1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 static inline void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static int 1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 1892 { 1893 if (!has_aux(aux_event)) 1894 return 0; 1895 1896 if (!event->pmu->aux_output_match) 1897 return 0; 1898 1899 return event->pmu->aux_output_match(aux_event); 1900 } 1901 1902 static void put_event(struct perf_event *event); 1903 static void event_sched_out(struct perf_event *event, 1904 struct perf_cpu_context *cpuctx, 1905 struct perf_event_context *ctx); 1906 1907 static void perf_put_aux_event(struct perf_event *event) 1908 { 1909 struct perf_event_context *ctx = event->ctx; 1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1911 struct perf_event *iter; 1912 1913 /* 1914 * If event uses aux_event tear down the link 1915 */ 1916 if (event->aux_event) { 1917 iter = event->aux_event; 1918 event->aux_event = NULL; 1919 put_event(iter); 1920 return; 1921 } 1922 1923 /* 1924 * If the event is an aux_event, tear down all links to 1925 * it from other events. 1926 */ 1927 for_each_sibling_event(iter, event->group_leader) { 1928 if (iter->aux_event != event) 1929 continue; 1930 1931 iter->aux_event = NULL; 1932 put_event(event); 1933 1934 /* 1935 * If it's ACTIVE, schedule it out and put it into ERROR 1936 * state so that we don't try to schedule it again. Note 1937 * that perf_event_enable() will clear the ERROR status. 1938 */ 1939 event_sched_out(iter, cpuctx, ctx); 1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 1941 } 1942 } 1943 1944 static bool perf_need_aux_event(struct perf_event *event) 1945 { 1946 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 1947 } 1948 1949 static int perf_get_aux_event(struct perf_event *event, 1950 struct perf_event *group_leader) 1951 { 1952 /* 1953 * Our group leader must be an aux event if we want to be 1954 * an aux_output. This way, the aux event will precede its 1955 * aux_output events in the group, and therefore will always 1956 * schedule first. 1957 */ 1958 if (!group_leader) 1959 return 0; 1960 1961 /* 1962 * aux_output and aux_sample_size are mutually exclusive. 1963 */ 1964 if (event->attr.aux_output && event->attr.aux_sample_size) 1965 return 0; 1966 1967 if (event->attr.aux_output && 1968 !perf_aux_output_match(event, group_leader)) 1969 return 0; 1970 1971 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 1972 return 0; 1973 1974 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 1975 return 0; 1976 1977 /* 1978 * Link aux_outputs to their aux event; this is undone in 1979 * perf_group_detach() by perf_put_aux_event(). When the 1980 * group in torn down, the aux_output events loose their 1981 * link to the aux_event and can't schedule any more. 1982 */ 1983 event->aux_event = group_leader; 1984 1985 return 1; 1986 } 1987 1988 static void perf_group_detach(struct perf_event *event) 1989 { 1990 struct perf_event *sibling, *tmp; 1991 struct perf_event_context *ctx = event->ctx; 1992 1993 lockdep_assert_held(&ctx->lock); 1994 1995 /* 1996 * We can have double detach due to exit/hot-unplug + close. 1997 */ 1998 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1999 return; 2000 2001 event->attach_state &= ~PERF_ATTACH_GROUP; 2002 2003 perf_put_aux_event(event); 2004 2005 /* 2006 * If this is a sibling, remove it from its group. 2007 */ 2008 if (event->group_leader != event) { 2009 list_del_init(&event->sibling_list); 2010 event->group_leader->nr_siblings--; 2011 goto out; 2012 } 2013 2014 /* 2015 * If this was a group event with sibling events then 2016 * upgrade the siblings to singleton events by adding them 2017 * to whatever list we are on. 2018 */ 2019 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2020 2021 sibling->group_leader = sibling; 2022 list_del_init(&sibling->sibling_list); 2023 2024 /* Inherit group flags from the previous leader */ 2025 sibling->group_caps = event->group_caps; 2026 2027 if (!RB_EMPTY_NODE(&event->group_node)) { 2028 add_event_to_groups(sibling, event->ctx); 2029 2030 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 2031 struct list_head *list = sibling->attr.pinned ? 2032 &ctx->pinned_active : &ctx->flexible_active; 2033 2034 list_add_tail(&sibling->active_list, list); 2035 } 2036 } 2037 2038 WARN_ON_ONCE(sibling->ctx != event->ctx); 2039 } 2040 2041 out: 2042 perf_event__header_size(event->group_leader); 2043 2044 for_each_sibling_event(tmp, event->group_leader) 2045 perf_event__header_size(tmp); 2046 } 2047 2048 static bool is_orphaned_event(struct perf_event *event) 2049 { 2050 return event->state == PERF_EVENT_STATE_DEAD; 2051 } 2052 2053 static inline int __pmu_filter_match(struct perf_event *event) 2054 { 2055 struct pmu *pmu = event->pmu; 2056 return pmu->filter_match ? pmu->filter_match(event) : 1; 2057 } 2058 2059 /* 2060 * Check whether we should attempt to schedule an event group based on 2061 * PMU-specific filtering. An event group can consist of HW and SW events, 2062 * potentially with a SW leader, so we must check all the filters, to 2063 * determine whether a group is schedulable: 2064 */ 2065 static inline int pmu_filter_match(struct perf_event *event) 2066 { 2067 struct perf_event *sibling; 2068 2069 if (!__pmu_filter_match(event)) 2070 return 0; 2071 2072 for_each_sibling_event(sibling, event) { 2073 if (!__pmu_filter_match(sibling)) 2074 return 0; 2075 } 2076 2077 return 1; 2078 } 2079 2080 static inline int 2081 event_filter_match(struct perf_event *event) 2082 { 2083 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2084 perf_cgroup_match(event) && pmu_filter_match(event); 2085 } 2086 2087 static void 2088 event_sched_out(struct perf_event *event, 2089 struct perf_cpu_context *cpuctx, 2090 struct perf_event_context *ctx) 2091 { 2092 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2093 2094 WARN_ON_ONCE(event->ctx != ctx); 2095 lockdep_assert_held(&ctx->lock); 2096 2097 if (event->state != PERF_EVENT_STATE_ACTIVE) 2098 return; 2099 2100 /* 2101 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2102 * we can schedule events _OUT_ individually through things like 2103 * __perf_remove_from_context(). 2104 */ 2105 list_del_init(&event->active_list); 2106 2107 perf_pmu_disable(event->pmu); 2108 2109 event->pmu->del(event, 0); 2110 event->oncpu = -1; 2111 2112 if (READ_ONCE(event->pending_disable) >= 0) { 2113 WRITE_ONCE(event->pending_disable, -1); 2114 state = PERF_EVENT_STATE_OFF; 2115 } 2116 perf_event_set_state(event, state); 2117 2118 if (!is_software_event(event)) 2119 cpuctx->active_oncpu--; 2120 if (!--ctx->nr_active) 2121 perf_event_ctx_deactivate(ctx); 2122 if (event->attr.freq && event->attr.sample_freq) 2123 ctx->nr_freq--; 2124 if (event->attr.exclusive || !cpuctx->active_oncpu) 2125 cpuctx->exclusive = 0; 2126 2127 perf_pmu_enable(event->pmu); 2128 } 2129 2130 static void 2131 group_sched_out(struct perf_event *group_event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx) 2134 { 2135 struct perf_event *event; 2136 2137 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2138 return; 2139 2140 perf_pmu_disable(ctx->pmu); 2141 2142 event_sched_out(group_event, cpuctx, ctx); 2143 2144 /* 2145 * Schedule out siblings (if any): 2146 */ 2147 for_each_sibling_event(event, group_event) 2148 event_sched_out(event, cpuctx, ctx); 2149 2150 perf_pmu_enable(ctx->pmu); 2151 2152 if (group_event->attr.exclusive) 2153 cpuctx->exclusive = 0; 2154 } 2155 2156 #define DETACH_GROUP 0x01UL 2157 2158 /* 2159 * Cross CPU call to remove a performance event 2160 * 2161 * We disable the event on the hardware level first. After that we 2162 * remove it from the context list. 2163 */ 2164 static void 2165 __perf_remove_from_context(struct perf_event *event, 2166 struct perf_cpu_context *cpuctx, 2167 struct perf_event_context *ctx, 2168 void *info) 2169 { 2170 unsigned long flags = (unsigned long)info; 2171 2172 if (ctx->is_active & EVENT_TIME) { 2173 update_context_time(ctx); 2174 update_cgrp_time_from_cpuctx(cpuctx); 2175 } 2176 2177 event_sched_out(event, cpuctx, ctx); 2178 if (flags & DETACH_GROUP) 2179 perf_group_detach(event); 2180 list_del_event(event, ctx); 2181 2182 if (!ctx->nr_events && ctx->is_active) { 2183 ctx->is_active = 0; 2184 if (ctx->task) { 2185 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2186 cpuctx->task_ctx = NULL; 2187 } 2188 } 2189 } 2190 2191 /* 2192 * Remove the event from a task's (or a CPU's) list of events. 2193 * 2194 * If event->ctx is a cloned context, callers must make sure that 2195 * every task struct that event->ctx->task could possibly point to 2196 * remains valid. This is OK when called from perf_release since 2197 * that only calls us on the top-level context, which can't be a clone. 2198 * When called from perf_event_exit_task, it's OK because the 2199 * context has been detached from its task. 2200 */ 2201 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2202 { 2203 struct perf_event_context *ctx = event->ctx; 2204 2205 lockdep_assert_held(&ctx->mutex); 2206 2207 event_function_call(event, __perf_remove_from_context, (void *)flags); 2208 2209 /* 2210 * The above event_function_call() can NO-OP when it hits 2211 * TASK_TOMBSTONE. In that case we must already have been detached 2212 * from the context (by perf_event_exit_event()) but the grouping 2213 * might still be in-tact. 2214 */ 2215 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2216 if ((flags & DETACH_GROUP) && 2217 (event->attach_state & PERF_ATTACH_GROUP)) { 2218 /* 2219 * Since in that case we cannot possibly be scheduled, simply 2220 * detach now. 2221 */ 2222 raw_spin_lock_irq(&ctx->lock); 2223 perf_group_detach(event); 2224 raw_spin_unlock_irq(&ctx->lock); 2225 } 2226 } 2227 2228 /* 2229 * Cross CPU call to disable a performance event 2230 */ 2231 static void __perf_event_disable(struct perf_event *event, 2232 struct perf_cpu_context *cpuctx, 2233 struct perf_event_context *ctx, 2234 void *info) 2235 { 2236 if (event->state < PERF_EVENT_STATE_INACTIVE) 2237 return; 2238 2239 if (ctx->is_active & EVENT_TIME) { 2240 update_context_time(ctx); 2241 update_cgrp_time_from_event(event); 2242 } 2243 2244 if (event == event->group_leader) 2245 group_sched_out(event, cpuctx, ctx); 2246 else 2247 event_sched_out(event, cpuctx, ctx); 2248 2249 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2250 } 2251 2252 /* 2253 * Disable an event. 2254 * 2255 * If event->ctx is a cloned context, callers must make sure that 2256 * every task struct that event->ctx->task could possibly point to 2257 * remains valid. This condition is satisfied when called through 2258 * perf_event_for_each_child or perf_event_for_each because they 2259 * hold the top-level event's child_mutex, so any descendant that 2260 * goes to exit will block in perf_event_exit_event(). 2261 * 2262 * When called from perf_pending_event it's OK because event->ctx 2263 * is the current context on this CPU and preemption is disabled, 2264 * hence we can't get into perf_event_task_sched_out for this context. 2265 */ 2266 static void _perf_event_disable(struct perf_event *event) 2267 { 2268 struct perf_event_context *ctx = event->ctx; 2269 2270 raw_spin_lock_irq(&ctx->lock); 2271 if (event->state <= PERF_EVENT_STATE_OFF) { 2272 raw_spin_unlock_irq(&ctx->lock); 2273 return; 2274 } 2275 raw_spin_unlock_irq(&ctx->lock); 2276 2277 event_function_call(event, __perf_event_disable, NULL); 2278 } 2279 2280 void perf_event_disable_local(struct perf_event *event) 2281 { 2282 event_function_local(event, __perf_event_disable, NULL); 2283 } 2284 2285 /* 2286 * Strictly speaking kernel users cannot create groups and therefore this 2287 * interface does not need the perf_event_ctx_lock() magic. 2288 */ 2289 void perf_event_disable(struct perf_event *event) 2290 { 2291 struct perf_event_context *ctx; 2292 2293 ctx = perf_event_ctx_lock(event); 2294 _perf_event_disable(event); 2295 perf_event_ctx_unlock(event, ctx); 2296 } 2297 EXPORT_SYMBOL_GPL(perf_event_disable); 2298 2299 void perf_event_disable_inatomic(struct perf_event *event) 2300 { 2301 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2302 /* can fail, see perf_pending_event_disable() */ 2303 irq_work_queue(&event->pending); 2304 } 2305 2306 static void perf_set_shadow_time(struct perf_event *event, 2307 struct perf_event_context *ctx) 2308 { 2309 /* 2310 * use the correct time source for the time snapshot 2311 * 2312 * We could get by without this by leveraging the 2313 * fact that to get to this function, the caller 2314 * has most likely already called update_context_time() 2315 * and update_cgrp_time_xx() and thus both timestamp 2316 * are identical (or very close). Given that tstamp is, 2317 * already adjusted for cgroup, we could say that: 2318 * tstamp - ctx->timestamp 2319 * is equivalent to 2320 * tstamp - cgrp->timestamp. 2321 * 2322 * Then, in perf_output_read(), the calculation would 2323 * work with no changes because: 2324 * - event is guaranteed scheduled in 2325 * - no scheduled out in between 2326 * - thus the timestamp would be the same 2327 * 2328 * But this is a bit hairy. 2329 * 2330 * So instead, we have an explicit cgroup call to remain 2331 * within the time time source all along. We believe it 2332 * is cleaner and simpler to understand. 2333 */ 2334 if (is_cgroup_event(event)) 2335 perf_cgroup_set_shadow_time(event, event->tstamp); 2336 else 2337 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2338 } 2339 2340 #define MAX_INTERRUPTS (~0ULL) 2341 2342 static void perf_log_throttle(struct perf_event *event, int enable); 2343 static void perf_log_itrace_start(struct perf_event *event); 2344 2345 static int 2346 event_sched_in(struct perf_event *event, 2347 struct perf_cpu_context *cpuctx, 2348 struct perf_event_context *ctx) 2349 { 2350 int ret = 0; 2351 2352 lockdep_assert_held(&ctx->lock); 2353 2354 if (event->state <= PERF_EVENT_STATE_OFF) 2355 return 0; 2356 2357 WRITE_ONCE(event->oncpu, smp_processor_id()); 2358 /* 2359 * Order event::oncpu write to happen before the ACTIVE state is 2360 * visible. This allows perf_event_{stop,read}() to observe the correct 2361 * ->oncpu if it sees ACTIVE. 2362 */ 2363 smp_wmb(); 2364 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2365 2366 /* 2367 * Unthrottle events, since we scheduled we might have missed several 2368 * ticks already, also for a heavily scheduling task there is little 2369 * guarantee it'll get a tick in a timely manner. 2370 */ 2371 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2372 perf_log_throttle(event, 1); 2373 event->hw.interrupts = 0; 2374 } 2375 2376 perf_pmu_disable(event->pmu); 2377 2378 perf_set_shadow_time(event, ctx); 2379 2380 perf_log_itrace_start(event); 2381 2382 if (event->pmu->add(event, PERF_EF_START)) { 2383 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2384 event->oncpu = -1; 2385 ret = -EAGAIN; 2386 goto out; 2387 } 2388 2389 if (!is_software_event(event)) 2390 cpuctx->active_oncpu++; 2391 if (!ctx->nr_active++) 2392 perf_event_ctx_activate(ctx); 2393 if (event->attr.freq && event->attr.sample_freq) 2394 ctx->nr_freq++; 2395 2396 if (event->attr.exclusive) 2397 cpuctx->exclusive = 1; 2398 2399 out: 2400 perf_pmu_enable(event->pmu); 2401 2402 return ret; 2403 } 2404 2405 static int 2406 group_sched_in(struct perf_event *group_event, 2407 struct perf_cpu_context *cpuctx, 2408 struct perf_event_context *ctx) 2409 { 2410 struct perf_event *event, *partial_group = NULL; 2411 struct pmu *pmu = ctx->pmu; 2412 2413 if (group_event->state == PERF_EVENT_STATE_OFF) 2414 return 0; 2415 2416 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2417 2418 if (event_sched_in(group_event, cpuctx, ctx)) { 2419 pmu->cancel_txn(pmu); 2420 perf_mux_hrtimer_restart(cpuctx); 2421 return -EAGAIN; 2422 } 2423 2424 /* 2425 * Schedule in siblings as one group (if any): 2426 */ 2427 for_each_sibling_event(event, group_event) { 2428 if (event_sched_in(event, cpuctx, ctx)) { 2429 partial_group = event; 2430 goto group_error; 2431 } 2432 } 2433 2434 if (!pmu->commit_txn(pmu)) 2435 return 0; 2436 2437 group_error: 2438 /* 2439 * Groups can be scheduled in as one unit only, so undo any 2440 * partial group before returning: 2441 * The events up to the failed event are scheduled out normally. 2442 */ 2443 for_each_sibling_event(event, group_event) { 2444 if (event == partial_group) 2445 break; 2446 2447 event_sched_out(event, cpuctx, ctx); 2448 } 2449 event_sched_out(group_event, cpuctx, ctx); 2450 2451 pmu->cancel_txn(pmu); 2452 2453 perf_mux_hrtimer_restart(cpuctx); 2454 2455 return -EAGAIN; 2456 } 2457 2458 /* 2459 * Work out whether we can put this event group on the CPU now. 2460 */ 2461 static int group_can_go_on(struct perf_event *event, 2462 struct perf_cpu_context *cpuctx, 2463 int can_add_hw) 2464 { 2465 /* 2466 * Groups consisting entirely of software events can always go on. 2467 */ 2468 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2469 return 1; 2470 /* 2471 * If an exclusive group is already on, no other hardware 2472 * events can go on. 2473 */ 2474 if (cpuctx->exclusive) 2475 return 0; 2476 /* 2477 * If this group is exclusive and there are already 2478 * events on the CPU, it can't go on. 2479 */ 2480 if (event->attr.exclusive && cpuctx->active_oncpu) 2481 return 0; 2482 /* 2483 * Otherwise, try to add it if all previous groups were able 2484 * to go on. 2485 */ 2486 return can_add_hw; 2487 } 2488 2489 static void add_event_to_ctx(struct perf_event *event, 2490 struct perf_event_context *ctx) 2491 { 2492 list_add_event(event, ctx); 2493 perf_group_attach(event); 2494 } 2495 2496 static void ctx_sched_out(struct perf_event_context *ctx, 2497 struct perf_cpu_context *cpuctx, 2498 enum event_type_t event_type); 2499 static void 2500 ctx_sched_in(struct perf_event_context *ctx, 2501 struct perf_cpu_context *cpuctx, 2502 enum event_type_t event_type, 2503 struct task_struct *task); 2504 2505 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2506 struct perf_event_context *ctx, 2507 enum event_type_t event_type) 2508 { 2509 if (!cpuctx->task_ctx) 2510 return; 2511 2512 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2513 return; 2514 2515 ctx_sched_out(ctx, cpuctx, event_type); 2516 } 2517 2518 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2519 struct perf_event_context *ctx, 2520 struct task_struct *task) 2521 { 2522 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2523 if (ctx) 2524 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2525 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2526 if (ctx) 2527 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2528 } 2529 2530 /* 2531 * We want to maintain the following priority of scheduling: 2532 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2533 * - task pinned (EVENT_PINNED) 2534 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2535 * - task flexible (EVENT_FLEXIBLE). 2536 * 2537 * In order to avoid unscheduling and scheduling back in everything every 2538 * time an event is added, only do it for the groups of equal priority and 2539 * below. 2540 * 2541 * This can be called after a batch operation on task events, in which case 2542 * event_type is a bit mask of the types of events involved. For CPU events, 2543 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2544 */ 2545 static void ctx_resched(struct perf_cpu_context *cpuctx, 2546 struct perf_event_context *task_ctx, 2547 enum event_type_t event_type) 2548 { 2549 enum event_type_t ctx_event_type; 2550 bool cpu_event = !!(event_type & EVENT_CPU); 2551 2552 /* 2553 * If pinned groups are involved, flexible groups also need to be 2554 * scheduled out. 2555 */ 2556 if (event_type & EVENT_PINNED) 2557 event_type |= EVENT_FLEXIBLE; 2558 2559 ctx_event_type = event_type & EVENT_ALL; 2560 2561 perf_pmu_disable(cpuctx->ctx.pmu); 2562 if (task_ctx) 2563 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2564 2565 /* 2566 * Decide which cpu ctx groups to schedule out based on the types 2567 * of events that caused rescheduling: 2568 * - EVENT_CPU: schedule out corresponding groups; 2569 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2570 * - otherwise, do nothing more. 2571 */ 2572 if (cpu_event) 2573 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2574 else if (ctx_event_type & EVENT_PINNED) 2575 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2576 2577 perf_event_sched_in(cpuctx, task_ctx, current); 2578 perf_pmu_enable(cpuctx->ctx.pmu); 2579 } 2580 2581 void perf_pmu_resched(struct pmu *pmu) 2582 { 2583 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2584 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2585 2586 perf_ctx_lock(cpuctx, task_ctx); 2587 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2588 perf_ctx_unlock(cpuctx, task_ctx); 2589 } 2590 2591 /* 2592 * Cross CPU call to install and enable a performance event 2593 * 2594 * Very similar to remote_function() + event_function() but cannot assume that 2595 * things like ctx->is_active and cpuctx->task_ctx are set. 2596 */ 2597 static int __perf_install_in_context(void *info) 2598 { 2599 struct perf_event *event = info; 2600 struct perf_event_context *ctx = event->ctx; 2601 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2602 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2603 bool reprogram = true; 2604 int ret = 0; 2605 2606 raw_spin_lock(&cpuctx->ctx.lock); 2607 if (ctx->task) { 2608 raw_spin_lock(&ctx->lock); 2609 task_ctx = ctx; 2610 2611 reprogram = (ctx->task == current); 2612 2613 /* 2614 * If the task is running, it must be running on this CPU, 2615 * otherwise we cannot reprogram things. 2616 * 2617 * If its not running, we don't care, ctx->lock will 2618 * serialize against it becoming runnable. 2619 */ 2620 if (task_curr(ctx->task) && !reprogram) { 2621 ret = -ESRCH; 2622 goto unlock; 2623 } 2624 2625 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2626 } else if (task_ctx) { 2627 raw_spin_lock(&task_ctx->lock); 2628 } 2629 2630 #ifdef CONFIG_CGROUP_PERF 2631 if (is_cgroup_event(event)) { 2632 /* 2633 * If the current cgroup doesn't match the event's 2634 * cgroup, we should not try to schedule it. 2635 */ 2636 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2637 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2638 event->cgrp->css.cgroup); 2639 } 2640 #endif 2641 2642 if (reprogram) { 2643 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2644 add_event_to_ctx(event, ctx); 2645 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2646 } else { 2647 add_event_to_ctx(event, ctx); 2648 } 2649 2650 unlock: 2651 perf_ctx_unlock(cpuctx, task_ctx); 2652 2653 return ret; 2654 } 2655 2656 static bool exclusive_event_installable(struct perf_event *event, 2657 struct perf_event_context *ctx); 2658 2659 /* 2660 * Attach a performance event to a context. 2661 * 2662 * Very similar to event_function_call, see comment there. 2663 */ 2664 static void 2665 perf_install_in_context(struct perf_event_context *ctx, 2666 struct perf_event *event, 2667 int cpu) 2668 { 2669 struct task_struct *task = READ_ONCE(ctx->task); 2670 2671 lockdep_assert_held(&ctx->mutex); 2672 2673 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2674 2675 if (event->cpu != -1) 2676 event->cpu = cpu; 2677 2678 /* 2679 * Ensures that if we can observe event->ctx, both the event and ctx 2680 * will be 'complete'. See perf_iterate_sb_cpu(). 2681 */ 2682 smp_store_release(&event->ctx, ctx); 2683 2684 /* 2685 * perf_event_attr::disabled events will not run and can be initialized 2686 * without IPI. Except when this is the first event for the context, in 2687 * that case we need the magic of the IPI to set ctx->is_active. 2688 * 2689 * The IOC_ENABLE that is sure to follow the creation of a disabled 2690 * event will issue the IPI and reprogram the hardware. 2691 */ 2692 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2693 raw_spin_lock_irq(&ctx->lock); 2694 if (ctx->task == TASK_TOMBSTONE) { 2695 raw_spin_unlock_irq(&ctx->lock); 2696 return; 2697 } 2698 add_event_to_ctx(event, ctx); 2699 raw_spin_unlock_irq(&ctx->lock); 2700 return; 2701 } 2702 2703 if (!task) { 2704 cpu_function_call(cpu, __perf_install_in_context, event); 2705 return; 2706 } 2707 2708 /* 2709 * Should not happen, we validate the ctx is still alive before calling. 2710 */ 2711 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2712 return; 2713 2714 /* 2715 * Installing events is tricky because we cannot rely on ctx->is_active 2716 * to be set in case this is the nr_events 0 -> 1 transition. 2717 * 2718 * Instead we use task_curr(), which tells us if the task is running. 2719 * However, since we use task_curr() outside of rq::lock, we can race 2720 * against the actual state. This means the result can be wrong. 2721 * 2722 * If we get a false positive, we retry, this is harmless. 2723 * 2724 * If we get a false negative, things are complicated. If we are after 2725 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2726 * value must be correct. If we're before, it doesn't matter since 2727 * perf_event_context_sched_in() will program the counter. 2728 * 2729 * However, this hinges on the remote context switch having observed 2730 * our task->perf_event_ctxp[] store, such that it will in fact take 2731 * ctx::lock in perf_event_context_sched_in(). 2732 * 2733 * We do this by task_function_call(), if the IPI fails to hit the task 2734 * we know any future context switch of task must see the 2735 * perf_event_ctpx[] store. 2736 */ 2737 2738 /* 2739 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2740 * task_cpu() load, such that if the IPI then does not find the task 2741 * running, a future context switch of that task must observe the 2742 * store. 2743 */ 2744 smp_mb(); 2745 again: 2746 if (!task_function_call(task, __perf_install_in_context, event)) 2747 return; 2748 2749 raw_spin_lock_irq(&ctx->lock); 2750 task = ctx->task; 2751 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2752 /* 2753 * Cannot happen because we already checked above (which also 2754 * cannot happen), and we hold ctx->mutex, which serializes us 2755 * against perf_event_exit_task_context(). 2756 */ 2757 raw_spin_unlock_irq(&ctx->lock); 2758 return; 2759 } 2760 /* 2761 * If the task is not running, ctx->lock will avoid it becoming so, 2762 * thus we can safely install the event. 2763 */ 2764 if (task_curr(task)) { 2765 raw_spin_unlock_irq(&ctx->lock); 2766 goto again; 2767 } 2768 add_event_to_ctx(event, ctx); 2769 raw_spin_unlock_irq(&ctx->lock); 2770 } 2771 2772 /* 2773 * Cross CPU call to enable a performance event 2774 */ 2775 static void __perf_event_enable(struct perf_event *event, 2776 struct perf_cpu_context *cpuctx, 2777 struct perf_event_context *ctx, 2778 void *info) 2779 { 2780 struct perf_event *leader = event->group_leader; 2781 struct perf_event_context *task_ctx; 2782 2783 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2784 event->state <= PERF_EVENT_STATE_ERROR) 2785 return; 2786 2787 if (ctx->is_active) 2788 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2789 2790 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2791 2792 if (!ctx->is_active) 2793 return; 2794 2795 if (!event_filter_match(event)) { 2796 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2797 return; 2798 } 2799 2800 /* 2801 * If the event is in a group and isn't the group leader, 2802 * then don't put it on unless the group is on. 2803 */ 2804 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2805 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2806 return; 2807 } 2808 2809 task_ctx = cpuctx->task_ctx; 2810 if (ctx->task) 2811 WARN_ON_ONCE(task_ctx != ctx); 2812 2813 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2814 } 2815 2816 /* 2817 * Enable an event. 2818 * 2819 * If event->ctx is a cloned context, callers must make sure that 2820 * every task struct that event->ctx->task could possibly point to 2821 * remains valid. This condition is satisfied when called through 2822 * perf_event_for_each_child or perf_event_for_each as described 2823 * for perf_event_disable. 2824 */ 2825 static void _perf_event_enable(struct perf_event *event) 2826 { 2827 struct perf_event_context *ctx = event->ctx; 2828 2829 raw_spin_lock_irq(&ctx->lock); 2830 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2831 event->state < PERF_EVENT_STATE_ERROR) { 2832 raw_spin_unlock_irq(&ctx->lock); 2833 return; 2834 } 2835 2836 /* 2837 * If the event is in error state, clear that first. 2838 * 2839 * That way, if we see the event in error state below, we know that it 2840 * has gone back into error state, as distinct from the task having 2841 * been scheduled away before the cross-call arrived. 2842 */ 2843 if (event->state == PERF_EVENT_STATE_ERROR) 2844 event->state = PERF_EVENT_STATE_OFF; 2845 raw_spin_unlock_irq(&ctx->lock); 2846 2847 event_function_call(event, __perf_event_enable, NULL); 2848 } 2849 2850 /* 2851 * See perf_event_disable(); 2852 */ 2853 void perf_event_enable(struct perf_event *event) 2854 { 2855 struct perf_event_context *ctx; 2856 2857 ctx = perf_event_ctx_lock(event); 2858 _perf_event_enable(event); 2859 perf_event_ctx_unlock(event, ctx); 2860 } 2861 EXPORT_SYMBOL_GPL(perf_event_enable); 2862 2863 struct stop_event_data { 2864 struct perf_event *event; 2865 unsigned int restart; 2866 }; 2867 2868 static int __perf_event_stop(void *info) 2869 { 2870 struct stop_event_data *sd = info; 2871 struct perf_event *event = sd->event; 2872 2873 /* if it's already INACTIVE, do nothing */ 2874 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2875 return 0; 2876 2877 /* matches smp_wmb() in event_sched_in() */ 2878 smp_rmb(); 2879 2880 /* 2881 * There is a window with interrupts enabled before we get here, 2882 * so we need to check again lest we try to stop another CPU's event. 2883 */ 2884 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2885 return -EAGAIN; 2886 2887 event->pmu->stop(event, PERF_EF_UPDATE); 2888 2889 /* 2890 * May race with the actual stop (through perf_pmu_output_stop()), 2891 * but it is only used for events with AUX ring buffer, and such 2892 * events will refuse to restart because of rb::aux_mmap_count==0, 2893 * see comments in perf_aux_output_begin(). 2894 * 2895 * Since this is happening on an event-local CPU, no trace is lost 2896 * while restarting. 2897 */ 2898 if (sd->restart) 2899 event->pmu->start(event, 0); 2900 2901 return 0; 2902 } 2903 2904 static int perf_event_stop(struct perf_event *event, int restart) 2905 { 2906 struct stop_event_data sd = { 2907 .event = event, 2908 .restart = restart, 2909 }; 2910 int ret = 0; 2911 2912 do { 2913 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2914 return 0; 2915 2916 /* matches smp_wmb() in event_sched_in() */ 2917 smp_rmb(); 2918 2919 /* 2920 * We only want to restart ACTIVE events, so if the event goes 2921 * inactive here (event->oncpu==-1), there's nothing more to do; 2922 * fall through with ret==-ENXIO. 2923 */ 2924 ret = cpu_function_call(READ_ONCE(event->oncpu), 2925 __perf_event_stop, &sd); 2926 } while (ret == -EAGAIN); 2927 2928 return ret; 2929 } 2930 2931 /* 2932 * In order to contain the amount of racy and tricky in the address filter 2933 * configuration management, it is a two part process: 2934 * 2935 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2936 * we update the addresses of corresponding vmas in 2937 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2938 * (p2) when an event is scheduled in (pmu::add), it calls 2939 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2940 * if the generation has changed since the previous call. 2941 * 2942 * If (p1) happens while the event is active, we restart it to force (p2). 2943 * 2944 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2945 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2946 * ioctl; 2947 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2948 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2949 * for reading; 2950 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2951 * of exec. 2952 */ 2953 void perf_event_addr_filters_sync(struct perf_event *event) 2954 { 2955 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2956 2957 if (!has_addr_filter(event)) 2958 return; 2959 2960 raw_spin_lock(&ifh->lock); 2961 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2962 event->pmu->addr_filters_sync(event); 2963 event->hw.addr_filters_gen = event->addr_filters_gen; 2964 } 2965 raw_spin_unlock(&ifh->lock); 2966 } 2967 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2968 2969 static int _perf_event_refresh(struct perf_event *event, int refresh) 2970 { 2971 /* 2972 * not supported on inherited events 2973 */ 2974 if (event->attr.inherit || !is_sampling_event(event)) 2975 return -EINVAL; 2976 2977 atomic_add(refresh, &event->event_limit); 2978 _perf_event_enable(event); 2979 2980 return 0; 2981 } 2982 2983 /* 2984 * See perf_event_disable() 2985 */ 2986 int perf_event_refresh(struct perf_event *event, int refresh) 2987 { 2988 struct perf_event_context *ctx; 2989 int ret; 2990 2991 ctx = perf_event_ctx_lock(event); 2992 ret = _perf_event_refresh(event, refresh); 2993 perf_event_ctx_unlock(event, ctx); 2994 2995 return ret; 2996 } 2997 EXPORT_SYMBOL_GPL(perf_event_refresh); 2998 2999 static int perf_event_modify_breakpoint(struct perf_event *bp, 3000 struct perf_event_attr *attr) 3001 { 3002 int err; 3003 3004 _perf_event_disable(bp); 3005 3006 err = modify_user_hw_breakpoint_check(bp, attr, true); 3007 3008 if (!bp->attr.disabled) 3009 _perf_event_enable(bp); 3010 3011 return err; 3012 } 3013 3014 static int perf_event_modify_attr(struct perf_event *event, 3015 struct perf_event_attr *attr) 3016 { 3017 if (event->attr.type != attr->type) 3018 return -EINVAL; 3019 3020 switch (event->attr.type) { 3021 case PERF_TYPE_BREAKPOINT: 3022 return perf_event_modify_breakpoint(event, attr); 3023 default: 3024 /* Place holder for future additions. */ 3025 return -EOPNOTSUPP; 3026 } 3027 } 3028 3029 static void ctx_sched_out(struct perf_event_context *ctx, 3030 struct perf_cpu_context *cpuctx, 3031 enum event_type_t event_type) 3032 { 3033 struct perf_event *event, *tmp; 3034 int is_active = ctx->is_active; 3035 3036 lockdep_assert_held(&ctx->lock); 3037 3038 if (likely(!ctx->nr_events)) { 3039 /* 3040 * See __perf_remove_from_context(). 3041 */ 3042 WARN_ON_ONCE(ctx->is_active); 3043 if (ctx->task) 3044 WARN_ON_ONCE(cpuctx->task_ctx); 3045 return; 3046 } 3047 3048 ctx->is_active &= ~event_type; 3049 if (!(ctx->is_active & EVENT_ALL)) 3050 ctx->is_active = 0; 3051 3052 if (ctx->task) { 3053 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3054 if (!ctx->is_active) 3055 cpuctx->task_ctx = NULL; 3056 } 3057 3058 /* 3059 * Always update time if it was set; not only when it changes. 3060 * Otherwise we can 'forget' to update time for any but the last 3061 * context we sched out. For example: 3062 * 3063 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3064 * ctx_sched_out(.event_type = EVENT_PINNED) 3065 * 3066 * would only update time for the pinned events. 3067 */ 3068 if (is_active & EVENT_TIME) { 3069 /* update (and stop) ctx time */ 3070 update_context_time(ctx); 3071 update_cgrp_time_from_cpuctx(cpuctx); 3072 } 3073 3074 is_active ^= ctx->is_active; /* changed bits */ 3075 3076 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3077 return; 3078 3079 /* 3080 * If we had been multiplexing, no rotations are necessary, now no events 3081 * are active. 3082 */ 3083 ctx->rotate_necessary = 0; 3084 3085 perf_pmu_disable(ctx->pmu); 3086 if (is_active & EVENT_PINNED) { 3087 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3088 group_sched_out(event, cpuctx, ctx); 3089 } 3090 3091 if (is_active & EVENT_FLEXIBLE) { 3092 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3093 group_sched_out(event, cpuctx, ctx); 3094 } 3095 perf_pmu_enable(ctx->pmu); 3096 } 3097 3098 /* 3099 * Test whether two contexts are equivalent, i.e. whether they have both been 3100 * cloned from the same version of the same context. 3101 * 3102 * Equivalence is measured using a generation number in the context that is 3103 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3104 * and list_del_event(). 3105 */ 3106 static int context_equiv(struct perf_event_context *ctx1, 3107 struct perf_event_context *ctx2) 3108 { 3109 lockdep_assert_held(&ctx1->lock); 3110 lockdep_assert_held(&ctx2->lock); 3111 3112 /* Pinning disables the swap optimization */ 3113 if (ctx1->pin_count || ctx2->pin_count) 3114 return 0; 3115 3116 /* If ctx1 is the parent of ctx2 */ 3117 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3118 return 1; 3119 3120 /* If ctx2 is the parent of ctx1 */ 3121 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3122 return 1; 3123 3124 /* 3125 * If ctx1 and ctx2 have the same parent; we flatten the parent 3126 * hierarchy, see perf_event_init_context(). 