xref: /linux/kernel/events/core.c (revision 5dafea097ac65bd01cc86801c399ae41dce79756)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 	struct event_function_struct efs = {
248 		.event = event,
249 		.func = func,
250 		.data = data,
251 	};
252 
253 	int ret = event_function(&efs);
254 	WARN_ON_ONCE(ret);
255 }
256 
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 	struct perf_event_context *ctx = event->ctx;
260 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 	struct event_function_struct efs = {
262 		.event = event,
263 		.func = func,
264 		.data = data,
265 	};
266 
267 	if (!event->parent) {
268 		/*
269 		 * If this is a !child event, we must hold ctx::mutex to
270 		 * stabilize the the event->ctx relation. See
271 		 * perf_event_ctx_lock().
272 		 */
273 		lockdep_assert_held(&ctx->mutex);
274 	}
275 
276 	if (!task) {
277 		cpu_function_call(event->cpu, event_function, &efs);
278 		return;
279 	}
280 
281 	if (task == TASK_TOMBSTONE)
282 		return;
283 
284 again:
285 	if (!task_function_call(task, event_function, &efs))
286 		return;
287 
288 	raw_spin_lock_irq(&ctx->lock);
289 	/*
290 	 * Reload the task pointer, it might have been changed by
291 	 * a concurrent perf_event_context_sched_out().
292 	 */
293 	task = ctx->task;
294 	if (task == TASK_TOMBSTONE) {
295 		raw_spin_unlock_irq(&ctx->lock);
296 		return;
297 	}
298 	if (ctx->is_active) {
299 		raw_spin_unlock_irq(&ctx->lock);
300 		goto again;
301 	}
302 	func(event, NULL, ctx, data);
303 	raw_spin_unlock_irq(&ctx->lock);
304 }
305 
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 		       PERF_FLAG_FD_OUTPUT  |\
308 		       PERF_FLAG_PID_CGROUP |\
309 		       PERF_FLAG_FD_CLOEXEC)
310 
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315 	(PERF_SAMPLE_BRANCH_KERNEL |\
316 	 PERF_SAMPLE_BRANCH_HV)
317 
318 enum event_type_t {
319 	EVENT_FLEXIBLE = 0x1,
320 	EVENT_PINNED = 0x2,
321 	EVENT_TIME = 0x4,
322 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324 
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329 
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335 
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339 
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345 
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349 
350 /*
351  * perf event paranoia level:
352  *  -1 - not paranoid at all
353  *   0 - disallow raw tracepoint access for unpriv
354  *   1 - disallow cpu events for unpriv
355  *   2 - disallow kernel profiling for unpriv
356  */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358 
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361 
362 /*
363  * max perf event sample rate
364  */
365 #define DEFAULT_MAX_SAMPLE_RATE		100000
366 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
368 
369 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
370 
371 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
373 
374 static int perf_sample_allowed_ns __read_mostly =
375 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376 
377 static void update_perf_cpu_limits(void)
378 {
379 	u64 tmp = perf_sample_period_ns;
380 
381 	tmp *= sysctl_perf_cpu_time_max_percent;
382 	tmp = div_u64(tmp, 100);
383 	if (!tmp)
384 		tmp = 1;
385 
386 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388 
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390 
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392 		void __user *buffer, size_t *lenp,
393 		loff_t *ppos)
394 {
395 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396 
397 	if (ret || !write)
398 		return ret;
399 
400 	/*
401 	 * If throttling is disabled don't allow the write:
402 	 */
403 	if (sysctl_perf_cpu_time_max_percent == 100 ||
404 	    sysctl_perf_cpu_time_max_percent == 0)
405 		return -EINVAL;
406 
407 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409 	update_perf_cpu_limits();
410 
411 	return 0;
412 }
413 
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415 
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417 				void __user *buffer, size_t *lenp,
418 				loff_t *ppos)
419 {
420 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421 
422 	if (ret || !write)
423 		return ret;
424 
425 	if (sysctl_perf_cpu_time_max_percent == 100 ||
426 	    sysctl_perf_cpu_time_max_percent == 0) {
427 		printk(KERN_WARNING
428 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429 		WRITE_ONCE(perf_sample_allowed_ns, 0);
430 	} else {
431 		update_perf_cpu_limits();
432 	}
433 
434 	return 0;
435 }
436 
437 /*
438  * perf samples are done in some very critical code paths (NMIs).
439  * If they take too much CPU time, the system can lock up and not
440  * get any real work done.  This will drop the sample rate when
441  * we detect that events are taking too long.
442  */
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
445 
446 static u64 __report_avg;
447 static u64 __report_allowed;
448 
449 static void perf_duration_warn(struct irq_work *w)
450 {
451 	printk_ratelimited(KERN_WARNING
452 		"perf: interrupt took too long (%lld > %lld), lowering "
453 		"kernel.perf_event_max_sample_rate to %d\n",
454 		__report_avg, __report_allowed,
455 		sysctl_perf_event_sample_rate);
456 }
457 
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459 
460 void perf_sample_event_took(u64 sample_len_ns)
461 {
462 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463 	u64 running_len;
464 	u64 avg_len;
465 	u32 max;
466 
467 	if (max_len == 0)
468 		return;
469 
470 	/* Decay the counter by 1 average sample. */
471 	running_len = __this_cpu_read(running_sample_length);
472 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473 	running_len += sample_len_ns;
474 	__this_cpu_write(running_sample_length, running_len);
475 
476 	/*
477 	 * Note: this will be biased artifically low until we have
478 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479 	 * from having to maintain a count.
480 	 */
481 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482 	if (avg_len <= max_len)
483 		return;
484 
485 	__report_avg = avg_len;
486 	__report_allowed = max_len;
487 
488 	/*
489 	 * Compute a throttle threshold 25% below the current duration.
490 	 */
491 	avg_len += avg_len / 4;
492 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493 	if (avg_len < max)
494 		max /= (u32)avg_len;
495 	else
496 		max = 1;
497 
498 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499 	WRITE_ONCE(max_samples_per_tick, max);
500 
501 	sysctl_perf_event_sample_rate = max * HZ;
502 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
503 
504 	if (!irq_work_queue(&perf_duration_work)) {
505 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506 			     "kernel.perf_event_max_sample_rate to %d\n",
507 			     __report_avg, __report_allowed,
508 			     sysctl_perf_event_sample_rate);
509 	}
510 }
511 
512 static atomic64_t perf_event_id;
513 
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515 			      enum event_type_t event_type);
516 
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518 			     enum event_type_t event_type,
519 			     struct task_struct *task);
520 
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
523 
524 void __weak perf_event_print_debug(void)	{ }
525 
526 extern __weak const char *perf_pmu_name(void)
527 {
528 	return "pmu";
529 }
530 
531 static inline u64 perf_clock(void)
532 {
533 	return local_clock();
534 }
535 
536 static inline u64 perf_event_clock(struct perf_event *event)
537 {
538 	return event->clock();
539 }
540 
541 #ifdef CONFIG_CGROUP_PERF
542 
543 static inline bool
544 perf_cgroup_match(struct perf_event *event)
545 {
546 	struct perf_event_context *ctx = event->ctx;
547 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548 
549 	/* @event doesn't care about cgroup */
550 	if (!event->cgrp)
551 		return true;
552 
553 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
554 	if (!cpuctx->cgrp)
555 		return false;
556 
557 	/*
558 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
559 	 * also enabled for all its descendant cgroups.  If @cpuctx's
560 	 * cgroup is a descendant of @event's (the test covers identity
561 	 * case), it's a match.
562 	 */
563 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564 				    event->cgrp->css.cgroup);
565 }
566 
567 static inline void perf_detach_cgroup(struct perf_event *event)
568 {
569 	css_put(&event->cgrp->css);
570 	event->cgrp = NULL;
571 }
572 
573 static inline int is_cgroup_event(struct perf_event *event)
574 {
575 	return event->cgrp != NULL;
576 }
577 
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
579 {
580 	struct perf_cgroup_info *t;
581 
582 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
583 	return t->time;
584 }
585 
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587 {
588 	struct perf_cgroup_info *info;
589 	u64 now;
590 
591 	now = perf_clock();
592 
593 	info = this_cpu_ptr(cgrp->info);
594 
595 	info->time += now - info->timestamp;
596 	info->timestamp = now;
597 }
598 
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600 {
601 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602 	if (cgrp_out)
603 		__update_cgrp_time(cgrp_out);
604 }
605 
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
607 {
608 	struct perf_cgroup *cgrp;
609 
610 	/*
611 	 * ensure we access cgroup data only when needed and
612 	 * when we know the cgroup is pinned (css_get)
613 	 */
614 	if (!is_cgroup_event(event))
615 		return;
616 
617 	cgrp = perf_cgroup_from_task(current, event->ctx);
618 	/*
619 	 * Do not update time when cgroup is not active
620 	 */
621 	if (cgrp == event->cgrp)
622 		__update_cgrp_time(event->cgrp);
623 }
624 
625 static inline void
626 perf_cgroup_set_timestamp(struct task_struct *task,
627 			  struct perf_event_context *ctx)
628 {
629 	struct perf_cgroup *cgrp;
630 	struct perf_cgroup_info *info;
631 
632 	/*
633 	 * ctx->lock held by caller
634 	 * ensure we do not access cgroup data
635 	 * unless we have the cgroup pinned (css_get)
636 	 */
637 	if (!task || !ctx->nr_cgroups)
638 		return;
639 
640 	cgrp = perf_cgroup_from_task(task, ctx);
641 	info = this_cpu_ptr(cgrp->info);
642 	info->timestamp = ctx->timestamp;
643 }
644 
645 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
647 
648 /*
649  * reschedule events based on the cgroup constraint of task.
650  *
651  * mode SWOUT : schedule out everything
652  * mode SWIN : schedule in based on cgroup for next
653  */
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
655 {
656 	struct perf_cpu_context *cpuctx;
657 	struct pmu *pmu;
658 	unsigned long flags;
659 
660 	/*
661 	 * disable interrupts to avoid geting nr_cgroup
662 	 * changes via __perf_event_disable(). Also
663 	 * avoids preemption.
664 	 */
665 	local_irq_save(flags);
666 
667 	/*
668 	 * we reschedule only in the presence of cgroup
669 	 * constrained events.
670 	 */
671 
672 	list_for_each_entry_rcu(pmu, &pmus, entry) {
673 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674 		if (cpuctx->unique_pmu != pmu)
675 			continue; /* ensure we process each cpuctx once */
676 
677 		/*
678 		 * perf_cgroup_events says at least one
679 		 * context on this CPU has cgroup events.
680 		 *
681 		 * ctx->nr_cgroups reports the number of cgroup
682 		 * events for a context.
683 		 */
684 		if (cpuctx->ctx.nr_cgroups > 0) {
685 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686 			perf_pmu_disable(cpuctx->ctx.pmu);
687 
688 			if (mode & PERF_CGROUP_SWOUT) {
689 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690 				/*
691 				 * must not be done before ctxswout due
692 				 * to event_filter_match() in event_sched_out()
693 				 */
694 				cpuctx->cgrp = NULL;
695 			}
696 
697 			if (mode & PERF_CGROUP_SWIN) {
698 				WARN_ON_ONCE(cpuctx->cgrp);
699 				/*
700 				 * set cgrp before ctxsw in to allow
701 				 * event_filter_match() to not have to pass
702 				 * task around
703 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
704 				 * because cgorup events are only per-cpu
705 				 */
706 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708 			}
709 			perf_pmu_enable(cpuctx->ctx.pmu);
710 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
711 		}
712 	}
713 
714 	local_irq_restore(flags);
715 }
716 
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718 					 struct task_struct *next)
719 {
720 	struct perf_cgroup *cgrp1;
721 	struct perf_cgroup *cgrp2 = NULL;
722 
723 	rcu_read_lock();
724 	/*
725 	 * we come here when we know perf_cgroup_events > 0
726 	 * we do not need to pass the ctx here because we know
727 	 * we are holding the rcu lock
728 	 */
729 	cgrp1 = perf_cgroup_from_task(task, NULL);
730 	cgrp2 = perf_cgroup_from_task(next, NULL);
731 
732 	/*
733 	 * only schedule out current cgroup events if we know
734 	 * that we are switching to a different cgroup. Otherwise,
735 	 * do no touch the cgroup events.
736 	 */
737 	if (cgrp1 != cgrp2)
738 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
739 
740 	rcu_read_unlock();
741 }
742 
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744 					struct task_struct *task)
745 {
746 	struct perf_cgroup *cgrp1;
747 	struct perf_cgroup *cgrp2 = NULL;
748 
749 	rcu_read_lock();
750 	/*
751 	 * we come here when we know perf_cgroup_events > 0
752 	 * we do not need to pass the ctx here because we know
753 	 * we are holding the rcu lock
754 	 */
755 	cgrp1 = perf_cgroup_from_task(task, NULL);
756 	cgrp2 = perf_cgroup_from_task(prev, NULL);
757 
758 	/*
759 	 * only need to schedule in cgroup events if we are changing
760 	 * cgroup during ctxsw. Cgroup events were not scheduled
761 	 * out of ctxsw out if that was not the case.
762 	 */
763 	if (cgrp1 != cgrp2)
764 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
765 
766 	rcu_read_unlock();
767 }
768 
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770 				      struct perf_event_attr *attr,
771 				      struct perf_event *group_leader)
772 {
773 	struct perf_cgroup *cgrp;
774 	struct cgroup_subsys_state *css;
775 	struct fd f = fdget(fd);
776 	int ret = 0;
777 
778 	if (!f.file)
779 		return -EBADF;
780 
781 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
782 					 &perf_event_cgrp_subsys);
783 	if (IS_ERR(css)) {
784 		ret = PTR_ERR(css);
785 		goto out;
786 	}
787 
788 	cgrp = container_of(css, struct perf_cgroup, css);
789 	event->cgrp = cgrp;
790 
791 	/*
792 	 * all events in a group must monitor
793 	 * the same cgroup because a task belongs
794 	 * to only one perf cgroup at a time
795 	 */
796 	if (group_leader && group_leader->cgrp != cgrp) {
797 		perf_detach_cgroup(event);
798 		ret = -EINVAL;
799 	}
800 out:
801 	fdput(f);
802 	return ret;
803 }
804 
805 static inline void
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807 {
808 	struct perf_cgroup_info *t;
809 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
810 	event->shadow_ctx_time = now - t->timestamp;
811 }
812 
813 static inline void
814 perf_cgroup_defer_enabled(struct perf_event *event)
815 {
816 	/*
817 	 * when the current task's perf cgroup does not match
818 	 * the event's, we need to remember to call the
819 	 * perf_mark_enable() function the first time a task with
820 	 * a matching perf cgroup is scheduled in.
821 	 */
822 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
823 		event->cgrp_defer_enabled = 1;
824 }
825 
826 static inline void
827 perf_cgroup_mark_enabled(struct perf_event *event,
828 			 struct perf_event_context *ctx)
829 {
830 	struct perf_event *sub;
831 	u64 tstamp = perf_event_time(event);
832 
833 	if (!event->cgrp_defer_enabled)
834 		return;
835 
836 	event->cgrp_defer_enabled = 0;
837 
838 	event->tstamp_enabled = tstamp - event->total_time_enabled;
839 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
840 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842 			sub->cgrp_defer_enabled = 0;
843 		}
844 	}
845 }
846 #else /* !CONFIG_CGROUP_PERF */
847 
848 static inline bool
849 perf_cgroup_match(struct perf_event *event)
850 {
851 	return true;
852 }
853 
854 static inline void perf_detach_cgroup(struct perf_event *event)
855 {}
856 
857 static inline int is_cgroup_event(struct perf_event *event)
858 {
859 	return 0;
860 }
861 
862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
863 {
864 	return 0;
865 }
866 
867 static inline void update_cgrp_time_from_event(struct perf_event *event)
868 {
869 }
870 
871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
872 {
873 }
874 
875 static inline void perf_cgroup_sched_out(struct task_struct *task,
876 					 struct task_struct *next)
877 {
878 }
879 
880 static inline void perf_cgroup_sched_in(struct task_struct *prev,
881 					struct task_struct *task)
882 {
883 }
884 
885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
886 				      struct perf_event_attr *attr,
887 				      struct perf_event *group_leader)
888 {
889 	return -EINVAL;
890 }
891 
892 static inline void
893 perf_cgroup_set_timestamp(struct task_struct *task,
894 			  struct perf_event_context *ctx)
895 {
896 }
897 
898 void
899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
900 {
901 }
902 
903 static inline void
904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
905 {
906 }
907 
908 static inline u64 perf_cgroup_event_time(struct perf_event *event)
909 {
910 	return 0;
911 }
912 
913 static inline void
914 perf_cgroup_defer_enabled(struct perf_event *event)
915 {
916 }
917 
918 static inline void
919 perf_cgroup_mark_enabled(struct perf_event *event,
920 			 struct perf_event_context *ctx)
921 {
922 }
923 #endif
924 
925 /*
926  * set default to be dependent on timer tick just
927  * like original code
928  */
929 #define PERF_CPU_HRTIMER (1000 / HZ)
930 /*
931  * function must be called with interrupts disbled
932  */
933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
934 {
935 	struct perf_cpu_context *cpuctx;
936 	int rotations = 0;
937 
938 	WARN_ON(!irqs_disabled());
939 
940 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
941 	rotations = perf_rotate_context(cpuctx);
942 
943 	raw_spin_lock(&cpuctx->hrtimer_lock);
944 	if (rotations)
945 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
946 	else
947 		cpuctx->hrtimer_active = 0;
948 	raw_spin_unlock(&cpuctx->hrtimer_lock);
949 
950 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
951 }
952 
953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
954 {
955 	struct hrtimer *timer = &cpuctx->hrtimer;
956 	struct pmu *pmu = cpuctx->ctx.pmu;
957 	u64 interval;
958 
959 	/* no multiplexing needed for SW PMU */
960 	if (pmu->task_ctx_nr == perf_sw_context)
961 		return;
962 
963 	/*
964 	 * check default is sane, if not set then force to
965 	 * default interval (1/tick)
966 	 */
967 	interval = pmu->hrtimer_interval_ms;
968 	if (interval < 1)
969 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
970 
971 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
972 
973 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
974 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
975 	timer->function = perf_mux_hrtimer_handler;
976 }
977 
978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
979 {
980 	struct hrtimer *timer = &cpuctx->hrtimer;
981 	struct pmu *pmu = cpuctx->ctx.pmu;
982 	unsigned long flags;
983 
984 	/* not for SW PMU */
985 	if (pmu->task_ctx_nr == perf_sw_context)
986 		return 0;
987 
988 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
989 	if (!cpuctx->hrtimer_active) {
990 		cpuctx->hrtimer_active = 1;
991 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
992 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
993 	}
994 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
995 
996 	return 0;
997 }
998 
999 void perf_pmu_disable(struct pmu *pmu)
1000 {
1001 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002 	if (!(*count)++)
1003 		pmu->pmu_disable(pmu);
1004 }
1005 
1006 void perf_pmu_enable(struct pmu *pmu)
1007 {
1008 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1009 	if (!--(*count))
1010 		pmu->pmu_enable(pmu);
1011 }
1012 
1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1014 
1015 /*
1016  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1017  * perf_event_task_tick() are fully serialized because they're strictly cpu
1018  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1019  * disabled, while perf_event_task_tick is called from IRQ context.
1020  */
1021 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1022 {
1023 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1024 
1025 	WARN_ON(!irqs_disabled());
1026 
1027 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1028 
1029 	list_add(&ctx->active_ctx_list, head);
1030 }
1031 
1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1033 {
1034 	WARN_ON(!irqs_disabled());
1035 
1036 	WARN_ON(list_empty(&ctx->active_ctx_list));
1037 
1038 	list_del_init(&ctx->active_ctx_list);
1039 }
1040 
1041 static void get_ctx(struct perf_event_context *ctx)
1042 {
1043 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1044 }
1045 
1046 static void free_ctx(struct rcu_head *head)
1047 {
1048 	struct perf_event_context *ctx;
1049 
1050 	ctx = container_of(head, struct perf_event_context, rcu_head);
1051 	kfree(ctx->task_ctx_data);
1052 	kfree(ctx);
1053 }
1054 
1055 static void put_ctx(struct perf_event_context *ctx)
1056 {
1057 	if (atomic_dec_and_test(&ctx->refcount)) {
1058 		if (ctx->parent_ctx)
1059 			put_ctx(ctx->parent_ctx);
1060 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1061 			put_task_struct(ctx->task);
1062 		call_rcu(&ctx->rcu_head, free_ctx);
1063 	}
1064 }
1065 
1066 /*
1067  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1068  * perf_pmu_migrate_context() we need some magic.
1069  *
1070  * Those places that change perf_event::ctx will hold both
1071  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1072  *
1073  * Lock ordering is by mutex address. There are two other sites where
1074  * perf_event_context::mutex nests and those are:
1075  *
1076  *  - perf_event_exit_task_context()	[ child , 0 ]
1077  *      perf_event_exit_event()
1078  *        put_event()			[ parent, 1 ]
1079  *
1080  *  - perf_event_init_context()		[ parent, 0 ]
1081  *      inherit_task_group()
1082  *        inherit_group()
1083  *          inherit_event()
1084  *            perf_event_alloc()
1085  *              perf_init_event()
1086  *                perf_try_init_event()	[ child , 1 ]
1087  *
1088  * While it appears there is an obvious deadlock here -- the parent and child
1089  * nesting levels are inverted between the two. This is in fact safe because
1090  * life-time rules separate them. That is an exiting task cannot fork, and a
1091  * spawning task cannot (yet) exit.
1092  *
1093  * But remember that that these are parent<->child context relations, and
1094  * migration does not affect children, therefore these two orderings should not
1095  * interact.
1096  *
1097  * The change in perf_event::ctx does not affect children (as claimed above)
1098  * because the sys_perf_event_open() case will install a new event and break
1099  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1100  * concerned with cpuctx and that doesn't have children.
1101  *
1102  * The places that change perf_event::ctx will issue:
1103  *
1104  *   perf_remove_from_context();
1105  *   synchronize_rcu();
1106  *   perf_install_in_context();
1107  *
1108  * to affect the change. The remove_from_context() + synchronize_rcu() should
1109  * quiesce the event, after which we can install it in the new location. This
1110  * means that only external vectors (perf_fops, prctl) can perturb the event
1111  * while in transit. Therefore all such accessors should also acquire
1112  * perf_event_context::mutex to serialize against this.
1113  *
1114  * However; because event->ctx can change while we're waiting to acquire
1115  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1116  * function.
1117  *
1118  * Lock order:
1119  *    cred_guard_mutex
1120  *	task_struct::perf_event_mutex
1121  *	  perf_event_context::mutex
1122  *	    perf_event::child_mutex;
1123  *	      perf_event_context::lock
1124  *	    perf_event::mmap_mutex
1125  *	    mmap_sem
1126  */
1127 static struct perf_event_context *
1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1129 {
1130 	struct perf_event_context *ctx;
1131 
1132 again:
1133 	rcu_read_lock();
1134 	ctx = ACCESS_ONCE(event->ctx);
1135 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1136 		rcu_read_unlock();
1137 		goto again;
1138 	}
1139 	rcu_read_unlock();
1140 
1141 	mutex_lock_nested(&ctx->mutex, nesting);
1142 	if (event->ctx != ctx) {
1143 		mutex_unlock(&ctx->mutex);
1144 		put_ctx(ctx);
1145 		goto again;
1146 	}
1147 
1148 	return ctx;
1149 }
1150 
1151 static inline struct perf_event_context *
1152 perf_event_ctx_lock(struct perf_event *event)
1153 {
1154 	return perf_event_ctx_lock_nested(event, 0);
1155 }
1156 
1157 static void perf_event_ctx_unlock(struct perf_event *event,
1158 				  struct perf_event_context *ctx)
1159 {
1160 	mutex_unlock(&ctx->mutex);
1161 	put_ctx(ctx);
1162 }
1163 
1164 /*
1165  * This must be done under the ctx->lock, such as to serialize against
1166  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1167  * calling scheduler related locks and ctx->lock nests inside those.
1168  */
1169 static __must_check struct perf_event_context *
1170 unclone_ctx(struct perf_event_context *ctx)
1171 {
1172 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1173 
1174 	lockdep_assert_held(&ctx->lock);
1175 
1176 	if (parent_ctx)
1177 		ctx->parent_ctx = NULL;
1178 	ctx->generation++;
1179 
1180 	return parent_ctx;
1181 }
1182 
1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1184 {
1185 	/*
1186 	 * only top level events have the pid namespace they were created in
1187 	 */
1188 	if (event->parent)
1189 		event = event->parent;
1190 
1191 	return task_tgid_nr_ns(p, event->ns);
1192 }
1193 
1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1195 {
1196 	/*
1197 	 * only top level events have the pid namespace they were created in
1198 	 */
1199 	if (event->parent)
1200 		event = event->parent;
1201 
1202 	return task_pid_nr_ns(p, event->ns);
1203 }
1204 
1205 /*
1206  * If we inherit events we want to return the parent event id
1207  * to userspace.
1208  */
1209 static u64 primary_event_id(struct perf_event *event)
1210 {
1211 	u64 id = event->id;
1212 
1213 	if (event->parent)
1214 		id = event->parent->id;
1215 
1216 	return id;
1217 }
1218 
1219 /*
1220  * Get the perf_event_context for a task and lock it.
1221  *
1222  * This has to cope with with the fact that until it is locked,
1223  * the context could get moved to another task.
1224  */
1225 static struct perf_event_context *
1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1227 {
1228 	struct perf_event_context *ctx;
1229 
1230 retry:
1231 	/*
1232 	 * One of the few rules of preemptible RCU is that one cannot do
1233 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1234 	 * part of the read side critical section was irqs-enabled -- see
1235 	 * rcu_read_unlock_special().
1236 	 *
1237 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1238 	 * side critical section has interrupts disabled.
1239 	 */
1240 	local_irq_save(*flags);
1241 	rcu_read_lock();
1242 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1243 	if (ctx) {
1244 		/*
1245 		 * If this context is a clone of another, it might
1246 		 * get swapped for another underneath us by
1247 		 * perf_event_task_sched_out, though the
1248 		 * rcu_read_lock() protects us from any context
1249 		 * getting freed.  Lock the context and check if it
1250 		 * got swapped before we could get the lock, and retry
1251 		 * if so.  If we locked the right context, then it
1252 		 * can't get swapped on us any more.
1253 		 */
1254 		raw_spin_lock(&ctx->lock);
1255 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1256 			raw_spin_unlock(&ctx->lock);
1257 			rcu_read_unlock();
1258 			local_irq_restore(*flags);
1259 			goto retry;
1260 		}
1261 
1262 		if (ctx->task == TASK_TOMBSTONE ||
1263 		    !atomic_inc_not_zero(&ctx->refcount)) {
1264 			raw_spin_unlock(&ctx->lock);
1265 			ctx = NULL;
1266 		} else {
1267 			WARN_ON_ONCE(ctx->task != task);
1268 		}
1269 	}
1270 	rcu_read_unlock();
1271 	if (!ctx)
1272 		local_irq_restore(*flags);
1273 	return ctx;
1274 }
1275 
1276 /*
1277  * Get the context for a task and increment its pin_count so it
1278  * can't get swapped to another task.  This also increments its
1279  * reference count so that the context can't get freed.
1280  */
1281 static struct perf_event_context *
1282 perf_pin_task_context(struct task_struct *task, int ctxn)
1283 {
1284 	struct perf_event_context *ctx;
1285 	unsigned long flags;
1286 
1287 	ctx = perf_lock_task_context(task, ctxn, &flags);
1288 	if (ctx) {
1289 		++ctx->pin_count;
1290 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1291 	}
1292 	return ctx;
1293 }
1294 
1295 static void perf_unpin_context(struct perf_event_context *ctx)
1296 {
1297 	unsigned long flags;
1298 
1299 	raw_spin_lock_irqsave(&ctx->lock, flags);
1300 	--ctx->pin_count;
1301 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1302 }
1303 
1304 /*
1305  * Update the record of the current time in a context.
1306  */
1307 static void update_context_time(struct perf_event_context *ctx)
1308 {
1309 	u64 now = perf_clock();
1310 
1311 	ctx->time += now - ctx->timestamp;
1312 	ctx->timestamp = now;
1313 }
1314 
1315 static u64 perf_event_time(struct perf_event *event)
1316 {
1317 	struct perf_event_context *ctx = event->ctx;
1318 
1319 	if (is_cgroup_event(event))
1320 		return perf_cgroup_event_time(event);
1321 
1322 	return ctx ? ctx->time : 0;
1323 }
1324 
1325 /*
1326  * Update the total_time_enabled and total_time_running fields for a event.
1327  */
1328 static void update_event_times(struct perf_event *event)
1329 {
1330 	struct perf_event_context *ctx = event->ctx;
1331 	u64 run_end;
1332 
1333 	lockdep_assert_held(&ctx->lock);
1334 
1335 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1336 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1337 		return;
1338 
1339 	/*
1340 	 * in cgroup mode, time_enabled represents
1341 	 * the time the event was enabled AND active
1342 	 * tasks were in the monitored cgroup. This is
1343 	 * independent of the activity of the context as
1344 	 * there may be a mix of cgroup and non-cgroup events.
1345 	 *
1346 	 * That is why we treat cgroup events differently
1347 	 * here.
1348 	 */
1349 	if (is_cgroup_event(event))
1350 		run_end = perf_cgroup_event_time(event);
1351 	else if (ctx->is_active)
1352 		run_end = ctx->time;
1353 	else
1354 		run_end = event->tstamp_stopped;
1355 
1356 	event->total_time_enabled = run_end - event->tstamp_enabled;
1357 
1358 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1359 		run_end = event->tstamp_stopped;
1360 	else
1361 		run_end = perf_event_time(event);
1362 
1363 	event->total_time_running = run_end - event->tstamp_running;
1364 
1365 }
1366 
1367 /*
1368  * Update total_time_enabled and total_time_running for all events in a group.
1369  */
1370 static void update_group_times(struct perf_event *leader)
1371 {
1372 	struct perf_event *event;
1373 
1374 	update_event_times(leader);
1375 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1376 		update_event_times(event);
1377 }
1378 
1379 static struct list_head *
1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1381 {
1382 	if (event->attr.pinned)
1383 		return &ctx->pinned_groups;
1384 	else
1385 		return &ctx->flexible_groups;
1386 }
1387 
1388 /*
1389  * Add a event from the lists for its context.
1390  * Must be called with ctx->mutex and ctx->lock held.
1391  */
1392 static void
1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395 	lockdep_assert_held(&ctx->lock);
1396 
1397 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1398 	event->attach_state |= PERF_ATTACH_CONTEXT;
1399 
1400 	/*
1401 	 * If we're a stand alone event or group leader, we go to the context
1402 	 * list, group events are kept attached to the group so that
1403 	 * perf_group_detach can, at all times, locate all siblings.
1404 	 */
1405 	if (event->group_leader == event) {
1406 		struct list_head *list;
1407 
1408 		if (is_software_event(event))
1409 			event->group_flags |= PERF_GROUP_SOFTWARE;
1410 
1411 		list = ctx_group_list(event, ctx);
1412 		list_add_tail(&event->group_entry, list);
1413 	}
1414 
1415 	if (is_cgroup_event(event))
1416 		ctx->nr_cgroups++;
1417 
1418 	list_add_rcu(&event->event_entry, &ctx->event_list);
1419 	ctx->nr_events++;
1420 	if (event->attr.inherit_stat)
1421 		ctx->nr_stat++;
1422 
1423 	ctx->generation++;
1424 }
1425 
1426 /*
1427  * Initialize event state based on the perf_event_attr::disabled.
1428  */
1429 static inline void perf_event__state_init(struct perf_event *event)
1430 {
1431 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1432 					      PERF_EVENT_STATE_INACTIVE;
1433 }
1434 
1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1436 {
1437 	int entry = sizeof(u64); /* value */
1438 	int size = 0;
1439 	int nr = 1;
1440 
1441 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442 		size += sizeof(u64);
1443 
1444 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445 		size += sizeof(u64);
1446 
1447 	if (event->attr.read_format & PERF_FORMAT_ID)
1448 		entry += sizeof(u64);
1449 
1450 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1451 		nr += nr_siblings;
1452 		size += sizeof(u64);
1453 	}
1454 
1455 	size += entry * nr;
1456 	event->read_size = size;
1457 }
1458 
1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1460 {
1461 	struct perf_sample_data *data;
1462 	u16 size = 0;
1463 
1464 	if (sample_type & PERF_SAMPLE_IP)
1465 		size += sizeof(data->ip);
1466 
1467 	if (sample_type & PERF_SAMPLE_ADDR)
1468 		size += sizeof(data->addr);
1469 
1470 	if (sample_type & PERF_SAMPLE_PERIOD)
1471 		size += sizeof(data->period);
1472 
1473 	if (sample_type & PERF_SAMPLE_WEIGHT)
1474 		size += sizeof(data->weight);
1475 
1476 	if (sample_type & PERF_SAMPLE_READ)
1477 		size += event->read_size;
1478 
1479 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1480 		size += sizeof(data->data_src.val);
1481 
1482 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1483 		size += sizeof(data->txn);
1484 
1485 	event->header_size = size;
1486 }
1487 
1488 /*
1489  * Called at perf_event creation and when events are attached/detached from a
1490  * group.
1491  */
1492 static void perf_event__header_size(struct perf_event *event)
1493 {
1494 	__perf_event_read_size(event,
1495 			       event->group_leader->nr_siblings);
1496 	__perf_event_header_size(event, event->attr.sample_type);
1497 }
1498 
1499 static void perf_event__id_header_size(struct perf_event *event)
1500 {
1501 	struct perf_sample_data *data;
1502 	u64 sample_type = event->attr.sample_type;
1503 	u16 size = 0;
1504 
1505 	if (sample_type & PERF_SAMPLE_TID)
1506 		size += sizeof(data->tid_entry);
1507 
1508 	if (sample_type & PERF_SAMPLE_TIME)
1509 		size += sizeof(data->time);
1510 
1511 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1512 		size += sizeof(data->id);
1513 
1514 	if (sample_type & PERF_SAMPLE_ID)
1515 		size += sizeof(data->id);
1516 
1517 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1518 		size += sizeof(data->stream_id);
1519 
1520 	if (sample_type & PERF_SAMPLE_CPU)
1521 		size += sizeof(data->cpu_entry);
1522 
1523 	event->id_header_size = size;
1524 }
1525 
1526 static bool perf_event_validate_size(struct perf_event *event)
1527 {
1528 	/*
1529 	 * The values computed here will be over-written when we actually
1530 	 * attach the event.
1531 	 */
1532 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1533 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1534 	perf_event__id_header_size(event);
1535 
1536 	/*
1537 	 * Sum the lot; should not exceed the 64k limit we have on records.
1538 	 * Conservative limit to allow for callchains and other variable fields.
1539 	 */
1540 	if (event->read_size + event->header_size +
1541 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1542 		return false;
1543 
1544 	return true;
1545 }
1546 
1547 static void perf_group_attach(struct perf_event *event)
1548 {
1549 	struct perf_event *group_leader = event->group_leader, *pos;
1550 
1551 	/*
1552 	 * We can have double attach due to group movement in perf_event_open.
1553 	 */
1554 	if (event->attach_state & PERF_ATTACH_GROUP)
1555 		return;
1556 
1557 	event->attach_state |= PERF_ATTACH_GROUP;
1558 
1559 	if (group_leader == event)
1560 		return;
1561 
1562 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1563 
1564 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1565 			!is_software_event(event))
1566 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1567 
1568 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1569 	group_leader->nr_siblings++;
1570 
1571 	perf_event__header_size(group_leader);
1572 
1573 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1574 		perf_event__header_size(pos);
1575 }
1576 
1577 /*
1578  * Remove a event from the lists for its context.
1579  * Must be called with ctx->mutex and ctx->lock held.
1580  */
1581 static void
1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584 	struct perf_cpu_context *cpuctx;
1585 
1586 	WARN_ON_ONCE(event->ctx != ctx);
1587 	lockdep_assert_held(&ctx->lock);
1588 
1589 	/*
1590 	 * We can have double detach due to exit/hot-unplug + close.
1591 	 */
1592 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1593 		return;
1594 
1595 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1596 
1597 	if (is_cgroup_event(event)) {
1598 		ctx->nr_cgroups--;
1599 		/*
1600 		 * Because cgroup events are always per-cpu events, this will
1601 		 * always be called from the right CPU.
1602 		 */
1603 		cpuctx = __get_cpu_context(ctx);
1604 		/*
1605 		 * If there are no more cgroup events then clear cgrp to avoid
1606 		 * stale pointer in update_cgrp_time_from_cpuctx().
1607 		 */
1608 		if (!ctx->nr_cgroups)
1609 			cpuctx->cgrp = NULL;
1610 	}
1611 
1612 	ctx->nr_events--;
1613 	if (event->attr.inherit_stat)
1614 		ctx->nr_stat--;
1615 
1616 	list_del_rcu(&event->event_entry);
1617 
1618 	if (event->group_leader == event)
1619 		list_del_init(&event->group_entry);
1620 
1621 	update_group_times(event);
1622 
1623 	/*
1624 	 * If event was in error state, then keep it
1625 	 * that way, otherwise bogus counts will be
1626 	 * returned on read(). The only way to get out
1627 	 * of error state is by explicit re-enabling
1628 	 * of the event
1629 	 */
1630 	if (event->state > PERF_EVENT_STATE_OFF)
1631 		event->state = PERF_EVENT_STATE_OFF;
1632 
1633 	ctx->generation++;
1634 }
1635 
1636 static void perf_group_detach(struct perf_event *event)
1637 {
1638 	struct perf_event *sibling, *tmp;
1639 	struct list_head *list = NULL;
1640 
1641 	/*
1642 	 * We can have double detach due to exit/hot-unplug + close.
1643 	 */
1644 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1645 		return;
1646 
1647 	event->attach_state &= ~PERF_ATTACH_GROUP;
1648 
1649 	/*
1650 	 * If this is a sibling, remove it from its group.
1651 	 */
1652 	if (event->group_leader != event) {
1653 		list_del_init(&event->group_entry);
1654 		event->group_leader->nr_siblings--;
1655 		goto out;
1656 	}
1657 
1658 	if (!list_empty(&event->group_entry))
1659 		list = &event->group_entry;
1660 
1661 	/*
1662 	 * If this was a group event with sibling events then
1663 	 * upgrade the siblings to singleton events by adding them
1664 	 * to whatever list we are on.
