xref: /linux/kernel/events/core.c (revision 5c8166419acf468b5bc3e48f928a040485d3e0c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 /*
678  * UP store-release, load-acquire
679  */
680 
681 #define __store_release(ptr, val)					\
682 do {									\
683 	barrier();							\
684 	WRITE_ONCE(*(ptr), (val));					\
685 } while (0)
686 
687 #define __load_acquire(ptr)						\
688 ({									\
689 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
690 	barrier();							\
691 	___p;								\
692 })
693 
694 #ifdef CONFIG_CGROUP_PERF
695 
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699 	struct perf_event_context *ctx = event->ctx;
700 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701 
702 	/* @event doesn't care about cgroup */
703 	if (!event->cgrp)
704 		return true;
705 
706 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
707 	if (!cpuctx->cgrp)
708 		return false;
709 
710 	/*
711 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
712 	 * also enabled for all its descendant cgroups.  If @cpuctx's
713 	 * cgroup is a descendant of @event's (the test covers identity
714 	 * case), it's a match.
715 	 */
716 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717 				    event->cgrp->css.cgroup);
718 }
719 
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722 	css_put(&event->cgrp->css);
723 	event->cgrp = NULL;
724 }
725 
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728 	return event->cgrp != NULL;
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	struct perf_cgroup_info *t;
734 
735 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
736 	return t->time;
737 }
738 
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741 	struct perf_cgroup_info *t;
742 
743 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
744 	if (!__load_acquire(&t->active))
745 		return t->time;
746 	now += READ_ONCE(t->timeoffset);
747 	return now;
748 }
749 
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752 	if (adv)
753 		info->time += now - info->timestamp;
754 	info->timestamp = now;
755 	/*
756 	 * see update_context_time()
757 	 */
758 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760 
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763 	struct perf_cgroup *cgrp = cpuctx->cgrp;
764 	struct cgroup_subsys_state *css;
765 	struct perf_cgroup_info *info;
766 
767 	if (cgrp) {
768 		u64 now = perf_clock();
769 
770 		for (css = &cgrp->css; css; css = css->parent) {
771 			cgrp = container_of(css, struct perf_cgroup, css);
772 			info = this_cpu_ptr(cgrp->info);
773 
774 			__update_cgrp_time(info, now, true);
775 			if (final)
776 				__store_release(&info->active, 0);
777 		}
778 	}
779 }
780 
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783 	struct perf_cgroup_info *info;
784 	struct perf_cgroup *cgrp;
785 
786 	/*
787 	 * ensure we access cgroup data only when needed and
788 	 * when we know the cgroup is pinned (css_get)
789 	 */
790 	if (!is_cgroup_event(event))
791 		return;
792 
793 	cgrp = perf_cgroup_from_task(current, event->ctx);
794 	/*
795 	 * Do not update time when cgroup is not active
796 	 */
797 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
798 		info = this_cpu_ptr(event->cgrp->info);
799 		__update_cgrp_time(info, perf_clock(), true);
800 	}
801 }
802 
803 static inline void
804 perf_cgroup_set_timestamp(struct task_struct *task,
805 			  struct perf_event_context *ctx)
806 {
807 	struct perf_cgroup *cgrp;
808 	struct perf_cgroup_info *info;
809 	struct cgroup_subsys_state *css;
810 
811 	/*
812 	 * ctx->lock held by caller
813 	 * ensure we do not access cgroup data
814 	 * unless we have the cgroup pinned (css_get)
815 	 */
816 	if (!task || !ctx->nr_cgroups)
817 		return;
818 
819 	cgrp = perf_cgroup_from_task(task, ctx);
820 
821 	for (css = &cgrp->css; css; css = css->parent) {
822 		cgrp = container_of(css, struct perf_cgroup, css);
823 		info = this_cpu_ptr(cgrp->info);
824 		__update_cgrp_time(info, ctx->timestamp, false);
825 		__store_release(&info->active, 1);
826 	}
827 }
828 
829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
830 
831 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
832 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
833 
834 /*
835  * reschedule events based on the cgroup constraint of task.
836  *
837  * mode SWOUT : schedule out everything
838  * mode SWIN : schedule in based on cgroup for next
839  */
840 static void perf_cgroup_switch(struct task_struct *task, int mode)
841 {
842 	struct perf_cpu_context *cpuctx, *tmp;
843 	struct list_head *list;
844 	unsigned long flags;
845 
846 	/*
847 	 * Disable interrupts and preemption to avoid this CPU's
848 	 * cgrp_cpuctx_entry to change under us.
849 	 */
850 	local_irq_save(flags);
851 
852 	list = this_cpu_ptr(&cgrp_cpuctx_list);
853 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
854 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
855 
856 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
857 		perf_pmu_disable(cpuctx->ctx.pmu);
858 
859 		if (mode & PERF_CGROUP_SWOUT) {
860 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
861 			/*
862 			 * must not be done before ctxswout due
863 			 * to event_filter_match() in event_sched_out()
864 			 */
865 			cpuctx->cgrp = NULL;
866 		}
867 
868 		if (mode & PERF_CGROUP_SWIN) {
869 			WARN_ON_ONCE(cpuctx->cgrp);
870 			/*
871 			 * set cgrp before ctxsw in to allow
872 			 * event_filter_match() to not have to pass
873 			 * task around
874 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
875 			 * because cgorup events are only per-cpu
876 			 */
877 			cpuctx->cgrp = perf_cgroup_from_task(task,
878 							     &cpuctx->ctx);
879 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
880 		}
881 		perf_pmu_enable(cpuctx->ctx.pmu);
882 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
883 	}
884 
885 	local_irq_restore(flags);
886 }
887 
888 static inline void perf_cgroup_sched_out(struct task_struct *task,
889 					 struct task_struct *next)
890 {
891 	struct perf_cgroup *cgrp1;
892 	struct perf_cgroup *cgrp2 = NULL;
893 
894 	rcu_read_lock();
895 	/*
896 	 * we come here when we know perf_cgroup_events > 0
897 	 * we do not need to pass the ctx here because we know
898 	 * we are holding the rcu lock
899 	 */
900 	cgrp1 = perf_cgroup_from_task(task, NULL);
901 	cgrp2 = perf_cgroup_from_task(next, NULL);
902 
903 	/*
904 	 * only schedule out current cgroup events if we know
905 	 * that we are switching to a different cgroup. Otherwise,
906 	 * do no touch the cgroup events.
907 	 */
908 	if (cgrp1 != cgrp2)
909 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
910 
911 	rcu_read_unlock();
912 }
913 
914 static inline void perf_cgroup_sched_in(struct task_struct *prev,
915 					struct task_struct *task)
916 {
917 	struct perf_cgroup *cgrp1;
918 	struct perf_cgroup *cgrp2 = NULL;
919 
920 	rcu_read_lock();
921 	/*
922 	 * we come here when we know perf_cgroup_events > 0
923 	 * we do not need to pass the ctx here because we know
924 	 * we are holding the rcu lock
925 	 */
926 	cgrp1 = perf_cgroup_from_task(task, NULL);
927 	cgrp2 = perf_cgroup_from_task(prev, NULL);
928 
929 	/*
930 	 * only need to schedule in cgroup events if we are changing
931 	 * cgroup during ctxsw. Cgroup events were not scheduled
932 	 * out of ctxsw out if that was not the case.
933 	 */
934 	if (cgrp1 != cgrp2)
935 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
936 
937 	rcu_read_unlock();
938 }
939 
940 static int perf_cgroup_ensure_storage(struct perf_event *event,
941 				struct cgroup_subsys_state *css)
942 {
943 	struct perf_cpu_context *cpuctx;
944 	struct perf_event **storage;
945 	int cpu, heap_size, ret = 0;
946 
947 	/*
948 	 * Allow storage to have sufficent space for an iterator for each
949 	 * possibly nested cgroup plus an iterator for events with no cgroup.
950 	 */
951 	for (heap_size = 1; css; css = css->parent)
952 		heap_size++;
953 
954 	for_each_possible_cpu(cpu) {
955 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
956 		if (heap_size <= cpuctx->heap_size)
957 			continue;
958 
959 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
960 				       GFP_KERNEL, cpu_to_node(cpu));
961 		if (!storage) {
962 			ret = -ENOMEM;
963 			break;
964 		}
965 
966 		raw_spin_lock_irq(&cpuctx->ctx.lock);
967 		if (cpuctx->heap_size < heap_size) {
968 			swap(cpuctx->heap, storage);
969 			if (storage == cpuctx->heap_default)
970 				storage = NULL;
971 			cpuctx->heap_size = heap_size;
972 		}
973 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
974 
975 		kfree(storage);
976 	}
977 
978 	return ret;
979 }
980 
981 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
982 				      struct perf_event_attr *attr,
983 				      struct perf_event *group_leader)
984 {
985 	struct perf_cgroup *cgrp;
986 	struct cgroup_subsys_state *css;
987 	struct fd f = fdget(fd);
988 	int ret = 0;
989 
990 	if (!f.file)
991 		return -EBADF;
992 
993 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
994 					 &perf_event_cgrp_subsys);
995 	if (IS_ERR(css)) {
996 		ret = PTR_ERR(css);
997 		goto out;
998 	}
999 
1000 	ret = perf_cgroup_ensure_storage(event, css);
1001 	if (ret)
1002 		goto out;
1003 
1004 	cgrp = container_of(css, struct perf_cgroup, css);
1005 	event->cgrp = cgrp;
1006 
1007 	/*
1008 	 * all events in a group must monitor
1009 	 * the same cgroup because a task belongs
1010 	 * to only one perf cgroup at a time
1011 	 */
1012 	if (group_leader && group_leader->cgrp != cgrp) {
1013 		perf_detach_cgroup(event);
1014 		ret = -EINVAL;
1015 	}
1016 out:
1017 	fdput(f);
1018 	return ret;
1019 }
1020 
1021 static inline void
1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	/*
1030 	 * Because cgroup events are always per-cpu events,
1031 	 * @ctx == &cpuctx->ctx.
1032 	 */
1033 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1034 
1035 	/*
1036 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1037 	 * matching the event's cgroup, we must do this for every new event,
1038 	 * because if the first would mismatch, the second would not try again
1039 	 * and we would leave cpuctx->cgrp unset.
1040 	 */
1041 	if (ctx->is_active && !cpuctx->cgrp) {
1042 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1043 
1044 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1045 			cpuctx->cgrp = cgrp;
1046 	}
1047 
1048 	if (ctx->nr_cgroups++)
1049 		return;
1050 
1051 	list_add(&cpuctx->cgrp_cpuctx_entry,
1052 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1053 }
1054 
1055 static inline void
1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1057 {
1058 	struct perf_cpu_context *cpuctx;
1059 
1060 	if (!is_cgroup_event(event))
1061 		return;
1062 
1063 	/*
1064 	 * Because cgroup events are always per-cpu events,
1065 	 * @ctx == &cpuctx->ctx.
1066 	 */
1067 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1068 
1069 	if (--ctx->nr_cgroups)
1070 		return;
1071 
1072 	if (ctx->is_active && cpuctx->cgrp)
1073 		cpuctx->cgrp = NULL;
1074 
1075 	list_del(&cpuctx->cgrp_cpuctx_entry);
1076 }
1077 
1078 #else /* !CONFIG_CGROUP_PERF */
1079 
1080 static inline bool
1081 perf_cgroup_match(struct perf_event *event)
1082 {
1083 	return true;
1084 }
1085 
1086 static inline void perf_detach_cgroup(struct perf_event *event)
1087 {}
1088 
1089 static inline int is_cgroup_event(struct perf_event *event)
1090 {
1091 	return 0;
1092 }
1093 
1094 static inline void update_cgrp_time_from_event(struct perf_event *event)
1095 {
1096 }
1097 
1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1099 						bool final)
1100 {
1101 }
1102 
1103 static inline void perf_cgroup_sched_out(struct task_struct *task,
1104 					 struct task_struct *next)
1105 {
1106 }
1107 
1108 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1109 					struct task_struct *task)
1110 {
1111 }
1112 
1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114 				      struct perf_event_attr *attr,
1115 				      struct perf_event *group_leader)
1116 {
1117 	return -EINVAL;
1118 }
1119 
1120 static inline void
1121 perf_cgroup_set_timestamp(struct task_struct *task,
1122 			  struct perf_event_context *ctx)
1123 {
1124 }
1125 
1126 static inline void
1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1128 {
1129 }
1130 
1131 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1132 {
1133 	return 0;
1134 }
1135 
1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1137 {
1138 	return 0;
1139 }
1140 
1141 static inline void
1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
1146 static inline void
1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1148 {
1149 }
1150 #endif
1151 
1152 /*
1153  * set default to be dependent on timer tick just
1154  * like original code
1155  */
1156 #define PERF_CPU_HRTIMER (1000 / HZ)
1157 /*
1158  * function must be called with interrupts disabled
1159  */
1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1161 {
1162 	struct perf_cpu_context *cpuctx;
1163 	bool rotations;
1164 
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1168 	rotations = perf_rotate_context(cpuctx);
1169 
1170 	raw_spin_lock(&cpuctx->hrtimer_lock);
1171 	if (rotations)
1172 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1173 	else
1174 		cpuctx->hrtimer_active = 0;
1175 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1176 
1177 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1178 }
1179 
1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1181 {
1182 	struct hrtimer *timer = &cpuctx->hrtimer;
1183 	struct pmu *pmu = cpuctx->ctx.pmu;
1184 	u64 interval;
1185 
1186 	/* no multiplexing needed for SW PMU */
1187 	if (pmu->task_ctx_nr == perf_sw_context)
1188 		return;
1189 
1190 	/*
1191 	 * check default is sane, if not set then force to
1192 	 * default interval (1/tick)
1193 	 */
1194 	interval = pmu->hrtimer_interval_ms;
1195 	if (interval < 1)
1196 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1197 
1198 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1199 
1200 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1201 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1202 	timer->function = perf_mux_hrtimer_handler;
1203 }
1204 
1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1206 {
1207 	struct hrtimer *timer = &cpuctx->hrtimer;
1208 	struct pmu *pmu = cpuctx->ctx.pmu;
1209 	unsigned long flags;
1210 
1211 	/* not for SW PMU */
1212 	if (pmu->task_ctx_nr == perf_sw_context)
1213 		return 0;
1214 
1215 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1216 	if (!cpuctx->hrtimer_active) {
1217 		cpuctx->hrtimer_active = 1;
1218 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1219 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1220 	}
1221 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1222 
1223 	return 0;
1224 }
1225 
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1229 	if (!(*count)++)
1230 		pmu->pmu_disable(pmu);
1231 }
1232 
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1236 	if (!--(*count))
1237 		pmu->pmu_enable(pmu);
1238 }
1239 
1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1241 
1242 /*
1243  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1244  * perf_event_task_tick() are fully serialized because they're strictly cpu
1245  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1246  * disabled, while perf_event_task_tick is called from IRQ context.
1247  */
1248 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1249 {
1250 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1251 
1252 	lockdep_assert_irqs_disabled();
1253 
1254 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1255 
1256 	list_add(&ctx->active_ctx_list, head);
1257 }
1258 
1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1260 {
1261 	lockdep_assert_irqs_disabled();
1262 
1263 	WARN_ON(list_empty(&ctx->active_ctx_list));
1264 
1265 	list_del_init(&ctx->active_ctx_list);
1266 }
1267 
1268 static void get_ctx(struct perf_event_context *ctx)
1269 {
1270 	refcount_inc(&ctx->refcount);
1271 }
1272 
1273 static void *alloc_task_ctx_data(struct pmu *pmu)
1274 {
1275 	if (pmu->task_ctx_cache)
1276 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1277 
1278 	return NULL;
1279 }
1280 
1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1282 {
1283 	if (pmu->task_ctx_cache && task_ctx_data)
1284 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1285 }
1286 
1287 static void free_ctx(struct rcu_head *head)
1288 {
1289 	struct perf_event_context *ctx;
1290 
1291 	ctx = container_of(head, struct perf_event_context, rcu_head);
1292 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1293 	kfree(ctx);
1294 }
1295 
1296 static void put_ctx(struct perf_event_context *ctx)
1297 {
1298 	if (refcount_dec_and_test(&ctx->refcount)) {
1299 		if (ctx->parent_ctx)
1300 			put_ctx(ctx->parent_ctx);
1301 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1302 			put_task_struct(ctx->task);
1303 		call_rcu(&ctx->rcu_head, free_ctx);
1304 	}
1305 }
1306 
1307 /*
1308  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1309  * perf_pmu_migrate_context() we need some magic.
1310  *
1311  * Those places that change perf_event::ctx will hold both
1312  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1313  *
1314  * Lock ordering is by mutex address. There are two other sites where
1315  * perf_event_context::mutex nests and those are:
1316  *
1317  *  - perf_event_exit_task_context()	[ child , 0 ]
1318  *      perf_event_exit_event()
1319  *        put_event()			[ parent, 1 ]
1320  *
1321  *  - perf_event_init_context()		[ parent, 0 ]
1322  *      inherit_task_group()
1323  *        inherit_group()
1324  *          inherit_event()
1325  *            perf_event_alloc()
1326  *              perf_init_event()
1327  *                perf_try_init_event()	[ child , 1 ]
1328  *
1329  * While it appears there is an obvious deadlock here -- the parent and child
1330  * nesting levels are inverted between the two. This is in fact safe because
1331  * life-time rules separate them. That is an exiting task cannot fork, and a
1332  * spawning task cannot (yet) exit.
1333  *
1334  * But remember that these are parent<->child context relations, and
1335  * migration does not affect children, therefore these two orderings should not
1336  * interact.
1337  *
1338  * The change in perf_event::ctx does not affect children (as claimed above)
1339  * because the sys_perf_event_open() case will install a new event and break
1340  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1341  * concerned with cpuctx and that doesn't have children.
1342  *
1343  * The places that change perf_event::ctx will issue:
1344  *
1345  *   perf_remove_from_context();
1346  *   synchronize_rcu();
1347  *   perf_install_in_context();
1348  *
1349  * to affect the change. The remove_from_context() + synchronize_rcu() should
1350  * quiesce the event, after which we can install it in the new location. This
1351  * means that only external vectors (perf_fops, prctl) can perturb the event
1352  * while in transit. Therefore all such accessors should also acquire
1353  * perf_event_context::mutex to serialize against this.
1354  *
1355  * However; because event->ctx can change while we're waiting to acquire
1356  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1357  * function.
1358  *
1359  * Lock order:
1360  *    exec_update_lock
1361  *	task_struct::perf_event_mutex
1362  *	  perf_event_context::mutex
1363  *	    perf_event::child_mutex;
1364  *	      perf_event_context::lock
1365  *	    perf_event::mmap_mutex
1366  *	    mmap_lock
1367  *	      perf_addr_filters_head::lock
1368  *
1369  *    cpu_hotplug_lock
1370  *      pmus_lock
1371  *	  cpuctx->mutex / perf_event_context::mutex
1372  */
1373 static struct perf_event_context *
1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1375 {
1376 	struct perf_event_context *ctx;
1377 
1378 again:
1379 	rcu_read_lock();
1380 	ctx = READ_ONCE(event->ctx);
1381 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1382 		rcu_read_unlock();
1383 		goto again;
1384 	}
1385 	rcu_read_unlock();
1386 
1387 	mutex_lock_nested(&ctx->mutex, nesting);
1388 	if (event->ctx != ctx) {
1389 		mutex_unlock(&ctx->mutex);
1390 		put_ctx(ctx);
1391 		goto again;
1392 	}
1393 
1394 	return ctx;
1395 }
1396 
1397 static inline struct perf_event_context *
1398 perf_event_ctx_lock(struct perf_event *event)
1399 {
1400 	return perf_event_ctx_lock_nested(event, 0);
1401 }
1402 
1403 static void perf_event_ctx_unlock(struct perf_event *event,
1404 				  struct perf_event_context *ctx)
1405 {
1406 	mutex_unlock(&ctx->mutex);
1407 	put_ctx(ctx);
1408 }
1409 
1410 /*
1411  * This must be done under the ctx->lock, such as to serialize against
1412  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1413  * calling scheduler related locks and ctx->lock nests inside those.
1414  */
1415 static __must_check struct perf_event_context *
1416 unclone_ctx(struct perf_event_context *ctx)
1417 {
1418 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1419 
1420 	lockdep_assert_held(&ctx->lock);
1421 
1422 	if (parent_ctx)
1423 		ctx->parent_ctx = NULL;
1424 	ctx->generation++;
1425 
1426 	return parent_ctx;
1427 }
1428 
1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1430 				enum pid_type type)
1431 {
1432 	u32 nr;
1433 	/*
1434 	 * only top level events have the pid namespace they were created in
1435 	 */
1436 	if (event->parent)
1437 		event = event->parent;
1438 
1439 	nr = __task_pid_nr_ns(p, type, event->ns);
1440 	/* avoid -1 if it is idle thread or runs in another ns */
1441 	if (!nr && !pid_alive(p))
1442 		nr = -1;
1443 	return nr;
1444 }
1445 
1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1447 {
1448 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1449 }
1450 
1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1452 {
1453 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1454 }
1455 
1456 /*
1457  * If we inherit events we want to return the parent event id
1458  * to userspace.
1459  */
1460 static u64 primary_event_id(struct perf_event *event)
1461 {
1462 	u64 id = event->id;
1463 
1464 	if (event->parent)
1465 		id = event->parent->id;
1466 
1467 	return id;
1468 }
1469 
1470 /*
1471  * Get the perf_event_context for a task and lock it.
1472  *
1473  * This has to cope with the fact that until it is locked,
1474  * the context could get moved to another task.
1475  */
1476 static struct perf_event_context *
1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1478 {
1479 	struct perf_event_context *ctx;
1480 
1481 retry:
1482 	/*
1483 	 * One of the few rules of preemptible RCU is that one cannot do
1484 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1485 	 * part of the read side critical section was irqs-enabled -- see
1486 	 * rcu_read_unlock_special().
1487 	 *
1488 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1489 	 * side critical section has interrupts disabled.
1490 	 */
1491 	local_irq_save(*flags);
1492 	rcu_read_lock();
1493 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1494 	if (ctx) {
1495 		/*
1496 		 * If this context is a clone of another, it might
1497 		 * get swapped for another underneath us by
1498 		 * perf_event_task_sched_out, though the
1499 		 * rcu_read_lock() protects us from any context
1500 		 * getting freed.  Lock the context and check if it
1501 		 * got swapped before we could get the lock, and retry
1502 		 * if so.  If we locked the right context, then it
1503 		 * can't get swapped on us any more.
1504 		 */
1505 		raw_spin_lock(&ctx->lock);
1506 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1507 			raw_spin_unlock(&ctx->lock);
1508 			rcu_read_unlock();
1509 			local_irq_restore(*flags);
1510 			goto retry;
1511 		}
1512 
1513 		if (ctx->task == TASK_TOMBSTONE ||
1514 		    !refcount_inc_not_zero(&ctx->refcount)) {
1515 			raw_spin_unlock(&ctx->lock);
1516 			ctx = NULL;
1517 		} else {
1518 			WARN_ON_ONCE(ctx->task != task);
1519 		}
1520 	}
1521 	rcu_read_unlock();
1522 	if (!ctx)
1523 		local_irq_restore(*flags);
1524 	return ctx;
1525 }
1526 
1527 /*
1528  * Get the context for a task and increment its pin_count so it
1529  * can't get swapped to another task.  This also increments its
1530  * reference count so that the context can't get freed.
1531  */
1532 static struct perf_event_context *
1533 perf_pin_task_context(struct task_struct *task, int ctxn)
1534 {
1535 	struct perf_event_context *ctx;
1536 	unsigned long flags;
1537 
1538 	ctx = perf_lock_task_context(task, ctxn, &flags);
1539 	if (ctx) {
1540 		++ctx->pin_count;
1541 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1542 	}
1543 	return ctx;
1544 }
1545 
1546 static void perf_unpin_context(struct perf_event_context *ctx)
1547 {
1548 	unsigned long flags;
1549 
1550 	raw_spin_lock_irqsave(&ctx->lock, flags);
1551 	--ctx->pin_count;
1552 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1553 }
1554 
1555 /*
1556  * Update the record of the current time in a context.
1557  */
1558 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1559 {
1560 	u64 now = perf_clock();
1561 
1562 	if (adv)
1563 		ctx->time += now - ctx->timestamp;
1564 	ctx->timestamp = now;
1565 
1566 	/*
1567 	 * The above: time' = time + (now - timestamp), can be re-arranged
1568 	 * into: time` = now + (time - timestamp), which gives a single value
1569 	 * offset to compute future time without locks on.
1570 	 *
1571 	 * See perf_event_time_now(), which can be used from NMI context where
1572 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1573 	 * both the above values in a consistent manner.
1574 	 */
1575 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1576 }
1577 
1578 static void update_context_time(struct perf_event_context *ctx)
1579 {
1580 	__update_context_time(ctx, true);
1581 }
1582 
1583 static u64 perf_event_time(struct perf_event *event)
1584 {
1585 	struct perf_event_context *ctx = event->ctx;
1586 
1587 	if (unlikely(!ctx))
1588 		return 0;
1589 
1590 	if (is_cgroup_event(event))
1591 		return perf_cgroup_event_time(event);
1592 
1593 	return ctx->time;
1594 }
1595 
1596 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1597 {
1598 	struct perf_event_context *ctx = event->ctx;
1599 
1600 	if (unlikely(!ctx))
1601 		return 0;
1602 
1603 	if (is_cgroup_event(event))
1604 		return perf_cgroup_event_time_now(event, now);
1605 
1606 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1607 		return ctx->time;
1608 
1609 	now += READ_ONCE(ctx->timeoffset);
1610 	return now;
1611 }
1612 
1613 static enum event_type_t get_event_type(struct perf_event *event)
1614 {
1615 	struct perf_event_context *ctx = event->ctx;
1616 	enum event_type_t event_type;
1617 
1618 	lockdep_assert_held(&ctx->lock);
1619 
1620 	/*
1621 	 * It's 'group type', really, because if our group leader is
1622 	 * pinned, so are we.
1623 	 */
1624 	if (event->group_leader != event)
1625 		event = event->group_leader;
1626 
1627 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1628 	if (!ctx->task)
1629 		event_type |= EVENT_CPU;
1630 
1631 	return event_type;
1632 }
1633 
1634 /*
1635  * Helper function to initialize event group nodes.
1636  */
1637 static void init_event_group(struct perf_event *event)
1638 {
1639 	RB_CLEAR_NODE(&event->group_node);
1640 	event->group_index = 0;
1641 }
1642 
1643 /*
1644  * Extract pinned or flexible groups from the context
1645  * based on event attrs bits.
1646  */
1647 static struct perf_event_groups *
1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650 	if (event->attr.pinned)
1651 		return &ctx->pinned_groups;
1652 	else
1653 		return &ctx->flexible_groups;
1654 }
1655 
1656 /*
1657  * Helper function to initializes perf_event_group trees.
1658  */
1659 static void perf_event_groups_init(struct perf_event_groups *groups)
1660 {
1661 	groups->tree = RB_ROOT;
1662 	groups->index = 0;
1663 }
1664 
1665 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1666 {
1667 	struct cgroup *cgroup = NULL;
1668 
1669 #ifdef CONFIG_CGROUP_PERF
1670 	if (event->cgrp)
1671 		cgroup = event->cgrp->css.cgroup;
1672 #endif
1673 
1674 	return cgroup;
1675 }
1676 
1677 /*
1678  * Compare function for event groups;
1679  *
1680  * Implements complex key that first sorts by CPU and then by virtual index
1681  * which provides ordering when rotating groups for the same CPU.
1682  */
1683 static __always_inline int
1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1685 		      const u64 left_group_index, const struct perf_event *right)
1686 {
1687 	if (left_cpu < right->cpu)
1688 		return -1;
1689 	if (left_cpu > right->cpu)
1690 		return 1;
1691 
1692 #ifdef CONFIG_CGROUP_PERF
1693 	{
1694 		const struct cgroup *right_cgroup = event_cgroup(right);
1695 
1696 		if (left_cgroup != right_cgroup) {
1697 			if (!left_cgroup) {
1698 				/*
1699 				 * Left has no cgroup but right does, no
1700 				 * cgroups come first.
1701 				 */
1702 				return -1;
1703 			}
1704 			if (!right_cgroup) {
1705 				/*
1706 				 * Right has no cgroup but left does, no
1707 				 * cgroups come first.
1708 				 */
1709 				return 1;
1710 			}
1711 			/* Two dissimilar cgroups, order by id. */
1712 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1713 				return -1;
1714 
1715 			return 1;
1716 		}
1717 	}
1718 #endif
1719 
1720 	if (left_group_index < right->group_index)
1721 		return -1;
1722 	if (left_group_index > right->group_index)
1723 		return 1;
1724 
1725 	return 0;
1726 }
1727 
1728 #define __node_2_pe(node) \
1729 	rb_entry((node), struct perf_event, group_node)
1730 
1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1732 {
1733 	struct perf_event *e = __node_2_pe(a);
1734 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1735 				     __node_2_pe(b)) < 0;
1736 }
1737 
1738 struct __group_key {
1739 	int cpu;
1740 	struct cgroup *cgroup;
1741 };
1742 
1743 static inline int __group_cmp(const void *key, const struct rb_node *node)
1744 {
1745 	const struct __group_key *a = key;
1746 	const struct perf_event *b = __node_2_pe(node);
1747 
1748 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1749 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1750 }
1751 
1752 /*
1753  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1754  * key (see perf_event_groups_less). This places it last inside the CPU
1755  * subtree.
1756  */
1757 static void
1758 perf_event_groups_insert(struct perf_event_groups *groups,
1759 			 struct perf_event *event)
1760 {
1761 	event->group_index = ++groups->index;
1762 
1763 	rb_add(&event->group_node, &groups->tree, __group_less);
1764 }
1765 
1766 /*
1767  * Helper function to insert event into the pinned or flexible groups.
1768  */
1769 static void
1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1771 {
1772 	struct perf_event_groups *groups;
1773 
1774 	groups = get_event_groups(event, ctx);
1775 	perf_event_groups_insert(groups, event);
1776 }
1777 
1778 /*
1779  * Delete a group from a tree.
1780  */
1781 static void
1782 perf_event_groups_delete(struct perf_event_groups *groups,
1783 			 struct perf_event *event)
1784 {
1785 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1786 		     RB_EMPTY_ROOT(&groups->tree));
1787 
1788 	rb_erase(&event->group_node, &groups->tree);
1789 	init_event_group(event);
1790 }
1791 
1792 /*
1793  * Helper function to delete event from its groups.
1794  */
1795 static void
1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1797 {
1798 	struct perf_event_groups *groups;
1799 
1800 	groups = get_event_groups(event, ctx);
1801 	perf_event_groups_delete(groups, event);
1802 }
1803 
1804 /*
1805  * Get the leftmost event in the cpu/cgroup subtree.
1806  */
1807 static struct perf_event *
1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1809 			struct cgroup *cgrp)
1810 {
1811 	struct __group_key key = {
1812 		.cpu = cpu,
1813 		.cgroup = cgrp,
1814 	};
1815 	struct rb_node *node;
1816 
1817 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1818 	if (node)
1819 		return __node_2_pe(node);
1820 
1821 	return NULL;
1822 }
1823 
1824 /*
1825  * Like rb_entry_next_safe() for the @cpu subtree.
1826  */
1827 static struct perf_event *
1828 perf_event_groups_next(struct perf_event *event)
1829 {
1830 	struct __group_key key = {
1831 		.cpu = event->cpu,
1832 		.cgroup = event_cgroup(event),
1833 	};
1834 	struct rb_node *next;
1835 
1836 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1837 	if (next)
1838 		return __node_2_pe(next);
1839 
1840 	return NULL;
1841 }
1842 
1843 /*
1844  * Iterate through the whole groups tree.
1845  */
1846 #define perf_event_groups_for_each(event, groups)			\
1847 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1848 				typeof(*event), group_node); event;	\
1849 		event = rb_entry_safe(rb_next(&event->group_node),	\
1850 				typeof(*event), group_node))
1851 
1852 /*
1853  * Add an event from the lists for its context.
1854  * Must be called with ctx->mutex and ctx->lock held.
1855  */
1856 static void
1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1858 {
1859 	lockdep_assert_held(&ctx->lock);
1860 
1861 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1862 	event->attach_state |= PERF_ATTACH_CONTEXT;
1863 
1864 	event->tstamp = perf_event_time(event);
1865 
1866 	/*
1867 	 * If we're a stand alone event or group leader, we go to the context
1868 	 * list, group events are kept attached to the group so that
1869 	 * perf_group_detach can, at all times, locate all siblings.
1870 	 */
1871 	if (event->group_leader == event) {
1872 		event->group_caps = event->event_caps;
1873 		add_event_to_groups(event, ctx);
1874 	}
1875 
1876 	list_add_rcu(&event->event_entry, &ctx->event_list);
1877 	ctx->nr_events++;
1878 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1879 		ctx->nr_user++;
1880 	if (event->attr.inherit_stat)
1881 		ctx->nr_stat++;
1882 
1883 	if (event->state > PERF_EVENT_STATE_OFF)
1884 		perf_cgroup_event_enable(event, ctx);
1885 
1886 	ctx->generation++;
1887 }
1888 
1889 /*
1890  * Initialize event state based on the perf_event_attr::disabled.
1891  */
1892 static inline void perf_event__state_init(struct perf_event *event)
1893 {
1894 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1895 					      PERF_EVENT_STATE_INACTIVE;
1896 }
1897 
1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1899 {
1900 	int entry = sizeof(u64); /* value */
1901 	int size = 0;
1902 	int nr = 1;
1903 
1904 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1905 		size += sizeof(u64);
1906 
1907 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1908 		size += sizeof(u64);
1909 
1910 	if (event->attr.read_format & PERF_FORMAT_ID)
1911 		entry += sizeof(u64);
1912 
1913 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1914 		nr += nr_siblings;
1915 		size += sizeof(u64);
1916 	}
1917 
1918 	size += entry * nr;
1919 	event->read_size = size;
1920 }
1921 
1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1923 {
1924 	struct perf_sample_data *data;
1925 	u16 size = 0;
1926 
1927 	if (sample_type & PERF_SAMPLE_IP)
1928 		size += sizeof(data->ip);
1929 
1930 	if (sample_type & PERF_SAMPLE_ADDR)
1931 		size += sizeof(data->addr);
1932 
1933 	if (sample_type & PERF_SAMPLE_PERIOD)
1934 		size += sizeof(data->period);
1935 
1936 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1937 		size += sizeof(data->weight.full);
1938 
1939 	if (sample_type & PERF_SAMPLE_READ)
1940 		size += event->read_size;
1941 
1942 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1943 		size += sizeof(data->data_src.val);
1944 
1945 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1946 		size += sizeof(data->txn);
1947 
1948 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1949 		size += sizeof(data->phys_addr);
1950 
1951 	if (sample_type & PERF_SAMPLE_CGROUP)
1952 		size += sizeof(data->cgroup);
1953 
1954 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1955 		size += sizeof(data->data_page_size);
1956 
1957 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1958 		size += sizeof(data->code_page_size);
1959 
1960 	event->header_size = size;
1961 }
1962 
1963 /*
1964  * Called at perf_event creation and when events are attached/detached from a
1965  * group.
1966  */
1967 static void perf_event__header_size(struct perf_event *event)
1968 {
1969 	__perf_event_read_size(event,
1970 			       event->group_leader->nr_siblings);
1971 	__perf_event_header_size(event, event->attr.sample_type);
1972 }
1973 
1974 static void perf_event__id_header_size(struct perf_event *event)
1975 {
1976 	struct perf_sample_data *data;
1977 	u64 sample_type = event->attr.sample_type;
1978 	u16 size = 0;
1979 
1980 	if (sample_type & PERF_SAMPLE_TID)
1981 		size += sizeof(data->tid_entry);
1982 
1983 	if (sample_type & PERF_SAMPLE_TIME)
1984 		size += sizeof(data->time);
1985 
1986 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1987 		size += sizeof(data->id);
1988 
1989 	if (sample_type & PERF_SAMPLE_ID)
1990 		size += sizeof(data->id);
1991 
1992 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1993 		size += sizeof(data->stream_id);
1994 
1995 	if (sample_type & PERF_SAMPLE_CPU)
1996 		size += sizeof(data->cpu_entry);
1997 
1998 	event->id_header_size = size;
1999 }
2000 
2001 static bool perf_event_validate_size(struct perf_event *event)
2002 {
2003 	/*
2004 	 * The values computed here will be over-written when we actually
2005 	 * attach the event.
2006 	 */
2007 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
2008 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
2009 	perf_event__id_header_size(event);
2010 
2011 	/*
2012 	 * Sum the lot; should not exceed the 64k limit we have on records.
2013 	 * Conservative limit to allow for callchains and other variable fields.
2014 	 */
2015 	if (event->read_size + event->header_size +
2016 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
2017 		return false;
2018 
2019 	return true;
2020 }
2021 
2022 static void perf_group_attach(struct perf_event *event)
2023 {
2024 	struct perf_event *group_leader = event->group_leader, *pos;
2025 
2026 	lockdep_assert_held(&event->ctx->lock);
2027 
2028 	/*
2029 	 * We can have double attach due to group movement in perf_event_open.
2030 	 */
2031 	if (event->attach_state & PERF_ATTACH_GROUP)
2032 		return;
2033 
2034 	event->attach_state |= PERF_ATTACH_GROUP;
2035 
2036 	if (group_leader == event)
2037 		return;
2038 
2039 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2040 
2041 	group_leader->group_caps &= event->event_caps;
2042 
2043 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2044 	group_leader->nr_siblings++;
2045 
2046 	perf_event__header_size(group_leader);
2047 
2048 	for_each_sibling_event(pos, group_leader)
2049 		perf_event__header_size(pos);
2050 }
2051 
2052 /*
2053  * Remove an event from the lists for its context.
2054  * Must be called with ctx->mutex and ctx->lock held.
2055  */
2056 static void
2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2058 {
2059 	WARN_ON_ONCE(event->ctx != ctx);
2060 	lockdep_assert_held(&ctx->lock);
2061 
2062 	/*
2063 	 * We can have double detach due to exit/hot-unplug + close.
2064 	 */
2065 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2066 		return;
2067 
2068 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2069 
2070 	ctx->nr_events--;
2071 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2072 		ctx->nr_user--;
2073 	if (event->attr.inherit_stat)
2074 		ctx->nr_stat--;
2075 
2076 	list_del_rcu(&event->event_entry);
2077 
2078 	if (event->group_leader == event)
2079 		del_event_from_groups(event, ctx);
2080 
2081 	/*
2082 	 * If event was in error state, then keep it
2083 	 * that way, otherwise bogus counts will be
2084 	 * returned on read(). The only way to get out
2085 	 * of error state is by explicit re-enabling
2086 	 * of the event
2087 	 */
2088 	if (event->state > PERF_EVENT_STATE_OFF) {
2089 		perf_cgroup_event_disable(event, ctx);
2090 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2091 	}
2092 
2093 	ctx->generation++;
2094 }
2095 
2096 static int
2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2098 {
2099 	if (!has_aux(aux_event))
2100 		return 0;
2101 
2102 	if (!event->pmu->aux_output_match)
2103 		return 0;
2104 
2105 	return event->pmu->aux_output_match(aux_event);
2106 }
2107 
2108 static void put_event(struct perf_event *event);
2109 static void event_sched_out(struct perf_event *event,
2110 			    struct perf_cpu_context *cpuctx,
2111 			    struct perf_event_context *ctx);
2112 
2113 static void perf_put_aux_event(struct perf_event *event)
2114 {
2115 	struct perf_event_context *ctx = event->ctx;
2116 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2117 	struct perf_event *iter;
2118 
2119 	/*
2120 	 * If event uses aux_event tear down the link
2121 	 */
2122 	if (event->aux_event) {
2123 		iter = event->aux_event;
2124 		event->aux_event = NULL;
2125 		put_event(iter);
2126 		return;
2127 	}
2128 
2129 	/*
2130 	 * If the event is an aux_event, tear down all links to
2131 	 * it from other events.
2132 	 */
2133 	for_each_sibling_event(iter, event->group_leader) {
2134 		if (iter->aux_event != event)
2135 			continue;
2136 
2137 		iter->aux_event = NULL;
2138 		put_event(event);
2139 
2140 		/*
2141 		 * If it's ACTIVE, schedule it out and put it into ERROR
2142 		 * state so that we don't try to schedule it again. Note
2143 		 * that perf_event_enable() will clear the ERROR status.
2144 		 */
2145 		event_sched_out(iter, cpuctx, ctx);
2146 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2147 	}
2148 }
2149 
2150 static bool perf_need_aux_event(struct perf_event *event)
2151 {
2152 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2153 }
2154 
2155 static int perf_get_aux_event(struct perf_event *event,
2156 			      struct perf_event *group_leader)
2157 {
2158 	/*
2159 	 * Our group leader must be an aux event if we want to be
2160 	 * an aux_output. This way, the aux event will precede its
2161 	 * aux_output events in the group, and therefore will always
2162 	 * schedule first.
2163 	 */
2164 	if (!group_leader)
2165 		return 0;
2166 
2167 	/*
2168 	 * aux_output and aux_sample_size are mutually exclusive.
2169 	 */
2170 	if (event->attr.aux_output && event->attr.aux_sample_size)
2171 		return 0;
2172 
2173 	if (event->attr.aux_output &&
2174 	    !perf_aux_output_match(event, group_leader))
2175 		return 0;
2176 
2177 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2178 		return 0;
2179 
2180 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2181 		return 0;
2182 
2183 	/*
2184 	 * Link aux_outputs to their aux event; this is undone in
2185 	 * perf_group_detach() by perf_put_aux_event(). When the
2186 	 * group in torn down, the aux_output events loose their
2187 	 * link to the aux_event and can't schedule any more.
2188 	 */
2189 	event->aux_event = group_leader;
2190 
2191 	return 1;
2192 }
2193 
2194 static inline struct list_head *get_event_list(struct perf_event *event)
2195 {
2196 	struct perf_event_context *ctx = event->ctx;
2197 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2198 }
2199 
2200 /*
2201  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2202  * cannot exist on their own, schedule them out and move them into the ERROR
2203  * state. Also see _perf_event_enable(), it will not be able to recover
2204  * this ERROR state.
2205  */
2206 static inline void perf_remove_sibling_event(struct perf_event *event)
2207 {
2208 	struct perf_event_context *ctx = event->ctx;
2209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 
2211 	event_sched_out(event, cpuctx, ctx);
2212 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2213 }
2214 
2215 static void perf_group_detach(struct perf_event *event)
2216 {
2217 	struct perf_event *leader = event->group_leader;
2218 	struct perf_event *sibling, *tmp;
2219 	struct perf_event_context *ctx = event->ctx;
2220 
2221 	lockdep_assert_held(&ctx->lock);
2222 
2223 	/*
2224 	 * We can have double detach due to exit/hot-unplug + close.
2225 	 */
2226 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2227 		return;
2228 
2229 	event->attach_state &= ~PERF_ATTACH_GROUP;
2230 
2231 	perf_put_aux_event(event);
2232 
2233 	/*
2234 	 * If this is a sibling, remove it from its group.
2235 	 */
2236 	if (leader != event) {
2237 		list_del_init(&event->sibling_list);
2238 		event->group_leader->nr_siblings--;
2239 		goto out;
2240 	}
2241 
2242 	/*
2243 	 * If this was a group event with sibling events then
2244 	 * upgrade the siblings to singleton events by adding them
2245 	 * to whatever list we are on.
2246 	 */
2247 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2248 
2249 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2250 			perf_remove_sibling_event(sibling);
2251 
2252 		sibling->group_leader = sibling;
2253 		list_del_init(&sibling->sibling_list);
2254 
2255 		/* Inherit group flags from the previous leader */
2256 		sibling->group_caps = event->group_caps;
2257 
2258 		if (!RB_EMPTY_NODE(&event->group_node)) {
2259 			add_event_to_groups(sibling, event->ctx);
2260 
2261 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2262 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2263 		}
2264 
2265 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2266 	}
2267 
2268 out:
2269 	for_each_sibling_event(tmp, leader)
2270 		perf_event__header_size(tmp);
2271 
2272 	perf_event__header_size(leader);
2273 }
2274 
2275 static void sync_child_event(struct perf_event *child_event);
2276 
2277 static void perf_child_detach(struct perf_event *event)
2278 {
2279 	struct perf_event *parent_event = event->parent;
2280 
2281 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2282 		return;
2283 
2284 	event->attach_state &= ~PERF_ATTACH_CHILD;
2285 
2286 	if (WARN_ON_ONCE(!parent_event))
2287 		return;
2288 
2289 	lockdep_assert_held(&parent_event->child_mutex);
2290 
2291 	sync_child_event(event);
2292 	list_del_init(&event->child_list);
2293 }
2294 
2295 static bool is_orphaned_event(struct perf_event *event)
2296 {
2297 	return event->state == PERF_EVENT_STATE_DEAD;
2298 }
2299 
2300 static inline int __pmu_filter_match(struct perf_event *event)
2301 {
2302 	struct pmu *pmu = event->pmu;
2303 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2304 }
2305 
2306 /*
2307  * Check whether we should attempt to schedule an event group based on
2308  * PMU-specific filtering. An event group can consist of HW and SW events,
2309  * potentially with a SW leader, so we must check all the filters, to
2310  * determine whether a group is schedulable:
2311  */
2312 static inline int pmu_filter_match(struct perf_event *event)
2313 {
2314 	struct perf_event *sibling;
2315 
2316 	if (!__pmu_filter_match(event))
2317 		return 0;
2318 
2319 	for_each_sibling_event(sibling, event) {
2320 		if (!__pmu_filter_match(sibling))
2321 			return 0;
2322 	}
2323 
2324 	return 1;
2325 }
2326 
2327 static inline int
2328 event_filter_match(struct perf_event *event)
2329 {
2330 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2331 	       perf_cgroup_match(event) && pmu_filter_match(event);
2332 }
2333 
2334 static void
2335 event_sched_out(struct perf_event *event,
2336 		  struct perf_cpu_context *cpuctx,
2337 		  struct perf_event_context *ctx)
2338 {
2339 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2340 
2341 	WARN_ON_ONCE(event->ctx != ctx);
2342 	lockdep_assert_held(&ctx->lock);
2343 
2344 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2345 		return;
2346 
2347 	/*
2348 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2349 	 * we can schedule events _OUT_ individually through things like
2350 	 * __perf_remove_from_context().
2351 	 */
2352 	list_del_init(&event->active_list);
2353 
2354 	perf_pmu_disable(event->pmu);
2355 
2356 	event->pmu->del(event, 0);
2357 	event->oncpu = -1;
2358 
2359 	if (READ_ONCE(event->pending_disable) >= 0) {
2360 		WRITE_ONCE(event->pending_disable, -1);
2361 		perf_cgroup_event_disable(event, ctx);
2362 		state = PERF_EVENT_STATE_OFF;
2363 	}
2364 	perf_event_set_state(event, state);
2365 
2366 	if (!is_software_event(event))
2367 		cpuctx->active_oncpu--;
2368 	if (!--ctx->nr_active)
2369 		perf_event_ctx_deactivate(ctx);
2370 	if (event->attr.freq && event->attr.sample_freq)
2371 		ctx->nr_freq--;
2372 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2373 		cpuctx->exclusive = 0;
2374 
2375 	perf_pmu_enable(event->pmu);
2376 }
2377 
2378 static void
2379 group_sched_out(struct perf_event *group_event,
2380 		struct perf_cpu_context *cpuctx,
2381 		struct perf_event_context *ctx)
2382 {
2383 	struct perf_event *event;
2384 
2385 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2386 		return;
2387 
2388 	perf_pmu_disable(ctx->pmu);
2389 
2390 	event_sched_out(group_event, cpuctx, ctx);
2391 
2392 	/*
2393 	 * Schedule out siblings (if any):
2394 	 */
2395 	for_each_sibling_event(event, group_event)
2396 		event_sched_out(event, cpuctx, ctx);
2397 
2398 	perf_pmu_enable(ctx->pmu);
2399 }
2400 
2401 #define DETACH_GROUP	0x01UL
2402 #define DETACH_CHILD	0x02UL
2403 
2404 /*
2405  * Cross CPU call to remove a performance event
2406  *
2407  * We disable the event on the hardware level first. After that we
2408  * remove it from the context list.