3127 */ 3128 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3129 ctx1->parent_gen == ctx2->parent_gen) 3130 return 1; 3131 3132 /* Unmatched */ 3133 return 0; 3134 } 3135 3136 static void __perf_event_sync_stat(struct perf_event *event, 3137 struct perf_event *next_event) 3138 { 3139 u64 value; 3140 3141 if (!event->attr.inherit_stat) 3142 return; 3143 3144 /* 3145 * Update the event value, we cannot use perf_event_read() 3146 * because we're in the middle of a context switch and have IRQs 3147 * disabled, which upsets smp_call_function_single(), however 3148 * we know the event must be on the current CPU, therefore we 3149 * don't need to use it. 3150 */ 3151 if (event->state == PERF_EVENT_STATE_ACTIVE) 3152 event->pmu->read(event); 3153 3154 perf_event_update_time(event); 3155 3156 /* 3157 * In order to keep per-task stats reliable we need to flip the event 3158 * values when we flip the contexts. 3159 */ 3160 value = local64_read(&next_event->count); 3161 value = local64_xchg(&event->count, value); 3162 local64_set(&next_event->count, value); 3163 3164 swap(event->total_time_enabled, next_event->total_time_enabled); 3165 swap(event->total_time_running, next_event->total_time_running); 3166 3167 /* 3168 * Since we swizzled the values, update the user visible data too. 3169 */ 3170 perf_event_update_userpage(event); 3171 perf_event_update_userpage(next_event); 3172 } 3173 3174 static void perf_event_sync_stat(struct perf_event_context *ctx, 3175 struct perf_event_context *next_ctx) 3176 { 3177 struct perf_event *event, *next_event; 3178 3179 if (!ctx->nr_stat) 3180 return; 3181 3182 update_context_time(ctx); 3183 3184 event = list_first_entry(&ctx->event_list, 3185 struct perf_event, event_entry); 3186 3187 next_event = list_first_entry(&next_ctx->event_list, 3188 struct perf_event, event_entry); 3189 3190 while (&event->event_entry != &ctx->event_list && 3191 &next_event->event_entry != &next_ctx->event_list) { 3192 3193 __perf_event_sync_stat(event, next_event); 3194 3195 event = list_next_entry(event, event_entry); 3196 next_event = list_next_entry(next_event, event_entry); 3197 } 3198 } 3199 3200 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3201 struct task_struct *next) 3202 { 3203 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3204 struct perf_event_context *next_ctx; 3205 struct perf_event_context *parent, *next_parent; 3206 struct perf_cpu_context *cpuctx; 3207 int do_switch = 1; 3208 3209 if (likely(!ctx)) 3210 return; 3211 3212 cpuctx = __get_cpu_context(ctx); 3213 if (!cpuctx->task_ctx) 3214 return; 3215 3216 rcu_read_lock(); 3217 next_ctx = next->perf_event_ctxp[ctxn]; 3218 if (!next_ctx) 3219 goto unlock; 3220 3221 parent = rcu_dereference(ctx->parent_ctx); 3222 next_parent = rcu_dereference(next_ctx->parent_ctx); 3223 3224 /* If neither context have a parent context; they cannot be clones. */ 3225 if (!parent && !next_parent) 3226 goto unlock; 3227 3228 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3229 /* 3230 * Looks like the two contexts are clones, so we might be 3231 * able to optimize the context switch. We lock both 3232 * contexts and check that they are clones under the 3233 * lock (including re-checking that neither has been 3234 * uncloned in the meantime). It doesn't matter which 3235 * order we take the locks because no other cpu could 3236 * be trying to lock both of these tasks. 3237 */ 3238 raw_spin_lock(&ctx->lock); 3239 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3240 if (context_equiv(ctx, next_ctx)) { 3241 struct pmu *pmu = ctx->pmu; 3242 3243 WRITE_ONCE(ctx->task, next); 3244 WRITE_ONCE(next_ctx->task, task); 3245 3246 /* 3247 * PMU specific parts of task perf context can require 3248 * additional synchronization. As an example of such 3249 * synchronization see implementation details of Intel 3250 * LBR call stack data profiling; 3251 */ 3252 if (pmu->swap_task_ctx) 3253 pmu->swap_task_ctx(ctx, next_ctx); 3254 else 3255 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3256 3257 /* 3258 * RCU_INIT_POINTER here is safe because we've not 3259 * modified the ctx and the above modification of 3260 * ctx->task and ctx->task_ctx_data are immaterial 3261 * since those values are always verified under 3262 * ctx->lock which we're now holding. 3263 */ 3264 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3265 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3266 3267 do_switch = 0; 3268 3269 perf_event_sync_stat(ctx, next_ctx); 3270 } 3271 raw_spin_unlock(&next_ctx->lock); 3272 raw_spin_unlock(&ctx->lock); 3273 } 3274 unlock: 3275 rcu_read_unlock(); 3276 3277 if (do_switch) { 3278 raw_spin_lock(&ctx->lock); 3279 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3280 raw_spin_unlock(&ctx->lock); 3281 } 3282 } 3283 3284 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3285 3286 void perf_sched_cb_dec(struct pmu *pmu) 3287 { 3288 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3289 3290 this_cpu_dec(perf_sched_cb_usages); 3291 3292 if (!--cpuctx->sched_cb_usage) 3293 list_del(&cpuctx->sched_cb_entry); 3294 } 3295 3296 3297 void perf_sched_cb_inc(struct pmu *pmu) 3298 { 3299 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3300 3301 if (!cpuctx->sched_cb_usage++) 3302 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3303 3304 this_cpu_inc(perf_sched_cb_usages); 3305 } 3306 3307 /* 3308 * This function provides the context switch callback to the lower code 3309 * layer. It is invoked ONLY when the context switch callback is enabled. 3310 * 3311 * This callback is relevant even to per-cpu events; for example multi event 3312 * PEBS requires this to provide PID/TID information. This requires we flush 3313 * all queued PEBS records before we context switch to a new task. 3314 */ 3315 static void perf_pmu_sched_task(struct task_struct *prev, 3316 struct task_struct *next, 3317 bool sched_in) 3318 { 3319 struct perf_cpu_context *cpuctx; 3320 struct pmu *pmu; 3321 3322 if (prev == next) 3323 return; 3324 3325 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3326 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3327 3328 if (WARN_ON_ONCE(!pmu->sched_task)) 3329 continue; 3330 3331 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3332 perf_pmu_disable(pmu); 3333 3334 pmu->sched_task(cpuctx->task_ctx, sched_in); 3335 3336 perf_pmu_enable(pmu); 3337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3338 } 3339 } 3340 3341 static void perf_event_switch(struct task_struct *task, 3342 struct task_struct *next_prev, bool sched_in); 3343 3344 #define for_each_task_context_nr(ctxn) \ 3345 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3346 3347 /* 3348 * Called from scheduler to remove the events of the current task, 3349 * with interrupts disabled. 3350 * 3351 * We stop each event and update the event value in event->count. 3352 * 3353 * This does not protect us against NMI, but disable() 3354 * sets the disabled bit in the control field of event _before_ 3355 * accessing the event control register. If a NMI hits, then it will 3356 * not restart the event. 3357 */ 3358 void __perf_event_task_sched_out(struct task_struct *task, 3359 struct task_struct *next) 3360 { 3361 int ctxn; 3362 3363 if (__this_cpu_read(perf_sched_cb_usages)) 3364 perf_pmu_sched_task(task, next, false); 3365 3366 if (atomic_read(&nr_switch_events)) 3367 perf_event_switch(task, next, false); 3368 3369 for_each_task_context_nr(ctxn) 3370 perf_event_context_sched_out(task, ctxn, next); 3371 3372 /* 3373 * if cgroup events exist on this CPU, then we need 3374 * to check if we have to switch out PMU state. 3375 * cgroup event are system-wide mode only 3376 */ 3377 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3378 perf_cgroup_sched_out(task, next); 3379 } 3380 3381 /* 3382 * Called with IRQs disabled 3383 */ 3384 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3385 enum event_type_t event_type) 3386 { 3387 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3388 } 3389 3390 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3391 int (*func)(struct perf_event *, void *), void *data) 3392 { 3393 struct perf_event **evt, *evt1, *evt2; 3394 int ret; 3395 3396 evt1 = perf_event_groups_first(groups, -1); 3397 evt2 = perf_event_groups_first(groups, cpu); 3398 3399 while (evt1 || evt2) { 3400 if (evt1 && evt2) { 3401 if (evt1->group_index < evt2->group_index) 3402 evt = &evt1; 3403 else 3404 evt = &evt2; 3405 } else if (evt1) { 3406 evt = &evt1; 3407 } else { 3408 evt = &evt2; 3409 } 3410 3411 ret = func(*evt, data); 3412 if (ret) 3413 return ret; 3414 3415 *evt = perf_event_groups_next(*evt); 3416 } 3417 3418 return 0; 3419 } 3420 3421 struct sched_in_data { 3422 struct perf_event_context *ctx; 3423 struct perf_cpu_context *cpuctx; 3424 int can_add_hw; 3425 }; 3426 3427 static int pinned_sched_in(struct perf_event *event, void *data) 3428 { 3429 struct sched_in_data *sid = data; 3430 3431 if (event->state <= PERF_EVENT_STATE_OFF) 3432 return 0; 3433 3434 if (!event_filter_match(event)) 3435 return 0; 3436 3437 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3438 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3439 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3440 } 3441 3442 /* 3443 * If this pinned group hasn't been scheduled, 3444 * put it in error state. 3445 */ 3446 if (event->state == PERF_EVENT_STATE_INACTIVE) 3447 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3448 3449 return 0; 3450 } 3451 3452 static int flexible_sched_in(struct perf_event *event, void *data) 3453 { 3454 struct sched_in_data *sid = data; 3455 3456 if (event->state <= PERF_EVENT_STATE_OFF) 3457 return 0; 3458 3459 if (!event_filter_match(event)) 3460 return 0; 3461 3462 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3463 int ret = group_sched_in(event, sid->cpuctx, sid->ctx); 3464 if (ret) { 3465 sid->can_add_hw = 0; 3466 sid->ctx->rotate_necessary = 1; 3467 return 0; 3468 } 3469 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3470 } 3471 3472 return 0; 3473 } 3474 3475 static void 3476 ctx_pinned_sched_in(struct perf_event_context *ctx, 3477 struct perf_cpu_context *cpuctx) 3478 { 3479 struct sched_in_data sid = { 3480 .ctx = ctx, 3481 .cpuctx = cpuctx, 3482 .can_add_hw = 1, 3483 }; 3484 3485 visit_groups_merge(&ctx->pinned_groups, 3486 smp_processor_id(), 3487 pinned_sched_in, &sid); 3488 } 3489 3490 static void 3491 ctx_flexible_sched_in(struct perf_event_context *ctx, 3492 struct perf_cpu_context *cpuctx) 3493 { 3494 struct sched_in_data sid = { 3495 .ctx = ctx, 3496 .cpuctx = cpuctx, 3497 .can_add_hw = 1, 3498 }; 3499 3500 visit_groups_merge(&ctx->flexible_groups, 3501 smp_processor_id(), 3502 flexible_sched_in, &sid); 3503 } 3504 3505 static void 3506 ctx_sched_in(struct perf_event_context *ctx, 3507 struct perf_cpu_context *cpuctx, 3508 enum event_type_t event_type, 3509 struct task_struct *task) 3510 { 3511 int is_active = ctx->is_active; 3512 u64 now; 3513 3514 lockdep_assert_held(&ctx->lock); 3515 3516 if (likely(!ctx->nr_events)) 3517 return; 3518 3519 ctx->is_active |= (event_type | EVENT_TIME); 3520 if (ctx->task) { 3521 if (!is_active) 3522 cpuctx->task_ctx = ctx; 3523 else 3524 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3525 } 3526 3527 is_active ^= ctx->is_active; /* changed bits */ 3528 3529 if (is_active & EVENT_TIME) { 3530 /* start ctx time */ 3531 now = perf_clock(); 3532 ctx->timestamp = now; 3533 perf_cgroup_set_timestamp(task, ctx); 3534 } 3535 3536 /* 3537 * First go through the list and put on any pinned groups 3538 * in order to give them the best chance of going on. 3539 */ 3540 if (is_active & EVENT_PINNED) 3541 ctx_pinned_sched_in(ctx, cpuctx); 3542 3543 /* Then walk through the lower prio flexible groups */ 3544 if (is_active & EVENT_FLEXIBLE) 3545 ctx_flexible_sched_in(ctx, cpuctx); 3546 } 3547 3548 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3549 enum event_type_t event_type, 3550 struct task_struct *task) 3551 { 3552 struct perf_event_context *ctx = &cpuctx->ctx; 3553 3554 ctx_sched_in(ctx, cpuctx, event_type, task); 3555 } 3556 3557 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3558 struct task_struct *task) 3559 { 3560 struct perf_cpu_context *cpuctx; 3561 3562 cpuctx = __get_cpu_context(ctx); 3563 if (cpuctx->task_ctx == ctx) 3564 return; 3565 3566 perf_ctx_lock(cpuctx, ctx); 3567 /* 3568 * We must check ctx->nr_events while holding ctx->lock, such 3569 * that we serialize against perf_install_in_context(). 3570 */ 3571 if (!ctx->nr_events) 3572 goto unlock; 3573 3574 perf_pmu_disable(ctx->pmu); 3575 /* 3576 * We want to keep the following priority order: 3577 * cpu pinned (that don't need to move), task pinned, 3578 * cpu flexible, task flexible. 3579 * 3580 * However, if task's ctx is not carrying any pinned 3581 * events, no need to flip the cpuctx's events around. 3582 */ 3583 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3584 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3585 perf_event_sched_in(cpuctx, ctx, task); 3586 perf_pmu_enable(ctx->pmu); 3587 3588 unlock: 3589 perf_ctx_unlock(cpuctx, ctx); 3590 } 3591 3592 /* 3593 * Called from scheduler to add the events of the current task 3594 * with interrupts disabled. 3595 * 3596 * We restore the event value and then enable it. 3597 * 3598 * This does not protect us against NMI, but enable() 3599 * sets the enabled bit in the control field of event _before_ 3600 * accessing the event control register. If a NMI hits, then it will 3601 * keep the event running. 3602 */ 3603 void __perf_event_task_sched_in(struct task_struct *prev, 3604 struct task_struct *task) 3605 { 3606 struct perf_event_context *ctx; 3607 int ctxn; 3608 3609 /* 3610 * If cgroup events exist on this CPU, then we need to check if we have 3611 * to switch in PMU state; cgroup event are system-wide mode only. 3612 * 3613 * Since cgroup events are CPU events, we must schedule these in before 3614 * we schedule in the task events. 3615 */ 3616 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3617 perf_cgroup_sched_in(prev, task); 3618 3619 for_each_task_context_nr(ctxn) { 3620 ctx = task->perf_event_ctxp[ctxn]; 3621 if (likely(!ctx)) 3622 continue; 3623 3624 perf_event_context_sched_in(ctx, task); 3625 } 3626 3627 if (atomic_read(&nr_switch_events)) 3628 perf_event_switch(task, prev, true); 3629 3630 if (__this_cpu_read(perf_sched_cb_usages)) 3631 perf_pmu_sched_task(prev, task, true); 3632 } 3633 3634 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3635 { 3636 u64 frequency = event->attr.sample_freq; 3637 u64 sec = NSEC_PER_SEC; 3638 u64 divisor, dividend; 3639 3640 int count_fls, nsec_fls, frequency_fls, sec_fls; 3641 3642 count_fls = fls64(count); 3643 nsec_fls = fls64(nsec); 3644 frequency_fls = fls64(frequency); 3645 sec_fls = 30; 3646 3647 /* 3648 * We got @count in @nsec, with a target of sample_freq HZ 3649 * the target period becomes: 3650 * 3651 * @count * 10^9 3652 * period = ------------------- 3653 * @nsec * sample_freq 3654 * 3655 */ 3656 3657 /* 3658 * Reduce accuracy by one bit such that @a and @b converge 3659 * to a similar magnitude. 3660 */ 3661 #define REDUCE_FLS(a, b) \ 3662 do { \ 3663 if (a##_fls > b##_fls) { \ 3664 a >>= 1; \ 3665 a##_fls--; \ 3666 } else { \ 3667 b >>= 1; \ 3668 b##_fls--; \ 3669 } \ 3670 } while (0) 3671 3672 /* 3673 * Reduce accuracy until either term fits in a u64, then proceed with 3674 * the other, so that finally we can do a u64/u64 division. 3675 */ 3676 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3677 REDUCE_FLS(nsec, frequency); 3678 REDUCE_FLS(sec, count); 3679 } 3680 3681 if (count_fls + sec_fls > 64) { 3682 divisor = nsec * frequency; 3683 3684 while (count_fls + sec_fls > 64) { 3685 REDUCE_FLS(count, sec); 3686 divisor >>= 1; 3687 } 3688 3689 dividend = count * sec; 3690 } else { 3691 dividend = count * sec; 3692 3693 while (nsec_fls + frequency_fls > 64) { 3694 REDUCE_FLS(nsec, frequency); 3695 dividend >>= 1; 3696 } 3697 3698 divisor = nsec * frequency; 3699 } 3700 3701 if (!divisor) 3702 return dividend; 3703 3704 return div64_u64(dividend, divisor); 3705 } 3706 3707 static DEFINE_PER_CPU(int, perf_throttled_count); 3708 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3709 3710 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3711 { 3712 struct hw_perf_event *hwc = &event->hw; 3713 s64 period, sample_period; 3714 s64 delta; 3715 3716 period = perf_calculate_period(event, nsec, count); 3717 3718 delta = (s64)(period - hwc->sample_period); 3719 delta = (delta + 7) / 8; /* low pass filter */ 3720 3721 sample_period = hwc->sample_period + delta; 3722 3723 if (!sample_period) 3724 sample_period = 1; 3725 3726 hwc->sample_period = sample_period; 3727 3728 if (local64_read(&hwc->period_left) > 8*sample_period) { 3729 if (disable) 3730 event->pmu->stop(event, PERF_EF_UPDATE); 3731 3732 local64_set(&hwc->period_left, 0); 3733 3734 if (disable) 3735 event->pmu->start(event, PERF_EF_RELOAD); 3736 } 3737 } 3738 3739 /* 3740 * combine freq adjustment with unthrottling to avoid two passes over the 3741 * events. At the same time, make sure, having freq events does not change 3742 * the rate of unthrottling as that would introduce bias. 3743 */ 3744 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3745 int needs_unthr) 3746 { 3747 struct perf_event *event; 3748 struct hw_perf_event *hwc; 3749 u64 now, period = TICK_NSEC; 3750 s64 delta; 3751 3752 /* 3753 * only need to iterate over all events iff: 3754 * - context have events in frequency mode (needs freq adjust) 3755 * - there are events to unthrottle on this cpu 3756 */ 3757 if (!(ctx->nr_freq || needs_unthr)) 3758 return; 3759 3760 raw_spin_lock(&ctx->lock); 3761 perf_pmu_disable(ctx->pmu); 3762 3763 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3764 if (event->state != PERF_EVENT_STATE_ACTIVE) 3765 continue; 3766 3767 if (!event_filter_match(event)) 3768 continue; 3769 3770 perf_pmu_disable(event->pmu); 3771 3772 hwc = &event->hw; 3773 3774 if (hwc->interrupts == MAX_INTERRUPTS) { 3775 hwc->interrupts = 0; 3776 perf_log_throttle(event, 1); 3777 event->pmu->start(event, 0); 3778 } 3779 3780 if (!event->attr.freq || !event->attr.sample_freq) 3781 goto next; 3782 3783 /* 3784 * stop the event and update event->count 3785 */ 3786 event->pmu->stop(event, PERF_EF_UPDATE); 3787 3788 now = local64_read(&event->count); 3789 delta = now - hwc->freq_count_stamp; 3790 hwc->freq_count_stamp = now; 3791 3792 /* 3793 * restart the event 3794 * reload only if value has changed 3795 * we have stopped the event so tell that 3796 * to perf_adjust_period() to avoid stopping it 3797 * twice. 3798 */ 3799 if (delta > 0) 3800 perf_adjust_period(event, period, delta, false); 3801 3802 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3803 next: 3804 perf_pmu_enable(event->pmu); 3805 } 3806 3807 perf_pmu_enable(ctx->pmu); 3808 raw_spin_unlock(&ctx->lock); 3809 } 3810 3811 /* 3812 * Move @event to the tail of the @ctx's elegible events. 3813 */ 3814 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3815 { 3816 /* 3817 * Rotate the first entry last of non-pinned groups. Rotation might be 3818 * disabled by the inheritance code. 3819 */ 3820 if (ctx->rotate_disable) 3821 return; 3822 3823 perf_event_groups_delete(&ctx->flexible_groups, event); 3824 perf_event_groups_insert(&ctx->flexible_groups, event); 3825 } 3826 3827 /* pick an event from the flexible_groups to rotate */ 3828 static inline struct perf_event * 3829 ctx_event_to_rotate(struct perf_event_context *ctx) 3830 { 3831 struct perf_event *event; 3832 3833 /* pick the first active flexible event */ 3834 event = list_first_entry_or_null(&ctx->flexible_active, 3835 struct perf_event, active_list); 3836 3837 /* if no active flexible event, pick the first event */ 3838 if (!event) { 3839 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 3840 typeof(*event), group_node); 3841 } 3842 3843 return event; 3844 } 3845 3846 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3847 { 3848 struct perf_event *cpu_event = NULL, *task_event = NULL; 3849 struct perf_event_context *task_ctx = NULL; 3850 int cpu_rotate, task_rotate; 3851 3852 /* 3853 * Since we run this from IRQ context, nobody can install new 3854 * events, thus the event count values are stable. 3855 */ 3856 3857 cpu_rotate = cpuctx->ctx.rotate_necessary; 3858 task_ctx = cpuctx->task_ctx; 3859 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 3860 3861 if (!(cpu_rotate || task_rotate)) 3862 return false; 3863 3864 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3865 perf_pmu_disable(cpuctx->ctx.pmu); 3866 3867 if (task_rotate) 3868 task_event = ctx_event_to_rotate(task_ctx); 3869 if (cpu_rotate) 3870 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 3871 3872 /* 3873 * As per the order given at ctx_resched() first 'pop' task flexible 3874 * and then, if needed CPU flexible. 3875 */ 3876 if (task_event || (task_ctx && cpu_event)) 3877 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 3878 if (cpu_event) 3879 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3880 3881 if (task_event) 3882 rotate_ctx(task_ctx, task_event); 3883 if (cpu_event) 3884 rotate_ctx(&cpuctx->ctx, cpu_event); 3885 3886 perf_event_sched_in(cpuctx, task_ctx, current); 3887 3888 perf_pmu_enable(cpuctx->ctx.pmu); 3889 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3890 3891 return true; 3892 } 3893 3894 void perf_event_task_tick(void) 3895 { 3896 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3897 struct perf_event_context *ctx, *tmp; 3898 int throttled; 3899 3900 lockdep_assert_irqs_disabled(); 3901 3902 __this_cpu_inc(perf_throttled_seq); 3903 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3904 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3905 3906 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3907 perf_adjust_freq_unthr_context(ctx, throttled); 3908 } 3909 3910 static int event_enable_on_exec(struct perf_event *event, 3911 struct perf_event_context *ctx) 3912 { 3913 if (!event->attr.enable_on_exec) 3914 return 0; 3915 3916 event->attr.enable_on_exec = 0; 3917 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3918 return 0; 3919 3920 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3921 3922 return 1; 3923 } 3924 3925 /* 3926 * Enable all of a task's events that have been marked enable-on-exec. 3927 * This expects task == current. 3928 */ 3929 static void perf_event_enable_on_exec(int ctxn) 3930 { 3931 struct perf_event_context *ctx, *clone_ctx = NULL; 3932 enum event_type_t event_type = 0; 3933 struct perf_cpu_context *cpuctx; 3934 struct perf_event *event; 3935 unsigned long flags; 3936 int enabled = 0; 3937 3938 local_irq_save(flags); 3939 ctx = current->perf_event_ctxp[ctxn]; 3940 if (!ctx || !ctx->nr_events) 3941 goto out; 3942 3943 cpuctx = __get_cpu_context(ctx); 3944 perf_ctx_lock(cpuctx, ctx); 3945 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3946 list_for_each_entry(event, &ctx->event_list, event_entry) { 3947 enabled |= event_enable_on_exec(event, ctx); 3948 event_type |= get_event_type(event); 3949 } 3950 3951 /* 3952 * Unclone and reschedule this context if we enabled any event. 3953 */ 3954 if (enabled) { 3955 clone_ctx = unclone_ctx(ctx); 3956 ctx_resched(cpuctx, ctx, event_type); 3957 } else { 3958 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3959 } 3960 perf_ctx_unlock(cpuctx, ctx); 3961 3962 out: 3963 local_irq_restore(flags); 3964 3965 if (clone_ctx) 3966 put_ctx(clone_ctx); 3967 } 3968 3969 struct perf_read_data { 3970 struct perf_event *event; 3971 bool group; 3972 int ret; 3973 }; 3974 3975 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3976 { 3977 u16 local_pkg, event_pkg; 3978 3979 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3980 int local_cpu = smp_processor_id(); 3981 3982 event_pkg = topology_physical_package_id(event_cpu); 3983 local_pkg = topology_physical_package_id(local_cpu); 3984 3985 if (event_pkg == local_pkg) 3986 return local_cpu; 3987 } 3988 3989 return event_cpu; 3990 } 3991 3992 /* 3993 * Cross CPU call to read the hardware event 3994 */ 3995 static void __perf_event_read(void *info) 3996 { 3997 struct perf_read_data *data = info; 3998 struct perf_event *sub, *event = data->event; 3999 struct perf_event_context *ctx = event->ctx; 4000 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4001 struct pmu *pmu = event->pmu; 4002 4003 /* 4004 * If this is a task context, we need to check whether it is 4005 * the current task context of this cpu. If not it has been 4006 * scheduled out before the smp call arrived. In that case 4007 * event->count would have been updated to a recent sample 4008 * when the event was scheduled out. 4009 */ 4010 if (ctx->task && cpuctx->task_ctx != ctx) 4011 return; 4012 4013 raw_spin_lock(&ctx->lock); 4014 if (ctx->is_active & EVENT_TIME) { 4015 update_context_time(ctx); 4016 update_cgrp_time_from_event(event); 4017 } 4018 4019 perf_event_update_time(event); 4020 if (data->group) 4021 perf_event_update_sibling_time(event); 4022 4023 if (event->state != PERF_EVENT_STATE_ACTIVE) 4024 goto unlock; 4025 4026 if (!data->group) { 4027 pmu->read(event); 4028 data->ret = 0; 4029 goto unlock; 4030 } 4031 4032 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4033 4034 pmu->read(event); 4035 4036 for_each_sibling_event(sub, event) { 4037 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4038 /* 4039 * Use sibling's PMU rather than @event's since 4040 * sibling could be on different (eg: software) PMU. 4041 */ 4042 sub->pmu->read(sub); 4043 } 4044 } 4045 4046 data->ret = pmu->commit_txn(pmu); 4047 4048 unlock: 4049 raw_spin_unlock(&ctx->lock); 4050 } 4051 4052 static inline u64 perf_event_count(struct perf_event *event) 4053 { 4054 return local64_read(&event->count) + atomic64_read(&event->child_count); 4055 } 4056 4057 /* 4058 * NMI-safe method to read a local event, that is an event that 4059 * is: 4060 * - either for the current task, or for this CPU 4061 * - does not have inherit set, for inherited task events 4062 * will not be local and we cannot read them atomically 4063 * - must not have a pmu::count method 4064 */ 4065 int perf_event_read_local(struct perf_event *event, u64 *value, 4066 u64 *enabled, u64 *running) 4067 { 4068 unsigned long flags; 4069 int ret = 0; 4070 4071 /* 4072 * Disabling interrupts avoids all counter scheduling (context 4073 * switches, timer based rotation and IPIs). 4074 */ 4075 local_irq_save(flags); 4076 4077 /* 4078 * It must not be an event with inherit set, we cannot read 4079 * all child counters from atomic context. 4080 */ 4081 if (event->attr.inherit) { 4082 ret = -EOPNOTSUPP; 4083 goto out; 4084 } 4085 4086 /* If this is a per-task event, it must be for current */ 4087 if ((event->attach_state & PERF_ATTACH_TASK) && 4088 event->hw.target != current) { 4089 ret = -EINVAL; 4090 goto out; 4091 } 4092 4093 /* If this is a per-CPU event, it must be for this CPU */ 4094 if (!(event->attach_state & PERF_ATTACH_TASK) && 4095 event->cpu != smp_processor_id()) { 4096 ret = -EINVAL; 4097 goto out; 4098 } 4099 4100 /* If this is a pinned event it must be running on this CPU */ 4101 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4102 ret = -EBUSY; 4103 goto out; 4104 } 4105 4106 /* 4107 * If the event is currently on this CPU, its either a per-task event, 4108 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4109 * oncpu == -1). 4110 */ 4111 if (event->oncpu == smp_processor_id()) 4112 event->pmu->read(event); 4113 4114 *value = local64_read(&event->count); 4115 if (enabled || running) { 4116 u64 now = event->shadow_ctx_time + perf_clock(); 4117 u64 __enabled, __running; 4118 4119 __perf_update_times(event, now, &__enabled, &__running); 4120 if (enabled) 4121 *enabled = __enabled; 4122 if (running) 4123 *running = __running; 4124 } 4125 out: 4126 local_irq_restore(flags); 4127 4128 return ret; 4129 } 4130 4131 static int perf_event_read(struct perf_event *event, bool group) 4132 { 4133 enum perf_event_state state = READ_ONCE(event->state); 4134 int event_cpu, ret = 0; 4135 4136 /* 4137 * If event is enabled and currently active on a CPU, update the 4138 * value in the event structure: 4139 */ 4140 again: 4141 if (state == PERF_EVENT_STATE_ACTIVE) { 4142 struct perf_read_data data; 4143 4144 /* 4145 * Orders the ->state and ->oncpu loads such that if we see 4146 * ACTIVE we must also see the right ->oncpu. 4147 * 4148 * Matches the smp_wmb() from event_sched_in(). 4149 */ 4150 smp_rmb(); 4151 4152 event_cpu = READ_ONCE(event->oncpu); 4153 if ((unsigned)event_cpu >= nr_cpu_ids) 4154 return 0; 4155 4156 data = (struct perf_read_data){ 4157 .event = event, 4158 .group = group, 4159 .ret = 0, 4160 }; 4161 4162 preempt_disable(); 4163 event_cpu = __perf_event_read_cpu(event, event_cpu); 4164 4165 /* 4166 * Purposely ignore the smp_call_function_single() return 4167 * value. 4168 * 4169 * If event_cpu isn't a valid CPU it means the event got 4170 * scheduled out and that will have updated the event count. 4171 * 4172 * Therefore, either way, we'll have an up-to-date event count 4173 * after this. 4174 */ 4175 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4176 preempt_enable(); 4177 ret = data.ret; 4178 4179 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4180 struct perf_event_context *ctx = event->ctx; 4181 unsigned long flags; 4182 4183 raw_spin_lock_irqsave(&ctx->lock, flags); 4184 state = event->state; 4185 if (state != PERF_EVENT_STATE_INACTIVE) { 4186 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4187 goto again; 4188 } 4189 4190 /* 4191 * May read while context is not active (e.g., thread is 4192 * blocked), in that case we cannot update context time 4193 */ 4194 if (ctx->is_active & EVENT_TIME) { 4195 update_context_time(ctx); 4196 update_cgrp_time_from_event(event); 4197 } 4198 4199 perf_event_update_time(event); 4200 if (group) 4201 perf_event_update_sibling_time(event); 4202 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4203 } 4204 4205 return ret; 4206 } 4207 4208 /* 4209 * Initialize the perf_event context in a task_struct: 4210 */ 4211 static void __perf_event_init_context(struct perf_event_context *ctx) 4212 { 4213 raw_spin_lock_init(&ctx->lock); 4214 mutex_init(&ctx->mutex); 4215 INIT_LIST_HEAD(&ctx->active_ctx_list); 4216 perf_event_groups_init(&ctx->pinned_groups); 4217 perf_event_groups_init(&ctx->flexible_groups); 4218 INIT_LIST_HEAD(&ctx->event_list); 4219 INIT_LIST_HEAD(&ctx->pinned_active); 4220 INIT_LIST_HEAD(&ctx->flexible_active); 4221 refcount_set(&ctx->refcount, 1); 4222 } 4223 4224 static struct perf_event_context * 4225 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4226 { 4227 struct perf_event_context *ctx; 4228 4229 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4230 if (!ctx) 4231 return NULL; 4232 4233 __perf_event_init_context(ctx); 4234 if (task) 4235 ctx->task = get_task_struct(task); 4236 ctx->pmu = pmu; 4237 4238 return ctx; 4239 } 4240 4241 static struct task_struct * 4242 find_lively_task_by_vpid(pid_t vpid) 4243 { 4244 struct task_struct *task; 4245 4246 rcu_read_lock(); 4247 if (!vpid) 4248 task = current; 4249 else 4250 task = find_task_by_vpid(vpid); 4251 if (task) 4252 get_task_struct(task); 4253 rcu_read_unlock(); 4254 4255 if (!task) 4256 return ERR_PTR(-ESRCH); 4257 4258 return task; 4259 } 4260 4261 /* 4262 * Returns a matching context with refcount and pincount. 4263 */ 4264 static struct perf_event_context * 4265 find_get_context(struct pmu *pmu, struct task_struct *task, 4266 struct perf_event *event) 4267 { 4268 struct perf_event_context *ctx, *clone_ctx = NULL; 4269 struct perf_cpu_context *cpuctx; 4270 void *task_ctx_data = NULL; 4271 unsigned long flags; 4272 int ctxn, err; 4273 int cpu = event->cpu; 4274 4275 if (!task) { 4276 /* Must be root to operate on a CPU event: */ 4277 err = perf_allow_cpu(&event->attr); 4278 if (err) 4279 return ERR_PTR(err); 4280 4281 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4282 ctx = &cpuctx->ctx; 4283 get_ctx(ctx); 4284 ++ctx->pin_count; 4285 4286 return ctx; 4287 } 4288 4289 err = -EINVAL; 4290 ctxn = pmu->task_ctx_nr; 4291 if (ctxn < 0) 4292 goto errout; 4293 4294 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4295 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4296 if (!task_ctx_data) { 4297 err = -ENOMEM; 4298 goto errout; 4299 } 4300 } 4301 4302 retry: 4303 ctx = perf_lock_task_context(task, ctxn, &flags); 4304 if (ctx) { 4305 clone_ctx = unclone_ctx(ctx); 4306 ++ctx->pin_count; 4307 4308 if (task_ctx_data && !ctx->task_ctx_data) { 4309 ctx->task_ctx_data = task_ctx_data; 4310 task_ctx_data = NULL; 4311 } 4312 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4313 4314 if (clone_ctx) 4315 put_ctx(clone_ctx); 4316 } else { 4317 ctx = alloc_perf_context(pmu, task); 4318 err = -ENOMEM; 4319 if (!ctx) 4320 goto errout; 4321 4322 if (task_ctx_data) { 4323 ctx->task_ctx_data = task_ctx_data; 4324 task_ctx_data = NULL; 4325 } 4326 4327 err = 0; 4328 mutex_lock(&task->perf_event_mutex); 4329 /* 4330 * If it has already passed perf_event_exit_task(). 4331 * we must see PF_EXITING, it takes this mutex too. 4332 */ 4333 if (task->flags & PF_EXITING) 4334 err = -ESRCH; 4335 else if (task->perf_event_ctxp[ctxn]) 4336 err = -EAGAIN; 4337 else { 4338 get_ctx(ctx); 4339 ++ctx->pin_count; 4340 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4341 } 4342 mutex_unlock(&task->perf_event_mutex); 4343 4344 if (unlikely(err)) { 4345 put_ctx(ctx); 4346 4347 if (err == -EAGAIN) 4348 goto retry; 4349 goto errout; 4350 } 4351 } 4352 4353 kfree(task_ctx_data); 4354 return ctx; 4355 4356 errout: 4357 kfree(task_ctx_data); 4358 return ERR_PTR(err); 4359 } 4360 4361 static void perf_event_free_filter(struct perf_event *event); 4362 static void perf_event_free_bpf_prog(struct perf_event *event); 4363 4364 static void free_event_rcu(struct rcu_head *head) 4365 { 4366 struct perf_event *event; 4367 4368 event = container_of(head, struct perf_event, rcu_head); 4369 if (event->ns) 4370 put_pid_ns(event->ns); 4371 perf_event_free_filter(event); 4372 kfree(event); 4373 } 4374 4375 static void ring_buffer_attach(struct perf_event *event, 4376 struct ring_buffer *rb); 4377 4378 static void detach_sb_event(struct perf_event *event) 4379 { 4380 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4381 4382 raw_spin_lock(&pel->lock); 4383 list_del_rcu(&event->sb_list); 4384 raw_spin_unlock(&pel->lock); 4385 } 4386 4387 static bool is_sb_event(struct perf_event *event) 4388 { 4389 struct perf_event_attr *attr = &event->attr; 4390 4391 if (event->parent) 4392 return false; 4393 4394 if (event->attach_state & PERF_ATTACH_TASK) 4395 return false; 4396 4397 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4398 attr->comm || attr->comm_exec || 4399 attr->task || attr->ksymbol || 4400 attr->context_switch || 4401 attr->bpf_event) 4402 return true; 4403 return false; 4404 } 4405 4406 static void unaccount_pmu_sb_event(struct perf_event *event) 4407 { 4408 if (is_sb_event(event)) 4409 detach_sb_event(event); 4410 } 4411 4412 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4413 { 4414 if (event->parent) 4415 return; 4416 4417 if (is_cgroup_event(event)) 4418 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4419 } 4420 4421 #ifdef CONFIG_NO_HZ_FULL 4422 static DEFINE_SPINLOCK(nr_freq_lock); 4423 #endif 4424 4425 static void unaccount_freq_event_nohz(void) 4426 { 4427 #ifdef CONFIG_NO_HZ_FULL 4428 spin_lock(&nr_freq_lock); 4429 if (atomic_dec_and_test(&nr_freq_events)) 4430 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4431 spin_unlock(&nr_freq_lock); 4432 #endif 4433 } 4434 4435 static void unaccount_freq_event(void) 4436 { 4437 if (tick_nohz_full_enabled()) 4438 unaccount_freq_event_nohz(); 4439 else 4440 atomic_dec(&nr_freq_events); 4441 } 4442 4443 static void unaccount_event(struct perf_event *event) 4444 { 4445 bool dec = false; 4446 4447 if (event->parent) 4448 return; 4449 4450 if (event->attach_state & PERF_ATTACH_TASK) 4451 dec = true; 4452 if (event->attr.mmap || event->attr.mmap_data) 4453 atomic_dec(&nr_mmap_events); 4454 if (event->attr.comm) 4455 atomic_dec(&nr_comm_events); 4456 if (event->attr.namespaces) 4457 atomic_dec(&nr_namespaces_events); 4458 if (event->attr.task) 4459 atomic_dec(&nr_task_events); 4460 if (event->attr.freq) 4461 unaccount_freq_event(); 4462 if (event->attr.context_switch) { 4463 dec = true; 4464 atomic_dec(&nr_switch_events); 4465 } 4466 if (is_cgroup_event(event)) 4467 dec = true; 4468 if (has_branch_stack(event)) 4469 dec = true; 4470 if (event->attr.ksymbol) 4471 atomic_dec(&nr_ksymbol_events); 4472 if (event->attr.bpf_event) 4473 atomic_dec(&nr_bpf_events); 4474 4475 if (dec) { 4476 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4477 schedule_delayed_work(&perf_sched_work, HZ); 4478 } 4479 4480 unaccount_event_cpu(event, event->cpu); 4481 4482 unaccount_pmu_sb_event(event); 4483 } 4484 4485 static void perf_sched_delayed(struct work_struct *work) 4486 { 4487 mutex_lock(&perf_sched_mutex); 4488 if (atomic_dec_and_test(&perf_sched_count)) 4489 static_branch_disable(&perf_sched_events); 4490 mutex_unlock(&perf_sched_mutex); 4491 } 4492 4493 /* 4494 * The following implement mutual exclusion of events on "exclusive" pmus 4495 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4496 * at a time, so we disallow creating events that might conflict, namely: 4497 * 4498 * 1) cpu-wide events in the presence of per-task events, 4499 * 2) per-task events in the presence of cpu-wide events, 4500 * 3) two matching events on the same context. 