1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 40 #include "internal.h" 41 42 #include <asm/irq_regs.h> 43 44 struct remote_function_call { 45 struct task_struct *p; 46 int (*func)(void *info); 47 void *info; 48 int ret; 49 }; 50 51 static void remote_function(void *data) 52 { 53 struct remote_function_call *tfc = data; 54 struct task_struct *p = tfc->p; 55 56 if (p) { 57 tfc->ret = -EAGAIN; 58 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 59 return; 60 } 61 62 tfc->ret = tfc->func(tfc->info); 63 } 64 65 /** 66 * task_function_call - call a function on the cpu on which a task runs 67 * @p: the task to evaluate 68 * @func: the function to be called 69 * @info: the function call argument 70 * 71 * Calls the function @func when the task is currently running. This might 72 * be on the current CPU, which just calls the function directly 73 * 74 * returns: @func return value, or 75 * -ESRCH - when the process isn't running 76 * -EAGAIN - when the process moved away 77 */ 78 static int 79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 80 { 81 struct remote_function_call data = { 82 .p = p, 83 .func = func, 84 .info = info, 85 .ret = -ESRCH, /* No such (running) process */ 86 }; 87 88 if (task_curr(p)) 89 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 90 91 return data.ret; 92 } 93 94 /** 95 * cpu_function_call - call a function on the cpu 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func on the remote cpu. 100 * 101 * returns: @func return value or -ENXIO when the cpu is offline 102 */ 103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 104 { 105 struct remote_function_call data = { 106 .p = NULL, 107 .func = func, 108 .info = info, 109 .ret = -ENXIO, /* No such CPU */ 110 }; 111 112 smp_call_function_single(cpu, remote_function, &data, 1); 113 114 return data.ret; 115 } 116 117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 118 PERF_FLAG_FD_OUTPUT |\ 119 PERF_FLAG_PID_CGROUP) 120 121 enum event_type_t { 122 EVENT_FLEXIBLE = 0x1, 123 EVENT_PINNED = 0x2, 124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 125 }; 126 127 /* 128 * perf_sched_events : >0 events exist 129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 130 */ 131 struct jump_label_key_deferred perf_sched_events __read_mostly; 132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 133 134 static atomic_t nr_mmap_events __read_mostly; 135 static atomic_t nr_comm_events __read_mostly; 136 static atomic_t nr_task_events __read_mostly; 137 138 static LIST_HEAD(pmus); 139 static DEFINE_MUTEX(pmus_lock); 140 static struct srcu_struct pmus_srcu; 141 142 /* 143 * perf event paranoia level: 144 * -1 - not paranoid at all 145 * 0 - disallow raw tracepoint access for unpriv 146 * 1 - disallow cpu events for unpriv 147 * 2 - disallow kernel profiling for unpriv 148 */ 149 int sysctl_perf_event_paranoid __read_mostly = 1; 150 151 /* Minimum for 512 kiB + 1 user control page */ 152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 153 154 /* 155 * max perf event sample rate 156 */ 157 #define DEFAULT_MAX_SAMPLE_RATE 100000 158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 159 static int max_samples_per_tick __read_mostly = 160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 161 162 int perf_proc_update_handler(struct ctl_table *table, int write, 163 void __user *buffer, size_t *lenp, 164 loff_t *ppos) 165 { 166 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 167 168 if (ret || !write) 169 return ret; 170 171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 172 173 return 0; 174 } 175 176 static atomic64_t perf_event_id; 177 178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 179 enum event_type_t event_type); 180 181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 182 enum event_type_t event_type, 183 struct task_struct *task); 184 185 static void update_context_time(struct perf_event_context *ctx); 186 static u64 perf_event_time(struct perf_event *event); 187 188 static void ring_buffer_attach(struct perf_event *event, 189 struct ring_buffer *rb); 190 191 void __weak perf_event_print_debug(void) { } 192 193 extern __weak const char *perf_pmu_name(void) 194 { 195 return "pmu"; 196 } 197 198 static inline u64 perf_clock(void) 199 { 200 return local_clock(); 201 } 202 203 static inline struct perf_cpu_context * 204 __get_cpu_context(struct perf_event_context *ctx) 205 { 206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 207 } 208 209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 210 struct perf_event_context *ctx) 211 { 212 raw_spin_lock(&cpuctx->ctx.lock); 213 if (ctx) 214 raw_spin_lock(&ctx->lock); 215 } 216 217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 218 struct perf_event_context *ctx) 219 { 220 if (ctx) 221 raw_spin_unlock(&ctx->lock); 222 raw_spin_unlock(&cpuctx->ctx.lock); 223 } 224 225 #ifdef CONFIG_CGROUP_PERF 226 227 /* 228 * Must ensure cgroup is pinned (css_get) before calling 229 * this function. In other words, we cannot call this function 230 * if there is no cgroup event for the current CPU context. 231 */ 232 static inline struct perf_cgroup * 233 perf_cgroup_from_task(struct task_struct *task) 234 { 235 return container_of(task_subsys_state(task, perf_subsys_id), 236 struct perf_cgroup, css); 237 } 238 239 static inline bool 240 perf_cgroup_match(struct perf_event *event) 241 { 242 struct perf_event_context *ctx = event->ctx; 243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 244 245 return !event->cgrp || event->cgrp == cpuctx->cgrp; 246 } 247 248 static inline void perf_get_cgroup(struct perf_event *event) 249 { 250 css_get(&event->cgrp->css); 251 } 252 253 static inline void perf_put_cgroup(struct perf_event *event) 254 { 255 css_put(&event->cgrp->css); 256 } 257 258 static inline void perf_detach_cgroup(struct perf_event *event) 259 { 260 perf_put_cgroup(event); 261 event->cgrp = NULL; 262 } 263 264 static inline int is_cgroup_event(struct perf_event *event) 265 { 266 return event->cgrp != NULL; 267 } 268 269 static inline u64 perf_cgroup_event_time(struct perf_event *event) 270 { 271 struct perf_cgroup_info *t; 272 273 t = per_cpu_ptr(event->cgrp->info, event->cpu); 274 return t->time; 275 } 276 277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 278 { 279 struct perf_cgroup_info *info; 280 u64 now; 281 282 now = perf_clock(); 283 284 info = this_cpu_ptr(cgrp->info); 285 286 info->time += now - info->timestamp; 287 info->timestamp = now; 288 } 289 290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 291 { 292 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 293 if (cgrp_out) 294 __update_cgrp_time(cgrp_out); 295 } 296 297 static inline void update_cgrp_time_from_event(struct perf_event *event) 298 { 299 struct perf_cgroup *cgrp; 300 301 /* 302 * ensure we access cgroup data only when needed and 303 * when we know the cgroup is pinned (css_get) 304 */ 305 if (!is_cgroup_event(event)) 306 return; 307 308 cgrp = perf_cgroup_from_task(current); 309 /* 310 * Do not update time when cgroup is not active 311 */ 312 if (cgrp == event->cgrp) 313 __update_cgrp_time(event->cgrp); 314 } 315 316 static inline void 317 perf_cgroup_set_timestamp(struct task_struct *task, 318 struct perf_event_context *ctx) 319 { 320 struct perf_cgroup *cgrp; 321 struct perf_cgroup_info *info; 322 323 /* 324 * ctx->lock held by caller 325 * ensure we do not access cgroup data 326 * unless we have the cgroup pinned (css_get) 327 */ 328 if (!task || !ctx->nr_cgroups) 329 return; 330 331 cgrp = perf_cgroup_from_task(task); 332 info = this_cpu_ptr(cgrp->info); 333 info->timestamp = ctx->timestamp; 334 } 335 336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 338 339 /* 340 * reschedule events based on the cgroup constraint of task. 341 * 342 * mode SWOUT : schedule out everything 343 * mode SWIN : schedule in based on cgroup for next 344 */ 345 void perf_cgroup_switch(struct task_struct *task, int mode) 346 { 347 struct perf_cpu_context *cpuctx; 348 struct pmu *pmu; 349 unsigned long flags; 350 351 /* 352 * disable interrupts to avoid geting nr_cgroup 353 * changes via __perf_event_disable(). Also 354 * avoids preemption. 355 */ 356 local_irq_save(flags); 357 358 /* 359 * we reschedule only in the presence of cgroup 360 * constrained events. 361 */ 362 rcu_read_lock(); 363 364 list_for_each_entry_rcu(pmu, &pmus, entry) { 365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 366 367 /* 368 * perf_cgroup_events says at least one 369 * context on this CPU has cgroup events. 370 * 371 * ctx->nr_cgroups reports the number of cgroup 372 * events for a context. 373 */ 374 if (cpuctx->ctx.nr_cgroups > 0) { 375 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 376 perf_pmu_disable(cpuctx->ctx.pmu); 377 378 if (mode & PERF_CGROUP_SWOUT) { 379 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 380 /* 381 * must not be done before ctxswout due 382 * to event_filter_match() in event_sched_out() 383 */ 384 cpuctx->cgrp = NULL; 385 } 386 387 if (mode & PERF_CGROUP_SWIN) { 388 WARN_ON_ONCE(cpuctx->cgrp); 389 /* set cgrp before ctxsw in to 390 * allow event_filter_match() to not 391 * have to pass task around 392 */ 393 cpuctx->cgrp = perf_cgroup_from_task(task); 394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 395 } 396 perf_pmu_enable(cpuctx->ctx.pmu); 397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 398 } 399 } 400 401 rcu_read_unlock(); 402 403 local_irq_restore(flags); 404 } 405 406 static inline void perf_cgroup_sched_out(struct task_struct *task, 407 struct task_struct *next) 408 { 409 struct perf_cgroup *cgrp1; 410 struct perf_cgroup *cgrp2 = NULL; 411 412 /* 413 * we come here when we know perf_cgroup_events > 0 414 */ 415 cgrp1 = perf_cgroup_from_task(task); 416 417 /* 418 * next is NULL when called from perf_event_enable_on_exec() 419 * that will systematically cause a cgroup_switch() 420 */ 421 if (next) 422 cgrp2 = perf_cgroup_from_task(next); 423 424 /* 425 * only schedule out current cgroup events if we know 426 * that we are switching to a different cgroup. Otherwise, 427 * do no touch the cgroup events. 428 */ 429 if (cgrp1 != cgrp2) 430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 431 } 432 433 static inline void perf_cgroup_sched_in(struct task_struct *prev, 434 struct task_struct *task) 435 { 436 struct perf_cgroup *cgrp1; 437 struct perf_cgroup *cgrp2 = NULL; 438 439 /* 440 * we come here when we know perf_cgroup_events > 0 441 */ 442 cgrp1 = perf_cgroup_from_task(task); 443 444 /* prev can never be NULL */ 445 cgrp2 = perf_cgroup_from_task(prev); 446 447 /* 448 * only need to schedule in cgroup events if we are changing 449 * cgroup during ctxsw. Cgroup events were not scheduled 450 * out of ctxsw out if that was not the case. 451 */ 452 if (cgrp1 != cgrp2) 453 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 454 } 455 456 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 457 struct perf_event_attr *attr, 458 struct perf_event *group_leader) 459 { 460 struct perf_cgroup *cgrp; 461 struct cgroup_subsys_state *css; 462 struct file *file; 463 int ret = 0, fput_needed; 464 465 file = fget_light(fd, &fput_needed); 466 if (!file) 467 return -EBADF; 468 469 css = cgroup_css_from_dir(file, perf_subsys_id); 470 if (IS_ERR(css)) { 471 ret = PTR_ERR(css); 472 goto out; 473 } 474 475 cgrp = container_of(css, struct perf_cgroup, css); 476 event->cgrp = cgrp; 477 478 /* must be done before we fput() the file */ 479 perf_get_cgroup(event); 480 481 /* 482 * all events in a group must monitor 483 * the same cgroup because a task belongs 484 * to only one perf cgroup at a time 485 */ 486 if (group_leader && group_leader->cgrp != cgrp) { 487 perf_detach_cgroup(event); 488 ret = -EINVAL; 489 } 490 out: 491 fput_light(file, fput_needed); 492 return ret; 493 } 494 495 static inline void 496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 497 { 498 struct perf_cgroup_info *t; 499 t = per_cpu_ptr(event->cgrp->info, event->cpu); 500 event->shadow_ctx_time = now - t->timestamp; 501 } 502 503 static inline void 504 perf_cgroup_defer_enabled(struct perf_event *event) 505 { 506 /* 507 * when the current task's perf cgroup does not match 508 * the event's, we need to remember to call the 509 * perf_mark_enable() function the first time a task with 510 * a matching perf cgroup is scheduled in. 511 */ 512 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 513 event->cgrp_defer_enabled = 1; 514 } 515 516 static inline void 517 perf_cgroup_mark_enabled(struct perf_event *event, 518 struct perf_event_context *ctx) 519 { 520 struct perf_event *sub; 521 u64 tstamp = perf_event_time(event); 522 523 if (!event->cgrp_defer_enabled) 524 return; 525 526 event->cgrp_defer_enabled = 0; 527 528 event->tstamp_enabled = tstamp - event->total_time_enabled; 529 list_for_each_entry(sub, &event->sibling_list, group_entry) { 530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 531 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 532 sub->cgrp_defer_enabled = 0; 533 } 534 } 535 } 536 #else /* !CONFIG_CGROUP_PERF */ 537 538 static inline bool 539 perf_cgroup_match(struct perf_event *event) 540 { 541 return true; 542 } 543 544 static inline void perf_detach_cgroup(struct perf_event *event) 545 {} 546 547 static inline int is_cgroup_event(struct perf_event *event) 548 { 549 return 0; 550 } 551 552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 553 { 554 return 0; 555 } 556 557 static inline void update_cgrp_time_from_event(struct perf_event *event) 558 { 559 } 560 561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 562 { 563 } 564 565 static inline void perf_cgroup_sched_out(struct task_struct *task, 566 struct task_struct *next) 567 { 568 } 569 570 static inline void perf_cgroup_sched_in(struct task_struct *prev, 571 struct task_struct *task) 572 { 573 } 574 575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 576 struct perf_event_attr *attr, 577 struct perf_event *group_leader) 578 { 579 return -EINVAL; 580 } 581 582 static inline void 583 perf_cgroup_set_timestamp(struct task_struct *task, 584 struct perf_event_context *ctx) 585 { 586 } 587 588 void 589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 590 { 591 } 592 593 static inline void 594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 595 { 596 } 597 598 static inline u64 perf_cgroup_event_time(struct perf_event *event) 599 { 600 return 0; 601 } 602 603 static inline void 604 perf_cgroup_defer_enabled(struct perf_event *event) 605 { 606 } 607 608 static inline void 609 perf_cgroup_mark_enabled(struct perf_event *event, 610 struct perf_event_context *ctx) 611 { 612 } 613 #endif 614 615 void perf_pmu_disable(struct pmu *pmu) 616 { 617 int *count = this_cpu_ptr(pmu->pmu_disable_count); 618 if (!(*count)++) 619 pmu->pmu_disable(pmu); 620 } 621 622 void perf_pmu_enable(struct pmu *pmu) 623 { 624 int *count = this_cpu_ptr(pmu->pmu_disable_count); 625 if (!--(*count)) 626 pmu->pmu_enable(pmu); 627 } 628 629 static DEFINE_PER_CPU(struct list_head, rotation_list); 630 631 /* 632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 633 * because they're strictly cpu affine and rotate_start is called with IRQs 634 * disabled, while rotate_context is called from IRQ context. 635 */ 636 static void perf_pmu_rotate_start(struct pmu *pmu) 637 { 638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 639 struct list_head *head = &__get_cpu_var(rotation_list); 640 641 WARN_ON(!irqs_disabled()); 642 643 if (list_empty(&cpuctx->rotation_list)) 644 list_add(&cpuctx->rotation_list, head); 645 } 646 647 static void get_ctx(struct perf_event_context *ctx) 648 { 649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 650 } 651 652 static void put_ctx(struct perf_event_context *ctx) 653 { 654 if (atomic_dec_and_test(&ctx->refcount)) { 655 if (ctx->parent_ctx) 656 put_ctx(ctx->parent_ctx); 657 if (ctx->task) 658 put_task_struct(ctx->task); 659 kfree_rcu(ctx, rcu_head); 660 } 661 } 662 663 static void unclone_ctx(struct perf_event_context *ctx) 664 { 665 if (ctx->parent_ctx) { 666 put_ctx(ctx->parent_ctx); 667 ctx->parent_ctx = NULL; 668 } 669 } 670 671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 672 { 673 /* 674 * only top level events have the pid namespace they were created in 675 */ 676 if (event->parent) 677 event = event->parent; 678 679 return task_tgid_nr_ns(p, event->ns); 680 } 681 682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 683 { 684 /* 685 * only top level events have the pid namespace they were created in 686 */ 687 if (event->parent) 688 event = event->parent; 689 690 return task_pid_nr_ns(p, event->ns); 691 } 692 693 /* 694 * If we inherit events we want to return the parent event id 695 * to userspace. 696 */ 697 static u64 primary_event_id(struct perf_event *event) 698 { 699 u64 id = event->id; 700 701 if (event->parent) 702 id = event->parent->id; 703 704 return id; 705 } 706 707 /* 708 * Get the perf_event_context for a task and lock it. 709 * This has to cope with with the fact that until it is locked, 710 * the context could get moved to another task. 711 */ 712 static struct perf_event_context * 713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 714 { 715 struct perf_event_context *ctx; 716 717 rcu_read_lock(); 718 retry: 719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 720 if (ctx) { 721 /* 722 * If this context is a clone of another, it might 723 * get swapped for another underneath us by 724 * perf_event_task_sched_out, though the 725 * rcu_read_lock() protects us from any context 726 * getting freed. Lock the context and check if it 727 * got swapped before we could get the lock, and retry 728 * if so. If we locked the right context, then it 729 * can't get swapped on us any more. 730 */ 731 raw_spin_lock_irqsave(&ctx->lock, *flags); 732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 733 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 734 goto retry; 735 } 736 737 if (!atomic_inc_not_zero(&ctx->refcount)) { 738 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 739 ctx = NULL; 740 } 741 } 742 rcu_read_unlock(); 743 return ctx; 744 } 745 746 /* 747 * Get the context for a task and increment its pin_count so it 748 * can't get swapped to another task. This also increments its 749 * reference count so that the context can't get freed. 750 */ 751 static struct perf_event_context * 752 perf_pin_task_context(struct task_struct *task, int ctxn) 753 { 754 struct perf_event_context *ctx; 755 unsigned long flags; 756 757 ctx = perf_lock_task_context(task, ctxn, &flags); 758 if (ctx) { 759 ++ctx->pin_count; 760 raw_spin_unlock_irqrestore(&ctx->lock, flags); 761 } 762 return ctx; 763 } 764 765 static void perf_unpin_context(struct perf_event_context *ctx) 766 { 767 unsigned long flags; 768 769 raw_spin_lock_irqsave(&ctx->lock, flags); 770 --ctx->pin_count; 771 raw_spin_unlock_irqrestore(&ctx->lock, flags); 772 } 773 774 /* 775 * Update the record of the current time in a context. 776 */ 777 static void update_context_time(struct perf_event_context *ctx) 778 { 779 u64 now = perf_clock(); 780 781 ctx->time += now - ctx->timestamp; 782 ctx->timestamp = now; 783 } 784 785 static u64 perf_event_time(struct perf_event *event) 786 { 787 struct perf_event_context *ctx = event->ctx; 788 789 if (is_cgroup_event(event)) 790 return perf_cgroup_event_time(event); 791 792 return ctx ? ctx->time : 0; 793 } 794 795 /* 796 * Update the total_time_enabled and total_time_running fields for a event. 797 * The caller of this function needs to hold the ctx->lock. 798 */ 799 static void update_event_times(struct perf_event *event) 800 { 801 struct perf_event_context *ctx = event->ctx; 802 u64 run_end; 803 804 if (event->state < PERF_EVENT_STATE_INACTIVE || 805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 806 return; 807 /* 808 * in cgroup mode, time_enabled represents 809 * the time the event was enabled AND active 810 * tasks were in the monitored cgroup. This is 811 * independent of the activity of the context as 812 * there may be a mix of cgroup and non-cgroup events. 813 * 814 * That is why we treat cgroup events differently 815 * here. 816 */ 817 if (is_cgroup_event(event)) 818 run_end = perf_cgroup_event_time(event); 819 else if (ctx->is_active) 820 run_end = ctx->time; 821 else 822 run_end = event->tstamp_stopped; 823 824 event->total_time_enabled = run_end - event->tstamp_enabled; 825 826 if (event->state == PERF_EVENT_STATE_INACTIVE) 827 run_end = event->tstamp_stopped; 828 else 829 run_end = perf_event_time(event); 830 831 event->total_time_running = run_end - event->tstamp_running; 832 833 } 834 835 /* 836 * Update total_time_enabled and total_time_running for all events in a group. 837 */ 838 static void update_group_times(struct perf_event *leader) 839 { 840 struct perf_event *event; 841 842 update_event_times(leader); 843 list_for_each_entry(event, &leader->sibling_list, group_entry) 844 update_event_times(event); 845 } 846 847 static struct list_head * 848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 849 { 850 if (event->attr.pinned) 851 return &ctx->pinned_groups; 852 else 853 return &ctx->flexible_groups; 854 } 855 856 /* 857 * Add a event from the lists for its context. 858 * Must be called with ctx->mutex and ctx->lock held. 859 */ 860 static void 861 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 862 { 863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 864 event->attach_state |= PERF_ATTACH_CONTEXT; 865 866 /* 867 * If we're a stand alone event or group leader, we go to the context 868 * list, group events are kept attached to the group so that 869 * perf_group_detach can, at all times, locate all siblings. 870 */ 871 if (event->group_leader == event) { 872 struct list_head *list; 873 874 if (is_software_event(event)) 875 event->group_flags |= PERF_GROUP_SOFTWARE; 876 877 list = ctx_group_list(event, ctx); 878 list_add_tail(&event->group_entry, list); 879 } 880 881 if (is_cgroup_event(event)) 882 ctx->nr_cgroups++; 883 884 list_add_rcu(&event->event_entry, &ctx->event_list); 885 if (!ctx->nr_events) 886 perf_pmu_rotate_start(ctx->pmu); 887 ctx->nr_events++; 888 if (event->attr.inherit_stat) 889 ctx->nr_stat++; 890 } 891 892 /* 893 * Called at perf_event creation and when events are attached/detached from a 894 * group. 