xref: /linux/kernel/events/core.c (revision 59fff63cc2b75dcfe08f9eeb4b2187d73e53843d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (event->attr.read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (event->attr.read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	size += entry * nr;
1841 	event->read_size = size;
1842 }
1843 
1844 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1845 {
1846 	struct perf_sample_data *data;
1847 	u16 size = 0;
1848 
1849 	if (sample_type & PERF_SAMPLE_IP)
1850 		size += sizeof(data->ip);
1851 
1852 	if (sample_type & PERF_SAMPLE_ADDR)
1853 		size += sizeof(data->addr);
1854 
1855 	if (sample_type & PERF_SAMPLE_PERIOD)
1856 		size += sizeof(data->period);
1857 
1858 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1859 		size += sizeof(data->weight.full);
1860 
1861 	if (sample_type & PERF_SAMPLE_READ)
1862 		size += event->read_size;
1863 
1864 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1865 		size += sizeof(data->data_src.val);
1866 
1867 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1868 		size += sizeof(data->txn);
1869 
1870 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1871 		size += sizeof(data->phys_addr);
1872 
1873 	if (sample_type & PERF_SAMPLE_CGROUP)
1874 		size += sizeof(data->cgroup);
1875 
1876 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1877 		size += sizeof(data->data_page_size);
1878 
1879 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1880 		size += sizeof(data->code_page_size);
1881 
1882 	event->header_size = size;
1883 }
1884 
1885 /*
1886  * Called at perf_event creation and when events are attached/detached from a
1887  * group.
1888  */
1889 static void perf_event__header_size(struct perf_event *event)
1890 {
1891 	__perf_event_read_size(event,
1892 			       event->group_leader->nr_siblings);
1893 	__perf_event_header_size(event, event->attr.sample_type);
1894 }
1895 
1896 static void perf_event__id_header_size(struct perf_event *event)
1897 {
1898 	struct perf_sample_data *data;
1899 	u64 sample_type = event->attr.sample_type;
1900 	u16 size = 0;
1901 
1902 	if (sample_type & PERF_SAMPLE_TID)
1903 		size += sizeof(data->tid_entry);
1904 
1905 	if (sample_type & PERF_SAMPLE_TIME)
1906 		size += sizeof(data->time);
1907 
1908 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1909 		size += sizeof(data->id);
1910 
1911 	if (sample_type & PERF_SAMPLE_ID)
1912 		size += sizeof(data->id);
1913 
1914 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1915 		size += sizeof(data->stream_id);
1916 
1917 	if (sample_type & PERF_SAMPLE_CPU)
1918 		size += sizeof(data->cpu_entry);
1919 
1920 	event->id_header_size = size;
1921 }
1922 
1923 static bool perf_event_validate_size(struct perf_event *event)
1924 {
1925 	/*
1926 	 * The values computed here will be over-written when we actually
1927 	 * attach the event.
1928 	 */
1929 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1930 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1931 	perf_event__id_header_size(event);
1932 
1933 	/*
1934 	 * Sum the lot; should not exceed the 64k limit we have on records.
1935 	 * Conservative limit to allow for callchains and other variable fields.
1936 	 */
1937 	if (event->read_size + event->header_size +
1938 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1939 		return false;
1940 
1941 	return true;
1942 }
1943 
1944 static void perf_group_attach(struct perf_event *event)
1945 {
1946 	struct perf_event *group_leader = event->group_leader, *pos;
1947 
1948 	lockdep_assert_held(&event->ctx->lock);
1949 
1950 	/*
1951 	 * We can have double attach due to group movement (move_group) in
1952 	 * perf_event_open().
1953 	 */
1954 	if (event->attach_state & PERF_ATTACH_GROUP)
1955 		return;
1956 
1957 	event->attach_state |= PERF_ATTACH_GROUP;
1958 
1959 	if (group_leader == event)
1960 		return;
1961 
1962 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1963 
1964 	group_leader->group_caps &= event->event_caps;
1965 
1966 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1967 	group_leader->nr_siblings++;
1968 	group_leader->group_generation++;
1969 
1970 	perf_event__header_size(group_leader);
1971 
1972 	for_each_sibling_event(pos, group_leader)
1973 		perf_event__header_size(pos);
1974 }
1975 
1976 /*
1977  * Remove an event from the lists for its context.