4501 * 4502 * The former two cases are handled in the allocation path (perf_event_alloc(), 4503 * _free_event()), the latter -- before the first perf_install_in_context(). 4504 */ 4505 static int exclusive_event_init(struct perf_event *event) 4506 { 4507 struct pmu *pmu = event->pmu; 4508 4509 if (!is_exclusive_pmu(pmu)) 4510 return 0; 4511 4512 /* 4513 * Prevent co-existence of per-task and cpu-wide events on the 4514 * same exclusive pmu. 4515 * 4516 * Negative pmu::exclusive_cnt means there are cpu-wide 4517 * events on this "exclusive" pmu, positive means there are 4518 * per-task events. 4519 * 4520 * Since this is called in perf_event_alloc() path, event::ctx 4521 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4522 * to mean "per-task event", because unlike other attach states it 4523 * never gets cleared. 4524 */ 4525 if (event->attach_state & PERF_ATTACH_TASK) { 4526 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4527 return -EBUSY; 4528 } else { 4529 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4530 return -EBUSY; 4531 } 4532 4533 return 0; 4534 } 4535 4536 static void exclusive_event_destroy(struct perf_event *event) 4537 { 4538 struct pmu *pmu = event->pmu; 4539 4540 if (!is_exclusive_pmu(pmu)) 4541 return; 4542 4543 /* see comment in exclusive_event_init() */ 4544 if (event->attach_state & PERF_ATTACH_TASK) 4545 atomic_dec(&pmu->exclusive_cnt); 4546 else 4547 atomic_inc(&pmu->exclusive_cnt); 4548 } 4549 4550 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4551 { 4552 if ((e1->pmu == e2->pmu) && 4553 (e1->cpu == e2->cpu || 4554 e1->cpu == -1 || 4555 e2->cpu == -1)) 4556 return true; 4557 return false; 4558 } 4559 4560 static bool exclusive_event_installable(struct perf_event *event, 4561 struct perf_event_context *ctx) 4562 { 4563 struct perf_event *iter_event; 4564 struct pmu *pmu = event->pmu; 4565 4566 lockdep_assert_held(&ctx->mutex); 4567 4568 if (!is_exclusive_pmu(pmu)) 4569 return true; 4570 4571 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4572 if (exclusive_event_match(iter_event, event)) 4573 return false; 4574 } 4575 4576 return true; 4577 } 4578 4579 static void perf_addr_filters_splice(struct perf_event *event, 4580 struct list_head *head); 4581 4582 static void _free_event(struct perf_event *event) 4583 { 4584 irq_work_sync(&event->pending); 4585 4586 unaccount_event(event); 4587 4588 security_perf_event_free(event); 4589 4590 if (event->rb) { 4591 /* 4592 * Can happen when we close an event with re-directed output. 4593 * 4594 * Since we have a 0 refcount, perf_mmap_close() will skip 4595 * over us; possibly making our ring_buffer_put() the last. 4596 */ 4597 mutex_lock(&event->mmap_mutex); 4598 ring_buffer_attach(event, NULL); 4599 mutex_unlock(&event->mmap_mutex); 4600 } 4601 4602 if (is_cgroup_event(event)) 4603 perf_detach_cgroup(event); 4604 4605 if (!event->parent) { 4606 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4607 put_callchain_buffers(); 4608 } 4609 4610 perf_event_free_bpf_prog(event); 4611 perf_addr_filters_splice(event, NULL); 4612 kfree(event->addr_filter_ranges); 4613 4614 if (event->destroy) 4615 event->destroy(event); 4616 4617 /* 4618 * Must be after ->destroy(), due to uprobe_perf_close() using 4619 * hw.target. 4620 */ 4621 if (event->hw.target) 4622 put_task_struct(event->hw.target); 4623 4624 /* 4625 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4626 * all task references must be cleaned up. 4627 */ 4628 if (event->ctx) 4629 put_ctx(event->ctx); 4630 4631 exclusive_event_destroy(event); 4632 module_put(event->pmu->module); 4633 4634 call_rcu(&event->rcu_head, free_event_rcu); 4635 } 4636 4637 /* 4638 * Used to free events which have a known refcount of 1, such as in error paths 4639 * where the event isn't exposed yet and inherited events. 4640 */ 4641 static void free_event(struct perf_event *event) 4642 { 4643 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4644 "unexpected event refcount: %ld; ptr=%p\n", 4645 atomic_long_read(&event->refcount), event)) { 4646 /* leak to avoid use-after-free */ 4647 return; 4648 } 4649 4650 _free_event(event); 4651 } 4652 4653 /* 4654 * Remove user event from the owner task. 4655 */ 4656 static void perf_remove_from_owner(struct perf_event *event) 4657 { 4658 struct task_struct *owner; 4659 4660 rcu_read_lock(); 4661 /* 4662 * Matches the smp_store_release() in perf_event_exit_task(). If we 4663 * observe !owner it means the list deletion is complete and we can 4664 * indeed free this event, otherwise we need to serialize on 4665 * owner->perf_event_mutex. 4666 */ 4667 owner = READ_ONCE(event->owner); 4668 if (owner) { 4669 /* 4670 * Since delayed_put_task_struct() also drops the last 4671 * task reference we can safely take a new reference 4672 * while holding the rcu_read_lock(). 4673 */ 4674 get_task_struct(owner); 4675 } 4676 rcu_read_unlock(); 4677 4678 if (owner) { 4679 /* 4680 * If we're here through perf_event_exit_task() we're already 4681 * holding ctx->mutex which would be an inversion wrt. the 4682 * normal lock order. 4683 * 4684 * However we can safely take this lock because its the child 4685 * ctx->mutex. 4686 */ 4687 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4688 4689 /* 4690 * We have to re-check the event->owner field, if it is cleared 4691 * we raced with perf_event_exit_task(), acquiring the mutex 4692 * ensured they're done, and we can proceed with freeing the 4693 * event. 4694 */ 4695 if (event->owner) { 4696 list_del_init(&event->owner_entry); 4697 smp_store_release(&event->owner, NULL); 4698 } 4699 mutex_unlock(&owner->perf_event_mutex); 4700 put_task_struct(owner); 4701 } 4702 } 4703 4704 static void put_event(struct perf_event *event) 4705 { 4706 if (!atomic_long_dec_and_test(&event->refcount)) 4707 return; 4708 4709 _free_event(event); 4710 } 4711 4712 /* 4713 * Kill an event dead; while event:refcount will preserve the event 4714 * object, it will not preserve its functionality. Once the last 'user' 4715 * gives up the object, we'll destroy the thing. 4716 */ 4717 int perf_event_release_kernel(struct perf_event *event) 4718 { 4719 struct perf_event_context *ctx = event->ctx; 4720 struct perf_event *child, *tmp; 4721 LIST_HEAD(free_list); 4722 4723 /* 4724 * If we got here through err_file: fput(event_file); we will not have 4725 * attached to a context yet. 4726 */ 4727 if (!ctx) { 4728 WARN_ON_ONCE(event->attach_state & 4729 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4730 goto no_ctx; 4731 } 4732 4733 if (!is_kernel_event(event)) 4734 perf_remove_from_owner(event); 4735 4736 ctx = perf_event_ctx_lock(event); 4737 WARN_ON_ONCE(ctx->parent_ctx); 4738 perf_remove_from_context(event, DETACH_GROUP); 4739 4740 raw_spin_lock_irq(&ctx->lock); 4741 /* 4742 * Mark this event as STATE_DEAD, there is no external reference to it 4743 * anymore. 4744 * 4745 * Anybody acquiring event->child_mutex after the below loop _must_ 4746 * also see this, most importantly inherit_event() which will avoid 4747 * placing more children on the list. 4748 * 4749 * Thus this guarantees that we will in fact observe and kill _ALL_ 4750 * child events. 4751 */ 4752 event->state = PERF_EVENT_STATE_DEAD; 4753 raw_spin_unlock_irq(&ctx->lock); 4754 4755 perf_event_ctx_unlock(event, ctx); 4756 4757 again: 4758 mutex_lock(&event->child_mutex); 4759 list_for_each_entry(child, &event->child_list, child_list) { 4760 4761 /* 4762 * Cannot change, child events are not migrated, see the 4763 * comment with perf_event_ctx_lock_nested(). 4764 */ 4765 ctx = READ_ONCE(child->ctx); 4766 /* 4767 * Since child_mutex nests inside ctx::mutex, we must jump 4768 * through hoops. We start by grabbing a reference on the ctx. 4769 * 4770 * Since the event cannot get freed while we hold the 4771 * child_mutex, the context must also exist and have a !0 4772 * reference count. 4773 */ 4774 get_ctx(ctx); 4775 4776 /* 4777 * Now that we have a ctx ref, we can drop child_mutex, and 4778 * acquire ctx::mutex without fear of it going away. Then we 4779 * can re-acquire child_mutex. 4780 */ 4781 mutex_unlock(&event->child_mutex); 4782 mutex_lock(&ctx->mutex); 4783 mutex_lock(&event->child_mutex); 4784 4785 /* 4786 * Now that we hold ctx::mutex and child_mutex, revalidate our 4787 * state, if child is still the first entry, it didn't get freed 4788 * and we can continue doing so. 4789 */ 4790 tmp = list_first_entry_or_null(&event->child_list, 4791 struct perf_event, child_list); 4792 if (tmp == child) { 4793 perf_remove_from_context(child, DETACH_GROUP); 4794 list_move(&child->child_list, &free_list); 4795 /* 4796 * This matches the refcount bump in inherit_event(); 4797 * this can't be the last reference. 4798 */ 4799 put_event(event); 4800 } 4801 4802 mutex_unlock(&event->child_mutex); 4803 mutex_unlock(&ctx->mutex); 4804 put_ctx(ctx); 4805 goto again; 4806 } 4807 mutex_unlock(&event->child_mutex); 4808 4809 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4810 void *var = &child->ctx->refcount; 4811 4812 list_del(&child->child_list); 4813 free_event(child); 4814 4815 /* 4816 * Wake any perf_event_free_task() waiting for this event to be 4817 * freed. 4818 */ 4819 smp_mb(); /* pairs with wait_var_event() */ 4820 wake_up_var(var); 4821 } 4822 4823 no_ctx: 4824 put_event(event); /* Must be the 'last' reference */ 4825 return 0; 4826 } 4827 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4828 4829 /* 4830 * Called when the last reference to the file is gone. 4831 */ 4832 static int perf_release(struct inode *inode, struct file *file) 4833 { 4834 perf_event_release_kernel(file->private_data); 4835 return 0; 4836 } 4837 4838 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4839 { 4840 struct perf_event *child; 4841 u64 total = 0; 4842 4843 *enabled = 0; 4844 *running = 0; 4845 4846 mutex_lock(&event->child_mutex); 4847 4848 (void)perf_event_read(event, false); 4849 total += perf_event_count(event); 4850 4851 *enabled += event->total_time_enabled + 4852 atomic64_read(&event->child_total_time_enabled); 4853 *running += event->total_time_running + 4854 atomic64_read(&event->child_total_time_running); 4855 4856 list_for_each_entry(child, &event->child_list, child_list) { 4857 (void)perf_event_read(child, false); 4858 total += perf_event_count(child); 4859 *enabled += child->total_time_enabled; 4860 *running += child->total_time_running; 4861 } 4862 mutex_unlock(&event->child_mutex); 4863 4864 return total; 4865 } 4866 4867 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4868 { 4869 struct perf_event_context *ctx; 4870 u64 count; 4871 4872 ctx = perf_event_ctx_lock(event); 4873 count = __perf_event_read_value(event, enabled, running); 4874 perf_event_ctx_unlock(event, ctx); 4875 4876 return count; 4877 } 4878 EXPORT_SYMBOL_GPL(perf_event_read_value); 4879 4880 static int __perf_read_group_add(struct perf_event *leader, 4881 u64 read_format, u64 *values) 4882 { 4883 struct perf_event_context *ctx = leader->ctx; 4884 struct perf_event *sub; 4885 unsigned long flags; 4886 int n = 1; /* skip @nr */ 4887 int ret; 4888 4889 ret = perf_event_read(leader, true); 4890 if (ret) 4891 return ret; 4892 4893 raw_spin_lock_irqsave(&ctx->lock, flags); 4894 4895 /* 4896 * Since we co-schedule groups, {enabled,running} times of siblings 4897 * will be identical to those of the leader, so we only publish one 4898 * set. 4899 */ 4900 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4901 values[n++] += leader->total_time_enabled + 4902 atomic64_read(&leader->child_total_time_enabled); 4903 } 4904 4905 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4906 values[n++] += leader->total_time_running + 4907 atomic64_read(&leader->child_total_time_running); 4908 } 4909 4910 /* 4911 * Write {count,id} tuples for every sibling. 4912 */ 4913 values[n++] += perf_event_count(leader); 4914 if (read_format & PERF_FORMAT_ID) 4915 values[n++] = primary_event_id(leader); 4916 4917 for_each_sibling_event(sub, leader) { 4918 values[n++] += perf_event_count(sub); 4919 if (read_format & PERF_FORMAT_ID) 4920 values[n++] = primary_event_id(sub); 4921 } 4922 4923 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4924 return 0; 4925 } 4926 4927 static int perf_read_group(struct perf_event *event, 4928 u64 read_format, char __user *buf) 4929 { 4930 struct perf_event *leader = event->group_leader, *child; 4931 struct perf_event_context *ctx = leader->ctx; 4932 int ret; 4933 u64 *values; 4934 4935 lockdep_assert_held(&ctx->mutex); 4936 4937 values = kzalloc(event->read_size, GFP_KERNEL); 4938 if (!values) 4939 return -ENOMEM; 4940 4941 values[0] = 1 + leader->nr_siblings; 4942 4943 /* 4944 * By locking the child_mutex of the leader we effectively 4945 * lock the child list of all siblings.. XXX explain how. 4946 */ 4947 mutex_lock(&leader->child_mutex); 4948 4949 ret = __perf_read_group_add(leader, read_format, values); 4950 if (ret) 4951 goto unlock; 4952 4953 list_for_each_entry(child, &leader->child_list, child_list) { 4954 ret = __perf_read_group_add(child, read_format, values); 4955 if (ret) 4956 goto unlock; 4957 } 4958 4959 mutex_unlock(&leader->child_mutex); 4960 4961 ret = event->read_size; 4962 if (copy_to_user(buf, values, event->read_size)) 4963 ret = -EFAULT; 4964 goto out; 4965 4966 unlock: 4967 mutex_unlock(&leader->child_mutex); 4968 out: 4969 kfree(values); 4970 return ret; 4971 } 4972 4973 static int perf_read_one(struct perf_event *event, 4974 u64 read_format, char __user *buf) 4975 { 4976 u64 enabled, running; 4977 u64 values[4]; 4978 int n = 0; 4979 4980 values[n++] = __perf_event_read_value(event, &enabled, &running); 4981 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4982 values[n++] = enabled; 4983 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4984 values[n++] = running; 4985 if (read_format & PERF_FORMAT_ID) 4986 values[n++] = primary_event_id(event); 4987 4988 if (copy_to_user(buf, values, n * sizeof(u64))) 4989 return -EFAULT; 4990 4991 return n * sizeof(u64); 4992 } 4993 4994 static bool is_event_hup(struct perf_event *event) 4995 { 4996 bool no_children; 4997 4998 if (event->state > PERF_EVENT_STATE_EXIT) 4999 return false; 5000 5001 mutex_lock(&event->child_mutex); 5002 no_children = list_empty(&event->child_list); 5003 mutex_unlock(&event->child_mutex); 5004 return no_children; 5005 } 5006 5007 /* 5008 * Read the performance event - simple non blocking version for now 5009 */ 5010 static ssize_t 5011 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5012 { 5013 u64 read_format = event->attr.read_format; 5014 int ret; 5015 5016 /* 5017 * Return end-of-file for a read on an event that is in 5018 * error state (i.e. because it was pinned but it couldn't be 5019 * scheduled on to the CPU at some point). 5020 */ 5021 if (event->state == PERF_EVENT_STATE_ERROR) 5022 return 0; 5023 5024 if (count < event->read_size) 5025 return -ENOSPC; 5026 5027 WARN_ON_ONCE(event->ctx->parent_ctx); 5028 if (read_format & PERF_FORMAT_GROUP) 5029 ret = perf_read_group(event, read_format, buf); 5030 else 5031 ret = perf_read_one(event, read_format, buf); 5032 5033 return ret; 5034 } 5035 5036 static ssize_t 5037 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5038 { 5039 struct perf_event *event = file->private_data; 5040 struct perf_event_context *ctx; 5041 int ret; 5042 5043 ret = security_perf_event_read(event); 5044 if (ret) 5045 return ret; 5046 5047 ctx = perf_event_ctx_lock(event); 5048 ret = __perf_read(event, buf, count); 5049 perf_event_ctx_unlock(event, ctx); 5050 5051 return ret; 5052 } 5053 5054 static __poll_t perf_poll(struct file *file, poll_table *wait) 5055 { 5056 struct perf_event *event = file->private_data; 5057 struct ring_buffer *rb; 5058 __poll_t events = EPOLLHUP; 5059 5060 poll_wait(file, &event->waitq, wait); 5061 5062 if (is_event_hup(event)) 5063 return events; 5064 5065 /* 5066 * Pin the event->rb by taking event->mmap_mutex; otherwise 5067 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5068 */ 5069 mutex_lock(&event->mmap_mutex); 5070 rb = event->rb; 5071 if (rb) 5072 events = atomic_xchg(&rb->poll, 0); 5073 mutex_unlock(&event->mmap_mutex); 5074 return events; 5075 } 5076 5077 static void _perf_event_reset(struct perf_event *event) 5078 { 5079 (void)perf_event_read(event, false); 5080 local64_set(&event->count, 0); 5081 perf_event_update_userpage(event); 5082 } 5083 5084 /* Assume it's not an event with inherit set. */ 5085 u64 perf_event_pause(struct perf_event *event, bool reset) 5086 { 5087 struct perf_event_context *ctx; 5088 u64 count; 5089 5090 ctx = perf_event_ctx_lock(event); 5091 WARN_ON_ONCE(event->attr.inherit); 5092 _perf_event_disable(event); 5093 count = local64_read(&event->count); 5094 if (reset) 5095 local64_set(&event->count, 0); 5096 perf_event_ctx_unlock(event, ctx); 5097 5098 return count; 5099 } 5100 EXPORT_SYMBOL_GPL(perf_event_pause); 5101 5102 /* 5103 * Holding the top-level event's child_mutex means that any 5104 * descendant process that has inherited this event will block 5105 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5106 * task existence requirements of perf_event_enable/disable. 5107 */ 5108 static void perf_event_for_each_child(struct perf_event *event, 5109 void (*func)(struct perf_event *)) 5110 { 5111 struct perf_event *child; 5112 5113 WARN_ON_ONCE(event->ctx->parent_ctx); 5114 5115 mutex_lock(&event->child_mutex); 5116 func(event); 5117 list_for_each_entry(child, &event->child_list, child_list) 5118 func(child); 5119 mutex_unlock(&event->child_mutex); 5120 } 5121 5122 static void perf_event_for_each(struct perf_event *event, 5123 void (*func)(struct perf_event *)) 5124 { 5125 struct perf_event_context *ctx = event->ctx; 5126 struct perf_event *sibling; 5127 5128 lockdep_assert_held(&ctx->mutex); 5129 5130 event = event->group_leader; 5131 5132 perf_event_for_each_child(event, func); 5133 for_each_sibling_event(sibling, event) 5134 perf_event_for_each_child(sibling, func); 5135 } 5136 5137 static void __perf_event_period(struct perf_event *event, 5138 struct perf_cpu_context *cpuctx, 5139 struct perf_event_context *ctx, 5140 void *info) 5141 { 5142 u64 value = *((u64 *)info); 5143 bool active; 5144 5145 if (event->attr.freq) { 5146 event->attr.sample_freq = value; 5147 } else { 5148 event->attr.sample_period = value; 5149 event->hw.sample_period = value; 5150 } 5151 5152 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5153 if (active) { 5154 perf_pmu_disable(ctx->pmu); 5155 /* 5156 * We could be throttled; unthrottle now to avoid the tick 5157 * trying to unthrottle while we already re-started the event. 5158 */ 5159 if (event->hw.interrupts == MAX_INTERRUPTS) { 5160 event->hw.interrupts = 0; 5161 perf_log_throttle(event, 1); 5162 } 5163 event->pmu->stop(event, PERF_EF_UPDATE); 5164 } 5165 5166 local64_set(&event->hw.period_left, 0); 5167 5168 if (active) { 5169 event->pmu->start(event, PERF_EF_RELOAD); 5170 perf_pmu_enable(ctx->pmu); 5171 } 5172 } 5173 5174 static int perf_event_check_period(struct perf_event *event, u64 value) 5175 { 5176 return event->pmu->check_period(event, value); 5177 } 5178 5179 static int _perf_event_period(struct perf_event *event, u64 value) 5180 { 5181 if (!is_sampling_event(event)) 5182 return -EINVAL; 5183 5184 if (!value) 5185 return -EINVAL; 5186 5187 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5188 return -EINVAL; 5189 5190 if (perf_event_check_period(event, value)) 5191 return -EINVAL; 5192 5193 if (!event->attr.freq && (value & (1ULL << 63))) 5194 return -EINVAL; 5195 5196 event_function_call(event, __perf_event_period, &value); 5197 5198 return 0; 5199 } 5200 5201 int perf_event_period(struct perf_event *event, u64 value) 5202 { 5203 struct perf_event_context *ctx; 5204 int ret; 5205 5206 ctx = perf_event_ctx_lock(event); 5207 ret = _perf_event_period(event, value); 5208 perf_event_ctx_unlock(event, ctx); 5209 5210 return ret; 5211 } 5212 EXPORT_SYMBOL_GPL(perf_event_period); 5213 5214 static const struct file_operations perf_fops; 5215 5216 static inline int perf_fget_light(int fd, struct fd *p) 5217 { 5218 struct fd f = fdget(fd); 5219 if (!f.file) 5220 return -EBADF; 5221 5222 if (f.file->f_op != &perf_fops) { 5223 fdput(f); 5224 return -EBADF; 5225 } 5226 *p = f; 5227 return 0; 5228 } 5229 5230 static int perf_event_set_output(struct perf_event *event, 5231 struct perf_event *output_event); 5232 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5233 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5234 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5235 struct perf_event_attr *attr); 5236 5237 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5238 { 5239 void (*func)(struct perf_event *); 5240 u32 flags = arg; 5241 5242 switch (cmd) { 5243 case PERF_EVENT_IOC_ENABLE: 5244 func = _perf_event_enable; 5245 break; 5246 case PERF_EVENT_IOC_DISABLE: 5247 func = _perf_event_disable; 5248 break; 5249 case PERF_EVENT_IOC_RESET: 5250 func = _perf_event_reset; 5251 break; 5252 5253 case PERF_EVENT_IOC_REFRESH: 5254 return _perf_event_refresh(event, arg); 5255 5256 case PERF_EVENT_IOC_PERIOD: 5257 { 5258 u64 value; 5259 5260 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5261 return -EFAULT; 5262 5263 return _perf_event_period(event, value); 5264 } 5265 case PERF_EVENT_IOC_ID: 5266 { 5267 u64 id = primary_event_id(event); 5268 5269 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5270 return -EFAULT; 5271 return 0; 5272 } 5273 5274 case PERF_EVENT_IOC_SET_OUTPUT: 5275 { 5276 int ret; 5277 if (arg != -1) { 5278 struct perf_event *output_event; 5279 struct fd output; 5280 ret = perf_fget_light(arg, &output); 5281 if (ret) 5282 return ret; 5283 output_event = output.file->private_data; 5284 ret = perf_event_set_output(event, output_event); 5285 fdput(output); 5286 } else { 5287 ret = perf_event_set_output(event, NULL); 5288 } 5289 return ret; 5290 } 5291 5292 case PERF_EVENT_IOC_SET_FILTER: 5293 return perf_event_set_filter(event, (void __user *)arg); 5294 5295 case PERF_EVENT_IOC_SET_BPF: 5296 return perf_event_set_bpf_prog(event, arg); 5297 5298 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5299 struct ring_buffer *rb; 5300 5301 rcu_read_lock(); 5302 rb = rcu_dereference(event->rb); 5303 if (!rb || !rb->nr_pages) { 5304 rcu_read_unlock(); 5305 return -EINVAL; 5306 } 5307 rb_toggle_paused(rb, !!arg); 5308 rcu_read_unlock(); 5309 return 0; 5310 } 5311 5312 case PERF_EVENT_IOC_QUERY_BPF: 5313 return perf_event_query_prog_array(event, (void __user *)arg); 5314 5315 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5316 struct perf_event_attr new_attr; 5317 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5318 &new_attr); 5319 5320 if (err) 5321 return err; 5322 5323 return perf_event_modify_attr(event, &new_attr); 5324 } 5325 default: 5326 return -ENOTTY; 5327 } 5328 5329 if (flags & PERF_IOC_FLAG_GROUP) 5330 perf_event_for_each(event, func); 5331 else 5332 perf_event_for_each_child(event, func); 5333 5334 return 0; 5335 } 5336 5337 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5338 { 5339 struct perf_event *event = file->private_data; 5340 struct perf_event_context *ctx; 5341 long ret; 5342 5343 /* Treat ioctl like writes as it is likely a mutating operation. */ 5344 ret = security_perf_event_write(event); 5345 if (ret) 5346 return ret; 5347 5348 ctx = perf_event_ctx_lock(event); 5349 ret = _perf_ioctl(event, cmd, arg); 5350 perf_event_ctx_unlock(event, ctx); 5351 5352 return ret; 5353 } 5354 5355 #ifdef CONFIG_COMPAT 5356 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5357 unsigned long arg) 5358 { 5359 switch (_IOC_NR(cmd)) { 5360 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5361 case _IOC_NR(PERF_EVENT_IOC_ID): 5362 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5363 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5364 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5365 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5366 cmd &= ~IOCSIZE_MASK; 5367 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5368 } 5369 break; 5370 } 5371 return perf_ioctl(file, cmd, arg); 5372 } 5373 #else 5374 # define perf_compat_ioctl NULL 5375 #endif 5376 5377 int perf_event_task_enable(void) 5378 { 5379 struct perf_event_context *ctx; 5380 struct perf_event *event; 5381 5382 mutex_lock(¤t->perf_event_mutex); 5383 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5384 ctx = perf_event_ctx_lock(event); 5385 perf_event_for_each_child(event, _perf_event_enable); 5386 perf_event_ctx_unlock(event, ctx); 5387 } 5388 mutex_unlock(¤t->perf_event_mutex); 5389 5390 return 0; 5391 } 5392 5393 int perf_event_task_disable(void) 5394 { 5395 struct perf_event_context *ctx; 5396 struct perf_event *event; 5397 5398 mutex_lock(¤t->perf_event_mutex); 5399 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5400 ctx = perf_event_ctx_lock(event); 5401 perf_event_for_each_child(event, _perf_event_disable); 5402 perf_event_ctx_unlock(event, ctx); 5403 } 5404 mutex_unlock(¤t->perf_event_mutex); 5405 5406 return 0; 5407 } 5408 5409 static int perf_event_index(struct perf_event *event) 5410 { 5411 if (event->hw.state & PERF_HES_STOPPED) 5412 return 0; 5413 5414 if (event->state != PERF_EVENT_STATE_ACTIVE) 5415 return 0; 5416 5417 return event->pmu->event_idx(event); 5418 } 5419 5420 static void calc_timer_values(struct perf_event *event, 5421 u64 *now, 5422 u64 *enabled, 5423 u64 *running) 5424 { 5425 u64 ctx_time; 5426 5427 *now = perf_clock(); 5428 ctx_time = event->shadow_ctx_time + *now; 5429 __perf_update_times(event, ctx_time, enabled, running); 5430 } 5431 5432 static void perf_event_init_userpage(struct perf_event *event) 5433 { 5434 struct perf_event_mmap_page *userpg; 5435 struct ring_buffer *rb; 5436 5437 rcu_read_lock(); 5438 rb = rcu_dereference(event->rb); 5439 if (!rb) 5440 goto unlock; 5441 5442 userpg = rb->user_page; 5443 5444 /* Allow new userspace to detect that bit 0 is deprecated */ 5445 userpg->cap_bit0_is_deprecated = 1; 5446 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5447 userpg->data_offset = PAGE_SIZE; 5448 userpg->data_size = perf_data_size(rb); 5449 5450 unlock: 5451 rcu_read_unlock(); 5452 } 5453 5454 void __weak arch_perf_update_userpage( 5455 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5456 { 5457 } 5458 5459 /* 5460 * Callers need to ensure there can be no nesting of this function, otherwise 5461 * the seqlock logic goes bad. We can not serialize this because the arch 5462 * code calls this from NMI context. 5463 */ 5464 void perf_event_update_userpage(struct perf_event *event) 5465 { 5466 struct perf_event_mmap_page *userpg; 5467 struct ring_buffer *rb; 5468 u64 enabled, running, now; 5469 5470 rcu_read_lock(); 5471 rb = rcu_dereference(event->rb); 5472 if (!rb) 5473 goto unlock; 5474 5475 /* 5476 * compute total_time_enabled, total_time_running 5477 * based on snapshot values taken when the event 5478 * was last scheduled in. 5479 * 5480 * we cannot simply called update_context_time() 5481 * because of locking issue as we can be called in 5482 * NMI context 5483 */ 5484 calc_timer_values(event, &now, &enabled, &running); 5485 5486 userpg = rb->user_page; 5487 /* 5488 * Disable preemption to guarantee consistent time stamps are stored to 5489 * the user page. 5490 */ 5491 preempt_disable(); 5492 ++userpg->lock; 5493 barrier(); 5494 userpg->index = perf_event_index(event); 5495 userpg->offset = perf_event_count(event); 5496 if (userpg->index) 5497 userpg->offset -= local64_read(&event->hw.prev_count); 5498 5499 userpg->time_enabled = enabled + 5500 atomic64_read(&event->child_total_time_enabled); 5501 5502 userpg->time_running = running + 5503 atomic64_read(&event->child_total_time_running); 5504 5505 arch_perf_update_userpage(event, userpg, now); 5506 5507 barrier(); 5508 ++userpg->lock; 5509 preempt_enable(); 5510 unlock: 5511 rcu_read_unlock(); 5512 } 5513 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5514 5515 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5516 { 5517 struct perf_event *event = vmf->vma->vm_file->private_data; 5518 struct ring_buffer *rb; 5519 vm_fault_t ret = VM_FAULT_SIGBUS; 5520 5521 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5522 if (vmf->pgoff == 0) 5523 ret = 0; 5524 return ret; 5525 } 5526 5527 rcu_read_lock(); 5528 rb = rcu_dereference(event->rb); 5529 if (!rb) 5530 goto unlock; 5531 5532 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5533 goto unlock; 5534 5535 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5536 if (!vmf->page) 5537 goto unlock; 5538 5539 get_page(vmf->page); 5540 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5541 vmf->page->index = vmf->pgoff; 5542 5543 ret = 0; 5544 unlock: 5545 rcu_read_unlock(); 5546 5547 return ret; 5548 } 5549 5550 static void ring_buffer_attach(struct perf_event *event, 5551 struct ring_buffer *rb) 5552 { 5553 struct ring_buffer *old_rb = NULL; 5554 unsigned long flags; 5555 5556 if (event->rb) { 5557 /* 5558 * Should be impossible, we set this when removing 5559 * event->rb_entry and wait/clear when adding event->rb_entry. 5560 */ 5561 WARN_ON_ONCE(event->rcu_pending); 5562 5563 old_rb = event->rb; 5564 spin_lock_irqsave(&old_rb->event_lock, flags); 5565 list_del_rcu(&event->rb_entry); 5566 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5567 5568 event->rcu_batches = get_state_synchronize_rcu(); 5569 event->rcu_pending = 1; 5570 } 5571 5572 if (rb) { 5573 if (event->rcu_pending) { 5574 cond_synchronize_rcu(event->rcu_batches); 5575 event->rcu_pending = 0; 5576 } 5577 5578 spin_lock_irqsave(&rb->event_lock, flags); 5579 list_add_rcu(&event->rb_entry, &rb->event_list); 5580 spin_unlock_irqrestore(&rb->event_lock, flags); 5581 } 5582 5583 /* 5584 * Avoid racing with perf_mmap_close(AUX): stop the event 5585 * before swizzling the event::rb pointer; if it's getting 5586 * unmapped, its aux_mmap_count will be 0 and it won't 5587 * restart. See the comment in __perf_pmu_output_stop(). 5588 * 5589 * Data will inevitably be lost when set_output is done in 5590 * mid-air, but then again, whoever does it like this is 5591 * not in for the data anyway. 5592 */ 5593 if (has_aux(event)) 5594 perf_event_stop(event, 0); 5595 5596 rcu_assign_pointer(event->rb, rb); 5597 5598 if (old_rb) { 5599 ring_buffer_put(old_rb); 5600 /* 5601 * Since we detached before setting the new rb, so that we 5602 * could attach the new rb, we could have missed a wakeup. 5603 * Provide it now. 5604 */ 5605 wake_up_all(&event->waitq); 5606 } 5607 } 5608 5609 static void ring_buffer_wakeup(struct perf_event *event) 5610 { 5611 struct ring_buffer *rb; 5612 5613 rcu_read_lock(); 5614 rb = rcu_dereference(event->rb); 5615 if (rb) { 5616 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5617 wake_up_all(&event->waitq); 5618 } 5619 rcu_read_unlock(); 5620 } 5621 5622 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5623 { 5624 struct ring_buffer *rb; 5625 5626 rcu_read_lock(); 5627 rb = rcu_dereference(event->rb); 5628 if (rb) { 5629 if (!refcount_inc_not_zero(&rb->refcount)) 5630 rb = NULL; 5631 } 5632 rcu_read_unlock(); 5633 5634 return rb; 5635 } 5636 5637 void ring_buffer_put(struct ring_buffer *rb) 5638 { 5639 if (!refcount_dec_and_test(&rb->refcount)) 5640 return; 5641 5642 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5643 5644 call_rcu(&rb->rcu_head, rb_free_rcu); 5645 } 5646 5647 static void perf_mmap_open(struct vm_area_struct *vma) 5648 { 5649 struct perf_event *event = vma->vm_file->private_data; 5650 5651 atomic_inc(&event->mmap_count); 5652 atomic_inc(&event->rb->mmap_count); 5653 5654 if (vma->vm_pgoff) 5655 atomic_inc(&event->rb->aux_mmap_count); 5656 5657 if (event->pmu->event_mapped) 5658 event->pmu->event_mapped(event, vma->vm_mm); 5659 } 5660 5661 static void perf_pmu_output_stop(struct perf_event *event); 5662 5663 /* 5664 * A buffer can be mmap()ed multiple times; either directly through the same 5665 * event, or through other events by use of perf_event_set_output(). 5666 * 5667 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5668 * the buffer here, where we still have a VM context. This means we need 5669 * to detach all events redirecting to us. 5670 */ 5671 static void perf_mmap_close(struct vm_area_struct *vma) 5672 { 5673 struct perf_event *event = vma->vm_file->private_data; 5674 5675 struct ring_buffer *rb = ring_buffer_get(event); 5676 struct user_struct *mmap_user = rb->mmap_user; 5677 int mmap_locked = rb->mmap_locked; 5678 unsigned long size = perf_data_size(rb); 5679 5680 if (event->pmu->event_unmapped) 5681 event->pmu->event_unmapped(event, vma->vm_mm); 5682 5683 /* 5684 * rb->aux_mmap_count will always drop before rb->mmap_count and 5685 * event->mmap_count, so it is ok to use event->mmap_mutex to 5686 * serialize with perf_mmap here. 5687 */ 5688 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5689 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5690 /* 5691 * Stop all AUX events that are writing to this buffer, 5692 * so that we can free its AUX pages and corresponding PMU 5693 * data. Note that after rb::aux_mmap_count dropped to zero, 5694 * they won't start any more (see perf_aux_output_begin()). 5695 */ 5696 perf_pmu_output_stop(event); 5697 5698 /* now it's safe to free the pages */ 5699 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5700 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5701 5702 /* this has to be the last one */ 5703 rb_free_aux(rb); 5704 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5705 5706 mutex_unlock(&event->mmap_mutex); 5707 } 5708 5709 atomic_dec(&rb->mmap_count); 5710 5711 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5712 goto out_put; 5713 5714 ring_buffer_attach(event, NULL); 5715 mutex_unlock(&event->mmap_mutex); 5716 5717 /* If there's still other mmap()s of this buffer, we're done. */ 5718 if (atomic_read(&rb->mmap_count)) 5719 goto out_put; 5720 5721 /* 5722 * No other mmap()s, detach from all other events that might redirect 5723 * into the now unreachable buffer. Somewhat complicated by the 5724 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5725 */ 5726 again: 5727 rcu_read_lock(); 5728 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5729 if (!atomic_long_inc_not_zero(&event->refcount)) { 5730 /* 5731 * This event is en-route to free_event() which will 5732 * detach it and remove it from the list. 5733 */ 5734 continue; 5735 } 5736 rcu_read_unlock(); 5737 5738 mutex_lock(&event->mmap_mutex); 5739 /* 5740 * Check we didn't race with perf_event_set_output() which can 5741 * swizzle the rb from under us while we were waiting to 5742 * acquire mmap_mutex. 5743 * 5744 * If we find a different rb; ignore this event, a next 5745 * iteration will no longer find it on the list. We have to 5746 * still restart the iteration to make sure we're not now 5747 * iterating the wrong list. 5748 */ 5749 if (event->rb == rb) 5750 ring_buffer_attach(event, NULL); 5751 5752 mutex_unlock(&event->mmap_mutex); 5753 put_event(event); 5754 5755 /* 5756 * Restart the iteration; either we're on the wrong list or 5757 * destroyed its integrity by doing a deletion. 5758 */ 5759 goto again; 5760 } 5761 rcu_read_unlock(); 5762 5763 /* 5764 * It could be there's still a few 0-ref events on the list; they'll 5765 * get cleaned up by free_event() -- they'll also still have their 5766 * ref on the rb and will free it whenever they are done with it. 5767 * 5768 * Aside from that, this buffer is 'fully' detached and unmapped, 5769 * undo the VM accounting. 5770 */ 5771 5772 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5773 &mmap_user->locked_vm); 5774 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5775 free_uid(mmap_user); 5776 5777 out_put: 5778 ring_buffer_put(rb); /* could be last */ 5779 } 5780 5781 static const struct vm_operations_struct perf_mmap_vmops = { 5782 .open = perf_mmap_open, 5783 .close = perf_mmap_close, /* non mergeable */ 5784 .fault = perf_mmap_fault, 5785 .page_mkwrite = perf_mmap_fault, 5786 }; 5787 5788 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5789 { 5790 struct perf_event *event = file->private_data; 5791 unsigned long user_locked, user_lock_limit; 5792 struct user_struct *user = current_user(); 5793 unsigned long locked, lock_limit; 5794 struct ring_buffer *rb = NULL; 5795 unsigned long vma_size; 5796 unsigned long nr_pages; 5797 long user_extra = 0, extra = 0; 5798 int ret = 0, flags = 0; 5799 5800 /* 5801 * Don't allow mmap() of inherited per-task counters. This would 5802 * create a performance issue due to all children writing to the 5803 * same rb. 5804 */ 5805 if (event->cpu == -1 && event->attr.inherit) 5806 return -EINVAL; 5807 5808 if (!