1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_call(struct perf_event *event, event_f func, void *data) 246 { 247 struct perf_event_context *ctx = event->ctx; 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 249 struct event_function_struct efs = { 250 .event = event, 251 .func = func, 252 .data = data, 253 }; 254 255 if (!event->parent) { 256 /* 257 * If this is a !child event, we must hold ctx::mutex to 258 * stabilize the the event->ctx relation. See 259 * perf_event_ctx_lock(). 260 */ 261 lockdep_assert_held(&ctx->mutex); 262 } 263 264 if (!task) { 265 cpu_function_call(event->cpu, event_function, &efs); 266 return; 267 } 268 269 if (task == TASK_TOMBSTONE) 270 return; 271 272 again: 273 if (!task_function_call(task, event_function, &efs)) 274 return; 275 276 raw_spin_lock_irq(&ctx->lock); 277 /* 278 * Reload the task pointer, it might have been changed by 279 * a concurrent perf_event_context_sched_out(). 280 */ 281 task = ctx->task; 282 if (task == TASK_TOMBSTONE) { 283 raw_spin_unlock_irq(&ctx->lock); 284 return; 285 } 286 if (ctx->is_active) { 287 raw_spin_unlock_irq(&ctx->lock); 288 goto again; 289 } 290 func(event, NULL, ctx, data); 291 raw_spin_unlock_irq(&ctx->lock); 292 } 293 294 /* 295 * Similar to event_function_call() + event_function(), but hard assumes IRQs 296 * are already disabled and we're on the right CPU. 297 */ 298 static void event_function_local(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 302 struct task_struct *task = READ_ONCE(ctx->task); 303 struct perf_event_context *task_ctx = NULL; 304 305 WARN_ON_ONCE(!irqs_disabled()); 306 307 if (task) { 308 if (task == TASK_TOMBSTONE) 309 return; 310 311 task_ctx = ctx; 312 } 313 314 perf_ctx_lock(cpuctx, task_ctx); 315 316 task = ctx->task; 317 if (task == TASK_TOMBSTONE) 318 goto unlock; 319 320 if (task) { 321 /* 322 * We must be either inactive or active and the right task, 323 * otherwise we're screwed, since we cannot IPI to somewhere 324 * else. 325 */ 326 if (ctx->is_active) { 327 if (WARN_ON_ONCE(task != current)) 328 goto unlock; 329 330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 331 goto unlock; 332 } 333 } else { 334 WARN_ON_ONCE(&cpuctx->ctx != ctx); 335 } 336 337 func(event, cpuctx, ctx, data); 338 unlock: 339 perf_ctx_unlock(cpuctx, task_ctx); 340 } 341 342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 343 PERF_FLAG_FD_OUTPUT |\ 344 PERF_FLAG_PID_CGROUP |\ 345 PERF_FLAG_FD_CLOEXEC) 346 347 /* 348 * branch priv levels that need permission checks 349 */ 350 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 351 (PERF_SAMPLE_BRANCH_KERNEL |\ 352 PERF_SAMPLE_BRANCH_HV) 353 354 enum event_type_t { 355 EVENT_FLEXIBLE = 0x1, 356 EVENT_PINNED = 0x2, 357 EVENT_TIME = 0x4, 358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 359 }; 360 361 /* 362 * perf_sched_events : >0 events exist 363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 364 */ 365 366 static void perf_sched_delayed(struct work_struct *work); 367 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 369 static DEFINE_MUTEX(perf_sched_mutex); 370 static atomic_t perf_sched_count; 371 372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 373 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 375 376 static atomic_t nr_mmap_events __read_mostly; 377 static atomic_t nr_comm_events __read_mostly; 378 static atomic_t nr_task_events __read_mostly; 379 static atomic_t nr_freq_events __read_mostly; 380 static atomic_t nr_switch_events __read_mostly; 381 382 static LIST_HEAD(pmus); 383 static DEFINE_MUTEX(pmus_lock); 384 static struct srcu_struct pmus_srcu; 385 386 /* 387 * perf event paranoia level: 388 * -1 - not paranoid at all 389 * 0 - disallow raw tracepoint access for unpriv 390 * 1 - disallow cpu events for unpriv 391 * 2 - disallow kernel profiling for unpriv 392 */ 393 int sysctl_perf_event_paranoid __read_mostly = 2; 394 395 /* Minimum for 512 kiB + 1 user control page */ 396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 397 398 /* 399 * max perf event sample rate 400 */ 401 #define DEFAULT_MAX_SAMPLE_RATE 100000 402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 404 405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 406 407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 409 410 static int perf_sample_allowed_ns __read_mostly = 411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 412 413 static void update_perf_cpu_limits(void) 414 { 415 u64 tmp = perf_sample_period_ns; 416 417 tmp *= sysctl_perf_cpu_time_max_percent; 418 tmp = div_u64(tmp, 100); 419 if (!tmp) 420 tmp = 1; 421 422 WRITE_ONCE(perf_sample_allowed_ns, tmp); 423 } 424 425 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 426 427 int perf_proc_update_handler(struct ctl_table *table, int write, 428 void __user *buffer, size_t *lenp, 429 loff_t *ppos) 430 { 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 432 433 if (ret || !write) 434 return ret; 435 436 /* 437 * If throttling is disabled don't allow the write: 438 */ 439 if (sysctl_perf_cpu_time_max_percent == 100 || 440 sysctl_perf_cpu_time_max_percent == 0) 441 return -EINVAL; 442 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 445 update_perf_cpu_limits(); 446 447 return 0; 448 } 449 450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 451 452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 453 void __user *buffer, size_t *lenp, 454 loff_t *ppos) 455 { 456 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 457 458 if (ret || !write) 459 return ret; 460 461 if (sysctl_perf_cpu_time_max_percent == 100 || 462 sysctl_perf_cpu_time_max_percent == 0) { 463 printk(KERN_WARNING 464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 465 WRITE_ONCE(perf_sample_allowed_ns, 0); 466 } else { 467 update_perf_cpu_limits(); 468 } 469 470 return 0; 471 } 472 473 /* 474 * perf samples are done in some very critical code paths (NMIs). 475 * If they take too much CPU time, the system can lock up and not 476 * get any real work done. This will drop the sample rate when 477 * we detect that events are taking too long. 478 */ 479 #define NR_ACCUMULATED_SAMPLES 128 480 static DEFINE_PER_CPU(u64, running_sample_length); 481 482 static u64 __report_avg; 483 static u64 __report_allowed; 484 485 static void perf_duration_warn(struct irq_work *w) 486 { 487 printk_ratelimited(KERN_INFO 488 "perf: interrupt took too long (%lld > %lld), lowering " 489 "kernel.perf_event_max_sample_rate to %d\n", 490 __report_avg, __report_allowed, 491 sysctl_perf_event_sample_rate); 492 } 493 494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 495 496 void perf_sample_event_took(u64 sample_len_ns) 497 { 498 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 499 u64 running_len; 500 u64 avg_len; 501 u32 max; 502 503 if (max_len == 0) 504 return; 505 506 /* Decay the counter by 1 average sample. */ 507 running_len = __this_cpu_read(running_sample_length); 508 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 509 running_len += sample_len_ns; 510 __this_cpu_write(running_sample_length, running_len); 511 512 /* 513 * Note: this will be biased artifically low until we have 514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 515 * from having to maintain a count. 516 */ 517 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 518 if (avg_len <= max_len) 519 return; 520 521 __report_avg = avg_len; 522 __report_allowed = max_len; 523 524 /* 525 * Compute a throttle threshold 25% below the current duration. 526 */ 527 avg_len += avg_len / 4; 528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 529 if (avg_len < max) 530 max /= (u32)avg_len; 531 else 532 max = 1; 533 534 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 535 WRITE_ONCE(max_samples_per_tick, max); 536 537 sysctl_perf_event_sample_rate = max * HZ; 538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 539 540 if (!irq_work_queue(&perf_duration_work)) { 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 542 "kernel.perf_event_max_sample_rate to %d\n", 543 __report_avg, __report_allowed, 544 sysctl_perf_event_sample_rate); 545 } 546 } 547 548 static atomic64_t perf_event_id; 549 550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 551 enum event_type_t event_type); 552 553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 554 enum event_type_t event_type, 555 struct task_struct *task); 556 557 static void update_context_time(struct perf_event_context *ctx); 558 static u64 perf_event_time(struct perf_event *event); 559 560 void __weak perf_event_print_debug(void) { } 561 562 extern __weak const char *perf_pmu_name(void) 563 { 564 return "pmu"; 565 } 566 567 static inline u64 perf_clock(void) 568 { 569 return local_clock(); 570 } 571 572 static inline u64 perf_event_clock(struct perf_event *event) 573 { 574 return event->clock(); 575 } 576 577 #ifdef CONFIG_CGROUP_PERF 578 579 static inline bool 580 perf_cgroup_match(struct perf_event *event) 581 { 582 struct perf_event_context *ctx = event->ctx; 583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 584 585 /* @event doesn't care about cgroup */ 586 if (!event->cgrp) 587 return true; 588 589 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 590 if (!cpuctx->cgrp) 591 return false; 592 593 /* 594 * Cgroup scoping is recursive. An event enabled for a cgroup is 595 * also enabled for all its descendant cgroups. If @cpuctx's 596 * cgroup is a descendant of @event's (the test covers identity 597 * case), it's a match. 598 */ 599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 600 event->cgrp->css.cgroup); 601 } 602 603 static inline void perf_detach_cgroup(struct perf_event *event) 604 { 605 css_put(&event->cgrp->css); 606 event->cgrp = NULL; 607 } 608 609 static inline int is_cgroup_event(struct perf_event *event) 610 { 611 return event->cgrp != NULL; 612 } 613 614 static inline u64 perf_cgroup_event_time(struct perf_event *event) 615 { 616 struct perf_cgroup_info *t; 617 618 t = per_cpu_ptr(event->cgrp->info, event->cpu); 619 return t->time; 620 } 621 622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 623 { 624 struct perf_cgroup_info *info; 625 u64 now; 626 627 now = perf_clock(); 628 629 info = this_cpu_ptr(cgrp->info); 630 631 info->time += now - info->timestamp; 632 info->timestamp = now; 633 } 634 635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 636 { 637 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 638 if (cgrp_out) 639 __update_cgrp_time(cgrp_out); 640 } 641 642 static inline void update_cgrp_time_from_event(struct perf_event *event) 643 { 644 struct perf_cgroup *cgrp; 645 646 /* 647 * ensure we access cgroup data only when needed and 648 * when we know the cgroup is pinned (css_get) 649 */ 650 if (!is_cgroup_event(event)) 651 return; 652 653 cgrp = perf_cgroup_from_task(current, event->ctx); 654 /* 655 * Do not update time when cgroup is not active 656 */ 657 if (cgrp == event->cgrp) 658 __update_cgrp_time(event->cgrp); 659 } 660 661 static inline void 662 perf_cgroup_set_timestamp(struct task_struct *task, 663 struct perf_event_context *ctx) 664 { 665 struct perf_cgroup *cgrp; 666 struct perf_cgroup_info *info; 667 668 /* 669 * ctx->lock held by caller 670 * ensure we do not access cgroup data 671 * unless we have the cgroup pinned (css_get) 672 */ 673 if (!task || !ctx->nr_cgroups) 674 return; 675 676 cgrp = perf_cgroup_from_task(task, ctx); 677 info = this_cpu_ptr(cgrp->info); 678 info->timestamp = ctx->timestamp; 679 } 680 681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 683 684 /* 685 * reschedule events based on the cgroup constraint of task. 686 * 687 * mode SWOUT : schedule out everything 688 * mode SWIN : schedule in based on cgroup for next 689 */ 690 static void perf_cgroup_switch(struct task_struct *task, int mode) 691 { 692 struct perf_cpu_context *cpuctx; 693 struct pmu *pmu; 694 unsigned long flags; 695 696 /* 697 * disable interrupts to avoid geting nr_cgroup 698 * changes via __perf_event_disable(). Also 699 * avoids preemption. 700 */ 701 local_irq_save(flags); 702 703 /* 704 * we reschedule only in the presence of cgroup 705 * constrained events. 706 */ 707 708 list_for_each_entry_rcu(pmu, &pmus, entry) { 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 710 if (cpuctx->unique_pmu != pmu) 711 continue; /* ensure we process each cpuctx once */ 712 713 /* 714 * perf_cgroup_events says at least one 715 * context on this CPU has cgroup events. 716 * 717 * ctx->nr_cgroups reports the number of cgroup 718 * events for a context. 719 */ 720 if (cpuctx->ctx.nr_cgroups > 0) { 721 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 722 perf_pmu_disable(cpuctx->ctx.pmu); 723 724 if (mode & PERF_CGROUP_SWOUT) { 725 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 726 /* 727 * must not be done before ctxswout due 728 * to event_filter_match() in event_sched_out() 729 */ 730 cpuctx->cgrp = NULL; 731 } 732 733 if (mode & PERF_CGROUP_SWIN) { 734 WARN_ON_ONCE(cpuctx->cgrp); 735 /* 736 * set cgrp before ctxsw in to allow 737 * event_filter_match() to not have to pass 738 * task around 739 * we pass the cpuctx->ctx to perf_cgroup_from_task() 740 * because cgorup events are only per-cpu 741 */ 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 744 } 745 perf_pmu_enable(cpuctx->ctx.pmu); 746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 747 } 748 } 749 750 local_irq_restore(flags); 751 } 752 753 static inline void perf_cgroup_sched_out(struct task_struct *task, 754 struct task_struct *next) 755 { 756 struct perf_cgroup *cgrp1; 757 struct perf_cgroup *cgrp2 = NULL; 758 759 rcu_read_lock(); 760 /* 761 * we come here when we know perf_cgroup_events > 0 762 * we do not need to pass the ctx here because we know 763 * we are holding the rcu lock 764 */ 765 cgrp1 = perf_cgroup_from_task(task, NULL); 766 cgrp2 = perf_cgroup_from_task(next, NULL); 767 768 /* 769 * only schedule out current cgroup events if we know 770 * that we are switching to a different cgroup. Otherwise, 771 * do no touch the cgroup events. 772 */ 773 if (cgrp1 != cgrp2) 774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 775 776 rcu_read_unlock(); 777 } 778 779 static inline void perf_cgroup_sched_in(struct task_struct *prev, 780 struct task_struct *task) 781 { 782 struct perf_cgroup *cgrp1; 783 struct perf_cgroup *cgrp2 = NULL; 784 785 rcu_read_lock(); 786 /* 787 * we come here when we know perf_cgroup_events > 0 788 * we do not need to pass the ctx here because we know 789 * we are holding the rcu lock 790 */ 791 cgrp1 = perf_cgroup_from_task(task, NULL); 792 cgrp2 = perf_cgroup_from_task(prev, NULL); 793 794 /* 795 * only need to schedule in cgroup events if we are changing 796 * cgroup during ctxsw. Cgroup events were not scheduled 797 * out of ctxsw out if that was not the case. 798 */ 799 if (cgrp1 != cgrp2) 800 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 801 802 rcu_read_unlock(); 803 } 804 805 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 806 struct perf_event_attr *attr, 807 struct perf_event *group_leader) 808 { 809 struct perf_cgroup *cgrp; 810 struct cgroup_subsys_state *css; 811 struct fd f = fdget(fd); 812 int ret = 0; 813 814 if (!f.file) 815 return -EBADF; 816 817 css = css_tryget_online_from_dir(f.file->f_path.dentry, 818 &perf_event_cgrp_subsys); 819 if (IS_ERR(css)) { 820 ret = PTR_ERR(css); 821 goto out; 822 } 823 824 cgrp = container_of(css, struct perf_cgroup, css); 825 event->cgrp = cgrp; 826 827 /* 828 * all events in a group must monitor 829 * the same cgroup because a task belongs 830 * to only one perf cgroup at a time 831 */ 832 if (group_leader && group_leader->cgrp != cgrp) { 833 perf_detach_cgroup(event); 834 ret = -EINVAL; 835 } 836 out: 837 fdput(f); 838 return ret; 839 } 840 841 static inline void 842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 843 { 844 struct perf_cgroup_info *t; 845 t = per_cpu_ptr(event->cgrp->info, event->cpu); 846 event->shadow_ctx_time = now - t->timestamp; 847 } 848 849 static inline void 850 perf_cgroup_defer_enabled(struct perf_event *event) 851 { 852 /* 853 * when the current task's perf cgroup does not match 854 * the event's, we need to remember to call the 855 * perf_mark_enable() function the first time a task with 856 * a matching perf cgroup is scheduled in. 857 */ 858 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 859 event->cgrp_defer_enabled = 1; 860 } 861 862 static inline void 863 perf_cgroup_mark_enabled(struct perf_event *event, 864 struct perf_event_context *ctx) 865 { 866 struct perf_event *sub; 867 u64 tstamp = perf_event_time(event); 868 869 if (!event->cgrp_defer_enabled) 870 return; 871 872 event->cgrp_defer_enabled = 0; 873 874 event->tstamp_enabled = tstamp - event->total_time_enabled; 875 list_for_each_entry(sub, &event->sibling_list, group_entry) { 876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 877 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 878 sub->cgrp_defer_enabled = 0; 879 } 880 } 881 } 882 883 /* 884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 885 * cleared when last cgroup event is removed. 886 */ 887 static inline void 888 list_update_cgroup_event(struct perf_event *event, 889 struct perf_event_context *ctx, bool add) 890 { 891 struct perf_cpu_context *cpuctx; 892 893 if (!is_cgroup_event(event)) 894 return; 895 896 if (add && ctx->nr_cgroups++) 897 return; 898 else if (!add && --ctx->nr_cgroups) 899 return; 900 /* 901 * Because cgroup events are always per-cpu events, 902 * this will always be called from the right CPU. 903 */ 904 cpuctx = __get_cpu_context(ctx); 905 906 /* 907 * cpuctx->cgrp is NULL until a cgroup event is sched in or 908 * ctx->nr_cgroup == 0 . 909 */ 910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp) 911 cpuctx->cgrp = event->cgrp; 912 else if (!add) 913 cpuctx->cgrp = NULL; 914 } 915 916 #else /* !CONFIG_CGROUP_PERF */ 917 918 static inline bool 919 perf_cgroup_match(struct perf_event *event) 920 { 921 return true; 922 } 923 924 static inline void perf_detach_cgroup(struct perf_event *event) 925 {} 926 927 static inline int is_cgroup_event(struct perf_event *event) 928 { 929 return 0; 930 } 931 932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 933 { 934 return 0; 935 } 936 937 static inline void update_cgrp_time_from_event(struct perf_event *event) 938 { 939 } 940 941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 942 { 943 } 944 945 static inline void perf_cgroup_sched_out(struct task_struct *task, 946 struct task_struct *next) 947 { 948 } 949 950 static inline void perf_cgroup_sched_in(struct task_struct *prev, 951 struct task_struct *task) 952 { 953 } 954 955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 956 struct perf_event_attr *attr, 957 struct perf_event *group_leader) 958 { 959 return -EINVAL; 960 } 961 962 static inline void 963 perf_cgroup_set_timestamp(struct task_struct *task, 964 struct perf_event_context *ctx) 965 { 966 } 967 968 void 969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 970 { 971 } 972 973 static inline void 974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 975 { 976 } 977 978 static inline u64 perf_cgroup_event_time(struct perf_event *event) 979 { 980 return 0; 981 } 982 983 static inline void 984 perf_cgroup_defer_enabled(struct perf_event *event) 985 { 986 } 987 988 static inline void 989 perf_cgroup_mark_enabled(struct perf_event *event, 990 struct perf_event_context *ctx) 991 { 992 } 993 994 static inline void 995 list_update_cgroup_event(struct perf_event *event, 996 struct perf_event_context *ctx, bool add) 997 { 998 } 999 1000 #endif 1001 1002 /* 1003 * set default to be dependent on timer tick just 1004 * like original code 1005 */ 1006 #define PERF_CPU_HRTIMER (1000 / HZ) 1007 /* 1008 * function must be called with interrupts disbled 1009 */ 1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1011 { 1012 struct perf_cpu_context *cpuctx; 1013 int rotations = 0; 1014 1015 WARN_ON(!irqs_disabled()); 1016 1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1018 rotations = perf_rotate_context(cpuctx); 1019 1020 raw_spin_lock(&cpuctx->hrtimer_lock); 1021 if (rotations) 1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1023 else 1024 cpuctx->hrtimer_active = 0; 1025 raw_spin_unlock(&cpuctx->hrtimer_lock); 1026 1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1028 } 1029 1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1031 { 1032 struct hrtimer *timer = &cpuctx->hrtimer; 1033 struct pmu *pmu = cpuctx->ctx.pmu; 1034 u64 interval; 1035 1036 /* no multiplexing needed for SW PMU */ 1037 if (pmu->task_ctx_nr == perf_sw_context) 1038 return; 1039 1040 /* 1041 * check default is sane, if not set then force to 1042 * default interval (1/tick) 1043 */ 1044 interval = pmu->hrtimer_interval_ms; 1045 if (interval < 1) 1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1047 1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1049 1050 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1052 timer->function = perf_mux_hrtimer_handler; 1053 } 1054 1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1056 { 1057 struct hrtimer *timer = &cpuctx->hrtimer; 1058 struct pmu *pmu = cpuctx->ctx.pmu; 1059 unsigned long flags; 1060 1061 /* not for SW PMU */ 1062 if (pmu->task_ctx_nr == perf_sw_context) 1063 return 0; 1064 1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1066 if (!cpuctx->hrtimer_active) { 1067 cpuctx->hrtimer_active = 1; 1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1070 } 1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1072 1073 return 0; 1074 } 1075 1076 void perf_pmu_disable(struct pmu *pmu) 1077 { 1078 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1079 if (!(*count)++) 1080 pmu->pmu_disable(pmu); 1081 } 1082 1083 void perf_pmu_enable(struct pmu *pmu) 1084 { 1085 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1086 if (!--(*count)) 1087 pmu->pmu_enable(pmu); 1088 } 1089 1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1091 1092 /* 1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1094 * perf_event_task_tick() are fully serialized because they're strictly cpu 1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1096 * disabled, while perf_event_task_tick is called from IRQ context. 1097 */ 1098 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1099 { 1100 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1101 1102 WARN_ON(!irqs_disabled()); 1103 1104 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1105 1106 list_add(&ctx->active_ctx_list, head); 1107 } 1108 1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1110 { 1111 WARN_ON(!irqs_disabled()); 1112 1113 WARN_ON(list_empty(&ctx->active_ctx_list)); 1114 1115 list_del_init(&ctx->active_ctx_list); 1116 } 1117 1118 static void get_ctx(struct perf_event_context *ctx) 1119 { 1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1121 } 1122 1123 static void free_ctx(struct rcu_head *head) 1124 { 1125 struct perf_event_context *ctx; 1126 1127 ctx = container_of(head, struct perf_event_context, rcu_head); 1128 kfree(ctx->task_ctx_data); 1129 kfree(ctx); 1130 } 1131 1132 static void put_ctx(struct perf_event_context *ctx) 1133 { 1134 if (atomic_dec_and_test(&ctx->refcount)) { 1135 if (ctx->parent_ctx) 1136 put_ctx(ctx->parent_ctx); 1137 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1138 put_task_struct(ctx->task); 1139 call_rcu(&ctx->rcu_head, free_ctx); 1140 } 1141 } 1142 1143 /* 1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1145 * perf_pmu_migrate_context() we need some magic. 1146 * 1147 * Those places that change perf_event::ctx will hold both 1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1149 * 1150 * Lock ordering is by mutex address. There are two other sites where 1151 * perf_event_context::mutex nests and those are: 1152 * 1153 * - perf_event_exit_task_context() [ child , 0 ] 1154 * perf_event_exit_event() 1155 * put_event() [ parent, 1 ] 1156 * 1157 * - perf_event_init_context() [ parent, 0 ] 1158 * inherit_task_group() 1159 * inherit_group() 1160 * inherit_event() 1161 * perf_event_alloc() 1162 * perf_init_event() 1163 * perf_try_init_event() [ child , 1 ] 1164 * 1165 * While it appears there is an obvious deadlock here -- the parent and child 1166 * nesting levels are inverted between the two. This is in fact safe because 1167 * life-time rules separate them. That is an exiting task cannot fork, and a 1168 * spawning task cannot (yet) exit. 1169 * 1170 * But remember that that these are parent<->child context relations, and 1171 * migration does not affect children, therefore these two orderings should not 1172 * interact. 1173 * 1174 * The change in perf_event::ctx does not affect children (as claimed above) 1175 * because the sys_perf_event_open() case will install a new event and break 1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1177 * concerned with cpuctx and that doesn't have children. 1178 * 1179 * The places that change perf_event::ctx will issue: 1180 * 1181 * perf_remove_from_context(); 1182 * synchronize_rcu(); 1183 * perf_install_in_context(); 1184 * 1185 * to affect the change. The remove_from_context() + synchronize_rcu() should 1186 * quiesce the event, after which we can install it in the new location. This 1187 * means that only external vectors (perf_fops, prctl) can perturb the event 1188 * while in transit. Therefore all such accessors should also acquire 1189 * perf_event_context::mutex to serialize against this. 1190 * 1191 * However; because event->ctx can change while we're waiting to acquire 1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1193 * function. 1194 * 1195 * Lock order: 1196 * cred_guard_mutex 1197 * task_struct::perf_event_mutex 1198 * perf_event_context::mutex 1199 * perf_event::child_mutex; 1200 * perf_event_context::lock 1201 * perf_event::mmap_mutex 1202 * mmap_sem 1203 */ 1204 static struct perf_event_context * 1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1206 { 1207 struct perf_event_context *ctx; 1208 1209 again: 1210 rcu_read_lock(); 1211 ctx = ACCESS_ONCE(event->ctx); 1212 if (!atomic_inc_not_zero(&ctx->refcount)) { 1213 rcu_read_unlock(); 1214 goto again; 1215 } 1216 rcu_read_unlock(); 1217 1218 mutex_lock_nested(&ctx->mutex, nesting); 1219 if (event->ctx != ctx) { 1220 mutex_unlock(&ctx->mutex); 1221 put_ctx(ctx); 1222 goto again; 1223 } 1224 1225 return ctx; 1226 } 1227 1228 static inline struct perf_event_context * 1229 perf_event_ctx_lock(struct perf_event *event) 1230 { 1231 return perf_event_ctx_lock_nested(event, 0); 1232 } 1233 1234 static void perf_event_ctx_unlock(struct perf_event *event, 1235 struct perf_event_context *ctx) 1236 { 1237 mutex_unlock(&ctx->mutex); 1238 put_ctx(ctx); 1239 } 1240 1241 /* 1242 * This must be done under the ctx->lock, such as to serialize against 1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1244 * calling scheduler related locks and ctx->lock nests inside those. 1245 */ 1246 static __must_check struct perf_event_context * 1247 unclone_ctx(struct perf_event_context *ctx) 1248 { 1249 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1250 1251 lockdep_assert_held(&ctx->lock); 1252 1253 if (parent_ctx) 1254 ctx->parent_ctx = NULL; 1255 ctx->generation++; 1256 1257 return parent_ctx; 1258 } 1259 1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1261 { 1262 /* 1263 * only top level events have the pid namespace they were created in 1264 */ 1265 if (event->parent) 1266 event = event->parent; 1267 1268 return task_tgid_nr_ns(p, event->ns); 1269 } 1270 1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1272 { 1273 /* 1274 * only top level events have the pid namespace they were created in 1275 */ 1276 if (event->parent) 1277 event = event->parent; 1278 1279 return task_pid_nr_ns(p, event->ns); 1280 } 1281 1282 /* 1283 * If we inherit events we want to return the parent event id 1284 * to userspace. 1285 */ 1286 static u64 primary_event_id(struct perf_event *event) 1287 { 1288 u64 id = event->id; 1289 1290 if (event->parent) 1291 id = event->parent->id; 1292 1293 return id; 1294 } 1295 1296 /* 1297 * Get the perf_event_context for a task and lock it. 1298 * 1299 * This has to cope with with the fact that until it is locked, 1300 * the context could get moved to another task. 1301 */ 1302 static struct perf_event_context * 1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1304 { 1305 struct perf_event_context *ctx; 1306 1307 retry: 1308 /* 1309 * One of the few rules of preemptible RCU is that one cannot do 1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1311 * part of the read side critical section was irqs-enabled -- see 1312 * rcu_read_unlock_special(). 1313 * 1314 * Since ctx->lock nests under rq->lock we must ensure the entire read 1315 * side critical section has interrupts disabled. 1316 */ 1317 local_irq_save(*flags); 1318 rcu_read_lock(); 1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1320 if (ctx) { 1321 /* 1322 * If this context is a clone of another, it might 1323 * get swapped for another underneath us by 1324 * perf_event_task_sched_out, though the 1325 * rcu_read_lock() protects us from any context 1326 * getting freed. Lock the context and check if it 1327 * got swapped before we could get the lock, and retry 1328 * if so. If we locked the right context, then it 1329 * can't get swapped on us any more. 1330 */ 1331 raw_spin_lock(&ctx->lock); 1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1333 raw_spin_unlock(&ctx->lock); 1334 rcu_read_unlock(); 1335 local_irq_restore(*flags); 1336 goto retry; 1337 } 1338 1339 if (ctx->task == TASK_TOMBSTONE || 1340 !atomic_inc_not_zero(&ctx->refcount)) { 1341 raw_spin_unlock(&ctx->lock); 1342 ctx = NULL; 1343 } else { 1344 WARN_ON_ONCE(ctx->task != task); 1345 } 1346 } 1347 rcu_read_unlock(); 1348 if (!ctx) 1349 local_irq_restore(*flags); 1350 return ctx; 1351 } 1352 1353 /* 1354 * Get the context for a task and increment its pin_count so it 1355 * can't get swapped to another task. This also increments its 1356 * reference count so that the context can't get freed. 1357 */ 1358 static struct perf_event_context * 1359 perf_pin_task_context(struct task_struct *task, int ctxn) 1360 { 1361 struct perf_event_context *ctx; 1362 unsigned long flags; 1363 1364 ctx = perf_lock_task_context(task, ctxn, &flags); 1365 if (ctx) { 1366 ++ctx->pin_count; 1367 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1368 } 1369 return ctx; 1370 } 1371 1372 static void perf_unpin_context(struct perf_event_context *ctx) 1373 { 1374 unsigned long flags; 1375 1376 raw_spin_lock_irqsave(&ctx->lock, flags); 1377 --ctx->pin_count; 1378 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1379 } 1380 1381 /* 1382 * Update the record of the current time in a context. 1383 */ 1384 static void update_context_time(struct perf_event_context *ctx) 1385 { 1386 u64 now = perf_clock(); 1387 1388 ctx->time += now - ctx->timestamp; 1389 ctx->timestamp = now; 1390 } 1391 1392 static u64 perf_event_time(struct perf_event *event) 1393 { 1394 struct perf_event_context *ctx = event->ctx; 1395 1396 if (is_cgroup_event(event)) 1397 return perf_cgroup_event_time(event); 1398 1399 return ctx ? ctx->time : 0; 1400 } 1401 1402 /* 1403 * Update the total_time_enabled and total_time_running fields for a event. 1404 */ 1405 static void update_event_times(struct perf_event *event) 1406 { 1407 struct perf_event_context *ctx = event->ctx; 1408 u64 run_end; 1409 1410 lockdep_assert_held(&ctx->lock); 1411 1412 if (event->state < PERF_EVENT_STATE_INACTIVE || 1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1414 return; 1415 1416 /* 1417 * in cgroup mode, time_enabled represents 1418 * the time the event was enabled AND active 1419 * tasks were in the monitored cgroup. This is 1420 * independent of the activity of the context as 1421 * there may be a mix of cgroup and non-cgroup events. 1422 * 1423 * That is why we treat cgroup events differently 1424 * here. 1425 */ 1426 if (is_cgroup_event(event)) 1427 run_end = perf_cgroup_event_time(event); 1428 else if (ctx->is_active) 1429 run_end = ctx->time; 1430 else 1431 run_end = event->tstamp_stopped; 1432 1433 event->total_time_enabled = run_end - event->tstamp_enabled; 1434 1435 if (event->state == PERF_EVENT_STATE_INACTIVE) 1436 run_end = event->tstamp_stopped; 1437 else 1438 run_end = perf_event_time(event); 1439 1440 event->total_time_running = run_end - event->tstamp_running; 1441 1442 } 1443 1444 /* 1445 * Update total_time_enabled and total_time_running for all events in a group. 1446 */ 1447 static void update_group_times(struct perf_event *leader) 1448 { 1449 struct perf_event *event; 1450 1451 update_event_times(leader); 1452 list_for_each_entry(event, &leader->sibling_list, group_entry) 1453 update_event_times(event); 1454 } 1455 1456 static struct list_head * 1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1458 { 1459 if (event->attr.pinned) 1460 return &ctx->pinned_groups; 1461 else 1462 return &ctx->flexible_groups; 1463 } 1464 1465 /* 1466 * Add a event from the lists for its context. 1467 * Must be called with ctx->mutex and ctx->lock held. 1468 */ 1469 static void 1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1471 { 1472 lockdep_assert_held(&ctx->lock); 1473 1474 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1475 event->attach_state |= PERF_ATTACH_CONTEXT; 1476 1477 /* 1478 * If we're a stand alone event or group leader, we go to the context 1479 * list, group events are kept attached to the group so that 1480 * perf_group_detach can, at all times, locate all siblings. 1481 */ 1482 if (event->group_leader == event) { 1483 struct list_head *list; 1484 1485 event->group_caps = event->event_caps; 1486 1487 list = ctx_group_list(event, ctx); 1488 list_add_tail(&event->group_entry, list); 1489 } 1490 1491 list_update_cgroup_event(event, ctx, true); 1492 1493 list_add_rcu(&event->event_entry, &ctx->event_list); 1494 ctx->nr_events++; 1495 if (event->attr.inherit_stat) 1496 ctx->nr_stat++; 1497 1498 ctx->generation++; 1499 } 1500 1501 /* 1502 * Initialize event state based on the perf_event_attr::disabled. 1503 */ 1504 static inline void perf_event__state_init(struct perf_event *event) 1505 { 1506 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1507 PERF_EVENT_STATE_INACTIVE; 1508 } 1509 1510 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1511 { 1512 int entry = sizeof(u64); /* value */ 1513 int size = 0; 1514 int nr = 1; 1515 1516 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1517 size += sizeof(u64); 1518 1519 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1520 size += sizeof(u64); 1521 1522 if (event->attr.read_format & PERF_FORMAT_ID) 1523 entry += sizeof(u64); 1524 1525 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1526 nr += nr_siblings; 1527 size += sizeof(u64); 1528 } 1529 1530 size += entry * nr; 1531 event->read_size = size; 1532 } 1533 1534 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1535 { 1536 struct perf_sample_data *data; 1537 u16 size = 0; 1538 1539 if (sample_type & PERF_SAMPLE_IP) 1540 size += sizeof(data->ip); 1541 1542 if (sample_type & PERF_SAMPLE_ADDR) 1543 size += sizeof(data->addr); 1544 1545 if (sample_type & PERF_SAMPLE_PERIOD) 1546 size += sizeof(data->period); 1547 1548 if (sample_type & PERF_SAMPLE_WEIGHT) 1549 size += sizeof(data->weight); 1550 1551 if (sample_type & PERF_SAMPLE_READ) 1552 size += event->read_size; 1553 1554 if (sample_type & PERF_SAMPLE_DATA_SRC) 1555 size += sizeof(data->data_src.val); 1556 1557 if (sample_type & PERF_SAMPLE_TRANSACTION) 1558 size += sizeof(data->txn); 1559 1560 event->header_size = size; 1561 } 1562 1563 /* 1564 * Called at perf_event creation and when events are attached/detached from a 1565 * group. 