1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright � 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/vmalloc.h> 29 #include <linux/hardirq.h> 30 #include <linux/rculist.h> 31 #include <linux/uaccess.h> 32 #include <linux/syscalls.h> 33 #include <linux/anon_inodes.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/perf_event.h> 36 #include <linux/ftrace_event.h> 37 #include <linux/hw_breakpoint.h> 38 39 #include "internal.h" 40 41 #include <asm/irq_regs.h> 42 43 struct remote_function_call { 44 struct task_struct *p; 45 int (*func)(void *info); 46 void *info; 47 int ret; 48 }; 49 50 static void remote_function(void *data) 51 { 52 struct remote_function_call *tfc = data; 53 struct task_struct *p = tfc->p; 54 55 if (p) { 56 tfc->ret = -EAGAIN; 57 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 58 return; 59 } 60 61 tfc->ret = tfc->func(tfc->info); 62 } 63 64 /** 65 * task_function_call - call a function on the cpu on which a task runs 66 * @p: the task to evaluate 67 * @func: the function to be called 68 * @info: the function call argument 69 * 70 * Calls the function @func when the task is currently running. This might 71 * be on the current CPU, which just calls the function directly 72 * 73 * returns: @func return value, or 74 * -ESRCH - when the process isn't running 75 * -EAGAIN - when the process moved away 76 */ 77 static int 78 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 79 { 80 struct remote_function_call data = { 81 .p = p, 82 .func = func, 83 .info = info, 84 .ret = -ESRCH, /* No such (running) process */ 85 }; 86 87 if (task_curr(p)) 88 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 89 90 return data.ret; 91 } 92 93 /** 94 * cpu_function_call - call a function on the cpu 95 * @func: the function to be called 96 * @info: the function call argument 97 * 98 * Calls the function @func on the remote cpu. 99 * 100 * returns: @func return value or -ENXIO when the cpu is offline 101 */ 102 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 103 { 104 struct remote_function_call data = { 105 .p = NULL, 106 .func = func, 107 .info = info, 108 .ret = -ENXIO, /* No such CPU */ 109 }; 110 111 smp_call_function_single(cpu, remote_function, &data, 1); 112 113 return data.ret; 114 } 115 116 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 117 PERF_FLAG_FD_OUTPUT |\ 118 PERF_FLAG_PID_CGROUP) 119 120 enum event_type_t { 121 EVENT_FLEXIBLE = 0x1, 122 EVENT_PINNED = 0x2, 123 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 124 }; 125 126 /* 127 * perf_sched_events : >0 events exist 128 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 129 */ 130 struct jump_label_key perf_sched_events __read_mostly; 131 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 132 133 static atomic_t nr_mmap_events __read_mostly; 134 static atomic_t nr_comm_events __read_mostly; 135 static atomic_t nr_task_events __read_mostly; 136 137 static LIST_HEAD(pmus); 138 static DEFINE_MUTEX(pmus_lock); 139 static struct srcu_struct pmus_srcu; 140 141 /* 142 * perf event paranoia level: 143 * -1 - not paranoid at all 144 * 0 - disallow raw tracepoint access for unpriv 145 * 1 - disallow cpu events for unpriv 146 * 2 - disallow kernel profiling for unpriv 147 */ 148 int sysctl_perf_event_paranoid __read_mostly = 1; 149 150 /* Minimum for 512 kiB + 1 user control page */ 151 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 152 153 /* 154 * max perf event sample rate 155 */ 156 #define DEFAULT_MAX_SAMPLE_RATE 100000 157 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 158 static int max_samples_per_tick __read_mostly = 159 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 160 161 int perf_proc_update_handler(struct ctl_table *table, int write, 162 void __user *buffer, size_t *lenp, 163 loff_t *ppos) 164 { 165 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 166 167 if (ret || !write) 168 return ret; 169 170 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 171 172 return 0; 173 } 174 175 static atomic64_t perf_event_id; 176 177 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 178 enum event_type_t event_type); 179 180 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 181 enum event_type_t event_type, 182 struct task_struct *task); 183 184 static void update_context_time(struct perf_event_context *ctx); 185 static u64 perf_event_time(struct perf_event *event); 186 187 void __weak perf_event_print_debug(void) { } 188 189 extern __weak const char *perf_pmu_name(void) 190 { 191 return "pmu"; 192 } 193 194 static inline u64 perf_clock(void) 195 { 196 return local_clock(); 197 } 198 199 static inline struct perf_cpu_context * 200 __get_cpu_context(struct perf_event_context *ctx) 201 { 202 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 203 } 204 205 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 206 struct perf_event_context *ctx) 207 { 208 raw_spin_lock(&cpuctx->ctx.lock); 209 if (ctx) 210 raw_spin_lock(&ctx->lock); 211 } 212 213 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 214 struct perf_event_context *ctx) 215 { 216 if (ctx) 217 raw_spin_unlock(&ctx->lock); 218 raw_spin_unlock(&cpuctx->ctx.lock); 219 } 220 221 #ifdef CONFIG_CGROUP_PERF 222 223 /* 224 * Must ensure cgroup is pinned (css_get) before calling 225 * this function. In other words, we cannot call this function 226 * if there is no cgroup event for the current CPU context. 227 */ 228 static inline struct perf_cgroup * 229 perf_cgroup_from_task(struct task_struct *task) 230 { 231 return container_of(task_subsys_state(task, perf_subsys_id), 232 struct perf_cgroup, css); 233 } 234 235 static inline bool 236 perf_cgroup_match(struct perf_event *event) 237 { 238 struct perf_event_context *ctx = event->ctx; 239 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 240 241 return !event->cgrp || event->cgrp == cpuctx->cgrp; 242 } 243 244 static inline void perf_get_cgroup(struct perf_event *event) 245 { 246 css_get(&event->cgrp->css); 247 } 248 249 static inline void perf_put_cgroup(struct perf_event *event) 250 { 251 css_put(&event->cgrp->css); 252 } 253 254 static inline void perf_detach_cgroup(struct perf_event *event) 255 { 256 perf_put_cgroup(event); 257 event->cgrp = NULL; 258 } 259 260 static inline int is_cgroup_event(struct perf_event *event) 261 { 262 return event->cgrp != NULL; 263 } 264 265 static inline u64 perf_cgroup_event_time(struct perf_event *event) 266 { 267 struct perf_cgroup_info *t; 268 269 t = per_cpu_ptr(event->cgrp->info, event->cpu); 270 return t->time; 271 } 272 273 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 274 { 275 struct perf_cgroup_info *info; 276 u64 now; 277 278 now = perf_clock(); 279 280 info = this_cpu_ptr(cgrp->info); 281 282 info->time += now - info->timestamp; 283 info->timestamp = now; 284 } 285 286 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 287 { 288 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 289 if (cgrp_out) 290 __update_cgrp_time(cgrp_out); 291 } 292 293 static inline void update_cgrp_time_from_event(struct perf_event *event) 294 { 295 struct perf_cgroup *cgrp; 296 297 /* 298 * ensure we access cgroup data only when needed and 299 * when we know the cgroup is pinned (css_get) 300 */ 301 if (!is_cgroup_event(event)) 302 return; 303 304 cgrp = perf_cgroup_from_task(current); 305 /* 306 * Do not update time when cgroup is not active 307 */ 308 if (cgrp == event->cgrp) 309 __update_cgrp_time(event->cgrp); 310 } 311 312 static inline void 313 perf_cgroup_set_timestamp(struct task_struct *task, 314 struct perf_event_context *ctx) 315 { 316 struct perf_cgroup *cgrp; 317 struct perf_cgroup_info *info; 318 319 /* 320 * ctx->lock held by caller 321 * ensure we do not access cgroup data 322 * unless we have the cgroup pinned (css_get) 323 */ 324 if (!task || !ctx->nr_cgroups) 325 return; 326 327 cgrp = perf_cgroup_from_task(task); 328 info = this_cpu_ptr(cgrp->info); 329 info->timestamp = ctx->timestamp; 330 } 331 332 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 333 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 334 335 /* 336 * reschedule events based on the cgroup constraint of task. 337 * 338 * mode SWOUT : schedule out everything 339 * mode SWIN : schedule in based on cgroup for next 340 */ 341 void perf_cgroup_switch(struct task_struct *task, int mode) 342 { 343 struct perf_cpu_context *cpuctx; 344 struct pmu *pmu; 345 unsigned long flags; 346 347 /* 348 * disable interrupts to avoid geting nr_cgroup 349 * changes via __perf_event_disable(). Also 350 * avoids preemption. 351 */ 352 local_irq_save(flags); 353 354 /* 355 * we reschedule only in the presence of cgroup 356 * constrained events. 357 */ 358 rcu_read_lock(); 359 360 list_for_each_entry_rcu(pmu, &pmus, entry) { 361 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 362 363 /* 364 * perf_cgroup_events says at least one 365 * context on this CPU has cgroup events. 366 * 367 * ctx->nr_cgroups reports the number of cgroup 368 * events for a context. 369 */ 370 if (cpuctx->ctx.nr_cgroups > 0) { 371 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 372 perf_pmu_disable(cpuctx->ctx.pmu); 373 374 if (mode & PERF_CGROUP_SWOUT) { 375 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 376 /* 377 * must not be done before ctxswout due 378 * to event_filter_match() in event_sched_out() 379 */ 380 cpuctx->cgrp = NULL; 381 } 382 383 if (mode & PERF_CGROUP_SWIN) { 384 WARN_ON_ONCE(cpuctx->cgrp); 385 /* set cgrp before ctxsw in to 386 * allow event_filter_match() to not 387 * have to pass task around 388 */ 389 cpuctx->cgrp = perf_cgroup_from_task(task); 390 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 391 } 392 perf_pmu_enable(cpuctx->ctx.pmu); 393 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 394 } 395 } 396 397 rcu_read_unlock(); 398 399 local_irq_restore(flags); 400 } 401 402 static inline void perf_cgroup_sched_out(struct task_struct *task, 403 struct task_struct *next) 404 { 405 struct perf_cgroup *cgrp1; 406 struct perf_cgroup *cgrp2 = NULL; 407 408 /* 409 * we come here when we know perf_cgroup_events > 0 410 */ 411 cgrp1 = perf_cgroup_from_task(task); 412 413 /* 414 * next is NULL when called from perf_event_enable_on_exec() 415 * that will systematically cause a cgroup_switch() 416 */ 417 if (next) 418 cgrp2 = perf_cgroup_from_task(next); 419 420 /* 421 * only schedule out current cgroup events if we know 422 * that we are switching to a different cgroup. Otherwise, 423 * do no touch the cgroup events. 424 */ 425 if (cgrp1 != cgrp2) 426 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 427 } 428 429 static inline void perf_cgroup_sched_in(struct task_struct *prev, 430 struct task_struct *task) 431 { 432 struct perf_cgroup *cgrp1; 433 struct perf_cgroup *cgrp2 = NULL; 434 435 /* 436 * we come here when we know perf_cgroup_events > 0 437 */ 438 cgrp1 = perf_cgroup_from_task(task); 439 440 /* prev can never be NULL */ 441 cgrp2 = perf_cgroup_from_task(prev); 442 443 /* 444 * only need to schedule in cgroup events if we are changing 445 * cgroup during ctxsw. Cgroup events were not scheduled 446 * out of ctxsw out if that was not the case. 447 */ 448 if (cgrp1 != cgrp2) 449 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 450 } 451 452 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 453 struct perf_event_attr *attr, 454 struct perf_event *group_leader) 455 { 456 struct perf_cgroup *cgrp; 457 struct cgroup_subsys_state *css; 458 struct file *file; 459 int ret = 0, fput_needed; 460 461 file = fget_light(fd, &fput_needed); 462 if (!file) 463 return -EBADF; 464 465 css = cgroup_css_from_dir(file, perf_subsys_id); 466 if (IS_ERR(css)) { 467 ret = PTR_ERR(css); 468 goto out; 469 } 470 471 cgrp = container_of(css, struct perf_cgroup, css); 472 event->cgrp = cgrp; 473 474 /* must be done before we fput() the file */ 475 perf_get_cgroup(event); 476 477 /* 478 * all events in a group must monitor 479 * the same cgroup because a task belongs 480 * to only one perf cgroup at a time 481 */ 482 if (group_leader && group_leader->cgrp != cgrp) { 483 perf_detach_cgroup(event); 484 ret = -EINVAL; 485 } 486 out: 487 fput_light(file, fput_needed); 488 return ret; 489 } 490 491 static inline void 492 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 493 { 494 struct perf_cgroup_info *t; 495 t = per_cpu_ptr(event->cgrp->info, event->cpu); 496 event->shadow_ctx_time = now - t->timestamp; 497 } 498 499 static inline void 500 perf_cgroup_defer_enabled(struct perf_event *event) 501 { 502 /* 503 * when the current task's perf cgroup does not match 504 * the event's, we need to remember to call the 505 * perf_mark_enable() function the first time a task with 506 * a matching perf cgroup is scheduled in. 507 */ 508 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 509 event->cgrp_defer_enabled = 1; 510 } 511 512 static inline void 513 perf_cgroup_mark_enabled(struct perf_event *event, 514 struct perf_event_context *ctx) 515 { 516 struct perf_event *sub; 517 u64 tstamp = perf_event_time(event); 518 519 if (!event->cgrp_defer_enabled) 520 return; 521 522 event->cgrp_defer_enabled = 0; 523 524 event->tstamp_enabled = tstamp - event->total_time_enabled; 525 list_for_each_entry(sub, &event->sibling_list, group_entry) { 526 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 527 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 528 sub->cgrp_defer_enabled = 0; 529 } 530 } 531 } 532 #else /* !CONFIG_CGROUP_PERF */ 533 534 static inline bool 535 perf_cgroup_match(struct perf_event *event) 536 { 537 return true; 538 } 539 540 static inline void perf_detach_cgroup(struct perf_event *event) 541 {} 542 543 static inline int is_cgroup_event(struct perf_event *event) 544 { 545 return 0; 546 } 547 548 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 549 { 550 return 0; 551 } 552 553 static inline void update_cgrp_time_from_event(struct perf_event *event) 554 { 555 } 556 557 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 558 { 559 } 560 561 static inline void perf_cgroup_sched_out(struct task_struct *task, 562 struct task_struct *next) 563 { 564 } 565 566 static inline void perf_cgroup_sched_in(struct task_struct *prev, 567 struct task_struct *task) 568 { 569 } 570 571 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 572 struct perf_event_attr *attr, 573 struct perf_event *group_leader) 574 { 575 return -EINVAL; 576 } 577 578 static inline void 579 perf_cgroup_set_timestamp(struct task_struct *task, 580 struct perf_event_context *ctx) 581 { 582 } 583 584 void 585 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 586 { 587 } 588 589 static inline void 590 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 591 { 592 } 593 594 static inline u64 perf_cgroup_event_time(struct perf_event *event) 595 { 596 return 0; 597 } 598 599 static inline void 600 perf_cgroup_defer_enabled(struct perf_event *event) 601 { 602 } 603 604 static inline void 605 perf_cgroup_mark_enabled(struct perf_event *event, 606 struct perf_event_context *ctx) 607 { 608 } 609 #endif 610 611 void perf_pmu_disable(struct pmu *pmu) 612 { 613 int *count = this_cpu_ptr(pmu->pmu_disable_count); 614 if (!(*count)++) 615 pmu->pmu_disable(pmu); 616 } 617 618 void perf_pmu_enable(struct pmu *pmu) 619 { 620 int *count = this_cpu_ptr(pmu->pmu_disable_count); 621 if (!--(*count)) 622 pmu->pmu_enable(pmu); 623 } 624 625 static DEFINE_PER_CPU(struct list_head, rotation_list); 626 627 /* 628 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 629 * because they're strictly cpu affine and rotate_start is called with IRQs 630 * disabled, while rotate_context is called from IRQ context. 631 */ 632 static void perf_pmu_rotate_start(struct pmu *pmu) 633 { 634 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 635 struct list_head *head = &__get_cpu_var(rotation_list); 636 637 WARN_ON(!irqs_disabled()); 638 639 if (list_empty(&cpuctx->rotation_list)) 640 list_add(&cpuctx->rotation_list, head); 641 } 642 643 static void get_ctx(struct perf_event_context *ctx) 644 { 645 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 646 } 647 648 static void put_ctx(struct perf_event_context *ctx) 649 { 650 if (atomic_dec_and_test(&ctx->refcount)) { 651 if (ctx->parent_ctx) 652 put_ctx(ctx->parent_ctx); 653 if (ctx->task) 654 put_task_struct(ctx->task); 655 kfree_rcu(ctx, rcu_head); 656 } 657 } 658 659 static void unclone_ctx(struct perf_event_context *ctx) 660 { 661 if (ctx->parent_ctx) { 662 put_ctx(ctx->parent_ctx); 663 ctx->parent_ctx = NULL; 664 } 665 } 666 667 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 668 { 669 /* 670 * only top level events have the pid namespace they were created in 671 */ 672 if (event->parent) 673 event = event->parent; 674 675 return task_tgid_nr_ns(p, event->ns); 676 } 677 678 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 679 { 680 /* 681 * only top level events have the pid namespace they were created in 682 */ 683 if (event->parent) 684 event = event->parent; 685 686 return task_pid_nr_ns(p, event->ns); 687 } 688 689 /* 690 * If we inherit events we want to return the parent event id 691 * to userspace. 692 */ 693 static u64 primary_event_id(struct perf_event *event) 694 { 695 u64 id = event->id; 696 697 if (event->parent) 698 id = event->parent->id; 699 700 return id; 701 } 702 703 /* 704 * Get the perf_event_context for a task and lock it. 705 * This has to cope with with the fact that until it is locked, 706 * the context could get moved to another task. 707 */ 708 static struct perf_event_context * 709 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 710 { 711 struct perf_event_context *ctx; 712 713 rcu_read_lock(); 714 retry: 715 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 716 if (ctx) { 717 /* 718 * If this context is a clone of another, it might 719 * get swapped for another underneath us by 720 * perf_event_task_sched_out, though the 721 * rcu_read_lock() protects us from any context 722 * getting freed. Lock the context and check if it 723 * got swapped before we could get the lock, and retry 724 * if so. If we locked the right context, then it 725 * can't get swapped on us any more. 726 */ 727 raw_spin_lock_irqsave(&ctx->lock, *flags); 728 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 729 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 730 goto retry; 731 } 732 733 if (!atomic_inc_not_zero(&ctx->refcount)) { 734 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 735 ctx = NULL; 736 } 737 } 738 rcu_read_unlock(); 739 return ctx; 740 } 741 742 /* 743 * Get the context for a task and increment its pin_count so it 744 * can't get swapped to another task. This also increments its 745 * reference count so that the context can't get freed. 746 */ 747 static struct perf_event_context * 748 perf_pin_task_context(struct task_struct *task, int ctxn) 749 { 750 struct perf_event_context *ctx; 751 unsigned long flags; 752 753 ctx = perf_lock_task_context(task, ctxn, &flags); 754 if (ctx) { 755 ++ctx->pin_count; 756 raw_spin_unlock_irqrestore(&ctx->lock, flags); 757 } 758 return ctx; 759 } 760 761 static void perf_unpin_context(struct perf_event_context *ctx) 762 { 763 unsigned long flags; 764 765 raw_spin_lock_irqsave(&ctx->lock, flags); 766 --ctx->pin_count; 767 raw_spin_unlock_irqrestore(&ctx->lock, flags); 768 } 769 770 /* 771 * Update the record of the current time in a context. 772 */ 773 static void update_context_time(struct perf_event_context *ctx) 774 { 775 u64 now = perf_clock(); 776 777 ctx->time += now - ctx->timestamp; 778 ctx->timestamp = now; 779 } 780 781 static u64 perf_event_time(struct perf_event *event) 782 { 783 struct perf_event_context *ctx = event->ctx; 784 785 if (is_cgroup_event(event)) 786 return perf_cgroup_event_time(event); 787 788 return ctx ? ctx->time : 0; 789 } 790 791 /* 792 * Update the total_time_enabled and total_time_running fields for a event. 793 * The caller of this function needs to hold the ctx->lock. 794 */ 795 static void update_event_times(struct perf_event *event) 796 { 797 struct perf_event_context *ctx = event->ctx; 798 u64 run_end; 799 800 if (event->state < PERF_EVENT_STATE_INACTIVE || 801 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 802 return; 803 /* 804 * in cgroup mode, time_enabled represents 805 * the time the event was enabled AND active 806 * tasks were in the monitored cgroup. This is 807 * independent of the activity of the context as 808 * there may be a mix of cgroup and non-cgroup events. 809 * 810 * That is why we treat cgroup events differently 811 * here. 812 */ 813 if (is_cgroup_event(event)) 814 run_end = perf_event_time(event); 815 else if (ctx->is_active) 816 run_end = ctx->time; 817 else 818 run_end = event->tstamp_stopped; 819 820 event->total_time_enabled = run_end - event->tstamp_enabled; 821 822 if (event->state == PERF_EVENT_STATE_INACTIVE) 823 run_end = event->tstamp_stopped; 824 else 825 run_end = perf_event_time(event); 826 827 event->total_time_running = run_end - event->tstamp_running; 828 829 } 830 831 /* 832 * Update total_time_enabled and total_time_running for all events in a group. 833 */ 834 static void update_group_times(struct perf_event *leader) 835 { 836 struct perf_event *event; 837 838 update_event_times(leader); 839 list_for_each_entry(event, &leader->sibling_list, group_entry) 840 update_event_times(event); 841 } 842 843 static struct list_head * 844 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 845 { 846 if (event->attr.pinned) 847 return &ctx->pinned_groups; 848 else 849 return &ctx->flexible_groups; 850 } 851 852 /* 853 * Add a event from the lists for its context. 854 * Must be called with ctx->mutex and ctx->lock held. 855 */ 856 static void 857 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 858 { 859 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 860 event->attach_state |= PERF_ATTACH_CONTEXT; 861 862 /* 863 * If we're a stand alone event or group leader, we go to the context 864 * list, group events are kept attached to the group so that 865 * perf_group_detach can, at all times, locate all siblings. 866 */ 867 if (event->group_leader == event) { 868 struct list_head *list; 869 870 if (is_software_event(event)) 871 event->group_flags |= PERF_GROUP_SOFTWARE; 872 873 list = ctx_group_list(event, ctx); 874 list_add_tail(&event->group_entry, list); 875 } 876 877 if (is_cgroup_event(event)) 878 ctx->nr_cgroups++; 879 880 list_add_rcu(&event->event_entry, &ctx->event_list); 881 if (!ctx->nr_events) 882 perf_pmu_rotate_start(ctx->pmu); 883 ctx->nr_events++; 884 if (event->attr.inherit_stat) 885 ctx->nr_stat++; 886 } 887 888 /* 889 * Called at perf_event creation and when events are attached/detached from a 890 * group. 