(vma->vm_flags & VM_SHARED)) 5809 return -EINVAL; 5810 5811 ret = security_perf_event_read(event); 5812 if (ret) 5813 return ret; 5814 5815 vma_size = vma->vm_end - vma->vm_start; 5816 5817 if (vma->vm_pgoff == 0) { 5818 nr_pages = (vma_size / PAGE_SIZE) - 1; 5819 } else { 5820 /* 5821 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5822 * mapped, all subsequent mappings should have the same size 5823 * and offset. Must be above the normal perf buffer. 5824 */ 5825 u64 aux_offset, aux_size; 5826 5827 if (!event->rb) 5828 return -EINVAL; 5829 5830 nr_pages = vma_size / PAGE_SIZE; 5831 5832 mutex_lock(&event->mmap_mutex); 5833 ret = -EINVAL; 5834 5835 rb = event->rb; 5836 if (!rb) 5837 goto aux_unlock; 5838 5839 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5840 aux_size = READ_ONCE(rb->user_page->aux_size); 5841 5842 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5843 goto aux_unlock; 5844 5845 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5846 goto aux_unlock; 5847 5848 /* already mapped with a different offset */ 5849 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5850 goto aux_unlock; 5851 5852 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5853 goto aux_unlock; 5854 5855 /* already mapped with a different size */ 5856 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5857 goto aux_unlock; 5858 5859 if (!is_power_of_2(nr_pages)) 5860 goto aux_unlock; 5861 5862 if (!atomic_inc_not_zero(&rb->mmap_count)) 5863 goto aux_unlock; 5864 5865 if (rb_has_aux(rb)) { 5866 atomic_inc(&rb->aux_mmap_count); 5867 ret = 0; 5868 goto unlock; 5869 } 5870 5871 atomic_set(&rb->aux_mmap_count, 1); 5872 user_extra = nr_pages; 5873 5874 goto accounting; 5875 } 5876 5877 /* 5878 * If we have rb pages ensure they're a power-of-two number, so we 5879 * can do bitmasks instead of modulo. 5880 */ 5881 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5882 return -EINVAL; 5883 5884 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5885 return -EINVAL; 5886 5887 WARN_ON_ONCE(event->ctx->parent_ctx); 5888 again: 5889 mutex_lock(&event->mmap_mutex); 5890 if (event->rb) { 5891 if (event->rb->nr_pages != nr_pages) { 5892 ret = -EINVAL; 5893 goto unlock; 5894 } 5895 5896 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5897 /* 5898 * Raced against perf_mmap_close() through 5899 * perf_event_set_output(). Try again, hope for better 5900 * luck. 5901 */ 5902 mutex_unlock(&event->mmap_mutex); 5903 goto again; 5904 } 5905 5906 goto unlock; 5907 } 5908 5909 user_extra = nr_pages + 1; 5910 5911 accounting: 5912 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5913 5914 /* 5915 * Increase the limit linearly with more CPUs: 5916 */ 5917 user_lock_limit *= num_online_cpus(); 5918 5919 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5920 5921 if (user_locked > user_lock_limit) { 5922 /* 5923 * charge locked_vm until it hits user_lock_limit; 5924 * charge the rest from pinned_vm 5925 */ 5926 extra = user_locked - user_lock_limit; 5927 user_extra -= extra; 5928 } 5929 5930 lock_limit = rlimit(RLIMIT_MEMLOCK); 5931 lock_limit >>= PAGE_SHIFT; 5932 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5933 5934 if ((locked > lock_limit) && perf_is_paranoid() && 5935 !capable(CAP_IPC_LOCK)) { 5936 ret = -EPERM; 5937 goto unlock; 5938 } 5939 5940 WARN_ON(!rb && event->rb); 5941 5942 if (vma->vm_flags & VM_WRITE) 5943 flags |= RING_BUFFER_WRITABLE; 5944 5945 if (!rb) { 5946 rb = rb_alloc(nr_pages, 5947 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5948 event->cpu, flags); 5949 5950 if (!rb) { 5951 ret = -ENOMEM; 5952 goto unlock; 5953 } 5954 5955 atomic_set(&rb->mmap_count, 1); 5956 rb->mmap_user = get_current_user(); 5957 rb->mmap_locked = extra; 5958 5959 ring_buffer_attach(event, rb); 5960 5961 perf_event_init_userpage(event); 5962 perf_event_update_userpage(event); 5963 } else { 5964 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5965 event->attr.aux_watermark, flags); 5966 if (!ret) 5967 rb->aux_mmap_locked = extra; 5968 } 5969 5970 unlock: 5971 if (!ret) { 5972 atomic_long_add(user_extra, &user->locked_vm); 5973 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5974 5975 atomic_inc(&event->mmap_count); 5976 } else if (rb) { 5977 atomic_dec(&rb->mmap_count); 5978 } 5979 aux_unlock: 5980 mutex_unlock(&event->mmap_mutex); 5981 5982 /* 5983 * Since pinned accounting is per vm we cannot allow fork() to copy our 5984 * vma. 5985 */ 5986 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5987 vma->vm_ops = &perf_mmap_vmops; 5988 5989 if (event->pmu->event_mapped) 5990 event->pmu->event_mapped(event, vma->vm_mm); 5991 5992 return ret; 5993 } 5994 5995 static int perf_fasync(int fd, struct file *filp, int on) 5996 { 5997 struct inode *inode = file_inode(filp); 5998 struct perf_event *event = filp->private_data; 5999 int retval; 6000 6001 inode_lock(inode); 6002 retval = fasync_helper(fd, filp, on, &event->fasync); 6003 inode_unlock(inode); 6004 6005 if (retval < 0) 6006 return retval; 6007 6008 return 0; 6009 } 6010 6011 static const struct file_operations perf_fops = { 6012 .llseek = no_llseek, 6013 .release = perf_release, 6014 .read = perf_read, 6015 .poll = perf_poll, 6016 .unlocked_ioctl = perf_ioctl, 6017 .compat_ioctl = perf_compat_ioctl, 6018 .mmap = perf_mmap, 6019 .fasync = perf_fasync, 6020 }; 6021 6022 /* 6023 * Perf event wakeup 6024 * 6025 * If there's data, ensure we set the poll() state and publish everything 6026 * to user-space before waking everybody up. 6027 */ 6028 6029 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6030 { 6031 /* only the parent has fasync state */ 6032 if (event->parent) 6033 event = event->parent; 6034 return &event->fasync; 6035 } 6036 6037 void perf_event_wakeup(struct perf_event *event) 6038 { 6039 ring_buffer_wakeup(event); 6040 6041 if (event->pending_kill) { 6042 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6043 event->pending_kill = 0; 6044 } 6045 } 6046 6047 static void perf_pending_event_disable(struct perf_event *event) 6048 { 6049 int cpu = READ_ONCE(event->pending_disable); 6050 6051 if (cpu < 0) 6052 return; 6053 6054 if (cpu == smp_processor_id()) { 6055 WRITE_ONCE(event->pending_disable, -1); 6056 perf_event_disable_local(event); 6057 return; 6058 } 6059 6060 /* 6061 * CPU-A CPU-B 6062 * 6063 * perf_event_disable_inatomic() 6064 * @pending_disable = CPU-A; 6065 * irq_work_queue(); 6066 * 6067 * sched-out 6068 * @pending_disable = -1; 6069 * 6070 * sched-in 6071 * perf_event_disable_inatomic() 6072 * @pending_disable = CPU-B; 6073 * irq_work_queue(); // FAILS 6074 * 6075 * irq_work_run() 6076 * perf_pending_event() 6077 * 6078 * But the event runs on CPU-B and wants disabling there. 6079 */ 6080 irq_work_queue_on(&event->pending, cpu); 6081 } 6082 6083 static void perf_pending_event(struct irq_work *entry) 6084 { 6085 struct perf_event *event = container_of(entry, struct perf_event, pending); 6086 int rctx; 6087 6088 rctx = perf_swevent_get_recursion_context(); 6089 /* 6090 * If we 'fail' here, that's OK, it means recursion is already disabled 6091 * and we won't recurse 'further'. 6092 */ 6093 6094 perf_pending_event_disable(event); 6095 6096 if (event->pending_wakeup) { 6097 event->pending_wakeup = 0; 6098 perf_event_wakeup(event); 6099 } 6100 6101 if (rctx >= 0) 6102 perf_swevent_put_recursion_context(rctx); 6103 } 6104 6105 /* 6106 * We assume there is only KVM supporting the callbacks. 6107 * Later on, we might change it to a list if there is 6108 * another virtualization implementation supporting the callbacks. 6109 */ 6110 struct perf_guest_info_callbacks *perf_guest_cbs; 6111 6112 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6113 { 6114 perf_guest_cbs = cbs; 6115 return 0; 6116 } 6117 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6118 6119 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6120 { 6121 perf_guest_cbs = NULL; 6122 return 0; 6123 } 6124 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6125 6126 static void 6127 perf_output_sample_regs(struct perf_output_handle *handle, 6128 struct pt_regs *regs, u64 mask) 6129 { 6130 int bit; 6131 DECLARE_BITMAP(_mask, 64); 6132 6133 bitmap_from_u64(_mask, mask); 6134 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6135 u64 val; 6136 6137 val = perf_reg_value(regs, bit); 6138 perf_output_put(handle, val); 6139 } 6140 } 6141 6142 static void perf_sample_regs_user(struct perf_regs *regs_user, 6143 struct pt_regs *regs, 6144 struct pt_regs *regs_user_copy) 6145 { 6146 if (user_mode(regs)) { 6147 regs_user->abi = perf_reg_abi(current); 6148 regs_user->regs = regs; 6149 } else if (!(current->flags & PF_KTHREAD)) { 6150 perf_get_regs_user(regs_user, regs, regs_user_copy); 6151 } else { 6152 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6153 regs_user->regs = NULL; 6154 } 6155 } 6156 6157 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6158 struct pt_regs *regs) 6159 { 6160 regs_intr->regs = regs; 6161 regs_intr->abi = perf_reg_abi(current); 6162 } 6163 6164 6165 /* 6166 * Get remaining task size from user stack pointer. 6167 * 6168 * It'd be better to take stack vma map and limit this more 6169 * precisely, but there's no way to get it safely under interrupt, 6170 * so using TASK_SIZE as limit. 6171 */ 6172 static u64 perf_ustack_task_size(struct pt_regs *regs) 6173 { 6174 unsigned long addr = perf_user_stack_pointer(regs); 6175 6176 if (!addr || addr >= TASK_SIZE) 6177 return 0; 6178 6179 return TASK_SIZE - addr; 6180 } 6181 6182 static u16 6183 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6184 struct pt_regs *regs) 6185 { 6186 u64 task_size; 6187 6188 /* No regs, no stack pointer, no dump. */ 6189 if (!regs) 6190 return 0; 6191 6192 /* 6193 * Check if we fit in with the requested stack size into the: 6194 * - TASK_SIZE 6195 * If we don't, we limit the size to the TASK_SIZE. 6196 * 6197 * - remaining sample size 6198 * If we don't, we customize the stack size to 6199 * fit in to the remaining sample size. 6200 */ 6201 6202 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6203 stack_size = min(stack_size, (u16) task_size); 6204 6205 /* Current header size plus static size and dynamic size. */ 6206 header_size += 2 * sizeof(u64); 6207 6208 /* Do we fit in with the current stack dump size? */ 6209 if ((u16) (header_size + stack_size) < header_size) { 6210 /* 6211 * If we overflow the maximum size for the sample, 6212 * we customize the stack dump size to fit in. 6213 */ 6214 stack_size = USHRT_MAX - header_size - sizeof(u64); 6215 stack_size = round_up(stack_size, sizeof(u64)); 6216 } 6217 6218 return stack_size; 6219 } 6220 6221 static void 6222 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6223 struct pt_regs *regs) 6224 { 6225 /* Case of a kernel thread, nothing to dump */ 6226 if (!regs) { 6227 u64 size = 0; 6228 perf_output_put(handle, size); 6229 } else { 6230 unsigned long sp; 6231 unsigned int rem; 6232 u64 dyn_size; 6233 mm_segment_t fs; 6234 6235 /* 6236 * We dump: 6237 * static size 6238 * - the size requested by user or the best one we can fit 6239 * in to the sample max size 6240 * data 6241 * - user stack dump data 6242 * dynamic size 6243 * - the actual dumped size 6244 */ 6245 6246 /* Static size. */ 6247 perf_output_put(handle, dump_size); 6248 6249 /* Data. */ 6250 sp = perf_user_stack_pointer(regs); 6251 fs = get_fs(); 6252 set_fs(USER_DS); 6253 rem = __output_copy_user(handle, (void *) sp, dump_size); 6254 set_fs(fs); 6255 dyn_size = dump_size - rem; 6256 6257 perf_output_skip(handle, rem); 6258 6259 /* Dynamic size. */ 6260 perf_output_put(handle, dyn_size); 6261 } 6262 } 6263 6264 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6265 struct perf_sample_data *data, 6266 size_t size) 6267 { 6268 struct perf_event *sampler = event->aux_event; 6269 struct ring_buffer *rb; 6270 6271 data->aux_size = 0; 6272 6273 if (!sampler) 6274 goto out; 6275 6276 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6277 goto out; 6278 6279 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6280 goto out; 6281 6282 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6283 if (!rb) 6284 goto out; 6285 6286 /* 6287 * If this is an NMI hit inside sampling code, don't take 6288 * the sample. See also perf_aux_sample_output(). 6289 */ 6290 if (READ_ONCE(rb->aux_in_sampling)) { 6291 data->aux_size = 0; 6292 } else { 6293 size = min_t(size_t, size, perf_aux_size(rb)); 6294 data->aux_size = ALIGN(size, sizeof(u64)); 6295 } 6296 ring_buffer_put(rb); 6297 6298 out: 6299 return data->aux_size; 6300 } 6301 6302 long perf_pmu_snapshot_aux(struct ring_buffer *rb, 6303 struct perf_event *event, 6304 struct perf_output_handle *handle, 6305 unsigned long size) 6306 { 6307 unsigned long flags; 6308 long ret; 6309 6310 /* 6311 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6312 * paths. If we start calling them in NMI context, they may race with 6313 * the IRQ ones, that is, for example, re-starting an event that's just 6314 * been stopped, which is why we're using a separate callback that 6315 * doesn't change the event state. 6316 * 6317 * IRQs need to be disabled to prevent IPIs from racing with us. 6318 */ 6319 local_irq_save(flags); 6320 /* 6321 * Guard against NMI hits inside the critical section; 6322 * see also perf_prepare_sample_aux(). 6323 */ 6324 WRITE_ONCE(rb->aux_in_sampling, 1); 6325 barrier(); 6326 6327 ret = event->pmu->snapshot_aux(event, handle, size); 6328 6329 barrier(); 6330 WRITE_ONCE(rb->aux_in_sampling, 0); 6331 local_irq_restore(flags); 6332 6333 return ret; 6334 } 6335 6336 static void perf_aux_sample_output(struct perf_event *event, 6337 struct perf_output_handle *handle, 6338 struct perf_sample_data *data) 6339 { 6340 struct perf_event *sampler = event->aux_event; 6341 unsigned long pad; 6342 struct ring_buffer *rb; 6343 long size; 6344 6345 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6346 return; 6347 6348 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6349 if (!rb) 6350 return; 6351 6352 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6353 6354 /* 6355 * An error here means that perf_output_copy() failed (returned a 6356 * non-zero surplus that it didn't copy), which in its current 6357 * enlightened implementation is not possible. If that changes, we'd 6358 * like to know. 6359 */ 6360 if (WARN_ON_ONCE(size < 0)) 6361 goto out_put; 6362 6363 /* 6364 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6365 * perf_prepare_sample_aux(), so should not be more than that. 6366 */ 6367 pad = data->aux_size - size; 6368 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6369 pad = 8; 6370 6371 if (pad) { 6372 u64 zero = 0; 6373 perf_output_copy(handle, &zero, pad); 6374 } 6375 6376 out_put: 6377 ring_buffer_put(rb); 6378 } 6379 6380 static void __perf_event_header__init_id(struct perf_event_header *header, 6381 struct perf_sample_data *data, 6382 struct perf_event *event) 6383 { 6384 u64 sample_type = event->attr.sample_type; 6385 6386 data->type = sample_type; 6387 header->size += event->id_header_size; 6388 6389 if (sample_type & PERF_SAMPLE_TID) { 6390 /* namespace issues */ 6391 data->tid_entry.pid = perf_event_pid(event, current); 6392 data->tid_entry.tid = perf_event_tid(event, current); 6393 } 6394 6395 if (sample_type & PERF_SAMPLE_TIME) 6396 data->time = perf_event_clock(event); 6397 6398 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6399 data->id = primary_event_id(event); 6400 6401 if (sample_type & PERF_SAMPLE_STREAM_ID) 6402 data->stream_id = event->id; 6403 6404 if (sample_type & PERF_SAMPLE_CPU) { 6405 data->cpu_entry.cpu = raw_smp_processor_id(); 6406 data->cpu_entry.reserved = 0; 6407 } 6408 } 6409 6410 void perf_event_header__init_id(struct perf_event_header *header, 6411 struct perf_sample_data *data, 6412 struct perf_event *event) 6413 { 6414 if (event->attr.sample_id_all) 6415 __perf_event_header__init_id(header, data, event); 6416 } 6417 6418 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6419 struct perf_sample_data *data) 6420 { 6421 u64 sample_type = data->type; 6422 6423 if (sample_type & PERF_SAMPLE_TID) 6424 perf_output_put(handle, data->tid_entry); 6425 6426 if (sample_type & PERF_SAMPLE_TIME) 6427 perf_output_put(handle, data->time); 6428 6429 if (sample_type & PERF_SAMPLE_ID) 6430 perf_output_put(handle, data->id); 6431 6432 if (sample_type & PERF_SAMPLE_STREAM_ID) 6433 perf_output_put(handle, data->stream_id); 6434 6435 if (sample_type & PERF_SAMPLE_CPU) 6436 perf_output_put(handle, data->cpu_entry); 6437 6438 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6439 perf_output_put(handle, data->id); 6440 } 6441 6442 void perf_event__output_id_sample(struct perf_event *event, 6443 struct perf_output_handle *handle, 6444 struct perf_sample_data *sample) 6445 { 6446 if (event->attr.sample_id_all) 6447 __perf_event__output_id_sample(handle, sample); 6448 } 6449 6450 static void perf_output_read_one(struct perf_output_handle *handle, 6451 struct perf_event *event, 6452 u64 enabled, u64 running) 6453 { 6454 u64 read_format = event->attr.read_format; 6455 u64 values[4]; 6456 int n = 0; 6457 6458 values[n++] = perf_event_count(event); 6459 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6460 values[n++] = enabled + 6461 atomic64_read(&event->child_total_time_enabled); 6462 } 6463 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6464 values[n++] = running + 6465 atomic64_read(&event->child_total_time_running); 6466 } 6467 if (read_format & PERF_FORMAT_ID) 6468 values[n++] = primary_event_id(event); 6469 6470 __output_copy(handle, values, n * sizeof(u64)); 6471 } 6472 6473 static void perf_output_read_group(struct perf_output_handle *handle, 6474 struct perf_event *event, 6475 u64 enabled, u64 running) 6476 { 6477 struct perf_event *leader = event->group_leader, *sub; 6478 u64 read_format = event->attr.read_format; 6479 u64 values[5]; 6480 int n = 0; 6481 6482 values[n++] = 1 + leader->nr_siblings; 6483 6484 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6485 values[n++] = enabled; 6486 6487 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6488 values[n++] = running; 6489 6490 if ((leader != event) && 6491 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6492 leader->pmu->read(leader); 6493 6494 values[n++] = perf_event_count(leader); 6495 if (read_format & PERF_FORMAT_ID) 6496 values[n++] = primary_event_id(leader); 6497 6498 __output_copy(handle, values, n * sizeof(u64)); 6499 6500 for_each_sibling_event(sub, leader) { 6501 n = 0; 6502 6503 if ((sub != event) && 6504 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6505 sub->pmu->read(sub); 6506 6507 values[n++] = perf_event_count(sub); 6508 if (read_format & PERF_FORMAT_ID) 6509 values[n++] = primary_event_id(sub); 6510 6511 __output_copy(handle, values, n * sizeof(u64)); 6512 } 6513 } 6514 6515 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6516 PERF_FORMAT_TOTAL_TIME_RUNNING) 6517 6518 /* 6519 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6520 * 6521 * The problem is that its both hard and excessively expensive to iterate the 6522 * child list, not to mention that its impossible to IPI the children running 6523 * on another CPU, from interrupt/NMI context. 6524 */ 6525 static void perf_output_read(struct perf_output_handle *handle, 6526 struct perf_event *event) 6527 { 6528 u64 enabled = 0, running = 0, now; 6529 u64 read_format = event->attr.read_format; 6530 6531 /* 6532 * compute total_time_enabled, total_time_running 6533 * based on snapshot values taken when the event 6534 * was last scheduled in. 6535 * 6536 * we cannot simply called update_context_time() 6537 * because of locking issue as we are called in 6538 * NMI context 6539 */ 6540 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6541 calc_timer_values(event, &now, &enabled, &running); 6542 6543 if (event->attr.read_format & PERF_FORMAT_GROUP) 6544 perf_output_read_group(handle, event, enabled, running); 6545 else 6546 perf_output_read_one(handle, event, enabled, running); 6547 } 6548 6549 void perf_output_sample(struct perf_output_handle *handle, 6550 struct perf_event_header *header, 6551 struct perf_sample_data *data, 6552 struct perf_event *event) 6553 { 6554 u64 sample_type = data->type; 6555 6556 perf_output_put(handle, *header); 6557 6558 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6559 perf_output_put(handle, data->id); 6560 6561 if (sample_type & PERF_SAMPLE_IP) 6562 perf_output_put(handle, data->ip); 6563 6564 if (sample_type & PERF_SAMPLE_TID) 6565 perf_output_put(handle, data->tid_entry); 6566 6567 if (sample_type & PERF_SAMPLE_TIME) 6568 perf_output_put(handle, data->time); 6569 6570 if (sample_type & PERF_SAMPLE_ADDR) 6571 perf_output_put(handle, data->addr); 6572 6573 if (sample_type & PERF_SAMPLE_ID) 6574 perf_output_put(handle, data->id); 6575 6576 if (sample_type & PERF_SAMPLE_STREAM_ID) 6577 perf_output_put(handle, data->stream_id); 6578 6579 if (sample_type & PERF_SAMPLE_CPU) 6580 perf_output_put(handle, data->cpu_entry); 6581 6582 if (sample_type & PERF_SAMPLE_PERIOD) 6583 perf_output_put(handle, data->period); 6584 6585 if (sample_type & PERF_SAMPLE_READ) 6586 perf_output_read(handle, event); 6587 6588 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6589 int size = 1; 6590 6591 size += data->callchain->nr; 6592 size *= sizeof(u64); 6593 __output_copy(handle, data->callchain, size); 6594 } 6595 6596 if (sample_type & PERF_SAMPLE_RAW) { 6597 struct perf_raw_record *raw = data->raw; 6598 6599 if (raw) { 6600 struct perf_raw_frag *frag = &raw->frag; 6601 6602 perf_output_put(handle, raw->size); 6603 do { 6604 if (frag->copy) { 6605 __output_custom(handle, frag->copy, 6606 frag->data, frag->size); 6607 } else { 6608 __output_copy(handle, frag->data, 6609 frag->size); 6610 } 6611 if (perf_raw_frag_last(frag)) 6612 break; 6613 frag = frag->next; 6614 } while (1); 6615 if (frag->pad) 6616 __output_skip(handle, NULL, frag->pad); 6617 } else { 6618 struct { 6619 u32 size; 6620 u32 data; 6621 } raw = { 6622 .size = sizeof(u32), 6623 .data = 0, 6624 }; 6625 perf_output_put(handle, raw); 6626 } 6627 } 6628 6629 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6630 if (data->br_stack) { 6631 size_t size; 6632 6633 size = data->br_stack->nr 6634 * sizeof(struct perf_branch_entry); 6635 6636 perf_output_put(handle, data->br_stack->nr); 6637 perf_output_copy(handle, data->br_stack->entries, size); 6638 } else { 6639 /* 6640 * we always store at least the value of nr 6641 */ 6642 u64 nr = 0; 6643 perf_output_put(handle, nr); 6644 } 6645 } 6646 6647 if (sample_type & PERF_SAMPLE_REGS_USER) { 6648 u64 abi = data->regs_user.abi; 6649 6650 /* 6651 * If there are no regs to dump, notice it through 6652 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6653 */ 6654 perf_output_put(handle, abi); 6655 6656 if (abi) { 6657 u64 mask = event->attr.sample_regs_user; 6658 perf_output_sample_regs(handle, 6659 data->regs_user.regs, 6660 mask); 6661 } 6662 } 6663 6664 if (sample_type & PERF_SAMPLE_STACK_USER) { 6665 perf_output_sample_ustack(handle, 6666 data->stack_user_size, 6667 data->regs_user.regs); 6668 } 6669 6670 if (sample_type & PERF_SAMPLE_WEIGHT) 6671 perf_output_put(handle, data->weight); 6672 6673 if (sample_type & PERF_SAMPLE_DATA_SRC) 6674 perf_output_put(handle, data->data_src.val); 6675 6676 if (sample_type & PERF_SAMPLE_TRANSACTION) 6677 perf_output_put(handle, data->txn); 6678 6679 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6680 u64 abi = data->regs_intr.abi; 6681 /* 6682 * If there are no regs to dump, notice it through 6683 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6684 */ 6685 perf_output_put(handle, abi); 6686 6687 if (abi) { 6688 u64 mask = event->attr.sample_regs_intr; 6689 6690 perf_output_sample_regs(handle, 6691 data->regs_intr.regs, 6692 mask); 6693 } 6694 } 6695 6696 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6697 perf_output_put(handle, data->phys_addr); 6698 6699 if (sample_type & PERF_SAMPLE_AUX) { 6700 perf_output_put(handle, data->aux_size); 6701 6702 if (data->aux_size) 6703 perf_aux_sample_output(event, handle, data); 6704 } 6705 6706 if (!event->attr.watermark) { 6707 int wakeup_events = event->attr.wakeup_events; 6708 6709 if (wakeup_events) { 6710 struct ring_buffer *rb = handle->rb; 6711 int events = local_inc_return(&rb->events); 6712 6713 if (events >= wakeup_events) { 6714 local_sub(wakeup_events, &rb->events); 6715 local_inc(&rb->wakeup); 6716 } 6717 } 6718 } 6719 } 6720 6721 static u64 perf_virt_to_phys(u64 virt) 6722 { 6723 u64 phys_addr = 0; 6724 struct page *p = NULL; 6725 6726 if (!virt) 6727 return 0; 6728 6729 if (virt >= TASK_SIZE) { 6730 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6731 if (virt_addr_valid((void *)(uintptr_t)virt) && 6732 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6733 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6734 } else { 6735 /* 6736 * Walking the pages tables for user address. 6737 * Interrupts are disabled, so it prevents any tear down 6738 * of the page tables. 6739 * Try IRQ-safe __get_user_pages_fast first. 6740 * If failed, leave phys_addr as 0. 6741 */ 6742 if ((current->mm != NULL) && 6743 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6744 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6745 6746 if (p) 6747 put_page(p); 6748 } 6749 6750 return phys_addr; 6751 } 6752 6753 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6754 6755 struct perf_callchain_entry * 6756 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6757 { 6758 bool kernel = !event->attr.exclude_callchain_kernel; 6759 bool user = !event->attr.exclude_callchain_user; 6760 /* Disallow cross-task user callchains. */ 6761 bool crosstask = event->ctx->task && event->ctx->task != current; 6762 const u32 max_stack = event->attr.sample_max_stack; 6763 struct perf_callchain_entry *callchain; 6764 6765 if (!kernel && !user) 6766 return &__empty_callchain; 6767 6768 callchain = get_perf_callchain(regs, 0, kernel, user, 6769 max_stack, crosstask, true); 6770 return callchain ?: &__empty_callchain; 6771 } 6772 6773 void perf_prepare_sample(struct perf_event_header *header, 6774 struct perf_sample_data *data, 6775 struct perf_event *event, 6776 struct pt_regs *regs) 6777 { 6778 u64 sample_type = event->attr.sample_type; 6779 6780 header->type = PERF_RECORD_SAMPLE; 6781 header->size = sizeof(*header) + event->header_size; 6782 6783 header->misc = 0; 6784 header->misc |= perf_misc_flags(regs); 6785 6786 __perf_event_header__init_id(header, data, event); 6787 6788 if (sample_type & PERF_SAMPLE_IP) 6789 data->ip = perf_instruction_pointer(regs); 6790 6791 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6792 int size = 1; 6793 6794 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6795 data->callchain = perf_callchain(event, regs); 6796 6797 size += data->callchain->nr; 6798 6799 header->size += size * sizeof(u64); 6800 } 6801 6802 if (sample_type & PERF_SAMPLE_RAW) { 6803 struct perf_raw_record *raw = data->raw; 6804 int size; 6805 6806 if (raw) { 6807 struct perf_raw_frag *frag = &raw->frag; 6808 u32 sum = 0; 6809 6810 do { 6811 sum += frag->size; 6812 if (perf_raw_frag_last(frag)) 6813 break; 6814 frag = frag->next; 6815 } while (1); 6816 6817 size = round_up(sum + sizeof(u32), sizeof(u64)); 6818 raw->size = size - sizeof(u32); 6819 frag->pad = raw->size - sum; 6820 } else { 6821 size = sizeof(u64); 6822 } 6823 6824 header->size += size; 6825 } 6826 6827 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6828 int size = sizeof(u64); /* nr */ 6829 if (data->br_stack) { 6830 size += data->br_stack->nr 6831 * sizeof(struct perf_branch_entry); 6832 } 6833 header->size += size; 6834 } 6835 6836 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6837 perf_sample_regs_user(&data->regs_user, regs, 6838 &data->regs_user_copy); 6839 6840 if (sample_type & PERF_SAMPLE_REGS_USER) { 6841 /* regs dump ABI info */ 6842 int size = sizeof(u64); 6843 6844 if (data->regs_user.regs) { 6845 u64 mask = event->attr.sample_regs_user; 6846 size += hweight64(mask) * sizeof(u64); 6847 } 6848 6849 header->size += size; 6850 } 6851 6852 if (sample_type & PERF_SAMPLE_STACK_USER) { 6853 /* 6854 * Either we need PERF_SAMPLE_STACK_USER bit to be always 6855 * processed as the last one or have additional check added 6856 * in case new sample type is added, because we could eat 6857 * up the rest of the sample size. 6858 */ 6859 u16 stack_size = event->attr.sample_stack_user; 6860 u16 size = sizeof(u64); 6861 6862 stack_size = perf_sample_ustack_size(stack_size, header->size, 6863 data->regs_user.regs); 6864 6865 /* 6866 * If there is something to dump, add space for the dump 6867 * itself and for the field that tells the dynamic size, 6868 * which is how many have been actually dumped. 6869 */ 6870 if (stack_size) 6871 size += sizeof(u64) + stack_size; 6872 6873 data->stack_user_size = stack_size; 6874 header->size += size; 6875 } 6876 6877 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6878 /* regs dump ABI info */ 6879 int size = sizeof(u64); 6880 6881 perf_sample_regs_intr(&data->regs_intr, regs); 6882 6883 if (data->regs_intr.regs) { 6884 u64 mask = event->attr.sample_regs_intr; 6885 6886 size += hweight64(mask) * sizeof(u64); 6887 } 6888 6889 header->size += size; 6890 } 6891 6892 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6893 data->phys_addr = perf_virt_to_phys(data->addr); 6894 6895 if (sample_type & PERF_SAMPLE_AUX) { 6896 u64 size; 6897 6898 header->size += sizeof(u64); /* size */ 6899 6900 /* 6901 * Given the 16bit nature of header::size, an AUX sample can 6902 * easily overflow it, what with all the preceding sample bits. 6903 * Make sure this doesn't happen by using up to U16_MAX bytes 6904 * per sample in total (rounded down to 8 byte boundary). 6905 */ 6906 size = min_t(size_t, U16_MAX - header->size, 6907 event->attr.aux_sample_size); 6908 size = rounddown(size, 8); 6909 size = perf_prepare_sample_aux(event, data, size); 6910 6911 WARN_ON_ONCE(size + header->size > U16_MAX); 6912 header->size += size; 6913 } 6914 /* 6915 * If you're adding more sample types here, you likely need to do 6916 * something about the overflowing header::size, like repurpose the 6917 * lowest 3 bits of size, which should be always zero at the moment. 6918 * This raises a more important question, do we really need 512k sized 6919 * samples and why, so good argumentation is in order for whatever you 6920 * do here next. 6921 */ 6922 WARN_ON_ONCE(header->size & 7); 6923 } 6924 6925 static __always_inline int 6926 __perf_event_output(struct perf_event *event, 6927 struct perf_sample_data *data, 6928 struct pt_regs *regs, 6929 int (*output_begin)(struct perf_output_handle *, 6930 struct perf_event *, 6931 unsigned int)) 6932 { 6933 struct perf_output_handle handle; 6934 struct perf_event_header header; 6935 int err; 6936 6937 /* protect the callchain buffers */ 6938 rcu_read_lock(); 6939 6940 perf_prepare_sample(&header, data, event, regs); 6941 6942 err = output_begin(&handle, event, header.size); 6943 if (err) 6944 goto exit; 6945 6946 perf_output_sample(&handle, &header, data, event); 6947 6948 perf_output_end(&handle); 6949 6950 exit: 6951 rcu_read_unlock(); 6952 return err; 6953 } 6954 6955 void 6956 perf_event_output_forward(struct perf_event *event, 6957 struct perf_sample_data *data, 6958 struct pt_regs *regs) 6959 { 6960 __perf_event_output(event, data, regs, perf_output_begin_forward); 6961 } 6962 6963 void 6964 perf_event_output_backward(struct perf_event *event, 6965 struct perf_sample_data *data, 6966 struct pt_regs *regs) 6967 { 6968 __perf_event_output(event, data, regs, perf_output_begin_backward); 6969 } 6970 6971 int 6972 perf_event_output(struct perf_event *event, 6973 struct perf_sample_data *data, 6974 struct pt_regs *regs) 6975 { 6976 return __perf_event_output(event, data, regs, perf_output_begin); 6977 } 6978 6979 /* 6980 * read event_id 6981 */ 6982 6983 struct perf_read_event { 6984 struct perf_event_header header; 6985 6986 u32 pid; 6987 u32 tid; 6988 }; 6989 6990 static void 6991 perf_event_read_event(struct perf_event *event, 6992 struct task_struct *task) 6993 { 6994 struct perf_output_handle handle; 6995 struct perf_sample_data sample; 6996 struct perf_read_event read_event = { 6997 .header = { 6998 .type = PERF_RECORD_READ, 6999 .misc = 0, 7000 .size = sizeof(read_event) + event->read_size, 7001 }, 7002 .pid = perf_event_pid(event, task), 7003 .tid = perf_event_tid(event, task), 7004 }; 7005 int ret; 7006 7007 perf_event_header__init_id(&read_event.header, &sample, event); 7008 ret = perf_output_begin(&handle, event, read_event.header.size); 7009 if (ret) 7010 return; 7011 7012 perf_output_put(&handle, read_event); 7013 perf_output_read(&handle, event); 7014 perf_event__output_id_sample(event, &handle, &sample); 7015 7016 perf_output_end(&handle); 7017 } 7018 7019 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7020 7021 static void 7022 perf_iterate_ctx(struct perf_event_context *ctx, 7023 perf_iterate_f output, 7024 void *data, bool all) 7025 { 7026 struct perf_event *event; 7027 7028 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7029 if (!all) { 7030 if (event->state < PERF_EVENT_STATE_INACTIVE) 7031 continue; 7032 if (!event_filter_match(event)) 7033 continue; 7034 } 7035 7036 output(event, data); 7037 } 7038 } 7039 7040 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7041 { 7042 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7043 struct perf_event *event; 7044 7045 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7046 /* 7047 * Skip events that are not fully formed yet; ensure that 7048 * if we observe event->ctx, both event and ctx will be 7049 * complete enough. See perf_install_in_context(). 7050 */ 7051 if (!smp_load_acquire(&event->ctx)) 7052 continue; 7053 7054 if (event->state < PERF_EVENT_STATE_INACTIVE) 7055 continue; 7056 if (!event_filter_match(event)) 7057 continue; 7058 output(event, data); 7059 } 7060 } 7061 7062 /* 7063 * Iterate all events that need to receive side-band events. 7064 * 7065 * For new callers; ensure that account_pmu_sb_event() includes 7066 * your event, otherwise it might not get delivered. 7067 */ 7068 static void 7069 perf_iterate_sb(perf_iterate_f output, void *data, 7070 struct perf_event_context *task_ctx) 7071 { 7072 struct perf_event_context *ctx; 7073 int ctxn; 7074 7075 rcu_read_lock(); 7076 preempt_disable(); 7077 7078 /* 7079 * If we have task_ctx != NULL we only notify the task context itself. 7080 * The task_ctx is set only for EXIT events before releasing task 7081 * context. 7082 */ 7083 if (task_ctx) { 7084 perf_iterate_ctx(task_ctx, output, data, false); 7085 goto done; 7086 } 7087 7088 perf_iterate_sb_cpu(output, data); 7089 7090 for_each_task_context_nr(ctxn) { 7091 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7092 if (ctx) 7093 perf_iterate_ctx(ctx, output, data, false); 7094 } 7095 done: 7096 preempt_enable(); 7097 rcu_read_unlock(); 7098 } 7099 7100 /* 7101 * Clear all file-based filters at exec, they'll have to be 7102 * re-instated when/if these objects are mmapped again. 7103 */ 7104 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7105 { 7106 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7107 struct perf_addr_filter *filter; 7108 unsigned int restart = 0, count = 0; 7109 unsigned long flags; 7110 7111 if (!has_addr_filter(event)) 7112 return; 7113 7114 raw_spin_lock_irqsave(&ifh->lock, flags); 7115 list_for_each_entry(filter, &ifh->list, entry) { 7116 if (filter->path.dentry) { 7117 event->addr_filter_ranges[count].start = 0; 7118 event->addr_filter_ranges[count].size = 0; 7119 restart++; 7120 } 7121 7122 count++; 7123 } 7124 7125 if (restart) 7126 event->addr_filters_gen++; 7127 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7128 7129 if (restart) 7130 perf_event_stop(event, 1); 7131 } 7132 7133 void perf_event_exec(void) 7134 { 7135 struct perf_event_context *ctx; 7136 int ctxn; 7137 7138 rcu_read_lock(); 7139 for_each_task_context_nr(ctxn) { 7140 ctx = current->perf_event_ctxp[ctxn]; 7141 if (!ctx) 7142 continue; 7143 7144 perf_event_enable_on_exec(ctxn); 7145 7146 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7147 true); 7148 } 7149 rcu_read_unlock(); 7150 } 7151 7152 struct remote_output { 7153 struct ring_buffer *rb; 7154 int err; 7155 }; 7156 7157 static void __perf_event_output_stop(struct perf_event *event, void *data) 7158 { 7159 struct perf_event *parent = event->parent; 7160 struct remote_output *ro = data; 7161 struct ring_buffer *rb = ro->rb; 7162 struct stop_event_data sd = { 7163 .event = event, 7164 }; 7165 7166 if (!has_aux(event)) 7167 return; 7168 7169 if (!parent) 7170 parent = event; 7171 7172 /* 7173 * In case of inheritance, it will be the parent that links to the 7174 * ring-buffer, but it will be the child that's actually using it. 7175 * 7176 * We are using event::rb to determine if the event should be stopped, 7177 * however this may race with ring_buffer_attach() (through set_output), 7178 * which will make us skip the event that actually needs to be stopped. 