2409  */
2410 static void
2411 __perf_remove_from_context(struct perf_event *event,
2412 			   struct perf_cpu_context *cpuctx,
2413 			   struct perf_event_context *ctx,
2414 			   void *info)
2415 {
2416 	unsigned long flags = (unsigned long)info;
2417 
2418 	if (ctx->is_active & EVENT_TIME) {
2419 		update_context_time(ctx);
2420 		update_cgrp_time_from_cpuctx(cpuctx, false);
2421 	}
2422 
2423 	event_sched_out(event, cpuctx, ctx);
2424 	if (flags & DETACH_GROUP)
2425 		perf_group_detach(event);
2426 	if (flags & DETACH_CHILD)
2427 		perf_child_detach(event);
2428 	list_del_event(event, ctx);
2429 
2430 	if (!ctx->nr_events && ctx->is_active) {
2431 		if (ctx == &cpuctx->ctx)
2432 			update_cgrp_time_from_cpuctx(cpuctx, true);
2433 
2434 		ctx->is_active = 0;
2435 		ctx->rotate_necessary = 0;
2436 		if (ctx->task) {
2437 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2438 			cpuctx->task_ctx = NULL;
2439 		}
2440 	}
2441 }
2442 
2443 /*
2444  * Remove the event from a task's (or a CPU's) list of events.
2445  *
2446  * If event->ctx is a cloned context, callers must make sure that
2447  * every task struct that event->ctx->task could possibly point to
2448  * remains valid.  This is OK when called from perf_release since
2449  * that only calls us on the top-level context, which can't be a clone.
2450  * When called from perf_event_exit_task, it's OK because the
2451  * context has been detached from its task.
2452  */
2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2454 {
2455 	struct perf_event_context *ctx = event->ctx;
2456 
2457 	lockdep_assert_held(&ctx->mutex);
2458 
2459 	/*
2460 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2461 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2462 	 * event_function_call() user.
2463 	 */
2464 	raw_spin_lock_irq(&ctx->lock);
2465 	/*
2466 	 * Cgroup events are per-cpu events, and must IPI because of
2467 	 * cgrp_cpuctx_list.
2468 	 */
2469 	if (!ctx->is_active && !is_cgroup_event(event)) {
2470 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2471 					   ctx, (void *)flags);
2472 		raw_spin_unlock_irq(&ctx->lock);
2473 		return;
2474 	}
2475 	raw_spin_unlock_irq(&ctx->lock);
2476 
2477 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2478 }
2479 
2480 /*
2481  * Cross CPU call to disable a performance event
2482  */
2483 static void __perf_event_disable(struct perf_event *event,
2484 				 struct perf_cpu_context *cpuctx,
2485 				 struct perf_event_context *ctx,
2486 				 void *info)
2487 {
2488 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2489 		return;
2490 
2491 	if (ctx->is_active & EVENT_TIME) {
2492 		update_context_time(ctx);
2493 		update_cgrp_time_from_event(event);
2494 	}
2495 
2496 	if (event == event->group_leader)
2497 		group_sched_out(event, cpuctx, ctx);
2498 	else
2499 		event_sched_out(event, cpuctx, ctx);
2500 
2501 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2502 	perf_cgroup_event_disable(event, ctx);
2503 }
2504 
2505 /*
2506  * Disable an event.
2507  *
2508  * If event->ctx is a cloned context, callers must make sure that
2509  * every task struct that event->ctx->task could possibly point to
2510  * remains valid.  This condition is satisfied when called through
2511  * perf_event_for_each_child or perf_event_for_each because they
2512  * hold the top-level event's child_mutex, so any descendant that
2513  * goes to exit will block in perf_event_exit_event().
2514  *
2515  * When called from perf_pending_event it's OK because event->ctx
2516  * is the current context on this CPU and preemption is disabled,
2517  * hence we can't get into perf_event_task_sched_out for this context.
2518  */
2519 static void _perf_event_disable(struct perf_event *event)
2520 {
2521 	struct perf_event_context *ctx = event->ctx;
2522 
2523 	raw_spin_lock_irq(&ctx->lock);
2524 	if (event->state <= PERF_EVENT_STATE_OFF) {
2525 		raw_spin_unlock_irq(&ctx->lock);
2526 		return;
2527 	}
2528 	raw_spin_unlock_irq(&ctx->lock);
2529 
2530 	event_function_call(event, __perf_event_disable, NULL);
2531 }
2532 
2533 void perf_event_disable_local(struct perf_event *event)
2534 {
2535 	event_function_local(event, __perf_event_disable, NULL);
2536 }
2537 
2538 /*
2539  * Strictly speaking kernel users cannot create groups and therefore this
2540  * interface does not need the perf_event_ctx_lock() magic.
2541  */
2542 void perf_event_disable(struct perf_event *event)
2543 {
2544 	struct perf_event_context *ctx;
2545 
2546 	ctx = perf_event_ctx_lock(event);
2547 	_perf_event_disable(event);
2548 	perf_event_ctx_unlock(event, ctx);
2549 }
2550 EXPORT_SYMBOL_GPL(perf_event_disable);
2551 
2552 void perf_event_disable_inatomic(struct perf_event *event)
2553 {
2554 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2555 	/* can fail, see perf_pending_event_disable() */
2556 	irq_work_queue(&event->pending);
2557 }
2558 
2559 #define MAX_INTERRUPTS (~0ULL)
2560 
2561 static void perf_log_throttle(struct perf_event *event, int enable);
2562 static void perf_log_itrace_start(struct perf_event *event);
2563 
2564 static int
2565 event_sched_in(struct perf_event *event,
2566 		 struct perf_cpu_context *cpuctx,
2567 		 struct perf_event_context *ctx)
2568 {
2569 	int ret = 0;
2570 
2571 	WARN_ON_ONCE(event->ctx != ctx);
2572 
2573 	lockdep_assert_held(&ctx->lock);
2574 
2575 	if (event->state <= PERF_EVENT_STATE_OFF)
2576 		return 0;
2577 
2578 	WRITE_ONCE(event->oncpu, smp_processor_id());
2579 	/*
2580 	 * Order event::oncpu write to happen before the ACTIVE state is
2581 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2582 	 * ->oncpu if it sees ACTIVE.
2583 	 */
2584 	smp_wmb();
2585 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2586 
2587 	/*
2588 	 * Unthrottle events, since we scheduled we might have missed several
2589 	 * ticks already, also for a heavily scheduling task there is little
2590 	 * guarantee it'll get a tick in a timely manner.
2591 	 */
2592 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2593 		perf_log_throttle(event, 1);
2594 		event->hw.interrupts = 0;
2595 	}
2596 
2597 	perf_pmu_disable(event->pmu);
2598 
2599 	perf_log_itrace_start(event);
2600 
2601 	if (event->pmu->add(event, PERF_EF_START)) {
2602 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2603 		event->oncpu = -1;
2604 		ret = -EAGAIN;
2605 		goto out;
2606 	}
2607 
2608 	if (!is_software_event(event))
2609 		cpuctx->active_oncpu++;
2610 	if (!ctx->nr_active++)
2611 		perf_event_ctx_activate(ctx);
2612 	if (event->attr.freq && event->attr.sample_freq)
2613 		ctx->nr_freq++;
2614 
2615 	if (event->attr.exclusive)
2616 		cpuctx->exclusive = 1;
2617 
2618 out:
2619 	perf_pmu_enable(event->pmu);
2620 
2621 	return ret;
2622 }
2623 
2624 static int
2625 group_sched_in(struct perf_event *group_event,
2626 	       struct perf_cpu_context *cpuctx,
2627 	       struct perf_event_context *ctx)
2628 {
2629 	struct perf_event *event, *partial_group = NULL;
2630 	struct pmu *pmu = ctx->pmu;
2631 
2632 	if (group_event->state == PERF_EVENT_STATE_OFF)
2633 		return 0;
2634 
2635 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2636 
2637 	if (event_sched_in(group_event, cpuctx, ctx))
2638 		goto error;
2639 
2640 	/*
2641 	 * Schedule in siblings as one group (if any):
2642 	 */
2643 	for_each_sibling_event(event, group_event) {
2644 		if (event_sched_in(event, cpuctx, ctx)) {
2645 			partial_group = event;
2646 			goto group_error;
2647 		}
2648 	}
2649 
2650 	if (!pmu->commit_txn(pmu))
2651 		return 0;
2652 
2653 group_error:
2654 	/*
2655 	 * Groups can be scheduled in as one unit only, so undo any
2656 	 * partial group before returning:
2657 	 * The events up to the failed event are scheduled out normally.
2658 	 */
2659 	for_each_sibling_event(event, group_event) {
2660 		if (event == partial_group)
2661 			break;
2662 
2663 		event_sched_out(event, cpuctx, ctx);
2664 	}
2665 	event_sched_out(group_event, cpuctx, ctx);
2666 
2667 error:
2668 	pmu->cancel_txn(pmu);
2669 	return -EAGAIN;
2670 }
2671 
2672 /*
2673  * Work out whether we can put this event group on the CPU now.
2674  */
2675 static int group_can_go_on(struct perf_event *event,
2676 			   struct perf_cpu_context *cpuctx,
2677 			   int can_add_hw)
2678 {
2679 	/*
2680 	 * Groups consisting entirely of software events can always go on.
2681 	 */
2682 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2683 		return 1;
2684 	/*
2685 	 * If an exclusive group is already on, no other hardware
2686 	 * events can go on.
2687 	 */
2688 	if (cpuctx->exclusive)
2689 		return 0;
2690 	/*
2691 	 * If this group is exclusive and there are already
2692 	 * events on the CPU, it can't go on.
2693 	 */
2694 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2695 		return 0;
2696 	/*
2697 	 * Otherwise, try to add it if all previous groups were able
2698 	 * to go on.
2699 	 */
2700 	return can_add_hw;
2701 }
2702 
2703 static void add_event_to_ctx(struct perf_event *event,
2704 			       struct perf_event_context *ctx)
2705 {
2706 	list_add_event(event, ctx);
2707 	perf_group_attach(event);
2708 }
2709 
2710 static void ctx_sched_out(struct perf_event_context *ctx,
2711 			  struct perf_cpu_context *cpuctx,
2712 			  enum event_type_t event_type);
2713 static void
2714 ctx_sched_in(struct perf_event_context *ctx,
2715 	     struct perf_cpu_context *cpuctx,
2716 	     enum event_type_t event_type,
2717 	     struct task_struct *task);
2718 
2719 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2720 			       struct perf_event_context *ctx,
2721 			       enum event_type_t event_type)
2722 {
2723 	if (!cpuctx->task_ctx)
2724 		return;
2725 
2726 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2727 		return;
2728 
2729 	ctx_sched_out(ctx, cpuctx, event_type);
2730 }
2731 
2732 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2733 				struct perf_event_context *ctx,
2734 				struct task_struct *task)
2735 {
2736 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2737 	if (ctx)
2738 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2739 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2740 	if (ctx)
2741 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2742 }
2743 
2744 /*
2745  * We want to maintain the following priority of scheduling:
2746  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2747  *  - task pinned (EVENT_PINNED)
2748  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2749  *  - task flexible (EVENT_FLEXIBLE).
2750  *
2751  * In order to avoid unscheduling and scheduling back in everything every
2752  * time an event is added, only do it for the groups of equal priority and
2753  * below.
2754  *
2755  * This can be called after a batch operation on task events, in which case
2756  * event_type is a bit mask of the types of events involved. For CPU events,
2757  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2758  */
2759 static void ctx_resched(struct perf_cpu_context *cpuctx,
2760 			struct perf_event_context *task_ctx,
2761 			enum event_type_t event_type)
2762 {
2763 	enum event_type_t ctx_event_type;
2764 	bool cpu_event = !!(event_type & EVENT_CPU);
2765 
2766 	/*
2767 	 * If pinned groups are involved, flexible groups also need to be
2768 	 * scheduled out.
2769 	 */
2770 	if (event_type & EVENT_PINNED)
2771 		event_type |= EVENT_FLEXIBLE;
2772 
2773 	ctx_event_type = event_type & EVENT_ALL;
2774 
2775 	perf_pmu_disable(cpuctx->ctx.pmu);
2776 	if (task_ctx)
2777 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2778 
2779 	/*
2780 	 * Decide which cpu ctx groups to schedule out based on the types
2781 	 * of events that caused rescheduling:
2782 	 *  - EVENT_CPU: schedule out corresponding groups;
2783 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2784 	 *  - otherwise, do nothing more.
2785 	 */
2786 	if (cpu_event)
2787 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2788 	else if (ctx_event_type & EVENT_PINNED)
2789 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2790 
2791 	perf_event_sched_in(cpuctx, task_ctx, current);
2792 	perf_pmu_enable(cpuctx->ctx.pmu);
2793 }
2794 
2795 void perf_pmu_resched(struct pmu *pmu)
2796 {
2797 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2798 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2799 
2800 	perf_ctx_lock(cpuctx, task_ctx);
2801 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2802 	perf_ctx_unlock(cpuctx, task_ctx);
2803 }
2804 
2805 /*
2806  * Cross CPU call to install and enable a performance event
2807  *
2808  * Very similar to remote_function() + event_function() but cannot assume that
2809  * things like ctx->is_active and cpuctx->task_ctx are set.
2810  */
2811 static int  __perf_install_in_context(void *info)
2812 {
2813 	struct perf_event *event = info;
2814 	struct perf_event_context *ctx = event->ctx;
2815 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2816 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2817 	bool reprogram = true;
2818 	int ret = 0;
2819 
2820 	raw_spin_lock(&cpuctx->ctx.lock);
2821 	if (ctx->task) {
2822 		raw_spin_lock(&ctx->lock);
2823 		task_ctx = ctx;
2824 
2825 		reprogram = (ctx->task == current);
2826 
2827 		/*
2828 		 * If the task is running, it must be running on this CPU,
2829 		 * otherwise we cannot reprogram things.
2830 		 *
2831 		 * If its not running, we don't care, ctx->lock will
2832 		 * serialize against it becoming runnable.
2833 		 */
2834 		if (task_curr(ctx->task) && !reprogram) {
2835 			ret = -ESRCH;
2836 			goto unlock;
2837 		}
2838 
2839 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2840 	} else if (task_ctx) {
2841 		raw_spin_lock(&task_ctx->lock);
2842 	}
2843 
2844 #ifdef CONFIG_CGROUP_PERF
2845 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2846 		/*
2847 		 * If the current cgroup doesn't match the event's
2848 		 * cgroup, we should not try to schedule it.
2849 		 */
2850 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2851 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2852 					event->cgrp->css.cgroup);
2853 	}
2854 #endif
2855 
2856 	if (reprogram) {
2857 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2858 		add_event_to_ctx(event, ctx);
2859 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2860 	} else {
2861 		add_event_to_ctx(event, ctx);
2862 	}
2863 
2864 unlock:
2865 	perf_ctx_unlock(cpuctx, task_ctx);
2866 
2867 	return ret;
2868 }
2869 
2870 static bool exclusive_event_installable(struct perf_event *event,
2871 					struct perf_event_context *ctx);
2872 
2873 /*
2874  * Attach a performance event to a context.
2875  *
2876  * Very similar to event_function_call, see comment there.
2877  */
2878 static void
2879 perf_install_in_context(struct perf_event_context *ctx,
2880 			struct perf_event *event,
2881 			int cpu)
2882 {
2883 	struct task_struct *task = READ_ONCE(ctx->task);
2884 
2885 	lockdep_assert_held(&ctx->mutex);
2886 
2887 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2888 
2889 	if (event->cpu != -1)
2890 		event->cpu = cpu;
2891 
2892 	/*
2893 	 * Ensures that if we can observe event->ctx, both the event and ctx
2894 	 * will be 'complete'. See perf_iterate_sb_cpu().
2895 	 */
2896 	smp_store_release(&event->ctx, ctx);
2897 
2898 	/*
2899 	 * perf_event_attr::disabled events will not run and can be initialized
2900 	 * without IPI. Except when this is the first event for the context, in
2901 	 * that case we need the magic of the IPI to set ctx->is_active.
2902 	 * Similarly, cgroup events for the context also needs the IPI to
2903 	 * manipulate the cgrp_cpuctx_list.
2904 	 *
2905 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2906 	 * event will issue the IPI and reprogram the hardware.
2907 	 */
2908 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2909 	    ctx->nr_events && !is_cgroup_event(event)) {
2910 		raw_spin_lock_irq(&ctx->lock);
2911 		if (ctx->task == TASK_TOMBSTONE) {
2912 			raw_spin_unlock_irq(&ctx->lock);
2913 			return;
2914 		}
2915 		add_event_to_ctx(event, ctx);
2916 		raw_spin_unlock_irq(&ctx->lock);
2917 		return;
2918 	}
2919 
2920 	if (!task) {
2921 		cpu_function_call(cpu, __perf_install_in_context, event);
2922 		return;
2923 	}
2924 
2925 	/*
2926 	 * Should not happen, we validate the ctx is still alive before calling.
2927 	 */
2928 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2929 		return;
2930 
2931 	/*
2932 	 * Installing events is tricky because we cannot rely on ctx->is_active
2933 	 * to be set in case this is the nr_events 0 -> 1 transition.
2934 	 *
2935 	 * Instead we use task_curr(), which tells us if the task is running.
2936 	 * However, since we use task_curr() outside of rq::lock, we can race
2937 	 * against the actual state. This means the result can be wrong.
2938 	 *
2939 	 * If we get a false positive, we retry, this is harmless.
2940 	 *
2941 	 * If we get a false negative, things are complicated. If we are after
2942 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2943 	 * value must be correct. If we're before, it doesn't matter since
2944 	 * perf_event_context_sched_in() will program the counter.
2945 	 *
2946 	 * However, this hinges on the remote context switch having observed
2947 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2948 	 * ctx::lock in perf_event_context_sched_in().
2949 	 *
2950 	 * We do this by task_function_call(), if the IPI fails to hit the task
2951 	 * we know any future context switch of task must see the
2952 	 * perf_event_ctpx[] store.
2953 	 */
2954 
2955 	/*
2956 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2957 	 * task_cpu() load, such that if the IPI then does not find the task
2958 	 * running, a future context switch of that task must observe the
2959 	 * store.
2960 	 */
2961 	smp_mb();
2962 again:
2963 	if (!task_function_call(task, __perf_install_in_context, event))
2964 		return;
2965 
2966 	raw_spin_lock_irq(&ctx->lock);
2967 	task = ctx->task;
2968 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2969 		/*
2970 		 * Cannot happen because we already checked above (which also
2971 		 * cannot happen), and we hold ctx->mutex, which serializes us
2972 		 * against perf_event_exit_task_context().
2973 		 */
2974 		raw_spin_unlock_irq(&ctx->lock);
2975 		return;
2976 	}
2977 	/*
2978 	 * If the task is not running, ctx->lock will avoid it becoming so,
2979 	 * thus we can safely install the event.
2980 	 */
2981 	if (task_curr(task)) {
2982 		raw_spin_unlock_irq(&ctx->lock);
2983 		goto again;
2984 	}
2985 	add_event_to_ctx(event, ctx);
2986 	raw_spin_unlock_irq(&ctx->lock);
2987 }
2988 
2989 /*
2990  * Cross CPU call to enable a performance event
2991  */
2992 static void __perf_event_enable(struct perf_event *event,
2993 				struct perf_cpu_context *cpuctx,
2994 				struct perf_event_context *ctx,
2995 				void *info)
2996 {
2997 	struct perf_event *leader = event->group_leader;
2998 	struct perf_event_context *task_ctx;
2999 
3000 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3001 	    event->state <= PERF_EVENT_STATE_ERROR)
3002 		return;
3003 
3004 	if (ctx->is_active)
3005 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3006 
3007 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3008 	perf_cgroup_event_enable(event, ctx);
3009 
3010 	if (!ctx->is_active)
3011 		return;
3012 
3013 	if (!event_filter_match(event)) {
3014 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3015 		return;
3016 	}
3017 
3018 	/*
3019 	 * If the event is in a group and isn't the group leader,
3020 	 * then don't put it on unless the group is on.
3021 	 */
3022 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3023 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3024 		return;
3025 	}
3026 
3027 	task_ctx = cpuctx->task_ctx;
3028 	if (ctx->task)
3029 		WARN_ON_ONCE(task_ctx != ctx);
3030 
3031 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
3032 }
3033 
3034 /*
3035  * Enable an event.
3036  *
3037  * If event->ctx is a cloned context, callers must make sure that
3038  * every task struct that event->ctx->task could possibly point to
3039  * remains valid.  This condition is satisfied when called through
3040  * perf_event_for_each_child or perf_event_for_each as described
3041  * for perf_event_disable.
3042  */
3043 static void _perf_event_enable(struct perf_event *event)
3044 {
3045 	struct perf_event_context *ctx = event->ctx;
3046 
3047 	raw_spin_lock_irq(&ctx->lock);
3048 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3049 	    event->state <  PERF_EVENT_STATE_ERROR) {
3050 out:
3051 		raw_spin_unlock_irq(&ctx->lock);
3052 		return;
3053 	}
3054 
3055 	/*
3056 	 * If the event is in error state, clear that first.
3057 	 *
3058 	 * That way, if we see the event in error state below, we know that it
3059 	 * has gone back into error state, as distinct from the task having
3060 	 * been scheduled away before the cross-call arrived.
3061 	 */
3062 	if (event->state == PERF_EVENT_STATE_ERROR) {
3063 		/*
3064 		 * Detached SIBLING events cannot leave ERROR state.
3065 		 */
3066 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3067 		    event->group_leader == event)
3068 			goto out;
3069 
3070 		event->state = PERF_EVENT_STATE_OFF;
3071 	}
3072 	raw_spin_unlock_irq(&ctx->lock);
3073 
3074 	event_function_call(event, __perf_event_enable, NULL);
3075 }
3076 
3077 /*
3078  * See perf_event_disable();
3079  */
3080 void perf_event_enable(struct perf_event *event)
3081 {
3082 	struct perf_event_context *ctx;
3083 
3084 	ctx = perf_event_ctx_lock(event);
3085 	_perf_event_enable(event);
3086 	perf_event_ctx_unlock(event, ctx);
3087 }
3088 EXPORT_SYMBOL_GPL(perf_event_enable);
3089 
3090 struct stop_event_data {
3091 	struct perf_event	*event;
3092 	unsigned int		restart;
3093 };
3094 
3095 static int __perf_event_stop(void *info)
3096 {
3097 	struct stop_event_data *sd = info;
3098 	struct perf_event *event = sd->event;
3099 
3100 	/* if it's already INACTIVE, do nothing */
3101 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3102 		return 0;
3103 
3104 	/* matches smp_wmb() in event_sched_in() */
3105 	smp_rmb();
3106 
3107 	/*
3108 	 * There is a window with interrupts enabled before we get here,
3109 	 * so we need to check again lest we try to stop another CPU's event.
3110 	 */
3111 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3112 		return -EAGAIN;
3113 
3114 	event->pmu->stop(event, PERF_EF_UPDATE);
3115 
3116 	/*
3117 	 * May race with the actual stop (through perf_pmu_output_stop()),
3118 	 * but it is only used for events with AUX ring buffer, and such
3119 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3120 	 * see comments in perf_aux_output_begin().
3121 	 *
3122 	 * Since this is happening on an event-local CPU, no trace is lost
3123 	 * while restarting.
3124 	 */
3125 	if (sd->restart)
3126 		event->pmu->start(event, 0);
3127 
3128 	return 0;
3129 }
3130 
3131 static int perf_event_stop(struct perf_event *event, int restart)
3132 {
3133 	struct stop_event_data sd = {
3134 		.event		= event,
3135 		.restart	= restart,
3136 	};
3137 	int ret = 0;
3138 
3139 	do {
3140 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3141 			return 0;
3142 
3143 		/* matches smp_wmb() in event_sched_in() */
3144 		smp_rmb();
3145 
3146 		/*
3147 		 * We only want to restart ACTIVE events, so if the event goes
3148 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3149 		 * fall through with ret==-ENXIO.
3150 		 */
3151 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3152 					__perf_event_stop, &sd);
3153 	} while (ret == -EAGAIN);
3154 
3155 	return ret;
3156 }
3157 
3158 /*
3159  * In order to contain the amount of racy and tricky in the address filter
3160  * configuration management, it is a two part process:
3161  *
3162  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3163  *      we update the addresses of corresponding vmas in
3164  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3165  * (p2) when an event is scheduled in (pmu::add), it calls
3166  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3167  *      if the generation has changed since the previous call.
3168  *
3169  * If (p1) happens while the event is active, we restart it to force (p2).
3170  *
3171  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3172  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3173  *     ioctl;
3174  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3175  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3176  *     for reading;
3177  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3178  *     of exec.
3179  */
3180 void perf_event_addr_filters_sync(struct perf_event *event)
3181 {
3182 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3183 
3184 	if (!has_addr_filter(event))
3185 		return;
3186 
3187 	raw_spin_lock(&ifh->lock);
3188 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3189 		event->pmu->addr_filters_sync(event);
3190 		event->hw.addr_filters_gen = event->addr_filters_gen;
3191 	}
3192 	raw_spin_unlock(&ifh->lock);
3193 }
3194 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3195 
3196 static int _perf_event_refresh(struct perf_event *event, int refresh)
3197 {
3198 	/*
3199 	 * not supported on inherited events
3200 	 */
3201 	if (event->attr.inherit || !is_sampling_event(event))
3202 		return -EINVAL;
3203 
3204 	atomic_add(refresh, &event->event_limit);
3205 	_perf_event_enable(event);
3206 
3207 	return 0;
3208 }
3209 
3210 /*
3211  * See perf_event_disable()
3212  */
3213 int perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 	struct perf_event_context *ctx;
3216 	int ret;
3217 
3218 	ctx = perf_event_ctx_lock(event);
3219 	ret = _perf_event_refresh(event, refresh);
3220 	perf_event_ctx_unlock(event, ctx);
3221 
3222 	return ret;
3223 }
3224 EXPORT_SYMBOL_GPL(perf_event_refresh);
3225 
3226 static int perf_event_modify_breakpoint(struct perf_event *bp,
3227 					 struct perf_event_attr *attr)
3228 {
3229 	int err;
3230 
3231 	_perf_event_disable(bp);
3232 
3233 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3234 
3235 	if (!bp->attr.disabled)
3236 		_perf_event_enable(bp);
3237 
3238 	return err;
3239 }
3240 
3241 /*
3242  * Copy event-type-independent attributes that may be modified.
3243  */
3244 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3245 					const struct perf_event_attr *from)
3246 {
3247 	to->sig_data = from->sig_data;
3248 }
3249 
3250 static int perf_event_modify_attr(struct perf_event *event,
3251 				  struct perf_event_attr *attr)
3252 {
3253 	int (*func)(struct perf_event *, struct perf_event_attr *);
3254 	struct perf_event *child;
3255 	int err;
3256 
3257 	if (event->attr.type != attr->type)
3258 		return -EINVAL;
3259 
3260 	switch (event->attr.type) {
3261 	case PERF_TYPE_BREAKPOINT:
3262 		func = perf_event_modify_breakpoint;
3263 		break;
3264 	default:
3265 		/* Place holder for future additions. */
3266 		return -EOPNOTSUPP;
3267 	}
3268 
3269 	WARN_ON_ONCE(event->ctx->parent_ctx);
3270 
3271 	mutex_lock(&event->child_mutex);
3272 	/*
3273 	 * Event-type-independent attributes must be copied before event-type
3274 	 * modification, which will validate that final attributes match the
3275 	 * source attributes after all relevant attributes have been copied.
3276 	 */
3277 	perf_event_modify_copy_attr(&event->attr, attr);
3278 	err = func(event, attr);
3279 	if (err)
3280 		goto out;
3281 	list_for_each_entry(child, &event->child_list, child_list) {
3282 		perf_event_modify_copy_attr(&child->attr, attr);
3283 		err = func(child, attr);
3284 		if (err)
3285 			goto out;
3286 	}
3287 out:
3288 	mutex_unlock(&event->child_mutex);
3289 	return err;
3290 }
3291 
3292 static void ctx_sched_out(struct perf_event_context *ctx,
3293 			  struct perf_cpu_context *cpuctx,
3294 			  enum event_type_t event_type)
3295 {
3296 	struct perf_event *event, *tmp;
3297 	int is_active = ctx->is_active;
3298 
3299 	lockdep_assert_held(&ctx->lock);
3300 
3301 	if (likely(!ctx->nr_events)) {
3302 		/*
3303 		 * See __perf_remove_from_context().
3304 		 */
3305 		WARN_ON_ONCE(ctx->is_active);
3306 		if (ctx->task)
3307 			WARN_ON_ONCE(cpuctx->task_ctx);
3308 		return;
3309 	}
3310 
3311 	/*
3312 	 * Always update time if it was set; not only when it changes.
3313 	 * Otherwise we can 'forget' to update time for any but the last
3314 	 * context we sched out. For example:
3315 	 *
3316 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3317 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3318 	 *
3319 	 * would only update time for the pinned events.
3320 	 */
3321 	if (is_active & EVENT_TIME) {
3322 		/* update (and stop) ctx time */
3323 		update_context_time(ctx);
3324 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3325 		/*
3326 		 * CPU-release for the below ->is_active store,
3327 		 * see __load_acquire() in perf_event_time_now()
3328 		 */
3329 		barrier();
3330 	}
3331 
3332 	ctx->is_active &= ~event_type;
3333 	if (!(ctx->is_active & EVENT_ALL))
3334 		ctx->is_active = 0;
3335 
3336 	if (ctx->task) {
3337 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3338 		if (!ctx->is_active)
3339 			cpuctx->task_ctx = NULL;
3340 	}
3341 
3342 	is_active ^= ctx->is_active; /* changed bits */
3343 
3344 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3345 		return;
3346 
3347 	perf_pmu_disable(ctx->pmu);
3348 	if (is_active & EVENT_PINNED) {
3349 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3350 			group_sched_out(event, cpuctx, ctx);
3351 	}
3352 
3353 	if (is_active & EVENT_FLEXIBLE) {
3354 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3355 			group_sched_out(event, cpuctx, ctx);
3356 
3357 		/*
3358 		 * Since we cleared EVENT_FLEXIBLE, also clear
3359 		 * rotate_necessary, is will be reset by
3360 		 * ctx_flexible_sched_in() when needed.
3361 		 */
3362 		ctx->rotate_necessary = 0;
3363 	}
3364 	perf_pmu_enable(ctx->pmu);
3365 }
3366 
3367 /*
3368  * Test whether two contexts are equivalent, i.e. whether they have both been
3369  * cloned from the same version of the same context.
3370  *
3371  * Equivalence is measured using a generation number in the context that is
3372  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3373  * and list_del_event().
3374  */
3375 static int context_equiv(struct perf_event_context *ctx1,
3376 			 struct perf_event_context *ctx2)
3377 {
3378 	lockdep_assert_held(&ctx1->lock);
3379 	lockdep_assert_held(&ctx2->lock);
3380 
3381 	/* Pinning disables the swap optimization */
3382 	if (ctx1->pin_count || ctx2->pin_count)
3383 		return 0;
3384 
3385 	/* If ctx1 is the parent of ctx2 */
3386 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3387 		return 1;
3388 
3389 	/* If ctx2 is the parent of ctx1 */
3390 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3391 		return 1;
3392 
3393 	/*
3394 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3395 	 * hierarchy, see perf_event_init_context().
3396 	 */
3397 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3398 			ctx1->parent_gen == ctx2->parent_gen)
3399 		return 1;
3400 
3401 	/* Unmatched */
3402 	return 0;
3403 }
3404 
3405 static void __perf_event_sync_stat(struct perf_event *event,
3406 				     struct perf_event *next_event)
3407 {
3408 	u64 value;
3409 
3410 	if (!event->attr.inherit_stat)
3411 		return;
3412 
3413 	/*
3414 	 * Update the event value, we cannot use perf_event_read()
3415 	 * because we're in the middle of a context switch and have IRQs
3416 	 * disabled, which upsets smp_call_function_single(), however
3417 	 * we know the event must be on the current CPU, therefore we
3418 	 * don't need to use it.
3419 	 */
3420 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3421 		event->pmu->read(event);
3422 
3423 	perf_event_update_time(event);
3424 
3425 	/*
3426 	 * In order to keep per-task stats reliable we need to flip the event
3427 	 * values when we flip the contexts.
3428 	 */
3429 	value = local64_read(&next_event->count);
3430 	value = local64_xchg(&event->count, value);
3431 	local64_set(&next_event->count, value);
3432 
3433 	swap(event->total_time_enabled, next_event->total_time_enabled);
3434 	swap(event->total_time_running, next_event->total_time_running);
3435 
3436 	/*
3437 	 * Since we swizzled the values, update the user visible data too.
3438 	 */
3439 	perf_event_update_userpage(event);
3440 	perf_event_update_userpage(next_event);
3441 }
3442 
3443 static void perf_event_sync_stat(struct perf_event_context *ctx,
3444 				   struct perf_event_context *next_ctx)
3445 {
3446 	struct perf_event *event, *next_event;
3447 
3448 	if (!ctx->nr_stat)
3449 		return;
3450 
3451 	update_context_time(ctx);
3452 
3453 	event = list_first_entry(&ctx->event_list,
3454 				   struct perf_event, event_entry);
3455 
3456 	next_event = list_first_entry(&next_ctx->event_list,
3457 					struct perf_event, event_entry);
3458 
3459 	while (&event->event_entry != &ctx->event_list &&
3460 	       &next_event->event_entry != &next_ctx->event_list) {
3461 
3462 		__perf_event_sync_stat(event, next_event);
3463 
3464 		event = list_next_entry(event, event_entry);
3465 		next_event = list_next_entry(next_event, event_entry);
3466 	}
3467 }
3468 
3469 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3470 					 struct task_struct *next)
3471 {
3472 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3473 	struct perf_event_context *next_ctx;
3474 	struct perf_event_context *parent, *next_parent;
3475 	struct perf_cpu_context *cpuctx;
3476 	int do_switch = 1;
3477 	struct pmu *pmu;
3478 
3479 	if (likely(!ctx))
3480 		return;
3481 
3482 	pmu = ctx->pmu;
3483 	cpuctx = __get_cpu_context(ctx);
3484 	if (!cpuctx->task_ctx)
3485 		return;
3486 
3487 	rcu_read_lock();
3488 	next_ctx = next->perf_event_ctxp[ctxn];
3489 	if (!next_ctx)
3490 		goto unlock;
3491 
3492 	parent = rcu_dereference(ctx->parent_ctx);
3493 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3494 
3495 	/* If neither context have a parent context; they cannot be clones. */
3496 	if (!parent && !next_parent)
3497 		goto unlock;
3498 
3499 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3500 		/*
3501 		 * Looks like the two contexts are clones, so we might be
3502 		 * able to optimize the context switch.  We lock both
3503 		 * contexts and check that they are clones under the
3504 		 * lock (including re-checking that neither has been
3505 		 * uncloned in the meantime).  It doesn't matter which
3506 		 * order we take the locks because no other cpu could
3507 		 * be trying to lock both of these tasks.
3508 		 */
3509 		raw_spin_lock(&ctx->lock);
3510 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3511 		if (context_equiv(ctx, next_ctx)) {
3512 
3513 			WRITE_ONCE(ctx->task, next);
3514 			WRITE_ONCE(next_ctx->task, task);
3515 
3516 			perf_pmu_disable(pmu);
3517 
3518 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3519 				pmu->sched_task(ctx, false);
3520 
3521 			/*
3522 			 * PMU specific parts of task perf context can require
3523 			 * additional synchronization. As an example of such
3524 			 * synchronization see implementation details of Intel
3525 			 * LBR call stack data profiling;
3526 			 */
3527 			if (pmu->swap_task_ctx)
3528 				pmu->swap_task_ctx(ctx, next_ctx);
3529 			else
3530 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3531 
3532 			perf_pmu_enable(pmu);
3533 
3534 			/*
3535 			 * RCU_INIT_POINTER here is safe because we've not
3536 			 * modified the ctx and the above modification of
3537 			 * ctx->task and ctx->task_ctx_data are immaterial
3538 			 * since those values are always verified under
3539 			 * ctx->lock which we're now holding.
3540 			 */
3541 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3542 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3543 
3544 			do_switch = 0;
3545 
3546 			perf_event_sync_stat(ctx, next_ctx);
3547 		}
3548 		raw_spin_unlock(&next_ctx->lock);
3549 		raw_spin_unlock(&ctx->lock);
3550 	}
3551 unlock:
3552 	rcu_read_unlock();
3553 
3554 	if (do_switch) {
3555 		raw_spin_lock(&ctx->lock);
3556 		perf_pmu_disable(pmu);
3557 
3558 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3559 			pmu->sched_task(ctx, false);
3560 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3561 
3562 		perf_pmu_enable(pmu);
3563 		raw_spin_unlock(&ctx->lock);
3564 	}
3565 }
3566 
3567 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3568 
3569 void perf_sched_cb_dec(struct pmu *pmu)
3570 {
3571 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3572 
3573 	this_cpu_dec(perf_sched_cb_usages);
3574 
3575 	if (!--cpuctx->sched_cb_usage)
3576 		list_del(&cpuctx->sched_cb_entry);
3577 }
3578 
3579 
3580 void perf_sched_cb_inc(struct pmu *pmu)
3581 {
3582 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3583 
3584 	if (!cpuctx->sched_cb_usage++)
3585 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3586 
3587 	this_cpu_inc(perf_sched_cb_usages);
3588 }
3589 
3590 /*
3591  * This function provides the context switch callback to the lower code
3592  * layer. It is invoked ONLY when the context switch callback is enabled.
3593  *
3594  * This callback is relevant even to per-cpu events; for example multi event
3595  * PEBS requires this to provide PID/TID information. This requires we flush
3596  * all queued PEBS records before we context switch to a new task.
3597  */
3598 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3599 {
3600 	struct pmu *pmu;
3601 
3602 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3603 
3604 	if (WARN_ON_ONCE(!pmu->sched_task))
3605 		return;
3606 
3607 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3608 	perf_pmu_disable(pmu);
3609 
3610 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3611 
3612 	perf_pmu_enable(pmu);
3613 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3614 }
3615 
3616 static void perf_pmu_sched_task(struct task_struct *prev,
3617 				struct task_struct *next,
3618 				bool sched_in)
3619 {
3620 	struct perf_cpu_context *cpuctx;
3621 
3622 	if (prev == next)
3623 		return;
3624 
3625 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3626 		/* will be handled in perf_event_context_sched_in/out */
3627 		if (cpuctx->task_ctx)
3628 			continue;
3629 
3630 		__perf_pmu_sched_task(cpuctx, sched_in);
3631 	}
3632 }
3633 
3634 static void perf_event_switch(struct task_struct *task,
3635 			      struct task_struct *next_prev, bool sched_in);
3636 
3637 #define for_each_task_context_nr(ctxn)					\
3638 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3639 
3640 /*
3641  * Called from scheduler to remove the events of the current task,
3642  * with interrupts disabled.
3643  *
3644  * We stop each event and update the event value in event->count.
3645  *
3646  * This does not protect us against NMI, but disable()
3647  * sets the disabled bit in the control field of event _before_
3648  * accessing the event control register. If a NMI hits, then it will
3649  * not restart the event.
3650  */
3651 void __perf_event_task_sched_out(struct task_struct *task,
3652 				 struct task_struct *next)
3653 {
3654 	int ctxn;
3655 
3656 	if (__this_cpu_read(perf_sched_cb_usages))
3657 		perf_pmu_sched_task(task, next, false);
3658 
3659 	if (atomic_read(&nr_switch_events))
3660 		perf_event_switch(task, next, false);
3661 
3662 	for_each_task_context_nr(ctxn)
3663 		perf_event_context_sched_out(task, ctxn, next);
3664 
3665 	/*
3666 	 * if cgroup events exist on this CPU, then we need
3667 	 * to check if we have to switch out PMU state.
3668 	 * cgroup event are system-wide mode only
3669 	 */
3670 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3671 		perf_cgroup_sched_out(task, next);
3672 }
3673 
3674 /*
3675  * Called with IRQs disabled
3676  */
3677 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3678 			      enum event_type_t event_type)
3679 {
3680 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3681 }
3682 
3683 static bool perf_less_group_idx(const void *l, const void *r)
3684 {
3685 	const struct perf_event *le = *(const struct perf_event **)l;
3686 	const struct perf_event *re = *(const struct perf_event **)r;
3687 
3688 	return le->group_index < re->group_index;
3689 }
3690 
3691 static void swap_ptr(void *l, void *r)
3692 {
3693 	void **lp = l, **rp = r;
3694 
3695 	swap(*lp, *rp);
3696 }
3697 
3698 static const struct min_heap_callbacks perf_min_heap = {
3699 	.elem_size = sizeof(struct perf_event *),
3700 	.less = perf_less_group_idx,
3701 	.swp = swap_ptr,
3702 };
3703 
3704 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3705 {
3706 	struct perf_event **itrs = heap->data;
3707 
3708 	if (event) {
3709 		itrs[heap->nr] = event;
3710 		heap->nr++;
3711 	}
3712 }
3713 
3714 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3715 				struct perf_event_groups *groups, int cpu,
3716 				int (*func)(struct perf_event *, void *),
3717 				void *data)
3718 {
3719 #ifdef CONFIG_CGROUP_PERF
3720 	struct cgroup_subsys_state *css = NULL;
3721 #endif
3722 	/* Space for per CPU and/or any CPU event iterators. */
3723 	struct perf_event *itrs[2];
3724 	struct min_heap event_heap;
3725 	struct perf_event **evt;
3726 	int ret;
3727 
3728 	if (cpuctx) {
3729 		event_heap = (struct min_heap){
3730 			.data = cpuctx->heap,
3731 			.nr = 0,
3732 			.size = cpuctx->heap_size,
3733 		};
3734 
3735 		lockdep_assert_held(&cpuctx->ctx.lock);
3736 
3737 #ifdef CONFIG_CGROUP_PERF
3738 		if (cpuctx->cgrp)
3739 			css = &cpuctx->cgrp->css;
3740 #endif
3741 	} else {
3742 		event_heap = (struct min_heap){
3743 			.data = itrs,
3744 			.nr = 0,
3745 			.size = ARRAY_SIZE(itrs),
3746 		};
3747 		/* Events not within a CPU context may be on any CPU. */
3748 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3749 	}
3750 	evt = event_heap.data;
3751 
3752 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3753 
3754 #ifdef CONFIG_CGROUP_PERF
3755 	for (; css; css = css->parent)
3756 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3757 #endif
3758 
3759 	min_heapify_all(&event_heap, &perf_min_heap);
3760 
3761 	while (event_heap.nr) {
3762 		ret = func(*evt, data);
3763 		if (ret)
3764 			return ret;
3765 
3766 		*evt = perf_event_groups_next(*evt);
3767 		if (*evt)
3768 			min_heapify(&event_heap, 0, &perf_min_heap);
3769 		else
3770 			min_heap_pop(&event_heap, &perf_min_heap);
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 /*
3777  * Because the userpage is strictly per-event (there is no concept of context,
3778  * so there cannot be a context indirection), every userpage must be updated
3779  * when context time starts :-(
3780  *
3781  * IOW, we must not miss EVENT_TIME edges.
3782  */
3783 static inline bool event_update_userpage(struct perf_event *event)
3784 {
3785 	if (likely(!atomic_read(&event->mmap_count)))
3786 		return false;
3787 
3788 	perf_event_update_time(event);
3789 	perf_event_update_userpage(event);
3790 
3791 	return true;
3792 }
3793 
3794 static inline void group_update_userpage(struct perf_event *group_event)
3795 {
3796 	struct perf_event *event;
3797 
3798 	if (!event_update_userpage(group_event))
3799 		return;
3800 
3801 	for_each_sibling_event(event, group_event)
3802 		event_update_userpage(event);
3803 }
3804 
3805 static int merge_sched_in(struct perf_event *event, void *data)
3806 {
3807 	struct perf_event_context *ctx = event->ctx;
3808 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3809 	int *can_add_hw = data;
3810 
3811 	if (event->state <= PERF_EVENT_STATE_OFF)
3812 		return 0;
3813 
3814 	if (!event_filter_match(event))
3815 		return 0;
3816 
3817 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3818 		if (!group_sched_in(event, cpuctx, ctx))
3819 			list_add_tail(&event->active_list, get_event_list(event));
3820 	}
3821 
3822 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823 		*can_add_hw = 0;
3824 		if (event->attr.pinned) {
3825 			perf_cgroup_event_disable(event, ctx);
3826 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3827 		} else {
3828 			ctx->rotate_necessary = 1;
3829 			perf_mux_hrtimer_restart(cpuctx);
3830 			group_update_userpage(event);
3831 		}
3832 	}
3833 
3834 	return 0;
3835 }
3836 
3837 static void
3838 ctx_pinned_sched_in(struct perf_event_context *ctx,
3839 		    struct perf_cpu_context *cpuctx)
3840 {
3841 	int can_add_hw = 1;
3842 
3843 	if (ctx != &cpuctx->ctx)
3844 		cpuctx = NULL;
3845 
3846 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3847 			   smp_processor_id(),
3848 			   merge_sched_in, &can_add_hw);
3849 }
3850 
3851 static void
3852 ctx_flexible_sched_in(struct perf_event_context *ctx,
3853 		      struct perf_cpu_context *cpuctx)
3854 {
3855 	int can_add_hw = 1;
3856 
3857 	if (ctx != &cpuctx->ctx)
3858 		cpuctx = NULL;
3859 
3860 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3861 			   smp_processor_id(),
3862 			   merge_sched_in, &can_add_hw);
3863 }
3864 
3865 static void
3866 ctx_sched_in(struct perf_event_context *ctx,
3867 	     struct perf_cpu_context *cpuctx,
3868 	     enum event_type_t event_type,
3869 	     struct task_struct *task)
3870 {
3871 	int is_active = ctx->is_active;
3872 
3873 	lockdep_assert_held(&ctx->lock);
3874 
3875 	if (likely(!ctx->nr_events))
3876 		return;
3877 
3878 	if (is_active ^ EVENT_TIME) {
3879 		/* start ctx time */
3880 		__update_context_time(ctx, false);
3881 		perf_cgroup_set_timestamp(task, ctx);
3882 		/*
3883 		 * CPU-release for the below ->is_active store,
3884 		 * see __load_acquire() in perf_event_time_now()
3885 		 */
3886 		barrier();
3887 	}
3888 
3889 	ctx->is_active |= (event_type | EVENT_TIME);
3890 	if (ctx->task) {
3891 		if (!is_active)
3892 			cpuctx->task_ctx = ctx;
3893 		else
3894 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3895 	}
3896 
3897 	is_active ^= ctx->is_active; /* changed bits */
3898 
3899 	/*
3900 	 * First go through the list and put on any pinned groups
3901 	 * in order to give them the best chance of going on.
3902 	 */
3903 	if (is_active & EVENT_PINNED)
3904 		ctx_pinned_sched_in(ctx, cpuctx);
3905 
3906 	/* Then walk through the lower prio flexible groups */
3907 	if (is_active & EVENT_FLEXIBLE)
3908 		ctx_flexible_sched_in(ctx, cpuctx);
3909 }
3910 
3911 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3912 			     enum event_type_t event_type,
3913 			     struct task_struct *task)
3914 {
3915 	struct perf_event_context *ctx = &cpuctx->ctx;
3916 
3917 	ctx_sched_in(ctx, cpuctx, event_type, task);
3918 }
3919 
3920 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3921 					struct task_struct *task)
3922 {
3923 	struct perf_cpu_context *cpuctx;
3924 	struct pmu *pmu;
3925 
3926 	cpuctx = __get_cpu_context(ctx);
3927 
3928 	/*
3929 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3930 	 * different PMU, force (re)set the context,
3931 	 */
3932 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3933 
3934 	if (cpuctx->task_ctx == ctx) {
3935 		if (cpuctx->sched_cb_usage)
3936 			__perf_pmu_sched_task(cpuctx, true);
3937 		return;
3938 	}
3939 
3940 	perf_ctx_lock(cpuctx, ctx);
3941 	/*
3942 	 * We must check ctx->nr_events while holding ctx->lock, such
3943 	 * that we serialize against perf_install_in_context().
3944 	 */
3945 	if (!ctx->nr_events)
3946 		goto unlock;
3947 
3948 	perf_pmu_disable(pmu);
3949 	/*
3950 	 * We want to keep the following priority order:
3951 	 * cpu pinned (that don't need to move), task pinned,
3952 	 * cpu flexible, task flexible.