1665 	 */
1666 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1667 		if (list)
1668 			list_move_tail(&sibling->group_entry, list);
1669 		sibling->group_leader = sibling;
1670 
1671 		/* Inherit group flags from the previous leader */
1672 		sibling->group_flags = event->group_flags;
1673 
1674 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1675 	}
1676 
1677 out:
1678 	perf_event__header_size(event->group_leader);
1679 
1680 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1681 		perf_event__header_size(tmp);
1682 }
1683 
1684 static bool is_orphaned_event(struct perf_event *event)
1685 {
1686 	return event->state == PERF_EVENT_STATE_DEAD;
1687 }
1688 
1689 static inline int pmu_filter_match(struct perf_event *event)
1690 {
1691 	struct pmu *pmu = event->pmu;
1692 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1693 }
1694 
1695 static inline int
1696 event_filter_match(struct perf_event *event)
1697 {
1698 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1699 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1700 }
1701 
1702 static void
1703 event_sched_out(struct perf_event *event,
1704 		  struct perf_cpu_context *cpuctx,
1705 		  struct perf_event_context *ctx)
1706 {
1707 	u64 tstamp = perf_event_time(event);
1708 	u64 delta;
1709 
1710 	WARN_ON_ONCE(event->ctx != ctx);
1711 	lockdep_assert_held(&ctx->lock);
1712 
1713 	/*
1714 	 * An event which could not be activated because of
1715 	 * filter mismatch still needs to have its timings
1716 	 * maintained, otherwise bogus information is return
1717 	 * via read() for time_enabled, time_running:
1718 	 */
1719 	if (event->state == PERF_EVENT_STATE_INACTIVE
1720 	    && !event_filter_match(event)) {
1721 		delta = tstamp - event->tstamp_stopped;
1722 		event->tstamp_running += delta;
1723 		event->tstamp_stopped = tstamp;
1724 	}
1725 
1726 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1727 		return;
1728 
1729 	perf_pmu_disable(event->pmu);
1730 
1731 	event->tstamp_stopped = tstamp;
1732 	event->pmu->del(event, 0);
1733 	event->oncpu = -1;
1734 	event->state = PERF_EVENT_STATE_INACTIVE;
1735 	if (event->pending_disable) {
1736 		event->pending_disable = 0;
1737 		event->state = PERF_EVENT_STATE_OFF;
1738 	}
1739 
1740 	if (!is_software_event(event))
1741 		cpuctx->active_oncpu--;
1742 	if (!--ctx->nr_active)
1743 		perf_event_ctx_deactivate(ctx);
1744 	if (event->attr.freq && event->attr.sample_freq)
1745 		ctx->nr_freq--;
1746 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1747 		cpuctx->exclusive = 0;
1748 
1749 	perf_pmu_enable(event->pmu);
1750 }
1751 
1752 static void
1753 group_sched_out(struct perf_event *group_event,
1754 		struct perf_cpu_context *cpuctx,
1755 		struct perf_event_context *ctx)
1756 {
1757 	struct perf_event *event;
1758 	int state = group_event->state;
1759 
1760 	event_sched_out(group_event, cpuctx, ctx);
1761 
1762 	/*
1763 	 * Schedule out siblings (if any):
1764 	 */
1765 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1766 		event_sched_out(event, cpuctx, ctx);
1767 
1768 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1769 		cpuctx->exclusive = 0;
1770 }
1771 
1772 #define DETACH_GROUP	0x01UL
1773 
1774 /*
1775  * Cross CPU call to remove a performance event
1776  *
1777  * We disable the event on the hardware level first. After that we
1778  * remove it from the context list.
1779  */
1780 static void
1781 __perf_remove_from_context(struct perf_event *event,
1782 			   struct perf_cpu_context *cpuctx,
1783 			   struct perf_event_context *ctx,
1784 			   void *info)
1785 {
1786 	unsigned long flags = (unsigned long)info;
1787 
1788 	event_sched_out(event, cpuctx, ctx);
1789 	if (flags & DETACH_GROUP)
1790 		perf_group_detach(event);
1791 	list_del_event(event, ctx);
1792 
1793 	if (!ctx->nr_events && ctx->is_active) {
1794 		ctx->is_active = 0;
1795 		if (ctx->task) {
1796 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797 			cpuctx->task_ctx = NULL;
1798 		}
1799 	}
1800 }
1801 
1802 /*
1803  * Remove the event from a task's (or a CPU's) list of events.
1804  *
1805  * If event->ctx is a cloned context, callers must make sure that
1806  * every task struct that event->ctx->task could possibly point to
1807  * remains valid.  This is OK when called from perf_release since
1808  * that only calls us on the top-level context, which can't be a clone.
1809  * When called from perf_event_exit_task, it's OK because the
1810  * context has been detached from its task.
1811  */
1812 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1813 {
1814 	lockdep_assert_held(&event->ctx->mutex);
1815 
1816 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1817 }
1818 
1819 /*
1820  * Cross CPU call to disable a performance event
1821  */
1822 static void __perf_event_disable(struct perf_event *event,
1823 				 struct perf_cpu_context *cpuctx,
1824 				 struct perf_event_context *ctx,
1825 				 void *info)
1826 {
1827 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1828 		return;
1829 
1830 	update_context_time(ctx);
1831 	update_cgrp_time_from_event(event);
1832 	update_group_times(event);
1833 	if (event == event->group_leader)
1834 		group_sched_out(event, cpuctx, ctx);
1835 	else
1836 		event_sched_out(event, cpuctx, ctx);
1837 	event->state = PERF_EVENT_STATE_OFF;
1838 }
1839 
1840 /*
1841  * Disable a event.
1842  *
1843  * If event->ctx is a cloned context, callers must make sure that
1844  * every task struct that event->ctx->task could possibly point to
1845  * remains valid.  This condition is satisifed when called through
1846  * perf_event_for_each_child or perf_event_for_each because they
1847  * hold the top-level event's child_mutex, so any descendant that
1848  * goes to exit will block in perf_event_exit_event().
1849  *
1850  * When called from perf_pending_event it's OK because event->ctx
1851  * is the current context on this CPU and preemption is disabled,
1852  * hence we can't get into perf_event_task_sched_out for this context.
1853  */
1854 static void _perf_event_disable(struct perf_event *event)
1855 {
1856 	struct perf_event_context *ctx = event->ctx;
1857 
1858 	raw_spin_lock_irq(&ctx->lock);
1859 	if (event->state <= PERF_EVENT_STATE_OFF) {
1860 		raw_spin_unlock_irq(&ctx->lock);
1861 		return;
1862 	}
1863 	raw_spin_unlock_irq(&ctx->lock);
1864 
1865 	event_function_call(event, __perf_event_disable, NULL);
1866 }
1867 
1868 void perf_event_disable_local(struct perf_event *event)
1869 {
1870 	event_function_local(event, __perf_event_disable, NULL);
1871 }
1872 
1873 /*
1874  * Strictly speaking kernel users cannot create groups and therefore this
1875  * interface does not need the perf_event_ctx_lock() magic.
1876  */
1877 void perf_event_disable(struct perf_event *event)
1878 {
1879 	struct perf_event_context *ctx;
1880 
1881 	ctx = perf_event_ctx_lock(event);
1882 	_perf_event_disable(event);
1883 	perf_event_ctx_unlock(event, ctx);
1884 }
1885 EXPORT_SYMBOL_GPL(perf_event_disable);
1886 
1887 static void perf_set_shadow_time(struct perf_event *event,
1888 				 struct perf_event_context *ctx,
1889 				 u64 tstamp)
1890 {
1891 	/*
1892 	 * use the correct time source for the time snapshot
1893 	 *
1894 	 * We could get by without this by leveraging the
1895 	 * fact that to get to this function, the caller
1896 	 * has most likely already called update_context_time()
1897 	 * and update_cgrp_time_xx() and thus both timestamp
1898 	 * are identical (or very close). Given that tstamp is,
1899 	 * already adjusted for cgroup, we could say that:
1900 	 *    tstamp - ctx->timestamp
1901 	 * is equivalent to
1902 	 *    tstamp - cgrp->timestamp.
1903 	 *
1904 	 * Then, in perf_output_read(), the calculation would
1905 	 * work with no changes because:
1906 	 * - event is guaranteed scheduled in
1907 	 * - no scheduled out in between
1908 	 * - thus the timestamp would be the same
1909 	 *
1910 	 * But this is a bit hairy.
1911 	 *
1912 	 * So instead, we have an explicit cgroup call to remain
1913 	 * within the time time source all along. We believe it
1914 	 * is cleaner and simpler to understand.
1915 	 */
1916 	if (is_cgroup_event(event))
1917 		perf_cgroup_set_shadow_time(event, tstamp);
1918 	else
1919 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1920 }
1921 
1922 #define MAX_INTERRUPTS (~0ULL)
1923 
1924 static void perf_log_throttle(struct perf_event *event, int enable);
1925 static void perf_log_itrace_start(struct perf_event *event);
1926 
1927 static int
1928 event_sched_in(struct perf_event *event,
1929 		 struct perf_cpu_context *cpuctx,
1930 		 struct perf_event_context *ctx)
1931 {
1932 	u64 tstamp = perf_event_time(event);
1933 	int ret = 0;
1934 
1935 	lockdep_assert_held(&ctx->lock);
1936 
1937 	if (event->state <= PERF_EVENT_STATE_OFF)
1938 		return 0;
1939 
1940 	WRITE_ONCE(event->oncpu, smp_processor_id());
1941 	/*
1942 	 * Order event::oncpu write to happen before the ACTIVE state
1943 	 * is visible.
1944 	 */
1945 	smp_wmb();
1946 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1947 
1948 	/*
1949 	 * Unthrottle events, since we scheduled we might have missed several
1950 	 * ticks already, also for a heavily scheduling task there is little
1951 	 * guarantee it'll get a tick in a timely manner.
1952 	 */
1953 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1954 		perf_log_throttle(event, 1);
1955 		event->hw.interrupts = 0;
1956 	}
1957 
1958 	/*
1959 	 * The new state must be visible before we turn it on in the hardware:
1960 	 */
1961 	smp_wmb();
1962 
1963 	perf_pmu_disable(event->pmu);
1964 
1965 	perf_set_shadow_time(event, ctx, tstamp);
1966 
1967 	perf_log_itrace_start(event);
1968 
1969 	if (event->pmu->add(event, PERF_EF_START)) {
1970 		event->state = PERF_EVENT_STATE_INACTIVE;
1971 		event->oncpu = -1;
1972 		ret = -EAGAIN;
1973 		goto out;
1974 	}
1975 
1976 	event->tstamp_running += tstamp - event->tstamp_stopped;
1977 
1978 	if (!is_software_event(event))
1979 		cpuctx->active_oncpu++;
1980 	if (!ctx->nr_active++)
1981 		perf_event_ctx_activate(ctx);
1982 	if (event->attr.freq && event->attr.sample_freq)
1983 		ctx->nr_freq++;
1984 
1985 	if (event->attr.exclusive)
1986 		cpuctx->exclusive = 1;
1987 
1988 out:
1989 	perf_pmu_enable(event->pmu);
1990 
1991 	return ret;
1992 }
1993 
1994 static int
1995 group_sched_in(struct perf_event *group_event,
1996 	       struct perf_cpu_context *cpuctx,
1997 	       struct perf_event_context *ctx)
1998 {
1999 	struct perf_event *event, *partial_group = NULL;
2000 	struct pmu *pmu = ctx->pmu;
2001 	u64 now = ctx->time;
2002 	bool simulate = false;
2003 
2004 	if (group_event->state == PERF_EVENT_STATE_OFF)
2005 		return 0;
2006 
2007 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2008 
2009 	if (event_sched_in(group_event, cpuctx, ctx)) {
2010 		pmu->cancel_txn(pmu);
2011 		perf_mux_hrtimer_restart(cpuctx);
2012 		return -EAGAIN;
2013 	}
2014 
2015 	/*
2016 	 * Schedule in siblings as one group (if any):
2017 	 */
2018 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2019 		if (event_sched_in(event, cpuctx, ctx)) {
2020 			partial_group = event;
2021 			goto group_error;
2022 		}
2023 	}
2024 
2025 	if (!pmu->commit_txn(pmu))
2026 		return 0;
2027 
2028 group_error:
2029 	/*
2030 	 * Groups can be scheduled in as one unit only, so undo any
2031 	 * partial group before returning:
2032 	 * The events up to the failed event are scheduled out normally,
2033 	 * tstamp_stopped will be updated.
2034 	 *
2035 	 * The failed events and the remaining siblings need to have
2036 	 * their timings updated as if they had gone thru event_sched_in()
2037 	 * and event_sched_out(). This is required to get consistent timings
2038 	 * across the group. This also takes care of the case where the group
2039 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2040 	 * the time the event was actually stopped, such that time delta
2041 	 * calculation in update_event_times() is correct.
2042 	 */
2043 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2044 		if (event == partial_group)
2045 			simulate = true;
2046 
2047 		if (simulate) {
2048 			event->tstamp_running += now - event->tstamp_stopped;
2049 			event->tstamp_stopped = now;
2050 		} else {
2051 			event_sched_out(event, cpuctx, ctx);
2052 		}
2053 	}
2054 	event_sched_out(group_event, cpuctx, ctx);
2055 
2056 	pmu->cancel_txn(pmu);
2057 
2058 	perf_mux_hrtimer_restart(cpuctx);
2059 
2060 	return -EAGAIN;
2061 }
2062 
2063 /*
2064  * Work out whether we can put this event group on the CPU now.
2065  */
2066 static int group_can_go_on(struct perf_event *event,
2067 			   struct perf_cpu_context *cpuctx,
2068 			   int can_add_hw)
2069 {
2070 	/*
2071 	 * Groups consisting entirely of software events can always go on.
2072 	 */
2073 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2074 		return 1;
2075 	/*
2076 	 * If an exclusive group is already on, no other hardware
2077 	 * events can go on.
2078 	 */
2079 	if (cpuctx->exclusive)
2080 		return 0;
2081 	/*
2082 	 * If this group is exclusive and there are already
2083 	 * events on the CPU, it can't go on.
2084 	 */
2085 	if (event->attr.exclusive && cpuctx->active_oncpu)
2086 		return 0;
2087 	/*
2088 	 * Otherwise, try to add it if all previous groups were able
2089 	 * to go on.
2090 	 */
2091 	return can_add_hw;
2092 }
2093 
2094 static void add_event_to_ctx(struct perf_event *event,
2095 			       struct perf_event_context *ctx)
2096 {
2097 	u64 tstamp = perf_event_time(event);
2098 
2099 	list_add_event(event, ctx);
2100 	perf_group_attach(event);
2101 	event->tstamp_enabled = tstamp;
2102 	event->tstamp_running = tstamp;
2103 	event->tstamp_stopped = tstamp;
2104 }
2105 
2106 static void ctx_sched_out(struct perf_event_context *ctx,
2107 			  struct perf_cpu_context *cpuctx,
2108 			  enum event_type_t event_type);
2109 static void
2110 ctx_sched_in(struct perf_event_context *ctx,
2111 	     struct perf_cpu_context *cpuctx,
2112 	     enum event_type_t event_type,
2113 	     struct task_struct *task);
2114 
2115 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2116 			       struct perf_event_context *ctx)
2117 {
2118 	if (!cpuctx->task_ctx)
2119 		return;
2120 
2121 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2122 		return;
2123 
2124 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2125 }
2126 
2127 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2128 				struct perf_event_context *ctx,
2129 				struct task_struct *task)
2130 {
2131 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2132 	if (ctx)
2133 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2134 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2135 	if (ctx)
2136 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2137 }
2138 
2139 static void ctx_resched(struct perf_cpu_context *cpuctx,
2140 			struct perf_event_context *task_ctx)
2141 {
2142 	perf_pmu_disable(cpuctx->ctx.pmu);
2143 	if (task_ctx)
2144 		task_ctx_sched_out(cpuctx, task_ctx);
2145 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2146 	perf_event_sched_in(cpuctx, task_ctx, current);
2147 	perf_pmu_enable(cpuctx->ctx.pmu);
2148 }
2149 
2150 /*
2151  * Cross CPU call to install and enable a performance event
2152  *
2153  * Very similar to remote_function() + event_function() but cannot assume that
2154  * things like ctx->is_active and cpuctx->task_ctx are set.
2155  */
2156 static int  __perf_install_in_context(void *info)
2157 {
2158 	struct perf_event *event = info;
2159 	struct perf_event_context *ctx = event->ctx;
2160 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2161 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2162 	bool activate = true;
2163 	int ret = 0;
2164 
2165 	raw_spin_lock(&cpuctx->ctx.lock);
2166 	if (ctx->task) {
2167 		raw_spin_lock(&ctx->lock);
2168 		task_ctx = ctx;
2169 
2170 		/* If we're on the wrong CPU, try again */
2171 		if (task_cpu(ctx->task) != smp_processor_id()) {
2172 			ret = -ESRCH;
2173 			goto unlock;
2174 		}
2175 
2176 		/*
2177 		 * If we're on the right CPU, see if the task we target is
2178 		 * current, if not we don't have to activate the ctx, a future
2179 		 * context switch will do that for us.
2180 		 */
2181 		if (ctx->task != current)
2182 			activate = false;
2183 		else
2184 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2185 
2186 	} else if (task_ctx) {
2187 		raw_spin_lock(&task_ctx->lock);
2188 	}
2189 
2190 	if (activate) {
2191 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2192 		add_event_to_ctx(event, ctx);
2193 		ctx_resched(cpuctx, task_ctx);
2194 	} else {
2195 		add_event_to_ctx(event, ctx);
2196 	}
2197 
2198 unlock:
2199 	perf_ctx_unlock(cpuctx, task_ctx);
2200 
2201 	return ret;
2202 }
2203 
2204 /*
2205  * Attach a performance event to a context.
2206  *
2207  * Very similar to event_function_call, see comment there.
2208  */
2209 static void
2210 perf_install_in_context(struct perf_event_context *ctx,
2211 			struct perf_event *event,
2212 			int cpu)
2213 {
2214 	struct task_struct *task = READ_ONCE(ctx->task);
2215 
2216 	lockdep_assert_held(&ctx->mutex);
2217 
2218 	event->ctx = ctx;
2219 	if (event->cpu != -1)
2220 		event->cpu = cpu;
2221 
2222 	if (!task) {
2223 		cpu_function_call(cpu, __perf_install_in_context, event);
2224 		return;
2225 	}
2226 
2227 	/*
2228 	 * Should not happen, we validate the ctx is still alive before calling.
2229 	 */
2230 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2231 		return;
2232 
2233 	/*
2234 	 * Installing events is tricky because we cannot rely on ctx->is_active
2235 	 * to be set in case this is the nr_events 0 -> 1 transition.
2236 	 */
2237 again:
2238 	/*
2239 	 * Cannot use task_function_call() because we need to run on the task's
2240 	 * CPU regardless of whether its current or not.
2241 	 */
2242 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2243 		return;
2244 
2245 	raw_spin_lock_irq(&ctx->lock);
2246 	task = ctx->task;
2247 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2248 		/*
2249 		 * Cannot happen because we already checked above (which also
2250 		 * cannot happen), and we hold ctx->mutex, which serializes us
2251 		 * against perf_event_exit_task_context().
2252 		 */
2253 		raw_spin_unlock_irq(&ctx->lock);
2254 		return;
2255 	}
2256 	raw_spin_unlock_irq(&ctx->lock);
2257 	/*
2258 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2259 	 * unconditionally.
2260 	 */
2261 	goto again;
2262 }
2263 
2264 /*
2265  * Put a event into inactive state and update time fields.
2266  * Enabling the leader of a group effectively enables all
2267  * the group members that aren't explicitly disabled, so we
2268  * have to update their ->tstamp_enabled also.
2269  * Note: this works for group members as well as group leaders
2270  * since the non-leader members' sibling_lists will be empty.
2271  */
2272 static void __perf_event_mark_enabled(struct perf_event *event)
2273 {
2274 	struct perf_event *sub;
2275 	u64 tstamp = perf_event_time(event);
2276 
2277 	event->state = PERF_EVENT_STATE_INACTIVE;
2278 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2279 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2280 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2281 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2282 	}
2283 }
2284 
2285 /*
2286  * Cross CPU call to enable a performance event
2287  */
2288 static void __perf_event_enable(struct perf_event *event,
2289 				struct perf_cpu_context *cpuctx,
2290 				struct perf_event_context *ctx,
2291 				void *info)
2292 {
2293 	struct perf_event *leader = event->group_leader;
2294 	struct perf_event_context *task_ctx;
2295 
2296 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2297 	    event->state <= PERF_EVENT_STATE_ERROR)
2298 		return;
2299 
2300 	if (ctx->is_active)
2301 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2302 
2303 	__perf_event_mark_enabled(event);
2304 
2305 	if (!ctx->is_active)
2306 		return;
2307 
2308 	if (!event_filter_match(event)) {
2309 		if (is_cgroup_event(event))
2310 			perf_cgroup_defer_enabled(event);
2311 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2312 		return;
2313 	}
2314 
2315 	/*
2316 	 * If the event is in a group and isn't the group leader,
2317 	 * then don't put it on unless the group is on.
2318 	 */
2319 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2320 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2321 		return;
2322 	}
2323 
2324 	task_ctx = cpuctx->task_ctx;
2325 	if (ctx->task)
2326 		WARN_ON_ONCE(task_ctx != ctx);
2327 
2328 	ctx_resched(cpuctx, task_ctx);
2329 }
2330 
2331 /*
2332  * Enable a event.
2333  *
2334  * If event->ctx is a cloned context, callers must make sure that
2335  * every task struct that event->ctx->task could possibly point to
2336  * remains valid.  This condition is satisfied when called through
2337  * perf_event_for_each_child or perf_event_for_each as described
2338  * for perf_event_disable.
2339  */
2340 static void _perf_event_enable(struct perf_event *event)
2341 {
2342 	struct perf_event_context *ctx = event->ctx;
2343 
2344 	raw_spin_lock_irq(&ctx->lock);
2345 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2346 	    event->state <  PERF_EVENT_STATE_ERROR) {
2347 		raw_spin_unlock_irq(&ctx->lock);
2348 		return;
2349 	}
2350 
2351 	/*
2352 	 * If the event is in error state, clear that first.
2353 	 *
2354 	 * That way, if we see the event in error state below, we know that it
2355 	 * has gone back into error state, as distinct from the task having
2356 	 * been scheduled away before the cross-call arrived.
2357 	 */
2358 	if (event->state == PERF_EVENT_STATE_ERROR)
2359 		event->state = PERF_EVENT_STATE_OFF;
2360 	raw_spin_unlock_irq(&ctx->lock);
2361 
2362 	event_function_call(event, __perf_event_enable, NULL);
2363 }
2364 
2365 /*
2366  * See perf_event_disable();
2367  */
2368 void perf_event_enable(struct perf_event *event)
2369 {
2370 	struct perf_event_context *ctx;
2371 
2372 	ctx = perf_event_ctx_lock(event);
2373 	_perf_event_enable(event);
2374 	perf_event_ctx_unlock(event, ctx);
2375 }
2376 EXPORT_SYMBOL_GPL(perf_event_enable);
2377 
2378 struct stop_event_data {
2379 	struct perf_event	*event;
2380 	unsigned int		restart;
2381 };
2382 
2383 static int __perf_event_stop(void *info)
2384 {
2385 	struct stop_event_data *sd = info;
2386 	struct perf_event *event = sd->event;
2387 
2388 	/* if it's already INACTIVE, do nothing */
2389 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2390 		return 0;
2391 
2392 	/* matches smp_wmb() in event_sched_in() */
2393 	smp_rmb();
2394 
2395 	/*
2396 	 * There is a window with interrupts enabled before we get here,
2397 	 * so we need to check again lest we try to stop another CPU's event.
2398 	 */
2399 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2400 		return -EAGAIN;
2401 
2402 	event->pmu->stop(event, PERF_EF_UPDATE);
2403 
2404 	/*
2405 	 * May race with the actual stop (through perf_pmu_output_stop()),
2406 	 * but it is only used for events with AUX ring buffer, and such
2407 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2408 	 * see comments in perf_aux_output_begin().
2409 	 *
2410 	 * Since this is happening on a event-local CPU, no trace is lost
2411 	 * while restarting.
2412 	 */
2413 	if (sd->restart)
2414 		event->pmu->start(event, PERF_EF_START);
2415 
2416 	return 0;
2417 }
2418 
2419 static int perf_event_restart(struct perf_event *event)
2420 {
2421 	struct stop_event_data sd = {
2422 		.event		= event,
2423 		.restart	= 1,
2424 	};
2425 	int ret = 0;
2426 
2427 	do {
2428 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2429 			return 0;
2430 
2431 		/* matches smp_wmb() in event_sched_in() */
2432 		smp_rmb();
2433 
2434 		/*
2435 		 * We only want to restart ACTIVE events, so if the event goes
2436 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2437 		 * fall through with ret==-ENXIO.
2438 		 */
2439 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2440 					__perf_event_stop, &sd);
2441 	} while (ret == -EAGAIN);
2442 
2443 	return ret;
2444 }
2445 
2446 /*
2447  * In order to contain the amount of racy and tricky in the address filter
2448  * configuration management, it is a two part process:
2449  *
2450  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2451  *      we update the addresses of corresponding vmas in
2452  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2453  * (p2) when an event is scheduled in (pmu::add), it calls
2454  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2455  *      if the generation has changed since the previous call.
2456  *
2457  * If (p1) happens while the event is active, we restart it to force (p2).
2458  *
2459  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2460  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2461  *     ioctl;
2462  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2463  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2464  *     for reading;
2465  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2466  *     of exec.
2467  */
2468 void perf_event_addr_filters_sync(struct perf_event *event)
2469 {
2470 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2471 
2472 	if (!has_addr_filter(event))
2473 		return;
2474 
2475 	raw_spin_lock(&ifh->lock);
2476 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2477 		event->pmu->addr_filters_sync(event);
2478 		event->hw.addr_filters_gen = event->addr_filters_gen;
2479 	}
2480 	raw_spin_unlock(&ifh->lock);
2481 }
2482 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2483 
2484 static int _perf_event_refresh(struct perf_event *event, int refresh)
2485 {
2486 	/*
2487 	 * not supported on inherited events
2488 	 */
2489 	if (event->attr.inherit || !is_sampling_event(event))
2490 		return -EINVAL;
2491 
2492 	atomic_add(refresh, &event->event_limit);
2493 	_perf_event_enable(event);
2494 
2495 	return 0;
2496 }
2497 
2498 /*
2499  * See perf_event_disable()
2500  */
2501 int perf_event_refresh(struct perf_event *event, int refresh)
2502 {
2503 	struct perf_event_context *ctx;
2504 	int ret;
2505 
2506 	ctx = perf_event_ctx_lock(event);
2507 	ret = _perf_event_refresh(event, refresh);
2508 	perf_event_ctx_unlock(event, ctx);
2509 
2510 	return ret;
2511 }
2512 EXPORT_SYMBOL_GPL(perf_event_refresh);
2513 
2514 static void ctx_sched_out(struct perf_event_context *ctx,
2515 			  struct perf_cpu_context *cpuctx,
2516 			  enum event_type_t event_type)
2517 {
2518 	int is_active = ctx->is_active;
2519 	struct perf_event *event;
2520 
2521 	lockdep_assert_held(&ctx->lock);
2522 
2523 	if (likely(!ctx->nr_events)) {
2524 		/*
2525 		 * See __perf_remove_from_context().
2526 		 */
2527 		WARN_ON_ONCE(ctx->is_active);
2528 		if (ctx->task)
2529 			WARN_ON_ONCE(cpuctx->task_ctx);
2530 		return;
2531 	}
2532 
2533 	ctx->is_active &= ~event_type;
2534 	if (!(ctx->is_active & EVENT_ALL))
2535 		ctx->is_active = 0;
2536 
2537 	if (ctx->task) {
2538 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2539 		if (!ctx->is_active)
2540 			cpuctx->task_ctx = NULL;
2541 	}
2542 
2543 	/*
2544 	 * Always update time if it was set; not only when it changes.
2545 	 * Otherwise we can 'forget' to update time for any but the last
2546 	 * context we sched out. For example:
2547 	 *
2548 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2549 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2550 	 *
2551 	 * would only update time for the pinned events.
2552 	 */
2553 	if (is_active & EVENT_TIME) {
2554 		/* update (and stop) ctx time */
2555 		update_context_time(ctx);
2556 		update_cgrp_time_from_cpuctx(cpuctx);
2557 	}
2558 
2559 	is_active ^= ctx->is_active; /* changed bits */
2560 
2561 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2562 		return;
2563 
2564 	perf_pmu_disable(ctx->pmu);
2565 	if (is_active & EVENT_PINNED) {
2566 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2567 			group_sched_out(event, cpuctx, ctx);
2568 	}
2569 
2570 	if (is_active & EVENT_FLEXIBLE) {
2571 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2572 			group_sched_out(event, cpuctx, ctx);
2573 	}
2574 	perf_pmu_enable(ctx->pmu);
2575 }
2576 
2577 /*
2578  * Test whether two contexts are equivalent, i.e. whether they have both been
2579  * cloned from the same version of the same context.
2580  *
2581  * Equivalence is measured using a generation number in the context that is
2582  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2583  * and list_del_event().
2584  */
2585 static int context_equiv(struct perf_event_context *ctx1,
2586 			 struct perf_event_context *ctx2)
2587 {
2588 	lockdep_assert_held(&ctx1->lock);
2589 	lockdep_assert_held(&ctx2->lock);
2590 
2591 	/* Pinning disables the swap optimization */
2592 	if (ctx1->pin_count || ctx2->pin_count)
2593 		return 0;
2594 
2595 	/* If ctx1 is the parent of ctx2 */
2596 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2597 		return 1;
2598 
2599 	/* If ctx2 is the parent of ctx1 */
2600 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2601 		return 1;
2602 
2603 	/*
2604 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2605 	 * hierarchy, see perf_event_init_context().
2606 	 */
2607 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2608 			ctx1->parent_gen == ctx2->parent_gen)
2609 		return 1;
2610 
2611 	/* Unmatched */
2612 	return 0;
2613 }
2614 
2615 static void __perf_event_sync_stat(struct perf_event *event,
2616 				     struct perf_event *next_event)
2617 {
2618 	u64 value;
2619 
2620 	if (!event->attr.inherit_stat)
2621 		return;
2622 
2623 	/*
2624 	 * Update the event value, we cannot use perf_event_read()
2625 	 * because we're in the middle of a context switch and have IRQs
2626 	 * disabled, which upsets smp_call_function_single(), however
2627 	 * we know the event must be on the current CPU, therefore we
2628 	 * don't need to use it.
2629 	 */
2630 	switch (event->state) {
2631 	case PERF_EVENT_STATE_ACTIVE:
2632 		event->pmu->read(event);
2633 		/* fall-through */
2634 
2635 	case PERF_EVENT_STATE_INACTIVE:
2636 		update_event_times(event);
2637 		break;
2638 
2639 	default:
2640 		break;
2641 	}
2642 
2643 	/*
2644 	 * In order to keep per-task stats reliable we need to flip the event
2645 	 * values when we flip the contexts.
2646 	 */
2647 	value = local64_read(&next_event->count);
2648 	value = local64_xchg(&event->count, value);
2649 	local64_set(&next_event->count, value);
2650 
2651 	swap(event->total_time_enabled, next_event->total_time_enabled);
2652 	swap(event->total_time_running, next_event->total_time_running);
2653 
2654 	/*
2655 	 * Since we swizzled the values, update the user visible data too.
2656 	 */
2657 	perf_event_update_userpage(event);
2658 	perf_event_update_userpage(next_event);
2659 }
2660 
2661 static void perf_event_sync_stat(struct perf_event_context *ctx,
2662 				   struct perf_event_context *next_ctx)
2663 {
2664 	struct perf_event *event, *next_event;
2665 
2666 	if (!ctx->nr_stat)
2667 		return;
2668 
2669 	update_context_time(ctx);
2670 
2671 	event = list_first_entry(&ctx->event_list,
2672 				   struct perf_event, event_entry);
2673 
2674 	next_event = list_first_entry(&next_ctx->event_list,
2675 					struct perf_event, event_entry);
2676 
2677 	while (&event->event_entry != &ctx->event_list &&
2678 	       &next_event->event_entry != &next_ctx->event_list) {
2679 
2680 		__perf_event_sync_stat(event, next_event);
2681 
2682 		event = list_next_entry(event, event_entry);
2683 		next_event = list_next_entry(next_event, event_entry);
2684 	}
2685 }
2686 
2687 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2688 					 struct task_struct *next)
2689 {
2690 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2691 	struct perf_event_context *next_ctx;
2692 	struct perf_event_context *parent, *next_parent;
2693 	struct perf_cpu_context *cpuctx;
2694 	int do_switch = 1;
2695 
2696 	if (likely(!ctx))
2697 		return;
2698 
2699 	cpuctx = __get_cpu_context(ctx);
2700 	if (!cpuctx->task_ctx)
2701 		return;
2702 
2703 	rcu_read_lock();
2704 	next_ctx = next->perf_event_ctxp[ctxn];
2705 	if (!next_ctx)
2706 		goto unlock;
2707 
2708 	parent = rcu_dereference(ctx->parent_ctx);
2709 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2710 
2711 	/* If neither context have a parent context; they cannot be clones. */
2712 	if (!parent && !next_parent)
2713 		goto unlock;
2714 
2715 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2716 		/*
2717 		 * Looks like the two contexts are clones, so we might be
2718 		 * able to optimize the context switch.  We lock both
2719 		 * contexts and check that they are clones under the
2720 		 * lock (including re-checking that neither has been
2721 		 * uncloned in the meantime).  It doesn't matter which
2722 		 * order we take the locks because no other cpu could
2723 		 * be trying to lock both of these tasks.
2724 		 */
2725 		raw_spin_lock(&ctx->lock);
2726 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2727 		if (context_equiv(ctx, next_ctx)) {
2728 			WRITE_ONCE(ctx->task, next);
2729 			WRITE_ONCE(next_ctx->task, task);
2730 
2731 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2732 
2733 			/*
2734 			 * RCU_INIT_POINTER here is safe because we've not
2735 			 * modified the ctx and the above modification of
2736 			 * ctx->task and ctx->task_ctx_data are immaterial
2737 			 * since those values are always verified under
2738 			 * ctx->lock which we're now holding.
2739 			 */
2740 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2741 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2742 
2743 			do_switch = 0;
2744 
2745 			perf_event_sync_stat(ctx, next_ctx);
2746 		}
2747 		raw_spin_unlock(&next_ctx->lock);
2748 		raw_spin_unlock(&ctx->lock);
2749 	}
2750 unlock:
2751 	rcu_read_unlock();
2752 
2753 	if (do_switch) {
2754 		raw_spin_lock(&ctx->lock);
2755 		task_ctx_sched_out(cpuctx, ctx);
2756 		raw_spin_unlock(&ctx->lock);
2757 	}
2758 }
2759 
2760 void perf_sched_cb_dec(struct pmu *pmu)
2761 {
2762 	this_cpu_dec(perf_sched_cb_usages);
2763 }
2764 
2765 void perf_sched_cb_inc(struct pmu *pmu)
2766 {
2767 	this_cpu_inc(perf_sched_cb_usages);
2768 }
2769 
2770 /*
2771  * This function provides the context switch callback to the lower code
2772  * layer. It is invoked ONLY when the context switch callback is enabled.
2773  */
2774 static void perf_pmu_sched_task(struct task_struct *prev,
2775 				struct task_struct *next,
2776 				bool sched_in)
2777 {
2778 	struct perf_cpu_context *cpuctx;
2779 	struct pmu *pmu;
2780 	unsigned long flags;
2781 
2782 	if (prev == next)
2783 		return;
2784 
2785 	local_irq_save(flags);
2786 
2787 	rcu_read_lock();
2788 
2789 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2790 		if (pmu->sched_task) {
2791 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2792 
2793 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2794 
2795 			perf_pmu_disable(pmu);
2796 
2797 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2798 
2799 			perf_pmu_enable(pmu);
2800 
2801 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2802 		}
2803 	}
2804 
2805 	rcu_read_unlock();
2806 
2807 	local_irq_restore(flags);
2808 }
2809 
2810 static void perf_event_switch(struct task_struct *task,
2811 			      struct task_struct *next_prev, bool sched_in);
2812 
2813 #define for_each_task_context_nr(ctxn)					\
2814 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2815 
2816 /*
2817  * Called from scheduler to remove the events of the current task,
2818  * with interrupts disabled.
2819  *
2820  * We stop each event and update the event value in event->count.
2821  *
2822  * This does not protect us against NMI, but disable()
2823  * sets the disabled bit in the control field of event _before_
2824  * accessing the event control register. If a NMI hits, then it will
2825  * not restart the event.
2826  */
2827 void __perf_event_task_sched_out(struct task_struct *task,
2828 				 struct task_struct *next)
2829 {
2830 	int ctxn;
2831 
2832 	if (__this_cpu_read(perf_sched_cb_usages))
2833 		perf_pmu_sched_task(task, next, false);
2834 
2835 	if (atomic_read(&nr_switch_events))
2836 		perf_event_switch(task, next, false);
2837 
2838 	for_each_task_context_nr(ctxn)
2839 		perf_event_context_sched_out(task, ctxn, next);
2840 
2841 	/*
2842 	 * if cgroup events exist on this CPU, then we need
2843 	 * to check if we have to switch out PMU state.
2844 	 * cgroup event are system-wide mode only
2845 	 */
2846 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2847 		perf_cgroup_sched_out(task, next);
2848 }
2849 
2850 /*
2851  * Called with IRQs disabled
2852  */
2853 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2854 			      enum event_type_t event_type)
2855 {
2856 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2857 }
2858 
2859 static void
2860 ctx_pinned_sched_in(struct perf_event_context *ctx,
2861 		    struct perf_cpu_context *cpuctx)
2862 {
2863 	struct perf_event *event;
2864 
2865 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2866 		if (event->state <= PERF_EVENT_STATE_OFF)
2867 			continue;
2868 		if (!event_filter_match(event))
2869 			continue;
2870 
2871 		/* may need to reset tstamp_enabled */
2872 		if (is_cgroup_event(event))
2873 			perf_cgroup_mark_enabled(event, ctx);
2874 
2875 		if (group_can_go_on(event, cpuctx, 1))
2876 			group_sched_in(event, cpuctx, ctx);
2877 
2878 		/*
2879 		 * If this pinned group hasn't been scheduled,
2880 		 * put it in error state.
