xref: /linux/kernel/events/core.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38 
39 #include "internal.h"
40 
41 #include <asm/irq_regs.h>
42 
43 struct remote_function_call {
44 	struct task_struct	*p;
45 	int			(*func)(void *info);
46 	void			*info;
47 	int			ret;
48 };
49 
50 static void remote_function(void *data)
51 {
52 	struct remote_function_call *tfc = data;
53 	struct task_struct *p = tfc->p;
54 
55 	if (p) {
56 		tfc->ret = -EAGAIN;
57 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
58 			return;
59 	}
60 
61 	tfc->ret = tfc->func(tfc->info);
62 }
63 
64 /**
65  * task_function_call - call a function on the cpu on which a task runs
66  * @p:		the task to evaluate
67  * @func:	the function to be called
68  * @info:	the function call argument
69  *
70  * Calls the function @func when the task is currently running. This might
71  * be on the current CPU, which just calls the function directly
72  *
73  * returns: @func return value, or
74  *	    -ESRCH  - when the process isn't running
75  *	    -EAGAIN - when the process moved away
76  */
77 static int
78 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
79 {
80 	struct remote_function_call data = {
81 		.p	= p,
82 		.func	= func,
83 		.info	= info,
84 		.ret	= -ESRCH, /* No such (running) process */
85 	};
86 
87 	if (task_curr(p))
88 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
89 
90 	return data.ret;
91 }
92 
93 /**
94  * cpu_function_call - call a function on the cpu
95  * @func:	the function to be called
96  * @info:	the function call argument
97  *
98  * Calls the function @func on the remote cpu.
99  *
100  * returns: @func return value or -ENXIO when the cpu is offline
101  */
102 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
103 {
104 	struct remote_function_call data = {
105 		.p	= NULL,
106 		.func	= func,
107 		.info	= info,
108 		.ret	= -ENXIO, /* No such CPU */
109 	};
110 
111 	smp_call_function_single(cpu, remote_function, &data, 1);
112 
113 	return data.ret;
114 }
115 
116 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
117 		       PERF_FLAG_FD_OUTPUT  |\
118 		       PERF_FLAG_PID_CGROUP)
119 
120 enum event_type_t {
121 	EVENT_FLEXIBLE = 0x1,
122 	EVENT_PINNED = 0x2,
123 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
124 };
125 
126 /*
127  * perf_sched_events : >0 events exist
128  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
129  */
130 struct jump_label_key perf_sched_events __read_mostly;
131 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
132 
133 static atomic_t nr_mmap_events __read_mostly;
134 static atomic_t nr_comm_events __read_mostly;
135 static atomic_t nr_task_events __read_mostly;
136 
137 static LIST_HEAD(pmus);
138 static DEFINE_MUTEX(pmus_lock);
139 static struct srcu_struct pmus_srcu;
140 
141 /*
142  * perf event paranoia level:
143  *  -1 - not paranoid at all
144  *   0 - disallow raw tracepoint access for unpriv
145  *   1 - disallow cpu events for unpriv
146  *   2 - disallow kernel profiling for unpriv
147  */
148 int sysctl_perf_event_paranoid __read_mostly = 1;
149 
150 /* Minimum for 512 kiB + 1 user control page */
151 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
152 
153 /*
154  * max perf event sample rate
155  */
156 #define DEFAULT_MAX_SAMPLE_RATE 100000
157 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
158 static int max_samples_per_tick __read_mostly =
159 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
160 
161 int perf_proc_update_handler(struct ctl_table *table, int write,
162 		void __user *buffer, size_t *lenp,
163 		loff_t *ppos)
164 {
165 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
166 
167 	if (ret || !write)
168 		return ret;
169 
170 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
171 
172 	return 0;
173 }
174 
175 static atomic64_t perf_event_id;
176 
177 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
178 			      enum event_type_t event_type);
179 
180 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
181 			     enum event_type_t event_type,
182 			     struct task_struct *task);
183 
184 static void update_context_time(struct perf_event_context *ctx);
185 static u64 perf_event_time(struct perf_event *event);
186 
187 void __weak perf_event_print_debug(void)	{ }
188 
189 extern __weak const char *perf_pmu_name(void)
190 {
191 	return "pmu";
192 }
193 
194 static inline u64 perf_clock(void)
195 {
196 	return local_clock();
197 }
198 
199 static inline struct perf_cpu_context *
200 __get_cpu_context(struct perf_event_context *ctx)
201 {
202 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
203 }
204 
205 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
206 			  struct perf_event_context *ctx)
207 {
208 	raw_spin_lock(&cpuctx->ctx.lock);
209 	if (ctx)
210 		raw_spin_lock(&ctx->lock);
211 }
212 
213 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
214 			    struct perf_event_context *ctx)
215 {
216 	if (ctx)
217 		raw_spin_unlock(&ctx->lock);
218 	raw_spin_unlock(&cpuctx->ctx.lock);
219 }
220 
221 #ifdef CONFIG_CGROUP_PERF
222 
223 /*
224  * Must ensure cgroup is pinned (css_get) before calling
225  * this function. In other words, we cannot call this function
226  * if there is no cgroup event for the current CPU context.
227  */
228 static inline struct perf_cgroup *
229 perf_cgroup_from_task(struct task_struct *task)
230 {
231 	return container_of(task_subsys_state(task, perf_subsys_id),
232 			struct perf_cgroup, css);
233 }
234 
235 static inline bool
236 perf_cgroup_match(struct perf_event *event)
237 {
238 	struct perf_event_context *ctx = event->ctx;
239 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
240 
241 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
242 }
243 
244 static inline void perf_get_cgroup(struct perf_event *event)
245 {
246 	css_get(&event->cgrp->css);
247 }
248 
249 static inline void perf_put_cgroup(struct perf_event *event)
250 {
251 	css_put(&event->cgrp->css);
252 }
253 
254 static inline void perf_detach_cgroup(struct perf_event *event)
255 {
256 	perf_put_cgroup(event);
257 	event->cgrp = NULL;
258 }
259 
260 static inline int is_cgroup_event(struct perf_event *event)
261 {
262 	return event->cgrp != NULL;
263 }
264 
265 static inline u64 perf_cgroup_event_time(struct perf_event *event)
266 {
267 	struct perf_cgroup_info *t;
268 
269 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
270 	return t->time;
271 }
272 
273 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
274 {
275 	struct perf_cgroup_info *info;
276 	u64 now;
277 
278 	now = perf_clock();
279 
280 	info = this_cpu_ptr(cgrp->info);
281 
282 	info->time += now - info->timestamp;
283 	info->timestamp = now;
284 }
285 
286 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
287 {
288 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
289 	if (cgrp_out)
290 		__update_cgrp_time(cgrp_out);
291 }
292 
293 static inline void update_cgrp_time_from_event(struct perf_event *event)
294 {
295 	struct perf_cgroup *cgrp;
296 
297 	/*
298 	 * ensure we access cgroup data only when needed and
299 	 * when we know the cgroup is pinned (css_get)
300 	 */
301 	if (!is_cgroup_event(event))
302 		return;
303 
304 	cgrp = perf_cgroup_from_task(current);
305 	/*
306 	 * Do not update time when cgroup is not active
307 	 */
308 	if (cgrp == event->cgrp)
309 		__update_cgrp_time(event->cgrp);
310 }
311 
312 static inline void
313 perf_cgroup_set_timestamp(struct task_struct *task,
314 			  struct perf_event_context *ctx)
315 {
316 	struct perf_cgroup *cgrp;
317 	struct perf_cgroup_info *info;
318 
319 	/*
320 	 * ctx->lock held by caller
321 	 * ensure we do not access cgroup data
322 	 * unless we have the cgroup pinned (css_get)
323 	 */
324 	if (!task || !ctx->nr_cgroups)
325 		return;
326 
327 	cgrp = perf_cgroup_from_task(task);
328 	info = this_cpu_ptr(cgrp->info);
329 	info->timestamp = ctx->timestamp;
330 }
331 
332 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
333 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
334 
335 /*
336  * reschedule events based on the cgroup constraint of task.
337  *
338  * mode SWOUT : schedule out everything
339  * mode SWIN : schedule in based on cgroup for next
340  */
341 void perf_cgroup_switch(struct task_struct *task, int mode)
342 {
343 	struct perf_cpu_context *cpuctx;
344 	struct pmu *pmu;
345 	unsigned long flags;
346 
347 	/*
348 	 * disable interrupts to avoid geting nr_cgroup
349 	 * changes via __perf_event_disable(). Also
350 	 * avoids preemption.
351 	 */
352 	local_irq_save(flags);
353 
354 	/*
355 	 * we reschedule only in the presence of cgroup
356 	 * constrained events.
357 	 */
358 	rcu_read_lock();
359 
360 	list_for_each_entry_rcu(pmu, &pmus, entry) {
361 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
362 
363 		/*
364 		 * perf_cgroup_events says at least one
365 		 * context on this CPU has cgroup events.
366 		 *
367 		 * ctx->nr_cgroups reports the number of cgroup
368 		 * events for a context.
369 		 */
370 		if (cpuctx->ctx.nr_cgroups > 0) {
371 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
372 			perf_pmu_disable(cpuctx->ctx.pmu);
373 
374 			if (mode & PERF_CGROUP_SWOUT) {
375 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
376 				/*
377 				 * must not be done before ctxswout due
378 				 * to event_filter_match() in event_sched_out()
379 				 */
380 				cpuctx->cgrp = NULL;
381 			}
382 
383 			if (mode & PERF_CGROUP_SWIN) {
384 				WARN_ON_ONCE(cpuctx->cgrp);
385 				/* set cgrp before ctxsw in to
386 				 * allow event_filter_match() to not
387 				 * have to pass task around
388 				 */
389 				cpuctx->cgrp = perf_cgroup_from_task(task);
390 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
391 			}
392 			perf_pmu_enable(cpuctx->ctx.pmu);
393 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
394 		}
395 	}
396 
397 	rcu_read_unlock();
398 
399 	local_irq_restore(flags);
400 }
401 
402 static inline void perf_cgroup_sched_out(struct task_struct *task,
403 					 struct task_struct *next)
404 {
405 	struct perf_cgroup *cgrp1;
406 	struct perf_cgroup *cgrp2 = NULL;
407 
408 	/*
409 	 * we come here when we know perf_cgroup_events > 0
410 	 */
411 	cgrp1 = perf_cgroup_from_task(task);
412 
413 	/*
414 	 * next is NULL when called from perf_event_enable_on_exec()
415 	 * that will systematically cause a cgroup_switch()
416 	 */
417 	if (next)
418 		cgrp2 = perf_cgroup_from_task(next);
419 
420 	/*
421 	 * only schedule out current cgroup events if we know
422 	 * that we are switching to a different cgroup. Otherwise,
423 	 * do no touch the cgroup events.
424 	 */
425 	if (cgrp1 != cgrp2)
426 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
427 }
428 
429 static inline void perf_cgroup_sched_in(struct task_struct *prev,
430 					struct task_struct *task)
431 {
432 	struct perf_cgroup *cgrp1;
433 	struct perf_cgroup *cgrp2 = NULL;
434 
435 	/*
436 	 * we come here when we know perf_cgroup_events > 0
437 	 */
438 	cgrp1 = perf_cgroup_from_task(task);
439 
440 	/* prev can never be NULL */
441 	cgrp2 = perf_cgroup_from_task(prev);
442 
443 	/*
444 	 * only need to schedule in cgroup events if we are changing
445 	 * cgroup during ctxsw. Cgroup events were not scheduled
446 	 * out of ctxsw out if that was not the case.
447 	 */
448 	if (cgrp1 != cgrp2)
449 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
450 }
451 
452 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
453 				      struct perf_event_attr *attr,
454 				      struct perf_event *group_leader)
455 {
456 	struct perf_cgroup *cgrp;
457 	struct cgroup_subsys_state *css;
458 	struct file *file;
459 	int ret = 0, fput_needed;
460 
461 	file = fget_light(fd, &fput_needed);
462 	if (!file)
463 		return -EBADF;
464 
465 	css = cgroup_css_from_dir(file, perf_subsys_id);
466 	if (IS_ERR(css)) {
467 		ret = PTR_ERR(css);
468 		goto out;
469 	}
470 
471 	cgrp = container_of(css, struct perf_cgroup, css);
472 	event->cgrp = cgrp;
473 
474 	/* must be done before we fput() the file */
475 	perf_get_cgroup(event);
476 
477 	/*
478 	 * all events in a group must monitor
479 	 * the same cgroup because a task belongs
480 	 * to only one perf cgroup at a time
481 	 */
482 	if (group_leader && group_leader->cgrp != cgrp) {
483 		perf_detach_cgroup(event);
484 		ret = -EINVAL;
485 	}
486 out:
487 	fput_light(file, fput_needed);
488 	return ret;
489 }
490 
491 static inline void
492 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
493 {
494 	struct perf_cgroup_info *t;
495 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
496 	event->shadow_ctx_time = now - t->timestamp;
497 }
498 
499 static inline void
500 perf_cgroup_defer_enabled(struct perf_event *event)
501 {
502 	/*
503 	 * when the current task's perf cgroup does not match
504 	 * the event's, we need to remember to call the
505 	 * perf_mark_enable() function the first time a task with
506 	 * a matching perf cgroup is scheduled in.
507 	 */
508 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
509 		event->cgrp_defer_enabled = 1;
510 }
511 
512 static inline void
513 perf_cgroup_mark_enabled(struct perf_event *event,
514 			 struct perf_event_context *ctx)
515 {
516 	struct perf_event *sub;
517 	u64 tstamp = perf_event_time(event);
518 
519 	if (!event->cgrp_defer_enabled)
520 		return;
521 
522 	event->cgrp_defer_enabled = 0;
523 
524 	event->tstamp_enabled = tstamp - event->total_time_enabled;
525 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
526 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
527 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
528 			sub->cgrp_defer_enabled = 0;
529 		}
530 	}
531 }
532 #else /* !CONFIG_CGROUP_PERF */
533 
534 static inline bool
535 perf_cgroup_match(struct perf_event *event)
536 {
537 	return true;
538 }
539 
540 static inline void perf_detach_cgroup(struct perf_event *event)
541 {}
542 
543 static inline int is_cgroup_event(struct perf_event *event)
544 {
545 	return 0;
546 }
547 
548 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
549 {
550 	return 0;
551 }
552 
553 static inline void update_cgrp_time_from_event(struct perf_event *event)
554 {
555 }
556 
557 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
558 {
559 }
560 
561 static inline void perf_cgroup_sched_out(struct task_struct *task,
562 					 struct task_struct *next)
563 {
564 }
565 
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 					struct task_struct *task)
568 {
569 }
570 
571 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
572 				      struct perf_event_attr *attr,
573 				      struct perf_event *group_leader)
574 {
575 	return -EINVAL;
576 }
577 
578 static inline void
579 perf_cgroup_set_timestamp(struct task_struct *task,
580 			  struct perf_event_context *ctx)
581 {
582 }
583 
584 void
585 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
586 {
587 }
588 
589 static inline void
590 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
591 {
592 }
593 
594 static inline u64 perf_cgroup_event_time(struct perf_event *event)
595 {
596 	return 0;
597 }
598 
599 static inline void
600 perf_cgroup_defer_enabled(struct perf_event *event)
601 {
602 }
603 
604 static inline void
605 perf_cgroup_mark_enabled(struct perf_event *event,
606 			 struct perf_event_context *ctx)
607 {
608 }
609 #endif
610 
611 void perf_pmu_disable(struct pmu *pmu)
612 {
613 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
614 	if (!(*count)++)
615 		pmu->pmu_disable(pmu);
616 }
617 
618 void perf_pmu_enable(struct pmu *pmu)
619 {
620 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
621 	if (!--(*count))
622 		pmu->pmu_enable(pmu);
623 }
624 
625 static DEFINE_PER_CPU(struct list_head, rotation_list);
626 
627 /*
628  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
629  * because they're strictly cpu affine and rotate_start is called with IRQs
630  * disabled, while rotate_context is called from IRQ context.
631  */
632 static void perf_pmu_rotate_start(struct pmu *pmu)
633 {
634 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
635 	struct list_head *head = &__get_cpu_var(rotation_list);
636 
637 	WARN_ON(!irqs_disabled());
638 
639 	if (list_empty(&cpuctx->rotation_list))
640 		list_add(&cpuctx->rotation_list, head);
641 }
642 
643 static void get_ctx(struct perf_event_context *ctx)
644 {
645 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
646 }
647 
648 static void put_ctx(struct perf_event_context *ctx)
649 {
650 	if (atomic_dec_and_test(&ctx->refcount)) {
651 		if (ctx->parent_ctx)
652 			put_ctx(ctx->parent_ctx);
653 		if (ctx->task)
654 			put_task_struct(ctx->task);
655 		kfree_rcu(ctx, rcu_head);
656 	}
657 }
658 
659 static void unclone_ctx(struct perf_event_context *ctx)
660 {
661 	if (ctx->parent_ctx) {
662 		put_ctx(ctx->parent_ctx);
663 		ctx->parent_ctx = NULL;
664 	}
665 }
666 
667 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
668 {
669 	/*
670 	 * only top level events have the pid namespace they were created in
671 	 */
672 	if (event->parent)
673 		event = event->parent;
674 
675 	return task_tgid_nr_ns(p, event->ns);
676 }
677 
678 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
679 {
680 	/*
681 	 * only top level events have the pid namespace they were created in
682 	 */
683 	if (event->parent)
684 		event = event->parent;
685 
686 	return task_pid_nr_ns(p, event->ns);
687 }
688 
689 /*
690  * If we inherit events we want to return the parent event id
691  * to userspace.
692  */
693 static u64 primary_event_id(struct perf_event *event)
694 {
695 	u64 id = event->id;
696 
697 	if (event->parent)
698 		id = event->parent->id;
699 
700 	return id;
701 }
702 
703 /*
704  * Get the perf_event_context for a task and lock it.
705  * This has to cope with with the fact that until it is locked,
706  * the context could get moved to another task.
707  */
708 static struct perf_event_context *
709 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
710 {
711 	struct perf_event_context *ctx;
712 
713 	rcu_read_lock();
714 retry:
715 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
716 	if (ctx) {
717 		/*
718 		 * If this context is a clone of another, it might
719 		 * get swapped for another underneath us by
720 		 * perf_event_task_sched_out, though the
721 		 * rcu_read_lock() protects us from any context
722 		 * getting freed.  Lock the context and check if it
723 		 * got swapped before we could get the lock, and retry
724 		 * if so.  If we locked the right context, then it
725 		 * can't get swapped on us any more.
726 		 */
727 		raw_spin_lock_irqsave(&ctx->lock, *flags);
728 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
729 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
730 			goto retry;
731 		}
732 
733 		if (!atomic_inc_not_zero(&ctx->refcount)) {
734 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
735 			ctx = NULL;
736 		}
737 	}
738 	rcu_read_unlock();
739 	return ctx;
740 }
741 
742 /*
743  * Get the context for a task and increment its pin_count so it
744  * can't get swapped to another task.  This also increments its
745  * reference count so that the context can't get freed.
746  */
747 static struct perf_event_context *
748 perf_pin_task_context(struct task_struct *task, int ctxn)
749 {
750 	struct perf_event_context *ctx;
751 	unsigned long flags;
752 
753 	ctx = perf_lock_task_context(task, ctxn, &flags);
754 	if (ctx) {
755 		++ctx->pin_count;
756 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
757 	}
758 	return ctx;
759 }
760 
761 static void perf_unpin_context(struct perf_event_context *ctx)
762 {
763 	unsigned long flags;
764 
765 	raw_spin_lock_irqsave(&ctx->lock, flags);
766 	--ctx->pin_count;
767 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
768 }
769 
770 /*
771  * Update the record of the current time in a context.
772  */
773 static void update_context_time(struct perf_event_context *ctx)
774 {
775 	u64 now = perf_clock();
776 
777 	ctx->time += now - ctx->timestamp;
778 	ctx->timestamp = now;
779 }
780 
781 static u64 perf_event_time(struct perf_event *event)
782 {
783 	struct perf_event_context *ctx = event->ctx;
784 
785 	if (is_cgroup_event(event))
786 		return perf_cgroup_event_time(event);
787 
788 	return ctx ? ctx->time : 0;
789 }
790 
791 /*
792  * Update the total_time_enabled and total_time_running fields for a event.
793  * The caller of this function needs to hold the ctx->lock.
794  */
795 static void update_event_times(struct perf_event *event)
796 {
797 	struct perf_event_context *ctx = event->ctx;
798 	u64 run_end;
799 
800 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
801 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
802 		return;
803 	/*
804 	 * in cgroup mode, time_enabled represents
805 	 * the time the event was enabled AND active
806 	 * tasks were in the monitored cgroup. This is
807 	 * independent of the activity of the context as
808 	 * there may be a mix of cgroup and non-cgroup events.
809 	 *
810 	 * That is why we treat cgroup events differently
811 	 * here.
812 	 */
813 	if (is_cgroup_event(event))
814 		run_end = perf_event_time(event);
815 	else if (ctx->is_active)
816 		run_end = ctx->time;
817 	else
818 		run_end = event->tstamp_stopped;
819 
820 	event->total_time_enabled = run_end - event->tstamp_enabled;
821 
822 	if (event->state == PERF_EVENT_STATE_INACTIVE)
823 		run_end = event->tstamp_stopped;
824 	else
825 		run_end = perf_event_time(event);
826 
827 	event->total_time_running = run_end - event->tstamp_running;
828 
829 }
830 
831 /*
832  * Update total_time_enabled and total_time_running for all events in a group.
833  */
834 static void update_group_times(struct perf_event *leader)
835 {
836 	struct perf_event *event;
837 
838 	update_event_times(leader);
839 	list_for_each_entry(event, &leader->sibling_list, group_entry)
840 		update_event_times(event);
841 }
842 
843 static struct list_head *
844 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
845 {
846 	if (event->attr.pinned)
847 		return &ctx->pinned_groups;
848 	else
849 		return &ctx->flexible_groups;
850 }
851 
852 /*
853  * Add a event from the lists for its context.
854  * Must be called with ctx->mutex and ctx->lock held.
855  */
856 static void
857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
858 {
859 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
860 	event->attach_state |= PERF_ATTACH_CONTEXT;
861 
862 	/*
863 	 * If we're a stand alone event or group leader, we go to the context
864 	 * list, group events are kept attached to the group so that
865 	 * perf_group_detach can, at all times, locate all siblings.
866 	 */
867 	if (event->group_leader == event) {
868 		struct list_head *list;
869 
870 		if (is_software_event(event))
871 			event->group_flags |= PERF_GROUP_SOFTWARE;
872 
873 		list = ctx_group_list(event, ctx);
874 		list_add_tail(&event->group_entry, list);
875 	}
876 
877 	if (is_cgroup_event(event))
878 		ctx->nr_cgroups++;
879 
880 	list_add_rcu(&event->event_entry, &ctx->event_list);
881 	if (!ctx->nr_events)
882 		perf_pmu_rotate_start(ctx->pmu);
883 	ctx->nr_events++;
884 	if (event->attr.inherit_stat)
885 		ctx->nr_stat++;
886 }
887 
888 /*
889  * Called at perf_event creation and when events are attached/detached from a
890  * group.
891  */
892 static void perf_event__read_size(struct perf_event *event)
893 {
894 	int entry = sizeof(u64); /* value */
895 	int size = 0;
896 	int nr = 1;
897 
898 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
899 		size += sizeof(u64);
900 
901 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
902 		size += sizeof(u64);
903 
904 	if (event->attr.read_format & PERF_FORMAT_ID)
905 		entry += sizeof(u64);
906 
907 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
908 		nr += event->group_leader->nr_siblings;
909 		size += sizeof(u64);
910 	}
911 
912 	size += entry * nr;
913 	event->read_size = size;
914 }
915 
916 static void perf_event__header_size(struct perf_event *event)
917 {
918 	struct perf_sample_data *data;
919 	u64 sample_type = event->attr.sample_type;
920 	u16 size = 0;
921 
922 	perf_event__read_size(event);
923 
924 	if (sample_type & PERF_SAMPLE_IP)
925 		size += sizeof(data->ip);
926 
927 	if (sample_type & PERF_SAMPLE_ADDR)
928 		size += sizeof(data->addr);
929 
930 	if (sample_type & PERF_SAMPLE_PERIOD)
931 		size += sizeof(data->period);
932 
933 	if (sample_type & PERF_SAMPLE_READ)
934 		size += event->read_size;
935 
936 	event->header_size = size;
937 }
938 
939 static void perf_event__id_header_size(struct perf_event *event)
940 {
941 	struct perf_sample_data *data;
942 	u64 sample_type = event->attr.sample_type;
943 	u16 size = 0;
944 
945 	if (sample_type & PERF_SAMPLE_TID)
946 		size += sizeof(data->tid_entry);
947 
948 	if (sample_type & PERF_SAMPLE_TIME)
949 		size += sizeof(data->time);
950 
951 	if (sample_type & PERF_SAMPLE_ID)
952 		size += sizeof(data->id);
953 
954 	if (sample_type & PERF_SAMPLE_STREAM_ID)
955 		size += sizeof(data->stream_id);
956 
957 	if (sample_type & PERF_SAMPLE_CPU)
958 		size += sizeof(data->cpu_entry);
959 
960 	event->id_header_size = size;
961 }
962 
963 static void perf_group_attach(struct perf_event *event)
964 {
965 	struct perf_event *group_leader = event->group_leader, *pos;
966 
967 	/*
968 	 * We can have double attach due to group movement in perf_event_open.
969 	 */
970 	if (event->attach_state & PERF_ATTACH_GROUP)
971 		return;
972 
973 	event->attach_state |= PERF_ATTACH_GROUP;
974 
975 	if (group_leader == event)
976 		return;
977 
978 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
979 			!is_software_event(event))
980 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
981 
982 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
983 	group_leader->nr_siblings++;
984 
985 	perf_event__header_size(group_leader);
986 
987 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
988 		perf_event__header_size(pos);
989 }
990 
991 /*
992  * Remove a event from the lists for its context.
993  * Must be called with ctx->mutex and ctx->lock held.
994  */
995 static void
996 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
997 {
998 	struct perf_cpu_context *cpuctx;
999 	/*
1000 	 * We can have double detach due to exit/hot-unplug + close.