1566 */ 1567 static void perf_event__header_size(struct perf_event *event) 1568 { 1569 __perf_event_read_size(event, 1570 event->group_leader->nr_siblings); 1571 __perf_event_header_size(event, event->attr.sample_type); 1572 } 1573 1574 static void perf_event__id_header_size(struct perf_event *event) 1575 { 1576 struct perf_sample_data *data; 1577 u64 sample_type = event->attr.sample_type; 1578 u16 size = 0; 1579 1580 if (sample_type & PERF_SAMPLE_TID) 1581 size += sizeof(data->tid_entry); 1582 1583 if (sample_type & PERF_SAMPLE_TIME) 1584 size += sizeof(data->time); 1585 1586 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1587 size += sizeof(data->id); 1588 1589 if (sample_type & PERF_SAMPLE_ID) 1590 size += sizeof(data->id); 1591 1592 if (sample_type & PERF_SAMPLE_STREAM_ID) 1593 size += sizeof(data->stream_id); 1594 1595 if (sample_type & PERF_SAMPLE_CPU) 1596 size += sizeof(data->cpu_entry); 1597 1598 event->id_header_size = size; 1599 } 1600 1601 static bool perf_event_validate_size(struct perf_event *event) 1602 { 1603 /* 1604 * The values computed here will be over-written when we actually 1605 * attach the event. 1606 */ 1607 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1608 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1609 perf_event__id_header_size(event); 1610 1611 /* 1612 * Sum the lot; should not exceed the 64k limit we have on records. 1613 * Conservative limit to allow for callchains and other variable fields. 1614 */ 1615 if (event->read_size + event->header_size + 1616 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1617 return false; 1618 1619 return true; 1620 } 1621 1622 static void perf_group_attach(struct perf_event *event) 1623 { 1624 struct perf_event *group_leader = event->group_leader, *pos; 1625 1626 lockdep_assert_held(&event->ctx->lock); 1627 1628 /* 1629 * We can have double attach due to group movement in perf_event_open. 1630 */ 1631 if (event->attach_state & PERF_ATTACH_GROUP) 1632 return; 1633 1634 event->attach_state |= PERF_ATTACH_GROUP; 1635 1636 if (group_leader == event) 1637 return; 1638 1639 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1640 1641 group_leader->group_caps &= event->event_caps; 1642 1643 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1644 group_leader->nr_siblings++; 1645 1646 perf_event__header_size(group_leader); 1647 1648 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1649 perf_event__header_size(pos); 1650 } 1651 1652 /* 1653 * Remove a event from the lists for its context. 1654 * Must be called with ctx->mutex and ctx->lock held. 1655 */ 1656 static void 1657 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1658 { 1659 WARN_ON_ONCE(event->ctx != ctx); 1660 lockdep_assert_held(&ctx->lock); 1661 1662 /* 1663 * We can have double detach due to exit/hot-unplug + close. 1664 */ 1665 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1666 return; 1667 1668 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1669 1670 list_update_cgroup_event(event, ctx, false); 1671 1672 ctx->nr_events--; 1673 if (event->attr.inherit_stat) 1674 ctx->nr_stat--; 1675 1676 list_del_rcu(&event->event_entry); 1677 1678 if (event->group_leader == event) 1679 list_del_init(&event->group_entry); 1680 1681 update_group_times(event); 1682 1683 /* 1684 * If event was in error state, then keep it 1685 * that way, otherwise bogus counts will be 1686 * returned on read(). The only way to get out 1687 * of error state is by explicit re-enabling 1688 * of the event 1689 */ 1690 if (event->state > PERF_EVENT_STATE_OFF) 1691 event->state = PERF_EVENT_STATE_OFF; 1692 1693 ctx->generation++; 1694 } 1695 1696 static void perf_group_detach(struct perf_event *event) 1697 { 1698 struct perf_event *sibling, *tmp; 1699 struct list_head *list = NULL; 1700 1701 lockdep_assert_held(&event->ctx->lock); 1702 1703 /* 1704 * We can have double detach due to exit/hot-unplug + close. 1705 */ 1706 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1707 return; 1708 1709 event->attach_state &= ~PERF_ATTACH_GROUP; 1710 1711 /* 1712 * If this is a sibling, remove it from its group. 1713 */ 1714 if (event->group_leader != event) { 1715 list_del_init(&event->group_entry); 1716 event->group_leader->nr_siblings--; 1717 goto out; 1718 } 1719 1720 if (!list_empty(&event->group_entry)) 1721 list = &event->group_entry; 1722 1723 /* 1724 * If this was a group event with sibling events then 1725 * upgrade the siblings to singleton events by adding them 1726 * to whatever list we are on. 1727 */ 1728 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1729 if (list) 1730 list_move_tail(&sibling->group_entry, list); 1731 sibling->group_leader = sibling; 1732 1733 /* Inherit group flags from the previous leader */ 1734 sibling->group_caps = event->group_caps; 1735 1736 WARN_ON_ONCE(sibling->ctx != event->ctx); 1737 } 1738 1739 out: 1740 perf_event__header_size(event->group_leader); 1741 1742 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1743 perf_event__header_size(tmp); 1744 } 1745 1746 static bool is_orphaned_event(struct perf_event *event) 1747 { 1748 return event->state == PERF_EVENT_STATE_DEAD; 1749 } 1750 1751 static inline int __pmu_filter_match(struct perf_event *event) 1752 { 1753 struct pmu *pmu = event->pmu; 1754 return pmu->filter_match ? pmu->filter_match(event) : 1; 1755 } 1756 1757 /* 1758 * Check whether we should attempt to schedule an event group based on 1759 * PMU-specific filtering. An event group can consist of HW and SW events, 1760 * potentially with a SW leader, so we must check all the filters, to 1761 * determine whether a group is schedulable: 1762 */ 1763 static inline int pmu_filter_match(struct perf_event *event) 1764 { 1765 struct perf_event *child; 1766 1767 if (!__pmu_filter_match(event)) 1768 return 0; 1769 1770 list_for_each_entry(child, &event->sibling_list, group_entry) { 1771 if (!__pmu_filter_match(child)) 1772 return 0; 1773 } 1774 1775 return 1; 1776 } 1777 1778 static inline int 1779 event_filter_match(struct perf_event *event) 1780 { 1781 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1782 perf_cgroup_match(event) && pmu_filter_match(event); 1783 } 1784 1785 static void 1786 event_sched_out(struct perf_event *event, 1787 struct perf_cpu_context *cpuctx, 1788 struct perf_event_context *ctx) 1789 { 1790 u64 tstamp = perf_event_time(event); 1791 u64 delta; 1792 1793 WARN_ON_ONCE(event->ctx != ctx); 1794 lockdep_assert_held(&ctx->lock); 1795 1796 /* 1797 * An event which could not be activated because of 1798 * filter mismatch still needs to have its timings 1799 * maintained, otherwise bogus information is return 1800 * via read() for time_enabled, time_running: 1801 */ 1802 if (event->state == PERF_EVENT_STATE_INACTIVE && 1803 !event_filter_match(event)) { 1804 delta = tstamp - event->tstamp_stopped; 1805 event->tstamp_running += delta; 1806 event->tstamp_stopped = tstamp; 1807 } 1808 1809 if (event->state != PERF_EVENT_STATE_ACTIVE) 1810 return; 1811 1812 perf_pmu_disable(event->pmu); 1813 1814 event->tstamp_stopped = tstamp; 1815 event->pmu->del(event, 0); 1816 event->oncpu = -1; 1817 event->state = PERF_EVENT_STATE_INACTIVE; 1818 if (event->pending_disable) { 1819 event->pending_disable = 0; 1820 event->state = PERF_EVENT_STATE_OFF; 1821 } 1822 1823 if (!is_software_event(event)) 1824 cpuctx->active_oncpu--; 1825 if (!--ctx->nr_active) 1826 perf_event_ctx_deactivate(ctx); 1827 if (event->attr.freq && event->attr.sample_freq) 1828 ctx->nr_freq--; 1829 if (event->attr.exclusive || !cpuctx->active_oncpu) 1830 cpuctx->exclusive = 0; 1831 1832 perf_pmu_enable(event->pmu); 1833 } 1834 1835 static void 1836 group_sched_out(struct perf_event *group_event, 1837 struct perf_cpu_context *cpuctx, 1838 struct perf_event_context *ctx) 1839 { 1840 struct perf_event *event; 1841 int state = group_event->state; 1842 1843 perf_pmu_disable(ctx->pmu); 1844 1845 event_sched_out(group_event, cpuctx, ctx); 1846 1847 /* 1848 * Schedule out siblings (if any): 1849 */ 1850 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1851 event_sched_out(event, cpuctx, ctx); 1852 1853 perf_pmu_enable(ctx->pmu); 1854 1855 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1856 cpuctx->exclusive = 0; 1857 } 1858 1859 #define DETACH_GROUP 0x01UL 1860 1861 /* 1862 * Cross CPU call to remove a performance event 1863 * 1864 * We disable the event on the hardware level first. After that we 1865 * remove it from the context list. 1866 */ 1867 static void 1868 __perf_remove_from_context(struct perf_event *event, 1869 struct perf_cpu_context *cpuctx, 1870 struct perf_event_context *ctx, 1871 void *info) 1872 { 1873 unsigned long flags = (unsigned long)info; 1874 1875 event_sched_out(event, cpuctx, ctx); 1876 if (flags & DETACH_GROUP) 1877 perf_group_detach(event); 1878 list_del_event(event, ctx); 1879 1880 if (!ctx->nr_events && ctx->is_active) { 1881 ctx->is_active = 0; 1882 if (ctx->task) { 1883 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1884 cpuctx->task_ctx = NULL; 1885 } 1886 } 1887 } 1888 1889 /* 1890 * Remove the event from a task's (or a CPU's) list of events. 1891 * 1892 * If event->ctx is a cloned context, callers must make sure that 1893 * every task struct that event->ctx->task could possibly point to 1894 * remains valid. This is OK when called from perf_release since 1895 * that only calls us on the top-level context, which can't be a clone. 1896 * When called from perf_event_exit_task, it's OK because the 1897 * context has been detached from its task. 1898 */ 1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1900 { 1901 struct perf_event_context *ctx = event->ctx; 1902 1903 lockdep_assert_held(&ctx->mutex); 1904 1905 event_function_call(event, __perf_remove_from_context, (void *)flags); 1906 1907 /* 1908 * The above event_function_call() can NO-OP when it hits 1909 * TASK_TOMBSTONE. In that case we must already have been detached 1910 * from the context (by perf_event_exit_event()) but the grouping 1911 * might still be in-tact. 1912 */ 1913 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1914 if ((flags & DETACH_GROUP) && 1915 (event->attach_state & PERF_ATTACH_GROUP)) { 1916 /* 1917 * Since in that case we cannot possibly be scheduled, simply 1918 * detach now. 1919 */ 1920 raw_spin_lock_irq(&ctx->lock); 1921 perf_group_detach(event); 1922 raw_spin_unlock_irq(&ctx->lock); 1923 } 1924 } 1925 1926 /* 1927 * Cross CPU call to disable a performance event 1928 */ 1929 static void __perf_event_disable(struct perf_event *event, 1930 struct perf_cpu_context *cpuctx, 1931 struct perf_event_context *ctx, 1932 void *info) 1933 { 1934 if (event->state < PERF_EVENT_STATE_INACTIVE) 1935 return; 1936 1937 update_context_time(ctx); 1938 update_cgrp_time_from_event(event); 1939 update_group_times(event); 1940 if (event == event->group_leader) 1941 group_sched_out(event, cpuctx, ctx); 1942 else 1943 event_sched_out(event, cpuctx, ctx); 1944 event->state = PERF_EVENT_STATE_OFF; 1945 } 1946 1947 /* 1948 * Disable a event. 1949 * 1950 * If event->ctx is a cloned context, callers must make sure that 1951 * every task struct that event->ctx->task could possibly point to 1952 * remains valid. This condition is satisifed when called through 1953 * perf_event_for_each_child or perf_event_for_each because they 1954 * hold the top-level event's child_mutex, so any descendant that 1955 * goes to exit will block in perf_event_exit_event(). 1956 * 1957 * When called from perf_pending_event it's OK because event->ctx 1958 * is the current context on this CPU and preemption is disabled, 1959 * hence we can't get into perf_event_task_sched_out for this context. 1960 */ 1961 static void _perf_event_disable(struct perf_event *event) 1962 { 1963 struct perf_event_context *ctx = event->ctx; 1964 1965 raw_spin_lock_irq(&ctx->lock); 1966 if (event->state <= PERF_EVENT_STATE_OFF) { 1967 raw_spin_unlock_irq(&ctx->lock); 1968 return; 1969 } 1970 raw_spin_unlock_irq(&ctx->lock); 1971 1972 event_function_call(event, __perf_event_disable, NULL); 1973 } 1974 1975 void perf_event_disable_local(struct perf_event *event) 1976 { 1977 event_function_local(event, __perf_event_disable, NULL); 1978 } 1979 1980 /* 1981 * Strictly speaking kernel users cannot create groups and therefore this 1982 * interface does not need the perf_event_ctx_lock() magic. 1983 */ 1984 void perf_event_disable(struct perf_event *event) 1985 { 1986 struct perf_event_context *ctx; 1987 1988 ctx = perf_event_ctx_lock(event); 1989 _perf_event_disable(event); 1990 perf_event_ctx_unlock(event, ctx); 1991 } 1992 EXPORT_SYMBOL_GPL(perf_event_disable); 1993 1994 void perf_event_disable_inatomic(struct perf_event *event) 1995 { 1996 event->pending_disable = 1; 1997 irq_work_queue(&event->pending); 1998 } 1999 2000 static void perf_set_shadow_time(struct perf_event *event, 2001 struct perf_event_context *ctx, 2002 u64 tstamp) 2003 { 2004 /* 2005 * use the correct time source for the time snapshot 2006 * 2007 * We could get by without this by leveraging the 2008 * fact that to get to this function, the caller 2009 * has most likely already called update_context_time() 2010 * and update_cgrp_time_xx() and thus both timestamp 2011 * are identical (or very close). Given that tstamp is, 2012 * already adjusted for cgroup, we could say that: 2013 * tstamp - ctx->timestamp 2014 * is equivalent to 2015 * tstamp - cgrp->timestamp. 2016 * 2017 * Then, in perf_output_read(), the calculation would 2018 * work with no changes because: 2019 * - event is guaranteed scheduled in 2020 * - no scheduled out in between 2021 * - thus the timestamp would be the same 2022 * 2023 * But this is a bit hairy. 2024 * 2025 * So instead, we have an explicit cgroup call to remain 2026 * within the time time source all along. We believe it 2027 * is cleaner and simpler to understand. 2028 */ 2029 if (is_cgroup_event(event)) 2030 perf_cgroup_set_shadow_time(event, tstamp); 2031 else 2032 event->shadow_ctx_time = tstamp - ctx->timestamp; 2033 } 2034 2035 #define MAX_INTERRUPTS (~0ULL) 2036 2037 static void perf_log_throttle(struct perf_event *event, int enable); 2038 static void perf_log_itrace_start(struct perf_event *event); 2039 2040 static int 2041 event_sched_in(struct perf_event *event, 2042 struct perf_cpu_context *cpuctx, 2043 struct perf_event_context *ctx) 2044 { 2045 u64 tstamp = perf_event_time(event); 2046 int ret = 0; 2047 2048 lockdep_assert_held(&ctx->lock); 2049 2050 if (event->state <= PERF_EVENT_STATE_OFF) 2051 return 0; 2052 2053 WRITE_ONCE(event->oncpu, smp_processor_id()); 2054 /* 2055 * Order event::oncpu write to happen before the ACTIVE state 2056 * is visible. 2057 */ 2058 smp_wmb(); 2059 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2060 2061 /* 2062 * Unthrottle events, since we scheduled we might have missed several 2063 * ticks already, also for a heavily scheduling task there is little 2064 * guarantee it'll get a tick in a timely manner. 2065 */ 2066 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2067 perf_log_throttle(event, 1); 2068 event->hw.interrupts = 0; 2069 } 2070 2071 /* 2072 * The new state must be visible before we turn it on in the hardware: 2073 */ 2074 smp_wmb(); 2075 2076 perf_pmu_disable(event->pmu); 2077 2078 perf_set_shadow_time(event, ctx, tstamp); 2079 2080 perf_log_itrace_start(event); 2081 2082 if (event->pmu->add(event, PERF_EF_START)) { 2083 event->state = PERF_EVENT_STATE_INACTIVE; 2084 event->oncpu = -1; 2085 ret = -EAGAIN; 2086 goto out; 2087 } 2088 2089 event->tstamp_running += tstamp - event->tstamp_stopped; 2090 2091 if (!is_software_event(event)) 2092 cpuctx->active_oncpu++; 2093 if (!ctx->nr_active++) 2094 perf_event_ctx_activate(ctx); 2095 if (event->attr.freq && event->attr.sample_freq) 2096 ctx->nr_freq++; 2097 2098 if (event->attr.exclusive) 2099 cpuctx->exclusive = 1; 2100 2101 out: 2102 perf_pmu_enable(event->pmu); 2103 2104 return ret; 2105 } 2106 2107 static int 2108 group_sched_in(struct perf_event *group_event, 2109 struct perf_cpu_context *cpuctx, 2110 struct perf_event_context *ctx) 2111 { 2112 struct perf_event *event, *partial_group = NULL; 2113 struct pmu *pmu = ctx->pmu; 2114 u64 now = ctx->time; 2115 bool simulate = false; 2116 2117 if (group_event->state == PERF_EVENT_STATE_OFF) 2118 return 0; 2119 2120 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2121 2122 if (event_sched_in(group_event, cpuctx, ctx)) { 2123 pmu->cancel_txn(pmu); 2124 perf_mux_hrtimer_restart(cpuctx); 2125 return -EAGAIN; 2126 } 2127 2128 /* 2129 * Schedule in siblings as one group (if any): 2130 */ 2131 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2132 if (event_sched_in(event, cpuctx, ctx)) { 2133 partial_group = event; 2134 goto group_error; 2135 } 2136 } 2137 2138 if (!pmu->commit_txn(pmu)) 2139 return 0; 2140 2141 group_error: 2142 /* 2143 * Groups can be scheduled in as one unit only, so undo any 2144 * partial group before returning: 2145 * The events up to the failed event are scheduled out normally, 2146 * tstamp_stopped will be updated. 2147 * 2148 * The failed events and the remaining siblings need to have 2149 * their timings updated as if they had gone thru event_sched_in() 2150 * and event_sched_out(). This is required to get consistent timings 2151 * across the group. This also takes care of the case where the group 2152 * could never be scheduled by ensuring tstamp_stopped is set to mark 2153 * the time the event was actually stopped, such that time delta 2154 * calculation in update_event_times() is correct. 2155 */ 2156 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2157 if (event == partial_group) 2158 simulate = true; 2159 2160 if (simulate) { 2161 event->tstamp_running += now - event->tstamp_stopped; 2162 event->tstamp_stopped = now; 2163 } else { 2164 event_sched_out(event, cpuctx, ctx); 2165 } 2166 } 2167 event_sched_out(group_event, cpuctx, ctx); 2168 2169 pmu->cancel_txn(pmu); 2170 2171 perf_mux_hrtimer_restart(cpuctx); 2172 2173 return -EAGAIN; 2174 } 2175 2176 /* 2177 * Work out whether we can put this event group on the CPU now. 2178 */ 2179 static int group_can_go_on(struct perf_event *event, 2180 struct perf_cpu_context *cpuctx, 2181 int can_add_hw) 2182 { 2183 /* 2184 * Groups consisting entirely of software events can always go on. 2185 */ 2186 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2187 return 1; 2188 /* 2189 * If an exclusive group is already on, no other hardware 2190 * events can go on. 2191 */ 2192 if (cpuctx->exclusive) 2193 return 0; 2194 /* 2195 * If this group is exclusive and there are already 2196 * events on the CPU, it can't go on. 2197 */ 2198 if (event->attr.exclusive && cpuctx->active_oncpu) 2199 return 0; 2200 /* 2201 * Otherwise, try to add it if all previous groups were able 2202 * to go on. 2203 */ 2204 return can_add_hw; 2205 } 2206 2207 static void add_event_to_ctx(struct perf_event *event, 2208 struct perf_event_context *ctx) 2209 { 2210 u64 tstamp = perf_event_time(event); 2211 2212 list_add_event(event, ctx); 2213 perf_group_attach(event); 2214 event->tstamp_enabled = tstamp; 2215 event->tstamp_running = tstamp; 2216 event->tstamp_stopped = tstamp; 2217 } 2218 2219 static void ctx_sched_out(struct perf_event_context *ctx, 2220 struct perf_cpu_context *cpuctx, 2221 enum event_type_t event_type); 2222 static void 2223 ctx_sched_in(struct perf_event_context *ctx, 2224 struct perf_cpu_context *cpuctx, 2225 enum event_type_t event_type, 2226 struct task_struct *task); 2227 2228 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2229 struct perf_event_context *ctx) 2230 { 2231 if (!cpuctx->task_ctx) 2232 return; 2233 2234 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2235 return; 2236 2237 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2238 } 2239 2240 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2241 struct perf_event_context *ctx, 2242 struct task_struct *task) 2243 { 2244 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2245 if (ctx) 2246 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2247 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2248 if (ctx) 2249 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2250 } 2251 2252 static void ctx_resched(struct perf_cpu_context *cpuctx, 2253 struct perf_event_context *task_ctx) 2254 { 2255 perf_pmu_disable(cpuctx->ctx.pmu); 2256 if (task_ctx) 2257 task_ctx_sched_out(cpuctx, task_ctx); 2258 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2259 perf_event_sched_in(cpuctx, task_ctx, current); 2260 perf_pmu_enable(cpuctx->ctx.pmu); 2261 } 2262 2263 /* 2264 * Cross CPU call to install and enable a performance event 2265 * 2266 * Very similar to remote_function() + event_function() but cannot assume that 2267 * things like ctx->is_active and cpuctx->task_ctx are set. 2268 */ 2269 static int __perf_install_in_context(void *info) 2270 { 2271 struct perf_event *event = info; 2272 struct perf_event_context *ctx = event->ctx; 2273 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2274 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2275 bool reprogram = true; 2276 int ret = 0; 2277 2278 raw_spin_lock(&cpuctx->ctx.lock); 2279 if (ctx->task) { 2280 raw_spin_lock(&ctx->lock); 2281 task_ctx = ctx; 2282 2283 reprogram = (ctx->task == current); 2284 2285 /* 2286 * If the task is running, it must be running on this CPU, 2287 * otherwise we cannot reprogram things. 2288 * 2289 * If its not running, we don't care, ctx->lock will 2290 * serialize against it becoming runnable. 2291 */ 2292 if (task_curr(ctx->task) && !reprogram) { 2293 ret = -ESRCH; 2294 goto unlock; 2295 } 2296 2297 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2298 } else if (task_ctx) { 2299 raw_spin_lock(&task_ctx->lock); 2300 } 2301 2302 if (reprogram) { 2303 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2304 add_event_to_ctx(event, ctx); 2305 ctx_resched(cpuctx, task_ctx); 2306 } else { 2307 add_event_to_ctx(event, ctx); 2308 } 2309 2310 unlock: 2311 perf_ctx_unlock(cpuctx, task_ctx); 2312 2313 return ret; 2314 } 2315 2316 /* 2317 * Attach a performance event to a context. 2318 * 2319 * Very similar to event_function_call, see comment there. 2320 */ 2321 static void 2322 perf_install_in_context(struct perf_event_context *ctx, 2323 struct perf_event *event, 2324 int cpu) 2325 { 2326 struct task_struct *task = READ_ONCE(ctx->task); 2327 2328 lockdep_assert_held(&ctx->mutex); 2329 2330 if (event->cpu != -1) 2331 event->cpu = cpu; 2332 2333 /* 2334 * Ensures that if we can observe event->ctx, both the event and ctx 2335 * will be 'complete'. See perf_iterate_sb_cpu(). 2336 */ 2337 smp_store_release(&event->ctx, ctx); 2338 2339 if (!task) { 2340 cpu_function_call(cpu, __perf_install_in_context, event); 2341 return; 2342 } 2343 2344 /* 2345 * Should not happen, we validate the ctx is still alive before calling. 2346 */ 2347 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2348 return; 2349 2350 /* 2351 * Installing events is tricky because we cannot rely on ctx->is_active 2352 * to be set in case this is the nr_events 0 -> 1 transition. 2353 * 2354 * Instead we use task_curr(), which tells us if the task is running. 2355 * However, since we use task_curr() outside of rq::lock, we can race 2356 * against the actual state. This means the result can be wrong. 2357 * 2358 * If we get a false positive, we retry, this is harmless. 2359 * 2360 * If we get a false negative, things are complicated. If we are after 2361 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2362 * value must be correct. If we're before, it doesn't matter since 2363 * perf_event_context_sched_in() will program the counter. 2364 * 2365 * However, this hinges on the remote context switch having observed 2366 * our task->perf_event_ctxp[] store, such that it will in fact take 2367 * ctx::lock in perf_event_context_sched_in(). 2368 * 2369 * We do this by task_function_call(), if the IPI fails to hit the task 2370 * we know any future context switch of task must see the 2371 * perf_event_ctpx[] store. 2372 */ 2373 2374 /* 2375 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2376 * task_cpu() load, such that if the IPI then does not find the task 2377 * running, a future context switch of that task must observe the 2378 * store. 2379 */ 2380 smp_mb(); 2381 again: 2382 if (!task_function_call(task, __perf_install_in_context, event)) 2383 return; 2384 2385 raw_spin_lock_irq(&ctx->lock); 2386 task = ctx->task; 2387 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2388 /* 2389 * Cannot happen because we already checked above (which also 2390 * cannot happen), and we hold ctx->mutex, which serializes us 2391 * against perf_event_exit_task_context(). 2392 */ 2393 raw_spin_unlock_irq(&ctx->lock); 2394 return; 2395 } 2396 /* 2397 * If the task is not running, ctx->lock will avoid it becoming so, 2398 * thus we can safely install the event. 2399 */ 2400 if (task_curr(task)) { 2401 raw_spin_unlock_irq(&ctx->lock); 2402 goto again; 2403 } 2404 add_event_to_ctx(event, ctx); 2405 raw_spin_unlock_irq(&ctx->lock); 2406 } 2407 2408 /* 2409 * Put a event into inactive state and update time fields. 2410 * Enabling the leader of a group effectively enables all 2411 * the group members that aren't explicitly disabled, so we 2412 * have to update their ->tstamp_enabled also. 2413 * Note: this works for group members as well as group leaders 2414 * since the non-leader members' sibling_lists will be empty. 2415 */ 2416 static void __perf_event_mark_enabled(struct perf_event *event) 2417 { 2418 struct perf_event *sub; 2419 u64 tstamp = perf_event_time(event); 2420 2421 event->state = PERF_EVENT_STATE_INACTIVE; 2422 event->tstamp_enabled = tstamp - event->total_time_enabled; 2423 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2424 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2425 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2426 } 2427 } 2428 2429 /* 2430 * Cross CPU call to enable a performance event 2431 */ 2432 static void __perf_event_enable(struct perf_event *event, 2433 struct perf_cpu_context *cpuctx, 2434 struct perf_event_context *ctx, 2435 void *info) 2436 { 2437 struct perf_event *leader = event->group_leader; 2438 struct perf_event_context *task_ctx; 2439 2440 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2441 event->state <= PERF_EVENT_STATE_ERROR) 2442 return; 2443 2444 if (ctx->is_active) 2445 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2446 2447 __perf_event_mark_enabled(event); 2448 2449 if (!ctx->is_active) 2450 return; 2451 2452 if (!event_filter_match(event)) { 2453 if (is_cgroup_event(event)) 2454 perf_cgroup_defer_enabled(event); 2455 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2456 return; 2457 } 2458 2459 /* 2460 * If the event is in a group and isn't the group leader, 2461 * then don't put it on unless the group is on. 2462 */ 2463 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2464 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2465 return; 2466 } 2467 2468 task_ctx = cpuctx->task_ctx; 2469 if (ctx->task) 2470 WARN_ON_ONCE(task_ctx != ctx); 2471 2472 ctx_resched(cpuctx, task_ctx); 2473 } 2474 2475 /* 2476 * Enable a event. 2477 * 2478 * If event->ctx is a cloned context, callers must make sure that 2479 * every task struct that event->ctx->task could possibly point to 2480 * remains valid. This condition is satisfied when called through 2481 * perf_event_for_each_child or perf_event_for_each as described 2482 * for perf_event_disable. 2483 */ 2484 static void _perf_event_enable(struct perf_event *event) 2485 { 2486 struct perf_event_context *ctx = event->ctx; 2487 2488 raw_spin_lock_irq(&ctx->lock); 2489 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2490 event->state < PERF_EVENT_STATE_ERROR) { 2491 raw_spin_unlock_irq(&ctx->lock); 2492 return; 2493 } 2494 2495 /* 2496 * If the event is in error state, clear that first. 2497 * 2498 * That way, if we see the event in error state below, we know that it 2499 * has gone back into error state, as distinct from the task having 2500 * been scheduled away before the cross-call arrived. 2501 */ 2502 if (event->state == PERF_EVENT_STATE_ERROR) 2503 event->state = PERF_EVENT_STATE_OFF; 2504 raw_spin_unlock_irq(&ctx->lock); 2505 2506 event_function_call(event, __perf_event_enable, NULL); 2507 } 2508 2509 /* 2510 * See perf_event_disable(); 2511 */ 2512 void perf_event_enable(struct perf_event *event) 2513 { 2514 struct perf_event_context *ctx; 2515 2516 ctx = perf_event_ctx_lock(event); 2517 _perf_event_enable(event); 2518 perf_event_ctx_unlock(event, ctx); 2519 } 2520 EXPORT_SYMBOL_GPL(perf_event_enable); 2521 2522 struct stop_event_data { 2523 struct perf_event *event; 2524 unsigned int restart; 2525 }; 2526 2527 static int __perf_event_stop(void *info) 2528 { 2529 struct stop_event_data *sd = info; 2530 struct perf_event *event = sd->event; 2531 2532 /* if it's already INACTIVE, do nothing */ 2533 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2534 return 0; 2535 2536 /* matches smp_wmb() in event_sched_in() */ 2537 smp_rmb(); 2538 2539 /* 2540 * There is a window with interrupts enabled before we get here, 2541 * so we need to check again lest we try to stop another CPU's event. 2542 */ 2543 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2544 return -EAGAIN; 2545 2546 event->pmu->stop(event, PERF_EF_UPDATE); 2547 2548 /* 2549 * May race with the actual stop (through perf_pmu_output_stop()), 2550 * but it is only used for events with AUX ring buffer, and such 2551 * events will refuse to restart because of rb::aux_mmap_count==0, 2552 * see comments in perf_aux_output_begin(). 2553 * 2554 * Since this is happening on a event-local CPU, no trace is lost 2555 * while restarting. 2556 */ 2557 if (sd->restart) 2558 event->pmu->start(event, 0); 2559 2560 return 0; 2561 } 2562 2563 static int perf_event_stop(struct perf_event *event, int restart) 2564 { 2565 struct stop_event_data sd = { 2566 .event = event, 2567 .restart = restart, 2568 }; 2569 int ret = 0; 2570 2571 do { 2572 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2573 return 0; 2574 2575 /* matches smp_wmb() in event_sched_in() */ 2576 smp_rmb(); 2577 2578 /* 2579 * We only want to restart ACTIVE events, so if the event goes 2580 * inactive here (event->oncpu==-1), there's nothing more to do; 2581 * fall through with ret==-ENXIO. 2582 */ 2583 ret = cpu_function_call(READ_ONCE(event->oncpu), 2584 __perf_event_stop, &sd); 2585 } while (ret == -EAGAIN); 2586 2587 return ret; 2588 } 2589 2590 /* 2591 * In order to contain the amount of racy and tricky in the address filter 2592 * configuration management, it is a two part process: 2593 * 2594 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2595 * we update the addresses of corresponding vmas in 2596 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2597 * (p2) when an event is scheduled in (pmu::add), it calls 2598 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2599 * if the generation has changed since the previous call. 2600 * 2601 * If (p1) happens while the event is active, we restart it to force (p2). 2602 * 2603 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2604 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2605 * ioctl; 2606 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2607 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2608 * for reading; 2609 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2610 * of exec. 2611 */ 2612 void perf_event_addr_filters_sync(struct perf_event *event) 2613 { 2614 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2615 2616 if (!has_addr_filter(event)) 2617 return; 2618 2619 raw_spin_lock(&ifh->lock); 2620 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2621 event->pmu->addr_filters_sync(event); 2622 event->hw.addr_filters_gen = event->addr_filters_gen; 2623 } 2624 raw_spin_unlock(&ifh->lock); 2625 } 2626 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2627 2628 static int _perf_event_refresh(struct perf_event *event, int refresh) 2629 { 2630 /* 2631 * not supported on inherited events 2632 */ 2633 if (event->attr.inherit || !is_sampling_event(event)) 2634 return -EINVAL; 2635 2636 atomic_add(refresh, &event->event_limit); 2637 _perf_event_enable(event); 2638 2639 return 0; 2640 } 2641 2642 /* 2643 * See perf_event_disable() 2644 */ 2645 int perf_event_refresh(struct perf_event *event, int refresh) 2646 { 2647 struct perf_event_context *ctx; 2648 int ret; 2649 2650 ctx = perf_event_ctx_lock(event); 2651 ret = _perf_event_refresh(event, refresh); 2652 perf_event_ctx_unlock(event, ctx); 2653 2654 return ret; 2655 } 2656 EXPORT_SYMBOL_GPL(perf_event_refresh); 2657 2658 static void ctx_sched_out(struct perf_event_context *ctx, 2659 struct perf_cpu_context *cpuctx, 2660 enum event_type_t event_type) 2661 { 2662 int is_active = ctx->is_active; 2663 struct perf_event *event; 2664 2665 lockdep_assert_held(&ctx->lock); 2666 2667 if (likely(!ctx->nr_events)) { 2668 /* 2669 * See __perf_remove_from_context(). 2670 */ 2671 WARN_ON_ONCE(ctx->is_active); 2672 if (ctx->task) 2673 WARN_ON_ONCE(cpuctx->task_ctx); 2674 return; 2675 } 2676 2677 ctx->is_active &= ~event_type; 2678 if (!(ctx->is_active & EVENT_ALL)) 2679 ctx->is_active = 0; 2680 2681 if (ctx->task) { 2682 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2683 if (!ctx->is_active) 2684 cpuctx->task_ctx = NULL; 2685 } 2686 2687 /* 2688 * Always update time if it was set; not only when it changes. 2689 * Otherwise we can 'forget' to update time for any but the last 2690 * context we sched out. For example: 2691 * 2692 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2693 * ctx_sched_out(.event_type = EVENT_PINNED) 2694 * 2695 * would only update time for the pinned events. 2696 */ 2697 if (is_active & EVENT_TIME) { 2698 /* update (and stop) ctx time */ 2699 update_context_time(ctx); 2700 update_cgrp_time_from_cpuctx(cpuctx); 2701 } 2702 2703 is_active ^= ctx->is_active; /* changed bits */ 2704 2705 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2706 return; 2707 2708 perf_pmu_disable(ctx->pmu); 2709 if (is_active & EVENT_PINNED) { 2710 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2711 group_sched_out(event, cpuctx, ctx); 2712 } 2713 2714 if (is_active & EVENT_FLEXIBLE) { 2715 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2716 group_sched_out(event, cpuctx, ctx); 2717 } 2718 perf_pmu_enable(ctx->pmu); 2719 } 2720 2721 /* 2722 * Test whether two contexts are equivalent, i.e. whether they have both been 2723 * cloned from the same version of the same context. 2724 * 2725 * Equivalence is measured using a generation number in the context that is 2726 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2727 * and list_del_event(). 2728 */ 2729 static int context_equiv(struct perf_event_context *ctx1, 2730 struct perf_event_context *ctx2) 2731 { 2732 lockdep_assert_held(&ctx1->lock); 2733 lockdep_assert_held(&ctx2->lock); 2734 2735 /* Pinning disables the swap optimization */ 2736 if (ctx1->pin_count || ctx2->pin_count) 2737 return 0; 2738 2739 /* If ctx1 is the parent of ctx2 */ 2740 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2741 return 1; 2742 2743 /* If ctx2 is the parent of ctx1 */ 2744 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2745 return 1; 2746 2747 /* 2748 * If ctx1 and ctx2 have the same parent; we flatten the parent 2749 * hierarchy, see perf_event_init_context(). 2750 */ 2751 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2752 ctx1->parent_gen == ctx2->parent_gen) 2753 return 1; 2754 2755 /* Unmatched */ 2756 return 0; 2757 } 2758 2759 static void __perf_event_sync_stat(struct perf_event *event, 2760 struct perf_event *next_event) 2761 { 2762 u64 value; 2763 2764 if (!event->attr.inherit_stat) 2765 return; 2766 2767 /* 2768 * Update the event value, we cannot use perf_event_read() 2769 * because we're in the middle of a context switch and have IRQs 2770 * disabled, which upsets smp_call_function_single(), however 2771 * we know the event must be on the current CPU, therefore we 2772 * don't need to use it. 2773 */ 2774 switch (event->state) { 2775 case PERF_EVENT_STATE_ACTIVE: 2776 event->pmu->read(event); 2777 /* fall-through */ 2778 2779 case PERF_EVENT_STATE_INACTIVE: 2780 update_event_times(event); 2781 break; 2782 2783 default: 2784 break; 2785 } 2786 2787 /* 2788 * In order to keep per-task stats reliable we need to flip the event 2789 * values when we flip the contexts. 