895 */ 896 static void perf_event__read_size(struct perf_event *event) 897 { 898 int entry = sizeof(u64); /* value */ 899 int size = 0; 900 int nr = 1; 901 902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 903 size += sizeof(u64); 904 905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 906 size += sizeof(u64); 907 908 if (event->attr.read_format & PERF_FORMAT_ID) 909 entry += sizeof(u64); 910 911 if (event->attr.read_format & PERF_FORMAT_GROUP) { 912 nr += event->group_leader->nr_siblings; 913 size += sizeof(u64); 914 } 915 916 size += entry * nr; 917 event->read_size = size; 918 } 919 920 static void perf_event__header_size(struct perf_event *event) 921 { 922 struct perf_sample_data *data; 923 u64 sample_type = event->attr.sample_type; 924 u16 size = 0; 925 926 perf_event__read_size(event); 927 928 if (sample_type & PERF_SAMPLE_IP) 929 size += sizeof(data->ip); 930 931 if (sample_type & PERF_SAMPLE_ADDR) 932 size += sizeof(data->addr); 933 934 if (sample_type & PERF_SAMPLE_PERIOD) 935 size += sizeof(data->period); 936 937 if (sample_type & PERF_SAMPLE_READ) 938 size += event->read_size; 939 940 event->header_size = size; 941 } 942 943 static void perf_event__id_header_size(struct perf_event *event) 944 { 945 struct perf_sample_data *data; 946 u64 sample_type = event->attr.sample_type; 947 u16 size = 0; 948 949 if (sample_type & PERF_SAMPLE_TID) 950 size += sizeof(data->tid_entry); 951 952 if (sample_type & PERF_SAMPLE_TIME) 953 size += sizeof(data->time); 954 955 if (sample_type & PERF_SAMPLE_ID) 956 size += sizeof(data->id); 957 958 if (sample_type & PERF_SAMPLE_STREAM_ID) 959 size += sizeof(data->stream_id); 960 961 if (sample_type & PERF_SAMPLE_CPU) 962 size += sizeof(data->cpu_entry); 963 964 event->id_header_size = size; 965 } 966 967 static void perf_group_attach(struct perf_event *event) 968 { 969 struct perf_event *group_leader = event->group_leader, *pos; 970 971 /* 972 * We can have double attach due to group movement in perf_event_open. 973 */ 974 if (event->attach_state & PERF_ATTACH_GROUP) 975 return; 976 977 event->attach_state |= PERF_ATTACH_GROUP; 978 979 if (group_leader == event) 980 return; 981 982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 983 !is_software_event(event)) 984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 985 986 list_add_tail(&event->group_entry, &group_leader->sibling_list); 987 group_leader->nr_siblings++; 988 989 perf_event__header_size(group_leader); 990 991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 992 perf_event__header_size(pos); 993 } 994 995 /* 996 * Remove a event from the lists for its context. 997 * Must be called with ctx->mutex and ctx->lock held. 998 */ 999 static void 1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1001 { 1002 struct perf_cpu_context *cpuctx; 1003 /* 1004 * We can have double detach due to exit/hot-unplug + close. 1005 */ 1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1007 return; 1008 1009 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1010 1011 if (is_cgroup_event(event)) { 1012 ctx->nr_cgroups--; 1013 cpuctx = __get_cpu_context(ctx); 1014 /* 1015 * if there are no more cgroup events 1016 * then cler cgrp to avoid stale pointer 1017 * in update_cgrp_time_from_cpuctx() 1018 */ 1019 if (!ctx->nr_cgroups) 1020 cpuctx->cgrp = NULL; 1021 } 1022 1023 ctx->nr_events--; 1024 if (event->attr.inherit_stat) 1025 ctx->nr_stat--; 1026 1027 list_del_rcu(&event->event_entry); 1028 1029 if (event->group_leader == event) 1030 list_del_init(&event->group_entry); 1031 1032 update_group_times(event); 1033 1034 /* 1035 * If event was in error state, then keep it 1036 * that way, otherwise bogus counts will be 1037 * returned on read(). The only way to get out 1038 * of error state is by explicit re-enabling 1039 * of the event 1040 */ 1041 if (event->state > PERF_EVENT_STATE_OFF) 1042 event->state = PERF_EVENT_STATE_OFF; 1043 } 1044 1045 static void perf_group_detach(struct perf_event *event) 1046 { 1047 struct perf_event *sibling, *tmp; 1048 struct list_head *list = NULL; 1049 1050 /* 1051 * We can have double detach due to exit/hot-unplug + close. 1052 */ 1053 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1054 return; 1055 1056 event->attach_state &= ~PERF_ATTACH_GROUP; 1057 1058 /* 1059 * If this is a sibling, remove it from its group. 1060 */ 1061 if (event->group_leader != event) { 1062 list_del_init(&event->group_entry); 1063 event->group_leader->nr_siblings--; 1064 goto out; 1065 } 1066 1067 if (!list_empty(&event->group_entry)) 1068 list = &event->group_entry; 1069 1070 /* 1071 * If this was a group event with sibling events then 1072 * upgrade the siblings to singleton events by adding them 1073 * to whatever list we are on. 1074 */ 1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1076 if (list) 1077 list_move_tail(&sibling->group_entry, list); 1078 sibling->group_leader = sibling; 1079 1080 /* Inherit group flags from the previous leader */ 1081 sibling->group_flags = event->group_flags; 1082 } 1083 1084 out: 1085 perf_event__header_size(event->group_leader); 1086 1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1088 perf_event__header_size(tmp); 1089 } 1090 1091 static inline int 1092 event_filter_match(struct perf_event *event) 1093 { 1094 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1095 && perf_cgroup_match(event); 1096 } 1097 1098 static void 1099 event_sched_out(struct perf_event *event, 1100 struct perf_cpu_context *cpuctx, 1101 struct perf_event_context *ctx) 1102 { 1103 u64 tstamp = perf_event_time(event); 1104 u64 delta; 1105 /* 1106 * An event which could not be activated because of 1107 * filter mismatch still needs to have its timings 1108 * maintained, otherwise bogus information is return 1109 * via read() for time_enabled, time_running: 1110 */ 1111 if (event->state == PERF_EVENT_STATE_INACTIVE 1112 && !event_filter_match(event)) { 1113 delta = tstamp - event->tstamp_stopped; 1114 event->tstamp_running += delta; 1115 event->tstamp_stopped = tstamp; 1116 } 1117 1118 if (event->state != PERF_EVENT_STATE_ACTIVE) 1119 return; 1120 1121 event->state = PERF_EVENT_STATE_INACTIVE; 1122 if (event->pending_disable) { 1123 event->pending_disable = 0; 1124 event->state = PERF_EVENT_STATE_OFF; 1125 } 1126 event->tstamp_stopped = tstamp; 1127 event->pmu->del(event, 0); 1128 event->oncpu = -1; 1129 1130 if (!is_software_event(event)) 1131 cpuctx->active_oncpu--; 1132 ctx->nr_active--; 1133 if (event->attr.freq && event->attr.sample_freq) 1134 ctx->nr_freq--; 1135 if (event->attr.exclusive || !cpuctx->active_oncpu) 1136 cpuctx->exclusive = 0; 1137 } 1138 1139 static void 1140 group_sched_out(struct perf_event *group_event, 1141 struct perf_cpu_context *cpuctx, 1142 struct perf_event_context *ctx) 1143 { 1144 struct perf_event *event; 1145 int state = group_event->state; 1146 1147 event_sched_out(group_event, cpuctx, ctx); 1148 1149 /* 1150 * Schedule out siblings (if any): 1151 */ 1152 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1153 event_sched_out(event, cpuctx, ctx); 1154 1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1156 cpuctx->exclusive = 0; 1157 } 1158 1159 /* 1160 * Cross CPU call to remove a performance event 1161 * 1162 * We disable the event on the hardware level first. After that we 1163 * remove it from the context list. 1164 */ 1165 static int __perf_remove_from_context(void *info) 1166 { 1167 struct perf_event *event = info; 1168 struct perf_event_context *ctx = event->ctx; 1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1170 1171 raw_spin_lock(&ctx->lock); 1172 event_sched_out(event, cpuctx, ctx); 1173 list_del_event(event, ctx); 1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1175 ctx->is_active = 0; 1176 cpuctx->task_ctx = NULL; 1177 } 1178 raw_spin_unlock(&ctx->lock); 1179 1180 return 0; 1181 } 1182 1183 1184 /* 1185 * Remove the event from a task's (or a CPU's) list of events. 1186 * 1187 * CPU events are removed with a smp call. For task events we only 1188 * call when the task is on a CPU. 1189 * 1190 * If event->ctx is a cloned context, callers must make sure that 1191 * every task struct that event->ctx->task could possibly point to 1192 * remains valid. This is OK when called from perf_release since 1193 * that only calls us on the top-level context, which can't be a clone. 1194 * When called from perf_event_exit_task, it's OK because the 1195 * context has been detached from its task. 1196 */ 1197 static void perf_remove_from_context(struct perf_event *event) 1198 { 1199 struct perf_event_context *ctx = event->ctx; 1200 struct task_struct *task = ctx->task; 1201 1202 lockdep_assert_held(&ctx->mutex); 1203 1204 if (!task) { 1205 /* 1206 * Per cpu events are removed via an smp call and 1207 * the removal is always successful. 1208 */ 1209 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1210 return; 1211 } 1212 1213 retry: 1214 if (!task_function_call(task, __perf_remove_from_context, event)) 1215 return; 1216 1217 raw_spin_lock_irq(&ctx->lock); 1218 /* 1219 * If we failed to find a running task, but find the context active now 1220 * that we've acquired the ctx->lock, retry. 1221 */ 1222 if (ctx->is_active) { 1223 raw_spin_unlock_irq(&ctx->lock); 1224 goto retry; 1225 } 1226 1227 /* 1228 * Since the task isn't running, its safe to remove the event, us 1229 * holding the ctx->lock ensures the task won't get scheduled in. 1230 */ 1231 list_del_event(event, ctx); 1232 raw_spin_unlock_irq(&ctx->lock); 1233 } 1234 1235 /* 1236 * Cross CPU call to disable a performance event 1237 */ 1238 static int __perf_event_disable(void *info) 1239 { 1240 struct perf_event *event = info; 1241 struct perf_event_context *ctx = event->ctx; 1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1243 1244 /* 1245 * If this is a per-task event, need to check whether this 1246 * event's task is the current task on this cpu. 1247 * 1248 * Can trigger due to concurrent perf_event_context_sched_out() 1249 * flipping contexts around. 1250 */ 1251 if (ctx->task && cpuctx->task_ctx != ctx) 1252 return -EINVAL; 1253 1254 raw_spin_lock(&ctx->lock); 1255 1256 /* 1257 * If the event is on, turn it off. 1258 * If it is in error state, leave it in error state. 1259 */ 1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1261 update_context_time(ctx); 1262 update_cgrp_time_from_event(event); 1263 update_group_times(event); 1264 if (event == event->group_leader) 1265 group_sched_out(event, cpuctx, ctx); 1266 else 1267 event_sched_out(event, cpuctx, ctx); 1268 event->state = PERF_EVENT_STATE_OFF; 1269 } 1270 1271 raw_spin_unlock(&ctx->lock); 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * Disable a event. 1278 * 1279 * If event->ctx is a cloned context, callers must make sure that 1280 * every task struct that event->ctx->task could possibly point to 1281 * remains valid. This condition is satisifed when called through 1282 * perf_event_for_each_child or perf_event_for_each because they 1283 * hold the top-level event's child_mutex, so any descendant that 1284 * goes to exit will block in sync_child_event. 1285 * When called from perf_pending_event it's OK because event->ctx 1286 * is the current context on this CPU and preemption is disabled, 1287 * hence we can't get into perf_event_task_sched_out for this context. 1288 */ 1289 void perf_event_disable(struct perf_event *event) 1290 { 1291 struct perf_event_context *ctx = event->ctx; 1292 struct task_struct *task = ctx->task; 1293 1294 if (!task) { 1295 /* 1296 * Disable the event on the cpu that it's on 1297 */ 1298 cpu_function_call(event->cpu, __perf_event_disable, event); 1299 return; 1300 } 1301 1302 retry: 1303 if (!task_function_call(task, __perf_event_disable, event)) 1304 return; 1305 1306 raw_spin_lock_irq(&ctx->lock); 1307 /* 1308 * If the event is still active, we need to retry the cross-call. 1309 */ 1310 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1311 raw_spin_unlock_irq(&ctx->lock); 1312 /* 1313 * Reload the task pointer, it might have been changed by 1314 * a concurrent perf_event_context_sched_out(). 1315 */ 1316 task = ctx->task; 1317 goto retry; 1318 } 1319 1320 /* 1321 * Since we have the lock this context can't be scheduled 1322 * in, so we can change the state safely. 1323 */ 1324 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1325 update_group_times(event); 1326 event->state = PERF_EVENT_STATE_OFF; 1327 } 1328 raw_spin_unlock_irq(&ctx->lock); 1329 } 1330 EXPORT_SYMBOL_GPL(perf_event_disable); 1331 1332 static void perf_set_shadow_time(struct perf_event *event, 1333 struct perf_event_context *ctx, 1334 u64 tstamp) 1335 { 1336 /* 1337 * use the correct time source for the time snapshot 1338 * 1339 * We could get by without this by leveraging the 1340 * fact that to get to this function, the caller 1341 * has most likely already called update_context_time() 1342 * and update_cgrp_time_xx() and thus both timestamp 1343 * are identical (or very close). Given that tstamp is, 1344 * already adjusted for cgroup, we could say that: 1345 * tstamp - ctx->timestamp 1346 * is equivalent to 1347 * tstamp - cgrp->timestamp. 1348 * 1349 * Then, in perf_output_read(), the calculation would 1350 * work with no changes because: 1351 * - event is guaranteed scheduled in 1352 * - no scheduled out in between 1353 * - thus the timestamp would be the same 1354 * 1355 * But this is a bit hairy. 1356 * 1357 * So instead, we have an explicit cgroup call to remain 1358 * within the time time source all along. We believe it 1359 * is cleaner and simpler to understand. 1360 */ 1361 if (is_cgroup_event(event)) 1362 perf_cgroup_set_shadow_time(event, tstamp); 1363 else 1364 event->shadow_ctx_time = tstamp - ctx->timestamp; 1365 } 1366 1367 #define MAX_INTERRUPTS (~0ULL) 1368 1369 static void perf_log_throttle(struct perf_event *event, int enable); 1370 1371 static int 1372 event_sched_in(struct perf_event *event, 1373 struct perf_cpu_context *cpuctx, 1374 struct perf_event_context *ctx) 1375 { 1376 u64 tstamp = perf_event_time(event); 1377 1378 if (event->state <= PERF_EVENT_STATE_OFF) 1379 return 0; 1380 1381 event->state = PERF_EVENT_STATE_ACTIVE; 1382 event->oncpu = smp_processor_id(); 1383 1384 /* 1385 * Unthrottle events, since we scheduled we might have missed several 1386 * ticks already, also for a heavily scheduling task there is little 1387 * guarantee it'll get a tick in a timely manner. 1388 */ 1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1390 perf_log_throttle(event, 1); 1391 event->hw.interrupts = 0; 1392 } 1393 1394 /* 1395 * The new state must be visible before we turn it on in the hardware: 1396 */ 1397 smp_wmb(); 1398 1399 if (event->pmu->add(event, PERF_EF_START)) { 1400 event->state = PERF_EVENT_STATE_INACTIVE; 1401 event->oncpu = -1; 1402 return -EAGAIN; 1403 } 1404 1405 event->tstamp_running += tstamp - event->tstamp_stopped; 1406 1407 perf_set_shadow_time(event, ctx, tstamp); 1408 1409 if (!is_software_event(event)) 1410 cpuctx->active_oncpu++; 1411 ctx->nr_active++; 1412 if (event->attr.freq && event->attr.sample_freq) 1413 ctx->nr_freq++; 1414 1415 if (event->attr.exclusive) 1416 cpuctx->exclusive = 1; 1417 1418 return 0; 1419 } 1420 1421 static int 1422 group_sched_in(struct perf_event *group_event, 1423 struct perf_cpu_context *cpuctx, 1424 struct perf_event_context *ctx) 1425 { 1426 struct perf_event *event, *partial_group = NULL; 1427 struct pmu *pmu = group_event->pmu; 1428 u64 now = ctx->time; 1429 bool simulate = false; 1430 1431 if (group_event->state == PERF_EVENT_STATE_OFF) 1432 return 0; 1433 1434 pmu->start_txn(pmu); 1435 1436 if (event_sched_in(group_event, cpuctx, ctx)) { 1437 pmu->cancel_txn(pmu); 1438 return -EAGAIN; 1439 } 1440 1441 /* 1442 * Schedule in siblings as one group (if any): 1443 */ 1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1445 if (event_sched_in(event, cpuctx, ctx)) { 1446 partial_group = event; 1447 goto group_error; 1448 } 1449 } 1450 1451 if (!pmu->commit_txn(pmu)) 1452 return 0; 1453 1454 group_error: 1455 /* 1456 * Groups can be scheduled in as one unit only, so undo any 1457 * partial group before returning: 1458 * The events up to the failed event are scheduled out normally, 1459 * tstamp_stopped will be updated. 1460 * 1461 * The failed events and the remaining siblings need to have 1462 * their timings updated as if they had gone thru event_sched_in() 1463 * and event_sched_out(). This is required to get consistent timings 1464 * across the group. This also takes care of the case where the group 1465 * could never be scheduled by ensuring tstamp_stopped is set to mark 1466 * the time the event was actually stopped, such that time delta 1467 * calculation in update_event_times() is correct. 1468 */ 1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1470 if (event == partial_group) 1471 simulate = true; 1472 1473 if (simulate) { 1474 event->tstamp_running += now - event->tstamp_stopped; 1475 event->tstamp_stopped = now; 1476 } else { 1477 event_sched_out(event, cpuctx, ctx); 1478 } 1479 } 1480 event_sched_out(group_event, cpuctx, ctx); 1481 1482 pmu->cancel_txn(pmu); 1483 1484 return -EAGAIN; 1485 } 1486 1487 /* 1488 * Work out whether we can put this event group on the CPU now. 1489 */ 1490 static int group_can_go_on(struct perf_event *event, 1491 struct perf_cpu_context *cpuctx, 1492 int can_add_hw) 1493 { 1494 /* 1495 * Groups consisting entirely of software events can always go on. 1496 */ 1497 if (event->group_flags & PERF_GROUP_SOFTWARE) 1498 return 1; 1499 /* 1500 * If an exclusive group is already on, no other hardware 1501 * events can go on. 1502 */ 1503 if (cpuctx->exclusive) 1504 return 0; 1505 /* 1506 * If this group is exclusive and there are already 1507 * events on the CPU, it can't go on. 1508 */ 1509 if (event->attr.exclusive && cpuctx->active_oncpu) 1510 return 0; 1511 /* 1512 * Otherwise, try to add it if all previous groups were able 1513 * to go on. 1514 */ 1515 return can_add_hw; 1516 } 1517 1518 static void add_event_to_ctx(struct perf_event *event, 1519 struct perf_event_context *ctx) 1520 { 1521 u64 tstamp = perf_event_time(event); 1522 1523 list_add_event(event, ctx); 1524 perf_group_attach(event); 1525 event->tstamp_enabled = tstamp; 1526 event->tstamp_running = tstamp; 1527 event->tstamp_stopped = tstamp; 1528 } 1529 1530 static void task_ctx_sched_out(struct perf_event_context *ctx); 1531 static void 1532 ctx_sched_in(struct perf_event_context *ctx, 1533 struct perf_cpu_context *cpuctx, 1534 enum event_type_t event_type, 1535 struct task_struct *task); 1536 1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1538 struct perf_event_context *ctx, 1539 struct task_struct *task) 1540 { 1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1542 if (ctx) 1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1545 if (ctx) 1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1547 } 1548 1549 /* 1550 * Cross CPU call to install and enable a performance event 1551 * 1552 * Must be called with ctx->mutex held 1553 */ 1554 static int __perf_install_in_context(void *info) 1555 { 1556 struct perf_event *event = info; 1557 struct perf_event_context *ctx = event->ctx; 1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1559 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1560 struct task_struct *task = current; 1561 1562 perf_ctx_lock(cpuctx, task_ctx); 1563 perf_pmu_disable(cpuctx->ctx.pmu); 1564 1565 /* 1566 * If there was an active task_ctx schedule it out. 1567 */ 1568 if (task_ctx) 1569 task_ctx_sched_out(task_ctx); 1570 1571 /* 1572 * If the context we're installing events in is not the 1573 * active task_ctx, flip them. 1574 */ 1575 if (ctx->task && task_ctx != ctx) { 1576 if (task_ctx) 1577 raw_spin_unlock(&task_ctx->lock); 1578 raw_spin_lock(&ctx->lock); 1579 task_ctx = ctx; 1580 } 1581 1582 if (task_ctx) { 1583 cpuctx->task_ctx = task_ctx; 1584 task = task_ctx->task; 1585 } 1586 1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1588 1589 update_context_time(ctx); 1590 /* 1591 * update cgrp time only if current cgrp 1592 * matches event->cgrp. Must be done before 1593 * calling add_event_to_ctx() 1594 */ 1595 update_cgrp_time_from_event(event); 1596 1597 add_event_to_ctx(event, ctx); 1598 1599 /* 1600 * Schedule everything back in 1601 */ 1602 perf_event_sched_in(cpuctx, task_ctx, task); 1603 1604 perf_pmu_enable(cpuctx->ctx.pmu); 1605 perf_ctx_unlock(cpuctx, task_ctx); 1606 1607 return 0; 1608 } 1609 1610 /* 1611 * Attach a performance event to a context 1612 * 1613 * First we add the event to the list with the hardware enable bit 1614 * in event->hw_config cleared. 1615 * 1616 * If the event is attached to a task which is on a CPU we use a smp 1617 * call to enable it in the task context. The task might have been 1618 * scheduled away, but we check this in the smp call again. 1619 */ 1620 static void 1621 perf_install_in_context(struct perf_event_context *ctx, 1622 struct perf_event *event, 1623 int cpu) 1624 { 1625 struct task_struct *task = ctx->task; 1626 1627 lockdep_assert_held(&ctx->mutex); 1628 1629 event->ctx = ctx; 1630 1631 if (!task) { 1632 /* 1633 * Per cpu events are installed via an smp call and 1634 * the install is always successful. 1635 */ 1636 cpu_function_call(cpu, __perf_install_in_context, event); 1637 return; 1638 } 1639 1640 retry: 1641 if (!task_function_call(task, __perf_install_in_context, event)) 1642 return; 1643 1644 raw_spin_lock_irq(&ctx->lock); 1645 /* 1646 * If we failed to find a running task, but find the context active now 1647 * that we've acquired the ctx->lock, retry. 1648 */ 1649 if (ctx->is_active) { 1650 raw_spin_unlock_irq(&ctx->lock); 1651 goto retry; 1652 } 1653 1654 /* 1655 * Since the task isn't running, its safe to add the event, us holding 1656 * the ctx->lock ensures the task won't get scheduled in. 1657 */ 1658 add_event_to_ctx(event, ctx); 1659 raw_spin_unlock_irq(&ctx->lock); 1660 } 1661 1662 /* 1663 * Put a event into inactive state and update time fields. 1664 * Enabling the leader of a group effectively enables all 1665 * the group members that aren't explicitly disabled, so we 1666 * have to update their ->tstamp_enabled also. 1667 * Note: this works for group members as well as group leaders 1668 * since the non-leader members' sibling_lists will be empty. 1669 */ 1670 static void __perf_event_mark_enabled(struct perf_event *event) 1671 { 1672 struct perf_event *sub; 1673 u64 tstamp = perf_event_time(event); 1674 1675 event->state = PERF_EVENT_STATE_INACTIVE; 1676 event->tstamp_enabled = tstamp - event->total_time_enabled; 1677 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1680 } 1681 } 1682 1683 /* 1684 * Cross CPU call to enable a performance event 1685 */ 1686 static int __perf_event_enable(void *info) 1687 { 1688 struct perf_event *event = info; 1689 struct perf_event_context *ctx = event->ctx; 1690 struct perf_event *leader = event->group_leader; 1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1692 int err; 1693 1694 if (WARN_ON_ONCE(!ctx->is_active)) 1695 return -EINVAL; 1696 1697 raw_spin_lock(&ctx->lock); 1698 update_context_time(ctx); 1699 1700 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1701 goto unlock; 1702 1703 /* 1704 * set current task's cgroup time reference point 1705 */ 1706 perf_cgroup_set_timestamp(current, ctx); 1707 1708 __perf_event_mark_enabled(event); 1709 1710 if (!event_filter_match(event)) { 1711 if (is_cgroup_event(event)) 1712 perf_cgroup_defer_enabled(event); 1713 goto unlock; 1714 } 1715 1716 /* 1717 * If the event is in a group and isn't the group leader, 1718 * then don't put it on unless the group is on. 1719 */ 1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1721 goto unlock; 1722 1723 if (!group_can_go_on(event, cpuctx, 1)) { 1724 err = -EEXIST; 1725 } else { 1726 if (event == leader) 1727 err = group_sched_in(event, cpuctx, ctx); 1728 else 1729 err = event_sched_in(event, cpuctx, ctx); 1730 } 1731 1732 if (err) { 1733 /* 1734 * If this event can't go on and it's part of a 1735 * group, then the whole group has to come off. 1736 */ 1737 if (leader != event) 1738 group_sched_out(leader, cpuctx, ctx); 1739 if (leader->attr.pinned) { 1740 update_group_times(leader); 1741 leader->state = PERF_EVENT_STATE_ERROR; 1742 } 1743 } 1744 1745 unlock: 1746 raw_spin_unlock(&ctx->lock); 1747 1748 return 0; 1749 } 1750 1751 /* 1752 * Enable a event. 