3953 	 *
3954 	 * However, if task's ctx is not carrying any pinned
3955 	 * events, no need to flip the cpuctx's events around.
3956 	 */
3957 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3958 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3959 	perf_event_sched_in(cpuctx, ctx, task);
3960 
3961 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3962 		pmu->sched_task(cpuctx->task_ctx, true);
3963 
3964 	perf_pmu_enable(pmu);
3965 
3966 unlock:
3967 	perf_ctx_unlock(cpuctx, ctx);
3968 }
3969 
3970 /*
3971  * Called from scheduler to add the events of the current task
3972  * with interrupts disabled.
3973  *
3974  * We restore the event value and then enable it.
3975  *
3976  * This does not protect us against NMI, but enable()
3977  * sets the enabled bit in the control field of event _before_
3978  * accessing the event control register. If a NMI hits, then it will
3979  * keep the event running.
3980  */
3981 void __perf_event_task_sched_in(struct task_struct *prev,
3982 				struct task_struct *task)
3983 {
3984 	struct perf_event_context *ctx;
3985 	int ctxn;
3986 
3987 	/*
3988 	 * If cgroup events exist on this CPU, then we need to check if we have
3989 	 * to switch in PMU state; cgroup event are system-wide mode only.
3990 	 *
3991 	 * Since cgroup events are CPU events, we must schedule these in before
3992 	 * we schedule in the task events.
3993 	 */
3994 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3995 		perf_cgroup_sched_in(prev, task);
3996 
3997 	for_each_task_context_nr(ctxn) {
3998 		ctx = task->perf_event_ctxp[ctxn];
3999 		if (likely(!ctx))
4000 			continue;
4001 
4002 		perf_event_context_sched_in(ctx, task);
4003 	}
4004 
4005 	if (atomic_read(&nr_switch_events))
4006 		perf_event_switch(task, prev, true);
4007 
4008 	if (__this_cpu_read(perf_sched_cb_usages))
4009 		perf_pmu_sched_task(prev, task, true);
4010 }
4011 
4012 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4013 {
4014 	u64 frequency = event->attr.sample_freq;
4015 	u64 sec = NSEC_PER_SEC;
4016 	u64 divisor, dividend;
4017 
4018 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4019 
4020 	count_fls = fls64(count);
4021 	nsec_fls = fls64(nsec);
4022 	frequency_fls = fls64(frequency);
4023 	sec_fls = 30;
4024 
4025 	/*
4026 	 * We got @count in @nsec, with a target of sample_freq HZ
4027 	 * the target period becomes:
4028 	 *
4029 	 *             @count * 10^9
4030 	 * period = -------------------
4031 	 *          @nsec * sample_freq
4032 	 *
4033 	 */
4034 
4035 	/*
4036 	 * Reduce accuracy by one bit such that @a and @b converge
4037 	 * to a similar magnitude.
4038 	 */
4039 #define REDUCE_FLS(a, b)		\
4040 do {					\
4041 	if (a##_fls > b##_fls) {	\
4042 		a >>= 1;		\
4043 		a##_fls--;		\
4044 	} else {			\
4045 		b >>= 1;		\
4046 		b##_fls--;		\
4047 	}				\
4048 } while (0)
4049 
4050 	/*
4051 	 * Reduce accuracy until either term fits in a u64, then proceed with
4052 	 * the other, so that finally we can do a u64/u64 division.
4053 	 */
4054 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4055 		REDUCE_FLS(nsec, frequency);
4056 		REDUCE_FLS(sec, count);
4057 	}
4058 
4059 	if (count_fls + sec_fls > 64) {
4060 		divisor = nsec * frequency;
4061 
4062 		while (count_fls + sec_fls > 64) {
4063 			REDUCE_FLS(count, sec);
4064 			divisor >>= 1;
4065 		}
4066 
4067 		dividend = count * sec;
4068 	} else {
4069 		dividend = count * sec;
4070 
4071 		while (nsec_fls + frequency_fls > 64) {
4072 			REDUCE_FLS(nsec, frequency);
4073 			dividend >>= 1;
4074 		}
4075 
4076 		divisor = nsec * frequency;
4077 	}
4078 
4079 	if (!divisor)
4080 		return dividend;
4081 
4082 	return div64_u64(dividend, divisor);
4083 }
4084 
4085 static DEFINE_PER_CPU(int, perf_throttled_count);
4086 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4087 
4088 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4089 {
4090 	struct hw_perf_event *hwc = &event->hw;
4091 	s64 period, sample_period;
4092 	s64 delta;
4093 
4094 	period = perf_calculate_period(event, nsec, count);
4095 
4096 	delta = (s64)(period - hwc->sample_period);
4097 	delta = (delta + 7) / 8; /* low pass filter */
4098 
4099 	sample_period = hwc->sample_period + delta;
4100 
4101 	if (!sample_period)
4102 		sample_period = 1;
4103 
4104 	hwc->sample_period = sample_period;
4105 
4106 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4107 		if (disable)
4108 			event->pmu->stop(event, PERF_EF_UPDATE);
4109 
4110 		local64_set(&hwc->period_left, 0);
4111 
4112 		if (disable)
4113 			event->pmu->start(event, PERF_EF_RELOAD);
4114 	}
4115 }
4116 
4117 /*
4118  * combine freq adjustment with unthrottling to avoid two passes over the
4119  * events. At the same time, make sure, having freq events does not change
4120  * the rate of unthrottling as that would introduce bias.
4121  */
4122 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4123 					   int needs_unthr)
4124 {
4125 	struct perf_event *event;
4126 	struct hw_perf_event *hwc;
4127 	u64 now, period = TICK_NSEC;
4128 	s64 delta;
4129 
4130 	/*
4131 	 * only need to iterate over all events iff:
4132 	 * - context have events in frequency mode (needs freq adjust)
4133 	 * - there are events to unthrottle on this cpu
4134 	 */
4135 	if (!(ctx->nr_freq || needs_unthr))
4136 		return;
4137 
4138 	raw_spin_lock(&ctx->lock);
4139 	perf_pmu_disable(ctx->pmu);
4140 
4141 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4142 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4143 			continue;
4144 
4145 		if (!event_filter_match(event))
4146 			continue;
4147 
4148 		perf_pmu_disable(event->pmu);
4149 
4150 		hwc = &event->hw;
4151 
4152 		if (hwc->interrupts == MAX_INTERRUPTS) {
4153 			hwc->interrupts = 0;
4154 			perf_log_throttle(event, 1);
4155 			event->pmu->start(event, 0);
4156 		}
4157 
4158 		if (!event->attr.freq || !event->attr.sample_freq)
4159 			goto next;
4160 
4161 		/*
4162 		 * stop the event and update event->count
4163 		 */
4164 		event->pmu->stop(event, PERF_EF_UPDATE);
4165 
4166 		now = local64_read(&event->count);
4167 		delta = now - hwc->freq_count_stamp;
4168 		hwc->freq_count_stamp = now;
4169 
4170 		/*
4171 		 * restart the event
4172 		 * reload only if value has changed
4173 		 * we have stopped the event so tell that
4174 		 * to perf_adjust_period() to avoid stopping it
4175 		 * twice.
4176 		 */
4177 		if (delta > 0)
4178 			perf_adjust_period(event, period, delta, false);
4179 
4180 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4181 	next:
4182 		perf_pmu_enable(event->pmu);
4183 	}
4184 
4185 	perf_pmu_enable(ctx->pmu);
4186 	raw_spin_unlock(&ctx->lock);
4187 }
4188 
4189 /*
4190  * Move @event to the tail of the @ctx's elegible events.
4191  */
4192 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4193 {
4194 	/*
4195 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4196 	 * disabled by the inheritance code.
4197 	 */
4198 	if (ctx->rotate_disable)
4199 		return;
4200 
4201 	perf_event_groups_delete(&ctx->flexible_groups, event);
4202 	perf_event_groups_insert(&ctx->flexible_groups, event);
4203 }
4204 
4205 /* pick an event from the flexible_groups to rotate */
4206 static inline struct perf_event *
4207 ctx_event_to_rotate(struct perf_event_context *ctx)
4208 {
4209 	struct perf_event *event;
4210 
4211 	/* pick the first active flexible event */
4212 	event = list_first_entry_or_null(&ctx->flexible_active,
4213 					 struct perf_event, active_list);
4214 
4215 	/* if no active flexible event, pick the first event */
4216 	if (!event) {
4217 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4218 				      typeof(*event), group_node);
4219 	}
4220 
4221 	/*
4222 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4223 	 * finds there are unschedulable events, it will set it again.
4224 	 */
4225 	ctx->rotate_necessary = 0;
4226 
4227 	return event;
4228 }
4229 
4230 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4231 {
4232 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4233 	struct perf_event_context *task_ctx = NULL;
4234 	int cpu_rotate, task_rotate;
4235 
4236 	/*
4237 	 * Since we run this from IRQ context, nobody can install new
4238 	 * events, thus the event count values are stable.
4239 	 */
4240 
4241 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4242 	task_ctx = cpuctx->task_ctx;
4243 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4244 
4245 	if (!(cpu_rotate || task_rotate))
4246 		return false;
4247 
4248 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4249 	perf_pmu_disable(cpuctx->ctx.pmu);
4250 
4251 	if (task_rotate)
4252 		task_event = ctx_event_to_rotate(task_ctx);
4253 	if (cpu_rotate)
4254 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4255 
4256 	/*
4257 	 * As per the order given at ctx_resched() first 'pop' task flexible
4258 	 * and then, if needed CPU flexible.
4259 	 */
4260 	if (task_event || (task_ctx && cpu_event))
4261 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4262 	if (cpu_event)
4263 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4264 
4265 	if (task_event)
4266 		rotate_ctx(task_ctx, task_event);
4267 	if (cpu_event)
4268 		rotate_ctx(&cpuctx->ctx, cpu_event);
4269 
4270 	perf_event_sched_in(cpuctx, task_ctx, current);
4271 
4272 	perf_pmu_enable(cpuctx->ctx.pmu);
4273 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4274 
4275 	return true;
4276 }
4277 
4278 void perf_event_task_tick(void)
4279 {
4280 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4281 	struct perf_event_context *ctx, *tmp;
4282 	int throttled;
4283 
4284 	lockdep_assert_irqs_disabled();
4285 
4286 	__this_cpu_inc(perf_throttled_seq);
4287 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4288 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4289 
4290 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4291 		perf_adjust_freq_unthr_context(ctx, throttled);
4292 }
4293 
4294 static int event_enable_on_exec(struct perf_event *event,
4295 				struct perf_event_context *ctx)
4296 {
4297 	if (!event->attr.enable_on_exec)
4298 		return 0;
4299 
4300 	event->attr.enable_on_exec = 0;
4301 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4302 		return 0;
4303 
4304 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4305 
4306 	return 1;
4307 }
4308 
4309 /*
4310  * Enable all of a task's events that have been marked enable-on-exec.
4311  * This expects task == current.
4312  */
4313 static void perf_event_enable_on_exec(int ctxn)
4314 {
4315 	struct perf_event_context *ctx, *clone_ctx = NULL;
4316 	enum event_type_t event_type = 0;
4317 	struct perf_cpu_context *cpuctx;
4318 	struct perf_event *event;
4319 	unsigned long flags;
4320 	int enabled = 0;
4321 
4322 	local_irq_save(flags);
4323 	ctx = current->perf_event_ctxp[ctxn];
4324 	if (!ctx || !ctx->nr_events)
4325 		goto out;
4326 
4327 	cpuctx = __get_cpu_context(ctx);
4328 	perf_ctx_lock(cpuctx, ctx);
4329 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4330 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4331 		enabled |= event_enable_on_exec(event, ctx);
4332 		event_type |= get_event_type(event);
4333 	}
4334 
4335 	/*
4336 	 * Unclone and reschedule this context if we enabled any event.
4337 	 */
4338 	if (enabled) {
4339 		clone_ctx = unclone_ctx(ctx);
4340 		ctx_resched(cpuctx, ctx, event_type);
4341 	} else {
4342 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4343 	}
4344 	perf_ctx_unlock(cpuctx, ctx);
4345 
4346 out:
4347 	local_irq_restore(flags);
4348 
4349 	if (clone_ctx)
4350 		put_ctx(clone_ctx);
4351 }
4352 
4353 static void perf_remove_from_owner(struct perf_event *event);
4354 static void perf_event_exit_event(struct perf_event *event,
4355 				  struct perf_event_context *ctx);
4356 
4357 /*
4358  * Removes all events from the current task that have been marked
4359  * remove-on-exec, and feeds their values back to parent events.
4360  */
4361 static void perf_event_remove_on_exec(int ctxn)
4362 {
4363 	struct perf_event_context *ctx, *clone_ctx = NULL;
4364 	struct perf_event *event, *next;
4365 	LIST_HEAD(free_list);
4366 	unsigned long flags;
4367 	bool modified = false;
4368 
4369 	ctx = perf_pin_task_context(current, ctxn);
4370 	if (!ctx)
4371 		return;
4372 
4373 	mutex_lock(&ctx->mutex);
4374 
4375 	if (WARN_ON_ONCE(ctx->task != current))
4376 		goto unlock;
4377 
4378 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4379 		if (!event->attr.remove_on_exec)
4380 			continue;
4381 
4382 		if (!is_kernel_event(event))
4383 			perf_remove_from_owner(event);
4384 
4385 		modified = true;
4386 
4387 		perf_event_exit_event(event, ctx);
4388 	}
4389 
4390 	raw_spin_lock_irqsave(&ctx->lock, flags);
4391 	if (modified)
4392 		clone_ctx = unclone_ctx(ctx);
4393 	--ctx->pin_count;
4394 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4395 
4396 unlock:
4397 	mutex_unlock(&ctx->mutex);
4398 
4399 	put_ctx(ctx);
4400 	if (clone_ctx)
4401 		put_ctx(clone_ctx);
4402 }
4403 
4404 struct perf_read_data {
4405 	struct perf_event *event;
4406 	bool group;
4407 	int ret;
4408 };
4409 
4410 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4411 {
4412 	u16 local_pkg, event_pkg;
4413 
4414 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4415 		int local_cpu = smp_processor_id();
4416 
4417 		event_pkg = topology_physical_package_id(event_cpu);
4418 		local_pkg = topology_physical_package_id(local_cpu);
4419 
4420 		if (event_pkg == local_pkg)
4421 			return local_cpu;
4422 	}
4423 
4424 	return event_cpu;
4425 }
4426 
4427 /*
4428  * Cross CPU call to read the hardware event
4429  */
4430 static void __perf_event_read(void *info)
4431 {
4432 	struct perf_read_data *data = info;
4433 	struct perf_event *sub, *event = data->event;
4434 	struct perf_event_context *ctx = event->ctx;
4435 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4436 	struct pmu *pmu = event->pmu;
4437 
4438 	/*
4439 	 * If this is a task context, we need to check whether it is
4440 	 * the current task context of this cpu.  If not it has been
4441 	 * scheduled out before the smp call arrived.  In that case
4442 	 * event->count would have been updated to a recent sample
4443 	 * when the event was scheduled out.
4444 	 */
4445 	if (ctx->task && cpuctx->task_ctx != ctx)
4446 		return;
4447 
4448 	raw_spin_lock(&ctx->lock);
4449 	if (ctx->is_active & EVENT_TIME) {
4450 		update_context_time(ctx);
4451 		update_cgrp_time_from_event(event);
4452 	}
4453 
4454 	perf_event_update_time(event);
4455 	if (data->group)
4456 		perf_event_update_sibling_time(event);
4457 
4458 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4459 		goto unlock;
4460 
4461 	if (!data->group) {
4462 		pmu->read(event);
4463 		data->ret = 0;
4464 		goto unlock;
4465 	}
4466 
4467 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4468 
4469 	pmu->read(event);
4470 
4471 	for_each_sibling_event(sub, event) {
4472 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4473 			/*
4474 			 * Use sibling's PMU rather than @event's since
4475 			 * sibling could be on different (eg: software) PMU.
4476 			 */
4477 			sub->pmu->read(sub);
4478 		}
4479 	}
4480 
4481 	data->ret = pmu->commit_txn(pmu);
4482 
4483 unlock:
4484 	raw_spin_unlock(&ctx->lock);
4485 }
4486 
4487 static inline u64 perf_event_count(struct perf_event *event)
4488 {
4489 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4490 }
4491 
4492 static void calc_timer_values(struct perf_event *event,
4493 				u64 *now,
4494 				u64 *enabled,
4495 				u64 *running)
4496 {
4497 	u64 ctx_time;
4498 
4499 	*now = perf_clock();
4500 	ctx_time = perf_event_time_now(event, *now);
4501 	__perf_update_times(event, ctx_time, enabled, running);
4502 }
4503 
4504 /*
4505  * NMI-safe method to read a local event, that is an event that
4506  * is:
4507  *   - either for the current task, or for this CPU
4508  *   - does not have inherit set, for inherited task events
4509  *     will not be local and we cannot read them atomically
4510  *   - must not have a pmu::count method
4511  */
4512 int perf_event_read_local(struct perf_event *event, u64 *value,
4513 			  u64 *enabled, u64 *running)
4514 {
4515 	unsigned long flags;
4516 	int ret = 0;
4517 
4518 	/*
4519 	 * Disabling interrupts avoids all counter scheduling (context
4520 	 * switches, timer based rotation and IPIs).
4521 	 */
4522 	local_irq_save(flags);
4523 
4524 	/*
4525 	 * It must not be an event with inherit set, we cannot read
4526 	 * all child counters from atomic context.
4527 	 */
4528 	if (event->attr.inherit) {
4529 		ret = -EOPNOTSUPP;
4530 		goto out;
4531 	}
4532 
4533 	/* If this is a per-task event, it must be for current */
4534 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4535 	    event->hw.target != current) {
4536 		ret = -EINVAL;
4537 		goto out;
4538 	}
4539 
4540 	/* If this is a per-CPU event, it must be for this CPU */
4541 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4542 	    event->cpu != smp_processor_id()) {
4543 		ret = -EINVAL;
4544 		goto out;
4545 	}
4546 
4547 	/* If this is a pinned event it must be running on this CPU */
4548 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4549 		ret = -EBUSY;
4550 		goto out;
4551 	}
4552 
4553 	/*
4554 	 * If the event is currently on this CPU, its either a per-task event,
4555 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4556 	 * oncpu == -1).
4557 	 */
4558 	if (event->oncpu == smp_processor_id())
4559 		event->pmu->read(event);
4560 
4561 	*value = local64_read(&event->count);
4562 	if (enabled || running) {
4563 		u64 __enabled, __running, __now;;
4564 
4565 		calc_timer_values(event, &__now, &__enabled, &__running);
4566 		if (enabled)
4567 			*enabled = __enabled;
4568 		if (running)
4569 			*running = __running;
4570 	}
4571 out:
4572 	local_irq_restore(flags);
4573 
4574 	return ret;
4575 }
4576 
4577 static int perf_event_read(struct perf_event *event, bool group)
4578 {
4579 	enum perf_event_state state = READ_ONCE(event->state);
4580 	int event_cpu, ret = 0;
4581 
4582 	/*
4583 	 * If event is enabled and currently active on a CPU, update the
4584 	 * value in the event structure:
4585 	 */
4586 again:
4587 	if (state == PERF_EVENT_STATE_ACTIVE) {
4588 		struct perf_read_data data;
4589 
4590 		/*
4591 		 * Orders the ->state and ->oncpu loads such that if we see
4592 		 * ACTIVE we must also see the right ->oncpu.
4593 		 *
4594 		 * Matches the smp_wmb() from event_sched_in().
4595 		 */
4596 		smp_rmb();
4597 
4598 		event_cpu = READ_ONCE(event->oncpu);
4599 		if ((unsigned)event_cpu >= nr_cpu_ids)
4600 			return 0;
4601 
4602 		data = (struct perf_read_data){
4603 			.event = event,
4604 			.group = group,
4605 			.ret = 0,
4606 		};
4607 
4608 		preempt_disable();
4609 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4610 
4611 		/*
4612 		 * Purposely ignore the smp_call_function_single() return
4613 		 * value.
4614 		 *
4615 		 * If event_cpu isn't a valid CPU it means the event got
4616 		 * scheduled out and that will have updated the event count.
4617 		 *
4618 		 * Therefore, either way, we'll have an up-to-date event count
4619 		 * after this.
4620 		 */
4621 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4622 		preempt_enable();
4623 		ret = data.ret;
4624 
4625 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4626 		struct perf_event_context *ctx = event->ctx;
4627 		unsigned long flags;
4628 
4629 		raw_spin_lock_irqsave(&ctx->lock, flags);
4630 		state = event->state;
4631 		if (state != PERF_EVENT_STATE_INACTIVE) {
4632 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4633 			goto again;
4634 		}
4635 
4636 		/*
4637 		 * May read while context is not active (e.g., thread is
4638 		 * blocked), in that case we cannot update context time
4639 		 */
4640 		if (ctx->is_active & EVENT_TIME) {
4641 			update_context_time(ctx);
4642 			update_cgrp_time_from_event(event);
4643 		}
4644 
4645 		perf_event_update_time(event);
4646 		if (group)
4647 			perf_event_update_sibling_time(event);
4648 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4649 	}
4650 
4651 	return ret;
4652 }
4653 
4654 /*
4655  * Initialize the perf_event context in a task_struct:
4656  */
4657 static void __perf_event_init_context(struct perf_event_context *ctx)
4658 {
4659 	raw_spin_lock_init(&ctx->lock);
4660 	mutex_init(&ctx->mutex);
4661 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4662 	perf_event_groups_init(&ctx->pinned_groups);
4663 	perf_event_groups_init(&ctx->flexible_groups);
4664 	INIT_LIST_HEAD(&ctx->event_list);
4665 	INIT_LIST_HEAD(&ctx->pinned_active);
4666 	INIT_LIST_HEAD(&ctx->flexible_active);
4667 	refcount_set(&ctx->refcount, 1);
4668 }
4669 
4670 static struct perf_event_context *
4671 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4672 {
4673 	struct perf_event_context *ctx;
4674 
4675 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4676 	if (!ctx)
4677 		return NULL;
4678 
4679 	__perf_event_init_context(ctx);
4680 	if (task)
4681 		ctx->task = get_task_struct(task);
4682 	ctx->pmu = pmu;
4683 
4684 	return ctx;
4685 }
4686 
4687 static struct task_struct *
4688 find_lively_task_by_vpid(pid_t vpid)
4689 {
4690 	struct task_struct *task;
4691 
4692 	rcu_read_lock();
4693 	if (!vpid)
4694 		task = current;
4695 	else
4696 		task = find_task_by_vpid(vpid);
4697 	if (task)
4698 		get_task_struct(task);
4699 	rcu_read_unlock();
4700 
4701 	if (!task)
4702 		return ERR_PTR(-ESRCH);
4703 
4704 	return task;
4705 }
4706 
4707 /*
4708  * Returns a matching context with refcount and pincount.
4709  */
4710 static struct perf_event_context *
4711 find_get_context(struct pmu *pmu, struct task_struct *task,
4712 		struct perf_event *event)
4713 {
4714 	struct perf_event_context *ctx, *clone_ctx = NULL;
4715 	struct perf_cpu_context *cpuctx;
4716 	void *task_ctx_data = NULL;
4717 	unsigned long flags;
4718 	int ctxn, err;
4719 	int cpu = event->cpu;
4720 
4721 	if (!task) {
4722 		/* Must be root to operate on a CPU event: */
4723 		err = perf_allow_cpu(&event->attr);
4724 		if (err)
4725 			return ERR_PTR(err);
4726 
4727 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4728 		ctx = &cpuctx->ctx;
4729 		get_ctx(ctx);
4730 		raw_spin_lock_irqsave(&ctx->lock, flags);
4731 		++ctx->pin_count;
4732 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4733 
4734 		return ctx;
4735 	}
4736 
4737 	err = -EINVAL;
4738 	ctxn = pmu->task_ctx_nr;
4739 	if (ctxn < 0)
4740 		goto errout;
4741 
4742 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4743 		task_ctx_data = alloc_task_ctx_data(pmu);
4744 		if (!task_ctx_data) {
4745 			err = -ENOMEM;
4746 			goto errout;
4747 		}
4748 	}
4749 
4750 retry:
4751 	ctx = perf_lock_task_context(task, ctxn, &flags);
4752 	if (ctx) {
4753 		clone_ctx = unclone_ctx(ctx);
4754 		++ctx->pin_count;
4755 
4756 		if (task_ctx_data && !ctx->task_ctx_data) {
4757 			ctx->task_ctx_data = task_ctx_data;
4758 			task_ctx_data = NULL;
4759 		}
4760 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4761 
4762 		if (clone_ctx)
4763 			put_ctx(clone_ctx);
4764 	} else {
4765 		ctx = alloc_perf_context(pmu, task);
4766 		err = -ENOMEM;
4767 		if (!ctx)
4768 			goto errout;
4769 
4770 		if (task_ctx_data) {
4771 			ctx->task_ctx_data = task_ctx_data;
4772 			task_ctx_data = NULL;
4773 		}
4774 
4775 		err = 0;
4776 		mutex_lock(&task->perf_event_mutex);
4777 		/*
4778 		 * If it has already passed perf_event_exit_task().
4779 		 * we must see PF_EXITING, it takes this mutex too.
4780 		 */
4781 		if (task->flags & PF_EXITING)
4782 			err = -ESRCH;
4783 		else if (task->perf_event_ctxp[ctxn])
4784 			err = -EAGAIN;
4785 		else {
4786 			get_ctx(ctx);
4787 			++ctx->pin_count;
4788 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4789 		}
4790 		mutex_unlock(&task->perf_event_mutex);
4791 
4792 		if (unlikely(err)) {
4793 			put_ctx(ctx);
4794 
4795 			if (err == -EAGAIN)
4796 				goto retry;
4797 			goto errout;
4798 		}
4799 	}
4800 
4801 	free_task_ctx_data(pmu, task_ctx_data);
4802 	return ctx;
4803 
4804 errout:
4805 	free_task_ctx_data(pmu, task_ctx_data);
4806 	return ERR_PTR(err);
4807 }
4808 
4809 static void perf_event_free_filter(struct perf_event *event);
4810 
4811 static void free_event_rcu(struct rcu_head *head)
4812 {
4813 	struct perf_event *event;
4814 
4815 	event = container_of(head, struct perf_event, rcu_head);
4816 	if (event->ns)
4817 		put_pid_ns(event->ns);
4818 	perf_event_free_filter(event);
4819 	kmem_cache_free(perf_event_cache, event);
4820 }
4821 
4822 static void ring_buffer_attach(struct perf_event *event,
4823 			       struct perf_buffer *rb);
4824 
4825 static void detach_sb_event(struct perf_event *event)
4826 {
4827 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4828 
4829 	raw_spin_lock(&pel->lock);
4830 	list_del_rcu(&event->sb_list);
4831 	raw_spin_unlock(&pel->lock);
4832 }
4833 
4834 static bool is_sb_event(struct perf_event *event)
4835 {
4836 	struct perf_event_attr *attr = &event->attr;
4837 
4838 	if (event->parent)
4839 		return false;
4840 
4841 	if (event->attach_state & PERF_ATTACH_TASK)
4842 		return false;
4843 
4844 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4845 	    attr->comm || attr->comm_exec ||
4846 	    attr->task || attr->ksymbol ||
4847 	    attr->context_switch || attr->text_poke ||
4848 	    attr->bpf_event)
4849 		return true;
4850 	return false;
4851 }
4852 
4853 static void unaccount_pmu_sb_event(struct perf_event *event)
4854 {
4855 	if (is_sb_event(event))
4856 		detach_sb_event(event);
4857 }
4858 
4859 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4860 {
4861 	if (event->parent)
4862 		return;
4863 
4864 	if (is_cgroup_event(event))
4865 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4866 }
4867 
4868 #ifdef CONFIG_NO_HZ_FULL
4869 static DEFINE_SPINLOCK(nr_freq_lock);
4870 #endif
4871 
4872 static void unaccount_freq_event_nohz(void)
4873 {
4874 #ifdef CONFIG_NO_HZ_FULL
4875 	spin_lock(&nr_freq_lock);
4876 	if (atomic_dec_and_test(&nr_freq_events))
4877 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4878 	spin_unlock(&nr_freq_lock);
4879 #endif
4880 }
4881 
4882 static void unaccount_freq_event(void)
4883 {
4884 	if (tick_nohz_full_enabled())
4885 		unaccount_freq_event_nohz();
4886 	else
4887 		atomic_dec(&nr_freq_events);
4888 }
4889 
4890 static void unaccount_event(struct perf_event *event)
4891 {
4892 	bool dec = false;
4893 
4894 	if (event->parent)
4895 		return;
4896 
4897 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4898 		dec = true;
4899 	if (event->attr.mmap || event->attr.mmap_data)
4900 		atomic_dec(&nr_mmap_events);
4901 	if (event->attr.build_id)
4902 		atomic_dec(&nr_build_id_events);
4903 	if (event->attr.comm)
4904 		atomic_dec(&nr_comm_events);
4905 	if (event->attr.namespaces)
4906 		atomic_dec(&nr_namespaces_events);
4907 	if (event->attr.cgroup)
4908 		atomic_dec(&nr_cgroup_events);
4909 	if (event->attr.task)
4910 		atomic_dec(&nr_task_events);
4911 	if (event->attr.freq)
4912 		unaccount_freq_event();
4913 	if (event->attr.context_switch) {
4914 		dec = true;
4915 		atomic_dec(&nr_switch_events);
4916 	}
4917 	if (is_cgroup_event(event))
4918 		dec = true;
4919 	if (has_branch_stack(event))
4920 		dec = true;
4921 	if (event->attr.ksymbol)
4922 		atomic_dec(&nr_ksymbol_events);
4923 	if (event->attr.bpf_event)
4924 		atomic_dec(&nr_bpf_events);
4925 	if (event->attr.text_poke)
4926 		atomic_dec(&nr_text_poke_events);
4927 
4928 	if (dec) {
4929 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4930 			schedule_delayed_work(&perf_sched_work, HZ);
4931 	}
4932 
4933 	unaccount_event_cpu(event, event->cpu);
4934 
4935 	unaccount_pmu_sb_event(event);
4936 }
4937 
4938 static void perf_sched_delayed(struct work_struct *work)
4939 {
4940 	mutex_lock(&perf_sched_mutex);
4941 	if (atomic_dec_and_test(&perf_sched_count))
4942 		static_branch_disable(&perf_sched_events);
4943 	mutex_unlock(&perf_sched_mutex);
4944 }
4945 
4946 /*
4947  * The following implement mutual exclusion of events on "exclusive" pmus
4948  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4949  * at a time, so we disallow creating events that might conflict, namely:
4950  *
4951  *  1) cpu-wide events in the presence of per-task events,
4952  *  2) per-task events in the presence of cpu-wide events,
4953  *  3) two matching events on the same context.
4954  *
4955  * The former two cases are handled in the allocation path (perf_event_alloc(),
4956  * _free_event()), the latter -- before the first perf_install_in_context().
4957  */
4958 static int exclusive_event_init(struct perf_event *event)
4959 {
4960 	struct pmu *pmu = event->pmu;
4961 
4962 	if (!is_exclusive_pmu(pmu))
4963 		return 0;
4964 
4965 	/*
4966 	 * Prevent co-existence of per-task and cpu-wide events on the
4967 	 * same exclusive pmu.
4968 	 *
4969 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4970 	 * events on this "exclusive" pmu, positive means there are
4971 	 * per-task events.
4972 	 *
4973 	 * Since this is called in perf_event_alloc() path, event::ctx
4974 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4975 	 * to mean "per-task event", because unlike other attach states it
4976 	 * never gets cleared.
4977 	 */
4978 	if (event->attach_state & PERF_ATTACH_TASK) {
4979 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4980 			return -EBUSY;
4981 	} else {
4982 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4983 			return -EBUSY;
4984 	}
4985 
4986 	return 0;
4987 }
4988 
4989 static void exclusive_event_destroy(struct perf_event *event)
4990 {
4991 	struct pmu *pmu = event->pmu;
4992 
4993 	if (!is_exclusive_pmu(pmu))
4994 		return;
4995 
4996 	/* see comment in exclusive_event_init() */
4997 	if (event->attach_state & PERF_ATTACH_TASK)
4998 		atomic_dec(&pmu->exclusive_cnt);
4999 	else
5000 		atomic_inc(&pmu->exclusive_cnt);
5001 }
5002 
5003 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5004 {
5005 	if ((e1->pmu == e2->pmu) &&
5006 	    (e1->cpu == e2->cpu ||
5007 	     e1->cpu == -1 ||
5008 	     e2->cpu == -1))
5009 		return true;
5010 	return false;
5011 }
5012 
5013 static bool exclusive_event_installable(struct perf_event *event,
5014 					struct perf_event_context *ctx)
5015 {
5016 	struct perf_event *iter_event;
5017 	struct pmu *pmu = event->pmu;
5018 
5019 	lockdep_assert_held(&ctx->mutex);
5020 
5021 	if (!is_exclusive_pmu(pmu))
5022 		return true;
5023 
5024 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5025 		if (exclusive_event_match(iter_event, event))
5026 			return false;
5027 	}
5028 
5029 	return true;
5030 }
5031 
5032 static void perf_addr_filters_splice(struct perf_event *event,
5033 				       struct list_head *head);
5034 
5035 static void _free_event(struct perf_event *event)
5036 {
5037 	irq_work_sync(&event->pending);
5038 
5039 	unaccount_event(event);
5040 
5041 	security_perf_event_free(event);
5042 
5043 	if (event->rb) {
5044 		/*
5045 		 * Can happen when we close an event with re-directed output.
5046 		 *
5047 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5048 		 * over us; possibly making our ring_buffer_put() the last.
5049 		 */
5050 		mutex_lock(&event->mmap_mutex);
5051 		ring_buffer_attach(event, NULL);
5052 		mutex_unlock(&event->mmap_mutex);
5053 	}
5054 
5055 	if (is_cgroup_event(event))
5056 		perf_detach_cgroup(event);
5057 
5058 	if (!event->parent) {
5059 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5060 			put_callchain_buffers();
5061 	}
5062 
5063 	perf_event_free_bpf_prog(event);
5064 	perf_addr_filters_splice(event, NULL);
5065 	kfree(event->addr_filter_ranges);
5066 
5067 	if (event->destroy)
5068 		event->destroy(event);
5069 
5070 	/*
5071 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5072 	 * hw.target.
5073 	 */
5074 	if (event->hw.target)
5075 		put_task_struct(event->hw.target);
5076 
5077 	/*
5078 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5079 	 * all task references must be cleaned up.
5080 	 */
5081 	if (event->ctx)
5082 		put_ctx(event->ctx);
5083 
5084 	exclusive_event_destroy(event);
5085 	module_put(event->pmu->module);
5086 
5087 	call_rcu(&event->rcu_head, free_event_rcu);
5088 }
5089 
5090 /*
5091  * Used to free events which have a known refcount of 1, such as in error paths
5092  * where the event isn't exposed yet and inherited events.
5093  */
5094 static void free_event(struct perf_event *event)
5095 {
5096 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5097 				"unexpected event refcount: %ld; ptr=%p\n",
5098 				atomic_long_read(&event->refcount), event)) {
5099 		/* leak to avoid use-after-free */
5100 		return;
5101 	}
5102 
5103 	_free_event(event);
5104 }
5105 
5106 /*
5107  * Remove user event from the owner task.
5108  */
5109 static void perf_remove_from_owner(struct perf_event *event)
5110 {
5111 	struct task_struct *owner;
5112 
5113 	rcu_read_lock();
5114 	/*
5115 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5116 	 * observe !owner it means the list deletion is complete and we can
5117 	 * indeed free this event, otherwise we need to serialize on
5118 	 * owner->perf_event_mutex.
5119 	 */
5120 	owner = READ_ONCE(event->owner);
5121 	if (owner) {
5122 		/*
5123 		 * Since delayed_put_task_struct() also drops the last
5124 		 * task reference we can safely take a new reference
5125 		 * while holding the rcu_read_lock().
5126 		 */
5127 		get_task_struct(owner);
5128 	}
5129 	rcu_read_unlock();
5130 
5131 	if (owner) {
5132 		/*
5133 		 * If we're here through perf_event_exit_task() we're already
5134 		 * holding ctx->mutex which would be an inversion wrt. the
5135 		 * normal lock order.
5136 		 *
5137 		 * However we can safely take this lock because its the child
5138 		 * ctx->mutex.
5139 		 */
5140 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5141 
5142 		/*
5143 		 * We have to re-check the event->owner field, if it is cleared
5144 		 * we raced with perf_event_exit_task(), acquiring the mutex
5145 		 * ensured they're done, and we can proceed with freeing the
5146 		 * event.
5147 		 */
5148 		if (event->owner) {
5149 			list_del_init(&event->owner_entry);
5150 			smp_store_release(&event->owner, NULL);
5151 		}
5152 		mutex_unlock(&owner->perf_event_mutex);
5153 		put_task_struct(owner);
5154 	}
5155 }
5156 
5157 static void put_event(struct perf_event *event)
5158 {
5159 	if (!atomic_long_dec_and_test(&event->refcount))
5160 		return;
5161 
5162 	_free_event(event);
5163 }
5164 
5165 /*
5166  * Kill an event dead; while event:refcount will preserve the event
5167  * object, it will not preserve its functionality. Once the last 'user'
5168  * gives up the object, we'll destroy the thing.
5169  */
5170 int perf_event_release_kernel(struct perf_event *event)
5171 {
5172 	struct perf_event_context *ctx = event->ctx;
5173 	struct perf_event *child, *tmp;
5174 	LIST_HEAD(free_list);
5175 
5176 	/*
5177 	 * If we got here through err_file: fput(event_file); we will not have
5178 	 * attached to a context yet.
5179 	 */
5180 	if (!ctx) {
5181 		WARN_ON_ONCE(event->attach_state &
5182 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5183 		goto no_ctx;
5184 	}
5185 
5186 	if (!is_kernel_event(event))
5187 		perf_remove_from_owner(event);
5188 
5189 	ctx = perf_event_ctx_lock(event);
5190 	WARN_ON_ONCE(ctx->parent_ctx);
5191 	perf_remove_from_context(event, DETACH_GROUP);
5192 
5193 	raw_spin_lock_irq(&ctx->lock);
5194 	/*
5195 	 * Mark this event as STATE_DEAD, there is no external reference to it
5196 	 * anymore.
5197 	 *
5198 	 * Anybody acquiring event->child_mutex after the below loop _must_
5199 	 * also see this, most importantly inherit_event() which will avoid
5200 	 * placing more children on the list.
5201 	 *
5202 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5203 	 * child events.
5204 	 */
5205 	event->state = PERF_EVENT_STATE_DEAD;
5206 	raw_spin_unlock_irq(&ctx->lock);
5207 
5208 	perf_event_ctx_unlock(event, ctx);
5209 
5210 again:
5211 	mutex_lock(&event->child_mutex);
5212 	list_for_each_entry(child, &event->child_list, child_list) {
5213 
5214 		/*
5215 		 * Cannot change, child events are not migrated, see the
5216 		 * comment with perf_event_ctx_lock_nested().
5217 		 */
5218 		ctx = READ_ONCE(child->ctx);
5219 		/*
5220 		 * Since child_mutex nests inside ctx::mutex, we must jump
5221 		 * through hoops. We start by grabbing a reference on the ctx.
5222 		 *
5223 		 * Since the event cannot get freed while we hold the
5224 		 * child_mutex, the context must also exist and have a !0
5225 		 * reference count.
5226 		 */
5227 		get_ctx(ctx);
5228 
5229 		/*
5230 		 * Now that we have a ctx ref, we can drop child_mutex, and
5231 		 * acquire ctx::mutex without fear of it going away. Then we
5232 		 * can re-acquire child_mutex.
5233 		 */
5234 		mutex_unlock(&event->child_mutex);
5235 		mutex_lock(&ctx->mutex);
5236 		mutex_lock(&event->child_mutex);
5237 
5238 		/*
5239 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5240 		 * state, if child is still the first entry, it didn't get freed
5241 		 * and we can continue doing so.
5242 		 */
5243 		tmp = list_first_entry_or_null(&event->child_list,
5244 					       struct perf_event, child_list);
5245 		if (tmp == child) {
5246 			perf_remove_from_context(child, DETACH_GROUP);
5247 			list_move(&child->child_list, &free_list);
5248 			/*
5249 			 * This matches the refcount bump in inherit_event();
5250 			 * this can't be the last reference.
5251 			 */
5252 			put_event(event);
5253 		}
5254 
5255 		mutex_unlock(&event->child_mutex);
5256 		mutex_unlock(&ctx->mutex);
5257 		put_ctx(ctx);
5258 		goto again;
5259 	}
5260 	mutex_unlock(&event->child_mutex);
5261 
5262 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5263 		void *var = &child->ctx->refcount;
5264 
5265 		list_del(&child->child_list);
5266 		free_event(child);
5267 
5268 		/*
5269 		 * Wake any perf_event_free_task() waiting for this event to be
5270 		 * freed.
5271 		 */
5272 		smp_mb(); /* pairs with wait_var_event() */
5273 		wake_up_var(var);
5274 	}
5275 
5276 no_ctx:
5277 	put_event(event); /* Must be the 'last' reference */
5278 	return 0;
5279 }
5280 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5281 
5282 /*
5283  * Called when the last reference to the file is gone.
5284  */
5285 static int perf_release(struct inode *inode, struct file *file)
5286 {
5287 	perf_event_release_kernel(file->private_data);
5288 	return 0;
5289 }
5290 
5291 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5292 {
5293 	struct perf_event *child;
5294 	u64 total = 0;
5295 
5296 	*enabled = 0;
5297 	*running = 0;
5298 
5299 	mutex_lock(&event->child_mutex);
5300 
5301 	(void)perf_event_read(event, false);
5302 	total += perf_event_count(event);
5303 
5304 	*enabled += event->total_time_enabled +
5305 			atomic64_read(&event->child_total_time_enabled);
5306 	*running += event->total_time_running +
5307 			atomic64_read(&event->child_total_time_running);
5308 
5309 	list_for_each_entry(child, &event->child_list, child_list) {
5310 		(void)perf_event_read(child, false);
5311 		total += perf_event_count(child);
5312 		*enabled += child->total_time_enabled;
5313 		*running += child->total_time_running;
5314 	}
5315 	mutex_unlock(&event->child_mutex);
5316 
5317 	return total;
5318 }
5319 
5320 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5321 {
5322 	struct perf_event_context *ctx;
5323 	u64 count;
5324 
5325 	ctx = perf_event_ctx_lock(event);
5326 	count = __perf_event_read_value(event, enabled, running);
5327 	perf_event_ctx_unlock(event, ctx);
5328 
5329 	return count;
5330 }
5331 EXPORT_SYMBOL_GPL(perf_event_read_value);
5332 
5333 static int __perf_read_group_add(struct perf_event *leader,
5334 					u64 read_format, u64 *values)
5335 {
5336 	struct perf_event_context *ctx = leader->ctx;
5337 	struct perf_event *sub;
5338 	unsigned long flags;
5339 	int n = 1; /* skip @nr */
5340 	int ret;
5341 
5342 	ret = perf_event_read(leader, true);
5343 	if (ret)
5344 		return ret;
5345 
5346 	raw_spin_lock_irqsave(&ctx->lock, flags);
5347 
5348 	/*
5349 	 * Since we co-schedule groups, {enabled,running} times of siblings
5350 	 * will be identical to those of the leader, so we only publish one
5351 	 * set.
5352 	 */
5353 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5354 		values[n++] += leader->total_time_enabled +
5355 			atomic64_read(&leader->child_total_time_enabled);
5356 	}
5357 
5358 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5359 		values[n++] += leader->total_time_running +
5360 			atomic64_read(&leader->child_total_time_running);
5361 	}
5362 
5363 	/*
5364 	 * Write {count,id} tuples for every sibling.
5365 	 */
5366 	values[n++] += perf_event_count(leader);
5367 	if (read_format & PERF_FORMAT_ID)
5368 		values[n++] = primary_event_id(leader);
5369 
5370 	for_each_sibling_event(sub, leader) {
5371 		values[n++] += perf_event_count(sub);
5372 		if (read_format & PERF_FORMAT_ID)
5373 			values[n++] = primary_event_id(sub);
5374 	}
5375 
5376 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5377 	return 0;
5378 }
5379 
5380 static int perf_read_group(struct perf_event *event,
5381 				   u64 read_format, char __user *buf)
5382 {
5383 	struct perf_event *leader = event->group_leader, *child;
5384 	struct perf_event_context *ctx = leader->ctx;
5385 	int ret;
5386 	u64 *values;
5387 
5388 	lockdep_assert_held(&ctx->mutex);
5389 
5390 	values = kzalloc(event->read_size, GFP_KERNEL);
5391 	if (!values)
5392 		return -ENOMEM;
5393 
5394 	values[0] = 1 + leader->nr_siblings;
5395 
5396 	/*
5397 	 * By locking the child_mutex of the leader we effectively
5398 	 * lock the child list of all siblings.. XXX explain how.
5399 	 */
5400 	mutex_lock(&leader->child_mutex);
5401 
5402 	ret = __perf_read_group_add(leader, read_format, values);
5403 	if (ret)
5404 		goto unlock;
5405 
5406 	list_for_each_entry(child, &leader->child_list, child_list) {
5407 		ret = __perf_read_group_add(child, read_format, values);
5408 		if (ret)
5409 			goto unlock;
5410 	}
5411 
5412 	mutex_unlock(&leader->child_mutex);
5413 
5414 	ret = event->read_size;
5415 	if (copy_to_user(buf, values, event->read_size))
5416 		ret = -EFAULT;
5417 	goto out;
5418 
5419 unlock:
5420 	mutex_unlock(&leader->child_mutex);
5421 out:
5422 	kfree(values);
5423 	return ret;
5424 }
5425 
5426 static int perf_read_one(struct perf_event *event,
5427 				 u64 read_format, char __user *buf)
5428 {
5429 	u64 enabled, running;
5430 	u64 values[4];
5431 	int n = 0;
5432 
5433 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5434 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5435 		values[n++] = enabled;
5436 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5437 		values[n++] = running;
5438 	if (read_format & PERF_FORMAT_ID)
5439 		values[n++] = primary_event_id(event);
5440 
5441 	if (copy_to_user(buf, values, n * sizeof(u64)))
5442 		return -EFAULT;
5443 
5444 	return n * sizeof(u64);
5445 }
5446 
5447 static bool is_event_hup(struct perf_event *event)
5448 {
5449 	bool no_children;
5450 
5451 	if (event->state > PERF_EVENT_STATE_EXIT)
5452 		return false;
5453 
5454 	mutex_lock(&event->child_mutex);
5455 	no_children = list_empty(&event->child_list);
5456 	mutex_unlock(&event->child_mutex);
5457 	return no_children;
5458 }
5459 
5460 /*
5461  * Read the performance event - simple non blocking version for now
5462  */
5463 static ssize_t
5464 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5465 {
5466 	u64 read_format = event->attr.read_format;
5467 	int ret;
5468 
5469 	/*
5470 	 * Return end-of-file for a read on an event that is in
5471 	 * error state (i.e. because it was pinned but it couldn't be
5472 	 * scheduled on to the CPU at some point).