891 */ 892 static void perf_event__read_size(struct perf_event *event) 893 { 894 int entry = sizeof(u64); /* value */ 895 int size = 0; 896 int nr = 1; 897 898 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 899 size += sizeof(u64); 900 901 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 902 size += sizeof(u64); 903 904 if (event->attr.read_format & PERF_FORMAT_ID) 905 entry += sizeof(u64); 906 907 if (event->attr.read_format & PERF_FORMAT_GROUP) { 908 nr += event->group_leader->nr_siblings; 909 size += sizeof(u64); 910 } 911 912 size += entry * nr; 913 event->read_size = size; 914 } 915 916 static void perf_event__header_size(struct perf_event *event) 917 { 918 struct perf_sample_data *data; 919 u64 sample_type = event->attr.sample_type; 920 u16 size = 0; 921 922 perf_event__read_size(event); 923 924 if (sample_type & PERF_SAMPLE_IP) 925 size += sizeof(data->ip); 926 927 if (sample_type & PERF_SAMPLE_ADDR) 928 size += sizeof(data->addr); 929 930 if (sample_type & PERF_SAMPLE_PERIOD) 931 size += sizeof(data->period); 932 933 if (sample_type & PERF_SAMPLE_READ) 934 size += event->read_size; 935 936 event->header_size = size; 937 } 938 939 static void perf_event__id_header_size(struct perf_event *event) 940 { 941 struct perf_sample_data *data; 942 u64 sample_type = event->attr.sample_type; 943 u16 size = 0; 944 945 if (sample_type & PERF_SAMPLE_TID) 946 size += sizeof(data->tid_entry); 947 948 if (sample_type & PERF_SAMPLE_TIME) 949 size += sizeof(data->time); 950 951 if (sample_type & PERF_SAMPLE_ID) 952 size += sizeof(data->id); 953 954 if (sample_type & PERF_SAMPLE_STREAM_ID) 955 size += sizeof(data->stream_id); 956 957 if (sample_type & PERF_SAMPLE_CPU) 958 size += sizeof(data->cpu_entry); 959 960 event->id_header_size = size; 961 } 962 963 static void perf_group_attach(struct perf_event *event) 964 { 965 struct perf_event *group_leader = event->group_leader, *pos; 966 967 /* 968 * We can have double attach due to group movement in perf_event_open. 969 */ 970 if (event->attach_state & PERF_ATTACH_GROUP) 971 return; 972 973 event->attach_state |= PERF_ATTACH_GROUP; 974 975 if (group_leader == event) 976 return; 977 978 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 979 !is_software_event(event)) 980 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 981 982 list_add_tail(&event->group_entry, &group_leader->sibling_list); 983 group_leader->nr_siblings++; 984 985 perf_event__header_size(group_leader); 986 987 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 988 perf_event__header_size(pos); 989 } 990 991 /* 992 * Remove a event from the lists for its context. 993 * Must be called with ctx->mutex and ctx->lock held. 994 */ 995 static void 996 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 997 { 998 struct perf_cpu_context *cpuctx; 999 /* 1000 * We can have double detach due to exit/hot-unplug + close. 1001 */ 1002 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1003 return; 1004 1005 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1006 1007 if (is_cgroup_event(event)) { 1008 ctx->nr_cgroups--; 1009 cpuctx = __get_cpu_context(ctx); 1010 /* 1011 * if there are no more cgroup events 1012 * then cler cgrp to avoid stale pointer 1013 * in update_cgrp_time_from_cpuctx() 1014 */ 1015 if (!ctx->nr_cgroups) 1016 cpuctx->cgrp = NULL; 1017 } 1018 1019 ctx->nr_events--; 1020 if (event->attr.inherit_stat) 1021 ctx->nr_stat--; 1022 1023 list_del_rcu(&event->event_entry); 1024 1025 if (event->group_leader == event) 1026 list_del_init(&event->group_entry); 1027 1028 update_group_times(event); 1029 1030 /* 1031 * If event was in error state, then keep it 1032 * that way, otherwise bogus counts will be 1033 * returned on read(). The only way to get out 1034 * of error state is by explicit re-enabling 1035 * of the event 1036 */ 1037 if (event->state > PERF_EVENT_STATE_OFF) 1038 event->state = PERF_EVENT_STATE_OFF; 1039 } 1040 1041 static void perf_group_detach(struct perf_event *event) 1042 { 1043 struct perf_event *sibling, *tmp; 1044 struct list_head *list = NULL; 1045 1046 /* 1047 * We can have double detach due to exit/hot-unplug + close. 1048 */ 1049 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1050 return; 1051 1052 event->attach_state &= ~PERF_ATTACH_GROUP; 1053 1054 /* 1055 * If this is a sibling, remove it from its group. 1056 */ 1057 if (event->group_leader != event) { 1058 list_del_init(&event->group_entry); 1059 event->group_leader->nr_siblings--; 1060 goto out; 1061 } 1062 1063 if (!list_empty(&event->group_entry)) 1064 list = &event->group_entry; 1065 1066 /* 1067 * If this was a group event with sibling events then 1068 * upgrade the siblings to singleton events by adding them 1069 * to whatever list we are on. 1070 */ 1071 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1072 if (list) 1073 list_move_tail(&sibling->group_entry, list); 1074 sibling->group_leader = sibling; 1075 1076 /* Inherit group flags from the previous leader */ 1077 sibling->group_flags = event->group_flags; 1078 } 1079 1080 out: 1081 perf_event__header_size(event->group_leader); 1082 1083 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1084 perf_event__header_size(tmp); 1085 } 1086 1087 static inline int 1088 event_filter_match(struct perf_event *event) 1089 { 1090 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1091 && perf_cgroup_match(event); 1092 } 1093 1094 static void 1095 event_sched_out(struct perf_event *event, 1096 struct perf_cpu_context *cpuctx, 1097 struct perf_event_context *ctx) 1098 { 1099 u64 tstamp = perf_event_time(event); 1100 u64 delta; 1101 /* 1102 * An event which could not be activated because of 1103 * filter mismatch still needs to have its timings 1104 * maintained, otherwise bogus information is return 1105 * via read() for time_enabled, time_running: 1106 */ 1107 if (event->state == PERF_EVENT_STATE_INACTIVE 1108 && !event_filter_match(event)) { 1109 delta = tstamp - event->tstamp_stopped; 1110 event->tstamp_running += delta; 1111 event->tstamp_stopped = tstamp; 1112 } 1113 1114 if (event->state != PERF_EVENT_STATE_ACTIVE) 1115 return; 1116 1117 event->state = PERF_EVENT_STATE_INACTIVE; 1118 if (event->pending_disable) { 1119 event->pending_disable = 0; 1120 event->state = PERF_EVENT_STATE_OFF; 1121 } 1122 event->tstamp_stopped = tstamp; 1123 event->pmu->del(event, 0); 1124 event->oncpu = -1; 1125 1126 if (!is_software_event(event)) 1127 cpuctx->active_oncpu--; 1128 ctx->nr_active--; 1129 if (event->attr.exclusive || !cpuctx->active_oncpu) 1130 cpuctx->exclusive = 0; 1131 } 1132 1133 static void 1134 group_sched_out(struct perf_event *group_event, 1135 struct perf_cpu_context *cpuctx, 1136 struct perf_event_context *ctx) 1137 { 1138 struct perf_event *event; 1139 int state = group_event->state; 1140 1141 event_sched_out(group_event, cpuctx, ctx); 1142 1143 /* 1144 * Schedule out siblings (if any): 1145 */ 1146 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1147 event_sched_out(event, cpuctx, ctx); 1148 1149 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1150 cpuctx->exclusive = 0; 1151 } 1152 1153 /* 1154 * Cross CPU call to remove a performance event 1155 * 1156 * We disable the event on the hardware level first. After that we 1157 * remove it from the context list. 1158 */ 1159 static int __perf_remove_from_context(void *info) 1160 { 1161 struct perf_event *event = info; 1162 struct perf_event_context *ctx = event->ctx; 1163 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1164 1165 raw_spin_lock(&ctx->lock); 1166 event_sched_out(event, cpuctx, ctx); 1167 list_del_event(event, ctx); 1168 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1169 ctx->is_active = 0; 1170 cpuctx->task_ctx = NULL; 1171 } 1172 raw_spin_unlock(&ctx->lock); 1173 1174 return 0; 1175 } 1176 1177 1178 /* 1179 * Remove the event from a task's (or a CPU's) list of events. 1180 * 1181 * CPU events are removed with a smp call. For task events we only 1182 * call when the task is on a CPU. 1183 * 1184 * If event->ctx is a cloned context, callers must make sure that 1185 * every task struct that event->ctx->task could possibly point to 1186 * remains valid. This is OK when called from perf_release since 1187 * that only calls us on the top-level context, which can't be a clone. 1188 * When called from perf_event_exit_task, it's OK because the 1189 * context has been detached from its task. 1190 */ 1191 static void perf_remove_from_context(struct perf_event *event) 1192 { 1193 struct perf_event_context *ctx = event->ctx; 1194 struct task_struct *task = ctx->task; 1195 1196 lockdep_assert_held(&ctx->mutex); 1197 1198 if (!task) { 1199 /* 1200 * Per cpu events are removed via an smp call and 1201 * the removal is always successful. 1202 */ 1203 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1204 return; 1205 } 1206 1207 retry: 1208 if (!task_function_call(task, __perf_remove_from_context, event)) 1209 return; 1210 1211 raw_spin_lock_irq(&ctx->lock); 1212 /* 1213 * If we failed to find a running task, but find the context active now 1214 * that we've acquired the ctx->lock, retry. 1215 */ 1216 if (ctx->is_active) { 1217 raw_spin_unlock_irq(&ctx->lock); 1218 goto retry; 1219 } 1220 1221 /* 1222 * Since the task isn't running, its safe to remove the event, us 1223 * holding the ctx->lock ensures the task won't get scheduled in. 1224 */ 1225 list_del_event(event, ctx); 1226 raw_spin_unlock_irq(&ctx->lock); 1227 } 1228 1229 /* 1230 * Cross CPU call to disable a performance event 1231 */ 1232 static int __perf_event_disable(void *info) 1233 { 1234 struct perf_event *event = info; 1235 struct perf_event_context *ctx = event->ctx; 1236 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1237 1238 /* 1239 * If this is a per-task event, need to check whether this 1240 * event's task is the current task on this cpu. 1241 * 1242 * Can trigger due to concurrent perf_event_context_sched_out() 1243 * flipping contexts around. 1244 */ 1245 if (ctx->task && cpuctx->task_ctx != ctx) 1246 return -EINVAL; 1247 1248 raw_spin_lock(&ctx->lock); 1249 1250 /* 1251 * If the event is on, turn it off. 1252 * If it is in error state, leave it in error state. 1253 */ 1254 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1255 update_context_time(ctx); 1256 update_cgrp_time_from_event(event); 1257 update_group_times(event); 1258 if (event == event->group_leader) 1259 group_sched_out(event, cpuctx, ctx); 1260 else 1261 event_sched_out(event, cpuctx, ctx); 1262 event->state = PERF_EVENT_STATE_OFF; 1263 } 1264 1265 raw_spin_unlock(&ctx->lock); 1266 1267 return 0; 1268 } 1269 1270 /* 1271 * Disable a event. 1272 * 1273 * If event->ctx is a cloned context, callers must make sure that 1274 * every task struct that event->ctx->task could possibly point to 1275 * remains valid. This condition is satisifed when called through 1276 * perf_event_for_each_child or perf_event_for_each because they 1277 * hold the top-level event's child_mutex, so any descendant that 1278 * goes to exit will block in sync_child_event. 1279 * When called from perf_pending_event it's OK because event->ctx 1280 * is the current context on this CPU and preemption is disabled, 1281 * hence we can't get into perf_event_task_sched_out for this context. 1282 */ 1283 void perf_event_disable(struct perf_event *event) 1284 { 1285 struct perf_event_context *ctx = event->ctx; 1286 struct task_struct *task = ctx->task; 1287 1288 if (!task) { 1289 /* 1290 * Disable the event on the cpu that it's on 1291 */ 1292 cpu_function_call(event->cpu, __perf_event_disable, event); 1293 return; 1294 } 1295 1296 retry: 1297 if (!task_function_call(task, __perf_event_disable, event)) 1298 return; 1299 1300 raw_spin_lock_irq(&ctx->lock); 1301 /* 1302 * If the event is still active, we need to retry the cross-call. 1303 */ 1304 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1305 raw_spin_unlock_irq(&ctx->lock); 1306 /* 1307 * Reload the task pointer, it might have been changed by 1308 * a concurrent perf_event_context_sched_out(). 1309 */ 1310 task = ctx->task; 1311 goto retry; 1312 } 1313 1314 /* 1315 * Since we have the lock this context can't be scheduled 1316 * in, so we can change the state safely. 1317 */ 1318 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1319 update_group_times(event); 1320 event->state = PERF_EVENT_STATE_OFF; 1321 } 1322 raw_spin_unlock_irq(&ctx->lock); 1323 } 1324 1325 static void perf_set_shadow_time(struct perf_event *event, 1326 struct perf_event_context *ctx, 1327 u64 tstamp) 1328 { 1329 /* 1330 * use the correct time source for the time snapshot 1331 * 1332 * We could get by without this by leveraging the 1333 * fact that to get to this function, the caller 1334 * has most likely already called update_context_time() 1335 * and update_cgrp_time_xx() and thus both timestamp 1336 * are identical (or very close). Given that tstamp is, 1337 * already adjusted for cgroup, we could say that: 1338 * tstamp - ctx->timestamp 1339 * is equivalent to 1340 * tstamp - cgrp->timestamp. 1341 * 1342 * Then, in perf_output_read(), the calculation would 1343 * work with no changes because: 1344 * - event is guaranteed scheduled in 1345 * - no scheduled out in between 1346 * - thus the timestamp would be the same 1347 * 1348 * But this is a bit hairy. 1349 * 1350 * So instead, we have an explicit cgroup call to remain 1351 * within the time time source all along. We believe it 1352 * is cleaner and simpler to understand. 1353 */ 1354 if (is_cgroup_event(event)) 1355 perf_cgroup_set_shadow_time(event, tstamp); 1356 else 1357 event->shadow_ctx_time = tstamp - ctx->timestamp; 1358 } 1359 1360 #define MAX_INTERRUPTS (~0ULL) 1361 1362 static void perf_log_throttle(struct perf_event *event, int enable); 1363 1364 static int 1365 event_sched_in(struct perf_event *event, 1366 struct perf_cpu_context *cpuctx, 1367 struct perf_event_context *ctx) 1368 { 1369 u64 tstamp = perf_event_time(event); 1370 1371 if (event->state <= PERF_EVENT_STATE_OFF) 1372 return 0; 1373 1374 event->state = PERF_EVENT_STATE_ACTIVE; 1375 event->oncpu = smp_processor_id(); 1376 1377 /* 1378 * Unthrottle events, since we scheduled we might have missed several 1379 * ticks already, also for a heavily scheduling task there is little 1380 * guarantee it'll get a tick in a timely manner. 1381 */ 1382 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1383 perf_log_throttle(event, 1); 1384 event->hw.interrupts = 0; 1385 } 1386 1387 /* 1388 * The new state must be visible before we turn it on in the hardware: 1389 */ 1390 smp_wmb(); 1391 1392 if (event->pmu->add(event, PERF_EF_START)) { 1393 event->state = PERF_EVENT_STATE_INACTIVE; 1394 event->oncpu = -1; 1395 return -EAGAIN; 1396 } 1397 1398 event->tstamp_running += tstamp - event->tstamp_stopped; 1399 1400 perf_set_shadow_time(event, ctx, tstamp); 1401 1402 if (!is_software_event(event)) 1403 cpuctx->active_oncpu++; 1404 ctx->nr_active++; 1405 1406 if (event->attr.exclusive) 1407 cpuctx->exclusive = 1; 1408 1409 return 0; 1410 } 1411 1412 static int 1413 group_sched_in(struct perf_event *group_event, 1414 struct perf_cpu_context *cpuctx, 1415 struct perf_event_context *ctx) 1416 { 1417 struct perf_event *event, *partial_group = NULL; 1418 struct pmu *pmu = group_event->pmu; 1419 u64 now = ctx->time; 1420 bool simulate = false; 1421 1422 if (group_event->state == PERF_EVENT_STATE_OFF) 1423 return 0; 1424 1425 pmu->start_txn(pmu); 1426 1427 if (event_sched_in(group_event, cpuctx, ctx)) { 1428 pmu->cancel_txn(pmu); 1429 return -EAGAIN; 1430 } 1431 1432 /* 1433 * Schedule in siblings as one group (if any): 1434 */ 1435 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1436 if (event_sched_in(event, cpuctx, ctx)) { 1437 partial_group = event; 1438 goto group_error; 1439 } 1440 } 1441 1442 if (!pmu->commit_txn(pmu)) 1443 return 0; 1444 1445 group_error: 1446 /* 1447 * Groups can be scheduled in as one unit only, so undo any 1448 * partial group before returning: 1449 * The events up to the failed event are scheduled out normally, 1450 * tstamp_stopped will be updated. 1451 * 1452 * The failed events and the remaining siblings need to have 1453 * their timings updated as if they had gone thru event_sched_in() 1454 * and event_sched_out(). This is required to get consistent timings 1455 * across the group. This also takes care of the case where the group 1456 * could never be scheduled by ensuring tstamp_stopped is set to mark 1457 * the time the event was actually stopped, such that time delta 1458 * calculation in update_event_times() is correct. 1459 */ 1460 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1461 if (event == partial_group) 1462 simulate = true; 1463 1464 if (simulate) { 1465 event->tstamp_running += now - event->tstamp_stopped; 1466 event->tstamp_stopped = now; 1467 } else { 1468 event_sched_out(event, cpuctx, ctx); 1469 } 1470 } 1471 event_sched_out(group_event, cpuctx, ctx); 1472 1473 pmu->cancel_txn(pmu); 1474 1475 return -EAGAIN; 1476 } 1477 1478 /* 1479 * Work out whether we can put this event group on the CPU now. 1480 */ 1481 static int group_can_go_on(struct perf_event *event, 1482 struct perf_cpu_context *cpuctx, 1483 int can_add_hw) 1484 { 1485 /* 1486 * Groups consisting entirely of software events can always go on. 1487 */ 1488 if (event->group_flags & PERF_GROUP_SOFTWARE) 1489 return 1; 1490 /* 1491 * If an exclusive group is already on, no other hardware 1492 * events can go on. 1493 */ 1494 if (cpuctx->exclusive) 1495 return 0; 1496 /* 1497 * If this group is exclusive and there are already 1498 * events on the CPU, it can't go on. 1499 */ 1500 if (event->attr.exclusive && cpuctx->active_oncpu) 1501 return 0; 1502 /* 1503 * Otherwise, try to add it if all previous groups were able 1504 * to go on. 1505 */ 1506 return can_add_hw; 1507 } 1508 1509 static void add_event_to_ctx(struct perf_event *event, 1510 struct perf_event_context *ctx) 1511 { 1512 u64 tstamp = perf_event_time(event); 1513 1514 list_add_event(event, ctx); 1515 perf_group_attach(event); 1516 event->tstamp_enabled = tstamp; 1517 event->tstamp_running = tstamp; 1518 event->tstamp_stopped = tstamp; 1519 } 1520 1521 static void task_ctx_sched_out(struct perf_event_context *ctx); 1522 static void 1523 ctx_sched_in(struct perf_event_context *ctx, 1524 struct perf_cpu_context *cpuctx, 1525 enum event_type_t event_type, 1526 struct task_struct *task); 1527 1528 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1529 struct perf_event_context *ctx, 1530 struct task_struct *task) 1531 { 1532 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1533 if (ctx) 1534 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1535 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1536 if (ctx) 1537 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1538 } 1539 1540 /* 1541 * Cross CPU call to install and enable a performance event 1542 * 1543 * Must be called with ctx->mutex held 1544 */ 1545 static int __perf_install_in_context(void *info) 1546 { 1547 struct perf_event *event = info; 1548 struct perf_event_context *ctx = event->ctx; 1549 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1550 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1551 struct task_struct *task = current; 1552 1553 perf_ctx_lock(cpuctx, task_ctx); 1554 perf_pmu_disable(cpuctx->ctx.pmu); 1555 1556 /* 1557 * If there was an active task_ctx schedule it out. 1558 */ 1559 if (task_ctx) 1560 task_ctx_sched_out(task_ctx); 1561 1562 /* 1563 * If the context we're installing events in is not the 1564 * active task_ctx, flip them. 1565 */ 1566 if (ctx->task && task_ctx != ctx) { 1567 if (task_ctx) 1568 raw_spin_unlock(&task_ctx->lock); 1569 raw_spin_lock(&ctx->lock); 1570 task_ctx = ctx; 1571 } 1572 1573 if (task_ctx) { 1574 cpuctx->task_ctx = task_ctx; 1575 task = task_ctx->task; 1576 } 1577 1578 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1579 1580 update_context_time(ctx); 1581 /* 1582 * update cgrp time only if current cgrp 1583 * matches event->cgrp. Must be done before 1584 * calling add_event_to_ctx() 1585 */ 1586 update_cgrp_time_from_event(event); 1587 1588 add_event_to_ctx(event, ctx); 1589 1590 /* 1591 * Schedule everything back in 1592 */ 1593 perf_event_sched_in(cpuctx, task_ctx, task); 1594 1595 perf_pmu_enable(cpuctx->ctx.pmu); 1596 perf_ctx_unlock(cpuctx, task_ctx); 1597 1598 return 0; 1599 } 1600 1601 /* 1602 * Attach a performance event to a context 1603 * 1604 * First we add the event to the list with the hardware enable bit 1605 * in event->hw_config cleared. 1606 * 1607 * If the event is attached to a task which is on a CPU we use a smp 1608 * call to enable it in the task context. The task might have been 1609 * scheduled away, but we check this in the smp call again. 1610 */ 1611 static void 1612 perf_install_in_context(struct perf_event_context *ctx, 1613 struct perf_event *event, 1614 int cpu) 1615 { 1616 struct task_struct *task = ctx->task; 1617 1618 lockdep_assert_held(&ctx->mutex); 1619 1620 event->ctx = ctx; 1621 1622 if (!task) { 1623 /* 1624 * Per cpu events are installed via an smp call and 1625 * the install is always successful. 1626 */ 1627 cpu_function_call(cpu, __perf_install_in_context, event); 1628 return; 1629 } 1630 1631 retry: 1632 if (!task_function_call(task, __perf_install_in_context, event)) 1633 return; 1634 1635 raw_spin_lock_irq(&ctx->lock); 1636 /* 1637 * If we failed to find a running task, but find the context active now 1638 * that we've acquired the ctx->lock, retry. 1639 */ 1640 if (ctx->is_active) { 1641 raw_spin_unlock_irq(&ctx->lock); 1642 goto retry; 1643 } 1644 1645 /* 1646 * Since the task isn't running, its safe to add the event, us holding 1647 * the ctx->lock ensures the task won't get scheduled in. 1648 */ 1649 add_event_to_ctx(event, ctx); 1650 raw_spin_unlock_irq(&ctx->lock); 1651 } 1652 1653 /* 1654 * Put a event into inactive state and update time fields. 1655 * Enabling the leader of a group effectively enables all 1656 * the group members that aren't explicitly disabled, so we 1657 * have to update their ->tstamp_enabled also. 1658 * Note: this works for group members as well as group leaders 1659 * since the non-leader members' sibling_lists will be empty. 1660 */ 1661 static void __perf_event_mark_enabled(struct perf_event *event, 1662 struct perf_event_context *ctx) 1663 { 1664 struct perf_event *sub; 1665 u64 tstamp = perf_event_time(event); 1666 1667 event->state = PERF_EVENT_STATE_INACTIVE; 1668 event->tstamp_enabled = tstamp - event->total_time_enabled; 1669 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1670 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1671 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1672 } 1673 } 1674 1675 /* 1676 * Cross CPU call to enable a performance event 1677 */ 1678 static int __perf_event_enable(void *info) 1679 { 1680 struct perf_event *event = info; 1681 struct perf_event_context *ctx = event->ctx; 1682 struct perf_event *leader = event->group_leader; 1683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1684 int err; 1685 1686 if (WARN_ON_ONCE(!ctx->is_active)) 1687 return -EINVAL; 1688 1689 raw_spin_lock(&ctx->lock); 1690 update_context_time(ctx); 1691 1692 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1693 goto unlock; 1694 1695 /* 1696 * set current task's cgroup time reference point 1697 */ 1698 perf_cgroup_set_timestamp(current, ctx); 1699 1700 __perf_event_mark_enabled(event, ctx); 1701 1702 if (!event_filter_match(event)) { 1703 if (is_cgroup_event(event)) 1704 perf_cgroup_defer_enabled(event); 1705 goto unlock; 1706 } 1707 1708 /* 1709 * If the event is in a group and isn't the group leader, 1710 * then don't put it on unless the group is on. 1711 */ 1712 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1713 goto unlock; 1714 1715 if (!group_can_go_on(event, cpuctx, 1)) { 1716 err = -EEXIST; 1717 } else { 1718 if (event == leader) 1719 err = group_sched_in(event, cpuctx, ctx); 1720 else 1721 err = event_sched_in(event, cpuctx, ctx); 1722 } 1723 1724 if (err) { 1725 /* 1726 * If this event can't go on and it's part of a 1727 * group, then the whole group has to come off. 1728 */ 1729 if (leader != event) 1730 group_sched_out(leader, cpuctx, ctx); 1731 if (leader->attr.pinned) { 1732 update_group_times(leader); 1733 leader->state = PERF_EVENT_STATE_ERROR; 1734 } 1735 } 1736 1737 unlock: 1738 raw_spin_unlock(&ctx->lock); 1739 1740 return 0; 1741 } 1742 1743 /* 1744 * Enable a event. 