1753 * 1754 * If event->ctx is a cloned context, callers must make sure that 1755 * every task struct that event->ctx->task could possibly point to 1756 * remains valid. This condition is satisfied when called through 1757 * perf_event_for_each_child or perf_event_for_each as described 1758 * for perf_event_disable. 1759 */ 1760 void perf_event_enable(struct perf_event *event) 1761 { 1762 struct perf_event_context *ctx = event->ctx; 1763 struct task_struct *task = ctx->task; 1764 1765 if (!task) { 1766 /* 1767 * Enable the event on the cpu that it's on 1768 */ 1769 cpu_function_call(event->cpu, __perf_event_enable, event); 1770 return; 1771 } 1772 1773 raw_spin_lock_irq(&ctx->lock); 1774 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1775 goto out; 1776 1777 /* 1778 * If the event is in error state, clear that first. 1779 * That way, if we see the event in error state below, we 1780 * know that it has gone back into error state, as distinct 1781 * from the task having been scheduled away before the 1782 * cross-call arrived. 1783 */ 1784 if (event->state == PERF_EVENT_STATE_ERROR) 1785 event->state = PERF_EVENT_STATE_OFF; 1786 1787 retry: 1788 if (!ctx->is_active) { 1789 __perf_event_mark_enabled(event); 1790 goto out; 1791 } 1792 1793 raw_spin_unlock_irq(&ctx->lock); 1794 1795 if (!task_function_call(task, __perf_event_enable, event)) 1796 return; 1797 1798 raw_spin_lock_irq(&ctx->lock); 1799 1800 /* 1801 * If the context is active and the event is still off, 1802 * we need to retry the cross-call. 1803 */ 1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1805 /* 1806 * task could have been flipped by a concurrent 1807 * perf_event_context_sched_out() 1808 */ 1809 task = ctx->task; 1810 goto retry; 1811 } 1812 1813 out: 1814 raw_spin_unlock_irq(&ctx->lock); 1815 } 1816 EXPORT_SYMBOL_GPL(perf_event_enable); 1817 1818 int perf_event_refresh(struct perf_event *event, int refresh) 1819 { 1820 /* 1821 * not supported on inherited events 1822 */ 1823 if (event->attr.inherit || !is_sampling_event(event)) 1824 return -EINVAL; 1825 1826 atomic_add(refresh, &event->event_limit); 1827 perf_event_enable(event); 1828 1829 return 0; 1830 } 1831 EXPORT_SYMBOL_GPL(perf_event_refresh); 1832 1833 static void ctx_sched_out(struct perf_event_context *ctx, 1834 struct perf_cpu_context *cpuctx, 1835 enum event_type_t event_type) 1836 { 1837 struct perf_event *event; 1838 int is_active = ctx->is_active; 1839 1840 ctx->is_active &= ~event_type; 1841 if (likely(!ctx->nr_events)) 1842 return; 1843 1844 update_context_time(ctx); 1845 update_cgrp_time_from_cpuctx(cpuctx); 1846 if (!ctx->nr_active) 1847 return; 1848 1849 perf_pmu_disable(ctx->pmu); 1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1852 group_sched_out(event, cpuctx, ctx); 1853 } 1854 1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1857 group_sched_out(event, cpuctx, ctx); 1858 } 1859 perf_pmu_enable(ctx->pmu); 1860 } 1861 1862 /* 1863 * Test whether two contexts are equivalent, i.e. whether they 1864 * have both been cloned from the same version of the same context 1865 * and they both have the same number of enabled events. 1866 * If the number of enabled events is the same, then the set 1867 * of enabled events should be the same, because these are both 1868 * inherited contexts, therefore we can't access individual events 1869 * in them directly with an fd; we can only enable/disable all 1870 * events via prctl, or enable/disable all events in a family 1871 * via ioctl, which will have the same effect on both contexts. 1872 */ 1873 static int context_equiv(struct perf_event_context *ctx1, 1874 struct perf_event_context *ctx2) 1875 { 1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1877 && ctx1->parent_gen == ctx2->parent_gen 1878 && !ctx1->pin_count && !ctx2->pin_count; 1879 } 1880 1881 static void __perf_event_sync_stat(struct perf_event *event, 1882 struct perf_event *next_event) 1883 { 1884 u64 value; 1885 1886 if (!event->attr.inherit_stat) 1887 return; 1888 1889 /* 1890 * Update the event value, we cannot use perf_event_read() 1891 * because we're in the middle of a context switch and have IRQs 1892 * disabled, which upsets smp_call_function_single(), however 1893 * we know the event must be on the current CPU, therefore we 1894 * don't need to use it. 1895 */ 1896 switch (event->state) { 1897 case PERF_EVENT_STATE_ACTIVE: 1898 event->pmu->read(event); 1899 /* fall-through */ 1900 1901 case PERF_EVENT_STATE_INACTIVE: 1902 update_event_times(event); 1903 break; 1904 1905 default: 1906 break; 1907 } 1908 1909 /* 1910 * In order to keep per-task stats reliable we need to flip the event 1911 * values when we flip the contexts. 1912 */ 1913 value = local64_read(&next_event->count); 1914 value = local64_xchg(&event->count, value); 1915 local64_set(&next_event->count, value); 1916 1917 swap(event->total_time_enabled, next_event->total_time_enabled); 1918 swap(event->total_time_running, next_event->total_time_running); 1919 1920 /* 1921 * Since we swizzled the values, update the user visible data too. 1922 */ 1923 perf_event_update_userpage(event); 1924 perf_event_update_userpage(next_event); 1925 } 1926 1927 #define list_next_entry(pos, member) \ 1928 list_entry(pos->member.next, typeof(*pos), member) 1929 1930 static void perf_event_sync_stat(struct perf_event_context *ctx, 1931 struct perf_event_context *next_ctx) 1932 { 1933 struct perf_event *event, *next_event; 1934 1935 if (!ctx->nr_stat) 1936 return; 1937 1938 update_context_time(ctx); 1939 1940 event = list_first_entry(&ctx->event_list, 1941 struct perf_event, event_entry); 1942 1943 next_event = list_first_entry(&next_ctx->event_list, 1944 struct perf_event, event_entry); 1945 1946 while (&event->event_entry != &ctx->event_list && 1947 &next_event->event_entry != &next_ctx->event_list) { 1948 1949 __perf_event_sync_stat(event, next_event); 1950 1951 event = list_next_entry(event, event_entry); 1952 next_event = list_next_entry(next_event, event_entry); 1953 } 1954 } 1955 1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1957 struct task_struct *next) 1958 { 1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1960 struct perf_event_context *next_ctx; 1961 struct perf_event_context *parent; 1962 struct perf_cpu_context *cpuctx; 1963 int do_switch = 1; 1964 1965 if (likely(!ctx)) 1966 return; 1967 1968 cpuctx = __get_cpu_context(ctx); 1969 if (!cpuctx->task_ctx) 1970 return; 1971 1972 rcu_read_lock(); 1973 parent = rcu_dereference(ctx->parent_ctx); 1974 next_ctx = next->perf_event_ctxp[ctxn]; 1975 if (parent && next_ctx && 1976 rcu_dereference(next_ctx->parent_ctx) == parent) { 1977 /* 1978 * Looks like the two contexts are clones, so we might be 1979 * able to optimize the context switch. We lock both 1980 * contexts and check that they are clones under the 1981 * lock (including re-checking that neither has been 1982 * uncloned in the meantime). It doesn't matter which 1983 * order we take the locks because no other cpu could 1984 * be trying to lock both of these tasks. 1985 */ 1986 raw_spin_lock(&ctx->lock); 1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 1988 if (context_equiv(ctx, next_ctx)) { 1989 /* 1990 * XXX do we need a memory barrier of sorts 1991 * wrt to rcu_dereference() of perf_event_ctxp 1992 */ 1993 task->perf_event_ctxp[ctxn] = next_ctx; 1994 next->perf_event_ctxp[ctxn] = ctx; 1995 ctx->task = next; 1996 next_ctx->task = task; 1997 do_switch = 0; 1998 1999 perf_event_sync_stat(ctx, next_ctx); 2000 } 2001 raw_spin_unlock(&next_ctx->lock); 2002 raw_spin_unlock(&ctx->lock); 2003 } 2004 rcu_read_unlock(); 2005 2006 if (do_switch) { 2007 raw_spin_lock(&ctx->lock); 2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2009 cpuctx->task_ctx = NULL; 2010 raw_spin_unlock(&ctx->lock); 2011 } 2012 } 2013 2014 #define for_each_task_context_nr(ctxn) \ 2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2016 2017 /* 2018 * Called from scheduler to remove the events of the current task, 2019 * with interrupts disabled. 2020 * 2021 * We stop each event and update the event value in event->count. 2022 * 2023 * This does not protect us against NMI, but disable() 2024 * sets the disabled bit in the control field of event _before_ 2025 * accessing the event control register. If a NMI hits, then it will 2026 * not restart the event. 2027 */ 2028 void __perf_event_task_sched_out(struct task_struct *task, 2029 struct task_struct *next) 2030 { 2031 int ctxn; 2032 2033 for_each_task_context_nr(ctxn) 2034 perf_event_context_sched_out(task, ctxn, next); 2035 2036 /* 2037 * if cgroup events exist on this CPU, then we need 2038 * to check if we have to switch out PMU state. 2039 * cgroup event are system-wide mode only 2040 */ 2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2042 perf_cgroup_sched_out(task, next); 2043 } 2044 2045 static void task_ctx_sched_out(struct perf_event_context *ctx) 2046 { 2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2048 2049 if (!cpuctx->task_ctx) 2050 return; 2051 2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2053 return; 2054 2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2056 cpuctx->task_ctx = NULL; 2057 } 2058 2059 /* 2060 * Called with IRQs disabled 2061 */ 2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2063 enum event_type_t event_type) 2064 { 2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2066 } 2067 2068 static void 2069 ctx_pinned_sched_in(struct perf_event_context *ctx, 2070 struct perf_cpu_context *cpuctx) 2071 { 2072 struct perf_event *event; 2073 2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2075 if (event->state <= PERF_EVENT_STATE_OFF) 2076 continue; 2077 if (!event_filter_match(event)) 2078 continue; 2079 2080 /* may need to reset tstamp_enabled */ 2081 if (is_cgroup_event(event)) 2082 perf_cgroup_mark_enabled(event, ctx); 2083 2084 if (group_can_go_on(event, cpuctx, 1)) 2085 group_sched_in(event, cpuctx, ctx); 2086 2087 /* 2088 * If this pinned group hasn't been scheduled, 2089 * put it in error state. 2090 */ 2091 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2092 update_group_times(event); 2093 event->state = PERF_EVENT_STATE_ERROR; 2094 } 2095 } 2096 } 2097 2098 static void 2099 ctx_flexible_sched_in(struct perf_event_context *ctx, 2100 struct perf_cpu_context *cpuctx) 2101 { 2102 struct perf_event *event; 2103 int can_add_hw = 1; 2104 2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2106 /* Ignore events in OFF or ERROR state */ 2107 if (event->state <= PERF_EVENT_STATE_OFF) 2108 continue; 2109 /* 2110 * Listen to the 'cpu' scheduling filter constraint 2111 * of events: 2112 */ 2113 if (!event_filter_match(event)) 2114 continue; 2115 2116 /* may need to reset tstamp_enabled */ 2117 if (is_cgroup_event(event)) 2118 perf_cgroup_mark_enabled(event, ctx); 2119 2120 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2121 if (group_sched_in(event, cpuctx, ctx)) 2122 can_add_hw = 0; 2123 } 2124 } 2125 } 2126 2127 static void 2128 ctx_sched_in(struct perf_event_context *ctx, 2129 struct perf_cpu_context *cpuctx, 2130 enum event_type_t event_type, 2131 struct task_struct *task) 2132 { 2133 u64 now; 2134 int is_active = ctx->is_active; 2135 2136 ctx->is_active |= event_type; 2137 if (likely(!ctx->nr_events)) 2138 return; 2139 2140 now = perf_clock(); 2141 ctx->timestamp = now; 2142 perf_cgroup_set_timestamp(task, ctx); 2143 /* 2144 * First go through the list and put on any pinned groups 2145 * in order to give them the best chance of going on. 2146 */ 2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2148 ctx_pinned_sched_in(ctx, cpuctx); 2149 2150 /* Then walk through the lower prio flexible groups */ 2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2152 ctx_flexible_sched_in(ctx, cpuctx); 2153 } 2154 2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2156 enum event_type_t event_type, 2157 struct task_struct *task) 2158 { 2159 struct perf_event_context *ctx = &cpuctx->ctx; 2160 2161 ctx_sched_in(ctx, cpuctx, event_type, task); 2162 } 2163 2164 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2165 struct task_struct *task) 2166 { 2167 struct perf_cpu_context *cpuctx; 2168 2169 cpuctx = __get_cpu_context(ctx); 2170 if (cpuctx->task_ctx == ctx) 2171 return; 2172 2173 perf_ctx_lock(cpuctx, ctx); 2174 perf_pmu_disable(ctx->pmu); 2175 /* 2176 * We want to keep the following priority order: 2177 * cpu pinned (that don't need to move), task pinned, 2178 * cpu flexible, task flexible. 2179 */ 2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2181 2182 if (ctx->nr_events) 2183 cpuctx->task_ctx = ctx; 2184 2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2186 2187 perf_pmu_enable(ctx->pmu); 2188 perf_ctx_unlock(cpuctx, ctx); 2189 2190 /* 2191 * Since these rotations are per-cpu, we need to ensure the 2192 * cpu-context we got scheduled on is actually rotating. 2193 */ 2194 perf_pmu_rotate_start(ctx->pmu); 2195 } 2196 2197 /* 2198 * Called from scheduler to add the events of the current task 2199 * with interrupts disabled. 2200 * 2201 * We restore the event value and then enable it. 2202 * 2203 * This does not protect us against NMI, but enable() 2204 * sets the enabled bit in the control field of event _before_ 2205 * accessing the event control register. If a NMI hits, then it will 2206 * keep the event running. 2207 */ 2208 void __perf_event_task_sched_in(struct task_struct *prev, 2209 struct task_struct *task) 2210 { 2211 struct perf_event_context *ctx; 2212 int ctxn; 2213 2214 for_each_task_context_nr(ctxn) { 2215 ctx = task->perf_event_ctxp[ctxn]; 2216 if (likely(!ctx)) 2217 continue; 2218 2219 perf_event_context_sched_in(ctx, task); 2220 } 2221 /* 2222 * if cgroup events exist on this CPU, then we need 2223 * to check if we have to switch in PMU state. 2224 * cgroup event are system-wide mode only 2225 */ 2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2227 perf_cgroup_sched_in(prev, task); 2228 } 2229 2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2231 { 2232 u64 frequency = event->attr.sample_freq; 2233 u64 sec = NSEC_PER_SEC; 2234 u64 divisor, dividend; 2235 2236 int count_fls, nsec_fls, frequency_fls, sec_fls; 2237 2238 count_fls = fls64(count); 2239 nsec_fls = fls64(nsec); 2240 frequency_fls = fls64(frequency); 2241 sec_fls = 30; 2242 2243 /* 2244 * We got @count in @nsec, with a target of sample_freq HZ 2245 * the target period becomes: 2246 * 2247 * @count * 10^9 2248 * period = ------------------- 2249 * @nsec * sample_freq 2250 * 2251 */ 2252 2253 /* 2254 * Reduce accuracy by one bit such that @a and @b converge 2255 * to a similar magnitude. 2256 */ 2257 #define REDUCE_FLS(a, b) \ 2258 do { \ 2259 if (a##_fls > b##_fls) { \ 2260 a >>= 1; \ 2261 a##_fls--; \ 2262 } else { \ 2263 b >>= 1; \ 2264 b##_fls--; \ 2265 } \ 2266 } while (0) 2267 2268 /* 2269 * Reduce accuracy until either term fits in a u64, then proceed with 2270 * the other, so that finally we can do a u64/u64 division. 2271 */ 2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2273 REDUCE_FLS(nsec, frequency); 2274 REDUCE_FLS(sec, count); 2275 } 2276 2277 if (count_fls + sec_fls > 64) { 2278 divisor = nsec * frequency; 2279 2280 while (count_fls + sec_fls > 64) { 2281 REDUCE_FLS(count, sec); 2282 divisor >>= 1; 2283 } 2284 2285 dividend = count * sec; 2286 } else { 2287 dividend = count * sec; 2288 2289 while (nsec_fls + frequency_fls > 64) { 2290 REDUCE_FLS(nsec, frequency); 2291 dividend >>= 1; 2292 } 2293 2294 divisor = nsec * frequency; 2295 } 2296 2297 if (!divisor) 2298 return dividend; 2299 2300 return div64_u64(dividend, divisor); 2301 } 2302 2303 static DEFINE_PER_CPU(int, perf_throttled_count); 2304 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2305 2306 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2307 { 2308 struct hw_perf_event *hwc = &event->hw; 2309 s64 period, sample_period; 2310 s64 delta; 2311 2312 period = perf_calculate_period(event, nsec, count); 2313 2314 delta = (s64)(period - hwc->sample_period); 2315 delta = (delta + 7) / 8; /* low pass filter */ 2316 2317 sample_period = hwc->sample_period + delta; 2318 2319 if (!sample_period) 2320 sample_period = 1; 2321 2322 hwc->sample_period = sample_period; 2323 2324 if (local64_read(&hwc->period_left) > 8*sample_period) { 2325 if (disable) 2326 event->pmu->stop(event, PERF_EF_UPDATE); 2327 2328 local64_set(&hwc->period_left, 0); 2329 2330 if (disable) 2331 event->pmu->start(event, PERF_EF_RELOAD); 2332 } 2333 } 2334 2335 /* 2336 * combine freq adjustment with unthrottling to avoid two passes over the 2337 * events. At the same time, make sure, having freq events does not change 2338 * the rate of unthrottling as that would introduce bias. 2339 */ 2340 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2341 int needs_unthr) 2342 { 2343 struct perf_event *event; 2344 struct hw_perf_event *hwc; 2345 u64 now, period = TICK_NSEC; 2346 s64 delta; 2347 2348 /* 2349 * only need to iterate over all events iff: 2350 * - context have events in frequency mode (needs freq adjust) 2351 * - there are events to unthrottle on this cpu 2352 */ 2353 if (!(ctx->nr_freq || needs_unthr)) 2354 return; 2355 2356 raw_spin_lock(&ctx->lock); 2357 perf_pmu_disable(ctx->pmu); 2358 2359 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2360 if (event->state != PERF_EVENT_STATE_ACTIVE) 2361 continue; 2362 2363 if (!event_filter_match(event)) 2364 continue; 2365 2366 hwc = &event->hw; 2367 2368 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2369 hwc->interrupts = 0; 2370 perf_log_throttle(event, 1); 2371 event->pmu->start(event, 0); 2372 } 2373 2374 if (!event->attr.freq || !event->attr.sample_freq) 2375 continue; 2376 2377 /* 2378 * stop the event and update event->count 2379 */ 2380 event->pmu->stop(event, PERF_EF_UPDATE); 2381 2382 now = local64_read(&event->count); 2383 delta = now - hwc->freq_count_stamp; 2384 hwc->freq_count_stamp = now; 2385 2386 /* 2387 * restart the event 2388 * reload only if value has changed 2389 * we have stopped the event so tell that 2390 * to perf_adjust_period() to avoid stopping it 2391 * twice. 2392 */ 2393 if (delta > 0) 2394 perf_adjust_period(event, period, delta, false); 2395 2396 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2397 } 2398 2399 perf_pmu_enable(ctx->pmu); 2400 raw_spin_unlock(&ctx->lock); 2401 } 2402 2403 /* 2404 * Round-robin a context's events: 2405 */ 2406 static void rotate_ctx(struct perf_event_context *ctx) 2407 { 2408 /* 2409 * Rotate the first entry last of non-pinned groups. Rotation might be 2410 * disabled by the inheritance code. 2411 */ 2412 if (!ctx->rotate_disable) 2413 list_rotate_left(&ctx->flexible_groups); 2414 } 2415 2416 /* 2417 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2418 * because they're strictly cpu affine and rotate_start is called with IRQs 2419 * disabled, while rotate_context is called from IRQ context. 2420 */ 2421 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2422 { 2423 struct perf_event_context *ctx = NULL; 2424 int rotate = 0, remove = 1; 2425 2426 if (cpuctx->ctx.nr_events) { 2427 remove = 0; 2428 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2429 rotate = 1; 2430 } 2431 2432 ctx = cpuctx->task_ctx; 2433 if (ctx && ctx->nr_events) { 2434 remove = 0; 2435 if (ctx->nr_events != ctx->nr_active) 2436 rotate = 1; 2437 } 2438 2439 if (!rotate) 2440 goto done; 2441 2442 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2443 perf_pmu_disable(cpuctx->ctx.pmu); 2444 2445 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2446 if (ctx) 2447 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2448 2449 rotate_ctx(&cpuctx->ctx); 2450 if (ctx) 2451 rotate_ctx(ctx); 2452 2453 perf_event_sched_in(cpuctx, ctx, current); 2454 2455 perf_pmu_enable(cpuctx->ctx.pmu); 2456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2457 done: 2458 if (remove) 2459 list_del_init(&cpuctx->rotation_list); 2460 } 2461 2462 void perf_event_task_tick(void) 2463 { 2464 struct list_head *head = &__get_cpu_var(rotation_list); 2465 struct perf_cpu_context *cpuctx, *tmp; 2466 struct perf_event_context *ctx; 2467 int throttled; 2468 2469 WARN_ON(!irqs_disabled()); 2470 2471 __this_cpu_inc(perf_throttled_seq); 2472 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2473 2474 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2475 ctx = &cpuctx->ctx; 2476 perf_adjust_freq_unthr_context(ctx, throttled); 2477 2478 ctx = cpuctx->task_ctx; 2479 if (ctx) 2480 perf_adjust_freq_unthr_context(ctx, throttled); 2481 2482 if (cpuctx->jiffies_interval == 1 || 2483 !(jiffies % cpuctx->jiffies_interval)) 2484 perf_rotate_context(cpuctx); 2485 } 2486 } 2487 2488 static int event_enable_on_exec(struct perf_event *event, 2489 struct perf_event_context *ctx) 2490 { 2491 if (!event->attr.enable_on_exec) 2492 return 0; 2493 2494 event->attr.enable_on_exec = 0; 2495 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2496 return 0; 2497 2498 __perf_event_mark_enabled(event); 2499 2500 return 1; 2501 } 2502 2503 /* 2504 * Enable all of a task's events that have been marked enable-on-exec. 2505 * This expects task == current. 2506 */ 2507 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2508 { 2509 struct perf_event *event; 2510 unsigned long flags; 2511 int enabled = 0; 2512 int ret; 2513 2514 local_irq_save(flags); 2515 if (!ctx || !ctx->nr_events) 2516 goto out; 2517 2518 /* 2519 * We must ctxsw out cgroup events to avoid conflict 2520 * when invoking perf_task_event_sched_in() later on 2521 * in this function. Otherwise we end up trying to 2522 * ctxswin cgroup events which are already scheduled 2523 * in. 2524 */ 2525 perf_cgroup_sched_out(current, NULL); 2526 2527 raw_spin_lock(&ctx->lock); 2528 task_ctx_sched_out(ctx); 2529 2530 list_for_each_entry(event, &ctx->event_list, event_entry) { 2531 ret = event_enable_on_exec(event, ctx); 2532 if (ret) 2533 enabled = 1; 2534 } 2535 2536 /* 2537 * Unclone this context if we enabled any event. 