1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 enum event_type_t { 159 EVENT_FLEXIBLE = 0x01, 160 EVENT_PINNED = 0x02, 161 EVENT_TIME = 0x04, 162 EVENT_FROZEN = 0x08, 163 /* see ctx_resched() for details */ 164 EVENT_CPU = 0x10, 165 EVENT_CGROUP = 0x20, 166 167 /* compound helpers */ 168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 170 }; 171 172 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 173 { 174 raw_spin_lock(&ctx->lock); 175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 176 } 177 178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 179 struct perf_event_context *ctx) 180 { 181 __perf_ctx_lock(&cpuctx->ctx); 182 if (ctx) 183 __perf_ctx_lock(ctx); 184 } 185 186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 187 { 188 /* 189 * If ctx_sched_in() didn't again set any ALL flags, clean up 190 * after ctx_sched_out() by clearing is_active. 191 */ 192 if (ctx->is_active & EVENT_FROZEN) { 193 if (!(ctx->is_active & EVENT_ALL)) 194 ctx->is_active = 0; 195 else 196 ctx->is_active &= ~EVENT_FROZEN; 197 } 198 raw_spin_unlock(&ctx->lock); 199 } 200 201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 202 struct perf_event_context *ctx) 203 { 204 if (ctx) 205 __perf_ctx_unlock(ctx); 206 __perf_ctx_unlock(&cpuctx->ctx); 207 } 208 209 #define TASK_TOMBSTONE ((void *)-1L) 210 211 static bool is_kernel_event(struct perf_event *event) 212 { 213 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 214 } 215 216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 217 218 struct perf_event_context *perf_cpu_task_ctx(void) 219 { 220 lockdep_assert_irqs_disabled(); 221 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 222 } 223 224 /* 225 * On task ctx scheduling... 226 * 227 * When !ctx->nr_events a task context will not be scheduled. This means 228 * we can disable the scheduler hooks (for performance) without leaving 229 * pending task ctx state. 230 * 231 * This however results in two special cases: 232 * 233 * - removing the last event from a task ctx; this is relatively straight 234 * forward and is done in __perf_remove_from_context. 235 * 236 * - adding the first event to a task ctx; this is tricky because we cannot 237 * rely on ctx->is_active and therefore cannot use event_function_call(). 238 * See perf_install_in_context(). 239 * 240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 241 */ 242 243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 244 struct perf_event_context *, void *); 245 246 struct event_function_struct { 247 struct perf_event *event; 248 event_f func; 249 void *data; 250 }; 251 252 static int event_function(void *info) 253 { 254 struct event_function_struct *efs = info; 255 struct perf_event *event = efs->event; 256 struct perf_event_context *ctx = event->ctx; 257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 258 struct perf_event_context *task_ctx = cpuctx->task_ctx; 259 int ret = 0; 260 261 lockdep_assert_irqs_disabled(); 262 263 perf_ctx_lock(cpuctx, task_ctx); 264 /* 265 * Since we do the IPI call without holding ctx->lock things can have 266 * changed, double check we hit the task we set out to hit. 267 */ 268 if (ctx->task) { 269 if (ctx->task != current) { 270 ret = -ESRCH; 271 goto unlock; 272 } 273 274 /* 275 * We only use event_function_call() on established contexts, 276 * and event_function() is only ever called when active (or 277 * rather, we'll have bailed in task_function_call() or the 278 * above ctx->task != current test), therefore we must have 279 * ctx->is_active here. 280 */ 281 WARN_ON_ONCE(!ctx->is_active); 282 /* 283 * And since we have ctx->is_active, cpuctx->task_ctx must 284 * match. 285 */ 286 WARN_ON_ONCE(task_ctx != ctx); 287 } else { 288 WARN_ON_ONCE(&cpuctx->ctx != ctx); 289 } 290 291 efs->func(event, cpuctx, ctx, efs->data); 292 unlock: 293 perf_ctx_unlock(cpuctx, task_ctx); 294 295 return ret; 296 } 297 298 static void event_function_call(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 302 struct perf_cpu_context *cpuctx; 303 struct event_function_struct efs = { 304 .event = event, 305 .func = func, 306 .data = data, 307 }; 308 309 if (!event->parent) { 310 /* 311 * If this is a !child event, we must hold ctx::mutex to 312 * stabilize the event->ctx relation. See 313 * perf_event_ctx_lock(). 314 */ 315 lockdep_assert_held(&ctx->mutex); 316 } 317 318 if (!task) { 319 cpu_function_call(event->cpu, event_function, &efs); 320 return; 321 } 322 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 again: 327 if (!task_function_call(task, event_function, &efs)) 328 return; 329 330 local_irq_disable(); 331 cpuctx = this_cpu_ptr(&perf_cpu_context); 332 perf_ctx_lock(cpuctx, ctx); 333 /* 334 * Reload the task pointer, it might have been changed by 335 * a concurrent perf_event_context_sched_out(). 336 */ 337 task = ctx->task; 338 if (task == TASK_TOMBSTONE) 339 goto unlock; 340 if (ctx->is_active) { 341 perf_ctx_unlock(cpuctx, ctx); 342 local_irq_enable(); 343 goto again; 344 } 345 func(event, NULL, ctx, data); 346 unlock: 347 perf_ctx_unlock(cpuctx, ctx); 348 local_irq_enable(); 349 } 350 351 /* 352 * Similar to event_function_call() + event_function(), but hard assumes IRQs 353 * are already disabled and we're on the right CPU. 354 */ 355 static void event_function_local(struct perf_event *event, event_f func, void *data) 356 { 357 struct perf_event_context *ctx = event->ctx; 358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 359 struct task_struct *task = READ_ONCE(ctx->task); 360 struct perf_event_context *task_ctx = NULL; 361 362 lockdep_assert_irqs_disabled(); 363 364 if (task) { 365 if (task == TASK_TOMBSTONE) 366 return; 367 368 task_ctx = ctx; 369 } 370 371 perf_ctx_lock(cpuctx, task_ctx); 372 373 task = ctx->task; 374 if (task == TASK_TOMBSTONE) 375 goto unlock; 376 377 if (task) { 378 /* 379 * We must be either inactive or active and the right task, 380 * otherwise we're screwed, since we cannot IPI to somewhere 381 * else. 382 */ 383 if (ctx->is_active) { 384 if (WARN_ON_ONCE(task != current)) 385 goto unlock; 386 387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 388 goto unlock; 389 } 390 } else { 391 WARN_ON_ONCE(&cpuctx->ctx != ctx); 392 } 393 394 func(event, cpuctx, ctx, data); 395 unlock: 396 perf_ctx_unlock(cpuctx, task_ctx); 397 } 398 399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 400 PERF_FLAG_FD_OUTPUT |\ 401 PERF_FLAG_PID_CGROUP |\ 402 PERF_FLAG_FD_CLOEXEC) 403 404 /* 405 * branch priv levels that need permission checks 406 */ 407 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 408 (PERF_SAMPLE_BRANCH_KERNEL |\ 409 PERF_SAMPLE_BRANCH_HV) 410 411 /* 412 * perf_sched_events : >0 events exist 413 */ 414 415 static void perf_sched_delayed(struct work_struct *work); 416 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 418 static DEFINE_MUTEX(perf_sched_mutex); 419 static atomic_t perf_sched_count; 420 421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 422 423 static atomic_t nr_mmap_events __read_mostly; 424 static atomic_t nr_comm_events __read_mostly; 425 static atomic_t nr_namespaces_events __read_mostly; 426 static atomic_t nr_task_events __read_mostly; 427 static atomic_t nr_freq_events __read_mostly; 428 static atomic_t nr_switch_events __read_mostly; 429 static atomic_t nr_ksymbol_events __read_mostly; 430 static atomic_t nr_bpf_events __read_mostly; 431 static atomic_t nr_cgroup_events __read_mostly; 432 static atomic_t nr_text_poke_events __read_mostly; 433 static atomic_t nr_build_id_events __read_mostly; 434 435 static LIST_HEAD(pmus); 436 static DEFINE_MUTEX(pmus_lock); 437 static struct srcu_struct pmus_srcu; 438 static cpumask_var_t perf_online_mask; 439 static cpumask_var_t perf_online_core_mask; 440 static cpumask_var_t perf_online_die_mask; 441 static cpumask_var_t perf_online_cluster_mask; 442 static cpumask_var_t perf_online_pkg_mask; 443 static cpumask_var_t perf_online_sys_mask; 444 static struct kmem_cache *perf_event_cache; 445 446 /* 447 * perf event paranoia level: 448 * -1 - not paranoid at all 449 * 0 - disallow raw tracepoint access for unpriv 450 * 1 - disallow cpu events for unpriv 451 * 2 - disallow kernel profiling for unpriv 452 */ 453 int sysctl_perf_event_paranoid __read_mostly = 2; 454 455 /* Minimum for 512 kiB + 1 user control page */ 456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 457 458 /* 459 * max perf event sample rate 460 */ 461 #define DEFAULT_MAX_SAMPLE_RATE 100000 462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 464 465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 466 467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 469 470 static int perf_sample_allowed_ns __read_mostly = 471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 472 473 static void update_perf_cpu_limits(void) 474 { 475 u64 tmp = perf_sample_period_ns; 476 477 tmp *= sysctl_perf_cpu_time_max_percent; 478 tmp = div_u64(tmp, 100); 479 if (!tmp) 480 tmp = 1; 481 482 WRITE_ONCE(perf_sample_allowed_ns, tmp); 483 } 484 485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 486 487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 488 void *buffer, size_t *lenp, loff_t *ppos) 489 { 490 int ret; 491 int perf_cpu = sysctl_perf_cpu_time_max_percent; 492 /* 493 * If throttling is disabled don't allow the write: 494 */ 495 if (write && (perf_cpu == 100 || perf_cpu == 0)) 496 return -EINVAL; 497 498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 499 if (ret || !write) 500 return ret; 501 502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 504 update_perf_cpu_limits(); 505 506 return 0; 507 } 508 509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 510 511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 512 void *buffer, size_t *lenp, loff_t *ppos) 513 { 514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 516 if (ret || !write) 517 return ret; 518 519 if (sysctl_perf_cpu_time_max_percent == 100 || 520 sysctl_perf_cpu_time_max_percent == 0) { 521 printk(KERN_WARNING 522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 523 WRITE_ONCE(perf_sample_allowed_ns, 0); 524 } else { 525 update_perf_cpu_limits(); 526 } 527 528 return 0; 529 } 530 531 /* 532 * perf samples are done in some very critical code paths (NMIs). 533 * If they take too much CPU time, the system can lock up and not 534 * get any real work done. This will drop the sample rate when 535 * we detect that events are taking too long. 536 */ 537 #define NR_ACCUMULATED_SAMPLES 128 538 static DEFINE_PER_CPU(u64, running_sample_length); 539 540 static u64 __report_avg; 541 static u64 __report_allowed; 542 543 static void perf_duration_warn(struct irq_work *w) 544 { 545 printk_ratelimited(KERN_INFO 546 "perf: interrupt took too long (%lld > %lld), lowering " 547 "kernel.perf_event_max_sample_rate to %d\n", 548 __report_avg, __report_allowed, 549 sysctl_perf_event_sample_rate); 550 } 551 552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 553 554 void perf_sample_event_took(u64 sample_len_ns) 555 { 556 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 557 u64 running_len; 558 u64 avg_len; 559 u32 max; 560 561 if (max_len == 0) 562 return; 563 564 /* Decay the counter by 1 average sample. */ 565 running_len = __this_cpu_read(running_sample_length); 566 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 567 running_len += sample_len_ns; 568 __this_cpu_write(running_sample_length, running_len); 569 570 /* 571 * Note: this will be biased artificially low until we have 572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 573 * from having to maintain a count. 574 */ 575 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 576 if (avg_len <= max_len) 577 return; 578 579 __report_avg = avg_len; 580 __report_allowed = max_len; 581 582 /* 583 * Compute a throttle threshold 25% below the current duration. 584 */ 585 avg_len += avg_len / 4; 586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 587 if (avg_len < max) 588 max /= (u32)avg_len; 589 else 590 max = 1; 591 592 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 593 WRITE_ONCE(max_samples_per_tick, max); 594 595 sysctl_perf_event_sample_rate = max * HZ; 596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 597 598 if (!irq_work_queue(&perf_duration_work)) { 599 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 600 "kernel.perf_event_max_sample_rate to %d\n", 601 __report_avg, __report_allowed, 602 sysctl_perf_event_sample_rate); 603 } 604 } 605 606 static atomic64_t perf_event_id; 607 608 static void update_context_time(struct perf_event_context *ctx); 609 static u64 perf_event_time(struct perf_event *event); 610 611 void __weak perf_event_print_debug(void) { } 612 613 static inline u64 perf_clock(void) 614 { 615 return local_clock(); 616 } 617 618 static inline u64 perf_event_clock(struct perf_event *event) 619 { 620 return event->clock(); 621 } 622 623 /* 624 * State based event timekeeping... 625 * 626 * The basic idea is to use event->state to determine which (if any) time 627 * fields to increment with the current delta. This means we only need to 628 * update timestamps when we change state or when they are explicitly requested 629 * (read). 630 * 631 * Event groups make things a little more complicated, but not terribly so. The 632 * rules for a group are that if the group leader is OFF the entire group is 633 * OFF, irrespective of what the group member states are. This results in 634 * __perf_effective_state(). 635 * 636 * A further ramification is that when a group leader flips between OFF and 637 * !OFF, we need to update all group member times. 638 * 639 * 640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 641 * need to make sure the relevant context time is updated before we try and 642 * update our timestamps. 643 */ 644 645 static __always_inline enum perf_event_state 646 __perf_effective_state(struct perf_event *event) 647 { 648 struct perf_event *leader = event->group_leader; 649 650 if (leader->state <= PERF_EVENT_STATE_OFF) 651 return leader->state; 652 653 return event->state; 654 } 655 656 static __always_inline void 657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 658 { 659 enum perf_event_state state = __perf_effective_state(event); 660 u64 delta = now - event->tstamp; 661 662 *enabled = event->total_time_enabled; 663 if (state >= PERF_EVENT_STATE_INACTIVE) 664 *enabled += delta; 665 666 *running = event->total_time_running; 667 if (state >= PERF_EVENT_STATE_ACTIVE) 668 *running += delta; 669 } 670 671 static void perf_event_update_time(struct perf_event *event) 672 { 673 u64 now = perf_event_time(event); 674 675 __perf_update_times(event, now, &event->total_time_enabled, 676 &event->total_time_running); 677 event->tstamp = now; 678 } 679 680 static void perf_event_update_sibling_time(struct perf_event *leader) 681 { 682 struct perf_event *sibling; 683 684 for_each_sibling_event(sibling, leader) 685 perf_event_update_time(sibling); 686 } 687 688 static void 689 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 690 { 691 if (event->state == state) 692 return; 693 694 perf_event_update_time(event); 695 /* 696 * If a group leader gets enabled/disabled all its siblings 697 * are affected too. 698 */ 699 if ((event->state < 0) ^ (state < 0)) 700 perf_event_update_sibling_time(event); 701 702 WRITE_ONCE(event->state, state); 703 } 704 705 /* 706 * UP store-release, load-acquire 707 */ 708 709 #define __store_release(ptr, val) \ 710 do { \ 711 barrier(); \ 712 WRITE_ONCE(*(ptr), (val)); \ 713 } while (0) 714 715 #define __load_acquire(ptr) \ 716 ({ \ 717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 718 barrier(); \ 719 ___p; \ 720 }) 721 722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 724 if (_cgroup && !_epc->nr_cgroups) \ 725 continue; \ 726 else if (_pmu && _epc->pmu != _pmu) \ 727 continue; \ 728 else 729 730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 731 { 732 struct perf_event_pmu_context *pmu_ctx; 733 734 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 735 perf_pmu_disable(pmu_ctx->pmu); 736 } 737 738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 739 { 740 struct perf_event_pmu_context *pmu_ctx; 741 742 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 743 perf_pmu_enable(pmu_ctx->pmu); 744 } 745 746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 748 749 #ifdef CONFIG_CGROUP_PERF 750 751 static inline bool 752 perf_cgroup_match(struct perf_event *event) 753 { 754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 755 756 /* @event doesn't care about cgroup */ 757 if (!event->cgrp) 758 return true; 759 760 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 761 if (!cpuctx->cgrp) 762 return false; 763 764 /* 765 * Cgroup scoping is recursive. An event enabled for a cgroup is 766 * also enabled for all its descendant cgroups. If @cpuctx's 767 * cgroup is a descendant of @event's (the test covers identity 768 * case), it's a match. 769 */ 770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 771 event->cgrp->css.cgroup); 772 } 773 774 static inline void perf_detach_cgroup(struct perf_event *event) 775 { 776 css_put(&event->cgrp->css); 777 event->cgrp = NULL; 778 } 779 780 static inline int is_cgroup_event(struct perf_event *event) 781 { 782 return event->cgrp != NULL; 783 } 784 785 static inline u64 perf_cgroup_event_time(struct perf_event *event) 786 { 787 struct perf_cgroup_info *t; 788 789 t = per_cpu_ptr(event->cgrp->info, event->cpu); 790 return t->time; 791 } 792 793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 794 { 795 struct perf_cgroup_info *t; 796 797 t = per_cpu_ptr(event->cgrp->info, event->cpu); 798 if (!__load_acquire(&t->active)) 799 return t->time; 800 now += READ_ONCE(t->timeoffset); 801 return now; 802 } 803 804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 805 { 806 if (adv) 807 info->time += now - info->timestamp; 808 info->timestamp = now; 809 /* 810 * see update_context_time() 811 */ 812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 813 } 814 815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 816 { 817 struct perf_cgroup *cgrp = cpuctx->cgrp; 818 struct cgroup_subsys_state *css; 819 struct perf_cgroup_info *info; 820 821 if (cgrp) { 822 u64 now = perf_clock(); 823 824 for (css = &cgrp->css; css; css = css->parent) { 825 cgrp = container_of(css, struct perf_cgroup, css); 826 info = this_cpu_ptr(cgrp->info); 827 828 __update_cgrp_time(info, now, true); 829 if (final) 830 __store_release(&info->active, 0); 831 } 832 } 833 } 834 835 static inline void update_cgrp_time_from_event(struct perf_event *event) 836 { 837 struct perf_cgroup_info *info; 838 839 /* 840 * ensure we access cgroup data only when needed and 841 * when we know the cgroup is pinned (css_get) 842 */ 843 if (!is_cgroup_event(event)) 844 return; 845 846 info = this_cpu_ptr(event->cgrp->info); 847 /* 848 * Do not update time when cgroup is not active 849 */ 850 if (info->active) 851 __update_cgrp_time(info, perf_clock(), true); 852 } 853 854 static inline void 855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 856 { 857 struct perf_event_context *ctx = &cpuctx->ctx; 858 struct perf_cgroup *cgrp = cpuctx->cgrp; 859 struct perf_cgroup_info *info; 860 struct cgroup_subsys_state *css; 861 862 /* 863 * ctx->lock held by caller 864 * ensure we do not access cgroup data 865 * unless we have the cgroup pinned (css_get) 866 */ 867 if (!cgrp) 868 return; 869 870 WARN_ON_ONCE(!ctx->nr_cgroups); 871 872 for (css = &cgrp->css; css; css = css->parent) { 873 cgrp = container_of(css, struct perf_cgroup, css); 874 info = this_cpu_ptr(cgrp->info); 875 __update_cgrp_time(info, ctx->timestamp, false); 876 __store_release(&info->active, 1); 877 } 878 } 879 880 /* 881 * reschedule events based on the cgroup constraint of task. 882 */ 883 static void perf_cgroup_switch(struct task_struct *task) 884 { 885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 886 struct perf_cgroup *cgrp; 887 888 /* 889 * cpuctx->cgrp is set when the first cgroup event enabled, 890 * and is cleared when the last cgroup event disabled. 891 */ 892 if (READ_ONCE(cpuctx->cgrp) == NULL) 893 return; 894 895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 896 897 cgrp = perf_cgroup_from_task(task, NULL); 898 if (READ_ONCE(cpuctx->cgrp) == cgrp) 899 return; 900 901 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 902 perf_ctx_disable(&cpuctx->ctx, true); 903 904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 905 /* 906 * must not be done before ctxswout due 907 * to update_cgrp_time_from_cpuctx() in 908 * ctx_sched_out() 909 */ 910 cpuctx->cgrp = cgrp; 911 /* 912 * set cgrp before ctxsw in to allow 913 * perf_cgroup_set_timestamp() in ctx_sched_in() 914 * to not have to pass task around 915 */ 916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 917 918 perf_ctx_enable(&cpuctx->ctx, true); 919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 920 } 921 922 static int perf_cgroup_ensure_storage(struct perf_event *event, 923 struct cgroup_subsys_state *css) 924 { 925 struct perf_cpu_context *cpuctx; 926 struct perf_event **storage; 927 int cpu, heap_size, ret = 0; 928 929 /* 930 * Allow storage to have sufficient space for an iterator for each 931 * possibly nested cgroup plus an iterator for events with no cgroup. 932 */ 933 for (heap_size = 1; css; css = css->parent) 934 heap_size++; 935 936 for_each_possible_cpu(cpu) { 937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 938 if (heap_size <= cpuctx->heap_size) 939 continue; 940 941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 942 GFP_KERNEL, cpu_to_node(cpu)); 943 if (!storage) { 944 ret = -ENOMEM; 945 break; 946 } 947 948 raw_spin_lock_irq(&cpuctx->ctx.lock); 949 if (cpuctx->heap_size < heap_size) { 950 swap(cpuctx->heap, storage); 951 if (storage == cpuctx->heap_default) 952 storage = NULL; 953 cpuctx->heap_size = heap_size; 954 } 955 raw_spin_unlock_irq(&cpuctx->ctx.lock); 956 957 kfree(storage); 958 } 959 960 return ret; 961 } 962 963 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 964 struct perf_event_attr *attr, 965 struct perf_event *group_leader) 966 { 967 struct perf_cgroup *cgrp; 968 struct cgroup_subsys_state *css; 969 struct fd f = fdget(fd); 970 int ret = 0; 971 972 if (!f.file) 973 return -EBADF; 974 975 css = css_tryget_online_from_dir(f.file->f_path.dentry, 976 &perf_event_cgrp_subsys); 977 if (IS_ERR(css)) { 978 ret = PTR_ERR(css); 979 goto out; 980 } 981 982 ret = perf_cgroup_ensure_storage(event, css); 983 if (ret) 984 goto out; 985 986 cgrp = container_of(css, struct perf_cgroup, css); 987 event->cgrp = cgrp; 988 989 /* 990 * all events in a group must monitor 991 * the same cgroup because a task belongs 992 * to only one perf cgroup at a time 993 */ 994 if (group_leader && group_leader->cgrp != cgrp) { 995 perf_detach_cgroup(event); 996 ret = -EINVAL; 997 } 998 out: 999 fdput(f); 1000 return ret; 1001 } 1002 1003 static inline void 1004 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1005 { 1006 struct perf_cpu_context *cpuctx; 1007 1008 if (!is_cgroup_event(event)) 1009 return; 1010 1011 event->pmu_ctx->nr_cgroups++; 1012 1013 /* 1014 * Because cgroup events are always per-cpu events, 1015 * @ctx == &cpuctx->ctx. 1016 */ 1017 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1018 1019 if (ctx->nr_cgroups++) 1020 return; 1021 1022 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1023 } 1024 1025 static inline void 1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1027 { 1028 struct perf_cpu_context *cpuctx; 1029 1030 if (!is_cgroup_event(event)) 1031 return; 1032 1033 event->pmu_ctx->nr_cgroups--; 1034 1035 /* 1036 * Because cgroup events are always per-cpu events, 1037 * @ctx == &cpuctx->ctx. 1038 */ 1039 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1040 1041 if (--ctx->nr_cgroups) 1042 return; 1043 1044 cpuctx->cgrp = NULL; 1045 } 1046 1047 #else /* !CONFIG_CGROUP_PERF */ 1048 1049 static inline bool 1050 perf_cgroup_match(struct perf_event *event) 1051 { 1052 return true; 1053 } 1054 1055 static inline void perf_detach_cgroup(struct perf_event *event) 1056 {} 1057 1058 static inline int is_cgroup_event(struct perf_event *event) 1059 { 1060 return 0; 1061 } 1062 1063 static inline void update_cgrp_time_from_event(struct perf_event *event) 1064 { 1065 } 1066 1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1068 bool final) 1069 { 1070 } 1071 1072 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1073 struct perf_event_attr *attr, 1074 struct perf_event *group_leader) 1075 { 1076 return -EINVAL; 1077 } 1078 1079 static inline void 1080 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1081 { 1082 } 1083 1084 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1085 { 1086 return 0; 1087 } 1088 1089 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1090 { 1091 return 0; 1092 } 1093 1094 static inline void 1095 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1096 { 1097 } 1098 1099 static inline void 1100 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1101 { 1102 } 1103 1104 static void perf_cgroup_switch(struct task_struct *task) 1105 { 1106 } 1107 #endif 1108 1109 /* 1110 * set default to be dependent on timer tick just 1111 * like original code 1112 */ 1113 #define PERF_CPU_HRTIMER (1000 / HZ) 1114 /* 1115 * function must be called with interrupts disabled 1116 */ 1117 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1118 { 1119 struct perf_cpu_pmu_context *cpc; 1120 bool rotations; 1121 1122 lockdep_assert_irqs_disabled(); 1123 1124 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1125 rotations = perf_rotate_context(cpc); 1126 1127 raw_spin_lock(&cpc->hrtimer_lock); 1128 if (rotations) 1129 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1130 else 1131 cpc->hrtimer_active = 0; 1132 raw_spin_unlock(&cpc->hrtimer_lock); 1133 1134 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1135 } 1136 1137 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1138 { 1139 struct hrtimer *timer = &cpc->hrtimer; 1140 struct pmu *pmu = cpc->epc.pmu; 1141 u64 interval; 1142 1143 /* 1144 * check default is sane, if not set then force to 1145 * default interval (1/tick) 1146 */ 1147 interval = pmu->hrtimer_interval_ms; 1148 if (interval < 1) 1149 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1150 1151 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1152 1153 raw_spin_lock_init(&cpc->hrtimer_lock); 1154 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1155 timer->function = perf_mux_hrtimer_handler; 1156 } 1157 1158 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1159 { 1160 struct hrtimer *timer = &cpc->hrtimer; 1161 unsigned long flags; 1162 1163 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1164 if (!cpc->hrtimer_active) { 1165 cpc->hrtimer_active = 1; 1166 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1167 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1168 } 1169 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1170 1171 return 0; 1172 } 1173 1174 static int perf_mux_hrtimer_restart_ipi(void *arg) 1175 { 1176 return perf_mux_hrtimer_restart(arg); 1177 } 1178 1179 void perf_pmu_disable(struct pmu *pmu) 1180 { 1181 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1182 if (!(*count)++) 1183 pmu->pmu_disable(pmu); 1184 } 1185 1186 void perf_pmu_enable(struct pmu *pmu) 1187 { 1188 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1189 if (!--(*count)) 1190 pmu->pmu_enable(pmu); 1191 } 1192 1193 static void perf_assert_pmu_disabled(struct pmu *pmu) 1194 { 1195 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1196 } 1197 1198 static void get_ctx(struct perf_event_context *ctx) 1199 { 1200 refcount_inc(&ctx->refcount); 1201 } 1202 1203 static void *alloc_task_ctx_data(struct pmu *pmu) 1204 { 1205 if (pmu->task_ctx_cache) 1206 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1207 1208 return NULL; 1209 } 1210 1211 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1212 { 1213 if (pmu->task_ctx_cache && task_ctx_data) 1214 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1215 } 1216 1217 static void free_ctx(struct rcu_head *head) 1218 { 1219 struct perf_event_context *ctx; 1220 1221 ctx = container_of(head, struct perf_event_context, rcu_head); 1222 kfree(ctx); 1223 } 1224 1225 static void put_ctx(struct perf_event_context *ctx) 1226 { 1227 if (refcount_dec_and_test(&ctx->refcount)) { 1228 if (ctx->parent_ctx) 1229 put_ctx(ctx->parent_ctx); 1230 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1231 put_task_struct(ctx->task); 1232 call_rcu(&ctx->rcu_head, free_ctx); 1233 } 1234 } 1235 1236 /* 1237 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1238 * perf_pmu_migrate_context() we need some magic. 1239 * 1240 * Those places that change perf_event::ctx will hold both 1241 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1242 * 1243 * Lock ordering is by mutex address. There are two other sites where 1244 * perf_event_context::mutex nests and those are: 1245 * 1246 * - perf_event_exit_task_context() [ child , 0 ] 1247 * perf_event_exit_event() 1248 * put_event() [ parent, 1 ] 1249 * 1250 * - perf_event_init_context() [ parent, 0 ] 1251 * inherit_task_group() 1252 * inherit_group() 1253 * inherit_event() 1254 * perf_event_alloc() 1255 * perf_init_event() 1256 * perf_try_init_event() [ child , 1 ] 1257 * 1258 * While it appears there is an obvious deadlock here -- the parent and child 1259 * nesting levels are inverted between the two. This is in fact safe because 1260 * life-time rules separate them. That is an exiting task cannot fork, and a 1261 * spawning task cannot (yet) exit. 1262 * 1263 * But remember that these are parent<->child context relations, and 1264 * migration does not affect children, therefore these two orderings should not 1265 * interact. 1266 * 1267 * The change in perf_event::ctx does not affect children (as claimed above) 1268 * because the sys_perf_event_open() case will install a new event and break 1269 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1270 * concerned with cpuctx and that doesn't have children. 1271 * 1272 * The places that change perf_event::ctx will issue: 1273 * 1274 * perf_remove_from_context(); 1275 * synchronize_rcu(); 1276 * perf_install_in_context(); 1277 * 1278 * to affect the change. The remove_from_context() + synchronize_rcu() should 1279 * quiesce the event, after which we can install it in the new location. This 1280 * means that only external vectors (perf_fops, prctl) can perturb the event 1281 * while in transit. Therefore all such accessors should also acquire 1282 * perf_event_context::mutex to serialize against this. 1283 * 1284 * However; because event->ctx can change while we're waiting to acquire 1285 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1286 * function. 1287 * 1288 * Lock order: 1289 * exec_update_lock 1290 * task_struct::perf_event_mutex 1291 * perf_event_context::mutex 1292 * perf_event::child_mutex; 1293 * perf_event_context::lock 1294 * mmap_lock 1295 * perf_event::mmap_mutex 1296 * perf_buffer::aux_mutex 1297 * perf_addr_filters_head::lock 1298 * 1299 * cpu_hotplug_lock 1300 * pmus_lock 1301 * cpuctx->mutex / perf_event_context::mutex 1302 */ 1303 static struct perf_event_context * 1304 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1305 { 1306 struct perf_event_context *ctx; 1307 1308 again: 1309 rcu_read_lock(); 1310 ctx = READ_ONCE(event->ctx); 1311 if (!refcount_inc_not_zero(&ctx->refcount)) { 1312 rcu_read_unlock(); 1313 goto again; 1314 } 1315 rcu_read_unlock(); 1316 1317 mutex_lock_nested(&ctx->mutex, nesting); 1318 if (event->ctx != ctx) { 1319 mutex_unlock(&ctx->mutex); 1320 put_ctx(ctx); 1321 goto again; 1322 } 1323 1324 return ctx; 1325 } 1326 1327 static inline struct perf_event_context * 1328 perf_event_ctx_lock(struct perf_event *event) 1329 { 1330 return perf_event_ctx_lock_nested(event, 0); 1331 } 1332 1333 static void perf_event_ctx_unlock(struct perf_event *event, 1334 struct perf_event_context *ctx) 1335 { 1336 mutex_unlock(&ctx->mutex); 1337 put_ctx(ctx); 1338 } 1339 1340 /* 1341 * This must be done under the ctx->lock, such as to serialize against 1342 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1343 * calling scheduler related locks and ctx->lock nests inside those. 1344 */ 1345 static __must_check struct perf_event_context * 1346 unclone_ctx(struct perf_event_context *ctx) 1347 { 1348 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1349 1350 lockdep_assert_held(&ctx->lock); 1351 1352 if (parent_ctx) 1353 ctx->parent_ctx = NULL; 1354 ctx->generation++; 1355 1356 return parent_ctx; 1357 } 1358 1359 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1360 enum pid_type type) 1361 { 1362 u32 nr; 1363 /* 1364 * only top level events have the pid namespace they were created in 1365 */ 1366 if (event->parent) 1367 event = event->parent; 1368 1369 nr = __task_pid_nr_ns(p, type, event->ns); 1370 /* avoid -1 if it is idle thread or runs in another ns */ 1371 if (!nr && !pid_alive(p)) 1372 nr = -1; 1373 return nr; 1374 } 1375 1376 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1377 { 1378 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1379 } 1380 1381 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1382 { 1383 return perf_event_pid_type(event, p, PIDTYPE_PID); 1384 } 1385 1386 /* 1387 * If we inherit events we want to return the parent event id 1388 * to userspace. 1389 */ 1390 static u64 primary_event_id(struct perf_event *event) 1391 { 1392 u64 id = event->id; 1393 1394 if (event->parent) 1395 id = event->parent->id; 1396 1397 return id; 1398 } 1399 1400 /* 1401 * Get the perf_event_context for a task and lock it. 1402 * 1403 * This has to cope with the fact that until it is locked, 1404 * the context could get moved to another task. 1405 */ 1406 static struct perf_event_context * 1407 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1408 { 1409 struct perf_event_context *ctx; 1410 1411 retry: 1412 /* 1413 * One of the few rules of preemptible RCU is that one cannot do 1414 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1415 * part of the read side critical section was irqs-enabled -- see 1416 * rcu_read_unlock_special(). 1417 * 1418 * Since ctx->lock nests under rq->lock we must ensure the entire read 1419 * side critical section has interrupts disabled. 1420 */ 1421 local_irq_save(*flags); 1422 rcu_read_lock(); 1423 ctx = rcu_dereference(task->perf_event_ctxp); 1424 if (ctx) { 1425 /* 1426 * If this context is a clone of another, it might 1427 * get swapped for another underneath us by 1428 * perf_event_task_sched_out, though the 1429 * rcu_read_lock() protects us from any context 1430 * getting freed. Lock the context and check if it 1431 * got swapped before we could get the lock, and retry 1432 * if so. If we locked the right context, then it 1433 * can't get swapped on us any more. 1434 */ 1435 raw_spin_lock(&ctx->lock); 1436 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1437 raw_spin_unlock(&ctx->lock); 1438 rcu_read_unlock(); 1439 local_irq_restore(*flags); 1440 goto retry; 1441 } 1442 1443 if (ctx->task == TASK_TOMBSTONE || 1444 !refcount_inc_not_zero(&ctx->refcount)) { 1445 raw_spin_unlock(&ctx->lock); 1446 ctx = NULL; 1447 } else { 1448 WARN_ON_ONCE(ctx->task != task); 1449 } 1450 } 1451 rcu_read_unlock(); 1452 if (!ctx) 1453 local_irq_restore(*flags); 1454 return ctx; 1455 } 1456 1457 /* 1458 * Get the context for a task and increment its pin_count so it 1459 * can't get swapped to another task. This also increments its 1460 * reference count so that the context can't get freed. 1461 */ 1462 static struct perf_event_context * 1463 perf_pin_task_context(struct task_struct *task) 1464 { 1465 struct perf_event_context *ctx; 1466 unsigned long flags; 1467 1468 ctx = perf_lock_task_context(task, &flags); 1469 if (ctx) { 1470 ++ctx->pin_count; 1471 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1472 } 1473 return ctx; 1474 } 1475 1476 static void perf_unpin_context(struct perf_event_context *ctx) 1477 { 1478 unsigned long flags; 1479 1480 raw_spin_lock_irqsave(&ctx->lock, flags); 1481 --ctx->pin_count; 1482 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1483 } 1484 1485 /* 1486 * Update the record of the current time in a context. 1487 */ 1488 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1489 { 1490 u64 now = perf_clock(); 1491 1492 lockdep_assert_held(&ctx->lock); 1493 1494 if (adv) 1495 ctx->time += now - ctx->timestamp; 1496 ctx->timestamp = now; 1497 1498 /* 1499 * The above: time' = time + (now - timestamp), can be re-arranged 1500 * into: time` = now + (time - timestamp), which gives a single value 1501 * offset to compute future time without locks on. 1502 * 1503 * See perf_event_time_now(), which can be used from NMI context where 1504 * it's (obviously) not possible to acquire ctx->lock in order to read 1505 * both the above values in a consistent manner. 1506 */ 1507 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1508 } 1509 1510 static void update_context_time(struct perf_event_context *ctx) 1511 { 1512 __update_context_time(ctx, true); 1513 } 1514 1515 static u64 perf_event_time(struct perf_event *event) 1516 { 1517 struct perf_event_context *ctx = event->ctx; 1518 1519 if (unlikely(!ctx)) 1520 return 0; 1521 1522 if (is_cgroup_event(event)) 1523 return perf_cgroup_event_time(event); 1524 1525 return ctx->time; 1526 } 1527 1528 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1529 { 1530 struct perf_event_context *ctx = event->ctx; 1531 1532 if (unlikely(!ctx)) 1533 return 0; 1534 1535 if (is_cgroup_event(event)) 1536 return perf_cgroup_event_time_now(event, now); 1537 1538 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1539 return ctx->time; 1540 1541 now += READ_ONCE(ctx->timeoffset); 1542 return now; 1543 } 1544 1545 static enum event_type_t get_event_type(struct perf_event *event) 1546 { 1547 struct perf_event_context *ctx = event->ctx; 1548 enum event_type_t event_type; 1549 1550 lockdep_assert_held(&ctx->lock); 1551 1552 /* 1553 * It's 'group type', really, because if our group leader is 1554 * pinned, so are we. 1555 */ 1556 if (event->group_leader != event) 1557 event = event->group_leader; 1558 1559 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1560 if (!ctx->task) 1561 event_type |= EVENT_CPU; 1562 1563 return event_type; 1564 } 1565 1566 /* 1567 * Helper function to initialize event group nodes. 1568 */ 1569 static void init_event_group(struct perf_event *event) 1570 { 1571 RB_CLEAR_NODE(&event->group_node); 1572 event->group_index = 0; 1573 } 1574 1575 /* 1576 * Extract pinned or flexible groups from the context 1577 * based on event attrs bits. 1578 */ 1579 static struct perf_event_groups * 1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1581 { 1582 if (event->attr.pinned) 1583 return &ctx->pinned_groups; 1584 else 1585 return &ctx->flexible_groups; 1586 } 1587 1588 /* 1589 * Helper function to initializes perf_event_group trees. 1590 */ 1591 static void perf_event_groups_init(struct perf_event_groups *groups) 1592 { 1593 groups->tree = RB_ROOT; 1594 groups->index = 0; 1595 } 1596 1597 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1598 { 1599 struct cgroup *cgroup = NULL; 1600 1601 #ifdef CONFIG_CGROUP_PERF 1602 if (event->cgrp) 1603 cgroup = event->cgrp->css.cgroup; 1604 #endif 1605 1606 return cgroup; 1607 } 1608 1609 /* 1610 * Compare function for event groups; 1611 * 1612 * Implements complex key that first sorts by CPU and then by virtual index 1613 * which provides ordering when rotating groups for the same CPU. 1614 */ 1615 static __always_inline int 1616 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1617 const struct cgroup *left_cgroup, const u64 left_group_index, 1618 const struct perf_event *right) 1619 { 1620 if (left_cpu < right->cpu) 1621 return -1; 1622 if (left_cpu > right->cpu) 1623 return 1; 1624 1625 if (left_pmu) { 1626 if (left_pmu < right->pmu_ctx->pmu) 1627 return -1; 1628 if (left_pmu > right->pmu_ctx->pmu) 1629 return 1; 1630 } 1631 1632 #ifdef CONFIG_CGROUP_PERF 1633 { 1634 const struct cgroup *right_cgroup = event_cgroup(right); 1635 1636 if (left_cgroup != right_cgroup) { 1637 if (!left_cgroup) { 1638 /* 1639 * Left has no cgroup but right does, no 1640 * cgroups come first. 1641 */ 1642 return -1; 1643 } 1644 if (!right_cgroup) { 1645 /* 1646 * Right has no cgroup but left does, no 1647 * cgroups come first. 1648 */ 1649 return 1; 1650 } 1651 /* Two dissimilar cgroups, order by id. */ 1652 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1653 return -1; 1654 1655 return 1; 1656 } 1657 } 1658 #endif 1659 1660 if (left_group_index < right->group_index) 1661 return -1; 1662 if (left_group_index > right->group_index) 1663 return 1; 1664 1665 return 0; 1666 } 1667 1668 #define __node_2_pe(node) \ 1669 rb_entry((node), struct perf_event, group_node) 1670 1671 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1672 { 1673 struct perf_event *e = __node_2_pe(a); 1674 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1675 e->group_index, __node_2_pe(b)) < 0; 1676 } 1677 1678 struct __group_key { 1679 int cpu; 1680 struct pmu *pmu; 1681 struct cgroup *cgroup; 1682 }; 1683 1684 static inline int __group_cmp(const void *key, const struct rb_node *node) 1685 { 1686 const struct __group_key *a = key; 1687 const struct perf_event *b = __node_2_pe(node); 1688 1689 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1690 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1691 } 1692 1693 static inline int 1694 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1695 { 1696 const struct __group_key *a = key; 1697 const struct perf_event *b = __node_2_pe(node); 1698 1699 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1700 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1701 b->group_index, b); 1702 } 1703 1704 /* 1705 * Insert @event into @groups' tree; using 1706 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1707 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1708 */ 1709 static void 1710 perf_event_groups_insert(struct perf_event_groups *groups, 1711 struct perf_event *event) 1712 { 1713 event->group_index = ++groups->index; 1714 1715 rb_add(&event->group_node, &groups->tree, __group_less); 1716 } 1717 1718 /* 1719 * Helper function to insert event into the pinned or flexible groups. 1720 */ 1721 static void 1722 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1723 { 1724 struct perf_event_groups *groups; 1725 1726 groups = get_event_groups(event, ctx); 1727 perf_event_groups_insert(groups, event); 1728 } 1729 1730 /* 1731 * Delete a group from a tree. 1732 */ 1733 static void 1734 perf_event_groups_delete(struct perf_event_groups *groups, 1735 struct perf_event *event) 1736 { 1737 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1738 RB_EMPTY_ROOT(&groups->tree)); 1739 1740 rb_erase(&event->group_node, &groups->tree); 1741 init_event_group(event); 1742 } 1743 1744 /* 1745 * Helper function to delete event from its groups. 1746 */ 1747 static void 1748 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1749 { 1750 struct perf_event_groups *groups; 1751 1752 groups = get_event_groups(event, ctx); 1753 perf_event_groups_delete(groups, event); 1754 } 1755 1756 /* 1757 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1758 */ 1759 static struct perf_event * 1760 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1761 struct pmu *pmu, struct cgroup *cgrp) 1762 { 1763 struct __group_key key = { 1764 .cpu = cpu, 1765 .pmu = pmu, 1766 .cgroup = cgrp, 1767 }; 1768 struct rb_node *node; 1769 1770 node = rb_find_first(&key, &groups->tree, __group_cmp); 1771 if (node) 1772 return __node_2_pe(node); 1773 1774 return NULL; 1775 } 1776 1777 static struct perf_event * 1778 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1779 { 1780 struct __group_key key = { 1781 .cpu = event->cpu, 1782 .pmu = pmu, 1783 .cgroup = event_cgroup(event), 1784 }; 1785 struct rb_node *next; 1786 1787 next = rb_next_match(&key, &event->group_node, __group_cmp); 1788 if (next) 1789 return __node_2_pe(next); 1790 1791 return NULL; 1792 } 1793 1794 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1795 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1796 event; event = perf_event_groups_next(event, pmu)) 1797 1798 /* 1799 * Iterate through the whole groups tree. 1800 */ 1801 #define perf_event_groups_for_each(event, groups) \ 1802 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1803 typeof(*event), group_node); event; \ 1804 event = rb_entry_safe(rb_next(&event->group_node), \ 1805 typeof(*event), group_node)) 1806 1807 /* 1808 * Does the event attribute request inherit with PERF_SAMPLE_READ 1809 */ 1810 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1811 { 1812 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1813 } 1814 1815 /* 1816 * Add an event from the lists for its context. 1817 * Must be called with ctx->mutex and ctx->lock held. 1818 */ 1819 static void 1820 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1821 { 1822 lockdep_assert_held(&ctx->lock); 1823 1824 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1825 event->attach_state |= PERF_ATTACH_CONTEXT; 1826 1827 event->tstamp = perf_event_time(event); 1828 1829 /* 1830 * If we're a stand alone event or group leader, we go to the context 1831 * list, group events are kept attached to the group so that 1832 * perf_group_detach can, at all times, locate all siblings. 1833 */ 1834 if (event->group_leader == event) { 1835 event->group_caps = event->event_caps; 1836 add_event_to_groups(event, ctx); 1837 } 1838 1839 list_add_rcu(&event->event_entry, &ctx->event_list); 1840 ctx->nr_events++; 1841 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1842 ctx->nr_user++; 1843 if (event->attr.inherit_stat) 1844 ctx->nr_stat++; 1845 if (has_inherit_and_sample_read(&event->attr)) 1846 local_inc(&ctx->nr_no_switch_fast); 1847 1848 if (event->state > PERF_EVENT_STATE_OFF) 1849 perf_cgroup_event_enable(event, ctx); 1850 1851 ctx->generation++; 1852 event->pmu_ctx->nr_events++; 1853 } 1854 1855 /* 1856 * Initialize event state based on the perf_event_attr::disabled. 1857 */ 1858 static inline void perf_event__state_init(struct perf_event *event) 1859 { 1860 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1861 PERF_EVENT_STATE_INACTIVE; 1862 } 1863 1864 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1865 { 1866 int entry = sizeof(u64); /* value */ 1867 int size = 0; 1868 int nr = 1; 1869 1870 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1871 size += sizeof(u64); 1872 1873 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1874 size += sizeof(u64); 1875 1876 if (read_format & PERF_FORMAT_ID) 1877 entry += sizeof(u64); 1878 1879 if (read_format & PERF_FORMAT_LOST) 1880 entry += sizeof(u64); 1881 1882 if (read_format & PERF_FORMAT_GROUP) { 1883 nr += nr_siblings; 1884 size += sizeof(u64); 1885 } 1886 1887 /* 1888 * Since perf_event_validate_size() limits this to 16k and inhibits 1889 * adding more siblings, this will never overflow. 1890 */ 1891 return size + nr * entry; 1892 } 1893 1894 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1895 { 1896 struct perf_sample_data *data; 1897 u16 size = 0; 1898 1899 if (sample_type & PERF_SAMPLE_IP) 1900 size += sizeof(data->ip); 1901 1902 if (sample_type & PERF_SAMPLE_ADDR) 1903 size += sizeof(data->addr); 1904 1905 if (sample_type & PERF_SAMPLE_PERIOD) 1906 size += sizeof(data->period); 1907 1908 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1909 size += sizeof(data->weight.full); 1910 1911 if (sample_type & PERF_SAMPLE_READ) 1912 size += event->read_size; 1913 1914 if (sample_type & PERF_SAMPLE_DATA_SRC) 1915 size += sizeof(data->data_src.val); 1916 1917 if (sample_type & PERF_SAMPLE_TRANSACTION) 1918 size += sizeof(data->txn); 1919 1920 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1921 size += sizeof(data->phys_addr); 1922 1923 if (sample_type & PERF_SAMPLE_CGROUP) 1924 size += sizeof(data->cgroup); 1925 1926 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1927 size += sizeof(data->data_page_size); 1928 1929 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1930 size += sizeof(data->code_page_size); 1931 1932 event->header_size = size; 1933 } 1934 1935 /* 1936 * Called at perf_event creation and when events are attached/detached from a 1937 * group. 1938 */ 1939 static void perf_event__header_size(struct perf_event *event) 1940 { 1941 event->read_size = 1942 __perf_event_read_size(event->attr.read_format, 1943 event->group_leader->nr_siblings); 1944 __perf_event_header_size(event, event->attr.sample_type); 1945 } 1946 1947 static void perf_event__id_header_size(struct perf_event *event) 1948 { 1949 struct perf_sample_data *data; 1950 u64 sample_type = event->attr.sample_type; 1951 u16 size = 0; 1952 1953 if (sample_type & PERF_SAMPLE_TID) 1954 size += sizeof(data->tid_entry); 1955 1956 if (sample_type & PERF_SAMPLE_TIME) 1957 size += sizeof(data->time); 1958 1959 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1960 size += sizeof(data->id); 1961 1962 if (sample_type & PERF_SAMPLE_ID) 1963 size += sizeof(data->id); 1964 1965 if (sample_type & PERF_SAMPLE_STREAM_ID) 1966 size += sizeof(data->stream_id); 1967 1968 if (sample_type & PERF_SAMPLE_CPU) 1969 size += sizeof(data->cpu_entry); 1970 1971 event->id_header_size = size; 1972 } 1973 1974 /* 1975 * Check that adding an event to the group does not result in anybody 1976 * overflowing the 64k event limit imposed by the output buffer. 