1745 * 1746 * If event->ctx is a cloned context, callers must make sure that 1747 * every task struct that event->ctx->task could possibly point to 1748 * remains valid. This condition is satisfied when called through 1749 * perf_event_for_each_child or perf_event_for_each as described 1750 * for perf_event_disable. 1751 */ 1752 void perf_event_enable(struct perf_event *event) 1753 { 1754 struct perf_event_context *ctx = event->ctx; 1755 struct task_struct *task = ctx->task; 1756 1757 if (!task) { 1758 /* 1759 * Enable the event on the cpu that it's on 1760 */ 1761 cpu_function_call(event->cpu, __perf_event_enable, event); 1762 return; 1763 } 1764 1765 raw_spin_lock_irq(&ctx->lock); 1766 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1767 goto out; 1768 1769 /* 1770 * If the event is in error state, clear that first. 1771 * That way, if we see the event in error state below, we 1772 * know that it has gone back into error state, as distinct 1773 * from the task having been scheduled away before the 1774 * cross-call arrived. 1775 */ 1776 if (event->state == PERF_EVENT_STATE_ERROR) 1777 event->state = PERF_EVENT_STATE_OFF; 1778 1779 retry: 1780 if (!ctx->is_active) { 1781 __perf_event_mark_enabled(event, ctx); 1782 goto out; 1783 } 1784 1785 raw_spin_unlock_irq(&ctx->lock); 1786 1787 if (!task_function_call(task, __perf_event_enable, event)) 1788 return; 1789 1790 raw_spin_lock_irq(&ctx->lock); 1791 1792 /* 1793 * If the context is active and the event is still off, 1794 * we need to retry the cross-call. 1795 */ 1796 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1797 /* 1798 * task could have been flipped by a concurrent 1799 * perf_event_context_sched_out() 1800 */ 1801 task = ctx->task; 1802 goto retry; 1803 } 1804 1805 out: 1806 raw_spin_unlock_irq(&ctx->lock); 1807 } 1808 1809 int perf_event_refresh(struct perf_event *event, int refresh) 1810 { 1811 /* 1812 * not supported on inherited events 1813 */ 1814 if (event->attr.inherit || !is_sampling_event(event)) 1815 return -EINVAL; 1816 1817 atomic_add(refresh, &event->event_limit); 1818 perf_event_enable(event); 1819 1820 return 0; 1821 } 1822 EXPORT_SYMBOL_GPL(perf_event_refresh); 1823 1824 static void ctx_sched_out(struct perf_event_context *ctx, 1825 struct perf_cpu_context *cpuctx, 1826 enum event_type_t event_type) 1827 { 1828 struct perf_event *event; 1829 int is_active = ctx->is_active; 1830 1831 ctx->is_active &= ~event_type; 1832 if (likely(!ctx->nr_events)) 1833 return; 1834 1835 update_context_time(ctx); 1836 update_cgrp_time_from_cpuctx(cpuctx); 1837 if (!ctx->nr_active) 1838 return; 1839 1840 perf_pmu_disable(ctx->pmu); 1841 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1842 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1843 group_sched_out(event, cpuctx, ctx); 1844 } 1845 1846 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1847 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1848 group_sched_out(event, cpuctx, ctx); 1849 } 1850 perf_pmu_enable(ctx->pmu); 1851 } 1852 1853 /* 1854 * Test whether two contexts are equivalent, i.e. whether they 1855 * have both been cloned from the same version of the same context 1856 * and they both have the same number of enabled events. 1857 * If the number of enabled events is the same, then the set 1858 * of enabled events should be the same, because these are both 1859 * inherited contexts, therefore we can't access individual events 1860 * in them directly with an fd; we can only enable/disable all 1861 * events via prctl, or enable/disable all events in a family 1862 * via ioctl, which will have the same effect on both contexts. 1863 */ 1864 static int context_equiv(struct perf_event_context *ctx1, 1865 struct perf_event_context *ctx2) 1866 { 1867 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1868 && ctx1->parent_gen == ctx2->parent_gen 1869 && !ctx1->pin_count && !ctx2->pin_count; 1870 } 1871 1872 static void __perf_event_sync_stat(struct perf_event *event, 1873 struct perf_event *next_event) 1874 { 1875 u64 value; 1876 1877 if (!event->attr.inherit_stat) 1878 return; 1879 1880 /* 1881 * Update the event value, we cannot use perf_event_read() 1882 * because we're in the middle of a context switch and have IRQs 1883 * disabled, which upsets smp_call_function_single(), however 1884 * we know the event must be on the current CPU, therefore we 1885 * don't need to use it. 1886 */ 1887 switch (event->state) { 1888 case PERF_EVENT_STATE_ACTIVE: 1889 event->pmu->read(event); 1890 /* fall-through */ 1891 1892 case PERF_EVENT_STATE_INACTIVE: 1893 update_event_times(event); 1894 break; 1895 1896 default: 1897 break; 1898 } 1899 1900 /* 1901 * In order to keep per-task stats reliable we need to flip the event 1902 * values when we flip the contexts. 1903 */ 1904 value = local64_read(&next_event->count); 1905 value = local64_xchg(&event->count, value); 1906 local64_set(&next_event->count, value); 1907 1908 swap(event->total_time_enabled, next_event->total_time_enabled); 1909 swap(event->total_time_running, next_event->total_time_running); 1910 1911 /* 1912 * Since we swizzled the values, update the user visible data too. 1913 */ 1914 perf_event_update_userpage(event); 1915 perf_event_update_userpage(next_event); 1916 } 1917 1918 #define list_next_entry(pos, member) \ 1919 list_entry(pos->member.next, typeof(*pos), member) 1920 1921 static void perf_event_sync_stat(struct perf_event_context *ctx, 1922 struct perf_event_context *next_ctx) 1923 { 1924 struct perf_event *event, *next_event; 1925 1926 if (!ctx->nr_stat) 1927 return; 1928 1929 update_context_time(ctx); 1930 1931 event = list_first_entry(&ctx->event_list, 1932 struct perf_event, event_entry); 1933 1934 next_event = list_first_entry(&next_ctx->event_list, 1935 struct perf_event, event_entry); 1936 1937 while (&event->event_entry != &ctx->event_list && 1938 &next_event->event_entry != &next_ctx->event_list) { 1939 1940 __perf_event_sync_stat(event, next_event); 1941 1942 event = list_next_entry(event, event_entry); 1943 next_event = list_next_entry(next_event, event_entry); 1944 } 1945 } 1946 1947 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1948 struct task_struct *next) 1949 { 1950 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1951 struct perf_event_context *next_ctx; 1952 struct perf_event_context *parent; 1953 struct perf_cpu_context *cpuctx; 1954 int do_switch = 1; 1955 1956 if (likely(!ctx)) 1957 return; 1958 1959 cpuctx = __get_cpu_context(ctx); 1960 if (!cpuctx->task_ctx) 1961 return; 1962 1963 rcu_read_lock(); 1964 parent = rcu_dereference(ctx->parent_ctx); 1965 next_ctx = next->perf_event_ctxp[ctxn]; 1966 if (parent && next_ctx && 1967 rcu_dereference(next_ctx->parent_ctx) == parent) { 1968 /* 1969 * Looks like the two contexts are clones, so we might be 1970 * able to optimize the context switch. We lock both 1971 * contexts and check that they are clones under the 1972 * lock (including re-checking that neither has been 1973 * uncloned in the meantime). It doesn't matter which 1974 * order we take the locks because no other cpu could 1975 * be trying to lock both of these tasks. 1976 */ 1977 raw_spin_lock(&ctx->lock); 1978 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 1979 if (context_equiv(ctx, next_ctx)) { 1980 /* 1981 * XXX do we need a memory barrier of sorts 1982 * wrt to rcu_dereference() of perf_event_ctxp 1983 */ 1984 task->perf_event_ctxp[ctxn] = next_ctx; 1985 next->perf_event_ctxp[ctxn] = ctx; 1986 ctx->task = next; 1987 next_ctx->task = task; 1988 do_switch = 0; 1989 1990 perf_event_sync_stat(ctx, next_ctx); 1991 } 1992 raw_spin_unlock(&next_ctx->lock); 1993 raw_spin_unlock(&ctx->lock); 1994 } 1995 rcu_read_unlock(); 1996 1997 if (do_switch) { 1998 raw_spin_lock(&ctx->lock); 1999 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2000 cpuctx->task_ctx = NULL; 2001 raw_spin_unlock(&ctx->lock); 2002 } 2003 } 2004 2005 #define for_each_task_context_nr(ctxn) \ 2006 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2007 2008 /* 2009 * Called from scheduler to remove the events of the current task, 2010 * with interrupts disabled. 2011 * 2012 * We stop each event and update the event value in event->count. 2013 * 2014 * This does not protect us against NMI, but disable() 2015 * sets the disabled bit in the control field of event _before_ 2016 * accessing the event control register. If a NMI hits, then it will 2017 * not restart the event. 2018 */ 2019 void __perf_event_task_sched_out(struct task_struct *task, 2020 struct task_struct *next) 2021 { 2022 int ctxn; 2023 2024 for_each_task_context_nr(ctxn) 2025 perf_event_context_sched_out(task, ctxn, next); 2026 2027 /* 2028 * if cgroup events exist on this CPU, then we need 2029 * to check if we have to switch out PMU state. 2030 * cgroup event are system-wide mode only 2031 */ 2032 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2033 perf_cgroup_sched_out(task, next); 2034 } 2035 2036 static void task_ctx_sched_out(struct perf_event_context *ctx) 2037 { 2038 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2039 2040 if (!cpuctx->task_ctx) 2041 return; 2042 2043 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2044 return; 2045 2046 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2047 cpuctx->task_ctx = NULL; 2048 } 2049 2050 /* 2051 * Called with IRQs disabled 2052 */ 2053 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2054 enum event_type_t event_type) 2055 { 2056 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2057 } 2058 2059 static void 2060 ctx_pinned_sched_in(struct perf_event_context *ctx, 2061 struct perf_cpu_context *cpuctx) 2062 { 2063 struct perf_event *event; 2064 2065 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2066 if (event->state <= PERF_EVENT_STATE_OFF) 2067 continue; 2068 if (!event_filter_match(event)) 2069 continue; 2070 2071 /* may need to reset tstamp_enabled */ 2072 if (is_cgroup_event(event)) 2073 perf_cgroup_mark_enabled(event, ctx); 2074 2075 if (group_can_go_on(event, cpuctx, 1)) 2076 group_sched_in(event, cpuctx, ctx); 2077 2078 /* 2079 * If this pinned group hasn't been scheduled, 2080 * put it in error state. 2081 */ 2082 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2083 update_group_times(event); 2084 event->state = PERF_EVENT_STATE_ERROR; 2085 } 2086 } 2087 } 2088 2089 static void 2090 ctx_flexible_sched_in(struct perf_event_context *ctx, 2091 struct perf_cpu_context *cpuctx) 2092 { 2093 struct perf_event *event; 2094 int can_add_hw = 1; 2095 2096 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2097 /* Ignore events in OFF or ERROR state */ 2098 if (event->state <= PERF_EVENT_STATE_OFF) 2099 continue; 2100 /* 2101 * Listen to the 'cpu' scheduling filter constraint 2102 * of events: 2103 */ 2104 if (!event_filter_match(event)) 2105 continue; 2106 2107 /* may need to reset tstamp_enabled */ 2108 if (is_cgroup_event(event)) 2109 perf_cgroup_mark_enabled(event, ctx); 2110 2111 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2112 if (group_sched_in(event, cpuctx, ctx)) 2113 can_add_hw = 0; 2114 } 2115 } 2116 } 2117 2118 static void 2119 ctx_sched_in(struct perf_event_context *ctx, 2120 struct perf_cpu_context *cpuctx, 2121 enum event_type_t event_type, 2122 struct task_struct *task) 2123 { 2124 u64 now; 2125 int is_active = ctx->is_active; 2126 2127 ctx->is_active |= event_type; 2128 if (likely(!ctx->nr_events)) 2129 return; 2130 2131 now = perf_clock(); 2132 ctx->timestamp = now; 2133 perf_cgroup_set_timestamp(task, ctx); 2134 /* 2135 * First go through the list and put on any pinned groups 2136 * in order to give them the best chance of going on. 2137 */ 2138 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2139 ctx_pinned_sched_in(ctx, cpuctx); 2140 2141 /* Then walk through the lower prio flexible groups */ 2142 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2143 ctx_flexible_sched_in(ctx, cpuctx); 2144 } 2145 2146 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2147 enum event_type_t event_type, 2148 struct task_struct *task) 2149 { 2150 struct perf_event_context *ctx = &cpuctx->ctx; 2151 2152 ctx_sched_in(ctx, cpuctx, event_type, task); 2153 } 2154 2155 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2156 struct task_struct *task) 2157 { 2158 struct perf_cpu_context *cpuctx; 2159 2160 cpuctx = __get_cpu_context(ctx); 2161 if (cpuctx->task_ctx == ctx) 2162 return; 2163 2164 perf_ctx_lock(cpuctx, ctx); 2165 perf_pmu_disable(ctx->pmu); 2166 /* 2167 * We want to keep the following priority order: 2168 * cpu pinned (that don't need to move), task pinned, 2169 * cpu flexible, task flexible. 2170 */ 2171 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2172 2173 perf_event_sched_in(cpuctx, ctx, task); 2174 2175 cpuctx->task_ctx = ctx; 2176 2177 perf_pmu_enable(ctx->pmu); 2178 perf_ctx_unlock(cpuctx, ctx); 2179 2180 /* 2181 * Since these rotations are per-cpu, we need to ensure the 2182 * cpu-context we got scheduled on is actually rotating. 2183 */ 2184 perf_pmu_rotate_start(ctx->pmu); 2185 } 2186 2187 /* 2188 * Called from scheduler to add the events of the current task 2189 * with interrupts disabled. 2190 * 2191 * We restore the event value and then enable it. 2192 * 2193 * This does not protect us against NMI, but enable() 2194 * sets the enabled bit in the control field of event _before_ 2195 * accessing the event control register. If a NMI hits, then it will 2196 * keep the event running. 2197 */ 2198 void __perf_event_task_sched_in(struct task_struct *prev, 2199 struct task_struct *task) 2200 { 2201 struct perf_event_context *ctx; 2202 int ctxn; 2203 2204 for_each_task_context_nr(ctxn) { 2205 ctx = task->perf_event_ctxp[ctxn]; 2206 if (likely(!ctx)) 2207 continue; 2208 2209 perf_event_context_sched_in(ctx, task); 2210 } 2211 /* 2212 * if cgroup events exist on this CPU, then we need 2213 * to check if we have to switch in PMU state. 2214 * cgroup event are system-wide mode only 2215 */ 2216 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2217 perf_cgroup_sched_in(prev, task); 2218 } 2219 2220 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2221 { 2222 u64 frequency = event->attr.sample_freq; 2223 u64 sec = NSEC_PER_SEC; 2224 u64 divisor, dividend; 2225 2226 int count_fls, nsec_fls, frequency_fls, sec_fls; 2227 2228 count_fls = fls64(count); 2229 nsec_fls = fls64(nsec); 2230 frequency_fls = fls64(frequency); 2231 sec_fls = 30; 2232 2233 /* 2234 * We got @count in @nsec, with a target of sample_freq HZ 2235 * the target period becomes: 2236 * 2237 * @count * 10^9 2238 * period = ------------------- 2239 * @nsec * sample_freq 2240 * 2241 */ 2242 2243 /* 2244 * Reduce accuracy by one bit such that @a and @b converge 2245 * to a similar magnitude. 2246 */ 2247 #define REDUCE_FLS(a, b) \ 2248 do { \ 2249 if (a##_fls > b##_fls) { \ 2250 a >>= 1; \ 2251 a##_fls--; \ 2252 } else { \ 2253 b >>= 1; \ 2254 b##_fls--; \ 2255 } \ 2256 } while (0) 2257 2258 /* 2259 * Reduce accuracy until either term fits in a u64, then proceed with 2260 * the other, so that finally we can do a u64/u64 division. 2261 */ 2262 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2263 REDUCE_FLS(nsec, frequency); 2264 REDUCE_FLS(sec, count); 2265 } 2266 2267 if (count_fls + sec_fls > 64) { 2268 divisor = nsec * frequency; 2269 2270 while (count_fls + sec_fls > 64) { 2271 REDUCE_FLS(count, sec); 2272 divisor >>= 1; 2273 } 2274 2275 dividend = count * sec; 2276 } else { 2277 dividend = count * sec; 2278 2279 while (nsec_fls + frequency_fls > 64) { 2280 REDUCE_FLS(nsec, frequency); 2281 dividend >>= 1; 2282 } 2283 2284 divisor = nsec * frequency; 2285 } 2286 2287 if (!divisor) 2288 return dividend; 2289 2290 return div64_u64(dividend, divisor); 2291 } 2292 2293 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) 2294 { 2295 struct hw_perf_event *hwc = &event->hw; 2296 s64 period, sample_period; 2297 s64 delta; 2298 2299 period = perf_calculate_period(event, nsec, count); 2300 2301 delta = (s64)(period - hwc->sample_period); 2302 delta = (delta + 7) / 8; /* low pass filter */ 2303 2304 sample_period = hwc->sample_period + delta; 2305 2306 if (!sample_period) 2307 sample_period = 1; 2308 2309 hwc->sample_period = sample_period; 2310 2311 if (local64_read(&hwc->period_left) > 8*sample_period) { 2312 event->pmu->stop(event, PERF_EF_UPDATE); 2313 local64_set(&hwc->period_left, 0); 2314 event->pmu->start(event, PERF_EF_RELOAD); 2315 } 2316 } 2317 2318 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) 2319 { 2320 struct perf_event *event; 2321 struct hw_perf_event *hwc; 2322 u64 interrupts, now; 2323 s64 delta; 2324 2325 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2326 if (event->state != PERF_EVENT_STATE_ACTIVE) 2327 continue; 2328 2329 if (!event_filter_match(event)) 2330 continue; 2331 2332 hwc = &event->hw; 2333 2334 interrupts = hwc->interrupts; 2335 hwc->interrupts = 0; 2336 2337 /* 2338 * unthrottle events on the tick 2339 */ 2340 if (interrupts == MAX_INTERRUPTS) { 2341 perf_log_throttle(event, 1); 2342 event->pmu->start(event, 0); 2343 } 2344 2345 if (!event->attr.freq || !event->attr.sample_freq) 2346 continue; 2347 2348 event->pmu->read(event); 2349 now = local64_read(&event->count); 2350 delta = now - hwc->freq_count_stamp; 2351 hwc->freq_count_stamp = now; 2352 2353 if (delta > 0) 2354 perf_adjust_period(event, period, delta); 2355 } 2356 } 2357 2358 /* 2359 * Round-robin a context's events: 2360 */ 2361 static void rotate_ctx(struct perf_event_context *ctx) 2362 { 2363 /* 2364 * Rotate the first entry last of non-pinned groups. Rotation might be 2365 * disabled by the inheritance code. 2366 */ 2367 if (!ctx->rotate_disable) 2368 list_rotate_left(&ctx->flexible_groups); 2369 } 2370 2371 /* 2372 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2373 * because they're strictly cpu affine and rotate_start is called with IRQs 2374 * disabled, while rotate_context is called from IRQ context. 2375 */ 2376 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2377 { 2378 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; 2379 struct perf_event_context *ctx = NULL; 2380 int rotate = 0, remove = 1; 2381 2382 if (cpuctx->ctx.nr_events) { 2383 remove = 0; 2384 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2385 rotate = 1; 2386 } 2387 2388 ctx = cpuctx->task_ctx; 2389 if (ctx && ctx->nr_events) { 2390 remove = 0; 2391 if (ctx->nr_events != ctx->nr_active) 2392 rotate = 1; 2393 } 2394 2395 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2396 perf_pmu_disable(cpuctx->ctx.pmu); 2397 perf_ctx_adjust_freq(&cpuctx->ctx, interval); 2398 if (ctx) 2399 perf_ctx_adjust_freq(ctx, interval); 2400 2401 if (!rotate) 2402 goto done; 2403 2404 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2405 if (ctx) 2406 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2407 2408 rotate_ctx(&cpuctx->ctx); 2409 if (ctx) 2410 rotate_ctx(ctx); 2411 2412 perf_event_sched_in(cpuctx, ctx, current); 2413 2414 done: 2415 if (remove) 2416 list_del_init(&cpuctx->rotation_list); 2417 2418 perf_pmu_enable(cpuctx->ctx.pmu); 2419 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2420 } 2421 2422 void perf_event_task_tick(void) 2423 { 2424 struct list_head *head = &__get_cpu_var(rotation_list); 2425 struct perf_cpu_context *cpuctx, *tmp; 2426 2427 WARN_ON(!irqs_disabled()); 2428 2429 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2430 if (cpuctx->jiffies_interval == 1 || 2431 !(jiffies % cpuctx->jiffies_interval)) 2432 perf_rotate_context(cpuctx); 2433 } 2434 } 2435 2436 static int event_enable_on_exec(struct perf_event *event, 2437 struct perf_event_context *ctx) 2438 { 2439 if (!event->attr.enable_on_exec) 2440 return 0; 2441 2442 event->attr.enable_on_exec = 0; 2443 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2444 return 0; 2445 2446 __perf_event_mark_enabled(event, ctx); 2447 2448 return 1; 2449 } 2450 2451 /* 2452 * Enable all of a task's events that have been marked enable-on-exec. 2453 * This expects task == current. 2454 */ 2455 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2456 { 2457 struct perf_event *event; 2458 unsigned long flags; 2459 int enabled = 0; 2460 int ret; 2461 2462 local_irq_save(flags); 2463 if (!ctx || !ctx->nr_events) 2464 goto out; 2465 2466 /* 2467 * We must ctxsw out cgroup events to avoid conflict 2468 * when invoking perf_task_event_sched_in() later on 2469 * in this function. Otherwise we end up trying to 2470 * ctxswin cgroup events which are already scheduled 2471 * in. 2472 */ 2473 perf_cgroup_sched_out(current, NULL); 2474 2475 raw_spin_lock(&ctx->lock); 2476 task_ctx_sched_out(ctx); 2477 2478 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2479 ret = event_enable_on_exec(event, ctx); 2480 if (ret) 2481 enabled = 1; 2482 } 2483 2484 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2485 ret = event_enable_on_exec(event, ctx); 2486 if (ret) 2487 enabled = 1; 2488 } 2489 2490 /* 2491 * Unclone this context if we enabled any event. 