1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type); 578 579 static void update_context_time(struct perf_event_context *ctx); 580 static u64 perf_event_time(struct perf_event *event); 581 582 void __weak perf_event_print_debug(void) { } 583 584 static inline u64 perf_clock(void) 585 { 586 return local_clock(); 587 } 588 589 static inline u64 perf_event_clock(struct perf_event *event) 590 { 591 return event->clock(); 592 } 593 594 /* 595 * State based event timekeeping... 596 * 597 * The basic idea is to use event->state to determine which (if any) time 598 * fields to increment with the current delta. This means we only need to 599 * update timestamps when we change state or when they are explicitly requested 600 * (read). 601 * 602 * Event groups make things a little more complicated, but not terribly so. The 603 * rules for a group are that if the group leader is OFF the entire group is 604 * OFF, irrespecive of what the group member states are. This results in 605 * __perf_effective_state(). 606 * 607 * A futher ramification is that when a group leader flips between OFF and 608 * !OFF, we need to update all group member times. 609 * 610 * 611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 612 * need to make sure the relevant context time is updated before we try and 613 * update our timestamps. 614 */ 615 616 static __always_inline enum perf_event_state 617 __perf_effective_state(struct perf_event *event) 618 { 619 struct perf_event *leader = event->group_leader; 620 621 if (leader->state <= PERF_EVENT_STATE_OFF) 622 return leader->state; 623 624 return event->state; 625 } 626 627 static __always_inline void 628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 629 { 630 enum perf_event_state state = __perf_effective_state(event); 631 u64 delta = now - event->tstamp; 632 633 *enabled = event->total_time_enabled; 634 if (state >= PERF_EVENT_STATE_INACTIVE) 635 *enabled += delta; 636 637 *running = event->total_time_running; 638 if (state >= PERF_EVENT_STATE_ACTIVE) 639 *running += delta; 640 } 641 642 static void perf_event_update_time(struct perf_event *event) 643 { 644 u64 now = perf_event_time(event); 645 646 __perf_update_times(event, now, &event->total_time_enabled, 647 &event->total_time_running); 648 event->tstamp = now; 649 } 650 651 static void perf_event_update_sibling_time(struct perf_event *leader) 652 { 653 struct perf_event *sibling; 654 655 for_each_sibling_event(sibling, leader) 656 perf_event_update_time(sibling); 657 } 658 659 static void 660 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 661 { 662 if (event->state == state) 663 return; 664 665 perf_event_update_time(event); 666 /* 667 * If a group leader gets enabled/disabled all its siblings 668 * are affected too. 669 */ 670 if ((event->state < 0) ^ (state < 0)) 671 perf_event_update_sibling_time(event); 672 673 WRITE_ONCE(event->state, state); 674 } 675 676 /* 677 * UP store-release, load-acquire 678 */ 679 680 #define __store_release(ptr, val) \ 681 do { \ 682 barrier(); \ 683 WRITE_ONCE(*(ptr), (val)); \ 684 } while (0) 685 686 #define __load_acquire(ptr) \ 687 ({ \ 688 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 689 barrier(); \ 690 ___p; \ 691 }) 692 693 #ifdef CONFIG_CGROUP_PERF 694 695 static inline bool 696 perf_cgroup_match(struct perf_event *event) 697 { 698 struct perf_event_context *ctx = event->ctx; 699 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 700 701 /* @event doesn't care about cgroup */ 702 if (!event->cgrp) 703 return true; 704 705 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 706 if (!cpuctx->cgrp) 707 return false; 708 709 /* 710 * Cgroup scoping is recursive. An event enabled for a cgroup is 711 * also enabled for all its descendant cgroups. If @cpuctx's 712 * cgroup is a descendant of @event's (the test covers identity 713 * case), it's a match. 714 */ 715 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 716 event->cgrp->css.cgroup); 717 } 718 719 static inline void perf_detach_cgroup(struct perf_event *event) 720 { 721 css_put(&event->cgrp->css); 722 event->cgrp = NULL; 723 } 724 725 static inline int is_cgroup_event(struct perf_event *event) 726 { 727 return event->cgrp != NULL; 728 } 729 730 static inline u64 perf_cgroup_event_time(struct perf_event *event) 731 { 732 struct perf_cgroup_info *t; 733 734 t = per_cpu_ptr(event->cgrp->info, event->cpu); 735 return t->time; 736 } 737 738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 739 { 740 struct perf_cgroup_info *t; 741 742 t = per_cpu_ptr(event->cgrp->info, event->cpu); 743 if (!__load_acquire(&t->active)) 744 return t->time; 745 now += READ_ONCE(t->timeoffset); 746 return now; 747 } 748 749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 750 { 751 if (adv) 752 info->time += now - info->timestamp; 753 info->timestamp = now; 754 /* 755 * see update_context_time() 756 */ 757 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 758 } 759 760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 761 { 762 struct perf_cgroup *cgrp = cpuctx->cgrp; 763 struct cgroup_subsys_state *css; 764 struct perf_cgroup_info *info; 765 766 if (cgrp) { 767 u64 now = perf_clock(); 768 769 for (css = &cgrp->css; css; css = css->parent) { 770 cgrp = container_of(css, struct perf_cgroup, css); 771 info = this_cpu_ptr(cgrp->info); 772 773 __update_cgrp_time(info, now, true); 774 if (final) 775 __store_release(&info->active, 0); 776 } 777 } 778 } 779 780 static inline void update_cgrp_time_from_event(struct perf_event *event) 781 { 782 struct perf_cgroup_info *info; 783 784 /* 785 * ensure we access cgroup data only when needed and 786 * when we know the cgroup is pinned (css_get) 787 */ 788 if (!is_cgroup_event(event)) 789 return; 790 791 info = this_cpu_ptr(event->cgrp->info); 792 /* 793 * Do not update time when cgroup is not active 794 */ 795 if (info->active) 796 __update_cgrp_time(info, perf_clock(), true); 797 } 798 799 static inline void 800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 801 { 802 struct perf_event_context *ctx = &cpuctx->ctx; 803 struct perf_cgroup *cgrp = cpuctx->cgrp; 804 struct perf_cgroup_info *info; 805 struct cgroup_subsys_state *css; 806 807 /* 808 * ctx->lock held by caller 809 * ensure we do not access cgroup data 810 * unless we have the cgroup pinned (css_get) 811 */ 812 if (!cgrp) 813 return; 814 815 WARN_ON_ONCE(!ctx->nr_cgroups); 816 817 for (css = &cgrp->css; css; css = css->parent) { 818 cgrp = container_of(css, struct perf_cgroup, css); 819 info = this_cpu_ptr(cgrp->info); 820 __update_cgrp_time(info, ctx->timestamp, false); 821 __store_release(&info->active, 1); 822 } 823 } 824 825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 826 827 /* 828 * reschedule events based on the cgroup constraint of task. 829 */ 830 static void perf_cgroup_switch(struct task_struct *task) 831 { 832 struct perf_cgroup *cgrp; 833 struct perf_cpu_context *cpuctx, *tmp; 834 struct list_head *list; 835 unsigned long flags; 836 837 /* 838 * Disable interrupts and preemption to avoid this CPU's 839 * cgrp_cpuctx_entry to change under us. 840 */ 841 local_irq_save(flags); 842 843 cgrp = perf_cgroup_from_task(task, NULL); 844 845 list = this_cpu_ptr(&cgrp_cpuctx_list); 846 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) { 847 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 848 if (READ_ONCE(cpuctx->cgrp) == cgrp) 849 continue; 850 851 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 852 perf_pmu_disable(cpuctx->ctx.pmu); 853 854 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 855 /* 856 * must not be done before ctxswout due 857 * to update_cgrp_time_from_cpuctx() in 858 * ctx_sched_out() 859 */ 860 cpuctx->cgrp = cgrp; 861 /* 862 * set cgrp before ctxsw in to allow 863 * perf_cgroup_set_timestamp() in ctx_sched_in() 864 * to not have to pass task around 865 */ 866 cpu_ctx_sched_in(cpuctx, EVENT_ALL); 867 868 perf_pmu_enable(cpuctx->ctx.pmu); 869 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 870 } 871 872 local_irq_restore(flags); 873 } 874 875 static int perf_cgroup_ensure_storage(struct perf_event *event, 876 struct cgroup_subsys_state *css) 877 { 878 struct perf_cpu_context *cpuctx; 879 struct perf_event **storage; 880 int cpu, heap_size, ret = 0; 881 882 /* 883 * Allow storage to have sufficent space for an iterator for each 884 * possibly nested cgroup plus an iterator for events with no cgroup. 885 */ 886 for (heap_size = 1; css; css = css->parent) 887 heap_size++; 888 889 for_each_possible_cpu(cpu) { 890 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 891 if (heap_size <= cpuctx->heap_size) 892 continue; 893 894 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 895 GFP_KERNEL, cpu_to_node(cpu)); 896 if (!storage) { 897 ret = -ENOMEM; 898 break; 899 } 900 901 raw_spin_lock_irq(&cpuctx->ctx.lock); 902 if (cpuctx->heap_size < heap_size) { 903 swap(cpuctx->heap, storage); 904 if (storage == cpuctx->heap_default) 905 storage = NULL; 906 cpuctx->heap_size = heap_size; 907 } 908 raw_spin_unlock_irq(&cpuctx->ctx.lock); 909 910 kfree(storage); 911 } 912 913 return ret; 914 } 915 916 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 917 struct perf_event_attr *attr, 918 struct perf_event *group_leader) 919 { 920 struct perf_cgroup *cgrp; 921 struct cgroup_subsys_state *css; 922 struct fd f = fdget(fd); 923 int ret = 0; 924 925 if (!f.file) 926 return -EBADF; 927 928 css = css_tryget_online_from_dir(f.file->f_path.dentry, 929 &perf_event_cgrp_subsys); 930 if (IS_ERR(css)) { 931 ret = PTR_ERR(css); 932 goto out; 933 } 934 935 ret = perf_cgroup_ensure_storage(event, css); 936 if (ret) 937 goto out; 938 939 cgrp = container_of(css, struct perf_cgroup, css); 940 event->cgrp = cgrp; 941 942 /* 943 * all events in a group must monitor 944 * the same cgroup because a task belongs 945 * to only one perf cgroup at a time 946 */ 947 if (group_leader && group_leader->cgrp != cgrp) { 948 perf_detach_cgroup(event); 949 ret = -EINVAL; 950 } 951 out: 952 fdput(f); 953 return ret; 954 } 955 956 static inline void 957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 958 { 959 struct perf_cpu_context *cpuctx; 960 961 if (!is_cgroup_event(event)) 962 return; 963 964 /* 965 * Because cgroup events are always per-cpu events, 966 * @ctx == &cpuctx->ctx. 967 */ 968 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 969 970 if (ctx->nr_cgroups++) 971 return; 972 973 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 974 list_add(&cpuctx->cgrp_cpuctx_entry, 975 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 976 } 977 978 static inline void 979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 980 { 981 struct perf_cpu_context *cpuctx; 982 983 if (!is_cgroup_event(event)) 984 return; 985 986 /* 987 * Because cgroup events are always per-cpu events, 988 * @ctx == &cpuctx->ctx. 989 */ 990 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 991 992 if (--ctx->nr_cgroups) 993 return; 994 995 cpuctx->cgrp = NULL; 996 list_del(&cpuctx->cgrp_cpuctx_entry); 997 } 998 999 #else /* !CONFIG_CGROUP_PERF */ 1000 1001 static inline bool 1002 perf_cgroup_match(struct perf_event *event) 1003 { 1004 return true; 1005 } 1006 1007 static inline void perf_detach_cgroup(struct perf_event *event) 1008 {} 1009 1010 static inline int is_cgroup_event(struct perf_event *event) 1011 { 1012 return 0; 1013 } 1014 1015 static inline void update_cgrp_time_from_event(struct perf_event *event) 1016 { 1017 } 1018 1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1020 bool final) 1021 { 1022 } 1023 1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1025 struct perf_event_attr *attr, 1026 struct perf_event *group_leader) 1027 { 1028 return -EINVAL; 1029 } 1030 1031 static inline void 1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1033 { 1034 } 1035 1036 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1037 { 1038 return 0; 1039 } 1040 1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1042 { 1043 return 0; 1044 } 1045 1046 static inline void 1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1048 { 1049 } 1050 1051 static inline void 1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1053 { 1054 } 1055 1056 static void perf_cgroup_switch(struct task_struct *task) 1057 { 1058 } 1059 #endif 1060 1061 /* 1062 * set default to be dependent on timer tick just 1063 * like original code 1064 */ 1065 #define PERF_CPU_HRTIMER (1000 / HZ) 1066 /* 1067 * function must be called with interrupts disabled 1068 */ 1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1070 { 1071 struct perf_cpu_context *cpuctx; 1072 bool rotations; 1073 1074 lockdep_assert_irqs_disabled(); 1075 1076 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1077 rotations = perf_rotate_context(cpuctx); 1078 1079 raw_spin_lock(&cpuctx->hrtimer_lock); 1080 if (rotations) 1081 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1082 else 1083 cpuctx->hrtimer_active = 0; 1084 raw_spin_unlock(&cpuctx->hrtimer_lock); 1085 1086 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1087 } 1088 1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1090 { 1091 struct hrtimer *timer = &cpuctx->hrtimer; 1092 struct pmu *pmu = cpuctx->ctx.pmu; 1093 u64 interval; 1094 1095 /* no multiplexing needed for SW PMU */ 1096 if (pmu->task_ctx_nr == perf_sw_context) 1097 return; 1098 1099 /* 1100 * check default is sane, if not set then force to 1101 * default interval (1/tick) 1102 */ 1103 interval = pmu->hrtimer_interval_ms; 1104 if (interval < 1) 1105 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1106 1107 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1108 1109 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1110 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1111 timer->function = perf_mux_hrtimer_handler; 1112 } 1113 1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1115 { 1116 struct hrtimer *timer = &cpuctx->hrtimer; 1117 struct pmu *pmu = cpuctx->ctx.pmu; 1118 unsigned long flags; 1119 1120 /* not for SW PMU */ 1121 if (pmu->task_ctx_nr == perf_sw_context) 1122 return 0; 1123 1124 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1125 if (!cpuctx->hrtimer_active) { 1126 cpuctx->hrtimer_active = 1; 1127 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1129 } 1130 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1131 1132 return 0; 1133 } 1134 1135 void perf_pmu_disable(struct pmu *pmu) 1136 { 1137 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1138 if (!(*count)++) 1139 pmu->pmu_disable(pmu); 1140 } 1141 1142 void perf_pmu_enable(struct pmu *pmu) 1143 { 1144 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1145 if (!--(*count)) 1146 pmu->pmu_enable(pmu); 1147 } 1148 1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1150 1151 /* 1152 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1153 * perf_event_task_tick() are fully serialized because they're strictly cpu 1154 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1155 * disabled, while perf_event_task_tick is called from IRQ context. 1156 */ 1157 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1158 { 1159 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1160 1161 lockdep_assert_irqs_disabled(); 1162 1163 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1164 1165 list_add(&ctx->active_ctx_list, head); 1166 } 1167 1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1169 { 1170 lockdep_assert_irqs_disabled(); 1171 1172 WARN_ON(list_empty(&ctx->active_ctx_list)); 1173 1174 list_del_init(&ctx->active_ctx_list); 1175 } 1176 1177 static void get_ctx(struct perf_event_context *ctx) 1178 { 1179 refcount_inc(&ctx->refcount); 1180 } 1181 1182 static void *alloc_task_ctx_data(struct pmu *pmu) 1183 { 1184 if (pmu->task_ctx_cache) 1185 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1186 1187 return NULL; 1188 } 1189 1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1191 { 1192 if (pmu->task_ctx_cache && task_ctx_data) 1193 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1194 } 1195 1196 static void free_ctx(struct rcu_head *head) 1197 { 1198 struct perf_event_context *ctx; 1199 1200 ctx = container_of(head, struct perf_event_context, rcu_head); 1201 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1202 kfree(ctx); 1203 } 1204 1205 static void put_ctx(struct perf_event_context *ctx) 1206 { 1207 if (refcount_dec_and_test(&ctx->refcount)) { 1208 if (ctx->parent_ctx) 1209 put_ctx(ctx->parent_ctx); 1210 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1211 put_task_struct(ctx->task); 1212 call_rcu(&ctx->rcu_head, free_ctx); 1213 } 1214 } 1215 1216 /* 1217 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1218 * perf_pmu_migrate_context() we need some magic. 1219 * 1220 * Those places that change perf_event::ctx will hold both 1221 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1222 * 1223 * Lock ordering is by mutex address. There are two other sites where 1224 * perf_event_context::mutex nests and those are: 1225 * 1226 * - perf_event_exit_task_context() [ child , 0 ] 1227 * perf_event_exit_event() 1228 * put_event() [ parent, 1 ] 1229 * 1230 * - perf_event_init_context() [ parent, 0 ] 1231 * inherit_task_group() 1232 * inherit_group() 1233 * inherit_event() 1234 * perf_event_alloc() 1235 * perf_init_event() 1236 * perf_try_init_event() [ child , 1 ] 1237 * 1238 * While it appears there is an obvious deadlock here -- the parent and child 1239 * nesting levels are inverted between the two. This is in fact safe because 1240 * life-time rules separate them. That is an exiting task cannot fork, and a 1241 * spawning task cannot (yet) exit. 1242 * 1243 * But remember that these are parent<->child context relations, and 1244 * migration does not affect children, therefore these two orderings should not 1245 * interact. 1246 * 1247 * The change in perf_event::ctx does not affect children (as claimed above) 1248 * because the sys_perf_event_open() case will install a new event and break 1249 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1250 * concerned with cpuctx and that doesn't have children. 1251 * 1252 * The places that change perf_event::ctx will issue: 1253 * 1254 * perf_remove_from_context(); 1255 * synchronize_rcu(); 1256 * perf_install_in_context(); 1257 * 1258 * to affect the change. The remove_from_context() + synchronize_rcu() should 1259 * quiesce the event, after which we can install it in the new location. This 1260 * means that only external vectors (perf_fops, prctl) can perturb the event 1261 * while in transit. Therefore all such accessors should also acquire 1262 * perf_event_context::mutex to serialize against this. 1263 * 1264 * However; because event->ctx can change while we're waiting to acquire 1265 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1266 * function. 1267 * 1268 * Lock order: 1269 * exec_update_lock 1270 * task_struct::perf_event_mutex 1271 * perf_event_context::mutex 1272 * perf_event::child_mutex; 1273 * perf_event_context::lock 1274 * perf_event::mmap_mutex 1275 * mmap_lock 1276 * perf_addr_filters_head::lock 1277 * 1278 * cpu_hotplug_lock 1279 * pmus_lock 1280 * cpuctx->mutex / perf_event_context::mutex 1281 */ 1282 static struct perf_event_context * 1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1284 { 1285 struct perf_event_context *ctx; 1286 1287 again: 1288 rcu_read_lock(); 1289 ctx = READ_ONCE(event->ctx); 1290 if (!refcount_inc_not_zero(&ctx->refcount)) { 1291 rcu_read_unlock(); 1292 goto again; 1293 } 1294 rcu_read_unlock(); 1295 1296 mutex_lock_nested(&ctx->mutex, nesting); 1297 if (event->ctx != ctx) { 1298 mutex_unlock(&ctx->mutex); 1299 put_ctx(ctx); 1300 goto again; 1301 } 1302 1303 return ctx; 1304 } 1305 1306 static inline struct perf_event_context * 1307 perf_event_ctx_lock(struct perf_event *event) 1308 { 1309 return perf_event_ctx_lock_nested(event, 0); 1310 } 1311 1312 static void perf_event_ctx_unlock(struct perf_event *event, 1313 struct perf_event_context *ctx) 1314 { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 } 1318 1319 /* 1320 * This must be done under the ctx->lock, such as to serialize against 1321 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1322 * calling scheduler related locks and ctx->lock nests inside those. 1323 */ 1324 static __must_check struct perf_event_context * 1325 unclone_ctx(struct perf_event_context *ctx) 1326 { 1327 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1328 1329 lockdep_assert_held(&ctx->lock); 1330 1331 if (parent_ctx) 1332 ctx->parent_ctx = NULL; 1333 ctx->generation++; 1334 1335 return parent_ctx; 1336 } 1337 1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1339 enum pid_type type) 1340 { 1341 u32 nr; 1342 /* 1343 * only top level events have the pid namespace they were created in 1344 */ 1345 if (event->parent) 1346 event = event->parent; 1347 1348 nr = __task_pid_nr_ns(p, type, event->ns); 1349 /* avoid -1 if it is idle thread or runs in another ns */ 1350 if (!nr && !pid_alive(p)) 1351 nr = -1; 1352 return nr; 1353 } 1354 1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1356 { 1357 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1358 } 1359 1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1361 { 1362 return perf_event_pid_type(event, p, PIDTYPE_PID); 1363 } 1364 1365 /* 1366 * If we inherit events we want to return the parent event id 1367 * to userspace. 1368 */ 1369 static u64 primary_event_id(struct perf_event *event) 1370 { 1371 u64 id = event->id; 1372 1373 if (event->parent) 1374 id = event->parent->id; 1375 1376 return id; 1377 } 1378 1379 /* 1380 * Get the perf_event_context for a task and lock it. 1381 * 1382 * This has to cope with the fact that until it is locked, 1383 * the context could get moved to another task. 1384 */ 1385 static struct perf_event_context * 1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1387 { 1388 struct perf_event_context *ctx; 1389 1390 retry: 1391 /* 1392 * One of the few rules of preemptible RCU is that one cannot do 1393 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1394 * part of the read side critical section was irqs-enabled -- see 1395 * rcu_read_unlock_special(). 1396 * 1397 * Since ctx->lock nests under rq->lock we must ensure the entire read 1398 * side critical section has interrupts disabled. 1399 */ 1400 local_irq_save(*flags); 1401 rcu_read_lock(); 1402 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1403 if (ctx) { 1404 /* 1405 * If this context is a clone of another, it might 1406 * get swapped for another underneath us by 1407 * perf_event_task_sched_out, though the 1408 * rcu_read_lock() protects us from any context 1409 * getting freed. Lock the context and check if it 1410 * got swapped before we could get the lock, and retry 1411 * if so. If we locked the right context, then it 1412 * can't get swapped on us any more. 1413 */ 1414 raw_spin_lock(&ctx->lock); 1415 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1416 raw_spin_unlock(&ctx->lock); 1417 rcu_read_unlock(); 1418 local_irq_restore(*flags); 1419 goto retry; 1420 } 1421 1422 if (ctx->task == TASK_TOMBSTONE || 1423 !refcount_inc_not_zero(&ctx->refcount)) { 1424 raw_spin_unlock(&ctx->lock); 1425 ctx = NULL; 1426 } else { 1427 WARN_ON_ONCE(ctx->task != task); 1428 } 1429 } 1430 rcu_read_unlock(); 1431 if (!ctx) 1432 local_irq_restore(*flags); 1433 return ctx; 1434 } 1435 1436 /* 1437 * Get the context for a task and increment its pin_count so it 1438 * can't get swapped to another task. This also increments its 1439 * reference count so that the context can't get freed. 1440 */ 1441 static struct perf_event_context * 1442 perf_pin_task_context(struct task_struct *task, int ctxn) 1443 { 1444 struct perf_event_context *ctx; 1445 unsigned long flags; 1446 1447 ctx = perf_lock_task_context(task, ctxn, &flags); 1448 if (ctx) { 1449 ++ctx->pin_count; 1450 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1451 } 1452 return ctx; 1453 } 1454 1455 static void perf_unpin_context(struct perf_event_context *ctx) 1456 { 1457 unsigned long flags; 1458 1459 raw_spin_lock_irqsave(&ctx->lock, flags); 1460 --ctx->pin_count; 1461 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1462 } 1463 1464 /* 1465 * Update the record of the current time in a context. 1466 */ 1467 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1468 { 1469 u64 now = perf_clock(); 1470 1471 if (adv) 1472 ctx->time += now - ctx->timestamp; 1473 ctx->timestamp = now; 1474 1475 /* 1476 * The above: time' = time + (now - timestamp), can be re-arranged 1477 * into: time` = now + (time - timestamp), which gives a single value 1478 * offset to compute future time without locks on. 1479 * 1480 * See perf_event_time_now(), which can be used from NMI context where 1481 * it's (obviously) not possible to acquire ctx->lock in order to read 1482 * both the above values in a consistent manner. 1483 */ 1484 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1485 } 1486 1487 static void update_context_time(struct perf_event_context *ctx) 1488 { 1489 __update_context_time(ctx, true); 1490 } 1491 1492 static u64 perf_event_time(struct perf_event *event) 1493 { 1494 struct perf_event_context *ctx = event->ctx; 1495 1496 if (unlikely(!ctx)) 1497 return 0; 1498 1499 if (is_cgroup_event(event)) 1500 return perf_cgroup_event_time(event); 1501 1502 return ctx->time; 1503 } 1504 1505 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1506 { 1507 struct perf_event_context *ctx = event->ctx; 1508 1509 if (unlikely(!ctx)) 1510 return 0; 1511 1512 if (is_cgroup_event(event)) 1513 return perf_cgroup_event_time_now(event, now); 1514 1515 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1516 return ctx->time; 1517 1518 now += READ_ONCE(ctx->timeoffset); 1519 return now; 1520 } 1521 1522 static enum event_type_t get_event_type(struct perf_event *event) 1523 { 1524 struct perf_event_context *ctx = event->ctx; 1525 enum event_type_t event_type; 1526 1527 lockdep_assert_held(&ctx->lock); 1528 1529 /* 1530 * It's 'group type', really, because if our group leader is 1531 * pinned, so are we. 1532 */ 1533 if (event->group_leader != event) 1534 event = event->group_leader; 1535 1536 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1537 if (!ctx->task) 1538 event_type |= EVENT_CPU; 1539 1540 return event_type; 1541 } 1542 1543 /* 1544 * Helper function to initialize event group nodes. 1545 */ 1546 static void init_event_group(struct perf_event *event) 1547 { 1548 RB_CLEAR_NODE(&event->group_node); 1549 event->group_index = 0; 1550 } 1551 1552 /* 1553 * Extract pinned or flexible groups from the context 1554 * based on event attrs bits. 1555 */ 1556 static struct perf_event_groups * 1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1558 { 1559 if (event->attr.pinned) 1560 return &ctx->pinned_groups; 1561 else 1562 return &ctx->flexible_groups; 1563 } 1564 1565 /* 1566 * Helper function to initializes perf_event_group trees. 1567 */ 1568 static void perf_event_groups_init(struct perf_event_groups *groups) 1569 { 1570 groups->tree = RB_ROOT; 1571 groups->index = 0; 1572 } 1573 1574 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1575 { 1576 struct cgroup *cgroup = NULL; 1577 1578 #ifdef CONFIG_CGROUP_PERF 1579 if (event->cgrp) 1580 cgroup = event->cgrp->css.cgroup; 1581 #endif 1582 1583 return cgroup; 1584 } 1585 1586 /* 1587 * Compare function for event groups; 1588 * 1589 * Implements complex key that first sorts by CPU and then by virtual index 1590 * which provides ordering when rotating groups for the same CPU. 1591 */ 1592 static __always_inline int 1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1594 const u64 left_group_index, const struct perf_event *right) 1595 { 1596 if (left_cpu < right->cpu) 1597 return -1; 1598 if (left_cpu > right->cpu) 1599 return 1; 1600 1601 #ifdef CONFIG_CGROUP_PERF 1602 { 1603 const struct cgroup *right_cgroup = event_cgroup(right); 1604 1605 if (left_cgroup != right_cgroup) { 1606 if (!left_cgroup) { 1607 /* 1608 * Left has no cgroup but right does, no 1609 * cgroups come first. 1610 */ 1611 return -1; 1612 } 1613 if (!right_cgroup) { 1614 /* 1615 * Right has no cgroup but left does, no 1616 * cgroups come first. 1617 */ 1618 return 1; 1619 } 1620 /* Two dissimilar cgroups, order by id. */ 1621 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1622 return -1; 1623 1624 return 1; 1625 } 1626 } 1627 #endif 1628 1629 if (left_group_index < right->group_index) 1630 return -1; 1631 if (left_group_index > right->group_index) 1632 return 1; 1633 1634 return 0; 1635 } 1636 1637 #define __node_2_pe(node) \ 1638 rb_entry((node), struct perf_event, group_node) 1639 1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1641 { 1642 struct perf_event *e = __node_2_pe(a); 1643 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1644 __node_2_pe(b)) < 0; 1645 } 1646 1647 struct __group_key { 1648 int cpu; 1649 struct cgroup *cgroup; 1650 }; 1651 1652 static inline int __group_cmp(const void *key, const struct rb_node *node) 1653 { 1654 const struct __group_key *a = key; 1655 const struct perf_event *b = __node_2_pe(node); 1656 1657 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1658 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1659 } 1660 1661 /* 1662 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1663 * key (see perf_event_groups_less). This places it last inside the CPU 1664 * subtree. 1665 */ 1666 static void 1667 perf_event_groups_insert(struct perf_event_groups *groups, 1668 struct perf_event *event) 1669 { 1670 event->group_index = ++groups->index; 1671 1672 rb_add(&event->group_node, &groups->tree, __group_less); 1673 } 1674 1675 /* 1676 * Helper function to insert event into the pinned or flexible groups. 1677 */ 1678 static void 1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1680 { 1681 struct perf_event_groups *groups; 1682 1683 groups = get_event_groups(event, ctx); 1684 perf_event_groups_insert(groups, event); 1685 } 1686 1687 /* 1688 * Delete a group from a tree. 1689 */ 1690 static void 1691 perf_event_groups_delete(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1695 RB_EMPTY_ROOT(&groups->tree)); 1696 1697 rb_erase(&event->group_node, &groups->tree); 1698 init_event_group(event); 1699 } 1700 1701 /* 1702 * Helper function to delete event from its groups. 1703 */ 1704 static void 1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1706 { 1707 struct perf_event_groups *groups; 1708 1709 groups = get_event_groups(event, ctx); 1710 perf_event_groups_delete(groups, event); 1711 } 1712 1713 /* 1714 * Get the leftmost event in the cpu/cgroup subtree. 1715 */ 1716 static struct perf_event * 1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1718 struct cgroup *cgrp) 1719 { 1720 struct __group_key key = { 1721 .cpu = cpu, 1722 .cgroup = cgrp, 1723 }; 1724 struct rb_node *node; 1725 1726 node = rb_find_first(&key, &groups->tree, __group_cmp); 1727 if (node) 1728 return __node_2_pe(node); 1729 1730 return NULL; 1731 } 1732 1733 /* 1734 * Like rb_entry_next_safe() for the @cpu subtree. 1735 */ 1736 static struct perf_event * 1737 perf_event_groups_next(struct perf_event *event) 1738 { 1739 struct __group_key key = { 1740 .cpu = event->cpu, 1741 .cgroup = event_cgroup(event), 1742 }; 1743 struct rb_node *next; 1744 1745 next = rb_next_match(&key, &event->group_node, __group_cmp); 1746 if (next) 1747 return __node_2_pe(next); 1748 1749 return NULL; 1750 } 1751 1752 /* 1753 * Iterate through the whole groups tree. 1754 */ 1755 #define perf_event_groups_for_each(event, groups) \ 1756 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1757 typeof(*event), group_node); event; \ 1758 event = rb_entry_safe(rb_next(&event->group_node), \ 1759 typeof(*event), group_node)) 1760 1761 /* 1762 * Add an event from the lists for its context. 1763 * Must be called with ctx->mutex and ctx->lock held. 1764 */ 1765 static void 1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1767 { 1768 lockdep_assert_held(&ctx->lock); 1769 1770 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1771 event->attach_state |= PERF_ATTACH_CONTEXT; 1772 1773 event->tstamp = perf_event_time(event); 1774 1775 /* 1776 * If we're a stand alone event or group leader, we go to the context 1777 * list, group events are kept attached to the group so that 1778 * perf_group_detach can, at all times, locate all siblings. 1779 */ 1780 if (event->group_leader == event) { 1781 event->group_caps = event->event_caps; 1782 add_event_to_groups(event, ctx); 1783 } 1784 1785 list_add_rcu(&event->event_entry, &ctx->event_list); 1786 ctx->nr_events++; 1787 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1788 ctx->nr_user++; 1789 if (event->attr.inherit_stat) 1790 ctx->nr_stat++; 1791 1792 if (event->state > PERF_EVENT_STATE_OFF) 1793 perf_cgroup_event_enable(event, ctx); 1794 1795 ctx->generation++; 1796 } 1797 1798 /* 1799 * Initialize event state based on the perf_event_attr::disabled. 1800 */ 1801 static inline void perf_event__state_init(struct perf_event *event) 1802 { 1803 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1804 PERF_EVENT_STATE_INACTIVE; 1805 } 1806 1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1808 { 1809 int entry = sizeof(u64); /* value */ 1810 int size = 0; 1811 int nr = 1; 1812 1813 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1814 size += sizeof(u64); 1815 1816 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1817 size += sizeof(u64); 1818 1819 if (event->attr.read_format & PERF_FORMAT_ID) 1820 entry += sizeof(u64); 1821 1822 if (event->attr.read_format & PERF_FORMAT_LOST) 1823 entry += sizeof(u64); 1824 1825 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1826 nr += nr_siblings; 1827 size += sizeof(u64); 1828 } 1829 1830 size += entry * nr; 1831 event->read_size = size; 1832 } 1833 1834 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1835 { 1836 struct perf_sample_data *data; 1837 u16 size = 0; 1838 1839 if (sample_type & PERF_SAMPLE_IP) 1840 size += sizeof(data->ip); 1841 1842 if (sample_type & PERF_SAMPLE_ADDR) 1843 size += sizeof(data->addr); 1844 1845 if (sample_type & PERF_SAMPLE_PERIOD) 1846 size += sizeof(data->period); 1847 1848 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1849 size += sizeof(data->weight.full); 1850 1851 if (sample_type & PERF_SAMPLE_READ) 1852 size += event->read_size; 1853 1854 if (sample_type & PERF_SAMPLE_DATA_SRC) 1855 size += sizeof(data->data_src.val); 1856 1857 if (sample_type & PERF_SAMPLE_TRANSACTION) 1858 size += sizeof(data->txn); 1859 1860 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1861 size += sizeof(data->phys_addr); 1862 1863 if (sample_type & PERF_SAMPLE_CGROUP) 1864 size += sizeof(data->cgroup); 1865 1866 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1867 size += sizeof(data->data_page_size); 1868 1869 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1870 size += sizeof(data->code_page_size); 1871 1872 event->header_size = size; 1873 } 1874 1875 /* 1876 * Called at perf_event creation and when events are attached/detached from a 1877 * group. 1878 */ 1879 static void perf_event__header_size(struct perf_event *event) 1880 { 1881 __perf_event_read_size(event, 1882 event->group_leader->nr_siblings); 1883 __perf_event_header_size(event, event->attr.sample_type); 1884 } 1885 1886 static void perf_event__id_header_size(struct perf_event *event) 1887 { 1888 struct perf_sample_data *data; 1889 u64 sample_type = event->attr.sample_type; 1890 u16 size = 0; 1891 1892 if (sample_type & PERF_SAMPLE_TID) 1893 size += sizeof(data->tid_entry); 1894 1895 if (sample_type & PERF_SAMPLE_TIME) 1896 size += sizeof(data->time); 1897 1898 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1899 size += sizeof(data->id); 1900 1901 if (sample_type & PERF_SAMPLE_ID) 1902 size += sizeof(data->id); 1903 1904 if (sample_type & PERF_SAMPLE_STREAM_ID) 1905 size += sizeof(data->stream_id); 1906 1907 if (sample_type & PERF_SAMPLE_CPU) 1908 size += sizeof(data->cpu_entry); 1909 1910 event->id_header_size = size; 1911 } 1912 1913 static bool perf_event_validate_size(struct perf_event *event) 1914 { 1915 /* 1916 * The values computed here will be over-written when we actually 1917 * attach the event. 1918 */ 1919 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1920 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1921 perf_event__id_header_size(event); 1922 1923 /* 1924 * Sum the lot; should not exceed the 64k limit we have on records. 1925 * Conservative limit to allow for callchains and other variable fields. 1926 */ 1927 if (event->read_size + event->header_size + 1928 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1929 return false; 1930 1931 return true; 1932 } 1933 1934 static void perf_group_attach(struct perf_event *event) 1935 { 1936 struct perf_event *group_leader = event->group_leader, *pos; 1937 1938 lockdep_assert_held(&event->ctx->lock); 1939 1940 /* 1941 * We can have double attach due to group movement in perf_event_open. 1942 */ 1943 if (event->attach_state & PERF_ATTACH_GROUP) 1944 return; 1945 1946 event->attach_state |= PERF_ATTACH_GROUP; 1947 1948 if (group_leader == event) 1949 return; 1950 1951 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1952 1953 group_leader->group_caps &= event->event_caps; 1954 1955 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1956 group_leader->nr_siblings++; 1957 1958 perf_event__header_size(group_leader); 1959 1960 for_each_sibling_event(pos, group_leader) 1961 perf_event__header_size(pos); 1962 } 1963 1964 /* 1965 * Remove an event from the lists for its context. 1966 * Must be called with ctx->mutex and ctx->lock held. 1967 */ 1968 static void 1969 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1970 { 1971 WARN_ON_ONCE(event->ctx != ctx); 1972 lockdep_assert_held(&ctx->lock); 1973 1974 /* 1975 * We can have double detach due to exit/hot-unplug + close. 1976 */ 1977 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1978 return; 1979 1980 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1981 1982 ctx->nr_events--; 1983 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1984 ctx->nr_user--; 1985 if (event->attr.inherit_stat) 1986 ctx->nr_stat--; 1987 1988 list_del_rcu(&event->event_entry); 1989 1990 if (event->group_leader == event) 1991 del_event_from_groups(event, ctx); 1992 1993 /* 1994 * If event was in error state, then keep it 1995 * that way, otherwise bogus counts will be 1996 * returned on read(). The only way to get out 1997 * of error state is by explicit re-enabling 1998 * of the event 1999 */ 2000 if (event->state > PERF_EVENT_STATE_OFF) { 2001 perf_cgroup_event_disable(event, ctx); 2002 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2003 } 2004 2005 ctx->generation++; 2006 } 2007 2008 static int 2009 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2010 { 2011 if (!has_aux(aux_event)) 2012 return 0; 2013 2014 if (!event->pmu->aux_output_match) 2015 return 0; 2016 2017 return event->pmu->aux_output_match(aux_event); 2018 } 2019 2020 static void put_event(struct perf_event *event); 2021 static void event_sched_out(struct perf_event *event, 2022 struct perf_cpu_context *cpuctx, 2023 struct perf_event_context *ctx); 2024 2025 static void perf_put_aux_event(struct perf_event *event) 2026 { 2027 struct perf_event_context *ctx = event->ctx; 2028 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2029 struct perf_event *iter; 2030 2031 /* 2032 * If event uses aux_event tear down the link 2033 */ 2034 if (event->aux_event) { 2035 iter = event->aux_event; 2036 event->aux_event = NULL; 2037 put_event(iter); 2038 return; 2039 } 2040 2041 /* 2042 * If the event is an aux_event, tear down all links to 2043 * it from other events. 2044 */ 2045 for_each_sibling_event(iter, event->group_leader) { 2046 if (iter->aux_event != event) 2047 continue; 2048 2049 iter->aux_event = NULL; 2050 put_event(event); 2051 2052 /* 2053 * If it's ACTIVE, schedule it out and put it into ERROR 2054 * state so that we don't try to schedule it again. Note 2055 * that perf_event_enable() will clear the ERROR status. 2056 */ 2057 event_sched_out(iter, cpuctx, ctx); 2058 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2059 } 2060 } 2061 2062 static bool perf_need_aux_event(struct perf_event *event) 2063 { 2064 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2065 } 2066 2067 static int perf_get_aux_event(struct perf_event *event, 2068 struct perf_event *group_leader) 2069 { 2070 /* 2071 * Our group leader must be an aux event if we want to be 2072 * an aux_output. This way, the aux event will precede its 2073 * aux_output events in the group, and therefore will always 2074 * schedule first. 2075 */ 2076 if (!group_leader) 2077 return 0; 2078 2079 /* 2080 * aux_output and aux_sample_size are mutually exclusive. 2081 */ 2082 if (event->attr.aux_output && event->attr.aux_sample_size) 2083 return 0; 2084 2085 if (event->attr.aux_output && 2086 !perf_aux_output_match(event, group_leader)) 2087 return 0; 2088 2089 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2090 return 0; 2091 2092 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2093 return 0; 2094 2095 /* 2096 * Link aux_outputs to their aux event; this is undone in 2097 * perf_group_detach() by perf_put_aux_event(). When the 2098 * group in torn down, the aux_output events loose their 2099 * link to the aux_event and can't schedule any more. 2100 */ 2101 event->aux_event = group_leader; 2102 2103 return 1; 2104 } 2105 2106 static inline struct list_head *get_event_list(struct perf_event *event) 2107 { 2108 struct perf_event_context *ctx = event->ctx; 2109 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2110 } 2111 2112 /* 2113 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2114 * cannot exist on their own, schedule them out and move them into the ERROR 2115 * state. Also see _perf_event_enable(), it will not be able to recover 2116 * this ERROR state. 2117 */ 2118 static inline void perf_remove_sibling_event(struct perf_event *event) 2119 { 2120 struct perf_event_context *ctx = event->ctx; 2121 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2122 2123 event_sched_out(event, cpuctx, ctx); 2124 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2125 } 2126 2127 static void perf_group_detach(struct perf_event *event) 2128 { 2129 struct perf_event *leader = event->group_leader; 2130 struct perf_event *sibling, *tmp; 2131 struct perf_event_context *ctx = event->ctx; 2132 2133 lockdep_assert_held(&ctx->lock); 2134 2135 /* 2136 * We can have double detach due to exit/hot-unplug + close. 2137 */ 2138 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2139 return; 2140 2141 event->attach_state &= ~PERF_ATTACH_GROUP; 2142 2143 perf_put_aux_event(event); 2144 2145 /* 2146 * If this is a sibling, remove it from its group. 2147 */ 2148 if (leader != event) { 2149 list_del_init(&event->sibling_list); 2150 event->group_leader->nr_siblings--; 2151 goto out; 2152 } 2153 2154 /* 2155 * If this was a group event with sibling events then 2156 * upgrade the siblings to singleton events by adding them 2157 * to whatever list we are on. 2158 */ 2159 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2160 2161 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2162 perf_remove_sibling_event(sibling); 2163 2164 sibling->group_leader = sibling; 2165 list_del_init(&sibling->sibling_list); 2166 2167 /* Inherit group flags from the previous leader */ 2168 sibling->group_caps = event->group_caps; 2169 2170 if (!RB_EMPTY_NODE(&event->group_node)) { 2171 add_event_to_groups(sibling, event->ctx); 2172 2173 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2174 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2175 } 2176 2177 WARN_ON_ONCE(sibling->ctx != event->ctx); 2178 } 2179 2180 out: 2181 for_each_sibling_event(tmp, leader) 2182 perf_event__header_size(tmp); 2183 2184 perf_event__header_size(leader); 2185 } 2186 2187 static void sync_child_event(struct perf_event *child_event); 2188 2189 static void perf_child_detach(struct perf_event *event) 2190 { 2191 struct perf_event *parent_event = event->parent; 2192 2193 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2194 return; 2195 2196 event->attach_state &= ~PERF_ATTACH_CHILD; 2197 2198 if (WARN_ON_ONCE(!parent_event)) 2199 return; 2200 2201 lockdep_assert_held(&parent_event->child_mutex); 2202 2203 sync_child_event(event); 2204 list_del_init(&event->child_list); 2205 } 2206 2207 static bool is_orphaned_event(struct perf_event *event) 2208 { 2209 return event->state == PERF_EVENT_STATE_DEAD; 2210 } 2211 2212 static inline int __pmu_filter_match(struct perf_event *event) 2213 { 2214 struct pmu *pmu = event->pmu; 2215 return pmu->filter_match ? pmu->filter_match(event) : 1; 2216 } 2217 2218 /* 2219 * Check whether we should attempt to schedule an event group based on 2220 * PMU-specific filtering. An event group can consist of HW and SW events, 2221 * potentially with a SW leader, so we must check all the filters, to 2222 * determine whether a group is schedulable: 2223 */ 2224 static inline int pmu_filter_match(struct perf_event *event) 2225 { 2226 struct perf_event *sibling; 2227 2228 if (!