7179 * So ring_buffer_attach() has to stop an aux event before re-assigning 7180 * its rb pointer. 7181 */ 7182 if (rcu_dereference(parent->rb) == rb) 7183 ro->err = __perf_event_stop(&sd); 7184 } 7185 7186 static int __perf_pmu_output_stop(void *info) 7187 { 7188 struct perf_event *event = info; 7189 struct pmu *pmu = event->ctx->pmu; 7190 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7191 struct remote_output ro = { 7192 .rb = event->rb, 7193 }; 7194 7195 rcu_read_lock(); 7196 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7197 if (cpuctx->task_ctx) 7198 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7199 &ro, false); 7200 rcu_read_unlock(); 7201 7202 return ro.err; 7203 } 7204 7205 static void perf_pmu_output_stop(struct perf_event *event) 7206 { 7207 struct perf_event *iter; 7208 int err, cpu; 7209 7210 restart: 7211 rcu_read_lock(); 7212 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7213 /* 7214 * For per-CPU events, we need to make sure that neither they 7215 * nor their children are running; for cpu==-1 events it's 7216 * sufficient to stop the event itself if it's active, since 7217 * it can't have children. 7218 */ 7219 cpu = iter->cpu; 7220 if (cpu == -1) 7221 cpu = READ_ONCE(iter->oncpu); 7222 7223 if (cpu == -1) 7224 continue; 7225 7226 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7227 if (err == -EAGAIN) { 7228 rcu_read_unlock(); 7229 goto restart; 7230 } 7231 } 7232 rcu_read_unlock(); 7233 } 7234 7235 /* 7236 * task tracking -- fork/exit 7237 * 7238 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7239 */ 7240 7241 struct perf_task_event { 7242 struct task_struct *task; 7243 struct perf_event_context *task_ctx; 7244 7245 struct { 7246 struct perf_event_header header; 7247 7248 u32 pid; 7249 u32 ppid; 7250 u32 tid; 7251 u32 ptid; 7252 u64 time; 7253 } event_id; 7254 }; 7255 7256 static int perf_event_task_match(struct perf_event *event) 7257 { 7258 return event->attr.comm || event->attr.mmap || 7259 event->attr.mmap2 || event->attr.mmap_data || 7260 event->attr.task; 7261 } 7262 7263 static void perf_event_task_output(struct perf_event *event, 7264 void *data) 7265 { 7266 struct perf_task_event *task_event = data; 7267 struct perf_output_handle handle; 7268 struct perf_sample_data sample; 7269 struct task_struct *task = task_event->task; 7270 int ret, size = task_event->event_id.header.size; 7271 7272 if (!perf_event_task_match(event)) 7273 return; 7274 7275 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7276 7277 ret = perf_output_begin(&handle, event, 7278 task_event->event_id.header.size); 7279 if (ret) 7280 goto out; 7281 7282 task_event->event_id.pid = perf_event_pid(event, task); 7283 task_event->event_id.ppid = perf_event_pid(event, current); 7284 7285 task_event->event_id.tid = perf_event_tid(event, task); 7286 task_event->event_id.ptid = perf_event_tid(event, current); 7287 7288 task_event->event_id.time = perf_event_clock(event); 7289 7290 perf_output_put(&handle, task_event->event_id); 7291 7292 perf_event__output_id_sample(event, &handle, &sample); 7293 7294 perf_output_end(&handle); 7295 out: 7296 task_event->event_id.header.size = size; 7297 } 7298 7299 static void perf_event_task(struct task_struct *task, 7300 struct perf_event_context *task_ctx, 7301 int new) 7302 { 7303 struct perf_task_event task_event; 7304 7305 if (!atomic_read(&nr_comm_events) && 7306 !atomic_read(&nr_mmap_events) && 7307 !atomic_read(&nr_task_events)) 7308 return; 7309 7310 task_event = (struct perf_task_event){ 7311 .task = task, 7312 .task_ctx = task_ctx, 7313 .event_id = { 7314 .header = { 7315 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7316 .misc = 0, 7317 .size = sizeof(task_event.event_id), 7318 }, 7319 /* .pid */ 7320 /* .ppid */ 7321 /* .tid */ 7322 /* .ptid */ 7323 /* .time */ 7324 }, 7325 }; 7326 7327 perf_iterate_sb(perf_event_task_output, 7328 &task_event, 7329 task_ctx); 7330 } 7331 7332 void perf_event_fork(struct task_struct *task) 7333 { 7334 perf_event_task(task, NULL, 1); 7335 perf_event_namespaces(task); 7336 } 7337 7338 /* 7339 * comm tracking 7340 */ 7341 7342 struct perf_comm_event { 7343 struct task_struct *task; 7344 char *comm; 7345 int comm_size; 7346 7347 struct { 7348 struct perf_event_header header; 7349 7350 u32 pid; 7351 u32 tid; 7352 } event_id; 7353 }; 7354 7355 static int perf_event_comm_match(struct perf_event *event) 7356 { 7357 return event->attr.comm; 7358 } 7359 7360 static void perf_event_comm_output(struct perf_event *event, 7361 void *data) 7362 { 7363 struct perf_comm_event *comm_event = data; 7364 struct perf_output_handle handle; 7365 struct perf_sample_data sample; 7366 int size = comm_event->event_id.header.size; 7367 int ret; 7368 7369 if (!perf_event_comm_match(event)) 7370 return; 7371 7372 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7373 ret = perf_output_begin(&handle, event, 7374 comm_event->event_id.header.size); 7375 7376 if (ret) 7377 goto out; 7378 7379 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7380 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7381 7382 perf_output_put(&handle, comm_event->event_id); 7383 __output_copy(&handle, comm_event->comm, 7384 comm_event->comm_size); 7385 7386 perf_event__output_id_sample(event, &handle, &sample); 7387 7388 perf_output_end(&handle); 7389 out: 7390 comm_event->event_id.header.size = size; 7391 } 7392 7393 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7394 { 7395 char comm[TASK_COMM_LEN]; 7396 unsigned int size; 7397 7398 memset(comm, 0, sizeof(comm)); 7399 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7400 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7401 7402 comm_event->comm = comm; 7403 comm_event->comm_size = size; 7404 7405 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7406 7407 perf_iterate_sb(perf_event_comm_output, 7408 comm_event, 7409 NULL); 7410 } 7411 7412 void perf_event_comm(struct task_struct *task, bool exec) 7413 { 7414 struct perf_comm_event comm_event; 7415 7416 if (!atomic_read(&nr_comm_events)) 7417 return; 7418 7419 comm_event = (struct perf_comm_event){ 7420 .task = task, 7421 /* .comm */ 7422 /* .comm_size */ 7423 .event_id = { 7424 .header = { 7425 .type = PERF_RECORD_COMM, 7426 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7427 /* .size */ 7428 }, 7429 /* .pid */ 7430 /* .tid */ 7431 }, 7432 }; 7433 7434 perf_event_comm_event(&comm_event); 7435 } 7436 7437 /* 7438 * namespaces tracking 7439 */ 7440 7441 struct perf_namespaces_event { 7442 struct task_struct *task; 7443 7444 struct { 7445 struct perf_event_header header; 7446 7447 u32 pid; 7448 u32 tid; 7449 u64 nr_namespaces; 7450 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7451 } event_id; 7452 }; 7453 7454 static int perf_event_namespaces_match(struct perf_event *event) 7455 { 7456 return event->attr.namespaces; 7457 } 7458 7459 static void perf_event_namespaces_output(struct perf_event *event, 7460 void *data) 7461 { 7462 struct perf_namespaces_event *namespaces_event = data; 7463 struct perf_output_handle handle; 7464 struct perf_sample_data sample; 7465 u16 header_size = namespaces_event->event_id.header.size; 7466 int ret; 7467 7468 if (!perf_event_namespaces_match(event)) 7469 return; 7470 7471 perf_event_header__init_id(&namespaces_event->event_id.header, 7472 &sample, event); 7473 ret = perf_output_begin(&handle, event, 7474 namespaces_event->event_id.header.size); 7475 if (ret) 7476 goto out; 7477 7478 namespaces_event->event_id.pid = perf_event_pid(event, 7479 namespaces_event->task); 7480 namespaces_event->event_id.tid = perf_event_tid(event, 7481 namespaces_event->task); 7482 7483 perf_output_put(&handle, namespaces_event->event_id); 7484 7485 perf_event__output_id_sample(event, &handle, &sample); 7486 7487 perf_output_end(&handle); 7488 out: 7489 namespaces_event->event_id.header.size = header_size; 7490 } 7491 7492 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7493 struct task_struct *task, 7494 const struct proc_ns_operations *ns_ops) 7495 { 7496 struct path ns_path; 7497 struct inode *ns_inode; 7498 void *error; 7499 7500 error = ns_get_path(&ns_path, task, ns_ops); 7501 if (!error) { 7502 ns_inode = ns_path.dentry->d_inode; 7503 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7504 ns_link_info->ino = ns_inode->i_ino; 7505 path_put(&ns_path); 7506 } 7507 } 7508 7509 void perf_event_namespaces(struct task_struct *task) 7510 { 7511 struct perf_namespaces_event namespaces_event; 7512 struct perf_ns_link_info *ns_link_info; 7513 7514 if (!atomic_read(&nr_namespaces_events)) 7515 return; 7516 7517 namespaces_event = (struct perf_namespaces_event){ 7518 .task = task, 7519 .event_id = { 7520 .header = { 7521 .type = PERF_RECORD_NAMESPACES, 7522 .misc = 0, 7523 .size = sizeof(namespaces_event.event_id), 7524 }, 7525 /* .pid */ 7526 /* .tid */ 7527 .nr_namespaces = NR_NAMESPACES, 7528 /* .link_info[NR_NAMESPACES] */ 7529 }, 7530 }; 7531 7532 ns_link_info = namespaces_event.event_id.link_info; 7533 7534 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7535 task, &mntns_operations); 7536 7537 #ifdef CONFIG_USER_NS 7538 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7539 task, &userns_operations); 7540 #endif 7541 #ifdef CONFIG_NET_NS 7542 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7543 task, &netns_operations); 7544 #endif 7545 #ifdef CONFIG_UTS_NS 7546 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7547 task, &utsns_operations); 7548 #endif 7549 #ifdef CONFIG_IPC_NS 7550 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7551 task, &ipcns_operations); 7552 #endif 7553 #ifdef CONFIG_PID_NS 7554 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7555 task, &pidns_operations); 7556 #endif 7557 #ifdef CONFIG_CGROUPS 7558 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7559 task, &cgroupns_operations); 7560 #endif 7561 7562 perf_iterate_sb(perf_event_namespaces_output, 7563 &namespaces_event, 7564 NULL); 7565 } 7566 7567 /* 7568 * mmap tracking 7569 */ 7570 7571 struct perf_mmap_event { 7572 struct vm_area_struct *vma; 7573 7574 const char *file_name; 7575 int file_size; 7576 int maj, min; 7577 u64 ino; 7578 u64 ino_generation; 7579 u32 prot, flags; 7580 7581 struct { 7582 struct perf_event_header header; 7583 7584 u32 pid; 7585 u32 tid; 7586 u64 start; 7587 u64 len; 7588 u64 pgoff; 7589 } event_id; 7590 }; 7591 7592 static int perf_event_mmap_match(struct perf_event *event, 7593 void *data) 7594 { 7595 struct perf_mmap_event *mmap_event = data; 7596 struct vm_area_struct *vma = mmap_event->vma; 7597 int executable = vma->vm_flags & VM_EXEC; 7598 7599 return (!executable && event->attr.mmap_data) || 7600 (executable && (event->attr.mmap || event->attr.mmap2)); 7601 } 7602 7603 static void perf_event_mmap_output(struct perf_event *event, 7604 void *data) 7605 { 7606 struct perf_mmap_event *mmap_event = data; 7607 struct perf_output_handle handle; 7608 struct perf_sample_data sample; 7609 int size = mmap_event->event_id.header.size; 7610 u32 type = mmap_event->event_id.header.type; 7611 int ret; 7612 7613 if (!perf_event_mmap_match(event, data)) 7614 return; 7615 7616 if (event->attr.mmap2) { 7617 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7618 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7619 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7620 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7621 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7622 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7623 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7624 } 7625 7626 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7627 ret = perf_output_begin(&handle, event, 7628 mmap_event->event_id.header.size); 7629 if (ret) 7630 goto out; 7631 7632 mmap_event->event_id.pid = perf_event_pid(event, current); 7633 mmap_event->event_id.tid = perf_event_tid(event, current); 7634 7635 perf_output_put(&handle, mmap_event->event_id); 7636 7637 if (event->attr.mmap2) { 7638 perf_output_put(&handle, mmap_event->maj); 7639 perf_output_put(&handle, mmap_event->min); 7640 perf_output_put(&handle, mmap_event->ino); 7641 perf_output_put(&handle, mmap_event->ino_generation); 7642 perf_output_put(&handle, mmap_event->prot); 7643 perf_output_put(&handle, mmap_event->flags); 7644 } 7645 7646 __output_copy(&handle, mmap_event->file_name, 7647 mmap_event->file_size); 7648 7649 perf_event__output_id_sample(event, &handle, &sample); 7650 7651 perf_output_end(&handle); 7652 out: 7653 mmap_event->event_id.header.size = size; 7654 mmap_event->event_id.header.type = type; 7655 } 7656 7657 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7658 { 7659 struct vm_area_struct *vma = mmap_event->vma; 7660 struct file *file = vma->vm_file; 7661 int maj = 0, min = 0; 7662 u64 ino = 0, gen = 0; 7663 u32 prot = 0, flags = 0; 7664 unsigned int size; 7665 char tmp[16]; 7666 char *buf = NULL; 7667 char *name; 7668 7669 if (vma->vm_flags & VM_READ) 7670 prot |= PROT_READ; 7671 if (vma->vm_flags & VM_WRITE) 7672 prot |= PROT_WRITE; 7673 if (vma->vm_flags & VM_EXEC) 7674 prot |= PROT_EXEC; 7675 7676 if (vma->vm_flags & VM_MAYSHARE) 7677 flags = MAP_SHARED; 7678 else 7679 flags = MAP_PRIVATE; 7680 7681 if (vma->vm_flags & VM_DENYWRITE) 7682 flags |= MAP_DENYWRITE; 7683 if (vma->vm_flags & VM_MAYEXEC) 7684 flags |= MAP_EXECUTABLE; 7685 if (vma->vm_flags & VM_LOCKED) 7686 flags |= MAP_LOCKED; 7687 if (vma->vm_flags & VM_HUGETLB) 7688 flags |= MAP_HUGETLB; 7689 7690 if (file) { 7691 struct inode *inode; 7692 dev_t dev; 7693 7694 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7695 if (!buf) { 7696 name = "//enomem"; 7697 goto cpy_name; 7698 } 7699 /* 7700 * d_path() works from the end of the rb backwards, so we 7701 * need to add enough zero bytes after the string to handle 7702 * the 64bit alignment we do later. 7703 */ 7704 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7705 if (IS_ERR(name)) { 7706 name = "//toolong"; 7707 goto cpy_name; 7708 } 7709 inode = file_inode(vma->vm_file); 7710 dev = inode->i_sb->s_dev; 7711 ino = inode->i_ino; 7712 gen = inode->i_generation; 7713 maj = MAJOR(dev); 7714 min = MINOR(dev); 7715 7716 goto got_name; 7717 } else { 7718 if (vma->vm_ops && vma->vm_ops->name) { 7719 name = (char *) vma->vm_ops->name(vma); 7720 if (name) 7721 goto cpy_name; 7722 } 7723 7724 name = (char *)arch_vma_name(vma); 7725 if (name) 7726 goto cpy_name; 7727 7728 if (vma->vm_start <= vma->vm_mm->start_brk && 7729 vma->vm_end >= vma->vm_mm->brk) { 7730 name = "[heap]"; 7731 goto cpy_name; 7732 } 7733 if (vma->vm_start <= vma->vm_mm->start_stack && 7734 vma->vm_end >= vma->vm_mm->start_stack) { 7735 name = "[stack]"; 7736 goto cpy_name; 7737 } 7738 7739 name = "//anon"; 7740 goto cpy_name; 7741 } 7742 7743 cpy_name: 7744 strlcpy(tmp, name, sizeof(tmp)); 7745 name = tmp; 7746 got_name: 7747 /* 7748 * Since our buffer works in 8 byte units we need to align our string 7749 * size to a multiple of 8. However, we must guarantee the tail end is 7750 * zero'd out to avoid leaking random bits to userspace. 7751 */ 7752 size = strlen(name)+1; 7753 while (!IS_ALIGNED(size, sizeof(u64))) 7754 name[size++] = '\0'; 7755 7756 mmap_event->file_name = name; 7757 mmap_event->file_size = size; 7758 mmap_event->maj = maj; 7759 mmap_event->min = min; 7760 mmap_event->ino = ino; 7761 mmap_event->ino_generation = gen; 7762 mmap_event->prot = prot; 7763 mmap_event->flags = flags; 7764 7765 if (!(vma->vm_flags & VM_EXEC)) 7766 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7767 7768 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7769 7770 perf_iterate_sb(perf_event_mmap_output, 7771 mmap_event, 7772 NULL); 7773 7774 kfree(buf); 7775 } 7776 7777 /* 7778 * Check whether inode and address range match filter criteria. 7779 */ 7780 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7781 struct file *file, unsigned long offset, 7782 unsigned long size) 7783 { 7784 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7785 if (!filter->path.dentry) 7786 return false; 7787 7788 if (d_inode(filter->path.dentry) != file_inode(file)) 7789 return false; 7790 7791 if (filter->offset > offset + size) 7792 return false; 7793 7794 if (filter->offset + filter->size < offset) 7795 return false; 7796 7797 return true; 7798 } 7799 7800 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7801 struct vm_area_struct *vma, 7802 struct perf_addr_filter_range *fr) 7803 { 7804 unsigned long vma_size = vma->vm_end - vma->vm_start; 7805 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7806 struct file *file = vma->vm_file; 7807 7808 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7809 return false; 7810 7811 if (filter->offset < off) { 7812 fr->start = vma->vm_start; 7813 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7814 } else { 7815 fr->start = vma->vm_start + filter->offset - off; 7816 fr->size = min(vma->vm_end - fr->start, filter->size); 7817 } 7818 7819 return true; 7820 } 7821 7822 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7823 { 7824 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7825 struct vm_area_struct *vma = data; 7826 struct perf_addr_filter *filter; 7827 unsigned int restart = 0, count = 0; 7828 unsigned long flags; 7829 7830 if (!has_addr_filter(event)) 7831 return; 7832 7833 if (!vma->vm_file) 7834 return; 7835 7836 raw_spin_lock_irqsave(&ifh->lock, flags); 7837 list_for_each_entry(filter, &ifh->list, entry) { 7838 if (perf_addr_filter_vma_adjust(filter, vma, 7839 &event->addr_filter_ranges[count])) 7840 restart++; 7841 7842 count++; 7843 } 7844 7845 if (restart) 7846 event->addr_filters_gen++; 7847 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7848 7849 if (restart) 7850 perf_event_stop(event, 1); 7851 } 7852 7853 /* 7854 * Adjust all task's events' filters to the new vma 7855 */ 7856 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7857 { 7858 struct perf_event_context *ctx; 7859 int ctxn; 7860 7861 /* 7862 * Data tracing isn't supported yet and as such there is no need 7863 * to keep track of anything that isn't related to executable code: 7864 */ 7865 if (!(vma->vm_flags & VM_EXEC)) 7866 return; 7867 7868 rcu_read_lock(); 7869 for_each_task_context_nr(ctxn) { 7870 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7871 if (!ctx) 7872 continue; 7873 7874 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7875 } 7876 rcu_read_unlock(); 7877 } 7878 7879 void perf_event_mmap(struct vm_area_struct *vma) 7880 { 7881 struct perf_mmap_event mmap_event; 7882 7883 if (!atomic_read(&nr_mmap_events)) 7884 return; 7885 7886 mmap_event = (struct perf_mmap_event){ 7887 .vma = vma, 7888 /* .file_name */ 7889 /* .file_size */ 7890 .event_id = { 7891 .header = { 7892 .type = PERF_RECORD_MMAP, 7893 .misc = PERF_RECORD_MISC_USER, 7894 /* .size */ 7895 }, 7896 /* .pid */ 7897 /* .tid */ 7898 .start = vma->vm_start, 7899 .len = vma->vm_end - vma->vm_start, 7900 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7901 }, 7902 /* .maj (attr_mmap2 only) */ 7903 /* .min (attr_mmap2 only) */ 7904 /* .ino (attr_mmap2 only) */ 7905 /* .ino_generation (attr_mmap2 only) */ 7906 /* .prot (attr_mmap2 only) */ 7907 /* .flags (attr_mmap2 only) */ 7908 }; 7909 7910 perf_addr_filters_adjust(vma); 7911 perf_event_mmap_event(&mmap_event); 7912 } 7913 7914 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7915 unsigned long size, u64 flags) 7916 { 7917 struct perf_output_handle handle; 7918 struct perf_sample_data sample; 7919 struct perf_aux_event { 7920 struct perf_event_header header; 7921 u64 offset; 7922 u64 size; 7923 u64 flags; 7924 } rec = { 7925 .header = { 7926 .type = PERF_RECORD_AUX, 7927 .misc = 0, 7928 .size = sizeof(rec), 7929 }, 7930 .offset = head, 7931 .size = size, 7932 .flags = flags, 7933 }; 7934 int ret; 7935 7936 perf_event_header__init_id(&rec.header, &sample, event); 7937 ret = perf_output_begin(&handle, event, rec.header.size); 7938 7939 if (ret) 7940 return; 7941 7942 perf_output_put(&handle, rec); 7943 perf_event__output_id_sample(event, &handle, &sample); 7944 7945 perf_output_end(&handle); 7946 } 7947 7948 /* 7949 * Lost/dropped samples logging 7950 */ 7951 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7952 { 7953 struct perf_output_handle handle; 7954 struct perf_sample_data sample; 7955 int ret; 7956 7957 struct { 7958 struct perf_event_header header; 7959 u64 lost; 7960 } lost_samples_event = { 7961 .header = { 7962 .type = PERF_RECORD_LOST_SAMPLES, 7963 .misc = 0, 7964 .size = sizeof(lost_samples_event), 7965 }, 7966 .lost = lost, 7967 }; 7968 7969 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7970 7971 ret = perf_output_begin(&handle, event, 7972 lost_samples_event.header.size); 7973 if (ret) 7974 return; 7975 7976 perf_output_put(&handle, lost_samples_event); 7977 perf_event__output_id_sample(event, &handle, &sample); 7978 perf_output_end(&handle); 7979 } 7980 7981 /* 7982 * context_switch tracking 7983 */ 7984 7985 struct perf_switch_event { 7986 struct task_struct *task; 7987 struct task_struct *next_prev; 7988 7989 struct { 7990 struct perf_event_header header; 7991 u32 next_prev_pid; 7992 u32 next_prev_tid; 7993 } event_id; 7994 }; 7995 7996 static int perf_event_switch_match(struct perf_event *event) 7997 { 7998 return event->attr.context_switch; 7999 } 8000 8001 static void perf_event_switch_output(struct perf_event *event, void *data) 8002 { 8003 struct perf_switch_event *se = data; 8004 struct perf_output_handle handle; 8005 struct perf_sample_data sample; 8006 int ret; 8007 8008 if (!perf_event_switch_match(event)) 8009 return; 8010 8011 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8012 if (event->ctx->task) { 8013 se->event_id.header.type = PERF_RECORD_SWITCH; 8014 se->event_id.header.size = sizeof(se->event_id.header); 8015 } else { 8016 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8017 se->event_id.header.size = sizeof(se->event_id); 8018 se->event_id.next_prev_pid = 8019 perf_event_pid(event, se->next_prev); 8020 se->event_id.next_prev_tid = 8021 perf_event_tid(event, se->next_prev); 8022 } 8023 8024 perf_event_header__init_id(&se->event_id.header, &sample, event); 8025 8026 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8027 if (ret) 8028 return; 8029 8030 if (event->ctx->task) 8031 perf_output_put(&handle, se->event_id.header); 8032 else 8033 perf_output_put(&handle, se->event_id); 8034 8035 perf_event__output_id_sample(event, &handle, &sample); 8036 8037 perf_output_end(&handle); 8038 } 8039 8040 static void perf_event_switch(struct task_struct *task, 8041 struct task_struct *next_prev, bool sched_in) 8042 { 8043 struct perf_switch_event switch_event; 8044 8045 /* N.B. caller checks nr_switch_events != 0 */ 8046 8047 switch_event = (struct perf_switch_event){ 8048 .task = task, 8049 .next_prev = next_prev, 8050 .event_id = { 8051 .header = { 8052 /* .type */ 8053 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8054 /* .size */ 8055 }, 8056 /* .next_prev_pid */ 8057 /* .next_prev_tid */ 8058 }, 8059 }; 8060 8061 if (!sched_in && task->state == TASK_RUNNING) 8062 switch_event.event_id.header.misc |= 8063 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8064 8065 perf_iterate_sb(perf_event_switch_output, 8066 &switch_event, 8067 NULL); 8068 } 8069 8070 /* 8071 * IRQ throttle logging 8072 */ 8073 8074 static void perf_log_throttle(struct perf_event *event, int enable) 8075 { 8076 struct perf_output_handle handle; 8077 struct perf_sample_data sample; 8078 int ret; 8079 8080 struct { 8081 struct perf_event_header header; 8082 u64 time; 8083 u64 id; 8084 u64 stream_id; 8085 } throttle_event = { 8086 .header = { 8087 .type = PERF_RECORD_THROTTLE, 8088 .misc = 0, 8089 .size = sizeof(throttle_event), 8090 }, 8091 .time = perf_event_clock(event), 8092 .id = primary_event_id(event), 8093 .stream_id = event->id, 8094 }; 8095 8096 if (enable) 8097 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8098 8099 perf_event_header__init_id(&throttle_event.header, &sample, event); 8100 8101 ret = perf_output_begin(&handle, event, 8102 throttle_event.header.size); 8103 if (ret) 8104 return; 8105 8106 perf_output_put(&handle, throttle_event); 8107 perf_event__output_id_sample(event, &handle, &sample); 8108 perf_output_end(&handle); 8109 } 8110 8111 /* 8112 * ksymbol register/unregister tracking 8113 */ 8114 8115 struct perf_ksymbol_event { 8116 const char *name; 8117 int name_len; 8118 struct { 8119 struct perf_event_header header; 8120 u64 addr; 8121 u32 len; 8122 u16 ksym_type; 8123 u16 flags; 8124 } event_id; 8125 }; 8126 8127 static int perf_event_ksymbol_match(struct perf_event *event) 8128 { 8129 return event->attr.ksymbol; 8130 } 8131 8132 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8133 { 8134 struct perf_ksymbol_event *ksymbol_event = data; 8135 struct perf_output_handle handle; 8136 struct perf_sample_data sample; 8137 int ret; 8138 8139 if (!perf_event_ksymbol_match(event)) 8140 return; 8141 8142 perf_event_header__init_id(&ksymbol_event->event_id.header, 8143 &sample, event); 8144 ret = perf_output_begin(&handle, event, 8145 ksymbol_event->event_id.header.size); 8146 if (ret) 8147 return; 8148 8149 perf_output_put(&handle, ksymbol_event->event_id); 8150 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8151 perf_event__output_id_sample(event, &handle, &sample); 8152 8153 perf_output_end(&handle); 8154 } 8155 8156 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8157 const char *sym) 8158 { 8159 struct perf_ksymbol_event ksymbol_event; 8160 char name[KSYM_NAME_LEN]; 8161 u16 flags = 0; 8162 int name_len; 8163 8164 if (!atomic_read(&nr_ksymbol_events)) 8165 return; 8166 8167 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8168 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8169 goto err; 8170 8171 strlcpy(name, sym, KSYM_NAME_LEN); 8172 name_len = strlen(name) + 1; 8173 while (!IS_ALIGNED(name_len, sizeof(u64))) 8174 name[name_len++] = '\0'; 8175 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8176 8177 if (unregister) 8178 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8179 8180 ksymbol_event = (struct perf_ksymbol_event){ 8181 .name = name, 8182 .name_len = name_len, 8183 .event_id = { 8184 .header = { 8185 .type = PERF_RECORD_KSYMBOL, 8186 .size = sizeof(ksymbol_event.event_id) + 8187 name_len, 8188 }, 8189 .addr = addr, 8190 .len = len, 8191 .ksym_type = ksym_type, 8192 .flags = flags, 8193 }, 8194 }; 8195 8196 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8197 return; 8198 err: 8199 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8200 } 8201 8202 /* 8203 * bpf program load/unload tracking 8204 */ 8205 8206 struct perf_bpf_event { 8207 struct bpf_prog *prog; 8208 struct { 8209 struct perf_event_header header; 8210 u16 type; 8211 u16 flags; 8212 u32 id; 8213 u8 tag[BPF_TAG_SIZE]; 8214 } event_id; 8215 }; 8216 8217 static int perf_event_bpf_match(struct perf_event *event) 8218 { 8219 return event->attr.bpf_event; 8220 } 8221 8222 static void perf_event_bpf_output(struct perf_event *event, void *data) 8223 { 8224 struct perf_bpf_event *bpf_event = data; 8225 struct perf_output_handle handle; 8226 struct perf_sample_data sample; 8227 int ret; 8228 8229 if (!perf_event_bpf_match(event)) 8230 return; 8231 8232 perf_event_header__init_id(&bpf_event->event_id.header, 8233 &sample, event); 8234 ret = perf_output_begin(&handle, event, 8235 bpf_event->event_id.header.size); 8236 if (ret) 8237 return; 8238 8239 perf_output_put(&handle, bpf_event->event_id); 8240 perf_event__output_id_sample(event, &handle, &sample); 8241 8242 perf_output_end(&handle); 8243 } 8244 8245 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8246 enum perf_bpf_event_type type) 8247 { 8248 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8249 char sym[KSYM_NAME_LEN]; 8250 int i; 8251 8252 if (prog->aux->func_cnt == 0) { 8253 bpf_get_prog_name(prog, sym); 8254 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8255 (u64)(unsigned long)prog->bpf_func, 8256 prog->jited_len, unregister, sym); 8257 } else { 8258 for (i = 0; i < prog->aux->func_cnt; i++) { 8259 struct bpf_prog *subprog = prog->aux->func[i]; 8260 8261 bpf_get_prog_name(subprog, sym); 8262 perf_event_ksymbol( 8263 PERF_RECORD_KSYMBOL_TYPE_BPF, 8264 (u64)(unsigned long)subprog->bpf_func, 8265 subprog->jited_len, unregister, sym); 8266 } 8267 } 8268 } 8269 8270 void perf_event_bpf_event(struct bpf_prog *prog, 8271 enum perf_bpf_event_type type, 8272 u16 flags) 8273 { 8274 struct perf_bpf_event bpf_event; 8275 8276 if (type <= PERF_BPF_EVENT_UNKNOWN || 8277 type >= PERF_BPF_EVENT_MAX) 8278 return; 8279 8280 switch (type) { 8281 case PERF_BPF_EVENT_PROG_LOAD: 8282 case PERF_BPF_EVENT_PROG_UNLOAD: 8283 if (atomic_read(&nr_ksymbol_events)) 8284 perf_event_bpf_emit_ksymbols(prog, type); 8285 break; 8286 default: 8287 break; 8288 } 8289 8290 if (!atomic_read(&nr_bpf_events)) 8291 return; 8292 8293 bpf_event = (struct perf_bpf_event){ 8294 .prog = prog, 8295 .event_id = { 8296 .header = { 8297 .type = PERF_RECORD_BPF_EVENT, 8298 .size = sizeof(bpf_event.event_id), 8299 }, 8300 .type = type, 8301 .flags = flags, 8302 .id = prog->aux->id, 8303 }, 8304 }; 8305 8306 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8307 8308 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8309 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8310 } 8311 8312 void perf_event_itrace_started(struct perf_event *event) 8313 { 8314 event->attach_state |= PERF_ATTACH_ITRACE; 8315 } 8316 8317 static void perf_log_itrace_start(struct perf_event *event) 8318 { 8319 struct perf_output_handle handle; 8320 struct perf_sample_data sample; 8321 struct perf_aux_event { 8322 struct perf_event_header header; 8323 u32 pid; 8324 u32 tid; 8325 } rec; 8326 int ret; 8327 8328 if (event->parent) 8329 event = event->parent; 8330 8331 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8332 event->attach_state & PERF_ATTACH_ITRACE) 8333 return; 8334 8335 rec.header.type = PERF_RECORD_ITRACE_START; 8336 rec.header.misc = 0; 8337 rec.header.size = sizeof(rec); 8338 rec.pid = perf_event_pid(event, current); 8339 rec.tid = perf_event_tid(event, current); 8340 8341 perf_event_header__init_id(&rec.header, &sample, event); 8342 ret = perf_output_begin(&handle, event, rec.header.size); 8343 8344 if (ret) 8345 return; 8346 8347 perf_output_put(&handle, rec); 8348 perf_event__output_id_sample(event, &handle, &sample); 8349 8350 perf_output_end(&handle); 8351 } 8352 8353 static int 8354 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8355 { 8356 struct hw_perf_event *hwc = &event->hw; 8357 int ret = 0; 8358 u64 seq; 8359 8360 seq = __this_cpu_read(perf_throttled_seq); 8361 if (seq != hwc->interrupts_seq) { 8362 hwc->interrupts_seq = seq; 8363 hwc->interrupts = 1; 8364 } else { 8365 hwc->interrupts++; 8366 if (unlikely(throttle 8367 && hwc->interrupts >= max_samples_per_tick)) { 8368 __this_cpu_inc(perf_throttled_count); 8369 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8370 hwc->interrupts = MAX_INTERRUPTS; 8371 perf_log_throttle(event, 0); 8372 ret = 1; 8373 } 8374 } 8375 8376 if (event->attr.freq) { 8377 u64 now = perf_clock(); 8378 s64 delta = now - hwc->freq_time_stamp; 8379 8380 hwc->freq_time_stamp = now; 8381 8382 if (delta > 0 && delta < 2*TICK_NSEC) 8383 perf_adjust_period(event, delta, hwc->last_period, true); 8384 } 8385 8386 return ret; 8387 } 8388 8389 int perf_event_account_interrupt(struct perf_event *event) 8390 { 8391 return __perf_event_account_interrupt(event, 1); 8392 } 8393 8394 /* 8395 * Generic event overflow handling, sampling. 8396 */ 8397 8398 static int __perf_event_overflow(struct perf_event *event, 8399 int throttle, struct perf_sample_data *data, 8400 struct pt_regs *regs) 8401 { 8402 int events = atomic_read(&event->event_limit); 8403 int ret = 0; 8404 8405 /* 8406 * Non-sampling counters might still use the PMI to fold short 8407 * hardware counters, ignore those. 8408 */ 8409 if (unlikely(!is_sampling_event(event))) 8410 return 0; 8411 8412 ret = __perf_event_account_interrupt(event, throttle); 8413 8414 /* 8415 * XXX event_limit might not quite work as expected on inherited 8416 * events 8417 */ 8418 8419 event->pending_kill = POLL_IN; 8420 if (events && atomic_dec_and_test(&event->event_limit)) { 8421 ret = 1; 8422 event->pending_kill = POLL_HUP; 8423 8424 perf_event_disable_inatomic(event); 8425 } 8426 8427 READ_ONCE(event->overflow_handler)(event, data, regs); 8428 8429 if (*perf_event_fasync(event) && event->pending_kill) { 8430 event->pending_wakeup = 1; 8431 irq_work_queue(&event->pending); 8432 } 8433 8434 return ret; 8435 } 8436 8437 int perf_event_overflow(struct perf_event *event, 8438 struct perf_sample_data *data, 8439 struct pt_regs *regs) 8440 { 8441 return __perf_event_overflow(event, 1, data, regs); 8442 } 8443 8444 /* 8445 * Generic software event infrastructure 8446 */ 8447 8448 struct swevent_htable { 8449 struct swevent_hlist *swevent_hlist; 8450 struct mutex hlist_mutex; 8451 int hlist_refcount; 8452 8453 /* Recursion avoidance in each contexts */ 8454 int recursion[PERF_NR_CONTEXTS]; 8455 }; 8456 8457 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8458 8459 /* 8460 * We directly increment event->count and keep a second value in 8461 * event->hw.period_left to count intervals. This period event 8462 * is kept in the range [-sample_period, 0] so that we can use the 8463 * sign as trigger. 8464 */ 8465 8466 u64 perf_swevent_set_period(struct perf_event *event) 8467 { 8468 struct hw_perf_event *hwc = &event->hw; 8469 u64 period = hwc->last_period; 8470 u64 nr, offset; 8471 s64 old, val; 8472 8473 hwc->last_period = hwc->sample_period; 8474 8475 again: 8476 old = val = local64_read(&hwc->period_left); 8477 if (val < 0) 8478 return 0; 8479 8480 nr = div64_u64(period + val, period); 8481 offset = nr * period; 8482 val -= offset; 8483 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8484 goto again; 8485 8486 return nr; 8487 } 8488 8489 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8490 struct perf_sample_data *data, 8491 struct pt_regs *regs) 8492 { 8493 struct hw_perf_event *hwc = &event->hw; 8494 int throttle = 0; 8495 8496 if (!overflow) 8497 overflow = perf_swevent_set_period(event); 8498 8499 if (hwc->interrupts == MAX_INTERRUPTS) 8500 return; 8501 8502 for (; overflow; overflow--) { 8503 if (__perf_event_overflow(event, throttle, 8504 data, regs)) { 8505 /* 8506 * We inhibit the overflow from happening when 8507 * hwc->interrupts == MAX_INTERRUPTS. 