2492 */ 2493 if (enabled) 2494 unclone_ctx(ctx); 2495 2496 raw_spin_unlock(&ctx->lock); 2497 2498 /* 2499 * Also calls ctxswin for cgroup events, if any: 2500 */ 2501 perf_event_context_sched_in(ctx, ctx->task); 2502 out: 2503 local_irq_restore(flags); 2504 } 2505 2506 /* 2507 * Cross CPU call to read the hardware event 2508 */ 2509 static void __perf_event_read(void *info) 2510 { 2511 struct perf_event *event = info; 2512 struct perf_event_context *ctx = event->ctx; 2513 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2514 2515 /* 2516 * If this is a task context, we need to check whether it is 2517 * the current task context of this cpu. If not it has been 2518 * scheduled out before the smp call arrived. In that case 2519 * event->count would have been updated to a recent sample 2520 * when the event was scheduled out. 2521 */ 2522 if (ctx->task && cpuctx->task_ctx != ctx) 2523 return; 2524 2525 raw_spin_lock(&ctx->lock); 2526 if (ctx->is_active) { 2527 update_context_time(ctx); 2528 update_cgrp_time_from_event(event); 2529 } 2530 update_event_times(event); 2531 if (event->state == PERF_EVENT_STATE_ACTIVE) 2532 event->pmu->read(event); 2533 raw_spin_unlock(&ctx->lock); 2534 } 2535 2536 static inline u64 perf_event_count(struct perf_event *event) 2537 { 2538 return local64_read(&event->count) + atomic64_read(&event->child_count); 2539 } 2540 2541 static u64 perf_event_read(struct perf_event *event) 2542 { 2543 /* 2544 * If event is enabled and currently active on a CPU, update the 2545 * value in the event structure: 2546 */ 2547 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2548 smp_call_function_single(event->oncpu, 2549 __perf_event_read, event, 1); 2550 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2551 struct perf_event_context *ctx = event->ctx; 2552 unsigned long flags; 2553 2554 raw_spin_lock_irqsave(&ctx->lock, flags); 2555 /* 2556 * may read while context is not active 2557 * (e.g., thread is blocked), in that case 2558 * we cannot update context time 2559 */ 2560 if (ctx->is_active) { 2561 update_context_time(ctx); 2562 update_cgrp_time_from_event(event); 2563 } 2564 update_event_times(event); 2565 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2566 } 2567 2568 return perf_event_count(event); 2569 } 2570 2571 /* 2572 * Callchain support 2573 */ 2574 2575 struct callchain_cpus_entries { 2576 struct rcu_head rcu_head; 2577 struct perf_callchain_entry *cpu_entries[0]; 2578 }; 2579 2580 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); 2581 static atomic_t nr_callchain_events; 2582 static DEFINE_MUTEX(callchain_mutex); 2583 struct callchain_cpus_entries *callchain_cpus_entries; 2584 2585 2586 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry, 2587 struct pt_regs *regs) 2588 { 2589 } 2590 2591 __weak void perf_callchain_user(struct perf_callchain_entry *entry, 2592 struct pt_regs *regs) 2593 { 2594 } 2595 2596 static void release_callchain_buffers_rcu(struct rcu_head *head) 2597 { 2598 struct callchain_cpus_entries *entries; 2599 int cpu; 2600 2601 entries = container_of(head, struct callchain_cpus_entries, rcu_head); 2602 2603 for_each_possible_cpu(cpu) 2604 kfree(entries->cpu_entries[cpu]); 2605 2606 kfree(entries); 2607 } 2608 2609 static void release_callchain_buffers(void) 2610 { 2611 struct callchain_cpus_entries *entries; 2612 2613 entries = callchain_cpus_entries; 2614 rcu_assign_pointer(callchain_cpus_entries, NULL); 2615 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); 2616 } 2617 2618 static int alloc_callchain_buffers(void) 2619 { 2620 int cpu; 2621 int size; 2622 struct callchain_cpus_entries *entries; 2623 2624 /* 2625 * We can't use the percpu allocation API for data that can be 2626 * accessed from NMI. Use a temporary manual per cpu allocation 2627 * until that gets sorted out. 2628 */ 2629 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]); 2630 2631 entries = kzalloc(size, GFP_KERNEL); 2632 if (!entries) 2633 return -ENOMEM; 2634 2635 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS; 2636 2637 for_each_possible_cpu(cpu) { 2638 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, 2639 cpu_to_node(cpu)); 2640 if (!entries->cpu_entries[cpu]) 2641 goto fail; 2642 } 2643 2644 rcu_assign_pointer(callchain_cpus_entries, entries); 2645 2646 return 0; 2647 2648 fail: 2649 for_each_possible_cpu(cpu) 2650 kfree(entries->cpu_entries[cpu]); 2651 kfree(entries); 2652 2653 return -ENOMEM; 2654 } 2655 2656 static int get_callchain_buffers(void) 2657 { 2658 int err = 0; 2659 int count; 2660 2661 mutex_lock(&callchain_mutex); 2662 2663 count = atomic_inc_return(&nr_callchain_events); 2664 if (WARN_ON_ONCE(count < 1)) { 2665 err = -EINVAL; 2666 goto exit; 2667 } 2668 2669 if (count > 1) { 2670 /* If the allocation failed, give up */ 2671 if (!callchain_cpus_entries) 2672 err = -ENOMEM; 2673 goto exit; 2674 } 2675 2676 err = alloc_callchain_buffers(); 2677 if (err) 2678 release_callchain_buffers(); 2679 exit: 2680 mutex_unlock(&callchain_mutex); 2681 2682 return err; 2683 } 2684 2685 static void put_callchain_buffers(void) 2686 { 2687 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { 2688 release_callchain_buffers(); 2689 mutex_unlock(&callchain_mutex); 2690 } 2691 } 2692 2693 static int get_recursion_context(int *recursion) 2694 { 2695 int rctx; 2696 2697 if (in_nmi()) 2698 rctx = 3; 2699 else if (in_irq()) 2700 rctx = 2; 2701 else if (in_softirq()) 2702 rctx = 1; 2703 else 2704 rctx = 0; 2705 2706 if (recursion[rctx]) 2707 return -1; 2708 2709 recursion[rctx]++; 2710 barrier(); 2711 2712 return rctx; 2713 } 2714 2715 static inline void put_recursion_context(int *recursion, int rctx) 2716 { 2717 barrier(); 2718 recursion[rctx]--; 2719 } 2720 2721 static struct perf_callchain_entry *get_callchain_entry(int *rctx) 2722 { 2723 int cpu; 2724 struct callchain_cpus_entries *entries; 2725 2726 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion)); 2727 if (*rctx == -1) 2728 return NULL; 2729 2730 entries = rcu_dereference(callchain_cpus_entries); 2731 if (!entries) 2732 return NULL; 2733 2734 cpu = smp_processor_id(); 2735 2736 return &entries->cpu_entries[cpu][*rctx]; 2737 } 2738 2739 static void 2740 put_callchain_entry(int rctx) 2741 { 2742 put_recursion_context(__get_cpu_var(callchain_recursion), rctx); 2743 } 2744 2745 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) 2746 { 2747 int rctx; 2748 struct perf_callchain_entry *entry; 2749 2750 2751 entry = get_callchain_entry(&rctx); 2752 if (rctx == -1) 2753 return NULL; 2754 2755 if (!entry) 2756 goto exit_put; 2757 2758 entry->nr = 0; 2759 2760 if (!user_mode(regs)) { 2761 perf_callchain_store(entry, PERF_CONTEXT_KERNEL); 2762 perf_callchain_kernel(entry, regs); 2763 if (current->mm) 2764 regs = task_pt_regs(current); 2765 else 2766 regs = NULL; 2767 } 2768 2769 if (regs) { 2770 perf_callchain_store(entry, PERF_CONTEXT_USER); 2771 perf_callchain_user(entry, regs); 2772 } 2773 2774 exit_put: 2775 put_callchain_entry(rctx); 2776 2777 return entry; 2778 } 2779 2780 /* 2781 * Initialize the perf_event context in a task_struct: 2782 */ 2783 static void __perf_event_init_context(struct perf_event_context *ctx) 2784 { 2785 raw_spin_lock_init(&ctx->lock); 2786 mutex_init(&ctx->mutex); 2787 INIT_LIST_HEAD(&ctx->pinned_groups); 2788 INIT_LIST_HEAD(&ctx->flexible_groups); 2789 INIT_LIST_HEAD(&ctx->event_list); 2790 atomic_set(&ctx->refcount, 1); 2791 } 2792 2793 static struct perf_event_context * 2794 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2795 { 2796 struct perf_event_context *ctx; 2797 2798 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2799 if (!ctx) 2800 return NULL; 2801 2802 __perf_event_init_context(ctx); 2803 if (task) { 2804 ctx->task = task; 2805 get_task_struct(task); 2806 } 2807 ctx->pmu = pmu; 2808 2809 return ctx; 2810 } 2811 2812 static struct task_struct * 2813 find_lively_task_by_vpid(pid_t vpid) 2814 { 2815 struct task_struct *task; 2816 int err; 2817 2818 rcu_read_lock(); 2819 if (!vpid) 2820 task = current; 2821 else 2822 task = find_task_by_vpid(vpid); 2823 if (task) 2824 get_task_struct(task); 2825 rcu_read_unlock(); 2826 2827 if (!task) 2828 return ERR_PTR(-ESRCH); 2829 2830 /* Reuse ptrace permission checks for now. */ 2831 err = -EACCES; 2832 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2833 goto errout; 2834 2835 return task; 2836 errout: 2837 put_task_struct(task); 2838 return ERR_PTR(err); 2839 2840 } 2841 2842 /* 2843 * Returns a matching context with refcount and pincount. 2844 */ 2845 static struct perf_event_context * 2846 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2847 { 2848 struct perf_event_context *ctx; 2849 struct perf_cpu_context *cpuctx; 2850 unsigned long flags; 2851 int ctxn, err; 2852 2853 if (!task) { 2854 /* Must be root to operate on a CPU event: */ 2855 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2856 return ERR_PTR(-EACCES); 2857 2858 /* 2859 * We could be clever and allow to attach a event to an 2860 * offline CPU and activate it when the CPU comes up, but 2861 * that's for later. 2862 */ 2863 if (!cpu_online(cpu)) 2864 return ERR_PTR(-ENODEV); 2865 2866 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2867 ctx = &cpuctx->ctx; 2868 get_ctx(ctx); 2869 ++ctx->pin_count; 2870 2871 return ctx; 2872 } 2873 2874 err = -EINVAL; 2875 ctxn = pmu->task_ctx_nr; 2876 if (ctxn < 0) 2877 goto errout; 2878 2879 retry: 2880 ctx = perf_lock_task_context(task, ctxn, &flags); 2881 if (ctx) { 2882 unclone_ctx(ctx); 2883 ++ctx->pin_count; 2884 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2885 } else { 2886 ctx = alloc_perf_context(pmu, task); 2887 err = -ENOMEM; 2888 if (!ctx) 2889 goto errout; 2890 2891 err = 0; 2892 mutex_lock(&task->perf_event_mutex); 2893 /* 2894 * If it has already passed perf_event_exit_task(). 2895 * we must see PF_EXITING, it takes this mutex too. 2896 */ 2897 if (task->flags & PF_EXITING) 2898 err = -ESRCH; 2899 else if (task->perf_event_ctxp[ctxn]) 2900 err = -EAGAIN; 2901 else { 2902 get_ctx(ctx); 2903 ++ctx->pin_count; 2904 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2905 } 2906 mutex_unlock(&task->perf_event_mutex); 2907 2908 if (unlikely(err)) { 2909 put_ctx(ctx); 2910 2911 if (err == -EAGAIN) 2912 goto retry; 2913 goto errout; 2914 } 2915 } 2916 2917 return ctx; 2918 2919 errout: 2920 return ERR_PTR(err); 2921 } 2922 2923 static void perf_event_free_filter(struct perf_event *event); 2924 2925 static void free_event_rcu(struct rcu_head *head) 2926 { 2927 struct perf_event *event; 2928 2929 event = container_of(head, struct perf_event, rcu_head); 2930 if (event->ns) 2931 put_pid_ns(event->ns); 2932 perf_event_free_filter(event); 2933 kfree(event); 2934 } 2935 2936 static void ring_buffer_put(struct ring_buffer *rb); 2937 2938 static void free_event(struct perf_event *event) 2939 { 2940 irq_work_sync(&event->pending); 2941 2942 if (!event->parent) { 2943 if (event->attach_state & PERF_ATTACH_TASK) 2944 jump_label_dec(&perf_sched_events); 2945 if (event->attr.mmap || event->attr.mmap_data) 2946 atomic_dec(&nr_mmap_events); 2947 if (event->attr.comm) 2948 atomic_dec(&nr_comm_events); 2949 if (event->attr.task) 2950 atomic_dec(&nr_task_events); 2951 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2952 put_callchain_buffers(); 2953 if (is_cgroup_event(event)) { 2954 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2955 jump_label_dec(&perf_sched_events); 2956 } 2957 } 2958 2959 if (event->rb) { 2960 ring_buffer_put(event->rb); 2961 event->rb = NULL; 2962 } 2963 2964 if (is_cgroup_event(event)) 2965 perf_detach_cgroup(event); 2966 2967 if (event->destroy) 2968 event->destroy(event); 2969 2970 if (event->ctx) 2971 put_ctx(event->ctx); 2972 2973 call_rcu(&event->rcu_head, free_event_rcu); 2974 } 2975 2976 int perf_event_release_kernel(struct perf_event *event) 2977 { 2978 struct perf_event_context *ctx = event->ctx; 2979 2980 WARN_ON_ONCE(ctx->parent_ctx); 2981 /* 2982 * There are two ways this annotation is useful: 2983 * 2984 * 1) there is a lock recursion from perf_event_exit_task 2985 * see the comment there. 2986 * 2987 * 2) there is a lock-inversion with mmap_sem through 2988 * perf_event_read_group(), which takes faults while 2989 * holding ctx->mutex, however this is called after 2990 * the last filedesc died, so there is no possibility 2991 * to trigger the AB-BA case. 2992 */ 2993 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2994 raw_spin_lock_irq(&ctx->lock); 2995 perf_group_detach(event); 2996 raw_spin_unlock_irq(&ctx->lock); 2997 perf_remove_from_context(event); 2998 mutex_unlock(&ctx->mutex); 2999 3000 free_event(event); 3001 3002 return 0; 3003 } 3004 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3005 3006 /* 3007 * Called when the last reference to the file is gone. 3008 */ 3009 static int perf_release(struct inode *inode, struct file *file) 3010 { 3011 struct perf_event *event = file->private_data; 3012 struct task_struct *owner; 3013 3014 file->private_data = NULL; 3015 3016 rcu_read_lock(); 3017 owner = ACCESS_ONCE(event->owner); 3018 /* 3019 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3020 * !owner it means the list deletion is complete and we can indeed 3021 * free this event, otherwise we need to serialize on 3022 * owner->perf_event_mutex. 3023 */ 3024 smp_read_barrier_depends(); 3025 if (owner) { 3026 /* 3027 * Since delayed_put_task_struct() also drops the last 3028 * task reference we can safely take a new reference 3029 * while holding the rcu_read_lock(). 3030 */ 3031 get_task_struct(owner); 3032 } 3033 rcu_read_unlock(); 3034 3035 if (owner) { 3036 mutex_lock(&owner->perf_event_mutex); 3037 /* 3038 * We have to re-check the event->owner field, if it is cleared 3039 * we raced with perf_event_exit_task(), acquiring the mutex 3040 * ensured they're done, and we can proceed with freeing the 3041 * event. 3042 */ 3043 if (event->owner) 3044 list_del_init(&event->owner_entry); 3045 mutex_unlock(&owner->perf_event_mutex); 3046 put_task_struct(owner); 3047 } 3048 3049 return perf_event_release_kernel(event); 3050 } 3051 3052 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3053 { 3054 struct perf_event *child; 3055 u64 total = 0; 3056 3057 *enabled = 0; 3058 *running = 0; 3059 3060 mutex_lock(&event->child_mutex); 3061 total += perf_event_read(event); 3062 *enabled += event->total_time_enabled + 3063 atomic64_read(&event->child_total_time_enabled); 3064 *running += event->total_time_running + 3065 atomic64_read(&event->child_total_time_running); 3066 3067 list_for_each_entry(child, &event->child_list, child_list) { 3068 total += perf_event_read(child); 3069 *enabled += child->total_time_enabled; 3070 *running += child->total_time_running; 3071 } 3072 mutex_unlock(&event->child_mutex); 3073 3074 return total; 3075 } 3076 EXPORT_SYMBOL_GPL(perf_event_read_value); 3077 3078 static int perf_event_read_group(struct perf_event *event, 3079 u64 read_format, char __user *buf) 3080 { 3081 struct perf_event *leader = event->group_leader, *sub; 3082 int n = 0, size = 0, ret = -EFAULT; 3083 struct perf_event_context *ctx = leader->ctx; 3084 u64 values[5]; 3085 u64 count, enabled, running; 3086 3087 mutex_lock(&ctx->mutex); 3088 count = perf_event_read_value(leader, &enabled, &running); 3089 3090 values[n++] = 1 + leader->nr_siblings; 3091 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3092 values[n++] = enabled; 3093 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3094 values[n++] = running; 3095 values[n++] = count; 3096 if (read_format & PERF_FORMAT_ID) 3097 values[n++] = primary_event_id(leader); 3098 3099 size = n * sizeof(u64); 3100 3101 if (copy_to_user(buf, values, size)) 3102 goto unlock; 3103 3104 ret = size; 3105 3106 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3107 n = 0; 3108 3109 values[n++] = perf_event_read_value(sub, &enabled, &running); 3110 if (read_format & PERF_FORMAT_ID) 3111 values[n++] = primary_event_id(sub); 3112 3113 size = n * sizeof(u64); 3114 3115 if (copy_to_user(buf + ret, values, size)) { 3116 ret = -EFAULT; 3117 goto unlock; 3118 } 3119 3120 ret += size; 3121 } 3122 unlock: 3123 mutex_unlock(&ctx->mutex); 3124 3125 return ret; 3126 } 3127 3128 static int perf_event_read_one(struct perf_event *event, 3129 u64 read_format, char __user *buf) 3130 { 3131 u64 enabled, running; 3132 u64 values[4]; 3133 int n = 0; 3134 3135 values[n++] = perf_event_read_value(event, &enabled, &running); 3136 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3137 values[n++] = enabled; 3138 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3139 values[n++] = running; 3140 if (read_format & PERF_FORMAT_ID) 3141 values[n++] = primary_event_id(event); 3142 3143 if (copy_to_user(buf, values, n * sizeof(u64))) 3144 return -EFAULT; 3145 3146 return n * sizeof(u64); 3147 } 3148 3149 /* 3150 * Read the performance event - simple non blocking version for now 3151 */ 3152 static ssize_t 3153 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3154 { 3155 u64 read_format = event->attr.read_format; 3156 int ret; 3157 3158 /* 3159 * Return end-of-file for a read on a event that is in 3160 * error state (i.e. because it was pinned but it couldn't be 3161 * scheduled on to the CPU at some point). 3162 */ 3163 if (event->state == PERF_EVENT_STATE_ERROR) 3164 return 0; 3165 3166 if (count < event->read_size) 3167 return -ENOSPC; 3168 3169 WARN_ON_ONCE(event->ctx->parent_ctx); 3170 if (read_format & PERF_FORMAT_GROUP) 3171 ret = perf_event_read_group(event, read_format, buf); 3172 else 3173 ret = perf_event_read_one(event, read_format, buf); 3174 3175 return ret; 3176 } 3177 3178 static ssize_t 3179 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3180 { 3181 struct perf_event *event = file->private_data; 3182 3183 return perf_read_hw(event, buf, count); 3184 } 3185 3186 static unsigned int perf_poll(struct file *file, poll_table *wait) 3187 { 3188 struct perf_event *event = file->private_data; 3189 struct ring_buffer *rb; 3190 unsigned int events = POLL_HUP; 3191 3192 rcu_read_lock(); 3193 rb = rcu_dereference(event->rb); 3194 if (rb) 3195 events = atomic_xchg(&rb->poll, 0); 3196 rcu_read_unlock(); 3197 3198 poll_wait(file, &event->waitq, wait); 3199 3200 return events; 3201 } 3202 3203 static void perf_event_reset(struct perf_event *event) 3204 { 3205 (void)perf_event_read(event); 3206 local64_set(&event->count, 0); 3207 perf_event_update_userpage(event); 3208 } 3209 3210 /* 3211 * Holding the top-level event's child_mutex means that any 3212 * descendant process that has inherited this event will block 3213 * in sync_child_event if it goes to exit, thus satisfying the 3214 * task existence requirements of perf_event_enable/disable. 3215 */ 3216 static void perf_event_for_each_child(struct perf_event *event, 3217 void (*func)(struct perf_event *)) 3218 { 3219 struct perf_event *child; 3220 3221 WARN_ON_ONCE(event->ctx->parent_ctx); 3222 mutex_lock(&event->child_mutex); 3223 func(event); 3224 list_for_each_entry(child, &event->child_list, child_list) 3225 func(child); 3226 mutex_unlock(&event->child_mutex); 3227 } 3228 3229 static void perf_event_for_each(struct perf_event *event, 3230 void (*func)(struct perf_event *)) 3231 { 3232 struct perf_event_context *ctx = event->ctx; 3233 struct perf_event *sibling; 3234 3235 WARN_ON_ONCE(ctx->parent_ctx); 3236 mutex_lock(&ctx->mutex); 3237 event = event->group_leader; 3238 3239 perf_event_for_each_child(event, func); 3240 func(event); 3241 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3242 perf_event_for_each_child(event, func); 3243 mutex_unlock(&ctx->mutex); 3244 } 3245 3246 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3247 { 3248 struct perf_event_context *ctx = event->ctx; 3249 int ret = 0; 3250 u64 value; 3251 3252 if (!is_sampling_event(event)) 3253 return -EINVAL; 3254 3255 if (copy_from_user(&value, arg, sizeof(value))) 3256 return -EFAULT; 3257 3258 if (!value) 3259 return -EINVAL; 3260 3261 raw_spin_lock_irq(&ctx->lock); 3262 if (event->attr.freq) { 3263 if (value > sysctl_perf_event_sample_rate) { 3264 ret = -EINVAL; 3265 goto unlock; 3266 } 3267 3268 event->attr.sample_freq = value; 3269 } else { 3270 event->attr.sample_period = value; 3271 event->hw.sample_period = value; 3272 } 3273 unlock: 3274 raw_spin_unlock_irq(&ctx->lock); 3275 3276 return ret; 3277 } 3278 3279 static const struct file_operations perf_fops; 3280 3281 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3282 { 3283 struct file *file; 3284 3285 file = fget_light(fd, fput_needed); 3286 if (!file) 3287 return ERR_PTR(-EBADF); 3288 3289 if (file->f_op != &perf_fops) { 3290 fput_light(file, *fput_needed); 3291 *fput_needed = 0; 3292 return ERR_PTR(-EBADF); 3293 } 3294 3295 return file->private_data; 3296 } 3297 3298 static int perf_event_set_output(struct perf_event *event, 3299 struct perf_event *output_event); 3300 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3301 3302 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3303 { 3304 struct perf_event *event = file->private_data; 3305 void (*func)(struct perf_event *); 3306 u32 flags = arg; 3307 3308 switch (cmd) { 3309 case PERF_EVENT_IOC_ENABLE: 3310 func = perf_event_enable; 3311 break; 3312 case PERF_EVENT_IOC_DISABLE: 3313 func = perf_event_disable; 3314 break; 3315 case PERF_EVENT_IOC_RESET: 3316 func = perf_event_reset; 3317 break; 3318 3319 case PERF_EVENT_IOC_REFRESH: 3320 return perf_event_refresh(event, arg); 3321 3322 case PERF_EVENT_IOC_PERIOD: 3323 return perf_event_period(event, (u64 __user *)arg); 3324 3325 case PERF_EVENT_IOC_SET_OUTPUT: 3326 { 3327 struct perf_event *output_event = NULL; 3328 int fput_needed = 0; 3329 int ret; 3330 3331 if (arg != -1) { 3332 output_event = perf_fget_light(arg, &fput_needed); 3333 if (IS_ERR(output_event)) 3334 return PTR_ERR(output_event); 3335 } 3336 3337 ret = perf_event_set_output(event, output_event); 3338 if (output_event) 3339 fput_light(output_event->filp, fput_needed); 3340 3341 return ret; 3342 } 3343 3344 case PERF_EVENT_IOC_SET_FILTER: 3345 return perf_event_set_filter(event, (void __user *)arg); 3346 3347 default: 3348 return -ENOTTY; 3349 } 3350 3351 if (flags & PERF_IOC_FLAG_GROUP) 3352 perf_event_for_each(event, func); 3353 else 3354 perf_event_for_each_child(event, func); 3355 3356 return 0; 3357 } 3358 3359 int perf_event_task_enable(void) 3360 { 3361 struct perf_event *event; 3362 3363 mutex_lock(¤t->perf_event_mutex); 3364 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3365 perf_event_for_each_child(event, perf_event_enable); 3366 mutex_unlock(¤t->perf_event_mutex); 3367 3368 return 0; 3369 } 3370 3371 int perf_event_task_disable(void) 3372 { 3373 struct perf_event *event; 3374 3375 mutex_lock(¤t->perf_event_mutex); 3376 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3377 perf_event_for_each_child(event, perf_event_disable); 3378 mutex_unlock(¤t->perf_event_mutex); 3379 3380 return 0; 3381 } 3382 3383 #ifndef PERF_EVENT_INDEX_OFFSET 3384 # define PERF_EVENT_INDEX_OFFSET 0 3385 #endif 3386 3387 static int perf_event_index(struct perf_event *event) 3388 { 3389 if (event->hw.state & PERF_HES_STOPPED) 3390 return 0; 3391 3392 if (event->state != PERF_EVENT_STATE_ACTIVE) 3393 return 0; 3394 3395 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; 3396 } 3397 3398 static void calc_timer_values(struct perf_event *event, 3399 u64 *enabled, 3400 u64 *running) 3401 { 3402 u64 now, ctx_time; 3403 3404 now = perf_clock(); 3405 ctx_time = event->shadow_ctx_time + now; 3406 *enabled = ctx_time - event->tstamp_enabled; 3407 *running = ctx_time - event->tstamp_running; 3408 } 3409 3410 /* 3411 * Callers need to ensure there can be no nesting of this function, otherwise 3412 * the seqlock logic goes bad. We can not serialize this because the arch 3413 * code calls this from NMI context. 3414 */ 3415 void perf_event_update_userpage(struct perf_event *event) 3416 { 3417 struct perf_event_mmap_page *userpg; 3418 struct ring_buffer *rb; 3419 u64 enabled, running; 3420 3421 rcu_read_lock(); 3422 /* 3423 * compute total_time_enabled, total_time_running 3424 * based on snapshot values taken when the event 3425 * was last scheduled in. 3426 * 3427 * we cannot simply called update_context_time() 3428 * because of locking issue as we can be called in 3429 * NMI context 3430 */ 3431 calc_timer_values(event, &enabled, &running); 3432 rb = rcu_dereference(event->rb); 3433 if (!rb) 3434 goto unlock; 3435 3436 userpg = rb->user_page; 3437 3438 /* 3439 * Disable preemption so as to not let the corresponding user-space 3440 * spin too long if we get preempted. 