xref: /linux/kernel/events/core.c (revision 66a0e2d579dbec5c676cfe446234ffebb267c564)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 
906 	/*
907 	 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 	 * ctx->nr_cgroup == 0 .
909 	 */
910 	if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 		cpuctx->cgrp = event->cgrp;
912 	else if (!add)
913 		cpuctx->cgrp = NULL;
914 }
915 
916 #else /* !CONFIG_CGROUP_PERF */
917 
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921 	return true;
922 }
923 
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926 
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929 	return 0;
930 }
931 
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934 	return 0;
935 }
936 
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940 
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944 
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946 					 struct task_struct *next)
947 {
948 }
949 
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 					struct task_struct *task)
952 {
953 }
954 
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 				      struct perf_event_attr *attr,
957 				      struct perf_event *group_leader)
958 {
959 	return -EINVAL;
960 }
961 
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964 			  struct perf_event_context *ctx)
965 {
966 }
967 
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972 
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977 
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980 	return 0;
981 }
982 
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987 
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990 			 struct perf_event_context *ctx)
991 {
992 }
993 
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996 			 struct perf_event_context *ctx, bool add)
997 {
998 }
999 
1000 #endif
1001 
1002 /*
1003  * set default to be dependent on timer tick just
1004  * like original code
1005  */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008  * function must be called with interrupts disbled
1009  */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012 	struct perf_cpu_context *cpuctx;
1013 	int rotations = 0;
1014 
1015 	WARN_ON(!irqs_disabled());
1016 
1017 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018 	rotations = perf_rotate_context(cpuctx);
1019 
1020 	raw_spin_lock(&cpuctx->hrtimer_lock);
1021 	if (rotations)
1022 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023 	else
1024 		cpuctx->hrtimer_active = 0;
1025 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1026 
1027 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029 
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032 	struct hrtimer *timer = &cpuctx->hrtimer;
1033 	struct pmu *pmu = cpuctx->ctx.pmu;
1034 	u64 interval;
1035 
1036 	/* no multiplexing needed for SW PMU */
1037 	if (pmu->task_ctx_nr == perf_sw_context)
1038 		return;
1039 
1040 	/*
1041 	 * check default is sane, if not set then force to
1042 	 * default interval (1/tick)
1043 	 */
1044 	interval = pmu->hrtimer_interval_ms;
1045 	if (interval < 1)
1046 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047 
1048 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049 
1050 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052 	timer->function = perf_mux_hrtimer_handler;
1053 }
1054 
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057 	struct hrtimer *timer = &cpuctx->hrtimer;
1058 	struct pmu *pmu = cpuctx->ctx.pmu;
1059 	unsigned long flags;
1060 
1061 	/* not for SW PMU */
1062 	if (pmu->task_ctx_nr == perf_sw_context)
1063 		return 0;
1064 
1065 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 	if (!cpuctx->hrtimer_active) {
1067 		cpuctx->hrtimer_active = 1;
1068 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 	}
1071 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072 
1073 	return 0;
1074 }
1075 
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 	if (!(*count)++)
1080 		pmu->pmu_disable(pmu);
1081 }
1082 
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 	if (!--(*count))
1087 		pmu->pmu_enable(pmu);
1088 }
1089 
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091 
1092 /*
1093  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094  * perf_event_task_tick() are fully serialized because they're strictly cpu
1095  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096  * disabled, while perf_event_task_tick is called from IRQ context.
1097  */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101 
1102 	WARN_ON(!irqs_disabled());
1103 
1104 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1105 
1106 	list_add(&ctx->active_ctx_list, head);
1107 }
1108 
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111 	WARN_ON(!irqs_disabled());
1112 
1113 	WARN_ON(list_empty(&ctx->active_ctx_list));
1114 
1115 	list_del_init(&ctx->active_ctx_list);
1116 }
1117 
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122 
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125 	struct perf_event_context *ctx;
1126 
1127 	ctx = container_of(head, struct perf_event_context, rcu_head);
1128 	kfree(ctx->task_ctx_data);
1129 	kfree(ctx);
1130 }
1131 
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134 	if (atomic_dec_and_test(&ctx->refcount)) {
1135 		if (ctx->parent_ctx)
1136 			put_ctx(ctx->parent_ctx);
1137 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138 			put_task_struct(ctx->task);
1139 		call_rcu(&ctx->rcu_head, free_ctx);
1140 	}
1141 }
1142 
1143 /*
1144  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145  * perf_pmu_migrate_context() we need some magic.
1146  *
1147  * Those places that change perf_event::ctx will hold both
1148  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149  *
1150  * Lock ordering is by mutex address. There are two other sites where
1151  * perf_event_context::mutex nests and those are:
1152  *
1153  *  - perf_event_exit_task_context()	[ child , 0 ]
1154  *      perf_event_exit_event()
1155  *        put_event()			[ parent, 1 ]
1156  *
1157  *  - perf_event_init_context()		[ parent, 0 ]
1158  *      inherit_task_group()
1159  *        inherit_group()
1160  *          inherit_event()
1161  *            perf_event_alloc()
1162  *              perf_init_event()
1163  *                perf_try_init_event()	[ child , 1 ]
1164  *
1165  * While it appears there is an obvious deadlock here -- the parent and child
1166  * nesting levels are inverted between the two. This is in fact safe because
1167  * life-time rules separate them. That is an exiting task cannot fork, and a
1168  * spawning task cannot (yet) exit.
1169  *
1170  * But remember that that these are parent<->child context relations, and
1171  * migration does not affect children, therefore these two orderings should not
1172  * interact.
1173  *
1174  * The change in perf_event::ctx does not affect children (as claimed above)
1175  * because the sys_perf_event_open() case will install a new event and break
1176  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177  * concerned with cpuctx and that doesn't have children.
1178  *
1179  * The places that change perf_event::ctx will issue:
1180  *
1181  *   perf_remove_from_context();
1182  *   synchronize_rcu();
1183  *   perf_install_in_context();
1184  *
1185  * to affect the change. The remove_from_context() + synchronize_rcu() should
1186  * quiesce the event, after which we can install it in the new location. This
1187  * means that only external vectors (perf_fops, prctl) can perturb the event
1188  * while in transit. Therefore all such accessors should also acquire
1189  * perf_event_context::mutex to serialize against this.
1190  *
1191  * However; because event->ctx can change while we're waiting to acquire
1192  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193  * function.
1194  *
1195  * Lock order:
1196  *    cred_guard_mutex
1197  *	task_struct::perf_event_mutex
1198  *	  perf_event_context::mutex
1199  *	    perf_event::child_mutex;
1200  *	      perf_event_context::lock
1201  *	    perf_event::mmap_mutex
1202  *	    mmap_sem
1203  */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207 	struct perf_event_context *ctx;
1208 
1209 again:
1210 	rcu_read_lock();
1211 	ctx = ACCESS_ONCE(event->ctx);
1212 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 		rcu_read_unlock();
1214 		goto again;
1215 	}
1216 	rcu_read_unlock();
1217 
1218 	mutex_lock_nested(&ctx->mutex, nesting);
1219 	if (event->ctx != ctx) {
1220 		mutex_unlock(&ctx->mutex);
1221 		put_ctx(ctx);
1222 		goto again;
1223 	}
1224 
1225 	return ctx;
1226 }
1227 
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231 	return perf_event_ctx_lock_nested(event, 0);
1232 }
1233 
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235 				  struct perf_event_context *ctx)
1236 {
1237 	mutex_unlock(&ctx->mutex);
1238 	put_ctx(ctx);
1239 }
1240 
1241 /*
1242  * This must be done under the ctx->lock, such as to serialize against
1243  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244  * calling scheduler related locks and ctx->lock nests inside those.
1245  */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250 
1251 	lockdep_assert_held(&ctx->lock);
1252 
1253 	if (parent_ctx)
1254 		ctx->parent_ctx = NULL;
1255 	ctx->generation++;
1256 
1257 	return parent_ctx;
1258 }
1259 
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262 	/*
1263 	 * only top level events have the pid namespace they were created in
1264 	 */
1265 	if (event->parent)
1266 		event = event->parent;
1267 
1268 	return task_tgid_nr_ns(p, event->ns);
1269 }
1270 
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273 	/*
1274 	 * only top level events have the pid namespace they were created in
1275 	 */
1276 	if (event->parent)
1277 		event = event->parent;
1278 
1279 	return task_pid_nr_ns(p, event->ns);
1280 }
1281 
1282 /*
1283  * If we inherit events we want to return the parent event id
1284  * to userspace.
1285  */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288 	u64 id = event->id;
1289 
1290 	if (event->parent)
1291 		id = event->parent->id;
1292 
1293 	return id;
1294 }
1295 
1296 /*
1297  * Get the perf_event_context for a task and lock it.
1298  *
1299  * This has to cope with with the fact that until it is locked,
1300  * the context could get moved to another task.
1301  */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305 	struct perf_event_context *ctx;
1306 
1307 retry:
1308 	/*
1309 	 * One of the few rules of preemptible RCU is that one cannot do
1310 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 	 * part of the read side critical section was irqs-enabled -- see
1312 	 * rcu_read_unlock_special().
1313 	 *
1314 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 	 * side critical section has interrupts disabled.
1316 	 */
1317 	local_irq_save(*flags);
1318 	rcu_read_lock();
1319 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320 	if (ctx) {
1321 		/*
1322 		 * If this context is a clone of another, it might
1323 		 * get swapped for another underneath us by
1324 		 * perf_event_task_sched_out, though the
1325 		 * rcu_read_lock() protects us from any context
1326 		 * getting freed.  Lock the context and check if it
1327 		 * got swapped before we could get the lock, and retry
1328 		 * if so.  If we locked the right context, then it
1329 		 * can't get swapped on us any more.
1330 		 */
1331 		raw_spin_lock(&ctx->lock);
1332 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			rcu_read_unlock();
1335 			local_irq_restore(*flags);
1336 			goto retry;
1337 		}
1338 
1339 		if (ctx->task == TASK_TOMBSTONE ||
1340 		    !atomic_inc_not_zero(&ctx->refcount)) {
1341 			raw_spin_unlock(&ctx->lock);
1342 			ctx = NULL;
1343 		} else {
1344 			WARN_ON_ONCE(ctx->task != task);
1345 		}
1346 	}
1347 	rcu_read_unlock();
1348 	if (!ctx)
1349 		local_irq_restore(*flags);
1350 	return ctx;
1351 }
1352 
1353 /*
1354  * Get the context for a task and increment its pin_count so it
1355  * can't get swapped to another task.  This also increments its
1356  * reference count so that the context can't get freed.
1357  */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361 	struct perf_event_context *ctx;
1362 	unsigned long flags;
1363 
1364 	ctx = perf_lock_task_context(task, ctxn, &flags);
1365 	if (ctx) {
1366 		++ctx->pin_count;
1367 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368 	}
1369 	return ctx;
1370 }
1371 
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374 	unsigned long flags;
1375 
1376 	raw_spin_lock_irqsave(&ctx->lock, flags);
1377 	--ctx->pin_count;
1378 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380 
1381 /*
1382  * Update the record of the current time in a context.
1383  */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386 	u64 now = perf_clock();
1387 
1388 	ctx->time += now - ctx->timestamp;
1389 	ctx->timestamp = now;
1390 }
1391 
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394 	struct perf_event_context *ctx = event->ctx;
1395 
1396 	if (is_cgroup_event(event))
1397 		return perf_cgroup_event_time(event);
1398 
1399 	return ctx ? ctx->time : 0;
1400 }
1401 
1402 /*
1403  * Update the total_time_enabled and total_time_running fields for a event.
1404  */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407 	struct perf_event_context *ctx = event->ctx;
1408 	u64 run_end;
1409 
1410 	lockdep_assert_held(&ctx->lock);
1411 
1412 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 		return;
1415 
1416 	/*
1417 	 * in cgroup mode, time_enabled represents
1418 	 * the time the event was enabled AND active
1419 	 * tasks were in the monitored cgroup. This is
1420 	 * independent of the activity of the context as
1421 	 * there may be a mix of cgroup and non-cgroup events.
1422 	 *
1423 	 * That is why we treat cgroup events differently
1424 	 * here.
1425 	 */
1426 	if (is_cgroup_event(event))
1427 		run_end = perf_cgroup_event_time(event);
1428 	else if (ctx->is_active)
1429 		run_end = ctx->time;
1430 	else
1431 		run_end = event->tstamp_stopped;
1432 
1433 	event->total_time_enabled = run_end - event->tstamp_enabled;
1434 
1435 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 		run_end = event->tstamp_stopped;
1437 	else
1438 		run_end = perf_event_time(event);
1439 
1440 	event->total_time_running = run_end - event->tstamp_running;
1441 
1442 }
1443 
1444 /*
1445  * Update total_time_enabled and total_time_running for all events in a group.
1446  */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449 	struct perf_event *event;
1450 
1451 	update_event_times(leader);
1452 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 		update_event_times(event);
1454 }
1455 
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459 	if (event->attr.pinned)
1460 		return &ctx->pinned_groups;
1461 	else
1462 		return &ctx->flexible_groups;
1463 }
1464 
1465 /*
1466  * Add a event from the lists for its context.
1467  * Must be called with ctx->mutex and ctx->lock held.
1468  */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1475 	event->attach_state |= PERF_ATTACH_CONTEXT;
1476 
1477 	/*
1478 	 * If we're a stand alone event or group leader, we go to the context
1479 	 * list, group events are kept attached to the group so that
1480 	 * perf_group_detach can, at all times, locate all siblings.
1481 	 */
1482 	if (event->group_leader == event) {
1483 		struct list_head *list;
1484 
1485 		event->group_caps = event->event_caps;
1486 
1487 		list = ctx_group_list(event, ctx);
1488 		list_add_tail(&event->group_entry, list);
1489 	}
1490 
1491 	list_update_cgroup_event(event, ctx, true);
1492 
1493 	list_add_rcu(&event->event_entry, &ctx->event_list);
1494 	ctx->nr_events++;
1495 	if (event->attr.inherit_stat)
1496 		ctx->nr_stat++;
1497 
1498 	ctx->generation++;
1499 }
1500 
1501 /*
1502  * Initialize event state based on the perf_event_attr::disabled.
1503  */
1504 static inline void perf_event__state_init(struct perf_event *event)
1505 {
1506 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1507 					      PERF_EVENT_STATE_INACTIVE;
1508 }
1509 
1510 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1511 {
1512 	int entry = sizeof(u64); /* value */
1513 	int size = 0;
1514 	int nr = 1;
1515 
1516 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1517 		size += sizeof(u64);
1518 
1519 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1520 		size += sizeof(u64);
1521 
1522 	if (event->attr.read_format & PERF_FORMAT_ID)
1523 		entry += sizeof(u64);
1524 
1525 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1526 		nr += nr_siblings;
1527 		size += sizeof(u64);
1528 	}
1529 
1530 	size += entry * nr;
1531 	event->read_size = size;
1532 }
1533 
1534 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1535 {
1536 	struct perf_sample_data *data;
1537 	u16 size = 0;
1538 
1539 	if (sample_type & PERF_SAMPLE_IP)
1540 		size += sizeof(data->ip);
1541 
1542 	if (sample_type & PERF_SAMPLE_ADDR)
1543 		size += sizeof(data->addr);
1544 
1545 	if (sample_type & PERF_SAMPLE_PERIOD)
1546 		size += sizeof(data->period);
1547 
1548 	if (sample_type & PERF_SAMPLE_WEIGHT)
1549 		size += sizeof(data->weight);
1550 
1551 	if (sample_type & PERF_SAMPLE_READ)
1552 		size += event->read_size;
1553 
1554 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1555 		size += sizeof(data->data_src.val);
1556 
1557 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1558 		size += sizeof(data->txn);
1559 
1560 	event->header_size = size;
1561 }
1562 
1563 /*
1564  * Called at perf_event creation and when events are attached/detached from a
1565  * group.
1566  */
1567 static void perf_event__header_size(struct perf_event *event)
1568 {
1569 	__perf_event_read_size(event,
1570 			       event->group_leader->nr_siblings);
1571 	__perf_event_header_size(event, event->attr.sample_type);
1572 }
1573 
1574 static void perf_event__id_header_size(struct perf_event *event)
1575 {
1576 	struct perf_sample_data *data;
1577 	u64 sample_type = event->attr.sample_type;
1578 	u16 size = 0;
1579 
1580 	if (sample_type & PERF_SAMPLE_TID)
1581 		size += sizeof(data->tid_entry);
1582 
1583 	if (sample_type & PERF_SAMPLE_TIME)
1584 		size += sizeof(data->time);
1585 
1586 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1587 		size += sizeof(data->id);
1588 
1589 	if (sample_type & PERF_SAMPLE_ID)
1590 		size += sizeof(data->id);
1591 
1592 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1593 		size += sizeof(data->stream_id);
1594 
1595 	if (sample_type & PERF_SAMPLE_CPU)
1596 		size += sizeof(data->cpu_entry);
1597 
1598 	event->id_header_size = size;
1599 }
1600 
1601 static bool perf_event_validate_size(struct perf_event *event)
1602 {
1603 	/*
1604 	 * The values computed here will be over-written when we actually
1605 	 * attach the event.
1606 	 */
1607 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1608 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1609 	perf_event__id_header_size(event);
1610 
1611 	/*
1612 	 * Sum the lot; should not exceed the 64k limit we have on records.
1613 	 * Conservative limit to allow for callchains and other variable fields.
1614 	 */
1615 	if (event->read_size + event->header_size +
1616 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1617 		return false;
1618 
1619 	return true;
1620 }
1621 
1622 static void perf_group_attach(struct perf_event *event)
1623 {
1624 	struct perf_event *group_leader = event->group_leader, *pos;
1625 
1626 	lockdep_assert_held(&event->ctx->lock);
1627 
1628 	/*
1629 	 * We can have double attach due to group movement in perf_event_open.
1630 	 */
1631 	if (event->attach_state & PERF_ATTACH_GROUP)
1632 		return;
1633 
1634 	event->attach_state |= PERF_ATTACH_GROUP;
1635 
1636 	if (group_leader == event)
1637 		return;
1638 
1639 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1640 
1641 	group_leader->group_caps &= event->event_caps;
1642 
1643 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1644 	group_leader->nr_siblings++;
1645 
1646 	perf_event__header_size(group_leader);
1647 
1648 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1649 		perf_event__header_size(pos);
1650 }
1651 
1652 /*
1653  * Remove a event from the lists for its context.
1654  * Must be called with ctx->mutex and ctx->lock held.
1655  */
1656 static void
1657 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1658 {
1659 	WARN_ON_ONCE(event->ctx != ctx);
1660 	lockdep_assert_held(&ctx->lock);
1661 
1662 	/*
1663 	 * We can have double detach due to exit/hot-unplug + close.
1664 	 */
1665 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1666 		return;
1667 
1668 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1669 
1670 	list_update_cgroup_event(event, ctx, false);
1671 
1672 	ctx->nr_events--;
1673 	if (event->attr.inherit_stat)
1674 		ctx->nr_stat--;
1675 
1676 	list_del_rcu(&event->event_entry);
1677 
1678 	if (event->group_leader == event)
1679 		list_del_init(&event->group_entry);
1680 
1681 	update_group_times(event);
1682 
1683 	/*
1684 	 * If event was in error state, then keep it
1685 	 * that way, otherwise bogus counts will be
1686 	 * returned on read(). The only way to get out
1687 	 * of error state is by explicit re-enabling
1688 	 * of the event
1689 	 */
1690 	if (event->state > PERF_EVENT_STATE_OFF)
1691 		event->state = PERF_EVENT_STATE_OFF;
1692 
1693 	ctx->generation++;
1694 }
1695 
1696 static void perf_group_detach(struct perf_event *event)
1697 {
1698 	struct perf_event *sibling, *tmp;
1699 	struct list_head *list = NULL;
1700 
1701 	lockdep_assert_held(&event->ctx->lock);
1702 
1703 	/*
1704 	 * We can have double detach due to exit/hot-unplug + close.
1705 	 */
1706 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1707 		return;
1708 
1709 	event->attach_state &= ~PERF_ATTACH_GROUP;
1710 
1711 	/*
1712 	 * If this is a sibling, remove it from its group.
1713 	 */
1714 	if (event->group_leader != event) {
1715 		list_del_init(&event->group_entry);
1716 		event->group_leader->nr_siblings--;
1717 		goto out;
1718 	}
1719 
1720 	if (!list_empty(&event->group_entry))
1721 		list = &event->group_entry;
1722 
1723 	/*
1724 	 * If this was a group event with sibling events then
1725 	 * upgrade the siblings to singleton events by adding them
1726 	 * to whatever list we are on.
1727 	 */
1728 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729 		if (list)
1730 			list_move_tail(&sibling->group_entry, list);
1731 		sibling->group_leader = sibling;
1732 
1733 		/* Inherit group flags from the previous leader */
1734 		sibling->group_caps = event->group_caps;
1735 
1736 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1737 	}
1738 
1739 out:
1740 	perf_event__header_size(event->group_leader);
1741 
1742 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743 		perf_event__header_size(tmp);
1744 }
1745 
1746 static bool is_orphaned_event(struct perf_event *event)
1747 {
1748 	return event->state == PERF_EVENT_STATE_DEAD;
1749 }
1750 
1751 static inline int __pmu_filter_match(struct perf_event *event)
1752 {
1753 	struct pmu *pmu = event->pmu;
1754 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1755 }
1756 
1757 /*
1758  * Check whether we should attempt to schedule an event group based on
1759  * PMU-specific filtering. An event group can consist of HW and SW events,
1760  * potentially with a SW leader, so we must check all the filters, to
1761  * determine whether a group is schedulable:
1762  */
1763 static inline int pmu_filter_match(struct perf_event *event)
1764 {
1765 	struct perf_event *child;
1766 
1767 	if (!__pmu_filter_match(event))
1768 		return 0;
1769 
1770 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1771 		if (!__pmu_filter_match(child))
1772 			return 0;
1773 	}
1774 
1775 	return 1;
1776 }
1777 
1778 static inline int
1779 event_filter_match(struct perf_event *event)
1780 {
1781 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782 	       perf_cgroup_match(event) && pmu_filter_match(event);
1783 }
1784 
1785 static void
1786 event_sched_out(struct perf_event *event,
1787 		  struct perf_cpu_context *cpuctx,
1788 		  struct perf_event_context *ctx)
1789 {
1790 	u64 tstamp = perf_event_time(event);
1791 	u64 delta;
1792 
1793 	WARN_ON_ONCE(event->ctx != ctx);
1794 	lockdep_assert_held(&ctx->lock);
1795 
1796 	/*
1797 	 * An event which could not be activated because of
1798 	 * filter mismatch still needs to have its timings
1799 	 * maintained, otherwise bogus information is return
1800 	 * via read() for time_enabled, time_running:
1801 	 */
1802 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803 	    !event_filter_match(event)) {
1804 		delta = tstamp - event->tstamp_stopped;
1805 		event->tstamp_running += delta;
1806 		event->tstamp_stopped = tstamp;
1807 	}
1808 
1809 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1810 		return;
1811 
1812 	perf_pmu_disable(event->pmu);
1813 
1814 	event->tstamp_stopped = tstamp;
1815 	event->pmu->del(event, 0);
1816 	event->oncpu = -1;
1817 	event->state = PERF_EVENT_STATE_INACTIVE;
1818 	if (event->pending_disable) {
1819 		event->pending_disable = 0;
1820 		event->state = PERF_EVENT_STATE_OFF;
1821 	}
1822 
1823 	if (!is_software_event(event))
1824 		cpuctx->active_oncpu--;
1825 	if (!--ctx->nr_active)
1826 		perf_event_ctx_deactivate(ctx);
1827 	if (event->attr.freq && event->attr.sample_freq)
1828 		ctx->nr_freq--;
1829 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1830 		cpuctx->exclusive = 0;
1831 
1832 	perf_pmu_enable(event->pmu);
1833 }
1834 
1835 static void
1836 group_sched_out(struct perf_event *group_event,
1837 		struct perf_cpu_context *cpuctx,
1838 		struct perf_event_context *ctx)
1839 {
1840 	struct perf_event *event;
1841 	int state = group_event->state;
1842 
1843 	perf_pmu_disable(ctx->pmu);
1844 
1845 	event_sched_out(group_event, cpuctx, ctx);
1846 
1847 	/*
1848 	 * Schedule out siblings (if any):
1849 	 */
1850 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851 		event_sched_out(event, cpuctx, ctx);
1852 
1853 	perf_pmu_enable(ctx->pmu);
1854 
1855 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856 		cpuctx->exclusive = 0;
1857 }
1858 
1859 #define DETACH_GROUP	0x01UL
1860 
1861 /*
1862  * Cross CPU call to remove a performance event
1863  *
1864  * We disable the event on the hardware level first. After that we
1865  * remove it from the context list.
1866  */
1867 static void
1868 __perf_remove_from_context(struct perf_event *event,
1869 			   struct perf_cpu_context *cpuctx,
1870 			   struct perf_event_context *ctx,
1871 			   void *info)
1872 {
1873 	unsigned long flags = (unsigned long)info;
1874 
1875 	event_sched_out(event, cpuctx, ctx);
1876 	if (flags & DETACH_GROUP)
1877 		perf_group_detach(event);
1878 	list_del_event(event, ctx);
1879 
1880 	if (!ctx->nr_events && ctx->is_active) {
1881 		ctx->is_active = 0;
1882 		if (ctx->task) {
1883 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884 			cpuctx->task_ctx = NULL;
1885 		}
1886 	}
1887 }
1888 
1889 /*
1890  * Remove the event from a task's (or a CPU's) list of events.
1891  *
1892  * If event->ctx is a cloned context, callers must make sure that
1893  * every task struct that event->ctx->task could possibly point to
1894  * remains valid.  This is OK when called from perf_release since
1895  * that only calls us on the top-level context, which can't be a clone.
1896  * When called from perf_event_exit_task, it's OK because the
1897  * context has been detached from its task.
1898  */
1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1900 {
1901 	struct perf_event_context *ctx = event->ctx;
1902 
1903 	lockdep_assert_held(&ctx->mutex);
1904 
1905 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1906 
1907 	/*
1908 	 * The above event_function_call() can NO-OP when it hits
1909 	 * TASK_TOMBSTONE. In that case we must already have been detached
1910 	 * from the context (by perf_event_exit_event()) but the grouping
1911 	 * might still be in-tact.
1912 	 */
1913 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1914 	if ((flags & DETACH_GROUP) &&
1915 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1916 		/*
1917 		 * Since in that case we cannot possibly be scheduled, simply
1918 		 * detach now.
1919 		 */
1920 		raw_spin_lock_irq(&ctx->lock);
1921 		perf_group_detach(event);
1922 		raw_spin_unlock_irq(&ctx->lock);
1923 	}
1924 }
1925 
1926 /*
1927  * Cross CPU call to disable a performance event
1928  */
1929 static void __perf_event_disable(struct perf_event *event,
1930 				 struct perf_cpu_context *cpuctx,
1931 				 struct perf_event_context *ctx,
1932 				 void *info)
1933 {
1934 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1935 		return;
1936 
1937 	update_context_time(ctx);
1938 	update_cgrp_time_from_event(event);
1939 	update_group_times(event);
1940 	if (event == event->group_leader)
1941 		group_sched_out(event, cpuctx, ctx);
1942 	else
1943 		event_sched_out(event, cpuctx, ctx);
1944 	event->state = PERF_EVENT_STATE_OFF;
1945 }
1946 
1947 /*
1948  * Disable a event.
1949  *
1950  * If event->ctx is a cloned context, callers must make sure that
1951  * every task struct that event->ctx->task could possibly point to
1952  * remains valid.  This condition is satisifed when called through
1953  * perf_event_for_each_child or perf_event_for_each because they
1954  * hold the top-level event's child_mutex, so any descendant that
1955  * goes to exit will block in perf_event_exit_event().
1956  *
1957  * When called from perf_pending_event it's OK because event->ctx
1958  * is the current context on this CPU and preemption is disabled,
1959  * hence we can't get into perf_event_task_sched_out for this context.
1960  */
1961 static void _perf_event_disable(struct perf_event *event)
1962 {
1963 	struct perf_event_context *ctx = event->ctx;
1964 
1965 	raw_spin_lock_irq(&ctx->lock);
1966 	if (event->state <= PERF_EVENT_STATE_OFF) {
1967 		raw_spin_unlock_irq(&ctx->lock);
1968 		return;
1969 	}
1970 	raw_spin_unlock_irq(&ctx->lock);
1971 
1972 	event_function_call(event, __perf_event_disable, NULL);
1973 }
1974 
1975 void perf_event_disable_local(struct perf_event *event)
1976 {
1977 	event_function_local(event, __perf_event_disable, NULL);
1978 }
1979 
1980 /*
1981  * Strictly speaking kernel users cannot create groups and therefore this
1982  * interface does not need the perf_event_ctx_lock() magic.
1983  */
1984 void perf_event_disable(struct perf_event *event)
1985 {
1986 	struct perf_event_context *ctx;
1987 
1988 	ctx = perf_event_ctx_lock(event);
1989 	_perf_event_disable(event);
1990 	perf_event_ctx_unlock(event, ctx);
1991 }
1992 EXPORT_SYMBOL_GPL(perf_event_disable);
1993 
1994 void perf_event_disable_inatomic(struct perf_event *event)
1995 {
1996 	event->pending_disable = 1;
1997 	irq_work_queue(&event->pending);
1998 }
1999 
2000 static void perf_set_shadow_time(struct perf_event *event,
2001 				 struct perf_event_context *ctx,
2002 				 u64 tstamp)
2003 {
2004 	/*
2005 	 * use the correct time source for the time snapshot
2006 	 *
2007 	 * We could get by without this by leveraging the
2008 	 * fact that to get to this function, the caller
2009 	 * has most likely already called update_context_time()
2010 	 * and update_cgrp_time_xx() and thus both timestamp
2011 	 * are identical (or very close). Given that tstamp is,
2012 	 * already adjusted for cgroup, we could say that:
2013 	 *    tstamp - ctx->timestamp
2014 	 * is equivalent to
2015 	 *    tstamp - cgrp->timestamp.
2016 	 *
2017 	 * Then, in perf_output_read(), the calculation would
2018 	 * work with no changes because:
2019 	 * - event is guaranteed scheduled in
2020 	 * - no scheduled out in between
2021 	 * - thus the timestamp would be the same
2022 	 *
2023 	 * But this is a bit hairy.
2024 	 *
2025 	 * So instead, we have an explicit cgroup call to remain
2026 	 * within the time time source all along. We believe it
2027 	 * is cleaner and simpler to understand.
2028 	 */
2029 	if (is_cgroup_event(event))
2030 		perf_cgroup_set_shadow_time(event, tstamp);
2031 	else
2032 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2033 }
2034 
2035 #define MAX_INTERRUPTS (~0ULL)
2036 
2037 static void perf_log_throttle(struct perf_event *event, int enable);
2038 static void perf_log_itrace_start(struct perf_event *event);
2039 
2040 static int
2041 event_sched_in(struct perf_event *event,
2042 		 struct perf_cpu_context *cpuctx,
2043 		 struct perf_event_context *ctx)
2044 {
2045 	u64 tstamp = perf_event_time(event);
2046 	int ret = 0;
2047 
2048 	lockdep_assert_held(&ctx->lock);
2049 
2050 	if (event->state <= PERF_EVENT_STATE_OFF)
2051 		return 0;
2052 
2053 	WRITE_ONCE(event->oncpu, smp_processor_id());
2054 	/*
2055 	 * Order event::oncpu write to happen before the ACTIVE state
2056 	 * is visible.
2057 	 */
2058 	smp_wmb();
2059 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2060 
2061 	/*
2062 	 * Unthrottle events, since we scheduled we might have missed several
2063 	 * ticks already, also for a heavily scheduling task there is little
2064 	 * guarantee it'll get a tick in a timely manner.
2065 	 */
2066 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2067 		perf_log_throttle(event, 1);
2068 		event->hw.interrupts = 0;
2069 	}
2070 
2071 	/*
2072 	 * The new state must be visible before we turn it on in the hardware:
2073 	 */
2074 	smp_wmb();
2075 
2076 	perf_pmu_disable(event->pmu);
2077 
2078 	perf_set_shadow_time(event, ctx, tstamp);
2079 
2080 	perf_log_itrace_start(event);
2081 
2082 	if (event->pmu->add(event, PERF_EF_START)) {
2083 		event->state = PERF_EVENT_STATE_INACTIVE;
2084 		event->oncpu = -1;
2085 		ret = -EAGAIN;
2086 		goto out;
2087 	}
2088 
2089 	event->tstamp_running += tstamp - event->tstamp_stopped;
2090 
2091 	if (!is_software_event(event))
2092 		cpuctx->active_oncpu++;
2093 	if (!ctx->nr_active++)
2094 		perf_event_ctx_activate(ctx);
2095 	if (event->attr.freq && event->attr.sample_freq)
2096 		ctx->nr_freq++;
2097 
2098 	if (event->attr.exclusive)
2099 		cpuctx->exclusive = 1;
2100 
2101 out:
2102 	perf_pmu_enable(event->pmu);
2103 
2104 	return ret;
2105 }
2106 
2107 static int
2108 group_sched_in(struct perf_event *group_event,
2109 	       struct perf_cpu_context *cpuctx,
2110 	       struct perf_event_context *ctx)
2111 {
2112 	struct perf_event *event, *partial_group = NULL;
2113 	struct pmu *pmu = ctx->pmu;
2114 	u64 now = ctx->time;
2115 	bool simulate = false;
2116 
2117 	if (group_event->state == PERF_EVENT_STATE_OFF)
2118 		return 0;
2119 
2120 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2121 
2122 	if (event_sched_in(group_event, cpuctx, ctx)) {
2123 		pmu->cancel_txn(pmu);
2124 		perf_mux_hrtimer_restart(cpuctx);
2125 		return -EAGAIN;
2126 	}
2127 
2128 	/*
2129 	 * Schedule in siblings as one group (if any):
2130 	 */
2131 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2132 		if (event_sched_in(event, cpuctx, ctx)) {
2133 			partial_group = event;
2134 			goto group_error;
2135 		}
2136 	}
2137 
2138 	if (!pmu->commit_txn(pmu))
2139 		return 0;
2140 
2141 group_error:
2142 	/*
2143 	 * Groups can be scheduled in as one unit only, so undo any
2144 	 * partial group before returning:
2145 	 * The events up to the failed event are scheduled out normally,
2146 	 * tstamp_stopped will be updated.
2147 	 *
2148 	 * The failed events and the remaining siblings need to have
2149 	 * their timings updated as if they had gone thru event_sched_in()
2150 	 * and event_sched_out(). This is required to get consistent timings
2151 	 * across the group. This also takes care of the case where the group
2152 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2153 	 * the time the event was actually stopped, such that time delta
2154 	 * calculation in update_event_times() is correct.
2155 	 */
2156 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2157 		if (event == partial_group)
2158 			simulate = true;
2159 
2160 		if (simulate) {
2161 			event->tstamp_running += now - event->tstamp_stopped;
2162 			event->tstamp_stopped = now;
2163 		} else {
2164 			event_sched_out(event, cpuctx, ctx);
2165 		}
2166 	}
2167 	event_sched_out(group_event, cpuctx, ctx);
2168 
2169 	pmu->cancel_txn(pmu);
2170 
2171 	perf_mux_hrtimer_restart(cpuctx);
2172 
2173 	return -EAGAIN;
2174 }
2175 
2176 /*
2177  * Work out whether we can put this event group on the CPU now.
2178  */
2179 static int group_can_go_on(struct perf_event *event,
2180 			   struct perf_cpu_context *cpuctx,
2181 			   int can_add_hw)
2182 {
2183 	/*
2184 	 * Groups consisting entirely of software events can always go on.
2185 	 */
2186 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2187 		return 1;
2188 	/*
2189 	 * If an exclusive group is already on, no other hardware
2190 	 * events can go on.
2191 	 */
2192 	if (cpuctx->exclusive)
2193 		return 0;
2194 	/*
2195 	 * If this group is exclusive and there are already
2196 	 * events on the CPU, it can't go on.
2197 	 */
2198 	if (event->attr.exclusive && cpuctx->active_oncpu)
2199 		return 0;
2200 	/*
2201 	 * Otherwise, try to add it if all previous groups were able
2202 	 * to go on.
2203 	 */
2204 	return can_add_hw;
2205 }
2206 
2207 static void add_event_to_ctx(struct perf_event *event,
2208 			       struct perf_event_context *ctx)
2209 {
2210 	u64 tstamp = perf_event_time(event);
2211 
2212 	list_add_event(event, ctx);
2213 	perf_group_attach(event);
2214 	event->tstamp_enabled = tstamp;
2215 	event->tstamp_running = tstamp;
2216 	event->tstamp_stopped = tstamp;
2217 }
2218 
2219 static void ctx_sched_out(struct perf_event_context *ctx,
2220 			  struct perf_cpu_context *cpuctx,
2221 			  enum event_type_t event_type);
2222 static void
2223 ctx_sched_in(struct perf_event_context *ctx,
2224 	     struct perf_cpu_context *cpuctx,
2225 	     enum event_type_t event_type,
2226 	     struct task_struct *task);
2227 
2228 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2229 			       struct perf_event_context *ctx)
2230 {
2231 	if (!cpuctx->task_ctx)
2232 		return;
2233 
2234 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2235 		return;
2236 
2237 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2238 }
2239 
2240 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2241 				struct perf_event_context *ctx,
2242 				struct task_struct *task)
2243 {
2244 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2245 	if (ctx)
2246 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2247 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2248 	if (ctx)
2249 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2250 }
2251 
2252 static void ctx_resched(struct perf_cpu_context *cpuctx,
2253 			struct perf_event_context *task_ctx)
2254 {
2255 	perf_pmu_disable(cpuctx->ctx.pmu);
2256 	if (task_ctx)
2257 		task_ctx_sched_out(cpuctx, task_ctx);
2258 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2259 	perf_event_sched_in(cpuctx, task_ctx, current);
2260 	perf_pmu_enable(cpuctx->ctx.pmu);
2261 }
2262 
2263 /*
2264  * Cross CPU call to install and enable a performance event
2265  *
2266  * Very similar to remote_function() + event_function() but cannot assume that
2267  * things like ctx->is_active and cpuctx->task_ctx are set.