2790 */ 2791 value = local64_read(&next_event->count); 2792 value = local64_xchg(&event->count, value); 2793 local64_set(&next_event->count, value); 2794 2795 swap(event->total_time_enabled, next_event->total_time_enabled); 2796 swap(event->total_time_running, next_event->total_time_running); 2797 2798 /* 2799 * Since we swizzled the values, update the user visible data too. 2800 */ 2801 perf_event_update_userpage(event); 2802 perf_event_update_userpage(next_event); 2803 } 2804 2805 static void perf_event_sync_stat(struct perf_event_context *ctx, 2806 struct perf_event_context *next_ctx) 2807 { 2808 struct perf_event *event, *next_event; 2809 2810 if (!ctx->nr_stat) 2811 return; 2812 2813 update_context_time(ctx); 2814 2815 event = list_first_entry(&ctx->event_list, 2816 struct perf_event, event_entry); 2817 2818 next_event = list_first_entry(&next_ctx->event_list, 2819 struct perf_event, event_entry); 2820 2821 while (&event->event_entry != &ctx->event_list && 2822 &next_event->event_entry != &next_ctx->event_list) { 2823 2824 __perf_event_sync_stat(event, next_event); 2825 2826 event = list_next_entry(event, event_entry); 2827 next_event = list_next_entry(next_event, event_entry); 2828 } 2829 } 2830 2831 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2832 struct task_struct *next) 2833 { 2834 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2835 struct perf_event_context *next_ctx; 2836 struct perf_event_context *parent, *next_parent; 2837 struct perf_cpu_context *cpuctx; 2838 int do_switch = 1; 2839 2840 if (likely(!ctx)) 2841 return; 2842 2843 cpuctx = __get_cpu_context(ctx); 2844 if (!cpuctx->task_ctx) 2845 return; 2846 2847 rcu_read_lock(); 2848 next_ctx = next->perf_event_ctxp[ctxn]; 2849 if (!next_ctx) 2850 goto unlock; 2851 2852 parent = rcu_dereference(ctx->parent_ctx); 2853 next_parent = rcu_dereference(next_ctx->parent_ctx); 2854 2855 /* If neither context have a parent context; they cannot be clones. */ 2856 if (!parent && !next_parent) 2857 goto unlock; 2858 2859 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2860 /* 2861 * Looks like the two contexts are clones, so we might be 2862 * able to optimize the context switch. We lock both 2863 * contexts and check that they are clones under the 2864 * lock (including re-checking that neither has been 2865 * uncloned in the meantime). It doesn't matter which 2866 * order we take the locks because no other cpu could 2867 * be trying to lock both of these tasks. 2868 */ 2869 raw_spin_lock(&ctx->lock); 2870 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2871 if (context_equiv(ctx, next_ctx)) { 2872 WRITE_ONCE(ctx->task, next); 2873 WRITE_ONCE(next_ctx->task, task); 2874 2875 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2876 2877 /* 2878 * RCU_INIT_POINTER here is safe because we've not 2879 * modified the ctx and the above modification of 2880 * ctx->task and ctx->task_ctx_data are immaterial 2881 * since those values are always verified under 2882 * ctx->lock which we're now holding. 2883 */ 2884 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2885 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2886 2887 do_switch = 0; 2888 2889 perf_event_sync_stat(ctx, next_ctx); 2890 } 2891 raw_spin_unlock(&next_ctx->lock); 2892 raw_spin_unlock(&ctx->lock); 2893 } 2894 unlock: 2895 rcu_read_unlock(); 2896 2897 if (do_switch) { 2898 raw_spin_lock(&ctx->lock); 2899 task_ctx_sched_out(cpuctx, ctx); 2900 raw_spin_unlock(&ctx->lock); 2901 } 2902 } 2903 2904 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2905 2906 void perf_sched_cb_dec(struct pmu *pmu) 2907 { 2908 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2909 2910 this_cpu_dec(perf_sched_cb_usages); 2911 2912 if (!--cpuctx->sched_cb_usage) 2913 list_del(&cpuctx->sched_cb_entry); 2914 } 2915 2916 2917 void perf_sched_cb_inc(struct pmu *pmu) 2918 { 2919 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2920 2921 if (!cpuctx->sched_cb_usage++) 2922 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2923 2924 this_cpu_inc(perf_sched_cb_usages); 2925 } 2926 2927 /* 2928 * This function provides the context switch callback to the lower code 2929 * layer. It is invoked ONLY when the context switch callback is enabled. 2930 * 2931 * This callback is relevant even to per-cpu events; for example multi event 2932 * PEBS requires this to provide PID/TID information. This requires we flush 2933 * all queued PEBS records before we context switch to a new task. 2934 */ 2935 static void perf_pmu_sched_task(struct task_struct *prev, 2936 struct task_struct *next, 2937 bool sched_in) 2938 { 2939 struct perf_cpu_context *cpuctx; 2940 struct pmu *pmu; 2941 2942 if (prev == next) 2943 return; 2944 2945 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2946 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */ 2947 2948 if (WARN_ON_ONCE(!pmu->sched_task)) 2949 continue; 2950 2951 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2952 perf_pmu_disable(pmu); 2953 2954 pmu->sched_task(cpuctx->task_ctx, sched_in); 2955 2956 perf_pmu_enable(pmu); 2957 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2958 } 2959 } 2960 2961 static void perf_event_switch(struct task_struct *task, 2962 struct task_struct *next_prev, bool sched_in); 2963 2964 #define for_each_task_context_nr(ctxn) \ 2965 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2966 2967 /* 2968 * Called from scheduler to remove the events of the current task, 2969 * with interrupts disabled. 2970 * 2971 * We stop each event and update the event value in event->count. 2972 * 2973 * This does not protect us against NMI, but disable() 2974 * sets the disabled bit in the control field of event _before_ 2975 * accessing the event control register. If a NMI hits, then it will 2976 * not restart the event. 2977 */ 2978 void __perf_event_task_sched_out(struct task_struct *task, 2979 struct task_struct *next) 2980 { 2981 int ctxn; 2982 2983 if (__this_cpu_read(perf_sched_cb_usages)) 2984 perf_pmu_sched_task(task, next, false); 2985 2986 if (atomic_read(&nr_switch_events)) 2987 perf_event_switch(task, next, false); 2988 2989 for_each_task_context_nr(ctxn) 2990 perf_event_context_sched_out(task, ctxn, next); 2991 2992 /* 2993 * if cgroup events exist on this CPU, then we need 2994 * to check if we have to switch out PMU state. 2995 * cgroup event are system-wide mode only 2996 */ 2997 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2998 perf_cgroup_sched_out(task, next); 2999 } 3000 3001 /* 3002 * Called with IRQs disabled 3003 */ 3004 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3005 enum event_type_t event_type) 3006 { 3007 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3008 } 3009 3010 static void 3011 ctx_pinned_sched_in(struct perf_event_context *ctx, 3012 struct perf_cpu_context *cpuctx) 3013 { 3014 struct perf_event *event; 3015 3016 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3017 if (event->state <= PERF_EVENT_STATE_OFF) 3018 continue; 3019 if (!event_filter_match(event)) 3020 continue; 3021 3022 /* may need to reset tstamp_enabled */ 3023 if (is_cgroup_event(event)) 3024 perf_cgroup_mark_enabled(event, ctx); 3025 3026 if (group_can_go_on(event, cpuctx, 1)) 3027 group_sched_in(event, cpuctx, ctx); 3028 3029 /* 3030 * If this pinned group hasn't been scheduled, 3031 * put it in error state. 3032 */ 3033 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3034 update_group_times(event); 3035 event->state = PERF_EVENT_STATE_ERROR; 3036 } 3037 } 3038 } 3039 3040 static void 3041 ctx_flexible_sched_in(struct perf_event_context *ctx, 3042 struct perf_cpu_context *cpuctx) 3043 { 3044 struct perf_event *event; 3045 int can_add_hw = 1; 3046 3047 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3048 /* Ignore events in OFF or ERROR state */ 3049 if (event->state <= PERF_EVENT_STATE_OFF) 3050 continue; 3051 /* 3052 * Listen to the 'cpu' scheduling filter constraint 3053 * of events: 3054 */ 3055 if (!event_filter_match(event)) 3056 continue; 3057 3058 /* may need to reset tstamp_enabled */ 3059 if (is_cgroup_event(event)) 3060 perf_cgroup_mark_enabled(event, ctx); 3061 3062 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3063 if (group_sched_in(event, cpuctx, ctx)) 3064 can_add_hw = 0; 3065 } 3066 } 3067 } 3068 3069 static void 3070 ctx_sched_in(struct perf_event_context *ctx, 3071 struct perf_cpu_context *cpuctx, 3072 enum event_type_t event_type, 3073 struct task_struct *task) 3074 { 3075 int is_active = ctx->is_active; 3076 u64 now; 3077 3078 lockdep_assert_held(&ctx->lock); 3079 3080 if (likely(!ctx->nr_events)) 3081 return; 3082 3083 ctx->is_active |= (event_type | EVENT_TIME); 3084 if (ctx->task) { 3085 if (!is_active) 3086 cpuctx->task_ctx = ctx; 3087 else 3088 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3089 } 3090 3091 is_active ^= ctx->is_active; /* changed bits */ 3092 3093 if (is_active & EVENT_TIME) { 3094 /* start ctx time */ 3095 now = perf_clock(); 3096 ctx->timestamp = now; 3097 perf_cgroup_set_timestamp(task, ctx); 3098 } 3099 3100 /* 3101 * First go through the list and put on any pinned groups 3102 * in order to give them the best chance of going on. 3103 */ 3104 if (is_active & EVENT_PINNED) 3105 ctx_pinned_sched_in(ctx, cpuctx); 3106 3107 /* Then walk through the lower prio flexible groups */ 3108 if (is_active & EVENT_FLEXIBLE) 3109 ctx_flexible_sched_in(ctx, cpuctx); 3110 } 3111 3112 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3113 enum event_type_t event_type, 3114 struct task_struct *task) 3115 { 3116 struct perf_event_context *ctx = &cpuctx->ctx; 3117 3118 ctx_sched_in(ctx, cpuctx, event_type, task); 3119 } 3120 3121 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3122 struct task_struct *task) 3123 { 3124 struct perf_cpu_context *cpuctx; 3125 3126 cpuctx = __get_cpu_context(ctx); 3127 if (cpuctx->task_ctx == ctx) 3128 return; 3129 3130 perf_ctx_lock(cpuctx, ctx); 3131 perf_pmu_disable(ctx->pmu); 3132 /* 3133 * We want to keep the following priority order: 3134 * cpu pinned (that don't need to move), task pinned, 3135 * cpu flexible, task flexible. 3136 */ 3137 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3138 perf_event_sched_in(cpuctx, ctx, task); 3139 perf_pmu_enable(ctx->pmu); 3140 perf_ctx_unlock(cpuctx, ctx); 3141 } 3142 3143 /* 3144 * Called from scheduler to add the events of the current task 3145 * with interrupts disabled. 3146 * 3147 * We restore the event value and then enable it. 3148 * 3149 * This does not protect us against NMI, but enable() 3150 * sets the enabled bit in the control field of event _before_ 3151 * accessing the event control register. If a NMI hits, then it will 3152 * keep the event running. 3153 */ 3154 void __perf_event_task_sched_in(struct task_struct *prev, 3155 struct task_struct *task) 3156 { 3157 struct perf_event_context *ctx; 3158 int ctxn; 3159 3160 /* 3161 * If cgroup events exist on this CPU, then we need to check if we have 3162 * to switch in PMU state; cgroup event are system-wide mode only. 3163 * 3164 * Since cgroup events are CPU events, we must schedule these in before 3165 * we schedule in the task events. 3166 */ 3167 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3168 perf_cgroup_sched_in(prev, task); 3169 3170 for_each_task_context_nr(ctxn) { 3171 ctx = task->perf_event_ctxp[ctxn]; 3172 if (likely(!ctx)) 3173 continue; 3174 3175 perf_event_context_sched_in(ctx, task); 3176 } 3177 3178 if (atomic_read(&nr_switch_events)) 3179 perf_event_switch(task, prev, true); 3180 3181 if (__this_cpu_read(perf_sched_cb_usages)) 3182 perf_pmu_sched_task(prev, task, true); 3183 } 3184 3185 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3186 { 3187 u64 frequency = event->attr.sample_freq; 3188 u64 sec = NSEC_PER_SEC; 3189 u64 divisor, dividend; 3190 3191 int count_fls, nsec_fls, frequency_fls, sec_fls; 3192 3193 count_fls = fls64(count); 3194 nsec_fls = fls64(nsec); 3195 frequency_fls = fls64(frequency); 3196 sec_fls = 30; 3197 3198 /* 3199 * We got @count in @nsec, with a target of sample_freq HZ 3200 * the target period becomes: 3201 * 3202 * @count * 10^9 3203 * period = ------------------- 3204 * @nsec * sample_freq 3205 * 3206 */ 3207 3208 /* 3209 * Reduce accuracy by one bit such that @a and @b converge 3210 * to a similar magnitude. 3211 */ 3212 #define REDUCE_FLS(a, b) \ 3213 do { \ 3214 if (a##_fls > b##_fls) { \ 3215 a >>= 1; \ 3216 a##_fls--; \ 3217 } else { \ 3218 b >>= 1; \ 3219 b##_fls--; \ 3220 } \ 3221 } while (0) 3222 3223 /* 3224 * Reduce accuracy until either term fits in a u64, then proceed with 3225 * the other, so that finally we can do a u64/u64 division. 3226 */ 3227 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3228 REDUCE_FLS(nsec, frequency); 3229 REDUCE_FLS(sec, count); 3230 } 3231 3232 if (count_fls + sec_fls > 64) { 3233 divisor = nsec * frequency; 3234 3235 while (count_fls + sec_fls > 64) { 3236 REDUCE_FLS(count, sec); 3237 divisor >>= 1; 3238 } 3239 3240 dividend = count * sec; 3241 } else { 3242 dividend = count * sec; 3243 3244 while (nsec_fls + frequency_fls > 64) { 3245 REDUCE_FLS(nsec, frequency); 3246 dividend >>= 1; 3247 } 3248 3249 divisor = nsec * frequency; 3250 } 3251 3252 if (!divisor) 3253 return dividend; 3254 3255 return div64_u64(dividend, divisor); 3256 } 3257 3258 static DEFINE_PER_CPU(int, perf_throttled_count); 3259 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3260 3261 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3262 { 3263 struct hw_perf_event *hwc = &event->hw; 3264 s64 period, sample_period; 3265 s64 delta; 3266 3267 period = perf_calculate_period(event, nsec, count); 3268 3269 delta = (s64)(period - hwc->sample_period); 3270 delta = (delta + 7) / 8; /* low pass filter */ 3271 3272 sample_period = hwc->sample_period + delta; 3273 3274 if (!sample_period) 3275 sample_period = 1; 3276 3277 hwc->sample_period = sample_period; 3278 3279 if (local64_read(&hwc->period_left) > 8*sample_period) { 3280 if (disable) 3281 event->pmu->stop(event, PERF_EF_UPDATE); 3282 3283 local64_set(&hwc->period_left, 0); 3284 3285 if (disable) 3286 event->pmu->start(event, PERF_EF_RELOAD); 3287 } 3288 } 3289 3290 /* 3291 * combine freq adjustment with unthrottling to avoid two passes over the 3292 * events. At the same time, make sure, having freq events does not change 3293 * the rate of unthrottling as that would introduce bias. 3294 */ 3295 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3296 int needs_unthr) 3297 { 3298 struct perf_event *event; 3299 struct hw_perf_event *hwc; 3300 u64 now, period = TICK_NSEC; 3301 s64 delta; 3302 3303 /* 3304 * only need to iterate over all events iff: 3305 * - context have events in frequency mode (needs freq adjust) 3306 * - there are events to unthrottle on this cpu 3307 */ 3308 if (!(ctx->nr_freq || needs_unthr)) 3309 return; 3310 3311 raw_spin_lock(&ctx->lock); 3312 perf_pmu_disable(ctx->pmu); 3313 3314 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3315 if (event->state != PERF_EVENT_STATE_ACTIVE) 3316 continue; 3317 3318 if (!event_filter_match(event)) 3319 continue; 3320 3321 perf_pmu_disable(event->pmu); 3322 3323 hwc = &event->hw; 3324 3325 if (hwc->interrupts == MAX_INTERRUPTS) { 3326 hwc->interrupts = 0; 3327 perf_log_throttle(event, 1); 3328 event->pmu->start(event, 0); 3329 } 3330 3331 if (!event->attr.freq || !event->attr.sample_freq) 3332 goto next; 3333 3334 /* 3335 * stop the event and update event->count 3336 */ 3337 event->pmu->stop(event, PERF_EF_UPDATE); 3338 3339 now = local64_read(&event->count); 3340 delta = now - hwc->freq_count_stamp; 3341 hwc->freq_count_stamp = now; 3342 3343 /* 3344 * restart the event 3345 * reload only if value has changed 3346 * we have stopped the event so tell that 3347 * to perf_adjust_period() to avoid stopping it 3348 * twice. 3349 */ 3350 if (delta > 0) 3351 perf_adjust_period(event, period, delta, false); 3352 3353 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3354 next: 3355 perf_pmu_enable(event->pmu); 3356 } 3357 3358 perf_pmu_enable(ctx->pmu); 3359 raw_spin_unlock(&ctx->lock); 3360 } 3361 3362 /* 3363 * Round-robin a context's events: 3364 */ 3365 static void rotate_ctx(struct perf_event_context *ctx) 3366 { 3367 /* 3368 * Rotate the first entry last of non-pinned groups. Rotation might be 3369 * disabled by the inheritance code. 3370 */ 3371 if (!ctx->rotate_disable) 3372 list_rotate_left(&ctx->flexible_groups); 3373 } 3374 3375 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3376 { 3377 struct perf_event_context *ctx = NULL; 3378 int rotate = 0; 3379 3380 if (cpuctx->ctx.nr_events) { 3381 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3382 rotate = 1; 3383 } 3384 3385 ctx = cpuctx->task_ctx; 3386 if (ctx && ctx->nr_events) { 3387 if (ctx->nr_events != ctx->nr_active) 3388 rotate = 1; 3389 } 3390 3391 if (!rotate) 3392 goto done; 3393 3394 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3395 perf_pmu_disable(cpuctx->ctx.pmu); 3396 3397 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3398 if (ctx) 3399 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3400 3401 rotate_ctx(&cpuctx->ctx); 3402 if (ctx) 3403 rotate_ctx(ctx); 3404 3405 perf_event_sched_in(cpuctx, ctx, current); 3406 3407 perf_pmu_enable(cpuctx->ctx.pmu); 3408 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3409 done: 3410 3411 return rotate; 3412 } 3413 3414 void perf_event_task_tick(void) 3415 { 3416 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3417 struct perf_event_context *ctx, *tmp; 3418 int throttled; 3419 3420 WARN_ON(!irqs_disabled()); 3421 3422 __this_cpu_inc(perf_throttled_seq); 3423 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3424 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3425 3426 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3427 perf_adjust_freq_unthr_context(ctx, throttled); 3428 } 3429 3430 static int event_enable_on_exec(struct perf_event *event, 3431 struct perf_event_context *ctx) 3432 { 3433 if (!event->attr.enable_on_exec) 3434 return 0; 3435 3436 event->attr.enable_on_exec = 0; 3437 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3438 return 0; 3439 3440 __perf_event_mark_enabled(event); 3441 3442 return 1; 3443 } 3444 3445 /* 3446 * Enable all of a task's events that have been marked enable-on-exec. 3447 * This expects task == current. 3448 */ 3449 static void perf_event_enable_on_exec(int ctxn) 3450 { 3451 struct perf_event_context *ctx, *clone_ctx = NULL; 3452 struct perf_cpu_context *cpuctx; 3453 struct perf_event *event; 3454 unsigned long flags; 3455 int enabled = 0; 3456 3457 local_irq_save(flags); 3458 ctx = current->perf_event_ctxp[ctxn]; 3459 if (!ctx || !ctx->nr_events) 3460 goto out; 3461 3462 cpuctx = __get_cpu_context(ctx); 3463 perf_ctx_lock(cpuctx, ctx); 3464 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3465 list_for_each_entry(event, &ctx->event_list, event_entry) 3466 enabled |= event_enable_on_exec(event, ctx); 3467 3468 /* 3469 * Unclone and reschedule this context if we enabled any event. 3470 */ 3471 if (enabled) { 3472 clone_ctx = unclone_ctx(ctx); 3473 ctx_resched(cpuctx, ctx); 3474 } 3475 perf_ctx_unlock(cpuctx, ctx); 3476 3477 out: 3478 local_irq_restore(flags); 3479 3480 if (clone_ctx) 3481 put_ctx(clone_ctx); 3482 } 3483 3484 struct perf_read_data { 3485 struct perf_event *event; 3486 bool group; 3487 int ret; 3488 }; 3489 3490 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3491 { 3492 u16 local_pkg, event_pkg; 3493 3494 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3495 int local_cpu = smp_processor_id(); 3496 3497 event_pkg = topology_physical_package_id(event_cpu); 3498 local_pkg = topology_physical_package_id(local_cpu); 3499 3500 if (event_pkg == local_pkg) 3501 return local_cpu; 3502 } 3503 3504 return event_cpu; 3505 } 3506 3507 /* 3508 * Cross CPU call to read the hardware event 3509 */ 3510 static void __perf_event_read(void *info) 3511 { 3512 struct perf_read_data *data = info; 3513 struct perf_event *sub, *event = data->event; 3514 struct perf_event_context *ctx = event->ctx; 3515 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3516 struct pmu *pmu = event->pmu; 3517 3518 /* 3519 * If this is a task context, we need to check whether it is 3520 * the current task context of this cpu. If not it has been 3521 * scheduled out before the smp call arrived. In that case 3522 * event->count would have been updated to a recent sample 3523 * when the event was scheduled out. 3524 */ 3525 if (ctx->task && cpuctx->task_ctx != ctx) 3526 return; 3527 3528 raw_spin_lock(&ctx->lock); 3529 if (ctx->is_active) { 3530 update_context_time(ctx); 3531 update_cgrp_time_from_event(event); 3532 } 3533 3534 update_event_times(event); 3535 if (event->state != PERF_EVENT_STATE_ACTIVE) 3536 goto unlock; 3537 3538 if (!data->group) { 3539 pmu->read(event); 3540 data->ret = 0; 3541 goto unlock; 3542 } 3543 3544 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3545 3546 pmu->read(event); 3547 3548 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3549 update_event_times(sub); 3550 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3551 /* 3552 * Use sibling's PMU rather than @event's since 3553 * sibling could be on different (eg: software) PMU. 3554 */ 3555 sub->pmu->read(sub); 3556 } 3557 } 3558 3559 data->ret = pmu->commit_txn(pmu); 3560 3561 unlock: 3562 raw_spin_unlock(&ctx->lock); 3563 } 3564 3565 static inline u64 perf_event_count(struct perf_event *event) 3566 { 3567 if (event->pmu->count) 3568 return event->pmu->count(event); 3569 3570 return __perf_event_count(event); 3571 } 3572 3573 /* 3574 * NMI-safe method to read a local event, that is an event that 3575 * is: 3576 * - either for the current task, or for this CPU 3577 * - does not have inherit set, for inherited task events 3578 * will not be local and we cannot read them atomically 3579 * - must not have a pmu::count method 3580 */ 3581 u64 perf_event_read_local(struct perf_event *event) 3582 { 3583 unsigned long flags; 3584 u64 val; 3585 3586 /* 3587 * Disabling interrupts avoids all counter scheduling (context 3588 * switches, timer based rotation and IPIs). 3589 */ 3590 local_irq_save(flags); 3591 3592 /* If this is a per-task event, it must be for current */ 3593 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3594 event->hw.target != current); 3595 3596 /* If this is a per-CPU event, it must be for this CPU */ 3597 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3598 event->cpu != smp_processor_id()); 3599 3600 /* 3601 * It must not be an event with inherit set, we cannot read 3602 * all child counters from atomic context. 3603 */ 3604 WARN_ON_ONCE(event->attr.inherit); 3605 3606 /* 3607 * It must not have a pmu::count method, those are not 3608 * NMI safe. 3609 */ 3610 WARN_ON_ONCE(event->pmu->count); 3611 3612 /* 3613 * If the event is currently on this CPU, its either a per-task event, 3614 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3615 * oncpu == -1). 3616 */ 3617 if (event->oncpu == smp_processor_id()) 3618 event->pmu->read(event); 3619 3620 val = local64_read(&event->count); 3621 local_irq_restore(flags); 3622 3623 return val; 3624 } 3625 3626 static int perf_event_read(struct perf_event *event, bool group) 3627 { 3628 int event_cpu, ret = 0; 3629 3630 /* 3631 * If event is enabled and currently active on a CPU, update the 3632 * value in the event structure: 3633 */ 3634 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3635 struct perf_read_data data = { 3636 .event = event, 3637 .group = group, 3638 .ret = 0, 3639 }; 3640 3641 event_cpu = READ_ONCE(event->oncpu); 3642 if ((unsigned)event_cpu >= nr_cpu_ids) 3643 return 0; 3644 3645 preempt_disable(); 3646 event_cpu = __perf_event_read_cpu(event, event_cpu); 3647 3648 /* 3649 * Purposely ignore the smp_call_function_single() return 3650 * value. 3651 * 3652 * If event_cpu isn't a valid CPU it means the event got 3653 * scheduled out and that will have updated the event count. 3654 * 3655 * Therefore, either way, we'll have an up-to-date event count 3656 * after this. 3657 */ 3658 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3659 preempt_enable(); 3660 ret = data.ret; 3661 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3662 struct perf_event_context *ctx = event->ctx; 3663 unsigned long flags; 3664 3665 raw_spin_lock_irqsave(&ctx->lock, flags); 3666 /* 3667 * may read while context is not active 3668 * (e.g., thread is blocked), in that case 3669 * we cannot update context time 3670 */ 3671 if (ctx->is_active) { 3672 update_context_time(ctx); 3673 update_cgrp_time_from_event(event); 3674 } 3675 if (group) 3676 update_group_times(event); 3677 else 3678 update_event_times(event); 3679 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3680 } 3681 3682 return ret; 3683 } 3684 3685 /* 3686 * Initialize the perf_event context in a task_struct: 3687 */ 3688 static void __perf_event_init_context(struct perf_event_context *ctx) 3689 { 3690 raw_spin_lock_init(&ctx->lock); 3691 mutex_init(&ctx->mutex); 3692 INIT_LIST_HEAD(&ctx->active_ctx_list); 3693 INIT_LIST_HEAD(&ctx->pinned_groups); 3694 INIT_LIST_HEAD(&ctx->flexible_groups); 3695 INIT_LIST_HEAD(&ctx->event_list); 3696 atomic_set(&ctx->refcount, 1); 3697 } 3698 3699 static struct perf_event_context * 3700 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3701 { 3702 struct perf_event_context *ctx; 3703 3704 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3705 if (!ctx) 3706 return NULL; 3707 3708 __perf_event_init_context(ctx); 3709 if (task) { 3710 ctx->task = task; 3711 get_task_struct(task); 3712 } 3713 ctx->pmu = pmu; 3714 3715 return ctx; 3716 } 3717 3718 static struct task_struct * 3719 find_lively_task_by_vpid(pid_t vpid) 3720 { 3721 struct task_struct *task; 3722 3723 rcu_read_lock(); 3724 if (!vpid) 3725 task = current; 3726 else 3727 task = find_task_by_vpid(vpid); 3728 if (task) 3729 get_task_struct(task); 3730 rcu_read_unlock(); 3731 3732 if (!task) 3733 return ERR_PTR(-ESRCH); 3734 3735 return task; 3736 } 3737 3738 /* 3739 * Returns a matching context with refcount and pincount. 3740 */ 3741 static struct perf_event_context * 3742 find_get_context(struct pmu *pmu, struct task_struct *task, 3743 struct perf_event *event) 3744 { 3745 struct perf_event_context *ctx, *clone_ctx = NULL; 3746 struct perf_cpu_context *cpuctx; 3747 void *task_ctx_data = NULL; 3748 unsigned long flags; 3749 int ctxn, err; 3750 int cpu = event->cpu; 3751 3752 if (!task) { 3753 /* Must be root to operate on a CPU event: */ 3754 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3755 return ERR_PTR(-EACCES); 3756 3757 /* 3758 * We could be clever and allow to attach a event to an 3759 * offline CPU and activate it when the CPU comes up, but 3760 * that's for later. 3761 */ 3762 if (!cpu_online(cpu)) 3763 return ERR_PTR(-ENODEV); 3764 3765 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3766 ctx = &cpuctx->ctx; 3767 get_ctx(ctx); 3768 ++ctx->pin_count; 3769 3770 return ctx; 3771 } 3772 3773 err = -EINVAL; 3774 ctxn = pmu->task_ctx_nr; 3775 if (ctxn < 0) 3776 goto errout; 3777 3778 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3779 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3780 if (!task_ctx_data) { 3781 err = -ENOMEM; 3782 goto errout; 3783 } 3784 } 3785 3786 retry: 3787 ctx = perf_lock_task_context(task, ctxn, &flags); 3788 if (ctx) { 3789 clone_ctx = unclone_ctx(ctx); 3790 ++ctx->pin_count; 3791 3792 if (task_ctx_data && !ctx->task_ctx_data) { 3793 ctx->task_ctx_data = task_ctx_data; 3794 task_ctx_data = NULL; 3795 } 3796 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3797 3798 if (clone_ctx) 3799 put_ctx(clone_ctx); 3800 } else { 3801 ctx = alloc_perf_context(pmu, task); 3802 err = -ENOMEM; 3803 if (!ctx) 3804 goto errout; 3805 3806 if (task_ctx_data) { 3807 ctx->task_ctx_data = task_ctx_data; 3808 task_ctx_data = NULL; 3809 } 3810 3811 err = 0; 3812 mutex_lock(&task->perf_event_mutex); 3813 /* 3814 * If it has already passed perf_event_exit_task(). 3815 * we must see PF_EXITING, it takes this mutex too. 3816 */ 3817 if (task->flags & PF_EXITING) 3818 err = -ESRCH; 3819 else if (task->perf_event_ctxp[ctxn]) 3820 err = -EAGAIN; 3821 else { 3822 get_ctx(ctx); 3823 ++ctx->pin_count; 3824 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3825 } 3826 mutex_unlock(&task->perf_event_mutex); 3827 3828 if (unlikely(err)) { 3829 put_ctx(ctx); 3830 3831 if (err == -EAGAIN) 3832 goto retry; 3833 goto errout; 3834 } 3835 } 3836 3837 kfree(task_ctx_data); 3838 return ctx; 3839 3840 errout: 3841 kfree(task_ctx_data); 3842 return ERR_PTR(err); 3843 } 3844 3845 static void perf_event_free_filter(struct perf_event *event); 3846 static void perf_event_free_bpf_prog(struct perf_event *event); 3847 3848 static void free_event_rcu(struct rcu_head *head) 3849 { 3850 struct perf_event *event; 3851 3852 event = container_of(head, struct perf_event, rcu_head); 3853 if (event->ns) 3854 put_pid_ns(event->ns); 3855 perf_event_free_filter(event); 3856 kfree(event); 3857 } 3858 3859 static void ring_buffer_attach(struct perf_event *event, 3860 struct ring_buffer *rb); 3861 3862 static void detach_sb_event(struct perf_event *event) 3863 { 3864 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3865 3866 raw_spin_lock(&pel->lock); 3867 list_del_rcu(&event->sb_list); 3868 raw_spin_unlock(&pel->lock); 3869 } 3870 3871 static bool is_sb_event(struct perf_event *event) 3872 { 3873 struct perf_event_attr *attr = &event->attr; 3874 3875 if (event->parent) 3876 return false; 3877 3878 if (event->attach_state & PERF_ATTACH_TASK) 3879 return false; 3880 3881 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3882 attr->comm || attr->comm_exec || 3883 attr->task || 3884 attr->context_switch) 3885 return true; 3886 return false; 3887 } 3888 3889 static void unaccount_pmu_sb_event(struct perf_event *event) 3890 { 3891 if (is_sb_event(event)) 3892 detach_sb_event(event); 3893 } 3894 3895 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3896 { 3897 if (event->parent) 3898 return; 3899 3900 if (is_cgroup_event(event)) 3901 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3902 } 3903 3904 #ifdef CONFIG_NO_HZ_FULL 3905 static DEFINE_SPINLOCK(nr_freq_lock); 3906 #endif 3907 3908 static void unaccount_freq_event_nohz(void) 3909 { 3910 #ifdef CONFIG_NO_HZ_FULL 3911 spin_lock(&nr_freq_lock); 3912 if (atomic_dec_and_test(&nr_freq_events)) 3913 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3914 spin_unlock(&nr_freq_lock); 3915 #endif 3916 } 3917 3918 static void unaccount_freq_event(void) 3919 { 3920 if (tick_nohz_full_enabled()) 3921 unaccount_freq_event_nohz(); 3922 else 3923 atomic_dec(&nr_freq_events); 3924 } 3925 3926 static void unaccount_event(struct perf_event *event) 3927 { 3928 bool dec = false; 3929 3930 if (event->parent) 3931 return; 3932 3933 if (event->attach_state & PERF_ATTACH_TASK) 3934 dec = true; 3935 if (event->attr.mmap || event->attr.mmap_data) 3936 atomic_dec(&nr_mmap_events); 3937 if (event->attr.comm) 3938 atomic_dec(&nr_comm_events); 3939 if (event->attr.task) 3940 atomic_dec(&nr_task_events); 3941 if (event->attr.freq) 3942 unaccount_freq_event(); 3943 if (event->attr.context_switch) { 3944 dec = true; 3945 atomic_dec(&nr_switch_events); 3946 } 3947 if (is_cgroup_event(event)) 3948 dec = true; 3949 if (has_branch_stack(event)) 3950 dec = true; 3951 3952 if (dec) { 3953 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3954 schedule_delayed_work(&perf_sched_work, HZ); 3955 } 3956 3957 unaccount_event_cpu(event, event->cpu); 3958 3959 unaccount_pmu_sb_event(event); 3960 } 3961 3962 static void perf_sched_delayed(struct work_struct *work) 3963 { 3964 mutex_lock(&perf_sched_mutex); 3965 if (atomic_dec_and_test(&perf_sched_count)) 3966 static_branch_disable(&perf_sched_events); 3967 mutex_unlock(&perf_sched_mutex); 3968 } 3969 3970 /* 3971 * The following implement mutual exclusion of events on "exclusive" pmus 3972 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3973 * at a time, so we disallow creating events that might conflict, namely: 3974 * 3975 * 1) cpu-wide events in the presence of per-task events, 3976 * 2) per-task events in the presence of cpu-wide events, 3977 * 3) two matching events on the same context. 3978 * 3979 * The former two cases are handled in the allocation path (perf_event_alloc(), 3980 * _free_event()), the latter -- before the first perf_install_in_context(). 3981 */ 3982 static int exclusive_event_init(struct perf_event *event) 3983 { 3984 struct pmu *pmu = event->pmu; 3985 3986 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3987 return 0; 3988 3989 /* 3990 * Prevent co-existence of per-task and cpu-wide events on the 3991 * same exclusive pmu. 3992 * 3993 * Negative pmu::exclusive_cnt means there are cpu-wide 3994 * events on this "exclusive" pmu, positive means there are 3995 * per-task events. 3996 * 3997 * Since this is called in perf_event_alloc() path, event::ctx 3998 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3999 * to mean "per-task event", because unlike other attach states it 4000 * never gets cleared. 4001 */ 4002 if (event->attach_state & PERF_ATTACH_TASK) { 4003 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4004 return -EBUSY; 4005 } else { 4006 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4007 return -EBUSY; 4008 } 4009 4010 return 0; 4011 } 4012 4013 static void exclusive_event_destroy(struct perf_event *event) 4014 { 4015 struct pmu *pmu = event->pmu; 4016 4017 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4018 return; 4019 4020 /* see comment in exclusive_event_init() */ 4021 if (event->attach_state & PERF_ATTACH_TASK) 4022 atomic_dec(&pmu->exclusive_cnt); 4023 else 4024 atomic_inc(&pmu->exclusive_cnt); 4025 } 4026 4027 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4028 { 4029 if ((e1->pmu == e2->pmu) && 4030 (e1->cpu == e2->cpu || 4031 e1->cpu == -1 || 4032 e2->cpu == -1)) 4033 return true; 4034 return false; 4035 } 4036 4037 /* Called under the same ctx::mutex as perf_install_in_context() */ 4038 static bool exclusive_event_installable(struct perf_event *event, 4039 struct perf_event_context *ctx) 4040 { 4041 struct perf_event *iter_event; 4042 struct pmu *pmu = event->pmu; 4043 4044 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4045 return true; 4046 4047 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4048 if (exclusive_event_match(iter_event, event)) 4049 return false; 4050 } 4051 4052 return true; 4053 } 4054 4055 static void perf_addr_filters_splice(struct perf_event *event, 4056 struct list_head *head); 4057 4058 static void _free_event(struct perf_event *event) 4059 { 4060 irq_work_sync(&event->pending); 4061 4062 unaccount_event(event); 4063 4064 if (event->rb) { 4065 /* 4066 * Can happen when we close an event with re-directed output. 4067 * 4068 * Since we have a 0 refcount, perf_mmap_close() will skip 4069 * over us; possibly making our ring_buffer_put() the last. 4070 */ 4071 mutex_lock(&event->mmap_mutex); 4072 ring_buffer_attach(event, NULL); 4073 mutex_unlock(&event->mmap_mutex); 4074 } 4075 4076 if (is_cgroup_event(event)) 4077 perf_detach_cgroup(event); 4078 4079 if (!event->parent) { 4080 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4081 put_callchain_buffers(); 4082 } 4083 4084 perf_event_free_bpf_prog(event); 4085 perf_addr_filters_splice(event, NULL); 4086 kfree(event->addr_filters_offs); 4087 4088 if (event->destroy) 4089 event->destroy(event); 4090 4091 if (event->ctx) 4092 put_ctx(event->ctx); 4093 4094 exclusive_event_destroy(event); 4095 module_put(event->pmu->module); 4096 4097 call_rcu(&event->rcu_head, free_event_rcu); 4098 } 4099 4100 /* 4101 * Used to free events which have a known refcount of 1, such as in error paths 4102 * where the event isn't exposed yet and inherited events. 