5473 	 */
5474 	if (event->state == PERF_EVENT_STATE_ERROR)
5475 		return 0;
5476 
5477 	if (count < event->read_size)
5478 		return -ENOSPC;
5479 
5480 	WARN_ON_ONCE(event->ctx->parent_ctx);
5481 	if (read_format & PERF_FORMAT_GROUP)
5482 		ret = perf_read_group(event, read_format, buf);
5483 	else
5484 		ret = perf_read_one(event, read_format, buf);
5485 
5486 	return ret;
5487 }
5488 
5489 static ssize_t
5490 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5491 {
5492 	struct perf_event *event = file->private_data;
5493 	struct perf_event_context *ctx;
5494 	int ret;
5495 
5496 	ret = security_perf_event_read(event);
5497 	if (ret)
5498 		return ret;
5499 
5500 	ctx = perf_event_ctx_lock(event);
5501 	ret = __perf_read(event, buf, count);
5502 	perf_event_ctx_unlock(event, ctx);
5503 
5504 	return ret;
5505 }
5506 
5507 static __poll_t perf_poll(struct file *file, poll_table *wait)
5508 {
5509 	struct perf_event *event = file->private_data;
5510 	struct perf_buffer *rb;
5511 	__poll_t events = EPOLLHUP;
5512 
5513 	poll_wait(file, &event->waitq, wait);
5514 
5515 	if (is_event_hup(event))
5516 		return events;
5517 
5518 	/*
5519 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5520 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5521 	 */
5522 	mutex_lock(&event->mmap_mutex);
5523 	rb = event->rb;
5524 	if (rb)
5525 		events = atomic_xchg(&rb->poll, 0);
5526 	mutex_unlock(&event->mmap_mutex);
5527 	return events;
5528 }
5529 
5530 static void _perf_event_reset(struct perf_event *event)
5531 {
5532 	(void)perf_event_read(event, false);
5533 	local64_set(&event->count, 0);
5534 	perf_event_update_userpage(event);
5535 }
5536 
5537 /* Assume it's not an event with inherit set. */
5538 u64 perf_event_pause(struct perf_event *event, bool reset)
5539 {
5540 	struct perf_event_context *ctx;
5541 	u64 count;
5542 
5543 	ctx = perf_event_ctx_lock(event);
5544 	WARN_ON_ONCE(event->attr.inherit);
5545 	_perf_event_disable(event);
5546 	count = local64_read(&event->count);
5547 	if (reset)
5548 		local64_set(&event->count, 0);
5549 	perf_event_ctx_unlock(event, ctx);
5550 
5551 	return count;
5552 }
5553 EXPORT_SYMBOL_GPL(perf_event_pause);
5554 
5555 /*
5556  * Holding the top-level event's child_mutex means that any
5557  * descendant process that has inherited this event will block
5558  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5559  * task existence requirements of perf_event_enable/disable.
5560  */
5561 static void perf_event_for_each_child(struct perf_event *event,
5562 					void (*func)(struct perf_event *))
5563 {
5564 	struct perf_event *child;
5565 
5566 	WARN_ON_ONCE(event->ctx->parent_ctx);
5567 
5568 	mutex_lock(&event->child_mutex);
5569 	func(event);
5570 	list_for_each_entry(child, &event->child_list, child_list)
5571 		func(child);
5572 	mutex_unlock(&event->child_mutex);
5573 }
5574 
5575 static void perf_event_for_each(struct perf_event *event,
5576 				  void (*func)(struct perf_event *))
5577 {
5578 	struct perf_event_context *ctx = event->ctx;
5579 	struct perf_event *sibling;
5580 
5581 	lockdep_assert_held(&ctx->mutex);
5582 
5583 	event = event->group_leader;
5584 
5585 	perf_event_for_each_child(event, func);
5586 	for_each_sibling_event(sibling, event)
5587 		perf_event_for_each_child(sibling, func);
5588 }
5589 
5590 static void __perf_event_period(struct perf_event *event,
5591 				struct perf_cpu_context *cpuctx,
5592 				struct perf_event_context *ctx,
5593 				void *info)
5594 {
5595 	u64 value = *((u64 *)info);
5596 	bool active;
5597 
5598 	if (event->attr.freq) {
5599 		event->attr.sample_freq = value;
5600 	} else {
5601 		event->attr.sample_period = value;
5602 		event->hw.sample_period = value;
5603 	}
5604 
5605 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5606 	if (active) {
5607 		perf_pmu_disable(ctx->pmu);
5608 		/*
5609 		 * We could be throttled; unthrottle now to avoid the tick
5610 		 * trying to unthrottle while we already re-started the event.
5611 		 */
5612 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5613 			event->hw.interrupts = 0;
5614 			perf_log_throttle(event, 1);
5615 		}
5616 		event->pmu->stop(event, PERF_EF_UPDATE);
5617 	}
5618 
5619 	local64_set(&event->hw.period_left, 0);
5620 
5621 	if (active) {
5622 		event->pmu->start(event, PERF_EF_RELOAD);
5623 		perf_pmu_enable(ctx->pmu);
5624 	}
5625 }
5626 
5627 static int perf_event_check_period(struct perf_event *event, u64 value)
5628 {
5629 	return event->pmu->check_period(event, value);
5630 }
5631 
5632 static int _perf_event_period(struct perf_event *event, u64 value)
5633 {
5634 	if (!is_sampling_event(event))
5635 		return -EINVAL;
5636 
5637 	if (!value)
5638 		return -EINVAL;
5639 
5640 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5641 		return -EINVAL;
5642 
5643 	if (perf_event_check_period(event, value))
5644 		return -EINVAL;
5645 
5646 	if (!event->attr.freq && (value & (1ULL << 63)))
5647 		return -EINVAL;
5648 
5649 	event_function_call(event, __perf_event_period, &value);
5650 
5651 	return 0;
5652 }
5653 
5654 int perf_event_period(struct perf_event *event, u64 value)
5655 {
5656 	struct perf_event_context *ctx;
5657 	int ret;
5658 
5659 	ctx = perf_event_ctx_lock(event);
5660 	ret = _perf_event_period(event, value);
5661 	perf_event_ctx_unlock(event, ctx);
5662 
5663 	return ret;
5664 }
5665 EXPORT_SYMBOL_GPL(perf_event_period);
5666 
5667 static const struct file_operations perf_fops;
5668 
5669 static inline int perf_fget_light(int fd, struct fd *p)
5670 {
5671 	struct fd f = fdget(fd);
5672 	if (!f.file)
5673 		return -EBADF;
5674 
5675 	if (f.file->f_op != &perf_fops) {
5676 		fdput(f);
5677 		return -EBADF;
5678 	}
5679 	*p = f;
5680 	return 0;
5681 }
5682 
5683 static int perf_event_set_output(struct perf_event *event,
5684 				 struct perf_event *output_event);
5685 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5686 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5687 			  struct perf_event_attr *attr);
5688 
5689 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5690 {
5691 	void (*func)(struct perf_event *);
5692 	u32 flags = arg;
5693 
5694 	switch (cmd) {
5695 	case PERF_EVENT_IOC_ENABLE:
5696 		func = _perf_event_enable;
5697 		break;
5698 	case PERF_EVENT_IOC_DISABLE:
5699 		func = _perf_event_disable;
5700 		break;
5701 	case PERF_EVENT_IOC_RESET:
5702 		func = _perf_event_reset;
5703 		break;
5704 
5705 	case PERF_EVENT_IOC_REFRESH:
5706 		return _perf_event_refresh(event, arg);
5707 
5708 	case PERF_EVENT_IOC_PERIOD:
5709 	{
5710 		u64 value;
5711 
5712 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5713 			return -EFAULT;
5714 
5715 		return _perf_event_period(event, value);
5716 	}
5717 	case PERF_EVENT_IOC_ID:
5718 	{
5719 		u64 id = primary_event_id(event);
5720 
5721 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5722 			return -EFAULT;
5723 		return 0;
5724 	}
5725 
5726 	case PERF_EVENT_IOC_SET_OUTPUT:
5727 	{
5728 		int ret;
5729 		if (arg != -1) {
5730 			struct perf_event *output_event;
5731 			struct fd output;
5732 			ret = perf_fget_light(arg, &output);
5733 			if (ret)
5734 				return ret;
5735 			output_event = output.file->private_data;
5736 			ret = perf_event_set_output(event, output_event);
5737 			fdput(output);
5738 		} else {
5739 			ret = perf_event_set_output(event, NULL);
5740 		}
5741 		return ret;
5742 	}
5743 
5744 	case PERF_EVENT_IOC_SET_FILTER:
5745 		return perf_event_set_filter(event, (void __user *)arg);
5746 
5747 	case PERF_EVENT_IOC_SET_BPF:
5748 	{
5749 		struct bpf_prog *prog;
5750 		int err;
5751 
5752 		prog = bpf_prog_get(arg);
5753 		if (IS_ERR(prog))
5754 			return PTR_ERR(prog);
5755 
5756 		err = perf_event_set_bpf_prog(event, prog, 0);
5757 		if (err) {
5758 			bpf_prog_put(prog);
5759 			return err;
5760 		}
5761 
5762 		return 0;
5763 	}
5764 
5765 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5766 		struct perf_buffer *rb;
5767 
5768 		rcu_read_lock();
5769 		rb = rcu_dereference(event->rb);
5770 		if (!rb || !rb->nr_pages) {
5771 			rcu_read_unlock();
5772 			return -EINVAL;
5773 		}
5774 		rb_toggle_paused(rb, !!arg);
5775 		rcu_read_unlock();
5776 		return 0;
5777 	}
5778 
5779 	case PERF_EVENT_IOC_QUERY_BPF:
5780 		return perf_event_query_prog_array(event, (void __user *)arg);
5781 
5782 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5783 		struct perf_event_attr new_attr;
5784 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5785 					 &new_attr);
5786 
5787 		if (err)
5788 			return err;
5789 
5790 		return perf_event_modify_attr(event,  &new_attr);
5791 	}
5792 	default:
5793 		return -ENOTTY;
5794 	}
5795 
5796 	if (flags & PERF_IOC_FLAG_GROUP)
5797 		perf_event_for_each(event, func);
5798 	else
5799 		perf_event_for_each_child(event, func);
5800 
5801 	return 0;
5802 }
5803 
5804 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5805 {
5806 	struct perf_event *event = file->private_data;
5807 	struct perf_event_context *ctx;
5808 	long ret;
5809 
5810 	/* Treat ioctl like writes as it is likely a mutating operation. */
5811 	ret = security_perf_event_write(event);
5812 	if (ret)
5813 		return ret;
5814 
5815 	ctx = perf_event_ctx_lock(event);
5816 	ret = _perf_ioctl(event, cmd, arg);
5817 	perf_event_ctx_unlock(event, ctx);
5818 
5819 	return ret;
5820 }
5821 
5822 #ifdef CONFIG_COMPAT
5823 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5824 				unsigned long arg)
5825 {
5826 	switch (_IOC_NR(cmd)) {
5827 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5828 	case _IOC_NR(PERF_EVENT_IOC_ID):
5829 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5830 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5831 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5832 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5833 			cmd &= ~IOCSIZE_MASK;
5834 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5835 		}
5836 		break;
5837 	}
5838 	return perf_ioctl(file, cmd, arg);
5839 }
5840 #else
5841 # define perf_compat_ioctl NULL
5842 #endif
5843 
5844 int perf_event_task_enable(void)
5845 {
5846 	struct perf_event_context *ctx;
5847 	struct perf_event *event;
5848 
5849 	mutex_lock(&current->perf_event_mutex);
5850 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5851 		ctx = perf_event_ctx_lock(event);
5852 		perf_event_for_each_child(event, _perf_event_enable);
5853 		perf_event_ctx_unlock(event, ctx);
5854 	}
5855 	mutex_unlock(&current->perf_event_mutex);
5856 
5857 	return 0;
5858 }
5859 
5860 int perf_event_task_disable(void)
5861 {
5862 	struct perf_event_context *ctx;
5863 	struct perf_event *event;
5864 
5865 	mutex_lock(&current->perf_event_mutex);
5866 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5867 		ctx = perf_event_ctx_lock(event);
5868 		perf_event_for_each_child(event, _perf_event_disable);
5869 		perf_event_ctx_unlock(event, ctx);
5870 	}
5871 	mutex_unlock(&current->perf_event_mutex);
5872 
5873 	return 0;
5874 }
5875 
5876 static int perf_event_index(struct perf_event *event)
5877 {
5878 	if (event->hw.state & PERF_HES_STOPPED)
5879 		return 0;
5880 
5881 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5882 		return 0;
5883 
5884 	return event->pmu->event_idx(event);
5885 }
5886 
5887 static void perf_event_init_userpage(struct perf_event *event)
5888 {
5889 	struct perf_event_mmap_page *userpg;
5890 	struct perf_buffer *rb;
5891 
5892 	rcu_read_lock();
5893 	rb = rcu_dereference(event->rb);
5894 	if (!rb)
5895 		goto unlock;
5896 
5897 	userpg = rb->user_page;
5898 
5899 	/* Allow new userspace to detect that bit 0 is deprecated */
5900 	userpg->cap_bit0_is_deprecated = 1;
5901 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5902 	userpg->data_offset = PAGE_SIZE;
5903 	userpg->data_size = perf_data_size(rb);
5904 
5905 unlock:
5906 	rcu_read_unlock();
5907 }
5908 
5909 void __weak arch_perf_update_userpage(
5910 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5911 {
5912 }
5913 
5914 /*
5915  * Callers need to ensure there can be no nesting of this function, otherwise
5916  * the seqlock logic goes bad. We can not serialize this because the arch
5917  * code calls this from NMI context.
5918  */
5919 void perf_event_update_userpage(struct perf_event *event)
5920 {
5921 	struct perf_event_mmap_page *userpg;
5922 	struct perf_buffer *rb;
5923 	u64 enabled, running, now;
5924 
5925 	rcu_read_lock();
5926 	rb = rcu_dereference(event->rb);
5927 	if (!rb)
5928 		goto unlock;
5929 
5930 	/*
5931 	 * compute total_time_enabled, total_time_running
5932 	 * based on snapshot values taken when the event
5933 	 * was last scheduled in.
5934 	 *
5935 	 * we cannot simply called update_context_time()
5936 	 * because of locking issue as we can be called in
5937 	 * NMI context
5938 	 */
5939 	calc_timer_values(event, &now, &enabled, &running);
5940 
5941 	userpg = rb->user_page;
5942 	/*
5943 	 * Disable preemption to guarantee consistent time stamps are stored to
5944 	 * the user page.
5945 	 */
5946 	preempt_disable();
5947 	++userpg->lock;
5948 	barrier();
5949 	userpg->index = perf_event_index(event);
5950 	userpg->offset = perf_event_count(event);
5951 	if (userpg->index)
5952 		userpg->offset -= local64_read(&event->hw.prev_count);
5953 
5954 	userpg->time_enabled = enabled +
5955 			atomic64_read(&event->child_total_time_enabled);
5956 
5957 	userpg->time_running = running +
5958 			atomic64_read(&event->child_total_time_running);
5959 
5960 	arch_perf_update_userpage(event, userpg, now);
5961 
5962 	barrier();
5963 	++userpg->lock;
5964 	preempt_enable();
5965 unlock:
5966 	rcu_read_unlock();
5967 }
5968 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5969 
5970 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5971 {
5972 	struct perf_event *event = vmf->vma->vm_file->private_data;
5973 	struct perf_buffer *rb;
5974 	vm_fault_t ret = VM_FAULT_SIGBUS;
5975 
5976 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5977 		if (vmf->pgoff == 0)
5978 			ret = 0;
5979 		return ret;
5980 	}
5981 
5982 	rcu_read_lock();
5983 	rb = rcu_dereference(event->rb);
5984 	if (!rb)
5985 		goto unlock;
5986 
5987 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5988 		goto unlock;
5989 
5990 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5991 	if (!vmf->page)
5992 		goto unlock;
5993 
5994 	get_page(vmf->page);
5995 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5996 	vmf->page->index   = vmf->pgoff;
5997 
5998 	ret = 0;
5999 unlock:
6000 	rcu_read_unlock();
6001 
6002 	return ret;
6003 }
6004 
6005 static void ring_buffer_attach(struct perf_event *event,
6006 			       struct perf_buffer *rb)
6007 {
6008 	struct perf_buffer *old_rb = NULL;
6009 	unsigned long flags;
6010 
6011 	WARN_ON_ONCE(event->parent);
6012 
6013 	if (event->rb) {
6014 		/*
6015 		 * Should be impossible, we set this when removing
6016 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6017 		 */
6018 		WARN_ON_ONCE(event->rcu_pending);
6019 
6020 		old_rb = event->rb;
6021 		spin_lock_irqsave(&old_rb->event_lock, flags);
6022 		list_del_rcu(&event->rb_entry);
6023 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6024 
6025 		event->rcu_batches = get_state_synchronize_rcu();
6026 		event->rcu_pending = 1;
6027 	}
6028 
6029 	if (rb) {
6030 		if (event->rcu_pending) {
6031 			cond_synchronize_rcu(event->rcu_batches);
6032 			event->rcu_pending = 0;
6033 		}
6034 
6035 		spin_lock_irqsave(&rb->event_lock, flags);
6036 		list_add_rcu(&event->rb_entry, &rb->event_list);
6037 		spin_unlock_irqrestore(&rb->event_lock, flags);
6038 	}
6039 
6040 	/*
6041 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6042 	 * before swizzling the event::rb pointer; if it's getting
6043 	 * unmapped, its aux_mmap_count will be 0 and it won't
6044 	 * restart. See the comment in __perf_pmu_output_stop().
6045 	 *
6046 	 * Data will inevitably be lost when set_output is done in
6047 	 * mid-air, but then again, whoever does it like this is
6048 	 * not in for the data anyway.
6049 	 */
6050 	if (has_aux(event))
6051 		perf_event_stop(event, 0);
6052 
6053 	rcu_assign_pointer(event->rb, rb);
6054 
6055 	if (old_rb) {
6056 		ring_buffer_put(old_rb);
6057 		/*
6058 		 * Since we detached before setting the new rb, so that we
6059 		 * could attach the new rb, we could have missed a wakeup.
6060 		 * Provide it now.
6061 		 */
6062 		wake_up_all(&event->waitq);
6063 	}
6064 }
6065 
6066 static void ring_buffer_wakeup(struct perf_event *event)
6067 {
6068 	struct perf_buffer *rb;
6069 
6070 	if (event->parent)
6071 		event = event->parent;
6072 
6073 	rcu_read_lock();
6074 	rb = rcu_dereference(event->rb);
6075 	if (rb) {
6076 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6077 			wake_up_all(&event->waitq);
6078 	}
6079 	rcu_read_unlock();
6080 }
6081 
6082 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6083 {
6084 	struct perf_buffer *rb;
6085 
6086 	if (event->parent)
6087 		event = event->parent;
6088 
6089 	rcu_read_lock();
6090 	rb = rcu_dereference(event->rb);
6091 	if (rb) {
6092 		if (!refcount_inc_not_zero(&rb->refcount))
6093 			rb = NULL;
6094 	}
6095 	rcu_read_unlock();
6096 
6097 	return rb;
6098 }
6099 
6100 void ring_buffer_put(struct perf_buffer *rb)
6101 {
6102 	if (!refcount_dec_and_test(&rb->refcount))
6103 		return;
6104 
6105 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6106 
6107 	call_rcu(&rb->rcu_head, rb_free_rcu);
6108 }
6109 
6110 static void perf_mmap_open(struct vm_area_struct *vma)
6111 {
6112 	struct perf_event *event = vma->vm_file->private_data;
6113 
6114 	atomic_inc(&event->mmap_count);
6115 	atomic_inc(&event->rb->mmap_count);
6116 
6117 	if (vma->vm_pgoff)
6118 		atomic_inc(&event->rb->aux_mmap_count);
6119 
6120 	if (event->pmu->event_mapped)
6121 		event->pmu->event_mapped(event, vma->vm_mm);
6122 }
6123 
6124 static void perf_pmu_output_stop(struct perf_event *event);
6125 
6126 /*
6127  * A buffer can be mmap()ed multiple times; either directly through the same
6128  * event, or through other events by use of perf_event_set_output().
6129  *
6130  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6131  * the buffer here, where we still have a VM context. This means we need
6132  * to detach all events redirecting to us.
6133  */
6134 static void perf_mmap_close(struct vm_area_struct *vma)
6135 {
6136 	struct perf_event *event = vma->vm_file->private_data;
6137 	struct perf_buffer *rb = ring_buffer_get(event);
6138 	struct user_struct *mmap_user = rb->mmap_user;
6139 	int mmap_locked = rb->mmap_locked;
6140 	unsigned long size = perf_data_size(rb);
6141 	bool detach_rest = false;
6142 
6143 	if (event->pmu->event_unmapped)
6144 		event->pmu->event_unmapped(event, vma->vm_mm);
6145 
6146 	/*
6147 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6148 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6149 	 * serialize with perf_mmap here.
6150 	 */
6151 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6152 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6153 		/*
6154 		 * Stop all AUX events that are writing to this buffer,
6155 		 * so that we can free its AUX pages and corresponding PMU
6156 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6157 		 * they won't start any more (see perf_aux_output_begin()).
6158 		 */
6159 		perf_pmu_output_stop(event);
6160 
6161 		/* now it's safe to free the pages */
6162 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6163 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6164 
6165 		/* this has to be the last one */
6166 		rb_free_aux(rb);
6167 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6168 
6169 		mutex_unlock(&event->mmap_mutex);
6170 	}
6171 
6172 	if (atomic_dec_and_test(&rb->mmap_count))
6173 		detach_rest = true;
6174 
6175 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6176 		goto out_put;
6177 
6178 	ring_buffer_attach(event, NULL);
6179 	mutex_unlock(&event->mmap_mutex);
6180 
6181 	/* If there's still other mmap()s of this buffer, we're done. */
6182 	if (!detach_rest)
6183 		goto out_put;
6184 
6185 	/*
6186 	 * No other mmap()s, detach from all other events that might redirect
6187 	 * into the now unreachable buffer. Somewhat complicated by the
6188 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6189 	 */
6190 again:
6191 	rcu_read_lock();
6192 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6193 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6194 			/*
6195 			 * This event is en-route to free_event() which will
6196 			 * detach it and remove it from the list.
6197 			 */
6198 			continue;
6199 		}
6200 		rcu_read_unlock();
6201 
6202 		mutex_lock(&event->mmap_mutex);
6203 		/*
6204 		 * Check we didn't race with perf_event_set_output() which can
6205 		 * swizzle the rb from under us while we were waiting to
6206 		 * acquire mmap_mutex.
6207 		 *
6208 		 * If we find a different rb; ignore this event, a next
6209 		 * iteration will no longer find it on the list. We have to
6210 		 * still restart the iteration to make sure we're not now
6211 		 * iterating the wrong list.
6212 		 */
6213 		if (event->rb == rb)
6214 			ring_buffer_attach(event, NULL);
6215 
6216 		mutex_unlock(&event->mmap_mutex);
6217 		put_event(event);
6218 
6219 		/*
6220 		 * Restart the iteration; either we're on the wrong list or
6221 		 * destroyed its integrity by doing a deletion.
6222 		 */
6223 		goto again;
6224 	}
6225 	rcu_read_unlock();
6226 
6227 	/*
6228 	 * It could be there's still a few 0-ref events on the list; they'll
6229 	 * get cleaned up by free_event() -- they'll also still have their
6230 	 * ref on the rb and will free it whenever they are done with it.
6231 	 *
6232 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6233 	 * undo the VM accounting.
6234 	 */
6235 
6236 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6237 			&mmap_user->locked_vm);
6238 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6239 	free_uid(mmap_user);
6240 
6241 out_put:
6242 	ring_buffer_put(rb); /* could be last */
6243 }
6244 
6245 static const struct vm_operations_struct perf_mmap_vmops = {
6246 	.open		= perf_mmap_open,
6247 	.close		= perf_mmap_close, /* non mergeable */
6248 	.fault		= perf_mmap_fault,
6249 	.page_mkwrite	= perf_mmap_fault,
6250 };
6251 
6252 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6253 {
6254 	struct perf_event *event = file->private_data;
6255 	unsigned long user_locked, user_lock_limit;
6256 	struct user_struct *user = current_user();
6257 	struct perf_buffer *rb = NULL;
6258 	unsigned long locked, lock_limit;
6259 	unsigned long vma_size;
6260 	unsigned long nr_pages;
6261 	long user_extra = 0, extra = 0;
6262 	int ret = 0, flags = 0;
6263 
6264 	/*
6265 	 * Don't allow mmap() of inherited per-task counters. This would
6266 	 * create a performance issue due to all children writing to the
6267 	 * same rb.
6268 	 */
6269 	if (event->cpu == -1 && event->attr.inherit)
6270 		return -EINVAL;
6271 
6272 	if (!(vma->vm_flags & VM_SHARED))
6273 		return -EINVAL;
6274 
6275 	ret = security_perf_event_read(event);
6276 	if (ret)
6277 		return ret;
6278 
6279 	vma_size = vma->vm_end - vma->vm_start;
6280 
6281 	if (vma->vm_pgoff == 0) {
6282 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6283 	} else {
6284 		/*
6285 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6286 		 * mapped, all subsequent mappings should have the same size
6287 		 * and offset. Must be above the normal perf buffer.
6288 		 */
6289 		u64 aux_offset, aux_size;
6290 
6291 		if (!event->rb)
6292 			return -EINVAL;
6293 
6294 		nr_pages = vma_size / PAGE_SIZE;
6295 
6296 		mutex_lock(&event->mmap_mutex);
6297 		ret = -EINVAL;
6298 
6299 		rb = event->rb;
6300 		if (!rb)
6301 			goto aux_unlock;
6302 
6303 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6304 		aux_size = READ_ONCE(rb->user_page->aux_size);
6305 
6306 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6307 			goto aux_unlock;
6308 
6309 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6310 			goto aux_unlock;
6311 
6312 		/* already mapped with a different offset */
6313 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6314 			goto aux_unlock;
6315 
6316 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6317 			goto aux_unlock;
6318 
6319 		/* already mapped with a different size */
6320 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6321 			goto aux_unlock;
6322 
6323 		if (!is_power_of_2(nr_pages))
6324 			goto aux_unlock;
6325 
6326 		if (!atomic_inc_not_zero(&rb->mmap_count))
6327 			goto aux_unlock;
6328 
6329 		if (rb_has_aux(rb)) {
6330 			atomic_inc(&rb->aux_mmap_count);
6331 			ret = 0;
6332 			goto unlock;
6333 		}
6334 
6335 		atomic_set(&rb->aux_mmap_count, 1);
6336 		user_extra = nr_pages;
6337 
6338 		goto accounting;
6339 	}
6340 
6341 	/*
6342 	 * If we have rb pages ensure they're a power-of-two number, so we
6343 	 * can do bitmasks instead of modulo.
6344 	 */
6345 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6346 		return -EINVAL;
6347 
6348 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6349 		return -EINVAL;
6350 
6351 	WARN_ON_ONCE(event->ctx->parent_ctx);
6352 again:
6353 	mutex_lock(&event->mmap_mutex);
6354 	if (event->rb) {
6355 		if (event->rb->nr_pages != nr_pages) {
6356 			ret = -EINVAL;
6357 			goto unlock;
6358 		}
6359 
6360 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6361 			/*
6362 			 * Raced against perf_mmap_close() through
6363 			 * perf_event_set_output(). Try again, hope for better
6364 			 * luck.
6365 			 */
6366 			mutex_unlock(&event->mmap_mutex);
6367 			goto again;
6368 		}
6369 
6370 		goto unlock;
6371 	}
6372 
6373 	user_extra = nr_pages + 1;
6374 
6375 accounting:
6376 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6377 
6378 	/*
6379 	 * Increase the limit linearly with more CPUs:
6380 	 */
6381 	user_lock_limit *= num_online_cpus();
6382 
6383 	user_locked = atomic_long_read(&user->locked_vm);
6384 
6385 	/*
6386 	 * sysctl_perf_event_mlock may have changed, so that
6387 	 *     user->locked_vm > user_lock_limit
6388 	 */
6389 	if (user_locked > user_lock_limit)
6390 		user_locked = user_lock_limit;
6391 	user_locked += user_extra;
6392 
6393 	if (user_locked > user_lock_limit) {
6394 		/*
6395 		 * charge locked_vm until it hits user_lock_limit;
6396 		 * charge the rest from pinned_vm
6397 		 */
6398 		extra = user_locked - user_lock_limit;
6399 		user_extra -= extra;
6400 	}
6401 
6402 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6403 	lock_limit >>= PAGE_SHIFT;
6404 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6405 
6406 	if ((locked > lock_limit) && perf_is_paranoid() &&
6407 		!capable(CAP_IPC_LOCK)) {
6408 		ret = -EPERM;
6409 		goto unlock;
6410 	}
6411 
6412 	WARN_ON(!rb && event->rb);
6413 
6414 	if (vma->vm_flags & VM_WRITE)
6415 		flags |= RING_BUFFER_WRITABLE;
6416 
6417 	if (!rb) {
6418 		rb = rb_alloc(nr_pages,
6419 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6420 			      event->cpu, flags);
6421 
6422 		if (!rb) {
6423 			ret = -ENOMEM;
6424 			goto unlock;
6425 		}
6426 
6427 		atomic_set(&rb->mmap_count, 1);
6428 		rb->mmap_user = get_current_user();
6429 		rb->mmap_locked = extra;
6430 
6431 		ring_buffer_attach(event, rb);
6432 
6433 		perf_event_update_time(event);
6434 		perf_event_init_userpage(event);
6435 		perf_event_update_userpage(event);
6436 	} else {
6437 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6438 				   event->attr.aux_watermark, flags);
6439 		if (!ret)
6440 			rb->aux_mmap_locked = extra;
6441 	}
6442 
6443 unlock:
6444 	if (!ret) {
6445 		atomic_long_add(user_extra, &user->locked_vm);
6446 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6447 
6448 		atomic_inc(&event->mmap_count);
6449 	} else if (rb) {
6450 		atomic_dec(&rb->mmap_count);
6451 	}
6452 aux_unlock:
6453 	mutex_unlock(&event->mmap_mutex);
6454 
6455 	/*
6456 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6457 	 * vma.
6458 	 */
6459 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6460 	vma->vm_ops = &perf_mmap_vmops;
6461 
6462 	if (event->pmu->event_mapped)
6463 		event->pmu->event_mapped(event, vma->vm_mm);
6464 
6465 	return ret;
6466 }
6467 
6468 static int perf_fasync(int fd, struct file *filp, int on)
6469 {
6470 	struct inode *inode = file_inode(filp);
6471 	struct perf_event *event = filp->private_data;
6472 	int retval;
6473 
6474 	inode_lock(inode);
6475 	retval = fasync_helper(fd, filp, on, &event->fasync);
6476 	inode_unlock(inode);
6477 
6478 	if (retval < 0)
6479 		return retval;
6480 
6481 	return 0;
6482 }
6483 
6484 static const struct file_operations perf_fops = {
6485 	.llseek			= no_llseek,
6486 	.release		= perf_release,
6487 	.read			= perf_read,
6488 	.poll			= perf_poll,
6489 	.unlocked_ioctl		= perf_ioctl,
6490 	.compat_ioctl		= perf_compat_ioctl,
6491 	.mmap			= perf_mmap,
6492 	.fasync			= perf_fasync,
6493 };
6494 
6495 /*
6496  * Perf event wakeup
6497  *
6498  * If there's data, ensure we set the poll() state and publish everything
6499  * to user-space before waking everybody up.
6500  */
6501 
6502 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6503 {
6504 	/* only the parent has fasync state */
6505 	if (event->parent)
6506 		event = event->parent;
6507 	return &event->fasync;
6508 }
6509 
6510 void perf_event_wakeup(struct perf_event *event)
6511 {
6512 	ring_buffer_wakeup(event);
6513 
6514 	if (event->pending_kill) {
6515 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6516 		event->pending_kill = 0;
6517 	}
6518 }
6519 
6520 static void perf_sigtrap(struct perf_event *event)
6521 {
6522 	/*
6523 	 * We'd expect this to only occur if the irq_work is delayed and either
6524 	 * ctx->task or current has changed in the meantime. This can be the
6525 	 * case on architectures that do not implement arch_irq_work_raise().
6526 	 */
6527 	if (WARN_ON_ONCE(event->ctx->task != current))
6528 		return;
6529 
6530 	/*
6531 	 * perf_pending_event() can race with the task exiting.
6532 	 */
6533 	if (current->flags & PF_EXITING)
6534 		return;
6535 
6536 	force_sig_perf((void __user *)event->pending_addr,
6537 		       event->attr.type, event->attr.sig_data);
6538 }
6539 
6540 static void perf_pending_event_disable(struct perf_event *event)
6541 {
6542 	int cpu = READ_ONCE(event->pending_disable);
6543 
6544 	if (cpu < 0)
6545 		return;
6546 
6547 	if (cpu == smp_processor_id()) {
6548 		WRITE_ONCE(event->pending_disable, -1);
6549 
6550 		if (event->attr.sigtrap) {
6551 			perf_sigtrap(event);
6552 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6553 			return;
6554 		}
6555 
6556 		perf_event_disable_local(event);
6557 		return;
6558 	}
6559 
6560 	/*
6561 	 *  CPU-A			CPU-B
6562 	 *
6563 	 *  perf_event_disable_inatomic()
6564 	 *    @pending_disable = CPU-A;
6565 	 *    irq_work_queue();
6566 	 *
6567 	 *  sched-out
6568 	 *    @pending_disable = -1;
6569 	 *
6570 	 *				sched-in
6571 	 *				perf_event_disable_inatomic()
6572 	 *				  @pending_disable = CPU-B;
6573 	 *				  irq_work_queue(); // FAILS
6574 	 *
6575 	 *  irq_work_run()
6576 	 *    perf_pending_event()
6577 	 *
6578 	 * But the event runs on CPU-B and wants disabling there.
6579 	 */
6580 	irq_work_queue_on(&event->pending, cpu);
6581 }
6582 
6583 static void perf_pending_event(struct irq_work *entry)
6584 {
6585 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6586 	int rctx;
6587 
6588 	rctx = perf_swevent_get_recursion_context();
6589 	/*
6590 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6591 	 * and we won't recurse 'further'.
6592 	 */
6593 
6594 	perf_pending_event_disable(event);
6595 
6596 	if (event->pending_wakeup) {
6597 		event->pending_wakeup = 0;
6598 		perf_event_wakeup(event);
6599 	}
6600 
6601 	if (rctx >= 0)
6602 		perf_swevent_put_recursion_context(rctx);
6603 }
6604 
6605 #ifdef CONFIG_GUEST_PERF_EVENTS
6606 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6607 
6608 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6609 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6610 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6611 
6612 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6613 {
6614 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6615 		return;
6616 
6617 	rcu_assign_pointer(perf_guest_cbs, cbs);
6618 	static_call_update(__perf_guest_state, cbs->state);
6619 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6620 
6621 	/* Implementing ->handle_intel_pt_intr is optional. */
6622 	if (cbs->handle_intel_pt_intr)
6623 		static_call_update(__perf_guest_handle_intel_pt_intr,
6624 				   cbs->handle_intel_pt_intr);
6625 }
6626 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6627 
6628 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6629 {
6630 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6631 		return;
6632 
6633 	rcu_assign_pointer(perf_guest_cbs, NULL);
6634 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6635 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6636 	static_call_update(__perf_guest_handle_intel_pt_intr,
6637 			   (void *)&__static_call_return0);
6638 	synchronize_rcu();
6639 }
6640 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6641 #endif
6642 
6643 static void
6644 perf_output_sample_regs(struct perf_output_handle *handle,
6645 			struct pt_regs *regs, u64 mask)
6646 {
6647 	int bit;
6648 	DECLARE_BITMAP(_mask, 64);
6649 
6650 	bitmap_from_u64(_mask, mask);
6651 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6652 		u64 val;
6653 
6654 		val = perf_reg_value(regs, bit);
6655 		perf_output_put(handle, val);
6656 	}
6657 }
6658 
6659 static void perf_sample_regs_user(struct perf_regs *regs_user,
6660 				  struct pt_regs *regs)
6661 {
6662 	if (user_mode(regs)) {
6663 		regs_user->abi = perf_reg_abi(current);
6664 		regs_user->regs = regs;
6665 	} else if (!(current->flags & PF_KTHREAD)) {
6666 		perf_get_regs_user(regs_user, regs);
6667 	} else {
6668 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6669 		regs_user->regs = NULL;
6670 	}
6671 }
6672 
6673 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6674 				  struct pt_regs *regs)
6675 {
6676 	regs_intr->regs = regs;
6677 	regs_intr->abi  = perf_reg_abi(current);
6678 }
6679 
6680 
6681 /*
6682  * Get remaining task size from user stack pointer.
6683  *
6684  * It'd be better to take stack vma map and limit this more
6685  * precisely, but there's no way to get it safely under interrupt,
6686  * so using TASK_SIZE as limit.
6687  */
6688 static u64 perf_ustack_task_size(struct pt_regs *regs)
6689 {
6690 	unsigned long addr = perf_user_stack_pointer(regs);
6691 
6692 	if (!addr || addr >= TASK_SIZE)
6693 		return 0;
6694 
6695 	return TASK_SIZE - addr;
6696 }
6697 
6698 static u16
6699 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6700 			struct pt_regs *regs)
6701 {
6702 	u64 task_size;
6703 
6704 	/* No regs, no stack pointer, no dump. */
6705 	if (!regs)
6706 		return 0;
6707 
6708 	/*
6709 	 * Check if we fit in with the requested stack size into the:
6710 	 * - TASK_SIZE
6711 	 *   If we don't, we limit the size to the TASK_SIZE.
6712 	 *
6713 	 * - remaining sample size
6714 	 *   If we don't, we customize the stack size to
6715 	 *   fit in to the remaining sample size.
6716 	 */
6717 
6718 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6719 	stack_size = min(stack_size, (u16) task_size);
6720 
6721 	/* Current header size plus static size and dynamic size. */
6722 	header_size += 2 * sizeof(u64);
6723 
6724 	/* Do we fit in with the current stack dump size? */
6725 	if ((u16) (header_size + stack_size) < header_size) {
6726 		/*
6727 		 * If we overflow the maximum size for the sample,
6728 		 * we customize the stack dump size to fit in.
6729 		 */
6730 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6731 		stack_size = round_up(stack_size, sizeof(u64));
6732 	}
6733 
6734 	return stack_size;
6735 }
6736 
6737 static void
6738 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6739 			  struct pt_regs *regs)
6740 {
6741 	/* Case of a kernel thread, nothing to dump */
6742 	if (!regs) {
6743 		u64 size = 0;
6744 		perf_output_put(handle, size);
6745 	} else {
6746 		unsigned long sp;
6747 		unsigned int rem;
6748 		u64 dyn_size;
6749 		mm_segment_t fs;
6750 
6751 		/*
6752 		 * We dump:
6753 		 * static size
6754 		 *   - the size requested by user or the best one we can fit
6755 		 *     in to the sample max size
6756 		 * data
6757 		 *   - user stack dump data
6758 		 * dynamic size
6759 		 *   - the actual dumped size
6760 		 */
6761 
6762 		/* Static size. */
6763 		perf_output_put(handle, dump_size);
6764 
6765 		/* Data. */
6766 		sp = perf_user_stack_pointer(regs);
6767 		fs = force_uaccess_begin();
6768 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6769 		force_uaccess_end(fs);
6770 		dyn_size = dump_size - rem;
6771 
6772 		perf_output_skip(handle, rem);
6773 
6774 		/* Dynamic size. */
6775 		perf_output_put(handle, dyn_size);
6776 	}
6777 }
6778 
6779 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6780 					  struct perf_sample_data *data,
6781 					  size_t size)
6782 {
6783 	struct perf_event *sampler = event->aux_event;
6784 	struct perf_buffer *rb;
6785 
6786 	data->aux_size = 0;
6787 
6788 	if (!sampler)
6789 		goto out;
6790 
6791 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6792 		goto out;
6793 
6794 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6795 		goto out;
6796 
6797 	rb = ring_buffer_get(sampler);
6798 	if (!rb)
6799 		goto out;
6800 
6801 	/*
6802 	 * If this is an NMI hit inside sampling code, don't take
6803 	 * the sample. See also perf_aux_sample_output().
6804 	 */
6805 	if (READ_ONCE(rb->aux_in_sampling)) {
6806 		data->aux_size = 0;
6807 	} else {
6808 		size = min_t(size_t, size, perf_aux_size(rb));
6809 		data->aux_size = ALIGN(size, sizeof(u64));
6810 	}
6811 	ring_buffer_put(rb);
6812 
6813 out:
6814 	return data->aux_size;
6815 }
6816 
6817 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6818                                  struct perf_event *event,
6819                                  struct perf_output_handle *handle,
6820                                  unsigned long size)
6821 {
6822 	unsigned long flags;
6823 	long ret;
6824 
6825 	/*
6826 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6827 	 * paths. If we start calling them in NMI context, they may race with
6828 	 * the IRQ ones, that is, for example, re-starting an event that's just
6829 	 * been stopped, which is why we're using a separate callback that
6830 	 * doesn't change the event state.
6831 	 *
6832 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6833 	 */
6834 	local_irq_save(flags);
6835 	/*
6836 	 * Guard against NMI hits inside the critical section;
6837 	 * see also perf_prepare_sample_aux().
6838 	 */
6839 	WRITE_ONCE(rb->aux_in_sampling, 1);
6840 	barrier();
6841 
6842 	ret = event->pmu->snapshot_aux(event, handle, size);
6843 
6844 	barrier();
6845 	WRITE_ONCE(rb->aux_in_sampling, 0);
6846 	local_irq_restore(flags);
6847 
6848 	return ret;
6849 }
6850 
6851 static void perf_aux_sample_output(struct perf_event *event,
6852 				   struct perf_output_handle *handle,
6853 				   struct perf_sample_data *data)
6854 {
6855 	struct perf_event *sampler = event->aux_event;
6856 	struct perf_buffer *rb;
6857 	unsigned long pad;
6858 	long size;
6859 
6860 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6861 		return;
6862 
6863 	rb = ring_buffer_get(sampler);
6864 	if (!rb)
6865 		return;
6866 
6867 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6868 
6869 	/*
6870 	 * An error here means that perf_output_copy() failed (returned a
6871 	 * non-zero surplus that it didn't copy), which in its current
6872 	 * enlightened implementation is not possible. If that changes, we'd
6873 	 * like to know.
6874 	 */
6875 	if (WARN_ON_ONCE(size < 0))
6876 		goto out_put;
6877 
6878 	/*
6879 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6880 	 * perf_prepare_sample_aux(), so should not be more than that.
6881 	 */
6882 	pad = data->aux_size - size;
6883 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6884 		pad = 8;
6885 
6886 	if (pad) {
6887 		u64 zero = 0;
6888 		perf_output_copy(handle, &zero, pad);
6889 	}
6890 
6891 out_put:
6892 	ring_buffer_put(rb);
6893 }
6894 
6895 static void __perf_event_header__init_id(struct perf_event_header *header,
6896 					 struct perf_sample_data *data,
6897 					 struct perf_event *event)
6898 {
6899 	u64 sample_type = event->attr.sample_type;
6900 
6901 	data->type = sample_type;
6902 	header->size += event->id_header_size;
6903 
6904 	if (sample_type & PERF_SAMPLE_TID) {
6905 		/* namespace issues */
6906 		data->tid_entry.pid = perf_event_pid(event, current);
6907 		data->tid_entry.tid = perf_event_tid(event, current);
6908 	}
6909 
6910 	if (sample_type & PERF_SAMPLE_TIME)
6911 		data->time = perf_event_clock(event);
6912 
6913 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6914 		data->id = primary_event_id(event);
6915 
6916 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6917 		data->stream_id = event->id;
6918 
6919 	if (sample_type & PERF_SAMPLE_CPU) {
6920 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6921 		data->cpu_entry.reserved = 0;
6922 	}
6923 }
6924 
6925 void perf_event_header__init_id(struct perf_event_header *header,
6926 				struct perf_sample_data *data,
6927 				struct perf_event *event)
6928 {
6929 	if (event->attr.sample_id_all)
6930 		__perf_event_header__init_id(header, data, event);
6931 }
6932 
6933 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6934 					   struct perf_sample_data *data)
6935 {
6936 	u64 sample_type = data->type;
6937 
6938 	if (sample_type & PERF_SAMPLE_TID)
6939 		perf_output_put(handle, data->tid_entry);
6940 
6941 	if (sample_type & PERF_SAMPLE_TIME)
6942 		perf_output_put(handle, data->time);
6943 
6944 	if (sample_type & PERF_SAMPLE_ID)
6945 		perf_output_put(handle, data->id);
6946 
6947 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6948 		perf_output_put(handle, data->stream_id);
6949 
6950 	if (sample_type & PERF_SAMPLE_CPU)
6951 		perf_output_put(handle, data->cpu_entry);
6952 
6953 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6954 		perf_output_put(handle, data->id);
6955 }
6956 
6957 void perf_event__output_id_sample(struct perf_event *event,
6958 				  struct perf_output_handle *handle,
6959 				  struct perf_sample_data *sample)
6960 {
6961 	if (event->attr.sample_id_all)
6962 		__perf_event__output_id_sample(handle, sample);
6963 }
6964 
6965 static void perf_output_read_one(struct perf_output_handle *handle,
6966 				 struct perf_event *event,
6967 				 u64 enabled, u64 running)
6968 {
6969 	u64 read_format = event->attr.read_format;
6970 	u64 values[4];
6971 	int n = 0;
6972 
6973 	values[n++] = perf_event_count(event);
6974 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6975 		values[n++] = enabled +
6976 			atomic64_read(&event->child_total_time_enabled);
6977 	}
6978 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6979 		values[n++] = running +
6980 			atomic64_read(&event->child_total_time_running);
6981 	}
6982 	if (read_format & PERF_FORMAT_ID)
6983 		values[n++] = primary_event_id(event);
6984 
6985 	__output_copy(handle, values, n * sizeof(u64));
6986 }
6987 
6988 static void perf_output_read_group(struct perf_output_handle *handle,
6989 			    struct perf_event *event,
6990 			    u64 enabled, u64 running)
6991 {
6992 	struct perf_event *leader = event->group_leader, *sub;
6993 	u64 read_format = event->attr.read_format;
6994 	u64 values[5];
6995 	int n = 0;
6996 
6997 	values[n++] = 1 + leader->nr_siblings;
6998 
6999 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7000 		values[n++] = enabled;
7001 
7002 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7003 		values[n++] = running;
7004 
7005 	if ((leader != event) &&
7006 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7007 		leader->pmu->read(leader);
7008 
7009 	values[n++] = perf_event_count(leader);
7010 	if (read_format & PERF_FORMAT_ID)
7011 		values[n++] = primary_event_id(leader);
7012 
7013 	__output_copy(handle, values, n * sizeof(u64));
7014 
7015 	for_each_sibling_event(sub, leader) {
7016 		n = 0;
7017 
7018 		if ((sub != event) &&
7019 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7020 			sub->pmu->read(sub);
7021 
7022 		values[n++] = perf_event_count(sub);
7023 		if (read_format & PERF_FORMAT_ID)
7024 			values[n++] = primary_event_id(sub);
7025 
7026 		__output_copy(handle, values, n * sizeof(u64));
7027 	}
7028 }
7029 
7030 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7031 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7032 
7033 /*
7034  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7035  *
7036  * The problem is that its both hard and excessively expensive to iterate the
7037  * child list, not to mention that its impossible to IPI the children running
7038  * on another CPU, from interrupt/NMI context.
7039  */
7040 static void perf_output_read(struct perf_output_handle *handle,
7041 			     struct perf_event *event)
7042 {
7043 	u64 enabled = 0, running = 0, now;
7044 	u64 read_format = event->attr.read_format;
7045 
7046 	/*
7047 	 * compute total_time_enabled, total_time_running
7048 	 * based on snapshot values taken when the event
7049 	 * was last scheduled in.
