1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_local(struct perf_event *event, event_f func, void *data) 246 { 247 struct event_function_struct efs = { 248 .event = event, 249 .func = func, 250 .data = data, 251 }; 252 253 int ret = event_function(&efs); 254 WARN_ON_ONCE(ret); 255 } 256 257 static void event_function_call(struct perf_event *event, event_f func, void *data) 258 { 259 struct perf_event_context *ctx = event->ctx; 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 261 struct event_function_struct efs = { 262 .event = event, 263 .func = func, 264 .data = data, 265 }; 266 267 if (!event->parent) { 268 /* 269 * If this is a !child event, we must hold ctx::mutex to 270 * stabilize the the event->ctx relation. See 271 * perf_event_ctx_lock(). 272 */ 273 lockdep_assert_held(&ctx->mutex); 274 } 275 276 if (!task) { 277 cpu_function_call(event->cpu, event_function, &efs); 278 return; 279 } 280 281 if (task == TASK_TOMBSTONE) 282 return; 283 284 again: 285 if (!task_function_call(task, event_function, &efs)) 286 return; 287 288 raw_spin_lock_irq(&ctx->lock); 289 /* 290 * Reload the task pointer, it might have been changed by 291 * a concurrent perf_event_context_sched_out(). 292 */ 293 task = ctx->task; 294 if (task == TASK_TOMBSTONE) { 295 raw_spin_unlock_irq(&ctx->lock); 296 return; 297 } 298 if (ctx->is_active) { 299 raw_spin_unlock_irq(&ctx->lock); 300 goto again; 301 } 302 func(event, NULL, ctx, data); 303 raw_spin_unlock_irq(&ctx->lock); 304 } 305 306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 307 PERF_FLAG_FD_OUTPUT |\ 308 PERF_FLAG_PID_CGROUP |\ 309 PERF_FLAG_FD_CLOEXEC) 310 311 /* 312 * branch priv levels that need permission checks 313 */ 314 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 315 (PERF_SAMPLE_BRANCH_KERNEL |\ 316 PERF_SAMPLE_BRANCH_HV) 317 318 enum event_type_t { 319 EVENT_FLEXIBLE = 0x1, 320 EVENT_PINNED = 0x2, 321 EVENT_TIME = 0x4, 322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 323 }; 324 325 /* 326 * perf_sched_events : >0 events exist 327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 328 */ 329 330 static void perf_sched_delayed(struct work_struct *work); 331 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 333 static DEFINE_MUTEX(perf_sched_mutex); 334 static atomic_t perf_sched_count; 335 336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 337 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 339 340 static atomic_t nr_mmap_events __read_mostly; 341 static atomic_t nr_comm_events __read_mostly; 342 static atomic_t nr_task_events __read_mostly; 343 static atomic_t nr_freq_events __read_mostly; 344 static atomic_t nr_switch_events __read_mostly; 345 346 static LIST_HEAD(pmus); 347 static DEFINE_MUTEX(pmus_lock); 348 static struct srcu_struct pmus_srcu; 349 350 /* 351 * perf event paranoia level: 352 * -1 - not paranoid at all 353 * 0 - disallow raw tracepoint access for unpriv 354 * 1 - disallow cpu events for unpriv 355 * 2 - disallow kernel profiling for unpriv 356 */ 357 int sysctl_perf_event_paranoid __read_mostly = 2; 358 359 /* Minimum for 512 kiB + 1 user control page */ 360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 361 362 /* 363 * max perf event sample rate 364 */ 365 #define DEFAULT_MAX_SAMPLE_RATE 100000 366 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 367 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 368 369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 370 371 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 372 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 373 374 static int perf_sample_allowed_ns __read_mostly = 375 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 376 377 static void update_perf_cpu_limits(void) 378 { 379 u64 tmp = perf_sample_period_ns; 380 381 tmp *= sysctl_perf_cpu_time_max_percent; 382 tmp = div_u64(tmp, 100); 383 if (!tmp) 384 tmp = 1; 385 386 WRITE_ONCE(perf_sample_allowed_ns, tmp); 387 } 388 389 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 390 391 int perf_proc_update_handler(struct ctl_table *table, int write, 392 void __user *buffer, size_t *lenp, 393 loff_t *ppos) 394 { 395 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 396 397 if (ret || !write) 398 return ret; 399 400 /* 401 * If throttling is disabled don't allow the write: 402 */ 403 if (sysctl_perf_cpu_time_max_percent == 100 || 404 sysctl_perf_cpu_time_max_percent == 0) 405 return -EINVAL; 406 407 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 408 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 409 update_perf_cpu_limits(); 410 411 return 0; 412 } 413 414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 415 416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 417 void __user *buffer, size_t *lenp, 418 loff_t *ppos) 419 { 420 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 421 422 if (ret || !write) 423 return ret; 424 425 if (sysctl_perf_cpu_time_max_percent == 100 || 426 sysctl_perf_cpu_time_max_percent == 0) { 427 printk(KERN_WARNING 428 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 429 WRITE_ONCE(perf_sample_allowed_ns, 0); 430 } else { 431 update_perf_cpu_limits(); 432 } 433 434 return 0; 435 } 436 437 /* 438 * perf samples are done in some very critical code paths (NMIs). 439 * If they take too much CPU time, the system can lock up and not 440 * get any real work done. This will drop the sample rate when 441 * we detect that events are taking too long. 442 */ 443 #define NR_ACCUMULATED_SAMPLES 128 444 static DEFINE_PER_CPU(u64, running_sample_length); 445 446 static u64 __report_avg; 447 static u64 __report_allowed; 448 449 static void perf_duration_warn(struct irq_work *w) 450 { 451 printk_ratelimited(KERN_WARNING 452 "perf: interrupt took too long (%lld > %lld), lowering " 453 "kernel.perf_event_max_sample_rate to %d\n", 454 __report_avg, __report_allowed, 455 sysctl_perf_event_sample_rate); 456 } 457 458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 459 460 void perf_sample_event_took(u64 sample_len_ns) 461 { 462 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 463 u64 running_len; 464 u64 avg_len; 465 u32 max; 466 467 if (max_len == 0) 468 return; 469 470 /* Decay the counter by 1 average sample. */ 471 running_len = __this_cpu_read(running_sample_length); 472 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 473 running_len += sample_len_ns; 474 __this_cpu_write(running_sample_length, running_len); 475 476 /* 477 * Note: this will be biased artifically low until we have 478 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 479 * from having to maintain a count. 480 */ 481 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 482 if (avg_len <= max_len) 483 return; 484 485 __report_avg = avg_len; 486 __report_allowed = max_len; 487 488 /* 489 * Compute a throttle threshold 25% below the current duration. 490 */ 491 avg_len += avg_len / 4; 492 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 493 if (avg_len < max) 494 max /= (u32)avg_len; 495 else 496 max = 1; 497 498 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 499 WRITE_ONCE(max_samples_per_tick, max); 500 501 sysctl_perf_event_sample_rate = max * HZ; 502 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 503 504 if (!irq_work_queue(&perf_duration_work)) { 505 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 506 "kernel.perf_event_max_sample_rate to %d\n", 507 __report_avg, __report_allowed, 508 sysctl_perf_event_sample_rate); 509 } 510 } 511 512 static atomic64_t perf_event_id; 513 514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 515 enum event_type_t event_type); 516 517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 518 enum event_type_t event_type, 519 struct task_struct *task); 520 521 static void update_context_time(struct perf_event_context *ctx); 522 static u64 perf_event_time(struct perf_event *event); 523 524 void __weak perf_event_print_debug(void) { } 525 526 extern __weak const char *perf_pmu_name(void) 527 { 528 return "pmu"; 529 } 530 531 static inline u64 perf_clock(void) 532 { 533 return local_clock(); 534 } 535 536 static inline u64 perf_event_clock(struct perf_event *event) 537 { 538 return event->clock(); 539 } 540 541 #ifdef CONFIG_CGROUP_PERF 542 543 static inline bool 544 perf_cgroup_match(struct perf_event *event) 545 { 546 struct perf_event_context *ctx = event->ctx; 547 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 548 549 /* @event doesn't care about cgroup */ 550 if (!event->cgrp) 551 return true; 552 553 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 554 if (!cpuctx->cgrp) 555 return false; 556 557 /* 558 * Cgroup scoping is recursive. An event enabled for a cgroup is 559 * also enabled for all its descendant cgroups. If @cpuctx's 560 * cgroup is a descendant of @event's (the test covers identity 561 * case), it's a match. 562 */ 563 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 564 event->cgrp->css.cgroup); 565 } 566 567 static inline void perf_detach_cgroup(struct perf_event *event) 568 { 569 css_put(&event->cgrp->css); 570 event->cgrp = NULL; 571 } 572 573 static inline int is_cgroup_event(struct perf_event *event) 574 { 575 return event->cgrp != NULL; 576 } 577 578 static inline u64 perf_cgroup_event_time(struct perf_event *event) 579 { 580 struct perf_cgroup_info *t; 581 582 t = per_cpu_ptr(event->cgrp->info, event->cpu); 583 return t->time; 584 } 585 586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 587 { 588 struct perf_cgroup_info *info; 589 u64 now; 590 591 now = perf_clock(); 592 593 info = this_cpu_ptr(cgrp->info); 594 595 info->time += now - info->timestamp; 596 info->timestamp = now; 597 } 598 599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 600 { 601 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 602 if (cgrp_out) 603 __update_cgrp_time(cgrp_out); 604 } 605 606 static inline void update_cgrp_time_from_event(struct perf_event *event) 607 { 608 struct perf_cgroup *cgrp; 609 610 /* 611 * ensure we access cgroup data only when needed and 612 * when we know the cgroup is pinned (css_get) 613 */ 614 if (!is_cgroup_event(event)) 615 return; 616 617 cgrp = perf_cgroup_from_task(current, event->ctx); 618 /* 619 * Do not update time when cgroup is not active 620 */ 621 if (cgrp == event->cgrp) 622 __update_cgrp_time(event->cgrp); 623 } 624 625 static inline void 626 perf_cgroup_set_timestamp(struct task_struct *task, 627 struct perf_event_context *ctx) 628 { 629 struct perf_cgroup *cgrp; 630 struct perf_cgroup_info *info; 631 632 /* 633 * ctx->lock held by caller 634 * ensure we do not access cgroup data 635 * unless we have the cgroup pinned (css_get) 636 */ 637 if (!task || !ctx->nr_cgroups) 638 return; 639 640 cgrp = perf_cgroup_from_task(task, ctx); 641 info = this_cpu_ptr(cgrp->info); 642 info->timestamp = ctx->timestamp; 643 } 644 645 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 646 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 647 648 /* 649 * reschedule events based on the cgroup constraint of task. 650 * 651 * mode SWOUT : schedule out everything 652 * mode SWIN : schedule in based on cgroup for next 653 */ 654 static void perf_cgroup_switch(struct task_struct *task, int mode) 655 { 656 struct perf_cpu_context *cpuctx; 657 struct pmu *pmu; 658 unsigned long flags; 659 660 /* 661 * disable interrupts to avoid geting nr_cgroup 662 * changes via __perf_event_disable(). Also 663 * avoids preemption. 664 */ 665 local_irq_save(flags); 666 667 /* 668 * we reschedule only in the presence of cgroup 669 * constrained events. 670 */ 671 672 list_for_each_entry_rcu(pmu, &pmus, entry) { 673 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 674 if (cpuctx->unique_pmu != pmu) 675 continue; /* ensure we process each cpuctx once */ 676 677 /* 678 * perf_cgroup_events says at least one 679 * context on this CPU has cgroup events. 680 * 681 * ctx->nr_cgroups reports the number of cgroup 682 * events for a context. 683 */ 684 if (cpuctx->ctx.nr_cgroups > 0) { 685 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 686 perf_pmu_disable(cpuctx->ctx.pmu); 687 688 if (mode & PERF_CGROUP_SWOUT) { 689 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 690 /* 691 * must not be done before ctxswout due 692 * to event_filter_match() in event_sched_out() 693 */ 694 cpuctx->cgrp = NULL; 695 } 696 697 if (mode & PERF_CGROUP_SWIN) { 698 WARN_ON_ONCE(cpuctx->cgrp); 699 /* 700 * set cgrp before ctxsw in to allow 701 * event_filter_match() to not have to pass 702 * task around 703 * we pass the cpuctx->ctx to perf_cgroup_from_task() 704 * because cgorup events are only per-cpu 705 */ 706 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 707 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 708 } 709 perf_pmu_enable(cpuctx->ctx.pmu); 710 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 711 } 712 } 713 714 local_irq_restore(flags); 715 } 716 717 static inline void perf_cgroup_sched_out(struct task_struct *task, 718 struct task_struct *next) 719 { 720 struct perf_cgroup *cgrp1; 721 struct perf_cgroup *cgrp2 = NULL; 722 723 rcu_read_lock(); 724 /* 725 * we come here when we know perf_cgroup_events > 0 726 * we do not need to pass the ctx here because we know 727 * we are holding the rcu lock 728 */ 729 cgrp1 = perf_cgroup_from_task(task, NULL); 730 cgrp2 = perf_cgroup_from_task(next, NULL); 731 732 /* 733 * only schedule out current cgroup events if we know 734 * that we are switching to a different cgroup. Otherwise, 735 * do no touch the cgroup events. 736 */ 737 if (cgrp1 != cgrp2) 738 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 739 740 rcu_read_unlock(); 741 } 742 743 static inline void perf_cgroup_sched_in(struct task_struct *prev, 744 struct task_struct *task) 745 { 746 struct perf_cgroup *cgrp1; 747 struct perf_cgroup *cgrp2 = NULL; 748 749 rcu_read_lock(); 750 /* 751 * we come here when we know perf_cgroup_events > 0 752 * we do not need to pass the ctx here because we know 753 * we are holding the rcu lock 754 */ 755 cgrp1 = perf_cgroup_from_task(task, NULL); 756 cgrp2 = perf_cgroup_from_task(prev, NULL); 757 758 /* 759 * only need to schedule in cgroup events if we are changing 760 * cgroup during ctxsw. Cgroup events were not scheduled 761 * out of ctxsw out if that was not the case. 762 */ 763 if (cgrp1 != cgrp2) 764 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 765 766 rcu_read_unlock(); 767 } 768 769 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 770 struct perf_event_attr *attr, 771 struct perf_event *group_leader) 772 { 773 struct perf_cgroup *cgrp; 774 struct cgroup_subsys_state *css; 775 struct fd f = fdget(fd); 776 int ret = 0; 777 778 if (!f.file) 779 return -EBADF; 780 781 css = css_tryget_online_from_dir(f.file->f_path.dentry, 782 &perf_event_cgrp_subsys); 783 if (IS_ERR(css)) { 784 ret = PTR_ERR(css); 785 goto out; 786 } 787 788 cgrp = container_of(css, struct perf_cgroup, css); 789 event->cgrp = cgrp; 790 791 /* 792 * all events in a group must monitor 793 * the same cgroup because a task belongs 794 * to only one perf cgroup at a time 795 */ 796 if (group_leader && group_leader->cgrp != cgrp) { 797 perf_detach_cgroup(event); 798 ret = -EINVAL; 799 } 800 out: 801 fdput(f); 802 return ret; 803 } 804 805 static inline void 806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 807 { 808 struct perf_cgroup_info *t; 809 t = per_cpu_ptr(event->cgrp->info, event->cpu); 810 event->shadow_ctx_time = now - t->timestamp; 811 } 812 813 static inline void 814 perf_cgroup_defer_enabled(struct perf_event *event) 815 { 816 /* 817 * when the current task's perf cgroup does not match 818 * the event's, we need to remember to call the 819 * perf_mark_enable() function the first time a task with 820 * a matching perf cgroup is scheduled in. 821 */ 822 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 823 event->cgrp_defer_enabled = 1; 824 } 825 826 static inline void 827 perf_cgroup_mark_enabled(struct perf_event *event, 828 struct perf_event_context *ctx) 829 { 830 struct perf_event *sub; 831 u64 tstamp = perf_event_time(event); 832 833 if (!event->cgrp_defer_enabled) 834 return; 835 836 event->cgrp_defer_enabled = 0; 837 838 event->tstamp_enabled = tstamp - event->total_time_enabled; 839 list_for_each_entry(sub, &event->sibling_list, group_entry) { 840 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 841 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 842 sub->cgrp_defer_enabled = 0; 843 } 844 } 845 } 846 #else /* !CONFIG_CGROUP_PERF */ 847 848 static inline bool 849 perf_cgroup_match(struct perf_event *event) 850 { 851 return true; 852 } 853 854 static inline void perf_detach_cgroup(struct perf_event *event) 855 {} 856 857 static inline int is_cgroup_event(struct perf_event *event) 858 { 859 return 0; 860 } 861 862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 863 { 864 return 0; 865 } 866 867 static inline void update_cgrp_time_from_event(struct perf_event *event) 868 { 869 } 870 871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 872 { 873 } 874 875 static inline void perf_cgroup_sched_out(struct task_struct *task, 876 struct task_struct *next) 877 { 878 } 879 880 static inline void perf_cgroup_sched_in(struct task_struct *prev, 881 struct task_struct *task) 882 { 883 } 884 885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 886 struct perf_event_attr *attr, 887 struct perf_event *group_leader) 888 { 889 return -EINVAL; 890 } 891 892 static inline void 893 perf_cgroup_set_timestamp(struct task_struct *task, 894 struct perf_event_context *ctx) 895 { 896 } 897 898 void 899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 900 { 901 } 902 903 static inline void 904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 905 { 906 } 907 908 static inline u64 perf_cgroup_event_time(struct perf_event *event) 909 { 910 return 0; 911 } 912 913 static inline void 914 perf_cgroup_defer_enabled(struct perf_event *event) 915 { 916 } 917 918 static inline void 919 perf_cgroup_mark_enabled(struct perf_event *event, 920 struct perf_event_context *ctx) 921 { 922 } 923 #endif 924 925 /* 926 * set default to be dependent on timer tick just 927 * like original code 928 */ 929 #define PERF_CPU_HRTIMER (1000 / HZ) 930 /* 931 * function must be called with interrupts disbled 932 */ 933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 934 { 935 struct perf_cpu_context *cpuctx; 936 int rotations = 0; 937 938 WARN_ON(!irqs_disabled()); 939 940 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 941 rotations = perf_rotate_context(cpuctx); 942 943 raw_spin_lock(&cpuctx->hrtimer_lock); 944 if (rotations) 945 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 946 else 947 cpuctx->hrtimer_active = 0; 948 raw_spin_unlock(&cpuctx->hrtimer_lock); 949 950 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 951 } 952 953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 954 { 955 struct hrtimer *timer = &cpuctx->hrtimer; 956 struct pmu *pmu = cpuctx->ctx.pmu; 957 u64 interval; 958 959 /* no multiplexing needed for SW PMU */ 960 if (pmu->task_ctx_nr == perf_sw_context) 961 return; 962 963 /* 964 * check default is sane, if not set then force to 965 * default interval (1/tick) 966 */ 967 interval = pmu->hrtimer_interval_ms; 968 if (interval < 1) 969 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 970 971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 972 973 raw_spin_lock_init(&cpuctx->hrtimer_lock); 974 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 975 timer->function = perf_mux_hrtimer_handler; 976 } 977 978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 979 { 980 struct hrtimer *timer = &cpuctx->hrtimer; 981 struct pmu *pmu = cpuctx->ctx.pmu; 982 unsigned long flags; 983 984 /* not for SW PMU */ 985 if (pmu->task_ctx_nr == perf_sw_context) 986 return 0; 987 988 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 989 if (!cpuctx->hrtimer_active) { 990 cpuctx->hrtimer_active = 1; 991 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 992 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 993 } 994 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 995 996 return 0; 997 } 998 999 void perf_pmu_disable(struct pmu *pmu) 1000 { 1001 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1002 if (!(*count)++) 1003 pmu->pmu_disable(pmu); 1004 } 1005 1006 void perf_pmu_enable(struct pmu *pmu) 1007 { 1008 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1009 if (!--(*count)) 1010 pmu->pmu_enable(pmu); 1011 } 1012 1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1014 1015 /* 1016 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1017 * perf_event_task_tick() are fully serialized because they're strictly cpu 1018 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1019 * disabled, while perf_event_task_tick is called from IRQ context. 1020 */ 1021 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1022 { 1023 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1024 1025 WARN_ON(!irqs_disabled()); 1026 1027 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1028 1029 list_add(&ctx->active_ctx_list, head); 1030 } 1031 1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1033 { 1034 WARN_ON(!irqs_disabled()); 1035 1036 WARN_ON(list_empty(&ctx->active_ctx_list)); 1037 1038 list_del_init(&ctx->active_ctx_list); 1039 } 1040 1041 static void get_ctx(struct perf_event_context *ctx) 1042 { 1043 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1044 } 1045 1046 static void free_ctx(struct rcu_head *head) 1047 { 1048 struct perf_event_context *ctx; 1049 1050 ctx = container_of(head, struct perf_event_context, rcu_head); 1051 kfree(ctx->task_ctx_data); 1052 kfree(ctx); 1053 } 1054 1055 static void put_ctx(struct perf_event_context *ctx) 1056 { 1057 if (atomic_dec_and_test(&ctx->refcount)) { 1058 if (ctx->parent_ctx) 1059 put_ctx(ctx->parent_ctx); 1060 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1061 put_task_struct(ctx->task); 1062 call_rcu(&ctx->rcu_head, free_ctx); 1063 } 1064 } 1065 1066 /* 1067 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1068 * perf_pmu_migrate_context() we need some magic. 1069 * 1070 * Those places that change perf_event::ctx will hold both 1071 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1072 * 1073 * Lock ordering is by mutex address. There are two other sites where 1074 * perf_event_context::mutex nests and those are: 1075 * 1076 * - perf_event_exit_task_context() [ child , 0 ] 1077 * perf_event_exit_event() 1078 * put_event() [ parent, 1 ] 1079 * 1080 * - perf_event_init_context() [ parent, 0 ] 1081 * inherit_task_group() 1082 * inherit_group() 1083 * inherit_event() 1084 * perf_event_alloc() 1085 * perf_init_event() 1086 * perf_try_init_event() [ child , 1 ] 1087 * 1088 * While it appears there is an obvious deadlock here -- the parent and child 1089 * nesting levels are inverted between the two. This is in fact safe because 1090 * life-time rules separate them. That is an exiting task cannot fork, and a 1091 * spawning task cannot (yet) exit. 1092 * 1093 * But remember that that these are parent<->child context relations, and 1094 * migration does not affect children, therefore these two orderings should not 1095 * interact. 1096 * 1097 * The change in perf_event::ctx does not affect children (as claimed above) 1098 * because the sys_perf_event_open() case will install a new event and break 1099 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1100 * concerned with cpuctx and that doesn't have children. 1101 * 1102 * The places that change perf_event::ctx will issue: 1103 * 1104 * perf_remove_from_context(); 1105 * synchronize_rcu(); 1106 * perf_install_in_context(); 1107 * 1108 * to affect the change. The remove_from_context() + synchronize_rcu() should 1109 * quiesce the event, after which we can install it in the new location. This 1110 * means that only external vectors (perf_fops, prctl) can perturb the event 1111 * while in transit. Therefore all such accessors should also acquire 1112 * perf_event_context::mutex to serialize against this. 1113 * 1114 * However; because event->ctx can change while we're waiting to acquire 1115 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1116 * function. 1117 * 1118 * Lock order: 1119 * cred_guard_mutex 1120 * task_struct::perf_event_mutex 1121 * perf_event_context::mutex 1122 * perf_event::child_mutex; 1123 * perf_event_context::lock 1124 * perf_event::mmap_mutex 1125 * mmap_sem 1126 */ 1127 static struct perf_event_context * 1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1129 { 1130 struct perf_event_context *ctx; 1131 1132 again: 1133 rcu_read_lock(); 1134 ctx = ACCESS_ONCE(event->ctx); 1135 if (!atomic_inc_not_zero(&ctx->refcount)) { 1136 rcu_read_unlock(); 1137 goto again; 1138 } 1139 rcu_read_unlock(); 1140 1141 mutex_lock_nested(&ctx->mutex, nesting); 1142 if (event->ctx != ctx) { 1143 mutex_unlock(&ctx->mutex); 1144 put_ctx(ctx); 1145 goto again; 1146 } 1147 1148 return ctx; 1149 } 1150 1151 static inline struct perf_event_context * 1152 perf_event_ctx_lock(struct perf_event *event) 1153 { 1154 return perf_event_ctx_lock_nested(event, 0); 1155 } 1156 1157 static void perf_event_ctx_unlock(struct perf_event *event, 1158 struct perf_event_context *ctx) 1159 { 1160 mutex_unlock(&ctx->mutex); 1161 put_ctx(ctx); 1162 } 1163 1164 /* 1165 * This must be done under the ctx->lock, such as to serialize against 1166 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1167 * calling scheduler related locks and ctx->lock nests inside those. 1168 */ 1169 static __must_check struct perf_event_context * 1170 unclone_ctx(struct perf_event_context *ctx) 1171 { 1172 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1173 1174 lockdep_assert_held(&ctx->lock); 1175 1176 if (parent_ctx) 1177 ctx->parent_ctx = NULL; 1178 ctx->generation++; 1179 1180 return parent_ctx; 1181 } 1182 1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1184 { 1185 /* 1186 * only top level events have the pid namespace they were created in 1187 */ 1188 if (event->parent) 1189 event = event->parent; 1190 1191 return task_tgid_nr_ns(p, event->ns); 1192 } 1193 1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1195 { 1196 /* 1197 * only top level events have the pid namespace they were created in 1198 */ 1199 if (event->parent) 1200 event = event->parent; 1201 1202 return task_pid_nr_ns(p, event->ns); 1203 } 1204 1205 /* 1206 * If we inherit events we want to return the parent event id 1207 * to userspace. 1208 */ 1209 static u64 primary_event_id(struct perf_event *event) 1210 { 1211 u64 id = event->id; 1212 1213 if (event->parent) 1214 id = event->parent->id; 1215 1216 return id; 1217 } 1218 1219 /* 1220 * Get the perf_event_context for a task and lock it. 1221 * 1222 * This has to cope with with the fact that until it is locked, 1223 * the context could get moved to another task. 1224 */ 1225 static struct perf_event_context * 1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1227 { 1228 struct perf_event_context *ctx; 1229 1230 retry: 1231 /* 1232 * One of the few rules of preemptible RCU is that one cannot do 1233 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1234 * part of the read side critical section was irqs-enabled -- see 1235 * rcu_read_unlock_special(). 1236 * 1237 * Since ctx->lock nests under rq->lock we must ensure the entire read 1238 * side critical section has interrupts disabled. 1239 */ 1240 local_irq_save(*flags); 1241 rcu_read_lock(); 1242 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1243 if (ctx) { 1244 /* 1245 * If this context is a clone of another, it might 1246 * get swapped for another underneath us by 1247 * perf_event_task_sched_out, though the 1248 * rcu_read_lock() protects us from any context 1249 * getting freed. Lock the context and check if it 1250 * got swapped before we could get the lock, and retry 1251 * if so. If we locked the right context, then it 1252 * can't get swapped on us any more. 1253 */ 1254 raw_spin_lock(&ctx->lock); 1255 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1256 raw_spin_unlock(&ctx->lock); 1257 rcu_read_unlock(); 1258 local_irq_restore(*flags); 1259 goto retry; 1260 } 1261 1262 if (ctx->task == TASK_TOMBSTONE || 1263 !atomic_inc_not_zero(&ctx->refcount)) { 1264 raw_spin_unlock(&ctx->lock); 1265 ctx = NULL; 1266 } else { 1267 WARN_ON_ONCE(ctx->task != task); 1268 } 1269 } 1270 rcu_read_unlock(); 1271 if (!ctx) 1272 local_irq_restore(*flags); 1273 return ctx; 1274 } 1275 1276 /* 1277 * Get the context for a task and increment its pin_count so it 1278 * can't get swapped to another task. This also increments its 1279 * reference count so that the context can't get freed. 1280 */ 1281 static struct perf_event_context * 1282 perf_pin_task_context(struct task_struct *task, int ctxn) 1283 { 1284 struct perf_event_context *ctx; 1285 unsigned long flags; 1286 1287 ctx = perf_lock_task_context(task, ctxn, &flags); 1288 if (ctx) { 1289 ++ctx->pin_count; 1290 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1291 } 1292 return ctx; 1293 } 1294 1295 static void perf_unpin_context(struct perf_event_context *ctx) 1296 { 1297 unsigned long flags; 1298 1299 raw_spin_lock_irqsave(&ctx->lock, flags); 1300 --ctx->pin_count; 1301 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1302 } 1303 1304 /* 1305 * Update the record of the current time in a context. 1306 */ 1307 static void update_context_time(struct perf_event_context *ctx) 1308 { 1309 u64 now = perf_clock(); 1310 1311 ctx->time += now - ctx->timestamp; 1312 ctx->timestamp = now; 1313 } 1314 1315 static u64 perf_event_time(struct perf_event *event) 1316 { 1317 struct perf_event_context *ctx = event->ctx; 1318 1319 if (is_cgroup_event(event)) 1320 return perf_cgroup_event_time(event); 1321 1322 return ctx ? ctx->time : 0; 1323 } 1324 1325 /* 1326 * Update the total_time_enabled and total_time_running fields for a event. 1327 */ 1328 static void update_event_times(struct perf_event *event) 1329 { 1330 struct perf_event_context *ctx = event->ctx; 1331 u64 run_end; 1332 1333 lockdep_assert_held(&ctx->lock); 1334 1335 if (event->state < PERF_EVENT_STATE_INACTIVE || 1336 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1337 return; 1338 1339 /* 1340 * in cgroup mode, time_enabled represents 1341 * the time the event was enabled AND active 1342 * tasks were in the monitored cgroup. This is 1343 * independent of the activity of the context as 1344 * there may be a mix of cgroup and non-cgroup events. 1345 * 1346 * That is why we treat cgroup events differently 1347 * here. 1348 */ 1349 if (is_cgroup_event(event)) 1350 run_end = perf_cgroup_event_time(event); 1351 else if (ctx->is_active) 1352 run_end = ctx->time; 1353 else 1354 run_end = event->tstamp_stopped; 1355 1356 event->total_time_enabled = run_end - event->tstamp_enabled; 1357 1358 if (event->state == PERF_EVENT_STATE_INACTIVE) 1359 run_end = event->tstamp_stopped; 1360 else 1361 run_end = perf_event_time(event); 1362 1363 event->total_time_running = run_end - event->tstamp_running; 1364 1365 } 1366 1367 /* 1368 * Update total_time_enabled and total_time_running for all events in a group. 1369 */ 1370 static void update_group_times(struct perf_event *leader) 1371 { 1372 struct perf_event *event; 1373 1374 update_event_times(leader); 1375 list_for_each_entry(event, &leader->sibling_list, group_entry) 1376 update_event_times(event); 1377 } 1378 1379 static struct list_head * 1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1381 { 1382 if (event->attr.pinned) 1383 return &ctx->pinned_groups; 1384 else 1385 return &ctx->flexible_groups; 1386 } 1387 1388 /* 1389 * Add a event from the lists for its context. 1390 * Must be called with ctx->mutex and ctx->lock held. 1391 */ 1392 static void 1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1394 { 1395 lockdep_assert_held(&ctx->lock); 1396 1397 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1398 event->attach_state |= PERF_ATTACH_CONTEXT; 1399 1400 /* 1401 * If we're a stand alone event or group leader, we go to the context 1402 * list, group events are kept attached to the group so that 1403 * perf_group_detach can, at all times, locate all siblings. 1404 */ 1405 if (event->group_leader == event) { 1406 struct list_head *list; 1407 1408 if (is_software_event(event)) 1409 event->group_flags |= PERF_GROUP_SOFTWARE; 1410 1411 list = ctx_group_list(event, ctx); 1412 list_add_tail(&event->group_entry, list); 1413 } 1414 1415 if (is_cgroup_event(event)) 1416 ctx->nr_cgroups++; 1417 1418 list_add_rcu(&event->event_entry, &ctx->event_list); 1419 ctx->nr_events++; 1420 if (event->attr.inherit_stat) 1421 ctx->nr_stat++; 1422 1423 ctx->generation++; 1424 } 1425 1426 /* 1427 * Initialize event state based on the perf_event_attr::disabled. 1428 */ 1429 static inline void perf_event__state_init(struct perf_event *event) 1430 { 1431 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1432 PERF_EVENT_STATE_INACTIVE; 1433 } 1434 1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1436 { 1437 int entry = sizeof(u64); /* value */ 1438 int size = 0; 1439 int nr = 1; 1440 1441 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1442 size += sizeof(u64); 1443 1444 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1445 size += sizeof(u64); 1446 1447 if (event->attr.read_format & PERF_FORMAT_ID) 1448 entry += sizeof(u64); 1449 1450 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1451 nr += nr_siblings; 1452 size += sizeof(u64); 1453 } 1454 1455 size += entry * nr; 1456 event->read_size = size; 1457 } 1458 1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1460 { 1461 struct perf_sample_data *data; 1462 u16 size = 0; 1463 1464 if (sample_type & PERF_SAMPLE_IP) 1465 size += sizeof(data->ip); 1466 1467 if (sample_type & PERF_SAMPLE_ADDR) 1468 size += sizeof(data->addr); 1469 1470 if (sample_type & PERF_SAMPLE_PERIOD) 1471 size += sizeof(data->period); 1472 1473 if (sample_type & PERF_SAMPLE_WEIGHT) 1474 size += sizeof(data->weight); 1475 1476 if (sample_type & PERF_SAMPLE_READ) 1477 size += event->read_size; 1478 1479 if (sample_type & PERF_SAMPLE_DATA_SRC) 1480 size += sizeof(data->data_src.val); 1481 1482 if (sample_type & PERF_SAMPLE_TRANSACTION) 1483 size += sizeof(data->txn); 1484 1485 event->header_size = size; 1486 } 1487 1488 /* 1489 * Called at perf_event creation and when events are attached/detached from a 1490 * group. 