__pmu_filter_match(event)) 2229 return 0; 2230 2231 for_each_sibling_event(sibling, event) { 2232 if (!__pmu_filter_match(sibling)) 2233 return 0; 2234 } 2235 2236 return 1; 2237 } 2238 2239 static inline int 2240 event_filter_match(struct perf_event *event) 2241 { 2242 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2243 perf_cgroup_match(event) && pmu_filter_match(event); 2244 } 2245 2246 static void 2247 event_sched_out(struct perf_event *event, 2248 struct perf_cpu_context *cpuctx, 2249 struct perf_event_context *ctx) 2250 { 2251 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2252 2253 WARN_ON_ONCE(event->ctx != ctx); 2254 lockdep_assert_held(&ctx->lock); 2255 2256 if (event->state != PERF_EVENT_STATE_ACTIVE) 2257 return; 2258 2259 /* 2260 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2261 * we can schedule events _OUT_ individually through things like 2262 * __perf_remove_from_context(). 2263 */ 2264 list_del_init(&event->active_list); 2265 2266 perf_pmu_disable(event->pmu); 2267 2268 event->pmu->del(event, 0); 2269 event->oncpu = -1; 2270 2271 if (READ_ONCE(event->pending_disable) >= 0) { 2272 WRITE_ONCE(event->pending_disable, -1); 2273 perf_cgroup_event_disable(event, ctx); 2274 state = PERF_EVENT_STATE_OFF; 2275 } 2276 perf_event_set_state(event, state); 2277 2278 if (!is_software_event(event)) 2279 cpuctx->active_oncpu--; 2280 if (!--ctx->nr_active) 2281 perf_event_ctx_deactivate(ctx); 2282 if (event->attr.freq && event->attr.sample_freq) 2283 ctx->nr_freq--; 2284 if (event->attr.exclusive || !cpuctx->active_oncpu) 2285 cpuctx->exclusive = 0; 2286 2287 perf_pmu_enable(event->pmu); 2288 } 2289 2290 static void 2291 group_sched_out(struct perf_event *group_event, 2292 struct perf_cpu_context *cpuctx, 2293 struct perf_event_context *ctx) 2294 { 2295 struct perf_event *event; 2296 2297 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2298 return; 2299 2300 perf_pmu_disable(ctx->pmu); 2301 2302 event_sched_out(group_event, cpuctx, ctx); 2303 2304 /* 2305 * Schedule out siblings (if any): 2306 */ 2307 for_each_sibling_event(event, group_event) 2308 event_sched_out(event, cpuctx, ctx); 2309 2310 perf_pmu_enable(ctx->pmu); 2311 } 2312 2313 #define DETACH_GROUP 0x01UL 2314 #define DETACH_CHILD 0x02UL 2315 2316 /* 2317 * Cross CPU call to remove a performance event 2318 * 2319 * We disable the event on the hardware level first. After that we 2320 * remove it from the context list. 2321 */ 2322 static void 2323 __perf_remove_from_context(struct perf_event *event, 2324 struct perf_cpu_context *cpuctx, 2325 struct perf_event_context *ctx, 2326 void *info) 2327 { 2328 unsigned long flags = (unsigned long)info; 2329 2330 if (ctx->is_active & EVENT_TIME) { 2331 update_context_time(ctx); 2332 update_cgrp_time_from_cpuctx(cpuctx, false); 2333 } 2334 2335 event_sched_out(event, cpuctx, ctx); 2336 if (flags & DETACH_GROUP) 2337 perf_group_detach(event); 2338 if (flags & DETACH_CHILD) 2339 perf_child_detach(event); 2340 list_del_event(event, ctx); 2341 2342 if (!ctx->nr_events && ctx->is_active) { 2343 if (ctx == &cpuctx->ctx) 2344 update_cgrp_time_from_cpuctx(cpuctx, true); 2345 2346 ctx->is_active = 0; 2347 ctx->rotate_necessary = 0; 2348 if (ctx->task) { 2349 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2350 cpuctx->task_ctx = NULL; 2351 } 2352 } 2353 } 2354 2355 /* 2356 * Remove the event from a task's (or a CPU's) list of events. 2357 * 2358 * If event->ctx is a cloned context, callers must make sure that 2359 * every task struct that event->ctx->task could possibly point to 2360 * remains valid. This is OK when called from perf_release since 2361 * that only calls us on the top-level context, which can't be a clone. 2362 * When called from perf_event_exit_task, it's OK because the 2363 * context has been detached from its task. 2364 */ 2365 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2366 { 2367 struct perf_event_context *ctx = event->ctx; 2368 2369 lockdep_assert_held(&ctx->mutex); 2370 2371 /* 2372 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2373 * to work in the face of TASK_TOMBSTONE, unlike every other 2374 * event_function_call() user. 2375 */ 2376 raw_spin_lock_irq(&ctx->lock); 2377 /* 2378 * Cgroup events are per-cpu events, and must IPI because of 2379 * cgrp_cpuctx_list. 2380 */ 2381 if (!ctx->is_active && !is_cgroup_event(event)) { 2382 __perf_remove_from_context(event, __get_cpu_context(ctx), 2383 ctx, (void *)flags); 2384 raw_spin_unlock_irq(&ctx->lock); 2385 return; 2386 } 2387 raw_spin_unlock_irq(&ctx->lock); 2388 2389 event_function_call(event, __perf_remove_from_context, (void *)flags); 2390 } 2391 2392 /* 2393 * Cross CPU call to disable a performance event 2394 */ 2395 static void __perf_event_disable(struct perf_event *event, 2396 struct perf_cpu_context *cpuctx, 2397 struct perf_event_context *ctx, 2398 void *info) 2399 { 2400 if (event->state < PERF_EVENT_STATE_INACTIVE) 2401 return; 2402 2403 if (ctx->is_active & EVENT_TIME) { 2404 update_context_time(ctx); 2405 update_cgrp_time_from_event(event); 2406 } 2407 2408 if (event == event->group_leader) 2409 group_sched_out(event, cpuctx, ctx); 2410 else 2411 event_sched_out(event, cpuctx, ctx); 2412 2413 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2414 perf_cgroup_event_disable(event, ctx); 2415 } 2416 2417 /* 2418 * Disable an event. 2419 * 2420 * If event->ctx is a cloned context, callers must make sure that 2421 * every task struct that event->ctx->task could possibly point to 2422 * remains valid. This condition is satisfied when called through 2423 * perf_event_for_each_child or perf_event_for_each because they 2424 * hold the top-level event's child_mutex, so any descendant that 2425 * goes to exit will block in perf_event_exit_event(). 2426 * 2427 * When called from perf_pending_event it's OK because event->ctx 2428 * is the current context on this CPU and preemption is disabled, 2429 * hence we can't get into perf_event_task_sched_out for this context. 2430 */ 2431 static void _perf_event_disable(struct perf_event *event) 2432 { 2433 struct perf_event_context *ctx = event->ctx; 2434 2435 raw_spin_lock_irq(&ctx->lock); 2436 if (event->state <= PERF_EVENT_STATE_OFF) { 2437 raw_spin_unlock_irq(&ctx->lock); 2438 return; 2439 } 2440 raw_spin_unlock_irq(&ctx->lock); 2441 2442 event_function_call(event, __perf_event_disable, NULL); 2443 } 2444 2445 void perf_event_disable_local(struct perf_event *event) 2446 { 2447 event_function_local(event, __perf_event_disable, NULL); 2448 } 2449 2450 /* 2451 * Strictly speaking kernel users cannot create groups and therefore this 2452 * interface does not need the perf_event_ctx_lock() magic. 2453 */ 2454 void perf_event_disable(struct perf_event *event) 2455 { 2456 struct perf_event_context *ctx; 2457 2458 ctx = perf_event_ctx_lock(event); 2459 _perf_event_disable(event); 2460 perf_event_ctx_unlock(event, ctx); 2461 } 2462 EXPORT_SYMBOL_GPL(perf_event_disable); 2463 2464 void perf_event_disable_inatomic(struct perf_event *event) 2465 { 2466 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2467 /* can fail, see perf_pending_event_disable() */ 2468 irq_work_queue(&event->pending); 2469 } 2470 2471 #define MAX_INTERRUPTS (~0ULL) 2472 2473 static void perf_log_throttle(struct perf_event *event, int enable); 2474 static void perf_log_itrace_start(struct perf_event *event); 2475 2476 static int 2477 event_sched_in(struct perf_event *event, 2478 struct perf_cpu_context *cpuctx, 2479 struct perf_event_context *ctx) 2480 { 2481 int ret = 0; 2482 2483 WARN_ON_ONCE(event->ctx != ctx); 2484 2485 lockdep_assert_held(&ctx->lock); 2486 2487 if (event->state <= PERF_EVENT_STATE_OFF) 2488 return 0; 2489 2490 WRITE_ONCE(event->oncpu, smp_processor_id()); 2491 /* 2492 * Order event::oncpu write to happen before the ACTIVE state is 2493 * visible. This allows perf_event_{stop,read}() to observe the correct 2494 * ->oncpu if it sees ACTIVE. 2495 */ 2496 smp_wmb(); 2497 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2498 2499 /* 2500 * Unthrottle events, since we scheduled we might have missed several 2501 * ticks already, also for a heavily scheduling task there is little 2502 * guarantee it'll get a tick in a timely manner. 2503 */ 2504 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2505 perf_log_throttle(event, 1); 2506 event->hw.interrupts = 0; 2507 } 2508 2509 perf_pmu_disable(event->pmu); 2510 2511 perf_log_itrace_start(event); 2512 2513 if (event->pmu->add(event, PERF_EF_START)) { 2514 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2515 event->oncpu = -1; 2516 ret = -EAGAIN; 2517 goto out; 2518 } 2519 2520 if (!is_software_event(event)) 2521 cpuctx->active_oncpu++; 2522 if (!ctx->nr_active++) 2523 perf_event_ctx_activate(ctx); 2524 if (event->attr.freq && event->attr.sample_freq) 2525 ctx->nr_freq++; 2526 2527 if (event->attr.exclusive) 2528 cpuctx->exclusive = 1; 2529 2530 out: 2531 perf_pmu_enable(event->pmu); 2532 2533 return ret; 2534 } 2535 2536 static int 2537 group_sched_in(struct perf_event *group_event, 2538 struct perf_cpu_context *cpuctx, 2539 struct perf_event_context *ctx) 2540 { 2541 struct perf_event *event, *partial_group = NULL; 2542 struct pmu *pmu = ctx->pmu; 2543 2544 if (group_event->state == PERF_EVENT_STATE_OFF) 2545 return 0; 2546 2547 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2548 2549 if (event_sched_in(group_event, cpuctx, ctx)) 2550 goto error; 2551 2552 /* 2553 * Schedule in siblings as one group (if any): 2554 */ 2555 for_each_sibling_event(event, group_event) { 2556 if (event_sched_in(event, cpuctx, ctx)) { 2557 partial_group = event; 2558 goto group_error; 2559 } 2560 } 2561 2562 if (!pmu->commit_txn(pmu)) 2563 return 0; 2564 2565 group_error: 2566 /* 2567 * Groups can be scheduled in as one unit only, so undo any 2568 * partial group before returning: 2569 * The events up to the failed event are scheduled out normally. 2570 */ 2571 for_each_sibling_event(event, group_event) { 2572 if (event == partial_group) 2573 break; 2574 2575 event_sched_out(event, cpuctx, ctx); 2576 } 2577 event_sched_out(group_event, cpuctx, ctx); 2578 2579 error: 2580 pmu->cancel_txn(pmu); 2581 return -EAGAIN; 2582 } 2583 2584 /* 2585 * Work out whether we can put this event group on the CPU now. 2586 */ 2587 static int group_can_go_on(struct perf_event *event, 2588 struct perf_cpu_context *cpuctx, 2589 int can_add_hw) 2590 { 2591 /* 2592 * Groups consisting entirely of software events can always go on. 2593 */ 2594 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2595 return 1; 2596 /* 2597 * If an exclusive group is already on, no other hardware 2598 * events can go on. 2599 */ 2600 if (cpuctx->exclusive) 2601 return 0; 2602 /* 2603 * If this group is exclusive and there are already 2604 * events on the CPU, it can't go on. 2605 */ 2606 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2607 return 0; 2608 /* 2609 * Otherwise, try to add it if all previous groups were able 2610 * to go on. 2611 */ 2612 return can_add_hw; 2613 } 2614 2615 static void add_event_to_ctx(struct perf_event *event, 2616 struct perf_event_context *ctx) 2617 { 2618 list_add_event(event, ctx); 2619 perf_group_attach(event); 2620 } 2621 2622 static void ctx_sched_out(struct perf_event_context *ctx, 2623 struct perf_cpu_context *cpuctx, 2624 enum event_type_t event_type); 2625 static void 2626 ctx_sched_in(struct perf_event_context *ctx, 2627 struct perf_cpu_context *cpuctx, 2628 enum event_type_t event_type); 2629 2630 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2631 struct perf_event_context *ctx, 2632 enum event_type_t event_type) 2633 { 2634 if (!cpuctx->task_ctx) 2635 return; 2636 2637 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2638 return; 2639 2640 ctx_sched_out(ctx, cpuctx, event_type); 2641 } 2642 2643 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2644 struct perf_event_context *ctx) 2645 { 2646 cpu_ctx_sched_in(cpuctx, EVENT_PINNED); 2647 if (ctx) 2648 ctx_sched_in(ctx, cpuctx, EVENT_PINNED); 2649 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); 2650 if (ctx) 2651 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); 2652 } 2653 2654 /* 2655 * We want to maintain the following priority of scheduling: 2656 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2657 * - task pinned (EVENT_PINNED) 2658 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2659 * - task flexible (EVENT_FLEXIBLE). 2660 * 2661 * In order to avoid unscheduling and scheduling back in everything every 2662 * time an event is added, only do it for the groups of equal priority and 2663 * below. 2664 * 2665 * This can be called after a batch operation on task events, in which case 2666 * event_type is a bit mask of the types of events involved. For CPU events, 2667 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2668 */ 2669 static void ctx_resched(struct perf_cpu_context *cpuctx, 2670 struct perf_event_context *task_ctx, 2671 enum event_type_t event_type) 2672 { 2673 enum event_type_t ctx_event_type; 2674 bool cpu_event = !!(event_type & EVENT_CPU); 2675 2676 /* 2677 * If pinned groups are involved, flexible groups also need to be 2678 * scheduled out. 2679 */ 2680 if (event_type & EVENT_PINNED) 2681 event_type |= EVENT_FLEXIBLE; 2682 2683 ctx_event_type = event_type & EVENT_ALL; 2684 2685 perf_pmu_disable(cpuctx->ctx.pmu); 2686 if (task_ctx) 2687 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2688 2689 /* 2690 * Decide which cpu ctx groups to schedule out based on the types 2691 * of events that caused rescheduling: 2692 * - EVENT_CPU: schedule out corresponding groups; 2693 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2694 * - otherwise, do nothing more. 2695 */ 2696 if (cpu_event) 2697 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2698 else if (ctx_event_type & EVENT_PINNED) 2699 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2700 2701 perf_event_sched_in(cpuctx, task_ctx); 2702 perf_pmu_enable(cpuctx->ctx.pmu); 2703 } 2704 2705 void perf_pmu_resched(struct pmu *pmu) 2706 { 2707 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2708 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2709 2710 perf_ctx_lock(cpuctx, task_ctx); 2711 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2712 perf_ctx_unlock(cpuctx, task_ctx); 2713 } 2714 2715 /* 2716 * Cross CPU call to install and enable a performance event 2717 * 2718 * Very similar to remote_function() + event_function() but cannot assume that 2719 * things like ctx->is_active and cpuctx->task_ctx are set. 2720 */ 2721 static int __perf_install_in_context(void *info) 2722 { 2723 struct perf_event *event = info; 2724 struct perf_event_context *ctx = event->ctx; 2725 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2726 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2727 bool reprogram = true; 2728 int ret = 0; 2729 2730 raw_spin_lock(&cpuctx->ctx.lock); 2731 if (ctx->task) { 2732 raw_spin_lock(&ctx->lock); 2733 task_ctx = ctx; 2734 2735 reprogram = (ctx->task == current); 2736 2737 /* 2738 * If the task is running, it must be running on this CPU, 2739 * otherwise we cannot reprogram things. 2740 * 2741 * If its not running, we don't care, ctx->lock will 2742 * serialize against it becoming runnable. 2743 */ 2744 if (task_curr(ctx->task) && !reprogram) { 2745 ret = -ESRCH; 2746 goto unlock; 2747 } 2748 2749 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2750 } else if (task_ctx) { 2751 raw_spin_lock(&task_ctx->lock); 2752 } 2753 2754 #ifdef CONFIG_CGROUP_PERF 2755 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2756 /* 2757 * If the current cgroup doesn't match the event's 2758 * cgroup, we should not try to schedule it. 2759 */ 2760 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2761 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2762 event->cgrp->css.cgroup); 2763 } 2764 #endif 2765 2766 if (reprogram) { 2767 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2768 add_event_to_ctx(event, ctx); 2769 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2770 } else { 2771 add_event_to_ctx(event, ctx); 2772 } 2773 2774 unlock: 2775 perf_ctx_unlock(cpuctx, task_ctx); 2776 2777 return ret; 2778 } 2779 2780 static bool exclusive_event_installable(struct perf_event *event, 2781 struct perf_event_context *ctx); 2782 2783 /* 2784 * Attach a performance event to a context. 2785 * 2786 * Very similar to event_function_call, see comment there. 2787 */ 2788 static void 2789 perf_install_in_context(struct perf_event_context *ctx, 2790 struct perf_event *event, 2791 int cpu) 2792 { 2793 struct task_struct *task = READ_ONCE(ctx->task); 2794 2795 lockdep_assert_held(&ctx->mutex); 2796 2797 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2798 2799 if (event->cpu != -1) 2800 event->cpu = cpu; 2801 2802 /* 2803 * Ensures that if we can observe event->ctx, both the event and ctx 2804 * will be 'complete'. See perf_iterate_sb_cpu(). 2805 */ 2806 smp_store_release(&event->ctx, ctx); 2807 2808 /* 2809 * perf_event_attr::disabled events will not run and can be initialized 2810 * without IPI. Except when this is the first event for the context, in 2811 * that case we need the magic of the IPI to set ctx->is_active. 2812 * Similarly, cgroup events for the context also needs the IPI to 2813 * manipulate the cgrp_cpuctx_list. 2814 * 2815 * The IOC_ENABLE that is sure to follow the creation of a disabled 2816 * event will issue the IPI and reprogram the hardware. 2817 */ 2818 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2819 ctx->nr_events && !is_cgroup_event(event)) { 2820 raw_spin_lock_irq(&ctx->lock); 2821 if (ctx->task == TASK_TOMBSTONE) { 2822 raw_spin_unlock_irq(&ctx->lock); 2823 return; 2824 } 2825 add_event_to_ctx(event, ctx); 2826 raw_spin_unlock_irq(&ctx->lock); 2827 return; 2828 } 2829 2830 if (!task) { 2831 cpu_function_call(cpu, __perf_install_in_context, event); 2832 return; 2833 } 2834 2835 /* 2836 * Should not happen, we validate the ctx is still alive before calling. 2837 */ 2838 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2839 return; 2840 2841 /* 2842 * Installing events is tricky because we cannot rely on ctx->is_active 2843 * to be set in case this is the nr_events 0 -> 1 transition. 2844 * 2845 * Instead we use task_curr(), which tells us if the task is running. 2846 * However, since we use task_curr() outside of rq::lock, we can race 2847 * against the actual state. This means the result can be wrong. 2848 * 2849 * If we get a false positive, we retry, this is harmless. 2850 * 2851 * If we get a false negative, things are complicated. If we are after 2852 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2853 * value must be correct. If we're before, it doesn't matter since 2854 * perf_event_context_sched_in() will program the counter. 2855 * 2856 * However, this hinges on the remote context switch having observed 2857 * our task->perf_event_ctxp[] store, such that it will in fact take 2858 * ctx::lock in perf_event_context_sched_in(). 2859 * 2860 * We do this by task_function_call(), if the IPI fails to hit the task 2861 * we know any future context switch of task must see the 2862 * perf_event_ctpx[] store. 2863 */ 2864 2865 /* 2866 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2867 * task_cpu() load, such that if the IPI then does not find the task 2868 * running, a future context switch of that task must observe the 2869 * store. 2870 */ 2871 smp_mb(); 2872 again: 2873 if (!task_function_call(task, __perf_install_in_context, event)) 2874 return; 2875 2876 raw_spin_lock_irq(&ctx->lock); 2877 task = ctx->task; 2878 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2879 /* 2880 * Cannot happen because we already checked above (which also 2881 * cannot happen), and we hold ctx->mutex, which serializes us 2882 * against perf_event_exit_task_context(). 2883 */ 2884 raw_spin_unlock_irq(&ctx->lock); 2885 return; 2886 } 2887 /* 2888 * If the task is not running, ctx->lock will avoid it becoming so, 2889 * thus we can safely install the event. 2890 */ 2891 if (task_curr(task)) { 2892 raw_spin_unlock_irq(&ctx->lock); 2893 goto again; 2894 } 2895 add_event_to_ctx(event, ctx); 2896 raw_spin_unlock_irq(&ctx->lock); 2897 } 2898 2899 /* 2900 * Cross CPU call to enable a performance event 2901 */ 2902 static void __perf_event_enable(struct perf_event *event, 2903 struct perf_cpu_context *cpuctx, 2904 struct perf_event_context *ctx, 2905 void *info) 2906 { 2907 struct perf_event *leader = event->group_leader; 2908 struct perf_event_context *task_ctx; 2909 2910 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2911 event->state <= PERF_EVENT_STATE_ERROR) 2912 return; 2913 2914 if (ctx->is_active) 2915 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2916 2917 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2918 perf_cgroup_event_enable(event, ctx); 2919 2920 if (!ctx->is_active) 2921 return; 2922 2923 if (!event_filter_match(event)) { 2924 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2925 return; 2926 } 2927 2928 /* 2929 * If the event is in a group and isn't the group leader, 2930 * then don't put it on unless the group is on. 2931 */ 2932 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2933 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2934 return; 2935 } 2936 2937 task_ctx = cpuctx->task_ctx; 2938 if (ctx->task) 2939 WARN_ON_ONCE(task_ctx != ctx); 2940 2941 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2942 } 2943 2944 /* 2945 * Enable an event. 2946 * 2947 * If event->ctx is a cloned context, callers must make sure that 2948 * every task struct that event->ctx->task could possibly point to 2949 * remains valid. This condition is satisfied when called through 2950 * perf_event_for_each_child or perf_event_for_each as described 2951 * for perf_event_disable. 2952 */ 2953 static void _perf_event_enable(struct perf_event *event) 2954 { 2955 struct perf_event_context *ctx = event->ctx; 2956 2957 raw_spin_lock_irq(&ctx->lock); 2958 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2959 event->state < PERF_EVENT_STATE_ERROR) { 2960 out: 2961 raw_spin_unlock_irq(&ctx->lock); 2962 return; 2963 } 2964 2965 /* 2966 * If the event is in error state, clear that first. 2967 * 2968 * That way, if we see the event in error state below, we know that it 2969 * has gone back into error state, as distinct from the task having 2970 * been scheduled away before the cross-call arrived. 2971 */ 2972 if (event->state == PERF_EVENT_STATE_ERROR) { 2973 /* 2974 * Detached SIBLING events cannot leave ERROR state. 2975 */ 2976 if (event->event_caps & PERF_EV_CAP_SIBLING && 2977 event->group_leader == event) 2978 goto out; 2979 2980 event->state = PERF_EVENT_STATE_OFF; 2981 } 2982 raw_spin_unlock_irq(&ctx->lock); 2983 2984 event_function_call(event, __perf_event_enable, NULL); 2985 } 2986 2987 /* 2988 * See perf_event_disable(); 2989 */ 2990 void perf_event_enable(struct perf_event *event) 2991 { 2992 struct perf_event_context *ctx; 2993 2994 ctx = perf_event_ctx_lock(event); 2995 _perf_event_enable(event); 2996 perf_event_ctx_unlock(event, ctx); 2997 } 2998 EXPORT_SYMBOL_GPL(perf_event_enable); 2999 3000 struct stop_event_data { 3001 struct perf_event *event; 3002 unsigned int restart; 3003 }; 3004 3005 static int __perf_event_stop(void *info) 3006 { 3007 struct stop_event_data *sd = info; 3008 struct perf_event *event = sd->event; 3009 3010 /* if it's already INACTIVE, do nothing */ 3011 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3012 return 0; 3013 3014 /* matches smp_wmb() in event_sched_in() */ 3015 smp_rmb(); 3016 3017 /* 3018 * There is a window with interrupts enabled before we get here, 3019 * so we need to check again lest we try to stop another CPU's event. 3020 */ 3021 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3022 return -EAGAIN; 3023 3024 event->pmu->stop(event, PERF_EF_UPDATE); 3025 3026 /* 3027 * May race with the actual stop (through perf_pmu_output_stop()), 3028 * but it is only used for events with AUX ring buffer, and such 3029 * events will refuse to restart because of rb::aux_mmap_count==0, 3030 * see comments in perf_aux_output_begin(). 3031 * 3032 * Since this is happening on an event-local CPU, no trace is lost 3033 * while restarting. 3034 */ 3035 if (sd->restart) 3036 event->pmu->start(event, 0); 3037 3038 return 0; 3039 } 3040 3041 static int perf_event_stop(struct perf_event *event, int restart) 3042 { 3043 struct stop_event_data sd = { 3044 .event = event, 3045 .restart = restart, 3046 }; 3047 int ret = 0; 3048 3049 do { 3050 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3051 return 0; 3052 3053 /* matches smp_wmb() in event_sched_in() */ 3054 smp_rmb(); 3055 3056 /* 3057 * We only want to restart ACTIVE events, so if the event goes 3058 * inactive here (event->oncpu==-1), there's nothing more to do; 3059 * fall through with ret==-ENXIO. 3060 */ 3061 ret = cpu_function_call(READ_ONCE(event->oncpu), 3062 __perf_event_stop, &sd); 3063 } while (ret == -EAGAIN); 3064 3065 return ret; 3066 } 3067 3068 /* 3069 * In order to contain the amount of racy and tricky in the address filter 3070 * configuration management, it is a two part process: 3071 * 3072 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3073 * we update the addresses of corresponding vmas in 3074 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3075 * (p2) when an event is scheduled in (pmu::add), it calls 3076 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3077 * if the generation has changed since the previous call. 3078 * 3079 * If (p1) happens while the event is active, we restart it to force (p2). 3080 * 3081 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3082 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3083 * ioctl; 3084 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3085 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3086 * for reading; 3087 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3088 * of exec. 3089 */ 3090 void perf_event_addr_filters_sync(struct perf_event *event) 3091 { 3092 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3093 3094 if (!has_addr_filter(event)) 3095 return; 3096 3097 raw_spin_lock(&ifh->lock); 3098 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3099 event->pmu->addr_filters_sync(event); 3100 event->hw.addr_filters_gen = event->addr_filters_gen; 3101 } 3102 raw_spin_unlock(&ifh->lock); 3103 } 3104 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3105 3106 static int _perf_event_refresh(struct perf_event *event, int refresh) 3107 { 3108 /* 3109 * not supported on inherited events 3110 */ 3111 if (event->attr.inherit || !is_sampling_event(event)) 3112 return -EINVAL; 3113 3114 atomic_add(refresh, &event->event_limit); 3115 _perf_event_enable(event); 3116 3117 return 0; 3118 } 3119 3120 /* 3121 * See perf_event_disable() 3122 */ 3123 int perf_event_refresh(struct perf_event *event, int refresh) 3124 { 3125 struct perf_event_context *ctx; 3126 int ret; 3127 3128 ctx = perf_event_ctx_lock(event); 3129 ret = _perf_event_refresh(event, refresh); 3130 perf_event_ctx_unlock(event, ctx); 3131 3132 return ret; 3133 } 3134 EXPORT_SYMBOL_GPL(perf_event_refresh); 3135 3136 static int perf_event_modify_breakpoint(struct perf_event *bp, 3137 struct perf_event_attr *attr) 3138 { 3139 int err; 3140 3141 _perf_event_disable(bp); 3142 3143 err = modify_user_hw_breakpoint_check(bp, attr, true); 3144 3145 if (!bp->attr.disabled) 3146 _perf_event_enable(bp); 3147 3148 return err; 3149 } 3150 3151 /* 3152 * Copy event-type-independent attributes that may be modified. 3153 */ 3154 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3155 const struct perf_event_attr *from) 3156 { 3157 to->sig_data = from->sig_data; 3158 } 3159 3160 static int perf_event_modify_attr(struct perf_event *event, 3161 struct perf_event_attr *attr) 3162 { 3163 int (*func)(struct perf_event *, struct perf_event_attr *); 3164 struct perf_event *child; 3165 int err; 3166 3167 if (event->attr.type != attr->type) 3168 return -EINVAL; 3169 3170 switch (event->attr.type) { 3171 case PERF_TYPE_BREAKPOINT: 3172 func = perf_event_modify_breakpoint; 3173 break; 3174 default: 3175 /* Place holder for future additions. */ 3176 return -EOPNOTSUPP; 3177 } 3178 3179 WARN_ON_ONCE(event->ctx->parent_ctx); 3180 3181 mutex_lock(&event->child_mutex); 3182 /* 3183 * Event-type-independent attributes must be copied before event-type 3184 * modification, which will validate that final attributes match the 3185 * source attributes after all relevant attributes have been copied. 3186 */ 3187 perf_event_modify_copy_attr(&event->attr, attr); 3188 err = func(event, attr); 3189 if (err) 3190 goto out; 3191 list_for_each_entry(child, &event->child_list, child_list) { 3192 perf_event_modify_copy_attr(&child->attr, attr); 3193 err = func(child, attr); 3194 if (err) 3195 goto out; 3196 } 3197 out: 3198 mutex_unlock(&event->child_mutex); 3199 return err; 3200 } 3201 3202 static void ctx_sched_out(struct perf_event_context *ctx, 3203 struct perf_cpu_context *cpuctx, 3204 enum event_type_t event_type) 3205 { 3206 struct perf_event *event, *tmp; 3207 int is_active = ctx->is_active; 3208 3209 lockdep_assert_held(&ctx->lock); 3210 3211 if (likely(!ctx->nr_events)) { 3212 /* 3213 * See __perf_remove_from_context(). 3214 */ 3215 WARN_ON_ONCE(ctx->is_active); 3216 if (ctx->task) 3217 WARN_ON_ONCE(cpuctx->task_ctx); 3218 return; 3219 } 3220 3221 /* 3222 * Always update time if it was set; not only when it changes. 3223 * Otherwise we can 'forget' to update time for any but the last 3224 * context we sched out. For example: 3225 * 3226 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3227 * ctx_sched_out(.event_type = EVENT_PINNED) 3228 * 3229 * would only update time for the pinned events. 3230 */ 3231 if (is_active & EVENT_TIME) { 3232 /* update (and stop) ctx time */ 3233 update_context_time(ctx); 3234 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3235 /* 3236 * CPU-release for the below ->is_active store, 3237 * see __load_acquire() in perf_event_time_now() 3238 */ 3239 barrier(); 3240 } 3241 3242 ctx->is_active &= ~event_type; 3243 if (!(ctx->is_active & EVENT_ALL)) 3244 ctx->is_active = 0; 3245 3246 if (ctx->task) { 3247 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3248 if (!ctx->is_active) 3249 cpuctx->task_ctx = NULL; 3250 } 3251 3252 is_active ^= ctx->is_active; /* changed bits */ 3253 3254 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3255 return; 3256 3257 perf_pmu_disable(ctx->pmu); 3258 if (is_active & EVENT_PINNED) { 3259 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3260 group_sched_out(event, cpuctx, ctx); 3261 } 3262 3263 if (is_active & EVENT_FLEXIBLE) { 3264 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3265 group_sched_out(event, cpuctx, ctx); 3266 3267 /* 3268 * Since we cleared EVENT_FLEXIBLE, also clear 3269 * rotate_necessary, is will be reset by 3270 * ctx_flexible_sched_in() when needed. 3271 */ 3272 ctx->rotate_necessary = 0; 3273 } 3274 perf_pmu_enable(ctx->pmu); 3275 } 3276 3277 /* 3278 * Test whether two contexts are equivalent, i.e. whether they have both been 3279 * cloned from the same version of the same context. 3280 * 3281 * Equivalence is measured using a generation number in the context that is 3282 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3283 * and list_del_event(). 3284 */ 3285 static int context_equiv(struct perf_event_context *ctx1, 3286 struct perf_event_context *ctx2) 3287 { 3288 lockdep_assert_held(&ctx1->lock); 3289 lockdep_assert_held(&ctx2->lock); 3290 3291 /* Pinning disables the swap optimization */ 3292 if (ctx1->pin_count || ctx2->pin_count) 3293 return 0; 3294 3295 /* If ctx1 is the parent of ctx2 */ 3296 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3297 return 1; 3298 3299 /* If ctx2 is the parent of ctx1 */ 3300 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3301 return 1; 3302 3303 /* 3304 * If ctx1 and ctx2 have the same parent; we flatten the parent 3305 * hierarchy, see perf_event_init_context(). 3306 */ 3307 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3308 ctx1->parent_gen == ctx2->parent_gen) 3309 return 1; 3310 3311 /* Unmatched */ 3312 return 0; 3313 } 3314 3315 static void __perf_event_sync_stat(struct perf_event *event, 3316 struct perf_event *next_event) 3317 { 3318 u64 value; 3319 3320 if (!event->attr.inherit_stat) 3321 return; 3322 3323 /* 3324 * Update the event value, we cannot use perf_event_read() 3325 * because we're in the middle of a context switch and have IRQs 3326 * disabled, which upsets smp_call_function_single(), however 3327 * we know the event must be on the current CPU, therefore we 3328 * don't need to use it. 3329 */ 3330 if (event->state == PERF_EVENT_STATE_ACTIVE) 3331 event->pmu->read(event); 3332 3333 perf_event_update_time(event); 3334 3335 /* 3336 * In order to keep per-task stats reliable we need to flip the event 3337 * values when we flip the contexts. 3338 */ 3339 value = local64_read(&next_event->count); 3340 value = local64_xchg(&event->count, value); 3341 local64_set(&next_event->count, value); 3342 3343 swap(event->total_time_enabled, next_event->total_time_enabled); 3344 swap(event->total_time_running, next_event->total_time_running); 3345 3346 /* 3347 * Since we swizzled the values, update the user visible data too. 3348 */ 3349 perf_event_update_userpage(event); 3350 perf_event_update_userpage(next_event); 3351 } 3352 3353 static void perf_event_sync_stat(struct perf_event_context *ctx, 3354 struct perf_event_context *next_ctx) 3355 { 3356 struct perf_event *event, *next_event; 3357 3358 if (!ctx->nr_stat) 3359 return; 3360 3361 update_context_time(ctx); 3362 3363 event = list_first_entry(&ctx->event_list, 3364 struct perf_event, event_entry); 3365 3366 next_event = list_first_entry(&next_ctx->event_list, 3367 struct perf_event, event_entry); 3368 3369 while (&event->event_entry != &ctx->event_list && 3370 &next_event->event_entry != &next_ctx->event_list) { 3371 3372 __perf_event_sync_stat(event, next_event); 3373 3374 event = list_next_entry(event, event_entry); 3375 next_event = list_next_entry(next_event, event_entry); 3376 } 3377 } 3378 3379 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3380 struct task_struct *next) 3381 { 3382 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3383 struct perf_event_context *next_ctx; 3384 struct perf_event_context *parent, *next_parent; 3385 struct perf_cpu_context *cpuctx; 3386 int do_switch = 1; 3387 struct pmu *pmu; 3388 3389 if (likely(!ctx)) 3390 return; 3391 3392 pmu = ctx->pmu; 3393 cpuctx = __get_cpu_context(ctx); 3394 if (!cpuctx->task_ctx) 3395 return; 3396 3397 rcu_read_lock(); 3398 next_ctx = next->perf_event_ctxp[ctxn]; 3399 if (!next_ctx) 3400 goto unlock; 3401 3402 parent = rcu_dereference(ctx->parent_ctx); 3403 next_parent = rcu_dereference(next_ctx->parent_ctx); 3404 3405 /* If neither context have a parent context; they cannot be clones. */ 3406 if (!parent && !next_parent) 3407 goto unlock; 3408 3409 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3410 /* 3411 * Looks like the two contexts are clones, so we might be 3412 * able to optimize the context switch. We lock both 3413 * contexts and check that they are clones under the 3414 * lock (including re-checking that neither has been 3415 * uncloned in the meantime). It doesn't matter which 3416 * order we take the locks because no other cpu could 3417 * be trying to lock both of these tasks. 3418 */ 3419 raw_spin_lock(&ctx->lock); 3420 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3421 if (context_equiv(ctx, next_ctx)) { 3422 3423 WRITE_ONCE(ctx->task, next); 3424 WRITE_ONCE(next_ctx->task, task); 3425 3426 perf_pmu_disable(pmu); 3427 3428 if (cpuctx->sched_cb_usage && pmu->sched_task) 3429 pmu->sched_task(ctx, false); 3430 3431 /* 3432 * PMU specific parts of task perf context can require 3433 * additional synchronization. As an example of such 3434 * synchronization see implementation details of Intel 3435 * LBR call stack data profiling; 3436 */ 3437 if (pmu->swap_task_ctx) 3438 pmu->swap_task_ctx(ctx, next_ctx); 3439 else 3440 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3441 3442 perf_pmu_enable(pmu); 3443 3444 /* 3445 * RCU_INIT_POINTER here is safe because we've not 3446 * modified the ctx and the above modification of 3447 * ctx->task and ctx->task_ctx_data are immaterial 3448 * since those values are always verified under 3449 * ctx->lock which we're now holding. 3450 */ 3451 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3452 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3453 3454 do_switch = 0; 3455 3456 perf_event_sync_stat(ctx, next_ctx); 3457 } 3458 raw_spin_unlock(&next_ctx->lock); 3459 raw_spin_unlock(&ctx->lock); 3460 } 3461 unlock: 3462 rcu_read_unlock(); 3463 3464 if (do_switch) { 3465 raw_spin_lock(&ctx->lock); 3466 perf_pmu_disable(pmu); 3467 3468 if (cpuctx->sched_cb_usage && pmu->sched_task) 3469 pmu->sched_task(ctx, false); 3470 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3471 3472 perf_pmu_enable(pmu); 3473 raw_spin_unlock(&ctx->lock); 3474 } 3475 } 3476 3477 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3478 3479 void perf_sched_cb_dec(struct pmu *pmu) 3480 { 3481 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3482 3483 this_cpu_dec(perf_sched_cb_usages); 3484 3485 if (!--cpuctx->sched_cb_usage) 3486 list_del(&cpuctx->sched_cb_entry); 3487 } 3488 3489 3490 void perf_sched_cb_inc(struct pmu *pmu) 3491 { 3492 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3493 3494 if (!cpuctx->sched_cb_usage++) 3495 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3496 3497 this_cpu_inc(perf_sched_cb_usages); 3498 } 3499 3500 /* 3501 * This function provides the context switch callback to the lower code 3502 * layer. It is invoked ONLY when the context switch callback is enabled. 3503 * 3504 * This callback is relevant even to per-cpu events; for example multi event 3505 * PEBS requires this to provide PID/TID information. This requires we flush 3506 * all queued PEBS records before we context switch to a new task. 3507 */ 3508 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3509 { 3510 struct pmu *pmu; 3511 3512 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3513 3514 if (WARN_ON_ONCE(!pmu->sched_task)) 3515 return; 3516 3517 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3518 perf_pmu_disable(pmu); 3519 3520 pmu->sched_task(cpuctx->task_ctx, sched_in); 3521 3522 perf_pmu_enable(pmu); 3523 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3524 } 3525 3526 static void perf_pmu_sched_task(struct task_struct *prev, 3527 struct task_struct *next, 3528 bool sched_in) 3529 { 3530 struct perf_cpu_context *cpuctx; 3531 3532 if (prev == next) 3533 return; 3534 3535 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3536 /* will be handled in perf_event_context_sched_in/out */ 3537 if (cpuctx->task_ctx) 3538 continue; 3539 3540 __perf_pmu_sched_task(cpuctx, sched_in); 3541 } 3542 } 3543 3544 static void perf_event_switch(struct task_struct *task, 3545 struct task_struct *next_prev, bool sched_in); 3546 3547 #define for_each_task_context_nr(ctxn) \ 3548 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3549 3550 /* 3551 * Called from scheduler to remove the events of the current task, 3552 * with interrupts disabled. 3553 * 3554 * We stop each event and update the event value in event->count. 3555 * 3556 * This does not protect us against NMI, but disable() 3557 * sets the disabled bit in the control field of event _before_ 3558 * accessing the event control register. If a NMI hits, then it will 3559 * not restart the event. 3560 */ 3561 void __perf_event_task_sched_out(struct task_struct *task, 3562 struct task_struct *next) 3563 { 3564 int ctxn; 3565 3566 if (__this_cpu_read(perf_sched_cb_usages)) 3567 perf_pmu_sched_task(task, next, false); 3568 3569 if (atomic_read(&nr_switch_events)) 3570 perf_event_switch(task, next, false); 3571 3572 for_each_task_context_nr(ctxn) 3573 perf_event_context_sched_out(task, ctxn, next); 3574 3575 /* 3576 * if cgroup events exist on this CPU, then we need 3577 * to check if we have to switch out PMU state. 3578 * cgroup event are system-wide mode only 3579 */ 3580 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3581 perf_cgroup_switch(next); 3582 } 3583 3584 /* 3585 * Called with IRQs disabled 3586 */ 3587 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3588 enum event_type_t event_type) 3589 { 3590 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3591 } 3592 3593 static bool perf_less_group_idx(const void *l, const void *r) 3594 { 3595 const struct perf_event *le = *(const struct perf_event **)l; 3596 const struct perf_event *re = *(const struct perf_event **)r; 3597 3598 return le->group_index < re->group_index; 3599 } 3600 3601 static void swap_ptr(void *l, void *r) 3602 { 3603 void **lp = l, **rp = r; 3604 3605 swap(*lp, *rp); 3606 } 3607 3608 static const struct min_heap_callbacks perf_min_heap = { 3609 .elem_size = sizeof(struct perf_event *), 3610 .less = perf_less_group_idx, 3611 .swp = swap_ptr, 3612 }; 3613 3614 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3615 { 3616 struct perf_event **itrs = heap->data; 3617 3618 if (event) { 3619 itrs[heap->nr] = event; 3620 heap->nr++; 3621 } 3622 } 3623 3624 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3625 struct perf_event_groups *groups, int cpu, 3626 int (*func)(struct perf_event *, void *), 3627 void *data) 3628 { 3629 #ifdef CONFIG_CGROUP_PERF 3630 struct cgroup_subsys_state *css = NULL; 3631 #endif 3632 /* Space for per CPU and/or any CPU event iterators. */ 3633 struct perf_event *itrs[2]; 3634 struct min_heap event_heap; 3635 struct perf_event **evt; 3636 int ret; 3637 3638 if (cpuctx) { 3639 event_heap = (struct min_heap){ 3640 .data = cpuctx->heap, 3641 .nr = 0, 3642 .size = cpuctx->heap_size, 3643 }; 3644 3645 lockdep_assert_held(&cpuctx->ctx.lock); 3646 3647 #ifdef CONFIG_CGROUP_PERF 3648 if (cpuctx->cgrp) 3649 css = &cpuctx->cgrp->css; 3650 #endif 3651 } else { 3652 event_heap = (struct min_heap){ 3653 .data = itrs, 3654 .nr = 0, 3655 .size = ARRAY_SIZE(itrs), 3656 }; 3657 /* Events not within a CPU context may be on any CPU. */ 3658 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3659 } 3660 evt = event_heap.data; 3661 3662 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3663 3664 #ifdef CONFIG_CGROUP_PERF 3665 for (; css; css = css->parent) 3666 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3667 #endif 3668 3669 min_heapify_all(&event_heap, &perf_min_heap); 3670 3671 while (event_heap.nr) { 3672 ret = func(*evt, data); 3673 if (ret) 3674 return ret; 3675 3676 *evt = perf_event_groups_next(*evt); 3677 if (*evt) 3678 min_heapify(&event_heap, 0, &perf_min_heap); 3679 else 3680 min_heap_pop(&event_heap, &perf_min_heap); 3681 } 3682 3683 return 0; 3684 } 3685 3686 /* 3687 * Because the userpage is strictly per-event (there is no concept of context, 3688 * so there cannot be a context indirection), every userpage must be updated 3689 * when context time starts :-( 3690 * 3691 * IOW, we must not miss EVENT_TIME edges. 