2538 */ 2539 if (enabled) 2540 unclone_ctx(ctx); 2541 2542 raw_spin_unlock(&ctx->lock); 2543 2544 /* 2545 * Also calls ctxswin for cgroup events, if any: 2546 */ 2547 perf_event_context_sched_in(ctx, ctx->task); 2548 out: 2549 local_irq_restore(flags); 2550 } 2551 2552 /* 2553 * Cross CPU call to read the hardware event 2554 */ 2555 static void __perf_event_read(void *info) 2556 { 2557 struct perf_event *event = info; 2558 struct perf_event_context *ctx = event->ctx; 2559 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2560 2561 /* 2562 * If this is a task context, we need to check whether it is 2563 * the current task context of this cpu. If not it has been 2564 * scheduled out before the smp call arrived. In that case 2565 * event->count would have been updated to a recent sample 2566 * when the event was scheduled out. 2567 */ 2568 if (ctx->task && cpuctx->task_ctx != ctx) 2569 return; 2570 2571 raw_spin_lock(&ctx->lock); 2572 if (ctx->is_active) { 2573 update_context_time(ctx); 2574 update_cgrp_time_from_event(event); 2575 } 2576 update_event_times(event); 2577 if (event->state == PERF_EVENT_STATE_ACTIVE) 2578 event->pmu->read(event); 2579 raw_spin_unlock(&ctx->lock); 2580 } 2581 2582 static inline u64 perf_event_count(struct perf_event *event) 2583 { 2584 return local64_read(&event->count) + atomic64_read(&event->child_count); 2585 } 2586 2587 static u64 perf_event_read(struct perf_event *event) 2588 { 2589 /* 2590 * If event is enabled and currently active on a CPU, update the 2591 * value in the event structure: 2592 */ 2593 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2594 smp_call_function_single(event->oncpu, 2595 __perf_event_read, event, 1); 2596 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2597 struct perf_event_context *ctx = event->ctx; 2598 unsigned long flags; 2599 2600 raw_spin_lock_irqsave(&ctx->lock, flags); 2601 /* 2602 * may read while context is not active 2603 * (e.g., thread is blocked), in that case 2604 * we cannot update context time 2605 */ 2606 if (ctx->is_active) { 2607 update_context_time(ctx); 2608 update_cgrp_time_from_event(event); 2609 } 2610 update_event_times(event); 2611 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2612 } 2613 2614 return perf_event_count(event); 2615 } 2616 2617 /* 2618 * Initialize the perf_event context in a task_struct: 2619 */ 2620 static void __perf_event_init_context(struct perf_event_context *ctx) 2621 { 2622 raw_spin_lock_init(&ctx->lock); 2623 mutex_init(&ctx->mutex); 2624 INIT_LIST_HEAD(&ctx->pinned_groups); 2625 INIT_LIST_HEAD(&ctx->flexible_groups); 2626 INIT_LIST_HEAD(&ctx->event_list); 2627 atomic_set(&ctx->refcount, 1); 2628 } 2629 2630 static struct perf_event_context * 2631 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2632 { 2633 struct perf_event_context *ctx; 2634 2635 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2636 if (!ctx) 2637 return NULL; 2638 2639 __perf_event_init_context(ctx); 2640 if (task) { 2641 ctx->task = task; 2642 get_task_struct(task); 2643 } 2644 ctx->pmu = pmu; 2645 2646 return ctx; 2647 } 2648 2649 static struct task_struct * 2650 find_lively_task_by_vpid(pid_t vpid) 2651 { 2652 struct task_struct *task; 2653 int err; 2654 2655 rcu_read_lock(); 2656 if (!vpid) 2657 task = current; 2658 else 2659 task = find_task_by_vpid(vpid); 2660 if (task) 2661 get_task_struct(task); 2662 rcu_read_unlock(); 2663 2664 if (!task) 2665 return ERR_PTR(-ESRCH); 2666 2667 /* Reuse ptrace permission checks for now. */ 2668 err = -EACCES; 2669 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2670 goto errout; 2671 2672 return task; 2673 errout: 2674 put_task_struct(task); 2675 return ERR_PTR(err); 2676 2677 } 2678 2679 /* 2680 * Returns a matching context with refcount and pincount. 2681 */ 2682 static struct perf_event_context * 2683 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2684 { 2685 struct perf_event_context *ctx; 2686 struct perf_cpu_context *cpuctx; 2687 unsigned long flags; 2688 int ctxn, err; 2689 2690 if (!task) { 2691 /* Must be root to operate on a CPU event: */ 2692 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2693 return ERR_PTR(-EACCES); 2694 2695 /* 2696 * We could be clever and allow to attach a event to an 2697 * offline CPU and activate it when the CPU comes up, but 2698 * that's for later. 2699 */ 2700 if (!cpu_online(cpu)) 2701 return ERR_PTR(-ENODEV); 2702 2703 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2704 ctx = &cpuctx->ctx; 2705 get_ctx(ctx); 2706 ++ctx->pin_count; 2707 2708 return ctx; 2709 } 2710 2711 err = -EINVAL; 2712 ctxn = pmu->task_ctx_nr; 2713 if (ctxn < 0) 2714 goto errout; 2715 2716 retry: 2717 ctx = perf_lock_task_context(task, ctxn, &flags); 2718 if (ctx) { 2719 unclone_ctx(ctx); 2720 ++ctx->pin_count; 2721 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2722 } else { 2723 ctx = alloc_perf_context(pmu, task); 2724 err = -ENOMEM; 2725 if (!ctx) 2726 goto errout; 2727 2728 err = 0; 2729 mutex_lock(&task->perf_event_mutex); 2730 /* 2731 * If it has already passed perf_event_exit_task(). 2732 * we must see PF_EXITING, it takes this mutex too. 2733 */ 2734 if (task->flags & PF_EXITING) 2735 err = -ESRCH; 2736 else if (task->perf_event_ctxp[ctxn]) 2737 err = -EAGAIN; 2738 else { 2739 get_ctx(ctx); 2740 ++ctx->pin_count; 2741 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2742 } 2743 mutex_unlock(&task->perf_event_mutex); 2744 2745 if (unlikely(err)) { 2746 put_ctx(ctx); 2747 2748 if (err == -EAGAIN) 2749 goto retry; 2750 goto errout; 2751 } 2752 } 2753 2754 return ctx; 2755 2756 errout: 2757 return ERR_PTR(err); 2758 } 2759 2760 static void perf_event_free_filter(struct perf_event *event); 2761 2762 static void free_event_rcu(struct rcu_head *head) 2763 { 2764 struct perf_event *event; 2765 2766 event = container_of(head, struct perf_event, rcu_head); 2767 if (event->ns) 2768 put_pid_ns(event->ns); 2769 perf_event_free_filter(event); 2770 kfree(event); 2771 } 2772 2773 static void ring_buffer_put(struct ring_buffer *rb); 2774 2775 static void free_event(struct perf_event *event) 2776 { 2777 irq_work_sync(&event->pending); 2778 2779 if (!event->parent) { 2780 if (event->attach_state & PERF_ATTACH_TASK) 2781 jump_label_dec_deferred(&perf_sched_events); 2782 if (event->attr.mmap || event->attr.mmap_data) 2783 atomic_dec(&nr_mmap_events); 2784 if (event->attr.comm) 2785 atomic_dec(&nr_comm_events); 2786 if (event->attr.task) 2787 atomic_dec(&nr_task_events); 2788 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2789 put_callchain_buffers(); 2790 if (is_cgroup_event(event)) { 2791 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2792 jump_label_dec_deferred(&perf_sched_events); 2793 } 2794 } 2795 2796 if (event->rb) { 2797 ring_buffer_put(event->rb); 2798 event->rb = NULL; 2799 } 2800 2801 if (is_cgroup_event(event)) 2802 perf_detach_cgroup(event); 2803 2804 if (event->destroy) 2805 event->destroy(event); 2806 2807 if (event->ctx) 2808 put_ctx(event->ctx); 2809 2810 call_rcu(&event->rcu_head, free_event_rcu); 2811 } 2812 2813 int perf_event_release_kernel(struct perf_event *event) 2814 { 2815 struct perf_event_context *ctx = event->ctx; 2816 2817 WARN_ON_ONCE(ctx->parent_ctx); 2818 /* 2819 * There are two ways this annotation is useful: 2820 * 2821 * 1) there is a lock recursion from perf_event_exit_task 2822 * see the comment there. 2823 * 2824 * 2) there is a lock-inversion with mmap_sem through 2825 * perf_event_read_group(), which takes faults while 2826 * holding ctx->mutex, however this is called after 2827 * the last filedesc died, so there is no possibility 2828 * to trigger the AB-BA case. 2829 */ 2830 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2831 raw_spin_lock_irq(&ctx->lock); 2832 perf_group_detach(event); 2833 raw_spin_unlock_irq(&ctx->lock); 2834 perf_remove_from_context(event); 2835 mutex_unlock(&ctx->mutex); 2836 2837 free_event(event); 2838 2839 return 0; 2840 } 2841 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2842 2843 /* 2844 * Called when the last reference to the file is gone. 2845 */ 2846 static int perf_release(struct inode *inode, struct file *file) 2847 { 2848 struct perf_event *event = file->private_data; 2849 struct task_struct *owner; 2850 2851 file->private_data = NULL; 2852 2853 rcu_read_lock(); 2854 owner = ACCESS_ONCE(event->owner); 2855 /* 2856 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2857 * !owner it means the list deletion is complete and we can indeed 2858 * free this event, otherwise we need to serialize on 2859 * owner->perf_event_mutex. 2860 */ 2861 smp_read_barrier_depends(); 2862 if (owner) { 2863 /* 2864 * Since delayed_put_task_struct() also drops the last 2865 * task reference we can safely take a new reference 2866 * while holding the rcu_read_lock(). 2867 */ 2868 get_task_struct(owner); 2869 } 2870 rcu_read_unlock(); 2871 2872 if (owner) { 2873 mutex_lock(&owner->perf_event_mutex); 2874 /* 2875 * We have to re-check the event->owner field, if it is cleared 2876 * we raced with perf_event_exit_task(), acquiring the mutex 2877 * ensured they're done, and we can proceed with freeing the 2878 * event. 2879 */ 2880 if (event->owner) 2881 list_del_init(&event->owner_entry); 2882 mutex_unlock(&owner->perf_event_mutex); 2883 put_task_struct(owner); 2884 } 2885 2886 return perf_event_release_kernel(event); 2887 } 2888 2889 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2890 { 2891 struct perf_event *child; 2892 u64 total = 0; 2893 2894 *enabled = 0; 2895 *running = 0; 2896 2897 mutex_lock(&event->child_mutex); 2898 total += perf_event_read(event); 2899 *enabled += event->total_time_enabled + 2900 atomic64_read(&event->child_total_time_enabled); 2901 *running += event->total_time_running + 2902 atomic64_read(&event->child_total_time_running); 2903 2904 list_for_each_entry(child, &event->child_list, child_list) { 2905 total += perf_event_read(child); 2906 *enabled += child->total_time_enabled; 2907 *running += child->total_time_running; 2908 } 2909 mutex_unlock(&event->child_mutex); 2910 2911 return total; 2912 } 2913 EXPORT_SYMBOL_GPL(perf_event_read_value); 2914 2915 static int perf_event_read_group(struct perf_event *event, 2916 u64 read_format, char __user *buf) 2917 { 2918 struct perf_event *leader = event->group_leader, *sub; 2919 int n = 0, size = 0, ret = -EFAULT; 2920 struct perf_event_context *ctx = leader->ctx; 2921 u64 values[5]; 2922 u64 count, enabled, running; 2923 2924 mutex_lock(&ctx->mutex); 2925 count = perf_event_read_value(leader, &enabled, &running); 2926 2927 values[n++] = 1 + leader->nr_siblings; 2928 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2929 values[n++] = enabled; 2930 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2931 values[n++] = running; 2932 values[n++] = count; 2933 if (read_format & PERF_FORMAT_ID) 2934 values[n++] = primary_event_id(leader); 2935 2936 size = n * sizeof(u64); 2937 2938 if (copy_to_user(buf, values, size)) 2939 goto unlock; 2940 2941 ret = size; 2942 2943 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 2944 n = 0; 2945 2946 values[n++] = perf_event_read_value(sub, &enabled, &running); 2947 if (read_format & PERF_FORMAT_ID) 2948 values[n++] = primary_event_id(sub); 2949 2950 size = n * sizeof(u64); 2951 2952 if (copy_to_user(buf + ret, values, size)) { 2953 ret = -EFAULT; 2954 goto unlock; 2955 } 2956 2957 ret += size; 2958 } 2959 unlock: 2960 mutex_unlock(&ctx->mutex); 2961 2962 return ret; 2963 } 2964 2965 static int perf_event_read_one(struct perf_event *event, 2966 u64 read_format, char __user *buf) 2967 { 2968 u64 enabled, running; 2969 u64 values[4]; 2970 int n = 0; 2971 2972 values[n++] = perf_event_read_value(event, &enabled, &running); 2973 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2974 values[n++] = enabled; 2975 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2976 values[n++] = running; 2977 if (read_format & PERF_FORMAT_ID) 2978 values[n++] = primary_event_id(event); 2979 2980 if (copy_to_user(buf, values, n * sizeof(u64))) 2981 return -EFAULT; 2982 2983 return n * sizeof(u64); 2984 } 2985 2986 /* 2987 * Read the performance event - simple non blocking version for now 2988 */ 2989 static ssize_t 2990 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 2991 { 2992 u64 read_format = event->attr.read_format; 2993 int ret; 2994 2995 /* 2996 * Return end-of-file for a read on a event that is in 2997 * error state (i.e. because it was pinned but it couldn't be 2998 * scheduled on to the CPU at some point). 2999 */ 3000 if (event->state == PERF_EVENT_STATE_ERROR) 3001 return 0; 3002 3003 if (count < event->read_size) 3004 return -ENOSPC; 3005 3006 WARN_ON_ONCE(event->ctx->parent_ctx); 3007 if (read_format & PERF_FORMAT_GROUP) 3008 ret = perf_event_read_group(event, read_format, buf); 3009 else 3010 ret = perf_event_read_one(event, read_format, buf); 3011 3012 return ret; 3013 } 3014 3015 static ssize_t 3016 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3017 { 3018 struct perf_event *event = file->private_data; 3019 3020 return perf_read_hw(event, buf, count); 3021 } 3022 3023 static unsigned int perf_poll(struct file *file, poll_table *wait) 3024 { 3025 struct perf_event *event = file->private_data; 3026 struct ring_buffer *rb; 3027 unsigned int events = POLL_HUP; 3028 3029 /* 3030 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3031 * grabs the rb reference but perf_event_set_output() overrides it. 3032 * Here is the timeline for two threads T1, T2: 3033 * t0: T1, rb = rcu_dereference(event->rb) 3034 * t1: T2, old_rb = event->rb 3035 * t2: T2, event->rb = new rb 3036 * t3: T2, ring_buffer_detach(old_rb) 3037 * t4: T1, ring_buffer_attach(rb1) 3038 * t5: T1, poll_wait(event->waitq) 3039 * 3040 * To avoid this problem, we grab mmap_mutex in perf_poll() 3041 * thereby ensuring that the assignment of the new ring buffer 3042 * and the detachment of the old buffer appear atomic to perf_poll() 3043 */ 3044 mutex_lock(&event->mmap_mutex); 3045 3046 rcu_read_lock(); 3047 rb = rcu_dereference(event->rb); 3048 if (rb) { 3049 ring_buffer_attach(event, rb); 3050 events = atomic_xchg(&rb->poll, 0); 3051 } 3052 rcu_read_unlock(); 3053 3054 mutex_unlock(&event->mmap_mutex); 3055 3056 poll_wait(file, &event->waitq, wait); 3057 3058 return events; 3059 } 3060 3061 static void perf_event_reset(struct perf_event *event) 3062 { 3063 (void)perf_event_read(event); 3064 local64_set(&event->count, 0); 3065 perf_event_update_userpage(event); 3066 } 3067 3068 /* 3069 * Holding the top-level event's child_mutex means that any 3070 * descendant process that has inherited this event will block 3071 * in sync_child_event if it goes to exit, thus satisfying the 3072 * task existence requirements of perf_event_enable/disable. 3073 */ 3074 static void perf_event_for_each_child(struct perf_event *event, 3075 void (*func)(struct perf_event *)) 3076 { 3077 struct perf_event *child; 3078 3079 WARN_ON_ONCE(event->ctx->parent_ctx); 3080 mutex_lock(&event->child_mutex); 3081 func(event); 3082 list_for_each_entry(child, &event->child_list, child_list) 3083 func(child); 3084 mutex_unlock(&event->child_mutex); 3085 } 3086 3087 static void perf_event_for_each(struct perf_event *event, 3088 void (*func)(struct perf_event *)) 3089 { 3090 struct perf_event_context *ctx = event->ctx; 3091 struct perf_event *sibling; 3092 3093 WARN_ON_ONCE(ctx->parent_ctx); 3094 mutex_lock(&ctx->mutex); 3095 event = event->group_leader; 3096 3097 perf_event_for_each_child(event, func); 3098 func(event); 3099 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3100 perf_event_for_each_child(event, func); 3101 mutex_unlock(&ctx->mutex); 3102 } 3103 3104 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3105 { 3106 struct perf_event_context *ctx = event->ctx; 3107 int ret = 0; 3108 u64 value; 3109 3110 if (!is_sampling_event(event)) 3111 return -EINVAL; 3112 3113 if (copy_from_user(&value, arg, sizeof(value))) 3114 return -EFAULT; 3115 3116 if (!value) 3117 return -EINVAL; 3118 3119 raw_spin_lock_irq(&ctx->lock); 3120 if (event->attr.freq) { 3121 if (value > sysctl_perf_event_sample_rate) { 3122 ret = -EINVAL; 3123 goto unlock; 3124 } 3125 3126 event->attr.sample_freq = value; 3127 } else { 3128 event->attr.sample_period = value; 3129 event->hw.sample_period = value; 3130 } 3131 unlock: 3132 raw_spin_unlock_irq(&ctx->lock); 3133 3134 return ret; 3135 } 3136 3137 static const struct file_operations perf_fops; 3138 3139 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3140 { 3141 struct file *file; 3142 3143 file = fget_light(fd, fput_needed); 3144 if (!file) 3145 return ERR_PTR(-EBADF); 3146 3147 if (file->f_op != &perf_fops) { 3148 fput_light(file, *fput_needed); 3149 *fput_needed = 0; 3150 return ERR_PTR(-EBADF); 3151 } 3152 3153 return file->private_data; 3154 } 3155 3156 static int perf_event_set_output(struct perf_event *event, 3157 struct perf_event *output_event); 3158 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3159 3160 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3161 { 3162 struct perf_event *event = file->private_data; 3163 void (*func)(struct perf_event *); 3164 u32 flags = arg; 3165 3166 switch (cmd) { 3167 case PERF_EVENT_IOC_ENABLE: 3168 func = perf_event_enable; 3169 break; 3170 case PERF_EVENT_IOC_DISABLE: 3171 func = perf_event_disable; 3172 break; 3173 case PERF_EVENT_IOC_RESET: 3174 func = perf_event_reset; 3175 break; 3176 3177 case PERF_EVENT_IOC_REFRESH: 3178 return perf_event_refresh(event, arg); 3179 3180 case PERF_EVENT_IOC_PERIOD: 3181 return perf_event_period(event, (u64 __user *)arg); 3182 3183 case PERF_EVENT_IOC_SET_OUTPUT: 3184 { 3185 struct perf_event *output_event = NULL; 3186 int fput_needed = 0; 3187 int ret; 3188 3189 if (arg != -1) { 3190 output_event = perf_fget_light(arg, &fput_needed); 3191 if (IS_ERR(output_event)) 3192 return PTR_ERR(output_event); 3193 } 3194 3195 ret = perf_event_set_output(event, output_event); 3196 if (output_event) 3197 fput_light(output_event->filp, fput_needed); 3198 3199 return ret; 3200 } 3201 3202 case PERF_EVENT_IOC_SET_FILTER: 3203 return perf_event_set_filter(event, (void __user *)arg); 3204 3205 default: 3206 return -ENOTTY; 3207 } 3208 3209 if (flags & PERF_IOC_FLAG_GROUP) 3210 perf_event_for_each(event, func); 3211 else 3212 perf_event_for_each_child(event, func); 3213 3214 return 0; 3215 } 3216 3217 int perf_event_task_enable(void) 3218 { 3219 struct perf_event *event; 3220 3221 mutex_lock(¤t->perf_event_mutex); 3222 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3223 perf_event_for_each_child(event, perf_event_enable); 3224 mutex_unlock(¤t->perf_event_mutex); 3225 3226 return 0; 3227 } 3228 3229 int perf_event_task_disable(void) 3230 { 3231 struct perf_event *event; 3232 3233 mutex_lock(¤t->perf_event_mutex); 3234 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3235 perf_event_for_each_child(event, perf_event_disable); 3236 mutex_unlock(¤t->perf_event_mutex); 3237 3238 return 0; 3239 } 3240 3241 #ifndef PERF_EVENT_INDEX_OFFSET 3242 # define PERF_EVENT_INDEX_OFFSET 0 3243 #endif 3244 3245 static int perf_event_index(struct perf_event *event) 3246 { 3247 if (event->hw.state & PERF_HES_STOPPED) 3248 return 0; 3249 3250 if (event->state != PERF_EVENT_STATE_ACTIVE) 3251 return 0; 3252 3253 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; 3254 } 3255 3256 static void calc_timer_values(struct perf_event *event, 3257 u64 *enabled, 3258 u64 *running) 3259 { 3260 u64 now, ctx_time; 3261 3262 now = perf_clock(); 3263 ctx_time = event->shadow_ctx_time + now; 3264 *enabled = ctx_time - event->tstamp_enabled; 3265 *running = ctx_time - event->tstamp_running; 3266 } 3267 3268 /* 3269 * Callers need to ensure there can be no nesting of this function, otherwise 3270 * the seqlock logic goes bad. We can not serialize this because the arch 3271 * code calls this from NMI context. 3272 */ 3273 void perf_event_update_userpage(struct perf_event *event) 3274 { 3275 struct perf_event_mmap_page *userpg; 3276 struct ring_buffer *rb; 3277 u64 enabled, running; 3278 3279 rcu_read_lock(); 3280 /* 3281 * compute total_time_enabled, total_time_running 3282 * based on snapshot values taken when the event 3283 * was last scheduled in. 3284 * 3285 * we cannot simply called update_context_time() 3286 * because of locking issue as we can be called in 3287 * NMI context 3288 */ 3289 calc_timer_values(event, &enabled, &running); 3290 rb = rcu_dereference(event->rb); 3291 if (!rb) 3292 goto unlock; 3293 3294 userpg = rb->user_page; 3295 3296 /* 3297 * Disable preemption so as to not let the corresponding user-space 3298 * spin too long if we get preempted. 3299 */ 3300 preempt_disable(); 3301 ++userpg->lock; 3302 barrier(); 3303 userpg->index = perf_event_index(event); 3304 userpg->offset = perf_event_count(event); 3305 if (event->state == PERF_EVENT_STATE_ACTIVE) 3306 userpg->offset -= local64_read(&event->hw.prev_count); 3307 3308 userpg->time_enabled = enabled + 3309 atomic64_read(&event->child_total_time_enabled); 3310 3311 userpg->time_running = running + 3312 atomic64_read(&event->child_total_time_running); 3313 3314 barrier(); 3315 ++userpg->lock; 3316 preempt_enable(); 3317 unlock: 3318 rcu_read_unlock(); 3319 } 3320 3321 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3322 { 3323 struct perf_event *event = vma->vm_file->private_data; 3324 struct ring_buffer *rb; 3325 int ret = VM_FAULT_SIGBUS; 3326 3327 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3328 if (vmf->pgoff == 0) 3329 ret = 0; 3330 return ret; 3331 } 3332 3333 rcu_read_lock(); 3334 rb = rcu_dereference(event->rb); 3335 if (!rb) 3336 goto unlock; 3337 3338 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3339 goto unlock; 3340 3341 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3342 if (!vmf->page) 3343 goto unlock; 3344 3345 get_page(vmf->page); 3346 vmf->page->mapping = vma->vm_file->f_mapping; 3347 vmf->page->index = vmf->pgoff; 3348 3349 ret = 0; 3350 unlock: 3351 rcu_read_unlock(); 3352 3353 return ret; 3354 } 3355 3356 static void ring_buffer_attach(struct perf_event *event, 3357 struct ring_buffer *rb) 3358 { 3359 unsigned long flags; 3360 3361 if (!list_empty(&event->rb_entry)) 3362 return; 3363 3364 spin_lock_irqsave(&rb->event_lock, flags); 3365 if (!list_empty(&event->rb_entry)) 3366 goto unlock; 3367 3368 list_add(&event->rb_entry, &rb->event_list); 3369 unlock: 3370 spin_unlock_irqrestore(&rb->event_lock, flags); 3371 } 3372 3373 static void ring_buffer_detach(struct perf_event *event, 3374 struct ring_buffer *rb) 3375 { 3376 unsigned long flags; 3377 3378 if (list_empty(&event->rb_entry)) 3379 return; 3380 3381 spin_lock_irqsave(&rb->event_lock, flags); 3382 list_del_init(&event->rb_entry); 3383 wake_up_all(&event->waitq); 3384 spin_unlock_irqrestore(&rb->event_lock, flags); 3385 } 3386 3387 static void ring_buffer_wakeup(struct perf_event *event) 3388 { 3389 struct ring_buffer *rb; 3390 3391 rcu_read_lock(); 3392 rb = rcu_dereference(event->rb); 3393 if (!rb) 3394 goto unlock; 3395 3396 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3397 wake_up_all(&event->waitq); 3398 3399 unlock: 3400 rcu_read_unlock(); 3401 } 3402 3403 static void rb_free_rcu(struct rcu_head *rcu_head) 3404 { 3405 struct ring_buffer *rb; 3406 3407 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3408 rb_free(rb); 3409 } 3410 3411 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3412 { 3413 struct ring_buffer *rb; 3414 3415 rcu_read_lock(); 3416 rb = rcu_dereference(event->rb); 3417 if (rb) { 3418 if (!atomic_inc_not_zero(&rb->refcount)) 3419 rb = NULL; 3420 } 3421 rcu_read_unlock(); 3422 3423 return rb; 3424 } 3425 3426 static void ring_buffer_put(struct ring_buffer *rb) 3427 { 3428 struct perf_event *event, *n; 3429 unsigned long flags; 3430 3431 if (!atomic_dec_and_test(&rb->refcount)) 3432 return; 3433 3434 spin_lock_irqsave(&rb->event_lock, flags); 3435 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3436 list_del_init(&event->rb_entry); 3437 wake_up_all(&event->waitq); 3438 } 3439 spin_unlock_irqrestore(&rb->event_lock, flags); 3440 3441 call_rcu(&rb->rcu_head, rb_free_rcu); 3442 } 3443 3444 static void perf_mmap_open(struct vm_area_struct *vma) 3445 { 3446 struct perf_event *event = vma->vm_file->private_data; 3447 3448 atomic_inc(&event->mmap_count); 3449 } 3450 3451 static void perf_mmap_close(struct vm_area_struct *vma) 3452 { 3453 struct perf_event *event = vma->vm_file->private_data; 3454 3455 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3456 unsigned long size = perf_data_size(event->rb); 3457 struct user_struct *user = event->mmap_user; 3458 struct ring_buffer *rb = event->rb; 3459 3460 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3461 vma->vm_mm->pinned_vm -= event->mmap_locked; 3462 rcu_assign_pointer(event->rb, NULL); 3463 ring_buffer_detach(event, rb); 3464 mutex_unlock(&event->mmap_mutex); 3465 3466 ring_buffer_put(rb); 3467 free_uid(user); 3468 } 3469 } 3470 3471 static const struct vm_operations_struct perf_mmap_vmops = { 3472 .open = perf_mmap_open, 3473 .close = perf_mmap_close, 3474 .fault = perf_mmap_fault, 3475 .page_mkwrite = perf_mmap_fault, 3476 }; 3477 3478 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3479 { 3480 struct perf_event *event = file->private_data; 3481 unsigned long user_locked, user_lock_limit; 3482 struct user_struct *user = current_user(); 3483 unsigned long locked, lock_limit; 3484 struct ring_buffer *rb; 3485 unsigned long vma_size; 3486 unsigned long nr_pages; 3487 long user_extra, extra; 3488 int ret = 0, flags = 0; 3489 3490 /* 3491 * Don't allow mmap() of inherited per-task counters. This would 3492 * create a performance issue due to all children writing to the 3493 * same rb. 3494 */ 3495 if (event->cpu == -1 && event->attr.inherit) 3496 return -EINVAL; 3497 3498 if (!