1491 */ 1492 static void perf_event__header_size(struct perf_event *event) 1493 { 1494 __perf_event_read_size(event, 1495 event->group_leader->nr_siblings); 1496 __perf_event_header_size(event, event->attr.sample_type); 1497 } 1498 1499 static void perf_event__id_header_size(struct perf_event *event) 1500 { 1501 struct perf_sample_data *data; 1502 u64 sample_type = event->attr.sample_type; 1503 u16 size = 0; 1504 1505 if (sample_type & PERF_SAMPLE_TID) 1506 size += sizeof(data->tid_entry); 1507 1508 if (sample_type & PERF_SAMPLE_TIME) 1509 size += sizeof(data->time); 1510 1511 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1512 size += sizeof(data->id); 1513 1514 if (sample_type & PERF_SAMPLE_ID) 1515 size += sizeof(data->id); 1516 1517 if (sample_type & PERF_SAMPLE_STREAM_ID) 1518 size += sizeof(data->stream_id); 1519 1520 if (sample_type & PERF_SAMPLE_CPU) 1521 size += sizeof(data->cpu_entry); 1522 1523 event->id_header_size = size; 1524 } 1525 1526 static bool perf_event_validate_size(struct perf_event *event) 1527 { 1528 /* 1529 * The values computed here will be over-written when we actually 1530 * attach the event. 1531 */ 1532 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1533 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1534 perf_event__id_header_size(event); 1535 1536 /* 1537 * Sum the lot; should not exceed the 64k limit we have on records. 1538 * Conservative limit to allow for callchains and other variable fields. 1539 */ 1540 if (event->read_size + event->header_size + 1541 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1542 return false; 1543 1544 return true; 1545 } 1546 1547 static void perf_group_attach(struct perf_event *event) 1548 { 1549 struct perf_event *group_leader = event->group_leader, *pos; 1550 1551 /* 1552 * We can have double attach due to group movement in perf_event_open. 1553 */ 1554 if (event->attach_state & PERF_ATTACH_GROUP) 1555 return; 1556 1557 event->attach_state |= PERF_ATTACH_GROUP; 1558 1559 if (group_leader == event) 1560 return; 1561 1562 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1563 1564 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1565 !is_software_event(event)) 1566 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1567 1568 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1569 group_leader->nr_siblings++; 1570 1571 perf_event__header_size(group_leader); 1572 1573 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1574 perf_event__header_size(pos); 1575 } 1576 1577 /* 1578 * Remove a event from the lists for its context. 1579 * Must be called with ctx->mutex and ctx->lock held. 1580 */ 1581 static void 1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1583 { 1584 struct perf_cpu_context *cpuctx; 1585 1586 WARN_ON_ONCE(event->ctx != ctx); 1587 lockdep_assert_held(&ctx->lock); 1588 1589 /* 1590 * We can have double detach due to exit/hot-unplug + close. 1591 */ 1592 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1593 return; 1594 1595 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1596 1597 if (is_cgroup_event(event)) { 1598 ctx->nr_cgroups--; 1599 /* 1600 * Because cgroup events are always per-cpu events, this will 1601 * always be called from the right CPU. 1602 */ 1603 cpuctx = __get_cpu_context(ctx); 1604 /* 1605 * If there are no more cgroup events then clear cgrp to avoid 1606 * stale pointer in update_cgrp_time_from_cpuctx(). 1607 */ 1608 if (!ctx->nr_cgroups) 1609 cpuctx->cgrp = NULL; 1610 } 1611 1612 ctx->nr_events--; 1613 if (event->attr.inherit_stat) 1614 ctx->nr_stat--; 1615 1616 list_del_rcu(&event->event_entry); 1617 1618 if (event->group_leader == event) 1619 list_del_init(&event->group_entry); 1620 1621 update_group_times(event); 1622 1623 /* 1624 * If event was in error state, then keep it 1625 * that way, otherwise bogus counts will be 1626 * returned on read(). The only way to get out 1627 * of error state is by explicit re-enabling 1628 * of the event 1629 */ 1630 if (event->state > PERF_EVENT_STATE_OFF) 1631 event->state = PERF_EVENT_STATE_OFF; 1632 1633 ctx->generation++; 1634 } 1635 1636 static void perf_group_detach(struct perf_event *event) 1637 { 1638 struct perf_event *sibling, *tmp; 1639 struct list_head *list = NULL; 1640 1641 /* 1642 * We can have double detach due to exit/hot-unplug + close. 1643 */ 1644 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1645 return; 1646 1647 event->attach_state &= ~PERF_ATTACH_GROUP; 1648 1649 /* 1650 * If this is a sibling, remove it from its group. 1651 */ 1652 if (event->group_leader != event) { 1653 list_del_init(&event->group_entry); 1654 event->group_leader->nr_siblings--; 1655 goto out; 1656 } 1657 1658 if (!list_empty(&event->group_entry)) 1659 list = &event->group_entry; 1660 1661 /* 1662 * If this was a group event with sibling events then 1663 * upgrade the siblings to singleton events by adding them 1664 * to whatever list we are on. 1665 */ 1666 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1667 if (list) 1668 list_move_tail(&sibling->group_entry, list); 1669 sibling->group_leader = sibling; 1670 1671 /* Inherit group flags from the previous leader */ 1672 sibling->group_flags = event->group_flags; 1673 1674 WARN_ON_ONCE(sibling->ctx != event->ctx); 1675 } 1676 1677 out: 1678 perf_event__header_size(event->group_leader); 1679 1680 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1681 perf_event__header_size(tmp); 1682 } 1683 1684 static bool is_orphaned_event(struct perf_event *event) 1685 { 1686 return event->state == PERF_EVENT_STATE_DEAD; 1687 } 1688 1689 static inline int pmu_filter_match(struct perf_event *event) 1690 { 1691 struct pmu *pmu = event->pmu; 1692 return pmu->filter_match ? pmu->filter_match(event) : 1; 1693 } 1694 1695 static inline int 1696 event_filter_match(struct perf_event *event) 1697 { 1698 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1699 && perf_cgroup_match(event) && pmu_filter_match(event); 1700 } 1701 1702 static void 1703 event_sched_out(struct perf_event *event, 1704 struct perf_cpu_context *cpuctx, 1705 struct perf_event_context *ctx) 1706 { 1707 u64 tstamp = perf_event_time(event); 1708 u64 delta; 1709 1710 WARN_ON_ONCE(event->ctx != ctx); 1711 lockdep_assert_held(&ctx->lock); 1712 1713 /* 1714 * An event which could not be activated because of 1715 * filter mismatch still needs to have its timings 1716 * maintained, otherwise bogus information is return 1717 * via read() for time_enabled, time_running: 1718 */ 1719 if (event->state == PERF_EVENT_STATE_INACTIVE 1720 && !event_filter_match(event)) { 1721 delta = tstamp - event->tstamp_stopped; 1722 event->tstamp_running += delta; 1723 event->tstamp_stopped = tstamp; 1724 } 1725 1726 if (event->state != PERF_EVENT_STATE_ACTIVE) 1727 return; 1728 1729 perf_pmu_disable(event->pmu); 1730 1731 event->tstamp_stopped = tstamp; 1732 event->pmu->del(event, 0); 1733 event->oncpu = -1; 1734 event->state = PERF_EVENT_STATE_INACTIVE; 1735 if (event->pending_disable) { 1736 event->pending_disable = 0; 1737 event->state = PERF_EVENT_STATE_OFF; 1738 } 1739 1740 if (!is_software_event(event)) 1741 cpuctx->active_oncpu--; 1742 if (!--ctx->nr_active) 1743 perf_event_ctx_deactivate(ctx); 1744 if (event->attr.freq && event->attr.sample_freq) 1745 ctx->nr_freq--; 1746 if (event->attr.exclusive || !cpuctx->active_oncpu) 1747 cpuctx->exclusive = 0; 1748 1749 perf_pmu_enable(event->pmu); 1750 } 1751 1752 static void 1753 group_sched_out(struct perf_event *group_event, 1754 struct perf_cpu_context *cpuctx, 1755 struct perf_event_context *ctx) 1756 { 1757 struct perf_event *event; 1758 int state = group_event->state; 1759 1760 event_sched_out(group_event, cpuctx, ctx); 1761 1762 /* 1763 * Schedule out siblings (if any): 1764 */ 1765 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1766 event_sched_out(event, cpuctx, ctx); 1767 1768 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1769 cpuctx->exclusive = 0; 1770 } 1771 1772 #define DETACH_GROUP 0x01UL 1773 1774 /* 1775 * Cross CPU call to remove a performance event 1776 * 1777 * We disable the event on the hardware level first. After that we 1778 * remove it from the context list. 1779 */ 1780 static void 1781 __perf_remove_from_context(struct perf_event *event, 1782 struct perf_cpu_context *cpuctx, 1783 struct perf_event_context *ctx, 1784 void *info) 1785 { 1786 unsigned long flags = (unsigned long)info; 1787 1788 event_sched_out(event, cpuctx, ctx); 1789 if (flags & DETACH_GROUP) 1790 perf_group_detach(event); 1791 list_del_event(event, ctx); 1792 1793 if (!ctx->nr_events && ctx->is_active) { 1794 ctx->is_active = 0; 1795 if (ctx->task) { 1796 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1797 cpuctx->task_ctx = NULL; 1798 } 1799 } 1800 } 1801 1802 /* 1803 * Remove the event from a task's (or a CPU's) list of events. 1804 * 1805 * If event->ctx is a cloned context, callers must make sure that 1806 * every task struct that event->ctx->task could possibly point to 1807 * remains valid. This is OK when called from perf_release since 1808 * that only calls us on the top-level context, which can't be a clone. 1809 * When called from perf_event_exit_task, it's OK because the 1810 * context has been detached from its task. 1811 */ 1812 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1813 { 1814 lockdep_assert_held(&event->ctx->mutex); 1815 1816 event_function_call(event, __perf_remove_from_context, (void *)flags); 1817 } 1818 1819 /* 1820 * Cross CPU call to disable a performance event 1821 */ 1822 static void __perf_event_disable(struct perf_event *event, 1823 struct perf_cpu_context *cpuctx, 1824 struct perf_event_context *ctx, 1825 void *info) 1826 { 1827 if (event->state < PERF_EVENT_STATE_INACTIVE) 1828 return; 1829 1830 update_context_time(ctx); 1831 update_cgrp_time_from_event(event); 1832 update_group_times(event); 1833 if (event == event->group_leader) 1834 group_sched_out(event, cpuctx, ctx); 1835 else 1836 event_sched_out(event, cpuctx, ctx); 1837 event->state = PERF_EVENT_STATE_OFF; 1838 } 1839 1840 /* 1841 * Disable a event. 1842 * 1843 * If event->ctx is a cloned context, callers must make sure that 1844 * every task struct that event->ctx->task could possibly point to 1845 * remains valid. This condition is satisifed when called through 1846 * perf_event_for_each_child or perf_event_for_each because they 1847 * hold the top-level event's child_mutex, so any descendant that 1848 * goes to exit will block in perf_event_exit_event(). 1849 * 1850 * When called from perf_pending_event it's OK because event->ctx 1851 * is the current context on this CPU and preemption is disabled, 1852 * hence we can't get into perf_event_task_sched_out for this context. 1853 */ 1854 static void _perf_event_disable(struct perf_event *event) 1855 { 1856 struct perf_event_context *ctx = event->ctx; 1857 1858 raw_spin_lock_irq(&ctx->lock); 1859 if (event->state <= PERF_EVENT_STATE_OFF) { 1860 raw_spin_unlock_irq(&ctx->lock); 1861 return; 1862 } 1863 raw_spin_unlock_irq(&ctx->lock); 1864 1865 event_function_call(event, __perf_event_disable, NULL); 1866 } 1867 1868 void perf_event_disable_local(struct perf_event *event) 1869 { 1870 event_function_local(event, __perf_event_disable, NULL); 1871 } 1872 1873 /* 1874 * Strictly speaking kernel users cannot create groups and therefore this 1875 * interface does not need the perf_event_ctx_lock() magic. 1876 */ 1877 void perf_event_disable(struct perf_event *event) 1878 { 1879 struct perf_event_context *ctx; 1880 1881 ctx = perf_event_ctx_lock(event); 1882 _perf_event_disable(event); 1883 perf_event_ctx_unlock(event, ctx); 1884 } 1885 EXPORT_SYMBOL_GPL(perf_event_disable); 1886 1887 static void perf_set_shadow_time(struct perf_event *event, 1888 struct perf_event_context *ctx, 1889 u64 tstamp) 1890 { 1891 /* 1892 * use the correct time source for the time snapshot 1893 * 1894 * We could get by without this by leveraging the 1895 * fact that to get to this function, the caller 1896 * has most likely already called update_context_time() 1897 * and update_cgrp_time_xx() and thus both timestamp 1898 * are identical (or very close). Given that tstamp is, 1899 * already adjusted for cgroup, we could say that: 1900 * tstamp - ctx->timestamp 1901 * is equivalent to 1902 * tstamp - cgrp->timestamp. 1903 * 1904 * Then, in perf_output_read(), the calculation would 1905 * work with no changes because: 1906 * - event is guaranteed scheduled in 1907 * - no scheduled out in between 1908 * - thus the timestamp would be the same 1909 * 1910 * But this is a bit hairy. 1911 * 1912 * So instead, we have an explicit cgroup call to remain 1913 * within the time time source all along. We believe it 1914 * is cleaner and simpler to understand. 1915 */ 1916 if (is_cgroup_event(event)) 1917 perf_cgroup_set_shadow_time(event, tstamp); 1918 else 1919 event->shadow_ctx_time = tstamp - ctx->timestamp; 1920 } 1921 1922 #define MAX_INTERRUPTS (~0ULL) 1923 1924 static void perf_log_throttle(struct perf_event *event, int enable); 1925 static void perf_log_itrace_start(struct perf_event *event); 1926 1927 static int 1928 event_sched_in(struct perf_event *event, 1929 struct perf_cpu_context *cpuctx, 1930 struct perf_event_context *ctx) 1931 { 1932 u64 tstamp = perf_event_time(event); 1933 int ret = 0; 1934 1935 lockdep_assert_held(&ctx->lock); 1936 1937 if (event->state <= PERF_EVENT_STATE_OFF) 1938 return 0; 1939 1940 WRITE_ONCE(event->oncpu, smp_processor_id()); 1941 /* 1942 * Order event::oncpu write to happen before the ACTIVE state 1943 * is visible. 1944 */ 1945 smp_wmb(); 1946 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 1947 1948 /* 1949 * Unthrottle events, since we scheduled we might have missed several 1950 * ticks already, also for a heavily scheduling task there is little 1951 * guarantee it'll get a tick in a timely manner. 1952 */ 1953 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1954 perf_log_throttle(event, 1); 1955 event->hw.interrupts = 0; 1956 } 1957 1958 /* 1959 * The new state must be visible before we turn it on in the hardware: 1960 */ 1961 smp_wmb(); 1962 1963 perf_pmu_disable(event->pmu); 1964 1965 perf_set_shadow_time(event, ctx, tstamp); 1966 1967 perf_log_itrace_start(event); 1968 1969 if (event->pmu->add(event, PERF_EF_START)) { 1970 event->state = PERF_EVENT_STATE_INACTIVE; 1971 event->oncpu = -1; 1972 ret = -EAGAIN; 1973 goto out; 1974 } 1975 1976 event->tstamp_running += tstamp - event->tstamp_stopped; 1977 1978 if (!is_software_event(event)) 1979 cpuctx->active_oncpu++; 1980 if (!ctx->nr_active++) 1981 perf_event_ctx_activate(ctx); 1982 if (event->attr.freq && event->attr.sample_freq) 1983 ctx->nr_freq++; 1984 1985 if (event->attr.exclusive) 1986 cpuctx->exclusive = 1; 1987 1988 out: 1989 perf_pmu_enable(event->pmu); 1990 1991 return ret; 1992 } 1993 1994 static int 1995 group_sched_in(struct perf_event *group_event, 1996 struct perf_cpu_context *cpuctx, 1997 struct perf_event_context *ctx) 1998 { 1999 struct perf_event *event, *partial_group = NULL; 2000 struct pmu *pmu = ctx->pmu; 2001 u64 now = ctx->time; 2002 bool simulate = false; 2003 2004 if (group_event->state == PERF_EVENT_STATE_OFF) 2005 return 0; 2006 2007 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2008 2009 if (event_sched_in(group_event, cpuctx, ctx)) { 2010 pmu->cancel_txn(pmu); 2011 perf_mux_hrtimer_restart(cpuctx); 2012 return -EAGAIN; 2013 } 2014 2015 /* 2016 * Schedule in siblings as one group (if any): 2017 */ 2018 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2019 if (event_sched_in(event, cpuctx, ctx)) { 2020 partial_group = event; 2021 goto group_error; 2022 } 2023 } 2024 2025 if (!pmu->commit_txn(pmu)) 2026 return 0; 2027 2028 group_error: 2029 /* 2030 * Groups can be scheduled in as one unit only, so undo any 2031 * partial group before returning: 2032 * The events up to the failed event are scheduled out normally, 2033 * tstamp_stopped will be updated. 2034 * 2035 * The failed events and the remaining siblings need to have 2036 * their timings updated as if they had gone thru event_sched_in() 2037 * and event_sched_out(). This is required to get consistent timings 2038 * across the group. This also takes care of the case where the group 2039 * could never be scheduled by ensuring tstamp_stopped is set to mark 2040 * the time the event was actually stopped, such that time delta 2041 * calculation in update_event_times() is correct. 2042 */ 2043 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2044 if (event == partial_group) 2045 simulate = true; 2046 2047 if (simulate) { 2048 event->tstamp_running += now - event->tstamp_stopped; 2049 event->tstamp_stopped = now; 2050 } else { 2051 event_sched_out(event, cpuctx, ctx); 2052 } 2053 } 2054 event_sched_out(group_event, cpuctx, ctx); 2055 2056 pmu->cancel_txn(pmu); 2057 2058 perf_mux_hrtimer_restart(cpuctx); 2059 2060 return -EAGAIN; 2061 } 2062 2063 /* 2064 * Work out whether we can put this event group on the CPU now. 2065 */ 2066 static int group_can_go_on(struct perf_event *event, 2067 struct perf_cpu_context *cpuctx, 2068 int can_add_hw) 2069 { 2070 /* 2071 * Groups consisting entirely of software events can always go on. 2072 */ 2073 if (event->group_flags & PERF_GROUP_SOFTWARE) 2074 return 1; 2075 /* 2076 * If an exclusive group is already on, no other hardware 2077 * events can go on. 2078 */ 2079 if (cpuctx->exclusive) 2080 return 0; 2081 /* 2082 * If this group is exclusive and there are already 2083 * events on the CPU, it can't go on. 2084 */ 2085 if (event->attr.exclusive && cpuctx->active_oncpu) 2086 return 0; 2087 /* 2088 * Otherwise, try to add it if all previous groups were able 2089 * to go on. 2090 */ 2091 return can_add_hw; 2092 } 2093 2094 static void add_event_to_ctx(struct perf_event *event, 2095 struct perf_event_context *ctx) 2096 { 2097 u64 tstamp = perf_event_time(event); 2098 2099 list_add_event(event, ctx); 2100 perf_group_attach(event); 2101 event->tstamp_enabled = tstamp; 2102 event->tstamp_running = tstamp; 2103 event->tstamp_stopped = tstamp; 2104 } 2105 2106 static void ctx_sched_out(struct perf_event_context *ctx, 2107 struct perf_cpu_context *cpuctx, 2108 enum event_type_t event_type); 2109 static void 2110 ctx_sched_in(struct perf_event_context *ctx, 2111 struct perf_cpu_context *cpuctx, 2112 enum event_type_t event_type, 2113 struct task_struct *task); 2114 2115 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2116 struct perf_event_context *ctx) 2117 { 2118 if (!cpuctx->task_ctx) 2119 return; 2120 2121 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2122 return; 2123 2124 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2125 } 2126 2127 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2128 struct perf_event_context *ctx, 2129 struct task_struct *task) 2130 { 2131 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2132 if (ctx) 2133 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2134 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2135 if (ctx) 2136 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2137 } 2138 2139 static void ctx_resched(struct perf_cpu_context *cpuctx, 2140 struct perf_event_context *task_ctx) 2141 { 2142 perf_pmu_disable(cpuctx->ctx.pmu); 2143 if (task_ctx) 2144 task_ctx_sched_out(cpuctx, task_ctx); 2145 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2146 perf_event_sched_in(cpuctx, task_ctx, current); 2147 perf_pmu_enable(cpuctx->ctx.pmu); 2148 } 2149 2150 /* 2151 * Cross CPU call to install and enable a performance event 2152 * 2153 * Very similar to remote_function() + event_function() but cannot assume that 2154 * things like ctx->is_active and cpuctx->task_ctx are set. 2155 */ 2156 static int __perf_install_in_context(void *info) 2157 { 2158 struct perf_event *event = info; 2159 struct perf_event_context *ctx = event->ctx; 2160 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2161 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2162 bool activate = true; 2163 int ret = 0; 2164 2165 raw_spin_lock(&cpuctx->ctx.lock); 2166 if (ctx->task) { 2167 raw_spin_lock(&ctx->lock); 2168 task_ctx = ctx; 2169 2170 /* If we're on the wrong CPU, try again */ 2171 if (task_cpu(ctx->task) != smp_processor_id()) { 2172 ret = -ESRCH; 2173 goto unlock; 2174 } 2175 2176 /* 2177 * If we're on the right CPU, see if the task we target is 2178 * current, if not we don't have to activate the ctx, a future 2179 * context switch will do that for us. 2180 */ 2181 if (ctx->task != current) 2182 activate = false; 2183 else 2184 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2185 2186 } else if (task_ctx) { 2187 raw_spin_lock(&task_ctx->lock); 2188 } 2189 2190 if (activate) { 2191 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2192 add_event_to_ctx(event, ctx); 2193 ctx_resched(cpuctx, task_ctx); 2194 } else { 2195 add_event_to_ctx(event, ctx); 2196 } 2197 2198 unlock: 2199 perf_ctx_unlock(cpuctx, task_ctx); 2200 2201 return ret; 2202 } 2203 2204 /* 2205 * Attach a performance event to a context. 2206 * 2207 * Very similar to event_function_call, see comment there. 2208 */ 2209 static void 2210 perf_install_in_context(struct perf_event_context *ctx, 2211 struct perf_event *event, 2212 int cpu) 2213 { 2214 struct task_struct *task = READ_ONCE(ctx->task); 2215 2216 lockdep_assert_held(&ctx->mutex); 2217 2218 event->ctx = ctx; 2219 if (event->cpu != -1) 2220 event->cpu = cpu; 2221 2222 if (!task) { 2223 cpu_function_call(cpu, __perf_install_in_context, event); 2224 return; 2225 } 2226 2227 /* 2228 * Should not happen, we validate the ctx is still alive before calling. 2229 */ 2230 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2231 return; 2232 2233 /* 2234 * Installing events is tricky because we cannot rely on ctx->is_active 2235 * to be set in case this is the nr_events 0 -> 1 transition. 2236 */ 2237 again: 2238 /* 2239 * Cannot use task_function_call() because we need to run on the task's 2240 * CPU regardless of whether its current or not. 2241 */ 2242 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2243 return; 2244 2245 raw_spin_lock_irq(&ctx->lock); 2246 task = ctx->task; 2247 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2248 /* 2249 * Cannot happen because we already checked above (which also 2250 * cannot happen), and we hold ctx->mutex, which serializes us 2251 * against perf_event_exit_task_context(). 2252 */ 2253 raw_spin_unlock_irq(&ctx->lock); 2254 return; 2255 } 2256 raw_spin_unlock_irq(&ctx->lock); 2257 /* 2258 * Since !ctx->is_active doesn't mean anything, we must IPI 2259 * unconditionally. 2260 */ 2261 goto again; 2262 } 2263 2264 /* 2265 * Put a event into inactive state and update time fields. 2266 * Enabling the leader of a group effectively enables all 2267 * the group members that aren't explicitly disabled, so we 2268 * have to update their ->tstamp_enabled also. 2269 * Note: this works for group members as well as group leaders 2270 * since the non-leader members' sibling_lists will be empty. 2271 */ 2272 static void __perf_event_mark_enabled(struct perf_event *event) 2273 { 2274 struct perf_event *sub; 2275 u64 tstamp = perf_event_time(event); 2276 2277 event->state = PERF_EVENT_STATE_INACTIVE; 2278 event->tstamp_enabled = tstamp - event->total_time_enabled; 2279 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2280 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2281 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2282 } 2283 } 2284 2285 /* 2286 * Cross CPU call to enable a performance event 2287 */ 2288 static void __perf_event_enable(struct perf_event *event, 2289 struct perf_cpu_context *cpuctx, 2290 struct perf_event_context *ctx, 2291 void *info) 2292 { 2293 struct perf_event *leader = event->group_leader; 2294 struct perf_event_context *task_ctx; 2295 2296 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2297 event->state <= PERF_EVENT_STATE_ERROR) 2298 return; 2299 2300 if (ctx->is_active) 2301 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2302 2303 __perf_event_mark_enabled(event); 2304 2305 if (!ctx->is_active) 2306 return; 2307 2308 if (!event_filter_match(event)) { 2309 if (is_cgroup_event(event)) 2310 perf_cgroup_defer_enabled(event); 2311 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2312 return; 2313 } 2314 2315 /* 2316 * If the event is in a group and isn't the group leader, 2317 * then don't put it on unless the group is on. 2318 */ 2319 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2320 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2321 return; 2322 } 2323 2324 task_ctx = cpuctx->task_ctx; 2325 if (ctx->task) 2326 WARN_ON_ONCE(task_ctx != ctx); 2327 2328 ctx_resched(cpuctx, task_ctx); 2329 } 2330 2331 /* 2332 * Enable a event. 2333 * 2334 * If event->ctx is a cloned context, callers must make sure that 2335 * every task struct that event->ctx->task could possibly point to 2336 * remains valid. This condition is satisfied when called through 2337 * perf_event_for_each_child or perf_event_for_each as described 2338 * for perf_event_disable. 2339 */ 2340 static void _perf_event_enable(struct perf_event *event) 2341 { 2342 struct perf_event_context *ctx = event->ctx; 2343 2344 raw_spin_lock_irq(&ctx->lock); 2345 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2346 event->state < PERF_EVENT_STATE_ERROR) { 2347 raw_spin_unlock_irq(&ctx->lock); 2348 return; 2349 } 2350 2351 /* 2352 * If the event is in error state, clear that first. 2353 * 2354 * That way, if we see the event in error state below, we know that it 2355 * has gone back into error state, as distinct from the task having 2356 * been scheduled away before the cross-call arrived. 2357 */ 2358 if (event->state == PERF_EVENT_STATE_ERROR) 2359 event->state = PERF_EVENT_STATE_OFF; 2360 raw_spin_unlock_irq(&ctx->lock); 2361 2362 event_function_call(event, __perf_event_enable, NULL); 2363 } 2364 2365 /* 2366 * See perf_event_disable(); 2367 */ 2368 void perf_event_enable(struct perf_event *event) 2369 { 2370 struct perf_event_context *ctx; 2371 2372 ctx = perf_event_ctx_lock(event); 2373 _perf_event_enable(event); 2374 perf_event_ctx_unlock(event, ctx); 2375 } 2376 EXPORT_SYMBOL_GPL(perf_event_enable); 2377 2378 struct stop_event_data { 2379 struct perf_event *event; 2380 unsigned int restart; 2381 }; 2382 2383 static int __perf_event_stop(void *info) 2384 { 2385 struct stop_event_data *sd = info; 2386 struct perf_event *event = sd->event; 2387 2388 /* if it's already INACTIVE, do nothing */ 2389 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2390 return 0; 2391 2392 /* matches smp_wmb() in event_sched_in() */ 2393 smp_rmb(); 2394 2395 /* 2396 * There is a window with interrupts enabled before we get here, 2397 * so we need to check again lest we try to stop another CPU's event. 2398 */ 2399 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2400 return -EAGAIN; 2401 2402 event->pmu->stop(event, PERF_EF_UPDATE); 2403 2404 /* 2405 * May race with the actual stop (through perf_pmu_output_stop()), 2406 * but it is only used for events with AUX ring buffer, and such 2407 * events will refuse to restart because of rb::aux_mmap_count==0, 2408 * see comments in perf_aux_output_begin(). 2409 * 2410 * Since this is happening on a event-local CPU, no trace is lost 2411 * while restarting. 2412 */ 2413 if (sd->restart) 2414 event->pmu->start(event, PERF_EF_START); 2415 2416 return 0; 2417 } 2418 2419 static int perf_event_restart(struct perf_event *event) 2420 { 2421 struct stop_event_data sd = { 2422 .event = event, 2423 .restart = 1, 2424 }; 2425 int ret = 0; 2426 2427 do { 2428 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2429 return 0; 2430 2431 /* matches smp_wmb() in event_sched_in() */ 2432 smp_rmb(); 2433 2434 /* 2435 * We only want to restart ACTIVE events, so if the event goes 2436 * inactive here (event->oncpu==-1), there's nothing more to do; 2437 * fall through with ret==-ENXIO. 2438 */ 2439 ret = cpu_function_call(READ_ONCE(event->oncpu), 2440 __perf_event_stop, &sd); 2441 } while (ret == -EAGAIN); 2442 2443 return ret; 2444 } 2445 2446 /* 2447 * In order to contain the amount of racy and tricky in the address filter 2448 * configuration management, it is a two part process: 2449 * 2450 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2451 * we update the addresses of corresponding vmas in 2452 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2453 * (p2) when an event is scheduled in (pmu::add), it calls 2454 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2455 * if the generation has changed since the previous call. 2456 * 2457 * If (p1) happens while the event is active, we restart it to force (p2). 2458 * 2459 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2460 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2461 * ioctl; 2462 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2463 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2464 * for reading; 2465 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2466 * of exec. 2467 */ 2468 void perf_event_addr_filters_sync(struct perf_event *event) 2469 { 2470 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2471 2472 if (!has_addr_filter(event)) 2473 return; 2474 2475 raw_spin_lock(&ifh->lock); 2476 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2477 event->pmu->addr_filters_sync(event); 2478 event->hw.addr_filters_gen = event->addr_filters_gen; 2479 } 2480 raw_spin_unlock(&ifh->lock); 2481 } 2482 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2483 2484 static int _perf_event_refresh(struct perf_event *event, int refresh) 2485 { 2486 /* 2487 * not supported on inherited events 2488 */ 2489 if (event->attr.inherit || !is_sampling_event(event)) 2490 return -EINVAL; 2491 2492 atomic_add(refresh, &event->event_limit); 2493 _perf_event_enable(event); 2494 2495 return 0; 2496 } 2497 2498 /* 2499 * See perf_event_disable() 2500 */ 2501 int perf_event_refresh(struct perf_event *event, int refresh) 2502 { 2503 struct perf_event_context *ctx; 2504 int ret; 2505 2506 ctx = perf_event_ctx_lock(event); 2507 ret = _perf_event_refresh(event, refresh); 2508 perf_event_ctx_unlock(event, ctx); 2509 2510 return ret; 2511 } 2512 EXPORT_SYMBOL_GPL(perf_event_refresh); 2513 2514 static void ctx_sched_out(struct perf_event_context *ctx, 2515 struct perf_cpu_context *cpuctx, 2516 enum event_type_t event_type) 2517 { 2518 int is_active = ctx->is_active; 2519 struct perf_event *event; 2520 2521 lockdep_assert_held(&ctx->lock); 2522 2523 if (likely(!ctx->nr_events)) { 2524 /* 2525 * See __perf_remove_from_context(). 2526 */ 2527 WARN_ON_ONCE(ctx->is_active); 2528 if (ctx->task) 2529 WARN_ON_ONCE(cpuctx->task_ctx); 2530 return; 2531 } 2532 2533 ctx->is_active &= ~event_type; 2534 if (!(ctx->is_active & EVENT_ALL)) 2535 ctx->is_active = 0; 2536 2537 if (ctx->task) { 2538 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2539 if (!ctx->is_active) 2540 cpuctx->task_ctx = NULL; 2541 } 2542 2543 /* 2544 * Always update time if it was set; not only when it changes. 2545 * Otherwise we can 'forget' to update time for any but the last 2546 * context we sched out. For example: 2547 * 2548 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2549 * ctx_sched_out(.event_type = EVENT_PINNED) 2550 * 2551 * would only update time for the pinned events. 2552 */ 2553 if (is_active & EVENT_TIME) { 2554 /* update (and stop) ctx time */ 2555 update_context_time(ctx); 2556 update_cgrp_time_from_cpuctx(cpuctx); 2557 } 2558 2559 is_active ^= ctx->is_active; /* changed bits */ 2560 2561 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2562 return; 2563 2564 perf_pmu_disable(ctx->pmu); 2565 if (is_active & EVENT_PINNED) { 2566 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2567 group_sched_out(event, cpuctx, ctx); 2568 } 2569 2570 if (is_active & EVENT_FLEXIBLE) { 2571 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2572 group_sched_out(event, cpuctx, ctx); 2573 } 2574 perf_pmu_enable(ctx->pmu); 2575 } 2576 2577 /* 2578 * Test whether two contexts are equivalent, i.e. whether they have both been 2579 * cloned from the same version of the same context. 2580 * 2581 * Equivalence is measured using a generation number in the context that is 2582 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2583 * and list_del_event(). 2584 */ 2585 static int context_equiv(struct perf_event_context *ctx1, 2586 struct perf_event_context *ctx2) 2587 { 2588 lockdep_assert_held(&ctx1->lock); 2589 lockdep_assert_held(&ctx2->lock); 2590 2591 /* Pinning disables the swap optimization */ 2592 if (ctx1->pin_count || ctx2->pin_count) 2593 return 0; 2594 2595 /* If ctx1 is the parent of ctx2 */ 2596 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2597 return 1; 2598 2599 /* If ctx2 is the parent of ctx1 */ 2600 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2601 return 1; 2602 2603 /* 2604 * If ctx1 and ctx2 have the same parent; we flatten the parent 2605 * hierarchy, see perf_event_init_context(). 2606 */ 2607 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2608 ctx1->parent_gen == ctx2->parent_gen) 2609 return 1; 2610 2611 /* Unmatched */ 2612 return 0; 2613 } 2614 2615 static void __perf_event_sync_stat(struct perf_event *event, 2616 struct perf_event *next_event) 2617 { 2618 u64 value; 2619 2620 if (!event->attr.inherit_stat) 2621 return; 2622 2623 /* 2624 * Update the event value, we cannot use perf_event_read() 2625 * because we're in the middle of a context switch and have IRQs 2626 * disabled, which upsets smp_call_function_single(), however 2627 * we know the event must be on the current CPU, therefore we 2628 * don't need to use it. 2629 */ 2630 switch (event->state) { 2631 case PERF_EVENT_STATE_ACTIVE: 2632 event->pmu->read(event); 2633 /* fall-through */ 2634 2635 case PERF_EVENT_STATE_INACTIVE: 2636 update_event_times(event); 2637 break; 2638 2639 default: 2640 break; 2641 } 2642 2643 /* 2644 * In order to keep per-task stats reliable we need to flip the event 2645 * values when we flip the contexts. 2646 */ 2647 value = local64_read(&next_event->count); 2648 value = local64_xchg(&event->count, value); 2649 local64_set(&next_event->count, value); 2650 2651 swap(event->total_time_enabled, next_event->total_time_enabled); 2652 swap(event->total_time_running, next_event->total_time_running); 2653 2654 /* 2655 * Since we swizzled the values, update the user visible data too. 2656 */ 2657 perf_event_update_userpage(event); 2658 perf_event_update_userpage(next_event); 2659 } 2660 2661 static void perf_event_sync_stat(struct perf_event_context *ctx, 2662 struct perf_event_context *next_ctx) 2663 { 2664 struct perf_event *event, *next_event; 2665 2666 if (!ctx->nr_stat) 2667 return; 2668 2669 update_context_time(ctx); 2670 2671 event = list_first_entry(&ctx->event_list, 2672 struct perf_event, event_entry); 2673 2674 next_event = list_first_entry(&next_ctx->event_list, 2675 struct perf_event, event_entry); 2676 2677 while (&event->event_entry != &ctx->event_list && 2678 &next_event->event_entry != &next_ctx->event_list) { 2679 2680 __perf_event_sync_stat(event, next_event); 2681 2682 event = list_next_entry(event, event_entry); 2683 next_event = list_next_entry(next_event, event_entry); 2684 } 2685 } 2686 2687 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2688 struct task_struct *next) 2689 { 2690 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2691 struct perf_event_context *next_ctx; 2692 struct perf_event_context *parent, *next_parent; 2693 struct perf_cpu_context *cpuctx; 2694 int do_switch = 1; 2695 2696 if (likely(!ctx)) 2697 return; 2698 2699 cpuctx = __get_cpu_context(ctx); 2700 if (!cpuctx->task_ctx) 2701 return; 2702 2703 rcu_read_lock(); 2704 next_ctx = next->perf_event_ctxp[ctxn]; 2705 if (!next_ctx) 2706 goto unlock; 2707 2708 parent = rcu_dereference(ctx->parent_ctx); 2709 next_parent = rcu_dereference(next_ctx->parent_ctx); 2710 2711 /* If neither context have a parent context; they cannot be clones. */ 2712 if (!parent && !next_parent) 2713 goto unlock; 2714 2715 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2716 /* 2717 * Looks like the two contexts are clones, so we might be 2718 * able to optimize the context switch. We lock both 2719 * contexts and check that they are clones under the 2720 * lock (including re-checking that neither has been 2721 * uncloned in the meantime). It doesn't matter which 2722 * order we take the locks because no other cpu could 2723 * be trying to lock both of these tasks. 