3692 */ 3693 static inline bool event_update_userpage(struct perf_event *event) 3694 { 3695 if (likely(!atomic_read(&event->mmap_count))) 3696 return false; 3697 3698 perf_event_update_time(event); 3699 perf_event_update_userpage(event); 3700 3701 return true; 3702 } 3703 3704 static inline void group_update_userpage(struct perf_event *group_event) 3705 { 3706 struct perf_event *event; 3707 3708 if (!event_update_userpage(group_event)) 3709 return; 3710 3711 for_each_sibling_event(event, group_event) 3712 event_update_userpage(event); 3713 } 3714 3715 static int merge_sched_in(struct perf_event *event, void *data) 3716 { 3717 struct perf_event_context *ctx = event->ctx; 3718 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3719 int *can_add_hw = data; 3720 3721 if (event->state <= PERF_EVENT_STATE_OFF) 3722 return 0; 3723 3724 if (!event_filter_match(event)) 3725 return 0; 3726 3727 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3728 if (!group_sched_in(event, cpuctx, ctx)) 3729 list_add_tail(&event->active_list, get_event_list(event)); 3730 } 3731 3732 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3733 *can_add_hw = 0; 3734 if (event->attr.pinned) { 3735 perf_cgroup_event_disable(event, ctx); 3736 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3737 } else { 3738 ctx->rotate_necessary = 1; 3739 perf_mux_hrtimer_restart(cpuctx); 3740 group_update_userpage(event); 3741 } 3742 } 3743 3744 return 0; 3745 } 3746 3747 static void 3748 ctx_pinned_sched_in(struct perf_event_context *ctx, 3749 struct perf_cpu_context *cpuctx) 3750 { 3751 int can_add_hw = 1; 3752 3753 if (ctx != &cpuctx->ctx) 3754 cpuctx = NULL; 3755 3756 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3757 smp_processor_id(), 3758 merge_sched_in, &can_add_hw); 3759 } 3760 3761 static void 3762 ctx_flexible_sched_in(struct perf_event_context *ctx, 3763 struct perf_cpu_context *cpuctx) 3764 { 3765 int can_add_hw = 1; 3766 3767 if (ctx != &cpuctx->ctx) 3768 cpuctx = NULL; 3769 3770 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3771 smp_processor_id(), 3772 merge_sched_in, &can_add_hw); 3773 } 3774 3775 static void 3776 ctx_sched_in(struct perf_event_context *ctx, 3777 struct perf_cpu_context *cpuctx, 3778 enum event_type_t event_type) 3779 { 3780 int is_active = ctx->is_active; 3781 3782 lockdep_assert_held(&ctx->lock); 3783 3784 if (likely(!ctx->nr_events)) 3785 return; 3786 3787 if (is_active ^ EVENT_TIME) { 3788 /* start ctx time */ 3789 __update_context_time(ctx, false); 3790 perf_cgroup_set_timestamp(cpuctx); 3791 /* 3792 * CPU-release for the below ->is_active store, 3793 * see __load_acquire() in perf_event_time_now() 3794 */ 3795 barrier(); 3796 } 3797 3798 ctx->is_active |= (event_type | EVENT_TIME); 3799 if (ctx->task) { 3800 if (!is_active) 3801 cpuctx->task_ctx = ctx; 3802 else 3803 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3804 } 3805 3806 is_active ^= ctx->is_active; /* changed bits */ 3807 3808 /* 3809 * First go through the list and put on any pinned groups 3810 * in order to give them the best chance of going on. 3811 */ 3812 if (is_active & EVENT_PINNED) 3813 ctx_pinned_sched_in(ctx, cpuctx); 3814 3815 /* Then walk through the lower prio flexible groups */ 3816 if (is_active & EVENT_FLEXIBLE) 3817 ctx_flexible_sched_in(ctx, cpuctx); 3818 } 3819 3820 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3821 enum event_type_t event_type) 3822 { 3823 struct perf_event_context *ctx = &cpuctx->ctx; 3824 3825 ctx_sched_in(ctx, cpuctx, event_type); 3826 } 3827 3828 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3829 struct task_struct *task) 3830 { 3831 struct perf_cpu_context *cpuctx; 3832 struct pmu *pmu; 3833 3834 cpuctx = __get_cpu_context(ctx); 3835 3836 /* 3837 * HACK: for HETEROGENEOUS the task context might have switched to a 3838 * different PMU, force (re)set the context, 3839 */ 3840 pmu = ctx->pmu = cpuctx->ctx.pmu; 3841 3842 if (cpuctx->task_ctx == ctx) { 3843 if (cpuctx->sched_cb_usage) 3844 __perf_pmu_sched_task(cpuctx, true); 3845 return; 3846 } 3847 3848 perf_ctx_lock(cpuctx, ctx); 3849 /* 3850 * We must check ctx->nr_events while holding ctx->lock, such 3851 * that we serialize against perf_install_in_context(). 3852 */ 3853 if (!ctx->nr_events) 3854 goto unlock; 3855 3856 perf_pmu_disable(pmu); 3857 /* 3858 * We want to keep the following priority order: 3859 * cpu pinned (that don't need to move), task pinned, 3860 * cpu flexible, task flexible. 3861 * 3862 * However, if task's ctx is not carrying any pinned 3863 * events, no need to flip the cpuctx's events around. 3864 */ 3865 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3866 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3867 perf_event_sched_in(cpuctx, ctx); 3868 3869 if (cpuctx->sched_cb_usage && pmu->sched_task) 3870 pmu->sched_task(cpuctx->task_ctx, true); 3871 3872 perf_pmu_enable(pmu); 3873 3874 unlock: 3875 perf_ctx_unlock(cpuctx, ctx); 3876 } 3877 3878 /* 3879 * Called from scheduler to add the events of the current task 3880 * with interrupts disabled. 3881 * 3882 * We restore the event value and then enable it. 3883 * 3884 * This does not protect us against NMI, but enable() 3885 * sets the enabled bit in the control field of event _before_ 3886 * accessing the event control register. If a NMI hits, then it will 3887 * keep the event running. 3888 */ 3889 void __perf_event_task_sched_in(struct task_struct *prev, 3890 struct task_struct *task) 3891 { 3892 struct perf_event_context *ctx; 3893 int ctxn; 3894 3895 for_each_task_context_nr(ctxn) { 3896 ctx = task->perf_event_ctxp[ctxn]; 3897 if (likely(!ctx)) 3898 continue; 3899 3900 perf_event_context_sched_in(ctx, task); 3901 } 3902 3903 if (atomic_read(&nr_switch_events)) 3904 perf_event_switch(task, prev, true); 3905 3906 if (__this_cpu_read(perf_sched_cb_usages)) 3907 perf_pmu_sched_task(prev, task, true); 3908 } 3909 3910 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3911 { 3912 u64 frequency = event->attr.sample_freq; 3913 u64 sec = NSEC_PER_SEC; 3914 u64 divisor, dividend; 3915 3916 int count_fls, nsec_fls, frequency_fls, sec_fls; 3917 3918 count_fls = fls64(count); 3919 nsec_fls = fls64(nsec); 3920 frequency_fls = fls64(frequency); 3921 sec_fls = 30; 3922 3923 /* 3924 * We got @count in @nsec, with a target of sample_freq HZ 3925 * the target period becomes: 3926 * 3927 * @count * 10^9 3928 * period = ------------------- 3929 * @nsec * sample_freq 3930 * 3931 */ 3932 3933 /* 3934 * Reduce accuracy by one bit such that @a and @b converge 3935 * to a similar magnitude. 3936 */ 3937 #define REDUCE_FLS(a, b) \ 3938 do { \ 3939 if (a##_fls > b##_fls) { \ 3940 a >>= 1; \ 3941 a##_fls--; \ 3942 } else { \ 3943 b >>= 1; \ 3944 b##_fls--; \ 3945 } \ 3946 } while (0) 3947 3948 /* 3949 * Reduce accuracy until either term fits in a u64, then proceed with 3950 * the other, so that finally we can do a u64/u64 division. 3951 */ 3952 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3953 REDUCE_FLS(nsec, frequency); 3954 REDUCE_FLS(sec, count); 3955 } 3956 3957 if (count_fls + sec_fls > 64) { 3958 divisor = nsec * frequency; 3959 3960 while (count_fls + sec_fls > 64) { 3961 REDUCE_FLS(count, sec); 3962 divisor >>= 1; 3963 } 3964 3965 dividend = count * sec; 3966 } else { 3967 dividend = count * sec; 3968 3969 while (nsec_fls + frequency_fls > 64) { 3970 REDUCE_FLS(nsec, frequency); 3971 dividend >>= 1; 3972 } 3973 3974 divisor = nsec * frequency; 3975 } 3976 3977 if (!divisor) 3978 return dividend; 3979 3980 return div64_u64(dividend, divisor); 3981 } 3982 3983 static DEFINE_PER_CPU(int, perf_throttled_count); 3984 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3985 3986 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3987 { 3988 struct hw_perf_event *hwc = &event->hw; 3989 s64 period, sample_period; 3990 s64 delta; 3991 3992 period = perf_calculate_period(event, nsec, count); 3993 3994 delta = (s64)(period - hwc->sample_period); 3995 delta = (delta + 7) / 8; /* low pass filter */ 3996 3997 sample_period = hwc->sample_period + delta; 3998 3999 if (!sample_period) 4000 sample_period = 1; 4001 4002 hwc->sample_period = sample_period; 4003 4004 if (local64_read(&hwc->period_left) > 8*sample_period) { 4005 if (disable) 4006 event->pmu->stop(event, PERF_EF_UPDATE); 4007 4008 local64_set(&hwc->period_left, 0); 4009 4010 if (disable) 4011 event->pmu->start(event, PERF_EF_RELOAD); 4012 } 4013 } 4014 4015 /* 4016 * combine freq adjustment with unthrottling to avoid two passes over the 4017 * events. At the same time, make sure, having freq events does not change 4018 * the rate of unthrottling as that would introduce bias. 4019 */ 4020 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4021 int needs_unthr) 4022 { 4023 struct perf_event *event; 4024 struct hw_perf_event *hwc; 4025 u64 now, period = TICK_NSEC; 4026 s64 delta; 4027 4028 /* 4029 * only need to iterate over all events iff: 4030 * - context have events in frequency mode (needs freq adjust) 4031 * - there are events to unthrottle on this cpu 4032 */ 4033 if (!(ctx->nr_freq || needs_unthr)) 4034 return; 4035 4036 raw_spin_lock(&ctx->lock); 4037 perf_pmu_disable(ctx->pmu); 4038 4039 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4040 if (event->state != PERF_EVENT_STATE_ACTIVE) 4041 continue; 4042 4043 if (!event_filter_match(event)) 4044 continue; 4045 4046 perf_pmu_disable(event->pmu); 4047 4048 hwc = &event->hw; 4049 4050 if (hwc->interrupts == MAX_INTERRUPTS) { 4051 hwc->interrupts = 0; 4052 perf_log_throttle(event, 1); 4053 event->pmu->start(event, 0); 4054 } 4055 4056 if (!event->attr.freq || !event->attr.sample_freq) 4057 goto next; 4058 4059 /* 4060 * stop the event and update event->count 4061 */ 4062 event->pmu->stop(event, PERF_EF_UPDATE); 4063 4064 now = local64_read(&event->count); 4065 delta = now - hwc->freq_count_stamp; 4066 hwc->freq_count_stamp = now; 4067 4068 /* 4069 * restart the event 4070 * reload only if value has changed 4071 * we have stopped the event so tell that 4072 * to perf_adjust_period() to avoid stopping it 4073 * twice. 4074 */ 4075 if (delta > 0) 4076 perf_adjust_period(event, period, delta, false); 4077 4078 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4079 next: 4080 perf_pmu_enable(event->pmu); 4081 } 4082 4083 perf_pmu_enable(ctx->pmu); 4084 raw_spin_unlock(&ctx->lock); 4085 } 4086 4087 /* 4088 * Move @event to the tail of the @ctx's elegible events. 4089 */ 4090 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4091 { 4092 /* 4093 * Rotate the first entry last of non-pinned groups. Rotation might be 4094 * disabled by the inheritance code. 4095 */ 4096 if (ctx->rotate_disable) 4097 return; 4098 4099 perf_event_groups_delete(&ctx->flexible_groups, event); 4100 perf_event_groups_insert(&ctx->flexible_groups, event); 4101 } 4102 4103 /* pick an event from the flexible_groups to rotate */ 4104 static inline struct perf_event * 4105 ctx_event_to_rotate(struct perf_event_context *ctx) 4106 { 4107 struct perf_event *event; 4108 4109 /* pick the first active flexible event */ 4110 event = list_first_entry_or_null(&ctx->flexible_active, 4111 struct perf_event, active_list); 4112 4113 /* if no active flexible event, pick the first event */ 4114 if (!event) { 4115 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4116 typeof(*event), group_node); 4117 } 4118 4119 /* 4120 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4121 * finds there are unschedulable events, it will set it again. 4122 */ 4123 ctx->rotate_necessary = 0; 4124 4125 return event; 4126 } 4127 4128 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4129 { 4130 struct perf_event *cpu_event = NULL, *task_event = NULL; 4131 struct perf_event_context *task_ctx = NULL; 4132 int cpu_rotate, task_rotate; 4133 4134 /* 4135 * Since we run this from IRQ context, nobody can install new 4136 * events, thus the event count values are stable. 4137 */ 4138 4139 cpu_rotate = cpuctx->ctx.rotate_necessary; 4140 task_ctx = cpuctx->task_ctx; 4141 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4142 4143 if (!(cpu_rotate || task_rotate)) 4144 return false; 4145 4146 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4147 perf_pmu_disable(cpuctx->ctx.pmu); 4148 4149 if (task_rotate) 4150 task_event = ctx_event_to_rotate(task_ctx); 4151 if (cpu_rotate) 4152 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4153 4154 /* 4155 * As per the order given at ctx_resched() first 'pop' task flexible 4156 * and then, if needed CPU flexible. 4157 */ 4158 if (task_event || (task_ctx && cpu_event)) 4159 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4160 if (cpu_event) 4161 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4162 4163 if (task_event) 4164 rotate_ctx(task_ctx, task_event); 4165 if (cpu_event) 4166 rotate_ctx(&cpuctx->ctx, cpu_event); 4167 4168 perf_event_sched_in(cpuctx, task_ctx); 4169 4170 perf_pmu_enable(cpuctx->ctx.pmu); 4171 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4172 4173 return true; 4174 } 4175 4176 void perf_event_task_tick(void) 4177 { 4178 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4179 struct perf_event_context *ctx, *tmp; 4180 int throttled; 4181 4182 lockdep_assert_irqs_disabled(); 4183 4184 __this_cpu_inc(perf_throttled_seq); 4185 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4186 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4187 4188 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4189 perf_adjust_freq_unthr_context(ctx, throttled); 4190 } 4191 4192 static int event_enable_on_exec(struct perf_event *event, 4193 struct perf_event_context *ctx) 4194 { 4195 if (!event->attr.enable_on_exec) 4196 return 0; 4197 4198 event->attr.enable_on_exec = 0; 4199 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4200 return 0; 4201 4202 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4203 4204 return 1; 4205 } 4206 4207 /* 4208 * Enable all of a task's events that have been marked enable-on-exec. 4209 * This expects task == current. 4210 */ 4211 static void perf_event_enable_on_exec(int ctxn) 4212 { 4213 struct perf_event_context *ctx, *clone_ctx = NULL; 4214 enum event_type_t event_type = 0; 4215 struct perf_cpu_context *cpuctx; 4216 struct perf_event *event; 4217 unsigned long flags; 4218 int enabled = 0; 4219 4220 local_irq_save(flags); 4221 ctx = current->perf_event_ctxp[ctxn]; 4222 if (!ctx || !ctx->nr_events) 4223 goto out; 4224 4225 cpuctx = __get_cpu_context(ctx); 4226 perf_ctx_lock(cpuctx, ctx); 4227 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4228 list_for_each_entry(event, &ctx->event_list, event_entry) { 4229 enabled |= event_enable_on_exec(event, ctx); 4230 event_type |= get_event_type(event); 4231 } 4232 4233 /* 4234 * Unclone and reschedule this context if we enabled any event. 4235 */ 4236 if (enabled) { 4237 clone_ctx = unclone_ctx(ctx); 4238 ctx_resched(cpuctx, ctx, event_type); 4239 } else { 4240 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 4241 } 4242 perf_ctx_unlock(cpuctx, ctx); 4243 4244 out: 4245 local_irq_restore(flags); 4246 4247 if (clone_ctx) 4248 put_ctx(clone_ctx); 4249 } 4250 4251 static void perf_remove_from_owner(struct perf_event *event); 4252 static void perf_event_exit_event(struct perf_event *event, 4253 struct perf_event_context *ctx); 4254 4255 /* 4256 * Removes all events from the current task that have been marked 4257 * remove-on-exec, and feeds their values back to parent events. 4258 */ 4259 static void perf_event_remove_on_exec(int ctxn) 4260 { 4261 struct perf_event_context *ctx, *clone_ctx = NULL; 4262 struct perf_event *event, *next; 4263 unsigned long flags; 4264 bool modified = false; 4265 4266 ctx = perf_pin_task_context(current, ctxn); 4267 if (!ctx) 4268 return; 4269 4270 mutex_lock(&ctx->mutex); 4271 4272 if (WARN_ON_ONCE(ctx->task != current)) 4273 goto unlock; 4274 4275 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4276 if (!event->attr.remove_on_exec) 4277 continue; 4278 4279 if (!is_kernel_event(event)) 4280 perf_remove_from_owner(event); 4281 4282 modified = true; 4283 4284 perf_event_exit_event(event, ctx); 4285 } 4286 4287 raw_spin_lock_irqsave(&ctx->lock, flags); 4288 if (modified) 4289 clone_ctx = unclone_ctx(ctx); 4290 --ctx->pin_count; 4291 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4292 4293 unlock: 4294 mutex_unlock(&ctx->mutex); 4295 4296 put_ctx(ctx); 4297 if (clone_ctx) 4298 put_ctx(clone_ctx); 4299 } 4300 4301 struct perf_read_data { 4302 struct perf_event *event; 4303 bool group; 4304 int ret; 4305 }; 4306 4307 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4308 { 4309 u16 local_pkg, event_pkg; 4310 4311 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4312 int local_cpu = smp_processor_id(); 4313 4314 event_pkg = topology_physical_package_id(event_cpu); 4315 local_pkg = topology_physical_package_id(local_cpu); 4316 4317 if (event_pkg == local_pkg) 4318 return local_cpu; 4319 } 4320 4321 return event_cpu; 4322 } 4323 4324 /* 4325 * Cross CPU call to read the hardware event 4326 */ 4327 static void __perf_event_read(void *info) 4328 { 4329 struct perf_read_data *data = info; 4330 struct perf_event *sub, *event = data->event; 4331 struct perf_event_context *ctx = event->ctx; 4332 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4333 struct pmu *pmu = event->pmu; 4334 4335 /* 4336 * If this is a task context, we need to check whether it is 4337 * the current task context of this cpu. If not it has been 4338 * scheduled out before the smp call arrived. In that case 4339 * event->count would have been updated to a recent sample 4340 * when the event was scheduled out. 4341 */ 4342 if (ctx->task && cpuctx->task_ctx != ctx) 4343 return; 4344 4345 raw_spin_lock(&ctx->lock); 4346 if (ctx->is_active & EVENT_TIME) { 4347 update_context_time(ctx); 4348 update_cgrp_time_from_event(event); 4349 } 4350 4351 perf_event_update_time(event); 4352 if (data->group) 4353 perf_event_update_sibling_time(event); 4354 4355 if (event->state != PERF_EVENT_STATE_ACTIVE) 4356 goto unlock; 4357 4358 if (!data->group) { 4359 pmu->read(event); 4360 data->ret = 0; 4361 goto unlock; 4362 } 4363 4364 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4365 4366 pmu->read(event); 4367 4368 for_each_sibling_event(sub, event) { 4369 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4370 /* 4371 * Use sibling's PMU rather than @event's since 4372 * sibling could be on different (eg: software) PMU. 4373 */ 4374 sub->pmu->read(sub); 4375 } 4376 } 4377 4378 data->ret = pmu->commit_txn(pmu); 4379 4380 unlock: 4381 raw_spin_unlock(&ctx->lock); 4382 } 4383 4384 static inline u64 perf_event_count(struct perf_event *event) 4385 { 4386 return local64_read(&event->count) + atomic64_read(&event->child_count); 4387 } 4388 4389 static void calc_timer_values(struct perf_event *event, 4390 u64 *now, 4391 u64 *enabled, 4392 u64 *running) 4393 { 4394 u64 ctx_time; 4395 4396 *now = perf_clock(); 4397 ctx_time = perf_event_time_now(event, *now); 4398 __perf_update_times(event, ctx_time, enabled, running); 4399 } 4400 4401 /* 4402 * NMI-safe method to read a local event, that is an event that 4403 * is: 4404 * - either for the current task, or for this CPU 4405 * - does not have inherit set, for inherited task events 4406 * will not be local and we cannot read them atomically 4407 * - must not have a pmu::count method 4408 */ 4409 int perf_event_read_local(struct perf_event *event, u64 *value, 4410 u64 *enabled, u64 *running) 4411 { 4412 unsigned long flags; 4413 int ret = 0; 4414 4415 /* 4416 * Disabling interrupts avoids all counter scheduling (context 4417 * switches, timer based rotation and IPIs). 4418 */ 4419 local_irq_save(flags); 4420 4421 /* 4422 * It must not be an event with inherit set, we cannot read 4423 * all child counters from atomic context. 4424 */ 4425 if (event->attr.inherit) { 4426 ret = -EOPNOTSUPP; 4427 goto out; 4428 } 4429 4430 /* If this is a per-task event, it must be for current */ 4431 if ((event->attach_state & PERF_ATTACH_TASK) && 4432 event->hw.target != current) { 4433 ret = -EINVAL; 4434 goto out; 4435 } 4436 4437 /* If this is a per-CPU event, it must be for this CPU */ 4438 if (!(event->attach_state & PERF_ATTACH_TASK) && 4439 event->cpu != smp_processor_id()) { 4440 ret = -EINVAL; 4441 goto out; 4442 } 4443 4444 /* If this is a pinned event it must be running on this CPU */ 4445 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4446 ret = -EBUSY; 4447 goto out; 4448 } 4449 4450 /* 4451 * If the event is currently on this CPU, its either a per-task event, 4452 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4453 * oncpu == -1). 4454 */ 4455 if (event->oncpu == smp_processor_id()) 4456 event->pmu->read(event); 4457 4458 *value = local64_read(&event->count); 4459 if (enabled || running) { 4460 u64 __enabled, __running, __now; 4461 4462 calc_timer_values(event, &__now, &__enabled, &__running); 4463 if (enabled) 4464 *enabled = __enabled; 4465 if (running) 4466 *running = __running; 4467 } 4468 out: 4469 local_irq_restore(flags); 4470 4471 return ret; 4472 } 4473 4474 static int perf_event_read(struct perf_event *event, bool group) 4475 { 4476 enum perf_event_state state = READ_ONCE(event->state); 4477 int event_cpu, ret = 0; 4478 4479 /* 4480 * If event is enabled and currently active on a CPU, update the 4481 * value in the event structure: 4482 */ 4483 again: 4484 if (state == PERF_EVENT_STATE_ACTIVE) { 4485 struct perf_read_data data; 4486 4487 /* 4488 * Orders the ->state and ->oncpu loads such that if we see 4489 * ACTIVE we must also see the right ->oncpu. 4490 * 4491 * Matches the smp_wmb() from event_sched_in(). 4492 */ 4493 smp_rmb(); 4494 4495 event_cpu = READ_ONCE(event->oncpu); 4496 if ((unsigned)event_cpu >= nr_cpu_ids) 4497 return 0; 4498 4499 data = (struct perf_read_data){ 4500 .event = event, 4501 .group = group, 4502 .ret = 0, 4503 }; 4504 4505 preempt_disable(); 4506 event_cpu = __perf_event_read_cpu(event, event_cpu); 4507 4508 /* 4509 * Purposely ignore the smp_call_function_single() return 4510 * value. 4511 * 4512 * If event_cpu isn't a valid CPU it means the event got 4513 * scheduled out and that will have updated the event count. 4514 * 4515 * Therefore, either way, we'll have an up-to-date event count 4516 * after this. 4517 */ 4518 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4519 preempt_enable(); 4520 ret = data.ret; 4521 4522 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4523 struct perf_event_context *ctx = event->ctx; 4524 unsigned long flags; 4525 4526 raw_spin_lock_irqsave(&ctx->lock, flags); 4527 state = event->state; 4528 if (state != PERF_EVENT_STATE_INACTIVE) { 4529 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4530 goto again; 4531 } 4532 4533 /* 4534 * May read while context is not active (e.g., thread is 4535 * blocked), in that case we cannot update context time 4536 */ 4537 if (ctx->is_active & EVENT_TIME) { 4538 update_context_time(ctx); 4539 update_cgrp_time_from_event(event); 4540 } 4541 4542 perf_event_update_time(event); 4543 if (group) 4544 perf_event_update_sibling_time(event); 4545 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4546 } 4547 4548 return ret; 4549 } 4550 4551 /* 4552 * Initialize the perf_event context in a task_struct: 4553 */ 4554 static void __perf_event_init_context(struct perf_event_context *ctx) 4555 { 4556 raw_spin_lock_init(&ctx->lock); 4557 mutex_init(&ctx->mutex); 4558 INIT_LIST_HEAD(&ctx->active_ctx_list); 4559 perf_event_groups_init(&ctx->pinned_groups); 4560 perf_event_groups_init(&ctx->flexible_groups); 4561 INIT_LIST_HEAD(&ctx->event_list); 4562 INIT_LIST_HEAD(&ctx->pinned_active); 4563 INIT_LIST_HEAD(&ctx->flexible_active); 4564 refcount_set(&ctx->refcount, 1); 4565 } 4566 4567 static struct perf_event_context * 4568 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4569 { 4570 struct perf_event_context *ctx; 4571 4572 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4573 if (!ctx) 4574 return NULL; 4575 4576 __perf_event_init_context(ctx); 4577 if (task) 4578 ctx->task = get_task_struct(task); 4579 ctx->pmu = pmu; 4580 4581 return ctx; 4582 } 4583 4584 static struct task_struct * 4585 find_lively_task_by_vpid(pid_t vpid) 4586 { 4587 struct task_struct *task; 4588 4589 rcu_read_lock(); 4590 if (!vpid) 4591 task = current; 4592 else 4593 task = find_task_by_vpid(vpid); 4594 if (task) 4595 get_task_struct(task); 4596 rcu_read_unlock(); 4597 4598 if (!task) 4599 return ERR_PTR(-ESRCH); 4600 4601 return task; 4602 } 4603 4604 /* 4605 * Returns a matching context with refcount and pincount. 4606 */ 4607 static struct perf_event_context * 4608 find_get_context(struct pmu *pmu, struct task_struct *task, 4609 struct perf_event *event) 4610 { 4611 struct perf_event_context *ctx, *clone_ctx = NULL; 4612 struct perf_cpu_context *cpuctx; 4613 void *task_ctx_data = NULL; 4614 unsigned long flags; 4615 int ctxn, err; 4616 int cpu = event->cpu; 4617 4618 if (!task) { 4619 /* Must be root to operate on a CPU event: */ 4620 err = perf_allow_cpu(&event->attr); 4621 if (err) 4622 return ERR_PTR(err); 4623 4624 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4625 ctx = &cpuctx->ctx; 4626 get_ctx(ctx); 4627 raw_spin_lock_irqsave(&ctx->lock, flags); 4628 ++ctx->pin_count; 4629 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4630 4631 return ctx; 4632 } 4633 4634 err = -EINVAL; 4635 ctxn = pmu->task_ctx_nr; 4636 if (ctxn < 0) 4637 goto errout; 4638 4639 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4640 task_ctx_data = alloc_task_ctx_data(pmu); 4641 if (!task_ctx_data) { 4642 err = -ENOMEM; 4643 goto errout; 4644 } 4645 } 4646 4647 retry: 4648 ctx = perf_lock_task_context(task, ctxn, &flags); 4649 if (ctx) { 4650 clone_ctx = unclone_ctx(ctx); 4651 ++ctx->pin_count; 4652 4653 if (task_ctx_data && !ctx->task_ctx_data) { 4654 ctx->task_ctx_data = task_ctx_data; 4655 task_ctx_data = NULL; 4656 } 4657 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4658 4659 if (clone_ctx) 4660 put_ctx(clone_ctx); 4661 } else { 4662 ctx = alloc_perf_context(pmu, task); 4663 err = -ENOMEM; 4664 if (!ctx) 4665 goto errout; 4666 4667 if (task_ctx_data) { 4668 ctx->task_ctx_data = task_ctx_data; 4669 task_ctx_data = NULL; 4670 } 4671 4672 err = 0; 4673 mutex_lock(&task->perf_event_mutex); 4674 /* 4675 * If it has already passed perf_event_exit_task(). 4676 * we must see PF_EXITING, it takes this mutex too. 4677 */ 4678 if (task->flags & PF_EXITING) 4679 err = -ESRCH; 4680 else if (task->perf_event_ctxp[ctxn]) 4681 err = -EAGAIN; 4682 else { 4683 get_ctx(ctx); 4684 ++ctx->pin_count; 4685 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4686 } 4687 mutex_unlock(&task->perf_event_mutex); 4688 4689 if (unlikely(err)) { 4690 put_ctx(ctx); 4691 4692 if (err == -EAGAIN) 4693 goto retry; 4694 goto errout; 4695 } 4696 } 4697 4698 free_task_ctx_data(pmu, task_ctx_data); 4699 return ctx; 4700 4701 errout: 4702 free_task_ctx_data(pmu, task_ctx_data); 4703 return ERR_PTR(err); 4704 } 4705 4706 static void perf_event_free_filter(struct perf_event *event); 4707 4708 static void free_event_rcu(struct rcu_head *head) 4709 { 4710 struct perf_event *event; 4711 4712 event = container_of(head, struct perf_event, rcu_head); 4713 if (event->ns) 4714 put_pid_ns(event->ns); 4715 perf_event_free_filter(event); 4716 kmem_cache_free(perf_event_cache, event); 4717 } 4718 4719 static void ring_buffer_attach(struct perf_event *event, 4720 struct perf_buffer *rb); 4721 4722 static void detach_sb_event(struct perf_event *event) 4723 { 4724 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4725 4726 raw_spin_lock(&pel->lock); 4727 list_del_rcu(&event->sb_list); 4728 raw_spin_unlock(&pel->lock); 4729 } 4730 4731 static bool is_sb_event(struct perf_event *event) 4732 { 4733 struct perf_event_attr *attr = &event->attr; 4734 4735 if (event->parent) 4736 return false; 4737 4738 if (event->attach_state & PERF_ATTACH_TASK) 4739 return false; 4740 4741 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4742 attr->comm || attr->comm_exec || 4743 attr->task || attr->ksymbol || 4744 attr->context_switch || attr->text_poke || 4745 attr->bpf_event) 4746 return true; 4747 return false; 4748 } 4749 4750 static void unaccount_pmu_sb_event(struct perf_event *event) 4751 { 4752 if (is_sb_event(event)) 4753 detach_sb_event(event); 4754 } 4755 4756 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4757 { 4758 if (event->parent) 4759 return; 4760 4761 if (is_cgroup_event(event)) 4762 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4763 } 4764 4765 #ifdef CONFIG_NO_HZ_FULL 4766 static DEFINE_SPINLOCK(nr_freq_lock); 4767 #endif 4768 4769 static void unaccount_freq_event_nohz(void) 4770 { 4771 #ifdef CONFIG_NO_HZ_FULL 4772 spin_lock(&nr_freq_lock); 4773 if (atomic_dec_and_test(&nr_freq_events)) 4774 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4775 spin_unlock(&nr_freq_lock); 4776 #endif 4777 } 4778 4779 static void unaccount_freq_event(void) 4780 { 4781 if (tick_nohz_full_enabled()) 4782 unaccount_freq_event_nohz(); 4783 else 4784 atomic_dec(&nr_freq_events); 4785 } 4786 4787 static void unaccount_event(struct perf_event *event) 4788 { 4789 bool dec = false; 4790 4791 if (event->parent) 4792 return; 4793 4794 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4795 dec = true; 4796 if (event->attr.mmap || event->attr.mmap_data) 4797 atomic_dec(&nr_mmap_events); 4798 if (event->attr.build_id) 4799 atomic_dec(&nr_build_id_events); 4800 if (event->attr.comm) 4801 atomic_dec(&nr_comm_events); 4802 if (event->attr.namespaces) 4803 atomic_dec(&nr_namespaces_events); 4804 if (event->attr.cgroup) 4805 atomic_dec(&nr_cgroup_events); 4806 if (event->attr.task) 4807 atomic_dec(&nr_task_events); 4808 if (event->attr.freq) 4809 unaccount_freq_event(); 4810 if (event->attr.context_switch) { 4811 dec = true; 4812 atomic_dec(&nr_switch_events); 4813 } 4814 if (is_cgroup_event(event)) 4815 dec = true; 4816 if (has_branch_stack(event)) 4817 dec = true; 4818 if (event->attr.ksymbol) 4819 atomic_dec(&nr_ksymbol_events); 4820 if (event->attr.bpf_event) 4821 atomic_dec(&nr_bpf_events); 4822 if (event->attr.text_poke) 4823 atomic_dec(&nr_text_poke_events); 4824 4825 if (dec) { 4826 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4827 schedule_delayed_work(&perf_sched_work, HZ); 4828 } 4829 4830 unaccount_event_cpu(event, event->cpu); 4831 4832 unaccount_pmu_sb_event(event); 4833 } 4834 4835 static void perf_sched_delayed(struct work_struct *work) 4836 { 4837 mutex_lock(&perf_sched_mutex); 4838 if (atomic_dec_and_test(&perf_sched_count)) 4839 static_branch_disable(&perf_sched_events); 4840 mutex_unlock(&perf_sched_mutex); 4841 } 4842 4843 /* 4844 * The following implement mutual exclusion of events on "exclusive" pmus 4845 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4846 * at a time, so we disallow creating events that might conflict, namely: 4847 * 4848 * 1) cpu-wide events in the presence of per-task events, 4849 * 2) per-task events in the presence of cpu-wide events, 4850 * 3) two matching events on the same context. 4851 * 4852 * The former two cases are handled in the allocation path (perf_event_alloc(), 4853 * _free_event()), the latter -- before the first perf_install_in_context(). 4854 */ 4855 static int exclusive_event_init(struct perf_event *event) 4856 { 4857 struct pmu *pmu = event->pmu; 4858 4859 if (!is_exclusive_pmu(pmu)) 4860 return 0; 4861 4862 /* 4863 * Prevent co-existence of per-task and cpu-wide events on the 4864 * same exclusive pmu. 4865 * 4866 * Negative pmu::exclusive_cnt means there are cpu-wide 4867 * events on this "exclusive" pmu, positive means there are 4868 * per-task events. 4869 * 4870 * Since this is called in perf_event_alloc() path, event::ctx 4871 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4872 * to mean "per-task event", because unlike other attach states it 4873 * never gets cleared. 4874 */ 4875 if (event->attach_state & PERF_ATTACH_TASK) { 4876 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4877 return -EBUSY; 4878 } else { 4879 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4880 return -EBUSY; 4881 } 4882 4883 return 0; 4884 } 4885 4886 static void exclusive_event_destroy(struct perf_event *event) 4887 { 4888 struct pmu *pmu = event->pmu; 4889 4890 if (!is_exclusive_pmu(pmu)) 4891 return; 4892 4893 /* see comment in exclusive_event_init() */ 4894 if (event->attach_state & PERF_ATTACH_TASK) 4895 atomic_dec(&pmu->exclusive_cnt); 4896 else 4897 atomic_inc(&pmu->exclusive_cnt); 4898 } 4899 4900 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4901 { 4902 if ((e1->pmu == e2->pmu) && 4903 (e1->cpu == e2->cpu || 4904 e1->cpu == -1 || 4905 e2->cpu == -1)) 4906 return true; 4907 return false; 4908 } 4909 4910 static bool exclusive_event_installable(struct perf_event *event, 4911 struct perf_event_context *ctx) 4912 { 4913 struct perf_event *iter_event; 4914 struct pmu *pmu = event->pmu; 4915 4916 lockdep_assert_held(&ctx->mutex); 4917 4918 if (!is_exclusive_pmu(pmu)) 4919 return true; 4920 4921 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4922 if (exclusive_event_match(iter_event, event)) 4923 return false; 4924 } 4925 4926 return true; 4927 } 4928 4929 static void perf_addr_filters_splice(struct perf_event *event, 4930 struct list_head *head); 4931 4932 static void _free_event(struct perf_event *event) 4933 { 4934 irq_work_sync(&event->pending); 4935 4936 unaccount_event(event); 4937 4938 security_perf_event_free(event); 4939 4940 if (event->rb) { 4941 /* 4942 * Can happen when we close an event with re-directed output. 4943 * 4944 * Since we have a 0 refcount, perf_mmap_close() will skip 4945 * over us; possibly making our ring_buffer_put() the last. 4946 */ 4947 mutex_lock(&event->mmap_mutex); 4948 ring_buffer_attach(event, NULL); 4949 mutex_unlock(&event->mmap_mutex); 4950 } 4951 4952 if (is_cgroup_event(event)) 4953 perf_detach_cgroup(event); 4954 4955 if (!event->parent) { 4956 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4957 put_callchain_buffers(); 4958 } 4959 4960 perf_event_free_bpf_prog(event); 4961 perf_addr_filters_splice(event, NULL); 4962 kfree(event->addr_filter_ranges); 4963 4964 if (event->destroy) 4965 event->destroy(event); 4966 4967 /* 4968 * Must be after ->destroy(), due to uprobe_perf_close() using 4969 * hw.target. 4970 */ 4971 if (event->hw.target) 4972 put_task_struct(event->hw.target); 4973 4974 /* 4975 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4976 * all task references must be cleaned up. 4977 */ 4978 if (event->ctx) 4979 put_ctx(event->ctx); 4980 4981 exclusive_event_destroy(event); 4982 module_put(event->pmu->module); 4983 4984 call_rcu(&event->rcu_head, free_event_rcu); 4985 } 4986 4987 /* 4988 * Used to free events which have a known refcount of 1, such as in error paths 4989 * where the event isn't exposed yet and inherited events. 4990 */ 4991 static void free_event(struct perf_event *event) 4992 { 4993 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4994 "unexpected event refcount: %ld; ptr=%p\n", 4995 atomic_long_read(&event->refcount), event)) { 4996 /* leak to avoid use-after-free */ 4997 return; 4998 } 4999 5000 _free_event(event); 5001 } 5002 5003 /* 5004 * Remove user event from the owner task. 5005 */ 5006 static void perf_remove_from_owner(struct perf_event *event) 5007 { 5008 struct task_struct *owner; 5009 5010 rcu_read_lock(); 5011 /* 5012 * Matches the smp_store_release() in perf_event_exit_task(). If we 5013 * observe !owner it means the list deletion is complete and we can 5014 * indeed free this event, otherwise we need to serialize on 5015 * owner->perf_event_mutex. 5016 */ 5017 owner = READ_ONCE(event->owner); 5018 if (owner) { 5019 /* 5020 * Since delayed_put_task_struct() also drops the last 5021 * task reference we can safely take a new reference 5022 * while holding the rcu_read_lock(). 5023 */ 5024 get_task_struct(owner); 5025 } 5026 rcu_read_unlock(); 5027 5028 if (owner) { 5029 /* 5030 * If we're here through perf_event_exit_task() we're already 5031 * holding ctx->mutex which would be an inversion wrt. the 5032 * normal lock order. 5033 * 5034 * However we can safely take this lock because its the child 5035 * ctx->mutex. 5036 */ 5037 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5038 5039 /* 5040 * We have to re-check the event->owner field, if it is cleared 5041 * we raced with perf_event_exit_task(), acquiring the mutex 5042 * ensured they're done, and we can proceed with freeing the 5043 * event. 5044 */ 5045 if (event->owner) { 5046 list_del_init(&event->owner_entry); 5047 smp_store_release(&event->owner, NULL); 5048 } 5049 mutex_unlock(&owner->perf_event_mutex); 5050 put_task_struct(owner); 5051 } 5052 } 5053 5054 static void put_event(struct perf_event *event) 5055 { 5056 if (!atomic_long_dec_and_test(&event->refcount)) 5057 return; 5058 5059 _free_event(event); 5060 } 5061 5062 /* 5063 * Kill an event dead; while event:refcount will preserve the event 5064 * object, it will not preserve its functionality. Once the last 'user' 5065 * gives up the object, we'll destroy the thing. 5066 */ 5067 int perf_event_release_kernel(struct perf_event *event) 5068 { 5069 struct perf_event_context *ctx = event->ctx; 5070 struct perf_event *child, *tmp; 5071 LIST_HEAD(free_list); 5072 5073 /* 5074 * If we got here through err_file: fput(event_file); we will not have 5075 * attached to a context yet. 5076 */ 5077 if (!ctx) { 5078 WARN_ON_ONCE(event->attach_state & 5079 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5080 goto no_ctx; 5081 } 5082 5083 if (!is_kernel_event(event)) 5084 perf_remove_from_owner(event); 5085 5086 ctx = perf_event_ctx_lock(event); 5087 WARN_ON_ONCE(ctx->parent_ctx); 5088 perf_remove_from_context(event, DETACH_GROUP); 5089 5090 raw_spin_lock_irq(&ctx->lock); 5091 /* 5092 * Mark this event as STATE_DEAD, there is no external reference to it 5093 * anymore. 5094 * 5095 * Anybody acquiring event->child_mutex after the below loop _must_ 5096 * also see this, most importantly inherit_event() which will avoid 5097 * placing more children on the list. 5098 * 5099 * Thus this guarantees that we will in fact observe and kill _ALL_ 5100 * child events. 5101 */ 5102 event->state = PERF_EVENT_STATE_DEAD; 5103 raw_spin_unlock_irq(&ctx->lock); 5104 5105 perf_event_ctx_unlock(event, ctx); 5106 5107 again: 5108 mutex_lock(&event->child_mutex); 5109 list_for_each_entry(child, &event->child_list, child_list) { 5110 5111 /* 5112 * Cannot change, child events are not migrated, see the 5113 * comment with perf_event_ctx_lock_nested(). 5114 */ 5115 ctx = READ_ONCE(child->ctx); 5116 /* 5117 * Since child_mutex nests inside ctx::mutex, we must jump 5118 * through hoops. We start by grabbing a reference on the ctx. 5119 * 5120 * Since the event cannot get freed while we hold the 5121 * child_mutex, the context must also exist and have a !0 5122 * reference count. 5123 */ 5124 get_ctx(ctx); 5125 5126 /* 5127 * Now that we have a ctx ref, we can drop child_mutex, and 5128 * acquire ctx::mutex without fear of it going away. Then we 5129 * can re-acquire child_mutex. 5130 */ 5131 mutex_unlock(&event->child_mutex); 5132 mutex_lock(&ctx->mutex); 5133 mutex_lock(&event->child_mutex); 5134 5135 /* 5136 * Now that we hold ctx::mutex and child_mutex, revalidate our 5137 * state, if child is still the first entry, it didn't get freed 5138 * and we can continue doing so. 5139 */ 5140 tmp = list_first_entry_or_null(&event->child_list, 5141 struct perf_event, child_list); 5142 if (tmp == child) { 5143 perf_remove_from_context(child, DETACH_GROUP); 5144 list_move(&child->child_list, &free_list); 5145 /* 5146 * This matches the refcount bump in inherit_event(); 5147 * this can't be the last reference. 5148 */ 5149 put_event(event); 5150 } 5151 5152 mutex_unlock(&event->child_mutex); 5153 mutex_unlock(&ctx->mutex); 5154 put_ctx(ctx); 5155 goto again; 5156 } 5157 mutex_unlock(&event->child_mutex); 5158 5159 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5160 void *var = &child->ctx->refcount; 5161 5162 list_del(&child->child_list); 5163 free_event(child); 5164 5165 /* 5166 * Wake any perf_event_free_task() waiting for this event to be 5167 * freed. 5168 */ 5169 smp_mb(); /* pairs with wait_var_event() */ 5170 wake_up_var(var); 5171 } 5172 5173 no_ctx: 5174 put_event(event); /* Must be the 'last' reference */ 5175 return 0; 5176 } 5177 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5178 5179 /* 5180 * Called when the last reference to the file is gone. 5181 */ 5182 static int perf_release(struct inode *inode, struct file *file) 5183 { 5184 perf_event_release_kernel(file->private_data); 5185 return 0; 5186 } 5187 5188 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5189 { 5190 struct perf_event *child; 5191 u64 total = 0; 5192 5193 *enabled = 0; 5194 *running = 0; 5195 5196 mutex_lock(&event->child_mutex); 5197 5198 (void)perf_event_read(event, false); 5199 total += perf_event_count(event); 5200 5201 *enabled += event->total_time_enabled + 5202 atomic64_read(&event->child_total_time_enabled); 5203 *running += event->total_time_running + 5204 atomic64_read(&event->child_total_time_running); 5205 5206 list_for_each_entry(child, &event->child_list, child_list) { 5207 (void)perf_event_read(child, false); 5208 total += perf_event_count(child); 5209 *enabled += child->total_time_enabled; 5210 *running += child->total_time_running; 5211 } 5212 mutex_unlock(&event->child_mutex); 5213 5214 return total; 5215 } 5216 5217 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5218 { 5219 struct perf_event_context *ctx; 5220 u64 count; 5221 5222 ctx = perf_event_ctx_lock(event); 5223 count = __perf_event_read_value(event, enabled, running); 5224 perf_event_ctx_unlock(event, ctx); 5225 5226 return count; 5227 } 5228 EXPORT_SYMBOL_GPL(perf_event_read_value); 5229 5230 static int __perf_read_group_add(struct perf_event *leader, 5231 u64 read_format, u64 *values) 5232 { 5233 struct perf_event_context *ctx = leader->ctx; 5234 struct perf_event *sub; 5235 unsigned long flags; 5236 int n = 1; /* skip @nr */ 5237 int ret; 5238 5239 ret = perf_event_read(leader, true); 5240 if (ret) 5241 return ret; 5242 5243 raw_spin_lock_irqsave(&ctx->lock, flags); 5244 5245 /* 5246 * Since we co-schedule groups, {enabled,running} times of siblings 5247 * will be identical to those of the leader, so we only publish one 5248 * set. 5249 */ 5250 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5251 values[n++] += leader->total_time_enabled + 5252 atomic64_read(&leader->child_total_time_enabled); 5253 } 5254 5255 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5256 values[n++] += leader->total_time_running + 5257 atomic64_read(&leader->child_total_time_running); 5258 } 5259 5260 /* 5261 * Write {count,id} tuples for every sibling. 5262 */ 5263 values[n++] += perf_event_count(leader); 5264 if (read_format & PERF_FORMAT_ID) 5265 values[n++] = primary_event_id(leader); 5266 if (read_format & PERF_FORMAT_LOST) 5267 values[n++] = atomic64_read(&leader->lost_samples); 5268 5269 for_each_sibling_event(sub, leader) { 5270 values[n++] += perf_event_count(sub); 5271 if (read_format & PERF_FORMAT_ID) 5272 values[n++] = primary_event_id(sub); 5273 if (read_format & PERF_FORMAT_LOST) 5274 values[n++] = atomic64_read(&sub->lost_samples); 5275 } 5276 5277 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5278 return 0; 5279 } 5280 5281 static int perf_read_group(struct perf_event *event, 5282 u64 read_format, char __user *buf) 5283 { 5284 struct perf_event *leader = event->group_leader, *child; 5285 struct perf_event_context *ctx = leader->ctx; 5286 int ret; 5287 u64 *values; 5288 5289 lockdep_assert_held(&ctx->mutex); 5290 5291 values = kzalloc(event->read_size, GFP_KERNEL); 5292 if (!values) 5293 return -ENOMEM; 5294 5295 values[0] = 1 + leader->nr_siblings; 5296 5297 /* 5298 * By locking the child_mutex of the leader we effectively 5299 * lock the child list of all siblings.. XXX explain how. 5300 */ 5301 mutex_lock(&leader->child_mutex); 5302 5303 ret = __perf_read_group_add(leader, read_format, values); 5304 if (ret) 5305 goto unlock; 5306 5307 list_for_each_entry(child, &leader->child_list, child_list) { 5308 ret = __perf_read_group_add(child, read_format, values); 5309 if (ret) 5310 goto unlock; 5311 } 5312 5313 mutex_unlock(&leader->child_mutex); 5314 5315 ret = event->read_size; 5316 if (copy_to_user(buf, values, event->read_size)) 5317 ret = -EFAULT; 5318 goto out; 5319 5320 unlock: 5321 mutex_unlock(&leader->child_mutex); 5322 out: 5323 kfree(values); 5324 return ret; 5325 } 5326 5327 static int perf_read_one(struct perf_event *event, 5328 u64 read_format, char __user *buf) 5329 { 5330 u64 enabled, running; 5331 u64 values[5]; 5332 int n = 0; 5333 5334 values[n++] = __perf_event_read_value(event, &enabled, &running); 5335 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5336 values[n++] = enabled; 5337 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5338 values[n++] = running; 5339 if (read_format & PERF_FORMAT_ID) 5340 values[n++] = primary_event_id(event); 5341 if (read_format & PERF_FORMAT_LOST) 5342 values[n++] = atomic64_read(&event->lost_samples); 5343 5344 if (copy_to_user(buf, values, n * sizeof(u64))) 5345 return -EFAULT; 5346 5347 return n * sizeof(u64); 5348 } 5349 5350 static bool is_event_hup(struct perf_event *event) 5351 { 5352 bool no_children; 5353 5354 if (event->state > PERF_EVENT_STATE_EXIT) 5355 return false; 5356 5357 mutex_lock(&event->child_mutex); 5358 no_children = list_empty(&event->child_list); 5359 mutex_unlock(&event->child_mutex); 5360 return no_children; 5361 } 5362 5363 /* 5364 * Read the performance event - simple non blocking version for now 5365 */ 5366 static ssize_t 5367 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5368 { 5369 u64 read_format = event->attr.read_format; 5370 int ret; 5371 5372 /* 5373 * Return end-of-file for a read on an event that is in 5374 * error state (i.e. because it was pinned but it couldn't be 5375 * scheduled on to the CPU at some point). 