2881 		 */
2882 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2883 			update_group_times(event);
2884 			event->state = PERF_EVENT_STATE_ERROR;
2885 		}
2886 	}
2887 }
2888 
2889 static void
2890 ctx_flexible_sched_in(struct perf_event_context *ctx,
2891 		      struct perf_cpu_context *cpuctx)
2892 {
2893 	struct perf_event *event;
2894 	int can_add_hw = 1;
2895 
2896 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2897 		/* Ignore events in OFF or ERROR state */
2898 		if (event->state <= PERF_EVENT_STATE_OFF)
2899 			continue;
2900 		/*
2901 		 * Listen to the 'cpu' scheduling filter constraint
2902 		 * of events:
2903 		 */
2904 		if (!event_filter_match(event))
2905 			continue;
2906 
2907 		/* may need to reset tstamp_enabled */
2908 		if (is_cgroup_event(event))
2909 			perf_cgroup_mark_enabled(event, ctx);
2910 
2911 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2912 			if (group_sched_in(event, cpuctx, ctx))
2913 				can_add_hw = 0;
2914 		}
2915 	}
2916 }
2917 
2918 static void
2919 ctx_sched_in(struct perf_event_context *ctx,
2920 	     struct perf_cpu_context *cpuctx,
2921 	     enum event_type_t event_type,
2922 	     struct task_struct *task)
2923 {
2924 	int is_active = ctx->is_active;
2925 	u64 now;
2926 
2927 	lockdep_assert_held(&ctx->lock);
2928 
2929 	if (likely(!ctx->nr_events))
2930 		return;
2931 
2932 	ctx->is_active |= (event_type | EVENT_TIME);
2933 	if (ctx->task) {
2934 		if (!is_active)
2935 			cpuctx->task_ctx = ctx;
2936 		else
2937 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2938 	}
2939 
2940 	is_active ^= ctx->is_active; /* changed bits */
2941 
2942 	if (is_active & EVENT_TIME) {
2943 		/* start ctx time */
2944 		now = perf_clock();
2945 		ctx->timestamp = now;
2946 		perf_cgroup_set_timestamp(task, ctx);
2947 	}
2948 
2949 	/*
2950 	 * First go through the list and put on any pinned groups
2951 	 * in order to give them the best chance of going on.
2952 	 */
2953 	if (is_active & EVENT_PINNED)
2954 		ctx_pinned_sched_in(ctx, cpuctx);
2955 
2956 	/* Then walk through the lower prio flexible groups */
2957 	if (is_active & EVENT_FLEXIBLE)
2958 		ctx_flexible_sched_in(ctx, cpuctx);
2959 }
2960 
2961 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2962 			     enum event_type_t event_type,
2963 			     struct task_struct *task)
2964 {
2965 	struct perf_event_context *ctx = &cpuctx->ctx;
2966 
2967 	ctx_sched_in(ctx, cpuctx, event_type, task);
2968 }
2969 
2970 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2971 					struct task_struct *task)
2972 {
2973 	struct perf_cpu_context *cpuctx;
2974 
2975 	cpuctx = __get_cpu_context(ctx);
2976 	if (cpuctx->task_ctx == ctx)
2977 		return;
2978 
2979 	perf_ctx_lock(cpuctx, ctx);
2980 	perf_pmu_disable(ctx->pmu);
2981 	/*
2982 	 * We want to keep the following priority order:
2983 	 * cpu pinned (that don't need to move), task pinned,
2984 	 * cpu flexible, task flexible.
2985 	 */
2986 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2987 	perf_event_sched_in(cpuctx, ctx, task);
2988 	perf_pmu_enable(ctx->pmu);
2989 	perf_ctx_unlock(cpuctx, ctx);
2990 }
2991 
2992 /*
2993  * Called from scheduler to add the events of the current task
2994  * with interrupts disabled.
2995  *
2996  * We restore the event value and then enable it.
2997  *
2998  * This does not protect us against NMI, but enable()
2999  * sets the enabled bit in the control field of event _before_
3000  * accessing the event control register. If a NMI hits, then it will
3001  * keep the event running.
3002  */
3003 void __perf_event_task_sched_in(struct task_struct *prev,
3004 				struct task_struct *task)
3005 {
3006 	struct perf_event_context *ctx;
3007 	int ctxn;
3008 
3009 	/*
3010 	 * If cgroup events exist on this CPU, then we need to check if we have
3011 	 * to switch in PMU state; cgroup event are system-wide mode only.
3012 	 *
3013 	 * Since cgroup events are CPU events, we must schedule these in before
3014 	 * we schedule in the task events.
3015 	 */
3016 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3017 		perf_cgroup_sched_in(prev, task);
3018 
3019 	for_each_task_context_nr(ctxn) {
3020 		ctx = task->perf_event_ctxp[ctxn];
3021 		if (likely(!ctx))
3022 			continue;
3023 
3024 		perf_event_context_sched_in(ctx, task);
3025 	}
3026 
3027 	if (atomic_read(&nr_switch_events))
3028 		perf_event_switch(task, prev, true);
3029 
3030 	if (__this_cpu_read(perf_sched_cb_usages))
3031 		perf_pmu_sched_task(prev, task, true);
3032 }
3033 
3034 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3035 {
3036 	u64 frequency = event->attr.sample_freq;
3037 	u64 sec = NSEC_PER_SEC;
3038 	u64 divisor, dividend;
3039 
3040 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3041 
3042 	count_fls = fls64(count);
3043 	nsec_fls = fls64(nsec);
3044 	frequency_fls = fls64(frequency);
3045 	sec_fls = 30;
3046 
3047 	/*
3048 	 * We got @count in @nsec, with a target of sample_freq HZ
3049 	 * the target period becomes:
3050 	 *
3051 	 *             @count * 10^9
3052 	 * period = -------------------
3053 	 *          @nsec * sample_freq
3054 	 *
3055 	 */
3056 
3057 	/*
3058 	 * Reduce accuracy by one bit such that @a and @b converge
3059 	 * to a similar magnitude.
3060 	 */
3061 #define REDUCE_FLS(a, b)		\
3062 do {					\
3063 	if (a##_fls > b##_fls) {	\
3064 		a >>= 1;		\
3065 		a##_fls--;		\
3066 	} else {			\
3067 		b >>= 1;		\
3068 		b##_fls--;		\
3069 	}				\
3070 } while (0)
3071 
3072 	/*
3073 	 * Reduce accuracy until either term fits in a u64, then proceed with
3074 	 * the other, so that finally we can do a u64/u64 division.
3075 	 */
3076 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3077 		REDUCE_FLS(nsec, frequency);
3078 		REDUCE_FLS(sec, count);
3079 	}
3080 
3081 	if (count_fls + sec_fls > 64) {
3082 		divisor = nsec * frequency;
3083 
3084 		while (count_fls + sec_fls > 64) {
3085 			REDUCE_FLS(count, sec);
3086 			divisor >>= 1;
3087 		}
3088 
3089 		dividend = count * sec;
3090 	} else {
3091 		dividend = count * sec;
3092 
3093 		while (nsec_fls + frequency_fls > 64) {
3094 			REDUCE_FLS(nsec, frequency);
3095 			dividend >>= 1;
3096 		}
3097 
3098 		divisor = nsec * frequency;
3099 	}
3100 
3101 	if (!divisor)
3102 		return dividend;
3103 
3104 	return div64_u64(dividend, divisor);
3105 }
3106 
3107 static DEFINE_PER_CPU(int, perf_throttled_count);
3108 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3109 
3110 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3111 {
3112 	struct hw_perf_event *hwc = &event->hw;
3113 	s64 period, sample_period;
3114 	s64 delta;
3115 
3116 	period = perf_calculate_period(event, nsec, count);
3117 
3118 	delta = (s64)(period - hwc->sample_period);
3119 	delta = (delta + 7) / 8; /* low pass filter */
3120 
3121 	sample_period = hwc->sample_period + delta;
3122 
3123 	if (!sample_period)
3124 		sample_period = 1;
3125 
3126 	hwc->sample_period = sample_period;
3127 
3128 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3129 		if (disable)
3130 			event->pmu->stop(event, PERF_EF_UPDATE);
3131 
3132 		local64_set(&hwc->period_left, 0);
3133 
3134 		if (disable)
3135 			event->pmu->start(event, PERF_EF_RELOAD);
3136 	}
3137 }
3138 
3139 /*
3140  * combine freq adjustment with unthrottling to avoid two passes over the
3141  * events. At the same time, make sure, having freq events does not change
3142  * the rate of unthrottling as that would introduce bias.
3143  */
3144 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3145 					   int needs_unthr)
3146 {
3147 	struct perf_event *event;
3148 	struct hw_perf_event *hwc;
3149 	u64 now, period = TICK_NSEC;
3150 	s64 delta;
3151 
3152 	/*
3153 	 * only need to iterate over all events iff:
3154 	 * - context have events in frequency mode (needs freq adjust)
3155 	 * - there are events to unthrottle on this cpu
3156 	 */
3157 	if (!(ctx->nr_freq || needs_unthr))
3158 		return;
3159 
3160 	raw_spin_lock(&ctx->lock);
3161 	perf_pmu_disable(ctx->pmu);
3162 
3163 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3164 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3165 			continue;
3166 
3167 		if (!event_filter_match(event))
3168 			continue;
3169 
3170 		perf_pmu_disable(event->pmu);
3171 
3172 		hwc = &event->hw;
3173 
3174 		if (hwc->interrupts == MAX_INTERRUPTS) {
3175 			hwc->interrupts = 0;
3176 			perf_log_throttle(event, 1);
3177 			event->pmu->start(event, 0);
3178 		}
3179 
3180 		if (!event->attr.freq || !event->attr.sample_freq)
3181 			goto next;
3182 
3183 		/*
3184 		 * stop the event and update event->count
3185 		 */
3186 		event->pmu->stop(event, PERF_EF_UPDATE);
3187 
3188 		now = local64_read(&event->count);
3189 		delta = now - hwc->freq_count_stamp;
3190 		hwc->freq_count_stamp = now;
3191 
3192 		/*
3193 		 * restart the event
3194 		 * reload only if value has changed
3195 		 * we have stopped the event so tell that
3196 		 * to perf_adjust_period() to avoid stopping it
3197 		 * twice.
3198 		 */
3199 		if (delta > 0)
3200 			perf_adjust_period(event, period, delta, false);
3201 
3202 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3203 	next:
3204 		perf_pmu_enable(event->pmu);
3205 	}
3206 
3207 	perf_pmu_enable(ctx->pmu);
3208 	raw_spin_unlock(&ctx->lock);
3209 }
3210 
3211 /*
3212  * Round-robin a context's events:
3213  */
3214 static void rotate_ctx(struct perf_event_context *ctx)
3215 {
3216 	/*
3217 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3218 	 * disabled by the inheritance code.
3219 	 */
3220 	if (!ctx->rotate_disable)
3221 		list_rotate_left(&ctx->flexible_groups);
3222 }
3223 
3224 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3225 {
3226 	struct perf_event_context *ctx = NULL;
3227 	int rotate = 0;
3228 
3229 	if (cpuctx->ctx.nr_events) {
3230 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3231 			rotate = 1;
3232 	}
3233 
3234 	ctx = cpuctx->task_ctx;
3235 	if (ctx && ctx->nr_events) {
3236 		if (ctx->nr_events != ctx->nr_active)
3237 			rotate = 1;
3238 	}
3239 
3240 	if (!rotate)
3241 		goto done;
3242 
3243 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3244 	perf_pmu_disable(cpuctx->ctx.pmu);
3245 
3246 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3247 	if (ctx)
3248 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3249 
3250 	rotate_ctx(&cpuctx->ctx);
3251 	if (ctx)
3252 		rotate_ctx(ctx);
3253 
3254 	perf_event_sched_in(cpuctx, ctx, current);
3255 
3256 	perf_pmu_enable(cpuctx->ctx.pmu);
3257 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3258 done:
3259 
3260 	return rotate;
3261 }
3262 
3263 void perf_event_task_tick(void)
3264 {
3265 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3266 	struct perf_event_context *ctx, *tmp;
3267 	int throttled;
3268 
3269 	WARN_ON(!irqs_disabled());
3270 
3271 	__this_cpu_inc(perf_throttled_seq);
3272 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3273 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3274 
3275 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3276 		perf_adjust_freq_unthr_context(ctx, throttled);
3277 }
3278 
3279 static int event_enable_on_exec(struct perf_event *event,
3280 				struct perf_event_context *ctx)
3281 {
3282 	if (!event->attr.enable_on_exec)
3283 		return 0;
3284 
3285 	event->attr.enable_on_exec = 0;
3286 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3287 		return 0;
3288 
3289 	__perf_event_mark_enabled(event);
3290 
3291 	return 1;
3292 }
3293 
3294 /*
3295  * Enable all of a task's events that have been marked enable-on-exec.
3296  * This expects task == current.
3297  */
3298 static void perf_event_enable_on_exec(int ctxn)
3299 {
3300 	struct perf_event_context *ctx, *clone_ctx = NULL;
3301 	struct perf_cpu_context *cpuctx;
3302 	struct perf_event *event;
3303 	unsigned long flags;
3304 	int enabled = 0;
3305 
3306 	local_irq_save(flags);
3307 	ctx = current->perf_event_ctxp[ctxn];
3308 	if (!ctx || !ctx->nr_events)
3309 		goto out;
3310 
3311 	cpuctx = __get_cpu_context(ctx);
3312 	perf_ctx_lock(cpuctx, ctx);
3313 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3314 	list_for_each_entry(event, &ctx->event_list, event_entry)
3315 		enabled |= event_enable_on_exec(event, ctx);
3316 
3317 	/*
3318 	 * Unclone and reschedule this context if we enabled any event.
3319 	 */
3320 	if (enabled) {
3321 		clone_ctx = unclone_ctx(ctx);
3322 		ctx_resched(cpuctx, ctx);
3323 	}
3324 	perf_ctx_unlock(cpuctx, ctx);
3325 
3326 out:
3327 	local_irq_restore(flags);
3328 
3329 	if (clone_ctx)
3330 		put_ctx(clone_ctx);
3331 }
3332 
3333 struct perf_read_data {
3334 	struct perf_event *event;
3335 	bool group;
3336 	int ret;
3337 };
3338 
3339 /*
3340  * Cross CPU call to read the hardware event
3341  */
3342 static void __perf_event_read(void *info)
3343 {
3344 	struct perf_read_data *data = info;
3345 	struct perf_event *sub, *event = data->event;
3346 	struct perf_event_context *ctx = event->ctx;
3347 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3348 	struct pmu *pmu = event->pmu;
3349 
3350 	/*
3351 	 * If this is a task context, we need to check whether it is
3352 	 * the current task context of this cpu.  If not it has been
3353 	 * scheduled out before the smp call arrived.  In that case
3354 	 * event->count would have been updated to a recent sample
3355 	 * when the event was scheduled out.
3356 	 */
3357 	if (ctx->task && cpuctx->task_ctx != ctx)
3358 		return;
3359 
3360 	raw_spin_lock(&ctx->lock);
3361 	if (ctx->is_active) {
3362 		update_context_time(ctx);
3363 		update_cgrp_time_from_event(event);
3364 	}
3365 
3366 	update_event_times(event);
3367 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3368 		goto unlock;
3369 
3370 	if (!data->group) {
3371 		pmu->read(event);
3372 		data->ret = 0;
3373 		goto unlock;
3374 	}
3375 
3376 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3377 
3378 	pmu->read(event);
3379 
3380 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3381 		update_event_times(sub);
3382 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3383 			/*
3384 			 * Use sibling's PMU rather than @event's since
3385 			 * sibling could be on different (eg: software) PMU.
3386 			 */
3387 			sub->pmu->read(sub);
3388 		}
3389 	}
3390 
3391 	data->ret = pmu->commit_txn(pmu);
3392 
3393 unlock:
3394 	raw_spin_unlock(&ctx->lock);
3395 }
3396 
3397 static inline u64 perf_event_count(struct perf_event *event)
3398 {
3399 	if (event->pmu->count)
3400 		return event->pmu->count(event);
3401 
3402 	return __perf_event_count(event);
3403 }
3404 
3405 /*
3406  * NMI-safe method to read a local event, that is an event that
3407  * is:
3408  *   - either for the current task, or for this CPU
3409  *   - does not have inherit set, for inherited task events
3410  *     will not be local and we cannot read them atomically
3411  *   - must not have a pmu::count method
3412  */
3413 u64 perf_event_read_local(struct perf_event *event)
3414 {
3415 	unsigned long flags;
3416 	u64 val;
3417 
3418 	/*
3419 	 * Disabling interrupts avoids all counter scheduling (context
3420 	 * switches, timer based rotation and IPIs).
3421 	 */
3422 	local_irq_save(flags);
3423 
3424 	/* If this is a per-task event, it must be for current */
3425 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3426 		     event->hw.target != current);
3427 
3428 	/* If this is a per-CPU event, it must be for this CPU */
3429 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3430 		     event->cpu != smp_processor_id());
3431 
3432 	/*
3433 	 * It must not be an event with inherit set, we cannot read
3434 	 * all child counters from atomic context.
3435 	 */
3436 	WARN_ON_ONCE(event->attr.inherit);
3437 
3438 	/*
3439 	 * It must not have a pmu::count method, those are not
3440 	 * NMI safe.
3441 	 */
3442 	WARN_ON_ONCE(event->pmu->count);
3443 
3444 	/*
3445 	 * If the event is currently on this CPU, its either a per-task event,
3446 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3447 	 * oncpu == -1).
3448 	 */
3449 	if (event->oncpu == smp_processor_id())
3450 		event->pmu->read(event);
3451 
3452 	val = local64_read(&event->count);
3453 	local_irq_restore(flags);
3454 
3455 	return val;
3456 }
3457 
3458 static int perf_event_read(struct perf_event *event, bool group)
3459 {
3460 	int ret = 0;
3461 
3462 	/*
3463 	 * If event is enabled and currently active on a CPU, update the
3464 	 * value in the event structure:
3465 	 */
3466 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3467 		struct perf_read_data data = {
3468 			.event = event,
3469 			.group = group,
3470 			.ret = 0,
3471 		};
3472 		smp_call_function_single(event->oncpu,
3473 					 __perf_event_read, &data, 1);
3474 		ret = data.ret;
3475 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3476 		struct perf_event_context *ctx = event->ctx;
3477 		unsigned long flags;
3478 
3479 		raw_spin_lock_irqsave(&ctx->lock, flags);
3480 		/*
3481 		 * may read while context is not active
3482 		 * (e.g., thread is blocked), in that case
3483 		 * we cannot update context time
3484 		 */
3485 		if (ctx->is_active) {
3486 			update_context_time(ctx);
3487 			update_cgrp_time_from_event(event);
3488 		}
3489 		if (group)
3490 			update_group_times(event);
3491 		else
3492 			update_event_times(event);
3493 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3494 	}
3495 
3496 	return ret;
3497 }
3498 
3499 /*
3500  * Initialize the perf_event context in a task_struct:
3501  */
3502 static void __perf_event_init_context(struct perf_event_context *ctx)
3503 {
3504 	raw_spin_lock_init(&ctx->lock);
3505 	mutex_init(&ctx->mutex);
3506 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3507 	INIT_LIST_HEAD(&ctx->pinned_groups);
3508 	INIT_LIST_HEAD(&ctx->flexible_groups);
3509 	INIT_LIST_HEAD(&ctx->event_list);
3510 	atomic_set(&ctx->refcount, 1);
3511 }
3512 
3513 static struct perf_event_context *
3514 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3515 {
3516 	struct perf_event_context *ctx;
3517 
3518 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3519 	if (!ctx)
3520 		return NULL;
3521 
3522 	__perf_event_init_context(ctx);
3523 	if (task) {
3524 		ctx->task = task;
3525 		get_task_struct(task);
3526 	}
3527 	ctx->pmu = pmu;
3528 
3529 	return ctx;
3530 }
3531 
3532 static struct task_struct *
3533 find_lively_task_by_vpid(pid_t vpid)
3534 {
3535 	struct task_struct *task;
3536 
3537 	rcu_read_lock();
3538 	if (!vpid)
3539 		task = current;
3540 	else
3541 		task = find_task_by_vpid(vpid);
3542 	if (task)
3543 		get_task_struct(task);
3544 	rcu_read_unlock();
3545 
3546 	if (!task)
3547 		return ERR_PTR(-ESRCH);
3548 
3549 	return task;
3550 }
3551 
3552 /*
3553  * Returns a matching context with refcount and pincount.
3554  */
3555 static struct perf_event_context *
3556 find_get_context(struct pmu *pmu, struct task_struct *task,
3557 		struct perf_event *event)
3558 {
3559 	struct perf_event_context *ctx, *clone_ctx = NULL;
3560 	struct perf_cpu_context *cpuctx;
3561 	void *task_ctx_data = NULL;
3562 	unsigned long flags;
3563 	int ctxn, err;
3564 	int cpu = event->cpu;
3565 
3566 	if (!task) {
3567 		/* Must be root to operate on a CPU event: */
3568 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3569 			return ERR_PTR(-EACCES);
3570 
3571 		/*
3572 		 * We could be clever and allow to attach a event to an
3573 		 * offline CPU and activate it when the CPU comes up, but
3574 		 * that's for later.
3575 		 */
3576 		if (!cpu_online(cpu))
3577 			return ERR_PTR(-ENODEV);
3578 
3579 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3580 		ctx = &cpuctx->ctx;
3581 		get_ctx(ctx);
3582 		++ctx->pin_count;
3583 
3584 		return ctx;
3585 	}
3586 
3587 	err = -EINVAL;
3588 	ctxn = pmu->task_ctx_nr;
3589 	if (ctxn < 0)
3590 		goto errout;
3591 
3592 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3593 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3594 		if (!task_ctx_data) {
3595 			err = -ENOMEM;
3596 			goto errout;
3597 		}
3598 	}
3599 
3600 retry:
3601 	ctx = perf_lock_task_context(task, ctxn, &flags);
3602 	if (ctx) {
3603 		clone_ctx = unclone_ctx(ctx);
3604 		++ctx->pin_count;
3605 
3606 		if (task_ctx_data && !ctx->task_ctx_data) {
3607 			ctx->task_ctx_data = task_ctx_data;
3608 			task_ctx_data = NULL;
3609 		}
3610 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3611 
3612 		if (clone_ctx)
3613 			put_ctx(clone_ctx);
3614 	} else {
3615 		ctx = alloc_perf_context(pmu, task);
3616 		err = -ENOMEM;
3617 		if (!ctx)
3618 			goto errout;
3619 
3620 		if (task_ctx_data) {
3621 			ctx->task_ctx_data = task_ctx_data;
3622 			task_ctx_data = NULL;
3623 		}
3624 
3625 		err = 0;
3626 		mutex_lock(&task->perf_event_mutex);
3627 		/*
3628 		 * If it has already passed perf_event_exit_task().
3629 		 * we must see PF_EXITING, it takes this mutex too.
3630 		 */
3631 		if (task->flags & PF_EXITING)
3632 			err = -ESRCH;
3633 		else if (task->perf_event_ctxp[ctxn])
3634 			err = -EAGAIN;
3635 		else {
3636 			get_ctx(ctx);
3637 			++ctx->pin_count;
3638 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3639 		}
3640 		mutex_unlock(&task->perf_event_mutex);
3641 
3642 		if (unlikely(err)) {
3643 			put_ctx(ctx);
3644 
3645 			if (err == -EAGAIN)
3646 				goto retry;
3647 			goto errout;
3648 		}
3649 	}
3650 
3651 	kfree(task_ctx_data);
3652 	return ctx;
3653 
3654 errout:
3655 	kfree(task_ctx_data);
3656 	return ERR_PTR(err);
3657 }
3658 
3659 static void perf_event_free_filter(struct perf_event *event);
3660 static void perf_event_free_bpf_prog(struct perf_event *event);
3661 
3662 static void free_event_rcu(struct rcu_head *head)
3663 {
3664 	struct perf_event *event;
3665 
3666 	event = container_of(head, struct perf_event, rcu_head);
3667 	if (event->ns)
3668 		put_pid_ns(event->ns);
3669 	perf_event_free_filter(event);
3670 	kfree(event);
3671 }
3672 
3673 static void ring_buffer_attach(struct perf_event *event,
3674 			       struct ring_buffer *rb);
3675 
3676 static void detach_sb_event(struct perf_event *event)
3677 {
3678 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3679 
3680 	raw_spin_lock(&pel->lock);
3681 	list_del_rcu(&event->sb_list);
3682 	raw_spin_unlock(&pel->lock);
3683 }
3684 
3685 static bool is_sb_event(struct perf_event *event)
3686 {
3687 	struct perf_event_attr *attr = &event->attr;
3688 
3689 	if (event->parent)
3690 		return false;
3691 
3692 	if (event->attach_state & PERF_ATTACH_TASK)
3693 		return false;
3694 
3695 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3696 	    attr->comm || attr->comm_exec ||
3697 	    attr->task ||
3698 	    attr->context_switch)
3699 		return true;
3700 	return false;
3701 }
3702 
3703 static void unaccount_pmu_sb_event(struct perf_event *event)
3704 {
3705 	if (is_sb_event(event))
3706 		detach_sb_event(event);
3707 }
3708 
3709 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3710 {
3711 	if (event->parent)
3712 		return;
3713 
3714 	if (is_cgroup_event(event))
3715 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3716 }
3717 
3718 #ifdef CONFIG_NO_HZ_FULL
3719 static DEFINE_SPINLOCK(nr_freq_lock);
3720 #endif
3721 
3722 static void unaccount_freq_event_nohz(void)
3723 {
3724 #ifdef CONFIG_NO_HZ_FULL
3725 	spin_lock(&nr_freq_lock);
3726 	if (atomic_dec_and_test(&nr_freq_events))
3727 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3728 	spin_unlock(&nr_freq_lock);
3729 #endif
3730 }
3731 
3732 static void unaccount_freq_event(void)
3733 {
3734 	if (tick_nohz_full_enabled())
3735 		unaccount_freq_event_nohz();
3736 	else
3737 		atomic_dec(&nr_freq_events);
3738 }
3739 
3740 static void unaccount_event(struct perf_event *event)
3741 {
3742 	bool dec = false;
3743 
3744 	if (event->parent)
3745 		return;
3746 
3747 	if (event->attach_state & PERF_ATTACH_TASK)
3748 		dec = true;
3749 	if (event->attr.mmap || event->attr.mmap_data)
3750 		atomic_dec(&nr_mmap_events);
3751 	if (event->attr.comm)
3752 		atomic_dec(&nr_comm_events);
3753 	if (event->attr.task)
3754 		atomic_dec(&nr_task_events);
3755 	if (event->attr.freq)
3756 		unaccount_freq_event();
3757 	if (event->attr.context_switch) {
3758 		dec = true;
3759 		atomic_dec(&nr_switch_events);
3760 	}
3761 	if (is_cgroup_event(event))
3762 		dec = true;
3763 	if (has_branch_stack(event))
3764 		dec = true;
3765 
3766 	if (dec) {
3767 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3768 			schedule_delayed_work(&perf_sched_work, HZ);
3769 	}
3770 
3771 	unaccount_event_cpu(event, event->cpu);
3772 
3773 	unaccount_pmu_sb_event(event);
3774 }
3775 
3776 static void perf_sched_delayed(struct work_struct *work)
3777 {
3778 	mutex_lock(&perf_sched_mutex);
3779 	if (atomic_dec_and_test(&perf_sched_count))
3780 		static_branch_disable(&perf_sched_events);
3781 	mutex_unlock(&perf_sched_mutex);
3782 }
3783 
3784 /*
3785  * The following implement mutual exclusion of events on "exclusive" pmus
3786  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3787  * at a time, so we disallow creating events that might conflict, namely:
3788  *
3789  *  1) cpu-wide events in the presence of per-task events,
3790  *  2) per-task events in the presence of cpu-wide events,
3791  *  3) two matching events on the same context.
3792  *
3793  * The former two cases are handled in the allocation path (perf_event_alloc(),
3794  * _free_event()), the latter -- before the first perf_install_in_context().
3795  */
3796 static int exclusive_event_init(struct perf_event *event)
3797 {
3798 	struct pmu *pmu = event->pmu;
3799 
3800 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3801 		return 0;
3802 
3803 	/*
3804 	 * Prevent co-existence of per-task and cpu-wide events on the
3805 	 * same exclusive pmu.
3806 	 *
3807 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3808 	 * events on this "exclusive" pmu, positive means there are
3809 	 * per-task events.
3810 	 *
3811 	 * Since this is called in perf_event_alloc() path, event::ctx
3812 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3813 	 * to mean "per-task event", because unlike other attach states it
3814 	 * never gets cleared.
3815 	 */
3816 	if (event->attach_state & PERF_ATTACH_TASK) {
3817 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3818 			return -EBUSY;
3819 	} else {
3820 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3821 			return -EBUSY;
3822 	}
3823 
3824 	return 0;
3825 }
3826 
3827 static void exclusive_event_destroy(struct perf_event *event)
3828 {
3829 	struct pmu *pmu = event->pmu;
3830 
3831 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3832 		return;
3833 
3834 	/* see comment in exclusive_event_init() */
3835 	if (event->attach_state & PERF_ATTACH_TASK)
3836 		atomic_dec(&pmu->exclusive_cnt);
3837 	else
3838 		atomic_inc(&pmu->exclusive_cnt);
3839 }
3840 
3841 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3842 {
3843 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3844 	    (e1->cpu == e2->cpu ||
3845 	     e1->cpu == -1 ||
3846 	     e2->cpu == -1))
3847 		return true;
3848 	return false;
3849 }
3850 
3851 /* Called under the same ctx::mutex as perf_install_in_context() */
3852 static bool exclusive_event_installable(struct perf_event *event,
3853 					struct perf_event_context *ctx)
3854 {
3855 	struct perf_event *iter_event;
3856 	struct pmu *pmu = event->pmu;
3857 
3858 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3859 		return true;
3860 
3861 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3862 		if (exclusive_event_match(iter_event, event))
3863 			return false;
3864 	}
3865 
3866 	return true;
3867 }
3868 
3869 static void perf_addr_filters_splice(struct perf_event *event,
3870 				       struct list_head *head);
3871 
3872 static void _free_event(struct perf_event *event)
3873 {
3874 	irq_work_sync(&event->pending);
3875 
3876 	unaccount_event(event);
3877 
3878 	if (event->rb) {
3879 		/*
3880 		 * Can happen when we close an event with re-directed output.
3881 		 *
3882 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3883 		 * over us; possibly making our ring_buffer_put() the last.
3884 		 */
3885 		mutex_lock(&event->mmap_mutex);
3886 		ring_buffer_attach(event, NULL);
3887 		mutex_unlock(&event->mmap_mutex);
3888 	}
3889 
3890 	if (is_cgroup_event(event))
3891 		perf_detach_cgroup(event);
3892 
3893 	if (!event->parent) {
3894 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3895 			put_callchain_buffers();
3896 	}
3897 
3898 	perf_event_free_bpf_prog(event);
3899 	perf_addr_filters_splice(event, NULL);
3900 	kfree(event->addr_filters_offs);
3901 
3902 	if (event->destroy)
3903 		event->destroy(event);
3904 
3905 	if (event->ctx)
3906 		put_ctx(event->ctx);
3907 
3908 	exclusive_event_destroy(event);
3909 	module_put(event->pmu->module);
3910 
3911 	call_rcu(&event->rcu_head, free_event_rcu);
3912 }
3913 
3914 /*
3915  * Used to free events which have a known refcount of 1, such as in error paths
3916  * where the event isn't exposed yet and inherited events.
3917  */
3918 static void free_event(struct perf_event *event)
3919 {
3920 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3921 				"unexpected event refcount: %ld; ptr=%p\n",
3922 				atomic_long_read(&event->refcount), event)) {
3923 		/* leak to avoid use-after-free */
3924 		return;
3925 	}
3926 
3927 	_free_event(event);
3928 }
3929 
3930 /*
3931  * Remove user event from the owner task.
3932  */
3933 static void perf_remove_from_owner(struct perf_event *event)
3934 {
3935 	struct task_struct *owner;
3936 
3937 	rcu_read_lock();
3938 	/*
3939 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3940 	 * observe !owner it means the list deletion is complete and we can
3941 	 * indeed free this event, otherwise we need to serialize on
3942 	 * owner->perf_event_mutex.
3943 	 */
3944 	owner = lockless_dereference(event->owner);
3945 	if (owner) {
3946 		/*
3947 		 * Since delayed_put_task_struct() also drops the last
3948 		 * task reference we can safely take a new reference
3949 		 * while holding the rcu_read_lock().
3950 		 */
3951 		get_task_struct(owner);
3952 	}
3953 	rcu_read_unlock();
3954 
3955 	if (owner) {
3956 		/*
3957 		 * If we're here through perf_event_exit_task() we're already
3958 		 * holding ctx->mutex which would be an inversion wrt. the
3959 		 * normal lock order.
3960 		 *
3961 		 * However we can safely take this lock because its the child
3962 		 * ctx->mutex.
3963 		 */
3964 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3965 
3966 		/*
3967 		 * We have to re-check the event->owner field, if it is cleared
3968 		 * we raced with perf_event_exit_task(), acquiring the mutex
3969 		 * ensured they're done, and we can proceed with freeing the
3970 		 * event.
3971 		 */
3972 		if (event->owner) {
3973 			list_del_init(&event->owner_entry);
3974 			smp_store_release(&event->owner, NULL);
3975 		}
3976 		mutex_unlock(&owner->perf_event_mutex);
3977 		put_task_struct(owner);
3978 	}
3979 }
3980 
3981 static void put_event(struct perf_event *event)
3982 {
3983 	if (!atomic_long_dec_and_test(&event->refcount))
3984 		return;
3985 
3986 	_free_event(event);
3987 }
3988 
3989 /*
3990  * Kill an event dead; while event:refcount will preserve the event
3991  * object, it will not preserve its functionality. Once the last 'user'
3992  * gives up the object, we'll destroy the thing.
3993  */
3994 int perf_event_release_kernel(struct perf_event *event)
3995 {
3996 	struct perf_event_context *ctx = event->ctx;
3997 	struct perf_event *child, *tmp;
3998 
3999 	/*
4000 	 * If we got here through err_file: fput(event_file); we will not have
4001 	 * attached to a context yet.
4002 	 */
4003 	if (!ctx) {
4004 		WARN_ON_ONCE(event->attach_state &
4005 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4006 		goto no_ctx;
4007 	}
4008 
4009 	if (!is_kernel_event(event))
4010 		perf_remove_from_owner(event);
4011 
4012 	ctx = perf_event_ctx_lock(event);
4013 	WARN_ON_ONCE(ctx->parent_ctx);
4014 	perf_remove_from_context(event, DETACH_GROUP);
4015 
4016 	raw_spin_lock_irq(&ctx->lock);
4017 	/*
4018 	 * Mark this even as STATE_DEAD, there is no external reference to it
4019 	 * anymore.
4020 	 *
4021 	 * Anybody acquiring event->child_mutex after the below loop _must_
4022 	 * also see this, most importantly inherit_event() which will avoid
4023 	 * placing more children on the list.
4024 	 *
4025 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4026 	 * child events.
4027 	 */
4028 	event->state = PERF_EVENT_STATE_DEAD;
4029 	raw_spin_unlock_irq(&ctx->lock);
4030 
4031 	perf_event_ctx_unlock(event, ctx);
4032 
4033 again:
4034 	mutex_lock(&event->child_mutex);
4035 	list_for_each_entry(child, &event->child_list, child_list) {
4036 
4037 		/*
4038 		 * Cannot change, child events are not migrated, see the
4039 		 * comment with perf_event_ctx_lock_nested().
4040 		 */
4041 		ctx = lockless_dereference(child->ctx);
4042 		/*
4043 		 * Since child_mutex nests inside ctx::mutex, we must jump
4044 		 * through hoops. We start by grabbing a reference on the ctx.
4045 		 *
4046 		 * Since the event cannot get freed while we hold the
4047 		 * child_mutex, the context must also exist and have a !0
4048 		 * reference count.
4049 		 */
4050 		get_ctx(ctx);
4051 
4052 		/*
4053 		 * Now that we have a ctx ref, we can drop child_mutex, and
4054 		 * acquire ctx::mutex without fear of it going away. Then we
4055 		 * can re-acquire child_mutex.
4056 		 */
4057 		mutex_unlock(&event->child_mutex);
4058 		mutex_lock(&ctx->mutex);
4059 		mutex_lock(&event->child_mutex);
4060 
4061 		/*
4062 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4063 		 * state, if child is still the first entry, it didn't get freed
4064 		 * and we can continue doing so.
4065 		 */
4066 		tmp = list_first_entry_or_null(&event->child_list,
4067 					       struct perf_event, child_list);
4068 		if (tmp == child) {
4069 			perf_remove_from_context(child, DETACH_GROUP);
4070 			list_del(&child->child_list);
4071 			free_event(child);
4072 			/*
4073 			 * This matches the refcount bump in inherit_event();
4074 			 * this can't be the last reference.
4075 			 */
4076 			put_event(event);
4077 		}
4078 
4079 		mutex_unlock(&event->child_mutex);
4080 		mutex_unlock(&ctx->mutex);
4081 		put_ctx(ctx);
4082 		goto again;
4083 	}
4084 	mutex_unlock(&event->child_mutex);
4085 
4086 no_ctx:
4087 	put_event(event); /* Must be the 'last' reference */
4088 	return 0;
4089 }
4090 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4091 
4092 /*
4093  * Called when the last reference to the file is gone.
4094  */
4095 static int perf_release(struct inode *inode, struct file *file)
4096 {
4097 	perf_event_release_kernel(file->private_data);
4098 	return 0;
4099 }
4100 
4101 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4102 {
4103 	struct perf_event *child;
4104 	u64 total = 0;
4105 
4106 	*enabled = 0;
4107 	*running = 0;
4108 
4109 	mutex_lock(&event->child_mutex);
4110 
4111 	(void)perf_event_read(event, false);
4112 	total += perf_event_count(event);
4113 
4114 	*enabled += event->total_time_enabled +
4115 			atomic64_read(&event->child_total_time_enabled);
4116 	*running += event->total_time_running +
4117 			atomic64_read(&event->child_total_time_running);
4118 
4119 	list_for_each_entry(child, &event->child_list, child_list) {
4120 		(void)perf_event_read(child, false);
4121 		total += perf_event_count(child);
4122 		*enabled += child->total_time_enabled;
4123 		*running += child->total_time_running;
4124 	}
4125 	mutex_unlock(&event->child_mutex);
4126 
4127 	return total;
4128 }
4129 EXPORT_SYMBOL_GPL(perf_event_read_value);
4130 
4131 static int __perf_read_group_add(struct perf_event *leader,
4132 					u64 read_format, u64 *values)
4133 {
4134 	struct perf_event *sub;
4135 	int n = 1; /* skip @nr */
4136 	int ret;
4137 
4138 	ret = perf_event_read(leader, true);
4139 	if (ret)
4140 		return ret;
4141 
4142 	/*
4143 	 * Since we co-schedule groups, {enabled,running} times of siblings
4144 	 * will be identical to those of the leader, so we only publish one
4145 	 * set.