2268  */
2269 static int  __perf_install_in_context(void *info)
2270 {
2271 	struct perf_event *event = info;
2272 	struct perf_event_context *ctx = event->ctx;
2273 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2274 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2275 	bool reprogram = true;
2276 	int ret = 0;
2277 
2278 	raw_spin_lock(&cpuctx->ctx.lock);
2279 	if (ctx->task) {
2280 		raw_spin_lock(&ctx->lock);
2281 		task_ctx = ctx;
2282 
2283 		reprogram = (ctx->task == current);
2284 
2285 		/*
2286 		 * If the task is running, it must be running on this CPU,
2287 		 * otherwise we cannot reprogram things.
2288 		 *
2289 		 * If its not running, we don't care, ctx->lock will
2290 		 * serialize against it becoming runnable.
2291 		 */
2292 		if (task_curr(ctx->task) && !reprogram) {
2293 			ret = -ESRCH;
2294 			goto unlock;
2295 		}
2296 
2297 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2298 	} else if (task_ctx) {
2299 		raw_spin_lock(&task_ctx->lock);
2300 	}
2301 
2302 	if (reprogram) {
2303 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2304 		add_event_to_ctx(event, ctx);
2305 		ctx_resched(cpuctx, task_ctx);
2306 	} else {
2307 		add_event_to_ctx(event, ctx);
2308 	}
2309 
2310 unlock:
2311 	perf_ctx_unlock(cpuctx, task_ctx);
2312 
2313 	return ret;
2314 }
2315 
2316 /*
2317  * Attach a performance event to a context.
2318  *
2319  * Very similar to event_function_call, see comment there.
2320  */
2321 static void
2322 perf_install_in_context(struct perf_event_context *ctx,
2323 			struct perf_event *event,
2324 			int cpu)
2325 {
2326 	struct task_struct *task = READ_ONCE(ctx->task);
2327 
2328 	lockdep_assert_held(&ctx->mutex);
2329 
2330 	if (event->cpu != -1)
2331 		event->cpu = cpu;
2332 
2333 	/*
2334 	 * Ensures that if we can observe event->ctx, both the event and ctx
2335 	 * will be 'complete'. See perf_iterate_sb_cpu().
2336 	 */
2337 	smp_store_release(&event->ctx, ctx);
2338 
2339 	if (!task) {
2340 		cpu_function_call(cpu, __perf_install_in_context, event);
2341 		return;
2342 	}
2343 
2344 	/*
2345 	 * Should not happen, we validate the ctx is still alive before calling.
2346 	 */
2347 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2348 		return;
2349 
2350 	/*
2351 	 * Installing events is tricky because we cannot rely on ctx->is_active
2352 	 * to be set in case this is the nr_events 0 -> 1 transition.
2353 	 *
2354 	 * Instead we use task_curr(), which tells us if the task is running.
2355 	 * However, since we use task_curr() outside of rq::lock, we can race
2356 	 * against the actual state. This means the result can be wrong.
2357 	 *
2358 	 * If we get a false positive, we retry, this is harmless.
2359 	 *
2360 	 * If we get a false negative, things are complicated. If we are after
2361 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2362 	 * value must be correct. If we're before, it doesn't matter since
2363 	 * perf_event_context_sched_in() will program the counter.
2364 	 *
2365 	 * However, this hinges on the remote context switch having observed
2366 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2367 	 * ctx::lock in perf_event_context_sched_in().
2368 	 *
2369 	 * We do this by task_function_call(), if the IPI fails to hit the task
2370 	 * we know any future context switch of task must see the
2371 	 * perf_event_ctpx[] store.
2372 	 */
2373 
2374 	/*
2375 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2376 	 * task_cpu() load, such that if the IPI then does not find the task
2377 	 * running, a future context switch of that task must observe the
2378 	 * store.
2379 	 */
2380 	smp_mb();
2381 again:
2382 	if (!task_function_call(task, __perf_install_in_context, event))
2383 		return;
2384 
2385 	raw_spin_lock_irq(&ctx->lock);
2386 	task = ctx->task;
2387 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2388 		/*
2389 		 * Cannot happen because we already checked above (which also
2390 		 * cannot happen), and we hold ctx->mutex, which serializes us
2391 		 * against perf_event_exit_task_context().
2392 		 */
2393 		raw_spin_unlock_irq(&ctx->lock);
2394 		return;
2395 	}
2396 	/*
2397 	 * If the task is not running, ctx->lock will avoid it becoming so,
2398 	 * thus we can safely install the event.
2399 	 */
2400 	if (task_curr(task)) {
2401 		raw_spin_unlock_irq(&ctx->lock);
2402 		goto again;
2403 	}
2404 	add_event_to_ctx(event, ctx);
2405 	raw_spin_unlock_irq(&ctx->lock);
2406 }
2407 
2408 /*
2409  * Put a event into inactive state and update time fields.
2410  * Enabling the leader of a group effectively enables all
2411  * the group members that aren't explicitly disabled, so we
2412  * have to update their ->tstamp_enabled also.
2413  * Note: this works for group members as well as group leaders
2414  * since the non-leader members' sibling_lists will be empty.
2415  */
2416 static void __perf_event_mark_enabled(struct perf_event *event)
2417 {
2418 	struct perf_event *sub;
2419 	u64 tstamp = perf_event_time(event);
2420 
2421 	event->state = PERF_EVENT_STATE_INACTIVE;
2422 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2423 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2424 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2425 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2426 	}
2427 }
2428 
2429 /*
2430  * Cross CPU call to enable a performance event
2431  */
2432 static void __perf_event_enable(struct perf_event *event,
2433 				struct perf_cpu_context *cpuctx,
2434 				struct perf_event_context *ctx,
2435 				void *info)
2436 {
2437 	struct perf_event *leader = event->group_leader;
2438 	struct perf_event_context *task_ctx;
2439 
2440 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441 	    event->state <= PERF_EVENT_STATE_ERROR)
2442 		return;
2443 
2444 	if (ctx->is_active)
2445 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2446 
2447 	__perf_event_mark_enabled(event);
2448 
2449 	if (!ctx->is_active)
2450 		return;
2451 
2452 	if (!event_filter_match(event)) {
2453 		if (is_cgroup_event(event))
2454 			perf_cgroup_defer_enabled(event);
2455 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2456 		return;
2457 	}
2458 
2459 	/*
2460 	 * If the event is in a group and isn't the group leader,
2461 	 * then don't put it on unless the group is on.
2462 	 */
2463 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2464 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2465 		return;
2466 	}
2467 
2468 	task_ctx = cpuctx->task_ctx;
2469 	if (ctx->task)
2470 		WARN_ON_ONCE(task_ctx != ctx);
2471 
2472 	ctx_resched(cpuctx, task_ctx);
2473 }
2474 
2475 /*
2476  * Enable a event.
2477  *
2478  * If event->ctx is a cloned context, callers must make sure that
2479  * every task struct that event->ctx->task could possibly point to
2480  * remains valid.  This condition is satisfied when called through
2481  * perf_event_for_each_child or perf_event_for_each as described
2482  * for perf_event_disable.
2483  */
2484 static void _perf_event_enable(struct perf_event *event)
2485 {
2486 	struct perf_event_context *ctx = event->ctx;
2487 
2488 	raw_spin_lock_irq(&ctx->lock);
2489 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 	    event->state <  PERF_EVENT_STATE_ERROR) {
2491 		raw_spin_unlock_irq(&ctx->lock);
2492 		return;
2493 	}
2494 
2495 	/*
2496 	 * If the event is in error state, clear that first.
2497 	 *
2498 	 * That way, if we see the event in error state below, we know that it
2499 	 * has gone back into error state, as distinct from the task having
2500 	 * been scheduled away before the cross-call arrived.
2501 	 */
2502 	if (event->state == PERF_EVENT_STATE_ERROR)
2503 		event->state = PERF_EVENT_STATE_OFF;
2504 	raw_spin_unlock_irq(&ctx->lock);
2505 
2506 	event_function_call(event, __perf_event_enable, NULL);
2507 }
2508 
2509 /*
2510  * See perf_event_disable();
2511  */
2512 void perf_event_enable(struct perf_event *event)
2513 {
2514 	struct perf_event_context *ctx;
2515 
2516 	ctx = perf_event_ctx_lock(event);
2517 	_perf_event_enable(event);
2518 	perf_event_ctx_unlock(event, ctx);
2519 }
2520 EXPORT_SYMBOL_GPL(perf_event_enable);
2521 
2522 struct stop_event_data {
2523 	struct perf_event	*event;
2524 	unsigned int		restart;
2525 };
2526 
2527 static int __perf_event_stop(void *info)
2528 {
2529 	struct stop_event_data *sd = info;
2530 	struct perf_event *event = sd->event;
2531 
2532 	/* if it's already INACTIVE, do nothing */
2533 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2534 		return 0;
2535 
2536 	/* matches smp_wmb() in event_sched_in() */
2537 	smp_rmb();
2538 
2539 	/*
2540 	 * There is a window with interrupts enabled before we get here,
2541 	 * so we need to check again lest we try to stop another CPU's event.
2542 	 */
2543 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2544 		return -EAGAIN;
2545 
2546 	event->pmu->stop(event, PERF_EF_UPDATE);
2547 
2548 	/*
2549 	 * May race with the actual stop (through perf_pmu_output_stop()),
2550 	 * but it is only used for events with AUX ring buffer, and such
2551 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2552 	 * see comments in perf_aux_output_begin().
2553 	 *
2554 	 * Since this is happening on a event-local CPU, no trace is lost
2555 	 * while restarting.
2556 	 */
2557 	if (sd->restart)
2558 		event->pmu->start(event, 0);
2559 
2560 	return 0;
2561 }
2562 
2563 static int perf_event_stop(struct perf_event *event, int restart)
2564 {
2565 	struct stop_event_data sd = {
2566 		.event		= event,
2567 		.restart	= restart,
2568 	};
2569 	int ret = 0;
2570 
2571 	do {
2572 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2573 			return 0;
2574 
2575 		/* matches smp_wmb() in event_sched_in() */
2576 		smp_rmb();
2577 
2578 		/*
2579 		 * We only want to restart ACTIVE events, so if the event goes
2580 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2581 		 * fall through with ret==-ENXIO.
2582 		 */
2583 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2584 					__perf_event_stop, &sd);
2585 	} while (ret == -EAGAIN);
2586 
2587 	return ret;
2588 }
2589 
2590 /*
2591  * In order to contain the amount of racy and tricky in the address filter
2592  * configuration management, it is a two part process:
2593  *
2594  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2595  *      we update the addresses of corresponding vmas in
2596  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2597  * (p2) when an event is scheduled in (pmu::add), it calls
2598  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2599  *      if the generation has changed since the previous call.
2600  *
2601  * If (p1) happens while the event is active, we restart it to force (p2).
2602  *
2603  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2604  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2605  *     ioctl;
2606  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2607  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2608  *     for reading;
2609  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2610  *     of exec.
2611  */
2612 void perf_event_addr_filters_sync(struct perf_event *event)
2613 {
2614 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2615 
2616 	if (!has_addr_filter(event))
2617 		return;
2618 
2619 	raw_spin_lock(&ifh->lock);
2620 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2621 		event->pmu->addr_filters_sync(event);
2622 		event->hw.addr_filters_gen = event->addr_filters_gen;
2623 	}
2624 	raw_spin_unlock(&ifh->lock);
2625 }
2626 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2627 
2628 static int _perf_event_refresh(struct perf_event *event, int refresh)
2629 {
2630 	/*
2631 	 * not supported on inherited events
2632 	 */
2633 	if (event->attr.inherit || !is_sampling_event(event))
2634 		return -EINVAL;
2635 
2636 	atomic_add(refresh, &event->event_limit);
2637 	_perf_event_enable(event);
2638 
2639 	return 0;
2640 }
2641 
2642 /*
2643  * See perf_event_disable()
2644  */
2645 int perf_event_refresh(struct perf_event *event, int refresh)
2646 {
2647 	struct perf_event_context *ctx;
2648 	int ret;
2649 
2650 	ctx = perf_event_ctx_lock(event);
2651 	ret = _perf_event_refresh(event, refresh);
2652 	perf_event_ctx_unlock(event, ctx);
2653 
2654 	return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(perf_event_refresh);
2657 
2658 static void ctx_sched_out(struct perf_event_context *ctx,
2659 			  struct perf_cpu_context *cpuctx,
2660 			  enum event_type_t event_type)
2661 {
2662 	int is_active = ctx->is_active;
2663 	struct perf_event *event;
2664 
2665 	lockdep_assert_held(&ctx->lock);
2666 
2667 	if (likely(!ctx->nr_events)) {
2668 		/*
2669 		 * See __perf_remove_from_context().
2670 		 */
2671 		WARN_ON_ONCE(ctx->is_active);
2672 		if (ctx->task)
2673 			WARN_ON_ONCE(cpuctx->task_ctx);
2674 		return;
2675 	}
2676 
2677 	ctx->is_active &= ~event_type;
2678 	if (!(ctx->is_active & EVENT_ALL))
2679 		ctx->is_active = 0;
2680 
2681 	if (ctx->task) {
2682 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2683 		if (!ctx->is_active)
2684 			cpuctx->task_ctx = NULL;
2685 	}
2686 
2687 	/*
2688 	 * Always update time if it was set; not only when it changes.
2689 	 * Otherwise we can 'forget' to update time for any but the last
2690 	 * context we sched out. For example:
2691 	 *
2692 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2693 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2694 	 *
2695 	 * would only update time for the pinned events.
2696 	 */
2697 	if (is_active & EVENT_TIME) {
2698 		/* update (and stop) ctx time */
2699 		update_context_time(ctx);
2700 		update_cgrp_time_from_cpuctx(cpuctx);
2701 	}
2702 
2703 	is_active ^= ctx->is_active; /* changed bits */
2704 
2705 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2706 		return;
2707 
2708 	perf_pmu_disable(ctx->pmu);
2709 	if (is_active & EVENT_PINNED) {
2710 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2711 			group_sched_out(event, cpuctx, ctx);
2712 	}
2713 
2714 	if (is_active & EVENT_FLEXIBLE) {
2715 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2716 			group_sched_out(event, cpuctx, ctx);
2717 	}
2718 	perf_pmu_enable(ctx->pmu);
2719 }
2720 
2721 /*
2722  * Test whether two contexts are equivalent, i.e. whether they have both been
2723  * cloned from the same version of the same context.
2724  *
2725  * Equivalence is measured using a generation number in the context that is
2726  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2727  * and list_del_event().
2728  */
2729 static int context_equiv(struct perf_event_context *ctx1,
2730 			 struct perf_event_context *ctx2)
2731 {
2732 	lockdep_assert_held(&ctx1->lock);
2733 	lockdep_assert_held(&ctx2->lock);
2734 
2735 	/* Pinning disables the swap optimization */
2736 	if (ctx1->pin_count || ctx2->pin_count)
2737 		return 0;
2738 
2739 	/* If ctx1 is the parent of ctx2 */
2740 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2741 		return 1;
2742 
2743 	/* If ctx2 is the parent of ctx1 */
2744 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2745 		return 1;
2746 
2747 	/*
2748 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2749 	 * hierarchy, see perf_event_init_context().
2750 	 */
2751 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2752 			ctx1->parent_gen == ctx2->parent_gen)
2753 		return 1;
2754 
2755 	/* Unmatched */
2756 	return 0;
2757 }
2758 
2759 static void __perf_event_sync_stat(struct perf_event *event,
2760 				     struct perf_event *next_event)
2761 {
2762 	u64 value;
2763 
2764 	if (!event->attr.inherit_stat)
2765 		return;
2766 
2767 	/*
2768 	 * Update the event value, we cannot use perf_event_read()
2769 	 * because we're in the middle of a context switch and have IRQs
2770 	 * disabled, which upsets smp_call_function_single(), however
2771 	 * we know the event must be on the current CPU, therefore we
2772 	 * don't need to use it.
2773 	 */
2774 	switch (event->state) {
2775 	case PERF_EVENT_STATE_ACTIVE:
2776 		event->pmu->read(event);
2777 		/* fall-through */
2778 
2779 	case PERF_EVENT_STATE_INACTIVE:
2780 		update_event_times(event);
2781 		break;
2782 
2783 	default:
2784 		break;
2785 	}
2786 
2787 	/*
2788 	 * In order to keep per-task stats reliable we need to flip the event
2789 	 * values when we flip the contexts.
2790 	 */
2791 	value = local64_read(&next_event->count);
2792 	value = local64_xchg(&event->count, value);
2793 	local64_set(&next_event->count, value);
2794 
2795 	swap(event->total_time_enabled, next_event->total_time_enabled);
2796 	swap(event->total_time_running, next_event->total_time_running);
2797 
2798 	/*
2799 	 * Since we swizzled the values, update the user visible data too.
2800 	 */
2801 	perf_event_update_userpage(event);
2802 	perf_event_update_userpage(next_event);
2803 }
2804 
2805 static void perf_event_sync_stat(struct perf_event_context *ctx,
2806 				   struct perf_event_context *next_ctx)
2807 {
2808 	struct perf_event *event, *next_event;
2809 
2810 	if (!ctx->nr_stat)
2811 		return;
2812 
2813 	update_context_time(ctx);
2814 
2815 	event = list_first_entry(&ctx->event_list,
2816 				   struct perf_event, event_entry);
2817 
2818 	next_event = list_first_entry(&next_ctx->event_list,
2819 					struct perf_event, event_entry);
2820 
2821 	while (&event->event_entry != &ctx->event_list &&
2822 	       &next_event->event_entry != &next_ctx->event_list) {
2823 
2824 		__perf_event_sync_stat(event, next_event);
2825 
2826 		event = list_next_entry(event, event_entry);
2827 		next_event = list_next_entry(next_event, event_entry);
2828 	}
2829 }
2830 
2831 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2832 					 struct task_struct *next)
2833 {
2834 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2835 	struct perf_event_context *next_ctx;
2836 	struct perf_event_context *parent, *next_parent;
2837 	struct perf_cpu_context *cpuctx;
2838 	int do_switch = 1;
2839 
2840 	if (likely(!ctx))
2841 		return;
2842 
2843 	cpuctx = __get_cpu_context(ctx);
2844 	if (!cpuctx->task_ctx)
2845 		return;
2846 
2847 	rcu_read_lock();
2848 	next_ctx = next->perf_event_ctxp[ctxn];
2849 	if (!next_ctx)
2850 		goto unlock;
2851 
2852 	parent = rcu_dereference(ctx->parent_ctx);
2853 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2854 
2855 	/* If neither context have a parent context; they cannot be clones. */
2856 	if (!parent && !next_parent)
2857 		goto unlock;
2858 
2859 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2860 		/*
2861 		 * Looks like the two contexts are clones, so we might be
2862 		 * able to optimize the context switch.  We lock both
2863 		 * contexts and check that they are clones under the
2864 		 * lock (including re-checking that neither has been
2865 		 * uncloned in the meantime).  It doesn't matter which
2866 		 * order we take the locks because no other cpu could
2867 		 * be trying to lock both of these tasks.
2868 		 */
2869 		raw_spin_lock(&ctx->lock);
2870 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2871 		if (context_equiv(ctx, next_ctx)) {
2872 			WRITE_ONCE(ctx->task, next);
2873 			WRITE_ONCE(next_ctx->task, task);
2874 
2875 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2876 
2877 			/*
2878 			 * RCU_INIT_POINTER here is safe because we've not
2879 			 * modified the ctx and the above modification of
2880 			 * ctx->task and ctx->task_ctx_data are immaterial
2881 			 * since those values are always verified under
2882 			 * ctx->lock which we're now holding.
2883 			 */
2884 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2885 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2886 
2887 			do_switch = 0;
2888 
2889 			perf_event_sync_stat(ctx, next_ctx);
2890 		}
2891 		raw_spin_unlock(&next_ctx->lock);
2892 		raw_spin_unlock(&ctx->lock);
2893 	}
2894 unlock:
2895 	rcu_read_unlock();
2896 
2897 	if (do_switch) {
2898 		raw_spin_lock(&ctx->lock);
2899 		task_ctx_sched_out(cpuctx, ctx);
2900 		raw_spin_unlock(&ctx->lock);
2901 	}
2902 }
2903 
2904 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2905 
2906 void perf_sched_cb_dec(struct pmu *pmu)
2907 {
2908 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2909 
2910 	this_cpu_dec(perf_sched_cb_usages);
2911 
2912 	if (!--cpuctx->sched_cb_usage)
2913 		list_del(&cpuctx->sched_cb_entry);
2914 }
2915 
2916 
2917 void perf_sched_cb_inc(struct pmu *pmu)
2918 {
2919 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2920 
2921 	if (!cpuctx->sched_cb_usage++)
2922 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2923 
2924 	this_cpu_inc(perf_sched_cb_usages);
2925 }
2926 
2927 /*
2928  * This function provides the context switch callback to the lower code
2929  * layer. It is invoked ONLY when the context switch callback is enabled.
2930  *
2931  * This callback is relevant even to per-cpu events; for example multi event
2932  * PEBS requires this to provide PID/TID information. This requires we flush
2933  * all queued PEBS records before we context switch to a new task.
2934  */
2935 static void perf_pmu_sched_task(struct task_struct *prev,
2936 				struct task_struct *next,
2937 				bool sched_in)
2938 {
2939 	struct perf_cpu_context *cpuctx;
2940 	struct pmu *pmu;
2941 
2942 	if (prev == next)
2943 		return;
2944 
2945 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2946 		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2947 
2948 		if (WARN_ON_ONCE(!pmu->sched_task))
2949 			continue;
2950 
2951 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2952 		perf_pmu_disable(pmu);
2953 
2954 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2955 
2956 		perf_pmu_enable(pmu);
2957 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2958 	}
2959 }
2960 
2961 static void perf_event_switch(struct task_struct *task,
2962 			      struct task_struct *next_prev, bool sched_in);
2963 
2964 #define for_each_task_context_nr(ctxn)					\
2965 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2966 
2967 /*
2968  * Called from scheduler to remove the events of the current task,
2969  * with interrupts disabled.
2970  *
2971  * We stop each event and update the event value in event->count.
2972  *
2973  * This does not protect us against NMI, but disable()
2974  * sets the disabled bit in the control field of event _before_
2975  * accessing the event control register. If a NMI hits, then it will
2976  * not restart the event.
2977  */
2978 void __perf_event_task_sched_out(struct task_struct *task,
2979 				 struct task_struct *next)
2980 {
2981 	int ctxn;
2982 
2983 	if (__this_cpu_read(perf_sched_cb_usages))
2984 		perf_pmu_sched_task(task, next, false);
2985 
2986 	if (atomic_read(&nr_switch_events))
2987 		perf_event_switch(task, next, false);
2988 
2989 	for_each_task_context_nr(ctxn)
2990 		perf_event_context_sched_out(task, ctxn, next);
2991 
2992 	/*
2993 	 * if cgroup events exist on this CPU, then we need
2994 	 * to check if we have to switch out PMU state.
2995 	 * cgroup event are system-wide mode only
2996 	 */
2997 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2998 		perf_cgroup_sched_out(task, next);
2999 }
3000 
3001 /*
3002  * Called with IRQs disabled
3003  */
3004 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3005 			      enum event_type_t event_type)
3006 {
3007 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3008 }
3009 
3010 static void
3011 ctx_pinned_sched_in(struct perf_event_context *ctx,
3012 		    struct perf_cpu_context *cpuctx)
3013 {
3014 	struct perf_event *event;
3015 
3016 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3017 		if (event->state <= PERF_EVENT_STATE_OFF)
3018 			continue;
3019 		if (!event_filter_match(event))
3020 			continue;
3021 
3022 		/* may need to reset tstamp_enabled */
3023 		if (is_cgroup_event(event))
3024 			perf_cgroup_mark_enabled(event, ctx);
3025 
3026 		if (group_can_go_on(event, cpuctx, 1))
3027 			group_sched_in(event, cpuctx, ctx);
3028 
3029 		/*
3030 		 * If this pinned group hasn't been scheduled,
3031 		 * put it in error state.
3032 		 */
3033 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3034 			update_group_times(event);
3035 			event->state = PERF_EVENT_STATE_ERROR;
3036 		}
3037 	}
3038 }
3039 
3040 static void
3041 ctx_flexible_sched_in(struct perf_event_context *ctx,
3042 		      struct perf_cpu_context *cpuctx)
3043 {
3044 	struct perf_event *event;
3045 	int can_add_hw = 1;
3046 
3047 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3048 		/* Ignore events in OFF or ERROR state */
3049 		if (event->state <= PERF_EVENT_STATE_OFF)
3050 			continue;
3051 		/*
3052 		 * Listen to the 'cpu' scheduling filter constraint
3053 		 * of events:
3054 		 */
3055 		if (!event_filter_match(event))
3056 			continue;
3057 
3058 		/* may need to reset tstamp_enabled */
3059 		if (is_cgroup_event(event))
3060 			perf_cgroup_mark_enabled(event, ctx);
3061 
3062 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3063 			if (group_sched_in(event, cpuctx, ctx))
3064 				can_add_hw = 0;
3065 		}
3066 	}
3067 }
3068 
3069 static void
3070 ctx_sched_in(struct perf_event_context *ctx,
3071 	     struct perf_cpu_context *cpuctx,
3072 	     enum event_type_t event_type,
3073 	     struct task_struct *task)
3074 {
3075 	int is_active = ctx->is_active;
3076 	u64 now;
3077 
3078 	lockdep_assert_held(&ctx->lock);
3079 
3080 	if (likely(!ctx->nr_events))
3081 		return;
3082 
3083 	ctx->is_active |= (event_type | EVENT_TIME);
3084 	if (ctx->task) {
3085 		if (!is_active)
3086 			cpuctx->task_ctx = ctx;
3087 		else
3088 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3089 	}
3090 
3091 	is_active ^= ctx->is_active; /* changed bits */
3092 
3093 	if (is_active & EVENT_TIME) {
3094 		/* start ctx time */
3095 		now = perf_clock();
3096 		ctx->timestamp = now;
3097 		perf_cgroup_set_timestamp(task, ctx);
3098 	}
3099 
3100 	/*
3101 	 * First go through the list and put on any pinned groups
3102 	 * in order to give them the best chance of going on.
3103 	 */
3104 	if (is_active & EVENT_PINNED)
3105 		ctx_pinned_sched_in(ctx, cpuctx);
3106 
3107 	/* Then walk through the lower prio flexible groups */
3108 	if (is_active & EVENT_FLEXIBLE)
3109 		ctx_flexible_sched_in(ctx, cpuctx);
3110 }
3111 
3112 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3113 			     enum event_type_t event_type,
3114 			     struct task_struct *task)
3115 {
3116 	struct perf_event_context *ctx = &cpuctx->ctx;
3117 
3118 	ctx_sched_in(ctx, cpuctx, event_type, task);
3119 }
3120 
3121 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3122 					struct task_struct *task)
3123 {
3124 	struct perf_cpu_context *cpuctx;
3125 
3126 	cpuctx = __get_cpu_context(ctx);
3127 	if (cpuctx->task_ctx == ctx)
3128 		return;
3129 
3130 	perf_ctx_lock(cpuctx, ctx);
3131 	perf_pmu_disable(ctx->pmu);
3132 	/*
3133 	 * We want to keep the following priority order:
3134 	 * cpu pinned (that don't need to move), task pinned,
3135 	 * cpu flexible, task flexible.
3136 	 */
3137 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3138 	perf_event_sched_in(cpuctx, ctx, task);
3139 	perf_pmu_enable(ctx->pmu);
3140 	perf_ctx_unlock(cpuctx, ctx);
3141 }
3142 
3143 /*
3144  * Called from scheduler to add the events of the current task
3145  * with interrupts disabled.
3146  *
3147  * We restore the event value and then enable it.
3148  *
3149  * This does not protect us against NMI, but enable()
3150  * sets the enabled bit in the control field of event _before_
3151  * accessing the event control register. If a NMI hits, then it will
3152  * keep the event running.
3153  */
3154 void __perf_event_task_sched_in(struct task_struct *prev,
3155 				struct task_struct *task)
3156 {
3157 	struct perf_event_context *ctx;
3158 	int ctxn;
3159 
3160 	/*
3161 	 * If cgroup events exist on this CPU, then we need to check if we have
3162 	 * to switch in PMU state; cgroup event are system-wide mode only.
3163 	 *
3164 	 * Since cgroup events are CPU events, we must schedule these in before
3165 	 * we schedule in the task events.
3166 	 */
3167 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3168 		perf_cgroup_sched_in(prev, task);
3169 
3170 	for_each_task_context_nr(ctxn) {
3171 		ctx = task->perf_event_ctxp[ctxn];
3172 		if (likely(!ctx))
3173 			continue;
3174 
3175 		perf_event_context_sched_in(ctx, task);
3176 	}
3177 
3178 	if (atomic_read(&nr_switch_events))
3179 		perf_event_switch(task, prev, true);
3180 
3181 	if (__this_cpu_read(perf_sched_cb_usages))
3182 		perf_pmu_sched_task(prev, task, true);
3183 }
3184 
3185 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3186 {
3187 	u64 frequency = event->attr.sample_freq;
3188 	u64 sec = NSEC_PER_SEC;
3189 	u64 divisor, dividend;
3190 
3191 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3192 
3193 	count_fls = fls64(count);
3194 	nsec_fls = fls64(nsec);
3195 	frequency_fls = fls64(frequency);
3196 	sec_fls = 30;
3197 
3198 	/*
3199 	 * We got @count in @nsec, with a target of sample_freq HZ
3200 	 * the target period becomes:
3201 	 *
3202 	 *             @count * 10^9
3203 	 * period = -------------------
3204 	 *          @nsec * sample_freq
3205 	 *
3206 	 */
3207 
3208 	/*
3209 	 * Reduce accuracy by one bit such that @a and @b converge
3210 	 * to a similar magnitude.
3211 	 */
3212 #define REDUCE_FLS(a, b)		\
3213 do {					\
3214 	if (a##_fls > b##_fls) {	\
3215 		a >>= 1;		\
3216 		a##_fls--;		\
3217 	} else {			\
3218 		b >>= 1;		\
3219 		b##_fls--;		\
3220 	}				\
3221 } while (0)
3222 
3223 	/*
3224 	 * Reduce accuracy until either term fits in a u64, then proceed with
3225 	 * the other, so that finally we can do a u64/u64 division.
3226 	 */
3227 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3228 		REDUCE_FLS(nsec, frequency);
3229 		REDUCE_FLS(sec, count);
3230 	}
3231 
3232 	if (count_fls + sec_fls > 64) {
3233 		divisor = nsec * frequency;
3234 
3235 		while (count_fls + sec_fls > 64) {
3236 			REDUCE_FLS(count, sec);
3237 			divisor >>= 1;
3238 		}
3239 
3240 		dividend = count * sec;
3241 	} else {
3242 		dividend = count * sec;
3243 
3244 		while (nsec_fls + frequency_fls > 64) {
3245 			REDUCE_FLS(nsec, frequency);
3246 			dividend >>= 1;
3247 		}
3248 
3249 		divisor = nsec * frequency;
3250 	}
3251 
3252 	if (!divisor)
3253 		return dividend;
3254 
3255 	return div64_u64(dividend, divisor);
3256 }
3257 
3258 static DEFINE_PER_CPU(int, perf_throttled_count);
3259 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3260 
3261 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3262 {
3263 	struct hw_perf_event *hwc = &event->hw;
3264 	s64 period, sample_period;
3265 	s64 delta;
3266 
3267 	period = perf_calculate_period(event, nsec, count);
3268 
3269 	delta = (s64)(period - hwc->sample_period);
3270 	delta = (delta + 7) / 8; /* low pass filter */
3271 
3272 	sample_period = hwc->sample_period + delta;
3273 
3274 	if (!sample_period)
3275 		sample_period = 1;
3276 
3277 	hwc->sample_period = sample_period;
3278 
3279 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3280 		if (disable)
3281 			event->pmu->stop(event, PERF_EF_UPDATE);
3282 
3283 		local64_set(&hwc->period_left, 0);
3284 
3285 		if (disable)
3286 			event->pmu->start(event, PERF_EF_RELOAD);
3287 	}
3288 }
3289 
3290 /*
3291  * combine freq adjustment with unthrottling to avoid two passes over the
3292  * events. At the same time, make sure, having freq events does not change
3293  * the rate of unthrottling as that would introduce bias.
3294  */
3295 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3296 					   int needs_unthr)
3297 {
3298 	struct perf_event *event;
3299 	struct hw_perf_event *hwc;
3300 	u64 now, period = TICK_NSEC;
3301 	s64 delta;
3302 
3303 	/*
3304 	 * only need to iterate over all events iff:
3305 	 * - context have events in frequency mode (needs freq adjust)
3306 	 * - there are events to unthrottle on this cpu
3307 	 */
3308 	if (!(ctx->nr_freq || needs_unthr))
3309 		return;
3310 
3311 	raw_spin_lock(&ctx->lock);
3312 	perf_pmu_disable(ctx->pmu);
3313 
3314 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3315 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3316 			continue;
3317 
3318 		if (!event_filter_match(event))
3319 			continue;
3320 
3321 		perf_pmu_disable(event->pmu);
3322 
3323 		hwc = &event->hw;
3324 
3325 		if (hwc->interrupts == MAX_INTERRUPTS) {
3326 			hwc->interrupts = 0;
3327 			perf_log_throttle(event, 1);
3328 			event->pmu->start(event, 0);
3329 		}
3330 
3331 		if (!event->attr.freq || !event->attr.sample_freq)
3332 			goto next;
3333 
3334 		/*
3335 		 * stop the event and update event->count
3336 		 */
3337 		event->pmu->stop(event, PERF_EF_UPDATE);
3338 
3339 		now = local64_read(&event->count);
3340 		delta = now - hwc->freq_count_stamp;
3341 		hwc->freq_count_stamp = now;
3342 
3343 		/*
3344 		 * restart the event
3345 		 * reload only if value has changed
3346 		 * we have stopped the event so tell that
3347 		 * to perf_adjust_period() to avoid stopping it
3348 		 * twice.
3349 		 */
3350 		if (delta > 0)
3351 			perf_adjust_period(event, period, delta, false);
3352 
3353 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3354 	next:
3355 		perf_pmu_enable(event->pmu);
3356 	}
3357 
3358 	perf_pmu_enable(ctx->pmu);
3359 	raw_spin_unlock(&ctx->lock);
3360 }
3361 
3362 /*
3363  * Round-robin a context's events:
3364  */
3365 static void rotate_ctx(struct perf_event_context *ctx)
3366 {
3367 	/*
3368 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3369 	 * disabled by the inheritance code.
3370 	 */
3371 	if (!ctx->rotate_disable)
3372 		list_rotate_left(&ctx->flexible_groups);
3373 }
3374 
3375 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3376 {
3377 	struct perf_event_context *ctx = NULL;
3378 	int rotate = 0;
3379 
3380 	if (cpuctx->ctx.nr_events) {
3381 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3382 			rotate = 1;
3383 	}
3384 
3385 	ctx = cpuctx->task_ctx;
3386 	if (ctx && ctx->nr_events) {
3387 		if (ctx->nr_events != ctx->nr_active)
3388 			rotate = 1;
3389 	}
3390 
3391 	if (!rotate)
3392 		goto done;
3393 
3394 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3395 	perf_pmu_disable(cpuctx->ctx.pmu);
3396 
3397 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3398 	if (ctx)
3399 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3400 
3401 	rotate_ctx(&cpuctx->ctx);
3402 	if (ctx)
3403 		rotate_ctx(ctx);
3404 
3405 	perf_event_sched_in(cpuctx, ctx, current);
3406 
3407 	perf_pmu_enable(cpuctx->ctx.pmu);
3408 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3409 done:
3410 
3411 	return rotate;
3412 }
3413 
3414 void perf_event_task_tick(void)
3415 {
3416 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3417 	struct perf_event_context *ctx, *tmp;
3418 	int throttled;
3419 
3420 	WARN_ON(!irqs_disabled());
3421 
3422 	__this_cpu_inc(perf_throttled_seq);
3423 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3424 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3425 
3426 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3427 		perf_adjust_freq_unthr_context(ctx, throttled);
3428 }
3429 
3430 static int event_enable_on_exec(struct perf_event *event,
3431 				struct perf_event_context *ctx)
3432 {
3433 	if (!event->attr.enable_on_exec)
3434 		return 0;
3435 
3436 	event->attr.enable_on_exec = 0;
3437 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3438 		return 0;
3439 
3440 	__perf_event_mark_enabled(event);
3441 
3442 	return 1;
3443 }
3444 
3445 /*
3446  * Enable all of a task's events that have been marked enable-on-exec.