5376 */ 5377 if (event->state == PERF_EVENT_STATE_ERROR) 5378 return 0; 5379 5380 if (count < event->read_size) 5381 return -ENOSPC; 5382 5383 WARN_ON_ONCE(event->ctx->parent_ctx); 5384 if (read_format & PERF_FORMAT_GROUP) 5385 ret = perf_read_group(event, read_format, buf); 5386 else 5387 ret = perf_read_one(event, read_format, buf); 5388 5389 return ret; 5390 } 5391 5392 static ssize_t 5393 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5394 { 5395 struct perf_event *event = file->private_data; 5396 struct perf_event_context *ctx; 5397 int ret; 5398 5399 ret = security_perf_event_read(event); 5400 if (ret) 5401 return ret; 5402 5403 ctx = perf_event_ctx_lock(event); 5404 ret = __perf_read(event, buf, count); 5405 perf_event_ctx_unlock(event, ctx); 5406 5407 return ret; 5408 } 5409 5410 static __poll_t perf_poll(struct file *file, poll_table *wait) 5411 { 5412 struct perf_event *event = file->private_data; 5413 struct perf_buffer *rb; 5414 __poll_t events = EPOLLHUP; 5415 5416 poll_wait(file, &event->waitq, wait); 5417 5418 if (is_event_hup(event)) 5419 return events; 5420 5421 /* 5422 * Pin the event->rb by taking event->mmap_mutex; otherwise 5423 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5424 */ 5425 mutex_lock(&event->mmap_mutex); 5426 rb = event->rb; 5427 if (rb) 5428 events = atomic_xchg(&rb->poll, 0); 5429 mutex_unlock(&event->mmap_mutex); 5430 return events; 5431 } 5432 5433 static void _perf_event_reset(struct perf_event *event) 5434 { 5435 (void)perf_event_read(event, false); 5436 local64_set(&event->count, 0); 5437 perf_event_update_userpage(event); 5438 } 5439 5440 /* Assume it's not an event with inherit set. */ 5441 u64 perf_event_pause(struct perf_event *event, bool reset) 5442 { 5443 struct perf_event_context *ctx; 5444 u64 count; 5445 5446 ctx = perf_event_ctx_lock(event); 5447 WARN_ON_ONCE(event->attr.inherit); 5448 _perf_event_disable(event); 5449 count = local64_read(&event->count); 5450 if (reset) 5451 local64_set(&event->count, 0); 5452 perf_event_ctx_unlock(event, ctx); 5453 5454 return count; 5455 } 5456 EXPORT_SYMBOL_GPL(perf_event_pause); 5457 5458 /* 5459 * Holding the top-level event's child_mutex means that any 5460 * descendant process that has inherited this event will block 5461 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5462 * task existence requirements of perf_event_enable/disable. 5463 */ 5464 static void perf_event_for_each_child(struct perf_event *event, 5465 void (*func)(struct perf_event *)) 5466 { 5467 struct perf_event *child; 5468 5469 WARN_ON_ONCE(event->ctx->parent_ctx); 5470 5471 mutex_lock(&event->child_mutex); 5472 func(event); 5473 list_for_each_entry(child, &event->child_list, child_list) 5474 func(child); 5475 mutex_unlock(&event->child_mutex); 5476 } 5477 5478 static void perf_event_for_each(struct perf_event *event, 5479 void (*func)(struct perf_event *)) 5480 { 5481 struct perf_event_context *ctx = event->ctx; 5482 struct perf_event *sibling; 5483 5484 lockdep_assert_held(&ctx->mutex); 5485 5486 event = event->group_leader; 5487 5488 perf_event_for_each_child(event, func); 5489 for_each_sibling_event(sibling, event) 5490 perf_event_for_each_child(sibling, func); 5491 } 5492 5493 static void __perf_event_period(struct perf_event *event, 5494 struct perf_cpu_context *cpuctx, 5495 struct perf_event_context *ctx, 5496 void *info) 5497 { 5498 u64 value = *((u64 *)info); 5499 bool active; 5500 5501 if (event->attr.freq) { 5502 event->attr.sample_freq = value; 5503 } else { 5504 event->attr.sample_period = value; 5505 event->hw.sample_period = value; 5506 } 5507 5508 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5509 if (active) { 5510 perf_pmu_disable(ctx->pmu); 5511 /* 5512 * We could be throttled; unthrottle now to avoid the tick 5513 * trying to unthrottle while we already re-started the event. 5514 */ 5515 if (event->hw.interrupts == MAX_INTERRUPTS) { 5516 event->hw.interrupts = 0; 5517 perf_log_throttle(event, 1); 5518 } 5519 event->pmu->stop(event, PERF_EF_UPDATE); 5520 } 5521 5522 local64_set(&event->hw.period_left, 0); 5523 5524 if (active) { 5525 event->pmu->start(event, PERF_EF_RELOAD); 5526 perf_pmu_enable(ctx->pmu); 5527 } 5528 } 5529 5530 static int perf_event_check_period(struct perf_event *event, u64 value) 5531 { 5532 return event->pmu->check_period(event, value); 5533 } 5534 5535 static int _perf_event_period(struct perf_event *event, u64 value) 5536 { 5537 if (!is_sampling_event(event)) 5538 return -EINVAL; 5539 5540 if (!value) 5541 return -EINVAL; 5542 5543 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5544 return -EINVAL; 5545 5546 if (perf_event_check_period(event, value)) 5547 return -EINVAL; 5548 5549 if (!event->attr.freq && (value & (1ULL << 63))) 5550 return -EINVAL; 5551 5552 event_function_call(event, __perf_event_period, &value); 5553 5554 return 0; 5555 } 5556 5557 int perf_event_period(struct perf_event *event, u64 value) 5558 { 5559 struct perf_event_context *ctx; 5560 int ret; 5561 5562 ctx = perf_event_ctx_lock(event); 5563 ret = _perf_event_period(event, value); 5564 perf_event_ctx_unlock(event, ctx); 5565 5566 return ret; 5567 } 5568 EXPORT_SYMBOL_GPL(perf_event_period); 5569 5570 static const struct file_operations perf_fops; 5571 5572 static inline int perf_fget_light(int fd, struct fd *p) 5573 { 5574 struct fd f = fdget(fd); 5575 if (!f.file) 5576 return -EBADF; 5577 5578 if (f.file->f_op != &perf_fops) { 5579 fdput(f); 5580 return -EBADF; 5581 } 5582 *p = f; 5583 return 0; 5584 } 5585 5586 static int perf_event_set_output(struct perf_event *event, 5587 struct perf_event *output_event); 5588 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5589 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5590 struct perf_event_attr *attr); 5591 5592 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5593 { 5594 void (*func)(struct perf_event *); 5595 u32 flags = arg; 5596 5597 switch (cmd) { 5598 case PERF_EVENT_IOC_ENABLE: 5599 func = _perf_event_enable; 5600 break; 5601 case PERF_EVENT_IOC_DISABLE: 5602 func = _perf_event_disable; 5603 break; 5604 case PERF_EVENT_IOC_RESET: 5605 func = _perf_event_reset; 5606 break; 5607 5608 case PERF_EVENT_IOC_REFRESH: 5609 return _perf_event_refresh(event, arg); 5610 5611 case PERF_EVENT_IOC_PERIOD: 5612 { 5613 u64 value; 5614 5615 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5616 return -EFAULT; 5617 5618 return _perf_event_period(event, value); 5619 } 5620 case PERF_EVENT_IOC_ID: 5621 { 5622 u64 id = primary_event_id(event); 5623 5624 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5625 return -EFAULT; 5626 return 0; 5627 } 5628 5629 case PERF_EVENT_IOC_SET_OUTPUT: 5630 { 5631 int ret; 5632 if (arg != -1) { 5633 struct perf_event *output_event; 5634 struct fd output; 5635 ret = perf_fget_light(arg, &output); 5636 if (ret) 5637 return ret; 5638 output_event = output.file->private_data; 5639 ret = perf_event_set_output(event, output_event); 5640 fdput(output); 5641 } else { 5642 ret = perf_event_set_output(event, NULL); 5643 } 5644 return ret; 5645 } 5646 5647 case PERF_EVENT_IOC_SET_FILTER: 5648 return perf_event_set_filter(event, (void __user *)arg); 5649 5650 case PERF_EVENT_IOC_SET_BPF: 5651 { 5652 struct bpf_prog *prog; 5653 int err; 5654 5655 prog = bpf_prog_get(arg); 5656 if (IS_ERR(prog)) 5657 return PTR_ERR(prog); 5658 5659 err = perf_event_set_bpf_prog(event, prog, 0); 5660 if (err) { 5661 bpf_prog_put(prog); 5662 return err; 5663 } 5664 5665 return 0; 5666 } 5667 5668 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5669 struct perf_buffer *rb; 5670 5671 rcu_read_lock(); 5672 rb = rcu_dereference(event->rb); 5673 if (!rb || !rb->nr_pages) { 5674 rcu_read_unlock(); 5675 return -EINVAL; 5676 } 5677 rb_toggle_paused(rb, !!arg); 5678 rcu_read_unlock(); 5679 return 0; 5680 } 5681 5682 case PERF_EVENT_IOC_QUERY_BPF: 5683 return perf_event_query_prog_array(event, (void __user *)arg); 5684 5685 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5686 struct perf_event_attr new_attr; 5687 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5688 &new_attr); 5689 5690 if (err) 5691 return err; 5692 5693 return perf_event_modify_attr(event, &new_attr); 5694 } 5695 default: 5696 return -ENOTTY; 5697 } 5698 5699 if (flags & PERF_IOC_FLAG_GROUP) 5700 perf_event_for_each(event, func); 5701 else 5702 perf_event_for_each_child(event, func); 5703 5704 return 0; 5705 } 5706 5707 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5708 { 5709 struct perf_event *event = file->private_data; 5710 struct perf_event_context *ctx; 5711 long ret; 5712 5713 /* Treat ioctl like writes as it is likely a mutating operation. */ 5714 ret = security_perf_event_write(event); 5715 if (ret) 5716 return ret; 5717 5718 ctx = perf_event_ctx_lock(event); 5719 ret = _perf_ioctl(event, cmd, arg); 5720 perf_event_ctx_unlock(event, ctx); 5721 5722 return ret; 5723 } 5724 5725 #ifdef CONFIG_COMPAT 5726 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5727 unsigned long arg) 5728 { 5729 switch (_IOC_NR(cmd)) { 5730 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5731 case _IOC_NR(PERF_EVENT_IOC_ID): 5732 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5733 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5734 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5735 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5736 cmd &= ~IOCSIZE_MASK; 5737 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5738 } 5739 break; 5740 } 5741 return perf_ioctl(file, cmd, arg); 5742 } 5743 #else 5744 # define perf_compat_ioctl NULL 5745 #endif 5746 5747 int perf_event_task_enable(void) 5748 { 5749 struct perf_event_context *ctx; 5750 struct perf_event *event; 5751 5752 mutex_lock(¤t->perf_event_mutex); 5753 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5754 ctx = perf_event_ctx_lock(event); 5755 perf_event_for_each_child(event, _perf_event_enable); 5756 perf_event_ctx_unlock(event, ctx); 5757 } 5758 mutex_unlock(¤t->perf_event_mutex); 5759 5760 return 0; 5761 } 5762 5763 int perf_event_task_disable(void) 5764 { 5765 struct perf_event_context *ctx; 5766 struct perf_event *event; 5767 5768 mutex_lock(¤t->perf_event_mutex); 5769 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5770 ctx = perf_event_ctx_lock(event); 5771 perf_event_for_each_child(event, _perf_event_disable); 5772 perf_event_ctx_unlock(event, ctx); 5773 } 5774 mutex_unlock(¤t->perf_event_mutex); 5775 5776 return 0; 5777 } 5778 5779 static int perf_event_index(struct perf_event *event) 5780 { 5781 if (event->hw.state & PERF_HES_STOPPED) 5782 return 0; 5783 5784 if (event->state != PERF_EVENT_STATE_ACTIVE) 5785 return 0; 5786 5787 return event->pmu->event_idx(event); 5788 } 5789 5790 static void perf_event_init_userpage(struct perf_event *event) 5791 { 5792 struct perf_event_mmap_page *userpg; 5793 struct perf_buffer *rb; 5794 5795 rcu_read_lock(); 5796 rb = rcu_dereference(event->rb); 5797 if (!rb) 5798 goto unlock; 5799 5800 userpg = rb->user_page; 5801 5802 /* Allow new userspace to detect that bit 0 is deprecated */ 5803 userpg->cap_bit0_is_deprecated = 1; 5804 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5805 userpg->data_offset = PAGE_SIZE; 5806 userpg->data_size = perf_data_size(rb); 5807 5808 unlock: 5809 rcu_read_unlock(); 5810 } 5811 5812 void __weak arch_perf_update_userpage( 5813 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5814 { 5815 } 5816 5817 /* 5818 * Callers need to ensure there can be no nesting of this function, otherwise 5819 * the seqlock logic goes bad. We can not serialize this because the arch 5820 * code calls this from NMI context. 5821 */ 5822 void perf_event_update_userpage(struct perf_event *event) 5823 { 5824 struct perf_event_mmap_page *userpg; 5825 struct perf_buffer *rb; 5826 u64 enabled, running, now; 5827 5828 rcu_read_lock(); 5829 rb = rcu_dereference(event->rb); 5830 if (!rb) 5831 goto unlock; 5832 5833 /* 5834 * compute total_time_enabled, total_time_running 5835 * based on snapshot values taken when the event 5836 * was last scheduled in. 5837 * 5838 * we cannot simply called update_context_time() 5839 * because of locking issue as we can be called in 5840 * NMI context 5841 */ 5842 calc_timer_values(event, &now, &enabled, &running); 5843 5844 userpg = rb->user_page; 5845 /* 5846 * Disable preemption to guarantee consistent time stamps are stored to 5847 * the user page. 5848 */ 5849 preempt_disable(); 5850 ++userpg->lock; 5851 barrier(); 5852 userpg->index = perf_event_index(event); 5853 userpg->offset = perf_event_count(event); 5854 if (userpg->index) 5855 userpg->offset -= local64_read(&event->hw.prev_count); 5856 5857 userpg->time_enabled = enabled + 5858 atomic64_read(&event->child_total_time_enabled); 5859 5860 userpg->time_running = running + 5861 atomic64_read(&event->child_total_time_running); 5862 5863 arch_perf_update_userpage(event, userpg, now); 5864 5865 barrier(); 5866 ++userpg->lock; 5867 preempt_enable(); 5868 unlock: 5869 rcu_read_unlock(); 5870 } 5871 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5872 5873 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5874 { 5875 struct perf_event *event = vmf->vma->vm_file->private_data; 5876 struct perf_buffer *rb; 5877 vm_fault_t ret = VM_FAULT_SIGBUS; 5878 5879 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5880 if (vmf->pgoff == 0) 5881 ret = 0; 5882 return ret; 5883 } 5884 5885 rcu_read_lock(); 5886 rb = rcu_dereference(event->rb); 5887 if (!rb) 5888 goto unlock; 5889 5890 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5891 goto unlock; 5892 5893 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5894 if (!vmf->page) 5895 goto unlock; 5896 5897 get_page(vmf->page); 5898 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5899 vmf->page->index = vmf->pgoff; 5900 5901 ret = 0; 5902 unlock: 5903 rcu_read_unlock(); 5904 5905 return ret; 5906 } 5907 5908 static void ring_buffer_attach(struct perf_event *event, 5909 struct perf_buffer *rb) 5910 { 5911 struct perf_buffer *old_rb = NULL; 5912 unsigned long flags; 5913 5914 WARN_ON_ONCE(event->parent); 5915 5916 if (event->rb) { 5917 /* 5918 * Should be impossible, we set this when removing 5919 * event->rb_entry and wait/clear when adding event->rb_entry. 5920 */ 5921 WARN_ON_ONCE(event->rcu_pending); 5922 5923 old_rb = event->rb; 5924 spin_lock_irqsave(&old_rb->event_lock, flags); 5925 list_del_rcu(&event->rb_entry); 5926 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5927 5928 event->rcu_batches = get_state_synchronize_rcu(); 5929 event->rcu_pending = 1; 5930 } 5931 5932 if (rb) { 5933 if (event->rcu_pending) { 5934 cond_synchronize_rcu(event->rcu_batches); 5935 event->rcu_pending = 0; 5936 } 5937 5938 spin_lock_irqsave(&rb->event_lock, flags); 5939 list_add_rcu(&event->rb_entry, &rb->event_list); 5940 spin_unlock_irqrestore(&rb->event_lock, flags); 5941 } 5942 5943 /* 5944 * Avoid racing with perf_mmap_close(AUX): stop the event 5945 * before swizzling the event::rb pointer; if it's getting 5946 * unmapped, its aux_mmap_count will be 0 and it won't 5947 * restart. See the comment in __perf_pmu_output_stop(). 5948 * 5949 * Data will inevitably be lost when set_output is done in 5950 * mid-air, but then again, whoever does it like this is 5951 * not in for the data anyway. 5952 */ 5953 if (has_aux(event)) 5954 perf_event_stop(event, 0); 5955 5956 rcu_assign_pointer(event->rb, rb); 5957 5958 if (old_rb) { 5959 ring_buffer_put(old_rb); 5960 /* 5961 * Since we detached before setting the new rb, so that we 5962 * could attach the new rb, we could have missed a wakeup. 5963 * Provide it now. 5964 */ 5965 wake_up_all(&event->waitq); 5966 } 5967 } 5968 5969 static void ring_buffer_wakeup(struct perf_event *event) 5970 { 5971 struct perf_buffer *rb; 5972 5973 if (event->parent) 5974 event = event->parent; 5975 5976 rcu_read_lock(); 5977 rb = rcu_dereference(event->rb); 5978 if (rb) { 5979 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5980 wake_up_all(&event->waitq); 5981 } 5982 rcu_read_unlock(); 5983 } 5984 5985 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5986 { 5987 struct perf_buffer *rb; 5988 5989 if (event->parent) 5990 event = event->parent; 5991 5992 rcu_read_lock(); 5993 rb = rcu_dereference(event->rb); 5994 if (rb) { 5995 if (!refcount_inc_not_zero(&rb->refcount)) 5996 rb = NULL; 5997 } 5998 rcu_read_unlock(); 5999 6000 return rb; 6001 } 6002 6003 void ring_buffer_put(struct perf_buffer *rb) 6004 { 6005 if (!refcount_dec_and_test(&rb->refcount)) 6006 return; 6007 6008 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6009 6010 call_rcu(&rb->rcu_head, rb_free_rcu); 6011 } 6012 6013 static void perf_mmap_open(struct vm_area_struct *vma) 6014 { 6015 struct perf_event *event = vma->vm_file->private_data; 6016 6017 atomic_inc(&event->mmap_count); 6018 atomic_inc(&event->rb->mmap_count); 6019 6020 if (vma->vm_pgoff) 6021 atomic_inc(&event->rb->aux_mmap_count); 6022 6023 if (event->pmu->event_mapped) 6024 event->pmu->event_mapped(event, vma->vm_mm); 6025 } 6026 6027 static void perf_pmu_output_stop(struct perf_event *event); 6028 6029 /* 6030 * A buffer can be mmap()ed multiple times; either directly through the same 6031 * event, or through other events by use of perf_event_set_output(). 6032 * 6033 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6034 * the buffer here, where we still have a VM context. This means we need 6035 * to detach all events redirecting to us. 6036 */ 6037 static void perf_mmap_close(struct vm_area_struct *vma) 6038 { 6039 struct perf_event *event = vma->vm_file->private_data; 6040 struct perf_buffer *rb = ring_buffer_get(event); 6041 struct user_struct *mmap_user = rb->mmap_user; 6042 int mmap_locked = rb->mmap_locked; 6043 unsigned long size = perf_data_size(rb); 6044 bool detach_rest = false; 6045 6046 if (event->pmu->event_unmapped) 6047 event->pmu->event_unmapped(event, vma->vm_mm); 6048 6049 /* 6050 * rb->aux_mmap_count will always drop before rb->mmap_count and 6051 * event->mmap_count, so it is ok to use event->mmap_mutex to 6052 * serialize with perf_mmap here. 6053 */ 6054 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6055 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6056 /* 6057 * Stop all AUX events that are writing to this buffer, 6058 * so that we can free its AUX pages and corresponding PMU 6059 * data. Note that after rb::aux_mmap_count dropped to zero, 6060 * they won't start any more (see perf_aux_output_begin()). 6061 */ 6062 perf_pmu_output_stop(event); 6063 6064 /* now it's safe to free the pages */ 6065 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6066 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6067 6068 /* this has to be the last one */ 6069 rb_free_aux(rb); 6070 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6071 6072 mutex_unlock(&event->mmap_mutex); 6073 } 6074 6075 if (atomic_dec_and_test(&rb->mmap_count)) 6076 detach_rest = true; 6077 6078 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6079 goto out_put; 6080 6081 ring_buffer_attach(event, NULL); 6082 mutex_unlock(&event->mmap_mutex); 6083 6084 /* If there's still other mmap()s of this buffer, we're done. */ 6085 if (!detach_rest) 6086 goto out_put; 6087 6088 /* 6089 * No other mmap()s, detach from all other events that might redirect 6090 * into the now unreachable buffer. Somewhat complicated by the 6091 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6092 */ 6093 again: 6094 rcu_read_lock(); 6095 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6096 if (!atomic_long_inc_not_zero(&event->refcount)) { 6097 /* 6098 * This event is en-route to free_event() which will 6099 * detach it and remove it from the list. 6100 */ 6101 continue; 6102 } 6103 rcu_read_unlock(); 6104 6105 mutex_lock(&event->mmap_mutex); 6106 /* 6107 * Check we didn't race with perf_event_set_output() which can 6108 * swizzle the rb from under us while we were waiting to 6109 * acquire mmap_mutex. 6110 * 6111 * If we find a different rb; ignore this event, a next 6112 * iteration will no longer find it on the list. We have to 6113 * still restart the iteration to make sure we're not now 6114 * iterating the wrong list. 6115 */ 6116 if (event->rb == rb) 6117 ring_buffer_attach(event, NULL); 6118 6119 mutex_unlock(&event->mmap_mutex); 6120 put_event(event); 6121 6122 /* 6123 * Restart the iteration; either we're on the wrong list or 6124 * destroyed its integrity by doing a deletion. 6125 */ 6126 goto again; 6127 } 6128 rcu_read_unlock(); 6129 6130 /* 6131 * It could be there's still a few 0-ref events on the list; they'll 6132 * get cleaned up by free_event() -- they'll also still have their 6133 * ref on the rb and will free it whenever they are done with it. 6134 * 6135 * Aside from that, this buffer is 'fully' detached and unmapped, 6136 * undo the VM accounting. 6137 */ 6138 6139 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6140 &mmap_user->locked_vm); 6141 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6142 free_uid(mmap_user); 6143 6144 out_put: 6145 ring_buffer_put(rb); /* could be last */ 6146 } 6147 6148 static const struct vm_operations_struct perf_mmap_vmops = { 6149 .open = perf_mmap_open, 6150 .close = perf_mmap_close, /* non mergeable */ 6151 .fault = perf_mmap_fault, 6152 .page_mkwrite = perf_mmap_fault, 6153 }; 6154 6155 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6156 { 6157 struct perf_event *event = file->private_data; 6158 unsigned long user_locked, user_lock_limit; 6159 struct user_struct *user = current_user(); 6160 struct perf_buffer *rb = NULL; 6161 unsigned long locked, lock_limit; 6162 unsigned long vma_size; 6163 unsigned long nr_pages; 6164 long user_extra = 0, extra = 0; 6165 int ret = 0, flags = 0; 6166 6167 /* 6168 * Don't allow mmap() of inherited per-task counters. This would 6169 * create a performance issue due to all children writing to the 6170 * same rb. 6171 */ 6172 if (event->cpu == -1 && event->attr.inherit) 6173 return -EINVAL; 6174 6175 if (!(vma->vm_flags & VM_SHARED)) 6176 return -EINVAL; 6177 6178 ret = security_perf_event_read(event); 6179 if (ret) 6180 return ret; 6181 6182 vma_size = vma->vm_end - vma->vm_start; 6183 6184 if (vma->vm_pgoff == 0) { 6185 nr_pages = (vma_size / PAGE_SIZE) - 1; 6186 } else { 6187 /* 6188 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6189 * mapped, all subsequent mappings should have the same size 6190 * and offset. Must be above the normal perf buffer. 6191 */ 6192 u64 aux_offset, aux_size; 6193 6194 if (!event->rb) 6195 return -EINVAL; 6196 6197 nr_pages = vma_size / PAGE_SIZE; 6198 6199 mutex_lock(&event->mmap_mutex); 6200 ret = -EINVAL; 6201 6202 rb = event->rb; 6203 if (!rb) 6204 goto aux_unlock; 6205 6206 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6207 aux_size = READ_ONCE(rb->user_page->aux_size); 6208 6209 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6210 goto aux_unlock; 6211 6212 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6213 goto aux_unlock; 6214 6215 /* already mapped with a different offset */ 6216 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6217 goto aux_unlock; 6218 6219 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6220 goto aux_unlock; 6221 6222 /* already mapped with a different size */ 6223 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6224 goto aux_unlock; 6225 6226 if (!is_power_of_2(nr_pages)) 6227 goto aux_unlock; 6228 6229 if (!atomic_inc_not_zero(&rb->mmap_count)) 6230 goto aux_unlock; 6231 6232 if (rb_has_aux(rb)) { 6233 atomic_inc(&rb->aux_mmap_count); 6234 ret = 0; 6235 goto unlock; 6236 } 6237 6238 atomic_set(&rb->aux_mmap_count, 1); 6239 user_extra = nr_pages; 6240 6241 goto accounting; 6242 } 6243 6244 /* 6245 * If we have rb pages ensure they're a power-of-two number, so we 6246 * can do bitmasks instead of modulo. 6247 */ 6248 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6249 return -EINVAL; 6250 6251 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6252 return -EINVAL; 6253 6254 WARN_ON_ONCE(event->ctx->parent_ctx); 6255 again: 6256 mutex_lock(&event->mmap_mutex); 6257 if (event->rb) { 6258 if (data_page_nr(event->rb) != nr_pages) { 6259 ret = -EINVAL; 6260 goto unlock; 6261 } 6262 6263 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6264 /* 6265 * Raced against perf_mmap_close(); remove the 6266 * event and try again. 6267 */ 6268 ring_buffer_attach(event, NULL); 6269 mutex_unlock(&event->mmap_mutex); 6270 goto again; 6271 } 6272 6273 goto unlock; 6274 } 6275 6276 user_extra = nr_pages + 1; 6277 6278 accounting: 6279 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6280 6281 /* 6282 * Increase the limit linearly with more CPUs: 6283 */ 6284 user_lock_limit *= num_online_cpus(); 6285 6286 user_locked = atomic_long_read(&user->locked_vm); 6287 6288 /* 6289 * sysctl_perf_event_mlock may have changed, so that 6290 * user->locked_vm > user_lock_limit 6291 */ 6292 if (user_locked > user_lock_limit) 6293 user_locked = user_lock_limit; 6294 user_locked += user_extra; 6295 6296 if (user_locked > user_lock_limit) { 6297 /* 6298 * charge locked_vm until it hits user_lock_limit; 6299 * charge the rest from pinned_vm 6300 */ 6301 extra = user_locked - user_lock_limit; 6302 user_extra -= extra; 6303 } 6304 6305 lock_limit = rlimit(RLIMIT_MEMLOCK); 6306 lock_limit >>= PAGE_SHIFT; 6307 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6308 6309 if ((locked > lock_limit) && perf_is_paranoid() && 6310 !capable(CAP_IPC_LOCK)) { 6311 ret = -EPERM; 6312 goto unlock; 6313 } 6314 6315 WARN_ON(!rb && event->rb); 6316 6317 if (vma->vm_flags & VM_WRITE) 6318 flags |= RING_BUFFER_WRITABLE; 6319 6320 if (!rb) { 6321 rb = rb_alloc(nr_pages, 6322 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6323 event->cpu, flags); 6324 6325 if (!rb) { 6326 ret = -ENOMEM; 6327 goto unlock; 6328 } 6329 6330 atomic_set(&rb->mmap_count, 1); 6331 rb->mmap_user = get_current_user(); 6332 rb->mmap_locked = extra; 6333 6334 ring_buffer_attach(event, rb); 6335 6336 perf_event_update_time(event); 6337 perf_event_init_userpage(event); 6338 perf_event_update_userpage(event); 6339 } else { 6340 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6341 event->attr.aux_watermark, flags); 6342 if (!ret) 6343 rb->aux_mmap_locked = extra; 6344 } 6345 6346 unlock: 6347 if (!ret) { 6348 atomic_long_add(user_extra, &user->locked_vm); 6349 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6350 6351 atomic_inc(&event->mmap_count); 6352 } else if (rb) { 6353 atomic_dec(&rb->mmap_count); 6354 } 6355 aux_unlock: 6356 mutex_unlock(&event->mmap_mutex); 6357 6358 /* 6359 * Since pinned accounting is per vm we cannot allow fork() to copy our 6360 * vma. 6361 */ 6362 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6363 vma->vm_ops = &perf_mmap_vmops; 6364 6365 if (event->pmu->event_mapped) 6366 event->pmu->event_mapped(event, vma->vm_mm); 6367 6368 return ret; 6369 } 6370 6371 static int perf_fasync(int fd, struct file *filp, int on) 6372 { 6373 struct inode *inode = file_inode(filp); 6374 struct perf_event *event = filp->private_data; 6375 int retval; 6376 6377 inode_lock(inode); 6378 retval = fasync_helper(fd, filp, on, &event->fasync); 6379 inode_unlock(inode); 6380 6381 if (retval < 0) 6382 return retval; 6383 6384 return 0; 6385 } 6386 6387 static const struct file_operations perf_fops = { 6388 .llseek = no_llseek, 6389 .release = perf_release, 6390 .read = perf_read, 6391 .poll = perf_poll, 6392 .unlocked_ioctl = perf_ioctl, 6393 .compat_ioctl = perf_compat_ioctl, 6394 .mmap = perf_mmap, 6395 .fasync = perf_fasync, 6396 }; 6397 6398 /* 6399 * Perf event wakeup 6400 * 6401 * If there's data, ensure we set the poll() state and publish everything 6402 * to user-space before waking everybody up. 6403 */ 6404 6405 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6406 { 6407 /* only the parent has fasync state */ 6408 if (event->parent) 6409 event = event->parent; 6410 return &event->fasync; 6411 } 6412 6413 void perf_event_wakeup(struct perf_event *event) 6414 { 6415 ring_buffer_wakeup(event); 6416 6417 if (event->pending_kill) { 6418 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6419 event->pending_kill = 0; 6420 } 6421 } 6422 6423 static void perf_sigtrap(struct perf_event *event) 6424 { 6425 /* 6426 * We'd expect this to only occur if the irq_work is delayed and either 6427 * ctx->task or current has changed in the meantime. This can be the 6428 * case on architectures that do not implement arch_irq_work_raise(). 6429 */ 6430 if (WARN_ON_ONCE(event->ctx->task != current)) 6431 return; 6432 6433 /* 6434 * perf_pending_event() can race with the task exiting. 6435 */ 6436 if (current->flags & PF_EXITING) 6437 return; 6438 6439 send_sig_perf((void __user *)event->pending_addr, 6440 event->attr.type, event->attr.sig_data); 6441 } 6442 6443 static void perf_pending_event_disable(struct perf_event *event) 6444 { 6445 int cpu = READ_ONCE(event->pending_disable); 6446 6447 if (cpu < 0) 6448 return; 6449 6450 if (cpu == smp_processor_id()) { 6451 WRITE_ONCE(event->pending_disable, -1); 6452 6453 if (event->attr.sigtrap) { 6454 perf_sigtrap(event); 6455 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6456 return; 6457 } 6458 6459 perf_event_disable_local(event); 6460 return; 6461 } 6462 6463 /* 6464 * CPU-A CPU-B 6465 * 6466 * perf_event_disable_inatomic() 6467 * @pending_disable = CPU-A; 6468 * irq_work_queue(); 6469 * 6470 * sched-out 6471 * @pending_disable = -1; 6472 * 6473 * sched-in 6474 * perf_event_disable_inatomic() 6475 * @pending_disable = CPU-B; 6476 * irq_work_queue(); // FAILS 6477 * 6478 * irq_work_run() 6479 * perf_pending_event() 6480 * 6481 * But the event runs on CPU-B and wants disabling there. 6482 */ 6483 irq_work_queue_on(&event->pending, cpu); 6484 } 6485 6486 static void perf_pending_event(struct irq_work *entry) 6487 { 6488 struct perf_event *event = container_of(entry, struct perf_event, pending); 6489 int rctx; 6490 6491 rctx = perf_swevent_get_recursion_context(); 6492 /* 6493 * If we 'fail' here, that's OK, it means recursion is already disabled 6494 * and we won't recurse 'further'. 6495 */ 6496 6497 perf_pending_event_disable(event); 6498 6499 if (event->pending_wakeup) { 6500 event->pending_wakeup = 0; 6501 perf_event_wakeup(event); 6502 } 6503 6504 if (rctx >= 0) 6505 perf_swevent_put_recursion_context(rctx); 6506 } 6507 6508 #ifdef CONFIG_GUEST_PERF_EVENTS 6509 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6510 6511 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6512 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6513 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6514 6515 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6516 { 6517 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6518 return; 6519 6520 rcu_assign_pointer(perf_guest_cbs, cbs); 6521 static_call_update(__perf_guest_state, cbs->state); 6522 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6523 6524 /* Implementing ->handle_intel_pt_intr is optional. */ 6525 if (cbs->handle_intel_pt_intr) 6526 static_call_update(__perf_guest_handle_intel_pt_intr, 6527 cbs->handle_intel_pt_intr); 6528 } 6529 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6530 6531 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6532 { 6533 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6534 return; 6535 6536 rcu_assign_pointer(perf_guest_cbs, NULL); 6537 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6538 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6539 static_call_update(__perf_guest_handle_intel_pt_intr, 6540 (void *)&__static_call_return0); 6541 synchronize_rcu(); 6542 } 6543 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6544 #endif 6545 6546 static void 6547 perf_output_sample_regs(struct perf_output_handle *handle, 6548 struct pt_regs *regs, u64 mask) 6549 { 6550 int bit; 6551 DECLARE_BITMAP(_mask, 64); 6552 6553 bitmap_from_u64(_mask, mask); 6554 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6555 u64 val; 6556 6557 val = perf_reg_value(regs, bit); 6558 perf_output_put(handle, val); 6559 } 6560 } 6561 6562 static void perf_sample_regs_user(struct perf_regs *regs_user, 6563 struct pt_regs *regs) 6564 { 6565 if (user_mode(regs)) { 6566 regs_user->abi = perf_reg_abi(current); 6567 regs_user->regs = regs; 6568 } else if (!(current->flags & PF_KTHREAD)) { 6569 perf_get_regs_user(regs_user, regs); 6570 } else { 6571 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6572 regs_user->regs = NULL; 6573 } 6574 } 6575 6576 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6577 struct pt_regs *regs) 6578 { 6579 regs_intr->regs = regs; 6580 regs_intr->abi = perf_reg_abi(current); 6581 } 6582 6583 6584 /* 6585 * Get remaining task size from user stack pointer. 6586 * 6587 * It'd be better to take stack vma map and limit this more 6588 * precisely, but there's no way to get it safely under interrupt, 6589 * so using TASK_SIZE as limit. 6590 */ 6591 static u64 perf_ustack_task_size(struct pt_regs *regs) 6592 { 6593 unsigned long addr = perf_user_stack_pointer(regs); 6594 6595 if (!addr || addr >= TASK_SIZE) 6596 return 0; 6597 6598 return TASK_SIZE - addr; 6599 } 6600 6601 static u16 6602 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6603 struct pt_regs *regs) 6604 { 6605 u64 task_size; 6606 6607 /* No regs, no stack pointer, no dump. */ 6608 if (!regs) 6609 return 0; 6610 6611 /* 6612 * Check if we fit in with the requested stack size into the: 6613 * - TASK_SIZE 6614 * If we don't, we limit the size to the TASK_SIZE. 6615 * 6616 * - remaining sample size 6617 * If we don't, we customize the stack size to 6618 * fit in to the remaining sample size. 6619 */ 6620 6621 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6622 stack_size = min(stack_size, (u16) task_size); 6623 6624 /* Current header size plus static size and dynamic size. */ 6625 header_size += 2 * sizeof(u64); 6626 6627 /* Do we fit in with the current stack dump size? */ 6628 if ((u16) (header_size + stack_size) < header_size) { 6629 /* 6630 * If we overflow the maximum size for the sample, 6631 * we customize the stack dump size to fit in. 6632 */ 6633 stack_size = USHRT_MAX - header_size - sizeof(u64); 6634 stack_size = round_up(stack_size, sizeof(u64)); 6635 } 6636 6637 return stack_size; 6638 } 6639 6640 static void 6641 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6642 struct pt_regs *regs) 6643 { 6644 /* Case of a kernel thread, nothing to dump */ 6645 if (!regs) { 6646 u64 size = 0; 6647 perf_output_put(handle, size); 6648 } else { 6649 unsigned long sp; 6650 unsigned int rem; 6651 u64 dyn_size; 6652 6653 /* 6654 * We dump: 6655 * static size 6656 * - the size requested by user or the best one we can fit 6657 * in to the sample max size 6658 * data 6659 * - user stack dump data 6660 * dynamic size 6661 * - the actual dumped size 6662 */ 6663 6664 /* Static size. */ 6665 perf_output_put(handle, dump_size); 6666 6667 /* Data. */ 6668 sp = perf_user_stack_pointer(regs); 6669 rem = __output_copy_user(handle, (void *) sp, dump_size); 6670 dyn_size = dump_size - rem; 6671 6672 perf_output_skip(handle, rem); 6673 6674 /* Dynamic size. */ 6675 perf_output_put(handle, dyn_size); 6676 } 6677 } 6678 6679 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6680 struct perf_sample_data *data, 6681 size_t size) 6682 { 6683 struct perf_event *sampler = event->aux_event; 6684 struct perf_buffer *rb; 6685 6686 data->aux_size = 0; 6687 6688 if (!sampler) 6689 goto out; 6690 6691 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6692 goto out; 6693 6694 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6695 goto out; 6696 6697 rb = ring_buffer_get(sampler); 6698 if (!rb) 6699 goto out; 6700 6701 /* 6702 * If this is an NMI hit inside sampling code, don't take 6703 * the sample. See also perf_aux_sample_output(). 6704 */ 6705 if (READ_ONCE(rb->aux_in_sampling)) { 6706 data->aux_size = 0; 6707 } else { 6708 size = min_t(size_t, size, perf_aux_size(rb)); 6709 data->aux_size = ALIGN(size, sizeof(u64)); 6710 } 6711 ring_buffer_put(rb); 6712 6713 out: 6714 return data->aux_size; 6715 } 6716 6717 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6718 struct perf_event *event, 6719 struct perf_output_handle *handle, 6720 unsigned long size) 6721 { 6722 unsigned long flags; 6723 long ret; 6724 6725 /* 6726 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6727 * paths. If we start calling them in NMI context, they may race with 6728 * the IRQ ones, that is, for example, re-starting an event that's just 6729 * been stopped, which is why we're using a separate callback that 6730 * doesn't change the event state. 6731 * 6732 * IRQs need to be disabled to prevent IPIs from racing with us. 6733 */ 6734 local_irq_save(flags); 6735 /* 6736 * Guard against NMI hits inside the critical section; 6737 * see also perf_prepare_sample_aux(). 6738 */ 6739 WRITE_ONCE(rb->aux_in_sampling, 1); 6740 barrier(); 6741 6742 ret = event->pmu->snapshot_aux(event, handle, size); 6743 6744 barrier(); 6745 WRITE_ONCE(rb->aux_in_sampling, 0); 6746 local_irq_restore(flags); 6747 6748 return ret; 6749 } 6750 6751 static void perf_aux_sample_output(struct perf_event *event, 6752 struct perf_output_handle *handle, 6753 struct perf_sample_data *data) 6754 { 6755 struct perf_event *sampler = event->aux_event; 6756 struct perf_buffer *rb; 6757 unsigned long pad; 6758 long size; 6759 6760 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6761 return; 6762 6763 rb = ring_buffer_get(sampler); 6764 if (!rb) 6765 return; 6766 6767 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6768 6769 /* 6770 * An error here means that perf_output_copy() failed (returned a 6771 * non-zero surplus that it didn't copy), which in its current 6772 * enlightened implementation is not possible. If that changes, we'd 6773 * like to know. 6774 */ 6775 if (WARN_ON_ONCE(size < 0)) 6776 goto out_put; 6777 6778 /* 6779 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6780 * perf_prepare_sample_aux(), so should not be more than that. 6781 */ 6782 pad = data->aux_size - size; 6783 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6784 pad = 8; 6785 6786 if (pad) { 6787 u64 zero = 0; 6788 perf_output_copy(handle, &zero, pad); 6789 } 6790 6791 out_put: 6792 ring_buffer_put(rb); 6793 } 6794 6795 static void __perf_event_header__init_id(struct perf_event_header *header, 6796 struct perf_sample_data *data, 6797 struct perf_event *event) 6798 { 6799 u64 sample_type = event->attr.sample_type; 6800 6801 data->type = sample_type; 6802 header->size += event->id_header_size; 6803 6804 if (sample_type & PERF_SAMPLE_TID) { 6805 /* namespace issues */ 6806 data->tid_entry.pid = perf_event_pid(event, current); 6807 data->tid_entry.tid = perf_event_tid(event, current); 6808 } 6809 6810 if (sample_type & PERF_SAMPLE_TIME) 6811 data->time = perf_event_clock(event); 6812 6813 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6814 data->id = primary_event_id(event); 6815 6816 if (sample_type & PERF_SAMPLE_STREAM_ID) 6817 data->stream_id = event->id; 6818 6819 if (sample_type & PERF_SAMPLE_CPU) { 6820 data->cpu_entry.cpu = raw_smp_processor_id(); 6821 data->cpu_entry.reserved = 0; 6822 } 6823 } 6824 6825 void perf_event_header__init_id(struct perf_event_header *header, 6826 struct perf_sample_data *data, 6827 struct perf_event *event) 6828 { 6829 if (event->attr.sample_id_all) 6830 __perf_event_header__init_id(header, data, event); 6831 } 6832 6833 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6834 struct perf_sample_data *data) 6835 { 6836 u64 sample_type = data->type; 6837 6838 if (sample_type & PERF_SAMPLE_TID) 6839 perf_output_put(handle, data->tid_entry); 6840 6841 if (sample_type & PERF_SAMPLE_TIME) 6842 perf_output_put(handle, data->time); 6843 6844 if (sample_type & PERF_SAMPLE_ID) 6845 perf_output_put(handle, data->id); 6846 6847 if (sample_type & PERF_SAMPLE_STREAM_ID) 6848 perf_output_put(handle, data->stream_id); 6849 6850 if (sample_type & PERF_SAMPLE_CPU) 6851 perf_output_put(handle, data->cpu_entry); 6852 6853 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6854 perf_output_put(handle, data->id); 6855 } 6856 6857 void perf_event__output_id_sample(struct perf_event *event, 6858 struct perf_output_handle *handle, 6859 struct perf_sample_data *sample) 6860 { 6861 if (event->attr.sample_id_all) 6862 __perf_event__output_id_sample(handle, sample); 6863 } 6864 6865 static void perf_output_read_one(struct perf_output_handle *handle, 6866 struct perf_event *event, 6867 u64 enabled, u64 running) 6868 { 6869 u64 read_format = event->attr.read_format; 6870 u64 values[5]; 6871 int n = 0; 6872 6873 values[n++] = perf_event_count(event); 6874 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6875 values[n++] = enabled + 6876 atomic64_read(&event->child_total_time_enabled); 6877 } 6878 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6879 values[n++] = running + 6880 atomic64_read(&event->child_total_time_running); 6881 } 6882 if (read_format & PERF_FORMAT_ID) 6883 values[n++] = primary_event_id(event); 6884 if (read_format & PERF_FORMAT_LOST) 6885 values[n++] = atomic64_read(&event->lost_samples); 6886 6887 __output_copy(handle, values, n * sizeof(u64)); 6888 } 6889 6890 static void perf_output_read_group(struct perf_output_handle *handle, 6891 struct perf_event *event, 6892 u64 enabled, u64 running) 6893 { 6894 struct perf_event *leader = event->group_leader, *sub; 6895 u64 read_format = event->attr.read_format; 6896 unsigned long flags; 6897 u64 values[6]; 6898 int n = 0; 6899 6900 /* 6901 * Disabling interrupts avoids all counter scheduling 6902 * (context switches, timer based rotation and IPIs). 6903 */ 6904 local_irq_save(flags); 6905 6906 values[n++] = 1 + leader->nr_siblings; 6907 6908 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6909 values[n++] = enabled; 6910 6911 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6912 values[n++] = running; 6913 6914 if ((leader != event) && 6915 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6916 leader->pmu->read(leader); 6917 6918 values[n++] = perf_event_count(leader); 6919 if (read_format & PERF_FORMAT_ID) 6920 values[n++] = primary_event_id(leader); 6921 if (read_format & PERF_FORMAT_LOST) 6922 values[n++] = atomic64_read(&leader->lost_samples); 6923 6924 __output_copy(handle, values, n * sizeof(u64)); 6925 6926 for_each_sibling_event(sub, leader) { 6927 n = 0; 6928 6929 if ((sub != event) && 6930 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6931 sub->pmu->read(sub); 6932 6933 values[n++] = perf_event_count(sub); 6934 if (read_format & PERF_FORMAT_ID) 6935 values[n++] = primary_event_id(sub); 6936 if (read_format & PERF_FORMAT_LOST) 6937 values[n++] = atomic64_read(&sub->lost_samples); 6938 6939 __output_copy(handle, values, n * sizeof(u64)); 6940 } 6941 6942 local_irq_restore(flags); 6943 } 6944 6945 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6946 PERF_FORMAT_TOTAL_TIME_RUNNING) 6947 6948 /* 6949 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6950 * 6951 * The problem is that its both hard and excessively expensive to iterate the 6952 * child list, not to mention that its impossible to IPI the children running 6953 * on another CPU, from interrupt/NMI context. 