4146 	 */
4147 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4148 		values[n++] += leader->total_time_enabled +
4149 			atomic64_read(&leader->child_total_time_enabled);
4150 	}
4151 
4152 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4153 		values[n++] += leader->total_time_running +
4154 			atomic64_read(&leader->child_total_time_running);
4155 	}
4156 
4157 	/*
4158 	 * Write {count,id} tuples for every sibling.
4159 	 */
4160 	values[n++] += perf_event_count(leader);
4161 	if (read_format & PERF_FORMAT_ID)
4162 		values[n++] = primary_event_id(leader);
4163 
4164 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4165 		values[n++] += perf_event_count(sub);
4166 		if (read_format & PERF_FORMAT_ID)
4167 			values[n++] = primary_event_id(sub);
4168 	}
4169 
4170 	return 0;
4171 }
4172 
4173 static int perf_read_group(struct perf_event *event,
4174 				   u64 read_format, char __user *buf)
4175 {
4176 	struct perf_event *leader = event->group_leader, *child;
4177 	struct perf_event_context *ctx = leader->ctx;
4178 	int ret;
4179 	u64 *values;
4180 
4181 	lockdep_assert_held(&ctx->mutex);
4182 
4183 	values = kzalloc(event->read_size, GFP_KERNEL);
4184 	if (!values)
4185 		return -ENOMEM;
4186 
4187 	values[0] = 1 + leader->nr_siblings;
4188 
4189 	/*
4190 	 * By locking the child_mutex of the leader we effectively
4191 	 * lock the child list of all siblings.. XXX explain how.
4192 	 */
4193 	mutex_lock(&leader->child_mutex);
4194 
4195 	ret = __perf_read_group_add(leader, read_format, values);
4196 	if (ret)
4197 		goto unlock;
4198 
4199 	list_for_each_entry(child, &leader->child_list, child_list) {
4200 		ret = __perf_read_group_add(child, read_format, values);
4201 		if (ret)
4202 			goto unlock;
4203 	}
4204 
4205 	mutex_unlock(&leader->child_mutex);
4206 
4207 	ret = event->read_size;
4208 	if (copy_to_user(buf, values, event->read_size))
4209 		ret = -EFAULT;
4210 	goto out;
4211 
4212 unlock:
4213 	mutex_unlock(&leader->child_mutex);
4214 out:
4215 	kfree(values);
4216 	return ret;
4217 }
4218 
4219 static int perf_read_one(struct perf_event *event,
4220 				 u64 read_format, char __user *buf)
4221 {
4222 	u64 enabled, running;
4223 	u64 values[4];
4224 	int n = 0;
4225 
4226 	values[n++] = perf_event_read_value(event, &enabled, &running);
4227 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4228 		values[n++] = enabled;
4229 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4230 		values[n++] = running;
4231 	if (read_format & PERF_FORMAT_ID)
4232 		values[n++] = primary_event_id(event);
4233 
4234 	if (copy_to_user(buf, values, n * sizeof(u64)))
4235 		return -EFAULT;
4236 
4237 	return n * sizeof(u64);
4238 }
4239 
4240 static bool is_event_hup(struct perf_event *event)
4241 {
4242 	bool no_children;
4243 
4244 	if (event->state > PERF_EVENT_STATE_EXIT)
4245 		return false;
4246 
4247 	mutex_lock(&event->child_mutex);
4248 	no_children = list_empty(&event->child_list);
4249 	mutex_unlock(&event->child_mutex);
4250 	return no_children;
4251 }
4252 
4253 /*
4254  * Read the performance event - simple non blocking version for now
4255  */
4256 static ssize_t
4257 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4258 {
4259 	u64 read_format = event->attr.read_format;
4260 	int ret;
4261 
4262 	/*
4263 	 * Return end-of-file for a read on a event that is in
4264 	 * error state (i.e. because it was pinned but it couldn't be
4265 	 * scheduled on to the CPU at some point).
4266 	 */
4267 	if (event->state == PERF_EVENT_STATE_ERROR)
4268 		return 0;
4269 
4270 	if (count < event->read_size)
4271 		return -ENOSPC;
4272 
4273 	WARN_ON_ONCE(event->ctx->parent_ctx);
4274 	if (read_format & PERF_FORMAT_GROUP)
4275 		ret = perf_read_group(event, read_format, buf);
4276 	else
4277 		ret = perf_read_one(event, read_format, buf);
4278 
4279 	return ret;
4280 }
4281 
4282 static ssize_t
4283 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4284 {
4285 	struct perf_event *event = file->private_data;
4286 	struct perf_event_context *ctx;
4287 	int ret;
4288 
4289 	ctx = perf_event_ctx_lock(event);
4290 	ret = __perf_read(event, buf, count);
4291 	perf_event_ctx_unlock(event, ctx);
4292 
4293 	return ret;
4294 }
4295 
4296 static unsigned int perf_poll(struct file *file, poll_table *wait)
4297 {
4298 	struct perf_event *event = file->private_data;
4299 	struct ring_buffer *rb;
4300 	unsigned int events = POLLHUP;
4301 
4302 	poll_wait(file, &event->waitq, wait);
4303 
4304 	if (is_event_hup(event))
4305 		return events;
4306 
4307 	/*
4308 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4309 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4310 	 */
4311 	mutex_lock(&event->mmap_mutex);
4312 	rb = event->rb;
4313 	if (rb)
4314 		events = atomic_xchg(&rb->poll, 0);
4315 	mutex_unlock(&event->mmap_mutex);
4316 	return events;
4317 }
4318 
4319 static void _perf_event_reset(struct perf_event *event)
4320 {
4321 	(void)perf_event_read(event, false);
4322 	local64_set(&event->count, 0);
4323 	perf_event_update_userpage(event);
4324 }
4325 
4326 /*
4327  * Holding the top-level event's child_mutex means that any
4328  * descendant process that has inherited this event will block
4329  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4330  * task existence requirements of perf_event_enable/disable.
4331  */
4332 static void perf_event_for_each_child(struct perf_event *event,
4333 					void (*func)(struct perf_event *))
4334 {
4335 	struct perf_event *child;
4336 
4337 	WARN_ON_ONCE(event->ctx->parent_ctx);
4338 
4339 	mutex_lock(&event->child_mutex);
4340 	func(event);
4341 	list_for_each_entry(child, &event->child_list, child_list)
4342 		func(child);
4343 	mutex_unlock(&event->child_mutex);
4344 }
4345 
4346 static void perf_event_for_each(struct perf_event *event,
4347 				  void (*func)(struct perf_event *))
4348 {
4349 	struct perf_event_context *ctx = event->ctx;
4350 	struct perf_event *sibling;
4351 
4352 	lockdep_assert_held(&ctx->mutex);
4353 
4354 	event = event->group_leader;
4355 
4356 	perf_event_for_each_child(event, func);
4357 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4358 		perf_event_for_each_child(sibling, func);
4359 }
4360 
4361 static void __perf_event_period(struct perf_event *event,
4362 				struct perf_cpu_context *cpuctx,
4363 				struct perf_event_context *ctx,
4364 				void *info)
4365 {
4366 	u64 value = *((u64 *)info);
4367 	bool active;
4368 
4369 	if (event->attr.freq) {
4370 		event->attr.sample_freq = value;
4371 	} else {
4372 		event->attr.sample_period = value;
4373 		event->hw.sample_period = value;
4374 	}
4375 
4376 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4377 	if (active) {
4378 		perf_pmu_disable(ctx->pmu);
4379 		/*
4380 		 * We could be throttled; unthrottle now to avoid the tick
4381 		 * trying to unthrottle while we already re-started the event.
4382 		 */
4383 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4384 			event->hw.interrupts = 0;
4385 			perf_log_throttle(event, 1);
4386 		}
4387 		event->pmu->stop(event, PERF_EF_UPDATE);
4388 	}
4389 
4390 	local64_set(&event->hw.period_left, 0);
4391 
4392 	if (active) {
4393 		event->pmu->start(event, PERF_EF_RELOAD);
4394 		perf_pmu_enable(ctx->pmu);
4395 	}
4396 }
4397 
4398 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4399 {
4400 	u64 value;
4401 
4402 	if (!is_sampling_event(event))
4403 		return -EINVAL;
4404 
4405 	if (copy_from_user(&value, arg, sizeof(value)))
4406 		return -EFAULT;
4407 
4408 	if (!value)
4409 		return -EINVAL;
4410 
4411 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4412 		return -EINVAL;
4413 
4414 	event_function_call(event, __perf_event_period, &value);
4415 
4416 	return 0;
4417 }
4418 
4419 static const struct file_operations perf_fops;
4420 
4421 static inline int perf_fget_light(int fd, struct fd *p)
4422 {
4423 	struct fd f = fdget(fd);
4424 	if (!f.file)
4425 		return -EBADF;
4426 
4427 	if (f.file->f_op != &perf_fops) {
4428 		fdput(f);
4429 		return -EBADF;
4430 	}
4431 	*p = f;
4432 	return 0;
4433 }
4434 
4435 static int perf_event_set_output(struct perf_event *event,
4436 				 struct perf_event *output_event);
4437 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4438 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4439 
4440 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4441 {
4442 	void (*func)(struct perf_event *);
4443 	u32 flags = arg;
4444 
4445 	switch (cmd) {
4446 	case PERF_EVENT_IOC_ENABLE:
4447 		func = _perf_event_enable;
4448 		break;
4449 	case PERF_EVENT_IOC_DISABLE:
4450 		func = _perf_event_disable;
4451 		break;
4452 	case PERF_EVENT_IOC_RESET:
4453 		func = _perf_event_reset;
4454 		break;
4455 
4456 	case PERF_EVENT_IOC_REFRESH:
4457 		return _perf_event_refresh(event, arg);
4458 
4459 	case PERF_EVENT_IOC_PERIOD:
4460 		return perf_event_period(event, (u64 __user *)arg);
4461 
4462 	case PERF_EVENT_IOC_ID:
4463 	{
4464 		u64 id = primary_event_id(event);
4465 
4466 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4467 			return -EFAULT;
4468 		return 0;
4469 	}
4470 
4471 	case PERF_EVENT_IOC_SET_OUTPUT:
4472 	{
4473 		int ret;
4474 		if (arg != -1) {
4475 			struct perf_event *output_event;
4476 			struct fd output;
4477 			ret = perf_fget_light(arg, &output);
4478 			if (ret)
4479 				return ret;
4480 			output_event = output.file->private_data;
4481 			ret = perf_event_set_output(event, output_event);
4482 			fdput(output);
4483 		} else {
4484 			ret = perf_event_set_output(event, NULL);
4485 		}
4486 		return ret;
4487 	}
4488 
4489 	case PERF_EVENT_IOC_SET_FILTER:
4490 		return perf_event_set_filter(event, (void __user *)arg);
4491 
4492 	case PERF_EVENT_IOC_SET_BPF:
4493 		return perf_event_set_bpf_prog(event, arg);
4494 
4495 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4496 		struct ring_buffer *rb;
4497 
4498 		rcu_read_lock();
4499 		rb = rcu_dereference(event->rb);
4500 		if (!rb || !rb->nr_pages) {
4501 			rcu_read_unlock();
4502 			return -EINVAL;
4503 		}
4504 		rb_toggle_paused(rb, !!arg);
4505 		rcu_read_unlock();
4506 		return 0;
4507 	}
4508 	default:
4509 		return -ENOTTY;
4510 	}
4511 
4512 	if (flags & PERF_IOC_FLAG_GROUP)
4513 		perf_event_for_each(event, func);
4514 	else
4515 		perf_event_for_each_child(event, func);
4516 
4517 	return 0;
4518 }
4519 
4520 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4521 {
4522 	struct perf_event *event = file->private_data;
4523 	struct perf_event_context *ctx;
4524 	long ret;
4525 
4526 	ctx = perf_event_ctx_lock(event);
4527 	ret = _perf_ioctl(event, cmd, arg);
4528 	perf_event_ctx_unlock(event, ctx);
4529 
4530 	return ret;
4531 }
4532 
4533 #ifdef CONFIG_COMPAT
4534 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4535 				unsigned long arg)
4536 {
4537 	switch (_IOC_NR(cmd)) {
4538 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4539 	case _IOC_NR(PERF_EVENT_IOC_ID):
4540 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4541 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4542 			cmd &= ~IOCSIZE_MASK;
4543 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4544 		}
4545 		break;
4546 	}
4547 	return perf_ioctl(file, cmd, arg);
4548 }
4549 #else
4550 # define perf_compat_ioctl NULL
4551 #endif
4552 
4553 int perf_event_task_enable(void)
4554 {
4555 	struct perf_event_context *ctx;
4556 	struct perf_event *event;
4557 
4558 	mutex_lock(&current->perf_event_mutex);
4559 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4560 		ctx = perf_event_ctx_lock(event);
4561 		perf_event_for_each_child(event, _perf_event_enable);
4562 		perf_event_ctx_unlock(event, ctx);
4563 	}
4564 	mutex_unlock(&current->perf_event_mutex);
4565 
4566 	return 0;
4567 }
4568 
4569 int perf_event_task_disable(void)
4570 {
4571 	struct perf_event_context *ctx;
4572 	struct perf_event *event;
4573 
4574 	mutex_lock(&current->perf_event_mutex);
4575 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4576 		ctx = perf_event_ctx_lock(event);
4577 		perf_event_for_each_child(event, _perf_event_disable);
4578 		perf_event_ctx_unlock(event, ctx);
4579 	}
4580 	mutex_unlock(&current->perf_event_mutex);
4581 
4582 	return 0;
4583 }
4584 
4585 static int perf_event_index(struct perf_event *event)
4586 {
4587 	if (event->hw.state & PERF_HES_STOPPED)
4588 		return 0;
4589 
4590 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4591 		return 0;
4592 
4593 	return event->pmu->event_idx(event);
4594 }
4595 
4596 static void calc_timer_values(struct perf_event *event,
4597 				u64 *now,
4598 				u64 *enabled,
4599 				u64 *running)
4600 {
4601 	u64 ctx_time;
4602 
4603 	*now = perf_clock();
4604 	ctx_time = event->shadow_ctx_time + *now;
4605 	*enabled = ctx_time - event->tstamp_enabled;
4606 	*running = ctx_time - event->tstamp_running;
4607 }
4608 
4609 static void perf_event_init_userpage(struct perf_event *event)
4610 {
4611 	struct perf_event_mmap_page *userpg;
4612 	struct ring_buffer *rb;
4613 
4614 	rcu_read_lock();
4615 	rb = rcu_dereference(event->rb);
4616 	if (!rb)
4617 		goto unlock;
4618 
4619 	userpg = rb->user_page;
4620 
4621 	/* Allow new userspace to detect that bit 0 is deprecated */
4622 	userpg->cap_bit0_is_deprecated = 1;
4623 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4624 	userpg->data_offset = PAGE_SIZE;
4625 	userpg->data_size = perf_data_size(rb);
4626 
4627 unlock:
4628 	rcu_read_unlock();
4629 }
4630 
4631 void __weak arch_perf_update_userpage(
4632 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4633 {
4634 }
4635 
4636 /*
4637  * Callers need to ensure there can be no nesting of this function, otherwise
4638  * the seqlock logic goes bad. We can not serialize this because the arch
4639  * code calls this from NMI context.
4640  */
4641 void perf_event_update_userpage(struct perf_event *event)
4642 {
4643 	struct perf_event_mmap_page *userpg;
4644 	struct ring_buffer *rb;
4645 	u64 enabled, running, now;
4646 
4647 	rcu_read_lock();
4648 	rb = rcu_dereference(event->rb);
4649 	if (!rb)
4650 		goto unlock;
4651 
4652 	/*
4653 	 * compute total_time_enabled, total_time_running
4654 	 * based on snapshot values taken when the event
4655 	 * was last scheduled in.
4656 	 *
4657 	 * we cannot simply called update_context_time()
4658 	 * because of locking issue as we can be called in
4659 	 * NMI context
4660 	 */
4661 	calc_timer_values(event, &now, &enabled, &running);
4662 
4663 	userpg = rb->user_page;
4664 	/*
4665 	 * Disable preemption so as to not let the corresponding user-space
4666 	 * spin too long if we get preempted.
4667 	 */
4668 	preempt_disable();
4669 	++userpg->lock;
4670 	barrier();
4671 	userpg->index = perf_event_index(event);
4672 	userpg->offset = perf_event_count(event);
4673 	if (userpg->index)
4674 		userpg->offset -= local64_read(&event->hw.prev_count);
4675 
4676 	userpg->time_enabled = enabled +
4677 			atomic64_read(&event->child_total_time_enabled);
4678 
4679 	userpg->time_running = running +
4680 			atomic64_read(&event->child_total_time_running);
4681 
4682 	arch_perf_update_userpage(event, userpg, now);
4683 
4684 	barrier();
4685 	++userpg->lock;
4686 	preempt_enable();
4687 unlock:
4688 	rcu_read_unlock();
4689 }
4690 
4691 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4692 {
4693 	struct perf_event *event = vma->vm_file->private_data;
4694 	struct ring_buffer *rb;
4695 	int ret = VM_FAULT_SIGBUS;
4696 
4697 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4698 		if (vmf->pgoff == 0)
4699 			ret = 0;
4700 		return ret;
4701 	}
4702 
4703 	rcu_read_lock();
4704 	rb = rcu_dereference(event->rb);
4705 	if (!rb)
4706 		goto unlock;
4707 
4708 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4709 		goto unlock;
4710 
4711 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4712 	if (!vmf->page)
4713 		goto unlock;
4714 
4715 	get_page(vmf->page);
4716 	vmf->page->mapping = vma->vm_file->f_mapping;
4717 	vmf->page->index   = vmf->pgoff;
4718 
4719 	ret = 0;
4720 unlock:
4721 	rcu_read_unlock();
4722 
4723 	return ret;
4724 }
4725 
4726 static void ring_buffer_attach(struct perf_event *event,
4727 			       struct ring_buffer *rb)
4728 {
4729 	struct ring_buffer *old_rb = NULL;
4730 	unsigned long flags;
4731 
4732 	if (event->rb) {
4733 		/*
4734 		 * Should be impossible, we set this when removing
4735 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4736 		 */
4737 		WARN_ON_ONCE(event->rcu_pending);
4738 
4739 		old_rb = event->rb;
4740 		spin_lock_irqsave(&old_rb->event_lock, flags);
4741 		list_del_rcu(&event->rb_entry);
4742 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4743 
4744 		event->rcu_batches = get_state_synchronize_rcu();
4745 		event->rcu_pending = 1;
4746 	}
4747 
4748 	if (rb) {
4749 		if (event->rcu_pending) {
4750 			cond_synchronize_rcu(event->rcu_batches);
4751 			event->rcu_pending = 0;
4752 		}
4753 
4754 		spin_lock_irqsave(&rb->event_lock, flags);
4755 		list_add_rcu(&event->rb_entry, &rb->event_list);
4756 		spin_unlock_irqrestore(&rb->event_lock, flags);
4757 	}
4758 
4759 	rcu_assign_pointer(event->rb, rb);
4760 
4761 	if (old_rb) {
4762 		ring_buffer_put(old_rb);
4763 		/*
4764 		 * Since we detached before setting the new rb, so that we
4765 		 * could attach the new rb, we could have missed a wakeup.
4766 		 * Provide it now.
4767 		 */
4768 		wake_up_all(&event->waitq);
4769 	}
4770 }
4771 
4772 static void ring_buffer_wakeup(struct perf_event *event)
4773 {
4774 	struct ring_buffer *rb;
4775 
4776 	rcu_read_lock();
4777 	rb = rcu_dereference(event->rb);
4778 	if (rb) {
4779 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4780 			wake_up_all(&event->waitq);
4781 	}
4782 	rcu_read_unlock();
4783 }
4784 
4785 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4786 {
4787 	struct ring_buffer *rb;
4788 
4789 	rcu_read_lock();
4790 	rb = rcu_dereference(event->rb);
4791 	if (rb) {
4792 		if (!atomic_inc_not_zero(&rb->refcount))
4793 			rb = NULL;
4794 	}
4795 	rcu_read_unlock();
4796 
4797 	return rb;
4798 }
4799 
4800 void ring_buffer_put(struct ring_buffer *rb)
4801 {
4802 	if (!atomic_dec_and_test(&rb->refcount))
4803 		return;
4804 
4805 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4806 
4807 	call_rcu(&rb->rcu_head, rb_free_rcu);
4808 }
4809 
4810 static void perf_mmap_open(struct vm_area_struct *vma)
4811 {
4812 	struct perf_event *event = vma->vm_file->private_data;
4813 
4814 	atomic_inc(&event->mmap_count);
4815 	atomic_inc(&event->rb->mmap_count);
4816 
4817 	if (vma->vm_pgoff)
4818 		atomic_inc(&event->rb->aux_mmap_count);
4819 
4820 	if (event->pmu->event_mapped)
4821 		event->pmu->event_mapped(event);
4822 }
4823 
4824 static void perf_pmu_output_stop(struct perf_event *event);
4825 
4826 /*
4827  * A buffer can be mmap()ed multiple times; either directly through the same
4828  * event, or through other events by use of perf_event_set_output().
4829  *
4830  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4831  * the buffer here, where we still have a VM context. This means we need
4832  * to detach all events redirecting to us.
4833  */
4834 static void perf_mmap_close(struct vm_area_struct *vma)
4835 {
4836 	struct perf_event *event = vma->vm_file->private_data;
4837 
4838 	struct ring_buffer *rb = ring_buffer_get(event);
4839 	struct user_struct *mmap_user = rb->mmap_user;
4840 	int mmap_locked = rb->mmap_locked;
4841 	unsigned long size = perf_data_size(rb);
4842 
4843 	if (event->pmu->event_unmapped)
4844 		event->pmu->event_unmapped(event);
4845 
4846 	/*
4847 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4848 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4849 	 * serialize with perf_mmap here.
4850 	 */
4851 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4852 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4853 		/*
4854 		 * Stop all AUX events that are writing to this buffer,
4855 		 * so that we can free its AUX pages and corresponding PMU
4856 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4857 		 * they won't start any more (see perf_aux_output_begin()).
4858 		 */
4859 		perf_pmu_output_stop(event);
4860 
4861 		/* now it's safe to free the pages */
4862 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4863 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4864 
4865 		/* this has to be the last one */
4866 		rb_free_aux(rb);
4867 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4868 
4869 		mutex_unlock(&event->mmap_mutex);
4870 	}
4871 
4872 	atomic_dec(&rb->mmap_count);
4873 
4874 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4875 		goto out_put;
4876 
4877 	ring_buffer_attach(event, NULL);
4878 	mutex_unlock(&event->mmap_mutex);
4879 
4880 	/* If there's still other mmap()s of this buffer, we're done. */
4881 	if (atomic_read(&rb->mmap_count))
4882 		goto out_put;
4883 
4884 	/*
4885 	 * No other mmap()s, detach from all other events that might redirect
4886 	 * into the now unreachable buffer. Somewhat complicated by the
4887 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4888 	 */
4889 again:
4890 	rcu_read_lock();
4891 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4892 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4893 			/*
4894 			 * This event is en-route to free_event() which will
4895 			 * detach it and remove it from the list.
4896 			 */
4897 			continue;
4898 		}
4899 		rcu_read_unlock();
4900 
4901 		mutex_lock(&event->mmap_mutex);
4902 		/*
4903 		 * Check we didn't race with perf_event_set_output() which can
4904 		 * swizzle the rb from under us while we were waiting to
4905 		 * acquire mmap_mutex.
4906 		 *
4907 		 * If we find a different rb; ignore this event, a next
4908 		 * iteration will no longer find it on the list. We have to
4909 		 * still restart the iteration to make sure we're not now
4910 		 * iterating the wrong list.
4911 		 */
4912 		if (event->rb == rb)
4913 			ring_buffer_attach(event, NULL);
4914 
4915 		mutex_unlock(&event->mmap_mutex);
4916 		put_event(event);
4917 
4918 		/*
4919 		 * Restart the iteration; either we're on the wrong list or
4920 		 * destroyed its integrity by doing a deletion.
4921 		 */
4922 		goto again;
4923 	}
4924 	rcu_read_unlock();
4925 
4926 	/*
4927 	 * It could be there's still a few 0-ref events on the list; they'll
4928 	 * get cleaned up by free_event() -- they'll also still have their
4929 	 * ref on the rb and will free it whenever they are done with it.
4930 	 *
4931 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4932 	 * undo the VM accounting.
4933 	 */
4934 
4935 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4936 	vma->vm_mm->pinned_vm -= mmap_locked;
4937 	free_uid(mmap_user);
4938 
4939 out_put:
4940 	ring_buffer_put(rb); /* could be last */
4941 }
4942 
4943 static const struct vm_operations_struct perf_mmap_vmops = {
4944 	.open		= perf_mmap_open,
4945 	.close		= perf_mmap_close, /* non mergable */
4946 	.fault		= perf_mmap_fault,
4947 	.page_mkwrite	= perf_mmap_fault,
4948 };
4949 
4950 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4951 {
4952 	struct perf_event *event = file->private_data;
4953 	unsigned long user_locked, user_lock_limit;
4954 	struct user_struct *user = current_user();
4955 	unsigned long locked, lock_limit;
4956 	struct ring_buffer *rb = NULL;
4957 	unsigned long vma_size;
4958 	unsigned long nr_pages;
4959 	long user_extra = 0, extra = 0;
4960 	int ret = 0, flags = 0;
4961 
4962 	/*
4963 	 * Don't allow mmap() of inherited per-task counters. This would
4964 	 * create a performance issue due to all children writing to the
4965 	 * same rb.
4966 	 */
4967 	if (event->cpu == -1 && event->attr.inherit)
4968 		return -EINVAL;
4969 
4970 	if (!(vma->vm_flags & VM_SHARED))
4971 		return -EINVAL;
4972 
4973 	vma_size = vma->vm_end - vma->vm_start;
4974 
4975 	if (vma->vm_pgoff == 0) {
4976 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4977 	} else {
4978 		/*
4979 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4980 		 * mapped, all subsequent mappings should have the same size
4981 		 * and offset. Must be above the normal perf buffer.
4982 		 */
4983 		u64 aux_offset, aux_size;
4984 
4985 		if (!event->rb)
4986 			return -EINVAL;
4987 
4988 		nr_pages = vma_size / PAGE_SIZE;
4989 
4990 		mutex_lock(&event->mmap_mutex);
4991 		ret = -EINVAL;
4992 
4993 		rb = event->rb;
4994 		if (!rb)
4995 			goto aux_unlock;
4996 
4997 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4998 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4999 
5000 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5001 			goto aux_unlock;
5002 
5003 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5004 			goto aux_unlock;
5005 
5006 		/* already mapped with a different offset */
5007 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5008 			goto aux_unlock;
5009 
5010 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5011 			goto aux_unlock;
5012 
5013 		/* already mapped with a different size */
5014 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5015 			goto aux_unlock;
5016 
5017 		if (!is_power_of_2(nr_pages))
5018 			goto aux_unlock;
5019 
5020 		if (!atomic_inc_not_zero(&rb->mmap_count))
5021 			goto aux_unlock;
5022 
5023 		if (rb_has_aux(rb)) {
5024 			atomic_inc(&rb->aux_mmap_count);
5025 			ret = 0;
5026 			goto unlock;
5027 		}
5028 
5029 		atomic_set(&rb->aux_mmap_count, 1);
5030 		user_extra = nr_pages;
5031 
5032 		goto accounting;
5033 	}
5034 
5035 	/*
5036 	 * If we have rb pages ensure they're a power-of-two number, so we
5037 	 * can do bitmasks instead of modulo.
5038 	 */
5039 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5040 		return -EINVAL;
5041 
5042 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5043 		return -EINVAL;
5044 
5045 	WARN_ON_ONCE(event->ctx->parent_ctx);
5046 again:
5047 	mutex_lock(&event->mmap_mutex);
5048 	if (event->rb) {
5049 		if (event->rb->nr_pages != nr_pages) {
5050 			ret = -EINVAL;
5051 			goto unlock;
5052 		}
5053 
5054 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5055 			/*
5056 			 * Raced against perf_mmap_close() through
5057 			 * perf_event_set_output(). Try again, hope for better
5058 			 * luck.
5059 			 */
5060 			mutex_unlock(&event->mmap_mutex);
5061 			goto again;
5062 		}
5063 
5064 		goto unlock;
5065 	}
5066 
5067 	user_extra = nr_pages + 1;
5068 
5069 accounting:
5070 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5071 
5072 	/*
5073 	 * Increase the limit linearly with more CPUs:
5074 	 */
5075 	user_lock_limit *= num_online_cpus();
5076 
5077 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5078 
5079 	if (user_locked > user_lock_limit)
5080 		extra = user_locked - user_lock_limit;
5081 
5082 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5083 	lock_limit >>= PAGE_SHIFT;
5084 	locked = vma->vm_mm->pinned_vm + extra;
5085 
5086 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5087 		!capable(CAP_IPC_LOCK)) {
5088 		ret = -EPERM;
5089 		goto unlock;
5090 	}
5091 
5092 	WARN_ON(!rb && event->rb);
5093 
5094 	if (vma->vm_flags & VM_WRITE)
5095 		flags |= RING_BUFFER_WRITABLE;
5096 
5097 	if (!rb) {
5098 		rb = rb_alloc(nr_pages,
5099 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5100 			      event->cpu, flags);
5101 
5102 		if (!rb) {
5103 			ret = -ENOMEM;
5104 			goto unlock;
5105 		}
5106 
5107 		atomic_set(&rb->mmap_count, 1);
5108 		rb->mmap_user = get_current_user();
5109 		rb->mmap_locked = extra;
5110 
5111 		ring_buffer_attach(event, rb);
5112 
5113 		perf_event_init_userpage(event);
5114 		perf_event_update_userpage(event);
5115 	} else {
5116 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5117 				   event->attr.aux_watermark, flags);
5118 		if (!ret)
5119 			rb->aux_mmap_locked = extra;
5120 	}
5121 
5122 unlock:
5123 	if (!ret) {
5124 		atomic_long_add(user_extra, &user->locked_vm);
5125 		vma->vm_mm->pinned_vm += extra;
5126 
5127 		atomic_inc(&event->mmap_count);
5128 	} else if (rb) {
5129 		atomic_dec(&rb->mmap_count);
5130 	}
5131 aux_unlock:
5132 	mutex_unlock(&event->mmap_mutex);
5133 
5134 	/*
5135 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5136 	 * vma.
5137 	 */
5138 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5139 	vma->vm_ops = &perf_mmap_vmops;
5140 
5141 	if (event->pmu->event_mapped)
5142 		event->pmu->event_mapped(event);
5143 
5144 	return ret;
5145 }
5146 
5147 static int perf_fasync(int fd, struct file *filp, int on)
5148 {
5149 	struct inode *inode = file_inode(filp);
5150 	struct perf_event *event = filp->private_data;
5151 	int retval;
5152 
5153 	inode_lock(inode);
5154 	retval = fasync_helper(fd, filp, on, &event->fasync);
5155 	inode_unlock(inode);
5156 
5157 	if (retval < 0)
5158 		return retval;
5159 
5160 	return 0;
5161 }
5162 
5163 static const struct file_operations perf_fops = {
5164 	.llseek			= no_llseek,
5165 	.release		= perf_release,
5166 	.read			= perf_read,
5167 	.poll			= perf_poll,
5168 	.unlocked_ioctl		= perf_ioctl,
5169 	.compat_ioctl		= perf_compat_ioctl,
5170 	.mmap			= perf_mmap,
5171 	.fasync			= perf_fasync,
5172 };
5173 
5174 /*
5175  * Perf event wakeup
5176  *
5177  * If there's data, ensure we set the poll() state and publish everything
5178  * to user-space before waking everybody up.
5179  */
5180 
5181 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5182 {
5183 	/* only the parent has fasync state */
5184 	if (event->parent)
5185 		event = event->parent;
5186 	return &event->fasync;
5187 }
5188 
5189 void perf_event_wakeup(struct perf_event *event)
5190 {
5191 	ring_buffer_wakeup(event);
5192 
5193 	if (event->pending_kill) {
5194 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5195 		event->pending_kill = 0;
5196 	}
5197 }
5198 
5199 static void perf_pending_event(struct irq_work *entry)
5200 {
5201 	struct perf_event *event = container_of(entry,
5202 			struct perf_event, pending);
5203 	int rctx;
5204 
5205 	rctx = perf_swevent_get_recursion_context();
5206 	/*
5207 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5208 	 * and we won't recurse 'further'.
5209 	 */
5210 
5211 	if (event->pending_disable) {
5212 		event->pending_disable = 0;
5213 		perf_event_disable_local(event);
5214 	}
5215 
5216 	if (event->pending_wakeup) {
5217 		event->pending_wakeup = 0;
5218 		perf_event_wakeup(event);
5219 	}
5220 
5221 	if (rctx >= 0)
5222 		perf_swevent_put_recursion_context(rctx);
5223 }
5224 
5225 /*
5226  * We assume there is only KVM supporting the callbacks.
5227  * Later on, we might change it to a list if there is
5228  * another virtualization implementation supporting the callbacks.
5229  */
5230 struct perf_guest_info_callbacks *perf_guest_cbs;
5231 
5232 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5233 {
5234 	perf_guest_cbs = cbs;
5235 	return 0;
5236 }
5237 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5238 
5239 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5240 {
5241 	perf_guest_cbs = NULL;
5242 	return 0;
5243 }
5244 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5245 
5246 static void
5247 perf_output_sample_regs(struct perf_output_handle *handle,
5248 			struct pt_regs *regs, u64 mask)
5249 {
5250 	int bit;
5251 
5252 	for_each_set_bit(bit, (const unsigned long *) &mask,
5253 			 sizeof(mask) * BITS_PER_BYTE) {
5254 		u64 val;
5255 
5256 		val = perf_reg_value(regs, bit);
5257 		perf_output_put(handle, val);
5258 	}
5259 }
5260 
5261 static void perf_sample_regs_user(struct perf_regs *regs_user,
5262 				  struct pt_regs *regs,
5263 				  struct pt_regs *regs_user_copy)
5264 {
5265 	if (user_mode(regs)) {
5266 		regs_user->abi = perf_reg_abi(current);
5267 		regs_user->regs = regs;
5268 	} else if (current->mm) {
5269 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5270 	} else {
5271 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5272 		regs_user->regs = NULL;
5273 	}
5274 }
5275 
5276 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5277 				  struct pt_regs *regs)
5278 {
5279 	regs_intr->regs = regs;
5280 	regs_intr->abi  = perf_reg_abi(current);
5281 }
5282 
5283 
5284 /*
5285  * Get remaining task size from user stack pointer.
5286  *
5287  * It'd be better to take stack vma map and limit this more
5288  * precisly, but there's no way to get it safely under interrupt,
5289  * so using TASK_SIZE as limit.
5290  */
5291 static u64 perf_ustack_task_size(struct pt_regs *regs)
5292 {
5293 	unsigned long addr = perf_user_stack_pointer(regs);
5294 
5295 	if (!addr || addr >= TASK_SIZE)
5296 		return 0;
5297 
5298 	return TASK_SIZE - addr;
5299 }
5300 
5301 static u16
5302 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5303 			struct pt_regs *regs)
5304 {
5305 	u64 task_size;
5306 
5307 	/* No regs, no stack pointer, no dump. */
5308 	if (!regs)
5309 		return 0;
5310 
5311 	/*
5312 	 * Check if we fit in with the requested stack size into the:
5313 	 * - TASK_SIZE
5314 	 *   If we don't, we limit the size to the TASK_SIZE.
5315 	 *
5316 	 * - remaining sample size
5317 	 *   If we don't, we customize the stack size to
5318 	 *   fit in to the remaining sample size.
5319 	 */
5320 
5321 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5322 	stack_size = min(stack_size, (u16) task_size);
5323 
5324 	/* Current header size plus static size and dynamic size. */
5325 	header_size += 2 * sizeof(u64);
5326 
5327 	/* Do we fit in with the current stack dump size? */
5328 	if ((u16) (header_size + stack_size) < header_size) {
5329 		/*
5330 		 * If we overflow the maximum size for the sample,
5331 		 * we customize the stack dump size to fit in.