1001 	 */
1002 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1003 		return;
1004 
1005 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1006 
1007 	if (is_cgroup_event(event)) {
1008 		ctx->nr_cgroups--;
1009 		cpuctx = __get_cpu_context(ctx);
1010 		/*
1011 		 * if there are no more cgroup events
1012 		 * then cler cgrp to avoid stale pointer
1013 		 * in update_cgrp_time_from_cpuctx()
1014 		 */
1015 		if (!ctx->nr_cgroups)
1016 			cpuctx->cgrp = NULL;
1017 	}
1018 
1019 	ctx->nr_events--;
1020 	if (event->attr.inherit_stat)
1021 		ctx->nr_stat--;
1022 
1023 	list_del_rcu(&event->event_entry);
1024 
1025 	if (event->group_leader == event)
1026 		list_del_init(&event->group_entry);
1027 
1028 	update_group_times(event);
1029 
1030 	/*
1031 	 * If event was in error state, then keep it
1032 	 * that way, otherwise bogus counts will be
1033 	 * returned on read(). The only way to get out
1034 	 * of error state is by explicit re-enabling
1035 	 * of the event
1036 	 */
1037 	if (event->state > PERF_EVENT_STATE_OFF)
1038 		event->state = PERF_EVENT_STATE_OFF;
1039 }
1040 
1041 static void perf_group_detach(struct perf_event *event)
1042 {
1043 	struct perf_event *sibling, *tmp;
1044 	struct list_head *list = NULL;
1045 
1046 	/*
1047 	 * We can have double detach due to exit/hot-unplug + close.
1048 	 */
1049 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1050 		return;
1051 
1052 	event->attach_state &= ~PERF_ATTACH_GROUP;
1053 
1054 	/*
1055 	 * If this is a sibling, remove it from its group.
1056 	 */
1057 	if (event->group_leader != event) {
1058 		list_del_init(&event->group_entry);
1059 		event->group_leader->nr_siblings--;
1060 		goto out;
1061 	}
1062 
1063 	if (!list_empty(&event->group_entry))
1064 		list = &event->group_entry;
1065 
1066 	/*
1067 	 * If this was a group event with sibling events then
1068 	 * upgrade the siblings to singleton events by adding them
1069 	 * to whatever list we are on.
1070 	 */
1071 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1072 		if (list)
1073 			list_move_tail(&sibling->group_entry, list);
1074 		sibling->group_leader = sibling;
1075 
1076 		/* Inherit group flags from the previous leader */
1077 		sibling->group_flags = event->group_flags;
1078 	}
1079 
1080 out:
1081 	perf_event__header_size(event->group_leader);
1082 
1083 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1084 		perf_event__header_size(tmp);
1085 }
1086 
1087 static inline int
1088 event_filter_match(struct perf_event *event)
1089 {
1090 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1091 	    && perf_cgroup_match(event);
1092 }
1093 
1094 static void
1095 event_sched_out(struct perf_event *event,
1096 		  struct perf_cpu_context *cpuctx,
1097 		  struct perf_event_context *ctx)
1098 {
1099 	u64 tstamp = perf_event_time(event);
1100 	u64 delta;
1101 	/*
1102 	 * An event which could not be activated because of
1103 	 * filter mismatch still needs to have its timings
1104 	 * maintained, otherwise bogus information is return
1105 	 * via read() for time_enabled, time_running:
1106 	 */
1107 	if (event->state == PERF_EVENT_STATE_INACTIVE
1108 	    && !event_filter_match(event)) {
1109 		delta = tstamp - event->tstamp_stopped;
1110 		event->tstamp_running += delta;
1111 		event->tstamp_stopped = tstamp;
1112 	}
1113 
1114 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1115 		return;
1116 
1117 	event->state = PERF_EVENT_STATE_INACTIVE;
1118 	if (event->pending_disable) {
1119 		event->pending_disable = 0;
1120 		event->state = PERF_EVENT_STATE_OFF;
1121 	}
1122 	event->tstamp_stopped = tstamp;
1123 	event->pmu->del(event, 0);
1124 	event->oncpu = -1;
1125 
1126 	if (!is_software_event(event))
1127 		cpuctx->active_oncpu--;
1128 	ctx->nr_active--;
1129 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1130 		cpuctx->exclusive = 0;
1131 }
1132 
1133 static void
1134 group_sched_out(struct perf_event *group_event,
1135 		struct perf_cpu_context *cpuctx,
1136 		struct perf_event_context *ctx)
1137 {
1138 	struct perf_event *event;
1139 	int state = group_event->state;
1140 
1141 	event_sched_out(group_event, cpuctx, ctx);
1142 
1143 	/*
1144 	 * Schedule out siblings (if any):
1145 	 */
1146 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1147 		event_sched_out(event, cpuctx, ctx);
1148 
1149 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1150 		cpuctx->exclusive = 0;
1151 }
1152 
1153 /*
1154  * Cross CPU call to remove a performance event
1155  *
1156  * We disable the event on the hardware level first. After that we
1157  * remove it from the context list.
1158  */
1159 static int __perf_remove_from_context(void *info)
1160 {
1161 	struct perf_event *event = info;
1162 	struct perf_event_context *ctx = event->ctx;
1163 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1164 
1165 	raw_spin_lock(&ctx->lock);
1166 	event_sched_out(event, cpuctx, ctx);
1167 	list_del_event(event, ctx);
1168 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1169 		ctx->is_active = 0;
1170 		cpuctx->task_ctx = NULL;
1171 	}
1172 	raw_spin_unlock(&ctx->lock);
1173 
1174 	return 0;
1175 }
1176 
1177 
1178 /*
1179  * Remove the event from a task's (or a CPU's) list of events.
1180  *
1181  * CPU events are removed with a smp call. For task events we only
1182  * call when the task is on a CPU.
1183  *
1184  * If event->ctx is a cloned context, callers must make sure that
1185  * every task struct that event->ctx->task could possibly point to
1186  * remains valid.  This is OK when called from perf_release since
1187  * that only calls us on the top-level context, which can't be a clone.
1188  * When called from perf_event_exit_task, it's OK because the
1189  * context has been detached from its task.
1190  */
1191 static void perf_remove_from_context(struct perf_event *event)
1192 {
1193 	struct perf_event_context *ctx = event->ctx;
1194 	struct task_struct *task = ctx->task;
1195 
1196 	lockdep_assert_held(&ctx->mutex);
1197 
1198 	if (!task) {
1199 		/*
1200 		 * Per cpu events are removed via an smp call and
1201 		 * the removal is always successful.
1202 		 */
1203 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1204 		return;
1205 	}
1206 
1207 retry:
1208 	if (!task_function_call(task, __perf_remove_from_context, event))
1209 		return;
1210 
1211 	raw_spin_lock_irq(&ctx->lock);
1212 	/*
1213 	 * If we failed to find a running task, but find the context active now
1214 	 * that we've acquired the ctx->lock, retry.
1215 	 */
1216 	if (ctx->is_active) {
1217 		raw_spin_unlock_irq(&ctx->lock);
1218 		goto retry;
1219 	}
1220 
1221 	/*
1222 	 * Since the task isn't running, its safe to remove the event, us
1223 	 * holding the ctx->lock ensures the task won't get scheduled in.
1224 	 */
1225 	list_del_event(event, ctx);
1226 	raw_spin_unlock_irq(&ctx->lock);
1227 }
1228 
1229 /*
1230  * Cross CPU call to disable a performance event
1231  */
1232 static int __perf_event_disable(void *info)
1233 {
1234 	struct perf_event *event = info;
1235 	struct perf_event_context *ctx = event->ctx;
1236 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1237 
1238 	/*
1239 	 * If this is a per-task event, need to check whether this
1240 	 * event's task is the current task on this cpu.
1241 	 *
1242 	 * Can trigger due to concurrent perf_event_context_sched_out()
1243 	 * flipping contexts around.
1244 	 */
1245 	if (ctx->task && cpuctx->task_ctx != ctx)
1246 		return -EINVAL;
1247 
1248 	raw_spin_lock(&ctx->lock);
1249 
1250 	/*
1251 	 * If the event is on, turn it off.
1252 	 * If it is in error state, leave it in error state.
1253 	 */
1254 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1255 		update_context_time(ctx);
1256 		update_cgrp_time_from_event(event);
1257 		update_group_times(event);
1258 		if (event == event->group_leader)
1259 			group_sched_out(event, cpuctx, ctx);
1260 		else
1261 			event_sched_out(event, cpuctx, ctx);
1262 		event->state = PERF_EVENT_STATE_OFF;
1263 	}
1264 
1265 	raw_spin_unlock(&ctx->lock);
1266 
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Disable a event.
1272  *
1273  * If event->ctx is a cloned context, callers must make sure that
1274  * every task struct that event->ctx->task could possibly point to
1275  * remains valid.  This condition is satisifed when called through
1276  * perf_event_for_each_child or perf_event_for_each because they
1277  * hold the top-level event's child_mutex, so any descendant that
1278  * goes to exit will block in sync_child_event.
1279  * When called from perf_pending_event it's OK because event->ctx
1280  * is the current context on this CPU and preemption is disabled,
1281  * hence we can't get into perf_event_task_sched_out for this context.
1282  */
1283 void perf_event_disable(struct perf_event *event)
1284 {
1285 	struct perf_event_context *ctx = event->ctx;
1286 	struct task_struct *task = ctx->task;
1287 
1288 	if (!task) {
1289 		/*
1290 		 * Disable the event on the cpu that it's on
1291 		 */
1292 		cpu_function_call(event->cpu, __perf_event_disable, event);
1293 		return;
1294 	}
1295 
1296 retry:
1297 	if (!task_function_call(task, __perf_event_disable, event))
1298 		return;
1299 
1300 	raw_spin_lock_irq(&ctx->lock);
1301 	/*
1302 	 * If the event is still active, we need to retry the cross-call.
1303 	 */
1304 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1305 		raw_spin_unlock_irq(&ctx->lock);
1306 		/*
1307 		 * Reload the task pointer, it might have been changed by
1308 		 * a concurrent perf_event_context_sched_out().
1309 		 */
1310 		task = ctx->task;
1311 		goto retry;
1312 	}
1313 
1314 	/*
1315 	 * Since we have the lock this context can't be scheduled
1316 	 * in, so we can change the state safely.
1317 	 */
1318 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1319 		update_group_times(event);
1320 		event->state = PERF_EVENT_STATE_OFF;
1321 	}
1322 	raw_spin_unlock_irq(&ctx->lock);
1323 }
1324 
1325 static void perf_set_shadow_time(struct perf_event *event,
1326 				 struct perf_event_context *ctx,
1327 				 u64 tstamp)
1328 {
1329 	/*
1330 	 * use the correct time source for the time snapshot
1331 	 *
1332 	 * We could get by without this by leveraging the
1333 	 * fact that to get to this function, the caller
1334 	 * has most likely already called update_context_time()
1335 	 * and update_cgrp_time_xx() and thus both timestamp
1336 	 * are identical (or very close). Given that tstamp is,
1337 	 * already adjusted for cgroup, we could say that:
1338 	 *    tstamp - ctx->timestamp
1339 	 * is equivalent to
1340 	 *    tstamp - cgrp->timestamp.
1341 	 *
1342 	 * Then, in perf_output_read(), the calculation would
1343 	 * work with no changes because:
1344 	 * - event is guaranteed scheduled in
1345 	 * - no scheduled out in between
1346 	 * - thus the timestamp would be the same
1347 	 *
1348 	 * But this is a bit hairy.
1349 	 *
1350 	 * So instead, we have an explicit cgroup call to remain
1351 	 * within the time time source all along. We believe it
1352 	 * is cleaner and simpler to understand.
1353 	 */
1354 	if (is_cgroup_event(event))
1355 		perf_cgroup_set_shadow_time(event, tstamp);
1356 	else
1357 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1358 }
1359 
1360 #define MAX_INTERRUPTS (~0ULL)
1361 
1362 static void perf_log_throttle(struct perf_event *event, int enable);
1363 
1364 static int
1365 event_sched_in(struct perf_event *event,
1366 		 struct perf_cpu_context *cpuctx,
1367 		 struct perf_event_context *ctx)
1368 {
1369 	u64 tstamp = perf_event_time(event);
1370 
1371 	if (event->state <= PERF_EVENT_STATE_OFF)
1372 		return 0;
1373 
1374 	event->state = PERF_EVENT_STATE_ACTIVE;
1375 	event->oncpu = smp_processor_id();
1376 
1377 	/*
1378 	 * Unthrottle events, since we scheduled we might have missed several
1379 	 * ticks already, also for a heavily scheduling task there is little
1380 	 * guarantee it'll get a tick in a timely manner.
1381 	 */
1382 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1383 		perf_log_throttle(event, 1);
1384 		event->hw.interrupts = 0;
1385 	}
1386 
1387 	/*
1388 	 * The new state must be visible before we turn it on in the hardware:
1389 	 */
1390 	smp_wmb();
1391 
1392 	if (event->pmu->add(event, PERF_EF_START)) {
1393 		event->state = PERF_EVENT_STATE_INACTIVE;
1394 		event->oncpu = -1;
1395 		return -EAGAIN;
1396 	}
1397 
1398 	event->tstamp_running += tstamp - event->tstamp_stopped;
1399 
1400 	perf_set_shadow_time(event, ctx, tstamp);
1401 
1402 	if (!is_software_event(event))
1403 		cpuctx->active_oncpu++;
1404 	ctx->nr_active++;
1405 
1406 	if (event->attr.exclusive)
1407 		cpuctx->exclusive = 1;
1408 
1409 	return 0;
1410 }
1411 
1412 static int
1413 group_sched_in(struct perf_event *group_event,
1414 	       struct perf_cpu_context *cpuctx,
1415 	       struct perf_event_context *ctx)
1416 {
1417 	struct perf_event *event, *partial_group = NULL;
1418 	struct pmu *pmu = group_event->pmu;
1419 	u64 now = ctx->time;
1420 	bool simulate = false;
1421 
1422 	if (group_event->state == PERF_EVENT_STATE_OFF)
1423 		return 0;
1424 
1425 	pmu->start_txn(pmu);
1426 
1427 	if (event_sched_in(group_event, cpuctx, ctx)) {
1428 		pmu->cancel_txn(pmu);
1429 		return -EAGAIN;
1430 	}
1431 
1432 	/*
1433 	 * Schedule in siblings as one group (if any):
1434 	 */
1435 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1436 		if (event_sched_in(event, cpuctx, ctx)) {
1437 			partial_group = event;
1438 			goto group_error;
1439 		}
1440 	}
1441 
1442 	if (!pmu->commit_txn(pmu))
1443 		return 0;
1444 
1445 group_error:
1446 	/*
1447 	 * Groups can be scheduled in as one unit only, so undo any
1448 	 * partial group before returning:
1449 	 * The events up to the failed event are scheduled out normally,
1450 	 * tstamp_stopped will be updated.
1451 	 *
1452 	 * The failed events and the remaining siblings need to have
1453 	 * their timings updated as if they had gone thru event_sched_in()
1454 	 * and event_sched_out(). This is required to get consistent timings
1455 	 * across the group. This also takes care of the case where the group
1456 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1457 	 * the time the event was actually stopped, such that time delta
1458 	 * calculation in update_event_times() is correct.
1459 	 */
1460 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1461 		if (event == partial_group)
1462 			simulate = true;
1463 
1464 		if (simulate) {
1465 			event->tstamp_running += now - event->tstamp_stopped;
1466 			event->tstamp_stopped = now;
1467 		} else {
1468 			event_sched_out(event, cpuctx, ctx);
1469 		}
1470 	}
1471 	event_sched_out(group_event, cpuctx, ctx);
1472 
1473 	pmu->cancel_txn(pmu);
1474 
1475 	return -EAGAIN;
1476 }
1477 
1478 /*
1479  * Work out whether we can put this event group on the CPU now.
1480  */
1481 static int group_can_go_on(struct perf_event *event,
1482 			   struct perf_cpu_context *cpuctx,
1483 			   int can_add_hw)
1484 {
1485 	/*
1486 	 * Groups consisting entirely of software events can always go on.
1487 	 */
1488 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1489 		return 1;
1490 	/*
1491 	 * If an exclusive group is already on, no other hardware
1492 	 * events can go on.
1493 	 */
1494 	if (cpuctx->exclusive)
1495 		return 0;
1496 	/*
1497 	 * If this group is exclusive and there are already
1498 	 * events on the CPU, it can't go on.
1499 	 */
1500 	if (event->attr.exclusive && cpuctx->active_oncpu)
1501 		return 0;
1502 	/*
1503 	 * Otherwise, try to add it if all previous groups were able
1504 	 * to go on.
1505 	 */
1506 	return can_add_hw;
1507 }
1508 
1509 static void add_event_to_ctx(struct perf_event *event,
1510 			       struct perf_event_context *ctx)
1511 {
1512 	u64 tstamp = perf_event_time(event);
1513 
1514 	list_add_event(event, ctx);
1515 	perf_group_attach(event);
1516 	event->tstamp_enabled = tstamp;
1517 	event->tstamp_running = tstamp;
1518 	event->tstamp_stopped = tstamp;
1519 }
1520 
1521 static void task_ctx_sched_out(struct perf_event_context *ctx);
1522 static void
1523 ctx_sched_in(struct perf_event_context *ctx,
1524 	     struct perf_cpu_context *cpuctx,
1525 	     enum event_type_t event_type,
1526 	     struct task_struct *task);
1527 
1528 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1529 				struct perf_event_context *ctx,
1530 				struct task_struct *task)
1531 {
1532 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1533 	if (ctx)
1534 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1535 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1536 	if (ctx)
1537 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1538 }
1539 
1540 /*
1541  * Cross CPU call to install and enable a performance event
1542  *
1543  * Must be called with ctx->mutex held
1544  */
1545 static int  __perf_install_in_context(void *info)
1546 {
1547 	struct perf_event *event = info;
1548 	struct perf_event_context *ctx = event->ctx;
1549 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1550 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1551 	struct task_struct *task = current;
1552 
1553 	perf_ctx_lock(cpuctx, task_ctx);
1554 	perf_pmu_disable(cpuctx->ctx.pmu);
1555 
1556 	/*
1557 	 * If there was an active task_ctx schedule it out.
1558 	 */
1559 	if (task_ctx)
1560 		task_ctx_sched_out(task_ctx);
1561 
1562 	/*
1563 	 * If the context we're installing events in is not the
1564 	 * active task_ctx, flip them.
1565 	 */
1566 	if (ctx->task && task_ctx != ctx) {
1567 		if (task_ctx)
1568 			raw_spin_unlock(&task_ctx->lock);
1569 		raw_spin_lock(&ctx->lock);
1570 		task_ctx = ctx;
1571 	}
1572 
1573 	if (task_ctx) {
1574 		cpuctx->task_ctx = task_ctx;
1575 		task = task_ctx->task;
1576 	}
1577 
1578 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1579 
1580 	update_context_time(ctx);
1581 	/*
1582 	 * update cgrp time only if current cgrp
1583 	 * matches event->cgrp. Must be done before
1584 	 * calling add_event_to_ctx()
1585 	 */
1586 	update_cgrp_time_from_event(event);
1587 
1588 	add_event_to_ctx(event, ctx);
1589 
1590 	/*
1591 	 * Schedule everything back in
1592 	 */
1593 	perf_event_sched_in(cpuctx, task_ctx, task);
1594 
1595 	perf_pmu_enable(cpuctx->ctx.pmu);
1596 	perf_ctx_unlock(cpuctx, task_ctx);
1597 
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Attach a performance event to a context
1603  *
1604  * First we add the event to the list with the hardware enable bit
1605  * in event->hw_config cleared.
1606  *
1607  * If the event is attached to a task which is on a CPU we use a smp
1608  * call to enable it in the task context. The task might have been
1609  * scheduled away, but we check this in the smp call again.
1610  */
1611 static void
1612 perf_install_in_context(struct perf_event_context *ctx,
1613 			struct perf_event *event,
1614 			int cpu)
1615 {
1616 	struct task_struct *task = ctx->task;
1617 
1618 	lockdep_assert_held(&ctx->mutex);
1619 
1620 	event->ctx = ctx;
1621 
1622 	if (!task) {
1623 		/*
1624 		 * Per cpu events are installed via an smp call and
1625 		 * the install is always successful.
1626 		 */
1627 		cpu_function_call(cpu, __perf_install_in_context, event);
1628 		return;
1629 	}
1630 
1631 retry:
1632 	if (!task_function_call(task, __perf_install_in_context, event))
1633 		return;
1634 
1635 	raw_spin_lock_irq(&ctx->lock);
1636 	/*
1637 	 * If we failed to find a running task, but find the context active now
1638 	 * that we've acquired the ctx->lock, retry.
1639 	 */
1640 	if (ctx->is_active) {
1641 		raw_spin_unlock_irq(&ctx->lock);
1642 		goto retry;
1643 	}
1644 
1645 	/*
1646 	 * Since the task isn't running, its safe to add the event, us holding
1647 	 * the ctx->lock ensures the task won't get scheduled in.
1648 	 */
1649 	add_event_to_ctx(event, ctx);
1650 	raw_spin_unlock_irq(&ctx->lock);
1651 }
1652 
1653 /*
1654  * Put a event into inactive state and update time fields.
1655  * Enabling the leader of a group effectively enables all
1656  * the group members that aren't explicitly disabled, so we
1657  * have to update their ->tstamp_enabled also.
1658  * Note: this works for group members as well as group leaders
1659  * since the non-leader members' sibling_lists will be empty.
1660  */
1661 static void __perf_event_mark_enabled(struct perf_event *event,
1662 					struct perf_event_context *ctx)
1663 {
1664 	struct perf_event *sub;
1665 	u64 tstamp = perf_event_time(event);
1666 
1667 	event->state = PERF_EVENT_STATE_INACTIVE;
1668 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1669 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1670 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1671 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1672 	}
1673 }
1674 
1675 /*
1676  * Cross CPU call to enable a performance event
1677  */
1678 static int __perf_event_enable(void *info)
1679 {
1680 	struct perf_event *event = info;
1681 	struct perf_event_context *ctx = event->ctx;
1682 	struct perf_event *leader = event->group_leader;
1683 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1684 	int err;
1685 
1686 	if (WARN_ON_ONCE(!ctx->is_active))
1687 		return -EINVAL;
1688 
1689 	raw_spin_lock(&ctx->lock);
1690 	update_context_time(ctx);
1691 
1692 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1693 		goto unlock;
1694 
1695 	/*
1696 	 * set current task's cgroup time reference point
1697 	 */
1698 	perf_cgroup_set_timestamp(current, ctx);
1699 
1700 	__perf_event_mark_enabled(event, ctx);
1701 
1702 	if (!event_filter_match(event)) {
1703 		if (is_cgroup_event(event))
1704 			perf_cgroup_defer_enabled(event);
1705 		goto unlock;
1706 	}
1707 
1708 	/*
1709 	 * If the event is in a group and isn't the group leader,
1710 	 * then don't put it on unless the group is on.
1711 	 */
1712 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1713 		goto unlock;
1714 
1715 	if (!group_can_go_on(event, cpuctx, 1)) {
1716 		err = -EEXIST;
1717 	} else {
1718 		if (event == leader)
1719 			err = group_sched_in(event, cpuctx, ctx);
1720 		else
1721 			err = event_sched_in(event, cpuctx, ctx);
1722 	}
1723 
1724 	if (err) {
1725 		/*
1726 		 * If this event can't go on and it's part of a
1727 		 * group, then the whole group has to come off.
1728 		 */
1729 		if (leader != event)
1730 			group_sched_out(leader, cpuctx, ctx);
1731 		if (leader->attr.pinned) {
1732 			update_group_times(leader);
1733 			leader->state = PERF_EVENT_STATE_ERROR;
1734 		}
1735 	}
1736 
1737 unlock:
1738 	raw_spin_unlock(&ctx->lock);
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * Enable a event.
1745  *
1746  * If event->ctx is a cloned context, callers must make sure that
1747  * every task struct that event->ctx->task could possibly point to
1748  * remains valid.  This condition is satisfied when called through
1749  * perf_event_for_each_child or perf_event_for_each as described
1750  * for perf_event_disable.
1751  */
1752 void perf_event_enable(struct perf_event *event)
1753 {
1754 	struct perf_event_context *ctx = event->ctx;
1755 	struct task_struct *task = ctx->task;
1756 
1757 	if (!task) {
1758 		/*
1759 		 * Enable the event on the cpu that it's on
1760 		 */
1761 		cpu_function_call(event->cpu, __perf_event_enable, event);
1762 		return;
1763 	}
1764 
1765 	raw_spin_lock_irq(&ctx->lock);
1766 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1767 		goto out;
1768 
1769 	/*
1770 	 * If the event is in error state, clear that first.
1771 	 * That way, if we see the event in error state below, we
1772 	 * know that it has gone back into error state, as distinct
1773 	 * from the task having been scheduled away before the
1774 	 * cross-call arrived.
1775 	 */
1776 	if (event->state == PERF_EVENT_STATE_ERROR)
1777 		event->state = PERF_EVENT_STATE_OFF;
1778 
1779 retry:
1780 	if (!ctx->is_active) {
1781 		__perf_event_mark_enabled(event, ctx);
1782 		goto out;
1783 	}
1784 
1785 	raw_spin_unlock_irq(&ctx->lock);
1786 
1787 	if (!task_function_call(task, __perf_event_enable, event))
1788 		return;
1789 
1790 	raw_spin_lock_irq(&ctx->lock);
1791 
1792 	/*
1793 	 * If the context is active and the event is still off,
1794 	 * we need to retry the cross-call.
1795 	 */
1796 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1797 		/*
1798 		 * task could have been flipped by a concurrent
1799 		 * perf_event_context_sched_out()
1800 		 */
1801 		task = ctx->task;
1802 		goto retry;
1803 	}
1804 
1805 out:
1806 	raw_spin_unlock_irq(&ctx->lock);
1807 }
1808 
1809 int perf_event_refresh(struct perf_event *event, int refresh)
1810 {
1811 	/*
1812 	 * not supported on inherited events
1813 	 */
1814 	if (event->attr.inherit || !is_sampling_event(event))
1815 		return -EINVAL;
1816 
1817 	atomic_add(refresh, &event->event_limit);
1818 	perf_event_enable(event);
1819 
1820 	return 0;
1821 }
1822 EXPORT_SYMBOL_GPL(perf_event_refresh);
1823 
1824 static void ctx_sched_out(struct perf_event_context *ctx,
1825 			  struct perf_cpu_context *cpuctx,
1826 			  enum event_type_t event_type)
1827 {
1828 	struct perf_event *event;
1829 	int is_active = ctx->is_active;
1830 
1831 	ctx->is_active &= ~event_type;
1832 	if (likely(!ctx->nr_events))
1833 		return;
1834 
1835 	update_context_time(ctx);
1836 	update_cgrp_time_from_cpuctx(cpuctx);
1837 	if (!ctx->nr_active)
1838 		return;
1839 
1840 	perf_pmu_disable(ctx->pmu);
1841 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1842 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1843 			group_sched_out(event, cpuctx, ctx);
1844 	}
1845 
1846 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1847 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1848 			group_sched_out(event, cpuctx, ctx);
1849 	}
1850 	perf_pmu_enable(ctx->pmu);
1851 }
1852 
1853 /*
1854  * Test whether two contexts are equivalent, i.e. whether they
1855  * have both been cloned from the same version of the same context
1856  * and they both have the same number of enabled events.