1977 * 1978 * Specifically, check that the read_size for the event does not exceed 16k, 1979 * read_size being the one term that grows with groups size. Since read_size 1980 * depends on per-event read_format, also (re)check the existing events. 1981 * 1982 * This leaves 48k for the constant size fields and things like callchains, 1983 * branch stacks and register sets. 1984 */ 1985 static bool perf_event_validate_size(struct perf_event *event) 1986 { 1987 struct perf_event *sibling, *group_leader = event->group_leader; 1988 1989 if (__perf_event_read_size(event->attr.read_format, 1990 group_leader->nr_siblings + 1) > 16*1024) 1991 return false; 1992 1993 if (__perf_event_read_size(group_leader->attr.read_format, 1994 group_leader->nr_siblings + 1) > 16*1024) 1995 return false; 1996 1997 /* 1998 * When creating a new group leader, group_leader->ctx is initialized 1999 * after the size has been validated, but we cannot safely use 2000 * for_each_sibling_event() until group_leader->ctx is set. A new group 2001 * leader cannot have any siblings yet, so we can safely skip checking 2002 * the non-existent siblings. 2003 */ 2004 if (event == group_leader) 2005 return true; 2006 2007 for_each_sibling_event(sibling, group_leader) { 2008 if (__perf_event_read_size(sibling->attr.read_format, 2009 group_leader->nr_siblings + 1) > 16*1024) 2010 return false; 2011 } 2012 2013 return true; 2014 } 2015 2016 static void perf_group_attach(struct perf_event *event) 2017 { 2018 struct perf_event *group_leader = event->group_leader, *pos; 2019 2020 lockdep_assert_held(&event->ctx->lock); 2021 2022 /* 2023 * We can have double attach due to group movement (move_group) in 2024 * perf_event_open(). 2025 */ 2026 if (event->attach_state & PERF_ATTACH_GROUP) 2027 return; 2028 2029 event->attach_state |= PERF_ATTACH_GROUP; 2030 2031 if (group_leader == event) 2032 return; 2033 2034 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2035 2036 group_leader->group_caps &= event->event_caps; 2037 2038 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2039 group_leader->nr_siblings++; 2040 group_leader->group_generation++; 2041 2042 perf_event__header_size(group_leader); 2043 2044 for_each_sibling_event(pos, group_leader) 2045 perf_event__header_size(pos); 2046 } 2047 2048 /* 2049 * Remove an event from the lists for its context. 2050 * Must be called with ctx->mutex and ctx->lock held. 2051 */ 2052 static void 2053 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2054 { 2055 WARN_ON_ONCE(event->ctx != ctx); 2056 lockdep_assert_held(&ctx->lock); 2057 2058 /* 2059 * We can have double detach due to exit/hot-unplug + close. 2060 */ 2061 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2062 return; 2063 2064 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2065 2066 ctx->nr_events--; 2067 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2068 ctx->nr_user--; 2069 if (event->attr.inherit_stat) 2070 ctx->nr_stat--; 2071 if (has_inherit_and_sample_read(&event->attr)) 2072 local_dec(&ctx->nr_no_switch_fast); 2073 2074 list_del_rcu(&event->event_entry); 2075 2076 if (event->group_leader == event) 2077 del_event_from_groups(event, ctx); 2078 2079 /* 2080 * If event was in error state, then keep it 2081 * that way, otherwise bogus counts will be 2082 * returned on read(). The only way to get out 2083 * of error state is by explicit re-enabling 2084 * of the event 2085 */ 2086 if (event->state > PERF_EVENT_STATE_OFF) { 2087 perf_cgroup_event_disable(event, ctx); 2088 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2089 } 2090 2091 ctx->generation++; 2092 event->pmu_ctx->nr_events--; 2093 } 2094 2095 static int 2096 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2097 { 2098 if (!has_aux(aux_event)) 2099 return 0; 2100 2101 if (!event->pmu->aux_output_match) 2102 return 0; 2103 2104 return event->pmu->aux_output_match(aux_event); 2105 } 2106 2107 static void put_event(struct perf_event *event); 2108 static void event_sched_out(struct perf_event *event, 2109 struct perf_event_context *ctx); 2110 2111 static void perf_put_aux_event(struct perf_event *event) 2112 { 2113 struct perf_event_context *ctx = event->ctx; 2114 struct perf_event *iter; 2115 2116 /* 2117 * If event uses aux_event tear down the link 2118 */ 2119 if (event->aux_event) { 2120 iter = event->aux_event; 2121 event->aux_event = NULL; 2122 put_event(iter); 2123 return; 2124 } 2125 2126 /* 2127 * If the event is an aux_event, tear down all links to 2128 * it from other events. 2129 */ 2130 for_each_sibling_event(iter, event->group_leader) { 2131 if (iter->aux_event != event) 2132 continue; 2133 2134 iter->aux_event = NULL; 2135 put_event(event); 2136 2137 /* 2138 * If it's ACTIVE, schedule it out and put it into ERROR 2139 * state so that we don't try to schedule it again. Note 2140 * that perf_event_enable() will clear the ERROR status. 2141 */ 2142 event_sched_out(iter, ctx); 2143 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2144 } 2145 } 2146 2147 static bool perf_need_aux_event(struct perf_event *event) 2148 { 2149 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2150 } 2151 2152 static int perf_get_aux_event(struct perf_event *event, 2153 struct perf_event *group_leader) 2154 { 2155 /* 2156 * Our group leader must be an aux event if we want to be 2157 * an aux_output. This way, the aux event will precede its 2158 * aux_output events in the group, and therefore will always 2159 * schedule first. 2160 */ 2161 if (!group_leader) 2162 return 0; 2163 2164 /* 2165 * aux_output and aux_sample_size are mutually exclusive. 2166 */ 2167 if (event->attr.aux_output && event->attr.aux_sample_size) 2168 return 0; 2169 2170 if (event->attr.aux_output && 2171 !perf_aux_output_match(event, group_leader)) 2172 return 0; 2173 2174 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2175 return 0; 2176 2177 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2178 return 0; 2179 2180 /* 2181 * Link aux_outputs to their aux event; this is undone in 2182 * perf_group_detach() by perf_put_aux_event(). When the 2183 * group in torn down, the aux_output events loose their 2184 * link to the aux_event and can't schedule any more. 2185 */ 2186 event->aux_event = group_leader; 2187 2188 return 1; 2189 } 2190 2191 static inline struct list_head *get_event_list(struct perf_event *event) 2192 { 2193 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2194 &event->pmu_ctx->flexible_active; 2195 } 2196 2197 /* 2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2199 * cannot exist on their own, schedule them out and move them into the ERROR 2200 * state. Also see _perf_event_enable(), it will not be able to recover 2201 * this ERROR state. 2202 */ 2203 static inline void perf_remove_sibling_event(struct perf_event *event) 2204 { 2205 event_sched_out(event, event->ctx); 2206 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2207 } 2208 2209 static void perf_group_detach(struct perf_event *event) 2210 { 2211 struct perf_event *leader = event->group_leader; 2212 struct perf_event *sibling, *tmp; 2213 struct perf_event_context *ctx = event->ctx; 2214 2215 lockdep_assert_held(&ctx->lock); 2216 2217 /* 2218 * We can have double detach due to exit/hot-unplug + close. 2219 */ 2220 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2221 return; 2222 2223 event->attach_state &= ~PERF_ATTACH_GROUP; 2224 2225 perf_put_aux_event(event); 2226 2227 /* 2228 * If this is a sibling, remove it from its group. 2229 */ 2230 if (leader != event) { 2231 list_del_init(&event->sibling_list); 2232 event->group_leader->nr_siblings--; 2233 event->group_leader->group_generation++; 2234 goto out; 2235 } 2236 2237 /* 2238 * If this was a group event with sibling events then 2239 * upgrade the siblings to singleton events by adding them 2240 * to whatever list we are on. 2241 */ 2242 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2243 2244 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2245 perf_remove_sibling_event(sibling); 2246 2247 sibling->group_leader = sibling; 2248 list_del_init(&sibling->sibling_list); 2249 2250 /* Inherit group flags from the previous leader */ 2251 sibling->group_caps = event->group_caps; 2252 2253 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2254 add_event_to_groups(sibling, event->ctx); 2255 2256 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2257 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2258 } 2259 2260 WARN_ON_ONCE(sibling->ctx != event->ctx); 2261 } 2262 2263 out: 2264 for_each_sibling_event(tmp, leader) 2265 perf_event__header_size(tmp); 2266 2267 perf_event__header_size(leader); 2268 } 2269 2270 static void sync_child_event(struct perf_event *child_event); 2271 2272 static void perf_child_detach(struct perf_event *event) 2273 { 2274 struct perf_event *parent_event = event->parent; 2275 2276 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2277 return; 2278 2279 event->attach_state &= ~PERF_ATTACH_CHILD; 2280 2281 if (WARN_ON_ONCE(!parent_event)) 2282 return; 2283 2284 lockdep_assert_held(&parent_event->child_mutex); 2285 2286 sync_child_event(event); 2287 list_del_init(&event->child_list); 2288 } 2289 2290 static bool is_orphaned_event(struct perf_event *event) 2291 { 2292 return event->state == PERF_EVENT_STATE_DEAD; 2293 } 2294 2295 static inline int 2296 event_filter_match(struct perf_event *event) 2297 { 2298 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2299 perf_cgroup_match(event); 2300 } 2301 2302 static void 2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2304 { 2305 struct perf_event_pmu_context *epc = event->pmu_ctx; 2306 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2307 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2308 2309 // XXX cpc serialization, probably per-cpu IRQ disabled 2310 2311 WARN_ON_ONCE(event->ctx != ctx); 2312 lockdep_assert_held(&ctx->lock); 2313 2314 if (event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 /* 2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2319 * we can schedule events _OUT_ individually through things like 2320 * __perf_remove_from_context(). 2321 */ 2322 list_del_init(&event->active_list); 2323 2324 perf_pmu_disable(event->pmu); 2325 2326 event->pmu->del(event, 0); 2327 event->oncpu = -1; 2328 2329 if (event->pending_disable) { 2330 event->pending_disable = 0; 2331 perf_cgroup_event_disable(event, ctx); 2332 state = PERF_EVENT_STATE_OFF; 2333 } 2334 2335 perf_event_set_state(event, state); 2336 2337 if (!is_software_event(event)) 2338 cpc->active_oncpu--; 2339 if (event->attr.freq && event->attr.sample_freq) { 2340 ctx->nr_freq--; 2341 epc->nr_freq--; 2342 } 2343 if (event->attr.exclusive || !cpc->active_oncpu) 2344 cpc->exclusive = 0; 2345 2346 perf_pmu_enable(event->pmu); 2347 } 2348 2349 static void 2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2351 { 2352 struct perf_event *event; 2353 2354 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2355 return; 2356 2357 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2358 2359 event_sched_out(group_event, ctx); 2360 2361 /* 2362 * Schedule out siblings (if any): 2363 */ 2364 for_each_sibling_event(event, group_event) 2365 event_sched_out(event, ctx); 2366 } 2367 2368 static inline void 2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2370 { 2371 if (ctx->is_active & EVENT_TIME) { 2372 if (ctx->is_active & EVENT_FROZEN) 2373 return; 2374 update_context_time(ctx); 2375 update_cgrp_time_from_cpuctx(cpuctx, final); 2376 } 2377 } 2378 2379 static inline void 2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2381 { 2382 __ctx_time_update(cpuctx, ctx, false); 2383 } 2384 2385 /* 2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2387 */ 2388 static inline void 2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2390 { 2391 ctx_time_update(cpuctx, ctx); 2392 if (ctx->is_active & EVENT_TIME) 2393 ctx->is_active |= EVENT_FROZEN; 2394 } 2395 2396 static inline void 2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2398 { 2399 if (ctx->is_active & EVENT_TIME) { 2400 if (ctx->is_active & EVENT_FROZEN) 2401 return; 2402 update_context_time(ctx); 2403 update_cgrp_time_from_event(event); 2404 } 2405 } 2406 2407 #define DETACH_GROUP 0x01UL 2408 #define DETACH_CHILD 0x02UL 2409 #define DETACH_DEAD 0x04UL 2410 2411 /* 2412 * Cross CPU call to remove a performance event 2413 * 2414 * We disable the event on the hardware level first. After that we 2415 * remove it from the context list. 2416 */ 2417 static void 2418 __perf_remove_from_context(struct perf_event *event, 2419 struct perf_cpu_context *cpuctx, 2420 struct perf_event_context *ctx, 2421 void *info) 2422 { 2423 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2424 unsigned long flags = (unsigned long)info; 2425 2426 ctx_time_update(cpuctx, ctx); 2427 2428 /* 2429 * Ensure event_sched_out() switches to OFF, at the very least 2430 * this avoids raising perf_pending_task() at this time. 2431 */ 2432 if (flags & DETACH_DEAD) 2433 event->pending_disable = 1; 2434 event_sched_out(event, ctx); 2435 if (flags & DETACH_GROUP) 2436 perf_group_detach(event); 2437 if (flags & DETACH_CHILD) 2438 perf_child_detach(event); 2439 list_del_event(event, ctx); 2440 if (flags & DETACH_DEAD) 2441 event->state = PERF_EVENT_STATE_DEAD; 2442 2443 if (!pmu_ctx->nr_events) { 2444 pmu_ctx->rotate_necessary = 0; 2445 2446 if (ctx->task && ctx->is_active) { 2447 struct perf_cpu_pmu_context *cpc; 2448 2449 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2450 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2451 cpc->task_epc = NULL; 2452 } 2453 } 2454 2455 if (!ctx->nr_events && ctx->is_active) { 2456 if (ctx == &cpuctx->ctx) 2457 update_cgrp_time_from_cpuctx(cpuctx, true); 2458 2459 ctx->is_active = 0; 2460 if (ctx->task) { 2461 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2462 cpuctx->task_ctx = NULL; 2463 } 2464 } 2465 } 2466 2467 /* 2468 * Remove the event from a task's (or a CPU's) list of events. 2469 * 2470 * If event->ctx is a cloned context, callers must make sure that 2471 * every task struct that event->ctx->task could possibly point to 2472 * remains valid. This is OK when called from perf_release since 2473 * that only calls us on the top-level context, which can't be a clone. 2474 * When called from perf_event_exit_task, it's OK because the 2475 * context has been detached from its task. 2476 */ 2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2478 { 2479 struct perf_event_context *ctx = event->ctx; 2480 2481 lockdep_assert_held(&ctx->mutex); 2482 2483 /* 2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2485 * to work in the face of TASK_TOMBSTONE, unlike every other 2486 * event_function_call() user. 2487 */ 2488 raw_spin_lock_irq(&ctx->lock); 2489 if (!ctx->is_active) { 2490 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2491 ctx, (void *)flags); 2492 raw_spin_unlock_irq(&ctx->lock); 2493 return; 2494 } 2495 raw_spin_unlock_irq(&ctx->lock); 2496 2497 event_function_call(event, __perf_remove_from_context, (void *)flags); 2498 } 2499 2500 /* 2501 * Cross CPU call to disable a performance event 2502 */ 2503 static void __perf_event_disable(struct perf_event *event, 2504 struct perf_cpu_context *cpuctx, 2505 struct perf_event_context *ctx, 2506 void *info) 2507 { 2508 if (event->state < PERF_EVENT_STATE_INACTIVE) 2509 return; 2510 2511 perf_pmu_disable(event->pmu_ctx->pmu); 2512 ctx_time_update_event(ctx, event); 2513 2514 if (event == event->group_leader) 2515 group_sched_out(event, ctx); 2516 else 2517 event_sched_out(event, ctx); 2518 2519 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2520 perf_cgroup_event_disable(event, ctx); 2521 2522 perf_pmu_enable(event->pmu_ctx->pmu); 2523 } 2524 2525 /* 2526 * Disable an event. 2527 * 2528 * If event->ctx is a cloned context, callers must make sure that 2529 * every task struct that event->ctx->task could possibly point to 2530 * remains valid. This condition is satisfied when called through 2531 * perf_event_for_each_child or perf_event_for_each because they 2532 * hold the top-level event's child_mutex, so any descendant that 2533 * goes to exit will block in perf_event_exit_event(). 2534 * 2535 * When called from perf_pending_disable it's OK because event->ctx 2536 * is the current context on this CPU and preemption is disabled, 2537 * hence we can't get into perf_event_task_sched_out for this context. 2538 */ 2539 static void _perf_event_disable(struct perf_event *event) 2540 { 2541 struct perf_event_context *ctx = event->ctx; 2542 2543 raw_spin_lock_irq(&ctx->lock); 2544 if (event->state <= PERF_EVENT_STATE_OFF) { 2545 raw_spin_unlock_irq(&ctx->lock); 2546 return; 2547 } 2548 raw_spin_unlock_irq(&ctx->lock); 2549 2550 event_function_call(event, __perf_event_disable, NULL); 2551 } 2552 2553 void perf_event_disable_local(struct perf_event *event) 2554 { 2555 event_function_local(event, __perf_event_disable, NULL); 2556 } 2557 2558 /* 2559 * Strictly speaking kernel users cannot create groups and therefore this 2560 * interface does not need the perf_event_ctx_lock() magic. 2561 */ 2562 void perf_event_disable(struct perf_event *event) 2563 { 2564 struct perf_event_context *ctx; 2565 2566 ctx = perf_event_ctx_lock(event); 2567 _perf_event_disable(event); 2568 perf_event_ctx_unlock(event, ctx); 2569 } 2570 EXPORT_SYMBOL_GPL(perf_event_disable); 2571 2572 void perf_event_disable_inatomic(struct perf_event *event) 2573 { 2574 event->pending_disable = 1; 2575 irq_work_queue(&event->pending_disable_irq); 2576 } 2577 2578 #define MAX_INTERRUPTS (~0ULL) 2579 2580 static void perf_log_throttle(struct perf_event *event, int enable); 2581 static void perf_log_itrace_start(struct perf_event *event); 2582 2583 static int 2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2585 { 2586 struct perf_event_pmu_context *epc = event->pmu_ctx; 2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2588 int ret = 0; 2589 2590 WARN_ON_ONCE(event->ctx != ctx); 2591 2592 lockdep_assert_held(&ctx->lock); 2593 2594 if (event->state <= PERF_EVENT_STATE_OFF) 2595 return 0; 2596 2597 WRITE_ONCE(event->oncpu, smp_processor_id()); 2598 /* 2599 * Order event::oncpu write to happen before the ACTIVE state is 2600 * visible. This allows perf_event_{stop,read}() to observe the correct 2601 * ->oncpu if it sees ACTIVE. 2602 */ 2603 smp_wmb(); 2604 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2605 2606 /* 2607 * Unthrottle events, since we scheduled we might have missed several 2608 * ticks already, also for a heavily scheduling task there is little 2609 * guarantee it'll get a tick in a timely manner. 2610 */ 2611 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2612 perf_log_throttle(event, 1); 2613 event->hw.interrupts = 0; 2614 } 2615 2616 perf_pmu_disable(event->pmu); 2617 2618 perf_log_itrace_start(event); 2619 2620 if (event->pmu->add(event, PERF_EF_START)) { 2621 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2622 event->oncpu = -1; 2623 ret = -EAGAIN; 2624 goto out; 2625 } 2626 2627 if (!is_software_event(event)) 2628 cpc->active_oncpu++; 2629 if (event->attr.freq && event->attr.sample_freq) { 2630 ctx->nr_freq++; 2631 epc->nr_freq++; 2632 } 2633 if (event->attr.exclusive) 2634 cpc->exclusive = 1; 2635 2636 out: 2637 perf_pmu_enable(event->pmu); 2638 2639 return ret; 2640 } 2641 2642 static int 2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2644 { 2645 struct perf_event *event, *partial_group = NULL; 2646 struct pmu *pmu = group_event->pmu_ctx->pmu; 2647 2648 if (group_event->state == PERF_EVENT_STATE_OFF) 2649 return 0; 2650 2651 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2652 2653 if (event_sched_in(group_event, ctx)) 2654 goto error; 2655 2656 /* 2657 * Schedule in siblings as one group (if any): 2658 */ 2659 for_each_sibling_event(event, group_event) { 2660 if (event_sched_in(event, ctx)) { 2661 partial_group = event; 2662 goto group_error; 2663 } 2664 } 2665 2666 if (!pmu->commit_txn(pmu)) 2667 return 0; 2668 2669 group_error: 2670 /* 2671 * Groups can be scheduled in as one unit only, so undo any 2672 * partial group before returning: 2673 * The events up to the failed event are scheduled out normally. 2674 */ 2675 for_each_sibling_event(event, group_event) { 2676 if (event == partial_group) 2677 break; 2678 2679 event_sched_out(event, ctx); 2680 } 2681 event_sched_out(group_event, ctx); 2682 2683 error: 2684 pmu->cancel_txn(pmu); 2685 return -EAGAIN; 2686 } 2687 2688 /* 2689 * Work out whether we can put this event group on the CPU now. 2690 */ 2691 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2692 { 2693 struct perf_event_pmu_context *epc = event->pmu_ctx; 2694 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2695 2696 /* 2697 * Groups consisting entirely of software events can always go on. 2698 */ 2699 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2700 return 1; 2701 /* 2702 * If an exclusive group is already on, no other hardware 2703 * events can go on. 2704 */ 2705 if (cpc->exclusive) 2706 return 0; 2707 /* 2708 * If this group is exclusive and there are already 2709 * events on the CPU, it can't go on. 2710 */ 2711 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2712 return 0; 2713 /* 2714 * Otherwise, try to add it if all previous groups were able 2715 * to go on. 2716 */ 2717 return can_add_hw; 2718 } 2719 2720 static void add_event_to_ctx(struct perf_event *event, 2721 struct perf_event_context *ctx) 2722 { 2723 list_add_event(event, ctx); 2724 perf_group_attach(event); 2725 } 2726 2727 static void task_ctx_sched_out(struct perf_event_context *ctx, 2728 struct pmu *pmu, 2729 enum event_type_t event_type) 2730 { 2731 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2732 2733 if (!cpuctx->task_ctx) 2734 return; 2735 2736 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2737 return; 2738 2739 ctx_sched_out(ctx, pmu, event_type); 2740 } 2741 2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2743 struct perf_event_context *ctx, 2744 struct pmu *pmu) 2745 { 2746 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2747 if (ctx) 2748 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2749 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2750 if (ctx) 2751 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2752 } 2753 2754 /* 2755 * We want to maintain the following priority of scheduling: 2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2757 * - task pinned (EVENT_PINNED) 2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2759 * - task flexible (EVENT_FLEXIBLE). 2760 * 2761 * In order to avoid unscheduling and scheduling back in everything every 2762 * time an event is added, only do it for the groups of equal priority and 2763 * below. 2764 * 2765 * This can be called after a batch operation on task events, in which case 2766 * event_type is a bit mask of the types of events involved. For CPU events, 2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2768 */ 2769 static void ctx_resched(struct perf_cpu_context *cpuctx, 2770 struct perf_event_context *task_ctx, 2771 struct pmu *pmu, enum event_type_t event_type) 2772 { 2773 bool cpu_event = !!(event_type & EVENT_CPU); 2774 struct perf_event_pmu_context *epc; 2775 2776 /* 2777 * If pinned groups are involved, flexible groups also need to be 2778 * scheduled out. 2779 */ 2780 if (event_type & EVENT_PINNED) 2781 event_type |= EVENT_FLEXIBLE; 2782 2783 event_type &= EVENT_ALL; 2784 2785 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2786 perf_pmu_disable(epc->pmu); 2787 2788 if (task_ctx) { 2789 for_each_epc(epc, task_ctx, pmu, false) 2790 perf_pmu_disable(epc->pmu); 2791 2792 task_ctx_sched_out(task_ctx, pmu, event_type); 2793 } 2794 2795 /* 2796 * Decide which cpu ctx groups to schedule out based on the types 2797 * of events that caused rescheduling: 2798 * - EVENT_CPU: schedule out corresponding groups; 2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2800 * - otherwise, do nothing more. 2801 */ 2802 if (cpu_event) 2803 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2804 else if (event_type & EVENT_PINNED) 2805 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2806 2807 perf_event_sched_in(cpuctx, task_ctx, pmu); 2808 2809 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2810 perf_pmu_enable(epc->pmu); 2811 2812 if (task_ctx) { 2813 for_each_epc(epc, task_ctx, pmu, false) 2814 perf_pmu_enable(epc->pmu); 2815 } 2816 } 2817 2818 void perf_pmu_resched(struct pmu *pmu) 2819 { 2820 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2821 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2822 2823 perf_ctx_lock(cpuctx, task_ctx); 2824 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2825 perf_ctx_unlock(cpuctx, task_ctx); 2826 } 2827 2828 /* 2829 * Cross CPU call to install and enable a performance event 2830 * 2831 * Very similar to remote_function() + event_function() but cannot assume that 2832 * things like ctx->is_active and cpuctx->task_ctx are set. 2833 */ 2834 static int __perf_install_in_context(void *info) 2835 { 2836 struct perf_event *event = info; 2837 struct perf_event_context *ctx = event->ctx; 2838 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2839 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2840 bool reprogram = true; 2841 int ret = 0; 2842 2843 raw_spin_lock(&cpuctx->ctx.lock); 2844 if (ctx->task) { 2845 raw_spin_lock(&ctx->lock); 2846 task_ctx = ctx; 2847 2848 reprogram = (ctx->task == current); 2849 2850 /* 2851 * If the task is running, it must be running on this CPU, 2852 * otherwise we cannot reprogram things. 2853 * 2854 * If its not running, we don't care, ctx->lock will 2855 * serialize against it becoming runnable. 2856 */ 2857 if (task_curr(ctx->task) && !reprogram) { 2858 ret = -ESRCH; 2859 goto unlock; 2860 } 2861 2862 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2863 } else if (task_ctx) { 2864 raw_spin_lock(&task_ctx->lock); 2865 } 2866 2867 #ifdef CONFIG_CGROUP_PERF 2868 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2869 /* 2870 * If the current cgroup doesn't match the event's 2871 * cgroup, we should not try to schedule it. 2872 */ 2873 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2874 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2875 event->cgrp->css.cgroup); 2876 } 2877 #endif 2878 2879 if (reprogram) { 2880 ctx_time_freeze(cpuctx, ctx); 2881 add_event_to_ctx(event, ctx); 2882 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 2883 get_event_type(event)); 2884 } else { 2885 add_event_to_ctx(event, ctx); 2886 } 2887 2888 unlock: 2889 perf_ctx_unlock(cpuctx, task_ctx); 2890 2891 return ret; 2892 } 2893 2894 static bool exclusive_event_installable(struct perf_event *event, 2895 struct perf_event_context *ctx); 2896 2897 /* 2898 * Attach a performance event to a context. 2899 * 2900 * Very similar to event_function_call, see comment there. 2901 */ 2902 static void 2903 perf_install_in_context(struct perf_event_context *ctx, 2904 struct perf_event *event, 2905 int cpu) 2906 { 2907 struct task_struct *task = READ_ONCE(ctx->task); 2908 2909 lockdep_assert_held(&ctx->mutex); 2910 2911 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2912 2913 if (event->cpu != -1) 2914 WARN_ON_ONCE(event->cpu != cpu); 2915 2916 /* 2917 * Ensures that if we can observe event->ctx, both the event and ctx 2918 * will be 'complete'. See perf_iterate_sb_cpu(). 2919 */ 2920 smp_store_release(&event->ctx, ctx); 2921 2922 /* 2923 * perf_event_attr::disabled events will not run and can be initialized 2924 * without IPI. Except when this is the first event for the context, in 2925 * that case we need the magic of the IPI to set ctx->is_active. 2926 * 2927 * The IOC_ENABLE that is sure to follow the creation of a disabled 2928 * event will issue the IPI and reprogram the hardware. 2929 */ 2930 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2931 ctx->nr_events && !is_cgroup_event(event)) { 2932 raw_spin_lock_irq(&ctx->lock); 2933 if (ctx->task == TASK_TOMBSTONE) { 2934 raw_spin_unlock_irq(&ctx->lock); 2935 return; 2936 } 2937 add_event_to_ctx(event, ctx); 2938 raw_spin_unlock_irq(&ctx->lock); 2939 return; 2940 } 2941 2942 if (!task) { 2943 cpu_function_call(cpu, __perf_install_in_context, event); 2944 return; 2945 } 2946 2947 /* 2948 * Should not happen, we validate the ctx is still alive before calling. 2949 */ 2950 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2951 return; 2952 2953 /* 2954 * Installing events is tricky because we cannot rely on ctx->is_active 2955 * to be set in case this is the nr_events 0 -> 1 transition. 2956 * 2957 * Instead we use task_curr(), which tells us if the task is running. 2958 * However, since we use task_curr() outside of rq::lock, we can race 2959 * against the actual state. This means the result can be wrong. 2960 * 2961 * If we get a false positive, we retry, this is harmless. 2962 * 2963 * If we get a false negative, things are complicated. If we are after 2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2965 * value must be correct. If we're before, it doesn't matter since 2966 * perf_event_context_sched_in() will program the counter. 2967 * 2968 * However, this hinges on the remote context switch having observed 2969 * our task->perf_event_ctxp[] store, such that it will in fact take 2970 * ctx::lock in perf_event_context_sched_in(). 2971 * 2972 * We do this by task_function_call(), if the IPI fails to hit the task 2973 * we know any future context switch of task must see the 2974 * perf_event_ctpx[] store. 2975 */ 2976 2977 /* 2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2979 * task_cpu() load, such that if the IPI then does not find the task 2980 * running, a future context switch of that task must observe the 2981 * store. 2982 */ 2983 smp_mb(); 2984 again: 2985 if (!task_function_call(task, __perf_install_in_context, event)) 2986 return; 2987 2988 raw_spin_lock_irq(&ctx->lock); 2989 task = ctx->task; 2990 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2991 /* 2992 * Cannot happen because we already checked above (which also 2993 * cannot happen), and we hold ctx->mutex, which serializes us 2994 * against perf_event_exit_task_context(). 2995 */ 2996 raw_spin_unlock_irq(&ctx->lock); 2997 return; 2998 } 2999 /* 3000 * If the task is not running, ctx->lock will avoid it becoming so, 3001 * thus we can safely install the event. 3002 */ 3003 if (task_curr(task)) { 3004 raw_spin_unlock_irq(&ctx->lock); 3005 goto again; 3006 } 3007 add_event_to_ctx(event, ctx); 3008 raw_spin_unlock_irq(&ctx->lock); 3009 } 3010 3011 /* 3012 * Cross CPU call to enable a performance event 3013 */ 3014 static void __perf_event_enable(struct perf_event *event, 3015 struct perf_cpu_context *cpuctx, 3016 struct perf_event_context *ctx, 3017 void *info) 3018 { 3019 struct perf_event *leader = event->group_leader; 3020 struct perf_event_context *task_ctx; 3021 3022 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3023 event->state <= PERF_EVENT_STATE_ERROR) 3024 return; 3025 3026 ctx_time_freeze(cpuctx, ctx); 3027 3028 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3029 perf_cgroup_event_enable(event, ctx); 3030 3031 if (!ctx->is_active) 3032 return; 3033 3034 if (!event_filter_match(event)) 3035 return; 3036 3037 /* 3038 * If the event is in a group and isn't the group leader, 3039 * then don't put it on unless the group is on. 3040 */ 3041 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3042 return; 3043 3044 task_ctx = cpuctx->task_ctx; 3045 if (ctx->task) 3046 WARN_ON_ONCE(task_ctx != ctx); 3047 3048 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3049 } 3050 3051 /* 3052 * Enable an event. 3053 * 3054 * If event->ctx is a cloned context, callers must make sure that 3055 * every task struct that event->ctx->task could possibly point to 3056 * remains valid. This condition is satisfied when called through 3057 * perf_event_for_each_child or perf_event_for_each as described 3058 * for perf_event_disable. 3059 */ 3060 static void _perf_event_enable(struct perf_event *event) 3061 { 3062 struct perf_event_context *ctx = event->ctx; 3063 3064 raw_spin_lock_irq(&ctx->lock); 3065 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3066 event->state < PERF_EVENT_STATE_ERROR) { 3067 out: 3068 raw_spin_unlock_irq(&ctx->lock); 3069 return; 3070 } 3071 3072 /* 3073 * If the event is in error state, clear that first. 3074 * 3075 * That way, if we see the event in error state below, we know that it 3076 * has gone back into error state, as distinct from the task having 3077 * been scheduled away before the cross-call arrived. 3078 */ 3079 if (event->state == PERF_EVENT_STATE_ERROR) { 3080 /* 3081 * Detached SIBLING events cannot leave ERROR state. 3082 */ 3083 if (event->event_caps & PERF_EV_CAP_SIBLING && 3084 event->group_leader == event) 3085 goto out; 3086 3087 event->state = PERF_EVENT_STATE_OFF; 3088 } 3089 raw_spin_unlock_irq(&ctx->lock); 3090 3091 event_function_call(event, __perf_event_enable, NULL); 3092 } 3093 3094 /* 3095 * See perf_event_disable(); 3096 */ 3097 void perf_event_enable(struct perf_event *event) 3098 { 3099 struct perf_event_context *ctx; 3100 3101 ctx = perf_event_ctx_lock(event); 3102 _perf_event_enable(event); 3103 perf_event_ctx_unlock(event, ctx); 3104 } 3105 EXPORT_SYMBOL_GPL(perf_event_enable); 3106 3107 struct stop_event_data { 3108 struct perf_event *event; 3109 unsigned int restart; 3110 }; 3111 3112 static int __perf_event_stop(void *info) 3113 { 3114 struct stop_event_data *sd = info; 3115 struct perf_event *event = sd->event; 3116 3117 /* if it's already INACTIVE, do nothing */ 3118 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3119 return 0; 3120 3121 /* matches smp_wmb() in event_sched_in() */ 3122 smp_rmb(); 3123 3124 /* 3125 * There is a window with interrupts enabled before we get here, 3126 * so we need to check again lest we try to stop another CPU's event. 3127 */ 3128 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3129 return -EAGAIN; 3130 3131 event->pmu->stop(event, PERF_EF_UPDATE); 3132 3133 /* 3134 * May race with the actual stop (through perf_pmu_output_stop()), 3135 * but it is only used for events with AUX ring buffer, and such 3136 * events will refuse to restart because of rb::aux_mmap_count==0, 3137 * see comments in perf_aux_output_begin(). 3138 * 3139 * Since this is happening on an event-local CPU, no trace is lost 3140 * while restarting. 3141 */ 3142 if (sd->restart) 3143 event->pmu->start(event, 0); 3144 3145 return 0; 3146 } 3147 3148 static int perf_event_stop(struct perf_event *event, int restart) 3149 { 3150 struct stop_event_data sd = { 3151 .event = event, 3152 .restart = restart, 3153 }; 3154 int ret = 0; 3155 3156 do { 3157 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3158 return 0; 3159 3160 /* matches smp_wmb() in event_sched_in() */ 3161 smp_rmb(); 3162 3163 /* 3164 * We only want to restart ACTIVE events, so if the event goes 3165 * inactive here (event->oncpu==-1), there's nothing more to do; 3166 * fall through with ret==-ENXIO. 3167 */ 3168 ret = cpu_function_call(READ_ONCE(event->oncpu), 3169 __perf_event_stop, &sd); 3170 } while (ret == -EAGAIN); 3171 3172 return ret; 3173 } 3174 3175 /* 3176 * In order to contain the amount of racy and tricky in the address filter 3177 * configuration management, it is a two part process: 3178 * 3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3180 * we update the addresses of corresponding vmas in 3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3182 * (p2) when an event is scheduled in (pmu::add), it calls 3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3184 * if the generation has changed since the previous call. 3185 * 3186 * If (p1) happens while the event is active, we restart it to force (p2). 3187 * 3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3190 * ioctl; 3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3193 * for reading; 3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3195 * of exec. 3196 */ 3197 void perf_event_addr_filters_sync(struct perf_event *event) 3198 { 3199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3200 3201 if (!has_addr_filter(event)) 3202 return; 3203 3204 raw_spin_lock(&ifh->lock); 3205 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3206 event->pmu->addr_filters_sync(event); 3207 event->hw.addr_filters_gen = event->addr_filters_gen; 3208 } 3209 raw_spin_unlock(&ifh->lock); 3210 } 3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3212 3213 static int _perf_event_refresh(struct perf_event *event, int refresh) 3214 { 3215 /* 3216 * not supported on inherited events 3217 */ 3218 if (event->attr.inherit || !is_sampling_event(event)) 3219 return -EINVAL; 3220 3221 atomic_add(refresh, &event->event_limit); 3222 _perf_event_enable(event); 3223 3224 return 0; 3225 } 3226 3227 /* 3228 * See perf_event_disable() 3229 */ 3230 int perf_event_refresh(struct perf_event *event, int refresh) 3231 { 3232 struct perf_event_context *ctx; 3233 int ret; 3234 3235 ctx = perf_event_ctx_lock(event); 3236 ret = _perf_event_refresh(event, refresh); 3237 perf_event_ctx_unlock(event, ctx); 3238 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(perf_event_refresh); 3242 3243 static int perf_event_modify_breakpoint(struct perf_event *bp, 3244 struct perf_event_attr *attr) 3245 { 3246 int err; 3247 3248 _perf_event_disable(bp); 3249 3250 err = modify_user_hw_breakpoint_check(bp, attr, true); 3251 3252 if (!bp->attr.disabled) 3253 _perf_event_enable(bp); 3254 3255 return err; 3256 } 3257 3258 /* 3259 * Copy event-type-independent attributes that may be modified. 3260 */ 3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3262 const struct perf_event_attr *from) 3263 { 3264 to->sig_data = from->sig_data; 3265 } 3266 3267 static int perf_event_modify_attr(struct perf_event *event, 3268 struct perf_event_attr *attr) 3269 { 3270 int (*func)(struct perf_event *, struct perf_event_attr *); 3271 struct perf_event *child; 3272 int err; 3273 3274 if (event->attr.type != attr->type) 3275 return -EINVAL; 3276 3277 switch (event->attr.type) { 3278 case PERF_TYPE_BREAKPOINT: 3279 func = perf_event_modify_breakpoint; 3280 break; 3281 default: 3282 /* Place holder for future additions. */ 3283 return -EOPNOTSUPP; 3284 } 3285 3286 WARN_ON_ONCE(event->ctx->parent_ctx); 3287 3288 mutex_lock(&event->child_mutex); 3289 /* 3290 * Event-type-independent attributes must be copied before event-type 3291 * modification, which will validate that final attributes match the 3292 * source attributes after all relevant attributes have been copied. 3293 */ 3294 perf_event_modify_copy_attr(&event->attr, attr); 3295 err = func(event, attr); 3296 if (err) 3297 goto out; 3298 list_for_each_entry(child, &event->child_list, child_list) { 3299 perf_event_modify_copy_attr(&child->attr, attr); 3300 err = func(child, attr); 3301 if (err) 3302 goto out; 3303 } 3304 out: 3305 mutex_unlock(&event->child_mutex); 3306 return err; 3307 } 3308 3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3310 enum event_type_t event_type) 3311 { 3312 struct perf_event_context *ctx = pmu_ctx->ctx; 3313 struct perf_event *event, *tmp; 3314 struct pmu *pmu = pmu_ctx->pmu; 3315 3316 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3317 struct perf_cpu_pmu_context *cpc; 3318 3319 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3320 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3321 cpc->task_epc = NULL; 3322 } 3323 3324 if (!(event_type & EVENT_ALL)) 3325 return; 3326 3327 perf_pmu_disable(pmu); 3328 if (event_type & EVENT_PINNED) { 3329 list_for_each_entry_safe(event, tmp, 3330 &pmu_ctx->pinned_active, 3331 active_list) 3332 group_sched_out(event, ctx); 3333 } 3334 3335 if (event_type & EVENT_FLEXIBLE) { 3336 list_for_each_entry_safe(event, tmp, 3337 &pmu_ctx->flexible_active, 3338 active_list) 3339 group_sched_out(event, ctx); 3340 /* 3341 * Since we cleared EVENT_FLEXIBLE, also clear 3342 * rotate_necessary, is will be reset by 3343 * ctx_flexible_sched_in() when needed. 3344 */ 3345 pmu_ctx->rotate_necessary = 0; 3346 } 3347 perf_pmu_enable(pmu); 3348 } 3349 3350 /* 3351 * Be very careful with the @pmu argument since this will change ctx state. 3352 * The @pmu argument works for ctx_resched(), because that is symmetric in 3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3354 * 3355 * However, if you were to be asymmetrical, you could end up with messed up 3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3357 * be active. 3358 */ 3359 static void 3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3361 { 3362 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3363 struct perf_event_pmu_context *pmu_ctx; 3364 int is_active = ctx->is_active; 3365 bool cgroup = event_type & EVENT_CGROUP; 3366 3367 event_type &= ~EVENT_CGROUP; 3368 3369 lockdep_assert_held(&ctx->lock); 3370 3371 if (likely(!ctx->nr_events)) { 3372 /* 3373 * See __perf_remove_from_context(). 3374 */ 3375 WARN_ON_ONCE(ctx->is_active); 3376 if (ctx->task) 3377 WARN_ON_ONCE(cpuctx->task_ctx); 3378 return; 3379 } 3380 3381 /* 3382 * Always update time if it was set; not only when it changes. 3383 * Otherwise we can 'forget' to update time for any but the last 3384 * context we sched out. For example: 3385 * 3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3387 * ctx_sched_out(.event_type = EVENT_PINNED) 3388 * 3389 * would only update time for the pinned events. 3390 */ 3391 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3392 3393 /* 3394 * CPU-release for the below ->is_active store, 3395 * see __load_acquire() in perf_event_time_now() 3396 */ 3397 barrier(); 3398 ctx->is_active &= ~event_type; 3399 3400 if (!(ctx->is_active & EVENT_ALL)) { 3401 /* 3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3403 * does not observe a hole. perf_ctx_unlock() will clean up. 3404 */ 3405 if (ctx->is_active & EVENT_FROZEN) 3406 ctx->is_active &= EVENT_TIME_FROZEN; 3407 else 3408 ctx->is_active = 0; 3409 } 3410 3411 if (ctx->task) { 3412 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3413 if (!(ctx->is_active & EVENT_ALL)) 3414 cpuctx->task_ctx = NULL; 3415 } 3416 3417 is_active ^= ctx->is_active; /* changed bits */ 3418 3419 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3420 __pmu_ctx_sched_out(pmu_ctx, is_active); 3421 } 3422 3423 /* 3424 * Test whether two contexts are equivalent, i.e. whether they have both been 3425 * cloned from the same version of the same context. 3426 * 3427 * Equivalence is measured using a generation number in the context that is 3428 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3429 * and list_del_event(). 3430 */ 3431 static int context_equiv(struct perf_event_context *ctx1, 3432 struct perf_event_context *ctx2) 3433 { 3434 lockdep_assert_held(&ctx1->lock); 3435 lockdep_assert_held(&ctx2->lock); 3436 3437 /* Pinning disables the swap optimization */ 3438 if (ctx1->pin_count || ctx2->pin_count) 3439 return 0; 3440 3441 /* If ctx1 is the parent of ctx2 */ 3442 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3443 return 1; 3444 3445 /* If ctx2 is the parent of ctx1 */ 3446 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3447 return 1; 3448 3449 /* 3450 * If ctx1 and ctx2 have the same parent; we flatten the parent 3451 * hierarchy, see perf_event_init_context(). 3452 */ 3453 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3454 ctx1->parent_gen == ctx2->parent_gen) 3455 return 1; 3456 3457 /* Unmatched */ 3458 return 0; 3459 } 3460 3461 static void __perf_event_sync_stat(struct perf_event *event, 3462 struct perf_event *next_event) 3463 { 3464 u64 value; 3465 3466 if (!event->attr.inherit_stat) 3467 return; 3468 3469 /* 3470 * Update the event value, we cannot use perf_event_read() 3471 * because we're in the middle of a context switch and have IRQs 3472 * disabled, which upsets smp_call_function_single(), however 3473 * we know the event must be on the current CPU, therefore we 3474 * don't need to use it. 3475 */ 3476 if (event->state == PERF_EVENT_STATE_ACTIVE) 3477 event->pmu->read(event); 3478 3479 perf_event_update_time(event); 3480 3481 /* 3482 * In order to keep per-task stats reliable we need to flip the event 3483 * values when we flip the contexts. 3484 */ 3485 value = local64_read(&next_event->count); 3486 value = local64_xchg(&event->count, value); 3487 local64_set(&next_event->count, value); 3488 3489 swap(event->total_time_enabled, next_event->total_time_enabled); 3490 swap(event->total_time_running, next_event->total_time_running); 3491 3492 /* 3493 * Since we swizzled the values, update the user visible data too. 3494 */ 3495 perf_event_update_userpage(event); 3496 perf_event_update_userpage(next_event); 3497 } 3498 3499 static void perf_event_sync_stat(struct perf_event_context *ctx, 3500 struct perf_event_context *next_ctx) 3501 { 3502 struct perf_event *event, *next_event; 3503 3504 if (!ctx->nr_stat) 3505 return; 3506 3507 update_context_time(ctx); 3508 3509 event = list_first_entry(&ctx->event_list, 3510 struct perf_event, event_entry); 3511 3512 next_event = list_first_entry(&next_ctx->event_list, 3513 struct perf_event, event_entry); 3514 3515 while (&event->event_entry != &ctx->event_list && 3516 &next_event->event_entry != &next_ctx->event_list) { 3517 3518 __perf_event_sync_stat(event, next_event); 3519 3520 event = list_next_entry(event, event_entry); 3521 next_event = list_next_entry(next_event, event_entry); 3522 } 3523 } 3524 3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3528 !list_entry_is_head(pos1, head1, member) && \ 3529 !list_entry_is_head(pos2, head2, member); \ 3530 pos1 = list_next_entry(pos1, member), \ 3531 pos2 = list_next_entry(pos2, member)) 3532 3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3534 struct perf_event_context *next_ctx) 3535 { 3536 struct perf_event_pmu_context *prev_epc, *next_epc; 3537 3538 if (!prev_ctx->nr_task_data) 3539 return; 3540 3541 double_list_for_each_entry(prev_epc, next_epc, 3542 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3543 pmu_ctx_entry) { 3544 3545 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3546 continue; 3547 3548 /* 3549 * PMU specific parts of task perf context can require 3550 * additional synchronization. As an example of such 3551 * synchronization see implementation details of Intel 3552 * LBR call stack data profiling; 3553 */ 3554 if (prev_epc->pmu->swap_task_ctx) 3555 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3556 else 3557 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3558 } 3559 } 3560 3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3562 { 3563 struct perf_event_pmu_context *pmu_ctx; 3564 struct perf_cpu_pmu_context *cpc; 3565 3566 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3567 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3568 3569 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3570 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3571 } 3572 } 3573 3574 static void 3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3576 { 3577 struct perf_event_context *ctx = task->perf_event_ctxp; 3578 struct perf_event_context *next_ctx; 3579 struct perf_event_context *parent, *next_parent; 3580 int do_switch = 1; 3581 3582 if (likely(!ctx)) 3583 return; 3584 3585 rcu_read_lock(); 3586 next_ctx = rcu_dereference(next->perf_event_ctxp); 3587 if (!next_ctx) 3588 goto unlock; 3589 3590 parent = rcu_dereference(ctx->parent_ctx); 3591 next_parent = rcu_dereference(next_ctx->parent_ctx); 3592 3593 /* If neither context have a parent context; they cannot be clones. */ 3594 if (!parent && !next_parent) 3595 goto unlock; 3596 3597 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3598 /* 3599 * Looks like the two contexts are clones, so we might be 3600 * able to optimize the context switch. We lock both 3601 * contexts and check that they are clones under the 3602 * lock (including re-checking that neither has been 3603 * uncloned in the meantime). It doesn't matter which 3604 * order we take the locks because no other cpu could 3605 * be trying to lock both of these tasks. 3606 */ 3607 raw_spin_lock(&ctx->lock); 3608 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3609 if (context_equiv(ctx, next_ctx)) { 3610 3611 perf_ctx_disable(ctx, false); 3612 3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3614 if (local_read(&ctx->nr_no_switch_fast) || 3615 local_read(&next_ctx->nr_no_switch_fast)) { 3616 /* 3617 * Must not swap out ctx when there's pending 3618 * events that rely on the ctx->task relation. 