5332 		 */
5333 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5334 		stack_size = round_up(stack_size, sizeof(u64));
5335 	}
5336 
5337 	return stack_size;
5338 }
5339 
5340 static void
5341 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5342 			  struct pt_regs *regs)
5343 {
5344 	/* Case of a kernel thread, nothing to dump */
5345 	if (!regs) {
5346 		u64 size = 0;
5347 		perf_output_put(handle, size);
5348 	} else {
5349 		unsigned long sp;
5350 		unsigned int rem;
5351 		u64 dyn_size;
5352 
5353 		/*
5354 		 * We dump:
5355 		 * static size
5356 		 *   - the size requested by user or the best one we can fit
5357 		 *     in to the sample max size
5358 		 * data
5359 		 *   - user stack dump data
5360 		 * dynamic size
5361 		 *   - the actual dumped size
5362 		 */
5363 
5364 		/* Static size. */
5365 		perf_output_put(handle, dump_size);
5366 
5367 		/* Data. */
5368 		sp = perf_user_stack_pointer(regs);
5369 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5370 		dyn_size = dump_size - rem;
5371 
5372 		perf_output_skip(handle, rem);
5373 
5374 		/* Dynamic size. */
5375 		perf_output_put(handle, dyn_size);
5376 	}
5377 }
5378 
5379 static void __perf_event_header__init_id(struct perf_event_header *header,
5380 					 struct perf_sample_data *data,
5381 					 struct perf_event *event)
5382 {
5383 	u64 sample_type = event->attr.sample_type;
5384 
5385 	data->type = sample_type;
5386 	header->size += event->id_header_size;
5387 
5388 	if (sample_type & PERF_SAMPLE_TID) {
5389 		/* namespace issues */
5390 		data->tid_entry.pid = perf_event_pid(event, current);
5391 		data->tid_entry.tid = perf_event_tid(event, current);
5392 	}
5393 
5394 	if (sample_type & PERF_SAMPLE_TIME)
5395 		data->time = perf_event_clock(event);
5396 
5397 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5398 		data->id = primary_event_id(event);
5399 
5400 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5401 		data->stream_id = event->id;
5402 
5403 	if (sample_type & PERF_SAMPLE_CPU) {
5404 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5405 		data->cpu_entry.reserved = 0;
5406 	}
5407 }
5408 
5409 void perf_event_header__init_id(struct perf_event_header *header,
5410 				struct perf_sample_data *data,
5411 				struct perf_event *event)
5412 {
5413 	if (event->attr.sample_id_all)
5414 		__perf_event_header__init_id(header, data, event);
5415 }
5416 
5417 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5418 					   struct perf_sample_data *data)
5419 {
5420 	u64 sample_type = data->type;
5421 
5422 	if (sample_type & PERF_SAMPLE_TID)
5423 		perf_output_put(handle, data->tid_entry);
5424 
5425 	if (sample_type & PERF_SAMPLE_TIME)
5426 		perf_output_put(handle, data->time);
5427 
5428 	if (sample_type & PERF_SAMPLE_ID)
5429 		perf_output_put(handle, data->id);
5430 
5431 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5432 		perf_output_put(handle, data->stream_id);
5433 
5434 	if (sample_type & PERF_SAMPLE_CPU)
5435 		perf_output_put(handle, data->cpu_entry);
5436 
5437 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5438 		perf_output_put(handle, data->id);
5439 }
5440 
5441 void perf_event__output_id_sample(struct perf_event *event,
5442 				  struct perf_output_handle *handle,
5443 				  struct perf_sample_data *sample)
5444 {
5445 	if (event->attr.sample_id_all)
5446 		__perf_event__output_id_sample(handle, sample);
5447 }
5448 
5449 static void perf_output_read_one(struct perf_output_handle *handle,
5450 				 struct perf_event *event,
5451 				 u64 enabled, u64 running)
5452 {
5453 	u64 read_format = event->attr.read_format;
5454 	u64 values[4];
5455 	int n = 0;
5456 
5457 	values[n++] = perf_event_count(event);
5458 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5459 		values[n++] = enabled +
5460 			atomic64_read(&event->child_total_time_enabled);
5461 	}
5462 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5463 		values[n++] = running +
5464 			atomic64_read(&event->child_total_time_running);
5465 	}
5466 	if (read_format & PERF_FORMAT_ID)
5467 		values[n++] = primary_event_id(event);
5468 
5469 	__output_copy(handle, values, n * sizeof(u64));
5470 }
5471 
5472 /*
5473  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5474  */
5475 static void perf_output_read_group(struct perf_output_handle *handle,
5476 			    struct perf_event *event,
5477 			    u64 enabled, u64 running)
5478 {
5479 	struct perf_event *leader = event->group_leader, *sub;
5480 	u64 read_format = event->attr.read_format;
5481 	u64 values[5];
5482 	int n = 0;
5483 
5484 	values[n++] = 1 + leader->nr_siblings;
5485 
5486 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5487 		values[n++] = enabled;
5488 
5489 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5490 		values[n++] = running;
5491 
5492 	if (leader != event)
5493 		leader->pmu->read(leader);
5494 
5495 	values[n++] = perf_event_count(leader);
5496 	if (read_format & PERF_FORMAT_ID)
5497 		values[n++] = primary_event_id(leader);
5498 
5499 	__output_copy(handle, values, n * sizeof(u64));
5500 
5501 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5502 		n = 0;
5503 
5504 		if ((sub != event) &&
5505 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5506 			sub->pmu->read(sub);
5507 
5508 		values[n++] = perf_event_count(sub);
5509 		if (read_format & PERF_FORMAT_ID)
5510 			values[n++] = primary_event_id(sub);
5511 
5512 		__output_copy(handle, values, n * sizeof(u64));
5513 	}
5514 }
5515 
5516 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5517 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5518 
5519 static void perf_output_read(struct perf_output_handle *handle,
5520 			     struct perf_event *event)
5521 {
5522 	u64 enabled = 0, running = 0, now;
5523 	u64 read_format = event->attr.read_format;
5524 
5525 	/*
5526 	 * compute total_time_enabled, total_time_running
5527 	 * based on snapshot values taken when the event
5528 	 * was last scheduled in.
5529 	 *
5530 	 * we cannot simply called update_context_time()
5531 	 * because of locking issue as we are called in
5532 	 * NMI context
5533 	 */
5534 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5535 		calc_timer_values(event, &now, &enabled, &running);
5536 
5537 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5538 		perf_output_read_group(handle, event, enabled, running);
5539 	else
5540 		perf_output_read_one(handle, event, enabled, running);
5541 }
5542 
5543 void perf_output_sample(struct perf_output_handle *handle,
5544 			struct perf_event_header *header,
5545 			struct perf_sample_data *data,
5546 			struct perf_event *event)
5547 {
5548 	u64 sample_type = data->type;
5549 
5550 	perf_output_put(handle, *header);
5551 
5552 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5553 		perf_output_put(handle, data->id);
5554 
5555 	if (sample_type & PERF_SAMPLE_IP)
5556 		perf_output_put(handle, data->ip);
5557 
5558 	if (sample_type & PERF_SAMPLE_TID)
5559 		perf_output_put(handle, data->tid_entry);
5560 
5561 	if (sample_type & PERF_SAMPLE_TIME)
5562 		perf_output_put(handle, data->time);
5563 
5564 	if (sample_type & PERF_SAMPLE_ADDR)
5565 		perf_output_put(handle, data->addr);
5566 
5567 	if (sample_type & PERF_SAMPLE_ID)
5568 		perf_output_put(handle, data->id);
5569 
5570 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5571 		perf_output_put(handle, data->stream_id);
5572 
5573 	if (sample_type & PERF_SAMPLE_CPU)
5574 		perf_output_put(handle, data->cpu_entry);
5575 
5576 	if (sample_type & PERF_SAMPLE_PERIOD)
5577 		perf_output_put(handle, data->period);
5578 
5579 	if (sample_type & PERF_SAMPLE_READ)
5580 		perf_output_read(handle, event);
5581 
5582 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5583 		if (data->callchain) {
5584 			int size = 1;
5585 
5586 			if (data->callchain)
5587 				size += data->callchain->nr;
5588 
5589 			size *= sizeof(u64);
5590 
5591 			__output_copy(handle, data->callchain, size);
5592 		} else {
5593 			u64 nr = 0;
5594 			perf_output_put(handle, nr);
5595 		}
5596 	}
5597 
5598 	if (sample_type & PERF_SAMPLE_RAW) {
5599 		if (data->raw) {
5600 			u32 raw_size = data->raw->size;
5601 			u32 real_size = round_up(raw_size + sizeof(u32),
5602 						 sizeof(u64)) - sizeof(u32);
5603 			u64 zero = 0;
5604 
5605 			perf_output_put(handle, real_size);
5606 			__output_copy(handle, data->raw->data, raw_size);
5607 			if (real_size - raw_size)
5608 				__output_copy(handle, &zero, real_size - raw_size);
5609 		} else {
5610 			struct {
5611 				u32	size;
5612 				u32	data;
5613 			} raw = {
5614 				.size = sizeof(u32),
5615 				.data = 0,
5616 			};
5617 			perf_output_put(handle, raw);
5618 		}
5619 	}
5620 
5621 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5622 		if (data->br_stack) {
5623 			size_t size;
5624 
5625 			size = data->br_stack->nr
5626 			     * sizeof(struct perf_branch_entry);
5627 
5628 			perf_output_put(handle, data->br_stack->nr);
5629 			perf_output_copy(handle, data->br_stack->entries, size);
5630 		} else {
5631 			/*
5632 			 * we always store at least the value of nr
5633 			 */
5634 			u64 nr = 0;
5635 			perf_output_put(handle, nr);
5636 		}
5637 	}
5638 
5639 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5640 		u64 abi = data->regs_user.abi;
5641 
5642 		/*
5643 		 * If there are no regs to dump, notice it through
5644 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5645 		 */
5646 		perf_output_put(handle, abi);
5647 
5648 		if (abi) {
5649 			u64 mask = event->attr.sample_regs_user;
5650 			perf_output_sample_regs(handle,
5651 						data->regs_user.regs,
5652 						mask);
5653 		}
5654 	}
5655 
5656 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5657 		perf_output_sample_ustack(handle,
5658 					  data->stack_user_size,
5659 					  data->regs_user.regs);
5660 	}
5661 
5662 	if (sample_type & PERF_SAMPLE_WEIGHT)
5663 		perf_output_put(handle, data->weight);
5664 
5665 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5666 		perf_output_put(handle, data->data_src.val);
5667 
5668 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5669 		perf_output_put(handle, data->txn);
5670 
5671 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5672 		u64 abi = data->regs_intr.abi;
5673 		/*
5674 		 * If there are no regs to dump, notice it through
5675 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5676 		 */
5677 		perf_output_put(handle, abi);
5678 
5679 		if (abi) {
5680 			u64 mask = event->attr.sample_regs_intr;
5681 
5682 			perf_output_sample_regs(handle,
5683 						data->regs_intr.regs,
5684 						mask);
5685 		}
5686 	}
5687 
5688 	if (!event->attr.watermark) {
5689 		int wakeup_events = event->attr.wakeup_events;
5690 
5691 		if (wakeup_events) {
5692 			struct ring_buffer *rb = handle->rb;
5693 			int events = local_inc_return(&rb->events);
5694 
5695 			if (events >= wakeup_events) {
5696 				local_sub(wakeup_events, &rb->events);
5697 				local_inc(&rb->wakeup);
5698 			}
5699 		}
5700 	}
5701 }
5702 
5703 void perf_prepare_sample(struct perf_event_header *header,
5704 			 struct perf_sample_data *data,
5705 			 struct perf_event *event,
5706 			 struct pt_regs *regs)
5707 {
5708 	u64 sample_type = event->attr.sample_type;
5709 
5710 	header->type = PERF_RECORD_SAMPLE;
5711 	header->size = sizeof(*header) + event->header_size;
5712 
5713 	header->misc = 0;
5714 	header->misc |= perf_misc_flags(regs);
5715 
5716 	__perf_event_header__init_id(header, data, event);
5717 
5718 	if (sample_type & PERF_SAMPLE_IP)
5719 		data->ip = perf_instruction_pointer(regs);
5720 
5721 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5722 		int size = 1;
5723 
5724 		data->callchain = perf_callchain(event, regs);
5725 
5726 		if (data->callchain)
5727 			size += data->callchain->nr;
5728 
5729 		header->size += size * sizeof(u64);
5730 	}
5731 
5732 	if (sample_type & PERF_SAMPLE_RAW) {
5733 		int size = sizeof(u32);
5734 
5735 		if (data->raw)
5736 			size += data->raw->size;
5737 		else
5738 			size += sizeof(u32);
5739 
5740 		header->size += round_up(size, sizeof(u64));
5741 	}
5742 
5743 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5744 		int size = sizeof(u64); /* nr */
5745 		if (data->br_stack) {
5746 			size += data->br_stack->nr
5747 			      * sizeof(struct perf_branch_entry);
5748 		}
5749 		header->size += size;
5750 	}
5751 
5752 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5753 		perf_sample_regs_user(&data->regs_user, regs,
5754 				      &data->regs_user_copy);
5755 
5756 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5757 		/* regs dump ABI info */
5758 		int size = sizeof(u64);
5759 
5760 		if (data->regs_user.regs) {
5761 			u64 mask = event->attr.sample_regs_user;
5762 			size += hweight64(mask) * sizeof(u64);
5763 		}
5764 
5765 		header->size += size;
5766 	}
5767 
5768 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5769 		/*
5770 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5771 		 * processed as the last one or have additional check added
5772 		 * in case new sample type is added, because we could eat
5773 		 * up the rest of the sample size.
5774 		 */
5775 		u16 stack_size = event->attr.sample_stack_user;
5776 		u16 size = sizeof(u64);
5777 
5778 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5779 						     data->regs_user.regs);
5780 
5781 		/*
5782 		 * If there is something to dump, add space for the dump
5783 		 * itself and for the field that tells the dynamic size,
5784 		 * which is how many have been actually dumped.
5785 		 */
5786 		if (stack_size)
5787 			size += sizeof(u64) + stack_size;
5788 
5789 		data->stack_user_size = stack_size;
5790 		header->size += size;
5791 	}
5792 
5793 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5794 		/* regs dump ABI info */
5795 		int size = sizeof(u64);
5796 
5797 		perf_sample_regs_intr(&data->regs_intr, regs);
5798 
5799 		if (data->regs_intr.regs) {
5800 			u64 mask = event->attr.sample_regs_intr;
5801 
5802 			size += hweight64(mask) * sizeof(u64);
5803 		}
5804 
5805 		header->size += size;
5806 	}
5807 }
5808 
5809 static void __always_inline
5810 __perf_event_output(struct perf_event *event,
5811 		    struct perf_sample_data *data,
5812 		    struct pt_regs *regs,
5813 		    int (*output_begin)(struct perf_output_handle *,
5814 					struct perf_event *,
5815 					unsigned int))
5816 {
5817 	struct perf_output_handle handle;
5818 	struct perf_event_header header;
5819 
5820 	/* protect the callchain buffers */
5821 	rcu_read_lock();
5822 
5823 	perf_prepare_sample(&header, data, event, regs);
5824 
5825 	if (output_begin(&handle, event, header.size))
5826 		goto exit;
5827 
5828 	perf_output_sample(&handle, &header, data, event);
5829 
5830 	perf_output_end(&handle);
5831 
5832 exit:
5833 	rcu_read_unlock();
5834 }
5835 
5836 void
5837 perf_event_output_forward(struct perf_event *event,
5838 			 struct perf_sample_data *data,
5839 			 struct pt_regs *regs)
5840 {
5841 	__perf_event_output(event, data, regs, perf_output_begin_forward);
5842 }
5843 
5844 void
5845 perf_event_output_backward(struct perf_event *event,
5846 			   struct perf_sample_data *data,
5847 			   struct pt_regs *regs)
5848 {
5849 	__perf_event_output(event, data, regs, perf_output_begin_backward);
5850 }
5851 
5852 void
5853 perf_event_output(struct perf_event *event,
5854 		  struct perf_sample_data *data,
5855 		  struct pt_regs *regs)
5856 {
5857 	__perf_event_output(event, data, regs, perf_output_begin);
5858 }
5859 
5860 /*
5861  * read event_id
5862  */
5863 
5864 struct perf_read_event {
5865 	struct perf_event_header	header;
5866 
5867 	u32				pid;
5868 	u32				tid;
5869 };
5870 
5871 static void
5872 perf_event_read_event(struct perf_event *event,
5873 			struct task_struct *task)
5874 {
5875 	struct perf_output_handle handle;
5876 	struct perf_sample_data sample;
5877 	struct perf_read_event read_event = {
5878 		.header = {
5879 			.type = PERF_RECORD_READ,
5880 			.misc = 0,
5881 			.size = sizeof(read_event) + event->read_size,
5882 		},
5883 		.pid = perf_event_pid(event, task),
5884 		.tid = perf_event_tid(event, task),
5885 	};
5886 	int ret;
5887 
5888 	perf_event_header__init_id(&read_event.header, &sample, event);
5889 	ret = perf_output_begin(&handle, event, read_event.header.size);
5890 	if (ret)
5891 		return;
5892 
5893 	perf_output_put(&handle, read_event);
5894 	perf_output_read(&handle, event);
5895 	perf_event__output_id_sample(event, &handle, &sample);
5896 
5897 	perf_output_end(&handle);
5898 }
5899 
5900 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5901 
5902 static void
5903 perf_iterate_ctx(struct perf_event_context *ctx,
5904 		   perf_iterate_f output,
5905 		   void *data, bool all)
5906 {
5907 	struct perf_event *event;
5908 
5909 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5910 		if (!all) {
5911 			if (event->state < PERF_EVENT_STATE_INACTIVE)
5912 				continue;
5913 			if (!event_filter_match(event))
5914 				continue;
5915 		}
5916 
5917 		output(event, data);
5918 	}
5919 }
5920 
5921 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5922 {
5923 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5924 	struct perf_event *event;
5925 
5926 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
5927 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5928 			continue;
5929 		if (!event_filter_match(event))
5930 			continue;
5931 		output(event, data);
5932 	}
5933 }
5934 
5935 /*
5936  * Iterate all events that need to receive side-band events.
5937  *
5938  * For new callers; ensure that account_pmu_sb_event() includes
5939  * your event, otherwise it might not get delivered.
5940  */
5941 static void
5942 perf_iterate_sb(perf_iterate_f output, void *data,
5943 	       struct perf_event_context *task_ctx)
5944 {
5945 	struct perf_event_context *ctx;
5946 	int ctxn;
5947 
5948 	rcu_read_lock();
5949 	preempt_disable();
5950 
5951 	/*
5952 	 * If we have task_ctx != NULL we only notify the task context itself.
5953 	 * The task_ctx is set only for EXIT events before releasing task
5954 	 * context.
5955 	 */
5956 	if (task_ctx) {
5957 		perf_iterate_ctx(task_ctx, output, data, false);
5958 		goto done;
5959 	}
5960 
5961 	perf_iterate_sb_cpu(output, data);
5962 
5963 	for_each_task_context_nr(ctxn) {
5964 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5965 		if (ctx)
5966 			perf_iterate_ctx(ctx, output, data, false);
5967 	}
5968 done:
5969 	preempt_enable();
5970 	rcu_read_unlock();
5971 }
5972 
5973 /*
5974  * Clear all file-based filters at exec, they'll have to be
5975  * re-instated when/if these objects are mmapped again.
5976  */
5977 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5978 {
5979 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5980 	struct perf_addr_filter *filter;
5981 	unsigned int restart = 0, count = 0;
5982 	unsigned long flags;
5983 
5984 	if (!has_addr_filter(event))
5985 		return;
5986 
5987 	raw_spin_lock_irqsave(&ifh->lock, flags);
5988 	list_for_each_entry(filter, &ifh->list, entry) {
5989 		if (filter->inode) {
5990 			event->addr_filters_offs[count] = 0;
5991 			restart++;
5992 		}
5993 
5994 		count++;
5995 	}
5996 
5997 	if (restart)
5998 		event->addr_filters_gen++;
5999 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6000 
6001 	if (restart)
6002 		perf_event_restart(event);
6003 }
6004 
6005 void perf_event_exec(void)
6006 {
6007 	struct perf_event_context *ctx;
6008 	int ctxn;
6009 
6010 	rcu_read_lock();
6011 	for_each_task_context_nr(ctxn) {
6012 		ctx = current->perf_event_ctxp[ctxn];
6013 		if (!ctx)
6014 			continue;
6015 
6016 		perf_event_enable_on_exec(ctxn);
6017 
6018 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6019 				   true);
6020 	}
6021 	rcu_read_unlock();
6022 }
6023 
6024 struct remote_output {
6025 	struct ring_buffer	*rb;
6026 	int			err;
6027 };
6028 
6029 static void __perf_event_output_stop(struct perf_event *event, void *data)
6030 {
6031 	struct perf_event *parent = event->parent;
6032 	struct remote_output *ro = data;
6033 	struct ring_buffer *rb = ro->rb;
6034 	struct stop_event_data sd = {
6035 		.event	= event,
6036 	};
6037 
6038 	if (!has_aux(event))
6039 		return;
6040 
6041 	if (!parent)
6042 		parent = event;
6043 
6044 	/*
6045 	 * In case of inheritance, it will be the parent that links to the
6046 	 * ring-buffer, but it will be the child that's actually using it:
6047 	 */
6048 	if (rcu_dereference(parent->rb) == rb)
6049 		ro->err = __perf_event_stop(&sd);
6050 }
6051 
6052 static int __perf_pmu_output_stop(void *info)
6053 {
6054 	struct perf_event *event = info;
6055 	struct pmu *pmu = event->pmu;
6056 	struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6057 	struct remote_output ro = {
6058 		.rb	= event->rb,
6059 	};
6060 
6061 	rcu_read_lock();
6062 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6063 	if (cpuctx->task_ctx)
6064 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6065 				   &ro, false);
6066 	rcu_read_unlock();
6067 
6068 	return ro.err;
6069 }
6070 
6071 static void perf_pmu_output_stop(struct perf_event *event)
6072 {
6073 	struct perf_event *iter;
6074 	int err, cpu;
6075 
6076 restart:
6077 	rcu_read_lock();
6078 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6079 		/*
6080 		 * For per-CPU events, we need to make sure that neither they
6081 		 * nor their children are running; for cpu==-1 events it's
6082 		 * sufficient to stop the event itself if it's active, since
6083 		 * it can't have children.
6084 		 */
6085 		cpu = iter->cpu;
6086 		if (cpu == -1)
6087 			cpu = READ_ONCE(iter->oncpu);
6088 
6089 		if (cpu == -1)
6090 			continue;
6091 
6092 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6093 		if (err == -EAGAIN) {
6094 			rcu_read_unlock();
6095 			goto restart;
6096 		}
6097 	}
6098 	rcu_read_unlock();
6099 }
6100 
6101 /*
6102  * task tracking -- fork/exit
6103  *
6104  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6105  */
6106 
6107 struct perf_task_event {
6108 	struct task_struct		*task;
6109 	struct perf_event_context	*task_ctx;
6110 
6111 	struct {
6112 		struct perf_event_header	header;
6113 
6114 		u32				pid;
6115 		u32				ppid;
6116 		u32				tid;
6117 		u32				ptid;
6118 		u64				time;
6119 	} event_id;
6120 };
6121 
6122 static int perf_event_task_match(struct perf_event *event)
6123 {
6124 	return event->attr.comm  || event->attr.mmap ||
6125 	       event->attr.mmap2 || event->attr.mmap_data ||
6126 	       event->attr.task;
6127 }
6128 
6129 static void perf_event_task_output(struct perf_event *event,
6130 				   void *data)
6131 {
6132 	struct perf_task_event *task_event = data;
6133 	struct perf_output_handle handle;
6134 	struct perf_sample_data	sample;
6135 	struct task_struct *task = task_event->task;
6136 	int ret, size = task_event->event_id.header.size;
6137 
6138 	if (!perf_event_task_match(event))
6139 		return;
6140 
6141 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6142 
6143 	ret = perf_output_begin(&handle, event,
6144 				task_event->event_id.header.size);
6145 	if (ret)
6146 		goto out;
6147 
6148 	task_event->event_id.pid = perf_event_pid(event, task);
6149 	task_event->event_id.ppid = perf_event_pid(event, current);
6150 
6151 	task_event->event_id.tid = perf_event_tid(event, task);
6152 	task_event->event_id.ptid = perf_event_tid(event, current);
6153 
6154 	task_event->event_id.time = perf_event_clock(event);
6155 
6156 	perf_output_put(&handle, task_event->event_id);
6157 
6158 	perf_event__output_id_sample(event, &handle, &sample);
6159 
6160 	perf_output_end(&handle);
6161 out:
6162 	task_event->event_id.header.size = size;
6163 }
6164 
6165 static void perf_event_task(struct task_struct *task,
6166 			      struct perf_event_context *task_ctx,
6167 			      int new)
6168 {
6169 	struct perf_task_event task_event;
6170 
6171 	if (!atomic_read(&nr_comm_events) &&
6172 	    !atomic_read(&nr_mmap_events) &&
6173 	    !atomic_read(&nr_task_events))
6174 		return;
6175 
6176 	task_event = (struct perf_task_event){
6177 		.task	  = task,
6178 		.task_ctx = task_ctx,
6179 		.event_id    = {
6180 			.header = {
6181 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6182 				.misc = 0,
6183 				.size = sizeof(task_event.event_id),
6184 			},
6185 			/* .pid  */
6186 			/* .ppid */
6187 			/* .tid  */
6188 			/* .ptid */
6189 			/* .time */
6190 		},
6191 	};
6192 
6193 	perf_iterate_sb(perf_event_task_output,
6194 		       &task_event,
6195 		       task_ctx);
6196 }
6197 
6198 void perf_event_fork(struct task_struct *task)
6199 {
6200 	perf_event_task(task, NULL, 1);
6201 }
6202 
6203 /*
6204  * comm tracking
6205  */
6206 
6207 struct perf_comm_event {
6208 	struct task_struct	*task;
6209 	char			*comm;
6210 	int			comm_size;
6211 
6212 	struct {
6213 		struct perf_event_header	header;
6214 
6215 		u32				pid;
6216 		u32				tid;
6217 	} event_id;
6218 };
6219 
6220 static int perf_event_comm_match(struct perf_event *event)
6221 {
6222 	return event->attr.comm;
6223 }
6224 
6225 static void perf_event_comm_output(struct perf_event *event,
6226 				   void *data)
6227 {
6228 	struct perf_comm_event *comm_event = data;
6229 	struct perf_output_handle handle;
6230 	struct perf_sample_data sample;
6231 	int size = comm_event->event_id.header.size;
6232 	int ret;
6233 
6234 	if (!perf_event_comm_match(event))
6235 		return;
6236 
6237 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6238 	ret = perf_output_begin(&handle, event,
6239 				comm_event->event_id.header.size);
6240 
6241 	if (ret)
6242 		goto out;
6243 
6244 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6245 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6246 
6247 	perf_output_put(&handle, comm_event->event_id);
6248 	__output_copy(&handle, comm_event->comm,
6249 				   comm_event->comm_size);
6250 
6251 	perf_event__output_id_sample(event, &handle, &sample);
6252 
6253 	perf_output_end(&handle);
6254 out:
6255 	comm_event->event_id.header.size = size;
6256 }
6257 
6258 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6259 {
6260 	char comm[TASK_COMM_LEN];
6261 	unsigned int size;
6262 
6263 	memset(comm, 0, sizeof(comm));
6264 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6265 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6266 
6267 	comm_event->comm = comm;
6268 	comm_event->comm_size = size;
6269 
6270 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6271 
6272 	perf_iterate_sb(perf_event_comm_output,
6273 		       comm_event,
6274 		       NULL);
6275 }
6276 
6277 void perf_event_comm(struct task_struct *task, bool exec)
6278 {
6279 	struct perf_comm_event comm_event;
6280 
6281 	if (!atomic_read(&nr_comm_events))
6282 		return;
6283 
6284 	comm_event = (struct perf_comm_event){
6285 		.task	= task,
6286 		/* .comm      */
6287 		/* .comm_size */
6288 		.event_id  = {
6289 			.header = {
6290 				.type = PERF_RECORD_COMM,
6291 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6292 				/* .size */
6293 			},
6294 			/* .pid */
6295 			/* .tid */
6296 		},
6297 	};
6298 
6299 	perf_event_comm_event(&comm_event);
6300 }
6301 
6302 /*
6303  * mmap tracking
6304  */
6305 
6306 struct perf_mmap_event {
6307 	struct vm_area_struct	*vma;
6308 
6309 	const char		*file_name;
6310 	int			file_size;
6311 	int			maj, min;
6312 	u64			ino;
6313 	u64			ino_generation;
6314 	u32			prot, flags;
6315 
6316 	struct {
6317 		struct perf_event_header	header;
6318 
6319 		u32				pid;
6320 		u32				tid;
6321 		u64				start;
6322 		u64				len;
6323 		u64				pgoff;
6324 	} event_id;
6325 };
6326 
6327 static int perf_event_mmap_match(struct perf_event *event,
6328 				 void *data)
6329 {
6330 	struct perf_mmap_event *mmap_event = data;
6331 	struct vm_area_struct *vma = mmap_event->vma;
6332 	int executable = vma->vm_flags & VM_EXEC;
6333 
6334 	return (!executable && event->attr.mmap_data) ||
6335 	       (executable && (event->attr.mmap || event->attr.mmap2));
6336 }
6337 
6338 static void perf_event_mmap_output(struct perf_event *event,
6339 				   void *data)
6340 {
6341 	struct perf_mmap_event *mmap_event = data;
6342 	struct perf_output_handle handle;
6343 	struct perf_sample_data sample;
6344 	int size = mmap_event->event_id.header.size;
6345 	int ret;
6346 
6347 	if (!perf_event_mmap_match(event, data))
6348 		return;
6349 
6350 	if (event->attr.mmap2) {
6351 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6352 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6353 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6354 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6355 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6356 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6357 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6358 	}
6359 
6360 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6361 	ret = perf_output_begin(&handle, event,
6362 				mmap_event->event_id.header.size);
6363 	if (ret)
6364 		goto out;
6365 
6366 	mmap_event->event_id.pid = perf_event_pid(event, current);
6367 	mmap_event->event_id.tid = perf_event_tid(event, current);
6368 
6369 	perf_output_put(&handle, mmap_event->event_id);
6370 
6371 	if (event->attr.mmap2) {
6372 		perf_output_put(&handle, mmap_event->maj);
6373 		perf_output_put(&handle, mmap_event->min);
6374 		perf_output_put(&handle, mmap_event->ino);
6375 		perf_output_put(&handle, mmap_event->ino_generation);
6376 		perf_output_put(&handle, mmap_event->prot);
6377 		perf_output_put(&handle, mmap_event->flags);
6378 	}
6379 
6380 	__output_copy(&handle, mmap_event->file_name,
6381 				   mmap_event->file_size);
6382 
6383 	perf_event__output_id_sample(event, &handle, &sample);
6384 
6385 	perf_output_end(&handle);
6386 out:
6387 	mmap_event->event_id.header.size = size;
6388 }
6389 
6390 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6391 {
6392 	struct vm_area_struct *vma = mmap_event->vma;
6393 	struct file *file = vma->vm_file;
6394 	int maj = 0, min = 0;
6395 	u64 ino = 0, gen = 0;
6396 	u32 prot = 0, flags = 0;
6397 	unsigned int size;
6398 	char tmp[16];
6399 	char *buf = NULL;
6400 	char *name;
6401 
6402 	if (file) {
6403 		struct inode *inode;
6404 		dev_t dev;
6405 
6406 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6407 		if (!buf) {
6408 			name = "//enomem";
6409 			goto cpy_name;
6410 		}
6411 		/*
6412 		 * d_path() works from the end of the rb backwards, so we
6413 		 * need to add enough zero bytes after the string to handle
6414 		 * the 64bit alignment we do later.
6415 		 */
6416 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6417 		if (IS_ERR(name)) {
6418 			name = "//toolong";
6419 			goto cpy_name;
6420 		}
6421 		inode = file_inode(vma->vm_file);
6422 		dev = inode->i_sb->s_dev;
6423 		ino = inode->i_ino;
6424 		gen = inode->i_generation;
6425 		maj = MAJOR(dev);
6426 		min = MINOR(dev);
6427 
6428 		if (vma->vm_flags & VM_READ)
6429 			prot |= PROT_READ;
6430 		if (vma->vm_flags & VM_WRITE)
6431 			prot |= PROT_WRITE;
6432 		if (vma->vm_flags & VM_EXEC)
6433 			prot |= PROT_EXEC;
6434 
6435 		if (vma->vm_flags & VM_MAYSHARE)
6436 			flags = MAP_SHARED;
6437 		else
6438 			flags = MAP_PRIVATE;
6439 
6440 		if (vma->vm_flags & VM_DENYWRITE)
6441 			flags |= MAP_DENYWRITE;
6442 		if (vma->vm_flags & VM_MAYEXEC)
6443 			flags |= MAP_EXECUTABLE;
6444 		if (vma->vm_flags & VM_LOCKED)
6445 			flags |= MAP_LOCKED;
6446 		if (vma->vm_flags & VM_HUGETLB)
6447 			flags |= MAP_HUGETLB;
6448 
6449 		goto got_name;
6450 	} else {
6451 		if (vma->vm_ops && vma->vm_ops->name) {
6452 			name = (char *) vma->vm_ops->name(vma);
6453 			if (name)
6454 				goto cpy_name;
6455 		}
6456 
6457 		name = (char *)arch_vma_name(vma);
6458 		if (name)
6459 			goto cpy_name;
6460 
6461 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6462 				vma->vm_end >= vma->vm_mm->brk) {
6463 			name = "[heap]";
6464 			goto cpy_name;
6465 		}
6466 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6467 				vma->vm_end >= vma->vm_mm->start_stack) {
6468 			name = "[stack]";
6469 			goto cpy_name;
6470 		}
6471 
6472 		name = "//anon";
6473 		goto cpy_name;
6474 	}
6475 
6476 cpy_name:
6477 	strlcpy(tmp, name, sizeof(tmp));
6478 	name = tmp;
6479 got_name:
6480 	/*
6481 	 * Since our buffer works in 8 byte units we need to align our string
6482 	 * size to a multiple of 8. However, we must guarantee the tail end is
6483 	 * zero'd out to avoid leaking random bits to userspace.
6484 	 */
6485 	size = strlen(name)+1;
6486 	while (!IS_ALIGNED(size, sizeof(u64)))
6487 		name[size++] = '\0';
6488 
6489 	mmap_event->file_name = name;
6490 	mmap_event->file_size = size;
6491 	mmap_event->maj = maj;
6492 	mmap_event->min = min;
6493 	mmap_event->ino = ino;
6494 	mmap_event->ino_generation = gen;
6495 	mmap_event->prot = prot;
6496 	mmap_event->flags = flags;
6497 
6498 	if (!(vma->vm_flags & VM_EXEC))
6499 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6500 
6501 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6502 
6503 	perf_iterate_sb(perf_event_mmap_output,
6504 		       mmap_event,
6505 		       NULL);
6506 
6507 	kfree(buf);
6508 }
6509 
6510 /*
6511  * Whether this @filter depends on a dynamic object which is not loaded
6512  * yet or its load addresses are not known.
6513  */
6514 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6515 {
6516 	return filter->filter && filter->inode;
6517 }
6518 
6519 /*
6520  * Check whether inode and address range match filter criteria.