1857  * If the number of enabled events is the same, then the set
1858  * of enabled events should be the same, because these are both
1859  * inherited contexts, therefore we can't access individual events
1860  * in them directly with an fd; we can only enable/disable all
1861  * events via prctl, or enable/disable all events in a family
1862  * via ioctl, which will have the same effect on both contexts.
1863  */
1864 static int context_equiv(struct perf_event_context *ctx1,
1865 			 struct perf_event_context *ctx2)
1866 {
1867 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1868 		&& ctx1->parent_gen == ctx2->parent_gen
1869 		&& !ctx1->pin_count && !ctx2->pin_count;
1870 }
1871 
1872 static void __perf_event_sync_stat(struct perf_event *event,
1873 				     struct perf_event *next_event)
1874 {
1875 	u64 value;
1876 
1877 	if (!event->attr.inherit_stat)
1878 		return;
1879 
1880 	/*
1881 	 * Update the event value, we cannot use perf_event_read()
1882 	 * because we're in the middle of a context switch and have IRQs
1883 	 * disabled, which upsets smp_call_function_single(), however
1884 	 * we know the event must be on the current CPU, therefore we
1885 	 * don't need to use it.
1886 	 */
1887 	switch (event->state) {
1888 	case PERF_EVENT_STATE_ACTIVE:
1889 		event->pmu->read(event);
1890 		/* fall-through */
1891 
1892 	case PERF_EVENT_STATE_INACTIVE:
1893 		update_event_times(event);
1894 		break;
1895 
1896 	default:
1897 		break;
1898 	}
1899 
1900 	/*
1901 	 * In order to keep per-task stats reliable we need to flip the event
1902 	 * values when we flip the contexts.
1903 	 */
1904 	value = local64_read(&next_event->count);
1905 	value = local64_xchg(&event->count, value);
1906 	local64_set(&next_event->count, value);
1907 
1908 	swap(event->total_time_enabled, next_event->total_time_enabled);
1909 	swap(event->total_time_running, next_event->total_time_running);
1910 
1911 	/*
1912 	 * Since we swizzled the values, update the user visible data too.
1913 	 */
1914 	perf_event_update_userpage(event);
1915 	perf_event_update_userpage(next_event);
1916 }
1917 
1918 #define list_next_entry(pos, member) \
1919 	list_entry(pos->member.next, typeof(*pos), member)
1920 
1921 static void perf_event_sync_stat(struct perf_event_context *ctx,
1922 				   struct perf_event_context *next_ctx)
1923 {
1924 	struct perf_event *event, *next_event;
1925 
1926 	if (!ctx->nr_stat)
1927 		return;
1928 
1929 	update_context_time(ctx);
1930 
1931 	event = list_first_entry(&ctx->event_list,
1932 				   struct perf_event, event_entry);
1933 
1934 	next_event = list_first_entry(&next_ctx->event_list,
1935 					struct perf_event, event_entry);
1936 
1937 	while (&event->event_entry != &ctx->event_list &&
1938 	       &next_event->event_entry != &next_ctx->event_list) {
1939 
1940 		__perf_event_sync_stat(event, next_event);
1941 
1942 		event = list_next_entry(event, event_entry);
1943 		next_event = list_next_entry(next_event, event_entry);
1944 	}
1945 }
1946 
1947 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1948 					 struct task_struct *next)
1949 {
1950 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1951 	struct perf_event_context *next_ctx;
1952 	struct perf_event_context *parent;
1953 	struct perf_cpu_context *cpuctx;
1954 	int do_switch = 1;
1955 
1956 	if (likely(!ctx))
1957 		return;
1958 
1959 	cpuctx = __get_cpu_context(ctx);
1960 	if (!cpuctx->task_ctx)
1961 		return;
1962 
1963 	rcu_read_lock();
1964 	parent = rcu_dereference(ctx->parent_ctx);
1965 	next_ctx = next->perf_event_ctxp[ctxn];
1966 	if (parent && next_ctx &&
1967 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1968 		/*
1969 		 * Looks like the two contexts are clones, so we might be
1970 		 * able to optimize the context switch.  We lock both
1971 		 * contexts and check that they are clones under the
1972 		 * lock (including re-checking that neither has been
1973 		 * uncloned in the meantime).  It doesn't matter which
1974 		 * order we take the locks because no other cpu could
1975 		 * be trying to lock both of these tasks.
1976 		 */
1977 		raw_spin_lock(&ctx->lock);
1978 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1979 		if (context_equiv(ctx, next_ctx)) {
1980 			/*
1981 			 * XXX do we need a memory barrier of sorts
1982 			 * wrt to rcu_dereference() of perf_event_ctxp
1983 			 */
1984 			task->perf_event_ctxp[ctxn] = next_ctx;
1985 			next->perf_event_ctxp[ctxn] = ctx;
1986 			ctx->task = next;
1987 			next_ctx->task = task;
1988 			do_switch = 0;
1989 
1990 			perf_event_sync_stat(ctx, next_ctx);
1991 		}
1992 		raw_spin_unlock(&next_ctx->lock);
1993 		raw_spin_unlock(&ctx->lock);
1994 	}
1995 	rcu_read_unlock();
1996 
1997 	if (do_switch) {
1998 		raw_spin_lock(&ctx->lock);
1999 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2000 		cpuctx->task_ctx = NULL;
2001 		raw_spin_unlock(&ctx->lock);
2002 	}
2003 }
2004 
2005 #define for_each_task_context_nr(ctxn)					\
2006 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2007 
2008 /*
2009  * Called from scheduler to remove the events of the current task,
2010  * with interrupts disabled.
2011  *
2012  * We stop each event and update the event value in event->count.
2013  *
2014  * This does not protect us against NMI, but disable()
2015  * sets the disabled bit in the control field of event _before_
2016  * accessing the event control register. If a NMI hits, then it will
2017  * not restart the event.
2018  */
2019 void __perf_event_task_sched_out(struct task_struct *task,
2020 				 struct task_struct *next)
2021 {
2022 	int ctxn;
2023 
2024 	for_each_task_context_nr(ctxn)
2025 		perf_event_context_sched_out(task, ctxn, next);
2026 
2027 	/*
2028 	 * if cgroup events exist on this CPU, then we need
2029 	 * to check if we have to switch out PMU state.
2030 	 * cgroup event are system-wide mode only
2031 	 */
2032 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2033 		perf_cgroup_sched_out(task, next);
2034 }
2035 
2036 static void task_ctx_sched_out(struct perf_event_context *ctx)
2037 {
2038 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2039 
2040 	if (!cpuctx->task_ctx)
2041 		return;
2042 
2043 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2044 		return;
2045 
2046 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2047 	cpuctx->task_ctx = NULL;
2048 }
2049 
2050 /*
2051  * Called with IRQs disabled
2052  */
2053 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2054 			      enum event_type_t event_type)
2055 {
2056 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2057 }
2058 
2059 static void
2060 ctx_pinned_sched_in(struct perf_event_context *ctx,
2061 		    struct perf_cpu_context *cpuctx)
2062 {
2063 	struct perf_event *event;
2064 
2065 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2066 		if (event->state <= PERF_EVENT_STATE_OFF)
2067 			continue;
2068 		if (!event_filter_match(event))
2069 			continue;
2070 
2071 		/* may need to reset tstamp_enabled */
2072 		if (is_cgroup_event(event))
2073 			perf_cgroup_mark_enabled(event, ctx);
2074 
2075 		if (group_can_go_on(event, cpuctx, 1))
2076 			group_sched_in(event, cpuctx, ctx);
2077 
2078 		/*
2079 		 * If this pinned group hasn't been scheduled,
2080 		 * put it in error state.
2081 		 */
2082 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2083 			update_group_times(event);
2084 			event->state = PERF_EVENT_STATE_ERROR;
2085 		}
2086 	}
2087 }
2088 
2089 static void
2090 ctx_flexible_sched_in(struct perf_event_context *ctx,
2091 		      struct perf_cpu_context *cpuctx)
2092 {
2093 	struct perf_event *event;
2094 	int can_add_hw = 1;
2095 
2096 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2097 		/* Ignore events in OFF or ERROR state */
2098 		if (event->state <= PERF_EVENT_STATE_OFF)
2099 			continue;
2100 		/*
2101 		 * Listen to the 'cpu' scheduling filter constraint
2102 		 * of events:
2103 		 */
2104 		if (!event_filter_match(event))
2105 			continue;
2106 
2107 		/* may need to reset tstamp_enabled */
2108 		if (is_cgroup_event(event))
2109 			perf_cgroup_mark_enabled(event, ctx);
2110 
2111 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2112 			if (group_sched_in(event, cpuctx, ctx))
2113 				can_add_hw = 0;
2114 		}
2115 	}
2116 }
2117 
2118 static void
2119 ctx_sched_in(struct perf_event_context *ctx,
2120 	     struct perf_cpu_context *cpuctx,
2121 	     enum event_type_t event_type,
2122 	     struct task_struct *task)
2123 {
2124 	u64 now;
2125 	int is_active = ctx->is_active;
2126 
2127 	ctx->is_active |= event_type;
2128 	if (likely(!ctx->nr_events))
2129 		return;
2130 
2131 	now = perf_clock();
2132 	ctx->timestamp = now;
2133 	perf_cgroup_set_timestamp(task, ctx);
2134 	/*
2135 	 * First go through the list and put on any pinned groups
2136 	 * in order to give them the best chance of going on.
2137 	 */
2138 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2139 		ctx_pinned_sched_in(ctx, cpuctx);
2140 
2141 	/* Then walk through the lower prio flexible groups */
2142 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2143 		ctx_flexible_sched_in(ctx, cpuctx);
2144 }
2145 
2146 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2147 			     enum event_type_t event_type,
2148 			     struct task_struct *task)
2149 {
2150 	struct perf_event_context *ctx = &cpuctx->ctx;
2151 
2152 	ctx_sched_in(ctx, cpuctx, event_type, task);
2153 }
2154 
2155 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2156 					struct task_struct *task)
2157 {
2158 	struct perf_cpu_context *cpuctx;
2159 
2160 	cpuctx = __get_cpu_context(ctx);
2161 	if (cpuctx->task_ctx == ctx)
2162 		return;
2163 
2164 	perf_ctx_lock(cpuctx, ctx);
2165 	perf_pmu_disable(ctx->pmu);
2166 	/*
2167 	 * We want to keep the following priority order:
2168 	 * cpu pinned (that don't need to move), task pinned,
2169 	 * cpu flexible, task flexible.
2170 	 */
2171 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2172 
2173 	perf_event_sched_in(cpuctx, ctx, task);
2174 
2175 	cpuctx->task_ctx = ctx;
2176 
2177 	perf_pmu_enable(ctx->pmu);
2178 	perf_ctx_unlock(cpuctx, ctx);
2179 
2180 	/*
2181 	 * Since these rotations are per-cpu, we need to ensure the
2182 	 * cpu-context we got scheduled on is actually rotating.
2183 	 */
2184 	perf_pmu_rotate_start(ctx->pmu);
2185 }
2186 
2187 /*
2188  * Called from scheduler to add the events of the current task
2189  * with interrupts disabled.
2190  *
2191  * We restore the event value and then enable it.
2192  *
2193  * This does not protect us against NMI, but enable()
2194  * sets the enabled bit in the control field of event _before_
2195  * accessing the event control register. If a NMI hits, then it will
2196  * keep the event running.
2197  */
2198 void __perf_event_task_sched_in(struct task_struct *prev,
2199 				struct task_struct *task)
2200 {
2201 	struct perf_event_context *ctx;
2202 	int ctxn;
2203 
2204 	for_each_task_context_nr(ctxn) {
2205 		ctx = task->perf_event_ctxp[ctxn];
2206 		if (likely(!ctx))
2207 			continue;
2208 
2209 		perf_event_context_sched_in(ctx, task);
2210 	}
2211 	/*
2212 	 * if cgroup events exist on this CPU, then we need
2213 	 * to check if we have to switch in PMU state.
2214 	 * cgroup event are system-wide mode only
2215 	 */
2216 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2217 		perf_cgroup_sched_in(prev, task);
2218 }
2219 
2220 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2221 {
2222 	u64 frequency = event->attr.sample_freq;
2223 	u64 sec = NSEC_PER_SEC;
2224 	u64 divisor, dividend;
2225 
2226 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2227 
2228 	count_fls = fls64(count);
2229 	nsec_fls = fls64(nsec);
2230 	frequency_fls = fls64(frequency);
2231 	sec_fls = 30;
2232 
2233 	/*
2234 	 * We got @count in @nsec, with a target of sample_freq HZ
2235 	 * the target period becomes:
2236 	 *
2237 	 *             @count * 10^9
2238 	 * period = -------------------
2239 	 *          @nsec * sample_freq
2240 	 *
2241 	 */
2242 
2243 	/*
2244 	 * Reduce accuracy by one bit such that @a and @b converge
2245 	 * to a similar magnitude.
2246 	 */
2247 #define REDUCE_FLS(a, b)		\
2248 do {					\
2249 	if (a##_fls > b##_fls) {	\
2250 		a >>= 1;		\
2251 		a##_fls--;		\
2252 	} else {			\
2253 		b >>= 1;		\
2254 		b##_fls--;		\
2255 	}				\
2256 } while (0)
2257 
2258 	/*
2259 	 * Reduce accuracy until either term fits in a u64, then proceed with
2260 	 * the other, so that finally we can do a u64/u64 division.
2261 	 */
2262 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2263 		REDUCE_FLS(nsec, frequency);
2264 		REDUCE_FLS(sec, count);
2265 	}
2266 
2267 	if (count_fls + sec_fls > 64) {
2268 		divisor = nsec * frequency;
2269 
2270 		while (count_fls + sec_fls > 64) {
2271 			REDUCE_FLS(count, sec);
2272 			divisor >>= 1;
2273 		}
2274 
2275 		dividend = count * sec;
2276 	} else {
2277 		dividend = count * sec;
2278 
2279 		while (nsec_fls + frequency_fls > 64) {
2280 			REDUCE_FLS(nsec, frequency);
2281 			dividend >>= 1;
2282 		}
2283 
2284 		divisor = nsec * frequency;
2285 	}
2286 
2287 	if (!divisor)
2288 		return dividend;
2289 
2290 	return div64_u64(dividend, divisor);
2291 }
2292 
2293 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2294 {
2295 	struct hw_perf_event *hwc = &event->hw;
2296 	s64 period, sample_period;
2297 	s64 delta;
2298 
2299 	period = perf_calculate_period(event, nsec, count);
2300 
2301 	delta = (s64)(period - hwc->sample_period);
2302 	delta = (delta + 7) / 8; /* low pass filter */
2303 
2304 	sample_period = hwc->sample_period + delta;
2305 
2306 	if (!sample_period)
2307 		sample_period = 1;
2308 
2309 	hwc->sample_period = sample_period;
2310 
2311 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2312 		event->pmu->stop(event, PERF_EF_UPDATE);
2313 		local64_set(&hwc->period_left, 0);
2314 		event->pmu->start(event, PERF_EF_RELOAD);
2315 	}
2316 }
2317 
2318 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2319 {
2320 	struct perf_event *event;
2321 	struct hw_perf_event *hwc;
2322 	u64 interrupts, now;
2323 	s64 delta;
2324 
2325 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2326 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2327 			continue;
2328 
2329 		if (!event_filter_match(event))
2330 			continue;
2331 
2332 		hwc = &event->hw;
2333 
2334 		interrupts = hwc->interrupts;
2335 		hwc->interrupts = 0;
2336 
2337 		/*
2338 		 * unthrottle events on the tick
2339 		 */
2340 		if (interrupts == MAX_INTERRUPTS) {
2341 			perf_log_throttle(event, 1);
2342 			event->pmu->start(event, 0);
2343 		}
2344 
2345 		if (!event->attr.freq || !event->attr.sample_freq)
2346 			continue;
2347 
2348 		event->pmu->read(event);
2349 		now = local64_read(&event->count);
2350 		delta = now - hwc->freq_count_stamp;
2351 		hwc->freq_count_stamp = now;
2352 
2353 		if (delta > 0)
2354 			perf_adjust_period(event, period, delta);
2355 	}
2356 }
2357 
2358 /*
2359  * Round-robin a context's events:
2360  */
2361 static void rotate_ctx(struct perf_event_context *ctx)
2362 {
2363 	/*
2364 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2365 	 * disabled by the inheritance code.
2366 	 */
2367 	if (!ctx->rotate_disable)
2368 		list_rotate_left(&ctx->flexible_groups);
2369 }
2370 
2371 /*
2372  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2373  * because they're strictly cpu affine and rotate_start is called with IRQs
2374  * disabled, while rotate_context is called from IRQ context.
2375  */
2376 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2377 {
2378 	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2379 	struct perf_event_context *ctx = NULL;
2380 	int rotate = 0, remove = 1;
2381 
2382 	if (cpuctx->ctx.nr_events) {
2383 		remove = 0;
2384 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2385 			rotate = 1;
2386 	}
2387 
2388 	ctx = cpuctx->task_ctx;
2389 	if (ctx && ctx->nr_events) {
2390 		remove = 0;
2391 		if (ctx->nr_events != ctx->nr_active)
2392 			rotate = 1;
2393 	}
2394 
2395 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2396 	perf_pmu_disable(cpuctx->ctx.pmu);
2397 	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2398 	if (ctx)
2399 		perf_ctx_adjust_freq(ctx, interval);
2400 
2401 	if (!rotate)
2402 		goto done;
2403 
2404 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2405 	if (ctx)
2406 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2407 
2408 	rotate_ctx(&cpuctx->ctx);
2409 	if (ctx)
2410 		rotate_ctx(ctx);
2411 
2412 	perf_event_sched_in(cpuctx, ctx, current);
2413 
2414 done:
2415 	if (remove)
2416 		list_del_init(&cpuctx->rotation_list);
2417 
2418 	perf_pmu_enable(cpuctx->ctx.pmu);
2419 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2420 }
2421 
2422 void perf_event_task_tick(void)
2423 {
2424 	struct list_head *head = &__get_cpu_var(rotation_list);
2425 	struct perf_cpu_context *cpuctx, *tmp;
2426 
2427 	WARN_ON(!irqs_disabled());
2428 
2429 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2430 		if (cpuctx->jiffies_interval == 1 ||
2431 				!(jiffies % cpuctx->jiffies_interval))
2432 			perf_rotate_context(cpuctx);
2433 	}
2434 }
2435 
2436 static int event_enable_on_exec(struct perf_event *event,
2437 				struct perf_event_context *ctx)
2438 {
2439 	if (!event->attr.enable_on_exec)
2440 		return 0;
2441 
2442 	event->attr.enable_on_exec = 0;
2443 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2444 		return 0;
2445 
2446 	__perf_event_mark_enabled(event, ctx);
2447 
2448 	return 1;
2449 }
2450 
2451 /*
2452  * Enable all of a task's events that have been marked enable-on-exec.
2453  * This expects task == current.
2454  */
2455 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2456 {
2457 	struct perf_event *event;
2458 	unsigned long flags;
2459 	int enabled = 0;
2460 	int ret;
2461 
2462 	local_irq_save(flags);
2463 	if (!ctx || !ctx->nr_events)
2464 		goto out;
2465 
2466 	/*
2467 	 * We must ctxsw out cgroup events to avoid conflict
2468 	 * when invoking perf_task_event_sched_in() later on
2469 	 * in this function. Otherwise we end up trying to
2470 	 * ctxswin cgroup events which are already scheduled
2471 	 * in.
2472 	 */
2473 	perf_cgroup_sched_out(current, NULL);
2474 
2475 	raw_spin_lock(&ctx->lock);
2476 	task_ctx_sched_out(ctx);
2477 
2478 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2479 		ret = event_enable_on_exec(event, ctx);
2480 		if (ret)
2481 			enabled = 1;
2482 	}
2483 
2484 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2485 		ret = event_enable_on_exec(event, ctx);
2486 		if (ret)
2487 			enabled = 1;
2488 	}
2489 
2490 	/*
2491 	 * Unclone this context if we enabled any event.
2492 	 */
2493 	if (enabled)
2494 		unclone_ctx(ctx);
2495 
2496 	raw_spin_unlock(&ctx->lock);
2497 
2498 	/*
2499 	 * Also calls ctxswin for cgroup events, if any:
2500 	 */
2501 	perf_event_context_sched_in(ctx, ctx->task);
2502 out:
2503 	local_irq_restore(flags);
2504 }
2505 
2506 /*
2507  * Cross CPU call to read the hardware event
2508  */
2509 static void __perf_event_read(void *info)
2510 {
2511 	struct perf_event *event = info;
2512 	struct perf_event_context *ctx = event->ctx;
2513 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2514 
2515 	/*
2516 	 * If this is a task context, we need to check whether it is
2517 	 * the current task context of this cpu.  If not it has been
2518 	 * scheduled out before the smp call arrived.  In that case
2519 	 * event->count would have been updated to a recent sample
2520 	 * when the event was scheduled out.
2521 	 */
2522 	if (ctx->task && cpuctx->task_ctx != ctx)
2523 		return;
2524 
2525 	raw_spin_lock(&ctx->lock);
2526 	if (ctx->is_active) {
2527 		update_context_time(ctx);
2528 		update_cgrp_time_from_event(event);
2529 	}
2530 	update_event_times(event);
2531 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2532 		event->pmu->read(event);
2533 	raw_spin_unlock(&ctx->lock);
2534 }
2535 
2536 static inline u64 perf_event_count(struct perf_event *event)
2537 {
2538 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2539 }
2540 
2541 static u64 perf_event_read(struct perf_event *event)
2542 {
2543 	/*
2544 	 * If event is enabled and currently active on a CPU, update the
2545 	 * value in the event structure:
2546 	 */
2547 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2548 		smp_call_function_single(event->oncpu,
2549 					 __perf_event_read, event, 1);
2550 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2551 		struct perf_event_context *ctx = event->ctx;
2552 		unsigned long flags;
2553 
2554 		raw_spin_lock_irqsave(&ctx->lock, flags);
2555 		/*
2556 		 * may read while context is not active
2557 		 * (e.g., thread is blocked), in that case
2558 		 * we cannot update context time
2559 		 */
2560 		if (ctx->is_active) {
2561 			update_context_time(ctx);
2562 			update_cgrp_time_from_event(event);
2563 		}
2564 		update_event_times(event);
2565 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2566 	}
2567 
2568 	return perf_event_count(event);
2569 }
2570 
2571 /*
2572  * Callchain support
2573  */
2574 
2575 struct callchain_cpus_entries {
2576 	struct rcu_head			rcu_head;
2577 	struct perf_callchain_entry	*cpu_entries[0];
2578 };
2579 
2580 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2581 static atomic_t nr_callchain_events;
2582 static DEFINE_MUTEX(callchain_mutex);
2583 struct callchain_cpus_entries *callchain_cpus_entries;
2584 
2585 
2586 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2587 				  struct pt_regs *regs)
2588 {
2589 }
2590 
2591 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2592 				struct pt_regs *regs)
2593 {
2594 }
2595 
2596 static void release_callchain_buffers_rcu(struct rcu_head *head)
2597 {
2598 	struct callchain_cpus_entries *entries;
2599 	int cpu;
2600 
2601 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2602 
2603 	for_each_possible_cpu(cpu)
2604 		kfree(entries->cpu_entries[cpu]);
2605 
2606 	kfree(entries);
2607 }
2608 
2609 static void release_callchain_buffers(void)
2610 {
2611 	struct callchain_cpus_entries *entries;
2612 
2613 	entries = callchain_cpus_entries;
2614 	rcu_assign_pointer(callchain_cpus_entries, NULL);
2615 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2616 }
2617 
2618 static int alloc_callchain_buffers(void)
2619 {
2620 	int cpu;
2621 	int size;
2622 	struct callchain_cpus_entries *entries;
2623 
2624 	/*
2625 	 * We can't use the percpu allocation API for data that can be
2626 	 * accessed from NMI. Use a temporary manual per cpu allocation
2627 	 * until that gets sorted out.