2724 */ 2725 raw_spin_lock(&ctx->lock); 2726 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2727 if (context_equiv(ctx, next_ctx)) { 2728 WRITE_ONCE(ctx->task, next); 2729 WRITE_ONCE(next_ctx->task, task); 2730 2731 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2732 2733 /* 2734 * RCU_INIT_POINTER here is safe because we've not 2735 * modified the ctx and the above modification of 2736 * ctx->task and ctx->task_ctx_data are immaterial 2737 * since those values are always verified under 2738 * ctx->lock which we're now holding. 2739 */ 2740 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2741 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2742 2743 do_switch = 0; 2744 2745 perf_event_sync_stat(ctx, next_ctx); 2746 } 2747 raw_spin_unlock(&next_ctx->lock); 2748 raw_spin_unlock(&ctx->lock); 2749 } 2750 unlock: 2751 rcu_read_unlock(); 2752 2753 if (do_switch) { 2754 raw_spin_lock(&ctx->lock); 2755 task_ctx_sched_out(cpuctx, ctx); 2756 raw_spin_unlock(&ctx->lock); 2757 } 2758 } 2759 2760 void perf_sched_cb_dec(struct pmu *pmu) 2761 { 2762 this_cpu_dec(perf_sched_cb_usages); 2763 } 2764 2765 void perf_sched_cb_inc(struct pmu *pmu) 2766 { 2767 this_cpu_inc(perf_sched_cb_usages); 2768 } 2769 2770 /* 2771 * This function provides the context switch callback to the lower code 2772 * layer. It is invoked ONLY when the context switch callback is enabled. 2773 */ 2774 static void perf_pmu_sched_task(struct task_struct *prev, 2775 struct task_struct *next, 2776 bool sched_in) 2777 { 2778 struct perf_cpu_context *cpuctx; 2779 struct pmu *pmu; 2780 unsigned long flags; 2781 2782 if (prev == next) 2783 return; 2784 2785 local_irq_save(flags); 2786 2787 rcu_read_lock(); 2788 2789 list_for_each_entry_rcu(pmu, &pmus, entry) { 2790 if (pmu->sched_task) { 2791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2792 2793 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2794 2795 perf_pmu_disable(pmu); 2796 2797 pmu->sched_task(cpuctx->task_ctx, sched_in); 2798 2799 perf_pmu_enable(pmu); 2800 2801 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2802 } 2803 } 2804 2805 rcu_read_unlock(); 2806 2807 local_irq_restore(flags); 2808 } 2809 2810 static void perf_event_switch(struct task_struct *task, 2811 struct task_struct *next_prev, bool sched_in); 2812 2813 #define for_each_task_context_nr(ctxn) \ 2814 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2815 2816 /* 2817 * Called from scheduler to remove the events of the current task, 2818 * with interrupts disabled. 2819 * 2820 * We stop each event and update the event value in event->count. 2821 * 2822 * This does not protect us against NMI, but disable() 2823 * sets the disabled bit in the control field of event _before_ 2824 * accessing the event control register. If a NMI hits, then it will 2825 * not restart the event. 2826 */ 2827 void __perf_event_task_sched_out(struct task_struct *task, 2828 struct task_struct *next) 2829 { 2830 int ctxn; 2831 2832 if (__this_cpu_read(perf_sched_cb_usages)) 2833 perf_pmu_sched_task(task, next, false); 2834 2835 if (atomic_read(&nr_switch_events)) 2836 perf_event_switch(task, next, false); 2837 2838 for_each_task_context_nr(ctxn) 2839 perf_event_context_sched_out(task, ctxn, next); 2840 2841 /* 2842 * if cgroup events exist on this CPU, then we need 2843 * to check if we have to switch out PMU state. 2844 * cgroup event are system-wide mode only 2845 */ 2846 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2847 perf_cgroup_sched_out(task, next); 2848 } 2849 2850 /* 2851 * Called with IRQs disabled 2852 */ 2853 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2854 enum event_type_t event_type) 2855 { 2856 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2857 } 2858 2859 static void 2860 ctx_pinned_sched_in(struct perf_event_context *ctx, 2861 struct perf_cpu_context *cpuctx) 2862 { 2863 struct perf_event *event; 2864 2865 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2866 if (event->state <= PERF_EVENT_STATE_OFF) 2867 continue; 2868 if (!event_filter_match(event)) 2869 continue; 2870 2871 /* may need to reset tstamp_enabled */ 2872 if (is_cgroup_event(event)) 2873 perf_cgroup_mark_enabled(event, ctx); 2874 2875 if (group_can_go_on(event, cpuctx, 1)) 2876 group_sched_in(event, cpuctx, ctx); 2877 2878 /* 2879 * If this pinned group hasn't been scheduled, 2880 * put it in error state. 2881 */ 2882 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2883 update_group_times(event); 2884 event->state = PERF_EVENT_STATE_ERROR; 2885 } 2886 } 2887 } 2888 2889 static void 2890 ctx_flexible_sched_in(struct perf_event_context *ctx, 2891 struct perf_cpu_context *cpuctx) 2892 { 2893 struct perf_event *event; 2894 int can_add_hw = 1; 2895 2896 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2897 /* Ignore events in OFF or ERROR state */ 2898 if (event->state <= PERF_EVENT_STATE_OFF) 2899 continue; 2900 /* 2901 * Listen to the 'cpu' scheduling filter constraint 2902 * of events: 2903 */ 2904 if (!event_filter_match(event)) 2905 continue; 2906 2907 /* may need to reset tstamp_enabled */ 2908 if (is_cgroup_event(event)) 2909 perf_cgroup_mark_enabled(event, ctx); 2910 2911 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2912 if (group_sched_in(event, cpuctx, ctx)) 2913 can_add_hw = 0; 2914 } 2915 } 2916 } 2917 2918 static void 2919 ctx_sched_in(struct perf_event_context *ctx, 2920 struct perf_cpu_context *cpuctx, 2921 enum event_type_t event_type, 2922 struct task_struct *task) 2923 { 2924 int is_active = ctx->is_active; 2925 u64 now; 2926 2927 lockdep_assert_held(&ctx->lock); 2928 2929 if (likely(!ctx->nr_events)) 2930 return; 2931 2932 ctx->is_active |= (event_type | EVENT_TIME); 2933 if (ctx->task) { 2934 if (!is_active) 2935 cpuctx->task_ctx = ctx; 2936 else 2937 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2938 } 2939 2940 is_active ^= ctx->is_active; /* changed bits */ 2941 2942 if (is_active & EVENT_TIME) { 2943 /* start ctx time */ 2944 now = perf_clock(); 2945 ctx->timestamp = now; 2946 perf_cgroup_set_timestamp(task, ctx); 2947 } 2948 2949 /* 2950 * First go through the list and put on any pinned groups 2951 * in order to give them the best chance of going on. 2952 */ 2953 if (is_active & EVENT_PINNED) 2954 ctx_pinned_sched_in(ctx, cpuctx); 2955 2956 /* Then walk through the lower prio flexible groups */ 2957 if (is_active & EVENT_FLEXIBLE) 2958 ctx_flexible_sched_in(ctx, cpuctx); 2959 } 2960 2961 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2962 enum event_type_t event_type, 2963 struct task_struct *task) 2964 { 2965 struct perf_event_context *ctx = &cpuctx->ctx; 2966 2967 ctx_sched_in(ctx, cpuctx, event_type, task); 2968 } 2969 2970 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2971 struct task_struct *task) 2972 { 2973 struct perf_cpu_context *cpuctx; 2974 2975 cpuctx = __get_cpu_context(ctx); 2976 if (cpuctx->task_ctx == ctx) 2977 return; 2978 2979 perf_ctx_lock(cpuctx, ctx); 2980 perf_pmu_disable(ctx->pmu); 2981 /* 2982 * We want to keep the following priority order: 2983 * cpu pinned (that don't need to move), task pinned, 2984 * cpu flexible, task flexible. 2985 */ 2986 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2987 perf_event_sched_in(cpuctx, ctx, task); 2988 perf_pmu_enable(ctx->pmu); 2989 perf_ctx_unlock(cpuctx, ctx); 2990 } 2991 2992 /* 2993 * Called from scheduler to add the events of the current task 2994 * with interrupts disabled. 2995 * 2996 * We restore the event value and then enable it. 2997 * 2998 * This does not protect us against NMI, but enable() 2999 * sets the enabled bit in the control field of event _before_ 3000 * accessing the event control register. If a NMI hits, then it will 3001 * keep the event running. 3002 */ 3003 void __perf_event_task_sched_in(struct task_struct *prev, 3004 struct task_struct *task) 3005 { 3006 struct perf_event_context *ctx; 3007 int ctxn; 3008 3009 /* 3010 * If cgroup events exist on this CPU, then we need to check if we have 3011 * to switch in PMU state; cgroup event are system-wide mode only. 3012 * 3013 * Since cgroup events are CPU events, we must schedule these in before 3014 * we schedule in the task events. 3015 */ 3016 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3017 perf_cgroup_sched_in(prev, task); 3018 3019 for_each_task_context_nr(ctxn) { 3020 ctx = task->perf_event_ctxp[ctxn]; 3021 if (likely(!ctx)) 3022 continue; 3023 3024 perf_event_context_sched_in(ctx, task); 3025 } 3026 3027 if (atomic_read(&nr_switch_events)) 3028 perf_event_switch(task, prev, true); 3029 3030 if (__this_cpu_read(perf_sched_cb_usages)) 3031 perf_pmu_sched_task(prev, task, true); 3032 } 3033 3034 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3035 { 3036 u64 frequency = event->attr.sample_freq; 3037 u64 sec = NSEC_PER_SEC; 3038 u64 divisor, dividend; 3039 3040 int count_fls, nsec_fls, frequency_fls, sec_fls; 3041 3042 count_fls = fls64(count); 3043 nsec_fls = fls64(nsec); 3044 frequency_fls = fls64(frequency); 3045 sec_fls = 30; 3046 3047 /* 3048 * We got @count in @nsec, with a target of sample_freq HZ 3049 * the target period becomes: 3050 * 3051 * @count * 10^9 3052 * period = ------------------- 3053 * @nsec * sample_freq 3054 * 3055 */ 3056 3057 /* 3058 * Reduce accuracy by one bit such that @a and @b converge 3059 * to a similar magnitude. 3060 */ 3061 #define REDUCE_FLS(a, b) \ 3062 do { \ 3063 if (a##_fls > b##_fls) { \ 3064 a >>= 1; \ 3065 a##_fls--; \ 3066 } else { \ 3067 b >>= 1; \ 3068 b##_fls--; \ 3069 } \ 3070 } while (0) 3071 3072 /* 3073 * Reduce accuracy until either term fits in a u64, then proceed with 3074 * the other, so that finally we can do a u64/u64 division. 3075 */ 3076 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3077 REDUCE_FLS(nsec, frequency); 3078 REDUCE_FLS(sec, count); 3079 } 3080 3081 if (count_fls + sec_fls > 64) { 3082 divisor = nsec * frequency; 3083 3084 while (count_fls + sec_fls > 64) { 3085 REDUCE_FLS(count, sec); 3086 divisor >>= 1; 3087 } 3088 3089 dividend = count * sec; 3090 } else { 3091 dividend = count * sec; 3092 3093 while (nsec_fls + frequency_fls > 64) { 3094 REDUCE_FLS(nsec, frequency); 3095 dividend >>= 1; 3096 } 3097 3098 divisor = nsec * frequency; 3099 } 3100 3101 if (!divisor) 3102 return dividend; 3103 3104 return div64_u64(dividend, divisor); 3105 } 3106 3107 static DEFINE_PER_CPU(int, perf_throttled_count); 3108 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3109 3110 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3111 { 3112 struct hw_perf_event *hwc = &event->hw; 3113 s64 period, sample_period; 3114 s64 delta; 3115 3116 period = perf_calculate_period(event, nsec, count); 3117 3118 delta = (s64)(period - hwc->sample_period); 3119 delta = (delta + 7) / 8; /* low pass filter */ 3120 3121 sample_period = hwc->sample_period + delta; 3122 3123 if (!sample_period) 3124 sample_period = 1; 3125 3126 hwc->sample_period = sample_period; 3127 3128 if (local64_read(&hwc->period_left) > 8*sample_period) { 3129 if (disable) 3130 event->pmu->stop(event, PERF_EF_UPDATE); 3131 3132 local64_set(&hwc->period_left, 0); 3133 3134 if (disable) 3135 event->pmu->start(event, PERF_EF_RELOAD); 3136 } 3137 } 3138 3139 /* 3140 * combine freq adjustment with unthrottling to avoid two passes over the 3141 * events. At the same time, make sure, having freq events does not change 3142 * the rate of unthrottling as that would introduce bias. 3143 */ 3144 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3145 int needs_unthr) 3146 { 3147 struct perf_event *event; 3148 struct hw_perf_event *hwc; 3149 u64 now, period = TICK_NSEC; 3150 s64 delta; 3151 3152 /* 3153 * only need to iterate over all events iff: 3154 * - context have events in frequency mode (needs freq adjust) 3155 * - there are events to unthrottle on this cpu 3156 */ 3157 if (!(ctx->nr_freq || needs_unthr)) 3158 return; 3159 3160 raw_spin_lock(&ctx->lock); 3161 perf_pmu_disable(ctx->pmu); 3162 3163 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3164 if (event->state != PERF_EVENT_STATE_ACTIVE) 3165 continue; 3166 3167 if (!event_filter_match(event)) 3168 continue; 3169 3170 perf_pmu_disable(event->pmu); 3171 3172 hwc = &event->hw; 3173 3174 if (hwc->interrupts == MAX_INTERRUPTS) { 3175 hwc->interrupts = 0; 3176 perf_log_throttle(event, 1); 3177 event->pmu->start(event, 0); 3178 } 3179 3180 if (!event->attr.freq || !event->attr.sample_freq) 3181 goto next; 3182 3183 /* 3184 * stop the event and update event->count 3185 */ 3186 event->pmu->stop(event, PERF_EF_UPDATE); 3187 3188 now = local64_read(&event->count); 3189 delta = now - hwc->freq_count_stamp; 3190 hwc->freq_count_stamp = now; 3191 3192 /* 3193 * restart the event 3194 * reload only if value has changed 3195 * we have stopped the event so tell that 3196 * to perf_adjust_period() to avoid stopping it 3197 * twice. 3198 */ 3199 if (delta > 0) 3200 perf_adjust_period(event, period, delta, false); 3201 3202 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3203 next: 3204 perf_pmu_enable(event->pmu); 3205 } 3206 3207 perf_pmu_enable(ctx->pmu); 3208 raw_spin_unlock(&ctx->lock); 3209 } 3210 3211 /* 3212 * Round-robin a context's events: 3213 */ 3214 static void rotate_ctx(struct perf_event_context *ctx) 3215 { 3216 /* 3217 * Rotate the first entry last of non-pinned groups. Rotation might be 3218 * disabled by the inheritance code. 3219 */ 3220 if (!ctx->rotate_disable) 3221 list_rotate_left(&ctx->flexible_groups); 3222 } 3223 3224 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3225 { 3226 struct perf_event_context *ctx = NULL; 3227 int rotate = 0; 3228 3229 if (cpuctx->ctx.nr_events) { 3230 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3231 rotate = 1; 3232 } 3233 3234 ctx = cpuctx->task_ctx; 3235 if (ctx && ctx->nr_events) { 3236 if (ctx->nr_events != ctx->nr_active) 3237 rotate = 1; 3238 } 3239 3240 if (!rotate) 3241 goto done; 3242 3243 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3244 perf_pmu_disable(cpuctx->ctx.pmu); 3245 3246 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3247 if (ctx) 3248 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3249 3250 rotate_ctx(&cpuctx->ctx); 3251 if (ctx) 3252 rotate_ctx(ctx); 3253 3254 perf_event_sched_in(cpuctx, ctx, current); 3255 3256 perf_pmu_enable(cpuctx->ctx.pmu); 3257 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3258 done: 3259 3260 return rotate; 3261 } 3262 3263 void perf_event_task_tick(void) 3264 { 3265 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3266 struct perf_event_context *ctx, *tmp; 3267 int throttled; 3268 3269 WARN_ON(!irqs_disabled()); 3270 3271 __this_cpu_inc(perf_throttled_seq); 3272 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3273 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3274 3275 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3276 perf_adjust_freq_unthr_context(ctx, throttled); 3277 } 3278 3279 static int event_enable_on_exec(struct perf_event *event, 3280 struct perf_event_context *ctx) 3281 { 3282 if (!event->attr.enable_on_exec) 3283 return 0; 3284 3285 event->attr.enable_on_exec = 0; 3286 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3287 return 0; 3288 3289 __perf_event_mark_enabled(event); 3290 3291 return 1; 3292 } 3293 3294 /* 3295 * Enable all of a task's events that have been marked enable-on-exec. 3296 * This expects task == current. 3297 */ 3298 static void perf_event_enable_on_exec(int ctxn) 3299 { 3300 struct perf_event_context *ctx, *clone_ctx = NULL; 3301 struct perf_cpu_context *cpuctx; 3302 struct perf_event *event; 3303 unsigned long flags; 3304 int enabled = 0; 3305 3306 local_irq_save(flags); 3307 ctx = current->perf_event_ctxp[ctxn]; 3308 if (!ctx || !ctx->nr_events) 3309 goto out; 3310 3311 cpuctx = __get_cpu_context(ctx); 3312 perf_ctx_lock(cpuctx, ctx); 3313 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3314 list_for_each_entry(event, &ctx->event_list, event_entry) 3315 enabled |= event_enable_on_exec(event, ctx); 3316 3317 /* 3318 * Unclone and reschedule this context if we enabled any event. 3319 */ 3320 if (enabled) { 3321 clone_ctx = unclone_ctx(ctx); 3322 ctx_resched(cpuctx, ctx); 3323 } 3324 perf_ctx_unlock(cpuctx, ctx); 3325 3326 out: 3327 local_irq_restore(flags); 3328 3329 if (clone_ctx) 3330 put_ctx(clone_ctx); 3331 } 3332 3333 struct perf_read_data { 3334 struct perf_event *event; 3335 bool group; 3336 int ret; 3337 }; 3338 3339 /* 3340 * Cross CPU call to read the hardware event 3341 */ 3342 static void __perf_event_read(void *info) 3343 { 3344 struct perf_read_data *data = info; 3345 struct perf_event *sub, *event = data->event; 3346 struct perf_event_context *ctx = event->ctx; 3347 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3348 struct pmu *pmu = event->pmu; 3349 3350 /* 3351 * If this is a task context, we need to check whether it is 3352 * the current task context of this cpu. If not it has been 3353 * scheduled out before the smp call arrived. In that case 3354 * event->count would have been updated to a recent sample 3355 * when the event was scheduled out. 3356 */ 3357 if (ctx->task && cpuctx->task_ctx != ctx) 3358 return; 3359 3360 raw_spin_lock(&ctx->lock); 3361 if (ctx->is_active) { 3362 update_context_time(ctx); 3363 update_cgrp_time_from_event(event); 3364 } 3365 3366 update_event_times(event); 3367 if (event->state != PERF_EVENT_STATE_ACTIVE) 3368 goto unlock; 3369 3370 if (!data->group) { 3371 pmu->read(event); 3372 data->ret = 0; 3373 goto unlock; 3374 } 3375 3376 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3377 3378 pmu->read(event); 3379 3380 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3381 update_event_times(sub); 3382 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3383 /* 3384 * Use sibling's PMU rather than @event's since 3385 * sibling could be on different (eg: software) PMU. 3386 */ 3387 sub->pmu->read(sub); 3388 } 3389 } 3390 3391 data->ret = pmu->commit_txn(pmu); 3392 3393 unlock: 3394 raw_spin_unlock(&ctx->lock); 3395 } 3396 3397 static inline u64 perf_event_count(struct perf_event *event) 3398 { 3399 if (event->pmu->count) 3400 return event->pmu->count(event); 3401 3402 return __perf_event_count(event); 3403 } 3404 3405 /* 3406 * NMI-safe method to read a local event, that is an event that 3407 * is: 3408 * - either for the current task, or for this CPU 3409 * - does not have inherit set, for inherited task events 3410 * will not be local and we cannot read them atomically 3411 * - must not have a pmu::count method 3412 */ 3413 u64 perf_event_read_local(struct perf_event *event) 3414 { 3415 unsigned long flags; 3416 u64 val; 3417 3418 /* 3419 * Disabling interrupts avoids all counter scheduling (context 3420 * switches, timer based rotation and IPIs). 3421 */ 3422 local_irq_save(flags); 3423 3424 /* If this is a per-task event, it must be for current */ 3425 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3426 event->hw.target != current); 3427 3428 /* If this is a per-CPU event, it must be for this CPU */ 3429 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3430 event->cpu != smp_processor_id()); 3431 3432 /* 3433 * It must not be an event with inherit set, we cannot read 3434 * all child counters from atomic context. 3435 */ 3436 WARN_ON_ONCE(event->attr.inherit); 3437 3438 /* 3439 * It must not have a pmu::count method, those are not 3440 * NMI safe. 3441 */ 3442 WARN_ON_ONCE(event->pmu->count); 3443 3444 /* 3445 * If the event is currently on this CPU, its either a per-task event, 3446 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3447 * oncpu == -1). 3448 */ 3449 if (event->oncpu == smp_processor_id()) 3450 event->pmu->read(event); 3451 3452 val = local64_read(&event->count); 3453 local_irq_restore(flags); 3454 3455 return val; 3456 } 3457 3458 static int perf_event_read(struct perf_event *event, bool group) 3459 { 3460 int ret = 0; 3461 3462 /* 3463 * If event is enabled and currently active on a CPU, update the 3464 * value in the event structure: 3465 */ 3466 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3467 struct perf_read_data data = { 3468 .event = event, 3469 .group = group, 3470 .ret = 0, 3471 }; 3472 smp_call_function_single(event->oncpu, 3473 __perf_event_read, &data, 1); 3474 ret = data.ret; 3475 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3476 struct perf_event_context *ctx = event->ctx; 3477 unsigned long flags; 3478 3479 raw_spin_lock_irqsave(&ctx->lock, flags); 3480 /* 3481 * may read while context is not active 3482 * (e.g., thread is blocked), in that case 3483 * we cannot update context time 3484 */ 3485 if (ctx->is_active) { 3486 update_context_time(ctx); 3487 update_cgrp_time_from_event(event); 3488 } 3489 if (group) 3490 update_group_times(event); 3491 else 3492 update_event_times(event); 3493 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3494 } 3495 3496 return ret; 3497 } 3498 3499 /* 3500 * Initialize the perf_event context in a task_struct: 3501 */ 3502 static void __perf_event_init_context(struct perf_event_context *ctx) 3503 { 3504 raw_spin_lock_init(&ctx->lock); 3505 mutex_init(&ctx->mutex); 3506 INIT_LIST_HEAD(&ctx->active_ctx_list); 3507 INIT_LIST_HEAD(&ctx->pinned_groups); 3508 INIT_LIST_HEAD(&ctx->flexible_groups); 3509 INIT_LIST_HEAD(&ctx->event_list); 3510 atomic_set(&ctx->refcount, 1); 3511 } 3512 3513 static struct perf_event_context * 3514 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3515 { 3516 struct perf_event_context *ctx; 3517 3518 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3519 if (!ctx) 3520 return NULL; 3521 3522 __perf_event_init_context(ctx); 3523 if (task) { 3524 ctx->task = task; 3525 get_task_struct(task); 3526 } 3527 ctx->pmu = pmu; 3528 3529 return ctx; 3530 } 3531 3532 static struct task_struct * 3533 find_lively_task_by_vpid(pid_t vpid) 3534 { 3535 struct task_struct *task; 3536 3537 rcu_read_lock(); 3538 if (!vpid) 3539 task = current; 3540 else 3541 task = find_task_by_vpid(vpid); 3542 if (task) 3543 get_task_struct(task); 3544 rcu_read_unlock(); 3545 3546 if (!task) 3547 return ERR_PTR(-ESRCH); 3548 3549 return task; 3550 } 3551 3552 /* 3553 * Returns a matching context with refcount and pincount. 3554 */ 3555 static struct perf_event_context * 3556 find_get_context(struct pmu *pmu, struct task_struct *task, 3557 struct perf_event *event) 3558 { 3559 struct perf_event_context *ctx, *clone_ctx = NULL; 3560 struct perf_cpu_context *cpuctx; 3561 void *task_ctx_data = NULL; 3562 unsigned long flags; 3563 int ctxn, err; 3564 int cpu = event->cpu; 3565 3566 if (!task) { 3567 /* Must be root to operate on a CPU event: */ 3568 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3569 return ERR_PTR(-EACCES); 3570 3571 /* 3572 * We could be clever and allow to attach a event to an 3573 * offline CPU and activate it when the CPU comes up, but 3574 * that's for later. 3575 */ 3576 if (!cpu_online(cpu)) 3577 return ERR_PTR(-ENODEV); 3578 3579 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3580 ctx = &cpuctx->ctx; 3581 get_ctx(ctx); 3582 ++ctx->pin_count; 3583 3584 return ctx; 3585 } 3586 3587 err = -EINVAL; 3588 ctxn = pmu->task_ctx_nr; 3589 if (ctxn < 0) 3590 goto errout; 3591 3592 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3593 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3594 if (!task_ctx_data) { 3595 err = -ENOMEM; 3596 goto errout; 3597 } 3598 } 3599 3600 retry: 3601 ctx = perf_lock_task_context(task, ctxn, &flags); 3602 if (ctx) { 3603 clone_ctx = unclone_ctx(ctx); 3604 ++ctx->pin_count; 3605 3606 if (task_ctx_data && !ctx->task_ctx_data) { 3607 ctx->task_ctx_data = task_ctx_data; 3608 task_ctx_data = NULL; 3609 } 3610 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3611 3612 if (clone_ctx) 3613 put_ctx(clone_ctx); 3614 } else { 3615 ctx = alloc_perf_context(pmu, task); 3616 err = -ENOMEM; 3617 if (!ctx) 3618 goto errout; 3619 3620 if (task_ctx_data) { 3621 ctx->task_ctx_data = task_ctx_data; 3622 task_ctx_data = NULL; 3623 } 3624 3625 err = 0; 3626 mutex_lock(&task->perf_event_mutex); 3627 /* 3628 * If it has already passed perf_event_exit_task(). 3629 * we must see PF_EXITING, it takes this mutex too. 3630 */ 3631 if (task->flags & PF_EXITING) 3632 err = -ESRCH; 3633 else if (task->perf_event_ctxp[ctxn]) 3634 err = -EAGAIN; 3635 else { 3636 get_ctx(ctx); 3637 ++ctx->pin_count; 3638 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3639 } 3640 mutex_unlock(&task->perf_event_mutex); 3641 3642 if (unlikely(err)) { 3643 put_ctx(ctx); 3644 3645 if (err == -EAGAIN) 3646 goto retry; 3647 goto errout; 3648 } 3649 } 3650 3651 kfree(task_ctx_data); 3652 return ctx; 3653 3654 errout: 3655 kfree(task_ctx_data); 3656 return ERR_PTR(err); 3657 } 3658 3659 static void perf_event_free_filter(struct perf_event *event); 3660 static void perf_event_free_bpf_prog(struct perf_event *event); 3661 3662 static void free_event_rcu(struct rcu_head *head) 3663 { 3664 struct perf_event *event; 3665 3666 event = container_of(head, struct perf_event, rcu_head); 3667 if (event->ns) 3668 put_pid_ns(event->ns); 3669 perf_event_free_filter(event); 3670 kfree(event); 3671 } 3672 3673 static void ring_buffer_attach(struct perf_event *event, 3674 struct ring_buffer *rb); 3675 3676 static void detach_sb_event(struct perf_event *event) 3677 { 3678 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3679 3680 raw_spin_lock(&pel->lock); 3681 list_del_rcu(&event->sb_list); 3682 raw_spin_unlock(&pel->lock); 3683 } 3684 3685 static bool is_sb_event(struct perf_event *event) 3686 { 3687 struct perf_event_attr *attr = &event->attr; 3688 3689 if (event->parent) 3690 return false; 3691 3692 if (event->attach_state & PERF_ATTACH_TASK) 3693 return false; 3694 3695 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3696 attr->comm || attr->comm_exec || 3697 attr->task || 3698 attr->context_switch) 3699 return true; 3700 return false; 3701 } 3702 3703 static void unaccount_pmu_sb_event(struct perf_event *event) 3704 { 3705 if (is_sb_event(event)) 3706 detach_sb_event(event); 3707 } 3708 3709 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3710 { 3711 if (event->parent) 3712 return; 3713 3714 if (is_cgroup_event(event)) 3715 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3716 } 3717 3718 #ifdef CONFIG_NO_HZ_FULL 3719 static DEFINE_SPINLOCK(nr_freq_lock); 3720 #endif 3721 3722 static void unaccount_freq_event_nohz(void) 3723 { 3724 #ifdef CONFIG_NO_HZ_FULL 3725 spin_lock(&nr_freq_lock); 3726 if (atomic_dec_and_test(&nr_freq_events)) 3727 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3728 spin_unlock(&nr_freq_lock); 3729 #endif 3730 } 3731 3732 static void unaccount_freq_event(void) 3733 { 3734 if (tick_nohz_full_enabled()) 3735 unaccount_freq_event_nohz(); 3736 else 3737 atomic_dec(&nr_freq_events); 3738 } 3739 3740 static void unaccount_event(struct perf_event *event) 3741 { 3742 bool dec = false; 3743 3744 if (event->parent) 3745 return; 3746 3747 if (event->attach_state & PERF_ATTACH_TASK) 3748 dec = true; 3749 if (event->attr.mmap || event->attr.mmap_data) 3750 atomic_dec(&nr_mmap_events); 3751 if (event->attr.comm) 3752 atomic_dec(&nr_comm_events); 3753 if (event->attr.task) 3754 atomic_dec(&nr_task_events); 3755 if (event->attr.freq) 3756 unaccount_freq_event(); 3757 if (event->attr.context_switch) { 3758 dec = true; 3759 atomic_dec(&nr_switch_events); 3760 } 3761 if (is_cgroup_event(event)) 3762 dec = true; 3763 if (has_branch_stack(event)) 3764 dec = true; 3765 3766 if (dec) { 3767 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3768 schedule_delayed_work(&perf_sched_work, HZ); 3769 } 3770 3771 unaccount_event_cpu(event, event->cpu); 3772 3773 unaccount_pmu_sb_event(event); 3774 } 3775 3776 static void perf_sched_delayed(struct work_struct *work) 3777 { 3778 mutex_lock(&perf_sched_mutex); 3779 if (atomic_dec_and_test(&perf_sched_count)) 3780 static_branch_disable(&perf_sched_events); 3781 mutex_unlock(&perf_sched_mutex); 3782 } 3783 3784 /* 3785 * The following implement mutual exclusion of events on "exclusive" pmus 3786 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3787 * at a time, so we disallow creating events that might conflict, namely: 3788 * 3789 * 1) cpu-wide events in the presence of per-task events, 3790 * 2) per-task events in the presence of cpu-wide events, 3791 * 3) two matching events on the same context. 3792 * 3793 * The former two cases are handled in the allocation path (perf_event_alloc(), 3794 * _free_event()), the latter -- before the first perf_install_in_context(). 3795 */ 3796 static int exclusive_event_init(struct perf_event *event) 3797 { 3798 struct pmu *pmu = event->pmu; 3799 3800 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3801 return 0; 3802 3803 /* 3804 * Prevent co-existence of per-task and cpu-wide events on the 3805 * same exclusive pmu. 3806 * 3807 * Negative pmu::exclusive_cnt means there are cpu-wide 3808 * events on this "exclusive" pmu, positive means there are 3809 * per-task events. 3810 * 3811 * Since this is called in perf_event_alloc() path, event::ctx 3812 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3813 * to mean "per-task event", because unlike other attach states it 3814 * never gets cleared. 3815 */ 3816 if (event->attach_state & PERF_ATTACH_TASK) { 3817 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3818 return -EBUSY; 3819 } else { 3820 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3821 return -EBUSY; 3822 } 3823 3824 return 0; 3825 } 3826 3827 static void exclusive_event_destroy(struct perf_event *event) 3828 { 3829 struct pmu *pmu = event->pmu; 3830 3831 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3832 return; 3833 3834 /* see comment in exclusive_event_init() */ 3835 if (event->attach_state & PERF_ATTACH_TASK) 3836 atomic_dec(&pmu->exclusive_cnt); 3837 else 3838 atomic_inc(&pmu->exclusive_cnt); 3839 } 3840 3841 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3842 { 3843 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3844 (e1->cpu == e2->cpu || 3845 e1->cpu == -1 || 3846 e2->cpu == -1)) 3847 return true; 3848 return false; 3849 } 3850 3851 /* Called under the same ctx::mutex as perf_install_in_context() */ 3852 static bool exclusive_event_installable(struct perf_event *event, 3853 struct perf_event_context *ctx) 3854 { 3855 struct perf_event *iter_event; 3856 struct pmu *pmu = event->pmu; 3857 3858 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3859 return true; 3860 3861 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3862 if (exclusive_event_match(iter_event, event)) 3863 return false; 3864 } 3865 3866 return true; 3867 } 3868 3869 static void perf_addr_filters_splice(struct perf_event *event, 3870 struct list_head *head); 3871 3872 static void _free_event(struct perf_event *event) 3873 { 3874 irq_work_sync(&event->pending); 3875 3876 unaccount_event(event); 3877 3878 if (event->rb) { 3879 /* 3880 * Can happen when we close an event with re-directed output. 3881 * 3882 * Since we have a 0 refcount, perf_mmap_close() will skip 3883 * over us; possibly making our ring_buffer_put() the last. 3884 */ 3885 mutex_lock(&event->mmap_mutex); 3886 ring_buffer_attach(event, NULL); 3887 mutex_unlock(&event->mmap_mutex); 3888 } 3889 3890 if (is_cgroup_event(event)) 3891 perf_detach_cgroup(event); 3892 3893 if (!event->parent) { 3894 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3895 put_callchain_buffers(); 3896 } 3897 3898 perf_event_free_bpf_prog(event); 3899 perf_addr_filters_splice(event, NULL); 3900 kfree(event->addr_filters_offs); 3901 3902 if (event->destroy) 3903 event->destroy(event); 3904 3905 if (event->ctx) 3906 put_ctx(event->ctx); 3907 3908 exclusive_event_destroy(event); 3909 module_put(event->pmu->module); 3910 3911 call_rcu(&event->rcu_head, free_event_rcu); 3912 } 3913 3914 /* 3915 * Used to free events which have a known refcount of 1, such as in error paths 3916 * where the event isn't exposed yet and inherited events. 3917 */ 3918 static void free_event(struct perf_event *event) 3919 { 3920 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3921 "unexpected event refcount: %ld; ptr=%p\n", 3922 atomic_long_read(&event->refcount), event)) { 3923 /* leak to avoid use-after-free */ 3924 return; 3925 } 3926 3927 _free_event(event); 3928 } 3929 3930 /* 3931 * Remove user event from the owner task. 3932 */ 3933 static void perf_remove_from_owner(struct perf_event *event) 3934 { 3935 struct task_struct *owner; 3936 3937 rcu_read_lock(); 3938 /* 3939 * Matches the smp_store_release() in perf_event_exit_task(). If we 3940 * observe !owner it means the list deletion is complete and we can 3941 * indeed free this event, otherwise we need to serialize on 3942 * owner->perf_event_mutex. 3943 */ 3944 owner = lockless_dereference(event->owner); 3945 if (owner) { 3946 /* 3947 * Since delayed_put_task_struct() also drops the last 3948 * task reference we can safely take a new reference 3949 * while holding the rcu_read_lock(). 3950 */ 3951 get_task_struct(owner); 3952 } 3953 rcu_read_unlock(); 3954 3955 if (owner) { 3956 /* 3957 * If we're here through perf_event_exit_task() we're already 3958 * holding ctx->mutex which would be an inversion wrt. the 3959 * normal lock order. 3960 * 3961 * However we can safely take this lock because its the child 3962 * ctx->mutex. 3963 */ 3964 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3965 3966 /* 3967 * We have to re-check the event->owner field, if it is cleared 3968 * we raced with perf_event_exit_task(), acquiring the mutex 3969 * ensured they're done, and we can proceed with freeing the 3970 * event. 