1978  * Must be called with ctx->mutex and ctx->lock held.
1979  */
1980 static void
1981 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1982 {
1983 	WARN_ON_ONCE(event->ctx != ctx);
1984 	lockdep_assert_held(&ctx->lock);
1985 
1986 	/*
1987 	 * We can have double detach due to exit/hot-unplug + close.
1988 	 */
1989 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1990 		return;
1991 
1992 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1993 
1994 	ctx->nr_events--;
1995 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1996 		ctx->nr_user--;
1997 	if (event->attr.inherit_stat)
1998 		ctx->nr_stat--;
1999 
2000 	list_del_rcu(&event->event_entry);
2001 
2002 	if (event->group_leader == event)
2003 		del_event_from_groups(event, ctx);
2004 
2005 	/*
2006 	 * If event was in error state, then keep it
2007 	 * that way, otherwise bogus counts will be
2008 	 * returned on read(). The only way to get out
2009 	 * of error state is by explicit re-enabling
2010 	 * of the event
2011 	 */
2012 	if (event->state > PERF_EVENT_STATE_OFF) {
2013 		perf_cgroup_event_disable(event, ctx);
2014 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2015 	}
2016 
2017 	ctx->generation++;
2018 	event->pmu_ctx->nr_events--;
2019 }
2020 
2021 static int
2022 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2023 {
2024 	if (!has_aux(aux_event))
2025 		return 0;
2026 
2027 	if (!event->pmu->aux_output_match)
2028 		return 0;
2029 
2030 	return event->pmu->aux_output_match(aux_event);
2031 }
2032 
2033 static void put_event(struct perf_event *event);
2034 static void event_sched_out(struct perf_event *event,
2035 			    struct perf_event_context *ctx);
2036 
2037 static void perf_put_aux_event(struct perf_event *event)
2038 {
2039 	struct perf_event_context *ctx = event->ctx;
2040 	struct perf_event *iter;
2041 
2042 	/*
2043 	 * If event uses aux_event tear down the link
2044 	 */
2045 	if (event->aux_event) {
2046 		iter = event->aux_event;
2047 		event->aux_event = NULL;
2048 		put_event(iter);
2049 		return;
2050 	}
2051 
2052 	/*
2053 	 * If the event is an aux_event, tear down all links to
2054 	 * it from other events.
2055 	 */
2056 	for_each_sibling_event(iter, event->group_leader) {
2057 		if (iter->aux_event != event)
2058 			continue;
2059 
2060 		iter->aux_event = NULL;
2061 		put_event(event);
2062 
2063 		/*
2064 		 * If it's ACTIVE, schedule it out and put it into ERROR
2065 		 * state so that we don't try to schedule it again. Note
2066 		 * that perf_event_enable() will clear the ERROR status.
2067 		 */
2068 		event_sched_out(iter, ctx);
2069 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2070 	}
2071 }
2072 
2073 static bool perf_need_aux_event(struct perf_event *event)
2074 {
2075 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2076 }
2077 
2078 static int perf_get_aux_event(struct perf_event *event,
2079 			      struct perf_event *group_leader)
2080 {
2081 	/*
2082 	 * Our group leader must be an aux event if we want to be
2083 	 * an aux_output. This way, the aux event will precede its
2084 	 * aux_output events in the group, and therefore will always
2085 	 * schedule first.
2086 	 */
2087 	if (!group_leader)
2088 		return 0;
2089 
2090 	/*
2091 	 * aux_output and aux_sample_size are mutually exclusive.