3447  * This expects task == current.
3448  */
3449 static void perf_event_enable_on_exec(int ctxn)
3450 {
3451 	struct perf_event_context *ctx, *clone_ctx = NULL;
3452 	struct perf_cpu_context *cpuctx;
3453 	struct perf_event *event;
3454 	unsigned long flags;
3455 	int enabled = 0;
3456 
3457 	local_irq_save(flags);
3458 	ctx = current->perf_event_ctxp[ctxn];
3459 	if (!ctx || !ctx->nr_events)
3460 		goto out;
3461 
3462 	cpuctx = __get_cpu_context(ctx);
3463 	perf_ctx_lock(cpuctx, ctx);
3464 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3465 	list_for_each_entry(event, &ctx->event_list, event_entry)
3466 		enabled |= event_enable_on_exec(event, ctx);
3467 
3468 	/*
3469 	 * Unclone and reschedule this context if we enabled any event.
3470 	 */
3471 	if (enabled) {
3472 		clone_ctx = unclone_ctx(ctx);
3473 		ctx_resched(cpuctx, ctx);
3474 	}
3475 	perf_ctx_unlock(cpuctx, ctx);
3476 
3477 out:
3478 	local_irq_restore(flags);
3479 
3480 	if (clone_ctx)
3481 		put_ctx(clone_ctx);
3482 }
3483 
3484 struct perf_read_data {
3485 	struct perf_event *event;
3486 	bool group;
3487 	int ret;
3488 };
3489 
3490 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3491 {
3492 	u16 local_pkg, event_pkg;
3493 
3494 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3495 		int local_cpu = smp_processor_id();
3496 
3497 		event_pkg = topology_physical_package_id(event_cpu);
3498 		local_pkg = topology_physical_package_id(local_cpu);
3499 
3500 		if (event_pkg == local_pkg)
3501 			return local_cpu;
3502 	}
3503 
3504 	return event_cpu;
3505 }
3506 
3507 /*
3508  * Cross CPU call to read the hardware event
3509  */
3510 static void __perf_event_read(void *info)
3511 {
3512 	struct perf_read_data *data = info;
3513 	struct perf_event *sub, *event = data->event;
3514 	struct perf_event_context *ctx = event->ctx;
3515 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3516 	struct pmu *pmu = event->pmu;
3517 
3518 	/*
3519 	 * If this is a task context, we need to check whether it is
3520 	 * the current task context of this cpu.  If not it has been
3521 	 * scheduled out before the smp call arrived.  In that case
3522 	 * event->count would have been updated to a recent sample
3523 	 * when the event was scheduled out.
3524 	 */
3525 	if (ctx->task && cpuctx->task_ctx != ctx)
3526 		return;
3527 
3528 	raw_spin_lock(&ctx->lock);
3529 	if (ctx->is_active) {
3530 		update_context_time(ctx);
3531 		update_cgrp_time_from_event(event);
3532 	}
3533 
3534 	update_event_times(event);
3535 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3536 		goto unlock;
3537 
3538 	if (!data->group) {
3539 		pmu->read(event);
3540 		data->ret = 0;
3541 		goto unlock;
3542 	}
3543 
3544 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3545 
3546 	pmu->read(event);
3547 
3548 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3549 		update_event_times(sub);
3550 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3551 			/*
3552 			 * Use sibling's PMU rather than @event's since
3553 			 * sibling could be on different (eg: software) PMU.
3554 			 */
3555 			sub->pmu->read(sub);
3556 		}
3557 	}
3558 
3559 	data->ret = pmu->commit_txn(pmu);
3560 
3561 unlock:
3562 	raw_spin_unlock(&ctx->lock);
3563 }
3564 
3565 static inline u64 perf_event_count(struct perf_event *event)
3566 {
3567 	if (event->pmu->count)
3568 		return event->pmu->count(event);
3569 
3570 	return __perf_event_count(event);
3571 }
3572 
3573 /*
3574  * NMI-safe method to read a local event, that is an event that
3575  * is:
3576  *   - either for the current task, or for this CPU
3577  *   - does not have inherit set, for inherited task events
3578  *     will not be local and we cannot read them atomically
3579  *   - must not have a pmu::count method
3580  */
3581 u64 perf_event_read_local(struct perf_event *event)
3582 {
3583 	unsigned long flags;
3584 	u64 val;
3585 
3586 	/*
3587 	 * Disabling interrupts avoids all counter scheduling (context
3588 	 * switches, timer based rotation and IPIs).
3589 	 */
3590 	local_irq_save(flags);
3591 
3592 	/* If this is a per-task event, it must be for current */
3593 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3594 		     event->hw.target != current);
3595 
3596 	/* If this is a per-CPU event, it must be for this CPU */
3597 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3598 		     event->cpu != smp_processor_id());
3599 
3600 	/*
3601 	 * It must not be an event with inherit set, we cannot read
3602 	 * all child counters from atomic context.
3603 	 */
3604 	WARN_ON_ONCE(event->attr.inherit);
3605 
3606 	/*
3607 	 * It must not have a pmu::count method, those are not
3608 	 * NMI safe.
3609 	 */
3610 	WARN_ON_ONCE(event->pmu->count);
3611 
3612 	/*
3613 	 * If the event is currently on this CPU, its either a per-task event,
3614 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3615 	 * oncpu == -1).
3616 	 */
3617 	if (event->oncpu == smp_processor_id())
3618 		event->pmu->read(event);
3619 
3620 	val = local64_read(&event->count);
3621 	local_irq_restore(flags);
3622 
3623 	return val;
3624 }
3625 
3626 static int perf_event_read(struct perf_event *event, bool group)
3627 {
3628 	int event_cpu, ret = 0;
3629 
3630 	/*
3631 	 * If event is enabled and currently active on a CPU, update the
3632 	 * value in the event structure:
3633 	 */
3634 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3635 		struct perf_read_data data = {
3636 			.event = event,
3637 			.group = group,
3638 			.ret = 0,
3639 		};
3640 
3641 		event_cpu = READ_ONCE(event->oncpu);
3642 		if ((unsigned)event_cpu >= nr_cpu_ids)
3643 			return 0;
3644 
3645 		preempt_disable();
3646 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3647 
3648 		/*
3649 		 * Purposely ignore the smp_call_function_single() return
3650 		 * value.
3651 		 *
3652 		 * If event_cpu isn't a valid CPU it means the event got
3653 		 * scheduled out and that will have updated the event count.
3654 		 *
3655 		 * Therefore, either way, we'll have an up-to-date event count
3656 		 * after this.
3657 		 */
3658 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3659 		preempt_enable();
3660 		ret = data.ret;
3661 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3662 		struct perf_event_context *ctx = event->ctx;
3663 		unsigned long flags;
3664 
3665 		raw_spin_lock_irqsave(&ctx->lock, flags);
3666 		/*
3667 		 * may read while context is not active
3668 		 * (e.g., thread is blocked), in that case
3669 		 * we cannot update context time
3670 		 */
3671 		if (ctx->is_active) {
3672 			update_context_time(ctx);
3673 			update_cgrp_time_from_event(event);
3674 		}
3675 		if (group)
3676 			update_group_times(event);
3677 		else
3678 			update_event_times(event);
3679 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3680 	}
3681 
3682 	return ret;
3683 }
3684 
3685 /*
3686  * Initialize the perf_event context in a task_struct:
3687  */
3688 static void __perf_event_init_context(struct perf_event_context *ctx)
3689 {
3690 	raw_spin_lock_init(&ctx->lock);
3691 	mutex_init(&ctx->mutex);
3692 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3693 	INIT_LIST_HEAD(&ctx->pinned_groups);
3694 	INIT_LIST_HEAD(&ctx->flexible_groups);
3695 	INIT_LIST_HEAD(&ctx->event_list);
3696 	atomic_set(&ctx->refcount, 1);
3697 }
3698 
3699 static struct perf_event_context *
3700 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3701 {
3702 	struct perf_event_context *ctx;
3703 
3704 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3705 	if (!ctx)
3706 		return NULL;
3707 
3708 	__perf_event_init_context(ctx);
3709 	if (task) {
3710 		ctx->task = task;
3711 		get_task_struct(task);
3712 	}
3713 	ctx->pmu = pmu;
3714 
3715 	return ctx;
3716 }
3717 
3718 static struct task_struct *
3719 find_lively_task_by_vpid(pid_t vpid)
3720 {
3721 	struct task_struct *task;
3722 
3723 	rcu_read_lock();
3724 	if (!vpid)
3725 		task = current;
3726 	else
3727 		task = find_task_by_vpid(vpid);
3728 	if (task)
3729 		get_task_struct(task);
3730 	rcu_read_unlock();
3731 
3732 	if (!task)
3733 		return ERR_PTR(-ESRCH);
3734 
3735 	return task;
3736 }
3737 
3738 /*
3739  * Returns a matching context with refcount and pincount.
3740  */
3741 static struct perf_event_context *
3742 find_get_context(struct pmu *pmu, struct task_struct *task,
3743 		struct perf_event *event)
3744 {
3745 	struct perf_event_context *ctx, *clone_ctx = NULL;
3746 	struct perf_cpu_context *cpuctx;
3747 	void *task_ctx_data = NULL;
3748 	unsigned long flags;
3749 	int ctxn, err;
3750 	int cpu = event->cpu;
3751 
3752 	if (!task) {
3753 		/* Must be root to operate on a CPU event: */
3754 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3755 			return ERR_PTR(-EACCES);
3756 
3757 		/*
3758 		 * We could be clever and allow to attach a event to an
3759 		 * offline CPU and activate it when the CPU comes up, but
3760 		 * that's for later.
3761 		 */
3762 		if (!cpu_online(cpu))
3763 			return ERR_PTR(-ENODEV);
3764 
3765 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3766 		ctx = &cpuctx->ctx;
3767 		get_ctx(ctx);
3768 		++ctx->pin_count;
3769 
3770 		return ctx;
3771 	}
3772 
3773 	err = -EINVAL;
3774 	ctxn = pmu->task_ctx_nr;
3775 	if (ctxn < 0)
3776 		goto errout;
3777 
3778 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3779 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3780 		if (!task_ctx_data) {
3781 			err = -ENOMEM;
3782 			goto errout;
3783 		}
3784 	}
3785 
3786 retry:
3787 	ctx = perf_lock_task_context(task, ctxn, &flags);
3788 	if (ctx) {
3789 		clone_ctx = unclone_ctx(ctx);
3790 		++ctx->pin_count;
3791 
3792 		if (task_ctx_data && !ctx->task_ctx_data) {
3793 			ctx->task_ctx_data = task_ctx_data;
3794 			task_ctx_data = NULL;
3795 		}
3796 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3797 
3798 		if (clone_ctx)
3799 			put_ctx(clone_ctx);
3800 	} else {
3801 		ctx = alloc_perf_context(pmu, task);
3802 		err = -ENOMEM;
3803 		if (!ctx)
3804 			goto errout;
3805 
3806 		if (task_ctx_data) {
3807 			ctx->task_ctx_data = task_ctx_data;
3808 			task_ctx_data = NULL;
3809 		}
3810 
3811 		err = 0;
3812 		mutex_lock(&task->perf_event_mutex);
3813 		/*
3814 		 * If it has already passed perf_event_exit_task().
3815 		 * we must see PF_EXITING, it takes this mutex too.
3816 		 */
3817 		if (task->flags & PF_EXITING)
3818 			err = -ESRCH;
3819 		else if (task->perf_event_ctxp[ctxn])
3820 			err = -EAGAIN;
3821 		else {
3822 			get_ctx(ctx);
3823 			++ctx->pin_count;
3824 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3825 		}
3826 		mutex_unlock(&task->perf_event_mutex);
3827 
3828 		if (unlikely(err)) {
3829 			put_ctx(ctx);
3830 
3831 			if (err == -EAGAIN)
3832 				goto retry;
3833 			goto errout;
3834 		}
3835 	}
3836 
3837 	kfree(task_ctx_data);
3838 	return ctx;
3839 
3840 errout:
3841 	kfree(task_ctx_data);
3842 	return ERR_PTR(err);
3843 }
3844 
3845 static void perf_event_free_filter(struct perf_event *event);
3846 static void perf_event_free_bpf_prog(struct perf_event *event);
3847 
3848 static void free_event_rcu(struct rcu_head *head)
3849 {
3850 	struct perf_event *event;
3851 
3852 	event = container_of(head, struct perf_event, rcu_head);
3853 	if (event->ns)
3854 		put_pid_ns(event->ns);
3855 	perf_event_free_filter(event);
3856 	kfree(event);
3857 }
3858 
3859 static void ring_buffer_attach(struct perf_event *event,
3860 			       struct ring_buffer *rb);
3861 
3862 static void detach_sb_event(struct perf_event *event)
3863 {
3864 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3865 
3866 	raw_spin_lock(&pel->lock);
3867 	list_del_rcu(&event->sb_list);
3868 	raw_spin_unlock(&pel->lock);
3869 }
3870 
3871 static bool is_sb_event(struct perf_event *event)
3872 {
3873 	struct perf_event_attr *attr = &event->attr;
3874 
3875 	if (event->parent)
3876 		return false;
3877 
3878 	if (event->attach_state & PERF_ATTACH_TASK)
3879 		return false;
3880 
3881 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3882 	    attr->comm || attr->comm_exec ||
3883 	    attr->task ||
3884 	    attr->context_switch)
3885 		return true;
3886 	return false;
3887 }
3888 
3889 static void unaccount_pmu_sb_event(struct perf_event *event)
3890 {
3891 	if (is_sb_event(event))
3892 		detach_sb_event(event);
3893 }
3894 
3895 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3896 {
3897 	if (event->parent)
3898 		return;
3899 
3900 	if (is_cgroup_event(event))
3901 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3902 }
3903 
3904 #ifdef CONFIG_NO_HZ_FULL
3905 static DEFINE_SPINLOCK(nr_freq_lock);
3906 #endif
3907 
3908 static void unaccount_freq_event_nohz(void)
3909 {
3910 #ifdef CONFIG_NO_HZ_FULL
3911 	spin_lock(&nr_freq_lock);
3912 	if (atomic_dec_and_test(&nr_freq_events))
3913 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3914 	spin_unlock(&nr_freq_lock);
3915 #endif
3916 }
3917 
3918 static void unaccount_freq_event(void)
3919 {
3920 	if (tick_nohz_full_enabled())
3921 		unaccount_freq_event_nohz();
3922 	else
3923 		atomic_dec(&nr_freq_events);
3924 }
3925 
3926 static void unaccount_event(struct perf_event *event)
3927 {
3928 	bool dec = false;
3929 
3930 	if (event->parent)
3931 		return;
3932 
3933 	if (event->attach_state & PERF_ATTACH_TASK)
3934 		dec = true;
3935 	if (event->attr.mmap || event->attr.mmap_data)
3936 		atomic_dec(&nr_mmap_events);
3937 	if (event->attr.comm)
3938 		atomic_dec(&nr_comm_events);
3939 	if (event->attr.task)
3940 		atomic_dec(&nr_task_events);
3941 	if (event->attr.freq)
3942 		unaccount_freq_event();
3943 	if (event->attr.context_switch) {
3944 		dec = true;
3945 		atomic_dec(&nr_switch_events);
3946 	}
3947 	if (is_cgroup_event(event))
3948 		dec = true;
3949 	if (has_branch_stack(event))
3950 		dec = true;
3951 
3952 	if (dec) {
3953 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3954 			schedule_delayed_work(&perf_sched_work, HZ);
3955 	}
3956 
3957 	unaccount_event_cpu(event, event->cpu);
3958 
3959 	unaccount_pmu_sb_event(event);
3960 }
3961 
3962 static void perf_sched_delayed(struct work_struct *work)
3963 {
3964 	mutex_lock(&perf_sched_mutex);
3965 	if (atomic_dec_and_test(&perf_sched_count))
3966 		static_branch_disable(&perf_sched_events);
3967 	mutex_unlock(&perf_sched_mutex);
3968 }
3969 
3970 /*
3971  * The following implement mutual exclusion of events on "exclusive" pmus
3972  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3973  * at a time, so we disallow creating events that might conflict, namely:
3974  *
3975  *  1) cpu-wide events in the presence of per-task events,
3976  *  2) per-task events in the presence of cpu-wide events,
3977  *  3) two matching events on the same context.
3978  *
3979  * The former two cases are handled in the allocation path (perf_event_alloc(),
3980  * _free_event()), the latter -- before the first perf_install_in_context().
3981  */
3982 static int exclusive_event_init(struct perf_event *event)
3983 {
3984 	struct pmu *pmu = event->pmu;
3985 
3986 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3987 		return 0;
3988 
3989 	/*
3990 	 * Prevent co-existence of per-task and cpu-wide events on the
3991 	 * same exclusive pmu.
3992 	 *
3993 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3994 	 * events on this "exclusive" pmu, positive means there are
3995 	 * per-task events.
3996 	 *
3997 	 * Since this is called in perf_event_alloc() path, event::ctx
3998 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3999 	 * to mean "per-task event", because unlike other attach states it
4000 	 * never gets cleared.
4001 	 */
4002 	if (event->attach_state & PERF_ATTACH_TASK) {
4003 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4004 			return -EBUSY;
4005 	} else {
4006 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4007 			return -EBUSY;
4008 	}
4009 
4010 	return 0;
4011 }
4012 
4013 static void exclusive_event_destroy(struct perf_event *event)
4014 {
4015 	struct pmu *pmu = event->pmu;
4016 
4017 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4018 		return;
4019 
4020 	/* see comment in exclusive_event_init() */
4021 	if (event->attach_state & PERF_ATTACH_TASK)
4022 		atomic_dec(&pmu->exclusive_cnt);
4023 	else
4024 		atomic_inc(&pmu->exclusive_cnt);
4025 }
4026 
4027 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4028 {
4029 	if ((e1->pmu == e2->pmu) &&
4030 	    (e1->cpu == e2->cpu ||
4031 	     e1->cpu == -1 ||
4032 	     e2->cpu == -1))
4033 		return true;
4034 	return false;
4035 }
4036 
4037 /* Called under the same ctx::mutex as perf_install_in_context() */
4038 static bool exclusive_event_installable(struct perf_event *event,
4039 					struct perf_event_context *ctx)
4040 {
4041 	struct perf_event *iter_event;
4042 	struct pmu *pmu = event->pmu;
4043 
4044 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4045 		return true;
4046 
4047 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4048 		if (exclusive_event_match(iter_event, event))
4049 			return false;
4050 	}
4051 
4052 	return true;
4053 }
4054 
4055 static void perf_addr_filters_splice(struct perf_event *event,
4056 				       struct list_head *head);
4057 
4058 static void _free_event(struct perf_event *event)
4059 {
4060 	irq_work_sync(&event->pending);
4061 
4062 	unaccount_event(event);
4063 
4064 	if (event->rb) {
4065 		/*
4066 		 * Can happen when we close an event with re-directed output.
4067 		 *
4068 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4069 		 * over us; possibly making our ring_buffer_put() the last.
4070 		 */
4071 		mutex_lock(&event->mmap_mutex);
4072 		ring_buffer_attach(event, NULL);
4073 		mutex_unlock(&event->mmap_mutex);
4074 	}
4075 
4076 	if (is_cgroup_event(event))
4077 		perf_detach_cgroup(event);
4078 
4079 	if (!event->parent) {
4080 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4081 			put_callchain_buffers();
4082 	}
4083 
4084 	perf_event_free_bpf_prog(event);
4085 	perf_addr_filters_splice(event, NULL);
4086 	kfree(event->addr_filters_offs);
4087 
4088 	if (event->destroy)
4089 		event->destroy(event);
4090 
4091 	if (event->ctx)
4092 		put_ctx(event->ctx);
4093 
4094 	exclusive_event_destroy(event);
4095 	module_put(event->pmu->module);
4096 
4097 	call_rcu(&event->rcu_head, free_event_rcu);
4098 }
4099 
4100 /*
4101  * Used to free events which have a known refcount of 1, such as in error paths
4102  * where the event isn't exposed yet and inherited events.
4103  */
4104 static void free_event(struct perf_event *event)
4105 {
4106 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4107 				"unexpected event refcount: %ld; ptr=%p\n",
4108 				atomic_long_read(&event->refcount), event)) {
4109 		/* leak to avoid use-after-free */
4110 		return;
4111 	}
4112 
4113 	_free_event(event);
4114 }
4115 
4116 /*
4117  * Remove user event from the owner task.
4118  */
4119 static void perf_remove_from_owner(struct perf_event *event)
4120 {
4121 	struct task_struct *owner;
4122 
4123 	rcu_read_lock();
4124 	/*
4125 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4126 	 * observe !owner it means the list deletion is complete and we can
4127 	 * indeed free this event, otherwise we need to serialize on
4128 	 * owner->perf_event_mutex.
4129 	 */
4130 	owner = lockless_dereference(event->owner);
4131 	if (owner) {
4132 		/*
4133 		 * Since delayed_put_task_struct() also drops the last
4134 		 * task reference we can safely take a new reference
4135 		 * while holding the rcu_read_lock().
4136 		 */
4137 		get_task_struct(owner);
4138 	}
4139 	rcu_read_unlock();
4140 
4141 	if (owner) {
4142 		/*
4143 		 * If we're here through perf_event_exit_task() we're already
4144 		 * holding ctx->mutex which would be an inversion wrt. the
4145 		 * normal lock order.
4146 		 *
4147 		 * However we can safely take this lock because its the child
4148 		 * ctx->mutex.
4149 		 */
4150 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4151 
4152 		/*
4153 		 * We have to re-check the event->owner field, if it is cleared
4154 		 * we raced with perf_event_exit_task(), acquiring the mutex
4155 		 * ensured they're done, and we can proceed with freeing the
4156 		 * event.
4157 		 */
4158 		if (event->owner) {
4159 			list_del_init(&event->owner_entry);
4160 			smp_store_release(&event->owner, NULL);
4161 		}
4162 		mutex_unlock(&owner->perf_event_mutex);
4163 		put_task_struct(owner);
4164 	}
4165 }
4166 
4167 static void put_event(struct perf_event *event)
4168 {
4169 	if (!atomic_long_dec_and_test(&event->refcount))
4170 		return;
4171 
4172 	_free_event(event);
4173 }
4174 
4175 /*
4176  * Kill an event dead; while event:refcount will preserve the event
4177  * object, it will not preserve its functionality. Once the last 'user'
4178  * gives up the object, we'll destroy the thing.
4179  */
4180 int perf_event_release_kernel(struct perf_event *event)
4181 {
4182 	struct perf_event_context *ctx = event->ctx;
4183 	struct perf_event *child, *tmp;
4184 
4185 	/*
4186 	 * If we got here through err_file: fput(event_file); we will not have
4187 	 * attached to a context yet.
4188 	 */
4189 	if (!ctx) {
4190 		WARN_ON_ONCE(event->attach_state &
4191 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4192 		goto no_ctx;
4193 	}
4194 
4195 	if (!is_kernel_event(event))
4196 		perf_remove_from_owner(event);
4197 
4198 	ctx = perf_event_ctx_lock(event);
4199 	WARN_ON_ONCE(ctx->parent_ctx);
4200 	perf_remove_from_context(event, DETACH_GROUP);
4201 
4202 	raw_spin_lock_irq(&ctx->lock);
4203 	/*
4204 	 * Mark this even as STATE_DEAD, there is no external reference to it
4205 	 * anymore.
4206 	 *
4207 	 * Anybody acquiring event->child_mutex after the below loop _must_
4208 	 * also see this, most importantly inherit_event() which will avoid
4209 	 * placing more children on the list.
4210 	 *
4211 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4212 	 * child events.
4213 	 */
4214 	event->state = PERF_EVENT_STATE_DEAD;
4215 	raw_spin_unlock_irq(&ctx->lock);
4216 
4217 	perf_event_ctx_unlock(event, ctx);
4218 
4219 again:
4220 	mutex_lock(&event->child_mutex);
4221 	list_for_each_entry(child, &event->child_list, child_list) {
4222 
4223 		/*
4224 		 * Cannot change, child events are not migrated, see the
4225 		 * comment with perf_event_ctx_lock_nested().
4226 		 */
4227 		ctx = lockless_dereference(child->ctx);
4228 		/*
4229 		 * Since child_mutex nests inside ctx::mutex, we must jump
4230 		 * through hoops. We start by grabbing a reference on the ctx.
4231 		 *
4232 		 * Since the event cannot get freed while we hold the
4233 		 * child_mutex, the context must also exist and have a !0
4234 		 * reference count.
4235 		 */
4236 		get_ctx(ctx);
4237 
4238 		/*
4239 		 * Now that we have a ctx ref, we can drop child_mutex, and
4240 		 * acquire ctx::mutex without fear of it going away. Then we
4241 		 * can re-acquire child_mutex.
4242 		 */
4243 		mutex_unlock(&event->child_mutex);
4244 		mutex_lock(&ctx->mutex);
4245 		mutex_lock(&event->child_mutex);
4246 
4247 		/*
4248 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4249 		 * state, if child is still the first entry, it didn't get freed
4250 		 * and we can continue doing so.
4251 		 */
4252 		tmp = list_first_entry_or_null(&event->child_list,
4253 					       struct perf_event, child_list);
4254 		if (tmp == child) {
4255 			perf_remove_from_context(child, DETACH_GROUP);
4256 			list_del(&child->child_list);
4257 			free_event(child);
4258 			/*
4259 			 * This matches the refcount bump in inherit_event();
4260 			 * this can't be the last reference.
4261 			 */
4262 			put_event(event);
4263 		}
4264 
4265 		mutex_unlock(&event->child_mutex);
4266 		mutex_unlock(&ctx->mutex);
4267 		put_ctx(ctx);
4268 		goto again;
4269 	}
4270 	mutex_unlock(&event->child_mutex);
4271 
4272 no_ctx:
4273 	put_event(event); /* Must be the 'last' reference */
4274 	return 0;
4275 }
4276 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4277 
4278 /*
4279  * Called when the last reference to the file is gone.
4280  */
4281 static int perf_release(struct inode *inode, struct file *file)
4282 {
4283 	perf_event_release_kernel(file->private_data);
4284 	return 0;
4285 }
4286 
4287 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4288 {
4289 	struct perf_event *child;
4290 	u64 total = 0;
4291 
4292 	*enabled = 0;
4293 	*running = 0;
4294 
4295 	mutex_lock(&event->child_mutex);
4296 
4297 	(void)perf_event_read(event, false);
4298 	total += perf_event_count(event);
4299 
4300 	*enabled += event->total_time_enabled +
4301 			atomic64_read(&event->child_total_time_enabled);
4302 	*running += event->total_time_running +
4303 			atomic64_read(&event->child_total_time_running);
4304 
4305 	list_for_each_entry(child, &event->child_list, child_list) {
4306 		(void)perf_event_read(child, false);
4307 		total += perf_event_count(child);
4308 		*enabled += child->total_time_enabled;
4309 		*running += child->total_time_running;
4310 	}
4311 	mutex_unlock(&event->child_mutex);
4312 
4313 	return total;
4314 }
4315 EXPORT_SYMBOL_GPL(perf_event_read_value);
4316 
4317 static int __perf_read_group_add(struct perf_event *leader,
4318 					u64 read_format, u64 *values)
4319 {
4320 	struct perf_event *sub;
4321 	int n = 1; /* skip @nr */
4322 	int ret;
4323 
4324 	ret = perf_event_read(leader, true);
4325 	if (ret)
4326 		return ret;
4327 
4328 	/*
4329 	 * Since we co-schedule groups, {enabled,running} times of siblings
4330 	 * will be identical to those of the leader, so we only publish one
4331 	 * set.
4332 	 */
4333 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4334 		values[n++] += leader->total_time_enabled +
4335 			atomic64_read(&leader->child_total_time_enabled);
4336 	}
4337 
4338 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4339 		values[n++] += leader->total_time_running +
4340 			atomic64_read(&leader->child_total_time_running);
4341 	}
4342 
4343 	/*
4344 	 * Write {count,id} tuples for every sibling.
4345 	 */
4346 	values[n++] += perf_event_count(leader);
4347 	if (read_format & PERF_FORMAT_ID)
4348 		values[n++] = primary_event_id(leader);
4349 
4350 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4351 		values[n++] += perf_event_count(sub);
4352 		if (read_format & PERF_FORMAT_ID)
4353 			values[n++] = primary_event_id(sub);
4354 	}
4355 
4356 	return 0;
4357 }
4358 
4359 static int perf_read_group(struct perf_event *event,
4360 				   u64 read_format, char __user *buf)
4361 {
4362 	struct perf_event *leader = event->group_leader, *child;
4363 	struct perf_event_context *ctx = leader->ctx;
4364 	int ret;
4365 	u64 *values;
4366 
4367 	lockdep_assert_held(&ctx->mutex);
4368 
4369 	values = kzalloc(event->read_size, GFP_KERNEL);
4370 	if (!values)
4371 		return -ENOMEM;
4372 
4373 	values[0] = 1 + leader->nr_siblings;
4374 
4375 	/*
4376 	 * By locking the child_mutex of the leader we effectively
4377 	 * lock the child list of all siblings.. XXX explain how.
4378 	 */
4379 	mutex_lock(&leader->child_mutex);
4380 
4381 	ret = __perf_read_group_add(leader, read_format, values);
4382 	if (ret)
4383 		goto unlock;
4384 
4385 	list_for_each_entry(child, &leader->child_list, child_list) {
4386 		ret = __perf_read_group_add(child, read_format, values);
4387 		if (ret)
4388 			goto unlock;
4389 	}
4390 
4391 	mutex_unlock(&leader->child_mutex);
4392 
4393 	ret = event->read_size;
4394 	if (copy_to_user(buf, values, event->read_size))
4395 		ret = -EFAULT;
4396 	goto out;
4397 
4398 unlock:
4399 	mutex_unlock(&leader->child_mutex);
4400 out:
4401 	kfree(values);
4402 	return ret;
4403 }
4404 
4405 static int perf_read_one(struct perf_event *event,
4406 				 u64 read_format, char __user *buf)
4407 {
4408 	u64 enabled, running;
4409 	u64 values[4];
4410 	int n = 0;
4411 
4412 	values[n++] = perf_event_read_value(event, &enabled, &running);
4413 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4414 		values[n++] = enabled;
4415 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4416 		values[n++] = running;
4417 	if (read_format & PERF_FORMAT_ID)
4418 		values[n++] = primary_event_id(event);
4419 
4420 	if (copy_to_user(buf, values, n * sizeof(u64)))
4421 		return -EFAULT;
4422 
4423 	return n * sizeof(u64);
4424 }
4425 
4426 static bool is_event_hup(struct perf_event *event)
4427 {
4428 	bool no_children;
4429 
4430 	if (event->state > PERF_EVENT_STATE_EXIT)
4431 		return false;
4432 
4433 	mutex_lock(&event->child_mutex);
4434 	no_children = list_empty(&event->child_list);
4435 	mutex_unlock(&event->child_mutex);
4436 	return no_children;
4437 }
4438 
4439 /*
4440  * Read the performance event - simple non blocking version for now
4441  */
4442 static ssize_t
4443 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4444 {
4445 	u64 read_format = event->attr.read_format;
4446 	int ret;
4447 
4448 	/*
4449 	 * Return end-of-file for a read on a event that is in
4450 	 * error state (i.e. because it was pinned but it couldn't be
4451 	 * scheduled on to the CPU at some point).
4452 	 */
4453 	if (event->state == PERF_EVENT_STATE_ERROR)
4454 		return 0;
4455 
4456 	if (count < event->read_size)
4457 		return -ENOSPC;
4458 
4459 	WARN_ON_ONCE(event->ctx->parent_ctx);
4460 	if (read_format & PERF_FORMAT_GROUP)
4461 		ret = perf_read_group(event, read_format, buf);
4462 	else
4463 		ret = perf_read_one(event, read_format, buf);
4464 
4465 	return ret;
4466 }
4467 
4468 static ssize_t
4469 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4470 {
4471 	struct perf_event *event = file->private_data;
4472 	struct perf_event_context *ctx;
4473 	int ret;
4474 
4475 	ctx = perf_event_ctx_lock(event);
4476 	ret = __perf_read(event, buf, count);
4477 	perf_event_ctx_unlock(event, ctx);
4478 
4479 	return ret;
4480 }
4481 
4482 static unsigned int perf_poll(struct file *file, poll_table *wait)
4483 {
4484 	struct perf_event *event = file->private_data;
4485 	struct ring_buffer *rb;
4486 	unsigned int events = POLLHUP;
4487 
4488 	poll_wait(file, &event->waitq, wait);
4489 
4490 	if (is_event_hup(event))
4491 		return events;
4492 
4493 	/*
4494 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4495 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4496 	 */
4497 	mutex_lock(&event->mmap_mutex);
4498 	rb = event->rb;
4499 	if (rb)
4500 		events = atomic_xchg(&rb->poll, 0);
4501 	mutex_unlock(&event->mmap_mutex);
4502 	return events;
4503 }
4504 
4505 static void _perf_event_reset(struct perf_event *event)
4506 {
4507 	(void)perf_event_read(event, false);
4508 	local64_set(&event->count, 0);
4509 	perf_event_update_userpage(event);
4510 }
4511 
4512 /*
4513  * Holding the top-level event's child_mutex means that any
4514  * descendant process that has inherited this event will block
4515  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4516  * task existence requirements of perf_event_enable/disable.
4517  */
4518 static void perf_event_for_each_child(struct perf_event *event,
4519 					void (*func)(struct perf_event *))
4520 {
4521 	struct perf_event *child;
4522 
4523 	WARN_ON_ONCE(event->ctx->parent_ctx);
4524 
4525 	mutex_lock(&event->child_mutex);
4526 	func(event);
4527 	list_for_each_entry(child, &event->child_list, child_list)
4528 		func(child);
4529 	mutex_unlock(&event->child_mutex);
4530 }
4531 
4532 static void perf_event_for_each(struct perf_event *event,
4533 				  void (*func)(struct perf_event *))
4534 {
4535 	struct perf_event_context *ctx = event->ctx;
4536 	struct perf_event *sibling;
4537 
4538 	lockdep_assert_held(&ctx->mutex);
4539 
4540 	event = event->group_leader;
4541 
4542 	perf_event_for_each_child(event, func);
4543 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4544 		perf_event_for_each_child(sibling, func);
4545 }
4546 
4547 static void __perf_event_period(struct perf_event *event,
4548 				struct perf_cpu_context *cpuctx,
4549 				struct perf_event_context *ctx,
4550 				void *info)
4551 {
4552 	u64 value = *((u64 *)info);
4553 	bool active;
4554 
4555 	if (event->attr.freq) {
4556 		event->attr.sample_freq = value;
4557 	} else {
4558 		event->attr.sample_period = value;
4559 		event->hw.sample_period = value;
4560 	}
4561 
4562 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4563 	if (active) {
4564 		perf_pmu_disable(ctx->pmu);
4565 		/*
4566 		 * We could be throttled; unthrottle now to avoid the tick
4567 		 * trying to unthrottle while we already re-started the event.