2628 	 */
2629 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2630 
2631 	entries = kzalloc(size, GFP_KERNEL);
2632 	if (!entries)
2633 		return -ENOMEM;
2634 
2635 	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2636 
2637 	for_each_possible_cpu(cpu) {
2638 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2639 							 cpu_to_node(cpu));
2640 		if (!entries->cpu_entries[cpu])
2641 			goto fail;
2642 	}
2643 
2644 	rcu_assign_pointer(callchain_cpus_entries, entries);
2645 
2646 	return 0;
2647 
2648 fail:
2649 	for_each_possible_cpu(cpu)
2650 		kfree(entries->cpu_entries[cpu]);
2651 	kfree(entries);
2652 
2653 	return -ENOMEM;
2654 }
2655 
2656 static int get_callchain_buffers(void)
2657 {
2658 	int err = 0;
2659 	int count;
2660 
2661 	mutex_lock(&callchain_mutex);
2662 
2663 	count = atomic_inc_return(&nr_callchain_events);
2664 	if (WARN_ON_ONCE(count < 1)) {
2665 		err = -EINVAL;
2666 		goto exit;
2667 	}
2668 
2669 	if (count > 1) {
2670 		/* If the allocation failed, give up */
2671 		if (!callchain_cpus_entries)
2672 			err = -ENOMEM;
2673 		goto exit;
2674 	}
2675 
2676 	err = alloc_callchain_buffers();
2677 	if (err)
2678 		release_callchain_buffers();
2679 exit:
2680 	mutex_unlock(&callchain_mutex);
2681 
2682 	return err;
2683 }
2684 
2685 static void put_callchain_buffers(void)
2686 {
2687 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2688 		release_callchain_buffers();
2689 		mutex_unlock(&callchain_mutex);
2690 	}
2691 }
2692 
2693 static int get_recursion_context(int *recursion)
2694 {
2695 	int rctx;
2696 
2697 	if (in_nmi())
2698 		rctx = 3;
2699 	else if (in_irq())
2700 		rctx = 2;
2701 	else if (in_softirq())
2702 		rctx = 1;
2703 	else
2704 		rctx = 0;
2705 
2706 	if (recursion[rctx])
2707 		return -1;
2708 
2709 	recursion[rctx]++;
2710 	barrier();
2711 
2712 	return rctx;
2713 }
2714 
2715 static inline void put_recursion_context(int *recursion, int rctx)
2716 {
2717 	barrier();
2718 	recursion[rctx]--;
2719 }
2720 
2721 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2722 {
2723 	int cpu;
2724 	struct callchain_cpus_entries *entries;
2725 
2726 	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2727 	if (*rctx == -1)
2728 		return NULL;
2729 
2730 	entries = rcu_dereference(callchain_cpus_entries);
2731 	if (!entries)
2732 		return NULL;
2733 
2734 	cpu = smp_processor_id();
2735 
2736 	return &entries->cpu_entries[cpu][*rctx];
2737 }
2738 
2739 static void
2740 put_callchain_entry(int rctx)
2741 {
2742 	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2743 }
2744 
2745 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2746 {
2747 	int rctx;
2748 	struct perf_callchain_entry *entry;
2749 
2750 
2751 	entry = get_callchain_entry(&rctx);
2752 	if (rctx == -1)
2753 		return NULL;
2754 
2755 	if (!entry)
2756 		goto exit_put;
2757 
2758 	entry->nr = 0;
2759 
2760 	if (!user_mode(regs)) {
2761 		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2762 		perf_callchain_kernel(entry, regs);
2763 		if (current->mm)
2764 			regs = task_pt_regs(current);
2765 		else
2766 			regs = NULL;
2767 	}
2768 
2769 	if (regs) {
2770 		perf_callchain_store(entry, PERF_CONTEXT_USER);
2771 		perf_callchain_user(entry, regs);
2772 	}
2773 
2774 exit_put:
2775 	put_callchain_entry(rctx);
2776 
2777 	return entry;
2778 }
2779 
2780 /*
2781  * Initialize the perf_event context in a task_struct:
2782  */
2783 static void __perf_event_init_context(struct perf_event_context *ctx)
2784 {
2785 	raw_spin_lock_init(&ctx->lock);
2786 	mutex_init(&ctx->mutex);
2787 	INIT_LIST_HEAD(&ctx->pinned_groups);
2788 	INIT_LIST_HEAD(&ctx->flexible_groups);
2789 	INIT_LIST_HEAD(&ctx->event_list);
2790 	atomic_set(&ctx->refcount, 1);
2791 }
2792 
2793 static struct perf_event_context *
2794 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2795 {
2796 	struct perf_event_context *ctx;
2797 
2798 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2799 	if (!ctx)
2800 		return NULL;
2801 
2802 	__perf_event_init_context(ctx);
2803 	if (task) {
2804 		ctx->task = task;
2805 		get_task_struct(task);
2806 	}
2807 	ctx->pmu = pmu;
2808 
2809 	return ctx;
2810 }
2811 
2812 static struct task_struct *
2813 find_lively_task_by_vpid(pid_t vpid)
2814 {
2815 	struct task_struct *task;
2816 	int err;
2817 
2818 	rcu_read_lock();
2819 	if (!vpid)
2820 		task = current;
2821 	else
2822 		task = find_task_by_vpid(vpid);
2823 	if (task)
2824 		get_task_struct(task);
2825 	rcu_read_unlock();
2826 
2827 	if (!task)
2828 		return ERR_PTR(-ESRCH);
2829 
2830 	/* Reuse ptrace permission checks for now. */
2831 	err = -EACCES;
2832 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2833 		goto errout;
2834 
2835 	return task;
2836 errout:
2837 	put_task_struct(task);
2838 	return ERR_PTR(err);
2839 
2840 }
2841 
2842 /*
2843  * Returns a matching context with refcount and pincount.
2844  */
2845 static struct perf_event_context *
2846 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2847 {
2848 	struct perf_event_context *ctx;
2849 	struct perf_cpu_context *cpuctx;
2850 	unsigned long flags;
2851 	int ctxn, err;
2852 
2853 	if (!task) {
2854 		/* Must be root to operate on a CPU event: */
2855 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2856 			return ERR_PTR(-EACCES);
2857 
2858 		/*
2859 		 * We could be clever and allow to attach a event to an
2860 		 * offline CPU and activate it when the CPU comes up, but
2861 		 * that's for later.
2862 		 */
2863 		if (!cpu_online(cpu))
2864 			return ERR_PTR(-ENODEV);
2865 
2866 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2867 		ctx = &cpuctx->ctx;
2868 		get_ctx(ctx);
2869 		++ctx->pin_count;
2870 
2871 		return ctx;
2872 	}
2873 
2874 	err = -EINVAL;
2875 	ctxn = pmu->task_ctx_nr;
2876 	if (ctxn < 0)
2877 		goto errout;
2878 
2879 retry:
2880 	ctx = perf_lock_task_context(task, ctxn, &flags);
2881 	if (ctx) {
2882 		unclone_ctx(ctx);
2883 		++ctx->pin_count;
2884 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2885 	} else {
2886 		ctx = alloc_perf_context(pmu, task);
2887 		err = -ENOMEM;
2888 		if (!ctx)
2889 			goto errout;
2890 
2891 		err = 0;
2892 		mutex_lock(&task->perf_event_mutex);
2893 		/*
2894 		 * If it has already passed perf_event_exit_task().
2895 		 * we must see PF_EXITING, it takes this mutex too.
2896 		 */
2897 		if (task->flags & PF_EXITING)
2898 			err = -ESRCH;
2899 		else if (task->perf_event_ctxp[ctxn])
2900 			err = -EAGAIN;
2901 		else {
2902 			get_ctx(ctx);
2903 			++ctx->pin_count;
2904 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2905 		}
2906 		mutex_unlock(&task->perf_event_mutex);
2907 
2908 		if (unlikely(err)) {
2909 			put_ctx(ctx);
2910 
2911 			if (err == -EAGAIN)
2912 				goto retry;
2913 			goto errout;
2914 		}
2915 	}
2916 
2917 	return ctx;
2918 
2919 errout:
2920 	return ERR_PTR(err);
2921 }
2922 
2923 static void perf_event_free_filter(struct perf_event *event);
2924 
2925 static void free_event_rcu(struct rcu_head *head)
2926 {
2927 	struct perf_event *event;
2928 
2929 	event = container_of(head, struct perf_event, rcu_head);
2930 	if (event->ns)
2931 		put_pid_ns(event->ns);
2932 	perf_event_free_filter(event);
2933 	kfree(event);
2934 }
2935 
2936 static void ring_buffer_put(struct ring_buffer *rb);
2937 
2938 static void free_event(struct perf_event *event)
2939 {
2940 	irq_work_sync(&event->pending);
2941 
2942 	if (!event->parent) {
2943 		if (event->attach_state & PERF_ATTACH_TASK)
2944 			jump_label_dec(&perf_sched_events);
2945 		if (event->attr.mmap || event->attr.mmap_data)
2946 			atomic_dec(&nr_mmap_events);
2947 		if (event->attr.comm)
2948 			atomic_dec(&nr_comm_events);
2949 		if (event->attr.task)
2950 			atomic_dec(&nr_task_events);
2951 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2952 			put_callchain_buffers();
2953 		if (is_cgroup_event(event)) {
2954 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2955 			jump_label_dec(&perf_sched_events);
2956 		}
2957 	}
2958 
2959 	if (event->rb) {
2960 		ring_buffer_put(event->rb);
2961 		event->rb = NULL;
2962 	}
2963 
2964 	if (is_cgroup_event(event))
2965 		perf_detach_cgroup(event);
2966 
2967 	if (event->destroy)
2968 		event->destroy(event);
2969 
2970 	if (event->ctx)
2971 		put_ctx(event->ctx);
2972 
2973 	call_rcu(&event->rcu_head, free_event_rcu);
2974 }
2975 
2976 int perf_event_release_kernel(struct perf_event *event)
2977 {
2978 	struct perf_event_context *ctx = event->ctx;
2979 
2980 	WARN_ON_ONCE(ctx->parent_ctx);
2981 	/*
2982 	 * There are two ways this annotation is useful:
2983 	 *
2984 	 *  1) there is a lock recursion from perf_event_exit_task
2985 	 *     see the comment there.
2986 	 *
2987 	 *  2) there is a lock-inversion with mmap_sem through
2988 	 *     perf_event_read_group(), which takes faults while
2989 	 *     holding ctx->mutex, however this is called after
2990 	 *     the last filedesc died, so there is no possibility
2991 	 *     to trigger the AB-BA case.
2992 	 */
2993 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2994 	raw_spin_lock_irq(&ctx->lock);
2995 	perf_group_detach(event);
2996 	raw_spin_unlock_irq(&ctx->lock);
2997 	perf_remove_from_context(event);
2998 	mutex_unlock(&ctx->mutex);
2999 
3000 	free_event(event);
3001 
3002 	return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3005 
3006 /*
3007  * Called when the last reference to the file is gone.
3008  */
3009 static int perf_release(struct inode *inode, struct file *file)
3010 {
3011 	struct perf_event *event = file->private_data;
3012 	struct task_struct *owner;
3013 
3014 	file->private_data = NULL;
3015 
3016 	rcu_read_lock();
3017 	owner = ACCESS_ONCE(event->owner);
3018 	/*
3019 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3020 	 * !owner it means the list deletion is complete and we can indeed
3021 	 * free this event, otherwise we need to serialize on
3022 	 * owner->perf_event_mutex.
3023 	 */
3024 	smp_read_barrier_depends();
3025 	if (owner) {
3026 		/*
3027 		 * Since delayed_put_task_struct() also drops the last
3028 		 * task reference we can safely take a new reference
3029 		 * while holding the rcu_read_lock().
3030 		 */
3031 		get_task_struct(owner);
3032 	}
3033 	rcu_read_unlock();
3034 
3035 	if (owner) {
3036 		mutex_lock(&owner->perf_event_mutex);
3037 		/*
3038 		 * We have to re-check the event->owner field, if it is cleared
3039 		 * we raced with perf_event_exit_task(), acquiring the mutex
3040 		 * ensured they're done, and we can proceed with freeing the
3041 		 * event.
3042 		 */
3043 		if (event->owner)
3044 			list_del_init(&event->owner_entry);
3045 		mutex_unlock(&owner->perf_event_mutex);
3046 		put_task_struct(owner);
3047 	}
3048 
3049 	return perf_event_release_kernel(event);
3050 }
3051 
3052 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3053 {
3054 	struct perf_event *child;
3055 	u64 total = 0;
3056 
3057 	*enabled = 0;
3058 	*running = 0;
3059 
3060 	mutex_lock(&event->child_mutex);
3061 	total += perf_event_read(event);
3062 	*enabled += event->total_time_enabled +
3063 			atomic64_read(&event->child_total_time_enabled);
3064 	*running += event->total_time_running +
3065 			atomic64_read(&event->child_total_time_running);
3066 
3067 	list_for_each_entry(child, &event->child_list, child_list) {
3068 		total += perf_event_read(child);
3069 		*enabled += child->total_time_enabled;
3070 		*running += child->total_time_running;
3071 	}
3072 	mutex_unlock(&event->child_mutex);
3073 
3074 	return total;
3075 }
3076 EXPORT_SYMBOL_GPL(perf_event_read_value);
3077 
3078 static int perf_event_read_group(struct perf_event *event,
3079 				   u64 read_format, char __user *buf)
3080 {
3081 	struct perf_event *leader = event->group_leader, *sub;
3082 	int n = 0, size = 0, ret = -EFAULT;
3083 	struct perf_event_context *ctx = leader->ctx;
3084 	u64 values[5];
3085 	u64 count, enabled, running;
3086 
3087 	mutex_lock(&ctx->mutex);
3088 	count = perf_event_read_value(leader, &enabled, &running);
3089 
3090 	values[n++] = 1 + leader->nr_siblings;
3091 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3092 		values[n++] = enabled;
3093 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3094 		values[n++] = running;
3095 	values[n++] = count;
3096 	if (read_format & PERF_FORMAT_ID)
3097 		values[n++] = primary_event_id(leader);
3098 
3099 	size = n * sizeof(u64);
3100 
3101 	if (copy_to_user(buf, values, size))
3102 		goto unlock;
3103 
3104 	ret = size;
3105 
3106 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3107 		n = 0;
3108 
3109 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3110 		if (read_format & PERF_FORMAT_ID)
3111 			values[n++] = primary_event_id(sub);
3112 
3113 		size = n * sizeof(u64);
3114 
3115 		if (copy_to_user(buf + ret, values, size)) {
3116 			ret = -EFAULT;
3117 			goto unlock;
3118 		}
3119 
3120 		ret += size;
3121 	}
3122 unlock:
3123 	mutex_unlock(&ctx->mutex);
3124 
3125 	return ret;
3126 }
3127 
3128 static int perf_event_read_one(struct perf_event *event,
3129 				 u64 read_format, char __user *buf)
3130 {
3131 	u64 enabled, running;
3132 	u64 values[4];
3133 	int n = 0;
3134 
3135 	values[n++] = perf_event_read_value(event, &enabled, &running);
3136 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3137 		values[n++] = enabled;
3138 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3139 		values[n++] = running;
3140 	if (read_format & PERF_FORMAT_ID)
3141 		values[n++] = primary_event_id(event);
3142 
3143 	if (copy_to_user(buf, values, n * sizeof(u64)))
3144 		return -EFAULT;
3145 
3146 	return n * sizeof(u64);
3147 }
3148 
3149 /*
3150  * Read the performance event - simple non blocking version for now
3151  */
3152 static ssize_t
3153 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3154 {
3155 	u64 read_format = event->attr.read_format;
3156 	int ret;
3157 
3158 	/*
3159 	 * Return end-of-file for a read on a event that is in
3160 	 * error state (i.e. because it was pinned but it couldn't be
3161 	 * scheduled on to the CPU at some point).
3162 	 */
3163 	if (event->state == PERF_EVENT_STATE_ERROR)
3164 		return 0;
3165 
3166 	if (count < event->read_size)
3167 		return -ENOSPC;
3168 
3169 	WARN_ON_ONCE(event->ctx->parent_ctx);
3170 	if (read_format & PERF_FORMAT_GROUP)
3171 		ret = perf_event_read_group(event, read_format, buf);
3172 	else
3173 		ret = perf_event_read_one(event, read_format, buf);
3174 
3175 	return ret;
3176 }
3177 
3178 static ssize_t
3179 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3180 {
3181 	struct perf_event *event = file->private_data;
3182 
3183 	return perf_read_hw(event, buf, count);
3184 }
3185 
3186 static unsigned int perf_poll(struct file *file, poll_table *wait)
3187 {
3188 	struct perf_event *event = file->private_data;
3189 	struct ring_buffer *rb;
3190 	unsigned int events = POLL_HUP;
3191 
3192 	rcu_read_lock();
3193 	rb = rcu_dereference(event->rb);
3194 	if (rb)
3195 		events = atomic_xchg(&rb->poll, 0);
3196 	rcu_read_unlock();
3197 
3198 	poll_wait(file, &event->waitq, wait);
3199 
3200 	return events;
3201 }
3202 
3203 static void perf_event_reset(struct perf_event *event)
3204 {
3205 	(void)perf_event_read(event);
3206 	local64_set(&event->count, 0);
3207 	perf_event_update_userpage(event);
3208 }
3209 
3210 /*
3211  * Holding the top-level event's child_mutex means that any
3212  * descendant process that has inherited this event will block
3213  * in sync_child_event if it goes to exit, thus satisfying the
3214  * task existence requirements of perf_event_enable/disable.
3215  */
3216 static void perf_event_for_each_child(struct perf_event *event,
3217 					void (*func)(struct perf_event *))
3218 {
3219 	struct perf_event *child;
3220 
3221 	WARN_ON_ONCE(event->ctx->parent_ctx);
3222 	mutex_lock(&event->child_mutex);
3223 	func(event);
3224 	list_for_each_entry(child, &event->child_list, child_list)
3225 		func(child);
3226 	mutex_unlock(&event->child_mutex);
3227 }
3228 
3229 static void perf_event_for_each(struct perf_event *event,
3230 				  void (*func)(struct perf_event *))
3231 {
3232 	struct perf_event_context *ctx = event->ctx;
3233 	struct perf_event *sibling;
3234 
3235 	WARN_ON_ONCE(ctx->parent_ctx);
3236 	mutex_lock(&ctx->mutex);
3237 	event = event->group_leader;
3238 
3239 	perf_event_for_each_child(event, func);
3240 	func(event);
3241 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3242 		perf_event_for_each_child(event, func);
3243 	mutex_unlock(&ctx->mutex);
3244 }
3245 
3246 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3247 {
3248 	struct perf_event_context *ctx = event->ctx;
3249 	int ret = 0;
3250 	u64 value;
3251 
3252 	if (!is_sampling_event(event))
3253 		return -EINVAL;
3254 
3255 	if (copy_from_user(&value, arg, sizeof(value)))
3256 		return -EFAULT;
3257 
3258 	if (!value)
3259 		return -EINVAL;
3260 
3261 	raw_spin_lock_irq(&ctx->lock);
3262 	if (event->attr.freq) {
3263 		if (value > sysctl_perf_event_sample_rate) {
3264 			ret = -EINVAL;
3265 			goto unlock;
3266 		}
3267 
3268 		event->attr.sample_freq = value;
3269 	} else {
3270 		event->attr.sample_period = value;
3271 		event->hw.sample_period = value;
3272 	}
3273 unlock:
3274 	raw_spin_unlock_irq(&ctx->lock);
3275 
3276 	return ret;
3277 }
3278 
3279 static const struct file_operations perf_fops;
3280 
3281 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3282 {
3283 	struct file *file;
3284 
3285 	file = fget_light(fd, fput_needed);
3286 	if (!file)
3287 		return ERR_PTR(-EBADF);
3288 
3289 	if (file->f_op != &perf_fops) {
3290 		fput_light(file, *fput_needed);
3291 		*fput_needed = 0;
3292 		return ERR_PTR(-EBADF);
3293 	}
3294 
3295 	return file->private_data;
3296 }
3297 
3298 static int perf_event_set_output(struct perf_event *event,
3299 				 struct perf_event *output_event);
3300 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3301 
3302 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3303 {
3304 	struct perf_event *event = file->private_data;
3305 	void (*func)(struct perf_event *);
3306 	u32 flags = arg;
3307 
3308 	switch (cmd) {
3309 	case PERF_EVENT_IOC_ENABLE:
3310 		func = perf_event_enable;
3311 		break;
3312 	case PERF_EVENT_IOC_DISABLE:
3313 		func = perf_event_disable;
3314 		break;
3315 	case PERF_EVENT_IOC_RESET:
3316 		func = perf_event_reset;
3317 		break;
3318 
3319 	case PERF_EVENT_IOC_REFRESH:
3320 		return perf_event_refresh(event, arg);
3321 
3322 	case PERF_EVENT_IOC_PERIOD:
3323 		return perf_event_period(event, (u64 __user *)arg);
3324 
3325 	case PERF_EVENT_IOC_SET_OUTPUT:
3326 	{
3327 		struct perf_event *output_event = NULL;
3328 		int fput_needed = 0;
3329 		int ret;
3330 
3331 		if (arg != -1) {
3332 			output_event = perf_fget_light(arg, &fput_needed);
3333 			if (IS_ERR(output_event))
3334 				return PTR_ERR(output_event);
3335 		}
3336 
3337 		ret = perf_event_set_output(event, output_event);
3338 		if (output_event)
3339 			fput_light(output_event->filp, fput_needed);
3340 
3341 		return ret;
3342 	}
3343 
3344 	case PERF_EVENT_IOC_SET_FILTER:
3345 		return perf_event_set_filter(event, (void __user *)arg);
3346 
3347 	default:
3348 		return -ENOTTY;
3349 	}
3350 
3351 	if (flags & PERF_IOC_FLAG_GROUP)
3352 		perf_event_for_each(event, func);
3353 	else
3354 		perf_event_for_each_child(event, func);
3355 
3356 	return 0;
3357 }
3358 
3359 int perf_event_task_enable(void)
3360 {
3361 	struct perf_event *event;
3362 
3363 	mutex_lock(&current->perf_event_mutex);
3364 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3365 		perf_event_for_each_child(event, perf_event_enable);
3366 	mutex_unlock(&current->perf_event_mutex);
3367 
3368 	return 0;
3369 }
3370 
3371 int perf_event_task_disable(void)
3372 {
3373 	struct perf_event *event;
3374 
3375 	mutex_lock(&current->perf_event_mutex);
3376 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3377 		perf_event_for_each_child(event, perf_event_disable);
3378 	mutex_unlock(&current->perf_event_mutex);
3379 
3380 	return 0;
3381 }
3382 
3383 #ifndef PERF_EVENT_INDEX_OFFSET
3384 # define PERF_EVENT_INDEX_OFFSET 0
3385 #endif
3386 
3387 static int perf_event_index(struct perf_event *event)
3388 {
3389 	if (event->hw.state & PERF_HES_STOPPED)
3390 		return 0;
3391 
3392 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3393 		return 0;
3394 
3395 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3396 }
3397 
3398 static void calc_timer_values(struct perf_event *event,
3399 				u64 *enabled,
3400 				u64 *running)
3401 {
3402 	u64 now, ctx_time;
3403 
3404 	now = perf_clock();
3405 	ctx_time = event->shadow_ctx_time + now;
3406 	*enabled = ctx_time - event->tstamp_enabled;
3407 	*running = ctx_time - event->tstamp_running;
3408 }
3409 
3410 /*
3411  * Callers need to ensure there can be no nesting of this function, otherwise
3412  * the seqlock logic goes bad. We can not serialize this because the arch
3413  * code calls this from NMI context.
3414  */
3415 void perf_event_update_userpage(struct perf_event *event)
3416 {
3417 	struct perf_event_mmap_page *userpg;
3418 	struct ring_buffer *rb;
3419 	u64 enabled, running;
3420 
3421 	rcu_read_lock();
3422 	/*
3423 	 * compute total_time_enabled, total_time_running
3424 	 * based on snapshot values taken when the event
3425 	 * was last scheduled in.
3426 	 *
3427 	 * we cannot simply called update_context_time()
3428 	 * because of locking issue as we can be called in
3429 	 * NMI context
3430 	 */
3431 	calc_timer_values(event, &enabled, &running);
3432 	rb = rcu_dereference(event->rb);
3433 	if (!rb)
3434 		goto unlock;
3435 
3436 	userpg = rb->user_page;
3437 
3438 	/*
3439 	 * Disable preemption so as to not let the corresponding user-space
3440 	 * spin too long if we get preempted.
3441 	 */
3442 	preempt_disable();
3443 	++userpg->lock;
3444 	barrier();
3445 	userpg->index = perf_event_index(event);
3446 	userpg->offset = perf_event_count(event);
3447 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3448 		userpg->offset -= local64_read(&event->hw.prev_count);
3449 
3450 	userpg->time_enabled = enabled +
3451 			atomic64_read(&event->child_total_time_enabled);
3452 
3453 	userpg->time_running = running +
3454 			atomic64_read(&event->child_total_time_running);
3455 
3456 	barrier();
3457 	++userpg->lock;
3458 	preempt_enable();
3459 unlock:
3460 	rcu_read_unlock();
3461 }
3462 
3463 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3464 {
3465 	struct perf_event *event = vma->vm_file->private_data;
3466 	struct ring_buffer *rb;
3467 	int ret = VM_FAULT_SIGBUS;
3468 
3469 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3470 		if (vmf->pgoff == 0)
3471 			ret = 0;
3472 		return ret;
3473 	}
3474 
3475 	rcu_read_lock();
3476 	rb = rcu_dereference(event->rb);
3477 	if (!rb)
3478 		goto unlock;
3479 
3480 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3481 		goto unlock;
3482 
3483 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3484 	if (!vmf->page)
3485 		goto unlock;
3486 
3487 	get_page(vmf->page);
3488 	vmf->page->mapping = vma->vm_file->f_mapping;
3489 	vmf->page->index   = vmf->pgoff;
3490 
3491 	ret = 0;
3492 unlock:
3493 	rcu_read_unlock();
3494 
3495 	return ret;
3496 }
3497 
3498 static void rb_free_rcu(struct rcu_head *rcu_head)
3499 {
3500 	struct ring_buffer *rb;
3501 
3502 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3503 	rb_free(rb);
3504 }
3505 
3506 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3507 {
3508 	struct ring_buffer *rb;
3509 
3510 	rcu_read_lock();
3511 	rb = rcu_dereference(event->rb);
3512 	if (rb) {
3513 		if (!atomic_inc_not_zero(&rb->refcount))
3514 			rb = NULL;
3515 	}
3516 	rcu_read_unlock();
3517 
3518 	return rb;
3519 }
3520 
3521 static void ring_buffer_put(struct ring_buffer *rb)
3522 {
3523 	if (!atomic_dec_and_test(&rb->refcount))
3524 		return;
3525 
3526 	call_rcu(&rb->rcu_head, rb_free_rcu);
3527 }
3528 
3529 static void perf_mmap_open(struct vm_area_struct *vma)
3530 {
3531 	struct perf_event *event = vma->vm_file->private_data;
3532 
3533 	atomic_inc(&event->mmap_count);
3534 }
3535 
3536 static void perf_mmap_close(struct vm_area_struct *vma)
3537 {
3538 	struct perf_event *event = vma->vm_file->private_data;
3539 
3540 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3541 		unsigned long size = perf_data_size(event->rb);
3542 		struct user_struct *user = event->mmap_user;
3543 		struct ring_buffer *rb = event->rb;
3544 
3545 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3546 		vma->vm_mm->locked_vm -= event->mmap_locked;
3547 		rcu_assign_pointer(event->rb, NULL);
3548 		mutex_unlock(&event->mmap_mutex);
3549 
3550 		ring_buffer_put(rb);
3551 		free_uid(user);
3552 	}
3553 }
3554 
3555 static const struct vm_operations_struct perf_mmap_vmops = {
3556 	.open		= perf_mmap_open,
3557 	.close		= perf_mmap_close,
3558 	.fault		= perf_mmap_fault,
3559 	.page_mkwrite	= perf_mmap_fault,
3560 };
3561 
3562 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3563 {
3564 	struct perf_event *event = file->private_data;
3565 	unsigned long user_locked, user_lock_limit;
3566 	struct user_struct *user = current_user();
3567 	unsigned long locked, lock_limit;
3568 	struct ring_buffer *rb;
3569 	unsigned long vma_size;
3570 	unsigned long nr_pages;
3571 	long user_extra, extra;
3572 	int ret = 0, flags = 0;
3573 
3574 	/*
3575 	 * Don't allow mmap() of inherited per-task counters. This would
3576 	 * create a performance issue due to all children writing to the
3577 	 * same rb.