2092 	 */
2093 	if (event->attr.aux_output && event->attr.aux_sample_size)
2094 		return 0;
2095 
2096 	if (event->attr.aux_output &&
2097 	    !perf_aux_output_match(event, group_leader))
2098 		return 0;
2099 
2100 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2101 		return 0;
2102 
2103 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2104 		return 0;
2105 
2106 	/*
2107 	 * Link aux_outputs to their aux event; this is undone in
2108 	 * perf_group_detach() by perf_put_aux_event(). When the
2109 	 * group in torn down, the aux_output events loose their
2110 	 * link to the aux_event and can't schedule any more.
2111 	 */
2112 	event->aux_event = group_leader;
2113 
2114 	return 1;
2115 }
2116 
2117 static inline struct list_head *get_event_list(struct perf_event *event)
2118 {
2119 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2120 				    &event->pmu_ctx->flexible_active;
2121 }
2122 
2123 /*
2124  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2125  * cannot exist on their own, schedule them out and move them into the ERROR
2126  * state. Also see _perf_event_enable(), it will not be able to recover
2127  * this ERROR state.
2128  */
2129 static inline void perf_remove_sibling_event(struct perf_event *event)
2130 {
2131 	event_sched_out(event, event->ctx);
2132 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2133 }
2134 
2135 static void perf_group_detach(struct perf_event *event)
2136 {
2137 	struct perf_event *leader = event->group_leader;
2138 	struct perf_event *sibling, *tmp;
2139 	struct perf_event_context *ctx = event->ctx;
2140 
2141 	lockdep_assert_held(&ctx->lock);
2142 
2143 	/*
2144 	 * We can have double detach due to exit/hot-unplug + close.
2145 	 */
2146 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2147 		return;
2148 
2149 	event->attach_state &= ~PERF_ATTACH_GROUP;
2150 
2151 	perf_put_aux_event(event);
2152 
2153 	/*
2154 	 * If this is a sibling, remove it from its group.
2155 	 */
2156 	if (leader != event) {
2157 		list_del_init(&event->sibling_list);
2158 		event->group_leader->nr_siblings--;
2159 		event->group_leader->group_generation++;
2160 		goto out;
2161 	}
2162 
2163 	/*
2164 	 * If this was a group event with sibling events then
2165 	 * upgrade the siblings to singleton events by adding them
2166 	 * to whatever list we are on.
2167 	 */
2168 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2169 
2170 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2171 			perf_remove_sibling_event(sibling);
2172 
2173 		sibling->group_leader = sibling;
2174 		list_del_init(&sibling->sibling_list);
2175 
2176 		/* Inherit group flags from the previous leader */
2177 		sibling->group_caps = event->group_caps;
2178 
2179 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2180 			add_event_to_groups(sibling, event->ctx);
2181 
2182 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2183 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2184 		}
2185 
2186 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2187 	}
2188 
2189 out:
2190 	for_each_sibling_event(tmp, leader)
2191 		perf_event__header_size(tmp);
2192 
2193 	perf_event__header_size(leader);
2194 }
2195 
2196 static void sync_child_event(struct perf_event *child_event);
2197 
2198 static void perf_child_detach(struct perf_event *event)
2199 {
2200 	struct perf_event *parent_event = event->parent;
2201 
2202 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2203 		return;
2204 
2205 	event->attach_state &= ~PERF_ATTACH_CHILD;
2206 
2207 	if (WARN_ON_ONCE(!parent_event))
2208 		return;
2209 
2210 	lockdep_assert_held(&parent_event->child_mutex);
2211 
2212 	sync_child_event(event);
2213 	list_del_init(&event->child_list);
2214 }
2215 
2216 static bool is_orphaned_event(struct perf_event *event)
2217 {
2218 	return event->state == PERF_EVENT_STATE_DEAD;
2219 }
2220 
2221 static inline int
2222 event_filter_match(struct perf_event *event)
2223 {
2224 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2225 	       perf_cgroup_match(event);
2226 }
2227 
2228 static void
2229 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2230 {
2231 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2232 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2233 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2234 
2235 	// XXX cpc serialization, probably per-cpu IRQ disabled
2236 
2237 	WARN_ON_ONCE(event->ctx != ctx);
2238 	lockdep_assert_held(&ctx->lock);
2239 
2240 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2241 		return;
2242 
2243 	/*
2244 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2245 	 * we can schedule events _OUT_ individually through things like
2246 	 * __perf_remove_from_context().