3971 */ 3972 if (event->owner) { 3973 list_del_init(&event->owner_entry); 3974 smp_store_release(&event->owner, NULL); 3975 } 3976 mutex_unlock(&owner->perf_event_mutex); 3977 put_task_struct(owner); 3978 } 3979 } 3980 3981 static void put_event(struct perf_event *event) 3982 { 3983 if (!atomic_long_dec_and_test(&event->refcount)) 3984 return; 3985 3986 _free_event(event); 3987 } 3988 3989 /* 3990 * Kill an event dead; while event:refcount will preserve the event 3991 * object, it will not preserve its functionality. Once the last 'user' 3992 * gives up the object, we'll destroy the thing. 3993 */ 3994 int perf_event_release_kernel(struct perf_event *event) 3995 { 3996 struct perf_event_context *ctx = event->ctx; 3997 struct perf_event *child, *tmp; 3998 3999 /* 4000 * If we got here through err_file: fput(event_file); we will not have 4001 * attached to a context yet. 4002 */ 4003 if (!ctx) { 4004 WARN_ON_ONCE(event->attach_state & 4005 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4006 goto no_ctx; 4007 } 4008 4009 if (!is_kernel_event(event)) 4010 perf_remove_from_owner(event); 4011 4012 ctx = perf_event_ctx_lock(event); 4013 WARN_ON_ONCE(ctx->parent_ctx); 4014 perf_remove_from_context(event, DETACH_GROUP); 4015 4016 raw_spin_lock_irq(&ctx->lock); 4017 /* 4018 * Mark this even as STATE_DEAD, there is no external reference to it 4019 * anymore. 4020 * 4021 * Anybody acquiring event->child_mutex after the below loop _must_ 4022 * also see this, most importantly inherit_event() which will avoid 4023 * placing more children on the list. 4024 * 4025 * Thus this guarantees that we will in fact observe and kill _ALL_ 4026 * child events. 4027 */ 4028 event->state = PERF_EVENT_STATE_DEAD; 4029 raw_spin_unlock_irq(&ctx->lock); 4030 4031 perf_event_ctx_unlock(event, ctx); 4032 4033 again: 4034 mutex_lock(&event->child_mutex); 4035 list_for_each_entry(child, &event->child_list, child_list) { 4036 4037 /* 4038 * Cannot change, child events are not migrated, see the 4039 * comment with perf_event_ctx_lock_nested(). 4040 */ 4041 ctx = lockless_dereference(child->ctx); 4042 /* 4043 * Since child_mutex nests inside ctx::mutex, we must jump 4044 * through hoops. We start by grabbing a reference on the ctx. 4045 * 4046 * Since the event cannot get freed while we hold the 4047 * child_mutex, the context must also exist and have a !0 4048 * reference count. 4049 */ 4050 get_ctx(ctx); 4051 4052 /* 4053 * Now that we have a ctx ref, we can drop child_mutex, and 4054 * acquire ctx::mutex without fear of it going away. Then we 4055 * can re-acquire child_mutex. 4056 */ 4057 mutex_unlock(&event->child_mutex); 4058 mutex_lock(&ctx->mutex); 4059 mutex_lock(&event->child_mutex); 4060 4061 /* 4062 * Now that we hold ctx::mutex and child_mutex, revalidate our 4063 * state, if child is still the first entry, it didn't get freed 4064 * and we can continue doing so. 4065 */ 4066 tmp = list_first_entry_or_null(&event->child_list, 4067 struct perf_event, child_list); 4068 if (tmp == child) { 4069 perf_remove_from_context(child, DETACH_GROUP); 4070 list_del(&child->child_list); 4071 free_event(child); 4072 /* 4073 * This matches the refcount bump in inherit_event(); 4074 * this can't be the last reference. 4075 */ 4076 put_event(event); 4077 } 4078 4079 mutex_unlock(&event->child_mutex); 4080 mutex_unlock(&ctx->mutex); 4081 put_ctx(ctx); 4082 goto again; 4083 } 4084 mutex_unlock(&event->child_mutex); 4085 4086 no_ctx: 4087 put_event(event); /* Must be the 'last' reference */ 4088 return 0; 4089 } 4090 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4091 4092 /* 4093 * Called when the last reference to the file is gone. 4094 */ 4095 static int perf_release(struct inode *inode, struct file *file) 4096 { 4097 perf_event_release_kernel(file->private_data); 4098 return 0; 4099 } 4100 4101 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4102 { 4103 struct perf_event *child; 4104 u64 total = 0; 4105 4106 *enabled = 0; 4107 *running = 0; 4108 4109 mutex_lock(&event->child_mutex); 4110 4111 (void)perf_event_read(event, false); 4112 total += perf_event_count(event); 4113 4114 *enabled += event->total_time_enabled + 4115 atomic64_read(&event->child_total_time_enabled); 4116 *running += event->total_time_running + 4117 atomic64_read(&event->child_total_time_running); 4118 4119 list_for_each_entry(child, &event->child_list, child_list) { 4120 (void)perf_event_read(child, false); 4121 total += perf_event_count(child); 4122 *enabled += child->total_time_enabled; 4123 *running += child->total_time_running; 4124 } 4125 mutex_unlock(&event->child_mutex); 4126 4127 return total; 4128 } 4129 EXPORT_SYMBOL_GPL(perf_event_read_value); 4130 4131 static int __perf_read_group_add(struct perf_event *leader, 4132 u64 read_format, u64 *values) 4133 { 4134 struct perf_event *sub; 4135 int n = 1; /* skip @nr */ 4136 int ret; 4137 4138 ret = perf_event_read(leader, true); 4139 if (ret) 4140 return ret; 4141 4142 /* 4143 * Since we co-schedule groups, {enabled,running} times of siblings 4144 * will be identical to those of the leader, so we only publish one 4145 * set. 4146 */ 4147 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4148 values[n++] += leader->total_time_enabled + 4149 atomic64_read(&leader->child_total_time_enabled); 4150 } 4151 4152 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4153 values[n++] += leader->total_time_running + 4154 atomic64_read(&leader->child_total_time_running); 4155 } 4156 4157 /* 4158 * Write {count,id} tuples for every sibling. 4159 */ 4160 values[n++] += perf_event_count(leader); 4161 if (read_format & PERF_FORMAT_ID) 4162 values[n++] = primary_event_id(leader); 4163 4164 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4165 values[n++] += perf_event_count(sub); 4166 if (read_format & PERF_FORMAT_ID) 4167 values[n++] = primary_event_id(sub); 4168 } 4169 4170 return 0; 4171 } 4172 4173 static int perf_read_group(struct perf_event *event, 4174 u64 read_format, char __user *buf) 4175 { 4176 struct perf_event *leader = event->group_leader, *child; 4177 struct perf_event_context *ctx = leader->ctx; 4178 int ret; 4179 u64 *values; 4180 4181 lockdep_assert_held(&ctx->mutex); 4182 4183 values = kzalloc(event->read_size, GFP_KERNEL); 4184 if (!values) 4185 return -ENOMEM; 4186 4187 values[0] = 1 + leader->nr_siblings; 4188 4189 /* 4190 * By locking the child_mutex of the leader we effectively 4191 * lock the child list of all siblings.. XXX explain how. 4192 */ 4193 mutex_lock(&leader->child_mutex); 4194 4195 ret = __perf_read_group_add(leader, read_format, values); 4196 if (ret) 4197 goto unlock; 4198 4199 list_for_each_entry(child, &leader->child_list, child_list) { 4200 ret = __perf_read_group_add(child, read_format, values); 4201 if (ret) 4202 goto unlock; 4203 } 4204 4205 mutex_unlock(&leader->child_mutex); 4206 4207 ret = event->read_size; 4208 if (copy_to_user(buf, values, event->read_size)) 4209 ret = -EFAULT; 4210 goto out; 4211 4212 unlock: 4213 mutex_unlock(&leader->child_mutex); 4214 out: 4215 kfree(values); 4216 return ret; 4217 } 4218 4219 static int perf_read_one(struct perf_event *event, 4220 u64 read_format, char __user *buf) 4221 { 4222 u64 enabled, running; 4223 u64 values[4]; 4224 int n = 0; 4225 4226 values[n++] = perf_event_read_value(event, &enabled, &running); 4227 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4228 values[n++] = enabled; 4229 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4230 values[n++] = running; 4231 if (read_format & PERF_FORMAT_ID) 4232 values[n++] = primary_event_id(event); 4233 4234 if (copy_to_user(buf, values, n * sizeof(u64))) 4235 return -EFAULT; 4236 4237 return n * sizeof(u64); 4238 } 4239 4240 static bool is_event_hup(struct perf_event *event) 4241 { 4242 bool no_children; 4243 4244 if (event->state > PERF_EVENT_STATE_EXIT) 4245 return false; 4246 4247 mutex_lock(&event->child_mutex); 4248 no_children = list_empty(&event->child_list); 4249 mutex_unlock(&event->child_mutex); 4250 return no_children; 4251 } 4252 4253 /* 4254 * Read the performance event - simple non blocking version for now 4255 */ 4256 static ssize_t 4257 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4258 { 4259 u64 read_format = event->attr.read_format; 4260 int ret; 4261 4262 /* 4263 * Return end-of-file for a read on a event that is in 4264 * error state (i.e. because it was pinned but it couldn't be 4265 * scheduled on to the CPU at some point). 4266 */ 4267 if (event->state == PERF_EVENT_STATE_ERROR) 4268 return 0; 4269 4270 if (count < event->read_size) 4271 return -ENOSPC; 4272 4273 WARN_ON_ONCE(event->ctx->parent_ctx); 4274 if (read_format & PERF_FORMAT_GROUP) 4275 ret = perf_read_group(event, read_format, buf); 4276 else 4277 ret = perf_read_one(event, read_format, buf); 4278 4279 return ret; 4280 } 4281 4282 static ssize_t 4283 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4284 { 4285 struct perf_event *event = file->private_data; 4286 struct perf_event_context *ctx; 4287 int ret; 4288 4289 ctx = perf_event_ctx_lock(event); 4290 ret = __perf_read(event, buf, count); 4291 perf_event_ctx_unlock(event, ctx); 4292 4293 return ret; 4294 } 4295 4296 static unsigned int perf_poll(struct file *file, poll_table *wait) 4297 { 4298 struct perf_event *event = file->private_data; 4299 struct ring_buffer *rb; 4300 unsigned int events = POLLHUP; 4301 4302 poll_wait(file, &event->waitq, wait); 4303 4304 if (is_event_hup(event)) 4305 return events; 4306 4307 /* 4308 * Pin the event->rb by taking event->mmap_mutex; otherwise 4309 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4310 */ 4311 mutex_lock(&event->mmap_mutex); 4312 rb = event->rb; 4313 if (rb) 4314 events = atomic_xchg(&rb->poll, 0); 4315 mutex_unlock(&event->mmap_mutex); 4316 return events; 4317 } 4318 4319 static void _perf_event_reset(struct perf_event *event) 4320 { 4321 (void)perf_event_read(event, false); 4322 local64_set(&event->count, 0); 4323 perf_event_update_userpage(event); 4324 } 4325 4326 /* 4327 * Holding the top-level event's child_mutex means that any 4328 * descendant process that has inherited this event will block 4329 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4330 * task existence requirements of perf_event_enable/disable. 4331 */ 4332 static void perf_event_for_each_child(struct perf_event *event, 4333 void (*func)(struct perf_event *)) 4334 { 4335 struct perf_event *child; 4336 4337 WARN_ON_ONCE(event->ctx->parent_ctx); 4338 4339 mutex_lock(&event->child_mutex); 4340 func(event); 4341 list_for_each_entry(child, &event->child_list, child_list) 4342 func(child); 4343 mutex_unlock(&event->child_mutex); 4344 } 4345 4346 static void perf_event_for_each(struct perf_event *event, 4347 void (*func)(struct perf_event *)) 4348 { 4349 struct perf_event_context *ctx = event->ctx; 4350 struct perf_event *sibling; 4351 4352 lockdep_assert_held(&ctx->mutex); 4353 4354 event = event->group_leader; 4355 4356 perf_event_for_each_child(event, func); 4357 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4358 perf_event_for_each_child(sibling, func); 4359 } 4360 4361 static void __perf_event_period(struct perf_event *event, 4362 struct perf_cpu_context *cpuctx, 4363 struct perf_event_context *ctx, 4364 void *info) 4365 { 4366 u64 value = *((u64 *)info); 4367 bool active; 4368 4369 if (event->attr.freq) { 4370 event->attr.sample_freq = value; 4371 } else { 4372 event->attr.sample_period = value; 4373 event->hw.sample_period = value; 4374 } 4375 4376 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4377 if (active) { 4378 perf_pmu_disable(ctx->pmu); 4379 /* 4380 * We could be throttled; unthrottle now to avoid the tick 4381 * trying to unthrottle while we already re-started the event. 4382 */ 4383 if (event->hw.interrupts == MAX_INTERRUPTS) { 4384 event->hw.interrupts = 0; 4385 perf_log_throttle(event, 1); 4386 } 4387 event->pmu->stop(event, PERF_EF_UPDATE); 4388 } 4389 4390 local64_set(&event->hw.period_left, 0); 4391 4392 if (active) { 4393 event->pmu->start(event, PERF_EF_RELOAD); 4394 perf_pmu_enable(ctx->pmu); 4395 } 4396 } 4397 4398 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4399 { 4400 u64 value; 4401 4402 if (!is_sampling_event(event)) 4403 return -EINVAL; 4404 4405 if (copy_from_user(&value, arg, sizeof(value))) 4406 return -EFAULT; 4407 4408 if (!value) 4409 return -EINVAL; 4410 4411 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4412 return -EINVAL; 4413 4414 event_function_call(event, __perf_event_period, &value); 4415 4416 return 0; 4417 } 4418 4419 static const struct file_operations perf_fops; 4420 4421 static inline int perf_fget_light(int fd, struct fd *p) 4422 { 4423 struct fd f = fdget(fd); 4424 if (!f.file) 4425 return -EBADF; 4426 4427 if (f.file->f_op != &perf_fops) { 4428 fdput(f); 4429 return -EBADF; 4430 } 4431 *p = f; 4432 return 0; 4433 } 4434 4435 static int perf_event_set_output(struct perf_event *event, 4436 struct perf_event *output_event); 4437 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4438 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4439 4440 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4441 { 4442 void (*func)(struct perf_event *); 4443 u32 flags = arg; 4444 4445 switch (cmd) { 4446 case PERF_EVENT_IOC_ENABLE: 4447 func = _perf_event_enable; 4448 break; 4449 case PERF_EVENT_IOC_DISABLE: 4450 func = _perf_event_disable; 4451 break; 4452 case PERF_EVENT_IOC_RESET: 4453 func = _perf_event_reset; 4454 break; 4455 4456 case PERF_EVENT_IOC_REFRESH: 4457 return _perf_event_refresh(event, arg); 4458 4459 case PERF_EVENT_IOC_PERIOD: 4460 return perf_event_period(event, (u64 __user *)arg); 4461 4462 case PERF_EVENT_IOC_ID: 4463 { 4464 u64 id = primary_event_id(event); 4465 4466 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4467 return -EFAULT; 4468 return 0; 4469 } 4470 4471 case PERF_EVENT_IOC_SET_OUTPUT: 4472 { 4473 int ret; 4474 if (arg != -1) { 4475 struct perf_event *output_event; 4476 struct fd output; 4477 ret = perf_fget_light(arg, &output); 4478 if (ret) 4479 return ret; 4480 output_event = output.file->private_data; 4481 ret = perf_event_set_output(event, output_event); 4482 fdput(output); 4483 } else { 4484 ret = perf_event_set_output(event, NULL); 4485 } 4486 return ret; 4487 } 4488 4489 case PERF_EVENT_IOC_SET_FILTER: 4490 return perf_event_set_filter(event, (void __user *)arg); 4491 4492 case PERF_EVENT_IOC_SET_BPF: 4493 return perf_event_set_bpf_prog(event, arg); 4494 4495 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4496 struct ring_buffer *rb; 4497 4498 rcu_read_lock(); 4499 rb = rcu_dereference(event->rb); 4500 if (!rb || !rb->nr_pages) { 4501 rcu_read_unlock(); 4502 return -EINVAL; 4503 } 4504 rb_toggle_paused(rb, !!arg); 4505 rcu_read_unlock(); 4506 return 0; 4507 } 4508 default: 4509 return -ENOTTY; 4510 } 4511 4512 if (flags & PERF_IOC_FLAG_GROUP) 4513 perf_event_for_each(event, func); 4514 else 4515 perf_event_for_each_child(event, func); 4516 4517 return 0; 4518 } 4519 4520 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4521 { 4522 struct perf_event *event = file->private_data; 4523 struct perf_event_context *ctx; 4524 long ret; 4525 4526 ctx = perf_event_ctx_lock(event); 4527 ret = _perf_ioctl(event, cmd, arg); 4528 perf_event_ctx_unlock(event, ctx); 4529 4530 return ret; 4531 } 4532 4533 #ifdef CONFIG_COMPAT 4534 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4535 unsigned long arg) 4536 { 4537 switch (_IOC_NR(cmd)) { 4538 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4539 case _IOC_NR(PERF_EVENT_IOC_ID): 4540 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4541 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4542 cmd &= ~IOCSIZE_MASK; 4543 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4544 } 4545 break; 4546 } 4547 return perf_ioctl(file, cmd, arg); 4548 } 4549 #else 4550 # define perf_compat_ioctl NULL 4551 #endif 4552 4553 int perf_event_task_enable(void) 4554 { 4555 struct perf_event_context *ctx; 4556 struct perf_event *event; 4557 4558 mutex_lock(¤t->perf_event_mutex); 4559 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4560 ctx = perf_event_ctx_lock(event); 4561 perf_event_for_each_child(event, _perf_event_enable); 4562 perf_event_ctx_unlock(event, ctx); 4563 } 4564 mutex_unlock(¤t->perf_event_mutex); 4565 4566 return 0; 4567 } 4568 4569 int perf_event_task_disable(void) 4570 { 4571 struct perf_event_context *ctx; 4572 struct perf_event *event; 4573 4574 mutex_lock(¤t->perf_event_mutex); 4575 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4576 ctx = perf_event_ctx_lock(event); 4577 perf_event_for_each_child(event, _perf_event_disable); 4578 perf_event_ctx_unlock(event, ctx); 4579 } 4580 mutex_unlock(¤t->perf_event_mutex); 4581 4582 return 0; 4583 } 4584 4585 static int perf_event_index(struct perf_event *event) 4586 { 4587 if (event->hw.state & PERF_HES_STOPPED) 4588 return 0; 4589 4590 if (event->state != PERF_EVENT_STATE_ACTIVE) 4591 return 0; 4592 4593 return event->pmu->event_idx(event); 4594 } 4595 4596 static void calc_timer_values(struct perf_event *event, 4597 u64 *now, 4598 u64 *enabled, 4599 u64 *running) 4600 { 4601 u64 ctx_time; 4602 4603 *now = perf_clock(); 4604 ctx_time = event->shadow_ctx_time + *now; 4605 *enabled = ctx_time - event->tstamp_enabled; 4606 *running = ctx_time - event->tstamp_running; 4607 } 4608 4609 static void perf_event_init_userpage(struct perf_event *event) 4610 { 4611 struct perf_event_mmap_page *userpg; 4612 struct ring_buffer *rb; 4613 4614 rcu_read_lock(); 4615 rb = rcu_dereference(event->rb); 4616 if (!rb) 4617 goto unlock; 4618 4619 userpg = rb->user_page; 4620 4621 /* Allow new userspace to detect that bit 0 is deprecated */ 4622 userpg->cap_bit0_is_deprecated = 1; 4623 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4624 userpg->data_offset = PAGE_SIZE; 4625 userpg->data_size = perf_data_size(rb); 4626 4627 unlock: 4628 rcu_read_unlock(); 4629 } 4630 4631 void __weak arch_perf_update_userpage( 4632 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4633 { 4634 } 4635 4636 /* 4637 * Callers need to ensure there can be no nesting of this function, otherwise 4638 * the seqlock logic goes bad. We can not serialize this because the arch 4639 * code calls this from NMI context. 4640 */ 4641 void perf_event_update_userpage(struct perf_event *event) 4642 { 4643 struct perf_event_mmap_page *userpg; 4644 struct ring_buffer *rb; 4645 u64 enabled, running, now; 4646 4647 rcu_read_lock(); 4648 rb = rcu_dereference(event->rb); 4649 if (!rb) 4650 goto unlock; 4651 4652 /* 4653 * compute total_time_enabled, total_time_running 4654 * based on snapshot values taken when the event 4655 * was last scheduled in. 4656 * 4657 * we cannot simply called update_context_time() 4658 * because of locking issue as we can be called in 4659 * NMI context 4660 */ 4661 calc_timer_values(event, &now, &enabled, &running); 4662 4663 userpg = rb->user_page; 4664 /* 4665 * Disable preemption so as to not let the corresponding user-space 4666 * spin too long if we get preempted. 4667 */ 4668 preempt_disable(); 4669 ++userpg->lock; 4670 barrier(); 4671 userpg->index = perf_event_index(event); 4672 userpg->offset = perf_event_count(event); 4673 if (userpg->index) 4674 userpg->offset -= local64_read(&event->hw.prev_count); 4675 4676 userpg->time_enabled = enabled + 4677 atomic64_read(&event->child_total_time_enabled); 4678 4679 userpg->time_running = running + 4680 atomic64_read(&event->child_total_time_running); 4681 4682 arch_perf_update_userpage(event, userpg, now); 4683 4684 barrier(); 4685 ++userpg->lock; 4686 preempt_enable(); 4687 unlock: 4688 rcu_read_unlock(); 4689 } 4690 4691 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4692 { 4693 struct perf_event *event = vma->vm_file->private_data; 4694 struct ring_buffer *rb; 4695 int ret = VM_FAULT_SIGBUS; 4696 4697 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4698 if (vmf->pgoff == 0) 4699 ret = 0; 4700 return ret; 4701 } 4702 4703 rcu_read_lock(); 4704 rb = rcu_dereference(event->rb); 4705 if (!rb) 4706 goto unlock; 4707 4708 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4709 goto unlock; 4710 4711 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4712 if (!vmf->page) 4713 goto unlock; 4714 4715 get_page(vmf->page); 4716 vmf->page->mapping = vma->vm_file->f_mapping; 4717 vmf->page->index = vmf->pgoff; 4718 4719 ret = 0; 4720 unlock: 4721 rcu_read_unlock(); 4722 4723 return ret; 4724 } 4725 4726 static void ring_buffer_attach(struct perf_event *event, 4727 struct ring_buffer *rb) 4728 { 4729 struct ring_buffer *old_rb = NULL; 4730 unsigned long flags; 4731 4732 if (event->rb) { 4733 /* 4734 * Should be impossible, we set this when removing 4735 * event->rb_entry and wait/clear when adding event->rb_entry. 4736 */ 4737 WARN_ON_ONCE(event->rcu_pending); 4738 4739 old_rb = event->rb; 4740 spin_lock_irqsave(&old_rb->event_lock, flags); 4741 list_del_rcu(&event->rb_entry); 4742 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4743 4744 event->rcu_batches = get_state_synchronize_rcu(); 4745 event->rcu_pending = 1; 4746 } 4747 4748 if (rb) { 4749 if (event->rcu_pending) { 4750 cond_synchronize_rcu(event->rcu_batches); 4751 event->rcu_pending = 0; 4752 } 4753 4754 spin_lock_irqsave(&rb->event_lock, flags); 4755 list_add_rcu(&event->rb_entry, &rb->event_list); 4756 spin_unlock_irqrestore(&rb->event_lock, flags); 4757 } 4758 4759 rcu_assign_pointer(event->rb, rb); 4760 4761 if (old_rb) { 4762 ring_buffer_put(old_rb); 4763 /* 4764 * Since we detached before setting the new rb, so that we 4765 * could attach the new rb, we could have missed a wakeup. 4766 * Provide it now. 4767 */ 4768 wake_up_all(&event->waitq); 4769 } 4770 } 4771 4772 static void ring_buffer_wakeup(struct perf_event *event) 4773 { 4774 struct ring_buffer *rb; 4775 4776 rcu_read_lock(); 4777 rb = rcu_dereference(event->rb); 4778 if (rb) { 4779 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4780 wake_up_all(&event->waitq); 4781 } 4782 rcu_read_unlock(); 4783 } 4784 4785 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4786 { 4787 struct ring_buffer *rb; 4788 4789 rcu_read_lock(); 4790 rb = rcu_dereference(event->rb); 4791 if (rb) { 4792 if (!atomic_inc_not_zero(&rb->refcount)) 4793 rb = NULL; 4794 } 4795 rcu_read_unlock(); 4796 4797 return rb; 4798 } 4799 4800 void ring_buffer_put(struct ring_buffer *rb) 4801 { 4802 if (!atomic_dec_and_test(&rb->refcount)) 4803 return; 4804 4805 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4806 4807 call_rcu(&rb->rcu_head, rb_free_rcu); 4808 } 4809 4810 static void perf_mmap_open(struct vm_area_struct *vma) 4811 { 4812 struct perf_event *event = vma->vm_file->private_data; 4813 4814 atomic_inc(&event->mmap_count); 4815 atomic_inc(&event->rb->mmap_count); 4816 4817 if (vma->vm_pgoff) 4818 atomic_inc(&event->rb->aux_mmap_count); 4819 4820 if (event->pmu->event_mapped) 4821 event->pmu->event_mapped(event); 4822 } 4823 4824 static void perf_pmu_output_stop(struct perf_event *event); 4825 4826 /* 4827 * A buffer can be mmap()ed multiple times; either directly through the same 4828 * event, or through other events by use of perf_event_set_output(). 4829 * 4830 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4831 * the buffer here, where we still have a VM context. This means we need 4832 * to detach all events redirecting to us. 4833 */ 4834 static void perf_mmap_close(struct vm_area_struct *vma) 4835 { 4836 struct perf_event *event = vma->vm_file->private_data; 4837 4838 struct ring_buffer *rb = ring_buffer_get(event); 4839 struct user_struct *mmap_user = rb->mmap_user; 4840 int mmap_locked = rb->mmap_locked; 4841 unsigned long size = perf_data_size(rb); 4842 4843 if (event->pmu->event_unmapped) 4844 event->pmu->event_unmapped(event); 4845 4846 /* 4847 * rb->aux_mmap_count will always drop before rb->mmap_count and 4848 * event->mmap_count, so it is ok to use event->mmap_mutex to 4849 * serialize with perf_mmap here. 4850 */ 4851 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4852 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4853 /* 4854 * Stop all AUX events that are writing to this buffer, 4855 * so that we can free its AUX pages and corresponding PMU 4856 * data. Note that after rb::aux_mmap_count dropped to zero, 4857 * they won't start any more (see perf_aux_output_begin()). 4858 */ 4859 perf_pmu_output_stop(event); 4860 4861 /* now it's safe to free the pages */ 4862 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4863 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4864 4865 /* this has to be the last one */ 4866 rb_free_aux(rb); 4867 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 4868 4869 mutex_unlock(&event->mmap_mutex); 4870 } 4871 4872 atomic_dec(&rb->mmap_count); 4873 4874 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4875 goto out_put; 4876 4877 ring_buffer_attach(event, NULL); 4878 mutex_unlock(&event->mmap_mutex); 4879 4880 /* If there's still other mmap()s of this buffer, we're done. */ 4881 if (atomic_read(&rb->mmap_count)) 4882 goto out_put; 4883 4884 /* 4885 * No other mmap()s, detach from all other events that might redirect 4886 * into the now unreachable buffer. Somewhat complicated by the 4887 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4888 */ 4889 again: 4890 rcu_read_lock(); 4891 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4892 if (!atomic_long_inc_not_zero(&event->refcount)) { 4893 /* 4894 * This event is en-route to free_event() which will 4895 * detach it and remove it from the list. 4896 */ 4897 continue; 4898 } 4899 rcu_read_unlock(); 4900 4901 mutex_lock(&event->mmap_mutex); 4902 /* 4903 * Check we didn't race with perf_event_set_output() which can 4904 * swizzle the rb from under us while we were waiting to 4905 * acquire mmap_mutex. 4906 * 4907 * If we find a different rb; ignore this event, a next 4908 * iteration will no longer find it on the list. We have to 4909 * still restart the iteration to make sure we're not now 4910 * iterating the wrong list. 4911 */ 4912 if (event->rb == rb) 4913 ring_buffer_attach(event, NULL); 4914 4915 mutex_unlock(&event->mmap_mutex); 4916 put_event(event); 4917 4918 /* 4919 * Restart the iteration; either we're on the wrong list or 4920 * destroyed its integrity by doing a deletion. 4921 */ 4922 goto again; 4923 } 4924 rcu_read_unlock(); 4925 4926 /* 4927 * It could be there's still a few 0-ref events on the list; they'll 4928 * get cleaned up by free_event() -- they'll also still have their 4929 * ref on the rb and will free it whenever they are done with it. 4930 * 4931 * Aside from that, this buffer is 'fully' detached and unmapped, 4932 * undo the VM accounting. 4933 */ 4934 4935 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4936 vma->vm_mm->pinned_vm -= mmap_locked; 4937 free_uid(mmap_user); 4938 4939 out_put: 4940 ring_buffer_put(rb); /* could be last */ 4941 } 4942 4943 static const struct vm_operations_struct perf_mmap_vmops = { 4944 .open = perf_mmap_open, 4945 .close = perf_mmap_close, /* non mergable */ 4946 .fault = perf_mmap_fault, 4947 .page_mkwrite = perf_mmap_fault, 4948 }; 4949 4950 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4951 { 4952 struct perf_event *event = file->private_data; 4953 unsigned long user_locked, user_lock_limit; 4954 struct user_struct *user = current_user(); 4955 unsigned long locked, lock_limit; 4956 struct ring_buffer *rb = NULL; 4957 unsigned long vma_size; 4958 unsigned long nr_pages; 4959 long user_extra = 0, extra = 0; 4960 int ret = 0, flags = 0; 4961 4962 /* 4963 * Don't allow mmap() of inherited per-task counters. This would 4964 * create a performance issue due to all children writing to the 4965 * same rb. 4966 */ 4967 if (event->cpu == -1 && event->attr.inherit) 4968 return -EINVAL; 4969 4970 if (!(vma->vm_flags & VM_SHARED)) 4971 return -EINVAL; 4972 4973 vma_size = vma->vm_end - vma->vm_start; 4974 4975 if (vma->vm_pgoff == 0) { 4976 nr_pages = (vma_size / PAGE_SIZE) - 1; 4977 } else { 4978 /* 4979 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4980 * mapped, all subsequent mappings should have the same size 4981 * and offset. Must be above the normal perf buffer. 4982 */ 4983 u64 aux_offset, aux_size; 4984 4985 if (!event->rb) 4986 return -EINVAL; 4987 4988 nr_pages = vma_size / PAGE_SIZE; 4989 4990 mutex_lock(&event->mmap_mutex); 4991 ret = -EINVAL; 4992 4993 rb = event->rb; 4994 if (!rb) 4995 goto aux_unlock; 4996 4997 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4998 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4999 5000 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5001 goto aux_unlock; 5002 5003 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5004 goto aux_unlock; 5005 5006 /* already mapped with a different offset */ 5007 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5008 goto aux_unlock; 5009 5010 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5011 goto aux_unlock; 5012 5013 /* already mapped with a different size */ 5014 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5015 goto aux_unlock; 5016 5017 if (!is_power_of_2(nr_pages)) 5018 goto aux_unlock; 5019 5020 if (!atomic_inc_not_zero(&rb->mmap_count)) 5021 goto aux_unlock; 5022 5023 if (rb_has_aux(rb)) { 5024 atomic_inc(&rb->aux_mmap_count); 5025 ret = 0; 5026 goto unlock; 5027 } 5028 5029 atomic_set(&rb->aux_mmap_count, 1); 5030 user_extra = nr_pages; 5031 5032 goto accounting; 5033 } 5034 5035 /* 5036 * If we have rb pages ensure they're a power-of-two number, so we 5037 * can do bitmasks instead of modulo. 5038 */ 5039 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5040 return -EINVAL; 5041 5042 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5043 return -EINVAL; 5044 5045 WARN_ON_ONCE(event->ctx->parent_ctx); 5046 again: 5047 mutex_lock(&event->mmap_mutex); 5048 if (event->rb) { 5049 if (event->rb->nr_pages != nr_pages) { 5050 ret = -EINVAL; 5051 goto unlock; 5052 } 5053 5054 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5055 /* 5056 * Raced against perf_mmap_close() through 5057 * perf_event_set_output(). Try again, hope for better 5058 * luck. 5059 */ 5060 mutex_unlock(&event->mmap_mutex); 5061 goto again; 5062 } 5063 5064 goto unlock; 5065 } 5066 5067 user_extra = nr_pages + 1; 5068 5069 accounting: 5070 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5071 5072 /* 5073 * Increase the limit linearly with more CPUs: 5074 */ 5075 user_lock_limit *= num_online_cpus(); 5076 5077 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5078 5079 if (user_locked > user_lock_limit) 5080 extra = user_locked - user_lock_limit; 5081 5082 lock_limit = rlimit(RLIMIT_MEMLOCK); 5083 lock_limit >>= PAGE_SHIFT; 5084 locked = vma->vm_mm->pinned_vm + extra; 5085 5086 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5087 !capable(CAP_IPC_LOCK)) { 5088 ret = -EPERM; 5089 goto unlock; 5090 } 5091 5092 WARN_ON(!rb && event->rb); 5093 5094 if (vma->vm_flags & VM_WRITE) 5095 flags |= RING_BUFFER_WRITABLE; 5096 5097 if (!rb) { 5098 rb = rb_alloc(nr_pages, 5099 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5100 event->cpu, flags); 5101 5102 if (!rb) { 5103 ret = -ENOMEM; 5104 goto unlock; 5105 } 5106 5107 atomic_set(&rb->mmap_count, 1); 5108 rb->mmap_user = get_current_user(); 5109 rb->mmap_locked = extra; 5110 5111 ring_buffer_attach(event, rb); 5112 5113 perf_event_init_userpage(event); 5114 perf_event_update_userpage(event); 5115 } else { 5116 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5117 event->attr.aux_watermark, flags); 5118 if (!ret) 5119 rb->aux_mmap_locked = extra; 5120 } 5121 5122 unlock: 5123 if (!ret) { 5124 atomic_long_add(user_extra, &user->locked_vm); 5125 vma->vm_mm->pinned_vm += extra; 5126 5127 atomic_inc(&event->mmap_count); 5128 } else if (rb) { 5129 atomic_dec(&rb->mmap_count); 5130 } 5131 aux_unlock: 5132 mutex_unlock(&event->mmap_mutex); 5133 5134 /* 5135 * Since pinned accounting is per vm we cannot allow fork() to copy our 5136 * vma. 5137 */ 5138 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5139 vma->vm_ops = &perf_mmap_vmops; 5140 5141 if (event->pmu->event_mapped) 5142 event->pmu->event_mapped(event); 5143 5144 return ret; 5145 } 5146 5147 static int perf_fasync(int fd, struct file *filp, int on) 5148 { 5149 struct inode *inode = file_inode(filp); 5150 struct perf_event *event = filp->private_data; 5151 int retval; 5152 5153 inode_lock(inode); 5154 retval = fasync_helper(fd, filp, on, &event->fasync); 5155 inode_unlock(inode); 5156 5157 if (retval < 0) 5158 return retval; 5159 5160 return 0; 5161 } 5162 5163 static const struct file_operations perf_fops = { 5164 .llseek = no_llseek, 5165 .release = perf_release, 5166 .read = perf_read, 5167 .poll = perf_poll, 5168 .unlocked_ioctl = perf_ioctl, 5169 .compat_ioctl = perf_compat_ioctl, 5170 .mmap = perf_mmap, 5171 .fasync = perf_fasync, 5172 }; 5173 5174 /* 5175 * Perf event wakeup 5176 * 5177 * If there's data, ensure we set the poll() state and publish everything 5178 * to user-space before waking everybody up. 5179 */ 5180 5181 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5182 { 5183 /* only the parent has fasync state */ 5184 if (event->parent) 5185 event = event->parent; 5186 return &event->fasync; 5187 } 5188 5189 void perf_event_wakeup(struct perf_event *event) 5190 { 5191 ring_buffer_wakeup(event); 5192 5193 if (event->pending_kill) { 5194 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5195 event->pending_kill = 0; 5196 } 5197 } 5198 5199 static void perf_pending_event(struct irq_work *entry) 5200 { 5201 struct perf_event *event = container_of(entry, 5202 struct perf_event, pending); 5203 int rctx; 5204 5205 rctx = perf_swevent_get_recursion_context(); 5206 /* 5207 * If we 'fail' here, that's OK, it means recursion is already disabled 5208 * and we won't recurse 'further'. 5209 */ 5210 5211 if (event->pending_disable) { 5212 event->pending_disable = 0; 5213 perf_event_disable_local(event); 5214 } 5215 5216 if (event->pending_wakeup) { 5217 event->pending_wakeup = 0; 5218 perf_event_wakeup(event); 5219 } 5220 5221 if (rctx >= 0) 5222 perf_swevent_put_recursion_context(rctx); 5223 } 5224 5225 /* 5226 * We assume there is only KVM supporting the callbacks. 5227 * Later on, we might change it to a list if there is 5228 * another virtualization implementation supporting the callbacks. 