3619 * 3620 * Likewise, when a context contains inherit + 3621 * SAMPLE_READ events they should be switched 3622 * out using the slow path so that they are 3623 * treated as if they were distinct contexts. 3624 */ 3625 raw_spin_unlock(&next_ctx->lock); 3626 rcu_read_unlock(); 3627 goto inside_switch; 3628 } 3629 3630 WRITE_ONCE(ctx->task, next); 3631 WRITE_ONCE(next_ctx->task, task); 3632 3633 perf_ctx_sched_task_cb(ctx, false); 3634 perf_event_swap_task_ctx_data(ctx, next_ctx); 3635 3636 perf_ctx_enable(ctx, false); 3637 3638 /* 3639 * RCU_INIT_POINTER here is safe because we've not 3640 * modified the ctx and the above modification of 3641 * ctx->task and ctx->task_ctx_data are immaterial 3642 * since those values are always verified under 3643 * ctx->lock which we're now holding. 3644 */ 3645 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3646 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3647 3648 do_switch = 0; 3649 3650 perf_event_sync_stat(ctx, next_ctx); 3651 } 3652 raw_spin_unlock(&next_ctx->lock); 3653 raw_spin_unlock(&ctx->lock); 3654 } 3655 unlock: 3656 rcu_read_unlock(); 3657 3658 if (do_switch) { 3659 raw_spin_lock(&ctx->lock); 3660 perf_ctx_disable(ctx, false); 3661 3662 inside_switch: 3663 perf_ctx_sched_task_cb(ctx, false); 3664 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3665 3666 perf_ctx_enable(ctx, false); 3667 raw_spin_unlock(&ctx->lock); 3668 } 3669 } 3670 3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3673 3674 void perf_sched_cb_dec(struct pmu *pmu) 3675 { 3676 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3677 3678 this_cpu_dec(perf_sched_cb_usages); 3679 barrier(); 3680 3681 if (!--cpc->sched_cb_usage) 3682 list_del(&cpc->sched_cb_entry); 3683 } 3684 3685 3686 void perf_sched_cb_inc(struct pmu *pmu) 3687 { 3688 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3689 3690 if (!cpc->sched_cb_usage++) 3691 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3692 3693 barrier(); 3694 this_cpu_inc(perf_sched_cb_usages); 3695 } 3696 3697 /* 3698 * This function provides the context switch callback to the lower code 3699 * layer. It is invoked ONLY when the context switch callback is enabled. 3700 * 3701 * This callback is relevant even to per-cpu events; for example multi event 3702 * PEBS requires this to provide PID/TID information. This requires we flush 3703 * all queued PEBS records before we context switch to a new task. 3704 */ 3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3706 { 3707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3708 struct pmu *pmu; 3709 3710 pmu = cpc->epc.pmu; 3711 3712 /* software PMUs will not have sched_task */ 3713 if (WARN_ON_ONCE(!pmu->sched_task)) 3714 return; 3715 3716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3717 perf_pmu_disable(pmu); 3718 3719 pmu->sched_task(cpc->task_epc, sched_in); 3720 3721 perf_pmu_enable(pmu); 3722 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3723 } 3724 3725 static void perf_pmu_sched_task(struct task_struct *prev, 3726 struct task_struct *next, 3727 bool sched_in) 3728 { 3729 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3730 struct perf_cpu_pmu_context *cpc; 3731 3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3733 if (prev == next || cpuctx->task_ctx) 3734 return; 3735 3736 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3737 __perf_pmu_sched_task(cpc, sched_in); 3738 } 3739 3740 static void perf_event_switch(struct task_struct *task, 3741 struct task_struct *next_prev, bool sched_in); 3742 3743 /* 3744 * Called from scheduler to remove the events of the current task, 3745 * with interrupts disabled. 3746 * 3747 * We stop each event and update the event value in event->count. 3748 * 3749 * This does not protect us against NMI, but disable() 3750 * sets the disabled bit in the control field of event _before_ 3751 * accessing the event control register. If a NMI hits, then it will 3752 * not restart the event. 3753 */ 3754 void __perf_event_task_sched_out(struct task_struct *task, 3755 struct task_struct *next) 3756 { 3757 if (__this_cpu_read(perf_sched_cb_usages)) 3758 perf_pmu_sched_task(task, next, false); 3759 3760 if (atomic_read(&nr_switch_events)) 3761 perf_event_switch(task, next, false); 3762 3763 perf_event_context_sched_out(task, next); 3764 3765 /* 3766 * if cgroup events exist on this CPU, then we need 3767 * to check if we have to switch out PMU state. 3768 * cgroup event are system-wide mode only 3769 */ 3770 perf_cgroup_switch(next); 3771 } 3772 3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3774 { 3775 const struct perf_event *le = *(const struct perf_event **)l; 3776 const struct perf_event *re = *(const struct perf_event **)r; 3777 3778 return le->group_index < re->group_index; 3779 } 3780 3781 static void swap_ptr(void *l, void *r, void __always_unused *args) 3782 { 3783 void **lp = l, **rp = r; 3784 3785 swap(*lp, *rp); 3786 } 3787 3788 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3789 3790 static const struct min_heap_callbacks perf_min_heap = { 3791 .less = perf_less_group_idx, 3792 .swp = swap_ptr, 3793 }; 3794 3795 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3796 { 3797 struct perf_event **itrs = heap->data; 3798 3799 if (event) { 3800 itrs[heap->nr] = event; 3801 heap->nr++; 3802 } 3803 } 3804 3805 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3806 { 3807 struct perf_cpu_pmu_context *cpc; 3808 3809 if (!pmu_ctx->ctx->task) 3810 return; 3811 3812 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3813 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3814 cpc->task_epc = pmu_ctx; 3815 } 3816 3817 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3818 struct perf_event_groups *groups, int cpu, 3819 struct pmu *pmu, 3820 int (*func)(struct perf_event *, void *), 3821 void *data) 3822 { 3823 #ifdef CONFIG_CGROUP_PERF 3824 struct cgroup_subsys_state *css = NULL; 3825 #endif 3826 struct perf_cpu_context *cpuctx = NULL; 3827 /* Space for per CPU and/or any CPU event iterators. */ 3828 struct perf_event *itrs[2]; 3829 struct perf_event_min_heap event_heap; 3830 struct perf_event **evt; 3831 int ret; 3832 3833 if (pmu->filter && pmu->filter(pmu, cpu)) 3834 return 0; 3835 3836 if (!ctx->task) { 3837 cpuctx = this_cpu_ptr(&perf_cpu_context); 3838 event_heap = (struct perf_event_min_heap){ 3839 .data = cpuctx->heap, 3840 .nr = 0, 3841 .size = cpuctx->heap_size, 3842 }; 3843 3844 lockdep_assert_held(&cpuctx->ctx.lock); 3845 3846 #ifdef CONFIG_CGROUP_PERF 3847 if (cpuctx->cgrp) 3848 css = &cpuctx->cgrp->css; 3849 #endif 3850 } else { 3851 event_heap = (struct perf_event_min_heap){ 3852 .data = itrs, 3853 .nr = 0, 3854 .size = ARRAY_SIZE(itrs), 3855 }; 3856 /* Events not within a CPU context may be on any CPU. */ 3857 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3858 } 3859 evt = event_heap.data; 3860 3861 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3862 3863 #ifdef CONFIG_CGROUP_PERF 3864 for (; css; css = css->parent) 3865 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3866 #endif 3867 3868 if (event_heap.nr) { 3869 __link_epc((*evt)->pmu_ctx); 3870 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3871 } 3872 3873 min_heapify_all(&event_heap, &perf_min_heap, NULL); 3874 3875 while (event_heap.nr) { 3876 ret = func(*evt, data); 3877 if (ret) 3878 return ret; 3879 3880 *evt = perf_event_groups_next(*evt, pmu); 3881 if (*evt) 3882 min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL); 3883 else 3884 min_heap_pop(&event_heap, &perf_min_heap, NULL); 3885 } 3886 3887 return 0; 3888 } 3889 3890 /* 3891 * Because the userpage is strictly per-event (there is no concept of context, 3892 * so there cannot be a context indirection), every userpage must be updated 3893 * when context time starts :-( 3894 * 3895 * IOW, we must not miss EVENT_TIME edges. 3896 */ 3897 static inline bool event_update_userpage(struct perf_event *event) 3898 { 3899 if (likely(!atomic_read(&event->mmap_count))) 3900 return false; 3901 3902 perf_event_update_time(event); 3903 perf_event_update_userpage(event); 3904 3905 return true; 3906 } 3907 3908 static inline void group_update_userpage(struct perf_event *group_event) 3909 { 3910 struct perf_event *event; 3911 3912 if (!event_update_userpage(group_event)) 3913 return; 3914 3915 for_each_sibling_event(event, group_event) 3916 event_update_userpage(event); 3917 } 3918 3919 static int merge_sched_in(struct perf_event *event, void *data) 3920 { 3921 struct perf_event_context *ctx = event->ctx; 3922 int *can_add_hw = data; 3923 3924 if (event->state <= PERF_EVENT_STATE_OFF) 3925 return 0; 3926 3927 if (!event_filter_match(event)) 3928 return 0; 3929 3930 if (group_can_go_on(event, *can_add_hw)) { 3931 if (!group_sched_in(event, ctx)) 3932 list_add_tail(&event->active_list, get_event_list(event)); 3933 } 3934 3935 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3936 *can_add_hw = 0; 3937 if (event->attr.pinned) { 3938 perf_cgroup_event_disable(event, ctx); 3939 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3940 } else { 3941 struct perf_cpu_pmu_context *cpc; 3942 3943 event->pmu_ctx->rotate_necessary = 1; 3944 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3945 perf_mux_hrtimer_restart(cpc); 3946 group_update_userpage(event); 3947 } 3948 } 3949 3950 return 0; 3951 } 3952 3953 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3954 struct perf_event_groups *groups, 3955 struct pmu *pmu) 3956 { 3957 int can_add_hw = 1; 3958 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3959 merge_sched_in, &can_add_hw); 3960 } 3961 3962 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 3963 enum event_type_t event_type) 3964 { 3965 struct perf_event_context *ctx = pmu_ctx->ctx; 3966 3967 if (event_type & EVENT_PINNED) 3968 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 3969 if (event_type & EVENT_FLEXIBLE) 3970 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 3971 } 3972 3973 static void 3974 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3975 { 3976 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3977 struct perf_event_pmu_context *pmu_ctx; 3978 int is_active = ctx->is_active; 3979 bool cgroup = event_type & EVENT_CGROUP; 3980 3981 event_type &= ~EVENT_CGROUP; 3982 3983 lockdep_assert_held(&ctx->lock); 3984 3985 if (likely(!ctx->nr_events)) 3986 return; 3987 3988 if (!(is_active & EVENT_TIME)) { 3989 /* start ctx time */ 3990 __update_context_time(ctx, false); 3991 perf_cgroup_set_timestamp(cpuctx); 3992 /* 3993 * CPU-release for the below ->is_active store, 3994 * see __load_acquire() in perf_event_time_now() 3995 */ 3996 barrier(); 3997 } 3998 3999 ctx->is_active |= (event_type | EVENT_TIME); 4000 if (ctx->task) { 4001 if (!(is_active & EVENT_ALL)) 4002 cpuctx->task_ctx = ctx; 4003 else 4004 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4005 } 4006 4007 is_active ^= ctx->is_active; /* changed bits */ 4008 4009 /* 4010 * First go through the list and put on any pinned groups 4011 * in order to give them the best chance of going on. 4012 */ 4013 if (is_active & EVENT_PINNED) { 4014 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4015 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4016 } 4017 4018 /* Then walk through the lower prio flexible groups */ 4019 if (is_active & EVENT_FLEXIBLE) { 4020 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4021 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4022 } 4023 } 4024 4025 static void perf_event_context_sched_in(struct task_struct *task) 4026 { 4027 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4028 struct perf_event_context *ctx; 4029 4030 rcu_read_lock(); 4031 ctx = rcu_dereference(task->perf_event_ctxp); 4032 if (!ctx) 4033 goto rcu_unlock; 4034 4035 if (cpuctx->task_ctx == ctx) { 4036 perf_ctx_lock(cpuctx, ctx); 4037 perf_ctx_disable(ctx, false); 4038 4039 perf_ctx_sched_task_cb(ctx, true); 4040 4041 perf_ctx_enable(ctx, false); 4042 perf_ctx_unlock(cpuctx, ctx); 4043 goto rcu_unlock; 4044 } 4045 4046 perf_ctx_lock(cpuctx, ctx); 4047 /* 4048 * We must check ctx->nr_events while holding ctx->lock, such 4049 * that we serialize against perf_install_in_context(). 4050 */ 4051 if (!ctx->nr_events) 4052 goto unlock; 4053 4054 perf_ctx_disable(ctx, false); 4055 /* 4056 * We want to keep the following priority order: 4057 * cpu pinned (that don't need to move), task pinned, 4058 * cpu flexible, task flexible. 4059 * 4060 * However, if task's ctx is not carrying any pinned 4061 * events, no need to flip the cpuctx's events around. 4062 */ 4063 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4064 perf_ctx_disable(&cpuctx->ctx, false); 4065 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4066 } 4067 4068 perf_event_sched_in(cpuctx, ctx, NULL); 4069 4070 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 4071 4072 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4073 perf_ctx_enable(&cpuctx->ctx, false); 4074 4075 perf_ctx_enable(ctx, false); 4076 4077 unlock: 4078 perf_ctx_unlock(cpuctx, ctx); 4079 rcu_unlock: 4080 rcu_read_unlock(); 4081 } 4082 4083 /* 4084 * Called from scheduler to add the events of the current task 4085 * with interrupts disabled. 4086 * 4087 * We restore the event value and then enable it. 4088 * 4089 * This does not protect us against NMI, but enable() 4090 * sets the enabled bit in the control field of event _before_ 4091 * accessing the event control register. If a NMI hits, then it will 4092 * keep the event running. 4093 */ 4094 void __perf_event_task_sched_in(struct task_struct *prev, 4095 struct task_struct *task) 4096 { 4097 perf_event_context_sched_in(task); 4098 4099 if (atomic_read(&nr_switch_events)) 4100 perf_event_switch(task, prev, true); 4101 4102 if (__this_cpu_read(perf_sched_cb_usages)) 4103 perf_pmu_sched_task(prev, task, true); 4104 } 4105 4106 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4107 { 4108 u64 frequency = event->attr.sample_freq; 4109 u64 sec = NSEC_PER_SEC; 4110 u64 divisor, dividend; 4111 4112 int count_fls, nsec_fls, frequency_fls, sec_fls; 4113 4114 count_fls = fls64(count); 4115 nsec_fls = fls64(nsec); 4116 frequency_fls = fls64(frequency); 4117 sec_fls = 30; 4118 4119 /* 4120 * We got @count in @nsec, with a target of sample_freq HZ 4121 * the target period becomes: 4122 * 4123 * @count * 10^9 4124 * period = ------------------- 4125 * @nsec * sample_freq 4126 * 4127 */ 4128 4129 /* 4130 * Reduce accuracy by one bit such that @a and @b converge 4131 * to a similar magnitude. 4132 */ 4133 #define REDUCE_FLS(a, b) \ 4134 do { \ 4135 if (a##_fls > b##_fls) { \ 4136 a >>= 1; \ 4137 a##_fls--; \ 4138 } else { \ 4139 b >>= 1; \ 4140 b##_fls--; \ 4141 } \ 4142 } while (0) 4143 4144 /* 4145 * Reduce accuracy until either term fits in a u64, then proceed with 4146 * the other, so that finally we can do a u64/u64 division. 4147 */ 4148 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4149 REDUCE_FLS(nsec, frequency); 4150 REDUCE_FLS(sec, count); 4151 } 4152 4153 if (count_fls + sec_fls > 64) { 4154 divisor = nsec * frequency; 4155 4156 while (count_fls + sec_fls > 64) { 4157 REDUCE_FLS(count, sec); 4158 divisor >>= 1; 4159 } 4160 4161 dividend = count * sec; 4162 } else { 4163 dividend = count * sec; 4164 4165 while (nsec_fls + frequency_fls > 64) { 4166 REDUCE_FLS(nsec, frequency); 4167 dividend >>= 1; 4168 } 4169 4170 divisor = nsec * frequency; 4171 } 4172 4173 if (!divisor) 4174 return dividend; 4175 4176 return div64_u64(dividend, divisor); 4177 } 4178 4179 static DEFINE_PER_CPU(int, perf_throttled_count); 4180 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4181 4182 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4183 { 4184 struct hw_perf_event *hwc = &event->hw; 4185 s64 period, sample_period; 4186 s64 delta; 4187 4188 period = perf_calculate_period(event, nsec, count); 4189 4190 delta = (s64)(period - hwc->sample_period); 4191 if (delta >= 0) 4192 delta += 7; 4193 else 4194 delta -= 7; 4195 delta /= 8; /* low pass filter */ 4196 4197 sample_period = hwc->sample_period + delta; 4198 4199 if (!sample_period) 4200 sample_period = 1; 4201 4202 hwc->sample_period = sample_period; 4203 4204 if (local64_read(&hwc->period_left) > 8*sample_period) { 4205 if (disable) 4206 event->pmu->stop(event, PERF_EF_UPDATE); 4207 4208 local64_set(&hwc->period_left, 0); 4209 4210 if (disable) 4211 event->pmu->start(event, PERF_EF_RELOAD); 4212 } 4213 } 4214 4215 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4216 { 4217 struct perf_event *event; 4218 struct hw_perf_event *hwc; 4219 u64 now, period = TICK_NSEC; 4220 s64 delta; 4221 4222 list_for_each_entry(event, event_list, active_list) { 4223 if (event->state != PERF_EVENT_STATE_ACTIVE) 4224 continue; 4225 4226 // XXX use visit thingy to avoid the -1,cpu match 4227 if (!event_filter_match(event)) 4228 continue; 4229 4230 hwc = &event->hw; 4231 4232 if (hwc->interrupts == MAX_INTERRUPTS) { 4233 hwc->interrupts = 0; 4234 perf_log_throttle(event, 1); 4235 if (!event->attr.freq || !event->attr.sample_freq) 4236 event->pmu->start(event, 0); 4237 } 4238 4239 if (!event->attr.freq || !event->attr.sample_freq) 4240 continue; 4241 4242 /* 4243 * stop the event and update event->count 4244 */ 4245 event->pmu->stop(event, PERF_EF_UPDATE); 4246 4247 now = local64_read(&event->count); 4248 delta = now - hwc->freq_count_stamp; 4249 hwc->freq_count_stamp = now; 4250 4251 /* 4252 * restart the event 4253 * reload only if value has changed 4254 * we have stopped the event so tell that 4255 * to perf_adjust_period() to avoid stopping it 4256 * twice. 4257 */ 4258 if (delta > 0) 4259 perf_adjust_period(event, period, delta, false); 4260 4261 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4262 } 4263 } 4264 4265 /* 4266 * combine freq adjustment with unthrottling to avoid two passes over the 4267 * events. At the same time, make sure, having freq events does not change 4268 * the rate of unthrottling as that would introduce bias. 4269 */ 4270 static void 4271 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4272 { 4273 struct perf_event_pmu_context *pmu_ctx; 4274 4275 /* 4276 * only need to iterate over all events iff: 4277 * - context have events in frequency mode (needs freq adjust) 4278 * - there are events to unthrottle on this cpu 4279 */ 4280 if (!(ctx->nr_freq || unthrottle)) 4281 return; 4282 4283 raw_spin_lock(&ctx->lock); 4284 4285 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4286 if (!(pmu_ctx->nr_freq || unthrottle)) 4287 continue; 4288 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4289 continue; 4290 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4291 continue; 4292 4293 perf_pmu_disable(pmu_ctx->pmu); 4294 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4295 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4296 perf_pmu_enable(pmu_ctx->pmu); 4297 } 4298 4299 raw_spin_unlock(&ctx->lock); 4300 } 4301 4302 /* 4303 * Move @event to the tail of the @ctx's elegible events. 4304 */ 4305 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4306 { 4307 /* 4308 * Rotate the first entry last of non-pinned groups. Rotation might be 4309 * disabled by the inheritance code. 4310 */ 4311 if (ctx->rotate_disable) 4312 return; 4313 4314 perf_event_groups_delete(&ctx->flexible_groups, event); 4315 perf_event_groups_insert(&ctx->flexible_groups, event); 4316 } 4317 4318 /* pick an event from the flexible_groups to rotate */ 4319 static inline struct perf_event * 4320 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4321 { 4322 struct perf_event *event; 4323 struct rb_node *node; 4324 struct rb_root *tree; 4325 struct __group_key key = { 4326 .pmu = pmu_ctx->pmu, 4327 }; 4328 4329 /* pick the first active flexible event */ 4330 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4331 struct perf_event, active_list); 4332 if (event) 4333 goto out; 4334 4335 /* if no active flexible event, pick the first event */ 4336 tree = &pmu_ctx->ctx->flexible_groups.tree; 4337 4338 if (!pmu_ctx->ctx->task) { 4339 key.cpu = smp_processor_id(); 4340 4341 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4342 if (node) 4343 event = __node_2_pe(node); 4344 goto out; 4345 } 4346 4347 key.cpu = -1; 4348 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4349 if (node) { 4350 event = __node_2_pe(node); 4351 goto out; 4352 } 4353 4354 key.cpu = smp_processor_id(); 4355 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4356 if (node) 4357 event = __node_2_pe(node); 4358 4359 out: 4360 /* 4361 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4362 * finds there are unschedulable events, it will set it again. 4363 */ 4364 pmu_ctx->rotate_necessary = 0; 4365 4366 return event; 4367 } 4368 4369 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4370 { 4371 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4372 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4373 struct perf_event *cpu_event = NULL, *task_event = NULL; 4374 int cpu_rotate, task_rotate; 4375 struct pmu *pmu; 4376 4377 /* 4378 * Since we run this from IRQ context, nobody can install new 4379 * events, thus the event count values are stable. 4380 */ 4381 4382 cpu_epc = &cpc->epc; 4383 pmu = cpu_epc->pmu; 4384 task_epc = cpc->task_epc; 4385 4386 cpu_rotate = cpu_epc->rotate_necessary; 4387 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4388 4389 if (!(cpu_rotate || task_rotate)) 4390 return false; 4391 4392 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4393 perf_pmu_disable(pmu); 4394 4395 if (task_rotate) 4396 task_event = ctx_event_to_rotate(task_epc); 4397 if (cpu_rotate) 4398 cpu_event = ctx_event_to_rotate(cpu_epc); 4399 4400 /* 4401 * As per the order given at ctx_resched() first 'pop' task flexible 4402 * and then, if needed CPU flexible. 4403 */ 4404 if (task_event || (task_epc && cpu_event)) { 4405 update_context_time(task_epc->ctx); 4406 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4407 } 4408 4409 if (cpu_event) { 4410 update_context_time(&cpuctx->ctx); 4411 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4412 rotate_ctx(&cpuctx->ctx, cpu_event); 4413 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4414 } 4415 4416 if (task_event) 4417 rotate_ctx(task_epc->ctx, task_event); 4418 4419 if (task_event || (task_epc && cpu_event)) 4420 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4421 4422 perf_pmu_enable(pmu); 4423 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4424 4425 return true; 4426 } 4427 4428 void perf_event_task_tick(void) 4429 { 4430 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4431 struct perf_event_context *ctx; 4432 int throttled; 4433 4434 lockdep_assert_irqs_disabled(); 4435 4436 __this_cpu_inc(perf_throttled_seq); 4437 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4438 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4439 4440 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4441 4442 rcu_read_lock(); 4443 ctx = rcu_dereference(current->perf_event_ctxp); 4444 if (ctx) 4445 perf_adjust_freq_unthr_context(ctx, !!throttled); 4446 rcu_read_unlock(); 4447 } 4448 4449 static int event_enable_on_exec(struct perf_event *event, 4450 struct perf_event_context *ctx) 4451 { 4452 if (!event->attr.enable_on_exec) 4453 return 0; 4454 4455 event->attr.enable_on_exec = 0; 4456 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4457 return 0; 4458 4459 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4460 4461 return 1; 4462 } 4463 4464 /* 4465 * Enable all of a task's events that have been marked enable-on-exec. 4466 * This expects task == current. 4467 */ 4468 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4469 { 4470 struct perf_event_context *clone_ctx = NULL; 4471 enum event_type_t event_type = 0; 4472 struct perf_cpu_context *cpuctx; 4473 struct perf_event *event; 4474 unsigned long flags; 4475 int enabled = 0; 4476 4477 local_irq_save(flags); 4478 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4479 goto out; 4480 4481 if (!ctx->nr_events) 4482 goto out; 4483 4484 cpuctx = this_cpu_ptr(&perf_cpu_context); 4485 perf_ctx_lock(cpuctx, ctx); 4486 ctx_time_freeze(cpuctx, ctx); 4487 4488 list_for_each_entry(event, &ctx->event_list, event_entry) { 4489 enabled |= event_enable_on_exec(event, ctx); 4490 event_type |= get_event_type(event); 4491 } 4492 4493 /* 4494 * Unclone and reschedule this context if we enabled any event. 4495 */ 4496 if (enabled) { 4497 clone_ctx = unclone_ctx(ctx); 4498 ctx_resched(cpuctx, ctx, NULL, event_type); 4499 } 4500 perf_ctx_unlock(cpuctx, ctx); 4501 4502 out: 4503 local_irq_restore(flags); 4504 4505 if (clone_ctx) 4506 put_ctx(clone_ctx); 4507 } 4508 4509 static void perf_remove_from_owner(struct perf_event *event); 4510 static void perf_event_exit_event(struct perf_event *event, 4511 struct perf_event_context *ctx); 4512 4513 /* 4514 * Removes all events from the current task that have been marked 4515 * remove-on-exec, and feeds their values back to parent events. 4516 */ 4517 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4518 { 4519 struct perf_event_context *clone_ctx = NULL; 4520 struct perf_event *event, *next; 4521 unsigned long flags; 4522 bool modified = false; 4523 4524 mutex_lock(&ctx->mutex); 4525 4526 if (WARN_ON_ONCE(ctx->task != current)) 4527 goto unlock; 4528 4529 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4530 if (!event->attr.remove_on_exec) 4531 continue; 4532 4533 if (!is_kernel_event(event)) 4534 perf_remove_from_owner(event); 4535 4536 modified = true; 4537 4538 perf_event_exit_event(event, ctx); 4539 } 4540 4541 raw_spin_lock_irqsave(&ctx->lock, flags); 4542 if (modified) 4543 clone_ctx = unclone_ctx(ctx); 4544 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4545 4546 unlock: 4547 mutex_unlock(&ctx->mutex); 4548 4549 if (clone_ctx) 4550 put_ctx(clone_ctx); 4551 } 4552 4553 struct perf_read_data { 4554 struct perf_event *event; 4555 bool group; 4556 int ret; 4557 }; 4558 4559 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4560 4561 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4562 { 4563 int local_cpu = smp_processor_id(); 4564 u16 local_pkg, event_pkg; 4565 4566 if ((unsigned)event_cpu >= nr_cpu_ids) 4567 return event_cpu; 4568 4569 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4570 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4571 4572 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4573 return local_cpu; 4574 } 4575 4576 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4577 event_pkg = topology_physical_package_id(event_cpu); 4578 local_pkg = topology_physical_package_id(local_cpu); 4579 4580 if (event_pkg == local_pkg) 4581 return local_cpu; 4582 } 4583 4584 return event_cpu; 4585 } 4586 4587 /* 4588 * Cross CPU call to read the hardware event 4589 */ 4590 static void __perf_event_read(void *info) 4591 { 4592 struct perf_read_data *data = info; 4593 struct perf_event *sub, *event = data->event; 4594 struct perf_event_context *ctx = event->ctx; 4595 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4596 struct pmu *pmu = event->pmu; 4597 4598 /* 4599 * If this is a task context, we need to check whether it is 4600 * the current task context of this cpu. If not it has been 4601 * scheduled out before the smp call arrived. In that case 4602 * event->count would have been updated to a recent sample 4603 * when the event was scheduled out. 4604 */ 4605 if (ctx->task && cpuctx->task_ctx != ctx) 4606 return; 4607 4608 raw_spin_lock(&ctx->lock); 4609 ctx_time_update_event(ctx, event); 4610 4611 perf_event_update_time(event); 4612 if (data->group) 4613 perf_event_update_sibling_time(event); 4614 4615 if (event->state != PERF_EVENT_STATE_ACTIVE) 4616 goto unlock; 4617 4618 if (!data->group) { 4619 pmu->read(event); 4620 data->ret = 0; 4621 goto unlock; 4622 } 4623 4624 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4625 4626 pmu->read(event); 4627 4628 for_each_sibling_event(sub, event) { 4629 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4630 /* 4631 * Use sibling's PMU rather than @event's since 4632 * sibling could be on different (eg: software) PMU. 4633 */ 4634 sub->pmu->read(sub); 4635 } 4636 } 4637 4638 data->ret = pmu->commit_txn(pmu); 4639 4640 unlock: 4641 raw_spin_unlock(&ctx->lock); 4642 } 4643 4644 static inline u64 perf_event_count(struct perf_event *event, bool self) 4645 { 4646 if (self) 4647 return local64_read(&event->count); 4648 4649 return local64_read(&event->count) + atomic64_read(&event->child_count); 4650 } 4651 4652 static void calc_timer_values(struct perf_event *event, 4653 u64 *now, 4654 u64 *enabled, 4655 u64 *running) 4656 { 4657 u64 ctx_time; 4658 4659 *now = perf_clock(); 4660 ctx_time = perf_event_time_now(event, *now); 4661 __perf_update_times(event, ctx_time, enabled, running); 4662 } 4663 4664 /* 4665 * NMI-safe method to read a local event, that is an event that 4666 * is: 4667 * - either for the current task, or for this CPU 4668 * - does not have inherit set, for inherited task events 4669 * will not be local and we cannot read them atomically 4670 * - must not have a pmu::count method 4671 */ 4672 int perf_event_read_local(struct perf_event *event, u64 *value, 4673 u64 *enabled, u64 *running) 4674 { 4675 unsigned long flags; 4676 int event_oncpu; 4677 int event_cpu; 4678 int ret = 0; 4679 4680 /* 4681 * Disabling interrupts avoids all counter scheduling (context 4682 * switches, timer based rotation and IPIs). 4683 */ 4684 local_irq_save(flags); 4685 4686 /* 4687 * It must not be an event with inherit set, we cannot read 4688 * all child counters from atomic context. 4689 */ 4690 if (event->attr.inherit) { 4691 ret = -EOPNOTSUPP; 4692 goto out; 4693 } 4694 4695 /* If this is a per-task event, it must be for current */ 4696 if ((event->attach_state & PERF_ATTACH_TASK) && 4697 event->hw.target != current) { 4698 ret = -EINVAL; 4699 goto out; 4700 } 4701 4702 /* 4703 * Get the event CPU numbers, and adjust them to local if the event is 4704 * a per-package event that can be read locally 4705 */ 4706 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4707 event_cpu = __perf_event_read_cpu(event, event->cpu); 4708 4709 /* If this is a per-CPU event, it must be for this CPU */ 4710 if (!(event->attach_state & PERF_ATTACH_TASK) && 4711 event_cpu != smp_processor_id()) { 4712 ret = -EINVAL; 4713 goto out; 4714 } 4715 4716 /* If this is a pinned event it must be running on this CPU */ 4717 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4718 ret = -EBUSY; 4719 goto out; 4720 } 4721 4722 /* 4723 * If the event is currently on this CPU, its either a per-task event, 4724 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4725 * oncpu == -1). 4726 */ 4727 if (event_oncpu == smp_processor_id()) 4728 event->pmu->read(event); 4729 4730 *value = local64_read(&event->count); 4731 if (enabled || running) { 4732 u64 __enabled, __running, __now; 4733 4734 calc_timer_values(event, &__now, &__enabled, &__running); 4735 if (enabled) 4736 *enabled = __enabled; 4737 if (running) 4738 *running = __running; 4739 } 4740 out: 4741 local_irq_restore(flags); 4742 4743 return ret; 4744 } 4745 4746 static int perf_event_read(struct perf_event *event, bool group) 4747 { 4748 enum perf_event_state state = READ_ONCE(event->state); 4749 int event_cpu, ret = 0; 4750 4751 /* 4752 * If event is enabled and currently active on a CPU, update the 4753 * value in the event structure: 4754 */ 4755 again: 4756 if (state == PERF_EVENT_STATE_ACTIVE) { 4757 struct perf_read_data data; 4758 4759 /* 4760 * Orders the ->state and ->oncpu loads such that if we see 4761 * ACTIVE we must also see the right ->oncpu. 4762 * 4763 * Matches the smp_wmb() from event_sched_in(). 4764 */ 4765 smp_rmb(); 4766 4767 event_cpu = READ_ONCE(event->oncpu); 4768 if ((unsigned)event_cpu >= nr_cpu_ids) 4769 return 0; 4770 4771 data = (struct perf_read_data){ 4772 .event = event, 4773 .group = group, 4774 .ret = 0, 4775 }; 4776 4777 preempt_disable(); 4778 event_cpu = __perf_event_read_cpu(event, event_cpu); 4779 4780 /* 4781 * Purposely ignore the smp_call_function_single() return 4782 * value. 4783 * 4784 * If event_cpu isn't a valid CPU it means the event got 4785 * scheduled out and that will have updated the event count. 4786 * 4787 * Therefore, either way, we'll have an up-to-date event count 4788 * after this. 4789 */ 4790 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4791 preempt_enable(); 4792 ret = data.ret; 4793 4794 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4795 struct perf_event_context *ctx = event->ctx; 4796 unsigned long flags; 4797 4798 raw_spin_lock_irqsave(&ctx->lock, flags); 4799 state = event->state; 4800 if (state != PERF_EVENT_STATE_INACTIVE) { 4801 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4802 goto again; 4803 } 4804 4805 /* 4806 * May read while context is not active (e.g., thread is 4807 * blocked), in that case we cannot update context time 4808 */ 4809 ctx_time_update_event(ctx, event); 4810 4811 perf_event_update_time(event); 4812 if (group) 4813 perf_event_update_sibling_time(event); 4814 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4815 } 4816 4817 return ret; 4818 } 4819 4820 /* 4821 * Initialize the perf_event context in a task_struct: 4822 */ 4823 static void __perf_event_init_context(struct perf_event_context *ctx) 4824 { 4825 raw_spin_lock_init(&ctx->lock); 4826 mutex_init(&ctx->mutex); 4827 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4828 perf_event_groups_init(&ctx->pinned_groups); 4829 perf_event_groups_init(&ctx->flexible_groups); 4830 INIT_LIST_HEAD(&ctx->event_list); 4831 refcount_set(&ctx->refcount, 1); 4832 } 4833 4834 static void 4835 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4836 { 4837 epc->pmu = pmu; 4838 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4839 INIT_LIST_HEAD(&epc->pinned_active); 4840 INIT_LIST_HEAD(&epc->flexible_active); 4841 atomic_set(&epc->refcount, 1); 4842 } 4843 4844 static struct perf_event_context * 4845 alloc_perf_context(struct task_struct *task) 4846 { 4847 struct perf_event_context *ctx; 4848 4849 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4850 if (!ctx) 4851 return NULL; 4852 4853 __perf_event_init_context(ctx); 4854 if (task) 4855 ctx->task = get_task_struct(task); 4856 4857 return ctx; 4858 } 4859 4860 static struct task_struct * 4861 find_lively_task_by_vpid(pid_t vpid) 4862 { 4863 struct task_struct *task; 4864 4865 rcu_read_lock(); 4866 if (!vpid) 4867 task = current; 4868 else 4869 task = find_task_by_vpid(vpid); 4870 if (task) 4871 get_task_struct(task); 4872 rcu_read_unlock(); 4873 4874 if (!task) 4875 return ERR_PTR(-ESRCH); 4876 4877 return task; 4878 } 4879 4880 /* 4881 * Returns a matching context with refcount and pincount. 4882 */ 4883 static struct perf_event_context * 4884 find_get_context(struct task_struct *task, struct perf_event *event) 4885 { 4886 struct perf_event_context *ctx, *clone_ctx = NULL; 4887 struct perf_cpu_context *cpuctx; 4888 unsigned long flags; 4889 int err; 4890 4891 if (!task) { 4892 /* Must be root to operate on a CPU event: */ 4893 err = perf_allow_cpu(&event->attr); 4894 if (err) 4895 return ERR_PTR(err); 4896 4897 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4898 ctx = &cpuctx->ctx; 4899 get_ctx(ctx); 4900 raw_spin_lock_irqsave(&ctx->lock, flags); 4901 ++ctx->pin_count; 4902 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4903 4904 return ctx; 4905 } 4906 4907 err = -EINVAL; 4908 retry: 4909 ctx = perf_lock_task_context(task, &flags); 4910 if (ctx) { 4911 clone_ctx = unclone_ctx(ctx); 4912 ++ctx->pin_count; 4913 4914 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4915 4916 if (clone_ctx) 4917 put_ctx(clone_ctx); 4918 } else { 4919 ctx = alloc_perf_context(task); 4920 err = -ENOMEM; 4921 if (!ctx) 4922 goto errout; 4923 4924 err = 0; 4925 mutex_lock(&task->perf_event_mutex); 4926 /* 4927 * If it has already passed perf_event_exit_task(). 4928 * we must see PF_EXITING, it takes this mutex too. 4929 */ 4930 if (task->flags & PF_EXITING) 4931 err = -ESRCH; 4932 else if (task->perf_event_ctxp) 4933 err = -EAGAIN; 4934 else { 4935 get_ctx(ctx); 4936 ++ctx->pin_count; 4937 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4938 } 4939 mutex_unlock(&task->perf_event_mutex); 4940 4941 if (unlikely(err)) { 4942 put_ctx(ctx); 4943 4944 if (err == -EAGAIN) 4945 goto retry; 4946 goto errout; 4947 } 4948 } 4949 4950 return ctx; 4951 4952 errout: 4953 return ERR_PTR(err); 4954 } 4955 4956 static struct perf_event_pmu_context * 4957 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4958 struct perf_event *event) 4959 { 4960 struct perf_event_pmu_context *new = NULL, *epc; 4961 void *task_ctx_data = NULL; 4962 4963 if (!ctx->task) { 4964 /* 4965 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4966 * relies on the fact that find_get_pmu_context() cannot fail 4967 * for CPU contexts. 4968 */ 4969 struct perf_cpu_pmu_context *cpc; 4970 4971 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4972 epc = &cpc->epc; 4973 raw_spin_lock_irq(&ctx->lock); 4974 if (!epc->ctx) { 4975 atomic_set(&epc->refcount, 1); 4976 epc->embedded = 1; 4977 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4978 epc->ctx = ctx; 4979 } else { 4980 WARN_ON_ONCE(epc->ctx != ctx); 4981 atomic_inc(&epc->refcount); 4982 } 4983 raw_spin_unlock_irq(&ctx->lock); 4984 return epc; 4985 } 4986 4987 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4988 if (!new) 4989 return ERR_PTR(-ENOMEM); 4990 4991 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4992 task_ctx_data = alloc_task_ctx_data(pmu); 4993 if (!task_ctx_data) { 4994 kfree(new); 4995 return ERR_PTR(-ENOMEM); 4996 } 4997 } 4998 4999 __perf_init_event_pmu_context(new, pmu); 5000 5001 /* 5002 * XXX 5003 * 5004 * lockdep_assert_held(&ctx->mutex); 5005 * 5006 * can't because perf_event_init_task() doesn't actually hold the 5007 * child_ctx->mutex. 5008 */ 5009 5010 raw_spin_lock_irq(&ctx->lock); 5011 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5012 if (epc->pmu == pmu) { 5013 WARN_ON_ONCE(epc->ctx != ctx); 5014 atomic_inc(&epc->refcount); 5015 goto found_epc; 5016 } 5017 } 5018 5019 epc = new; 5020 new = NULL; 5021 5022 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5023 epc->ctx = ctx; 5024 5025 found_epc: 5026 if (task_ctx_data && !epc->task_ctx_data) { 5027 epc->task_ctx_data = task_ctx_data; 5028 task_ctx_data = NULL; 5029 ctx->nr_task_data++; 5030 } 5031 raw_spin_unlock_irq(&ctx->lock); 5032 5033 free_task_ctx_data(pmu, task_ctx_data); 5034 kfree(new); 5035 5036 return epc; 5037 } 5038 5039 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5040 { 5041 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5042 } 5043 5044 static void free_epc_rcu(struct rcu_head *head) 5045 { 5046 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5047 5048 kfree(epc->task_ctx_data); 5049 kfree(epc); 5050 } 5051 5052 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5053 { 5054 struct perf_event_context *ctx = epc->ctx; 5055 unsigned long flags; 5056 5057 /* 5058 * XXX 5059 * 5060 * lockdep_assert_held(&ctx->mutex); 5061 * 5062 * can't because of the call-site in _free_event()/put_event() 5063 * which isn't always called under ctx->mutex. 5064 */ 5065 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5066 return; 5067 5068 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5069 5070 list_del_init(&epc->pmu_ctx_entry); 5071 epc->ctx = NULL; 5072 5073 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5074 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5075 5076 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5077 5078 if (epc->embedded) 5079 return; 5080 5081 call_rcu(&epc->rcu_head, free_epc_rcu); 5082 } 5083 5084 static void perf_event_free_filter(struct perf_event *event); 5085 5086 static void free_event_rcu(struct rcu_head *head) 5087 { 5088 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5089 5090 if (event->ns) 5091 put_pid_ns(event->ns); 5092 perf_event_free_filter(event); 5093 kmem_cache_free(perf_event_cache, event); 5094 } 5095 5096 static void ring_buffer_attach(struct perf_event *event, 5097 struct perf_buffer *rb); 5098 5099 static void detach_sb_event(struct perf_event *event) 5100 { 5101 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5102 5103 raw_spin_lock(&pel->lock); 5104 list_del_rcu(&event->sb_list); 5105 raw_spin_unlock(&pel->lock); 5106 } 5107 5108 static bool is_sb_event(struct perf_event *event) 5109 { 5110 struct perf_event_attr *attr = &event->attr; 5111 5112 if (event->parent) 5113 return false; 5114 5115 if (event->attach_state & PERF_ATTACH_TASK) 5116 return false; 5117 5118 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5119 attr->comm || attr->comm_exec || 5120 attr->task || attr->ksymbol || 5121 attr->context_switch || attr->text_poke || 5122 attr->bpf_event) 5123 return true; 5124 return false; 5125 } 5126 5127 static void unaccount_pmu_sb_event(struct perf_event *event) 5128 { 5129 if (is_sb_event(event)) 5130 detach_sb_event(event); 5131 } 5132 5133 #ifdef CONFIG_NO_HZ_FULL 5134 static DEFINE_SPINLOCK(nr_freq_lock); 5135 #endif 5136 5137 static void unaccount_freq_event_nohz(void) 5138 { 5139 #ifdef CONFIG_NO_HZ_FULL 5140 spin_lock(&nr_freq_lock); 5141 if (atomic_dec_and_test(&nr_freq_events)) 5142 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5143 spin_unlock(&nr_freq_lock); 5144 #endif 5145 } 5146 5147 static void unaccount_freq_event(void) 5148 { 5149 if (tick_nohz_full_enabled()) 5150 unaccount_freq_event_nohz(); 5151 else 5152 atomic_dec(&nr_freq_events); 5153 } 5154 5155 static void unaccount_event(struct perf_event *event) 5156 { 5157 bool dec = false; 5158 5159 if (event->parent) 5160 return; 5161 5162 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5163 dec = true; 5164 if (event->attr.mmap || event->attr.mmap_data) 5165 atomic_dec(&nr_mmap_events); 5166 if (event->attr.build_id) 5167 atomic_dec(&nr_build_id_events); 5168 if (event->attr.comm) 5169 atomic_dec(&nr_comm_events); 5170 if (event->attr.namespaces) 5171 atomic_dec(&nr_namespaces_events); 5172 if (event->attr.cgroup) 5173 atomic_dec(&nr_cgroup_events); 5174 if (event->attr.task) 5175 atomic_dec(&nr_task_events); 5176 if (event->attr.freq) 5177 unaccount_freq_event(); 5178 if (event->attr.context_switch) { 5179 dec = true; 5180 atomic_dec(&nr_switch_events); 5181 } 5182 if (is_cgroup_event(event)) 5183 dec = true; 5184 if (has_branch_stack(event)) 5185 dec = true; 5186 if (event->attr.ksymbol) 5187 atomic_dec(&nr_ksymbol_events); 5188 if (event->attr.bpf_event) 5189 atomic_dec(&nr_bpf_events); 5190 if (event->attr.text_poke) 5191 atomic_dec(&nr_text_poke_events); 5192 5193 if (dec) { 5194 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5195 schedule_delayed_work(&perf_sched_work, HZ); 5196 } 5197 5198 unaccount_pmu_sb_event(event); 5199 } 5200 5201 static void perf_sched_delayed(struct work_struct *work) 5202 { 5203 mutex_lock(&perf_sched_mutex); 5204 if (atomic_dec_and_test(&perf_sched_count)) 5205 static_branch_disable(&perf_sched_events); 5206 mutex_unlock(&perf_sched_mutex); 5207 } 5208 5209 /* 5210 * The following implement mutual exclusion of events on "exclusive" pmus 5211 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5212 * at a time, so we disallow creating events that might conflict, namely: 5213 * 5214 * 1) cpu-wide events in the presence of per-task events, 5215 * 2) per-task events in the presence of cpu-wide events, 5216 * 3) two matching events on the same perf_event_context. 5217 * 5218 * The former two cases are handled in the allocation path (perf_event_alloc(), 5219 * _free_event()), the latter -- before the first perf_install_in_context(). 5220 */ 5221 static int exclusive_event_init(struct perf_event *event) 5222 { 5223 struct pmu *pmu = event->pmu; 5224 5225 if (!is_exclusive_pmu(pmu)) 5226 return 0; 5227 5228 /* 5229 * Prevent co-existence of per-task and cpu-wide events on the 5230 * same exclusive pmu. 5231 * 5232 * Negative pmu::exclusive_cnt means there are cpu-wide 5233 * events on this "exclusive" pmu, positive means there are 5234 * per-task events. 5235 * 5236 * Since this is called in perf_event_alloc() path, event::ctx 5237 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5238 * to mean "per-task event", because unlike other attach states it 5239 * never gets cleared. 5240 */ 5241 if (event->attach_state & PERF_ATTACH_TASK) { 5242 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5243 return -EBUSY; 5244 } else { 5245 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5246 return -EBUSY; 5247 } 5248 5249 return 0; 5250 } 5251 5252 static void exclusive_event_destroy(struct perf_event *event) 5253 { 5254 struct pmu *pmu = event->pmu; 5255 5256 if (!is_exclusive_pmu(pmu)) 5257 return; 5258 5259 /* see comment in exclusive_event_init() */ 5260 if (event->attach_state & PERF_ATTACH_TASK) 5261 atomic_dec(&pmu->exclusive_cnt); 5262 else 5263 atomic_inc(&pmu->exclusive_cnt); 5264 } 5265 5266 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5267 { 5268 if ((e1->pmu == e2->pmu) && 5269 (e1->cpu == e2->cpu || 5270 e1->cpu == -1 || 5271 e2->cpu == -1)) 5272 return true; 5273 return false; 5274 } 5275 5276 static bool exclusive_event_installable(struct perf_event *event, 5277 struct perf_event_context *ctx) 5278 { 5279 struct perf_event *iter_event; 5280 struct pmu *pmu = event->pmu; 5281 5282 lockdep_assert_held(&ctx->mutex); 5283 5284 if (!is_exclusive_pmu(pmu)) 5285 return true; 5286 5287 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5288 if (exclusive_event_match(iter_event, event)) 5289 return false; 5290 } 5291 5292 return true; 5293 } 5294 5295 static void perf_addr_filters_splice(struct perf_event *event, 5296 struct list_head *head); 5297 5298 static void perf_pending_task_sync(struct perf_event *event) 5299 { 5300 struct callback_head *head = &event->pending_task; 5301 5302 if (!event->pending_work) 5303 return; 5304 /* 5305 * If the task is queued to the current task's queue, we 5306 * obviously can't wait for it to complete. Simply cancel it. 5307 */ 5308 if (task_work_cancel(current, head)) { 5309 event->pending_work = 0; 5310 local_dec(&event->ctx->nr_no_switch_fast); 5311 return; 5312 } 5313 5314 /* 5315 * All accesses related to the event are within the same RCU section in 5316 * perf_pending_task(). The RCU grace period before the event is freed 5317 * will make sure all those accesses are complete by then. 5318 */ 5319 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5320 } 5321 5322 static void _free_event(struct perf_event *event) 5323 { 5324 irq_work_sync(&event->pending_irq); 5325 irq_work_sync(&event->pending_disable_irq); 5326 perf_pending_task_sync(event); 5327 5328 unaccount_event(event); 5329 5330 security_perf_event_free(event); 5331 5332 if (event->rb) { 5333 /* 5334 * Can happen when we close an event with re-directed output. 5335 * 5336 * Since we have a 0 refcount, perf_mmap_close() will skip 5337 * over us; possibly making our ring_buffer_put() the last. 5338 */ 5339 mutex_lock(&event->mmap_mutex); 5340 ring_buffer_attach(event, NULL); 5341 mutex_unlock(&event->mmap_mutex); 5342 } 5343 5344 if (is_cgroup_event(event)) 5345 perf_detach_cgroup(event); 5346 5347 if (!event->parent) { 5348 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5349 put_callchain_buffers(); 5350 } 5351 5352 perf_event_free_bpf_prog(event); 5353 perf_addr_filters_splice(event, NULL); 5354 kfree(event->addr_filter_ranges); 5355 5356 if (event->destroy) 5357 event->destroy(event); 5358 5359 /* 5360 * Must be after ->destroy(), due to uprobe_perf_close() using 5361 * hw.target. 5362 */ 5363 if (event->hw.target) 5364 put_task_struct(event->hw.target); 5365 5366 if (event->pmu_ctx) 5367 put_pmu_ctx(event->pmu_ctx); 5368 5369 /* 5370 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5371 * all task references must be cleaned up. 5372 */ 5373 if (event->ctx) 5374 put_ctx(event->ctx); 5375 5376 exclusive_event_destroy(event); 5377 module_put(event->pmu->module); 5378 5379 call_rcu(&event->rcu_head, free_event_rcu); 5380 } 5381 5382 /* 5383 * Used to free events which have a known refcount of 1, such as in error paths 5384 * where the event isn't exposed yet and inherited events. 5385 */ 5386 static void free_event(struct perf_event *event) 5387 { 5388 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5389 "unexpected event refcount: %ld; ptr=%p\n", 5390 atomic_long_read(&event->refcount), event)) { 5391 /* leak to avoid use-after-free */ 5392 return; 5393 } 5394 5395 _free_event(event); 5396 } 5397 5398 /* 5399 * Remove user event from the owner task. 5400 */ 5401 static void perf_remove_from_owner(struct perf_event *event) 5402 { 5403 struct task_struct *owner; 5404 5405 rcu_read_lock(); 5406 /* 5407 * Matches the smp_store_release() in perf_event_exit_task(). If we 5408 * observe !owner it means the list deletion is complete and we can 5409 * indeed free this event, otherwise we need to serialize on 5410 * owner->perf_event_mutex. 