4103 */ 4104 static void free_event(struct perf_event *event) 4105 { 4106 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4107 "unexpected event refcount: %ld; ptr=%p\n", 4108 atomic_long_read(&event->refcount), event)) { 4109 /* leak to avoid use-after-free */ 4110 return; 4111 } 4112 4113 _free_event(event); 4114 } 4115 4116 /* 4117 * Remove user event from the owner task. 4118 */ 4119 static void perf_remove_from_owner(struct perf_event *event) 4120 { 4121 struct task_struct *owner; 4122 4123 rcu_read_lock(); 4124 /* 4125 * Matches the smp_store_release() in perf_event_exit_task(). If we 4126 * observe !owner it means the list deletion is complete and we can 4127 * indeed free this event, otherwise we need to serialize on 4128 * owner->perf_event_mutex. 4129 */ 4130 owner = lockless_dereference(event->owner); 4131 if (owner) { 4132 /* 4133 * Since delayed_put_task_struct() also drops the last 4134 * task reference we can safely take a new reference 4135 * while holding the rcu_read_lock(). 4136 */ 4137 get_task_struct(owner); 4138 } 4139 rcu_read_unlock(); 4140 4141 if (owner) { 4142 /* 4143 * If we're here through perf_event_exit_task() we're already 4144 * holding ctx->mutex which would be an inversion wrt. the 4145 * normal lock order. 4146 * 4147 * However we can safely take this lock because its the child 4148 * ctx->mutex. 4149 */ 4150 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4151 4152 /* 4153 * We have to re-check the event->owner field, if it is cleared 4154 * we raced with perf_event_exit_task(), acquiring the mutex 4155 * ensured they're done, and we can proceed with freeing the 4156 * event. 4157 */ 4158 if (event->owner) { 4159 list_del_init(&event->owner_entry); 4160 smp_store_release(&event->owner, NULL); 4161 } 4162 mutex_unlock(&owner->perf_event_mutex); 4163 put_task_struct(owner); 4164 } 4165 } 4166 4167 static void put_event(struct perf_event *event) 4168 { 4169 if (!atomic_long_dec_and_test(&event->refcount)) 4170 return; 4171 4172 _free_event(event); 4173 } 4174 4175 /* 4176 * Kill an event dead; while event:refcount will preserve the event 4177 * object, it will not preserve its functionality. Once the last 'user' 4178 * gives up the object, we'll destroy the thing. 4179 */ 4180 int perf_event_release_kernel(struct perf_event *event) 4181 { 4182 struct perf_event_context *ctx = event->ctx; 4183 struct perf_event *child, *tmp; 4184 4185 /* 4186 * If we got here through err_file: fput(event_file); we will not have 4187 * attached to a context yet. 4188 */ 4189 if (!ctx) { 4190 WARN_ON_ONCE(event->attach_state & 4191 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4192 goto no_ctx; 4193 } 4194 4195 if (!is_kernel_event(event)) 4196 perf_remove_from_owner(event); 4197 4198 ctx = perf_event_ctx_lock(event); 4199 WARN_ON_ONCE(ctx->parent_ctx); 4200 perf_remove_from_context(event, DETACH_GROUP); 4201 4202 raw_spin_lock_irq(&ctx->lock); 4203 /* 4204 * Mark this even as STATE_DEAD, there is no external reference to it 4205 * anymore. 4206 * 4207 * Anybody acquiring event->child_mutex after the below loop _must_ 4208 * also see this, most importantly inherit_event() which will avoid 4209 * placing more children on the list. 4210 * 4211 * Thus this guarantees that we will in fact observe and kill _ALL_ 4212 * child events. 4213 */ 4214 event->state = PERF_EVENT_STATE_DEAD; 4215 raw_spin_unlock_irq(&ctx->lock); 4216 4217 perf_event_ctx_unlock(event, ctx); 4218 4219 again: 4220 mutex_lock(&event->child_mutex); 4221 list_for_each_entry(child, &event->child_list, child_list) { 4222 4223 /* 4224 * Cannot change, child events are not migrated, see the 4225 * comment with perf_event_ctx_lock_nested(). 4226 */ 4227 ctx = lockless_dereference(child->ctx); 4228 /* 4229 * Since child_mutex nests inside ctx::mutex, we must jump 4230 * through hoops. We start by grabbing a reference on the ctx. 4231 * 4232 * Since the event cannot get freed while we hold the 4233 * child_mutex, the context must also exist and have a !0 4234 * reference count. 4235 */ 4236 get_ctx(ctx); 4237 4238 /* 4239 * Now that we have a ctx ref, we can drop child_mutex, and 4240 * acquire ctx::mutex without fear of it going away. Then we 4241 * can re-acquire child_mutex. 4242 */ 4243 mutex_unlock(&event->child_mutex); 4244 mutex_lock(&ctx->mutex); 4245 mutex_lock(&event->child_mutex); 4246 4247 /* 4248 * Now that we hold ctx::mutex and child_mutex, revalidate our 4249 * state, if child is still the first entry, it didn't get freed 4250 * and we can continue doing so. 4251 */ 4252 tmp = list_first_entry_or_null(&event->child_list, 4253 struct perf_event, child_list); 4254 if (tmp == child) { 4255 perf_remove_from_context(child, DETACH_GROUP); 4256 list_del(&child->child_list); 4257 free_event(child); 4258 /* 4259 * This matches the refcount bump in inherit_event(); 4260 * this can't be the last reference. 4261 */ 4262 put_event(event); 4263 } 4264 4265 mutex_unlock(&event->child_mutex); 4266 mutex_unlock(&ctx->mutex); 4267 put_ctx(ctx); 4268 goto again; 4269 } 4270 mutex_unlock(&event->child_mutex); 4271 4272 no_ctx: 4273 put_event(event); /* Must be the 'last' reference */ 4274 return 0; 4275 } 4276 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4277 4278 /* 4279 * Called when the last reference to the file is gone. 4280 */ 4281 static int perf_release(struct inode *inode, struct file *file) 4282 { 4283 perf_event_release_kernel(file->private_data); 4284 return 0; 4285 } 4286 4287 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4288 { 4289 struct perf_event *child; 4290 u64 total = 0; 4291 4292 *enabled = 0; 4293 *running = 0; 4294 4295 mutex_lock(&event->child_mutex); 4296 4297 (void)perf_event_read(event, false); 4298 total += perf_event_count(event); 4299 4300 *enabled += event->total_time_enabled + 4301 atomic64_read(&event->child_total_time_enabled); 4302 *running += event->total_time_running + 4303 atomic64_read(&event->child_total_time_running); 4304 4305 list_for_each_entry(child, &event->child_list, child_list) { 4306 (void)perf_event_read(child, false); 4307 total += perf_event_count(child); 4308 *enabled += child->total_time_enabled; 4309 *running += child->total_time_running; 4310 } 4311 mutex_unlock(&event->child_mutex); 4312 4313 return total; 4314 } 4315 EXPORT_SYMBOL_GPL(perf_event_read_value); 4316 4317 static int __perf_read_group_add(struct perf_event *leader, 4318 u64 read_format, u64 *values) 4319 { 4320 struct perf_event *sub; 4321 int n = 1; /* skip @nr */ 4322 int ret; 4323 4324 ret = perf_event_read(leader, true); 4325 if (ret) 4326 return ret; 4327 4328 /* 4329 * Since we co-schedule groups, {enabled,running} times of siblings 4330 * will be identical to those of the leader, so we only publish one 4331 * set. 4332 */ 4333 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4334 values[n++] += leader->total_time_enabled + 4335 atomic64_read(&leader->child_total_time_enabled); 4336 } 4337 4338 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4339 values[n++] += leader->total_time_running + 4340 atomic64_read(&leader->child_total_time_running); 4341 } 4342 4343 /* 4344 * Write {count,id} tuples for every sibling. 4345 */ 4346 values[n++] += perf_event_count(leader); 4347 if (read_format & PERF_FORMAT_ID) 4348 values[n++] = primary_event_id(leader); 4349 4350 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4351 values[n++] += perf_event_count(sub); 4352 if (read_format & PERF_FORMAT_ID) 4353 values[n++] = primary_event_id(sub); 4354 } 4355 4356 return 0; 4357 } 4358 4359 static int perf_read_group(struct perf_event *event, 4360 u64 read_format, char __user *buf) 4361 { 4362 struct perf_event *leader = event->group_leader, *child; 4363 struct perf_event_context *ctx = leader->ctx; 4364 int ret; 4365 u64 *values; 4366 4367 lockdep_assert_held(&ctx->mutex); 4368 4369 values = kzalloc(event->read_size, GFP_KERNEL); 4370 if (!values) 4371 return -ENOMEM; 4372 4373 values[0] = 1 + leader->nr_siblings; 4374 4375 /* 4376 * By locking the child_mutex of the leader we effectively 4377 * lock the child list of all siblings.. XXX explain how. 4378 */ 4379 mutex_lock(&leader->child_mutex); 4380 4381 ret = __perf_read_group_add(leader, read_format, values); 4382 if (ret) 4383 goto unlock; 4384 4385 list_for_each_entry(child, &leader->child_list, child_list) { 4386 ret = __perf_read_group_add(child, read_format, values); 4387 if (ret) 4388 goto unlock; 4389 } 4390 4391 mutex_unlock(&leader->child_mutex); 4392 4393 ret = event->read_size; 4394 if (copy_to_user(buf, values, event->read_size)) 4395 ret = -EFAULT; 4396 goto out; 4397 4398 unlock: 4399 mutex_unlock(&leader->child_mutex); 4400 out: 4401 kfree(values); 4402 return ret; 4403 } 4404 4405 static int perf_read_one(struct perf_event *event, 4406 u64 read_format, char __user *buf) 4407 { 4408 u64 enabled, running; 4409 u64 values[4]; 4410 int n = 0; 4411 4412 values[n++] = perf_event_read_value(event, &enabled, &running); 4413 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4414 values[n++] = enabled; 4415 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4416 values[n++] = running; 4417 if (read_format & PERF_FORMAT_ID) 4418 values[n++] = primary_event_id(event); 4419 4420 if (copy_to_user(buf, values, n * sizeof(u64))) 4421 return -EFAULT; 4422 4423 return n * sizeof(u64); 4424 } 4425 4426 static bool is_event_hup(struct perf_event *event) 4427 { 4428 bool no_children; 4429 4430 if (event->state > PERF_EVENT_STATE_EXIT) 4431 return false; 4432 4433 mutex_lock(&event->child_mutex); 4434 no_children = list_empty(&event->child_list); 4435 mutex_unlock(&event->child_mutex); 4436 return no_children; 4437 } 4438 4439 /* 4440 * Read the performance event - simple non blocking version for now 4441 */ 4442 static ssize_t 4443 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4444 { 4445 u64 read_format = event->attr.read_format; 4446 int ret; 4447 4448 /* 4449 * Return end-of-file for a read on a event that is in 4450 * error state (i.e. because it was pinned but it couldn't be 4451 * scheduled on to the CPU at some point). 4452 */ 4453 if (event->state == PERF_EVENT_STATE_ERROR) 4454 return 0; 4455 4456 if (count < event->read_size) 4457 return -ENOSPC; 4458 4459 WARN_ON_ONCE(event->ctx->parent_ctx); 4460 if (read_format & PERF_FORMAT_GROUP) 4461 ret = perf_read_group(event, read_format, buf); 4462 else 4463 ret = perf_read_one(event, read_format, buf); 4464 4465 return ret; 4466 } 4467 4468 static ssize_t 4469 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4470 { 4471 struct perf_event *event = file->private_data; 4472 struct perf_event_context *ctx; 4473 int ret; 4474 4475 ctx = perf_event_ctx_lock(event); 4476 ret = __perf_read(event, buf, count); 4477 perf_event_ctx_unlock(event, ctx); 4478 4479 return ret; 4480 } 4481 4482 static unsigned int perf_poll(struct file *file, poll_table *wait) 4483 { 4484 struct perf_event *event = file->private_data; 4485 struct ring_buffer *rb; 4486 unsigned int events = POLLHUP; 4487 4488 poll_wait(file, &event->waitq, wait); 4489 4490 if (is_event_hup(event)) 4491 return events; 4492 4493 /* 4494 * Pin the event->rb by taking event->mmap_mutex; otherwise 4495 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4496 */ 4497 mutex_lock(&event->mmap_mutex); 4498 rb = event->rb; 4499 if (rb) 4500 events = atomic_xchg(&rb->poll, 0); 4501 mutex_unlock(&event->mmap_mutex); 4502 return events; 4503 } 4504 4505 static void _perf_event_reset(struct perf_event *event) 4506 { 4507 (void)perf_event_read(event, false); 4508 local64_set(&event->count, 0); 4509 perf_event_update_userpage(event); 4510 } 4511 4512 /* 4513 * Holding the top-level event's child_mutex means that any 4514 * descendant process that has inherited this event will block 4515 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4516 * task existence requirements of perf_event_enable/disable. 4517 */ 4518 static void perf_event_for_each_child(struct perf_event *event, 4519 void (*func)(struct perf_event *)) 4520 { 4521 struct perf_event *child; 4522 4523 WARN_ON_ONCE(event->ctx->parent_ctx); 4524 4525 mutex_lock(&event->child_mutex); 4526 func(event); 4527 list_for_each_entry(child, &event->child_list, child_list) 4528 func(child); 4529 mutex_unlock(&event->child_mutex); 4530 } 4531 4532 static void perf_event_for_each(struct perf_event *event, 4533 void (*func)(struct perf_event *)) 4534 { 4535 struct perf_event_context *ctx = event->ctx; 4536 struct perf_event *sibling; 4537 4538 lockdep_assert_held(&ctx->mutex); 4539 4540 event = event->group_leader; 4541 4542 perf_event_for_each_child(event, func); 4543 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4544 perf_event_for_each_child(sibling, func); 4545 } 4546 4547 static void __perf_event_period(struct perf_event *event, 4548 struct perf_cpu_context *cpuctx, 4549 struct perf_event_context *ctx, 4550 void *info) 4551 { 4552 u64 value = *((u64 *)info); 4553 bool active; 4554 4555 if (event->attr.freq) { 4556 event->attr.sample_freq = value; 4557 } else { 4558 event->attr.sample_period = value; 4559 event->hw.sample_period = value; 4560 } 4561 4562 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4563 if (active) { 4564 perf_pmu_disable(ctx->pmu); 4565 /* 4566 * We could be throttled; unthrottle now to avoid the tick 4567 * trying to unthrottle while we already re-started the event. 4568 */ 4569 if (event->hw.interrupts == MAX_INTERRUPTS) { 4570 event->hw.interrupts = 0; 4571 perf_log_throttle(event, 1); 4572 } 4573 event->pmu->stop(event, PERF_EF_UPDATE); 4574 } 4575 4576 local64_set(&event->hw.period_left, 0); 4577 4578 if (active) { 4579 event->pmu->start(event, PERF_EF_RELOAD); 4580 perf_pmu_enable(ctx->pmu); 4581 } 4582 } 4583 4584 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4585 { 4586 u64 value; 4587 4588 if (!is_sampling_event(event)) 4589 return -EINVAL; 4590 4591 if (copy_from_user(&value, arg, sizeof(value))) 4592 return -EFAULT; 4593 4594 if (!value) 4595 return -EINVAL; 4596 4597 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4598 return -EINVAL; 4599 4600 event_function_call(event, __perf_event_period, &value); 4601 4602 return 0; 4603 } 4604 4605 static const struct file_operations perf_fops; 4606 4607 static inline int perf_fget_light(int fd, struct fd *p) 4608 { 4609 struct fd f = fdget(fd); 4610 if (!f.file) 4611 return -EBADF; 4612 4613 if (f.file->f_op != &perf_fops) { 4614 fdput(f); 4615 return -EBADF; 4616 } 4617 *p = f; 4618 return 0; 4619 } 4620 4621 static int perf_event_set_output(struct perf_event *event, 4622 struct perf_event *output_event); 4623 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4624 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4625 4626 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4627 { 4628 void (*func)(struct perf_event *); 4629 u32 flags = arg; 4630 4631 switch (cmd) { 4632 case PERF_EVENT_IOC_ENABLE: 4633 func = _perf_event_enable; 4634 break; 4635 case PERF_EVENT_IOC_DISABLE: 4636 func = _perf_event_disable; 4637 break; 4638 case PERF_EVENT_IOC_RESET: 4639 func = _perf_event_reset; 4640 break; 4641 4642 case PERF_EVENT_IOC_REFRESH: 4643 return _perf_event_refresh(event, arg); 4644 4645 case PERF_EVENT_IOC_PERIOD: 4646 return perf_event_period(event, (u64 __user *)arg); 4647 4648 case PERF_EVENT_IOC_ID: 4649 { 4650 u64 id = primary_event_id(event); 4651 4652 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4653 return -EFAULT; 4654 return 0; 4655 } 4656 4657 case PERF_EVENT_IOC_SET_OUTPUT: 4658 { 4659 int ret; 4660 if (arg != -1) { 4661 struct perf_event *output_event; 4662 struct fd output; 4663 ret = perf_fget_light(arg, &output); 4664 if (ret) 4665 return ret; 4666 output_event = output.file->private_data; 4667 ret = perf_event_set_output(event, output_event); 4668 fdput(output); 4669 } else { 4670 ret = perf_event_set_output(event, NULL); 4671 } 4672 return ret; 4673 } 4674 4675 case PERF_EVENT_IOC_SET_FILTER: 4676 return perf_event_set_filter(event, (void __user *)arg); 4677 4678 case PERF_EVENT_IOC_SET_BPF: 4679 return perf_event_set_bpf_prog(event, arg); 4680 4681 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4682 struct ring_buffer *rb; 4683 4684 rcu_read_lock(); 4685 rb = rcu_dereference(event->rb); 4686 if (!rb || !rb->nr_pages) { 4687 rcu_read_unlock(); 4688 return -EINVAL; 4689 } 4690 rb_toggle_paused(rb, !!arg); 4691 rcu_read_unlock(); 4692 return 0; 4693 } 4694 default: 4695 return -ENOTTY; 4696 } 4697 4698 if (flags & PERF_IOC_FLAG_GROUP) 4699 perf_event_for_each(event, func); 4700 else 4701 perf_event_for_each_child(event, func); 4702 4703 return 0; 4704 } 4705 4706 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4707 { 4708 struct perf_event *event = file->private_data; 4709 struct perf_event_context *ctx; 4710 long ret; 4711 4712 ctx = perf_event_ctx_lock(event); 4713 ret = _perf_ioctl(event, cmd, arg); 4714 perf_event_ctx_unlock(event, ctx); 4715 4716 return ret; 4717 } 4718 4719 #ifdef CONFIG_COMPAT 4720 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4721 unsigned long arg) 4722 { 4723 switch (_IOC_NR(cmd)) { 4724 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4725 case _IOC_NR(PERF_EVENT_IOC_ID): 4726 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4727 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4728 cmd &= ~IOCSIZE_MASK; 4729 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4730 } 4731 break; 4732 } 4733 return perf_ioctl(file, cmd, arg); 4734 } 4735 #else 4736 # define perf_compat_ioctl NULL 4737 #endif 4738 4739 int perf_event_task_enable(void) 4740 { 4741 struct perf_event_context *ctx; 4742 struct perf_event *event; 4743 4744 mutex_lock(¤t->perf_event_mutex); 4745 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4746 ctx = perf_event_ctx_lock(event); 4747 perf_event_for_each_child(event, _perf_event_enable); 4748 perf_event_ctx_unlock(event, ctx); 4749 } 4750 mutex_unlock(¤t->perf_event_mutex); 4751 4752 return 0; 4753 } 4754 4755 int perf_event_task_disable(void) 4756 { 4757 struct perf_event_context *ctx; 4758 struct perf_event *event; 4759 4760 mutex_lock(¤t->perf_event_mutex); 4761 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4762 ctx = perf_event_ctx_lock(event); 4763 perf_event_for_each_child(event, _perf_event_disable); 4764 perf_event_ctx_unlock(event, ctx); 4765 } 4766 mutex_unlock(¤t->perf_event_mutex); 4767 4768 return 0; 4769 } 4770 4771 static int perf_event_index(struct perf_event *event) 4772 { 4773 if (event->hw.state & PERF_HES_STOPPED) 4774 return 0; 4775 4776 if (event->state != PERF_EVENT_STATE_ACTIVE) 4777 return 0; 4778 4779 return event->pmu->event_idx(event); 4780 } 4781 4782 static void calc_timer_values(struct perf_event *event, 4783 u64 *now, 4784 u64 *enabled, 4785 u64 *running) 4786 { 4787 u64 ctx_time; 4788 4789 *now = perf_clock(); 4790 ctx_time = event->shadow_ctx_time + *now; 4791 *enabled = ctx_time - event->tstamp_enabled; 4792 *running = ctx_time - event->tstamp_running; 4793 } 4794 4795 static void perf_event_init_userpage(struct perf_event *event) 4796 { 4797 struct perf_event_mmap_page *userpg; 4798 struct ring_buffer *rb; 4799 4800 rcu_read_lock(); 4801 rb = rcu_dereference(event->rb); 4802 if (!rb) 4803 goto unlock; 4804 4805 userpg = rb->user_page; 4806 4807 /* Allow new userspace to detect that bit 0 is deprecated */ 4808 userpg->cap_bit0_is_deprecated = 1; 4809 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4810 userpg->data_offset = PAGE_SIZE; 4811 userpg->data_size = perf_data_size(rb); 4812 4813 unlock: 4814 rcu_read_unlock(); 4815 } 4816 4817 void __weak arch_perf_update_userpage( 4818 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4819 { 4820 } 4821 4822 /* 4823 * Callers need to ensure there can be no nesting of this function, otherwise 4824 * the seqlock logic goes bad. We can not serialize this because the arch 4825 * code calls this from NMI context. 4826 */ 4827 void perf_event_update_userpage(struct perf_event *event) 4828 { 4829 struct perf_event_mmap_page *userpg; 4830 struct ring_buffer *rb; 4831 u64 enabled, running, now; 4832 4833 rcu_read_lock(); 4834 rb = rcu_dereference(event->rb); 4835 if (!rb) 4836 goto unlock; 4837 4838 /* 4839 * compute total_time_enabled, total_time_running 4840 * based on snapshot values taken when the event 4841 * was last scheduled in. 4842 * 4843 * we cannot simply called update_context_time() 4844 * because of locking issue as we can be called in 4845 * NMI context 4846 */ 4847 calc_timer_values(event, &now, &enabled, &running); 4848 4849 userpg = rb->user_page; 4850 /* 4851 * Disable preemption so as to not let the corresponding user-space 4852 * spin too long if we get preempted. 4853 */ 4854 preempt_disable(); 4855 ++userpg->lock; 4856 barrier(); 4857 userpg->index = perf_event_index(event); 4858 userpg->offset = perf_event_count(event); 4859 if (userpg->index) 4860 userpg->offset -= local64_read(&event->hw.prev_count); 4861 4862 userpg->time_enabled = enabled + 4863 atomic64_read(&event->child_total_time_enabled); 4864 4865 userpg->time_running = running + 4866 atomic64_read(&event->child_total_time_running); 4867 4868 arch_perf_update_userpage(event, userpg, now); 4869 4870 barrier(); 4871 ++userpg->lock; 4872 preempt_enable(); 4873 unlock: 4874 rcu_read_unlock(); 4875 } 4876 4877 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4878 { 4879 struct perf_event *event = vma->vm_file->private_data; 4880 struct ring_buffer *rb; 4881 int ret = VM_FAULT_SIGBUS; 4882 4883 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4884 if (vmf->pgoff == 0) 4885 ret = 0; 4886 return ret; 4887 } 4888 4889 rcu_read_lock(); 4890 rb = rcu_dereference(event->rb); 4891 if (!rb) 4892 goto unlock; 4893 4894 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4895 goto unlock; 4896 4897 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4898 if (!vmf->page) 4899 goto unlock; 4900 4901 get_page(vmf->page); 4902 vmf->page->mapping = vma->vm_file->f_mapping; 4903 vmf->page->index = vmf->pgoff; 4904 4905 ret = 0; 4906 unlock: 4907 rcu_read_unlock(); 4908 4909 return ret; 4910 } 4911 4912 static void ring_buffer_attach(struct perf_event *event, 4913 struct ring_buffer *rb) 4914 { 4915 struct ring_buffer *old_rb = NULL; 4916 unsigned long flags; 4917 4918 if (event->rb) { 4919 /* 4920 * Should be impossible, we set this when removing 4921 * event->rb_entry and wait/clear when adding event->rb_entry. 4922 */ 4923 WARN_ON_ONCE(event->rcu_pending); 4924 4925 old_rb = event->rb; 4926 spin_lock_irqsave(&old_rb->event_lock, flags); 4927 list_del_rcu(&event->rb_entry); 4928 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4929 4930 event->rcu_batches = get_state_synchronize_rcu(); 4931 event->rcu_pending = 1; 4932 } 4933 4934 if (rb) { 4935 if (event->rcu_pending) { 4936 cond_synchronize_rcu(event->rcu_batches); 4937 event->rcu_pending = 0; 4938 } 4939 4940 spin_lock_irqsave(&rb->event_lock, flags); 4941 list_add_rcu(&event->rb_entry, &rb->event_list); 4942 spin_unlock_irqrestore(&rb->event_lock, flags); 4943 } 4944 4945 /* 4946 * Avoid racing with perf_mmap_close(AUX): stop the event 4947 * before swizzling the event::rb pointer; if it's getting 4948 * unmapped, its aux_mmap_count will be 0 and it won't 4949 * restart. See the comment in __perf_pmu_output_stop(). 4950 * 4951 * Data will inevitably be lost when set_output is done in 4952 * mid-air, but then again, whoever does it like this is 4953 * not in for the data anyway. 4954 */ 4955 if (has_aux(event)) 4956 perf_event_stop(event, 0); 4957 4958 rcu_assign_pointer(event->rb, rb); 4959 4960 if (old_rb) { 4961 ring_buffer_put(old_rb); 4962 /* 4963 * Since we detached before setting the new rb, so that we 4964 * could attach the new rb, we could have missed a wakeup. 4965 * Provide it now. 4966 */ 4967 wake_up_all(&event->waitq); 4968 } 4969 } 4970 4971 static void ring_buffer_wakeup(struct perf_event *event) 4972 { 4973 struct ring_buffer *rb; 4974 4975 rcu_read_lock(); 4976 rb = rcu_dereference(event->rb); 4977 if (rb) { 4978 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4979 wake_up_all(&event->waitq); 4980 } 4981 rcu_read_unlock(); 4982 } 4983 4984 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4985 { 4986 struct ring_buffer *rb; 4987 4988 rcu_read_lock(); 4989 rb = rcu_dereference(event->rb); 4990 if (rb) { 4991 if (!atomic_inc_not_zero(&rb->refcount)) 4992 rb = NULL; 4993 } 4994 rcu_read_unlock(); 4995 4996 return rb; 4997 } 4998 4999 void ring_buffer_put(struct ring_buffer *rb) 5000 { 5001 if (!atomic_dec_and_test(&rb->refcount)) 5002 return; 5003 5004 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5005 5006 call_rcu(&rb->rcu_head, rb_free_rcu); 5007 } 5008 5009 static void perf_mmap_open(struct vm_area_struct *vma) 5010 { 5011 struct perf_event *event = vma->vm_file->private_data; 5012 5013 atomic_inc(&event->mmap_count); 5014 atomic_inc(&event->rb->mmap_count); 5015 5016 if (vma->vm_pgoff) 5017 atomic_inc(&event->rb->aux_mmap_count); 5018 5019 if (event->pmu->event_mapped) 5020 event->pmu->event_mapped(event); 5021 } 5022 5023 static void perf_pmu_output_stop(struct perf_event *event); 5024 5025 /* 5026 * A buffer can be mmap()ed multiple times; either directly through the same 5027 * event, or through other events by use of perf_event_set_output(). 5028 * 5029 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5030 * the buffer here, where we still have a VM context. This means we need 5031 * to detach all events redirecting to us. 5032 */ 5033 static void perf_mmap_close(struct vm_area_struct *vma) 5034 { 5035 struct perf_event *event = vma->vm_file->private_data; 5036 5037 struct ring_buffer *rb = ring_buffer_get(event); 5038 struct user_struct *mmap_user = rb->mmap_user; 5039 int mmap_locked = rb->mmap_locked; 5040 unsigned long size = perf_data_size(rb); 5041 5042 if (event->pmu->event_unmapped) 5043 event->pmu->event_unmapped(event); 5044 5045 /* 5046 * rb->aux_mmap_count will always drop before rb->mmap_count and 5047 * event->mmap_count, so it is ok to use event->mmap_mutex to 5048 * serialize with perf_mmap here. 5049 */ 5050 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5051 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5052 /* 5053 * Stop all AUX events that are writing to this buffer, 5054 * so that we can free its AUX pages and corresponding PMU 5055 * data. Note that after rb::aux_mmap_count dropped to zero, 5056 * they won't start any more (see perf_aux_output_begin()). 5057 */ 5058 perf_pmu_output_stop(event); 5059 5060 /* now it's safe to free the pages */ 5061 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5062 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5063 5064 /* this has to be the last one */ 5065 rb_free_aux(rb); 5066 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5067 5068 mutex_unlock(&event->mmap_mutex); 5069 } 5070 5071 atomic_dec(&rb->mmap_count); 5072 5073 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5074 goto out_put; 5075 5076 ring_buffer_attach(event, NULL); 5077 mutex_unlock(&event->mmap_mutex); 5078 5079 /* If there's still other mmap()s of this buffer, we're done. */ 5080 if (atomic_read(&rb->mmap_count)) 5081 goto out_put; 5082 5083 /* 5084 * No other mmap()s, detach from all other events that might redirect 5085 * into the now unreachable buffer. Somewhat complicated by the 5086 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5087 */ 5088 again: 5089 rcu_read_lock(); 5090 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5091 if (!atomic_long_inc_not_zero(&event->refcount)) { 5092 /* 5093 * This event is en-route to free_event() which will 5094 * detach it and remove it from the list. 5095 */ 5096 continue; 5097 } 5098 rcu_read_unlock(); 5099 5100 mutex_lock(&event->mmap_mutex); 5101 /* 5102 * Check we didn't race with perf_event_set_output() which can 5103 * swizzle the rb from under us while we were waiting to 5104 * acquire mmap_mutex. 5105 * 5106 * If we find a different rb; ignore this event, a next 5107 * iteration will no longer find it on the list. We have to 5108 * still restart the iteration to make sure we're not now 5109 * iterating the wrong list. 5110 */ 5111 if (event->rb == rb) 5112 ring_buffer_attach(event, NULL); 5113 5114 mutex_unlock(&event->mmap_mutex); 5115 put_event(event); 5116 5117 /* 5118 * Restart the iteration; either we're on the wrong list or 5119 * destroyed its integrity by doing a deletion. 5120 */ 5121 goto again; 5122 } 5123 rcu_read_unlock(); 5124 5125 /* 5126 * It could be there's still a few 0-ref events on the list; they'll 5127 * get cleaned up by free_event() -- they'll also still have their 5128 * ref on the rb and will free it whenever they are done with it. 5129 * 5130 * Aside from that, this buffer is 'fully' detached and unmapped, 5131 * undo the VM accounting. 5132 */ 5133 5134 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5135 vma->vm_mm->pinned_vm -= mmap_locked; 5136 free_uid(mmap_user); 5137 5138 out_put: 5139 ring_buffer_put(rb); /* could be last */ 5140 } 5141 5142 static const struct vm_operations_struct perf_mmap_vmops = { 5143 .open = perf_mmap_open, 5144 .close = perf_mmap_close, /* non mergable */ 5145 .fault = perf_mmap_fault, 5146 .page_mkwrite = perf_mmap_fault, 5147 }; 5148 5149 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5150 { 5151 struct perf_event *event = file->private_data; 5152 unsigned long user_locked, user_lock_limit; 5153 struct user_struct *user = current_user(); 5154 unsigned long locked, lock_limit; 5155 struct ring_buffer *rb = NULL; 5156 unsigned long vma_size; 5157 unsigned long nr_pages; 5158 long user_extra = 0, extra = 0; 5159 int ret = 0, flags = 0; 5160 5161 /* 5162 * Don't allow mmap() of inherited per-task counters. This would 5163 * create a performance issue due to all children writing to the 5164 * same rb. 5165 */ 5166 if (event->cpu == -1 && event->attr.inherit) 5167 return -EINVAL; 5168 5169 if (!(vma->vm_flags & VM_SHARED)) 5170 return -EINVAL; 5171 5172 vma_size = vma->vm_end - vma->vm_start; 5173 5174 if (vma->vm_pgoff == 0) { 5175 nr_pages = (vma_size / PAGE_SIZE) - 1; 5176 } else { 5177 /* 5178 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5179 * mapped, all subsequent mappings should have the same size 5180 * and offset. Must be above the normal perf buffer. 5181 */ 5182 u64 aux_offset, aux_size; 5183 5184 if (!event->rb) 5185 return -EINVAL; 5186 5187 nr_pages = vma_size / PAGE_SIZE; 5188 5189 mutex_lock(&event->mmap_mutex); 5190 ret = -EINVAL; 5191 5192 rb = event->rb; 5193 if (!rb) 5194 goto aux_unlock; 5195 5196 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5197 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5198 5199 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5200 goto aux_unlock; 5201 5202 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5203 goto aux_unlock; 5204 5205 /* already mapped with a different offset */ 5206 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5207 goto aux_unlock; 5208 5209 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5210 goto aux_unlock; 5211 5212 /* already mapped with a different size */ 5213 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5214 goto aux_unlock; 5215 5216 if (!is_power_of_2(nr_pages)) 5217 goto aux_unlock; 5218 5219 if (!atomic_inc_not_zero(&rb->mmap_count)) 5220 goto aux_unlock; 5221 5222 if (rb_has_aux(rb)) { 5223 atomic_inc(&rb->aux_mmap_count); 5224 ret = 0; 5225 goto unlock; 5226 } 5227 5228 atomic_set(&rb->aux_mmap_count, 1); 5229 user_extra = nr_pages; 5230 5231 goto accounting; 5232 } 5233 5234 /* 5235 * If we have rb pages ensure they're a power-of-two number, so we 5236 * can do bitmasks instead of modulo. 5237 */ 5238 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5239 return -EINVAL; 5240 5241 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5242 return -EINVAL; 5243 5244 WARN_ON_ONCE(event->ctx->parent_ctx); 5245 again: 5246 mutex_lock(&event->mmap_mutex); 5247 if (event->rb) { 5248 if (event->rb->nr_pages != nr_pages) { 5249 ret = -EINVAL; 5250 goto unlock; 5251 } 5252 5253 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5254 /* 5255 * Raced against perf_mmap_close() through 5256 * perf_event_set_output(). Try again, hope for better 5257 * luck. 5258 */ 5259 mutex_unlock(&event->mmap_mutex); 5260 goto again; 5261 } 5262 5263 goto unlock; 5264 } 5265 5266 user_extra = nr_pages + 1; 5267 5268 accounting: 5269 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5270 5271 /* 5272 * Increase the limit linearly with more CPUs: 5273 */ 5274 user_lock_limit *= num_online_cpus(); 5275 5276 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5277 5278 if (user_locked > user_lock_limit) 5279 extra = user_locked - user_lock_limit; 5280 5281 lock_limit = rlimit(RLIMIT_MEMLOCK); 5282 lock_limit >>= PAGE_SHIFT; 5283 locked = vma->vm_mm->pinned_vm + extra; 5284 5285 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5286 !capable(CAP_IPC_LOCK)) { 5287 ret = -EPERM; 5288 goto unlock; 5289 } 5290 5291 WARN_ON(!rb && event->rb); 5292 5293 if (vma->vm_flags & VM_WRITE) 5294 flags |= RING_BUFFER_WRITABLE; 5295 5296 if (!rb) { 5297 rb = rb_alloc(nr_pages, 5298 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5299 event->cpu, flags); 5300 5301 if (!rb) { 5302 ret = -ENOMEM; 5303 goto unlock; 5304 } 5305 5306 atomic_set(&rb->mmap_count, 1); 5307 rb->mmap_user = get_current_user(); 5308 rb->mmap_locked = extra; 5309 5310 ring_buffer_attach(event, rb); 5311 5312 perf_event_init_userpage(event); 5313 perf_event_update_userpage(event); 5314 } else { 5315 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5316 event->attr.aux_watermark, flags); 5317 if (!ret) 5318 rb->aux_mmap_locked = extra; 5319 } 5320 5321 unlock: 5322 if (!ret) { 5323 atomic_long_add(user_extra, &user->locked_vm); 5324 vma->vm_mm->pinned_vm += extra; 5325 5326 atomic_inc(&event->mmap_count); 5327 } else if (rb) { 5328 atomic_dec(&rb->mmap_count); 5329 } 5330 aux_unlock: 5331 mutex_unlock(&event->mmap_mutex); 5332 5333 /* 5334 * Since pinned accounting is per vm we cannot allow fork() to copy our 5335 * vma. 5336 */ 5337 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5338 vma->vm_ops = &perf_mmap_vmops; 5339 5340 if (event->pmu->event_mapped) 5341 event->pmu->event_mapped(event); 5342 5343 return ret; 5344 } 5345 5346 static int perf_fasync(int fd, struct file *filp, int on) 5347 { 5348 struct inode *inode = file_inode(filp); 5349 struct perf_event *event = filp->private_data; 5350 int retval; 5351 5352 inode_lock(inode); 5353 retval = fasync_helper(fd, filp, on, &event->fasync); 5354 inode_unlock(inode); 5355 5356 if (retval < 0) 5357 return retval; 5358 5359 return 0; 5360 } 5361 5362 static const struct file_operations perf_fops = { 5363 .llseek = no_llseek, 5364 .release = perf_release, 5365 .read = perf_read, 5366 .poll = perf_poll, 5367 .unlocked_ioctl = perf_ioctl, 5368 .compat_ioctl = perf_compat_ioctl, 5369 .mmap = perf_mmap, 5370 .fasync = perf_fasync, 5371 }; 5372 5373 /* 5374 * Perf event wakeup 5375 * 5376 * If there's data, ensure we set the poll() state and publish everything 5377 * to user-space before waking everybody up. 5378 */ 5379 5380 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5381 { 5382 /* only the parent has fasync state */ 5383 if (event->parent) 5384 event = event->parent; 5385 return &event->fasync; 5386 } 5387 5388 void perf_event_wakeup(struct perf_event *event) 5389 { 5390 ring_buffer_wakeup(event); 5391 5392 if (event->pending_kill) { 5393 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5394 event->pending_kill = 0; 5395 } 5396 } 5397 5398 static void perf_pending_event(struct irq_work *entry) 5399 { 5400 struct perf_event *event = container_of(entry, 5401 struct perf_event, pending); 5402 int rctx; 5403 5404 rctx = perf_swevent_get_recursion_context(); 5405 /* 5406 * If we 'fail' here, that's OK, it means recursion is already disabled 5407 * and we won't recurse 'further'. 5408 */ 5409 5410 if (event->pending_disable) { 5411 event->pending_disable = 0; 5412 perf_event_disable_local(event); 5413 } 5414 5415 if (event->pending_wakeup) { 5416 event->pending_wakeup = 0; 5417 perf_event_wakeup(event); 5418 } 5419 5420 if (rctx >= 0) 5421 perf_swevent_put_recursion_context(rctx); 5422 } 5423 5424 /* 5425 * We assume there is only KVM supporting the callbacks. 5426 * Later on, we might change it to a list if there is 5427 * another virtualization implementation supporting the callbacks. 