5229 */ 5230 struct perf_guest_info_callbacks *perf_guest_cbs; 5231 5232 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5233 { 5234 perf_guest_cbs = cbs; 5235 return 0; 5236 } 5237 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5238 5239 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5240 { 5241 perf_guest_cbs = NULL; 5242 return 0; 5243 } 5244 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5245 5246 static void 5247 perf_output_sample_regs(struct perf_output_handle *handle, 5248 struct pt_regs *regs, u64 mask) 5249 { 5250 int bit; 5251 5252 for_each_set_bit(bit, (const unsigned long *) &mask, 5253 sizeof(mask) * BITS_PER_BYTE) { 5254 u64 val; 5255 5256 val = perf_reg_value(regs, bit); 5257 perf_output_put(handle, val); 5258 } 5259 } 5260 5261 static void perf_sample_regs_user(struct perf_regs *regs_user, 5262 struct pt_regs *regs, 5263 struct pt_regs *regs_user_copy) 5264 { 5265 if (user_mode(regs)) { 5266 regs_user->abi = perf_reg_abi(current); 5267 regs_user->regs = regs; 5268 } else if (current->mm) { 5269 perf_get_regs_user(regs_user, regs, regs_user_copy); 5270 } else { 5271 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5272 regs_user->regs = NULL; 5273 } 5274 } 5275 5276 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5277 struct pt_regs *regs) 5278 { 5279 regs_intr->regs = regs; 5280 regs_intr->abi = perf_reg_abi(current); 5281 } 5282 5283 5284 /* 5285 * Get remaining task size from user stack pointer. 5286 * 5287 * It'd be better to take stack vma map and limit this more 5288 * precisly, but there's no way to get it safely under interrupt, 5289 * so using TASK_SIZE as limit. 5290 */ 5291 static u64 perf_ustack_task_size(struct pt_regs *regs) 5292 { 5293 unsigned long addr = perf_user_stack_pointer(regs); 5294 5295 if (!addr || addr >= TASK_SIZE) 5296 return 0; 5297 5298 return TASK_SIZE - addr; 5299 } 5300 5301 static u16 5302 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5303 struct pt_regs *regs) 5304 { 5305 u64 task_size; 5306 5307 /* No regs, no stack pointer, no dump. */ 5308 if (!regs) 5309 return 0; 5310 5311 /* 5312 * Check if we fit in with the requested stack size into the: 5313 * - TASK_SIZE 5314 * If we don't, we limit the size to the TASK_SIZE. 5315 * 5316 * - remaining sample size 5317 * If we don't, we customize the stack size to 5318 * fit in to the remaining sample size. 5319 */ 5320 5321 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5322 stack_size = min(stack_size, (u16) task_size); 5323 5324 /* Current header size plus static size and dynamic size. */ 5325 header_size += 2 * sizeof(u64); 5326 5327 /* Do we fit in with the current stack dump size? */ 5328 if ((u16) (header_size + stack_size) < header_size) { 5329 /* 5330 * If we overflow the maximum size for the sample, 5331 * we customize the stack dump size to fit in. 5332 */ 5333 stack_size = USHRT_MAX - header_size - sizeof(u64); 5334 stack_size = round_up(stack_size, sizeof(u64)); 5335 } 5336 5337 return stack_size; 5338 } 5339 5340 static void 5341 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5342 struct pt_regs *regs) 5343 { 5344 /* Case of a kernel thread, nothing to dump */ 5345 if (!regs) { 5346 u64 size = 0; 5347 perf_output_put(handle, size); 5348 } else { 5349 unsigned long sp; 5350 unsigned int rem; 5351 u64 dyn_size; 5352 5353 /* 5354 * We dump: 5355 * static size 5356 * - the size requested by user or the best one we can fit 5357 * in to the sample max size 5358 * data 5359 * - user stack dump data 5360 * dynamic size 5361 * - the actual dumped size 5362 */ 5363 5364 /* Static size. */ 5365 perf_output_put(handle, dump_size); 5366 5367 /* Data. */ 5368 sp = perf_user_stack_pointer(regs); 5369 rem = __output_copy_user(handle, (void *) sp, dump_size); 5370 dyn_size = dump_size - rem; 5371 5372 perf_output_skip(handle, rem); 5373 5374 /* Dynamic size. */ 5375 perf_output_put(handle, dyn_size); 5376 } 5377 } 5378 5379 static void __perf_event_header__init_id(struct perf_event_header *header, 5380 struct perf_sample_data *data, 5381 struct perf_event *event) 5382 { 5383 u64 sample_type = event->attr.sample_type; 5384 5385 data->type = sample_type; 5386 header->size += event->id_header_size; 5387 5388 if (sample_type & PERF_SAMPLE_TID) { 5389 /* namespace issues */ 5390 data->tid_entry.pid = perf_event_pid(event, current); 5391 data->tid_entry.tid = perf_event_tid(event, current); 5392 } 5393 5394 if (sample_type & PERF_SAMPLE_TIME) 5395 data->time = perf_event_clock(event); 5396 5397 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5398 data->id = primary_event_id(event); 5399 5400 if (sample_type & PERF_SAMPLE_STREAM_ID) 5401 data->stream_id = event->id; 5402 5403 if (sample_type & PERF_SAMPLE_CPU) { 5404 data->cpu_entry.cpu = raw_smp_processor_id(); 5405 data->cpu_entry.reserved = 0; 5406 } 5407 } 5408 5409 void perf_event_header__init_id(struct perf_event_header *header, 5410 struct perf_sample_data *data, 5411 struct perf_event *event) 5412 { 5413 if (event->attr.sample_id_all) 5414 __perf_event_header__init_id(header, data, event); 5415 } 5416 5417 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5418 struct perf_sample_data *data) 5419 { 5420 u64 sample_type = data->type; 5421 5422 if (sample_type & PERF_SAMPLE_TID) 5423 perf_output_put(handle, data->tid_entry); 5424 5425 if (sample_type & PERF_SAMPLE_TIME) 5426 perf_output_put(handle, data->time); 5427 5428 if (sample_type & PERF_SAMPLE_ID) 5429 perf_output_put(handle, data->id); 5430 5431 if (sample_type & PERF_SAMPLE_STREAM_ID) 5432 perf_output_put(handle, data->stream_id); 5433 5434 if (sample_type & PERF_SAMPLE_CPU) 5435 perf_output_put(handle, data->cpu_entry); 5436 5437 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5438 perf_output_put(handle, data->id); 5439 } 5440 5441 void perf_event__output_id_sample(struct perf_event *event, 5442 struct perf_output_handle *handle, 5443 struct perf_sample_data *sample) 5444 { 5445 if (event->attr.sample_id_all) 5446 __perf_event__output_id_sample(handle, sample); 5447 } 5448 5449 static void perf_output_read_one(struct perf_output_handle *handle, 5450 struct perf_event *event, 5451 u64 enabled, u64 running) 5452 { 5453 u64 read_format = event->attr.read_format; 5454 u64 values[4]; 5455 int n = 0; 5456 5457 values[n++] = perf_event_count(event); 5458 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5459 values[n++] = enabled + 5460 atomic64_read(&event->child_total_time_enabled); 5461 } 5462 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5463 values[n++] = running + 5464 atomic64_read(&event->child_total_time_running); 5465 } 5466 if (read_format & PERF_FORMAT_ID) 5467 values[n++] = primary_event_id(event); 5468 5469 __output_copy(handle, values, n * sizeof(u64)); 5470 } 5471 5472 /* 5473 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5474 */ 5475 static void perf_output_read_group(struct perf_output_handle *handle, 5476 struct perf_event *event, 5477 u64 enabled, u64 running) 5478 { 5479 struct perf_event *leader = event->group_leader, *sub; 5480 u64 read_format = event->attr.read_format; 5481 u64 values[5]; 5482 int n = 0; 5483 5484 values[n++] = 1 + leader->nr_siblings; 5485 5486 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5487 values[n++] = enabled; 5488 5489 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5490 values[n++] = running; 5491 5492 if (leader != event) 5493 leader->pmu->read(leader); 5494 5495 values[n++] = perf_event_count(leader); 5496 if (read_format & PERF_FORMAT_ID) 5497 values[n++] = primary_event_id(leader); 5498 5499 __output_copy(handle, values, n * sizeof(u64)); 5500 5501 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5502 n = 0; 5503 5504 if ((sub != event) && 5505 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5506 sub->pmu->read(sub); 5507 5508 values[n++] = perf_event_count(sub); 5509 if (read_format & PERF_FORMAT_ID) 5510 values[n++] = primary_event_id(sub); 5511 5512 __output_copy(handle, values, n * sizeof(u64)); 5513 } 5514 } 5515 5516 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5517 PERF_FORMAT_TOTAL_TIME_RUNNING) 5518 5519 static void perf_output_read(struct perf_output_handle *handle, 5520 struct perf_event *event) 5521 { 5522 u64 enabled = 0, running = 0, now; 5523 u64 read_format = event->attr.read_format; 5524 5525 /* 5526 * compute total_time_enabled, total_time_running 5527 * based on snapshot values taken when the event 5528 * was last scheduled in. 5529 * 5530 * we cannot simply called update_context_time() 5531 * because of locking issue as we are called in 5532 * NMI context 5533 */ 5534 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5535 calc_timer_values(event, &now, &enabled, &running); 5536 5537 if (event->attr.read_format & PERF_FORMAT_GROUP) 5538 perf_output_read_group(handle, event, enabled, running); 5539 else 5540 perf_output_read_one(handle, event, enabled, running); 5541 } 5542 5543 void perf_output_sample(struct perf_output_handle *handle, 5544 struct perf_event_header *header, 5545 struct perf_sample_data *data, 5546 struct perf_event *event) 5547 { 5548 u64 sample_type = data->type; 5549 5550 perf_output_put(handle, *header); 5551 5552 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5553 perf_output_put(handle, data->id); 5554 5555 if (sample_type & PERF_SAMPLE_IP) 5556 perf_output_put(handle, data->ip); 5557 5558 if (sample_type & PERF_SAMPLE_TID) 5559 perf_output_put(handle, data->tid_entry); 5560 5561 if (sample_type & PERF_SAMPLE_TIME) 5562 perf_output_put(handle, data->time); 5563 5564 if (sample_type & PERF_SAMPLE_ADDR) 5565 perf_output_put(handle, data->addr); 5566 5567 if (sample_type & PERF_SAMPLE_ID) 5568 perf_output_put(handle, data->id); 5569 5570 if (sample_type & PERF_SAMPLE_STREAM_ID) 5571 perf_output_put(handle, data->stream_id); 5572 5573 if (sample_type & PERF_SAMPLE_CPU) 5574 perf_output_put(handle, data->cpu_entry); 5575 5576 if (sample_type & PERF_SAMPLE_PERIOD) 5577 perf_output_put(handle, data->period); 5578 5579 if (sample_type & PERF_SAMPLE_READ) 5580 perf_output_read(handle, event); 5581 5582 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5583 if (data->callchain) { 5584 int size = 1; 5585 5586 if (data->callchain) 5587 size += data->callchain->nr; 5588 5589 size *= sizeof(u64); 5590 5591 __output_copy(handle, data->callchain, size); 5592 } else { 5593 u64 nr = 0; 5594 perf_output_put(handle, nr); 5595 } 5596 } 5597 5598 if (sample_type & PERF_SAMPLE_RAW) { 5599 if (data->raw) { 5600 u32 raw_size = data->raw->size; 5601 u32 real_size = round_up(raw_size + sizeof(u32), 5602 sizeof(u64)) - sizeof(u32); 5603 u64 zero = 0; 5604 5605 perf_output_put(handle, real_size); 5606 __output_copy(handle, data->raw->data, raw_size); 5607 if (real_size - raw_size) 5608 __output_copy(handle, &zero, real_size - raw_size); 5609 } else { 5610 struct { 5611 u32 size; 5612 u32 data; 5613 } raw = { 5614 .size = sizeof(u32), 5615 .data = 0, 5616 }; 5617 perf_output_put(handle, raw); 5618 } 5619 } 5620 5621 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5622 if (data->br_stack) { 5623 size_t size; 5624 5625 size = data->br_stack->nr 5626 * sizeof(struct perf_branch_entry); 5627 5628 perf_output_put(handle, data->br_stack->nr); 5629 perf_output_copy(handle, data->br_stack->entries, size); 5630 } else { 5631 /* 5632 * we always store at least the value of nr 5633 */ 5634 u64 nr = 0; 5635 perf_output_put(handle, nr); 5636 } 5637 } 5638 5639 if (sample_type & PERF_SAMPLE_REGS_USER) { 5640 u64 abi = data->regs_user.abi; 5641 5642 /* 5643 * If there are no regs to dump, notice it through 5644 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5645 */ 5646 perf_output_put(handle, abi); 5647 5648 if (abi) { 5649 u64 mask = event->attr.sample_regs_user; 5650 perf_output_sample_regs(handle, 5651 data->regs_user.regs, 5652 mask); 5653 } 5654 } 5655 5656 if (sample_type & PERF_SAMPLE_STACK_USER) { 5657 perf_output_sample_ustack(handle, 5658 data->stack_user_size, 5659 data->regs_user.regs); 5660 } 5661 5662 if (sample_type & PERF_SAMPLE_WEIGHT) 5663 perf_output_put(handle, data->weight); 5664 5665 if (sample_type & PERF_SAMPLE_DATA_SRC) 5666 perf_output_put(handle, data->data_src.val); 5667 5668 if (sample_type & PERF_SAMPLE_TRANSACTION) 5669 perf_output_put(handle, data->txn); 5670 5671 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5672 u64 abi = data->regs_intr.abi; 5673 /* 5674 * If there are no regs to dump, notice it through 5675 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5676 */ 5677 perf_output_put(handle, abi); 5678 5679 if (abi) { 5680 u64 mask = event->attr.sample_regs_intr; 5681 5682 perf_output_sample_regs(handle, 5683 data->regs_intr.regs, 5684 mask); 5685 } 5686 } 5687 5688 if (!event->attr.watermark) { 5689 int wakeup_events = event->attr.wakeup_events; 5690 5691 if (wakeup_events) { 5692 struct ring_buffer *rb = handle->rb; 5693 int events = local_inc_return(&rb->events); 5694 5695 if (events >= wakeup_events) { 5696 local_sub(wakeup_events, &rb->events); 5697 local_inc(&rb->wakeup); 5698 } 5699 } 5700 } 5701 } 5702 5703 void perf_prepare_sample(struct perf_event_header *header, 5704 struct perf_sample_data *data, 5705 struct perf_event *event, 5706 struct pt_regs *regs) 5707 { 5708 u64 sample_type = event->attr.sample_type; 5709 5710 header->type = PERF_RECORD_SAMPLE; 5711 header->size = sizeof(*header) + event->header_size; 5712 5713 header->misc = 0; 5714 header->misc |= perf_misc_flags(regs); 5715 5716 __perf_event_header__init_id(header, data, event); 5717 5718 if (sample_type & PERF_SAMPLE_IP) 5719 data->ip = perf_instruction_pointer(regs); 5720 5721 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5722 int size = 1; 5723 5724 data->callchain = perf_callchain(event, regs); 5725 5726 if (data->callchain) 5727 size += data->callchain->nr; 5728 5729 header->size += size * sizeof(u64); 5730 } 5731 5732 if (sample_type & PERF_SAMPLE_RAW) { 5733 int size = sizeof(u32); 5734 5735 if (data->raw) 5736 size += data->raw->size; 5737 else 5738 size += sizeof(u32); 5739 5740 header->size += round_up(size, sizeof(u64)); 5741 } 5742 5743 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5744 int size = sizeof(u64); /* nr */ 5745 if (data->br_stack) { 5746 size += data->br_stack->nr 5747 * sizeof(struct perf_branch_entry); 5748 } 5749 header->size += size; 5750 } 5751 5752 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5753 perf_sample_regs_user(&data->regs_user, regs, 5754 &data->regs_user_copy); 5755 5756 if (sample_type & PERF_SAMPLE_REGS_USER) { 5757 /* regs dump ABI info */ 5758 int size = sizeof(u64); 5759 5760 if (data->regs_user.regs) { 5761 u64 mask = event->attr.sample_regs_user; 5762 size += hweight64(mask) * sizeof(u64); 5763 } 5764 5765 header->size += size; 5766 } 5767 5768 if (sample_type & PERF_SAMPLE_STACK_USER) { 5769 /* 5770 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5771 * processed as the last one or have additional check added 5772 * in case new sample type is added, because we could eat 5773 * up the rest of the sample size. 5774 */ 5775 u16 stack_size = event->attr.sample_stack_user; 5776 u16 size = sizeof(u64); 5777 5778 stack_size = perf_sample_ustack_size(stack_size, header->size, 5779 data->regs_user.regs); 5780 5781 /* 5782 * If there is something to dump, add space for the dump 5783 * itself and for the field that tells the dynamic size, 5784 * which is how many have been actually dumped. 5785 */ 5786 if (stack_size) 5787 size += sizeof(u64) + stack_size; 5788 5789 data->stack_user_size = stack_size; 5790 header->size += size; 5791 } 5792 5793 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5794 /* regs dump ABI info */ 5795 int size = sizeof(u64); 5796 5797 perf_sample_regs_intr(&data->regs_intr, regs); 5798 5799 if (data->regs_intr.regs) { 5800 u64 mask = event->attr.sample_regs_intr; 5801 5802 size += hweight64(mask) * sizeof(u64); 5803 } 5804 5805 header->size += size; 5806 } 5807 } 5808 5809 static void __always_inline 5810 __perf_event_output(struct perf_event *event, 5811 struct perf_sample_data *data, 5812 struct pt_regs *regs, 5813 int (*output_begin)(struct perf_output_handle *, 5814 struct perf_event *, 5815 unsigned int)) 5816 { 5817 struct perf_output_handle handle; 5818 struct perf_event_header header; 5819 5820 /* protect the callchain buffers */ 5821 rcu_read_lock(); 5822 5823 perf_prepare_sample(&header, data, event, regs); 5824 5825 if (output_begin(&handle, event, header.size)) 5826 goto exit; 5827 5828 perf_output_sample(&handle, &header, data, event); 5829 5830 perf_output_end(&handle); 5831 5832 exit: 5833 rcu_read_unlock(); 5834 } 5835 5836 void 5837 perf_event_output_forward(struct perf_event *event, 5838 struct perf_sample_data *data, 5839 struct pt_regs *regs) 5840 { 5841 __perf_event_output(event, data, regs, perf_output_begin_forward); 5842 } 5843 5844 void 5845 perf_event_output_backward(struct perf_event *event, 5846 struct perf_sample_data *data, 5847 struct pt_regs *regs) 5848 { 5849 __perf_event_output(event, data, regs, perf_output_begin_backward); 5850 } 5851 5852 void 5853 perf_event_output(struct perf_event *event, 5854 struct perf_sample_data *data, 5855 struct pt_regs *regs) 5856 { 5857 __perf_event_output(event, data, regs, perf_output_begin); 5858 } 5859 5860 /* 5861 * read event_id 5862 */ 5863 5864 struct perf_read_event { 5865 struct perf_event_header header; 5866 5867 u32 pid; 5868 u32 tid; 5869 }; 5870 5871 static void 5872 perf_event_read_event(struct perf_event *event, 5873 struct task_struct *task) 5874 { 5875 struct perf_output_handle handle; 5876 struct perf_sample_data sample; 5877 struct perf_read_event read_event = { 5878 .header = { 5879 .type = PERF_RECORD_READ, 5880 .misc = 0, 5881 .size = sizeof(read_event) + event->read_size, 5882 }, 5883 .pid = perf_event_pid(event, task), 5884 .tid = perf_event_tid(event, task), 5885 }; 5886 int ret; 5887 5888 perf_event_header__init_id(&read_event.header, &sample, event); 5889 ret = perf_output_begin(&handle, event, read_event.header.size); 5890 if (ret) 5891 return; 5892 5893 perf_output_put(&handle, read_event); 5894 perf_output_read(&handle, event); 5895 perf_event__output_id_sample(event, &handle, &sample); 5896 5897 perf_output_end(&handle); 5898 } 5899 5900 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 5901 5902 static void 5903 perf_iterate_ctx(struct perf_event_context *ctx, 5904 perf_iterate_f output, 5905 void *data, bool all) 5906 { 5907 struct perf_event *event; 5908 5909 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5910 if (!all) { 5911 if (event->state < PERF_EVENT_STATE_INACTIVE) 5912 continue; 5913 if (!event_filter_match(event)) 5914 continue; 5915 } 5916 5917 output(event, data); 5918 } 5919 } 5920 5921 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 5922 { 5923 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 5924 struct perf_event *event; 5925 5926 list_for_each_entry_rcu(event, &pel->list, sb_list) { 5927 if (event->state < PERF_EVENT_STATE_INACTIVE) 5928 continue; 5929 if (!event_filter_match(event)) 5930 continue; 5931 output(event, data); 5932 } 5933 } 5934 5935 /* 5936 * Iterate all events that need to receive side-band events. 5937 * 5938 * For new callers; ensure that account_pmu_sb_event() includes 5939 * your event, otherwise it might not get delivered. 5940 */ 5941 static void 5942 perf_iterate_sb(perf_iterate_f output, void *data, 5943 struct perf_event_context *task_ctx) 5944 { 5945 struct perf_event_context *ctx; 5946 int ctxn; 5947 5948 rcu_read_lock(); 5949 preempt_disable(); 5950 5951 /* 5952 * If we have task_ctx != NULL we only notify the task context itself. 5953 * The task_ctx is set only for EXIT events before releasing task 5954 * context. 5955 */ 5956 if (task_ctx) { 5957 perf_iterate_ctx(task_ctx, output, data, false); 5958 goto done; 5959 } 5960 5961 perf_iterate_sb_cpu(output, data); 5962 5963 for_each_task_context_nr(ctxn) { 5964 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5965 if (ctx) 5966 perf_iterate_ctx(ctx, output, data, false); 5967 } 5968 done: 5969 preempt_enable(); 5970 rcu_read_unlock(); 5971 } 5972 5973 /* 5974 * Clear all file-based filters at exec, they'll have to be 5975 * re-instated when/if these objects are mmapped again. 5976 */ 5977 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 5978 { 5979 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 5980 struct perf_addr_filter *filter; 5981 unsigned int restart = 0, count = 0; 5982 unsigned long flags; 5983 5984 if (!has_addr_filter(event)) 5985 return; 5986 5987 raw_spin_lock_irqsave(&ifh->lock, flags); 5988 list_for_each_entry(filter, &ifh->list, entry) { 5989 if (filter->inode) { 5990 event->addr_filters_offs[count] = 0; 5991 restart++; 5992 } 5993 5994 count++; 5995 } 5996 5997 if (restart) 5998 event->addr_filters_gen++; 5999 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6000 6001 if (restart) 6002 perf_event_restart(event); 6003 } 6004 6005 void perf_event_exec(void) 6006 { 6007 struct perf_event_context *ctx; 6008 int ctxn; 6009 6010 rcu_read_lock(); 6011 for_each_task_context_nr(ctxn) { 6012 ctx = current->perf_event_ctxp[ctxn]; 6013 if (!ctx) 6014 continue; 6015 6016 perf_event_enable_on_exec(ctxn); 6017 6018 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6019 true); 6020 } 6021 rcu_read_unlock(); 6022 } 6023 6024 struct remote_output { 6025 struct ring_buffer *rb; 6026 int err; 6027 }; 6028 6029 static void __perf_event_output_stop(struct perf_event *event, void *data) 6030 { 6031 struct perf_event *parent = event->parent; 6032 struct remote_output *ro = data; 6033 struct ring_buffer *rb = ro->rb; 6034 struct stop_event_data sd = { 6035 .event = event, 6036 }; 6037 6038 if (!has_aux(event)) 6039 return; 6040 6041 if (!parent) 6042 parent = event; 6043 6044 /* 6045 * In case of inheritance, it will be the parent that links to the 6046 * ring-buffer, but it will be the child that's actually using it: 6047 */ 6048 if (rcu_dereference(parent->rb) == rb) 6049 ro->err = __perf_event_stop(&sd); 6050 } 6051 6052 static int __perf_pmu_output_stop(void *info) 6053 { 6054 struct perf_event *event = info; 6055 struct pmu *pmu = event->pmu; 6056 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 6057 struct remote_output ro = { 6058 .rb = event->rb, 6059 }; 6060 6061 rcu_read_lock(); 6062 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6063 if (cpuctx->task_ctx) 6064 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6065 &ro, false); 6066 rcu_read_unlock(); 6067 6068 return ro.err; 6069 } 6070 6071 static void perf_pmu_output_stop(struct perf_event *event) 6072 { 6073 struct perf_event *iter; 6074 int err, cpu; 6075 6076 restart: 6077 rcu_read_lock(); 6078 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6079 /* 6080 * For per-CPU events, we need to make sure that neither they 6081 * nor their children are running; for cpu==-1 events it's 6082 * sufficient to stop the event itself if it's active, since 6083 * it can't have children. 6084 */ 6085 cpu = iter->cpu; 6086 if (cpu == -1) 6087 cpu = READ_ONCE(iter->oncpu); 6088 6089 if (cpu == -1) 6090 continue; 6091 6092 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6093 if (err == -EAGAIN) { 6094 rcu_read_unlock(); 6095 goto restart; 6096 } 6097 } 6098 rcu_read_unlock(); 6099 } 6100 6101 /* 6102 * task tracking -- fork/exit 6103 * 6104 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6105 */ 6106 6107 struct perf_task_event { 6108 struct task_struct *task; 6109 struct perf_event_context *task_ctx; 6110 6111 struct { 6112 struct perf_event_header header; 6113 6114 u32 pid; 6115 u32 ppid; 6116 u32 tid; 6117 u32 ptid; 6118 u64 time; 6119 } event_id; 6120 }; 6121 6122 static int perf_event_task_match(struct perf_event *event) 6123 { 6124 return event->attr.comm || event->attr.mmap || 6125 event->attr.mmap2 || event->attr.mmap_data || 6126 event->attr.task; 6127 } 6128 6129 static void perf_event_task_output(struct perf_event *event, 6130 void *data) 6131 { 6132 struct perf_task_event *task_event = data; 6133 struct perf_output_handle handle; 6134 struct perf_sample_data sample; 6135 struct task_struct *task = task_event->task; 6136 int ret, size = task_event->event_id.header.size; 6137 6138 if (!perf_event_task_match(event)) 6139 return; 6140 6141 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6142 6143 ret = perf_output_begin(&handle, event, 6144 task_event->event_id.header.size); 6145 if (ret) 6146 goto out; 6147 6148 task_event->event_id.pid = perf_event_pid(event, task); 6149 task_event->event_id.ppid = perf_event_pid(event, current); 6150 6151 task_event->event_id.tid = perf_event_tid(event, task); 6152 task_event->event_id.ptid = perf_event_tid(event, current); 6153 6154 task_event->event_id.time = perf_event_clock(event); 6155 6156 perf_output_put(&handle, task_event->event_id); 6157 6158 perf_event__output_id_sample(event, &handle, &sample); 6159 6160 perf_output_end(&handle); 6161 out: 6162 task_event->event_id.header.size = size; 6163 } 6164 6165 static void perf_event_task(struct task_struct *task, 6166 struct perf_event_context *task_ctx, 6167 int new) 6168 { 6169 struct perf_task_event task_event; 6170 6171 if (!atomic_read(&nr_comm_events) && 6172 !atomic_read(&nr_mmap_events) && 6173 !atomic_read(&nr_task_events)) 6174 return; 6175 6176 task_event = (struct perf_task_event){ 6177 .task = task, 6178 .task_ctx = task_ctx, 6179 .event_id = { 6180 .header = { 6181 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6182 .misc = 0, 6183 .size = sizeof(task_event.event_id), 6184 }, 6185 /* .pid */ 6186 /* .ppid */ 6187 /* .tid */ 6188 /* .ptid */ 6189 /* .time */ 6190 }, 6191 }; 6192 6193 perf_iterate_sb(perf_event_task_output, 6194 &task_event, 6195 task_ctx); 6196 } 6197 6198 void perf_event_fork(struct task_struct *task) 6199 { 6200 perf_event_task(task, NULL, 1); 6201 } 6202 6203 /* 6204 * comm tracking 6205 */ 6206 6207 struct perf_comm_event { 6208 struct task_struct *task; 6209 char *comm; 6210 int comm_size; 6211 6212 struct { 6213 struct perf_event_header header; 6214 6215 u32 pid; 6216 u32 tid; 6217 } event_id; 6218 }; 6219 6220 static int perf_event_comm_match(struct perf_event *event) 6221 { 6222 return event->attr.comm; 6223 } 6224 6225 static void perf_event_comm_output(struct perf_event *event, 6226 void *data) 6227 { 6228 struct perf_comm_event *comm_event = data; 6229 struct perf_output_handle handle; 6230 struct perf_sample_data sample; 6231 int size = comm_event->event_id.header.size; 6232 int ret; 6233 6234 if (!perf_event_comm_match(event)) 6235 return; 6236 6237 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6238 ret = perf_output_begin(&handle, event, 6239 comm_event->event_id.header.size); 6240 6241 if (ret) 6242 goto out; 6243 6244 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6245 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6246 6247 perf_output_put(&handle, comm_event->event_id); 6248 __output_copy(&handle, comm_event->comm, 6249 comm_event->comm_size); 6250 6251 perf_event__output_id_sample(event, &handle, &sample); 6252 6253 perf_output_end(&handle); 6254 out: 6255 comm_event->event_id.header.size = size; 6256 } 6257 6258 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6259 { 6260 char comm[TASK_COMM_LEN]; 6261 unsigned int size; 6262 6263 memset(comm, 0, sizeof(comm)); 6264 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6265 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6266 6267 comm_event->comm = comm; 6268 comm_event->comm_size = size; 6269 6270 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6271 6272 perf_iterate_sb(perf_event_comm_output, 6273 comm_event, 6274 NULL); 6275 } 6276 6277 void perf_event_comm(struct task_struct *task, bool exec) 6278 { 6279 struct perf_comm_event comm_event; 6280 6281 if (!atomic_read(&nr_comm_events)) 6282 return; 6283 6284 comm_event = (struct perf_comm_event){ 6285 .task = task, 6286 /* .comm */ 6287 /* .comm_size */ 6288 .event_id = { 6289 .header = { 6290 .type = PERF_RECORD_COMM, 6291 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6292 /* .size */ 6293 }, 6294 /* .pid */ 6295 /* .tid */ 6296 }, 6297 }; 6298 6299 perf_event_comm_event(&comm_event); 6300 } 6301 6302 /* 6303 * mmap tracking 6304 */ 6305 6306 struct perf_mmap_event { 6307 struct vm_area_struct *vma; 6308 6309 const char *file_name; 6310 int file_size; 6311 int maj, min; 6312 u64 ino; 6313 u64 ino_generation; 6314 u32 prot, flags; 6315 6316 struct { 6317 struct perf_event_header header; 6318 6319 u32 pid; 6320 u32 tid; 6321 u64 start; 6322 u64 len; 6323 u64 pgoff; 6324 } event_id; 6325 }; 6326 6327 static int perf_event_mmap_match(struct perf_event *event, 6328 void *data) 6329 { 6330 struct perf_mmap_event *mmap_event = data; 6331 struct vm_area_struct *vma = mmap_event->vma; 6332 int executable = vma->vm_flags & VM_EXEC; 6333 6334 return (!executable && event->attr.mmap_data) || 6335 (executable && (event->attr.mmap || event->attr.mmap2)); 6336 } 6337 6338 static void perf_event_mmap_output(struct perf_event *event, 6339 void *data) 6340 { 6341 struct perf_mmap_event *mmap_event = data; 6342 struct perf_output_handle handle; 6343 struct perf_sample_data sample; 6344 int size = mmap_event->event_id.header.size; 6345 int ret; 6346 6347 if (!perf_event_mmap_match(event, data)) 6348 return; 6349 6350 if (event->attr.mmap2) { 6351 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6352 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6353 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6354 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6355 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6356 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6357 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6358 } 6359 6360 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6361 ret = perf_output_begin(&handle, event, 6362 mmap_event->event_id.header.size); 6363 if (ret) 6364 goto out; 6365 6366 mmap_event->event_id.pid = perf_event_pid(event, current); 6367 mmap_event->event_id.tid = perf_event_tid(event, current); 6368 6369 perf_output_put(&handle, mmap_event->event_id); 6370 6371 if (event->attr.mmap2) { 6372 perf_output_put(&handle, mmap_event->maj); 6373 perf_output_put(&handle, mmap_event->min); 6374 perf_output_put(&handle, mmap_event->ino); 6375 perf_output_put(&handle, mmap_event->ino_generation); 6376 perf_output_put(&handle, mmap_event->prot); 6377 perf_output_put(&handle, mmap_event->flags); 6378 } 6379 6380 __output_copy(&handle, mmap_event->file_name, 6381 mmap_event->file_size); 6382 6383 perf_event__output_id_sample(event, &handle, &sample); 6384 6385 perf_output_end(&handle); 6386 out: 6387 mmap_event->event_id.header.size = size; 6388 } 6389 6390 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6391 { 6392 struct vm_area_struct *vma = mmap_event->vma; 6393 struct file *file = vma->vm_file; 6394 int maj = 0, min = 0; 6395 u64 ino = 0, gen = 0; 6396 u32 prot = 0, flags = 0; 6397 unsigned int size; 6398 char tmp[16]; 6399 char *buf = NULL; 6400 char *name; 6401 6402 if (file) { 6403 struct inode *inode; 6404 dev_t dev; 6405 6406 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6407 if (!buf) { 6408 name = "//enomem"; 6409 goto cpy_name; 6410 } 6411 /* 6412 * d_path() works from the end of the rb backwards, so we 6413 * need to add enough zero bytes after the string to handle 6414 * the 64bit alignment we do later. 6415 */ 6416 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6417 if (IS_ERR(name)) { 6418 name = "//toolong"; 6419 goto cpy_name; 6420 } 6421 inode = file_inode(vma->vm_file); 6422 dev = inode->i_sb->s_dev; 6423 ino = inode->i_ino; 6424 gen = inode->i_generation; 6425 maj = MAJOR(dev); 6426 min = MINOR(dev); 6427 6428 if (vma->vm_flags & VM_READ) 6429 prot |= PROT_READ; 6430 if (vma->vm_flags & VM_WRITE) 6431 prot |= PROT_WRITE; 6432 if (vma->vm_flags & VM_EXEC) 6433 prot |= PROT_EXEC; 6434 6435 if (vma->vm_flags & VM_MAYSHARE) 6436 flags = MAP_SHARED; 6437 else 6438 flags = MAP_PRIVATE; 6439 6440 if (vma->vm_flags & VM_DENYWRITE) 6441 flags |= MAP_DENYWRITE; 6442 if (vma->vm_flags & VM_MAYEXEC) 6443 flags |= MAP_EXECUTABLE; 6444 if (vma->vm_flags & VM_LOCKED) 6445 flags |= MAP_LOCKED; 6446 if (vma->vm_flags & VM_HUGETLB) 6447 flags |= MAP_HUGETLB; 6448 6449 goto got_name; 6450 } else { 6451 if (vma->vm_ops && vma->vm_ops->name) { 6452 name = (char *) vma->vm_ops->name(vma); 6453 if (name) 6454 goto cpy_name; 6455 } 6456 6457 name = (char *)arch_vma_name(vma); 6458 if (name) 6459 goto cpy_name; 6460 6461 if (vma->vm_start <= vma->vm_mm->start_brk && 6462 vma->vm_end >= vma->vm_mm->brk) { 6463 name = "[heap]"; 6464 goto cpy_name; 6465 } 6466 if (vma->vm_start <= vma->vm_mm->start_stack && 6467 vma->vm_end >= vma->vm_mm->start_stack) { 6468 name = "[stack]"; 6469 goto cpy_name; 6470 } 6471 6472 name = "//anon"; 6473 goto cpy_name; 6474 } 6475 6476 cpy_name: 6477 strlcpy(tmp, name, sizeof(tmp)); 6478 name = tmp; 6479 got_name: 6480 /* 6481 * Since our buffer works in 8 byte units we need to align our string 6482 * size to a multiple of 8. However, we must guarantee the tail end is 6483 * zero'd out to avoid leaking random bits to userspace. 6484 */ 6485 size = strlen(name)+1; 6486 while (!IS_ALIGNED(size, sizeof(u64))) 6487 name[size++] = '\0'; 6488 6489 mmap_event->file_name = name; 6490 mmap_event->file_size = size; 6491 mmap_event->maj = maj; 6492 mmap_event->min = min; 6493 mmap_event->ino = ino; 6494 mmap_event->ino_generation = gen; 6495 mmap_event->prot = prot; 6496 mmap_event->flags = flags; 6497 6498 if (!(vma->vm_flags & VM_EXEC)) 6499 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6500 6501 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6502 6503 perf_iterate_sb(perf_event_mmap_output, 6504 mmap_event, 6505 NULL); 6506 6507 kfree(buf); 6508 } 6509 6510 /* 6511 * Whether this @filter depends on a dynamic object which is not loaded 6512 * yet or its load addresses are not known. 6513 */ 6514 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter) 6515 { 6516 return filter->filter && filter->inode; 6517 } 6518 6519 /* 6520 * Check whether inode and address range match filter criteria. 