3441 */ 3442 preempt_disable(); 3443 ++userpg->lock; 3444 barrier(); 3445 userpg->index = perf_event_index(event); 3446 userpg->offset = perf_event_count(event); 3447 if (event->state == PERF_EVENT_STATE_ACTIVE) 3448 userpg->offset -= local64_read(&event->hw.prev_count); 3449 3450 userpg->time_enabled = enabled + 3451 atomic64_read(&event->child_total_time_enabled); 3452 3453 userpg->time_running = running + 3454 atomic64_read(&event->child_total_time_running); 3455 3456 barrier(); 3457 ++userpg->lock; 3458 preempt_enable(); 3459 unlock: 3460 rcu_read_unlock(); 3461 } 3462 3463 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3464 { 3465 struct perf_event *event = vma->vm_file->private_data; 3466 struct ring_buffer *rb; 3467 int ret = VM_FAULT_SIGBUS; 3468 3469 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3470 if (vmf->pgoff == 0) 3471 ret = 0; 3472 return ret; 3473 } 3474 3475 rcu_read_lock(); 3476 rb = rcu_dereference(event->rb); 3477 if (!rb) 3478 goto unlock; 3479 3480 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3481 goto unlock; 3482 3483 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3484 if (!vmf->page) 3485 goto unlock; 3486 3487 get_page(vmf->page); 3488 vmf->page->mapping = vma->vm_file->f_mapping; 3489 vmf->page->index = vmf->pgoff; 3490 3491 ret = 0; 3492 unlock: 3493 rcu_read_unlock(); 3494 3495 return ret; 3496 } 3497 3498 static void rb_free_rcu(struct rcu_head *rcu_head) 3499 { 3500 struct ring_buffer *rb; 3501 3502 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3503 rb_free(rb); 3504 } 3505 3506 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3507 { 3508 struct ring_buffer *rb; 3509 3510 rcu_read_lock(); 3511 rb = rcu_dereference(event->rb); 3512 if (rb) { 3513 if (!atomic_inc_not_zero(&rb->refcount)) 3514 rb = NULL; 3515 } 3516 rcu_read_unlock(); 3517 3518 return rb; 3519 } 3520 3521 static void ring_buffer_put(struct ring_buffer *rb) 3522 { 3523 if (!atomic_dec_and_test(&rb->refcount)) 3524 return; 3525 3526 call_rcu(&rb->rcu_head, rb_free_rcu); 3527 } 3528 3529 static void perf_mmap_open(struct vm_area_struct *vma) 3530 { 3531 struct perf_event *event = vma->vm_file->private_data; 3532 3533 atomic_inc(&event->mmap_count); 3534 } 3535 3536 static void perf_mmap_close(struct vm_area_struct *vma) 3537 { 3538 struct perf_event *event = vma->vm_file->private_data; 3539 3540 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3541 unsigned long size = perf_data_size(event->rb); 3542 struct user_struct *user = event->mmap_user; 3543 struct ring_buffer *rb = event->rb; 3544 3545 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3546 vma->vm_mm->locked_vm -= event->mmap_locked; 3547 rcu_assign_pointer(event->rb, NULL); 3548 mutex_unlock(&event->mmap_mutex); 3549 3550 ring_buffer_put(rb); 3551 free_uid(user); 3552 } 3553 } 3554 3555 static const struct vm_operations_struct perf_mmap_vmops = { 3556 .open = perf_mmap_open, 3557 .close = perf_mmap_close, 3558 .fault = perf_mmap_fault, 3559 .page_mkwrite = perf_mmap_fault, 3560 }; 3561 3562 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3563 { 3564 struct perf_event *event = file->private_data; 3565 unsigned long user_locked, user_lock_limit; 3566 struct user_struct *user = current_user(); 3567 unsigned long locked, lock_limit; 3568 struct ring_buffer *rb; 3569 unsigned long vma_size; 3570 unsigned long nr_pages; 3571 long user_extra, extra; 3572 int ret = 0, flags = 0; 3573 3574 /* 3575 * Don't allow mmap() of inherited per-task counters. This would 3576 * create a performance issue due to all children writing to the 3577 * same rb. 3578 */ 3579 if (event->cpu == -1 && event->attr.inherit) 3580 return -EINVAL; 3581 3582 if (!(vma->vm_flags & VM_SHARED)) 3583 return -EINVAL; 3584 3585 vma_size = vma->vm_end - vma->vm_start; 3586 nr_pages = (vma_size / PAGE_SIZE) - 1; 3587 3588 /* 3589 * If we have rb pages ensure they're a power-of-two number, so we 3590 * can do bitmasks instead of modulo. 3591 */ 3592 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3593 return -EINVAL; 3594 3595 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3596 return -EINVAL; 3597 3598 if (vma->vm_pgoff != 0) 3599 return -EINVAL; 3600 3601 WARN_ON_ONCE(event->ctx->parent_ctx); 3602 mutex_lock(&event->mmap_mutex); 3603 if (event->rb) { 3604 if (event->rb->nr_pages == nr_pages) 3605 atomic_inc(&event->rb->refcount); 3606 else 3607 ret = -EINVAL; 3608 goto unlock; 3609 } 3610 3611 user_extra = nr_pages + 1; 3612 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3613 3614 /* 3615 * Increase the limit linearly with more CPUs: 3616 */ 3617 user_lock_limit *= num_online_cpus(); 3618 3619 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3620 3621 extra = 0; 3622 if (user_locked > user_lock_limit) 3623 extra = user_locked - user_lock_limit; 3624 3625 lock_limit = rlimit(RLIMIT_MEMLOCK); 3626 lock_limit >>= PAGE_SHIFT; 3627 locked = vma->vm_mm->locked_vm + extra; 3628 3629 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3630 !capable(CAP_IPC_LOCK)) { 3631 ret = -EPERM; 3632 goto unlock; 3633 } 3634 3635 WARN_ON(event->rb); 3636 3637 if (vma->vm_flags & VM_WRITE) 3638 flags |= RING_BUFFER_WRITABLE; 3639 3640 rb = rb_alloc(nr_pages, 3641 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3642 event->cpu, flags); 3643 3644 if (!rb) { 3645 ret = -ENOMEM; 3646 goto unlock; 3647 } 3648 rcu_assign_pointer(event->rb, rb); 3649 3650 atomic_long_add(user_extra, &user->locked_vm); 3651 event->mmap_locked = extra; 3652 event->mmap_user = get_current_user(); 3653 vma->vm_mm->locked_vm += event->mmap_locked; 3654 3655 unlock: 3656 if (!ret) 3657 atomic_inc(&event->mmap_count); 3658 mutex_unlock(&event->mmap_mutex); 3659 3660 vma->vm_flags |= VM_RESERVED; 3661 vma->vm_ops = &perf_mmap_vmops; 3662 3663 return ret; 3664 } 3665 3666 static int perf_fasync(int fd, struct file *filp, int on) 3667 { 3668 struct inode *inode = filp->f_path.dentry->d_inode; 3669 struct perf_event *event = filp->private_data; 3670 int retval; 3671 3672 mutex_lock(&inode->i_mutex); 3673 retval = fasync_helper(fd, filp, on, &event->fasync); 3674 mutex_unlock(&inode->i_mutex); 3675 3676 if (retval < 0) 3677 return retval; 3678 3679 return 0; 3680 } 3681 3682 static const struct file_operations perf_fops = { 3683 .llseek = no_llseek, 3684 .release = perf_release, 3685 .read = perf_read, 3686 .poll = perf_poll, 3687 .unlocked_ioctl = perf_ioctl, 3688 .compat_ioctl = perf_ioctl, 3689 .mmap = perf_mmap, 3690 .fasync = perf_fasync, 3691 }; 3692 3693 /* 3694 * Perf event wakeup 3695 * 3696 * If there's data, ensure we set the poll() state and publish everything 3697 * to user-space before waking everybody up. 3698 */ 3699 3700 void perf_event_wakeup(struct perf_event *event) 3701 { 3702 wake_up_all(&event->waitq); 3703 3704 if (event->pending_kill) { 3705 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3706 event->pending_kill = 0; 3707 } 3708 } 3709 3710 static void perf_pending_event(struct irq_work *entry) 3711 { 3712 struct perf_event *event = container_of(entry, 3713 struct perf_event, pending); 3714 3715 if (event->pending_disable) { 3716 event->pending_disable = 0; 3717 __perf_event_disable(event); 3718 } 3719 3720 if (event->pending_wakeup) { 3721 event->pending_wakeup = 0; 3722 perf_event_wakeup(event); 3723 } 3724 } 3725 3726 /* 3727 * We assume there is only KVM supporting the callbacks. 3728 * Later on, we might change it to a list if there is 3729 * another virtualization implementation supporting the callbacks. 3730 */ 3731 struct perf_guest_info_callbacks *perf_guest_cbs; 3732 3733 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3734 { 3735 perf_guest_cbs = cbs; 3736 return 0; 3737 } 3738 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3739 3740 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3741 { 3742 perf_guest_cbs = NULL; 3743 return 0; 3744 } 3745 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3746 3747 static void __perf_event_header__init_id(struct perf_event_header *header, 3748 struct perf_sample_data *data, 3749 struct perf_event *event) 3750 { 3751 u64 sample_type = event->attr.sample_type; 3752 3753 data->type = sample_type; 3754 header->size += event->id_header_size; 3755 3756 if (sample_type & PERF_SAMPLE_TID) { 3757 /* namespace issues */ 3758 data->tid_entry.pid = perf_event_pid(event, current); 3759 data->tid_entry.tid = perf_event_tid(event, current); 3760 } 3761 3762 if (sample_type & PERF_SAMPLE_TIME) 3763 data->time = perf_clock(); 3764 3765 if (sample_type & PERF_SAMPLE_ID) 3766 data->id = primary_event_id(event); 3767 3768 if (sample_type & PERF_SAMPLE_STREAM_ID) 3769 data->stream_id = event->id; 3770 3771 if (sample_type & PERF_SAMPLE_CPU) { 3772 data->cpu_entry.cpu = raw_smp_processor_id(); 3773 data->cpu_entry.reserved = 0; 3774 } 3775 } 3776 3777 void perf_event_header__init_id(struct perf_event_header *header, 3778 struct perf_sample_data *data, 3779 struct perf_event *event) 3780 { 3781 if (event->attr.sample_id_all) 3782 __perf_event_header__init_id(header, data, event); 3783 } 3784 3785 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3786 struct perf_sample_data *data) 3787 { 3788 u64 sample_type = data->type; 3789 3790 if (sample_type & PERF_SAMPLE_TID) 3791 perf_output_put(handle, data->tid_entry); 3792 3793 if (sample_type & PERF_SAMPLE_TIME) 3794 perf_output_put(handle, data->time); 3795 3796 if (sample_type & PERF_SAMPLE_ID) 3797 perf_output_put(handle, data->id); 3798 3799 if (sample_type & PERF_SAMPLE_STREAM_ID) 3800 perf_output_put(handle, data->stream_id); 3801 3802 if (sample_type & PERF_SAMPLE_CPU) 3803 perf_output_put(handle, data->cpu_entry); 3804 } 3805 3806 void perf_event__output_id_sample(struct perf_event *event, 3807 struct perf_output_handle *handle, 3808 struct perf_sample_data *sample) 3809 { 3810 if (event->attr.sample_id_all) 3811 __perf_event__output_id_sample(handle, sample); 3812 } 3813 3814 static void perf_output_read_one(struct perf_output_handle *handle, 3815 struct perf_event *event, 3816 u64 enabled, u64 running) 3817 { 3818 u64 read_format = event->attr.read_format; 3819 u64 values[4]; 3820 int n = 0; 3821 3822 values[n++] = perf_event_count(event); 3823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3824 values[n++] = enabled + 3825 atomic64_read(&event->child_total_time_enabled); 3826 } 3827 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3828 values[n++] = running + 3829 atomic64_read(&event->child_total_time_running); 3830 } 3831 if (read_format & PERF_FORMAT_ID) 3832 values[n++] = primary_event_id(event); 3833 3834 __output_copy(handle, values, n * sizeof(u64)); 3835 } 3836 3837 /* 3838 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3839 */ 3840 static void perf_output_read_group(struct perf_output_handle *handle, 3841 struct perf_event *event, 3842 u64 enabled, u64 running) 3843 { 3844 struct perf_event *leader = event->group_leader, *sub; 3845 u64 read_format = event->attr.read_format; 3846 u64 values[5]; 3847 int n = 0; 3848 3849 values[n++] = 1 + leader->nr_siblings; 3850 3851 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3852 values[n++] = enabled; 3853 3854 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3855 values[n++] = running; 3856 3857 if (leader != event) 3858 leader->pmu->read(leader); 3859 3860 values[n++] = perf_event_count(leader); 3861 if (read_format & PERF_FORMAT_ID) 3862 values[n++] = primary_event_id(leader); 3863 3864 __output_copy(handle, values, n * sizeof(u64)); 3865 3866 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3867 n = 0; 3868 3869 if (sub != event) 3870 sub->pmu->read(sub); 3871 3872 values[n++] = perf_event_count(sub); 3873 if (read_format & PERF_FORMAT_ID) 3874 values[n++] = primary_event_id(sub); 3875 3876 __output_copy(handle, values, n * sizeof(u64)); 3877 } 3878 } 3879 3880 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3881 PERF_FORMAT_TOTAL_TIME_RUNNING) 3882 3883 static void perf_output_read(struct perf_output_handle *handle, 3884 struct perf_event *event) 3885 { 3886 u64 enabled = 0, running = 0; 3887 u64 read_format = event->attr.read_format; 3888 3889 /* 3890 * compute total_time_enabled, total_time_running 3891 * based on snapshot values taken when the event 3892 * was last scheduled in. 3893 * 3894 * we cannot simply called update_context_time() 3895 * because of locking issue as we are called in 3896 * NMI context 3897 */ 3898 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3899 calc_timer_values(event, &enabled, &running); 3900 3901 if (event->attr.read_format & PERF_FORMAT_GROUP) 3902 perf_output_read_group(handle, event, enabled, running); 3903 else 3904 perf_output_read_one(handle, event, enabled, running); 3905 } 3906 3907 void perf_output_sample(struct perf_output_handle *handle, 3908 struct perf_event_header *header, 3909 struct perf_sample_data *data, 3910 struct perf_event *event) 3911 { 3912 u64 sample_type = data->type; 3913 3914 perf_output_put(handle, *header); 3915 3916 if (sample_type & PERF_SAMPLE_IP) 3917 perf_output_put(handle, data->ip); 3918 3919 if (sample_type & PERF_SAMPLE_TID) 3920 perf_output_put(handle, data->tid_entry); 3921 3922 if (sample_type & PERF_SAMPLE_TIME) 3923 perf_output_put(handle, data->time); 3924 3925 if (sample_type & PERF_SAMPLE_ADDR) 3926 perf_output_put(handle, data->addr); 3927 3928 if (sample_type & PERF_SAMPLE_ID) 3929 perf_output_put(handle, data->id); 3930 3931 if (sample_type & PERF_SAMPLE_STREAM_ID) 3932 perf_output_put(handle, data->stream_id); 3933 3934 if (sample_type & PERF_SAMPLE_CPU) 3935 perf_output_put(handle, data->cpu_entry); 3936 3937 if (sample_type & PERF_SAMPLE_PERIOD) 3938 perf_output_put(handle, data->period); 3939 3940 if (sample_type & PERF_SAMPLE_READ) 3941 perf_output_read(handle, event); 3942 3943 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3944 if (data->callchain) { 3945 int size = 1; 3946 3947 if (data->callchain) 3948 size += data->callchain->nr; 3949 3950 size *= sizeof(u64); 3951 3952 __output_copy(handle, data->callchain, size); 3953 } else { 3954 u64 nr = 0; 3955 perf_output_put(handle, nr); 3956 } 3957 } 3958 3959 if (sample_type & PERF_SAMPLE_RAW) { 3960 if (data->raw) { 3961 perf_output_put(handle, data->raw->size); 3962 __output_copy(handle, data->raw->data, 3963 data->raw->size); 3964 } else { 3965 struct { 3966 u32 size; 3967 u32 data; 3968 } raw = { 3969 .size = sizeof(u32), 3970 .data = 0, 3971 }; 3972 perf_output_put(handle, raw); 3973 } 3974 } 3975 3976 if (!event->attr.watermark) { 3977 int wakeup_events = event->attr.wakeup_events; 3978 3979 if (wakeup_events) { 3980 struct ring_buffer *rb = handle->rb; 3981 int events = local_inc_return(&rb->events); 3982 3983 if (events >= wakeup_events) { 3984 local_sub(wakeup_events, &rb->events); 3985 local_inc(&rb->wakeup); 3986 } 3987 } 3988 } 3989 } 3990 3991 void perf_prepare_sample(struct perf_event_header *header, 3992 struct perf_sample_data *data, 3993 struct perf_event *event, 3994 struct pt_regs *regs) 3995 { 3996 u64 sample_type = event->attr.sample_type; 3997 3998 header->type = PERF_RECORD_SAMPLE; 3999 header->size = sizeof(*header) + event->header_size; 4000 4001 header->misc = 0; 4002 header->misc |= perf_misc_flags(regs); 4003 4004 __perf_event_header__init_id(header, data, event); 4005 4006 if (sample_type & PERF_SAMPLE_IP) 4007 data->ip = perf_instruction_pointer(regs); 4008 4009 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4010 int size = 1; 4011 4012 data->callchain = perf_callchain(regs); 4013 4014 if (data->callchain) 4015 size += data->callchain->nr; 4016 4017 header->size += size * sizeof(u64); 4018 } 4019 4020 if (sample_type & PERF_SAMPLE_RAW) { 4021 int size = sizeof(u32); 4022 4023 if (data->raw) 4024 size += data->raw->size; 4025 else 4026 size += sizeof(u32); 4027 4028 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4029 header->size += size; 4030 } 4031 } 4032 4033 static void perf_event_output(struct perf_event *event, 4034 struct perf_sample_data *data, 4035 struct pt_regs *regs) 4036 { 4037 struct perf_output_handle handle; 4038 struct perf_event_header header; 4039 4040 /* protect the callchain buffers */ 4041 rcu_read_lock(); 4042 4043 perf_prepare_sample(&header, data, event, regs); 4044 4045 if (perf_output_begin(&handle, event, header.size)) 4046 goto exit; 4047 4048 perf_output_sample(&handle, &header, data, event); 4049 4050 perf_output_end(&handle); 4051 4052 exit: 4053 rcu_read_unlock(); 4054 } 4055 4056 /* 4057 * read event_id 4058 */ 4059 4060 struct perf_read_event { 4061 struct perf_event_header header; 4062 4063 u32 pid; 4064 u32 tid; 4065 }; 4066 4067 static void 4068 perf_event_read_event(struct perf_event *event, 4069 struct task_struct *task) 4070 { 4071 struct perf_output_handle handle; 4072 struct perf_sample_data sample; 4073 struct perf_read_event read_event = { 4074 .header = { 4075 .type = PERF_RECORD_READ, 4076 .misc = 0, 4077 .size = sizeof(read_event) + event->read_size, 4078 }, 4079 .pid = perf_event_pid(event, task), 4080 .tid = perf_event_tid(event, task), 4081 }; 4082 int ret; 4083 4084 perf_event_header__init_id(&read_event.header, &sample, event); 4085 ret = perf_output_begin(&handle, event, read_event.header.size); 4086 if (ret) 4087 return; 4088 4089 perf_output_put(&handle, read_event); 4090 perf_output_read(&handle, event); 4091 perf_event__output_id_sample(event, &handle, &sample); 4092 4093 perf_output_end(&handle); 4094 } 4095 4096 /* 4097 * task tracking -- fork/exit 4098 * 4099 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4100 */ 4101 4102 struct perf_task_event { 4103 struct task_struct *task; 4104 struct perf_event_context *task_ctx; 4105 4106 struct { 4107 struct perf_event_header header; 4108 4109 u32 pid; 4110 u32 ppid; 4111 u32 tid; 4112 u32 ptid; 4113 u64 time; 4114 } event_id; 4115 }; 4116 4117 static void perf_event_task_output(struct perf_event *event, 4118 struct perf_task_event *task_event) 4119 { 4120 struct perf_output_handle handle; 4121 struct perf_sample_data sample; 4122 struct task_struct *task = task_event->task; 4123 int ret, size = task_event->event_id.header.size; 4124 4125 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4126 4127 ret = perf_output_begin(&handle, event, 4128 task_event->event_id.header.size); 4129 if (ret) 4130 goto out; 4131 4132 task_event->event_id.pid = perf_event_pid(event, task); 4133 task_event->event_id.ppid = perf_event_pid(event, current); 4134 4135 task_event->event_id.tid = perf_event_tid(event, task); 4136 task_event->event_id.ptid = perf_event_tid(event, current); 4137 4138 perf_output_put(&handle, task_event->event_id); 4139 4140 perf_event__output_id_sample(event, &handle, &sample); 4141 4142 perf_output_end(&handle); 4143 out: 4144 task_event->event_id.header.size = size; 4145 } 4146 4147 static int perf_event_task_match(struct perf_event *event) 4148 { 4149 if (event->state < PERF_EVENT_STATE_INACTIVE) 4150 return 0; 4151 4152 if (!event_filter_match(event)) 4153 return 0; 4154 4155 if (event->attr.comm || event->attr.mmap || 4156 event->attr.mmap_data || event->attr.task) 4157 return 1; 4158 4159 return 0; 4160 } 4161 4162 static void perf_event_task_ctx(struct perf_event_context *ctx, 4163 struct perf_task_event *task_event) 4164 { 4165 struct perf_event *event; 4166 4167 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4168 if (perf_event_task_match(event)) 4169 perf_event_task_output(event, task_event); 4170 } 4171 } 4172 4173 static void perf_event_task_event(struct perf_task_event *task_event) 4174 { 4175 struct perf_cpu_context *cpuctx; 4176 struct perf_event_context *ctx; 4177 struct pmu *pmu; 4178 int ctxn; 4179 4180 rcu_read_lock(); 4181 list_for_each_entry_rcu(pmu, &pmus, entry) { 4182 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4183 if (cpuctx->active_pmu != pmu) 4184 goto next; 4185 perf_event_task_ctx(&cpuctx->ctx, task_event); 4186 4187 ctx = task_event->task_ctx; 4188 if (!ctx) { 4189 ctxn = pmu->task_ctx_nr; 4190 if (ctxn < 0) 4191 goto next; 4192 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4193 } 4194 if (ctx) 4195 perf_event_task_ctx(ctx, task_event); 4196 next: 4197 put_cpu_ptr(pmu->pmu_cpu_context); 4198 } 4199 rcu_read_unlock(); 4200 } 4201 4202 static void perf_event_task(struct task_struct *task, 4203 struct perf_event_context *task_ctx, 4204 int new) 4205 { 4206 struct perf_task_event task_event; 4207 4208 if (!atomic_read(&nr_comm_events) && 4209 !atomic_read(&nr_mmap_events) && 4210 !atomic_read(&nr_task_events)) 4211 return; 4212 4213 task_event = (struct perf_task_event){ 4214 .task = task, 4215 .task_ctx = task_ctx, 4216 .event_id = { 4217 .header = { 4218 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4219 .misc = 0, 4220 .size = sizeof(task_event.event_id), 4221 }, 4222 /* .pid */ 4223 /* .ppid */ 4224 /* .tid */ 4225 /* .ptid */ 4226 .time = perf_clock(), 4227 }, 4228 }; 4229 4230 perf_event_task_event(&task_event); 4231 } 4232 4233 void perf_event_fork(struct task_struct *task) 4234 { 4235 perf_event_task(task, NULL, 1); 4236 } 4237 4238 /* 4239 * comm tracking 4240 */ 4241 4242 struct perf_comm_event { 4243 struct task_struct *task; 4244 char *comm; 4245 int comm_size; 4246 4247 struct { 4248 struct perf_event_header header; 4249 4250 u32 pid; 4251 u32 tid; 4252 } event_id; 4253 }; 4254 4255 static void perf_event_comm_output(struct perf_event *event, 4256 struct perf_comm_event *comm_event) 4257 { 4258 struct perf_output_handle handle; 4259 struct perf_sample_data sample; 4260 int size = comm_event->event_id.header.size; 4261 int ret; 4262 4263 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4264 ret = perf_output_begin(&handle, event, 4265 comm_event->event_id.header.size); 4266 4267 if (ret) 4268 goto out; 4269 4270 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4271 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4272 4273 perf_output_put(&handle, comm_event->event_id); 4274 __output_copy(&handle, comm_event->comm, 4275 comm_event->comm_size); 4276 4277 perf_event__output_id_sample(event, &handle, &sample); 4278 4279 perf_output_end(&handle); 4280 out: 4281 comm_event->event_id.header.size = size; 4282 } 4283 4284 static int perf_event_comm_match(struct perf_event *event) 4285 { 4286 if (event->state < PERF_EVENT_STATE_INACTIVE) 4287 return 0; 4288 4289 if (!event_filter_match(event)) 4290 return 0; 4291 4292 if (event->attr.comm) 4293 return 1; 4294 4295 return 0; 4296 } 4297 4298 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4299 struct perf_comm_event *comm_event) 4300 { 4301 struct perf_event *event; 4302 4303 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4304 if (perf_event_comm_match(event)) 4305 perf_event_comm_output(event, comm_event); 4306 } 4307 } 4308 4309 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4310 { 4311 struct perf_cpu_context *cpuctx; 4312 struct perf_event_context *ctx; 4313 char comm[TASK_COMM_LEN]; 4314 unsigned int size; 4315 struct pmu *pmu; 4316 int ctxn; 4317 4318 memset(comm, 0, sizeof(comm)); 4319 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4320 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4321 4322 comm_event->comm = comm; 4323 comm_event->comm_size = size; 4324 4325 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4326 rcu_read_lock(); 4327 list_for_each_entry_rcu(pmu, &pmus, entry) { 4328 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4329 if (cpuctx->active_pmu != pmu) 4330 goto next; 4331 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4332 4333 ctxn = pmu->task_ctx_nr; 4334 if (ctxn < 0) 4335 goto next; 4336 4337 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4338 if (ctx) 4339 perf_event_comm_ctx(ctx, comm_event); 4340 next: 4341 put_cpu_ptr(pmu->pmu_cpu_context); 4342 } 4343 rcu_read_unlock(); 4344 } 4345 4346 void perf_event_comm(struct task_struct *task) 4347 { 4348 struct perf_comm_event comm_event; 4349 struct perf_event_context *ctx; 4350 int ctxn; 4351 4352 for_each_task_context_nr(ctxn) { 4353 ctx = task->perf_event_ctxp[ctxn]; 4354 if (!ctx) 4355 continue; 4356 4357 perf_event_enable_on_exec(ctx); 4358 } 4359 4360 if (!atomic_read(&nr_comm_events)) 4361 return; 4362 4363 comm_event = (struct perf_comm_event){ 4364 .task = task, 4365 /* .comm */ 4366 /* .comm_size */ 4367 .event_id = { 4368 .header = { 4369 .type = PERF_RECORD_COMM, 4370 .misc = 0, 4371 /* .size */ 4372 }, 4373 /* .pid */ 4374 /* .tid */ 4375 }, 4376 }; 4377 4378 perf_event_comm_event(&comm_event); 4379 } 4380 4381 /* 4382 * mmap tracking 4383 */ 4384 4385 struct perf_mmap_event { 4386 struct vm_area_struct *vma; 4387 4388 const char *file_name; 4389 int file_size; 4390 4391 struct { 4392 struct perf_event_header header; 4393 4394 u32 pid; 4395 u32 tid; 4396 u64 start; 4397 u64 len; 4398 u64 pgoff; 4399 } event_id; 4400 }; 4401 4402 static void perf_event_mmap_output(struct perf_event *event, 4403 struct perf_mmap_event *mmap_event) 4404 { 4405 struct perf_output_handle handle; 4406 struct perf_sample_data sample; 4407 int size = mmap_event->event_id.header.size; 4408 int ret; 4409 4410 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4411 ret = perf_output_begin(&handle, event, 4412 mmap_event->event_id.header.size); 4413 if (ret) 4414 goto out; 4415 4416 mmap_event->event_id.pid = perf_event_pid(event, current); 4417 mmap_event->event_id.tid = perf_event_tid(event, current); 4418 4419 perf_output_put(&handle, mmap_event->event_id); 4420 __output_copy(&handle, mmap_event->file_name, 4421 mmap_event->file_size); 4422 4423 perf_event__output_id_sample(event, &handle, &sample); 4424 4425 perf_output_end(&handle); 4426 out: 4427 mmap_event->event_id.header.size = size; 4428 } 4429 4430 static int perf_event_mmap_match(struct perf_event *event, 4431 struct perf_mmap_event *mmap_event, 4432 int executable) 4433 { 4434 if (event->state < PERF_EVENT_STATE_INACTIVE) 4435 return 0; 4436 4437 if (!event_filter_match(event)) 4438 return 0; 4439 4440 if ((!executable && event->attr.mmap_data) || 4441 (executable && event->attr.mmap)) 4442 return 1; 4443 4444 return 0; 4445 } 4446 4447 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4448 struct perf_mmap_event *mmap_event, 4449 int executable) 4450 { 4451 struct perf_event *event; 4452 4453 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4454 if (perf_event_mmap_match(event, mmap_event, executable)) 4455 perf_event_mmap_output(event, mmap_event); 4456 } 4457 } 4458 4459 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4460 { 4461 struct perf_cpu_context *cpuctx; 4462 struct perf_event_context *ctx; 4463 struct vm_area_struct *vma = mmap_event->vma; 4464 struct file *file = vma->vm_file; 4465 unsigned int size; 4466 char tmp[16]; 4467 char *buf = NULL; 4468 const char *name; 4469 struct pmu *pmu; 4470 int ctxn; 4471 4472 memset(tmp, 0, sizeof(tmp)); 4473 4474 if (file) { 4475 /* 4476 * d_path works from the end of the rb backwards, so we 4477 * need to add enough zero bytes after the string to handle 4478 * the 64bit alignment we do later. 