8508 */ 8509 break; 8510 } 8511 throttle = 1; 8512 } 8513 } 8514 8515 static void perf_swevent_event(struct perf_event *event, u64 nr, 8516 struct perf_sample_data *data, 8517 struct pt_regs *regs) 8518 { 8519 struct hw_perf_event *hwc = &event->hw; 8520 8521 local64_add(nr, &event->count); 8522 8523 if (!regs) 8524 return; 8525 8526 if (!is_sampling_event(event)) 8527 return; 8528 8529 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8530 data->period = nr; 8531 return perf_swevent_overflow(event, 1, data, regs); 8532 } else 8533 data->period = event->hw.last_period; 8534 8535 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8536 return perf_swevent_overflow(event, 1, data, regs); 8537 8538 if (local64_add_negative(nr, &hwc->period_left)) 8539 return; 8540 8541 perf_swevent_overflow(event, 0, data, regs); 8542 } 8543 8544 static int perf_exclude_event(struct perf_event *event, 8545 struct pt_regs *regs) 8546 { 8547 if (event->hw.state & PERF_HES_STOPPED) 8548 return 1; 8549 8550 if (regs) { 8551 if (event->attr.exclude_user && user_mode(regs)) 8552 return 1; 8553 8554 if (event->attr.exclude_kernel && !user_mode(regs)) 8555 return 1; 8556 } 8557 8558 return 0; 8559 } 8560 8561 static int perf_swevent_match(struct perf_event *event, 8562 enum perf_type_id type, 8563 u32 event_id, 8564 struct perf_sample_data *data, 8565 struct pt_regs *regs) 8566 { 8567 if (event->attr.type != type) 8568 return 0; 8569 8570 if (event->attr.config != event_id) 8571 return 0; 8572 8573 if (perf_exclude_event(event, regs)) 8574 return 0; 8575 8576 return 1; 8577 } 8578 8579 static inline u64 swevent_hash(u64 type, u32 event_id) 8580 { 8581 u64 val = event_id | (type << 32); 8582 8583 return hash_64(val, SWEVENT_HLIST_BITS); 8584 } 8585 8586 static inline struct hlist_head * 8587 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8588 { 8589 u64 hash = swevent_hash(type, event_id); 8590 8591 return &hlist->heads[hash]; 8592 } 8593 8594 /* For the read side: events when they trigger */ 8595 static inline struct hlist_head * 8596 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8597 { 8598 struct swevent_hlist *hlist; 8599 8600 hlist = rcu_dereference(swhash->swevent_hlist); 8601 if (!hlist) 8602 return NULL; 8603 8604 return __find_swevent_head(hlist, type, event_id); 8605 } 8606 8607 /* For the event head insertion and removal in the hlist */ 8608 static inline struct hlist_head * 8609 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8610 { 8611 struct swevent_hlist *hlist; 8612 u32 event_id = event->attr.config; 8613 u64 type = event->attr.type; 8614 8615 /* 8616 * Event scheduling is always serialized against hlist allocation 8617 * and release. Which makes the protected version suitable here. 8618 * The context lock guarantees that. 8619 */ 8620 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8621 lockdep_is_held(&event->ctx->lock)); 8622 if (!hlist) 8623 return NULL; 8624 8625 return __find_swevent_head(hlist, type, event_id); 8626 } 8627 8628 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8629 u64 nr, 8630 struct perf_sample_data *data, 8631 struct pt_regs *regs) 8632 { 8633 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8634 struct perf_event *event; 8635 struct hlist_head *head; 8636 8637 rcu_read_lock(); 8638 head = find_swevent_head_rcu(swhash, type, event_id); 8639 if (!head) 8640 goto end; 8641 8642 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8643 if (perf_swevent_match(event, type, event_id, data, regs)) 8644 perf_swevent_event(event, nr, data, regs); 8645 } 8646 end: 8647 rcu_read_unlock(); 8648 } 8649 8650 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8651 8652 int perf_swevent_get_recursion_context(void) 8653 { 8654 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8655 8656 return get_recursion_context(swhash->recursion); 8657 } 8658 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8659 8660 void perf_swevent_put_recursion_context(int rctx) 8661 { 8662 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8663 8664 put_recursion_context(swhash->recursion, rctx); 8665 } 8666 8667 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8668 { 8669 struct perf_sample_data data; 8670 8671 if (WARN_ON_ONCE(!regs)) 8672 return; 8673 8674 perf_sample_data_init(&data, addr, 0); 8675 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8676 } 8677 8678 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8679 { 8680 int rctx; 8681 8682 preempt_disable_notrace(); 8683 rctx = perf_swevent_get_recursion_context(); 8684 if (unlikely(rctx < 0)) 8685 goto fail; 8686 8687 ___perf_sw_event(event_id, nr, regs, addr); 8688 8689 perf_swevent_put_recursion_context(rctx); 8690 fail: 8691 preempt_enable_notrace(); 8692 } 8693 8694 static void perf_swevent_read(struct perf_event *event) 8695 { 8696 } 8697 8698 static int perf_swevent_add(struct perf_event *event, int flags) 8699 { 8700 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8701 struct hw_perf_event *hwc = &event->hw; 8702 struct hlist_head *head; 8703 8704 if (is_sampling_event(event)) { 8705 hwc->last_period = hwc->sample_period; 8706 perf_swevent_set_period(event); 8707 } 8708 8709 hwc->state = !(flags & PERF_EF_START); 8710 8711 head = find_swevent_head(swhash, event); 8712 if (WARN_ON_ONCE(!head)) 8713 return -EINVAL; 8714 8715 hlist_add_head_rcu(&event->hlist_entry, head); 8716 perf_event_update_userpage(event); 8717 8718 return 0; 8719 } 8720 8721 static void perf_swevent_del(struct perf_event *event, int flags) 8722 { 8723 hlist_del_rcu(&event->hlist_entry); 8724 } 8725 8726 static void perf_swevent_start(struct perf_event *event, int flags) 8727 { 8728 event->hw.state = 0; 8729 } 8730 8731 static void perf_swevent_stop(struct perf_event *event, int flags) 8732 { 8733 event->hw.state = PERF_HES_STOPPED; 8734 } 8735 8736 /* Deref the hlist from the update side */ 8737 static inline struct swevent_hlist * 8738 swevent_hlist_deref(struct swevent_htable *swhash) 8739 { 8740 return rcu_dereference_protected(swhash->swevent_hlist, 8741 lockdep_is_held(&swhash->hlist_mutex)); 8742 } 8743 8744 static void swevent_hlist_release(struct swevent_htable *swhash) 8745 { 8746 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8747 8748 if (!hlist) 8749 return; 8750 8751 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8752 kfree_rcu(hlist, rcu_head); 8753 } 8754 8755 static void swevent_hlist_put_cpu(int cpu) 8756 { 8757 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8758 8759 mutex_lock(&swhash->hlist_mutex); 8760 8761 if (!--swhash->hlist_refcount) 8762 swevent_hlist_release(swhash); 8763 8764 mutex_unlock(&swhash->hlist_mutex); 8765 } 8766 8767 static void swevent_hlist_put(void) 8768 { 8769 int cpu; 8770 8771 for_each_possible_cpu(cpu) 8772 swevent_hlist_put_cpu(cpu); 8773 } 8774 8775 static int swevent_hlist_get_cpu(int cpu) 8776 { 8777 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8778 int err = 0; 8779 8780 mutex_lock(&swhash->hlist_mutex); 8781 if (!swevent_hlist_deref(swhash) && 8782 cpumask_test_cpu(cpu, perf_online_mask)) { 8783 struct swevent_hlist *hlist; 8784 8785 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8786 if (!hlist) { 8787 err = -ENOMEM; 8788 goto exit; 8789 } 8790 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8791 } 8792 swhash->hlist_refcount++; 8793 exit: 8794 mutex_unlock(&swhash->hlist_mutex); 8795 8796 return err; 8797 } 8798 8799 static int swevent_hlist_get(void) 8800 { 8801 int err, cpu, failed_cpu; 8802 8803 mutex_lock(&pmus_lock); 8804 for_each_possible_cpu(cpu) { 8805 err = swevent_hlist_get_cpu(cpu); 8806 if (err) { 8807 failed_cpu = cpu; 8808 goto fail; 8809 } 8810 } 8811 mutex_unlock(&pmus_lock); 8812 return 0; 8813 fail: 8814 for_each_possible_cpu(cpu) { 8815 if (cpu == failed_cpu) 8816 break; 8817 swevent_hlist_put_cpu(cpu); 8818 } 8819 mutex_unlock(&pmus_lock); 8820 return err; 8821 } 8822 8823 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8824 8825 static void sw_perf_event_destroy(struct perf_event *event) 8826 { 8827 u64 event_id = event->attr.config; 8828 8829 WARN_ON(event->parent); 8830 8831 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8832 swevent_hlist_put(); 8833 } 8834 8835 static int perf_swevent_init(struct perf_event *event) 8836 { 8837 u64 event_id = event->attr.config; 8838 8839 if (event->attr.type != PERF_TYPE_SOFTWARE) 8840 return -ENOENT; 8841 8842 /* 8843 * no branch sampling for software events 8844 */ 8845 if (has_branch_stack(event)) 8846 return -EOPNOTSUPP; 8847 8848 switch (event_id) { 8849 case PERF_COUNT_SW_CPU_CLOCK: 8850 case PERF_COUNT_SW_TASK_CLOCK: 8851 return -ENOENT; 8852 8853 default: 8854 break; 8855 } 8856 8857 if (event_id >= PERF_COUNT_SW_MAX) 8858 return -ENOENT; 8859 8860 if (!event->parent) { 8861 int err; 8862 8863 err = swevent_hlist_get(); 8864 if (err) 8865 return err; 8866 8867 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8868 event->destroy = sw_perf_event_destroy; 8869 } 8870 8871 return 0; 8872 } 8873 8874 static struct pmu perf_swevent = { 8875 .task_ctx_nr = perf_sw_context, 8876 8877 .capabilities = PERF_PMU_CAP_NO_NMI, 8878 8879 .event_init = perf_swevent_init, 8880 .add = perf_swevent_add, 8881 .del = perf_swevent_del, 8882 .start = perf_swevent_start, 8883 .stop = perf_swevent_stop, 8884 .read = perf_swevent_read, 8885 }; 8886 8887 #ifdef CONFIG_EVENT_TRACING 8888 8889 static int perf_tp_filter_match(struct perf_event *event, 8890 struct perf_sample_data *data) 8891 { 8892 void *record = data->raw->frag.data; 8893 8894 /* only top level events have filters set */ 8895 if (event->parent) 8896 event = event->parent; 8897 8898 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8899 return 1; 8900 return 0; 8901 } 8902 8903 static int perf_tp_event_match(struct perf_event *event, 8904 struct perf_sample_data *data, 8905 struct pt_regs *regs) 8906 { 8907 if (event->hw.state & PERF_HES_STOPPED) 8908 return 0; 8909 /* 8910 * If exclude_kernel, only trace user-space tracepoints (uprobes) 8911 */ 8912 if (event->attr.exclude_kernel && !user_mode(regs)) 8913 return 0; 8914 8915 if (!perf_tp_filter_match(event, data)) 8916 return 0; 8917 8918 return 1; 8919 } 8920 8921 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8922 struct trace_event_call *call, u64 count, 8923 struct pt_regs *regs, struct hlist_head *head, 8924 struct task_struct *task) 8925 { 8926 if (bpf_prog_array_valid(call)) { 8927 *(struct pt_regs **)raw_data = regs; 8928 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8929 perf_swevent_put_recursion_context(rctx); 8930 return; 8931 } 8932 } 8933 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8934 rctx, task); 8935 } 8936 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8937 8938 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8939 struct pt_regs *regs, struct hlist_head *head, int rctx, 8940 struct task_struct *task) 8941 { 8942 struct perf_sample_data data; 8943 struct perf_event *event; 8944 8945 struct perf_raw_record raw = { 8946 .frag = { 8947 .size = entry_size, 8948 .data = record, 8949 }, 8950 }; 8951 8952 perf_sample_data_init(&data, 0, 0); 8953 data.raw = &raw; 8954 8955 perf_trace_buf_update(record, event_type); 8956 8957 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8958 if (perf_tp_event_match(event, &data, regs)) 8959 perf_swevent_event(event, count, &data, regs); 8960 } 8961 8962 /* 8963 * If we got specified a target task, also iterate its context and 8964 * deliver this event there too. 8965 */ 8966 if (task && task != current) { 8967 struct perf_event_context *ctx; 8968 struct trace_entry *entry = record; 8969 8970 rcu_read_lock(); 8971 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8972 if (!ctx) 8973 goto unlock; 8974 8975 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8976 if (event->cpu != smp_processor_id()) 8977 continue; 8978 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8979 continue; 8980 if (event->attr.config != entry->type) 8981 continue; 8982 if (perf_tp_event_match(event, &data, regs)) 8983 perf_swevent_event(event, count, &data, regs); 8984 } 8985 unlock: 8986 rcu_read_unlock(); 8987 } 8988 8989 perf_swevent_put_recursion_context(rctx); 8990 } 8991 EXPORT_SYMBOL_GPL(perf_tp_event); 8992 8993 static void tp_perf_event_destroy(struct perf_event *event) 8994 { 8995 perf_trace_destroy(event); 8996 } 8997 8998 static int perf_tp_event_init(struct perf_event *event) 8999 { 9000 int err; 9001 9002 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9003 return -ENOENT; 9004 9005 /* 9006 * no branch sampling for tracepoint events 9007 */ 9008 if (has_branch_stack(event)) 9009 return -EOPNOTSUPP; 9010 9011 err = perf_trace_init(event); 9012 if (err) 9013 return err; 9014 9015 event->destroy = tp_perf_event_destroy; 9016 9017 return 0; 9018 } 9019 9020 static struct pmu perf_tracepoint = { 9021 .task_ctx_nr = perf_sw_context, 9022 9023 .event_init = perf_tp_event_init, 9024 .add = perf_trace_add, 9025 .del = perf_trace_del, 9026 .start = perf_swevent_start, 9027 .stop = perf_swevent_stop, 9028 .read = perf_swevent_read, 9029 }; 9030 9031 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9032 /* 9033 * Flags in config, used by dynamic PMU kprobe and uprobe 9034 * The flags should match following PMU_FORMAT_ATTR(). 9035 * 9036 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9037 * if not set, create kprobe/uprobe 9038 * 9039 * The following values specify a reference counter (or semaphore in the 9040 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9041 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9042 * 9043 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9044 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9045 */ 9046 enum perf_probe_config { 9047 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9048 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9049 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9050 }; 9051 9052 PMU_FORMAT_ATTR(retprobe, "config:0"); 9053 #endif 9054 9055 #ifdef CONFIG_KPROBE_EVENTS 9056 static struct attribute *kprobe_attrs[] = { 9057 &format_attr_retprobe.attr, 9058 NULL, 9059 }; 9060 9061 static struct attribute_group kprobe_format_group = { 9062 .name = "format", 9063 .attrs = kprobe_attrs, 9064 }; 9065 9066 static const struct attribute_group *kprobe_attr_groups[] = { 9067 &kprobe_format_group, 9068 NULL, 9069 }; 9070 9071 static int perf_kprobe_event_init(struct perf_event *event); 9072 static struct pmu perf_kprobe = { 9073 .task_ctx_nr = perf_sw_context, 9074 .event_init = perf_kprobe_event_init, 9075 .add = perf_trace_add, 9076 .del = perf_trace_del, 9077 .start = perf_swevent_start, 9078 .stop = perf_swevent_stop, 9079 .read = perf_swevent_read, 9080 .attr_groups = kprobe_attr_groups, 9081 }; 9082 9083 static int perf_kprobe_event_init(struct perf_event *event) 9084 { 9085 int err; 9086 bool is_retprobe; 9087 9088 if (event->attr.type != perf_kprobe.type) 9089 return -ENOENT; 9090 9091 if (!capable(CAP_SYS_ADMIN)) 9092 return -EACCES; 9093 9094 /* 9095 * no branch sampling for probe events 9096 */ 9097 if (has_branch_stack(event)) 9098 return -EOPNOTSUPP; 9099 9100 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9101 err = perf_kprobe_init(event, is_retprobe); 9102 if (err) 9103 return err; 9104 9105 event->destroy = perf_kprobe_destroy; 9106 9107 return 0; 9108 } 9109 #endif /* CONFIG_KPROBE_EVENTS */ 9110 9111 #ifdef CONFIG_UPROBE_EVENTS 9112 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9113 9114 static struct attribute *uprobe_attrs[] = { 9115 &format_attr_retprobe.attr, 9116 &format_attr_ref_ctr_offset.attr, 9117 NULL, 9118 }; 9119 9120 static struct attribute_group uprobe_format_group = { 9121 .name = "format", 9122 .attrs = uprobe_attrs, 9123 }; 9124 9125 static const struct attribute_group *uprobe_attr_groups[] = { 9126 &uprobe_format_group, 9127 NULL, 9128 }; 9129 9130 static int perf_uprobe_event_init(struct perf_event *event); 9131 static struct pmu perf_uprobe = { 9132 .task_ctx_nr = perf_sw_context, 9133 .event_init = perf_uprobe_event_init, 9134 .add = perf_trace_add, 9135 .del = perf_trace_del, 9136 .start = perf_swevent_start, 9137 .stop = perf_swevent_stop, 9138 .read = perf_swevent_read, 9139 .attr_groups = uprobe_attr_groups, 9140 }; 9141 9142 static int perf_uprobe_event_init(struct perf_event *event) 9143 { 9144 int err; 9145 unsigned long ref_ctr_offset; 9146 bool is_retprobe; 9147 9148 if (event->attr.type != perf_uprobe.type) 9149 return -ENOENT; 9150 9151 if (!capable(CAP_SYS_ADMIN)) 9152 return -EACCES; 9153 9154 /* 9155 * no branch sampling for probe events 9156 */ 9157 if (has_branch_stack(event)) 9158 return -EOPNOTSUPP; 9159 9160 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9161 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9162 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9163 if (err) 9164 return err; 9165 9166 event->destroy = perf_uprobe_destroy; 9167 9168 return 0; 9169 } 9170 #endif /* CONFIG_UPROBE_EVENTS */ 9171 9172 static inline void perf_tp_register(void) 9173 { 9174 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9175 #ifdef CONFIG_KPROBE_EVENTS 9176 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9177 #endif 9178 #ifdef CONFIG_UPROBE_EVENTS 9179 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9180 #endif 9181 } 9182 9183 static void perf_event_free_filter(struct perf_event *event) 9184 { 9185 ftrace_profile_free_filter(event); 9186 } 9187 9188 #ifdef CONFIG_BPF_SYSCALL 9189 static void bpf_overflow_handler(struct perf_event *event, 9190 struct perf_sample_data *data, 9191 struct pt_regs *regs) 9192 { 9193 struct bpf_perf_event_data_kern ctx = { 9194 .data = data, 9195 .event = event, 9196 }; 9197 int ret = 0; 9198 9199 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9200 preempt_disable(); 9201 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9202 goto out; 9203 rcu_read_lock(); 9204 ret = BPF_PROG_RUN(event->prog, &ctx); 9205 rcu_read_unlock(); 9206 out: 9207 __this_cpu_dec(bpf_prog_active); 9208 preempt_enable(); 9209 if (!ret) 9210 return; 9211 9212 event->orig_overflow_handler(event, data, regs); 9213 } 9214 9215 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9216 { 9217 struct bpf_prog *prog; 9218 9219 if (event->overflow_handler_context) 9220 /* hw breakpoint or kernel counter */ 9221 return -EINVAL; 9222 9223 if (event->prog) 9224 return -EEXIST; 9225 9226 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9227 if (IS_ERR(prog)) 9228 return PTR_ERR(prog); 9229 9230 event->prog = prog; 9231 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9232 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9233 return 0; 9234 } 9235 9236 static void perf_event_free_bpf_handler(struct perf_event *event) 9237 { 9238 struct bpf_prog *prog = event->prog; 9239 9240 if (!prog) 9241 return; 9242 9243 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9244 event->prog = NULL; 9245 bpf_prog_put(prog); 9246 } 9247 #else 9248 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9249 { 9250 return -EOPNOTSUPP; 9251 } 9252 static void perf_event_free_bpf_handler(struct perf_event *event) 9253 { 9254 } 9255 #endif 9256 9257 /* 9258 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9259 * with perf_event_open() 9260 */ 9261 static inline bool perf_event_is_tracing(struct perf_event *event) 9262 { 9263 if (event->pmu == &perf_tracepoint) 9264 return true; 9265 #ifdef CONFIG_KPROBE_EVENTS 9266 if (event->pmu == &perf_kprobe) 9267 return true; 9268 #endif 9269 #ifdef CONFIG_UPROBE_EVENTS 9270 if (event->pmu == &perf_uprobe) 9271 return true; 9272 #endif 9273 return false; 9274 } 9275 9276 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9277 { 9278 bool is_kprobe, is_tracepoint, is_syscall_tp; 9279 struct bpf_prog *prog; 9280 int ret; 9281 9282 if (!perf_event_is_tracing(event)) 9283 return perf_event_set_bpf_handler(event, prog_fd); 9284 9285 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9286 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9287 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9288 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9289 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9290 return -EINVAL; 9291 9292 prog = bpf_prog_get(prog_fd); 9293 if (IS_ERR(prog)) 9294 return PTR_ERR(prog); 9295 9296 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9297 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9298 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9299 /* valid fd, but invalid bpf program type */ 9300 bpf_prog_put(prog); 9301 return -EINVAL; 9302 } 9303 9304 /* Kprobe override only works for kprobes, not uprobes. */ 9305 if (prog->kprobe_override && 9306 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9307 bpf_prog_put(prog); 9308 return -EINVAL; 9309 } 9310 9311 if (is_tracepoint || is_syscall_tp) { 9312 int off = trace_event_get_offsets(event->tp_event); 9313 9314 if (prog->aux->max_ctx_offset > off) { 9315 bpf_prog_put(prog); 9316 return -EACCES; 9317 } 9318 } 9319 9320 ret = perf_event_attach_bpf_prog(event, prog); 9321 if (ret) 9322 bpf_prog_put(prog); 9323 return ret; 9324 } 9325 9326 static void perf_event_free_bpf_prog(struct perf_event *event) 9327 { 9328 if (!perf_event_is_tracing(event)) { 9329 perf_event_free_bpf_handler(event); 9330 return; 9331 } 9332 perf_event_detach_bpf_prog(event); 9333 } 9334 9335 #else 9336 9337 static inline void perf_tp_register(void) 9338 { 9339 } 9340 9341 static void perf_event_free_filter(struct perf_event *event) 9342 { 9343 } 9344 9345 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9346 { 9347 return -ENOENT; 9348 } 9349 9350 static void perf_event_free_bpf_prog(struct perf_event *event) 9351 { 9352 } 9353 #endif /* CONFIG_EVENT_TRACING */ 9354 9355 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9356 void perf_bp_event(struct perf_event *bp, void *data) 9357 { 9358 struct perf_sample_data sample; 9359 struct pt_regs *regs = data; 9360 9361 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9362 9363 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9364 perf_swevent_event(bp, 1, &sample, regs); 9365 } 9366 #endif 9367 9368 /* 9369 * Allocate a new address filter 9370 */ 9371 static struct perf_addr_filter * 9372 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9373 { 9374 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9375 struct perf_addr_filter *filter; 9376 9377 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9378 if (!filter) 9379 return NULL; 9380 9381 INIT_LIST_HEAD(&filter->entry); 9382 list_add_tail(&filter->entry, filters); 9383 9384 return filter; 9385 } 9386 9387 static void free_filters_list(struct list_head *filters) 9388 { 9389 struct perf_addr_filter *filter, *iter; 9390 9391 list_for_each_entry_safe(filter, iter, filters, entry) { 9392 path_put(&filter->path); 9393 list_del(&filter->entry); 9394 kfree(filter); 9395 } 9396 } 9397 9398 /* 9399 * Free existing address filters and optionally install new ones 9400 */ 9401 static void perf_addr_filters_splice(struct perf_event *event, 9402 struct list_head *head) 9403 { 9404 unsigned long flags; 9405 LIST_HEAD(list); 9406 9407 if (!has_addr_filter(event)) 9408 return; 9409 9410 /* don't bother with children, they don't have their own filters */ 9411 if (event->parent) 9412 return; 9413 9414 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9415 9416 list_splice_init(&event->addr_filters.list, &list); 9417 if (head) 9418 list_splice(head, &event->addr_filters.list); 9419 9420 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9421 9422 free_filters_list(&list); 9423 } 9424 9425 /* 9426 * Scan through mm's vmas and see if one of them matches the 9427 * @filter; if so, adjust filter's address range. 9428 * Called with mm::mmap_sem down for reading. 9429 */ 9430 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9431 struct mm_struct *mm, 9432 struct perf_addr_filter_range *fr) 9433 { 9434 struct vm_area_struct *vma; 9435 9436 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9437 if (!vma->vm_file) 9438 continue; 9439 9440 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9441 return; 9442 } 9443 } 9444 9445 /* 9446 * Update event's address range filters based on the 9447 * task's existing mappings, if any. 9448 */ 9449 static void perf_event_addr_filters_apply(struct perf_event *event) 9450 { 9451 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9452 struct task_struct *task = READ_ONCE(event->ctx->task); 9453 struct perf_addr_filter *filter; 9454 struct mm_struct *mm = NULL; 9455 unsigned int count = 0; 9456 unsigned long flags; 9457 9458 /* 9459 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9460 * will stop on the parent's child_mutex that our caller is also holding 9461 */ 9462 if (task == TASK_TOMBSTONE) 9463 return; 9464 9465 if (ifh->nr_file_filters) { 9466 mm = get_task_mm(event->ctx->task); 9467 if (!mm) 9468 goto restart; 9469 9470 down_read(&mm->mmap_sem); 9471 } 9472 9473 raw_spin_lock_irqsave(&ifh->lock, flags); 9474 list_for_each_entry(filter, &ifh->list, entry) { 9475 if (filter->path.dentry) { 9476 /* 9477 * Adjust base offset if the filter is associated to a 9478 * binary that needs to be mapped: 9479 */ 9480 event->addr_filter_ranges[count].start = 0; 9481 event->addr_filter_ranges[count].size = 0; 9482 9483 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9484 } else { 9485 event->addr_filter_ranges[count].start = filter->offset; 9486 event->addr_filter_ranges[count].size = filter->size; 9487 } 9488 9489 count++; 9490 } 9491 9492 event->addr_filters_gen++; 9493 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9494 9495 if (ifh->nr_file_filters) { 9496 up_read(&mm->mmap_sem); 9497 9498 mmput(mm); 9499 } 9500 9501 restart: 9502 perf_event_stop(event, 1); 9503 } 9504 9505 /* 9506 * Address range filtering: limiting the data to certain 9507 * instruction address ranges. Filters are ioctl()ed to us from 9508 * userspace as ascii strings. 9509 * 9510 * Filter string format: 9511 * 9512 * ACTION RANGE_SPEC 9513 * where ACTION is one of the 9514 * * "filter": limit the trace to this region 9515 * * "start": start tracing from this address 9516 * * "stop": stop tracing at this address/region; 9517 * RANGE_SPEC is 9518 * * for kernel addresses: <start address>[/<size>] 9519 * * for object files: <start address>[/<size>]@</path/to/object/file> 9520 * 9521 * if <size> is not specified or is zero, the range is treated as a single 9522 * address; not valid for ACTION=="filter". 9523 */ 9524 enum { 9525 IF_ACT_NONE = -1, 9526 IF_ACT_FILTER, 9527 IF_ACT_START, 9528 IF_ACT_STOP, 9529 IF_SRC_FILE, 9530 IF_SRC_KERNEL, 9531 IF_SRC_FILEADDR, 9532 IF_SRC_KERNELADDR, 9533 }; 9534 9535 enum { 9536 IF_STATE_ACTION = 0, 9537 IF_STATE_SOURCE, 9538 IF_STATE_END, 9539 }; 9540 9541 static const match_table_t if_tokens = { 9542 { IF_ACT_FILTER, "filter" }, 9543 { IF_ACT_START, "start" }, 9544 { IF_ACT_STOP, "stop" }, 9545 { IF_SRC_FILE, "%u/%u@%s" }, 9546 { IF_SRC_KERNEL, "%u/%u" }, 9547 { IF_SRC_FILEADDR, "%u@%s" }, 9548 { IF_SRC_KERNELADDR, "%u" }, 9549 { IF_ACT_NONE, NULL }, 9550 }; 9551 9552 /* 9553 * Address filter string parser 9554 */ 9555 static int 9556 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9557 struct list_head *filters) 9558 { 9559 struct perf_addr_filter *filter = NULL; 9560 char *start, *orig, *filename = NULL; 9561 substring_t args[MAX_OPT_ARGS]; 9562 int state = IF_STATE_ACTION, token; 9563 unsigned int kernel = 0; 9564 int ret = -EINVAL; 9565 9566 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9567 if (!fstr) 9568 return -ENOMEM; 9569 9570 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9571 static const enum perf_addr_filter_action_t actions[] = { 9572 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9573 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9574 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9575 }; 9576 ret = -EINVAL; 9577 9578 if (!*start) 9579 continue; 9580 9581 /* filter definition begins */ 9582 if (state == IF_STATE_ACTION) { 9583 filter = perf_addr_filter_new(event, filters); 9584 if (!filter) 9585 goto fail; 9586 } 9587 9588 token = match_token(start, if_tokens, args); 9589 switch (token) { 9590 case IF_ACT_FILTER: 9591 case IF_ACT_START: 9592 case IF_ACT_STOP: 9593 if (state != IF_STATE_ACTION) 9594 goto fail; 9595 9596 filter->action = actions[token]; 9597 state = IF_STATE_SOURCE; 9598 break; 9599 9600 case IF_SRC_KERNELADDR: 9601 case IF_SRC_KERNEL: 9602 kernel = 1; 9603 /* fall through */ 9604 9605 case IF_SRC_FILEADDR: 9606 case IF_SRC_FILE: 9607 if (state != IF_STATE_SOURCE) 9608 goto fail; 9609 9610 *args[0].to = 0; 9611 ret = kstrtoul(args[0].from, 0, &filter->offset); 9612 if (ret) 9613 goto fail; 9614 9615 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9616 *args[1].to = 0; 9617 ret = kstrtoul(args[1].from, 0, &filter->size); 9618 if (ret) 9619 goto fail; 9620 } 9621 9622 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9623 int fpos = token == IF_SRC_FILE ? 2 : 1; 9624 9625 filename = match_strdup(&args[fpos]); 9626 if (!filename) { 9627 ret = -ENOMEM; 9628 goto fail; 9629 } 9630 } 9631 9632 state = IF_STATE_END; 9633 break; 9634 9635 default: 9636 goto fail; 9637 } 9638 9639 /* 9640 * Filter definition is fully parsed, validate and install it. 9641 * Make sure that it doesn't contradict itself or the event's 9642 * attribute. 9643 */ 9644 if (state == IF_STATE_END) { 9645 ret = -EINVAL; 9646 if (kernel && event->attr.exclude_kernel) 9647 goto fail; 9648 9649 /* 9650 * ACTION "filter" must have a non-zero length region 9651 * specified. 9652 */ 9653 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9654 !filter->size) 9655 goto fail; 9656 9657 if (!kernel) { 9658 if (!filename) 9659 goto fail; 9660 9661 /* 9662 * For now, we only support file-based filters 9663 * in per-task events; doing so for CPU-wide 9664 * events requires additional context switching 9665 * trickery, since same object code will be 9666 * mapped at different virtual addresses in 9667 * different processes. 9668 */ 9669 ret = -EOPNOTSUPP; 9670 if (!event->ctx->task) 9671 goto fail_free_name; 9672 9673 /* look up the path and grab its inode */ 9674 ret = kern_path(filename, LOOKUP_FOLLOW, 9675 &filter->path); 9676 if (ret) 9677 goto fail_free_name; 9678 9679 kfree(filename); 9680 filename = NULL; 9681 9682 ret = -EINVAL; 9683 if (!filter->path.dentry || 9684 !S_ISREG(d_inode(filter->path.dentry) 9685 ->i_mode)) 9686 goto fail; 9687 9688 event->addr_filters.nr_file_filters++; 9689 } 9690 9691 /* ready to consume more filters */ 9692 state = IF_STATE_ACTION; 9693 filter = NULL; 9694 } 9695 } 9696 9697 if (state != IF_STATE_ACTION) 9698 goto fail; 9699 9700 kfree(orig); 9701 9702 return 0; 9703 9704 fail_free_name: 9705 kfree(filename); 9706 fail: 9707 free_filters_list(filters); 9708 kfree(orig); 9709 9710 return ret; 9711 } 9712 9713 static int 9714 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9715 { 9716 LIST_HEAD(filters); 9717 int ret; 9718 9719 /* 9720 * Since this is called in perf_ioctl() path, we're already holding 9721 * ctx::mutex. 9722 */ 9723 lockdep_assert_held(&event->ctx->mutex); 9724 9725 if (WARN_ON_ONCE(event->parent)) 9726 return -EINVAL; 9727 9728 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9729 if (ret) 9730 goto fail_clear_files; 9731 9732 ret = event->pmu->addr_filters_validate(&filters); 9733 if (ret) 9734 goto fail_free_filters; 9735 9736 /* remove existing filters, if any */ 9737 perf_addr_filters_splice(event, &filters); 9738 9739 /* install new filters */ 9740 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9741 9742 return ret; 9743 9744 fail_free_filters: 9745 free_filters_list(&filters); 9746 9747 fail_clear_files: 9748 event->addr_filters.nr_file_filters = 0; 9749 9750 return ret; 9751 } 9752 9753 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9754 { 9755 int ret = -EINVAL; 9756 char *filter_str; 9757 9758 filter_str = strndup_user(arg, PAGE_SIZE); 9759 if (IS_ERR(filter_str)) 9760 return PTR_ERR(filter_str); 9761 9762 #ifdef CONFIG_EVENT_TRACING 9763 if (perf_event_is_tracing(event)) { 9764 struct perf_event_context *ctx = event->ctx; 9765 9766 /* 9767 * Beware, here be dragons!! 9768 * 9769 * the tracepoint muck will deadlock against ctx->mutex, but 9770 * the tracepoint stuff does not actually need it. So 9771 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9772 * already have a reference on ctx. 9773 * 9774 * This can result in event getting moved to a different ctx, 9775 * but that does not affect the tracepoint state. 9776 */ 9777 mutex_unlock(&ctx->mutex); 9778 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9779 mutex_lock(&ctx->mutex); 9780 } else 9781 #endif 9782 if (has_addr_filter(event)) 9783 ret = perf_event_set_addr_filter(event, filter_str); 9784 9785 kfree(filter_str); 9786 return ret; 9787 } 9788 9789 /* 9790 * hrtimer based swevent callback 9791 */ 9792 9793 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9794 { 9795 enum hrtimer_restart ret = HRTIMER_RESTART; 9796 struct perf_sample_data data; 9797 struct pt_regs *regs; 9798 struct perf_event *event; 9799 u64 period; 9800 9801 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9802 9803 if (event->state != PERF_EVENT_STATE_ACTIVE) 9804 return HRTIMER_NORESTART; 9805 9806 event->pmu->read(event); 9807 9808 perf_sample_data_init(&data, 0, event->hw.last_period); 9809 regs = get_irq_regs(); 9810 9811 if (regs && !perf_exclude_event(event, regs)) { 9812 if (!(event->attr.exclude_idle && is_idle_task(current))) 9813 if (__perf_event_overflow(event, 1, &data, regs)) 9814 ret = HRTIMER_NORESTART; 9815 } 9816 9817 period = max_t(u64, 10000, event->hw.sample_period); 9818 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9819 9820 return ret; 9821 } 9822 9823 static void perf_swevent_start_hrtimer(struct perf_event *event) 9824 { 9825 struct hw_perf_event *hwc = &event->hw; 9826 s64 period; 9827 9828 if (!is_sampling_event(event)) 9829 return; 9830 9831 period = local64_read(&hwc->period_left); 9832 if (period) { 9833 if (period < 0) 9834 period = 10000; 9835 9836 local64_set(&hwc->period_left, 0); 9837 } else { 9838 period = max_t(u64, 10000, hwc->sample_period); 9839 } 9840 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9841 HRTIMER_MODE_REL_PINNED_HARD); 9842 } 9843 9844 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9845 { 9846 struct hw_perf_event *hwc = &event->hw; 9847 9848 if (is_sampling_event(event)) { 9849 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9850 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9851 9852 hrtimer_cancel(&hwc->hrtimer); 9853 } 9854 } 9855 9856 static void perf_swevent_init_hrtimer(struct perf_event *event) 9857 { 9858 struct hw_perf_event *hwc = &event->hw; 9859 9860 if (!is_sampling_event(event)) 9861 return; 9862 9863 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 9864 hwc->hrtimer.function = perf_swevent_hrtimer; 9865 9866 /* 9867 * Since hrtimers have a fixed rate, we can do a static freq->period 9868 * mapping and avoid the whole period adjust feedback stuff. 