6521  */
6522 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6523 				     struct file *file, unsigned long offset,
6524 				     unsigned long size)
6525 {
6526 	if (filter->inode != file->f_inode)
6527 		return false;
6528 
6529 	if (filter->offset > offset + size)
6530 		return false;
6531 
6532 	if (filter->offset + filter->size < offset)
6533 		return false;
6534 
6535 	return true;
6536 }
6537 
6538 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6539 {
6540 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6541 	struct vm_area_struct *vma = data;
6542 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6543 	struct file *file = vma->vm_file;
6544 	struct perf_addr_filter *filter;
6545 	unsigned int restart = 0, count = 0;
6546 
6547 	if (!has_addr_filter(event))
6548 		return;
6549 
6550 	if (!file)
6551 		return;
6552 
6553 	raw_spin_lock_irqsave(&ifh->lock, flags);
6554 	list_for_each_entry(filter, &ifh->list, entry) {
6555 		if (perf_addr_filter_match(filter, file, off,
6556 					     vma->vm_end - vma->vm_start)) {
6557 			event->addr_filters_offs[count] = vma->vm_start;
6558 			restart++;
6559 		}
6560 
6561 		count++;
6562 	}
6563 
6564 	if (restart)
6565 		event->addr_filters_gen++;
6566 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6567 
6568 	if (restart)
6569 		perf_event_restart(event);
6570 }
6571 
6572 /*
6573  * Adjust all task's events' filters to the new vma
6574  */
6575 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6576 {
6577 	struct perf_event_context *ctx;
6578 	int ctxn;
6579 
6580 	rcu_read_lock();
6581 	for_each_task_context_nr(ctxn) {
6582 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6583 		if (!ctx)
6584 			continue;
6585 
6586 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6587 	}
6588 	rcu_read_unlock();
6589 }
6590 
6591 void perf_event_mmap(struct vm_area_struct *vma)
6592 {
6593 	struct perf_mmap_event mmap_event;
6594 
6595 	if (!atomic_read(&nr_mmap_events))
6596 		return;
6597 
6598 	mmap_event = (struct perf_mmap_event){
6599 		.vma	= vma,
6600 		/* .file_name */
6601 		/* .file_size */
6602 		.event_id  = {
6603 			.header = {
6604 				.type = PERF_RECORD_MMAP,
6605 				.misc = PERF_RECORD_MISC_USER,
6606 				/* .size */
6607 			},
6608 			/* .pid */
6609 			/* .tid */
6610 			.start  = vma->vm_start,
6611 			.len    = vma->vm_end - vma->vm_start,
6612 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6613 		},
6614 		/* .maj (attr_mmap2 only) */
6615 		/* .min (attr_mmap2 only) */
6616 		/* .ino (attr_mmap2 only) */
6617 		/* .ino_generation (attr_mmap2 only) */
6618 		/* .prot (attr_mmap2 only) */
6619 		/* .flags (attr_mmap2 only) */
6620 	};
6621 
6622 	perf_addr_filters_adjust(vma);
6623 	perf_event_mmap_event(&mmap_event);
6624 }
6625 
6626 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6627 			  unsigned long size, u64 flags)
6628 {
6629 	struct perf_output_handle handle;
6630 	struct perf_sample_data sample;
6631 	struct perf_aux_event {
6632 		struct perf_event_header	header;
6633 		u64				offset;
6634 		u64				size;
6635 		u64				flags;
6636 	} rec = {
6637 		.header = {
6638 			.type = PERF_RECORD_AUX,
6639 			.misc = 0,
6640 			.size = sizeof(rec),
6641 		},
6642 		.offset		= head,
6643 		.size		= size,
6644 		.flags		= flags,
6645 	};
6646 	int ret;
6647 
6648 	perf_event_header__init_id(&rec.header, &sample, event);
6649 	ret = perf_output_begin(&handle, event, rec.header.size);
6650 
6651 	if (ret)
6652 		return;
6653 
6654 	perf_output_put(&handle, rec);
6655 	perf_event__output_id_sample(event, &handle, &sample);
6656 
6657 	perf_output_end(&handle);
6658 }
6659 
6660 /*
6661  * Lost/dropped samples logging
6662  */
6663 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6664 {
6665 	struct perf_output_handle handle;
6666 	struct perf_sample_data sample;
6667 	int ret;
6668 
6669 	struct {
6670 		struct perf_event_header	header;
6671 		u64				lost;
6672 	} lost_samples_event = {
6673 		.header = {
6674 			.type = PERF_RECORD_LOST_SAMPLES,
6675 			.misc = 0,
6676 			.size = sizeof(lost_samples_event),
6677 		},
6678 		.lost		= lost,
6679 	};
6680 
6681 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6682 
6683 	ret = perf_output_begin(&handle, event,
6684 				lost_samples_event.header.size);
6685 	if (ret)
6686 		return;
6687 
6688 	perf_output_put(&handle, lost_samples_event);
6689 	perf_event__output_id_sample(event, &handle, &sample);
6690 	perf_output_end(&handle);
6691 }
6692 
6693 /*
6694  * context_switch tracking
6695  */
6696 
6697 struct perf_switch_event {
6698 	struct task_struct	*task;
6699 	struct task_struct	*next_prev;
6700 
6701 	struct {
6702 		struct perf_event_header	header;
6703 		u32				next_prev_pid;
6704 		u32				next_prev_tid;
6705 	} event_id;
6706 };
6707 
6708 static int perf_event_switch_match(struct perf_event *event)
6709 {
6710 	return event->attr.context_switch;
6711 }
6712 
6713 static void perf_event_switch_output(struct perf_event *event, void *data)
6714 {
6715 	struct perf_switch_event *se = data;
6716 	struct perf_output_handle handle;
6717 	struct perf_sample_data sample;
6718 	int ret;
6719 
6720 	if (!perf_event_switch_match(event))
6721 		return;
6722 
6723 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6724 	if (event->ctx->task) {
6725 		se->event_id.header.type = PERF_RECORD_SWITCH;
6726 		se->event_id.header.size = sizeof(se->event_id.header);
6727 	} else {
6728 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6729 		se->event_id.header.size = sizeof(se->event_id);
6730 		se->event_id.next_prev_pid =
6731 					perf_event_pid(event, se->next_prev);
6732 		se->event_id.next_prev_tid =
6733 					perf_event_tid(event, se->next_prev);
6734 	}
6735 
6736 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6737 
6738 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6739 	if (ret)
6740 		return;
6741 
6742 	if (event->ctx->task)
6743 		perf_output_put(&handle, se->event_id.header);
6744 	else
6745 		perf_output_put(&handle, se->event_id);
6746 
6747 	perf_event__output_id_sample(event, &handle, &sample);
6748 
6749 	perf_output_end(&handle);
6750 }
6751 
6752 static void perf_event_switch(struct task_struct *task,
6753 			      struct task_struct *next_prev, bool sched_in)
6754 {
6755 	struct perf_switch_event switch_event;
6756 
6757 	/* N.B. caller checks nr_switch_events != 0 */
6758 
6759 	switch_event = (struct perf_switch_event){
6760 		.task		= task,
6761 		.next_prev	= next_prev,
6762 		.event_id	= {
6763 			.header = {
6764 				/* .type */
6765 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6766 				/* .size */
6767 			},
6768 			/* .next_prev_pid */
6769 			/* .next_prev_tid */
6770 		},
6771 	};
6772 
6773 	perf_iterate_sb(perf_event_switch_output,
6774 		       &switch_event,
6775 		       NULL);
6776 }
6777 
6778 /*
6779  * IRQ throttle logging
6780  */
6781 
6782 static void perf_log_throttle(struct perf_event *event, int enable)
6783 {
6784 	struct perf_output_handle handle;
6785 	struct perf_sample_data sample;
6786 	int ret;
6787 
6788 	struct {
6789 		struct perf_event_header	header;
6790 		u64				time;
6791 		u64				id;
6792 		u64				stream_id;
6793 	} throttle_event = {
6794 		.header = {
6795 			.type = PERF_RECORD_THROTTLE,
6796 			.misc = 0,
6797 			.size = sizeof(throttle_event),
6798 		},
6799 		.time		= perf_event_clock(event),
6800 		.id		= primary_event_id(event),
6801 		.stream_id	= event->id,
6802 	};
6803 
6804 	if (enable)
6805 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6806 
6807 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6808 
6809 	ret = perf_output_begin(&handle, event,
6810 				throttle_event.header.size);
6811 	if (ret)
6812 		return;
6813 
6814 	perf_output_put(&handle, throttle_event);
6815 	perf_event__output_id_sample(event, &handle, &sample);
6816 	perf_output_end(&handle);
6817 }
6818 
6819 static void perf_log_itrace_start(struct perf_event *event)
6820 {
6821 	struct perf_output_handle handle;
6822 	struct perf_sample_data sample;
6823 	struct perf_aux_event {
6824 		struct perf_event_header        header;
6825 		u32				pid;
6826 		u32				tid;
6827 	} rec;
6828 	int ret;
6829 
6830 	if (event->parent)
6831 		event = event->parent;
6832 
6833 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6834 	    event->hw.itrace_started)
6835 		return;
6836 
6837 	rec.header.type	= PERF_RECORD_ITRACE_START;
6838 	rec.header.misc	= 0;
6839 	rec.header.size	= sizeof(rec);
6840 	rec.pid	= perf_event_pid(event, current);
6841 	rec.tid	= perf_event_tid(event, current);
6842 
6843 	perf_event_header__init_id(&rec.header, &sample, event);
6844 	ret = perf_output_begin(&handle, event, rec.header.size);
6845 
6846 	if (ret)
6847 		return;
6848 
6849 	perf_output_put(&handle, rec);
6850 	perf_event__output_id_sample(event, &handle, &sample);
6851 
6852 	perf_output_end(&handle);
6853 }
6854 
6855 /*
6856  * Generic event overflow handling, sampling.
6857  */
6858 
6859 static int __perf_event_overflow(struct perf_event *event,
6860 				   int throttle, struct perf_sample_data *data,
6861 				   struct pt_regs *regs)
6862 {
6863 	int events = atomic_read(&event->event_limit);
6864 	struct hw_perf_event *hwc = &event->hw;
6865 	u64 seq;
6866 	int ret = 0;
6867 
6868 	/*
6869 	 * Non-sampling counters might still use the PMI to fold short
6870 	 * hardware counters, ignore those.
6871 	 */
6872 	if (unlikely(!is_sampling_event(event)))
6873 		return 0;
6874 
6875 	seq = __this_cpu_read(perf_throttled_seq);
6876 	if (seq != hwc->interrupts_seq) {
6877 		hwc->interrupts_seq = seq;
6878 		hwc->interrupts = 1;
6879 	} else {
6880 		hwc->interrupts++;
6881 		if (unlikely(throttle
6882 			     && hwc->interrupts >= max_samples_per_tick)) {
6883 			__this_cpu_inc(perf_throttled_count);
6884 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6885 			hwc->interrupts = MAX_INTERRUPTS;
6886 			perf_log_throttle(event, 0);
6887 			ret = 1;
6888 		}
6889 	}
6890 
6891 	if (event->attr.freq) {
6892 		u64 now = perf_clock();
6893 		s64 delta = now - hwc->freq_time_stamp;
6894 
6895 		hwc->freq_time_stamp = now;
6896 
6897 		if (delta > 0 && delta < 2*TICK_NSEC)
6898 			perf_adjust_period(event, delta, hwc->last_period, true);
6899 	}
6900 
6901 	/*
6902 	 * XXX event_limit might not quite work as expected on inherited
6903 	 * events
6904 	 */
6905 
6906 	event->pending_kill = POLL_IN;
6907 	if (events && atomic_dec_and_test(&event->event_limit)) {
6908 		ret = 1;
6909 		event->pending_kill = POLL_HUP;
6910 		event->pending_disable = 1;
6911 		irq_work_queue(&event->pending);
6912 	}
6913 
6914 	event->overflow_handler(event, data, regs);
6915 
6916 	if (*perf_event_fasync(event) && event->pending_kill) {
6917 		event->pending_wakeup = 1;
6918 		irq_work_queue(&event->pending);
6919 	}
6920 
6921 	return ret;
6922 }
6923 
6924 int perf_event_overflow(struct perf_event *event,
6925 			  struct perf_sample_data *data,
6926 			  struct pt_regs *regs)
6927 {
6928 	return __perf_event_overflow(event, 1, data, regs);
6929 }
6930 
6931 /*
6932  * Generic software event infrastructure
6933  */
6934 
6935 struct swevent_htable {
6936 	struct swevent_hlist		*swevent_hlist;
6937 	struct mutex			hlist_mutex;
6938 	int				hlist_refcount;
6939 
6940 	/* Recursion avoidance in each contexts */
6941 	int				recursion[PERF_NR_CONTEXTS];
6942 };
6943 
6944 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6945 
6946 /*
6947  * We directly increment event->count and keep a second value in
6948  * event->hw.period_left to count intervals. This period event
6949  * is kept in the range [-sample_period, 0] so that we can use the
6950  * sign as trigger.
6951  */
6952 
6953 u64 perf_swevent_set_period(struct perf_event *event)
6954 {
6955 	struct hw_perf_event *hwc = &event->hw;
6956 	u64 period = hwc->last_period;
6957 	u64 nr, offset;
6958 	s64 old, val;
6959 
6960 	hwc->last_period = hwc->sample_period;
6961 
6962 again:
6963 	old = val = local64_read(&hwc->period_left);
6964 	if (val < 0)
6965 		return 0;
6966 
6967 	nr = div64_u64(period + val, period);
6968 	offset = nr * period;
6969 	val -= offset;
6970 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6971 		goto again;
6972 
6973 	return nr;
6974 }
6975 
6976 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6977 				    struct perf_sample_data *data,
6978 				    struct pt_regs *regs)
6979 {
6980 	struct hw_perf_event *hwc = &event->hw;
6981 	int throttle = 0;
6982 
6983 	if (!overflow)
6984 		overflow = perf_swevent_set_period(event);
6985 
6986 	if (hwc->interrupts == MAX_INTERRUPTS)
6987 		return;
6988 
6989 	for (; overflow; overflow--) {
6990 		if (__perf_event_overflow(event, throttle,
6991 					    data, regs)) {
6992 			/*
6993 			 * We inhibit the overflow from happening when
6994 			 * hwc->interrupts == MAX_INTERRUPTS.
6995 			 */
6996 			break;
6997 		}
6998 		throttle = 1;
6999 	}
7000 }
7001 
7002 static void perf_swevent_event(struct perf_event *event, u64 nr,
7003 			       struct perf_sample_data *data,
7004 			       struct pt_regs *regs)
7005 {
7006 	struct hw_perf_event *hwc = &event->hw;
7007 
7008 	local64_add(nr, &event->count);
7009 
7010 	if (!regs)
7011 		return;
7012 
7013 	if (!is_sampling_event(event))
7014 		return;
7015 
7016 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7017 		data->period = nr;
7018 		return perf_swevent_overflow(event, 1, data, regs);
7019 	} else
7020 		data->period = event->hw.last_period;
7021 
7022 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7023 		return perf_swevent_overflow(event, 1, data, regs);
7024 
7025 	if (local64_add_negative(nr, &hwc->period_left))
7026 		return;
7027 
7028 	perf_swevent_overflow(event, 0, data, regs);
7029 }
7030 
7031 static int perf_exclude_event(struct perf_event *event,
7032 			      struct pt_regs *regs)
7033 {
7034 	if (event->hw.state & PERF_HES_STOPPED)
7035 		return 1;
7036 
7037 	if (regs) {
7038 		if (event->attr.exclude_user && user_mode(regs))
7039 			return 1;
7040 
7041 		if (event->attr.exclude_kernel && !user_mode(regs))
7042 			return 1;
7043 	}
7044 
7045 	return 0;
7046 }
7047 
7048 static int perf_swevent_match(struct perf_event *event,
7049 				enum perf_type_id type,
7050 				u32 event_id,
7051 				struct perf_sample_data *data,
7052 				struct pt_regs *regs)
7053 {
7054 	if (event->attr.type != type)
7055 		return 0;
7056 
7057 	if (event->attr.config != event_id)
7058 		return 0;
7059 
7060 	if (perf_exclude_event(event, regs))
7061 		return 0;
7062 
7063 	return 1;
7064 }
7065 
7066 static inline u64 swevent_hash(u64 type, u32 event_id)
7067 {
7068 	u64 val = event_id | (type << 32);
7069 
7070 	return hash_64(val, SWEVENT_HLIST_BITS);
7071 }
7072 
7073 static inline struct hlist_head *
7074 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7075 {
7076 	u64 hash = swevent_hash(type, event_id);
7077 
7078 	return &hlist->heads[hash];
7079 }
7080 
7081 /* For the read side: events when they trigger */
7082 static inline struct hlist_head *
7083 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7084 {
7085 	struct swevent_hlist *hlist;
7086 
7087 	hlist = rcu_dereference(swhash->swevent_hlist);
7088 	if (!hlist)
7089 		return NULL;
7090 
7091 	return __find_swevent_head(hlist, type, event_id);
7092 }
7093 
7094 /* For the event head insertion and removal in the hlist */
7095 static inline struct hlist_head *
7096 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7097 {
7098 	struct swevent_hlist *hlist;
7099 	u32 event_id = event->attr.config;
7100 	u64 type = event->attr.type;
7101 
7102 	/*
7103 	 * Event scheduling is always serialized against hlist allocation
7104 	 * and release. Which makes the protected version suitable here.
7105 	 * The context lock guarantees that.
7106 	 */
7107 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7108 					  lockdep_is_held(&event->ctx->lock));
7109 	if (!hlist)
7110 		return NULL;
7111 
7112 	return __find_swevent_head(hlist, type, event_id);
7113 }
7114 
7115 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7116 				    u64 nr,
7117 				    struct perf_sample_data *data,
7118 				    struct pt_regs *regs)
7119 {
7120 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7121 	struct perf_event *event;
7122 	struct hlist_head *head;
7123 
7124 	rcu_read_lock();
7125 	head = find_swevent_head_rcu(swhash, type, event_id);
7126 	if (!head)
7127 		goto end;
7128 
7129 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7130 		if (perf_swevent_match(event, type, event_id, data, regs))
7131 			perf_swevent_event(event, nr, data, regs);
7132 	}
7133 end:
7134 	rcu_read_unlock();
7135 }
7136 
7137 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7138 
7139 int perf_swevent_get_recursion_context(void)
7140 {
7141 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7142 
7143 	return get_recursion_context(swhash->recursion);
7144 }
7145 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7146 
7147 void perf_swevent_put_recursion_context(int rctx)
7148 {
7149 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7150 
7151 	put_recursion_context(swhash->recursion, rctx);
7152 }
7153 
7154 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7155 {
7156 	struct perf_sample_data data;
7157 
7158 	if (WARN_ON_ONCE(!regs))
7159 		return;
7160 
7161 	perf_sample_data_init(&data, addr, 0);
7162 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7163 }
7164 
7165 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7166 {
7167 	int rctx;
7168 
7169 	preempt_disable_notrace();
7170 	rctx = perf_swevent_get_recursion_context();
7171 	if (unlikely(rctx < 0))
7172 		goto fail;
7173 
7174 	___perf_sw_event(event_id, nr, regs, addr);
7175 
7176 	perf_swevent_put_recursion_context(rctx);
7177 fail:
7178 	preempt_enable_notrace();
7179 }
7180 
7181 static void perf_swevent_read(struct perf_event *event)
7182 {
7183 }
7184 
7185 static int perf_swevent_add(struct perf_event *event, int flags)
7186 {
7187 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7188 	struct hw_perf_event *hwc = &event->hw;
7189 	struct hlist_head *head;
7190 
7191 	if (is_sampling_event(event)) {
7192 		hwc->last_period = hwc->sample_period;
7193 		perf_swevent_set_period(event);
7194 	}
7195 
7196 	hwc->state = !(flags & PERF_EF_START);
7197 
7198 	head = find_swevent_head(swhash, event);
7199 	if (WARN_ON_ONCE(!head))
7200 		return -EINVAL;
7201 
7202 	hlist_add_head_rcu(&event->hlist_entry, head);
7203 	perf_event_update_userpage(event);
7204 
7205 	return 0;
7206 }
7207 
7208 static void perf_swevent_del(struct perf_event *event, int flags)
7209 {
7210 	hlist_del_rcu(&event->hlist_entry);
7211 }
7212 
7213 static void perf_swevent_start(struct perf_event *event, int flags)
7214 {
7215 	event->hw.state = 0;
7216 }
7217 
7218 static void perf_swevent_stop(struct perf_event *event, int flags)
7219 {
7220 	event->hw.state = PERF_HES_STOPPED;
7221 }
7222 
7223 /* Deref the hlist from the update side */
7224 static inline struct swevent_hlist *
7225 swevent_hlist_deref(struct swevent_htable *swhash)
7226 {
7227 	return rcu_dereference_protected(swhash->swevent_hlist,
7228 					 lockdep_is_held(&swhash->hlist_mutex));
7229 }
7230 
7231 static void swevent_hlist_release(struct swevent_htable *swhash)
7232 {
7233 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7234 
7235 	if (!hlist)
7236 		return;
7237 
7238 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7239 	kfree_rcu(hlist, rcu_head);
7240 }
7241 
7242 static void swevent_hlist_put_cpu(int cpu)
7243 {
7244 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7245 
7246 	mutex_lock(&swhash->hlist_mutex);
7247 
7248 	if (!--swhash->hlist_refcount)
7249 		swevent_hlist_release(swhash);
7250 
7251 	mutex_unlock(&swhash->hlist_mutex);
7252 }
7253 
7254 static void swevent_hlist_put(void)
7255 {
7256 	int cpu;
7257 
7258 	for_each_possible_cpu(cpu)
7259 		swevent_hlist_put_cpu(cpu);
7260 }
7261 
7262 static int swevent_hlist_get_cpu(int cpu)
7263 {
7264 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7265 	int err = 0;
7266 
7267 	mutex_lock(&swhash->hlist_mutex);
7268 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7269 		struct swevent_hlist *hlist;
7270 
7271 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7272 		if (!hlist) {
7273 			err = -ENOMEM;
7274 			goto exit;
7275 		}
7276 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7277 	}
7278 	swhash->hlist_refcount++;
7279 exit:
7280 	mutex_unlock(&swhash->hlist_mutex);
7281 
7282 	return err;
7283 }
7284 
7285 static int swevent_hlist_get(void)
7286 {
7287 	int err, cpu, failed_cpu;
7288 
7289 	get_online_cpus();
7290 	for_each_possible_cpu(cpu) {
7291 		err = swevent_hlist_get_cpu(cpu);
7292 		if (err) {
7293 			failed_cpu = cpu;
7294 			goto fail;
7295 		}
7296 	}
7297 	put_online_cpus();
7298 
7299 	return 0;
7300 fail:
7301 	for_each_possible_cpu(cpu) {
7302 		if (cpu == failed_cpu)
7303 			break;
7304 		swevent_hlist_put_cpu(cpu);
7305 	}
7306 
7307 	put_online_cpus();
7308 	return err;
7309 }
7310 
7311 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7312 
7313 static void sw_perf_event_destroy(struct perf_event *event)
7314 {
7315 	u64 event_id = event->attr.config;
7316 
7317 	WARN_ON(event->parent);
7318 
7319 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7320 	swevent_hlist_put();
7321 }
7322 
7323 static int perf_swevent_init(struct perf_event *event)
7324 {
7325 	u64 event_id = event->attr.config;
7326 
7327 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7328 		return -ENOENT;
7329 
7330 	/*
7331 	 * no branch sampling for software events
7332 	 */
7333 	if (has_branch_stack(event))
7334 		return -EOPNOTSUPP;
7335 
7336 	switch (event_id) {
7337 	case PERF_COUNT_SW_CPU_CLOCK:
7338 	case PERF_COUNT_SW_TASK_CLOCK:
7339 		return -ENOENT;
7340 
7341 	default:
7342 		break;
7343 	}
7344 
7345 	if (event_id >= PERF_COUNT_SW_MAX)
7346 		return -ENOENT;
7347 
7348 	if (!event->parent) {
7349 		int err;
7350 
7351 		err = swevent_hlist_get();
7352 		if (err)
7353 			return err;
7354 
7355 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7356 		event->destroy = sw_perf_event_destroy;
7357 	}
7358 
7359 	return 0;
7360 }
7361 
7362 static struct pmu perf_swevent = {
7363 	.task_ctx_nr	= perf_sw_context,
7364 
7365 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7366 
7367 	.event_init	= perf_swevent_init,
7368 	.add		= perf_swevent_add,
7369 	.del		= perf_swevent_del,
7370 	.start		= perf_swevent_start,
7371 	.stop		= perf_swevent_stop,
7372 	.read		= perf_swevent_read,
7373 };
7374 
7375 #ifdef CONFIG_EVENT_TRACING
7376 
7377 static int perf_tp_filter_match(struct perf_event *event,
7378 				struct perf_sample_data *data)
7379 {
7380 	void *record = data->raw->data;
7381 
7382 	/* only top level events have filters set */
7383 	if (event->parent)
7384 		event = event->parent;
7385 
7386 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7387 		return 1;
7388 	return 0;
7389 }
7390 
7391 static int perf_tp_event_match(struct perf_event *event,
7392 				struct perf_sample_data *data,
7393 				struct pt_regs *regs)
7394 {
7395 	if (event->hw.state & PERF_HES_STOPPED)
7396 		return 0;
7397 	/*
7398 	 * All tracepoints are from kernel-space.
7399 	 */
7400 	if (event->attr.exclude_kernel)
7401 		return 0;
7402 
7403 	if (!perf_tp_filter_match(event, data))
7404 		return 0;
7405 
7406 	return 1;
7407 }
7408 
7409 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7410 			       struct trace_event_call *call, u64 count,
7411 			       struct pt_regs *regs, struct hlist_head *head,
7412 			       struct task_struct *task)
7413 {
7414 	struct bpf_prog *prog = call->prog;
7415 
7416 	if (prog) {
7417 		*(struct pt_regs **)raw_data = regs;
7418 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7419 			perf_swevent_put_recursion_context(rctx);
7420 			return;
7421 		}
7422 	}
7423 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7424 		      rctx, task);
7425 }
7426 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7427 
7428 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7429 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7430 		   struct task_struct *task)
7431 {
7432 	struct perf_sample_data data;
7433 	struct perf_event *event;
7434 
7435 	struct perf_raw_record raw = {
7436 		.size = entry_size,
7437 		.data = record,
7438 	};
7439 
7440 	perf_sample_data_init(&data, 0, 0);
7441 	data.raw = &raw;
7442 
7443 	perf_trace_buf_update(record, event_type);
7444 
7445 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7446 		if (perf_tp_event_match(event, &data, regs))
7447 			perf_swevent_event(event, count, &data, regs);
7448 	}
7449 
7450 	/*
7451 	 * If we got specified a target task, also iterate its context and
7452 	 * deliver this event there too.
7453 	 */
7454 	if (task && task != current) {
7455 		struct perf_event_context *ctx;
7456 		struct trace_entry *entry = record;
7457 
7458 		rcu_read_lock();
7459 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7460 		if (!ctx)
7461 			goto unlock;
7462 
7463 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7464 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7465 				continue;
7466 			if (event->attr.config != entry->type)
7467 				continue;
7468 			if (perf_tp_event_match(event, &data, regs))
7469 				perf_swevent_event(event, count, &data, regs);
7470 		}
7471 unlock:
7472 		rcu_read_unlock();
7473 	}
7474 
7475 	perf_swevent_put_recursion_context(rctx);
7476 }
7477 EXPORT_SYMBOL_GPL(perf_tp_event);
7478 
7479 static void tp_perf_event_destroy(struct perf_event *event)
7480 {
7481 	perf_trace_destroy(event);
7482 }
7483 
7484 static int perf_tp_event_init(struct perf_event *event)
7485 {
7486 	int err;
7487 
7488 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7489 		return -ENOENT;
7490 
7491 	/*
7492 	 * no branch sampling for tracepoint events
7493 	 */
7494 	if (has_branch_stack(event))
7495 		return -EOPNOTSUPP;
7496 
7497 	err = perf_trace_init(event);
7498 	if (err)
7499 		return err;
7500 
7501 	event->destroy = tp_perf_event_destroy;
7502 
7503 	return 0;
7504 }
7505 
7506 static struct pmu perf_tracepoint = {
7507 	.task_ctx_nr	= perf_sw_context,
7508 
7509 	.event_init	= perf_tp_event_init,
7510 	.add		= perf_trace_add,
7511 	.del		= perf_trace_del,
7512 	.start		= perf_swevent_start,
7513 	.stop		= perf_swevent_stop,
7514 	.read		= perf_swevent_read,
7515 };
7516 
7517 static inline void perf_tp_register(void)
7518 {
7519 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7520 }
7521 
7522 static void perf_event_free_filter(struct perf_event *event)
7523 {
7524 	ftrace_profile_free_filter(event);
7525 }
7526 
7527 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7528 {
7529 	bool is_kprobe, is_tracepoint;
7530 	struct bpf_prog *prog;
7531 
7532 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7533 		return -EINVAL;
7534 
7535 	if (event->tp_event->prog)
7536 		return -EEXIST;
7537 
7538 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7539 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7540 	if (!is_kprobe && !is_tracepoint)
7541 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7542 		return -EINVAL;
7543 
7544 	prog = bpf_prog_get(prog_fd);
7545 	if (IS_ERR(prog))
7546 		return PTR_ERR(prog);
7547 
7548 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7549 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7550 		/* valid fd, but invalid bpf program type */
7551 		bpf_prog_put(prog);
7552 		return -EINVAL;
7553 	}
7554 
7555 	if (is_tracepoint) {
7556 		int off = trace_event_get_offsets(event->tp_event);
7557 
7558 		if (prog->aux->max_ctx_offset > off) {
7559 			bpf_prog_put(prog);
7560 			return -EACCES;
7561 		}
7562 	}
7563 	event->tp_event->prog = prog;
7564 
7565 	return 0;
7566 }
7567 
7568 static void perf_event_free_bpf_prog(struct perf_event *event)
7569 {
7570 	struct bpf_prog *prog;
7571 
7572 	if (!event->tp_event)
7573 		return;
7574 
7575 	prog = event->tp_event->prog;
7576 	if (prog) {
7577 		event->tp_event->prog = NULL;
7578 		bpf_prog_put(prog);
7579 	}
7580 }
7581 
7582 #else
7583 
7584 static inline void perf_tp_register(void)
7585 {
7586 }
7587 
7588 static void perf_event_free_filter(struct perf_event *event)
7589 {
7590 }
7591 
7592 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7593 {
7594 	return -ENOENT;
7595 }
7596 
7597 static void perf_event_free_bpf_prog(struct perf_event *event)
7598 {
7599 }
7600 #endif /* CONFIG_EVENT_TRACING */
7601 
7602 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7603 void perf_bp_event(struct perf_event *bp, void *data)
7604 {
7605 	struct perf_sample_data sample;
7606 	struct pt_regs *regs = data;
7607 
7608 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7609 
7610 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7611 		perf_swevent_event(bp, 1, &sample, regs);
7612 }
7613 #endif
7614 
7615 /*
7616  * Allocate a new address filter
7617  */
7618 static struct perf_addr_filter *
7619 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7620 {
7621 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7622 	struct perf_addr_filter *filter;
7623 
7624 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7625 	if (!filter)
7626 		return NULL;
7627 
7628 	INIT_LIST_HEAD(&filter->entry);
7629 	list_add_tail(&filter->entry, filters);
7630 
7631 	return filter;
7632 }
7633 
7634 static void free_filters_list(struct list_head *filters)
7635 {
7636 	struct perf_addr_filter *filter, *iter;
7637 
7638 	list_for_each_entry_safe(filter, iter, filters, entry) {
7639 		if (filter->inode)
7640 			iput(filter->inode);
7641 		list_del(&filter->entry);
7642 		kfree(filter);
7643 	}
7644 }
7645 
7646 /*
7647  * Free existing address filters and optionally install new ones
7648  */
7649 static void perf_addr_filters_splice(struct perf_event *event,
7650 				     struct list_head *head)
7651 {
7652 	unsigned long flags;
7653 	LIST_HEAD(list);
7654 
7655 	if (!has_addr_filter(event))
7656 		return;
7657 
7658 	/* don't bother with children, they don't have their own filters */
7659 	if (event->parent)
7660 		return;
7661 
7662 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7663 
7664 	list_splice_init(&event->addr_filters.list, &list);
7665 	if (head)
7666 		list_splice(head, &event->addr_filters.list);
7667 
7668 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7669 
7670 	free_filters_list(&list);
7671 }
7672 
7673 /*
7674  * Scan through mm's vmas and see if one of them matches the
7675  * @filter; if so, adjust filter's address range.
7676  * Called with mm::mmap_sem down for reading.
7677  */
7678 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7679 					    struct mm_struct *mm)
7680 {
7681 	struct vm_area_struct *vma;
7682 
7683 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7684 		struct file *file = vma->vm_file;
7685 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7686 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7687 
7688 		if (!file)
7689 			continue;
7690 
7691 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7692 			continue;
7693 
7694 		return vma->vm_start;
7695 	}
7696 
7697 	return 0;
7698 }
7699 
7700 /*
7701  * Update event's address range filters based on the
7702  * task's existing mappings, if any.
7703  */
7704 static void perf_event_addr_filters_apply(struct perf_event *event)
7705 {
7706 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7707 	struct task_struct *task = READ_ONCE(event->ctx->task);
7708 	struct perf_addr_filter *filter;
7709 	struct mm_struct *mm = NULL;
7710 	unsigned int count = 0;
7711 	unsigned long flags;
7712 
7713 	/*
7714 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7715 	 * will stop on the parent's child_mutex that our caller is also holding
7716 	 */
7717 	if (task == TASK_TOMBSTONE)
7718 		return;
7719 
7720 	mm = get_task_mm(event->ctx->task);
7721 	if (!mm)
7722 		goto restart;
7723 
7724 	down_read(&mm->mmap_sem);
7725 
7726 	raw_spin_lock_irqsave(&ifh->lock, flags);
7727 	list_for_each_entry(filter, &ifh->list, entry) {
7728 		event->addr_filters_offs[count] = 0;
7729 
7730 		if (perf_addr_filter_needs_mmap(filter))
7731 			event->addr_filters_offs[count] =
7732 				perf_addr_filter_apply(filter, mm);
7733 
7734 		count++;
7735 	}
7736 
7737 	event->addr_filters_gen++;
7738 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7739 
7740 	up_read(&mm->mmap_sem);
7741 
7742 	mmput(mm);
7743 
7744 restart:
7745 	perf_event_restart(event);
7746 }
7747 
7748 /*
7749  * Address range filtering: limiting the data to certain
7750  * instruction address ranges. Filters are ioctl()ed to us from
7751  * userspace as ascii strings.
7752  *
7753  * Filter string format:
7754  *
7755  * ACTION RANGE_SPEC
7756  * where ACTION is one of the
7757  *  * "filter": limit the trace to this region
7758  *  * "start": start tracing from this address
7759  *  * "stop": stop tracing at this address/region;
7760  * RANGE_SPEC is
7761  *  * for kernel addresses: <start address>[/<size>]
7762  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7763  *
7764  * if <size> is not specified, the range is treated as a single address.
7765  */
7766 enum {
7767 	IF_ACT_FILTER,
7768 	IF_ACT_START,
7769 	IF_ACT_STOP,
7770 	IF_SRC_FILE,
7771 	IF_SRC_KERNEL,
7772 	IF_SRC_FILEADDR,
7773 	IF_SRC_KERNELADDR,
7774 };
7775 
7776 enum {
7777 	IF_STATE_ACTION = 0,
7778 	IF_STATE_SOURCE,
7779 	IF_STATE_END,
7780 };
7781 
7782 static const match_table_t if_tokens = {
7783 	{ IF_ACT_FILTER,	"filter" },
7784 	{ IF_ACT_START,		"start" },
7785 	{ IF_ACT_STOP,		"stop" },
7786 	{ IF_SRC_FILE,		"%u/%u@%s" },
7787 	{ IF_SRC_KERNEL,	"%u/%u" },
7788 	{ IF_SRC_FILEADDR,	"%u@%s" },
7789 	{ IF_SRC_KERNELADDR,	"%u" },
7790 };
7791 
7792 /*
7793  * Address filter string parser
7794  */
7795 static int
7796 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7797 			     struct list_head *filters)
7798 {
7799 	struct perf_addr_filter *filter = NULL;
7800 	char *start, *orig, *filename = NULL;
7801 	struct path path;
7802 	substring_t args[MAX_OPT_ARGS];
7803 	int state = IF_STATE_ACTION, token;
7804 	unsigned int kernel = 0;
7805 	int ret = -EINVAL;
7806 
7807 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
7808 	if (!fstr)
7809 		return -ENOMEM;
7810 
7811 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
7812 		ret = -EINVAL;
7813 
7814 		if (!*start)
7815 			continue;
7816 
7817 		/* filter definition begins */
7818 		if (state == IF_STATE_ACTION) {
7819 			filter = perf_addr_filter_new(event, filters);
7820 			if (!filter)
7821 				goto fail;
7822 		}
7823 
7824 		token = match_token(start, if_tokens, args);
7825 		switch (token) {
7826 		case IF_ACT_FILTER:
7827 		case IF_ACT_START:
7828 			filter->filter = 1;
7829 
7830 		case IF_ACT_STOP:
7831 			if (state != IF_STATE_ACTION)
7832 				goto fail;
7833 
7834 			state = IF_STATE_SOURCE;
7835 			break;
7836 
7837 		case IF_SRC_KERNELADDR:
7838 		case IF_SRC_KERNEL:
7839 			kernel = 1;
7840 
7841 		case IF_SRC_FILEADDR:
7842 		case IF_SRC_FILE:
7843 			if (state != IF_STATE_SOURCE)
7844 				goto fail;
7845 
7846 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7847 				filter->range = 1;
7848 
7849 			*args[0].to = 0;
7850 			ret = kstrtoul(args[0].from, 0, &filter->offset);
7851 			if (ret)
7852 				goto fail;
7853 
7854 			if (filter->range) {
7855 				*args[1].to = 0;
7856 				ret = kstrtoul(args[1].from, 0, &filter->size);
7857 				if (ret)
7858 					goto fail;
7859 			}
7860 
7861 			if (token == IF_SRC_FILE) {
7862 				filename = match_strdup(&args[2]);
7863 				if (!filename) {
7864 					ret = -ENOMEM;
7865 					goto fail;
7866 				}
7867 			}
7868 
7869 			state = IF_STATE_END;
7870 			break;
7871 
7872 		default:
7873 			goto fail;
7874 		}
7875 
7876 		/*
7877 		 * Filter definition is fully parsed, validate and install it.
7878 		 * Make sure that it doesn't contradict itself or the event's
7879 		 * attribute.
7880 		 */
7881 		if (state == IF_STATE_END) {
7882 			if (kernel && event->attr.exclude_kernel)
7883 				goto fail;
7884 
7885 			if (!kernel) {
7886 				if (!filename)
7887 					goto fail;
7888 
7889 				/* look up the path and grab its inode */
7890 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7891 				if (ret)
7892 					goto fail_free_name;
7893 
7894 				filter->inode = igrab(d_inode(path.dentry));
7895 				path_put(&path);
7896 				kfree(filename);
7897 				filename = NULL;
7898 
7899 				ret = -EINVAL;
7900 				if (!filter->inode ||
7901 				    !S_ISREG(filter->inode->i_mode))
7902 					/* free_filters_list() will iput() */
7903 					goto fail;
7904 			}
7905 
7906 			/* ready to consume more filters */
7907 			state = IF_STATE_ACTION;
7908 			filter = NULL;
7909 		}
7910 	}
7911 
7912 	if (state != IF_STATE_ACTION)
7913 		goto fail;
7914 
7915 	kfree(orig);
7916 
7917 	return 0;
7918 
7919 fail_free_name:
7920 	kfree(filename);
7921 fail:
7922 	free_filters_list(filters);
7923 	kfree(orig);
7924 
7925 	return ret;
7926 }
7927 
7928 static int
7929 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7930 {
7931 	LIST_HEAD(filters);
7932 	int ret;
7933 
7934 	/*
7935 	 * Since this is called in perf_ioctl() path, we're already holding
7936 	 * ctx::mutex.
7937 	 */
7938 	lockdep_assert_held(&event->ctx->mutex);
7939 
7940 	if (WARN_ON_ONCE(event->parent))
7941 		return -EINVAL;
7942 
7943 	/*
7944 	 * For now, we only support filtering in per-task events; doing so
7945 	 * for CPU-wide events requires additional context switching trickery,
7946 	 * since same object code will be mapped at different virtual
7947 	 * addresses in different processes.
7948 	 */
7949 	if (!event->ctx->task)
7950 		return -EOPNOTSUPP;
7951 
7952 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7953 	if (ret)
7954 		return ret;
7955 
7956 	ret = event->pmu->addr_filters_validate(&filters);
7957 	if (ret) {
7958 		free_filters_list(&filters);
7959 		return ret;
7960 	}
7961 
7962 	/* remove existing filters, if any */
7963 	perf_addr_filters_splice(event, &filters);
7964 
7965 	/* install new filters */
7966 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
7967 
7968 	return ret;
7969 }
7970 
7971 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7972 {
7973 	char *filter_str;
7974 	int ret = -EINVAL;
7975 
7976 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7977 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7978 	    !has_addr_filter(event))
7979 		return -EINVAL;
7980 
7981 	filter_str = strndup_user(arg, PAGE_SIZE);
7982 	if (IS_ERR(filter_str))
7983 		return PTR_ERR(filter_str);
7984 
7985 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7986 	    event->attr.type == PERF_TYPE_TRACEPOINT)
7987 		ret = ftrace_profile_set_filter(event, event->attr.config,
7988 						filter_str);
7989 	else if (has_addr_filter(event))
7990 		ret = perf_event_set_addr_filter(event, filter_str);
7991 
7992 	kfree(filter_str);
7993 	return ret;
7994 }
7995 
7996 /*
7997  * hrtimer based swevent callback
7998  */
7999 
8000 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8001 {
8002 	enum hrtimer_restart ret = HRTIMER_RESTART;
8003 	struct perf_sample_data data;
8004 	struct pt_regs *regs;
8005 	struct perf_event *event;
8006 	u64 period;
8007 
8008 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8009 
8010 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8011 		return HRTIMER_NORESTART;
8012 
8013 	event->pmu->read(event);
8014 
8015 	perf_sample_data_init(&data, 0, event->hw.last_period);
8016 	regs = get_irq_regs();
8017 
8018 	if (regs && !perf_exclude_event(event, regs)) {
8019 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8020 			if (__perf_event_overflow(event, 1, &data, regs))
8021 				ret = HRTIMER_NORESTART;
8022 	}
8023 
8024 	period = max_t(u64, 10000, event->hw.sample_period);
8025 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8026 
8027 	return ret;
8028 }
8029 
8030 static void perf_swevent_start_hrtimer(struct perf_event *event)
8031 {
8032 	struct hw_perf_event *hwc = &event->hw;
8033 	s64 period;
8034 
8035 	if (!is_sampling_event(event))
8036 		return;
8037 
8038 	period = local64_read(&hwc->period_left);
8039 	if (period) {
8040 		if (period < 0)
8041 			period = 10000;
8042 
8043 		local64_set(&hwc->period_left, 0);
8044 	} else {
8045 		period = max_t(u64, 10000, hwc->sample_period);
8046 	}
8047 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8048 		      HRTIMER_MODE_REL_PINNED);
8049 }
8050 
8051 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8052 {
8053 	struct hw_perf_event *hwc = &event->hw;
8054 
8055 	if (is_sampling_event(event)) {
8056 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8057 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8058 
8059 		hrtimer_cancel(&hwc->hrtimer);
8060 	}
8061 }
8062 
8063 static void perf_swevent_init_hrtimer(struct perf_event *event)
8064 {
8065 	struct hw_perf_event *hwc = &event->hw;
8066 
8067 	if (!is_sampling_event(event))
8068 		return;
8069 
8070 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8071 	hwc->hrtimer.function = perf_swevent_hrtimer;
8072 
8073 	/*
8074 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8075 	 * mapping and avoid the whole period adjust feedback stuff.