6954 */ 6955 static void perf_output_read(struct perf_output_handle *handle, 6956 struct perf_event *event) 6957 { 6958 u64 enabled = 0, running = 0, now; 6959 u64 read_format = event->attr.read_format; 6960 6961 /* 6962 * compute total_time_enabled, total_time_running 6963 * based on snapshot values taken when the event 6964 * was last scheduled in. 6965 * 6966 * we cannot simply called update_context_time() 6967 * because of locking issue as we are called in 6968 * NMI context 6969 */ 6970 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6971 calc_timer_values(event, &now, &enabled, &running); 6972 6973 if (event->attr.read_format & PERF_FORMAT_GROUP) 6974 perf_output_read_group(handle, event, enabled, running); 6975 else 6976 perf_output_read_one(handle, event, enabled, running); 6977 } 6978 6979 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6980 { 6981 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6982 } 6983 6984 void perf_output_sample(struct perf_output_handle *handle, 6985 struct perf_event_header *header, 6986 struct perf_sample_data *data, 6987 struct perf_event *event) 6988 { 6989 u64 sample_type = data->type; 6990 6991 perf_output_put(handle, *header); 6992 6993 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6994 perf_output_put(handle, data->id); 6995 6996 if (sample_type & PERF_SAMPLE_IP) 6997 perf_output_put(handle, data->ip); 6998 6999 if (sample_type & PERF_SAMPLE_TID) 7000 perf_output_put(handle, data->tid_entry); 7001 7002 if (sample_type & PERF_SAMPLE_TIME) 7003 perf_output_put(handle, data->time); 7004 7005 if (sample_type & PERF_SAMPLE_ADDR) 7006 perf_output_put(handle, data->addr); 7007 7008 if (sample_type & PERF_SAMPLE_ID) 7009 perf_output_put(handle, data->id); 7010 7011 if (sample_type & PERF_SAMPLE_STREAM_ID) 7012 perf_output_put(handle, data->stream_id); 7013 7014 if (sample_type & PERF_SAMPLE_CPU) 7015 perf_output_put(handle, data->cpu_entry); 7016 7017 if (sample_type & PERF_SAMPLE_PERIOD) 7018 perf_output_put(handle, data->period); 7019 7020 if (sample_type & PERF_SAMPLE_READ) 7021 perf_output_read(handle, event); 7022 7023 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7024 int size = 1; 7025 7026 size += data->callchain->nr; 7027 size *= sizeof(u64); 7028 __output_copy(handle, data->callchain, size); 7029 } 7030 7031 if (sample_type & PERF_SAMPLE_RAW) { 7032 struct perf_raw_record *raw = data->raw; 7033 7034 if (raw) { 7035 struct perf_raw_frag *frag = &raw->frag; 7036 7037 perf_output_put(handle, raw->size); 7038 do { 7039 if (frag->copy) { 7040 __output_custom(handle, frag->copy, 7041 frag->data, frag->size); 7042 } else { 7043 __output_copy(handle, frag->data, 7044 frag->size); 7045 } 7046 if (perf_raw_frag_last(frag)) 7047 break; 7048 frag = frag->next; 7049 } while (1); 7050 if (frag->pad) 7051 __output_skip(handle, NULL, frag->pad); 7052 } else { 7053 struct { 7054 u32 size; 7055 u32 data; 7056 } raw = { 7057 .size = sizeof(u32), 7058 .data = 0, 7059 }; 7060 perf_output_put(handle, raw); 7061 } 7062 } 7063 7064 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7065 if (data->br_stack) { 7066 size_t size; 7067 7068 size = data->br_stack->nr 7069 * sizeof(struct perf_branch_entry); 7070 7071 perf_output_put(handle, data->br_stack->nr); 7072 if (perf_sample_save_hw_index(event)) 7073 perf_output_put(handle, data->br_stack->hw_idx); 7074 perf_output_copy(handle, data->br_stack->entries, size); 7075 } else { 7076 /* 7077 * we always store at least the value of nr 7078 */ 7079 u64 nr = 0; 7080 perf_output_put(handle, nr); 7081 } 7082 } 7083 7084 if (sample_type & PERF_SAMPLE_REGS_USER) { 7085 u64 abi = data->regs_user.abi; 7086 7087 /* 7088 * If there are no regs to dump, notice it through 7089 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7090 */ 7091 perf_output_put(handle, abi); 7092 7093 if (abi) { 7094 u64 mask = event->attr.sample_regs_user; 7095 perf_output_sample_regs(handle, 7096 data->regs_user.regs, 7097 mask); 7098 } 7099 } 7100 7101 if (sample_type & PERF_SAMPLE_STACK_USER) { 7102 perf_output_sample_ustack(handle, 7103 data->stack_user_size, 7104 data->regs_user.regs); 7105 } 7106 7107 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7108 perf_output_put(handle, data->weight.full); 7109 7110 if (sample_type & PERF_SAMPLE_DATA_SRC) 7111 perf_output_put(handle, data->data_src.val); 7112 7113 if (sample_type & PERF_SAMPLE_TRANSACTION) 7114 perf_output_put(handle, data->txn); 7115 7116 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7117 u64 abi = data->regs_intr.abi; 7118 /* 7119 * If there are no regs to dump, notice it through 7120 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7121 */ 7122 perf_output_put(handle, abi); 7123 7124 if (abi) { 7125 u64 mask = event->attr.sample_regs_intr; 7126 7127 perf_output_sample_regs(handle, 7128 data->regs_intr.regs, 7129 mask); 7130 } 7131 } 7132 7133 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7134 perf_output_put(handle, data->phys_addr); 7135 7136 if (sample_type & PERF_SAMPLE_CGROUP) 7137 perf_output_put(handle, data->cgroup); 7138 7139 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7140 perf_output_put(handle, data->data_page_size); 7141 7142 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7143 perf_output_put(handle, data->code_page_size); 7144 7145 if (sample_type & PERF_SAMPLE_AUX) { 7146 perf_output_put(handle, data->aux_size); 7147 7148 if (data->aux_size) 7149 perf_aux_sample_output(event, handle, data); 7150 } 7151 7152 if (!event->attr.watermark) { 7153 int wakeup_events = event->attr.wakeup_events; 7154 7155 if (wakeup_events) { 7156 struct perf_buffer *rb = handle->rb; 7157 int events = local_inc_return(&rb->events); 7158 7159 if (events >= wakeup_events) { 7160 local_sub(wakeup_events, &rb->events); 7161 local_inc(&rb->wakeup); 7162 } 7163 } 7164 } 7165 } 7166 7167 static u64 perf_virt_to_phys(u64 virt) 7168 { 7169 u64 phys_addr = 0; 7170 7171 if (!virt) 7172 return 0; 7173 7174 if (virt >= TASK_SIZE) { 7175 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7176 if (virt_addr_valid((void *)(uintptr_t)virt) && 7177 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7178 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7179 } else { 7180 /* 7181 * Walking the pages tables for user address. 7182 * Interrupts are disabled, so it prevents any tear down 7183 * of the page tables. 7184 * Try IRQ-safe get_user_page_fast_only first. 7185 * If failed, leave phys_addr as 0. 7186 */ 7187 if (current->mm != NULL) { 7188 struct page *p; 7189 7190 pagefault_disable(); 7191 if (get_user_page_fast_only(virt, 0, &p)) { 7192 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7193 put_page(p); 7194 } 7195 pagefault_enable(); 7196 } 7197 } 7198 7199 return phys_addr; 7200 } 7201 7202 /* 7203 * Return the pagetable size of a given virtual address. 7204 */ 7205 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7206 { 7207 u64 size = 0; 7208 7209 #ifdef CONFIG_HAVE_FAST_GUP 7210 pgd_t *pgdp, pgd; 7211 p4d_t *p4dp, p4d; 7212 pud_t *pudp, pud; 7213 pmd_t *pmdp, pmd; 7214 pte_t *ptep, pte; 7215 7216 pgdp = pgd_offset(mm, addr); 7217 pgd = READ_ONCE(*pgdp); 7218 if (pgd_none(pgd)) 7219 return 0; 7220 7221 if (pgd_leaf(pgd)) 7222 return pgd_leaf_size(pgd); 7223 7224 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7225 p4d = READ_ONCE(*p4dp); 7226 if (!p4d_present(p4d)) 7227 return 0; 7228 7229 if (p4d_leaf(p4d)) 7230 return p4d_leaf_size(p4d); 7231 7232 pudp = pud_offset_lockless(p4dp, p4d, addr); 7233 pud = READ_ONCE(*pudp); 7234 if (!pud_present(pud)) 7235 return 0; 7236 7237 if (pud_leaf(pud)) 7238 return pud_leaf_size(pud); 7239 7240 pmdp = pmd_offset_lockless(pudp, pud, addr); 7241 pmd = READ_ONCE(*pmdp); 7242 if (!pmd_present(pmd)) 7243 return 0; 7244 7245 if (pmd_leaf(pmd)) 7246 return pmd_leaf_size(pmd); 7247 7248 ptep = pte_offset_map(&pmd, addr); 7249 pte = ptep_get_lockless(ptep); 7250 if (pte_present(pte)) 7251 size = pte_leaf_size(pte); 7252 pte_unmap(ptep); 7253 #endif /* CONFIG_HAVE_FAST_GUP */ 7254 7255 return size; 7256 } 7257 7258 static u64 perf_get_page_size(unsigned long addr) 7259 { 7260 struct mm_struct *mm; 7261 unsigned long flags; 7262 u64 size; 7263 7264 if (!addr) 7265 return 0; 7266 7267 /* 7268 * Software page-table walkers must disable IRQs, 7269 * which prevents any tear down of the page tables. 7270 */ 7271 local_irq_save(flags); 7272 7273 mm = current->mm; 7274 if (!mm) { 7275 /* 7276 * For kernel threads and the like, use init_mm so that 7277 * we can find kernel memory. 7278 */ 7279 mm = &init_mm; 7280 } 7281 7282 size = perf_get_pgtable_size(mm, addr); 7283 7284 local_irq_restore(flags); 7285 7286 return size; 7287 } 7288 7289 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7290 7291 struct perf_callchain_entry * 7292 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7293 { 7294 bool kernel = !event->attr.exclude_callchain_kernel; 7295 bool user = !event->attr.exclude_callchain_user; 7296 /* Disallow cross-task user callchains. */ 7297 bool crosstask = event->ctx->task && event->ctx->task != current; 7298 const u32 max_stack = event->attr.sample_max_stack; 7299 struct perf_callchain_entry *callchain; 7300 7301 if (!kernel && !user) 7302 return &__empty_callchain; 7303 7304 callchain = get_perf_callchain(regs, 0, kernel, user, 7305 max_stack, crosstask, true); 7306 return callchain ?: &__empty_callchain; 7307 } 7308 7309 void perf_prepare_sample(struct perf_event_header *header, 7310 struct perf_sample_data *data, 7311 struct perf_event *event, 7312 struct pt_regs *regs) 7313 { 7314 u64 sample_type = event->attr.sample_type; 7315 7316 header->type = PERF_RECORD_SAMPLE; 7317 header->size = sizeof(*header) + event->header_size; 7318 7319 header->misc = 0; 7320 header->misc |= perf_misc_flags(regs); 7321 7322 __perf_event_header__init_id(header, data, event); 7323 7324 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7325 data->ip = perf_instruction_pointer(regs); 7326 7327 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7328 int size = 1; 7329 7330 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7331 data->callchain = perf_callchain(event, regs); 7332 7333 size += data->callchain->nr; 7334 7335 header->size += size * sizeof(u64); 7336 } 7337 7338 if (sample_type & PERF_SAMPLE_RAW) { 7339 struct perf_raw_record *raw = data->raw; 7340 int size; 7341 7342 if (raw) { 7343 struct perf_raw_frag *frag = &raw->frag; 7344 u32 sum = 0; 7345 7346 do { 7347 sum += frag->size; 7348 if (perf_raw_frag_last(frag)) 7349 break; 7350 frag = frag->next; 7351 } while (1); 7352 7353 size = round_up(sum + sizeof(u32), sizeof(u64)); 7354 raw->size = size - sizeof(u32); 7355 frag->pad = raw->size - sum; 7356 } else { 7357 size = sizeof(u64); 7358 } 7359 7360 header->size += size; 7361 } 7362 7363 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7364 int size = sizeof(u64); /* nr */ 7365 if (data->br_stack) { 7366 if (perf_sample_save_hw_index(event)) 7367 size += sizeof(u64); 7368 7369 size += data->br_stack->nr 7370 * sizeof(struct perf_branch_entry); 7371 } 7372 header->size += size; 7373 } 7374 7375 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7376 perf_sample_regs_user(&data->regs_user, regs); 7377 7378 if (sample_type & PERF_SAMPLE_REGS_USER) { 7379 /* regs dump ABI info */ 7380 int size = sizeof(u64); 7381 7382 if (data->regs_user.regs) { 7383 u64 mask = event->attr.sample_regs_user; 7384 size += hweight64(mask) * sizeof(u64); 7385 } 7386 7387 header->size += size; 7388 } 7389 7390 if (sample_type & PERF_SAMPLE_STACK_USER) { 7391 /* 7392 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7393 * processed as the last one or have additional check added 7394 * in case new sample type is added, because we could eat 7395 * up the rest of the sample size. 7396 */ 7397 u16 stack_size = event->attr.sample_stack_user; 7398 u16 size = sizeof(u64); 7399 7400 stack_size = perf_sample_ustack_size(stack_size, header->size, 7401 data->regs_user.regs); 7402 7403 /* 7404 * If there is something to dump, add space for the dump 7405 * itself and for the field that tells the dynamic size, 7406 * which is how many have been actually dumped. 7407 */ 7408 if (stack_size) 7409 size += sizeof(u64) + stack_size; 7410 7411 data->stack_user_size = stack_size; 7412 header->size += size; 7413 } 7414 7415 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7416 /* regs dump ABI info */ 7417 int size = sizeof(u64); 7418 7419 perf_sample_regs_intr(&data->regs_intr, regs); 7420 7421 if (data->regs_intr.regs) { 7422 u64 mask = event->attr.sample_regs_intr; 7423 7424 size += hweight64(mask) * sizeof(u64); 7425 } 7426 7427 header->size += size; 7428 } 7429 7430 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7431 data->phys_addr = perf_virt_to_phys(data->addr); 7432 7433 #ifdef CONFIG_CGROUP_PERF 7434 if (sample_type & PERF_SAMPLE_CGROUP) { 7435 struct cgroup *cgrp; 7436 7437 /* protected by RCU */ 7438 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7439 data->cgroup = cgroup_id(cgrp); 7440 } 7441 #endif 7442 7443 /* 7444 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7445 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7446 * but the value will not dump to the userspace. 7447 */ 7448 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7449 data->data_page_size = perf_get_page_size(data->addr); 7450 7451 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7452 data->code_page_size = perf_get_page_size(data->ip); 7453 7454 if (sample_type & PERF_SAMPLE_AUX) { 7455 u64 size; 7456 7457 header->size += sizeof(u64); /* size */ 7458 7459 /* 7460 * Given the 16bit nature of header::size, an AUX sample can 7461 * easily overflow it, what with all the preceding sample bits. 7462 * Make sure this doesn't happen by using up to U16_MAX bytes 7463 * per sample in total (rounded down to 8 byte boundary). 7464 */ 7465 size = min_t(size_t, U16_MAX - header->size, 7466 event->attr.aux_sample_size); 7467 size = rounddown(size, 8); 7468 size = perf_prepare_sample_aux(event, data, size); 7469 7470 WARN_ON_ONCE(size + header->size > U16_MAX); 7471 header->size += size; 7472 } 7473 /* 7474 * If you're adding more sample types here, you likely need to do 7475 * something about the overflowing header::size, like repurpose the 7476 * lowest 3 bits of size, which should be always zero at the moment. 7477 * This raises a more important question, do we really need 512k sized 7478 * samples and why, so good argumentation is in order for whatever you 7479 * do here next. 7480 */ 7481 WARN_ON_ONCE(header->size & 7); 7482 } 7483 7484 static __always_inline int 7485 __perf_event_output(struct perf_event *event, 7486 struct perf_sample_data *data, 7487 struct pt_regs *regs, 7488 int (*output_begin)(struct perf_output_handle *, 7489 struct perf_sample_data *, 7490 struct perf_event *, 7491 unsigned int)) 7492 { 7493 struct perf_output_handle handle; 7494 struct perf_event_header header; 7495 int err; 7496 7497 /* protect the callchain buffers */ 7498 rcu_read_lock(); 7499 7500 perf_prepare_sample(&header, data, event, regs); 7501 7502 err = output_begin(&handle, data, event, header.size); 7503 if (err) 7504 goto exit; 7505 7506 perf_output_sample(&handle, &header, data, event); 7507 7508 perf_output_end(&handle); 7509 7510 exit: 7511 rcu_read_unlock(); 7512 return err; 7513 } 7514 7515 void 7516 perf_event_output_forward(struct perf_event *event, 7517 struct perf_sample_data *data, 7518 struct pt_regs *regs) 7519 { 7520 __perf_event_output(event, data, regs, perf_output_begin_forward); 7521 } 7522 7523 void 7524 perf_event_output_backward(struct perf_event *event, 7525 struct perf_sample_data *data, 7526 struct pt_regs *regs) 7527 { 7528 __perf_event_output(event, data, regs, perf_output_begin_backward); 7529 } 7530 7531 int 7532 perf_event_output(struct perf_event *event, 7533 struct perf_sample_data *data, 7534 struct pt_regs *regs) 7535 { 7536 return __perf_event_output(event, data, regs, perf_output_begin); 7537 } 7538 7539 /* 7540 * read event_id 7541 */ 7542 7543 struct perf_read_event { 7544 struct perf_event_header header; 7545 7546 u32 pid; 7547 u32 tid; 7548 }; 7549 7550 static void 7551 perf_event_read_event(struct perf_event *event, 7552 struct task_struct *task) 7553 { 7554 struct perf_output_handle handle; 7555 struct perf_sample_data sample; 7556 struct perf_read_event read_event = { 7557 .header = { 7558 .type = PERF_RECORD_READ, 7559 .misc = 0, 7560 .size = sizeof(read_event) + event->read_size, 7561 }, 7562 .pid = perf_event_pid(event, task), 7563 .tid = perf_event_tid(event, task), 7564 }; 7565 int ret; 7566 7567 perf_event_header__init_id(&read_event.header, &sample, event); 7568 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7569 if (ret) 7570 return; 7571 7572 perf_output_put(&handle, read_event); 7573 perf_output_read(&handle, event); 7574 perf_event__output_id_sample(event, &handle, &sample); 7575 7576 perf_output_end(&handle); 7577 } 7578 7579 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7580 7581 static void 7582 perf_iterate_ctx(struct perf_event_context *ctx, 7583 perf_iterate_f output, 7584 void *data, bool all) 7585 { 7586 struct perf_event *event; 7587 7588 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7589 if (!all) { 7590 if (event->state < PERF_EVENT_STATE_INACTIVE) 7591 continue; 7592 if (!event_filter_match(event)) 7593 continue; 7594 } 7595 7596 output(event, data); 7597 } 7598 } 7599 7600 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7601 { 7602 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7603 struct perf_event *event; 7604 7605 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7606 /* 7607 * Skip events that are not fully formed yet; ensure that 7608 * if we observe event->ctx, both event and ctx will be 7609 * complete enough. See perf_install_in_context(). 7610 */ 7611 if (!smp_load_acquire(&event->ctx)) 7612 continue; 7613 7614 if (event->state < PERF_EVENT_STATE_INACTIVE) 7615 continue; 7616 if (!event_filter_match(event)) 7617 continue; 7618 output(event, data); 7619 } 7620 } 7621 7622 /* 7623 * Iterate all events that need to receive side-band events. 7624 * 7625 * For new callers; ensure that account_pmu_sb_event() includes 7626 * your event, otherwise it might not get delivered. 7627 */ 7628 static void 7629 perf_iterate_sb(perf_iterate_f output, void *data, 7630 struct perf_event_context *task_ctx) 7631 { 7632 struct perf_event_context *ctx; 7633 int ctxn; 7634 7635 rcu_read_lock(); 7636 preempt_disable(); 7637 7638 /* 7639 * If we have task_ctx != NULL we only notify the task context itself. 7640 * The task_ctx is set only for EXIT events before releasing task 7641 * context. 7642 */ 7643 if (task_ctx) { 7644 perf_iterate_ctx(task_ctx, output, data, false); 7645 goto done; 7646 } 7647 7648 perf_iterate_sb_cpu(output, data); 7649 7650 for_each_task_context_nr(ctxn) { 7651 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7652 if (ctx) 7653 perf_iterate_ctx(ctx, output, data, false); 7654 } 7655 done: 7656 preempt_enable(); 7657 rcu_read_unlock(); 7658 } 7659 7660 /* 7661 * Clear all file-based filters at exec, they'll have to be 7662 * re-instated when/if these objects are mmapped again. 7663 */ 7664 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7665 { 7666 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7667 struct perf_addr_filter *filter; 7668 unsigned int restart = 0, count = 0; 7669 unsigned long flags; 7670 7671 if (!has_addr_filter(event)) 7672 return; 7673 7674 raw_spin_lock_irqsave(&ifh->lock, flags); 7675 list_for_each_entry(filter, &ifh->list, entry) { 7676 if (filter->path.dentry) { 7677 event->addr_filter_ranges[count].start = 0; 7678 event->addr_filter_ranges[count].size = 0; 7679 restart++; 7680 } 7681 7682 count++; 7683 } 7684 7685 if (restart) 7686 event->addr_filters_gen++; 7687 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7688 7689 if (restart) 7690 perf_event_stop(event, 1); 7691 } 7692 7693 void perf_event_exec(void) 7694 { 7695 struct perf_event_context *ctx; 7696 int ctxn; 7697 7698 for_each_task_context_nr(ctxn) { 7699 perf_event_enable_on_exec(ctxn); 7700 perf_event_remove_on_exec(ctxn); 7701 7702 rcu_read_lock(); 7703 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7704 if (ctx) { 7705 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7706 NULL, true); 7707 } 7708 rcu_read_unlock(); 7709 } 7710 } 7711 7712 struct remote_output { 7713 struct perf_buffer *rb; 7714 int err; 7715 }; 7716 7717 static void __perf_event_output_stop(struct perf_event *event, void *data) 7718 { 7719 struct perf_event *parent = event->parent; 7720 struct remote_output *ro = data; 7721 struct perf_buffer *rb = ro->rb; 7722 struct stop_event_data sd = { 7723 .event = event, 7724 }; 7725 7726 if (!has_aux(event)) 7727 return; 7728 7729 if (!parent) 7730 parent = event; 7731 7732 /* 7733 * In case of inheritance, it will be the parent that links to the 7734 * ring-buffer, but it will be the child that's actually using it. 7735 * 7736 * We are using event::rb to determine if the event should be stopped, 7737 * however this may race with ring_buffer_attach() (through set_output), 7738 * which will make us skip the event that actually needs to be stopped. 7739 * So ring_buffer_attach() has to stop an aux event before re-assigning 7740 * its rb pointer. 7741 */ 7742 if (rcu_dereference(parent->rb) == rb) 7743 ro->err = __perf_event_stop(&sd); 7744 } 7745 7746 static int __perf_pmu_output_stop(void *info) 7747 { 7748 struct perf_event *event = info; 7749 struct pmu *pmu = event->ctx->pmu; 7750 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7751 struct remote_output ro = { 7752 .rb = event->rb, 7753 }; 7754 7755 rcu_read_lock(); 7756 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7757 if (cpuctx->task_ctx) 7758 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7759 &ro, false); 7760 rcu_read_unlock(); 7761 7762 return ro.err; 7763 } 7764 7765 static void perf_pmu_output_stop(struct perf_event *event) 7766 { 7767 struct perf_event *iter; 7768 int err, cpu; 7769 7770 restart: 7771 rcu_read_lock(); 7772 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7773 /* 7774 * For per-CPU events, we need to make sure that neither they 7775 * nor their children are running; for cpu==-1 events it's 7776 * sufficient to stop the event itself if it's active, since 7777 * it can't have children. 7778 */ 7779 cpu = iter->cpu; 7780 if (cpu == -1) 7781 cpu = READ_ONCE(iter->oncpu); 7782 7783 if (cpu == -1) 7784 continue; 7785 7786 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7787 if (err == -EAGAIN) { 7788 rcu_read_unlock(); 7789 goto restart; 7790 } 7791 } 7792 rcu_read_unlock(); 7793 } 7794 7795 /* 7796 * task tracking -- fork/exit 7797 * 7798 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7799 */ 7800 7801 struct perf_task_event { 7802 struct task_struct *task; 7803 struct perf_event_context *task_ctx; 7804 7805 struct { 7806 struct perf_event_header header; 7807 7808 u32 pid; 7809 u32 ppid; 7810 u32 tid; 7811 u32 ptid; 7812 u64 time; 7813 } event_id; 7814 }; 7815 7816 static int perf_event_task_match(struct perf_event *event) 7817 { 7818 return event->attr.comm || event->attr.mmap || 7819 event->attr.mmap2 || event->attr.mmap_data || 7820 event->attr.task; 7821 } 7822 7823 static void perf_event_task_output(struct perf_event *event, 7824 void *data) 7825 { 7826 struct perf_task_event *task_event = data; 7827 struct perf_output_handle handle; 7828 struct perf_sample_data sample; 7829 struct task_struct *task = task_event->task; 7830 int ret, size = task_event->event_id.header.size; 7831 7832 if (!perf_event_task_match(event)) 7833 return; 7834 7835 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7836 7837 ret = perf_output_begin(&handle, &sample, event, 7838 task_event->event_id.header.size); 7839 if (ret) 7840 goto out; 7841 7842 task_event->event_id.pid = perf_event_pid(event, task); 7843 task_event->event_id.tid = perf_event_tid(event, task); 7844 7845 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7846 task_event->event_id.ppid = perf_event_pid(event, 7847 task->real_parent); 7848 task_event->event_id.ptid = perf_event_pid(event, 7849 task->real_parent); 7850 } else { /* PERF_RECORD_FORK */ 7851 task_event->event_id.ppid = perf_event_pid(event, current); 7852 task_event->event_id.ptid = perf_event_tid(event, current); 7853 } 7854 7855 task_event->event_id.time = perf_event_clock(event); 7856 7857 perf_output_put(&handle, task_event->event_id); 7858 7859 perf_event__output_id_sample(event, &handle, &sample); 7860 7861 perf_output_end(&handle); 7862 out: 7863 task_event->event_id.header.size = size; 7864 } 7865 7866 static void perf_event_task(struct task_struct *task, 7867 struct perf_event_context *task_ctx, 7868 int new) 7869 { 7870 struct perf_task_event task_event; 7871 7872 if (!atomic_read(&nr_comm_events) && 7873 !atomic_read(&nr_mmap_events) && 7874 !atomic_read(&nr_task_events)) 7875 return; 7876 7877 task_event = (struct perf_task_event){ 7878 .task = task, 7879 .task_ctx = task_ctx, 7880 .event_id = { 7881 .header = { 7882 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7883 .misc = 0, 7884 .size = sizeof(task_event.event_id), 7885 }, 7886 /* .pid */ 7887 /* .ppid */ 7888 /* .tid */ 7889 /* .ptid */ 7890 /* .time */ 7891 }, 7892 }; 7893 7894 perf_iterate_sb(perf_event_task_output, 7895 &task_event, 7896 task_ctx); 7897 } 7898 7899 void perf_event_fork(struct task_struct *task) 7900 { 7901 perf_event_task(task, NULL, 1); 7902 perf_event_namespaces(task); 7903 } 7904 7905 /* 7906 * comm tracking 7907 */ 7908 7909 struct perf_comm_event { 7910 struct task_struct *task; 7911 char *comm; 7912 int comm_size; 7913 7914 struct { 7915 struct perf_event_header header; 7916 7917 u32 pid; 7918 u32 tid; 7919 } event_id; 7920 }; 7921 7922 static int perf_event_comm_match(struct perf_event *event) 7923 { 7924 return event->attr.comm; 7925 } 7926 7927 static void perf_event_comm_output(struct perf_event *event, 7928 void *data) 7929 { 7930 struct perf_comm_event *comm_event = data; 7931 struct perf_output_handle handle; 7932 struct perf_sample_data sample; 7933 int size = comm_event->event_id.header.size; 7934 int ret; 7935 7936 if (!perf_event_comm_match(event)) 7937 return; 7938 7939 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7940 ret = perf_output_begin(&handle, &sample, event, 7941 comm_event->event_id.header.size); 7942 7943 if (ret) 7944 goto out; 7945 7946 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7947 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7948 7949 perf_output_put(&handle, comm_event->event_id); 7950 __output_copy(&handle, comm_event->comm, 7951 comm_event->comm_size); 7952 7953 perf_event__output_id_sample(event, &handle, &sample); 7954 7955 perf_output_end(&handle); 7956 out: 7957 comm_event->event_id.header.size = size; 7958 } 7959 7960 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7961 { 7962 char comm[TASK_COMM_LEN]; 7963 unsigned int size; 7964 7965 memset(comm, 0, sizeof(comm)); 7966 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7967 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7968 7969 comm_event->comm = comm; 7970 comm_event->comm_size = size; 7971 7972 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7973 7974 perf_iterate_sb(perf_event_comm_output, 7975 comm_event, 7976 NULL); 7977 } 7978 7979 void perf_event_comm(struct task_struct *task, bool exec) 7980 { 7981 struct perf_comm_event comm_event; 7982 7983 if (!atomic_read(&nr_comm_events)) 7984 return; 7985 7986 comm_event = (struct perf_comm_event){ 7987 .task = task, 7988 /* .comm */ 7989 /* .comm_size */ 7990 .event_id = { 7991 .header = { 7992 .type = PERF_RECORD_COMM, 7993 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7994 /* .size */ 7995 }, 7996 /* .pid */ 7997 /* .tid */ 7998 }, 7999 }; 8000 8001 perf_event_comm_event(&comm_event); 8002 } 8003 8004 /* 8005 * namespaces tracking 8006 */ 8007 8008 struct perf_namespaces_event { 8009 struct task_struct *task; 8010 8011 struct { 8012 struct perf_event_header header; 8013 8014 u32 pid; 8015 u32 tid; 8016 u64 nr_namespaces; 8017 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8018 } event_id; 8019 }; 8020 8021 static int perf_event_namespaces_match(struct perf_event *event) 8022 { 8023 return event->attr.namespaces; 8024 } 8025 8026 static void perf_event_namespaces_output(struct perf_event *event, 8027 void *data) 8028 { 8029 struct perf_namespaces_event *namespaces_event = data; 8030 struct perf_output_handle handle; 8031 struct perf_sample_data sample; 8032 u16 header_size = namespaces_event->event_id.header.size; 8033 int ret; 8034 8035 if (!perf_event_namespaces_match(event)) 8036 return; 8037 8038 perf_event_header__init_id(&namespaces_event->event_id.header, 8039 &sample, event); 8040 ret = perf_output_begin(&handle, &sample, event, 8041 namespaces_event->event_id.header.size); 8042 if (ret) 8043 goto out; 8044 8045 namespaces_event->event_id.pid = perf_event_pid(event, 8046 namespaces_event->task); 8047 namespaces_event->event_id.tid = perf_event_tid(event, 8048 namespaces_event->task); 8049 8050 perf_output_put(&handle, namespaces_event->event_id); 8051 8052 perf_event__output_id_sample(event, &handle, &sample); 8053 8054 perf_output_end(&handle); 8055 out: 8056 namespaces_event->event_id.header.size = header_size; 8057 } 8058 8059 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8060 struct task_struct *task, 8061 const struct proc_ns_operations *ns_ops) 8062 { 8063 struct path ns_path; 8064 struct inode *ns_inode; 8065 int error; 8066 8067 error = ns_get_path(&ns_path, task, ns_ops); 8068 if (!error) { 8069 ns_inode = ns_path.dentry->d_inode; 8070 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8071 ns_link_info->ino = ns_inode->i_ino; 8072 path_put(&ns_path); 8073 } 8074 } 8075 8076 void perf_event_namespaces(struct task_struct *task) 8077 { 8078 struct perf_namespaces_event namespaces_event; 8079 struct perf_ns_link_info *ns_link_info; 8080 8081 if (!atomic_read(&nr_namespaces_events)) 8082 return; 8083 8084 namespaces_event = (struct perf_namespaces_event){ 8085 .task = task, 8086 .event_id = { 8087 .header = { 8088 .type = PERF_RECORD_NAMESPACES, 8089 .misc = 0, 8090 .size = sizeof(namespaces_event.event_id), 8091 }, 8092 /* .pid */ 8093 /* .tid */ 8094 .nr_namespaces = NR_NAMESPACES, 8095 /* .link_info[NR_NAMESPACES] */ 8096 }, 8097 }; 8098 8099 ns_link_info = namespaces_event.event_id.link_info; 8100 8101 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8102 task, &mntns_operations); 8103 8104 #ifdef CONFIG_USER_NS 8105 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8106 task, &userns_operations); 8107 #endif 8108 #ifdef CONFIG_NET_NS 8109 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8110 task, &netns_operations); 8111 #endif 8112 #ifdef CONFIG_UTS_NS 8113 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8114 task, &utsns_operations); 8115 #endif 8116 #ifdef CONFIG_IPC_NS 8117 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8118 task, &ipcns_operations); 8119 #endif 8120 #ifdef CONFIG_PID_NS 8121 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8122 task, &pidns_operations); 8123 #endif 8124 #ifdef CONFIG_CGROUPS 8125 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8126 task, &cgroupns_operations); 8127 #endif 8128 8129 perf_iterate_sb(perf_event_namespaces_output, 8130 &namespaces_event, 8131 NULL); 8132 } 8133 8134 /* 8135 * cgroup tracking 8136 */ 8137 #ifdef CONFIG_CGROUP_PERF 8138 8139 struct perf_cgroup_event { 8140 char *path; 8141 int path_size; 8142 struct { 8143 struct perf_event_header header; 8144 u64 id; 8145 char path[]; 8146 } event_id; 8147 }; 8148 8149 static int perf_event_cgroup_match(struct perf_event *event) 8150 { 8151 return event->attr.cgroup; 8152 } 8153 8154 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8155 { 8156 struct perf_cgroup_event *cgroup_event = data; 8157 struct perf_output_handle handle; 8158 struct perf_sample_data sample; 8159 u16 header_size = cgroup_event->event_id.header.size; 8160 int ret; 8161 8162 if (!perf_event_cgroup_match(event)) 8163 return; 8164 8165 perf_event_header__init_id(&cgroup_event->event_id.header, 8166 &sample, event); 8167 ret = perf_output_begin(&handle, &sample, event, 8168 cgroup_event->event_id.header.size); 8169 if (ret) 8170 goto out; 8171 8172 perf_output_put(&handle, cgroup_event->event_id); 8173 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8174 8175 perf_event__output_id_sample(event, &handle, &sample); 8176 8177 perf_output_end(&handle); 8178 out: 8179 cgroup_event->event_id.header.size = header_size; 8180 } 8181 8182 static void perf_event_cgroup(struct cgroup *cgrp) 8183 { 8184 struct perf_cgroup_event cgroup_event; 8185 char path_enomem[16] = "//enomem"; 8186 char *pathname; 8187 size_t size; 8188 8189 if (!atomic_read(&nr_cgroup_events)) 8190 return; 8191 8192 cgroup_event = (struct perf_cgroup_event){ 8193 .event_id = { 8194 .header = { 8195 .type = PERF_RECORD_CGROUP, 8196 .misc = 0, 8197 .size = sizeof(cgroup_event.event_id), 8198 }, 8199 .id = cgroup_id(cgrp), 8200 }, 8201 }; 8202 8203 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8204 if (pathname == NULL) { 8205 cgroup_event.path = path_enomem; 8206 } else { 8207 /* just to be sure to have enough space for alignment */ 8208 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8209 cgroup_event.path = pathname; 8210 } 8211 8212 /* 8213 * Since our buffer works in 8 byte units we need to align our string 8214 * size to a multiple of 8. However, we must guarantee the tail end is 8215 * zero'd out to avoid leaking random bits to userspace. 8216 */ 8217 size = strlen(cgroup_event.path) + 1; 8218 while (!IS_ALIGNED(size, sizeof(u64))) 8219 cgroup_event.path[size++] = '\0'; 8220 8221 cgroup_event.event_id.header.size += size; 8222 cgroup_event.path_size = size; 8223 8224 perf_iterate_sb(perf_event_cgroup_output, 8225 &cgroup_event, 8226 NULL); 8227 8228 kfree(pathname); 8229 } 8230 8231 #endif 8232 8233 /* 8234 * mmap tracking 8235 */ 8236 8237 struct perf_mmap_event { 8238 struct vm_area_struct *vma; 8239 8240 const char *file_name; 8241 int file_size; 8242 int maj, min; 8243 u64 ino; 8244 u64 ino_generation; 8245 u32 prot, flags; 8246 u8 build_id[BUILD_ID_SIZE_MAX]; 8247 u32 build_id_size; 8248 8249 struct { 8250 struct perf_event_header header; 8251 8252 u32 pid; 8253 u32 tid; 8254 u64 start; 8255 u64 len; 8256 u64 pgoff; 8257 } event_id; 8258 }; 8259 8260 static int perf_event_mmap_match(struct perf_event *event, 8261 void *data) 8262 { 8263 struct perf_mmap_event *mmap_event = data; 8264 struct vm_area_struct *vma = mmap_event->vma; 8265 int executable = vma->vm_flags & VM_EXEC; 8266 8267 return (!executable && event->attr.mmap_data) || 8268 (executable && (event->attr.mmap || event->attr.mmap2)); 8269 } 8270 8271 static void perf_event_mmap_output(struct perf_event *event, 8272 void *data) 8273 { 8274 struct perf_mmap_event *mmap_event = data; 8275 struct perf_output_handle handle; 8276 struct perf_sample_data sample; 8277 int size = mmap_event->event_id.header.size; 8278 u32 type = mmap_event->event_id.header.type; 8279 bool use_build_id; 8280 int ret; 8281 8282 if (!perf_event_mmap_match(event, data)) 8283 return; 8284 8285 if (event->attr.mmap2) { 8286 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8287 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8288 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8289 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8290 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8291 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8292 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8293 } 8294 8295 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8296 ret = perf_output_begin(&handle, &sample, event, 8297 mmap_event->event_id.header.size); 8298 if (ret) 8299 goto out; 8300 8301 mmap_event->event_id.pid = perf_event_pid(event, current); 8302 mmap_event->event_id.tid = perf_event_tid(event, current); 8303 8304 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8305 8306 if (event->attr.mmap2 && use_build_id) 8307 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8308 8309 perf_output_put(&handle, mmap_event->event_id); 8310 8311 if (event->attr.mmap2) { 8312 if (use_build_id) { 8313 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8314 8315 __output_copy(&handle, size, 4); 8316 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8317 } else { 8318 perf_output_put(&handle, mmap_event->maj); 8319 perf_output_put(&handle, mmap_event->min); 8320 perf_output_put(&handle, mmap_event->ino); 8321 perf_output_put(&handle, mmap_event->ino_generation); 8322 } 8323 perf_output_put(&handle, mmap_event->prot); 8324 perf_output_put(&handle, mmap_event->flags); 8325 } 8326 8327 __output_copy(&handle, mmap_event->file_name, 8328 mmap_event->file_size); 8329 8330 perf_event__output_id_sample(event, &handle, &sample); 8331 8332 perf_output_end(&handle); 8333 out: 8334 mmap_event->event_id.header.size = size; 8335 mmap_event->event_id.header.type = type; 8336 } 8337 8338 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8339 { 8340 struct vm_area_struct *vma = mmap_event->vma; 8341 struct file *file = vma->vm_file; 8342 int maj = 0, min = 0; 8343 u64 ino = 0, gen = 0; 8344 u32 prot = 0, flags = 0; 8345 unsigned int size; 8346 char tmp[16]; 8347 char *buf = NULL; 8348 char *name; 8349 8350 if (vma->vm_flags & VM_READ) 8351 prot |= PROT_READ; 8352 if (vma->vm_flags & VM_WRITE) 8353 prot |= PROT_WRITE; 8354 if (vma->vm_flags & VM_EXEC) 8355 prot |= PROT_EXEC; 8356 8357 if (vma->vm_flags & VM_MAYSHARE) 8358 flags = MAP_SHARED; 8359 else 8360 flags = MAP_PRIVATE; 8361 8362 if (vma->vm_flags & VM_LOCKED) 8363 flags |= MAP_LOCKED; 8364 if (is_vm_hugetlb_page(vma)) 8365 flags |= MAP_HUGETLB; 8366 8367 if (file) { 8368 struct inode *inode; 8369 dev_t dev; 8370 8371 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8372 if (!buf) { 8373 name = "//enomem"; 8374 goto cpy_name; 8375 } 8376 /* 8377 * d_path() works from the end of the rb backwards, so we 8378 * need to add enough zero bytes after the string to handle 8379 * the 64bit alignment we do later. 8380 */ 8381 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8382 if (IS_ERR(name)) { 8383 name = "//toolong"; 8384 goto cpy_name; 8385 } 8386 inode = file_inode(vma->vm_file); 8387 dev = inode->i_sb->s_dev; 8388 ino = inode->i_ino; 8389 gen = inode->i_generation; 8390 maj = MAJOR(dev); 8391 min = MINOR(dev); 8392 8393 goto got_name; 8394 } else { 8395 if (vma->vm_ops && vma->vm_ops->name) { 8396 name = (char *) vma->vm_ops->name(vma); 8397 if (name) 8398 goto cpy_name; 8399 } 8400 8401 name = (char *)arch_vma_name(vma); 8402 if (name) 8403 goto cpy_name; 8404 8405 if (vma->vm_start <= vma->vm_mm->start_brk && 8406 vma->vm_end >= vma->vm_mm->brk) { 8407 name = "[heap]"; 8408 goto cpy_name; 8409 } 8410 if (vma->vm_start <= vma->vm_mm->start_stack && 8411 vma->vm_end >= vma->vm_mm->start_stack) { 8412 name = "[stack]"; 8413 goto cpy_name; 8414 } 8415 8416 name = "//anon"; 8417 goto cpy_name; 8418 } 8419 8420 cpy_name: 8421 strlcpy(tmp, name, sizeof(tmp)); 8422 name = tmp; 8423 got_name: 8424 /* 8425 * Since our buffer works in 8 byte units we need to align our string 8426 * size to a multiple of 8. However, we must guarantee the tail end is 8427 * zero'd out to avoid leaking random bits to userspace. 8428 */ 8429 size = strlen(name)+1; 8430 while (!IS_ALIGNED(size, sizeof(u64))) 8431 name[size++] = '\0'; 8432 8433 mmap_event->file_name = name; 8434 mmap_event->file_size = size; 8435 mmap_event->maj = maj; 8436 mmap_event->min = min; 8437 mmap_event->ino = ino; 8438 mmap_event->ino_generation = gen; 8439 mmap_event->prot = prot; 8440 mmap_event->flags = flags; 8441 8442 if (!(vma->vm_flags & VM_EXEC)) 8443 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8444 8445 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8446 8447 if (atomic_read(&nr_build_id_events)) 8448 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8449 8450 perf_iterate_sb(perf_event_mmap_output, 8451 mmap_event, 8452 NULL); 8453 8454 kfree(buf); 8455 } 8456 8457 /* 8458 * Check whether inode and address range match filter criteria. 8459 */ 8460 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8461 struct file *file, unsigned long offset, 8462 unsigned long size) 8463 { 8464 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8465 if (!filter->path.dentry) 8466 return false; 8467 8468 if (d_inode(filter->path.dentry) != file_inode(file)) 8469 return false; 8470 8471 if (filter->offset > offset + size) 8472 return false; 8473 8474 if (filter->offset + filter->size < offset) 8475 return false; 8476 8477 return true; 8478 } 8479 8480 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8481 struct vm_area_struct *vma, 8482 struct perf_addr_filter_range *fr) 8483 { 8484 unsigned long vma_size = vma->vm_end - vma->vm_start; 8485 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8486 struct file *file = vma->vm_file; 8487 8488 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8489 return false; 8490 8491 if (filter->offset < off) { 8492 fr->start = vma->vm_start; 8493 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8494 } else { 8495 fr->start = vma->vm_start + filter->offset - off; 8496 fr->size = min(vma->vm_end - fr->start, filter->size); 8497 } 8498 8499 return true; 8500 } 8501 8502 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8503 { 8504 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8505 struct vm_area_struct *vma = data; 8506 struct perf_addr_filter *filter; 8507 unsigned int restart = 0, count = 0; 8508 unsigned long flags; 8509 8510 if (!has_addr_filter(event)) 8511 return; 8512 8513 if (!vma->vm_file) 8514 return; 8515 8516 raw_spin_lock_irqsave(&ifh->lock, flags); 8517 list_for_each_entry(filter, &ifh->list, entry) { 8518 if (perf_addr_filter_vma_adjust(filter, vma, 8519 &event->addr_filter_ranges[count])) 8520 restart++; 8521 8522 count++; 8523 } 8524 8525 if (restart) 8526 event->addr_filters_gen++; 8527 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8528 8529 if (restart) 8530 perf_event_stop(event, 1); 8531 } 8532 8533 /* 8534 * Adjust all task's events' filters to the new vma 8535 */ 8536 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8537 { 8538 struct perf_event_context *ctx; 8539 int ctxn; 8540 8541 /* 8542 * Data tracing isn't supported yet and as such there is no need 8543 * to keep track of anything that isn't related to executable code: 8544 */ 8545 if (!