(vma->vm_flags & VM_SHARED)) 3499 return -EINVAL; 3500 3501 vma_size = vma->vm_end - vma->vm_start; 3502 nr_pages = (vma_size / PAGE_SIZE) - 1; 3503 3504 /* 3505 * If we have rb pages ensure they're a power-of-two number, so we 3506 * can do bitmasks instead of modulo. 3507 */ 3508 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3509 return -EINVAL; 3510 3511 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3512 return -EINVAL; 3513 3514 if (vma->vm_pgoff != 0) 3515 return -EINVAL; 3516 3517 WARN_ON_ONCE(event->ctx->parent_ctx); 3518 mutex_lock(&event->mmap_mutex); 3519 if (event->rb) { 3520 if (event->rb->nr_pages == nr_pages) 3521 atomic_inc(&event->rb->refcount); 3522 else 3523 ret = -EINVAL; 3524 goto unlock; 3525 } 3526 3527 user_extra = nr_pages + 1; 3528 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3529 3530 /* 3531 * Increase the limit linearly with more CPUs: 3532 */ 3533 user_lock_limit *= num_online_cpus(); 3534 3535 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3536 3537 extra = 0; 3538 if (user_locked > user_lock_limit) 3539 extra = user_locked - user_lock_limit; 3540 3541 lock_limit = rlimit(RLIMIT_MEMLOCK); 3542 lock_limit >>= PAGE_SHIFT; 3543 locked = vma->vm_mm->pinned_vm + extra; 3544 3545 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3546 !capable(CAP_IPC_LOCK)) { 3547 ret = -EPERM; 3548 goto unlock; 3549 } 3550 3551 WARN_ON(event->rb); 3552 3553 if (vma->vm_flags & VM_WRITE) 3554 flags |= RING_BUFFER_WRITABLE; 3555 3556 rb = rb_alloc(nr_pages, 3557 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3558 event->cpu, flags); 3559 3560 if (!rb) { 3561 ret = -ENOMEM; 3562 goto unlock; 3563 } 3564 rcu_assign_pointer(event->rb, rb); 3565 3566 atomic_long_add(user_extra, &user->locked_vm); 3567 event->mmap_locked = extra; 3568 event->mmap_user = get_current_user(); 3569 vma->vm_mm->pinned_vm += event->mmap_locked; 3570 3571 unlock: 3572 if (!ret) 3573 atomic_inc(&event->mmap_count); 3574 mutex_unlock(&event->mmap_mutex); 3575 3576 vma->vm_flags |= VM_RESERVED; 3577 vma->vm_ops = &perf_mmap_vmops; 3578 3579 return ret; 3580 } 3581 3582 static int perf_fasync(int fd, struct file *filp, int on) 3583 { 3584 struct inode *inode = filp->f_path.dentry->d_inode; 3585 struct perf_event *event = filp->private_data; 3586 int retval; 3587 3588 mutex_lock(&inode->i_mutex); 3589 retval = fasync_helper(fd, filp, on, &event->fasync); 3590 mutex_unlock(&inode->i_mutex); 3591 3592 if (retval < 0) 3593 return retval; 3594 3595 return 0; 3596 } 3597 3598 static const struct file_operations perf_fops = { 3599 .llseek = no_llseek, 3600 .release = perf_release, 3601 .read = perf_read, 3602 .poll = perf_poll, 3603 .unlocked_ioctl = perf_ioctl, 3604 .compat_ioctl = perf_ioctl, 3605 .mmap = perf_mmap, 3606 .fasync = perf_fasync, 3607 }; 3608 3609 /* 3610 * Perf event wakeup 3611 * 3612 * If there's data, ensure we set the poll() state and publish everything 3613 * to user-space before waking everybody up. 3614 */ 3615 3616 void perf_event_wakeup(struct perf_event *event) 3617 { 3618 ring_buffer_wakeup(event); 3619 3620 if (event->pending_kill) { 3621 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3622 event->pending_kill = 0; 3623 } 3624 } 3625 3626 static void perf_pending_event(struct irq_work *entry) 3627 { 3628 struct perf_event *event = container_of(entry, 3629 struct perf_event, pending); 3630 3631 if (event->pending_disable) { 3632 event->pending_disable = 0; 3633 __perf_event_disable(event); 3634 } 3635 3636 if (event->pending_wakeup) { 3637 event->pending_wakeup = 0; 3638 perf_event_wakeup(event); 3639 } 3640 } 3641 3642 /* 3643 * We assume there is only KVM supporting the callbacks. 3644 * Later on, we might change it to a list if there is 3645 * another virtualization implementation supporting the callbacks. 3646 */ 3647 struct perf_guest_info_callbacks *perf_guest_cbs; 3648 3649 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3650 { 3651 perf_guest_cbs = cbs; 3652 return 0; 3653 } 3654 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3655 3656 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3657 { 3658 perf_guest_cbs = NULL; 3659 return 0; 3660 } 3661 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3662 3663 static void __perf_event_header__init_id(struct perf_event_header *header, 3664 struct perf_sample_data *data, 3665 struct perf_event *event) 3666 { 3667 u64 sample_type = event->attr.sample_type; 3668 3669 data->type = sample_type; 3670 header->size += event->id_header_size; 3671 3672 if (sample_type & PERF_SAMPLE_TID) { 3673 /* namespace issues */ 3674 data->tid_entry.pid = perf_event_pid(event, current); 3675 data->tid_entry.tid = perf_event_tid(event, current); 3676 } 3677 3678 if (sample_type & PERF_SAMPLE_TIME) 3679 data->time = perf_clock(); 3680 3681 if (sample_type & PERF_SAMPLE_ID) 3682 data->id = primary_event_id(event); 3683 3684 if (sample_type & PERF_SAMPLE_STREAM_ID) 3685 data->stream_id = event->id; 3686 3687 if (sample_type & PERF_SAMPLE_CPU) { 3688 data->cpu_entry.cpu = raw_smp_processor_id(); 3689 data->cpu_entry.reserved = 0; 3690 } 3691 } 3692 3693 void perf_event_header__init_id(struct perf_event_header *header, 3694 struct perf_sample_data *data, 3695 struct perf_event *event) 3696 { 3697 if (event->attr.sample_id_all) 3698 __perf_event_header__init_id(header, data, event); 3699 } 3700 3701 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3702 struct perf_sample_data *data) 3703 { 3704 u64 sample_type = data->type; 3705 3706 if (sample_type & PERF_SAMPLE_TID) 3707 perf_output_put(handle, data->tid_entry); 3708 3709 if (sample_type & PERF_SAMPLE_TIME) 3710 perf_output_put(handle, data->time); 3711 3712 if (sample_type & PERF_SAMPLE_ID) 3713 perf_output_put(handle, data->id); 3714 3715 if (sample_type & PERF_SAMPLE_STREAM_ID) 3716 perf_output_put(handle, data->stream_id); 3717 3718 if (sample_type & PERF_SAMPLE_CPU) 3719 perf_output_put(handle, data->cpu_entry); 3720 } 3721 3722 void perf_event__output_id_sample(struct perf_event *event, 3723 struct perf_output_handle *handle, 3724 struct perf_sample_data *sample) 3725 { 3726 if (event->attr.sample_id_all) 3727 __perf_event__output_id_sample(handle, sample); 3728 } 3729 3730 static void perf_output_read_one(struct perf_output_handle *handle, 3731 struct perf_event *event, 3732 u64 enabled, u64 running) 3733 { 3734 u64 read_format = event->attr.read_format; 3735 u64 values[4]; 3736 int n = 0; 3737 3738 values[n++] = perf_event_count(event); 3739 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3740 values[n++] = enabled + 3741 atomic64_read(&event->child_total_time_enabled); 3742 } 3743 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3744 values[n++] = running + 3745 atomic64_read(&event->child_total_time_running); 3746 } 3747 if (read_format & PERF_FORMAT_ID) 3748 values[n++] = primary_event_id(event); 3749 3750 __output_copy(handle, values, n * sizeof(u64)); 3751 } 3752 3753 /* 3754 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3755 */ 3756 static void perf_output_read_group(struct perf_output_handle *handle, 3757 struct perf_event *event, 3758 u64 enabled, u64 running) 3759 { 3760 struct perf_event *leader = event->group_leader, *sub; 3761 u64 read_format = event->attr.read_format; 3762 u64 values[5]; 3763 int n = 0; 3764 3765 values[n++] = 1 + leader->nr_siblings; 3766 3767 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3768 values[n++] = enabled; 3769 3770 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3771 values[n++] = running; 3772 3773 if (leader != event) 3774 leader->pmu->read(leader); 3775 3776 values[n++] = perf_event_count(leader); 3777 if (read_format & PERF_FORMAT_ID) 3778 values[n++] = primary_event_id(leader); 3779 3780 __output_copy(handle, values, n * sizeof(u64)); 3781 3782 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3783 n = 0; 3784 3785 if (sub != event) 3786 sub->pmu->read(sub); 3787 3788 values[n++] = perf_event_count(sub); 3789 if (read_format & PERF_FORMAT_ID) 3790 values[n++] = primary_event_id(sub); 3791 3792 __output_copy(handle, values, n * sizeof(u64)); 3793 } 3794 } 3795 3796 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3797 PERF_FORMAT_TOTAL_TIME_RUNNING) 3798 3799 static void perf_output_read(struct perf_output_handle *handle, 3800 struct perf_event *event) 3801 { 3802 u64 enabled = 0, running = 0; 3803 u64 read_format = event->attr.read_format; 3804 3805 /* 3806 * compute total_time_enabled, total_time_running 3807 * based on snapshot values taken when the event 3808 * was last scheduled in. 3809 * 3810 * we cannot simply called update_context_time() 3811 * because of locking issue as we are called in 3812 * NMI context 3813 */ 3814 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3815 calc_timer_values(event, &enabled, &running); 3816 3817 if (event->attr.read_format & PERF_FORMAT_GROUP) 3818 perf_output_read_group(handle, event, enabled, running); 3819 else 3820 perf_output_read_one(handle, event, enabled, running); 3821 } 3822 3823 void perf_output_sample(struct perf_output_handle *handle, 3824 struct perf_event_header *header, 3825 struct perf_sample_data *data, 3826 struct perf_event *event) 3827 { 3828 u64 sample_type = data->type; 3829 3830 perf_output_put(handle, *header); 3831 3832 if (sample_type & PERF_SAMPLE_IP) 3833 perf_output_put(handle, data->ip); 3834 3835 if (sample_type & PERF_SAMPLE_TID) 3836 perf_output_put(handle, data->tid_entry); 3837 3838 if (sample_type & PERF_SAMPLE_TIME) 3839 perf_output_put(handle, data->time); 3840 3841 if (sample_type & PERF_SAMPLE_ADDR) 3842 perf_output_put(handle, data->addr); 3843 3844 if (sample_type & PERF_SAMPLE_ID) 3845 perf_output_put(handle, data->id); 3846 3847 if (sample_type & PERF_SAMPLE_STREAM_ID) 3848 perf_output_put(handle, data->stream_id); 3849 3850 if (sample_type & PERF_SAMPLE_CPU) 3851 perf_output_put(handle, data->cpu_entry); 3852 3853 if (sample_type & PERF_SAMPLE_PERIOD) 3854 perf_output_put(handle, data->period); 3855 3856 if (sample_type & PERF_SAMPLE_READ) 3857 perf_output_read(handle, event); 3858 3859 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3860 if (data->callchain) { 3861 int size = 1; 3862 3863 if (data->callchain) 3864 size += data->callchain->nr; 3865 3866 size *= sizeof(u64); 3867 3868 __output_copy(handle, data->callchain, size); 3869 } else { 3870 u64 nr = 0; 3871 perf_output_put(handle, nr); 3872 } 3873 } 3874 3875 if (sample_type & PERF_SAMPLE_RAW) { 3876 if (data->raw) { 3877 perf_output_put(handle, data->raw->size); 3878 __output_copy(handle, data->raw->data, 3879 data->raw->size); 3880 } else { 3881 struct { 3882 u32 size; 3883 u32 data; 3884 } raw = { 3885 .size = sizeof(u32), 3886 .data = 0, 3887 }; 3888 perf_output_put(handle, raw); 3889 } 3890 } 3891 3892 if (!event->attr.watermark) { 3893 int wakeup_events = event->attr.wakeup_events; 3894 3895 if (wakeup_events) { 3896 struct ring_buffer *rb = handle->rb; 3897 int events = local_inc_return(&rb->events); 3898 3899 if (events >= wakeup_events) { 3900 local_sub(wakeup_events, &rb->events); 3901 local_inc(&rb->wakeup); 3902 } 3903 } 3904 } 3905 } 3906 3907 void perf_prepare_sample(struct perf_event_header *header, 3908 struct perf_sample_data *data, 3909 struct perf_event *event, 3910 struct pt_regs *regs) 3911 { 3912 u64 sample_type = event->attr.sample_type; 3913 3914 header->type = PERF_RECORD_SAMPLE; 3915 header->size = sizeof(*header) + event->header_size; 3916 3917 header->misc = 0; 3918 header->misc |= perf_misc_flags(regs); 3919 3920 __perf_event_header__init_id(header, data, event); 3921 3922 if (sample_type & PERF_SAMPLE_IP) 3923 data->ip = perf_instruction_pointer(regs); 3924 3925 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3926 int size = 1; 3927 3928 data->callchain = perf_callchain(regs); 3929 3930 if (data->callchain) 3931 size += data->callchain->nr; 3932 3933 header->size += size * sizeof(u64); 3934 } 3935 3936 if (sample_type & PERF_SAMPLE_RAW) { 3937 int size = sizeof(u32); 3938 3939 if (data->raw) 3940 size += data->raw->size; 3941 else 3942 size += sizeof(u32); 3943 3944 WARN_ON_ONCE(size & (sizeof(u64)-1)); 3945 header->size += size; 3946 } 3947 } 3948 3949 static void perf_event_output(struct perf_event *event, 3950 struct perf_sample_data *data, 3951 struct pt_regs *regs) 3952 { 3953 struct perf_output_handle handle; 3954 struct perf_event_header header; 3955 3956 /* protect the callchain buffers */ 3957 rcu_read_lock(); 3958 3959 perf_prepare_sample(&header, data, event, regs); 3960 3961 if (perf_output_begin(&handle, event, header.size)) 3962 goto exit; 3963 3964 perf_output_sample(&handle, &header, data, event); 3965 3966 perf_output_end(&handle); 3967 3968 exit: 3969 rcu_read_unlock(); 3970 } 3971 3972 /* 3973 * read event_id 3974 */ 3975 3976 struct perf_read_event { 3977 struct perf_event_header header; 3978 3979 u32 pid; 3980 u32 tid; 3981 }; 3982 3983 static void 3984 perf_event_read_event(struct perf_event *event, 3985 struct task_struct *task) 3986 { 3987 struct perf_output_handle handle; 3988 struct perf_sample_data sample; 3989 struct perf_read_event read_event = { 3990 .header = { 3991 .type = PERF_RECORD_READ, 3992 .misc = 0, 3993 .size = sizeof(read_event) + event->read_size, 3994 }, 3995 .pid = perf_event_pid(event, task), 3996 .tid = perf_event_tid(event, task), 3997 }; 3998 int ret; 3999 4000 perf_event_header__init_id(&read_event.header, &sample, event); 4001 ret = perf_output_begin(&handle, event, read_event.header.size); 4002 if (ret) 4003 return; 4004 4005 perf_output_put(&handle, read_event); 4006 perf_output_read(&handle, event); 4007 perf_event__output_id_sample(event, &handle, &sample); 4008 4009 perf_output_end(&handle); 4010 } 4011 4012 /* 4013 * task tracking -- fork/exit 4014 * 4015 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4016 */ 4017 4018 struct perf_task_event { 4019 struct task_struct *task; 4020 struct perf_event_context *task_ctx; 4021 4022 struct { 4023 struct perf_event_header header; 4024 4025 u32 pid; 4026 u32 ppid; 4027 u32 tid; 4028 u32 ptid; 4029 u64 time; 4030 } event_id; 4031 }; 4032 4033 static void perf_event_task_output(struct perf_event *event, 4034 struct perf_task_event *task_event) 4035 { 4036 struct perf_output_handle handle; 4037 struct perf_sample_data sample; 4038 struct task_struct *task = task_event->task; 4039 int ret, size = task_event->event_id.header.size; 4040 4041 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4042 4043 ret = perf_output_begin(&handle, event, 4044 task_event->event_id.header.size); 4045 if (ret) 4046 goto out; 4047 4048 task_event->event_id.pid = perf_event_pid(event, task); 4049 task_event->event_id.ppid = perf_event_pid(event, current); 4050 4051 task_event->event_id.tid = perf_event_tid(event, task); 4052 task_event->event_id.ptid = perf_event_tid(event, current); 4053 4054 perf_output_put(&handle, task_event->event_id); 4055 4056 perf_event__output_id_sample(event, &handle, &sample); 4057 4058 perf_output_end(&handle); 4059 out: 4060 task_event->event_id.header.size = size; 4061 } 4062 4063 static int perf_event_task_match(struct perf_event *event) 4064 { 4065 if (event->state < PERF_EVENT_STATE_INACTIVE) 4066 return 0; 4067 4068 if (!event_filter_match(event)) 4069 return 0; 4070 4071 if (event->attr.comm || event->attr.mmap || 4072 event->attr.mmap_data || event->attr.task) 4073 return 1; 4074 4075 return 0; 4076 } 4077 4078 static void perf_event_task_ctx(struct perf_event_context *ctx, 4079 struct perf_task_event *task_event) 4080 { 4081 struct perf_event *event; 4082 4083 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4084 if (perf_event_task_match(event)) 4085 perf_event_task_output(event, task_event); 4086 } 4087 } 4088 4089 static void perf_event_task_event(struct perf_task_event *task_event) 4090 { 4091 struct perf_cpu_context *cpuctx; 4092 struct perf_event_context *ctx; 4093 struct pmu *pmu; 4094 int ctxn; 4095 4096 rcu_read_lock(); 4097 list_for_each_entry_rcu(pmu, &pmus, entry) { 4098 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4099 if (cpuctx->active_pmu != pmu) 4100 goto next; 4101 perf_event_task_ctx(&cpuctx->ctx, task_event); 4102 4103 ctx = task_event->task_ctx; 4104 if (!ctx) { 4105 ctxn = pmu->task_ctx_nr; 4106 if (ctxn < 0) 4107 goto next; 4108 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4109 } 4110 if (ctx) 4111 perf_event_task_ctx(ctx, task_event); 4112 next: 4113 put_cpu_ptr(pmu->pmu_cpu_context); 4114 } 4115 rcu_read_unlock(); 4116 } 4117 4118 static void perf_event_task(struct task_struct *task, 4119 struct perf_event_context *task_ctx, 4120 int new) 4121 { 4122 struct perf_task_event task_event; 4123 4124 if (!atomic_read(&nr_comm_events) && 4125 !atomic_read(&nr_mmap_events) && 4126 !atomic_read(&nr_task_events)) 4127 return; 4128 4129 task_event = (struct perf_task_event){ 4130 .task = task, 4131 .task_ctx = task_ctx, 4132 .event_id = { 4133 .header = { 4134 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4135 .misc = 0, 4136 .size = sizeof(task_event.event_id), 4137 }, 4138 /* .pid */ 4139 /* .ppid */ 4140 /* .tid */ 4141 /* .ptid */ 4142 .time = perf_clock(), 4143 }, 4144 }; 4145 4146 perf_event_task_event(&task_event); 4147 } 4148 4149 void perf_event_fork(struct task_struct *task) 4150 { 4151 perf_event_task(task, NULL, 1); 4152 } 4153 4154 /* 4155 * comm tracking 4156 */ 4157 4158 struct perf_comm_event { 4159 struct task_struct *task; 4160 char *comm; 4161 int comm_size; 4162 4163 struct { 4164 struct perf_event_header header; 4165 4166 u32 pid; 4167 u32 tid; 4168 } event_id; 4169 }; 4170 4171 static void perf_event_comm_output(struct perf_event *event, 4172 struct perf_comm_event *comm_event) 4173 { 4174 struct perf_output_handle handle; 4175 struct perf_sample_data sample; 4176 int size = comm_event->event_id.header.size; 4177 int ret; 4178 4179 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4180 ret = perf_output_begin(&handle, event, 4181 comm_event->event_id.header.size); 4182 4183 if (ret) 4184 goto out; 4185 4186 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4187 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4188 4189 perf_output_put(&handle, comm_event->event_id); 4190 __output_copy(&handle, comm_event->comm, 4191 comm_event->comm_size); 4192 4193 perf_event__output_id_sample(event, &handle, &sample); 4194 4195 perf_output_end(&handle); 4196 out: 4197 comm_event->event_id.header.size = size; 4198 } 4199 4200 static int perf_event_comm_match(struct perf_event *event) 4201 { 4202 if (event->state < PERF_EVENT_STATE_INACTIVE) 4203 return 0; 4204 4205 if (!event_filter_match(event)) 4206 return 0; 4207 4208 if (event->attr.comm) 4209 return 1; 4210 4211 return 0; 4212 } 4213 4214 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4215 struct perf_comm_event *comm_event) 4216 { 4217 struct perf_event *event; 4218 4219 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4220 if (perf_event_comm_match(event)) 4221 perf_event_comm_output(event, comm_event); 4222 } 4223 } 4224 4225 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4226 { 4227 struct perf_cpu_context *cpuctx; 4228 struct perf_event_context *ctx; 4229 char comm[TASK_COMM_LEN]; 4230 unsigned int size; 4231 struct pmu *pmu; 4232 int ctxn; 4233 4234 memset(comm, 0, sizeof(comm)); 4235 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4236 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4237 4238 comm_event->comm = comm; 4239 comm_event->comm_size = size; 4240 4241 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4242 rcu_read_lock(); 4243 list_for_each_entry_rcu(pmu, &pmus, entry) { 4244 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4245 if (cpuctx->active_pmu != pmu) 4246 goto next; 4247 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4248 4249 ctxn = pmu->task_ctx_nr; 4250 if (ctxn < 0) 4251 goto next; 4252 4253 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4254 if (ctx) 4255 perf_event_comm_ctx(ctx, comm_event); 4256 next: 4257 put_cpu_ptr(pmu->pmu_cpu_context); 4258 } 4259 rcu_read_unlock(); 4260 } 4261 4262 void perf_event_comm(struct task_struct *task) 4263 { 4264 struct perf_comm_event comm_event; 4265 struct perf_event_context *ctx; 4266 int ctxn; 4267 4268 for_each_task_context_nr(ctxn) { 4269 ctx = task->perf_event_ctxp[ctxn]; 4270 if (!ctx) 4271 continue; 4272 4273 perf_event_enable_on_exec(ctx); 4274 } 4275 4276 if (!atomic_read(&nr_comm_events)) 4277 return; 4278 4279 comm_event = (struct perf_comm_event){ 4280 .task = task, 4281 /* .comm */ 4282 /* .comm_size */ 4283 .event_id = { 4284 .header = { 4285 .type = PERF_RECORD_COMM, 4286 .misc = 0, 4287 /* .size */ 4288 }, 4289 /* .pid */ 4290 /* .tid */ 4291 }, 4292 }; 4293 4294 perf_event_comm_event(&comm_event); 4295 } 4296 4297 /* 4298 * mmap tracking 4299 */ 4300 4301 struct perf_mmap_event { 4302 struct vm_area_struct *vma; 4303 4304 const char *file_name; 4305 int file_size; 4306 4307 struct { 4308 struct perf_event_header header; 4309 4310 u32 pid; 4311 u32 tid; 4312 u64 start; 4313 u64 len; 4314 u64 pgoff; 4315 } event_id; 4316 }; 4317 4318 static void perf_event_mmap_output(struct perf_event *event, 4319 struct perf_mmap_event *mmap_event) 4320 { 4321 struct perf_output_handle handle; 4322 struct perf_sample_data sample; 4323 int size = mmap_event->event_id.header.size; 4324 int ret; 4325 4326 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4327 ret = perf_output_begin(&handle, event, 4328 mmap_event->event_id.header.size); 4329 if (ret) 4330 goto out; 4331 4332 mmap_event->event_id.pid = perf_event_pid(event, current); 4333 mmap_event->event_id.tid = perf_event_tid(event, current); 4334 4335 perf_output_put(&handle, mmap_event->event_id); 4336 __output_copy(&handle, mmap_event->file_name, 4337 mmap_event->file_size); 4338 4339 perf_event__output_id_sample(event, &handle, &sample); 4340 4341 perf_output_end(&handle); 4342 out: 4343 mmap_event->event_id.header.size = size; 4344 } 4345 4346 static int perf_event_mmap_match(struct perf_event *event, 4347 struct perf_mmap_event *mmap_event, 4348 int executable) 4349 { 4350 if (event->state < PERF_EVENT_STATE_INACTIVE) 4351 return 0; 4352 4353 if (!event_filter_match(event)) 4354 return 0; 4355 4356 if ((!executable && event->attr.mmap_data) || 4357 (executable && event->attr.mmap)) 4358 return 1; 4359 4360 return 0; 4361 } 4362 4363 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4364 struct perf_mmap_event *mmap_event, 4365 int executable) 4366 { 4367 struct perf_event *event; 4368 4369 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4370 if (perf_event_mmap_match(event, mmap_event, executable)) 4371 perf_event_mmap_output(event, mmap_event); 4372 } 4373 } 4374 4375 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4376 { 4377 struct perf_cpu_context *cpuctx; 4378 struct perf_event_context *ctx; 4379 struct vm_area_struct *vma = mmap_event->vma; 4380 struct file *file = vma->vm_file; 4381 unsigned int size; 4382 char tmp[16]; 4383 char *buf = NULL; 4384 const char *name; 4385 struct pmu *pmu; 4386 int ctxn; 4387 4388 memset(tmp, 0, sizeof(tmp)); 4389 4390 if (file) { 4391 /* 4392 * d_path works from the end of the rb backwards, so we 4393 * need to add enough zero bytes after the string to handle 4394 * the 64bit alignment we do later. 