2247 	 */
2248 	list_del_init(&event->active_list);
2249 
2250 	perf_pmu_disable(event->pmu);
2251 
2252 	event->pmu->del(event, 0);
2253 	event->oncpu = -1;
2254 
2255 	if (event->pending_disable) {
2256 		event->pending_disable = 0;
2257 		perf_cgroup_event_disable(event, ctx);
2258 		state = PERF_EVENT_STATE_OFF;
2259 	}
2260 
2261 	if (event->pending_sigtrap) {
2262 		bool dec = true;
2263 
2264 		event->pending_sigtrap = 0;
2265 		if (state != PERF_EVENT_STATE_OFF &&
2266 		    !event->pending_work) {
2267 			event->pending_work = 1;
2268 			dec = false;
2269 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2270 			task_work_add(current, &event->pending_task, TWA_RESUME);
2271 		}
2272 		if (dec)
2273 			local_dec(&event->ctx->nr_pending);
2274 	}
2275 
2276 	perf_event_set_state(event, state);
2277 
2278 	if (!is_software_event(event))
2279 		cpc->active_oncpu--;
2280 	if (event->attr.freq && event->attr.sample_freq)
2281 		ctx->nr_freq--;
2282 	if (event->attr.exclusive || !cpc->active_oncpu)
2283 		cpc->exclusive = 0;
2284 
2285 	perf_pmu_enable(event->pmu);
2286 }
2287 
2288 static void
2289 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2290 {
2291 	struct perf_event *event;
2292 
2293 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2294 		return;
2295 
2296 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2297 
2298 	event_sched_out(group_event, ctx);
2299 
2300 	/*
2301 	 * Schedule out siblings (if any):
2302 	 */
2303 	for_each_sibling_event(event, group_event)
2304 		event_sched_out(event, ctx);
2305 }
2306 
2307 #define DETACH_GROUP	0x01UL
2308 #define DETACH_CHILD	0x02UL
2309 #define DETACH_DEAD	0x04UL
2310 
2311 /*
2312  * Cross CPU call to remove a performance event
2313  *
2314  * We disable the event on the hardware level first. After that we
2315  * remove it from the context list.
2316  */
2317 static void
2318 __perf_remove_from_context(struct perf_event *event,
2319 			   struct perf_cpu_context *cpuctx,
2320 			   struct perf_event_context *ctx,
2321 			   void *info)
2322 {
2323 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2324 	unsigned long flags = (unsigned long)info;
2325 
2326 	if (ctx->is_active & EVENT_TIME) {
2327 		update_context_time(ctx);
2328 		update_cgrp_time_from_cpuctx(cpuctx, false);
2329 	}
2330 
2331 	/*
2332 	 * Ensure event_sched_out() switches to OFF, at the very least
2333 	 * this avoids raising perf_pending_task() at this time.
2334 	 */
2335 	if (flags & DETACH_DEAD)
2336 		event->pending_disable = 1;
2337 	event_sched_out(event, ctx);
2338 	if (flags & DETACH_GROUP)
2339 		perf_group_detach(event);
2340 	if (flags & DETACH_CHILD)
2341 		perf_child_detach(event);
2342 	list_del_event(event, ctx);
2343 	if (flags & DETACH_DEAD)
2344 		event->state = PERF_EVENT_STATE_DEAD;
2345 
2346 	if (!pmu_ctx->nr_events) {
2347 		pmu_ctx->rotate_necessary = 0;
2348 
2349 		if (ctx->task && ctx->is_active) {
2350 			struct perf_cpu_pmu_context *cpc;
2351 
2352 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2353 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2354 			cpc->task_epc = NULL;
2355 		}
2356 	}
2357 
2358 	if (!ctx->nr_events && ctx->is_active) {
2359 		if (ctx == &cpuctx->ctx)
2360 			update_cgrp_time_from_cpuctx(cpuctx, true);
2361 
2362 		ctx->is_active = 0;
2363 		if (ctx->task) {
2364 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2365 			cpuctx->task_ctx = NULL;
2366 		}
2367 	}
2368 }
2369 
2370 /*
2371  * Remove the event from a task's (or a CPU's) list of events.