5411 */ 5412 owner = READ_ONCE(event->owner); 5413 if (owner) { 5414 /* 5415 * Since delayed_put_task_struct() also drops the last 5416 * task reference we can safely take a new reference 5417 * while holding the rcu_read_lock(). 5418 */ 5419 get_task_struct(owner); 5420 } 5421 rcu_read_unlock(); 5422 5423 if (owner) { 5424 /* 5425 * If we're here through perf_event_exit_task() we're already 5426 * holding ctx->mutex which would be an inversion wrt. the 5427 * normal lock order. 5428 * 5429 * However we can safely take this lock because its the child 5430 * ctx->mutex. 5431 */ 5432 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5433 5434 /* 5435 * We have to re-check the event->owner field, if it is cleared 5436 * we raced with perf_event_exit_task(), acquiring the mutex 5437 * ensured they're done, and we can proceed with freeing the 5438 * event. 5439 */ 5440 if (event->owner) { 5441 list_del_init(&event->owner_entry); 5442 smp_store_release(&event->owner, NULL); 5443 } 5444 mutex_unlock(&owner->perf_event_mutex); 5445 put_task_struct(owner); 5446 } 5447 } 5448 5449 static void put_event(struct perf_event *event) 5450 { 5451 if (!atomic_long_dec_and_test(&event->refcount)) 5452 return; 5453 5454 _free_event(event); 5455 } 5456 5457 /* 5458 * Kill an event dead; while event:refcount will preserve the event 5459 * object, it will not preserve its functionality. Once the last 'user' 5460 * gives up the object, we'll destroy the thing. 5461 */ 5462 int perf_event_release_kernel(struct perf_event *event) 5463 { 5464 struct perf_event_context *ctx = event->ctx; 5465 struct perf_event *child, *tmp; 5466 LIST_HEAD(free_list); 5467 5468 /* 5469 * If we got here through err_alloc: free_event(event); we will not 5470 * have attached to a context yet. 5471 */ 5472 if (!ctx) { 5473 WARN_ON_ONCE(event->attach_state & 5474 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5475 goto no_ctx; 5476 } 5477 5478 if (!is_kernel_event(event)) 5479 perf_remove_from_owner(event); 5480 5481 ctx = perf_event_ctx_lock(event); 5482 WARN_ON_ONCE(ctx->parent_ctx); 5483 5484 /* 5485 * Mark this event as STATE_DEAD, there is no external reference to it 5486 * anymore. 5487 * 5488 * Anybody acquiring event->child_mutex after the below loop _must_ 5489 * also see this, most importantly inherit_event() which will avoid 5490 * placing more children on the list. 5491 * 5492 * Thus this guarantees that we will in fact observe and kill _ALL_ 5493 * child events. 5494 */ 5495 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5496 5497 perf_event_ctx_unlock(event, ctx); 5498 5499 again: 5500 mutex_lock(&event->child_mutex); 5501 list_for_each_entry(child, &event->child_list, child_list) { 5502 void *var = NULL; 5503 5504 /* 5505 * Cannot change, child events are not migrated, see the 5506 * comment with perf_event_ctx_lock_nested(). 5507 */ 5508 ctx = READ_ONCE(child->ctx); 5509 /* 5510 * Since child_mutex nests inside ctx::mutex, we must jump 5511 * through hoops. We start by grabbing a reference on the ctx. 5512 * 5513 * Since the event cannot get freed while we hold the 5514 * child_mutex, the context must also exist and have a !0 5515 * reference count. 5516 */ 5517 get_ctx(ctx); 5518 5519 /* 5520 * Now that we have a ctx ref, we can drop child_mutex, and 5521 * acquire ctx::mutex without fear of it going away. Then we 5522 * can re-acquire child_mutex. 5523 */ 5524 mutex_unlock(&event->child_mutex); 5525 mutex_lock(&ctx->mutex); 5526 mutex_lock(&event->child_mutex); 5527 5528 /* 5529 * Now that we hold ctx::mutex and child_mutex, revalidate our 5530 * state, if child is still the first entry, it didn't get freed 5531 * and we can continue doing so. 5532 */ 5533 tmp = list_first_entry_or_null(&event->child_list, 5534 struct perf_event, child_list); 5535 if (tmp == child) { 5536 perf_remove_from_context(child, DETACH_GROUP); 5537 list_move(&child->child_list, &free_list); 5538 /* 5539 * This matches the refcount bump in inherit_event(); 5540 * this can't be the last reference. 5541 */ 5542 put_event(event); 5543 } else { 5544 var = &ctx->refcount; 5545 } 5546 5547 mutex_unlock(&event->child_mutex); 5548 mutex_unlock(&ctx->mutex); 5549 put_ctx(ctx); 5550 5551 if (var) { 5552 /* 5553 * If perf_event_free_task() has deleted all events from the 5554 * ctx while the child_mutex got released above, make sure to 5555 * notify about the preceding put_ctx(). 5556 */ 5557 smp_mb(); /* pairs with wait_var_event() */ 5558 wake_up_var(var); 5559 } 5560 goto again; 5561 } 5562 mutex_unlock(&event->child_mutex); 5563 5564 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5565 void *var = &child->ctx->refcount; 5566 5567 list_del(&child->child_list); 5568 free_event(child); 5569 5570 /* 5571 * Wake any perf_event_free_task() waiting for this event to be 5572 * freed. 5573 */ 5574 smp_mb(); /* pairs with wait_var_event() */ 5575 wake_up_var(var); 5576 } 5577 5578 no_ctx: 5579 put_event(event); /* Must be the 'last' reference */ 5580 return 0; 5581 } 5582 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5583 5584 /* 5585 * Called when the last reference to the file is gone. 5586 */ 5587 static int perf_release(struct inode *inode, struct file *file) 5588 { 5589 perf_event_release_kernel(file->private_data); 5590 return 0; 5591 } 5592 5593 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5594 { 5595 struct perf_event *child; 5596 u64 total = 0; 5597 5598 *enabled = 0; 5599 *running = 0; 5600 5601 mutex_lock(&event->child_mutex); 5602 5603 (void)perf_event_read(event, false); 5604 total += perf_event_count(event, false); 5605 5606 *enabled += event->total_time_enabled + 5607 atomic64_read(&event->child_total_time_enabled); 5608 *running += event->total_time_running + 5609 atomic64_read(&event->child_total_time_running); 5610 5611 list_for_each_entry(child, &event->child_list, child_list) { 5612 (void)perf_event_read(child, false); 5613 total += perf_event_count(child, false); 5614 *enabled += child->total_time_enabled; 5615 *running += child->total_time_running; 5616 } 5617 mutex_unlock(&event->child_mutex); 5618 5619 return total; 5620 } 5621 5622 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5623 { 5624 struct perf_event_context *ctx; 5625 u64 count; 5626 5627 ctx = perf_event_ctx_lock(event); 5628 count = __perf_event_read_value(event, enabled, running); 5629 perf_event_ctx_unlock(event, ctx); 5630 5631 return count; 5632 } 5633 EXPORT_SYMBOL_GPL(perf_event_read_value); 5634 5635 static int __perf_read_group_add(struct perf_event *leader, 5636 u64 read_format, u64 *values) 5637 { 5638 struct perf_event_context *ctx = leader->ctx; 5639 struct perf_event *sub, *parent; 5640 unsigned long flags; 5641 int n = 1; /* skip @nr */ 5642 int ret; 5643 5644 ret = perf_event_read(leader, true); 5645 if (ret) 5646 return ret; 5647 5648 raw_spin_lock_irqsave(&ctx->lock, flags); 5649 /* 5650 * Verify the grouping between the parent and child (inherited) 5651 * events is still in tact. 5652 * 5653 * Specifically: 5654 * - leader->ctx->lock pins leader->sibling_list 5655 * - parent->child_mutex pins parent->child_list 5656 * - parent->ctx->mutex pins parent->sibling_list 5657 * 5658 * Because parent->ctx != leader->ctx (and child_list nests inside 5659 * ctx->mutex), group destruction is not atomic between children, also 5660 * see perf_event_release_kernel(). Additionally, parent can grow the 5661 * group. 5662 * 5663 * Therefore it is possible to have parent and child groups in a 5664 * different configuration and summing over such a beast makes no sense 5665 * what so ever. 5666 * 5667 * Reject this. 5668 */ 5669 parent = leader->parent; 5670 if (parent && 5671 (parent->group_generation != leader->group_generation || 5672 parent->nr_siblings != leader->nr_siblings)) { 5673 ret = -ECHILD; 5674 goto unlock; 5675 } 5676 5677 /* 5678 * Since we co-schedule groups, {enabled,running} times of siblings 5679 * will be identical to those of the leader, so we only publish one 5680 * set. 5681 */ 5682 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5683 values[n++] += leader->total_time_enabled + 5684 atomic64_read(&leader->child_total_time_enabled); 5685 } 5686 5687 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5688 values[n++] += leader->total_time_running + 5689 atomic64_read(&leader->child_total_time_running); 5690 } 5691 5692 /* 5693 * Write {count,id} tuples for every sibling. 5694 */ 5695 values[n++] += perf_event_count(leader, false); 5696 if (read_format & PERF_FORMAT_ID) 5697 values[n++] = primary_event_id(leader); 5698 if (read_format & PERF_FORMAT_LOST) 5699 values[n++] = atomic64_read(&leader->lost_samples); 5700 5701 for_each_sibling_event(sub, leader) { 5702 values[n++] += perf_event_count(sub, false); 5703 if (read_format & PERF_FORMAT_ID) 5704 values[n++] = primary_event_id(sub); 5705 if (read_format & PERF_FORMAT_LOST) 5706 values[n++] = atomic64_read(&sub->lost_samples); 5707 } 5708 5709 unlock: 5710 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5711 return ret; 5712 } 5713 5714 static int perf_read_group(struct perf_event *event, 5715 u64 read_format, char __user *buf) 5716 { 5717 struct perf_event *leader = event->group_leader, *child; 5718 struct perf_event_context *ctx = leader->ctx; 5719 int ret; 5720 u64 *values; 5721 5722 lockdep_assert_held(&ctx->mutex); 5723 5724 values = kzalloc(event->read_size, GFP_KERNEL); 5725 if (!values) 5726 return -ENOMEM; 5727 5728 values[0] = 1 + leader->nr_siblings; 5729 5730 mutex_lock(&leader->child_mutex); 5731 5732 ret = __perf_read_group_add(leader, read_format, values); 5733 if (ret) 5734 goto unlock; 5735 5736 list_for_each_entry(child, &leader->child_list, child_list) { 5737 ret = __perf_read_group_add(child, read_format, values); 5738 if (ret) 5739 goto unlock; 5740 } 5741 5742 mutex_unlock(&leader->child_mutex); 5743 5744 ret = event->read_size; 5745 if (copy_to_user(buf, values, event->read_size)) 5746 ret = -EFAULT; 5747 goto out; 5748 5749 unlock: 5750 mutex_unlock(&leader->child_mutex); 5751 out: 5752 kfree(values); 5753 return ret; 5754 } 5755 5756 static int perf_read_one(struct perf_event *event, 5757 u64 read_format, char __user *buf) 5758 { 5759 u64 enabled, running; 5760 u64 values[5]; 5761 int n = 0; 5762 5763 values[n++] = __perf_event_read_value(event, &enabled, &running); 5764 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5765 values[n++] = enabled; 5766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5767 values[n++] = running; 5768 if (read_format & PERF_FORMAT_ID) 5769 values[n++] = primary_event_id(event); 5770 if (read_format & PERF_FORMAT_LOST) 5771 values[n++] = atomic64_read(&event->lost_samples); 5772 5773 if (copy_to_user(buf, values, n * sizeof(u64))) 5774 return -EFAULT; 5775 5776 return n * sizeof(u64); 5777 } 5778 5779 static bool is_event_hup(struct perf_event *event) 5780 { 5781 bool no_children; 5782 5783 if (event->state > PERF_EVENT_STATE_EXIT) 5784 return false; 5785 5786 mutex_lock(&event->child_mutex); 5787 no_children = list_empty(&event->child_list); 5788 mutex_unlock(&event->child_mutex); 5789 return no_children; 5790 } 5791 5792 /* 5793 * Read the performance event - simple non blocking version for now 5794 */ 5795 static ssize_t 5796 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5797 { 5798 u64 read_format = event->attr.read_format; 5799 int ret; 5800 5801 /* 5802 * Return end-of-file for a read on an event that is in 5803 * error state (i.e. because it was pinned but it couldn't be 5804 * scheduled on to the CPU at some point). 5805 */ 5806 if (event->state == PERF_EVENT_STATE_ERROR) 5807 return 0; 5808 5809 if (count < event->read_size) 5810 return -ENOSPC; 5811 5812 WARN_ON_ONCE(event->ctx->parent_ctx); 5813 if (read_format & PERF_FORMAT_GROUP) 5814 ret = perf_read_group(event, read_format, buf); 5815 else 5816 ret = perf_read_one(event, read_format, buf); 5817 5818 return ret; 5819 } 5820 5821 static ssize_t 5822 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5823 { 5824 struct perf_event *event = file->private_data; 5825 struct perf_event_context *ctx; 5826 int ret; 5827 5828 ret = security_perf_event_read(event); 5829 if (ret) 5830 return ret; 5831 5832 ctx = perf_event_ctx_lock(event); 5833 ret = __perf_read(event, buf, count); 5834 perf_event_ctx_unlock(event, ctx); 5835 5836 return ret; 5837 } 5838 5839 static __poll_t perf_poll(struct file *file, poll_table *wait) 5840 { 5841 struct perf_event *event = file->private_data; 5842 struct perf_buffer *rb; 5843 __poll_t events = EPOLLHUP; 5844 5845 poll_wait(file, &event->waitq, wait); 5846 5847 if (is_event_hup(event)) 5848 return events; 5849 5850 /* 5851 * Pin the event->rb by taking event->mmap_mutex; otherwise 5852 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5853 */ 5854 mutex_lock(&event->mmap_mutex); 5855 rb = event->rb; 5856 if (rb) 5857 events = atomic_xchg(&rb->poll, 0); 5858 mutex_unlock(&event->mmap_mutex); 5859 return events; 5860 } 5861 5862 static void _perf_event_reset(struct perf_event *event) 5863 { 5864 (void)perf_event_read(event, false); 5865 local64_set(&event->count, 0); 5866 perf_event_update_userpage(event); 5867 } 5868 5869 /* Assume it's not an event with inherit set. */ 5870 u64 perf_event_pause(struct perf_event *event, bool reset) 5871 { 5872 struct perf_event_context *ctx; 5873 u64 count; 5874 5875 ctx = perf_event_ctx_lock(event); 5876 WARN_ON_ONCE(event->attr.inherit); 5877 _perf_event_disable(event); 5878 count = local64_read(&event->count); 5879 if (reset) 5880 local64_set(&event->count, 0); 5881 perf_event_ctx_unlock(event, ctx); 5882 5883 return count; 5884 } 5885 EXPORT_SYMBOL_GPL(perf_event_pause); 5886 5887 /* 5888 * Holding the top-level event's child_mutex means that any 5889 * descendant process that has inherited this event will block 5890 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5891 * task existence requirements of perf_event_enable/disable. 5892 */ 5893 static void perf_event_for_each_child(struct perf_event *event, 5894 void (*func)(struct perf_event *)) 5895 { 5896 struct perf_event *child; 5897 5898 WARN_ON_ONCE(event->ctx->parent_ctx); 5899 5900 mutex_lock(&event->child_mutex); 5901 func(event); 5902 list_for_each_entry(child, &event->child_list, child_list) 5903 func(child); 5904 mutex_unlock(&event->child_mutex); 5905 } 5906 5907 static void perf_event_for_each(struct perf_event *event, 5908 void (*func)(struct perf_event *)) 5909 { 5910 struct perf_event_context *ctx = event->ctx; 5911 struct perf_event *sibling; 5912 5913 lockdep_assert_held(&ctx->mutex); 5914 5915 event = event->group_leader; 5916 5917 perf_event_for_each_child(event, func); 5918 for_each_sibling_event(sibling, event) 5919 perf_event_for_each_child(sibling, func); 5920 } 5921 5922 static void __perf_event_period(struct perf_event *event, 5923 struct perf_cpu_context *cpuctx, 5924 struct perf_event_context *ctx, 5925 void *info) 5926 { 5927 u64 value = *((u64 *)info); 5928 bool active; 5929 5930 if (event->attr.freq) { 5931 event->attr.sample_freq = value; 5932 } else { 5933 event->attr.sample_period = value; 5934 event->hw.sample_period = value; 5935 } 5936 5937 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5938 if (active) { 5939 perf_pmu_disable(event->pmu); 5940 /* 5941 * We could be throttled; unthrottle now to avoid the tick 5942 * trying to unthrottle while we already re-started the event. 5943 */ 5944 if (event->hw.interrupts == MAX_INTERRUPTS) { 5945 event->hw.interrupts = 0; 5946 perf_log_throttle(event, 1); 5947 } 5948 event->pmu->stop(event, PERF_EF_UPDATE); 5949 } 5950 5951 local64_set(&event->hw.period_left, 0); 5952 5953 if (active) { 5954 event->pmu->start(event, PERF_EF_RELOAD); 5955 perf_pmu_enable(event->pmu); 5956 } 5957 } 5958 5959 static int perf_event_check_period(struct perf_event *event, u64 value) 5960 { 5961 return event->pmu->check_period(event, value); 5962 } 5963 5964 static int _perf_event_period(struct perf_event *event, u64 value) 5965 { 5966 if (!is_sampling_event(event)) 5967 return -EINVAL; 5968 5969 if (!value) 5970 return -EINVAL; 5971 5972 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5973 return -EINVAL; 5974 5975 if (perf_event_check_period(event, value)) 5976 return -EINVAL; 5977 5978 if (!event->attr.freq && (value & (1ULL << 63))) 5979 return -EINVAL; 5980 5981 event_function_call(event, __perf_event_period, &value); 5982 5983 return 0; 5984 } 5985 5986 int perf_event_period(struct perf_event *event, u64 value) 5987 { 5988 struct perf_event_context *ctx; 5989 int ret; 5990 5991 ctx = perf_event_ctx_lock(event); 5992 ret = _perf_event_period(event, value); 5993 perf_event_ctx_unlock(event, ctx); 5994 5995 return ret; 5996 } 5997 EXPORT_SYMBOL_GPL(perf_event_period); 5998 5999 static const struct file_operations perf_fops; 6000 6001 static inline int perf_fget_light(int fd, struct fd *p) 6002 { 6003 struct fd f = fdget(fd); 6004 if (!f.file) 6005 return -EBADF; 6006 6007 if (f.file->f_op != &perf_fops) { 6008 fdput(f); 6009 return -EBADF; 6010 } 6011 *p = f; 6012 return 0; 6013 } 6014 6015 static int perf_event_set_output(struct perf_event *event, 6016 struct perf_event *output_event); 6017 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6018 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6019 struct perf_event_attr *attr); 6020 6021 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6022 { 6023 void (*func)(struct perf_event *); 6024 u32 flags = arg; 6025 6026 switch (cmd) { 6027 case PERF_EVENT_IOC_ENABLE: 6028 func = _perf_event_enable; 6029 break; 6030 case PERF_EVENT_IOC_DISABLE: 6031 func = _perf_event_disable; 6032 break; 6033 case PERF_EVENT_IOC_RESET: 6034 func = _perf_event_reset; 6035 break; 6036 6037 case PERF_EVENT_IOC_REFRESH: 6038 return _perf_event_refresh(event, arg); 6039 6040 case PERF_EVENT_IOC_PERIOD: 6041 { 6042 u64 value; 6043 6044 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6045 return -EFAULT; 6046 6047 return _perf_event_period(event, value); 6048 } 6049 case PERF_EVENT_IOC_ID: 6050 { 6051 u64 id = primary_event_id(event); 6052 6053 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6054 return -EFAULT; 6055 return 0; 6056 } 6057 6058 case PERF_EVENT_IOC_SET_OUTPUT: 6059 { 6060 int ret; 6061 if (arg != -1) { 6062 struct perf_event *output_event; 6063 struct fd output; 6064 ret = perf_fget_light(arg, &output); 6065 if (ret) 6066 return ret; 6067 output_event = output.file->private_data; 6068 ret = perf_event_set_output(event, output_event); 6069 fdput(output); 6070 } else { 6071 ret = perf_event_set_output(event, NULL); 6072 } 6073 return ret; 6074 } 6075 6076 case PERF_EVENT_IOC_SET_FILTER: 6077 return perf_event_set_filter(event, (void __user *)arg); 6078 6079 case PERF_EVENT_IOC_SET_BPF: 6080 { 6081 struct bpf_prog *prog; 6082 int err; 6083 6084 prog = bpf_prog_get(arg); 6085 if (IS_ERR(prog)) 6086 return PTR_ERR(prog); 6087 6088 err = perf_event_set_bpf_prog(event, prog, 0); 6089 if (err) { 6090 bpf_prog_put(prog); 6091 return err; 6092 } 6093 6094 return 0; 6095 } 6096 6097 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6098 struct perf_buffer *rb; 6099 6100 rcu_read_lock(); 6101 rb = rcu_dereference(event->rb); 6102 if (!rb || !rb->nr_pages) { 6103 rcu_read_unlock(); 6104 return -EINVAL; 6105 } 6106 rb_toggle_paused(rb, !!arg); 6107 rcu_read_unlock(); 6108 return 0; 6109 } 6110 6111 case PERF_EVENT_IOC_QUERY_BPF: 6112 return perf_event_query_prog_array(event, (void __user *)arg); 6113 6114 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6115 struct perf_event_attr new_attr; 6116 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6117 &new_attr); 6118 6119 if (err) 6120 return err; 6121 6122 return perf_event_modify_attr(event, &new_attr); 6123 } 6124 default: 6125 return -ENOTTY; 6126 } 6127 6128 if (flags & PERF_IOC_FLAG_GROUP) 6129 perf_event_for_each(event, func); 6130 else 6131 perf_event_for_each_child(event, func); 6132 6133 return 0; 6134 } 6135 6136 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6137 { 6138 struct perf_event *event = file->private_data; 6139 struct perf_event_context *ctx; 6140 long ret; 6141 6142 /* Treat ioctl like writes as it is likely a mutating operation. */ 6143 ret = security_perf_event_write(event); 6144 if (ret) 6145 return ret; 6146 6147 ctx = perf_event_ctx_lock(event); 6148 ret = _perf_ioctl(event, cmd, arg); 6149 perf_event_ctx_unlock(event, ctx); 6150 6151 return ret; 6152 } 6153 6154 #ifdef CONFIG_COMPAT 6155 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6156 unsigned long arg) 6157 { 6158 switch (_IOC_NR(cmd)) { 6159 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6160 case _IOC_NR(PERF_EVENT_IOC_ID): 6161 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6162 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6163 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6164 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6165 cmd &= ~IOCSIZE_MASK; 6166 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6167 } 6168 break; 6169 } 6170 return perf_ioctl(file, cmd, arg); 6171 } 6172 #else 6173 # define perf_compat_ioctl NULL 6174 #endif 6175 6176 int perf_event_task_enable(void) 6177 { 6178 struct perf_event_context *ctx; 6179 struct perf_event *event; 6180 6181 mutex_lock(¤t->perf_event_mutex); 6182 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6183 ctx = perf_event_ctx_lock(event); 6184 perf_event_for_each_child(event, _perf_event_enable); 6185 perf_event_ctx_unlock(event, ctx); 6186 } 6187 mutex_unlock(¤t->perf_event_mutex); 6188 6189 return 0; 6190 } 6191 6192 int perf_event_task_disable(void) 6193 { 6194 struct perf_event_context *ctx; 6195 struct perf_event *event; 6196 6197 mutex_lock(¤t->perf_event_mutex); 6198 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6199 ctx = perf_event_ctx_lock(event); 6200 perf_event_for_each_child(event, _perf_event_disable); 6201 perf_event_ctx_unlock(event, ctx); 6202 } 6203 mutex_unlock(¤t->perf_event_mutex); 6204 6205 return 0; 6206 } 6207 6208 static int perf_event_index(struct perf_event *event) 6209 { 6210 if (event->hw.state & PERF_HES_STOPPED) 6211 return 0; 6212 6213 if (event->state != PERF_EVENT_STATE_ACTIVE) 6214 return 0; 6215 6216 return event->pmu->event_idx(event); 6217 } 6218 6219 static void perf_event_init_userpage(struct perf_event *event) 6220 { 6221 struct perf_event_mmap_page *userpg; 6222 struct perf_buffer *rb; 6223 6224 rcu_read_lock(); 6225 rb = rcu_dereference(event->rb); 6226 if (!rb) 6227 goto unlock; 6228 6229 userpg = rb->user_page; 6230 6231 /* Allow new userspace to detect that bit 0 is deprecated */ 6232 userpg->cap_bit0_is_deprecated = 1; 6233 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6234 userpg->data_offset = PAGE_SIZE; 6235 userpg->data_size = perf_data_size(rb); 6236 6237 unlock: 6238 rcu_read_unlock(); 6239 } 6240 6241 void __weak arch_perf_update_userpage( 6242 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6243 { 6244 } 6245 6246 /* 6247 * Callers need to ensure there can be no nesting of this function, otherwise 6248 * the seqlock logic goes bad. We can not serialize this because the arch 6249 * code calls this from NMI context. 6250 */ 6251 void perf_event_update_userpage(struct perf_event *event) 6252 { 6253 struct perf_event_mmap_page *userpg; 6254 struct perf_buffer *rb; 6255 u64 enabled, running, now; 6256 6257 rcu_read_lock(); 6258 rb = rcu_dereference(event->rb); 6259 if (!rb) 6260 goto unlock; 6261 6262 /* 6263 * compute total_time_enabled, total_time_running 6264 * based on snapshot values taken when the event 6265 * was last scheduled in. 6266 * 6267 * we cannot simply called update_context_time() 6268 * because of locking issue as we can be called in 6269 * NMI context 6270 */ 6271 calc_timer_values(event, &now, &enabled, &running); 6272 6273 userpg = rb->user_page; 6274 /* 6275 * Disable preemption to guarantee consistent time stamps are stored to 6276 * the user page. 6277 */ 6278 preempt_disable(); 6279 ++userpg->lock; 6280 barrier(); 6281 userpg->index = perf_event_index(event); 6282 userpg->offset = perf_event_count(event, false); 6283 if (userpg->index) 6284 userpg->offset -= local64_read(&event->hw.prev_count); 6285 6286 userpg->time_enabled = enabled + 6287 atomic64_read(&event->child_total_time_enabled); 6288 6289 userpg->time_running = running + 6290 atomic64_read(&event->child_total_time_running); 6291 6292 arch_perf_update_userpage(event, userpg, now); 6293 6294 barrier(); 6295 ++userpg->lock; 6296 preempt_enable(); 6297 unlock: 6298 rcu_read_unlock(); 6299 } 6300 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6301 6302 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6303 { 6304 struct perf_event *event = vmf->vma->vm_file->private_data; 6305 struct perf_buffer *rb; 6306 vm_fault_t ret = VM_FAULT_SIGBUS; 6307 6308 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6309 if (vmf->pgoff == 0) 6310 ret = 0; 6311 return ret; 6312 } 6313 6314 rcu_read_lock(); 6315 rb = rcu_dereference(event->rb); 6316 if (!rb) 6317 goto unlock; 6318 6319 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6320 goto unlock; 6321 6322 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6323 if (!vmf->page) 6324 goto unlock; 6325 6326 get_page(vmf->page); 6327 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6328 vmf->page->index = vmf->pgoff; 6329 6330 ret = 0; 6331 unlock: 6332 rcu_read_unlock(); 6333 6334 return ret; 6335 } 6336 6337 static void ring_buffer_attach(struct perf_event *event, 6338 struct perf_buffer *rb) 6339 { 6340 struct perf_buffer *old_rb = NULL; 6341 unsigned long flags; 6342 6343 WARN_ON_ONCE(event->parent); 6344 6345 if (event->rb) { 6346 /* 6347 * Should be impossible, we set this when removing 6348 * event->rb_entry and wait/clear when adding event->rb_entry. 6349 */ 6350 WARN_ON_ONCE(event->rcu_pending); 6351 6352 old_rb = event->rb; 6353 spin_lock_irqsave(&old_rb->event_lock, flags); 6354 list_del_rcu(&event->rb_entry); 6355 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6356 6357 event->rcu_batches = get_state_synchronize_rcu(); 6358 event->rcu_pending = 1; 6359 } 6360 6361 if (rb) { 6362 if (event->rcu_pending) { 6363 cond_synchronize_rcu(event->rcu_batches); 6364 event->rcu_pending = 0; 6365 } 6366 6367 spin_lock_irqsave(&rb->event_lock, flags); 6368 list_add_rcu(&event->rb_entry, &rb->event_list); 6369 spin_unlock_irqrestore(&rb->event_lock, flags); 6370 } 6371 6372 /* 6373 * Avoid racing with perf_mmap_close(AUX): stop the event 6374 * before swizzling the event::rb pointer; if it's getting 6375 * unmapped, its aux_mmap_count will be 0 and it won't 6376 * restart. See the comment in __perf_pmu_output_stop(). 6377 * 6378 * Data will inevitably be lost when set_output is done in 6379 * mid-air, but then again, whoever does it like this is 6380 * not in for the data anyway. 6381 */ 6382 if (has_aux(event)) 6383 perf_event_stop(event, 0); 6384 6385 rcu_assign_pointer(event->rb, rb); 6386 6387 if (old_rb) { 6388 ring_buffer_put(old_rb); 6389 /* 6390 * Since we detached before setting the new rb, so that we 6391 * could attach the new rb, we could have missed a wakeup. 6392 * Provide it now. 6393 */ 6394 wake_up_all(&event->waitq); 6395 } 6396 } 6397 6398 static void ring_buffer_wakeup(struct perf_event *event) 6399 { 6400 struct perf_buffer *rb; 6401 6402 if (event->parent) 6403 event = event->parent; 6404 6405 rcu_read_lock(); 6406 rb = rcu_dereference(event->rb); 6407 if (rb) { 6408 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6409 wake_up_all(&event->waitq); 6410 } 6411 rcu_read_unlock(); 6412 } 6413 6414 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6415 { 6416 struct perf_buffer *rb; 6417 6418 if (event->parent) 6419 event = event->parent; 6420 6421 rcu_read_lock(); 6422 rb = rcu_dereference(event->rb); 6423 if (rb) { 6424 if (!refcount_inc_not_zero(&rb->refcount)) 6425 rb = NULL; 6426 } 6427 rcu_read_unlock(); 6428 6429 return rb; 6430 } 6431 6432 void ring_buffer_put(struct perf_buffer *rb) 6433 { 6434 if (!refcount_dec_and_test(&rb->refcount)) 6435 return; 6436 6437 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6438 6439 call_rcu(&rb->rcu_head, rb_free_rcu); 6440 } 6441 6442 static void perf_mmap_open(struct vm_area_struct *vma) 6443 { 6444 struct perf_event *event = vma->vm_file->private_data; 6445 6446 atomic_inc(&event->mmap_count); 6447 atomic_inc(&event->rb->mmap_count); 6448 6449 if (vma->vm_pgoff) 6450 atomic_inc(&event->rb->aux_mmap_count); 6451 6452 if (event->pmu->event_mapped) 6453 event->pmu->event_mapped(event, vma->vm_mm); 6454 } 6455 6456 static void perf_pmu_output_stop(struct perf_event *event); 6457 6458 /* 6459 * A buffer can be mmap()ed multiple times; either directly through the same 6460 * event, or through other events by use of perf_event_set_output(). 6461 * 6462 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6463 * the buffer here, where we still have a VM context. This means we need 6464 * to detach all events redirecting to us. 6465 */ 6466 static void perf_mmap_close(struct vm_area_struct *vma) 6467 { 6468 struct perf_event *event = vma->vm_file->private_data; 6469 struct perf_buffer *rb = ring_buffer_get(event); 6470 struct user_struct *mmap_user = rb->mmap_user; 6471 int mmap_locked = rb->mmap_locked; 6472 unsigned long size = perf_data_size(rb); 6473 bool detach_rest = false; 6474 6475 if (event->pmu->event_unmapped) 6476 event->pmu->event_unmapped(event, vma->vm_mm); 6477 6478 /* 6479 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6480 * to avoid complications. 6481 */ 6482 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6483 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6484 /* 6485 * Stop all AUX events that are writing to this buffer, 6486 * so that we can free its AUX pages and corresponding PMU 6487 * data. Note that after rb::aux_mmap_count dropped to zero, 6488 * they won't start any more (see perf_aux_output_begin()). 6489 */ 6490 perf_pmu_output_stop(event); 6491 6492 /* now it's safe to free the pages */ 6493 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6494 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6495 6496 /* this has to be the last one */ 6497 rb_free_aux(rb); 6498 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6499 6500 mutex_unlock(&rb->aux_mutex); 6501 } 6502 6503 if (atomic_dec_and_test(&rb->mmap_count)) 6504 detach_rest = true; 6505 6506 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6507 goto out_put; 6508 6509 ring_buffer_attach(event, NULL); 6510 mutex_unlock(&event->mmap_mutex); 6511 6512 /* If there's still other mmap()s of this buffer, we're done. */ 6513 if (!detach_rest) 6514 goto out_put; 6515 6516 /* 6517 * No other mmap()s, detach from all other events that might redirect 6518 * into the now unreachable buffer. Somewhat complicated by the 6519 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6520 */ 6521 again: 6522 rcu_read_lock(); 6523 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6524 if (!atomic_long_inc_not_zero(&event->refcount)) { 6525 /* 6526 * This event is en-route to free_event() which will 6527 * detach it and remove it from the list. 6528 */ 6529 continue; 6530 } 6531 rcu_read_unlock(); 6532 6533 mutex_lock(&event->mmap_mutex); 6534 /* 6535 * Check we didn't race with perf_event_set_output() which can 6536 * swizzle the rb from under us while we were waiting to 6537 * acquire mmap_mutex. 6538 * 6539 * If we find a different rb; ignore this event, a next 6540 * iteration will no longer find it on the list. We have to 6541 * still restart the iteration to make sure we're not now 6542 * iterating the wrong list. 6543 */ 6544 if (event->rb == rb) 6545 ring_buffer_attach(event, NULL); 6546 6547 mutex_unlock(&event->mmap_mutex); 6548 put_event(event); 6549 6550 /* 6551 * Restart the iteration; either we're on the wrong list or 6552 * destroyed its integrity by doing a deletion. 6553 */ 6554 goto again; 6555 } 6556 rcu_read_unlock(); 6557 6558 /* 6559 * It could be there's still a few 0-ref events on the list; they'll 6560 * get cleaned up by free_event() -- they'll also still have their 6561 * ref on the rb and will free it whenever they are done with it. 6562 * 6563 * Aside from that, this buffer is 'fully' detached and unmapped, 6564 * undo the VM accounting. 6565 */ 6566 6567 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6568 &mmap_user->locked_vm); 6569 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6570 free_uid(mmap_user); 6571 6572 out_put: 6573 ring_buffer_put(rb); /* could be last */ 6574 } 6575 6576 static const struct vm_operations_struct perf_mmap_vmops = { 6577 .open = perf_mmap_open, 6578 .close = perf_mmap_close, /* non mergeable */ 6579 .fault = perf_mmap_fault, 6580 .page_mkwrite = perf_mmap_fault, 6581 }; 6582 6583 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6584 { 6585 struct perf_event *event = file->private_data; 6586 unsigned long user_locked, user_lock_limit; 6587 struct user_struct *user = current_user(); 6588 struct mutex *aux_mutex = NULL; 6589 struct perf_buffer *rb = NULL; 6590 unsigned long locked, lock_limit; 6591 unsigned long vma_size; 6592 unsigned long nr_pages; 6593 long user_extra = 0, extra = 0; 6594 int ret = 0, flags = 0; 6595 6596 /* 6597 * Don't allow mmap() of inherited per-task counters. This would 6598 * create a performance issue due to all children writing to the 6599 * same rb. 6600 */ 6601 if (event->cpu == -1 && event->attr.inherit) 6602 return -EINVAL; 6603 6604 if (!(vma->vm_flags & VM_SHARED)) 6605 return -EINVAL; 6606 6607 ret = security_perf_event_read(event); 6608 if (ret) 6609 return ret; 6610 6611 vma_size = vma->vm_end - vma->vm_start; 6612 6613 if (vma->vm_pgoff == 0) { 6614 nr_pages = (vma_size / PAGE_SIZE) - 1; 6615 } else { 6616 /* 6617 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6618 * mapped, all subsequent mappings should have the same size 6619 * and offset. Must be above the normal perf buffer. 6620 */ 6621 u64 aux_offset, aux_size; 6622 6623 if (!event->rb) 6624 return -EINVAL; 6625 6626 nr_pages = vma_size / PAGE_SIZE; 6627 if (nr_pages > INT_MAX) 6628 return -ENOMEM; 6629 6630 mutex_lock(&event->mmap_mutex); 6631 ret = -EINVAL; 6632 6633 rb = event->rb; 6634 if (!rb) 6635 goto aux_unlock; 6636 6637 aux_mutex = &rb->aux_mutex; 6638 mutex_lock(aux_mutex); 6639 6640 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6641 aux_size = READ_ONCE(rb->user_page->aux_size); 6642 6643 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6644 goto aux_unlock; 6645 6646 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6647 goto aux_unlock; 6648 6649 /* already mapped with a different offset */ 6650 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6651 goto aux_unlock; 6652 6653 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6654 goto aux_unlock; 6655 6656 /* already mapped with a different size */ 6657 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6658 goto aux_unlock; 6659 6660 if (!is_power_of_2(nr_pages)) 6661 goto aux_unlock; 6662 6663 if (!atomic_inc_not_zero(&rb->mmap_count)) 6664 goto aux_unlock; 6665 6666 if (rb_has_aux(rb)) { 6667 atomic_inc(&rb->aux_mmap_count); 6668 ret = 0; 6669 goto unlock; 6670 } 6671 6672 atomic_set(&rb->aux_mmap_count, 1); 6673 user_extra = nr_pages; 6674 6675 goto accounting; 6676 } 6677 6678 /* 6679 * If we have rb pages ensure they're a power-of-two number, so we 6680 * can do bitmasks instead of modulo. 6681 */ 6682 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6683 return -EINVAL; 6684 6685 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6686 return -EINVAL; 6687 6688 WARN_ON_ONCE(event->ctx->parent_ctx); 6689 again: 6690 mutex_lock(&event->mmap_mutex); 6691 if (event->rb) { 6692 if (data_page_nr(event->rb) != nr_pages) { 6693 ret = -EINVAL; 6694 goto unlock; 6695 } 6696 6697 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6698 /* 6699 * Raced against perf_mmap_close(); remove the 6700 * event and try again. 6701 */ 6702 ring_buffer_attach(event, NULL); 6703 mutex_unlock(&event->mmap_mutex); 6704 goto again; 6705 } 6706 6707 goto unlock; 6708 } 6709 6710 user_extra = nr_pages + 1; 6711 6712 accounting: 6713 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6714 6715 /* 6716 * Increase the limit linearly with more CPUs: 6717 */ 6718 user_lock_limit *= num_online_cpus(); 6719 6720 user_locked = atomic_long_read(&user->locked_vm); 6721 6722 /* 6723 * sysctl_perf_event_mlock may have changed, so that 6724 * user->locked_vm > user_lock_limit 6725 */ 6726 if (user_locked > user_lock_limit) 6727 user_locked = user_lock_limit; 6728 user_locked += user_extra; 6729 6730 if (user_locked > user_lock_limit) { 6731 /* 6732 * charge locked_vm until it hits user_lock_limit; 6733 * charge the rest from pinned_vm 6734 */ 6735 extra = user_locked - user_lock_limit; 6736 user_extra -= extra; 6737 } 6738 6739 lock_limit = rlimit(RLIMIT_MEMLOCK); 6740 lock_limit >>= PAGE_SHIFT; 6741 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6742 6743 if ((locked > lock_limit) && perf_is_paranoid() && 6744 !capable(CAP_IPC_LOCK)) { 6745 ret = -EPERM; 6746 goto unlock; 6747 } 6748 6749 WARN_ON(!rb && event->rb); 6750 6751 if (vma->vm_flags & VM_WRITE) 6752 flags |= RING_BUFFER_WRITABLE; 6753 6754 if (!rb) { 6755 rb = rb_alloc(nr_pages, 6756 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6757 event->cpu, flags); 6758 6759 if (!rb) { 6760 ret = -ENOMEM; 6761 goto unlock; 6762 } 6763 6764 atomic_set(&rb->mmap_count, 1); 6765 rb->mmap_user = get_current_user(); 6766 rb->mmap_locked = extra; 6767 6768 ring_buffer_attach(event, rb); 6769 6770 perf_event_update_time(event); 6771 perf_event_init_userpage(event); 6772 perf_event_update_userpage(event); 6773 } else { 6774 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6775 event->attr.aux_watermark, flags); 6776 if (!ret) 6777 rb->aux_mmap_locked = extra; 6778 } 6779 6780 unlock: 6781 if (!ret) { 6782 atomic_long_add(user_extra, &user->locked_vm); 6783 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6784 6785 atomic_inc(&event->mmap_count); 6786 } else if (rb) { 6787 atomic_dec(&rb->mmap_count); 6788 } 6789 aux_unlock: 6790 if (aux_mutex) 6791 mutex_unlock(aux_mutex); 6792 mutex_unlock(&event->mmap_mutex); 6793 6794 /* 6795 * Since pinned accounting is per vm we cannot allow fork() to copy our 6796 * vma. 6797 */ 6798 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6799 vma->vm_ops = &perf_mmap_vmops; 6800 6801 if (event->pmu->event_mapped) 6802 event->pmu->event_mapped(event, vma->vm_mm); 6803 6804 return ret; 6805 } 6806 6807 static int perf_fasync(int fd, struct file *filp, int on) 6808 { 6809 struct inode *inode = file_inode(filp); 6810 struct perf_event *event = filp->private_data; 6811 int retval; 6812 6813 inode_lock(inode); 6814 retval = fasync_helper(fd, filp, on, &event->fasync); 6815 inode_unlock(inode); 6816 6817 if (retval < 0) 6818 return retval; 6819 6820 return 0; 6821 } 6822 6823 static const struct file_operations perf_fops = { 6824 .llseek = no_llseek, 6825 .release = perf_release, 6826 .read = perf_read, 6827 .poll = perf_poll, 6828 .unlocked_ioctl = perf_ioctl, 6829 .compat_ioctl = perf_compat_ioctl, 6830 .mmap = perf_mmap, 6831 .fasync = perf_fasync, 6832 }; 6833 6834 /* 6835 * Perf event wakeup 6836 * 6837 * If there's data, ensure we set the poll() state and publish everything 6838 * to user-space before waking everybody up. 6839 */ 6840 6841 void perf_event_wakeup(struct perf_event *event) 6842 { 6843 ring_buffer_wakeup(event); 6844 6845 if (event->pending_kill) { 6846 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6847 event->pending_kill = 0; 6848 } 6849 } 6850 6851 static void perf_sigtrap(struct perf_event *event) 6852 { 6853 /* 6854 * We'd expect this to only occur if the irq_work is delayed and either 6855 * ctx->task or current has changed in the meantime. This can be the 6856 * case on architectures that do not implement arch_irq_work_raise(). 6857 */ 6858 if (WARN_ON_ONCE(event->ctx->task != current)) 6859 return; 6860 6861 /* 6862 * Both perf_pending_task() and perf_pending_irq() can race with the 6863 * task exiting. 6864 */ 6865 if (current->flags & PF_EXITING) 6866 return; 6867 6868 send_sig_perf((void __user *)event->pending_addr, 6869 event->orig_type, event->attr.sig_data); 6870 } 6871 6872 /* 6873 * Deliver the pending work in-event-context or follow the context. 6874 */ 6875 static void __perf_pending_disable(struct perf_event *event) 6876 { 6877 int cpu = READ_ONCE(event->oncpu); 6878 6879 /* 6880 * If the event isn't running; we done. event_sched_out() will have 6881 * taken care of things. 6882 */ 6883 if (cpu < 0) 6884 return; 6885 6886 /* 6887 * Yay, we hit home and are in the context of the event. 6888 */ 6889 if (cpu == smp_processor_id()) { 6890 if (event->pending_disable) { 6891 event->pending_disable = 0; 6892 perf_event_disable_local(event); 6893 } 6894 return; 6895 } 6896 6897 /* 6898 * CPU-A CPU-B 6899 * 6900 * perf_event_disable_inatomic() 6901 * @pending_disable = CPU-A; 6902 * irq_work_queue(); 6903 * 6904 * sched-out 6905 * @pending_disable = -1; 6906 * 6907 * sched-in 6908 * perf_event_disable_inatomic() 6909 * @pending_disable = CPU-B; 6910 * irq_work_queue(); // FAILS 6911 * 6912 * irq_work_run() 6913 * perf_pending_disable() 6914 * 6915 * But the event runs on CPU-B and wants disabling there. 6916 */ 6917 irq_work_queue_on(&event->pending_disable_irq, cpu); 6918 } 6919 6920 static void perf_pending_disable(struct irq_work *entry) 6921 { 6922 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 6923 int rctx; 6924 6925 /* 6926 * If we 'fail' here, that's OK, it means recursion is already disabled 6927 * and we won't recurse 'further'. 6928 */ 6929 rctx = perf_swevent_get_recursion_context(); 6930 __perf_pending_disable(event); 6931 if (rctx >= 0) 6932 perf_swevent_put_recursion_context(rctx); 6933 } 6934 6935 static void perf_pending_irq(struct irq_work *entry) 6936 { 6937 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6938 int rctx; 6939 6940 /* 6941 * If we 'fail' here, that's OK, it means recursion is already disabled 6942 * and we won't recurse 'further'. 6943 */ 6944 rctx = perf_swevent_get_recursion_context(); 6945 6946 /* 6947 * The wakeup isn't bound to the context of the event -- it can happen 6948 * irrespective of where the event is. 6949 */ 6950 if (event->pending_wakeup) { 6951 event->pending_wakeup = 0; 6952 perf_event_wakeup(event); 6953 } 6954 6955 if (rctx >= 0) 6956 perf_swevent_put_recursion_context(rctx); 6957 } 6958 6959 static void perf_pending_task(struct callback_head *head) 6960 { 6961 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6962 int rctx; 6963 6964 /* 6965 * All accesses to the event must belong to the same implicit RCU read-side 6966 * critical section as the ->pending_work reset. See comment in 6967 * perf_pending_task_sync(). 6968 */ 6969 rcu_read_lock(); 6970 /* 6971 * If we 'fail' here, that's OK, it means recursion is already disabled 6972 * and we won't recurse 'further'. 6973 */ 6974 rctx = perf_swevent_get_recursion_context(); 6975 6976 if (event->pending_work) { 6977 event->pending_work = 0; 6978 perf_sigtrap(event); 6979 local_dec(&event->ctx->nr_no_switch_fast); 6980 rcuwait_wake_up(&event->pending_work_wait); 6981 } 6982 rcu_read_unlock(); 6983 6984 if (rctx >= 0) 6985 perf_swevent_put_recursion_context(rctx); 6986 } 6987 6988 #ifdef CONFIG_GUEST_PERF_EVENTS 6989 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6990 6991 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6992 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6993 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6994 6995 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6996 { 6997 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6998 return; 6999 7000 rcu_assign_pointer(perf_guest_cbs, cbs); 7001 static_call_update(__perf_guest_state, cbs->state); 7002 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7003 7004 /* Implementing ->handle_intel_pt_intr is optional. */ 7005 if (cbs->handle_intel_pt_intr) 7006 static_call_update(__perf_guest_handle_intel_pt_intr, 7007 cbs->handle_intel_pt_intr); 7008 } 7009 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7010 7011 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7012 { 7013 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7014 return; 7015 7016 rcu_assign_pointer(perf_guest_cbs, NULL); 7017 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7018 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7019 static_call_update(__perf_guest_handle_intel_pt_intr, 7020 (void *)&__static_call_return0); 7021 synchronize_rcu(); 7022 } 7023 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7024 #endif 7025 7026 static void 7027 perf_output_sample_regs(struct perf_output_handle *handle, 7028 struct pt_regs *regs, u64 mask) 7029 { 7030 int bit; 7031 DECLARE_BITMAP(_mask, 64); 7032 7033 bitmap_from_u64(_mask, mask); 7034 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7035 u64 val; 7036 7037 val = perf_reg_value(regs, bit); 7038 perf_output_put(handle, val); 7039 } 7040 } 7041 7042 static void perf_sample_regs_user(struct perf_regs *regs_user, 7043 struct pt_regs *regs) 7044 { 7045 if (user_mode(regs)) { 7046 regs_user->abi = perf_reg_abi(current); 7047 regs_user->regs = regs; 7048 } else if (!(current->flags & PF_KTHREAD)) { 7049 perf_get_regs_user(regs_user, regs); 7050 } else { 7051 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7052 regs_user->regs = NULL; 7053 } 7054 } 7055 7056 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7057 struct pt_regs *regs) 7058 { 7059 regs_intr->regs = regs; 7060 regs_intr->abi = perf_reg_abi(current); 7061 } 7062 7063 7064 /* 7065 * Get remaining task size from user stack pointer. 7066 * 7067 * It'd be better to take stack vma map and limit this more 7068 * precisely, but there's no way to get it safely under interrupt, 7069 * so using TASK_SIZE as limit. 7070 */ 7071 static u64 perf_ustack_task_size(struct pt_regs *regs) 7072 { 7073 unsigned long addr = perf_user_stack_pointer(regs); 7074 7075 if (!addr || addr >= TASK_SIZE) 7076 return 0; 7077 7078 return TASK_SIZE - addr; 7079 } 7080 7081 static u16 7082 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7083 struct pt_regs *regs) 7084 { 7085 u64 task_size; 7086 7087 /* No regs, no stack pointer, no dump. */ 7088 if (!regs) 7089 return 0; 7090 7091 /* 7092 * Check if we fit in with the requested stack size into the: 7093 * - TASK_SIZE 7094 * If we don't, we limit the size to the TASK_SIZE. 7095 * 7096 * - remaining sample size 7097 * If we don't, we customize the stack size to 7098 * fit in to the remaining sample size. 7099 */ 7100 7101 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7102 stack_size = min(stack_size, (u16) task_size); 7103 7104 /* Current header size plus static size and dynamic size. */ 7105 header_size += 2 * sizeof(u64); 7106 7107 /* Do we fit in with the current stack dump size? */ 7108 if ((u16) (header_size + stack_size) < header_size) { 7109 /* 7110 * If we overflow the maximum size for the sample, 7111 * we customize the stack dump size to fit in. 7112 */ 7113 stack_size = USHRT_MAX - header_size - sizeof(u64); 7114 stack_size = round_up(stack_size, sizeof(u64)); 7115 } 7116 7117 return stack_size; 7118 } 7119 7120 static void 7121 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7122 struct pt_regs *regs) 7123 { 7124 /* Case of a kernel thread, nothing to dump */ 7125 if (!regs) { 7126 u64 size = 0; 7127 perf_output_put(handle, size); 7128 } else { 7129 unsigned long sp; 7130 unsigned int rem; 7131 u64 dyn_size; 7132 7133 /* 7134 * We dump: 7135 * static size 7136 * - the size requested by user or the best one we can fit 7137 * in to the sample max size 7138 * data 7139 * - user stack dump data 7140 * dynamic size 7141 * - the actual dumped size 7142 */ 7143 7144 /* Static size. */ 7145 perf_output_put(handle, dump_size); 7146 7147 /* Data. */ 7148 sp = perf_user_stack_pointer(regs); 7149 rem = __output_copy_user(handle, (void *) sp, dump_size); 7150 dyn_size = dump_size - rem; 7151 7152 perf_output_skip(handle, rem); 7153 7154 /* Dynamic size. */ 7155 perf_output_put(handle, dyn_size); 7156 } 7157 } 7158 7159 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7160 struct perf_sample_data *data, 7161 size_t size) 7162 { 7163 struct perf_event *sampler = event->aux_event; 7164 struct perf_buffer *rb; 7165 7166 data->aux_size = 0; 7167 7168 if (!sampler) 7169 goto out; 7170 7171 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7172 goto out; 7173 7174 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7175 goto out; 7176 7177 rb = ring_buffer_get(sampler); 7178 if (!rb) 7179 goto out; 7180 7181 /* 7182 * If this is an NMI hit inside sampling code, don't take 7183 * the sample. See also perf_aux_sample_output(). 