3578 	 */
3579 	if (event->cpu == -1 && event->attr.inherit)
3580 		return -EINVAL;
3581 
3582 	if (!(vma->vm_flags & VM_SHARED))
3583 		return -EINVAL;
3584 
3585 	vma_size = vma->vm_end - vma->vm_start;
3586 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3587 
3588 	/*
3589 	 * If we have rb pages ensure they're a power-of-two number, so we
3590 	 * can do bitmasks instead of modulo.
3591 	 */
3592 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3593 		return -EINVAL;
3594 
3595 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3596 		return -EINVAL;
3597 
3598 	if (vma->vm_pgoff != 0)
3599 		return -EINVAL;
3600 
3601 	WARN_ON_ONCE(event->ctx->parent_ctx);
3602 	mutex_lock(&event->mmap_mutex);
3603 	if (event->rb) {
3604 		if (event->rb->nr_pages == nr_pages)
3605 			atomic_inc(&event->rb->refcount);
3606 		else
3607 			ret = -EINVAL;
3608 		goto unlock;
3609 	}
3610 
3611 	user_extra = nr_pages + 1;
3612 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3613 
3614 	/*
3615 	 * Increase the limit linearly with more CPUs:
3616 	 */
3617 	user_lock_limit *= num_online_cpus();
3618 
3619 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3620 
3621 	extra = 0;
3622 	if (user_locked > user_lock_limit)
3623 		extra = user_locked - user_lock_limit;
3624 
3625 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3626 	lock_limit >>= PAGE_SHIFT;
3627 	locked = vma->vm_mm->locked_vm + extra;
3628 
3629 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3630 		!capable(CAP_IPC_LOCK)) {
3631 		ret = -EPERM;
3632 		goto unlock;
3633 	}
3634 
3635 	WARN_ON(event->rb);
3636 
3637 	if (vma->vm_flags & VM_WRITE)
3638 		flags |= RING_BUFFER_WRITABLE;
3639 
3640 	rb = rb_alloc(nr_pages,
3641 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3642 		event->cpu, flags);
3643 
3644 	if (!rb) {
3645 		ret = -ENOMEM;
3646 		goto unlock;
3647 	}
3648 	rcu_assign_pointer(event->rb, rb);
3649 
3650 	atomic_long_add(user_extra, &user->locked_vm);
3651 	event->mmap_locked = extra;
3652 	event->mmap_user = get_current_user();
3653 	vma->vm_mm->locked_vm += event->mmap_locked;
3654 
3655 unlock:
3656 	if (!ret)
3657 		atomic_inc(&event->mmap_count);
3658 	mutex_unlock(&event->mmap_mutex);
3659 
3660 	vma->vm_flags |= VM_RESERVED;
3661 	vma->vm_ops = &perf_mmap_vmops;
3662 
3663 	return ret;
3664 }
3665 
3666 static int perf_fasync(int fd, struct file *filp, int on)
3667 {
3668 	struct inode *inode = filp->f_path.dentry->d_inode;
3669 	struct perf_event *event = filp->private_data;
3670 	int retval;
3671 
3672 	mutex_lock(&inode->i_mutex);
3673 	retval = fasync_helper(fd, filp, on, &event->fasync);
3674 	mutex_unlock(&inode->i_mutex);
3675 
3676 	if (retval < 0)
3677 		return retval;
3678 
3679 	return 0;
3680 }
3681 
3682 static const struct file_operations perf_fops = {
3683 	.llseek			= no_llseek,
3684 	.release		= perf_release,
3685 	.read			= perf_read,
3686 	.poll			= perf_poll,
3687 	.unlocked_ioctl		= perf_ioctl,
3688 	.compat_ioctl		= perf_ioctl,
3689 	.mmap			= perf_mmap,
3690 	.fasync			= perf_fasync,
3691 };
3692 
3693 /*
3694  * Perf event wakeup
3695  *
3696  * If there's data, ensure we set the poll() state and publish everything
3697  * to user-space before waking everybody up.
3698  */
3699 
3700 void perf_event_wakeup(struct perf_event *event)
3701 {
3702 	wake_up_all(&event->waitq);
3703 
3704 	if (event->pending_kill) {
3705 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3706 		event->pending_kill = 0;
3707 	}
3708 }
3709 
3710 static void perf_pending_event(struct irq_work *entry)
3711 {
3712 	struct perf_event *event = container_of(entry,
3713 			struct perf_event, pending);
3714 
3715 	if (event->pending_disable) {
3716 		event->pending_disable = 0;
3717 		__perf_event_disable(event);
3718 	}
3719 
3720 	if (event->pending_wakeup) {
3721 		event->pending_wakeup = 0;
3722 		perf_event_wakeup(event);
3723 	}
3724 }
3725 
3726 /*
3727  * We assume there is only KVM supporting the callbacks.
3728  * Later on, we might change it to a list if there is
3729  * another virtualization implementation supporting the callbacks.
3730  */
3731 struct perf_guest_info_callbacks *perf_guest_cbs;
3732 
3733 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3734 {
3735 	perf_guest_cbs = cbs;
3736 	return 0;
3737 }
3738 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3739 
3740 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741 {
3742 	perf_guest_cbs = NULL;
3743 	return 0;
3744 }
3745 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3746 
3747 static void __perf_event_header__init_id(struct perf_event_header *header,
3748 					 struct perf_sample_data *data,
3749 					 struct perf_event *event)
3750 {
3751 	u64 sample_type = event->attr.sample_type;
3752 
3753 	data->type = sample_type;
3754 	header->size += event->id_header_size;
3755 
3756 	if (sample_type & PERF_SAMPLE_TID) {
3757 		/* namespace issues */
3758 		data->tid_entry.pid = perf_event_pid(event, current);
3759 		data->tid_entry.tid = perf_event_tid(event, current);
3760 	}
3761 
3762 	if (sample_type & PERF_SAMPLE_TIME)
3763 		data->time = perf_clock();
3764 
3765 	if (sample_type & PERF_SAMPLE_ID)
3766 		data->id = primary_event_id(event);
3767 
3768 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3769 		data->stream_id = event->id;
3770 
3771 	if (sample_type & PERF_SAMPLE_CPU) {
3772 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3773 		data->cpu_entry.reserved = 0;
3774 	}
3775 }
3776 
3777 void perf_event_header__init_id(struct perf_event_header *header,
3778 				struct perf_sample_data *data,
3779 				struct perf_event *event)
3780 {
3781 	if (event->attr.sample_id_all)
3782 		__perf_event_header__init_id(header, data, event);
3783 }
3784 
3785 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3786 					   struct perf_sample_data *data)
3787 {
3788 	u64 sample_type = data->type;
3789 
3790 	if (sample_type & PERF_SAMPLE_TID)
3791 		perf_output_put(handle, data->tid_entry);
3792 
3793 	if (sample_type & PERF_SAMPLE_TIME)
3794 		perf_output_put(handle, data->time);
3795 
3796 	if (sample_type & PERF_SAMPLE_ID)
3797 		perf_output_put(handle, data->id);
3798 
3799 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3800 		perf_output_put(handle, data->stream_id);
3801 
3802 	if (sample_type & PERF_SAMPLE_CPU)
3803 		perf_output_put(handle, data->cpu_entry);
3804 }
3805 
3806 void perf_event__output_id_sample(struct perf_event *event,
3807 				  struct perf_output_handle *handle,
3808 				  struct perf_sample_data *sample)
3809 {
3810 	if (event->attr.sample_id_all)
3811 		__perf_event__output_id_sample(handle, sample);
3812 }
3813 
3814 static void perf_output_read_one(struct perf_output_handle *handle,
3815 				 struct perf_event *event,
3816 				 u64 enabled, u64 running)
3817 {
3818 	u64 read_format = event->attr.read_format;
3819 	u64 values[4];
3820 	int n = 0;
3821 
3822 	values[n++] = perf_event_count(event);
3823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3824 		values[n++] = enabled +
3825 			atomic64_read(&event->child_total_time_enabled);
3826 	}
3827 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3828 		values[n++] = running +
3829 			atomic64_read(&event->child_total_time_running);
3830 	}
3831 	if (read_format & PERF_FORMAT_ID)
3832 		values[n++] = primary_event_id(event);
3833 
3834 	__output_copy(handle, values, n * sizeof(u64));
3835 }
3836 
3837 /*
3838  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3839  */
3840 static void perf_output_read_group(struct perf_output_handle *handle,
3841 			    struct perf_event *event,
3842 			    u64 enabled, u64 running)
3843 {
3844 	struct perf_event *leader = event->group_leader, *sub;
3845 	u64 read_format = event->attr.read_format;
3846 	u64 values[5];
3847 	int n = 0;
3848 
3849 	values[n++] = 1 + leader->nr_siblings;
3850 
3851 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3852 		values[n++] = enabled;
3853 
3854 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3855 		values[n++] = running;
3856 
3857 	if (leader != event)
3858 		leader->pmu->read(leader);
3859 
3860 	values[n++] = perf_event_count(leader);
3861 	if (read_format & PERF_FORMAT_ID)
3862 		values[n++] = primary_event_id(leader);
3863 
3864 	__output_copy(handle, values, n * sizeof(u64));
3865 
3866 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3867 		n = 0;
3868 
3869 		if (sub != event)
3870 			sub->pmu->read(sub);
3871 
3872 		values[n++] = perf_event_count(sub);
3873 		if (read_format & PERF_FORMAT_ID)
3874 			values[n++] = primary_event_id(sub);
3875 
3876 		__output_copy(handle, values, n * sizeof(u64));
3877 	}
3878 }
3879 
3880 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3881 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3882 
3883 static void perf_output_read(struct perf_output_handle *handle,
3884 			     struct perf_event *event)
3885 {
3886 	u64 enabled = 0, running = 0;
3887 	u64 read_format = event->attr.read_format;
3888 
3889 	/*
3890 	 * compute total_time_enabled, total_time_running
3891 	 * based on snapshot values taken when the event
3892 	 * was last scheduled in.
3893 	 *
3894 	 * we cannot simply called update_context_time()
3895 	 * because of locking issue as we are called in
3896 	 * NMI context
3897 	 */
3898 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3899 		calc_timer_values(event, &enabled, &running);
3900 
3901 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3902 		perf_output_read_group(handle, event, enabled, running);
3903 	else
3904 		perf_output_read_one(handle, event, enabled, running);
3905 }
3906 
3907 void perf_output_sample(struct perf_output_handle *handle,
3908 			struct perf_event_header *header,
3909 			struct perf_sample_data *data,
3910 			struct perf_event *event)
3911 {
3912 	u64 sample_type = data->type;
3913 
3914 	perf_output_put(handle, *header);
3915 
3916 	if (sample_type & PERF_SAMPLE_IP)
3917 		perf_output_put(handle, data->ip);
3918 
3919 	if (sample_type & PERF_SAMPLE_TID)
3920 		perf_output_put(handle, data->tid_entry);
3921 
3922 	if (sample_type & PERF_SAMPLE_TIME)
3923 		perf_output_put(handle, data->time);
3924 
3925 	if (sample_type & PERF_SAMPLE_ADDR)
3926 		perf_output_put(handle, data->addr);
3927 
3928 	if (sample_type & PERF_SAMPLE_ID)
3929 		perf_output_put(handle, data->id);
3930 
3931 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3932 		perf_output_put(handle, data->stream_id);
3933 
3934 	if (sample_type & PERF_SAMPLE_CPU)
3935 		perf_output_put(handle, data->cpu_entry);
3936 
3937 	if (sample_type & PERF_SAMPLE_PERIOD)
3938 		perf_output_put(handle, data->period);
3939 
3940 	if (sample_type & PERF_SAMPLE_READ)
3941 		perf_output_read(handle, event);
3942 
3943 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3944 		if (data->callchain) {
3945 			int size = 1;
3946 
3947 			if (data->callchain)
3948 				size += data->callchain->nr;
3949 
3950 			size *= sizeof(u64);
3951 
3952 			__output_copy(handle, data->callchain, size);
3953 		} else {
3954 			u64 nr = 0;
3955 			perf_output_put(handle, nr);
3956 		}
3957 	}
3958 
3959 	if (sample_type & PERF_SAMPLE_RAW) {
3960 		if (data->raw) {
3961 			perf_output_put(handle, data->raw->size);
3962 			__output_copy(handle, data->raw->data,
3963 					   data->raw->size);
3964 		} else {
3965 			struct {
3966 				u32	size;
3967 				u32	data;
3968 			} raw = {
3969 				.size = sizeof(u32),
3970 				.data = 0,
3971 			};
3972 			perf_output_put(handle, raw);
3973 		}
3974 	}
3975 
3976 	if (!event->attr.watermark) {
3977 		int wakeup_events = event->attr.wakeup_events;
3978 
3979 		if (wakeup_events) {
3980 			struct ring_buffer *rb = handle->rb;
3981 			int events = local_inc_return(&rb->events);
3982 
3983 			if (events >= wakeup_events) {
3984 				local_sub(wakeup_events, &rb->events);
3985 				local_inc(&rb->wakeup);
3986 			}
3987 		}
3988 	}
3989 }
3990 
3991 void perf_prepare_sample(struct perf_event_header *header,
3992 			 struct perf_sample_data *data,
3993 			 struct perf_event *event,
3994 			 struct pt_regs *regs)
3995 {
3996 	u64 sample_type = event->attr.sample_type;
3997 
3998 	header->type = PERF_RECORD_SAMPLE;
3999 	header->size = sizeof(*header) + event->header_size;
4000 
4001 	header->misc = 0;
4002 	header->misc |= perf_misc_flags(regs);
4003 
4004 	__perf_event_header__init_id(header, data, event);
4005 
4006 	if (sample_type & PERF_SAMPLE_IP)
4007 		data->ip = perf_instruction_pointer(regs);
4008 
4009 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4010 		int size = 1;
4011 
4012 		data->callchain = perf_callchain(regs);
4013 
4014 		if (data->callchain)
4015 			size += data->callchain->nr;
4016 
4017 		header->size += size * sizeof(u64);
4018 	}
4019 
4020 	if (sample_type & PERF_SAMPLE_RAW) {
4021 		int size = sizeof(u32);
4022 
4023 		if (data->raw)
4024 			size += data->raw->size;
4025 		else
4026 			size += sizeof(u32);
4027 
4028 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4029 		header->size += size;
4030 	}
4031 }
4032 
4033 static void perf_event_output(struct perf_event *event,
4034 				struct perf_sample_data *data,
4035 				struct pt_regs *regs)
4036 {
4037 	struct perf_output_handle handle;
4038 	struct perf_event_header header;
4039 
4040 	/* protect the callchain buffers */
4041 	rcu_read_lock();
4042 
4043 	perf_prepare_sample(&header, data, event, regs);
4044 
4045 	if (perf_output_begin(&handle, event, header.size))
4046 		goto exit;
4047 
4048 	perf_output_sample(&handle, &header, data, event);
4049 
4050 	perf_output_end(&handle);
4051 
4052 exit:
4053 	rcu_read_unlock();
4054 }
4055 
4056 /*
4057  * read event_id
4058  */
4059 
4060 struct perf_read_event {
4061 	struct perf_event_header	header;
4062 
4063 	u32				pid;
4064 	u32				tid;
4065 };
4066 
4067 static void
4068 perf_event_read_event(struct perf_event *event,
4069 			struct task_struct *task)
4070 {
4071 	struct perf_output_handle handle;
4072 	struct perf_sample_data sample;
4073 	struct perf_read_event read_event = {
4074 		.header = {
4075 			.type = PERF_RECORD_READ,
4076 			.misc = 0,
4077 			.size = sizeof(read_event) + event->read_size,
4078 		},
4079 		.pid = perf_event_pid(event, task),
4080 		.tid = perf_event_tid(event, task),
4081 	};
4082 	int ret;
4083 
4084 	perf_event_header__init_id(&read_event.header, &sample, event);
4085 	ret = perf_output_begin(&handle, event, read_event.header.size);
4086 	if (ret)
4087 		return;
4088 
4089 	perf_output_put(&handle, read_event);
4090 	perf_output_read(&handle, event);
4091 	perf_event__output_id_sample(event, &handle, &sample);
4092 
4093 	perf_output_end(&handle);
4094 }
4095 
4096 /*
4097  * task tracking -- fork/exit
4098  *
4099  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4100  */
4101 
4102 struct perf_task_event {
4103 	struct task_struct		*task;
4104 	struct perf_event_context	*task_ctx;
4105 
4106 	struct {
4107 		struct perf_event_header	header;
4108 
4109 		u32				pid;
4110 		u32				ppid;
4111 		u32				tid;
4112 		u32				ptid;
4113 		u64				time;
4114 	} event_id;
4115 };
4116 
4117 static void perf_event_task_output(struct perf_event *event,
4118 				     struct perf_task_event *task_event)
4119 {
4120 	struct perf_output_handle handle;
4121 	struct perf_sample_data	sample;
4122 	struct task_struct *task = task_event->task;
4123 	int ret, size = task_event->event_id.header.size;
4124 
4125 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4126 
4127 	ret = perf_output_begin(&handle, event,
4128 				task_event->event_id.header.size);
4129 	if (ret)
4130 		goto out;
4131 
4132 	task_event->event_id.pid = perf_event_pid(event, task);
4133 	task_event->event_id.ppid = perf_event_pid(event, current);
4134 
4135 	task_event->event_id.tid = perf_event_tid(event, task);
4136 	task_event->event_id.ptid = perf_event_tid(event, current);
4137 
4138 	perf_output_put(&handle, task_event->event_id);
4139 
4140 	perf_event__output_id_sample(event, &handle, &sample);
4141 
4142 	perf_output_end(&handle);
4143 out:
4144 	task_event->event_id.header.size = size;
4145 }
4146 
4147 static int perf_event_task_match(struct perf_event *event)
4148 {
4149 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4150 		return 0;
4151 
4152 	if (!event_filter_match(event))
4153 		return 0;
4154 
4155 	if (event->attr.comm || event->attr.mmap ||
4156 	    event->attr.mmap_data || event->attr.task)
4157 		return 1;
4158 
4159 	return 0;
4160 }
4161 
4162 static void perf_event_task_ctx(struct perf_event_context *ctx,
4163 				  struct perf_task_event *task_event)
4164 {
4165 	struct perf_event *event;
4166 
4167 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4168 		if (perf_event_task_match(event))
4169 			perf_event_task_output(event, task_event);
4170 	}
4171 }
4172 
4173 static void perf_event_task_event(struct perf_task_event *task_event)
4174 {
4175 	struct perf_cpu_context *cpuctx;
4176 	struct perf_event_context *ctx;
4177 	struct pmu *pmu;
4178 	int ctxn;
4179 
4180 	rcu_read_lock();
4181 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4182 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4183 		if (cpuctx->active_pmu != pmu)
4184 			goto next;
4185 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4186 
4187 		ctx = task_event->task_ctx;
4188 		if (!ctx) {
4189 			ctxn = pmu->task_ctx_nr;
4190 			if (ctxn < 0)
4191 				goto next;
4192 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4193 		}
4194 		if (ctx)
4195 			perf_event_task_ctx(ctx, task_event);
4196 next:
4197 		put_cpu_ptr(pmu->pmu_cpu_context);
4198 	}
4199 	rcu_read_unlock();
4200 }
4201 
4202 static void perf_event_task(struct task_struct *task,
4203 			      struct perf_event_context *task_ctx,
4204 			      int new)
4205 {
4206 	struct perf_task_event task_event;
4207 
4208 	if (!atomic_read(&nr_comm_events) &&
4209 	    !atomic_read(&nr_mmap_events) &&
4210 	    !atomic_read(&nr_task_events))
4211 		return;
4212 
4213 	task_event = (struct perf_task_event){
4214 		.task	  = task,
4215 		.task_ctx = task_ctx,
4216 		.event_id    = {
4217 			.header = {
4218 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4219 				.misc = 0,
4220 				.size = sizeof(task_event.event_id),
4221 			},
4222 			/* .pid  */
4223 			/* .ppid */
4224 			/* .tid  */
4225 			/* .ptid */
4226 			.time = perf_clock(),
4227 		},
4228 	};
4229 
4230 	perf_event_task_event(&task_event);
4231 }
4232 
4233 void perf_event_fork(struct task_struct *task)
4234 {
4235 	perf_event_task(task, NULL, 1);
4236 }
4237 
4238 /*
4239  * comm tracking
4240  */
4241 
4242 struct perf_comm_event {
4243 	struct task_struct	*task;
4244 	char			*comm;
4245 	int			comm_size;
4246 
4247 	struct {
4248 		struct perf_event_header	header;
4249 
4250 		u32				pid;
4251 		u32				tid;
4252 	} event_id;
4253 };
4254 
4255 static void perf_event_comm_output(struct perf_event *event,
4256 				     struct perf_comm_event *comm_event)
4257 {
4258 	struct perf_output_handle handle;
4259 	struct perf_sample_data sample;
4260 	int size = comm_event->event_id.header.size;
4261 	int ret;
4262 
4263 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4264 	ret = perf_output_begin(&handle, event,
4265 				comm_event->event_id.header.size);
4266 
4267 	if (ret)
4268 		goto out;
4269 
4270 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4271 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4272 
4273 	perf_output_put(&handle, comm_event->event_id);
4274 	__output_copy(&handle, comm_event->comm,
4275 				   comm_event->comm_size);
4276 
4277 	perf_event__output_id_sample(event, &handle, &sample);
4278 
4279 	perf_output_end(&handle);
4280 out:
4281 	comm_event->event_id.header.size = size;
4282 }
4283 
4284 static int perf_event_comm_match(struct perf_event *event)
4285 {
4286 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4287 		return 0;
4288 
4289 	if (!event_filter_match(event))
4290 		return 0;
4291 
4292 	if (event->attr.comm)
4293 		return 1;
4294 
4295 	return 0;
4296 }
4297 
4298 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4299 				  struct perf_comm_event *comm_event)
4300 {
4301 	struct perf_event *event;
4302 
4303 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4304 		if (perf_event_comm_match(event))
4305 			perf_event_comm_output(event, comm_event);
4306 	}
4307 }
4308 
4309 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4310 {
4311 	struct perf_cpu_context *cpuctx;
4312 	struct perf_event_context *ctx;
4313 	char comm[TASK_COMM_LEN];
4314 	unsigned int size;
4315 	struct pmu *pmu;
4316 	int ctxn;
4317 
4318 	memset(comm, 0, sizeof(comm));
4319 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4320 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4321 
4322 	comm_event->comm = comm;
4323 	comm_event->comm_size = size;
4324 
4325 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4326 	rcu_read_lock();
4327 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4328 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4329 		if (cpuctx->active_pmu != pmu)
4330 			goto next;
4331 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4332 
4333 		ctxn = pmu->task_ctx_nr;
4334 		if (ctxn < 0)
4335 			goto next;
4336 
4337 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4338 		if (ctx)
4339 			perf_event_comm_ctx(ctx, comm_event);
4340 next:
4341 		put_cpu_ptr(pmu->pmu_cpu_context);
4342 	}
4343 	rcu_read_unlock();
4344 }
4345 
4346 void perf_event_comm(struct task_struct *task)
4347 {
4348 	struct perf_comm_event comm_event;
4349 	struct perf_event_context *ctx;
4350 	int ctxn;
4351 
4352 	for_each_task_context_nr(ctxn) {
4353 		ctx = task->perf_event_ctxp[ctxn];
4354 		if (!ctx)
4355 			continue;
4356 
4357 		perf_event_enable_on_exec(ctx);
4358 	}
4359 
4360 	if (!atomic_read(&nr_comm_events))
4361 		return;
4362 
4363 	comm_event = (struct perf_comm_event){
4364 		.task	= task,
4365 		/* .comm      */
4366 		/* .comm_size */
4367 		.event_id  = {
4368 			.header = {
4369 				.type = PERF_RECORD_COMM,
4370 				.misc = 0,
4371 				/* .size */
4372 			},
4373 			/* .pid */
4374 			/* .tid */
4375 		},
4376 	};
4377 
4378 	perf_event_comm_event(&comm_event);
4379 }
4380 
4381 /*
4382  * mmap tracking
4383  */
4384 
4385 struct perf_mmap_event {
4386 	struct vm_area_struct	*vma;
4387 
4388 	const char		*file_name;
4389 	int			file_size;
4390 
4391 	struct {
4392 		struct perf_event_header	header;
4393 
4394 		u32				pid;
4395 		u32				tid;
4396 		u64				start;
4397 		u64				len;
4398 		u64				pgoff;
4399 	} event_id;
4400 };
4401 
4402 static void perf_event_mmap_output(struct perf_event *event,
4403 				     struct perf_mmap_event *mmap_event)
4404 {
4405 	struct perf_output_handle handle;
4406 	struct perf_sample_data sample;
4407 	int size = mmap_event->event_id.header.size;
4408 	int ret;
4409 
4410 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4411 	ret = perf_output_begin(&handle, event,
4412 				mmap_event->event_id.header.size);
4413 	if (ret)
4414 		goto out;
4415 
4416 	mmap_event->event_id.pid = perf_event_pid(event, current);
4417 	mmap_event->event_id.tid = perf_event_tid(event, current);
4418 
4419 	perf_output_put(&handle, mmap_event->event_id);
4420 	__output_copy(&handle, mmap_event->file_name,
4421 				   mmap_event->file_size);
4422 
4423 	perf_event__output_id_sample(event, &handle, &sample);
4424 
4425 	perf_output_end(&handle);
4426 out:
4427 	mmap_event->event_id.header.size = size;
4428 }
4429 
4430 static int perf_event_mmap_match(struct perf_event *event,
4431 				   struct perf_mmap_event *mmap_event,
4432 				   int executable)
4433 {
4434 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4435 		return 0;
4436 
4437 	if (!event_filter_match(event))
4438 		return 0;
4439 
4440 	if ((!executable && event->attr.mmap_data) ||
4441 	    (executable && event->attr.mmap))
4442 		return 1;
4443 
4444 	return 0;
4445 }
4446 
4447 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4448 				  struct perf_mmap_event *mmap_event,
4449 				  int executable)
4450 {
4451 	struct perf_event *event;
4452 
4453 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4454 		if (perf_event_mmap_match(event, mmap_event, executable))
4455 			perf_event_mmap_output(event, mmap_event);
4456 	}
4457 }
4458 
4459 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4460 {
4461 	struct perf_cpu_context *cpuctx;
4462 	struct perf_event_context *ctx;
4463 	struct vm_area_struct *vma = mmap_event->vma;
4464 	struct file *file = vma->vm_file;
4465 	unsigned int size;
4466 	char tmp[16];
4467 	char *buf = NULL;
4468 	const char *name;
4469 	struct pmu *pmu;
4470 	int ctxn;
4471 
4472 	memset(tmp, 0, sizeof(tmp));
4473 
4474 	if (file) {
4475 		/*
4476 		 * d_path works from the end of the rb backwards, so we
4477 		 * need to add enough zero bytes after the string to handle
4478 		 * the 64bit alignment we do later.