5428 */ 5429 struct perf_guest_info_callbacks *perf_guest_cbs; 5430 5431 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5432 { 5433 perf_guest_cbs = cbs; 5434 return 0; 5435 } 5436 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5437 5438 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5439 { 5440 perf_guest_cbs = NULL; 5441 return 0; 5442 } 5443 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5444 5445 static void 5446 perf_output_sample_regs(struct perf_output_handle *handle, 5447 struct pt_regs *regs, u64 mask) 5448 { 5449 int bit; 5450 DECLARE_BITMAP(_mask, 64); 5451 5452 bitmap_from_u64(_mask, mask); 5453 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5454 u64 val; 5455 5456 val = perf_reg_value(regs, bit); 5457 perf_output_put(handle, val); 5458 } 5459 } 5460 5461 static void perf_sample_regs_user(struct perf_regs *regs_user, 5462 struct pt_regs *regs, 5463 struct pt_regs *regs_user_copy) 5464 { 5465 if (user_mode(regs)) { 5466 regs_user->abi = perf_reg_abi(current); 5467 regs_user->regs = regs; 5468 } else if (current->mm) { 5469 perf_get_regs_user(regs_user, regs, regs_user_copy); 5470 } else { 5471 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5472 regs_user->regs = NULL; 5473 } 5474 } 5475 5476 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5477 struct pt_regs *regs) 5478 { 5479 regs_intr->regs = regs; 5480 regs_intr->abi = perf_reg_abi(current); 5481 } 5482 5483 5484 /* 5485 * Get remaining task size from user stack pointer. 5486 * 5487 * It'd be better to take stack vma map and limit this more 5488 * precisly, but there's no way to get it safely under interrupt, 5489 * so using TASK_SIZE as limit. 5490 */ 5491 static u64 perf_ustack_task_size(struct pt_regs *regs) 5492 { 5493 unsigned long addr = perf_user_stack_pointer(regs); 5494 5495 if (!addr || addr >= TASK_SIZE) 5496 return 0; 5497 5498 return TASK_SIZE - addr; 5499 } 5500 5501 static u16 5502 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5503 struct pt_regs *regs) 5504 { 5505 u64 task_size; 5506 5507 /* No regs, no stack pointer, no dump. */ 5508 if (!regs) 5509 return 0; 5510 5511 /* 5512 * Check if we fit in with the requested stack size into the: 5513 * - TASK_SIZE 5514 * If we don't, we limit the size to the TASK_SIZE. 5515 * 5516 * - remaining sample size 5517 * If we don't, we customize the stack size to 5518 * fit in to the remaining sample size. 5519 */ 5520 5521 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5522 stack_size = min(stack_size, (u16) task_size); 5523 5524 /* Current header size plus static size and dynamic size. */ 5525 header_size += 2 * sizeof(u64); 5526 5527 /* Do we fit in with the current stack dump size? */ 5528 if ((u16) (header_size + stack_size) < header_size) { 5529 /* 5530 * If we overflow the maximum size for the sample, 5531 * we customize the stack dump size to fit in. 5532 */ 5533 stack_size = USHRT_MAX - header_size - sizeof(u64); 5534 stack_size = round_up(stack_size, sizeof(u64)); 5535 } 5536 5537 return stack_size; 5538 } 5539 5540 static void 5541 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5542 struct pt_regs *regs) 5543 { 5544 /* Case of a kernel thread, nothing to dump */ 5545 if (!regs) { 5546 u64 size = 0; 5547 perf_output_put(handle, size); 5548 } else { 5549 unsigned long sp; 5550 unsigned int rem; 5551 u64 dyn_size; 5552 5553 /* 5554 * We dump: 5555 * static size 5556 * - the size requested by user or the best one we can fit 5557 * in to the sample max size 5558 * data 5559 * - user stack dump data 5560 * dynamic size 5561 * - the actual dumped size 5562 */ 5563 5564 /* Static size. */ 5565 perf_output_put(handle, dump_size); 5566 5567 /* Data. */ 5568 sp = perf_user_stack_pointer(regs); 5569 rem = __output_copy_user(handle, (void *) sp, dump_size); 5570 dyn_size = dump_size - rem; 5571 5572 perf_output_skip(handle, rem); 5573 5574 /* Dynamic size. */ 5575 perf_output_put(handle, dyn_size); 5576 } 5577 } 5578 5579 static void __perf_event_header__init_id(struct perf_event_header *header, 5580 struct perf_sample_data *data, 5581 struct perf_event *event) 5582 { 5583 u64 sample_type = event->attr.sample_type; 5584 5585 data->type = sample_type; 5586 header->size += event->id_header_size; 5587 5588 if (sample_type & PERF_SAMPLE_TID) { 5589 /* namespace issues */ 5590 data->tid_entry.pid = perf_event_pid(event, current); 5591 data->tid_entry.tid = perf_event_tid(event, current); 5592 } 5593 5594 if (sample_type & PERF_SAMPLE_TIME) 5595 data->time = perf_event_clock(event); 5596 5597 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5598 data->id = primary_event_id(event); 5599 5600 if (sample_type & PERF_SAMPLE_STREAM_ID) 5601 data->stream_id = event->id; 5602 5603 if (sample_type & PERF_SAMPLE_CPU) { 5604 data->cpu_entry.cpu = raw_smp_processor_id(); 5605 data->cpu_entry.reserved = 0; 5606 } 5607 } 5608 5609 void perf_event_header__init_id(struct perf_event_header *header, 5610 struct perf_sample_data *data, 5611 struct perf_event *event) 5612 { 5613 if (event->attr.sample_id_all) 5614 __perf_event_header__init_id(header, data, event); 5615 } 5616 5617 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5618 struct perf_sample_data *data) 5619 { 5620 u64 sample_type = data->type; 5621 5622 if (sample_type & PERF_SAMPLE_TID) 5623 perf_output_put(handle, data->tid_entry); 5624 5625 if (sample_type & PERF_SAMPLE_TIME) 5626 perf_output_put(handle, data->time); 5627 5628 if (sample_type & PERF_SAMPLE_ID) 5629 perf_output_put(handle, data->id); 5630 5631 if (sample_type & PERF_SAMPLE_STREAM_ID) 5632 perf_output_put(handle, data->stream_id); 5633 5634 if (sample_type & PERF_SAMPLE_CPU) 5635 perf_output_put(handle, data->cpu_entry); 5636 5637 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5638 perf_output_put(handle, data->id); 5639 } 5640 5641 void perf_event__output_id_sample(struct perf_event *event, 5642 struct perf_output_handle *handle, 5643 struct perf_sample_data *sample) 5644 { 5645 if (event->attr.sample_id_all) 5646 __perf_event__output_id_sample(handle, sample); 5647 } 5648 5649 static void perf_output_read_one(struct perf_output_handle *handle, 5650 struct perf_event *event, 5651 u64 enabled, u64 running) 5652 { 5653 u64 read_format = event->attr.read_format; 5654 u64 values[4]; 5655 int n = 0; 5656 5657 values[n++] = perf_event_count(event); 5658 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5659 values[n++] = enabled + 5660 atomic64_read(&event->child_total_time_enabled); 5661 } 5662 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5663 values[n++] = running + 5664 atomic64_read(&event->child_total_time_running); 5665 } 5666 if (read_format & PERF_FORMAT_ID) 5667 values[n++] = primary_event_id(event); 5668 5669 __output_copy(handle, values, n * sizeof(u64)); 5670 } 5671 5672 /* 5673 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5674 */ 5675 static void perf_output_read_group(struct perf_output_handle *handle, 5676 struct perf_event *event, 5677 u64 enabled, u64 running) 5678 { 5679 struct perf_event *leader = event->group_leader, *sub; 5680 u64 read_format = event->attr.read_format; 5681 u64 values[5]; 5682 int n = 0; 5683 5684 values[n++] = 1 + leader->nr_siblings; 5685 5686 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5687 values[n++] = enabled; 5688 5689 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5690 values[n++] = running; 5691 5692 if (leader != event) 5693 leader->pmu->read(leader); 5694 5695 values[n++] = perf_event_count(leader); 5696 if (read_format & PERF_FORMAT_ID) 5697 values[n++] = primary_event_id(leader); 5698 5699 __output_copy(handle, values, n * sizeof(u64)); 5700 5701 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5702 n = 0; 5703 5704 if ((sub != event) && 5705 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5706 sub->pmu->read(sub); 5707 5708 values[n++] = perf_event_count(sub); 5709 if (read_format & PERF_FORMAT_ID) 5710 values[n++] = primary_event_id(sub); 5711 5712 __output_copy(handle, values, n * sizeof(u64)); 5713 } 5714 } 5715 5716 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5717 PERF_FORMAT_TOTAL_TIME_RUNNING) 5718 5719 static void perf_output_read(struct perf_output_handle *handle, 5720 struct perf_event *event) 5721 { 5722 u64 enabled = 0, running = 0, now; 5723 u64 read_format = event->attr.read_format; 5724 5725 /* 5726 * compute total_time_enabled, total_time_running 5727 * based on snapshot values taken when the event 5728 * was last scheduled in. 5729 * 5730 * we cannot simply called update_context_time() 5731 * because of locking issue as we are called in 5732 * NMI context 5733 */ 5734 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5735 calc_timer_values(event, &now, &enabled, &running); 5736 5737 if (event->attr.read_format & PERF_FORMAT_GROUP) 5738 perf_output_read_group(handle, event, enabled, running); 5739 else 5740 perf_output_read_one(handle, event, enabled, running); 5741 } 5742 5743 void perf_output_sample(struct perf_output_handle *handle, 5744 struct perf_event_header *header, 5745 struct perf_sample_data *data, 5746 struct perf_event *event) 5747 { 5748 u64 sample_type = data->type; 5749 5750 perf_output_put(handle, *header); 5751 5752 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5753 perf_output_put(handle, data->id); 5754 5755 if (sample_type & PERF_SAMPLE_IP) 5756 perf_output_put(handle, data->ip); 5757 5758 if (sample_type & PERF_SAMPLE_TID) 5759 perf_output_put(handle, data->tid_entry); 5760 5761 if (sample_type & PERF_SAMPLE_TIME) 5762 perf_output_put(handle, data->time); 5763 5764 if (sample_type & PERF_SAMPLE_ADDR) 5765 perf_output_put(handle, data->addr); 5766 5767 if (sample_type & PERF_SAMPLE_ID) 5768 perf_output_put(handle, data->id); 5769 5770 if (sample_type & PERF_SAMPLE_STREAM_ID) 5771 perf_output_put(handle, data->stream_id); 5772 5773 if (sample_type & PERF_SAMPLE_CPU) 5774 perf_output_put(handle, data->cpu_entry); 5775 5776 if (sample_type & PERF_SAMPLE_PERIOD) 5777 perf_output_put(handle, data->period); 5778 5779 if (sample_type & PERF_SAMPLE_READ) 5780 perf_output_read(handle, event); 5781 5782 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5783 if (data->callchain) { 5784 int size = 1; 5785 5786 if (data->callchain) 5787 size += data->callchain->nr; 5788 5789 size *= sizeof(u64); 5790 5791 __output_copy(handle, data->callchain, size); 5792 } else { 5793 u64 nr = 0; 5794 perf_output_put(handle, nr); 5795 } 5796 } 5797 5798 if (sample_type & PERF_SAMPLE_RAW) { 5799 struct perf_raw_record *raw = data->raw; 5800 5801 if (raw) { 5802 struct perf_raw_frag *frag = &raw->frag; 5803 5804 perf_output_put(handle, raw->size); 5805 do { 5806 if (frag->copy) { 5807 __output_custom(handle, frag->copy, 5808 frag->data, frag->size); 5809 } else { 5810 __output_copy(handle, frag->data, 5811 frag->size); 5812 } 5813 if (perf_raw_frag_last(frag)) 5814 break; 5815 frag = frag->next; 5816 } while (1); 5817 if (frag->pad) 5818 __output_skip(handle, NULL, frag->pad); 5819 } else { 5820 struct { 5821 u32 size; 5822 u32 data; 5823 } raw = { 5824 .size = sizeof(u32), 5825 .data = 0, 5826 }; 5827 perf_output_put(handle, raw); 5828 } 5829 } 5830 5831 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5832 if (data->br_stack) { 5833 size_t size; 5834 5835 size = data->br_stack->nr 5836 * sizeof(struct perf_branch_entry); 5837 5838 perf_output_put(handle, data->br_stack->nr); 5839 perf_output_copy(handle, data->br_stack->entries, size); 5840 } else { 5841 /* 5842 * we always store at least the value of nr 5843 */ 5844 u64 nr = 0; 5845 perf_output_put(handle, nr); 5846 } 5847 } 5848 5849 if (sample_type & PERF_SAMPLE_REGS_USER) { 5850 u64 abi = data->regs_user.abi; 5851 5852 /* 5853 * If there are no regs to dump, notice it through 5854 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5855 */ 5856 perf_output_put(handle, abi); 5857 5858 if (abi) { 5859 u64 mask = event->attr.sample_regs_user; 5860 perf_output_sample_regs(handle, 5861 data->regs_user.regs, 5862 mask); 5863 } 5864 } 5865 5866 if (sample_type & PERF_SAMPLE_STACK_USER) { 5867 perf_output_sample_ustack(handle, 5868 data->stack_user_size, 5869 data->regs_user.regs); 5870 } 5871 5872 if (sample_type & PERF_SAMPLE_WEIGHT) 5873 perf_output_put(handle, data->weight); 5874 5875 if (sample_type & PERF_SAMPLE_DATA_SRC) 5876 perf_output_put(handle, data->data_src.val); 5877 5878 if (sample_type & PERF_SAMPLE_TRANSACTION) 5879 perf_output_put(handle, data->txn); 5880 5881 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5882 u64 abi = data->regs_intr.abi; 5883 /* 5884 * If there are no regs to dump, notice it through 5885 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5886 */ 5887 perf_output_put(handle, abi); 5888 5889 if (abi) { 5890 u64 mask = event->attr.sample_regs_intr; 5891 5892 perf_output_sample_regs(handle, 5893 data->regs_intr.regs, 5894 mask); 5895 } 5896 } 5897 5898 if (!event->attr.watermark) { 5899 int wakeup_events = event->attr.wakeup_events; 5900 5901 if (wakeup_events) { 5902 struct ring_buffer *rb = handle->rb; 5903 int events = local_inc_return(&rb->events); 5904 5905 if (events >= wakeup_events) { 5906 local_sub(wakeup_events, &rb->events); 5907 local_inc(&rb->wakeup); 5908 } 5909 } 5910 } 5911 } 5912 5913 void perf_prepare_sample(struct perf_event_header *header, 5914 struct perf_sample_data *data, 5915 struct perf_event *event, 5916 struct pt_regs *regs) 5917 { 5918 u64 sample_type = event->attr.sample_type; 5919 5920 header->type = PERF_RECORD_SAMPLE; 5921 header->size = sizeof(*header) + event->header_size; 5922 5923 header->misc = 0; 5924 header->misc |= perf_misc_flags(regs); 5925 5926 __perf_event_header__init_id(header, data, event); 5927 5928 if (sample_type & PERF_SAMPLE_IP) 5929 data->ip = perf_instruction_pointer(regs); 5930 5931 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5932 int size = 1; 5933 5934 data->callchain = perf_callchain(event, regs); 5935 5936 if (data->callchain) 5937 size += data->callchain->nr; 5938 5939 header->size += size * sizeof(u64); 5940 } 5941 5942 if (sample_type & PERF_SAMPLE_RAW) { 5943 struct perf_raw_record *raw = data->raw; 5944 int size; 5945 5946 if (raw) { 5947 struct perf_raw_frag *frag = &raw->frag; 5948 u32 sum = 0; 5949 5950 do { 5951 sum += frag->size; 5952 if (perf_raw_frag_last(frag)) 5953 break; 5954 frag = frag->next; 5955 } while (1); 5956 5957 size = round_up(sum + sizeof(u32), sizeof(u64)); 5958 raw->size = size - sizeof(u32); 5959 frag->pad = raw->size - sum; 5960 } else { 5961 size = sizeof(u64); 5962 } 5963 5964 header->size += size; 5965 } 5966 5967 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5968 int size = sizeof(u64); /* nr */ 5969 if (data->br_stack) { 5970 size += data->br_stack->nr 5971 * sizeof(struct perf_branch_entry); 5972 } 5973 header->size += size; 5974 } 5975 5976 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5977 perf_sample_regs_user(&data->regs_user, regs, 5978 &data->regs_user_copy); 5979 5980 if (sample_type & PERF_SAMPLE_REGS_USER) { 5981 /* regs dump ABI info */ 5982 int size = sizeof(u64); 5983 5984 if (data->regs_user.regs) { 5985 u64 mask = event->attr.sample_regs_user; 5986 size += hweight64(mask) * sizeof(u64); 5987 } 5988 5989 header->size += size; 5990 } 5991 5992 if (sample_type & PERF_SAMPLE_STACK_USER) { 5993 /* 5994 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5995 * processed as the last one or have additional check added 5996 * in case new sample type is added, because we could eat 5997 * up the rest of the sample size. 5998 */ 5999 u16 stack_size = event->attr.sample_stack_user; 6000 u16 size = sizeof(u64); 6001 6002 stack_size = perf_sample_ustack_size(stack_size, header->size, 6003 data->regs_user.regs); 6004 6005 /* 6006 * If there is something to dump, add space for the dump 6007 * itself and for the field that tells the dynamic size, 6008 * which is how many have been actually dumped. 6009 */ 6010 if (stack_size) 6011 size += sizeof(u64) + stack_size; 6012 6013 data->stack_user_size = stack_size; 6014 header->size += size; 6015 } 6016 6017 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6018 /* regs dump ABI info */ 6019 int size = sizeof(u64); 6020 6021 perf_sample_regs_intr(&data->regs_intr, regs); 6022 6023 if (data->regs_intr.regs) { 6024 u64 mask = event->attr.sample_regs_intr; 6025 6026 size += hweight64(mask) * sizeof(u64); 6027 } 6028 6029 header->size += size; 6030 } 6031 } 6032 6033 static void __always_inline 6034 __perf_event_output(struct perf_event *event, 6035 struct perf_sample_data *data, 6036 struct pt_regs *regs, 6037 int (*output_begin)(struct perf_output_handle *, 6038 struct perf_event *, 6039 unsigned int)) 6040 { 6041 struct perf_output_handle handle; 6042 struct perf_event_header header; 6043 6044 /* protect the callchain buffers */ 6045 rcu_read_lock(); 6046 6047 perf_prepare_sample(&header, data, event, regs); 6048 6049 if (output_begin(&handle, event, header.size)) 6050 goto exit; 6051 6052 perf_output_sample(&handle, &header, data, event); 6053 6054 perf_output_end(&handle); 6055 6056 exit: 6057 rcu_read_unlock(); 6058 } 6059 6060 void 6061 perf_event_output_forward(struct perf_event *event, 6062 struct perf_sample_data *data, 6063 struct pt_regs *regs) 6064 { 6065 __perf_event_output(event, data, regs, perf_output_begin_forward); 6066 } 6067 6068 void 6069 perf_event_output_backward(struct perf_event *event, 6070 struct perf_sample_data *data, 6071 struct pt_regs *regs) 6072 { 6073 __perf_event_output(event, data, regs, perf_output_begin_backward); 6074 } 6075 6076 void 6077 perf_event_output(struct perf_event *event, 6078 struct perf_sample_data *data, 6079 struct pt_regs *regs) 6080 { 6081 __perf_event_output(event, data, regs, perf_output_begin); 6082 } 6083 6084 /* 6085 * read event_id 6086 */ 6087 6088 struct perf_read_event { 6089 struct perf_event_header header; 6090 6091 u32 pid; 6092 u32 tid; 6093 }; 6094 6095 static void 6096 perf_event_read_event(struct perf_event *event, 6097 struct task_struct *task) 6098 { 6099 struct perf_output_handle handle; 6100 struct perf_sample_data sample; 6101 struct perf_read_event read_event = { 6102 .header = { 6103 .type = PERF_RECORD_READ, 6104 .misc = 0, 6105 .size = sizeof(read_event) + event->read_size, 6106 }, 6107 .pid = perf_event_pid(event, task), 6108 .tid = perf_event_tid(event, task), 6109 }; 6110 int ret; 6111 6112 perf_event_header__init_id(&read_event.header, &sample, event); 6113 ret = perf_output_begin(&handle, event, read_event.header.size); 6114 if (ret) 6115 return; 6116 6117 perf_output_put(&handle, read_event); 6118 perf_output_read(&handle, event); 6119 perf_event__output_id_sample(event, &handle, &sample); 6120 6121 perf_output_end(&handle); 6122 } 6123 6124 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6125 6126 static void 6127 perf_iterate_ctx(struct perf_event_context *ctx, 6128 perf_iterate_f output, 6129 void *data, bool all) 6130 { 6131 struct perf_event *event; 6132 6133 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6134 if (!all) { 6135 if (event->state < PERF_EVENT_STATE_INACTIVE) 6136 continue; 6137 if (!event_filter_match(event)) 6138 continue; 6139 } 6140 6141 output(event, data); 6142 } 6143 } 6144 6145 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6146 { 6147 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6148 struct perf_event *event; 6149 6150 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6151 /* 6152 * Skip events that are not fully formed yet; ensure that 6153 * if we observe event->ctx, both event and ctx will be 6154 * complete enough. See perf_install_in_context(). 6155 */ 6156 if (!smp_load_acquire(&event->ctx)) 6157 continue; 6158 6159 if (event->state < PERF_EVENT_STATE_INACTIVE) 6160 continue; 6161 if (!event_filter_match(event)) 6162 continue; 6163 output(event, data); 6164 } 6165 } 6166 6167 /* 6168 * Iterate all events that need to receive side-band events. 6169 * 6170 * For new callers; ensure that account_pmu_sb_event() includes 6171 * your event, otherwise it might not get delivered. 6172 */ 6173 static void 6174 perf_iterate_sb(perf_iterate_f output, void *data, 6175 struct perf_event_context *task_ctx) 6176 { 6177 struct perf_event_context *ctx; 6178 int ctxn; 6179 6180 rcu_read_lock(); 6181 preempt_disable(); 6182 6183 /* 6184 * If we have task_ctx != NULL we only notify the task context itself. 6185 * The task_ctx is set only for EXIT events before releasing task 6186 * context. 6187 */ 6188 if (task_ctx) { 6189 perf_iterate_ctx(task_ctx, output, data, false); 6190 goto done; 6191 } 6192 6193 perf_iterate_sb_cpu(output, data); 6194 6195 for_each_task_context_nr(ctxn) { 6196 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6197 if (ctx) 6198 perf_iterate_ctx(ctx, output, data, false); 6199 } 6200 done: 6201 preempt_enable(); 6202 rcu_read_unlock(); 6203 } 6204 6205 /* 6206 * Clear all file-based filters at exec, they'll have to be 6207 * re-instated when/if these objects are mmapped again. 6208 */ 6209 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6210 { 6211 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6212 struct perf_addr_filter *filter; 6213 unsigned int restart = 0, count = 0; 6214 unsigned long flags; 6215 6216 if (!has_addr_filter(event)) 6217 return; 6218 6219 raw_spin_lock_irqsave(&ifh->lock, flags); 6220 list_for_each_entry(filter, &ifh->list, entry) { 6221 if (filter->inode) { 6222 event->addr_filters_offs[count] = 0; 6223 restart++; 6224 } 6225 6226 count++; 6227 } 6228 6229 if (restart) 6230 event->addr_filters_gen++; 6231 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6232 6233 if (restart) 6234 perf_event_stop(event, 1); 6235 } 6236 6237 void perf_event_exec(void) 6238 { 6239 struct perf_event_context *ctx; 6240 int ctxn; 6241 6242 rcu_read_lock(); 6243 for_each_task_context_nr(ctxn) { 6244 ctx = current->perf_event_ctxp[ctxn]; 6245 if (!ctx) 6246 continue; 6247 6248 perf_event_enable_on_exec(ctxn); 6249 6250 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6251 true); 6252 } 6253 rcu_read_unlock(); 6254 } 6255 6256 struct remote_output { 6257 struct ring_buffer *rb; 6258 int err; 6259 }; 6260 6261 static void __perf_event_output_stop(struct perf_event *event, void *data) 6262 { 6263 struct perf_event *parent = event->parent; 6264 struct remote_output *ro = data; 6265 struct ring_buffer *rb = ro->rb; 6266 struct stop_event_data sd = { 6267 .event = event, 6268 }; 6269 6270 if (!has_aux(event)) 6271 return; 6272 6273 if (!parent) 6274 parent = event; 6275 6276 /* 6277 * In case of inheritance, it will be the parent that links to the 6278 * ring-buffer, but it will be the child that's actually using it. 6279 * 6280 * We are using event::rb to determine if the event should be stopped, 6281 * however this may race with ring_buffer_attach() (through set_output), 6282 * which will make us skip the event that actually needs to be stopped. 6283 * So ring_buffer_attach() has to stop an aux event before re-assigning 6284 * its rb pointer. 6285 */ 6286 if (rcu_dereference(parent->rb) == rb) 6287 ro->err = __perf_event_stop(&sd); 6288 } 6289 6290 static int __perf_pmu_output_stop(void *info) 6291 { 6292 struct perf_event *event = info; 6293 struct pmu *pmu = event->pmu; 6294 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6295 struct remote_output ro = { 6296 .rb = event->rb, 6297 }; 6298 6299 rcu_read_lock(); 6300 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6301 if (cpuctx->task_ctx) 6302 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6303 &ro, false); 6304 rcu_read_unlock(); 6305 6306 return ro.err; 6307 } 6308 6309 static void perf_pmu_output_stop(struct perf_event *event) 6310 { 6311 struct perf_event *iter; 6312 int err, cpu; 6313 6314 restart: 6315 rcu_read_lock(); 6316 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6317 /* 6318 * For per-CPU events, we need to make sure that neither they 6319 * nor their children are running; for cpu==-1 events it's 6320 * sufficient to stop the event itself if it's active, since 6321 * it can't have children. 6322 */ 6323 cpu = iter->cpu; 6324 if (cpu == -1) 6325 cpu = READ_ONCE(iter->oncpu); 6326 6327 if (cpu == -1) 6328 continue; 6329 6330 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6331 if (err == -EAGAIN) { 6332 rcu_read_unlock(); 6333 goto restart; 6334 } 6335 } 6336 rcu_read_unlock(); 6337 } 6338 6339 /* 6340 * task tracking -- fork/exit 6341 * 6342 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6343 */ 6344 6345 struct perf_task_event { 6346 struct task_struct *task; 6347 struct perf_event_context *task_ctx; 6348 6349 struct { 6350 struct perf_event_header header; 6351 6352 u32 pid; 6353 u32 ppid; 6354 u32 tid; 6355 u32 ptid; 6356 u64 time; 6357 } event_id; 6358 }; 6359 6360 static int perf_event_task_match(struct perf_event *event) 6361 { 6362 return event->attr.comm || event->attr.mmap || 6363 event->attr.mmap2 || event->attr.mmap_data || 6364 event->attr.task; 6365 } 6366 6367 static void perf_event_task_output(struct perf_event *event, 6368 void *data) 6369 { 6370 struct perf_task_event *task_event = data; 6371 struct perf_output_handle handle; 6372 struct perf_sample_data sample; 6373 struct task_struct *task = task_event->task; 6374 int ret, size = task_event->event_id.header.size; 6375 6376 if (!perf_event_task_match(event)) 6377 return; 6378 6379 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6380 6381 ret = perf_output_begin(&handle, event, 6382 task_event->event_id.header.size); 6383 if (ret) 6384 goto out; 6385 6386 task_event->event_id.pid = perf_event_pid(event, task); 6387 task_event->event_id.ppid = perf_event_pid(event, current); 6388 6389 task_event->event_id.tid = perf_event_tid(event, task); 6390 task_event->event_id.ptid = perf_event_tid(event, current); 6391 6392 task_event->event_id.time = perf_event_clock(event); 6393 6394 perf_output_put(&handle, task_event->event_id); 6395 6396 perf_event__output_id_sample(event, &handle, &sample); 6397 6398 perf_output_end(&handle); 6399 out: 6400 task_event->event_id.header.size = size; 6401 } 6402 6403 static void perf_event_task(struct task_struct *task, 6404 struct perf_event_context *task_ctx, 6405 int new) 6406 { 6407 struct perf_task_event task_event; 6408 6409 if (!atomic_read(&nr_comm_events) && 6410 !atomic_read(&nr_mmap_events) && 6411 !atomic_read(&nr_task_events)) 6412 return; 6413 6414 task_event = (struct perf_task_event){ 6415 .task = task, 6416 .task_ctx = task_ctx, 6417 .event_id = { 6418 .header = { 6419 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6420 .misc = 0, 6421 .size = sizeof(task_event.event_id), 6422 }, 6423 /* .pid */ 6424 /* .ppid */ 6425 /* .tid */ 6426 /* .ptid */ 6427 /* .time */ 6428 }, 6429 }; 6430 6431 perf_iterate_sb(perf_event_task_output, 6432 &task_event, 6433 task_ctx); 6434 } 6435 6436 void perf_event_fork(struct task_struct *task) 6437 { 6438 perf_event_task(task, NULL, 1); 6439 } 6440 6441 /* 6442 * comm tracking 6443 */ 6444 6445 struct perf_comm_event { 6446 struct task_struct *task; 6447 char *comm; 6448 int comm_size; 6449 6450 struct { 6451 struct perf_event_header header; 6452 6453 u32 pid; 6454 u32 tid; 6455 } event_id; 6456 }; 6457 6458 static int perf_event_comm_match(struct perf_event *event) 6459 { 6460 return event->attr.comm; 6461 } 6462 6463 static void perf_event_comm_output(struct perf_event *event, 6464 void *data) 6465 { 6466 struct perf_comm_event *comm_event = data; 6467 struct perf_output_handle handle; 6468 struct perf_sample_data sample; 6469 int size = comm_event->event_id.header.size; 6470 int ret; 6471 6472 if (!perf_event_comm_match(event)) 6473 return; 6474 6475 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6476 ret = perf_output_begin(&handle, event, 6477 comm_event->event_id.header.size); 6478 6479 if (ret) 6480 goto out; 6481 6482 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6483 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6484 6485 perf_output_put(&handle, comm_event->event_id); 6486 __output_copy(&handle, comm_event->comm, 6487 comm_event->comm_size); 6488 6489 perf_event__output_id_sample(event, &handle, &sample); 6490 6491 perf_output_end(&handle); 6492 out: 6493 comm_event->event_id.header.size = size; 6494 } 6495 6496 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6497 { 6498 char comm[TASK_COMM_LEN]; 6499 unsigned int size; 6500 6501 memset(comm, 0, sizeof(comm)); 6502 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6503 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6504 6505 comm_event->comm = comm; 6506 comm_event->comm_size = size; 6507 6508 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6509 6510 perf_iterate_sb(perf_event_comm_output, 6511 comm_event, 6512 NULL); 6513 } 6514 6515 void perf_event_comm(struct task_struct *task, bool exec) 6516 { 6517 struct perf_comm_event comm_event; 6518 6519 if (!atomic_read(&nr_comm_events)) 6520 return; 6521 6522 comm_event = (struct perf_comm_event){ 6523 .task = task, 6524 /* .comm */ 6525 /* .comm_size */ 6526 .event_id = { 6527 .header = { 6528 .type = PERF_RECORD_COMM, 6529 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6530 /* .size */ 6531 }, 6532 /* .pid */ 6533 /* .tid */ 6534 }, 6535 }; 6536 6537 perf_event_comm_event(&comm_event); 6538 } 6539 6540 /* 6541 * mmap tracking 6542 */ 6543 6544 struct perf_mmap_event { 6545 struct vm_area_struct *vma; 6546 6547 const char *file_name; 6548 int file_size; 6549 int maj, min; 6550 u64 ino; 6551 u64 ino_generation; 6552 u32 prot, flags; 6553 6554 struct { 6555 struct perf_event_header header; 6556 6557 u32 pid; 6558 u32 tid; 6559 u64 start; 6560 u64 len; 6561 u64 pgoff; 6562 } event_id; 6563 }; 6564 6565 static int perf_event_mmap_match(struct perf_event *event, 6566 void *data) 6567 { 6568 struct perf_mmap_event *mmap_event = data; 6569 struct vm_area_struct *vma = mmap_event->vma; 6570 int executable = vma->vm_flags & VM_EXEC; 6571 6572 return (!executable && event->attr.mmap_data) || 6573 (executable && (event->attr.mmap || event->attr.mmap2)); 6574 } 6575 6576 static void perf_event_mmap_output(struct perf_event *event, 6577 void *data) 6578 { 6579 struct perf_mmap_event *mmap_event = data; 6580 struct perf_output_handle handle; 6581 struct perf_sample_data sample; 6582 int size = mmap_event->event_id.header.size; 6583 int ret; 6584 6585 if (!perf_event_mmap_match(event, data)) 6586 return; 6587 6588 if (event->attr.mmap2) { 6589 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6590 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6591 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6592 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6593 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6594 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6595 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6596 } 6597 6598 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6599 ret = perf_output_begin(&handle, event, 6600 mmap_event->event_id.header.size); 6601 if (ret) 6602 goto out; 6603 6604 mmap_event->event_id.pid = perf_event_pid(event, current); 6605 mmap_event->event_id.tid = perf_event_tid(event, current); 6606 6607 perf_output_put(&handle, mmap_event->event_id); 6608 6609 if (event->attr.mmap2) { 6610 perf_output_put(&handle, mmap_event->maj); 6611 perf_output_put(&handle, mmap_event->min); 6612 perf_output_put(&handle, mmap_event->ino); 6613 perf_output_put(&handle, mmap_event->ino_generation); 6614 perf_output_put(&handle, mmap_event->prot); 6615 perf_output_put(&handle, mmap_event->flags); 6616 } 6617 6618 __output_copy(&handle, mmap_event->file_name, 6619 mmap_event->file_size); 6620 6621 perf_event__output_id_sample(event, &handle, &sample); 6622 6623 perf_output_end(&handle); 6624 out: 6625 mmap_event->event_id.header.size = size; 6626 } 6627 6628 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6629 { 6630 struct vm_area_struct *vma = mmap_event->vma; 6631 struct file *file = vma->vm_file; 6632 int maj = 0, min = 0; 6633 u64 ino = 0, gen = 0; 6634 u32 prot = 0, flags = 0; 6635 unsigned int size; 6636 char tmp[16]; 6637 char *buf = NULL; 6638 char *name; 6639 6640 if (vma->vm_flags & VM_READ) 6641 prot |= PROT_READ; 6642 if (vma->vm_flags & VM_WRITE) 6643 prot |= PROT_WRITE; 6644 if (vma->vm_flags & VM_EXEC) 6645 prot |= PROT_EXEC; 6646 6647 if (vma->vm_flags & VM_MAYSHARE) 6648 flags = MAP_SHARED; 6649 else 6650 flags = MAP_PRIVATE; 6651 6652 if (vma->vm_flags & VM_DENYWRITE) 6653 flags |= MAP_DENYWRITE; 6654 if (vma->vm_flags & VM_MAYEXEC) 6655 flags |= MAP_EXECUTABLE; 6656 if (vma->vm_flags & VM_LOCKED) 6657 flags |= MAP_LOCKED; 6658 if (vma->vm_flags & VM_HUGETLB) 6659 flags |= MAP_HUGETLB; 6660 6661 if (file) { 6662 struct inode *inode; 6663 dev_t dev; 6664 6665 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6666 if (!buf) { 6667 name = "//enomem"; 6668 goto cpy_name; 6669 } 6670 /* 6671 * d_path() works from the end of the rb backwards, so we 6672 * need to add enough zero bytes after the string to handle 6673 * the 64bit alignment we do later. 6674 */ 6675 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6676 if (IS_ERR(name)) { 6677 name = "//toolong"; 6678 goto cpy_name; 6679 } 6680 inode = file_inode(vma->vm_file); 6681 dev = inode->i_sb->s_dev; 6682 ino = inode->i_ino; 6683 gen = inode->i_generation; 6684 maj = MAJOR(dev); 6685 min = MINOR(dev); 6686 6687 goto got_name; 6688 } else { 6689 if (vma->vm_ops && vma->vm_ops->name) { 6690 name = (char *) vma->vm_ops->name(vma); 6691 if (name) 6692 goto cpy_name; 6693 } 6694 6695 name = (char *)arch_vma_name(vma); 6696 if (name) 6697 goto cpy_name; 6698 6699 if (vma->vm_start <= vma->vm_mm->start_brk && 6700 vma->vm_end >= vma->vm_mm->brk) { 6701 name = "[heap]"; 6702 goto cpy_name; 6703 } 6704 if (vma->vm_start <= vma->vm_mm->start_stack && 6705 vma->vm_end >= vma->vm_mm->start_stack) { 6706 name = "[stack]"; 6707 goto cpy_name; 6708 } 6709 6710 name = "//anon"; 6711 goto cpy_name; 6712 } 6713 6714 cpy_name: 6715 strlcpy(tmp, name, sizeof(tmp)); 6716 name = tmp; 6717 got_name: 6718 /* 6719 * Since our buffer works in 8 byte units we need to align our string 6720 * size to a multiple of 8. However, we must guarantee the tail end is 6721 * zero'd out to avoid leaking random bits to userspace. 6722 */ 6723 size = strlen(name)+1; 6724 while (!IS_ALIGNED(size, sizeof(u64))) 6725 name[size++] = '\0'; 6726 6727 mmap_event->file_name = name; 6728 mmap_event->file_size = size; 6729 mmap_event->maj = maj; 6730 mmap_event->min = min; 6731 mmap_event->ino = ino; 6732 mmap_event->ino_generation = gen; 6733 mmap_event->prot = prot; 6734 mmap_event->flags = flags; 6735 6736 if (!(vma->vm_flags & VM_EXEC)) 6737 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6738 6739 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6740 6741 perf_iterate_sb(perf_event_mmap_output, 6742 mmap_event, 6743 NULL); 6744 6745 kfree(buf); 6746 } 6747 6748 /* 6749 * Check whether inode and address range match filter criteria. 6750 */ 6751 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6752 struct file *file, unsigned long offset, 6753 unsigned long size) 6754 { 6755 if (filter->inode != file_inode(file)) 6756 return false; 6757 6758 if (filter->offset > offset + size) 6759 return false; 6760 6761 if (filter->offset + filter->size < offset) 6762 return false; 6763 6764 return true; 6765 } 6766 6767 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6768 { 6769 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6770 struct vm_area_struct *vma = data; 6771 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6772 struct file *file = vma->vm_file; 6773 struct perf_addr_filter *filter; 6774 unsigned int restart = 0, count = 0; 6775 6776 if (!has_addr_filter(event)) 6777 return; 6778 6779 if (!file) 6780 return; 6781 6782 raw_spin_lock_irqsave(&ifh->lock, flags); 6783 list_for_each_entry(filter, &ifh->list, entry) { 6784 if (perf_addr_filter_match(filter, file, off, 6785 vma->vm_end - vma->vm_start)) { 6786 event->addr_filters_offs[count] = vma->vm_start; 6787 restart++; 6788 } 6789 6790 count++; 6791 } 6792 6793 if (restart) 6794 event->addr_filters_gen++; 6795 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6796 6797 if (restart) 6798 perf_event_stop(event, 1); 6799 } 6800 6801 /* 6802 * Adjust all task's events' filters to the new vma 6803 */ 6804 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6805 { 6806 struct perf_event_context *ctx; 6807 int ctxn; 6808 6809 /* 6810 * Data tracing isn't supported yet and as such there is no need 6811 * to keep track of anything that isn't related to executable code: 6812 */ 6813 if (!