9869 */ 9870 if (event->attr.freq) { 9871 long freq = event->attr.sample_freq; 9872 9873 event->attr.sample_period = NSEC_PER_SEC / freq; 9874 hwc->sample_period = event->attr.sample_period; 9875 local64_set(&hwc->period_left, hwc->sample_period); 9876 hwc->last_period = hwc->sample_period; 9877 event->attr.freq = 0; 9878 } 9879 } 9880 9881 /* 9882 * Software event: cpu wall time clock 9883 */ 9884 9885 static void cpu_clock_event_update(struct perf_event *event) 9886 { 9887 s64 prev; 9888 u64 now; 9889 9890 now = local_clock(); 9891 prev = local64_xchg(&event->hw.prev_count, now); 9892 local64_add(now - prev, &event->count); 9893 } 9894 9895 static void cpu_clock_event_start(struct perf_event *event, int flags) 9896 { 9897 local64_set(&event->hw.prev_count, local_clock()); 9898 perf_swevent_start_hrtimer(event); 9899 } 9900 9901 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9902 { 9903 perf_swevent_cancel_hrtimer(event); 9904 cpu_clock_event_update(event); 9905 } 9906 9907 static int cpu_clock_event_add(struct perf_event *event, int flags) 9908 { 9909 if (flags & PERF_EF_START) 9910 cpu_clock_event_start(event, flags); 9911 perf_event_update_userpage(event); 9912 9913 return 0; 9914 } 9915 9916 static void cpu_clock_event_del(struct perf_event *event, int flags) 9917 { 9918 cpu_clock_event_stop(event, flags); 9919 } 9920 9921 static void cpu_clock_event_read(struct perf_event *event) 9922 { 9923 cpu_clock_event_update(event); 9924 } 9925 9926 static int cpu_clock_event_init(struct perf_event *event) 9927 { 9928 if (event->attr.type != PERF_TYPE_SOFTWARE) 9929 return -ENOENT; 9930 9931 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9932 return -ENOENT; 9933 9934 /* 9935 * no branch sampling for software events 9936 */ 9937 if (has_branch_stack(event)) 9938 return -EOPNOTSUPP; 9939 9940 perf_swevent_init_hrtimer(event); 9941 9942 return 0; 9943 } 9944 9945 static struct pmu perf_cpu_clock = { 9946 .task_ctx_nr = perf_sw_context, 9947 9948 .capabilities = PERF_PMU_CAP_NO_NMI, 9949 9950 .event_init = cpu_clock_event_init, 9951 .add = cpu_clock_event_add, 9952 .del = cpu_clock_event_del, 9953 .start = cpu_clock_event_start, 9954 .stop = cpu_clock_event_stop, 9955 .read = cpu_clock_event_read, 9956 }; 9957 9958 /* 9959 * Software event: task time clock 9960 */ 9961 9962 static void task_clock_event_update(struct perf_event *event, u64 now) 9963 { 9964 u64 prev; 9965 s64 delta; 9966 9967 prev = local64_xchg(&event->hw.prev_count, now); 9968 delta = now - prev; 9969 local64_add(delta, &event->count); 9970 } 9971 9972 static void task_clock_event_start(struct perf_event *event, int flags) 9973 { 9974 local64_set(&event->hw.prev_count, event->ctx->time); 9975 perf_swevent_start_hrtimer(event); 9976 } 9977 9978 static void task_clock_event_stop(struct perf_event *event, int flags) 9979 { 9980 perf_swevent_cancel_hrtimer(event); 9981 task_clock_event_update(event, event->ctx->time); 9982 } 9983 9984 static int task_clock_event_add(struct perf_event *event, int flags) 9985 { 9986 if (flags & PERF_EF_START) 9987 task_clock_event_start(event, flags); 9988 perf_event_update_userpage(event); 9989 9990 return 0; 9991 } 9992 9993 static void task_clock_event_del(struct perf_event *event, int flags) 9994 { 9995 task_clock_event_stop(event, PERF_EF_UPDATE); 9996 } 9997 9998 static void task_clock_event_read(struct perf_event *event) 9999 { 10000 u64 now = perf_clock(); 10001 u64 delta = now - event->ctx->timestamp; 10002 u64 time = event->ctx->time + delta; 10003 10004 task_clock_event_update(event, time); 10005 } 10006 10007 static int task_clock_event_init(struct perf_event *event) 10008 { 10009 if (event->attr.type != PERF_TYPE_SOFTWARE) 10010 return -ENOENT; 10011 10012 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10013 return -ENOENT; 10014 10015 /* 10016 * no branch sampling for software events 10017 */ 10018 if (has_branch_stack(event)) 10019 return -EOPNOTSUPP; 10020 10021 perf_swevent_init_hrtimer(event); 10022 10023 return 0; 10024 } 10025 10026 static struct pmu perf_task_clock = { 10027 .task_ctx_nr = perf_sw_context, 10028 10029 .capabilities = PERF_PMU_CAP_NO_NMI, 10030 10031 .event_init = task_clock_event_init, 10032 .add = task_clock_event_add, 10033 .del = task_clock_event_del, 10034 .start = task_clock_event_start, 10035 .stop = task_clock_event_stop, 10036 .read = task_clock_event_read, 10037 }; 10038 10039 static void perf_pmu_nop_void(struct pmu *pmu) 10040 { 10041 } 10042 10043 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10044 { 10045 } 10046 10047 static int perf_pmu_nop_int(struct pmu *pmu) 10048 { 10049 return 0; 10050 } 10051 10052 static int perf_event_nop_int(struct perf_event *event, u64 value) 10053 { 10054 return 0; 10055 } 10056 10057 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10058 10059 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10060 { 10061 __this_cpu_write(nop_txn_flags, flags); 10062 10063 if (flags & ~PERF_PMU_TXN_ADD) 10064 return; 10065 10066 perf_pmu_disable(pmu); 10067 } 10068 10069 static int perf_pmu_commit_txn(struct pmu *pmu) 10070 { 10071 unsigned int flags = __this_cpu_read(nop_txn_flags); 10072 10073 __this_cpu_write(nop_txn_flags, 0); 10074 10075 if (flags & ~PERF_PMU_TXN_ADD) 10076 return 0; 10077 10078 perf_pmu_enable(pmu); 10079 return 0; 10080 } 10081 10082 static void perf_pmu_cancel_txn(struct pmu *pmu) 10083 { 10084 unsigned int flags = __this_cpu_read(nop_txn_flags); 10085 10086 __this_cpu_write(nop_txn_flags, 0); 10087 10088 if (flags & ~PERF_PMU_TXN_ADD) 10089 return; 10090 10091 perf_pmu_enable(pmu); 10092 } 10093 10094 static int perf_event_idx_default(struct perf_event *event) 10095 { 10096 return 0; 10097 } 10098 10099 /* 10100 * Ensures all contexts with the same task_ctx_nr have the same 10101 * pmu_cpu_context too. 10102 */ 10103 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10104 { 10105 struct pmu *pmu; 10106 10107 if (ctxn < 0) 10108 return NULL; 10109 10110 list_for_each_entry(pmu, &pmus, entry) { 10111 if (pmu->task_ctx_nr == ctxn) 10112 return pmu->pmu_cpu_context; 10113 } 10114 10115 return NULL; 10116 } 10117 10118 static void free_pmu_context(struct pmu *pmu) 10119 { 10120 /* 10121 * Static contexts such as perf_sw_context have a global lifetime 10122 * and may be shared between different PMUs. Avoid freeing them 10123 * when a single PMU is going away. 10124 */ 10125 if (pmu->task_ctx_nr > perf_invalid_context) 10126 return; 10127 10128 free_percpu(pmu->pmu_cpu_context); 10129 } 10130 10131 /* 10132 * Let userspace know that this PMU supports address range filtering: 10133 */ 10134 static ssize_t nr_addr_filters_show(struct device *dev, 10135 struct device_attribute *attr, 10136 char *page) 10137 { 10138 struct pmu *pmu = dev_get_drvdata(dev); 10139 10140 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10141 } 10142 DEVICE_ATTR_RO(nr_addr_filters); 10143 10144 static struct idr pmu_idr; 10145 10146 static ssize_t 10147 type_show(struct device *dev, struct device_attribute *attr, char *page) 10148 { 10149 struct pmu *pmu = dev_get_drvdata(dev); 10150 10151 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10152 } 10153 static DEVICE_ATTR_RO(type); 10154 10155 static ssize_t 10156 perf_event_mux_interval_ms_show(struct device *dev, 10157 struct device_attribute *attr, 10158 char *page) 10159 { 10160 struct pmu *pmu = dev_get_drvdata(dev); 10161 10162 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10163 } 10164 10165 static DEFINE_MUTEX(mux_interval_mutex); 10166 10167 static ssize_t 10168 perf_event_mux_interval_ms_store(struct device *dev, 10169 struct device_attribute *attr, 10170 const char *buf, size_t count) 10171 { 10172 struct pmu *pmu = dev_get_drvdata(dev); 10173 int timer, cpu, ret; 10174 10175 ret = kstrtoint(buf, 0, &timer); 10176 if (ret) 10177 return ret; 10178 10179 if (timer < 1) 10180 return -EINVAL; 10181 10182 /* same value, noting to do */ 10183 if (timer == pmu->hrtimer_interval_ms) 10184 return count; 10185 10186 mutex_lock(&mux_interval_mutex); 10187 pmu->hrtimer_interval_ms = timer; 10188 10189 /* update all cpuctx for this PMU */ 10190 cpus_read_lock(); 10191 for_each_online_cpu(cpu) { 10192 struct perf_cpu_context *cpuctx; 10193 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10194 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10195 10196 cpu_function_call(cpu, 10197 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10198 } 10199 cpus_read_unlock(); 10200 mutex_unlock(&mux_interval_mutex); 10201 10202 return count; 10203 } 10204 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10205 10206 static struct attribute *pmu_dev_attrs[] = { 10207 &dev_attr_type.attr, 10208 &dev_attr_perf_event_mux_interval_ms.attr, 10209 NULL, 10210 }; 10211 ATTRIBUTE_GROUPS(pmu_dev); 10212 10213 static int pmu_bus_running; 10214 static struct bus_type pmu_bus = { 10215 .name = "event_source", 10216 .dev_groups = pmu_dev_groups, 10217 }; 10218 10219 static void pmu_dev_release(struct device *dev) 10220 { 10221 kfree(dev); 10222 } 10223 10224 static int pmu_dev_alloc(struct pmu *pmu) 10225 { 10226 int ret = -ENOMEM; 10227 10228 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10229 if (!pmu->dev) 10230 goto out; 10231 10232 pmu->dev->groups = pmu->attr_groups; 10233 device_initialize(pmu->dev); 10234 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10235 if (ret) 10236 goto free_dev; 10237 10238 dev_set_drvdata(pmu->dev, pmu); 10239 pmu->dev->bus = &pmu_bus; 10240 pmu->dev->release = pmu_dev_release; 10241 ret = device_add(pmu->dev); 10242 if (ret) 10243 goto free_dev; 10244 10245 /* For PMUs with address filters, throw in an extra attribute: */ 10246 if (pmu->nr_addr_filters) 10247 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10248 10249 if (ret) 10250 goto del_dev; 10251 10252 if (pmu->attr_update) 10253 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10254 10255 if (ret) 10256 goto del_dev; 10257 10258 out: 10259 return ret; 10260 10261 del_dev: 10262 device_del(pmu->dev); 10263 10264 free_dev: 10265 put_device(pmu->dev); 10266 goto out; 10267 } 10268 10269 static struct lock_class_key cpuctx_mutex; 10270 static struct lock_class_key cpuctx_lock; 10271 10272 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10273 { 10274 int cpu, ret, max = PERF_TYPE_MAX; 10275 10276 mutex_lock(&pmus_lock); 10277 ret = -ENOMEM; 10278 pmu->pmu_disable_count = alloc_percpu(int); 10279 if (!pmu->pmu_disable_count) 10280 goto unlock; 10281 10282 pmu->type = -1; 10283 if (!name) 10284 goto skip_type; 10285 pmu->name = name; 10286 10287 if (type != PERF_TYPE_SOFTWARE) { 10288 if (type >= 0) 10289 max = type; 10290 10291 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10292 if (ret < 0) 10293 goto free_pdc; 10294 10295 WARN_ON(type >= 0 && ret != type); 10296 10297 type = ret; 10298 } 10299 pmu->type = type; 10300 10301 if (pmu_bus_running) { 10302 ret = pmu_dev_alloc(pmu); 10303 if (ret) 10304 goto free_idr; 10305 } 10306 10307 skip_type: 10308 if (pmu->task_ctx_nr == perf_hw_context) { 10309 static int hw_context_taken = 0; 10310 10311 /* 10312 * Other than systems with heterogeneous CPUs, it never makes 10313 * sense for two PMUs to share perf_hw_context. PMUs which are 10314 * uncore must use perf_invalid_context. 10315 */ 10316 if (WARN_ON_ONCE(hw_context_taken && 10317 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10318 pmu->task_ctx_nr = perf_invalid_context; 10319 10320 hw_context_taken = 1; 10321 } 10322 10323 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10324 if (pmu->pmu_cpu_context) 10325 goto got_cpu_context; 10326 10327 ret = -ENOMEM; 10328 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10329 if (!pmu->pmu_cpu_context) 10330 goto free_dev; 10331 10332 for_each_possible_cpu(cpu) { 10333 struct perf_cpu_context *cpuctx; 10334 10335 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10336 __perf_event_init_context(&cpuctx->ctx); 10337 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10338 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10339 cpuctx->ctx.pmu = pmu; 10340 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10341 10342 __perf_mux_hrtimer_init(cpuctx, cpu); 10343 } 10344 10345 got_cpu_context: 10346 if (!pmu->start_txn) { 10347 if (pmu->pmu_enable) { 10348 /* 10349 * If we have pmu_enable/pmu_disable calls, install 10350 * transaction stubs that use that to try and batch 10351 * hardware accesses. 10352 */ 10353 pmu->start_txn = perf_pmu_start_txn; 10354 pmu->commit_txn = perf_pmu_commit_txn; 10355 pmu->cancel_txn = perf_pmu_cancel_txn; 10356 } else { 10357 pmu->start_txn = perf_pmu_nop_txn; 10358 pmu->commit_txn = perf_pmu_nop_int; 10359 pmu->cancel_txn = perf_pmu_nop_void; 10360 } 10361 } 10362 10363 if (!pmu->pmu_enable) { 10364 pmu->pmu_enable = perf_pmu_nop_void; 10365 pmu->pmu_disable = perf_pmu_nop_void; 10366 } 10367 10368 if (!pmu->check_period) 10369 pmu->check_period = perf_event_nop_int; 10370 10371 if (!pmu->event_idx) 10372 pmu->event_idx = perf_event_idx_default; 10373 10374 /* 10375 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10376 * since these cannot be in the IDR. This way the linear search 10377 * is fast, provided a valid software event is provided. 10378 */ 10379 if (type == PERF_TYPE_SOFTWARE || !name) 10380 list_add_rcu(&pmu->entry, &pmus); 10381 else 10382 list_add_tail_rcu(&pmu->entry, &pmus); 10383 10384 atomic_set(&pmu->exclusive_cnt, 0); 10385 ret = 0; 10386 unlock: 10387 mutex_unlock(&pmus_lock); 10388 10389 return ret; 10390 10391 free_dev: 10392 device_del(pmu->dev); 10393 put_device(pmu->dev); 10394 10395 free_idr: 10396 if (pmu->type != PERF_TYPE_SOFTWARE) 10397 idr_remove(&pmu_idr, pmu->type); 10398 10399 free_pdc: 10400 free_percpu(pmu->pmu_disable_count); 10401 goto unlock; 10402 } 10403 EXPORT_SYMBOL_GPL(perf_pmu_register); 10404 10405 void perf_pmu_unregister(struct pmu *pmu) 10406 { 10407 mutex_lock(&pmus_lock); 10408 list_del_rcu(&pmu->entry); 10409 10410 /* 10411 * We dereference the pmu list under both SRCU and regular RCU, so 10412 * synchronize against both of those. 10413 */ 10414 synchronize_srcu(&pmus_srcu); 10415 synchronize_rcu(); 10416 10417 free_percpu(pmu->pmu_disable_count); 10418 if (pmu->type != PERF_TYPE_SOFTWARE) 10419 idr_remove(&pmu_idr, pmu->type); 10420 if (pmu_bus_running) { 10421 if (pmu->nr_addr_filters) 10422 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10423 device_del(pmu->dev); 10424 put_device(pmu->dev); 10425 } 10426 free_pmu_context(pmu); 10427 mutex_unlock(&pmus_lock); 10428 } 10429 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10430 10431 static inline bool has_extended_regs(struct perf_event *event) 10432 { 10433 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10434 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10435 } 10436 10437 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10438 { 10439 struct perf_event_context *ctx = NULL; 10440 int ret; 10441 10442 if (!try_module_get(pmu->module)) 10443 return -ENODEV; 10444 10445 /* 10446 * A number of pmu->event_init() methods iterate the sibling_list to, 10447 * for example, validate if the group fits on the PMU. Therefore, 10448 * if this is a sibling event, acquire the ctx->mutex to protect 10449 * the sibling_list. 10450 */ 10451 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10452 /* 10453 * This ctx->mutex can nest when we're called through 10454 * inheritance. See the perf_event_ctx_lock_nested() comment. 10455 */ 10456 ctx = perf_event_ctx_lock_nested(event->group_leader, 10457 SINGLE_DEPTH_NESTING); 10458 BUG_ON(!ctx); 10459 } 10460 10461 event->pmu = pmu; 10462 ret = pmu->event_init(event); 10463 10464 if (ctx) 10465 perf_event_ctx_unlock(event->group_leader, ctx); 10466 10467 if (!ret) { 10468 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10469 has_extended_regs(event)) 10470 ret = -EOPNOTSUPP; 10471 10472 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10473 event_has_any_exclude_flag(event)) 10474 ret = -EINVAL; 10475 10476 if (ret && event->destroy) 10477 event->destroy(event); 10478 } 10479 10480 if (ret) 10481 module_put(pmu->module); 10482 10483 return ret; 10484 } 10485 10486 static struct pmu *perf_init_event(struct perf_event *event) 10487 { 10488 int idx, type, ret; 10489 struct pmu *pmu; 10490 10491 idx = srcu_read_lock(&pmus_srcu); 10492 10493 /* Try parent's PMU first: */ 10494 if (event->parent && event->parent->pmu) { 10495 pmu = event->parent->pmu; 10496 ret = perf_try_init_event(pmu, event); 10497 if (!ret) 10498 goto unlock; 10499 } 10500 10501 /* 10502 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10503 * are often aliases for PERF_TYPE_RAW. 10504 */ 10505 type = event->attr.type; 10506 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10507 type = PERF_TYPE_RAW; 10508 10509 again: 10510 rcu_read_lock(); 10511 pmu = idr_find(&pmu_idr, type); 10512 rcu_read_unlock(); 10513 if (pmu) { 10514 ret = perf_try_init_event(pmu, event); 10515 if (ret == -ENOENT && event->attr.type != type) { 10516 type = event->attr.type; 10517 goto again; 10518 } 10519 10520 if (ret) 10521 pmu = ERR_PTR(ret); 10522 10523 goto unlock; 10524 } 10525 10526 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10527 ret = perf_try_init_event(pmu, event); 10528 if (!ret) 10529 goto unlock; 10530 10531 if (ret != -ENOENT) { 10532 pmu = ERR_PTR(ret); 10533 goto unlock; 10534 } 10535 } 10536 pmu = ERR_PTR(-ENOENT); 10537 unlock: 10538 srcu_read_unlock(&pmus_srcu, idx); 10539 10540 return pmu; 10541 } 10542 10543 static void attach_sb_event(struct perf_event *event) 10544 { 10545 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10546 10547 raw_spin_lock(&pel->lock); 10548 list_add_rcu(&event->sb_list, &pel->list); 10549 raw_spin_unlock(&pel->lock); 10550 } 10551 10552 /* 10553 * We keep a list of all !task (and therefore per-cpu) events 10554 * that need to receive side-band records. 10555 * 10556 * This avoids having to scan all the various PMU per-cpu contexts 10557 * looking for them. 10558 */ 10559 static void account_pmu_sb_event(struct perf_event *event) 10560 { 10561 if (is_sb_event(event)) 10562 attach_sb_event(event); 10563 } 10564 10565 static void account_event_cpu(struct perf_event *event, int cpu) 10566 { 10567 if (event->parent) 10568 return; 10569 10570 if (is_cgroup_event(event)) 10571 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10572 } 10573 10574 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10575 static void account_freq_event_nohz(void) 10576 { 10577 #ifdef CONFIG_NO_HZ_FULL 10578 /* Lock so we don't race with concurrent unaccount */ 10579 spin_lock(&nr_freq_lock); 10580 if (atomic_inc_return(&nr_freq_events) == 1) 10581 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10582 spin_unlock(&nr_freq_lock); 10583 #endif 10584 } 10585 10586 static void account_freq_event(void) 10587 { 10588 if (tick_nohz_full_enabled()) 10589 account_freq_event_nohz(); 10590 else 10591 atomic_inc(&nr_freq_events); 10592 } 10593 10594 10595 static void account_event(struct perf_event *event) 10596 { 10597 bool inc = false; 10598 10599 if (event->parent) 10600 return; 10601 10602 if (event->attach_state & PERF_ATTACH_TASK) 10603 inc = true; 10604 if (event->attr.mmap || event->attr.mmap_data) 10605 atomic_inc(&nr_mmap_events); 10606 if (event->attr.comm) 10607 atomic_inc(&nr_comm_events); 10608 if (event->attr.namespaces) 10609 atomic_inc(&nr_namespaces_events); 10610 if (event->attr.task) 10611 atomic_inc(&nr_task_events); 10612 if (event->attr.freq) 10613 account_freq_event(); 10614 if (event->attr.context_switch) { 10615 atomic_inc(&nr_switch_events); 10616 inc = true; 10617 } 10618 if (has_branch_stack(event)) 10619 inc = true; 10620 if (is_cgroup_event(event)) 10621 inc = true; 10622 if (event->attr.ksymbol) 10623 atomic_inc(&nr_ksymbol_events); 10624 if (event->attr.bpf_event) 10625 atomic_inc(&nr_bpf_events); 10626 10627 if (inc) { 10628 /* 10629 * We need the mutex here because static_branch_enable() 10630 * must complete *before* the perf_sched_count increment 10631 * becomes visible. 10632 */ 10633 if (atomic_inc_not_zero(&perf_sched_count)) 10634 goto enabled; 10635 10636 mutex_lock(&perf_sched_mutex); 10637 if (!atomic_read(&perf_sched_count)) { 10638 static_branch_enable(&perf_sched_events); 10639 /* 10640 * Guarantee that all CPUs observe they key change and 10641 * call the perf scheduling hooks before proceeding to 10642 * install events that need them. 10643 */ 10644 synchronize_rcu(); 10645 } 10646 /* 10647 * Now that we have waited for the sync_sched(), allow further 10648 * increments to by-pass the mutex. 10649 */ 10650 atomic_inc(&perf_sched_count); 10651 mutex_unlock(&perf_sched_mutex); 10652 } 10653 enabled: 10654 10655 account_event_cpu(event, event->cpu); 10656 10657 account_pmu_sb_event(event); 10658 } 10659 10660 /* 10661 * Allocate and initialize an event structure 10662 */ 10663 static struct perf_event * 10664 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10665 struct task_struct *task, 10666 struct perf_event *group_leader, 10667 struct perf_event *parent_event, 10668 perf_overflow_handler_t overflow_handler, 10669 void *context, int cgroup_fd) 10670 { 10671 struct pmu *pmu; 10672 struct perf_event *event; 10673 struct hw_perf_event *hwc; 10674 long err = -EINVAL; 10675 10676 if ((unsigned)cpu >= nr_cpu_ids) { 10677 if (!task || cpu != -1) 10678 return ERR_PTR(-EINVAL); 10679 } 10680 10681 event = kzalloc(sizeof(*event), GFP_KERNEL); 10682 if (!event) 10683 return ERR_PTR(-ENOMEM); 10684 10685 /* 10686 * Single events are their own group leaders, with an 10687 * empty sibling list: 10688 */ 10689 if (!group_leader) 10690 group_leader = event; 10691 10692 mutex_init(&event->child_mutex); 10693 INIT_LIST_HEAD(&event->child_list); 10694 10695 INIT_LIST_HEAD(&event->event_entry); 10696 INIT_LIST_HEAD(&event->sibling_list); 10697 INIT_LIST_HEAD(&event->active_list); 10698 init_event_group(event); 10699 INIT_LIST_HEAD(&event->rb_entry); 10700 INIT_LIST_HEAD(&event->active_entry); 10701 INIT_LIST_HEAD(&event->addr_filters.list); 10702 INIT_HLIST_NODE(&event->hlist_entry); 10703 10704 10705 init_waitqueue_head(&event->waitq); 10706 event->pending_disable = -1; 10707 init_irq_work(&event->pending, perf_pending_event); 10708 10709 mutex_init(&event->mmap_mutex); 10710 raw_spin_lock_init(&event->addr_filters.lock); 10711 10712 atomic_long_set(&event->refcount, 1); 10713 event->cpu = cpu; 10714 event->attr = *attr; 10715 event->group_leader = group_leader; 10716 event->pmu = NULL; 10717 event->oncpu = -1; 10718 10719 event->parent = parent_event; 10720 10721 event->ns = get_pid_ns(task_active_pid_ns(current)); 10722 event->id = atomic64_inc_return(&perf_event_id); 10723 10724 event->state = PERF_EVENT_STATE_INACTIVE; 10725 10726 if (task) { 10727 event->attach_state = PERF_ATTACH_TASK; 10728 /* 10729 * XXX pmu::event_init needs to know what task to account to 10730 * and we cannot use the ctx information because we need the 10731 * pmu before we get a ctx. 10732 */ 10733 event->hw.target = get_task_struct(task); 10734 } 10735 10736 event->clock = &local_clock; 10737 if (parent_event) 10738 event->clock = parent_event->clock; 10739 10740 if (!overflow_handler && parent_event) { 10741 overflow_handler = parent_event->overflow_handler; 10742 context = parent_event->overflow_handler_context; 10743 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10744 if (overflow_handler == bpf_overflow_handler) { 10745 struct bpf_prog *prog = parent_event->prog; 10746 10747 bpf_prog_inc(prog); 10748 event->prog = prog; 10749 event->orig_overflow_handler = 10750 parent_event->orig_overflow_handler; 10751 } 10752 #endif 10753 } 10754 10755 if (overflow_handler) { 10756 event->overflow_handler = overflow_handler; 10757 event->overflow_handler_context = context; 10758 } else if (is_write_backward(event)){ 10759 event->overflow_handler = perf_event_output_backward; 10760 event->overflow_handler_context = NULL; 10761 } else { 10762 event->overflow_handler = perf_event_output_forward; 10763 event->overflow_handler_context = NULL; 10764 } 10765 10766 perf_event__state_init(event); 10767 10768 pmu = NULL; 10769 10770 hwc = &event->hw; 10771 hwc->sample_period = attr->sample_period; 10772 if (attr->freq && attr->sample_freq) 10773 hwc->sample_period = 1; 10774 hwc->last_period = hwc->sample_period; 10775 10776 local64_set(&hwc->period_left, hwc->sample_period); 10777 10778 /* 10779 * We currently do not support PERF_SAMPLE_READ on inherited events. 10780 * See perf_output_read(). 10781 */ 10782 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10783 goto err_ns; 10784 10785 if (!has_branch_stack(event)) 10786 event->attr.branch_sample_type = 0; 10787 10788 if (cgroup_fd != -1) { 10789 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10790 if (err) 10791 goto err_ns; 10792 } 10793 10794 pmu = perf_init_event(event); 10795 if (IS_ERR(pmu)) { 10796 err = PTR_ERR(pmu); 10797 goto err_ns; 10798 } 10799 10800 /* 10801 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 10802 * be different on other CPUs in the uncore mask. 10803 */ 10804 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 10805 err = -EINVAL; 10806 goto err_pmu; 10807 } 10808 10809 if (event->attr.aux_output && 10810 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 10811 err = -EOPNOTSUPP; 10812 goto err_pmu; 10813 } 10814 10815 err = exclusive_event_init(event); 10816 if (err) 10817 goto err_pmu; 10818 10819 if (has_addr_filter(event)) { 10820 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10821 sizeof(struct perf_addr_filter_range), 10822 GFP_KERNEL); 10823 if (!event->addr_filter_ranges) { 10824 err = -ENOMEM; 10825 goto err_per_task; 10826 } 10827 10828 /* 10829 * Clone the parent's vma offsets: they are valid until exec() 10830 * even if the mm is not shared with the parent. 10831 */ 10832 if (event->parent) { 10833 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10834 10835 raw_spin_lock_irq(&ifh->lock); 10836 memcpy(event->addr_filter_ranges, 10837 event->parent->addr_filter_ranges, 10838 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10839 raw_spin_unlock_irq(&ifh->lock); 10840 } 10841 10842 /* force hw sync on the address filters */ 10843 event->addr_filters_gen = 1; 10844 } 10845 10846 if (!event->parent) { 10847 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10848 err = get_callchain_buffers(attr->sample_max_stack); 10849 if (err) 10850 goto err_addr_filters; 10851 } 10852 } 10853 10854 err = security_perf_event_alloc(event); 10855 if (err) 10856 goto err_callchain_buffer; 10857 10858 /* symmetric to unaccount_event() in _free_event() */ 10859 account_event(event); 10860 10861 return event; 10862 10863 err_callchain_buffer: 10864 if (!event->parent) { 10865 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 10866 put_callchain_buffers(); 10867 } 10868 err_addr_filters: 10869 kfree(event->addr_filter_ranges); 10870 10871 err_per_task: 10872 exclusive_event_destroy(event); 10873 10874 err_pmu: 10875 if (event->destroy) 10876 event->destroy(event); 10877 module_put(pmu->module); 10878 err_ns: 10879 if (is_cgroup_event(event)) 10880 perf_detach_cgroup(event); 10881 if (event->ns) 10882 put_pid_ns(event->ns); 10883 if (event->hw.target) 10884 put_task_struct(event->hw.target); 10885 kfree(event); 10886 10887 return ERR_PTR(err); 10888 } 10889 10890 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10891 struct perf_event_attr *attr) 10892 { 10893 u32 size; 10894 int ret; 10895 10896 /* Zero the full structure, so that a short copy will be nice. */ 10897 memset(attr, 0, sizeof(*attr)); 10898 10899 ret = get_user(size, &uattr->size); 10900 if (ret) 10901 return ret; 10902 10903 /* ABI compatibility quirk: */ 10904 if (!size) 10905 size = PERF_ATTR_SIZE_VER0; 10906 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 10907 goto err_size; 10908 10909 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 10910 if (ret) { 10911 if (ret == -E2BIG) 10912 goto err_size; 10913 return ret; 10914 } 10915 10916 attr->size = size; 10917 10918 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 10919 return -EINVAL; 10920 10921 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10922 return -EINVAL; 10923 10924 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10925 return -EINVAL; 10926 10927 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10928 u64 mask = attr->branch_sample_type; 10929 10930 /* only using defined bits */ 10931 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10932 return -EINVAL; 10933 10934 /* at least one branch bit must be set */ 10935 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10936 return -EINVAL; 10937 10938 /* propagate priv level, when not set for branch */ 10939 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10940 10941 /* exclude_kernel checked on syscall entry */ 10942 if (!attr->exclude_kernel) 10943 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10944 10945 if (!attr->exclude_user) 10946 mask |= PERF_SAMPLE_BRANCH_USER; 10947 10948 if (!attr->exclude_hv) 10949 mask |= PERF_SAMPLE_BRANCH_HV; 10950 /* 10951 * adjust user setting (for HW filter setup) 10952 */ 10953 attr->branch_sample_type = mask; 10954 } 10955 /* privileged levels capture (kernel, hv): check permissions */ 10956 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 10957 ret = perf_allow_kernel(attr); 10958 if (ret) 10959 return ret; 10960 } 10961 } 10962 10963 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10964 ret = perf_reg_validate(attr->sample_regs_user); 10965 if (ret) 10966 return ret; 10967 } 10968 10969 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10970 if (!arch_perf_have_user_stack_dump()) 10971 return -ENOSYS; 10972 10973 /* 10974 * We have __u32 type for the size, but so far 10975 * we can only use __u16 as maximum due to the 10976 * __u16 sample size limit. 10977 */ 10978 if (attr->sample_stack_user >= USHRT_MAX) 10979 return -EINVAL; 10980 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10981 return -EINVAL; 10982 } 10983 10984 if (!attr->sample_max_stack) 10985 attr->sample_max_stack = sysctl_perf_event_max_stack; 10986 10987 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10988 ret = perf_reg_validate(attr->sample_regs_intr); 10989 out: 10990 return ret; 10991 10992 err_size: 10993 put_user(sizeof(*attr), &uattr->size); 10994 ret = -E2BIG; 10995 goto out; 10996 } 10997 10998 static int 10999 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11000 { 11001 struct ring_buffer *rb = NULL; 11002 int ret = -EINVAL; 11003 11004 if (!output_event) 11005 goto set; 11006 11007 /* don't allow circular references */ 11008 if (event == output_event) 11009 goto out; 11010 11011 /* 11012 * Don't allow cross-cpu buffers 11013 */ 11014 if (output_event->cpu != event->cpu) 11015 goto out; 11016 11017 /* 11018 * If its not a per-cpu rb, it must be the same task. 11019 */ 11020 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11021 goto out; 11022 11023 /* 11024 * Mixing clocks in the same buffer is trouble you don't need. 11025 */ 11026 if (output_event->clock != event->clock) 11027 goto out; 11028 11029 /* 11030 * Either writing ring buffer from beginning or from end. 11031 * Mixing is not allowed. 11032 */ 11033 if (is_write_backward(output_event) != is_write_backward(event)) 11034 goto out; 11035 11036 /* 11037 * If both events generate aux data, they must be on the same PMU 11038 */ 11039 if (has_aux(event) && has_aux(output_event) && 11040 event->pmu != output_event->pmu) 11041 goto out; 11042 11043 set: 11044 mutex_lock(&event->mmap_mutex); 11045 /* Can't redirect output if we've got an active mmap() */ 11046 if (atomic_read(&event->mmap_count)) 11047 goto unlock; 11048 11049 if (output_event) { 11050 /* get the rb we want to redirect to */ 11051 rb = ring_buffer_get(output_event); 11052 if (!rb) 11053 goto unlock; 11054 } 11055 11056 ring_buffer_attach(event, rb); 11057 11058 ret = 0; 11059 unlock: 11060 mutex_unlock(&event->mmap_mutex); 11061 11062 out: 11063 return ret; 11064 } 11065 11066 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11067 { 11068 if (b < a) 11069 swap(a, b); 11070 11071 mutex_lock(a); 11072 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11073 } 11074 11075 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11076 { 11077 bool nmi_safe = false; 11078 11079 switch (clk_id) { 11080 case CLOCK_MONOTONIC: 11081 event->clock = &ktime_get_mono_fast_ns; 11082 nmi_safe = true; 11083 break; 11084 11085 case CLOCK_MONOTONIC_RAW: 11086 event->clock = &ktime_get_raw_fast_ns; 11087 nmi_safe = true; 11088 break; 11089 11090 case CLOCK_REALTIME: 11091 event->clock = &ktime_get_real_ns; 11092 break; 11093 11094 case CLOCK_BOOTTIME: 11095 event->clock = &ktime_get_boottime_ns; 11096 break; 11097 11098 case CLOCK_TAI: 11099 event->clock = &ktime_get_clocktai_ns; 11100 break; 11101 11102 default: 11103 return -EINVAL; 11104 } 11105 11106 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11107 return -EINVAL; 11108 11109 return 0; 11110 } 11111 11112 /* 11113 * Variation on perf_event_ctx_lock_nested(), except we take two context 11114 * mutexes. 11115 */ 11116 static struct perf_event_context * 11117 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11118 struct perf_event_context *ctx) 11119 { 11120 struct perf_event_context *gctx; 11121 11122 again: 11123 rcu_read_lock(); 11124 gctx = READ_ONCE(group_leader->ctx); 11125 if (!refcount_inc_not_zero(&gctx->refcount)) { 11126 rcu_read_unlock(); 11127 goto again; 11128 } 11129 rcu_read_unlock(); 11130 11131 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11132 11133 if (group_leader->ctx != gctx) { 11134 mutex_unlock(&ctx->mutex); 11135 mutex_unlock(&gctx->mutex); 11136 put_ctx(gctx); 11137 goto again; 11138 } 11139 11140 return gctx; 11141 } 11142 11143 /** 11144 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11145 * 11146 * @attr_uptr: event_id type attributes for monitoring/sampling 11147 * @pid: target pid 11148 * @cpu: target cpu 11149 * @group_fd: group leader event fd 11150 */ 11151 SYSCALL_DEFINE5(perf_event_open, 11152 struct perf_event_attr __user *, attr_uptr, 11153 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11154 { 11155 struct perf_event *group_leader = NULL, *output_event = NULL; 11156 struct perf_event *event, *sibling; 11157 struct perf_event_attr attr; 11158 struct perf_event_context *ctx, *uninitialized_var(gctx); 11159 struct file *event_file = NULL; 11160 struct fd group = {NULL, 0}; 11161 struct task_struct *task = NULL; 11162 struct pmu *pmu; 11163 int event_fd; 11164 int move_group = 0; 11165 int err; 11166 int f_flags = O_RDWR; 11167 int cgroup_fd = -1; 11168 11169 /* for future expandability... */ 11170 if (flags & ~PERF_FLAG_ALL) 11171 return -EINVAL; 11172 11173 /* Do we allow access to perf_event_open(2) ? */ 11174 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11175 if (err) 11176 return err; 11177 11178 err = perf_copy_attr(attr_uptr, &attr); 11179 if (err) 11180 return err; 11181 11182 if (!attr.exclude_kernel) { 11183 err = perf_allow_kernel(&attr); 11184 if (err) 11185 return err; 11186 } 11187 11188 if (attr.namespaces) { 11189 if (!capable(CAP_SYS_ADMIN)) 11190 return -EACCES; 11191 } 11192 11193 if (attr.freq) { 11194 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11195 return -EINVAL; 11196 } else { 11197 if (attr.sample_period & (1ULL << 63)) 11198 return -EINVAL; 11199 } 11200 11201 /* Only privileged users can get physical addresses */ 11202 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11203 err = perf_allow_kernel(&attr); 11204 if (err) 11205 return err; 11206 } 11207 11208 err = security_locked_down(LOCKDOWN_PERF); 11209 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11210 /* REGS_INTR can leak data, lockdown must prevent this */ 11211 return err; 11212 11213 err = 0; 11214 11215 /* 11216 * In cgroup mode, the pid argument is used to pass the fd 11217 * opened to the cgroup directory in cgroupfs. The cpu argument 11218 * designates the cpu on which to monitor threads from that 11219 * cgroup. 11220 */ 11221 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11222 return -EINVAL; 11223 11224 if (flags & PERF_FLAG_FD_CLOEXEC) 11225 f_flags |= O_CLOEXEC; 11226 11227 event_fd = get_unused_fd_flags(f_flags); 11228 if (event_fd < 0) 11229 return event_fd; 11230 11231 if (group_fd != -1) { 11232 err = perf_fget_light(group_fd, &group); 11233 if (err) 11234 goto err_fd; 11235 group_leader = group.file->private_data; 11236 if (flags & PERF_FLAG_FD_OUTPUT) 11237 output_event = group_leader; 11238 if (flags & PERF_FLAG_FD_NO_GROUP) 11239 group_leader = NULL; 11240 } 11241 11242 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11243 task = find_lively_task_by_vpid(pid); 11244 if (IS_ERR(task)) { 11245 err = PTR_ERR(task); 11246 goto err_group_fd; 11247 } 11248 } 11249 11250 if (task && group_leader && 11251 group_leader->attr.inherit != attr.inherit) { 11252 err = -EINVAL; 11253 goto err_task; 11254 } 11255 11256 if (task) { 11257 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 11258 if (err) 11259 goto err_task; 11260 11261 /* 11262 * Reuse ptrace permission checks for now. 11263 * 11264 * We must hold cred_guard_mutex across this and any potential 11265 * perf_install_in_context() call for this new event to 11266 * serialize against exec() altering our credentials (and the 11267 * perf_event_exit_task() that could imply). 11268 */ 11269 err = -EACCES; 11270 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11271 goto err_cred; 11272 } 11273 11274 if (flags & PERF_FLAG_PID_CGROUP) 11275 cgroup_fd = pid; 11276 11277 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11278 NULL, NULL, cgroup_fd); 11279 if (IS_ERR(event)) { 11280 err = PTR_ERR(event); 11281 goto err_cred; 11282 } 11283 11284 if (is_sampling_event(event)) { 11285 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11286 err = -EOPNOTSUPP; 11287 goto err_alloc; 11288 } 11289 } 11290 11291 /* 11292 * Special case software events and allow them to be part of 11293 * any hardware group. 11294 */ 11295 pmu = event->pmu; 11296 11297 if (attr.use_clockid) { 11298 err = perf_event_set_clock(event, attr.clockid); 11299 if (err) 11300 goto err_alloc; 11301 } 11302 11303 if (pmu->task_ctx_nr == perf_sw_context) 11304 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11305 11306 if (group_leader) { 11307 if (is_software_event(event) && 11308 !in_software_context(group_leader)) { 11309 /* 11310 * If the event is a sw event, but the group_leader 11311 * is on hw context. 11312 * 11313 * Allow the addition of software events to hw 11314 * groups, this is safe because software events 11315 * never fail to schedule. 11316 */ 11317 pmu = group_leader->ctx->pmu; 11318 } else if (!is_software_event(event) && 11319 is_software_event(group_leader) && 11320 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11321 /* 11322 * In case the group is a pure software group, and we 11323 * try to add a hardware event, move the whole group to 11324 * the hardware context. 11325 */ 11326 move_group = 1; 11327 } 11328 } 11329 11330 /* 11331 * Get the target context (task or percpu): 11332 */ 11333 ctx = find_get_context(pmu, task, event); 11334 if (IS_ERR(ctx)) { 11335 err = PTR_ERR(ctx); 11336 goto err_alloc; 11337 } 11338 11339 /* 11340 * Look up the group leader (we will attach this event to it): 11341 */ 11342 if (group_leader) { 11343 err = -EINVAL; 11344 11345 /* 11346 * Do not allow a recursive hierarchy (this new sibling 11347 * becoming part of another group-sibling): 11348 */ 11349 if (group_leader->group_leader != group_leader) 11350 goto err_context; 11351 11352 /* All events in a group should have the same clock */ 11353 if (group_leader->clock != event->clock) 11354 goto err_context; 11355 11356 /* 11357 * Make sure we're both events for the same CPU; 11358 * grouping events for different CPUs is broken; since 11359 * you can never concurrently schedule them anyhow. 11360 */ 11361 if (group_leader->cpu != event->cpu) 11362 goto err_context; 11363 11364 /* 11365 * Make sure we're both on the same task, or both 11366 * per-CPU events. 