4479 		 */
4480 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4481 		if (!buf) {
4482 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4483 			goto got_name;
4484 		}
4485 		name = d_path(&file->f_path, buf, PATH_MAX);
4486 		if (IS_ERR(name)) {
4487 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4488 			goto got_name;
4489 		}
4490 	} else {
4491 		if (arch_vma_name(mmap_event->vma)) {
4492 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4493 				       sizeof(tmp));
4494 			goto got_name;
4495 		}
4496 
4497 		if (!vma->vm_mm) {
4498 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4499 			goto got_name;
4500 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4501 				vma->vm_end >= vma->vm_mm->brk) {
4502 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4503 			goto got_name;
4504 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4505 				vma->vm_end >= vma->vm_mm->start_stack) {
4506 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4507 			goto got_name;
4508 		}
4509 
4510 		name = strncpy(tmp, "//anon", sizeof(tmp));
4511 		goto got_name;
4512 	}
4513 
4514 got_name:
4515 	size = ALIGN(strlen(name)+1, sizeof(u64));
4516 
4517 	mmap_event->file_name = name;
4518 	mmap_event->file_size = size;
4519 
4520 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4521 
4522 	rcu_read_lock();
4523 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4524 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4525 		if (cpuctx->active_pmu != pmu)
4526 			goto next;
4527 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4528 					vma->vm_flags & VM_EXEC);
4529 
4530 		ctxn = pmu->task_ctx_nr;
4531 		if (ctxn < 0)
4532 			goto next;
4533 
4534 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4535 		if (ctx) {
4536 			perf_event_mmap_ctx(ctx, mmap_event,
4537 					vma->vm_flags & VM_EXEC);
4538 		}
4539 next:
4540 		put_cpu_ptr(pmu->pmu_cpu_context);
4541 	}
4542 	rcu_read_unlock();
4543 
4544 	kfree(buf);
4545 }
4546 
4547 void perf_event_mmap(struct vm_area_struct *vma)
4548 {
4549 	struct perf_mmap_event mmap_event;
4550 
4551 	if (!atomic_read(&nr_mmap_events))
4552 		return;
4553 
4554 	mmap_event = (struct perf_mmap_event){
4555 		.vma	= vma,
4556 		/* .file_name */
4557 		/* .file_size */
4558 		.event_id  = {
4559 			.header = {
4560 				.type = PERF_RECORD_MMAP,
4561 				.misc = PERF_RECORD_MISC_USER,
4562 				/* .size */
4563 			},
4564 			/* .pid */
4565 			/* .tid */
4566 			.start  = vma->vm_start,
4567 			.len    = vma->vm_end - vma->vm_start,
4568 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4569 		},
4570 	};
4571 
4572 	perf_event_mmap_event(&mmap_event);
4573 }
4574 
4575 /*
4576  * IRQ throttle logging
4577  */
4578 
4579 static void perf_log_throttle(struct perf_event *event, int enable)
4580 {
4581 	struct perf_output_handle handle;
4582 	struct perf_sample_data sample;
4583 	int ret;
4584 
4585 	struct {
4586 		struct perf_event_header	header;
4587 		u64				time;
4588 		u64				id;
4589 		u64				stream_id;
4590 	} throttle_event = {
4591 		.header = {
4592 			.type = PERF_RECORD_THROTTLE,
4593 			.misc = 0,
4594 			.size = sizeof(throttle_event),
4595 		},
4596 		.time		= perf_clock(),
4597 		.id		= primary_event_id(event),
4598 		.stream_id	= event->id,
4599 	};
4600 
4601 	if (enable)
4602 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4603 
4604 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4605 
4606 	ret = perf_output_begin(&handle, event,
4607 				throttle_event.header.size);
4608 	if (ret)
4609 		return;
4610 
4611 	perf_output_put(&handle, throttle_event);
4612 	perf_event__output_id_sample(event, &handle, &sample);
4613 	perf_output_end(&handle);
4614 }
4615 
4616 /*
4617  * Generic event overflow handling, sampling.
4618  */
4619 
4620 static int __perf_event_overflow(struct perf_event *event,
4621 				   int throttle, struct perf_sample_data *data,
4622 				   struct pt_regs *regs)
4623 {
4624 	int events = atomic_read(&event->event_limit);
4625 	struct hw_perf_event *hwc = &event->hw;
4626 	int ret = 0;
4627 
4628 	/*
4629 	 * Non-sampling counters might still use the PMI to fold short
4630 	 * hardware counters, ignore those.
4631 	 */
4632 	if (unlikely(!is_sampling_event(event)))
4633 		return 0;
4634 
4635 	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4636 		if (throttle) {
4637 			hwc->interrupts = MAX_INTERRUPTS;
4638 			perf_log_throttle(event, 0);
4639 			ret = 1;
4640 		}
4641 	} else
4642 		hwc->interrupts++;
4643 
4644 	if (event->attr.freq) {
4645 		u64 now = perf_clock();
4646 		s64 delta = now - hwc->freq_time_stamp;
4647 
4648 		hwc->freq_time_stamp = now;
4649 
4650 		if (delta > 0 && delta < 2*TICK_NSEC)
4651 			perf_adjust_period(event, delta, hwc->last_period);
4652 	}
4653 
4654 	/*
4655 	 * XXX event_limit might not quite work as expected on inherited
4656 	 * events
4657 	 */
4658 
4659 	event->pending_kill = POLL_IN;
4660 	if (events && atomic_dec_and_test(&event->event_limit)) {
4661 		ret = 1;
4662 		event->pending_kill = POLL_HUP;
4663 		event->pending_disable = 1;
4664 		irq_work_queue(&event->pending);
4665 	}
4666 
4667 	if (event->overflow_handler)
4668 		event->overflow_handler(event, data, regs);
4669 	else
4670 		perf_event_output(event, data, regs);
4671 
4672 	if (event->fasync && event->pending_kill) {
4673 		event->pending_wakeup = 1;
4674 		irq_work_queue(&event->pending);
4675 	}
4676 
4677 	return ret;
4678 }
4679 
4680 int perf_event_overflow(struct perf_event *event,
4681 			  struct perf_sample_data *data,
4682 			  struct pt_regs *regs)
4683 {
4684 	return __perf_event_overflow(event, 1, data, regs);
4685 }
4686 
4687 /*
4688  * Generic software event infrastructure
4689  */
4690 
4691 struct swevent_htable {
4692 	struct swevent_hlist		*swevent_hlist;
4693 	struct mutex			hlist_mutex;
4694 	int				hlist_refcount;
4695 
4696 	/* Recursion avoidance in each contexts */
4697 	int				recursion[PERF_NR_CONTEXTS];
4698 };
4699 
4700 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4701 
4702 /*
4703  * We directly increment event->count and keep a second value in
4704  * event->hw.period_left to count intervals. This period event
4705  * is kept in the range [-sample_period, 0] so that we can use the
4706  * sign as trigger.
4707  */
4708 
4709 static u64 perf_swevent_set_period(struct perf_event *event)
4710 {
4711 	struct hw_perf_event *hwc = &event->hw;
4712 	u64 period = hwc->last_period;
4713 	u64 nr, offset;
4714 	s64 old, val;
4715 
4716 	hwc->last_period = hwc->sample_period;
4717 
4718 again:
4719 	old = val = local64_read(&hwc->period_left);
4720 	if (val < 0)
4721 		return 0;
4722 
4723 	nr = div64_u64(period + val, period);
4724 	offset = nr * period;
4725 	val -= offset;
4726 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4727 		goto again;
4728 
4729 	return nr;
4730 }
4731 
4732 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4733 				    struct perf_sample_data *data,
4734 				    struct pt_regs *regs)
4735 {
4736 	struct hw_perf_event *hwc = &event->hw;
4737 	int throttle = 0;
4738 
4739 	data->period = event->hw.last_period;
4740 	if (!overflow)
4741 		overflow = perf_swevent_set_period(event);
4742 
4743 	if (hwc->interrupts == MAX_INTERRUPTS)
4744 		return;
4745 
4746 	for (; overflow; overflow--) {
4747 		if (__perf_event_overflow(event, throttle,
4748 					    data, regs)) {
4749 			/*
4750 			 * We inhibit the overflow from happening when
4751 			 * hwc->interrupts == MAX_INTERRUPTS.
4752 			 */
4753 			break;
4754 		}
4755 		throttle = 1;
4756 	}
4757 }
4758 
4759 static void perf_swevent_event(struct perf_event *event, u64 nr,
4760 			       struct perf_sample_data *data,
4761 			       struct pt_regs *regs)
4762 {
4763 	struct hw_perf_event *hwc = &event->hw;
4764 
4765 	local64_add(nr, &event->count);
4766 
4767 	if (!regs)
4768 		return;
4769 
4770 	if (!is_sampling_event(event))
4771 		return;
4772 
4773 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4774 		return perf_swevent_overflow(event, 1, data, regs);
4775 
4776 	if (local64_add_negative(nr, &hwc->period_left))
4777 		return;
4778 
4779 	perf_swevent_overflow(event, 0, data, regs);
4780 }
4781 
4782 static int perf_exclude_event(struct perf_event *event,
4783 			      struct pt_regs *regs)
4784 {
4785 	if (event->hw.state & PERF_HES_STOPPED)
4786 		return 1;
4787 
4788 	if (regs) {
4789 		if (event->attr.exclude_user && user_mode(regs))
4790 			return 1;
4791 
4792 		if (event->attr.exclude_kernel && !user_mode(regs))
4793 			return 1;
4794 	}
4795 
4796 	return 0;
4797 }
4798 
4799 static int perf_swevent_match(struct perf_event *event,
4800 				enum perf_type_id type,
4801 				u32 event_id,
4802 				struct perf_sample_data *data,
4803 				struct pt_regs *regs)
4804 {
4805 	if (event->attr.type != type)
4806 		return 0;
4807 
4808 	if (event->attr.config != event_id)
4809 		return 0;
4810 
4811 	if (perf_exclude_event(event, regs))
4812 		return 0;
4813 
4814 	return 1;
4815 }
4816 
4817 static inline u64 swevent_hash(u64 type, u32 event_id)
4818 {
4819 	u64 val = event_id | (type << 32);
4820 
4821 	return hash_64(val, SWEVENT_HLIST_BITS);
4822 }
4823 
4824 static inline struct hlist_head *
4825 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4826 {
4827 	u64 hash = swevent_hash(type, event_id);
4828 
4829 	return &hlist->heads[hash];
4830 }
4831 
4832 /* For the read side: events when they trigger */
4833 static inline struct hlist_head *
4834 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4835 {
4836 	struct swevent_hlist *hlist;
4837 
4838 	hlist = rcu_dereference(swhash->swevent_hlist);
4839 	if (!hlist)
4840 		return NULL;
4841 
4842 	return __find_swevent_head(hlist, type, event_id);
4843 }
4844 
4845 /* For the event head insertion and removal in the hlist */
4846 static inline struct hlist_head *
4847 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4848 {
4849 	struct swevent_hlist *hlist;
4850 	u32 event_id = event->attr.config;
4851 	u64 type = event->attr.type;
4852 
4853 	/*
4854 	 * Event scheduling is always serialized against hlist allocation
4855 	 * and release. Which makes the protected version suitable here.
4856 	 * The context lock guarantees that.
4857 	 */
4858 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4859 					  lockdep_is_held(&event->ctx->lock));
4860 	if (!hlist)
4861 		return NULL;
4862 
4863 	return __find_swevent_head(hlist, type, event_id);
4864 }
4865 
4866 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4867 				    u64 nr,
4868 				    struct perf_sample_data *data,
4869 				    struct pt_regs *regs)
4870 {
4871 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4872 	struct perf_event *event;
4873 	struct hlist_node *node;
4874 	struct hlist_head *head;
4875 
4876 	rcu_read_lock();
4877 	head = find_swevent_head_rcu(swhash, type, event_id);
4878 	if (!head)
4879 		goto end;
4880 
4881 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4882 		if (perf_swevent_match(event, type, event_id, data, regs))
4883 			perf_swevent_event(event, nr, data, regs);
4884 	}
4885 end:
4886 	rcu_read_unlock();
4887 }
4888 
4889 int perf_swevent_get_recursion_context(void)
4890 {
4891 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4892 
4893 	return get_recursion_context(swhash->recursion);
4894 }
4895 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4896 
4897 inline void perf_swevent_put_recursion_context(int rctx)
4898 {
4899 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4900 
4901 	put_recursion_context(swhash->recursion, rctx);
4902 }
4903 
4904 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4905 {
4906 	struct perf_sample_data data;
4907 	int rctx;
4908 
4909 	preempt_disable_notrace();
4910 	rctx = perf_swevent_get_recursion_context();
4911 	if (rctx < 0)
4912 		return;
4913 
4914 	perf_sample_data_init(&data, addr);
4915 
4916 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4917 
4918 	perf_swevent_put_recursion_context(rctx);
4919 	preempt_enable_notrace();
4920 }
4921 
4922 static void perf_swevent_read(struct perf_event *event)
4923 {
4924 }
4925 
4926 static int perf_swevent_add(struct perf_event *event, int flags)
4927 {
4928 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4929 	struct hw_perf_event *hwc = &event->hw;
4930 	struct hlist_head *head;
4931 
4932 	if (is_sampling_event(event)) {
4933 		hwc->last_period = hwc->sample_period;
4934 		perf_swevent_set_period(event);
4935 	}
4936 
4937 	hwc->state = !(flags & PERF_EF_START);
4938 
4939 	head = find_swevent_head(swhash, event);
4940 	if (WARN_ON_ONCE(!head))
4941 		return -EINVAL;
4942 
4943 	hlist_add_head_rcu(&event->hlist_entry, head);
4944 
4945 	return 0;
4946 }
4947 
4948 static void perf_swevent_del(struct perf_event *event, int flags)
4949 {
4950 	hlist_del_rcu(&event->hlist_entry);
4951 }
4952 
4953 static void perf_swevent_start(struct perf_event *event, int flags)
4954 {
4955 	event->hw.state = 0;
4956 }
4957 
4958 static void perf_swevent_stop(struct perf_event *event, int flags)
4959 {
4960 	event->hw.state = PERF_HES_STOPPED;
4961 }
4962 
4963 /* Deref the hlist from the update side */
4964 static inline struct swevent_hlist *
4965 swevent_hlist_deref(struct swevent_htable *swhash)
4966 {
4967 	return rcu_dereference_protected(swhash->swevent_hlist,
4968 					 lockdep_is_held(&swhash->hlist_mutex));
4969 }
4970 
4971 static void swevent_hlist_release(struct swevent_htable *swhash)
4972 {
4973 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4974 
4975 	if (!hlist)
4976 		return;
4977 
4978 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4979 	kfree_rcu(hlist, rcu_head);
4980 }
4981 
4982 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4983 {
4984 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4985 
4986 	mutex_lock(&swhash->hlist_mutex);
4987 
4988 	if (!--swhash->hlist_refcount)
4989 		swevent_hlist_release(swhash);
4990 
4991 	mutex_unlock(&swhash->hlist_mutex);
4992 }
4993 
4994 static void swevent_hlist_put(struct perf_event *event)
4995 {
4996 	int cpu;
4997 
4998 	if (event->cpu != -1) {
4999 		swevent_hlist_put_cpu(event, event->cpu);
5000 		return;
5001 	}
5002 
5003 	for_each_possible_cpu(cpu)
5004 		swevent_hlist_put_cpu(event, cpu);
5005 }
5006 
5007 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5008 {
5009 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5010 	int err = 0;
5011 
5012 	mutex_lock(&swhash->hlist_mutex);
5013 
5014 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5015 		struct swevent_hlist *hlist;
5016 
5017 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5018 		if (!hlist) {
5019 			err = -ENOMEM;
5020 			goto exit;
5021 		}
5022 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5023 	}
5024 	swhash->hlist_refcount++;
5025 exit:
5026 	mutex_unlock(&swhash->hlist_mutex);
5027 
5028 	return err;
5029 }
5030 
5031 static int swevent_hlist_get(struct perf_event *event)
5032 {
5033 	int err;
5034 	int cpu, failed_cpu;
5035 
5036 	if (event->cpu != -1)
5037 		return swevent_hlist_get_cpu(event, event->cpu);
5038 
5039 	get_online_cpus();
5040 	for_each_possible_cpu(cpu) {
5041 		err = swevent_hlist_get_cpu(event, cpu);
5042 		if (err) {
5043 			failed_cpu = cpu;
5044 			goto fail;
5045 		}
5046 	}
5047 	put_online_cpus();
5048 
5049 	return 0;
5050 fail:
5051 	for_each_possible_cpu(cpu) {
5052 		if (cpu == failed_cpu)
5053 			break;
5054 		swevent_hlist_put_cpu(event, cpu);
5055 	}
5056 
5057 	put_online_cpus();
5058 	return err;
5059 }
5060 
5061 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5062 
5063 static void sw_perf_event_destroy(struct perf_event *event)
5064 {
5065 	u64 event_id = event->attr.config;
5066 
5067 	WARN_ON(event->parent);
5068 
5069 	jump_label_dec(&perf_swevent_enabled[event_id]);
5070 	swevent_hlist_put(event);
5071 }
5072 
5073 static int perf_swevent_init(struct perf_event *event)
5074 {
5075 	int event_id = event->attr.config;
5076 
5077 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5078 		return -ENOENT;
5079 
5080 	switch (event_id) {
5081 	case PERF_COUNT_SW_CPU_CLOCK:
5082 	case PERF_COUNT_SW_TASK_CLOCK:
5083 		return -ENOENT;
5084 
5085 	default:
5086 		break;
5087 	}
5088 
5089 	if (event_id >= PERF_COUNT_SW_MAX)
5090 		return -ENOENT;
5091 
5092 	if (!event->parent) {
5093 		int err;
5094 
5095 		err = swevent_hlist_get(event);
5096 		if (err)
5097 			return err;
5098 
5099 		jump_label_inc(&perf_swevent_enabled[event_id]);
5100 		event->destroy = sw_perf_event_destroy;
5101 	}
5102 
5103 	return 0;
5104 }
5105 
5106 static struct pmu perf_swevent = {
5107 	.task_ctx_nr	= perf_sw_context,
5108 
5109 	.event_init	= perf_swevent_init,
5110 	.add		= perf_swevent_add,
5111 	.del		= perf_swevent_del,
5112 	.start		= perf_swevent_start,
5113 	.stop		= perf_swevent_stop,
5114 	.read		= perf_swevent_read,
5115 };
5116 
5117 #ifdef CONFIG_EVENT_TRACING
5118 
5119 static int perf_tp_filter_match(struct perf_event *event,
5120 				struct perf_sample_data *data)
5121 {
5122 	void *record = data->raw->data;
5123 
5124 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5125 		return 1;
5126 	return 0;
5127 }
5128 
5129 static int perf_tp_event_match(struct perf_event *event,
5130 				struct perf_sample_data *data,
5131 				struct pt_regs *regs)
5132 {
5133 	if (event->hw.state & PERF_HES_STOPPED)
5134 		return 0;
5135 	/*
5136 	 * All tracepoints are from kernel-space.
5137 	 */
5138 	if (event->attr.exclude_kernel)
5139 		return 0;
5140 
5141 	if (!perf_tp_filter_match(event, data))
5142 		return 0;
5143 
5144 	return 1;
5145 }
5146 
5147 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5148 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5149 {
5150 	struct perf_sample_data data;
5151 	struct perf_event *event;
5152 	struct hlist_node *node;
5153 
5154 	struct perf_raw_record raw = {
5155 		.size = entry_size,
5156 		.data = record,
5157 	};
5158 
5159 	perf_sample_data_init(&data, addr);
5160 	data.raw = &raw;
5161 
5162 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5163 		if (perf_tp_event_match(event, &data, regs))
5164 			perf_swevent_event(event, count, &data, regs);
5165 	}
5166 
5167 	perf_swevent_put_recursion_context(rctx);
5168 }
5169 EXPORT_SYMBOL_GPL(perf_tp_event);
5170 
5171 static void tp_perf_event_destroy(struct perf_event *event)
5172 {
5173 	perf_trace_destroy(event);
5174 }
5175 
5176 static int perf_tp_event_init(struct perf_event *event)
5177 {
5178 	int err;
5179 
5180 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5181 		return -ENOENT;
5182 
5183 	err = perf_trace_init(event);
5184 	if (err)
5185 		return err;
5186 
5187 	event->destroy = tp_perf_event_destroy;
5188 
5189 	return 0;
5190 }
5191 
5192 static struct pmu perf_tracepoint = {
5193 	.task_ctx_nr	= perf_sw_context,
5194 
5195 	.event_init	= perf_tp_event_init,
5196 	.add		= perf_trace_add,
5197 	.del		= perf_trace_del,
5198 	.start		= perf_swevent_start,
5199 	.stop		= perf_swevent_stop,
5200 	.read		= perf_swevent_read,
5201 };
5202 
5203 static inline void perf_tp_register(void)
5204 {
5205 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5206 }
5207 
5208 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5209 {
5210 	char *filter_str;
5211 	int ret;
5212 
5213 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5214 		return -EINVAL;
5215 
5216 	filter_str = strndup_user(arg, PAGE_SIZE);
5217 	if (IS_ERR(filter_str))
5218 		return PTR_ERR(filter_str);
5219 
5220 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5221 
5222 	kfree(filter_str);
5223 	return ret;
5224 }
5225 
5226 static void perf_event_free_filter(struct perf_event *event)
5227 {
5228 	ftrace_profile_free_filter(event);
5229 }
5230 
5231 #else
5232 
5233 static inline void perf_tp_register(void)
5234 {
5235 }
5236 
5237 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5238 {
5239 	return -ENOENT;
5240 }
5241 
5242 static void perf_event_free_filter(struct perf_event *event)
5243 {
5244 }
5245 
5246 #endif /* CONFIG_EVENT_TRACING */
5247 
5248 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5249 void perf_bp_event(struct perf_event *bp, void *data)
5250 {
5251 	struct perf_sample_data sample;
5252 	struct pt_regs *regs = data;
5253 
5254 	perf_sample_data_init(&sample, bp->attr.bp_addr);
5255 
5256 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5257 		perf_swevent_event(bp, 1, &sample, regs);
5258 }
5259 #endif
5260 
5261 /*
5262  * hrtimer based swevent callback
5263  */
5264 
5265 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5266 {
5267 	enum hrtimer_restart ret = HRTIMER_RESTART;
5268 	struct perf_sample_data data;
5269 	struct pt_regs *regs;
5270 	struct perf_event *event;
5271 	u64 period;
5272 
5273 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5274 
5275 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5276 		return HRTIMER_NORESTART;
5277 
5278 	event->pmu->read(event);
5279 
5280 	perf_sample_data_init(&data, 0);
5281 	data.period = event->hw.last_period;
5282 	regs = get_irq_regs();
5283 
5284 	if (regs && !perf_exclude_event(event, regs)) {
5285 		if (!(event->attr.exclude_idle && current->pid == 0))
5286 			if (perf_event_overflow(event, &data, regs))
5287 				ret = HRTIMER_NORESTART;
5288 	}
5289 
5290 	period = max_t(u64, 10000, event->hw.sample_period);
5291 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5292 
5293 	return ret;
5294 }
5295 
5296 static void perf_swevent_start_hrtimer(struct perf_event *event)
5297 {
5298 	struct hw_perf_event *hwc = &event->hw;
5299 	s64 period;
5300 
5301 	if (!is_sampling_event(event))
5302 		return;
5303 
5304 	period = local64_read(&hwc->period_left);
5305 	if (period) {
5306 		if (period < 0)
5307 			period = 10000;
5308 
5309 		local64_set(&hwc->period_left, 0);
5310 	} else {
5311 		period = max_t(u64, 10000, hwc->sample_period);
5312 	}
5313 	__hrtimer_start_range_ns(&hwc->hrtimer,
5314 				ns_to_ktime(period), 0,
5315 				HRTIMER_MODE_REL_PINNED, 0);
5316 }
5317 
5318 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5319 {
5320 	struct hw_perf_event *hwc = &event->hw;
5321 
5322 	if (is_sampling_event(event)) {
5323 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5324 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5325 
5326 		hrtimer_cancel(&hwc->hrtimer);
5327 	}
5328 }
5329 
5330 static void perf_swevent_init_hrtimer(struct perf_event *event)
5331 {
5332 	struct hw_perf_event *hwc = &event->hw;
5333 
5334 	if (!is_sampling_event(event))
5335 		return;
5336 
5337 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5338 	hwc->hrtimer.function = perf_swevent_hrtimer;
5339 
5340 	/*
5341 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5342 	 * mapping and avoid the whole period adjust feedback stuff.