4568 		 */
4569 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4570 			event->hw.interrupts = 0;
4571 			perf_log_throttle(event, 1);
4572 		}
4573 		event->pmu->stop(event, PERF_EF_UPDATE);
4574 	}
4575 
4576 	local64_set(&event->hw.period_left, 0);
4577 
4578 	if (active) {
4579 		event->pmu->start(event, PERF_EF_RELOAD);
4580 		perf_pmu_enable(ctx->pmu);
4581 	}
4582 }
4583 
4584 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4585 {
4586 	u64 value;
4587 
4588 	if (!is_sampling_event(event))
4589 		return -EINVAL;
4590 
4591 	if (copy_from_user(&value, arg, sizeof(value)))
4592 		return -EFAULT;
4593 
4594 	if (!value)
4595 		return -EINVAL;
4596 
4597 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4598 		return -EINVAL;
4599 
4600 	event_function_call(event, __perf_event_period, &value);
4601 
4602 	return 0;
4603 }
4604 
4605 static const struct file_operations perf_fops;
4606 
4607 static inline int perf_fget_light(int fd, struct fd *p)
4608 {
4609 	struct fd f = fdget(fd);
4610 	if (!f.file)
4611 		return -EBADF;
4612 
4613 	if (f.file->f_op != &perf_fops) {
4614 		fdput(f);
4615 		return -EBADF;
4616 	}
4617 	*p = f;
4618 	return 0;
4619 }
4620 
4621 static int perf_event_set_output(struct perf_event *event,
4622 				 struct perf_event *output_event);
4623 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4624 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4625 
4626 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4627 {
4628 	void (*func)(struct perf_event *);
4629 	u32 flags = arg;
4630 
4631 	switch (cmd) {
4632 	case PERF_EVENT_IOC_ENABLE:
4633 		func = _perf_event_enable;
4634 		break;
4635 	case PERF_EVENT_IOC_DISABLE:
4636 		func = _perf_event_disable;
4637 		break;
4638 	case PERF_EVENT_IOC_RESET:
4639 		func = _perf_event_reset;
4640 		break;
4641 
4642 	case PERF_EVENT_IOC_REFRESH:
4643 		return _perf_event_refresh(event, arg);
4644 
4645 	case PERF_EVENT_IOC_PERIOD:
4646 		return perf_event_period(event, (u64 __user *)arg);
4647 
4648 	case PERF_EVENT_IOC_ID:
4649 	{
4650 		u64 id = primary_event_id(event);
4651 
4652 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4653 			return -EFAULT;
4654 		return 0;
4655 	}
4656 
4657 	case PERF_EVENT_IOC_SET_OUTPUT:
4658 	{
4659 		int ret;
4660 		if (arg != -1) {
4661 			struct perf_event *output_event;
4662 			struct fd output;
4663 			ret = perf_fget_light(arg, &output);
4664 			if (ret)
4665 				return ret;
4666 			output_event = output.file->private_data;
4667 			ret = perf_event_set_output(event, output_event);
4668 			fdput(output);
4669 		} else {
4670 			ret = perf_event_set_output(event, NULL);
4671 		}
4672 		return ret;
4673 	}
4674 
4675 	case PERF_EVENT_IOC_SET_FILTER:
4676 		return perf_event_set_filter(event, (void __user *)arg);
4677 
4678 	case PERF_EVENT_IOC_SET_BPF:
4679 		return perf_event_set_bpf_prog(event, arg);
4680 
4681 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4682 		struct ring_buffer *rb;
4683 
4684 		rcu_read_lock();
4685 		rb = rcu_dereference(event->rb);
4686 		if (!rb || !rb->nr_pages) {
4687 			rcu_read_unlock();
4688 			return -EINVAL;
4689 		}
4690 		rb_toggle_paused(rb, !!arg);
4691 		rcu_read_unlock();
4692 		return 0;
4693 	}
4694 	default:
4695 		return -ENOTTY;
4696 	}
4697 
4698 	if (flags & PERF_IOC_FLAG_GROUP)
4699 		perf_event_for_each(event, func);
4700 	else
4701 		perf_event_for_each_child(event, func);
4702 
4703 	return 0;
4704 }
4705 
4706 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4707 {
4708 	struct perf_event *event = file->private_data;
4709 	struct perf_event_context *ctx;
4710 	long ret;
4711 
4712 	ctx = perf_event_ctx_lock(event);
4713 	ret = _perf_ioctl(event, cmd, arg);
4714 	perf_event_ctx_unlock(event, ctx);
4715 
4716 	return ret;
4717 }
4718 
4719 #ifdef CONFIG_COMPAT
4720 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4721 				unsigned long arg)
4722 {
4723 	switch (_IOC_NR(cmd)) {
4724 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4725 	case _IOC_NR(PERF_EVENT_IOC_ID):
4726 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4727 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4728 			cmd &= ~IOCSIZE_MASK;
4729 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4730 		}
4731 		break;
4732 	}
4733 	return perf_ioctl(file, cmd, arg);
4734 }
4735 #else
4736 # define perf_compat_ioctl NULL
4737 #endif
4738 
4739 int perf_event_task_enable(void)
4740 {
4741 	struct perf_event_context *ctx;
4742 	struct perf_event *event;
4743 
4744 	mutex_lock(&current->perf_event_mutex);
4745 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4746 		ctx = perf_event_ctx_lock(event);
4747 		perf_event_for_each_child(event, _perf_event_enable);
4748 		perf_event_ctx_unlock(event, ctx);
4749 	}
4750 	mutex_unlock(&current->perf_event_mutex);
4751 
4752 	return 0;
4753 }
4754 
4755 int perf_event_task_disable(void)
4756 {
4757 	struct perf_event_context *ctx;
4758 	struct perf_event *event;
4759 
4760 	mutex_lock(&current->perf_event_mutex);
4761 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4762 		ctx = perf_event_ctx_lock(event);
4763 		perf_event_for_each_child(event, _perf_event_disable);
4764 		perf_event_ctx_unlock(event, ctx);
4765 	}
4766 	mutex_unlock(&current->perf_event_mutex);
4767 
4768 	return 0;
4769 }
4770 
4771 static int perf_event_index(struct perf_event *event)
4772 {
4773 	if (event->hw.state & PERF_HES_STOPPED)
4774 		return 0;
4775 
4776 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4777 		return 0;
4778 
4779 	return event->pmu->event_idx(event);
4780 }
4781 
4782 static void calc_timer_values(struct perf_event *event,
4783 				u64 *now,
4784 				u64 *enabled,
4785 				u64 *running)
4786 {
4787 	u64 ctx_time;
4788 
4789 	*now = perf_clock();
4790 	ctx_time = event->shadow_ctx_time + *now;
4791 	*enabled = ctx_time - event->tstamp_enabled;
4792 	*running = ctx_time - event->tstamp_running;
4793 }
4794 
4795 static void perf_event_init_userpage(struct perf_event *event)
4796 {
4797 	struct perf_event_mmap_page *userpg;
4798 	struct ring_buffer *rb;
4799 
4800 	rcu_read_lock();
4801 	rb = rcu_dereference(event->rb);
4802 	if (!rb)
4803 		goto unlock;
4804 
4805 	userpg = rb->user_page;
4806 
4807 	/* Allow new userspace to detect that bit 0 is deprecated */
4808 	userpg->cap_bit0_is_deprecated = 1;
4809 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4810 	userpg->data_offset = PAGE_SIZE;
4811 	userpg->data_size = perf_data_size(rb);
4812 
4813 unlock:
4814 	rcu_read_unlock();
4815 }
4816 
4817 void __weak arch_perf_update_userpage(
4818 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4819 {
4820 }
4821 
4822 /*
4823  * Callers need to ensure there can be no nesting of this function, otherwise
4824  * the seqlock logic goes bad. We can not serialize this because the arch
4825  * code calls this from NMI context.
4826  */
4827 void perf_event_update_userpage(struct perf_event *event)
4828 {
4829 	struct perf_event_mmap_page *userpg;
4830 	struct ring_buffer *rb;
4831 	u64 enabled, running, now;
4832 
4833 	rcu_read_lock();
4834 	rb = rcu_dereference(event->rb);
4835 	if (!rb)
4836 		goto unlock;
4837 
4838 	/*
4839 	 * compute total_time_enabled, total_time_running
4840 	 * based on snapshot values taken when the event
4841 	 * was last scheduled in.
4842 	 *
4843 	 * we cannot simply called update_context_time()
4844 	 * because of locking issue as we can be called in
4845 	 * NMI context
4846 	 */
4847 	calc_timer_values(event, &now, &enabled, &running);
4848 
4849 	userpg = rb->user_page;
4850 	/*
4851 	 * Disable preemption so as to not let the corresponding user-space
4852 	 * spin too long if we get preempted.
4853 	 */
4854 	preempt_disable();
4855 	++userpg->lock;
4856 	barrier();
4857 	userpg->index = perf_event_index(event);
4858 	userpg->offset = perf_event_count(event);
4859 	if (userpg->index)
4860 		userpg->offset -= local64_read(&event->hw.prev_count);
4861 
4862 	userpg->time_enabled = enabled +
4863 			atomic64_read(&event->child_total_time_enabled);
4864 
4865 	userpg->time_running = running +
4866 			atomic64_read(&event->child_total_time_running);
4867 
4868 	arch_perf_update_userpage(event, userpg, now);
4869 
4870 	barrier();
4871 	++userpg->lock;
4872 	preempt_enable();
4873 unlock:
4874 	rcu_read_unlock();
4875 }
4876 
4877 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4878 {
4879 	struct perf_event *event = vma->vm_file->private_data;
4880 	struct ring_buffer *rb;
4881 	int ret = VM_FAULT_SIGBUS;
4882 
4883 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4884 		if (vmf->pgoff == 0)
4885 			ret = 0;
4886 		return ret;
4887 	}
4888 
4889 	rcu_read_lock();
4890 	rb = rcu_dereference(event->rb);
4891 	if (!rb)
4892 		goto unlock;
4893 
4894 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4895 		goto unlock;
4896 
4897 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4898 	if (!vmf->page)
4899 		goto unlock;
4900 
4901 	get_page(vmf->page);
4902 	vmf->page->mapping = vma->vm_file->f_mapping;
4903 	vmf->page->index   = vmf->pgoff;
4904 
4905 	ret = 0;
4906 unlock:
4907 	rcu_read_unlock();
4908 
4909 	return ret;
4910 }
4911 
4912 static void ring_buffer_attach(struct perf_event *event,
4913 			       struct ring_buffer *rb)
4914 {
4915 	struct ring_buffer *old_rb = NULL;
4916 	unsigned long flags;
4917 
4918 	if (event->rb) {
4919 		/*
4920 		 * Should be impossible, we set this when removing
4921 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4922 		 */
4923 		WARN_ON_ONCE(event->rcu_pending);
4924 
4925 		old_rb = event->rb;
4926 		spin_lock_irqsave(&old_rb->event_lock, flags);
4927 		list_del_rcu(&event->rb_entry);
4928 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4929 
4930 		event->rcu_batches = get_state_synchronize_rcu();
4931 		event->rcu_pending = 1;
4932 	}
4933 
4934 	if (rb) {
4935 		if (event->rcu_pending) {
4936 			cond_synchronize_rcu(event->rcu_batches);
4937 			event->rcu_pending = 0;
4938 		}
4939 
4940 		spin_lock_irqsave(&rb->event_lock, flags);
4941 		list_add_rcu(&event->rb_entry, &rb->event_list);
4942 		spin_unlock_irqrestore(&rb->event_lock, flags);
4943 	}
4944 
4945 	/*
4946 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4947 	 * before swizzling the event::rb pointer; if it's getting
4948 	 * unmapped, its aux_mmap_count will be 0 and it won't
4949 	 * restart. See the comment in __perf_pmu_output_stop().
4950 	 *
4951 	 * Data will inevitably be lost when set_output is done in
4952 	 * mid-air, but then again, whoever does it like this is
4953 	 * not in for the data anyway.
4954 	 */
4955 	if (has_aux(event))
4956 		perf_event_stop(event, 0);
4957 
4958 	rcu_assign_pointer(event->rb, rb);
4959 
4960 	if (old_rb) {
4961 		ring_buffer_put(old_rb);
4962 		/*
4963 		 * Since we detached before setting the new rb, so that we
4964 		 * could attach the new rb, we could have missed a wakeup.
4965 		 * Provide it now.
4966 		 */
4967 		wake_up_all(&event->waitq);
4968 	}
4969 }
4970 
4971 static void ring_buffer_wakeup(struct perf_event *event)
4972 {
4973 	struct ring_buffer *rb;
4974 
4975 	rcu_read_lock();
4976 	rb = rcu_dereference(event->rb);
4977 	if (rb) {
4978 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4979 			wake_up_all(&event->waitq);
4980 	}
4981 	rcu_read_unlock();
4982 }
4983 
4984 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4985 {
4986 	struct ring_buffer *rb;
4987 
4988 	rcu_read_lock();
4989 	rb = rcu_dereference(event->rb);
4990 	if (rb) {
4991 		if (!atomic_inc_not_zero(&rb->refcount))
4992 			rb = NULL;
4993 	}
4994 	rcu_read_unlock();
4995 
4996 	return rb;
4997 }
4998 
4999 void ring_buffer_put(struct ring_buffer *rb)
5000 {
5001 	if (!atomic_dec_and_test(&rb->refcount))
5002 		return;
5003 
5004 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5005 
5006 	call_rcu(&rb->rcu_head, rb_free_rcu);
5007 }
5008 
5009 static void perf_mmap_open(struct vm_area_struct *vma)
5010 {
5011 	struct perf_event *event = vma->vm_file->private_data;
5012 
5013 	atomic_inc(&event->mmap_count);
5014 	atomic_inc(&event->rb->mmap_count);
5015 
5016 	if (vma->vm_pgoff)
5017 		atomic_inc(&event->rb->aux_mmap_count);
5018 
5019 	if (event->pmu->event_mapped)
5020 		event->pmu->event_mapped(event);
5021 }
5022 
5023 static void perf_pmu_output_stop(struct perf_event *event);
5024 
5025 /*
5026  * A buffer can be mmap()ed multiple times; either directly through the same
5027  * event, or through other events by use of perf_event_set_output().
5028  *
5029  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5030  * the buffer here, where we still have a VM context. This means we need
5031  * to detach all events redirecting to us.
5032  */
5033 static void perf_mmap_close(struct vm_area_struct *vma)
5034 {
5035 	struct perf_event *event = vma->vm_file->private_data;
5036 
5037 	struct ring_buffer *rb = ring_buffer_get(event);
5038 	struct user_struct *mmap_user = rb->mmap_user;
5039 	int mmap_locked = rb->mmap_locked;
5040 	unsigned long size = perf_data_size(rb);
5041 
5042 	if (event->pmu->event_unmapped)
5043 		event->pmu->event_unmapped(event);
5044 
5045 	/*
5046 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5047 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5048 	 * serialize with perf_mmap here.
5049 	 */
5050 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5051 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5052 		/*
5053 		 * Stop all AUX events that are writing to this buffer,
5054 		 * so that we can free its AUX pages and corresponding PMU
5055 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5056 		 * they won't start any more (see perf_aux_output_begin()).
5057 		 */
5058 		perf_pmu_output_stop(event);
5059 
5060 		/* now it's safe to free the pages */
5061 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5062 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5063 
5064 		/* this has to be the last one */
5065 		rb_free_aux(rb);
5066 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5067 
5068 		mutex_unlock(&event->mmap_mutex);
5069 	}
5070 
5071 	atomic_dec(&rb->mmap_count);
5072 
5073 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5074 		goto out_put;
5075 
5076 	ring_buffer_attach(event, NULL);
5077 	mutex_unlock(&event->mmap_mutex);
5078 
5079 	/* If there's still other mmap()s of this buffer, we're done. */
5080 	if (atomic_read(&rb->mmap_count))
5081 		goto out_put;
5082 
5083 	/*
5084 	 * No other mmap()s, detach from all other events that might redirect
5085 	 * into the now unreachable buffer. Somewhat complicated by the
5086 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5087 	 */
5088 again:
5089 	rcu_read_lock();
5090 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5091 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5092 			/*
5093 			 * This event is en-route to free_event() which will
5094 			 * detach it and remove it from the list.
5095 			 */
5096 			continue;
5097 		}
5098 		rcu_read_unlock();
5099 
5100 		mutex_lock(&event->mmap_mutex);
5101 		/*
5102 		 * Check we didn't race with perf_event_set_output() which can
5103 		 * swizzle the rb from under us while we were waiting to
5104 		 * acquire mmap_mutex.
5105 		 *
5106 		 * If we find a different rb; ignore this event, a next
5107 		 * iteration will no longer find it on the list. We have to
5108 		 * still restart the iteration to make sure we're not now
5109 		 * iterating the wrong list.
5110 		 */
5111 		if (event->rb == rb)
5112 			ring_buffer_attach(event, NULL);
5113 
5114 		mutex_unlock(&event->mmap_mutex);
5115 		put_event(event);
5116 
5117 		/*
5118 		 * Restart the iteration; either we're on the wrong list or
5119 		 * destroyed its integrity by doing a deletion.
5120 		 */
5121 		goto again;
5122 	}
5123 	rcu_read_unlock();
5124 
5125 	/*
5126 	 * It could be there's still a few 0-ref events on the list; they'll
5127 	 * get cleaned up by free_event() -- they'll also still have their
5128 	 * ref on the rb and will free it whenever they are done with it.
5129 	 *
5130 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5131 	 * undo the VM accounting.
5132 	 */
5133 
5134 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5135 	vma->vm_mm->pinned_vm -= mmap_locked;
5136 	free_uid(mmap_user);
5137 
5138 out_put:
5139 	ring_buffer_put(rb); /* could be last */
5140 }
5141 
5142 static const struct vm_operations_struct perf_mmap_vmops = {
5143 	.open		= perf_mmap_open,
5144 	.close		= perf_mmap_close, /* non mergable */
5145 	.fault		= perf_mmap_fault,
5146 	.page_mkwrite	= perf_mmap_fault,
5147 };
5148 
5149 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5150 {
5151 	struct perf_event *event = file->private_data;
5152 	unsigned long user_locked, user_lock_limit;
5153 	struct user_struct *user = current_user();
5154 	unsigned long locked, lock_limit;
5155 	struct ring_buffer *rb = NULL;
5156 	unsigned long vma_size;
5157 	unsigned long nr_pages;
5158 	long user_extra = 0, extra = 0;
5159 	int ret = 0, flags = 0;
5160 
5161 	/*
5162 	 * Don't allow mmap() of inherited per-task counters. This would
5163 	 * create a performance issue due to all children writing to the
5164 	 * same rb.
5165 	 */
5166 	if (event->cpu == -1 && event->attr.inherit)
5167 		return -EINVAL;
5168 
5169 	if (!(vma->vm_flags & VM_SHARED))
5170 		return -EINVAL;
5171 
5172 	vma_size = vma->vm_end - vma->vm_start;
5173 
5174 	if (vma->vm_pgoff == 0) {
5175 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5176 	} else {
5177 		/*
5178 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5179 		 * mapped, all subsequent mappings should have the same size
5180 		 * and offset. Must be above the normal perf buffer.
5181 		 */
5182 		u64 aux_offset, aux_size;
5183 
5184 		if (!event->rb)
5185 			return -EINVAL;
5186 
5187 		nr_pages = vma_size / PAGE_SIZE;
5188 
5189 		mutex_lock(&event->mmap_mutex);
5190 		ret = -EINVAL;
5191 
5192 		rb = event->rb;
5193 		if (!rb)
5194 			goto aux_unlock;
5195 
5196 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5197 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5198 
5199 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5200 			goto aux_unlock;
5201 
5202 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5203 			goto aux_unlock;
5204 
5205 		/* already mapped with a different offset */
5206 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5207 			goto aux_unlock;
5208 
5209 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5210 			goto aux_unlock;
5211 
5212 		/* already mapped with a different size */
5213 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5214 			goto aux_unlock;
5215 
5216 		if (!is_power_of_2(nr_pages))
5217 			goto aux_unlock;
5218 
5219 		if (!atomic_inc_not_zero(&rb->mmap_count))
5220 			goto aux_unlock;
5221 
5222 		if (rb_has_aux(rb)) {
5223 			atomic_inc(&rb->aux_mmap_count);
5224 			ret = 0;
5225 			goto unlock;
5226 		}
5227 
5228 		atomic_set(&rb->aux_mmap_count, 1);
5229 		user_extra = nr_pages;
5230 
5231 		goto accounting;
5232 	}
5233 
5234 	/*
5235 	 * If we have rb pages ensure they're a power-of-two number, so we
5236 	 * can do bitmasks instead of modulo.
5237 	 */
5238 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5239 		return -EINVAL;
5240 
5241 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5242 		return -EINVAL;
5243 
5244 	WARN_ON_ONCE(event->ctx->parent_ctx);
5245 again:
5246 	mutex_lock(&event->mmap_mutex);
5247 	if (event->rb) {
5248 		if (event->rb->nr_pages != nr_pages) {
5249 			ret = -EINVAL;
5250 			goto unlock;
5251 		}
5252 
5253 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5254 			/*
5255 			 * Raced against perf_mmap_close() through
5256 			 * perf_event_set_output(). Try again, hope for better
5257 			 * luck.
5258 			 */
5259 			mutex_unlock(&event->mmap_mutex);
5260 			goto again;
5261 		}
5262 
5263 		goto unlock;
5264 	}
5265 
5266 	user_extra = nr_pages + 1;
5267 
5268 accounting:
5269 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5270 
5271 	/*
5272 	 * Increase the limit linearly with more CPUs:
5273 	 */
5274 	user_lock_limit *= num_online_cpus();
5275 
5276 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5277 
5278 	if (user_locked > user_lock_limit)
5279 		extra = user_locked - user_lock_limit;
5280 
5281 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5282 	lock_limit >>= PAGE_SHIFT;
5283 	locked = vma->vm_mm->pinned_vm + extra;
5284 
5285 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5286 		!capable(CAP_IPC_LOCK)) {
5287 		ret = -EPERM;
5288 		goto unlock;
5289 	}
5290 
5291 	WARN_ON(!rb && event->rb);
5292 
5293 	if (vma->vm_flags & VM_WRITE)
5294 		flags |= RING_BUFFER_WRITABLE;
5295 
5296 	if (!rb) {
5297 		rb = rb_alloc(nr_pages,
5298 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5299 			      event->cpu, flags);
5300 
5301 		if (!rb) {
5302 			ret = -ENOMEM;
5303 			goto unlock;
5304 		}
5305 
5306 		atomic_set(&rb->mmap_count, 1);
5307 		rb->mmap_user = get_current_user();
5308 		rb->mmap_locked = extra;
5309 
5310 		ring_buffer_attach(event, rb);
5311 
5312 		perf_event_init_userpage(event);
5313 		perf_event_update_userpage(event);
5314 	} else {
5315 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5316 				   event->attr.aux_watermark, flags);
5317 		if (!ret)
5318 			rb->aux_mmap_locked = extra;
5319 	}
5320 
5321 unlock:
5322 	if (!ret) {
5323 		atomic_long_add(user_extra, &user->locked_vm);
5324 		vma->vm_mm->pinned_vm += extra;
5325 
5326 		atomic_inc(&event->mmap_count);
5327 	} else if (rb) {
5328 		atomic_dec(&rb->mmap_count);
5329 	}
5330 aux_unlock:
5331 	mutex_unlock(&event->mmap_mutex);
5332 
5333 	/*
5334 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5335 	 * vma.
5336 	 */
5337 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5338 	vma->vm_ops = &perf_mmap_vmops;
5339 
5340 	if (event->pmu->event_mapped)
5341 		event->pmu->event_mapped(event);
5342 
5343 	return ret;
5344 }
5345 
5346 static int perf_fasync(int fd, struct file *filp, int on)
5347 {
5348 	struct inode *inode = file_inode(filp);
5349 	struct perf_event *event = filp->private_data;
5350 	int retval;
5351 
5352 	inode_lock(inode);
5353 	retval = fasync_helper(fd, filp, on, &event->fasync);
5354 	inode_unlock(inode);
5355 
5356 	if (retval < 0)
5357 		return retval;
5358 
5359 	return 0;
5360 }
5361 
5362 static const struct file_operations perf_fops = {
5363 	.llseek			= no_llseek,
5364 	.release		= perf_release,
5365 	.read			= perf_read,
5366 	.poll			= perf_poll,
5367 	.unlocked_ioctl		= perf_ioctl,
5368 	.compat_ioctl		= perf_compat_ioctl,
5369 	.mmap			= perf_mmap,
5370 	.fasync			= perf_fasync,
5371 };
5372 
5373 /*
5374  * Perf event wakeup
5375  *
5376  * If there's data, ensure we set the poll() state and publish everything
5377  * to user-space before waking everybody up.
5378  */
5379 
5380 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5381 {
5382 	/* only the parent has fasync state */
5383 	if (event->parent)
5384 		event = event->parent;
5385 	return &event->fasync;
5386 }
5387 
5388 void perf_event_wakeup(struct perf_event *event)
5389 {
5390 	ring_buffer_wakeup(event);
5391 
5392 	if (event->pending_kill) {
5393 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5394 		event->pending_kill = 0;
5395 	}
5396 }
5397 
5398 static void perf_pending_event(struct irq_work *entry)
5399 {
5400 	struct perf_event *event = container_of(entry,
5401 			struct perf_event, pending);
5402 	int rctx;
5403 
5404 	rctx = perf_swevent_get_recursion_context();
5405 	/*
5406 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5407 	 * and we won't recurse 'further'.
5408 	 */
5409 
5410 	if (event->pending_disable) {
5411 		event->pending_disable = 0;
5412 		perf_event_disable_local(event);
5413 	}
5414 
5415 	if (event->pending_wakeup) {
5416 		event->pending_wakeup = 0;
5417 		perf_event_wakeup(event);
5418 	}
5419 
5420 	if (rctx >= 0)
5421 		perf_swevent_put_recursion_context(rctx);
5422 }
5423 
5424 /*
5425  * We assume there is only KVM supporting the callbacks.
5426  * Later on, we might change it to a list if there is
5427  * another virtualization implementation supporting the callbacks.
5428  */
5429 struct perf_guest_info_callbacks *perf_guest_cbs;
5430 
5431 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5432 {
5433 	perf_guest_cbs = cbs;
5434 	return 0;
5435 }
5436 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5437 
5438 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5439 {
5440 	perf_guest_cbs = NULL;
5441 	return 0;
5442 }
5443 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5444 
5445 static void
5446 perf_output_sample_regs(struct perf_output_handle *handle,
5447 			struct pt_regs *regs, u64 mask)
5448 {
5449 	int bit;
5450 	DECLARE_BITMAP(_mask, 64);
5451 
5452 	bitmap_from_u64(_mask, mask);
5453 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5454 		u64 val;
5455 
5456 		val = perf_reg_value(regs, bit);
5457 		perf_output_put(handle, val);
5458 	}
5459 }
5460 
5461 static void perf_sample_regs_user(struct perf_regs *regs_user,
5462 				  struct pt_regs *regs,
5463 				  struct pt_regs *regs_user_copy)
5464 {
5465 	if (user_mode(regs)) {
5466 		regs_user->abi = perf_reg_abi(current);
5467 		regs_user->regs = regs;
5468 	} else if (current->mm) {
5469 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5470 	} else {
5471 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5472 		regs_user->regs = NULL;
5473 	}
5474 }
5475 
5476 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5477 				  struct pt_regs *regs)
5478 {
5479 	regs_intr->regs = regs;
5480 	regs_intr->abi  = perf_reg_abi(current);
5481 }
5482 
5483 
5484 /*
5485  * Get remaining task size from user stack pointer.
5486  *
5487  * It'd be better to take stack vma map and limit this more
5488  * precisly, but there's no way to get it safely under interrupt,
5489  * so using TASK_SIZE as limit.
5490  */
5491 static u64 perf_ustack_task_size(struct pt_regs *regs)
5492 {
5493 	unsigned long addr = perf_user_stack_pointer(regs);
5494 
5495 	if (!addr || addr >= TASK_SIZE)
5496 		return 0;
5497 
5498 	return TASK_SIZE - addr;
5499 }
5500 
5501 static u16
5502 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5503 			struct pt_regs *regs)
5504 {
5505 	u64 task_size;
5506 
5507 	/* No regs, no stack pointer, no dump. */
5508 	if (!regs)
5509 		return 0;
5510 
5511 	/*
5512 	 * Check if we fit in with the requested stack size into the:
5513 	 * - TASK_SIZE
5514 	 *   If we don't, we limit the size to the TASK_SIZE.
5515 	 *
5516 	 * - remaining sample size
5517 	 *   If we don't, we customize the stack size to
5518 	 *   fit in to the remaining sample size.
5519 	 */
5520 
5521 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5522 	stack_size = min(stack_size, (u16) task_size);
5523 
5524 	/* Current header size plus static size and dynamic size. */
5525 	header_size += 2 * sizeof(u64);
5526 
5527 	/* Do we fit in with the current stack dump size? */
5528 	if ((u16) (header_size + stack_size) < header_size) {
5529 		/*
5530 		 * If we overflow the maximum size for the sample,
5531 		 * we customize the stack dump size to fit in.
5532 		 */
5533 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5534 		stack_size = round_up(stack_size, sizeof(u64));
5535 	}
5536 
5537 	return stack_size;
5538 }
5539 
5540 static void
5541 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5542 			  struct pt_regs *regs)
5543 {
5544 	/* Case of a kernel thread, nothing to dump */
5545 	if (!regs) {
5546 		u64 size = 0;
5547 		perf_output_put(handle, size);
5548 	} else {
5549 		unsigned long sp;
5550 		unsigned int rem;
5551 		u64 dyn_size;
5552 
5553 		/*
5554 		 * We dump:
5555 		 * static size
5556 		 *   - the size requested by user or the best one we can fit
5557 		 *     in to the sample max size
5558 		 * data
5559 		 *   - user stack dump data
5560 		 * dynamic size
5561 		 *   - the actual dumped size
5562 		 */
5563 
5564 		/* Static size. */
5565 		perf_output_put(handle, dump_size);
5566 
5567 		/* Data. */
5568 		sp = perf_user_stack_pointer(regs);
5569 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5570 		dyn_size = dump_size - rem;
5571 
5572 		perf_output_skip(handle, rem);
5573 
5574 		/* Dynamic size. */
5575 		perf_output_put(handle, dyn_size);
5576 	}
5577 }
5578 
5579 static void __perf_event_header__init_id(struct perf_event_header *header,
5580 					 struct perf_sample_data *data,
5581 					 struct perf_event *event)
5582 {
5583 	u64 sample_type = event->attr.sample_type;
5584 
5585 	data->type = sample_type;
5586 	header->size += event->id_header_size;
5587 
5588 	if (sample_type & PERF_SAMPLE_TID) {
5589 		/* namespace issues */
5590 		data->tid_entry.pid = perf_event_pid(event, current);
5591 		data->tid_entry.tid = perf_event_tid(event, current);
5592 	}
5593 
5594 	if (sample_type & PERF_SAMPLE_TIME)
5595 		data->time = perf_event_clock(event);
5596 
5597 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5598 		data->id = primary_event_id(event);
5599 
5600 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5601 		data->stream_id = event->id;
5602 
5603 	if (sample_type & PERF_SAMPLE_CPU) {
5604 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5605 		data->cpu_entry.reserved = 0;
5606 	}
5607 }
5608 
5609 void perf_event_header__init_id(struct perf_event_header *header,
5610 				struct perf_sample_data *data,
5611 				struct perf_event *event)
5612 {
5613 	if (event->attr.sample_id_all)
5614 		__perf_event_header__init_id(header, data, event);
5615 }
5616 
5617 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5618 					   struct perf_sample_data *data)
5619 {
5620 	u64 sample_type = data->type;
5621 
5622 	if (sample_type & PERF_SAMPLE_TID)
5623 		perf_output_put(handle, data->tid_entry);
5624 
5625 	if (sample_type & PERF_SAMPLE_TIME)
5626 		perf_output_put(handle, data->time);
5627 
5628 	if (sample_type & PERF_SAMPLE_ID)
5629 		perf_output_put(handle, data->id);
5630 
5631 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5632 		perf_output_put(handle, data->stream_id);
5633 
5634 	if (sample_type & PERF_SAMPLE_CPU)
5635 		perf_output_put(handle, data->cpu_entry);
5636 
5637 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5638 		perf_output_put(handle, data->id);
5639 }
5640 
5641 void perf_event__output_id_sample(struct perf_event *event,
5642 				  struct perf_output_handle *handle,
5643 				  struct perf_sample_data *sample)
5644 {
5645 	if (event->attr.sample_id_all)
5646 		__perf_event__output_id_sample(handle, sample);
5647 }
5648 
5649 static void perf_output_read_one(struct perf_output_handle *handle,
5650 				 struct perf_event *event,
5651 				 u64 enabled, u64 running)
5652 {
5653 	u64 read_format = event->attr.read_format;
5654 	u64 values[4];
5655 	int n = 0;
5656 
5657 	values[n++] = perf_event_count(event);
5658 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5659 		values[n++] = enabled +
5660 			atomic64_read(&event->child_total_time_enabled);
5661 	}
5662 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5663 		values[n++] = running +
5664 			atomic64_read(&event->child_total_time_running);
5665 	}
5666 	if (read_format & PERF_FORMAT_ID)
5667 		values[n++] = primary_event_id(event);
5668 
5669 	__output_copy(handle, values, n * sizeof(u64));
5670 }
5671 
5672 /*
5673  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5674  */
5675 static void perf_output_read_group(struct perf_output_handle *handle,
5676 			    struct perf_event *event,
5677 			    u64 enabled, u64 running)
5678 {
5679 	struct perf_event *leader = event->group_leader, *sub;
5680 	u64 read_format = event->attr.read_format;
5681 	u64 values[5];
5682 	int n = 0;
5683 
5684 	values[n++] = 1 + leader->nr_siblings;
5685 
5686 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5687 		values[n++] = enabled;
5688 
5689 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5690 		values[n++] = running;
5691 
5692 	if (leader != event)
5693 		leader->pmu->read(leader);
5694 
5695 	values[n++] = perf_event_count(leader);
5696 	if (read_format & PERF_FORMAT_ID)
5697 		values[n++] = primary_event_id(leader);
5698 
5699 	__output_copy(handle, values, n * sizeof(u64));
5700 
5701 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5702 		n = 0;
5703 
5704 		if ((sub != event) &&
5705 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5706 			sub->pmu->read(sub);
5707 
5708 		values[n++] = perf_event_count(sub);
5709 		if (read_format & PERF_FORMAT_ID)
5710 			values[n++] = primary_event_id(sub);
5711 
5712 		__output_copy(handle, values, n * sizeof(u64));
5713 	}
5714 }
5715 
5716 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5717 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5718 
5719 static void perf_output_read(struct perf_output_handle *handle,
5720 			     struct perf_event *event)
5721 {
5722 	u64 enabled = 0, running = 0, now;
5723 	u64 read_format = event->attr.read_format;
5724 
5725 	/*
5726 	 * compute total_time_enabled, total_time_running
5727 	 * based on snapshot values taken when the event
5728 	 * was last scheduled in.
5729 	 *
5730 	 * we cannot simply called update_context_time()
5731 	 * because of locking issue as we are called in
5732 	 * NMI context
5733 	 */
5734 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5735 		calc_timer_values(event, &now, &enabled, &running);
5736 
5737 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5738 		perf_output_read_group(handle, event, enabled, running);
5739 	else
5740 		perf_output_read_one(handle, event, enabled, running);
5741 }
5742 
5743 void perf_output_sample(struct perf_output_handle *handle,
5744 			struct perf_event_header *header,
5745 			struct perf_sample_data *data,
5746 			struct perf_event *event)
5747 {
5748 	u64 sample_type = data->type;
5749 
5750 	perf_output_put(handle, *header);
5751 
5752 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5753 		perf_output_put(handle, data->id);
5754 
5755 	if (sample_type & PERF_SAMPLE_IP)
5756 		perf_output_put(handle, data->ip);
5757 
5758 	if (sample_type & PERF_SAMPLE_TID)
5759 		perf_output_put(handle, data->tid_entry);
5760 
5761 	if (sample_type & PERF_SAMPLE_TIME)
5762 		perf_output_put(handle, data->time);
5763 
5764 	if (sample_type & PERF_SAMPLE_ADDR)
5765 		perf_output_put(handle, data->addr);
5766 
5767 	if (sample_type & PERF_SAMPLE_ID)
5768 		perf_output_put(handle, data->id);
5769 
5770 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5771 		perf_output_put(handle, data->stream_id);
5772 
5773 	if (sample_type & PERF_SAMPLE_CPU)
5774 		perf_output_put(handle, data->cpu_entry);
5775 
5776 	if (sample_type & PERF_SAMPLE_PERIOD)
5777 		perf_output_put(handle, data->period);
5778 
5779 	if (sample_type & PERF_SAMPLE_READ)
5780 		perf_output_read(handle, event);
5781 
5782 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5783 		if (data->callchain) {
5784 			int size = 1;
5785 
5786 			if (data->callchain)
5787 				size += data->callchain->nr;
5788 
5789 			size *= sizeof(u64);
5790 
5791 			__output_copy(handle, data->callchain, size);
5792 		} else {
5793 			u64 nr = 0;
5794 			perf_output_put(handle, nr);
5795 		}
5796 	}
5797 
5798 	if (sample_type & PERF_SAMPLE_RAW) {
5799 		struct perf_raw_record *raw = data->raw;
5800 
5801 		if (raw) {
5802 			struct perf_raw_frag *frag = &raw->frag;
5803 
5804 			perf_output_put(handle, raw->size);
5805 			do {
5806 				if (frag->copy) {
5807 					__output_custom(handle, frag->copy,
5808 							frag->data, frag->size);
5809 				} else {
5810 					__output_copy(handle, frag->data,
5811 						      frag->size);
5812 				}
5813 				if (perf_raw_frag_last(frag))
5814 					break;
5815 				frag = frag->next;
5816 			} while (1);
5817 			if (frag->pad)
5818 				__output_skip(handle, NULL, frag->pad);
5819 		} else {
5820 			struct {
5821 				u32	size;
5822 				u32	data;
5823 			} raw = {
5824 				.size = sizeof(u32),
5825 				.data = 0,
5826 			};
5827 			perf_output_put(handle, raw);
5828 		}
5829 	}
5830 
5831 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5832 		if (data->br_stack) {
5833 			size_t size;
5834 
5835 			size = data->br_stack->nr
5836 			     * sizeof(struct perf_branch_entry);
5837 
5838 			perf_output_put(handle, data->br_stack->nr);
5839 			perf_output_copy(handle, data->br_stack->entries, size);
5840 		} else {
5841 			/*
5842 			 * we always store at least the value of nr
5843 			 */
5844 			u64 nr = 0;
5845 			perf_output_put(handle, nr);
5846 		}
5847 	}
5848 
5849 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5850 		u64 abi = data->regs_user.abi;
5851 
5852 		/*
5853 		 * If there are no regs to dump, notice it through
5854 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5855 		 */
5856 		perf_output_put(handle, abi);
5857 
5858 		if (abi) {
5859 			u64 mask = event->attr.sample_regs_user;
5860 			perf_output_sample_regs(handle,
5861 						data->regs_user.regs,
5862 						mask);
5863 		}
5864 	}
5865 
5866 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5867 		perf_output_sample_ustack(handle,
5868 					  data->stack_user_size,
5869 					  data->regs_user.regs);
5870 	}
5871 
5872 	if (sample_type & PERF_SAMPLE_WEIGHT)
5873 		perf_output_put(handle, data->weight);
5874 
5875 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5876 		perf_output_put(handle, data->data_src.val);
5877 
5878 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5879 		perf_output_put(handle, data->txn);
5880 
5881 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5882 		u64 abi = data->regs_intr.abi;
5883 		/*
5884 		 * If there are no regs to dump, notice it through
5885 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5886 		 */
5887 		perf_output_put(handle, abi);
5888 
5889 		if (abi) {
5890 			u64 mask = event->attr.sample_regs_intr;
5891 
5892 			perf_output_sample_regs(handle,
5893 						data->regs_intr.regs,
5894 						mask);
5895 		}
5896 	}
5897 
5898 	if (!event->attr.watermark) {
5899 		int wakeup_events = event->attr.wakeup_events;
5900 
5901 		if (wakeup_events) {
5902 			struct ring_buffer *rb = handle->rb;
5903 			int events = local_inc_return(&rb->events);
5904 
5905 			if (events >= wakeup_events) {
5906 				local_sub(wakeup_events, &rb->events);
5907 				local_inc(&rb->wakeup);
5908 			}
5909 		}
5910 	}
5911 }
5912 
5913 void perf_prepare_sample(struct perf_event_header *header,
5914 			 struct perf_sample_data *data,
5915 			 struct perf_event *event,
5916 			 struct pt_regs *regs)
5917 {
5918 	u64 sample_type = event->attr.sample_type;
5919 
5920 	header->type = PERF_RECORD_SAMPLE;
5921 	header->size = sizeof(*header) + event->header_size;
5922 
5923 	header->misc = 0;
5924 	header->misc |= perf_misc_flags(regs);
5925 
5926 	__perf_event_header__init_id(header, data, event);
5927 
5928 	if (sample_type & PERF_SAMPLE_IP)
5929 		data->ip = perf_instruction_pointer(regs);
5930 
5931 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5932 		int size = 1;
5933 
5934 		data->callchain = perf_callchain(event, regs);
5935 
5936 		if (data->callchain)
5937 			size += data->callchain->nr;
5938 
5939 		header->size += size * sizeof(u64);
5940 	}
5941 
5942 	if (sample_type & PERF_SAMPLE_RAW) {
5943 		struct perf_raw_record *raw = data->raw;
5944 		int size;
5945 
5946 		if (raw) {
5947 			struct perf_raw_frag *frag = &raw->frag;
5948 			u32 sum = 0;
5949 
5950 			do {
5951 				sum += frag->size;
5952 				if (perf_raw_frag_last(frag))
5953 					break;
5954 				frag = frag->next;
5955 			} while (1);
5956 
5957 			size = round_up(sum + sizeof(u32), sizeof(u64));
5958 			raw->size = size - sizeof(u32);
5959 			frag->pad = raw->size - sum;
5960 		} else {
5961 			size = sizeof(u64);
5962 		}
5963 
5964 		header->size += size;
5965 	}
5966 
5967 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5968 		int size = sizeof(u64); /* nr */
5969 		if (data->br_stack) {
5970 			size += data->br_stack->nr
5971 			      * sizeof(struct perf_branch_entry);
5972 		}
5973 		header->size += size;
5974 	}
5975 
5976 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5977 		perf_sample_regs_user(&data->regs_user, regs,
5978 				      &data->regs_user_copy);
5979 
5980 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5981 		/* regs dump ABI info */
5982 		int size = sizeof(u64);
5983 
5984 		if (data->regs_user.regs) {
5985 			u64 mask = event->attr.sample_regs_user;
5986 			size += hweight64(mask) * sizeof(u64);
5987 		}
5988 
5989 		header->size += size;
5990 	}
5991 
5992 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5993 		/*
5994 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5995 		 * processed as the last one or have additional check added
5996 		 * in case new sample type is added, because we could eat
5997 		 * up the rest of the sample size.