(vma->vm_flags & VM_EXEC)) 8546 return; 8547 8548 rcu_read_lock(); 8549 for_each_task_context_nr(ctxn) { 8550 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8551 if (!ctx) 8552 continue; 8553 8554 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8555 } 8556 rcu_read_unlock(); 8557 } 8558 8559 void perf_event_mmap(struct vm_area_struct *vma) 8560 { 8561 struct perf_mmap_event mmap_event; 8562 8563 if (!atomic_read(&nr_mmap_events)) 8564 return; 8565 8566 mmap_event = (struct perf_mmap_event){ 8567 .vma = vma, 8568 /* .file_name */ 8569 /* .file_size */ 8570 .event_id = { 8571 .header = { 8572 .type = PERF_RECORD_MMAP, 8573 .misc = PERF_RECORD_MISC_USER, 8574 /* .size */ 8575 }, 8576 /* .pid */ 8577 /* .tid */ 8578 .start = vma->vm_start, 8579 .len = vma->vm_end - vma->vm_start, 8580 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8581 }, 8582 /* .maj (attr_mmap2 only) */ 8583 /* .min (attr_mmap2 only) */ 8584 /* .ino (attr_mmap2 only) */ 8585 /* .ino_generation (attr_mmap2 only) */ 8586 /* .prot (attr_mmap2 only) */ 8587 /* .flags (attr_mmap2 only) */ 8588 }; 8589 8590 perf_addr_filters_adjust(vma); 8591 perf_event_mmap_event(&mmap_event); 8592 } 8593 8594 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8595 unsigned long size, u64 flags) 8596 { 8597 struct perf_output_handle handle; 8598 struct perf_sample_data sample; 8599 struct perf_aux_event { 8600 struct perf_event_header header; 8601 u64 offset; 8602 u64 size; 8603 u64 flags; 8604 } rec = { 8605 .header = { 8606 .type = PERF_RECORD_AUX, 8607 .misc = 0, 8608 .size = sizeof(rec), 8609 }, 8610 .offset = head, 8611 .size = size, 8612 .flags = flags, 8613 }; 8614 int ret; 8615 8616 perf_event_header__init_id(&rec.header, &sample, event); 8617 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8618 8619 if (ret) 8620 return; 8621 8622 perf_output_put(&handle, rec); 8623 perf_event__output_id_sample(event, &handle, &sample); 8624 8625 perf_output_end(&handle); 8626 } 8627 8628 /* 8629 * Lost/dropped samples logging 8630 */ 8631 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8632 { 8633 struct perf_output_handle handle; 8634 struct perf_sample_data sample; 8635 int ret; 8636 8637 struct { 8638 struct perf_event_header header; 8639 u64 lost; 8640 } lost_samples_event = { 8641 .header = { 8642 .type = PERF_RECORD_LOST_SAMPLES, 8643 .misc = 0, 8644 .size = sizeof(lost_samples_event), 8645 }, 8646 .lost = lost, 8647 }; 8648 8649 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8650 8651 ret = perf_output_begin(&handle, &sample, event, 8652 lost_samples_event.header.size); 8653 if (ret) 8654 return; 8655 8656 perf_output_put(&handle, lost_samples_event); 8657 perf_event__output_id_sample(event, &handle, &sample); 8658 perf_output_end(&handle); 8659 } 8660 8661 /* 8662 * context_switch tracking 8663 */ 8664 8665 struct perf_switch_event { 8666 struct task_struct *task; 8667 struct task_struct *next_prev; 8668 8669 struct { 8670 struct perf_event_header header; 8671 u32 next_prev_pid; 8672 u32 next_prev_tid; 8673 } event_id; 8674 }; 8675 8676 static int perf_event_switch_match(struct perf_event *event) 8677 { 8678 return event->attr.context_switch; 8679 } 8680 8681 static void perf_event_switch_output(struct perf_event *event, void *data) 8682 { 8683 struct perf_switch_event *se = data; 8684 struct perf_output_handle handle; 8685 struct perf_sample_data sample; 8686 int ret; 8687 8688 if (!perf_event_switch_match(event)) 8689 return; 8690 8691 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8692 if (event->ctx->task) { 8693 se->event_id.header.type = PERF_RECORD_SWITCH; 8694 se->event_id.header.size = sizeof(se->event_id.header); 8695 } else { 8696 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8697 se->event_id.header.size = sizeof(se->event_id); 8698 se->event_id.next_prev_pid = 8699 perf_event_pid(event, se->next_prev); 8700 se->event_id.next_prev_tid = 8701 perf_event_tid(event, se->next_prev); 8702 } 8703 8704 perf_event_header__init_id(&se->event_id.header, &sample, event); 8705 8706 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8707 if (ret) 8708 return; 8709 8710 if (event->ctx->task) 8711 perf_output_put(&handle, se->event_id.header); 8712 else 8713 perf_output_put(&handle, se->event_id); 8714 8715 perf_event__output_id_sample(event, &handle, &sample); 8716 8717 perf_output_end(&handle); 8718 } 8719 8720 static void perf_event_switch(struct task_struct *task, 8721 struct task_struct *next_prev, bool sched_in) 8722 { 8723 struct perf_switch_event switch_event; 8724 8725 /* N.B. caller checks nr_switch_events != 0 */ 8726 8727 switch_event = (struct perf_switch_event){ 8728 .task = task, 8729 .next_prev = next_prev, 8730 .event_id = { 8731 .header = { 8732 /* .type */ 8733 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8734 /* .size */ 8735 }, 8736 /* .next_prev_pid */ 8737 /* .next_prev_tid */ 8738 }, 8739 }; 8740 8741 if (!sched_in && task->on_rq) { 8742 switch_event.event_id.header.misc |= 8743 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8744 } 8745 8746 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8747 } 8748 8749 /* 8750 * IRQ throttle logging 8751 */ 8752 8753 static void perf_log_throttle(struct perf_event *event, int enable) 8754 { 8755 struct perf_output_handle handle; 8756 struct perf_sample_data sample; 8757 int ret; 8758 8759 struct { 8760 struct perf_event_header header; 8761 u64 time; 8762 u64 id; 8763 u64 stream_id; 8764 } throttle_event = { 8765 .header = { 8766 .type = PERF_RECORD_THROTTLE, 8767 .misc = 0, 8768 .size = sizeof(throttle_event), 8769 }, 8770 .time = perf_event_clock(event), 8771 .id = primary_event_id(event), 8772 .stream_id = event->id, 8773 }; 8774 8775 if (enable) 8776 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8777 8778 perf_event_header__init_id(&throttle_event.header, &sample, event); 8779 8780 ret = perf_output_begin(&handle, &sample, event, 8781 throttle_event.header.size); 8782 if (ret) 8783 return; 8784 8785 perf_output_put(&handle, throttle_event); 8786 perf_event__output_id_sample(event, &handle, &sample); 8787 perf_output_end(&handle); 8788 } 8789 8790 /* 8791 * ksymbol register/unregister tracking 8792 */ 8793 8794 struct perf_ksymbol_event { 8795 const char *name; 8796 int name_len; 8797 struct { 8798 struct perf_event_header header; 8799 u64 addr; 8800 u32 len; 8801 u16 ksym_type; 8802 u16 flags; 8803 } event_id; 8804 }; 8805 8806 static int perf_event_ksymbol_match(struct perf_event *event) 8807 { 8808 return event->attr.ksymbol; 8809 } 8810 8811 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8812 { 8813 struct perf_ksymbol_event *ksymbol_event = data; 8814 struct perf_output_handle handle; 8815 struct perf_sample_data sample; 8816 int ret; 8817 8818 if (!perf_event_ksymbol_match(event)) 8819 return; 8820 8821 perf_event_header__init_id(&ksymbol_event->event_id.header, 8822 &sample, event); 8823 ret = perf_output_begin(&handle, &sample, event, 8824 ksymbol_event->event_id.header.size); 8825 if (ret) 8826 return; 8827 8828 perf_output_put(&handle, ksymbol_event->event_id); 8829 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8830 perf_event__output_id_sample(event, &handle, &sample); 8831 8832 perf_output_end(&handle); 8833 } 8834 8835 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8836 const char *sym) 8837 { 8838 struct perf_ksymbol_event ksymbol_event; 8839 char name[KSYM_NAME_LEN]; 8840 u16 flags = 0; 8841 int name_len; 8842 8843 if (!atomic_read(&nr_ksymbol_events)) 8844 return; 8845 8846 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8847 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8848 goto err; 8849 8850 strlcpy(name, sym, KSYM_NAME_LEN); 8851 name_len = strlen(name) + 1; 8852 while (!IS_ALIGNED(name_len, sizeof(u64))) 8853 name[name_len++] = '\0'; 8854 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8855 8856 if (unregister) 8857 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8858 8859 ksymbol_event = (struct perf_ksymbol_event){ 8860 .name = name, 8861 .name_len = name_len, 8862 .event_id = { 8863 .header = { 8864 .type = PERF_RECORD_KSYMBOL, 8865 .size = sizeof(ksymbol_event.event_id) + 8866 name_len, 8867 }, 8868 .addr = addr, 8869 .len = len, 8870 .ksym_type = ksym_type, 8871 .flags = flags, 8872 }, 8873 }; 8874 8875 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8876 return; 8877 err: 8878 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8879 } 8880 8881 /* 8882 * bpf program load/unload tracking 8883 */ 8884 8885 struct perf_bpf_event { 8886 struct bpf_prog *prog; 8887 struct { 8888 struct perf_event_header header; 8889 u16 type; 8890 u16 flags; 8891 u32 id; 8892 u8 tag[BPF_TAG_SIZE]; 8893 } event_id; 8894 }; 8895 8896 static int perf_event_bpf_match(struct perf_event *event) 8897 { 8898 return event->attr.bpf_event; 8899 } 8900 8901 static void perf_event_bpf_output(struct perf_event *event, void *data) 8902 { 8903 struct perf_bpf_event *bpf_event = data; 8904 struct perf_output_handle handle; 8905 struct perf_sample_data sample; 8906 int ret; 8907 8908 if (!perf_event_bpf_match(event)) 8909 return; 8910 8911 perf_event_header__init_id(&bpf_event->event_id.header, 8912 &sample, event); 8913 ret = perf_output_begin(&handle, data, event, 8914 bpf_event->event_id.header.size); 8915 if (ret) 8916 return; 8917 8918 perf_output_put(&handle, bpf_event->event_id); 8919 perf_event__output_id_sample(event, &handle, &sample); 8920 8921 perf_output_end(&handle); 8922 } 8923 8924 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8925 enum perf_bpf_event_type type) 8926 { 8927 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8928 int i; 8929 8930 if (prog->aux->func_cnt == 0) { 8931 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8932 (u64)(unsigned long)prog->bpf_func, 8933 prog->jited_len, unregister, 8934 prog->aux->ksym.name); 8935 } else { 8936 for (i = 0; i < prog->aux->func_cnt; i++) { 8937 struct bpf_prog *subprog = prog->aux->func[i]; 8938 8939 perf_event_ksymbol( 8940 PERF_RECORD_KSYMBOL_TYPE_BPF, 8941 (u64)(unsigned long)subprog->bpf_func, 8942 subprog->jited_len, unregister, 8943 prog->aux->ksym.name); 8944 } 8945 } 8946 } 8947 8948 void perf_event_bpf_event(struct bpf_prog *prog, 8949 enum perf_bpf_event_type type, 8950 u16 flags) 8951 { 8952 struct perf_bpf_event bpf_event; 8953 8954 if (type <= PERF_BPF_EVENT_UNKNOWN || 8955 type >= PERF_BPF_EVENT_MAX) 8956 return; 8957 8958 switch (type) { 8959 case PERF_BPF_EVENT_PROG_LOAD: 8960 case PERF_BPF_EVENT_PROG_UNLOAD: 8961 if (atomic_read(&nr_ksymbol_events)) 8962 perf_event_bpf_emit_ksymbols(prog, type); 8963 break; 8964 default: 8965 break; 8966 } 8967 8968 if (!atomic_read(&nr_bpf_events)) 8969 return; 8970 8971 bpf_event = (struct perf_bpf_event){ 8972 .prog = prog, 8973 .event_id = { 8974 .header = { 8975 .type = PERF_RECORD_BPF_EVENT, 8976 .size = sizeof(bpf_event.event_id), 8977 }, 8978 .type = type, 8979 .flags = flags, 8980 .id = prog->aux->id, 8981 }, 8982 }; 8983 8984 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8985 8986 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8987 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8988 } 8989 8990 struct perf_text_poke_event { 8991 const void *old_bytes; 8992 const void *new_bytes; 8993 size_t pad; 8994 u16 old_len; 8995 u16 new_len; 8996 8997 struct { 8998 struct perf_event_header header; 8999 9000 u64 addr; 9001 } event_id; 9002 }; 9003 9004 static int perf_event_text_poke_match(struct perf_event *event) 9005 { 9006 return event->attr.text_poke; 9007 } 9008 9009 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9010 { 9011 struct perf_text_poke_event *text_poke_event = data; 9012 struct perf_output_handle handle; 9013 struct perf_sample_data sample; 9014 u64 padding = 0; 9015 int ret; 9016 9017 if (!perf_event_text_poke_match(event)) 9018 return; 9019 9020 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9021 9022 ret = perf_output_begin(&handle, &sample, event, 9023 text_poke_event->event_id.header.size); 9024 if (ret) 9025 return; 9026 9027 perf_output_put(&handle, text_poke_event->event_id); 9028 perf_output_put(&handle, text_poke_event->old_len); 9029 perf_output_put(&handle, text_poke_event->new_len); 9030 9031 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9032 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9033 9034 if (text_poke_event->pad) 9035 __output_copy(&handle, &padding, text_poke_event->pad); 9036 9037 perf_event__output_id_sample(event, &handle, &sample); 9038 9039 perf_output_end(&handle); 9040 } 9041 9042 void perf_event_text_poke(const void *addr, const void *old_bytes, 9043 size_t old_len, const void *new_bytes, size_t new_len) 9044 { 9045 struct perf_text_poke_event text_poke_event; 9046 size_t tot, pad; 9047 9048 if (!atomic_read(&nr_text_poke_events)) 9049 return; 9050 9051 tot = sizeof(text_poke_event.old_len) + old_len; 9052 tot += sizeof(text_poke_event.new_len) + new_len; 9053 pad = ALIGN(tot, sizeof(u64)) - tot; 9054 9055 text_poke_event = (struct perf_text_poke_event){ 9056 .old_bytes = old_bytes, 9057 .new_bytes = new_bytes, 9058 .pad = pad, 9059 .old_len = old_len, 9060 .new_len = new_len, 9061 .event_id = { 9062 .header = { 9063 .type = PERF_RECORD_TEXT_POKE, 9064 .misc = PERF_RECORD_MISC_KERNEL, 9065 .size = sizeof(text_poke_event.event_id) + tot + pad, 9066 }, 9067 .addr = (unsigned long)addr, 9068 }, 9069 }; 9070 9071 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9072 } 9073 9074 void perf_event_itrace_started(struct perf_event *event) 9075 { 9076 event->attach_state |= PERF_ATTACH_ITRACE; 9077 } 9078 9079 static void perf_log_itrace_start(struct perf_event *event) 9080 { 9081 struct perf_output_handle handle; 9082 struct perf_sample_data sample; 9083 struct perf_aux_event { 9084 struct perf_event_header header; 9085 u32 pid; 9086 u32 tid; 9087 } rec; 9088 int ret; 9089 9090 if (event->parent) 9091 event = event->parent; 9092 9093 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9094 event->attach_state & PERF_ATTACH_ITRACE) 9095 return; 9096 9097 rec.header.type = PERF_RECORD_ITRACE_START; 9098 rec.header.misc = 0; 9099 rec.header.size = sizeof(rec); 9100 rec.pid = perf_event_pid(event, current); 9101 rec.tid = perf_event_tid(event, current); 9102 9103 perf_event_header__init_id(&rec.header, &sample, event); 9104 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9105 9106 if (ret) 9107 return; 9108 9109 perf_output_put(&handle, rec); 9110 perf_event__output_id_sample(event, &handle, &sample); 9111 9112 perf_output_end(&handle); 9113 } 9114 9115 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9116 { 9117 struct perf_output_handle handle; 9118 struct perf_sample_data sample; 9119 struct perf_aux_event { 9120 struct perf_event_header header; 9121 u64 hw_id; 9122 } rec; 9123 int ret; 9124 9125 if (event->parent) 9126 event = event->parent; 9127 9128 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9129 rec.header.misc = 0; 9130 rec.header.size = sizeof(rec); 9131 rec.hw_id = hw_id; 9132 9133 perf_event_header__init_id(&rec.header, &sample, event); 9134 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9135 9136 if (ret) 9137 return; 9138 9139 perf_output_put(&handle, rec); 9140 perf_event__output_id_sample(event, &handle, &sample); 9141 9142 perf_output_end(&handle); 9143 } 9144 9145 static int 9146 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9147 { 9148 struct hw_perf_event *hwc = &event->hw; 9149 int ret = 0; 9150 u64 seq; 9151 9152 seq = __this_cpu_read(perf_throttled_seq); 9153 if (seq != hwc->interrupts_seq) { 9154 hwc->interrupts_seq = seq; 9155 hwc->interrupts = 1; 9156 } else { 9157 hwc->interrupts++; 9158 if (unlikely(throttle 9159 && hwc->interrupts >= max_samples_per_tick)) { 9160 __this_cpu_inc(perf_throttled_count); 9161 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9162 hwc->interrupts = MAX_INTERRUPTS; 9163 perf_log_throttle(event, 0); 9164 ret = 1; 9165 } 9166 } 9167 9168 if (event->attr.freq) { 9169 u64 now = perf_clock(); 9170 s64 delta = now - hwc->freq_time_stamp; 9171 9172 hwc->freq_time_stamp = now; 9173 9174 if (delta > 0 && delta < 2*TICK_NSEC) 9175 perf_adjust_period(event, delta, hwc->last_period, true); 9176 } 9177 9178 return ret; 9179 } 9180 9181 int perf_event_account_interrupt(struct perf_event *event) 9182 { 9183 return __perf_event_account_interrupt(event, 1); 9184 } 9185 9186 /* 9187 * Generic event overflow handling, sampling. 9188 */ 9189 9190 static int __perf_event_overflow(struct perf_event *event, 9191 int throttle, struct perf_sample_data *data, 9192 struct pt_regs *regs) 9193 { 9194 int events = atomic_read(&event->event_limit); 9195 int ret = 0; 9196 9197 /* 9198 * Non-sampling counters might still use the PMI to fold short 9199 * hardware counters, ignore those. 9200 */ 9201 if (unlikely(!is_sampling_event(event))) 9202 return 0; 9203 9204 ret = __perf_event_account_interrupt(event, throttle); 9205 9206 /* 9207 * XXX event_limit might not quite work as expected on inherited 9208 * events 9209 */ 9210 9211 event->pending_kill = POLL_IN; 9212 if (events && atomic_dec_and_test(&event->event_limit)) { 9213 ret = 1; 9214 event->pending_kill = POLL_HUP; 9215 event->pending_addr = data->addr; 9216 9217 perf_event_disable_inatomic(event); 9218 } 9219 9220 READ_ONCE(event->overflow_handler)(event, data, regs); 9221 9222 if (*perf_event_fasync(event) && event->pending_kill) { 9223 event->pending_wakeup = 1; 9224 irq_work_queue(&event->pending); 9225 } 9226 9227 return ret; 9228 } 9229 9230 int perf_event_overflow(struct perf_event *event, 9231 struct perf_sample_data *data, 9232 struct pt_regs *regs) 9233 { 9234 return __perf_event_overflow(event, 1, data, regs); 9235 } 9236 9237 /* 9238 * Generic software event infrastructure 9239 */ 9240 9241 struct swevent_htable { 9242 struct swevent_hlist *swevent_hlist; 9243 struct mutex hlist_mutex; 9244 int hlist_refcount; 9245 9246 /* Recursion avoidance in each contexts */ 9247 int recursion[PERF_NR_CONTEXTS]; 9248 }; 9249 9250 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9251 9252 /* 9253 * We directly increment event->count and keep a second value in 9254 * event->hw.period_left to count intervals. This period event 9255 * is kept in the range [-sample_period, 0] so that we can use the 9256 * sign as trigger. 9257 */ 9258 9259 u64 perf_swevent_set_period(struct perf_event *event) 9260 { 9261 struct hw_perf_event *hwc = &event->hw; 9262 u64 period = hwc->last_period; 9263 u64 nr, offset; 9264 s64 old, val; 9265 9266 hwc->last_period = hwc->sample_period; 9267 9268 again: 9269 old = val = local64_read(&hwc->period_left); 9270 if (val < 0) 9271 return 0; 9272 9273 nr = div64_u64(period + val, period); 9274 offset = nr * period; 9275 val -= offset; 9276 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9277 goto again; 9278 9279 return nr; 9280 } 9281 9282 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9283 struct perf_sample_data *data, 9284 struct pt_regs *regs) 9285 { 9286 struct hw_perf_event *hwc = &event->hw; 9287 int throttle = 0; 9288 9289 if (!overflow) 9290 overflow = perf_swevent_set_period(event); 9291 9292 if (hwc->interrupts == MAX_INTERRUPTS) 9293 return; 9294 9295 for (; overflow; overflow--) { 9296 if (__perf_event_overflow(event, throttle, 9297 data, regs)) { 9298 /* 9299 * We inhibit the overflow from happening when 9300 * hwc->interrupts == MAX_INTERRUPTS. 9301 */ 9302 break; 9303 } 9304 throttle = 1; 9305 } 9306 } 9307 9308 static void perf_swevent_event(struct perf_event *event, u64 nr, 9309 struct perf_sample_data *data, 9310 struct pt_regs *regs) 9311 { 9312 struct hw_perf_event *hwc = &event->hw; 9313 9314 local64_add(nr, &event->count); 9315 9316 if (!regs) 9317 return; 9318 9319 if (!is_sampling_event(event)) 9320 return; 9321 9322 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9323 data->period = nr; 9324 return perf_swevent_overflow(event, 1, data, regs); 9325 } else 9326 data->period = event->hw.last_period; 9327 9328 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9329 return perf_swevent_overflow(event, 1, data, regs); 9330 9331 if (local64_add_negative(nr, &hwc->period_left)) 9332 return; 9333 9334 perf_swevent_overflow(event, 0, data, regs); 9335 } 9336 9337 static int perf_exclude_event(struct perf_event *event, 9338 struct pt_regs *regs) 9339 { 9340 if (event->hw.state & PERF_HES_STOPPED) 9341 return 1; 9342 9343 if (regs) { 9344 if (event->attr.exclude_user && user_mode(regs)) 9345 return 1; 9346 9347 if (event->attr.exclude_kernel && !user_mode(regs)) 9348 return 1; 9349 } 9350 9351 return 0; 9352 } 9353 9354 static int perf_swevent_match(struct perf_event *event, 9355 enum perf_type_id type, 9356 u32 event_id, 9357 struct perf_sample_data *data, 9358 struct pt_regs *regs) 9359 { 9360 if (event->attr.type != type) 9361 return 0; 9362 9363 if (event->attr.config != event_id) 9364 return 0; 9365 9366 if (perf_exclude_event(event, regs)) 9367 return 0; 9368 9369 return 1; 9370 } 9371 9372 static inline u64 swevent_hash(u64 type, u32 event_id) 9373 { 9374 u64 val = event_id | (type << 32); 9375 9376 return hash_64(val, SWEVENT_HLIST_BITS); 9377 } 9378 9379 static inline struct hlist_head * 9380 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9381 { 9382 u64 hash = swevent_hash(type, event_id); 9383 9384 return &hlist->heads[hash]; 9385 } 9386 9387 /* For the read side: events when they trigger */ 9388 static inline struct hlist_head * 9389 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9390 { 9391 struct swevent_hlist *hlist; 9392 9393 hlist = rcu_dereference(swhash->swevent_hlist); 9394 if (!hlist) 9395 return NULL; 9396 9397 return __find_swevent_head(hlist, type, event_id); 9398 } 9399 9400 /* For the event head insertion and removal in the hlist */ 9401 static inline struct hlist_head * 9402 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9403 { 9404 struct swevent_hlist *hlist; 9405 u32 event_id = event->attr.config; 9406 u64 type = event->attr.type; 9407 9408 /* 9409 * Event scheduling is always serialized against hlist allocation 9410 * and release. Which makes the protected version suitable here. 9411 * The context lock guarantees that. 9412 */ 9413 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9414 lockdep_is_held(&event->ctx->lock)); 9415 if (!hlist) 9416 return NULL; 9417 9418 return __find_swevent_head(hlist, type, event_id); 9419 } 9420 9421 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9422 u64 nr, 9423 struct perf_sample_data *data, 9424 struct pt_regs *regs) 9425 { 9426 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9427 struct perf_event *event; 9428 struct hlist_head *head; 9429 9430 rcu_read_lock(); 9431 head = find_swevent_head_rcu(swhash, type, event_id); 9432 if (!head) 9433 goto end; 9434 9435 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9436 if (perf_swevent_match(event, type, event_id, data, regs)) 9437 perf_swevent_event(event, nr, data, regs); 9438 } 9439 end: 9440 rcu_read_unlock(); 9441 } 9442 9443 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9444 9445 int perf_swevent_get_recursion_context(void) 9446 { 9447 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9448 9449 return get_recursion_context(swhash->recursion); 9450 } 9451 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9452 9453 void perf_swevent_put_recursion_context(int rctx) 9454 { 9455 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9456 9457 put_recursion_context(swhash->recursion, rctx); 9458 } 9459 9460 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9461 { 9462 struct perf_sample_data data; 9463 9464 if (WARN_ON_ONCE(!regs)) 9465 return; 9466 9467 perf_sample_data_init(&data, addr, 0); 9468 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9469 } 9470 9471 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9472 { 9473 int rctx; 9474 9475 preempt_disable_notrace(); 9476 rctx = perf_swevent_get_recursion_context(); 9477 if (unlikely(rctx < 0)) 9478 goto fail; 9479 9480 ___perf_sw_event(event_id, nr, regs, addr); 9481 9482 perf_swevent_put_recursion_context(rctx); 9483 fail: 9484 preempt_enable_notrace(); 9485 } 9486 9487 static void perf_swevent_read(struct perf_event *event) 9488 { 9489 } 9490 9491 static int perf_swevent_add(struct perf_event *event, int flags) 9492 { 9493 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9494 struct hw_perf_event *hwc = &event->hw; 9495 struct hlist_head *head; 9496 9497 if (is_sampling_event(event)) { 9498 hwc->last_period = hwc->sample_period; 9499 perf_swevent_set_period(event); 9500 } 9501 9502 hwc->state = !(flags & PERF_EF_START); 9503 9504 head = find_swevent_head(swhash, event); 9505 if (WARN_ON_ONCE(!head)) 9506 return -EINVAL; 9507 9508 hlist_add_head_rcu(&event->hlist_entry, head); 9509 perf_event_update_userpage(event); 9510 9511 return 0; 9512 } 9513 9514 static void perf_swevent_del(struct perf_event *event, int flags) 9515 { 9516 hlist_del_rcu(&event->hlist_entry); 9517 } 9518 9519 static void perf_swevent_start(struct perf_event *event, int flags) 9520 { 9521 event->hw.state = 0; 9522 } 9523 9524 static void perf_swevent_stop(struct perf_event *event, int flags) 9525 { 9526 event->hw.state = PERF_HES_STOPPED; 9527 } 9528 9529 /* Deref the hlist from the update side */ 9530 static inline struct swevent_hlist * 9531 swevent_hlist_deref(struct swevent_htable *swhash) 9532 { 9533 return rcu_dereference_protected(swhash->swevent_hlist, 9534 lockdep_is_held(&swhash->hlist_mutex)); 9535 } 9536 9537 static void swevent_hlist_release(struct swevent_htable *swhash) 9538 { 9539 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9540 9541 if (!hlist) 9542 return; 9543 9544 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9545 kfree_rcu(hlist, rcu_head); 9546 } 9547 9548 static void swevent_hlist_put_cpu(int cpu) 9549 { 9550 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9551 9552 mutex_lock(&swhash->hlist_mutex); 9553 9554 if (!--swhash->hlist_refcount) 9555 swevent_hlist_release(swhash); 9556 9557 mutex_unlock(&swhash->hlist_mutex); 9558 } 9559 9560 static void swevent_hlist_put(void) 9561 { 9562 int cpu; 9563 9564 for_each_possible_cpu(cpu) 9565 swevent_hlist_put_cpu(cpu); 9566 } 9567 9568 static int swevent_hlist_get_cpu(int cpu) 9569 { 9570 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9571 int err = 0; 9572 9573 mutex_lock(&swhash->hlist_mutex); 9574 if (!swevent_hlist_deref(swhash) && 9575 cpumask_test_cpu(cpu, perf_online_mask)) { 9576 struct swevent_hlist *hlist; 9577 9578 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9579 if (!hlist) { 9580 err = -ENOMEM; 9581 goto exit; 9582 } 9583 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9584 } 9585 swhash->hlist_refcount++; 9586 exit: 9587 mutex_unlock(&swhash->hlist_mutex); 9588 9589 return err; 9590 } 9591 9592 static int swevent_hlist_get(void) 9593 { 9594 int err, cpu, failed_cpu; 9595 9596 mutex_lock(&pmus_lock); 9597 for_each_possible_cpu(cpu) { 9598 err = swevent_hlist_get_cpu(cpu); 9599 if (err) { 9600 failed_cpu = cpu; 9601 goto fail; 9602 } 9603 } 9604 mutex_unlock(&pmus_lock); 9605 return 0; 9606 fail: 9607 for_each_possible_cpu(cpu) { 9608 if (cpu == failed_cpu) 9609 break; 9610 swevent_hlist_put_cpu(cpu); 9611 } 9612 mutex_unlock(&pmus_lock); 9613 return err; 9614 } 9615 9616 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9617 9618 static void sw_perf_event_destroy(struct perf_event *event) 9619 { 9620 u64 event_id = event->attr.config; 9621 9622 WARN_ON(event->parent); 9623 9624 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9625 swevent_hlist_put(); 9626 } 9627 9628 static int perf_swevent_init(struct perf_event *event) 9629 { 9630 u64 event_id = event->attr.config; 9631 9632 if (event->attr.type != PERF_TYPE_SOFTWARE) 9633 return -ENOENT; 9634 9635 /* 9636 * no branch sampling for software events 9637 */ 9638 if (has_branch_stack(event)) 9639 return -EOPNOTSUPP; 9640 9641 switch (event_id) { 9642 case PERF_COUNT_SW_CPU_CLOCK: 9643 case PERF_COUNT_SW_TASK_CLOCK: 9644 return -ENOENT; 9645 9646 default: 9647 break; 9648 } 9649 9650 if (event_id >= PERF_COUNT_SW_MAX) 9651 return -ENOENT; 9652 9653 if (!event->parent) { 9654 int err; 9655 9656 err = swevent_hlist_get(); 9657 if (err) 9658 return err; 9659 9660 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9661 event->destroy = sw_perf_event_destroy; 9662 } 9663 9664 return 0; 9665 } 9666 9667 static struct pmu perf_swevent = { 9668 .task_ctx_nr = perf_sw_context, 9669 9670 .capabilities = PERF_PMU_CAP_NO_NMI, 9671 9672 .event_init = perf_swevent_init, 9673 .add = perf_swevent_add, 9674 .del = perf_swevent_del, 9675 .start = perf_swevent_start, 9676 .stop = perf_swevent_stop, 9677 .read = perf_swevent_read, 9678 }; 9679 9680 #ifdef CONFIG_EVENT_TRACING 9681 9682 static int perf_tp_filter_match(struct perf_event *event, 9683 struct perf_sample_data *data) 9684 { 9685 void *record = data->raw->frag.data; 9686 9687 /* only top level events have filters set */ 9688 if (event->parent) 9689 event = event->parent; 9690 9691 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9692 return 1; 9693 return 0; 9694 } 9695 9696 static int perf_tp_event_match(struct perf_event *event, 9697 struct perf_sample_data *data, 9698 struct pt_regs *regs) 9699 { 9700 if (event->hw.state & PERF_HES_STOPPED) 9701 return 0; 9702 /* 9703 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9704 */ 9705 if (event->attr.exclude_kernel && !user_mode(regs)) 9706 return 0; 9707 9708 if (!perf_tp_filter_match(event, data)) 9709 return 0; 9710 9711 return 1; 9712 } 9713 9714 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9715 struct trace_event_call *call, u64 count, 9716 struct pt_regs *regs, struct hlist_head *head, 9717 struct task_struct *task) 9718 { 9719 if (bpf_prog_array_valid(call)) { 9720 *(struct pt_regs **)raw_data = regs; 9721 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9722 perf_swevent_put_recursion_context(rctx); 9723 return; 9724 } 9725 } 9726 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9727 rctx, task); 9728 } 9729 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9730 9731 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9732 struct pt_regs *regs, struct hlist_head *head, int rctx, 9733 struct task_struct *task) 9734 { 9735 struct perf_sample_data data; 9736 struct perf_event *event; 9737 9738 struct perf_raw_record raw = { 9739 .frag = { 9740 .size = entry_size, 9741 .data = record, 9742 }, 9743 }; 9744 9745 perf_sample_data_init(&data, 0, 0); 9746 data.raw = &raw; 9747 9748 perf_trace_buf_update(record, event_type); 9749 9750 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9751 if (perf_tp_event_match(event, &data, regs)) 9752 perf_swevent_event(event, count, &data, regs); 9753 } 9754 9755 /* 9756 * If we got specified a target task, also iterate its context and 9757 * deliver this event there too. 9758 */ 9759 if (task && task != current) { 9760 struct perf_event_context *ctx; 9761 struct trace_entry *entry = record; 9762 9763 rcu_read_lock(); 9764 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9765 if (!ctx) 9766 goto unlock; 9767 9768 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9769 if (event->cpu != smp_processor_id()) 9770 continue; 9771 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9772 continue; 9773 if (event->attr.config != entry->type) 9774 continue; 9775 /* Cannot deliver synchronous signal to other task. */ 9776 if (event->attr.sigtrap) 9777 continue; 9778 if (perf_tp_event_match(event, &data, regs)) 9779 perf_swevent_event(event, count, &data, regs); 9780 } 9781 unlock: 9782 rcu_read_unlock(); 9783 } 9784 9785 perf_swevent_put_recursion_context(rctx); 9786 } 9787 EXPORT_SYMBOL_GPL(perf_tp_event); 9788 9789 static void tp_perf_event_destroy(struct perf_event *event) 9790 { 9791 perf_trace_destroy(event); 9792 } 9793 9794 static int perf_tp_event_init(struct perf_event *event) 9795 { 9796 int err; 9797 9798 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9799 return -ENOENT; 9800 9801 /* 9802 * no branch sampling for tracepoint events 9803 */ 9804 if (has_branch_stack(event)) 9805 return -EOPNOTSUPP; 9806 9807 err = perf_trace_init(event); 9808 if (err) 9809 return err; 9810 9811 event->destroy = tp_perf_event_destroy; 9812 9813 return 0; 9814 } 9815 9816 static struct pmu perf_tracepoint = { 9817 .task_ctx_nr = perf_sw_context, 9818 9819 .event_init = perf_tp_event_init, 9820 .add = perf_trace_add, 9821 .del = perf_trace_del, 9822 .start = perf_swevent_start, 9823 .stop = perf_swevent_stop, 9824 .read = perf_swevent_read, 9825 }; 9826 9827 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9828 /* 9829 * Flags in config, used by dynamic PMU kprobe and uprobe 9830 * The flags should match following PMU_FORMAT_ATTR(). 9831 * 9832 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9833 * if not set, create kprobe/uprobe 9834 * 9835 * The following values specify a reference counter (or semaphore in the 9836 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9837 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9838 * 9839 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9840 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9841 */ 9842 enum perf_probe_config { 9843 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9844 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9845 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9846 }; 9847 9848 PMU_FORMAT_ATTR(retprobe, "config:0"); 9849 #endif 9850 9851 #ifdef CONFIG_KPROBE_EVENTS 9852 static struct attribute *kprobe_attrs[] = { 9853 &format_attr_retprobe.attr, 9854 NULL, 9855 }; 9856 9857 static struct attribute_group kprobe_format_group = { 9858 .name = "format", 9859 .attrs = kprobe_attrs, 9860 }; 9861 9862 static const struct attribute_group *kprobe_attr_groups[] = { 9863 &kprobe_format_group, 9864 NULL, 9865 }; 9866 9867 static int perf_kprobe_event_init(struct perf_event *event); 9868 static struct pmu perf_kprobe = { 9869 .task_ctx_nr = perf_sw_context, 9870 .event_init = perf_kprobe_event_init, 9871 .add = perf_trace_add, 9872 .del = perf_trace_del, 9873 .start = perf_swevent_start, 9874 .stop = perf_swevent_stop, 9875 .read = perf_swevent_read, 9876 .attr_groups = kprobe_attr_groups, 9877 }; 9878 9879 static int perf_kprobe_event_init(struct perf_event *event) 9880 { 9881 int err; 9882 bool is_retprobe; 9883 9884 if (event->attr.type != perf_kprobe.type) 9885 return -ENOENT; 9886 9887 if (!perfmon_capable()) 9888 return -EACCES; 9889 9890 /* 9891 * no branch sampling for probe events 9892 */ 9893 if (has_branch_stack(event)) 9894 return -EOPNOTSUPP; 9895 9896 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9897 err = perf_kprobe_init(event, is_retprobe); 9898 if (err) 9899 return err; 9900 9901 event->destroy = perf_kprobe_destroy; 9902 9903 return 0; 9904 } 9905 #endif /* CONFIG_KPROBE_EVENTS */ 9906 9907 #ifdef CONFIG_UPROBE_EVENTS 9908 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9909 9910 static struct attribute *uprobe_attrs[] = { 9911 &format_attr_retprobe.attr, 9912 &format_attr_ref_ctr_offset.attr, 9913 NULL, 9914 }; 9915 9916 static struct attribute_group uprobe_format_group = { 9917 .name = "format", 9918 .attrs = uprobe_attrs, 9919 }; 9920 9921 static const struct attribute_group *uprobe_attr_groups[] = { 9922 &uprobe_format_group, 9923 NULL, 9924 }; 9925 9926 static int perf_uprobe_event_init(struct perf_event *event); 9927 static struct pmu perf_uprobe = { 9928 .task_ctx_nr = perf_sw_context, 9929 .event_init = perf_uprobe_event_init, 9930 .add = perf_trace_add, 9931 .del = perf_trace_del, 9932 .start = perf_swevent_start, 9933 .stop = perf_swevent_stop, 9934 .read = perf_swevent_read, 9935 .attr_groups = uprobe_attr_groups, 9936 }; 9937 9938 static int perf_uprobe_event_init(struct perf_event *event) 9939 { 9940 int err; 9941 unsigned long ref_ctr_offset; 9942 bool is_retprobe; 9943 9944 if (event->attr.type != perf_uprobe.type) 9945 return -ENOENT; 9946 9947 if (!perfmon_capable()) 9948 return -EACCES; 9949 9950 /* 9951 * no branch sampling for probe events 9952 */ 9953 if (has_branch_stack(event)) 9954 return -EOPNOTSUPP; 9955 9956 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9957 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9958 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9959 if (err) 9960 return err; 9961 9962 event->destroy = perf_uprobe_destroy; 9963 9964 return 0; 9965 } 9966 #endif /* CONFIG_UPROBE_EVENTS */ 9967 9968 static inline void perf_tp_register(void) 9969 { 9970 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9971 #ifdef CONFIG_KPROBE_EVENTS 9972 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9973 #endif 9974 #ifdef CONFIG_UPROBE_EVENTS 9975 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9976 #endif 9977 } 9978 9979 static void perf_event_free_filter(struct perf_event *event) 9980 { 9981 ftrace_profile_free_filter(event); 9982 } 9983 9984 #ifdef CONFIG_BPF_SYSCALL 9985 static void bpf_overflow_handler(struct perf_event *event, 9986 struct perf_sample_data *data, 9987 struct pt_regs *regs) 9988 { 9989 struct bpf_perf_event_data_kern ctx = { 9990 .data = data, 9991 .event = event, 9992 }; 9993 struct bpf_prog *prog; 9994 int ret = 0; 9995 9996 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9997 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9998 goto out; 9999 rcu_read_lock(); 10000 prog = READ_ONCE(event->prog); 10001 if (prog) 10002 ret = bpf_prog_run(prog, &ctx); 10003 rcu_read_unlock(); 10004 out: 10005 __this_cpu_dec(bpf_prog_active); 10006 if (!ret) 10007 return; 10008 10009 event->orig_overflow_handler(event, data, regs); 10010 } 10011 10012 static int perf_event_set_bpf_handler(struct perf_event *event, 10013 struct bpf_prog *prog, 10014 u64 bpf_cookie) 10015 { 10016 if (event->overflow_handler_context) 10017 /* hw breakpoint or kernel counter */ 10018 return -EINVAL; 10019 10020 if (event->prog) 10021 return -EEXIST; 10022 10023 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10024 return -EINVAL; 10025 10026 if (event->attr.precise_ip && 10027 prog->call_get_stack && 10028 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 10029 event->attr.exclude_callchain_kernel || 10030 event->attr.exclude_callchain_user)) { 10031 /* 10032 * On perf_event with precise_ip, calling bpf_get_stack() 10033 * may trigger unwinder warnings and occasional crashes. 10034 * bpf_get_[stack|stackid] works around this issue by using 10035 * callchain attached to perf_sample_data. If the 10036 * perf_event does not full (kernel and user) callchain 10037 * attached to perf_sample_data, do not allow attaching BPF 10038 * program that calls bpf_get_[stack|stackid]. 10039 */ 10040 return -EPROTO; 10041 } 10042 10043 event->prog = prog; 10044 event->bpf_cookie = bpf_cookie; 10045 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10046 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10047 return 0; 10048 } 10049 10050 static void perf_event_free_bpf_handler(struct perf_event *event) 10051 { 10052 struct bpf_prog *prog = event->prog; 10053 10054 if (!prog) 10055 return; 10056 10057 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10058 event->prog = NULL; 10059 bpf_prog_put(prog); 10060 } 10061 #else 10062 static int perf_event_set_bpf_handler(struct perf_event *event, 10063 struct bpf_prog *prog, 10064 u64 bpf_cookie) 10065 { 10066 return -EOPNOTSUPP; 10067 } 10068 static void perf_event_free_bpf_handler(struct perf_event *event) 10069 { 10070 } 10071 #endif 10072 10073 /* 10074 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10075 * with perf_event_open() 10076 */ 10077 static inline bool perf_event_is_tracing(struct perf_event *event) 10078 { 10079 if (event->pmu == &perf_tracepoint) 10080 return true; 10081 #ifdef CONFIG_KPROBE_EVENTS 10082 if (event->pmu == &perf_kprobe) 10083 return true; 10084 #endif 10085 #ifdef CONFIG_UPROBE_EVENTS 10086 if (event->pmu == &perf_uprobe) 10087 return true; 10088 #endif 10089 return false; 10090 } 10091 10092 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10093 u64 bpf_cookie) 10094 { 10095 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10096 10097 if (!perf_event_is_tracing(event)) 10098 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10099 10100 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10101 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10102 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10103 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10104 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10105 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10106 return -EINVAL; 10107 10108 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10109 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10110 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10111 return -EINVAL; 10112 10113 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10114 /* only uprobe programs are allowed to be sleepable */ 10115 return -EINVAL; 10116 10117 /* Kprobe override only works for kprobes, not uprobes. */ 10118 if (prog->kprobe_override && !is_kprobe) 10119 return -EINVAL; 10120 10121 if (is_tracepoint || is_syscall_tp) { 10122 int off = trace_event_get_offsets(event->tp_event); 10123 10124 if (prog->aux->max_ctx_offset > off) 10125 return -EACCES; 10126 } 10127 10128 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10129 } 10130 10131 void perf_event_free_bpf_prog(struct perf_event *event) 10132 { 10133 if (!perf_event_is_tracing(event)) { 10134 perf_event_free_bpf_handler(event); 10135 return; 10136 } 10137 perf_event_detach_bpf_prog(event); 10138 } 10139 10140 #else 10141 10142 static inline void perf_tp_register(void) 10143 { 10144 } 10145 10146 static void perf_event_free_filter(struct perf_event *event) 10147 { 10148 } 10149 10150 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10151 u64 bpf_cookie) 10152 { 10153 return -ENOENT; 10154 } 10155 10156 void perf_event_free_bpf_prog(struct perf_event *event) 10157 { 10158 } 10159 #endif /* CONFIG_EVENT_TRACING */ 10160 10161 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10162 void perf_bp_event(struct perf_event *bp, void *data) 10163 { 10164 struct perf_sample_data sample; 10165 struct pt_regs *regs = data; 10166 10167 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10168 10169 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10170 perf_swevent_event(bp, 1, &sample, regs); 10171 } 10172 #endif 10173 10174 /* 10175 * Allocate a new address filter 10176 */ 10177 static struct perf_addr_filter * 10178 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10179 { 10180 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10181 struct perf_addr_filter *filter; 10182 10183 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10184 if (!filter) 10185 return NULL; 10186 10187 INIT_LIST_HEAD(&filter->entry); 10188 list_add_tail(&filter->entry, filters); 10189 10190 return filter; 10191 } 10192 10193 static void free_filters_list(struct list_head *filters) 10194 { 10195 struct perf_addr_filter *filter, *iter; 10196 10197 list_for_each_entry_safe(filter, iter, filters, entry) { 10198 path_put(&filter->path); 10199 list_del(&filter->entry); 10200 kfree(filter); 10201 } 10202 } 10203 10204 /* 10205 * Free existing address filters and optionally install new ones 10206 */ 10207 static void perf_addr_filters_splice(struct perf_event *event, 10208 struct list_head *head) 10209 { 10210 unsigned long flags; 10211 LIST_HEAD(list); 10212 10213 if (!has_addr_filter(event)) 10214 return; 10215 10216 /* don't bother with children, they don't have their own filters */ 10217 if (event->parent) 10218 return; 10219 10220 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10221 10222 list_splice_init(&event->addr_filters.list, &list); 10223 if (head) 10224 list_splice(head, &event->addr_filters.list); 10225 10226 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10227 10228 free_filters_list(&list); 10229 } 10230 10231 /* 10232 * Scan through mm's vmas and see if one of them matches the 10233 * @filter; if so, adjust filter's address range. 10234 * Called with mm::mmap_lock down for reading. 10235 */ 10236 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10237 struct mm_struct *mm, 10238 struct perf_addr_filter_range *fr) 10239 { 10240 struct vm_area_struct *vma; 10241 10242 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10243 if (!vma->vm_file) 10244 continue; 10245 10246 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10247 return; 10248 } 10249 } 10250 10251 /* 10252 * Update event's address range filters based on the 10253 * task's existing mappings, if any. 10254 */ 10255 static void perf_event_addr_filters_apply(struct perf_event *event) 10256 { 10257 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10258 struct task_struct *task = READ_ONCE(event->ctx->task); 10259 struct perf_addr_filter *filter; 10260 struct mm_struct *mm = NULL; 10261 unsigned int count = 0; 10262 unsigned long flags; 10263 10264 /* 10265 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10266 * will stop on the parent's child_mutex that our caller is also holding 10267 */ 10268 if (task == TASK_TOMBSTONE) 10269 return; 10270 10271 if (ifh->nr_file_filters) { 10272 mm = get_task_mm(task); 10273 if (!mm) 10274 goto restart; 10275 10276 mmap_read_lock(mm); 10277 } 10278 10279 raw_spin_lock_irqsave(&ifh->lock, flags); 10280 list_for_each_entry(filter, &ifh->list, entry) { 10281 if (filter->path.dentry) { 10282 /* 10283 * Adjust base offset if the filter is associated to a 10284 * binary that needs to be mapped: 10285 */ 10286 event->addr_filter_ranges[count].start = 0; 10287 event->addr_filter_ranges[count].size = 0; 10288 10289 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10290 } else { 10291 event->addr_filter_ranges[count].start = filter->offset; 10292 event->addr_filter_ranges[count].size = filter->size; 10293 } 10294 10295 count++; 10296 } 10297 10298 event->addr_filters_gen++; 10299 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10300 10301 if (ifh->nr_file_filters) { 10302 mmap_read_unlock(mm); 10303 10304 mmput(mm); 10305 } 10306 10307 restart: 10308 perf_event_stop(event, 1); 10309 } 10310 10311 /* 10312 * Address range filtering: limiting the data to certain 10313 * instruction address ranges. Filters are ioctl()ed to us from 10314 * userspace as ascii strings. 10315 * 10316 * Filter string format: 10317 * 10318 * ACTION RANGE_SPEC 10319 * where ACTION is one of the 10320 * * "filter": limit the trace to this region 10321 * * "start": start tracing from this address 10322 * * "stop": stop tracing at this address/region; 10323 * RANGE_SPEC is 10324 * * for kernel addresses: <start address>[/<size>] 10325 * * for object files: <start address>[/<size>]@</path/to/object/file> 10326 * 10327 * if <size> is not specified or is zero, the range is treated as a single 10328 * address; not valid for ACTION=="filter". 10329 */ 10330 enum { 10331 IF_ACT_NONE = -1, 10332 IF_ACT_FILTER, 10333 IF_ACT_START, 10334 IF_ACT_STOP, 10335 IF_SRC_FILE, 10336 IF_SRC_KERNEL, 10337 IF_SRC_FILEADDR, 10338 IF_SRC_KERNELADDR, 10339 }; 10340 10341 enum { 10342 IF_STATE_ACTION = 0, 10343 IF_STATE_SOURCE, 10344 IF_STATE_END, 10345 }; 10346 10347 static const match_table_t if_tokens = { 10348 { IF_ACT_FILTER, "filter" }, 10349 { IF_ACT_START, "start" }, 10350 { IF_ACT_STOP, "stop" }, 10351 { IF_SRC_FILE, "%u/%u@%s" }, 10352 { IF_SRC_KERNEL, "%u/%u" }, 10353 { IF_SRC_FILEADDR, "%u@%s" }, 10354 { IF_SRC_KERNELADDR, "%u" }, 10355 { IF_ACT_NONE, NULL }, 10356 }; 10357 10358 /* 10359 * Address filter string parser 10360 */ 10361 static int 10362 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10363 struct list_head *filters) 10364 { 10365 struct perf_addr_filter *filter = NULL; 10366 char *start, *orig, *filename = NULL; 10367 substring_t args[MAX_OPT_ARGS]; 10368 int state = IF_STATE_ACTION, token; 10369 unsigned int kernel = 0; 10370 int ret = -EINVAL; 10371 10372 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10373 if (!fstr) 10374 return -ENOMEM; 10375 10376 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10377 static const enum perf_addr_filter_action_t actions[] = { 10378 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10379 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10380 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10381 }; 10382 ret = -EINVAL; 10383 10384 if (!