7184 */ 7185 if (READ_ONCE(rb->aux_in_sampling)) { 7186 data->aux_size = 0; 7187 } else { 7188 size = min_t(size_t, size, perf_aux_size(rb)); 7189 data->aux_size = ALIGN(size, sizeof(u64)); 7190 } 7191 ring_buffer_put(rb); 7192 7193 out: 7194 return data->aux_size; 7195 } 7196 7197 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7198 struct perf_event *event, 7199 struct perf_output_handle *handle, 7200 unsigned long size) 7201 { 7202 unsigned long flags; 7203 long ret; 7204 7205 /* 7206 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7207 * paths. If we start calling them in NMI context, they may race with 7208 * the IRQ ones, that is, for example, re-starting an event that's just 7209 * been stopped, which is why we're using a separate callback that 7210 * doesn't change the event state. 7211 * 7212 * IRQs need to be disabled to prevent IPIs from racing with us. 7213 */ 7214 local_irq_save(flags); 7215 /* 7216 * Guard against NMI hits inside the critical section; 7217 * see also perf_prepare_sample_aux(). 7218 */ 7219 WRITE_ONCE(rb->aux_in_sampling, 1); 7220 barrier(); 7221 7222 ret = event->pmu->snapshot_aux(event, handle, size); 7223 7224 barrier(); 7225 WRITE_ONCE(rb->aux_in_sampling, 0); 7226 local_irq_restore(flags); 7227 7228 return ret; 7229 } 7230 7231 static void perf_aux_sample_output(struct perf_event *event, 7232 struct perf_output_handle *handle, 7233 struct perf_sample_data *data) 7234 { 7235 struct perf_event *sampler = event->aux_event; 7236 struct perf_buffer *rb; 7237 unsigned long pad; 7238 long size; 7239 7240 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7241 return; 7242 7243 rb = ring_buffer_get(sampler); 7244 if (!rb) 7245 return; 7246 7247 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7248 7249 /* 7250 * An error here means that perf_output_copy() failed (returned a 7251 * non-zero surplus that it didn't copy), which in its current 7252 * enlightened implementation is not possible. If that changes, we'd 7253 * like to know. 7254 */ 7255 if (WARN_ON_ONCE(size < 0)) 7256 goto out_put; 7257 7258 /* 7259 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7260 * perf_prepare_sample_aux(), so should not be more than that. 7261 */ 7262 pad = data->aux_size - size; 7263 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7264 pad = 8; 7265 7266 if (pad) { 7267 u64 zero = 0; 7268 perf_output_copy(handle, &zero, pad); 7269 } 7270 7271 out_put: 7272 ring_buffer_put(rb); 7273 } 7274 7275 /* 7276 * A set of common sample data types saved even for non-sample records 7277 * when event->attr.sample_id_all is set. 7278 */ 7279 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7280 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7281 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7282 7283 static void __perf_event_header__init_id(struct perf_sample_data *data, 7284 struct perf_event *event, 7285 u64 sample_type) 7286 { 7287 data->type = event->attr.sample_type; 7288 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7289 7290 if (sample_type & PERF_SAMPLE_TID) { 7291 /* namespace issues */ 7292 data->tid_entry.pid = perf_event_pid(event, current); 7293 data->tid_entry.tid = perf_event_tid(event, current); 7294 } 7295 7296 if (sample_type & PERF_SAMPLE_TIME) 7297 data->time = perf_event_clock(event); 7298 7299 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7300 data->id = primary_event_id(event); 7301 7302 if (sample_type & PERF_SAMPLE_STREAM_ID) 7303 data->stream_id = event->id; 7304 7305 if (sample_type & PERF_SAMPLE_CPU) { 7306 data->cpu_entry.cpu = raw_smp_processor_id(); 7307 data->cpu_entry.reserved = 0; 7308 } 7309 } 7310 7311 void perf_event_header__init_id(struct perf_event_header *header, 7312 struct perf_sample_data *data, 7313 struct perf_event *event) 7314 { 7315 if (event->attr.sample_id_all) { 7316 header->size += event->id_header_size; 7317 __perf_event_header__init_id(data, event, event->attr.sample_type); 7318 } 7319 } 7320 7321 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7322 struct perf_sample_data *data) 7323 { 7324 u64 sample_type = data->type; 7325 7326 if (sample_type & PERF_SAMPLE_TID) 7327 perf_output_put(handle, data->tid_entry); 7328 7329 if (sample_type & PERF_SAMPLE_TIME) 7330 perf_output_put(handle, data->time); 7331 7332 if (sample_type & PERF_SAMPLE_ID) 7333 perf_output_put(handle, data->id); 7334 7335 if (sample_type & PERF_SAMPLE_STREAM_ID) 7336 perf_output_put(handle, data->stream_id); 7337 7338 if (sample_type & PERF_SAMPLE_CPU) 7339 perf_output_put(handle, data->cpu_entry); 7340 7341 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7342 perf_output_put(handle, data->id); 7343 } 7344 7345 void perf_event__output_id_sample(struct perf_event *event, 7346 struct perf_output_handle *handle, 7347 struct perf_sample_data *sample) 7348 { 7349 if (event->attr.sample_id_all) 7350 __perf_event__output_id_sample(handle, sample); 7351 } 7352 7353 static void perf_output_read_one(struct perf_output_handle *handle, 7354 struct perf_event *event, 7355 u64 enabled, u64 running) 7356 { 7357 u64 read_format = event->attr.read_format; 7358 u64 values[5]; 7359 int n = 0; 7360 7361 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7362 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7363 values[n++] = enabled + 7364 atomic64_read(&event->child_total_time_enabled); 7365 } 7366 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7367 values[n++] = running + 7368 atomic64_read(&event->child_total_time_running); 7369 } 7370 if (read_format & PERF_FORMAT_ID) 7371 values[n++] = primary_event_id(event); 7372 if (read_format & PERF_FORMAT_LOST) 7373 values[n++] = atomic64_read(&event->lost_samples); 7374 7375 __output_copy(handle, values, n * sizeof(u64)); 7376 } 7377 7378 static void perf_output_read_group(struct perf_output_handle *handle, 7379 struct perf_event *event, 7380 u64 enabled, u64 running) 7381 { 7382 struct perf_event *leader = event->group_leader, *sub; 7383 u64 read_format = event->attr.read_format; 7384 unsigned long flags; 7385 u64 values[6]; 7386 int n = 0; 7387 bool self = has_inherit_and_sample_read(&event->attr); 7388 7389 /* 7390 * Disabling interrupts avoids all counter scheduling 7391 * (context switches, timer based rotation and IPIs). 7392 */ 7393 local_irq_save(flags); 7394 7395 values[n++] = 1 + leader->nr_siblings; 7396 7397 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7398 values[n++] = enabled; 7399 7400 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7401 values[n++] = running; 7402 7403 if ((leader != event) && 7404 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7405 leader->pmu->read(leader); 7406 7407 values[n++] = perf_event_count(leader, self); 7408 if (read_format & PERF_FORMAT_ID) 7409 values[n++] = primary_event_id(leader); 7410 if (read_format & PERF_FORMAT_LOST) 7411 values[n++] = atomic64_read(&leader->lost_samples); 7412 7413 __output_copy(handle, values, n * sizeof(u64)); 7414 7415 for_each_sibling_event(sub, leader) { 7416 n = 0; 7417 7418 if ((sub != event) && 7419 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7420 sub->pmu->read(sub); 7421 7422 values[n++] = perf_event_count(sub, self); 7423 if (read_format & PERF_FORMAT_ID) 7424 values[n++] = primary_event_id(sub); 7425 if (read_format & PERF_FORMAT_LOST) 7426 values[n++] = atomic64_read(&sub->lost_samples); 7427 7428 __output_copy(handle, values, n * sizeof(u64)); 7429 } 7430 7431 local_irq_restore(flags); 7432 } 7433 7434 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7435 PERF_FORMAT_TOTAL_TIME_RUNNING) 7436 7437 /* 7438 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7439 * 7440 * The problem is that its both hard and excessively expensive to iterate the 7441 * child list, not to mention that its impossible to IPI the children running 7442 * on another CPU, from interrupt/NMI context. 7443 * 7444 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7445 * counts rather than attempting to accumulate some value across all children on 7446 * all cores. 7447 */ 7448 static void perf_output_read(struct perf_output_handle *handle, 7449 struct perf_event *event) 7450 { 7451 u64 enabled = 0, running = 0, now; 7452 u64 read_format = event->attr.read_format; 7453 7454 /* 7455 * compute total_time_enabled, total_time_running 7456 * based on snapshot values taken when the event 7457 * was last scheduled in. 7458 * 7459 * we cannot simply called update_context_time() 7460 * because of locking issue as we are called in 7461 * NMI context 7462 */ 7463 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7464 calc_timer_values(event, &now, &enabled, &running); 7465 7466 if (event->attr.read_format & PERF_FORMAT_GROUP) 7467 perf_output_read_group(handle, event, enabled, running); 7468 else 7469 perf_output_read_one(handle, event, enabled, running); 7470 } 7471 7472 void perf_output_sample(struct perf_output_handle *handle, 7473 struct perf_event_header *header, 7474 struct perf_sample_data *data, 7475 struct perf_event *event) 7476 { 7477 u64 sample_type = data->type; 7478 7479 perf_output_put(handle, *header); 7480 7481 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7482 perf_output_put(handle, data->id); 7483 7484 if (sample_type & PERF_SAMPLE_IP) 7485 perf_output_put(handle, data->ip); 7486 7487 if (sample_type & PERF_SAMPLE_TID) 7488 perf_output_put(handle, data->tid_entry); 7489 7490 if (sample_type & PERF_SAMPLE_TIME) 7491 perf_output_put(handle, data->time); 7492 7493 if (sample_type & PERF_SAMPLE_ADDR) 7494 perf_output_put(handle, data->addr); 7495 7496 if (sample_type & PERF_SAMPLE_ID) 7497 perf_output_put(handle, data->id); 7498 7499 if (sample_type & PERF_SAMPLE_STREAM_ID) 7500 perf_output_put(handle, data->stream_id); 7501 7502 if (sample_type & PERF_SAMPLE_CPU) 7503 perf_output_put(handle, data->cpu_entry); 7504 7505 if (sample_type & PERF_SAMPLE_PERIOD) 7506 perf_output_put(handle, data->period); 7507 7508 if (sample_type & PERF_SAMPLE_READ) 7509 perf_output_read(handle, event); 7510 7511 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7512 int size = 1; 7513 7514 size += data->callchain->nr; 7515 size *= sizeof(u64); 7516 __output_copy(handle, data->callchain, size); 7517 } 7518 7519 if (sample_type & PERF_SAMPLE_RAW) { 7520 struct perf_raw_record *raw = data->raw; 7521 7522 if (raw) { 7523 struct perf_raw_frag *frag = &raw->frag; 7524 7525 perf_output_put(handle, raw->size); 7526 do { 7527 if (frag->copy) { 7528 __output_custom(handle, frag->copy, 7529 frag->data, frag->size); 7530 } else { 7531 __output_copy(handle, frag->data, 7532 frag->size); 7533 } 7534 if (perf_raw_frag_last(frag)) 7535 break; 7536 frag = frag->next; 7537 } while (1); 7538 if (frag->pad) 7539 __output_skip(handle, NULL, frag->pad); 7540 } else { 7541 struct { 7542 u32 size; 7543 u32 data; 7544 } raw = { 7545 .size = sizeof(u32), 7546 .data = 0, 7547 }; 7548 perf_output_put(handle, raw); 7549 } 7550 } 7551 7552 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7553 if (data->br_stack) { 7554 size_t size; 7555 7556 size = data->br_stack->nr 7557 * sizeof(struct perf_branch_entry); 7558 7559 perf_output_put(handle, data->br_stack->nr); 7560 if (branch_sample_hw_index(event)) 7561 perf_output_put(handle, data->br_stack->hw_idx); 7562 perf_output_copy(handle, data->br_stack->entries, size); 7563 /* 7564 * Add the extension space which is appended 7565 * right after the struct perf_branch_stack. 7566 */ 7567 if (data->br_stack_cntr) { 7568 size = data->br_stack->nr * sizeof(u64); 7569 perf_output_copy(handle, data->br_stack_cntr, size); 7570 } 7571 } else { 7572 /* 7573 * we always store at least the value of nr 7574 */ 7575 u64 nr = 0; 7576 perf_output_put(handle, nr); 7577 } 7578 } 7579 7580 if (sample_type & PERF_SAMPLE_REGS_USER) { 7581 u64 abi = data->regs_user.abi; 7582 7583 /* 7584 * If there are no regs to dump, notice it through 7585 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7586 */ 7587 perf_output_put(handle, abi); 7588 7589 if (abi) { 7590 u64 mask = event->attr.sample_regs_user; 7591 perf_output_sample_regs(handle, 7592 data->regs_user.regs, 7593 mask); 7594 } 7595 } 7596 7597 if (sample_type & PERF_SAMPLE_STACK_USER) { 7598 perf_output_sample_ustack(handle, 7599 data->stack_user_size, 7600 data->regs_user.regs); 7601 } 7602 7603 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7604 perf_output_put(handle, data->weight.full); 7605 7606 if (sample_type & PERF_SAMPLE_DATA_SRC) 7607 perf_output_put(handle, data->data_src.val); 7608 7609 if (sample_type & PERF_SAMPLE_TRANSACTION) 7610 perf_output_put(handle, data->txn); 7611 7612 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7613 u64 abi = data->regs_intr.abi; 7614 /* 7615 * If there are no regs to dump, notice it through 7616 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7617 */ 7618 perf_output_put(handle, abi); 7619 7620 if (abi) { 7621 u64 mask = event->attr.sample_regs_intr; 7622 7623 perf_output_sample_regs(handle, 7624 data->regs_intr.regs, 7625 mask); 7626 } 7627 } 7628 7629 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7630 perf_output_put(handle, data->phys_addr); 7631 7632 if (sample_type & PERF_SAMPLE_CGROUP) 7633 perf_output_put(handle, data->cgroup); 7634 7635 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7636 perf_output_put(handle, data->data_page_size); 7637 7638 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7639 perf_output_put(handle, data->code_page_size); 7640 7641 if (sample_type & PERF_SAMPLE_AUX) { 7642 perf_output_put(handle, data->aux_size); 7643 7644 if (data->aux_size) 7645 perf_aux_sample_output(event, handle, data); 7646 } 7647 7648 if (!event->attr.watermark) { 7649 int wakeup_events = event->attr.wakeup_events; 7650 7651 if (wakeup_events) { 7652 struct perf_buffer *rb = handle->rb; 7653 int events = local_inc_return(&rb->events); 7654 7655 if (events >= wakeup_events) { 7656 local_sub(wakeup_events, &rb->events); 7657 local_inc(&rb->wakeup); 7658 } 7659 } 7660 } 7661 } 7662 7663 static u64 perf_virt_to_phys(u64 virt) 7664 { 7665 u64 phys_addr = 0; 7666 7667 if (!virt) 7668 return 0; 7669 7670 if (virt >= TASK_SIZE) { 7671 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7672 if (virt_addr_valid((void *)(uintptr_t)virt) && 7673 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7674 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7675 } else { 7676 /* 7677 * Walking the pages tables for user address. 7678 * Interrupts are disabled, so it prevents any tear down 7679 * of the page tables. 7680 * Try IRQ-safe get_user_page_fast_only first. 7681 * If failed, leave phys_addr as 0. 7682 */ 7683 if (current->mm != NULL) { 7684 struct page *p; 7685 7686 pagefault_disable(); 7687 if (get_user_page_fast_only(virt, 0, &p)) { 7688 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7689 put_page(p); 7690 } 7691 pagefault_enable(); 7692 } 7693 } 7694 7695 return phys_addr; 7696 } 7697 7698 /* 7699 * Return the pagetable size of a given virtual address. 7700 */ 7701 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7702 { 7703 u64 size = 0; 7704 7705 #ifdef CONFIG_HAVE_GUP_FAST 7706 pgd_t *pgdp, pgd; 7707 p4d_t *p4dp, p4d; 7708 pud_t *pudp, pud; 7709 pmd_t *pmdp, pmd; 7710 pte_t *ptep, pte; 7711 7712 pgdp = pgd_offset(mm, addr); 7713 pgd = READ_ONCE(*pgdp); 7714 if (pgd_none(pgd)) 7715 return 0; 7716 7717 if (pgd_leaf(pgd)) 7718 return pgd_leaf_size(pgd); 7719 7720 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7721 p4d = READ_ONCE(*p4dp); 7722 if (!p4d_present(p4d)) 7723 return 0; 7724 7725 if (p4d_leaf(p4d)) 7726 return p4d_leaf_size(p4d); 7727 7728 pudp = pud_offset_lockless(p4dp, p4d, addr); 7729 pud = READ_ONCE(*pudp); 7730 if (!pud_present(pud)) 7731 return 0; 7732 7733 if (pud_leaf(pud)) 7734 return pud_leaf_size(pud); 7735 7736 pmdp = pmd_offset_lockless(pudp, pud, addr); 7737 again: 7738 pmd = pmdp_get_lockless(pmdp); 7739 if (!pmd_present(pmd)) 7740 return 0; 7741 7742 if (pmd_leaf(pmd)) 7743 return pmd_leaf_size(pmd); 7744 7745 ptep = pte_offset_map(&pmd, addr); 7746 if (!ptep) 7747 goto again; 7748 7749 pte = ptep_get_lockless(ptep); 7750 if (pte_present(pte)) 7751 size = __pte_leaf_size(pmd, pte); 7752 pte_unmap(ptep); 7753 #endif /* CONFIG_HAVE_GUP_FAST */ 7754 7755 return size; 7756 } 7757 7758 static u64 perf_get_page_size(unsigned long addr) 7759 { 7760 struct mm_struct *mm; 7761 unsigned long flags; 7762 u64 size; 7763 7764 if (!addr) 7765 return 0; 7766 7767 /* 7768 * Software page-table walkers must disable IRQs, 7769 * which prevents any tear down of the page tables. 7770 */ 7771 local_irq_save(flags); 7772 7773 mm = current->mm; 7774 if (!mm) { 7775 /* 7776 * For kernel threads and the like, use init_mm so that 7777 * we can find kernel memory. 7778 */ 7779 mm = &init_mm; 7780 } 7781 7782 size = perf_get_pgtable_size(mm, addr); 7783 7784 local_irq_restore(flags); 7785 7786 return size; 7787 } 7788 7789 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7790 7791 struct perf_callchain_entry * 7792 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7793 { 7794 bool kernel = !event->attr.exclude_callchain_kernel; 7795 bool user = !event->attr.exclude_callchain_user; 7796 /* Disallow cross-task user callchains. */ 7797 bool crosstask = event->ctx->task && event->ctx->task != current; 7798 const u32 max_stack = event->attr.sample_max_stack; 7799 struct perf_callchain_entry *callchain; 7800 7801 if (!kernel && !user) 7802 return &__empty_callchain; 7803 7804 callchain = get_perf_callchain(regs, 0, kernel, user, 7805 max_stack, crosstask, true); 7806 return callchain ?: &__empty_callchain; 7807 } 7808 7809 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7810 { 7811 return d * !!(flags & s); 7812 } 7813 7814 void perf_prepare_sample(struct perf_sample_data *data, 7815 struct perf_event *event, 7816 struct pt_regs *regs) 7817 { 7818 u64 sample_type = event->attr.sample_type; 7819 u64 filtered_sample_type; 7820 7821 /* 7822 * Add the sample flags that are dependent to others. And clear the 7823 * sample flags that have already been done by the PMU driver. 7824 */ 7825 filtered_sample_type = sample_type; 7826 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7827 PERF_SAMPLE_IP); 7828 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7829 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7830 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7831 PERF_SAMPLE_REGS_USER); 7832 filtered_sample_type &= ~data->sample_flags; 7833 7834 if (filtered_sample_type == 0) { 7835 /* Make sure it has the correct data->type for output */ 7836 data->type = event->attr.sample_type; 7837 return; 7838 } 7839 7840 __perf_event_header__init_id(data, event, filtered_sample_type); 7841 7842 if (filtered_sample_type & PERF_SAMPLE_IP) { 7843 data->ip = perf_instruction_pointer(regs); 7844 data->sample_flags |= PERF_SAMPLE_IP; 7845 } 7846 7847 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7848 perf_sample_save_callchain(data, event, regs); 7849 7850 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7851 data->raw = NULL; 7852 data->dyn_size += sizeof(u64); 7853 data->sample_flags |= PERF_SAMPLE_RAW; 7854 } 7855 7856 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7857 data->br_stack = NULL; 7858 data->dyn_size += sizeof(u64); 7859 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7860 } 7861 7862 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7863 perf_sample_regs_user(&data->regs_user, regs); 7864 7865 /* 7866 * It cannot use the filtered_sample_type here as REGS_USER can be set 7867 * by STACK_USER (using __cond_set() above) and we don't want to update 7868 * the dyn_size if it's not requested by users. 7869 */ 7870 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7871 /* regs dump ABI info */ 7872 int size = sizeof(u64); 7873 7874 if (data->regs_user.regs) { 7875 u64 mask = event->attr.sample_regs_user; 7876 size += hweight64(mask) * sizeof(u64); 7877 } 7878 7879 data->dyn_size += size; 7880 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7881 } 7882 7883 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7884 /* 7885 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7886 * processed as the last one or have additional check added 7887 * in case new sample type is added, because we could eat 7888 * up the rest of the sample size. 7889 */ 7890 u16 stack_size = event->attr.sample_stack_user; 7891 u16 header_size = perf_sample_data_size(data, event); 7892 u16 size = sizeof(u64); 7893 7894 stack_size = perf_sample_ustack_size(stack_size, header_size, 7895 data->regs_user.regs); 7896 7897 /* 7898 * If there is something to dump, add space for the dump 7899 * itself and for the field that tells the dynamic size, 7900 * which is how many have been actually dumped. 7901 */ 7902 if (stack_size) 7903 size += sizeof(u64) + stack_size; 7904 7905 data->stack_user_size = stack_size; 7906 data->dyn_size += size; 7907 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7908 } 7909 7910 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7911 data->weight.full = 0; 7912 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7913 } 7914 7915 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7916 data->data_src.val = PERF_MEM_NA; 7917 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7918 } 7919 7920 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7921 data->txn = 0; 7922 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7923 } 7924 7925 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7926 data->addr = 0; 7927 data->sample_flags |= PERF_SAMPLE_ADDR; 7928 } 7929 7930 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7931 /* regs dump ABI info */ 7932 int size = sizeof(u64); 7933 7934 perf_sample_regs_intr(&data->regs_intr, regs); 7935 7936 if (data->regs_intr.regs) { 7937 u64 mask = event->attr.sample_regs_intr; 7938 7939 size += hweight64(mask) * sizeof(u64); 7940 } 7941 7942 data->dyn_size += size; 7943 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7944 } 7945 7946 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7947 data->phys_addr = perf_virt_to_phys(data->addr); 7948 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7949 } 7950 7951 #ifdef CONFIG_CGROUP_PERF 7952 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7953 struct cgroup *cgrp; 7954 7955 /* protected by RCU */ 7956 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7957 data->cgroup = cgroup_id(cgrp); 7958 data->sample_flags |= PERF_SAMPLE_CGROUP; 7959 } 7960 #endif 7961 7962 /* 7963 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7964 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7965 * but the value will not dump to the userspace. 7966 */ 7967 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7968 data->data_page_size = perf_get_page_size(data->addr); 7969 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7970 } 7971 7972 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7973 data->code_page_size = perf_get_page_size(data->ip); 7974 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7975 } 7976 7977 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7978 u64 size; 7979 u16 header_size = perf_sample_data_size(data, event); 7980 7981 header_size += sizeof(u64); /* size */ 7982 7983 /* 7984 * Given the 16bit nature of header::size, an AUX sample can 7985 * easily overflow it, what with all the preceding sample bits. 7986 * Make sure this doesn't happen by using up to U16_MAX bytes 7987 * per sample in total (rounded down to 8 byte boundary). 7988 */ 7989 size = min_t(size_t, U16_MAX - header_size, 7990 event->attr.aux_sample_size); 7991 size = rounddown(size, 8); 7992 size = perf_prepare_sample_aux(event, data, size); 7993 7994 WARN_ON_ONCE(size + header_size > U16_MAX); 7995 data->dyn_size += size + sizeof(u64); /* size above */ 7996 data->sample_flags |= PERF_SAMPLE_AUX; 7997 } 7998 } 7999 8000 void perf_prepare_header(struct perf_event_header *header, 8001 struct perf_sample_data *data, 8002 struct perf_event *event, 8003 struct pt_regs *regs) 8004 { 8005 header->type = PERF_RECORD_SAMPLE; 8006 header->size = perf_sample_data_size(data, event); 8007 header->misc = perf_misc_flags(regs); 8008 8009 /* 8010 * If you're adding more sample types here, you likely need to do 8011 * something about the overflowing header::size, like repurpose the 8012 * lowest 3 bits of size, which should be always zero at the moment. 8013 * This raises a more important question, do we really need 512k sized 8014 * samples and why, so good argumentation is in order for whatever you 8015 * do here next. 8016 */ 8017 WARN_ON_ONCE(header->size & 7); 8018 } 8019 8020 static __always_inline int 8021 __perf_event_output(struct perf_event *event, 8022 struct perf_sample_data *data, 8023 struct pt_regs *regs, 8024 int (*output_begin)(struct perf_output_handle *, 8025 struct perf_sample_data *, 8026 struct perf_event *, 8027 unsigned int)) 8028 { 8029 struct perf_output_handle handle; 8030 struct perf_event_header header; 8031 int err; 8032 8033 /* protect the callchain buffers */ 8034 rcu_read_lock(); 8035 8036 perf_prepare_sample(data, event, regs); 8037 perf_prepare_header(&header, data, event, regs); 8038 8039 err = output_begin(&handle, data, event, header.size); 8040 if (err) 8041 goto exit; 8042 8043 perf_output_sample(&handle, &header, data, event); 8044 8045 perf_output_end(&handle); 8046 8047 exit: 8048 rcu_read_unlock(); 8049 return err; 8050 } 8051 8052 void 8053 perf_event_output_forward(struct perf_event *event, 8054 struct perf_sample_data *data, 8055 struct pt_regs *regs) 8056 { 8057 __perf_event_output(event, data, regs, perf_output_begin_forward); 8058 } 8059 8060 void 8061 perf_event_output_backward(struct perf_event *event, 8062 struct perf_sample_data *data, 8063 struct pt_regs *regs) 8064 { 8065 __perf_event_output(event, data, regs, perf_output_begin_backward); 8066 } 8067 8068 int 8069 perf_event_output(struct perf_event *event, 8070 struct perf_sample_data *data, 8071 struct pt_regs *regs) 8072 { 8073 return __perf_event_output(event, data, regs, perf_output_begin); 8074 } 8075 8076 /* 8077 * read event_id 8078 */ 8079 8080 struct perf_read_event { 8081 struct perf_event_header header; 8082 8083 u32 pid; 8084 u32 tid; 8085 }; 8086 8087 static void 8088 perf_event_read_event(struct perf_event *event, 8089 struct task_struct *task) 8090 { 8091 struct perf_output_handle handle; 8092 struct perf_sample_data sample; 8093 struct perf_read_event read_event = { 8094 .header = { 8095 .type = PERF_RECORD_READ, 8096 .misc = 0, 8097 .size = sizeof(read_event) + event->read_size, 8098 }, 8099 .pid = perf_event_pid(event, task), 8100 .tid = perf_event_tid(event, task), 8101 }; 8102 int ret; 8103 8104 perf_event_header__init_id(&read_event.header, &sample, event); 8105 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8106 if (ret) 8107 return; 8108 8109 perf_output_put(&handle, read_event); 8110 perf_output_read(&handle, event); 8111 perf_event__output_id_sample(event, &handle, &sample); 8112 8113 perf_output_end(&handle); 8114 } 8115 8116 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8117 8118 static void 8119 perf_iterate_ctx(struct perf_event_context *ctx, 8120 perf_iterate_f output, 8121 void *data, bool all) 8122 { 8123 struct perf_event *event; 8124 8125 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8126 if (!all) { 8127 if (event->state < PERF_EVENT_STATE_INACTIVE) 8128 continue; 8129 if (!event_filter_match(event)) 8130 continue; 8131 } 8132 8133 output(event, data); 8134 } 8135 } 8136 8137 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8138 { 8139 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8140 struct perf_event *event; 8141 8142 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8143 /* 8144 * Skip events that are not fully formed yet; ensure that 8145 * if we observe event->ctx, both event and ctx will be 8146 * complete enough. See perf_install_in_context(). 8147 */ 8148 if (!smp_load_acquire(&event->ctx)) 8149 continue; 8150 8151 if (event->state < PERF_EVENT_STATE_INACTIVE) 8152 continue; 8153 if (!event_filter_match(event)) 8154 continue; 8155 output(event, data); 8156 } 8157 } 8158 8159 /* 8160 * Iterate all events that need to receive side-band events. 8161 * 8162 * For new callers; ensure that account_pmu_sb_event() includes 8163 * your event, otherwise it might not get delivered. 8164 */ 8165 static void 8166 perf_iterate_sb(perf_iterate_f output, void *data, 8167 struct perf_event_context *task_ctx) 8168 { 8169 struct perf_event_context *ctx; 8170 8171 rcu_read_lock(); 8172 preempt_disable(); 8173 8174 /* 8175 * If we have task_ctx != NULL we only notify the task context itself. 8176 * The task_ctx is set only for EXIT events before releasing task 8177 * context. 8178 */ 8179 if (task_ctx) { 8180 perf_iterate_ctx(task_ctx, output, data, false); 8181 goto done; 8182 } 8183 8184 perf_iterate_sb_cpu(output, data); 8185 8186 ctx = rcu_dereference(current->perf_event_ctxp); 8187 if (ctx) 8188 perf_iterate_ctx(ctx, output, data, false); 8189 done: 8190 preempt_enable(); 8191 rcu_read_unlock(); 8192 } 8193 8194 /* 8195 * Clear all file-based filters at exec, they'll have to be 8196 * re-instated when/if these objects are mmapped again. 8197 */ 8198 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8199 { 8200 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8201 struct perf_addr_filter *filter; 8202 unsigned int restart = 0, count = 0; 8203 unsigned long flags; 8204 8205 if (!has_addr_filter(event)) 8206 return; 8207 8208 raw_spin_lock_irqsave(&ifh->lock, flags); 8209 list_for_each_entry(filter, &ifh->list, entry) { 8210 if (filter->path.dentry) { 8211 event->addr_filter_ranges[count].start = 0; 8212 event->addr_filter_ranges[count].size = 0; 8213 restart++; 8214 } 8215 8216 count++; 8217 } 8218 8219 if (restart) 8220 event->addr_filters_gen++; 8221 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8222 8223 if (restart) 8224 perf_event_stop(event, 1); 8225 } 8226 8227 void perf_event_exec(void) 8228 { 8229 struct perf_event_context *ctx; 8230 8231 ctx = perf_pin_task_context(current); 8232 if (!ctx) 8233 return; 8234 8235 perf_event_enable_on_exec(ctx); 8236 perf_event_remove_on_exec(ctx); 8237 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8238 8239 perf_unpin_context(ctx); 8240 put_ctx(ctx); 8241 } 8242 8243 struct remote_output { 8244 struct perf_buffer *rb; 8245 int err; 8246 }; 8247 8248 static void __perf_event_output_stop(struct perf_event *event, void *data) 8249 { 8250 struct perf_event *parent = event->parent; 8251 struct remote_output *ro = data; 8252 struct perf_buffer *rb = ro->rb; 8253 struct stop_event_data sd = { 8254 .event = event, 8255 }; 8256 8257 if (!has_aux(event)) 8258 return; 8259 8260 if (!parent) 8261 parent = event; 8262 8263 /* 8264 * In case of inheritance, it will be the parent that links to the 8265 * ring-buffer, but it will be the child that's actually using it. 8266 * 8267 * We are using event::rb to determine if the event should be stopped, 8268 * however this may race with ring_buffer_attach() (through set_output), 8269 * which will make us skip the event that actually needs to be stopped. 8270 * So ring_buffer_attach() has to stop an aux event before re-assigning 8271 * its rb pointer. 8272 */ 8273 if (rcu_dereference(parent->rb) == rb) 8274 ro->err = __perf_event_stop(&sd); 8275 } 8276 8277 static int __perf_pmu_output_stop(void *info) 8278 { 8279 struct perf_event *event = info; 8280 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8281 struct remote_output ro = { 8282 .rb = event->rb, 8283 }; 8284 8285 rcu_read_lock(); 8286 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8287 if (cpuctx->task_ctx) 8288 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8289 &ro, false); 8290 rcu_read_unlock(); 8291 8292 return ro.err; 8293 } 8294 8295 static void perf_pmu_output_stop(struct perf_event *event) 8296 { 8297 struct perf_event *iter; 8298 int err, cpu; 8299 8300 restart: 8301 rcu_read_lock(); 8302 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8303 /* 8304 * For per-CPU events, we need to make sure that neither they 8305 * nor their children are running; for cpu==-1 events it's 8306 * sufficient to stop the event itself if it's active, since 8307 * it can't have children. 8308 */ 8309 cpu = iter->cpu; 8310 if (cpu == -1) 8311 cpu = READ_ONCE(iter->oncpu); 8312 8313 if (cpu == -1) 8314 continue; 8315 8316 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8317 if (err == -EAGAIN) { 8318 rcu_read_unlock(); 8319 goto restart; 8320 } 8321 } 8322 rcu_read_unlock(); 8323 } 8324 8325 /* 8326 * task tracking -- fork/exit 8327 * 8328 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8329 */ 8330 8331 struct perf_task_event { 8332 struct task_struct *task; 8333 struct perf_event_context *task_ctx; 8334 8335 struct { 8336 struct perf_event_header header; 8337 8338 u32 pid; 8339 u32 ppid; 8340 u32 tid; 8341 u32 ptid; 8342 u64 time; 8343 } event_id; 8344 }; 8345 8346 static int perf_event_task_match(struct perf_event *event) 8347 { 8348 return event->attr.comm || event->attr.mmap || 8349 event->attr.mmap2 || event->attr.mmap_data || 8350 event->attr.task; 8351 } 8352 8353 static void perf_event_task_output(struct perf_event *event, 8354 void *data) 8355 { 8356 struct perf_task_event *task_event = data; 8357 struct perf_output_handle handle; 8358 struct perf_sample_data sample; 8359 struct task_struct *task = task_event->task; 8360 int ret, size = task_event->event_id.header.size; 8361 8362 if (!perf_event_task_match(event)) 8363 return; 8364 8365 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8366 8367 ret = perf_output_begin(&handle, &sample, event, 8368 task_event->event_id.header.size); 8369 if (ret) 8370 goto out; 8371 8372 task_event->event_id.pid = perf_event_pid(event, task); 8373 task_event->event_id.tid = perf_event_tid(event, task); 8374 8375 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8376 task_event->event_id.ppid = perf_event_pid(event, 8377 task->real_parent); 8378 task_event->event_id.ptid = perf_event_pid(event, 8379 task->real_parent); 8380 } else { /* PERF_RECORD_FORK */ 8381 task_event->event_id.ppid = perf_event_pid(event, current); 8382 task_event->event_id.ptid = perf_event_tid(event, current); 8383 } 8384 8385 task_event->event_id.time = perf_event_clock(event); 8386 8387 perf_output_put(&handle, task_event->event_id); 8388 8389 perf_event__output_id_sample(event, &handle, &sample); 8390 8391 perf_output_end(&handle); 8392 out: 8393 task_event->event_id.header.size = size; 8394 } 8395 8396 static void perf_event_task(struct task_struct *task, 8397 struct perf_event_context *task_ctx, 8398 int new) 8399 { 8400 struct perf_task_event task_event; 8401 8402 if (!atomic_read(&nr_comm_events) && 8403 !atomic_read(&nr_mmap_events) && 8404 !atomic_read(&nr_task_events)) 8405 return; 8406 8407 task_event = (struct perf_task_event){ 8408 .task = task, 8409 .task_ctx = task_ctx, 8410 .event_id = { 8411 .header = { 8412 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8413 .misc = 0, 8414 .size = sizeof(task_event.event_id), 8415 }, 8416 /* .pid */ 8417 /* .ppid */ 8418 /* .tid */ 8419 /* .ptid */ 8420 /* .time */ 8421 }, 8422 }; 8423 8424 perf_iterate_sb(perf_event_task_output, 8425 &task_event, 8426 task_ctx); 8427 } 8428 8429 void perf_event_fork(struct task_struct *task) 8430 { 8431 perf_event_task(task, NULL, 1); 8432 perf_event_namespaces(task); 8433 } 8434 8435 /* 8436 * comm tracking 8437 */ 8438 8439 struct perf_comm_event { 8440 struct task_struct *task; 8441 char *comm; 8442 int comm_size; 8443 8444 struct { 8445 struct perf_event_header header; 8446 8447 u32 pid; 8448 u32 tid; 8449 } event_id; 8450 }; 8451 8452 static int perf_event_comm_match(struct perf_event *event) 8453 { 8454 return event->attr.comm; 8455 } 8456 8457 static void perf_event_comm_output(struct perf_event *event, 8458 void *data) 8459 { 8460 struct perf_comm_event *comm_event = data; 8461 struct perf_output_handle handle; 8462 struct perf_sample_data sample; 8463 int size = comm_event->event_id.header.size; 8464 int ret; 8465 8466 if (!perf_event_comm_match(event)) 8467 return; 8468 8469 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8470 ret = perf_output_begin(&handle, &sample, event, 8471 comm_event->event_id.header.size); 8472 8473 if (ret) 8474 goto out; 8475 8476 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8477 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8478 8479 perf_output_put(&handle, comm_event->event_id); 8480 __output_copy(&handle, comm_event->comm, 8481 comm_event->comm_size); 8482 8483 perf_event__output_id_sample(event, &handle, &sample); 8484 8485 perf_output_end(&handle); 8486 out: 8487 comm_event->event_id.header.size = size; 8488 } 8489 8490 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8491 { 8492 char comm[TASK_COMM_LEN]; 8493 unsigned int size; 8494 8495 memset(comm, 0, sizeof(comm)); 8496 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8497 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8498 8499 comm_event->comm = comm; 8500 comm_event->comm_size = size; 8501 8502 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8503 8504 perf_iterate_sb(perf_event_comm_output, 8505 comm_event, 8506 NULL); 8507 } 8508 8509 void perf_event_comm(struct task_struct *task, bool exec) 8510 { 8511 struct perf_comm_event comm_event; 8512 8513 if (!atomic_read(&nr_comm_events)) 8514 return; 8515 8516 comm_event = (struct perf_comm_event){ 8517 .task = task, 8518 /* .comm */ 8519 /* .comm_size */ 8520 .event_id = { 8521 .header = { 8522 .type = PERF_RECORD_COMM, 8523 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8524 /* .size */ 8525 }, 8526 /* .pid */ 8527 /* .tid */ 8528 }, 8529 }; 8530 8531 perf_event_comm_event(&comm_event); 8532 } 8533 8534 /* 8535 * namespaces tracking 8536 */ 8537 8538 struct perf_namespaces_event { 8539 struct task_struct *task; 8540 8541 struct { 8542 struct perf_event_header header; 8543 8544 u32 pid; 8545 u32 tid; 8546 u64 nr_namespaces; 8547 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8548 } event_id; 8549 }; 8550 8551 static int perf_event_namespaces_match(struct perf_event *event) 8552 { 8553 return event->attr.namespaces; 8554 } 8555 8556 static void perf_event_namespaces_output(struct perf_event *event, 8557 void *data) 8558 { 8559 struct perf_namespaces_event *namespaces_event = data; 8560 struct perf_output_handle handle; 8561 struct perf_sample_data sample; 8562 u16 header_size = namespaces_event->event_id.header.size; 8563 int ret; 8564 8565 if (!perf_event_namespaces_match(event)) 8566 return; 8567 8568 perf_event_header__init_id(&namespaces_event->event_id.header, 8569 &sample, event); 8570 ret = perf_output_begin(&handle, &sample, event, 8571 namespaces_event->event_id.header.size); 8572 if (ret) 8573 goto out; 8574 8575 namespaces_event->event_id.pid = perf_event_pid(event, 8576 namespaces_event->task); 8577 namespaces_event->event_id.tid = perf_event_tid(event, 8578 namespaces_event->task); 8579 8580 perf_output_put(&handle, namespaces_event->event_id); 8581 8582 perf_event__output_id_sample(event, &handle, &sample); 8583 8584 perf_output_end(&handle); 8585 out: 8586 namespaces_event->event_id.header.size = header_size; 8587 } 8588 8589 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8590 struct task_struct *task, 8591 const struct proc_ns_operations *ns_ops) 8592 { 8593 struct path ns_path; 8594 struct inode *ns_inode; 8595 int error; 8596 8597 error = ns_get_path(&ns_path, task, ns_ops); 8598 if (!error) { 8599 ns_inode = ns_path.dentry->d_inode; 8600 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8601 ns_link_info->ino = ns_inode->i_ino; 8602 path_put(&ns_path); 8603 } 8604 } 8605 8606 void perf_event_namespaces(struct task_struct *task) 8607 { 8608 struct perf_namespaces_event namespaces_event; 8609 struct perf_ns_link_info *ns_link_info; 8610 8611 if (!atomic_read(&nr_namespaces_events)) 8612 return; 8613 8614 namespaces_event = (struct perf_namespaces_event){ 8615 .task = task, 8616 .event_id = { 8617 .header = { 8618 .type = PERF_RECORD_NAMESPACES, 8619 .misc = 0, 8620 .size = sizeof(namespaces_event.event_id), 8621 }, 8622 /* .pid */ 8623 /* .tid */ 8624 .nr_namespaces = NR_NAMESPACES, 8625 /* .link_info[NR_NAMESPACES] */ 8626 }, 8627 }; 8628 8629 ns_link_info = namespaces_event.event_id.link_info; 8630 8631 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8632 task, &mntns_operations); 8633 8634 #ifdef CONFIG_USER_NS 8635 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8636 task, &userns_operations); 8637 #endif 8638 #ifdef CONFIG_NET_NS 8639 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8640 task, &netns_operations); 8641 #endif 8642 #ifdef CONFIG_UTS_NS 8643 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8644 task, &utsns_operations); 8645 #endif 8646 #ifdef CONFIG_IPC_NS 8647 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8648 task, &ipcns_operations); 8649 #endif 8650 #ifdef CONFIG_PID_NS 8651 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8652 task, &pidns_operations); 8653 #endif 8654 #ifdef CONFIG_CGROUPS 8655 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8656 task, &cgroupns_operations); 8657 #endif 8658 8659 perf_iterate_sb(perf_event_namespaces_output, 8660 &namespaces_event, 8661 NULL); 8662 } 8663 8664 /* 8665 * cgroup tracking 8666 */ 8667 #ifdef CONFIG_CGROUP_PERF 8668 8669 struct perf_cgroup_event { 8670 char *path; 8671 int path_size; 8672 struct { 8673 struct perf_event_header header; 8674 u64 id; 8675 char path[]; 8676 } event_id; 8677 }; 8678 8679 static int perf_event_cgroup_match(struct perf_event *event) 8680 { 8681 return event->attr.cgroup; 8682 } 8683 8684 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8685 { 8686 struct perf_cgroup_event *cgroup_event = data; 8687 struct perf_output_handle handle; 8688 struct perf_sample_data sample; 8689 u16 header_size = cgroup_event->event_id.header.size; 8690 int ret; 8691 8692 if (!perf_event_cgroup_match(event)) 8693 return; 8694 8695 perf_event_header__init_id(&cgroup_event->event_id.header, 8696 &sample, event); 8697 ret = perf_output_begin(&handle, &sample, event, 8698 cgroup_event->event_id.header.size); 8699 if (ret) 8700 goto out; 8701 8702 perf_output_put(&handle, cgroup_event->event_id); 8703 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8704 8705 perf_event__output_id_sample(event, &handle, &sample); 8706 8707 perf_output_end(&handle); 8708 out: 8709 cgroup_event->event_id.header.size = header_size; 8710 } 8711 8712 static void perf_event_cgroup(struct cgroup *cgrp) 8713 { 8714 struct perf_cgroup_event cgroup_event; 8715 char path_enomem[16] = "//enomem"; 8716 char *pathname; 8717 size_t size; 8718 8719 if (!atomic_read(&nr_cgroup_events)) 8720 return; 8721 8722 cgroup_event = (struct perf_cgroup_event){ 8723 .event_id = { 8724 .header = { 8725 .type = PERF_RECORD_CGROUP, 8726 .misc = 0, 8727 .size = sizeof(cgroup_event.event_id), 8728 }, 8729 .id = cgroup_id(cgrp), 8730 }, 8731 }; 8732 8733 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8734 if (pathname == NULL) { 8735 cgroup_event.path = path_enomem; 8736 } else { 8737 /* just to be sure to have enough space for alignment */ 8738 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8739 cgroup_event.path = pathname; 8740 } 8741 8742 /* 8743 * Since our buffer works in 8 byte units we need to align our string 8744 * size to a multiple of 8. However, we must guarantee the tail end is 8745 * zero'd out to avoid leaking random bits to userspace. 8746 */ 8747 size = strlen(cgroup_event.path) + 1; 8748 while (!IS_ALIGNED(size, sizeof(u64))) 8749 cgroup_event.path[size++] = '\0'; 8750 8751 cgroup_event.event_id.header.size += size; 8752 cgroup_event.path_size = size; 8753 8754 perf_iterate_sb(perf_event_cgroup_output, 8755 &cgroup_event, 8756 NULL); 8757 8758 kfree(pathname); 8759 } 8760 8761 #endif 8762 8763 /* 8764 * mmap tracking 8765 */ 8766 8767 struct perf_mmap_event { 8768 struct vm_area_struct *vma; 8769 8770 const char *file_name; 8771 int file_size; 8772 int maj, min; 8773 u64 ino; 8774 u64 ino_generation; 8775 u32 prot, flags; 8776 u8 build_id[BUILD_ID_SIZE_MAX]; 8777 u32 build_id_size; 8778 8779 struct { 8780 struct perf_event_header header; 8781 8782 u32 pid; 8783 u32 tid; 8784 u64 start; 8785 u64 len; 8786 u64 pgoff; 8787 } event_id; 8788 }; 8789 8790 static int perf_event_mmap_match(struct perf_event *event, 8791 void *data) 8792 { 8793 struct perf_mmap_event *mmap_event = data; 8794 struct vm_area_struct *vma = mmap_event->vma; 8795 int executable = vma->vm_flags & VM_EXEC; 8796 8797 return (!executable && event->attr.mmap_data) || 8798 (executable && (event->attr.mmap || event->attr.mmap2)); 8799 } 8800 8801 static void perf_event_mmap_output(struct perf_event *event, 8802 void *data) 8803 { 8804 struct perf_mmap_event *mmap_event = data; 8805 struct perf_output_handle handle; 8806 struct perf_sample_data sample; 8807 int size = mmap_event->event_id.header.size; 8808 u32 type = mmap_event->event_id.header.type; 8809 bool use_build_id; 8810 int ret; 8811 8812 if (!perf_event_mmap_match(event, data)) 8813 return; 8814 8815 if (event->attr.mmap2) { 8816 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8817 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8818 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8819 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8820 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8821 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8822 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8823 } 8824 8825 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8826 ret = perf_output_begin(&handle, &sample, event, 8827 mmap_event->event_id.header.size); 8828 if (ret) 8829 goto out; 8830 8831 mmap_event->event_id.pid = perf_event_pid(event, current); 8832 mmap_event->event_id.tid = perf_event_tid(event, current); 8833 8834 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8835 8836 if (event->attr.mmap2 && use_build_id) 8837 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8838 8839 perf_output_put(&handle, mmap_event->event_id); 8840 8841 if (event->attr.mmap2) { 8842 if (use_build_id) { 8843 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8844 8845 __output_copy(&handle, size, 4); 8846 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8847 } else { 8848 perf_output_put(&handle, mmap_event->maj); 8849 perf_output_put(&handle, mmap_event->min); 8850 perf_output_put(&handle, mmap_event->ino); 8851 perf_output_put(&handle, mmap_event->ino_generation); 8852 } 8853 perf_output_put(&handle, mmap_event->prot); 8854 perf_output_put(&handle, mmap_event->flags); 8855 } 8856 8857 __output_copy(&handle, mmap_event->file_name, 8858 mmap_event->file_size); 8859 8860 perf_event__output_id_sample(event, &handle, &sample); 8861 8862 perf_output_end(&handle); 8863 out: 8864 mmap_event->event_id.header.size = size; 8865 mmap_event->event_id.header.type = type; 8866 } 8867 8868 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8869 { 8870 struct vm_area_struct *vma = mmap_event->vma; 8871 struct file *file = vma->vm_file; 8872 int maj = 0, min = 0; 8873 u64 ino = 0, gen = 0; 8874 u32 prot = 0, flags = 0; 8875 unsigned int size; 8876 char tmp[16]; 8877 char *buf = NULL; 8878 char *name = NULL; 8879 8880 if (vma->vm_flags & VM_READ) 8881 prot |= PROT_READ; 8882 if (vma->vm_flags & VM_WRITE) 8883 prot |= PROT_WRITE; 8884 if (vma->vm_flags & VM_EXEC) 8885 prot |= PROT_EXEC; 8886 8887 if (vma->vm_flags & VM_MAYSHARE) 8888 flags = MAP_SHARED; 8889 else 8890 flags = MAP_PRIVATE; 8891 8892 if (vma->vm_flags & VM_LOCKED) 8893 flags |= MAP_LOCKED; 8894 if (is_vm_hugetlb_page(vma)) 8895 flags |= MAP_HUGETLB; 8896 8897 if (file) { 8898 struct inode *inode; 8899 dev_t dev; 8900 8901 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8902 if (!buf) { 8903 name = "//enomem"; 8904 goto cpy_name; 8905 } 8906 /* 8907 * d_path() works from the end of the rb backwards, so we 8908 * need to add enough zero bytes after the string to handle 8909 * the 64bit alignment we do later. 8910 */ 8911 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8912 if (IS_ERR(name)) { 8913 name = "//toolong"; 8914 goto cpy_name; 8915 } 8916 inode = file_inode(vma->vm_file); 8917 dev = inode->i_sb->s_dev; 8918 ino = inode->i_ino; 8919 gen = inode->i_generation; 8920 maj = MAJOR(dev); 8921 min = MINOR(dev); 8922 8923 goto got_name; 8924 } else { 8925 if (vma->vm_ops && vma->vm_ops->name) 8926 name = (char *) vma->vm_ops->name(vma); 8927 if (!name) 8928 name = (char *)arch_vma_name(vma); 8929 if (!name) { 8930 if (vma_is_initial_heap(vma)) 8931 name = "[heap]"; 8932 else if (vma_is_initial_stack(vma)) 8933 name = "[stack]"; 8934 else 8935 name = "//anon"; 8936 } 8937 } 8938 8939 cpy_name: 8940 strscpy(tmp, name, sizeof(tmp)); 8941 name = tmp; 8942 got_name: 8943 /* 8944 * Since our buffer works in 8 byte units we need to align our string 8945 * size to a multiple of 8. However, we must guarantee the tail end is 8946 * zero'd out to avoid leaking random bits to userspace. 