7050 	 *
7051 	 * we cannot simply called update_context_time()
7052 	 * because of locking issue as we are called in
7053 	 * NMI context
7054 	 */
7055 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7056 		calc_timer_values(event, &now, &enabled, &running);
7057 
7058 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7059 		perf_output_read_group(handle, event, enabled, running);
7060 	else
7061 		perf_output_read_one(handle, event, enabled, running);
7062 }
7063 
7064 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7065 {
7066 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7067 }
7068 
7069 void perf_output_sample(struct perf_output_handle *handle,
7070 			struct perf_event_header *header,
7071 			struct perf_sample_data *data,
7072 			struct perf_event *event)
7073 {
7074 	u64 sample_type = data->type;
7075 
7076 	perf_output_put(handle, *header);
7077 
7078 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7079 		perf_output_put(handle, data->id);
7080 
7081 	if (sample_type & PERF_SAMPLE_IP)
7082 		perf_output_put(handle, data->ip);
7083 
7084 	if (sample_type & PERF_SAMPLE_TID)
7085 		perf_output_put(handle, data->tid_entry);
7086 
7087 	if (sample_type & PERF_SAMPLE_TIME)
7088 		perf_output_put(handle, data->time);
7089 
7090 	if (sample_type & PERF_SAMPLE_ADDR)
7091 		perf_output_put(handle, data->addr);
7092 
7093 	if (sample_type & PERF_SAMPLE_ID)
7094 		perf_output_put(handle, data->id);
7095 
7096 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7097 		perf_output_put(handle, data->stream_id);
7098 
7099 	if (sample_type & PERF_SAMPLE_CPU)
7100 		perf_output_put(handle, data->cpu_entry);
7101 
7102 	if (sample_type & PERF_SAMPLE_PERIOD)
7103 		perf_output_put(handle, data->period);
7104 
7105 	if (sample_type & PERF_SAMPLE_READ)
7106 		perf_output_read(handle, event);
7107 
7108 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7109 		int size = 1;
7110 
7111 		size += data->callchain->nr;
7112 		size *= sizeof(u64);
7113 		__output_copy(handle, data->callchain, size);
7114 	}
7115 
7116 	if (sample_type & PERF_SAMPLE_RAW) {
7117 		struct perf_raw_record *raw = data->raw;
7118 
7119 		if (raw) {
7120 			struct perf_raw_frag *frag = &raw->frag;
7121 
7122 			perf_output_put(handle, raw->size);
7123 			do {
7124 				if (frag->copy) {
7125 					__output_custom(handle, frag->copy,
7126 							frag->data, frag->size);
7127 				} else {
7128 					__output_copy(handle, frag->data,
7129 						      frag->size);
7130 				}
7131 				if (perf_raw_frag_last(frag))
7132 					break;
7133 				frag = frag->next;
7134 			} while (1);
7135 			if (frag->pad)
7136 				__output_skip(handle, NULL, frag->pad);
7137 		} else {
7138 			struct {
7139 				u32	size;
7140 				u32	data;
7141 			} raw = {
7142 				.size = sizeof(u32),
7143 				.data = 0,
7144 			};
7145 			perf_output_put(handle, raw);
7146 		}
7147 	}
7148 
7149 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7150 		if (data->br_stack) {
7151 			size_t size;
7152 
7153 			size = data->br_stack->nr
7154 			     * sizeof(struct perf_branch_entry);
7155 
7156 			perf_output_put(handle, data->br_stack->nr);
7157 			if (perf_sample_save_hw_index(event))
7158 				perf_output_put(handle, data->br_stack->hw_idx);
7159 			perf_output_copy(handle, data->br_stack->entries, size);
7160 		} else {
7161 			/*
7162 			 * we always store at least the value of nr
7163 			 */
7164 			u64 nr = 0;
7165 			perf_output_put(handle, nr);
7166 		}
7167 	}
7168 
7169 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7170 		u64 abi = data->regs_user.abi;
7171 
7172 		/*
7173 		 * If there are no regs to dump, notice it through
7174 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7175 		 */
7176 		perf_output_put(handle, abi);
7177 
7178 		if (abi) {
7179 			u64 mask = event->attr.sample_regs_user;
7180 			perf_output_sample_regs(handle,
7181 						data->regs_user.regs,
7182 						mask);
7183 		}
7184 	}
7185 
7186 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7187 		perf_output_sample_ustack(handle,
7188 					  data->stack_user_size,
7189 					  data->regs_user.regs);
7190 	}
7191 
7192 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7193 		perf_output_put(handle, data->weight.full);
7194 
7195 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7196 		perf_output_put(handle, data->data_src.val);
7197 
7198 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7199 		perf_output_put(handle, data->txn);
7200 
7201 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7202 		u64 abi = data->regs_intr.abi;
7203 		/*
7204 		 * If there are no regs to dump, notice it through
7205 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7206 		 */
7207 		perf_output_put(handle, abi);
7208 
7209 		if (abi) {
7210 			u64 mask = event->attr.sample_regs_intr;
7211 
7212 			perf_output_sample_regs(handle,
7213 						data->regs_intr.regs,
7214 						mask);
7215 		}
7216 	}
7217 
7218 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7219 		perf_output_put(handle, data->phys_addr);
7220 
7221 	if (sample_type & PERF_SAMPLE_CGROUP)
7222 		perf_output_put(handle, data->cgroup);
7223 
7224 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7225 		perf_output_put(handle, data->data_page_size);
7226 
7227 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7228 		perf_output_put(handle, data->code_page_size);
7229 
7230 	if (sample_type & PERF_SAMPLE_AUX) {
7231 		perf_output_put(handle, data->aux_size);
7232 
7233 		if (data->aux_size)
7234 			perf_aux_sample_output(event, handle, data);
7235 	}
7236 
7237 	if (!event->attr.watermark) {
7238 		int wakeup_events = event->attr.wakeup_events;
7239 
7240 		if (wakeup_events) {
7241 			struct perf_buffer *rb = handle->rb;
7242 			int events = local_inc_return(&rb->events);
7243 
7244 			if (events >= wakeup_events) {
7245 				local_sub(wakeup_events, &rb->events);
7246 				local_inc(&rb->wakeup);
7247 			}
7248 		}
7249 	}
7250 }
7251 
7252 static u64 perf_virt_to_phys(u64 virt)
7253 {
7254 	u64 phys_addr = 0;
7255 
7256 	if (!virt)
7257 		return 0;
7258 
7259 	if (virt >= TASK_SIZE) {
7260 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7261 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7262 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7263 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7264 	} else {
7265 		/*
7266 		 * Walking the pages tables for user address.
7267 		 * Interrupts are disabled, so it prevents any tear down
7268 		 * of the page tables.
7269 		 * Try IRQ-safe get_user_page_fast_only first.
7270 		 * If failed, leave phys_addr as 0.
7271 		 */
7272 		if (current->mm != NULL) {
7273 			struct page *p;
7274 
7275 			pagefault_disable();
7276 			if (get_user_page_fast_only(virt, 0, &p)) {
7277 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7278 				put_page(p);
7279 			}
7280 			pagefault_enable();
7281 		}
7282 	}
7283 
7284 	return phys_addr;
7285 }
7286 
7287 /*
7288  * Return the pagetable size of a given virtual address.
7289  */
7290 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7291 {
7292 	u64 size = 0;
7293 
7294 #ifdef CONFIG_HAVE_FAST_GUP
7295 	pgd_t *pgdp, pgd;
7296 	p4d_t *p4dp, p4d;
7297 	pud_t *pudp, pud;
7298 	pmd_t *pmdp, pmd;
7299 	pte_t *ptep, pte;
7300 
7301 	pgdp = pgd_offset(mm, addr);
7302 	pgd = READ_ONCE(*pgdp);
7303 	if (pgd_none(pgd))
7304 		return 0;
7305 
7306 	if (pgd_leaf(pgd))
7307 		return pgd_leaf_size(pgd);
7308 
7309 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7310 	p4d = READ_ONCE(*p4dp);
7311 	if (!p4d_present(p4d))
7312 		return 0;
7313 
7314 	if (p4d_leaf(p4d))
7315 		return p4d_leaf_size(p4d);
7316 
7317 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7318 	pud = READ_ONCE(*pudp);
7319 	if (!pud_present(pud))
7320 		return 0;
7321 
7322 	if (pud_leaf(pud))
7323 		return pud_leaf_size(pud);
7324 
7325 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7326 	pmd = READ_ONCE(*pmdp);
7327 	if (!pmd_present(pmd))
7328 		return 0;
7329 
7330 	if (pmd_leaf(pmd))
7331 		return pmd_leaf_size(pmd);
7332 
7333 	ptep = pte_offset_map(&pmd, addr);
7334 	pte = ptep_get_lockless(ptep);
7335 	if (pte_present(pte))
7336 		size = pte_leaf_size(pte);
7337 	pte_unmap(ptep);
7338 #endif /* CONFIG_HAVE_FAST_GUP */
7339 
7340 	return size;
7341 }
7342 
7343 static u64 perf_get_page_size(unsigned long addr)
7344 {
7345 	struct mm_struct *mm;
7346 	unsigned long flags;
7347 	u64 size;
7348 
7349 	if (!addr)
7350 		return 0;
7351 
7352 	/*
7353 	 * Software page-table walkers must disable IRQs,
7354 	 * which prevents any tear down of the page tables.
7355 	 */
7356 	local_irq_save(flags);
7357 
7358 	mm = current->mm;
7359 	if (!mm) {
7360 		/*
7361 		 * For kernel threads and the like, use init_mm so that
7362 		 * we can find kernel memory.
7363 		 */
7364 		mm = &init_mm;
7365 	}
7366 
7367 	size = perf_get_pgtable_size(mm, addr);
7368 
7369 	local_irq_restore(flags);
7370 
7371 	return size;
7372 }
7373 
7374 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7375 
7376 struct perf_callchain_entry *
7377 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7378 {
7379 	bool kernel = !event->attr.exclude_callchain_kernel;
7380 	bool user   = !event->attr.exclude_callchain_user;
7381 	/* Disallow cross-task user callchains. */
7382 	bool crosstask = event->ctx->task && event->ctx->task != current;
7383 	const u32 max_stack = event->attr.sample_max_stack;
7384 	struct perf_callchain_entry *callchain;
7385 
7386 	if (!kernel && !user)
7387 		return &__empty_callchain;
7388 
7389 	callchain = get_perf_callchain(regs, 0, kernel, user,
7390 				       max_stack, crosstask, true);
7391 	return callchain ?: &__empty_callchain;
7392 }
7393 
7394 void perf_prepare_sample(struct perf_event_header *header,
7395 			 struct perf_sample_data *data,
7396 			 struct perf_event *event,
7397 			 struct pt_regs *regs)
7398 {
7399 	u64 sample_type = event->attr.sample_type;
7400 
7401 	header->type = PERF_RECORD_SAMPLE;
7402 	header->size = sizeof(*header) + event->header_size;
7403 
7404 	header->misc = 0;
7405 	header->misc |= perf_misc_flags(regs);
7406 
7407 	__perf_event_header__init_id(header, data, event);
7408 
7409 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7410 		data->ip = perf_instruction_pointer(regs);
7411 
7412 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7413 		int size = 1;
7414 
7415 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7416 			data->callchain = perf_callchain(event, regs);
7417 
7418 		size += data->callchain->nr;
7419 
7420 		header->size += size * sizeof(u64);
7421 	}
7422 
7423 	if (sample_type & PERF_SAMPLE_RAW) {
7424 		struct perf_raw_record *raw = data->raw;
7425 		int size;
7426 
7427 		if (raw) {
7428 			struct perf_raw_frag *frag = &raw->frag;
7429 			u32 sum = 0;
7430 
7431 			do {
7432 				sum += frag->size;
7433 				if (perf_raw_frag_last(frag))
7434 					break;
7435 				frag = frag->next;
7436 			} while (1);
7437 
7438 			size = round_up(sum + sizeof(u32), sizeof(u64));
7439 			raw->size = size - sizeof(u32);
7440 			frag->pad = raw->size - sum;
7441 		} else {
7442 			size = sizeof(u64);
7443 		}
7444 
7445 		header->size += size;
7446 	}
7447 
7448 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7449 		int size = sizeof(u64); /* nr */
7450 		if (data->br_stack) {
7451 			if (perf_sample_save_hw_index(event))
7452 				size += sizeof(u64);
7453 
7454 			size += data->br_stack->nr
7455 			      * sizeof(struct perf_branch_entry);
7456 		}
7457 		header->size += size;
7458 	}
7459 
7460 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7461 		perf_sample_regs_user(&data->regs_user, regs);
7462 
7463 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7464 		/* regs dump ABI info */
7465 		int size = sizeof(u64);
7466 
7467 		if (data->regs_user.regs) {
7468 			u64 mask = event->attr.sample_regs_user;
7469 			size += hweight64(mask) * sizeof(u64);
7470 		}
7471 
7472 		header->size += size;
7473 	}
7474 
7475 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7476 		/*
7477 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7478 		 * processed as the last one or have additional check added
7479 		 * in case new sample type is added, because we could eat
7480 		 * up the rest of the sample size.
7481 		 */
7482 		u16 stack_size = event->attr.sample_stack_user;
7483 		u16 size = sizeof(u64);
7484 
7485 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7486 						     data->regs_user.regs);
7487 
7488 		/*
7489 		 * If there is something to dump, add space for the dump
7490 		 * itself and for the field that tells the dynamic size,
7491 		 * which is how many have been actually dumped.
7492 		 */
7493 		if (stack_size)
7494 			size += sizeof(u64) + stack_size;
7495 
7496 		data->stack_user_size = stack_size;
7497 		header->size += size;
7498 	}
7499 
7500 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7501 		/* regs dump ABI info */
7502 		int size = sizeof(u64);
7503 
7504 		perf_sample_regs_intr(&data->regs_intr, regs);
7505 
7506 		if (data->regs_intr.regs) {
7507 			u64 mask = event->attr.sample_regs_intr;
7508 
7509 			size += hweight64(mask) * sizeof(u64);
7510 		}
7511 
7512 		header->size += size;
7513 	}
7514 
7515 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7516 		data->phys_addr = perf_virt_to_phys(data->addr);
7517 
7518 #ifdef CONFIG_CGROUP_PERF
7519 	if (sample_type & PERF_SAMPLE_CGROUP) {
7520 		struct cgroup *cgrp;
7521 
7522 		/* protected by RCU */
7523 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7524 		data->cgroup = cgroup_id(cgrp);
7525 	}
7526 #endif
7527 
7528 	/*
7529 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7530 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7531 	 * but the value will not dump to the userspace.
7532 	 */
7533 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7534 		data->data_page_size = perf_get_page_size(data->addr);
7535 
7536 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7537 		data->code_page_size = perf_get_page_size(data->ip);
7538 
7539 	if (sample_type & PERF_SAMPLE_AUX) {
7540 		u64 size;
7541 
7542 		header->size += sizeof(u64); /* size */
7543 
7544 		/*
7545 		 * Given the 16bit nature of header::size, an AUX sample can
7546 		 * easily overflow it, what with all the preceding sample bits.
7547 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7548 		 * per sample in total (rounded down to 8 byte boundary).
7549 		 */
7550 		size = min_t(size_t, U16_MAX - header->size,
7551 			     event->attr.aux_sample_size);
7552 		size = rounddown(size, 8);
7553 		size = perf_prepare_sample_aux(event, data, size);
7554 
7555 		WARN_ON_ONCE(size + header->size > U16_MAX);
7556 		header->size += size;
7557 	}
7558 	/*
7559 	 * If you're adding more sample types here, you likely need to do
7560 	 * something about the overflowing header::size, like repurpose the
7561 	 * lowest 3 bits of size, which should be always zero at the moment.
7562 	 * This raises a more important question, do we really need 512k sized
7563 	 * samples and why, so good argumentation is in order for whatever you
7564 	 * do here next.
7565 	 */
7566 	WARN_ON_ONCE(header->size & 7);
7567 }
7568 
7569 static __always_inline int
7570 __perf_event_output(struct perf_event *event,
7571 		    struct perf_sample_data *data,
7572 		    struct pt_regs *regs,
7573 		    int (*output_begin)(struct perf_output_handle *,
7574 					struct perf_sample_data *,
7575 					struct perf_event *,
7576 					unsigned int))
7577 {
7578 	struct perf_output_handle handle;
7579 	struct perf_event_header header;
7580 	int err;
7581 
7582 	/* protect the callchain buffers */
7583 	rcu_read_lock();
7584 
7585 	perf_prepare_sample(&header, data, event, regs);
7586 
7587 	err = output_begin(&handle, data, event, header.size);
7588 	if (err)
7589 		goto exit;
7590 
7591 	perf_output_sample(&handle, &header, data, event);
7592 
7593 	perf_output_end(&handle);
7594 
7595 exit:
7596 	rcu_read_unlock();
7597 	return err;
7598 }
7599 
7600 void
7601 perf_event_output_forward(struct perf_event *event,
7602 			 struct perf_sample_data *data,
7603 			 struct pt_regs *regs)
7604 {
7605 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7606 }
7607 
7608 void
7609 perf_event_output_backward(struct perf_event *event,
7610 			   struct perf_sample_data *data,
7611 			   struct pt_regs *regs)
7612 {
7613 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7614 }
7615 
7616 int
7617 perf_event_output(struct perf_event *event,
7618 		  struct perf_sample_data *data,
7619 		  struct pt_regs *regs)
7620 {
7621 	return __perf_event_output(event, data, regs, perf_output_begin);
7622 }
7623 
7624 /*
7625  * read event_id
7626  */
7627 
7628 struct perf_read_event {
7629 	struct perf_event_header	header;
7630 
7631 	u32				pid;
7632 	u32				tid;
7633 };
7634 
7635 static void
7636 perf_event_read_event(struct perf_event *event,
7637 			struct task_struct *task)
7638 {
7639 	struct perf_output_handle handle;
7640 	struct perf_sample_data sample;
7641 	struct perf_read_event read_event = {
7642 		.header = {
7643 			.type = PERF_RECORD_READ,
7644 			.misc = 0,
7645 			.size = sizeof(read_event) + event->read_size,
7646 		},
7647 		.pid = perf_event_pid(event, task),
7648 		.tid = perf_event_tid(event, task),
7649 	};
7650 	int ret;
7651 
7652 	perf_event_header__init_id(&read_event.header, &sample, event);
7653 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7654 	if (ret)
7655 		return;
7656 
7657 	perf_output_put(&handle, read_event);
7658 	perf_output_read(&handle, event);
7659 	perf_event__output_id_sample(event, &handle, &sample);
7660 
7661 	perf_output_end(&handle);
7662 }
7663 
7664 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7665 
7666 static void
7667 perf_iterate_ctx(struct perf_event_context *ctx,
7668 		   perf_iterate_f output,
7669 		   void *data, bool all)
7670 {
7671 	struct perf_event *event;
7672 
7673 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7674 		if (!all) {
7675 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7676 				continue;
7677 			if (!event_filter_match(event))
7678 				continue;
7679 		}
7680 
7681 		output(event, data);
7682 	}
7683 }
7684 
7685 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7686 {
7687 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7688 	struct perf_event *event;
7689 
7690 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7691 		/*
7692 		 * Skip events that are not fully formed yet; ensure that
7693 		 * if we observe event->ctx, both event and ctx will be
7694 		 * complete enough. See perf_install_in_context().
7695 		 */
7696 		if (!smp_load_acquire(&event->ctx))
7697 			continue;
7698 
7699 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7700 			continue;
7701 		if (!event_filter_match(event))
7702 			continue;
7703 		output(event, data);
7704 	}
7705 }
7706 
7707 /*
7708  * Iterate all events that need to receive side-band events.
7709  *
7710  * For new callers; ensure that account_pmu_sb_event() includes
7711  * your event, otherwise it might not get delivered.
7712  */
7713 static void
7714 perf_iterate_sb(perf_iterate_f output, void *data,
7715 	       struct perf_event_context *task_ctx)
7716 {
7717 	struct perf_event_context *ctx;
7718 	int ctxn;
7719 
7720 	rcu_read_lock();
7721 	preempt_disable();
7722 
7723 	/*
7724 	 * If we have task_ctx != NULL we only notify the task context itself.
7725 	 * The task_ctx is set only for EXIT events before releasing task
7726 	 * context.
7727 	 */
7728 	if (task_ctx) {
7729 		perf_iterate_ctx(task_ctx, output, data, false);
7730 		goto done;
7731 	}
7732 
7733 	perf_iterate_sb_cpu(output, data);
7734 
7735 	for_each_task_context_nr(ctxn) {
7736 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7737 		if (ctx)
7738 			perf_iterate_ctx(ctx, output, data, false);
7739 	}
7740 done:
7741 	preempt_enable();
7742 	rcu_read_unlock();
7743 }
7744 
7745 /*
7746  * Clear all file-based filters at exec, they'll have to be
7747  * re-instated when/if these objects are mmapped again.
7748  */
7749 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7750 {
7751 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7752 	struct perf_addr_filter *filter;
7753 	unsigned int restart = 0, count = 0;
7754 	unsigned long flags;
7755 
7756 	if (!has_addr_filter(event))
7757 		return;
7758 
7759 	raw_spin_lock_irqsave(&ifh->lock, flags);
7760 	list_for_each_entry(filter, &ifh->list, entry) {
7761 		if (filter->path.dentry) {
7762 			event->addr_filter_ranges[count].start = 0;
7763 			event->addr_filter_ranges[count].size = 0;
7764 			restart++;
7765 		}
7766 
7767 		count++;
7768 	}
7769 
7770 	if (restart)
7771 		event->addr_filters_gen++;
7772 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7773 
7774 	if (restart)
7775 		perf_event_stop(event, 1);
7776 }
7777 
7778 void perf_event_exec(void)
7779 {
7780 	struct perf_event_context *ctx;
7781 	int ctxn;
7782 
7783 	for_each_task_context_nr(ctxn) {
7784 		perf_event_enable_on_exec(ctxn);
7785 		perf_event_remove_on_exec(ctxn);
7786 
7787 		rcu_read_lock();
7788 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7789 		if (ctx) {
7790 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7791 					 NULL, true);
7792 		}
7793 		rcu_read_unlock();
7794 	}
7795 }
7796 
7797 struct remote_output {
7798 	struct perf_buffer	*rb;
7799 	int			err;
7800 };
7801 
7802 static void __perf_event_output_stop(struct perf_event *event, void *data)
7803 {
7804 	struct perf_event *parent = event->parent;
7805 	struct remote_output *ro = data;
7806 	struct perf_buffer *rb = ro->rb;
7807 	struct stop_event_data sd = {
7808 		.event	= event,
7809 	};
7810 
7811 	if (!has_aux(event))
7812 		return;
7813 
7814 	if (!parent)
7815 		parent = event;
7816 
7817 	/*
7818 	 * In case of inheritance, it will be the parent that links to the
7819 	 * ring-buffer, but it will be the child that's actually using it.
7820 	 *
7821 	 * We are using event::rb to determine if the event should be stopped,
7822 	 * however this may race with ring_buffer_attach() (through set_output),
7823 	 * which will make us skip the event that actually needs to be stopped.
7824 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7825 	 * its rb pointer.
7826 	 */
7827 	if (rcu_dereference(parent->rb) == rb)
7828 		ro->err = __perf_event_stop(&sd);
7829 }
7830 
7831 static int __perf_pmu_output_stop(void *info)
7832 {
7833 	struct perf_event *event = info;
7834 	struct pmu *pmu = event->ctx->pmu;
7835 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7836 	struct remote_output ro = {
7837 		.rb	= event->rb,
7838 	};
7839 
7840 	rcu_read_lock();
7841 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7842 	if (cpuctx->task_ctx)
7843 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7844 				   &ro, false);
7845 	rcu_read_unlock();
7846 
7847 	return ro.err;
7848 }
7849 
7850 static void perf_pmu_output_stop(struct perf_event *event)
7851 {
7852 	struct perf_event *iter;
7853 	int err, cpu;
7854 
7855 restart:
7856 	rcu_read_lock();
7857 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7858 		/*
7859 		 * For per-CPU events, we need to make sure that neither they
7860 		 * nor their children are running; for cpu==-1 events it's
7861 		 * sufficient to stop the event itself if it's active, since
7862 		 * it can't have children.
7863 		 */
7864 		cpu = iter->cpu;
7865 		if (cpu == -1)
7866 			cpu = READ_ONCE(iter->oncpu);
7867 
7868 		if (cpu == -1)
7869 			continue;
7870 
7871 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7872 		if (err == -EAGAIN) {
7873 			rcu_read_unlock();
7874 			goto restart;
7875 		}
7876 	}
7877 	rcu_read_unlock();
7878 }
7879 
7880 /*
7881  * task tracking -- fork/exit
7882  *
7883  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7884  */
7885 
7886 struct perf_task_event {
7887 	struct task_struct		*task;
7888 	struct perf_event_context	*task_ctx;
7889 
7890 	struct {
7891 		struct perf_event_header	header;
7892 
7893 		u32				pid;
7894 		u32				ppid;
7895 		u32				tid;
7896 		u32				ptid;
7897 		u64				time;
7898 	} event_id;
7899 };
7900 
7901 static int perf_event_task_match(struct perf_event *event)
7902 {
7903 	return event->attr.comm  || event->attr.mmap ||
7904 	       event->attr.mmap2 || event->attr.mmap_data ||
7905 	       event->attr.task;
7906 }
7907 
7908 static void perf_event_task_output(struct perf_event *event,
7909 				   void *data)
7910 {
7911 	struct perf_task_event *task_event = data;
7912 	struct perf_output_handle handle;
7913 	struct perf_sample_data	sample;
7914 	struct task_struct *task = task_event->task;
7915 	int ret, size = task_event->event_id.header.size;
7916 
7917 	if (!perf_event_task_match(event))
7918 		return;
7919 
7920 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7921 
7922 	ret = perf_output_begin(&handle, &sample, event,
7923 				task_event->event_id.header.size);
7924 	if (ret)
7925 		goto out;
7926 
7927 	task_event->event_id.pid = perf_event_pid(event, task);
7928 	task_event->event_id.tid = perf_event_tid(event, task);
7929 
7930 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7931 		task_event->event_id.ppid = perf_event_pid(event,
7932 							task->real_parent);
7933 		task_event->event_id.ptid = perf_event_pid(event,
7934 							task->real_parent);
7935 	} else {  /* PERF_RECORD_FORK */
7936 		task_event->event_id.ppid = perf_event_pid(event, current);
7937 		task_event->event_id.ptid = perf_event_tid(event, current);
7938 	}
7939 
7940 	task_event->event_id.time = perf_event_clock(event);
7941 
7942 	perf_output_put(&handle, task_event->event_id);
7943 
7944 	perf_event__output_id_sample(event, &handle, &sample);
7945 
7946 	perf_output_end(&handle);
7947 out:
7948 	task_event->event_id.header.size = size;
7949 }
7950 
7951 static void perf_event_task(struct task_struct *task,
7952 			      struct perf_event_context *task_ctx,
7953 			      int new)
7954 {
7955 	struct perf_task_event task_event;
7956 
7957 	if (!atomic_read(&nr_comm_events) &&
7958 	    !atomic_read(&nr_mmap_events) &&
7959 	    !atomic_read(&nr_task_events))
7960 		return;
7961 
7962 	task_event = (struct perf_task_event){
7963 		.task	  = task,
7964 		.task_ctx = task_ctx,
7965 		.event_id    = {
7966 			.header = {
7967 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7968 				.misc = 0,
7969 				.size = sizeof(task_event.event_id),
7970 			},
7971 			/* .pid  */
7972 			/* .ppid */
7973 			/* .tid  */
7974 			/* .ptid */
7975 			/* .time */
7976 		},
7977 	};
7978 
7979 	perf_iterate_sb(perf_event_task_output,
7980 		       &task_event,
7981 		       task_ctx);
7982 }
7983 
7984 void perf_event_fork(struct task_struct *task)
7985 {
7986 	perf_event_task(task, NULL, 1);
7987 	perf_event_namespaces(task);
7988 }
7989 
7990 /*
7991  * comm tracking
7992  */
7993 
7994 struct perf_comm_event {
7995 	struct task_struct	*task;
7996 	char			*comm;
7997 	int			comm_size;
7998 
7999 	struct {
8000 		struct perf_event_header	header;
8001 
8002 		u32				pid;
8003 		u32				tid;
8004 	} event_id;
8005 };
8006 
8007 static int perf_event_comm_match(struct perf_event *event)
8008 {
8009 	return event->attr.comm;
8010 }
8011 
8012 static void perf_event_comm_output(struct perf_event *event,
8013 				   void *data)
8014 {
8015 	struct perf_comm_event *comm_event = data;
8016 	struct perf_output_handle handle;
8017 	struct perf_sample_data sample;
8018 	int size = comm_event->event_id.header.size;
8019 	int ret;
8020 
8021 	if (!perf_event_comm_match(event))
8022 		return;
8023 
8024 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8025 	ret = perf_output_begin(&handle, &sample, event,
8026 				comm_event->event_id.header.size);
8027 
8028 	if (ret)
8029 		goto out;
8030 
8031 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8032 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8033 
8034 	perf_output_put(&handle, comm_event->event_id);
8035 	__output_copy(&handle, comm_event->comm,
8036 				   comm_event->comm_size);
8037 
8038 	perf_event__output_id_sample(event, &handle, &sample);
8039 
8040 	perf_output_end(&handle);
8041 out:
8042 	comm_event->event_id.header.size = size;
8043 }
8044 
8045 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8046 {
8047 	char comm[TASK_COMM_LEN];
8048 	unsigned int size;
8049 
8050 	memset(comm, 0, sizeof(comm));
8051 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
8052 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8053 
8054 	comm_event->comm = comm;
8055 	comm_event->comm_size = size;
8056 
8057 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8058 
8059 	perf_iterate_sb(perf_event_comm_output,
8060 		       comm_event,
8061 		       NULL);
8062 }
8063 
8064 void perf_event_comm(struct task_struct *task, bool exec)
8065 {
8066 	struct perf_comm_event comm_event;
8067 
8068 	if (!atomic_read(&nr_comm_events))
8069 		return;
8070 
8071 	comm_event = (struct perf_comm_event){
8072 		.task	= task,
8073 		/* .comm      */
8074 		/* .comm_size */
8075 		.event_id  = {
8076 			.header = {
8077 				.type = PERF_RECORD_COMM,
8078 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8079 				/* .size */
8080 			},
8081 			/* .pid */
8082 			/* .tid */
8083 		},
8084 	};
8085 
8086 	perf_event_comm_event(&comm_event);
8087 }
8088 
8089 /*
8090  * namespaces tracking
8091  */
8092 
8093 struct perf_namespaces_event {
8094 	struct task_struct		*task;
8095 
8096 	struct {
8097 		struct perf_event_header	header;
8098 
8099 		u32				pid;
8100 		u32				tid;
8101 		u64				nr_namespaces;
8102 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8103 	} event_id;
8104 };
8105 
8106 static int perf_event_namespaces_match(struct perf_event *event)
8107 {
8108 	return event->attr.namespaces;
8109 }
8110 
8111 static void perf_event_namespaces_output(struct perf_event *event,
8112 					 void *data)
8113 {
8114 	struct perf_namespaces_event *namespaces_event = data;
8115 	struct perf_output_handle handle;
8116 	struct perf_sample_data sample;
8117 	u16 header_size = namespaces_event->event_id.header.size;
8118 	int ret;
8119 
8120 	if (!perf_event_namespaces_match(event))
8121 		return;
8122 
8123 	perf_event_header__init_id(&namespaces_event->event_id.header,
8124 				   &sample, event);
8125 	ret = perf_output_begin(&handle, &sample, event,
8126 				namespaces_event->event_id.header.size);
8127 	if (ret)
8128 		goto out;
8129 
8130 	namespaces_event->event_id.pid = perf_event_pid(event,
8131 							namespaces_event->task);
8132 	namespaces_event->event_id.tid = perf_event_tid(event,
8133 							namespaces_event->task);
8134 
8135 	perf_output_put(&handle, namespaces_event->event_id);
8136 
8137 	perf_event__output_id_sample(event, &handle, &sample);
8138 
8139 	perf_output_end(&handle);
8140 out:
8141 	namespaces_event->event_id.header.size = header_size;
8142 }
8143 
8144 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8145 				   struct task_struct *task,
8146 				   const struct proc_ns_operations *ns_ops)
8147 {
8148 	struct path ns_path;
8149 	struct inode *ns_inode;
8150 	int error;
8151 
8152 	error = ns_get_path(&ns_path, task, ns_ops);
8153 	if (!error) {
8154 		ns_inode = ns_path.dentry->d_inode;
8155 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8156 		ns_link_info->ino = ns_inode->i_ino;
8157 		path_put(&ns_path);
8158 	}
8159 }
8160 
8161 void perf_event_namespaces(struct task_struct *task)
8162 {
8163 	struct perf_namespaces_event namespaces_event;
8164 	struct perf_ns_link_info *ns_link_info;
8165 
8166 	if (!atomic_read(&nr_namespaces_events))
8167 		return;
8168 
8169 	namespaces_event = (struct perf_namespaces_event){
8170 		.task	= task,
8171 		.event_id  = {
8172 			.header = {
8173 				.type = PERF_RECORD_NAMESPACES,
8174 				.misc = 0,
8175 				.size = sizeof(namespaces_event.event_id),
8176 			},
8177 			/* .pid */
8178 			/* .tid */
8179 			.nr_namespaces = NR_NAMESPACES,
8180 			/* .link_info[NR_NAMESPACES] */
8181 		},
8182 	};
8183 
8184 	ns_link_info = namespaces_event.event_id.link_info;
8185 
8186 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8187 			       task, &mntns_operations);
8188 
8189 #ifdef CONFIG_USER_NS
8190 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8191 			       task, &userns_operations);
8192 #endif
8193 #ifdef CONFIG_NET_NS
8194 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8195 			       task, &netns_operations);
8196 #endif
8197 #ifdef CONFIG_UTS_NS
8198 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8199 			       task, &utsns_operations);
8200 #endif
8201 #ifdef CONFIG_IPC_NS
8202 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8203 			       task, &ipcns_operations);
8204 #endif
8205 #ifdef CONFIG_PID_NS
8206 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8207 			       task, &pidns_operations);
8208 #endif
8209 #ifdef CONFIG_CGROUPS
8210 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8211 			       task, &cgroupns_operations);
8212 #endif
8213 
8214 	perf_iterate_sb(perf_event_namespaces_output,
8215 			&namespaces_event,
8216 			NULL);
8217 }
8218 
8219 /*
8220  * cgroup tracking
8221  */
8222 #ifdef CONFIG_CGROUP_PERF
8223 
8224 struct perf_cgroup_event {
8225 	char				*path;
8226 	int				path_size;
8227 	struct {
8228 		struct perf_event_header	header;
8229 		u64				id;
8230 		char				path[];
8231 	} event_id;
8232 };
8233 
8234 static int perf_event_cgroup_match(struct perf_event *event)
8235 {
8236 	return event->attr.cgroup;
8237 }
8238 
8239 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8240 {
8241 	struct perf_cgroup_event *cgroup_event = data;
8242 	struct perf_output_handle handle;
8243 	struct perf_sample_data sample;
8244 	u16 header_size = cgroup_event->event_id.header.size;
8245 	int ret;
8246 
8247 	if (!perf_event_cgroup_match(event))
8248 		return;
8249 
8250 	perf_event_header__init_id(&cgroup_event->event_id.header,
8251 				   &sample, event);
8252 	ret = perf_output_begin(&handle, &sample, event,
8253 				cgroup_event->event_id.header.size);
8254 	if (ret)
8255 		goto out;
8256 
8257 	perf_output_put(&handle, cgroup_event->event_id);
8258 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8259 
8260 	perf_event__output_id_sample(event, &handle, &sample);
8261 
8262 	perf_output_end(&handle);
8263 out:
8264 	cgroup_event->event_id.header.size = header_size;
8265 }
8266 
8267 static void perf_event_cgroup(struct cgroup *cgrp)
8268 {
8269 	struct perf_cgroup_event cgroup_event;
8270 	char path_enomem[16] = "//enomem";
8271 	char *pathname;
8272 	size_t size;
8273 
8274 	if (!atomic_read(&nr_cgroup_events))
8275 		return;
8276 
8277 	cgroup_event = (struct perf_cgroup_event){
8278 		.event_id  = {
8279 			.header = {
8280 				.type = PERF_RECORD_CGROUP,
8281 				.misc = 0,
8282 				.size = sizeof(cgroup_event.event_id),
8283 			},
8284 			.id = cgroup_id(cgrp),
8285 		},
8286 	};
8287 
8288 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8289 	if (pathname == NULL) {
8290 		cgroup_event.path = path_enomem;
8291 	} else {
8292 		/* just to be sure to have enough space for alignment */
8293 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8294 		cgroup_event.path = pathname;
8295 	}
8296 
8297 	/*
8298 	 * Since our buffer works in 8 byte units we need to align our string
8299 	 * size to a multiple of 8. However, we must guarantee the tail end is
8300 	 * zero'd out to avoid leaking random bits to userspace.
8301 	 */
8302 	size = strlen(cgroup_event.path) + 1;
8303 	while (!IS_ALIGNED(size, sizeof(u64)))
8304 		cgroup_event.path[size++] = '\0';
8305 
8306 	cgroup_event.event_id.header.size += size;
8307 	cgroup_event.path_size = size;
8308 
8309 	perf_iterate_sb(perf_event_cgroup_output,
8310 			&cgroup_event,
8311 			NULL);
8312 
8313 	kfree(pathname);
8314 }
8315 
8316 #endif
8317 
8318 /*
8319  * mmap tracking
8320  */
8321 
8322 struct perf_mmap_event {
8323 	struct vm_area_struct	*vma;
8324 
8325 	const char		*file_name;
8326 	int			file_size;
8327 	int			maj, min;
8328 	u64			ino;
8329 	u64			ino_generation;
8330 	u32			prot, flags;
8331 	u8			build_id[BUILD_ID_SIZE_MAX];
8332 	u32			build_id_size;
8333 
8334 	struct {
8335 		struct perf_event_header	header;
8336 
8337 		u32				pid;
8338 		u32				tid;
8339 		u64				start;
8340 		u64				len;
8341 		u64				pgoff;
8342 	} event_id;
8343 };
8344 
8345 static int perf_event_mmap_match(struct perf_event *event,
8346 				 void *data)
8347 {
8348 	struct perf_mmap_event *mmap_event = data;
8349 	struct vm_area_struct *vma = mmap_event->vma;
8350 	int executable = vma->vm_flags & VM_EXEC;
8351 
8352 	return (!executable && event->attr.mmap_data) ||
8353 	       (executable && (event->attr.mmap || event->attr.mmap2));
8354 }
8355 
8356 static void perf_event_mmap_output(struct perf_event *event,
8357 				   void *data)
8358 {
8359 	struct perf_mmap_event *mmap_event = data;
8360 	struct perf_output_handle handle;
8361 	struct perf_sample_data sample;
8362 	int size = mmap_event->event_id.header.size;
8363 	u32 type = mmap_event->event_id.header.type;
8364 	bool use_build_id;
8365 	int ret;
8366 
8367 	if (!perf_event_mmap_match(event, data))
8368 		return;
8369 
8370 	if (event->attr.mmap2) {
8371 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8372 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8373 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8374 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8375 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8376 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8377 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8378 	}
8379 
8380 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8381 	ret = perf_output_begin(&handle, &sample, event,
8382 				mmap_event->event_id.header.size);
8383 	if (ret)
8384 		goto out;
8385 
8386 	mmap_event->event_id.pid = perf_event_pid(event, current);
8387 	mmap_event->event_id.tid = perf_event_tid(event, current);
8388 
8389 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8390 
8391 	if (event->attr.mmap2 && use_build_id)
8392 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8393 
8394 	perf_output_put(&handle, mmap_event->event_id);
8395 
8396 	if (event->attr.mmap2) {
8397 		if (use_build_id) {
8398 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8399 
8400 			__output_copy(&handle, size, 4);
8401 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8402 		} else {
8403 			perf_output_put(&handle, mmap_event->maj);
8404 			perf_output_put(&handle, mmap_event->min);
8405 			perf_output_put(&handle, mmap_event->ino);
8406 			perf_output_put(&handle, mmap_event->ino_generation);
8407 		}
8408 		perf_output_put(&handle, mmap_event->prot);
8409 		perf_output_put(&handle, mmap_event->flags);
8410 	}
8411 
8412 	__output_copy(&handle, mmap_event->file_name,
8413 				   mmap_event->file_size);
8414 
8415 	perf_event__output_id_sample(event, &handle, &sample);
8416 
8417 	perf_output_end(&handle);
8418 out:
8419 	mmap_event->event_id.header.size = size;
8420 	mmap_event->event_id.header.type = type;
8421 }
8422 
8423 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8424 {
8425 	struct vm_area_struct *vma = mmap_event->vma;
8426 	struct file *file = vma->vm_file;
8427 	int maj = 0, min = 0;
8428 	u64 ino = 0, gen = 0;
8429 	u32 prot = 0, flags = 0;
8430 	unsigned int size;
8431 	char tmp[16];
8432 	char *buf = NULL;
8433 	char *name;
8434 
8435 	if (vma->vm_flags & VM_READ)
8436 		prot |= PROT_READ;
8437 	if (vma->vm_flags & VM_WRITE)
8438 		prot |= PROT_WRITE;
8439 	if (vma->vm_flags & VM_EXEC)
8440 		prot |= PROT_EXEC;
8441 
8442 	if (vma->vm_flags & VM_MAYSHARE)
8443 		flags = MAP_SHARED;
8444 	else
8445 		flags = MAP_PRIVATE;
8446 
8447 	if (vma->vm_flags & VM_LOCKED)
8448 		flags |= MAP_LOCKED;
8449 	if (is_vm_hugetlb_page(vma))
8450 		flags |= MAP_HUGETLB;
8451 
8452 	if (file) {
8453 		struct inode *inode;
8454 		dev_t dev;
8455 
8456 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8457 		if (!buf) {
8458 			name = "//enomem";
8459 			goto cpy_name;
8460 		}
8461 		/*
8462 		 * d_path() works from the end of the rb backwards, so we
8463 		 * need to add enough zero bytes after the string to handle
8464 		 * the 64bit alignment we do later.
8465 		 */
8466 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8467 		if (IS_ERR(name)) {
8468 			name = "//toolong";
8469 			goto cpy_name;
8470 		}
8471 		inode = file_inode(vma->vm_file);
8472 		dev = inode->i_sb->s_dev;
8473 		ino = inode->i_ino;
8474 		gen = inode->i_generation;
8475 		maj = MAJOR(dev);
8476 		min = MINOR(dev);
8477 
8478 		goto got_name;
8479 	} else {
8480 		if (vma->vm_ops && vma->vm_ops->name) {
8481 			name = (char *) vma->vm_ops->name(vma);
8482 			if (name)
8483 				goto cpy_name;
8484 		}
8485 
8486 		name = (char *)arch_vma_name(vma);
8487 		if (name)
8488 			goto cpy_name;
8489 
8490 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8491 				vma->vm_end >= vma->vm_mm->brk) {
8492 			name = "[heap]";
8493 			goto cpy_name;
8494 		}
8495 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8496 				vma->vm_end >= vma->vm_mm->start_stack) {
8497 			name = "[stack]";
8498 			goto cpy_name;
8499 		}
8500 
8501 		name = "//anon";
8502 		goto cpy_name;
8503 	}
8504 
8505 cpy_name:
8506 	strlcpy(tmp, name, sizeof(tmp));
8507 	name = tmp;
8508 got_name:
8509 	/*
8510 	 * Since our buffer works in 8 byte units we need to align our string
8511 	 * size to a multiple of 8. However, we must guarantee the tail end is
8512 	 * zero'd out to avoid leaking random bits to userspace.
8513 	 */
8514 	size = strlen(name)+1;
8515 	while (!IS_ALIGNED(size, sizeof(u64)))
8516 		name[size++] = '\0';
8517 
8518 	mmap_event->file_name = name;
8519 	mmap_event->file_size = size;
8520 	mmap_event->maj = maj;
8521 	mmap_event->min = min;
8522 	mmap_event->ino = ino;
8523 	mmap_event->ino_generation = gen;
8524 	mmap_event->prot = prot;
8525 	mmap_event->flags = flags;
8526 
8527 	if (!(vma->vm_flags & VM_EXEC))
8528 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8529 
8530 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8531 
8532 	if (atomic_read(&nr_build_id_events))
8533 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8534 
8535 	perf_iterate_sb(perf_event_mmap_output,
8536 		       mmap_event,
8537 		       NULL);
8538 
8539 	kfree(buf);
8540 }
8541 
8542 /*
8543  * Check whether inode and address range match filter criteria.