*start) 10385 continue; 10386 10387 /* filter definition begins */ 10388 if (state == IF_STATE_ACTION) { 10389 filter = perf_addr_filter_new(event, filters); 10390 if (!filter) 10391 goto fail; 10392 } 10393 10394 token = match_token(start, if_tokens, args); 10395 switch (token) { 10396 case IF_ACT_FILTER: 10397 case IF_ACT_START: 10398 case IF_ACT_STOP: 10399 if (state != IF_STATE_ACTION) 10400 goto fail; 10401 10402 filter->action = actions[token]; 10403 state = IF_STATE_SOURCE; 10404 break; 10405 10406 case IF_SRC_KERNELADDR: 10407 case IF_SRC_KERNEL: 10408 kernel = 1; 10409 fallthrough; 10410 10411 case IF_SRC_FILEADDR: 10412 case IF_SRC_FILE: 10413 if (state != IF_STATE_SOURCE) 10414 goto fail; 10415 10416 *args[0].to = 0; 10417 ret = kstrtoul(args[0].from, 0, &filter->offset); 10418 if (ret) 10419 goto fail; 10420 10421 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10422 *args[1].to = 0; 10423 ret = kstrtoul(args[1].from, 0, &filter->size); 10424 if (ret) 10425 goto fail; 10426 } 10427 10428 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10429 int fpos = token == IF_SRC_FILE ? 2 : 1; 10430 10431 kfree(filename); 10432 filename = match_strdup(&args[fpos]); 10433 if (!filename) { 10434 ret = -ENOMEM; 10435 goto fail; 10436 } 10437 } 10438 10439 state = IF_STATE_END; 10440 break; 10441 10442 default: 10443 goto fail; 10444 } 10445 10446 /* 10447 * Filter definition is fully parsed, validate and install it. 10448 * Make sure that it doesn't contradict itself or the event's 10449 * attribute. 10450 */ 10451 if (state == IF_STATE_END) { 10452 ret = -EINVAL; 10453 10454 /* 10455 * ACTION "filter" must have a non-zero length region 10456 * specified. 10457 */ 10458 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10459 !filter->size) 10460 goto fail; 10461 10462 if (!kernel) { 10463 if (!filename) 10464 goto fail; 10465 10466 /* 10467 * For now, we only support file-based filters 10468 * in per-task events; doing so for CPU-wide 10469 * events requires additional context switching 10470 * trickery, since same object code will be 10471 * mapped at different virtual addresses in 10472 * different processes. 10473 */ 10474 ret = -EOPNOTSUPP; 10475 if (!event->ctx->task) 10476 goto fail; 10477 10478 /* look up the path and grab its inode */ 10479 ret = kern_path(filename, LOOKUP_FOLLOW, 10480 &filter->path); 10481 if (ret) 10482 goto fail; 10483 10484 ret = -EINVAL; 10485 if (!filter->path.dentry || 10486 !S_ISREG(d_inode(filter->path.dentry) 10487 ->i_mode)) 10488 goto fail; 10489 10490 event->addr_filters.nr_file_filters++; 10491 } 10492 10493 /* ready to consume more filters */ 10494 kfree(filename); 10495 filename = NULL; 10496 state = IF_STATE_ACTION; 10497 filter = NULL; 10498 kernel = 0; 10499 } 10500 } 10501 10502 if (state != IF_STATE_ACTION) 10503 goto fail; 10504 10505 kfree(filename); 10506 kfree(orig); 10507 10508 return 0; 10509 10510 fail: 10511 kfree(filename); 10512 free_filters_list(filters); 10513 kfree(orig); 10514 10515 return ret; 10516 } 10517 10518 static int 10519 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10520 { 10521 LIST_HEAD(filters); 10522 int ret; 10523 10524 /* 10525 * Since this is called in perf_ioctl() path, we're already holding 10526 * ctx::mutex. 10527 */ 10528 lockdep_assert_held(&event->ctx->mutex); 10529 10530 if (WARN_ON_ONCE(event->parent)) 10531 return -EINVAL; 10532 10533 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10534 if (ret) 10535 goto fail_clear_files; 10536 10537 ret = event->pmu->addr_filters_validate(&filters); 10538 if (ret) 10539 goto fail_free_filters; 10540 10541 /* remove existing filters, if any */ 10542 perf_addr_filters_splice(event, &filters); 10543 10544 /* install new filters */ 10545 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10546 10547 return ret; 10548 10549 fail_free_filters: 10550 free_filters_list(&filters); 10551 10552 fail_clear_files: 10553 event->addr_filters.nr_file_filters = 0; 10554 10555 return ret; 10556 } 10557 10558 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10559 { 10560 int ret = -EINVAL; 10561 char *filter_str; 10562 10563 filter_str = strndup_user(arg, PAGE_SIZE); 10564 if (IS_ERR(filter_str)) 10565 return PTR_ERR(filter_str); 10566 10567 #ifdef CONFIG_EVENT_TRACING 10568 if (perf_event_is_tracing(event)) { 10569 struct perf_event_context *ctx = event->ctx; 10570 10571 /* 10572 * Beware, here be dragons!! 10573 * 10574 * the tracepoint muck will deadlock against ctx->mutex, but 10575 * the tracepoint stuff does not actually need it. So 10576 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10577 * already have a reference on ctx. 10578 * 10579 * This can result in event getting moved to a different ctx, 10580 * but that does not affect the tracepoint state. 10581 */ 10582 mutex_unlock(&ctx->mutex); 10583 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10584 mutex_lock(&ctx->mutex); 10585 } else 10586 #endif 10587 if (has_addr_filter(event)) 10588 ret = perf_event_set_addr_filter(event, filter_str); 10589 10590 kfree(filter_str); 10591 return ret; 10592 } 10593 10594 /* 10595 * hrtimer based swevent callback 10596 */ 10597 10598 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10599 { 10600 enum hrtimer_restart ret = HRTIMER_RESTART; 10601 struct perf_sample_data data; 10602 struct pt_regs *regs; 10603 struct perf_event *event; 10604 u64 period; 10605 10606 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10607 10608 if (event->state != PERF_EVENT_STATE_ACTIVE) 10609 return HRTIMER_NORESTART; 10610 10611 event->pmu->read(event); 10612 10613 perf_sample_data_init(&data, 0, event->hw.last_period); 10614 regs = get_irq_regs(); 10615 10616 if (regs && !perf_exclude_event(event, regs)) { 10617 if (!(event->attr.exclude_idle && is_idle_task(current))) 10618 if (__perf_event_overflow(event, 1, &data, regs)) 10619 ret = HRTIMER_NORESTART; 10620 } 10621 10622 period = max_t(u64, 10000, event->hw.sample_period); 10623 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10624 10625 return ret; 10626 } 10627 10628 static void perf_swevent_start_hrtimer(struct perf_event *event) 10629 { 10630 struct hw_perf_event *hwc = &event->hw; 10631 s64 period; 10632 10633 if (!is_sampling_event(event)) 10634 return; 10635 10636 period = local64_read(&hwc->period_left); 10637 if (period) { 10638 if (period < 0) 10639 period = 10000; 10640 10641 local64_set(&hwc->period_left, 0); 10642 } else { 10643 period = max_t(u64, 10000, hwc->sample_period); 10644 } 10645 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10646 HRTIMER_MODE_REL_PINNED_HARD); 10647 } 10648 10649 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10650 { 10651 struct hw_perf_event *hwc = &event->hw; 10652 10653 if (is_sampling_event(event)) { 10654 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10655 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10656 10657 hrtimer_cancel(&hwc->hrtimer); 10658 } 10659 } 10660 10661 static void perf_swevent_init_hrtimer(struct perf_event *event) 10662 { 10663 struct hw_perf_event *hwc = &event->hw; 10664 10665 if (!is_sampling_event(event)) 10666 return; 10667 10668 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10669 hwc->hrtimer.function = perf_swevent_hrtimer; 10670 10671 /* 10672 * Since hrtimers have a fixed rate, we can do a static freq->period 10673 * mapping and avoid the whole period adjust feedback stuff. 10674 */ 10675 if (event->attr.freq) { 10676 long freq = event->attr.sample_freq; 10677 10678 event->attr.sample_period = NSEC_PER_SEC / freq; 10679 hwc->sample_period = event->attr.sample_period; 10680 local64_set(&hwc->period_left, hwc->sample_period); 10681 hwc->last_period = hwc->sample_period; 10682 event->attr.freq = 0; 10683 } 10684 } 10685 10686 /* 10687 * Software event: cpu wall time clock 10688 */ 10689 10690 static void cpu_clock_event_update(struct perf_event *event) 10691 { 10692 s64 prev; 10693 u64 now; 10694 10695 now = local_clock(); 10696 prev = local64_xchg(&event->hw.prev_count, now); 10697 local64_add(now - prev, &event->count); 10698 } 10699 10700 static void cpu_clock_event_start(struct perf_event *event, int flags) 10701 { 10702 local64_set(&event->hw.prev_count, local_clock()); 10703 perf_swevent_start_hrtimer(event); 10704 } 10705 10706 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10707 { 10708 perf_swevent_cancel_hrtimer(event); 10709 cpu_clock_event_update(event); 10710 } 10711 10712 static int cpu_clock_event_add(struct perf_event *event, int flags) 10713 { 10714 if (flags & PERF_EF_START) 10715 cpu_clock_event_start(event, flags); 10716 perf_event_update_userpage(event); 10717 10718 return 0; 10719 } 10720 10721 static void cpu_clock_event_del(struct perf_event *event, int flags) 10722 { 10723 cpu_clock_event_stop(event, flags); 10724 } 10725 10726 static void cpu_clock_event_read(struct perf_event *event) 10727 { 10728 cpu_clock_event_update(event); 10729 } 10730 10731 static int cpu_clock_event_init(struct perf_event *event) 10732 { 10733 if (event->attr.type != PERF_TYPE_SOFTWARE) 10734 return -ENOENT; 10735 10736 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10737 return -ENOENT; 10738 10739 /* 10740 * no branch sampling for software events 10741 */ 10742 if (has_branch_stack(event)) 10743 return -EOPNOTSUPP; 10744 10745 perf_swevent_init_hrtimer(event); 10746 10747 return 0; 10748 } 10749 10750 static struct pmu perf_cpu_clock = { 10751 .task_ctx_nr = perf_sw_context, 10752 10753 .capabilities = PERF_PMU_CAP_NO_NMI, 10754 10755 .event_init = cpu_clock_event_init, 10756 .add = cpu_clock_event_add, 10757 .del = cpu_clock_event_del, 10758 .start = cpu_clock_event_start, 10759 .stop = cpu_clock_event_stop, 10760 .read = cpu_clock_event_read, 10761 }; 10762 10763 /* 10764 * Software event: task time clock 10765 */ 10766 10767 static void task_clock_event_update(struct perf_event *event, u64 now) 10768 { 10769 u64 prev; 10770 s64 delta; 10771 10772 prev = local64_xchg(&event->hw.prev_count, now); 10773 delta = now - prev; 10774 local64_add(delta, &event->count); 10775 } 10776 10777 static void task_clock_event_start(struct perf_event *event, int flags) 10778 { 10779 local64_set(&event->hw.prev_count, event->ctx->time); 10780 perf_swevent_start_hrtimer(event); 10781 } 10782 10783 static void task_clock_event_stop(struct perf_event *event, int flags) 10784 { 10785 perf_swevent_cancel_hrtimer(event); 10786 task_clock_event_update(event, event->ctx->time); 10787 } 10788 10789 static int task_clock_event_add(struct perf_event *event, int flags) 10790 { 10791 if (flags & PERF_EF_START) 10792 task_clock_event_start(event, flags); 10793 perf_event_update_userpage(event); 10794 10795 return 0; 10796 } 10797 10798 static void task_clock_event_del(struct perf_event *event, int flags) 10799 { 10800 task_clock_event_stop(event, PERF_EF_UPDATE); 10801 } 10802 10803 static void task_clock_event_read(struct perf_event *event) 10804 { 10805 u64 now = perf_clock(); 10806 u64 delta = now - event->ctx->timestamp; 10807 u64 time = event->ctx->time + delta; 10808 10809 task_clock_event_update(event, time); 10810 } 10811 10812 static int task_clock_event_init(struct perf_event *event) 10813 { 10814 if (event->attr.type != PERF_TYPE_SOFTWARE) 10815 return -ENOENT; 10816 10817 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10818 return -ENOENT; 10819 10820 /* 10821 * no branch sampling for software events 10822 */ 10823 if (has_branch_stack(event)) 10824 return -EOPNOTSUPP; 10825 10826 perf_swevent_init_hrtimer(event); 10827 10828 return 0; 10829 } 10830 10831 static struct pmu perf_task_clock = { 10832 .task_ctx_nr = perf_sw_context, 10833 10834 .capabilities = PERF_PMU_CAP_NO_NMI, 10835 10836 .event_init = task_clock_event_init, 10837 .add = task_clock_event_add, 10838 .del = task_clock_event_del, 10839 .start = task_clock_event_start, 10840 .stop = task_clock_event_stop, 10841 .read = task_clock_event_read, 10842 }; 10843 10844 static void perf_pmu_nop_void(struct pmu *pmu) 10845 { 10846 } 10847 10848 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10849 { 10850 } 10851 10852 static int perf_pmu_nop_int(struct pmu *pmu) 10853 { 10854 return 0; 10855 } 10856 10857 static int perf_event_nop_int(struct perf_event *event, u64 value) 10858 { 10859 return 0; 10860 } 10861 10862 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10863 10864 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10865 { 10866 __this_cpu_write(nop_txn_flags, flags); 10867 10868 if (flags & ~PERF_PMU_TXN_ADD) 10869 return; 10870 10871 perf_pmu_disable(pmu); 10872 } 10873 10874 static int perf_pmu_commit_txn(struct pmu *pmu) 10875 { 10876 unsigned int flags = __this_cpu_read(nop_txn_flags); 10877 10878 __this_cpu_write(nop_txn_flags, 0); 10879 10880 if (flags & ~PERF_PMU_TXN_ADD) 10881 return 0; 10882 10883 perf_pmu_enable(pmu); 10884 return 0; 10885 } 10886 10887 static void perf_pmu_cancel_txn(struct pmu *pmu) 10888 { 10889 unsigned int flags = __this_cpu_read(nop_txn_flags); 10890 10891 __this_cpu_write(nop_txn_flags, 0); 10892 10893 if (flags & ~PERF_PMU_TXN_ADD) 10894 return; 10895 10896 perf_pmu_enable(pmu); 10897 } 10898 10899 static int perf_event_idx_default(struct perf_event *event) 10900 { 10901 return 0; 10902 } 10903 10904 /* 10905 * Ensures all contexts with the same task_ctx_nr have the same 10906 * pmu_cpu_context too. 10907 */ 10908 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10909 { 10910 struct pmu *pmu; 10911 10912 if (ctxn < 0) 10913 return NULL; 10914 10915 list_for_each_entry(pmu, &pmus, entry) { 10916 if (pmu->task_ctx_nr == ctxn) 10917 return pmu->pmu_cpu_context; 10918 } 10919 10920 return NULL; 10921 } 10922 10923 static void free_pmu_context(struct pmu *pmu) 10924 { 10925 /* 10926 * Static contexts such as perf_sw_context have a global lifetime 10927 * and may be shared between different PMUs. Avoid freeing them 10928 * when a single PMU is going away. 10929 */ 10930 if (pmu->task_ctx_nr > perf_invalid_context) 10931 return; 10932 10933 free_percpu(pmu->pmu_cpu_context); 10934 } 10935 10936 /* 10937 * Let userspace know that this PMU supports address range filtering: 10938 */ 10939 static ssize_t nr_addr_filters_show(struct device *dev, 10940 struct device_attribute *attr, 10941 char *page) 10942 { 10943 struct pmu *pmu = dev_get_drvdata(dev); 10944 10945 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10946 } 10947 DEVICE_ATTR_RO(nr_addr_filters); 10948 10949 static struct idr pmu_idr; 10950 10951 static ssize_t 10952 type_show(struct device *dev, struct device_attribute *attr, char *page) 10953 { 10954 struct pmu *pmu = dev_get_drvdata(dev); 10955 10956 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10957 } 10958 static DEVICE_ATTR_RO(type); 10959 10960 static ssize_t 10961 perf_event_mux_interval_ms_show(struct device *dev, 10962 struct device_attribute *attr, 10963 char *page) 10964 { 10965 struct pmu *pmu = dev_get_drvdata(dev); 10966 10967 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10968 } 10969 10970 static DEFINE_MUTEX(mux_interval_mutex); 10971 10972 static ssize_t 10973 perf_event_mux_interval_ms_store(struct device *dev, 10974 struct device_attribute *attr, 10975 const char *buf, size_t count) 10976 { 10977 struct pmu *pmu = dev_get_drvdata(dev); 10978 int timer, cpu, ret; 10979 10980 ret = kstrtoint(buf, 0, &timer); 10981 if (ret) 10982 return ret; 10983 10984 if (timer < 1) 10985 return -EINVAL; 10986 10987 /* same value, noting to do */ 10988 if (timer == pmu->hrtimer_interval_ms) 10989 return count; 10990 10991 mutex_lock(&mux_interval_mutex); 10992 pmu->hrtimer_interval_ms = timer; 10993 10994 /* update all cpuctx for this PMU */ 10995 cpus_read_lock(); 10996 for_each_online_cpu(cpu) { 10997 struct perf_cpu_context *cpuctx; 10998 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10999 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11000 11001 cpu_function_call(cpu, 11002 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 11003 } 11004 cpus_read_unlock(); 11005 mutex_unlock(&mux_interval_mutex); 11006 11007 return count; 11008 } 11009 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11010 11011 static struct attribute *pmu_dev_attrs[] = { 11012 &dev_attr_type.attr, 11013 &dev_attr_perf_event_mux_interval_ms.attr, 11014 NULL, 11015 }; 11016 ATTRIBUTE_GROUPS(pmu_dev); 11017 11018 static int pmu_bus_running; 11019 static struct bus_type pmu_bus = { 11020 .name = "event_source", 11021 .dev_groups = pmu_dev_groups, 11022 }; 11023 11024 static void pmu_dev_release(struct device *dev) 11025 { 11026 kfree(dev); 11027 } 11028 11029 static int pmu_dev_alloc(struct pmu *pmu) 11030 { 11031 int ret = -ENOMEM; 11032 11033 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11034 if (!pmu->dev) 11035 goto out; 11036 11037 pmu->dev->groups = pmu->attr_groups; 11038 device_initialize(pmu->dev); 11039 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11040 if (ret) 11041 goto free_dev; 11042 11043 dev_set_drvdata(pmu->dev, pmu); 11044 pmu->dev->bus = &pmu_bus; 11045 pmu->dev->release = pmu_dev_release; 11046 ret = device_add(pmu->dev); 11047 if (ret) 11048 goto free_dev; 11049 11050 /* For PMUs with address filters, throw in an extra attribute: */ 11051 if (pmu->nr_addr_filters) 11052 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11053 11054 if (ret) 11055 goto del_dev; 11056 11057 if (pmu->attr_update) 11058 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11059 11060 if (ret) 11061 goto del_dev; 11062 11063 out: 11064 return ret; 11065 11066 del_dev: 11067 device_del(pmu->dev); 11068 11069 free_dev: 11070 put_device(pmu->dev); 11071 goto out; 11072 } 11073 11074 static struct lock_class_key cpuctx_mutex; 11075 static struct lock_class_key cpuctx_lock; 11076 11077 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11078 { 11079 int cpu, ret, max = PERF_TYPE_MAX; 11080 11081 mutex_lock(&pmus_lock); 11082 ret = -ENOMEM; 11083 pmu->pmu_disable_count = alloc_percpu(int); 11084 if (!pmu->pmu_disable_count) 11085 goto unlock; 11086 11087 pmu->type = -1; 11088 if (!name) 11089 goto skip_type; 11090 pmu->name = name; 11091 11092 if (type != PERF_TYPE_SOFTWARE) { 11093 if (type >= 0) 11094 max = type; 11095 11096 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11097 if (ret < 0) 11098 goto free_pdc; 11099 11100 WARN_ON(type >= 0 && ret != type); 11101 11102 type = ret; 11103 } 11104 pmu->type = type; 11105 11106 if (pmu_bus_running) { 11107 ret = pmu_dev_alloc(pmu); 11108 if (ret) 11109 goto free_idr; 11110 } 11111 11112 skip_type: 11113 if (pmu->task_ctx_nr == perf_hw_context) { 11114 static int hw_context_taken = 0; 11115 11116 /* 11117 * Other than systems with heterogeneous CPUs, it never makes 11118 * sense for two PMUs to share perf_hw_context. PMUs which are 11119 * uncore must use perf_invalid_context. 11120 */ 11121 if (WARN_ON_ONCE(hw_context_taken && 11122 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11123 pmu->task_ctx_nr = perf_invalid_context; 11124 11125 hw_context_taken = 1; 11126 } 11127 11128 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11129 if (pmu->pmu_cpu_context) 11130 goto got_cpu_context; 11131 11132 ret = -ENOMEM; 11133 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11134 if (!pmu->pmu_cpu_context) 11135 goto free_dev; 11136 11137 for_each_possible_cpu(cpu) { 11138 struct perf_cpu_context *cpuctx; 11139 11140 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11141 __perf_event_init_context(&cpuctx->ctx); 11142 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11143 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11144 cpuctx->ctx.pmu = pmu; 11145 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11146 11147 __perf_mux_hrtimer_init(cpuctx, cpu); 11148 11149 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11150 cpuctx->heap = cpuctx->heap_default; 11151 } 11152 11153 got_cpu_context: 11154 if (!pmu->start_txn) { 11155 if (pmu->pmu_enable) { 11156 /* 11157 * If we have pmu_enable/pmu_disable calls, install 11158 * transaction stubs that use that to try and batch 11159 * hardware accesses. 11160 */ 11161 pmu->start_txn = perf_pmu_start_txn; 11162 pmu->commit_txn = perf_pmu_commit_txn; 11163 pmu->cancel_txn = perf_pmu_cancel_txn; 11164 } else { 11165 pmu->start_txn = perf_pmu_nop_txn; 11166 pmu->commit_txn = perf_pmu_nop_int; 11167 pmu->cancel_txn = perf_pmu_nop_void; 11168 } 11169 } 11170 11171 if (!pmu->pmu_enable) { 11172 pmu->pmu_enable = perf_pmu_nop_void; 11173 pmu->pmu_disable = perf_pmu_nop_void; 11174 } 11175 11176 if (!pmu->check_period) 11177 pmu->check_period = perf_event_nop_int; 11178 11179 if (!pmu->event_idx) 11180 pmu->event_idx = perf_event_idx_default; 11181 11182 /* 11183 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11184 * since these cannot be in the IDR. This way the linear search 11185 * is fast, provided a valid software event is provided. 11186 */ 11187 if (type == PERF_TYPE_SOFTWARE || !name) 11188 list_add_rcu(&pmu->entry, &pmus); 11189 else 11190 list_add_tail_rcu(&pmu->entry, &pmus); 11191 11192 atomic_set(&pmu->exclusive_cnt, 0); 11193 ret = 0; 11194 unlock: 11195 mutex_unlock(&pmus_lock); 11196 11197 return ret; 11198 11199 free_dev: 11200 device_del(pmu->dev); 11201 put_device(pmu->dev); 11202 11203 free_idr: 11204 if (pmu->type != PERF_TYPE_SOFTWARE) 11205 idr_remove(&pmu_idr, pmu->type); 11206 11207 free_pdc: 11208 free_percpu(pmu->pmu_disable_count); 11209 goto unlock; 11210 } 11211 EXPORT_SYMBOL_GPL(perf_pmu_register); 11212 11213 void perf_pmu_unregister(struct pmu *pmu) 11214 { 11215 mutex_lock(&pmus_lock); 11216 list_del_rcu(&pmu->entry); 11217 11218 /* 11219 * We dereference the pmu list under both SRCU and regular RCU, so 11220 * synchronize against both of those. 11221 */ 11222 synchronize_srcu(&pmus_srcu); 11223 synchronize_rcu(); 11224 11225 free_percpu(pmu->pmu_disable_count); 11226 if (pmu->type != PERF_TYPE_SOFTWARE) 11227 idr_remove(&pmu_idr, pmu->type); 11228 if (pmu_bus_running) { 11229 if (pmu->nr_addr_filters) 11230 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11231 device_del(pmu->dev); 11232 put_device(pmu->dev); 11233 } 11234 free_pmu_context(pmu); 11235 mutex_unlock(&pmus_lock); 11236 } 11237 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11238 11239 static inline bool has_extended_regs(struct perf_event *event) 11240 { 11241 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11242 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11243 } 11244 11245 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11246 { 11247 struct perf_event_context *ctx = NULL; 11248 int ret; 11249 11250 if (!try_module_get(pmu->module)) 11251 return -ENODEV; 11252 11253 /* 11254 * A number of pmu->event_init() methods iterate the sibling_list to, 11255 * for example, validate if the group fits on the PMU. Therefore, 11256 * if this is a sibling event, acquire the ctx->mutex to protect 11257 * the sibling_list. 11258 */ 11259 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11260 /* 11261 * This ctx->mutex can nest when we're called through 11262 * inheritance. See the perf_event_ctx_lock_nested() comment. 11263 */ 11264 ctx = perf_event_ctx_lock_nested(event->group_leader, 11265 SINGLE_DEPTH_NESTING); 11266 BUG_ON(!ctx); 11267 } 11268 11269 event->pmu = pmu; 11270 ret = pmu->event_init(event); 11271 11272 if (ctx) 11273 perf_event_ctx_unlock(event->group_leader, ctx); 11274 11275 if (!ret) { 11276 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11277 has_extended_regs(event)) 11278 ret = -EOPNOTSUPP; 11279 11280 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11281 event_has_any_exclude_flag(event)) 11282 ret = -EINVAL; 11283 11284 if (ret && event->destroy) 11285 event->destroy(event); 11286 } 11287 11288 if (ret) 11289 module_put(pmu->module); 11290 11291 return ret; 11292 } 11293 11294 static struct pmu *perf_init_event(struct perf_event *event) 11295 { 11296 bool extended_type = false; 11297 int idx, type, ret; 11298 struct pmu *pmu; 11299 11300 idx = srcu_read_lock(&pmus_srcu); 11301 11302 /* Try parent's PMU first: */ 11303 if (event->parent && event->parent->pmu) { 11304 pmu = event->parent->pmu; 11305 ret = perf_try_init_event(pmu, event); 11306 if (!ret) 11307 goto unlock; 11308 } 11309 11310 /* 11311 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11312 * are often aliases for PERF_TYPE_RAW. 11313 */ 11314 type = event->attr.type; 11315 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11316 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11317 if (!type) { 11318 type = PERF_TYPE_RAW; 11319 } else { 11320 extended_type = true; 11321 event->attr.config &= PERF_HW_EVENT_MASK; 11322 } 11323 } 11324 11325 again: 11326 rcu_read_lock(); 11327 pmu = idr_find(&pmu_idr, type); 11328 rcu_read_unlock(); 11329 if (pmu) { 11330 if (event->attr.type != type && type != PERF_TYPE_RAW && 11331 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11332 goto fail; 11333 11334 ret = perf_try_init_event(pmu, event); 11335 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11336 type = event->attr.type; 11337 goto again; 11338 } 11339 11340 if (ret) 11341 pmu = ERR_PTR(ret); 11342 11343 goto unlock; 11344 } 11345 11346 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11347 ret = perf_try_init_event(pmu, event); 11348 if (!ret) 11349 goto unlock; 11350 11351 if (ret != -ENOENT) { 11352 pmu = ERR_PTR(ret); 11353 goto unlock; 11354 } 11355 } 11356 fail: 11357 pmu = ERR_PTR(-ENOENT); 11358 unlock: 11359 srcu_read_unlock(&pmus_srcu, idx); 11360 11361 return pmu; 11362 } 11363 11364 static void attach_sb_event(struct perf_event *event) 11365 { 11366 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11367 11368 raw_spin_lock(&pel->lock); 11369 list_add_rcu(&event->sb_list, &pel->list); 11370 raw_spin_unlock(&pel->lock); 11371 } 11372 11373 /* 11374 * We keep a list of all !task (and therefore per-cpu) events 11375 * that need to receive side-band records. 11376 * 11377 * This avoids having to scan all the various PMU per-cpu contexts 11378 * looking for them. 11379 */ 11380 static void account_pmu_sb_event(struct perf_event *event) 11381 { 11382 if (is_sb_event(event)) 11383 attach_sb_event(event); 11384 } 11385 11386 static void account_event_cpu(struct perf_event *event, int cpu) 11387 { 11388 if (event->parent) 11389 return; 11390 11391 if (is_cgroup_event(event)) 11392 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11393 } 11394 11395 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11396 static void account_freq_event_nohz(void) 11397 { 11398 #ifdef CONFIG_NO_HZ_FULL 11399 /* Lock so we don't race with concurrent unaccount */ 11400 spin_lock(&nr_freq_lock); 11401 if (atomic_inc_return(&nr_freq_events) == 1) 11402 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11403 spin_unlock(&nr_freq_lock); 11404 #endif 11405 } 11406 11407 static void account_freq_event(void) 11408 { 11409 if (tick_nohz_full_enabled()) 11410 account_freq_event_nohz(); 11411 else 11412 atomic_inc(&nr_freq_events); 11413 } 11414 11415 11416 static void account_event(struct perf_event *event) 11417 { 11418 bool inc = false; 11419 11420 if (event->parent) 11421 return; 11422 11423 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11424 inc = true; 11425 if (event->attr.mmap || event->attr.mmap_data) 11426 atomic_inc(&nr_mmap_events); 11427 if (event->attr.build_id) 11428 atomic_inc(&nr_build_id_events); 11429 if (event->attr.comm) 11430 atomic_inc(&nr_comm_events); 11431 if (event->attr.namespaces) 11432 atomic_inc(&nr_namespaces_events); 11433 if (event->attr.cgroup) 11434 atomic_inc(&nr_cgroup_events); 11435 if (event->attr.task) 11436 atomic_inc(&nr_task_events); 11437 if (event->attr.freq) 11438 account_freq_event(); 11439 if (event->attr.context_switch) { 11440 atomic_inc(&nr_switch_events); 11441 inc = true; 11442 } 11443 if (has_branch_stack(event)) 11444 inc = true; 11445 if (is_cgroup_event(event)) 11446 inc = true; 11447 if (event->attr.ksymbol) 11448 atomic_inc(&nr_ksymbol_events); 11449 if (event->attr.bpf_event) 11450 atomic_inc(&nr_bpf_events); 11451 if (event->attr.text_poke) 11452 atomic_inc(&nr_text_poke_events); 11453 11454 if (inc) { 11455 /* 11456 * We need the mutex here because static_branch_enable() 11457 * must complete *before* the perf_sched_count increment 11458 * becomes visible. 11459 */ 11460 if (atomic_inc_not_zero(&perf_sched_count)) 11461 goto enabled; 11462 11463 mutex_lock(&perf_sched_mutex); 11464 if (!atomic_read(&perf_sched_count)) { 11465 static_branch_enable(&perf_sched_events); 11466 /* 11467 * Guarantee that all CPUs observe they key change and 11468 * call the perf scheduling hooks before proceeding to 11469 * install events that need them. 11470 */ 11471 synchronize_rcu(); 11472 } 11473 /* 11474 * Now that we have waited for the sync_sched(), allow further 11475 * increments to by-pass the mutex. 11476 */ 11477 atomic_inc(&perf_sched_count); 11478 mutex_unlock(&perf_sched_mutex); 11479 } 11480 enabled: 11481 11482 account_event_cpu(event, event->cpu); 11483 11484 account_pmu_sb_event(event); 11485 } 11486 11487 /* 11488 * Allocate and initialize an event structure 11489 */ 11490 static struct perf_event * 11491 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11492 struct task_struct *task, 11493 struct perf_event *group_leader, 11494 struct perf_event *parent_event, 11495 perf_overflow_handler_t overflow_handler, 11496 void *context, int cgroup_fd) 11497 { 11498 struct pmu *pmu; 11499 struct perf_event *event; 11500 struct hw_perf_event *hwc; 11501 long err = -EINVAL; 11502 int node; 11503 11504 if ((unsigned)cpu >= nr_cpu_ids) { 11505 if (!task || cpu != -1) 11506 return ERR_PTR(-EINVAL); 11507 } 11508 if (attr->sigtrap && !task) { 11509 /* Requires a task: avoid signalling random tasks. */ 11510 return ERR_PTR(-EINVAL); 11511 } 11512 11513 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11514 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11515 node); 11516 if (!event) 11517 return ERR_PTR(-ENOMEM); 11518 11519 /* 11520 * Single events are their own group leaders, with an 11521 * empty sibling list: 11522 */ 11523 if (!group_leader) 11524 group_leader = event; 11525 11526 mutex_init(&event->child_mutex); 11527 INIT_LIST_HEAD(&event->child_list); 11528 11529 INIT_LIST_HEAD(&event->event_entry); 11530 INIT_LIST_HEAD(&event->sibling_list); 11531 INIT_LIST_HEAD(&event->active_list); 11532 init_event_group(event); 11533 INIT_LIST_HEAD(&event->rb_entry); 11534 INIT_LIST_HEAD(&event->active_entry); 11535 INIT_LIST_HEAD(&event->addr_filters.list); 11536 INIT_HLIST_NODE(&event->hlist_entry); 11537 11538 11539 init_waitqueue_head(&event->waitq); 11540 event->pending_disable = -1; 11541 init_irq_work(&event->pending, perf_pending_event); 11542 11543 mutex_init(&event->mmap_mutex); 11544 raw_spin_lock_init(&event->addr_filters.lock); 11545 11546 atomic_long_set(&event->refcount, 1); 11547 event->cpu = cpu; 11548 event->attr = *attr; 11549 event->group_leader = group_leader; 11550 event->pmu = NULL; 11551 event->oncpu = -1; 11552 11553 event->parent = parent_event; 11554 11555 event->ns = get_pid_ns(task_active_pid_ns(current)); 11556 event->id = atomic64_inc_return(&perf_event_id); 11557 11558 event->state = PERF_EVENT_STATE_INACTIVE; 11559 11560 if (parent_event) 11561 event->event_caps = parent_event->event_caps; 11562 11563 if (event->attr.sigtrap) 11564 atomic_set(&event->event_limit, 1); 11565 11566 if (task) { 11567 event->attach_state = PERF_ATTACH_TASK; 11568 /* 11569 * XXX pmu::event_init needs to know what task to account to 11570 * and we cannot use the ctx information because we need the 11571 * pmu before we get a ctx. 11572 */ 11573 event->hw.target = get_task_struct(task); 11574 } 11575 11576 event->clock = &local_clock; 11577 if (parent_event) 11578 event->clock = parent_event->clock; 11579 11580 if (!overflow_handler && parent_event) { 11581 overflow_handler = parent_event->overflow_handler; 11582 context = parent_event->overflow_handler_context; 11583 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11584 if (overflow_handler == bpf_overflow_handler) { 11585 struct bpf_prog *prog = parent_event->prog; 11586 11587 bpf_prog_inc(prog); 11588 event->prog = prog; 11589 event->orig_overflow_handler = 11590 parent_event->orig_overflow_handler; 11591 } 11592 #endif 11593 } 11594 11595 if (overflow_handler) { 11596 event->overflow_handler = overflow_handler; 11597 event->overflow_handler_context = context; 11598 } else if (is_write_backward(event)){ 11599 event->overflow_handler = perf_event_output_backward; 11600 event->overflow_handler_context = NULL; 11601 } else { 11602 event->overflow_handler = perf_event_output_forward; 11603 event->overflow_handler_context = NULL; 11604 } 11605 11606 perf_event__state_init(event); 11607 11608 pmu = NULL; 11609 11610 hwc = &event->hw; 11611 hwc->sample_period = attr->sample_period; 11612 if (attr->freq && attr->sample_freq) 11613 hwc->sample_period = 1; 11614 hwc->last_period = hwc->sample_period; 11615 11616 local64_set(&hwc->period_left, hwc->sample_period); 11617 11618 /* 11619 * We currently do not support PERF_SAMPLE_READ on inherited events. 11620 * See perf_output_read(). 11621 */ 11622 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11623 goto err_ns; 11624 11625 if (!has_branch_stack(event)) 11626 event->attr.branch_sample_type = 0; 11627 11628 pmu = perf_init_event(event); 11629 if (IS_ERR(pmu)) { 11630 err = PTR_ERR(pmu); 11631 goto err_ns; 11632 } 11633 11634 /* 11635 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11636 * be different on other CPUs in the uncore mask. 11637 */ 11638 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11639 err = -EINVAL; 11640 goto err_pmu; 11641 } 11642 11643 if (event->attr.aux_output && 11644 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11645 err = -EOPNOTSUPP; 11646 goto err_pmu; 11647 } 11648 11649 if (cgroup_fd != -1) { 11650 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11651 if (err) 11652 goto err_pmu; 11653 } 11654 11655 err = exclusive_event_init(event); 11656 if (err) 11657 goto err_pmu; 11658 11659 if (has_addr_filter(event)) { 11660 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11661 sizeof(struct perf_addr_filter_range), 11662 GFP_KERNEL); 11663 if (!event->addr_filter_ranges) { 11664 err = -ENOMEM; 11665 goto err_per_task; 11666 } 11667 11668 /* 11669 * Clone the parent's vma offsets: they are valid until exec() 11670 * even if the mm is not shared with the parent. 11671 */ 11672 if (event->parent) { 11673 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11674 11675 raw_spin_lock_irq(&ifh->lock); 11676 memcpy(event->addr_filter_ranges, 11677 event->parent->addr_filter_ranges, 11678 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11679 raw_spin_unlock_irq(&ifh->lock); 11680 } 11681 11682 /* force hw sync on the address filters */ 11683 event->addr_filters_gen = 1; 11684 } 11685 11686 if (!event->parent) { 11687 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11688 err = get_callchain_buffers(attr->sample_max_stack); 11689 if (err) 11690 goto err_addr_filters; 11691 } 11692 } 11693 11694 err = security_perf_event_alloc(event); 11695 if (err) 11696 goto err_callchain_buffer; 11697 11698 /* symmetric to unaccount_event() in _free_event() */ 11699 account_event(event); 11700 11701 return event; 11702 11703 err_callchain_buffer: 11704 if (!event->parent) { 11705 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11706 put_callchain_buffers(); 11707 } 11708 err_addr_filters: 11709 kfree(event->addr_filter_ranges); 11710 11711 err_per_task: 11712 exclusive_event_destroy(event); 11713 11714 err_pmu: 11715 if (is_cgroup_event(event)) 11716 perf_detach_cgroup(event); 11717 if (event->destroy) 11718 event->destroy(event); 11719 module_put(pmu->module); 11720 err_ns: 11721 if (event->ns) 11722 put_pid_ns(event->ns); 11723 if (event->hw.target) 11724 put_task_struct(event->hw.target); 11725 kmem_cache_free(perf_event_cache, event); 11726 11727 return ERR_PTR(err); 11728 } 11729 11730 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11731 struct perf_event_attr *attr) 11732 { 11733 u32 size; 11734 int ret; 11735 11736 /* Zero the full structure, so that a short copy will be nice. */ 11737 memset(attr, 0, sizeof(*attr)); 11738 11739 ret = get_user(size, &uattr->size); 11740 if (ret) 11741 return ret; 11742 11743 /* ABI compatibility quirk: */ 11744 if (!size) 11745 size = PERF_ATTR_SIZE_VER0; 11746 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11747 goto err_size; 11748 11749 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11750 if (ret) { 11751 if (ret == -E2BIG) 11752 goto err_size; 11753 return ret; 11754 } 11755 11756 attr->size = size; 11757 11758 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11759 return -EINVAL; 11760 11761 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11762 return -EINVAL; 11763 11764 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11765 return -EINVAL; 11766 11767 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11768 u64 mask = attr->branch_sample_type; 11769 11770 /* only using defined bits */ 11771 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11772 return -EINVAL; 11773 11774 /* at least one branch bit must be set */ 11775 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11776 return -EINVAL; 11777 11778 /* propagate priv level, when not set for branch */ 11779 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11780 11781 /* exclude_kernel checked on syscall entry */ 11782 if (!attr->exclude_kernel) 11783 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11784 11785 if (!attr->exclude_user) 11786 mask |= PERF_SAMPLE_BRANCH_USER; 11787 11788 if (!attr->exclude_hv) 11789 mask |= PERF_SAMPLE_BRANCH_HV; 11790 /* 11791 * adjust user setting (for HW filter setup) 11792 */ 11793 attr->branch_sample_type = mask; 11794 } 11795 /* privileged levels capture (kernel, hv): check permissions */ 11796 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11797 ret = perf_allow_kernel(attr); 11798 if (ret) 11799 return ret; 11800 } 11801 } 11802 11803 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11804 ret = perf_reg_validate(attr->sample_regs_user); 11805 if (ret) 11806 return ret; 11807 } 11808 11809 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11810 if (!arch_perf_have_user_stack_dump()) 11811 return -ENOSYS; 11812 11813 /* 11814 * We have __u32 type for the size, but so far 11815 * we can only use __u16 as maximum due to the 11816 * __u16 sample size limit. 11817 */ 11818 if (attr->sample_stack_user >= USHRT_MAX) 11819 return -EINVAL; 11820 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11821 return -EINVAL; 11822 } 11823 11824 if (!attr->sample_max_stack) 11825 attr->sample_max_stack = sysctl_perf_event_max_stack; 11826 11827 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11828 ret = perf_reg_validate(attr->sample_regs_intr); 11829 11830 #ifndef CONFIG_CGROUP_PERF 11831 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11832 return -EINVAL; 11833 #endif 11834 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11835 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11836 return -EINVAL; 11837 11838 if (!attr->inherit && attr->inherit_thread) 11839 return -EINVAL; 11840 11841 if (attr->remove_on_exec && attr->enable_on_exec) 11842 return -EINVAL; 11843 11844 if (attr->sigtrap && !attr->remove_on_exec) 11845 return -EINVAL; 11846 11847 out: 11848 return ret; 11849 11850 err_size: 11851 put_user(sizeof(*attr), &uattr->size); 11852 ret = -E2BIG; 11853 goto out; 11854 } 11855 11856 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11857 { 11858 if (b < a) 11859 swap(a, b); 11860 11861 mutex_lock(a); 11862 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11863 } 11864 11865 static int 11866 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11867 { 11868 struct perf_buffer *rb = NULL; 11869 int ret = -EINVAL; 11870 11871 if (!output_event) { 11872 mutex_lock(&event->mmap_mutex); 11873 goto set; 11874 } 11875 11876 /* don't allow circular references */ 11877 if (event == output_event) 11878 goto out; 11879 11880 /* 11881 * Don't allow cross-cpu buffers 11882 */ 11883 if (output_event->cpu != event->cpu) 11884 goto out; 11885 11886 /* 11887 * If its not a per-cpu rb, it must be the same task. 11888 */ 11889 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11890 goto out; 11891 11892 /* 11893 * Mixing clocks in the same buffer is trouble you don't need. 11894 */ 11895 if (output_event->clock != event->clock) 11896 goto out; 11897 11898 /* 11899 * Either writing ring buffer from beginning or from end. 11900 * Mixing is not allowed. 11901 */ 11902 if (is_write_backward(output_event) != is_write_backward(event)) 11903 goto out; 11904 11905 /* 11906 * If both events generate aux data, they must be on the same PMU 11907 */ 11908 if (has_aux(event) && has_aux(output_event) && 11909 event->pmu != output_event->pmu) 11910 goto out; 11911 11912 /* 11913 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 11914 * output_event is already on rb->event_list, and the list iteration 11915 * restarts after every removal, it is guaranteed this new event is 11916 * observed *OR* if output_event is already removed, it's guaranteed we 11917 * observe !rb->mmap_count. 11918 */ 11919 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 11920 set: 11921 /* Can't redirect output if we've got an active mmap() */ 11922 if (atomic_read(&event->mmap_count)) 11923 goto unlock; 11924 11925 if (output_event) { 11926 /* get the rb we want to redirect to */ 11927 rb = ring_buffer_get(output_event); 11928 if (!rb) 11929 goto unlock; 11930 11931 /* did we race against perf_mmap_close() */ 11932 if (!atomic_read(&rb->mmap_count)) { 11933 ring_buffer_put(rb); 11934 goto unlock; 11935 } 11936 } 11937 11938 ring_buffer_attach(event, rb); 11939 11940 ret = 0; 11941 unlock: 11942 mutex_unlock(&event->mmap_mutex); 11943 if (output_event) 11944 mutex_unlock(&output_event->mmap_mutex); 11945 11946 out: 11947 return ret; 11948 } 11949 11950 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11951 { 11952 bool nmi_safe = false; 11953 11954 switch (clk_id) { 11955 case CLOCK_MONOTONIC: 11956 event->clock = &ktime_get_mono_fast_ns; 11957 nmi_safe = true; 11958 break; 11959 11960 case CLOCK_MONOTONIC_RAW: 11961 event->clock = &ktime_get_raw_fast_ns; 11962 nmi_safe = true; 11963 break; 11964 11965 case CLOCK_REALTIME: 11966 event->clock = &ktime_get_real_ns; 11967 break; 11968 11969 case CLOCK_BOOTTIME: 11970 event->clock = &ktime_get_boottime_ns; 11971 break; 11972 11973 case CLOCK_TAI: 11974 event->clock = &ktime_get_clocktai_ns; 11975 break; 11976 11977 default: 11978 return -EINVAL; 11979 } 11980 11981 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11982 return -EINVAL; 11983 11984 return 0; 11985 } 11986 11987 /* 11988 * Variation on perf_event_ctx_lock_nested(), except we take two context 11989 * mutexes. 11990 */ 11991 static struct perf_event_context * 11992 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11993 struct perf_event_context *ctx) 11994 { 11995 struct perf_event_context *gctx; 11996 11997 again: 11998 rcu_read_lock(); 11999 gctx = READ_ONCE(group_leader->ctx); 12000 if (!refcount_inc_not_zero(&gctx->refcount)) { 12001 rcu_read_unlock(); 12002 goto again; 12003 } 12004 rcu_read_unlock(); 12005 12006 mutex_lock_double(&gctx->mutex, &ctx->mutex); 12007 12008 if (group_leader->ctx != gctx) { 12009 mutex_unlock(&ctx->mutex); 12010 mutex_unlock(&gctx->mutex); 12011 put_ctx(gctx); 12012 goto again; 12013 } 12014 12015 return gctx; 12016 } 12017 12018 static bool 12019 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12020 { 12021 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12022 bool is_capable = perfmon_capable(); 12023 12024 if (attr->sigtrap) { 12025 /* 12026 * perf_event_attr::sigtrap sends signals to the other task. 12027 * Require the current task to also have CAP_KILL. 12028 */ 12029 rcu_read_lock(); 12030 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12031 rcu_read_unlock(); 12032 12033 /* 12034 * If the required capabilities aren't available, checks for 12035 * ptrace permissions: upgrade to ATTACH, since sending signals 12036 * can effectively change the target task. 12037 */ 12038 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12039 } 12040 12041 /* 12042 * Preserve ptrace permission check for backwards compatibility. The 12043 * ptrace check also includes checks that the current task and other 12044 * task have matching uids, and is therefore not done here explicitly. 