4395 */ 4396 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4397 if (!buf) { 4398 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4399 goto got_name; 4400 } 4401 name = d_path(&file->f_path, buf, PATH_MAX); 4402 if (IS_ERR(name)) { 4403 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4404 goto got_name; 4405 } 4406 } else { 4407 if (arch_vma_name(mmap_event->vma)) { 4408 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4409 sizeof(tmp)); 4410 goto got_name; 4411 } 4412 4413 if (!vma->vm_mm) { 4414 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4415 goto got_name; 4416 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4417 vma->vm_end >= vma->vm_mm->brk) { 4418 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4419 goto got_name; 4420 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4421 vma->vm_end >= vma->vm_mm->start_stack) { 4422 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4423 goto got_name; 4424 } 4425 4426 name = strncpy(tmp, "//anon", sizeof(tmp)); 4427 goto got_name; 4428 } 4429 4430 got_name: 4431 size = ALIGN(strlen(name)+1, sizeof(u64)); 4432 4433 mmap_event->file_name = name; 4434 mmap_event->file_size = size; 4435 4436 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4437 4438 rcu_read_lock(); 4439 list_for_each_entry_rcu(pmu, &pmus, entry) { 4440 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4441 if (cpuctx->active_pmu != pmu) 4442 goto next; 4443 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4444 vma->vm_flags & VM_EXEC); 4445 4446 ctxn = pmu->task_ctx_nr; 4447 if (ctxn < 0) 4448 goto next; 4449 4450 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4451 if (ctx) { 4452 perf_event_mmap_ctx(ctx, mmap_event, 4453 vma->vm_flags & VM_EXEC); 4454 } 4455 next: 4456 put_cpu_ptr(pmu->pmu_cpu_context); 4457 } 4458 rcu_read_unlock(); 4459 4460 kfree(buf); 4461 } 4462 4463 void perf_event_mmap(struct vm_area_struct *vma) 4464 { 4465 struct perf_mmap_event mmap_event; 4466 4467 if (!atomic_read(&nr_mmap_events)) 4468 return; 4469 4470 mmap_event = (struct perf_mmap_event){ 4471 .vma = vma, 4472 /* .file_name */ 4473 /* .file_size */ 4474 .event_id = { 4475 .header = { 4476 .type = PERF_RECORD_MMAP, 4477 .misc = PERF_RECORD_MISC_USER, 4478 /* .size */ 4479 }, 4480 /* .pid */ 4481 /* .tid */ 4482 .start = vma->vm_start, 4483 .len = vma->vm_end - vma->vm_start, 4484 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4485 }, 4486 }; 4487 4488 perf_event_mmap_event(&mmap_event); 4489 } 4490 4491 /* 4492 * IRQ throttle logging 4493 */ 4494 4495 static void perf_log_throttle(struct perf_event *event, int enable) 4496 { 4497 struct perf_output_handle handle; 4498 struct perf_sample_data sample; 4499 int ret; 4500 4501 struct { 4502 struct perf_event_header header; 4503 u64 time; 4504 u64 id; 4505 u64 stream_id; 4506 } throttle_event = { 4507 .header = { 4508 .type = PERF_RECORD_THROTTLE, 4509 .misc = 0, 4510 .size = sizeof(throttle_event), 4511 }, 4512 .time = perf_clock(), 4513 .id = primary_event_id(event), 4514 .stream_id = event->id, 4515 }; 4516 4517 if (enable) 4518 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4519 4520 perf_event_header__init_id(&throttle_event.header, &sample, event); 4521 4522 ret = perf_output_begin(&handle, event, 4523 throttle_event.header.size); 4524 if (ret) 4525 return; 4526 4527 perf_output_put(&handle, throttle_event); 4528 perf_event__output_id_sample(event, &handle, &sample); 4529 perf_output_end(&handle); 4530 } 4531 4532 /* 4533 * Generic event overflow handling, sampling. 4534 */ 4535 4536 static int __perf_event_overflow(struct perf_event *event, 4537 int throttle, struct perf_sample_data *data, 4538 struct pt_regs *regs) 4539 { 4540 int events = atomic_read(&event->event_limit); 4541 struct hw_perf_event *hwc = &event->hw; 4542 u64 seq; 4543 int ret = 0; 4544 4545 /* 4546 * Non-sampling counters might still use the PMI to fold short 4547 * hardware counters, ignore those. 4548 */ 4549 if (unlikely(!is_sampling_event(event))) 4550 return 0; 4551 4552 seq = __this_cpu_read(perf_throttled_seq); 4553 if (seq != hwc->interrupts_seq) { 4554 hwc->interrupts_seq = seq; 4555 hwc->interrupts = 1; 4556 } else { 4557 hwc->interrupts++; 4558 if (unlikely(throttle 4559 && hwc->interrupts >= max_samples_per_tick)) { 4560 __this_cpu_inc(perf_throttled_count); 4561 hwc->interrupts = MAX_INTERRUPTS; 4562 perf_log_throttle(event, 0); 4563 ret = 1; 4564 } 4565 } 4566 4567 if (event->attr.freq) { 4568 u64 now = perf_clock(); 4569 s64 delta = now - hwc->freq_time_stamp; 4570 4571 hwc->freq_time_stamp = now; 4572 4573 if (delta > 0 && delta < 2*TICK_NSEC) 4574 perf_adjust_period(event, delta, hwc->last_period, true); 4575 } 4576 4577 /* 4578 * XXX event_limit might not quite work as expected on inherited 4579 * events 4580 */ 4581 4582 event->pending_kill = POLL_IN; 4583 if (events && atomic_dec_and_test(&event->event_limit)) { 4584 ret = 1; 4585 event->pending_kill = POLL_HUP; 4586 event->pending_disable = 1; 4587 irq_work_queue(&event->pending); 4588 } 4589 4590 if (event->overflow_handler) 4591 event->overflow_handler(event, data, regs); 4592 else 4593 perf_event_output(event, data, regs); 4594 4595 if (event->fasync && event->pending_kill) { 4596 event->pending_wakeup = 1; 4597 irq_work_queue(&event->pending); 4598 } 4599 4600 return ret; 4601 } 4602 4603 int perf_event_overflow(struct perf_event *event, 4604 struct perf_sample_data *data, 4605 struct pt_regs *regs) 4606 { 4607 return __perf_event_overflow(event, 1, data, regs); 4608 } 4609 4610 /* 4611 * Generic software event infrastructure 4612 */ 4613 4614 struct swevent_htable { 4615 struct swevent_hlist *swevent_hlist; 4616 struct mutex hlist_mutex; 4617 int hlist_refcount; 4618 4619 /* Recursion avoidance in each contexts */ 4620 int recursion[PERF_NR_CONTEXTS]; 4621 }; 4622 4623 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4624 4625 /* 4626 * We directly increment event->count and keep a second value in 4627 * event->hw.period_left to count intervals. This period event 4628 * is kept in the range [-sample_period, 0] so that we can use the 4629 * sign as trigger. 4630 */ 4631 4632 static u64 perf_swevent_set_period(struct perf_event *event) 4633 { 4634 struct hw_perf_event *hwc = &event->hw; 4635 u64 period = hwc->last_period; 4636 u64 nr, offset; 4637 s64 old, val; 4638 4639 hwc->last_period = hwc->sample_period; 4640 4641 again: 4642 old = val = local64_read(&hwc->period_left); 4643 if (val < 0) 4644 return 0; 4645 4646 nr = div64_u64(period + val, period); 4647 offset = nr * period; 4648 val -= offset; 4649 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4650 goto again; 4651 4652 return nr; 4653 } 4654 4655 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4656 struct perf_sample_data *data, 4657 struct pt_regs *regs) 4658 { 4659 struct hw_perf_event *hwc = &event->hw; 4660 int throttle = 0; 4661 4662 if (!overflow) 4663 overflow = perf_swevent_set_period(event); 4664 4665 if (hwc->interrupts == MAX_INTERRUPTS) 4666 return; 4667 4668 for (; overflow; overflow--) { 4669 if (__perf_event_overflow(event, throttle, 4670 data, regs)) { 4671 /* 4672 * We inhibit the overflow from happening when 4673 * hwc->interrupts == MAX_INTERRUPTS. 4674 */ 4675 break; 4676 } 4677 throttle = 1; 4678 } 4679 } 4680 4681 static void perf_swevent_event(struct perf_event *event, u64 nr, 4682 struct perf_sample_data *data, 4683 struct pt_regs *regs) 4684 { 4685 struct hw_perf_event *hwc = &event->hw; 4686 4687 local64_add(nr, &event->count); 4688 4689 if (!regs) 4690 return; 4691 4692 if (!is_sampling_event(event)) 4693 return; 4694 4695 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 4696 data->period = nr; 4697 return perf_swevent_overflow(event, 1, data, regs); 4698 } else 4699 data->period = event->hw.last_period; 4700 4701 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4702 return perf_swevent_overflow(event, 1, data, regs); 4703 4704 if (local64_add_negative(nr, &hwc->period_left)) 4705 return; 4706 4707 perf_swevent_overflow(event, 0, data, regs); 4708 } 4709 4710 static int perf_exclude_event(struct perf_event *event, 4711 struct pt_regs *regs) 4712 { 4713 if (event->hw.state & PERF_HES_STOPPED) 4714 return 1; 4715 4716 if (regs) { 4717 if (event->attr.exclude_user && user_mode(regs)) 4718 return 1; 4719 4720 if (event->attr.exclude_kernel && !user_mode(regs)) 4721 return 1; 4722 } 4723 4724 return 0; 4725 } 4726 4727 static int perf_swevent_match(struct perf_event *event, 4728 enum perf_type_id type, 4729 u32 event_id, 4730 struct perf_sample_data *data, 4731 struct pt_regs *regs) 4732 { 4733 if (event->attr.type != type) 4734 return 0; 4735 4736 if (event->attr.config != event_id) 4737 return 0; 4738 4739 if (perf_exclude_event(event, regs)) 4740 return 0; 4741 4742 return 1; 4743 } 4744 4745 static inline u64 swevent_hash(u64 type, u32 event_id) 4746 { 4747 u64 val = event_id | (type << 32); 4748 4749 return hash_64(val, SWEVENT_HLIST_BITS); 4750 } 4751 4752 static inline struct hlist_head * 4753 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4754 { 4755 u64 hash = swevent_hash(type, event_id); 4756 4757 return &hlist->heads[hash]; 4758 } 4759 4760 /* For the read side: events when they trigger */ 4761 static inline struct hlist_head * 4762 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4763 { 4764 struct swevent_hlist *hlist; 4765 4766 hlist = rcu_dereference(swhash->swevent_hlist); 4767 if (!hlist) 4768 return NULL; 4769 4770 return __find_swevent_head(hlist, type, event_id); 4771 } 4772 4773 /* For the event head insertion and removal in the hlist */ 4774 static inline struct hlist_head * 4775 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4776 { 4777 struct swevent_hlist *hlist; 4778 u32 event_id = event->attr.config; 4779 u64 type = event->attr.type; 4780 4781 /* 4782 * Event scheduling is always serialized against hlist allocation 4783 * and release. Which makes the protected version suitable here. 4784 * The context lock guarantees that. 4785 */ 4786 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4787 lockdep_is_held(&event->ctx->lock)); 4788 if (!hlist) 4789 return NULL; 4790 4791 return __find_swevent_head(hlist, type, event_id); 4792 } 4793 4794 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4795 u64 nr, 4796 struct perf_sample_data *data, 4797 struct pt_regs *regs) 4798 { 4799 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4800 struct perf_event *event; 4801 struct hlist_node *node; 4802 struct hlist_head *head; 4803 4804 rcu_read_lock(); 4805 head = find_swevent_head_rcu(swhash, type, event_id); 4806 if (!head) 4807 goto end; 4808 4809 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4810 if (perf_swevent_match(event, type, event_id, data, regs)) 4811 perf_swevent_event(event, nr, data, regs); 4812 } 4813 end: 4814 rcu_read_unlock(); 4815 } 4816 4817 int perf_swevent_get_recursion_context(void) 4818 { 4819 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4820 4821 return get_recursion_context(swhash->recursion); 4822 } 4823 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4824 4825 inline void perf_swevent_put_recursion_context(int rctx) 4826 { 4827 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4828 4829 put_recursion_context(swhash->recursion, rctx); 4830 } 4831 4832 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4833 { 4834 struct perf_sample_data data; 4835 int rctx; 4836 4837 preempt_disable_notrace(); 4838 rctx = perf_swevent_get_recursion_context(); 4839 if (rctx < 0) 4840 return; 4841 4842 perf_sample_data_init(&data, addr); 4843 4844 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4845 4846 perf_swevent_put_recursion_context(rctx); 4847 preempt_enable_notrace(); 4848 } 4849 4850 static void perf_swevent_read(struct perf_event *event) 4851 { 4852 } 4853 4854 static int perf_swevent_add(struct perf_event *event, int flags) 4855 { 4856 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4857 struct hw_perf_event *hwc = &event->hw; 4858 struct hlist_head *head; 4859 4860 if (is_sampling_event(event)) { 4861 hwc->last_period = hwc->sample_period; 4862 perf_swevent_set_period(event); 4863 } 4864 4865 hwc->state = !(flags & PERF_EF_START); 4866 4867 head = find_swevent_head(swhash, event); 4868 if (WARN_ON_ONCE(!head)) 4869 return -EINVAL; 4870 4871 hlist_add_head_rcu(&event->hlist_entry, head); 4872 4873 return 0; 4874 } 4875 4876 static void perf_swevent_del(struct perf_event *event, int flags) 4877 { 4878 hlist_del_rcu(&event->hlist_entry); 4879 } 4880 4881 static void perf_swevent_start(struct perf_event *event, int flags) 4882 { 4883 event->hw.state = 0; 4884 } 4885 4886 static void perf_swevent_stop(struct perf_event *event, int flags) 4887 { 4888 event->hw.state = PERF_HES_STOPPED; 4889 } 4890 4891 /* Deref the hlist from the update side */ 4892 static inline struct swevent_hlist * 4893 swevent_hlist_deref(struct swevent_htable *swhash) 4894 { 4895 return rcu_dereference_protected(swhash->swevent_hlist, 4896 lockdep_is_held(&swhash->hlist_mutex)); 4897 } 4898 4899 static void swevent_hlist_release(struct swevent_htable *swhash) 4900 { 4901 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 4902 4903 if (!hlist) 4904 return; 4905 4906 rcu_assign_pointer(swhash->swevent_hlist, NULL); 4907 kfree_rcu(hlist, rcu_head); 4908 } 4909 4910 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 4911 { 4912 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4913 4914 mutex_lock(&swhash->hlist_mutex); 4915 4916 if (!--swhash->hlist_refcount) 4917 swevent_hlist_release(swhash); 4918 4919 mutex_unlock(&swhash->hlist_mutex); 4920 } 4921 4922 static void swevent_hlist_put(struct perf_event *event) 4923 { 4924 int cpu; 4925 4926 if (event->cpu != -1) { 4927 swevent_hlist_put_cpu(event, event->cpu); 4928 return; 4929 } 4930 4931 for_each_possible_cpu(cpu) 4932 swevent_hlist_put_cpu(event, cpu); 4933 } 4934 4935 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 4936 { 4937 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4938 int err = 0; 4939 4940 mutex_lock(&swhash->hlist_mutex); 4941 4942 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 4943 struct swevent_hlist *hlist; 4944 4945 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 4946 if (!hlist) { 4947 err = -ENOMEM; 4948 goto exit; 4949 } 4950 rcu_assign_pointer(swhash->swevent_hlist, hlist); 4951 } 4952 swhash->hlist_refcount++; 4953 exit: 4954 mutex_unlock(&swhash->hlist_mutex); 4955 4956 return err; 4957 } 4958 4959 static int swevent_hlist_get(struct perf_event *event) 4960 { 4961 int err; 4962 int cpu, failed_cpu; 4963 4964 if (event->cpu != -1) 4965 return swevent_hlist_get_cpu(event, event->cpu); 4966 4967 get_online_cpus(); 4968 for_each_possible_cpu(cpu) { 4969 err = swevent_hlist_get_cpu(event, cpu); 4970 if (err) { 4971 failed_cpu = cpu; 4972 goto fail; 4973 } 4974 } 4975 put_online_cpus(); 4976 4977 return 0; 4978 fail: 4979 for_each_possible_cpu(cpu) { 4980 if (cpu == failed_cpu) 4981 break; 4982 swevent_hlist_put_cpu(event, cpu); 4983 } 4984 4985 put_online_cpus(); 4986 return err; 4987 } 4988 4989 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 4990 4991 static void sw_perf_event_destroy(struct perf_event *event) 4992 { 4993 u64 event_id = event->attr.config; 4994 4995 WARN_ON(event->parent); 4996 4997 jump_label_dec(&perf_swevent_enabled[event_id]); 4998 swevent_hlist_put(event); 4999 } 5000 5001 static int perf_swevent_init(struct perf_event *event) 5002 { 5003 int event_id = event->attr.config; 5004 5005 if (event->attr.type != PERF_TYPE_SOFTWARE) 5006 return -ENOENT; 5007 5008 switch (event_id) { 5009 case PERF_COUNT_SW_CPU_CLOCK: 5010 case PERF_COUNT_SW_TASK_CLOCK: 5011 return -ENOENT; 5012 5013 default: 5014 break; 5015 } 5016 5017 if (event_id >= PERF_COUNT_SW_MAX) 5018 return -ENOENT; 5019 5020 if (!event->parent) { 5021 int err; 5022 5023 err = swevent_hlist_get(event); 5024 if (err) 5025 return err; 5026 5027 jump_label_inc(&perf_swevent_enabled[event_id]); 5028 event->destroy = sw_perf_event_destroy; 5029 } 5030 5031 return 0; 5032 } 5033 5034 static struct pmu perf_swevent = { 5035 .task_ctx_nr = perf_sw_context, 5036 5037 .event_init = perf_swevent_init, 5038 .add = perf_swevent_add, 5039 .del = perf_swevent_del, 5040 .start = perf_swevent_start, 5041 .stop = perf_swevent_stop, 5042 .read = perf_swevent_read, 5043 }; 5044 5045 #ifdef CONFIG_EVENT_TRACING 5046 5047 static int perf_tp_filter_match(struct perf_event *event, 5048 struct perf_sample_data *data) 5049 { 5050 void *record = data->raw->data; 5051 5052 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5053 return 1; 5054 return 0; 5055 } 5056 5057 static int perf_tp_event_match(struct perf_event *event, 5058 struct perf_sample_data *data, 5059 struct pt_regs *regs) 5060 { 5061 if (event->hw.state & PERF_HES_STOPPED) 5062 return 0; 5063 /* 5064 * All tracepoints are from kernel-space. 5065 */ 5066 if (event->attr.exclude_kernel) 5067 return 0; 5068 5069 if (!perf_tp_filter_match(event, data)) 5070 return 0; 5071 5072 return 1; 5073 } 5074 5075 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5076 struct pt_regs *regs, struct hlist_head *head, int rctx) 5077 { 5078 struct perf_sample_data data; 5079 struct perf_event *event; 5080 struct hlist_node *node; 5081 5082 struct perf_raw_record raw = { 5083 .size = entry_size, 5084 .data = record, 5085 }; 5086 5087 perf_sample_data_init(&data, addr); 5088 data.raw = &raw; 5089 5090 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5091 if (perf_tp_event_match(event, &data, regs)) 5092 perf_swevent_event(event, count, &data, regs); 5093 } 5094 5095 perf_swevent_put_recursion_context(rctx); 5096 } 5097 EXPORT_SYMBOL_GPL(perf_tp_event); 5098 5099 static void tp_perf_event_destroy(struct perf_event *event) 5100 { 5101 perf_trace_destroy(event); 5102 } 5103 5104 static int perf_tp_event_init(struct perf_event *event) 5105 { 5106 int err; 5107 5108 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5109 return -ENOENT; 5110 5111 err = perf_trace_init(event); 5112 if (err) 5113 return err; 5114 5115 event->destroy = tp_perf_event_destroy; 5116 5117 return 0; 5118 } 5119 5120 static struct pmu perf_tracepoint = { 5121 .task_ctx_nr = perf_sw_context, 5122 5123 .event_init = perf_tp_event_init, 5124 .add = perf_trace_add, 5125 .del = perf_trace_del, 5126 .start = perf_swevent_start, 5127 .stop = perf_swevent_stop, 5128 .read = perf_swevent_read, 5129 }; 5130 5131 static inline void perf_tp_register(void) 5132 { 5133 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5134 } 5135 5136 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5137 { 5138 char *filter_str; 5139 int ret; 5140 5141 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5142 return -EINVAL; 5143 5144 filter_str = strndup_user(arg, PAGE_SIZE); 5145 if (IS_ERR(filter_str)) 5146 return PTR_ERR(filter_str); 5147 5148 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5149 5150 kfree(filter_str); 5151 return ret; 5152 } 5153 5154 static void perf_event_free_filter(struct perf_event *event) 5155 { 5156 ftrace_profile_free_filter(event); 5157 } 5158 5159 #else 5160 5161 static inline void perf_tp_register(void) 5162 { 5163 } 5164 5165 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5166 { 5167 return -ENOENT; 5168 } 5169 5170 static void perf_event_free_filter(struct perf_event *event) 5171 { 5172 } 5173 5174 #endif /* CONFIG_EVENT_TRACING */ 5175 5176 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5177 void perf_bp_event(struct perf_event *bp, void *data) 5178 { 5179 struct perf_sample_data sample; 5180 struct pt_regs *regs = data; 5181 5182 perf_sample_data_init(&sample, bp->attr.bp_addr); 5183 5184 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5185 perf_swevent_event(bp, 1, &sample, regs); 5186 } 5187 #endif 5188 5189 /* 5190 * hrtimer based swevent callback 5191 */ 5192 5193 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5194 { 5195 enum hrtimer_restart ret = HRTIMER_RESTART; 5196 struct perf_sample_data data; 5197 struct pt_regs *regs; 5198 struct perf_event *event; 5199 u64 period; 5200 5201 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5202 5203 if (event->state != PERF_EVENT_STATE_ACTIVE) 5204 return HRTIMER_NORESTART; 5205 5206 event->pmu->read(event); 5207 5208 perf_sample_data_init(&data, 0); 5209 data.period = event->hw.last_period; 5210 regs = get_irq_regs(); 5211 5212 if (regs && !perf_exclude_event(event, regs)) { 5213 if (!(event->attr.exclude_idle && is_idle_task(current))) 5214 if (perf_event_overflow(event, &data, regs)) 5215 ret = HRTIMER_NORESTART; 5216 } 5217 5218 period = max_t(u64, 10000, event->hw.sample_period); 5219 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5220 5221 return ret; 5222 } 5223 5224 static void perf_swevent_start_hrtimer(struct perf_event *event) 5225 { 5226 struct hw_perf_event *hwc = &event->hw; 5227 s64 period; 5228 5229 if (!is_sampling_event(event)) 5230 return; 5231 5232 period = local64_read(&hwc->period_left); 5233 if (period) { 5234 if (period < 0) 5235 period = 10000; 5236 5237 local64_set(&hwc->period_left, 0); 5238 } else { 5239 period = max_t(u64, 10000, hwc->sample_period); 5240 } 5241 __hrtimer_start_range_ns(&hwc->hrtimer, 5242 ns_to_ktime(period), 0, 5243 HRTIMER_MODE_REL_PINNED, 0); 5244 } 5245 5246 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5247 { 5248 struct hw_perf_event *hwc = &event->hw; 5249 5250 if (is_sampling_event(event)) { 5251 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5252 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5253 5254 hrtimer_cancel(&hwc->hrtimer); 5255 } 5256 } 5257 5258 static void perf_swevent_init_hrtimer(struct perf_event *event) 5259 { 5260 struct hw_perf_event *hwc = &event->hw; 5261 5262 if (!is_sampling_event(event)) 5263 return; 5264 5265 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5266 hwc->hrtimer.function = perf_swevent_hrtimer; 5267 5268 /* 5269 * Since hrtimers have a fixed rate, we can do a static freq->period 5270 * mapping and avoid the whole period adjust feedback stuff. 