8544  */
8545 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8546 				     struct file *file, unsigned long offset,
8547 				     unsigned long size)
8548 {
8549 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8550 	if (!filter->path.dentry)
8551 		return false;
8552 
8553 	if (d_inode(filter->path.dentry) != file_inode(file))
8554 		return false;
8555 
8556 	if (filter->offset > offset + size)
8557 		return false;
8558 
8559 	if (filter->offset + filter->size < offset)
8560 		return false;
8561 
8562 	return true;
8563 }
8564 
8565 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8566 					struct vm_area_struct *vma,
8567 					struct perf_addr_filter_range *fr)
8568 {
8569 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8570 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8571 	struct file *file = vma->vm_file;
8572 
8573 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8574 		return false;
8575 
8576 	if (filter->offset < off) {
8577 		fr->start = vma->vm_start;
8578 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8579 	} else {
8580 		fr->start = vma->vm_start + filter->offset - off;
8581 		fr->size = min(vma->vm_end - fr->start, filter->size);
8582 	}
8583 
8584 	return true;
8585 }
8586 
8587 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8588 {
8589 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8590 	struct vm_area_struct *vma = data;
8591 	struct perf_addr_filter *filter;
8592 	unsigned int restart = 0, count = 0;
8593 	unsigned long flags;
8594 
8595 	if (!has_addr_filter(event))
8596 		return;
8597 
8598 	if (!vma->vm_file)
8599 		return;
8600 
8601 	raw_spin_lock_irqsave(&ifh->lock, flags);
8602 	list_for_each_entry(filter, &ifh->list, entry) {
8603 		if (perf_addr_filter_vma_adjust(filter, vma,
8604 						&event->addr_filter_ranges[count]))
8605 			restart++;
8606 
8607 		count++;
8608 	}
8609 
8610 	if (restart)
8611 		event->addr_filters_gen++;
8612 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8613 
8614 	if (restart)
8615 		perf_event_stop(event, 1);
8616 }
8617 
8618 /*
8619  * Adjust all task's events' filters to the new vma
8620  */
8621 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8622 {
8623 	struct perf_event_context *ctx;
8624 	int ctxn;
8625 
8626 	/*
8627 	 * Data tracing isn't supported yet and as such there is no need
8628 	 * to keep track of anything that isn't related to executable code:
8629 	 */
8630 	if (!(vma->vm_flags & VM_EXEC))
8631 		return;
8632 
8633 	rcu_read_lock();
8634 	for_each_task_context_nr(ctxn) {
8635 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8636 		if (!ctx)
8637 			continue;
8638 
8639 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8640 	}
8641 	rcu_read_unlock();
8642 }
8643 
8644 void perf_event_mmap(struct vm_area_struct *vma)
8645 {
8646 	struct perf_mmap_event mmap_event;
8647 
8648 	if (!atomic_read(&nr_mmap_events))
8649 		return;
8650 
8651 	mmap_event = (struct perf_mmap_event){
8652 		.vma	= vma,
8653 		/* .file_name */
8654 		/* .file_size */
8655 		.event_id  = {
8656 			.header = {
8657 				.type = PERF_RECORD_MMAP,
8658 				.misc = PERF_RECORD_MISC_USER,
8659 				/* .size */
8660 			},
8661 			/* .pid */
8662 			/* .tid */
8663 			.start  = vma->vm_start,
8664 			.len    = vma->vm_end - vma->vm_start,
8665 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8666 		},
8667 		/* .maj (attr_mmap2 only) */
8668 		/* .min (attr_mmap2 only) */
8669 		/* .ino (attr_mmap2 only) */
8670 		/* .ino_generation (attr_mmap2 only) */
8671 		/* .prot (attr_mmap2 only) */
8672 		/* .flags (attr_mmap2 only) */
8673 	};
8674 
8675 	perf_addr_filters_adjust(vma);
8676 	perf_event_mmap_event(&mmap_event);
8677 }
8678 
8679 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8680 			  unsigned long size, u64 flags)
8681 {
8682 	struct perf_output_handle handle;
8683 	struct perf_sample_data sample;
8684 	struct perf_aux_event {
8685 		struct perf_event_header	header;
8686 		u64				offset;
8687 		u64				size;
8688 		u64				flags;
8689 	} rec = {
8690 		.header = {
8691 			.type = PERF_RECORD_AUX,
8692 			.misc = 0,
8693 			.size = sizeof(rec),
8694 		},
8695 		.offset		= head,
8696 		.size		= size,
8697 		.flags		= flags,
8698 	};
8699 	int ret;
8700 
8701 	perf_event_header__init_id(&rec.header, &sample, event);
8702 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8703 
8704 	if (ret)
8705 		return;
8706 
8707 	perf_output_put(&handle, rec);
8708 	perf_event__output_id_sample(event, &handle, &sample);
8709 
8710 	perf_output_end(&handle);
8711 }
8712 
8713 /*
8714  * Lost/dropped samples logging
8715  */
8716 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8717 {
8718 	struct perf_output_handle handle;
8719 	struct perf_sample_data sample;
8720 	int ret;
8721 
8722 	struct {
8723 		struct perf_event_header	header;
8724 		u64				lost;
8725 	} lost_samples_event = {
8726 		.header = {
8727 			.type = PERF_RECORD_LOST_SAMPLES,
8728 			.misc = 0,
8729 			.size = sizeof(lost_samples_event),
8730 		},
8731 		.lost		= lost,
8732 	};
8733 
8734 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8735 
8736 	ret = perf_output_begin(&handle, &sample, event,
8737 				lost_samples_event.header.size);
8738 	if (ret)
8739 		return;
8740 
8741 	perf_output_put(&handle, lost_samples_event);
8742 	perf_event__output_id_sample(event, &handle, &sample);
8743 	perf_output_end(&handle);
8744 }
8745 
8746 /*
8747  * context_switch tracking
8748  */
8749 
8750 struct perf_switch_event {
8751 	struct task_struct	*task;
8752 	struct task_struct	*next_prev;
8753 
8754 	struct {
8755 		struct perf_event_header	header;
8756 		u32				next_prev_pid;
8757 		u32				next_prev_tid;
8758 	} event_id;
8759 };
8760 
8761 static int perf_event_switch_match(struct perf_event *event)
8762 {
8763 	return event->attr.context_switch;
8764 }
8765 
8766 static void perf_event_switch_output(struct perf_event *event, void *data)
8767 {
8768 	struct perf_switch_event *se = data;
8769 	struct perf_output_handle handle;
8770 	struct perf_sample_data sample;
8771 	int ret;
8772 
8773 	if (!perf_event_switch_match(event))
8774 		return;
8775 
8776 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8777 	if (event->ctx->task) {
8778 		se->event_id.header.type = PERF_RECORD_SWITCH;
8779 		se->event_id.header.size = sizeof(se->event_id.header);
8780 	} else {
8781 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8782 		se->event_id.header.size = sizeof(se->event_id);
8783 		se->event_id.next_prev_pid =
8784 					perf_event_pid(event, se->next_prev);
8785 		se->event_id.next_prev_tid =
8786 					perf_event_tid(event, se->next_prev);
8787 	}
8788 
8789 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8790 
8791 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8792 	if (ret)
8793 		return;
8794 
8795 	if (event->ctx->task)
8796 		perf_output_put(&handle, se->event_id.header);
8797 	else
8798 		perf_output_put(&handle, se->event_id);
8799 
8800 	perf_event__output_id_sample(event, &handle, &sample);
8801 
8802 	perf_output_end(&handle);
8803 }
8804 
8805 static void perf_event_switch(struct task_struct *task,
8806 			      struct task_struct *next_prev, bool sched_in)
8807 {
8808 	struct perf_switch_event switch_event;
8809 
8810 	/* N.B. caller checks nr_switch_events != 0 */
8811 
8812 	switch_event = (struct perf_switch_event){
8813 		.task		= task,
8814 		.next_prev	= next_prev,
8815 		.event_id	= {
8816 			.header = {
8817 				/* .type */
8818 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8819 				/* .size */
8820 			},
8821 			/* .next_prev_pid */
8822 			/* .next_prev_tid */
8823 		},
8824 	};
8825 
8826 	if (!sched_in && task->on_rq) {
8827 		switch_event.event_id.header.misc |=
8828 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8829 	}
8830 
8831 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8832 }
8833 
8834 /*
8835  * IRQ throttle logging
8836  */
8837 
8838 static void perf_log_throttle(struct perf_event *event, int enable)
8839 {
8840 	struct perf_output_handle handle;
8841 	struct perf_sample_data sample;
8842 	int ret;
8843 
8844 	struct {
8845 		struct perf_event_header	header;
8846 		u64				time;
8847 		u64				id;
8848 		u64				stream_id;
8849 	} throttle_event = {
8850 		.header = {
8851 			.type = PERF_RECORD_THROTTLE,
8852 			.misc = 0,
8853 			.size = sizeof(throttle_event),
8854 		},
8855 		.time		= perf_event_clock(event),
8856 		.id		= primary_event_id(event),
8857 		.stream_id	= event->id,
8858 	};
8859 
8860 	if (enable)
8861 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8862 
8863 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8864 
8865 	ret = perf_output_begin(&handle, &sample, event,
8866 				throttle_event.header.size);
8867 	if (ret)
8868 		return;
8869 
8870 	perf_output_put(&handle, throttle_event);
8871 	perf_event__output_id_sample(event, &handle, &sample);
8872 	perf_output_end(&handle);
8873 }
8874 
8875 /*
8876  * ksymbol register/unregister tracking
8877  */
8878 
8879 struct perf_ksymbol_event {
8880 	const char	*name;
8881 	int		name_len;
8882 	struct {
8883 		struct perf_event_header        header;
8884 		u64				addr;
8885 		u32				len;
8886 		u16				ksym_type;
8887 		u16				flags;
8888 	} event_id;
8889 };
8890 
8891 static int perf_event_ksymbol_match(struct perf_event *event)
8892 {
8893 	return event->attr.ksymbol;
8894 }
8895 
8896 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8897 {
8898 	struct perf_ksymbol_event *ksymbol_event = data;
8899 	struct perf_output_handle handle;
8900 	struct perf_sample_data sample;
8901 	int ret;
8902 
8903 	if (!perf_event_ksymbol_match(event))
8904 		return;
8905 
8906 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8907 				   &sample, event);
8908 	ret = perf_output_begin(&handle, &sample, event,
8909 				ksymbol_event->event_id.header.size);
8910 	if (ret)
8911 		return;
8912 
8913 	perf_output_put(&handle, ksymbol_event->event_id);
8914 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8915 	perf_event__output_id_sample(event, &handle, &sample);
8916 
8917 	perf_output_end(&handle);
8918 }
8919 
8920 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8921 			const char *sym)
8922 {
8923 	struct perf_ksymbol_event ksymbol_event;
8924 	char name[KSYM_NAME_LEN];
8925 	u16 flags = 0;
8926 	int name_len;
8927 
8928 	if (!atomic_read(&nr_ksymbol_events))
8929 		return;
8930 
8931 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8932 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8933 		goto err;
8934 
8935 	strlcpy(name, sym, KSYM_NAME_LEN);
8936 	name_len = strlen(name) + 1;
8937 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8938 		name[name_len++] = '\0';
8939 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8940 
8941 	if (unregister)
8942 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8943 
8944 	ksymbol_event = (struct perf_ksymbol_event){
8945 		.name = name,
8946 		.name_len = name_len,
8947 		.event_id = {
8948 			.header = {
8949 				.type = PERF_RECORD_KSYMBOL,
8950 				.size = sizeof(ksymbol_event.event_id) +
8951 					name_len,
8952 			},
8953 			.addr = addr,
8954 			.len = len,
8955 			.ksym_type = ksym_type,
8956 			.flags = flags,
8957 		},
8958 	};
8959 
8960 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8961 	return;
8962 err:
8963 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8964 }
8965 
8966 /*
8967  * bpf program load/unload tracking
8968  */
8969 
8970 struct perf_bpf_event {
8971 	struct bpf_prog	*prog;
8972 	struct {
8973 		struct perf_event_header        header;
8974 		u16				type;
8975 		u16				flags;
8976 		u32				id;
8977 		u8				tag[BPF_TAG_SIZE];
8978 	} event_id;
8979 };
8980 
8981 static int perf_event_bpf_match(struct perf_event *event)
8982 {
8983 	return event->attr.bpf_event;
8984 }
8985 
8986 static void perf_event_bpf_output(struct perf_event *event, void *data)
8987 {
8988 	struct perf_bpf_event *bpf_event = data;
8989 	struct perf_output_handle handle;
8990 	struct perf_sample_data sample;
8991 	int ret;
8992 
8993 	if (!perf_event_bpf_match(event))
8994 		return;
8995 
8996 	perf_event_header__init_id(&bpf_event->event_id.header,
8997 				   &sample, event);
8998 	ret = perf_output_begin(&handle, data, event,
8999 				bpf_event->event_id.header.size);
9000 	if (ret)
9001 		return;
9002 
9003 	perf_output_put(&handle, bpf_event->event_id);
9004 	perf_event__output_id_sample(event, &handle, &sample);
9005 
9006 	perf_output_end(&handle);
9007 }
9008 
9009 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9010 					 enum perf_bpf_event_type type)
9011 {
9012 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9013 	int i;
9014 
9015 	if (prog->aux->func_cnt == 0) {
9016 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9017 				   (u64)(unsigned long)prog->bpf_func,
9018 				   prog->jited_len, unregister,
9019 				   prog->aux->ksym.name);
9020 	} else {
9021 		for (i = 0; i < prog->aux->func_cnt; i++) {
9022 			struct bpf_prog *subprog = prog->aux->func[i];
9023 
9024 			perf_event_ksymbol(
9025 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9026 				(u64)(unsigned long)subprog->bpf_func,
9027 				subprog->jited_len, unregister,
9028 				prog->aux->ksym.name);
9029 		}
9030 	}
9031 }
9032 
9033 void perf_event_bpf_event(struct bpf_prog *prog,
9034 			  enum perf_bpf_event_type type,
9035 			  u16 flags)
9036 {
9037 	struct perf_bpf_event bpf_event;
9038 
9039 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9040 	    type >= PERF_BPF_EVENT_MAX)
9041 		return;
9042 
9043 	switch (type) {
9044 	case PERF_BPF_EVENT_PROG_LOAD:
9045 	case PERF_BPF_EVENT_PROG_UNLOAD:
9046 		if (atomic_read(&nr_ksymbol_events))
9047 			perf_event_bpf_emit_ksymbols(prog, type);
9048 		break;
9049 	default:
9050 		break;
9051 	}
9052 
9053 	if (!atomic_read(&nr_bpf_events))
9054 		return;
9055 
9056 	bpf_event = (struct perf_bpf_event){
9057 		.prog = prog,
9058 		.event_id = {
9059 			.header = {
9060 				.type = PERF_RECORD_BPF_EVENT,
9061 				.size = sizeof(bpf_event.event_id),
9062 			},
9063 			.type = type,
9064 			.flags = flags,
9065 			.id = prog->aux->id,
9066 		},
9067 	};
9068 
9069 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9070 
9071 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9072 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9073 }
9074 
9075 struct perf_text_poke_event {
9076 	const void		*old_bytes;
9077 	const void		*new_bytes;
9078 	size_t			pad;
9079 	u16			old_len;
9080 	u16			new_len;
9081 
9082 	struct {
9083 		struct perf_event_header	header;
9084 
9085 		u64				addr;
9086 	} event_id;
9087 };
9088 
9089 static int perf_event_text_poke_match(struct perf_event *event)
9090 {
9091 	return event->attr.text_poke;
9092 }
9093 
9094 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9095 {
9096 	struct perf_text_poke_event *text_poke_event = data;
9097 	struct perf_output_handle handle;
9098 	struct perf_sample_data sample;
9099 	u64 padding = 0;
9100 	int ret;
9101 
9102 	if (!perf_event_text_poke_match(event))
9103 		return;
9104 
9105 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9106 
9107 	ret = perf_output_begin(&handle, &sample, event,
9108 				text_poke_event->event_id.header.size);
9109 	if (ret)
9110 		return;
9111 
9112 	perf_output_put(&handle, text_poke_event->event_id);
9113 	perf_output_put(&handle, text_poke_event->old_len);
9114 	perf_output_put(&handle, text_poke_event->new_len);
9115 
9116 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9117 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9118 
9119 	if (text_poke_event->pad)
9120 		__output_copy(&handle, &padding, text_poke_event->pad);
9121 
9122 	perf_event__output_id_sample(event, &handle, &sample);
9123 
9124 	perf_output_end(&handle);
9125 }
9126 
9127 void perf_event_text_poke(const void *addr, const void *old_bytes,
9128 			  size_t old_len, const void *new_bytes, size_t new_len)
9129 {
9130 	struct perf_text_poke_event text_poke_event;
9131 	size_t tot, pad;
9132 
9133 	if (!atomic_read(&nr_text_poke_events))
9134 		return;
9135 
9136 	tot  = sizeof(text_poke_event.old_len) + old_len;
9137 	tot += sizeof(text_poke_event.new_len) + new_len;
9138 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9139 
9140 	text_poke_event = (struct perf_text_poke_event){
9141 		.old_bytes    = old_bytes,
9142 		.new_bytes    = new_bytes,
9143 		.pad          = pad,
9144 		.old_len      = old_len,
9145 		.new_len      = new_len,
9146 		.event_id  = {
9147 			.header = {
9148 				.type = PERF_RECORD_TEXT_POKE,
9149 				.misc = PERF_RECORD_MISC_KERNEL,
9150 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9151 			},
9152 			.addr = (unsigned long)addr,
9153 		},
9154 	};
9155 
9156 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9157 }
9158 
9159 void perf_event_itrace_started(struct perf_event *event)
9160 {
9161 	event->attach_state |= PERF_ATTACH_ITRACE;
9162 }
9163 
9164 static void perf_log_itrace_start(struct perf_event *event)
9165 {
9166 	struct perf_output_handle handle;
9167 	struct perf_sample_data sample;
9168 	struct perf_aux_event {
9169 		struct perf_event_header        header;
9170 		u32				pid;
9171 		u32				tid;
9172 	} rec;
9173 	int ret;
9174 
9175 	if (event->parent)
9176 		event = event->parent;
9177 
9178 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9179 	    event->attach_state & PERF_ATTACH_ITRACE)
9180 		return;
9181 
9182 	rec.header.type	= PERF_RECORD_ITRACE_START;
9183 	rec.header.misc	= 0;
9184 	rec.header.size	= sizeof(rec);
9185 	rec.pid	= perf_event_pid(event, current);
9186 	rec.tid	= perf_event_tid(event, current);
9187 
9188 	perf_event_header__init_id(&rec.header, &sample, event);
9189 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9190 
9191 	if (ret)
9192 		return;
9193 
9194 	perf_output_put(&handle, rec);
9195 	perf_event__output_id_sample(event, &handle, &sample);
9196 
9197 	perf_output_end(&handle);
9198 }
9199 
9200 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9201 {
9202 	struct perf_output_handle handle;
9203 	struct perf_sample_data sample;
9204 	struct perf_aux_event {
9205 		struct perf_event_header        header;
9206 		u64				hw_id;
9207 	} rec;
9208 	int ret;
9209 
9210 	if (event->parent)
9211 		event = event->parent;
9212 
9213 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9214 	rec.header.misc	= 0;
9215 	rec.header.size	= sizeof(rec);
9216 	rec.hw_id	= hw_id;
9217 
9218 	perf_event_header__init_id(&rec.header, &sample, event);
9219 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9220 
9221 	if (ret)
9222 		return;
9223 
9224 	perf_output_put(&handle, rec);
9225 	perf_event__output_id_sample(event, &handle, &sample);
9226 
9227 	perf_output_end(&handle);
9228 }
9229 
9230 static int
9231 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9232 {
9233 	struct hw_perf_event *hwc = &event->hw;
9234 	int ret = 0;
9235 	u64 seq;
9236 
9237 	seq = __this_cpu_read(perf_throttled_seq);
9238 	if (seq != hwc->interrupts_seq) {
9239 		hwc->interrupts_seq = seq;
9240 		hwc->interrupts = 1;
9241 	} else {
9242 		hwc->interrupts++;
9243 		if (unlikely(throttle
9244 			     && hwc->interrupts >= max_samples_per_tick)) {
9245 			__this_cpu_inc(perf_throttled_count);
9246 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9247 			hwc->interrupts = MAX_INTERRUPTS;
9248 			perf_log_throttle(event, 0);
9249 			ret = 1;
9250 		}
9251 	}
9252 
9253 	if (event->attr.freq) {
9254 		u64 now = perf_clock();
9255 		s64 delta = now - hwc->freq_time_stamp;
9256 
9257 		hwc->freq_time_stamp = now;
9258 
9259 		if (delta > 0 && delta < 2*TICK_NSEC)
9260 			perf_adjust_period(event, delta, hwc->last_period, true);
9261 	}
9262 
9263 	return ret;
9264 }
9265 
9266 int perf_event_account_interrupt(struct perf_event *event)
9267 {
9268 	return __perf_event_account_interrupt(event, 1);
9269 }
9270 
9271 /*
9272  * Generic event overflow handling, sampling.
9273  */
9274 
9275 static int __perf_event_overflow(struct perf_event *event,
9276 				   int throttle, struct perf_sample_data *data,
9277 				   struct pt_regs *regs)
9278 {
9279 	int events = atomic_read(&event->event_limit);
9280 	int ret = 0;
9281 
9282 	/*
9283 	 * Non-sampling counters might still use the PMI to fold short
9284 	 * hardware counters, ignore those.
9285 	 */
9286 	if (unlikely(!is_sampling_event(event)))
9287 		return 0;
9288 
9289 	ret = __perf_event_account_interrupt(event, throttle);
9290 
9291 	/*
9292 	 * XXX event_limit might not quite work as expected on inherited
9293 	 * events
9294 	 */
9295 
9296 	event->pending_kill = POLL_IN;
9297 	if (events && atomic_dec_and_test(&event->event_limit)) {
9298 		ret = 1;
9299 		event->pending_kill = POLL_HUP;
9300 		event->pending_addr = data->addr;
9301 
9302 		perf_event_disable_inatomic(event);
9303 	}
9304 
9305 	READ_ONCE(event->overflow_handler)(event, data, regs);
9306 
9307 	if (*perf_event_fasync(event) && event->pending_kill) {
9308 		event->pending_wakeup = 1;
9309 		irq_work_queue(&event->pending);
9310 	}
9311 
9312 	return ret;
9313 }
9314 
9315 int perf_event_overflow(struct perf_event *event,
9316 			  struct perf_sample_data *data,
9317 			  struct pt_regs *regs)
9318 {
9319 	return __perf_event_overflow(event, 1, data, regs);
9320 }
9321 
9322 /*
9323  * Generic software event infrastructure
9324  */
9325 
9326 struct swevent_htable {
9327 	struct swevent_hlist		*swevent_hlist;
9328 	struct mutex			hlist_mutex;
9329 	int				hlist_refcount;
9330 
9331 	/* Recursion avoidance in each contexts */
9332 	int				recursion[PERF_NR_CONTEXTS];
9333 };
9334 
9335 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9336 
9337 /*
9338  * We directly increment event->count and keep a second value in
9339  * event->hw.period_left to count intervals. This period event
9340  * is kept in the range [-sample_period, 0] so that we can use the
9341  * sign as trigger.
9342  */
9343 
9344 u64 perf_swevent_set_period(struct perf_event *event)
9345 {
9346 	struct hw_perf_event *hwc = &event->hw;
9347 	u64 period = hwc->last_period;
9348 	u64 nr, offset;
9349 	s64 old, val;
9350 
9351 	hwc->last_period = hwc->sample_period;
9352 
9353 again:
9354 	old = val = local64_read(&hwc->period_left);
9355 	if (val < 0)
9356 		return 0;
9357 
9358 	nr = div64_u64(period + val, period);
9359 	offset = nr * period;
9360 	val -= offset;
9361 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9362 		goto again;
9363 
9364 	return nr;
9365 }
9366 
9367 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9368 				    struct perf_sample_data *data,
9369 				    struct pt_regs *regs)
9370 {
9371 	struct hw_perf_event *hwc = &event->hw;
9372 	int throttle = 0;
9373 
9374 	if (!overflow)
9375 		overflow = perf_swevent_set_period(event);
9376 
9377 	if (hwc->interrupts == MAX_INTERRUPTS)
9378 		return;
9379 
9380 	for (; overflow; overflow--) {
9381 		if (__perf_event_overflow(event, throttle,
9382 					    data, regs)) {
9383 			/*
9384 			 * We inhibit the overflow from happening when
9385 			 * hwc->interrupts == MAX_INTERRUPTS.
9386 			 */
9387 			break;
9388 		}
9389 		throttle = 1;
9390 	}
9391 }
9392 
9393 static void perf_swevent_event(struct perf_event *event, u64 nr,
9394 			       struct perf_sample_data *data,
9395 			       struct pt_regs *regs)
9396 {
9397 	struct hw_perf_event *hwc = &event->hw;
9398 
9399 	local64_add(nr, &event->count);
9400 
9401 	if (!regs)
9402 		return;
9403 
9404 	if (!is_sampling_event(event))
9405 		return;
9406 
9407 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9408 		data->period = nr;
9409 		return perf_swevent_overflow(event, 1, data, regs);
9410 	} else
9411 		data->period = event->hw.last_period;
9412 
9413 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9414 		return perf_swevent_overflow(event, 1, data, regs);
9415 
9416 	if (local64_add_negative(nr, &hwc->period_left))
9417 		return;
9418 
9419 	perf_swevent_overflow(event, 0, data, regs);
9420 }
9421 
9422 static int perf_exclude_event(struct perf_event *event,
9423 			      struct pt_regs *regs)
9424 {
9425 	if (event->hw.state & PERF_HES_STOPPED)
9426 		return 1;
9427 
9428 	if (regs) {
9429 		if (event->attr.exclude_user && user_mode(regs))
9430 			return 1;
9431 
9432 		if (event->attr.exclude_kernel && !user_mode(regs))
9433 			return 1;
9434 	}
9435 
9436 	return 0;
9437 }
9438 
9439 static int perf_swevent_match(struct perf_event *event,
9440 				enum perf_type_id type,
9441 				u32 event_id,
9442 				struct perf_sample_data *data,
9443 				struct pt_regs *regs)
9444 {
9445 	if (event->attr.type != type)
9446 		return 0;
9447 
9448 	if (event->attr.config != event_id)
9449 		return 0;
9450 
9451 	if (perf_exclude_event(event, regs))
9452 		return 0;
9453 
9454 	return 1;
9455 }
9456 
9457 static inline u64 swevent_hash(u64 type, u32 event_id)
9458 {
9459 	u64 val = event_id | (type << 32);
9460 
9461 	return hash_64(val, SWEVENT_HLIST_BITS);
9462 }
9463 
9464 static inline struct hlist_head *
9465 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9466 {
9467 	u64 hash = swevent_hash(type, event_id);
9468 
9469 	return &hlist->heads[hash];
9470 }
9471 
9472 /* For the read side: events when they trigger */
9473 static inline struct hlist_head *
9474 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9475 {
9476 	struct swevent_hlist *hlist;
9477 
9478 	hlist = rcu_dereference(swhash->swevent_hlist);
9479 	if (!hlist)
9480 		return NULL;
9481 
9482 	return __find_swevent_head(hlist, type, event_id);
9483 }
9484 
9485 /* For the event head insertion and removal in the hlist */
9486 static inline struct hlist_head *
9487 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9488 {
9489 	struct swevent_hlist *hlist;
9490 	u32 event_id = event->attr.config;
9491 	u64 type = event->attr.type;
9492 
9493 	/*
9494 	 * Event scheduling is always serialized against hlist allocation
9495 	 * and release. Which makes the protected version suitable here.
9496 	 * The context lock guarantees that.
9497 	 */
9498 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9499 					  lockdep_is_held(&event->ctx->lock));
9500 	if (!hlist)
9501 		return NULL;
9502 
9503 	return __find_swevent_head(hlist, type, event_id);
9504 }
9505 
9506 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9507 				    u64 nr,
9508 				    struct perf_sample_data *data,
9509 				    struct pt_regs *regs)
9510 {
9511 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9512 	struct perf_event *event;
9513 	struct hlist_head *head;
9514 
9515 	rcu_read_lock();
9516 	head = find_swevent_head_rcu(swhash, type, event_id);
9517 	if (!head)
9518 		goto end;
9519 
9520 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9521 		if (perf_swevent_match(event, type, event_id, data, regs))
9522 			perf_swevent_event(event, nr, data, regs);
9523 	}
9524 end:
9525 	rcu_read_unlock();
9526 }
9527 
9528 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9529 
9530 int perf_swevent_get_recursion_context(void)
9531 {
9532 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9533 
9534 	return get_recursion_context(swhash->recursion);
9535 }
9536 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9537 
9538 void perf_swevent_put_recursion_context(int rctx)
9539 {
9540 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9541 
9542 	put_recursion_context(swhash->recursion, rctx);
9543 }
9544 
9545 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9546 {
9547 	struct perf_sample_data data;
9548 
9549 	if (WARN_ON_ONCE(!regs))
9550 		return;
9551 
9552 	perf_sample_data_init(&data, addr, 0);
9553 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9554 }
9555 
9556 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9557 {
9558 	int rctx;
9559 
9560 	preempt_disable_notrace();
9561 	rctx = perf_swevent_get_recursion_context();
9562 	if (unlikely(rctx < 0))
9563 		goto fail;
9564 
9565 	___perf_sw_event(event_id, nr, regs, addr);
9566 
9567 	perf_swevent_put_recursion_context(rctx);
9568 fail:
9569 	preempt_enable_notrace();
9570 }
9571 
9572 static void perf_swevent_read(struct perf_event *event)
9573 {
9574 }
9575 
9576 static int perf_swevent_add(struct perf_event *event, int flags)
9577 {
9578 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9579 	struct hw_perf_event *hwc = &event->hw;
9580 	struct hlist_head *head;
9581 
9582 	if (is_sampling_event(event)) {
9583 		hwc->last_period = hwc->sample_period;
9584 		perf_swevent_set_period(event);
9585 	}
9586 
9587 	hwc->state = !(flags & PERF_EF_START);
9588 
9589 	head = find_swevent_head(swhash, event);
9590 	if (WARN_ON_ONCE(!head))
9591 		return -EINVAL;
9592 
9593 	hlist_add_head_rcu(&event->hlist_entry, head);
9594 	perf_event_update_userpage(event);
9595 
9596 	return 0;
9597 }
9598 
9599 static void perf_swevent_del(struct perf_event *event, int flags)
9600 {
9601 	hlist_del_rcu(&event->hlist_entry);
9602 }
9603 
9604 static void perf_swevent_start(struct perf_event *event, int flags)
9605 {
9606 	event->hw.state = 0;
9607 }
9608 
9609 static void perf_swevent_stop(struct perf_event *event, int flags)
9610 {
9611 	event->hw.state = PERF_HES_STOPPED;
9612 }
9613 
9614 /* Deref the hlist from the update side */
9615 static inline struct swevent_hlist *
9616 swevent_hlist_deref(struct swevent_htable *swhash)
9617 {
9618 	return rcu_dereference_protected(swhash->swevent_hlist,
9619 					 lockdep_is_held(&swhash->hlist_mutex));
9620 }
9621 
9622 static void swevent_hlist_release(struct swevent_htable *swhash)
9623 {
9624 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9625 
9626 	if (!hlist)
9627 		return;
9628 
9629 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9630 	kfree_rcu(hlist, rcu_head);
9631 }
9632 
9633 static void swevent_hlist_put_cpu(int cpu)
9634 {
9635 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9636 
9637 	mutex_lock(&swhash->hlist_mutex);
9638 
9639 	if (!--swhash->hlist_refcount)
9640 		swevent_hlist_release(swhash);
9641 
9642 	mutex_unlock(&swhash->hlist_mutex);
9643 }
9644 
9645 static void swevent_hlist_put(void)
9646 {
9647 	int cpu;
9648 
9649 	for_each_possible_cpu(cpu)
9650 		swevent_hlist_put_cpu(cpu);
9651 }
9652 
9653 static int swevent_hlist_get_cpu(int cpu)
9654 {
9655 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9656 	int err = 0;
9657 
9658 	mutex_lock(&swhash->hlist_mutex);
9659 	if (!swevent_hlist_deref(swhash) &&
9660 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9661 		struct swevent_hlist *hlist;
9662 
9663 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9664 		if (!hlist) {
9665 			err = -ENOMEM;
9666 			goto exit;
9667 		}
9668 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9669 	}
9670 	swhash->hlist_refcount++;
9671 exit:
9672 	mutex_unlock(&swhash->hlist_mutex);
9673 
9674 	return err;
9675 }
9676 
9677 static int swevent_hlist_get(void)
9678 {
9679 	int err, cpu, failed_cpu;
9680 
9681 	mutex_lock(&pmus_lock);
9682 	for_each_possible_cpu(cpu) {
9683 		err = swevent_hlist_get_cpu(cpu);
9684 		if (err) {
9685 			failed_cpu = cpu;
9686 			goto fail;
9687 		}
9688 	}
9689 	mutex_unlock(&pmus_lock);
9690 	return 0;
9691 fail:
9692 	for_each_possible_cpu(cpu) {
9693 		if (cpu == failed_cpu)
9694 			break;
9695 		swevent_hlist_put_cpu(cpu);
9696 	}
9697 	mutex_unlock(&pmus_lock);
9698 	return err;
9699 }
9700 
9701 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9702 
9703 static void sw_perf_event_destroy(struct perf_event *event)
9704 {
9705 	u64 event_id = event->attr.config;
9706 
9707 	WARN_ON(event->parent);
9708 
9709 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9710 	swevent_hlist_put();
9711 }
9712 
9713 static int perf_swevent_init(struct perf_event *event)
9714 {
9715 	u64 event_id = event->attr.config;
9716 
9717 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9718 		return -ENOENT;
9719 
9720 	/*
9721 	 * no branch sampling for software events
9722 	 */
9723 	if (has_branch_stack(event))
9724 		return -EOPNOTSUPP;
9725 
9726 	switch (event_id) {
9727 	case PERF_COUNT_SW_CPU_CLOCK:
9728 	case PERF_COUNT_SW_TASK_CLOCK:
9729 		return -ENOENT;
9730 
9731 	default:
9732 		break;
9733 	}
9734 
9735 	if (event_id >= PERF_COUNT_SW_MAX)
9736 		return -ENOENT;
9737 
9738 	if (!event->parent) {
9739 		int err;
9740 
9741 		err = swevent_hlist_get();
9742 		if (err)
9743 			return err;
9744 
9745 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9746 		event->destroy = sw_perf_event_destroy;
9747 	}
9748 
9749 	return 0;
9750 }
9751 
9752 static struct pmu perf_swevent = {
9753 	.task_ctx_nr	= perf_sw_context,
9754 
9755 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9756 
9757 	.event_init	= perf_swevent_init,
9758 	.add		= perf_swevent_add,
9759 	.del		= perf_swevent_del,
9760 	.start		= perf_swevent_start,
9761 	.stop		= perf_swevent_stop,
9762 	.read		= perf_swevent_read,
9763 };
9764 
9765 #ifdef CONFIG_EVENT_TRACING
9766 
9767 static int perf_tp_filter_match(struct perf_event *event,
9768 				struct perf_sample_data *data)
9769 {
9770 	void *record = data->raw->frag.data;
9771 
9772 	/* only top level events have filters set */
9773 	if (event->parent)
9774 		event = event->parent;
9775 
9776 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9777 		return 1;
9778 	return 0;
9779 }
9780 
9781 static int perf_tp_event_match(struct perf_event *event,
9782 				struct perf_sample_data *data,
9783 				struct pt_regs *regs)
9784 {
9785 	if (event->hw.state & PERF_HES_STOPPED)
9786 		return 0;
9787 	/*
9788 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9789 	 */
9790 	if (event->attr.exclude_kernel && !user_mode(regs))
9791 		return 0;
9792 
9793 	if (!perf_tp_filter_match(event, data))
9794 		return 0;
9795 
9796 	return 1;
9797 }
9798 
9799 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9800 			       struct trace_event_call *call, u64 count,
9801 			       struct pt_regs *regs, struct hlist_head *head,
9802 			       struct task_struct *task)
9803 {
9804 	if (bpf_prog_array_valid(call)) {
9805 		*(struct pt_regs **)raw_data = regs;
9806 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9807 			perf_swevent_put_recursion_context(rctx);
9808 			return;
9809 		}
9810 	}
9811 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9812 		      rctx, task);
9813 }
9814 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9815 
9816 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9817 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9818 		   struct task_struct *task)
9819 {
9820 	struct perf_sample_data data;
9821 	struct perf_event *event;
9822 
9823 	struct perf_raw_record raw = {
9824 		.frag = {
9825 			.size = entry_size,
9826 			.data = record,
9827 		},
9828 	};
9829 
9830 	perf_sample_data_init(&data, 0, 0);
9831 	data.raw = &raw;
9832 
9833 	perf_trace_buf_update(record, event_type);
9834 
9835 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9836 		if (perf_tp_event_match(event, &data, regs))
9837 			perf_swevent_event(event, count, &data, regs);
9838 	}
9839 
9840 	/*
9841 	 * If we got specified a target task, also iterate its context and
9842 	 * deliver this event there too.
9843 	 */
9844 	if (task && task != current) {
9845 		struct perf_event_context *ctx;
9846 		struct trace_entry *entry = record;
9847 
9848 		rcu_read_lock();
9849 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9850 		if (!ctx)
9851 			goto unlock;
9852 
9853 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9854 			if (event->cpu != smp_processor_id())
9855 				continue;
9856 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9857 				continue;
9858 			if (event->attr.config != entry->type)
9859 				continue;
9860 			/* Cannot deliver synchronous signal to other task. */
9861 			if (event->attr.sigtrap)
9862 				continue;
9863 			if (perf_tp_event_match(event, &data, regs))
9864 				perf_swevent_event(event, count, &data, regs);
9865 		}
9866 unlock:
9867 		rcu_read_unlock();
9868 	}
9869 
9870 	perf_swevent_put_recursion_context(rctx);
9871 }
9872 EXPORT_SYMBOL_GPL(perf_tp_event);
9873 
9874 static void tp_perf_event_destroy(struct perf_event *event)
9875 {
9876 	perf_trace_destroy(event);
9877 }
9878 
9879 static int perf_tp_event_init(struct perf_event *event)
9880 {
9881 	int err;
9882 
9883 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9884 		return -ENOENT;
9885 
9886 	/*
9887 	 * no branch sampling for tracepoint events
9888 	 */
9889 	if (has_branch_stack(event))
9890 		return -EOPNOTSUPP;
9891 
9892 	err = perf_trace_init(event);
9893 	if (err)
9894 		return err;
9895 
9896 	event->destroy = tp_perf_event_destroy;
9897 
9898 	return 0;
9899 }
9900 
9901 static struct pmu perf_tracepoint = {
9902 	.task_ctx_nr	= perf_sw_context,
9903 
9904 	.event_init	= perf_tp_event_init,
9905 	.add		= perf_trace_add,
9906 	.del		= perf_trace_del,
9907 	.start		= perf_swevent_start,
9908 	.stop		= perf_swevent_stop,
9909 	.read		= perf_swevent_read,
9910 };
9911 
9912 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9913 /*
9914  * Flags in config, used by dynamic PMU kprobe and uprobe
9915  * The flags should match following PMU_FORMAT_ATTR().
9916  *
9917  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9918  *                               if not set, create kprobe/uprobe
9919  *
9920  * The following values specify a reference counter (or semaphore in the
9921  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9922  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9923  *
9924  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9925  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9926  */
9927 enum perf_probe_config {
9928 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9929 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9930 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9931 };
9932 
9933 PMU_FORMAT_ATTR(retprobe, "config:0");
9934 #endif
9935 
9936 #ifdef CONFIG_KPROBE_EVENTS
9937 static struct attribute *kprobe_attrs[] = {
9938 	&format_attr_retprobe.attr,
9939 	NULL,
9940 };
9941 
9942 static struct attribute_group kprobe_format_group = {
9943 	.name = "format",
9944 	.attrs = kprobe_attrs,
9945 };
9946 
9947 static const struct attribute_group *kprobe_attr_groups[] = {
9948 	&kprobe_format_group,
9949 	NULL,
9950 };
9951 
9952 static int perf_kprobe_event_init(struct perf_event *event);
9953 static struct pmu perf_kprobe = {
9954 	.task_ctx_nr	= perf_sw_context,
9955 	.event_init	= perf_kprobe_event_init,
9956 	.add		= perf_trace_add,
9957 	.del		= perf_trace_del,
9958 	.start		= perf_swevent_start,
9959 	.stop		= perf_swevent_stop,
9960 	.read		= perf_swevent_read,
9961 	.attr_groups	= kprobe_attr_groups,
9962 };
9963 
9964 static int perf_kprobe_event_init(struct perf_event *event)
9965 {
9966 	int err;
9967 	bool is_retprobe;
9968 
9969 	if (event->attr.type != perf_kprobe.type)
9970 		return -ENOENT;
9971 
9972 	if (!perfmon_capable())
9973 		return -EACCES;
9974 
9975 	/*
9976 	 * no branch sampling for probe events
9977 	 */
9978 	if (has_branch_stack(event))
9979 		return -EOPNOTSUPP;
9980 
9981 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9982 	err = perf_kprobe_init(event, is_retprobe);
9983 	if (err)
9984 		return err;
9985 
9986 	event->destroy = perf_kprobe_destroy;
9987 
9988 	return 0;
9989 }
9990 #endif /* CONFIG_KPROBE_EVENTS */
9991 
9992 #ifdef CONFIG_UPROBE_EVENTS
9993 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9994 
9995 static struct attribute *uprobe_attrs[] = {
9996 	&format_attr_retprobe.attr,
9997 	&format_attr_ref_ctr_offset.attr,
9998 	NULL,
9999 };
10000 
10001 static struct attribute_group uprobe_format_group = {
10002 	.name = "format",
10003 	.attrs = uprobe_attrs,
10004 };
10005 
10006 static const struct attribute_group *uprobe_attr_groups[] = {
10007 	&uprobe_format_group,
10008 	NULL,
10009 };
10010 
10011 static int perf_uprobe_event_init(struct perf_event *event);
10012 static struct pmu perf_uprobe = {
10013 	.task_ctx_nr	= perf_sw_context,
10014 	.event_init	= perf_uprobe_event_init,
10015 	.add		= perf_trace_add,
10016 	.del		= perf_trace_del,
10017 	.start		= perf_swevent_start,
10018 	.stop		= perf_swevent_stop,
10019 	.read		= perf_swevent_read,
10020 	.attr_groups	= uprobe_attr_groups,
10021 };
10022 
10023 static int perf_uprobe_event_init(struct perf_event *event)
10024 {
10025 	int err;
10026 	unsigned long ref_ctr_offset;
10027 	bool is_retprobe;
10028 
10029 	if (event->attr.type != perf_uprobe.type)
10030 		return -ENOENT;
10031 
10032 	if (!perfmon_capable())
10033 		return -EACCES;
10034 
10035 	/*
10036 	 * no branch sampling for probe events
10037 	 */
10038 	if (has_branch_stack(event))
10039 		return -EOPNOTSUPP;
10040 
10041 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10042 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10043 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10044 	if (err)
10045 		return err;
10046 
10047 	event->destroy = perf_uprobe_destroy;
10048 
10049 	return 0;
10050 }
10051 #endif /* CONFIG_UPROBE_EVENTS */
10052 
10053 static inline void perf_tp_register(void)
10054 {
10055 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10056 #ifdef CONFIG_KPROBE_EVENTS
10057 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10058 #endif
10059 #ifdef CONFIG_UPROBE_EVENTS
10060 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10061 #endif
10062 }
10063 
10064 static void perf_event_free_filter(struct perf_event *event)
10065 {
10066 	ftrace_profile_free_filter(event);
10067 }
10068 
10069 #ifdef CONFIG_BPF_SYSCALL
10070 static void bpf_overflow_handler(struct perf_event *event,
10071 				 struct perf_sample_data *data,
10072 				 struct pt_regs *regs)
10073 {
10074 	struct bpf_perf_event_data_kern ctx = {
10075 		.data = data,
10076 		.event = event,
10077 	};
10078 	struct bpf_prog *prog;
10079 	int ret = 0;
10080 
10081 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10082 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10083 		goto out;
10084 	rcu_read_lock();
10085 	prog = READ_ONCE(event->prog);
10086 	if (prog)
10087 		ret = bpf_prog_run(prog, &ctx);
10088 	rcu_read_unlock();
10089 out:
10090 	__this_cpu_dec(bpf_prog_active);
10091 	if (!ret)
10092 		return;
10093 
10094 	event->orig_overflow_handler(event, data, regs);
10095 }
10096 
10097 static int perf_event_set_bpf_handler(struct perf_event *event,
10098 				      struct bpf_prog *prog,
10099 				      u64 bpf_cookie)
10100 {
10101 	if (event->overflow_handler_context)
10102 		/* hw breakpoint or kernel counter */
10103 		return -EINVAL;
10104 
10105 	if (event->prog)
10106 		return -EEXIST;
10107 
10108 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10109 		return -EINVAL;
10110 
10111 	if (event->attr.precise_ip &&
10112 	    prog->call_get_stack &&
10113 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10114 	     event->attr.exclude_callchain_kernel ||
10115 	     event->attr.exclude_callchain_user)) {
10116 		/*
10117 		 * On perf_event with precise_ip, calling bpf_get_stack()
10118 		 * may trigger unwinder warnings and occasional crashes.
10119 		 * bpf_get_[stack|stackid] works around this issue by using
10120 		 * callchain attached to perf_sample_data. If the
10121 		 * perf_event does not full (kernel and user) callchain
10122 		 * attached to perf_sample_data, do not allow attaching BPF
10123 		 * program that calls bpf_get_[stack|stackid].
10124 		 */
10125 		return -EPROTO;
10126 	}
10127 
10128 	event->prog = prog;
10129 	event->bpf_cookie = bpf_cookie;
10130 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10131 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10132 	return 0;
10133 }
10134 
10135 static void perf_event_free_bpf_handler(struct perf_event *event)
10136 {
10137 	struct bpf_prog *prog = event->prog;
10138 
10139 	if (!prog)
10140 		return;
10141 
10142 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10143 	event->prog = NULL;
10144 	bpf_prog_put(prog);
10145 }
10146 #else
10147 static int perf_event_set_bpf_handler(struct perf_event *event,
10148 				      struct bpf_prog *prog,
10149 				      u64 bpf_cookie)
10150 {
10151 	return -EOPNOTSUPP;
10152 }
10153 static void perf_event_free_bpf_handler(struct perf_event *event)
10154 {
10155 }
10156 #endif
10157 
10158 /*
10159  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10160  * with perf_event_open()
10161  */
10162 static inline bool perf_event_is_tracing(struct perf_event *event)
10163 {
10164 	if (event->pmu == &perf_tracepoint)
10165 		return true;
10166 #ifdef CONFIG_KPROBE_EVENTS
10167 	if (event->pmu == &perf_kprobe)
10168 		return true;
10169 #endif
10170 #ifdef CONFIG_UPROBE_EVENTS
10171 	if (event->pmu == &perf_uprobe)
10172 		return true;
10173 #endif
10174 	return false;
10175 }
10176 
10177 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10178 			    u64 bpf_cookie)
10179 {
10180 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10181 
10182 	if (!perf_event_is_tracing(event))
10183 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10184 
10185 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10186 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10187 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10188 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10189 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10190 		return -EINVAL;
10191 
10192 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10193 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10194 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10195 		return -EINVAL;
10196 
10197 	/* Kprobe override only works for kprobes, not uprobes. */
10198 	if (prog->kprobe_override &&
10199 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10200 		return -EINVAL;
10201 
10202 	if (is_tracepoint || is_syscall_tp) {
10203 		int off = trace_event_get_offsets(event->tp_event);
10204 
10205 		if (prog->aux->max_ctx_offset > off)
10206 			return -EACCES;
10207 	}
10208 
10209 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10210 }
10211 
10212 void perf_event_free_bpf_prog(struct perf_event *event)
10213 {
10214 	if (!perf_event_is_tracing(event)) {
10215 		perf_event_free_bpf_handler(event);
10216 		return;
10217 	}
10218 	perf_event_detach_bpf_prog(event);
10219 }
10220 
10221 #else
10222 
10223 static inline void perf_tp_register(void)
10224 {
10225 }
10226 
10227 static void perf_event_free_filter(struct perf_event *event)
10228 {
10229 }
10230 
10231 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10232 			    u64 bpf_cookie)
10233 {
10234 	return -ENOENT;
10235 }
10236 
10237 void perf_event_free_bpf_prog(struct perf_event *event)
10238 {
10239 }
10240 #endif /* CONFIG_EVENT_TRACING */
10241 
10242 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10243 void perf_bp_event(struct perf_event *bp, void *data)
10244 {
10245 	struct perf_sample_data sample;
10246 	struct pt_regs *regs = data;
10247 
10248 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10249 
10250 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10251 		perf_swevent_event(bp, 1, &sample, regs);
10252 }
10253 #endif
10254 
10255 /*
10256  * Allocate a new address filter
10257  */
10258 static struct perf_addr_filter *
10259 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10260 {
10261 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10262 	struct perf_addr_filter *filter;
10263 
10264 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10265 	if (!filter)
10266 		return NULL;
10267 
10268 	INIT_LIST_HEAD(&filter->entry);
10269 	list_add_tail(&filter->entry, filters);
10270 
10271 	return filter;
10272 }
10273 
10274 static void free_filters_list(struct list_head *filters)
10275 {
10276 	struct perf_addr_filter *filter, *iter;
10277 
10278 	list_for_each_entry_safe(filter, iter, filters, entry) {
10279 		path_put(&filter->path);
10280 		list_del(&filter->entry);
10281 		kfree(filter);
10282 	}
10283 }
10284 
10285 /*
10286  * Free existing address filters and optionally install new ones
10287  */
10288 static void perf_addr_filters_splice(struct perf_event *event,
10289 				     struct list_head *head)
10290 {
10291 	unsigned long flags;
10292 	LIST_HEAD(list);
10293 
10294 	if (!has_addr_filter(event))
10295 		return;
10296 
10297 	/* don't bother with children, they don't have their own filters */
10298 	if (event->parent)
10299 		return;
10300 
10301 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10302 
10303 	list_splice_init(&event->addr_filters.list, &list);
10304 	if (head)
10305 		list_splice(head, &event->addr_filters.list);
10306 
10307 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10308 
10309 	free_filters_list(&list);
10310 }
10311 
10312 /*
10313  * Scan through mm's vmas and see if one of them matches the
10314  * @filter; if so, adjust filter's address range.
10315  * Called with mm::mmap_lock down for reading.
10316  */
10317 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10318 				   struct mm_struct *mm,
10319 				   struct perf_addr_filter_range *fr)
10320 {
10321 	struct vm_area_struct *vma;
10322 
10323 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10324 		if (!vma->vm_file)
10325 			continue;
10326 
10327 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10328 			return;
10329 	}
10330 }
10331 
10332 /*
10333  * Update event's address range filters based on the
10334  * task's existing mappings, if any.
10335  */
10336 static void perf_event_addr_filters_apply(struct perf_event *event)
10337 {
10338 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10339 	struct task_struct *task = READ_ONCE(event->ctx->task);
10340 	struct perf_addr_filter *filter;
10341 	struct mm_struct *mm = NULL;
10342 	unsigned int count = 0;
10343 	unsigned long flags;
10344 
10345 	/*
10346 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10347 	 * will stop on the parent's child_mutex that our caller is also holding
10348 	 */
10349 	if (task == TASK_TOMBSTONE)
10350 		return;
10351 
10352 	if (ifh->nr_file_filters) {
10353 		mm = get_task_mm(task);
10354 		if (!mm)
10355 			goto restart;
10356 
10357 		mmap_read_lock(mm);
10358 	}
10359 
10360 	raw_spin_lock_irqsave(&ifh->lock, flags);
10361 	list_for_each_entry(filter, &ifh->list, entry) {
10362 		if (filter->path.dentry) {
10363 			/*
10364 			 * Adjust base offset if the filter is associated to a
10365 			 * binary that needs to be mapped:
10366 			 */
10367 			event->addr_filter_ranges[count].start = 0;
10368 			event->addr_filter_ranges[count].size = 0;
10369 
10370 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10371 		} else {
10372 			event->addr_filter_ranges[count].start = filter->offset;
10373 			event->addr_filter_ranges[count].size  = filter->size;
10374 		}
10375 
10376 		count++;
10377 	}
10378 
10379 	event->addr_filters_gen++;
10380 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10381 
10382 	if (ifh->nr_file_filters) {
10383 		mmap_read_unlock(mm);
10384 
10385 		mmput(mm);
10386 	}
10387 
10388 restart:
10389 	perf_event_stop(event, 1);
10390 }
10391 
10392 /*
10393  * Address range filtering: limiting the data to certain
10394  * instruction address ranges. Filters are ioctl()ed to us from
10395  * userspace as ascii strings.
10396  *
10397  * Filter string format:
10398  *
10399  * ACTION RANGE_SPEC
10400  * where ACTION is one of the
10401  *  * "filter": limit the trace to this region
10402  *  * "start": start tracing from this address
10403  *  * "stop": stop tracing at this address/region;
10404  * RANGE_SPEC is
10405  *  * for kernel addresses: <start address>[/<size>]
10406  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10407  *
10408  * if <size> is not specified or is zero, the range is treated as a single
10409  * address; not valid for ACTION=="filter".