4479 */ 4480 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4481 if (!buf) { 4482 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4483 goto got_name; 4484 } 4485 name = d_path(&file->f_path, buf, PATH_MAX); 4486 if (IS_ERR(name)) { 4487 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4488 goto got_name; 4489 } 4490 } else { 4491 if (arch_vma_name(mmap_event->vma)) { 4492 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4493 sizeof(tmp)); 4494 goto got_name; 4495 } 4496 4497 if (!vma->vm_mm) { 4498 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4499 goto got_name; 4500 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4501 vma->vm_end >= vma->vm_mm->brk) { 4502 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4503 goto got_name; 4504 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4505 vma->vm_end >= vma->vm_mm->start_stack) { 4506 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4507 goto got_name; 4508 } 4509 4510 name = strncpy(tmp, "//anon", sizeof(tmp)); 4511 goto got_name; 4512 } 4513 4514 got_name: 4515 size = ALIGN(strlen(name)+1, sizeof(u64)); 4516 4517 mmap_event->file_name = name; 4518 mmap_event->file_size = size; 4519 4520 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4521 4522 rcu_read_lock(); 4523 list_for_each_entry_rcu(pmu, &pmus, entry) { 4524 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4525 if (cpuctx->active_pmu != pmu) 4526 goto next; 4527 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4528 vma->vm_flags & VM_EXEC); 4529 4530 ctxn = pmu->task_ctx_nr; 4531 if (ctxn < 0) 4532 goto next; 4533 4534 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4535 if (ctx) { 4536 perf_event_mmap_ctx(ctx, mmap_event, 4537 vma->vm_flags & VM_EXEC); 4538 } 4539 next: 4540 put_cpu_ptr(pmu->pmu_cpu_context); 4541 } 4542 rcu_read_unlock(); 4543 4544 kfree(buf); 4545 } 4546 4547 void perf_event_mmap(struct vm_area_struct *vma) 4548 { 4549 struct perf_mmap_event mmap_event; 4550 4551 if (!atomic_read(&nr_mmap_events)) 4552 return; 4553 4554 mmap_event = (struct perf_mmap_event){ 4555 .vma = vma, 4556 /* .file_name */ 4557 /* .file_size */ 4558 .event_id = { 4559 .header = { 4560 .type = PERF_RECORD_MMAP, 4561 .misc = PERF_RECORD_MISC_USER, 4562 /* .size */ 4563 }, 4564 /* .pid */ 4565 /* .tid */ 4566 .start = vma->vm_start, 4567 .len = vma->vm_end - vma->vm_start, 4568 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4569 }, 4570 }; 4571 4572 perf_event_mmap_event(&mmap_event); 4573 } 4574 4575 /* 4576 * IRQ throttle logging 4577 */ 4578 4579 static void perf_log_throttle(struct perf_event *event, int enable) 4580 { 4581 struct perf_output_handle handle; 4582 struct perf_sample_data sample; 4583 int ret; 4584 4585 struct { 4586 struct perf_event_header header; 4587 u64 time; 4588 u64 id; 4589 u64 stream_id; 4590 } throttle_event = { 4591 .header = { 4592 .type = PERF_RECORD_THROTTLE, 4593 .misc = 0, 4594 .size = sizeof(throttle_event), 4595 }, 4596 .time = perf_clock(), 4597 .id = primary_event_id(event), 4598 .stream_id = event->id, 4599 }; 4600 4601 if (enable) 4602 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4603 4604 perf_event_header__init_id(&throttle_event.header, &sample, event); 4605 4606 ret = perf_output_begin(&handle, event, 4607 throttle_event.header.size); 4608 if (ret) 4609 return; 4610 4611 perf_output_put(&handle, throttle_event); 4612 perf_event__output_id_sample(event, &handle, &sample); 4613 perf_output_end(&handle); 4614 } 4615 4616 /* 4617 * Generic event overflow handling, sampling. 4618 */ 4619 4620 static int __perf_event_overflow(struct perf_event *event, 4621 int throttle, struct perf_sample_data *data, 4622 struct pt_regs *regs) 4623 { 4624 int events = atomic_read(&event->event_limit); 4625 struct hw_perf_event *hwc = &event->hw; 4626 int ret = 0; 4627 4628 /* 4629 * Non-sampling counters might still use the PMI to fold short 4630 * hardware counters, ignore those. 4631 */ 4632 if (unlikely(!is_sampling_event(event))) 4633 return 0; 4634 4635 if (unlikely(hwc->interrupts >= max_samples_per_tick)) { 4636 if (throttle) { 4637 hwc->interrupts = MAX_INTERRUPTS; 4638 perf_log_throttle(event, 0); 4639 ret = 1; 4640 } 4641 } else 4642 hwc->interrupts++; 4643 4644 if (event->attr.freq) { 4645 u64 now = perf_clock(); 4646 s64 delta = now - hwc->freq_time_stamp; 4647 4648 hwc->freq_time_stamp = now; 4649 4650 if (delta > 0 && delta < 2*TICK_NSEC) 4651 perf_adjust_period(event, delta, hwc->last_period); 4652 } 4653 4654 /* 4655 * XXX event_limit might not quite work as expected on inherited 4656 * events 4657 */ 4658 4659 event->pending_kill = POLL_IN; 4660 if (events && atomic_dec_and_test(&event->event_limit)) { 4661 ret = 1; 4662 event->pending_kill = POLL_HUP; 4663 event->pending_disable = 1; 4664 irq_work_queue(&event->pending); 4665 } 4666 4667 if (event->overflow_handler) 4668 event->overflow_handler(event, data, regs); 4669 else 4670 perf_event_output(event, data, regs); 4671 4672 if (event->fasync && event->pending_kill) { 4673 event->pending_wakeup = 1; 4674 irq_work_queue(&event->pending); 4675 } 4676 4677 return ret; 4678 } 4679 4680 int perf_event_overflow(struct perf_event *event, 4681 struct perf_sample_data *data, 4682 struct pt_regs *regs) 4683 { 4684 return __perf_event_overflow(event, 1, data, regs); 4685 } 4686 4687 /* 4688 * Generic software event infrastructure 4689 */ 4690 4691 struct swevent_htable { 4692 struct swevent_hlist *swevent_hlist; 4693 struct mutex hlist_mutex; 4694 int hlist_refcount; 4695 4696 /* Recursion avoidance in each contexts */ 4697 int recursion[PERF_NR_CONTEXTS]; 4698 }; 4699 4700 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4701 4702 /* 4703 * We directly increment event->count and keep a second value in 4704 * event->hw.period_left to count intervals. This period event 4705 * is kept in the range [-sample_period, 0] so that we can use the 4706 * sign as trigger. 4707 */ 4708 4709 static u64 perf_swevent_set_period(struct perf_event *event) 4710 { 4711 struct hw_perf_event *hwc = &event->hw; 4712 u64 period = hwc->last_period; 4713 u64 nr, offset; 4714 s64 old, val; 4715 4716 hwc->last_period = hwc->sample_period; 4717 4718 again: 4719 old = val = local64_read(&hwc->period_left); 4720 if (val < 0) 4721 return 0; 4722 4723 nr = div64_u64(period + val, period); 4724 offset = nr * period; 4725 val -= offset; 4726 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4727 goto again; 4728 4729 return nr; 4730 } 4731 4732 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4733 struct perf_sample_data *data, 4734 struct pt_regs *regs) 4735 { 4736 struct hw_perf_event *hwc = &event->hw; 4737 int throttle = 0; 4738 4739 data->period = event->hw.last_period; 4740 if (!overflow) 4741 overflow = perf_swevent_set_period(event); 4742 4743 if (hwc->interrupts == MAX_INTERRUPTS) 4744 return; 4745 4746 for (; overflow; overflow--) { 4747 if (__perf_event_overflow(event, throttle, 4748 data, regs)) { 4749 /* 4750 * We inhibit the overflow from happening when 4751 * hwc->interrupts == MAX_INTERRUPTS. 4752 */ 4753 break; 4754 } 4755 throttle = 1; 4756 } 4757 } 4758 4759 static void perf_swevent_event(struct perf_event *event, u64 nr, 4760 struct perf_sample_data *data, 4761 struct pt_regs *regs) 4762 { 4763 struct hw_perf_event *hwc = &event->hw; 4764 4765 local64_add(nr, &event->count); 4766 4767 if (!regs) 4768 return; 4769 4770 if (!is_sampling_event(event)) 4771 return; 4772 4773 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4774 return perf_swevent_overflow(event, 1, data, regs); 4775 4776 if (local64_add_negative(nr, &hwc->period_left)) 4777 return; 4778 4779 perf_swevent_overflow(event, 0, data, regs); 4780 } 4781 4782 static int perf_exclude_event(struct perf_event *event, 4783 struct pt_regs *regs) 4784 { 4785 if (event->hw.state & PERF_HES_STOPPED) 4786 return 1; 4787 4788 if (regs) { 4789 if (event->attr.exclude_user && user_mode(regs)) 4790 return 1; 4791 4792 if (event->attr.exclude_kernel && !user_mode(regs)) 4793 return 1; 4794 } 4795 4796 return 0; 4797 } 4798 4799 static int perf_swevent_match(struct perf_event *event, 4800 enum perf_type_id type, 4801 u32 event_id, 4802 struct perf_sample_data *data, 4803 struct pt_regs *regs) 4804 { 4805 if (event->attr.type != type) 4806 return 0; 4807 4808 if (event->attr.config != event_id) 4809 return 0; 4810 4811 if (perf_exclude_event(event, regs)) 4812 return 0; 4813 4814 return 1; 4815 } 4816 4817 static inline u64 swevent_hash(u64 type, u32 event_id) 4818 { 4819 u64 val = event_id | (type << 32); 4820 4821 return hash_64(val, SWEVENT_HLIST_BITS); 4822 } 4823 4824 static inline struct hlist_head * 4825 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4826 { 4827 u64 hash = swevent_hash(type, event_id); 4828 4829 return &hlist->heads[hash]; 4830 } 4831 4832 /* For the read side: events when they trigger */ 4833 static inline struct hlist_head * 4834 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4835 { 4836 struct swevent_hlist *hlist; 4837 4838 hlist = rcu_dereference(swhash->swevent_hlist); 4839 if (!hlist) 4840 return NULL; 4841 4842 return __find_swevent_head(hlist, type, event_id); 4843 } 4844 4845 /* For the event head insertion and removal in the hlist */ 4846 static inline struct hlist_head * 4847 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4848 { 4849 struct swevent_hlist *hlist; 4850 u32 event_id = event->attr.config; 4851 u64 type = event->attr.type; 4852 4853 /* 4854 * Event scheduling is always serialized against hlist allocation 4855 * and release. Which makes the protected version suitable here. 4856 * The context lock guarantees that. 4857 */ 4858 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4859 lockdep_is_held(&event->ctx->lock)); 4860 if (!hlist) 4861 return NULL; 4862 4863 return __find_swevent_head(hlist, type, event_id); 4864 } 4865 4866 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4867 u64 nr, 4868 struct perf_sample_data *data, 4869 struct pt_regs *regs) 4870 { 4871 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4872 struct perf_event *event; 4873 struct hlist_node *node; 4874 struct hlist_head *head; 4875 4876 rcu_read_lock(); 4877 head = find_swevent_head_rcu(swhash, type, event_id); 4878 if (!head) 4879 goto end; 4880 4881 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4882 if (perf_swevent_match(event, type, event_id, data, regs)) 4883 perf_swevent_event(event, nr, data, regs); 4884 } 4885 end: 4886 rcu_read_unlock(); 4887 } 4888 4889 int perf_swevent_get_recursion_context(void) 4890 { 4891 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4892 4893 return get_recursion_context(swhash->recursion); 4894 } 4895 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4896 4897 inline void perf_swevent_put_recursion_context(int rctx) 4898 { 4899 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4900 4901 put_recursion_context(swhash->recursion, rctx); 4902 } 4903 4904 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4905 { 4906 struct perf_sample_data data; 4907 int rctx; 4908 4909 preempt_disable_notrace(); 4910 rctx = perf_swevent_get_recursion_context(); 4911 if (rctx < 0) 4912 return; 4913 4914 perf_sample_data_init(&data, addr); 4915 4916 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4917 4918 perf_swevent_put_recursion_context(rctx); 4919 preempt_enable_notrace(); 4920 } 4921 4922 static void perf_swevent_read(struct perf_event *event) 4923 { 4924 } 4925 4926 static int perf_swevent_add(struct perf_event *event, int flags) 4927 { 4928 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4929 struct hw_perf_event *hwc = &event->hw; 4930 struct hlist_head *head; 4931 4932 if (is_sampling_event(event)) { 4933 hwc->last_period = hwc->sample_period; 4934 perf_swevent_set_period(event); 4935 } 4936 4937 hwc->state = !(flags & PERF_EF_START); 4938 4939 head = find_swevent_head(swhash, event); 4940 if (WARN_ON_ONCE(!head)) 4941 return -EINVAL; 4942 4943 hlist_add_head_rcu(&event->hlist_entry, head); 4944 4945 return 0; 4946 } 4947 4948 static void perf_swevent_del(struct perf_event *event, int flags) 4949 { 4950 hlist_del_rcu(&event->hlist_entry); 4951 } 4952 4953 static void perf_swevent_start(struct perf_event *event, int flags) 4954 { 4955 event->hw.state = 0; 4956 } 4957 4958 static void perf_swevent_stop(struct perf_event *event, int flags) 4959 { 4960 event->hw.state = PERF_HES_STOPPED; 4961 } 4962 4963 /* Deref the hlist from the update side */ 4964 static inline struct swevent_hlist * 4965 swevent_hlist_deref(struct swevent_htable *swhash) 4966 { 4967 return rcu_dereference_protected(swhash->swevent_hlist, 4968 lockdep_is_held(&swhash->hlist_mutex)); 4969 } 4970 4971 static void swevent_hlist_release(struct swevent_htable *swhash) 4972 { 4973 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 4974 4975 if (!hlist) 4976 return; 4977 4978 rcu_assign_pointer(swhash->swevent_hlist, NULL); 4979 kfree_rcu(hlist, rcu_head); 4980 } 4981 4982 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 4983 { 4984 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4985 4986 mutex_lock(&swhash->hlist_mutex); 4987 4988 if (!--swhash->hlist_refcount) 4989 swevent_hlist_release(swhash); 4990 4991 mutex_unlock(&swhash->hlist_mutex); 4992 } 4993 4994 static void swevent_hlist_put(struct perf_event *event) 4995 { 4996 int cpu; 4997 4998 if (event->cpu != -1) { 4999 swevent_hlist_put_cpu(event, event->cpu); 5000 return; 5001 } 5002 5003 for_each_possible_cpu(cpu) 5004 swevent_hlist_put_cpu(event, cpu); 5005 } 5006 5007 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5008 { 5009 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5010 int err = 0; 5011 5012 mutex_lock(&swhash->hlist_mutex); 5013 5014 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5015 struct swevent_hlist *hlist; 5016 5017 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5018 if (!hlist) { 5019 err = -ENOMEM; 5020 goto exit; 5021 } 5022 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5023 } 5024 swhash->hlist_refcount++; 5025 exit: 5026 mutex_unlock(&swhash->hlist_mutex); 5027 5028 return err; 5029 } 5030 5031 static int swevent_hlist_get(struct perf_event *event) 5032 { 5033 int err; 5034 int cpu, failed_cpu; 5035 5036 if (event->cpu != -1) 5037 return swevent_hlist_get_cpu(event, event->cpu); 5038 5039 get_online_cpus(); 5040 for_each_possible_cpu(cpu) { 5041 err = swevent_hlist_get_cpu(event, cpu); 5042 if (err) { 5043 failed_cpu = cpu; 5044 goto fail; 5045 } 5046 } 5047 put_online_cpus(); 5048 5049 return 0; 5050 fail: 5051 for_each_possible_cpu(cpu) { 5052 if (cpu == failed_cpu) 5053 break; 5054 swevent_hlist_put_cpu(event, cpu); 5055 } 5056 5057 put_online_cpus(); 5058 return err; 5059 } 5060 5061 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5062 5063 static void sw_perf_event_destroy(struct perf_event *event) 5064 { 5065 u64 event_id = event->attr.config; 5066 5067 WARN_ON(event->parent); 5068 5069 jump_label_dec(&perf_swevent_enabled[event_id]); 5070 swevent_hlist_put(event); 5071 } 5072 5073 static int perf_swevent_init(struct perf_event *event) 5074 { 5075 int event_id = event->attr.config; 5076 5077 if (event->attr.type != PERF_TYPE_SOFTWARE) 5078 return -ENOENT; 5079 5080 switch (event_id) { 5081 case PERF_COUNT_SW_CPU_CLOCK: 5082 case PERF_COUNT_SW_TASK_CLOCK: 5083 return -ENOENT; 5084 5085 default: 5086 break; 5087 } 5088 5089 if (event_id >= PERF_COUNT_SW_MAX) 5090 return -ENOENT; 5091 5092 if (!event->parent) { 5093 int err; 5094 5095 err = swevent_hlist_get(event); 5096 if (err) 5097 return err; 5098 5099 jump_label_inc(&perf_swevent_enabled[event_id]); 5100 event->destroy = sw_perf_event_destroy; 5101 } 5102 5103 return 0; 5104 } 5105 5106 static struct pmu perf_swevent = { 5107 .task_ctx_nr = perf_sw_context, 5108 5109 .event_init = perf_swevent_init, 5110 .add = perf_swevent_add, 5111 .del = perf_swevent_del, 5112 .start = perf_swevent_start, 5113 .stop = perf_swevent_stop, 5114 .read = perf_swevent_read, 5115 }; 5116 5117 #ifdef CONFIG_EVENT_TRACING 5118 5119 static int perf_tp_filter_match(struct perf_event *event, 5120 struct perf_sample_data *data) 5121 { 5122 void *record = data->raw->data; 5123 5124 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5125 return 1; 5126 return 0; 5127 } 5128 5129 static int perf_tp_event_match(struct perf_event *event, 5130 struct perf_sample_data *data, 5131 struct pt_regs *regs) 5132 { 5133 if (event->hw.state & PERF_HES_STOPPED) 5134 return 0; 5135 /* 5136 * All tracepoints are from kernel-space. 5137 */ 5138 if (event->attr.exclude_kernel) 5139 return 0; 5140 5141 if (!perf_tp_filter_match(event, data)) 5142 return 0; 5143 5144 return 1; 5145 } 5146 5147 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5148 struct pt_regs *regs, struct hlist_head *head, int rctx) 5149 { 5150 struct perf_sample_data data; 5151 struct perf_event *event; 5152 struct hlist_node *node; 5153 5154 struct perf_raw_record raw = { 5155 .size = entry_size, 5156 .data = record, 5157 }; 5158 5159 perf_sample_data_init(&data, addr); 5160 data.raw = &raw; 5161 5162 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5163 if (perf_tp_event_match(event, &data, regs)) 5164 perf_swevent_event(event, count, &data, regs); 5165 } 5166 5167 perf_swevent_put_recursion_context(rctx); 5168 } 5169 EXPORT_SYMBOL_GPL(perf_tp_event); 5170 5171 static void tp_perf_event_destroy(struct perf_event *event) 5172 { 5173 perf_trace_destroy(event); 5174 } 5175 5176 static int perf_tp_event_init(struct perf_event *event) 5177 { 5178 int err; 5179 5180 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5181 return -ENOENT; 5182 5183 err = perf_trace_init(event); 5184 if (err) 5185 return err; 5186 5187 event->destroy = tp_perf_event_destroy; 5188 5189 return 0; 5190 } 5191 5192 static struct pmu perf_tracepoint = { 5193 .task_ctx_nr = perf_sw_context, 5194 5195 .event_init = perf_tp_event_init, 5196 .add = perf_trace_add, 5197 .del = perf_trace_del, 5198 .start = perf_swevent_start, 5199 .stop = perf_swevent_stop, 5200 .read = perf_swevent_read, 5201 }; 5202 5203 static inline void perf_tp_register(void) 5204 { 5205 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5206 } 5207 5208 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5209 { 5210 char *filter_str; 5211 int ret; 5212 5213 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5214 return -EINVAL; 5215 5216 filter_str = strndup_user(arg, PAGE_SIZE); 5217 if (IS_ERR(filter_str)) 5218 return PTR_ERR(filter_str); 5219 5220 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5221 5222 kfree(filter_str); 5223 return ret; 5224 } 5225 5226 static void perf_event_free_filter(struct perf_event *event) 5227 { 5228 ftrace_profile_free_filter(event); 5229 } 5230 5231 #else 5232 5233 static inline void perf_tp_register(void) 5234 { 5235 } 5236 5237 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5238 { 5239 return -ENOENT; 5240 } 5241 5242 static void perf_event_free_filter(struct perf_event *event) 5243 { 5244 } 5245 5246 #endif /* CONFIG_EVENT_TRACING */ 5247 5248 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5249 void perf_bp_event(struct perf_event *bp, void *data) 5250 { 5251 struct perf_sample_data sample; 5252 struct pt_regs *regs = data; 5253 5254 perf_sample_data_init(&sample, bp->attr.bp_addr); 5255 5256 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5257 perf_swevent_event(bp, 1, &sample, regs); 5258 } 5259 #endif 5260 5261 /* 5262 * hrtimer based swevent callback 5263 */ 5264 5265 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5266 { 5267 enum hrtimer_restart ret = HRTIMER_RESTART; 5268 struct perf_sample_data data; 5269 struct pt_regs *regs; 5270 struct perf_event *event; 5271 u64 period; 5272 5273 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5274 5275 if (event->state != PERF_EVENT_STATE_ACTIVE) 5276 return HRTIMER_NORESTART; 5277 5278 event->pmu->read(event); 5279 5280 perf_sample_data_init(&data, 0); 5281 data.period = event->hw.last_period; 5282 regs = get_irq_regs(); 5283 5284 if (regs && !perf_exclude_event(event, regs)) { 5285 if (!