6521 */ 6522 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6523 struct file *file, unsigned long offset, 6524 unsigned long size) 6525 { 6526 if (filter->inode != file->f_inode) 6527 return false; 6528 6529 if (filter->offset > offset + size) 6530 return false; 6531 6532 if (filter->offset + filter->size < offset) 6533 return false; 6534 6535 return true; 6536 } 6537 6538 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6539 { 6540 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6541 struct vm_area_struct *vma = data; 6542 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6543 struct file *file = vma->vm_file; 6544 struct perf_addr_filter *filter; 6545 unsigned int restart = 0, count = 0; 6546 6547 if (!has_addr_filter(event)) 6548 return; 6549 6550 if (!file) 6551 return; 6552 6553 raw_spin_lock_irqsave(&ifh->lock, flags); 6554 list_for_each_entry(filter, &ifh->list, entry) { 6555 if (perf_addr_filter_match(filter, file, off, 6556 vma->vm_end - vma->vm_start)) { 6557 event->addr_filters_offs[count] = vma->vm_start; 6558 restart++; 6559 } 6560 6561 count++; 6562 } 6563 6564 if (restart) 6565 event->addr_filters_gen++; 6566 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6567 6568 if (restart) 6569 perf_event_restart(event); 6570 } 6571 6572 /* 6573 * Adjust all task's events' filters to the new vma 6574 */ 6575 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6576 { 6577 struct perf_event_context *ctx; 6578 int ctxn; 6579 6580 rcu_read_lock(); 6581 for_each_task_context_nr(ctxn) { 6582 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6583 if (!ctx) 6584 continue; 6585 6586 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6587 } 6588 rcu_read_unlock(); 6589 } 6590 6591 void perf_event_mmap(struct vm_area_struct *vma) 6592 { 6593 struct perf_mmap_event mmap_event; 6594 6595 if (!atomic_read(&nr_mmap_events)) 6596 return; 6597 6598 mmap_event = (struct perf_mmap_event){ 6599 .vma = vma, 6600 /* .file_name */ 6601 /* .file_size */ 6602 .event_id = { 6603 .header = { 6604 .type = PERF_RECORD_MMAP, 6605 .misc = PERF_RECORD_MISC_USER, 6606 /* .size */ 6607 }, 6608 /* .pid */ 6609 /* .tid */ 6610 .start = vma->vm_start, 6611 .len = vma->vm_end - vma->vm_start, 6612 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6613 }, 6614 /* .maj (attr_mmap2 only) */ 6615 /* .min (attr_mmap2 only) */ 6616 /* .ino (attr_mmap2 only) */ 6617 /* .ino_generation (attr_mmap2 only) */ 6618 /* .prot (attr_mmap2 only) */ 6619 /* .flags (attr_mmap2 only) */ 6620 }; 6621 6622 perf_addr_filters_adjust(vma); 6623 perf_event_mmap_event(&mmap_event); 6624 } 6625 6626 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6627 unsigned long size, u64 flags) 6628 { 6629 struct perf_output_handle handle; 6630 struct perf_sample_data sample; 6631 struct perf_aux_event { 6632 struct perf_event_header header; 6633 u64 offset; 6634 u64 size; 6635 u64 flags; 6636 } rec = { 6637 .header = { 6638 .type = PERF_RECORD_AUX, 6639 .misc = 0, 6640 .size = sizeof(rec), 6641 }, 6642 .offset = head, 6643 .size = size, 6644 .flags = flags, 6645 }; 6646 int ret; 6647 6648 perf_event_header__init_id(&rec.header, &sample, event); 6649 ret = perf_output_begin(&handle, event, rec.header.size); 6650 6651 if (ret) 6652 return; 6653 6654 perf_output_put(&handle, rec); 6655 perf_event__output_id_sample(event, &handle, &sample); 6656 6657 perf_output_end(&handle); 6658 } 6659 6660 /* 6661 * Lost/dropped samples logging 6662 */ 6663 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6664 { 6665 struct perf_output_handle handle; 6666 struct perf_sample_data sample; 6667 int ret; 6668 6669 struct { 6670 struct perf_event_header header; 6671 u64 lost; 6672 } lost_samples_event = { 6673 .header = { 6674 .type = PERF_RECORD_LOST_SAMPLES, 6675 .misc = 0, 6676 .size = sizeof(lost_samples_event), 6677 }, 6678 .lost = lost, 6679 }; 6680 6681 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6682 6683 ret = perf_output_begin(&handle, event, 6684 lost_samples_event.header.size); 6685 if (ret) 6686 return; 6687 6688 perf_output_put(&handle, lost_samples_event); 6689 perf_event__output_id_sample(event, &handle, &sample); 6690 perf_output_end(&handle); 6691 } 6692 6693 /* 6694 * context_switch tracking 6695 */ 6696 6697 struct perf_switch_event { 6698 struct task_struct *task; 6699 struct task_struct *next_prev; 6700 6701 struct { 6702 struct perf_event_header header; 6703 u32 next_prev_pid; 6704 u32 next_prev_tid; 6705 } event_id; 6706 }; 6707 6708 static int perf_event_switch_match(struct perf_event *event) 6709 { 6710 return event->attr.context_switch; 6711 } 6712 6713 static void perf_event_switch_output(struct perf_event *event, void *data) 6714 { 6715 struct perf_switch_event *se = data; 6716 struct perf_output_handle handle; 6717 struct perf_sample_data sample; 6718 int ret; 6719 6720 if (!perf_event_switch_match(event)) 6721 return; 6722 6723 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6724 if (event->ctx->task) { 6725 se->event_id.header.type = PERF_RECORD_SWITCH; 6726 se->event_id.header.size = sizeof(se->event_id.header); 6727 } else { 6728 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6729 se->event_id.header.size = sizeof(se->event_id); 6730 se->event_id.next_prev_pid = 6731 perf_event_pid(event, se->next_prev); 6732 se->event_id.next_prev_tid = 6733 perf_event_tid(event, se->next_prev); 6734 } 6735 6736 perf_event_header__init_id(&se->event_id.header, &sample, event); 6737 6738 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6739 if (ret) 6740 return; 6741 6742 if (event->ctx->task) 6743 perf_output_put(&handle, se->event_id.header); 6744 else 6745 perf_output_put(&handle, se->event_id); 6746 6747 perf_event__output_id_sample(event, &handle, &sample); 6748 6749 perf_output_end(&handle); 6750 } 6751 6752 static void perf_event_switch(struct task_struct *task, 6753 struct task_struct *next_prev, bool sched_in) 6754 { 6755 struct perf_switch_event switch_event; 6756 6757 /* N.B. caller checks nr_switch_events != 0 */ 6758 6759 switch_event = (struct perf_switch_event){ 6760 .task = task, 6761 .next_prev = next_prev, 6762 .event_id = { 6763 .header = { 6764 /* .type */ 6765 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6766 /* .size */ 6767 }, 6768 /* .next_prev_pid */ 6769 /* .next_prev_tid */ 6770 }, 6771 }; 6772 6773 perf_iterate_sb(perf_event_switch_output, 6774 &switch_event, 6775 NULL); 6776 } 6777 6778 /* 6779 * IRQ throttle logging 6780 */ 6781 6782 static void perf_log_throttle(struct perf_event *event, int enable) 6783 { 6784 struct perf_output_handle handle; 6785 struct perf_sample_data sample; 6786 int ret; 6787 6788 struct { 6789 struct perf_event_header header; 6790 u64 time; 6791 u64 id; 6792 u64 stream_id; 6793 } throttle_event = { 6794 .header = { 6795 .type = PERF_RECORD_THROTTLE, 6796 .misc = 0, 6797 .size = sizeof(throttle_event), 6798 }, 6799 .time = perf_event_clock(event), 6800 .id = primary_event_id(event), 6801 .stream_id = event->id, 6802 }; 6803 6804 if (enable) 6805 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6806 6807 perf_event_header__init_id(&throttle_event.header, &sample, event); 6808 6809 ret = perf_output_begin(&handle, event, 6810 throttle_event.header.size); 6811 if (ret) 6812 return; 6813 6814 perf_output_put(&handle, throttle_event); 6815 perf_event__output_id_sample(event, &handle, &sample); 6816 perf_output_end(&handle); 6817 } 6818 6819 static void perf_log_itrace_start(struct perf_event *event) 6820 { 6821 struct perf_output_handle handle; 6822 struct perf_sample_data sample; 6823 struct perf_aux_event { 6824 struct perf_event_header header; 6825 u32 pid; 6826 u32 tid; 6827 } rec; 6828 int ret; 6829 6830 if (event->parent) 6831 event = event->parent; 6832 6833 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6834 event->hw.itrace_started) 6835 return; 6836 6837 rec.header.type = PERF_RECORD_ITRACE_START; 6838 rec.header.misc = 0; 6839 rec.header.size = sizeof(rec); 6840 rec.pid = perf_event_pid(event, current); 6841 rec.tid = perf_event_tid(event, current); 6842 6843 perf_event_header__init_id(&rec.header, &sample, event); 6844 ret = perf_output_begin(&handle, event, rec.header.size); 6845 6846 if (ret) 6847 return; 6848 6849 perf_output_put(&handle, rec); 6850 perf_event__output_id_sample(event, &handle, &sample); 6851 6852 perf_output_end(&handle); 6853 } 6854 6855 /* 6856 * Generic event overflow handling, sampling. 6857 */ 6858 6859 static int __perf_event_overflow(struct perf_event *event, 6860 int throttle, struct perf_sample_data *data, 6861 struct pt_regs *regs) 6862 { 6863 int events = atomic_read(&event->event_limit); 6864 struct hw_perf_event *hwc = &event->hw; 6865 u64 seq; 6866 int ret = 0; 6867 6868 /* 6869 * Non-sampling counters might still use the PMI to fold short 6870 * hardware counters, ignore those. 6871 */ 6872 if (unlikely(!is_sampling_event(event))) 6873 return 0; 6874 6875 seq = __this_cpu_read(perf_throttled_seq); 6876 if (seq != hwc->interrupts_seq) { 6877 hwc->interrupts_seq = seq; 6878 hwc->interrupts = 1; 6879 } else { 6880 hwc->interrupts++; 6881 if (unlikely(throttle 6882 && hwc->interrupts >= max_samples_per_tick)) { 6883 __this_cpu_inc(perf_throttled_count); 6884 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6885 hwc->interrupts = MAX_INTERRUPTS; 6886 perf_log_throttle(event, 0); 6887 ret = 1; 6888 } 6889 } 6890 6891 if (event->attr.freq) { 6892 u64 now = perf_clock(); 6893 s64 delta = now - hwc->freq_time_stamp; 6894 6895 hwc->freq_time_stamp = now; 6896 6897 if (delta > 0 && delta < 2*TICK_NSEC) 6898 perf_adjust_period(event, delta, hwc->last_period, true); 6899 } 6900 6901 /* 6902 * XXX event_limit might not quite work as expected on inherited 6903 * events 6904 */ 6905 6906 event->pending_kill = POLL_IN; 6907 if (events && atomic_dec_and_test(&event->event_limit)) { 6908 ret = 1; 6909 event->pending_kill = POLL_HUP; 6910 event->pending_disable = 1; 6911 irq_work_queue(&event->pending); 6912 } 6913 6914 event->overflow_handler(event, data, regs); 6915 6916 if (*perf_event_fasync(event) && event->pending_kill) { 6917 event->pending_wakeup = 1; 6918 irq_work_queue(&event->pending); 6919 } 6920 6921 return ret; 6922 } 6923 6924 int perf_event_overflow(struct perf_event *event, 6925 struct perf_sample_data *data, 6926 struct pt_regs *regs) 6927 { 6928 return __perf_event_overflow(event, 1, data, regs); 6929 } 6930 6931 /* 6932 * Generic software event infrastructure 6933 */ 6934 6935 struct swevent_htable { 6936 struct swevent_hlist *swevent_hlist; 6937 struct mutex hlist_mutex; 6938 int hlist_refcount; 6939 6940 /* Recursion avoidance in each contexts */ 6941 int recursion[PERF_NR_CONTEXTS]; 6942 }; 6943 6944 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6945 6946 /* 6947 * We directly increment event->count and keep a second value in 6948 * event->hw.period_left to count intervals. This period event 6949 * is kept in the range [-sample_period, 0] so that we can use the 6950 * sign as trigger. 6951 */ 6952 6953 u64 perf_swevent_set_period(struct perf_event *event) 6954 { 6955 struct hw_perf_event *hwc = &event->hw; 6956 u64 period = hwc->last_period; 6957 u64 nr, offset; 6958 s64 old, val; 6959 6960 hwc->last_period = hwc->sample_period; 6961 6962 again: 6963 old = val = local64_read(&hwc->period_left); 6964 if (val < 0) 6965 return 0; 6966 6967 nr = div64_u64(period + val, period); 6968 offset = nr * period; 6969 val -= offset; 6970 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6971 goto again; 6972 6973 return nr; 6974 } 6975 6976 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6977 struct perf_sample_data *data, 6978 struct pt_regs *regs) 6979 { 6980 struct hw_perf_event *hwc = &event->hw; 6981 int throttle = 0; 6982 6983 if (!overflow) 6984 overflow = perf_swevent_set_period(event); 6985 6986 if (hwc->interrupts == MAX_INTERRUPTS) 6987 return; 6988 6989 for (; overflow; overflow--) { 6990 if (__perf_event_overflow(event, throttle, 6991 data, regs)) { 6992 /* 6993 * We inhibit the overflow from happening when 6994 * hwc->interrupts == MAX_INTERRUPTS. 6995 */ 6996 break; 6997 } 6998 throttle = 1; 6999 } 7000 } 7001 7002 static void perf_swevent_event(struct perf_event *event, u64 nr, 7003 struct perf_sample_data *data, 7004 struct pt_regs *regs) 7005 { 7006 struct hw_perf_event *hwc = &event->hw; 7007 7008 local64_add(nr, &event->count); 7009 7010 if (!regs) 7011 return; 7012 7013 if (!is_sampling_event(event)) 7014 return; 7015 7016 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7017 data->period = nr; 7018 return perf_swevent_overflow(event, 1, data, regs); 7019 } else 7020 data->period = event->hw.last_period; 7021 7022 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7023 return perf_swevent_overflow(event, 1, data, regs); 7024 7025 if (local64_add_negative(nr, &hwc->period_left)) 7026 return; 7027 7028 perf_swevent_overflow(event, 0, data, regs); 7029 } 7030 7031 static int perf_exclude_event(struct perf_event *event, 7032 struct pt_regs *regs) 7033 { 7034 if (event->hw.state & PERF_HES_STOPPED) 7035 return 1; 7036 7037 if (regs) { 7038 if (event->attr.exclude_user && user_mode(regs)) 7039 return 1; 7040 7041 if (event->attr.exclude_kernel && !user_mode(regs)) 7042 return 1; 7043 } 7044 7045 return 0; 7046 } 7047 7048 static int perf_swevent_match(struct perf_event *event, 7049 enum perf_type_id type, 7050 u32 event_id, 7051 struct perf_sample_data *data, 7052 struct pt_regs *regs) 7053 { 7054 if (event->attr.type != type) 7055 return 0; 7056 7057 if (event->attr.config != event_id) 7058 return 0; 7059 7060 if (perf_exclude_event(event, regs)) 7061 return 0; 7062 7063 return 1; 7064 } 7065 7066 static inline u64 swevent_hash(u64 type, u32 event_id) 7067 { 7068 u64 val = event_id | (type << 32); 7069 7070 return hash_64(val, SWEVENT_HLIST_BITS); 7071 } 7072 7073 static inline struct hlist_head * 7074 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7075 { 7076 u64 hash = swevent_hash(type, event_id); 7077 7078 return &hlist->heads[hash]; 7079 } 7080 7081 /* For the read side: events when they trigger */ 7082 static inline struct hlist_head * 7083 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7084 { 7085 struct swevent_hlist *hlist; 7086 7087 hlist = rcu_dereference(swhash->swevent_hlist); 7088 if (!hlist) 7089 return NULL; 7090 7091 return __find_swevent_head(hlist, type, event_id); 7092 } 7093 7094 /* For the event head insertion and removal in the hlist */ 7095 static inline struct hlist_head * 7096 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7097 { 7098 struct swevent_hlist *hlist; 7099 u32 event_id = event->attr.config; 7100 u64 type = event->attr.type; 7101 7102 /* 7103 * Event scheduling is always serialized against hlist allocation 7104 * and release. Which makes the protected version suitable here. 7105 * The context lock guarantees that. 7106 */ 7107 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7108 lockdep_is_held(&event->ctx->lock)); 7109 if (!hlist) 7110 return NULL; 7111 7112 return __find_swevent_head(hlist, type, event_id); 7113 } 7114 7115 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7116 u64 nr, 7117 struct perf_sample_data *data, 7118 struct pt_regs *regs) 7119 { 7120 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7121 struct perf_event *event; 7122 struct hlist_head *head; 7123 7124 rcu_read_lock(); 7125 head = find_swevent_head_rcu(swhash, type, event_id); 7126 if (!head) 7127 goto end; 7128 7129 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7130 if (perf_swevent_match(event, type, event_id, data, regs)) 7131 perf_swevent_event(event, nr, data, regs); 7132 } 7133 end: 7134 rcu_read_unlock(); 7135 } 7136 7137 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7138 7139 int perf_swevent_get_recursion_context(void) 7140 { 7141 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7142 7143 return get_recursion_context(swhash->recursion); 7144 } 7145 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7146 7147 void perf_swevent_put_recursion_context(int rctx) 7148 { 7149 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7150 7151 put_recursion_context(swhash->recursion, rctx); 7152 } 7153 7154 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7155 { 7156 struct perf_sample_data data; 7157 7158 if (WARN_ON_ONCE(!regs)) 7159 return; 7160 7161 perf_sample_data_init(&data, addr, 0); 7162 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7163 } 7164 7165 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7166 { 7167 int rctx; 7168 7169 preempt_disable_notrace(); 7170 rctx = perf_swevent_get_recursion_context(); 7171 if (unlikely(rctx < 0)) 7172 goto fail; 7173 7174 ___perf_sw_event(event_id, nr, regs, addr); 7175 7176 perf_swevent_put_recursion_context(rctx); 7177 fail: 7178 preempt_enable_notrace(); 7179 } 7180 7181 static void perf_swevent_read(struct perf_event *event) 7182 { 7183 } 7184 7185 static int perf_swevent_add(struct perf_event *event, int flags) 7186 { 7187 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7188 struct hw_perf_event *hwc = &event->hw; 7189 struct hlist_head *head; 7190 7191 if (is_sampling_event(event)) { 7192 hwc->last_period = hwc->sample_period; 7193 perf_swevent_set_period(event); 7194 } 7195 7196 hwc->state = !(flags & PERF_EF_START); 7197 7198 head = find_swevent_head(swhash, event); 7199 if (WARN_ON_ONCE(!head)) 7200 return -EINVAL; 7201 7202 hlist_add_head_rcu(&event->hlist_entry, head); 7203 perf_event_update_userpage(event); 7204 7205 return 0; 7206 } 7207 7208 static void perf_swevent_del(struct perf_event *event, int flags) 7209 { 7210 hlist_del_rcu(&event->hlist_entry); 7211 } 7212 7213 static void perf_swevent_start(struct perf_event *event, int flags) 7214 { 7215 event->hw.state = 0; 7216 } 7217 7218 static void perf_swevent_stop(struct perf_event *event, int flags) 7219 { 7220 event->hw.state = PERF_HES_STOPPED; 7221 } 7222 7223 /* Deref the hlist from the update side */ 7224 static inline struct swevent_hlist * 7225 swevent_hlist_deref(struct swevent_htable *swhash) 7226 { 7227 return rcu_dereference_protected(swhash->swevent_hlist, 7228 lockdep_is_held(&swhash->hlist_mutex)); 7229 } 7230 7231 static void swevent_hlist_release(struct swevent_htable *swhash) 7232 { 7233 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7234 7235 if (!hlist) 7236 return; 7237 7238 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7239 kfree_rcu(hlist, rcu_head); 7240 } 7241 7242 static void swevent_hlist_put_cpu(int cpu) 7243 { 7244 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7245 7246 mutex_lock(&swhash->hlist_mutex); 7247 7248 if (!--swhash->hlist_refcount) 7249 swevent_hlist_release(swhash); 7250 7251 mutex_unlock(&swhash->hlist_mutex); 7252 } 7253 7254 static void swevent_hlist_put(void) 7255 { 7256 int cpu; 7257 7258 for_each_possible_cpu(cpu) 7259 swevent_hlist_put_cpu(cpu); 7260 } 7261 7262 static int swevent_hlist_get_cpu(int cpu) 7263 { 7264 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7265 int err = 0; 7266 7267 mutex_lock(&swhash->hlist_mutex); 7268 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7269 struct swevent_hlist *hlist; 7270 7271 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7272 if (!hlist) { 7273 err = -ENOMEM; 7274 goto exit; 7275 } 7276 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7277 } 7278 swhash->hlist_refcount++; 7279 exit: 7280 mutex_unlock(&swhash->hlist_mutex); 7281 7282 return err; 7283 } 7284 7285 static int swevent_hlist_get(void) 7286 { 7287 int err, cpu, failed_cpu; 7288 7289 get_online_cpus(); 7290 for_each_possible_cpu(cpu) { 7291 err = swevent_hlist_get_cpu(cpu); 7292 if (err) { 7293 failed_cpu = cpu; 7294 goto fail; 7295 } 7296 } 7297 put_online_cpus(); 7298 7299 return 0; 7300 fail: 7301 for_each_possible_cpu(cpu) { 7302 if (cpu == failed_cpu) 7303 break; 7304 swevent_hlist_put_cpu(cpu); 7305 } 7306 7307 put_online_cpus(); 7308 return err; 7309 } 7310 7311 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7312 7313 static void sw_perf_event_destroy(struct perf_event *event) 7314 { 7315 u64 event_id = event->attr.config; 7316 7317 WARN_ON(event->parent); 7318 7319 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7320 swevent_hlist_put(); 7321 } 7322 7323 static int perf_swevent_init(struct perf_event *event) 7324 { 7325 u64 event_id = event->attr.config; 7326 7327 if (event->attr.type != PERF_TYPE_SOFTWARE) 7328 return -ENOENT; 7329 7330 /* 7331 * no branch sampling for software events 7332 */ 7333 if (has_branch_stack(event)) 7334 return -EOPNOTSUPP; 7335 7336 switch (event_id) { 7337 case PERF_COUNT_SW_CPU_CLOCK: 7338 case PERF_COUNT_SW_TASK_CLOCK: 7339 return -ENOENT; 7340 7341 default: 7342 break; 7343 } 7344 7345 if (event_id >= PERF_COUNT_SW_MAX) 7346 return -ENOENT; 7347 7348 if (!event->parent) { 7349 int err; 7350 7351 err = swevent_hlist_get(); 7352 if (err) 7353 return err; 7354 7355 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7356 event->destroy = sw_perf_event_destroy; 7357 } 7358 7359 return 0; 7360 } 7361 7362 static struct pmu perf_swevent = { 7363 .task_ctx_nr = perf_sw_context, 7364 7365 .capabilities = PERF_PMU_CAP_NO_NMI, 7366 7367 .event_init = perf_swevent_init, 7368 .add = perf_swevent_add, 7369 .del = perf_swevent_del, 7370 .start = perf_swevent_start, 7371 .stop = perf_swevent_stop, 7372 .read = perf_swevent_read, 7373 }; 7374 7375 #ifdef CONFIG_EVENT_TRACING 7376 7377 static int perf_tp_filter_match(struct perf_event *event, 7378 struct perf_sample_data *data) 7379 { 7380 void *record = data->raw->data; 7381 7382 /* only top level events have filters set */ 7383 if (event->parent) 7384 event = event->parent; 7385 7386 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7387 return 1; 7388 return 0; 7389 } 7390 7391 static int perf_tp_event_match(struct perf_event *event, 7392 struct perf_sample_data *data, 7393 struct pt_regs *regs) 7394 { 7395 if (event->hw.state & PERF_HES_STOPPED) 7396 return 0; 7397 /* 7398 * All tracepoints are from kernel-space. 7399 */ 7400 if (event->attr.exclude_kernel) 7401 return 0; 7402 7403 if (!perf_tp_filter_match(event, data)) 7404 return 0; 7405 7406 return 1; 7407 } 7408 7409 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7410 struct trace_event_call *call, u64 count, 7411 struct pt_regs *regs, struct hlist_head *head, 7412 struct task_struct *task) 7413 { 7414 struct bpf_prog *prog = call->prog; 7415 7416 if (prog) { 7417 *(struct pt_regs **)raw_data = regs; 7418 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7419 perf_swevent_put_recursion_context(rctx); 7420 return; 7421 } 7422 } 7423 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7424 rctx, task); 7425 } 7426 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7427 7428 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7429 struct pt_regs *regs, struct hlist_head *head, int rctx, 7430 struct task_struct *task) 7431 { 7432 struct perf_sample_data data; 7433 struct perf_event *event; 7434 7435 struct perf_raw_record raw = { 7436 .size = entry_size, 7437 .data = record, 7438 }; 7439 7440 perf_sample_data_init(&data, 0, 0); 7441 data.raw = &raw; 7442 7443 perf_trace_buf_update(record, event_type); 7444 7445 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7446 if (perf_tp_event_match(event, &data, regs)) 7447 perf_swevent_event(event, count, &data, regs); 7448 } 7449 7450 /* 7451 * If we got specified a target task, also iterate its context and 7452 * deliver this event there too. 7453 */ 7454 if (task && task != current) { 7455 struct perf_event_context *ctx; 7456 struct trace_entry *entry = record; 7457 7458 rcu_read_lock(); 7459 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7460 if (!ctx) 7461 goto unlock; 7462 7463 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7464 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7465 continue; 7466 if (event->attr.config != entry->type) 7467 continue; 7468 if (perf_tp_event_match(event, &data, regs)) 7469 perf_swevent_event(event, count, &data, regs); 7470 } 7471 unlock: 7472 rcu_read_unlock(); 7473 } 7474 7475 perf_swevent_put_recursion_context(rctx); 7476 } 7477 EXPORT_SYMBOL_GPL(perf_tp_event); 7478 7479 static void tp_perf_event_destroy(struct perf_event *event) 7480 { 7481 perf_trace_destroy(event); 7482 } 7483 7484 static int perf_tp_event_init(struct perf_event *event) 7485 { 7486 int err; 7487 7488 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7489 return -ENOENT; 7490 7491 /* 7492 * no branch sampling for tracepoint events 7493 */ 7494 if (has_branch_stack(event)) 7495 return -EOPNOTSUPP; 7496 7497 err = perf_trace_init(event); 7498 if (err) 7499 return err; 7500 7501 event->destroy = tp_perf_event_destroy; 7502 7503 return 0; 7504 } 7505 7506 static struct pmu perf_tracepoint = { 7507 .task_ctx_nr = perf_sw_context, 7508 7509 .event_init = perf_tp_event_init, 7510 .add = perf_trace_add, 7511 .del = perf_trace_del, 7512 .start = perf_swevent_start, 7513 .stop = perf_swevent_stop, 7514 .read = perf_swevent_read, 7515 }; 7516 7517 static inline void perf_tp_register(void) 7518 { 7519 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7520 } 7521 7522 static void perf_event_free_filter(struct perf_event *event) 7523 { 7524 ftrace_profile_free_filter(event); 7525 } 7526 7527 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7528 { 7529 bool is_kprobe, is_tracepoint; 7530 struct bpf_prog *prog; 7531 7532 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7533 return -EINVAL; 7534 7535 if (event->tp_event->prog) 7536 return -EEXIST; 7537 7538 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7539 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7540 if (!is_kprobe && !is_tracepoint) 7541 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7542 return -EINVAL; 7543 7544 prog = bpf_prog_get(prog_fd); 7545 if (IS_ERR(prog)) 7546 return PTR_ERR(prog); 7547 7548 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7549 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7550 /* valid fd, but invalid bpf program type */ 7551 bpf_prog_put(prog); 7552 return -EINVAL; 7553 } 7554 7555 if (is_tracepoint) { 7556 int off = trace_event_get_offsets(event->tp_event); 7557 7558 if (prog->aux->max_ctx_offset > off) { 7559 bpf_prog_put(prog); 7560 return -EACCES; 7561 } 7562 } 7563 event->tp_event->prog = prog; 7564 7565 return 0; 7566 } 7567 7568 static void perf_event_free_bpf_prog(struct perf_event *event) 7569 { 7570 struct bpf_prog *prog; 7571 7572 if (!event->tp_event) 7573 return; 7574 7575 prog = event->tp_event->prog; 7576 if (prog) { 7577 event->tp_event->prog = NULL; 7578 bpf_prog_put(prog); 7579 } 7580 } 7581 7582 #else 7583 7584 static inline void perf_tp_register(void) 7585 { 7586 } 7587 7588 static void perf_event_free_filter(struct perf_event *event) 7589 { 7590 } 7591 7592 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7593 { 7594 return -ENOENT; 7595 } 7596 7597 static void perf_event_free_bpf_prog(struct perf_event *event) 7598 { 7599 } 7600 #endif /* CONFIG_EVENT_TRACING */ 7601 7602 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7603 void perf_bp_event(struct perf_event *bp, void *data) 7604 { 7605 struct perf_sample_data sample; 7606 struct pt_regs *regs = data; 7607 7608 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7609 7610 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7611 perf_swevent_event(bp, 1, &sample, regs); 7612 } 7613 #endif 7614 7615 /* 7616 * Allocate a new address filter 7617 */ 7618 static struct perf_addr_filter * 7619 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7620 { 7621 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7622 struct perf_addr_filter *filter; 7623 7624 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7625 if (!filter) 7626 return NULL; 7627 7628 INIT_LIST_HEAD(&filter->entry); 7629 list_add_tail(&filter->entry, filters); 7630 7631 return filter; 7632 } 7633 7634 static void free_filters_list(struct list_head *filters) 7635 { 7636 struct perf_addr_filter *filter, *iter; 7637 7638 list_for_each_entry_safe(filter, iter, filters, entry) { 7639 if (filter->inode) 7640 iput(filter->inode); 7641 list_del(&filter->entry); 7642 kfree(filter); 7643 } 7644 } 7645 7646 /* 7647 * Free existing address filters and optionally install new ones 7648 */ 7649 static void perf_addr_filters_splice(struct perf_event *event, 7650 struct list_head *head) 7651 { 7652 unsigned long flags; 7653 LIST_HEAD(list); 7654 7655 if (!has_addr_filter(event)) 7656 return; 7657 7658 /* don't bother with children, they don't have their own filters */ 7659 if (event->parent) 7660 return; 7661 7662 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7663 7664 list_splice_init(&event->addr_filters.list, &list); 7665 if (head) 7666 list_splice(head, &event->addr_filters.list); 7667 7668 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7669 7670 free_filters_list(&list); 7671 } 7672 7673 /* 7674 * Scan through mm's vmas and see if one of them matches the 7675 * @filter; if so, adjust filter's address range. 7676 * Called with mm::mmap_sem down for reading. 7677 */ 7678 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7679 struct mm_struct *mm) 7680 { 7681 struct vm_area_struct *vma; 7682 7683 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7684 struct file *file = vma->vm_file; 7685 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7686 unsigned long vma_size = vma->vm_end - vma->vm_start; 7687 7688 if (!file) 7689 continue; 7690 7691 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7692 continue; 7693 7694 return vma->vm_start; 7695 } 7696 7697 return 0; 7698 } 7699 7700 /* 7701 * Update event's address range filters based on the 7702 * task's existing mappings, if any. 7703 */ 7704 static void perf_event_addr_filters_apply(struct perf_event *event) 7705 { 7706 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7707 struct task_struct *task = READ_ONCE(event->ctx->task); 7708 struct perf_addr_filter *filter; 7709 struct mm_struct *mm = NULL; 7710 unsigned int count = 0; 7711 unsigned long flags; 7712 7713 /* 7714 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7715 * will stop on the parent's child_mutex that our caller is also holding 7716 */ 7717 if (task == TASK_TOMBSTONE) 7718 return; 7719 7720 mm = get_task_mm(event->ctx->task); 7721 if (!mm) 7722 goto restart; 7723 7724 down_read(&mm->mmap_sem); 7725 7726 raw_spin_lock_irqsave(&ifh->lock, flags); 7727 list_for_each_entry(filter, &ifh->list, entry) { 7728 event->addr_filters_offs[count] = 0; 7729 7730 if (perf_addr_filter_needs_mmap(filter)) 7731 event->addr_filters_offs[count] = 7732 perf_addr_filter_apply(filter, mm); 7733 7734 count++; 7735 } 7736 7737 event->addr_filters_gen++; 7738 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7739 7740 up_read(&mm->mmap_sem); 7741 7742 mmput(mm); 7743 7744 restart: 7745 perf_event_restart(event); 7746 } 7747 7748 /* 7749 * Address range filtering: limiting the data to certain 7750 * instruction address ranges. Filters are ioctl()ed to us from 7751 * userspace as ascii strings. 7752 * 7753 * Filter string format: 7754 * 7755 * ACTION RANGE_SPEC 7756 * where ACTION is one of the 7757 * * "filter": limit the trace to this region 7758 * * "start": start tracing from this address 7759 * * "stop": stop tracing at this address/region; 7760 * RANGE_SPEC is 7761 * * for kernel addresses: <start address>[/<size>] 7762 * * for object files: <start address>[/<size>]@</path/to/object/file> 7763 * 7764 * if <size> is not specified, the range is treated as a single address. 7765 */ 7766 enum { 7767 IF_ACT_FILTER, 7768 IF_ACT_START, 7769 IF_ACT_STOP, 7770 IF_SRC_FILE, 7771 IF_SRC_KERNEL, 7772 IF_SRC_FILEADDR, 7773 IF_SRC_KERNELADDR, 7774 }; 7775 7776 enum { 7777 IF_STATE_ACTION = 0, 7778 IF_STATE_SOURCE, 7779 IF_STATE_END, 7780 }; 7781 7782 static const match_table_t if_tokens = { 7783 { IF_ACT_FILTER, "filter" }, 7784 { IF_ACT_START, "start" }, 7785 { IF_ACT_STOP, "stop" }, 7786 { IF_SRC_FILE, "%u/%u@%s" }, 7787 { IF_SRC_KERNEL, "%u/%u" }, 7788 { IF_SRC_FILEADDR, "%u@%s" }, 7789 { IF_SRC_KERNELADDR, "%u" }, 7790 }; 7791 7792 /* 7793 * Address filter string parser 7794 */ 7795 static int 7796 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 7797 struct list_head *filters) 7798 { 7799 struct perf_addr_filter *filter = NULL; 7800 char *start, *orig, *filename = NULL; 7801 struct path path; 7802 substring_t args[MAX_OPT_ARGS]; 7803 int state = IF_STATE_ACTION, token; 7804 unsigned int kernel = 0; 7805 int ret = -EINVAL; 7806 7807 orig = fstr = kstrdup(fstr, GFP_KERNEL); 7808 if (!fstr) 7809 return -ENOMEM; 7810 7811 while ((start = strsep(&fstr, " ,\n")) != NULL) { 7812 ret = -EINVAL; 7813 7814 if (!*start) 7815 continue; 7816 7817 /* filter definition begins */ 7818 if (state == IF_STATE_ACTION) { 7819 filter = perf_addr_filter_new(event, filters); 7820 if (!filter) 7821 goto fail; 7822 } 7823 7824 token = match_token(start, if_tokens, args); 7825 switch (token) { 7826 case IF_ACT_FILTER: 7827 case IF_ACT_START: 7828 filter->filter = 1; 7829 7830 case IF_ACT_STOP: 7831 if (state != IF_STATE_ACTION) 7832 goto fail; 7833 7834 state = IF_STATE_SOURCE; 7835 break; 7836 7837 case IF_SRC_KERNELADDR: 7838 case IF_SRC_KERNEL: 7839 kernel = 1; 7840 7841 case IF_SRC_FILEADDR: 7842 case IF_SRC_FILE: 7843 if (state != IF_STATE_SOURCE) 7844 goto fail; 7845 7846 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 7847 filter->range = 1; 7848 7849 *args[0].to = 0; 7850 ret = kstrtoul(args[0].from, 0, &filter->offset); 7851 if (ret) 7852 goto fail; 7853 7854 if (filter->range) { 7855 *args[1].to = 0; 7856 ret = kstrtoul(args[1].from, 0, &filter->size); 7857 if (ret) 7858 goto fail; 7859 } 7860 7861 if (token == IF_SRC_FILE) { 7862 filename = match_strdup(&args[2]); 7863 if (!filename) { 7864 ret = -ENOMEM; 7865 goto fail; 7866 } 7867 } 7868 7869 state = IF_STATE_END; 7870 break; 7871 7872 default: 7873 goto fail; 7874 } 7875 7876 /* 7877 * Filter definition is fully parsed, validate and install it. 7878 * Make sure that it doesn't contradict itself or the event's 7879 * attribute. 7880 */ 7881 if (state == IF_STATE_END) { 7882 if (kernel && event->attr.exclude_kernel) 7883 goto fail; 7884 7885 if (!kernel) { 7886 if (!filename) 7887 goto fail; 7888 7889 /* look up the path and grab its inode */ 7890 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 7891 if (ret) 7892 goto fail_free_name; 7893 7894 filter->inode = igrab(d_inode(path.dentry)); 7895 path_put(&path); 7896 kfree(filename); 7897 filename = NULL; 7898 7899 ret = -EINVAL; 7900 if (!filter->inode || 7901 !S_ISREG(filter->inode->i_mode)) 7902 /* free_filters_list() will iput() */ 7903 goto fail; 7904 } 7905 7906 /* ready to consume more filters */ 7907 state = IF_STATE_ACTION; 7908 filter = NULL; 7909 } 7910 } 7911 7912 if (state != IF_STATE_ACTION) 7913 goto fail; 7914 7915 kfree(orig); 7916 7917 return 0; 7918 7919 fail_free_name: 7920 kfree(filename); 7921 fail: 7922 free_filters_list(filters); 7923 kfree(orig); 7924 7925 return ret; 7926 } 7927 7928 static int 7929 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 7930 { 7931 LIST_HEAD(filters); 7932 int ret; 7933 7934 /* 7935 * Since this is called in perf_ioctl() path, we're already holding 7936 * ctx::mutex. 7937 */ 7938 lockdep_assert_held(&event->ctx->mutex); 7939 7940 if (WARN_ON_ONCE(event->parent)) 7941 return -EINVAL; 7942 7943 /* 7944 * For now, we only support filtering in per-task events; doing so 7945 * for CPU-wide events requires additional context switching trickery, 7946 * since same object code will be mapped at different virtual 7947 * addresses in different processes. 