5998 		 */
5999 		u16 stack_size = event->attr.sample_stack_user;
6000 		u16 size = sizeof(u64);
6001 
6002 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6003 						     data->regs_user.regs);
6004 
6005 		/*
6006 		 * If there is something to dump, add space for the dump
6007 		 * itself and for the field that tells the dynamic size,
6008 		 * which is how many have been actually dumped.
6009 		 */
6010 		if (stack_size)
6011 			size += sizeof(u64) + stack_size;
6012 
6013 		data->stack_user_size = stack_size;
6014 		header->size += size;
6015 	}
6016 
6017 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6018 		/* regs dump ABI info */
6019 		int size = sizeof(u64);
6020 
6021 		perf_sample_regs_intr(&data->regs_intr, regs);
6022 
6023 		if (data->regs_intr.regs) {
6024 			u64 mask = event->attr.sample_regs_intr;
6025 
6026 			size += hweight64(mask) * sizeof(u64);
6027 		}
6028 
6029 		header->size += size;
6030 	}
6031 }
6032 
6033 static void __always_inline
6034 __perf_event_output(struct perf_event *event,
6035 		    struct perf_sample_data *data,
6036 		    struct pt_regs *regs,
6037 		    int (*output_begin)(struct perf_output_handle *,
6038 					struct perf_event *,
6039 					unsigned int))
6040 {
6041 	struct perf_output_handle handle;
6042 	struct perf_event_header header;
6043 
6044 	/* protect the callchain buffers */
6045 	rcu_read_lock();
6046 
6047 	perf_prepare_sample(&header, data, event, regs);
6048 
6049 	if (output_begin(&handle, event, header.size))
6050 		goto exit;
6051 
6052 	perf_output_sample(&handle, &header, data, event);
6053 
6054 	perf_output_end(&handle);
6055 
6056 exit:
6057 	rcu_read_unlock();
6058 }
6059 
6060 void
6061 perf_event_output_forward(struct perf_event *event,
6062 			 struct perf_sample_data *data,
6063 			 struct pt_regs *regs)
6064 {
6065 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6066 }
6067 
6068 void
6069 perf_event_output_backward(struct perf_event *event,
6070 			   struct perf_sample_data *data,
6071 			   struct pt_regs *regs)
6072 {
6073 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6074 }
6075 
6076 void
6077 perf_event_output(struct perf_event *event,
6078 		  struct perf_sample_data *data,
6079 		  struct pt_regs *regs)
6080 {
6081 	__perf_event_output(event, data, regs, perf_output_begin);
6082 }
6083 
6084 /*
6085  * read event_id
6086  */
6087 
6088 struct perf_read_event {
6089 	struct perf_event_header	header;
6090 
6091 	u32				pid;
6092 	u32				tid;
6093 };
6094 
6095 static void
6096 perf_event_read_event(struct perf_event *event,
6097 			struct task_struct *task)
6098 {
6099 	struct perf_output_handle handle;
6100 	struct perf_sample_data sample;
6101 	struct perf_read_event read_event = {
6102 		.header = {
6103 			.type = PERF_RECORD_READ,
6104 			.misc = 0,
6105 			.size = sizeof(read_event) + event->read_size,
6106 		},
6107 		.pid = perf_event_pid(event, task),
6108 		.tid = perf_event_tid(event, task),
6109 	};
6110 	int ret;
6111 
6112 	perf_event_header__init_id(&read_event.header, &sample, event);
6113 	ret = perf_output_begin(&handle, event, read_event.header.size);
6114 	if (ret)
6115 		return;
6116 
6117 	perf_output_put(&handle, read_event);
6118 	perf_output_read(&handle, event);
6119 	perf_event__output_id_sample(event, &handle, &sample);
6120 
6121 	perf_output_end(&handle);
6122 }
6123 
6124 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6125 
6126 static void
6127 perf_iterate_ctx(struct perf_event_context *ctx,
6128 		   perf_iterate_f output,
6129 		   void *data, bool all)
6130 {
6131 	struct perf_event *event;
6132 
6133 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6134 		if (!all) {
6135 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6136 				continue;
6137 			if (!event_filter_match(event))
6138 				continue;
6139 		}
6140 
6141 		output(event, data);
6142 	}
6143 }
6144 
6145 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6146 {
6147 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6148 	struct perf_event *event;
6149 
6150 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6151 		/*
6152 		 * Skip events that are not fully formed yet; ensure that
6153 		 * if we observe event->ctx, both event and ctx will be
6154 		 * complete enough. See perf_install_in_context().
6155 		 */
6156 		if (!smp_load_acquire(&event->ctx))
6157 			continue;
6158 
6159 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6160 			continue;
6161 		if (!event_filter_match(event))
6162 			continue;
6163 		output(event, data);
6164 	}
6165 }
6166 
6167 /*
6168  * Iterate all events that need to receive side-band events.
6169  *
6170  * For new callers; ensure that account_pmu_sb_event() includes
6171  * your event, otherwise it might not get delivered.
6172  */
6173 static void
6174 perf_iterate_sb(perf_iterate_f output, void *data,
6175 	       struct perf_event_context *task_ctx)
6176 {
6177 	struct perf_event_context *ctx;
6178 	int ctxn;
6179 
6180 	rcu_read_lock();
6181 	preempt_disable();
6182 
6183 	/*
6184 	 * If we have task_ctx != NULL we only notify the task context itself.
6185 	 * The task_ctx is set only for EXIT events before releasing task
6186 	 * context.
6187 	 */
6188 	if (task_ctx) {
6189 		perf_iterate_ctx(task_ctx, output, data, false);
6190 		goto done;
6191 	}
6192 
6193 	perf_iterate_sb_cpu(output, data);
6194 
6195 	for_each_task_context_nr(ctxn) {
6196 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6197 		if (ctx)
6198 			perf_iterate_ctx(ctx, output, data, false);
6199 	}
6200 done:
6201 	preempt_enable();
6202 	rcu_read_unlock();
6203 }
6204 
6205 /*
6206  * Clear all file-based filters at exec, they'll have to be
6207  * re-instated when/if these objects are mmapped again.
6208  */
6209 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6210 {
6211 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6212 	struct perf_addr_filter *filter;
6213 	unsigned int restart = 0, count = 0;
6214 	unsigned long flags;
6215 
6216 	if (!has_addr_filter(event))
6217 		return;
6218 
6219 	raw_spin_lock_irqsave(&ifh->lock, flags);
6220 	list_for_each_entry(filter, &ifh->list, entry) {
6221 		if (filter->inode) {
6222 			event->addr_filters_offs[count] = 0;
6223 			restart++;
6224 		}
6225 
6226 		count++;
6227 	}
6228 
6229 	if (restart)
6230 		event->addr_filters_gen++;
6231 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6232 
6233 	if (restart)
6234 		perf_event_stop(event, 1);
6235 }
6236 
6237 void perf_event_exec(void)
6238 {
6239 	struct perf_event_context *ctx;
6240 	int ctxn;
6241 
6242 	rcu_read_lock();
6243 	for_each_task_context_nr(ctxn) {
6244 		ctx = current->perf_event_ctxp[ctxn];
6245 		if (!ctx)
6246 			continue;
6247 
6248 		perf_event_enable_on_exec(ctxn);
6249 
6250 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6251 				   true);
6252 	}
6253 	rcu_read_unlock();
6254 }
6255 
6256 struct remote_output {
6257 	struct ring_buffer	*rb;
6258 	int			err;
6259 };
6260 
6261 static void __perf_event_output_stop(struct perf_event *event, void *data)
6262 {
6263 	struct perf_event *parent = event->parent;
6264 	struct remote_output *ro = data;
6265 	struct ring_buffer *rb = ro->rb;
6266 	struct stop_event_data sd = {
6267 		.event	= event,
6268 	};
6269 
6270 	if (!has_aux(event))
6271 		return;
6272 
6273 	if (!parent)
6274 		parent = event;
6275 
6276 	/*
6277 	 * In case of inheritance, it will be the parent that links to the
6278 	 * ring-buffer, but it will be the child that's actually using it.
6279 	 *
6280 	 * We are using event::rb to determine if the event should be stopped,
6281 	 * however this may race with ring_buffer_attach() (through set_output),
6282 	 * which will make us skip the event that actually needs to be stopped.
6283 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6284 	 * its rb pointer.
6285 	 */
6286 	if (rcu_dereference(parent->rb) == rb)
6287 		ro->err = __perf_event_stop(&sd);
6288 }
6289 
6290 static int __perf_pmu_output_stop(void *info)
6291 {
6292 	struct perf_event *event = info;
6293 	struct pmu *pmu = event->pmu;
6294 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6295 	struct remote_output ro = {
6296 		.rb	= event->rb,
6297 	};
6298 
6299 	rcu_read_lock();
6300 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6301 	if (cpuctx->task_ctx)
6302 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6303 				   &ro, false);
6304 	rcu_read_unlock();
6305 
6306 	return ro.err;
6307 }
6308 
6309 static void perf_pmu_output_stop(struct perf_event *event)
6310 {
6311 	struct perf_event *iter;
6312 	int err, cpu;
6313 
6314 restart:
6315 	rcu_read_lock();
6316 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6317 		/*
6318 		 * For per-CPU events, we need to make sure that neither they
6319 		 * nor their children are running; for cpu==-1 events it's
6320 		 * sufficient to stop the event itself if it's active, since
6321 		 * it can't have children.
6322 		 */
6323 		cpu = iter->cpu;
6324 		if (cpu == -1)
6325 			cpu = READ_ONCE(iter->oncpu);
6326 
6327 		if (cpu == -1)
6328 			continue;
6329 
6330 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6331 		if (err == -EAGAIN) {
6332 			rcu_read_unlock();
6333 			goto restart;
6334 		}
6335 	}
6336 	rcu_read_unlock();
6337 }
6338 
6339 /*
6340  * task tracking -- fork/exit
6341  *
6342  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6343  */
6344 
6345 struct perf_task_event {
6346 	struct task_struct		*task;
6347 	struct perf_event_context	*task_ctx;
6348 
6349 	struct {
6350 		struct perf_event_header	header;
6351 
6352 		u32				pid;
6353 		u32				ppid;
6354 		u32				tid;
6355 		u32				ptid;
6356 		u64				time;
6357 	} event_id;
6358 };
6359 
6360 static int perf_event_task_match(struct perf_event *event)
6361 {
6362 	return event->attr.comm  || event->attr.mmap ||
6363 	       event->attr.mmap2 || event->attr.mmap_data ||
6364 	       event->attr.task;
6365 }
6366 
6367 static void perf_event_task_output(struct perf_event *event,
6368 				   void *data)
6369 {
6370 	struct perf_task_event *task_event = data;
6371 	struct perf_output_handle handle;
6372 	struct perf_sample_data	sample;
6373 	struct task_struct *task = task_event->task;
6374 	int ret, size = task_event->event_id.header.size;
6375 
6376 	if (!perf_event_task_match(event))
6377 		return;
6378 
6379 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6380 
6381 	ret = perf_output_begin(&handle, event,
6382 				task_event->event_id.header.size);
6383 	if (ret)
6384 		goto out;
6385 
6386 	task_event->event_id.pid = perf_event_pid(event, task);
6387 	task_event->event_id.ppid = perf_event_pid(event, current);
6388 
6389 	task_event->event_id.tid = perf_event_tid(event, task);
6390 	task_event->event_id.ptid = perf_event_tid(event, current);
6391 
6392 	task_event->event_id.time = perf_event_clock(event);
6393 
6394 	perf_output_put(&handle, task_event->event_id);
6395 
6396 	perf_event__output_id_sample(event, &handle, &sample);
6397 
6398 	perf_output_end(&handle);
6399 out:
6400 	task_event->event_id.header.size = size;
6401 }
6402 
6403 static void perf_event_task(struct task_struct *task,
6404 			      struct perf_event_context *task_ctx,
6405 			      int new)
6406 {
6407 	struct perf_task_event task_event;
6408 
6409 	if (!atomic_read(&nr_comm_events) &&
6410 	    !atomic_read(&nr_mmap_events) &&
6411 	    !atomic_read(&nr_task_events))
6412 		return;
6413 
6414 	task_event = (struct perf_task_event){
6415 		.task	  = task,
6416 		.task_ctx = task_ctx,
6417 		.event_id    = {
6418 			.header = {
6419 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6420 				.misc = 0,
6421 				.size = sizeof(task_event.event_id),
6422 			},
6423 			/* .pid  */
6424 			/* .ppid */
6425 			/* .tid  */
6426 			/* .ptid */
6427 			/* .time */
6428 		},
6429 	};
6430 
6431 	perf_iterate_sb(perf_event_task_output,
6432 		       &task_event,
6433 		       task_ctx);
6434 }
6435 
6436 void perf_event_fork(struct task_struct *task)
6437 {
6438 	perf_event_task(task, NULL, 1);
6439 }
6440 
6441 /*
6442  * comm tracking
6443  */
6444 
6445 struct perf_comm_event {
6446 	struct task_struct	*task;
6447 	char			*comm;
6448 	int			comm_size;
6449 
6450 	struct {
6451 		struct perf_event_header	header;
6452 
6453 		u32				pid;
6454 		u32				tid;
6455 	} event_id;
6456 };
6457 
6458 static int perf_event_comm_match(struct perf_event *event)
6459 {
6460 	return event->attr.comm;
6461 }
6462 
6463 static void perf_event_comm_output(struct perf_event *event,
6464 				   void *data)
6465 {
6466 	struct perf_comm_event *comm_event = data;
6467 	struct perf_output_handle handle;
6468 	struct perf_sample_data sample;
6469 	int size = comm_event->event_id.header.size;
6470 	int ret;
6471 
6472 	if (!perf_event_comm_match(event))
6473 		return;
6474 
6475 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6476 	ret = perf_output_begin(&handle, event,
6477 				comm_event->event_id.header.size);
6478 
6479 	if (ret)
6480 		goto out;
6481 
6482 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6483 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6484 
6485 	perf_output_put(&handle, comm_event->event_id);
6486 	__output_copy(&handle, comm_event->comm,
6487 				   comm_event->comm_size);
6488 
6489 	perf_event__output_id_sample(event, &handle, &sample);
6490 
6491 	perf_output_end(&handle);
6492 out:
6493 	comm_event->event_id.header.size = size;
6494 }
6495 
6496 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6497 {
6498 	char comm[TASK_COMM_LEN];
6499 	unsigned int size;
6500 
6501 	memset(comm, 0, sizeof(comm));
6502 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6503 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6504 
6505 	comm_event->comm = comm;
6506 	comm_event->comm_size = size;
6507 
6508 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6509 
6510 	perf_iterate_sb(perf_event_comm_output,
6511 		       comm_event,
6512 		       NULL);
6513 }
6514 
6515 void perf_event_comm(struct task_struct *task, bool exec)
6516 {
6517 	struct perf_comm_event comm_event;
6518 
6519 	if (!atomic_read(&nr_comm_events))
6520 		return;
6521 
6522 	comm_event = (struct perf_comm_event){
6523 		.task	= task,
6524 		/* .comm      */
6525 		/* .comm_size */
6526 		.event_id  = {
6527 			.header = {
6528 				.type = PERF_RECORD_COMM,
6529 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6530 				/* .size */
6531 			},
6532 			/* .pid */
6533 			/* .tid */
6534 		},
6535 	};
6536 
6537 	perf_event_comm_event(&comm_event);
6538 }
6539 
6540 /*
6541  * mmap tracking
6542  */
6543 
6544 struct perf_mmap_event {
6545 	struct vm_area_struct	*vma;
6546 
6547 	const char		*file_name;
6548 	int			file_size;
6549 	int			maj, min;
6550 	u64			ino;
6551 	u64			ino_generation;
6552 	u32			prot, flags;
6553 
6554 	struct {
6555 		struct perf_event_header	header;
6556 
6557 		u32				pid;
6558 		u32				tid;
6559 		u64				start;
6560 		u64				len;
6561 		u64				pgoff;
6562 	} event_id;
6563 };
6564 
6565 static int perf_event_mmap_match(struct perf_event *event,
6566 				 void *data)
6567 {
6568 	struct perf_mmap_event *mmap_event = data;
6569 	struct vm_area_struct *vma = mmap_event->vma;
6570 	int executable = vma->vm_flags & VM_EXEC;
6571 
6572 	return (!executable && event->attr.mmap_data) ||
6573 	       (executable && (event->attr.mmap || event->attr.mmap2));
6574 }
6575 
6576 static void perf_event_mmap_output(struct perf_event *event,
6577 				   void *data)
6578 {
6579 	struct perf_mmap_event *mmap_event = data;
6580 	struct perf_output_handle handle;
6581 	struct perf_sample_data sample;
6582 	int size = mmap_event->event_id.header.size;
6583 	int ret;
6584 
6585 	if (!perf_event_mmap_match(event, data))
6586 		return;
6587 
6588 	if (event->attr.mmap2) {
6589 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6590 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6591 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6592 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6593 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6594 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6595 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6596 	}
6597 
6598 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6599 	ret = perf_output_begin(&handle, event,
6600 				mmap_event->event_id.header.size);
6601 	if (ret)
6602 		goto out;
6603 
6604 	mmap_event->event_id.pid = perf_event_pid(event, current);
6605 	mmap_event->event_id.tid = perf_event_tid(event, current);
6606 
6607 	perf_output_put(&handle, mmap_event->event_id);
6608 
6609 	if (event->attr.mmap2) {
6610 		perf_output_put(&handle, mmap_event->maj);
6611 		perf_output_put(&handle, mmap_event->min);
6612 		perf_output_put(&handle, mmap_event->ino);
6613 		perf_output_put(&handle, mmap_event->ino_generation);
6614 		perf_output_put(&handle, mmap_event->prot);
6615 		perf_output_put(&handle, mmap_event->flags);
6616 	}
6617 
6618 	__output_copy(&handle, mmap_event->file_name,
6619 				   mmap_event->file_size);
6620 
6621 	perf_event__output_id_sample(event, &handle, &sample);
6622 
6623 	perf_output_end(&handle);
6624 out:
6625 	mmap_event->event_id.header.size = size;
6626 }
6627 
6628 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6629 {
6630 	struct vm_area_struct *vma = mmap_event->vma;
6631 	struct file *file = vma->vm_file;
6632 	int maj = 0, min = 0;
6633 	u64 ino = 0, gen = 0;
6634 	u32 prot = 0, flags = 0;
6635 	unsigned int size;
6636 	char tmp[16];
6637 	char *buf = NULL;
6638 	char *name;
6639 
6640 	if (vma->vm_flags & VM_READ)
6641 		prot |= PROT_READ;
6642 	if (vma->vm_flags & VM_WRITE)
6643 		prot |= PROT_WRITE;
6644 	if (vma->vm_flags & VM_EXEC)
6645 		prot |= PROT_EXEC;
6646 
6647 	if (vma->vm_flags & VM_MAYSHARE)
6648 		flags = MAP_SHARED;
6649 	else
6650 		flags = MAP_PRIVATE;
6651 
6652 	if (vma->vm_flags & VM_DENYWRITE)
6653 		flags |= MAP_DENYWRITE;
6654 	if (vma->vm_flags & VM_MAYEXEC)
6655 		flags |= MAP_EXECUTABLE;
6656 	if (vma->vm_flags & VM_LOCKED)
6657 		flags |= MAP_LOCKED;
6658 	if (vma->vm_flags & VM_HUGETLB)
6659 		flags |= MAP_HUGETLB;
6660 
6661 	if (file) {
6662 		struct inode *inode;
6663 		dev_t dev;
6664 
6665 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6666 		if (!buf) {
6667 			name = "//enomem";
6668 			goto cpy_name;
6669 		}
6670 		/*
6671 		 * d_path() works from the end of the rb backwards, so we
6672 		 * need to add enough zero bytes after the string to handle
6673 		 * the 64bit alignment we do later.
6674 		 */
6675 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6676 		if (IS_ERR(name)) {
6677 			name = "//toolong";
6678 			goto cpy_name;
6679 		}
6680 		inode = file_inode(vma->vm_file);
6681 		dev = inode->i_sb->s_dev;
6682 		ino = inode->i_ino;
6683 		gen = inode->i_generation;
6684 		maj = MAJOR(dev);
6685 		min = MINOR(dev);
6686 
6687 		goto got_name;
6688 	} else {
6689 		if (vma->vm_ops && vma->vm_ops->name) {
6690 			name = (char *) vma->vm_ops->name(vma);
6691 			if (name)
6692 				goto cpy_name;
6693 		}
6694 
6695 		name = (char *)arch_vma_name(vma);
6696 		if (name)
6697 			goto cpy_name;
6698 
6699 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6700 				vma->vm_end >= vma->vm_mm->brk) {
6701 			name = "[heap]";
6702 			goto cpy_name;
6703 		}
6704 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6705 				vma->vm_end >= vma->vm_mm->start_stack) {
6706 			name = "[stack]";
6707 			goto cpy_name;
6708 		}
6709 
6710 		name = "//anon";
6711 		goto cpy_name;
6712 	}
6713 
6714 cpy_name:
6715 	strlcpy(tmp, name, sizeof(tmp));
6716 	name = tmp;
6717 got_name:
6718 	/*
6719 	 * Since our buffer works in 8 byte units we need to align our string
6720 	 * size to a multiple of 8. However, we must guarantee the tail end is
6721 	 * zero'd out to avoid leaking random bits to userspace.
6722 	 */
6723 	size = strlen(name)+1;
6724 	while (!IS_ALIGNED(size, sizeof(u64)))
6725 		name[size++] = '\0';
6726 
6727 	mmap_event->file_name = name;
6728 	mmap_event->file_size = size;
6729 	mmap_event->maj = maj;
6730 	mmap_event->min = min;
6731 	mmap_event->ino = ino;
6732 	mmap_event->ino_generation = gen;
6733 	mmap_event->prot = prot;
6734 	mmap_event->flags = flags;
6735 
6736 	if (!(vma->vm_flags & VM_EXEC))
6737 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6738 
6739 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6740 
6741 	perf_iterate_sb(perf_event_mmap_output,
6742 		       mmap_event,
6743 		       NULL);
6744 
6745 	kfree(buf);
6746 }
6747 
6748 /*
6749  * Check whether inode and address range match filter criteria.
6750  */
6751 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6752 				     struct file *file, unsigned long offset,
6753 				     unsigned long size)
6754 {
6755 	if (filter->inode != file_inode(file))
6756 		return false;
6757 
6758 	if (filter->offset > offset + size)
6759 		return false;
6760 
6761 	if (filter->offset + filter->size < offset)
6762 		return false;
6763 
6764 	return true;
6765 }
6766 
6767 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6768 {
6769 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6770 	struct vm_area_struct *vma = data;
6771 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6772 	struct file *file = vma->vm_file;
6773 	struct perf_addr_filter *filter;
6774 	unsigned int restart = 0, count = 0;
6775 
6776 	if (!has_addr_filter(event))
6777 		return;
6778 
6779 	if (!file)
6780 		return;
6781 
6782 	raw_spin_lock_irqsave(&ifh->lock, flags);
6783 	list_for_each_entry(filter, &ifh->list, entry) {
6784 		if (perf_addr_filter_match(filter, file, off,
6785 					     vma->vm_end - vma->vm_start)) {
6786 			event->addr_filters_offs[count] = vma->vm_start;
6787 			restart++;
6788 		}
6789 
6790 		count++;
6791 	}
6792 
6793 	if (restart)
6794 		event->addr_filters_gen++;
6795 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6796 
6797 	if (restart)
6798 		perf_event_stop(event, 1);
6799 }
6800 
6801 /*
6802  * Adjust all task's events' filters to the new vma
6803  */
6804 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6805 {
6806 	struct perf_event_context *ctx;
6807 	int ctxn;
6808 
6809 	/*
6810 	 * Data tracing isn't supported yet and as such there is no need
6811 	 * to keep track of anything that isn't related to executable code:
6812 	 */
6813 	if (!(vma->vm_flags & VM_EXEC))
6814 		return;
6815 
6816 	rcu_read_lock();
6817 	for_each_task_context_nr(ctxn) {
6818 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6819 		if (!ctx)
6820 			continue;
6821 
6822 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6823 	}
6824 	rcu_read_unlock();
6825 }
6826 
6827 void perf_event_mmap(struct vm_area_struct *vma)
6828 {
6829 	struct perf_mmap_event mmap_event;
6830 
6831 	if (!atomic_read(&nr_mmap_events))
6832 		return;
6833 
6834 	mmap_event = (struct perf_mmap_event){
6835 		.vma	= vma,
6836 		/* .file_name */
6837 		/* .file_size */
6838 		.event_id  = {
6839 			.header = {
6840 				.type = PERF_RECORD_MMAP,
6841 				.misc = PERF_RECORD_MISC_USER,
6842 				/* .size */
6843 			},
6844 			/* .pid */
6845 			/* .tid */
6846 			.start  = vma->vm_start,
6847 			.len    = vma->vm_end - vma->vm_start,
6848 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6849 		},
6850 		/* .maj (attr_mmap2 only) */
6851 		/* .min (attr_mmap2 only) */
6852 		/* .ino (attr_mmap2 only) */
6853 		/* .ino_generation (attr_mmap2 only) */
6854 		/* .prot (attr_mmap2 only) */
6855 		/* .flags (attr_mmap2 only) */
6856 	};
6857 
6858 	perf_addr_filters_adjust(vma);
6859 	perf_event_mmap_event(&mmap_event);
6860 }
6861 
6862 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6863 			  unsigned long size, u64 flags)
6864 {
6865 	struct perf_output_handle handle;
6866 	struct perf_sample_data sample;
6867 	struct perf_aux_event {
6868 		struct perf_event_header	header;
6869 		u64				offset;
6870 		u64				size;
6871 		u64				flags;
6872 	} rec = {
6873 		.header = {
6874 			.type = PERF_RECORD_AUX,
6875 			.misc = 0,
6876 			.size = sizeof(rec),
6877 		},
6878 		.offset		= head,
6879 		.size		= size,
6880 		.flags		= flags,
6881 	};
6882 	int ret;
6883 
6884 	perf_event_header__init_id(&rec.header, &sample, event);
6885 	ret = perf_output_begin(&handle, event, rec.header.size);
6886 
6887 	if (ret)
6888 		return;
6889 
6890 	perf_output_put(&handle, rec);
6891 	perf_event__output_id_sample(event, &handle, &sample);
6892 
6893 	perf_output_end(&handle);
6894 }
6895 
6896 /*
6897  * Lost/dropped samples logging
6898  */
6899 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6900 {
6901 	struct perf_output_handle handle;
6902 	struct perf_sample_data sample;
6903 	int ret;
6904 
6905 	struct {
6906 		struct perf_event_header	header;
6907 		u64				lost;
6908 	} lost_samples_event = {
6909 		.header = {
6910 			.type = PERF_RECORD_LOST_SAMPLES,
6911 			.misc = 0,
6912 			.size = sizeof(lost_samples_event),
6913 		},
6914 		.lost		= lost,
6915 	};
6916 
6917 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6918 
6919 	ret = perf_output_begin(&handle, event,
6920 				lost_samples_event.header.size);
6921 	if (ret)
6922 		return;
6923 
6924 	perf_output_put(&handle, lost_samples_event);
6925 	perf_event__output_id_sample(event, &handle, &sample);
6926 	perf_output_end(&handle);
6927 }
6928 
6929 /*
6930  * context_switch tracking
6931  */
6932 
6933 struct perf_switch_event {
6934 	struct task_struct	*task;
6935 	struct task_struct	*next_prev;
6936 
6937 	struct {
6938 		struct perf_event_header	header;
6939 		u32				next_prev_pid;
6940 		u32				next_prev_tid;
6941 	} event_id;
6942 };
6943 
6944 static int perf_event_switch_match(struct perf_event *event)
6945 {
6946 	return event->attr.context_switch;
6947 }
6948 
6949 static void perf_event_switch_output(struct perf_event *event, void *data)
6950 {
6951 	struct perf_switch_event *se = data;
6952 	struct perf_output_handle handle;
6953 	struct perf_sample_data sample;
6954 	int ret;
6955 
6956 	if (!perf_event_switch_match(event))
6957 		return;
6958 
6959 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6960 	if (event->ctx->task) {
6961 		se->event_id.header.type = PERF_RECORD_SWITCH;
6962 		se->event_id.header.size = sizeof(se->event_id.header);
6963 	} else {
6964 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6965 		se->event_id.header.size = sizeof(se->event_id);
6966 		se->event_id.next_prev_pid =
6967 					perf_event_pid(event, se->next_prev);
6968 		se->event_id.next_prev_tid =
6969 					perf_event_tid(event, se->next_prev);
6970 	}
6971 
6972 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6973 
6974 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6975 	if (ret)
6976 		return;
6977 
6978 	if (event->ctx->task)
6979 		perf_output_put(&handle, se->event_id.header);
6980 	else
6981 		perf_output_put(&handle, se->event_id);
6982 
6983 	perf_event__output_id_sample(event, &handle, &sample);
6984 
6985 	perf_output_end(&handle);
6986 }
6987 
6988 static void perf_event_switch(struct task_struct *task,
6989 			      struct task_struct *next_prev, bool sched_in)
6990 {
6991 	struct perf_switch_event switch_event;
6992 
6993 	/* N.B. caller checks nr_switch_events != 0 */
6994 
6995 	switch_event = (struct perf_switch_event){
6996 		.task		= task,
6997 		.next_prev	= next_prev,
6998 		.event_id	= {
6999 			.header = {
7000 				/* .type */
7001 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7002 				/* .size */
7003 			},
7004 			/* .next_prev_pid */
7005 			/* .next_prev_tid */
7006 		},
7007 	};
7008 
7009 	perf_iterate_sb(perf_event_switch_output,
7010 		       &switch_event,
7011 		       NULL);
7012 }
7013 
7014 /*
7015  * IRQ throttle logging
7016  */
7017 
7018 static void perf_log_throttle(struct perf_event *event, int enable)
7019 {
7020 	struct perf_output_handle handle;
7021 	struct perf_sample_data sample;
7022 	int ret;
7023 
7024 	struct {
7025 		struct perf_event_header	header;
7026 		u64				time;
7027 		u64				id;
7028 		u64				stream_id;
7029 	} throttle_event = {
7030 		.header = {
7031 			.type = PERF_RECORD_THROTTLE,
7032 			.misc = 0,
7033 			.size = sizeof(throttle_event),
7034 		},
7035 		.time		= perf_event_clock(event),
7036 		.id		= primary_event_id(event),
7037 		.stream_id	= event->id,
7038 	};
7039 
7040 	if (enable)
7041 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7042 
7043 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7044 
7045 	ret = perf_output_begin(&handle, event,
7046 				throttle_event.header.size);
7047 	if (ret)
7048 		return;
7049 
7050 	perf_output_put(&handle, throttle_event);
7051 	perf_event__output_id_sample(event, &handle, &sample);
7052 	perf_output_end(&handle);
7053 }
7054 
7055 static void perf_log_itrace_start(struct perf_event *event)
7056 {
7057 	struct perf_output_handle handle;
7058 	struct perf_sample_data sample;
7059 	struct perf_aux_event {
7060 		struct perf_event_header        header;
7061 		u32				pid;
7062 		u32				tid;
7063 	} rec;
7064 	int ret;
7065 
7066 	if (event->parent)
7067 		event = event->parent;
7068 
7069 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7070 	    event->hw.itrace_started)
7071 		return;
7072 
7073 	rec.header.type	= PERF_RECORD_ITRACE_START;
7074 	rec.header.misc	= 0;
7075 	rec.header.size	= sizeof(rec);
7076 	rec.pid	= perf_event_pid(event, current);
7077 	rec.tid	= perf_event_tid(event, current);
7078 
7079 	perf_event_header__init_id(&rec.header, &sample, event);
7080 	ret = perf_output_begin(&handle, event, rec.header.size);
7081 
7082 	if (ret)
7083 		return;
7084 
7085 	perf_output_put(&handle, rec);
7086 	perf_event__output_id_sample(event, &handle, &sample);
7087 
7088 	perf_output_end(&handle);
7089 }
7090 
7091 static int
7092 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7093 {
7094 	struct hw_perf_event *hwc = &event->hw;
7095 	int ret = 0;
7096 	u64 seq;
7097 
7098 	seq = __this_cpu_read(perf_throttled_seq);
7099 	if (seq != hwc->interrupts_seq) {
7100 		hwc->interrupts_seq = seq;
7101 		hwc->interrupts = 1;
7102 	} else {
7103 		hwc->interrupts++;
7104 		if (unlikely(throttle
7105 			     && hwc->interrupts >= max_samples_per_tick)) {
7106 			__this_cpu_inc(perf_throttled_count);
7107 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7108 			hwc->interrupts = MAX_INTERRUPTS;
7109 			perf_log_throttle(event, 0);
7110 			ret = 1;
7111 		}
7112 	}
7113 
7114 	if (event->attr.freq) {
7115 		u64 now = perf_clock();
7116 		s64 delta = now - hwc->freq_time_stamp;
7117 
7118 		hwc->freq_time_stamp = now;
7119 
7120 		if (delta > 0 && delta < 2*TICK_NSEC)
7121 			perf_adjust_period(event, delta, hwc->last_period, true);
7122 	}
7123 
7124 	return ret;
7125 }
7126 
7127 int perf_event_account_interrupt(struct perf_event *event)
7128 {
7129 	return __perf_event_account_interrupt(event, 1);
7130 }
7131 
7132 /*
7133  * Generic event overflow handling, sampling.