2372  *
2373  * If event->ctx is a cloned context, callers must make sure that
2374  * every task struct that event->ctx->task could possibly point to
2375  * remains valid.  This is OK when called from perf_release since
2376  * that only calls us on the top-level context, which can't be a clone.
2377  * When called from perf_event_exit_task, it's OK because the
2378  * context has been detached from its task.
2379  */
2380 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2381 {
2382 	struct perf_event_context *ctx = event->ctx;
2383 
2384 	lockdep_assert_held(&ctx->mutex);
2385 
2386 	/*
2387 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2388 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2389 	 * event_function_call() user.
2390 	 */
2391 	raw_spin_lock_irq(&ctx->lock);
2392 	if (!ctx->is_active) {
2393 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2394 					   ctx, (void *)flags);
2395 		raw_spin_unlock_irq(&ctx->lock);
2396 		return;
2397 	}
2398 	raw_spin_unlock_irq(&ctx->lock);
2399 
2400 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2401 }
2402 
2403 /*
2404  * Cross CPU call to disable a performance event
2405  */
2406 static void __perf_event_disable(struct perf_event *event,
2407 				 struct perf_cpu_context *cpuctx,
2408 				 struct perf_event_context *ctx,
2409 				 void *info)
2410 {
2411 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2412 		return;
2413 
2414 	if (ctx->is_active & EVENT_TIME) {
2415 		update_context_time(ctx);
2416 		update_cgrp_time_from_event(event);
2417 	}
2418 
2419 	perf_pmu_disable(event->pmu_ctx->pmu);
2420 
2421 	if (event == event->group_leader)
2422 		group_sched_out(event, ctx);
2423 	else
2424 		event_sched_out(event, ctx);
2425 
2426 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2427 	perf_cgroup_event_disable(event, ctx);
2428 
2429 	perf_pmu_enable(event->pmu_ctx->pmu);
2430 }
2431 
2432 /*
2433  * Disable an event.
2434  *
2435  * If event->ctx is a cloned context, callers must make sure that
2436  * every task struct that event->ctx->task could possibly point to
2437  * remains valid.  This condition is satisfied when called through
2438  * perf_event_for_each_child or perf_event_for_each because they
2439  * hold the top-level event's child_mutex, so any descendant that
2440  * goes to exit will block in perf_event_exit_event().
2441  *
2442  * When called from perf_pending_irq it's OK because event->ctx
2443  * is the current context on this CPU and preemption is disabled,
2444  * hence we can't get into perf_event_task_sched_out for this context.
2445  */
2446 static void _perf_event_disable(struct perf_event *event)
2447 {
2448 	struct perf_event_context *ctx = event->ctx;
2449 
2450 	raw_spin_lock_irq(&ctx->lock);
2451 	if (event->state <= PERF_EVENT_STATE_OFF) {
2452 		raw_spin_unlock_irq(&ctx->lock);
2453 		return;
2454 	}
2455 	raw_spin_unlock_irq(&ctx->lock);
2456 
2457 	event_function_call(event, __perf_event_disable, NULL);
2458 }
2459 
2460 void perf_event_disable_local(struct perf_event *event)
2461 {
2462 	event_function_local(event, __perf_event_disable, NULL);
2463 }
2464 
2465 /*
2466  * Strictly speaking kernel users cannot create groups and therefore this
2467  * interface does not need the perf_event_ctx_lock() magic.