(event->attr.exclude_idle && current->pid == 0)) 5286 if (perf_event_overflow(event, &data, regs)) 5287 ret = HRTIMER_NORESTART; 5288 } 5289 5290 period = max_t(u64, 10000, event->hw.sample_period); 5291 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5292 5293 return ret; 5294 } 5295 5296 static void perf_swevent_start_hrtimer(struct perf_event *event) 5297 { 5298 struct hw_perf_event *hwc = &event->hw; 5299 s64 period; 5300 5301 if (!is_sampling_event(event)) 5302 return; 5303 5304 period = local64_read(&hwc->period_left); 5305 if (period) { 5306 if (period < 0) 5307 period = 10000; 5308 5309 local64_set(&hwc->period_left, 0); 5310 } else { 5311 period = max_t(u64, 10000, hwc->sample_period); 5312 } 5313 __hrtimer_start_range_ns(&hwc->hrtimer, 5314 ns_to_ktime(period), 0, 5315 HRTIMER_MODE_REL_PINNED, 0); 5316 } 5317 5318 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5319 { 5320 struct hw_perf_event *hwc = &event->hw; 5321 5322 if (is_sampling_event(event)) { 5323 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5324 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5325 5326 hrtimer_cancel(&hwc->hrtimer); 5327 } 5328 } 5329 5330 static void perf_swevent_init_hrtimer(struct perf_event *event) 5331 { 5332 struct hw_perf_event *hwc = &event->hw; 5333 5334 if (!is_sampling_event(event)) 5335 return; 5336 5337 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5338 hwc->hrtimer.function = perf_swevent_hrtimer; 5339 5340 /* 5341 * Since hrtimers have a fixed rate, we can do a static freq->period 5342 * mapping and avoid the whole period adjust feedback stuff. 5343 */ 5344 if (event->attr.freq) { 5345 long freq = event->attr.sample_freq; 5346 5347 event->attr.sample_period = NSEC_PER_SEC / freq; 5348 hwc->sample_period = event->attr.sample_period; 5349 local64_set(&hwc->period_left, hwc->sample_period); 5350 event->attr.freq = 0; 5351 } 5352 } 5353 5354 /* 5355 * Software event: cpu wall time clock 5356 */ 5357 5358 static void cpu_clock_event_update(struct perf_event *event) 5359 { 5360 s64 prev; 5361 u64 now; 5362 5363 now = local_clock(); 5364 prev = local64_xchg(&event->hw.prev_count, now); 5365 local64_add(now - prev, &event->count); 5366 } 5367 5368 static void cpu_clock_event_start(struct perf_event *event, int flags) 5369 { 5370 local64_set(&event->hw.prev_count, local_clock()); 5371 perf_swevent_start_hrtimer(event); 5372 } 5373 5374 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5375 { 5376 perf_swevent_cancel_hrtimer(event); 5377 cpu_clock_event_update(event); 5378 } 5379 5380 static int cpu_clock_event_add(struct perf_event *event, int flags) 5381 { 5382 if (flags & PERF_EF_START) 5383 cpu_clock_event_start(event, flags); 5384 5385 return 0; 5386 } 5387 5388 static void cpu_clock_event_del(struct perf_event *event, int flags) 5389 { 5390 cpu_clock_event_stop(event, flags); 5391 } 5392 5393 static void cpu_clock_event_read(struct perf_event *event) 5394 { 5395 cpu_clock_event_update(event); 5396 } 5397 5398 static int cpu_clock_event_init(struct perf_event *event) 5399 { 5400 if (event->attr.type != PERF_TYPE_SOFTWARE) 5401 return -ENOENT; 5402 5403 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5404 return -ENOENT; 5405 5406 perf_swevent_init_hrtimer(event); 5407 5408 return 0; 5409 } 5410 5411 static struct pmu perf_cpu_clock = { 5412 .task_ctx_nr = perf_sw_context, 5413 5414 .event_init = cpu_clock_event_init, 5415 .add = cpu_clock_event_add, 5416 .del = cpu_clock_event_del, 5417 .start = cpu_clock_event_start, 5418 .stop = cpu_clock_event_stop, 5419 .read = cpu_clock_event_read, 5420 }; 5421 5422 /* 5423 * Software event: task time clock 5424 */ 5425 5426 static void task_clock_event_update(struct perf_event *event, u64 now) 5427 { 5428 u64 prev; 5429 s64 delta; 5430 5431 prev = local64_xchg(&event->hw.prev_count, now); 5432 delta = now - prev; 5433 local64_add(delta, &event->count); 5434 } 5435 5436 static void task_clock_event_start(struct perf_event *event, int flags) 5437 { 5438 local64_set(&event->hw.prev_count, event->ctx->time); 5439 perf_swevent_start_hrtimer(event); 5440 } 5441 5442 static void task_clock_event_stop(struct perf_event *event, int flags) 5443 { 5444 perf_swevent_cancel_hrtimer(event); 5445 task_clock_event_update(event, event->ctx->time); 5446 } 5447 5448 static int task_clock_event_add(struct perf_event *event, int flags) 5449 { 5450 if (flags & PERF_EF_START) 5451 task_clock_event_start(event, flags); 5452 5453 return 0; 5454 } 5455 5456 static void task_clock_event_del(struct perf_event *event, int flags) 5457 { 5458 task_clock_event_stop(event, PERF_EF_UPDATE); 5459 } 5460 5461 static void task_clock_event_read(struct perf_event *event) 5462 { 5463 u64 now = perf_clock(); 5464 u64 delta = now - event->ctx->timestamp; 5465 u64 time = event->ctx->time + delta; 5466 5467 task_clock_event_update(event, time); 5468 } 5469 5470 static int task_clock_event_init(struct perf_event *event) 5471 { 5472 if (event->attr.type != PERF_TYPE_SOFTWARE) 5473 return -ENOENT; 5474 5475 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5476 return -ENOENT; 5477 5478 perf_swevent_init_hrtimer(event); 5479 5480 return 0; 5481 } 5482 5483 static struct pmu perf_task_clock = { 5484 .task_ctx_nr = perf_sw_context, 5485 5486 .event_init = task_clock_event_init, 5487 .add = task_clock_event_add, 5488 .del = task_clock_event_del, 5489 .start = task_clock_event_start, 5490 .stop = task_clock_event_stop, 5491 .read = task_clock_event_read, 5492 }; 5493 5494 static void perf_pmu_nop_void(struct pmu *pmu) 5495 { 5496 } 5497 5498 static int perf_pmu_nop_int(struct pmu *pmu) 5499 { 5500 return 0; 5501 } 5502 5503 static void perf_pmu_start_txn(struct pmu *pmu) 5504 { 5505 perf_pmu_disable(pmu); 5506 } 5507 5508 static int perf_pmu_commit_txn(struct pmu *pmu) 5509 { 5510 perf_pmu_enable(pmu); 5511 return 0; 5512 } 5513 5514 static void perf_pmu_cancel_txn(struct pmu *pmu) 5515 { 5516 perf_pmu_enable(pmu); 5517 } 5518 5519 /* 5520 * Ensures all contexts with the same task_ctx_nr have the same 5521 * pmu_cpu_context too. 5522 */ 5523 static void *find_pmu_context(int ctxn) 5524 { 5525 struct pmu *pmu; 5526 5527 if (ctxn < 0) 5528 return NULL; 5529 5530 list_for_each_entry(pmu, &pmus, entry) { 5531 if (pmu->task_ctx_nr == ctxn) 5532 return pmu->pmu_cpu_context; 5533 } 5534 5535 return NULL; 5536 } 5537 5538 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5539 { 5540 int cpu; 5541 5542 for_each_possible_cpu(cpu) { 5543 struct perf_cpu_context *cpuctx; 5544 5545 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5546 5547 if (cpuctx->active_pmu == old_pmu) 5548 cpuctx->active_pmu = pmu; 5549 } 5550 } 5551 5552 static void free_pmu_context(struct pmu *pmu) 5553 { 5554 struct pmu *i; 5555 5556 mutex_lock(&pmus_lock); 5557 /* 5558 * Like a real lame refcount. 5559 */ 5560 list_for_each_entry(i, &pmus, entry) { 5561 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5562 update_pmu_context(i, pmu); 5563 goto out; 5564 } 5565 } 5566 5567 free_percpu(pmu->pmu_cpu_context); 5568 out: 5569 mutex_unlock(&pmus_lock); 5570 } 5571 static struct idr pmu_idr; 5572 5573 static ssize_t 5574 type_show(struct device *dev, struct device_attribute *attr, char *page) 5575 { 5576 struct pmu *pmu = dev_get_drvdata(dev); 5577 5578 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5579 } 5580 5581 static struct device_attribute pmu_dev_attrs[] = { 5582 __ATTR_RO(type), 5583 __ATTR_NULL, 5584 }; 5585 5586 static int pmu_bus_running; 5587 static struct bus_type pmu_bus = { 5588 .name = "event_source", 5589 .dev_attrs = pmu_dev_attrs, 5590 }; 5591 5592 static void pmu_dev_release(struct device *dev) 5593 { 5594 kfree(dev); 5595 } 5596 5597 static int pmu_dev_alloc(struct pmu *pmu) 5598 { 5599 int ret = -ENOMEM; 5600 5601 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5602 if (!pmu->dev) 5603 goto out; 5604 5605 device_initialize(pmu->dev); 5606 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5607 if (ret) 5608 goto free_dev; 5609 5610 dev_set_drvdata(pmu->dev, pmu); 5611 pmu->dev->bus = &pmu_bus; 5612 pmu->dev->release = pmu_dev_release; 5613 ret = device_add(pmu->dev); 5614 if (ret) 5615 goto free_dev; 5616 5617 out: 5618 return ret; 5619 5620 free_dev: 5621 put_device(pmu->dev); 5622 goto out; 5623 } 5624 5625 static struct lock_class_key cpuctx_mutex; 5626 static struct lock_class_key cpuctx_lock; 5627 5628 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5629 { 5630 int cpu, ret; 5631 5632 mutex_lock(&pmus_lock); 5633 ret = -ENOMEM; 5634 pmu->pmu_disable_count = alloc_percpu(int); 5635 if (!pmu->pmu_disable_count) 5636 goto unlock; 5637 5638 pmu->type = -1; 5639 if (!name) 5640 goto skip_type; 5641 pmu->name = name; 5642 5643 if (type < 0) { 5644 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5645 if (!err) 5646 goto free_pdc; 5647 5648 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5649 if (err) { 5650 ret = err; 5651 goto free_pdc; 5652 } 5653 } 5654 pmu->type = type; 5655 5656 if (pmu_bus_running) { 5657 ret = pmu_dev_alloc(pmu); 5658 if (ret) 5659 goto free_idr; 5660 } 5661 5662 skip_type: 5663 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5664 if (pmu->pmu_cpu_context) 5665 goto got_cpu_context; 5666 5667 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5668 if (!pmu->pmu_cpu_context) 5669 goto free_dev; 5670 5671 for_each_possible_cpu(cpu) { 5672 struct perf_cpu_context *cpuctx; 5673 5674 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5675 __perf_event_init_context(&cpuctx->ctx); 5676 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5677 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5678 cpuctx->ctx.type = cpu_context; 5679 cpuctx->ctx.pmu = pmu; 5680 cpuctx->jiffies_interval = 1; 5681 INIT_LIST_HEAD(&cpuctx->rotation_list); 5682 cpuctx->active_pmu = pmu; 5683 } 5684 5685 got_cpu_context: 5686 if (!pmu->start_txn) { 5687 if (pmu->pmu_enable) { 5688 /* 5689 * If we have pmu_enable/pmu_disable calls, install 5690 * transaction stubs that use that to try and batch 5691 * hardware accesses. 5692 */ 5693 pmu->start_txn = perf_pmu_start_txn; 5694 pmu->commit_txn = perf_pmu_commit_txn; 5695 pmu->cancel_txn = perf_pmu_cancel_txn; 5696 } else { 5697 pmu->start_txn = perf_pmu_nop_void; 5698 pmu->commit_txn = perf_pmu_nop_int; 5699 pmu->cancel_txn = perf_pmu_nop_void; 5700 } 5701 } 5702 5703 if (!pmu->pmu_enable) { 5704 pmu->pmu_enable = perf_pmu_nop_void; 5705 pmu->pmu_disable = perf_pmu_nop_void; 5706 } 5707 5708 list_add_rcu(&pmu->entry, &pmus); 5709 ret = 0; 5710 unlock: 5711 mutex_unlock(&pmus_lock); 5712 5713 return ret; 5714 5715 free_dev: 5716 device_del(pmu->dev); 5717 put_device(pmu->dev); 5718 5719 free_idr: 5720 if (pmu->type >= PERF_TYPE_MAX) 5721 idr_remove(&pmu_idr, pmu->type); 5722 5723 free_pdc: 5724 free_percpu(pmu->pmu_disable_count); 5725 goto unlock; 5726 } 5727 5728 void perf_pmu_unregister(struct pmu *pmu) 5729 { 5730 mutex_lock(&pmus_lock); 5731 list_del_rcu(&pmu->entry); 5732 mutex_unlock(&pmus_lock); 5733 5734 /* 5735 * We dereference the pmu list under both SRCU and regular RCU, so 5736 * synchronize against both of those. 5737 */ 5738 synchronize_srcu(&pmus_srcu); 5739 synchronize_rcu(); 5740 5741 free_percpu(pmu->pmu_disable_count); 5742 if (pmu->type >= PERF_TYPE_MAX) 5743 idr_remove(&pmu_idr, pmu->type); 5744 device_del(pmu->dev); 5745 put_device(pmu->dev); 5746 free_pmu_context(pmu); 5747 } 5748 5749 struct pmu *perf_init_event(struct perf_event *event) 5750 { 5751 struct pmu *pmu = NULL; 5752 int idx; 5753 int ret; 5754 5755 idx = srcu_read_lock(&pmus_srcu); 5756 5757 rcu_read_lock(); 5758 pmu = idr_find(&pmu_idr, event->attr.type); 5759 rcu_read_unlock(); 5760 if (pmu) { 5761 ret = pmu->event_init(event); 5762 if (ret) 5763 pmu = ERR_PTR(ret); 5764 goto unlock; 5765 } 5766 5767 list_for_each_entry_rcu(pmu, &pmus, entry) { 5768 ret = pmu->event_init(event); 5769 if (!ret) 5770 goto unlock; 5771 5772 if (ret != -ENOENT) { 5773 pmu = ERR_PTR(ret); 5774 goto unlock; 5775 } 5776 } 5777 pmu = ERR_PTR(-ENOENT); 5778 unlock: 5779 srcu_read_unlock(&pmus_srcu, idx); 5780 5781 return pmu; 5782 } 5783 5784 /* 5785 * Allocate and initialize a event structure 5786 */ 5787 static struct perf_event * 5788 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5789 struct task_struct *task, 5790 struct perf_event *group_leader, 5791 struct perf_event *parent_event, 5792 perf_overflow_handler_t overflow_handler, 5793 void *context) 5794 { 5795 struct pmu *pmu; 5796 struct perf_event *event; 5797 struct hw_perf_event *hwc; 5798 long err; 5799 5800 if ((unsigned)cpu >= nr_cpu_ids) { 5801 if (!task || cpu != -1) 5802 return ERR_PTR(-EINVAL); 5803 } 5804 5805 event = kzalloc(sizeof(*event), GFP_KERNEL); 5806 if (!event) 5807 return ERR_PTR(-ENOMEM); 5808 5809 /* 5810 * Single events are their own group leaders, with an 5811 * empty sibling list: 5812 */ 5813 if (!group_leader) 5814 group_leader = event; 5815 5816 mutex_init(&event->child_mutex); 5817 INIT_LIST_HEAD(&event->child_list); 5818 5819 INIT_LIST_HEAD(&event->group_entry); 5820 INIT_LIST_HEAD(&event->event_entry); 5821 INIT_LIST_HEAD(&event->sibling_list); 5822 init_waitqueue_head(&event->waitq); 5823 init_irq_work(&event->pending, perf_pending_event); 5824 5825 mutex_init(&event->mmap_mutex); 5826 5827 event->cpu = cpu; 5828 event->attr = *attr; 5829 event->group_leader = group_leader; 5830 event->pmu = NULL; 5831 event->oncpu = -1; 5832 5833 event->parent = parent_event; 5834 5835 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5836 event->id = atomic64_inc_return(&perf_event_id); 5837 5838 event->state = PERF_EVENT_STATE_INACTIVE; 5839 5840 if (task) { 5841 event->attach_state = PERF_ATTACH_TASK; 5842 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5843 /* 5844 * hw_breakpoint is a bit difficult here.. 5845 */ 5846 if (attr->type == PERF_TYPE_BREAKPOINT) 5847 event->hw.bp_target = task; 5848 #endif 5849 } 5850 5851 if (!overflow_handler && parent_event) { 5852 overflow_handler = parent_event->overflow_handler; 5853 context = parent_event->overflow_handler_context; 5854 } 5855 5856 event->overflow_handler = overflow_handler; 5857 event->overflow_handler_context = context; 5858 5859 if (attr->disabled) 5860 event->state = PERF_EVENT_STATE_OFF; 5861 5862 pmu = NULL; 5863 5864 hwc = &event->hw; 5865 hwc->sample_period = attr->sample_period; 5866 if (attr->freq && attr->sample_freq) 5867 hwc->sample_period = 1; 5868 hwc->last_period = hwc->sample_period; 5869 5870 local64_set(&hwc->period_left, hwc->sample_period); 5871 5872 /* 5873 * we currently do not support PERF_FORMAT_GROUP on inherited events 5874 */ 5875 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5876 goto done; 5877 5878 pmu = perf_init_event(event); 5879 5880 done: 5881 err = 0; 5882 if (!pmu) 5883 err = -EINVAL; 5884 else if (IS_ERR(pmu)) 5885 err = PTR_ERR(pmu); 5886 5887 if (err) { 5888 if (event->ns) 5889 put_pid_ns(event->ns); 5890 kfree(event); 5891 return ERR_PTR(err); 5892 } 5893 5894 event->pmu = pmu; 5895 5896 if (!event->parent) { 5897 if (event->attach_state & PERF_ATTACH_TASK) 5898 jump_label_inc(&perf_sched_events); 5899 if (event->attr.mmap || event->attr.mmap_data) 5900 atomic_inc(&nr_mmap_events); 5901 if (event->attr.comm) 5902 atomic_inc(&nr_comm_events); 5903 if (event->attr.task) 5904 atomic_inc(&nr_task_events); 5905 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 5906 err = get_callchain_buffers(); 5907 if (err) { 5908 free_event(event); 5909 return ERR_PTR(err); 5910 } 5911 } 5912 } 5913 5914 return event; 5915 } 5916 5917 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5918 struct perf_event_attr *attr) 5919 { 5920 u32 size; 5921 int ret; 5922 5923 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 5924 return -EFAULT; 5925 5926 /* 5927 * zero the full structure, so that a short copy will be nice. 5928 */ 5929 memset(attr, 0, sizeof(*attr)); 5930 5931 ret = get_user(size, &uattr->size); 5932 if (ret) 5933 return ret; 5934 5935 if (size > PAGE_SIZE) /* silly large */ 5936 goto err_size; 5937 5938 if (!size) /* abi compat */ 5939 size = PERF_ATTR_SIZE_VER0; 5940 5941 if (size < PERF_ATTR_SIZE_VER0) 5942 goto err_size; 5943 5944 /* 5945 * If we're handed a bigger struct than we know of, 5946 * ensure all the unknown bits are 0 - i.e. new 5947 * user-space does not rely on any kernel feature 5948 * extensions we dont know about yet. 5949 */ 5950 if (size > sizeof(*attr)) { 5951 unsigned char __user *addr; 5952 unsigned char __user *end; 5953 unsigned char val; 5954 5955 addr = (void __user *)uattr + sizeof(*attr); 5956 end = (void __user *)uattr + size; 5957 5958 for (; addr < end; addr++) { 5959 ret = get_user(val, addr); 5960 if (ret) 5961 return ret; 5962 if (val) 5963 goto err_size; 5964 } 5965 size = sizeof(*attr); 5966 } 5967 5968 ret = copy_from_user(attr, uattr, size); 5969 if (ret) 5970 return -EFAULT; 5971 5972 if (attr->__reserved_1) 5973 return -EINVAL; 5974 5975 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 5976 return -EINVAL; 5977 5978 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 5979 return -EINVAL; 5980 5981 out: 5982 return ret; 5983 5984 err_size: 5985 put_user(sizeof(*attr), &uattr->size); 5986 ret = -E2BIG; 5987 goto out; 5988 } 5989 5990 static int 5991 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 5992 { 5993 struct ring_buffer *rb = NULL, *old_rb = NULL; 5994 int ret = -EINVAL; 5995 5996 if (!output_event) 5997 goto set; 5998 5999 /* don't allow circular references */ 6000 if (event == output_event) 6001 goto out; 6002 6003 /* 6004 * Don't allow cross-cpu buffers 6005 */ 6006 if (output_event->cpu != event->cpu) 6007 goto out; 6008 6009 /* 6010 * If its not a per-cpu rb, it must be the same task. 6011 */ 6012 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6013 goto out; 6014 6015 set: 6016 mutex_lock(&event->mmap_mutex); 6017 /* Can't redirect output if we've got an active mmap() */ 6018 if (atomic_read(&event->mmap_count)) 6019 goto unlock; 6020 6021 if (output_event) { 6022 /* get the rb we want to redirect to */ 6023 rb = ring_buffer_get(output_event); 6024 if (!rb) 6025 goto unlock; 6026 } 6027 6028 old_rb = event->rb; 6029 rcu_assign_pointer(event->rb, rb); 6030 ret = 0; 6031 unlock: 6032 mutex_unlock(&event->mmap_mutex); 6033 6034 if (old_rb) 6035 ring_buffer_put(old_rb); 6036 out: 6037 return ret; 6038 } 6039 6040 /** 6041 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6042 * 6043 * @attr_uptr: event_id type attributes for monitoring/sampling 6044 * @pid: target pid 6045 * @cpu: target cpu 6046 * @group_fd: group leader event fd 6047 */ 6048 SYSCALL_DEFINE5(perf_event_open, 6049 struct perf_event_attr __user *, attr_uptr, 6050 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6051 { 6052 struct perf_event *group_leader = NULL, *output_event = NULL; 6053 struct perf_event *event, *sibling; 6054 struct perf_event_attr attr; 6055 struct perf_event_context *ctx; 6056 struct file *event_file = NULL; 6057 struct file *group_file = NULL; 6058 struct task_struct *task = NULL; 6059 struct pmu *pmu; 6060 int event_fd; 6061 int move_group = 0; 6062 int fput_needed = 0; 6063 int err; 6064 6065 /* for future expandability... */ 6066 if (flags & ~PERF_FLAG_ALL) 6067 return -EINVAL; 6068 6069 err = perf_copy_attr(attr_uptr, &attr); 6070 if (err) 6071 return err; 6072 6073 if (!attr.exclude_kernel) { 6074 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6075 return -EACCES; 6076 } 6077 6078 if (attr.freq) { 6079 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6080 return -EINVAL; 6081 } 6082 6083 /* 6084 * In cgroup mode, the pid argument is used to pass the fd 6085 * opened to the cgroup directory in cgroupfs. The cpu argument 6086 * designates the cpu on which to monitor threads from that 6087 * cgroup. 6088 */ 6089 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6090 return -EINVAL; 6091 6092 event_fd = get_unused_fd_flags(O_RDWR); 6093 if (event_fd < 0) 6094 return event_fd; 6095 6096 if (group_fd != -1) { 6097 group_leader = perf_fget_light(group_fd, &fput_needed); 6098 if (IS_ERR(group_leader)) { 6099 err = PTR_ERR(group_leader); 6100 goto err_fd; 6101 } 6102 group_file = group_leader->filp; 6103 if (flags & PERF_FLAG_FD_OUTPUT) 6104 output_event = group_leader; 6105 if (flags & PERF_FLAG_FD_NO_GROUP) 6106 group_leader = NULL; 6107 } 6108 6109 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6110 task = find_lively_task_by_vpid(pid); 6111 if (IS_ERR(task)) { 6112 err = PTR_ERR(task); 6113 goto err_group_fd; 6114 } 6115 } 6116 6117 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6118 NULL, NULL); 6119 if (IS_ERR(event)) { 6120 err = PTR_ERR(event); 6121 goto err_task; 6122 } 6123 6124 if (flags & PERF_FLAG_PID_CGROUP) { 6125 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6126 if (err) 6127 goto err_alloc; 6128 /* 6129 * one more event: 6130 * - that has cgroup constraint on event->cpu 6131 * - that may need work on context switch 6132 */ 6133 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6134 jump_label_inc(&perf_sched_events); 6135 } 6136 6137 /* 6138 * Special case software events and allow them to be part of 6139 * any hardware group. 6140 */ 6141 pmu = event->pmu; 6142 6143 if (group_leader && 6144 (is_software_event(event) != is_software_event(group_leader))) { 6145 if (is_software_event(event)) { 6146 /* 6147 * If event and group_leader are not both a software 6148 * event, and event is, then group leader is not. 6149 * 6150 * Allow the addition of software events to !software 6151 * groups, this is safe because software events never 6152 * fail to schedule. 6153 */ 6154 pmu = group_leader->pmu; 6155 } else if (is_software_event(group_leader) && 6156 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6157 /* 6158 * In case the group is a pure software group, and we 6159 * try to add a hardware event, move the whole group to 6160 * the hardware context. 6161 */ 6162 move_group = 1; 6163 } 6164 } 6165 6166 /* 6167 * Get the target context (task or percpu): 6168 */ 6169 ctx = find_get_context(pmu, task, cpu); 6170 if (IS_ERR(ctx)) { 6171 err = PTR_ERR(ctx); 6172 goto err_alloc; 6173 } 6174 6175 if (task) { 6176 put_task_struct(task); 6177 task = NULL; 6178 } 6179 6180 /* 6181 * Look up the group leader (we will attach this event to it): 6182 */ 6183 if (group_leader) { 6184 err = -EINVAL; 6185 6186 /* 6187 * Do not allow a recursive hierarchy (this new sibling 6188 * becoming part of another group-sibling): 6189 */ 6190 if (group_leader->group_leader != group_leader) 6191 goto err_context; 6192 /* 6193 * Do not allow to attach to a group in a different 6194 * task or CPU context: 6195 */ 6196 if (move_group) { 6197 if (group_leader->ctx->type != ctx->type) 6198 goto err_context; 6199 } else { 6200 if (group_leader->ctx != ctx) 6201 goto err_context; 6202 } 6203 6204 /* 6205 * Only a group leader can be exclusive or pinned 6206 */ 6207 if (attr.exclusive || attr.pinned) 6208 goto err_context; 6209 } 6210 6211 if (output_event) { 6212 err = perf_event_set_output(event, output_event); 6213 if (err) 6214 goto err_context; 6215 } 6216 6217 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6218 if (IS_ERR(event_file)) { 6219 err = PTR_ERR(event_file); 6220 goto err_context; 6221 } 6222 6223 if (move_group) { 6224 struct perf_event_context *gctx = group_leader->ctx; 6225 6226 mutex_lock(&gctx->mutex); 6227 perf_remove_from_context(group_leader); 6228 list_for_each_entry(sibling, &group_leader->sibling_list, 6229 group_entry) { 6230 perf_remove_from_context(sibling); 6231 put_ctx(gctx); 6232 } 6233 mutex_unlock(&gctx->mutex); 6234 put_ctx(gctx); 6235 } 6236 6237 event->filp = event_file; 6238 WARN_ON_ONCE(ctx->parent_ctx); 6239 mutex_lock(&ctx->mutex); 6240 6241 if (move_group) { 6242 perf_install_in_context(ctx, group_leader, cpu); 6243 get_ctx(ctx); 6244 list_for_each_entry(sibling, &group_leader->sibling_list, 6245 group_entry) { 6246 perf_install_in_context(ctx, sibling, cpu); 6247 get_ctx(ctx); 6248 } 6249 } 6250 6251 perf_install_in_context(ctx, event, cpu); 6252 ++ctx->generation; 6253 perf_unpin_context(ctx); 6254 mutex_unlock(&ctx->mutex); 6255 6256 event->owner = current; 6257 6258 mutex_lock(¤t->perf_event_mutex); 6259 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6260 mutex_unlock(¤t->perf_event_mutex); 6261 6262 /* 6263 * Precalculate sample_data sizes 6264 */ 6265 perf_event__header_size(event); 6266 perf_event__id_header_size(event); 6267 6268 /* 6269 * Drop the reference on the group_event after placing the 6270 * new event on the sibling_list. This ensures destruction 6271 * of the group leader will find the pointer to itself in 6272 * perf_group_detach(). 