(vma->vm_flags & VM_EXEC)) 6814 return; 6815 6816 rcu_read_lock(); 6817 for_each_task_context_nr(ctxn) { 6818 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6819 if (!ctx) 6820 continue; 6821 6822 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6823 } 6824 rcu_read_unlock(); 6825 } 6826 6827 void perf_event_mmap(struct vm_area_struct *vma) 6828 { 6829 struct perf_mmap_event mmap_event; 6830 6831 if (!atomic_read(&nr_mmap_events)) 6832 return; 6833 6834 mmap_event = (struct perf_mmap_event){ 6835 .vma = vma, 6836 /* .file_name */ 6837 /* .file_size */ 6838 .event_id = { 6839 .header = { 6840 .type = PERF_RECORD_MMAP, 6841 .misc = PERF_RECORD_MISC_USER, 6842 /* .size */ 6843 }, 6844 /* .pid */ 6845 /* .tid */ 6846 .start = vma->vm_start, 6847 .len = vma->vm_end - vma->vm_start, 6848 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6849 }, 6850 /* .maj (attr_mmap2 only) */ 6851 /* .min (attr_mmap2 only) */ 6852 /* .ino (attr_mmap2 only) */ 6853 /* .ino_generation (attr_mmap2 only) */ 6854 /* .prot (attr_mmap2 only) */ 6855 /* .flags (attr_mmap2 only) */ 6856 }; 6857 6858 perf_addr_filters_adjust(vma); 6859 perf_event_mmap_event(&mmap_event); 6860 } 6861 6862 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6863 unsigned long size, u64 flags) 6864 { 6865 struct perf_output_handle handle; 6866 struct perf_sample_data sample; 6867 struct perf_aux_event { 6868 struct perf_event_header header; 6869 u64 offset; 6870 u64 size; 6871 u64 flags; 6872 } rec = { 6873 .header = { 6874 .type = PERF_RECORD_AUX, 6875 .misc = 0, 6876 .size = sizeof(rec), 6877 }, 6878 .offset = head, 6879 .size = size, 6880 .flags = flags, 6881 }; 6882 int ret; 6883 6884 perf_event_header__init_id(&rec.header, &sample, event); 6885 ret = perf_output_begin(&handle, event, rec.header.size); 6886 6887 if (ret) 6888 return; 6889 6890 perf_output_put(&handle, rec); 6891 perf_event__output_id_sample(event, &handle, &sample); 6892 6893 perf_output_end(&handle); 6894 } 6895 6896 /* 6897 * Lost/dropped samples logging 6898 */ 6899 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6900 { 6901 struct perf_output_handle handle; 6902 struct perf_sample_data sample; 6903 int ret; 6904 6905 struct { 6906 struct perf_event_header header; 6907 u64 lost; 6908 } lost_samples_event = { 6909 .header = { 6910 .type = PERF_RECORD_LOST_SAMPLES, 6911 .misc = 0, 6912 .size = sizeof(lost_samples_event), 6913 }, 6914 .lost = lost, 6915 }; 6916 6917 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6918 6919 ret = perf_output_begin(&handle, event, 6920 lost_samples_event.header.size); 6921 if (ret) 6922 return; 6923 6924 perf_output_put(&handle, lost_samples_event); 6925 perf_event__output_id_sample(event, &handle, &sample); 6926 perf_output_end(&handle); 6927 } 6928 6929 /* 6930 * context_switch tracking 6931 */ 6932 6933 struct perf_switch_event { 6934 struct task_struct *task; 6935 struct task_struct *next_prev; 6936 6937 struct { 6938 struct perf_event_header header; 6939 u32 next_prev_pid; 6940 u32 next_prev_tid; 6941 } event_id; 6942 }; 6943 6944 static int perf_event_switch_match(struct perf_event *event) 6945 { 6946 return event->attr.context_switch; 6947 } 6948 6949 static void perf_event_switch_output(struct perf_event *event, void *data) 6950 { 6951 struct perf_switch_event *se = data; 6952 struct perf_output_handle handle; 6953 struct perf_sample_data sample; 6954 int ret; 6955 6956 if (!perf_event_switch_match(event)) 6957 return; 6958 6959 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6960 if (event->ctx->task) { 6961 se->event_id.header.type = PERF_RECORD_SWITCH; 6962 se->event_id.header.size = sizeof(se->event_id.header); 6963 } else { 6964 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6965 se->event_id.header.size = sizeof(se->event_id); 6966 se->event_id.next_prev_pid = 6967 perf_event_pid(event, se->next_prev); 6968 se->event_id.next_prev_tid = 6969 perf_event_tid(event, se->next_prev); 6970 } 6971 6972 perf_event_header__init_id(&se->event_id.header, &sample, event); 6973 6974 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6975 if (ret) 6976 return; 6977 6978 if (event->ctx->task) 6979 perf_output_put(&handle, se->event_id.header); 6980 else 6981 perf_output_put(&handle, se->event_id); 6982 6983 perf_event__output_id_sample(event, &handle, &sample); 6984 6985 perf_output_end(&handle); 6986 } 6987 6988 static void perf_event_switch(struct task_struct *task, 6989 struct task_struct *next_prev, bool sched_in) 6990 { 6991 struct perf_switch_event switch_event; 6992 6993 /* N.B. caller checks nr_switch_events != 0 */ 6994 6995 switch_event = (struct perf_switch_event){ 6996 .task = task, 6997 .next_prev = next_prev, 6998 .event_id = { 6999 .header = { 7000 /* .type */ 7001 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7002 /* .size */ 7003 }, 7004 /* .next_prev_pid */ 7005 /* .next_prev_tid */ 7006 }, 7007 }; 7008 7009 perf_iterate_sb(perf_event_switch_output, 7010 &switch_event, 7011 NULL); 7012 } 7013 7014 /* 7015 * IRQ throttle logging 7016 */ 7017 7018 static void perf_log_throttle(struct perf_event *event, int enable) 7019 { 7020 struct perf_output_handle handle; 7021 struct perf_sample_data sample; 7022 int ret; 7023 7024 struct { 7025 struct perf_event_header header; 7026 u64 time; 7027 u64 id; 7028 u64 stream_id; 7029 } throttle_event = { 7030 .header = { 7031 .type = PERF_RECORD_THROTTLE, 7032 .misc = 0, 7033 .size = sizeof(throttle_event), 7034 }, 7035 .time = perf_event_clock(event), 7036 .id = primary_event_id(event), 7037 .stream_id = event->id, 7038 }; 7039 7040 if (enable) 7041 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7042 7043 perf_event_header__init_id(&throttle_event.header, &sample, event); 7044 7045 ret = perf_output_begin(&handle, event, 7046 throttle_event.header.size); 7047 if (ret) 7048 return; 7049 7050 perf_output_put(&handle, throttle_event); 7051 perf_event__output_id_sample(event, &handle, &sample); 7052 perf_output_end(&handle); 7053 } 7054 7055 static void perf_log_itrace_start(struct perf_event *event) 7056 { 7057 struct perf_output_handle handle; 7058 struct perf_sample_data sample; 7059 struct perf_aux_event { 7060 struct perf_event_header header; 7061 u32 pid; 7062 u32 tid; 7063 } rec; 7064 int ret; 7065 7066 if (event->parent) 7067 event = event->parent; 7068 7069 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7070 event->hw.itrace_started) 7071 return; 7072 7073 rec.header.type = PERF_RECORD_ITRACE_START; 7074 rec.header.misc = 0; 7075 rec.header.size = sizeof(rec); 7076 rec.pid = perf_event_pid(event, current); 7077 rec.tid = perf_event_tid(event, current); 7078 7079 perf_event_header__init_id(&rec.header, &sample, event); 7080 ret = perf_output_begin(&handle, event, rec.header.size); 7081 7082 if (ret) 7083 return; 7084 7085 perf_output_put(&handle, rec); 7086 perf_event__output_id_sample(event, &handle, &sample); 7087 7088 perf_output_end(&handle); 7089 } 7090 7091 static int 7092 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7093 { 7094 struct hw_perf_event *hwc = &event->hw; 7095 int ret = 0; 7096 u64 seq; 7097 7098 seq = __this_cpu_read(perf_throttled_seq); 7099 if (seq != hwc->interrupts_seq) { 7100 hwc->interrupts_seq = seq; 7101 hwc->interrupts = 1; 7102 } else { 7103 hwc->interrupts++; 7104 if (unlikely(throttle 7105 && hwc->interrupts >= max_samples_per_tick)) { 7106 __this_cpu_inc(perf_throttled_count); 7107 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7108 hwc->interrupts = MAX_INTERRUPTS; 7109 perf_log_throttle(event, 0); 7110 ret = 1; 7111 } 7112 } 7113 7114 if (event->attr.freq) { 7115 u64 now = perf_clock(); 7116 s64 delta = now - hwc->freq_time_stamp; 7117 7118 hwc->freq_time_stamp = now; 7119 7120 if (delta > 0 && delta < 2*TICK_NSEC) 7121 perf_adjust_period(event, delta, hwc->last_period, true); 7122 } 7123 7124 return ret; 7125 } 7126 7127 int perf_event_account_interrupt(struct perf_event *event) 7128 { 7129 return __perf_event_account_interrupt(event, 1); 7130 } 7131 7132 /* 7133 * Generic event overflow handling, sampling. 7134 */ 7135 7136 static int __perf_event_overflow(struct perf_event *event, 7137 int throttle, struct perf_sample_data *data, 7138 struct pt_regs *regs) 7139 { 7140 int events = atomic_read(&event->event_limit); 7141 int ret = 0; 7142 7143 /* 7144 * Non-sampling counters might still use the PMI to fold short 7145 * hardware counters, ignore those. 7146 */ 7147 if (unlikely(!is_sampling_event(event))) 7148 return 0; 7149 7150 ret = __perf_event_account_interrupt(event, throttle); 7151 7152 /* 7153 * XXX event_limit might not quite work as expected on inherited 7154 * events 7155 */ 7156 7157 event->pending_kill = POLL_IN; 7158 if (events && atomic_dec_and_test(&event->event_limit)) { 7159 ret = 1; 7160 event->pending_kill = POLL_HUP; 7161 7162 perf_event_disable_inatomic(event); 7163 } 7164 7165 READ_ONCE(event->overflow_handler)(event, data, regs); 7166 7167 if (*perf_event_fasync(event) && event->pending_kill) { 7168 event->pending_wakeup = 1; 7169 irq_work_queue(&event->pending); 7170 } 7171 7172 return ret; 7173 } 7174 7175 int perf_event_overflow(struct perf_event *event, 7176 struct perf_sample_data *data, 7177 struct pt_regs *regs) 7178 { 7179 return __perf_event_overflow(event, 1, data, regs); 7180 } 7181 7182 /* 7183 * Generic software event infrastructure 7184 */ 7185 7186 struct swevent_htable { 7187 struct swevent_hlist *swevent_hlist; 7188 struct mutex hlist_mutex; 7189 int hlist_refcount; 7190 7191 /* Recursion avoidance in each contexts */ 7192 int recursion[PERF_NR_CONTEXTS]; 7193 }; 7194 7195 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7196 7197 /* 7198 * We directly increment event->count and keep a second value in 7199 * event->hw.period_left to count intervals. This period event 7200 * is kept in the range [-sample_period, 0] so that we can use the 7201 * sign as trigger. 7202 */ 7203 7204 u64 perf_swevent_set_period(struct perf_event *event) 7205 { 7206 struct hw_perf_event *hwc = &event->hw; 7207 u64 period = hwc->last_period; 7208 u64 nr, offset; 7209 s64 old, val; 7210 7211 hwc->last_period = hwc->sample_period; 7212 7213 again: 7214 old = val = local64_read(&hwc->period_left); 7215 if (val < 0) 7216 return 0; 7217 7218 nr = div64_u64(period + val, period); 7219 offset = nr * period; 7220 val -= offset; 7221 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7222 goto again; 7223 7224 return nr; 7225 } 7226 7227 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7228 struct perf_sample_data *data, 7229 struct pt_regs *regs) 7230 { 7231 struct hw_perf_event *hwc = &event->hw; 7232 int throttle = 0; 7233 7234 if (!overflow) 7235 overflow = perf_swevent_set_period(event); 7236 7237 if (hwc->interrupts == MAX_INTERRUPTS) 7238 return; 7239 7240 for (; overflow; overflow--) { 7241 if (__perf_event_overflow(event, throttle, 7242 data, regs)) { 7243 /* 7244 * We inhibit the overflow from happening when 7245 * hwc->interrupts == MAX_INTERRUPTS. 7246 */ 7247 break; 7248 } 7249 throttle = 1; 7250 } 7251 } 7252 7253 static void perf_swevent_event(struct perf_event *event, u64 nr, 7254 struct perf_sample_data *data, 7255 struct pt_regs *regs) 7256 { 7257 struct hw_perf_event *hwc = &event->hw; 7258 7259 local64_add(nr, &event->count); 7260 7261 if (!regs) 7262 return; 7263 7264 if (!is_sampling_event(event)) 7265 return; 7266 7267 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7268 data->period = nr; 7269 return perf_swevent_overflow(event, 1, data, regs); 7270 } else 7271 data->period = event->hw.last_period; 7272 7273 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7274 return perf_swevent_overflow(event, 1, data, regs); 7275 7276 if (local64_add_negative(nr, &hwc->period_left)) 7277 return; 7278 7279 perf_swevent_overflow(event, 0, data, regs); 7280 } 7281 7282 static int perf_exclude_event(struct perf_event *event, 7283 struct pt_regs *regs) 7284 { 7285 if (event->hw.state & PERF_HES_STOPPED) 7286 return 1; 7287 7288 if (regs) { 7289 if (event->attr.exclude_user && user_mode(regs)) 7290 return 1; 7291 7292 if (event->attr.exclude_kernel && !user_mode(regs)) 7293 return 1; 7294 } 7295 7296 return 0; 7297 } 7298 7299 static int perf_swevent_match(struct perf_event *event, 7300 enum perf_type_id type, 7301 u32 event_id, 7302 struct perf_sample_data *data, 7303 struct pt_regs *regs) 7304 { 7305 if (event->attr.type != type) 7306 return 0; 7307 7308 if (event->attr.config != event_id) 7309 return 0; 7310 7311 if (perf_exclude_event(event, regs)) 7312 return 0; 7313 7314 return 1; 7315 } 7316 7317 static inline u64 swevent_hash(u64 type, u32 event_id) 7318 { 7319 u64 val = event_id | (type << 32); 7320 7321 return hash_64(val, SWEVENT_HLIST_BITS); 7322 } 7323 7324 static inline struct hlist_head * 7325 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7326 { 7327 u64 hash = swevent_hash(type, event_id); 7328 7329 return &hlist->heads[hash]; 7330 } 7331 7332 /* For the read side: events when they trigger */ 7333 static inline struct hlist_head * 7334 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7335 { 7336 struct swevent_hlist *hlist; 7337 7338 hlist = rcu_dereference(swhash->swevent_hlist); 7339 if (!hlist) 7340 return NULL; 7341 7342 return __find_swevent_head(hlist, type, event_id); 7343 } 7344 7345 /* For the event head insertion and removal in the hlist */ 7346 static inline struct hlist_head * 7347 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7348 { 7349 struct swevent_hlist *hlist; 7350 u32 event_id = event->attr.config; 7351 u64 type = event->attr.type; 7352 7353 /* 7354 * Event scheduling is always serialized against hlist allocation 7355 * and release. Which makes the protected version suitable here. 7356 * The context lock guarantees that. 7357 */ 7358 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7359 lockdep_is_held(&event->ctx->lock)); 7360 if (!hlist) 7361 return NULL; 7362 7363 return __find_swevent_head(hlist, type, event_id); 7364 } 7365 7366 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7367 u64 nr, 7368 struct perf_sample_data *data, 7369 struct pt_regs *regs) 7370 { 7371 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7372 struct perf_event *event; 7373 struct hlist_head *head; 7374 7375 rcu_read_lock(); 7376 head = find_swevent_head_rcu(swhash, type, event_id); 7377 if (!head) 7378 goto end; 7379 7380 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7381 if (perf_swevent_match(event, type, event_id, data, regs)) 7382 perf_swevent_event(event, nr, data, regs); 7383 } 7384 end: 7385 rcu_read_unlock(); 7386 } 7387 7388 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7389 7390 int perf_swevent_get_recursion_context(void) 7391 { 7392 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7393 7394 return get_recursion_context(swhash->recursion); 7395 } 7396 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7397 7398 void perf_swevent_put_recursion_context(int rctx) 7399 { 7400 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7401 7402 put_recursion_context(swhash->recursion, rctx); 7403 } 7404 7405 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7406 { 7407 struct perf_sample_data data; 7408 7409 if (WARN_ON_ONCE(!regs)) 7410 return; 7411 7412 perf_sample_data_init(&data, addr, 0); 7413 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7414 } 7415 7416 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7417 { 7418 int rctx; 7419 7420 preempt_disable_notrace(); 7421 rctx = perf_swevent_get_recursion_context(); 7422 if (unlikely(rctx < 0)) 7423 goto fail; 7424 7425 ___perf_sw_event(event_id, nr, regs, addr); 7426 7427 perf_swevent_put_recursion_context(rctx); 7428 fail: 7429 preempt_enable_notrace(); 7430 } 7431 7432 static void perf_swevent_read(struct perf_event *event) 7433 { 7434 } 7435 7436 static int perf_swevent_add(struct perf_event *event, int flags) 7437 { 7438 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7439 struct hw_perf_event *hwc = &event->hw; 7440 struct hlist_head *head; 7441 7442 if (is_sampling_event(event)) { 7443 hwc->last_period = hwc->sample_period; 7444 perf_swevent_set_period(event); 7445 } 7446 7447 hwc->state = !(flags & PERF_EF_START); 7448 7449 head = find_swevent_head(swhash, event); 7450 if (WARN_ON_ONCE(!head)) 7451 return -EINVAL; 7452 7453 hlist_add_head_rcu(&event->hlist_entry, head); 7454 perf_event_update_userpage(event); 7455 7456 return 0; 7457 } 7458 7459 static void perf_swevent_del(struct perf_event *event, int flags) 7460 { 7461 hlist_del_rcu(&event->hlist_entry); 7462 } 7463 7464 static void perf_swevent_start(struct perf_event *event, int flags) 7465 { 7466 event->hw.state = 0; 7467 } 7468 7469 static void perf_swevent_stop(struct perf_event *event, int flags) 7470 { 7471 event->hw.state = PERF_HES_STOPPED; 7472 } 7473 7474 /* Deref the hlist from the update side */ 7475 static inline struct swevent_hlist * 7476 swevent_hlist_deref(struct swevent_htable *swhash) 7477 { 7478 return rcu_dereference_protected(swhash->swevent_hlist, 7479 lockdep_is_held(&swhash->hlist_mutex)); 7480 } 7481 7482 static void swevent_hlist_release(struct swevent_htable *swhash) 7483 { 7484 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7485 7486 if (!hlist) 7487 return; 7488 7489 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7490 kfree_rcu(hlist, rcu_head); 7491 } 7492 7493 static void swevent_hlist_put_cpu(int cpu) 7494 { 7495 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7496 7497 mutex_lock(&swhash->hlist_mutex); 7498 7499 if (!--swhash->hlist_refcount) 7500 swevent_hlist_release(swhash); 7501 7502 mutex_unlock(&swhash->hlist_mutex); 7503 } 7504 7505 static void swevent_hlist_put(void) 7506 { 7507 int cpu; 7508 7509 for_each_possible_cpu(cpu) 7510 swevent_hlist_put_cpu(cpu); 7511 } 7512 7513 static int swevent_hlist_get_cpu(int cpu) 7514 { 7515 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7516 int err = 0; 7517 7518 mutex_lock(&swhash->hlist_mutex); 7519 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7520 struct swevent_hlist *hlist; 7521 7522 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7523 if (!hlist) { 7524 err = -ENOMEM; 7525 goto exit; 7526 } 7527 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7528 } 7529 swhash->hlist_refcount++; 7530 exit: 7531 mutex_unlock(&swhash->hlist_mutex); 7532 7533 return err; 7534 } 7535 7536 static int swevent_hlist_get(void) 7537 { 7538 int err, cpu, failed_cpu; 7539 7540 get_online_cpus(); 7541 for_each_possible_cpu(cpu) { 7542 err = swevent_hlist_get_cpu(cpu); 7543 if (err) { 7544 failed_cpu = cpu; 7545 goto fail; 7546 } 7547 } 7548 put_online_cpus(); 7549 7550 return 0; 7551 fail: 7552 for_each_possible_cpu(cpu) { 7553 if (cpu == failed_cpu) 7554 break; 7555 swevent_hlist_put_cpu(cpu); 7556 } 7557 7558 put_online_cpus(); 7559 return err; 7560 } 7561 7562 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7563 7564 static void sw_perf_event_destroy(struct perf_event *event) 7565 { 7566 u64 event_id = event->attr.config; 7567 7568 WARN_ON(event->parent); 7569 7570 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7571 swevent_hlist_put(); 7572 } 7573 7574 static int perf_swevent_init(struct perf_event *event) 7575 { 7576 u64 event_id = event->attr.config; 7577 7578 if (event->attr.type != PERF_TYPE_SOFTWARE) 7579 return -ENOENT; 7580 7581 /* 7582 * no branch sampling for software events 7583 */ 7584 if (has_branch_stack(event)) 7585 return -EOPNOTSUPP; 7586 7587 switch (event_id) { 7588 case PERF_COUNT_SW_CPU_CLOCK: 7589 case PERF_COUNT_SW_TASK_CLOCK: 7590 return -ENOENT; 7591 7592 default: 7593 break; 7594 } 7595 7596 if (event_id >= PERF_COUNT_SW_MAX) 7597 return -ENOENT; 7598 7599 if (!event->parent) { 7600 int err; 7601 7602 err = swevent_hlist_get(); 7603 if (err) 7604 return err; 7605 7606 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7607 event->destroy = sw_perf_event_destroy; 7608 } 7609 7610 return 0; 7611 } 7612 7613 static struct pmu perf_swevent = { 7614 .task_ctx_nr = perf_sw_context, 7615 7616 .capabilities = PERF_PMU_CAP_NO_NMI, 7617 7618 .event_init = perf_swevent_init, 7619 .add = perf_swevent_add, 7620 .del = perf_swevent_del, 7621 .start = perf_swevent_start, 7622 .stop = perf_swevent_stop, 7623 .read = perf_swevent_read, 7624 }; 7625 7626 #ifdef CONFIG_EVENT_TRACING 7627 7628 static int perf_tp_filter_match(struct perf_event *event, 7629 struct perf_sample_data *data) 7630 { 7631 void *record = data->raw->frag.data; 7632 7633 /* only top level events have filters set */ 7634 if (event->parent) 7635 event = event->parent; 7636 7637 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7638 return 1; 7639 return 0; 7640 } 7641 7642 static int perf_tp_event_match(struct perf_event *event, 7643 struct perf_sample_data *data, 7644 struct pt_regs *regs) 7645 { 7646 if (event->hw.state & PERF_HES_STOPPED) 7647 return 0; 7648 /* 7649 * All tracepoints are from kernel-space. 7650 */ 7651 if (event->attr.exclude_kernel) 7652 return 0; 7653 7654 if (!perf_tp_filter_match(event, data)) 7655 return 0; 7656 7657 return 1; 7658 } 7659 7660 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7661 struct trace_event_call *call, u64 count, 7662 struct pt_regs *regs, struct hlist_head *head, 7663 struct task_struct *task) 7664 { 7665 struct bpf_prog *prog = call->prog; 7666 7667 if (prog) { 7668 *(struct pt_regs **)raw_data = regs; 7669 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7670 perf_swevent_put_recursion_context(rctx); 7671 return; 7672 } 7673 } 7674 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7675 rctx, task); 7676 } 7677 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7678 7679 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7680 struct pt_regs *regs, struct hlist_head *head, int rctx, 7681 struct task_struct *task) 7682 { 7683 struct perf_sample_data data; 7684 struct perf_event *event; 7685 7686 struct perf_raw_record raw = { 7687 .frag = { 7688 .size = entry_size, 7689 .data = record, 7690 }, 7691 }; 7692 7693 perf_sample_data_init(&data, 0, 0); 7694 data.raw = &raw; 7695 7696 perf_trace_buf_update(record, event_type); 7697 7698 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7699 if (perf_tp_event_match(event, &data, regs)) 7700 perf_swevent_event(event, count, &data, regs); 7701 } 7702 7703 /* 7704 * If we got specified a target task, also iterate its context and 7705 * deliver this event there too. 7706 */ 7707 if (task && task != current) { 7708 struct perf_event_context *ctx; 7709 struct trace_entry *entry = record; 7710 7711 rcu_read_lock(); 7712 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7713 if (!ctx) 7714 goto unlock; 7715 7716 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7717 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7718 continue; 7719 if (event->attr.config != entry->type) 7720 continue; 7721 if (perf_tp_event_match(event, &data, regs)) 7722 perf_swevent_event(event, count, &data, regs); 7723 } 7724 unlock: 7725 rcu_read_unlock(); 7726 } 7727 7728 perf_swevent_put_recursion_context(rctx); 7729 } 7730 EXPORT_SYMBOL_GPL(perf_tp_event); 7731 7732 static void tp_perf_event_destroy(struct perf_event *event) 7733 { 7734 perf_trace_destroy(event); 7735 } 7736 7737 static int perf_tp_event_init(struct perf_event *event) 7738 { 7739 int err; 7740 7741 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7742 return -ENOENT; 7743 7744 /* 7745 * no branch sampling for tracepoint events 7746 */ 7747 if (has_branch_stack(event)) 7748 return -EOPNOTSUPP; 7749 7750 err = perf_trace_init(event); 7751 if (err) 7752 return err; 7753 7754 event->destroy = tp_perf_event_destroy; 7755 7756 return 0; 7757 } 7758 7759 static struct pmu perf_tracepoint = { 7760 .task_ctx_nr = perf_sw_context, 7761 7762 .event_init = perf_tp_event_init, 7763 .add = perf_trace_add, 7764 .del = perf_trace_del, 7765 .start = perf_swevent_start, 7766 .stop = perf_swevent_stop, 7767 .read = perf_swevent_read, 7768 }; 7769 7770 static inline void perf_tp_register(void) 7771 { 7772 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7773 } 7774 7775 static void perf_event_free_filter(struct perf_event *event) 7776 { 7777 ftrace_profile_free_filter(event); 7778 } 7779 7780 #ifdef CONFIG_BPF_SYSCALL 7781 static void bpf_overflow_handler(struct perf_event *event, 7782 struct perf_sample_data *data, 7783 struct pt_regs *regs) 7784 { 7785 struct bpf_perf_event_data_kern ctx = { 7786 .data = data, 7787 .regs = regs, 7788 }; 7789 int ret = 0; 7790 7791 preempt_disable(); 7792 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7793 goto out; 7794 rcu_read_lock(); 7795 ret = BPF_PROG_RUN(event->prog, &ctx); 7796 rcu_read_unlock(); 7797 out: 7798 __this_cpu_dec(bpf_prog_active); 7799 preempt_enable(); 7800 if (!ret) 7801 return; 7802 7803 event->orig_overflow_handler(event, data, regs); 7804 } 7805 7806 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7807 { 7808 struct bpf_prog *prog; 7809 7810 if (event->overflow_handler_context) 7811 /* hw breakpoint or kernel counter */ 7812 return -EINVAL; 7813 7814 if (event->prog) 7815 return -EEXIST; 7816 7817 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 7818 if (IS_ERR(prog)) 7819 return PTR_ERR(prog); 7820 7821 event->prog = prog; 7822 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 7823 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 7824 return 0; 7825 } 7826 7827 static void perf_event_free_bpf_handler(struct perf_event *event) 7828 { 7829 struct bpf_prog *prog = event->prog; 7830 7831 if (!prog) 7832 return; 7833 7834 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 7835 event->prog = NULL; 7836 bpf_prog_put(prog); 7837 } 7838 #else 7839 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7840 { 7841 return -EOPNOTSUPP; 7842 } 7843 static void perf_event_free_bpf_handler(struct perf_event *event) 7844 { 7845 } 7846 #endif 7847 7848 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7849 { 7850 bool is_kprobe, is_tracepoint; 7851 struct bpf_prog *prog; 7852 7853 if (event->attr.type == PERF_TYPE_HARDWARE || 7854 event->attr.type == PERF_TYPE_SOFTWARE) 7855 return perf_event_set_bpf_handler(event, prog_fd); 7856 7857 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7858 return -EINVAL; 7859 7860 if (event->tp_event->prog) 7861 return -EEXIST; 7862 7863 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7864 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7865 if (!is_kprobe && !is_tracepoint) 7866 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7867 return -EINVAL; 7868 7869 prog = bpf_prog_get(prog_fd); 7870 if (IS_ERR(prog)) 7871 return PTR_ERR(prog); 7872 7873 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7874 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7875 /* valid fd, but invalid bpf program type */ 7876 bpf_prog_put(prog); 7877 return -EINVAL; 7878 } 7879 7880 if (is_tracepoint) { 7881 int off = trace_event_get_offsets(event->tp_event); 7882 7883 if (prog->aux->max_ctx_offset > off) { 7884 bpf_prog_put(prog); 7885 return -EACCES; 7886 } 7887 } 7888 event->tp_event->prog = prog; 7889 7890 return 0; 7891 } 7892 7893 static void perf_event_free_bpf_prog(struct perf_event *event) 7894 { 7895 struct bpf_prog *prog; 7896 7897 perf_event_free_bpf_handler(event); 7898 7899 if (!event->tp_event) 7900 return; 7901 7902 prog = event->tp_event->prog; 7903 if (prog) { 7904 event->tp_event->prog = NULL; 7905 bpf_prog_put(prog); 7906 } 7907 } 7908 7909 #else 7910 7911 static inline void perf_tp_register(void) 7912 { 7913 } 7914 7915 static void perf_event_free_filter(struct perf_event *event) 7916 { 7917 } 7918 7919 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7920 { 7921 return -ENOENT; 7922 } 7923 7924 static void perf_event_free_bpf_prog(struct perf_event *event) 7925 { 7926 } 7927 #endif /* CONFIG_EVENT_TRACING */ 7928 7929 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7930 void perf_bp_event(struct perf_event *bp, void *data) 7931 { 7932 struct perf_sample_data sample; 7933 struct pt_regs *regs = data; 7934 7935 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7936 7937 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7938 perf_swevent_event(bp, 1, &sample, regs); 7939 } 7940 #endif 7941 7942 /* 7943 * Allocate a new address filter 7944 */ 7945 static struct perf_addr_filter * 7946 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7947 { 7948 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7949 struct perf_addr_filter *filter; 7950 7951 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7952 if (!filter) 7953 return NULL; 7954 7955 INIT_LIST_HEAD(&filter->entry); 7956 list_add_tail(&filter->entry, filters); 7957 7958 return filter; 7959 } 7960 7961 static void free_filters_list(struct list_head *filters) 7962 { 7963 struct perf_addr_filter *filter, *iter; 7964 7965 list_for_each_entry_safe(filter, iter, filters, entry) { 7966 if (filter->inode) 7967 iput(filter->inode); 7968 list_del(&filter->entry); 7969 kfree(filter); 7970 } 7971 } 7972 7973 /* 7974 * Free existing address filters and optionally install new ones 7975 */ 7976 static void perf_addr_filters_splice(struct perf_event *event, 7977 struct list_head *head) 7978 { 7979 unsigned long flags; 7980 LIST_HEAD(list); 7981 7982 if (!has_addr_filter(event)) 7983 return; 7984 7985 /* don't bother with children, they don't have their own filters */ 7986 if (event->parent) 7987 return; 7988 7989 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7990 7991 list_splice_init(&event->addr_filters.list, &list); 7992 if (head) 7993 list_splice(head, &event->addr_filters.list); 7994 7995 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7996 7997 free_filters_list(&list); 7998 } 7999 8000 /* 8001 * Scan through mm's vmas and see if one of them matches the 8002 * @filter; if so, adjust filter's address range. 8003 * Called with mm::mmap_sem down for reading. 8004 */ 8005 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8006 struct mm_struct *mm) 8007 { 8008 struct vm_area_struct *vma; 8009 8010 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8011 struct file *file = vma->vm_file; 8012 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8013 unsigned long vma_size = vma->vm_end - vma->vm_start; 8014 8015 if (!file) 8016 continue; 8017 8018 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8019 continue; 8020 8021 return vma->vm_start; 8022 } 8023 8024 return 0; 8025 } 8026 8027 /* 8028 * Update event's address range filters based on the 8029 * task's existing mappings, if any. 8030 */ 8031 static void perf_event_addr_filters_apply(struct perf_event *event) 8032 { 8033 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8034 struct task_struct *task = READ_ONCE(event->ctx->task); 8035 struct perf_addr_filter *filter; 8036 struct mm_struct *mm = NULL; 8037 unsigned int count = 0; 8038 unsigned long flags; 8039 8040 /* 8041 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8042 * will stop on the parent's child_mutex that our caller is also holding 8043 */ 8044 if (task == TASK_TOMBSTONE) 8045 return; 8046 8047 mm = get_task_mm(event->ctx->task); 8048 if (!mm) 8049 goto restart; 8050 8051 down_read(&mm->mmap_sem); 8052 8053 raw_spin_lock_irqsave(&ifh->lock, flags); 8054 list_for_each_entry(filter, &ifh->list, entry) { 8055 event->addr_filters_offs[count] = 0; 8056 8057 /* 8058 * Adjust base offset if the filter is associated to a binary 8059 * that needs to be mapped: 8060 */ 8061 if (filter->inode) 8062 event->addr_filters_offs[count] = 8063 perf_addr_filter_apply(filter, mm); 8064 8065 count++; 8066 } 8067 8068 event->addr_filters_gen++; 8069 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8070 8071 up_read(&mm->mmap_sem); 8072 8073 mmput(mm); 8074 8075 restart: 8076 perf_event_stop(event, 1); 8077 } 8078 8079 /* 8080 * Address range filtering: limiting the data to certain 8081 * instruction address ranges. Filters are ioctl()ed to us from 8082 * userspace as ascii strings. 8083 * 8084 * Filter string format: 8085 * 8086 * ACTION RANGE_SPEC 8087 * where ACTION is one of the 8088 * * "filter": limit the trace to this region 8089 * * "start": start tracing from this address 8090 * * "stop": stop tracing at this address/region; 8091 * RANGE_SPEC is 8092 * * for kernel addresses: <start address>[/<size>] 8093 * * for object files: <start address>[/<size>]@</path/to/object/file> 8094 * 8095 * if <size> is not specified, the range is treated as a single address. 8096 */ 8097 enum { 8098 IF_ACT_NONE = -1, 8099 IF_ACT_FILTER, 8100 IF_ACT_START, 8101 IF_ACT_STOP, 8102 IF_SRC_FILE, 8103 IF_SRC_KERNEL, 8104 IF_SRC_FILEADDR, 8105 IF_SRC_KERNELADDR, 8106 }; 8107 8108 enum { 8109 IF_STATE_ACTION = 0, 8110 IF_STATE_SOURCE, 8111 IF_STATE_END, 8112 }; 8113 8114 static const match_table_t if_tokens = { 8115 { IF_ACT_FILTER, "filter" }, 8116 { IF_ACT_START, "start" }, 8117 { IF_ACT_STOP, "stop" }, 8118 { IF_SRC_FILE, "%u/%u@%s" }, 8119 { IF_SRC_KERNEL, "%u/%u" }, 8120 { IF_SRC_FILEADDR, "%u@%s" }, 8121 { IF_SRC_KERNELADDR, "%u" }, 8122 { IF_ACT_NONE, NULL }, 8123 }; 8124 8125 /* 8126 * Address filter string parser 8127 */ 8128 static int 8129 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8130 struct list_head *filters) 8131 { 8132 struct perf_addr_filter *filter = NULL; 8133 char *start, *orig, *filename = NULL; 8134 struct path path; 8135 substring_t args[MAX_OPT_ARGS]; 8136 int state = IF_STATE_ACTION, token; 8137 unsigned int kernel = 0; 8138 int ret = -EINVAL; 8139 8140 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8141 if (!fstr) 8142 return -ENOMEM; 8143 8144 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8145 ret = -EINVAL; 8146 8147 if (!*start) 8148 continue; 8149 8150 /* filter definition begins */ 8151 if (state == IF_STATE_ACTION) { 8152 filter = perf_addr_filter_new(event, filters); 8153 if (!filter) 8154 goto fail; 8155 } 8156 8157 token = match_token(start, if_tokens, args); 8158 switch (token) { 8159 case IF_ACT_FILTER: 8160 case IF_ACT_START: 8161 filter->filter = 1; 8162 8163 case IF_ACT_STOP: 8164 if (state != IF_STATE_ACTION) 8165 goto fail; 8166 8167 state = IF_STATE_SOURCE; 8168 break; 8169 8170 case IF_SRC_KERNELADDR: 8171 case IF_SRC_KERNEL: 8172 kernel = 1; 8173 8174 case IF_SRC_FILEADDR: 8175 case IF_SRC_FILE: 8176 if (state != IF_STATE_SOURCE) 8177 goto fail; 8178 8179 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8180 filter->range = 1; 8181 8182 *args[0].to = 0; 8183 ret = kstrtoul(args[0].from, 0, &filter->offset); 8184 if (ret) 8185 goto fail; 8186 8187 if (filter->range) { 8188 *args[1].to = 0; 8189 ret = kstrtoul(args[1].from, 0, &filter->size); 8190 if (ret) 8191 goto fail; 8192 } 8193 8194 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8195 int fpos = filter->range ? 2 : 1; 8196 8197 filename = match_strdup(&args[fpos]); 8198 if (!filename) { 8199 ret = -ENOMEM; 8200 goto fail; 8201 } 8202 } 8203 8204 state = IF_STATE_END; 8205 break; 8206 8207 default: 8208 goto fail; 8209 } 8210 8211 /* 8212 * Filter definition is fully parsed, validate and install it. 8213 * Make sure that it doesn't contradict itself or the event's 8214 * attribute. 