2468  */
2469 void perf_event_disable(struct perf_event *event)
2470 {
2471 	struct perf_event_context *ctx;
2472 
2473 	ctx = perf_event_ctx_lock(event);
2474 	_perf_event_disable(event);
2475 	perf_event_ctx_unlock(event, ctx);
2476 }
2477 EXPORT_SYMBOL_GPL(perf_event_disable);
2478 
2479 void perf_event_disable_inatomic(struct perf_event *event)
2480 {
2481 	event->pending_disable = 1;
2482 	irq_work_queue(&event->pending_irq);
2483 }
2484 
2485 #define MAX_INTERRUPTS (~0ULL)
2486 
2487 static void perf_log_throttle(struct perf_event *event, int enable);
2488 static void perf_log_itrace_start(struct perf_event *event);
2489 
2490 static int
2491 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2492 {
2493 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2494 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2495 	int ret = 0;
2496 
2497 	WARN_ON_ONCE(event->ctx != ctx);
2498 
2499 	lockdep_assert_held(&ctx->lock);
2500 
2501 	if (event->state <= PERF_EVENT_STATE_OFF)
2502 		return 0;
2503 
2504 	WRITE_ONCE(event->oncpu, smp_processor_id());
2505 	/*
2506 	 * Order event::oncpu write to happen before the ACTIVE state is
2507 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2508 	 * ->oncpu if it sees ACTIVE.
2509 	 */
2510 	smp_wmb();
2511 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2512 
2513 	/*
2514 	 * Unthrottle events, since we scheduled we might have missed several
2515 	 * ticks already, also for a heavily scheduling task there is little
2516 	 * guarantee it'll get a tick in a timely manner.
2517 	 */
2518 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2519 		perf_log_throttle(event, 1);
2520 		event->hw.interrupts = 0;
2521 	}
2522 
2523 	perf_pmu_disable(event->pmu);
2524 
2525 	perf_log_itrace_start(event);
2526 
2527 	if (event->pmu->add(event, PERF_EF_START)) {
2528 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2529 		event->oncpu = -1;
2530 		ret = -EAGAIN;
2531 		goto out;
2532 	}
2533 
2534 	if (!is_software_event(event))
2535 		cpc->active_oncpu++;
2536 	if (event->attr.freq && event->attr.sample_freq)
2537 		ctx->nr_freq++;
2538 
2539 	if (event->attr.exclusive)
2540 		cpc->exclusive = 1;
2541 
2542 out:
2543 	perf_pmu_enable(event->pmu);
2544 
2545 	return ret;
2546 }
2547 
2548 static int
2549 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2550 {
2551 	struct perf_event *event, *partial_group = NULL;
2552 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2553 
2554 	if (group_event->state == PERF_EVENT_STATE_OFF)
2555 		return 0;
2556 
2557 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2558 
2559 	if (event_sched_in(group_event, ctx))
2560 		goto error;
2561 
2562 	/*
2563 	 * Schedule in siblings as one group (if any):
2564 	 */
2565 	for_each_sibling_event(event, group_event) {
2566 		if (event_sched_in(event, ctx)) {
2567 			partial_group = event;
2568 			goto group_error;
2569 		}
2570 	}
2571 
2572 	if (!pmu->commit_txn(pmu))
2573 		return 0;
2574 
2575 group_error:
2576 	/*
2577 	 * Groups can be scheduled in as one unit only, so undo any
2578 	 * partial group before returning:
2579 	 * The events up to the failed event are scheduled out normally.
2580 	 */
2581 	for_each_sibling_event(event, group_event) {
2582 		if (event == partial_group)
2583 			break;
2584 
2585 		event_sched_out(event, ctx);
2586 	}
2587 	event_sched_out(group_event, ctx);
2588 
2589 error:
2590 	pmu->cancel_txn(pmu);
2591 	return -EAGAIN;
2592 }
2593 
2594 /*
2595  * Work out whether we can put this event group on the CPU now.
2596  */
2597 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2598 {
2599 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2600 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2601 
2602 	/*
2603 	 * Groups consisting entirely of software events can always go on.