11367 */ 11368 if (group_leader->ctx->task != ctx->task) 11369 goto err_context; 11370 11371 /* 11372 * Do not allow to attach to a group in a different task 11373 * or CPU context. If we're moving SW events, we'll fix 11374 * this up later, so allow that. 11375 */ 11376 if (!move_group && group_leader->ctx != ctx) 11377 goto err_context; 11378 11379 /* 11380 * Only a group leader can be exclusive or pinned 11381 */ 11382 if (attr.exclusive || attr.pinned) 11383 goto err_context; 11384 } 11385 11386 if (output_event) { 11387 err = perf_event_set_output(event, output_event); 11388 if (err) 11389 goto err_context; 11390 } 11391 11392 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11393 f_flags); 11394 if (IS_ERR(event_file)) { 11395 err = PTR_ERR(event_file); 11396 event_file = NULL; 11397 goto err_context; 11398 } 11399 11400 if (move_group) { 11401 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11402 11403 if (gctx->task == TASK_TOMBSTONE) { 11404 err = -ESRCH; 11405 goto err_locked; 11406 } 11407 11408 /* 11409 * Check if we raced against another sys_perf_event_open() call 11410 * moving the software group underneath us. 11411 */ 11412 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11413 /* 11414 * If someone moved the group out from under us, check 11415 * if this new event wound up on the same ctx, if so 11416 * its the regular !move_group case, otherwise fail. 11417 */ 11418 if (gctx != ctx) { 11419 err = -EINVAL; 11420 goto err_locked; 11421 } else { 11422 perf_event_ctx_unlock(group_leader, gctx); 11423 move_group = 0; 11424 } 11425 } 11426 11427 /* 11428 * Failure to create exclusive events returns -EBUSY. 11429 */ 11430 err = -EBUSY; 11431 if (!exclusive_event_installable(group_leader, ctx)) 11432 goto err_locked; 11433 11434 for_each_sibling_event(sibling, group_leader) { 11435 if (!exclusive_event_installable(sibling, ctx)) 11436 goto err_locked; 11437 } 11438 } else { 11439 mutex_lock(&ctx->mutex); 11440 } 11441 11442 if (ctx->task == TASK_TOMBSTONE) { 11443 err = -ESRCH; 11444 goto err_locked; 11445 } 11446 11447 if (!perf_event_validate_size(event)) { 11448 err = -E2BIG; 11449 goto err_locked; 11450 } 11451 11452 if (!task) { 11453 /* 11454 * Check if the @cpu we're creating an event for is online. 11455 * 11456 * We use the perf_cpu_context::ctx::mutex to serialize against 11457 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11458 */ 11459 struct perf_cpu_context *cpuctx = 11460 container_of(ctx, struct perf_cpu_context, ctx); 11461 11462 if (!cpuctx->online) { 11463 err = -ENODEV; 11464 goto err_locked; 11465 } 11466 } 11467 11468 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11469 err = -EINVAL; 11470 goto err_locked; 11471 } 11472 11473 /* 11474 * Must be under the same ctx::mutex as perf_install_in_context(), 11475 * because we need to serialize with concurrent event creation. 11476 */ 11477 if (!exclusive_event_installable(event, ctx)) { 11478 err = -EBUSY; 11479 goto err_locked; 11480 } 11481 11482 WARN_ON_ONCE(ctx->parent_ctx); 11483 11484 /* 11485 * This is the point on no return; we cannot fail hereafter. This is 11486 * where we start modifying current state. 11487 */ 11488 11489 if (move_group) { 11490 /* 11491 * See perf_event_ctx_lock() for comments on the details 11492 * of swizzling perf_event::ctx. 11493 */ 11494 perf_remove_from_context(group_leader, 0); 11495 put_ctx(gctx); 11496 11497 for_each_sibling_event(sibling, group_leader) { 11498 perf_remove_from_context(sibling, 0); 11499 put_ctx(gctx); 11500 } 11501 11502 /* 11503 * Wait for everybody to stop referencing the events through 11504 * the old lists, before installing it on new lists. 11505 */ 11506 synchronize_rcu(); 11507 11508 /* 11509 * Install the group siblings before the group leader. 11510 * 11511 * Because a group leader will try and install the entire group 11512 * (through the sibling list, which is still in-tact), we can 11513 * end up with siblings installed in the wrong context. 11514 * 11515 * By installing siblings first we NO-OP because they're not 11516 * reachable through the group lists. 11517 */ 11518 for_each_sibling_event(sibling, group_leader) { 11519 perf_event__state_init(sibling); 11520 perf_install_in_context(ctx, sibling, sibling->cpu); 11521 get_ctx(ctx); 11522 } 11523 11524 /* 11525 * Removing from the context ends up with disabled 11526 * event. What we want here is event in the initial 11527 * startup state, ready to be add into new context. 11528 */ 11529 perf_event__state_init(group_leader); 11530 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11531 get_ctx(ctx); 11532 } 11533 11534 /* 11535 * Precalculate sample_data sizes; do while holding ctx::mutex such 11536 * that we're serialized against further additions and before 11537 * perf_install_in_context() which is the point the event is active and 11538 * can use these values. 11539 */ 11540 perf_event__header_size(event); 11541 perf_event__id_header_size(event); 11542 11543 event->owner = current; 11544 11545 perf_install_in_context(ctx, event, event->cpu); 11546 perf_unpin_context(ctx); 11547 11548 if (move_group) 11549 perf_event_ctx_unlock(group_leader, gctx); 11550 mutex_unlock(&ctx->mutex); 11551 11552 if (task) { 11553 mutex_unlock(&task->signal->cred_guard_mutex); 11554 put_task_struct(task); 11555 } 11556 11557 mutex_lock(¤t->perf_event_mutex); 11558 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11559 mutex_unlock(¤t->perf_event_mutex); 11560 11561 /* 11562 * Drop the reference on the group_event after placing the 11563 * new event on the sibling_list. This ensures destruction 11564 * of the group leader will find the pointer to itself in 11565 * perf_group_detach(). 11566 */ 11567 fdput(group); 11568 fd_install(event_fd, event_file); 11569 return event_fd; 11570 11571 err_locked: 11572 if (move_group) 11573 perf_event_ctx_unlock(group_leader, gctx); 11574 mutex_unlock(&ctx->mutex); 11575 /* err_file: */ 11576 fput(event_file); 11577 err_context: 11578 perf_unpin_context(ctx); 11579 put_ctx(ctx); 11580 err_alloc: 11581 /* 11582 * If event_file is set, the fput() above will have called ->release() 11583 * and that will take care of freeing the event. 11584 */ 11585 if (!event_file) 11586 free_event(event); 11587 err_cred: 11588 if (task) 11589 mutex_unlock(&task->signal->cred_guard_mutex); 11590 err_task: 11591 if (task) 11592 put_task_struct(task); 11593 err_group_fd: 11594 fdput(group); 11595 err_fd: 11596 put_unused_fd(event_fd); 11597 return err; 11598 } 11599 11600 /** 11601 * perf_event_create_kernel_counter 11602 * 11603 * @attr: attributes of the counter to create 11604 * @cpu: cpu in which the counter is bound 11605 * @task: task to profile (NULL for percpu) 11606 */ 11607 struct perf_event * 11608 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11609 struct task_struct *task, 11610 perf_overflow_handler_t overflow_handler, 11611 void *context) 11612 { 11613 struct perf_event_context *ctx; 11614 struct perf_event *event; 11615 int err; 11616 11617 /* 11618 * Grouping is not supported for kernel events, neither is 'AUX', 11619 * make sure the caller's intentions are adjusted. 11620 */ 11621 if (attr->aux_output) 11622 return ERR_PTR(-EINVAL); 11623 11624 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11625 overflow_handler, context, -1); 11626 if (IS_ERR(event)) { 11627 err = PTR_ERR(event); 11628 goto err; 11629 } 11630 11631 /* Mark owner so we could distinguish it from user events. */ 11632 event->owner = TASK_TOMBSTONE; 11633 11634 /* 11635 * Get the target context (task or percpu): 11636 */ 11637 ctx = find_get_context(event->pmu, task, event); 11638 if (IS_ERR(ctx)) { 11639 err = PTR_ERR(ctx); 11640 goto err_free; 11641 } 11642 11643 WARN_ON_ONCE(ctx->parent_ctx); 11644 mutex_lock(&ctx->mutex); 11645 if (ctx->task == TASK_TOMBSTONE) { 11646 err = -ESRCH; 11647 goto err_unlock; 11648 } 11649 11650 if (!task) { 11651 /* 11652 * Check if the @cpu we're creating an event for is online. 11653 * 11654 * We use the perf_cpu_context::ctx::mutex to serialize against 11655 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11656 */ 11657 struct perf_cpu_context *cpuctx = 11658 container_of(ctx, struct perf_cpu_context, ctx); 11659 if (!cpuctx->online) { 11660 err = -ENODEV; 11661 goto err_unlock; 11662 } 11663 } 11664 11665 if (!exclusive_event_installable(event, ctx)) { 11666 err = -EBUSY; 11667 goto err_unlock; 11668 } 11669 11670 perf_install_in_context(ctx, event, event->cpu); 11671 perf_unpin_context(ctx); 11672 mutex_unlock(&ctx->mutex); 11673 11674 return event; 11675 11676 err_unlock: 11677 mutex_unlock(&ctx->mutex); 11678 perf_unpin_context(ctx); 11679 put_ctx(ctx); 11680 err_free: 11681 free_event(event); 11682 err: 11683 return ERR_PTR(err); 11684 } 11685 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11686 11687 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11688 { 11689 struct perf_event_context *src_ctx; 11690 struct perf_event_context *dst_ctx; 11691 struct perf_event *event, *tmp; 11692 LIST_HEAD(events); 11693 11694 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11695 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11696 11697 /* 11698 * See perf_event_ctx_lock() for comments on the details 11699 * of swizzling perf_event::ctx. 11700 */ 11701 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11702 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11703 event_entry) { 11704 perf_remove_from_context(event, 0); 11705 unaccount_event_cpu(event, src_cpu); 11706 put_ctx(src_ctx); 11707 list_add(&event->migrate_entry, &events); 11708 } 11709 11710 /* 11711 * Wait for the events to quiesce before re-instating them. 11712 */ 11713 synchronize_rcu(); 11714 11715 /* 11716 * Re-instate events in 2 passes. 11717 * 11718 * Skip over group leaders and only install siblings on this first 11719 * pass, siblings will not get enabled without a leader, however a 11720 * leader will enable its siblings, even if those are still on the old 11721 * context. 11722 */ 11723 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11724 if (event->group_leader == event) 11725 continue; 11726 11727 list_del(&event->migrate_entry); 11728 if (event->state >= PERF_EVENT_STATE_OFF) 11729 event->state = PERF_EVENT_STATE_INACTIVE; 11730 account_event_cpu(event, dst_cpu); 11731 perf_install_in_context(dst_ctx, event, dst_cpu); 11732 get_ctx(dst_ctx); 11733 } 11734 11735 /* 11736 * Once all the siblings are setup properly, install the group leaders 11737 * to make it go. 11738 */ 11739 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11740 list_del(&event->migrate_entry); 11741 if (event->state >= PERF_EVENT_STATE_OFF) 11742 event->state = PERF_EVENT_STATE_INACTIVE; 11743 account_event_cpu(event, dst_cpu); 11744 perf_install_in_context(dst_ctx, event, dst_cpu); 11745 get_ctx(dst_ctx); 11746 } 11747 mutex_unlock(&dst_ctx->mutex); 11748 mutex_unlock(&src_ctx->mutex); 11749 } 11750 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11751 11752 static void sync_child_event(struct perf_event *child_event, 11753 struct task_struct *child) 11754 { 11755 struct perf_event *parent_event = child_event->parent; 11756 u64 child_val; 11757 11758 if (child_event->attr.inherit_stat) 11759 perf_event_read_event(child_event, child); 11760 11761 child_val = perf_event_count(child_event); 11762 11763 /* 11764 * Add back the child's count to the parent's count: 11765 */ 11766 atomic64_add(child_val, &parent_event->child_count); 11767 atomic64_add(child_event->total_time_enabled, 11768 &parent_event->child_total_time_enabled); 11769 atomic64_add(child_event->total_time_running, 11770 &parent_event->child_total_time_running); 11771 } 11772 11773 static void 11774 perf_event_exit_event(struct perf_event *child_event, 11775 struct perf_event_context *child_ctx, 11776 struct task_struct *child) 11777 { 11778 struct perf_event *parent_event = child_event->parent; 11779 11780 /* 11781 * Do not destroy the 'original' grouping; because of the context 11782 * switch optimization the original events could've ended up in a 11783 * random child task. 11784 * 11785 * If we were to destroy the original group, all group related 11786 * operations would cease to function properly after this random 11787 * child dies. 11788 * 11789 * Do destroy all inherited groups, we don't care about those 11790 * and being thorough is better. 11791 */ 11792 raw_spin_lock_irq(&child_ctx->lock); 11793 WARN_ON_ONCE(child_ctx->is_active); 11794 11795 if (parent_event) 11796 perf_group_detach(child_event); 11797 list_del_event(child_event, child_ctx); 11798 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11799 raw_spin_unlock_irq(&child_ctx->lock); 11800 11801 /* 11802 * Parent events are governed by their filedesc, retain them. 11803 */ 11804 if (!parent_event) { 11805 perf_event_wakeup(child_event); 11806 return; 11807 } 11808 /* 11809 * Child events can be cleaned up. 11810 */ 11811 11812 sync_child_event(child_event, child); 11813 11814 /* 11815 * Remove this event from the parent's list 11816 */ 11817 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11818 mutex_lock(&parent_event->child_mutex); 11819 list_del_init(&child_event->child_list); 11820 mutex_unlock(&parent_event->child_mutex); 11821 11822 /* 11823 * Kick perf_poll() for is_event_hup(). 11824 */ 11825 perf_event_wakeup(parent_event); 11826 free_event(child_event); 11827 put_event(parent_event); 11828 } 11829 11830 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11831 { 11832 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11833 struct perf_event *child_event, *next; 11834 11835 WARN_ON_ONCE(child != current); 11836 11837 child_ctx = perf_pin_task_context(child, ctxn); 11838 if (!child_ctx) 11839 return; 11840 11841 /* 11842 * In order to reduce the amount of tricky in ctx tear-down, we hold 11843 * ctx::mutex over the entire thing. This serializes against almost 11844 * everything that wants to access the ctx. 11845 * 11846 * The exception is sys_perf_event_open() / 11847 * perf_event_create_kernel_count() which does find_get_context() 11848 * without ctx::mutex (it cannot because of the move_group double mutex 11849 * lock thing). See the comments in perf_install_in_context(). 11850 */ 11851 mutex_lock(&child_ctx->mutex); 11852 11853 /* 11854 * In a single ctx::lock section, de-schedule the events and detach the 11855 * context from the task such that we cannot ever get it scheduled back 11856 * in. 11857 */ 11858 raw_spin_lock_irq(&child_ctx->lock); 11859 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11860 11861 /* 11862 * Now that the context is inactive, destroy the task <-> ctx relation 11863 * and mark the context dead. 11864 */ 11865 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11866 put_ctx(child_ctx); /* cannot be last */ 11867 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11868 put_task_struct(current); /* cannot be last */ 11869 11870 clone_ctx = unclone_ctx(child_ctx); 11871 raw_spin_unlock_irq(&child_ctx->lock); 11872 11873 if (clone_ctx) 11874 put_ctx(clone_ctx); 11875 11876 /* 11877 * Report the task dead after unscheduling the events so that we 11878 * won't get any samples after PERF_RECORD_EXIT. We can however still 11879 * get a few PERF_RECORD_READ events. 11880 */ 11881 perf_event_task(child, child_ctx, 0); 11882 11883 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11884 perf_event_exit_event(child_event, child_ctx, child); 11885 11886 mutex_unlock(&child_ctx->mutex); 11887 11888 put_ctx(child_ctx); 11889 } 11890 11891 /* 11892 * When a child task exits, feed back event values to parent events. 11893 * 11894 * Can be called with cred_guard_mutex held when called from 11895 * install_exec_creds(). 11896 */ 11897 void perf_event_exit_task(struct task_struct *child) 11898 { 11899 struct perf_event *event, *tmp; 11900 int ctxn; 11901 11902 mutex_lock(&child->perf_event_mutex); 11903 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11904 owner_entry) { 11905 list_del_init(&event->owner_entry); 11906 11907 /* 11908 * Ensure the list deletion is visible before we clear 11909 * the owner, closes a race against perf_release() where 11910 * we need to serialize on the owner->perf_event_mutex. 11911 */ 11912 smp_store_release(&event->owner, NULL); 11913 } 11914 mutex_unlock(&child->perf_event_mutex); 11915 11916 for_each_task_context_nr(ctxn) 11917 perf_event_exit_task_context(child, ctxn); 11918 11919 /* 11920 * The perf_event_exit_task_context calls perf_event_task 11921 * with child's task_ctx, which generates EXIT events for 11922 * child contexts and sets child->perf_event_ctxp[] to NULL. 11923 * At this point we need to send EXIT events to cpu contexts. 11924 */ 11925 perf_event_task(child, NULL, 0); 11926 } 11927 11928 static void perf_free_event(struct perf_event *event, 11929 struct perf_event_context *ctx) 11930 { 11931 struct perf_event *parent = event->parent; 11932 11933 if (WARN_ON_ONCE(!parent)) 11934 return; 11935 11936 mutex_lock(&parent->child_mutex); 11937 list_del_init(&event->child_list); 11938 mutex_unlock(&parent->child_mutex); 11939 11940 put_event(parent); 11941 11942 raw_spin_lock_irq(&ctx->lock); 11943 perf_group_detach(event); 11944 list_del_event(event, ctx); 11945 raw_spin_unlock_irq(&ctx->lock); 11946 free_event(event); 11947 } 11948 11949 /* 11950 * Free a context as created by inheritance by perf_event_init_task() below, 11951 * used by fork() in case of fail. 11952 * 11953 * Even though the task has never lived, the context and events have been 11954 * exposed through the child_list, so we must take care tearing it all down. 11955 */ 11956 void perf_event_free_task(struct task_struct *task) 11957 { 11958 struct perf_event_context *ctx; 11959 struct perf_event *event, *tmp; 11960 int ctxn; 11961 11962 for_each_task_context_nr(ctxn) { 11963 ctx = task->perf_event_ctxp[ctxn]; 11964 if (!ctx) 11965 continue; 11966 11967 mutex_lock(&ctx->mutex); 11968 raw_spin_lock_irq(&ctx->lock); 11969 /* 11970 * Destroy the task <-> ctx relation and mark the context dead. 11971 * 11972 * This is important because even though the task hasn't been 11973 * exposed yet the context has been (through child_list). 11974 */ 11975 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11976 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11977 put_task_struct(task); /* cannot be last */ 11978 raw_spin_unlock_irq(&ctx->lock); 11979 11980 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11981 perf_free_event(event, ctx); 11982 11983 mutex_unlock(&ctx->mutex); 11984 11985 /* 11986 * perf_event_release_kernel() could've stolen some of our 11987 * child events and still have them on its free_list. In that 11988 * case we must wait for these events to have been freed (in 11989 * particular all their references to this task must've been 11990 * dropped). 11991 * 11992 * Without this copy_process() will unconditionally free this 11993 * task (irrespective of its reference count) and 11994 * _free_event()'s put_task_struct(event->hw.target) will be a 11995 * use-after-free. 11996 * 11997 * Wait for all events to drop their context reference. 11998 */ 11999 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12000 put_ctx(ctx); /* must be last */ 12001 } 12002 } 12003 12004 void perf_event_delayed_put(struct task_struct *task) 12005 { 12006 int ctxn; 12007 12008 for_each_task_context_nr(ctxn) 12009 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12010 } 12011 12012 struct file *perf_event_get(unsigned int fd) 12013 { 12014 struct file *file = fget(fd); 12015 if (!file) 12016 return ERR_PTR(-EBADF); 12017 12018 if (file->f_op != &perf_fops) { 12019 fput(file); 12020 return ERR_PTR(-EBADF); 12021 } 12022 12023 return file; 12024 } 12025 12026 const struct perf_event *perf_get_event(struct file *file) 12027 { 12028 if (file->f_op != &perf_fops) 12029 return ERR_PTR(-EINVAL); 12030 12031 return file->private_data; 12032 } 12033 12034 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12035 { 12036 if (!event) 12037 return ERR_PTR(-EINVAL); 12038 12039 return &event->attr; 12040 } 12041 12042 /* 12043 * Inherit an event from parent task to child task. 12044 * 12045 * Returns: 12046 * - valid pointer on success 12047 * - NULL for orphaned events 12048 * - IS_ERR() on error 12049 */ 12050 static struct perf_event * 12051 inherit_event(struct perf_event *parent_event, 12052 struct task_struct *parent, 12053 struct perf_event_context *parent_ctx, 12054 struct task_struct *child, 12055 struct perf_event *group_leader, 12056 struct perf_event_context *child_ctx) 12057 { 12058 enum perf_event_state parent_state = parent_event->state; 12059 struct perf_event *child_event; 12060 unsigned long flags; 12061 12062 /* 12063 * Instead of creating recursive hierarchies of events, 12064 * we link inherited events back to the original parent, 12065 * which has a filp for sure, which we use as the reference 12066 * count: 12067 */ 12068 if (parent_event->parent) 12069 parent_event = parent_event->parent; 12070 12071 child_event = perf_event_alloc(&parent_event->attr, 12072 parent_event->cpu, 12073 child, 12074 group_leader, parent_event, 12075 NULL, NULL, -1); 12076 if (IS_ERR(child_event)) 12077 return child_event; 12078 12079 12080 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12081 !child_ctx->task_ctx_data) { 12082 struct pmu *pmu = child_event->pmu; 12083 12084 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 12085 GFP_KERNEL); 12086 if (!child_ctx->task_ctx_data) { 12087 free_event(child_event); 12088 return ERR_PTR(-ENOMEM); 12089 } 12090 } 12091 12092 /* 12093 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12094 * must be under the same lock in order to serialize against 12095 * perf_event_release_kernel(), such that either we must observe 12096 * is_orphaned_event() or they will observe us on the child_list. 12097 */ 12098 mutex_lock(&parent_event->child_mutex); 12099 if (is_orphaned_event(parent_event) || 12100 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12101 mutex_unlock(&parent_event->child_mutex); 12102 /* task_ctx_data is freed with child_ctx */ 12103 free_event(child_event); 12104 return NULL; 12105 } 12106 12107 get_ctx(child_ctx); 12108 12109 /* 12110 * Make the child state follow the state of the parent event, 12111 * not its attr.disabled bit. We hold the parent's mutex, 12112 * so we won't race with perf_event_{en, dis}able_family. 12113 */ 12114 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12115 child_event->state = PERF_EVENT_STATE_INACTIVE; 12116 else 12117 child_event->state = PERF_EVENT_STATE_OFF; 12118 12119 if (parent_event->attr.freq) { 12120 u64 sample_period = parent_event->hw.sample_period; 12121 struct hw_perf_event *hwc = &child_event->hw; 12122 12123 hwc->sample_period = sample_period; 12124 hwc->last_period = sample_period; 12125 12126 local64_set(&hwc->period_left, sample_period); 12127 } 12128 12129 child_event->ctx = child_ctx; 12130 child_event->overflow_handler = parent_event->overflow_handler; 12131 child_event->overflow_handler_context 12132 = parent_event->overflow_handler_context; 12133 12134 /* 12135 * Precalculate sample_data sizes 12136 */ 12137 perf_event__header_size(child_event); 12138 perf_event__id_header_size(child_event); 12139 12140 /* 12141 * Link it up in the child's context: 12142 */ 12143 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12144 add_event_to_ctx(child_event, child_ctx); 12145 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12146 12147 /* 12148 * Link this into the parent event's child list 12149 */ 12150 list_add_tail(&child_event->child_list, &parent_event->child_list); 12151 mutex_unlock(&parent_event->child_mutex); 12152 12153 return child_event; 12154 } 12155 12156 /* 12157 * Inherits an event group. 12158 * 12159 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12160 * This matches with perf_event_release_kernel() removing all child events. 12161 * 12162 * Returns: 12163 * - 0 on success 12164 * - <0 on error 12165 */ 12166 static int inherit_group(struct perf_event *parent_event, 12167 struct task_struct *parent, 12168 struct perf_event_context *parent_ctx, 12169 struct task_struct *child, 12170 struct perf_event_context *child_ctx) 12171 { 12172 struct perf_event *leader; 12173 struct perf_event *sub; 12174 struct perf_event *child_ctr; 12175 12176 leader = inherit_event(parent_event, parent, parent_ctx, 12177 child, NULL, child_ctx); 12178 if (IS_ERR(leader)) 12179 return PTR_ERR(leader); 12180 /* 12181 * @leader can be NULL here because of is_orphaned_event(). In this 12182 * case inherit_event() will create individual events, similar to what 12183 * perf_group_detach() would do anyway. 12184 */ 12185 for_each_sibling_event(sub, parent_event) { 12186 child_ctr = inherit_event(sub, parent, parent_ctx, 12187 child, leader, child_ctx); 12188 if (IS_ERR(child_ctr)) 12189 return PTR_ERR(child_ctr); 12190 12191 if (sub->aux_event == parent_event && child_ctr && 12192 !perf_get_aux_event(child_ctr, leader)) 12193 return -EINVAL; 12194 } 12195 return 0; 12196 } 12197 12198 /* 12199 * Creates the child task context and tries to inherit the event-group. 12200 * 12201 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12202 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12203 * consistent with perf_event_release_kernel() removing all child events. 12204 * 12205 * Returns: 12206 * - 0 on success 12207 * - <0 on error 12208 */ 12209 static int 12210 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12211 struct perf_event_context *parent_ctx, 12212 struct task_struct *child, int ctxn, 12213 int *inherited_all) 12214 { 12215 int ret; 12216 struct perf_event_context *child_ctx; 12217 12218 if (!event->attr.inherit) { 12219 *inherited_all = 0; 12220 return 0; 12221 } 12222 12223 child_ctx = child->perf_event_ctxp[ctxn]; 12224 if (!child_ctx) { 12225 /* 12226 * This is executed from the parent task context, so 12227 * inherit events that have been marked for cloning. 12228 * First allocate and initialize a context for the 12229 * child. 12230 */ 12231 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12232 if (!child_ctx) 12233 return -ENOMEM; 12234 12235 child->perf_event_ctxp[ctxn] = child_ctx; 12236 } 12237 12238 ret = inherit_group(event, parent, parent_ctx, 12239 child, child_ctx); 12240 12241 if (ret) 12242 *inherited_all = 0; 12243 12244 return ret; 12245 } 12246 12247 /* 12248 * Initialize the perf_event context in task_struct 12249 */ 12250 static int perf_event_init_context(struct task_struct *child, int ctxn) 12251 { 12252 struct perf_event_context *child_ctx, *parent_ctx; 12253 struct perf_event_context *cloned_ctx; 12254 struct perf_event *event; 12255 struct task_struct *parent = current; 12256 int inherited_all = 1; 12257 unsigned long flags; 12258 int ret = 0; 12259 12260 if (likely(!parent->perf_event_ctxp[ctxn])) 12261 return 0; 12262 12263 /* 12264 * If the parent's context is a clone, pin it so it won't get 12265 * swapped under us. 12266 */ 12267 parent_ctx = perf_pin_task_context(parent, ctxn); 12268 if (!parent_ctx) 12269 return 0; 12270 12271 /* 12272 * No need to check if parent_ctx != NULL here; since we saw 12273 * it non-NULL earlier, the only reason for it to become NULL 12274 * is if we exit, and since we're currently in the middle of 12275 * a fork we can't be exiting at the same time. 12276 */ 12277 12278 /* 12279 * Lock the parent list. No need to lock the child - not PID 12280 * hashed yet and not running, so nobody can access it. 12281 */ 12282 mutex_lock(&parent_ctx->mutex); 12283 12284 /* 12285 * We dont have to disable NMIs - we are only looking at 12286 * the list, not manipulating it: 12287 */ 12288 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12289 ret = inherit_task_group(event, parent, parent_ctx, 12290 child, ctxn, &inherited_all); 12291 if (ret) 12292 goto out_unlock; 12293 } 12294 12295 /* 12296 * We can't hold ctx->lock when iterating the ->flexible_group list due 12297 * to allocations, but we need to prevent rotation because 12298 * rotate_ctx() will change the list from interrupt context. 12299 */ 12300 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12301 parent_ctx->rotate_disable = 1; 12302 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12303 12304 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12305 ret = inherit_task_group(event, parent, parent_ctx, 12306 child, ctxn, &inherited_all); 12307 if (ret) 12308 goto out_unlock; 12309 } 12310 12311 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12312 parent_ctx->rotate_disable = 0; 12313 12314 child_ctx = child->perf_event_ctxp[ctxn]; 12315 12316 if (child_ctx && inherited_all) { 12317 /* 12318 * Mark the child context as a clone of the parent 12319 * context, or of whatever the parent is a clone of. 12320 * 12321 * Note that if the parent is a clone, the holding of 12322 * parent_ctx->lock avoids it from being uncloned. 12323 */ 12324 cloned_ctx = parent_ctx->parent_ctx; 12325 if (cloned_ctx) { 12326 child_ctx->parent_ctx = cloned_ctx; 12327 child_ctx->parent_gen = parent_ctx->parent_gen; 12328 } else { 12329 child_ctx->parent_ctx = parent_ctx; 12330 child_ctx->parent_gen = parent_ctx->generation; 12331 } 12332 get_ctx(child_ctx->parent_ctx); 12333 } 12334 12335 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12336 out_unlock: 12337 mutex_unlock(&parent_ctx->mutex); 12338 12339 perf_unpin_context(parent_ctx); 12340 put_ctx(parent_ctx); 12341 12342 return ret; 12343 } 12344 12345 /* 12346 * Initialize the perf_event context in task_struct 12347 */ 12348 int perf_event_init_task(struct task_struct *child) 12349 { 12350 int ctxn, ret; 12351 12352 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12353 mutex_init(&child->perf_event_mutex); 12354 INIT_LIST_HEAD(&child->perf_event_list); 12355 12356 for_each_task_context_nr(ctxn) { 12357 ret = perf_event_init_context(child, ctxn); 12358 if (ret) { 12359 perf_event_free_task(child); 12360 return ret; 12361 } 12362 } 12363 12364 return 0; 12365 } 12366 12367 static void __init perf_event_init_all_cpus(void) 12368 { 12369 struct swevent_htable *swhash; 12370 int cpu; 12371 12372 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12373 12374 for_each_possible_cpu(cpu) { 12375 swhash = &per_cpu(swevent_htable, cpu); 12376 mutex_init(&swhash->hlist_mutex); 12377 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12378 12379 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12380 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12381 12382 #ifdef CONFIG_CGROUP_PERF 12383 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12384 #endif 12385 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12386 } 12387 } 12388 12389 static void perf_swevent_init_cpu(unsigned int cpu) 12390 { 12391 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12392 12393 mutex_lock(&swhash->hlist_mutex); 12394 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12395 struct swevent_hlist *hlist; 12396 12397 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12398 WARN_ON(!hlist); 12399 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12400 } 12401 mutex_unlock(&swhash->hlist_mutex); 12402 } 12403 12404 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12405 static void __perf_event_exit_context(void *__info) 12406 { 12407 struct perf_event_context *ctx = __info; 12408 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12409 struct perf_event *event; 12410 12411 raw_spin_lock(&ctx->lock); 12412 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12413 list_for_each_entry(event, &ctx->event_list, event_entry) 12414 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12415 raw_spin_unlock(&ctx->lock); 12416 } 12417 12418 static void perf_event_exit_cpu_context(int cpu) 12419 { 12420 struct perf_cpu_context *cpuctx; 12421 struct perf_event_context *ctx; 12422 struct pmu *pmu; 12423 12424 mutex_lock(&pmus_lock); 12425 list_for_each_entry(pmu, &pmus, entry) { 12426 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12427 ctx = &cpuctx->ctx; 12428 12429 mutex_lock(&ctx->mutex); 12430 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12431 cpuctx->online = 0; 12432 mutex_unlock(&ctx->mutex); 12433 } 12434 cpumask_clear_cpu(cpu, perf_online_mask); 12435 mutex_unlock(&pmus_lock); 12436 } 12437 #else 12438 12439 static void perf_event_exit_cpu_context(int cpu) { } 12440 12441 #endif 12442 12443 int perf_event_init_cpu(unsigned int cpu) 12444 { 12445 struct perf_cpu_context *cpuctx; 12446 struct perf_event_context *ctx; 12447 struct pmu *pmu; 12448 12449 perf_swevent_init_cpu(cpu); 12450 12451 mutex_lock(&pmus_lock); 12452 cpumask_set_cpu(cpu, perf_online_mask); 12453 list_for_each_entry(pmu, &pmus, entry) { 12454 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12455 ctx = &cpuctx->ctx; 12456 12457 mutex_lock(&ctx->mutex); 12458 cpuctx->online = 1; 12459 mutex_unlock(&ctx->mutex); 12460 } 12461 mutex_unlock(&pmus_lock); 12462 12463 return 0; 12464 } 12465 12466 int perf_event_exit_cpu(unsigned int cpu) 12467 { 12468 perf_event_exit_cpu_context(cpu); 12469 return 0; 12470 } 12471 12472 static int 12473 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12474 { 12475 int cpu; 12476 12477 for_each_online_cpu(cpu) 12478 perf_event_exit_cpu(cpu); 12479 12480 return NOTIFY_OK; 12481 } 12482 12483 /* 12484 * Run the perf reboot notifier at the very last possible moment so that 12485 * the generic watchdog code runs as long as possible. 12486 */ 12487 static struct notifier_block perf_reboot_notifier = { 12488 .notifier_call = perf_reboot, 12489 .priority = INT_MIN, 12490 }; 12491 12492 void __init perf_event_init(void) 12493 { 12494 int ret; 12495 12496 idr_init(&pmu_idr); 12497 12498 perf_event_init_all_cpus(); 12499 init_srcu_struct(&pmus_srcu); 12500 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12501 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12502 perf_pmu_register(&perf_task_clock, NULL, -1); 12503 perf_tp_register(); 12504 perf_event_init_cpu(smp_processor_id()); 12505 register_reboot_notifier(&perf_reboot_notifier); 12506 12507 ret = init_hw_breakpoint(); 12508 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12509 12510 /* 12511 * Build time assertion that we keep the data_head at the intended 12512 * location. IOW, validation we got the __reserved[] size right. 12513 */ 12514 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12515 != 1024); 12516 } 12517 12518 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12519 char *page) 12520 { 12521 struct perf_pmu_events_attr *pmu_attr = 12522 container_of(attr, struct perf_pmu_events_attr, attr); 12523 12524 if (pmu_attr->event_str) 12525 return sprintf(page, "%s\n", pmu_attr->event_str); 12526 12527 return 0; 12528 } 12529 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12530 12531 static int __init perf_event_sysfs_init(void) 12532 { 12533 struct pmu *pmu; 12534 int ret; 12535 12536 mutex_lock(&pmus_lock); 12537 12538 ret = bus_register(&pmu_bus); 12539 if (ret) 12540 goto unlock; 12541 12542 list_for_each_entry(pmu, &pmus, entry) { 12543 if (!pmu->name || pmu->type < 0) 12544 continue; 12545 12546 ret = pmu_dev_alloc(pmu); 12547 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12548 } 12549 pmu_bus_running = 1; 12550 ret = 0; 12551 12552 unlock: 12553 mutex_unlock(&pmus_lock); 12554 12555 return ret; 12556 } 12557 device_initcall(perf_event_sysfs_init); 12558 12559 #ifdef CONFIG_CGROUP_PERF 12560 static struct cgroup_subsys_state * 12561 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12562 { 12563 struct perf_cgroup *jc; 12564 12565 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12566 if (!jc) 12567 return ERR_PTR(-ENOMEM); 12568 12569 jc->info = alloc_percpu(struct perf_cgroup_info); 12570 if (!jc->info) { 12571 kfree(jc); 12572 return ERR_PTR(-ENOMEM); 12573 } 12574 12575 return &jc->css; 12576 } 12577 12578 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12579 { 12580 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12581 12582 free_percpu(jc->info); 12583 kfree(jc); 12584 } 12585 12586 static int __perf_cgroup_move(void *info) 12587 { 12588 struct task_struct *task = info; 12589 rcu_read_lock(); 12590 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12591 rcu_read_unlock(); 12592 return 0; 12593 } 12594 12595 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12596 { 12597 struct task_struct *task; 12598 struct cgroup_subsys_state *css; 12599 12600 cgroup_taskset_for_each(task, css, tset) 12601 task_function_call(task, __perf_cgroup_move, task); 12602 } 12603 12604 struct cgroup_subsys perf_event_cgrp_subsys = { 12605 .css_alloc = perf_cgroup_css_alloc, 12606 .css_free = perf_cgroup_css_free, 12607 .attach = perf_cgroup_attach, 12608 /* 12609 * Implicitly enable on dfl hierarchy so that perf events can 12610 * always be filtered by cgroup2 path as long as perf_event 12611 * controller is not mounted on a legacy hierarchy. 12612 */ 12613 .implicit_on_dfl = true, 12614 .threaded = true, 12615 }; 12616 #endif /* CONFIG_CGROUP_PERF */ 12617