8947 */ 8948 size = strlen(name)+1; 8949 while (!IS_ALIGNED(size, sizeof(u64))) 8950 name[size++] = '\0'; 8951 8952 mmap_event->file_name = name; 8953 mmap_event->file_size = size; 8954 mmap_event->maj = maj; 8955 mmap_event->min = min; 8956 mmap_event->ino = ino; 8957 mmap_event->ino_generation = gen; 8958 mmap_event->prot = prot; 8959 mmap_event->flags = flags; 8960 8961 if (!(vma->vm_flags & VM_EXEC)) 8962 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8963 8964 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8965 8966 if (atomic_read(&nr_build_id_events)) 8967 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8968 8969 perf_iterate_sb(perf_event_mmap_output, 8970 mmap_event, 8971 NULL); 8972 8973 kfree(buf); 8974 } 8975 8976 /* 8977 * Check whether inode and address range match filter criteria. 8978 */ 8979 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8980 struct file *file, unsigned long offset, 8981 unsigned long size) 8982 { 8983 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8984 if (!filter->path.dentry) 8985 return false; 8986 8987 if (d_inode(filter->path.dentry) != file_inode(file)) 8988 return false; 8989 8990 if (filter->offset > offset + size) 8991 return false; 8992 8993 if (filter->offset + filter->size < offset) 8994 return false; 8995 8996 return true; 8997 } 8998 8999 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9000 struct vm_area_struct *vma, 9001 struct perf_addr_filter_range *fr) 9002 { 9003 unsigned long vma_size = vma->vm_end - vma->vm_start; 9004 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9005 struct file *file = vma->vm_file; 9006 9007 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9008 return false; 9009 9010 if (filter->offset < off) { 9011 fr->start = vma->vm_start; 9012 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9013 } else { 9014 fr->start = vma->vm_start + filter->offset - off; 9015 fr->size = min(vma->vm_end - fr->start, filter->size); 9016 } 9017 9018 return true; 9019 } 9020 9021 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9022 { 9023 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9024 struct vm_area_struct *vma = data; 9025 struct perf_addr_filter *filter; 9026 unsigned int restart = 0, count = 0; 9027 unsigned long flags; 9028 9029 if (!has_addr_filter(event)) 9030 return; 9031 9032 if (!vma->vm_file) 9033 return; 9034 9035 raw_spin_lock_irqsave(&ifh->lock, flags); 9036 list_for_each_entry(filter, &ifh->list, entry) { 9037 if (perf_addr_filter_vma_adjust(filter, vma, 9038 &event->addr_filter_ranges[count])) 9039 restart++; 9040 9041 count++; 9042 } 9043 9044 if (restart) 9045 event->addr_filters_gen++; 9046 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9047 9048 if (restart) 9049 perf_event_stop(event, 1); 9050 } 9051 9052 /* 9053 * Adjust all task's events' filters to the new vma 9054 */ 9055 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9056 { 9057 struct perf_event_context *ctx; 9058 9059 /* 9060 * Data tracing isn't supported yet and as such there is no need 9061 * to keep track of anything that isn't related to executable code: 9062 */ 9063 if (!(vma->vm_flags & VM_EXEC)) 9064 return; 9065 9066 rcu_read_lock(); 9067 ctx = rcu_dereference(current->perf_event_ctxp); 9068 if (ctx) 9069 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9070 rcu_read_unlock(); 9071 } 9072 9073 void perf_event_mmap(struct vm_area_struct *vma) 9074 { 9075 struct perf_mmap_event mmap_event; 9076 9077 if (!atomic_read(&nr_mmap_events)) 9078 return; 9079 9080 mmap_event = (struct perf_mmap_event){ 9081 .vma = vma, 9082 /* .file_name */ 9083 /* .file_size */ 9084 .event_id = { 9085 .header = { 9086 .type = PERF_RECORD_MMAP, 9087 .misc = PERF_RECORD_MISC_USER, 9088 /* .size */ 9089 }, 9090 /* .pid */ 9091 /* .tid */ 9092 .start = vma->vm_start, 9093 .len = vma->vm_end - vma->vm_start, 9094 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9095 }, 9096 /* .maj (attr_mmap2 only) */ 9097 /* .min (attr_mmap2 only) */ 9098 /* .ino (attr_mmap2 only) */ 9099 /* .ino_generation (attr_mmap2 only) */ 9100 /* .prot (attr_mmap2 only) */ 9101 /* .flags (attr_mmap2 only) */ 9102 }; 9103 9104 perf_addr_filters_adjust(vma); 9105 perf_event_mmap_event(&mmap_event); 9106 } 9107 9108 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9109 unsigned long size, u64 flags) 9110 { 9111 struct perf_output_handle handle; 9112 struct perf_sample_data sample; 9113 struct perf_aux_event { 9114 struct perf_event_header header; 9115 u64 offset; 9116 u64 size; 9117 u64 flags; 9118 } rec = { 9119 .header = { 9120 .type = PERF_RECORD_AUX, 9121 .misc = 0, 9122 .size = sizeof(rec), 9123 }, 9124 .offset = head, 9125 .size = size, 9126 .flags = flags, 9127 }; 9128 int ret; 9129 9130 perf_event_header__init_id(&rec.header, &sample, event); 9131 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9132 9133 if (ret) 9134 return; 9135 9136 perf_output_put(&handle, rec); 9137 perf_event__output_id_sample(event, &handle, &sample); 9138 9139 perf_output_end(&handle); 9140 } 9141 9142 /* 9143 * Lost/dropped samples logging 9144 */ 9145 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9146 { 9147 struct perf_output_handle handle; 9148 struct perf_sample_data sample; 9149 int ret; 9150 9151 struct { 9152 struct perf_event_header header; 9153 u64 lost; 9154 } lost_samples_event = { 9155 .header = { 9156 .type = PERF_RECORD_LOST_SAMPLES, 9157 .misc = 0, 9158 .size = sizeof(lost_samples_event), 9159 }, 9160 .lost = lost, 9161 }; 9162 9163 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9164 9165 ret = perf_output_begin(&handle, &sample, event, 9166 lost_samples_event.header.size); 9167 if (ret) 9168 return; 9169 9170 perf_output_put(&handle, lost_samples_event); 9171 perf_event__output_id_sample(event, &handle, &sample); 9172 perf_output_end(&handle); 9173 } 9174 9175 /* 9176 * context_switch tracking 9177 */ 9178 9179 struct perf_switch_event { 9180 struct task_struct *task; 9181 struct task_struct *next_prev; 9182 9183 struct { 9184 struct perf_event_header header; 9185 u32 next_prev_pid; 9186 u32 next_prev_tid; 9187 } event_id; 9188 }; 9189 9190 static int perf_event_switch_match(struct perf_event *event) 9191 { 9192 return event->attr.context_switch; 9193 } 9194 9195 static void perf_event_switch_output(struct perf_event *event, void *data) 9196 { 9197 struct perf_switch_event *se = data; 9198 struct perf_output_handle handle; 9199 struct perf_sample_data sample; 9200 int ret; 9201 9202 if (!perf_event_switch_match(event)) 9203 return; 9204 9205 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9206 if (event->ctx->task) { 9207 se->event_id.header.type = PERF_RECORD_SWITCH; 9208 se->event_id.header.size = sizeof(se->event_id.header); 9209 } else { 9210 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9211 se->event_id.header.size = sizeof(se->event_id); 9212 se->event_id.next_prev_pid = 9213 perf_event_pid(event, se->next_prev); 9214 se->event_id.next_prev_tid = 9215 perf_event_tid(event, se->next_prev); 9216 } 9217 9218 perf_event_header__init_id(&se->event_id.header, &sample, event); 9219 9220 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9221 if (ret) 9222 return; 9223 9224 if (event->ctx->task) 9225 perf_output_put(&handle, se->event_id.header); 9226 else 9227 perf_output_put(&handle, se->event_id); 9228 9229 perf_event__output_id_sample(event, &handle, &sample); 9230 9231 perf_output_end(&handle); 9232 } 9233 9234 static void perf_event_switch(struct task_struct *task, 9235 struct task_struct *next_prev, bool sched_in) 9236 { 9237 struct perf_switch_event switch_event; 9238 9239 /* N.B. caller checks nr_switch_events != 0 */ 9240 9241 switch_event = (struct perf_switch_event){ 9242 .task = task, 9243 .next_prev = next_prev, 9244 .event_id = { 9245 .header = { 9246 /* .type */ 9247 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9248 /* .size */ 9249 }, 9250 /* .next_prev_pid */ 9251 /* .next_prev_tid */ 9252 }, 9253 }; 9254 9255 if (!sched_in && task->on_rq) { 9256 switch_event.event_id.header.misc |= 9257 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9258 } 9259 9260 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9261 } 9262 9263 /* 9264 * IRQ throttle logging 9265 */ 9266 9267 static void perf_log_throttle(struct perf_event *event, int enable) 9268 { 9269 struct perf_output_handle handle; 9270 struct perf_sample_data sample; 9271 int ret; 9272 9273 struct { 9274 struct perf_event_header header; 9275 u64 time; 9276 u64 id; 9277 u64 stream_id; 9278 } throttle_event = { 9279 .header = { 9280 .type = PERF_RECORD_THROTTLE, 9281 .misc = 0, 9282 .size = sizeof(throttle_event), 9283 }, 9284 .time = perf_event_clock(event), 9285 .id = primary_event_id(event), 9286 .stream_id = event->id, 9287 }; 9288 9289 if (enable) 9290 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9291 9292 perf_event_header__init_id(&throttle_event.header, &sample, event); 9293 9294 ret = perf_output_begin(&handle, &sample, event, 9295 throttle_event.header.size); 9296 if (ret) 9297 return; 9298 9299 perf_output_put(&handle, throttle_event); 9300 perf_event__output_id_sample(event, &handle, &sample); 9301 perf_output_end(&handle); 9302 } 9303 9304 /* 9305 * ksymbol register/unregister tracking 9306 */ 9307 9308 struct perf_ksymbol_event { 9309 const char *name; 9310 int name_len; 9311 struct { 9312 struct perf_event_header header; 9313 u64 addr; 9314 u32 len; 9315 u16 ksym_type; 9316 u16 flags; 9317 } event_id; 9318 }; 9319 9320 static int perf_event_ksymbol_match(struct perf_event *event) 9321 { 9322 return event->attr.ksymbol; 9323 } 9324 9325 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9326 { 9327 struct perf_ksymbol_event *ksymbol_event = data; 9328 struct perf_output_handle handle; 9329 struct perf_sample_data sample; 9330 int ret; 9331 9332 if (!perf_event_ksymbol_match(event)) 9333 return; 9334 9335 perf_event_header__init_id(&ksymbol_event->event_id.header, 9336 &sample, event); 9337 ret = perf_output_begin(&handle, &sample, event, 9338 ksymbol_event->event_id.header.size); 9339 if (ret) 9340 return; 9341 9342 perf_output_put(&handle, ksymbol_event->event_id); 9343 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9344 perf_event__output_id_sample(event, &handle, &sample); 9345 9346 perf_output_end(&handle); 9347 } 9348 9349 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9350 const char *sym) 9351 { 9352 struct perf_ksymbol_event ksymbol_event; 9353 char name[KSYM_NAME_LEN]; 9354 u16 flags = 0; 9355 int name_len; 9356 9357 if (!atomic_read(&nr_ksymbol_events)) 9358 return; 9359 9360 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9361 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9362 goto err; 9363 9364 strscpy(name, sym, KSYM_NAME_LEN); 9365 name_len = strlen(name) + 1; 9366 while (!IS_ALIGNED(name_len, sizeof(u64))) 9367 name[name_len++] = '\0'; 9368 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9369 9370 if (unregister) 9371 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9372 9373 ksymbol_event = (struct perf_ksymbol_event){ 9374 .name = name, 9375 .name_len = name_len, 9376 .event_id = { 9377 .header = { 9378 .type = PERF_RECORD_KSYMBOL, 9379 .size = sizeof(ksymbol_event.event_id) + 9380 name_len, 9381 }, 9382 .addr = addr, 9383 .len = len, 9384 .ksym_type = ksym_type, 9385 .flags = flags, 9386 }, 9387 }; 9388 9389 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9390 return; 9391 err: 9392 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9393 } 9394 9395 /* 9396 * bpf program load/unload tracking 9397 */ 9398 9399 struct perf_bpf_event { 9400 struct bpf_prog *prog; 9401 struct { 9402 struct perf_event_header header; 9403 u16 type; 9404 u16 flags; 9405 u32 id; 9406 u8 tag[BPF_TAG_SIZE]; 9407 } event_id; 9408 }; 9409 9410 static int perf_event_bpf_match(struct perf_event *event) 9411 { 9412 return event->attr.bpf_event; 9413 } 9414 9415 static void perf_event_bpf_output(struct perf_event *event, void *data) 9416 { 9417 struct perf_bpf_event *bpf_event = data; 9418 struct perf_output_handle handle; 9419 struct perf_sample_data sample; 9420 int ret; 9421 9422 if (!perf_event_bpf_match(event)) 9423 return; 9424 9425 perf_event_header__init_id(&bpf_event->event_id.header, 9426 &sample, event); 9427 ret = perf_output_begin(&handle, &sample, event, 9428 bpf_event->event_id.header.size); 9429 if (ret) 9430 return; 9431 9432 perf_output_put(&handle, bpf_event->event_id); 9433 perf_event__output_id_sample(event, &handle, &sample); 9434 9435 perf_output_end(&handle); 9436 } 9437 9438 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9439 enum perf_bpf_event_type type) 9440 { 9441 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9442 int i; 9443 9444 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9445 (u64)(unsigned long)prog->bpf_func, 9446 prog->jited_len, unregister, 9447 prog->aux->ksym.name); 9448 9449 for (i = 1; i < prog->aux->func_cnt; i++) { 9450 struct bpf_prog *subprog = prog->aux->func[i]; 9451 9452 perf_event_ksymbol( 9453 PERF_RECORD_KSYMBOL_TYPE_BPF, 9454 (u64)(unsigned long)subprog->bpf_func, 9455 subprog->jited_len, unregister, 9456 subprog->aux->ksym.name); 9457 } 9458 } 9459 9460 void perf_event_bpf_event(struct bpf_prog *prog, 9461 enum perf_bpf_event_type type, 9462 u16 flags) 9463 { 9464 struct perf_bpf_event bpf_event; 9465 9466 switch (type) { 9467 case PERF_BPF_EVENT_PROG_LOAD: 9468 case PERF_BPF_EVENT_PROG_UNLOAD: 9469 if (atomic_read(&nr_ksymbol_events)) 9470 perf_event_bpf_emit_ksymbols(prog, type); 9471 break; 9472 default: 9473 return; 9474 } 9475 9476 if (!atomic_read(&nr_bpf_events)) 9477 return; 9478 9479 bpf_event = (struct perf_bpf_event){ 9480 .prog = prog, 9481 .event_id = { 9482 .header = { 9483 .type = PERF_RECORD_BPF_EVENT, 9484 .size = sizeof(bpf_event.event_id), 9485 }, 9486 .type = type, 9487 .flags = flags, 9488 .id = prog->aux->id, 9489 }, 9490 }; 9491 9492 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9493 9494 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9495 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9496 } 9497 9498 struct perf_text_poke_event { 9499 const void *old_bytes; 9500 const void *new_bytes; 9501 size_t pad; 9502 u16 old_len; 9503 u16 new_len; 9504 9505 struct { 9506 struct perf_event_header header; 9507 9508 u64 addr; 9509 } event_id; 9510 }; 9511 9512 static int perf_event_text_poke_match(struct perf_event *event) 9513 { 9514 return event->attr.text_poke; 9515 } 9516 9517 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9518 { 9519 struct perf_text_poke_event *text_poke_event = data; 9520 struct perf_output_handle handle; 9521 struct perf_sample_data sample; 9522 u64 padding = 0; 9523 int ret; 9524 9525 if (!perf_event_text_poke_match(event)) 9526 return; 9527 9528 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9529 9530 ret = perf_output_begin(&handle, &sample, event, 9531 text_poke_event->event_id.header.size); 9532 if (ret) 9533 return; 9534 9535 perf_output_put(&handle, text_poke_event->event_id); 9536 perf_output_put(&handle, text_poke_event->old_len); 9537 perf_output_put(&handle, text_poke_event->new_len); 9538 9539 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9540 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9541 9542 if (text_poke_event->pad) 9543 __output_copy(&handle, &padding, text_poke_event->pad); 9544 9545 perf_event__output_id_sample(event, &handle, &sample); 9546 9547 perf_output_end(&handle); 9548 } 9549 9550 void perf_event_text_poke(const void *addr, const void *old_bytes, 9551 size_t old_len, const void *new_bytes, size_t new_len) 9552 { 9553 struct perf_text_poke_event text_poke_event; 9554 size_t tot, pad; 9555 9556 if (!atomic_read(&nr_text_poke_events)) 9557 return; 9558 9559 tot = sizeof(text_poke_event.old_len) + old_len; 9560 tot += sizeof(text_poke_event.new_len) + new_len; 9561 pad = ALIGN(tot, sizeof(u64)) - tot; 9562 9563 text_poke_event = (struct perf_text_poke_event){ 9564 .old_bytes = old_bytes, 9565 .new_bytes = new_bytes, 9566 .pad = pad, 9567 .old_len = old_len, 9568 .new_len = new_len, 9569 .event_id = { 9570 .header = { 9571 .type = PERF_RECORD_TEXT_POKE, 9572 .misc = PERF_RECORD_MISC_KERNEL, 9573 .size = sizeof(text_poke_event.event_id) + tot + pad, 9574 }, 9575 .addr = (unsigned long)addr, 9576 }, 9577 }; 9578 9579 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9580 } 9581 9582 void perf_event_itrace_started(struct perf_event *event) 9583 { 9584 event->attach_state |= PERF_ATTACH_ITRACE; 9585 } 9586 9587 static void perf_log_itrace_start(struct perf_event *event) 9588 { 9589 struct perf_output_handle handle; 9590 struct perf_sample_data sample; 9591 struct perf_aux_event { 9592 struct perf_event_header header; 9593 u32 pid; 9594 u32 tid; 9595 } rec; 9596 int ret; 9597 9598 if (event->parent) 9599 event = event->parent; 9600 9601 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9602 event->attach_state & PERF_ATTACH_ITRACE) 9603 return; 9604 9605 rec.header.type = PERF_RECORD_ITRACE_START; 9606 rec.header.misc = 0; 9607 rec.header.size = sizeof(rec); 9608 rec.pid = perf_event_pid(event, current); 9609 rec.tid = perf_event_tid(event, current); 9610 9611 perf_event_header__init_id(&rec.header, &sample, event); 9612 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9613 9614 if (ret) 9615 return; 9616 9617 perf_output_put(&handle, rec); 9618 perf_event__output_id_sample(event, &handle, &sample); 9619 9620 perf_output_end(&handle); 9621 } 9622 9623 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9624 { 9625 struct perf_output_handle handle; 9626 struct perf_sample_data sample; 9627 struct perf_aux_event { 9628 struct perf_event_header header; 9629 u64 hw_id; 9630 } rec; 9631 int ret; 9632 9633 if (event->parent) 9634 event = event->parent; 9635 9636 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9637 rec.header.misc = 0; 9638 rec.header.size = sizeof(rec); 9639 rec.hw_id = hw_id; 9640 9641 perf_event_header__init_id(&rec.header, &sample, event); 9642 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9643 9644 if (ret) 9645 return; 9646 9647 perf_output_put(&handle, rec); 9648 perf_event__output_id_sample(event, &handle, &sample); 9649 9650 perf_output_end(&handle); 9651 } 9652 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9653 9654 static int 9655 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9656 { 9657 struct hw_perf_event *hwc = &event->hw; 9658 int ret = 0; 9659 u64 seq; 9660 9661 seq = __this_cpu_read(perf_throttled_seq); 9662 if (seq != hwc->interrupts_seq) { 9663 hwc->interrupts_seq = seq; 9664 hwc->interrupts = 1; 9665 } else { 9666 hwc->interrupts++; 9667 if (unlikely(throttle && 9668 hwc->interrupts > max_samples_per_tick)) { 9669 __this_cpu_inc(perf_throttled_count); 9670 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9671 hwc->interrupts = MAX_INTERRUPTS; 9672 perf_log_throttle(event, 0); 9673 ret = 1; 9674 } 9675 } 9676 9677 if (event->attr.freq) { 9678 u64 now = perf_clock(); 9679 s64 delta = now - hwc->freq_time_stamp; 9680 9681 hwc->freq_time_stamp = now; 9682 9683 if (delta > 0 && delta < 2*TICK_NSEC) 9684 perf_adjust_period(event, delta, hwc->last_period, true); 9685 } 9686 9687 return ret; 9688 } 9689 9690 int perf_event_account_interrupt(struct perf_event *event) 9691 { 9692 return __perf_event_account_interrupt(event, 1); 9693 } 9694 9695 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9696 { 9697 /* 9698 * Due to interrupt latency (AKA "skid"), we may enter the 9699 * kernel before taking an overflow, even if the PMU is only 9700 * counting user events. 9701 */ 9702 if (event->attr.exclude_kernel && !user_mode(regs)) 9703 return false; 9704 9705 return true; 9706 } 9707 9708 #ifdef CONFIG_BPF_SYSCALL 9709 static int bpf_overflow_handler(struct perf_event *event, 9710 struct perf_sample_data *data, 9711 struct pt_regs *regs) 9712 { 9713 struct bpf_perf_event_data_kern ctx = { 9714 .data = data, 9715 .event = event, 9716 }; 9717 struct bpf_prog *prog; 9718 int ret = 0; 9719 9720 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9721 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9722 goto out; 9723 rcu_read_lock(); 9724 prog = READ_ONCE(event->prog); 9725 if (prog) { 9726 perf_prepare_sample(data, event, regs); 9727 ret = bpf_prog_run(prog, &ctx); 9728 } 9729 rcu_read_unlock(); 9730 out: 9731 __this_cpu_dec(bpf_prog_active); 9732 9733 return ret; 9734 } 9735 9736 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9737 struct bpf_prog *prog, 9738 u64 bpf_cookie) 9739 { 9740 if (event->overflow_handler_context) 9741 /* hw breakpoint or kernel counter */ 9742 return -EINVAL; 9743 9744 if (event->prog) 9745 return -EEXIST; 9746 9747 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9748 return -EINVAL; 9749 9750 if (event->attr.precise_ip && 9751 prog->call_get_stack && 9752 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9753 event->attr.exclude_callchain_kernel || 9754 event->attr.exclude_callchain_user)) { 9755 /* 9756 * On perf_event with precise_ip, calling bpf_get_stack() 9757 * may trigger unwinder warnings and occasional crashes. 9758 * bpf_get_[stack|stackid] works around this issue by using 9759 * callchain attached to perf_sample_data. If the 9760 * perf_event does not full (kernel and user) callchain 9761 * attached to perf_sample_data, do not allow attaching BPF 9762 * program that calls bpf_get_[stack|stackid]. 9763 */ 9764 return -EPROTO; 9765 } 9766 9767 event->prog = prog; 9768 event->bpf_cookie = bpf_cookie; 9769 return 0; 9770 } 9771 9772 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9773 { 9774 struct bpf_prog *prog = event->prog; 9775 9776 if (!prog) 9777 return; 9778 9779 event->prog = NULL; 9780 bpf_prog_put(prog); 9781 } 9782 #else 9783 static inline int bpf_overflow_handler(struct perf_event *event, 9784 struct perf_sample_data *data, 9785 struct pt_regs *regs) 9786 { 9787 return 1; 9788 } 9789 9790 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9791 struct bpf_prog *prog, 9792 u64 bpf_cookie) 9793 { 9794 return -EOPNOTSUPP; 9795 } 9796 9797 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9798 { 9799 } 9800 #endif 9801 9802 /* 9803 * Generic event overflow handling, sampling. 9804 */ 9805 9806 static int __perf_event_overflow(struct perf_event *event, 9807 int throttle, struct perf_sample_data *data, 9808 struct pt_regs *regs) 9809 { 9810 int events = atomic_read(&event->event_limit); 9811 int ret = 0; 9812 9813 /* 9814 * Non-sampling counters might still use the PMI to fold short 9815 * hardware counters, ignore those. 9816 */ 9817 if (unlikely(!is_sampling_event(event))) 9818 return 0; 9819 9820 ret = __perf_event_account_interrupt(event, throttle); 9821 9822 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 9823 !bpf_overflow_handler(event, data, regs)) 9824 return ret; 9825 9826 /* 9827 * XXX event_limit might not quite work as expected on inherited 9828 * events 9829 */ 9830 9831 event->pending_kill = POLL_IN; 9832 if (events && atomic_dec_and_test(&event->event_limit)) { 9833 ret = 1; 9834 event->pending_kill = POLL_HUP; 9835 perf_event_disable_inatomic(event); 9836 } 9837 9838 if (event->attr.sigtrap) { 9839 /* 9840 * The desired behaviour of sigtrap vs invalid samples is a bit 9841 * tricky; on the one hand, one should not loose the SIGTRAP if 9842 * it is the first event, on the other hand, we should also not 9843 * trigger the WARN or override the data address. 9844 */ 9845 bool valid_sample = sample_is_allowed(event, regs); 9846 unsigned int pending_id = 1; 9847 enum task_work_notify_mode notify_mode; 9848 9849 if (regs) 9850 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9851 9852 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 9853 9854 if (!event->pending_work && 9855 !task_work_add(current, &event->pending_task, notify_mode)) { 9856 event->pending_work = pending_id; 9857 local_inc(&event->ctx->nr_no_switch_fast); 9858 9859 event->pending_addr = 0; 9860 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9861 event->pending_addr = data->addr; 9862 9863 } else if (event->attr.exclude_kernel && valid_sample) { 9864 /* 9865 * Should not be able to return to user space without 9866 * consuming pending_work; with exceptions: 9867 * 9868 * 1. Where !exclude_kernel, events can overflow again 9869 * in the kernel without returning to user space. 9870 * 9871 * 2. Events that can overflow again before the IRQ- 9872 * work without user space progress (e.g. hrtimer). 9873 * To approximate progress (with false negatives), 9874 * check 32-bit hash of the current IP. 9875 */ 9876 WARN_ON_ONCE(event->pending_work != pending_id); 9877 } 9878 } 9879 9880 READ_ONCE(event->overflow_handler)(event, data, regs); 9881 9882 if (*perf_event_fasync(event) && event->pending_kill) { 9883 event->pending_wakeup = 1; 9884 irq_work_queue(&event->pending_irq); 9885 } 9886 9887 return ret; 9888 } 9889 9890 int perf_event_overflow(struct perf_event *event, 9891 struct perf_sample_data *data, 9892 struct pt_regs *regs) 9893 { 9894 return __perf_event_overflow(event, 1, data, regs); 9895 } 9896 9897 /* 9898 * Generic software event infrastructure 9899 */ 9900 9901 struct swevent_htable { 9902 struct swevent_hlist *swevent_hlist; 9903 struct mutex hlist_mutex; 9904 int hlist_refcount; 9905 }; 9906 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9907 9908 /* 9909 * We directly increment event->count and keep a second value in 9910 * event->hw.period_left to count intervals. This period event 9911 * is kept in the range [-sample_period, 0] so that we can use the 9912 * sign as trigger. 9913 */ 9914 9915 u64 perf_swevent_set_period(struct perf_event *event) 9916 { 9917 struct hw_perf_event *hwc = &event->hw; 9918 u64 period = hwc->last_period; 9919 u64 nr, offset; 9920 s64 old, val; 9921 9922 hwc->last_period = hwc->sample_period; 9923 9924 old = local64_read(&hwc->period_left); 9925 do { 9926 val = old; 9927 if (val < 0) 9928 return 0; 9929 9930 nr = div64_u64(period + val, period); 9931 offset = nr * period; 9932 val -= offset; 9933 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9934 9935 return nr; 9936 } 9937 9938 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9939 struct perf_sample_data *data, 9940 struct pt_regs *regs) 9941 { 9942 struct hw_perf_event *hwc = &event->hw; 9943 int throttle = 0; 9944 9945 if (!overflow) 9946 overflow = perf_swevent_set_period(event); 9947 9948 if (hwc->interrupts == MAX_INTERRUPTS) 9949 return; 9950 9951 for (; overflow; overflow--) { 9952 if (__perf_event_overflow(event, throttle, 9953 data, regs)) { 9954 /* 9955 * We inhibit the overflow from happening when 9956 * hwc->interrupts == MAX_INTERRUPTS. 9957 */ 9958 break; 9959 } 9960 throttle = 1; 9961 } 9962 } 9963 9964 static void perf_swevent_event(struct perf_event *event, u64 nr, 9965 struct perf_sample_data *data, 9966 struct pt_regs *regs) 9967 { 9968 struct hw_perf_event *hwc = &event->hw; 9969 9970 local64_add(nr, &event->count); 9971 9972 if (!regs) 9973 return; 9974 9975 if (!is_sampling_event(event)) 9976 return; 9977 9978 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9979 data->period = nr; 9980 return perf_swevent_overflow(event, 1, data, regs); 9981 } else 9982 data->period = event->hw.last_period; 9983 9984 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9985 return perf_swevent_overflow(event, 1, data, regs); 9986 9987 if (local64_add_negative(nr, &hwc->period_left)) 9988 return; 9989 9990 perf_swevent_overflow(event, 0, data, regs); 9991 } 9992 9993 static int perf_exclude_event(struct perf_event *event, 9994 struct pt_regs *regs) 9995 { 9996 if (event->hw.state & PERF_HES_STOPPED) 9997 return 1; 9998 9999 if (regs) { 10000 if (event->attr.exclude_user && user_mode(regs)) 10001 return 1; 10002 10003 if (event->attr.exclude_kernel && !user_mode(regs)) 10004 return 1; 10005 } 10006 10007 return 0; 10008 } 10009 10010 static int perf_swevent_match(struct perf_event *event, 10011 enum perf_type_id type, 10012 u32 event_id, 10013 struct perf_sample_data *data, 10014 struct pt_regs *regs) 10015 { 10016 if (event->attr.type != type) 10017 return 0; 10018 10019 if (event->attr.config != event_id) 10020 return 0; 10021 10022 if (perf_exclude_event(event, regs)) 10023 return 0; 10024 10025 return 1; 10026 } 10027 10028 static inline u64 swevent_hash(u64 type, u32 event_id) 10029 { 10030 u64 val = event_id | (type << 32); 10031 10032 return hash_64(val, SWEVENT_HLIST_BITS); 10033 } 10034 10035 static inline struct hlist_head * 10036 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10037 { 10038 u64 hash = swevent_hash(type, event_id); 10039 10040 return &hlist->heads[hash]; 10041 } 10042 10043 /* For the read side: events when they trigger */ 10044 static inline struct hlist_head * 10045 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10046 { 10047 struct swevent_hlist *hlist; 10048 10049 hlist = rcu_dereference(swhash->swevent_hlist); 10050 if (!hlist) 10051 return NULL; 10052 10053 return __find_swevent_head(hlist, type, event_id); 10054 } 10055 10056 /* For the event head insertion and removal in the hlist */ 10057 static inline struct hlist_head * 10058 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10059 { 10060 struct swevent_hlist *hlist; 10061 u32 event_id = event->attr.config; 10062 u64 type = event->attr.type; 10063 10064 /* 10065 * Event scheduling is always serialized against hlist allocation 10066 * and release. Which makes the protected version suitable here. 10067 * The context lock guarantees that. 10068 */ 10069 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10070 lockdep_is_held(&event->ctx->lock)); 10071 if (!hlist) 10072 return NULL; 10073 10074 return __find_swevent_head(hlist, type, event_id); 10075 } 10076 10077 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10078 u64 nr, 10079 struct perf_sample_data *data, 10080 struct pt_regs *regs) 10081 { 10082 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10083 struct perf_event *event; 10084 struct hlist_head *head; 10085 10086 rcu_read_lock(); 10087 head = find_swevent_head_rcu(swhash, type, event_id); 10088 if (!head) 10089 goto end; 10090 10091 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10092 if (perf_swevent_match(event, type, event_id, data, regs)) 10093 perf_swevent_event(event, nr, data, regs); 10094 } 10095 end: 10096 rcu_read_unlock(); 10097 } 10098 10099 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10100 10101 int perf_swevent_get_recursion_context(void) 10102 { 10103 return get_recursion_context(current->perf_recursion); 10104 } 10105 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10106 10107 void perf_swevent_put_recursion_context(int rctx) 10108 { 10109 put_recursion_context(current->perf_recursion, rctx); 10110 } 10111 10112 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10113 { 10114 struct perf_sample_data data; 10115 10116 if (WARN_ON_ONCE(!regs)) 10117 return; 10118 10119 perf_sample_data_init(&data, addr, 0); 10120 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10121 } 10122 10123 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10124 { 10125 int rctx; 10126 10127 preempt_disable_notrace(); 10128 rctx = perf_swevent_get_recursion_context(); 10129 if (unlikely(rctx < 0)) 10130 goto fail; 10131 10132 ___perf_sw_event(event_id, nr, regs, addr); 10133 10134 perf_swevent_put_recursion_context(rctx); 10135 fail: 10136 preempt_enable_notrace(); 10137 } 10138 10139 static void perf_swevent_read(struct perf_event *event) 10140 { 10141 } 10142 10143 static int perf_swevent_add(struct perf_event *event, int flags) 10144 { 10145 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10146 struct hw_perf_event *hwc = &event->hw; 10147 struct hlist_head *head; 10148 10149 if (is_sampling_event(event)) { 10150 hwc->last_period = hwc->sample_period; 10151 perf_swevent_set_period(event); 10152 } 10153 10154 hwc->state = !(flags & PERF_EF_START); 10155 10156 head = find_swevent_head(swhash, event); 10157 if (WARN_ON_ONCE(!head)) 10158 return -EINVAL; 10159 10160 hlist_add_head_rcu(&event->hlist_entry, head); 10161 perf_event_update_userpage(event); 10162 10163 return 0; 10164 } 10165 10166 static void perf_swevent_del(struct perf_event *event, int flags) 10167 { 10168 hlist_del_rcu(&event->hlist_entry); 10169 } 10170 10171 static void perf_swevent_start(struct perf_event *event, int flags) 10172 { 10173 event->hw.state = 0; 10174 } 10175 10176 static void perf_swevent_stop(struct perf_event *event, int flags) 10177 { 10178 event->hw.state = PERF_HES_STOPPED; 10179 } 10180 10181 /* Deref the hlist from the update side */ 10182 static inline struct swevent_hlist * 10183 swevent_hlist_deref(struct swevent_htable *swhash) 10184 { 10185 return rcu_dereference_protected(swhash->swevent_hlist, 10186 lockdep_is_held(&swhash->hlist_mutex)); 10187 } 10188 10189 static void swevent_hlist_release(struct swevent_htable *swhash) 10190 { 10191 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10192 10193 if (!hlist) 10194 return; 10195 10196 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10197 kfree_rcu(hlist, rcu_head); 10198 } 10199 10200 static void swevent_hlist_put_cpu(int cpu) 10201 { 10202 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10203 10204 mutex_lock(&swhash->hlist_mutex); 10205 10206 if (!--swhash->hlist_refcount) 10207 swevent_hlist_release(swhash); 10208 10209 mutex_unlock(&swhash->hlist_mutex); 10210 } 10211 10212 static void swevent_hlist_put(void) 10213 { 10214 int cpu; 10215 10216 for_each_possible_cpu(cpu) 10217 swevent_hlist_put_cpu(cpu); 10218 } 10219 10220 static int swevent_hlist_get_cpu(int cpu) 10221 { 10222 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10223 int err = 0; 10224 10225 mutex_lock(&swhash->hlist_mutex); 10226 if (!swevent_hlist_deref(swhash) && 10227 cpumask_test_cpu(cpu, perf_online_mask)) { 10228 struct swevent_hlist *hlist; 10229 10230 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10231 if (!hlist) { 10232 err = -ENOMEM; 10233 goto exit; 10234 } 10235 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10236 } 10237 swhash->hlist_refcount++; 10238 exit: 10239 mutex_unlock(&swhash->hlist_mutex); 10240 10241 return err; 10242 } 10243 10244 static int swevent_hlist_get(void) 10245 { 10246 int err, cpu, failed_cpu; 10247 10248 mutex_lock(&pmus_lock); 10249 for_each_possible_cpu(cpu) { 10250 err = swevent_hlist_get_cpu(cpu); 10251 if (err) { 10252 failed_cpu = cpu; 10253 goto fail; 10254 } 10255 } 10256 mutex_unlock(&pmus_lock); 10257 return 0; 10258 fail: 10259 for_each_possible_cpu(cpu) { 10260 if (cpu == failed_cpu) 10261 break; 10262 swevent_hlist_put_cpu(cpu); 10263 } 10264 mutex_unlock(&pmus_lock); 10265 return err; 10266 } 10267 10268 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10269 10270 static void sw_perf_event_destroy(struct perf_event *event) 10271 { 10272 u64 event_id = event->attr.config; 10273 10274 WARN_ON(event->parent); 10275 10276 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10277 swevent_hlist_put(); 10278 } 10279 10280 static struct pmu perf_cpu_clock; /* fwd declaration */ 10281 static struct pmu perf_task_clock; 10282 10283 static int perf_swevent_init(struct perf_event *event) 10284 { 10285 u64 event_id = event->attr.config; 10286 10287 if (event->attr.type != PERF_TYPE_SOFTWARE) 10288 return -ENOENT; 10289 10290 /* 10291 * no branch sampling for software events 10292 */ 10293 if (has_branch_stack(event)) 10294 return -EOPNOTSUPP; 10295 10296 switch (event_id) { 10297 case PERF_COUNT_SW_CPU_CLOCK: 10298 event->attr.type = perf_cpu_clock.type; 10299 return -ENOENT; 10300 case PERF_COUNT_SW_TASK_CLOCK: 10301 event->attr.type = perf_task_clock.type; 10302 return -ENOENT; 10303 10304 default: 10305 break; 10306 } 10307 10308 if (event_id >= PERF_COUNT_SW_MAX) 10309 return -ENOENT; 10310 10311 if (!event->parent) { 10312 int err; 10313 10314 err = swevent_hlist_get(); 10315 if (err) 10316 return err; 10317 10318 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10319 event->destroy = sw_perf_event_destroy; 10320 } 10321 10322 return 0; 10323 } 10324 10325 static struct pmu perf_swevent = { 10326 .task_ctx_nr = perf_sw_context, 10327 10328 .capabilities = PERF_PMU_CAP_NO_NMI, 10329 10330 .event_init = perf_swevent_init, 10331 .add = perf_swevent_add, 10332 .del = perf_swevent_del, 10333 .start = perf_swevent_start, 10334 .stop = perf_swevent_stop, 10335 .read = perf_swevent_read, 10336 }; 10337 10338 #ifdef CONFIG_EVENT_TRACING 10339 10340 static void tp_perf_event_destroy(struct perf_event *event) 10341 { 10342 perf_trace_destroy(event); 10343 } 10344 10345 static int perf_tp_event_init(struct perf_event *event) 10346 { 10347 int err; 10348 10349 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10350 return -ENOENT; 10351 10352 /* 10353 * no branch sampling for tracepoint events 10354 */ 10355 if (has_branch_stack(event)) 10356 return -EOPNOTSUPP; 10357 10358 err = perf_trace_init(event); 10359 if (err) 10360 return err; 10361 10362 event->destroy = tp_perf_event_destroy; 10363 10364 return 0; 10365 } 10366 10367 static struct pmu perf_tracepoint = { 10368 .task_ctx_nr = perf_sw_context, 10369 10370 .event_init = perf_tp_event_init, 10371 .add = perf_trace_add, 10372 .del = perf_trace_del, 10373 .start = perf_swevent_start, 10374 .stop = perf_swevent_stop, 10375 .read = perf_swevent_read, 10376 }; 10377 10378 static int perf_tp_filter_match(struct perf_event *event, 10379 struct perf_sample_data *data) 10380 { 10381 void *record = data->raw->frag.data; 10382 10383 /* only top level events have filters set */ 10384 if (event->parent) 10385 event = event->parent; 10386 10387 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10388 return 1; 10389 return 0; 10390 } 10391 10392 static int perf_tp_event_match(struct perf_event *event, 10393 struct perf_sample_data *data, 10394 struct pt_regs *regs) 10395 { 10396 if (event->hw.state & PERF_HES_STOPPED) 10397 return 0; 10398 /* 10399 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10400 */ 10401 if (event->attr.exclude_kernel && !user_mode(regs)) 10402 return 0; 10403 10404 if (!perf_tp_filter_match(event, data)) 10405 return 0; 10406 10407 return 1; 10408 } 10409 10410 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10411 struct trace_event_call *call, u64 count, 10412 struct pt_regs *regs, struct hlist_head *head, 10413 struct task_struct *task) 10414 { 10415 if (bpf_prog_array_valid(call)) { 10416 *(struct pt_regs **)raw_data = regs; 10417 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10418 perf_swevent_put_recursion_context(rctx); 10419 return; 10420 } 10421 } 10422 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10423 rctx, task); 10424 } 10425 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10426 10427 static void __perf_tp_event_target_task(u64 count, void *record, 10428 struct pt_regs *regs, 10429 struct perf_sample_data *data, 10430 struct perf_event *event) 10431 { 10432 struct trace_entry *entry = record; 10433 10434 if (event->attr.config != entry->type) 10435 return; 10436 /* Cannot deliver synchronous signal to other task. */ 10437 if (event->attr.sigtrap) 10438 return; 10439 if (perf_tp_event_match(event, data, regs)) 10440 perf_swevent_event(event, count, data, regs); 10441 } 10442 10443 static void perf_tp_event_target_task(u64 count, void *record, 10444 struct pt_regs *regs, 10445 struct perf_sample_data *data, 10446 struct perf_event_context *ctx) 10447 { 10448 unsigned int cpu = smp_processor_id(); 10449 struct pmu *pmu = &perf_tracepoint; 10450 struct perf_event *event, *sibling; 10451 10452 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10453 __perf_tp_event_target_task(count, record, regs, data, event); 10454 for_each_sibling_event(sibling, event) 10455 __perf_tp_event_target_task(count, record, regs, data, sibling); 10456 } 10457 10458 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10459 __perf_tp_event_target_task(count, record, regs, data, event); 10460 for_each_sibling_event(sibling, event) 10461 __perf_tp_event_target_task(count, record, regs, data, sibling); 10462 } 10463 } 10464 10465 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10466 struct pt_regs *regs, struct hlist_head *head, int rctx, 10467 struct task_struct *task) 10468 { 10469 struct perf_sample_data data; 10470 struct perf_event *event; 10471 10472 struct perf_raw_record raw = { 10473 .frag = { 10474 .size = entry_size, 10475 .data = record, 10476 }, 10477 }; 10478 10479 perf_sample_data_init(&data, 0, 0); 10480 perf_sample_save_raw_data(&data, &raw); 10481 10482 perf_trace_buf_update(record, event_type); 10483 10484 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10485 if (perf_tp_event_match(event, &data, regs)) { 10486 perf_swevent_event(event, count, &data, regs); 10487 10488 /* 10489 * Here use the same on-stack perf_sample_data, 10490 * some members in data are event-specific and 10491 * need to be re-computed for different sweveents. 10492 * Re-initialize data->sample_flags safely to avoid 10493 * the problem that next event skips preparing data 10494 * because data->sample_flags is set. 10495 */ 10496 perf_sample_data_init(&data, 0, 0); 10497 perf_sample_save_raw_data(&data, &raw); 10498 } 10499 } 10500 10501 /* 10502 * If we got specified a target task, also iterate its context and 10503 * deliver this event there too. 10504 */ 10505 if (task && task != current) { 10506 struct perf_event_context *ctx; 10507 10508 rcu_read_lock(); 10509 ctx = rcu_dereference(task->perf_event_ctxp); 10510 if (!ctx) 10511 goto unlock; 10512 10513 raw_spin_lock(&ctx->lock); 10514 perf_tp_event_target_task(count, record, regs, &data, ctx); 10515 raw_spin_unlock(&ctx->lock); 10516 unlock: 10517 rcu_read_unlock(); 10518 } 10519 10520 perf_swevent_put_recursion_context(rctx); 10521 } 10522 EXPORT_SYMBOL_GPL(perf_tp_event); 10523 10524 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10525 /* 10526 * Flags in config, used by dynamic PMU kprobe and uprobe 10527 * The flags should match following PMU_FORMAT_ATTR(). 10528 * 10529 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10530 * if not set, create kprobe/uprobe 10531 * 10532 * The following values specify a reference counter (or semaphore in the 10533 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10534 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10535 * 10536 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10537 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10538 */ 10539 enum perf_probe_config { 10540 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10541 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10542 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10543 }; 10544 10545 PMU_FORMAT_ATTR(retprobe, "config:0"); 10546 #endif 10547 10548 #ifdef CONFIG_KPROBE_EVENTS 10549 static struct attribute *kprobe_attrs[] = { 10550 &format_attr_retprobe.attr, 10551 NULL, 10552 }; 10553 10554 static struct attribute_group kprobe_format_group = { 10555 .name = "format", 10556 .attrs = kprobe_attrs, 10557 }; 10558 10559 static const struct attribute_group *kprobe_attr_groups[] = { 10560 &kprobe_format_group, 10561 NULL, 10562 }; 10563 10564 static int perf_kprobe_event_init(struct perf_event *event); 10565 static struct pmu perf_kprobe = { 10566 .task_ctx_nr = perf_sw_context, 10567 .event_init = perf_kprobe_event_init, 10568 .add = perf_trace_add, 10569 .del = perf_trace_del, 10570 .start = perf_swevent_start, 10571 .stop = perf_swevent_stop, 10572 .read = perf_swevent_read, 10573 .attr_groups = kprobe_attr_groups, 10574 }; 10575 10576 static int perf_kprobe_event_init(struct perf_event *event) 10577 { 10578 int err; 10579 bool is_retprobe; 10580 10581 if (event->attr.type != perf_kprobe.type) 10582 return -ENOENT; 10583 10584 if (!perfmon_capable()) 10585 return -EACCES; 10586 10587 /* 10588 * no branch sampling for probe events 10589 */ 10590 if (has_branch_stack(event)) 10591 return -EOPNOTSUPP; 10592 10593 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10594 err = perf_kprobe_init(event, is_retprobe); 10595 if (err) 10596 return err; 10597 10598 event->destroy = perf_kprobe_destroy; 10599 10600 return 0; 10601 } 10602 #endif /* CONFIG_KPROBE_EVENTS */ 10603 10604 #ifdef CONFIG_UPROBE_EVENTS 10605 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10606 10607 static struct attribute *uprobe_attrs[] = { 10608 &format_attr_retprobe.attr, 10609 &format_attr_ref_ctr_offset.attr, 10610 NULL, 10611 }; 10612 10613 static struct attribute_group uprobe_format_group = { 10614 .name = "format", 10615 .attrs = uprobe_attrs, 10616 }; 10617 10618 static const struct attribute_group *uprobe_attr_groups[] = { 10619 &uprobe_format_group, 10620 NULL, 10621 }; 10622 10623 static int perf_uprobe_event_init(struct perf_event *event); 10624 static struct pmu perf_uprobe = { 10625 .task_ctx_nr = perf_sw_context, 10626 .event_init = perf_uprobe_event_init, 10627 .add = perf_trace_add, 10628 .del = perf_trace_del, 10629 .start = perf_swevent_start, 10630 .stop = perf_swevent_stop, 10631 .read = perf_swevent_read, 10632 .attr_groups = uprobe_attr_groups, 10633 }; 10634 10635 static int perf_uprobe_event_init(struct perf_event *event) 10636 { 10637 int err; 10638 unsigned long ref_ctr_offset; 10639 bool is_retprobe; 10640 10641 if (event->attr.type != perf_uprobe.type) 10642 return -ENOENT; 10643 10644 if (!perfmon_capable()) 10645 return -EACCES; 10646 10647 /* 10648 * no branch sampling for probe events 10649 */ 10650 if (has_branch_stack(event)) 10651 return -EOPNOTSUPP; 10652 10653 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10654 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10655 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10656 if (err) 10657 return err; 10658 10659 event->destroy = perf_uprobe_destroy; 10660 10661 return 0; 10662 } 10663 #endif /* CONFIG_UPROBE_EVENTS */ 10664 10665 static inline void perf_tp_register(void) 10666 { 10667 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10668 #ifdef CONFIG_KPROBE_EVENTS 10669 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10670 #endif 10671 #ifdef CONFIG_UPROBE_EVENTS 10672 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10673 #endif 10674 } 10675 10676 static void perf_event_free_filter(struct perf_event *event) 10677 { 10678 ftrace_profile_free_filter(event); 10679 } 10680 10681 /* 10682 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10683 * with perf_event_open() 10684 */ 10685 static inline bool perf_event_is_tracing(struct perf_event *event) 10686 { 10687 if (event->pmu == &perf_tracepoint) 10688 return true; 10689 #ifdef CONFIG_KPROBE_EVENTS 10690 if (event->pmu == &perf_kprobe) 10691 return true; 10692 #endif 10693 #ifdef CONFIG_UPROBE_EVENTS 10694 if (event->pmu == &perf_uprobe) 10695 return true; 10696 #endif 10697 return false; 10698 } 10699 10700 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10701 u64 bpf_cookie) 10702 { 10703 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10704 10705 if (!perf_event_is_tracing(event)) 10706 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10707 10708 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10709 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10710 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10711 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10712 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10713 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10714 return -EINVAL; 10715 10716 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10717 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10718 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10719 return -EINVAL; 10720 10721 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10722 /* only uprobe programs are allowed to be sleepable */ 10723 return -EINVAL; 10724 10725 /* Kprobe override only works for kprobes, not uprobes. */ 10726 if (prog->kprobe_override && !is_kprobe) 10727 return -EINVAL; 10728 10729 if (is_tracepoint || is_syscall_tp) { 10730 int off = trace_event_get_offsets(event->tp_event); 10731 10732 if (prog->aux->max_ctx_offset > off) 10733 return -EACCES; 10734 } 10735 10736 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10737 } 10738 10739 void perf_event_free_bpf_prog(struct perf_event *event) 10740 { 10741 if (!perf_event_is_tracing(event)) { 10742 perf_event_free_bpf_handler(event); 10743 return; 10744 } 10745 perf_event_detach_bpf_prog(event); 10746 } 10747 10748 #else 10749 10750 static inline void perf_tp_register(void) 10751 { 10752 } 10753 10754 static void perf_event_free_filter(struct perf_event *event) 10755 { 10756 } 10757 10758 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10759 u64 bpf_cookie) 10760 { 10761 return -ENOENT; 10762 } 10763 10764 void perf_event_free_bpf_prog(struct perf_event *event) 10765 { 10766 } 10767 #endif /* CONFIG_EVENT_TRACING */ 10768 10769 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10770 void perf_bp_event(struct perf_event *bp, void *data) 10771 { 10772 struct perf_sample_data sample; 10773 struct pt_regs *regs = data; 10774 10775 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10776 10777 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10778 perf_swevent_event(bp, 1, &sample, regs); 10779 } 10780 #endif 10781 10782 /* 10783 * Allocate a new address filter 10784 */ 10785 static struct perf_addr_filter * 10786 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10787 { 10788 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10789 struct perf_addr_filter *filter; 10790 10791 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10792 if (!filter) 10793 return NULL; 10794 10795 INIT_LIST_HEAD(&filter->entry); 10796 list_add_tail(&filter->entry, filters); 10797 10798 return filter; 10799 } 10800 10801 static void free_filters_list(struct list_head *filters) 10802 { 10803 struct perf_addr_filter *filter, *iter; 10804 10805 list_for_each_entry_safe(filter, iter, filters, entry) { 10806 path_put(&filter->path); 10807 list_del(&filter->entry); 10808 kfree(filter); 10809 } 10810 } 10811 10812 /* 10813 * Free existing address filters and optionally install new ones 10814 */ 10815 static void perf_addr_filters_splice(struct perf_event *event, 10816 struct list_head *head) 10817 { 10818 unsigned long flags; 10819 LIST_HEAD(list); 10820 10821 if (!has_addr_filter(event)) 10822 return; 10823 10824 /* don't bother with children, they don't have their own filters */ 10825 if (event->parent) 10826 return; 10827 10828 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10829 10830 list_splice_init(&event->addr_filters.list, &list); 10831 if (head) 10832 list_splice(head, &event->addr_filters.list); 10833 10834 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10835 10836 free_filters_list(&list); 10837 } 10838 10839 /* 10840 * Scan through mm's vmas and see if one of them matches the 10841 * @filter; if so, adjust filter's address range. 