10410  */
10411 enum {
10412 	IF_ACT_NONE = -1,
10413 	IF_ACT_FILTER,
10414 	IF_ACT_START,
10415 	IF_ACT_STOP,
10416 	IF_SRC_FILE,
10417 	IF_SRC_KERNEL,
10418 	IF_SRC_FILEADDR,
10419 	IF_SRC_KERNELADDR,
10420 };
10421 
10422 enum {
10423 	IF_STATE_ACTION = 0,
10424 	IF_STATE_SOURCE,
10425 	IF_STATE_END,
10426 };
10427 
10428 static const match_table_t if_tokens = {
10429 	{ IF_ACT_FILTER,	"filter" },
10430 	{ IF_ACT_START,		"start" },
10431 	{ IF_ACT_STOP,		"stop" },
10432 	{ IF_SRC_FILE,		"%u/%u@%s" },
10433 	{ IF_SRC_KERNEL,	"%u/%u" },
10434 	{ IF_SRC_FILEADDR,	"%u@%s" },
10435 	{ IF_SRC_KERNELADDR,	"%u" },
10436 	{ IF_ACT_NONE,		NULL },
10437 };
10438 
10439 /*
10440  * Address filter string parser
10441  */
10442 static int
10443 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10444 			     struct list_head *filters)
10445 {
10446 	struct perf_addr_filter *filter = NULL;
10447 	char *start, *orig, *filename = NULL;
10448 	substring_t args[MAX_OPT_ARGS];
10449 	int state = IF_STATE_ACTION, token;
10450 	unsigned int kernel = 0;
10451 	int ret = -EINVAL;
10452 
10453 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10454 	if (!fstr)
10455 		return -ENOMEM;
10456 
10457 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10458 		static const enum perf_addr_filter_action_t actions[] = {
10459 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10460 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10461 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10462 		};
10463 		ret = -EINVAL;
10464 
10465 		if (!*start)
10466 			continue;
10467 
10468 		/* filter definition begins */
10469 		if (state == IF_STATE_ACTION) {
10470 			filter = perf_addr_filter_new(event, filters);
10471 			if (!filter)
10472 				goto fail;
10473 		}
10474 
10475 		token = match_token(start, if_tokens, args);
10476 		switch (token) {
10477 		case IF_ACT_FILTER:
10478 		case IF_ACT_START:
10479 		case IF_ACT_STOP:
10480 			if (state != IF_STATE_ACTION)
10481 				goto fail;
10482 
10483 			filter->action = actions[token];
10484 			state = IF_STATE_SOURCE;
10485 			break;
10486 
10487 		case IF_SRC_KERNELADDR:
10488 		case IF_SRC_KERNEL:
10489 			kernel = 1;
10490 			fallthrough;
10491 
10492 		case IF_SRC_FILEADDR:
10493 		case IF_SRC_FILE:
10494 			if (state != IF_STATE_SOURCE)
10495 				goto fail;
10496 
10497 			*args[0].to = 0;
10498 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10499 			if (ret)
10500 				goto fail;
10501 
10502 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10503 				*args[1].to = 0;
10504 				ret = kstrtoul(args[1].from, 0, &filter->size);
10505 				if (ret)
10506 					goto fail;
10507 			}
10508 
10509 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10510 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10511 
10512 				kfree(filename);
10513 				filename = match_strdup(&args[fpos]);
10514 				if (!filename) {
10515 					ret = -ENOMEM;
10516 					goto fail;
10517 				}
10518 			}
10519 
10520 			state = IF_STATE_END;
10521 			break;
10522 
10523 		default:
10524 			goto fail;
10525 		}
10526 
10527 		/*
10528 		 * Filter definition is fully parsed, validate and install it.
10529 		 * Make sure that it doesn't contradict itself or the event's
10530 		 * attribute.
10531 		 */
10532 		if (state == IF_STATE_END) {
10533 			ret = -EINVAL;
10534 			if (kernel && event->attr.exclude_kernel)
10535 				goto fail;
10536 
10537 			/*
10538 			 * ACTION "filter" must have a non-zero length region
10539 			 * specified.
10540 			 */
10541 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10542 			    !filter->size)
10543 				goto fail;
10544 
10545 			if (!kernel) {
10546 				if (!filename)
10547 					goto fail;
10548 
10549 				/*
10550 				 * For now, we only support file-based filters
10551 				 * in per-task events; doing so for CPU-wide
10552 				 * events requires additional context switching
10553 				 * trickery, since same object code will be
10554 				 * mapped at different virtual addresses in
10555 				 * different processes.
10556 				 */
10557 				ret = -EOPNOTSUPP;
10558 				if (!event->ctx->task)
10559 					goto fail;
10560 
10561 				/* look up the path and grab its inode */
10562 				ret = kern_path(filename, LOOKUP_FOLLOW,
10563 						&filter->path);
10564 				if (ret)
10565 					goto fail;
10566 
10567 				ret = -EINVAL;
10568 				if (!filter->path.dentry ||
10569 				    !S_ISREG(d_inode(filter->path.dentry)
10570 					     ->i_mode))
10571 					goto fail;
10572 
10573 				event->addr_filters.nr_file_filters++;
10574 			}
10575 
10576 			/* ready to consume more filters */
10577 			state = IF_STATE_ACTION;
10578 			filter = NULL;
10579 		}
10580 	}
10581 
10582 	if (state != IF_STATE_ACTION)
10583 		goto fail;
10584 
10585 	kfree(filename);
10586 	kfree(orig);
10587 
10588 	return 0;
10589 
10590 fail:
10591 	kfree(filename);
10592 	free_filters_list(filters);
10593 	kfree(orig);
10594 
10595 	return ret;
10596 }
10597 
10598 static int
10599 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10600 {
10601 	LIST_HEAD(filters);
10602 	int ret;
10603 
10604 	/*
10605 	 * Since this is called in perf_ioctl() path, we're already holding
10606 	 * ctx::mutex.
10607 	 */
10608 	lockdep_assert_held(&event->ctx->mutex);
10609 
10610 	if (WARN_ON_ONCE(event->parent))
10611 		return -EINVAL;
10612 
10613 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10614 	if (ret)
10615 		goto fail_clear_files;
10616 
10617 	ret = event->pmu->addr_filters_validate(&filters);
10618 	if (ret)
10619 		goto fail_free_filters;
10620 
10621 	/* remove existing filters, if any */
10622 	perf_addr_filters_splice(event, &filters);
10623 
10624 	/* install new filters */
10625 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10626 
10627 	return ret;
10628 
10629 fail_free_filters:
10630 	free_filters_list(&filters);
10631 
10632 fail_clear_files:
10633 	event->addr_filters.nr_file_filters = 0;
10634 
10635 	return ret;
10636 }
10637 
10638 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10639 {
10640 	int ret = -EINVAL;
10641 	char *filter_str;
10642 
10643 	filter_str = strndup_user(arg, PAGE_SIZE);
10644 	if (IS_ERR(filter_str))
10645 		return PTR_ERR(filter_str);
10646 
10647 #ifdef CONFIG_EVENT_TRACING
10648 	if (perf_event_is_tracing(event)) {
10649 		struct perf_event_context *ctx = event->ctx;
10650 
10651 		/*
10652 		 * Beware, here be dragons!!
10653 		 *
10654 		 * the tracepoint muck will deadlock against ctx->mutex, but
10655 		 * the tracepoint stuff does not actually need it. So
10656 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10657 		 * already have a reference on ctx.
10658 		 *
10659 		 * This can result in event getting moved to a different ctx,
10660 		 * but that does not affect the tracepoint state.
10661 		 */
10662 		mutex_unlock(&ctx->mutex);
10663 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10664 		mutex_lock(&ctx->mutex);
10665 	} else
10666 #endif
10667 	if (has_addr_filter(event))
10668 		ret = perf_event_set_addr_filter(event, filter_str);
10669 
10670 	kfree(filter_str);
10671 	return ret;
10672 }
10673 
10674 /*
10675  * hrtimer based swevent callback
10676  */
10677 
10678 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10679 {
10680 	enum hrtimer_restart ret = HRTIMER_RESTART;
10681 	struct perf_sample_data data;
10682 	struct pt_regs *regs;
10683 	struct perf_event *event;
10684 	u64 period;
10685 
10686 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10687 
10688 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10689 		return HRTIMER_NORESTART;
10690 
10691 	event->pmu->read(event);
10692 
10693 	perf_sample_data_init(&data, 0, event->hw.last_period);
10694 	regs = get_irq_regs();
10695 
10696 	if (regs && !perf_exclude_event(event, regs)) {
10697 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10698 			if (__perf_event_overflow(event, 1, &data, regs))
10699 				ret = HRTIMER_NORESTART;
10700 	}
10701 
10702 	period = max_t(u64, 10000, event->hw.sample_period);
10703 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10704 
10705 	return ret;
10706 }
10707 
10708 static void perf_swevent_start_hrtimer(struct perf_event *event)
10709 {
10710 	struct hw_perf_event *hwc = &event->hw;
10711 	s64 period;
10712 
10713 	if (!is_sampling_event(event))
10714 		return;
10715 
10716 	period = local64_read(&hwc->period_left);
10717 	if (period) {
10718 		if (period < 0)
10719 			period = 10000;
10720 
10721 		local64_set(&hwc->period_left, 0);
10722 	} else {
10723 		period = max_t(u64, 10000, hwc->sample_period);
10724 	}
10725 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10726 		      HRTIMER_MODE_REL_PINNED_HARD);
10727 }
10728 
10729 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10730 {
10731 	struct hw_perf_event *hwc = &event->hw;
10732 
10733 	if (is_sampling_event(event)) {
10734 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10735 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10736 
10737 		hrtimer_cancel(&hwc->hrtimer);
10738 	}
10739 }
10740 
10741 static void perf_swevent_init_hrtimer(struct perf_event *event)
10742 {
10743 	struct hw_perf_event *hwc = &event->hw;
10744 
10745 	if (!is_sampling_event(event))
10746 		return;
10747 
10748 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10749 	hwc->hrtimer.function = perf_swevent_hrtimer;
10750 
10751 	/*
10752 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10753 	 * mapping and avoid the whole period adjust feedback stuff.
10754 	 */
10755 	if (event->attr.freq) {
10756 		long freq = event->attr.sample_freq;
10757 
10758 		event->attr.sample_period = NSEC_PER_SEC / freq;
10759 		hwc->sample_period = event->attr.sample_period;
10760 		local64_set(&hwc->period_left, hwc->sample_period);
10761 		hwc->last_period = hwc->sample_period;
10762 		event->attr.freq = 0;
10763 	}
10764 }
10765 
10766 /*
10767  * Software event: cpu wall time clock
10768  */
10769 
10770 static void cpu_clock_event_update(struct perf_event *event)
10771 {
10772 	s64 prev;
10773 	u64 now;
10774 
10775 	now = local_clock();
10776 	prev = local64_xchg(&event->hw.prev_count, now);
10777 	local64_add(now - prev, &event->count);
10778 }
10779 
10780 static void cpu_clock_event_start(struct perf_event *event, int flags)
10781 {
10782 	local64_set(&event->hw.prev_count, local_clock());
10783 	perf_swevent_start_hrtimer(event);
10784 }
10785 
10786 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10787 {
10788 	perf_swevent_cancel_hrtimer(event);
10789 	cpu_clock_event_update(event);
10790 }
10791 
10792 static int cpu_clock_event_add(struct perf_event *event, int flags)
10793 {
10794 	if (flags & PERF_EF_START)
10795 		cpu_clock_event_start(event, flags);
10796 	perf_event_update_userpage(event);
10797 
10798 	return 0;
10799 }
10800 
10801 static void cpu_clock_event_del(struct perf_event *event, int flags)
10802 {
10803 	cpu_clock_event_stop(event, flags);
10804 }
10805 
10806 static void cpu_clock_event_read(struct perf_event *event)
10807 {
10808 	cpu_clock_event_update(event);
10809 }
10810 
10811 static int cpu_clock_event_init(struct perf_event *event)
10812 {
10813 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10814 		return -ENOENT;
10815 
10816 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10817 		return -ENOENT;
10818 
10819 	/*
10820 	 * no branch sampling for software events
10821 	 */
10822 	if (has_branch_stack(event))
10823 		return -EOPNOTSUPP;
10824 
10825 	perf_swevent_init_hrtimer(event);
10826 
10827 	return 0;
10828 }
10829 
10830 static struct pmu perf_cpu_clock = {
10831 	.task_ctx_nr	= perf_sw_context,
10832 
10833 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10834 
10835 	.event_init	= cpu_clock_event_init,
10836 	.add		= cpu_clock_event_add,
10837 	.del		= cpu_clock_event_del,
10838 	.start		= cpu_clock_event_start,
10839 	.stop		= cpu_clock_event_stop,
10840 	.read		= cpu_clock_event_read,
10841 };
10842 
10843 /*
10844  * Software event: task time clock
10845  */
10846 
10847 static void task_clock_event_update(struct perf_event *event, u64 now)
10848 {
10849 	u64 prev;
10850 	s64 delta;
10851 
10852 	prev = local64_xchg(&event->hw.prev_count, now);
10853 	delta = now - prev;
10854 	local64_add(delta, &event->count);
10855 }
10856 
10857 static void task_clock_event_start(struct perf_event *event, int flags)
10858 {
10859 	local64_set(&event->hw.prev_count, event->ctx->time);
10860 	perf_swevent_start_hrtimer(event);
10861 }
10862 
10863 static void task_clock_event_stop(struct perf_event *event, int flags)
10864 {
10865 	perf_swevent_cancel_hrtimer(event);
10866 	task_clock_event_update(event, event->ctx->time);
10867 }
10868 
10869 static int task_clock_event_add(struct perf_event *event, int flags)
10870 {
10871 	if (flags & PERF_EF_START)
10872 		task_clock_event_start(event, flags);
10873 	perf_event_update_userpage(event);
10874 
10875 	return 0;
10876 }
10877 
10878 static void task_clock_event_del(struct perf_event *event, int flags)
10879 {
10880 	task_clock_event_stop(event, PERF_EF_UPDATE);
10881 }
10882 
10883 static void task_clock_event_read(struct perf_event *event)
10884 {
10885 	u64 now = perf_clock();
10886 	u64 delta = now - event->ctx->timestamp;
10887 	u64 time = event->ctx->time + delta;
10888 
10889 	task_clock_event_update(event, time);
10890 }
10891 
10892 static int task_clock_event_init(struct perf_event *event)
10893 {
10894 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10895 		return -ENOENT;
10896 
10897 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10898 		return -ENOENT;
10899 
10900 	/*
10901 	 * no branch sampling for software events
10902 	 */
10903 	if (has_branch_stack(event))
10904 		return -EOPNOTSUPP;
10905 
10906 	perf_swevent_init_hrtimer(event);
10907 
10908 	return 0;
10909 }
10910 
10911 static struct pmu perf_task_clock = {
10912 	.task_ctx_nr	= perf_sw_context,
10913 
10914 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10915 
10916 	.event_init	= task_clock_event_init,
10917 	.add		= task_clock_event_add,
10918 	.del		= task_clock_event_del,
10919 	.start		= task_clock_event_start,
10920 	.stop		= task_clock_event_stop,
10921 	.read		= task_clock_event_read,
10922 };
10923 
10924 static void perf_pmu_nop_void(struct pmu *pmu)
10925 {
10926 }
10927 
10928 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10929 {
10930 }
10931 
10932 static int perf_pmu_nop_int(struct pmu *pmu)
10933 {
10934 	return 0;
10935 }
10936 
10937 static int perf_event_nop_int(struct perf_event *event, u64 value)
10938 {
10939 	return 0;
10940 }
10941 
10942 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10943 
10944 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10945 {
10946 	__this_cpu_write(nop_txn_flags, flags);
10947 
10948 	if (flags & ~PERF_PMU_TXN_ADD)
10949 		return;
10950 
10951 	perf_pmu_disable(pmu);
10952 }
10953 
10954 static int perf_pmu_commit_txn(struct pmu *pmu)
10955 {
10956 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10957 
10958 	__this_cpu_write(nop_txn_flags, 0);
10959 
10960 	if (flags & ~PERF_PMU_TXN_ADD)
10961 		return 0;
10962 
10963 	perf_pmu_enable(pmu);
10964 	return 0;
10965 }
10966 
10967 static void perf_pmu_cancel_txn(struct pmu *pmu)
10968 {
10969 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10970 
10971 	__this_cpu_write(nop_txn_flags, 0);
10972 
10973 	if (flags & ~PERF_PMU_TXN_ADD)
10974 		return;
10975 
10976 	perf_pmu_enable(pmu);
10977 }
10978 
10979 static int perf_event_idx_default(struct perf_event *event)
10980 {
10981 	return 0;
10982 }
10983 
10984 /*
10985  * Ensures all contexts with the same task_ctx_nr have the same
10986  * pmu_cpu_context too.
10987  */
10988 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10989 {
10990 	struct pmu *pmu;
10991 
10992 	if (ctxn < 0)
10993 		return NULL;
10994 
10995 	list_for_each_entry(pmu, &pmus, entry) {
10996 		if (pmu->task_ctx_nr == ctxn)
10997 			return pmu->pmu_cpu_context;
10998 	}
10999 
11000 	return NULL;
11001 }
11002 
11003 static void free_pmu_context(struct pmu *pmu)
11004 {
11005 	/*
11006 	 * Static contexts such as perf_sw_context have a global lifetime
11007 	 * and may be shared between different PMUs. Avoid freeing them
11008 	 * when a single PMU is going away.
11009 	 */
11010 	if (pmu->task_ctx_nr > perf_invalid_context)
11011 		return;
11012 
11013 	free_percpu(pmu->pmu_cpu_context);
11014 }
11015 
11016 /*
11017  * Let userspace know that this PMU supports address range filtering:
11018  */
11019 static ssize_t nr_addr_filters_show(struct device *dev,
11020 				    struct device_attribute *attr,
11021 				    char *page)
11022 {
11023 	struct pmu *pmu = dev_get_drvdata(dev);
11024 
11025 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11026 }
11027 DEVICE_ATTR_RO(nr_addr_filters);
11028 
11029 static struct idr pmu_idr;
11030 
11031 static ssize_t
11032 type_show(struct device *dev, struct device_attribute *attr, char *page)
11033 {
11034 	struct pmu *pmu = dev_get_drvdata(dev);
11035 
11036 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11037 }
11038 static DEVICE_ATTR_RO(type);
11039 
11040 static ssize_t
11041 perf_event_mux_interval_ms_show(struct device *dev,
11042 				struct device_attribute *attr,
11043 				char *page)
11044 {
11045 	struct pmu *pmu = dev_get_drvdata(dev);
11046 
11047 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11048 }
11049 
11050 static DEFINE_MUTEX(mux_interval_mutex);
11051 
11052 static ssize_t
11053 perf_event_mux_interval_ms_store(struct device *dev,
11054 				 struct device_attribute *attr,
11055 				 const char *buf, size_t count)
11056 {
11057 	struct pmu *pmu = dev_get_drvdata(dev);
11058 	int timer, cpu, ret;
11059 
11060 	ret = kstrtoint(buf, 0, &timer);
11061 	if (ret)
11062 		return ret;
11063 
11064 	if (timer < 1)
11065 		return -EINVAL;
11066 
11067 	/* same value, noting to do */
11068 	if (timer == pmu->hrtimer_interval_ms)
11069 		return count;
11070 
11071 	mutex_lock(&mux_interval_mutex);
11072 	pmu->hrtimer_interval_ms = timer;
11073 
11074 	/* update all cpuctx for this PMU */
11075 	cpus_read_lock();
11076 	for_each_online_cpu(cpu) {
11077 		struct perf_cpu_context *cpuctx;
11078 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11079 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11080 
11081 		cpu_function_call(cpu,
11082 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11083 	}
11084 	cpus_read_unlock();
11085 	mutex_unlock(&mux_interval_mutex);
11086 
11087 	return count;
11088 }
11089 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11090 
11091 static struct attribute *pmu_dev_attrs[] = {
11092 	&dev_attr_type.attr,
11093 	&dev_attr_perf_event_mux_interval_ms.attr,
11094 	NULL,
11095 };
11096 ATTRIBUTE_GROUPS(pmu_dev);
11097 
11098 static int pmu_bus_running;
11099 static struct bus_type pmu_bus = {
11100 	.name		= "event_source",
11101 	.dev_groups	= pmu_dev_groups,
11102 };
11103 
11104 static void pmu_dev_release(struct device *dev)
11105 {
11106 	kfree(dev);
11107 }
11108 
11109 static int pmu_dev_alloc(struct pmu *pmu)
11110 {
11111 	int ret = -ENOMEM;
11112 
11113 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11114 	if (!pmu->dev)
11115 		goto out;
11116 
11117 	pmu->dev->groups = pmu->attr_groups;
11118 	device_initialize(pmu->dev);
11119 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11120 	if (ret)
11121 		goto free_dev;
11122 
11123 	dev_set_drvdata(pmu->dev, pmu);
11124 	pmu->dev->bus = &pmu_bus;
11125 	pmu->dev->release = pmu_dev_release;
11126 	ret = device_add(pmu->dev);
11127 	if (ret)
11128 		goto free_dev;
11129 
11130 	/* For PMUs with address filters, throw in an extra attribute: */
11131 	if (pmu->nr_addr_filters)
11132 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11133 
11134 	if (ret)
11135 		goto del_dev;
11136 
11137 	if (pmu->attr_update)
11138 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11139 
11140 	if (ret)
11141 		goto del_dev;
11142 
11143 out:
11144 	return ret;
11145 
11146 del_dev:
11147 	device_del(pmu->dev);
11148 
11149 free_dev:
11150 	put_device(pmu->dev);
11151 	goto out;
11152 }
11153 
11154 static struct lock_class_key cpuctx_mutex;
11155 static struct lock_class_key cpuctx_lock;
11156 
11157 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11158 {
11159 	int cpu, ret, max = PERF_TYPE_MAX;
11160 
11161 	mutex_lock(&pmus_lock);
11162 	ret = -ENOMEM;
11163 	pmu->pmu_disable_count = alloc_percpu(int);
11164 	if (!pmu->pmu_disable_count)
11165 		goto unlock;
11166 
11167 	pmu->type = -1;
11168 	if (!name)
11169 		goto skip_type;
11170 	pmu->name = name;
11171 
11172 	if (type != PERF_TYPE_SOFTWARE) {
11173 		if (type >= 0)
11174 			max = type;
11175 
11176 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11177 		if (ret < 0)
11178 			goto free_pdc;
11179 
11180 		WARN_ON(type >= 0 && ret != type);
11181 
11182 		type = ret;
11183 	}
11184 	pmu->type = type;
11185 
11186 	if (pmu_bus_running) {
11187 		ret = pmu_dev_alloc(pmu);
11188 		if (ret)
11189 			goto free_idr;
11190 	}
11191 
11192 skip_type:
11193 	if (pmu->task_ctx_nr == perf_hw_context) {
11194 		static int hw_context_taken = 0;
11195 
11196 		/*
11197 		 * Other than systems with heterogeneous CPUs, it never makes
11198 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11199 		 * uncore must use perf_invalid_context.
11200 		 */
11201 		if (WARN_ON_ONCE(hw_context_taken &&
11202 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11203 			pmu->task_ctx_nr = perf_invalid_context;
11204 
11205 		hw_context_taken = 1;
11206 	}
11207 
11208 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11209 	if (pmu->pmu_cpu_context)
11210 		goto got_cpu_context;
11211 
11212 	ret = -ENOMEM;
11213 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11214 	if (!pmu->pmu_cpu_context)
11215 		goto free_dev;
11216 
11217 	for_each_possible_cpu(cpu) {
11218 		struct perf_cpu_context *cpuctx;
11219 
11220 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11221 		__perf_event_init_context(&cpuctx->ctx);
11222 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11223 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11224 		cpuctx->ctx.pmu = pmu;
11225 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11226 
11227 		__perf_mux_hrtimer_init(cpuctx, cpu);
11228 
11229 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11230 		cpuctx->heap = cpuctx->heap_default;
11231 	}
11232 
11233 got_cpu_context:
11234 	if (!pmu->start_txn) {
11235 		if (pmu->pmu_enable) {
11236 			/*
11237 			 * If we have pmu_enable/pmu_disable calls, install
11238 			 * transaction stubs that use that to try and batch
11239 			 * hardware accesses.
11240 			 */
11241 			pmu->start_txn  = perf_pmu_start_txn;
11242 			pmu->commit_txn = perf_pmu_commit_txn;
11243 			pmu->cancel_txn = perf_pmu_cancel_txn;
11244 		} else {
11245 			pmu->start_txn  = perf_pmu_nop_txn;
11246 			pmu->commit_txn = perf_pmu_nop_int;
11247 			pmu->cancel_txn = perf_pmu_nop_void;
11248 		}
11249 	}
11250 
11251 	if (!pmu->pmu_enable) {
11252 		pmu->pmu_enable  = perf_pmu_nop_void;
11253 		pmu->pmu_disable = perf_pmu_nop_void;
11254 	}
11255 
11256 	if (!pmu->check_period)
11257 		pmu->check_period = perf_event_nop_int;
11258 
11259 	if (!pmu->event_idx)
11260 		pmu->event_idx = perf_event_idx_default;
11261 
11262 	/*
11263 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11264 	 * since these cannot be in the IDR. This way the linear search
11265 	 * is fast, provided a valid software event is provided.
11266 	 */
11267 	if (type == PERF_TYPE_SOFTWARE || !name)
11268 		list_add_rcu(&pmu->entry, &pmus);
11269 	else
11270 		list_add_tail_rcu(&pmu->entry, &pmus);
11271 
11272 	atomic_set(&pmu->exclusive_cnt, 0);
11273 	ret = 0;
11274 unlock:
11275 	mutex_unlock(&pmus_lock);
11276 
11277 	return ret;
11278 
11279 free_dev:
11280 	device_del(pmu->dev);
11281 	put_device(pmu->dev);
11282 
11283 free_idr:
11284 	if (pmu->type != PERF_TYPE_SOFTWARE)
11285 		idr_remove(&pmu_idr, pmu->type);
11286 
11287 free_pdc:
11288 	free_percpu(pmu->pmu_disable_count);
11289 	goto unlock;
11290 }
11291 EXPORT_SYMBOL_GPL(perf_pmu_register);
11292 
11293 void perf_pmu_unregister(struct pmu *pmu)
11294 {
11295 	mutex_lock(&pmus_lock);
11296 	list_del_rcu(&pmu->entry);
11297 
11298 	/*
11299 	 * We dereference the pmu list under both SRCU and regular RCU, so
11300 	 * synchronize against both of those.
11301 	 */
11302 	synchronize_srcu(&pmus_srcu);
11303 	synchronize_rcu();
11304 
11305 	free_percpu(pmu->pmu_disable_count);
11306 	if (pmu->type != PERF_TYPE_SOFTWARE)
11307 		idr_remove(&pmu_idr, pmu->type);
11308 	if (pmu_bus_running) {
11309 		if (pmu->nr_addr_filters)
11310 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11311 		device_del(pmu->dev);
11312 		put_device(pmu->dev);
11313 	}
11314 	free_pmu_context(pmu);
11315 	mutex_unlock(&pmus_lock);
11316 }
11317 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11318 
11319 static inline bool has_extended_regs(struct perf_event *event)
11320 {
11321 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11322 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11323 }
11324 
11325 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11326 {
11327 	struct perf_event_context *ctx = NULL;
11328 	int ret;
11329 
11330 	if (!try_module_get(pmu->module))
11331 		return -ENODEV;
11332 
11333 	/*
11334 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11335 	 * for example, validate if the group fits on the PMU. Therefore,
11336 	 * if this is a sibling event, acquire the ctx->mutex to protect
11337 	 * the sibling_list.
11338 	 */
11339 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11340 		/*
11341 		 * This ctx->mutex can nest when we're called through
11342 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11343 		 */
11344 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11345 						 SINGLE_DEPTH_NESTING);
11346 		BUG_ON(!ctx);
11347 	}
11348 
11349 	event->pmu = pmu;
11350 	ret = pmu->event_init(event);
11351 
11352 	if (ctx)
11353 		perf_event_ctx_unlock(event->group_leader, ctx);
11354 
11355 	if (!ret) {
11356 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11357 		    has_extended_regs(event))
11358 			ret = -EOPNOTSUPP;
11359 
11360 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11361 		    event_has_any_exclude_flag(event))
11362 			ret = -EINVAL;
11363 
11364 		if (ret && event->destroy)
11365 			event->destroy(event);
11366 	}
11367 
11368 	if (ret)
11369 		module_put(pmu->module);
11370 
11371 	return ret;
11372 }
11373 
11374 static struct pmu *perf_init_event(struct perf_event *event)
11375 {
11376 	bool extended_type = false;
11377 	int idx, type, ret;
11378 	struct pmu *pmu;
11379 
11380 	idx = srcu_read_lock(&pmus_srcu);
11381 
11382 	/* Try parent's PMU first: */
11383 	if (event->parent && event->parent->pmu) {
11384 		pmu = event->parent->pmu;
11385 		ret = perf_try_init_event(pmu, event);
11386 		if (!ret)
11387 			goto unlock;
11388 	}
11389 
11390 	/*
11391 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11392 	 * are often aliases for PERF_TYPE_RAW.
11393 	 */
11394 	type = event->attr.type;
11395 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11396 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11397 		if (!type) {
11398 			type = PERF_TYPE_RAW;
11399 		} else {
11400 			extended_type = true;
11401 			event->attr.config &= PERF_HW_EVENT_MASK;
11402 		}
11403 	}
11404 
11405 again:
11406 	rcu_read_lock();
11407 	pmu = idr_find(&pmu_idr, type);
11408 	rcu_read_unlock();
11409 	if (pmu) {
11410 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11411 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11412 			goto fail;
11413 
11414 		ret = perf_try_init_event(pmu, event);
11415 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11416 			type = event->attr.type;
11417 			goto again;
11418 		}
11419 
11420 		if (ret)
11421 			pmu = ERR_PTR(ret);
11422 
11423 		goto unlock;
11424 	}
11425 
11426 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11427 		ret = perf_try_init_event(pmu, event);
11428 		if (!ret)
11429 			goto unlock;
11430 
11431 		if (ret != -ENOENT) {
11432 			pmu = ERR_PTR(ret);
11433 			goto unlock;
11434 		}
11435 	}
11436 fail:
11437 	pmu = ERR_PTR(-ENOENT);
11438 unlock:
11439 	srcu_read_unlock(&pmus_srcu, idx);
11440 
11441 	return pmu;
11442 }
11443 
11444 static void attach_sb_event(struct perf_event *event)
11445 {
11446 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11447 
11448 	raw_spin_lock(&pel->lock);
11449 	list_add_rcu(&event->sb_list, &pel->list);
11450 	raw_spin_unlock(&pel->lock);
11451 }
11452 
11453 /*
11454  * We keep a list of all !task (and therefore per-cpu) events
11455  * that need to receive side-band records.
11456  *
11457  * This avoids having to scan all the various PMU per-cpu contexts
11458  * looking for them.
11459  */
11460 static void account_pmu_sb_event(struct perf_event *event)
11461 {
11462 	if (is_sb_event(event))
11463 		attach_sb_event(event);
11464 }
11465 
11466 static void account_event_cpu(struct perf_event *event, int cpu)
11467 {
11468 	if (event->parent)
11469 		return;
11470 
11471 	if (is_cgroup_event(event))
11472 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11473 }
11474 
11475 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11476 static void account_freq_event_nohz(void)
11477 {
11478 #ifdef CONFIG_NO_HZ_FULL
11479 	/* Lock so we don't race with concurrent unaccount */
11480 	spin_lock(&nr_freq_lock);
11481 	if (atomic_inc_return(&nr_freq_events) == 1)
11482 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11483 	spin_unlock(&nr_freq_lock);
11484 #endif
11485 }
11486 
11487 static void account_freq_event(void)
11488 {
11489 	if (tick_nohz_full_enabled())
11490 		account_freq_event_nohz();
11491 	else
11492 		atomic_inc(&nr_freq_events);
11493 }
11494 
11495 
11496 static void account_event(struct perf_event *event)
11497 {
11498 	bool inc = false;
11499 
11500 	if (event->parent)
11501 		return;
11502 
11503 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11504 		inc = true;
11505 	if (event->attr.mmap || event->attr.mmap_data)
11506 		atomic_inc(&nr_mmap_events);
11507 	if (event->attr.build_id)
11508 		atomic_inc(&nr_build_id_events);
11509 	if (event->attr.comm)
11510 		atomic_inc(&nr_comm_events);
11511 	if (event->attr.namespaces)
11512 		atomic_inc(&nr_namespaces_events);
11513 	if (event->attr.cgroup)
11514 		atomic_inc(&nr_cgroup_events);
11515 	if (event->attr.task)
11516 		atomic_inc(&nr_task_events);
11517 	if (event->attr.freq)
11518 		account_freq_event();
11519 	if (event->attr.context_switch) {
11520 		atomic_inc(&nr_switch_events);
11521 		inc = true;
11522 	}
11523 	if (has_branch_stack(event))
11524 		inc = true;
11525 	if (is_cgroup_event(event))
11526 		inc = true;
11527 	if (event->attr.ksymbol)
11528 		atomic_inc(&nr_ksymbol_events);
11529 	if (event->attr.bpf_event)
11530 		atomic_inc(&nr_bpf_events);
11531 	if (event->attr.text_poke)
11532 		atomic_inc(&nr_text_poke_events);
11533 
11534 	if (inc) {
11535 		/*
11536 		 * We need the mutex here because static_branch_enable()
11537 		 * must complete *before* the perf_sched_count increment
11538 		 * becomes visible.
11539 		 */
11540 		if (atomic_inc_not_zero(&perf_sched_count))
11541 			goto enabled;
11542 
11543 		mutex_lock(&perf_sched_mutex);
11544 		if (!atomic_read(&perf_sched_count)) {
11545 			static_branch_enable(&perf_sched_events);
11546 			/*
11547 			 * Guarantee that all CPUs observe they key change and
11548 			 * call the perf scheduling hooks before proceeding to
11549 			 * install events that need them.
11550 			 */
11551 			synchronize_rcu();
11552 		}
11553 		/*
11554 		 * Now that we have waited for the sync_sched(), allow further
11555 		 * increments to by-pass the mutex.
11556 		 */
11557 		atomic_inc(&perf_sched_count);
11558 		mutex_unlock(&perf_sched_mutex);
11559 	}
11560 enabled:
11561 
11562 	account_event_cpu(event, event->cpu);
11563 
11564 	account_pmu_sb_event(event);
11565 }
11566 
11567 /*
11568  * Allocate and initialize an event structure
11569  */
11570 static struct perf_event *
11571 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11572 		 struct task_struct *task,
11573 		 struct perf_event *group_leader,
11574 		 struct perf_event *parent_event,
11575 		 perf_overflow_handler_t overflow_handler,
11576 		 void *context, int cgroup_fd)
11577 {
11578 	struct pmu *pmu;
11579 	struct perf_event *event;
11580 	struct hw_perf_event *hwc;
11581 	long err = -EINVAL;
11582 	int node;
11583 
11584 	if ((unsigned)cpu >= nr_cpu_ids) {
11585 		if (!task || cpu != -1)
11586 			return ERR_PTR(-EINVAL);
11587 	}
11588 	if (attr->sigtrap && !task) {
11589 		/* Requires a task: avoid signalling random tasks. */
11590 		return ERR_PTR(-EINVAL);
11591 	}
11592 
11593 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11594 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11595 				      node);
11596 	if (!event)
11597 		return ERR_PTR(-ENOMEM);
11598 
11599 	/*
11600 	 * Single events are their own group leaders, with an
11601 	 * empty sibling list:
11602 	 */
11603 	if (!group_leader)
11604 		group_leader = event;
11605 
11606 	mutex_init(&event->child_mutex);
11607 	INIT_LIST_HEAD(&event->child_list);
11608 
11609 	INIT_LIST_HEAD(&event->event_entry);
11610 	INIT_LIST_HEAD(&event->sibling_list);
11611 	INIT_LIST_HEAD(&event->active_list);
11612 	init_event_group(event);
11613 	INIT_LIST_HEAD(&event->rb_entry);
11614 	INIT_LIST_HEAD(&event->active_entry);
11615 	INIT_LIST_HEAD(&event->addr_filters.list);
11616 	INIT_HLIST_NODE(&event->hlist_entry);
11617 
11618 
11619 	init_waitqueue_head(&event->waitq);
11620 	event->pending_disable = -1;
11621 	init_irq_work(&event->pending, perf_pending_event);
11622 
11623 	mutex_init(&event->mmap_mutex);
11624 	raw_spin_lock_init(&event->addr_filters.lock);
11625 
11626 	atomic_long_set(&event->refcount, 1);
11627 	event->cpu		= cpu;
11628 	event->attr		= *attr;
11629 	event->group_leader	= group_leader;
11630 	event->pmu		= NULL;
11631 	event->oncpu		= -1;
11632 
11633 	event->parent		= parent_event;
11634 
11635 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11636 	event->id		= atomic64_inc_return(&perf_event_id);
11637 
11638 	event->state		= PERF_EVENT_STATE_INACTIVE;
11639 
11640 	if (event->attr.sigtrap)
11641 		atomic_set(&event->event_limit, 1);
11642 
11643 	if (task) {
11644 		event->attach_state = PERF_ATTACH_TASK;
11645 		/*
11646 		 * XXX pmu::event_init needs to know what task to account to
11647 		 * and we cannot use the ctx information because we need the
11648 		 * pmu before we get a ctx.
11649 		 */
11650 		event->hw.target = get_task_struct(task);
11651 	}
11652 
11653 	event->clock = &local_clock;
11654 	if (parent_event)
11655 		event->clock = parent_event->clock;
11656 
11657 	if (!overflow_handler && parent_event) {
11658 		overflow_handler = parent_event->overflow_handler;
11659 		context = parent_event->overflow_handler_context;
11660 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11661 		if (overflow_handler == bpf_overflow_handler) {
11662 			struct bpf_prog *prog = parent_event->prog;
11663 
11664 			bpf_prog_inc(prog);
11665 			event->prog = prog;
11666 			event->orig_overflow_handler =
11667 				parent_event->orig_overflow_handler;
11668 		}
11669 #endif
11670 	}
11671 
11672 	if (overflow_handler) {
11673 		event->overflow_handler	= overflow_handler;
11674 		event->overflow_handler_context = context;
11675 	} else if (is_write_backward(event)){
11676 		event->overflow_handler = perf_event_output_backward;
11677 		event->overflow_handler_context = NULL;
11678 	} else {
11679 		event->overflow_handler = perf_event_output_forward;
11680 		event->overflow_handler_context = NULL;
11681 	}
11682 
11683 	perf_event__state_init(event);
11684 
11685 	pmu = NULL;
11686 
11687 	hwc = &event->hw;
11688 	hwc->sample_period = attr->sample_period;
11689 	if (attr->freq && attr->sample_freq)
11690 		hwc->sample_period = 1;
11691 	hwc->last_period = hwc->sample_period;
11692 
11693 	local64_set(&hwc->period_left, hwc->sample_period);
11694 
11695 	/*
11696 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11697 	 * See perf_output_read().
11698 	 */
11699 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11700 		goto err_ns;
11701 
11702 	if (!has_branch_stack(event))
11703 		event->attr.branch_sample_type = 0;
11704 
11705 	pmu = perf_init_event(event);
11706 	if (IS_ERR(pmu)) {
11707 		err = PTR_ERR(pmu);
11708 		goto err_ns;
11709 	}
11710 
11711 	/*
11712 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11713 	 * be different on other CPUs in the uncore mask.
11714 	 */
11715 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11716 		err = -EINVAL;
11717 		goto err_pmu;
11718 	}
11719 
11720 	if (event->attr.aux_output &&
11721 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11722 		err = -EOPNOTSUPP;
11723 		goto err_pmu;
11724 	}
11725 
11726 	if (cgroup_fd != -1) {
11727 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11728 		if (err)
11729 			goto err_pmu;
11730 	}
11731 
11732 	err = exclusive_event_init(event);
11733 	if (err)
11734 		goto err_pmu;
11735 
11736 	if (has_addr_filter(event)) {
11737 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11738 						    sizeof(struct perf_addr_filter_range),
11739 						    GFP_KERNEL);
11740 		if (!event->addr_filter_ranges) {
11741 			err = -ENOMEM;
11742 			goto err_per_task;
11743 		}
11744 
11745 		/*
11746 		 * Clone the parent's vma offsets: they are valid until exec()
11747 		 * even if the mm is not shared with the parent.
11748 		 */
11749 		if (event->parent) {
11750 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11751 
11752 			raw_spin_lock_irq(&ifh->lock);
11753 			memcpy(event->addr_filter_ranges,
11754 			       event->parent->addr_filter_ranges,
11755 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11756 			raw_spin_unlock_irq(&ifh->lock);
11757 		}
11758 
11759 		/* force hw sync on the address filters */
11760 		event->addr_filters_gen = 1;
11761 	}
11762 
11763 	if (!event->parent) {
11764 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11765 			err = get_callchain_buffers(attr->sample_max_stack);
11766 			if (err)
11767 				goto err_addr_filters;
11768 		}
11769 	}
11770 
11771 	err = security_perf_event_alloc(event);
11772 	if (err)
11773 		goto err_callchain_buffer;
11774 
11775 	/* symmetric to unaccount_event() in _free_event() */
11776 	account_event(event);
11777 
11778 	return event;
11779 
11780 err_callchain_buffer:
11781 	if (!event->parent) {
11782 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11783 			put_callchain_buffers();
11784 	}
11785 err_addr_filters:
11786 	kfree(event->addr_filter_ranges);
11787 
11788 err_per_task:
11789 	exclusive_event_destroy(event);
11790 
11791 err_pmu:
11792 	if (is_cgroup_event(event))
11793 		perf_detach_cgroup(event);
11794 	if (event->destroy)
11795 		event->destroy(event);
11796 	module_put(pmu->module);
11797 err_ns:
11798 	if (event->ns)
11799 		put_pid_ns(event->ns);
11800 	if (event->hw.target)
11801 		put_task_struct(event->hw.target);
11802 	kmem_cache_free(perf_event_cache, event);
11803 
11804 	return ERR_PTR(err);
11805 }
11806 
11807 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11808 			  struct perf_event_attr *attr)
11809 {
11810 	u32 size;
11811 	int ret;
11812 
11813 	/* Zero the full structure, so that a short copy will be nice. */
11814 	memset(attr, 0, sizeof(*attr));
11815 
11816 	ret = get_user(size, &uattr->size);
11817 	if (ret)
11818 		return ret;
11819 
11820 	/* ABI compatibility quirk: */
11821 	if (!size)
11822 		size = PERF_ATTR_SIZE_VER0;
11823 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11824 		goto err_size;
11825 
11826 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11827 	if (ret) {
11828 		if (ret == -E2BIG)
11829 			goto err_size;
11830 		return ret;
11831 	}
11832 
11833 	attr->size = size;
11834 
11835 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11836 		return -EINVAL;
11837 
11838 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11839 		return -EINVAL;
11840 
11841 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11842 		return -EINVAL;
11843 
11844 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11845 		u64 mask = attr->branch_sample_type;
11846 
11847 		/* only using defined bits */
11848 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11849 			return -EINVAL;
11850 
11851 		/* at least one branch bit must be set */
11852 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11853 			return -EINVAL;
11854 
11855 		/* propagate priv level, when not set for branch */
11856 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11857 
11858 			/* exclude_kernel checked on syscall entry */
11859 			if (!attr->exclude_kernel)
11860 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11861 
11862 			if (!attr->exclude_user)
11863 				mask |= PERF_SAMPLE_BRANCH_USER;
11864 
11865 			if (!attr->exclude_hv)
11866 				mask |= PERF_SAMPLE_BRANCH_HV;
11867 			/*
11868 			 * adjust user setting (for HW filter setup)
11869 			 */
11870 			attr->branch_sample_type = mask;
11871 		}
11872 		/* privileged levels capture (kernel, hv): check permissions */
11873 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11874 			ret = perf_allow_kernel(attr);
11875 			if (ret)
11876 				return ret;
11877 		}
11878 	}
11879 
11880 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11881 		ret = perf_reg_validate(attr->sample_regs_user);
11882 		if (ret)
11883 			return ret;
11884 	}
11885 
11886 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11887 		if (!arch_perf_have_user_stack_dump())
11888 			return -ENOSYS;
11889 
11890 		/*
11891 		 * We have __u32 type for the size, but so far
11892 		 * we can only use __u16 as maximum due to the
11893 		 * __u16 sample size limit.
11894 		 */
11895 		if (attr->sample_stack_user >= USHRT_MAX)
11896 			return -EINVAL;
11897 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11898 			return -EINVAL;
11899 	}
11900 
11901 	if (!attr->sample_max_stack)
11902 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11903 
11904 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11905 		ret = perf_reg_validate(attr->sample_regs_intr);
11906 
11907 #ifndef CONFIG_CGROUP_PERF
11908 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11909 		return -EINVAL;
11910 #endif
11911 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11912 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11913 		return -EINVAL;
11914 
11915 	if (!attr->inherit && attr->inherit_thread)
11916 		return -EINVAL;
11917 
11918 	if (attr->remove_on_exec && attr->enable_on_exec)
11919 		return -EINVAL;
11920 
11921 	if (attr->sigtrap && !attr->remove_on_exec)
11922 		return -EINVAL;
11923 
11924 out:
11925 	return ret;
11926 
11927 err_size:
11928 	put_user(sizeof(*attr), &uattr->size);
11929 	ret = -E2BIG;
11930 	goto out;
11931 }
11932 
11933 static int
11934 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11935 {
11936 	struct perf_buffer *rb = NULL;
11937 	int ret = -EINVAL;
11938 
11939 	if (!output_event)
11940 		goto set;
11941 
11942 	/* don't allow circular references */
11943 	if (event == output_event)
11944 		goto out;
11945 
11946 	/*
11947 	 * Don't allow cross-cpu buffers
11948 	 */
11949 	if (output_event->cpu != event->cpu)
11950 		goto out;
11951 
11952 	/*
11953 	 * If its not a per-cpu rb, it must be the same task.
11954 	 */
11955 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11956 		goto out;
11957 
11958 	/*
11959 	 * Mixing clocks in the same buffer is trouble you don't need.
11960 	 */
11961 	if (output_event->clock != event->clock)
11962 		goto out;
11963 
11964 	/*
11965 	 * Either writing ring buffer from beginning or from end.
11966 	 * Mixing is not allowed.
11967 	 */
11968 	if (is_write_backward(output_event) != is_write_backward(event))
11969 		goto out;
11970 
11971 	/*
11972 	 * If both events generate aux data, they must be on the same PMU
11973 	 */
11974 	if (has_aux(event) && has_aux(output_event) &&
11975 	    event->pmu != output_event->pmu)
11976 		goto out;
11977 
11978 set:
11979 	mutex_lock(&event->mmap_mutex);
11980 	/* Can't redirect output if we've got an active mmap() */
11981 	if (atomic_read(&event->mmap_count))
11982 		goto unlock;
11983 
11984 	if (output_event) {
11985 		/* get the rb we want to redirect to */
11986 		rb = ring_buffer_get(output_event);
11987 		if (!rb)
11988 			goto unlock;
11989 	}
11990 
11991 	ring_buffer_attach(event, rb);
11992 
11993 	ret = 0;
11994 unlock:
11995 	mutex_unlock(&event->mmap_mutex);
11996 
11997 out:
11998 	return ret;
11999 }
12000 
12001 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12002 {
12003 	if (b < a)
12004 		swap(a, b);
12005 
12006 	mutex_lock(a);
12007 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12008 }
12009 
12010 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12011 {
12012 	bool nmi_safe = false;
12013 
12014 	switch (clk_id) {
12015 	case CLOCK_MONOTONIC:
12016 		event->clock = &ktime_get_mono_fast_ns;
12017 		nmi_safe = true;
12018 		break;
12019 
12020 	case CLOCK_MONOTONIC_RAW:
12021 		event->clock = &ktime_get_raw_fast_ns;
12022 		nmi_safe = true;
12023 		break;
12024 
12025 	case CLOCK_REALTIME:
12026 		event->clock = &ktime_get_real_ns;
12027 		break;
12028 
12029 	case CLOCK_BOOTTIME:
12030 		event->clock = &ktime_get_boottime_ns;
12031 		break;
12032 
12033 	case CLOCK_TAI:
12034 		event->clock = &ktime_get_clocktai_ns;
12035 		break;
12036 
12037 	default:
12038 		return -EINVAL;
12039 	}
12040 
12041 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12042 		return -EINVAL;
12043 
12044 	return 0;
12045 }
12046 
12047 /*
12048  * Variation on perf_event_ctx_lock_nested(), except we take two context
12049  * mutexes.