8215 */ 8216 if (state == IF_STATE_END) { 8217 if (kernel && event->attr.exclude_kernel) 8218 goto fail; 8219 8220 if (!kernel) { 8221 if (!filename) 8222 goto fail; 8223 8224 /* look up the path and grab its inode */ 8225 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8226 if (ret) 8227 goto fail_free_name; 8228 8229 filter->inode = igrab(d_inode(path.dentry)); 8230 path_put(&path); 8231 kfree(filename); 8232 filename = NULL; 8233 8234 ret = -EINVAL; 8235 if (!filter->inode || 8236 !S_ISREG(filter->inode->i_mode)) 8237 /* free_filters_list() will iput() */ 8238 goto fail; 8239 } 8240 8241 /* ready to consume more filters */ 8242 state = IF_STATE_ACTION; 8243 filter = NULL; 8244 } 8245 } 8246 8247 if (state != IF_STATE_ACTION) 8248 goto fail; 8249 8250 kfree(orig); 8251 8252 return 0; 8253 8254 fail_free_name: 8255 kfree(filename); 8256 fail: 8257 free_filters_list(filters); 8258 kfree(orig); 8259 8260 return ret; 8261 } 8262 8263 static int 8264 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8265 { 8266 LIST_HEAD(filters); 8267 int ret; 8268 8269 /* 8270 * Since this is called in perf_ioctl() path, we're already holding 8271 * ctx::mutex. 8272 */ 8273 lockdep_assert_held(&event->ctx->mutex); 8274 8275 if (WARN_ON_ONCE(event->parent)) 8276 return -EINVAL; 8277 8278 /* 8279 * For now, we only support filtering in per-task events; doing so 8280 * for CPU-wide events requires additional context switching trickery, 8281 * since same object code will be mapped at different virtual 8282 * addresses in different processes. 8283 */ 8284 if (!event->ctx->task) 8285 return -EOPNOTSUPP; 8286 8287 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8288 if (ret) 8289 return ret; 8290 8291 ret = event->pmu->addr_filters_validate(&filters); 8292 if (ret) { 8293 free_filters_list(&filters); 8294 return ret; 8295 } 8296 8297 /* remove existing filters, if any */ 8298 perf_addr_filters_splice(event, &filters); 8299 8300 /* install new filters */ 8301 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8302 8303 return ret; 8304 } 8305 8306 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8307 { 8308 char *filter_str; 8309 int ret = -EINVAL; 8310 8311 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8312 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8313 !has_addr_filter(event)) 8314 return -EINVAL; 8315 8316 filter_str = strndup_user(arg, PAGE_SIZE); 8317 if (IS_ERR(filter_str)) 8318 return PTR_ERR(filter_str); 8319 8320 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8321 event->attr.type == PERF_TYPE_TRACEPOINT) 8322 ret = ftrace_profile_set_filter(event, event->attr.config, 8323 filter_str); 8324 else if (has_addr_filter(event)) 8325 ret = perf_event_set_addr_filter(event, filter_str); 8326 8327 kfree(filter_str); 8328 return ret; 8329 } 8330 8331 /* 8332 * hrtimer based swevent callback 8333 */ 8334 8335 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8336 { 8337 enum hrtimer_restart ret = HRTIMER_RESTART; 8338 struct perf_sample_data data; 8339 struct pt_regs *regs; 8340 struct perf_event *event; 8341 u64 period; 8342 8343 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8344 8345 if (event->state != PERF_EVENT_STATE_ACTIVE) 8346 return HRTIMER_NORESTART; 8347 8348 event->pmu->read(event); 8349 8350 perf_sample_data_init(&data, 0, event->hw.last_period); 8351 regs = get_irq_regs(); 8352 8353 if (regs && !perf_exclude_event(event, regs)) { 8354 if (!(event->attr.exclude_idle && is_idle_task(current))) 8355 if (__perf_event_overflow(event, 1, &data, regs)) 8356 ret = HRTIMER_NORESTART; 8357 } 8358 8359 period = max_t(u64, 10000, event->hw.sample_period); 8360 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8361 8362 return ret; 8363 } 8364 8365 static void perf_swevent_start_hrtimer(struct perf_event *event) 8366 { 8367 struct hw_perf_event *hwc = &event->hw; 8368 s64 period; 8369 8370 if (!is_sampling_event(event)) 8371 return; 8372 8373 period = local64_read(&hwc->period_left); 8374 if (period) { 8375 if (period < 0) 8376 period = 10000; 8377 8378 local64_set(&hwc->period_left, 0); 8379 } else { 8380 period = max_t(u64, 10000, hwc->sample_period); 8381 } 8382 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8383 HRTIMER_MODE_REL_PINNED); 8384 } 8385 8386 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8387 { 8388 struct hw_perf_event *hwc = &event->hw; 8389 8390 if (is_sampling_event(event)) { 8391 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8392 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8393 8394 hrtimer_cancel(&hwc->hrtimer); 8395 } 8396 } 8397 8398 static void perf_swevent_init_hrtimer(struct perf_event *event) 8399 { 8400 struct hw_perf_event *hwc = &event->hw; 8401 8402 if (!is_sampling_event(event)) 8403 return; 8404 8405 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8406 hwc->hrtimer.function = perf_swevent_hrtimer; 8407 8408 /* 8409 * Since hrtimers have a fixed rate, we can do a static freq->period 8410 * mapping and avoid the whole period adjust feedback stuff. 8411 */ 8412 if (event->attr.freq) { 8413 long freq = event->attr.sample_freq; 8414 8415 event->attr.sample_period = NSEC_PER_SEC / freq; 8416 hwc->sample_period = event->attr.sample_period; 8417 local64_set(&hwc->period_left, hwc->sample_period); 8418 hwc->last_period = hwc->sample_period; 8419 event->attr.freq = 0; 8420 } 8421 } 8422 8423 /* 8424 * Software event: cpu wall time clock 8425 */ 8426 8427 static void cpu_clock_event_update(struct perf_event *event) 8428 { 8429 s64 prev; 8430 u64 now; 8431 8432 now = local_clock(); 8433 prev = local64_xchg(&event->hw.prev_count, now); 8434 local64_add(now - prev, &event->count); 8435 } 8436 8437 static void cpu_clock_event_start(struct perf_event *event, int flags) 8438 { 8439 local64_set(&event->hw.prev_count, local_clock()); 8440 perf_swevent_start_hrtimer(event); 8441 } 8442 8443 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8444 { 8445 perf_swevent_cancel_hrtimer(event); 8446 cpu_clock_event_update(event); 8447 } 8448 8449 static int cpu_clock_event_add(struct perf_event *event, int flags) 8450 { 8451 if (flags & PERF_EF_START) 8452 cpu_clock_event_start(event, flags); 8453 perf_event_update_userpage(event); 8454 8455 return 0; 8456 } 8457 8458 static void cpu_clock_event_del(struct perf_event *event, int flags) 8459 { 8460 cpu_clock_event_stop(event, flags); 8461 } 8462 8463 static void cpu_clock_event_read(struct perf_event *event) 8464 { 8465 cpu_clock_event_update(event); 8466 } 8467 8468 static int cpu_clock_event_init(struct perf_event *event) 8469 { 8470 if (event->attr.type != PERF_TYPE_SOFTWARE) 8471 return -ENOENT; 8472 8473 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8474 return -ENOENT; 8475 8476 /* 8477 * no branch sampling for software events 8478 */ 8479 if (has_branch_stack(event)) 8480 return -EOPNOTSUPP; 8481 8482 perf_swevent_init_hrtimer(event); 8483 8484 return 0; 8485 } 8486 8487 static struct pmu perf_cpu_clock = { 8488 .task_ctx_nr = perf_sw_context, 8489 8490 .capabilities = PERF_PMU_CAP_NO_NMI, 8491 8492 .event_init = cpu_clock_event_init, 8493 .add = cpu_clock_event_add, 8494 .del = cpu_clock_event_del, 8495 .start = cpu_clock_event_start, 8496 .stop = cpu_clock_event_stop, 8497 .read = cpu_clock_event_read, 8498 }; 8499 8500 /* 8501 * Software event: task time clock 8502 */ 8503 8504 static void task_clock_event_update(struct perf_event *event, u64 now) 8505 { 8506 u64 prev; 8507 s64 delta; 8508 8509 prev = local64_xchg(&event->hw.prev_count, now); 8510 delta = now - prev; 8511 local64_add(delta, &event->count); 8512 } 8513 8514 static void task_clock_event_start(struct perf_event *event, int flags) 8515 { 8516 local64_set(&event->hw.prev_count, event->ctx->time); 8517 perf_swevent_start_hrtimer(event); 8518 } 8519 8520 static void task_clock_event_stop(struct perf_event *event, int flags) 8521 { 8522 perf_swevent_cancel_hrtimer(event); 8523 task_clock_event_update(event, event->ctx->time); 8524 } 8525 8526 static int task_clock_event_add(struct perf_event *event, int flags) 8527 { 8528 if (flags & PERF_EF_START) 8529 task_clock_event_start(event, flags); 8530 perf_event_update_userpage(event); 8531 8532 return 0; 8533 } 8534 8535 static void task_clock_event_del(struct perf_event *event, int flags) 8536 { 8537 task_clock_event_stop(event, PERF_EF_UPDATE); 8538 } 8539 8540 static void task_clock_event_read(struct perf_event *event) 8541 { 8542 u64 now = perf_clock(); 8543 u64 delta = now - event->ctx->timestamp; 8544 u64 time = event->ctx->time + delta; 8545 8546 task_clock_event_update(event, time); 8547 } 8548 8549 static int task_clock_event_init(struct perf_event *event) 8550 { 8551 if (event->attr.type != PERF_TYPE_SOFTWARE) 8552 return -ENOENT; 8553 8554 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8555 return -ENOENT; 8556 8557 /* 8558 * no branch sampling for software events 8559 */ 8560 if (has_branch_stack(event)) 8561 return -EOPNOTSUPP; 8562 8563 perf_swevent_init_hrtimer(event); 8564 8565 return 0; 8566 } 8567 8568 static struct pmu perf_task_clock = { 8569 .task_ctx_nr = perf_sw_context, 8570 8571 .capabilities = PERF_PMU_CAP_NO_NMI, 8572 8573 .event_init = task_clock_event_init, 8574 .add = task_clock_event_add, 8575 .del = task_clock_event_del, 8576 .start = task_clock_event_start, 8577 .stop = task_clock_event_stop, 8578 .read = task_clock_event_read, 8579 }; 8580 8581 static void perf_pmu_nop_void(struct pmu *pmu) 8582 { 8583 } 8584 8585 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8586 { 8587 } 8588 8589 static int perf_pmu_nop_int(struct pmu *pmu) 8590 { 8591 return 0; 8592 } 8593 8594 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8595 8596 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8597 { 8598 __this_cpu_write(nop_txn_flags, flags); 8599 8600 if (flags & ~PERF_PMU_TXN_ADD) 8601 return; 8602 8603 perf_pmu_disable(pmu); 8604 } 8605 8606 static int perf_pmu_commit_txn(struct pmu *pmu) 8607 { 8608 unsigned int flags = __this_cpu_read(nop_txn_flags); 8609 8610 __this_cpu_write(nop_txn_flags, 0); 8611 8612 if (flags & ~PERF_PMU_TXN_ADD) 8613 return 0; 8614 8615 perf_pmu_enable(pmu); 8616 return 0; 8617 } 8618 8619 static void perf_pmu_cancel_txn(struct pmu *pmu) 8620 { 8621 unsigned int flags = __this_cpu_read(nop_txn_flags); 8622 8623 __this_cpu_write(nop_txn_flags, 0); 8624 8625 if (flags & ~PERF_PMU_TXN_ADD) 8626 return; 8627 8628 perf_pmu_enable(pmu); 8629 } 8630 8631 static int perf_event_idx_default(struct perf_event *event) 8632 { 8633 return 0; 8634 } 8635 8636 /* 8637 * Ensures all contexts with the same task_ctx_nr have the same 8638 * pmu_cpu_context too. 8639 */ 8640 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8641 { 8642 struct pmu *pmu; 8643 8644 if (ctxn < 0) 8645 return NULL; 8646 8647 list_for_each_entry(pmu, &pmus, entry) { 8648 if (pmu->task_ctx_nr == ctxn) 8649 return pmu->pmu_cpu_context; 8650 } 8651 8652 return NULL; 8653 } 8654 8655 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8656 { 8657 int cpu; 8658 8659 for_each_possible_cpu(cpu) { 8660 struct perf_cpu_context *cpuctx; 8661 8662 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8663 8664 if (cpuctx->unique_pmu == old_pmu) 8665 cpuctx->unique_pmu = pmu; 8666 } 8667 } 8668 8669 static void free_pmu_context(struct pmu *pmu) 8670 { 8671 struct pmu *i; 8672 8673 mutex_lock(&pmus_lock); 8674 /* 8675 * Like a real lame refcount. 8676 */ 8677 list_for_each_entry(i, &pmus, entry) { 8678 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8679 update_pmu_context(i, pmu); 8680 goto out; 8681 } 8682 } 8683 8684 free_percpu(pmu->pmu_cpu_context); 8685 out: 8686 mutex_unlock(&pmus_lock); 8687 } 8688 8689 /* 8690 * Let userspace know that this PMU supports address range filtering: 8691 */ 8692 static ssize_t nr_addr_filters_show(struct device *dev, 8693 struct device_attribute *attr, 8694 char *page) 8695 { 8696 struct pmu *pmu = dev_get_drvdata(dev); 8697 8698 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8699 } 8700 DEVICE_ATTR_RO(nr_addr_filters); 8701 8702 static struct idr pmu_idr; 8703 8704 static ssize_t 8705 type_show(struct device *dev, struct device_attribute *attr, char *page) 8706 { 8707 struct pmu *pmu = dev_get_drvdata(dev); 8708 8709 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8710 } 8711 static DEVICE_ATTR_RO(type); 8712 8713 static ssize_t 8714 perf_event_mux_interval_ms_show(struct device *dev, 8715 struct device_attribute *attr, 8716 char *page) 8717 { 8718 struct pmu *pmu = dev_get_drvdata(dev); 8719 8720 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8721 } 8722 8723 static DEFINE_MUTEX(mux_interval_mutex); 8724 8725 static ssize_t 8726 perf_event_mux_interval_ms_store(struct device *dev, 8727 struct device_attribute *attr, 8728 const char *buf, size_t count) 8729 { 8730 struct pmu *pmu = dev_get_drvdata(dev); 8731 int timer, cpu, ret; 8732 8733 ret = kstrtoint(buf, 0, &timer); 8734 if (ret) 8735 return ret; 8736 8737 if (timer < 1) 8738 return -EINVAL; 8739 8740 /* same value, noting to do */ 8741 if (timer == pmu->hrtimer_interval_ms) 8742 return count; 8743 8744 mutex_lock(&mux_interval_mutex); 8745 pmu->hrtimer_interval_ms = timer; 8746 8747 /* update all cpuctx for this PMU */ 8748 get_online_cpus(); 8749 for_each_online_cpu(cpu) { 8750 struct perf_cpu_context *cpuctx; 8751 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8752 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8753 8754 cpu_function_call(cpu, 8755 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8756 } 8757 put_online_cpus(); 8758 mutex_unlock(&mux_interval_mutex); 8759 8760 return count; 8761 } 8762 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8763 8764 static struct attribute *pmu_dev_attrs[] = { 8765 &dev_attr_type.attr, 8766 &dev_attr_perf_event_mux_interval_ms.attr, 8767 NULL, 8768 }; 8769 ATTRIBUTE_GROUPS(pmu_dev); 8770 8771 static int pmu_bus_running; 8772 static struct bus_type pmu_bus = { 8773 .name = "event_source", 8774 .dev_groups = pmu_dev_groups, 8775 }; 8776 8777 static void pmu_dev_release(struct device *dev) 8778 { 8779 kfree(dev); 8780 } 8781 8782 static int pmu_dev_alloc(struct pmu *pmu) 8783 { 8784 int ret = -ENOMEM; 8785 8786 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8787 if (!pmu->dev) 8788 goto out; 8789 8790 pmu->dev->groups = pmu->attr_groups; 8791 device_initialize(pmu->dev); 8792 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8793 if (ret) 8794 goto free_dev; 8795 8796 dev_set_drvdata(pmu->dev, pmu); 8797 pmu->dev->bus = &pmu_bus; 8798 pmu->dev->release = pmu_dev_release; 8799 ret = device_add(pmu->dev); 8800 if (ret) 8801 goto free_dev; 8802 8803 /* For PMUs with address filters, throw in an extra attribute: */ 8804 if (pmu->nr_addr_filters) 8805 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8806 8807 if (ret) 8808 goto del_dev; 8809 8810 out: 8811 return ret; 8812 8813 del_dev: 8814 device_del(pmu->dev); 8815 8816 free_dev: 8817 put_device(pmu->dev); 8818 goto out; 8819 } 8820 8821 static struct lock_class_key cpuctx_mutex; 8822 static struct lock_class_key cpuctx_lock; 8823 8824 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8825 { 8826 int cpu, ret; 8827 8828 mutex_lock(&pmus_lock); 8829 ret = -ENOMEM; 8830 pmu->pmu_disable_count = alloc_percpu(int); 8831 if (!pmu->pmu_disable_count) 8832 goto unlock; 8833 8834 pmu->type = -1; 8835 if (!name) 8836 goto skip_type; 8837 pmu->name = name; 8838 8839 if (type < 0) { 8840 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8841 if (type < 0) { 8842 ret = type; 8843 goto free_pdc; 8844 } 8845 } 8846 pmu->type = type; 8847 8848 if (pmu_bus_running) { 8849 ret = pmu_dev_alloc(pmu); 8850 if (ret) 8851 goto free_idr; 8852 } 8853 8854 skip_type: 8855 if (pmu->task_ctx_nr == perf_hw_context) { 8856 static int hw_context_taken = 0; 8857 8858 /* 8859 * Other than systems with heterogeneous CPUs, it never makes 8860 * sense for two PMUs to share perf_hw_context. PMUs which are 8861 * uncore must use perf_invalid_context. 8862 */ 8863 if (WARN_ON_ONCE(hw_context_taken && 8864 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8865 pmu->task_ctx_nr = perf_invalid_context; 8866 8867 hw_context_taken = 1; 8868 } 8869 8870 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8871 if (pmu->pmu_cpu_context) 8872 goto got_cpu_context; 8873 8874 ret = -ENOMEM; 8875 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8876 if (!pmu->pmu_cpu_context) 8877 goto free_dev; 8878 8879 for_each_possible_cpu(cpu) { 8880 struct perf_cpu_context *cpuctx; 8881 8882 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8883 __perf_event_init_context(&cpuctx->ctx); 8884 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8885 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8886 cpuctx->ctx.pmu = pmu; 8887 8888 __perf_mux_hrtimer_init(cpuctx, cpu); 8889 8890 cpuctx->unique_pmu = pmu; 8891 } 8892 8893 got_cpu_context: 8894 if (!pmu->start_txn) { 8895 if (pmu->pmu_enable) { 8896 /* 8897 * If we have pmu_enable/pmu_disable calls, install 8898 * transaction stubs that use that to try and batch 8899 * hardware accesses. 8900 */ 8901 pmu->start_txn = perf_pmu_start_txn; 8902 pmu->commit_txn = perf_pmu_commit_txn; 8903 pmu->cancel_txn = perf_pmu_cancel_txn; 8904 } else { 8905 pmu->start_txn = perf_pmu_nop_txn; 8906 pmu->commit_txn = perf_pmu_nop_int; 8907 pmu->cancel_txn = perf_pmu_nop_void; 8908 } 8909 } 8910 8911 if (!pmu->pmu_enable) { 8912 pmu->pmu_enable = perf_pmu_nop_void; 8913 pmu->pmu_disable = perf_pmu_nop_void; 8914 } 8915 8916 if (!pmu->event_idx) 8917 pmu->event_idx = perf_event_idx_default; 8918 8919 list_add_rcu(&pmu->entry, &pmus); 8920 atomic_set(&pmu->exclusive_cnt, 0); 8921 ret = 0; 8922 unlock: 8923 mutex_unlock(&pmus_lock); 8924 8925 return ret; 8926 8927 free_dev: 8928 device_del(pmu->dev); 8929 put_device(pmu->dev); 8930 8931 free_idr: 8932 if (pmu->type >= PERF_TYPE_MAX) 8933 idr_remove(&pmu_idr, pmu->type); 8934 8935 free_pdc: 8936 free_percpu(pmu->pmu_disable_count); 8937 goto unlock; 8938 } 8939 EXPORT_SYMBOL_GPL(perf_pmu_register); 8940 8941 void perf_pmu_unregister(struct pmu *pmu) 8942 { 8943 int remove_device; 8944 8945 mutex_lock(&pmus_lock); 8946 remove_device = pmu_bus_running; 8947 list_del_rcu(&pmu->entry); 8948 mutex_unlock(&pmus_lock); 8949 8950 /* 8951 * We dereference the pmu list under both SRCU and regular RCU, so 8952 * synchronize against both of those. 8953 */ 8954 synchronize_srcu(&pmus_srcu); 8955 synchronize_rcu(); 8956 8957 free_percpu(pmu->pmu_disable_count); 8958 if (pmu->type >= PERF_TYPE_MAX) 8959 idr_remove(&pmu_idr, pmu->type); 8960 if (remove_device) { 8961 if (pmu->nr_addr_filters) 8962 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8963 device_del(pmu->dev); 8964 put_device(pmu->dev); 8965 } 8966 free_pmu_context(pmu); 8967 } 8968 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8969 8970 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8971 { 8972 struct perf_event_context *ctx = NULL; 8973 int ret; 8974 8975 if (!try_module_get(pmu->module)) 8976 return -ENODEV; 8977 8978 if (event->group_leader != event) { 8979 /* 8980 * This ctx->mutex can nest when we're called through 8981 * inheritance. See the perf_event_ctx_lock_nested() comment. 8982 */ 8983 ctx = perf_event_ctx_lock_nested(event->group_leader, 8984 SINGLE_DEPTH_NESTING); 8985 BUG_ON(!ctx); 8986 } 8987 8988 event->pmu = pmu; 8989 ret = pmu->event_init(event); 8990 8991 if (ctx) 8992 perf_event_ctx_unlock(event->group_leader, ctx); 8993 8994 if (ret) 8995 module_put(pmu->module); 8996 8997 return ret; 8998 } 8999 9000 static struct pmu *perf_init_event(struct perf_event *event) 9001 { 9002 struct pmu *pmu = NULL; 9003 int idx; 9004 int ret; 9005 9006 idx = srcu_read_lock(&pmus_srcu); 9007 9008 rcu_read_lock(); 9009 pmu = idr_find(&pmu_idr, event->attr.type); 9010 rcu_read_unlock(); 9011 if (pmu) { 9012 ret = perf_try_init_event(pmu, event); 9013 if (ret) 9014 pmu = ERR_PTR(ret); 9015 goto unlock; 9016 } 9017 9018 list_for_each_entry_rcu(pmu, &pmus, entry) { 9019 ret = perf_try_init_event(pmu, event); 9020 if (!ret) 9021 goto unlock; 9022 9023 if (ret != -ENOENT) { 9024 pmu = ERR_PTR(ret); 9025 goto unlock; 9026 } 9027 } 9028 pmu = ERR_PTR(-ENOENT); 9029 unlock: 9030 srcu_read_unlock(&pmus_srcu, idx); 9031 9032 return pmu; 9033 } 9034 9035 static void attach_sb_event(struct perf_event *event) 9036 { 9037 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9038 9039 raw_spin_lock(&pel->lock); 9040 list_add_rcu(&event->sb_list, &pel->list); 9041 raw_spin_unlock(&pel->lock); 9042 } 9043 9044 /* 9045 * We keep a list of all !task (and therefore per-cpu) events 9046 * that need to receive side-band records. 9047 * 9048 * This avoids having to scan all the various PMU per-cpu contexts 9049 * looking for them. 9050 */ 9051 static void account_pmu_sb_event(struct perf_event *event) 9052 { 9053 if (is_sb_event(event)) 9054 attach_sb_event(event); 9055 } 9056 9057 static void account_event_cpu(struct perf_event *event, int cpu) 9058 { 9059 if (event->parent) 9060 return; 9061 9062 if (is_cgroup_event(event)) 9063 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9064 } 9065 9066 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9067 static void account_freq_event_nohz(void) 9068 { 9069 #ifdef CONFIG_NO_HZ_FULL 9070 /* Lock so we don't race with concurrent unaccount */ 9071 spin_lock(&nr_freq_lock); 9072 if (atomic_inc_return(&nr_freq_events) == 1) 9073 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9074 spin_unlock(&nr_freq_lock); 9075 #endif 9076 } 9077 9078 static void account_freq_event(void) 9079 { 9080 if (tick_nohz_full_enabled()) 9081 account_freq_event_nohz(); 9082 else 9083 atomic_inc(&nr_freq_events); 9084 } 9085 9086 9087 static void account_event(struct perf_event *event) 9088 { 9089 bool inc = false; 9090 9091 if (event->parent) 9092 return; 9093 9094 if (event->attach_state & PERF_ATTACH_TASK) 9095 inc = true; 9096 if (event->attr.mmap || event->attr.mmap_data) 9097 atomic_inc(&nr_mmap_events); 9098 if (event->attr.comm) 9099 atomic_inc(&nr_comm_events); 9100 if (event->attr.task) 9101 atomic_inc(&nr_task_events); 9102 if (event->attr.freq) 9103 account_freq_event(); 9104 if (event->attr.context_switch) { 9105 atomic_inc(&nr_switch_events); 9106 inc = true; 9107 } 9108 if (has_branch_stack(event)) 9109 inc = true; 9110 if (is_cgroup_event(event)) 9111 inc = true; 9112 9113 if (inc) { 9114 if (atomic_inc_not_zero(&perf_sched_count)) 9115 goto enabled; 9116 9117 mutex_lock(&perf_sched_mutex); 9118 if (!atomic_read(&perf_sched_count)) { 9119 static_branch_enable(&perf_sched_events); 9120 /* 9121 * Guarantee that all CPUs observe they key change and 9122 * call the perf scheduling hooks before proceeding to 9123 * install events that need them. 9124 */ 9125 synchronize_sched(); 9126 } 9127 /* 9128 * Now that we have waited for the sync_sched(), allow further 9129 * increments to by-pass the mutex. 9130 */ 9131 atomic_inc(&perf_sched_count); 9132 mutex_unlock(&perf_sched_mutex); 9133 } 9134 enabled: 9135 9136 account_event_cpu(event, event->cpu); 9137 9138 account_pmu_sb_event(event); 9139 } 9140 9141 /* 9142 * Allocate and initialize a event structure 9143 */ 9144 static struct perf_event * 9145 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9146 struct task_struct *task, 9147 struct perf_event *group_leader, 9148 struct perf_event *parent_event, 9149 perf_overflow_handler_t overflow_handler, 9150 void *context, int cgroup_fd) 9151 { 9152 struct pmu *pmu; 9153 struct perf_event *event; 9154 struct hw_perf_event *hwc; 9155 long err = -EINVAL; 9156 9157 if ((unsigned)cpu >= nr_cpu_ids) { 9158 if (!task || cpu != -1) 9159 return ERR_PTR(-EINVAL); 9160 } 9161 9162 event = kzalloc(sizeof(*event), GFP_KERNEL); 9163 if (!event) 9164 return ERR_PTR(-ENOMEM); 9165 9166 /* 9167 * Single events are their own group leaders, with an 9168 * empty sibling list: 9169 */ 9170 if (!group_leader) 9171 group_leader = event; 9172 9173 mutex_init(&event->child_mutex); 9174 INIT_LIST_HEAD(&event->child_list); 9175 9176 INIT_LIST_HEAD(&event->group_entry); 9177 INIT_LIST_HEAD(&event->event_entry); 9178 INIT_LIST_HEAD(&event->sibling_list); 9179 INIT_LIST_HEAD(&event->rb_entry); 9180 INIT_LIST_HEAD(&event->active_entry); 9181 INIT_LIST_HEAD(&event->addr_filters.list); 9182 INIT_HLIST_NODE(&event->hlist_entry); 9183 9184 9185 init_waitqueue_head(&event->waitq); 9186 init_irq_work(&event->pending, perf_pending_event); 9187 9188 mutex_init(&event->mmap_mutex); 9189 raw_spin_lock_init(&event->addr_filters.lock); 9190 9191 atomic_long_set(&event->refcount, 1); 9192 event->cpu = cpu; 9193 event->attr = *attr; 9194 event->group_leader = group_leader; 9195 event->pmu = NULL; 9196 event->oncpu = -1; 9197 9198 event->parent = parent_event; 9199 9200 event->ns = get_pid_ns(task_active_pid_ns(current)); 9201 event->id = atomic64_inc_return(&perf_event_id); 9202 9203 event->state = PERF_EVENT_STATE_INACTIVE; 9204 9205 if (task) { 9206 event->attach_state = PERF_ATTACH_TASK; 9207 /* 9208 * XXX pmu::event_init needs to know what task to account to 9209 * and we cannot use the ctx information because we need the 9210 * pmu before we get a ctx. 9211 */ 9212 event->hw.target = task; 9213 } 9214 9215 event->clock = &local_clock; 9216 if (parent_event) 9217 event->clock = parent_event->clock; 9218 9219 if (!overflow_handler && parent_event) { 9220 overflow_handler = parent_event->overflow_handler; 9221 context = parent_event->overflow_handler_context; 9222 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9223 if (overflow_handler == bpf_overflow_handler) { 9224 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9225 9226 if (IS_ERR(prog)) { 9227 err = PTR_ERR(prog); 9228 goto err_ns; 9229 } 9230 event->prog = prog; 9231 event->orig_overflow_handler = 9232 parent_event->orig_overflow_handler; 9233 } 9234 #endif 9235 } 9236 9237 if (overflow_handler) { 9238 event->overflow_handler = overflow_handler; 9239 event->overflow_handler_context = context; 9240 } else if (is_write_backward(event)){ 9241 event->overflow_handler = perf_event_output_backward; 9242 event->overflow_handler_context = NULL; 9243 } else { 9244 event->overflow_handler = perf_event_output_forward; 9245 event->overflow_handler_context = NULL; 9246 } 9247 9248 perf_event__state_init(event); 9249 9250 pmu = NULL; 9251 9252 hwc = &event->hw; 9253 hwc->sample_period = attr->sample_period; 9254 if (attr->freq && attr->sample_freq) 9255 hwc->sample_period = 1; 9256 hwc->last_period = hwc->sample_period; 9257 9258 local64_set(&hwc->period_left, hwc->sample_period); 9259 9260 /* 9261 * we currently do not support PERF_FORMAT_GROUP on inherited events 9262 */ 9263 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9264 goto err_ns; 9265 9266 if (!has_branch_stack(event)) 9267 event->attr.branch_sample_type = 0; 9268 9269 if (cgroup_fd != -1) { 9270 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9271 if (err) 9272 goto err_ns; 9273 } 9274 9275 pmu = perf_init_event(event); 9276 if (!pmu) 9277 goto err_ns; 9278 else if (IS_ERR(pmu)) { 9279 err = PTR_ERR(pmu); 9280 goto err_ns; 9281 } 9282 9283 err = exclusive_event_init(event); 9284 if (err) 9285 goto err_pmu; 9286 9287 if (has_addr_filter(event)) { 9288 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9289 sizeof(unsigned long), 9290 GFP_KERNEL); 9291 if (!event->addr_filters_offs) 9292 goto err_per_task; 9293 9294 /* force hw sync on the address filters */ 9295 event->addr_filters_gen = 1; 9296 } 9297 9298 if (!event->parent) { 9299 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9300 err = get_callchain_buffers(attr->sample_max_stack); 9301 if (err) 9302 goto err_addr_filters; 9303 } 9304 } 9305 9306 /* symmetric to unaccount_event() in _free_event() */ 9307 account_event(event); 9308 9309 return event; 9310 9311 err_addr_filters: 9312 kfree(event->addr_filters_offs); 9313 9314 err_per_task: 9315 exclusive_event_destroy(event); 9316 9317 err_pmu: 9318 if (event->destroy) 9319 event->destroy(event); 9320 module_put(pmu->module); 9321 err_ns: 9322 if (is_cgroup_event(event)) 9323 perf_detach_cgroup(event); 9324 if (event->ns) 9325 put_pid_ns(event->ns); 9326 kfree(event); 9327 9328 return ERR_PTR(err); 9329 } 9330 9331 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9332 struct perf_event_attr *attr) 9333 { 9334 u32 size; 9335 int ret; 9336 9337 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9338 return -EFAULT; 9339 9340 /* 9341 * zero the full structure, so that a short copy will be nice. 9342 */ 9343 memset(attr, 0, sizeof(*attr)); 9344 9345 ret = get_user(size, &uattr->size); 9346 if (ret) 9347 return ret; 9348 9349 if (size > PAGE_SIZE) /* silly large */ 9350 goto err_size; 9351 9352 if (!size) /* abi compat */ 9353 size = PERF_ATTR_SIZE_VER0; 9354 9355 if (size < PERF_ATTR_SIZE_VER0) 9356 goto err_size; 9357 9358 /* 9359 * If we're handed a bigger struct than we know of, 9360 * ensure all the unknown bits are 0 - i.e. new 9361 * user-space does not rely on any kernel feature 9362 * extensions we dont know about yet. 9363 */ 9364 if (size > sizeof(*attr)) { 9365 unsigned char __user *addr; 9366 unsigned char __user *end; 9367 unsigned char val; 9368 9369 addr = (void __user *)uattr + sizeof(*attr); 9370 end = (void __user *)uattr + size; 9371 9372 for (; addr < end; addr++) { 9373 ret = get_user(val, addr); 9374 if (ret) 9375 return ret; 9376 if (val) 9377 goto err_size; 9378 } 9379 size = sizeof(*attr); 9380 } 9381 9382 ret = copy_from_user(attr, uattr, size); 9383 if (ret) 9384 return -EFAULT; 9385 9386 if (attr->__reserved_1) 9387 return -EINVAL; 9388 9389 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9390 return -EINVAL; 9391 9392 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9393 return -EINVAL; 9394 9395 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9396 u64 mask = attr->branch_sample_type; 9397 9398 /* only using defined bits */ 9399 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9400 return -EINVAL; 9401 9402 /* at least one branch bit must be set */ 9403 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9404 return -EINVAL; 9405 9406 /* propagate priv level, when not set for branch */ 9407 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9408 9409 /* exclude_kernel checked on syscall entry */ 9410 if (!attr->exclude_kernel) 9411 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9412 9413 if (!attr->exclude_user) 9414 mask |= PERF_SAMPLE_BRANCH_USER; 9415 9416 if (!attr->exclude_hv) 9417 mask |= PERF_SAMPLE_BRANCH_HV; 9418 /* 9419 * adjust user setting (for HW filter setup) 9420 */ 9421 attr->branch_sample_type = mask; 9422 } 9423 /* privileged levels capture (kernel, hv): check permissions */ 9424 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9425 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9426 return -EACCES; 9427 } 9428 9429 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9430 ret = perf_reg_validate(attr->sample_regs_user); 9431 if (ret) 9432 return ret; 9433 } 9434 9435 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9436 if (!arch_perf_have_user_stack_dump()) 9437 return -ENOSYS; 9438 9439 /* 9440 * We have __u32 type for the size, but so far 9441 * we can only use __u16 as maximum due to the 9442 * __u16 sample size limit. 9443 */ 9444 if (attr->sample_stack_user >= USHRT_MAX) 9445 ret = -EINVAL; 9446 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9447 ret = -EINVAL; 9448 } 9449 9450 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9451 ret = perf_reg_validate(attr->sample_regs_intr); 9452 out: 9453 return ret; 9454 9455 err_size: 9456 put_user(sizeof(*attr), &uattr->size); 9457 ret = -E2BIG; 9458 goto out; 9459 } 9460 9461 static int 9462 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9463 { 9464 struct ring_buffer *rb = NULL; 9465 int ret = -EINVAL; 9466 9467 if (!output_event) 9468 goto set; 9469 9470 /* don't allow circular references */ 9471 if (event == output_event) 9472 goto out; 9473 9474 /* 9475 * Don't allow cross-cpu buffers 9476 */ 9477 if (output_event->cpu != event->cpu) 9478 goto out; 9479 9480 /* 9481 * If its not a per-cpu rb, it must be the same task. 9482 */ 9483 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9484 goto out; 9485 9486 /* 9487 * Mixing clocks in the same buffer is trouble you don't need. 9488 */ 9489 if (output_event->clock != event->clock) 9490 goto out; 9491 9492 /* 9493 * Either writing ring buffer from beginning or from end. 9494 * Mixing is not allowed. 9495 */ 9496 if (is_write_backward(output_event) != is_write_backward(event)) 9497 goto out; 9498 9499 /* 9500 * If both events generate aux data, they must be on the same PMU 9501 */ 9502 if (has_aux(event) && has_aux(output_event) && 9503 event->pmu != output_event->pmu) 9504 goto out; 9505 9506 set: 9507 mutex_lock(&event->mmap_mutex); 9508 /* Can't redirect output if we've got an active mmap() */ 9509 if (atomic_read(&event->mmap_count)) 9510 goto unlock; 9511 9512 if (output_event) { 9513 /* get the rb we want to redirect to */ 9514 rb = ring_buffer_get(output_event); 9515 if (!rb) 9516 goto unlock; 9517 } 9518 9519 ring_buffer_attach(event, rb); 9520 9521 ret = 0; 9522 unlock: 9523 mutex_unlock(&event->mmap_mutex); 9524 9525 out: 9526 return ret; 9527 } 9528 9529 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9530 { 9531 if (b < a) 9532 swap(a, b); 9533 9534 mutex_lock(a); 9535 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9536 } 9537 9538 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9539 { 9540 bool nmi_safe = false; 9541 9542 switch (clk_id) { 9543 case CLOCK_MONOTONIC: 9544 event->clock = &ktime_get_mono_fast_ns; 9545 nmi_safe = true; 9546 break; 9547 9548 case CLOCK_MONOTONIC_RAW: 9549 event->clock = &ktime_get_raw_fast_ns; 9550 nmi_safe = true; 9551 break; 9552 9553 case CLOCK_REALTIME: 9554 event->clock = &ktime_get_real_ns; 9555 break; 9556 9557 case CLOCK_BOOTTIME: 9558 event->clock = &ktime_get_boot_ns; 9559 break; 9560 9561 case CLOCK_TAI: 9562 event->clock = &ktime_get_tai_ns; 9563 break; 9564 9565 default: 9566 return -EINVAL; 9567 } 9568 9569 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9570 return -EINVAL; 9571 9572 return 0; 9573 } 9574 9575 /* 9576 * Variation on perf_event_ctx_lock_nested(), except we take two context 9577 * mutexes. 9578 */ 9579 static struct perf_event_context * 9580 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9581 struct perf_event_context *ctx) 9582 { 9583 struct perf_event_context *gctx; 9584 9585 again: 9586 rcu_read_lock(); 9587 gctx = READ_ONCE(group_leader->ctx); 9588 if (!atomic_inc_not_zero(&gctx->refcount)) { 9589 rcu_read_unlock(); 9590 goto again; 9591 } 9592 rcu_read_unlock(); 9593 9594 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9595 9596 if (group_leader->ctx != gctx) { 9597 mutex_unlock(&ctx->mutex); 9598 mutex_unlock(&gctx->mutex); 9599 put_ctx(gctx); 9600 goto again; 9601 } 9602 9603 return gctx; 9604 } 9605 9606 /** 9607 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9608 * 9609 * @attr_uptr: event_id type attributes for monitoring/sampling 9610 * @pid: target pid 9611 * @cpu: target cpu 9612 * @group_fd: group leader event fd 9613 */ 9614 SYSCALL_DEFINE5(perf_event_open, 9615 struct perf_event_attr __user *, attr_uptr, 9616 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9617 { 9618 struct perf_event *group_leader = NULL, *output_event = NULL; 9619 struct perf_event *event, *sibling; 9620 struct perf_event_attr attr; 9621 struct perf_event_context *ctx, *uninitialized_var(gctx); 9622 struct file *event_file = NULL; 9623 struct fd group = {NULL, 0}; 9624 struct task_struct *task = NULL; 9625 struct pmu *pmu; 9626 int event_fd; 9627 int move_group = 0; 9628 int err; 9629 int f_flags = O_RDWR; 9630 int cgroup_fd = -1; 9631 9632 /* for future expandability... */ 9633 if (flags & ~PERF_FLAG_ALL) 9634 return -EINVAL; 9635 9636 err = perf_copy_attr(attr_uptr, &attr); 9637 if (err) 9638 return err; 9639 9640 if (!attr.exclude_kernel) { 9641 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9642 return -EACCES; 9643 } 9644 9645 if (attr.freq) { 9646 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9647 return -EINVAL; 9648 } else { 9649 if (attr.sample_period & (1ULL << 63)) 9650 return -EINVAL; 9651 } 9652 9653 if (!attr.sample_max_stack) 9654 attr.sample_max_stack = sysctl_perf_event_max_stack; 9655 9656 /* 9657 * In cgroup mode, the pid argument is used to pass the fd 9658 * opened to the cgroup directory in cgroupfs. The cpu argument 9659 * designates the cpu on which to monitor threads from that 9660 * cgroup. 