6273 */ 6274 fput_light(group_file, fput_needed); 6275 fd_install(event_fd, event_file); 6276 return event_fd; 6277 6278 err_context: 6279 perf_unpin_context(ctx); 6280 put_ctx(ctx); 6281 err_alloc: 6282 free_event(event); 6283 err_task: 6284 if (task) 6285 put_task_struct(task); 6286 err_group_fd: 6287 fput_light(group_file, fput_needed); 6288 err_fd: 6289 put_unused_fd(event_fd); 6290 return err; 6291 } 6292 6293 /** 6294 * perf_event_create_kernel_counter 6295 * 6296 * @attr: attributes of the counter to create 6297 * @cpu: cpu in which the counter is bound 6298 * @task: task to profile (NULL for percpu) 6299 */ 6300 struct perf_event * 6301 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6302 struct task_struct *task, 6303 perf_overflow_handler_t overflow_handler, 6304 void *context) 6305 { 6306 struct perf_event_context *ctx; 6307 struct perf_event *event; 6308 int err; 6309 6310 /* 6311 * Get the target context (task or percpu): 6312 */ 6313 6314 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6315 overflow_handler, context); 6316 if (IS_ERR(event)) { 6317 err = PTR_ERR(event); 6318 goto err; 6319 } 6320 6321 ctx = find_get_context(event->pmu, task, cpu); 6322 if (IS_ERR(ctx)) { 6323 err = PTR_ERR(ctx); 6324 goto err_free; 6325 } 6326 6327 event->filp = NULL; 6328 WARN_ON_ONCE(ctx->parent_ctx); 6329 mutex_lock(&ctx->mutex); 6330 perf_install_in_context(ctx, event, cpu); 6331 ++ctx->generation; 6332 perf_unpin_context(ctx); 6333 mutex_unlock(&ctx->mutex); 6334 6335 return event; 6336 6337 err_free: 6338 free_event(event); 6339 err: 6340 return ERR_PTR(err); 6341 } 6342 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6343 6344 static void sync_child_event(struct perf_event *child_event, 6345 struct task_struct *child) 6346 { 6347 struct perf_event *parent_event = child_event->parent; 6348 u64 child_val; 6349 6350 if (child_event->attr.inherit_stat) 6351 perf_event_read_event(child_event, child); 6352 6353 child_val = perf_event_count(child_event); 6354 6355 /* 6356 * Add back the child's count to the parent's count: 6357 */ 6358 atomic64_add(child_val, &parent_event->child_count); 6359 atomic64_add(child_event->total_time_enabled, 6360 &parent_event->child_total_time_enabled); 6361 atomic64_add(child_event->total_time_running, 6362 &parent_event->child_total_time_running); 6363 6364 /* 6365 * Remove this event from the parent's list 6366 */ 6367 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6368 mutex_lock(&parent_event->child_mutex); 6369 list_del_init(&child_event->child_list); 6370 mutex_unlock(&parent_event->child_mutex); 6371 6372 /* 6373 * Release the parent event, if this was the last 6374 * reference to it. 6375 */ 6376 fput(parent_event->filp); 6377 } 6378 6379 static void 6380 __perf_event_exit_task(struct perf_event *child_event, 6381 struct perf_event_context *child_ctx, 6382 struct task_struct *child) 6383 { 6384 if (child_event->parent) { 6385 raw_spin_lock_irq(&child_ctx->lock); 6386 perf_group_detach(child_event); 6387 raw_spin_unlock_irq(&child_ctx->lock); 6388 } 6389 6390 perf_remove_from_context(child_event); 6391 6392 /* 6393 * It can happen that the parent exits first, and has events 6394 * that are still around due to the child reference. These 6395 * events need to be zapped. 6396 */ 6397 if (child_event->parent) { 6398 sync_child_event(child_event, child); 6399 free_event(child_event); 6400 } 6401 } 6402 6403 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6404 { 6405 struct perf_event *child_event, *tmp; 6406 struct perf_event_context *child_ctx; 6407 unsigned long flags; 6408 6409 if (likely(!child->perf_event_ctxp[ctxn])) { 6410 perf_event_task(child, NULL, 0); 6411 return; 6412 } 6413 6414 local_irq_save(flags); 6415 /* 6416 * We can't reschedule here because interrupts are disabled, 6417 * and either child is current or it is a task that can't be 6418 * scheduled, so we are now safe from rescheduling changing 6419 * our context. 6420 */ 6421 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6422 6423 /* 6424 * Take the context lock here so that if find_get_context is 6425 * reading child->perf_event_ctxp, we wait until it has 6426 * incremented the context's refcount before we do put_ctx below. 6427 */ 6428 raw_spin_lock(&child_ctx->lock); 6429 task_ctx_sched_out(child_ctx); 6430 child->perf_event_ctxp[ctxn] = NULL; 6431 /* 6432 * If this context is a clone; unclone it so it can't get 6433 * swapped to another process while we're removing all 6434 * the events from it. 6435 */ 6436 unclone_ctx(child_ctx); 6437 update_context_time(child_ctx); 6438 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6439 6440 /* 6441 * Report the task dead after unscheduling the events so that we 6442 * won't get any samples after PERF_RECORD_EXIT. We can however still 6443 * get a few PERF_RECORD_READ events. 6444 */ 6445 perf_event_task(child, child_ctx, 0); 6446 6447 /* 6448 * We can recurse on the same lock type through: 6449 * 6450 * __perf_event_exit_task() 6451 * sync_child_event() 6452 * fput(parent_event->filp) 6453 * perf_release() 6454 * mutex_lock(&ctx->mutex) 6455 * 6456 * But since its the parent context it won't be the same instance. 6457 */ 6458 mutex_lock(&child_ctx->mutex); 6459 6460 again: 6461 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6462 group_entry) 6463 __perf_event_exit_task(child_event, child_ctx, child); 6464 6465 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6466 group_entry) 6467 __perf_event_exit_task(child_event, child_ctx, child); 6468 6469 /* 6470 * If the last event was a group event, it will have appended all 6471 * its siblings to the list, but we obtained 'tmp' before that which 6472 * will still point to the list head terminating the iteration. 6473 */ 6474 if (!list_empty(&child_ctx->pinned_groups) || 6475 !list_empty(&child_ctx->flexible_groups)) 6476 goto again; 6477 6478 mutex_unlock(&child_ctx->mutex); 6479 6480 put_ctx(child_ctx); 6481 } 6482 6483 /* 6484 * When a child task exits, feed back event values to parent events. 6485 */ 6486 void perf_event_exit_task(struct task_struct *child) 6487 { 6488 struct perf_event *event, *tmp; 6489 int ctxn; 6490 6491 mutex_lock(&child->perf_event_mutex); 6492 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6493 owner_entry) { 6494 list_del_init(&event->owner_entry); 6495 6496 /* 6497 * Ensure the list deletion is visible before we clear 6498 * the owner, closes a race against perf_release() where 6499 * we need to serialize on the owner->perf_event_mutex. 6500 */ 6501 smp_wmb(); 6502 event->owner = NULL; 6503 } 6504 mutex_unlock(&child->perf_event_mutex); 6505 6506 for_each_task_context_nr(ctxn) 6507 perf_event_exit_task_context(child, ctxn); 6508 } 6509 6510 static void perf_free_event(struct perf_event *event, 6511 struct perf_event_context *ctx) 6512 { 6513 struct perf_event *parent = event->parent; 6514 6515 if (WARN_ON_ONCE(!parent)) 6516 return; 6517 6518 mutex_lock(&parent->child_mutex); 6519 list_del_init(&event->child_list); 6520 mutex_unlock(&parent->child_mutex); 6521 6522 fput(parent->filp); 6523 6524 perf_group_detach(event); 6525 list_del_event(event, ctx); 6526 free_event(event); 6527 } 6528 6529 /* 6530 * free an unexposed, unused context as created by inheritance by 6531 * perf_event_init_task below, used by fork() in case of fail. 6532 */ 6533 void perf_event_free_task(struct task_struct *task) 6534 { 6535 struct perf_event_context *ctx; 6536 struct perf_event *event, *tmp; 6537 int ctxn; 6538 6539 for_each_task_context_nr(ctxn) { 6540 ctx = task->perf_event_ctxp[ctxn]; 6541 if (!ctx) 6542 continue; 6543 6544 mutex_lock(&ctx->mutex); 6545 again: 6546 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6547 group_entry) 6548 perf_free_event(event, ctx); 6549 6550 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6551 group_entry) 6552 perf_free_event(event, ctx); 6553 6554 if (!list_empty(&ctx->pinned_groups) || 6555 !list_empty(&ctx->flexible_groups)) 6556 goto again; 6557 6558 mutex_unlock(&ctx->mutex); 6559 6560 put_ctx(ctx); 6561 } 6562 } 6563 6564 void perf_event_delayed_put(struct task_struct *task) 6565 { 6566 int ctxn; 6567 6568 for_each_task_context_nr(ctxn) 6569 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6570 } 6571 6572 /* 6573 * inherit a event from parent task to child task: 6574 */ 6575 static struct perf_event * 6576 inherit_event(struct perf_event *parent_event, 6577 struct task_struct *parent, 6578 struct perf_event_context *parent_ctx, 6579 struct task_struct *child, 6580 struct perf_event *group_leader, 6581 struct perf_event_context *child_ctx) 6582 { 6583 struct perf_event *child_event; 6584 unsigned long flags; 6585 6586 /* 6587 * Instead of creating recursive hierarchies of events, 6588 * we link inherited events back to the original parent, 6589 * which has a filp for sure, which we use as the reference 6590 * count: 6591 */ 6592 if (parent_event->parent) 6593 parent_event = parent_event->parent; 6594 6595 child_event = perf_event_alloc(&parent_event->attr, 6596 parent_event->cpu, 6597 child, 6598 group_leader, parent_event, 6599 NULL, NULL); 6600 if (IS_ERR(child_event)) 6601 return child_event; 6602 get_ctx(child_ctx); 6603 6604 /* 6605 * Make the child state follow the state of the parent event, 6606 * not its attr.disabled bit. We hold the parent's mutex, 6607 * so we won't race with perf_event_{en, dis}able_family. 6608 */ 6609 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6610 child_event->state = PERF_EVENT_STATE_INACTIVE; 6611 else 6612 child_event->state = PERF_EVENT_STATE_OFF; 6613 6614 if (parent_event->attr.freq) { 6615 u64 sample_period = parent_event->hw.sample_period; 6616 struct hw_perf_event *hwc = &child_event->hw; 6617 6618 hwc->sample_period = sample_period; 6619 hwc->last_period = sample_period; 6620 6621 local64_set(&hwc->period_left, sample_period); 6622 } 6623 6624 child_event->ctx = child_ctx; 6625 child_event->overflow_handler = parent_event->overflow_handler; 6626 child_event->overflow_handler_context 6627 = parent_event->overflow_handler_context; 6628 6629 /* 6630 * Precalculate sample_data sizes 6631 */ 6632 perf_event__header_size(child_event); 6633 perf_event__id_header_size(child_event); 6634 6635 /* 6636 * Link it up in the child's context: 6637 */ 6638 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6639 add_event_to_ctx(child_event, child_ctx); 6640 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6641 6642 /* 6643 * Get a reference to the parent filp - we will fput it 6644 * when the child event exits. This is safe to do because 6645 * we are in the parent and we know that the filp still 6646 * exists and has a nonzero count: 6647 */ 6648 atomic_long_inc(&parent_event->filp->f_count); 6649 6650 /* 6651 * Link this into the parent event's child list 6652 */ 6653 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6654 mutex_lock(&parent_event->child_mutex); 6655 list_add_tail(&child_event->child_list, &parent_event->child_list); 6656 mutex_unlock(&parent_event->child_mutex); 6657 6658 return child_event; 6659 } 6660 6661 static int inherit_group(struct perf_event *parent_event, 6662 struct task_struct *parent, 6663 struct perf_event_context *parent_ctx, 6664 struct task_struct *child, 6665 struct perf_event_context *child_ctx) 6666 { 6667 struct perf_event *leader; 6668 struct perf_event *sub; 6669 struct perf_event *child_ctr; 6670 6671 leader = inherit_event(parent_event, parent, parent_ctx, 6672 child, NULL, child_ctx); 6673 if (IS_ERR(leader)) 6674 return PTR_ERR(leader); 6675 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6676 child_ctr = inherit_event(sub, parent, parent_ctx, 6677 child, leader, child_ctx); 6678 if (IS_ERR(child_ctr)) 6679 return PTR_ERR(child_ctr); 6680 } 6681 return 0; 6682 } 6683 6684 static int 6685 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6686 struct perf_event_context *parent_ctx, 6687 struct task_struct *child, int ctxn, 6688 int *inherited_all) 6689 { 6690 int ret; 6691 struct perf_event_context *child_ctx; 6692 6693 if (!event->attr.inherit) { 6694 *inherited_all = 0; 6695 return 0; 6696 } 6697 6698 child_ctx = child->perf_event_ctxp[ctxn]; 6699 if (!child_ctx) { 6700 /* 6701 * This is executed from the parent task context, so 6702 * inherit events that have been marked for cloning. 6703 * First allocate and initialize a context for the 6704 * child. 6705 */ 6706 6707 child_ctx = alloc_perf_context(event->pmu, child); 6708 if (!child_ctx) 6709 return -ENOMEM; 6710 6711 child->perf_event_ctxp[ctxn] = child_ctx; 6712 } 6713 6714 ret = inherit_group(event, parent, parent_ctx, 6715 child, child_ctx); 6716 6717 if (ret) 6718 *inherited_all = 0; 6719 6720 return ret; 6721 } 6722 6723 /* 6724 * Initialize the perf_event context in task_struct 6725 */ 6726 int perf_event_init_context(struct task_struct *child, int ctxn) 6727 { 6728 struct perf_event_context *child_ctx, *parent_ctx; 6729 struct perf_event_context *cloned_ctx; 6730 struct perf_event *event; 6731 struct task_struct *parent = current; 6732 int inherited_all = 1; 6733 unsigned long flags; 6734 int ret = 0; 6735 6736 if (likely(!parent->perf_event_ctxp[ctxn])) 6737 return 0; 6738 6739 /* 6740 * If the parent's context is a clone, pin it so it won't get 6741 * swapped under us. 6742 */ 6743 parent_ctx = perf_pin_task_context(parent, ctxn); 6744 6745 /* 6746 * No need to check if parent_ctx != NULL here; since we saw 6747 * it non-NULL earlier, the only reason for it to become NULL 6748 * is if we exit, and since we're currently in the middle of 6749 * a fork we can't be exiting at the same time. 6750 */ 6751 6752 /* 6753 * Lock the parent list. No need to lock the child - not PID 6754 * hashed yet and not running, so nobody can access it. 6755 */ 6756 mutex_lock(&parent_ctx->mutex); 6757 6758 /* 6759 * We dont have to disable NMIs - we are only looking at 6760 * the list, not manipulating it: 6761 */ 6762 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6763 ret = inherit_task_group(event, parent, parent_ctx, 6764 child, ctxn, &inherited_all); 6765 if (ret) 6766 break; 6767 } 6768 6769 /* 6770 * We can't hold ctx->lock when iterating the ->flexible_group list due 6771 * to allocations, but we need to prevent rotation because 6772 * rotate_ctx() will change the list from interrupt context. 6773 */ 6774 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6775 parent_ctx->rotate_disable = 1; 6776 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6777 6778 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6779 ret = inherit_task_group(event, parent, parent_ctx, 6780 child, ctxn, &inherited_all); 6781 if (ret) 6782 break; 6783 } 6784 6785 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6786 parent_ctx->rotate_disable = 0; 6787 6788 child_ctx = child->perf_event_ctxp[ctxn]; 6789 6790 if (child_ctx && inherited_all) { 6791 /* 6792 * Mark the child context as a clone of the parent 6793 * context, or of whatever the parent is a clone of. 6794 * 6795 * Note that if the parent is a clone, the holding of 6796 * parent_ctx->lock avoids it from being uncloned. 6797 */ 6798 cloned_ctx = parent_ctx->parent_ctx; 6799 if (cloned_ctx) { 6800 child_ctx->parent_ctx = cloned_ctx; 6801 child_ctx->parent_gen = parent_ctx->parent_gen; 6802 } else { 6803 child_ctx->parent_ctx = parent_ctx; 6804 child_ctx->parent_gen = parent_ctx->generation; 6805 } 6806 get_ctx(child_ctx->parent_ctx); 6807 } 6808 6809 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6810 mutex_unlock(&parent_ctx->mutex); 6811 6812 perf_unpin_context(parent_ctx); 6813 put_ctx(parent_ctx); 6814 6815 return ret; 6816 } 6817 6818 /* 6819 * Initialize the perf_event context in task_struct 6820 */ 6821 int perf_event_init_task(struct task_struct *child) 6822 { 6823 int ctxn, ret; 6824 6825 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6826 mutex_init(&child->perf_event_mutex); 6827 INIT_LIST_HEAD(&child->perf_event_list); 6828 6829 for_each_task_context_nr(ctxn) { 6830 ret = perf_event_init_context(child, ctxn); 6831 if (ret) 6832 return ret; 6833 } 6834 6835 return 0; 6836 } 6837 6838 static void __init perf_event_init_all_cpus(void) 6839 { 6840 struct swevent_htable *swhash; 6841 int cpu; 6842 6843 for_each_possible_cpu(cpu) { 6844 swhash = &per_cpu(swevent_htable, cpu); 6845 mutex_init(&swhash->hlist_mutex); 6846 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6847 } 6848 } 6849 6850 static void __cpuinit perf_event_init_cpu(int cpu) 6851 { 6852 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6853 6854 mutex_lock(&swhash->hlist_mutex); 6855 if (swhash->hlist_refcount > 0) { 6856 struct swevent_hlist *hlist; 6857 6858 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6859 WARN_ON(!hlist); 6860 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6861 } 6862 mutex_unlock(&swhash->hlist_mutex); 6863 } 6864 6865 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 6866 static void perf_pmu_rotate_stop(struct pmu *pmu) 6867 { 6868 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6869 6870 WARN_ON(!irqs_disabled()); 6871 6872 list_del_init(&cpuctx->rotation_list); 6873 } 6874 6875 static void __perf_event_exit_context(void *__info) 6876 { 6877 struct perf_event_context *ctx = __info; 6878 struct perf_event *event, *tmp; 6879 6880 perf_pmu_rotate_stop(ctx->pmu); 6881 6882 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 6883 __perf_remove_from_context(event); 6884 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 6885 __perf_remove_from_context(event); 6886 } 6887 6888 static void perf_event_exit_cpu_context(int cpu) 6889 { 6890 struct perf_event_context *ctx; 6891 struct pmu *pmu; 6892 int idx; 6893 6894 idx = srcu_read_lock(&pmus_srcu); 6895 list_for_each_entry_rcu(pmu, &pmus, entry) { 6896 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 6897 6898 mutex_lock(&ctx->mutex); 6899 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 6900 mutex_unlock(&ctx->mutex); 6901 } 6902 srcu_read_unlock(&pmus_srcu, idx); 6903 } 6904 6905 static void perf_event_exit_cpu(int cpu) 6906 { 6907 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6908 6909 mutex_lock(&swhash->hlist_mutex); 6910 swevent_hlist_release(swhash); 6911 mutex_unlock(&swhash->hlist_mutex); 6912 6913 perf_event_exit_cpu_context(cpu); 6914 } 6915 #else 6916 static inline void perf_event_exit_cpu(int cpu) { } 6917 #endif 6918 6919 static int 6920 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 6921 { 6922 int cpu; 6923 6924 for_each_online_cpu(cpu) 6925 perf_event_exit_cpu(cpu); 6926 6927 return NOTIFY_OK; 6928 } 6929 6930 /* 6931 * Run the perf reboot notifier at the very last possible moment so that 6932 * the generic watchdog code runs as long as possible. 6933 */ 6934 static struct notifier_block perf_reboot_notifier = { 6935 .notifier_call = perf_reboot, 6936 .priority = INT_MIN, 6937 }; 6938 6939 static int __cpuinit 6940 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 6941 { 6942 unsigned int cpu = (long)hcpu; 6943 6944 switch (action & ~CPU_TASKS_FROZEN) { 6945 6946 case CPU_UP_PREPARE: 6947 case CPU_DOWN_FAILED: 6948 perf_event_init_cpu(cpu); 6949 break; 6950 6951 case CPU_UP_CANCELED: 6952 case CPU_DOWN_PREPARE: 6953 perf_event_exit_cpu(cpu); 6954 break; 6955 6956 default: 6957 break; 6958 } 6959 6960 return NOTIFY_OK; 6961 } 6962 6963 void __init perf_event_init(void) 6964 { 6965 int ret; 6966 6967 idr_init(&pmu_idr); 6968 6969 perf_event_init_all_cpus(); 6970 init_srcu_struct(&pmus_srcu); 6971 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 6972 perf_pmu_register(&perf_cpu_clock, NULL, -1); 6973 perf_pmu_register(&perf_task_clock, NULL, -1); 6974 perf_tp_register(); 6975 perf_cpu_notifier(perf_cpu_notify); 6976 register_reboot_notifier(&perf_reboot_notifier); 6977 6978 ret = init_hw_breakpoint(); 6979 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 6980 } 6981 6982 static int __init perf_event_sysfs_init(void) 6983 { 6984 struct pmu *pmu; 6985 int ret; 6986 6987 mutex_lock(&pmus_lock); 6988 6989 ret = bus_register(&pmu_bus); 6990 if (ret) 6991 goto unlock; 6992 6993 list_for_each_entry(pmu, &pmus, entry) { 6994 if (!pmu->name || pmu->type < 0) 6995 continue; 6996 6997 ret = pmu_dev_alloc(pmu); 6998 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 6999 } 7000 pmu_bus_running = 1; 7001 ret = 0; 7002 7003 unlock: 7004 mutex_unlock(&pmus_lock); 7005 7006 return ret; 7007 } 7008 device_initcall(perf_event_sysfs_init); 7009 7010 #ifdef CONFIG_CGROUP_PERF 7011 static struct cgroup_subsys_state *perf_cgroup_create( 7012 struct cgroup_subsys *ss, struct cgroup *cont) 7013 { 7014 struct perf_cgroup *jc; 7015 7016 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7017 if (!jc) 7018 return ERR_PTR(-ENOMEM); 7019 7020 jc->info = alloc_percpu(struct perf_cgroup_info); 7021 if (!jc->info) { 7022 kfree(jc); 7023 return ERR_PTR(-ENOMEM); 7024 } 7025 7026 return &jc->css; 7027 } 7028 7029 static void perf_cgroup_destroy(struct cgroup_subsys *ss, 7030 struct cgroup *cont) 7031 { 7032 struct perf_cgroup *jc; 7033 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7034 struct perf_cgroup, css); 7035 free_percpu(jc->info); 7036 kfree(jc); 7037 } 7038 7039 static int __perf_cgroup_move(void *info) 7040 { 7041 struct task_struct *task = info; 7042 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7043 return 0; 7044 } 7045 7046 static void 7047 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task) 7048 { 7049 task_function_call(task, __perf_cgroup_move, task); 7050 } 7051 7052 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 7053 struct cgroup *old_cgrp, struct task_struct *task) 7054 { 7055 /* 7056 * cgroup_exit() is called in the copy_process() failure path. 7057 * Ignore this case since the task hasn't ran yet, this avoids 7058 * trying to poke a half freed task state from generic code. 7059 */ 7060 if (!(task->flags & PF_EXITING)) 7061 return; 7062 7063 perf_cgroup_attach_task(cgrp, task); 7064 } 7065 7066 struct cgroup_subsys perf_subsys = { 7067 .name = "perf_event", 7068 .subsys_id = perf_subsys_id, 7069 .create = perf_cgroup_create, 7070 .destroy = perf_cgroup_destroy, 7071 .exit = perf_cgroup_exit, 7072 .attach_task = perf_cgroup_attach_task, 7073 }; 7074 #endif /* CONFIG_CGROUP_PERF */ 7075