5343 	 */
5344 	if (event->attr.freq) {
5345 		long freq = event->attr.sample_freq;
5346 
5347 		event->attr.sample_period = NSEC_PER_SEC / freq;
5348 		hwc->sample_period = event->attr.sample_period;
5349 		local64_set(&hwc->period_left, hwc->sample_period);
5350 		event->attr.freq = 0;
5351 	}
5352 }
5353 
5354 /*
5355  * Software event: cpu wall time clock
5356  */
5357 
5358 static void cpu_clock_event_update(struct perf_event *event)
5359 {
5360 	s64 prev;
5361 	u64 now;
5362 
5363 	now = local_clock();
5364 	prev = local64_xchg(&event->hw.prev_count, now);
5365 	local64_add(now - prev, &event->count);
5366 }
5367 
5368 static void cpu_clock_event_start(struct perf_event *event, int flags)
5369 {
5370 	local64_set(&event->hw.prev_count, local_clock());
5371 	perf_swevent_start_hrtimer(event);
5372 }
5373 
5374 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5375 {
5376 	perf_swevent_cancel_hrtimer(event);
5377 	cpu_clock_event_update(event);
5378 }
5379 
5380 static int cpu_clock_event_add(struct perf_event *event, int flags)
5381 {
5382 	if (flags & PERF_EF_START)
5383 		cpu_clock_event_start(event, flags);
5384 
5385 	return 0;
5386 }
5387 
5388 static void cpu_clock_event_del(struct perf_event *event, int flags)
5389 {
5390 	cpu_clock_event_stop(event, flags);
5391 }
5392 
5393 static void cpu_clock_event_read(struct perf_event *event)
5394 {
5395 	cpu_clock_event_update(event);
5396 }
5397 
5398 static int cpu_clock_event_init(struct perf_event *event)
5399 {
5400 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5401 		return -ENOENT;
5402 
5403 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5404 		return -ENOENT;
5405 
5406 	perf_swevent_init_hrtimer(event);
5407 
5408 	return 0;
5409 }
5410 
5411 static struct pmu perf_cpu_clock = {
5412 	.task_ctx_nr	= perf_sw_context,
5413 
5414 	.event_init	= cpu_clock_event_init,
5415 	.add		= cpu_clock_event_add,
5416 	.del		= cpu_clock_event_del,
5417 	.start		= cpu_clock_event_start,
5418 	.stop		= cpu_clock_event_stop,
5419 	.read		= cpu_clock_event_read,
5420 };
5421 
5422 /*
5423  * Software event: task time clock
5424  */
5425 
5426 static void task_clock_event_update(struct perf_event *event, u64 now)
5427 {
5428 	u64 prev;
5429 	s64 delta;
5430 
5431 	prev = local64_xchg(&event->hw.prev_count, now);
5432 	delta = now - prev;
5433 	local64_add(delta, &event->count);
5434 }
5435 
5436 static void task_clock_event_start(struct perf_event *event, int flags)
5437 {
5438 	local64_set(&event->hw.prev_count, event->ctx->time);
5439 	perf_swevent_start_hrtimer(event);
5440 }
5441 
5442 static void task_clock_event_stop(struct perf_event *event, int flags)
5443 {
5444 	perf_swevent_cancel_hrtimer(event);
5445 	task_clock_event_update(event, event->ctx->time);
5446 }
5447 
5448 static int task_clock_event_add(struct perf_event *event, int flags)
5449 {
5450 	if (flags & PERF_EF_START)
5451 		task_clock_event_start(event, flags);
5452 
5453 	return 0;
5454 }
5455 
5456 static void task_clock_event_del(struct perf_event *event, int flags)
5457 {
5458 	task_clock_event_stop(event, PERF_EF_UPDATE);
5459 }
5460 
5461 static void task_clock_event_read(struct perf_event *event)
5462 {
5463 	u64 now = perf_clock();
5464 	u64 delta = now - event->ctx->timestamp;
5465 	u64 time = event->ctx->time + delta;
5466 
5467 	task_clock_event_update(event, time);
5468 }
5469 
5470 static int task_clock_event_init(struct perf_event *event)
5471 {
5472 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5473 		return -ENOENT;
5474 
5475 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5476 		return -ENOENT;
5477 
5478 	perf_swevent_init_hrtimer(event);
5479 
5480 	return 0;
5481 }
5482 
5483 static struct pmu perf_task_clock = {
5484 	.task_ctx_nr	= perf_sw_context,
5485 
5486 	.event_init	= task_clock_event_init,
5487 	.add		= task_clock_event_add,
5488 	.del		= task_clock_event_del,
5489 	.start		= task_clock_event_start,
5490 	.stop		= task_clock_event_stop,
5491 	.read		= task_clock_event_read,
5492 };
5493 
5494 static void perf_pmu_nop_void(struct pmu *pmu)
5495 {
5496 }
5497 
5498 static int perf_pmu_nop_int(struct pmu *pmu)
5499 {
5500 	return 0;
5501 }
5502 
5503 static void perf_pmu_start_txn(struct pmu *pmu)
5504 {
5505 	perf_pmu_disable(pmu);
5506 }
5507 
5508 static int perf_pmu_commit_txn(struct pmu *pmu)
5509 {
5510 	perf_pmu_enable(pmu);
5511 	return 0;
5512 }
5513 
5514 static void perf_pmu_cancel_txn(struct pmu *pmu)
5515 {
5516 	perf_pmu_enable(pmu);
5517 }
5518 
5519 /*
5520  * Ensures all contexts with the same task_ctx_nr have the same
5521  * pmu_cpu_context too.
5522  */
5523 static void *find_pmu_context(int ctxn)
5524 {
5525 	struct pmu *pmu;
5526 
5527 	if (ctxn < 0)
5528 		return NULL;
5529 
5530 	list_for_each_entry(pmu, &pmus, entry) {
5531 		if (pmu->task_ctx_nr == ctxn)
5532 			return pmu->pmu_cpu_context;
5533 	}
5534 
5535 	return NULL;
5536 }
5537 
5538 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5539 {
5540 	int cpu;
5541 
5542 	for_each_possible_cpu(cpu) {
5543 		struct perf_cpu_context *cpuctx;
5544 
5545 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5546 
5547 		if (cpuctx->active_pmu == old_pmu)
5548 			cpuctx->active_pmu = pmu;
5549 	}
5550 }
5551 
5552 static void free_pmu_context(struct pmu *pmu)
5553 {
5554 	struct pmu *i;
5555 
5556 	mutex_lock(&pmus_lock);
5557 	/*
5558 	 * Like a real lame refcount.
5559 	 */
5560 	list_for_each_entry(i, &pmus, entry) {
5561 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5562 			update_pmu_context(i, pmu);
5563 			goto out;
5564 		}
5565 	}
5566 
5567 	free_percpu(pmu->pmu_cpu_context);
5568 out:
5569 	mutex_unlock(&pmus_lock);
5570 }
5571 static struct idr pmu_idr;
5572 
5573 static ssize_t
5574 type_show(struct device *dev, struct device_attribute *attr, char *page)
5575 {
5576 	struct pmu *pmu = dev_get_drvdata(dev);
5577 
5578 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5579 }
5580 
5581 static struct device_attribute pmu_dev_attrs[] = {
5582        __ATTR_RO(type),
5583        __ATTR_NULL,
5584 };
5585 
5586 static int pmu_bus_running;
5587 static struct bus_type pmu_bus = {
5588 	.name		= "event_source",
5589 	.dev_attrs	= pmu_dev_attrs,
5590 };
5591 
5592 static void pmu_dev_release(struct device *dev)
5593 {
5594 	kfree(dev);
5595 }
5596 
5597 static int pmu_dev_alloc(struct pmu *pmu)
5598 {
5599 	int ret = -ENOMEM;
5600 
5601 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5602 	if (!pmu->dev)
5603 		goto out;
5604 
5605 	device_initialize(pmu->dev);
5606 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5607 	if (ret)
5608 		goto free_dev;
5609 
5610 	dev_set_drvdata(pmu->dev, pmu);
5611 	pmu->dev->bus = &pmu_bus;
5612 	pmu->dev->release = pmu_dev_release;
5613 	ret = device_add(pmu->dev);
5614 	if (ret)
5615 		goto free_dev;
5616 
5617 out:
5618 	return ret;
5619 
5620 free_dev:
5621 	put_device(pmu->dev);
5622 	goto out;
5623 }
5624 
5625 static struct lock_class_key cpuctx_mutex;
5626 static struct lock_class_key cpuctx_lock;
5627 
5628 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5629 {
5630 	int cpu, ret;
5631 
5632 	mutex_lock(&pmus_lock);
5633 	ret = -ENOMEM;
5634 	pmu->pmu_disable_count = alloc_percpu(int);
5635 	if (!pmu->pmu_disable_count)
5636 		goto unlock;
5637 
5638 	pmu->type = -1;
5639 	if (!name)
5640 		goto skip_type;
5641 	pmu->name = name;
5642 
5643 	if (type < 0) {
5644 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5645 		if (!err)
5646 			goto free_pdc;
5647 
5648 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5649 		if (err) {
5650 			ret = err;
5651 			goto free_pdc;
5652 		}
5653 	}
5654 	pmu->type = type;
5655 
5656 	if (pmu_bus_running) {
5657 		ret = pmu_dev_alloc(pmu);
5658 		if (ret)
5659 			goto free_idr;
5660 	}
5661 
5662 skip_type:
5663 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5664 	if (pmu->pmu_cpu_context)
5665 		goto got_cpu_context;
5666 
5667 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5668 	if (!pmu->pmu_cpu_context)
5669 		goto free_dev;
5670 
5671 	for_each_possible_cpu(cpu) {
5672 		struct perf_cpu_context *cpuctx;
5673 
5674 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5675 		__perf_event_init_context(&cpuctx->ctx);
5676 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5677 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5678 		cpuctx->ctx.type = cpu_context;
5679 		cpuctx->ctx.pmu = pmu;
5680 		cpuctx->jiffies_interval = 1;
5681 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5682 		cpuctx->active_pmu = pmu;
5683 	}
5684 
5685 got_cpu_context:
5686 	if (!pmu->start_txn) {
5687 		if (pmu->pmu_enable) {
5688 			/*
5689 			 * If we have pmu_enable/pmu_disable calls, install
5690 			 * transaction stubs that use that to try and batch
5691 			 * hardware accesses.
5692 			 */
5693 			pmu->start_txn  = perf_pmu_start_txn;
5694 			pmu->commit_txn = perf_pmu_commit_txn;
5695 			pmu->cancel_txn = perf_pmu_cancel_txn;
5696 		} else {
5697 			pmu->start_txn  = perf_pmu_nop_void;
5698 			pmu->commit_txn = perf_pmu_nop_int;
5699 			pmu->cancel_txn = perf_pmu_nop_void;
5700 		}
5701 	}
5702 
5703 	if (!pmu->pmu_enable) {
5704 		pmu->pmu_enable  = perf_pmu_nop_void;
5705 		pmu->pmu_disable = perf_pmu_nop_void;
5706 	}
5707 
5708 	list_add_rcu(&pmu->entry, &pmus);
5709 	ret = 0;
5710 unlock:
5711 	mutex_unlock(&pmus_lock);
5712 
5713 	return ret;
5714 
5715 free_dev:
5716 	device_del(pmu->dev);
5717 	put_device(pmu->dev);
5718 
5719 free_idr:
5720 	if (pmu->type >= PERF_TYPE_MAX)
5721 		idr_remove(&pmu_idr, pmu->type);
5722 
5723 free_pdc:
5724 	free_percpu(pmu->pmu_disable_count);
5725 	goto unlock;
5726 }
5727 
5728 void perf_pmu_unregister(struct pmu *pmu)
5729 {
5730 	mutex_lock(&pmus_lock);
5731 	list_del_rcu(&pmu->entry);
5732 	mutex_unlock(&pmus_lock);
5733 
5734 	/*
5735 	 * We dereference the pmu list under both SRCU and regular RCU, so
5736 	 * synchronize against both of those.
5737 	 */
5738 	synchronize_srcu(&pmus_srcu);
5739 	synchronize_rcu();
5740 
5741 	free_percpu(pmu->pmu_disable_count);
5742 	if (pmu->type >= PERF_TYPE_MAX)
5743 		idr_remove(&pmu_idr, pmu->type);
5744 	device_del(pmu->dev);
5745 	put_device(pmu->dev);
5746 	free_pmu_context(pmu);
5747 }
5748 
5749 struct pmu *perf_init_event(struct perf_event *event)
5750 {
5751 	struct pmu *pmu = NULL;
5752 	int idx;
5753 	int ret;
5754 
5755 	idx = srcu_read_lock(&pmus_srcu);
5756 
5757 	rcu_read_lock();
5758 	pmu = idr_find(&pmu_idr, event->attr.type);
5759 	rcu_read_unlock();
5760 	if (pmu) {
5761 		ret = pmu->event_init(event);
5762 		if (ret)
5763 			pmu = ERR_PTR(ret);
5764 		goto unlock;
5765 	}
5766 
5767 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5768 		ret = pmu->event_init(event);
5769 		if (!ret)
5770 			goto unlock;
5771 
5772 		if (ret != -ENOENT) {
5773 			pmu = ERR_PTR(ret);
5774 			goto unlock;
5775 		}
5776 	}
5777 	pmu = ERR_PTR(-ENOENT);
5778 unlock:
5779 	srcu_read_unlock(&pmus_srcu, idx);
5780 
5781 	return pmu;
5782 }
5783 
5784 /*
5785  * Allocate and initialize a event structure
5786  */
5787 static struct perf_event *
5788 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5789 		 struct task_struct *task,
5790 		 struct perf_event *group_leader,
5791 		 struct perf_event *parent_event,
5792 		 perf_overflow_handler_t overflow_handler,
5793 		 void *context)
5794 {
5795 	struct pmu *pmu;
5796 	struct perf_event *event;
5797 	struct hw_perf_event *hwc;
5798 	long err;
5799 
5800 	if ((unsigned)cpu >= nr_cpu_ids) {
5801 		if (!task || cpu != -1)
5802 			return ERR_PTR(-EINVAL);
5803 	}
5804 
5805 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5806 	if (!event)
5807 		return ERR_PTR(-ENOMEM);
5808 
5809 	/*
5810 	 * Single events are their own group leaders, with an
5811 	 * empty sibling list:
5812 	 */
5813 	if (!group_leader)
5814 		group_leader = event;
5815 
5816 	mutex_init(&event->child_mutex);
5817 	INIT_LIST_HEAD(&event->child_list);
5818 
5819 	INIT_LIST_HEAD(&event->group_entry);
5820 	INIT_LIST_HEAD(&event->event_entry);
5821 	INIT_LIST_HEAD(&event->sibling_list);
5822 	init_waitqueue_head(&event->waitq);
5823 	init_irq_work(&event->pending, perf_pending_event);
5824 
5825 	mutex_init(&event->mmap_mutex);
5826 
5827 	event->cpu		= cpu;
5828 	event->attr		= *attr;
5829 	event->group_leader	= group_leader;
5830 	event->pmu		= NULL;
5831 	event->oncpu		= -1;
5832 
5833 	event->parent		= parent_event;
5834 
5835 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5836 	event->id		= atomic64_inc_return(&perf_event_id);
5837 
5838 	event->state		= PERF_EVENT_STATE_INACTIVE;
5839 
5840 	if (task) {
5841 		event->attach_state = PERF_ATTACH_TASK;
5842 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5843 		/*
5844 		 * hw_breakpoint is a bit difficult here..
5845 		 */
5846 		if (attr->type == PERF_TYPE_BREAKPOINT)
5847 			event->hw.bp_target = task;
5848 #endif
5849 	}
5850 
5851 	if (!overflow_handler && parent_event) {
5852 		overflow_handler = parent_event->overflow_handler;
5853 		context = parent_event->overflow_handler_context;
5854 	}
5855 
5856 	event->overflow_handler	= overflow_handler;
5857 	event->overflow_handler_context = context;
5858 
5859 	if (attr->disabled)
5860 		event->state = PERF_EVENT_STATE_OFF;
5861 
5862 	pmu = NULL;
5863 
5864 	hwc = &event->hw;
5865 	hwc->sample_period = attr->sample_period;
5866 	if (attr->freq && attr->sample_freq)
5867 		hwc->sample_period = 1;
5868 	hwc->last_period = hwc->sample_period;
5869 
5870 	local64_set(&hwc->period_left, hwc->sample_period);
5871 
5872 	/*
5873 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5874 	 */
5875 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5876 		goto done;
5877 
5878 	pmu = perf_init_event(event);
5879 
5880 done:
5881 	err = 0;
5882 	if (!pmu)
5883 		err = -EINVAL;
5884 	else if (IS_ERR(pmu))
5885 		err = PTR_ERR(pmu);
5886 
5887 	if (err) {
5888 		if (event->ns)
5889 			put_pid_ns(event->ns);
5890 		kfree(event);
5891 		return ERR_PTR(err);
5892 	}
5893 
5894 	event->pmu = pmu;
5895 
5896 	if (!event->parent) {
5897 		if (event->attach_state & PERF_ATTACH_TASK)
5898 			jump_label_inc(&perf_sched_events);
5899 		if (event->attr.mmap || event->attr.mmap_data)
5900 			atomic_inc(&nr_mmap_events);
5901 		if (event->attr.comm)
5902 			atomic_inc(&nr_comm_events);
5903 		if (event->attr.task)
5904 			atomic_inc(&nr_task_events);
5905 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5906 			err = get_callchain_buffers();
5907 			if (err) {
5908 				free_event(event);
5909 				return ERR_PTR(err);
5910 			}
5911 		}
5912 	}
5913 
5914 	return event;
5915 }
5916 
5917 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5918 			  struct perf_event_attr *attr)
5919 {
5920 	u32 size;
5921 	int ret;
5922 
5923 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5924 		return -EFAULT;
5925 
5926 	/*
5927 	 * zero the full structure, so that a short copy will be nice.
5928 	 */
5929 	memset(attr, 0, sizeof(*attr));
5930 
5931 	ret = get_user(size, &uattr->size);
5932 	if (ret)
5933 		return ret;
5934 
5935 	if (size > PAGE_SIZE)	/* silly large */
5936 		goto err_size;
5937 
5938 	if (!size)		/* abi compat */
5939 		size = PERF_ATTR_SIZE_VER0;
5940 
5941 	if (size < PERF_ATTR_SIZE_VER0)
5942 		goto err_size;
5943 
5944 	/*
5945 	 * If we're handed a bigger struct than we know of,
5946 	 * ensure all the unknown bits are 0 - i.e. new
5947 	 * user-space does not rely on any kernel feature
5948 	 * extensions we dont know about yet.
5949 	 */
5950 	if (size > sizeof(*attr)) {
5951 		unsigned char __user *addr;
5952 		unsigned char __user *end;
5953 		unsigned char val;
5954 
5955 		addr = (void __user *)uattr + sizeof(*attr);
5956 		end  = (void __user *)uattr + size;
5957 
5958 		for (; addr < end; addr++) {
5959 			ret = get_user(val, addr);
5960 			if (ret)
5961 				return ret;
5962 			if (val)
5963 				goto err_size;
5964 		}
5965 		size = sizeof(*attr);
5966 	}
5967 
5968 	ret = copy_from_user(attr, uattr, size);
5969 	if (ret)
5970 		return -EFAULT;
5971 
5972 	if (attr->__reserved_1)
5973 		return -EINVAL;
5974 
5975 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5976 		return -EINVAL;
5977 
5978 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5979 		return -EINVAL;
5980 
5981 out:
5982 	return ret;
5983 
5984 err_size:
5985 	put_user(sizeof(*attr), &uattr->size);
5986 	ret = -E2BIG;
5987 	goto out;
5988 }
5989 
5990 static int
5991 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5992 {
5993 	struct ring_buffer *rb = NULL, *old_rb = NULL;
5994 	int ret = -EINVAL;
5995 
5996 	if (!output_event)
5997 		goto set;
5998 
5999 	/* don't allow circular references */
6000 	if (event == output_event)
6001 		goto out;
6002 
6003 	/*
6004 	 * Don't allow cross-cpu buffers
6005 	 */
6006 	if (output_event->cpu != event->cpu)
6007 		goto out;
6008 
6009 	/*
6010 	 * If its not a per-cpu rb, it must be the same task.
6011 	 */
6012 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6013 		goto out;
6014 
6015 set:
6016 	mutex_lock(&event->mmap_mutex);
6017 	/* Can't redirect output if we've got an active mmap() */
6018 	if (atomic_read(&event->mmap_count))
6019 		goto unlock;
6020 
6021 	if (output_event) {
6022 		/* get the rb we want to redirect to */
6023 		rb = ring_buffer_get(output_event);
6024 		if (!rb)
6025 			goto unlock;
6026 	}
6027 
6028 	old_rb = event->rb;
6029 	rcu_assign_pointer(event->rb, rb);
6030 	ret = 0;
6031 unlock:
6032 	mutex_unlock(&event->mmap_mutex);
6033 
6034 	if (old_rb)
6035 		ring_buffer_put(old_rb);
6036 out:
6037 	return ret;
6038 }
6039 
6040 /**
6041  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6042  *
6043  * @attr_uptr:	event_id type attributes for monitoring/sampling
6044  * @pid:		target pid
6045  * @cpu:		target cpu
6046  * @group_fd:		group leader event fd
6047  */
6048 SYSCALL_DEFINE5(perf_event_open,
6049 		struct perf_event_attr __user *, attr_uptr,
6050 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6051 {
6052 	struct perf_event *group_leader = NULL, *output_event = NULL;
6053 	struct perf_event *event, *sibling;
6054 	struct perf_event_attr attr;
6055 	struct perf_event_context *ctx;
6056 	struct file *event_file = NULL;
6057 	struct file *group_file = NULL;
6058 	struct task_struct *task = NULL;
6059 	struct pmu *pmu;
6060 	int event_fd;
6061 	int move_group = 0;
6062 	int fput_needed = 0;
6063 	int err;
6064 
6065 	/* for future expandability... */
6066 	if (flags & ~PERF_FLAG_ALL)
6067 		return -EINVAL;
6068 
6069 	err = perf_copy_attr(attr_uptr, &attr);
6070 	if (err)
6071 		return err;
6072 
6073 	if (!attr.exclude_kernel) {
6074 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6075 			return -EACCES;
6076 	}
6077 
6078 	if (attr.freq) {
6079 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6080 			return -EINVAL;
6081 	}
6082 
6083 	/*
6084 	 * In cgroup mode, the pid argument is used to pass the fd
6085 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6086 	 * designates the cpu on which to monitor threads from that
6087 	 * cgroup.
6088 	 */
6089 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6090 		return -EINVAL;
6091 
6092 	event_fd = get_unused_fd_flags(O_RDWR);
6093 	if (event_fd < 0)
6094 		return event_fd;
6095 
6096 	if (group_fd != -1) {
6097 		group_leader = perf_fget_light(group_fd, &fput_needed);
6098 		if (IS_ERR(group_leader)) {
6099 			err = PTR_ERR(group_leader);
6100 			goto err_fd;
6101 		}
6102 		group_file = group_leader->filp;
6103 		if (flags & PERF_FLAG_FD_OUTPUT)
6104 			output_event = group_leader;
6105 		if (flags & PERF_FLAG_FD_NO_GROUP)
6106 			group_leader = NULL;
6107 	}
6108 
6109 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6110 		task = find_lively_task_by_vpid(pid);
6111 		if (IS_ERR(task)) {
6112 			err = PTR_ERR(task);
6113 			goto err_group_fd;
6114 		}
6115 	}
6116 
6117 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6118 				 NULL, NULL);
6119 	if (IS_ERR(event)) {
6120 		err = PTR_ERR(event);
6121 		goto err_task;
6122 	}
6123 
6124 	if (flags & PERF_FLAG_PID_CGROUP) {
6125 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6126 		if (err)
6127 			goto err_alloc;
6128 		/*
6129 		 * one more event:
6130 		 * - that has cgroup constraint on event->cpu
6131 		 * - that may need work on context switch
6132 		 */
6133 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6134 		jump_label_inc(&perf_sched_events);
6135 	}
6136 
6137 	/*
6138 	 * Special case software events and allow them to be part of
6139 	 * any hardware group.
6140 	 */
6141 	pmu = event->pmu;
6142 
6143 	if (group_leader &&
6144 	    (is_software_event(event) != is_software_event(group_leader))) {
6145 		if (is_software_event(event)) {
6146 			/*
6147 			 * If event and group_leader are not both a software
6148 			 * event, and event is, then group leader is not.
6149 			 *
6150 			 * Allow the addition of software events to !software
6151 			 * groups, this is safe because software events never
6152 			 * fail to schedule.
6153 			 */
6154 			pmu = group_leader->pmu;
6155 		} else if (is_software_event(group_leader) &&
6156 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6157 			/*
6158 			 * In case the group is a pure software group, and we
6159 			 * try to add a hardware event, move the whole group to
6160 			 * the hardware context.
6161 			 */
6162 			move_group = 1;
6163 		}
6164 	}
6165 
6166 	/*
6167 	 * Get the target context (task or percpu):
6168 	 */
6169 	ctx = find_get_context(pmu, task, cpu);
6170 	if (IS_ERR(ctx)) {
6171 		err = PTR_ERR(ctx);
6172 		goto err_alloc;
6173 	}
6174 
6175 	if (task) {
6176 		put_task_struct(task);
6177 		task = NULL;
6178 	}
6179 
6180 	/*
6181 	 * Look up the group leader (we will attach this event to it):
6182 	 */
6183 	if (group_leader) {
6184 		err = -EINVAL;
6185 
6186 		/*
6187 		 * Do not allow a recursive hierarchy (this new sibling
6188 		 * becoming part of another group-sibling):
6189 		 */
6190 		if (group_leader->group_leader != group_leader)
6191 			goto err_context;
6192 		/*
6193 		 * Do not allow to attach to a group in a different
6194 		 * task or CPU context:
6195 		 */
6196 		if (move_group) {
6197 			if (group_leader->ctx->type != ctx->type)
6198 				goto err_context;
6199 		} else {
6200 			if (group_leader->ctx != ctx)
6201 				goto err_context;
6202 		}
6203 
6204 		/*
6205 		 * Only a group leader can be exclusive or pinned
6206 		 */
6207 		if (attr.exclusive || attr.pinned)
6208 			goto err_context;
6209 	}
6210 
6211 	if (output_event) {
6212 		err = perf_event_set_output(event, output_event);
6213 		if (err)
6214 			goto err_context;
6215 	}
6216 
6217 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6218 	if (IS_ERR(event_file)) {
6219 		err = PTR_ERR(event_file);
6220 		goto err_context;
6221 	}
6222 
6223 	if (move_group) {
6224 		struct perf_event_context *gctx = group_leader->ctx;
6225 
6226 		mutex_lock(&gctx->mutex);
6227 		perf_remove_from_context(group_leader);
6228 		list_for_each_entry(sibling, &group_leader->sibling_list,
6229 				    group_entry) {
6230 			perf_remove_from_context(sibling);
6231 			put_ctx(gctx);
6232 		}
6233 		mutex_unlock(&gctx->mutex);
6234 		put_ctx(gctx);
6235 	}
6236 
6237 	event->filp = event_file;
6238 	WARN_ON_ONCE(ctx->parent_ctx);
6239 	mutex_lock(&ctx->mutex);
6240 
6241 	if (move_group) {
6242 		perf_install_in_context(ctx, group_leader, cpu);
6243 		get_ctx(ctx);
6244 		list_for_each_entry(sibling, &group_leader->sibling_list,
6245 				    group_entry) {
6246 			perf_install_in_context(ctx, sibling, cpu);
6247 			get_ctx(ctx);
6248 		}
6249 	}
6250 
6251 	perf_install_in_context(ctx, event, cpu);
6252 	++ctx->generation;
6253 	perf_unpin_context(ctx);
6254 	mutex_unlock(&ctx->mutex);
6255 
6256 	event->owner = current;
6257 
6258 	mutex_lock(&current->perf_event_mutex);
6259 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6260 	mutex_unlock(&current->perf_event_mutex);
6261 
6262 	/*
6263 	 * Precalculate sample_data sizes
6264 	 */
6265 	perf_event__header_size(event);
6266 	perf_event__id_header_size(event);
6267 
6268 	/*
6269 	 * Drop the reference on the group_event after placing the
6270 	 * new event on the sibling_list. This ensures destruction
6271 	 * of the group leader will find the pointer to itself in
6272 	 * perf_group_detach().