12045 */ 12046 return is_capable || ptrace_may_access(task, ptrace_mode); 12047 } 12048 12049 /** 12050 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12051 * 12052 * @attr_uptr: event_id type attributes for monitoring/sampling 12053 * @pid: target pid 12054 * @cpu: target cpu 12055 * @group_fd: group leader event fd 12056 * @flags: perf event open flags 12057 */ 12058 SYSCALL_DEFINE5(perf_event_open, 12059 struct perf_event_attr __user *, attr_uptr, 12060 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12061 { 12062 struct perf_event *group_leader = NULL, *output_event = NULL; 12063 struct perf_event *event, *sibling; 12064 struct perf_event_attr attr; 12065 struct perf_event_context *ctx, *gctx; 12066 struct file *event_file = NULL; 12067 struct fd group = {NULL, 0}; 12068 struct task_struct *task = NULL; 12069 struct pmu *pmu; 12070 int event_fd; 12071 int move_group = 0; 12072 int err; 12073 int f_flags = O_RDWR; 12074 int cgroup_fd = -1; 12075 12076 /* for future expandability... */ 12077 if (flags & ~PERF_FLAG_ALL) 12078 return -EINVAL; 12079 12080 /* Do we allow access to perf_event_open(2) ? */ 12081 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12082 if (err) 12083 return err; 12084 12085 err = perf_copy_attr(attr_uptr, &attr); 12086 if (err) 12087 return err; 12088 12089 if (!attr.exclude_kernel) { 12090 err = perf_allow_kernel(&attr); 12091 if (err) 12092 return err; 12093 } 12094 12095 if (attr.namespaces) { 12096 if (!perfmon_capable()) 12097 return -EACCES; 12098 } 12099 12100 if (attr.freq) { 12101 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12102 return -EINVAL; 12103 } else { 12104 if (attr.sample_period & (1ULL << 63)) 12105 return -EINVAL; 12106 } 12107 12108 /* Only privileged users can get physical addresses */ 12109 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12110 err = perf_allow_kernel(&attr); 12111 if (err) 12112 return err; 12113 } 12114 12115 /* REGS_INTR can leak data, lockdown must prevent this */ 12116 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12117 err = security_locked_down(LOCKDOWN_PERF); 12118 if (err) 12119 return err; 12120 } 12121 12122 /* 12123 * In cgroup mode, the pid argument is used to pass the fd 12124 * opened to the cgroup directory in cgroupfs. The cpu argument 12125 * designates the cpu on which to monitor threads from that 12126 * cgroup. 12127 */ 12128 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12129 return -EINVAL; 12130 12131 if (flags & PERF_FLAG_FD_CLOEXEC) 12132 f_flags |= O_CLOEXEC; 12133 12134 event_fd = get_unused_fd_flags(f_flags); 12135 if (event_fd < 0) 12136 return event_fd; 12137 12138 if (group_fd != -1) { 12139 err = perf_fget_light(group_fd, &group); 12140 if (err) 12141 goto err_fd; 12142 group_leader = group.file->private_data; 12143 if (flags & PERF_FLAG_FD_OUTPUT) 12144 output_event = group_leader; 12145 if (flags & PERF_FLAG_FD_NO_GROUP) 12146 group_leader = NULL; 12147 } 12148 12149 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12150 task = find_lively_task_by_vpid(pid); 12151 if (IS_ERR(task)) { 12152 err = PTR_ERR(task); 12153 goto err_group_fd; 12154 } 12155 } 12156 12157 if (task && group_leader && 12158 group_leader->attr.inherit != attr.inherit) { 12159 err = -EINVAL; 12160 goto err_task; 12161 } 12162 12163 if (flags & PERF_FLAG_PID_CGROUP) 12164 cgroup_fd = pid; 12165 12166 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12167 NULL, NULL, cgroup_fd); 12168 if (IS_ERR(event)) { 12169 err = PTR_ERR(event); 12170 goto err_task; 12171 } 12172 12173 if (is_sampling_event(event)) { 12174 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12175 err = -EOPNOTSUPP; 12176 goto err_alloc; 12177 } 12178 } 12179 12180 /* 12181 * Special case software events and allow them to be part of 12182 * any hardware group. 12183 */ 12184 pmu = event->pmu; 12185 12186 if (attr.use_clockid) { 12187 err = perf_event_set_clock(event, attr.clockid); 12188 if (err) 12189 goto err_alloc; 12190 } 12191 12192 if (pmu->task_ctx_nr == perf_sw_context) 12193 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12194 12195 if (group_leader) { 12196 if (is_software_event(event) && 12197 !in_software_context(group_leader)) { 12198 /* 12199 * If the event is a sw event, but the group_leader 12200 * is on hw context. 12201 * 12202 * Allow the addition of software events to hw 12203 * groups, this is safe because software events 12204 * never fail to schedule. 12205 */ 12206 pmu = group_leader->ctx->pmu; 12207 } else if (!is_software_event(event) && 12208 is_software_event(group_leader) && 12209 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12210 /* 12211 * In case the group is a pure software group, and we 12212 * try to add a hardware event, move the whole group to 12213 * the hardware context. 12214 */ 12215 move_group = 1; 12216 } 12217 } 12218 12219 /* 12220 * Get the target context (task or percpu): 12221 */ 12222 ctx = find_get_context(pmu, task, event); 12223 if (IS_ERR(ctx)) { 12224 err = PTR_ERR(ctx); 12225 goto err_alloc; 12226 } 12227 12228 /* 12229 * Look up the group leader (we will attach this event to it): 12230 */ 12231 if (group_leader) { 12232 err = -EINVAL; 12233 12234 /* 12235 * Do not allow a recursive hierarchy (this new sibling 12236 * becoming part of another group-sibling): 12237 */ 12238 if (group_leader->group_leader != group_leader) 12239 goto err_context; 12240 12241 /* All events in a group should have the same clock */ 12242 if (group_leader->clock != event->clock) 12243 goto err_context; 12244 12245 /* 12246 * Make sure we're both events for the same CPU; 12247 * grouping events for different CPUs is broken; since 12248 * you can never concurrently schedule them anyhow. 12249 */ 12250 if (group_leader->cpu != event->cpu) 12251 goto err_context; 12252 12253 /* 12254 * Make sure we're both on the same task, or both 12255 * per-CPU events. 12256 */ 12257 if (group_leader->ctx->task != ctx->task) 12258 goto err_context; 12259 12260 /* 12261 * Do not allow to attach to a group in a different task 12262 * or CPU context. If we're moving SW events, we'll fix 12263 * this up later, so allow that. 12264 * 12265 * Racy, not holding group_leader->ctx->mutex, see comment with 12266 * perf_event_ctx_lock(). 12267 */ 12268 if (!move_group && group_leader->ctx != ctx) 12269 goto err_context; 12270 12271 /* 12272 * Only a group leader can be exclusive or pinned 12273 */ 12274 if (attr.exclusive || attr.pinned) 12275 goto err_context; 12276 } 12277 12278 if (output_event) { 12279 err = perf_event_set_output(event, output_event); 12280 if (err) 12281 goto err_context; 12282 } 12283 12284 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12285 f_flags); 12286 if (IS_ERR(event_file)) { 12287 err = PTR_ERR(event_file); 12288 event_file = NULL; 12289 goto err_context; 12290 } 12291 12292 if (task) { 12293 err = down_read_interruptible(&task->signal->exec_update_lock); 12294 if (err) 12295 goto err_file; 12296 12297 /* 12298 * We must hold exec_update_lock across this and any potential 12299 * perf_install_in_context() call for this new event to 12300 * serialize against exec() altering our credentials (and the 12301 * perf_event_exit_task() that could imply). 12302 */ 12303 err = -EACCES; 12304 if (!perf_check_permission(&attr, task)) 12305 goto err_cred; 12306 } 12307 12308 if (move_group) { 12309 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12310 12311 if (gctx->task == TASK_TOMBSTONE) { 12312 err = -ESRCH; 12313 goto err_locked; 12314 } 12315 12316 /* 12317 * Check if we raced against another sys_perf_event_open() call 12318 * moving the software group underneath us. 12319 */ 12320 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12321 /* 12322 * If someone moved the group out from under us, check 12323 * if this new event wound up on the same ctx, if so 12324 * its the regular !move_group case, otherwise fail. 12325 */ 12326 if (gctx != ctx) { 12327 err = -EINVAL; 12328 goto err_locked; 12329 } else { 12330 perf_event_ctx_unlock(group_leader, gctx); 12331 move_group = 0; 12332 goto not_move_group; 12333 } 12334 } 12335 12336 /* 12337 * Failure to create exclusive events returns -EBUSY. 12338 */ 12339 err = -EBUSY; 12340 if (!exclusive_event_installable(group_leader, ctx)) 12341 goto err_locked; 12342 12343 for_each_sibling_event(sibling, group_leader) { 12344 if (!exclusive_event_installable(sibling, ctx)) 12345 goto err_locked; 12346 } 12347 } else { 12348 mutex_lock(&ctx->mutex); 12349 12350 /* 12351 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx, 12352 * see the group_leader && !move_group test earlier. 12353 */ 12354 if (group_leader && group_leader->ctx != ctx) { 12355 err = -EINVAL; 12356 goto err_locked; 12357 } 12358 } 12359 not_move_group: 12360 12361 if (ctx->task == TASK_TOMBSTONE) { 12362 err = -ESRCH; 12363 goto err_locked; 12364 } 12365 12366 if (!perf_event_validate_size(event)) { 12367 err = -E2BIG; 12368 goto err_locked; 12369 } 12370 12371 if (!task) { 12372 /* 12373 * Check if the @cpu we're creating an event for is online. 12374 * 12375 * We use the perf_cpu_context::ctx::mutex to serialize against 12376 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12377 */ 12378 struct perf_cpu_context *cpuctx = 12379 container_of(ctx, struct perf_cpu_context, ctx); 12380 12381 if (!cpuctx->online) { 12382 err = -ENODEV; 12383 goto err_locked; 12384 } 12385 } 12386 12387 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12388 err = -EINVAL; 12389 goto err_locked; 12390 } 12391 12392 /* 12393 * Must be under the same ctx::mutex as perf_install_in_context(), 12394 * because we need to serialize with concurrent event creation. 12395 */ 12396 if (!exclusive_event_installable(event, ctx)) { 12397 err = -EBUSY; 12398 goto err_locked; 12399 } 12400 12401 WARN_ON_ONCE(ctx->parent_ctx); 12402 12403 /* 12404 * This is the point on no return; we cannot fail hereafter. This is 12405 * where we start modifying current state. 12406 */ 12407 12408 if (move_group) { 12409 /* 12410 * See perf_event_ctx_lock() for comments on the details 12411 * of swizzling perf_event::ctx. 12412 */ 12413 perf_remove_from_context(group_leader, 0); 12414 put_ctx(gctx); 12415 12416 for_each_sibling_event(sibling, group_leader) { 12417 perf_remove_from_context(sibling, 0); 12418 put_ctx(gctx); 12419 } 12420 12421 /* 12422 * Wait for everybody to stop referencing the events through 12423 * the old lists, before installing it on new lists. 12424 */ 12425 synchronize_rcu(); 12426 12427 /* 12428 * Install the group siblings before the group leader. 12429 * 12430 * Because a group leader will try and install the entire group 12431 * (through the sibling list, which is still in-tact), we can 12432 * end up with siblings installed in the wrong context. 12433 * 12434 * By installing siblings first we NO-OP because they're not 12435 * reachable through the group lists. 12436 */ 12437 for_each_sibling_event(sibling, group_leader) { 12438 perf_event__state_init(sibling); 12439 perf_install_in_context(ctx, sibling, sibling->cpu); 12440 get_ctx(ctx); 12441 } 12442 12443 /* 12444 * Removing from the context ends up with disabled 12445 * event. What we want here is event in the initial 12446 * startup state, ready to be add into new context. 12447 */ 12448 perf_event__state_init(group_leader); 12449 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12450 get_ctx(ctx); 12451 } 12452 12453 /* 12454 * Precalculate sample_data sizes; do while holding ctx::mutex such 12455 * that we're serialized against further additions and before 12456 * perf_install_in_context() which is the point the event is active and 12457 * can use these values. 12458 */ 12459 perf_event__header_size(event); 12460 perf_event__id_header_size(event); 12461 12462 event->owner = current; 12463 12464 perf_install_in_context(ctx, event, event->cpu); 12465 perf_unpin_context(ctx); 12466 12467 if (move_group) 12468 perf_event_ctx_unlock(group_leader, gctx); 12469 mutex_unlock(&ctx->mutex); 12470 12471 if (task) { 12472 up_read(&task->signal->exec_update_lock); 12473 put_task_struct(task); 12474 } 12475 12476 mutex_lock(¤t->perf_event_mutex); 12477 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12478 mutex_unlock(¤t->perf_event_mutex); 12479 12480 /* 12481 * Drop the reference on the group_event after placing the 12482 * new event on the sibling_list. This ensures destruction 12483 * of the group leader will find the pointer to itself in 12484 * perf_group_detach(). 12485 */ 12486 fdput(group); 12487 fd_install(event_fd, event_file); 12488 return event_fd; 12489 12490 err_locked: 12491 if (move_group) 12492 perf_event_ctx_unlock(group_leader, gctx); 12493 mutex_unlock(&ctx->mutex); 12494 err_cred: 12495 if (task) 12496 up_read(&task->signal->exec_update_lock); 12497 err_file: 12498 fput(event_file); 12499 err_context: 12500 perf_unpin_context(ctx); 12501 put_ctx(ctx); 12502 err_alloc: 12503 /* 12504 * If event_file is set, the fput() above will have called ->release() 12505 * and that will take care of freeing the event. 12506 */ 12507 if (!event_file) 12508 free_event(event); 12509 err_task: 12510 if (task) 12511 put_task_struct(task); 12512 err_group_fd: 12513 fdput(group); 12514 err_fd: 12515 put_unused_fd(event_fd); 12516 return err; 12517 } 12518 12519 /** 12520 * perf_event_create_kernel_counter 12521 * 12522 * @attr: attributes of the counter to create 12523 * @cpu: cpu in which the counter is bound 12524 * @task: task to profile (NULL for percpu) 12525 * @overflow_handler: callback to trigger when we hit the event 12526 * @context: context data could be used in overflow_handler callback 12527 */ 12528 struct perf_event * 12529 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12530 struct task_struct *task, 12531 perf_overflow_handler_t overflow_handler, 12532 void *context) 12533 { 12534 struct perf_event_context *ctx; 12535 struct perf_event *event; 12536 int err; 12537 12538 /* 12539 * Grouping is not supported for kernel events, neither is 'AUX', 12540 * make sure the caller's intentions are adjusted. 12541 */ 12542 if (attr->aux_output) 12543 return ERR_PTR(-EINVAL); 12544 12545 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12546 overflow_handler, context, -1); 12547 if (IS_ERR(event)) { 12548 err = PTR_ERR(event); 12549 goto err; 12550 } 12551 12552 /* Mark owner so we could distinguish it from user events. */ 12553 event->owner = TASK_TOMBSTONE; 12554 12555 /* 12556 * Get the target context (task or percpu): 12557 */ 12558 ctx = find_get_context(event->pmu, task, event); 12559 if (IS_ERR(ctx)) { 12560 err = PTR_ERR(ctx); 12561 goto err_free; 12562 } 12563 12564 WARN_ON_ONCE(ctx->parent_ctx); 12565 mutex_lock(&ctx->mutex); 12566 if (ctx->task == TASK_TOMBSTONE) { 12567 err = -ESRCH; 12568 goto err_unlock; 12569 } 12570 12571 if (!task) { 12572 /* 12573 * Check if the @cpu we're creating an event for is online. 12574 * 12575 * We use the perf_cpu_context::ctx::mutex to serialize against 12576 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12577 */ 12578 struct perf_cpu_context *cpuctx = 12579 container_of(ctx, struct perf_cpu_context, ctx); 12580 if (!cpuctx->online) { 12581 err = -ENODEV; 12582 goto err_unlock; 12583 } 12584 } 12585 12586 if (!exclusive_event_installable(event, ctx)) { 12587 err = -EBUSY; 12588 goto err_unlock; 12589 } 12590 12591 perf_install_in_context(ctx, event, event->cpu); 12592 perf_unpin_context(ctx); 12593 mutex_unlock(&ctx->mutex); 12594 12595 return event; 12596 12597 err_unlock: 12598 mutex_unlock(&ctx->mutex); 12599 perf_unpin_context(ctx); 12600 put_ctx(ctx); 12601 err_free: 12602 free_event(event); 12603 err: 12604 return ERR_PTR(err); 12605 } 12606 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12607 12608 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12609 { 12610 struct perf_event_context *src_ctx; 12611 struct perf_event_context *dst_ctx; 12612 struct perf_event *event, *tmp; 12613 LIST_HEAD(events); 12614 12615 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12616 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12617 12618 /* 12619 * See perf_event_ctx_lock() for comments on the details 12620 * of swizzling perf_event::ctx. 12621 */ 12622 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12623 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12624 event_entry) { 12625 perf_remove_from_context(event, 0); 12626 unaccount_event_cpu(event, src_cpu); 12627 put_ctx(src_ctx); 12628 list_add(&event->migrate_entry, &events); 12629 } 12630 12631 /* 12632 * Wait for the events to quiesce before re-instating them. 12633 */ 12634 synchronize_rcu(); 12635 12636 /* 12637 * Re-instate events in 2 passes. 12638 * 12639 * Skip over group leaders and only install siblings on this first 12640 * pass, siblings will not get enabled without a leader, however a 12641 * leader will enable its siblings, even if those are still on the old 12642 * context. 12643 */ 12644 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12645 if (event->group_leader == event) 12646 continue; 12647 12648 list_del(&event->migrate_entry); 12649 if (event->state >= PERF_EVENT_STATE_OFF) 12650 event->state = PERF_EVENT_STATE_INACTIVE; 12651 account_event_cpu(event, dst_cpu); 12652 perf_install_in_context(dst_ctx, event, dst_cpu); 12653 get_ctx(dst_ctx); 12654 } 12655 12656 /* 12657 * Once all the siblings are setup properly, install the group leaders 12658 * to make it go. 12659 */ 12660 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12661 list_del(&event->migrate_entry); 12662 if (event->state >= PERF_EVENT_STATE_OFF) 12663 event->state = PERF_EVENT_STATE_INACTIVE; 12664 account_event_cpu(event, dst_cpu); 12665 perf_install_in_context(dst_ctx, event, dst_cpu); 12666 get_ctx(dst_ctx); 12667 } 12668 mutex_unlock(&dst_ctx->mutex); 12669 mutex_unlock(&src_ctx->mutex); 12670 } 12671 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12672 12673 static void sync_child_event(struct perf_event *child_event) 12674 { 12675 struct perf_event *parent_event = child_event->parent; 12676 u64 child_val; 12677 12678 if (child_event->attr.inherit_stat) { 12679 struct task_struct *task = child_event->ctx->task; 12680 12681 if (task && task != TASK_TOMBSTONE) 12682 perf_event_read_event(child_event, task); 12683 } 12684 12685 child_val = perf_event_count(child_event); 12686 12687 /* 12688 * Add back the child's count to the parent's count: 12689 */ 12690 atomic64_add(child_val, &parent_event->child_count); 12691 atomic64_add(child_event->total_time_enabled, 12692 &parent_event->child_total_time_enabled); 12693 atomic64_add(child_event->total_time_running, 12694 &parent_event->child_total_time_running); 12695 } 12696 12697 static void 12698 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12699 { 12700 struct perf_event *parent_event = event->parent; 12701 unsigned long detach_flags = 0; 12702 12703 if (parent_event) { 12704 /* 12705 * Do not destroy the 'original' grouping; because of the 12706 * context switch optimization the original events could've 12707 * ended up in a random child task. 12708 * 12709 * If we were to destroy the original group, all group related 12710 * operations would cease to function properly after this 12711 * random child dies. 12712 * 12713 * Do destroy all inherited groups, we don't care about those 12714 * and being thorough is better. 12715 */ 12716 detach_flags = DETACH_GROUP | DETACH_CHILD; 12717 mutex_lock(&parent_event->child_mutex); 12718 } 12719 12720 perf_remove_from_context(event, detach_flags); 12721 12722 raw_spin_lock_irq(&ctx->lock); 12723 if (event->state > PERF_EVENT_STATE_EXIT) 12724 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12725 raw_spin_unlock_irq(&ctx->lock); 12726 12727 /* 12728 * Child events can be freed. 12729 */ 12730 if (parent_event) { 12731 mutex_unlock(&parent_event->child_mutex); 12732 /* 12733 * Kick perf_poll() for is_event_hup(); 12734 */ 12735 perf_event_wakeup(parent_event); 12736 free_event(event); 12737 put_event(parent_event); 12738 return; 12739 } 12740 12741 /* 12742 * Parent events are governed by their filedesc, retain them. 12743 */ 12744 perf_event_wakeup(event); 12745 } 12746 12747 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12748 { 12749 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12750 struct perf_event *child_event, *next; 12751 12752 WARN_ON_ONCE(child != current); 12753 12754 child_ctx = perf_pin_task_context(child, ctxn); 12755 if (!child_ctx) 12756 return; 12757 12758 /* 12759 * In order to reduce the amount of tricky in ctx tear-down, we hold 12760 * ctx::mutex over the entire thing. This serializes against almost 12761 * everything that wants to access the ctx. 12762 * 12763 * The exception is sys_perf_event_open() / 12764 * perf_event_create_kernel_count() which does find_get_context() 12765 * without ctx::mutex (it cannot because of the move_group double mutex 12766 * lock thing). See the comments in perf_install_in_context(). 12767 */ 12768 mutex_lock(&child_ctx->mutex); 12769 12770 /* 12771 * In a single ctx::lock section, de-schedule the events and detach the 12772 * context from the task such that we cannot ever get it scheduled back 12773 * in. 12774 */ 12775 raw_spin_lock_irq(&child_ctx->lock); 12776 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12777 12778 /* 12779 * Now that the context is inactive, destroy the task <-> ctx relation 12780 * and mark the context dead. 12781 */ 12782 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12783 put_ctx(child_ctx); /* cannot be last */ 12784 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12785 put_task_struct(current); /* cannot be last */ 12786 12787 clone_ctx = unclone_ctx(child_ctx); 12788 raw_spin_unlock_irq(&child_ctx->lock); 12789 12790 if (clone_ctx) 12791 put_ctx(clone_ctx); 12792 12793 /* 12794 * Report the task dead after unscheduling the events so that we 12795 * won't get any samples after PERF_RECORD_EXIT. We can however still 12796 * get a few PERF_RECORD_READ events. 12797 */ 12798 perf_event_task(child, child_ctx, 0); 12799 12800 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12801 perf_event_exit_event(child_event, child_ctx); 12802 12803 mutex_unlock(&child_ctx->mutex); 12804 12805 put_ctx(child_ctx); 12806 } 12807 12808 /* 12809 * When a child task exits, feed back event values to parent events. 12810 * 12811 * Can be called with exec_update_lock held when called from 12812 * setup_new_exec(). 12813 */ 12814 void perf_event_exit_task(struct task_struct *child) 12815 { 12816 struct perf_event *event, *tmp; 12817 int ctxn; 12818 12819 mutex_lock(&child->perf_event_mutex); 12820 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12821 owner_entry) { 12822 list_del_init(&event->owner_entry); 12823 12824 /* 12825 * Ensure the list deletion is visible before we clear 12826 * the owner, closes a race against perf_release() where 12827 * we need to serialize on the owner->perf_event_mutex. 12828 */ 12829 smp_store_release(&event->owner, NULL); 12830 } 12831 mutex_unlock(&child->perf_event_mutex); 12832 12833 for_each_task_context_nr(ctxn) 12834 perf_event_exit_task_context(child, ctxn); 12835 12836 /* 12837 * The perf_event_exit_task_context calls perf_event_task 12838 * with child's task_ctx, which generates EXIT events for 12839 * child contexts and sets child->perf_event_ctxp[] to NULL. 12840 * At this point we need to send EXIT events to cpu contexts. 12841 */ 12842 perf_event_task(child, NULL, 0); 12843 } 12844 12845 static void perf_free_event(struct perf_event *event, 12846 struct perf_event_context *ctx) 12847 { 12848 struct perf_event *parent = event->parent; 12849 12850 if (WARN_ON_ONCE(!parent)) 12851 return; 12852 12853 mutex_lock(&parent->child_mutex); 12854 list_del_init(&event->child_list); 12855 mutex_unlock(&parent->child_mutex); 12856 12857 put_event(parent); 12858 12859 raw_spin_lock_irq(&ctx->lock); 12860 perf_group_detach(event); 12861 list_del_event(event, ctx); 12862 raw_spin_unlock_irq(&ctx->lock); 12863 free_event(event); 12864 } 12865 12866 /* 12867 * Free a context as created by inheritance by perf_event_init_task() below, 12868 * used by fork() in case of fail. 12869 * 12870 * Even though the task has never lived, the context and events have been 12871 * exposed through the child_list, so we must take care tearing it all down. 12872 */ 12873 void perf_event_free_task(struct task_struct *task) 12874 { 12875 struct perf_event_context *ctx; 12876 struct perf_event *event, *tmp; 12877 int ctxn; 12878 12879 for_each_task_context_nr(ctxn) { 12880 ctx = task->perf_event_ctxp[ctxn]; 12881 if (!ctx) 12882 continue; 12883 12884 mutex_lock(&ctx->mutex); 12885 raw_spin_lock_irq(&ctx->lock); 12886 /* 12887 * Destroy the task <-> ctx relation and mark the context dead. 12888 * 12889 * This is important because even though the task hasn't been 12890 * exposed yet the context has been (through child_list). 12891 */ 12892 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12893 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12894 put_task_struct(task); /* cannot be last */ 12895 raw_spin_unlock_irq(&ctx->lock); 12896 12897 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12898 perf_free_event(event, ctx); 12899 12900 mutex_unlock(&ctx->mutex); 12901 12902 /* 12903 * perf_event_release_kernel() could've stolen some of our 12904 * child events and still have them on its free_list. In that 12905 * case we must wait for these events to have been freed (in 12906 * particular all their references to this task must've been 12907 * dropped). 12908 * 12909 * Without this copy_process() will unconditionally free this 12910 * task (irrespective of its reference count) and 12911 * _free_event()'s put_task_struct(event->hw.target) will be a 12912 * use-after-free. 12913 * 12914 * Wait for all events to drop their context reference. 12915 */ 12916 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12917 put_ctx(ctx); /* must be last */ 12918 } 12919 } 12920 12921 void perf_event_delayed_put(struct task_struct *task) 12922 { 12923 int ctxn; 12924 12925 for_each_task_context_nr(ctxn) 12926 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12927 } 12928 12929 struct file *perf_event_get(unsigned int fd) 12930 { 12931 struct file *file = fget(fd); 12932 if (!file) 12933 return ERR_PTR(-EBADF); 12934 12935 if (file->f_op != &perf_fops) { 12936 fput(file); 12937 return ERR_PTR(-EBADF); 12938 } 12939 12940 return file; 12941 } 12942 12943 const struct perf_event *perf_get_event(struct file *file) 12944 { 12945 if (file->f_op != &perf_fops) 12946 return ERR_PTR(-EINVAL); 12947 12948 return file->private_data; 12949 } 12950 12951 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12952 { 12953 if (!event) 12954 return ERR_PTR(-EINVAL); 12955 12956 return &event->attr; 12957 } 12958 12959 /* 12960 * Inherit an event from parent task to child task. 12961 * 12962 * Returns: 12963 * - valid pointer on success 12964 * - NULL for orphaned events 12965 * - IS_ERR() on error 12966 */ 12967 static struct perf_event * 12968 inherit_event(struct perf_event *parent_event, 12969 struct task_struct *parent, 12970 struct perf_event_context *parent_ctx, 12971 struct task_struct *child, 12972 struct perf_event *group_leader, 12973 struct perf_event_context *child_ctx) 12974 { 12975 enum perf_event_state parent_state = parent_event->state; 12976 struct perf_event *child_event; 12977 unsigned long flags; 12978 12979 /* 12980 * Instead of creating recursive hierarchies of events, 12981 * we link inherited events back to the original parent, 12982 * which has a filp for sure, which we use as the reference 12983 * count: 12984 */ 12985 if (parent_event->parent) 12986 parent_event = parent_event->parent; 12987 12988 child_event = perf_event_alloc(&parent_event->attr, 12989 parent_event->cpu, 12990 child, 12991 group_leader, parent_event, 12992 NULL, NULL, -1); 12993 if (IS_ERR(child_event)) 12994 return child_event; 12995 12996 12997 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12998 !child_ctx->task_ctx_data) { 12999 struct pmu *pmu = child_event->pmu; 13000 13001 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 13002 if (!child_ctx->task_ctx_data) { 13003 free_event(child_event); 13004 return ERR_PTR(-ENOMEM); 13005 } 13006 } 13007 13008 /* 13009 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13010 * must be under the same lock in order to serialize against 13011 * perf_event_release_kernel(), such that either we must observe 13012 * is_orphaned_event() or they will observe us on the child_list. 13013 */ 13014 mutex_lock(&parent_event->child_mutex); 13015 if (is_orphaned_event(parent_event) || 13016 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13017 mutex_unlock(&parent_event->child_mutex); 13018 /* task_ctx_data is freed with child_ctx */ 13019 free_event(child_event); 13020 return NULL; 13021 } 13022 13023 get_ctx(child_ctx); 13024 13025 /* 13026 * Make the child state follow the state of the parent event, 13027 * not its attr.disabled bit. We hold the parent's mutex, 13028 * so we won't race with perf_event_{en, dis}able_family. 13029 */ 13030 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13031 child_event->state = PERF_EVENT_STATE_INACTIVE; 13032 else 13033 child_event->state = PERF_EVENT_STATE_OFF; 13034 13035 if (parent_event->attr.freq) { 13036 u64 sample_period = parent_event->hw.sample_period; 13037 struct hw_perf_event *hwc = &child_event->hw; 13038 13039 hwc->sample_period = sample_period; 13040 hwc->last_period = sample_period; 13041 13042 local64_set(&hwc->period_left, sample_period); 13043 } 13044 13045 child_event->ctx = child_ctx; 13046 child_event->overflow_handler = parent_event->overflow_handler; 13047 child_event->overflow_handler_context 13048 = parent_event->overflow_handler_context; 13049 13050 /* 13051 * Precalculate sample_data sizes 13052 */ 13053 perf_event__header_size(child_event); 13054 perf_event__id_header_size(child_event); 13055 13056 /* 13057 * Link it up in the child's context: 13058 */ 13059 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13060 add_event_to_ctx(child_event, child_ctx); 13061 child_event->attach_state |= PERF_ATTACH_CHILD; 13062 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13063 13064 /* 13065 * Link this into the parent event's child list 13066 */ 13067 list_add_tail(&child_event->child_list, &parent_event->child_list); 13068 mutex_unlock(&parent_event->child_mutex); 13069 13070 return child_event; 13071 } 13072 13073 /* 13074 * Inherits an event group. 13075 * 13076 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13077 * This matches with perf_event_release_kernel() removing all child events. 13078 * 13079 * Returns: 13080 * - 0 on success 13081 * - <0 on error 13082 */ 13083 static int inherit_group(struct perf_event *parent_event, 13084 struct task_struct *parent, 13085 struct perf_event_context *parent_ctx, 13086 struct task_struct *child, 13087 struct perf_event_context *child_ctx) 13088 { 13089 struct perf_event *leader; 13090 struct perf_event *sub; 13091 struct perf_event *child_ctr; 13092 13093 leader = inherit_event(parent_event, parent, parent_ctx, 13094 child, NULL, child_ctx); 13095 if (IS_ERR(leader)) 13096 return PTR_ERR(leader); 13097 /* 13098 * @leader can be NULL here because of is_orphaned_event(). In this 13099 * case inherit_event() will create individual events, similar to what 13100 * perf_group_detach() would do anyway. 13101 */ 13102 for_each_sibling_event(sub, parent_event) { 13103 child_ctr = inherit_event(sub, parent, parent_ctx, 13104 child, leader, child_ctx); 13105 if (IS_ERR(child_ctr)) 13106 return PTR_ERR(child_ctr); 13107 13108 if (sub->aux_event == parent_event && child_ctr && 13109 !perf_get_aux_event(child_ctr, leader)) 13110 return -EINVAL; 13111 } 13112 return 0; 13113 } 13114 13115 /* 13116 * Creates the child task context and tries to inherit the event-group. 13117 * 13118 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13119 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13120 * consistent with perf_event_release_kernel() removing all child events. 13121 * 13122 * Returns: 13123 * - 0 on success 13124 * - <0 on error 13125 */ 13126 static int 13127 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13128 struct perf_event_context *parent_ctx, 13129 struct task_struct *child, int ctxn, 13130 u64 clone_flags, int *inherited_all) 13131 { 13132 int ret; 13133 struct perf_event_context *child_ctx; 13134 13135 if (!event->attr.inherit || 13136 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13137 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13138 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13139 *inherited_all = 0; 13140 return 0; 13141 } 13142 13143 child_ctx = child->perf_event_ctxp[ctxn]; 13144 if (!child_ctx) { 13145 /* 13146 * This is executed from the parent task context, so 13147 * inherit events that have been marked for cloning. 13148 * First allocate and initialize a context for the 13149 * child. 13150 */ 13151 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13152 if (!child_ctx) 13153 return -ENOMEM; 13154 13155 child->perf_event_ctxp[ctxn] = child_ctx; 13156 } 13157 13158 ret = inherit_group(event, parent, parent_ctx, 13159 child, child_ctx); 13160 13161 if (ret) 13162 *inherited_all = 0; 13163 13164 return ret; 13165 } 13166 13167 /* 13168 * Initialize the perf_event context in task_struct 13169 */ 13170 static int perf_event_init_context(struct task_struct *child, int ctxn, 13171 u64 clone_flags) 13172 { 13173 struct perf_event_context *child_ctx, *parent_ctx; 13174 struct perf_event_context *cloned_ctx; 13175 struct perf_event *event; 13176 struct task_struct *parent = current; 13177 int inherited_all = 1; 13178 unsigned long flags; 13179 int ret = 0; 13180 13181 if (likely(!parent->perf_event_ctxp[ctxn])) 13182 return 0; 13183 13184 /* 13185 * If the parent's context is a clone, pin it so it won't get 13186 * swapped under us. 13187 */ 13188 parent_ctx = perf_pin_task_context(parent, ctxn); 13189 if (!parent_ctx) 13190 return 0; 13191 13192 /* 13193 * No need to check if parent_ctx != NULL here; since we saw 13194 * it non-NULL earlier, the only reason for it to become NULL 13195 * is if we exit, and since we're currently in the middle of 13196 * a fork we can't be exiting at the same time. 13197 */ 13198 13199 /* 13200 * Lock the parent list. No need to lock the child - not PID 13201 * hashed yet and not running, so nobody can access it. 13202 */ 13203 mutex_lock(&parent_ctx->mutex); 13204 13205 /* 13206 * We dont have to disable NMIs - we are only looking at 13207 * the list, not manipulating it: 13208 */ 13209 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13210 ret = inherit_task_group(event, parent, parent_ctx, 13211 child, ctxn, clone_flags, 13212 &inherited_all); 13213 if (ret) 13214 goto out_unlock; 13215 } 13216 13217 /* 13218 * We can't hold ctx->lock when iterating the ->flexible_group list due 13219 * to allocations, but we need to prevent rotation because 13220 * rotate_ctx() will change the list from interrupt context. 13221 */ 13222 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13223 parent_ctx->rotate_disable = 1; 13224 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13225 13226 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13227 ret = inherit_task_group(event, parent, parent_ctx, 13228 child, ctxn, clone_flags, 13229 &inherited_all); 13230 if (ret) 13231 goto out_unlock; 13232 } 13233 13234 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13235 parent_ctx->rotate_disable = 0; 13236 13237 child_ctx = child->perf_event_ctxp[ctxn]; 13238 13239 if (child_ctx && inherited_all) { 13240 /* 13241 * Mark the child context as a clone of the parent 13242 * context, or of whatever the parent is a clone of. 13243 * 13244 * Note that if the parent is a clone, the holding of 13245 * parent_ctx->lock avoids it from being uncloned. 13246 */ 13247 cloned_ctx = parent_ctx->parent_ctx; 13248 if (cloned_ctx) { 13249 child_ctx->parent_ctx = cloned_ctx; 13250 child_ctx->parent_gen = parent_ctx->parent_gen; 13251 } else { 13252 child_ctx->parent_ctx = parent_ctx; 13253 child_ctx->parent_gen = parent_ctx->generation; 13254 } 13255 get_ctx(child_ctx->parent_ctx); 13256 } 13257 13258 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13259 out_unlock: 13260 mutex_unlock(&parent_ctx->mutex); 13261 13262 perf_unpin_context(parent_ctx); 13263 put_ctx(parent_ctx); 13264 13265 return ret; 13266 } 13267 13268 /* 13269 * Initialize the perf_event context in task_struct 13270 */ 13271 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13272 { 13273 int ctxn, ret; 13274 13275 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13276 mutex_init(&child->perf_event_mutex); 13277 INIT_LIST_HEAD(&child->perf_event_list); 13278 13279 for_each_task_context_nr(ctxn) { 13280 ret = perf_event_init_context(child, ctxn, clone_flags); 13281 if (ret) { 13282 perf_event_free_task(child); 13283 return ret; 13284 } 13285 } 13286 13287 return 0; 13288 } 13289 13290 static void __init perf_event_init_all_cpus(void) 13291 { 13292 struct swevent_htable *swhash; 13293 int cpu; 13294 13295 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13296 13297 for_each_possible_cpu(cpu) { 13298 swhash = &per_cpu(swevent_htable, cpu); 13299 mutex_init(&swhash->hlist_mutex); 13300 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13301 13302 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13303 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13304 13305 #ifdef CONFIG_CGROUP_PERF 13306 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13307 #endif 13308 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13309 } 13310 } 13311 13312 static void perf_swevent_init_cpu(unsigned int cpu) 13313 { 13314 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13315 13316 mutex_lock(&swhash->hlist_mutex); 13317 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13318 struct swevent_hlist *hlist; 13319 13320 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13321 WARN_ON(!hlist); 13322 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13323 } 13324 mutex_unlock(&swhash->hlist_mutex); 13325 } 13326 13327 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13328 static void __perf_event_exit_context(void *__info) 13329 { 13330 struct perf_event_context *ctx = __info; 13331 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13332 struct perf_event *event; 13333 13334 raw_spin_lock(&ctx->lock); 13335 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13336 list_for_each_entry(event, &ctx->event_list, event_entry) 13337 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13338 raw_spin_unlock(&ctx->lock); 13339 } 13340 13341 static void perf_event_exit_cpu_context(int cpu) 13342 { 13343 struct perf_cpu_context *cpuctx; 13344 struct perf_event_context *ctx; 13345 struct pmu *pmu; 13346 13347 mutex_lock(&pmus_lock); 13348 list_for_each_entry(pmu, &pmus, entry) { 13349 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13350 ctx = &cpuctx->ctx; 13351 13352 mutex_lock(&ctx->mutex); 13353 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13354 cpuctx->online = 0; 13355 mutex_unlock(&ctx->mutex); 13356 } 13357 cpumask_clear_cpu(cpu, perf_online_mask); 13358 mutex_unlock(&pmus_lock); 13359 } 13360 #else 13361 13362 static void perf_event_exit_cpu_context(int cpu) { } 13363 13364 #endif 13365 13366 int perf_event_init_cpu(unsigned int cpu) 13367 { 13368 struct perf_cpu_context *cpuctx; 13369 struct perf_event_context *ctx; 13370 struct pmu *pmu; 13371 13372 perf_swevent_init_cpu(cpu); 13373 13374 mutex_lock(&pmus_lock); 13375 cpumask_set_cpu(cpu, perf_online_mask); 13376 list_for_each_entry(pmu, &pmus, entry) { 13377 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13378 ctx = &cpuctx->ctx; 13379 13380 mutex_lock(&ctx->mutex); 13381 cpuctx->online = 1; 13382 mutex_unlock(&ctx->mutex); 13383 } 13384 mutex_unlock(&pmus_lock); 13385 13386 return 0; 13387 } 13388 13389 int perf_event_exit_cpu(unsigned int cpu) 13390 { 13391 perf_event_exit_cpu_context(cpu); 13392 return 0; 13393 } 13394 13395 static int 13396 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13397 { 13398 int cpu; 13399 13400 for_each_online_cpu(cpu) 13401 perf_event_exit_cpu(cpu); 13402 13403 return NOTIFY_OK; 13404 } 13405 13406 /* 13407 * Run the perf reboot notifier at the very last possible moment so that 13408 * the generic watchdog code runs as long as possible. 13409 */ 13410 static struct notifier_block perf_reboot_notifier = { 13411 .notifier_call = perf_reboot, 13412 .priority = INT_MIN, 13413 }; 13414 13415 void __init perf_event_init(void) 13416 { 13417 int ret; 13418 13419 idr_init(&pmu_idr); 13420 13421 perf_event_init_all_cpus(); 13422 init_srcu_struct(&pmus_srcu); 13423 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13424 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13425 perf_pmu_register(&perf_task_clock, NULL, -1); 13426 perf_tp_register(); 13427 perf_event_init_cpu(smp_processor_id()); 13428 register_reboot_notifier(&perf_reboot_notifier); 13429 13430 ret = init_hw_breakpoint(); 13431 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13432 13433 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13434 13435 /* 13436 * Build time assertion that we keep the data_head at the intended 13437 * location. IOW, validation we got the __reserved[] size right. 13438 */ 13439 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13440 != 1024); 13441 } 13442 13443 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13444 char *page) 13445 { 13446 struct perf_pmu_events_attr *pmu_attr = 13447 container_of(attr, struct perf_pmu_events_attr, attr); 13448 13449 if (pmu_attr->event_str) 13450 return sprintf(page, "%s\n", pmu_attr->event_str); 13451 13452 return 0; 13453 } 13454 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13455 13456 static int __init perf_event_sysfs_init(void) 13457 { 13458 struct pmu *pmu; 13459 int ret; 13460 13461 mutex_lock(&pmus_lock); 13462 13463 ret = bus_register(&pmu_bus); 13464 if (ret) 13465 goto unlock; 13466 13467 list_for_each_entry(pmu, &pmus, entry) { 13468 if (!pmu->name || pmu->type < 0) 13469 continue; 13470 13471 ret = pmu_dev_alloc(pmu); 13472 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13473 } 13474 pmu_bus_running = 1; 13475 ret = 0; 13476 13477 unlock: 13478 mutex_unlock(&pmus_lock); 13479 13480 return ret; 13481 } 13482 device_initcall(perf_event_sysfs_init); 13483 13484 #ifdef CONFIG_CGROUP_PERF 13485 static struct cgroup_subsys_state * 13486 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13487 { 13488 struct perf_cgroup *jc; 13489 13490 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13491 if (!jc) 13492 return ERR_PTR(-ENOMEM); 13493 13494 jc->info = alloc_percpu(struct perf_cgroup_info); 13495 if (!jc->info) { 13496 kfree(jc); 13497 return ERR_PTR(-ENOMEM); 13498 } 13499 13500 return &jc->css; 13501 } 13502 13503 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13504 { 13505 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13506 13507 free_percpu(jc->info); 13508 kfree(jc); 13509 } 13510 13511 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13512 { 13513 perf_event_cgroup(css->cgroup); 13514 return 0; 13515 } 13516 13517 static int __perf_cgroup_move(void *info) 13518 { 13519 struct task_struct *task = info; 13520 rcu_read_lock(); 13521 perf_cgroup_switch(task); 13522 rcu_read_unlock(); 13523 return 0; 13524 } 13525 13526 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13527 { 13528 struct task_struct *task; 13529 struct cgroup_subsys_state *css; 13530 13531 cgroup_taskset_for_each(task, css, tset) 13532 task_function_call(task, __perf_cgroup_move, task); 13533 } 13534 13535 struct cgroup_subsys perf_event_cgrp_subsys = { 13536 .css_alloc = perf_cgroup_css_alloc, 13537 .css_free = perf_cgroup_css_free, 13538 .css_online = perf_cgroup_css_online, 13539 .attach = perf_cgroup_attach, 13540 /* 13541 * Implicitly enable on dfl hierarchy so that perf events can 13542 * always be filtered by cgroup2 path as long as perf_event 13543 * controller is not mounted on a legacy hierarchy. 13544 */ 13545 .implicit_on_dfl = true, 13546 .threaded = true, 13547 }; 13548 #endif /* CONFIG_CGROUP_PERF */ 13549 13550 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13551