7134  */
7135 
7136 static int __perf_event_overflow(struct perf_event *event,
7137 				   int throttle, struct perf_sample_data *data,
7138 				   struct pt_regs *regs)
7139 {
7140 	int events = atomic_read(&event->event_limit);
7141 	int ret = 0;
7142 
7143 	/*
7144 	 * Non-sampling counters might still use the PMI to fold short
7145 	 * hardware counters, ignore those.
7146 	 */
7147 	if (unlikely(!is_sampling_event(event)))
7148 		return 0;
7149 
7150 	ret = __perf_event_account_interrupt(event, throttle);
7151 
7152 	/*
7153 	 * XXX event_limit might not quite work as expected on inherited
7154 	 * events
7155 	 */
7156 
7157 	event->pending_kill = POLL_IN;
7158 	if (events && atomic_dec_and_test(&event->event_limit)) {
7159 		ret = 1;
7160 		event->pending_kill = POLL_HUP;
7161 
7162 		perf_event_disable_inatomic(event);
7163 	}
7164 
7165 	READ_ONCE(event->overflow_handler)(event, data, regs);
7166 
7167 	if (*perf_event_fasync(event) && event->pending_kill) {
7168 		event->pending_wakeup = 1;
7169 		irq_work_queue(&event->pending);
7170 	}
7171 
7172 	return ret;
7173 }
7174 
7175 int perf_event_overflow(struct perf_event *event,
7176 			  struct perf_sample_data *data,
7177 			  struct pt_regs *regs)
7178 {
7179 	return __perf_event_overflow(event, 1, data, regs);
7180 }
7181 
7182 /*
7183  * Generic software event infrastructure
7184  */
7185 
7186 struct swevent_htable {
7187 	struct swevent_hlist		*swevent_hlist;
7188 	struct mutex			hlist_mutex;
7189 	int				hlist_refcount;
7190 
7191 	/* Recursion avoidance in each contexts */
7192 	int				recursion[PERF_NR_CONTEXTS];
7193 };
7194 
7195 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7196 
7197 /*
7198  * We directly increment event->count and keep a second value in
7199  * event->hw.period_left to count intervals. This period event
7200  * is kept in the range [-sample_period, 0] so that we can use the
7201  * sign as trigger.
7202  */
7203 
7204 u64 perf_swevent_set_period(struct perf_event *event)
7205 {
7206 	struct hw_perf_event *hwc = &event->hw;
7207 	u64 period = hwc->last_period;
7208 	u64 nr, offset;
7209 	s64 old, val;
7210 
7211 	hwc->last_period = hwc->sample_period;
7212 
7213 again:
7214 	old = val = local64_read(&hwc->period_left);
7215 	if (val < 0)
7216 		return 0;
7217 
7218 	nr = div64_u64(period + val, period);
7219 	offset = nr * period;
7220 	val -= offset;
7221 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7222 		goto again;
7223 
7224 	return nr;
7225 }
7226 
7227 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7228 				    struct perf_sample_data *data,
7229 				    struct pt_regs *regs)
7230 {
7231 	struct hw_perf_event *hwc = &event->hw;
7232 	int throttle = 0;
7233 
7234 	if (!overflow)
7235 		overflow = perf_swevent_set_period(event);
7236 
7237 	if (hwc->interrupts == MAX_INTERRUPTS)
7238 		return;
7239 
7240 	for (; overflow; overflow--) {
7241 		if (__perf_event_overflow(event, throttle,
7242 					    data, regs)) {
7243 			/*
7244 			 * We inhibit the overflow from happening when
7245 			 * hwc->interrupts == MAX_INTERRUPTS.
7246 			 */
7247 			break;
7248 		}
7249 		throttle = 1;
7250 	}
7251 }
7252 
7253 static void perf_swevent_event(struct perf_event *event, u64 nr,
7254 			       struct perf_sample_data *data,
7255 			       struct pt_regs *regs)
7256 {
7257 	struct hw_perf_event *hwc = &event->hw;
7258 
7259 	local64_add(nr, &event->count);
7260 
7261 	if (!regs)
7262 		return;
7263 
7264 	if (!is_sampling_event(event))
7265 		return;
7266 
7267 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7268 		data->period = nr;
7269 		return perf_swevent_overflow(event, 1, data, regs);
7270 	} else
7271 		data->period = event->hw.last_period;
7272 
7273 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7274 		return perf_swevent_overflow(event, 1, data, regs);
7275 
7276 	if (local64_add_negative(nr, &hwc->period_left))
7277 		return;
7278 
7279 	perf_swevent_overflow(event, 0, data, regs);
7280 }
7281 
7282 static int perf_exclude_event(struct perf_event *event,
7283 			      struct pt_regs *regs)
7284 {
7285 	if (event->hw.state & PERF_HES_STOPPED)
7286 		return 1;
7287 
7288 	if (regs) {
7289 		if (event->attr.exclude_user && user_mode(regs))
7290 			return 1;
7291 
7292 		if (event->attr.exclude_kernel && !user_mode(regs))
7293 			return 1;
7294 	}
7295 
7296 	return 0;
7297 }
7298 
7299 static int perf_swevent_match(struct perf_event *event,
7300 				enum perf_type_id type,
7301 				u32 event_id,
7302 				struct perf_sample_data *data,
7303 				struct pt_regs *regs)
7304 {
7305 	if (event->attr.type != type)
7306 		return 0;
7307 
7308 	if (event->attr.config != event_id)
7309 		return 0;
7310 
7311 	if (perf_exclude_event(event, regs))
7312 		return 0;
7313 
7314 	return 1;
7315 }
7316 
7317 static inline u64 swevent_hash(u64 type, u32 event_id)
7318 {
7319 	u64 val = event_id | (type << 32);
7320 
7321 	return hash_64(val, SWEVENT_HLIST_BITS);
7322 }
7323 
7324 static inline struct hlist_head *
7325 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7326 {
7327 	u64 hash = swevent_hash(type, event_id);
7328 
7329 	return &hlist->heads[hash];
7330 }
7331 
7332 /* For the read side: events when they trigger */
7333 static inline struct hlist_head *
7334 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7335 {
7336 	struct swevent_hlist *hlist;
7337 
7338 	hlist = rcu_dereference(swhash->swevent_hlist);
7339 	if (!hlist)
7340 		return NULL;
7341 
7342 	return __find_swevent_head(hlist, type, event_id);
7343 }
7344 
7345 /* For the event head insertion and removal in the hlist */
7346 static inline struct hlist_head *
7347 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7348 {
7349 	struct swevent_hlist *hlist;
7350 	u32 event_id = event->attr.config;
7351 	u64 type = event->attr.type;
7352 
7353 	/*
7354 	 * Event scheduling is always serialized against hlist allocation
7355 	 * and release. Which makes the protected version suitable here.
7356 	 * The context lock guarantees that.
7357 	 */
7358 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7359 					  lockdep_is_held(&event->ctx->lock));
7360 	if (!hlist)
7361 		return NULL;
7362 
7363 	return __find_swevent_head(hlist, type, event_id);
7364 }
7365 
7366 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7367 				    u64 nr,
7368 				    struct perf_sample_data *data,
7369 				    struct pt_regs *regs)
7370 {
7371 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7372 	struct perf_event *event;
7373 	struct hlist_head *head;
7374 
7375 	rcu_read_lock();
7376 	head = find_swevent_head_rcu(swhash, type, event_id);
7377 	if (!head)
7378 		goto end;
7379 
7380 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7381 		if (perf_swevent_match(event, type, event_id, data, regs))
7382 			perf_swevent_event(event, nr, data, regs);
7383 	}
7384 end:
7385 	rcu_read_unlock();
7386 }
7387 
7388 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7389 
7390 int perf_swevent_get_recursion_context(void)
7391 {
7392 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7393 
7394 	return get_recursion_context(swhash->recursion);
7395 }
7396 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7397 
7398 void perf_swevent_put_recursion_context(int rctx)
7399 {
7400 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7401 
7402 	put_recursion_context(swhash->recursion, rctx);
7403 }
7404 
7405 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7406 {
7407 	struct perf_sample_data data;
7408 
7409 	if (WARN_ON_ONCE(!regs))
7410 		return;
7411 
7412 	perf_sample_data_init(&data, addr, 0);
7413 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7414 }
7415 
7416 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7417 {
7418 	int rctx;
7419 
7420 	preempt_disable_notrace();
7421 	rctx = perf_swevent_get_recursion_context();
7422 	if (unlikely(rctx < 0))
7423 		goto fail;
7424 
7425 	___perf_sw_event(event_id, nr, regs, addr);
7426 
7427 	perf_swevent_put_recursion_context(rctx);
7428 fail:
7429 	preempt_enable_notrace();
7430 }
7431 
7432 static void perf_swevent_read(struct perf_event *event)
7433 {
7434 }
7435 
7436 static int perf_swevent_add(struct perf_event *event, int flags)
7437 {
7438 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7439 	struct hw_perf_event *hwc = &event->hw;
7440 	struct hlist_head *head;
7441 
7442 	if (is_sampling_event(event)) {
7443 		hwc->last_period = hwc->sample_period;
7444 		perf_swevent_set_period(event);
7445 	}
7446 
7447 	hwc->state = !(flags & PERF_EF_START);
7448 
7449 	head = find_swevent_head(swhash, event);
7450 	if (WARN_ON_ONCE(!head))
7451 		return -EINVAL;
7452 
7453 	hlist_add_head_rcu(&event->hlist_entry, head);
7454 	perf_event_update_userpage(event);
7455 
7456 	return 0;
7457 }
7458 
7459 static void perf_swevent_del(struct perf_event *event, int flags)
7460 {
7461 	hlist_del_rcu(&event->hlist_entry);
7462 }
7463 
7464 static void perf_swevent_start(struct perf_event *event, int flags)
7465 {
7466 	event->hw.state = 0;
7467 }
7468 
7469 static void perf_swevent_stop(struct perf_event *event, int flags)
7470 {
7471 	event->hw.state = PERF_HES_STOPPED;
7472 }
7473 
7474 /* Deref the hlist from the update side */
7475 static inline struct swevent_hlist *
7476 swevent_hlist_deref(struct swevent_htable *swhash)
7477 {
7478 	return rcu_dereference_protected(swhash->swevent_hlist,
7479 					 lockdep_is_held(&swhash->hlist_mutex));
7480 }
7481 
7482 static void swevent_hlist_release(struct swevent_htable *swhash)
7483 {
7484 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7485 
7486 	if (!hlist)
7487 		return;
7488 
7489 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7490 	kfree_rcu(hlist, rcu_head);
7491 }
7492 
7493 static void swevent_hlist_put_cpu(int cpu)
7494 {
7495 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7496 
7497 	mutex_lock(&swhash->hlist_mutex);
7498 
7499 	if (!--swhash->hlist_refcount)
7500 		swevent_hlist_release(swhash);
7501 
7502 	mutex_unlock(&swhash->hlist_mutex);
7503 }
7504 
7505 static void swevent_hlist_put(void)
7506 {
7507 	int cpu;
7508 
7509 	for_each_possible_cpu(cpu)
7510 		swevent_hlist_put_cpu(cpu);
7511 }
7512 
7513 static int swevent_hlist_get_cpu(int cpu)
7514 {
7515 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7516 	int err = 0;
7517 
7518 	mutex_lock(&swhash->hlist_mutex);
7519 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7520 		struct swevent_hlist *hlist;
7521 
7522 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7523 		if (!hlist) {
7524 			err = -ENOMEM;
7525 			goto exit;
7526 		}
7527 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7528 	}
7529 	swhash->hlist_refcount++;
7530 exit:
7531 	mutex_unlock(&swhash->hlist_mutex);
7532 
7533 	return err;
7534 }
7535 
7536 static int swevent_hlist_get(void)
7537 {
7538 	int err, cpu, failed_cpu;
7539 
7540 	get_online_cpus();
7541 	for_each_possible_cpu(cpu) {
7542 		err = swevent_hlist_get_cpu(cpu);
7543 		if (err) {
7544 			failed_cpu = cpu;
7545 			goto fail;
7546 		}
7547 	}
7548 	put_online_cpus();
7549 
7550 	return 0;
7551 fail:
7552 	for_each_possible_cpu(cpu) {
7553 		if (cpu == failed_cpu)
7554 			break;
7555 		swevent_hlist_put_cpu(cpu);
7556 	}
7557 
7558 	put_online_cpus();
7559 	return err;
7560 }
7561 
7562 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7563 
7564 static void sw_perf_event_destroy(struct perf_event *event)
7565 {
7566 	u64 event_id = event->attr.config;
7567 
7568 	WARN_ON(event->parent);
7569 
7570 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7571 	swevent_hlist_put();
7572 }
7573 
7574 static int perf_swevent_init(struct perf_event *event)
7575 {
7576 	u64 event_id = event->attr.config;
7577 
7578 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7579 		return -ENOENT;
7580 
7581 	/*
7582 	 * no branch sampling for software events
7583 	 */
7584 	if (has_branch_stack(event))
7585 		return -EOPNOTSUPP;
7586 
7587 	switch (event_id) {
7588 	case PERF_COUNT_SW_CPU_CLOCK:
7589 	case PERF_COUNT_SW_TASK_CLOCK:
7590 		return -ENOENT;
7591 
7592 	default:
7593 		break;
7594 	}
7595 
7596 	if (event_id >= PERF_COUNT_SW_MAX)
7597 		return -ENOENT;
7598 
7599 	if (!event->parent) {
7600 		int err;
7601 
7602 		err = swevent_hlist_get();
7603 		if (err)
7604 			return err;
7605 
7606 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7607 		event->destroy = sw_perf_event_destroy;
7608 	}
7609 
7610 	return 0;
7611 }
7612 
7613 static struct pmu perf_swevent = {
7614 	.task_ctx_nr	= perf_sw_context,
7615 
7616 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7617 
7618 	.event_init	= perf_swevent_init,
7619 	.add		= perf_swevent_add,
7620 	.del		= perf_swevent_del,
7621 	.start		= perf_swevent_start,
7622 	.stop		= perf_swevent_stop,
7623 	.read		= perf_swevent_read,
7624 };
7625 
7626 #ifdef CONFIG_EVENT_TRACING
7627 
7628 static int perf_tp_filter_match(struct perf_event *event,
7629 				struct perf_sample_data *data)
7630 {
7631 	void *record = data->raw->frag.data;
7632 
7633 	/* only top level events have filters set */
7634 	if (event->parent)
7635 		event = event->parent;
7636 
7637 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7638 		return 1;
7639 	return 0;
7640 }
7641 
7642 static int perf_tp_event_match(struct perf_event *event,
7643 				struct perf_sample_data *data,
7644 				struct pt_regs *regs)
7645 {
7646 	if (event->hw.state & PERF_HES_STOPPED)
7647 		return 0;
7648 	/*
7649 	 * All tracepoints are from kernel-space.
7650 	 */
7651 	if (event->attr.exclude_kernel)
7652 		return 0;
7653 
7654 	if (!perf_tp_filter_match(event, data))
7655 		return 0;
7656 
7657 	return 1;
7658 }
7659 
7660 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7661 			       struct trace_event_call *call, u64 count,
7662 			       struct pt_regs *regs, struct hlist_head *head,
7663 			       struct task_struct *task)
7664 {
7665 	struct bpf_prog *prog = call->prog;
7666 
7667 	if (prog) {
7668 		*(struct pt_regs **)raw_data = regs;
7669 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7670 			perf_swevent_put_recursion_context(rctx);
7671 			return;
7672 		}
7673 	}
7674 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7675 		      rctx, task);
7676 }
7677 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7678 
7679 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7680 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7681 		   struct task_struct *task)
7682 {
7683 	struct perf_sample_data data;
7684 	struct perf_event *event;
7685 
7686 	struct perf_raw_record raw = {
7687 		.frag = {
7688 			.size = entry_size,
7689 			.data = record,
7690 		},
7691 	};
7692 
7693 	perf_sample_data_init(&data, 0, 0);
7694 	data.raw = &raw;
7695 
7696 	perf_trace_buf_update(record, event_type);
7697 
7698 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7699 		if (perf_tp_event_match(event, &data, regs))
7700 			perf_swevent_event(event, count, &data, regs);
7701 	}
7702 
7703 	/*
7704 	 * If we got specified a target task, also iterate its context and
7705 	 * deliver this event there too.
7706 	 */
7707 	if (task && task != current) {
7708 		struct perf_event_context *ctx;
7709 		struct trace_entry *entry = record;
7710 
7711 		rcu_read_lock();
7712 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7713 		if (!ctx)
7714 			goto unlock;
7715 
7716 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7717 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7718 				continue;
7719 			if (event->attr.config != entry->type)
7720 				continue;
7721 			if (perf_tp_event_match(event, &data, regs))
7722 				perf_swevent_event(event, count, &data, regs);
7723 		}
7724 unlock:
7725 		rcu_read_unlock();
7726 	}
7727 
7728 	perf_swevent_put_recursion_context(rctx);
7729 }
7730 EXPORT_SYMBOL_GPL(perf_tp_event);
7731 
7732 static void tp_perf_event_destroy(struct perf_event *event)
7733 {
7734 	perf_trace_destroy(event);
7735 }
7736 
7737 static int perf_tp_event_init(struct perf_event *event)
7738 {
7739 	int err;
7740 
7741 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7742 		return -ENOENT;
7743 
7744 	/*
7745 	 * no branch sampling for tracepoint events
7746 	 */
7747 	if (has_branch_stack(event))
7748 		return -EOPNOTSUPP;
7749 
7750 	err = perf_trace_init(event);
7751 	if (err)
7752 		return err;
7753 
7754 	event->destroy = tp_perf_event_destroy;
7755 
7756 	return 0;
7757 }
7758 
7759 static struct pmu perf_tracepoint = {
7760 	.task_ctx_nr	= perf_sw_context,
7761 
7762 	.event_init	= perf_tp_event_init,
7763 	.add		= perf_trace_add,
7764 	.del		= perf_trace_del,
7765 	.start		= perf_swevent_start,
7766 	.stop		= perf_swevent_stop,
7767 	.read		= perf_swevent_read,
7768 };
7769 
7770 static inline void perf_tp_register(void)
7771 {
7772 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7773 }
7774 
7775 static void perf_event_free_filter(struct perf_event *event)
7776 {
7777 	ftrace_profile_free_filter(event);
7778 }
7779 
7780 #ifdef CONFIG_BPF_SYSCALL
7781 static void bpf_overflow_handler(struct perf_event *event,
7782 				 struct perf_sample_data *data,
7783 				 struct pt_regs *regs)
7784 {
7785 	struct bpf_perf_event_data_kern ctx = {
7786 		.data = data,
7787 		.regs = regs,
7788 	};
7789 	int ret = 0;
7790 
7791 	preempt_disable();
7792 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7793 		goto out;
7794 	rcu_read_lock();
7795 	ret = BPF_PROG_RUN(event->prog, &ctx);
7796 	rcu_read_unlock();
7797 out:
7798 	__this_cpu_dec(bpf_prog_active);
7799 	preempt_enable();
7800 	if (!ret)
7801 		return;
7802 
7803 	event->orig_overflow_handler(event, data, regs);
7804 }
7805 
7806 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7807 {
7808 	struct bpf_prog *prog;
7809 
7810 	if (event->overflow_handler_context)
7811 		/* hw breakpoint or kernel counter */
7812 		return -EINVAL;
7813 
7814 	if (event->prog)
7815 		return -EEXIST;
7816 
7817 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7818 	if (IS_ERR(prog))
7819 		return PTR_ERR(prog);
7820 
7821 	event->prog = prog;
7822 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7823 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7824 	return 0;
7825 }
7826 
7827 static void perf_event_free_bpf_handler(struct perf_event *event)
7828 {
7829 	struct bpf_prog *prog = event->prog;
7830 
7831 	if (!prog)
7832 		return;
7833 
7834 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7835 	event->prog = NULL;
7836 	bpf_prog_put(prog);
7837 }
7838 #else
7839 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7840 {
7841 	return -EOPNOTSUPP;
7842 }
7843 static void perf_event_free_bpf_handler(struct perf_event *event)
7844 {
7845 }
7846 #endif
7847 
7848 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7849 {
7850 	bool is_kprobe, is_tracepoint;
7851 	struct bpf_prog *prog;
7852 
7853 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7854 	    event->attr.type == PERF_TYPE_SOFTWARE)
7855 		return perf_event_set_bpf_handler(event, prog_fd);
7856 
7857 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7858 		return -EINVAL;
7859 
7860 	if (event->tp_event->prog)
7861 		return -EEXIST;
7862 
7863 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7864 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7865 	if (!is_kprobe && !is_tracepoint)
7866 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7867 		return -EINVAL;
7868 
7869 	prog = bpf_prog_get(prog_fd);
7870 	if (IS_ERR(prog))
7871 		return PTR_ERR(prog);
7872 
7873 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7874 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7875 		/* valid fd, but invalid bpf program type */
7876 		bpf_prog_put(prog);
7877 		return -EINVAL;
7878 	}
7879 
7880 	if (is_tracepoint) {
7881 		int off = trace_event_get_offsets(event->tp_event);
7882 
7883 		if (prog->aux->max_ctx_offset > off) {
7884 			bpf_prog_put(prog);
7885 			return -EACCES;
7886 		}
7887 	}
7888 	event->tp_event->prog = prog;
7889 
7890 	return 0;
7891 }
7892 
7893 static void perf_event_free_bpf_prog(struct perf_event *event)
7894 {
7895 	struct bpf_prog *prog;
7896 
7897 	perf_event_free_bpf_handler(event);
7898 
7899 	if (!event->tp_event)
7900 		return;
7901 
7902 	prog = event->tp_event->prog;
7903 	if (prog) {
7904 		event->tp_event->prog = NULL;
7905 		bpf_prog_put(prog);
7906 	}
7907 }
7908 
7909 #else
7910 
7911 static inline void perf_tp_register(void)
7912 {
7913 }
7914 
7915 static void perf_event_free_filter(struct perf_event *event)
7916 {
7917 }
7918 
7919 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7920 {
7921 	return -ENOENT;
7922 }
7923 
7924 static void perf_event_free_bpf_prog(struct perf_event *event)
7925 {
7926 }
7927 #endif /* CONFIG_EVENT_TRACING */
7928 
7929 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7930 void perf_bp_event(struct perf_event *bp, void *data)
7931 {
7932 	struct perf_sample_data sample;
7933 	struct pt_regs *regs = data;
7934 
7935 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7936 
7937 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7938 		perf_swevent_event(bp, 1, &sample, regs);
7939 }
7940 #endif
7941 
7942 /*
7943  * Allocate a new address filter
7944  */
7945 static struct perf_addr_filter *
7946 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7947 {
7948 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7949 	struct perf_addr_filter *filter;
7950 
7951 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7952 	if (!filter)
7953 		return NULL;
7954 
7955 	INIT_LIST_HEAD(&filter->entry);
7956 	list_add_tail(&filter->entry, filters);
7957 
7958 	return filter;
7959 }
7960 
7961 static void free_filters_list(struct list_head *filters)
7962 {
7963 	struct perf_addr_filter *filter, *iter;
7964 
7965 	list_for_each_entry_safe(filter, iter, filters, entry) {
7966 		if (filter->inode)
7967 			iput(filter->inode);
7968 		list_del(&filter->entry);
7969 		kfree(filter);
7970 	}
7971 }
7972 
7973 /*
7974  * Free existing address filters and optionally install new ones
7975  */
7976 static void perf_addr_filters_splice(struct perf_event *event,
7977 				     struct list_head *head)
7978 {
7979 	unsigned long flags;
7980 	LIST_HEAD(list);
7981 
7982 	if (!has_addr_filter(event))
7983 		return;
7984 
7985 	/* don't bother with children, they don't have their own filters */
7986 	if (event->parent)
7987 		return;
7988 
7989 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7990 
7991 	list_splice_init(&event->addr_filters.list, &list);
7992 	if (head)
7993 		list_splice(head, &event->addr_filters.list);
7994 
7995 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7996 
7997 	free_filters_list(&list);
7998 }
7999 
8000 /*
8001  * Scan through mm's vmas and see if one of them matches the
8002  * @filter; if so, adjust filter's address range.
8003  * Called with mm::mmap_sem down for reading.
8004  */
8005 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8006 					    struct mm_struct *mm)
8007 {
8008 	struct vm_area_struct *vma;
8009 
8010 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8011 		struct file *file = vma->vm_file;
8012 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8013 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8014 
8015 		if (!file)
8016 			continue;
8017 
8018 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8019 			continue;
8020 
8021 		return vma->vm_start;
8022 	}
8023 
8024 	return 0;
8025 }
8026 
8027 /*
8028  * Update event's address range filters based on the
8029  * task's existing mappings, if any.
8030  */
8031 static void perf_event_addr_filters_apply(struct perf_event *event)
8032 {
8033 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8034 	struct task_struct *task = READ_ONCE(event->ctx->task);
8035 	struct perf_addr_filter *filter;
8036 	struct mm_struct *mm = NULL;
8037 	unsigned int count = 0;
8038 	unsigned long flags;
8039 
8040 	/*
8041 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8042 	 * will stop on the parent's child_mutex that our caller is also holding
8043 	 */
8044 	if (task == TASK_TOMBSTONE)
8045 		return;
8046 
8047 	mm = get_task_mm(event->ctx->task);
8048 	if (!mm)
8049 		goto restart;
8050 
8051 	down_read(&mm->mmap_sem);
8052 
8053 	raw_spin_lock_irqsave(&ifh->lock, flags);
8054 	list_for_each_entry(filter, &ifh->list, entry) {
8055 		event->addr_filters_offs[count] = 0;
8056 
8057 		/*
8058 		 * Adjust base offset if the filter is associated to a binary
8059 		 * that needs to be mapped:
8060 		 */
8061 		if (filter->inode)
8062 			event->addr_filters_offs[count] =
8063 				perf_addr_filter_apply(filter, mm);
8064 
8065 		count++;
8066 	}
8067 
8068 	event->addr_filters_gen++;
8069 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8070 
8071 	up_read(&mm->mmap_sem);
8072 
8073 	mmput(mm);
8074 
8075 restart:
8076 	perf_event_stop(event, 1);
8077 }
8078 
8079 /*
8080  * Address range filtering: limiting the data to certain
8081  * instruction address ranges. Filters are ioctl()ed to us from
8082  * userspace as ascii strings.
8083  *
8084  * Filter string format:
8085  *
8086  * ACTION RANGE_SPEC
8087  * where ACTION is one of the
8088  *  * "filter": limit the trace to this region
8089  *  * "start": start tracing from this address
8090  *  * "stop": stop tracing at this address/region;
8091  * RANGE_SPEC is
8092  *  * for kernel addresses: <start address>[/<size>]
8093  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8094  *
8095  * if <size> is not specified, the range is treated as a single address.
8096  */
8097 enum {
8098 	IF_ACT_NONE = -1,
8099 	IF_ACT_FILTER,
8100 	IF_ACT_START,
8101 	IF_ACT_STOP,
8102 	IF_SRC_FILE,
8103 	IF_SRC_KERNEL,
8104 	IF_SRC_FILEADDR,
8105 	IF_SRC_KERNELADDR,
8106 };
8107 
8108 enum {
8109 	IF_STATE_ACTION = 0,
8110 	IF_STATE_SOURCE,
8111 	IF_STATE_END,
8112 };
8113 
8114 static const match_table_t if_tokens = {
8115 	{ IF_ACT_FILTER,	"filter" },
8116 	{ IF_ACT_START,		"start" },
8117 	{ IF_ACT_STOP,		"stop" },
8118 	{ IF_SRC_FILE,		"%u/%u@%s" },
8119 	{ IF_SRC_KERNEL,	"%u/%u" },
8120 	{ IF_SRC_FILEADDR,	"%u@%s" },
8121 	{ IF_SRC_KERNELADDR,	"%u" },
8122 	{ IF_ACT_NONE,		NULL },
8123 };
8124 
8125 /*
8126  * Address filter string parser
8127  */
8128 static int
8129 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8130 			     struct list_head *filters)
8131 {
8132 	struct perf_addr_filter *filter = NULL;
8133 	char *start, *orig, *filename = NULL;
8134 	struct path path;
8135 	substring_t args[MAX_OPT_ARGS];
8136 	int state = IF_STATE_ACTION, token;
8137 	unsigned int kernel = 0;
8138 	int ret = -EINVAL;
8139 
8140 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8141 	if (!fstr)
8142 		return -ENOMEM;
8143 
8144 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8145 		ret = -EINVAL;
8146 
8147 		if (!*start)
8148 			continue;
8149 
8150 		/* filter definition begins */
8151 		if (state == IF_STATE_ACTION) {
8152 			filter = perf_addr_filter_new(event, filters);
8153 			if (!filter)
8154 				goto fail;
8155 		}
8156 
8157 		token = match_token(start, if_tokens, args);
8158 		switch (token) {
8159 		case IF_ACT_FILTER:
8160 		case IF_ACT_START:
8161 			filter->filter = 1;
8162 
8163 		case IF_ACT_STOP:
8164 			if (state != IF_STATE_ACTION)
8165 				goto fail;
8166 
8167 			state = IF_STATE_SOURCE;
8168 			break;
8169 
8170 		case IF_SRC_KERNELADDR:
8171 		case IF_SRC_KERNEL:
8172 			kernel = 1;
8173 
8174 		case IF_SRC_FILEADDR:
8175 		case IF_SRC_FILE:
8176 			if (state != IF_STATE_SOURCE)
8177 				goto fail;
8178 
8179 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8180 				filter->range = 1;
8181 
8182 			*args[0].to = 0;
8183 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8184 			if (ret)
8185 				goto fail;
8186 
8187 			if (filter->range) {
8188 				*args[1].to = 0;
8189 				ret = kstrtoul(args[1].from, 0, &filter->size);
8190 				if (ret)
8191 					goto fail;
8192 			}
8193 
8194 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8195 				int fpos = filter->range ? 2 : 1;
8196 
8197 				filename = match_strdup(&args[fpos]);
8198 				if (!filename) {
8199 					ret = -ENOMEM;
8200 					goto fail;
8201 				}
8202 			}
8203 
8204 			state = IF_STATE_END;
8205 			break;
8206 
8207 		default:
8208 			goto fail;
8209 		}
8210 
8211 		/*
8212 		 * Filter definition is fully parsed, validate and install it.
8213 		 * Make sure that it doesn't contradict itself or the event's
8214 		 * attribute.
8215 		 */
8216 		if (state == IF_STATE_END) {
8217 			if (kernel && event->attr.exclude_kernel)
8218 				goto fail;
8219 
8220 			if (!kernel) {
8221 				if (!filename)
8222 					goto fail;
8223 
8224 				/* look up the path and grab its inode */
8225 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8226 				if (ret)
8227 					goto fail_free_name;
8228 
8229 				filter->inode = igrab(d_inode(path.dentry));
8230 				path_put(&path);
8231 				kfree(filename);
8232 				filename = NULL;
8233 
8234 				ret = -EINVAL;
8235 				if (!filter->inode ||
8236 				    !S_ISREG(filter->inode->i_mode))
8237 					/* free_filters_list() will iput() */
8238 					goto fail;
8239 			}
8240 
8241 			/* ready to consume more filters */
8242 			state = IF_STATE_ACTION;
8243 			filter = NULL;
8244 		}
8245 	}
8246 
8247 	if (state != IF_STATE_ACTION)
8248 		goto fail;
8249 
8250 	kfree(orig);
8251 
8252 	return 0;
8253 
8254 fail_free_name:
8255 	kfree(filename);
8256 fail:
8257 	free_filters_list(filters);
8258 	kfree(orig);
8259 
8260 	return ret;
8261 }
8262 
8263 static int
8264 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8265 {
8266 	LIST_HEAD(filters);
8267 	int ret;
8268 
8269 	/*
8270 	 * Since this is called in perf_ioctl() path, we're already holding
8271 	 * ctx::mutex.
8272 	 */
8273 	lockdep_assert_held(&event->ctx->mutex);
8274 
8275 	if (WARN_ON_ONCE(event->parent))
8276 		return -EINVAL;
8277 
8278 	/*
8279 	 * For now, we only support filtering in per-task events; doing so
8280 	 * for CPU-wide events requires additional context switching trickery,
8281 	 * since same object code will be mapped at different virtual
8282 	 * addresses in different processes.
8283 	 */
8284 	if (!event->ctx->task)
8285 		return -EOPNOTSUPP;
8286 
8287 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8288 	if (ret)
8289 		return ret;
8290 
8291 	ret = event->pmu->addr_filters_validate(&filters);
8292 	if (ret) {
8293 		free_filters_list(&filters);
8294 		return ret;
8295 	}
8296 
8297 	/* remove existing filters, if any */
8298 	perf_addr_filters_splice(event, &filters);
8299 
8300 	/* install new filters */
8301 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8302 
8303 	return ret;
8304 }
8305 
8306 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8307 {
8308 	char *filter_str;
8309 	int ret = -EINVAL;
8310 
8311 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8312 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8313 	    !has_addr_filter(event))
8314 		return -EINVAL;
8315 
8316 	filter_str = strndup_user(arg, PAGE_SIZE);
8317 	if (IS_ERR(filter_str))
8318 		return PTR_ERR(filter_str);
8319 
8320 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8321 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8322 		ret = ftrace_profile_set_filter(event, event->attr.config,
8323 						filter_str);
8324 	else if (has_addr_filter(event))
8325 		ret = perf_event_set_addr_filter(event, filter_str);
8326 
8327 	kfree(filter_str);
8328 	return ret;
8329 }
8330 
8331 /*
8332  * hrtimer based swevent callback
8333  */
8334 
8335 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8336 {
8337 	enum hrtimer_restart ret = HRTIMER_RESTART;
8338 	struct perf_sample_data data;
8339 	struct pt_regs *regs;
8340 	struct perf_event *event;
8341 	u64 period;
8342 
8343 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8344 
8345 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8346 		return HRTIMER_NORESTART;
8347 
8348 	event->pmu->read(event);
8349 
8350 	perf_sample_data_init(&data, 0, event->hw.last_period);
8351 	regs = get_irq_regs();
8352 
8353 	if (regs && !perf_exclude_event(event, regs)) {
8354 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8355 			if (__perf_event_overflow(event, 1, &data, regs))
8356 				ret = HRTIMER_NORESTART;
8357 	}
8358 
8359 	period = max_t(u64, 10000, event->hw.sample_period);
8360 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8361 
8362 	return ret;
8363 }
8364 
8365 static void perf_swevent_start_hrtimer(struct perf_event *event)
8366 {
8367 	struct hw_perf_event *hwc = &event->hw;
8368 	s64 period;
8369 
8370 	if (!is_sampling_event(event))
8371 		return;
8372 
8373 	period = local64_read(&hwc->period_left);
8374 	if (period) {
8375 		if (period < 0)
8376 			period = 10000;
8377 
8378 		local64_set(&hwc->period_left, 0);
8379 	} else {
8380 		period = max_t(u64, 10000, hwc->sample_period);
8381 	}
8382 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8383 		      HRTIMER_MODE_REL_PINNED);
8384 }
8385 
8386 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8387 {
8388 	struct hw_perf_event *hwc = &event->hw;
8389 
8390 	if (is_sampling_event(event)) {
8391 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8392 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8393 
8394 		hrtimer_cancel(&hwc->hrtimer);
8395 	}
8396 }
8397 
8398 static void perf_swevent_init_hrtimer(struct perf_event *event)
8399 {
8400 	struct hw_perf_event *hwc = &event->hw;
8401 
8402 	if (!is_sampling_event(event))
8403 		return;
8404 
8405 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8406 	hwc->hrtimer.function = perf_swevent_hrtimer;
8407 
8408 	/*
8409 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8410 	 * mapping and avoid the whole period adjust feedback stuff.