5271 */ 5272 if (event->attr.freq) { 5273 long freq = event->attr.sample_freq; 5274 5275 event->attr.sample_period = NSEC_PER_SEC / freq; 5276 hwc->sample_period = event->attr.sample_period; 5277 local64_set(&hwc->period_left, hwc->sample_period); 5278 event->attr.freq = 0; 5279 } 5280 } 5281 5282 /* 5283 * Software event: cpu wall time clock 5284 */ 5285 5286 static void cpu_clock_event_update(struct perf_event *event) 5287 { 5288 s64 prev; 5289 u64 now; 5290 5291 now = local_clock(); 5292 prev = local64_xchg(&event->hw.prev_count, now); 5293 local64_add(now - prev, &event->count); 5294 } 5295 5296 static void cpu_clock_event_start(struct perf_event *event, int flags) 5297 { 5298 local64_set(&event->hw.prev_count, local_clock()); 5299 perf_swevent_start_hrtimer(event); 5300 } 5301 5302 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5303 { 5304 perf_swevent_cancel_hrtimer(event); 5305 cpu_clock_event_update(event); 5306 } 5307 5308 static int cpu_clock_event_add(struct perf_event *event, int flags) 5309 { 5310 if (flags & PERF_EF_START) 5311 cpu_clock_event_start(event, flags); 5312 5313 return 0; 5314 } 5315 5316 static void cpu_clock_event_del(struct perf_event *event, int flags) 5317 { 5318 cpu_clock_event_stop(event, flags); 5319 } 5320 5321 static void cpu_clock_event_read(struct perf_event *event) 5322 { 5323 cpu_clock_event_update(event); 5324 } 5325 5326 static int cpu_clock_event_init(struct perf_event *event) 5327 { 5328 if (event->attr.type != PERF_TYPE_SOFTWARE) 5329 return -ENOENT; 5330 5331 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5332 return -ENOENT; 5333 5334 perf_swevent_init_hrtimer(event); 5335 5336 return 0; 5337 } 5338 5339 static struct pmu perf_cpu_clock = { 5340 .task_ctx_nr = perf_sw_context, 5341 5342 .event_init = cpu_clock_event_init, 5343 .add = cpu_clock_event_add, 5344 .del = cpu_clock_event_del, 5345 .start = cpu_clock_event_start, 5346 .stop = cpu_clock_event_stop, 5347 .read = cpu_clock_event_read, 5348 }; 5349 5350 /* 5351 * Software event: task time clock 5352 */ 5353 5354 static void task_clock_event_update(struct perf_event *event, u64 now) 5355 { 5356 u64 prev; 5357 s64 delta; 5358 5359 prev = local64_xchg(&event->hw.prev_count, now); 5360 delta = now - prev; 5361 local64_add(delta, &event->count); 5362 } 5363 5364 static void task_clock_event_start(struct perf_event *event, int flags) 5365 { 5366 local64_set(&event->hw.prev_count, event->ctx->time); 5367 perf_swevent_start_hrtimer(event); 5368 } 5369 5370 static void task_clock_event_stop(struct perf_event *event, int flags) 5371 { 5372 perf_swevent_cancel_hrtimer(event); 5373 task_clock_event_update(event, event->ctx->time); 5374 } 5375 5376 static int task_clock_event_add(struct perf_event *event, int flags) 5377 { 5378 if (flags & PERF_EF_START) 5379 task_clock_event_start(event, flags); 5380 5381 return 0; 5382 } 5383 5384 static void task_clock_event_del(struct perf_event *event, int flags) 5385 { 5386 task_clock_event_stop(event, PERF_EF_UPDATE); 5387 } 5388 5389 static void task_clock_event_read(struct perf_event *event) 5390 { 5391 u64 now = perf_clock(); 5392 u64 delta = now - event->ctx->timestamp; 5393 u64 time = event->ctx->time + delta; 5394 5395 task_clock_event_update(event, time); 5396 } 5397 5398 static int task_clock_event_init(struct perf_event *event) 5399 { 5400 if (event->attr.type != PERF_TYPE_SOFTWARE) 5401 return -ENOENT; 5402 5403 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5404 return -ENOENT; 5405 5406 perf_swevent_init_hrtimer(event); 5407 5408 return 0; 5409 } 5410 5411 static struct pmu perf_task_clock = { 5412 .task_ctx_nr = perf_sw_context, 5413 5414 .event_init = task_clock_event_init, 5415 .add = task_clock_event_add, 5416 .del = task_clock_event_del, 5417 .start = task_clock_event_start, 5418 .stop = task_clock_event_stop, 5419 .read = task_clock_event_read, 5420 }; 5421 5422 static void perf_pmu_nop_void(struct pmu *pmu) 5423 { 5424 } 5425 5426 static int perf_pmu_nop_int(struct pmu *pmu) 5427 { 5428 return 0; 5429 } 5430 5431 static void perf_pmu_start_txn(struct pmu *pmu) 5432 { 5433 perf_pmu_disable(pmu); 5434 } 5435 5436 static int perf_pmu_commit_txn(struct pmu *pmu) 5437 { 5438 perf_pmu_enable(pmu); 5439 return 0; 5440 } 5441 5442 static void perf_pmu_cancel_txn(struct pmu *pmu) 5443 { 5444 perf_pmu_enable(pmu); 5445 } 5446 5447 /* 5448 * Ensures all contexts with the same task_ctx_nr have the same 5449 * pmu_cpu_context too. 5450 */ 5451 static void *find_pmu_context(int ctxn) 5452 { 5453 struct pmu *pmu; 5454 5455 if (ctxn < 0) 5456 return NULL; 5457 5458 list_for_each_entry(pmu, &pmus, entry) { 5459 if (pmu->task_ctx_nr == ctxn) 5460 return pmu->pmu_cpu_context; 5461 } 5462 5463 return NULL; 5464 } 5465 5466 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5467 { 5468 int cpu; 5469 5470 for_each_possible_cpu(cpu) { 5471 struct perf_cpu_context *cpuctx; 5472 5473 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5474 5475 if (cpuctx->active_pmu == old_pmu) 5476 cpuctx->active_pmu = pmu; 5477 } 5478 } 5479 5480 static void free_pmu_context(struct pmu *pmu) 5481 { 5482 struct pmu *i; 5483 5484 mutex_lock(&pmus_lock); 5485 /* 5486 * Like a real lame refcount. 5487 */ 5488 list_for_each_entry(i, &pmus, entry) { 5489 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5490 update_pmu_context(i, pmu); 5491 goto out; 5492 } 5493 } 5494 5495 free_percpu(pmu->pmu_cpu_context); 5496 out: 5497 mutex_unlock(&pmus_lock); 5498 } 5499 static struct idr pmu_idr; 5500 5501 static ssize_t 5502 type_show(struct device *dev, struct device_attribute *attr, char *page) 5503 { 5504 struct pmu *pmu = dev_get_drvdata(dev); 5505 5506 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5507 } 5508 5509 static struct device_attribute pmu_dev_attrs[] = { 5510 __ATTR_RO(type), 5511 __ATTR_NULL, 5512 }; 5513 5514 static int pmu_bus_running; 5515 static struct bus_type pmu_bus = { 5516 .name = "event_source", 5517 .dev_attrs = pmu_dev_attrs, 5518 }; 5519 5520 static void pmu_dev_release(struct device *dev) 5521 { 5522 kfree(dev); 5523 } 5524 5525 static int pmu_dev_alloc(struct pmu *pmu) 5526 { 5527 int ret = -ENOMEM; 5528 5529 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5530 if (!pmu->dev) 5531 goto out; 5532 5533 device_initialize(pmu->dev); 5534 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5535 if (ret) 5536 goto free_dev; 5537 5538 dev_set_drvdata(pmu->dev, pmu); 5539 pmu->dev->bus = &pmu_bus; 5540 pmu->dev->release = pmu_dev_release; 5541 ret = device_add(pmu->dev); 5542 if (ret) 5543 goto free_dev; 5544 5545 out: 5546 return ret; 5547 5548 free_dev: 5549 put_device(pmu->dev); 5550 goto out; 5551 } 5552 5553 static struct lock_class_key cpuctx_mutex; 5554 static struct lock_class_key cpuctx_lock; 5555 5556 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5557 { 5558 int cpu, ret; 5559 5560 mutex_lock(&pmus_lock); 5561 ret = -ENOMEM; 5562 pmu->pmu_disable_count = alloc_percpu(int); 5563 if (!pmu->pmu_disable_count) 5564 goto unlock; 5565 5566 pmu->type = -1; 5567 if (!name) 5568 goto skip_type; 5569 pmu->name = name; 5570 5571 if (type < 0) { 5572 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5573 if (!err) 5574 goto free_pdc; 5575 5576 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5577 if (err) { 5578 ret = err; 5579 goto free_pdc; 5580 } 5581 } 5582 pmu->type = type; 5583 5584 if (pmu_bus_running) { 5585 ret = pmu_dev_alloc(pmu); 5586 if (ret) 5587 goto free_idr; 5588 } 5589 5590 skip_type: 5591 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5592 if (pmu->pmu_cpu_context) 5593 goto got_cpu_context; 5594 5595 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5596 if (!pmu->pmu_cpu_context) 5597 goto free_dev; 5598 5599 for_each_possible_cpu(cpu) { 5600 struct perf_cpu_context *cpuctx; 5601 5602 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5603 __perf_event_init_context(&cpuctx->ctx); 5604 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5605 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5606 cpuctx->ctx.type = cpu_context; 5607 cpuctx->ctx.pmu = pmu; 5608 cpuctx->jiffies_interval = 1; 5609 INIT_LIST_HEAD(&cpuctx->rotation_list); 5610 cpuctx->active_pmu = pmu; 5611 } 5612 5613 got_cpu_context: 5614 if (!pmu->start_txn) { 5615 if (pmu->pmu_enable) { 5616 /* 5617 * If we have pmu_enable/pmu_disable calls, install 5618 * transaction stubs that use that to try and batch 5619 * hardware accesses. 5620 */ 5621 pmu->start_txn = perf_pmu_start_txn; 5622 pmu->commit_txn = perf_pmu_commit_txn; 5623 pmu->cancel_txn = perf_pmu_cancel_txn; 5624 } else { 5625 pmu->start_txn = perf_pmu_nop_void; 5626 pmu->commit_txn = perf_pmu_nop_int; 5627 pmu->cancel_txn = perf_pmu_nop_void; 5628 } 5629 } 5630 5631 if (!pmu->pmu_enable) { 5632 pmu->pmu_enable = perf_pmu_nop_void; 5633 pmu->pmu_disable = perf_pmu_nop_void; 5634 } 5635 5636 list_add_rcu(&pmu->entry, &pmus); 5637 ret = 0; 5638 unlock: 5639 mutex_unlock(&pmus_lock); 5640 5641 return ret; 5642 5643 free_dev: 5644 device_del(pmu->dev); 5645 put_device(pmu->dev); 5646 5647 free_idr: 5648 if (pmu->type >= PERF_TYPE_MAX) 5649 idr_remove(&pmu_idr, pmu->type); 5650 5651 free_pdc: 5652 free_percpu(pmu->pmu_disable_count); 5653 goto unlock; 5654 } 5655 5656 void perf_pmu_unregister(struct pmu *pmu) 5657 { 5658 mutex_lock(&pmus_lock); 5659 list_del_rcu(&pmu->entry); 5660 mutex_unlock(&pmus_lock); 5661 5662 /* 5663 * We dereference the pmu list under both SRCU and regular RCU, so 5664 * synchronize against both of those. 5665 */ 5666 synchronize_srcu(&pmus_srcu); 5667 synchronize_rcu(); 5668 5669 free_percpu(pmu->pmu_disable_count); 5670 if (pmu->type >= PERF_TYPE_MAX) 5671 idr_remove(&pmu_idr, pmu->type); 5672 device_del(pmu->dev); 5673 put_device(pmu->dev); 5674 free_pmu_context(pmu); 5675 } 5676 5677 struct pmu *perf_init_event(struct perf_event *event) 5678 { 5679 struct pmu *pmu = NULL; 5680 int idx; 5681 int ret; 5682 5683 idx = srcu_read_lock(&pmus_srcu); 5684 5685 rcu_read_lock(); 5686 pmu = idr_find(&pmu_idr, event->attr.type); 5687 rcu_read_unlock(); 5688 if (pmu) { 5689 event->pmu = pmu; 5690 ret = pmu->event_init(event); 5691 if (ret) 5692 pmu = ERR_PTR(ret); 5693 goto unlock; 5694 } 5695 5696 list_for_each_entry_rcu(pmu, &pmus, entry) { 5697 event->pmu = pmu; 5698 ret = pmu->event_init(event); 5699 if (!ret) 5700 goto unlock; 5701 5702 if (ret != -ENOENT) { 5703 pmu = ERR_PTR(ret); 5704 goto unlock; 5705 } 5706 } 5707 pmu = ERR_PTR(-ENOENT); 5708 unlock: 5709 srcu_read_unlock(&pmus_srcu, idx); 5710 5711 return pmu; 5712 } 5713 5714 /* 5715 * Allocate and initialize a event structure 5716 */ 5717 static struct perf_event * 5718 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5719 struct task_struct *task, 5720 struct perf_event *group_leader, 5721 struct perf_event *parent_event, 5722 perf_overflow_handler_t overflow_handler, 5723 void *context) 5724 { 5725 struct pmu *pmu; 5726 struct perf_event *event; 5727 struct hw_perf_event *hwc; 5728 long err; 5729 5730 if ((unsigned)cpu >= nr_cpu_ids) { 5731 if (!task || cpu != -1) 5732 return ERR_PTR(-EINVAL); 5733 } 5734 5735 event = kzalloc(sizeof(*event), GFP_KERNEL); 5736 if (!event) 5737 return ERR_PTR(-ENOMEM); 5738 5739 /* 5740 * Single events are their own group leaders, with an 5741 * empty sibling list: 5742 */ 5743 if (!group_leader) 5744 group_leader = event; 5745 5746 mutex_init(&event->child_mutex); 5747 INIT_LIST_HEAD(&event->child_list); 5748 5749 INIT_LIST_HEAD(&event->group_entry); 5750 INIT_LIST_HEAD(&event->event_entry); 5751 INIT_LIST_HEAD(&event->sibling_list); 5752 INIT_LIST_HEAD(&event->rb_entry); 5753 5754 init_waitqueue_head(&event->waitq); 5755 init_irq_work(&event->pending, perf_pending_event); 5756 5757 mutex_init(&event->mmap_mutex); 5758 5759 event->cpu = cpu; 5760 event->attr = *attr; 5761 event->group_leader = group_leader; 5762 event->pmu = NULL; 5763 event->oncpu = -1; 5764 5765 event->parent = parent_event; 5766 5767 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5768 event->id = atomic64_inc_return(&perf_event_id); 5769 5770 event->state = PERF_EVENT_STATE_INACTIVE; 5771 5772 if (task) { 5773 event->attach_state = PERF_ATTACH_TASK; 5774 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5775 /* 5776 * hw_breakpoint is a bit difficult here.. 5777 */ 5778 if (attr->type == PERF_TYPE_BREAKPOINT) 5779 event->hw.bp_target = task; 5780 #endif 5781 } 5782 5783 if (!overflow_handler && parent_event) { 5784 overflow_handler = parent_event->overflow_handler; 5785 context = parent_event->overflow_handler_context; 5786 } 5787 5788 event->overflow_handler = overflow_handler; 5789 event->overflow_handler_context = context; 5790 5791 if (attr->disabled) 5792 event->state = PERF_EVENT_STATE_OFF; 5793 5794 pmu = NULL; 5795 5796 hwc = &event->hw; 5797 hwc->sample_period = attr->sample_period; 5798 if (attr->freq && attr->sample_freq) 5799 hwc->sample_period = 1; 5800 hwc->last_period = hwc->sample_period; 5801 5802 local64_set(&hwc->period_left, hwc->sample_period); 5803 5804 /* 5805 * we currently do not support PERF_FORMAT_GROUP on inherited events 5806 */ 5807 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5808 goto done; 5809 5810 pmu = perf_init_event(event); 5811 5812 done: 5813 err = 0; 5814 if (!pmu) 5815 err = -EINVAL; 5816 else if (IS_ERR(pmu)) 5817 err = PTR_ERR(pmu); 5818 5819 if (err) { 5820 if (event->ns) 5821 put_pid_ns(event->ns); 5822 kfree(event); 5823 return ERR_PTR(err); 5824 } 5825 5826 if (!event->parent) { 5827 if (event->attach_state & PERF_ATTACH_TASK) 5828 jump_label_inc(&perf_sched_events.key); 5829 if (event->attr.mmap || event->attr.mmap_data) 5830 atomic_inc(&nr_mmap_events); 5831 if (event->attr.comm) 5832 atomic_inc(&nr_comm_events); 5833 if (event->attr.task) 5834 atomic_inc(&nr_task_events); 5835 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 5836 err = get_callchain_buffers(); 5837 if (err) { 5838 free_event(event); 5839 return ERR_PTR(err); 5840 } 5841 } 5842 } 5843 5844 return event; 5845 } 5846 5847 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5848 struct perf_event_attr *attr) 5849 { 5850 u32 size; 5851 int ret; 5852 5853 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 5854 return -EFAULT; 5855 5856 /* 5857 * zero the full structure, so that a short copy will be nice. 5858 */ 5859 memset(attr, 0, sizeof(*attr)); 5860 5861 ret = get_user(size, &uattr->size); 5862 if (ret) 5863 return ret; 5864 5865 if (size > PAGE_SIZE) /* silly large */ 5866 goto err_size; 5867 5868 if (!size) /* abi compat */ 5869 size = PERF_ATTR_SIZE_VER0; 5870 5871 if (size < PERF_ATTR_SIZE_VER0) 5872 goto err_size; 5873 5874 /* 5875 * If we're handed a bigger struct than we know of, 5876 * ensure all the unknown bits are 0 - i.e. new 5877 * user-space does not rely on any kernel feature 5878 * extensions we dont know about yet. 5879 */ 5880 if (size > sizeof(*attr)) { 5881 unsigned char __user *addr; 5882 unsigned char __user *end; 5883 unsigned char val; 5884 5885 addr = (void __user *)uattr + sizeof(*attr); 5886 end = (void __user *)uattr + size; 5887 5888 for (; addr < end; addr++) { 5889 ret = get_user(val, addr); 5890 if (ret) 5891 return ret; 5892 if (val) 5893 goto err_size; 5894 } 5895 size = sizeof(*attr); 5896 } 5897 5898 ret = copy_from_user(attr, uattr, size); 5899 if (ret) 5900 return -EFAULT; 5901 5902 if (attr->__reserved_1) 5903 return -EINVAL; 5904 5905 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 5906 return -EINVAL; 5907 5908 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 5909 return -EINVAL; 5910 5911 out: 5912 return ret; 5913 5914 err_size: 5915 put_user(sizeof(*attr), &uattr->size); 5916 ret = -E2BIG; 5917 goto out; 5918 } 5919 5920 static int 5921 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 5922 { 5923 struct ring_buffer *rb = NULL, *old_rb = NULL; 5924 int ret = -EINVAL; 5925 5926 if (!output_event) 5927 goto set; 5928 5929 /* don't allow circular references */ 5930 if (event == output_event) 5931 goto out; 5932 5933 /* 5934 * Don't allow cross-cpu buffers 5935 */ 5936 if (output_event->cpu != event->cpu) 5937 goto out; 5938 5939 /* 5940 * If its not a per-cpu rb, it must be the same task. 5941 */ 5942 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 5943 goto out; 5944 5945 set: 5946 mutex_lock(&event->mmap_mutex); 5947 /* Can't redirect output if we've got an active mmap() */ 5948 if (atomic_read(&event->mmap_count)) 5949 goto unlock; 5950 5951 if (output_event) { 5952 /* get the rb we want to redirect to */ 5953 rb = ring_buffer_get(output_event); 5954 if (!rb) 5955 goto unlock; 5956 } 5957 5958 old_rb = event->rb; 5959 rcu_assign_pointer(event->rb, rb); 5960 if (old_rb) 5961 ring_buffer_detach(event, old_rb); 5962 ret = 0; 5963 unlock: 5964 mutex_unlock(&event->mmap_mutex); 5965 5966 if (old_rb) 5967 ring_buffer_put(old_rb); 5968 out: 5969 return ret; 5970 } 5971 5972 /** 5973 * sys_perf_event_open - open a performance event, associate it to a task/cpu 5974 * 5975 * @attr_uptr: event_id type attributes for monitoring/sampling 5976 * @pid: target pid 5977 * @cpu: target cpu 5978 * @group_fd: group leader event fd 5979 */ 5980 SYSCALL_DEFINE5(perf_event_open, 5981 struct perf_event_attr __user *, attr_uptr, 5982 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 5983 { 5984 struct perf_event *group_leader = NULL, *output_event = NULL; 5985 struct perf_event *event, *sibling; 5986 struct perf_event_attr attr; 5987 struct perf_event_context *ctx; 5988 struct file *event_file = NULL; 5989 struct file *group_file = NULL; 5990 struct task_struct *task = NULL; 5991 struct pmu *pmu; 5992 int event_fd; 5993 int move_group = 0; 5994 int fput_needed = 0; 5995 int err; 5996 5997 /* for future expandability... */ 5998 if (flags & ~PERF_FLAG_ALL) 5999 return -EINVAL; 6000 6001 err = perf_copy_attr(attr_uptr, &attr); 6002 if (err) 6003 return err; 6004 6005 if (!attr.exclude_kernel) { 6006 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6007 return -EACCES; 6008 } 6009 6010 if (attr.freq) { 6011 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6012 return -EINVAL; 6013 } 6014 6015 /* 6016 * In cgroup mode, the pid argument is used to pass the fd 6017 * opened to the cgroup directory in cgroupfs. The cpu argument 6018 * designates the cpu on which to monitor threads from that 6019 * cgroup. 6020 */ 6021 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6022 return -EINVAL; 6023 6024 event_fd = get_unused_fd_flags(O_RDWR); 6025 if (event_fd < 0) 6026 return event_fd; 6027 6028 if (group_fd != -1) { 6029 group_leader = perf_fget_light(group_fd, &fput_needed); 6030 if (IS_ERR(group_leader)) { 6031 err = PTR_ERR(group_leader); 6032 goto err_fd; 6033 } 6034 group_file = group_leader->filp; 6035 if (flags & PERF_FLAG_FD_OUTPUT) 6036 output_event = group_leader; 6037 if (flags & PERF_FLAG_FD_NO_GROUP) 6038 group_leader = NULL; 6039 } 6040 6041 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6042 task = find_lively_task_by_vpid(pid); 6043 if (IS_ERR(task)) { 6044 err = PTR_ERR(task); 6045 goto err_group_fd; 6046 } 6047 } 6048 6049 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6050 NULL, NULL); 6051 if (IS_ERR(event)) { 6052 err = PTR_ERR(event); 6053 goto err_task; 6054 } 6055 6056 if (flags & PERF_FLAG_PID_CGROUP) { 6057 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6058 if (err) 6059 goto err_alloc; 6060 /* 6061 * one more event: 6062 * - that has cgroup constraint on event->cpu 6063 * - that may need work on context switch 6064 */ 6065 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6066 jump_label_inc(&perf_sched_events.key); 6067 } 6068 6069 /* 6070 * Special case software events and allow them to be part of 6071 * any hardware group. 6072 */ 6073 pmu = event->pmu; 6074 6075 if (group_leader && 6076 (is_software_event(event) != is_software_event(group_leader))) { 6077 if (is_software_event(event)) { 6078 /* 6079 * If event and group_leader are not both a software 6080 * event, and event is, then group leader is not. 6081 * 6082 * Allow the addition of software events to !software 6083 * groups, this is safe because software events never 6084 * fail to schedule. 6085 */ 6086 pmu = group_leader->pmu; 6087 } else if (is_software_event(group_leader) && 6088 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6089 /* 6090 * In case the group is a pure software group, and we 6091 * try to add a hardware event, move the whole group to 6092 * the hardware context. 6093 */ 6094 move_group = 1; 6095 } 6096 } 6097 6098 /* 6099 * Get the target context (task or percpu): 6100 */ 6101 ctx = find_get_context(pmu, task, cpu); 6102 if (IS_ERR(ctx)) { 6103 err = PTR_ERR(ctx); 6104 goto err_alloc; 6105 } 6106 6107 if (task) { 6108 put_task_struct(task); 6109 task = NULL; 6110 } 6111 6112 /* 6113 * Look up the group leader (we will attach this event to it): 6114 */ 6115 if (group_leader) { 6116 err = -EINVAL; 6117 6118 /* 6119 * Do not allow a recursive hierarchy (this new sibling 6120 * becoming part of another group-sibling): 6121 */ 6122 if (group_leader->group_leader != group_leader) 6123 goto err_context; 6124 /* 6125 * Do not allow to attach to a group in a different 6126 * task or CPU context: 6127 */ 6128 if (move_group) { 6129 if (group_leader->ctx->type != ctx->type) 6130 goto err_context; 6131 } else { 6132 if (group_leader->ctx != ctx) 6133 goto err_context; 6134 } 6135 6136 /* 6137 * Only a group leader can be exclusive or pinned 6138 */ 6139 if (attr.exclusive || attr.pinned) 6140 goto err_context; 6141 } 6142 6143 if (output_event) { 6144 err = perf_event_set_output(event, output_event); 6145 if (err) 6146 goto err_context; 6147 } 6148 6149 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6150 if (IS_ERR(event_file)) { 6151 err = PTR_ERR(event_file); 6152 goto err_context; 6153 } 6154 6155 if (move_group) { 6156 struct perf_event_context *gctx = group_leader->ctx; 6157 6158 mutex_lock(&gctx->mutex); 6159 perf_remove_from_context(group_leader); 6160 list_for_each_entry(sibling, &group_leader->sibling_list, 6161 group_entry) { 6162 perf_remove_from_context(sibling); 6163 put_ctx(gctx); 6164 } 6165 mutex_unlock(&gctx->mutex); 6166 put_ctx(gctx); 6167 } 6168 6169 event->filp = event_file; 6170 WARN_ON_ONCE(ctx->parent_ctx); 6171 mutex_lock(&ctx->mutex); 6172 6173 if (move_group) { 6174 perf_install_in_context(ctx, group_leader, cpu); 6175 get_ctx(ctx); 6176 list_for_each_entry(sibling, &group_leader->sibling_list, 6177 group_entry) { 6178 perf_install_in_context(ctx, sibling, cpu); 6179 get_ctx(ctx); 6180 } 6181 } 6182 6183 perf_install_in_context(ctx, event, cpu); 6184 ++ctx->generation; 6185 perf_unpin_context(ctx); 6186 mutex_unlock(&ctx->mutex); 6187 6188 event->owner = current; 6189 6190 mutex_lock(¤t->perf_event_mutex); 6191 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6192 mutex_unlock(¤t->perf_event_mutex); 6193 6194 /* 6195 * Precalculate sample_data sizes 6196 */ 6197 perf_event__header_size(event); 6198 perf_event__id_header_size(event); 6199 6200 /* 6201 * Drop the reference on the group_event after placing the 6202 * new event on the sibling_list. This ensures destruction 6203 * of the group leader will find the pointer to itself in 6204 * perf_group_detach(). 