10842 * Called with mm::mmap_lock down for reading. 10843 */ 10844 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10845 struct mm_struct *mm, 10846 struct perf_addr_filter_range *fr) 10847 { 10848 struct vm_area_struct *vma; 10849 VMA_ITERATOR(vmi, mm, 0); 10850 10851 for_each_vma(vmi, vma) { 10852 if (!vma->vm_file) 10853 continue; 10854 10855 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10856 return; 10857 } 10858 } 10859 10860 /* 10861 * Update event's address range filters based on the 10862 * task's existing mappings, if any. 10863 */ 10864 static void perf_event_addr_filters_apply(struct perf_event *event) 10865 { 10866 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10867 struct task_struct *task = READ_ONCE(event->ctx->task); 10868 struct perf_addr_filter *filter; 10869 struct mm_struct *mm = NULL; 10870 unsigned int count = 0; 10871 unsigned long flags; 10872 10873 /* 10874 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10875 * will stop on the parent's child_mutex that our caller is also holding 10876 */ 10877 if (task == TASK_TOMBSTONE) 10878 return; 10879 10880 if (ifh->nr_file_filters) { 10881 mm = get_task_mm(task); 10882 if (!mm) 10883 goto restart; 10884 10885 mmap_read_lock(mm); 10886 } 10887 10888 raw_spin_lock_irqsave(&ifh->lock, flags); 10889 list_for_each_entry(filter, &ifh->list, entry) { 10890 if (filter->path.dentry) { 10891 /* 10892 * Adjust base offset if the filter is associated to a 10893 * binary that needs to be mapped: 10894 */ 10895 event->addr_filter_ranges[count].start = 0; 10896 event->addr_filter_ranges[count].size = 0; 10897 10898 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10899 } else { 10900 event->addr_filter_ranges[count].start = filter->offset; 10901 event->addr_filter_ranges[count].size = filter->size; 10902 } 10903 10904 count++; 10905 } 10906 10907 event->addr_filters_gen++; 10908 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10909 10910 if (ifh->nr_file_filters) { 10911 mmap_read_unlock(mm); 10912 10913 mmput(mm); 10914 } 10915 10916 restart: 10917 perf_event_stop(event, 1); 10918 } 10919 10920 /* 10921 * Address range filtering: limiting the data to certain 10922 * instruction address ranges. Filters are ioctl()ed to us from 10923 * userspace as ascii strings. 10924 * 10925 * Filter string format: 10926 * 10927 * ACTION RANGE_SPEC 10928 * where ACTION is one of the 10929 * * "filter": limit the trace to this region 10930 * * "start": start tracing from this address 10931 * * "stop": stop tracing at this address/region; 10932 * RANGE_SPEC is 10933 * * for kernel addresses: <start address>[/<size>] 10934 * * for object files: <start address>[/<size>]@</path/to/object/file> 10935 * 10936 * if <size> is not specified or is zero, the range is treated as a single 10937 * address; not valid for ACTION=="filter". 10938 */ 10939 enum { 10940 IF_ACT_NONE = -1, 10941 IF_ACT_FILTER, 10942 IF_ACT_START, 10943 IF_ACT_STOP, 10944 IF_SRC_FILE, 10945 IF_SRC_KERNEL, 10946 IF_SRC_FILEADDR, 10947 IF_SRC_KERNELADDR, 10948 }; 10949 10950 enum { 10951 IF_STATE_ACTION = 0, 10952 IF_STATE_SOURCE, 10953 IF_STATE_END, 10954 }; 10955 10956 static const match_table_t if_tokens = { 10957 { IF_ACT_FILTER, "filter" }, 10958 { IF_ACT_START, "start" }, 10959 { IF_ACT_STOP, "stop" }, 10960 { IF_SRC_FILE, "%u/%u@%s" }, 10961 { IF_SRC_KERNEL, "%u/%u" }, 10962 { IF_SRC_FILEADDR, "%u@%s" }, 10963 { IF_SRC_KERNELADDR, "%u" }, 10964 { IF_ACT_NONE, NULL }, 10965 }; 10966 10967 /* 10968 * Address filter string parser 10969 */ 10970 static int 10971 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10972 struct list_head *filters) 10973 { 10974 struct perf_addr_filter *filter = NULL; 10975 char *start, *orig, *filename = NULL; 10976 substring_t args[MAX_OPT_ARGS]; 10977 int state = IF_STATE_ACTION, token; 10978 unsigned int kernel = 0; 10979 int ret = -EINVAL; 10980 10981 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10982 if (!fstr) 10983 return -ENOMEM; 10984 10985 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10986 static const enum perf_addr_filter_action_t actions[] = { 10987 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10988 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10989 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10990 }; 10991 ret = -EINVAL; 10992 10993 if (!*start) 10994 continue; 10995 10996 /* filter definition begins */ 10997 if (state == IF_STATE_ACTION) { 10998 filter = perf_addr_filter_new(event, filters); 10999 if (!filter) 11000 goto fail; 11001 } 11002 11003 token = match_token(start, if_tokens, args); 11004 switch (token) { 11005 case IF_ACT_FILTER: 11006 case IF_ACT_START: 11007 case IF_ACT_STOP: 11008 if (state != IF_STATE_ACTION) 11009 goto fail; 11010 11011 filter->action = actions[token]; 11012 state = IF_STATE_SOURCE; 11013 break; 11014 11015 case IF_SRC_KERNELADDR: 11016 case IF_SRC_KERNEL: 11017 kernel = 1; 11018 fallthrough; 11019 11020 case IF_SRC_FILEADDR: 11021 case IF_SRC_FILE: 11022 if (state != IF_STATE_SOURCE) 11023 goto fail; 11024 11025 *args[0].to = 0; 11026 ret = kstrtoul(args[0].from, 0, &filter->offset); 11027 if (ret) 11028 goto fail; 11029 11030 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11031 *args[1].to = 0; 11032 ret = kstrtoul(args[1].from, 0, &filter->size); 11033 if (ret) 11034 goto fail; 11035 } 11036 11037 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11038 int fpos = token == IF_SRC_FILE ? 2 : 1; 11039 11040 kfree(filename); 11041 filename = match_strdup(&args[fpos]); 11042 if (!filename) { 11043 ret = -ENOMEM; 11044 goto fail; 11045 } 11046 } 11047 11048 state = IF_STATE_END; 11049 break; 11050 11051 default: 11052 goto fail; 11053 } 11054 11055 /* 11056 * Filter definition is fully parsed, validate and install it. 11057 * Make sure that it doesn't contradict itself or the event's 11058 * attribute. 11059 */ 11060 if (state == IF_STATE_END) { 11061 ret = -EINVAL; 11062 11063 /* 11064 * ACTION "filter" must have a non-zero length region 11065 * specified. 11066 */ 11067 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11068 !filter->size) 11069 goto fail; 11070 11071 if (!kernel) { 11072 if (!filename) 11073 goto fail; 11074 11075 /* 11076 * For now, we only support file-based filters 11077 * in per-task events; doing so for CPU-wide 11078 * events requires additional context switching 11079 * trickery, since same object code will be 11080 * mapped at different virtual addresses in 11081 * different processes. 11082 */ 11083 ret = -EOPNOTSUPP; 11084 if (!event->ctx->task) 11085 goto fail; 11086 11087 /* look up the path and grab its inode */ 11088 ret = kern_path(filename, LOOKUP_FOLLOW, 11089 &filter->path); 11090 if (ret) 11091 goto fail; 11092 11093 ret = -EINVAL; 11094 if (!filter->path.dentry || 11095 !S_ISREG(d_inode(filter->path.dentry) 11096 ->i_mode)) 11097 goto fail; 11098 11099 event->addr_filters.nr_file_filters++; 11100 } 11101 11102 /* ready to consume more filters */ 11103 kfree(filename); 11104 filename = NULL; 11105 state = IF_STATE_ACTION; 11106 filter = NULL; 11107 kernel = 0; 11108 } 11109 } 11110 11111 if (state != IF_STATE_ACTION) 11112 goto fail; 11113 11114 kfree(filename); 11115 kfree(orig); 11116 11117 return 0; 11118 11119 fail: 11120 kfree(filename); 11121 free_filters_list(filters); 11122 kfree(orig); 11123 11124 return ret; 11125 } 11126 11127 static int 11128 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11129 { 11130 LIST_HEAD(filters); 11131 int ret; 11132 11133 /* 11134 * Since this is called in perf_ioctl() path, we're already holding 11135 * ctx::mutex. 11136 */ 11137 lockdep_assert_held(&event->ctx->mutex); 11138 11139 if (WARN_ON_ONCE(event->parent)) 11140 return -EINVAL; 11141 11142 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11143 if (ret) 11144 goto fail_clear_files; 11145 11146 ret = event->pmu->addr_filters_validate(&filters); 11147 if (ret) 11148 goto fail_free_filters; 11149 11150 /* remove existing filters, if any */ 11151 perf_addr_filters_splice(event, &filters); 11152 11153 /* install new filters */ 11154 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11155 11156 return ret; 11157 11158 fail_free_filters: 11159 free_filters_list(&filters); 11160 11161 fail_clear_files: 11162 event->addr_filters.nr_file_filters = 0; 11163 11164 return ret; 11165 } 11166 11167 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11168 { 11169 int ret = -EINVAL; 11170 char *filter_str; 11171 11172 filter_str = strndup_user(arg, PAGE_SIZE); 11173 if (IS_ERR(filter_str)) 11174 return PTR_ERR(filter_str); 11175 11176 #ifdef CONFIG_EVENT_TRACING 11177 if (perf_event_is_tracing(event)) { 11178 struct perf_event_context *ctx = event->ctx; 11179 11180 /* 11181 * Beware, here be dragons!! 11182 * 11183 * the tracepoint muck will deadlock against ctx->mutex, but 11184 * the tracepoint stuff does not actually need it. So 11185 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11186 * already have a reference on ctx. 11187 * 11188 * This can result in event getting moved to a different ctx, 11189 * but that does not affect the tracepoint state. 11190 */ 11191 mutex_unlock(&ctx->mutex); 11192 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11193 mutex_lock(&ctx->mutex); 11194 } else 11195 #endif 11196 if (has_addr_filter(event)) 11197 ret = perf_event_set_addr_filter(event, filter_str); 11198 11199 kfree(filter_str); 11200 return ret; 11201 } 11202 11203 /* 11204 * hrtimer based swevent callback 11205 */ 11206 11207 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11208 { 11209 enum hrtimer_restart ret = HRTIMER_RESTART; 11210 struct perf_sample_data data; 11211 struct pt_regs *regs; 11212 struct perf_event *event; 11213 u64 period; 11214 11215 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11216 11217 if (event->state != PERF_EVENT_STATE_ACTIVE) 11218 return HRTIMER_NORESTART; 11219 11220 event->pmu->read(event); 11221 11222 perf_sample_data_init(&data, 0, event->hw.last_period); 11223 regs = get_irq_regs(); 11224 11225 if (regs && !perf_exclude_event(event, regs)) { 11226 if (!(event->attr.exclude_idle && is_idle_task(current))) 11227 if (__perf_event_overflow(event, 1, &data, regs)) 11228 ret = HRTIMER_NORESTART; 11229 } 11230 11231 period = max_t(u64, 10000, event->hw.sample_period); 11232 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11233 11234 return ret; 11235 } 11236 11237 static void perf_swevent_start_hrtimer(struct perf_event *event) 11238 { 11239 struct hw_perf_event *hwc = &event->hw; 11240 s64 period; 11241 11242 if (!is_sampling_event(event)) 11243 return; 11244 11245 period = local64_read(&hwc->period_left); 11246 if (period) { 11247 if (period < 0) 11248 period = 10000; 11249 11250 local64_set(&hwc->period_left, 0); 11251 } else { 11252 period = max_t(u64, 10000, hwc->sample_period); 11253 } 11254 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11255 HRTIMER_MODE_REL_PINNED_HARD); 11256 } 11257 11258 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11259 { 11260 struct hw_perf_event *hwc = &event->hw; 11261 11262 if (is_sampling_event(event)) { 11263 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11264 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11265 11266 hrtimer_cancel(&hwc->hrtimer); 11267 } 11268 } 11269 11270 static void perf_swevent_init_hrtimer(struct perf_event *event) 11271 { 11272 struct hw_perf_event *hwc = &event->hw; 11273 11274 if (!is_sampling_event(event)) 11275 return; 11276 11277 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11278 hwc->hrtimer.function = perf_swevent_hrtimer; 11279 11280 /* 11281 * Since hrtimers have a fixed rate, we can do a static freq->period 11282 * mapping and avoid the whole period adjust feedback stuff. 11283 */ 11284 if (event->attr.freq) { 11285 long freq = event->attr.sample_freq; 11286 11287 event->attr.sample_period = NSEC_PER_SEC / freq; 11288 hwc->sample_period = event->attr.sample_period; 11289 local64_set(&hwc->period_left, hwc->sample_period); 11290 hwc->last_period = hwc->sample_period; 11291 event->attr.freq = 0; 11292 } 11293 } 11294 11295 /* 11296 * Software event: cpu wall time clock 11297 */ 11298 11299 static void cpu_clock_event_update(struct perf_event *event) 11300 { 11301 s64 prev; 11302 u64 now; 11303 11304 now = local_clock(); 11305 prev = local64_xchg(&event->hw.prev_count, now); 11306 local64_add(now - prev, &event->count); 11307 } 11308 11309 static void cpu_clock_event_start(struct perf_event *event, int flags) 11310 { 11311 local64_set(&event->hw.prev_count, local_clock()); 11312 perf_swevent_start_hrtimer(event); 11313 } 11314 11315 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11316 { 11317 perf_swevent_cancel_hrtimer(event); 11318 cpu_clock_event_update(event); 11319 } 11320 11321 static int cpu_clock_event_add(struct perf_event *event, int flags) 11322 { 11323 if (flags & PERF_EF_START) 11324 cpu_clock_event_start(event, flags); 11325 perf_event_update_userpage(event); 11326 11327 return 0; 11328 } 11329 11330 static void cpu_clock_event_del(struct perf_event *event, int flags) 11331 { 11332 cpu_clock_event_stop(event, flags); 11333 } 11334 11335 static void cpu_clock_event_read(struct perf_event *event) 11336 { 11337 cpu_clock_event_update(event); 11338 } 11339 11340 static int cpu_clock_event_init(struct perf_event *event) 11341 { 11342 if (event->attr.type != perf_cpu_clock.type) 11343 return -ENOENT; 11344 11345 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11346 return -ENOENT; 11347 11348 /* 11349 * no branch sampling for software events 11350 */ 11351 if (has_branch_stack(event)) 11352 return -EOPNOTSUPP; 11353 11354 perf_swevent_init_hrtimer(event); 11355 11356 return 0; 11357 } 11358 11359 static struct pmu perf_cpu_clock = { 11360 .task_ctx_nr = perf_sw_context, 11361 11362 .capabilities = PERF_PMU_CAP_NO_NMI, 11363 .dev = PMU_NULL_DEV, 11364 11365 .event_init = cpu_clock_event_init, 11366 .add = cpu_clock_event_add, 11367 .del = cpu_clock_event_del, 11368 .start = cpu_clock_event_start, 11369 .stop = cpu_clock_event_stop, 11370 .read = cpu_clock_event_read, 11371 }; 11372 11373 /* 11374 * Software event: task time clock 11375 */ 11376 11377 static void task_clock_event_update(struct perf_event *event, u64 now) 11378 { 11379 u64 prev; 11380 s64 delta; 11381 11382 prev = local64_xchg(&event->hw.prev_count, now); 11383 delta = now - prev; 11384 local64_add(delta, &event->count); 11385 } 11386 11387 static void task_clock_event_start(struct perf_event *event, int flags) 11388 { 11389 local64_set(&event->hw.prev_count, event->ctx->time); 11390 perf_swevent_start_hrtimer(event); 11391 } 11392 11393 static void task_clock_event_stop(struct perf_event *event, int flags) 11394 { 11395 perf_swevent_cancel_hrtimer(event); 11396 task_clock_event_update(event, event->ctx->time); 11397 } 11398 11399 static int task_clock_event_add(struct perf_event *event, int flags) 11400 { 11401 if (flags & PERF_EF_START) 11402 task_clock_event_start(event, flags); 11403 perf_event_update_userpage(event); 11404 11405 return 0; 11406 } 11407 11408 static void task_clock_event_del(struct perf_event *event, int flags) 11409 { 11410 task_clock_event_stop(event, PERF_EF_UPDATE); 11411 } 11412 11413 static void task_clock_event_read(struct perf_event *event) 11414 { 11415 u64 now = perf_clock(); 11416 u64 delta = now - event->ctx->timestamp; 11417 u64 time = event->ctx->time + delta; 11418 11419 task_clock_event_update(event, time); 11420 } 11421 11422 static int task_clock_event_init(struct perf_event *event) 11423 { 11424 if (event->attr.type != perf_task_clock.type) 11425 return -ENOENT; 11426 11427 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11428 return -ENOENT; 11429 11430 /* 11431 * no branch sampling for software events 11432 */ 11433 if (has_branch_stack(event)) 11434 return -EOPNOTSUPP; 11435 11436 perf_swevent_init_hrtimer(event); 11437 11438 return 0; 11439 } 11440 11441 static struct pmu perf_task_clock = { 11442 .task_ctx_nr = perf_sw_context, 11443 11444 .capabilities = PERF_PMU_CAP_NO_NMI, 11445 .dev = PMU_NULL_DEV, 11446 11447 .event_init = task_clock_event_init, 11448 .add = task_clock_event_add, 11449 .del = task_clock_event_del, 11450 .start = task_clock_event_start, 11451 .stop = task_clock_event_stop, 11452 .read = task_clock_event_read, 11453 }; 11454 11455 static void perf_pmu_nop_void(struct pmu *pmu) 11456 { 11457 } 11458 11459 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11460 { 11461 } 11462 11463 static int perf_pmu_nop_int(struct pmu *pmu) 11464 { 11465 return 0; 11466 } 11467 11468 static int perf_event_nop_int(struct perf_event *event, u64 value) 11469 { 11470 return 0; 11471 } 11472 11473 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11474 11475 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11476 { 11477 __this_cpu_write(nop_txn_flags, flags); 11478 11479 if (flags & ~PERF_PMU_TXN_ADD) 11480 return; 11481 11482 perf_pmu_disable(pmu); 11483 } 11484 11485 static int perf_pmu_commit_txn(struct pmu *pmu) 11486 { 11487 unsigned int flags = __this_cpu_read(nop_txn_flags); 11488 11489 __this_cpu_write(nop_txn_flags, 0); 11490 11491 if (flags & ~PERF_PMU_TXN_ADD) 11492 return 0; 11493 11494 perf_pmu_enable(pmu); 11495 return 0; 11496 } 11497 11498 static void perf_pmu_cancel_txn(struct pmu *pmu) 11499 { 11500 unsigned int flags = __this_cpu_read(nop_txn_flags); 11501 11502 __this_cpu_write(nop_txn_flags, 0); 11503 11504 if (flags & ~PERF_PMU_TXN_ADD) 11505 return; 11506 11507 perf_pmu_enable(pmu); 11508 } 11509 11510 static int perf_event_idx_default(struct perf_event *event) 11511 { 11512 return 0; 11513 } 11514 11515 static void free_pmu_context(struct pmu *pmu) 11516 { 11517 free_percpu(pmu->cpu_pmu_context); 11518 } 11519 11520 /* 11521 * Let userspace know that this PMU supports address range filtering: 11522 */ 11523 static ssize_t nr_addr_filters_show(struct device *dev, 11524 struct device_attribute *attr, 11525 char *page) 11526 { 11527 struct pmu *pmu = dev_get_drvdata(dev); 11528 11529 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11530 } 11531 DEVICE_ATTR_RO(nr_addr_filters); 11532 11533 static struct idr pmu_idr; 11534 11535 static ssize_t 11536 type_show(struct device *dev, struct device_attribute *attr, char *page) 11537 { 11538 struct pmu *pmu = dev_get_drvdata(dev); 11539 11540 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11541 } 11542 static DEVICE_ATTR_RO(type); 11543 11544 static ssize_t 11545 perf_event_mux_interval_ms_show(struct device *dev, 11546 struct device_attribute *attr, 11547 char *page) 11548 { 11549 struct pmu *pmu = dev_get_drvdata(dev); 11550 11551 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11552 } 11553 11554 static DEFINE_MUTEX(mux_interval_mutex); 11555 11556 static ssize_t 11557 perf_event_mux_interval_ms_store(struct device *dev, 11558 struct device_attribute *attr, 11559 const char *buf, size_t count) 11560 { 11561 struct pmu *pmu = dev_get_drvdata(dev); 11562 int timer, cpu, ret; 11563 11564 ret = kstrtoint(buf, 0, &timer); 11565 if (ret) 11566 return ret; 11567 11568 if (timer < 1) 11569 return -EINVAL; 11570 11571 /* same value, noting to do */ 11572 if (timer == pmu->hrtimer_interval_ms) 11573 return count; 11574 11575 mutex_lock(&mux_interval_mutex); 11576 pmu->hrtimer_interval_ms = timer; 11577 11578 /* update all cpuctx for this PMU */ 11579 cpus_read_lock(); 11580 for_each_online_cpu(cpu) { 11581 struct perf_cpu_pmu_context *cpc; 11582 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11583 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11584 11585 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11586 } 11587 cpus_read_unlock(); 11588 mutex_unlock(&mux_interval_mutex); 11589 11590 return count; 11591 } 11592 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11593 11594 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 11595 { 11596 switch (scope) { 11597 case PERF_PMU_SCOPE_CORE: 11598 return topology_sibling_cpumask(cpu); 11599 case PERF_PMU_SCOPE_DIE: 11600 return topology_die_cpumask(cpu); 11601 case PERF_PMU_SCOPE_CLUSTER: 11602 return topology_cluster_cpumask(cpu); 11603 case PERF_PMU_SCOPE_PKG: 11604 return topology_core_cpumask(cpu); 11605 case PERF_PMU_SCOPE_SYS_WIDE: 11606 return cpu_online_mask; 11607 } 11608 11609 return NULL; 11610 } 11611 11612 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 11613 { 11614 switch (scope) { 11615 case PERF_PMU_SCOPE_CORE: 11616 return perf_online_core_mask; 11617 case PERF_PMU_SCOPE_DIE: 11618 return perf_online_die_mask; 11619 case PERF_PMU_SCOPE_CLUSTER: 11620 return perf_online_cluster_mask; 11621 case PERF_PMU_SCOPE_PKG: 11622 return perf_online_pkg_mask; 11623 case PERF_PMU_SCOPE_SYS_WIDE: 11624 return perf_online_sys_mask; 11625 } 11626 11627 return NULL; 11628 } 11629 11630 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 11631 char *buf) 11632 { 11633 struct pmu *pmu = dev_get_drvdata(dev); 11634 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 11635 11636 if (mask) 11637 return cpumap_print_to_pagebuf(true, buf, mask); 11638 return 0; 11639 } 11640 11641 static DEVICE_ATTR_RO(cpumask); 11642 11643 static struct attribute *pmu_dev_attrs[] = { 11644 &dev_attr_type.attr, 11645 &dev_attr_perf_event_mux_interval_ms.attr, 11646 &dev_attr_nr_addr_filters.attr, 11647 &dev_attr_cpumask.attr, 11648 NULL, 11649 }; 11650 11651 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11652 { 11653 struct device *dev = kobj_to_dev(kobj); 11654 struct pmu *pmu = dev_get_drvdata(dev); 11655 11656 if (n == 2 && !pmu->nr_addr_filters) 11657 return 0; 11658 11659 /* cpumask */ 11660 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 11661 return 0; 11662 11663 return a->mode; 11664 } 11665 11666 static struct attribute_group pmu_dev_attr_group = { 11667 .is_visible = pmu_dev_is_visible, 11668 .attrs = pmu_dev_attrs, 11669 }; 11670 11671 static const struct attribute_group *pmu_dev_groups[] = { 11672 &pmu_dev_attr_group, 11673 NULL, 11674 }; 11675 11676 static int pmu_bus_running; 11677 static struct bus_type pmu_bus = { 11678 .name = "event_source", 11679 .dev_groups = pmu_dev_groups, 11680 }; 11681 11682 static void pmu_dev_release(struct device *dev) 11683 { 11684 kfree(dev); 11685 } 11686 11687 static int pmu_dev_alloc(struct pmu *pmu) 11688 { 11689 int ret = -ENOMEM; 11690 11691 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11692 if (!pmu->dev) 11693 goto out; 11694 11695 pmu->dev->groups = pmu->attr_groups; 11696 device_initialize(pmu->dev); 11697 11698 dev_set_drvdata(pmu->dev, pmu); 11699 pmu->dev->bus = &pmu_bus; 11700 pmu->dev->parent = pmu->parent; 11701 pmu->dev->release = pmu_dev_release; 11702 11703 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11704 if (ret) 11705 goto free_dev; 11706 11707 ret = device_add(pmu->dev); 11708 if (ret) 11709 goto free_dev; 11710 11711 if (pmu->attr_update) { 11712 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11713 if (ret) 11714 goto del_dev; 11715 } 11716 11717 out: 11718 return ret; 11719 11720 del_dev: 11721 device_del(pmu->dev); 11722 11723 free_dev: 11724 put_device(pmu->dev); 11725 goto out; 11726 } 11727 11728 static struct lock_class_key cpuctx_mutex; 11729 static struct lock_class_key cpuctx_lock; 11730 11731 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11732 { 11733 int cpu, ret, max = PERF_TYPE_MAX; 11734 11735 mutex_lock(&pmus_lock); 11736 ret = -ENOMEM; 11737 pmu->pmu_disable_count = alloc_percpu(int); 11738 if (!pmu->pmu_disable_count) 11739 goto unlock; 11740 11741 pmu->type = -1; 11742 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11743 ret = -EINVAL; 11744 goto free_pdc; 11745 } 11746 11747 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) { 11748 ret = -EINVAL; 11749 goto free_pdc; 11750 } 11751 11752 pmu->name = name; 11753 11754 if (type >= 0) 11755 max = type; 11756 11757 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11758 if (ret < 0) 11759 goto free_pdc; 11760 11761 WARN_ON(type >= 0 && ret != type); 11762 11763 type = ret; 11764 pmu->type = type; 11765 11766 if (pmu_bus_running && !pmu->dev) { 11767 ret = pmu_dev_alloc(pmu); 11768 if (ret) 11769 goto free_idr; 11770 } 11771 11772 ret = -ENOMEM; 11773 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11774 if (!pmu->cpu_pmu_context) 11775 goto free_dev; 11776 11777 for_each_possible_cpu(cpu) { 11778 struct perf_cpu_pmu_context *cpc; 11779 11780 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11781 __perf_init_event_pmu_context(&cpc->epc, pmu); 11782 __perf_mux_hrtimer_init(cpc, cpu); 11783 } 11784 11785 if (!pmu->start_txn) { 11786 if (pmu->pmu_enable) { 11787 /* 11788 * If we have pmu_enable/pmu_disable calls, install 11789 * transaction stubs that use that to try and batch 11790 * hardware accesses. 11791 */ 11792 pmu->start_txn = perf_pmu_start_txn; 11793 pmu->commit_txn = perf_pmu_commit_txn; 11794 pmu->cancel_txn = perf_pmu_cancel_txn; 11795 } else { 11796 pmu->start_txn = perf_pmu_nop_txn; 11797 pmu->commit_txn = perf_pmu_nop_int; 11798 pmu->cancel_txn = perf_pmu_nop_void; 11799 } 11800 } 11801 11802 if (!pmu->pmu_enable) { 11803 pmu->pmu_enable = perf_pmu_nop_void; 11804 pmu->pmu_disable = perf_pmu_nop_void; 11805 } 11806 11807 if (!pmu->check_period) 11808 pmu->check_period = perf_event_nop_int; 11809 11810 if (!pmu->event_idx) 11811 pmu->event_idx = perf_event_idx_default; 11812 11813 list_add_rcu(&pmu->entry, &pmus); 11814 atomic_set(&pmu->exclusive_cnt, 0); 11815 ret = 0; 11816 unlock: 11817 mutex_unlock(&pmus_lock); 11818 11819 return ret; 11820 11821 free_dev: 11822 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11823 device_del(pmu->dev); 11824 put_device(pmu->dev); 11825 } 11826 11827 free_idr: 11828 idr_remove(&pmu_idr, pmu->type); 11829 11830 free_pdc: 11831 free_percpu(pmu->pmu_disable_count); 11832 goto unlock; 11833 } 11834 EXPORT_SYMBOL_GPL(perf_pmu_register); 11835 11836 void perf_pmu_unregister(struct pmu *pmu) 11837 { 11838 mutex_lock(&pmus_lock); 11839 list_del_rcu(&pmu->entry); 11840 11841 /* 11842 * We dereference the pmu list under both SRCU and regular RCU, so 11843 * synchronize against both of those. 11844 */ 11845 synchronize_srcu(&pmus_srcu); 11846 synchronize_rcu(); 11847 11848 free_percpu(pmu->pmu_disable_count); 11849 idr_remove(&pmu_idr, pmu->type); 11850 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11851 if (pmu->nr_addr_filters) 11852 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11853 device_del(pmu->dev); 11854 put_device(pmu->dev); 11855 } 11856 free_pmu_context(pmu); 11857 mutex_unlock(&pmus_lock); 11858 } 11859 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11860 11861 static inline bool has_extended_regs(struct perf_event *event) 11862 { 11863 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11864 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11865 } 11866 11867 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11868 { 11869 struct perf_event_context *ctx = NULL; 11870 int ret; 11871 11872 if (!try_module_get(pmu->module)) 11873 return -ENODEV; 11874 11875 /* 11876 * A number of pmu->event_init() methods iterate the sibling_list to, 11877 * for example, validate if the group fits on the PMU. Therefore, 11878 * if this is a sibling event, acquire the ctx->mutex to protect 11879 * the sibling_list. 11880 */ 11881 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11882 /* 11883 * This ctx->mutex can nest when we're called through 11884 * inheritance. See the perf_event_ctx_lock_nested() comment. 11885 */ 11886 ctx = perf_event_ctx_lock_nested(event->group_leader, 11887 SINGLE_DEPTH_NESTING); 11888 BUG_ON(!ctx); 11889 } 11890 11891 event->pmu = pmu; 11892 ret = pmu->event_init(event); 11893 11894 if (ctx) 11895 perf_event_ctx_unlock(event->group_leader, ctx); 11896 11897 if (!ret) { 11898 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11899 has_extended_regs(event)) 11900 ret = -EOPNOTSUPP; 11901 11902 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11903 event_has_any_exclude_flag(event)) 11904 ret = -EINVAL; 11905 11906 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 11907 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 11908 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope); 11909 int cpu; 11910 11911 if (pmu_cpumask && cpumask) { 11912 cpu = cpumask_any_and(pmu_cpumask, cpumask); 11913 if (cpu >= nr_cpu_ids) 11914 ret = -ENODEV; 11915 else 11916 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 11917 } else { 11918 ret = -ENODEV; 11919 } 11920 } 11921 11922 if (ret && event->destroy) 11923 event->destroy(event); 11924 } 11925 11926 if (ret) 11927 module_put(pmu->module); 11928 11929 return ret; 11930 } 11931 11932 static struct pmu *perf_init_event(struct perf_event *event) 11933 { 11934 bool extended_type = false; 11935 int idx, type, ret; 11936 struct pmu *pmu; 11937 11938 idx = srcu_read_lock(&pmus_srcu); 11939 11940 /* 11941 * Save original type before calling pmu->event_init() since certain 11942 * pmus overwrites event->attr.type to forward event to another pmu. 11943 */ 11944 event->orig_type = event->attr.type; 11945 11946 /* Try parent's PMU first: */ 11947 if (event->parent && event->parent->pmu) { 11948 pmu = event->parent->pmu; 11949 ret = perf_try_init_event(pmu, event); 11950 if (!ret) 11951 goto unlock; 11952 } 11953 11954 /* 11955 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11956 * are often aliases for PERF_TYPE_RAW. 11957 */ 11958 type = event->attr.type; 11959 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11960 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11961 if (!type) { 11962 type = PERF_TYPE_RAW; 11963 } else { 11964 extended_type = true; 11965 event->attr.config &= PERF_HW_EVENT_MASK; 11966 } 11967 } 11968 11969 again: 11970 rcu_read_lock(); 11971 pmu = idr_find(&pmu_idr, type); 11972 rcu_read_unlock(); 11973 if (pmu) { 11974 if (event->attr.type != type && type != PERF_TYPE_RAW && 11975 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11976 goto fail; 11977 11978 ret = perf_try_init_event(pmu, event); 11979 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11980 type = event->attr.type; 11981 goto again; 11982 } 11983 11984 if (ret) 11985 pmu = ERR_PTR(ret); 11986 11987 goto unlock; 11988 } 11989 11990 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11991 ret = perf_try_init_event(pmu, event); 11992 if (!ret) 11993 goto unlock; 11994 11995 if (ret != -ENOENT) { 11996 pmu = ERR_PTR(ret); 11997 goto unlock; 11998 } 11999 } 12000 fail: 12001 pmu = ERR_PTR(-ENOENT); 12002 unlock: 12003 srcu_read_unlock(&pmus_srcu, idx); 12004 12005 return pmu; 12006 } 12007 12008 static void attach_sb_event(struct perf_event *event) 12009 { 12010 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12011 12012 raw_spin_lock(&pel->lock); 12013 list_add_rcu(&event->sb_list, &pel->list); 12014 raw_spin_unlock(&pel->lock); 12015 } 12016 12017 /* 12018 * We keep a list of all !task (and therefore per-cpu) events 12019 * that need to receive side-band records. 12020 * 12021 * This avoids having to scan all the various PMU per-cpu contexts 12022 * looking for them. 12023 */ 12024 static void account_pmu_sb_event(struct perf_event *event) 12025 { 12026 if (is_sb_event(event)) 12027 attach_sb_event(event); 12028 } 12029 12030 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12031 static void account_freq_event_nohz(void) 12032 { 12033 #ifdef CONFIG_NO_HZ_FULL 12034 /* Lock so we don't race with concurrent unaccount */ 12035 spin_lock(&nr_freq_lock); 12036 if (atomic_inc_return(&nr_freq_events) == 1) 12037 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12038 spin_unlock(&nr_freq_lock); 12039 #endif 12040 } 12041 12042 static void account_freq_event(void) 12043 { 12044 if (tick_nohz_full_enabled()) 12045 account_freq_event_nohz(); 12046 else 12047 atomic_inc(&nr_freq_events); 12048 } 12049 12050 12051 static void account_event(struct perf_event *event) 12052 { 12053 bool inc = false; 12054 12055 if (event->parent) 12056 return; 12057 12058 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12059 inc = true; 12060 if (event->attr.mmap || event->attr.mmap_data) 12061 atomic_inc(&nr_mmap_events); 12062 if (event->attr.build_id) 12063 atomic_inc(&nr_build_id_events); 12064 if (event->attr.comm) 12065 atomic_inc(&nr_comm_events); 12066 if (event->attr.namespaces) 12067 atomic_inc(&nr_namespaces_events); 12068 if (event->attr.cgroup) 12069 atomic_inc(&nr_cgroup_events); 12070 if (event->attr.task) 12071 atomic_inc(&nr_task_events); 12072 if (event->attr.freq) 12073 account_freq_event(); 12074 if (event->attr.context_switch) { 12075 atomic_inc(&nr_switch_events); 12076 inc = true; 12077 } 12078 if (has_branch_stack(event)) 12079 inc = true; 12080 if (is_cgroup_event(event)) 12081 inc = true; 12082 if (event->attr.ksymbol) 12083 atomic_inc(&nr_ksymbol_events); 12084 if (event->attr.bpf_event) 12085 atomic_inc(&nr_bpf_events); 12086 if (event->attr.text_poke) 12087 atomic_inc(&nr_text_poke_events); 12088 12089 if (inc) { 12090 /* 12091 * We need the mutex here because static_branch_enable() 12092 * must complete *before* the perf_sched_count increment 12093 * becomes visible. 12094 */ 12095 if (atomic_inc_not_zero(&perf_sched_count)) 12096 goto enabled; 12097 12098 mutex_lock(&perf_sched_mutex); 12099 if (!atomic_read(&perf_sched_count)) { 12100 static_branch_enable(&perf_sched_events); 12101 /* 12102 * Guarantee that all CPUs observe they key change and 12103 * call the perf scheduling hooks before proceeding to 12104 * install events that need them. 12105 */ 12106 synchronize_rcu(); 12107 } 12108 /* 12109 * Now that we have waited for the sync_sched(), allow further 12110 * increments to by-pass the mutex. 12111 */ 12112 atomic_inc(&perf_sched_count); 12113 mutex_unlock(&perf_sched_mutex); 12114 } 12115 enabled: 12116 12117 account_pmu_sb_event(event); 12118 } 12119 12120 /* 12121 * Allocate and initialize an event structure 12122 */ 12123 static struct perf_event * 12124 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12125 struct task_struct *task, 12126 struct perf_event *group_leader, 12127 struct perf_event *parent_event, 12128 perf_overflow_handler_t overflow_handler, 12129 void *context, int cgroup_fd) 12130 { 12131 struct pmu *pmu; 12132 struct perf_event *event; 12133 struct hw_perf_event *hwc; 12134 long err = -EINVAL; 12135 int node; 12136 12137 if ((unsigned)cpu >= nr_cpu_ids) { 12138 if (!task || cpu != -1) 12139 return ERR_PTR(-EINVAL); 12140 } 12141 if (attr->sigtrap && !task) { 12142 /* Requires a task: avoid signalling random tasks. */ 12143 return ERR_PTR(-EINVAL); 12144 } 12145 12146 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12147 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 12148 node); 12149 if (!event) 12150 return ERR_PTR(-ENOMEM); 12151 12152 /* 12153 * Single events are their own group leaders, with an 12154 * empty sibling list: 12155 */ 12156 if (!group_leader) 12157 group_leader = event; 12158 12159 mutex_init(&event->child_mutex); 12160 INIT_LIST_HEAD(&event->child_list); 12161 12162 INIT_LIST_HEAD(&event->event_entry); 12163 INIT_LIST_HEAD(&event->sibling_list); 12164 INIT_LIST_HEAD(&event->active_list); 12165 init_event_group(event); 12166 INIT_LIST_HEAD(&event->rb_entry); 12167 INIT_LIST_HEAD(&event->active_entry); 12168 INIT_LIST_HEAD(&event->addr_filters.list); 12169 INIT_HLIST_NODE(&event->hlist_entry); 12170 12171 12172 init_waitqueue_head(&event->waitq); 12173 init_irq_work(&event->pending_irq, perf_pending_irq); 12174 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12175 init_task_work(&event->pending_task, perf_pending_task); 12176 rcuwait_init(&event->pending_work_wait); 12177 12178 mutex_init(&event->mmap_mutex); 12179 raw_spin_lock_init(&event->addr_filters.lock); 12180 12181 atomic_long_set(&event->refcount, 1); 12182 event->cpu = cpu; 12183 event->attr = *attr; 12184 event->group_leader = group_leader; 12185 event->pmu = NULL; 12186 event->oncpu = -1; 12187 12188 event->parent = parent_event; 12189 12190 event->ns = get_pid_ns(task_active_pid_ns(current)); 12191 event->id = atomic64_inc_return(&perf_event_id); 12192 12193 event->state = PERF_EVENT_STATE_INACTIVE; 12194 12195 if (parent_event) 12196 event->event_caps = parent_event->event_caps; 12197 12198 if (task) { 12199 event->attach_state = PERF_ATTACH_TASK; 12200 /* 12201 * XXX pmu::event_init needs to know what task to account to 12202 * and we cannot use the ctx information because we need the 12203 * pmu before we get a ctx. 12204 */ 12205 event->hw.target = get_task_struct(task); 12206 } 12207 12208 event->clock = &local_clock; 12209 if (parent_event) 12210 event->clock = parent_event->clock; 12211 12212 if (!overflow_handler && parent_event) { 12213 overflow_handler = parent_event->overflow_handler; 12214 context = parent_event->overflow_handler_context; 12215 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12216 if (parent_event->prog) { 12217 struct bpf_prog *prog = parent_event->prog; 12218 12219 bpf_prog_inc(prog); 12220 event->prog = prog; 12221 } 12222 #endif 12223 } 12224 12225 if (overflow_handler) { 12226 event->overflow_handler = overflow_handler; 12227 event->overflow_handler_context = context; 12228 } else if (is_write_backward(event)){ 12229 event->overflow_handler = perf_event_output_backward; 12230 event->overflow_handler_context = NULL; 12231 } else { 12232 event->overflow_handler = perf_event_output_forward; 12233 event->overflow_handler_context = NULL; 12234 } 12235 12236 perf_event__state_init(event); 12237 12238 pmu = NULL; 12239 12240 hwc = &event->hw; 12241 hwc->sample_period = attr->sample_period; 12242 if (attr->freq && attr->sample_freq) 12243 hwc->sample_period = 1; 12244 hwc->last_period = hwc->sample_period; 12245 12246 local64_set(&hwc->period_left, hwc->sample_period); 12247 12248 /* 12249 * We do not support PERF_SAMPLE_READ on inherited events unless 12250 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12251 * collect per-thread samples. 12252 * See perf_output_read(). 12253 */ 12254 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12255 goto err_ns; 12256 12257 if (!has_branch_stack(event)) 12258 event->attr.branch_sample_type = 0; 12259 12260 pmu = perf_init_event(event); 12261 if (IS_ERR(pmu)) { 12262 err = PTR_ERR(pmu); 12263 goto err_ns; 12264 } 12265 12266 /* 12267 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12268 * events (they don't make sense as the cgroup will be different 12269 * on other CPUs in the uncore mask). 12270 */ 12271 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12272 err = -EINVAL; 12273 goto err_pmu; 12274 } 12275 12276 if (event->attr.aux_output && 12277 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12278 err = -EOPNOTSUPP; 12279 goto err_pmu; 12280 } 12281 12282 if (cgroup_fd != -1) { 12283 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12284 if (err) 12285 goto err_pmu; 12286 } 12287 12288 err = exclusive_event_init(event); 12289 if (err) 12290 goto err_pmu; 12291 12292 if (has_addr_filter(event)) { 12293 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12294 sizeof(struct perf_addr_filter_range), 12295 GFP_KERNEL); 12296 if (!event->addr_filter_ranges) { 12297 err = -ENOMEM; 12298 goto err_per_task; 12299 } 12300 12301 /* 12302 * Clone the parent's vma offsets: they are valid until exec() 12303 * even if the mm is not shared with the parent. 12304 */ 12305 if (event->parent) { 12306 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12307 12308 raw_spin_lock_irq(&ifh->lock); 12309 memcpy(event->addr_filter_ranges, 12310 event->parent->addr_filter_ranges, 12311 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12312 raw_spin_unlock_irq(&ifh->lock); 12313 } 12314 12315 /* force hw sync on the address filters */ 12316 event->addr_filters_gen = 1; 12317 } 12318 12319 if (!event->parent) { 12320 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12321 err = get_callchain_buffers(attr->sample_max_stack); 12322 if (err) 12323 goto err_addr_filters; 12324 } 12325 } 12326 12327 err = security_perf_event_alloc(event); 12328 if (err) 12329 goto err_callchain_buffer; 12330 12331 /* symmetric to unaccount_event() in _free_event() */ 12332 account_event(event); 12333 12334 return event; 12335 12336 err_callchain_buffer: 12337 if (!event->parent) { 12338 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12339 put_callchain_buffers(); 12340 } 12341 err_addr_filters: 12342 kfree(event->addr_filter_ranges); 12343 12344 err_per_task: 12345 exclusive_event_destroy(event); 12346 12347 err_pmu: 12348 if (is_cgroup_event(event)) 12349 perf_detach_cgroup(event); 12350 if (event->destroy) 12351 event->destroy(event); 12352 module_put(pmu->module); 12353 err_ns: 12354 if (event->hw.target) 12355 put_task_struct(event->hw.target); 12356 call_rcu(&event->rcu_head, free_event_rcu); 12357 12358 return ERR_PTR(err); 12359 } 12360 12361 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12362 struct perf_event_attr *attr) 12363 { 12364 u32 size; 12365 int ret; 12366 12367 /* Zero the full structure, so that a short copy will be nice. */ 12368 memset(attr, 0, sizeof(*attr)); 12369 12370 ret = get_user(size, &uattr->size); 12371 if (ret) 12372 return ret; 12373 12374 /* ABI compatibility quirk: */ 12375 if (!size) 12376 size = PERF_ATTR_SIZE_VER0; 12377 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12378 goto err_size; 12379 12380 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12381 if (ret) { 12382 if (ret == -E2BIG) 12383 goto err_size; 12384 return ret; 12385 } 12386 12387 attr->size = size; 12388 12389 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12390 return -EINVAL; 12391 12392 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12393 return -EINVAL; 12394 12395 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12396 return -EINVAL; 12397 12398 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12399 u64 mask = attr->branch_sample_type; 12400 12401 /* only using defined bits */ 12402 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12403 return -EINVAL; 12404 12405 /* at least one branch bit must be set */ 12406 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12407 return -EINVAL; 12408 12409 /* propagate priv level, when not set for branch */ 12410 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12411 12412 /* exclude_kernel checked on syscall entry */ 12413 if (!attr->exclude_kernel) 12414 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12415 12416 if (!attr->exclude_user) 12417 mask |= PERF_SAMPLE_BRANCH_USER; 12418 12419 if (!attr->exclude_hv) 12420 mask |= PERF_SAMPLE_BRANCH_HV; 12421 /* 12422 * adjust user setting (for HW filter setup) 12423 */ 12424 attr->branch_sample_type = mask; 12425 } 12426 /* privileged levels capture (kernel, hv): check permissions */ 12427 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12428 ret = perf_allow_kernel(attr); 12429 if (ret) 12430 return ret; 12431 } 12432 } 12433 12434 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12435 ret = perf_reg_validate(attr->sample_regs_user); 12436 if (ret) 12437 return ret; 12438 } 12439 12440 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12441 if (!arch_perf_have_user_stack_dump()) 12442 return -ENOSYS; 12443 12444 /* 12445 * We have __u32 type for the size, but so far 12446 * we can only use __u16 as maximum due to the 12447 * __u16 sample size limit. 12448 */ 12449 if (attr->sample_stack_user >= USHRT_MAX) 12450 return -EINVAL; 12451 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12452 return -EINVAL; 12453 } 12454 12455 if (!attr->sample_max_stack) 12456 attr->sample_max_stack = sysctl_perf_event_max_stack; 12457 12458 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12459 ret = perf_reg_validate(attr->sample_regs_intr); 12460 12461 #ifndef CONFIG_CGROUP_PERF 12462 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12463 return -EINVAL; 12464 #endif 12465 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12466 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12467 return -EINVAL; 12468 12469 if (!attr->inherit && attr->inherit_thread) 12470 return -EINVAL; 12471 12472 if (attr->remove_on_exec && attr->enable_on_exec) 12473 return -EINVAL; 12474 12475 if (attr->sigtrap && !attr->remove_on_exec) 12476 return -EINVAL; 12477 12478 out: 12479 return ret; 12480 12481 err_size: 12482 put_user(sizeof(*attr), &uattr->size); 12483 ret = -E2BIG; 12484 goto out; 12485 } 12486 12487 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12488 { 12489 if (b < a) 12490 swap(a, b); 12491 12492 mutex_lock(a); 12493 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12494 } 12495 12496 static int 12497 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12498 { 12499 struct perf_buffer *rb = NULL; 12500 int ret = -EINVAL; 12501 12502 if (!output_event) { 12503 mutex_lock(&event->mmap_mutex); 12504 goto set; 12505 } 12506 12507 /* don't allow circular references */ 12508 if (event == output_event) 12509 goto out; 12510 12511 /* 12512 * Don't allow cross-cpu buffers 12513 */ 12514 if (output_event->cpu != event->cpu) 12515 goto out; 12516 12517 /* 12518 * If its not a per-cpu rb, it must be the same task. 12519 */ 12520 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12521 goto out; 12522 12523 /* 12524 * Mixing clocks in the same buffer is trouble you don't need. 12525 */ 12526 if (output_event->clock != event->clock) 12527 goto out; 12528 12529 /* 12530 * Either writing ring buffer from beginning or from end. 12531 * Mixing is not allowed. 12532 */ 12533 if (is_write_backward(output_event) != is_write_backward(event)) 12534 goto out; 12535 12536 /* 12537 * If both events generate aux data, they must be on the same PMU 12538 */ 12539 if (has_aux(event) && has_aux(output_event) && 12540 event->pmu != output_event->pmu) 12541 goto out; 12542 12543 /* 12544 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12545 * output_event is already on rb->event_list, and the list iteration 12546 * restarts after every removal, it is guaranteed this new event is 12547 * observed *OR* if output_event is already removed, it's guaranteed we 12548 * observe !rb->mmap_count. 