12050  */
12051 static struct perf_event_context *
12052 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12053 			     struct perf_event_context *ctx)
12054 {
12055 	struct perf_event_context *gctx;
12056 
12057 again:
12058 	rcu_read_lock();
12059 	gctx = READ_ONCE(group_leader->ctx);
12060 	if (!refcount_inc_not_zero(&gctx->refcount)) {
12061 		rcu_read_unlock();
12062 		goto again;
12063 	}
12064 	rcu_read_unlock();
12065 
12066 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
12067 
12068 	if (group_leader->ctx != gctx) {
12069 		mutex_unlock(&ctx->mutex);
12070 		mutex_unlock(&gctx->mutex);
12071 		put_ctx(gctx);
12072 		goto again;
12073 	}
12074 
12075 	return gctx;
12076 }
12077 
12078 static bool
12079 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12080 {
12081 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12082 	bool is_capable = perfmon_capable();
12083 
12084 	if (attr->sigtrap) {
12085 		/*
12086 		 * perf_event_attr::sigtrap sends signals to the other task.
12087 		 * Require the current task to also have CAP_KILL.
12088 		 */
12089 		rcu_read_lock();
12090 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12091 		rcu_read_unlock();
12092 
12093 		/*
12094 		 * If the required capabilities aren't available, checks for
12095 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12096 		 * can effectively change the target task.
12097 		 */
12098 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12099 	}
12100 
12101 	/*
12102 	 * Preserve ptrace permission check for backwards compatibility. The
12103 	 * ptrace check also includes checks that the current task and other
12104 	 * task have matching uids, and is therefore not done here explicitly.
12105 	 */
12106 	return is_capable || ptrace_may_access(task, ptrace_mode);
12107 }
12108 
12109 /**
12110  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12111  *
12112  * @attr_uptr:	event_id type attributes for monitoring/sampling
12113  * @pid:		target pid
12114  * @cpu:		target cpu
12115  * @group_fd:		group leader event fd
12116  * @flags:		perf event open flags
12117  */
12118 SYSCALL_DEFINE5(perf_event_open,
12119 		struct perf_event_attr __user *, attr_uptr,
12120 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12121 {
12122 	struct perf_event *group_leader = NULL, *output_event = NULL;
12123 	struct perf_event *event, *sibling;
12124 	struct perf_event_attr attr;
12125 	struct perf_event_context *ctx, *gctx;
12126 	struct file *event_file = NULL;
12127 	struct fd group = {NULL, 0};
12128 	struct task_struct *task = NULL;
12129 	struct pmu *pmu;
12130 	int event_fd;
12131 	int move_group = 0;
12132 	int err;
12133 	int f_flags = O_RDWR;
12134 	int cgroup_fd = -1;
12135 
12136 	/* for future expandability... */
12137 	if (flags & ~PERF_FLAG_ALL)
12138 		return -EINVAL;
12139 
12140 	/* Do we allow access to perf_event_open(2) ? */
12141 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12142 	if (err)
12143 		return err;
12144 
12145 	err = perf_copy_attr(attr_uptr, &attr);
12146 	if (err)
12147 		return err;
12148 
12149 	if (!attr.exclude_kernel) {
12150 		err = perf_allow_kernel(&attr);
12151 		if (err)
12152 			return err;
12153 	}
12154 
12155 	if (attr.namespaces) {
12156 		if (!perfmon_capable())
12157 			return -EACCES;
12158 	}
12159 
12160 	if (attr.freq) {
12161 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12162 			return -EINVAL;
12163 	} else {
12164 		if (attr.sample_period & (1ULL << 63))
12165 			return -EINVAL;
12166 	}
12167 
12168 	/* Only privileged users can get physical addresses */
12169 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12170 		err = perf_allow_kernel(&attr);
12171 		if (err)
12172 			return err;
12173 	}
12174 
12175 	/* REGS_INTR can leak data, lockdown must prevent this */
12176 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12177 		err = security_locked_down(LOCKDOWN_PERF);
12178 		if (err)
12179 			return err;
12180 	}
12181 
12182 	/*
12183 	 * In cgroup mode, the pid argument is used to pass the fd
12184 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12185 	 * designates the cpu on which to monitor threads from that
12186 	 * cgroup.
12187 	 */
12188 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12189 		return -EINVAL;
12190 
12191 	if (flags & PERF_FLAG_FD_CLOEXEC)
12192 		f_flags |= O_CLOEXEC;
12193 
12194 	event_fd = get_unused_fd_flags(f_flags);
12195 	if (event_fd < 0)
12196 		return event_fd;
12197 
12198 	if (group_fd != -1) {
12199 		err = perf_fget_light(group_fd, &group);
12200 		if (err)
12201 			goto err_fd;
12202 		group_leader = group.file->private_data;
12203 		if (flags & PERF_FLAG_FD_OUTPUT)
12204 			output_event = group_leader;
12205 		if (flags & PERF_FLAG_FD_NO_GROUP)
12206 			group_leader = NULL;
12207 	}
12208 
12209 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12210 		task = find_lively_task_by_vpid(pid);
12211 		if (IS_ERR(task)) {
12212 			err = PTR_ERR(task);
12213 			goto err_group_fd;
12214 		}
12215 	}
12216 
12217 	if (task && group_leader &&
12218 	    group_leader->attr.inherit != attr.inherit) {
12219 		err = -EINVAL;
12220 		goto err_task;
12221 	}
12222 
12223 	if (flags & PERF_FLAG_PID_CGROUP)
12224 		cgroup_fd = pid;
12225 
12226 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12227 				 NULL, NULL, cgroup_fd);
12228 	if (IS_ERR(event)) {
12229 		err = PTR_ERR(event);
12230 		goto err_task;
12231 	}
12232 
12233 	if (is_sampling_event(event)) {
12234 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12235 			err = -EOPNOTSUPP;
12236 			goto err_alloc;
12237 		}
12238 	}
12239 
12240 	/*
12241 	 * Special case software events and allow them to be part of
12242 	 * any hardware group.
12243 	 */
12244 	pmu = event->pmu;
12245 
12246 	if (attr.use_clockid) {
12247 		err = perf_event_set_clock(event, attr.clockid);
12248 		if (err)
12249 			goto err_alloc;
12250 	}
12251 
12252 	if (pmu->task_ctx_nr == perf_sw_context)
12253 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12254 
12255 	if (group_leader) {
12256 		if (is_software_event(event) &&
12257 		    !in_software_context(group_leader)) {
12258 			/*
12259 			 * If the event is a sw event, but the group_leader
12260 			 * is on hw context.
12261 			 *
12262 			 * Allow the addition of software events to hw
12263 			 * groups, this is safe because software events
12264 			 * never fail to schedule.
12265 			 */
12266 			pmu = group_leader->ctx->pmu;
12267 		} else if (!is_software_event(event) &&
12268 			   is_software_event(group_leader) &&
12269 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12270 			/*
12271 			 * In case the group is a pure software group, and we
12272 			 * try to add a hardware event, move the whole group to
12273 			 * the hardware context.
12274 			 */
12275 			move_group = 1;
12276 		}
12277 	}
12278 
12279 	/*
12280 	 * Get the target context (task or percpu):
12281 	 */
12282 	ctx = find_get_context(pmu, task, event);
12283 	if (IS_ERR(ctx)) {
12284 		err = PTR_ERR(ctx);
12285 		goto err_alloc;
12286 	}
12287 
12288 	/*
12289 	 * Look up the group leader (we will attach this event to it):
12290 	 */
12291 	if (group_leader) {
12292 		err = -EINVAL;
12293 
12294 		/*
12295 		 * Do not allow a recursive hierarchy (this new sibling
12296 		 * becoming part of another group-sibling):
12297 		 */
12298 		if (group_leader->group_leader != group_leader)
12299 			goto err_context;
12300 
12301 		/* All events in a group should have the same clock */
12302 		if (group_leader->clock != event->clock)
12303 			goto err_context;
12304 
12305 		/*
12306 		 * Make sure we're both events for the same CPU;
12307 		 * grouping events for different CPUs is broken; since
12308 		 * you can never concurrently schedule them anyhow.
12309 		 */
12310 		if (group_leader->cpu != event->cpu)
12311 			goto err_context;
12312 
12313 		/*
12314 		 * Make sure we're both on the same task, or both
12315 		 * per-CPU events.
12316 		 */
12317 		if (group_leader->ctx->task != ctx->task)
12318 			goto err_context;
12319 
12320 		/*
12321 		 * Do not allow to attach to a group in a different task
12322 		 * or CPU context. If we're moving SW events, we'll fix
12323 		 * this up later, so allow that.
12324 		 */
12325 		if (!move_group && group_leader->ctx != ctx)
12326 			goto err_context;
12327 
12328 		/*
12329 		 * Only a group leader can be exclusive or pinned
12330 		 */
12331 		if (attr.exclusive || attr.pinned)
12332 			goto err_context;
12333 	}
12334 
12335 	if (output_event) {
12336 		err = perf_event_set_output(event, output_event);
12337 		if (err)
12338 			goto err_context;
12339 	}
12340 
12341 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12342 					f_flags);
12343 	if (IS_ERR(event_file)) {
12344 		err = PTR_ERR(event_file);
12345 		event_file = NULL;
12346 		goto err_context;
12347 	}
12348 
12349 	if (task) {
12350 		err = down_read_interruptible(&task->signal->exec_update_lock);
12351 		if (err)
12352 			goto err_file;
12353 
12354 		/*
12355 		 * We must hold exec_update_lock across this and any potential
12356 		 * perf_install_in_context() call for this new event to
12357 		 * serialize against exec() altering our credentials (and the
12358 		 * perf_event_exit_task() that could imply).
12359 		 */
12360 		err = -EACCES;
12361 		if (!perf_check_permission(&attr, task))
12362 			goto err_cred;
12363 	}
12364 
12365 	if (move_group) {
12366 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12367 
12368 		if (gctx->task == TASK_TOMBSTONE) {
12369 			err = -ESRCH;
12370 			goto err_locked;
12371 		}
12372 
12373 		/*
12374 		 * Check if we raced against another sys_perf_event_open() call
12375 		 * moving the software group underneath us.
12376 		 */
12377 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12378 			/*
12379 			 * If someone moved the group out from under us, check
12380 			 * if this new event wound up on the same ctx, if so
12381 			 * its the regular !move_group case, otherwise fail.
12382 			 */
12383 			if (gctx != ctx) {
12384 				err = -EINVAL;
12385 				goto err_locked;
12386 			} else {
12387 				perf_event_ctx_unlock(group_leader, gctx);
12388 				move_group = 0;
12389 			}
12390 		}
12391 
12392 		/*
12393 		 * Failure to create exclusive events returns -EBUSY.
12394 		 */
12395 		err = -EBUSY;
12396 		if (!exclusive_event_installable(group_leader, ctx))
12397 			goto err_locked;
12398 
12399 		for_each_sibling_event(sibling, group_leader) {
12400 			if (!exclusive_event_installable(sibling, ctx))
12401 				goto err_locked;
12402 		}
12403 	} else {
12404 		mutex_lock(&ctx->mutex);
12405 	}
12406 
12407 	if (ctx->task == TASK_TOMBSTONE) {
12408 		err = -ESRCH;
12409 		goto err_locked;
12410 	}
12411 
12412 	if (!perf_event_validate_size(event)) {
12413 		err = -E2BIG;
12414 		goto err_locked;
12415 	}
12416 
12417 	if (!task) {
12418 		/*
12419 		 * Check if the @cpu we're creating an event for is online.
12420 		 *
12421 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12422 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12423 		 */
12424 		struct perf_cpu_context *cpuctx =
12425 			container_of(ctx, struct perf_cpu_context, ctx);
12426 
12427 		if (!cpuctx->online) {
12428 			err = -ENODEV;
12429 			goto err_locked;
12430 		}
12431 	}
12432 
12433 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12434 		err = -EINVAL;
12435 		goto err_locked;
12436 	}
12437 
12438 	/*
12439 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12440 	 * because we need to serialize with concurrent event creation.
12441 	 */
12442 	if (!exclusive_event_installable(event, ctx)) {
12443 		err = -EBUSY;
12444 		goto err_locked;
12445 	}
12446 
12447 	WARN_ON_ONCE(ctx->parent_ctx);
12448 
12449 	/*
12450 	 * This is the point on no return; we cannot fail hereafter. This is
12451 	 * where we start modifying current state.
12452 	 */
12453 
12454 	if (move_group) {
12455 		/*
12456 		 * See perf_event_ctx_lock() for comments on the details
12457 		 * of swizzling perf_event::ctx.
12458 		 */
12459 		perf_remove_from_context(group_leader, 0);
12460 		put_ctx(gctx);
12461 
12462 		for_each_sibling_event(sibling, group_leader) {
12463 			perf_remove_from_context(sibling, 0);
12464 			put_ctx(gctx);
12465 		}
12466 
12467 		/*
12468 		 * Wait for everybody to stop referencing the events through
12469 		 * the old lists, before installing it on new lists.
12470 		 */
12471 		synchronize_rcu();
12472 
12473 		/*
12474 		 * Install the group siblings before the group leader.
12475 		 *
12476 		 * Because a group leader will try and install the entire group
12477 		 * (through the sibling list, which is still in-tact), we can
12478 		 * end up with siblings installed in the wrong context.
12479 		 *
12480 		 * By installing siblings first we NO-OP because they're not
12481 		 * reachable through the group lists.
12482 		 */
12483 		for_each_sibling_event(sibling, group_leader) {
12484 			perf_event__state_init(sibling);
12485 			perf_install_in_context(ctx, sibling, sibling->cpu);
12486 			get_ctx(ctx);
12487 		}
12488 
12489 		/*
12490 		 * Removing from the context ends up with disabled
12491 		 * event. What we want here is event in the initial
12492 		 * startup state, ready to be add into new context.
12493 		 */
12494 		perf_event__state_init(group_leader);
12495 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12496 		get_ctx(ctx);
12497 	}
12498 
12499 	/*
12500 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12501 	 * that we're serialized against further additions and before
12502 	 * perf_install_in_context() which is the point the event is active and
12503 	 * can use these values.
12504 	 */
12505 	perf_event__header_size(event);
12506 	perf_event__id_header_size(event);
12507 
12508 	event->owner = current;
12509 
12510 	perf_install_in_context(ctx, event, event->cpu);
12511 	perf_unpin_context(ctx);
12512 
12513 	if (move_group)
12514 		perf_event_ctx_unlock(group_leader, gctx);
12515 	mutex_unlock(&ctx->mutex);
12516 
12517 	if (task) {
12518 		up_read(&task->signal->exec_update_lock);
12519 		put_task_struct(task);
12520 	}
12521 
12522 	mutex_lock(&current->perf_event_mutex);
12523 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12524 	mutex_unlock(&current->perf_event_mutex);
12525 
12526 	/*
12527 	 * Drop the reference on the group_event after placing the
12528 	 * new event on the sibling_list. This ensures destruction
12529 	 * of the group leader will find the pointer to itself in
12530 	 * perf_group_detach().
12531 	 */
12532 	fdput(group);
12533 	fd_install(event_fd, event_file);
12534 	return event_fd;
12535 
12536 err_locked:
12537 	if (move_group)
12538 		perf_event_ctx_unlock(group_leader, gctx);
12539 	mutex_unlock(&ctx->mutex);
12540 err_cred:
12541 	if (task)
12542 		up_read(&task->signal->exec_update_lock);
12543 err_file:
12544 	fput(event_file);
12545 err_context:
12546 	perf_unpin_context(ctx);
12547 	put_ctx(ctx);
12548 err_alloc:
12549 	/*
12550 	 * If event_file is set, the fput() above will have called ->release()
12551 	 * and that will take care of freeing the event.
12552 	 */
12553 	if (!event_file)
12554 		free_event(event);
12555 err_task:
12556 	if (task)
12557 		put_task_struct(task);
12558 err_group_fd:
12559 	fdput(group);
12560 err_fd:
12561 	put_unused_fd(event_fd);
12562 	return err;
12563 }
12564 
12565 /**
12566  * perf_event_create_kernel_counter
12567  *
12568  * @attr: attributes of the counter to create
12569  * @cpu: cpu in which the counter is bound
12570  * @task: task to profile (NULL for percpu)
12571  * @overflow_handler: callback to trigger when we hit the event
12572  * @context: context data could be used in overflow_handler callback
12573  */
12574 struct perf_event *
12575 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12576 				 struct task_struct *task,
12577 				 perf_overflow_handler_t overflow_handler,
12578 				 void *context)
12579 {
12580 	struct perf_event_context *ctx;
12581 	struct perf_event *event;
12582 	int err;
12583 
12584 	/*
12585 	 * Grouping is not supported for kernel events, neither is 'AUX',
12586 	 * make sure the caller's intentions are adjusted.
12587 	 */
12588 	if (attr->aux_output)
12589 		return ERR_PTR(-EINVAL);
12590 
12591 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12592 				 overflow_handler, context, -1);
12593 	if (IS_ERR(event)) {
12594 		err = PTR_ERR(event);
12595 		goto err;
12596 	}
12597 
12598 	/* Mark owner so we could distinguish it from user events. */
12599 	event->owner = TASK_TOMBSTONE;
12600 
12601 	/*
12602 	 * Get the target context (task or percpu):
12603 	 */
12604 	ctx = find_get_context(event->pmu, task, event);
12605 	if (IS_ERR(ctx)) {
12606 		err = PTR_ERR(ctx);
12607 		goto err_free;
12608 	}
12609 
12610 	WARN_ON_ONCE(ctx->parent_ctx);
12611 	mutex_lock(&ctx->mutex);
12612 	if (ctx->task == TASK_TOMBSTONE) {
12613 		err = -ESRCH;
12614 		goto err_unlock;
12615 	}
12616 
12617 	if (!task) {
12618 		/*
12619 		 * Check if the @cpu we're creating an event for is online.
12620 		 *
12621 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12622 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12623 		 */
12624 		struct perf_cpu_context *cpuctx =
12625 			container_of(ctx, struct perf_cpu_context, ctx);
12626 		if (!cpuctx->online) {
12627 			err = -ENODEV;
12628 			goto err_unlock;
12629 		}
12630 	}
12631 
12632 	if (!exclusive_event_installable(event, ctx)) {
12633 		err = -EBUSY;
12634 		goto err_unlock;
12635 	}
12636 
12637 	perf_install_in_context(ctx, event, event->cpu);
12638 	perf_unpin_context(ctx);
12639 	mutex_unlock(&ctx->mutex);
12640 
12641 	return event;
12642 
12643 err_unlock:
12644 	mutex_unlock(&ctx->mutex);
12645 	perf_unpin_context(ctx);
12646 	put_ctx(ctx);
12647 err_free:
12648 	free_event(event);
12649 err:
12650 	return ERR_PTR(err);
12651 }
12652 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12653 
12654 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12655 {
12656 	struct perf_event_context *src_ctx;
12657 	struct perf_event_context *dst_ctx;
12658 	struct perf_event *event, *tmp;
12659 	LIST_HEAD(events);
12660 
12661 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12662 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12663 
12664 	/*
12665 	 * See perf_event_ctx_lock() for comments on the details
12666 	 * of swizzling perf_event::ctx.
12667 	 */
12668 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12669 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12670 				 event_entry) {
12671 		perf_remove_from_context(event, 0);
12672 		unaccount_event_cpu(event, src_cpu);
12673 		put_ctx(src_ctx);
12674 		list_add(&event->migrate_entry, &events);
12675 	}
12676 
12677 	/*
12678 	 * Wait for the events to quiesce before re-instating them.
12679 	 */
12680 	synchronize_rcu();
12681 
12682 	/*
12683 	 * Re-instate events in 2 passes.
12684 	 *
12685 	 * Skip over group leaders and only install siblings on this first
12686 	 * pass, siblings will not get enabled without a leader, however a
12687 	 * leader will enable its siblings, even if those are still on the old
12688 	 * context.
12689 	 */
12690 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12691 		if (event->group_leader == event)
12692 			continue;
12693 
12694 		list_del(&event->migrate_entry);
12695 		if (event->state >= PERF_EVENT_STATE_OFF)
12696 			event->state = PERF_EVENT_STATE_INACTIVE;
12697 		account_event_cpu(event, dst_cpu);
12698 		perf_install_in_context(dst_ctx, event, dst_cpu);
12699 		get_ctx(dst_ctx);
12700 	}
12701 
12702 	/*
12703 	 * Once all the siblings are setup properly, install the group leaders
12704 	 * to make it go.
12705 	 */
12706 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12707 		list_del(&event->migrate_entry);
12708 		if (event->state >= PERF_EVENT_STATE_OFF)
12709 			event->state = PERF_EVENT_STATE_INACTIVE;
12710 		account_event_cpu(event, dst_cpu);
12711 		perf_install_in_context(dst_ctx, event, dst_cpu);
12712 		get_ctx(dst_ctx);
12713 	}
12714 	mutex_unlock(&dst_ctx->mutex);
12715 	mutex_unlock(&src_ctx->mutex);
12716 }
12717 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12718 
12719 static void sync_child_event(struct perf_event *child_event)
12720 {
12721 	struct perf_event *parent_event = child_event->parent;
12722 	u64 child_val;
12723 
12724 	if (child_event->attr.inherit_stat) {
12725 		struct task_struct *task = child_event->ctx->task;
12726 
12727 		if (task && task != TASK_TOMBSTONE)
12728 			perf_event_read_event(child_event, task);
12729 	}
12730 
12731 	child_val = perf_event_count(child_event);
12732 
12733 	/*
12734 	 * Add back the child's count to the parent's count:
12735 	 */
12736 	atomic64_add(child_val, &parent_event->child_count);
12737 	atomic64_add(child_event->total_time_enabled,
12738 		     &parent_event->child_total_time_enabled);
12739 	atomic64_add(child_event->total_time_running,
12740 		     &parent_event->child_total_time_running);
12741 }
12742 
12743 static void
12744 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12745 {
12746 	struct perf_event *parent_event = event->parent;
12747 	unsigned long detach_flags = 0;
12748 
12749 	if (parent_event) {
12750 		/*
12751 		 * Do not destroy the 'original' grouping; because of the
12752 		 * context switch optimization the original events could've
12753 		 * ended up in a random child task.
12754 		 *
12755 		 * If we were to destroy the original group, all group related
12756 		 * operations would cease to function properly after this
12757 		 * random child dies.
12758 		 *
12759 		 * Do destroy all inherited groups, we don't care about those
12760 		 * and being thorough is better.
12761 		 */
12762 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12763 		mutex_lock(&parent_event->child_mutex);
12764 	}
12765 
12766 	perf_remove_from_context(event, detach_flags);
12767 
12768 	raw_spin_lock_irq(&ctx->lock);
12769 	if (event->state > PERF_EVENT_STATE_EXIT)
12770 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12771 	raw_spin_unlock_irq(&ctx->lock);
12772 
12773 	/*
12774 	 * Child events can be freed.
12775 	 */
12776 	if (parent_event) {
12777 		mutex_unlock(&parent_event->child_mutex);
12778 		/*
12779 		 * Kick perf_poll() for is_event_hup();
12780 		 */
12781 		perf_event_wakeup(parent_event);
12782 		free_event(event);
12783 		put_event(parent_event);
12784 		return;
12785 	}
12786 
12787 	/*
12788 	 * Parent events are governed by their filedesc, retain them.
12789 	 */
12790 	perf_event_wakeup(event);
12791 }
12792 
12793 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12794 {
12795 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12796 	struct perf_event *child_event, *next;
12797 
12798 	WARN_ON_ONCE(child != current);
12799 
12800 	child_ctx = perf_pin_task_context(child, ctxn);
12801 	if (!child_ctx)
12802 		return;
12803 
12804 	/*
12805 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12806 	 * ctx::mutex over the entire thing. This serializes against almost
12807 	 * everything that wants to access the ctx.
12808 	 *
12809 	 * The exception is sys_perf_event_open() /
12810 	 * perf_event_create_kernel_count() which does find_get_context()
12811 	 * without ctx::mutex (it cannot because of the move_group double mutex
12812 	 * lock thing). See the comments in perf_install_in_context().
12813 	 */
12814 	mutex_lock(&child_ctx->mutex);
12815 
12816 	/*
12817 	 * In a single ctx::lock section, de-schedule the events and detach the
12818 	 * context from the task such that we cannot ever get it scheduled back
12819 	 * in.
12820 	 */
12821 	raw_spin_lock_irq(&child_ctx->lock);
12822 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12823 
12824 	/*
12825 	 * Now that the context is inactive, destroy the task <-> ctx relation
12826 	 * and mark the context dead.
12827 	 */
12828 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12829 	put_ctx(child_ctx); /* cannot be last */
12830 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12831 	put_task_struct(current); /* cannot be last */
12832 
12833 	clone_ctx = unclone_ctx(child_ctx);
12834 	raw_spin_unlock_irq(&child_ctx->lock);
12835 
12836 	if (clone_ctx)
12837 		put_ctx(clone_ctx);
12838 
12839 	/*
12840 	 * Report the task dead after unscheduling the events so that we
12841 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12842 	 * get a few PERF_RECORD_READ events.
12843 	 */
12844 	perf_event_task(child, child_ctx, 0);
12845 
12846 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12847 		perf_event_exit_event(child_event, child_ctx);
12848 
12849 	mutex_unlock(&child_ctx->mutex);
12850 
12851 	put_ctx(child_ctx);
12852 }
12853 
12854 /*
12855  * When a child task exits, feed back event values to parent events.
12856  *
12857  * Can be called with exec_update_lock held when called from
12858  * setup_new_exec().
12859  */
12860 void perf_event_exit_task(struct task_struct *child)
12861 {
12862 	struct perf_event *event, *tmp;
12863 	int ctxn;
12864 
12865 	mutex_lock(&child->perf_event_mutex);
12866 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12867 				 owner_entry) {
12868 		list_del_init(&event->owner_entry);
12869 
12870 		/*
12871 		 * Ensure the list deletion is visible before we clear
12872 		 * the owner, closes a race against perf_release() where
12873 		 * we need to serialize on the owner->perf_event_mutex.
12874 		 */
12875 		smp_store_release(&event->owner, NULL);
12876 	}
12877 	mutex_unlock(&child->perf_event_mutex);
12878 
12879 	for_each_task_context_nr(ctxn)
12880 		perf_event_exit_task_context(child, ctxn);
12881 
12882 	/*
12883 	 * The perf_event_exit_task_context calls perf_event_task
12884 	 * with child's task_ctx, which generates EXIT events for
12885 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12886 	 * At this point we need to send EXIT events to cpu contexts.
12887 	 */
12888 	perf_event_task(child, NULL, 0);
12889 }
12890 
12891 static void perf_free_event(struct perf_event *event,
12892 			    struct perf_event_context *ctx)
12893 {
12894 	struct perf_event *parent = event->parent;
12895 
12896 	if (WARN_ON_ONCE(!parent))
12897 		return;
12898 
12899 	mutex_lock(&parent->child_mutex);
12900 	list_del_init(&event->child_list);
12901 	mutex_unlock(&parent->child_mutex);
12902 
12903 	put_event(parent);
12904 
12905 	raw_spin_lock_irq(&ctx->lock);
12906 	perf_group_detach(event);
12907 	list_del_event(event, ctx);
12908 	raw_spin_unlock_irq(&ctx->lock);
12909 	free_event(event);
12910 }
12911 
12912 /*
12913  * Free a context as created by inheritance by perf_event_init_task() below,
12914  * used by fork() in case of fail.
12915  *
12916  * Even though the task has never lived, the context and events have been
12917  * exposed through the child_list, so we must take care tearing it all down.
12918  */
12919 void perf_event_free_task(struct task_struct *task)
12920 {
12921 	struct perf_event_context *ctx;
12922 	struct perf_event *event, *tmp;
12923 	int ctxn;
12924 
12925 	for_each_task_context_nr(ctxn) {
12926 		ctx = task->perf_event_ctxp[ctxn];
12927 		if (!ctx)
12928 			continue;
12929 
12930 		mutex_lock(&ctx->mutex);
12931 		raw_spin_lock_irq(&ctx->lock);
12932 		/*
12933 		 * Destroy the task <-> ctx relation and mark the context dead.
12934 		 *
12935 		 * This is important because even though the task hasn't been
12936 		 * exposed yet the context has been (through child_list).
12937 		 */
12938 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12939 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12940 		put_task_struct(task); /* cannot be last */
12941 		raw_spin_unlock_irq(&ctx->lock);
12942 
12943 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12944 			perf_free_event(event, ctx);
12945 
12946 		mutex_unlock(&ctx->mutex);
12947 
12948 		/*
12949 		 * perf_event_release_kernel() could've stolen some of our
12950 		 * child events and still have them on its free_list. In that
12951 		 * case we must wait for these events to have been freed (in
12952 		 * particular all their references to this task must've been
12953 		 * dropped).
12954 		 *
12955 		 * Without this copy_process() will unconditionally free this
12956 		 * task (irrespective of its reference count) and
12957 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12958 		 * use-after-free.
12959 		 *
12960 		 * Wait for all events to drop their context reference.
12961 		 */
12962 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12963 		put_ctx(ctx); /* must be last */
12964 	}
12965 }
12966 
12967 void perf_event_delayed_put(struct task_struct *task)
12968 {
12969 	int ctxn;
12970 
12971 	for_each_task_context_nr(ctxn)
12972 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12973 }
12974 
12975 struct file *perf_event_get(unsigned int fd)
12976 {
12977 	struct file *file = fget(fd);
12978 	if (!file)
12979 		return ERR_PTR(-EBADF);
12980 
12981 	if (file->f_op != &perf_fops) {
12982 		fput(file);
12983 		return ERR_PTR(-EBADF);
12984 	}
12985 
12986 	return file;
12987 }
12988 
12989 const struct perf_event *perf_get_event(struct file *file)
12990 {
12991 	if (file->f_op != &perf_fops)
12992 		return ERR_PTR(-EINVAL);
12993 
12994 	return file->private_data;
12995 }
12996 
12997 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12998 {
12999 	if (!event)
13000 		return ERR_PTR(-EINVAL);
13001 
13002 	return &event->attr;
13003 }
13004 
13005 /*
13006  * Inherit an event from parent task to child task.
13007  *
13008  * Returns:
13009  *  - valid pointer on success
13010  *  - NULL for orphaned events
13011  *  - IS_ERR() on error
13012  */
13013 static struct perf_event *
13014 inherit_event(struct perf_event *parent_event,
13015 	      struct task_struct *parent,
13016 	      struct perf_event_context *parent_ctx,
13017 	      struct task_struct *child,
13018 	      struct perf_event *group_leader,
13019 	      struct perf_event_context *child_ctx)
13020 {
13021 	enum perf_event_state parent_state = parent_event->state;
13022 	struct perf_event *child_event;
13023 	unsigned long flags;
13024 
13025 	/*
13026 	 * Instead of creating recursive hierarchies of events,
13027 	 * we link inherited events back to the original parent,
13028 	 * which has a filp for sure, which we use as the reference
13029 	 * count:
13030 	 */
13031 	if (parent_event->parent)
13032 		parent_event = parent_event->parent;
13033 
13034 	child_event = perf_event_alloc(&parent_event->attr,
13035 					   parent_event->cpu,
13036 					   child,
13037 					   group_leader, parent_event,
13038 					   NULL, NULL, -1);
13039 	if (IS_ERR(child_event))
13040 		return child_event;
13041 
13042 
13043 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13044 	    !child_ctx->task_ctx_data) {
13045 		struct pmu *pmu = child_event->pmu;
13046 
13047 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13048 		if (!child_ctx->task_ctx_data) {
13049 			free_event(child_event);
13050 			return ERR_PTR(-ENOMEM);
13051 		}
13052 	}
13053 
13054 	/*
13055 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13056 	 * must be under the same lock in order to serialize against
13057 	 * perf_event_release_kernel(), such that either we must observe
13058 	 * is_orphaned_event() or they will observe us on the child_list.
13059 	 */
13060 	mutex_lock(&parent_event->child_mutex);
13061 	if (is_orphaned_event(parent_event) ||
13062 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13063 		mutex_unlock(&parent_event->child_mutex);
13064 		/* task_ctx_data is freed with child_ctx */
13065 		free_event(child_event);
13066 		return NULL;
13067 	}
13068 
13069 	get_ctx(child_ctx);
13070 
13071 	/*
13072 	 * Make the child state follow the state of the parent event,
13073 	 * not its attr.disabled bit.  We hold the parent's mutex,
13074 	 * so we won't race with perf_event_{en, dis}able_family.
13075 	 */
13076 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13077 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13078 	else
13079 		child_event->state = PERF_EVENT_STATE_OFF;
13080 
13081 	if (parent_event->attr.freq) {
13082 		u64 sample_period = parent_event->hw.sample_period;
13083 		struct hw_perf_event *hwc = &child_event->hw;
13084 
13085 		hwc->sample_period = sample_period;
13086 		hwc->last_period   = sample_period;
13087 
13088 		local64_set(&hwc->period_left, sample_period);
13089 	}
13090 
13091 	child_event->ctx = child_ctx;
13092 	child_event->overflow_handler = parent_event->overflow_handler;
13093 	child_event->overflow_handler_context
13094 		= parent_event->overflow_handler_context;
13095 
13096 	/*
13097 	 * Precalculate sample_data sizes
13098 	 */
13099 	perf_event__header_size(child_event);
13100 	perf_event__id_header_size(child_event);
13101 
13102 	/*
13103 	 * Link it up in the child's context:
13104 	 */
13105 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13106 	add_event_to_ctx(child_event, child_ctx);
13107 	child_event->attach_state |= PERF_ATTACH_CHILD;
13108 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13109 
13110 	/*
13111 	 * Link this into the parent event's child list
13112 	 */
13113 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13114 	mutex_unlock(&parent_event->child_mutex);
13115 
13116 	return child_event;
13117 }
13118 
13119 /*
13120  * Inherits an event group.
13121  *
13122  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13123  * This matches with perf_event_release_kernel() removing all child events.
13124  *
13125  * Returns:
13126  *  - 0 on success
13127  *  - <0 on error
13128  */
13129 static int inherit_group(struct perf_event *parent_event,
13130 	      struct task_struct *parent,
13131 	      struct perf_event_context *parent_ctx,
13132 	      struct task_struct *child,
13133 	      struct perf_event_context *child_ctx)
13134 {
13135 	struct perf_event *leader;
13136 	struct perf_event *sub;
13137 	struct perf_event *child_ctr;
13138 
13139 	leader = inherit_event(parent_event, parent, parent_ctx,
13140 				 child, NULL, child_ctx);
13141 	if (IS_ERR(leader))
13142 		return PTR_ERR(leader);
13143 	/*
13144 	 * @leader can be NULL here because of is_orphaned_event(). In this
13145 	 * case inherit_event() will create individual events, similar to what
13146 	 * perf_group_detach() would do anyway.
13147 	 */
13148 	for_each_sibling_event(sub, parent_event) {
13149 		child_ctr = inherit_event(sub, parent, parent_ctx,
13150 					    child, leader, child_ctx);
13151 		if (IS_ERR(child_ctr))
13152 			return PTR_ERR(child_ctr);
13153 
13154 		if (sub->aux_event == parent_event && child_ctr &&
13155 		    !perf_get_aux_event(child_ctr, leader))
13156 			return -EINVAL;
13157 	}
13158 	return 0;
13159 }
13160 
13161 /*
13162  * Creates the child task context and tries to inherit the event-group.
13163  *
13164  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13165  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13166  * consistent with perf_event_release_kernel() removing all child events.
13167  *
13168  * Returns:
13169  *  - 0 on success
13170  *  - <0 on error
13171  */
13172 static int
13173 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13174 		   struct perf_event_context *parent_ctx,
13175 		   struct task_struct *child, int ctxn,
13176 		   u64 clone_flags, int *inherited_all)
13177 {
13178 	int ret;
13179 	struct perf_event_context *child_ctx;
13180 
13181 	if (!event->attr.inherit ||
13182 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13183 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13184 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13185 		*inherited_all = 0;
13186 		return 0;
13187 	}
13188 
13189 	child_ctx = child->perf_event_ctxp[ctxn];
13190 	if (!child_ctx) {
13191 		/*
13192 		 * This is executed from the parent task context, so
13193 		 * inherit events that have been marked for cloning.
13194 		 * First allocate and initialize a context for the
13195 		 * child.
13196 		 */
13197 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13198 		if (!child_ctx)
13199 			return -ENOMEM;
13200 
13201 		child->perf_event_ctxp[ctxn] = child_ctx;
13202 	}
13203 
13204 	ret = inherit_group(event, parent, parent_ctx,
13205 			    child, child_ctx);
13206 
13207 	if (ret)
13208 		*inherited_all = 0;
13209 
13210 	return ret;
13211 }
13212 
13213 /*
13214  * Initialize the perf_event context in task_struct
13215  */
13216 static int perf_event_init_context(struct task_struct *child, int ctxn,
13217 				   u64 clone_flags)
13218 {
13219 	struct perf_event_context *child_ctx, *parent_ctx;
13220 	struct perf_event_context *cloned_ctx;
13221 	struct perf_event *event;
13222 	struct task_struct *parent = current;
13223 	int inherited_all = 1;
13224 	unsigned long flags;
13225 	int ret = 0;
13226 
13227 	if (likely(!parent->perf_event_ctxp[ctxn]))
13228 		return 0;
13229 
13230 	/*
13231 	 * If the parent's context is a clone, pin it so it won't get
13232 	 * swapped under us.
13233 	 */
13234 	parent_ctx = perf_pin_task_context(parent, ctxn);
13235 	if (!parent_ctx)
13236 		return 0;
13237 
13238 	/*
13239 	 * No need to check if parent_ctx != NULL here; since we saw
13240 	 * it non-NULL earlier, the only reason for it to become NULL
13241 	 * is if we exit, and since we're currently in the middle of
13242 	 * a fork we can't be exiting at the same time.
13243 	 */
13244 
13245 	/*
13246 	 * Lock the parent list. No need to lock the child - not PID
13247 	 * hashed yet and not running, so nobody can access it.
13248 	 */
13249 	mutex_lock(&parent_ctx->mutex);
13250 
13251 	/*
13252 	 * We dont have to disable NMIs - we are only looking at
13253 	 * the list, not manipulating it:
13254 	 */
13255 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13256 		ret = inherit_task_group(event, parent, parent_ctx,
13257 					 child, ctxn, clone_flags,
13258 					 &inherited_all);
13259 		if (ret)
13260 			goto out_unlock;
13261 	}
13262 
13263 	/*
13264 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13265 	 * to allocations, but we need to prevent rotation because
13266 	 * rotate_ctx() will change the list from interrupt context.
13267 	 */
13268 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13269 	parent_ctx->rotate_disable = 1;
13270 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13271 
13272 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13273 		ret = inherit_task_group(event, parent, parent_ctx,
13274 					 child, ctxn, clone_flags,
13275 					 &inherited_all);
13276 		if (ret)
13277 			goto out_unlock;
13278 	}
13279 
13280 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13281 	parent_ctx->rotate_disable = 0;
13282 
13283 	child_ctx = child->perf_event_ctxp[ctxn];
13284 
13285 	if (child_ctx && inherited_all) {
13286 		/*
13287 		 * Mark the child context as a clone of the parent
13288 		 * context, or of whatever the parent is a clone of.
13289 		 *
13290 		 * Note that if the parent is a clone, the holding of
13291 		 * parent_ctx->lock avoids it from being uncloned.
13292 		 */
13293 		cloned_ctx = parent_ctx->parent_ctx;
13294 		if (cloned_ctx) {
13295 			child_ctx->parent_ctx = cloned_ctx;
13296 			child_ctx->parent_gen = parent_ctx->parent_gen;
13297 		} else {
13298 			child_ctx->parent_ctx = parent_ctx;
13299 			child_ctx->parent_gen = parent_ctx->generation;
13300 		}
13301 		get_ctx(child_ctx->parent_ctx);
13302 	}
13303 
13304 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13305 out_unlock:
13306 	mutex_unlock(&parent_ctx->mutex);
13307 
13308 	perf_unpin_context(parent_ctx);
13309 	put_ctx(parent_ctx);
13310 
13311 	return ret;
13312 }
13313 
13314 /*
13315  * Initialize the perf_event context in task_struct
13316  */
13317 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13318 {
13319 	int ctxn, ret;
13320 
13321 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13322 	mutex_init(&child->perf_event_mutex);
13323 	INIT_LIST_HEAD(&child->perf_event_list);
13324 
13325 	for_each_task_context_nr(ctxn) {
13326 		ret = perf_event_init_context(child, ctxn, clone_flags);
13327 		if (ret) {
13328 			perf_event_free_task(child);
13329 			return ret;
13330 		}
13331 	}
13332 
13333 	return 0;
13334 }
13335 
13336 static void __init perf_event_init_all_cpus(void)
13337 {
13338 	struct swevent_htable *swhash;
13339 	int cpu;
13340 
13341 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13342 
13343 	for_each_possible_cpu(cpu) {
13344 		swhash = &per_cpu(swevent_htable, cpu);
13345 		mutex_init(&swhash->hlist_mutex);
13346 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13347 
13348 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13349 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13350 
13351 #ifdef CONFIG_CGROUP_PERF
13352 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13353 #endif
13354 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13355 	}
13356 }
13357 
13358 static void perf_swevent_init_cpu(unsigned int cpu)
13359 {
13360 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13361 
13362 	mutex_lock(&swhash->hlist_mutex);
13363 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13364 		struct swevent_hlist *hlist;
13365 
13366 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13367 		WARN_ON(!hlist);
13368 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13369 	}
13370 	mutex_unlock(&swhash->hlist_mutex);
13371 }
13372 
13373 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13374 static void __perf_event_exit_context(void *__info)
13375 {
13376 	struct perf_event_context *ctx = __info;
13377 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13378 	struct perf_event *event;
13379 
13380 	raw_spin_lock(&ctx->lock);
13381 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13382 	list_for_each_entry(event, &ctx->event_list, event_entry)
13383 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13384 	raw_spin_unlock(&ctx->lock);
13385 }
13386 
13387 static void perf_event_exit_cpu_context(int cpu)
13388 {
13389 	struct perf_cpu_context *cpuctx;
13390 	struct perf_event_context *ctx;
13391 	struct pmu *pmu;
13392 
13393 	mutex_lock(&pmus_lock);
13394 	list_for_each_entry(pmu, &pmus, entry) {
13395 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13396 		ctx = &cpuctx->ctx;
13397 
13398 		mutex_lock(&ctx->mutex);
13399 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13400 		cpuctx->online = 0;
13401 		mutex_unlock(&ctx->mutex);
13402 	}
13403 	cpumask_clear_cpu(cpu, perf_online_mask);
13404 	mutex_unlock(&pmus_lock);
13405 }
13406 #else
13407 
13408 static void perf_event_exit_cpu_context(int cpu) { }
13409 
13410 #endif
13411 
13412 int perf_event_init_cpu(unsigned int cpu)
13413 {
13414 	struct perf_cpu_context *cpuctx;
13415 	struct perf_event_context *ctx;
13416 	struct pmu *pmu;
13417 
13418 	perf_swevent_init_cpu(cpu);
13419 
13420 	mutex_lock(&pmus_lock);
13421 	cpumask_set_cpu(cpu, perf_online_mask);
13422 	list_for_each_entry(pmu, &pmus, entry) {
13423 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13424 		ctx = &cpuctx->ctx;
13425 
13426 		mutex_lock(&ctx->mutex);
13427 		cpuctx->online = 1;
13428 		mutex_unlock(&ctx->mutex);
13429 	}
13430 	mutex_unlock(&pmus_lock);
13431 
13432 	return 0;
13433 }
13434 
13435 int perf_event_exit_cpu(unsigned int cpu)
13436 {
13437 	perf_event_exit_cpu_context(cpu);
13438 	return 0;
13439 }
13440 
13441 static int
13442 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13443 {
13444 	int cpu;
13445 
13446 	for_each_online_cpu(cpu)
13447 		perf_event_exit_cpu(cpu);
13448 
13449 	return NOTIFY_OK;
13450 }
13451 
13452 /*
13453  * Run the perf reboot notifier at the very last possible moment so that
13454  * the generic watchdog code runs as long as possible.
13455  */
13456 static struct notifier_block perf_reboot_notifier = {
13457 	.notifier_call = perf_reboot,
13458 	.priority = INT_MIN,
13459 };
13460 
13461 void __init perf_event_init(void)
13462 {
13463 	int ret;
13464 
13465 	idr_init(&pmu_idr);
13466 
13467 	perf_event_init_all_cpus();
13468 	init_srcu_struct(&pmus_srcu);
13469 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13470 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13471 	perf_pmu_register(&perf_task_clock, NULL, -1);
13472 	perf_tp_register();
13473 	perf_event_init_cpu(smp_processor_id());
13474 	register_reboot_notifier(&perf_reboot_notifier);
13475 
13476 	ret = init_hw_breakpoint();
13477 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13478 
13479 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13480 
13481 	/*
13482 	 * Build time assertion that we keep the data_head at the intended
13483 	 * location.  IOW, validation we got the __reserved[] size right.
13484 	 */
13485 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13486 		     != 1024);
13487 }
13488 
13489 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13490 			      char *page)
13491 {
13492 	struct perf_pmu_events_attr *pmu_attr =
13493 		container_of(attr, struct perf_pmu_events_attr, attr);
13494 
13495 	if (pmu_attr->event_str)
13496 		return sprintf(page, "%s\n", pmu_attr->event_str);
13497 
13498 	return 0;
13499 }
13500 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13501 
13502 static int __init perf_event_sysfs_init(void)
13503 {
13504 	struct pmu *pmu;
13505 	int ret;
13506 
13507 	mutex_lock(&pmus_lock);
13508 
13509 	ret = bus_register(&pmu_bus);
13510 	if (ret)
13511 		goto unlock;
13512 
13513 	list_for_each_entry(pmu, &pmus, entry) {
13514 		if (!pmu->name || pmu->type < 0)
13515 			continue;
13516 
13517 		ret = pmu_dev_alloc(pmu);
13518 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13519 	}
13520 	pmu_bus_running = 1;
13521 	ret = 0;
13522 
13523 unlock:
13524 	mutex_unlock(&pmus_lock);
13525 
13526 	return ret;
13527 }
13528 device_initcall(perf_event_sysfs_init);
13529 
13530 #ifdef CONFIG_CGROUP_PERF
13531 static struct cgroup_subsys_state *
13532 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13533 {
13534 	struct perf_cgroup *jc;
13535 
13536 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13537 	if (!jc)
13538 		return ERR_PTR(-ENOMEM);
13539 
13540 	jc->info = alloc_percpu(struct perf_cgroup_info);
13541 	if (!jc->info) {
13542 		kfree(jc);
13543 		return ERR_PTR(-ENOMEM);
13544 	}
13545 
13546 	return &jc->css;
13547 }
13548 
13549 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13550 {
13551 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13552 
13553 	free_percpu(jc->info);
13554 	kfree(jc);
13555 }
13556 
13557 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13558 {
13559 	perf_event_cgroup(css->cgroup);
13560 	return 0;
13561 }
13562 
13563 static int __perf_cgroup_move(void *info)
13564 {
13565 	struct task_struct *task = info;
13566 	rcu_read_lock();
13567 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13568 	rcu_read_unlock();
13569 	return 0;
13570 }
13571 
13572 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13573 {
13574 	struct task_struct *task;
13575 	struct cgroup_subsys_state *css;
13576 
13577 	cgroup_taskset_for_each(task, css, tset)
13578 		task_function_call(task, __perf_cgroup_move, task);
13579 }
13580 
13581 struct cgroup_subsys perf_event_cgrp_subsys = {
13582 	.css_alloc	= perf_cgroup_css_alloc,
13583 	.css_free	= perf_cgroup_css_free,
13584 	.css_online	= perf_cgroup_css_online,
13585 	.attach		= perf_cgroup_attach,
13586 	/*
13587 	 * Implicitly enable on dfl hierarchy so that perf events can
13588 	 * always be filtered by cgroup2 path as long as perf_event
13589 	 * controller is not mounted on a legacy hierarchy.
13590 	 */
13591 	.implicit_on_dfl = true,
13592 	.threaded	= true,
13593 };
13594 #endif /* CONFIG_CGROUP_PERF */
13595 
13596 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13597