6205 */ 6206 fput_light(group_file, fput_needed); 6207 fd_install(event_fd, event_file); 6208 return event_fd; 6209 6210 err_context: 6211 perf_unpin_context(ctx); 6212 put_ctx(ctx); 6213 err_alloc: 6214 free_event(event); 6215 err_task: 6216 if (task) 6217 put_task_struct(task); 6218 err_group_fd: 6219 fput_light(group_file, fput_needed); 6220 err_fd: 6221 put_unused_fd(event_fd); 6222 return err; 6223 } 6224 6225 /** 6226 * perf_event_create_kernel_counter 6227 * 6228 * @attr: attributes of the counter to create 6229 * @cpu: cpu in which the counter is bound 6230 * @task: task to profile (NULL for percpu) 6231 */ 6232 struct perf_event * 6233 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6234 struct task_struct *task, 6235 perf_overflow_handler_t overflow_handler, 6236 void *context) 6237 { 6238 struct perf_event_context *ctx; 6239 struct perf_event *event; 6240 int err; 6241 6242 /* 6243 * Get the target context (task or percpu): 6244 */ 6245 6246 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6247 overflow_handler, context); 6248 if (IS_ERR(event)) { 6249 err = PTR_ERR(event); 6250 goto err; 6251 } 6252 6253 ctx = find_get_context(event->pmu, task, cpu); 6254 if (IS_ERR(ctx)) { 6255 err = PTR_ERR(ctx); 6256 goto err_free; 6257 } 6258 6259 event->filp = NULL; 6260 WARN_ON_ONCE(ctx->parent_ctx); 6261 mutex_lock(&ctx->mutex); 6262 perf_install_in_context(ctx, event, cpu); 6263 ++ctx->generation; 6264 perf_unpin_context(ctx); 6265 mutex_unlock(&ctx->mutex); 6266 6267 return event; 6268 6269 err_free: 6270 free_event(event); 6271 err: 6272 return ERR_PTR(err); 6273 } 6274 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6275 6276 static void sync_child_event(struct perf_event *child_event, 6277 struct task_struct *child) 6278 { 6279 struct perf_event *parent_event = child_event->parent; 6280 u64 child_val; 6281 6282 if (child_event->attr.inherit_stat) 6283 perf_event_read_event(child_event, child); 6284 6285 child_val = perf_event_count(child_event); 6286 6287 /* 6288 * Add back the child's count to the parent's count: 6289 */ 6290 atomic64_add(child_val, &parent_event->child_count); 6291 atomic64_add(child_event->total_time_enabled, 6292 &parent_event->child_total_time_enabled); 6293 atomic64_add(child_event->total_time_running, 6294 &parent_event->child_total_time_running); 6295 6296 /* 6297 * Remove this event from the parent's list 6298 */ 6299 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6300 mutex_lock(&parent_event->child_mutex); 6301 list_del_init(&child_event->child_list); 6302 mutex_unlock(&parent_event->child_mutex); 6303 6304 /* 6305 * Release the parent event, if this was the last 6306 * reference to it. 6307 */ 6308 fput(parent_event->filp); 6309 } 6310 6311 static void 6312 __perf_event_exit_task(struct perf_event *child_event, 6313 struct perf_event_context *child_ctx, 6314 struct task_struct *child) 6315 { 6316 if (child_event->parent) { 6317 raw_spin_lock_irq(&child_ctx->lock); 6318 perf_group_detach(child_event); 6319 raw_spin_unlock_irq(&child_ctx->lock); 6320 } 6321 6322 perf_remove_from_context(child_event); 6323 6324 /* 6325 * It can happen that the parent exits first, and has events 6326 * that are still around due to the child reference. These 6327 * events need to be zapped. 6328 */ 6329 if (child_event->parent) { 6330 sync_child_event(child_event, child); 6331 free_event(child_event); 6332 } 6333 } 6334 6335 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6336 { 6337 struct perf_event *child_event, *tmp; 6338 struct perf_event_context *child_ctx; 6339 unsigned long flags; 6340 6341 if (likely(!child->perf_event_ctxp[ctxn])) { 6342 perf_event_task(child, NULL, 0); 6343 return; 6344 } 6345 6346 local_irq_save(flags); 6347 /* 6348 * We can't reschedule here because interrupts are disabled, 6349 * and either child is current or it is a task that can't be 6350 * scheduled, so we are now safe from rescheduling changing 6351 * our context. 6352 */ 6353 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6354 6355 /* 6356 * Take the context lock here so that if find_get_context is 6357 * reading child->perf_event_ctxp, we wait until it has 6358 * incremented the context's refcount before we do put_ctx below. 6359 */ 6360 raw_spin_lock(&child_ctx->lock); 6361 task_ctx_sched_out(child_ctx); 6362 child->perf_event_ctxp[ctxn] = NULL; 6363 /* 6364 * If this context is a clone; unclone it so it can't get 6365 * swapped to another process while we're removing all 6366 * the events from it. 6367 */ 6368 unclone_ctx(child_ctx); 6369 update_context_time(child_ctx); 6370 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6371 6372 /* 6373 * Report the task dead after unscheduling the events so that we 6374 * won't get any samples after PERF_RECORD_EXIT. We can however still 6375 * get a few PERF_RECORD_READ events. 6376 */ 6377 perf_event_task(child, child_ctx, 0); 6378 6379 /* 6380 * We can recurse on the same lock type through: 6381 * 6382 * __perf_event_exit_task() 6383 * sync_child_event() 6384 * fput(parent_event->filp) 6385 * perf_release() 6386 * mutex_lock(&ctx->mutex) 6387 * 6388 * But since its the parent context it won't be the same instance. 6389 */ 6390 mutex_lock(&child_ctx->mutex); 6391 6392 again: 6393 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6394 group_entry) 6395 __perf_event_exit_task(child_event, child_ctx, child); 6396 6397 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6398 group_entry) 6399 __perf_event_exit_task(child_event, child_ctx, child); 6400 6401 /* 6402 * If the last event was a group event, it will have appended all 6403 * its siblings to the list, but we obtained 'tmp' before that which 6404 * will still point to the list head terminating the iteration. 6405 */ 6406 if (!list_empty(&child_ctx->pinned_groups) || 6407 !list_empty(&child_ctx->flexible_groups)) 6408 goto again; 6409 6410 mutex_unlock(&child_ctx->mutex); 6411 6412 put_ctx(child_ctx); 6413 } 6414 6415 /* 6416 * When a child task exits, feed back event values to parent events. 6417 */ 6418 void perf_event_exit_task(struct task_struct *child) 6419 { 6420 struct perf_event *event, *tmp; 6421 int ctxn; 6422 6423 mutex_lock(&child->perf_event_mutex); 6424 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6425 owner_entry) { 6426 list_del_init(&event->owner_entry); 6427 6428 /* 6429 * Ensure the list deletion is visible before we clear 6430 * the owner, closes a race against perf_release() where 6431 * we need to serialize on the owner->perf_event_mutex. 6432 */ 6433 smp_wmb(); 6434 event->owner = NULL; 6435 } 6436 mutex_unlock(&child->perf_event_mutex); 6437 6438 for_each_task_context_nr(ctxn) 6439 perf_event_exit_task_context(child, ctxn); 6440 } 6441 6442 static void perf_free_event(struct perf_event *event, 6443 struct perf_event_context *ctx) 6444 { 6445 struct perf_event *parent = event->parent; 6446 6447 if (WARN_ON_ONCE(!parent)) 6448 return; 6449 6450 mutex_lock(&parent->child_mutex); 6451 list_del_init(&event->child_list); 6452 mutex_unlock(&parent->child_mutex); 6453 6454 fput(parent->filp); 6455 6456 perf_group_detach(event); 6457 list_del_event(event, ctx); 6458 free_event(event); 6459 } 6460 6461 /* 6462 * free an unexposed, unused context as created by inheritance by 6463 * perf_event_init_task below, used by fork() in case of fail. 6464 */ 6465 void perf_event_free_task(struct task_struct *task) 6466 { 6467 struct perf_event_context *ctx; 6468 struct perf_event *event, *tmp; 6469 int ctxn; 6470 6471 for_each_task_context_nr(ctxn) { 6472 ctx = task->perf_event_ctxp[ctxn]; 6473 if (!ctx) 6474 continue; 6475 6476 mutex_lock(&ctx->mutex); 6477 again: 6478 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6479 group_entry) 6480 perf_free_event(event, ctx); 6481 6482 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6483 group_entry) 6484 perf_free_event(event, ctx); 6485 6486 if (!list_empty(&ctx->pinned_groups) || 6487 !list_empty(&ctx->flexible_groups)) 6488 goto again; 6489 6490 mutex_unlock(&ctx->mutex); 6491 6492 put_ctx(ctx); 6493 } 6494 } 6495 6496 void perf_event_delayed_put(struct task_struct *task) 6497 { 6498 int ctxn; 6499 6500 for_each_task_context_nr(ctxn) 6501 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6502 } 6503 6504 /* 6505 * inherit a event from parent task to child task: 6506 */ 6507 static struct perf_event * 6508 inherit_event(struct perf_event *parent_event, 6509 struct task_struct *parent, 6510 struct perf_event_context *parent_ctx, 6511 struct task_struct *child, 6512 struct perf_event *group_leader, 6513 struct perf_event_context *child_ctx) 6514 { 6515 struct perf_event *child_event; 6516 unsigned long flags; 6517 6518 /* 6519 * Instead of creating recursive hierarchies of events, 6520 * we link inherited events back to the original parent, 6521 * which has a filp for sure, which we use as the reference 6522 * count: 6523 */ 6524 if (parent_event->parent) 6525 parent_event = parent_event->parent; 6526 6527 child_event = perf_event_alloc(&parent_event->attr, 6528 parent_event->cpu, 6529 child, 6530 group_leader, parent_event, 6531 NULL, NULL); 6532 if (IS_ERR(child_event)) 6533 return child_event; 6534 get_ctx(child_ctx); 6535 6536 /* 6537 * Make the child state follow the state of the parent event, 6538 * not its attr.disabled bit. We hold the parent's mutex, 6539 * so we won't race with perf_event_{en, dis}able_family. 6540 */ 6541 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6542 child_event->state = PERF_EVENT_STATE_INACTIVE; 6543 else 6544 child_event->state = PERF_EVENT_STATE_OFF; 6545 6546 if (parent_event->attr.freq) { 6547 u64 sample_period = parent_event->hw.sample_period; 6548 struct hw_perf_event *hwc = &child_event->hw; 6549 6550 hwc->sample_period = sample_period; 6551 hwc->last_period = sample_period; 6552 6553 local64_set(&hwc->period_left, sample_period); 6554 } 6555 6556 child_event->ctx = child_ctx; 6557 child_event->overflow_handler = parent_event->overflow_handler; 6558 child_event->overflow_handler_context 6559 = parent_event->overflow_handler_context; 6560 6561 /* 6562 * Precalculate sample_data sizes 6563 */ 6564 perf_event__header_size(child_event); 6565 perf_event__id_header_size(child_event); 6566 6567 /* 6568 * Link it up in the child's context: 6569 */ 6570 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6571 add_event_to_ctx(child_event, child_ctx); 6572 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6573 6574 /* 6575 * Get a reference to the parent filp - we will fput it 6576 * when the child event exits. This is safe to do because 6577 * we are in the parent and we know that the filp still 6578 * exists and has a nonzero count: 6579 */ 6580 atomic_long_inc(&parent_event->filp->f_count); 6581 6582 /* 6583 * Link this into the parent event's child list 6584 */ 6585 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6586 mutex_lock(&parent_event->child_mutex); 6587 list_add_tail(&child_event->child_list, &parent_event->child_list); 6588 mutex_unlock(&parent_event->child_mutex); 6589 6590 return child_event; 6591 } 6592 6593 static int inherit_group(struct perf_event *parent_event, 6594 struct task_struct *parent, 6595 struct perf_event_context *parent_ctx, 6596 struct task_struct *child, 6597 struct perf_event_context *child_ctx) 6598 { 6599 struct perf_event *leader; 6600 struct perf_event *sub; 6601 struct perf_event *child_ctr; 6602 6603 leader = inherit_event(parent_event, parent, parent_ctx, 6604 child, NULL, child_ctx); 6605 if (IS_ERR(leader)) 6606 return PTR_ERR(leader); 6607 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6608 child_ctr = inherit_event(sub, parent, parent_ctx, 6609 child, leader, child_ctx); 6610 if (IS_ERR(child_ctr)) 6611 return PTR_ERR(child_ctr); 6612 } 6613 return 0; 6614 } 6615 6616 static int 6617 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6618 struct perf_event_context *parent_ctx, 6619 struct task_struct *child, int ctxn, 6620 int *inherited_all) 6621 { 6622 int ret; 6623 struct perf_event_context *child_ctx; 6624 6625 if (!event->attr.inherit) { 6626 *inherited_all = 0; 6627 return 0; 6628 } 6629 6630 child_ctx = child->perf_event_ctxp[ctxn]; 6631 if (!child_ctx) { 6632 /* 6633 * This is executed from the parent task context, so 6634 * inherit events that have been marked for cloning. 6635 * First allocate and initialize a context for the 6636 * child. 6637 */ 6638 6639 child_ctx = alloc_perf_context(event->pmu, child); 6640 if (!child_ctx) 6641 return -ENOMEM; 6642 6643 child->perf_event_ctxp[ctxn] = child_ctx; 6644 } 6645 6646 ret = inherit_group(event, parent, parent_ctx, 6647 child, child_ctx); 6648 6649 if (ret) 6650 *inherited_all = 0; 6651 6652 return ret; 6653 } 6654 6655 /* 6656 * Initialize the perf_event context in task_struct 6657 */ 6658 int perf_event_init_context(struct task_struct *child, int ctxn) 6659 { 6660 struct perf_event_context *child_ctx, *parent_ctx; 6661 struct perf_event_context *cloned_ctx; 6662 struct perf_event *event; 6663 struct task_struct *parent = current; 6664 int inherited_all = 1; 6665 unsigned long flags; 6666 int ret = 0; 6667 6668 if (likely(!parent->perf_event_ctxp[ctxn])) 6669 return 0; 6670 6671 /* 6672 * If the parent's context is a clone, pin it so it won't get 6673 * swapped under us. 6674 */ 6675 parent_ctx = perf_pin_task_context(parent, ctxn); 6676 6677 /* 6678 * No need to check if parent_ctx != NULL here; since we saw 6679 * it non-NULL earlier, the only reason for it to become NULL 6680 * is if we exit, and since we're currently in the middle of 6681 * a fork we can't be exiting at the same time. 6682 */ 6683 6684 /* 6685 * Lock the parent list. No need to lock the child - not PID 6686 * hashed yet and not running, so nobody can access it. 6687 */ 6688 mutex_lock(&parent_ctx->mutex); 6689 6690 /* 6691 * We dont have to disable NMIs - we are only looking at 6692 * the list, not manipulating it: 6693 */ 6694 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6695 ret = inherit_task_group(event, parent, parent_ctx, 6696 child, ctxn, &inherited_all); 6697 if (ret) 6698 break; 6699 } 6700 6701 /* 6702 * We can't hold ctx->lock when iterating the ->flexible_group list due 6703 * to allocations, but we need to prevent rotation because 6704 * rotate_ctx() will change the list from interrupt context. 6705 */ 6706 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6707 parent_ctx->rotate_disable = 1; 6708 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6709 6710 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6711 ret = inherit_task_group(event, parent, parent_ctx, 6712 child, ctxn, &inherited_all); 6713 if (ret) 6714 break; 6715 } 6716 6717 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6718 parent_ctx->rotate_disable = 0; 6719 6720 child_ctx = child->perf_event_ctxp[ctxn]; 6721 6722 if (child_ctx && inherited_all) { 6723 /* 6724 * Mark the child context as a clone of the parent 6725 * context, or of whatever the parent is a clone of. 6726 * 6727 * Note that if the parent is a clone, the holding of 6728 * parent_ctx->lock avoids it from being uncloned. 6729 */ 6730 cloned_ctx = parent_ctx->parent_ctx; 6731 if (cloned_ctx) { 6732 child_ctx->parent_ctx = cloned_ctx; 6733 child_ctx->parent_gen = parent_ctx->parent_gen; 6734 } else { 6735 child_ctx->parent_ctx = parent_ctx; 6736 child_ctx->parent_gen = parent_ctx->generation; 6737 } 6738 get_ctx(child_ctx->parent_ctx); 6739 } 6740 6741 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6742 mutex_unlock(&parent_ctx->mutex); 6743 6744 perf_unpin_context(parent_ctx); 6745 put_ctx(parent_ctx); 6746 6747 return ret; 6748 } 6749 6750 /* 6751 * Initialize the perf_event context in task_struct 6752 */ 6753 int perf_event_init_task(struct task_struct *child) 6754 { 6755 int ctxn, ret; 6756 6757 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6758 mutex_init(&child->perf_event_mutex); 6759 INIT_LIST_HEAD(&child->perf_event_list); 6760 6761 for_each_task_context_nr(ctxn) { 6762 ret = perf_event_init_context(child, ctxn); 6763 if (ret) 6764 return ret; 6765 } 6766 6767 return 0; 6768 } 6769 6770 static void __init perf_event_init_all_cpus(void) 6771 { 6772 struct swevent_htable *swhash; 6773 int cpu; 6774 6775 for_each_possible_cpu(cpu) { 6776 swhash = &per_cpu(swevent_htable, cpu); 6777 mutex_init(&swhash->hlist_mutex); 6778 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6779 } 6780 } 6781 6782 static void __cpuinit perf_event_init_cpu(int cpu) 6783 { 6784 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6785 6786 mutex_lock(&swhash->hlist_mutex); 6787 if (swhash->hlist_refcount > 0) { 6788 struct swevent_hlist *hlist; 6789 6790 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6791 WARN_ON(!hlist); 6792 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6793 } 6794 mutex_unlock(&swhash->hlist_mutex); 6795 } 6796 6797 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 6798 static void perf_pmu_rotate_stop(struct pmu *pmu) 6799 { 6800 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6801 6802 WARN_ON(!irqs_disabled()); 6803 6804 list_del_init(&cpuctx->rotation_list); 6805 } 6806 6807 static void __perf_event_exit_context(void *__info) 6808 { 6809 struct perf_event_context *ctx = __info; 6810 struct perf_event *event, *tmp; 6811 6812 perf_pmu_rotate_stop(ctx->pmu); 6813 6814 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 6815 __perf_remove_from_context(event); 6816 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 6817 __perf_remove_from_context(event); 6818 } 6819 6820 static void perf_event_exit_cpu_context(int cpu) 6821 { 6822 struct perf_event_context *ctx; 6823 struct pmu *pmu; 6824 int idx; 6825 6826 idx = srcu_read_lock(&pmus_srcu); 6827 list_for_each_entry_rcu(pmu, &pmus, entry) { 6828 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 6829 6830 mutex_lock(&ctx->mutex); 6831 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 6832 mutex_unlock(&ctx->mutex); 6833 } 6834 srcu_read_unlock(&pmus_srcu, idx); 6835 } 6836 6837 static void perf_event_exit_cpu(int cpu) 6838 { 6839 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6840 6841 mutex_lock(&swhash->hlist_mutex); 6842 swevent_hlist_release(swhash); 6843 mutex_unlock(&swhash->hlist_mutex); 6844 6845 perf_event_exit_cpu_context(cpu); 6846 } 6847 #else 6848 static inline void perf_event_exit_cpu(int cpu) { } 6849 #endif 6850 6851 static int 6852 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 6853 { 6854 int cpu; 6855 6856 for_each_online_cpu(cpu) 6857 perf_event_exit_cpu(cpu); 6858 6859 return NOTIFY_OK; 6860 } 6861 6862 /* 6863 * Run the perf reboot notifier at the very last possible moment so that 6864 * the generic watchdog code runs as long as possible. 6865 */ 6866 static struct notifier_block perf_reboot_notifier = { 6867 .notifier_call = perf_reboot, 6868 .priority = INT_MIN, 6869 }; 6870 6871 static int __cpuinit 6872 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 6873 { 6874 unsigned int cpu = (long)hcpu; 6875 6876 switch (action & ~CPU_TASKS_FROZEN) { 6877 6878 case CPU_UP_PREPARE: 6879 case CPU_DOWN_FAILED: 6880 perf_event_init_cpu(cpu); 6881 break; 6882 6883 case CPU_UP_CANCELED: 6884 case CPU_DOWN_PREPARE: 6885 perf_event_exit_cpu(cpu); 6886 break; 6887 6888 default: 6889 break; 6890 } 6891 6892 return NOTIFY_OK; 6893 } 6894 6895 void __init perf_event_init(void) 6896 { 6897 int ret; 6898 6899 idr_init(&pmu_idr); 6900 6901 perf_event_init_all_cpus(); 6902 init_srcu_struct(&pmus_srcu); 6903 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 6904 perf_pmu_register(&perf_cpu_clock, NULL, -1); 6905 perf_pmu_register(&perf_task_clock, NULL, -1); 6906 perf_tp_register(); 6907 perf_cpu_notifier(perf_cpu_notify); 6908 register_reboot_notifier(&perf_reboot_notifier); 6909 6910 ret = init_hw_breakpoint(); 6911 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 6912 6913 /* do not patch jump label more than once per second */ 6914 jump_label_rate_limit(&perf_sched_events, HZ); 6915 } 6916 6917 static int __init perf_event_sysfs_init(void) 6918 { 6919 struct pmu *pmu; 6920 int ret; 6921 6922 mutex_lock(&pmus_lock); 6923 6924 ret = bus_register(&pmu_bus); 6925 if (ret) 6926 goto unlock; 6927 6928 list_for_each_entry(pmu, &pmus, entry) { 6929 if (!pmu->name || pmu->type < 0) 6930 continue; 6931 6932 ret = pmu_dev_alloc(pmu); 6933 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 6934 } 6935 pmu_bus_running = 1; 6936 ret = 0; 6937 6938 unlock: 6939 mutex_unlock(&pmus_lock); 6940 6941 return ret; 6942 } 6943 device_initcall(perf_event_sysfs_init); 6944 6945 #ifdef CONFIG_CGROUP_PERF 6946 static struct cgroup_subsys_state *perf_cgroup_create( 6947 struct cgroup_subsys *ss, struct cgroup *cont) 6948 { 6949 struct perf_cgroup *jc; 6950 6951 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 6952 if (!jc) 6953 return ERR_PTR(-ENOMEM); 6954 6955 jc->info = alloc_percpu(struct perf_cgroup_info); 6956 if (!jc->info) { 6957 kfree(jc); 6958 return ERR_PTR(-ENOMEM); 6959 } 6960 6961 return &jc->css; 6962 } 6963 6964 static void perf_cgroup_destroy(struct cgroup_subsys *ss, 6965 struct cgroup *cont) 6966 { 6967 struct perf_cgroup *jc; 6968 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 6969 struct perf_cgroup, css); 6970 free_percpu(jc->info); 6971 kfree(jc); 6972 } 6973 6974 static int __perf_cgroup_move(void *info) 6975 { 6976 struct task_struct *task = info; 6977 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 6978 return 0; 6979 } 6980 6981 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 6982 struct cgroup_taskset *tset) 6983 { 6984 struct task_struct *task; 6985 6986 cgroup_taskset_for_each(task, cgrp, tset) 6987 task_function_call(task, __perf_cgroup_move, task); 6988 } 6989 6990 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 6991 struct cgroup *old_cgrp, struct task_struct *task) 6992 { 6993 /* 6994 * cgroup_exit() is called in the copy_process() failure path. 6995 * Ignore this case since the task hasn't ran yet, this avoids 6996 * trying to poke a half freed task state from generic code. 6997 */ 6998 if (!(task->flags & PF_EXITING)) 6999 return; 7000 7001 task_function_call(task, __perf_cgroup_move, task); 7002 } 7003 7004 struct cgroup_subsys perf_subsys = { 7005 .name = "perf_event", 7006 .subsys_id = perf_subsys_id, 7007 .create = perf_cgroup_create, 7008 .destroy = perf_cgroup_destroy, 7009 .exit = perf_cgroup_exit, 7010 .attach = perf_cgroup_attach, 7011 }; 7012 #endif /* CONFIG_CGROUP_PERF */ 7013