8411 	 */
8412 	if (event->attr.freq) {
8413 		long freq = event->attr.sample_freq;
8414 
8415 		event->attr.sample_period = NSEC_PER_SEC / freq;
8416 		hwc->sample_period = event->attr.sample_period;
8417 		local64_set(&hwc->period_left, hwc->sample_period);
8418 		hwc->last_period = hwc->sample_period;
8419 		event->attr.freq = 0;
8420 	}
8421 }
8422 
8423 /*
8424  * Software event: cpu wall time clock
8425  */
8426 
8427 static void cpu_clock_event_update(struct perf_event *event)
8428 {
8429 	s64 prev;
8430 	u64 now;
8431 
8432 	now = local_clock();
8433 	prev = local64_xchg(&event->hw.prev_count, now);
8434 	local64_add(now - prev, &event->count);
8435 }
8436 
8437 static void cpu_clock_event_start(struct perf_event *event, int flags)
8438 {
8439 	local64_set(&event->hw.prev_count, local_clock());
8440 	perf_swevent_start_hrtimer(event);
8441 }
8442 
8443 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8444 {
8445 	perf_swevent_cancel_hrtimer(event);
8446 	cpu_clock_event_update(event);
8447 }
8448 
8449 static int cpu_clock_event_add(struct perf_event *event, int flags)
8450 {
8451 	if (flags & PERF_EF_START)
8452 		cpu_clock_event_start(event, flags);
8453 	perf_event_update_userpage(event);
8454 
8455 	return 0;
8456 }
8457 
8458 static void cpu_clock_event_del(struct perf_event *event, int flags)
8459 {
8460 	cpu_clock_event_stop(event, flags);
8461 }
8462 
8463 static void cpu_clock_event_read(struct perf_event *event)
8464 {
8465 	cpu_clock_event_update(event);
8466 }
8467 
8468 static int cpu_clock_event_init(struct perf_event *event)
8469 {
8470 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8471 		return -ENOENT;
8472 
8473 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8474 		return -ENOENT;
8475 
8476 	/*
8477 	 * no branch sampling for software events
8478 	 */
8479 	if (has_branch_stack(event))
8480 		return -EOPNOTSUPP;
8481 
8482 	perf_swevent_init_hrtimer(event);
8483 
8484 	return 0;
8485 }
8486 
8487 static struct pmu perf_cpu_clock = {
8488 	.task_ctx_nr	= perf_sw_context,
8489 
8490 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8491 
8492 	.event_init	= cpu_clock_event_init,
8493 	.add		= cpu_clock_event_add,
8494 	.del		= cpu_clock_event_del,
8495 	.start		= cpu_clock_event_start,
8496 	.stop		= cpu_clock_event_stop,
8497 	.read		= cpu_clock_event_read,
8498 };
8499 
8500 /*
8501  * Software event: task time clock
8502  */
8503 
8504 static void task_clock_event_update(struct perf_event *event, u64 now)
8505 {
8506 	u64 prev;
8507 	s64 delta;
8508 
8509 	prev = local64_xchg(&event->hw.prev_count, now);
8510 	delta = now - prev;
8511 	local64_add(delta, &event->count);
8512 }
8513 
8514 static void task_clock_event_start(struct perf_event *event, int flags)
8515 {
8516 	local64_set(&event->hw.prev_count, event->ctx->time);
8517 	perf_swevent_start_hrtimer(event);
8518 }
8519 
8520 static void task_clock_event_stop(struct perf_event *event, int flags)
8521 {
8522 	perf_swevent_cancel_hrtimer(event);
8523 	task_clock_event_update(event, event->ctx->time);
8524 }
8525 
8526 static int task_clock_event_add(struct perf_event *event, int flags)
8527 {
8528 	if (flags & PERF_EF_START)
8529 		task_clock_event_start(event, flags);
8530 	perf_event_update_userpage(event);
8531 
8532 	return 0;
8533 }
8534 
8535 static void task_clock_event_del(struct perf_event *event, int flags)
8536 {
8537 	task_clock_event_stop(event, PERF_EF_UPDATE);
8538 }
8539 
8540 static void task_clock_event_read(struct perf_event *event)
8541 {
8542 	u64 now = perf_clock();
8543 	u64 delta = now - event->ctx->timestamp;
8544 	u64 time = event->ctx->time + delta;
8545 
8546 	task_clock_event_update(event, time);
8547 }
8548 
8549 static int task_clock_event_init(struct perf_event *event)
8550 {
8551 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8552 		return -ENOENT;
8553 
8554 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8555 		return -ENOENT;
8556 
8557 	/*
8558 	 * no branch sampling for software events
8559 	 */
8560 	if (has_branch_stack(event))
8561 		return -EOPNOTSUPP;
8562 
8563 	perf_swevent_init_hrtimer(event);
8564 
8565 	return 0;
8566 }
8567 
8568 static struct pmu perf_task_clock = {
8569 	.task_ctx_nr	= perf_sw_context,
8570 
8571 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8572 
8573 	.event_init	= task_clock_event_init,
8574 	.add		= task_clock_event_add,
8575 	.del		= task_clock_event_del,
8576 	.start		= task_clock_event_start,
8577 	.stop		= task_clock_event_stop,
8578 	.read		= task_clock_event_read,
8579 };
8580 
8581 static void perf_pmu_nop_void(struct pmu *pmu)
8582 {
8583 }
8584 
8585 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8586 {
8587 }
8588 
8589 static int perf_pmu_nop_int(struct pmu *pmu)
8590 {
8591 	return 0;
8592 }
8593 
8594 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8595 
8596 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8597 {
8598 	__this_cpu_write(nop_txn_flags, flags);
8599 
8600 	if (flags & ~PERF_PMU_TXN_ADD)
8601 		return;
8602 
8603 	perf_pmu_disable(pmu);
8604 }
8605 
8606 static int perf_pmu_commit_txn(struct pmu *pmu)
8607 {
8608 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8609 
8610 	__this_cpu_write(nop_txn_flags, 0);
8611 
8612 	if (flags & ~PERF_PMU_TXN_ADD)
8613 		return 0;
8614 
8615 	perf_pmu_enable(pmu);
8616 	return 0;
8617 }
8618 
8619 static void perf_pmu_cancel_txn(struct pmu *pmu)
8620 {
8621 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8622 
8623 	__this_cpu_write(nop_txn_flags, 0);
8624 
8625 	if (flags & ~PERF_PMU_TXN_ADD)
8626 		return;
8627 
8628 	perf_pmu_enable(pmu);
8629 }
8630 
8631 static int perf_event_idx_default(struct perf_event *event)
8632 {
8633 	return 0;
8634 }
8635 
8636 /*
8637  * Ensures all contexts with the same task_ctx_nr have the same
8638  * pmu_cpu_context too.
8639  */
8640 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8641 {
8642 	struct pmu *pmu;
8643 
8644 	if (ctxn < 0)
8645 		return NULL;
8646 
8647 	list_for_each_entry(pmu, &pmus, entry) {
8648 		if (pmu->task_ctx_nr == ctxn)
8649 			return pmu->pmu_cpu_context;
8650 	}
8651 
8652 	return NULL;
8653 }
8654 
8655 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8656 {
8657 	int cpu;
8658 
8659 	for_each_possible_cpu(cpu) {
8660 		struct perf_cpu_context *cpuctx;
8661 
8662 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8663 
8664 		if (cpuctx->unique_pmu == old_pmu)
8665 			cpuctx->unique_pmu = pmu;
8666 	}
8667 }
8668 
8669 static void free_pmu_context(struct pmu *pmu)
8670 {
8671 	struct pmu *i;
8672 
8673 	mutex_lock(&pmus_lock);
8674 	/*
8675 	 * Like a real lame refcount.
8676 	 */
8677 	list_for_each_entry(i, &pmus, entry) {
8678 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8679 			update_pmu_context(i, pmu);
8680 			goto out;
8681 		}
8682 	}
8683 
8684 	free_percpu(pmu->pmu_cpu_context);
8685 out:
8686 	mutex_unlock(&pmus_lock);
8687 }
8688 
8689 /*
8690  * Let userspace know that this PMU supports address range filtering:
8691  */
8692 static ssize_t nr_addr_filters_show(struct device *dev,
8693 				    struct device_attribute *attr,
8694 				    char *page)
8695 {
8696 	struct pmu *pmu = dev_get_drvdata(dev);
8697 
8698 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8699 }
8700 DEVICE_ATTR_RO(nr_addr_filters);
8701 
8702 static struct idr pmu_idr;
8703 
8704 static ssize_t
8705 type_show(struct device *dev, struct device_attribute *attr, char *page)
8706 {
8707 	struct pmu *pmu = dev_get_drvdata(dev);
8708 
8709 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8710 }
8711 static DEVICE_ATTR_RO(type);
8712 
8713 static ssize_t
8714 perf_event_mux_interval_ms_show(struct device *dev,
8715 				struct device_attribute *attr,
8716 				char *page)
8717 {
8718 	struct pmu *pmu = dev_get_drvdata(dev);
8719 
8720 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8721 }
8722 
8723 static DEFINE_MUTEX(mux_interval_mutex);
8724 
8725 static ssize_t
8726 perf_event_mux_interval_ms_store(struct device *dev,
8727 				 struct device_attribute *attr,
8728 				 const char *buf, size_t count)
8729 {
8730 	struct pmu *pmu = dev_get_drvdata(dev);
8731 	int timer, cpu, ret;
8732 
8733 	ret = kstrtoint(buf, 0, &timer);
8734 	if (ret)
8735 		return ret;
8736 
8737 	if (timer < 1)
8738 		return -EINVAL;
8739 
8740 	/* same value, noting to do */
8741 	if (timer == pmu->hrtimer_interval_ms)
8742 		return count;
8743 
8744 	mutex_lock(&mux_interval_mutex);
8745 	pmu->hrtimer_interval_ms = timer;
8746 
8747 	/* update all cpuctx for this PMU */
8748 	get_online_cpus();
8749 	for_each_online_cpu(cpu) {
8750 		struct perf_cpu_context *cpuctx;
8751 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8752 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8753 
8754 		cpu_function_call(cpu,
8755 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8756 	}
8757 	put_online_cpus();
8758 	mutex_unlock(&mux_interval_mutex);
8759 
8760 	return count;
8761 }
8762 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8763 
8764 static struct attribute *pmu_dev_attrs[] = {
8765 	&dev_attr_type.attr,
8766 	&dev_attr_perf_event_mux_interval_ms.attr,
8767 	NULL,
8768 };
8769 ATTRIBUTE_GROUPS(pmu_dev);
8770 
8771 static int pmu_bus_running;
8772 static struct bus_type pmu_bus = {
8773 	.name		= "event_source",
8774 	.dev_groups	= pmu_dev_groups,
8775 };
8776 
8777 static void pmu_dev_release(struct device *dev)
8778 {
8779 	kfree(dev);
8780 }
8781 
8782 static int pmu_dev_alloc(struct pmu *pmu)
8783 {
8784 	int ret = -ENOMEM;
8785 
8786 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8787 	if (!pmu->dev)
8788 		goto out;
8789 
8790 	pmu->dev->groups = pmu->attr_groups;
8791 	device_initialize(pmu->dev);
8792 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8793 	if (ret)
8794 		goto free_dev;
8795 
8796 	dev_set_drvdata(pmu->dev, pmu);
8797 	pmu->dev->bus = &pmu_bus;
8798 	pmu->dev->release = pmu_dev_release;
8799 	ret = device_add(pmu->dev);
8800 	if (ret)
8801 		goto free_dev;
8802 
8803 	/* For PMUs with address filters, throw in an extra attribute: */
8804 	if (pmu->nr_addr_filters)
8805 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8806 
8807 	if (ret)
8808 		goto del_dev;
8809 
8810 out:
8811 	return ret;
8812 
8813 del_dev:
8814 	device_del(pmu->dev);
8815 
8816 free_dev:
8817 	put_device(pmu->dev);
8818 	goto out;
8819 }
8820 
8821 static struct lock_class_key cpuctx_mutex;
8822 static struct lock_class_key cpuctx_lock;
8823 
8824 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8825 {
8826 	int cpu, ret;
8827 
8828 	mutex_lock(&pmus_lock);
8829 	ret = -ENOMEM;
8830 	pmu->pmu_disable_count = alloc_percpu(int);
8831 	if (!pmu->pmu_disable_count)
8832 		goto unlock;
8833 
8834 	pmu->type = -1;
8835 	if (!name)
8836 		goto skip_type;
8837 	pmu->name = name;
8838 
8839 	if (type < 0) {
8840 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8841 		if (type < 0) {
8842 			ret = type;
8843 			goto free_pdc;
8844 		}
8845 	}
8846 	pmu->type = type;
8847 
8848 	if (pmu_bus_running) {
8849 		ret = pmu_dev_alloc(pmu);
8850 		if (ret)
8851 			goto free_idr;
8852 	}
8853 
8854 skip_type:
8855 	if (pmu->task_ctx_nr == perf_hw_context) {
8856 		static int hw_context_taken = 0;
8857 
8858 		/*
8859 		 * Other than systems with heterogeneous CPUs, it never makes
8860 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8861 		 * uncore must use perf_invalid_context.
8862 		 */
8863 		if (WARN_ON_ONCE(hw_context_taken &&
8864 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8865 			pmu->task_ctx_nr = perf_invalid_context;
8866 
8867 		hw_context_taken = 1;
8868 	}
8869 
8870 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8871 	if (pmu->pmu_cpu_context)
8872 		goto got_cpu_context;
8873 
8874 	ret = -ENOMEM;
8875 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8876 	if (!pmu->pmu_cpu_context)
8877 		goto free_dev;
8878 
8879 	for_each_possible_cpu(cpu) {
8880 		struct perf_cpu_context *cpuctx;
8881 
8882 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8883 		__perf_event_init_context(&cpuctx->ctx);
8884 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8885 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8886 		cpuctx->ctx.pmu = pmu;
8887 
8888 		__perf_mux_hrtimer_init(cpuctx, cpu);
8889 
8890 		cpuctx->unique_pmu = pmu;
8891 	}
8892 
8893 got_cpu_context:
8894 	if (!pmu->start_txn) {
8895 		if (pmu->pmu_enable) {
8896 			/*
8897 			 * If we have pmu_enable/pmu_disable calls, install
8898 			 * transaction stubs that use that to try and batch
8899 			 * hardware accesses.
8900 			 */
8901 			pmu->start_txn  = perf_pmu_start_txn;
8902 			pmu->commit_txn = perf_pmu_commit_txn;
8903 			pmu->cancel_txn = perf_pmu_cancel_txn;
8904 		} else {
8905 			pmu->start_txn  = perf_pmu_nop_txn;
8906 			pmu->commit_txn = perf_pmu_nop_int;
8907 			pmu->cancel_txn = perf_pmu_nop_void;
8908 		}
8909 	}
8910 
8911 	if (!pmu->pmu_enable) {
8912 		pmu->pmu_enable  = perf_pmu_nop_void;
8913 		pmu->pmu_disable = perf_pmu_nop_void;
8914 	}
8915 
8916 	if (!pmu->event_idx)
8917 		pmu->event_idx = perf_event_idx_default;
8918 
8919 	list_add_rcu(&pmu->entry, &pmus);
8920 	atomic_set(&pmu->exclusive_cnt, 0);
8921 	ret = 0;
8922 unlock:
8923 	mutex_unlock(&pmus_lock);
8924 
8925 	return ret;
8926 
8927 free_dev:
8928 	device_del(pmu->dev);
8929 	put_device(pmu->dev);
8930 
8931 free_idr:
8932 	if (pmu->type >= PERF_TYPE_MAX)
8933 		idr_remove(&pmu_idr, pmu->type);
8934 
8935 free_pdc:
8936 	free_percpu(pmu->pmu_disable_count);
8937 	goto unlock;
8938 }
8939 EXPORT_SYMBOL_GPL(perf_pmu_register);
8940 
8941 void perf_pmu_unregister(struct pmu *pmu)
8942 {
8943 	int remove_device;
8944 
8945 	mutex_lock(&pmus_lock);
8946 	remove_device = pmu_bus_running;
8947 	list_del_rcu(&pmu->entry);
8948 	mutex_unlock(&pmus_lock);
8949 
8950 	/*
8951 	 * We dereference the pmu list under both SRCU and regular RCU, so
8952 	 * synchronize against both of those.
8953 	 */
8954 	synchronize_srcu(&pmus_srcu);
8955 	synchronize_rcu();
8956 
8957 	free_percpu(pmu->pmu_disable_count);
8958 	if (pmu->type >= PERF_TYPE_MAX)
8959 		idr_remove(&pmu_idr, pmu->type);
8960 	if (remove_device) {
8961 		if (pmu->nr_addr_filters)
8962 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8963 		device_del(pmu->dev);
8964 		put_device(pmu->dev);
8965 	}
8966 	free_pmu_context(pmu);
8967 }
8968 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8969 
8970 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8971 {
8972 	struct perf_event_context *ctx = NULL;
8973 	int ret;
8974 
8975 	if (!try_module_get(pmu->module))
8976 		return -ENODEV;
8977 
8978 	if (event->group_leader != event) {
8979 		/*
8980 		 * This ctx->mutex can nest when we're called through
8981 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8982 		 */
8983 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8984 						 SINGLE_DEPTH_NESTING);
8985 		BUG_ON(!ctx);
8986 	}
8987 
8988 	event->pmu = pmu;
8989 	ret = pmu->event_init(event);
8990 
8991 	if (ctx)
8992 		perf_event_ctx_unlock(event->group_leader, ctx);
8993 
8994 	if (ret)
8995 		module_put(pmu->module);
8996 
8997 	return ret;
8998 }
8999 
9000 static struct pmu *perf_init_event(struct perf_event *event)
9001 {
9002 	struct pmu *pmu = NULL;
9003 	int idx;
9004 	int ret;
9005 
9006 	idx = srcu_read_lock(&pmus_srcu);
9007 
9008 	rcu_read_lock();
9009 	pmu = idr_find(&pmu_idr, event->attr.type);
9010 	rcu_read_unlock();
9011 	if (pmu) {
9012 		ret = perf_try_init_event(pmu, event);
9013 		if (ret)
9014 			pmu = ERR_PTR(ret);
9015 		goto unlock;
9016 	}
9017 
9018 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9019 		ret = perf_try_init_event(pmu, event);
9020 		if (!ret)
9021 			goto unlock;
9022 
9023 		if (ret != -ENOENT) {
9024 			pmu = ERR_PTR(ret);
9025 			goto unlock;
9026 		}
9027 	}
9028 	pmu = ERR_PTR(-ENOENT);
9029 unlock:
9030 	srcu_read_unlock(&pmus_srcu, idx);
9031 
9032 	return pmu;
9033 }
9034 
9035 static void attach_sb_event(struct perf_event *event)
9036 {
9037 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9038 
9039 	raw_spin_lock(&pel->lock);
9040 	list_add_rcu(&event->sb_list, &pel->list);
9041 	raw_spin_unlock(&pel->lock);
9042 }
9043 
9044 /*
9045  * We keep a list of all !task (and therefore per-cpu) events
9046  * that need to receive side-band records.
9047  *
9048  * This avoids having to scan all the various PMU per-cpu contexts
9049  * looking for them.
9050  */
9051 static void account_pmu_sb_event(struct perf_event *event)
9052 {
9053 	if (is_sb_event(event))
9054 		attach_sb_event(event);
9055 }
9056 
9057 static void account_event_cpu(struct perf_event *event, int cpu)
9058 {
9059 	if (event->parent)
9060 		return;
9061 
9062 	if (is_cgroup_event(event))
9063 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9064 }
9065 
9066 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9067 static void account_freq_event_nohz(void)
9068 {
9069 #ifdef CONFIG_NO_HZ_FULL
9070 	/* Lock so we don't race with concurrent unaccount */
9071 	spin_lock(&nr_freq_lock);
9072 	if (atomic_inc_return(&nr_freq_events) == 1)
9073 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9074 	spin_unlock(&nr_freq_lock);
9075 #endif
9076 }
9077 
9078 static void account_freq_event(void)
9079 {
9080 	if (tick_nohz_full_enabled())
9081 		account_freq_event_nohz();
9082 	else
9083 		atomic_inc(&nr_freq_events);
9084 }
9085 
9086 
9087 static void account_event(struct perf_event *event)
9088 {
9089 	bool inc = false;
9090 
9091 	if (event->parent)
9092 		return;
9093 
9094 	if (event->attach_state & PERF_ATTACH_TASK)
9095 		inc = true;
9096 	if (event->attr.mmap || event->attr.mmap_data)
9097 		atomic_inc(&nr_mmap_events);
9098 	if (event->attr.comm)
9099 		atomic_inc(&nr_comm_events);
9100 	if (event->attr.task)
9101 		atomic_inc(&nr_task_events);
9102 	if (event->attr.freq)
9103 		account_freq_event();
9104 	if (event->attr.context_switch) {
9105 		atomic_inc(&nr_switch_events);
9106 		inc = true;
9107 	}
9108 	if (has_branch_stack(event))
9109 		inc = true;
9110 	if (is_cgroup_event(event))
9111 		inc = true;
9112 
9113 	if (inc) {
9114 		if (atomic_inc_not_zero(&perf_sched_count))
9115 			goto enabled;
9116 
9117 		mutex_lock(&perf_sched_mutex);
9118 		if (!atomic_read(&perf_sched_count)) {
9119 			static_branch_enable(&perf_sched_events);
9120 			/*
9121 			 * Guarantee that all CPUs observe they key change and
9122 			 * call the perf scheduling hooks before proceeding to
9123 			 * install events that need them.
9124 			 */
9125 			synchronize_sched();
9126 		}
9127 		/*
9128 		 * Now that we have waited for the sync_sched(), allow further
9129 		 * increments to by-pass the mutex.
9130 		 */
9131 		atomic_inc(&perf_sched_count);
9132 		mutex_unlock(&perf_sched_mutex);
9133 	}
9134 enabled:
9135 
9136 	account_event_cpu(event, event->cpu);
9137 
9138 	account_pmu_sb_event(event);
9139 }
9140 
9141 /*
9142  * Allocate and initialize a event structure
9143  */
9144 static struct perf_event *
9145 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9146 		 struct task_struct *task,
9147 		 struct perf_event *group_leader,
9148 		 struct perf_event *parent_event,
9149 		 perf_overflow_handler_t overflow_handler,
9150 		 void *context, int cgroup_fd)
9151 {
9152 	struct pmu *pmu;
9153 	struct perf_event *event;
9154 	struct hw_perf_event *hwc;
9155 	long err = -EINVAL;
9156 
9157 	if ((unsigned)cpu >= nr_cpu_ids) {
9158 		if (!task || cpu != -1)
9159 			return ERR_PTR(-EINVAL);
9160 	}
9161 
9162 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9163 	if (!event)
9164 		return ERR_PTR(-ENOMEM);
9165 
9166 	/*
9167 	 * Single events are their own group leaders, with an
9168 	 * empty sibling list:
9169 	 */
9170 	if (!group_leader)
9171 		group_leader = event;
9172 
9173 	mutex_init(&event->child_mutex);
9174 	INIT_LIST_HEAD(&event->child_list);
9175 
9176 	INIT_LIST_HEAD(&event->group_entry);
9177 	INIT_LIST_HEAD(&event->event_entry);
9178 	INIT_LIST_HEAD(&event->sibling_list);
9179 	INIT_LIST_HEAD(&event->rb_entry);
9180 	INIT_LIST_HEAD(&event->active_entry);
9181 	INIT_LIST_HEAD(&event->addr_filters.list);
9182 	INIT_HLIST_NODE(&event->hlist_entry);
9183 
9184 
9185 	init_waitqueue_head(&event->waitq);
9186 	init_irq_work(&event->pending, perf_pending_event);
9187 
9188 	mutex_init(&event->mmap_mutex);
9189 	raw_spin_lock_init(&event->addr_filters.lock);
9190 
9191 	atomic_long_set(&event->refcount, 1);
9192 	event->cpu		= cpu;
9193 	event->attr		= *attr;
9194 	event->group_leader	= group_leader;
9195 	event->pmu		= NULL;
9196 	event->oncpu		= -1;
9197 
9198 	event->parent		= parent_event;
9199 
9200 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9201 	event->id		= atomic64_inc_return(&perf_event_id);
9202 
9203 	event->state		= PERF_EVENT_STATE_INACTIVE;
9204 
9205 	if (task) {
9206 		event->attach_state = PERF_ATTACH_TASK;
9207 		/*
9208 		 * XXX pmu::event_init needs to know what task to account to
9209 		 * and we cannot use the ctx information because we need the
9210 		 * pmu before we get a ctx.
9211 		 */
9212 		event->hw.target = task;
9213 	}
9214 
9215 	event->clock = &local_clock;
9216 	if (parent_event)
9217 		event->clock = parent_event->clock;
9218 
9219 	if (!overflow_handler && parent_event) {
9220 		overflow_handler = parent_event->overflow_handler;
9221 		context = parent_event->overflow_handler_context;
9222 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9223 		if (overflow_handler == bpf_overflow_handler) {
9224 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9225 
9226 			if (IS_ERR(prog)) {
9227 				err = PTR_ERR(prog);
9228 				goto err_ns;
9229 			}
9230 			event->prog = prog;
9231 			event->orig_overflow_handler =
9232 				parent_event->orig_overflow_handler;
9233 		}
9234 #endif
9235 	}
9236 
9237 	if (overflow_handler) {
9238 		event->overflow_handler	= overflow_handler;
9239 		event->overflow_handler_context = context;
9240 	} else if (is_write_backward(event)){
9241 		event->overflow_handler = perf_event_output_backward;
9242 		event->overflow_handler_context = NULL;
9243 	} else {
9244 		event->overflow_handler = perf_event_output_forward;
9245 		event->overflow_handler_context = NULL;
9246 	}
9247 
9248 	perf_event__state_init(event);
9249 
9250 	pmu = NULL;
9251 
9252 	hwc = &event->hw;
9253 	hwc->sample_period = attr->sample_period;
9254 	if (attr->freq && attr->sample_freq)
9255 		hwc->sample_period = 1;
9256 	hwc->last_period = hwc->sample_period;
9257 
9258 	local64_set(&hwc->period_left, hwc->sample_period);
9259 
9260 	/*
9261 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9262 	 */
9263 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9264 		goto err_ns;
9265 
9266 	if (!has_branch_stack(event))
9267 		event->attr.branch_sample_type = 0;
9268 
9269 	if (cgroup_fd != -1) {
9270 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9271 		if (err)
9272 			goto err_ns;
9273 	}
9274 
9275 	pmu = perf_init_event(event);
9276 	if (!pmu)
9277 		goto err_ns;
9278 	else if (IS_ERR(pmu)) {
9279 		err = PTR_ERR(pmu);
9280 		goto err_ns;
9281 	}
9282 
9283 	err = exclusive_event_init(event);
9284 	if (err)
9285 		goto err_pmu;
9286 
9287 	if (has_addr_filter(event)) {
9288 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9289 						   sizeof(unsigned long),
9290 						   GFP_KERNEL);
9291 		if (!event->addr_filters_offs)
9292 			goto err_per_task;
9293 
9294 		/* force hw sync on the address filters */
9295 		event->addr_filters_gen = 1;
9296 	}
9297 
9298 	if (!event->parent) {
9299 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9300 			err = get_callchain_buffers(attr->sample_max_stack);
9301 			if (err)
9302 				goto err_addr_filters;
9303 		}
9304 	}
9305 
9306 	/* symmetric to unaccount_event() in _free_event() */
9307 	account_event(event);
9308 
9309 	return event;
9310 
9311 err_addr_filters:
9312 	kfree(event->addr_filters_offs);
9313 
9314 err_per_task:
9315 	exclusive_event_destroy(event);
9316 
9317 err_pmu:
9318 	if (event->destroy)
9319 		event->destroy(event);
9320 	module_put(pmu->module);
9321 err_ns:
9322 	if (is_cgroup_event(event))
9323 		perf_detach_cgroup(event);
9324 	if (event->ns)
9325 		put_pid_ns(event->ns);
9326 	kfree(event);
9327 
9328 	return ERR_PTR(err);
9329 }
9330 
9331 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9332 			  struct perf_event_attr *attr)
9333 {
9334 	u32 size;
9335 	int ret;
9336 
9337 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9338 		return -EFAULT;
9339 
9340 	/*
9341 	 * zero the full structure, so that a short copy will be nice.
9342 	 */
9343 	memset(attr, 0, sizeof(*attr));
9344 
9345 	ret = get_user(size, &uattr->size);
9346 	if (ret)
9347 		return ret;
9348 
9349 	if (size > PAGE_SIZE)	/* silly large */
9350 		goto err_size;
9351 
9352 	if (!size)		/* abi compat */
9353 		size = PERF_ATTR_SIZE_VER0;
9354 
9355 	if (size < PERF_ATTR_SIZE_VER0)
9356 		goto err_size;
9357 
9358 	/*
9359 	 * If we're handed a bigger struct than we know of,
9360 	 * ensure all the unknown bits are 0 - i.e. new
9361 	 * user-space does not rely on any kernel feature
9362 	 * extensions we dont know about yet.
9363 	 */
9364 	if (size > sizeof(*attr)) {
9365 		unsigned char __user *addr;
9366 		unsigned char __user *end;
9367 		unsigned char val;
9368 
9369 		addr = (void __user *)uattr + sizeof(*attr);
9370 		end  = (void __user *)uattr + size;
9371 
9372 		for (; addr < end; addr++) {
9373 			ret = get_user(val, addr);
9374 			if (ret)
9375 				return ret;
9376 			if (val)
9377 				goto err_size;
9378 		}
9379 		size = sizeof(*attr);
9380 	}
9381 
9382 	ret = copy_from_user(attr, uattr, size);
9383 	if (ret)
9384 		return -EFAULT;
9385 
9386 	if (attr->__reserved_1)
9387 		return -EINVAL;
9388 
9389 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9390 		return -EINVAL;
9391 
9392 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9393 		return -EINVAL;
9394 
9395 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9396 		u64 mask = attr->branch_sample_type;
9397 
9398 		/* only using defined bits */
9399 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9400 			return -EINVAL;
9401 
9402 		/* at least one branch bit must be set */
9403 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9404 			return -EINVAL;
9405 
9406 		/* propagate priv level, when not set for branch */
9407 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9408 
9409 			/* exclude_kernel checked on syscall entry */
9410 			if (!attr->exclude_kernel)
9411 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9412 
9413 			if (!attr->exclude_user)
9414 				mask |= PERF_SAMPLE_BRANCH_USER;
9415 
9416 			if (!attr->exclude_hv)
9417 				mask |= PERF_SAMPLE_BRANCH_HV;
9418 			/*
9419 			 * adjust user setting (for HW filter setup)
9420 			 */
9421 			attr->branch_sample_type = mask;
9422 		}
9423 		/* privileged levels capture (kernel, hv): check permissions */
9424 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9425 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9426 			return -EACCES;
9427 	}
9428 
9429 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9430 		ret = perf_reg_validate(attr->sample_regs_user);
9431 		if (ret)
9432 			return ret;
9433 	}
9434 
9435 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9436 		if (!arch_perf_have_user_stack_dump())
9437 			return -ENOSYS;
9438 
9439 		/*
9440 		 * We have __u32 type for the size, but so far
9441 		 * we can only use __u16 as maximum due to the
9442 		 * __u16 sample size limit.
9443 		 */
9444 		if (attr->sample_stack_user >= USHRT_MAX)
9445 			ret = -EINVAL;
9446 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9447 			ret = -EINVAL;
9448 	}
9449 
9450 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9451 		ret = perf_reg_validate(attr->sample_regs_intr);
9452 out:
9453 	return ret;
9454 
9455 err_size:
9456 	put_user(sizeof(*attr), &uattr->size);
9457 	ret = -E2BIG;
9458 	goto out;
9459 }
9460 
9461 static int
9462 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9463 {
9464 	struct ring_buffer *rb = NULL;
9465 	int ret = -EINVAL;
9466 
9467 	if (!output_event)
9468 		goto set;
9469 
9470 	/* don't allow circular references */
9471 	if (event == output_event)
9472 		goto out;
9473 
9474 	/*
9475 	 * Don't allow cross-cpu buffers
9476 	 */
9477 	if (output_event->cpu != event->cpu)
9478 		goto out;
9479 
9480 	/*
9481 	 * If its not a per-cpu rb, it must be the same task.
9482 	 */
9483 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9484 		goto out;
9485 
9486 	/*
9487 	 * Mixing clocks in the same buffer is trouble you don't need.
9488 	 */
9489 	if (output_event->clock != event->clock)
9490 		goto out;
9491 
9492 	/*
9493 	 * Either writing ring buffer from beginning or from end.
9494 	 * Mixing is not allowed.
9495 	 */
9496 	if (is_write_backward(output_event) != is_write_backward(event))
9497 		goto out;
9498 
9499 	/*
9500 	 * If both events generate aux data, they must be on the same PMU
9501 	 */
9502 	if (has_aux(event) && has_aux(output_event) &&
9503 	    event->pmu != output_event->pmu)
9504 		goto out;
9505 
9506 set:
9507 	mutex_lock(&event->mmap_mutex);
9508 	/* Can't redirect output if we've got an active mmap() */
9509 	if (atomic_read(&event->mmap_count))
9510 		goto unlock;
9511 
9512 	if (output_event) {
9513 		/* get the rb we want to redirect to */
9514 		rb = ring_buffer_get(output_event);
9515 		if (!rb)
9516 			goto unlock;
9517 	}
9518 
9519 	ring_buffer_attach(event, rb);
9520 
9521 	ret = 0;
9522 unlock:
9523 	mutex_unlock(&event->mmap_mutex);
9524 
9525 out:
9526 	return ret;
9527 }
9528 
9529 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9530 {
9531 	if (b < a)
9532 		swap(a, b);
9533 
9534 	mutex_lock(a);
9535 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9536 }
9537 
9538 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9539 {
9540 	bool nmi_safe = false;
9541 
9542 	switch (clk_id) {
9543 	case CLOCK_MONOTONIC:
9544 		event->clock = &ktime_get_mono_fast_ns;
9545 		nmi_safe = true;
9546 		break;
9547 
9548 	case CLOCK_MONOTONIC_RAW:
9549 		event->clock = &ktime_get_raw_fast_ns;
9550 		nmi_safe = true;
9551 		break;
9552 
9553 	case CLOCK_REALTIME:
9554 		event->clock = &ktime_get_real_ns;
9555 		break;
9556 
9557 	case CLOCK_BOOTTIME:
9558 		event->clock = &ktime_get_boot_ns;
9559 		break;
9560 
9561 	case CLOCK_TAI:
9562 		event->clock = &ktime_get_tai_ns;
9563 		break;
9564 
9565 	default:
9566 		return -EINVAL;
9567 	}
9568 
9569 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9570 		return -EINVAL;
9571 
9572 	return 0;
9573 }
9574 
9575 /*
9576  * Variation on perf_event_ctx_lock_nested(), except we take two context
9577  * mutexes.
9578  */
9579 static struct perf_event_context *
9580 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9581 			     struct perf_event_context *ctx)
9582 {
9583 	struct perf_event_context *gctx;
9584 
9585 again:
9586 	rcu_read_lock();
9587 	gctx = READ_ONCE(group_leader->ctx);
9588 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9589 		rcu_read_unlock();
9590 		goto again;
9591 	}
9592 	rcu_read_unlock();
9593 
9594 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9595 
9596 	if (group_leader->ctx != gctx) {
9597 		mutex_unlock(&ctx->mutex);
9598 		mutex_unlock(&gctx->mutex);
9599 		put_ctx(gctx);
9600 		goto again;
9601 	}
9602 
9603 	return gctx;
9604 }
9605 
9606 /**
9607  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9608  *
9609  * @attr_uptr:	event_id type attributes for monitoring/sampling
9610  * @pid:		target pid
9611  * @cpu:		target cpu
9612  * @group_fd:		group leader event fd
9613  */
9614 SYSCALL_DEFINE5(perf_event_open,
9615 		struct perf_event_attr __user *, attr_uptr,
9616 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9617 {
9618 	struct perf_event *group_leader = NULL, *output_event = NULL;
9619 	struct perf_event *event, *sibling;
9620 	struct perf_event_attr attr;
9621 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9622 	struct file *event_file = NULL;
9623 	struct fd group = {NULL, 0};
9624 	struct task_struct *task = NULL;
9625 	struct pmu *pmu;
9626 	int event_fd;
9627 	int move_group = 0;
9628 	int err;
9629 	int f_flags = O_RDWR;
9630 	int cgroup_fd = -1;
9631 
9632 	/* for future expandability... */
9633 	if (flags & ~PERF_FLAG_ALL)
9634 		return -EINVAL;
9635 
9636 	err = perf_copy_attr(attr_uptr, &attr);
9637 	if (err)
9638 		return err;
9639 
9640 	if (!attr.exclude_kernel) {
9641 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9642 			return -EACCES;
9643 	}
9644 
9645 	if (attr.freq) {
9646 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9647 			return -EINVAL;
9648 	} else {
9649 		if (attr.sample_period & (1ULL << 63))
9650 			return -EINVAL;
9651 	}
9652 
9653 	if (!attr.sample_max_stack)
9654 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9655 
9656 	/*
9657 	 * In cgroup mode, the pid argument is used to pass the fd
9658 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9659 	 * designates the cpu on which to monitor threads from that
9660 	 * cgroup.
9661 	 */
9662 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9663 		return -EINVAL;
9664 
9665 	if (flags & PERF_FLAG_FD_CLOEXEC)
9666 		f_flags |= O_CLOEXEC;
9667 
9668 	event_fd = get_unused_fd_flags(f_flags);
9669 	if (event_fd < 0)
9670 		return event_fd;
9671 
9672 	if (group_fd != -1) {
9673 		err = perf_fget_light(group_fd, &group);
9674 		if (err)
9675 			goto err_fd;
9676 		group_leader = group.file->private_data;
9677 		if (flags & PERF_FLAG_FD_OUTPUT)
9678 			output_event = group_leader;
9679 		if (flags & PERF_FLAG_FD_NO_GROUP)
9680 			group_leader = NULL;
9681 	}
9682 
9683 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9684 		task = find_lively_task_by_vpid(pid);
9685 		if (IS_ERR(task)) {
9686 			err = PTR_ERR(task);
9687 			goto err_group_fd;
9688 		}
9689 	}
9690 
9691 	if (task && group_leader &&
9692 	    group_leader->attr.inherit != attr.inherit) {
9693 		err = -EINVAL;
9694 		goto err_task;
9695 	}
9696 
9697 	get_online_cpus();
9698 
9699 	if (task) {
9700 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9701 		if (err)
9702 			goto err_cpus;
9703 
9704 		/*
9705 		 * Reuse ptrace permission checks for now.
9706 		 *
9707 		 * We must hold cred_guard_mutex across this and any potential
9708 		 * perf_install_in_context() call for this new event to
9709 		 * serialize against exec() altering our credentials (and the
9710 		 * perf_event_exit_task() that could imply).