7948 */ 7949 if (!event->ctx->task) 7950 return -EOPNOTSUPP; 7951 7952 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 7953 if (ret) 7954 return ret; 7955 7956 ret = event->pmu->addr_filters_validate(&filters); 7957 if (ret) { 7958 free_filters_list(&filters); 7959 return ret; 7960 } 7961 7962 /* remove existing filters, if any */ 7963 perf_addr_filters_splice(event, &filters); 7964 7965 /* install new filters */ 7966 perf_event_for_each_child(event, perf_event_addr_filters_apply); 7967 7968 return ret; 7969 } 7970 7971 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7972 { 7973 char *filter_str; 7974 int ret = -EINVAL; 7975 7976 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 7977 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 7978 !has_addr_filter(event)) 7979 return -EINVAL; 7980 7981 filter_str = strndup_user(arg, PAGE_SIZE); 7982 if (IS_ERR(filter_str)) 7983 return PTR_ERR(filter_str); 7984 7985 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 7986 event->attr.type == PERF_TYPE_TRACEPOINT) 7987 ret = ftrace_profile_set_filter(event, event->attr.config, 7988 filter_str); 7989 else if (has_addr_filter(event)) 7990 ret = perf_event_set_addr_filter(event, filter_str); 7991 7992 kfree(filter_str); 7993 return ret; 7994 } 7995 7996 /* 7997 * hrtimer based swevent callback 7998 */ 7999 8000 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8001 { 8002 enum hrtimer_restart ret = HRTIMER_RESTART; 8003 struct perf_sample_data data; 8004 struct pt_regs *regs; 8005 struct perf_event *event; 8006 u64 period; 8007 8008 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8009 8010 if (event->state != PERF_EVENT_STATE_ACTIVE) 8011 return HRTIMER_NORESTART; 8012 8013 event->pmu->read(event); 8014 8015 perf_sample_data_init(&data, 0, event->hw.last_period); 8016 regs = get_irq_regs(); 8017 8018 if (regs && !perf_exclude_event(event, regs)) { 8019 if (!(event->attr.exclude_idle && is_idle_task(current))) 8020 if (__perf_event_overflow(event, 1, &data, regs)) 8021 ret = HRTIMER_NORESTART; 8022 } 8023 8024 period = max_t(u64, 10000, event->hw.sample_period); 8025 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8026 8027 return ret; 8028 } 8029 8030 static void perf_swevent_start_hrtimer(struct perf_event *event) 8031 { 8032 struct hw_perf_event *hwc = &event->hw; 8033 s64 period; 8034 8035 if (!is_sampling_event(event)) 8036 return; 8037 8038 period = local64_read(&hwc->period_left); 8039 if (period) { 8040 if (period < 0) 8041 period = 10000; 8042 8043 local64_set(&hwc->period_left, 0); 8044 } else { 8045 period = max_t(u64, 10000, hwc->sample_period); 8046 } 8047 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8048 HRTIMER_MODE_REL_PINNED); 8049 } 8050 8051 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8052 { 8053 struct hw_perf_event *hwc = &event->hw; 8054 8055 if (is_sampling_event(event)) { 8056 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8057 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8058 8059 hrtimer_cancel(&hwc->hrtimer); 8060 } 8061 } 8062 8063 static void perf_swevent_init_hrtimer(struct perf_event *event) 8064 { 8065 struct hw_perf_event *hwc = &event->hw; 8066 8067 if (!is_sampling_event(event)) 8068 return; 8069 8070 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8071 hwc->hrtimer.function = perf_swevent_hrtimer; 8072 8073 /* 8074 * Since hrtimers have a fixed rate, we can do a static freq->period 8075 * mapping and avoid the whole period adjust feedback stuff. 8076 */ 8077 if (event->attr.freq) { 8078 long freq = event->attr.sample_freq; 8079 8080 event->attr.sample_period = NSEC_PER_SEC / freq; 8081 hwc->sample_period = event->attr.sample_period; 8082 local64_set(&hwc->period_left, hwc->sample_period); 8083 hwc->last_period = hwc->sample_period; 8084 event->attr.freq = 0; 8085 } 8086 } 8087 8088 /* 8089 * Software event: cpu wall time clock 8090 */ 8091 8092 static void cpu_clock_event_update(struct perf_event *event) 8093 { 8094 s64 prev; 8095 u64 now; 8096 8097 now = local_clock(); 8098 prev = local64_xchg(&event->hw.prev_count, now); 8099 local64_add(now - prev, &event->count); 8100 } 8101 8102 static void cpu_clock_event_start(struct perf_event *event, int flags) 8103 { 8104 local64_set(&event->hw.prev_count, local_clock()); 8105 perf_swevent_start_hrtimer(event); 8106 } 8107 8108 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8109 { 8110 perf_swevent_cancel_hrtimer(event); 8111 cpu_clock_event_update(event); 8112 } 8113 8114 static int cpu_clock_event_add(struct perf_event *event, int flags) 8115 { 8116 if (flags & PERF_EF_START) 8117 cpu_clock_event_start(event, flags); 8118 perf_event_update_userpage(event); 8119 8120 return 0; 8121 } 8122 8123 static void cpu_clock_event_del(struct perf_event *event, int flags) 8124 { 8125 cpu_clock_event_stop(event, flags); 8126 } 8127 8128 static void cpu_clock_event_read(struct perf_event *event) 8129 { 8130 cpu_clock_event_update(event); 8131 } 8132 8133 static int cpu_clock_event_init(struct perf_event *event) 8134 { 8135 if (event->attr.type != PERF_TYPE_SOFTWARE) 8136 return -ENOENT; 8137 8138 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8139 return -ENOENT; 8140 8141 /* 8142 * no branch sampling for software events 8143 */ 8144 if (has_branch_stack(event)) 8145 return -EOPNOTSUPP; 8146 8147 perf_swevent_init_hrtimer(event); 8148 8149 return 0; 8150 } 8151 8152 static struct pmu perf_cpu_clock = { 8153 .task_ctx_nr = perf_sw_context, 8154 8155 .capabilities = PERF_PMU_CAP_NO_NMI, 8156 8157 .event_init = cpu_clock_event_init, 8158 .add = cpu_clock_event_add, 8159 .del = cpu_clock_event_del, 8160 .start = cpu_clock_event_start, 8161 .stop = cpu_clock_event_stop, 8162 .read = cpu_clock_event_read, 8163 }; 8164 8165 /* 8166 * Software event: task time clock 8167 */ 8168 8169 static void task_clock_event_update(struct perf_event *event, u64 now) 8170 { 8171 u64 prev; 8172 s64 delta; 8173 8174 prev = local64_xchg(&event->hw.prev_count, now); 8175 delta = now - prev; 8176 local64_add(delta, &event->count); 8177 } 8178 8179 static void task_clock_event_start(struct perf_event *event, int flags) 8180 { 8181 local64_set(&event->hw.prev_count, event->ctx->time); 8182 perf_swevent_start_hrtimer(event); 8183 } 8184 8185 static void task_clock_event_stop(struct perf_event *event, int flags) 8186 { 8187 perf_swevent_cancel_hrtimer(event); 8188 task_clock_event_update(event, event->ctx->time); 8189 } 8190 8191 static int task_clock_event_add(struct perf_event *event, int flags) 8192 { 8193 if (flags & PERF_EF_START) 8194 task_clock_event_start(event, flags); 8195 perf_event_update_userpage(event); 8196 8197 return 0; 8198 } 8199 8200 static void task_clock_event_del(struct perf_event *event, int flags) 8201 { 8202 task_clock_event_stop(event, PERF_EF_UPDATE); 8203 } 8204 8205 static void task_clock_event_read(struct perf_event *event) 8206 { 8207 u64 now = perf_clock(); 8208 u64 delta = now - event->ctx->timestamp; 8209 u64 time = event->ctx->time + delta; 8210 8211 task_clock_event_update(event, time); 8212 } 8213 8214 static int task_clock_event_init(struct perf_event *event) 8215 { 8216 if (event->attr.type != PERF_TYPE_SOFTWARE) 8217 return -ENOENT; 8218 8219 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8220 return -ENOENT; 8221 8222 /* 8223 * no branch sampling for software events 8224 */ 8225 if (has_branch_stack(event)) 8226 return -EOPNOTSUPP; 8227 8228 perf_swevent_init_hrtimer(event); 8229 8230 return 0; 8231 } 8232 8233 static struct pmu perf_task_clock = { 8234 .task_ctx_nr = perf_sw_context, 8235 8236 .capabilities = PERF_PMU_CAP_NO_NMI, 8237 8238 .event_init = task_clock_event_init, 8239 .add = task_clock_event_add, 8240 .del = task_clock_event_del, 8241 .start = task_clock_event_start, 8242 .stop = task_clock_event_stop, 8243 .read = task_clock_event_read, 8244 }; 8245 8246 static void perf_pmu_nop_void(struct pmu *pmu) 8247 { 8248 } 8249 8250 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8251 { 8252 } 8253 8254 static int perf_pmu_nop_int(struct pmu *pmu) 8255 { 8256 return 0; 8257 } 8258 8259 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8260 8261 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8262 { 8263 __this_cpu_write(nop_txn_flags, flags); 8264 8265 if (flags & ~PERF_PMU_TXN_ADD) 8266 return; 8267 8268 perf_pmu_disable(pmu); 8269 } 8270 8271 static int perf_pmu_commit_txn(struct pmu *pmu) 8272 { 8273 unsigned int flags = __this_cpu_read(nop_txn_flags); 8274 8275 __this_cpu_write(nop_txn_flags, 0); 8276 8277 if (flags & ~PERF_PMU_TXN_ADD) 8278 return 0; 8279 8280 perf_pmu_enable(pmu); 8281 return 0; 8282 } 8283 8284 static void perf_pmu_cancel_txn(struct pmu *pmu) 8285 { 8286 unsigned int flags = __this_cpu_read(nop_txn_flags); 8287 8288 __this_cpu_write(nop_txn_flags, 0); 8289 8290 if (flags & ~PERF_PMU_TXN_ADD) 8291 return; 8292 8293 perf_pmu_enable(pmu); 8294 } 8295 8296 static int perf_event_idx_default(struct perf_event *event) 8297 { 8298 return 0; 8299 } 8300 8301 /* 8302 * Ensures all contexts with the same task_ctx_nr have the same 8303 * pmu_cpu_context too. 8304 */ 8305 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8306 { 8307 struct pmu *pmu; 8308 8309 if (ctxn < 0) 8310 return NULL; 8311 8312 list_for_each_entry(pmu, &pmus, entry) { 8313 if (pmu->task_ctx_nr == ctxn) 8314 return pmu->pmu_cpu_context; 8315 } 8316 8317 return NULL; 8318 } 8319 8320 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8321 { 8322 int cpu; 8323 8324 for_each_possible_cpu(cpu) { 8325 struct perf_cpu_context *cpuctx; 8326 8327 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8328 8329 if (cpuctx->unique_pmu == old_pmu) 8330 cpuctx->unique_pmu = pmu; 8331 } 8332 } 8333 8334 static void free_pmu_context(struct pmu *pmu) 8335 { 8336 struct pmu *i; 8337 8338 mutex_lock(&pmus_lock); 8339 /* 8340 * Like a real lame refcount. 8341 */ 8342 list_for_each_entry(i, &pmus, entry) { 8343 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8344 update_pmu_context(i, pmu); 8345 goto out; 8346 } 8347 } 8348 8349 free_percpu(pmu->pmu_cpu_context); 8350 out: 8351 mutex_unlock(&pmus_lock); 8352 } 8353 8354 /* 8355 * Let userspace know that this PMU supports address range filtering: 8356 */ 8357 static ssize_t nr_addr_filters_show(struct device *dev, 8358 struct device_attribute *attr, 8359 char *page) 8360 { 8361 struct pmu *pmu = dev_get_drvdata(dev); 8362 8363 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8364 } 8365 DEVICE_ATTR_RO(nr_addr_filters); 8366 8367 static struct idr pmu_idr; 8368 8369 static ssize_t 8370 type_show(struct device *dev, struct device_attribute *attr, char *page) 8371 { 8372 struct pmu *pmu = dev_get_drvdata(dev); 8373 8374 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8375 } 8376 static DEVICE_ATTR_RO(type); 8377 8378 static ssize_t 8379 perf_event_mux_interval_ms_show(struct device *dev, 8380 struct device_attribute *attr, 8381 char *page) 8382 { 8383 struct pmu *pmu = dev_get_drvdata(dev); 8384 8385 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8386 } 8387 8388 static DEFINE_MUTEX(mux_interval_mutex); 8389 8390 static ssize_t 8391 perf_event_mux_interval_ms_store(struct device *dev, 8392 struct device_attribute *attr, 8393 const char *buf, size_t count) 8394 { 8395 struct pmu *pmu = dev_get_drvdata(dev); 8396 int timer, cpu, ret; 8397 8398 ret = kstrtoint(buf, 0, &timer); 8399 if (ret) 8400 return ret; 8401 8402 if (timer < 1) 8403 return -EINVAL; 8404 8405 /* same value, noting to do */ 8406 if (timer == pmu->hrtimer_interval_ms) 8407 return count; 8408 8409 mutex_lock(&mux_interval_mutex); 8410 pmu->hrtimer_interval_ms = timer; 8411 8412 /* update all cpuctx for this PMU */ 8413 get_online_cpus(); 8414 for_each_online_cpu(cpu) { 8415 struct perf_cpu_context *cpuctx; 8416 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8417 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8418 8419 cpu_function_call(cpu, 8420 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8421 } 8422 put_online_cpus(); 8423 mutex_unlock(&mux_interval_mutex); 8424 8425 return count; 8426 } 8427 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8428 8429 static struct attribute *pmu_dev_attrs[] = { 8430 &dev_attr_type.attr, 8431 &dev_attr_perf_event_mux_interval_ms.attr, 8432 NULL, 8433 }; 8434 ATTRIBUTE_GROUPS(pmu_dev); 8435 8436 static int pmu_bus_running; 8437 static struct bus_type pmu_bus = { 8438 .name = "event_source", 8439 .dev_groups = pmu_dev_groups, 8440 }; 8441 8442 static void pmu_dev_release(struct device *dev) 8443 { 8444 kfree(dev); 8445 } 8446 8447 static int pmu_dev_alloc(struct pmu *pmu) 8448 { 8449 int ret = -ENOMEM; 8450 8451 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8452 if (!pmu->dev) 8453 goto out; 8454 8455 pmu->dev->groups = pmu->attr_groups; 8456 device_initialize(pmu->dev); 8457 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8458 if (ret) 8459 goto free_dev; 8460 8461 dev_set_drvdata(pmu->dev, pmu); 8462 pmu->dev->bus = &pmu_bus; 8463 pmu->dev->release = pmu_dev_release; 8464 ret = device_add(pmu->dev); 8465 if (ret) 8466 goto free_dev; 8467 8468 /* For PMUs with address filters, throw in an extra attribute: */ 8469 if (pmu->nr_addr_filters) 8470 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8471 8472 if (ret) 8473 goto del_dev; 8474 8475 out: 8476 return ret; 8477 8478 del_dev: 8479 device_del(pmu->dev); 8480 8481 free_dev: 8482 put_device(pmu->dev); 8483 goto out; 8484 } 8485 8486 static struct lock_class_key cpuctx_mutex; 8487 static struct lock_class_key cpuctx_lock; 8488 8489 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8490 { 8491 int cpu, ret; 8492 8493 mutex_lock(&pmus_lock); 8494 ret = -ENOMEM; 8495 pmu->pmu_disable_count = alloc_percpu(int); 8496 if (!pmu->pmu_disable_count) 8497 goto unlock; 8498 8499 pmu->type = -1; 8500 if (!name) 8501 goto skip_type; 8502 pmu->name = name; 8503 8504 if (type < 0) { 8505 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8506 if (type < 0) { 8507 ret = type; 8508 goto free_pdc; 8509 } 8510 } 8511 pmu->type = type; 8512 8513 if (pmu_bus_running) { 8514 ret = pmu_dev_alloc(pmu); 8515 if (ret) 8516 goto free_idr; 8517 } 8518 8519 skip_type: 8520 if (pmu->task_ctx_nr == perf_hw_context) { 8521 static int hw_context_taken = 0; 8522 8523 /* 8524 * Other than systems with heterogeneous CPUs, it never makes 8525 * sense for two PMUs to share perf_hw_context. PMUs which are 8526 * uncore must use perf_invalid_context. 8527 */ 8528 if (WARN_ON_ONCE(hw_context_taken && 8529 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8530 pmu->task_ctx_nr = perf_invalid_context; 8531 8532 hw_context_taken = 1; 8533 } 8534 8535 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8536 if (pmu->pmu_cpu_context) 8537 goto got_cpu_context; 8538 8539 ret = -ENOMEM; 8540 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8541 if (!pmu->pmu_cpu_context) 8542 goto free_dev; 8543 8544 for_each_possible_cpu(cpu) { 8545 struct perf_cpu_context *cpuctx; 8546 8547 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8548 __perf_event_init_context(&cpuctx->ctx); 8549 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8550 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8551 cpuctx->ctx.pmu = pmu; 8552 8553 __perf_mux_hrtimer_init(cpuctx, cpu); 8554 8555 cpuctx->unique_pmu = pmu; 8556 } 8557 8558 got_cpu_context: 8559 if (!pmu->start_txn) { 8560 if (pmu->pmu_enable) { 8561 /* 8562 * If we have pmu_enable/pmu_disable calls, install 8563 * transaction stubs that use that to try and batch 8564 * hardware accesses. 8565 */ 8566 pmu->start_txn = perf_pmu_start_txn; 8567 pmu->commit_txn = perf_pmu_commit_txn; 8568 pmu->cancel_txn = perf_pmu_cancel_txn; 8569 } else { 8570 pmu->start_txn = perf_pmu_nop_txn; 8571 pmu->commit_txn = perf_pmu_nop_int; 8572 pmu->cancel_txn = perf_pmu_nop_void; 8573 } 8574 } 8575 8576 if (!pmu->pmu_enable) { 8577 pmu->pmu_enable = perf_pmu_nop_void; 8578 pmu->pmu_disable = perf_pmu_nop_void; 8579 } 8580 8581 if (!pmu->event_idx) 8582 pmu->event_idx = perf_event_idx_default; 8583 8584 list_add_rcu(&pmu->entry, &pmus); 8585 atomic_set(&pmu->exclusive_cnt, 0); 8586 ret = 0; 8587 unlock: 8588 mutex_unlock(&pmus_lock); 8589 8590 return ret; 8591 8592 free_dev: 8593 device_del(pmu->dev); 8594 put_device(pmu->dev); 8595 8596 free_idr: 8597 if (pmu->type >= PERF_TYPE_MAX) 8598 idr_remove(&pmu_idr, pmu->type); 8599 8600 free_pdc: 8601 free_percpu(pmu->pmu_disable_count); 8602 goto unlock; 8603 } 8604 EXPORT_SYMBOL_GPL(perf_pmu_register); 8605 8606 void perf_pmu_unregister(struct pmu *pmu) 8607 { 8608 mutex_lock(&pmus_lock); 8609 list_del_rcu(&pmu->entry); 8610 mutex_unlock(&pmus_lock); 8611 8612 /* 8613 * We dereference the pmu list under both SRCU and regular RCU, so 8614 * synchronize against both of those. 8615 */ 8616 synchronize_srcu(&pmus_srcu); 8617 synchronize_rcu(); 8618 8619 free_percpu(pmu->pmu_disable_count); 8620 if (pmu->type >= PERF_TYPE_MAX) 8621 idr_remove(&pmu_idr, pmu->type); 8622 if (pmu->nr_addr_filters) 8623 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8624 device_del(pmu->dev); 8625 put_device(pmu->dev); 8626 free_pmu_context(pmu); 8627 } 8628 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8629 8630 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8631 { 8632 struct perf_event_context *ctx = NULL; 8633 int ret; 8634 8635 if (!try_module_get(pmu->module)) 8636 return -ENODEV; 8637 8638 if (event->group_leader != event) { 8639 /* 8640 * This ctx->mutex can nest when we're called through 8641 * inheritance. See the perf_event_ctx_lock_nested() comment. 8642 */ 8643 ctx = perf_event_ctx_lock_nested(event->group_leader, 8644 SINGLE_DEPTH_NESTING); 8645 BUG_ON(!ctx); 8646 } 8647 8648 event->pmu = pmu; 8649 ret = pmu->event_init(event); 8650 8651 if (ctx) 8652 perf_event_ctx_unlock(event->group_leader, ctx); 8653 8654 if (ret) 8655 module_put(pmu->module); 8656 8657 return ret; 8658 } 8659 8660 static struct pmu *perf_init_event(struct perf_event *event) 8661 { 8662 struct pmu *pmu = NULL; 8663 int idx; 8664 int ret; 8665 8666 idx = srcu_read_lock(&pmus_srcu); 8667 8668 rcu_read_lock(); 8669 pmu = idr_find(&pmu_idr, event->attr.type); 8670 rcu_read_unlock(); 8671 if (pmu) { 8672 ret = perf_try_init_event(pmu, event); 8673 if (ret) 8674 pmu = ERR_PTR(ret); 8675 goto unlock; 8676 } 8677 8678 list_for_each_entry_rcu(pmu, &pmus, entry) { 8679 ret = perf_try_init_event(pmu, event); 8680 if (!ret) 8681 goto unlock; 8682 8683 if (ret != -ENOENT) { 8684 pmu = ERR_PTR(ret); 8685 goto unlock; 8686 } 8687 } 8688 pmu = ERR_PTR(-ENOENT); 8689 unlock: 8690 srcu_read_unlock(&pmus_srcu, idx); 8691 8692 return pmu; 8693 } 8694 8695 static void attach_sb_event(struct perf_event *event) 8696 { 8697 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 8698 8699 raw_spin_lock(&pel->lock); 8700 list_add_rcu(&event->sb_list, &pel->list); 8701 raw_spin_unlock(&pel->lock); 8702 } 8703 8704 /* 8705 * We keep a list of all !task (and therefore per-cpu) events 8706 * that need to receive side-band records. 8707 * 8708 * This avoids having to scan all the various PMU per-cpu contexts 8709 * looking for them. 8710 */ 8711 static void account_pmu_sb_event(struct perf_event *event) 8712 { 8713 if (is_sb_event(event)) 8714 attach_sb_event(event); 8715 } 8716 8717 static void account_event_cpu(struct perf_event *event, int cpu) 8718 { 8719 if (event->parent) 8720 return; 8721 8722 if (is_cgroup_event(event)) 8723 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8724 } 8725 8726 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 8727 static void account_freq_event_nohz(void) 8728 { 8729 #ifdef CONFIG_NO_HZ_FULL 8730 /* Lock so we don't race with concurrent unaccount */ 8731 spin_lock(&nr_freq_lock); 8732 if (atomic_inc_return(&nr_freq_events) == 1) 8733 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 8734 spin_unlock(&nr_freq_lock); 8735 #endif 8736 } 8737 8738 static void account_freq_event(void) 8739 { 8740 if (tick_nohz_full_enabled()) 8741 account_freq_event_nohz(); 8742 else 8743 atomic_inc(&nr_freq_events); 8744 } 8745 8746 8747 static void account_event(struct perf_event *event) 8748 { 8749 bool inc = false; 8750 8751 if (event->parent) 8752 return; 8753 8754 if (event->attach_state & PERF_ATTACH_TASK) 8755 inc = true; 8756 if (event->attr.mmap || event->attr.mmap_data) 8757 atomic_inc(&nr_mmap_events); 8758 if (event->attr.comm) 8759 atomic_inc(&nr_comm_events); 8760 if (event->attr.task) 8761 atomic_inc(&nr_task_events); 8762 if (event->attr.freq) 8763 account_freq_event(); 8764 if (event->attr.context_switch) { 8765 atomic_inc(&nr_switch_events); 8766 inc = true; 8767 } 8768 if (has_branch_stack(event)) 8769 inc = true; 8770 if (is_cgroup_event(event)) 8771 inc = true; 8772 8773 if (inc) { 8774 if (atomic_inc_not_zero(&perf_sched_count)) 8775 goto enabled; 8776 8777 mutex_lock(&perf_sched_mutex); 8778 if (!atomic_read(&perf_sched_count)) { 8779 static_branch_enable(&perf_sched_events); 8780 /* 8781 * Guarantee that all CPUs observe they key change and 8782 * call the perf scheduling hooks before proceeding to 8783 * install events that need them. 8784 */ 8785 synchronize_sched(); 8786 } 8787 /* 8788 * Now that we have waited for the sync_sched(), allow further 8789 * increments to by-pass the mutex. 8790 */ 8791 atomic_inc(&perf_sched_count); 8792 mutex_unlock(&perf_sched_mutex); 8793 } 8794 enabled: 8795 8796 account_event_cpu(event, event->cpu); 8797 8798 account_pmu_sb_event(event); 8799 } 8800 8801 /* 8802 * Allocate and initialize a event structure 8803 */ 8804 static struct perf_event * 8805 perf_event_alloc(struct perf_event_attr *attr, int cpu, 8806 struct task_struct *task, 8807 struct perf_event *group_leader, 8808 struct perf_event *parent_event, 8809 perf_overflow_handler_t overflow_handler, 8810 void *context, int cgroup_fd) 8811 { 8812 struct pmu *pmu; 8813 struct perf_event *event; 8814 struct hw_perf_event *hwc; 8815 long err = -EINVAL; 8816 8817 if ((unsigned)cpu >= nr_cpu_ids) { 8818 if (!task || cpu != -1) 8819 return ERR_PTR(-EINVAL); 8820 } 8821 8822 event = kzalloc(sizeof(*event), GFP_KERNEL); 8823 if (!event) 8824 return ERR_PTR(-ENOMEM); 8825 8826 /* 8827 * Single events are their own group leaders, with an 8828 * empty sibling list: 8829 */ 8830 if (!group_leader) 8831 group_leader = event; 8832 8833 mutex_init(&event->child_mutex); 8834 INIT_LIST_HEAD(&event->child_list); 8835 8836 INIT_LIST_HEAD(&event->group_entry); 8837 INIT_LIST_HEAD(&event->event_entry); 8838 INIT_LIST_HEAD(&event->sibling_list); 8839 INIT_LIST_HEAD(&event->rb_entry); 8840 INIT_LIST_HEAD(&event->active_entry); 8841 INIT_LIST_HEAD(&event->addr_filters.list); 8842 INIT_HLIST_NODE(&event->hlist_entry); 8843 8844 8845 init_waitqueue_head(&event->waitq); 8846 init_irq_work(&event->pending, perf_pending_event); 8847 8848 mutex_init(&event->mmap_mutex); 8849 raw_spin_lock_init(&event->addr_filters.lock); 8850 8851 atomic_long_set(&event->refcount, 1); 8852 event->cpu = cpu; 8853 event->attr = *attr; 8854 event->group_leader = group_leader; 8855 event->pmu = NULL; 8856 event->oncpu = -1; 8857 8858 event->parent = parent_event; 8859 8860 event->ns = get_pid_ns(task_active_pid_ns(current)); 8861 event->id = atomic64_inc_return(&perf_event_id); 8862 8863 event->state = PERF_EVENT_STATE_INACTIVE; 8864 8865 if (task) { 8866 event->attach_state = PERF_ATTACH_TASK; 8867 /* 8868 * XXX pmu::event_init needs to know what task to account to 8869 * and we cannot use the ctx information because we need the 8870 * pmu before we get a ctx. 8871 */ 8872 event->hw.target = task; 8873 } 8874 8875 event->clock = &local_clock; 8876 if (parent_event) 8877 event->clock = parent_event->clock; 8878 8879 if (!overflow_handler && parent_event) { 8880 overflow_handler = parent_event->overflow_handler; 8881 context = parent_event->overflow_handler_context; 8882 } 8883 8884 if (overflow_handler) { 8885 event->overflow_handler = overflow_handler; 8886 event->overflow_handler_context = context; 8887 } else if (is_write_backward(event)){ 8888 event->overflow_handler = perf_event_output_backward; 8889 event->overflow_handler_context = NULL; 8890 } else { 8891 event->overflow_handler = perf_event_output_forward; 8892 event->overflow_handler_context = NULL; 8893 } 8894 8895 perf_event__state_init(event); 8896 8897 pmu = NULL; 8898 8899 hwc = &event->hw; 8900 hwc->sample_period = attr->sample_period; 8901 if (attr->freq && attr->sample_freq) 8902 hwc->sample_period = 1; 8903 hwc->last_period = hwc->sample_period; 8904 8905 local64_set(&hwc->period_left, hwc->sample_period); 8906 8907 /* 8908 * we currently do not support PERF_FORMAT_GROUP on inherited events 8909 */ 8910 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8911 goto err_ns; 8912 8913 if (!has_branch_stack(event)) 8914 event->attr.branch_sample_type = 0; 8915 8916 if (cgroup_fd != -1) { 8917 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8918 if (err) 8919 goto err_ns; 8920 } 8921 8922 pmu = perf_init_event(event); 8923 if (!pmu) 8924 goto err_ns; 8925 else if (IS_ERR(pmu)) { 8926 err = PTR_ERR(pmu); 8927 goto err_ns; 8928 } 8929 8930 err = exclusive_event_init(event); 8931 if (err) 8932 goto err_pmu; 8933 8934 if (has_addr_filter(event)) { 8935 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 8936 sizeof(unsigned long), 8937 GFP_KERNEL); 8938 if (!event->addr_filters_offs) 8939 goto err_per_task; 8940 8941 /* force hw sync on the address filters */ 8942 event->addr_filters_gen = 1; 8943 } 8944 8945 if (!event->parent) { 8946 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8947 err = get_callchain_buffers(attr->sample_max_stack); 8948 if (err) 8949 goto err_addr_filters; 8950 } 8951 } 8952 8953 /* symmetric to unaccount_event() in _free_event() */ 8954 account_event(event); 8955 8956 return event; 8957 8958 err_addr_filters: 8959 kfree(event->addr_filters_offs); 8960 8961 err_per_task: 8962 exclusive_event_destroy(event); 8963 8964 err_pmu: 8965 if (event->destroy) 8966 event->destroy(event); 8967 module_put(pmu->module); 8968 err_ns: 8969 if (is_cgroup_event(event)) 8970 perf_detach_cgroup(event); 8971 if (event->ns) 8972 put_pid_ns(event->ns); 8973 kfree(event); 8974 8975 return ERR_PTR(err); 8976 } 8977 8978 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8979 struct perf_event_attr *attr) 8980 { 8981 u32 size; 8982 int ret; 8983 8984 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8985 return -EFAULT; 8986 8987 /* 8988 * zero the full structure, so that a short copy will be nice. 8989 */ 8990 memset(attr, 0, sizeof(*attr)); 8991 8992 ret = get_user(size, &uattr->size); 8993 if (ret) 8994 return ret; 8995 8996 if (size > PAGE_SIZE) /* silly large */ 8997 goto err_size; 8998 8999 if (!size) /* abi compat */ 9000 size = PERF_ATTR_SIZE_VER0; 9001 9002 if (size < PERF_ATTR_SIZE_VER0) 9003 goto err_size; 9004 9005 /* 9006 * If we're handed a bigger struct than we know of, 9007 * ensure all the unknown bits are 0 - i.e. new 9008 * user-space does not rely on any kernel feature 9009 * extensions we dont know about yet. 9010 */ 9011 if (size > sizeof(*attr)) { 9012 unsigned char __user *addr; 9013 unsigned char __user *end; 9014 unsigned char val; 9015 9016 addr = (void __user *)uattr + sizeof(*attr); 9017 end = (void __user *)uattr + size; 9018 9019 for (; addr < end; addr++) { 9020 ret = get_user(val, addr); 9021 if (ret) 9022 return ret; 9023 if (val) 9024 goto err_size; 9025 } 9026 size = sizeof(*attr); 9027 } 9028 9029 ret = copy_from_user(attr, uattr, size); 9030 if (ret) 9031 return -EFAULT; 9032 9033 if (attr->__reserved_1) 9034 return -EINVAL; 9035 9036 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9037 return -EINVAL; 9038 9039 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9040 return -EINVAL; 9041 9042 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9043 u64 mask = attr->branch_sample_type; 9044 9045 /* only using defined bits */ 9046 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9047 return -EINVAL; 9048 9049 /* at least one branch bit must be set */ 9050 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9051 return -EINVAL; 9052 9053 /* propagate priv level, when not set for branch */ 9054 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9055 9056 /* exclude_kernel checked on syscall entry */ 9057 if (!attr->exclude_kernel) 9058 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9059 9060 if (!attr->exclude_user) 9061 mask |= PERF_SAMPLE_BRANCH_USER; 9062 9063 if (!attr->exclude_hv) 9064 mask |= PERF_SAMPLE_BRANCH_HV; 9065 /* 9066 * adjust user setting (for HW filter setup) 9067 */ 9068 attr->branch_sample_type = mask; 9069 } 9070 /* privileged levels capture (kernel, hv): check permissions */ 9071 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9072 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9073 return -EACCES; 9074 } 9075 9076 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9077 ret = perf_reg_validate(attr->sample_regs_user); 9078 if (ret) 9079 return ret; 9080 } 9081 9082 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9083 if (!arch_perf_have_user_stack_dump()) 9084 return -ENOSYS; 9085 9086 /* 9087 * We have __u32 type for the size, but so far 9088 * we can only use __u16 as maximum due to the 9089 * __u16 sample size limit. 9090 */ 9091 if (attr->sample_stack_user >= USHRT_MAX) 9092 ret = -EINVAL; 9093 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9094 ret = -EINVAL; 9095 } 9096 9097 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9098 ret = perf_reg_validate(attr->sample_regs_intr); 9099 out: 9100 return ret; 9101 9102 err_size: 9103 put_user(sizeof(*attr), &uattr->size); 9104 ret = -E2BIG; 9105 goto out; 9106 } 9107 9108 static int 9109 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9110 { 9111 struct ring_buffer *rb = NULL; 9112 int ret = -EINVAL; 9113 9114 if (!output_event) 9115 goto set; 9116 9117 /* don't allow circular references */ 9118 if (event == output_event) 9119 goto out; 9120 9121 /* 9122 * Don't allow cross-cpu buffers 9123 */ 9124 if (output_event->cpu != event->cpu) 9125 goto out; 9126 9127 /* 9128 * If its not a per-cpu rb, it must be the same task. 9129 */ 9130 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9131 goto out; 9132 9133 /* 9134 * Mixing clocks in the same buffer is trouble you don't need. 9135 */ 9136 if (output_event->clock != event->clock) 9137 goto out; 9138 9139 /* 9140 * Either writing ring buffer from beginning or from end. 9141 * Mixing is not allowed. 9142 */ 9143 if (is_write_backward(output_event) != is_write_backward(event)) 9144 goto out; 9145 9146 /* 9147 * If both events generate aux data, they must be on the same PMU 9148 */ 9149 if (has_aux(event) && has_aux(output_event) && 9150 event->pmu != output_event->pmu) 9151 goto out; 9152 9153 set: 9154 mutex_lock(&event->mmap_mutex); 9155 /* Can't redirect output if we've got an active mmap() */ 9156 if (atomic_read(&event->mmap_count)) 9157 goto unlock; 9158 9159 if (output_event) { 9160 /* get the rb we want to redirect to */ 9161 rb = ring_buffer_get(output_event); 9162 if (!rb) 9163 goto unlock; 9164 } 9165 9166 ring_buffer_attach(event, rb); 9167 9168 ret = 0; 9169 unlock: 9170 mutex_unlock(&event->mmap_mutex); 9171 9172 out: 9173 return ret; 9174 } 9175 9176 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9177 { 9178 if (b < a) 9179 swap(a, b); 9180 9181 mutex_lock(a); 9182 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9183 } 9184 9185 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9186 { 9187 bool nmi_safe = false; 9188 9189 switch (clk_id) { 9190 case CLOCK_MONOTONIC: 9191 event->clock = &ktime_get_mono_fast_ns; 9192 nmi_safe = true; 9193 break; 9194 9195 case CLOCK_MONOTONIC_RAW: 9196 event->clock = &ktime_get_raw_fast_ns; 9197 nmi_safe = true; 9198 break; 9199 9200 case CLOCK_REALTIME: 9201 event->clock = &ktime_get_real_ns; 9202 break; 9203 9204 case CLOCK_BOOTTIME: 9205 event->clock = &ktime_get_boot_ns; 9206 break; 9207 9208 case CLOCK_TAI: 9209 event->clock = &ktime_get_tai_ns; 9210 break; 9211 9212 default: 9213 return -EINVAL; 9214 } 9215 9216 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9217 return -EINVAL; 9218 9219 return 0; 9220 } 9221 9222 /** 9223 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9224 * 9225 * @attr_uptr: event_id type attributes for monitoring/sampling 9226 * @pid: target pid 9227 * @cpu: target cpu 9228 * @group_fd: group leader event fd 9229 */ 9230 SYSCALL_DEFINE5(perf_event_open, 9231 struct perf_event_attr __user *, attr_uptr, 9232 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9233 { 9234 struct perf_event *group_leader = NULL, *output_event = NULL; 9235 struct perf_event *event, *sibling; 9236 struct perf_event_attr attr; 9237 struct perf_event_context *ctx, *uninitialized_var(gctx); 9238 struct file *event_file = NULL; 9239 struct fd group = {NULL, 0}; 9240 struct task_struct *task = NULL; 9241 struct pmu *pmu; 9242 int event_fd; 9243 int move_group = 0; 9244 int err; 9245 int f_flags = O_RDWR; 9246 int cgroup_fd = -1; 9247 9248 /* for future expandability... */ 9249 if (flags & ~PERF_FLAG_ALL) 9250 return -EINVAL; 9251 9252 err = perf_copy_attr(attr_uptr, &attr); 9253 if (err) 9254 return err; 9255 9256 if (!attr.exclude_kernel) { 9257 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9258 return -EACCES; 9259 } 9260 9261 if (attr.freq) { 9262 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9263 return -EINVAL; 9264 } else { 9265 if (attr.sample_period & (1ULL << 63)) 9266 return -EINVAL; 9267 } 9268 9269 if (!attr.sample_max_stack) 9270 attr.sample_max_stack = sysctl_perf_event_max_stack; 9271 9272 /* 9273 * In cgroup mode, the pid argument is used to pass the fd 9274 * opened to the cgroup directory in cgroupfs. The cpu argument 9275 * designates the cpu on which to monitor threads from that 9276 * cgroup. 9277 */ 9278 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9279 return -EINVAL; 9280 9281 if (flags & PERF_FLAG_FD_CLOEXEC) 9282 f_flags |= O_CLOEXEC; 9283 9284 event_fd = get_unused_fd_flags(f_flags); 9285 if (event_fd < 0) 9286 return event_fd; 9287 9288 if (group_fd != -1) { 9289 err = perf_fget_light(group_fd, &group); 9290 if (err) 9291 goto err_fd; 9292 group_leader = group.file->private_data; 9293 if (flags & PERF_FLAG_FD_OUTPUT) 9294 output_event = group_leader; 9295 if (flags & PERF_FLAG_FD_NO_GROUP) 9296 group_leader = NULL; 9297 } 9298 9299 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9300 task = find_lively_task_by_vpid(pid); 9301 if (IS_ERR(task)) { 9302 err = PTR_ERR(task); 9303 goto err_group_fd; 9304 } 9305 } 9306 9307 if (task && group_leader && 9308 group_leader->attr.inherit != attr.inherit) { 9309 err = -EINVAL; 9310 goto err_task; 9311 } 9312 9313 get_online_cpus(); 9314 9315 if (task) { 9316 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9317 if (err) 9318 goto err_cpus; 9319 9320 /* 9321 * Reuse ptrace permission checks for now. 9322 * 9323 * We must hold cred_guard_mutex across this and any potential 9324 * perf_install_in_context() call for this new event to 9325 * serialize against exec() altering our credentials (and the 9326 * perf_event_exit_task() that could imply). 