6273 	 */
6274 	fput_light(group_file, fput_needed);
6275 	fd_install(event_fd, event_file);
6276 	return event_fd;
6277 
6278 err_context:
6279 	perf_unpin_context(ctx);
6280 	put_ctx(ctx);
6281 err_alloc:
6282 	free_event(event);
6283 err_task:
6284 	if (task)
6285 		put_task_struct(task);
6286 err_group_fd:
6287 	fput_light(group_file, fput_needed);
6288 err_fd:
6289 	put_unused_fd(event_fd);
6290 	return err;
6291 }
6292 
6293 /**
6294  * perf_event_create_kernel_counter
6295  *
6296  * @attr: attributes of the counter to create
6297  * @cpu: cpu in which the counter is bound
6298  * @task: task to profile (NULL for percpu)
6299  */
6300 struct perf_event *
6301 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6302 				 struct task_struct *task,
6303 				 perf_overflow_handler_t overflow_handler,
6304 				 void *context)
6305 {
6306 	struct perf_event_context *ctx;
6307 	struct perf_event *event;
6308 	int err;
6309 
6310 	/*
6311 	 * Get the target context (task or percpu):
6312 	 */
6313 
6314 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6315 				 overflow_handler, context);
6316 	if (IS_ERR(event)) {
6317 		err = PTR_ERR(event);
6318 		goto err;
6319 	}
6320 
6321 	ctx = find_get_context(event->pmu, task, cpu);
6322 	if (IS_ERR(ctx)) {
6323 		err = PTR_ERR(ctx);
6324 		goto err_free;
6325 	}
6326 
6327 	event->filp = NULL;
6328 	WARN_ON_ONCE(ctx->parent_ctx);
6329 	mutex_lock(&ctx->mutex);
6330 	perf_install_in_context(ctx, event, cpu);
6331 	++ctx->generation;
6332 	perf_unpin_context(ctx);
6333 	mutex_unlock(&ctx->mutex);
6334 
6335 	return event;
6336 
6337 err_free:
6338 	free_event(event);
6339 err:
6340 	return ERR_PTR(err);
6341 }
6342 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6343 
6344 static void sync_child_event(struct perf_event *child_event,
6345 			       struct task_struct *child)
6346 {
6347 	struct perf_event *parent_event = child_event->parent;
6348 	u64 child_val;
6349 
6350 	if (child_event->attr.inherit_stat)
6351 		perf_event_read_event(child_event, child);
6352 
6353 	child_val = perf_event_count(child_event);
6354 
6355 	/*
6356 	 * Add back the child's count to the parent's count:
6357 	 */
6358 	atomic64_add(child_val, &parent_event->child_count);
6359 	atomic64_add(child_event->total_time_enabled,
6360 		     &parent_event->child_total_time_enabled);
6361 	atomic64_add(child_event->total_time_running,
6362 		     &parent_event->child_total_time_running);
6363 
6364 	/*
6365 	 * Remove this event from the parent's list
6366 	 */
6367 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6368 	mutex_lock(&parent_event->child_mutex);
6369 	list_del_init(&child_event->child_list);
6370 	mutex_unlock(&parent_event->child_mutex);
6371 
6372 	/*
6373 	 * Release the parent event, if this was the last
6374 	 * reference to it.
6375 	 */
6376 	fput(parent_event->filp);
6377 }
6378 
6379 static void
6380 __perf_event_exit_task(struct perf_event *child_event,
6381 			 struct perf_event_context *child_ctx,
6382 			 struct task_struct *child)
6383 {
6384 	if (child_event->parent) {
6385 		raw_spin_lock_irq(&child_ctx->lock);
6386 		perf_group_detach(child_event);
6387 		raw_spin_unlock_irq(&child_ctx->lock);
6388 	}
6389 
6390 	perf_remove_from_context(child_event);
6391 
6392 	/*
6393 	 * It can happen that the parent exits first, and has events
6394 	 * that are still around due to the child reference. These
6395 	 * events need to be zapped.
6396 	 */
6397 	if (child_event->parent) {
6398 		sync_child_event(child_event, child);
6399 		free_event(child_event);
6400 	}
6401 }
6402 
6403 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6404 {
6405 	struct perf_event *child_event, *tmp;
6406 	struct perf_event_context *child_ctx;
6407 	unsigned long flags;
6408 
6409 	if (likely(!child->perf_event_ctxp[ctxn])) {
6410 		perf_event_task(child, NULL, 0);
6411 		return;
6412 	}
6413 
6414 	local_irq_save(flags);
6415 	/*
6416 	 * We can't reschedule here because interrupts are disabled,
6417 	 * and either child is current or it is a task that can't be
6418 	 * scheduled, so we are now safe from rescheduling changing
6419 	 * our context.
6420 	 */
6421 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6422 
6423 	/*
6424 	 * Take the context lock here so that if find_get_context is
6425 	 * reading child->perf_event_ctxp, we wait until it has
6426 	 * incremented the context's refcount before we do put_ctx below.
6427 	 */
6428 	raw_spin_lock(&child_ctx->lock);
6429 	task_ctx_sched_out(child_ctx);
6430 	child->perf_event_ctxp[ctxn] = NULL;
6431 	/*
6432 	 * If this context is a clone; unclone it so it can't get
6433 	 * swapped to another process while we're removing all
6434 	 * the events from it.
6435 	 */
6436 	unclone_ctx(child_ctx);
6437 	update_context_time(child_ctx);
6438 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6439 
6440 	/*
6441 	 * Report the task dead after unscheduling the events so that we
6442 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6443 	 * get a few PERF_RECORD_READ events.
6444 	 */
6445 	perf_event_task(child, child_ctx, 0);
6446 
6447 	/*
6448 	 * We can recurse on the same lock type through:
6449 	 *
6450 	 *   __perf_event_exit_task()
6451 	 *     sync_child_event()
6452 	 *       fput(parent_event->filp)
6453 	 *         perf_release()
6454 	 *           mutex_lock(&ctx->mutex)
6455 	 *
6456 	 * But since its the parent context it won't be the same instance.
6457 	 */
6458 	mutex_lock(&child_ctx->mutex);
6459 
6460 again:
6461 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6462 				 group_entry)
6463 		__perf_event_exit_task(child_event, child_ctx, child);
6464 
6465 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6466 				 group_entry)
6467 		__perf_event_exit_task(child_event, child_ctx, child);
6468 
6469 	/*
6470 	 * If the last event was a group event, it will have appended all
6471 	 * its siblings to the list, but we obtained 'tmp' before that which
6472 	 * will still point to the list head terminating the iteration.
6473 	 */
6474 	if (!list_empty(&child_ctx->pinned_groups) ||
6475 	    !list_empty(&child_ctx->flexible_groups))
6476 		goto again;
6477 
6478 	mutex_unlock(&child_ctx->mutex);
6479 
6480 	put_ctx(child_ctx);
6481 }
6482 
6483 /*
6484  * When a child task exits, feed back event values to parent events.
6485  */
6486 void perf_event_exit_task(struct task_struct *child)
6487 {
6488 	struct perf_event *event, *tmp;
6489 	int ctxn;
6490 
6491 	mutex_lock(&child->perf_event_mutex);
6492 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6493 				 owner_entry) {
6494 		list_del_init(&event->owner_entry);
6495 
6496 		/*
6497 		 * Ensure the list deletion is visible before we clear
6498 		 * the owner, closes a race against perf_release() where
6499 		 * we need to serialize on the owner->perf_event_mutex.
6500 		 */
6501 		smp_wmb();
6502 		event->owner = NULL;
6503 	}
6504 	mutex_unlock(&child->perf_event_mutex);
6505 
6506 	for_each_task_context_nr(ctxn)
6507 		perf_event_exit_task_context(child, ctxn);
6508 }
6509 
6510 static void perf_free_event(struct perf_event *event,
6511 			    struct perf_event_context *ctx)
6512 {
6513 	struct perf_event *parent = event->parent;
6514 
6515 	if (WARN_ON_ONCE(!parent))
6516 		return;
6517 
6518 	mutex_lock(&parent->child_mutex);
6519 	list_del_init(&event->child_list);
6520 	mutex_unlock(&parent->child_mutex);
6521 
6522 	fput(parent->filp);
6523 
6524 	perf_group_detach(event);
6525 	list_del_event(event, ctx);
6526 	free_event(event);
6527 }
6528 
6529 /*
6530  * free an unexposed, unused context as created by inheritance by
6531  * perf_event_init_task below, used by fork() in case of fail.
6532  */
6533 void perf_event_free_task(struct task_struct *task)
6534 {
6535 	struct perf_event_context *ctx;
6536 	struct perf_event *event, *tmp;
6537 	int ctxn;
6538 
6539 	for_each_task_context_nr(ctxn) {
6540 		ctx = task->perf_event_ctxp[ctxn];
6541 		if (!ctx)
6542 			continue;
6543 
6544 		mutex_lock(&ctx->mutex);
6545 again:
6546 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6547 				group_entry)
6548 			perf_free_event(event, ctx);
6549 
6550 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6551 				group_entry)
6552 			perf_free_event(event, ctx);
6553 
6554 		if (!list_empty(&ctx->pinned_groups) ||
6555 				!list_empty(&ctx->flexible_groups))
6556 			goto again;
6557 
6558 		mutex_unlock(&ctx->mutex);
6559 
6560 		put_ctx(ctx);
6561 	}
6562 }
6563 
6564 void perf_event_delayed_put(struct task_struct *task)
6565 {
6566 	int ctxn;
6567 
6568 	for_each_task_context_nr(ctxn)
6569 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6570 }
6571 
6572 /*
6573  * inherit a event from parent task to child task:
6574  */
6575 static struct perf_event *
6576 inherit_event(struct perf_event *parent_event,
6577 	      struct task_struct *parent,
6578 	      struct perf_event_context *parent_ctx,
6579 	      struct task_struct *child,
6580 	      struct perf_event *group_leader,
6581 	      struct perf_event_context *child_ctx)
6582 {
6583 	struct perf_event *child_event;
6584 	unsigned long flags;
6585 
6586 	/*
6587 	 * Instead of creating recursive hierarchies of events,
6588 	 * we link inherited events back to the original parent,
6589 	 * which has a filp for sure, which we use as the reference
6590 	 * count:
6591 	 */
6592 	if (parent_event->parent)
6593 		parent_event = parent_event->parent;
6594 
6595 	child_event = perf_event_alloc(&parent_event->attr,
6596 					   parent_event->cpu,
6597 					   child,
6598 					   group_leader, parent_event,
6599 				           NULL, NULL);
6600 	if (IS_ERR(child_event))
6601 		return child_event;
6602 	get_ctx(child_ctx);
6603 
6604 	/*
6605 	 * Make the child state follow the state of the parent event,
6606 	 * not its attr.disabled bit.  We hold the parent's mutex,
6607 	 * so we won't race with perf_event_{en, dis}able_family.
6608 	 */
6609 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6610 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6611 	else
6612 		child_event->state = PERF_EVENT_STATE_OFF;
6613 
6614 	if (parent_event->attr.freq) {
6615 		u64 sample_period = parent_event->hw.sample_period;
6616 		struct hw_perf_event *hwc = &child_event->hw;
6617 
6618 		hwc->sample_period = sample_period;
6619 		hwc->last_period   = sample_period;
6620 
6621 		local64_set(&hwc->period_left, sample_period);
6622 	}
6623 
6624 	child_event->ctx = child_ctx;
6625 	child_event->overflow_handler = parent_event->overflow_handler;
6626 	child_event->overflow_handler_context
6627 		= parent_event->overflow_handler_context;
6628 
6629 	/*
6630 	 * Precalculate sample_data sizes
6631 	 */
6632 	perf_event__header_size(child_event);
6633 	perf_event__id_header_size(child_event);
6634 
6635 	/*
6636 	 * Link it up in the child's context:
6637 	 */
6638 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6639 	add_event_to_ctx(child_event, child_ctx);
6640 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6641 
6642 	/*
6643 	 * Get a reference to the parent filp - we will fput it
6644 	 * when the child event exits. This is safe to do because
6645 	 * we are in the parent and we know that the filp still
6646 	 * exists and has a nonzero count:
6647 	 */
6648 	atomic_long_inc(&parent_event->filp->f_count);
6649 
6650 	/*
6651 	 * Link this into the parent event's child list
6652 	 */
6653 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6654 	mutex_lock(&parent_event->child_mutex);
6655 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6656 	mutex_unlock(&parent_event->child_mutex);
6657 
6658 	return child_event;
6659 }
6660 
6661 static int inherit_group(struct perf_event *parent_event,
6662 	      struct task_struct *parent,
6663 	      struct perf_event_context *parent_ctx,
6664 	      struct task_struct *child,
6665 	      struct perf_event_context *child_ctx)
6666 {
6667 	struct perf_event *leader;
6668 	struct perf_event *sub;
6669 	struct perf_event *child_ctr;
6670 
6671 	leader = inherit_event(parent_event, parent, parent_ctx,
6672 				 child, NULL, child_ctx);
6673 	if (IS_ERR(leader))
6674 		return PTR_ERR(leader);
6675 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6676 		child_ctr = inherit_event(sub, parent, parent_ctx,
6677 					    child, leader, child_ctx);
6678 		if (IS_ERR(child_ctr))
6679 			return PTR_ERR(child_ctr);
6680 	}
6681 	return 0;
6682 }
6683 
6684 static int
6685 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6686 		   struct perf_event_context *parent_ctx,
6687 		   struct task_struct *child, int ctxn,
6688 		   int *inherited_all)
6689 {
6690 	int ret;
6691 	struct perf_event_context *child_ctx;
6692 
6693 	if (!event->attr.inherit) {
6694 		*inherited_all = 0;
6695 		return 0;
6696 	}
6697 
6698 	child_ctx = child->perf_event_ctxp[ctxn];
6699 	if (!child_ctx) {
6700 		/*
6701 		 * This is executed from the parent task context, so
6702 		 * inherit events that have been marked for cloning.
6703 		 * First allocate and initialize a context for the
6704 		 * child.
6705 		 */
6706 
6707 		child_ctx = alloc_perf_context(event->pmu, child);
6708 		if (!child_ctx)
6709 			return -ENOMEM;
6710 
6711 		child->perf_event_ctxp[ctxn] = child_ctx;
6712 	}
6713 
6714 	ret = inherit_group(event, parent, parent_ctx,
6715 			    child, child_ctx);
6716 
6717 	if (ret)
6718 		*inherited_all = 0;
6719 
6720 	return ret;
6721 }
6722 
6723 /*
6724  * Initialize the perf_event context in task_struct
6725  */
6726 int perf_event_init_context(struct task_struct *child, int ctxn)
6727 {
6728 	struct perf_event_context *child_ctx, *parent_ctx;
6729 	struct perf_event_context *cloned_ctx;
6730 	struct perf_event *event;
6731 	struct task_struct *parent = current;
6732 	int inherited_all = 1;
6733 	unsigned long flags;
6734 	int ret = 0;
6735 
6736 	if (likely(!parent->perf_event_ctxp[ctxn]))
6737 		return 0;
6738 
6739 	/*
6740 	 * If the parent's context is a clone, pin it so it won't get
6741 	 * swapped under us.
6742 	 */
6743 	parent_ctx = perf_pin_task_context(parent, ctxn);
6744 
6745 	/*
6746 	 * No need to check if parent_ctx != NULL here; since we saw
6747 	 * it non-NULL earlier, the only reason for it to become NULL
6748 	 * is if we exit, and since we're currently in the middle of
6749 	 * a fork we can't be exiting at the same time.
6750 	 */
6751 
6752 	/*
6753 	 * Lock the parent list. No need to lock the child - not PID
6754 	 * hashed yet and not running, so nobody can access it.
6755 	 */
6756 	mutex_lock(&parent_ctx->mutex);
6757 
6758 	/*
6759 	 * We dont have to disable NMIs - we are only looking at
6760 	 * the list, not manipulating it:
6761 	 */
6762 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6763 		ret = inherit_task_group(event, parent, parent_ctx,
6764 					 child, ctxn, &inherited_all);
6765 		if (ret)
6766 			break;
6767 	}
6768 
6769 	/*
6770 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6771 	 * to allocations, but we need to prevent rotation because
6772 	 * rotate_ctx() will change the list from interrupt context.
6773 	 */
6774 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6775 	parent_ctx->rotate_disable = 1;
6776 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6777 
6778 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6779 		ret = inherit_task_group(event, parent, parent_ctx,
6780 					 child, ctxn, &inherited_all);
6781 		if (ret)
6782 			break;
6783 	}
6784 
6785 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6786 	parent_ctx->rotate_disable = 0;
6787 
6788 	child_ctx = child->perf_event_ctxp[ctxn];
6789 
6790 	if (child_ctx && inherited_all) {
6791 		/*
6792 		 * Mark the child context as a clone of the parent
6793 		 * context, or of whatever the parent is a clone of.
6794 		 *
6795 		 * Note that if the parent is a clone, the holding of
6796 		 * parent_ctx->lock avoids it from being uncloned.
6797 		 */
6798 		cloned_ctx = parent_ctx->parent_ctx;
6799 		if (cloned_ctx) {
6800 			child_ctx->parent_ctx = cloned_ctx;
6801 			child_ctx->parent_gen = parent_ctx->parent_gen;
6802 		} else {
6803 			child_ctx->parent_ctx = parent_ctx;
6804 			child_ctx->parent_gen = parent_ctx->generation;
6805 		}
6806 		get_ctx(child_ctx->parent_ctx);
6807 	}
6808 
6809 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6810 	mutex_unlock(&parent_ctx->mutex);
6811 
6812 	perf_unpin_context(parent_ctx);
6813 	put_ctx(parent_ctx);
6814 
6815 	return ret;
6816 }
6817 
6818 /*
6819  * Initialize the perf_event context in task_struct
6820  */
6821 int perf_event_init_task(struct task_struct *child)
6822 {
6823 	int ctxn, ret;
6824 
6825 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6826 	mutex_init(&child->perf_event_mutex);
6827 	INIT_LIST_HEAD(&child->perf_event_list);
6828 
6829 	for_each_task_context_nr(ctxn) {
6830 		ret = perf_event_init_context(child, ctxn);
6831 		if (ret)
6832 			return ret;
6833 	}
6834 
6835 	return 0;
6836 }
6837 
6838 static void __init perf_event_init_all_cpus(void)
6839 {
6840 	struct swevent_htable *swhash;
6841 	int cpu;
6842 
6843 	for_each_possible_cpu(cpu) {
6844 		swhash = &per_cpu(swevent_htable, cpu);
6845 		mutex_init(&swhash->hlist_mutex);
6846 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6847 	}
6848 }
6849 
6850 static void __cpuinit perf_event_init_cpu(int cpu)
6851 {
6852 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6853 
6854 	mutex_lock(&swhash->hlist_mutex);
6855 	if (swhash->hlist_refcount > 0) {
6856 		struct swevent_hlist *hlist;
6857 
6858 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6859 		WARN_ON(!hlist);
6860 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6861 	}
6862 	mutex_unlock(&swhash->hlist_mutex);
6863 }
6864 
6865 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6866 static void perf_pmu_rotate_stop(struct pmu *pmu)
6867 {
6868 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6869 
6870 	WARN_ON(!irqs_disabled());
6871 
6872 	list_del_init(&cpuctx->rotation_list);
6873 }
6874 
6875 static void __perf_event_exit_context(void *__info)
6876 {
6877 	struct perf_event_context *ctx = __info;
6878 	struct perf_event *event, *tmp;
6879 
6880 	perf_pmu_rotate_stop(ctx->pmu);
6881 
6882 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6883 		__perf_remove_from_context(event);
6884 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6885 		__perf_remove_from_context(event);
6886 }
6887 
6888 static void perf_event_exit_cpu_context(int cpu)
6889 {
6890 	struct perf_event_context *ctx;
6891 	struct pmu *pmu;
6892 	int idx;
6893 
6894 	idx = srcu_read_lock(&pmus_srcu);
6895 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6896 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6897 
6898 		mutex_lock(&ctx->mutex);
6899 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6900 		mutex_unlock(&ctx->mutex);
6901 	}
6902 	srcu_read_unlock(&pmus_srcu, idx);
6903 }
6904 
6905 static void perf_event_exit_cpu(int cpu)
6906 {
6907 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6908 
6909 	mutex_lock(&swhash->hlist_mutex);
6910 	swevent_hlist_release(swhash);
6911 	mutex_unlock(&swhash->hlist_mutex);
6912 
6913 	perf_event_exit_cpu_context(cpu);
6914 }
6915 #else
6916 static inline void perf_event_exit_cpu(int cpu) { }
6917 #endif
6918 
6919 static int
6920 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6921 {
6922 	int cpu;
6923 
6924 	for_each_online_cpu(cpu)
6925 		perf_event_exit_cpu(cpu);
6926 
6927 	return NOTIFY_OK;
6928 }
6929 
6930 /*
6931  * Run the perf reboot notifier at the very last possible moment so that
6932  * the generic watchdog code runs as long as possible.
6933  */
6934 static struct notifier_block perf_reboot_notifier = {
6935 	.notifier_call = perf_reboot,
6936 	.priority = INT_MIN,
6937 };
6938 
6939 static int __cpuinit
6940 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6941 {
6942 	unsigned int cpu = (long)hcpu;
6943 
6944 	switch (action & ~CPU_TASKS_FROZEN) {
6945 
6946 	case CPU_UP_PREPARE:
6947 	case CPU_DOWN_FAILED:
6948 		perf_event_init_cpu(cpu);
6949 		break;
6950 
6951 	case CPU_UP_CANCELED:
6952 	case CPU_DOWN_PREPARE:
6953 		perf_event_exit_cpu(cpu);
6954 		break;
6955 
6956 	default:
6957 		break;
6958 	}
6959 
6960 	return NOTIFY_OK;
6961 }
6962 
6963 void __init perf_event_init(void)
6964 {
6965 	int ret;
6966 
6967 	idr_init(&pmu_idr);
6968 
6969 	perf_event_init_all_cpus();
6970 	init_srcu_struct(&pmus_srcu);
6971 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6972 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
6973 	perf_pmu_register(&perf_task_clock, NULL, -1);
6974 	perf_tp_register();
6975 	perf_cpu_notifier(perf_cpu_notify);
6976 	register_reboot_notifier(&perf_reboot_notifier);
6977 
6978 	ret = init_hw_breakpoint();
6979 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6980 }
6981 
6982 static int __init perf_event_sysfs_init(void)
6983 {
6984 	struct pmu *pmu;
6985 	int ret;
6986 
6987 	mutex_lock(&pmus_lock);
6988 
6989 	ret = bus_register(&pmu_bus);
6990 	if (ret)
6991 		goto unlock;
6992 
6993 	list_for_each_entry(pmu, &pmus, entry) {
6994 		if (!pmu->name || pmu->type < 0)
6995 			continue;
6996 
6997 		ret = pmu_dev_alloc(pmu);
6998 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6999 	}
7000 	pmu_bus_running = 1;
7001 	ret = 0;
7002 
7003 unlock:
7004 	mutex_unlock(&pmus_lock);
7005 
7006 	return ret;
7007 }
7008 device_initcall(perf_event_sysfs_init);
7009 
7010 #ifdef CONFIG_CGROUP_PERF
7011 static struct cgroup_subsys_state *perf_cgroup_create(
7012 	struct cgroup_subsys *ss, struct cgroup *cont)
7013 {
7014 	struct perf_cgroup *jc;
7015 
7016 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7017 	if (!jc)
7018 		return ERR_PTR(-ENOMEM);
7019 
7020 	jc->info = alloc_percpu(struct perf_cgroup_info);
7021 	if (!jc->info) {
7022 		kfree(jc);
7023 		return ERR_PTR(-ENOMEM);
7024 	}
7025 
7026 	return &jc->css;
7027 }
7028 
7029 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7030 				struct cgroup *cont)
7031 {
7032 	struct perf_cgroup *jc;
7033 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7034 			  struct perf_cgroup, css);
7035 	free_percpu(jc->info);
7036 	kfree(jc);
7037 }
7038 
7039 static int __perf_cgroup_move(void *info)
7040 {
7041 	struct task_struct *task = info;
7042 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7043 	return 0;
7044 }
7045 
7046 static void
7047 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7048 {
7049 	task_function_call(task, __perf_cgroup_move, task);
7050 }
7051 
7052 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7053 		struct cgroup *old_cgrp, struct task_struct *task)
7054 {
7055 	/*
7056 	 * cgroup_exit() is called in the copy_process() failure path.
7057 	 * Ignore this case since the task hasn't ran yet, this avoids
7058 	 * trying to poke a half freed task state from generic code.
7059 	 */
7060 	if (!(task->flags & PF_EXITING))
7061 		return;
7062 
7063 	perf_cgroup_attach_task(cgrp, task);
7064 }
7065 
7066 struct cgroup_subsys perf_subsys = {
7067 	.name		= "perf_event",
7068 	.subsys_id	= perf_subsys_id,
7069 	.create		= perf_cgroup_create,
7070 	.destroy	= perf_cgroup_destroy,
7071 	.exit		= perf_cgroup_exit,
7072 	.attach_task	= perf_cgroup_attach_task,
7073 };
7074 #endif /* CONFIG_CGROUP_PERF */
7075