9711 		 */
9712 		err = -EACCES;
9713 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9714 			goto err_cred;
9715 	}
9716 
9717 	if (flags & PERF_FLAG_PID_CGROUP)
9718 		cgroup_fd = pid;
9719 
9720 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9721 				 NULL, NULL, cgroup_fd);
9722 	if (IS_ERR(event)) {
9723 		err = PTR_ERR(event);
9724 		goto err_cred;
9725 	}
9726 
9727 	if (is_sampling_event(event)) {
9728 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9729 			err = -EOPNOTSUPP;
9730 			goto err_alloc;
9731 		}
9732 	}
9733 
9734 	/*
9735 	 * Special case software events and allow them to be part of
9736 	 * any hardware group.
9737 	 */
9738 	pmu = event->pmu;
9739 
9740 	if (attr.use_clockid) {
9741 		err = perf_event_set_clock(event, attr.clockid);
9742 		if (err)
9743 			goto err_alloc;
9744 	}
9745 
9746 	if (pmu->task_ctx_nr == perf_sw_context)
9747 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9748 
9749 	if (group_leader &&
9750 	    (is_software_event(event) != is_software_event(group_leader))) {
9751 		if (is_software_event(event)) {
9752 			/*
9753 			 * If event and group_leader are not both a software
9754 			 * event, and event is, then group leader is not.
9755 			 *
9756 			 * Allow the addition of software events to !software
9757 			 * groups, this is safe because software events never
9758 			 * fail to schedule.
9759 			 */
9760 			pmu = group_leader->pmu;
9761 		} else if (is_software_event(group_leader) &&
9762 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9763 			/*
9764 			 * In case the group is a pure software group, and we
9765 			 * try to add a hardware event, move the whole group to
9766 			 * the hardware context.
9767 			 */
9768 			move_group = 1;
9769 		}
9770 	}
9771 
9772 	/*
9773 	 * Get the target context (task or percpu):
9774 	 */
9775 	ctx = find_get_context(pmu, task, event);
9776 	if (IS_ERR(ctx)) {
9777 		err = PTR_ERR(ctx);
9778 		goto err_alloc;
9779 	}
9780 
9781 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9782 		err = -EBUSY;
9783 		goto err_context;
9784 	}
9785 
9786 	/*
9787 	 * Look up the group leader (we will attach this event to it):
9788 	 */
9789 	if (group_leader) {
9790 		err = -EINVAL;
9791 
9792 		/*
9793 		 * Do not allow a recursive hierarchy (this new sibling
9794 		 * becoming part of another group-sibling):
9795 		 */
9796 		if (group_leader->group_leader != group_leader)
9797 			goto err_context;
9798 
9799 		/* All events in a group should have the same clock */
9800 		if (group_leader->clock != event->clock)
9801 			goto err_context;
9802 
9803 		/*
9804 		 * Do not allow to attach to a group in a different
9805 		 * task or CPU context:
9806 		 */
9807 		if (move_group) {
9808 			/*
9809 			 * Make sure we're both on the same task, or both
9810 			 * per-cpu events.
9811 			 */
9812 			if (group_leader->ctx->task != ctx->task)
9813 				goto err_context;
9814 
9815 			/*
9816 			 * Make sure we're both events for the same CPU;
9817 			 * grouping events for different CPUs is broken; since
9818 			 * you can never concurrently schedule them anyhow.
9819 			 */
9820 			if (group_leader->cpu != event->cpu)
9821 				goto err_context;
9822 		} else {
9823 			if (group_leader->ctx != ctx)
9824 				goto err_context;
9825 		}
9826 
9827 		/*
9828 		 * Only a group leader can be exclusive or pinned
9829 		 */
9830 		if (attr.exclusive || attr.pinned)
9831 			goto err_context;
9832 	}
9833 
9834 	if (output_event) {
9835 		err = perf_event_set_output(event, output_event);
9836 		if (err)
9837 			goto err_context;
9838 	}
9839 
9840 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9841 					f_flags);
9842 	if (IS_ERR(event_file)) {
9843 		err = PTR_ERR(event_file);
9844 		event_file = NULL;
9845 		goto err_context;
9846 	}
9847 
9848 	if (move_group) {
9849 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9850 
9851 		if (gctx->task == TASK_TOMBSTONE) {
9852 			err = -ESRCH;
9853 			goto err_locked;
9854 		}
9855 
9856 		/*
9857 		 * Check if we raced against another sys_perf_event_open() call
9858 		 * moving the software group underneath us.
9859 		 */
9860 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9861 			/*
9862 			 * If someone moved the group out from under us, check
9863 			 * if this new event wound up on the same ctx, if so
9864 			 * its the regular !move_group case, otherwise fail.
9865 			 */
9866 			if (gctx != ctx) {
9867 				err = -EINVAL;
9868 				goto err_locked;
9869 			} else {
9870 				perf_event_ctx_unlock(group_leader, gctx);
9871 				move_group = 0;
9872 			}
9873 		}
9874 	} else {
9875 		mutex_lock(&ctx->mutex);
9876 	}
9877 
9878 	if (ctx->task == TASK_TOMBSTONE) {
9879 		err = -ESRCH;
9880 		goto err_locked;
9881 	}
9882 
9883 	if (!perf_event_validate_size(event)) {
9884 		err = -E2BIG;
9885 		goto err_locked;
9886 	}
9887 
9888 	/*
9889 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9890 	 * because we need to serialize with concurrent event creation.
9891 	 */
9892 	if (!exclusive_event_installable(event, ctx)) {
9893 		/* exclusive and group stuff are assumed mutually exclusive */
9894 		WARN_ON_ONCE(move_group);
9895 
9896 		err = -EBUSY;
9897 		goto err_locked;
9898 	}
9899 
9900 	WARN_ON_ONCE(ctx->parent_ctx);
9901 
9902 	/*
9903 	 * This is the point on no return; we cannot fail hereafter. This is
9904 	 * where we start modifying current state.
9905 	 */
9906 
9907 	if (move_group) {
9908 		/*
9909 		 * See perf_event_ctx_lock() for comments on the details
9910 		 * of swizzling perf_event::ctx.
9911 		 */
9912 		perf_remove_from_context(group_leader, 0);
9913 
9914 		list_for_each_entry(sibling, &group_leader->sibling_list,
9915 				    group_entry) {
9916 			perf_remove_from_context(sibling, 0);
9917 			put_ctx(gctx);
9918 		}
9919 
9920 		/*
9921 		 * Wait for everybody to stop referencing the events through
9922 		 * the old lists, before installing it on new lists.
9923 		 */
9924 		synchronize_rcu();
9925 
9926 		/*
9927 		 * Install the group siblings before the group leader.
9928 		 *
9929 		 * Because a group leader will try and install the entire group
9930 		 * (through the sibling list, which is still in-tact), we can
9931 		 * end up with siblings installed in the wrong context.
9932 		 *
9933 		 * By installing siblings first we NO-OP because they're not
9934 		 * reachable through the group lists.
9935 		 */
9936 		list_for_each_entry(sibling, &group_leader->sibling_list,
9937 				    group_entry) {
9938 			perf_event__state_init(sibling);
9939 			perf_install_in_context(ctx, sibling, sibling->cpu);
9940 			get_ctx(ctx);
9941 		}
9942 
9943 		/*
9944 		 * Removing from the context ends up with disabled
9945 		 * event. What we want here is event in the initial
9946 		 * startup state, ready to be add into new context.
9947 		 */
9948 		perf_event__state_init(group_leader);
9949 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9950 		get_ctx(ctx);
9951 
9952 		/*
9953 		 * Now that all events are installed in @ctx, nothing
9954 		 * references @gctx anymore, so drop the last reference we have
9955 		 * on it.
9956 		 */
9957 		put_ctx(gctx);
9958 	}
9959 
9960 	/*
9961 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9962 	 * that we're serialized against further additions and before
9963 	 * perf_install_in_context() which is the point the event is active and
9964 	 * can use these values.
9965 	 */
9966 	perf_event__header_size(event);
9967 	perf_event__id_header_size(event);
9968 
9969 	event->owner = current;
9970 
9971 	perf_install_in_context(ctx, event, event->cpu);
9972 	perf_unpin_context(ctx);
9973 
9974 	if (move_group)
9975 		perf_event_ctx_unlock(group_leader, gctx);
9976 	mutex_unlock(&ctx->mutex);
9977 
9978 	if (task) {
9979 		mutex_unlock(&task->signal->cred_guard_mutex);
9980 		put_task_struct(task);
9981 	}
9982 
9983 	put_online_cpus();
9984 
9985 	mutex_lock(&current->perf_event_mutex);
9986 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9987 	mutex_unlock(&current->perf_event_mutex);
9988 
9989 	/*
9990 	 * Drop the reference on the group_event after placing the
9991 	 * new event on the sibling_list. This ensures destruction
9992 	 * of the group leader will find the pointer to itself in
9993 	 * perf_group_detach().
9994 	 */
9995 	fdput(group);
9996 	fd_install(event_fd, event_file);
9997 	return event_fd;
9998 
9999 err_locked:
10000 	if (move_group)
10001 		perf_event_ctx_unlock(group_leader, gctx);
10002 	mutex_unlock(&ctx->mutex);
10003 /* err_file: */
10004 	fput(event_file);
10005 err_context:
10006 	perf_unpin_context(ctx);
10007 	put_ctx(ctx);
10008 err_alloc:
10009 	/*
10010 	 * If event_file is set, the fput() above will have called ->release()
10011 	 * and that will take care of freeing the event.
10012 	 */
10013 	if (!event_file)
10014 		free_event(event);
10015 err_cred:
10016 	if (task)
10017 		mutex_unlock(&task->signal->cred_guard_mutex);
10018 err_cpus:
10019 	put_online_cpus();
10020 err_task:
10021 	if (task)
10022 		put_task_struct(task);
10023 err_group_fd:
10024 	fdput(group);
10025 err_fd:
10026 	put_unused_fd(event_fd);
10027 	return err;
10028 }
10029 
10030 /**
10031  * perf_event_create_kernel_counter
10032  *
10033  * @attr: attributes of the counter to create
10034  * @cpu: cpu in which the counter is bound
10035  * @task: task to profile (NULL for percpu)
10036  */
10037 struct perf_event *
10038 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10039 				 struct task_struct *task,
10040 				 perf_overflow_handler_t overflow_handler,
10041 				 void *context)
10042 {
10043 	struct perf_event_context *ctx;
10044 	struct perf_event *event;
10045 	int err;
10046 
10047 	/*
10048 	 * Get the target context (task or percpu):
10049 	 */
10050 
10051 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10052 				 overflow_handler, context, -1);
10053 	if (IS_ERR(event)) {
10054 		err = PTR_ERR(event);
10055 		goto err;
10056 	}
10057 
10058 	/* Mark owner so we could distinguish it from user events. */
10059 	event->owner = TASK_TOMBSTONE;
10060 
10061 	ctx = find_get_context(event->pmu, task, event);
10062 	if (IS_ERR(ctx)) {
10063 		err = PTR_ERR(ctx);
10064 		goto err_free;
10065 	}
10066 
10067 	WARN_ON_ONCE(ctx->parent_ctx);
10068 	mutex_lock(&ctx->mutex);
10069 	if (ctx->task == TASK_TOMBSTONE) {
10070 		err = -ESRCH;
10071 		goto err_unlock;
10072 	}
10073 
10074 	if (!exclusive_event_installable(event, ctx)) {
10075 		err = -EBUSY;
10076 		goto err_unlock;
10077 	}
10078 
10079 	perf_install_in_context(ctx, event, cpu);
10080 	perf_unpin_context(ctx);
10081 	mutex_unlock(&ctx->mutex);
10082 
10083 	return event;
10084 
10085 err_unlock:
10086 	mutex_unlock(&ctx->mutex);
10087 	perf_unpin_context(ctx);
10088 	put_ctx(ctx);
10089 err_free:
10090 	free_event(event);
10091 err:
10092 	return ERR_PTR(err);
10093 }
10094 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10095 
10096 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10097 {
10098 	struct perf_event_context *src_ctx;
10099 	struct perf_event_context *dst_ctx;
10100 	struct perf_event *event, *tmp;
10101 	LIST_HEAD(events);
10102 
10103 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10104 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10105 
10106 	/*
10107 	 * See perf_event_ctx_lock() for comments on the details
10108 	 * of swizzling perf_event::ctx.
10109 	 */
10110 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10111 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10112 				 event_entry) {
10113 		perf_remove_from_context(event, 0);
10114 		unaccount_event_cpu(event, src_cpu);
10115 		put_ctx(src_ctx);
10116 		list_add(&event->migrate_entry, &events);
10117 	}
10118 
10119 	/*
10120 	 * Wait for the events to quiesce before re-instating them.
10121 	 */
10122 	synchronize_rcu();
10123 
10124 	/*
10125 	 * Re-instate events in 2 passes.
10126 	 *
10127 	 * Skip over group leaders and only install siblings on this first
10128 	 * pass, siblings will not get enabled without a leader, however a
10129 	 * leader will enable its siblings, even if those are still on the old
10130 	 * context.
10131 	 */
10132 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10133 		if (event->group_leader == event)
10134 			continue;
10135 
10136 		list_del(&event->migrate_entry);
10137 		if (event->state >= PERF_EVENT_STATE_OFF)
10138 			event->state = PERF_EVENT_STATE_INACTIVE;
10139 		account_event_cpu(event, dst_cpu);
10140 		perf_install_in_context(dst_ctx, event, dst_cpu);
10141 		get_ctx(dst_ctx);
10142 	}
10143 
10144 	/*
10145 	 * Once all the siblings are setup properly, install the group leaders
10146 	 * to make it go.
10147 	 */
10148 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10149 		list_del(&event->migrate_entry);
10150 		if (event->state >= PERF_EVENT_STATE_OFF)
10151 			event->state = PERF_EVENT_STATE_INACTIVE;
10152 		account_event_cpu(event, dst_cpu);
10153 		perf_install_in_context(dst_ctx, event, dst_cpu);
10154 		get_ctx(dst_ctx);
10155 	}
10156 	mutex_unlock(&dst_ctx->mutex);
10157 	mutex_unlock(&src_ctx->mutex);
10158 }
10159 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10160 
10161 static void sync_child_event(struct perf_event *child_event,
10162 			       struct task_struct *child)
10163 {
10164 	struct perf_event *parent_event = child_event->parent;
10165 	u64 child_val;
10166 
10167 	if (child_event->attr.inherit_stat)
10168 		perf_event_read_event(child_event, child);
10169 
10170 	child_val = perf_event_count(child_event);
10171 
10172 	/*
10173 	 * Add back the child's count to the parent's count:
10174 	 */
10175 	atomic64_add(child_val, &parent_event->child_count);
10176 	atomic64_add(child_event->total_time_enabled,
10177 		     &parent_event->child_total_time_enabled);
10178 	atomic64_add(child_event->total_time_running,
10179 		     &parent_event->child_total_time_running);
10180 }
10181 
10182 static void
10183 perf_event_exit_event(struct perf_event *child_event,
10184 		      struct perf_event_context *child_ctx,
10185 		      struct task_struct *child)
10186 {
10187 	struct perf_event *parent_event = child_event->parent;
10188 
10189 	/*
10190 	 * Do not destroy the 'original' grouping; because of the context
10191 	 * switch optimization the original events could've ended up in a
10192 	 * random child task.
10193 	 *
10194 	 * If we were to destroy the original group, all group related
10195 	 * operations would cease to function properly after this random
10196 	 * child dies.
10197 	 *
10198 	 * Do destroy all inherited groups, we don't care about those
10199 	 * and being thorough is better.
10200 	 */
10201 	raw_spin_lock_irq(&child_ctx->lock);
10202 	WARN_ON_ONCE(child_ctx->is_active);
10203 
10204 	if (parent_event)
10205 		perf_group_detach(child_event);
10206 	list_del_event(child_event, child_ctx);
10207 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10208 	raw_spin_unlock_irq(&child_ctx->lock);
10209 
10210 	/*
10211 	 * Parent events are governed by their filedesc, retain them.
10212 	 */
10213 	if (!parent_event) {
10214 		perf_event_wakeup(child_event);
10215 		return;
10216 	}
10217 	/*
10218 	 * Child events can be cleaned up.
10219 	 */
10220 
10221 	sync_child_event(child_event, child);
10222 
10223 	/*
10224 	 * Remove this event from the parent's list
10225 	 */
10226 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10227 	mutex_lock(&parent_event->child_mutex);
10228 	list_del_init(&child_event->child_list);
10229 	mutex_unlock(&parent_event->child_mutex);
10230 
10231 	/*
10232 	 * Kick perf_poll() for is_event_hup().
10233 	 */
10234 	perf_event_wakeup(parent_event);
10235 	free_event(child_event);
10236 	put_event(parent_event);
10237 }
10238 
10239 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10240 {
10241 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10242 	struct perf_event *child_event, *next;
10243 
10244 	WARN_ON_ONCE(child != current);
10245 
10246 	child_ctx = perf_pin_task_context(child, ctxn);
10247 	if (!child_ctx)
10248 		return;
10249 
10250 	/*
10251 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10252 	 * ctx::mutex over the entire thing. This serializes against almost
10253 	 * everything that wants to access the ctx.
10254 	 *
10255 	 * The exception is sys_perf_event_open() /
10256 	 * perf_event_create_kernel_count() which does find_get_context()
10257 	 * without ctx::mutex (it cannot because of the move_group double mutex
10258 	 * lock thing). See the comments in perf_install_in_context().
10259 	 */
10260 	mutex_lock(&child_ctx->mutex);
10261 
10262 	/*
10263 	 * In a single ctx::lock section, de-schedule the events and detach the
10264 	 * context from the task such that we cannot ever get it scheduled back
10265 	 * in.
10266 	 */
10267 	raw_spin_lock_irq(&child_ctx->lock);
10268 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10269 
10270 	/*
10271 	 * Now that the context is inactive, destroy the task <-> ctx relation
10272 	 * and mark the context dead.
10273 	 */
10274 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10275 	put_ctx(child_ctx); /* cannot be last */
10276 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10277 	put_task_struct(current); /* cannot be last */
10278 
10279 	clone_ctx = unclone_ctx(child_ctx);
10280 	raw_spin_unlock_irq(&child_ctx->lock);
10281 
10282 	if (clone_ctx)
10283 		put_ctx(clone_ctx);
10284 
10285 	/*
10286 	 * Report the task dead after unscheduling the events so that we
10287 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10288 	 * get a few PERF_RECORD_READ events.
10289 	 */
10290 	perf_event_task(child, child_ctx, 0);
10291 
10292 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10293 		perf_event_exit_event(child_event, child_ctx, child);
10294 
10295 	mutex_unlock(&child_ctx->mutex);
10296 
10297 	put_ctx(child_ctx);
10298 }
10299 
10300 /*
10301  * When a child task exits, feed back event values to parent events.
10302  *
10303  * Can be called with cred_guard_mutex held when called from
10304  * install_exec_creds().
10305  */
10306 void perf_event_exit_task(struct task_struct *child)
10307 {
10308 	struct perf_event *event, *tmp;
10309 	int ctxn;
10310 
10311 	mutex_lock(&child->perf_event_mutex);
10312 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10313 				 owner_entry) {
10314 		list_del_init(&event->owner_entry);
10315 
10316 		/*
10317 		 * Ensure the list deletion is visible before we clear
10318 		 * the owner, closes a race against perf_release() where
10319 		 * we need to serialize on the owner->perf_event_mutex.
10320 		 */
10321 		smp_store_release(&event->owner, NULL);
10322 	}
10323 	mutex_unlock(&child->perf_event_mutex);
10324 
10325 	for_each_task_context_nr(ctxn)
10326 		perf_event_exit_task_context(child, ctxn);
10327 
10328 	/*
10329 	 * The perf_event_exit_task_context calls perf_event_task
10330 	 * with child's task_ctx, which generates EXIT events for
10331 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10332 	 * At this point we need to send EXIT events to cpu contexts.
10333 	 */
10334 	perf_event_task(child, NULL, 0);
10335 }
10336 
10337 static void perf_free_event(struct perf_event *event,
10338 			    struct perf_event_context *ctx)
10339 {
10340 	struct perf_event *parent = event->parent;
10341 
10342 	if (WARN_ON_ONCE(!parent))
10343 		return;
10344 
10345 	mutex_lock(&parent->child_mutex);
10346 	list_del_init(&event->child_list);
10347 	mutex_unlock(&parent->child_mutex);
10348 
10349 	put_event(parent);
10350 
10351 	raw_spin_lock_irq(&ctx->lock);
10352 	perf_group_detach(event);
10353 	list_del_event(event, ctx);
10354 	raw_spin_unlock_irq(&ctx->lock);
10355 	free_event(event);
10356 }
10357 
10358 /*
10359  * Free an unexposed, unused context as created by inheritance by
10360  * perf_event_init_task below, used by fork() in case of fail.
10361  *
10362  * Not all locks are strictly required, but take them anyway to be nice and
10363  * help out with the lockdep assertions.
10364  */
10365 void perf_event_free_task(struct task_struct *task)
10366 {
10367 	struct perf_event_context *ctx;
10368 	struct perf_event *event, *tmp;
10369 	int ctxn;
10370 
10371 	for_each_task_context_nr(ctxn) {
10372 		ctx = task->perf_event_ctxp[ctxn];
10373 		if (!ctx)
10374 			continue;
10375 
10376 		mutex_lock(&ctx->mutex);
10377 again:
10378 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10379 				group_entry)
10380 			perf_free_event(event, ctx);
10381 
10382 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10383 				group_entry)
10384 			perf_free_event(event, ctx);
10385 
10386 		if (!list_empty(&ctx->pinned_groups) ||
10387 				!list_empty(&ctx->flexible_groups))
10388 			goto again;
10389 
10390 		mutex_unlock(&ctx->mutex);
10391 
10392 		put_ctx(ctx);
10393 	}
10394 }
10395 
10396 void perf_event_delayed_put(struct task_struct *task)
10397 {
10398 	int ctxn;
10399 
10400 	for_each_task_context_nr(ctxn)
10401 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10402 }
10403 
10404 struct file *perf_event_get(unsigned int fd)
10405 {
10406 	struct file *file;
10407 
10408 	file = fget_raw(fd);
10409 	if (!file)
10410 		return ERR_PTR(-EBADF);
10411 
10412 	if (file->f_op != &perf_fops) {
10413 		fput(file);
10414 		return ERR_PTR(-EBADF);
10415 	}
10416 
10417 	return file;
10418 }
10419 
10420 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10421 {
10422 	if (!event)
10423 		return ERR_PTR(-EINVAL);
10424 
10425 	return &event->attr;
10426 }
10427 
10428 /*
10429  * inherit a event from parent task to child task:
10430  */
10431 static struct perf_event *
10432 inherit_event(struct perf_event *parent_event,
10433 	      struct task_struct *parent,
10434 	      struct perf_event_context *parent_ctx,
10435 	      struct task_struct *child,
10436 	      struct perf_event *group_leader,
10437 	      struct perf_event_context *child_ctx)
10438 {
10439 	enum perf_event_active_state parent_state = parent_event->state;
10440 	struct perf_event *child_event;
10441 	unsigned long flags;
10442 
10443 	/*
10444 	 * Instead of creating recursive hierarchies of events,
10445 	 * we link inherited events back to the original parent,
10446 	 * which has a filp for sure, which we use as the reference
10447 	 * count:
10448 	 */
10449 	if (parent_event->parent)
10450 		parent_event = parent_event->parent;
10451 
10452 	child_event = perf_event_alloc(&parent_event->attr,
10453 					   parent_event->cpu,
10454 					   child,
10455 					   group_leader, parent_event,
10456 					   NULL, NULL, -1);
10457 	if (IS_ERR(child_event))
10458 		return child_event;
10459 
10460 	/*
10461 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10462 	 * must be under the same lock in order to serialize against
10463 	 * perf_event_release_kernel(), such that either we must observe
10464 	 * is_orphaned_event() or they will observe us on the child_list.
10465 	 */
10466 	mutex_lock(&parent_event->child_mutex);
10467 	if (is_orphaned_event(parent_event) ||
10468 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10469 		mutex_unlock(&parent_event->child_mutex);
10470 		free_event(child_event);
10471 		return NULL;
10472 	}
10473 
10474 	get_ctx(child_ctx);
10475 
10476 	/*
10477 	 * Make the child state follow the state of the parent event,
10478 	 * not its attr.disabled bit.  We hold the parent's mutex,
10479 	 * so we won't race with perf_event_{en, dis}able_family.
10480 	 */
10481 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10482 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10483 	else
10484 		child_event->state = PERF_EVENT_STATE_OFF;
10485 
10486 	if (parent_event->attr.freq) {
10487 		u64 sample_period = parent_event->hw.sample_period;
10488 		struct hw_perf_event *hwc = &child_event->hw;
10489 
10490 		hwc->sample_period = sample_period;
10491 		hwc->last_period   = sample_period;
10492 
10493 		local64_set(&hwc->period_left, sample_period);
10494 	}
10495 
10496 	child_event->ctx = child_ctx;
10497 	child_event->overflow_handler = parent_event->overflow_handler;
10498 	child_event->overflow_handler_context
10499 		= parent_event->overflow_handler_context;
10500 
10501 	/*
10502 	 * Precalculate sample_data sizes
10503 	 */
10504 	perf_event__header_size(child_event);
10505 	perf_event__id_header_size(child_event);
10506 
10507 	/*
10508 	 * Link it up in the child's context:
10509 	 */
10510 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10511 	add_event_to_ctx(child_event, child_ctx);
10512 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10513 
10514 	/*
10515 	 * Link this into the parent event's child list
10516 	 */
10517 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10518 	mutex_unlock(&parent_event->child_mutex);
10519 
10520 	return child_event;
10521 }
10522 
10523 static int inherit_group(struct perf_event *parent_event,
10524 	      struct task_struct *parent,
10525 	      struct perf_event_context *parent_ctx,
10526 	      struct task_struct *child,
10527 	      struct perf_event_context *child_ctx)
10528 {
10529 	struct perf_event *leader;
10530 	struct perf_event *sub;
10531 	struct perf_event *child_ctr;
10532 
10533 	leader = inherit_event(parent_event, parent, parent_ctx,
10534 				 child, NULL, child_ctx);
10535 	if (IS_ERR(leader))
10536 		return PTR_ERR(leader);
10537 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10538 		child_ctr = inherit_event(sub, parent, parent_ctx,
10539 					    child, leader, child_ctx);
10540 		if (IS_ERR(child_ctr))
10541 			return PTR_ERR(child_ctr);
10542 	}
10543 	return 0;
10544 }
10545 
10546 static int
10547 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10548 		   struct perf_event_context *parent_ctx,
10549 		   struct task_struct *child, int ctxn,
10550 		   int *inherited_all)
10551 {
10552 	int ret;
10553 	struct perf_event_context *child_ctx;
10554 
10555 	if (!event->attr.inherit) {
10556 		*inherited_all = 0;
10557 		return 0;
10558 	}
10559 
10560 	child_ctx = child->perf_event_ctxp[ctxn];
10561 	if (!child_ctx) {
10562 		/*
10563 		 * This is executed from the parent task context, so
10564 		 * inherit events that have been marked for cloning.
10565 		 * First allocate and initialize a context for the
10566 		 * child.
10567 		 */
10568 
10569 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10570 		if (!child_ctx)
10571 			return -ENOMEM;
10572 
10573 		child->perf_event_ctxp[ctxn] = child_ctx;
10574 	}
10575 
10576 	ret = inherit_group(event, parent, parent_ctx,
10577 			    child, child_ctx);
10578 
10579 	if (ret)
10580 		*inherited_all = 0;
10581 
10582 	return ret;
10583 }
10584 
10585 /*
10586  * Initialize the perf_event context in task_struct
10587  */
10588 static int perf_event_init_context(struct task_struct *child, int ctxn)
10589 {
10590 	struct perf_event_context *child_ctx, *parent_ctx;
10591 	struct perf_event_context *cloned_ctx;
10592 	struct perf_event *event;
10593 	struct task_struct *parent = current;
10594 	int inherited_all = 1;
10595 	unsigned long flags;
10596 	int ret = 0;
10597 
10598 	if (likely(!parent->perf_event_ctxp[ctxn]))
10599 		return 0;
10600 
10601 	/*
10602 	 * If the parent's context is a clone, pin it so it won't get
10603 	 * swapped under us.
10604 	 */
10605 	parent_ctx = perf_pin_task_context(parent, ctxn);
10606 	if (!parent_ctx)
10607 		return 0;
10608 
10609 	/*
10610 	 * No need to check if parent_ctx != NULL here; since we saw
10611 	 * it non-NULL earlier, the only reason for it to become NULL
10612 	 * is if we exit, and since we're currently in the middle of
10613 	 * a fork we can't be exiting at the same time.
10614 	 */
10615 
10616 	/*
10617 	 * Lock the parent list. No need to lock the child - not PID
10618 	 * hashed yet and not running, so nobody can access it.
10619 	 */
10620 	mutex_lock(&parent_ctx->mutex);
10621 
10622 	/*
10623 	 * We dont have to disable NMIs - we are only looking at
10624 	 * the list, not manipulating it:
10625 	 */
10626 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10627 		ret = inherit_task_group(event, parent, parent_ctx,
10628 					 child, ctxn, &inherited_all);
10629 		if (ret)
10630 			break;
10631 	}
10632 
10633 	/*
10634 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10635 	 * to allocations, but we need to prevent rotation because
10636 	 * rotate_ctx() will change the list from interrupt context.
10637 	 */
10638 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10639 	parent_ctx->rotate_disable = 1;
10640 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10641 
10642 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10643 		ret = inherit_task_group(event, parent, parent_ctx,
10644 					 child, ctxn, &inherited_all);
10645 		if (ret)
10646 			break;
10647 	}
10648 
10649 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10650 	parent_ctx->rotate_disable = 0;
10651 
10652 	child_ctx = child->perf_event_ctxp[ctxn];
10653 
10654 	if (child_ctx && inherited_all) {
10655 		/*
10656 		 * Mark the child context as a clone of the parent
10657 		 * context, or of whatever the parent is a clone of.
10658 		 *
10659 		 * Note that if the parent is a clone, the holding of
10660 		 * parent_ctx->lock avoids it from being uncloned.
10661 		 */
10662 		cloned_ctx = parent_ctx->parent_ctx;
10663 		if (cloned_ctx) {
10664 			child_ctx->parent_ctx = cloned_ctx;
10665 			child_ctx->parent_gen = parent_ctx->parent_gen;
10666 		} else {
10667 			child_ctx->parent_ctx = parent_ctx;
10668 			child_ctx->parent_gen = parent_ctx->generation;
10669 		}
10670 		get_ctx(child_ctx->parent_ctx);
10671 	}
10672 
10673 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10674 	mutex_unlock(&parent_ctx->mutex);
10675 
10676 	perf_unpin_context(parent_ctx);
10677 	put_ctx(parent_ctx);
10678 
10679 	return ret;
10680 }
10681 
10682 /*
10683  * Initialize the perf_event context in task_struct
10684  */
10685 int perf_event_init_task(struct task_struct *child)
10686 {
10687 	int ctxn, ret;
10688 
10689 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10690 	mutex_init(&child->perf_event_mutex);
10691 	INIT_LIST_HEAD(&child->perf_event_list);
10692 
10693 	for_each_task_context_nr(ctxn) {
10694 		ret = perf_event_init_context(child, ctxn);
10695 		if (ret) {
10696 			perf_event_free_task(child);
10697 			return ret;
10698 		}
10699 	}
10700 
10701 	return 0;
10702 }
10703 
10704 static void __init perf_event_init_all_cpus(void)
10705 {
10706 	struct swevent_htable *swhash;
10707 	int cpu;
10708 
10709 	for_each_possible_cpu(cpu) {
10710 		swhash = &per_cpu(swevent_htable, cpu);
10711 		mutex_init(&swhash->hlist_mutex);
10712 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10713 
10714 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10715 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10716 
10717 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10718 	}
10719 }
10720 
10721 int perf_event_init_cpu(unsigned int cpu)
10722 {
10723 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10724 
10725 	mutex_lock(&swhash->hlist_mutex);
10726 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10727 		struct swevent_hlist *hlist;
10728 
10729 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10730 		WARN_ON(!hlist);
10731 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10732 	}
10733 	mutex_unlock(&swhash->hlist_mutex);
10734 	return 0;
10735 }
10736 
10737 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10738 static void __perf_event_exit_context(void *__info)
10739 {
10740 	struct perf_event_context *ctx = __info;
10741 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10742 	struct perf_event *event;
10743 
10744 	raw_spin_lock(&ctx->lock);
10745 	list_for_each_entry(event, &ctx->event_list, event_entry)
10746 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10747 	raw_spin_unlock(&ctx->lock);
10748 }
10749 
10750 static void perf_event_exit_cpu_context(int cpu)
10751 {
10752 	struct perf_event_context *ctx;
10753 	struct pmu *pmu;
10754 	int idx;
10755 
10756 	idx = srcu_read_lock(&pmus_srcu);
10757 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10758 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10759 
10760 		mutex_lock(&ctx->mutex);
10761 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10762 		mutex_unlock(&ctx->mutex);
10763 	}
10764 	srcu_read_unlock(&pmus_srcu, idx);
10765 }
10766 #else
10767 
10768 static void perf_event_exit_cpu_context(int cpu) { }
10769 
10770 #endif
10771 
10772 int perf_event_exit_cpu(unsigned int cpu)
10773 {
10774 	perf_event_exit_cpu_context(cpu);
10775 	return 0;
10776 }
10777 
10778 static int
10779 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10780 {
10781 	int cpu;
10782 
10783 	for_each_online_cpu(cpu)
10784 		perf_event_exit_cpu(cpu);
10785 
10786 	return NOTIFY_OK;
10787 }
10788 
10789 /*
10790  * Run the perf reboot notifier at the very last possible moment so that
10791  * the generic watchdog code runs as long as possible.
10792  */
10793 static struct notifier_block perf_reboot_notifier = {
10794 	.notifier_call = perf_reboot,
10795 	.priority = INT_MIN,
10796 };
10797 
10798 void __init perf_event_init(void)
10799 {
10800 	int ret;
10801 
10802 	idr_init(&pmu_idr);
10803 
10804 	perf_event_init_all_cpus();
10805 	init_srcu_struct(&pmus_srcu);
10806 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10807 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10808 	perf_pmu_register(&perf_task_clock, NULL, -1);
10809 	perf_tp_register();
10810 	perf_event_init_cpu(smp_processor_id());
10811 	register_reboot_notifier(&perf_reboot_notifier);
10812 
10813 	ret = init_hw_breakpoint();
10814 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10815 
10816 	/*
10817 	 * Build time assertion that we keep the data_head at the intended
10818 	 * location.  IOW, validation we got the __reserved[] size right.
10819 	 */
10820 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10821 		     != 1024);
10822 }
10823 
10824 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10825 			      char *page)
10826 {
10827 	struct perf_pmu_events_attr *pmu_attr =
10828 		container_of(attr, struct perf_pmu_events_attr, attr);
10829 
10830 	if (pmu_attr->event_str)
10831 		return sprintf(page, "%s\n", pmu_attr->event_str);
10832 
10833 	return 0;
10834 }
10835 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10836 
10837 static int __init perf_event_sysfs_init(void)
10838 {
10839 	struct pmu *pmu;
10840 	int ret;
10841 
10842 	mutex_lock(&pmus_lock);
10843 
10844 	ret = bus_register(&pmu_bus);
10845 	if (ret)
10846 		goto unlock;
10847 
10848 	list_for_each_entry(pmu, &pmus, entry) {
10849 		if (!pmu->name || pmu->type < 0)
10850 			continue;
10851 
10852 		ret = pmu_dev_alloc(pmu);
10853 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10854 	}
10855 	pmu_bus_running = 1;
10856 	ret = 0;
10857 
10858 unlock:
10859 	mutex_unlock(&pmus_lock);
10860 
10861 	return ret;
10862 }
10863 device_initcall(perf_event_sysfs_init);
10864 
10865 #ifdef CONFIG_CGROUP_PERF
10866 static struct cgroup_subsys_state *
10867 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10868 {
10869 	struct perf_cgroup *jc;
10870 
10871 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10872 	if (!jc)
10873 		return ERR_PTR(-ENOMEM);
10874 
10875 	jc->info = alloc_percpu(struct perf_cgroup_info);
10876 	if (!jc->info) {
10877 		kfree(jc);
10878 		return ERR_PTR(-ENOMEM);
10879 	}
10880 
10881 	return &jc->css;
10882 }
10883 
10884 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10885 {
10886 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10887 
10888 	free_percpu(jc->info);
10889 	kfree(jc);
10890 }
10891 
10892 static int __perf_cgroup_move(void *info)
10893 {
10894 	struct task_struct *task = info;
10895 	rcu_read_lock();
10896 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10897 	rcu_read_unlock();
10898 	return 0;
10899 }
10900 
10901 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10902 {
10903 	struct task_struct *task;
10904 	struct cgroup_subsys_state *css;
10905 
10906 	cgroup_taskset_for_each(task, css, tset)
10907 		task_function_call(task, __perf_cgroup_move, task);
10908 }
10909 
10910 struct cgroup_subsys perf_event_cgrp_subsys = {
10911 	.css_alloc	= perf_cgroup_css_alloc,
10912 	.css_free	= perf_cgroup_css_free,
10913 	.attach		= perf_cgroup_attach,
10914 };
10915 #endif /* CONFIG_CGROUP_PERF */
10916