8076 	 */
8077 	if (event->attr.freq) {
8078 		long freq = event->attr.sample_freq;
8079 
8080 		event->attr.sample_period = NSEC_PER_SEC / freq;
8081 		hwc->sample_period = event->attr.sample_period;
8082 		local64_set(&hwc->period_left, hwc->sample_period);
8083 		hwc->last_period = hwc->sample_period;
8084 		event->attr.freq = 0;
8085 	}
8086 }
8087 
8088 /*
8089  * Software event: cpu wall time clock
8090  */
8091 
8092 static void cpu_clock_event_update(struct perf_event *event)
8093 {
8094 	s64 prev;
8095 	u64 now;
8096 
8097 	now = local_clock();
8098 	prev = local64_xchg(&event->hw.prev_count, now);
8099 	local64_add(now - prev, &event->count);
8100 }
8101 
8102 static void cpu_clock_event_start(struct perf_event *event, int flags)
8103 {
8104 	local64_set(&event->hw.prev_count, local_clock());
8105 	perf_swevent_start_hrtimer(event);
8106 }
8107 
8108 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8109 {
8110 	perf_swevent_cancel_hrtimer(event);
8111 	cpu_clock_event_update(event);
8112 }
8113 
8114 static int cpu_clock_event_add(struct perf_event *event, int flags)
8115 {
8116 	if (flags & PERF_EF_START)
8117 		cpu_clock_event_start(event, flags);
8118 	perf_event_update_userpage(event);
8119 
8120 	return 0;
8121 }
8122 
8123 static void cpu_clock_event_del(struct perf_event *event, int flags)
8124 {
8125 	cpu_clock_event_stop(event, flags);
8126 }
8127 
8128 static void cpu_clock_event_read(struct perf_event *event)
8129 {
8130 	cpu_clock_event_update(event);
8131 }
8132 
8133 static int cpu_clock_event_init(struct perf_event *event)
8134 {
8135 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8136 		return -ENOENT;
8137 
8138 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8139 		return -ENOENT;
8140 
8141 	/*
8142 	 * no branch sampling for software events
8143 	 */
8144 	if (has_branch_stack(event))
8145 		return -EOPNOTSUPP;
8146 
8147 	perf_swevent_init_hrtimer(event);
8148 
8149 	return 0;
8150 }
8151 
8152 static struct pmu perf_cpu_clock = {
8153 	.task_ctx_nr	= perf_sw_context,
8154 
8155 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8156 
8157 	.event_init	= cpu_clock_event_init,
8158 	.add		= cpu_clock_event_add,
8159 	.del		= cpu_clock_event_del,
8160 	.start		= cpu_clock_event_start,
8161 	.stop		= cpu_clock_event_stop,
8162 	.read		= cpu_clock_event_read,
8163 };
8164 
8165 /*
8166  * Software event: task time clock
8167  */
8168 
8169 static void task_clock_event_update(struct perf_event *event, u64 now)
8170 {
8171 	u64 prev;
8172 	s64 delta;
8173 
8174 	prev = local64_xchg(&event->hw.prev_count, now);
8175 	delta = now - prev;
8176 	local64_add(delta, &event->count);
8177 }
8178 
8179 static void task_clock_event_start(struct perf_event *event, int flags)
8180 {
8181 	local64_set(&event->hw.prev_count, event->ctx->time);
8182 	perf_swevent_start_hrtimer(event);
8183 }
8184 
8185 static void task_clock_event_stop(struct perf_event *event, int flags)
8186 {
8187 	perf_swevent_cancel_hrtimer(event);
8188 	task_clock_event_update(event, event->ctx->time);
8189 }
8190 
8191 static int task_clock_event_add(struct perf_event *event, int flags)
8192 {
8193 	if (flags & PERF_EF_START)
8194 		task_clock_event_start(event, flags);
8195 	perf_event_update_userpage(event);
8196 
8197 	return 0;
8198 }
8199 
8200 static void task_clock_event_del(struct perf_event *event, int flags)
8201 {
8202 	task_clock_event_stop(event, PERF_EF_UPDATE);
8203 }
8204 
8205 static void task_clock_event_read(struct perf_event *event)
8206 {
8207 	u64 now = perf_clock();
8208 	u64 delta = now - event->ctx->timestamp;
8209 	u64 time = event->ctx->time + delta;
8210 
8211 	task_clock_event_update(event, time);
8212 }
8213 
8214 static int task_clock_event_init(struct perf_event *event)
8215 {
8216 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8217 		return -ENOENT;
8218 
8219 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8220 		return -ENOENT;
8221 
8222 	/*
8223 	 * no branch sampling for software events
8224 	 */
8225 	if (has_branch_stack(event))
8226 		return -EOPNOTSUPP;
8227 
8228 	perf_swevent_init_hrtimer(event);
8229 
8230 	return 0;
8231 }
8232 
8233 static struct pmu perf_task_clock = {
8234 	.task_ctx_nr	= perf_sw_context,
8235 
8236 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8237 
8238 	.event_init	= task_clock_event_init,
8239 	.add		= task_clock_event_add,
8240 	.del		= task_clock_event_del,
8241 	.start		= task_clock_event_start,
8242 	.stop		= task_clock_event_stop,
8243 	.read		= task_clock_event_read,
8244 };
8245 
8246 static void perf_pmu_nop_void(struct pmu *pmu)
8247 {
8248 }
8249 
8250 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8251 {
8252 }
8253 
8254 static int perf_pmu_nop_int(struct pmu *pmu)
8255 {
8256 	return 0;
8257 }
8258 
8259 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8260 
8261 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8262 {
8263 	__this_cpu_write(nop_txn_flags, flags);
8264 
8265 	if (flags & ~PERF_PMU_TXN_ADD)
8266 		return;
8267 
8268 	perf_pmu_disable(pmu);
8269 }
8270 
8271 static int perf_pmu_commit_txn(struct pmu *pmu)
8272 {
8273 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8274 
8275 	__this_cpu_write(nop_txn_flags, 0);
8276 
8277 	if (flags & ~PERF_PMU_TXN_ADD)
8278 		return 0;
8279 
8280 	perf_pmu_enable(pmu);
8281 	return 0;
8282 }
8283 
8284 static void perf_pmu_cancel_txn(struct pmu *pmu)
8285 {
8286 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8287 
8288 	__this_cpu_write(nop_txn_flags, 0);
8289 
8290 	if (flags & ~PERF_PMU_TXN_ADD)
8291 		return;
8292 
8293 	perf_pmu_enable(pmu);
8294 }
8295 
8296 static int perf_event_idx_default(struct perf_event *event)
8297 {
8298 	return 0;
8299 }
8300 
8301 /*
8302  * Ensures all contexts with the same task_ctx_nr have the same
8303  * pmu_cpu_context too.
8304  */
8305 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8306 {
8307 	struct pmu *pmu;
8308 
8309 	if (ctxn < 0)
8310 		return NULL;
8311 
8312 	list_for_each_entry(pmu, &pmus, entry) {
8313 		if (pmu->task_ctx_nr == ctxn)
8314 			return pmu->pmu_cpu_context;
8315 	}
8316 
8317 	return NULL;
8318 }
8319 
8320 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8321 {
8322 	int cpu;
8323 
8324 	for_each_possible_cpu(cpu) {
8325 		struct perf_cpu_context *cpuctx;
8326 
8327 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8328 
8329 		if (cpuctx->unique_pmu == old_pmu)
8330 			cpuctx->unique_pmu = pmu;
8331 	}
8332 }
8333 
8334 static void free_pmu_context(struct pmu *pmu)
8335 {
8336 	struct pmu *i;
8337 
8338 	mutex_lock(&pmus_lock);
8339 	/*
8340 	 * Like a real lame refcount.
8341 	 */
8342 	list_for_each_entry(i, &pmus, entry) {
8343 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8344 			update_pmu_context(i, pmu);
8345 			goto out;
8346 		}
8347 	}
8348 
8349 	free_percpu(pmu->pmu_cpu_context);
8350 out:
8351 	mutex_unlock(&pmus_lock);
8352 }
8353 
8354 /*
8355  * Let userspace know that this PMU supports address range filtering:
8356  */
8357 static ssize_t nr_addr_filters_show(struct device *dev,
8358 				    struct device_attribute *attr,
8359 				    char *page)
8360 {
8361 	struct pmu *pmu = dev_get_drvdata(dev);
8362 
8363 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8364 }
8365 DEVICE_ATTR_RO(nr_addr_filters);
8366 
8367 static struct idr pmu_idr;
8368 
8369 static ssize_t
8370 type_show(struct device *dev, struct device_attribute *attr, char *page)
8371 {
8372 	struct pmu *pmu = dev_get_drvdata(dev);
8373 
8374 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8375 }
8376 static DEVICE_ATTR_RO(type);
8377 
8378 static ssize_t
8379 perf_event_mux_interval_ms_show(struct device *dev,
8380 				struct device_attribute *attr,
8381 				char *page)
8382 {
8383 	struct pmu *pmu = dev_get_drvdata(dev);
8384 
8385 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8386 }
8387 
8388 static DEFINE_MUTEX(mux_interval_mutex);
8389 
8390 static ssize_t
8391 perf_event_mux_interval_ms_store(struct device *dev,
8392 				 struct device_attribute *attr,
8393 				 const char *buf, size_t count)
8394 {
8395 	struct pmu *pmu = dev_get_drvdata(dev);
8396 	int timer, cpu, ret;
8397 
8398 	ret = kstrtoint(buf, 0, &timer);
8399 	if (ret)
8400 		return ret;
8401 
8402 	if (timer < 1)
8403 		return -EINVAL;
8404 
8405 	/* same value, noting to do */
8406 	if (timer == pmu->hrtimer_interval_ms)
8407 		return count;
8408 
8409 	mutex_lock(&mux_interval_mutex);
8410 	pmu->hrtimer_interval_ms = timer;
8411 
8412 	/* update all cpuctx for this PMU */
8413 	get_online_cpus();
8414 	for_each_online_cpu(cpu) {
8415 		struct perf_cpu_context *cpuctx;
8416 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8417 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8418 
8419 		cpu_function_call(cpu,
8420 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8421 	}
8422 	put_online_cpus();
8423 	mutex_unlock(&mux_interval_mutex);
8424 
8425 	return count;
8426 }
8427 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8428 
8429 static struct attribute *pmu_dev_attrs[] = {
8430 	&dev_attr_type.attr,
8431 	&dev_attr_perf_event_mux_interval_ms.attr,
8432 	NULL,
8433 };
8434 ATTRIBUTE_GROUPS(pmu_dev);
8435 
8436 static int pmu_bus_running;
8437 static struct bus_type pmu_bus = {
8438 	.name		= "event_source",
8439 	.dev_groups	= pmu_dev_groups,
8440 };
8441 
8442 static void pmu_dev_release(struct device *dev)
8443 {
8444 	kfree(dev);
8445 }
8446 
8447 static int pmu_dev_alloc(struct pmu *pmu)
8448 {
8449 	int ret = -ENOMEM;
8450 
8451 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8452 	if (!pmu->dev)
8453 		goto out;
8454 
8455 	pmu->dev->groups = pmu->attr_groups;
8456 	device_initialize(pmu->dev);
8457 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8458 	if (ret)
8459 		goto free_dev;
8460 
8461 	dev_set_drvdata(pmu->dev, pmu);
8462 	pmu->dev->bus = &pmu_bus;
8463 	pmu->dev->release = pmu_dev_release;
8464 	ret = device_add(pmu->dev);
8465 	if (ret)
8466 		goto free_dev;
8467 
8468 	/* For PMUs with address filters, throw in an extra attribute: */
8469 	if (pmu->nr_addr_filters)
8470 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8471 
8472 	if (ret)
8473 		goto del_dev;
8474 
8475 out:
8476 	return ret;
8477 
8478 del_dev:
8479 	device_del(pmu->dev);
8480 
8481 free_dev:
8482 	put_device(pmu->dev);
8483 	goto out;
8484 }
8485 
8486 static struct lock_class_key cpuctx_mutex;
8487 static struct lock_class_key cpuctx_lock;
8488 
8489 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8490 {
8491 	int cpu, ret;
8492 
8493 	mutex_lock(&pmus_lock);
8494 	ret = -ENOMEM;
8495 	pmu->pmu_disable_count = alloc_percpu(int);
8496 	if (!pmu->pmu_disable_count)
8497 		goto unlock;
8498 
8499 	pmu->type = -1;
8500 	if (!name)
8501 		goto skip_type;
8502 	pmu->name = name;
8503 
8504 	if (type < 0) {
8505 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8506 		if (type < 0) {
8507 			ret = type;
8508 			goto free_pdc;
8509 		}
8510 	}
8511 	pmu->type = type;
8512 
8513 	if (pmu_bus_running) {
8514 		ret = pmu_dev_alloc(pmu);
8515 		if (ret)
8516 			goto free_idr;
8517 	}
8518 
8519 skip_type:
8520 	if (pmu->task_ctx_nr == perf_hw_context) {
8521 		static int hw_context_taken = 0;
8522 
8523 		/*
8524 		 * Other than systems with heterogeneous CPUs, it never makes
8525 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8526 		 * uncore must use perf_invalid_context.
8527 		 */
8528 		if (WARN_ON_ONCE(hw_context_taken &&
8529 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8530 			pmu->task_ctx_nr = perf_invalid_context;
8531 
8532 		hw_context_taken = 1;
8533 	}
8534 
8535 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8536 	if (pmu->pmu_cpu_context)
8537 		goto got_cpu_context;
8538 
8539 	ret = -ENOMEM;
8540 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8541 	if (!pmu->pmu_cpu_context)
8542 		goto free_dev;
8543 
8544 	for_each_possible_cpu(cpu) {
8545 		struct perf_cpu_context *cpuctx;
8546 
8547 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8548 		__perf_event_init_context(&cpuctx->ctx);
8549 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8550 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8551 		cpuctx->ctx.pmu = pmu;
8552 
8553 		__perf_mux_hrtimer_init(cpuctx, cpu);
8554 
8555 		cpuctx->unique_pmu = pmu;
8556 	}
8557 
8558 got_cpu_context:
8559 	if (!pmu->start_txn) {
8560 		if (pmu->pmu_enable) {
8561 			/*
8562 			 * If we have pmu_enable/pmu_disable calls, install
8563 			 * transaction stubs that use that to try and batch
8564 			 * hardware accesses.
8565 			 */
8566 			pmu->start_txn  = perf_pmu_start_txn;
8567 			pmu->commit_txn = perf_pmu_commit_txn;
8568 			pmu->cancel_txn = perf_pmu_cancel_txn;
8569 		} else {
8570 			pmu->start_txn  = perf_pmu_nop_txn;
8571 			pmu->commit_txn = perf_pmu_nop_int;
8572 			pmu->cancel_txn = perf_pmu_nop_void;
8573 		}
8574 	}
8575 
8576 	if (!pmu->pmu_enable) {
8577 		pmu->pmu_enable  = perf_pmu_nop_void;
8578 		pmu->pmu_disable = perf_pmu_nop_void;
8579 	}
8580 
8581 	if (!pmu->event_idx)
8582 		pmu->event_idx = perf_event_idx_default;
8583 
8584 	list_add_rcu(&pmu->entry, &pmus);
8585 	atomic_set(&pmu->exclusive_cnt, 0);
8586 	ret = 0;
8587 unlock:
8588 	mutex_unlock(&pmus_lock);
8589 
8590 	return ret;
8591 
8592 free_dev:
8593 	device_del(pmu->dev);
8594 	put_device(pmu->dev);
8595 
8596 free_idr:
8597 	if (pmu->type >= PERF_TYPE_MAX)
8598 		idr_remove(&pmu_idr, pmu->type);
8599 
8600 free_pdc:
8601 	free_percpu(pmu->pmu_disable_count);
8602 	goto unlock;
8603 }
8604 EXPORT_SYMBOL_GPL(perf_pmu_register);
8605 
8606 void perf_pmu_unregister(struct pmu *pmu)
8607 {
8608 	mutex_lock(&pmus_lock);
8609 	list_del_rcu(&pmu->entry);
8610 	mutex_unlock(&pmus_lock);
8611 
8612 	/*
8613 	 * We dereference the pmu list under both SRCU and regular RCU, so
8614 	 * synchronize against both of those.
8615 	 */
8616 	synchronize_srcu(&pmus_srcu);
8617 	synchronize_rcu();
8618 
8619 	free_percpu(pmu->pmu_disable_count);
8620 	if (pmu->type >= PERF_TYPE_MAX)
8621 		idr_remove(&pmu_idr, pmu->type);
8622 	if (pmu->nr_addr_filters)
8623 		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8624 	device_del(pmu->dev);
8625 	put_device(pmu->dev);
8626 	free_pmu_context(pmu);
8627 }
8628 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8629 
8630 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8631 {
8632 	struct perf_event_context *ctx = NULL;
8633 	int ret;
8634 
8635 	if (!try_module_get(pmu->module))
8636 		return -ENODEV;
8637 
8638 	if (event->group_leader != event) {
8639 		/*
8640 		 * This ctx->mutex can nest when we're called through
8641 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8642 		 */
8643 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8644 						 SINGLE_DEPTH_NESTING);
8645 		BUG_ON(!ctx);
8646 	}
8647 
8648 	event->pmu = pmu;
8649 	ret = pmu->event_init(event);
8650 
8651 	if (ctx)
8652 		perf_event_ctx_unlock(event->group_leader, ctx);
8653 
8654 	if (ret)
8655 		module_put(pmu->module);
8656 
8657 	return ret;
8658 }
8659 
8660 static struct pmu *perf_init_event(struct perf_event *event)
8661 {
8662 	struct pmu *pmu = NULL;
8663 	int idx;
8664 	int ret;
8665 
8666 	idx = srcu_read_lock(&pmus_srcu);
8667 
8668 	rcu_read_lock();
8669 	pmu = idr_find(&pmu_idr, event->attr.type);
8670 	rcu_read_unlock();
8671 	if (pmu) {
8672 		ret = perf_try_init_event(pmu, event);
8673 		if (ret)
8674 			pmu = ERR_PTR(ret);
8675 		goto unlock;
8676 	}
8677 
8678 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8679 		ret = perf_try_init_event(pmu, event);
8680 		if (!ret)
8681 			goto unlock;
8682 
8683 		if (ret != -ENOENT) {
8684 			pmu = ERR_PTR(ret);
8685 			goto unlock;
8686 		}
8687 	}
8688 	pmu = ERR_PTR(-ENOENT);
8689 unlock:
8690 	srcu_read_unlock(&pmus_srcu, idx);
8691 
8692 	return pmu;
8693 }
8694 
8695 static void attach_sb_event(struct perf_event *event)
8696 {
8697 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8698 
8699 	raw_spin_lock(&pel->lock);
8700 	list_add_rcu(&event->sb_list, &pel->list);
8701 	raw_spin_unlock(&pel->lock);
8702 }
8703 
8704 /*
8705  * We keep a list of all !task (and therefore per-cpu) events
8706  * that need to receive side-band records.
8707  *
8708  * This avoids having to scan all the various PMU per-cpu contexts
8709  * looking for them.
8710  */
8711 static void account_pmu_sb_event(struct perf_event *event)
8712 {
8713 	if (is_sb_event(event))
8714 		attach_sb_event(event);
8715 }
8716 
8717 static void account_event_cpu(struct perf_event *event, int cpu)
8718 {
8719 	if (event->parent)
8720 		return;
8721 
8722 	if (is_cgroup_event(event))
8723 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8724 }
8725 
8726 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8727 static void account_freq_event_nohz(void)
8728 {
8729 #ifdef CONFIG_NO_HZ_FULL
8730 	/* Lock so we don't race with concurrent unaccount */
8731 	spin_lock(&nr_freq_lock);
8732 	if (atomic_inc_return(&nr_freq_events) == 1)
8733 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8734 	spin_unlock(&nr_freq_lock);
8735 #endif
8736 }
8737 
8738 static void account_freq_event(void)
8739 {
8740 	if (tick_nohz_full_enabled())
8741 		account_freq_event_nohz();
8742 	else
8743 		atomic_inc(&nr_freq_events);
8744 }
8745 
8746 
8747 static void account_event(struct perf_event *event)
8748 {
8749 	bool inc = false;
8750 
8751 	if (event->parent)
8752 		return;
8753 
8754 	if (event->attach_state & PERF_ATTACH_TASK)
8755 		inc = true;
8756 	if (event->attr.mmap || event->attr.mmap_data)
8757 		atomic_inc(&nr_mmap_events);
8758 	if (event->attr.comm)
8759 		atomic_inc(&nr_comm_events);
8760 	if (event->attr.task)
8761 		atomic_inc(&nr_task_events);
8762 	if (event->attr.freq)
8763 		account_freq_event();
8764 	if (event->attr.context_switch) {
8765 		atomic_inc(&nr_switch_events);
8766 		inc = true;
8767 	}
8768 	if (has_branch_stack(event))
8769 		inc = true;
8770 	if (is_cgroup_event(event))
8771 		inc = true;
8772 
8773 	if (inc) {
8774 		if (atomic_inc_not_zero(&perf_sched_count))
8775 			goto enabled;
8776 
8777 		mutex_lock(&perf_sched_mutex);
8778 		if (!atomic_read(&perf_sched_count)) {
8779 			static_branch_enable(&perf_sched_events);
8780 			/*
8781 			 * Guarantee that all CPUs observe they key change and
8782 			 * call the perf scheduling hooks before proceeding to
8783 			 * install events that need them.
8784 			 */
8785 			synchronize_sched();
8786 		}
8787 		/*
8788 		 * Now that we have waited for the sync_sched(), allow further
8789 		 * increments to by-pass the mutex.
8790 		 */
8791 		atomic_inc(&perf_sched_count);
8792 		mutex_unlock(&perf_sched_mutex);
8793 	}
8794 enabled:
8795 
8796 	account_event_cpu(event, event->cpu);
8797 
8798 	account_pmu_sb_event(event);
8799 }
8800 
8801 /*
8802  * Allocate and initialize a event structure
8803  */
8804 static struct perf_event *
8805 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8806 		 struct task_struct *task,
8807 		 struct perf_event *group_leader,
8808 		 struct perf_event *parent_event,
8809 		 perf_overflow_handler_t overflow_handler,
8810 		 void *context, int cgroup_fd)
8811 {
8812 	struct pmu *pmu;
8813 	struct perf_event *event;
8814 	struct hw_perf_event *hwc;
8815 	long err = -EINVAL;
8816 
8817 	if ((unsigned)cpu >= nr_cpu_ids) {
8818 		if (!task || cpu != -1)
8819 			return ERR_PTR(-EINVAL);
8820 	}
8821 
8822 	event = kzalloc(sizeof(*event), GFP_KERNEL);
8823 	if (!event)
8824 		return ERR_PTR(-ENOMEM);
8825 
8826 	/*
8827 	 * Single events are their own group leaders, with an
8828 	 * empty sibling list:
8829 	 */
8830 	if (!group_leader)
8831 		group_leader = event;
8832 
8833 	mutex_init(&event->child_mutex);
8834 	INIT_LIST_HEAD(&event->child_list);
8835 
8836 	INIT_LIST_HEAD(&event->group_entry);
8837 	INIT_LIST_HEAD(&event->event_entry);
8838 	INIT_LIST_HEAD(&event->sibling_list);
8839 	INIT_LIST_HEAD(&event->rb_entry);
8840 	INIT_LIST_HEAD(&event->active_entry);
8841 	INIT_LIST_HEAD(&event->addr_filters.list);
8842 	INIT_HLIST_NODE(&event->hlist_entry);
8843 
8844 
8845 	init_waitqueue_head(&event->waitq);
8846 	init_irq_work(&event->pending, perf_pending_event);
8847 
8848 	mutex_init(&event->mmap_mutex);
8849 	raw_spin_lock_init(&event->addr_filters.lock);
8850 
8851 	atomic_long_set(&event->refcount, 1);
8852 	event->cpu		= cpu;
8853 	event->attr		= *attr;
8854 	event->group_leader	= group_leader;
8855 	event->pmu		= NULL;
8856 	event->oncpu		= -1;
8857 
8858 	event->parent		= parent_event;
8859 
8860 	event->ns		= get_pid_ns(task_active_pid_ns(current));
8861 	event->id		= atomic64_inc_return(&perf_event_id);
8862 
8863 	event->state		= PERF_EVENT_STATE_INACTIVE;
8864 
8865 	if (task) {
8866 		event->attach_state = PERF_ATTACH_TASK;
8867 		/*
8868 		 * XXX pmu::event_init needs to know what task to account to
8869 		 * and we cannot use the ctx information because we need the
8870 		 * pmu before we get a ctx.
8871 		 */
8872 		event->hw.target = task;
8873 	}
8874 
8875 	event->clock = &local_clock;
8876 	if (parent_event)
8877 		event->clock = parent_event->clock;
8878 
8879 	if (!overflow_handler && parent_event) {
8880 		overflow_handler = parent_event->overflow_handler;
8881 		context = parent_event->overflow_handler_context;
8882 	}
8883 
8884 	if (overflow_handler) {
8885 		event->overflow_handler	= overflow_handler;
8886 		event->overflow_handler_context = context;
8887 	} else if (is_write_backward(event)){
8888 		event->overflow_handler = perf_event_output_backward;
8889 		event->overflow_handler_context = NULL;
8890 	} else {
8891 		event->overflow_handler = perf_event_output_forward;
8892 		event->overflow_handler_context = NULL;
8893 	}
8894 
8895 	perf_event__state_init(event);
8896 
8897 	pmu = NULL;
8898 
8899 	hwc = &event->hw;
8900 	hwc->sample_period = attr->sample_period;
8901 	if (attr->freq && attr->sample_freq)
8902 		hwc->sample_period = 1;
8903 	hwc->last_period = hwc->sample_period;
8904 
8905 	local64_set(&hwc->period_left, hwc->sample_period);
8906 
8907 	/*
8908 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8909 	 */
8910 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8911 		goto err_ns;
8912 
8913 	if (!has_branch_stack(event))
8914 		event->attr.branch_sample_type = 0;
8915 
8916 	if (cgroup_fd != -1) {
8917 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8918 		if (err)
8919 			goto err_ns;
8920 	}
8921 
8922 	pmu = perf_init_event(event);
8923 	if (!pmu)
8924 		goto err_ns;
8925 	else if (IS_ERR(pmu)) {
8926 		err = PTR_ERR(pmu);
8927 		goto err_ns;
8928 	}
8929 
8930 	err = exclusive_event_init(event);
8931 	if (err)
8932 		goto err_pmu;
8933 
8934 	if (has_addr_filter(event)) {
8935 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8936 						   sizeof(unsigned long),
8937 						   GFP_KERNEL);
8938 		if (!event->addr_filters_offs)
8939 			goto err_per_task;
8940 
8941 		/* force hw sync on the address filters */
8942 		event->addr_filters_gen = 1;
8943 	}
8944 
8945 	if (!event->parent) {
8946 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8947 			err = get_callchain_buffers(attr->sample_max_stack);
8948 			if (err)
8949 				goto err_addr_filters;
8950 		}
8951 	}
8952 
8953 	/* symmetric to unaccount_event() in _free_event() */
8954 	account_event(event);
8955 
8956 	return event;
8957 
8958 err_addr_filters:
8959 	kfree(event->addr_filters_offs);
8960 
8961 err_per_task:
8962 	exclusive_event_destroy(event);
8963 
8964 err_pmu:
8965 	if (event->destroy)
8966 		event->destroy(event);
8967 	module_put(pmu->module);
8968 err_ns:
8969 	if (is_cgroup_event(event))
8970 		perf_detach_cgroup(event);
8971 	if (event->ns)
8972 		put_pid_ns(event->ns);
8973 	kfree(event);
8974 
8975 	return ERR_PTR(err);
8976 }
8977 
8978 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8979 			  struct perf_event_attr *attr)
8980 {
8981 	u32 size;
8982 	int ret;
8983 
8984 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8985 		return -EFAULT;
8986 
8987 	/*
8988 	 * zero the full structure, so that a short copy will be nice.
8989 	 */
8990 	memset(attr, 0, sizeof(*attr));
8991 
8992 	ret = get_user(size, &uattr->size);
8993 	if (ret)
8994 		return ret;
8995 
8996 	if (size > PAGE_SIZE)	/* silly large */
8997 		goto err_size;
8998 
8999 	if (!size)		/* abi compat */
9000 		size = PERF_ATTR_SIZE_VER0;
9001 
9002 	if (size < PERF_ATTR_SIZE_VER0)
9003 		goto err_size;
9004 
9005 	/*
9006 	 * If we're handed a bigger struct than we know of,
9007 	 * ensure all the unknown bits are 0 - i.e. new
9008 	 * user-space does not rely on any kernel feature
9009 	 * extensions we dont know about yet.
9010 	 */
9011 	if (size > sizeof(*attr)) {
9012 		unsigned char __user *addr;
9013 		unsigned char __user *end;
9014 		unsigned char val;
9015 
9016 		addr = (void __user *)uattr + sizeof(*attr);
9017 		end  = (void __user *)uattr + size;
9018 
9019 		for (; addr < end; addr++) {
9020 			ret = get_user(val, addr);
9021 			if (ret)
9022 				return ret;
9023 			if (val)
9024 				goto err_size;
9025 		}
9026 		size = sizeof(*attr);
9027 	}
9028 
9029 	ret = copy_from_user(attr, uattr, size);
9030 	if (ret)
9031 		return -EFAULT;
9032 
9033 	if (attr->__reserved_1)
9034 		return -EINVAL;
9035 
9036 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9037 		return -EINVAL;
9038 
9039 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9040 		return -EINVAL;
9041 
9042 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9043 		u64 mask = attr->branch_sample_type;
9044 
9045 		/* only using defined bits */
9046 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9047 			return -EINVAL;
9048 
9049 		/* at least one branch bit must be set */
9050 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9051 			return -EINVAL;
9052 
9053 		/* propagate priv level, when not set for branch */
9054 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9055 
9056 			/* exclude_kernel checked on syscall entry */
9057 			if (!attr->exclude_kernel)
9058 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9059 
9060 			if (!attr->exclude_user)
9061 				mask |= PERF_SAMPLE_BRANCH_USER;
9062 
9063 			if (!attr->exclude_hv)
9064 				mask |= PERF_SAMPLE_BRANCH_HV;
9065 			/*
9066 			 * adjust user setting (for HW filter setup)
9067 			 */
9068 			attr->branch_sample_type = mask;
9069 		}
9070 		/* privileged levels capture (kernel, hv): check permissions */
9071 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9072 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9073 			return -EACCES;
9074 	}
9075 
9076 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9077 		ret = perf_reg_validate(attr->sample_regs_user);
9078 		if (ret)
9079 			return ret;
9080 	}
9081 
9082 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9083 		if (!arch_perf_have_user_stack_dump())
9084 			return -ENOSYS;
9085 
9086 		/*
9087 		 * We have __u32 type for the size, but so far
9088 		 * we can only use __u16 as maximum due to the
9089 		 * __u16 sample size limit.
9090 		 */
9091 		if (attr->sample_stack_user >= USHRT_MAX)
9092 			ret = -EINVAL;
9093 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9094 			ret = -EINVAL;
9095 	}
9096 
9097 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9098 		ret = perf_reg_validate(attr->sample_regs_intr);
9099 out:
9100 	return ret;
9101 
9102 err_size:
9103 	put_user(sizeof(*attr), &uattr->size);
9104 	ret = -E2BIG;
9105 	goto out;
9106 }
9107 
9108 static int
9109 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9110 {
9111 	struct ring_buffer *rb = NULL;
9112 	int ret = -EINVAL;
9113 
9114 	if (!output_event)
9115 		goto set;
9116 
9117 	/* don't allow circular references */
9118 	if (event == output_event)
9119 		goto out;
9120 
9121 	/*
9122 	 * Don't allow cross-cpu buffers
9123 	 */
9124 	if (output_event->cpu != event->cpu)
9125 		goto out;
9126 
9127 	/*
9128 	 * If its not a per-cpu rb, it must be the same task.
9129 	 */
9130 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9131 		goto out;
9132 
9133 	/*
9134 	 * Mixing clocks in the same buffer is trouble you don't need.
9135 	 */
9136 	if (output_event->clock != event->clock)
9137 		goto out;
9138 
9139 	/*
9140 	 * Either writing ring buffer from beginning or from end.
9141 	 * Mixing is not allowed.
9142 	 */
9143 	if (is_write_backward(output_event) != is_write_backward(event))
9144 		goto out;
9145 
9146 	/*
9147 	 * If both events generate aux data, they must be on the same PMU
9148 	 */
9149 	if (has_aux(event) && has_aux(output_event) &&
9150 	    event->pmu != output_event->pmu)
9151 		goto out;
9152 
9153 set:
9154 	mutex_lock(&event->mmap_mutex);
9155 	/* Can't redirect output if we've got an active mmap() */
9156 	if (atomic_read(&event->mmap_count))
9157 		goto unlock;
9158 
9159 	if (output_event) {
9160 		/* get the rb we want to redirect to */
9161 		rb = ring_buffer_get(output_event);
9162 		if (!rb)
9163 			goto unlock;
9164 	}
9165 
9166 	ring_buffer_attach(event, rb);
9167 
9168 	ret = 0;
9169 unlock:
9170 	mutex_unlock(&event->mmap_mutex);
9171 
9172 out:
9173 	return ret;
9174 }
9175 
9176 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9177 {
9178 	if (b < a)
9179 		swap(a, b);
9180 
9181 	mutex_lock(a);
9182 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9183 }
9184 
9185 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9186 {
9187 	bool nmi_safe = false;
9188 
9189 	switch (clk_id) {
9190 	case CLOCK_MONOTONIC:
9191 		event->clock = &ktime_get_mono_fast_ns;
9192 		nmi_safe = true;
9193 		break;
9194 
9195 	case CLOCK_MONOTONIC_RAW:
9196 		event->clock = &ktime_get_raw_fast_ns;
9197 		nmi_safe = true;
9198 		break;
9199 
9200 	case CLOCK_REALTIME:
9201 		event->clock = &ktime_get_real_ns;
9202 		break;
9203 
9204 	case CLOCK_BOOTTIME:
9205 		event->clock = &ktime_get_boot_ns;
9206 		break;
9207 
9208 	case CLOCK_TAI:
9209 		event->clock = &ktime_get_tai_ns;
9210 		break;
9211 
9212 	default:
9213 		return -EINVAL;
9214 	}
9215 
9216 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9217 		return -EINVAL;
9218 
9219 	return 0;
9220 }
9221 
9222 /**
9223  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9224  *
9225  * @attr_uptr:	event_id type attributes for monitoring/sampling
9226  * @pid:		target pid
9227  * @cpu:		target cpu
9228  * @group_fd:		group leader event fd
9229  */
9230 SYSCALL_DEFINE5(perf_event_open,
9231 		struct perf_event_attr __user *, attr_uptr,
9232 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9233 {
9234 	struct perf_event *group_leader = NULL, *output_event = NULL;
9235 	struct perf_event *event, *sibling;
9236 	struct perf_event_attr attr;
9237 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9238 	struct file *event_file = NULL;
9239 	struct fd group = {NULL, 0};
9240 	struct task_struct *task = NULL;
9241 	struct pmu *pmu;
9242 	int event_fd;
9243 	int move_group = 0;
9244 	int err;
9245 	int f_flags = O_RDWR;
9246 	int cgroup_fd = -1;
9247 
9248 	/* for future expandability... */
9249 	if (flags & ~PERF_FLAG_ALL)
9250 		return -EINVAL;
9251 
9252 	err = perf_copy_attr(attr_uptr, &attr);
9253 	if (err)
9254 		return err;
9255 
9256 	if (!attr.exclude_kernel) {
9257 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9258 			return -EACCES;
9259 	}
9260 
9261 	if (attr.freq) {
9262 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9263 			return -EINVAL;
9264 	} else {
9265 		if (attr.sample_period & (1ULL << 63))
9266 			return -EINVAL;
9267 	}
9268 
9269 	if (!attr.sample_max_stack)
9270 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9271 
9272 	/*
9273 	 * In cgroup mode, the pid argument is used to pass the fd
9274 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9275 	 * designates the cpu on which to monitor threads from that
9276 	 * cgroup.
9277 	 */
9278 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9279 		return -EINVAL;
9280 
9281 	if (flags & PERF_FLAG_FD_CLOEXEC)
9282 		f_flags |= O_CLOEXEC;
9283 
9284 	event_fd = get_unused_fd_flags(f_flags);
9285 	if (event_fd < 0)
9286 		return event_fd;
9287 
9288 	if (group_fd != -1) {
9289 		err = perf_fget_light(group_fd, &group);
9290 		if (err)
9291 			goto err_fd;
9292 		group_leader = group.file->private_data;
9293 		if (flags & PERF_FLAG_FD_OUTPUT)
9294 			output_event = group_leader;
9295 		if (flags & PERF_FLAG_FD_NO_GROUP)
9296 			group_leader = NULL;
9297 	}
9298 
9299 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9300 		task = find_lively_task_by_vpid(pid);
9301 		if (IS_ERR(task)) {
9302 			err = PTR_ERR(task);
9303 			goto err_group_fd;
9304 		}
9305 	}
9306 
9307 	if (task && group_leader &&
9308 	    group_leader->attr.inherit != attr.inherit) {
9309 		err = -EINVAL;
9310 		goto err_task;
9311 	}
9312 
9313 	get_online_cpus();
9314 
9315 	if (task) {
9316 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9317 		if (err)
9318 			goto err_cpus;
9319 
9320 		/*
9321 		 * Reuse ptrace permission checks for now.