9661 */ 9662 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9663 return -EINVAL; 9664 9665 if (flags & PERF_FLAG_FD_CLOEXEC) 9666 f_flags |= O_CLOEXEC; 9667 9668 event_fd = get_unused_fd_flags(f_flags); 9669 if (event_fd < 0) 9670 return event_fd; 9671 9672 if (group_fd != -1) { 9673 err = perf_fget_light(group_fd, &group); 9674 if (err) 9675 goto err_fd; 9676 group_leader = group.file->private_data; 9677 if (flags & PERF_FLAG_FD_OUTPUT) 9678 output_event = group_leader; 9679 if (flags & PERF_FLAG_FD_NO_GROUP) 9680 group_leader = NULL; 9681 } 9682 9683 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9684 task = find_lively_task_by_vpid(pid); 9685 if (IS_ERR(task)) { 9686 err = PTR_ERR(task); 9687 goto err_group_fd; 9688 } 9689 } 9690 9691 if (task && group_leader && 9692 group_leader->attr.inherit != attr.inherit) { 9693 err = -EINVAL; 9694 goto err_task; 9695 } 9696 9697 get_online_cpus(); 9698 9699 if (task) { 9700 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9701 if (err) 9702 goto err_cpus; 9703 9704 /* 9705 * Reuse ptrace permission checks for now. 9706 * 9707 * We must hold cred_guard_mutex across this and any potential 9708 * perf_install_in_context() call for this new event to 9709 * serialize against exec() altering our credentials (and the 9710 * perf_event_exit_task() that could imply). 9711 */ 9712 err = -EACCES; 9713 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9714 goto err_cred; 9715 } 9716 9717 if (flags & PERF_FLAG_PID_CGROUP) 9718 cgroup_fd = pid; 9719 9720 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9721 NULL, NULL, cgroup_fd); 9722 if (IS_ERR(event)) { 9723 err = PTR_ERR(event); 9724 goto err_cred; 9725 } 9726 9727 if (is_sampling_event(event)) { 9728 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9729 err = -EOPNOTSUPP; 9730 goto err_alloc; 9731 } 9732 } 9733 9734 /* 9735 * Special case software events and allow them to be part of 9736 * any hardware group. 9737 */ 9738 pmu = event->pmu; 9739 9740 if (attr.use_clockid) { 9741 err = perf_event_set_clock(event, attr.clockid); 9742 if (err) 9743 goto err_alloc; 9744 } 9745 9746 if (pmu->task_ctx_nr == perf_sw_context) 9747 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9748 9749 if (group_leader && 9750 (is_software_event(event) != is_software_event(group_leader))) { 9751 if (is_software_event(event)) { 9752 /* 9753 * If event and group_leader are not both a software 9754 * event, and event is, then group leader is not. 9755 * 9756 * Allow the addition of software events to !software 9757 * groups, this is safe because software events never 9758 * fail to schedule. 9759 */ 9760 pmu = group_leader->pmu; 9761 } else if (is_software_event(group_leader) && 9762 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9763 /* 9764 * In case the group is a pure software group, and we 9765 * try to add a hardware event, move the whole group to 9766 * the hardware context. 9767 */ 9768 move_group = 1; 9769 } 9770 } 9771 9772 /* 9773 * Get the target context (task or percpu): 9774 */ 9775 ctx = find_get_context(pmu, task, event); 9776 if (IS_ERR(ctx)) { 9777 err = PTR_ERR(ctx); 9778 goto err_alloc; 9779 } 9780 9781 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9782 err = -EBUSY; 9783 goto err_context; 9784 } 9785 9786 /* 9787 * Look up the group leader (we will attach this event to it): 9788 */ 9789 if (group_leader) { 9790 err = -EINVAL; 9791 9792 /* 9793 * Do not allow a recursive hierarchy (this new sibling 9794 * becoming part of another group-sibling): 9795 */ 9796 if (group_leader->group_leader != group_leader) 9797 goto err_context; 9798 9799 /* All events in a group should have the same clock */ 9800 if (group_leader->clock != event->clock) 9801 goto err_context; 9802 9803 /* 9804 * Do not allow to attach to a group in a different 9805 * task or CPU context: 9806 */ 9807 if (move_group) { 9808 /* 9809 * Make sure we're both on the same task, or both 9810 * per-cpu events. 9811 */ 9812 if (group_leader->ctx->task != ctx->task) 9813 goto err_context; 9814 9815 /* 9816 * Make sure we're both events for the same CPU; 9817 * grouping events for different CPUs is broken; since 9818 * you can never concurrently schedule them anyhow. 9819 */ 9820 if (group_leader->cpu != event->cpu) 9821 goto err_context; 9822 } else { 9823 if (group_leader->ctx != ctx) 9824 goto err_context; 9825 } 9826 9827 /* 9828 * Only a group leader can be exclusive or pinned 9829 */ 9830 if (attr.exclusive || attr.pinned) 9831 goto err_context; 9832 } 9833 9834 if (output_event) { 9835 err = perf_event_set_output(event, output_event); 9836 if (err) 9837 goto err_context; 9838 } 9839 9840 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9841 f_flags); 9842 if (IS_ERR(event_file)) { 9843 err = PTR_ERR(event_file); 9844 event_file = NULL; 9845 goto err_context; 9846 } 9847 9848 if (move_group) { 9849 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 9850 9851 if (gctx->task == TASK_TOMBSTONE) { 9852 err = -ESRCH; 9853 goto err_locked; 9854 } 9855 9856 /* 9857 * Check if we raced against another sys_perf_event_open() call 9858 * moving the software group underneath us. 9859 */ 9860 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9861 /* 9862 * If someone moved the group out from under us, check 9863 * if this new event wound up on the same ctx, if so 9864 * its the regular !move_group case, otherwise fail. 9865 */ 9866 if (gctx != ctx) { 9867 err = -EINVAL; 9868 goto err_locked; 9869 } else { 9870 perf_event_ctx_unlock(group_leader, gctx); 9871 move_group = 0; 9872 } 9873 } 9874 } else { 9875 mutex_lock(&ctx->mutex); 9876 } 9877 9878 if (ctx->task == TASK_TOMBSTONE) { 9879 err = -ESRCH; 9880 goto err_locked; 9881 } 9882 9883 if (!perf_event_validate_size(event)) { 9884 err = -E2BIG; 9885 goto err_locked; 9886 } 9887 9888 /* 9889 * Must be under the same ctx::mutex as perf_install_in_context(), 9890 * because we need to serialize with concurrent event creation. 9891 */ 9892 if (!exclusive_event_installable(event, ctx)) { 9893 /* exclusive and group stuff are assumed mutually exclusive */ 9894 WARN_ON_ONCE(move_group); 9895 9896 err = -EBUSY; 9897 goto err_locked; 9898 } 9899 9900 WARN_ON_ONCE(ctx->parent_ctx); 9901 9902 /* 9903 * This is the point on no return; we cannot fail hereafter. This is 9904 * where we start modifying current state. 9905 */ 9906 9907 if (move_group) { 9908 /* 9909 * See perf_event_ctx_lock() for comments on the details 9910 * of swizzling perf_event::ctx. 9911 */ 9912 perf_remove_from_context(group_leader, 0); 9913 9914 list_for_each_entry(sibling, &group_leader->sibling_list, 9915 group_entry) { 9916 perf_remove_from_context(sibling, 0); 9917 put_ctx(gctx); 9918 } 9919 9920 /* 9921 * Wait for everybody to stop referencing the events through 9922 * the old lists, before installing it on new lists. 9923 */ 9924 synchronize_rcu(); 9925 9926 /* 9927 * Install the group siblings before the group leader. 9928 * 9929 * Because a group leader will try and install the entire group 9930 * (through the sibling list, which is still in-tact), we can 9931 * end up with siblings installed in the wrong context. 9932 * 9933 * By installing siblings first we NO-OP because they're not 9934 * reachable through the group lists. 9935 */ 9936 list_for_each_entry(sibling, &group_leader->sibling_list, 9937 group_entry) { 9938 perf_event__state_init(sibling); 9939 perf_install_in_context(ctx, sibling, sibling->cpu); 9940 get_ctx(ctx); 9941 } 9942 9943 /* 9944 * Removing from the context ends up with disabled 9945 * event. What we want here is event in the initial 9946 * startup state, ready to be add into new context. 9947 */ 9948 perf_event__state_init(group_leader); 9949 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9950 get_ctx(ctx); 9951 9952 /* 9953 * Now that all events are installed in @ctx, nothing 9954 * references @gctx anymore, so drop the last reference we have 9955 * on it. 9956 */ 9957 put_ctx(gctx); 9958 } 9959 9960 /* 9961 * Precalculate sample_data sizes; do while holding ctx::mutex such 9962 * that we're serialized against further additions and before 9963 * perf_install_in_context() which is the point the event is active and 9964 * can use these values. 9965 */ 9966 perf_event__header_size(event); 9967 perf_event__id_header_size(event); 9968 9969 event->owner = current; 9970 9971 perf_install_in_context(ctx, event, event->cpu); 9972 perf_unpin_context(ctx); 9973 9974 if (move_group) 9975 perf_event_ctx_unlock(group_leader, gctx); 9976 mutex_unlock(&ctx->mutex); 9977 9978 if (task) { 9979 mutex_unlock(&task->signal->cred_guard_mutex); 9980 put_task_struct(task); 9981 } 9982 9983 put_online_cpus(); 9984 9985 mutex_lock(¤t->perf_event_mutex); 9986 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9987 mutex_unlock(¤t->perf_event_mutex); 9988 9989 /* 9990 * Drop the reference on the group_event after placing the 9991 * new event on the sibling_list. This ensures destruction 9992 * of the group leader will find the pointer to itself in 9993 * perf_group_detach(). 9994 */ 9995 fdput(group); 9996 fd_install(event_fd, event_file); 9997 return event_fd; 9998 9999 err_locked: 10000 if (move_group) 10001 perf_event_ctx_unlock(group_leader, gctx); 10002 mutex_unlock(&ctx->mutex); 10003 /* err_file: */ 10004 fput(event_file); 10005 err_context: 10006 perf_unpin_context(ctx); 10007 put_ctx(ctx); 10008 err_alloc: 10009 /* 10010 * If event_file is set, the fput() above will have called ->release() 10011 * and that will take care of freeing the event. 10012 */ 10013 if (!event_file) 10014 free_event(event); 10015 err_cred: 10016 if (task) 10017 mutex_unlock(&task->signal->cred_guard_mutex); 10018 err_cpus: 10019 put_online_cpus(); 10020 err_task: 10021 if (task) 10022 put_task_struct(task); 10023 err_group_fd: 10024 fdput(group); 10025 err_fd: 10026 put_unused_fd(event_fd); 10027 return err; 10028 } 10029 10030 /** 10031 * perf_event_create_kernel_counter 10032 * 10033 * @attr: attributes of the counter to create 10034 * @cpu: cpu in which the counter is bound 10035 * @task: task to profile (NULL for percpu) 10036 */ 10037 struct perf_event * 10038 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10039 struct task_struct *task, 10040 perf_overflow_handler_t overflow_handler, 10041 void *context) 10042 { 10043 struct perf_event_context *ctx; 10044 struct perf_event *event; 10045 int err; 10046 10047 /* 10048 * Get the target context (task or percpu): 10049 */ 10050 10051 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10052 overflow_handler, context, -1); 10053 if (IS_ERR(event)) { 10054 err = PTR_ERR(event); 10055 goto err; 10056 } 10057 10058 /* Mark owner so we could distinguish it from user events. */ 10059 event->owner = TASK_TOMBSTONE; 10060 10061 ctx = find_get_context(event->pmu, task, event); 10062 if (IS_ERR(ctx)) { 10063 err = PTR_ERR(ctx); 10064 goto err_free; 10065 } 10066 10067 WARN_ON_ONCE(ctx->parent_ctx); 10068 mutex_lock(&ctx->mutex); 10069 if (ctx->task == TASK_TOMBSTONE) { 10070 err = -ESRCH; 10071 goto err_unlock; 10072 } 10073 10074 if (!exclusive_event_installable(event, ctx)) { 10075 err = -EBUSY; 10076 goto err_unlock; 10077 } 10078 10079 perf_install_in_context(ctx, event, cpu); 10080 perf_unpin_context(ctx); 10081 mutex_unlock(&ctx->mutex); 10082 10083 return event; 10084 10085 err_unlock: 10086 mutex_unlock(&ctx->mutex); 10087 perf_unpin_context(ctx); 10088 put_ctx(ctx); 10089 err_free: 10090 free_event(event); 10091 err: 10092 return ERR_PTR(err); 10093 } 10094 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10095 10096 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10097 { 10098 struct perf_event_context *src_ctx; 10099 struct perf_event_context *dst_ctx; 10100 struct perf_event *event, *tmp; 10101 LIST_HEAD(events); 10102 10103 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10104 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10105 10106 /* 10107 * See perf_event_ctx_lock() for comments on the details 10108 * of swizzling perf_event::ctx. 10109 */ 10110 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10111 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10112 event_entry) { 10113 perf_remove_from_context(event, 0); 10114 unaccount_event_cpu(event, src_cpu); 10115 put_ctx(src_ctx); 10116 list_add(&event->migrate_entry, &events); 10117 } 10118 10119 /* 10120 * Wait for the events to quiesce before re-instating them. 10121 */ 10122 synchronize_rcu(); 10123 10124 /* 10125 * Re-instate events in 2 passes. 10126 * 10127 * Skip over group leaders and only install siblings on this first 10128 * pass, siblings will not get enabled without a leader, however a 10129 * leader will enable its siblings, even if those are still on the old 10130 * context. 10131 */ 10132 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10133 if (event->group_leader == event) 10134 continue; 10135 10136 list_del(&event->migrate_entry); 10137 if (event->state >= PERF_EVENT_STATE_OFF) 10138 event->state = PERF_EVENT_STATE_INACTIVE; 10139 account_event_cpu(event, dst_cpu); 10140 perf_install_in_context(dst_ctx, event, dst_cpu); 10141 get_ctx(dst_ctx); 10142 } 10143 10144 /* 10145 * Once all the siblings are setup properly, install the group leaders 10146 * to make it go. 10147 */ 10148 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10149 list_del(&event->migrate_entry); 10150 if (event->state >= PERF_EVENT_STATE_OFF) 10151 event->state = PERF_EVENT_STATE_INACTIVE; 10152 account_event_cpu(event, dst_cpu); 10153 perf_install_in_context(dst_ctx, event, dst_cpu); 10154 get_ctx(dst_ctx); 10155 } 10156 mutex_unlock(&dst_ctx->mutex); 10157 mutex_unlock(&src_ctx->mutex); 10158 } 10159 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10160 10161 static void sync_child_event(struct perf_event *child_event, 10162 struct task_struct *child) 10163 { 10164 struct perf_event *parent_event = child_event->parent; 10165 u64 child_val; 10166 10167 if (child_event->attr.inherit_stat) 10168 perf_event_read_event(child_event, child); 10169 10170 child_val = perf_event_count(child_event); 10171 10172 /* 10173 * Add back the child's count to the parent's count: 10174 */ 10175 atomic64_add(child_val, &parent_event->child_count); 10176 atomic64_add(child_event->total_time_enabled, 10177 &parent_event->child_total_time_enabled); 10178 atomic64_add(child_event->total_time_running, 10179 &parent_event->child_total_time_running); 10180 } 10181 10182 static void 10183 perf_event_exit_event(struct perf_event *child_event, 10184 struct perf_event_context *child_ctx, 10185 struct task_struct *child) 10186 { 10187 struct perf_event *parent_event = child_event->parent; 10188 10189 /* 10190 * Do not destroy the 'original' grouping; because of the context 10191 * switch optimization the original events could've ended up in a 10192 * random child task. 10193 * 10194 * If we were to destroy the original group, all group related 10195 * operations would cease to function properly after this random 10196 * child dies. 10197 * 10198 * Do destroy all inherited groups, we don't care about those 10199 * and being thorough is better. 10200 */ 10201 raw_spin_lock_irq(&child_ctx->lock); 10202 WARN_ON_ONCE(child_ctx->is_active); 10203 10204 if (parent_event) 10205 perf_group_detach(child_event); 10206 list_del_event(child_event, child_ctx); 10207 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10208 raw_spin_unlock_irq(&child_ctx->lock); 10209 10210 /* 10211 * Parent events are governed by their filedesc, retain them. 10212 */ 10213 if (!parent_event) { 10214 perf_event_wakeup(child_event); 10215 return; 10216 } 10217 /* 10218 * Child events can be cleaned up. 10219 */ 10220 10221 sync_child_event(child_event, child); 10222 10223 /* 10224 * Remove this event from the parent's list 10225 */ 10226 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10227 mutex_lock(&parent_event->child_mutex); 10228 list_del_init(&child_event->child_list); 10229 mutex_unlock(&parent_event->child_mutex); 10230 10231 /* 10232 * Kick perf_poll() for is_event_hup(). 10233 */ 10234 perf_event_wakeup(parent_event); 10235 free_event(child_event); 10236 put_event(parent_event); 10237 } 10238 10239 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10240 { 10241 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10242 struct perf_event *child_event, *next; 10243 10244 WARN_ON_ONCE(child != current); 10245 10246 child_ctx = perf_pin_task_context(child, ctxn); 10247 if (!child_ctx) 10248 return; 10249 10250 /* 10251 * In order to reduce the amount of tricky in ctx tear-down, we hold 10252 * ctx::mutex over the entire thing. This serializes against almost 10253 * everything that wants to access the ctx. 10254 * 10255 * The exception is sys_perf_event_open() / 10256 * perf_event_create_kernel_count() which does find_get_context() 10257 * without ctx::mutex (it cannot because of the move_group double mutex 10258 * lock thing). See the comments in perf_install_in_context(). 10259 */ 10260 mutex_lock(&child_ctx->mutex); 10261 10262 /* 10263 * In a single ctx::lock section, de-schedule the events and detach the 10264 * context from the task such that we cannot ever get it scheduled back 10265 * in. 10266 */ 10267 raw_spin_lock_irq(&child_ctx->lock); 10268 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 10269 10270 /* 10271 * Now that the context is inactive, destroy the task <-> ctx relation 10272 * and mark the context dead. 10273 */ 10274 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10275 put_ctx(child_ctx); /* cannot be last */ 10276 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10277 put_task_struct(current); /* cannot be last */ 10278 10279 clone_ctx = unclone_ctx(child_ctx); 10280 raw_spin_unlock_irq(&child_ctx->lock); 10281 10282 if (clone_ctx) 10283 put_ctx(clone_ctx); 10284 10285 /* 10286 * Report the task dead after unscheduling the events so that we 10287 * won't get any samples after PERF_RECORD_EXIT. We can however still 10288 * get a few PERF_RECORD_READ events. 10289 */ 10290 perf_event_task(child, child_ctx, 0); 10291 10292 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10293 perf_event_exit_event(child_event, child_ctx, child); 10294 10295 mutex_unlock(&child_ctx->mutex); 10296 10297 put_ctx(child_ctx); 10298 } 10299 10300 /* 10301 * When a child task exits, feed back event values to parent events. 10302 * 10303 * Can be called with cred_guard_mutex held when called from 10304 * install_exec_creds(). 10305 */ 10306 void perf_event_exit_task(struct task_struct *child) 10307 { 10308 struct perf_event *event, *tmp; 10309 int ctxn; 10310 10311 mutex_lock(&child->perf_event_mutex); 10312 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10313 owner_entry) { 10314 list_del_init(&event->owner_entry); 10315 10316 /* 10317 * Ensure the list deletion is visible before we clear 10318 * the owner, closes a race against perf_release() where 10319 * we need to serialize on the owner->perf_event_mutex. 10320 */ 10321 smp_store_release(&event->owner, NULL); 10322 } 10323 mutex_unlock(&child->perf_event_mutex); 10324 10325 for_each_task_context_nr(ctxn) 10326 perf_event_exit_task_context(child, ctxn); 10327 10328 /* 10329 * The perf_event_exit_task_context calls perf_event_task 10330 * with child's task_ctx, which generates EXIT events for 10331 * child contexts and sets child->perf_event_ctxp[] to NULL. 10332 * At this point we need to send EXIT events to cpu contexts. 10333 */ 10334 perf_event_task(child, NULL, 0); 10335 } 10336 10337 static void perf_free_event(struct perf_event *event, 10338 struct perf_event_context *ctx) 10339 { 10340 struct perf_event *parent = event->parent; 10341 10342 if (WARN_ON_ONCE(!parent)) 10343 return; 10344 10345 mutex_lock(&parent->child_mutex); 10346 list_del_init(&event->child_list); 10347 mutex_unlock(&parent->child_mutex); 10348 10349 put_event(parent); 10350 10351 raw_spin_lock_irq(&ctx->lock); 10352 perf_group_detach(event); 10353 list_del_event(event, ctx); 10354 raw_spin_unlock_irq(&ctx->lock); 10355 free_event(event); 10356 } 10357 10358 /* 10359 * Free an unexposed, unused context as created by inheritance by 10360 * perf_event_init_task below, used by fork() in case of fail. 10361 * 10362 * Not all locks are strictly required, but take them anyway to be nice and 10363 * help out with the lockdep assertions. 10364 */ 10365 void perf_event_free_task(struct task_struct *task) 10366 { 10367 struct perf_event_context *ctx; 10368 struct perf_event *event, *tmp; 10369 int ctxn; 10370 10371 for_each_task_context_nr(ctxn) { 10372 ctx = task->perf_event_ctxp[ctxn]; 10373 if (!ctx) 10374 continue; 10375 10376 mutex_lock(&ctx->mutex); 10377 again: 10378 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 10379 group_entry) 10380 perf_free_event(event, ctx); 10381 10382 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 10383 group_entry) 10384 perf_free_event(event, ctx); 10385 10386 if (!list_empty(&ctx->pinned_groups) || 10387 !list_empty(&ctx->flexible_groups)) 10388 goto again; 10389 10390 mutex_unlock(&ctx->mutex); 10391 10392 put_ctx(ctx); 10393 } 10394 } 10395 10396 void perf_event_delayed_put(struct task_struct *task) 10397 { 10398 int ctxn; 10399 10400 for_each_task_context_nr(ctxn) 10401 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10402 } 10403 10404 struct file *perf_event_get(unsigned int fd) 10405 { 10406 struct file *file; 10407 10408 file = fget_raw(fd); 10409 if (!file) 10410 return ERR_PTR(-EBADF); 10411 10412 if (file->f_op != &perf_fops) { 10413 fput(file); 10414 return ERR_PTR(-EBADF); 10415 } 10416 10417 return file; 10418 } 10419 10420 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10421 { 10422 if (!event) 10423 return ERR_PTR(-EINVAL); 10424 10425 return &event->attr; 10426 } 10427 10428 /* 10429 * inherit a event from parent task to child task: 10430 */ 10431 static struct perf_event * 10432 inherit_event(struct perf_event *parent_event, 10433 struct task_struct *parent, 10434 struct perf_event_context *parent_ctx, 10435 struct task_struct *child, 10436 struct perf_event *group_leader, 10437 struct perf_event_context *child_ctx) 10438 { 10439 enum perf_event_active_state parent_state = parent_event->state; 10440 struct perf_event *child_event; 10441 unsigned long flags; 10442 10443 /* 10444 * Instead of creating recursive hierarchies of events, 10445 * we link inherited events back to the original parent, 10446 * which has a filp for sure, which we use as the reference 10447 * count: 10448 */ 10449 if (parent_event->parent) 10450 parent_event = parent_event->parent; 10451 10452 child_event = perf_event_alloc(&parent_event->attr, 10453 parent_event->cpu, 10454 child, 10455 group_leader, parent_event, 10456 NULL, NULL, -1); 10457 if (IS_ERR(child_event)) 10458 return child_event; 10459 10460 /* 10461 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10462 * must be under the same lock in order to serialize against 10463 * perf_event_release_kernel(), such that either we must observe 10464 * is_orphaned_event() or they will observe us on the child_list. 10465 */ 10466 mutex_lock(&parent_event->child_mutex); 10467 if (is_orphaned_event(parent_event) || 10468 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10469 mutex_unlock(&parent_event->child_mutex); 10470 free_event(child_event); 10471 return NULL; 10472 } 10473 10474 get_ctx(child_ctx); 10475 10476 /* 10477 * Make the child state follow the state of the parent event, 10478 * not its attr.disabled bit. We hold the parent's mutex, 10479 * so we won't race with perf_event_{en, dis}able_family. 10480 */ 10481 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10482 child_event->state = PERF_EVENT_STATE_INACTIVE; 10483 else 10484 child_event->state = PERF_EVENT_STATE_OFF; 10485 10486 if (parent_event->attr.freq) { 10487 u64 sample_period = parent_event->hw.sample_period; 10488 struct hw_perf_event *hwc = &child_event->hw; 10489 10490 hwc->sample_period = sample_period; 10491 hwc->last_period = sample_period; 10492 10493 local64_set(&hwc->period_left, sample_period); 10494 } 10495 10496 child_event->ctx = child_ctx; 10497 child_event->overflow_handler = parent_event->overflow_handler; 10498 child_event->overflow_handler_context 10499 = parent_event->overflow_handler_context; 10500 10501 /* 10502 * Precalculate sample_data sizes 10503 */ 10504 perf_event__header_size(child_event); 10505 perf_event__id_header_size(child_event); 10506 10507 /* 10508 * Link it up in the child's context: 10509 */ 10510 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10511 add_event_to_ctx(child_event, child_ctx); 10512 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10513 10514 /* 10515 * Link this into the parent event's child list 10516 */ 10517 list_add_tail(&child_event->child_list, &parent_event->child_list); 10518 mutex_unlock(&parent_event->child_mutex); 10519 10520 return child_event; 10521 } 10522 10523 static int inherit_group(struct perf_event *parent_event, 10524 struct task_struct *parent, 10525 struct perf_event_context *parent_ctx, 10526 struct task_struct *child, 10527 struct perf_event_context *child_ctx) 10528 { 10529 struct perf_event *leader; 10530 struct perf_event *sub; 10531 struct perf_event *child_ctr; 10532 10533 leader = inherit_event(parent_event, parent, parent_ctx, 10534 child, NULL, child_ctx); 10535 if (IS_ERR(leader)) 10536 return PTR_ERR(leader); 10537 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10538 child_ctr = inherit_event(sub, parent, parent_ctx, 10539 child, leader, child_ctx); 10540 if (IS_ERR(child_ctr)) 10541 return PTR_ERR(child_ctr); 10542 } 10543 return 0; 10544 } 10545 10546 static int 10547 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10548 struct perf_event_context *parent_ctx, 10549 struct task_struct *child, int ctxn, 10550 int *inherited_all) 10551 { 10552 int ret; 10553 struct perf_event_context *child_ctx; 10554 10555 if (!event->attr.inherit) { 10556 *inherited_all = 0; 10557 return 0; 10558 } 10559 10560 child_ctx = child->perf_event_ctxp[ctxn]; 10561 if (!child_ctx) { 10562 /* 10563 * This is executed from the parent task context, so 10564 * inherit events that have been marked for cloning. 10565 * First allocate and initialize a context for the 10566 * child. 10567 */ 10568 10569 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10570 if (!child_ctx) 10571 return -ENOMEM; 10572 10573 child->perf_event_ctxp[ctxn] = child_ctx; 10574 } 10575 10576 ret = inherit_group(event, parent, parent_ctx, 10577 child, child_ctx); 10578 10579 if (ret) 10580 *inherited_all = 0; 10581 10582 return ret; 10583 } 10584 10585 /* 10586 * Initialize the perf_event context in task_struct 10587 */ 10588 static int perf_event_init_context(struct task_struct *child, int ctxn) 10589 { 10590 struct perf_event_context *child_ctx, *parent_ctx; 10591 struct perf_event_context *cloned_ctx; 10592 struct perf_event *event; 10593 struct task_struct *parent = current; 10594 int inherited_all = 1; 10595 unsigned long flags; 10596 int ret = 0; 10597 10598 if (likely(!parent->perf_event_ctxp[ctxn])) 10599 return 0; 10600 10601 /* 10602 * If the parent's context is a clone, pin it so it won't get 10603 * swapped under us. 10604 */ 10605 parent_ctx = perf_pin_task_context(parent, ctxn); 10606 if (!parent_ctx) 10607 return 0; 10608 10609 /* 10610 * No need to check if parent_ctx != NULL here; since we saw 10611 * it non-NULL earlier, the only reason for it to become NULL 10612 * is if we exit, and since we're currently in the middle of 10613 * a fork we can't be exiting at the same time. 10614 */ 10615 10616 /* 10617 * Lock the parent list. No need to lock the child - not PID 10618 * hashed yet and not running, so nobody can access it. 10619 */ 10620 mutex_lock(&parent_ctx->mutex); 10621 10622 /* 10623 * We dont have to disable NMIs - we are only looking at 10624 * the list, not manipulating it: 10625 */ 10626 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10627 ret = inherit_task_group(event, parent, parent_ctx, 10628 child, ctxn, &inherited_all); 10629 if (ret) 10630 break; 10631 } 10632 10633 /* 10634 * We can't hold ctx->lock when iterating the ->flexible_group list due 10635 * to allocations, but we need to prevent rotation because 10636 * rotate_ctx() will change the list from interrupt context. 10637 */ 10638 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10639 parent_ctx->rotate_disable = 1; 10640 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10641 10642 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10643 ret = inherit_task_group(event, parent, parent_ctx, 10644 child, ctxn, &inherited_all); 10645 if (ret) 10646 break; 10647 } 10648 10649 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10650 parent_ctx->rotate_disable = 0; 10651 10652 child_ctx = child->perf_event_ctxp[ctxn]; 10653 10654 if (child_ctx && inherited_all) { 10655 /* 10656 * Mark the child context as a clone of the parent 10657 * context, or of whatever the parent is a clone of. 10658 * 10659 * Note that if the parent is a clone, the holding of 10660 * parent_ctx->lock avoids it from being uncloned. 10661 */ 10662 cloned_ctx = parent_ctx->parent_ctx; 10663 if (cloned_ctx) { 10664 child_ctx->parent_ctx = cloned_ctx; 10665 child_ctx->parent_gen = parent_ctx->parent_gen; 10666 } else { 10667 child_ctx->parent_ctx = parent_ctx; 10668 child_ctx->parent_gen = parent_ctx->generation; 10669 } 10670 get_ctx(child_ctx->parent_ctx); 10671 } 10672 10673 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10674 mutex_unlock(&parent_ctx->mutex); 10675 10676 perf_unpin_context(parent_ctx); 10677 put_ctx(parent_ctx); 10678 10679 return ret; 10680 } 10681 10682 /* 10683 * Initialize the perf_event context in task_struct 10684 */ 10685 int perf_event_init_task(struct task_struct *child) 10686 { 10687 int ctxn, ret; 10688 10689 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10690 mutex_init(&child->perf_event_mutex); 10691 INIT_LIST_HEAD(&child->perf_event_list); 10692 10693 for_each_task_context_nr(ctxn) { 10694 ret = perf_event_init_context(child, ctxn); 10695 if (ret) { 10696 perf_event_free_task(child); 10697 return ret; 10698 } 10699 } 10700 10701 return 0; 10702 } 10703 10704 static void __init perf_event_init_all_cpus(void) 10705 { 10706 struct swevent_htable *swhash; 10707 int cpu; 10708 10709 for_each_possible_cpu(cpu) { 10710 swhash = &per_cpu(swevent_htable, cpu); 10711 mutex_init(&swhash->hlist_mutex); 10712 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10713 10714 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10715 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10716 10717 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10718 } 10719 } 10720 10721 int perf_event_init_cpu(unsigned int cpu) 10722 { 10723 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10724 10725 mutex_lock(&swhash->hlist_mutex); 10726 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10727 struct swevent_hlist *hlist; 10728 10729 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10730 WARN_ON(!hlist); 10731 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10732 } 10733 mutex_unlock(&swhash->hlist_mutex); 10734 return 0; 10735 } 10736 10737 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10738 static void __perf_event_exit_context(void *__info) 10739 { 10740 struct perf_event_context *ctx = __info; 10741 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10742 struct perf_event *event; 10743 10744 raw_spin_lock(&ctx->lock); 10745 list_for_each_entry(event, &ctx->event_list, event_entry) 10746 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10747 raw_spin_unlock(&ctx->lock); 10748 } 10749 10750 static void perf_event_exit_cpu_context(int cpu) 10751 { 10752 struct perf_event_context *ctx; 10753 struct pmu *pmu; 10754 int idx; 10755 10756 idx = srcu_read_lock(&pmus_srcu); 10757 list_for_each_entry_rcu(pmu, &pmus, entry) { 10758 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10759 10760 mutex_lock(&ctx->mutex); 10761 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10762 mutex_unlock(&ctx->mutex); 10763 } 10764 srcu_read_unlock(&pmus_srcu, idx); 10765 } 10766 #else 10767 10768 static void perf_event_exit_cpu_context(int cpu) { } 10769 10770 #endif 10771 10772 int perf_event_exit_cpu(unsigned int cpu) 10773 { 10774 perf_event_exit_cpu_context(cpu); 10775 return 0; 10776 } 10777 10778 static int 10779 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10780 { 10781 int cpu; 10782 10783 for_each_online_cpu(cpu) 10784 perf_event_exit_cpu(cpu); 10785 10786 return NOTIFY_OK; 10787 } 10788 10789 /* 10790 * Run the perf reboot notifier at the very last possible moment so that 10791 * the generic watchdog code runs as long as possible. 10792 */ 10793 static struct notifier_block perf_reboot_notifier = { 10794 .notifier_call = perf_reboot, 10795 .priority = INT_MIN, 10796 }; 10797 10798 void __init perf_event_init(void) 10799 { 10800 int ret; 10801 10802 idr_init(&pmu_idr); 10803 10804 perf_event_init_all_cpus(); 10805 init_srcu_struct(&pmus_srcu); 10806 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10807 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10808 perf_pmu_register(&perf_task_clock, NULL, -1); 10809 perf_tp_register(); 10810 perf_event_init_cpu(smp_processor_id()); 10811 register_reboot_notifier(&perf_reboot_notifier); 10812 10813 ret = init_hw_breakpoint(); 10814 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10815 10816 /* 10817 * Build time assertion that we keep the data_head at the intended 10818 * location. IOW, validation we got the __reserved[] size right. 10819 */ 10820 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10821 != 1024); 10822 } 10823 10824 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10825 char *page) 10826 { 10827 struct perf_pmu_events_attr *pmu_attr = 10828 container_of(attr, struct perf_pmu_events_attr, attr); 10829 10830 if (pmu_attr->event_str) 10831 return sprintf(page, "%s\n", pmu_attr->event_str); 10832 10833 return 0; 10834 } 10835 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10836 10837 static int __init perf_event_sysfs_init(void) 10838 { 10839 struct pmu *pmu; 10840 int ret; 10841 10842 mutex_lock(&pmus_lock); 10843 10844 ret = bus_register(&pmu_bus); 10845 if (ret) 10846 goto unlock; 10847 10848 list_for_each_entry(pmu, &pmus, entry) { 10849 if (!pmu->name || pmu->type < 0) 10850 continue; 10851 10852 ret = pmu_dev_alloc(pmu); 10853 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10854 } 10855 pmu_bus_running = 1; 10856 ret = 0; 10857 10858 unlock: 10859 mutex_unlock(&pmus_lock); 10860 10861 return ret; 10862 } 10863 device_initcall(perf_event_sysfs_init); 10864 10865 #ifdef CONFIG_CGROUP_PERF 10866 static struct cgroup_subsys_state * 10867 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10868 { 10869 struct perf_cgroup *jc; 10870 10871 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10872 if (!jc) 10873 return ERR_PTR(-ENOMEM); 10874 10875 jc->info = alloc_percpu(struct perf_cgroup_info); 10876 if (!jc->info) { 10877 kfree(jc); 10878 return ERR_PTR(-ENOMEM); 10879 } 10880 10881 return &jc->css; 10882 } 10883 10884 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10885 { 10886 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10887 10888 free_percpu(jc->info); 10889 kfree(jc); 10890 } 10891 10892 static int __perf_cgroup_move(void *info) 10893 { 10894 struct task_struct *task = info; 10895 rcu_read_lock(); 10896 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10897 rcu_read_unlock(); 10898 return 0; 10899 } 10900 10901 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10902 { 10903 struct task_struct *task; 10904 struct cgroup_subsys_state *css; 10905 10906 cgroup_taskset_for_each(task, css, tset) 10907 task_function_call(task, __perf_cgroup_move, task); 10908 } 10909 10910 struct cgroup_subsys perf_event_cgrp_subsys = { 10911 .css_alloc = perf_cgroup_css_alloc, 10912 .css_free = perf_cgroup_css_free, 10913 .attach = perf_cgroup_attach, 10914 }; 10915 #endif /* CONFIG_CGROUP_PERF */ 10916