9327 */ 9328 err = -EACCES; 9329 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9330 goto err_cred; 9331 } 9332 9333 if (flags & PERF_FLAG_PID_CGROUP) 9334 cgroup_fd = pid; 9335 9336 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9337 NULL, NULL, cgroup_fd); 9338 if (IS_ERR(event)) { 9339 err = PTR_ERR(event); 9340 goto err_cred; 9341 } 9342 9343 if (is_sampling_event(event)) { 9344 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9345 err = -EOPNOTSUPP; 9346 goto err_alloc; 9347 } 9348 } 9349 9350 /* 9351 * Special case software events and allow them to be part of 9352 * any hardware group. 9353 */ 9354 pmu = event->pmu; 9355 9356 if (attr.use_clockid) { 9357 err = perf_event_set_clock(event, attr.clockid); 9358 if (err) 9359 goto err_alloc; 9360 } 9361 9362 if (group_leader && 9363 (is_software_event(event) != is_software_event(group_leader))) { 9364 if (is_software_event(event)) { 9365 /* 9366 * If event and group_leader are not both a software 9367 * event, and event is, then group leader is not. 9368 * 9369 * Allow the addition of software events to !software 9370 * groups, this is safe because software events never 9371 * fail to schedule. 9372 */ 9373 pmu = group_leader->pmu; 9374 } else if (is_software_event(group_leader) && 9375 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 9376 /* 9377 * In case the group is a pure software group, and we 9378 * try to add a hardware event, move the whole group to 9379 * the hardware context. 9380 */ 9381 move_group = 1; 9382 } 9383 } 9384 9385 /* 9386 * Get the target context (task or percpu): 9387 */ 9388 ctx = find_get_context(pmu, task, event); 9389 if (IS_ERR(ctx)) { 9390 err = PTR_ERR(ctx); 9391 goto err_alloc; 9392 } 9393 9394 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9395 err = -EBUSY; 9396 goto err_context; 9397 } 9398 9399 /* 9400 * Look up the group leader (we will attach this event to it): 9401 */ 9402 if (group_leader) { 9403 err = -EINVAL; 9404 9405 /* 9406 * Do not allow a recursive hierarchy (this new sibling 9407 * becoming part of another group-sibling): 9408 */ 9409 if (group_leader->group_leader != group_leader) 9410 goto err_context; 9411 9412 /* All events in a group should have the same clock */ 9413 if (group_leader->clock != event->clock) 9414 goto err_context; 9415 9416 /* 9417 * Do not allow to attach to a group in a different 9418 * task or CPU context: 9419 */ 9420 if (move_group) { 9421 /* 9422 * Make sure we're both on the same task, or both 9423 * per-cpu events. 9424 */ 9425 if (group_leader->ctx->task != ctx->task) 9426 goto err_context; 9427 9428 /* 9429 * Make sure we're both events for the same CPU; 9430 * grouping events for different CPUs is broken; since 9431 * you can never concurrently schedule them anyhow. 9432 */ 9433 if (group_leader->cpu != event->cpu) 9434 goto err_context; 9435 } else { 9436 if (group_leader->ctx != ctx) 9437 goto err_context; 9438 } 9439 9440 /* 9441 * Only a group leader can be exclusive or pinned 9442 */ 9443 if (attr.exclusive || attr.pinned) 9444 goto err_context; 9445 } 9446 9447 if (output_event) { 9448 err = perf_event_set_output(event, output_event); 9449 if (err) 9450 goto err_context; 9451 } 9452 9453 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9454 f_flags); 9455 if (IS_ERR(event_file)) { 9456 err = PTR_ERR(event_file); 9457 event_file = NULL; 9458 goto err_context; 9459 } 9460 9461 if (move_group) { 9462 gctx = group_leader->ctx; 9463 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9464 if (gctx->task == TASK_TOMBSTONE) { 9465 err = -ESRCH; 9466 goto err_locked; 9467 } 9468 } else { 9469 mutex_lock(&ctx->mutex); 9470 } 9471 9472 if (ctx->task == TASK_TOMBSTONE) { 9473 err = -ESRCH; 9474 goto err_locked; 9475 } 9476 9477 if (!perf_event_validate_size(event)) { 9478 err = -E2BIG; 9479 goto err_locked; 9480 } 9481 9482 /* 9483 * Must be under the same ctx::mutex as perf_install_in_context(), 9484 * because we need to serialize with concurrent event creation. 9485 */ 9486 if (!exclusive_event_installable(event, ctx)) { 9487 /* exclusive and group stuff are assumed mutually exclusive */ 9488 WARN_ON_ONCE(move_group); 9489 9490 err = -EBUSY; 9491 goto err_locked; 9492 } 9493 9494 WARN_ON_ONCE(ctx->parent_ctx); 9495 9496 /* 9497 * This is the point on no return; we cannot fail hereafter. This is 9498 * where we start modifying current state. 9499 */ 9500 9501 if (move_group) { 9502 /* 9503 * See perf_event_ctx_lock() for comments on the details 9504 * of swizzling perf_event::ctx. 9505 */ 9506 perf_remove_from_context(group_leader, 0); 9507 9508 list_for_each_entry(sibling, &group_leader->sibling_list, 9509 group_entry) { 9510 perf_remove_from_context(sibling, 0); 9511 put_ctx(gctx); 9512 } 9513 9514 /* 9515 * Wait for everybody to stop referencing the events through 9516 * the old lists, before installing it on new lists. 9517 */ 9518 synchronize_rcu(); 9519 9520 /* 9521 * Install the group siblings before the group leader. 9522 * 9523 * Because a group leader will try and install the entire group 9524 * (through the sibling list, which is still in-tact), we can 9525 * end up with siblings installed in the wrong context. 9526 * 9527 * By installing siblings first we NO-OP because they're not 9528 * reachable through the group lists. 9529 */ 9530 list_for_each_entry(sibling, &group_leader->sibling_list, 9531 group_entry) { 9532 perf_event__state_init(sibling); 9533 perf_install_in_context(ctx, sibling, sibling->cpu); 9534 get_ctx(ctx); 9535 } 9536 9537 /* 9538 * Removing from the context ends up with disabled 9539 * event. What we want here is event in the initial 9540 * startup state, ready to be add into new context. 9541 */ 9542 perf_event__state_init(group_leader); 9543 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9544 get_ctx(ctx); 9545 9546 /* 9547 * Now that all events are installed in @ctx, nothing 9548 * references @gctx anymore, so drop the last reference we have 9549 * on it. 9550 */ 9551 put_ctx(gctx); 9552 } 9553 9554 /* 9555 * Precalculate sample_data sizes; do while holding ctx::mutex such 9556 * that we're serialized against further additions and before 9557 * perf_install_in_context() which is the point the event is active and 9558 * can use these values. 9559 */ 9560 perf_event__header_size(event); 9561 perf_event__id_header_size(event); 9562 9563 event->owner = current; 9564 9565 perf_install_in_context(ctx, event, event->cpu); 9566 perf_unpin_context(ctx); 9567 9568 if (move_group) 9569 mutex_unlock(&gctx->mutex); 9570 mutex_unlock(&ctx->mutex); 9571 9572 if (task) { 9573 mutex_unlock(&task->signal->cred_guard_mutex); 9574 put_task_struct(task); 9575 } 9576 9577 put_online_cpus(); 9578 9579 mutex_lock(¤t->perf_event_mutex); 9580 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9581 mutex_unlock(¤t->perf_event_mutex); 9582 9583 /* 9584 * Drop the reference on the group_event after placing the 9585 * new event on the sibling_list. This ensures destruction 9586 * of the group leader will find the pointer to itself in 9587 * perf_group_detach(). 9588 */ 9589 fdput(group); 9590 fd_install(event_fd, event_file); 9591 return event_fd; 9592 9593 err_locked: 9594 if (move_group) 9595 mutex_unlock(&gctx->mutex); 9596 mutex_unlock(&ctx->mutex); 9597 /* err_file: */ 9598 fput(event_file); 9599 err_context: 9600 perf_unpin_context(ctx); 9601 put_ctx(ctx); 9602 err_alloc: 9603 /* 9604 * If event_file is set, the fput() above will have called ->release() 9605 * and that will take care of freeing the event. 9606 */ 9607 if (!event_file) 9608 free_event(event); 9609 err_cred: 9610 if (task) 9611 mutex_unlock(&task->signal->cred_guard_mutex); 9612 err_cpus: 9613 put_online_cpus(); 9614 err_task: 9615 if (task) 9616 put_task_struct(task); 9617 err_group_fd: 9618 fdput(group); 9619 err_fd: 9620 put_unused_fd(event_fd); 9621 return err; 9622 } 9623 9624 /** 9625 * perf_event_create_kernel_counter 9626 * 9627 * @attr: attributes of the counter to create 9628 * @cpu: cpu in which the counter is bound 9629 * @task: task to profile (NULL for percpu) 9630 */ 9631 struct perf_event * 9632 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9633 struct task_struct *task, 9634 perf_overflow_handler_t overflow_handler, 9635 void *context) 9636 { 9637 struct perf_event_context *ctx; 9638 struct perf_event *event; 9639 int err; 9640 9641 /* 9642 * Get the target context (task or percpu): 9643 */ 9644 9645 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9646 overflow_handler, context, -1); 9647 if (IS_ERR(event)) { 9648 err = PTR_ERR(event); 9649 goto err; 9650 } 9651 9652 /* Mark owner so we could distinguish it from user events. */ 9653 event->owner = TASK_TOMBSTONE; 9654 9655 ctx = find_get_context(event->pmu, task, event); 9656 if (IS_ERR(ctx)) { 9657 err = PTR_ERR(ctx); 9658 goto err_free; 9659 } 9660 9661 WARN_ON_ONCE(ctx->parent_ctx); 9662 mutex_lock(&ctx->mutex); 9663 if (ctx->task == TASK_TOMBSTONE) { 9664 err = -ESRCH; 9665 goto err_unlock; 9666 } 9667 9668 if (!exclusive_event_installable(event, ctx)) { 9669 err = -EBUSY; 9670 goto err_unlock; 9671 } 9672 9673 perf_install_in_context(ctx, event, cpu); 9674 perf_unpin_context(ctx); 9675 mutex_unlock(&ctx->mutex); 9676 9677 return event; 9678 9679 err_unlock: 9680 mutex_unlock(&ctx->mutex); 9681 perf_unpin_context(ctx); 9682 put_ctx(ctx); 9683 err_free: 9684 free_event(event); 9685 err: 9686 return ERR_PTR(err); 9687 } 9688 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9689 9690 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9691 { 9692 struct perf_event_context *src_ctx; 9693 struct perf_event_context *dst_ctx; 9694 struct perf_event *event, *tmp; 9695 LIST_HEAD(events); 9696 9697 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9698 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9699 9700 /* 9701 * See perf_event_ctx_lock() for comments on the details 9702 * of swizzling perf_event::ctx. 9703 */ 9704 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9705 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9706 event_entry) { 9707 perf_remove_from_context(event, 0); 9708 unaccount_event_cpu(event, src_cpu); 9709 put_ctx(src_ctx); 9710 list_add(&event->migrate_entry, &events); 9711 } 9712 9713 /* 9714 * Wait for the events to quiesce before re-instating them. 9715 */ 9716 synchronize_rcu(); 9717 9718 /* 9719 * Re-instate events in 2 passes. 9720 * 9721 * Skip over group leaders and only install siblings on this first 9722 * pass, siblings will not get enabled without a leader, however a 9723 * leader will enable its siblings, even if those are still on the old 9724 * context. 9725 */ 9726 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9727 if (event->group_leader == event) 9728 continue; 9729 9730 list_del(&event->migrate_entry); 9731 if (event->state >= PERF_EVENT_STATE_OFF) 9732 event->state = PERF_EVENT_STATE_INACTIVE; 9733 account_event_cpu(event, dst_cpu); 9734 perf_install_in_context(dst_ctx, event, dst_cpu); 9735 get_ctx(dst_ctx); 9736 } 9737 9738 /* 9739 * Once all the siblings are setup properly, install the group leaders 9740 * to make it go. 9741 */ 9742 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9743 list_del(&event->migrate_entry); 9744 if (event->state >= PERF_EVENT_STATE_OFF) 9745 event->state = PERF_EVENT_STATE_INACTIVE; 9746 account_event_cpu(event, dst_cpu); 9747 perf_install_in_context(dst_ctx, event, dst_cpu); 9748 get_ctx(dst_ctx); 9749 } 9750 mutex_unlock(&dst_ctx->mutex); 9751 mutex_unlock(&src_ctx->mutex); 9752 } 9753 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 9754 9755 static void sync_child_event(struct perf_event *child_event, 9756 struct task_struct *child) 9757 { 9758 struct perf_event *parent_event = child_event->parent; 9759 u64 child_val; 9760 9761 if (child_event->attr.inherit_stat) 9762 perf_event_read_event(child_event, child); 9763 9764 child_val = perf_event_count(child_event); 9765 9766 /* 9767 * Add back the child's count to the parent's count: 9768 */ 9769 atomic64_add(child_val, &parent_event->child_count); 9770 atomic64_add(child_event->total_time_enabled, 9771 &parent_event->child_total_time_enabled); 9772 atomic64_add(child_event->total_time_running, 9773 &parent_event->child_total_time_running); 9774 } 9775 9776 static void 9777 perf_event_exit_event(struct perf_event *child_event, 9778 struct perf_event_context *child_ctx, 9779 struct task_struct *child) 9780 { 9781 struct perf_event *parent_event = child_event->parent; 9782 9783 /* 9784 * Do not destroy the 'original' grouping; because of the context 9785 * switch optimization the original events could've ended up in a 9786 * random child task. 9787 * 9788 * If we were to destroy the original group, all group related 9789 * operations would cease to function properly after this random 9790 * child dies. 9791 * 9792 * Do destroy all inherited groups, we don't care about those 9793 * and being thorough is better. 9794 */ 9795 raw_spin_lock_irq(&child_ctx->lock); 9796 WARN_ON_ONCE(child_ctx->is_active); 9797 9798 if (parent_event) 9799 perf_group_detach(child_event); 9800 list_del_event(child_event, child_ctx); 9801 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 9802 raw_spin_unlock_irq(&child_ctx->lock); 9803 9804 /* 9805 * Parent events are governed by their filedesc, retain them. 9806 */ 9807 if (!parent_event) { 9808 perf_event_wakeup(child_event); 9809 return; 9810 } 9811 /* 9812 * Child events can be cleaned up. 9813 */ 9814 9815 sync_child_event(child_event, child); 9816 9817 /* 9818 * Remove this event from the parent's list 9819 */ 9820 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9821 mutex_lock(&parent_event->child_mutex); 9822 list_del_init(&child_event->child_list); 9823 mutex_unlock(&parent_event->child_mutex); 9824 9825 /* 9826 * Kick perf_poll() for is_event_hup(). 9827 */ 9828 perf_event_wakeup(parent_event); 9829 free_event(child_event); 9830 put_event(parent_event); 9831 } 9832 9833 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 9834 { 9835 struct perf_event_context *child_ctx, *clone_ctx = NULL; 9836 struct perf_event *child_event, *next; 9837 9838 WARN_ON_ONCE(child != current); 9839 9840 child_ctx = perf_pin_task_context(child, ctxn); 9841 if (!child_ctx) 9842 return; 9843 9844 /* 9845 * In order to reduce the amount of tricky in ctx tear-down, we hold 9846 * ctx::mutex over the entire thing. This serializes against almost 9847 * everything that wants to access the ctx. 9848 * 9849 * The exception is sys_perf_event_open() / 9850 * perf_event_create_kernel_count() which does find_get_context() 9851 * without ctx::mutex (it cannot because of the move_group double mutex 9852 * lock thing). See the comments in perf_install_in_context(). 9853 */ 9854 mutex_lock(&child_ctx->mutex); 9855 9856 /* 9857 * In a single ctx::lock section, de-schedule the events and detach the 9858 * context from the task such that we cannot ever get it scheduled back 9859 * in. 9860 */ 9861 raw_spin_lock_irq(&child_ctx->lock); 9862 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 9863 9864 /* 9865 * Now that the context is inactive, destroy the task <-> ctx relation 9866 * and mark the context dead. 9867 */ 9868 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 9869 put_ctx(child_ctx); /* cannot be last */ 9870 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 9871 put_task_struct(current); /* cannot be last */ 9872 9873 clone_ctx = unclone_ctx(child_ctx); 9874 raw_spin_unlock_irq(&child_ctx->lock); 9875 9876 if (clone_ctx) 9877 put_ctx(clone_ctx); 9878 9879 /* 9880 * Report the task dead after unscheduling the events so that we 9881 * won't get any samples after PERF_RECORD_EXIT. We can however still 9882 * get a few PERF_RECORD_READ events. 9883 */ 9884 perf_event_task(child, child_ctx, 0); 9885 9886 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 9887 perf_event_exit_event(child_event, child_ctx, child); 9888 9889 mutex_unlock(&child_ctx->mutex); 9890 9891 put_ctx(child_ctx); 9892 } 9893 9894 /* 9895 * When a child task exits, feed back event values to parent events. 9896 * 9897 * Can be called with cred_guard_mutex held when called from 9898 * install_exec_creds(). 9899 */ 9900 void perf_event_exit_task(struct task_struct *child) 9901 { 9902 struct perf_event *event, *tmp; 9903 int ctxn; 9904 9905 mutex_lock(&child->perf_event_mutex); 9906 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 9907 owner_entry) { 9908 list_del_init(&event->owner_entry); 9909 9910 /* 9911 * Ensure the list deletion is visible before we clear 9912 * the owner, closes a race against perf_release() where 9913 * we need to serialize on the owner->perf_event_mutex. 9914 */ 9915 smp_store_release(&event->owner, NULL); 9916 } 9917 mutex_unlock(&child->perf_event_mutex); 9918 9919 for_each_task_context_nr(ctxn) 9920 perf_event_exit_task_context(child, ctxn); 9921 9922 /* 9923 * The perf_event_exit_task_context calls perf_event_task 9924 * with child's task_ctx, which generates EXIT events for 9925 * child contexts and sets child->perf_event_ctxp[] to NULL. 9926 * At this point we need to send EXIT events to cpu contexts. 9927 */ 9928 perf_event_task(child, NULL, 0); 9929 } 9930 9931 static void perf_free_event(struct perf_event *event, 9932 struct perf_event_context *ctx) 9933 { 9934 struct perf_event *parent = event->parent; 9935 9936 if (WARN_ON_ONCE(!parent)) 9937 return; 9938 9939 mutex_lock(&parent->child_mutex); 9940 list_del_init(&event->child_list); 9941 mutex_unlock(&parent->child_mutex); 9942 9943 put_event(parent); 9944 9945 raw_spin_lock_irq(&ctx->lock); 9946 perf_group_detach(event); 9947 list_del_event(event, ctx); 9948 raw_spin_unlock_irq(&ctx->lock); 9949 free_event(event); 9950 } 9951 9952 /* 9953 * Free an unexposed, unused context as created by inheritance by 9954 * perf_event_init_task below, used by fork() in case of fail. 9955 * 9956 * Not all locks are strictly required, but take them anyway to be nice and 9957 * help out with the lockdep assertions. 9958 */ 9959 void perf_event_free_task(struct task_struct *task) 9960 { 9961 struct perf_event_context *ctx; 9962 struct perf_event *event, *tmp; 9963 int ctxn; 9964 9965 for_each_task_context_nr(ctxn) { 9966 ctx = task->perf_event_ctxp[ctxn]; 9967 if (!ctx) 9968 continue; 9969 9970 mutex_lock(&ctx->mutex); 9971 again: 9972 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 9973 group_entry) 9974 perf_free_event(event, ctx); 9975 9976 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 9977 group_entry) 9978 perf_free_event(event, ctx); 9979 9980 if (!list_empty(&ctx->pinned_groups) || 9981 !list_empty(&ctx->flexible_groups)) 9982 goto again; 9983 9984 mutex_unlock(&ctx->mutex); 9985 9986 put_ctx(ctx); 9987 } 9988 } 9989 9990 void perf_event_delayed_put(struct task_struct *task) 9991 { 9992 int ctxn; 9993 9994 for_each_task_context_nr(ctxn) 9995 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 9996 } 9997 9998 struct file *perf_event_get(unsigned int fd) 9999 { 10000 struct file *file; 10001 10002 file = fget_raw(fd); 10003 if (!file) 10004 return ERR_PTR(-EBADF); 10005 10006 if (file->f_op != &perf_fops) { 10007 fput(file); 10008 return ERR_PTR(-EBADF); 10009 } 10010 10011 return file; 10012 } 10013 10014 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10015 { 10016 if (!event) 10017 return ERR_PTR(-EINVAL); 10018 10019 return &event->attr; 10020 } 10021 10022 /* 10023 * inherit a event from parent task to child task: 10024 */ 10025 static struct perf_event * 10026 inherit_event(struct perf_event *parent_event, 10027 struct task_struct *parent, 10028 struct perf_event_context *parent_ctx, 10029 struct task_struct *child, 10030 struct perf_event *group_leader, 10031 struct perf_event_context *child_ctx) 10032 { 10033 enum perf_event_active_state parent_state = parent_event->state; 10034 struct perf_event *child_event; 10035 unsigned long flags; 10036 10037 /* 10038 * Instead of creating recursive hierarchies of events, 10039 * we link inherited events back to the original parent, 10040 * which has a filp for sure, which we use as the reference 10041 * count: 10042 */ 10043 if (parent_event->parent) 10044 parent_event = parent_event->parent; 10045 10046 child_event = perf_event_alloc(&parent_event->attr, 10047 parent_event->cpu, 10048 child, 10049 group_leader, parent_event, 10050 NULL, NULL, -1); 10051 if (IS_ERR(child_event)) 10052 return child_event; 10053 10054 /* 10055 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10056 * must be under the same lock in order to serialize against 10057 * perf_event_release_kernel(), such that either we must observe 10058 * is_orphaned_event() or they will observe us on the child_list. 10059 */ 10060 mutex_lock(&parent_event->child_mutex); 10061 if (is_orphaned_event(parent_event) || 10062 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10063 mutex_unlock(&parent_event->child_mutex); 10064 free_event(child_event); 10065 return NULL; 10066 } 10067 10068 get_ctx(child_ctx); 10069 10070 /* 10071 * Make the child state follow the state of the parent event, 10072 * not its attr.disabled bit. We hold the parent's mutex, 10073 * so we won't race with perf_event_{en, dis}able_family. 10074 */ 10075 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10076 child_event->state = PERF_EVENT_STATE_INACTIVE; 10077 else 10078 child_event->state = PERF_EVENT_STATE_OFF; 10079 10080 if (parent_event->attr.freq) { 10081 u64 sample_period = parent_event->hw.sample_period; 10082 struct hw_perf_event *hwc = &child_event->hw; 10083 10084 hwc->sample_period = sample_period; 10085 hwc->last_period = sample_period; 10086 10087 local64_set(&hwc->period_left, sample_period); 10088 } 10089 10090 child_event->ctx = child_ctx; 10091 child_event->overflow_handler = parent_event->overflow_handler; 10092 child_event->overflow_handler_context 10093 = parent_event->overflow_handler_context; 10094 10095 /* 10096 * Precalculate sample_data sizes 10097 */ 10098 perf_event__header_size(child_event); 10099 perf_event__id_header_size(child_event); 10100 10101 /* 10102 * Link it up in the child's context: 10103 */ 10104 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10105 add_event_to_ctx(child_event, child_ctx); 10106 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10107 10108 /* 10109 * Link this into the parent event's child list 10110 */ 10111 list_add_tail(&child_event->child_list, &parent_event->child_list); 10112 mutex_unlock(&parent_event->child_mutex); 10113 10114 return child_event; 10115 } 10116 10117 static int inherit_group(struct perf_event *parent_event, 10118 struct task_struct *parent, 10119 struct perf_event_context *parent_ctx, 10120 struct task_struct *child, 10121 struct perf_event_context *child_ctx) 10122 { 10123 struct perf_event *leader; 10124 struct perf_event *sub; 10125 struct perf_event *child_ctr; 10126 10127 leader = inherit_event(parent_event, parent, parent_ctx, 10128 child, NULL, child_ctx); 10129 if (IS_ERR(leader)) 10130 return PTR_ERR(leader); 10131 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10132 child_ctr = inherit_event(sub, parent, parent_ctx, 10133 child, leader, child_ctx); 10134 if (IS_ERR(child_ctr)) 10135 return PTR_ERR(child_ctr); 10136 } 10137 return 0; 10138 } 10139 10140 static int 10141 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10142 struct perf_event_context *parent_ctx, 10143 struct task_struct *child, int ctxn, 10144 int *inherited_all) 10145 { 10146 int ret; 10147 struct perf_event_context *child_ctx; 10148 10149 if (!event->attr.inherit) { 10150 *inherited_all = 0; 10151 return 0; 10152 } 10153 10154 child_ctx = child->perf_event_ctxp[ctxn]; 10155 if (!child_ctx) { 10156 /* 10157 * This is executed from the parent task context, so 10158 * inherit events that have been marked for cloning. 10159 * First allocate and initialize a context for the 10160 * child. 10161 */ 10162 10163 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10164 if (!child_ctx) 10165 return -ENOMEM; 10166 10167 child->perf_event_ctxp[ctxn] = child_ctx; 10168 } 10169 10170 ret = inherit_group(event, parent, parent_ctx, 10171 child, child_ctx); 10172 10173 if (ret) 10174 *inherited_all = 0; 10175 10176 return ret; 10177 } 10178 10179 /* 10180 * Initialize the perf_event context in task_struct 10181 */ 10182 static int perf_event_init_context(struct task_struct *child, int ctxn) 10183 { 10184 struct perf_event_context *child_ctx, *parent_ctx; 10185 struct perf_event_context *cloned_ctx; 10186 struct perf_event *event; 10187 struct task_struct *parent = current; 10188 int inherited_all = 1; 10189 unsigned long flags; 10190 int ret = 0; 10191 10192 if (likely(!parent->perf_event_ctxp[ctxn])) 10193 return 0; 10194 10195 /* 10196 * If the parent's context is a clone, pin it so it won't get 10197 * swapped under us. 10198 */ 10199 parent_ctx = perf_pin_task_context(parent, ctxn); 10200 if (!parent_ctx) 10201 return 0; 10202 10203 /* 10204 * No need to check if parent_ctx != NULL here; since we saw 10205 * it non-NULL earlier, the only reason for it to become NULL 10206 * is if we exit, and since we're currently in the middle of 10207 * a fork we can't be exiting at the same time. 10208 */ 10209 10210 /* 10211 * Lock the parent list. No need to lock the child - not PID 10212 * hashed yet and not running, so nobody can access it. 10213 */ 10214 mutex_lock(&parent_ctx->mutex); 10215 10216 /* 10217 * We dont have to disable NMIs - we are only looking at 10218 * the list, not manipulating it: 10219 */ 10220 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10221 ret = inherit_task_group(event, parent, parent_ctx, 10222 child, ctxn, &inherited_all); 10223 if (ret) 10224 break; 10225 } 10226 10227 /* 10228 * We can't hold ctx->lock when iterating the ->flexible_group list due 10229 * to allocations, but we need to prevent rotation because 10230 * rotate_ctx() will change the list from interrupt context. 10231 */ 10232 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10233 parent_ctx->rotate_disable = 1; 10234 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10235 10236 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10237 ret = inherit_task_group(event, parent, parent_ctx, 10238 child, ctxn, &inherited_all); 10239 if (ret) 10240 break; 10241 } 10242 10243 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10244 parent_ctx->rotate_disable = 0; 10245 10246 child_ctx = child->perf_event_ctxp[ctxn]; 10247 10248 if (child_ctx && inherited_all) { 10249 /* 10250 * Mark the child context as a clone of the parent 10251 * context, or of whatever the parent is a clone of. 10252 * 10253 * Note that if the parent is a clone, the holding of 10254 * parent_ctx->lock avoids it from being uncloned. 10255 */ 10256 cloned_ctx = parent_ctx->parent_ctx; 10257 if (cloned_ctx) { 10258 child_ctx->parent_ctx = cloned_ctx; 10259 child_ctx->parent_gen = parent_ctx->parent_gen; 10260 } else { 10261 child_ctx->parent_ctx = parent_ctx; 10262 child_ctx->parent_gen = parent_ctx->generation; 10263 } 10264 get_ctx(child_ctx->parent_ctx); 10265 } 10266 10267 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10268 mutex_unlock(&parent_ctx->mutex); 10269 10270 perf_unpin_context(parent_ctx); 10271 put_ctx(parent_ctx); 10272 10273 return ret; 10274 } 10275 10276 /* 10277 * Initialize the perf_event context in task_struct 10278 */ 10279 int perf_event_init_task(struct task_struct *child) 10280 { 10281 int ctxn, ret; 10282 10283 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10284 mutex_init(&child->perf_event_mutex); 10285 INIT_LIST_HEAD(&child->perf_event_list); 10286 10287 for_each_task_context_nr(ctxn) { 10288 ret = perf_event_init_context(child, ctxn); 10289 if (ret) { 10290 perf_event_free_task(child); 10291 return ret; 10292 } 10293 } 10294 10295 return 0; 10296 } 10297 10298 static void __init perf_event_init_all_cpus(void) 10299 { 10300 struct swevent_htable *swhash; 10301 int cpu; 10302 10303 for_each_possible_cpu(cpu) { 10304 swhash = &per_cpu(swevent_htable, cpu); 10305 mutex_init(&swhash->hlist_mutex); 10306 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10307 10308 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10309 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10310 } 10311 } 10312 10313 static void perf_event_init_cpu(int cpu) 10314 { 10315 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10316 10317 mutex_lock(&swhash->hlist_mutex); 10318 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10319 struct swevent_hlist *hlist; 10320 10321 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10322 WARN_ON(!hlist); 10323 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10324 } 10325 mutex_unlock(&swhash->hlist_mutex); 10326 } 10327 10328 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10329 static void __perf_event_exit_context(void *__info) 10330 { 10331 struct perf_event_context *ctx = __info; 10332 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10333 struct perf_event *event; 10334 10335 raw_spin_lock(&ctx->lock); 10336 list_for_each_entry(event, &ctx->event_list, event_entry) 10337 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10338 raw_spin_unlock(&ctx->lock); 10339 } 10340 10341 static void perf_event_exit_cpu_context(int cpu) 10342 { 10343 struct perf_event_context *ctx; 10344 struct pmu *pmu; 10345 int idx; 10346 10347 idx = srcu_read_lock(&pmus_srcu); 10348 list_for_each_entry_rcu(pmu, &pmus, entry) { 10349 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10350 10351 mutex_lock(&ctx->mutex); 10352 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10353 mutex_unlock(&ctx->mutex); 10354 } 10355 srcu_read_unlock(&pmus_srcu, idx); 10356 } 10357 10358 static void perf_event_exit_cpu(int cpu) 10359 { 10360 perf_event_exit_cpu_context(cpu); 10361 } 10362 #else 10363 static inline void perf_event_exit_cpu(int cpu) { } 10364 #endif 10365 10366 static int 10367 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10368 { 10369 int cpu; 10370 10371 for_each_online_cpu(cpu) 10372 perf_event_exit_cpu(cpu); 10373 10374 return NOTIFY_OK; 10375 } 10376 10377 /* 10378 * Run the perf reboot notifier at the very last possible moment so that 10379 * the generic watchdog code runs as long as possible. 10380 */ 10381 static struct notifier_block perf_reboot_notifier = { 10382 .notifier_call = perf_reboot, 10383 .priority = INT_MIN, 10384 }; 10385 10386 static int 10387 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 10388 { 10389 unsigned int cpu = (long)hcpu; 10390 10391 switch (action & ~CPU_TASKS_FROZEN) { 10392 10393 case CPU_UP_PREPARE: 10394 /* 10395 * This must be done before the CPU comes alive, because the 10396 * moment we can run tasks we can encounter (software) events. 10397 * 10398 * Specifically, someone can have inherited events on kthreadd 10399 * or a pre-existing worker thread that gets re-bound. 10400 */ 10401 perf_event_init_cpu(cpu); 10402 break; 10403 10404 case CPU_DOWN_PREPARE: 10405 /* 10406 * This must be done before the CPU dies because after that an 10407 * active event might want to IPI the CPU and that'll not work 10408 * so great for dead CPUs. 10409 * 10410 * XXX smp_call_function_single() return -ENXIO without a warn 10411 * so we could possibly deal with this. 10412 * 10413 * This is safe against new events arriving because 10414 * sys_perf_event_open() serializes against hotplug using 10415 * get_online_cpus(). 10416 */ 10417 perf_event_exit_cpu(cpu); 10418 break; 10419 default: 10420 break; 10421 } 10422 10423 return NOTIFY_OK; 10424 } 10425 10426 void __init perf_event_init(void) 10427 { 10428 int ret; 10429 10430 idr_init(&pmu_idr); 10431 10432 perf_event_init_all_cpus(); 10433 init_srcu_struct(&pmus_srcu); 10434 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10435 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10436 perf_pmu_register(&perf_task_clock, NULL, -1); 10437 perf_tp_register(); 10438 perf_cpu_notifier(perf_cpu_notify); 10439 register_reboot_notifier(&perf_reboot_notifier); 10440 10441 ret = init_hw_breakpoint(); 10442 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10443 10444 /* 10445 * Build time assertion that we keep the data_head at the intended 10446 * location. IOW, validation we got the __reserved[] size right. 10447 */ 10448 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10449 != 1024); 10450 } 10451 10452 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10453 char *page) 10454 { 10455 struct perf_pmu_events_attr *pmu_attr = 10456 container_of(attr, struct perf_pmu_events_attr, attr); 10457 10458 if (pmu_attr->event_str) 10459 return sprintf(page, "%s\n", pmu_attr->event_str); 10460 10461 return 0; 10462 } 10463 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10464 10465 static int __init perf_event_sysfs_init(void) 10466 { 10467 struct pmu *pmu; 10468 int ret; 10469 10470 mutex_lock(&pmus_lock); 10471 10472 ret = bus_register(&pmu_bus); 10473 if (ret) 10474 goto unlock; 10475 10476 list_for_each_entry(pmu, &pmus, entry) { 10477 if (!pmu->name || pmu->type < 0) 10478 continue; 10479 10480 ret = pmu_dev_alloc(pmu); 10481 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10482 } 10483 pmu_bus_running = 1; 10484 ret = 0; 10485 10486 unlock: 10487 mutex_unlock(&pmus_lock); 10488 10489 return ret; 10490 } 10491 device_initcall(perf_event_sysfs_init); 10492 10493 #ifdef CONFIG_CGROUP_PERF 10494 static struct cgroup_subsys_state * 10495 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10496 { 10497 struct perf_cgroup *jc; 10498 10499 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10500 if (!jc) 10501 return ERR_PTR(-ENOMEM); 10502 10503 jc->info = alloc_percpu(struct perf_cgroup_info); 10504 if (!jc->info) { 10505 kfree(jc); 10506 return ERR_PTR(-ENOMEM); 10507 } 10508 10509 return &jc->css; 10510 } 10511 10512 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10513 { 10514 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10515 10516 free_percpu(jc->info); 10517 kfree(jc); 10518 } 10519 10520 static int __perf_cgroup_move(void *info) 10521 { 10522 struct task_struct *task = info; 10523 rcu_read_lock(); 10524 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10525 rcu_read_unlock(); 10526 return 0; 10527 } 10528 10529 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10530 { 10531 struct task_struct *task; 10532 struct cgroup_subsys_state *css; 10533 10534 cgroup_taskset_for_each(task, css, tset) 10535 task_function_call(task, __perf_cgroup_move, task); 10536 } 10537 10538 struct cgroup_subsys perf_event_cgrp_subsys = { 10539 .css_alloc = perf_cgroup_css_alloc, 10540 .css_free = perf_cgroup_css_free, 10541 .attach = perf_cgroup_attach, 10542 }; 10543 #endif /* CONFIG_CGROUP_PERF */ 10544