9322 		 *
9323 		 * We must hold cred_guard_mutex across this and any potential
9324 		 * perf_install_in_context() call for this new event to
9325 		 * serialize against exec() altering our credentials (and the
9326 		 * perf_event_exit_task() that could imply).
9327 		 */
9328 		err = -EACCES;
9329 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9330 			goto err_cred;
9331 	}
9332 
9333 	if (flags & PERF_FLAG_PID_CGROUP)
9334 		cgroup_fd = pid;
9335 
9336 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9337 				 NULL, NULL, cgroup_fd);
9338 	if (IS_ERR(event)) {
9339 		err = PTR_ERR(event);
9340 		goto err_cred;
9341 	}
9342 
9343 	if (is_sampling_event(event)) {
9344 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9345 			err = -EOPNOTSUPP;
9346 			goto err_alloc;
9347 		}
9348 	}
9349 
9350 	/*
9351 	 * Special case software events and allow them to be part of
9352 	 * any hardware group.
9353 	 */
9354 	pmu = event->pmu;
9355 
9356 	if (attr.use_clockid) {
9357 		err = perf_event_set_clock(event, attr.clockid);
9358 		if (err)
9359 			goto err_alloc;
9360 	}
9361 
9362 	if (group_leader &&
9363 	    (is_software_event(event) != is_software_event(group_leader))) {
9364 		if (is_software_event(event)) {
9365 			/*
9366 			 * If event and group_leader are not both a software
9367 			 * event, and event is, then group leader is not.
9368 			 *
9369 			 * Allow the addition of software events to !software
9370 			 * groups, this is safe because software events never
9371 			 * fail to schedule.
9372 			 */
9373 			pmu = group_leader->pmu;
9374 		} else if (is_software_event(group_leader) &&
9375 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9376 			/*
9377 			 * In case the group is a pure software group, and we
9378 			 * try to add a hardware event, move the whole group to
9379 			 * the hardware context.
9380 			 */
9381 			move_group = 1;
9382 		}
9383 	}
9384 
9385 	/*
9386 	 * Get the target context (task or percpu):
9387 	 */
9388 	ctx = find_get_context(pmu, task, event);
9389 	if (IS_ERR(ctx)) {
9390 		err = PTR_ERR(ctx);
9391 		goto err_alloc;
9392 	}
9393 
9394 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9395 		err = -EBUSY;
9396 		goto err_context;
9397 	}
9398 
9399 	/*
9400 	 * Look up the group leader (we will attach this event to it):
9401 	 */
9402 	if (group_leader) {
9403 		err = -EINVAL;
9404 
9405 		/*
9406 		 * Do not allow a recursive hierarchy (this new sibling
9407 		 * becoming part of another group-sibling):
9408 		 */
9409 		if (group_leader->group_leader != group_leader)
9410 			goto err_context;
9411 
9412 		/* All events in a group should have the same clock */
9413 		if (group_leader->clock != event->clock)
9414 			goto err_context;
9415 
9416 		/*
9417 		 * Do not allow to attach to a group in a different
9418 		 * task or CPU context:
9419 		 */
9420 		if (move_group) {
9421 			/*
9422 			 * Make sure we're both on the same task, or both
9423 			 * per-cpu events.
9424 			 */
9425 			if (group_leader->ctx->task != ctx->task)
9426 				goto err_context;
9427 
9428 			/*
9429 			 * Make sure we're both events for the same CPU;
9430 			 * grouping events for different CPUs is broken; since
9431 			 * you can never concurrently schedule them anyhow.
9432 			 */
9433 			if (group_leader->cpu != event->cpu)
9434 				goto err_context;
9435 		} else {
9436 			if (group_leader->ctx != ctx)
9437 				goto err_context;
9438 		}
9439 
9440 		/*
9441 		 * Only a group leader can be exclusive or pinned
9442 		 */
9443 		if (attr.exclusive || attr.pinned)
9444 			goto err_context;
9445 	}
9446 
9447 	if (output_event) {
9448 		err = perf_event_set_output(event, output_event);
9449 		if (err)
9450 			goto err_context;
9451 	}
9452 
9453 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9454 					f_flags);
9455 	if (IS_ERR(event_file)) {
9456 		err = PTR_ERR(event_file);
9457 		event_file = NULL;
9458 		goto err_context;
9459 	}
9460 
9461 	if (move_group) {
9462 		gctx = group_leader->ctx;
9463 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9464 		if (gctx->task == TASK_TOMBSTONE) {
9465 			err = -ESRCH;
9466 			goto err_locked;
9467 		}
9468 	} else {
9469 		mutex_lock(&ctx->mutex);
9470 	}
9471 
9472 	if (ctx->task == TASK_TOMBSTONE) {
9473 		err = -ESRCH;
9474 		goto err_locked;
9475 	}
9476 
9477 	if (!perf_event_validate_size(event)) {
9478 		err = -E2BIG;
9479 		goto err_locked;
9480 	}
9481 
9482 	/*
9483 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9484 	 * because we need to serialize with concurrent event creation.
9485 	 */
9486 	if (!exclusive_event_installable(event, ctx)) {
9487 		/* exclusive and group stuff are assumed mutually exclusive */
9488 		WARN_ON_ONCE(move_group);
9489 
9490 		err = -EBUSY;
9491 		goto err_locked;
9492 	}
9493 
9494 	WARN_ON_ONCE(ctx->parent_ctx);
9495 
9496 	/*
9497 	 * This is the point on no return; we cannot fail hereafter. This is
9498 	 * where we start modifying current state.
9499 	 */
9500 
9501 	if (move_group) {
9502 		/*
9503 		 * See perf_event_ctx_lock() for comments on the details
9504 		 * of swizzling perf_event::ctx.
9505 		 */
9506 		perf_remove_from_context(group_leader, 0);
9507 
9508 		list_for_each_entry(sibling, &group_leader->sibling_list,
9509 				    group_entry) {
9510 			perf_remove_from_context(sibling, 0);
9511 			put_ctx(gctx);
9512 		}
9513 
9514 		/*
9515 		 * Wait for everybody to stop referencing the events through
9516 		 * the old lists, before installing it on new lists.
9517 		 */
9518 		synchronize_rcu();
9519 
9520 		/*
9521 		 * Install the group siblings before the group leader.
9522 		 *
9523 		 * Because a group leader will try and install the entire group
9524 		 * (through the sibling list, which is still in-tact), we can
9525 		 * end up with siblings installed in the wrong context.
9526 		 *
9527 		 * By installing siblings first we NO-OP because they're not
9528 		 * reachable through the group lists.
9529 		 */
9530 		list_for_each_entry(sibling, &group_leader->sibling_list,
9531 				    group_entry) {
9532 			perf_event__state_init(sibling);
9533 			perf_install_in_context(ctx, sibling, sibling->cpu);
9534 			get_ctx(ctx);
9535 		}
9536 
9537 		/*
9538 		 * Removing from the context ends up with disabled
9539 		 * event. What we want here is event in the initial
9540 		 * startup state, ready to be add into new context.
9541 		 */
9542 		perf_event__state_init(group_leader);
9543 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9544 		get_ctx(ctx);
9545 
9546 		/*
9547 		 * Now that all events are installed in @ctx, nothing
9548 		 * references @gctx anymore, so drop the last reference we have
9549 		 * on it.
9550 		 */
9551 		put_ctx(gctx);
9552 	}
9553 
9554 	/*
9555 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9556 	 * that we're serialized against further additions and before
9557 	 * perf_install_in_context() which is the point the event is active and
9558 	 * can use these values.
9559 	 */
9560 	perf_event__header_size(event);
9561 	perf_event__id_header_size(event);
9562 
9563 	event->owner = current;
9564 
9565 	perf_install_in_context(ctx, event, event->cpu);
9566 	perf_unpin_context(ctx);
9567 
9568 	if (move_group)
9569 		mutex_unlock(&gctx->mutex);
9570 	mutex_unlock(&ctx->mutex);
9571 
9572 	if (task) {
9573 		mutex_unlock(&task->signal->cred_guard_mutex);
9574 		put_task_struct(task);
9575 	}
9576 
9577 	put_online_cpus();
9578 
9579 	mutex_lock(&current->perf_event_mutex);
9580 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9581 	mutex_unlock(&current->perf_event_mutex);
9582 
9583 	/*
9584 	 * Drop the reference on the group_event after placing the
9585 	 * new event on the sibling_list. This ensures destruction
9586 	 * of the group leader will find the pointer to itself in
9587 	 * perf_group_detach().
9588 	 */
9589 	fdput(group);
9590 	fd_install(event_fd, event_file);
9591 	return event_fd;
9592 
9593 err_locked:
9594 	if (move_group)
9595 		mutex_unlock(&gctx->mutex);
9596 	mutex_unlock(&ctx->mutex);
9597 /* err_file: */
9598 	fput(event_file);
9599 err_context:
9600 	perf_unpin_context(ctx);
9601 	put_ctx(ctx);
9602 err_alloc:
9603 	/*
9604 	 * If event_file is set, the fput() above will have called ->release()
9605 	 * and that will take care of freeing the event.
9606 	 */
9607 	if (!event_file)
9608 		free_event(event);
9609 err_cred:
9610 	if (task)
9611 		mutex_unlock(&task->signal->cred_guard_mutex);
9612 err_cpus:
9613 	put_online_cpus();
9614 err_task:
9615 	if (task)
9616 		put_task_struct(task);
9617 err_group_fd:
9618 	fdput(group);
9619 err_fd:
9620 	put_unused_fd(event_fd);
9621 	return err;
9622 }
9623 
9624 /**
9625  * perf_event_create_kernel_counter
9626  *
9627  * @attr: attributes of the counter to create
9628  * @cpu: cpu in which the counter is bound
9629  * @task: task to profile (NULL for percpu)
9630  */
9631 struct perf_event *
9632 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9633 				 struct task_struct *task,
9634 				 perf_overflow_handler_t overflow_handler,
9635 				 void *context)
9636 {
9637 	struct perf_event_context *ctx;
9638 	struct perf_event *event;
9639 	int err;
9640 
9641 	/*
9642 	 * Get the target context (task or percpu):
9643 	 */
9644 
9645 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9646 				 overflow_handler, context, -1);
9647 	if (IS_ERR(event)) {
9648 		err = PTR_ERR(event);
9649 		goto err;
9650 	}
9651 
9652 	/* Mark owner so we could distinguish it from user events. */
9653 	event->owner = TASK_TOMBSTONE;
9654 
9655 	ctx = find_get_context(event->pmu, task, event);
9656 	if (IS_ERR(ctx)) {
9657 		err = PTR_ERR(ctx);
9658 		goto err_free;
9659 	}
9660 
9661 	WARN_ON_ONCE(ctx->parent_ctx);
9662 	mutex_lock(&ctx->mutex);
9663 	if (ctx->task == TASK_TOMBSTONE) {
9664 		err = -ESRCH;
9665 		goto err_unlock;
9666 	}
9667 
9668 	if (!exclusive_event_installable(event, ctx)) {
9669 		err = -EBUSY;
9670 		goto err_unlock;
9671 	}
9672 
9673 	perf_install_in_context(ctx, event, cpu);
9674 	perf_unpin_context(ctx);
9675 	mutex_unlock(&ctx->mutex);
9676 
9677 	return event;
9678 
9679 err_unlock:
9680 	mutex_unlock(&ctx->mutex);
9681 	perf_unpin_context(ctx);
9682 	put_ctx(ctx);
9683 err_free:
9684 	free_event(event);
9685 err:
9686 	return ERR_PTR(err);
9687 }
9688 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9689 
9690 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9691 {
9692 	struct perf_event_context *src_ctx;
9693 	struct perf_event_context *dst_ctx;
9694 	struct perf_event *event, *tmp;
9695 	LIST_HEAD(events);
9696 
9697 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9698 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9699 
9700 	/*
9701 	 * See perf_event_ctx_lock() for comments on the details
9702 	 * of swizzling perf_event::ctx.
9703 	 */
9704 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9705 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9706 				 event_entry) {
9707 		perf_remove_from_context(event, 0);
9708 		unaccount_event_cpu(event, src_cpu);
9709 		put_ctx(src_ctx);
9710 		list_add(&event->migrate_entry, &events);
9711 	}
9712 
9713 	/*
9714 	 * Wait for the events to quiesce before re-instating them.
9715 	 */
9716 	synchronize_rcu();
9717 
9718 	/*
9719 	 * Re-instate events in 2 passes.
9720 	 *
9721 	 * Skip over group leaders and only install siblings on this first
9722 	 * pass, siblings will not get enabled without a leader, however a
9723 	 * leader will enable its siblings, even if those are still on the old
9724 	 * context.
9725 	 */
9726 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9727 		if (event->group_leader == event)
9728 			continue;
9729 
9730 		list_del(&event->migrate_entry);
9731 		if (event->state >= PERF_EVENT_STATE_OFF)
9732 			event->state = PERF_EVENT_STATE_INACTIVE;
9733 		account_event_cpu(event, dst_cpu);
9734 		perf_install_in_context(dst_ctx, event, dst_cpu);
9735 		get_ctx(dst_ctx);
9736 	}
9737 
9738 	/*
9739 	 * Once all the siblings are setup properly, install the group leaders
9740 	 * to make it go.
9741 	 */
9742 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9743 		list_del(&event->migrate_entry);
9744 		if (event->state >= PERF_EVENT_STATE_OFF)
9745 			event->state = PERF_EVENT_STATE_INACTIVE;
9746 		account_event_cpu(event, dst_cpu);
9747 		perf_install_in_context(dst_ctx, event, dst_cpu);
9748 		get_ctx(dst_ctx);
9749 	}
9750 	mutex_unlock(&dst_ctx->mutex);
9751 	mutex_unlock(&src_ctx->mutex);
9752 }
9753 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9754 
9755 static void sync_child_event(struct perf_event *child_event,
9756 			       struct task_struct *child)
9757 {
9758 	struct perf_event *parent_event = child_event->parent;
9759 	u64 child_val;
9760 
9761 	if (child_event->attr.inherit_stat)
9762 		perf_event_read_event(child_event, child);
9763 
9764 	child_val = perf_event_count(child_event);
9765 
9766 	/*
9767 	 * Add back the child's count to the parent's count:
9768 	 */
9769 	atomic64_add(child_val, &parent_event->child_count);
9770 	atomic64_add(child_event->total_time_enabled,
9771 		     &parent_event->child_total_time_enabled);
9772 	atomic64_add(child_event->total_time_running,
9773 		     &parent_event->child_total_time_running);
9774 }
9775 
9776 static void
9777 perf_event_exit_event(struct perf_event *child_event,
9778 		      struct perf_event_context *child_ctx,
9779 		      struct task_struct *child)
9780 {
9781 	struct perf_event *parent_event = child_event->parent;
9782 
9783 	/*
9784 	 * Do not destroy the 'original' grouping; because of the context
9785 	 * switch optimization the original events could've ended up in a
9786 	 * random child task.
9787 	 *
9788 	 * If we were to destroy the original group, all group related
9789 	 * operations would cease to function properly after this random
9790 	 * child dies.
9791 	 *
9792 	 * Do destroy all inherited groups, we don't care about those
9793 	 * and being thorough is better.
9794 	 */
9795 	raw_spin_lock_irq(&child_ctx->lock);
9796 	WARN_ON_ONCE(child_ctx->is_active);
9797 
9798 	if (parent_event)
9799 		perf_group_detach(child_event);
9800 	list_del_event(child_event, child_ctx);
9801 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9802 	raw_spin_unlock_irq(&child_ctx->lock);
9803 
9804 	/*
9805 	 * Parent events are governed by their filedesc, retain them.
9806 	 */
9807 	if (!parent_event) {
9808 		perf_event_wakeup(child_event);
9809 		return;
9810 	}
9811 	/*
9812 	 * Child events can be cleaned up.
9813 	 */
9814 
9815 	sync_child_event(child_event, child);
9816 
9817 	/*
9818 	 * Remove this event from the parent's list
9819 	 */
9820 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9821 	mutex_lock(&parent_event->child_mutex);
9822 	list_del_init(&child_event->child_list);
9823 	mutex_unlock(&parent_event->child_mutex);
9824 
9825 	/*
9826 	 * Kick perf_poll() for is_event_hup().
9827 	 */
9828 	perf_event_wakeup(parent_event);
9829 	free_event(child_event);
9830 	put_event(parent_event);
9831 }
9832 
9833 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9834 {
9835 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9836 	struct perf_event *child_event, *next;
9837 
9838 	WARN_ON_ONCE(child != current);
9839 
9840 	child_ctx = perf_pin_task_context(child, ctxn);
9841 	if (!child_ctx)
9842 		return;
9843 
9844 	/*
9845 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
9846 	 * ctx::mutex over the entire thing. This serializes against almost
9847 	 * everything that wants to access the ctx.
9848 	 *
9849 	 * The exception is sys_perf_event_open() /
9850 	 * perf_event_create_kernel_count() which does find_get_context()
9851 	 * without ctx::mutex (it cannot because of the move_group double mutex
9852 	 * lock thing). See the comments in perf_install_in_context().
9853 	 */
9854 	mutex_lock(&child_ctx->mutex);
9855 
9856 	/*
9857 	 * In a single ctx::lock section, de-schedule the events and detach the
9858 	 * context from the task such that we cannot ever get it scheduled back
9859 	 * in.
9860 	 */
9861 	raw_spin_lock_irq(&child_ctx->lock);
9862 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9863 
9864 	/*
9865 	 * Now that the context is inactive, destroy the task <-> ctx relation
9866 	 * and mark the context dead.
9867 	 */
9868 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9869 	put_ctx(child_ctx); /* cannot be last */
9870 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9871 	put_task_struct(current); /* cannot be last */
9872 
9873 	clone_ctx = unclone_ctx(child_ctx);
9874 	raw_spin_unlock_irq(&child_ctx->lock);
9875 
9876 	if (clone_ctx)
9877 		put_ctx(clone_ctx);
9878 
9879 	/*
9880 	 * Report the task dead after unscheduling the events so that we
9881 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
9882 	 * get a few PERF_RECORD_READ events.
9883 	 */
9884 	perf_event_task(child, child_ctx, 0);
9885 
9886 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9887 		perf_event_exit_event(child_event, child_ctx, child);
9888 
9889 	mutex_unlock(&child_ctx->mutex);
9890 
9891 	put_ctx(child_ctx);
9892 }
9893 
9894 /*
9895  * When a child task exits, feed back event values to parent events.
9896  *
9897  * Can be called with cred_guard_mutex held when called from
9898  * install_exec_creds().
9899  */
9900 void perf_event_exit_task(struct task_struct *child)
9901 {
9902 	struct perf_event *event, *tmp;
9903 	int ctxn;
9904 
9905 	mutex_lock(&child->perf_event_mutex);
9906 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9907 				 owner_entry) {
9908 		list_del_init(&event->owner_entry);
9909 
9910 		/*
9911 		 * Ensure the list deletion is visible before we clear
9912 		 * the owner, closes a race against perf_release() where
9913 		 * we need to serialize on the owner->perf_event_mutex.
9914 		 */
9915 		smp_store_release(&event->owner, NULL);
9916 	}
9917 	mutex_unlock(&child->perf_event_mutex);
9918 
9919 	for_each_task_context_nr(ctxn)
9920 		perf_event_exit_task_context(child, ctxn);
9921 
9922 	/*
9923 	 * The perf_event_exit_task_context calls perf_event_task
9924 	 * with child's task_ctx, which generates EXIT events for
9925 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
9926 	 * At this point we need to send EXIT events to cpu contexts.
9927 	 */
9928 	perf_event_task(child, NULL, 0);
9929 }
9930 
9931 static void perf_free_event(struct perf_event *event,
9932 			    struct perf_event_context *ctx)
9933 {
9934 	struct perf_event *parent = event->parent;
9935 
9936 	if (WARN_ON_ONCE(!parent))
9937 		return;
9938 
9939 	mutex_lock(&parent->child_mutex);
9940 	list_del_init(&event->child_list);
9941 	mutex_unlock(&parent->child_mutex);
9942 
9943 	put_event(parent);
9944 
9945 	raw_spin_lock_irq(&ctx->lock);
9946 	perf_group_detach(event);
9947 	list_del_event(event, ctx);
9948 	raw_spin_unlock_irq(&ctx->lock);
9949 	free_event(event);
9950 }
9951 
9952 /*
9953  * Free an unexposed, unused context as created by inheritance by
9954  * perf_event_init_task below, used by fork() in case of fail.
9955  *
9956  * Not all locks are strictly required, but take them anyway to be nice and
9957  * help out with the lockdep assertions.
9958  */
9959 void perf_event_free_task(struct task_struct *task)
9960 {
9961 	struct perf_event_context *ctx;
9962 	struct perf_event *event, *tmp;
9963 	int ctxn;
9964 
9965 	for_each_task_context_nr(ctxn) {
9966 		ctx = task->perf_event_ctxp[ctxn];
9967 		if (!ctx)
9968 			continue;
9969 
9970 		mutex_lock(&ctx->mutex);
9971 again:
9972 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9973 				group_entry)
9974 			perf_free_event(event, ctx);
9975 
9976 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9977 				group_entry)
9978 			perf_free_event(event, ctx);
9979 
9980 		if (!list_empty(&ctx->pinned_groups) ||
9981 				!list_empty(&ctx->flexible_groups))
9982 			goto again;
9983 
9984 		mutex_unlock(&ctx->mutex);
9985 
9986 		put_ctx(ctx);
9987 	}
9988 }
9989 
9990 void perf_event_delayed_put(struct task_struct *task)
9991 {
9992 	int ctxn;
9993 
9994 	for_each_task_context_nr(ctxn)
9995 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9996 }
9997 
9998 struct file *perf_event_get(unsigned int fd)
9999 {
10000 	struct file *file;
10001 
10002 	file = fget_raw(fd);
10003 	if (!file)
10004 		return ERR_PTR(-EBADF);
10005 
10006 	if (file->f_op != &perf_fops) {
10007 		fput(file);
10008 		return ERR_PTR(-EBADF);
10009 	}
10010 
10011 	return file;
10012 }
10013 
10014 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10015 {
10016 	if (!event)
10017 		return ERR_PTR(-EINVAL);
10018 
10019 	return &event->attr;
10020 }
10021 
10022 /*
10023  * inherit a event from parent task to child task:
10024  */
10025 static struct perf_event *
10026 inherit_event(struct perf_event *parent_event,
10027 	      struct task_struct *parent,
10028 	      struct perf_event_context *parent_ctx,
10029 	      struct task_struct *child,
10030 	      struct perf_event *group_leader,
10031 	      struct perf_event_context *child_ctx)
10032 {
10033 	enum perf_event_active_state parent_state = parent_event->state;
10034 	struct perf_event *child_event;
10035 	unsigned long flags;
10036 
10037 	/*
10038 	 * Instead of creating recursive hierarchies of events,
10039 	 * we link inherited events back to the original parent,
10040 	 * which has a filp for sure, which we use as the reference
10041 	 * count:
10042 	 */
10043 	if (parent_event->parent)
10044 		parent_event = parent_event->parent;
10045 
10046 	child_event = perf_event_alloc(&parent_event->attr,
10047 					   parent_event->cpu,
10048 					   child,
10049 					   group_leader, parent_event,
10050 					   NULL, NULL, -1);
10051 	if (IS_ERR(child_event))
10052 		return child_event;
10053 
10054 	/*
10055 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10056 	 * must be under the same lock in order to serialize against
10057 	 * perf_event_release_kernel(), such that either we must observe
10058 	 * is_orphaned_event() or they will observe us on the child_list.
10059 	 */
10060 	mutex_lock(&parent_event->child_mutex);
10061 	if (is_orphaned_event(parent_event) ||
10062 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10063 		mutex_unlock(&parent_event->child_mutex);
10064 		free_event(child_event);
10065 		return NULL;
10066 	}
10067 
10068 	get_ctx(child_ctx);
10069 
10070 	/*
10071 	 * Make the child state follow the state of the parent event,
10072 	 * not its attr.disabled bit.  We hold the parent's mutex,
10073 	 * so we won't race with perf_event_{en, dis}able_family.
10074 	 */
10075 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10076 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10077 	else
10078 		child_event->state = PERF_EVENT_STATE_OFF;
10079 
10080 	if (parent_event->attr.freq) {
10081 		u64 sample_period = parent_event->hw.sample_period;
10082 		struct hw_perf_event *hwc = &child_event->hw;
10083 
10084 		hwc->sample_period = sample_period;
10085 		hwc->last_period   = sample_period;
10086 
10087 		local64_set(&hwc->period_left, sample_period);
10088 	}
10089 
10090 	child_event->ctx = child_ctx;
10091 	child_event->overflow_handler = parent_event->overflow_handler;
10092 	child_event->overflow_handler_context
10093 		= parent_event->overflow_handler_context;
10094 
10095 	/*
10096 	 * Precalculate sample_data sizes
10097 	 */
10098 	perf_event__header_size(child_event);
10099 	perf_event__id_header_size(child_event);
10100 
10101 	/*
10102 	 * Link it up in the child's context:
10103 	 */
10104 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10105 	add_event_to_ctx(child_event, child_ctx);
10106 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10107 
10108 	/*
10109 	 * Link this into the parent event's child list
10110 	 */
10111 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10112 	mutex_unlock(&parent_event->child_mutex);
10113 
10114 	return child_event;
10115 }
10116 
10117 static int inherit_group(struct perf_event *parent_event,
10118 	      struct task_struct *parent,
10119 	      struct perf_event_context *parent_ctx,
10120 	      struct task_struct *child,
10121 	      struct perf_event_context *child_ctx)
10122 {
10123 	struct perf_event *leader;
10124 	struct perf_event *sub;
10125 	struct perf_event *child_ctr;
10126 
10127 	leader = inherit_event(parent_event, parent, parent_ctx,
10128 				 child, NULL, child_ctx);
10129 	if (IS_ERR(leader))
10130 		return PTR_ERR(leader);
10131 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10132 		child_ctr = inherit_event(sub, parent, parent_ctx,
10133 					    child, leader, child_ctx);
10134 		if (IS_ERR(child_ctr))
10135 			return PTR_ERR(child_ctr);
10136 	}
10137 	return 0;
10138 }
10139 
10140 static int
10141 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10142 		   struct perf_event_context *parent_ctx,
10143 		   struct task_struct *child, int ctxn,
10144 		   int *inherited_all)
10145 {
10146 	int ret;
10147 	struct perf_event_context *child_ctx;
10148 
10149 	if (!event->attr.inherit) {
10150 		*inherited_all = 0;
10151 		return 0;
10152 	}
10153 
10154 	child_ctx = child->perf_event_ctxp[ctxn];
10155 	if (!child_ctx) {
10156 		/*
10157 		 * This is executed from the parent task context, so
10158 		 * inherit events that have been marked for cloning.
10159 		 * First allocate and initialize a context for the
10160 		 * child.
10161 		 */
10162 
10163 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10164 		if (!child_ctx)
10165 			return -ENOMEM;
10166 
10167 		child->perf_event_ctxp[ctxn] = child_ctx;
10168 	}
10169 
10170 	ret = inherit_group(event, parent, parent_ctx,
10171 			    child, child_ctx);
10172 
10173 	if (ret)
10174 		*inherited_all = 0;
10175 
10176 	return ret;
10177 }
10178 
10179 /*
10180  * Initialize the perf_event context in task_struct
10181  */
10182 static int perf_event_init_context(struct task_struct *child, int ctxn)
10183 {
10184 	struct perf_event_context *child_ctx, *parent_ctx;
10185 	struct perf_event_context *cloned_ctx;
10186 	struct perf_event *event;
10187 	struct task_struct *parent = current;
10188 	int inherited_all = 1;
10189 	unsigned long flags;
10190 	int ret = 0;
10191 
10192 	if (likely(!parent->perf_event_ctxp[ctxn]))
10193 		return 0;
10194 
10195 	/*
10196 	 * If the parent's context is a clone, pin it so it won't get
10197 	 * swapped under us.
10198 	 */
10199 	parent_ctx = perf_pin_task_context(parent, ctxn);
10200 	if (!parent_ctx)
10201 		return 0;
10202 
10203 	/*
10204 	 * No need to check if parent_ctx != NULL here; since we saw
10205 	 * it non-NULL earlier, the only reason for it to become NULL
10206 	 * is if we exit, and since we're currently in the middle of
10207 	 * a fork we can't be exiting at the same time.
10208 	 */
10209 
10210 	/*
10211 	 * Lock the parent list. No need to lock the child - not PID
10212 	 * hashed yet and not running, so nobody can access it.
10213 	 */
10214 	mutex_lock(&parent_ctx->mutex);
10215 
10216 	/*
10217 	 * We dont have to disable NMIs - we are only looking at
10218 	 * the list, not manipulating it:
10219 	 */
10220 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10221 		ret = inherit_task_group(event, parent, parent_ctx,
10222 					 child, ctxn, &inherited_all);
10223 		if (ret)
10224 			break;
10225 	}
10226 
10227 	/*
10228 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10229 	 * to allocations, but we need to prevent rotation because
10230 	 * rotate_ctx() will change the list from interrupt context.
10231 	 */
10232 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10233 	parent_ctx->rotate_disable = 1;
10234 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10235 
10236 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10237 		ret = inherit_task_group(event, parent, parent_ctx,
10238 					 child, ctxn, &inherited_all);
10239 		if (ret)
10240 			break;
10241 	}
10242 
10243 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10244 	parent_ctx->rotate_disable = 0;
10245 
10246 	child_ctx = child->perf_event_ctxp[ctxn];
10247 
10248 	if (child_ctx && inherited_all) {
10249 		/*
10250 		 * Mark the child context as a clone of the parent
10251 		 * context, or of whatever the parent is a clone of.
10252 		 *
10253 		 * Note that if the parent is a clone, the holding of
10254 		 * parent_ctx->lock avoids it from being uncloned.
10255 		 */
10256 		cloned_ctx = parent_ctx->parent_ctx;
10257 		if (cloned_ctx) {
10258 			child_ctx->parent_ctx = cloned_ctx;
10259 			child_ctx->parent_gen = parent_ctx->parent_gen;
10260 		} else {
10261 			child_ctx->parent_ctx = parent_ctx;
10262 			child_ctx->parent_gen = parent_ctx->generation;
10263 		}
10264 		get_ctx(child_ctx->parent_ctx);
10265 	}
10266 
10267 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10268 	mutex_unlock(&parent_ctx->mutex);
10269 
10270 	perf_unpin_context(parent_ctx);
10271 	put_ctx(parent_ctx);
10272 
10273 	return ret;
10274 }
10275 
10276 /*
10277  * Initialize the perf_event context in task_struct
10278  */
10279 int perf_event_init_task(struct task_struct *child)
10280 {
10281 	int ctxn, ret;
10282 
10283 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10284 	mutex_init(&child->perf_event_mutex);
10285 	INIT_LIST_HEAD(&child->perf_event_list);
10286 
10287 	for_each_task_context_nr(ctxn) {
10288 		ret = perf_event_init_context(child, ctxn);
10289 		if (ret) {
10290 			perf_event_free_task(child);
10291 			return ret;
10292 		}
10293 	}
10294 
10295 	return 0;
10296 }
10297 
10298 static void __init perf_event_init_all_cpus(void)
10299 {
10300 	struct swevent_htable *swhash;
10301 	int cpu;
10302 
10303 	for_each_possible_cpu(cpu) {
10304 		swhash = &per_cpu(swevent_htable, cpu);
10305 		mutex_init(&swhash->hlist_mutex);
10306 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10307 
10308 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10309 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10310 	}
10311 }
10312 
10313 static void perf_event_init_cpu(int cpu)
10314 {
10315 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10316 
10317 	mutex_lock(&swhash->hlist_mutex);
10318 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10319 		struct swevent_hlist *hlist;
10320 
10321 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10322 		WARN_ON(!hlist);
10323 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10324 	}
10325 	mutex_unlock(&swhash->hlist_mutex);
10326 }
10327 
10328 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10329 static void __perf_event_exit_context(void *__info)
10330 {
10331 	struct perf_event_context *ctx = __info;
10332 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10333 	struct perf_event *event;
10334 
10335 	raw_spin_lock(&ctx->lock);
10336 	list_for_each_entry(event, &ctx->event_list, event_entry)
10337 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10338 	raw_spin_unlock(&ctx->lock);
10339 }
10340 
10341 static void perf_event_exit_cpu_context(int cpu)
10342 {
10343 	struct perf_event_context *ctx;
10344 	struct pmu *pmu;
10345 	int idx;
10346 
10347 	idx = srcu_read_lock(&pmus_srcu);
10348 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10349 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10350 
10351 		mutex_lock(&ctx->mutex);
10352 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10353 		mutex_unlock(&ctx->mutex);
10354 	}
10355 	srcu_read_unlock(&pmus_srcu, idx);
10356 }
10357 
10358 static void perf_event_exit_cpu(int cpu)
10359 {
10360 	perf_event_exit_cpu_context(cpu);
10361 }
10362 #else
10363 static inline void perf_event_exit_cpu(int cpu) { }
10364 #endif
10365 
10366 static int
10367 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10368 {
10369 	int cpu;
10370 
10371 	for_each_online_cpu(cpu)
10372 		perf_event_exit_cpu(cpu);
10373 
10374 	return NOTIFY_OK;
10375 }
10376 
10377 /*
10378  * Run the perf reboot notifier at the very last possible moment so that
10379  * the generic watchdog code runs as long as possible.
10380  */
10381 static struct notifier_block perf_reboot_notifier = {
10382 	.notifier_call = perf_reboot,
10383 	.priority = INT_MIN,
10384 };
10385 
10386 static int
10387 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10388 {
10389 	unsigned int cpu = (long)hcpu;
10390 
10391 	switch (action & ~CPU_TASKS_FROZEN) {
10392 
10393 	case CPU_UP_PREPARE:
10394 		/*
10395 		 * This must be done before the CPU comes alive, because the
10396 		 * moment we can run tasks we can encounter (software) events.
10397 		 *
10398 		 * Specifically, someone can have inherited events on kthreadd
10399 		 * or a pre-existing worker thread that gets re-bound.
10400 		 */
10401 		perf_event_init_cpu(cpu);
10402 		break;
10403 
10404 	case CPU_DOWN_PREPARE:
10405 		/*
10406 		 * This must be done before the CPU dies because after that an
10407 		 * active event might want to IPI the CPU and that'll not work
10408 		 * so great for dead CPUs.
10409 		 *
10410 		 * XXX smp_call_function_single() return -ENXIO without a warn
10411 		 * so we could possibly deal with this.
10412 		 *
10413 		 * This is safe against new events arriving because
10414 		 * sys_perf_event_open() serializes against hotplug using
10415 		 * get_online_cpus().
10416 		 */
10417 		perf_event_exit_cpu(cpu);
10418 		break;
10419 	default:
10420 		break;
10421 	}
10422 
10423 	return NOTIFY_OK;
10424 }
10425 
10426 void __init perf_event_init(void)
10427 {
10428 	int ret;
10429 
10430 	idr_init(&pmu_idr);
10431 
10432 	perf_event_init_all_cpus();
10433 	init_srcu_struct(&pmus_srcu);
10434 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10435 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10436 	perf_pmu_register(&perf_task_clock, NULL, -1);
10437 	perf_tp_register();
10438 	perf_cpu_notifier(perf_cpu_notify);
10439 	register_reboot_notifier(&perf_reboot_notifier);
10440 
10441 	ret = init_hw_breakpoint();
10442 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10443 
10444 	/*
10445 	 * Build time assertion that we keep the data_head at the intended
10446 	 * location.  IOW, validation we got the __reserved[] size right.
10447 	 */
10448 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10449 		     != 1024);
10450 }
10451 
10452 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10453 			      char *page)
10454 {
10455 	struct perf_pmu_events_attr *pmu_attr =
10456 		container_of(attr, struct perf_pmu_events_attr, attr);
10457 
10458 	if (pmu_attr->event_str)
10459 		return sprintf(page, "%s\n", pmu_attr->event_str);
10460 
10461 	return 0;
10462 }
10463 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10464 
10465 static int __init perf_event_sysfs_init(void)
10466 {
10467 	struct pmu *pmu;
10468 	int ret;
10469 
10470 	mutex_lock(&pmus_lock);
10471 
10472 	ret = bus_register(&pmu_bus);
10473 	if (ret)
10474 		goto unlock;
10475 
10476 	list_for_each_entry(pmu, &pmus, entry) {
10477 		if (!pmu->name || pmu->type < 0)
10478 			continue;
10479 
10480 		ret = pmu_dev_alloc(pmu);
10481 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10482 	}
10483 	pmu_bus_running = 1;
10484 	ret = 0;
10485 
10486 unlock:
10487 	mutex_unlock(&pmus_lock);
10488 
10489 	return ret;
10490 }
10491 device_initcall(perf_event_sysfs_init);
10492 
10493 #ifdef CONFIG_CGROUP_PERF
10494 static struct cgroup_subsys_state *
10495 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10496 {
10497 	struct perf_cgroup *jc;
10498 
10499 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10500 	if (!jc)
10501 		return ERR_PTR(-ENOMEM);
10502 
10503 	jc->info = alloc_percpu(struct perf_cgroup_info);
10504 	if (!jc->info) {
10505 		kfree(jc);
10506 		return ERR_PTR(-ENOMEM);
10507 	}
10508 
10509 	return &jc->css;
10510 }
10511 
10512 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10513 {
10514 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10515 
10516 	free_percpu(jc->info);
10517 	kfree(jc);
10518 }
10519 
10520 static int __perf_cgroup_move(void *info)
10521 {
10522 	struct task_struct *task = info;
10523 	rcu_read_lock();
10524 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10525 	rcu_read_unlock();
10526 	return 0;
10527 }
10528 
10529 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10530 {
10531 	struct task_struct *task;
10532 	struct cgroup_subsys_state *css;
10533 
10534 	cgroup_taskset_for_each(task, css, tset)
10535 		task_function_call(task, __perf_cgroup_move, task);
10536 }
10537 
10538 struct cgroup_subsys perf_event_cgrp_subsys = {
10539 	.css_alloc	= perf_cgroup_css_alloc,
10540 	.css_free	= perf_cgroup_css_free,
10541 	.attach		= perf_cgroup_attach,
10542 };
10543 #endif /* CONFIG_CGROUP_PERF */
10544