12549 */ 12550 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12551 set: 12552 /* Can't redirect output if we've got an active mmap() */ 12553 if (atomic_read(&event->mmap_count)) 12554 goto unlock; 12555 12556 if (output_event) { 12557 /* get the rb we want to redirect to */ 12558 rb = ring_buffer_get(output_event); 12559 if (!rb) 12560 goto unlock; 12561 12562 /* did we race against perf_mmap_close() */ 12563 if (!atomic_read(&rb->mmap_count)) { 12564 ring_buffer_put(rb); 12565 goto unlock; 12566 } 12567 } 12568 12569 ring_buffer_attach(event, rb); 12570 12571 ret = 0; 12572 unlock: 12573 mutex_unlock(&event->mmap_mutex); 12574 if (output_event) 12575 mutex_unlock(&output_event->mmap_mutex); 12576 12577 out: 12578 return ret; 12579 } 12580 12581 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12582 { 12583 bool nmi_safe = false; 12584 12585 switch (clk_id) { 12586 case CLOCK_MONOTONIC: 12587 event->clock = &ktime_get_mono_fast_ns; 12588 nmi_safe = true; 12589 break; 12590 12591 case CLOCK_MONOTONIC_RAW: 12592 event->clock = &ktime_get_raw_fast_ns; 12593 nmi_safe = true; 12594 break; 12595 12596 case CLOCK_REALTIME: 12597 event->clock = &ktime_get_real_ns; 12598 break; 12599 12600 case CLOCK_BOOTTIME: 12601 event->clock = &ktime_get_boottime_ns; 12602 break; 12603 12604 case CLOCK_TAI: 12605 event->clock = &ktime_get_clocktai_ns; 12606 break; 12607 12608 default: 12609 return -EINVAL; 12610 } 12611 12612 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12613 return -EINVAL; 12614 12615 return 0; 12616 } 12617 12618 static bool 12619 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12620 { 12621 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12622 bool is_capable = perfmon_capable(); 12623 12624 if (attr->sigtrap) { 12625 /* 12626 * perf_event_attr::sigtrap sends signals to the other task. 12627 * Require the current task to also have CAP_KILL. 12628 */ 12629 rcu_read_lock(); 12630 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12631 rcu_read_unlock(); 12632 12633 /* 12634 * If the required capabilities aren't available, checks for 12635 * ptrace permissions: upgrade to ATTACH, since sending signals 12636 * can effectively change the target task. 12637 */ 12638 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12639 } 12640 12641 /* 12642 * Preserve ptrace permission check for backwards compatibility. The 12643 * ptrace check also includes checks that the current task and other 12644 * task have matching uids, and is therefore not done here explicitly. 12645 */ 12646 return is_capable || ptrace_may_access(task, ptrace_mode); 12647 } 12648 12649 /** 12650 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12651 * 12652 * @attr_uptr: event_id type attributes for monitoring/sampling 12653 * @pid: target pid 12654 * @cpu: target cpu 12655 * @group_fd: group leader event fd 12656 * @flags: perf event open flags 12657 */ 12658 SYSCALL_DEFINE5(perf_event_open, 12659 struct perf_event_attr __user *, attr_uptr, 12660 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12661 { 12662 struct perf_event *group_leader = NULL, *output_event = NULL; 12663 struct perf_event_pmu_context *pmu_ctx; 12664 struct perf_event *event, *sibling; 12665 struct perf_event_attr attr; 12666 struct perf_event_context *ctx; 12667 struct file *event_file = NULL; 12668 struct fd group = {NULL, 0}; 12669 struct task_struct *task = NULL; 12670 struct pmu *pmu; 12671 int event_fd; 12672 int move_group = 0; 12673 int err; 12674 int f_flags = O_RDWR; 12675 int cgroup_fd = -1; 12676 12677 /* for future expandability... */ 12678 if (flags & ~PERF_FLAG_ALL) 12679 return -EINVAL; 12680 12681 err = perf_copy_attr(attr_uptr, &attr); 12682 if (err) 12683 return err; 12684 12685 /* Do we allow access to perf_event_open(2) ? */ 12686 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12687 if (err) 12688 return err; 12689 12690 if (!attr.exclude_kernel) { 12691 err = perf_allow_kernel(&attr); 12692 if (err) 12693 return err; 12694 } 12695 12696 if (attr.namespaces) { 12697 if (!perfmon_capable()) 12698 return -EACCES; 12699 } 12700 12701 if (attr.freq) { 12702 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12703 return -EINVAL; 12704 } else { 12705 if (attr.sample_period & (1ULL << 63)) 12706 return -EINVAL; 12707 } 12708 12709 /* Only privileged users can get physical addresses */ 12710 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12711 err = perf_allow_kernel(&attr); 12712 if (err) 12713 return err; 12714 } 12715 12716 /* REGS_INTR can leak data, lockdown must prevent this */ 12717 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12718 err = security_locked_down(LOCKDOWN_PERF); 12719 if (err) 12720 return err; 12721 } 12722 12723 /* 12724 * In cgroup mode, the pid argument is used to pass the fd 12725 * opened to the cgroup directory in cgroupfs. The cpu argument 12726 * designates the cpu on which to monitor threads from that 12727 * cgroup. 12728 */ 12729 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12730 return -EINVAL; 12731 12732 if (flags & PERF_FLAG_FD_CLOEXEC) 12733 f_flags |= O_CLOEXEC; 12734 12735 event_fd = get_unused_fd_flags(f_flags); 12736 if (event_fd < 0) 12737 return event_fd; 12738 12739 if (group_fd != -1) { 12740 err = perf_fget_light(group_fd, &group); 12741 if (err) 12742 goto err_fd; 12743 group_leader = group.file->private_data; 12744 if (flags & PERF_FLAG_FD_OUTPUT) 12745 output_event = group_leader; 12746 if (flags & PERF_FLAG_FD_NO_GROUP) 12747 group_leader = NULL; 12748 } 12749 12750 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12751 task = find_lively_task_by_vpid(pid); 12752 if (IS_ERR(task)) { 12753 err = PTR_ERR(task); 12754 goto err_group_fd; 12755 } 12756 } 12757 12758 if (task && group_leader && 12759 group_leader->attr.inherit != attr.inherit) { 12760 err = -EINVAL; 12761 goto err_task; 12762 } 12763 12764 if (flags & PERF_FLAG_PID_CGROUP) 12765 cgroup_fd = pid; 12766 12767 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12768 NULL, NULL, cgroup_fd); 12769 if (IS_ERR(event)) { 12770 err = PTR_ERR(event); 12771 goto err_task; 12772 } 12773 12774 if (is_sampling_event(event)) { 12775 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12776 err = -EOPNOTSUPP; 12777 goto err_alloc; 12778 } 12779 } 12780 12781 /* 12782 * Special case software events and allow them to be part of 12783 * any hardware group. 12784 */ 12785 pmu = event->pmu; 12786 12787 if (attr.use_clockid) { 12788 err = perf_event_set_clock(event, attr.clockid); 12789 if (err) 12790 goto err_alloc; 12791 } 12792 12793 if (pmu->task_ctx_nr == perf_sw_context) 12794 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12795 12796 if (task) { 12797 err = down_read_interruptible(&task->signal->exec_update_lock); 12798 if (err) 12799 goto err_alloc; 12800 12801 /* 12802 * We must hold exec_update_lock across this and any potential 12803 * perf_install_in_context() call for this new event to 12804 * serialize against exec() altering our credentials (and the 12805 * perf_event_exit_task() that could imply). 12806 */ 12807 err = -EACCES; 12808 if (!perf_check_permission(&attr, task)) 12809 goto err_cred; 12810 } 12811 12812 /* 12813 * Get the target context (task or percpu): 12814 */ 12815 ctx = find_get_context(task, event); 12816 if (IS_ERR(ctx)) { 12817 err = PTR_ERR(ctx); 12818 goto err_cred; 12819 } 12820 12821 mutex_lock(&ctx->mutex); 12822 12823 if (ctx->task == TASK_TOMBSTONE) { 12824 err = -ESRCH; 12825 goto err_locked; 12826 } 12827 12828 if (!task) { 12829 /* 12830 * Check if the @cpu we're creating an event for is online. 12831 * 12832 * We use the perf_cpu_context::ctx::mutex to serialize against 12833 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12834 */ 12835 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12836 12837 if (!cpuctx->online) { 12838 err = -ENODEV; 12839 goto err_locked; 12840 } 12841 } 12842 12843 if (group_leader) { 12844 err = -EINVAL; 12845 12846 /* 12847 * Do not allow a recursive hierarchy (this new sibling 12848 * becoming part of another group-sibling): 12849 */ 12850 if (group_leader->group_leader != group_leader) 12851 goto err_locked; 12852 12853 /* All events in a group should have the same clock */ 12854 if (group_leader->clock != event->clock) 12855 goto err_locked; 12856 12857 /* 12858 * Make sure we're both events for the same CPU; 12859 * grouping events for different CPUs is broken; since 12860 * you can never concurrently schedule them anyhow. 12861 */ 12862 if (group_leader->cpu != event->cpu) 12863 goto err_locked; 12864 12865 /* 12866 * Make sure we're both on the same context; either task or cpu. 12867 */ 12868 if (group_leader->ctx != ctx) 12869 goto err_locked; 12870 12871 /* 12872 * Only a group leader can be exclusive or pinned 12873 */ 12874 if (attr.exclusive || attr.pinned) 12875 goto err_locked; 12876 12877 if (is_software_event(event) && 12878 !in_software_context(group_leader)) { 12879 /* 12880 * If the event is a sw event, but the group_leader 12881 * is on hw context. 12882 * 12883 * Allow the addition of software events to hw 12884 * groups, this is safe because software events 12885 * never fail to schedule. 12886 * 12887 * Note the comment that goes with struct 12888 * perf_event_pmu_context. 12889 */ 12890 pmu = group_leader->pmu_ctx->pmu; 12891 } else if (!is_software_event(event)) { 12892 if (is_software_event(group_leader) && 12893 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12894 /* 12895 * In case the group is a pure software group, and we 12896 * try to add a hardware event, move the whole group to 12897 * the hardware context. 12898 */ 12899 move_group = 1; 12900 } 12901 12902 /* Don't allow group of multiple hw events from different pmus */ 12903 if (!in_software_context(group_leader) && 12904 group_leader->pmu_ctx->pmu != pmu) 12905 goto err_locked; 12906 } 12907 } 12908 12909 /* 12910 * Now that we're certain of the pmu; find the pmu_ctx. 12911 */ 12912 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12913 if (IS_ERR(pmu_ctx)) { 12914 err = PTR_ERR(pmu_ctx); 12915 goto err_locked; 12916 } 12917 event->pmu_ctx = pmu_ctx; 12918 12919 if (output_event) { 12920 err = perf_event_set_output(event, output_event); 12921 if (err) 12922 goto err_context; 12923 } 12924 12925 if (!perf_event_validate_size(event)) { 12926 err = -E2BIG; 12927 goto err_context; 12928 } 12929 12930 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12931 err = -EINVAL; 12932 goto err_context; 12933 } 12934 12935 /* 12936 * Must be under the same ctx::mutex as perf_install_in_context(), 12937 * because we need to serialize with concurrent event creation. 12938 */ 12939 if (!exclusive_event_installable(event, ctx)) { 12940 err = -EBUSY; 12941 goto err_context; 12942 } 12943 12944 WARN_ON_ONCE(ctx->parent_ctx); 12945 12946 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12947 if (IS_ERR(event_file)) { 12948 err = PTR_ERR(event_file); 12949 event_file = NULL; 12950 goto err_context; 12951 } 12952 12953 /* 12954 * This is the point on no return; we cannot fail hereafter. This is 12955 * where we start modifying current state. 12956 */ 12957 12958 if (move_group) { 12959 perf_remove_from_context(group_leader, 0); 12960 put_pmu_ctx(group_leader->pmu_ctx); 12961 12962 for_each_sibling_event(sibling, group_leader) { 12963 perf_remove_from_context(sibling, 0); 12964 put_pmu_ctx(sibling->pmu_ctx); 12965 } 12966 12967 /* 12968 * Install the group siblings before the group leader. 12969 * 12970 * Because a group leader will try and install the entire group 12971 * (through the sibling list, which is still in-tact), we can 12972 * end up with siblings installed in the wrong context. 12973 * 12974 * By installing siblings first we NO-OP because they're not 12975 * reachable through the group lists. 12976 */ 12977 for_each_sibling_event(sibling, group_leader) { 12978 sibling->pmu_ctx = pmu_ctx; 12979 get_pmu_ctx(pmu_ctx); 12980 perf_event__state_init(sibling); 12981 perf_install_in_context(ctx, sibling, sibling->cpu); 12982 } 12983 12984 /* 12985 * Removing from the context ends up with disabled 12986 * event. What we want here is event in the initial 12987 * startup state, ready to be add into new context. 12988 */ 12989 group_leader->pmu_ctx = pmu_ctx; 12990 get_pmu_ctx(pmu_ctx); 12991 perf_event__state_init(group_leader); 12992 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12993 } 12994 12995 /* 12996 * Precalculate sample_data sizes; do while holding ctx::mutex such 12997 * that we're serialized against further additions and before 12998 * perf_install_in_context() which is the point the event is active and 12999 * can use these values. 13000 */ 13001 perf_event__header_size(event); 13002 perf_event__id_header_size(event); 13003 13004 event->owner = current; 13005 13006 perf_install_in_context(ctx, event, event->cpu); 13007 perf_unpin_context(ctx); 13008 13009 mutex_unlock(&ctx->mutex); 13010 13011 if (task) { 13012 up_read(&task->signal->exec_update_lock); 13013 put_task_struct(task); 13014 } 13015 13016 mutex_lock(¤t->perf_event_mutex); 13017 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13018 mutex_unlock(¤t->perf_event_mutex); 13019 13020 /* 13021 * Drop the reference on the group_event after placing the 13022 * new event on the sibling_list. This ensures destruction 13023 * of the group leader will find the pointer to itself in 13024 * perf_group_detach(). 13025 */ 13026 fdput(group); 13027 fd_install(event_fd, event_file); 13028 return event_fd; 13029 13030 err_context: 13031 put_pmu_ctx(event->pmu_ctx); 13032 event->pmu_ctx = NULL; /* _free_event() */ 13033 err_locked: 13034 mutex_unlock(&ctx->mutex); 13035 perf_unpin_context(ctx); 13036 put_ctx(ctx); 13037 err_cred: 13038 if (task) 13039 up_read(&task->signal->exec_update_lock); 13040 err_alloc: 13041 free_event(event); 13042 err_task: 13043 if (task) 13044 put_task_struct(task); 13045 err_group_fd: 13046 fdput(group); 13047 err_fd: 13048 put_unused_fd(event_fd); 13049 return err; 13050 } 13051 13052 /** 13053 * perf_event_create_kernel_counter 13054 * 13055 * @attr: attributes of the counter to create 13056 * @cpu: cpu in which the counter is bound 13057 * @task: task to profile (NULL for percpu) 13058 * @overflow_handler: callback to trigger when we hit the event 13059 * @context: context data could be used in overflow_handler callback 13060 */ 13061 struct perf_event * 13062 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13063 struct task_struct *task, 13064 perf_overflow_handler_t overflow_handler, 13065 void *context) 13066 { 13067 struct perf_event_pmu_context *pmu_ctx; 13068 struct perf_event_context *ctx; 13069 struct perf_event *event; 13070 struct pmu *pmu; 13071 int err; 13072 13073 /* 13074 * Grouping is not supported for kernel events, neither is 'AUX', 13075 * make sure the caller's intentions are adjusted. 13076 */ 13077 if (attr->aux_output) 13078 return ERR_PTR(-EINVAL); 13079 13080 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13081 overflow_handler, context, -1); 13082 if (IS_ERR(event)) { 13083 err = PTR_ERR(event); 13084 goto err; 13085 } 13086 13087 /* Mark owner so we could distinguish it from user events. */ 13088 event->owner = TASK_TOMBSTONE; 13089 pmu = event->pmu; 13090 13091 if (pmu->task_ctx_nr == perf_sw_context) 13092 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13093 13094 /* 13095 * Get the target context (task or percpu): 13096 */ 13097 ctx = find_get_context(task, event); 13098 if (IS_ERR(ctx)) { 13099 err = PTR_ERR(ctx); 13100 goto err_alloc; 13101 } 13102 13103 WARN_ON_ONCE(ctx->parent_ctx); 13104 mutex_lock(&ctx->mutex); 13105 if (ctx->task == TASK_TOMBSTONE) { 13106 err = -ESRCH; 13107 goto err_unlock; 13108 } 13109 13110 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13111 if (IS_ERR(pmu_ctx)) { 13112 err = PTR_ERR(pmu_ctx); 13113 goto err_unlock; 13114 } 13115 event->pmu_ctx = pmu_ctx; 13116 13117 if (!task) { 13118 /* 13119 * Check if the @cpu we're creating an event for is online. 13120 * 13121 * We use the perf_cpu_context::ctx::mutex to serialize against 13122 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13123 */ 13124 struct perf_cpu_context *cpuctx = 13125 container_of(ctx, struct perf_cpu_context, ctx); 13126 if (!cpuctx->online) { 13127 err = -ENODEV; 13128 goto err_pmu_ctx; 13129 } 13130 } 13131 13132 if (!exclusive_event_installable(event, ctx)) { 13133 err = -EBUSY; 13134 goto err_pmu_ctx; 13135 } 13136 13137 perf_install_in_context(ctx, event, event->cpu); 13138 perf_unpin_context(ctx); 13139 mutex_unlock(&ctx->mutex); 13140 13141 return event; 13142 13143 err_pmu_ctx: 13144 put_pmu_ctx(pmu_ctx); 13145 event->pmu_ctx = NULL; /* _free_event() */ 13146 err_unlock: 13147 mutex_unlock(&ctx->mutex); 13148 perf_unpin_context(ctx); 13149 put_ctx(ctx); 13150 err_alloc: 13151 free_event(event); 13152 err: 13153 return ERR_PTR(err); 13154 } 13155 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13156 13157 static void __perf_pmu_remove(struct perf_event_context *ctx, 13158 int cpu, struct pmu *pmu, 13159 struct perf_event_groups *groups, 13160 struct list_head *events) 13161 { 13162 struct perf_event *event, *sibling; 13163 13164 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13165 perf_remove_from_context(event, 0); 13166 put_pmu_ctx(event->pmu_ctx); 13167 list_add(&event->migrate_entry, events); 13168 13169 for_each_sibling_event(sibling, event) { 13170 perf_remove_from_context(sibling, 0); 13171 put_pmu_ctx(sibling->pmu_ctx); 13172 list_add(&sibling->migrate_entry, events); 13173 } 13174 } 13175 } 13176 13177 static void __perf_pmu_install_event(struct pmu *pmu, 13178 struct perf_event_context *ctx, 13179 int cpu, struct perf_event *event) 13180 { 13181 struct perf_event_pmu_context *epc; 13182 struct perf_event_context *old_ctx = event->ctx; 13183 13184 get_ctx(ctx); /* normally find_get_context() */ 13185 13186 event->cpu = cpu; 13187 epc = find_get_pmu_context(pmu, ctx, event); 13188 event->pmu_ctx = epc; 13189 13190 if (event->state >= PERF_EVENT_STATE_OFF) 13191 event->state = PERF_EVENT_STATE_INACTIVE; 13192 perf_install_in_context(ctx, event, cpu); 13193 13194 /* 13195 * Now that event->ctx is updated and visible, put the old ctx. 13196 */ 13197 put_ctx(old_ctx); 13198 } 13199 13200 static void __perf_pmu_install(struct perf_event_context *ctx, 13201 int cpu, struct pmu *pmu, struct list_head *events) 13202 { 13203 struct perf_event *event, *tmp; 13204 13205 /* 13206 * Re-instate events in 2 passes. 13207 * 13208 * Skip over group leaders and only install siblings on this first 13209 * pass, siblings will not get enabled without a leader, however a 13210 * leader will enable its siblings, even if those are still on the old 13211 * context. 13212 */ 13213 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13214 if (event->group_leader == event) 13215 continue; 13216 13217 list_del(&event->migrate_entry); 13218 __perf_pmu_install_event(pmu, ctx, cpu, event); 13219 } 13220 13221 /* 13222 * Once all the siblings are setup properly, install the group leaders 13223 * to make it go. 13224 */ 13225 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13226 list_del(&event->migrate_entry); 13227 __perf_pmu_install_event(pmu, ctx, cpu, event); 13228 } 13229 } 13230 13231 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13232 { 13233 struct perf_event_context *src_ctx, *dst_ctx; 13234 LIST_HEAD(events); 13235 13236 /* 13237 * Since per-cpu context is persistent, no need to grab an extra 13238 * reference. 13239 */ 13240 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13241 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13242 13243 /* 13244 * See perf_event_ctx_lock() for comments on the details 13245 * of swizzling perf_event::ctx. 13246 */ 13247 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13248 13249 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13250 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13251 13252 if (!list_empty(&events)) { 13253 /* 13254 * Wait for the events to quiesce before re-instating them. 13255 */ 13256 synchronize_rcu(); 13257 13258 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13259 } 13260 13261 mutex_unlock(&dst_ctx->mutex); 13262 mutex_unlock(&src_ctx->mutex); 13263 } 13264 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13265 13266 static void sync_child_event(struct perf_event *child_event) 13267 { 13268 struct perf_event *parent_event = child_event->parent; 13269 u64 child_val; 13270 13271 if (child_event->attr.inherit_stat) { 13272 struct task_struct *task = child_event->ctx->task; 13273 13274 if (task && task != TASK_TOMBSTONE) 13275 perf_event_read_event(child_event, task); 13276 } 13277 13278 child_val = perf_event_count(child_event, false); 13279 13280 /* 13281 * Add back the child's count to the parent's count: 13282 */ 13283 atomic64_add(child_val, &parent_event->child_count); 13284 atomic64_add(child_event->total_time_enabled, 13285 &parent_event->child_total_time_enabled); 13286 atomic64_add(child_event->total_time_running, 13287 &parent_event->child_total_time_running); 13288 } 13289 13290 static void 13291 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13292 { 13293 struct perf_event *parent_event = event->parent; 13294 unsigned long detach_flags = 0; 13295 13296 if (parent_event) { 13297 /* 13298 * Do not destroy the 'original' grouping; because of the 13299 * context switch optimization the original events could've 13300 * ended up in a random child task. 13301 * 13302 * If we were to destroy the original group, all group related 13303 * operations would cease to function properly after this 13304 * random child dies. 13305 * 13306 * Do destroy all inherited groups, we don't care about those 13307 * and being thorough is better. 13308 */ 13309 detach_flags = DETACH_GROUP | DETACH_CHILD; 13310 mutex_lock(&parent_event->child_mutex); 13311 } 13312 13313 perf_remove_from_context(event, detach_flags); 13314 13315 raw_spin_lock_irq(&ctx->lock); 13316 if (event->state > PERF_EVENT_STATE_EXIT) 13317 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13318 raw_spin_unlock_irq(&ctx->lock); 13319 13320 /* 13321 * Child events can be freed. 13322 */ 13323 if (parent_event) { 13324 mutex_unlock(&parent_event->child_mutex); 13325 /* 13326 * Kick perf_poll() for is_event_hup(); 13327 */ 13328 perf_event_wakeup(parent_event); 13329 free_event(event); 13330 put_event(parent_event); 13331 return; 13332 } 13333 13334 /* 13335 * Parent events are governed by their filedesc, retain them. 13336 */ 13337 perf_event_wakeup(event); 13338 } 13339 13340 static void perf_event_exit_task_context(struct task_struct *child) 13341 { 13342 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13343 struct perf_event *child_event, *next; 13344 13345 WARN_ON_ONCE(child != current); 13346 13347 child_ctx = perf_pin_task_context(child); 13348 if (!child_ctx) 13349 return; 13350 13351 /* 13352 * In order to reduce the amount of tricky in ctx tear-down, we hold 13353 * ctx::mutex over the entire thing. This serializes against almost 13354 * everything that wants to access the ctx. 13355 * 13356 * The exception is sys_perf_event_open() / 13357 * perf_event_create_kernel_count() which does find_get_context() 13358 * without ctx::mutex (it cannot because of the move_group double mutex 13359 * lock thing). See the comments in perf_install_in_context(). 13360 */ 13361 mutex_lock(&child_ctx->mutex); 13362 13363 /* 13364 * In a single ctx::lock section, de-schedule the events and detach the 13365 * context from the task such that we cannot ever get it scheduled back 13366 * in. 13367 */ 13368 raw_spin_lock_irq(&child_ctx->lock); 13369 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL); 13370 13371 /* 13372 * Now that the context is inactive, destroy the task <-> ctx relation 13373 * and mark the context dead. 13374 */ 13375 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13376 put_ctx(child_ctx); /* cannot be last */ 13377 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13378 put_task_struct(current); /* cannot be last */ 13379 13380 clone_ctx = unclone_ctx(child_ctx); 13381 raw_spin_unlock_irq(&child_ctx->lock); 13382 13383 if (clone_ctx) 13384 put_ctx(clone_ctx); 13385 13386 /* 13387 * Report the task dead after unscheduling the events so that we 13388 * won't get any samples after PERF_RECORD_EXIT. We can however still 13389 * get a few PERF_RECORD_READ events. 13390 */ 13391 perf_event_task(child, child_ctx, 0); 13392 13393 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13394 perf_event_exit_event(child_event, child_ctx); 13395 13396 mutex_unlock(&child_ctx->mutex); 13397 13398 put_ctx(child_ctx); 13399 } 13400 13401 /* 13402 * When a child task exits, feed back event values to parent events. 13403 * 13404 * Can be called with exec_update_lock held when called from 13405 * setup_new_exec(). 13406 */ 13407 void perf_event_exit_task(struct task_struct *child) 13408 { 13409 struct perf_event *event, *tmp; 13410 13411 mutex_lock(&child->perf_event_mutex); 13412 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13413 owner_entry) { 13414 list_del_init(&event->owner_entry); 13415 13416 /* 13417 * Ensure the list deletion is visible before we clear 13418 * the owner, closes a race against perf_release() where 13419 * we need to serialize on the owner->perf_event_mutex. 13420 */ 13421 smp_store_release(&event->owner, NULL); 13422 } 13423 mutex_unlock(&child->perf_event_mutex); 13424 13425 perf_event_exit_task_context(child); 13426 13427 /* 13428 * The perf_event_exit_task_context calls perf_event_task 13429 * with child's task_ctx, which generates EXIT events for 13430 * child contexts and sets child->perf_event_ctxp[] to NULL. 13431 * At this point we need to send EXIT events to cpu contexts. 13432 */ 13433 perf_event_task(child, NULL, 0); 13434 } 13435 13436 static void perf_free_event(struct perf_event *event, 13437 struct perf_event_context *ctx) 13438 { 13439 struct perf_event *parent = event->parent; 13440 13441 if (WARN_ON_ONCE(!parent)) 13442 return; 13443 13444 mutex_lock(&parent->child_mutex); 13445 list_del_init(&event->child_list); 13446 mutex_unlock(&parent->child_mutex); 13447 13448 put_event(parent); 13449 13450 raw_spin_lock_irq(&ctx->lock); 13451 perf_group_detach(event); 13452 list_del_event(event, ctx); 13453 raw_spin_unlock_irq(&ctx->lock); 13454 free_event(event); 13455 } 13456 13457 /* 13458 * Free a context as created by inheritance by perf_event_init_task() below, 13459 * used by fork() in case of fail. 13460 * 13461 * Even though the task has never lived, the context and events have been 13462 * exposed through the child_list, so we must take care tearing it all down. 13463 */ 13464 void perf_event_free_task(struct task_struct *task) 13465 { 13466 struct perf_event_context *ctx; 13467 struct perf_event *event, *tmp; 13468 13469 ctx = rcu_access_pointer(task->perf_event_ctxp); 13470 if (!ctx) 13471 return; 13472 13473 mutex_lock(&ctx->mutex); 13474 raw_spin_lock_irq(&ctx->lock); 13475 /* 13476 * Destroy the task <-> ctx relation and mark the context dead. 13477 * 13478 * This is important because even though the task hasn't been 13479 * exposed yet the context has been (through child_list). 13480 */ 13481 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13482 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13483 put_task_struct(task); /* cannot be last */ 13484 raw_spin_unlock_irq(&ctx->lock); 13485 13486 13487 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13488 perf_free_event(event, ctx); 13489 13490 mutex_unlock(&ctx->mutex); 13491 13492 /* 13493 * perf_event_release_kernel() could've stolen some of our 13494 * child events and still have them on its free_list. In that 13495 * case we must wait for these events to have been freed (in 13496 * particular all their references to this task must've been 13497 * dropped). 13498 * 13499 * Without this copy_process() will unconditionally free this 13500 * task (irrespective of its reference count) and 13501 * _free_event()'s put_task_struct(event->hw.target) will be a 13502 * use-after-free. 13503 * 13504 * Wait for all events to drop their context reference. 13505 */ 13506 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13507 put_ctx(ctx); /* must be last */ 13508 } 13509 13510 void perf_event_delayed_put(struct task_struct *task) 13511 { 13512 WARN_ON_ONCE(task->perf_event_ctxp); 13513 } 13514 13515 struct file *perf_event_get(unsigned int fd) 13516 { 13517 struct file *file = fget(fd); 13518 if (!file) 13519 return ERR_PTR(-EBADF); 13520 13521 if (file->f_op != &perf_fops) { 13522 fput(file); 13523 return ERR_PTR(-EBADF); 13524 } 13525 13526 return file; 13527 } 13528 13529 const struct perf_event *perf_get_event(struct file *file) 13530 { 13531 if (file->f_op != &perf_fops) 13532 return ERR_PTR(-EINVAL); 13533 13534 return file->private_data; 13535 } 13536 13537 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13538 { 13539 if (!event) 13540 return ERR_PTR(-EINVAL); 13541 13542 return &event->attr; 13543 } 13544 13545 int perf_allow_kernel(struct perf_event_attr *attr) 13546 { 13547 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13548 return -EACCES; 13549 13550 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 13551 } 13552 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13553 13554 /* 13555 * Inherit an event from parent task to child task. 13556 * 13557 * Returns: 13558 * - valid pointer on success 13559 * - NULL for orphaned events 13560 * - IS_ERR() on error 13561 */ 13562 static struct perf_event * 13563 inherit_event(struct perf_event *parent_event, 13564 struct task_struct *parent, 13565 struct perf_event_context *parent_ctx, 13566 struct task_struct *child, 13567 struct perf_event *group_leader, 13568 struct perf_event_context *child_ctx) 13569 { 13570 enum perf_event_state parent_state = parent_event->state; 13571 struct perf_event_pmu_context *pmu_ctx; 13572 struct perf_event *child_event; 13573 unsigned long flags; 13574 13575 /* 13576 * Instead of creating recursive hierarchies of events, 13577 * we link inherited events back to the original parent, 13578 * which has a filp for sure, which we use as the reference 13579 * count: 13580 */ 13581 if (parent_event->parent) 13582 parent_event = parent_event->parent; 13583 13584 child_event = perf_event_alloc(&parent_event->attr, 13585 parent_event->cpu, 13586 child, 13587 group_leader, parent_event, 13588 NULL, NULL, -1); 13589 if (IS_ERR(child_event)) 13590 return child_event; 13591 13592 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13593 if (IS_ERR(pmu_ctx)) { 13594 free_event(child_event); 13595 return ERR_CAST(pmu_ctx); 13596 } 13597 child_event->pmu_ctx = pmu_ctx; 13598 13599 /* 13600 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13601 * must be under the same lock in order to serialize against 13602 * perf_event_release_kernel(), such that either we must observe 13603 * is_orphaned_event() or they will observe us on the child_list. 13604 */ 13605 mutex_lock(&parent_event->child_mutex); 13606 if (is_orphaned_event(parent_event) || 13607 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13608 mutex_unlock(&parent_event->child_mutex); 13609 /* task_ctx_data is freed with child_ctx */ 13610 free_event(child_event); 13611 return NULL; 13612 } 13613 13614 get_ctx(child_ctx); 13615 13616 /* 13617 * Make the child state follow the state of the parent event, 13618 * not its attr.disabled bit. We hold the parent's mutex, 13619 * so we won't race with perf_event_{en, dis}able_family. 13620 */ 13621 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13622 child_event->state = PERF_EVENT_STATE_INACTIVE; 13623 else 13624 child_event->state = PERF_EVENT_STATE_OFF; 13625 13626 if (parent_event->attr.freq) { 13627 u64 sample_period = parent_event->hw.sample_period; 13628 struct hw_perf_event *hwc = &child_event->hw; 13629 13630 hwc->sample_period = sample_period; 13631 hwc->last_period = sample_period; 13632 13633 local64_set(&hwc->period_left, sample_period); 13634 } 13635 13636 child_event->ctx = child_ctx; 13637 child_event->overflow_handler = parent_event->overflow_handler; 13638 child_event->overflow_handler_context 13639 = parent_event->overflow_handler_context; 13640 13641 /* 13642 * Precalculate sample_data sizes 13643 */ 13644 perf_event__header_size(child_event); 13645 perf_event__id_header_size(child_event); 13646 13647 /* 13648 * Link it up in the child's context: 13649 */ 13650 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13651 add_event_to_ctx(child_event, child_ctx); 13652 child_event->attach_state |= PERF_ATTACH_CHILD; 13653 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13654 13655 /* 13656 * Link this into the parent event's child list 13657 */ 13658 list_add_tail(&child_event->child_list, &parent_event->child_list); 13659 mutex_unlock(&parent_event->child_mutex); 13660 13661 return child_event; 13662 } 13663 13664 /* 13665 * Inherits an event group. 13666 * 13667 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13668 * This matches with perf_event_release_kernel() removing all child events. 13669 * 13670 * Returns: 13671 * - 0 on success 13672 * - <0 on error 13673 */ 13674 static int inherit_group(struct perf_event *parent_event, 13675 struct task_struct *parent, 13676 struct perf_event_context *parent_ctx, 13677 struct task_struct *child, 13678 struct perf_event_context *child_ctx) 13679 { 13680 struct perf_event *leader; 13681 struct perf_event *sub; 13682 struct perf_event *child_ctr; 13683 13684 leader = inherit_event(parent_event, parent, parent_ctx, 13685 child, NULL, child_ctx); 13686 if (IS_ERR(leader)) 13687 return PTR_ERR(leader); 13688 /* 13689 * @leader can be NULL here because of is_orphaned_event(). In this 13690 * case inherit_event() will create individual events, similar to what 13691 * perf_group_detach() would do anyway. 13692 */ 13693 for_each_sibling_event(sub, parent_event) { 13694 child_ctr = inherit_event(sub, parent, parent_ctx, 13695 child, leader, child_ctx); 13696 if (IS_ERR(child_ctr)) 13697 return PTR_ERR(child_ctr); 13698 13699 if (sub->aux_event == parent_event && child_ctr && 13700 !perf_get_aux_event(child_ctr, leader)) 13701 return -EINVAL; 13702 } 13703 if (leader) 13704 leader->group_generation = parent_event->group_generation; 13705 return 0; 13706 } 13707 13708 /* 13709 * Creates the child task context and tries to inherit the event-group. 13710 * 13711 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13712 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13713 * consistent with perf_event_release_kernel() removing all child events. 13714 * 13715 * Returns: 13716 * - 0 on success 13717 * - <0 on error 13718 */ 13719 static int 13720 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13721 struct perf_event_context *parent_ctx, 13722 struct task_struct *child, 13723 u64 clone_flags, int *inherited_all) 13724 { 13725 struct perf_event_context *child_ctx; 13726 int ret; 13727 13728 if (!event->attr.inherit || 13729 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13730 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13731 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13732 *inherited_all = 0; 13733 return 0; 13734 } 13735 13736 child_ctx = child->perf_event_ctxp; 13737 if (!child_ctx) { 13738 /* 13739 * This is executed from the parent task context, so 13740 * inherit events that have been marked for cloning. 13741 * First allocate and initialize a context for the 13742 * child. 13743 */ 13744 child_ctx = alloc_perf_context(child); 13745 if (!child_ctx) 13746 return -ENOMEM; 13747 13748 child->perf_event_ctxp = child_ctx; 13749 } 13750 13751 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13752 if (ret) 13753 *inherited_all = 0; 13754 13755 return ret; 13756 } 13757 13758 /* 13759 * Initialize the perf_event context in task_struct 13760 */ 13761 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13762 { 13763 struct perf_event_context *child_ctx, *parent_ctx; 13764 struct perf_event_context *cloned_ctx; 13765 struct perf_event *event; 13766 struct task_struct *parent = current; 13767 int inherited_all = 1; 13768 unsigned long flags; 13769 int ret = 0; 13770 13771 if (likely(!parent->perf_event_ctxp)) 13772 return 0; 13773 13774 /* 13775 * If the parent's context is a clone, pin it so it won't get 13776 * swapped under us. 13777 */ 13778 parent_ctx = perf_pin_task_context(parent); 13779 if (!parent_ctx) 13780 return 0; 13781 13782 /* 13783 * No need to check if parent_ctx != NULL here; since we saw 13784 * it non-NULL earlier, the only reason for it to become NULL 13785 * is if we exit, and since we're currently in the middle of 13786 * a fork we can't be exiting at the same time. 13787 */ 13788 13789 /* 13790 * Lock the parent list. No need to lock the child - not PID 13791 * hashed yet and not running, so nobody can access it. 13792 */ 13793 mutex_lock(&parent_ctx->mutex); 13794 13795 /* 13796 * We dont have to disable NMIs - we are only looking at 13797 * the list, not manipulating it: 13798 */ 13799 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13800 ret = inherit_task_group(event, parent, parent_ctx, 13801 child, clone_flags, &inherited_all); 13802 if (ret) 13803 goto out_unlock; 13804 } 13805 13806 /* 13807 * We can't hold ctx->lock when iterating the ->flexible_group list due 13808 * to allocations, but we need to prevent rotation because 13809 * rotate_ctx() will change the list from interrupt context. 13810 */ 13811 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13812 parent_ctx->rotate_disable = 1; 13813 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13814 13815 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13816 ret = inherit_task_group(event, parent, parent_ctx, 13817 child, clone_flags, &inherited_all); 13818 if (ret) 13819 goto out_unlock; 13820 } 13821 13822 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13823 parent_ctx->rotate_disable = 0; 13824 13825 child_ctx = child->perf_event_ctxp; 13826 13827 if (child_ctx && inherited_all) { 13828 /* 13829 * Mark the child context as a clone of the parent 13830 * context, or of whatever the parent is a clone of. 13831 * 13832 * Note that if the parent is a clone, the holding of 13833 * parent_ctx->lock avoids it from being uncloned. 13834 */ 13835 cloned_ctx = parent_ctx->parent_ctx; 13836 if (cloned_ctx) { 13837 child_ctx->parent_ctx = cloned_ctx; 13838 child_ctx->parent_gen = parent_ctx->parent_gen; 13839 } else { 13840 child_ctx->parent_ctx = parent_ctx; 13841 child_ctx->parent_gen = parent_ctx->generation; 13842 } 13843 get_ctx(child_ctx->parent_ctx); 13844 } 13845 13846 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13847 out_unlock: 13848 mutex_unlock(&parent_ctx->mutex); 13849 13850 perf_unpin_context(parent_ctx); 13851 put_ctx(parent_ctx); 13852 13853 return ret; 13854 } 13855 13856 /* 13857 * Initialize the perf_event context in task_struct 13858 */ 13859 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13860 { 13861 int ret; 13862 13863 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 13864 child->perf_event_ctxp = NULL; 13865 mutex_init(&child->perf_event_mutex); 13866 INIT_LIST_HEAD(&child->perf_event_list); 13867 13868 ret = perf_event_init_context(child, clone_flags); 13869 if (ret) { 13870 perf_event_free_task(child); 13871 return ret; 13872 } 13873 13874 return 0; 13875 } 13876 13877 static void __init perf_event_init_all_cpus(void) 13878 { 13879 struct swevent_htable *swhash; 13880 struct perf_cpu_context *cpuctx; 13881 int cpu; 13882 13883 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13884 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 13885 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 13886 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 13887 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 13888 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 13889 13890 13891 for_each_possible_cpu(cpu) { 13892 swhash = &per_cpu(swevent_htable, cpu); 13893 mutex_init(&swhash->hlist_mutex); 13894 13895 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13896 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13897 13898 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13899 13900 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13901 __perf_event_init_context(&cpuctx->ctx); 13902 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13903 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13904 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13905 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13906 cpuctx->heap = cpuctx->heap_default; 13907 } 13908 } 13909 13910 static void perf_swevent_init_cpu(unsigned int cpu) 13911 { 13912 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13913 13914 mutex_lock(&swhash->hlist_mutex); 13915 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13916 struct swevent_hlist *hlist; 13917 13918 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13919 WARN_ON(!hlist); 13920 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13921 } 13922 mutex_unlock(&swhash->hlist_mutex); 13923 } 13924 13925 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13926 static void __perf_event_exit_context(void *__info) 13927 { 13928 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13929 struct perf_event_context *ctx = __info; 13930 struct perf_event *event; 13931 13932 raw_spin_lock(&ctx->lock); 13933 ctx_sched_out(ctx, NULL, EVENT_TIME); 13934 list_for_each_entry(event, &ctx->event_list, event_entry) 13935 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13936 raw_spin_unlock(&ctx->lock); 13937 } 13938 13939 static void perf_event_clear_cpumask(unsigned int cpu) 13940 { 13941 int target[PERF_PMU_MAX_SCOPE]; 13942 unsigned int scope; 13943 struct pmu *pmu; 13944 13945 cpumask_clear_cpu(cpu, perf_online_mask); 13946 13947 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 13948 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 13949 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 13950 13951 target[scope] = -1; 13952 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 13953 continue; 13954 13955 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 13956 continue; 13957 target[scope] = cpumask_any_but(cpumask, cpu); 13958 if (target[scope] < nr_cpu_ids) 13959 cpumask_set_cpu(target[scope], pmu_cpumask); 13960 } 13961 13962 /* migrate */ 13963 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 13964 if (pmu->scope == PERF_PMU_SCOPE_NONE || 13965 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 13966 continue; 13967 13968 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 13969 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 13970 } 13971 } 13972 13973 static void perf_event_exit_cpu_context(int cpu) 13974 { 13975 struct perf_cpu_context *cpuctx; 13976 struct perf_event_context *ctx; 13977 13978 // XXX simplify cpuctx->online 13979 mutex_lock(&pmus_lock); 13980 /* 13981 * Clear the cpumasks, and migrate to other CPUs if possible. 13982 * Must be invoked before the __perf_event_exit_context. 13983 */ 13984 perf_event_clear_cpumask(cpu); 13985 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13986 ctx = &cpuctx->ctx; 13987 13988 mutex_lock(&ctx->mutex); 13989 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13990 cpuctx->online = 0; 13991 mutex_unlock(&ctx->mutex); 13992 mutex_unlock(&pmus_lock); 13993 } 13994 #else 13995 13996 static void perf_event_exit_cpu_context(int cpu) { } 13997 13998 #endif 13999 14000 static void perf_event_setup_cpumask(unsigned int cpu) 14001 { 14002 struct cpumask *pmu_cpumask; 14003 unsigned int scope; 14004 14005 cpumask_set_cpu(cpu, perf_online_mask); 14006 14007 /* 14008 * Early boot stage, the cpumask hasn't been set yet. 14009 * The perf_online_<domain>_masks includes the first CPU of each domain. 14010 * Always uncondifionally set the boot CPU for the perf_online_<domain>_masks. 14011 */ 14012 if (!topology_sibling_cpumask(cpu)) { 14013 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14014 pmu_cpumask = perf_scope_cpumask(scope); 14015 if (WARN_ON_ONCE(!pmu_cpumask)) 14016 continue; 14017 cpumask_set_cpu(cpu, pmu_cpumask); 14018 } 14019 return; 14020 } 14021 14022 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14023 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14024 14025 pmu_cpumask = perf_scope_cpumask(scope); 14026 14027 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14028 continue; 14029 14030 if (!cpumask_empty(cpumask) && 14031 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14032 cpumask_set_cpu(cpu, pmu_cpumask); 14033 } 14034 } 14035 14036 int perf_event_init_cpu(unsigned int cpu) 14037 { 14038 struct perf_cpu_context *cpuctx; 14039 struct perf_event_context *ctx; 14040 14041 perf_swevent_init_cpu(cpu); 14042 14043 mutex_lock(&pmus_lock); 14044 perf_event_setup_cpumask(cpu); 14045 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14046 ctx = &cpuctx->ctx; 14047 14048 mutex_lock(&ctx->mutex); 14049 cpuctx->online = 1; 14050 mutex_unlock(&ctx->mutex); 14051 mutex_unlock(&pmus_lock); 14052 14053 return 0; 14054 } 14055 14056 int perf_event_exit_cpu(unsigned int cpu) 14057 { 14058 perf_event_exit_cpu_context(cpu); 14059 return 0; 14060 } 14061 14062 static int 14063 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14064 { 14065 int cpu; 14066 14067 for_each_online_cpu(cpu) 14068 perf_event_exit_cpu(cpu); 14069 14070 return NOTIFY_OK; 14071 } 14072 14073 /* 14074 * Run the perf reboot notifier at the very last possible moment so that 14075 * the generic watchdog code runs as long as possible. 14076 */ 14077 static struct notifier_block perf_reboot_notifier = { 14078 .notifier_call = perf_reboot, 14079 .priority = INT_MIN, 14080 }; 14081 14082 void __init perf_event_init(void) 14083 { 14084 int ret; 14085 14086 idr_init(&pmu_idr); 14087 14088 perf_event_init_all_cpus(); 14089 init_srcu_struct(&pmus_srcu); 14090 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14091 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14092 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14093 perf_tp_register(); 14094 perf_event_init_cpu(smp_processor_id()); 14095 register_reboot_notifier(&perf_reboot_notifier); 14096 14097 ret = init_hw_breakpoint(); 14098 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14099 14100 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14101 14102 /* 14103 * Build time assertion that we keep the data_head at the intended 14104 * location. IOW, validation we got the __reserved[] size right. 14105 */ 14106 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14107 != 1024); 14108 } 14109 14110 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14111 char *page) 14112 { 14113 struct perf_pmu_events_attr *pmu_attr = 14114 container_of(attr, struct perf_pmu_events_attr, attr); 14115 14116 if (pmu_attr->event_str) 14117 return sprintf(page, "%s\n", pmu_attr->event_str); 14118 14119 return 0; 14120 } 14121 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14122 14123 static int __init perf_event_sysfs_init(void) 14124 { 14125 struct pmu *pmu; 14126 int ret; 14127 14128 mutex_lock(&pmus_lock); 14129 14130 ret = bus_register(&pmu_bus); 14131 if (ret) 14132 goto unlock; 14133 14134 list_for_each_entry(pmu, &pmus, entry) { 14135 if (pmu->dev) 14136 continue; 14137 14138 ret = pmu_dev_alloc(pmu); 14139 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14140 } 14141 pmu_bus_running = 1; 14142 ret = 0; 14143 14144 unlock: 14145 mutex_unlock(&pmus_lock); 14146 14147 return ret; 14148 } 14149 device_initcall(perf_event_sysfs_init); 14150 14151 #ifdef CONFIG_CGROUP_PERF 14152 static struct cgroup_subsys_state * 14153 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14154 { 14155 struct perf_cgroup *jc; 14156 14157 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14158 if (!jc) 14159 return ERR_PTR(-ENOMEM); 14160 14161 jc->info = alloc_percpu(struct perf_cgroup_info); 14162 if (!jc->info) { 14163 kfree(jc); 14164 return ERR_PTR(-ENOMEM); 14165 } 14166 14167 return &jc->css; 14168 } 14169 14170 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14171 { 14172 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14173 14174 free_percpu(jc->info); 14175 kfree(jc); 14176 } 14177 14178 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14179 { 14180 perf_event_cgroup(css->cgroup); 14181 return 0; 14182 } 14183 14184 static int __perf_cgroup_move(void *info) 14185 { 14186 struct task_struct *task = info; 14187 14188 preempt_disable(); 14189 perf_cgroup_switch(task); 14190 preempt_enable(); 14191 14192 return 0; 14193 } 14194 14195 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14196 { 14197 struct task_struct *task; 14198 struct cgroup_subsys_state *css; 14199 14200 cgroup_taskset_for_each(task, css, tset) 14201 task_function_call(task, __perf_cgroup_move, task); 14202 } 14203 14204 struct cgroup_subsys perf_event_cgrp_subsys = { 14205 .css_alloc = perf_cgroup_css_alloc, 14206 .css_free = perf_cgroup_css_free, 14207 .css_online = perf_cgroup_css_online, 14208 .attach = perf_cgroup_attach, 14209 /* 14210 * Implicitly enable on dfl hierarchy so that perf events can 14211 * always be filtered by cgroup2 path as long as perf_event 14212 * controller is not mounted on a legacy hierarchy. 14213 */ 14214 .implicit_on_dfl = true, 14215 .threaded = true, 14216 }; 14217 #endif /* CONFIG_CGROUP_PERF */ 14218 14219 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14220