2604 	 */
2605 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2606 		return 1;
2607 	/*
2608 	 * If an exclusive group is already on, no other hardware
2609 	 * events can go on.
2610 	 */
2611 	if (cpc->exclusive)
2612 		return 0;
2613 	/*
2614 	 * If this group is exclusive and there are already
2615 	 * events on the CPU, it can't go on.
2616 	 */
2617 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2618 		return 0;
2619 	/*
2620 	 * Otherwise, try to add it if all previous groups were able
2621 	 * to go on.
2622 	 */
2623 	return can_add_hw;
2624 }
2625 
2626 static void add_event_to_ctx(struct perf_event *event,
2627 			       struct perf_event_context *ctx)
2628 {
2629 	list_add_event(event, ctx);
2630 	perf_group_attach(event);
2631 }
2632 
2633 static void task_ctx_sched_out(struct perf_event_context *ctx,
2634 				enum event_type_t event_type)
2635 {
2636 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2637 
2638 	if (!cpuctx->task_ctx)
2639 		return;
2640 
2641 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2642 		return;
2643 
2644 	ctx_sched_out(ctx, event_type);
2645 }
2646 
2647 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2648 				struct perf_event_context *ctx)
2649 {
2650 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2651 	if (ctx)
2652 		 ctx_sched_in(ctx, EVENT_PINNED);
2653 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2654 	if (ctx)
2655 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2656 }
2657 
2658 /*
2659  * We want to maintain the following priority of scheduling:
2660  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2661  *  - task pinned (EVENT_PINNED)
2662  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2663  *  - task flexible (EVENT_FLEXIBLE).
2664  *
2665  * In order to avoid unscheduling and scheduling back in everything every
2666  * time an event is added, only do it for the groups of equal priority and
2667  * below.
2668  *
2669  * This can be called after a batch operation on task events, in which case
2670  * event_type is a bit mask of the types of events involved. For CPU events,
2671  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2672  */
2673 /*
2674  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2675  * event to the context or enabling existing event in the context. We can
2676  * probably optimize it by rescheduling only affected pmu_ctx.
2677  */
2678 static void ctx_resched(struct perf_cpu_context *cpuctx,
2679 			struct perf_event_context *task_ctx,
2680 			enum event_type_t event_type)
2681 {
2682 	bool cpu_event = !!(event_type & EVENT_CPU);
2683 
2684 	/*
2685 	 * If pinned groups are involved, flexible groups also need to be
2686 	 * scheduled out.
2687 	 */
2688 	if (event_type & EVENT_PINNED)
2689 		event_type |= EVENT_FLEXIBLE;
2690 
2691 	event_type &= EVENT_ALL;
2692 
2693 	perf_ctx_disable(&cpuctx->ctx, false);
2694 	if (task_ctx) {
2695 		perf_ctx_disable(task_ctx, false);
2696 		task_ctx_sched_out(task_ctx, event_type);
2697 	}
2698 
2699 	/*
2700 	 * Decide which cpu ctx groups to schedule out based on the types
2701 	 * of events that caused rescheduling:
2702 	 *  - EVENT_CPU: schedule out corresponding groups;
2703 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2704 	 *  - otherwise, do nothing more.
2705 	 */
2706 	if (cpu_event)
2707 		ctx_sched_out(&cpuctx->ctx, event_type);
2708 	else if (event_type & EVENT_PINNED)
2709 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2710 
2711 	perf_event_sched_in(cpuctx, task_ctx);
2712 
2713 	perf_ctx_enable(&cpuctx->ctx, false);
2714 	if (task_ctx)
2715 		perf_ctx_enable(task_ctx, false);
2716 }
2717 
2718 void perf_pmu_resched(struct pmu *pmu)
2719 {
2720 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2721 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2722 
2723 	perf_ctx_lock(cpuctx, task_ctx);
2724 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2725 	perf_ctx_unlock(cpuctx, task_ctx);
2726 }
2727 
2728 /*
2729  * Cross CPU call to install and enable a performance event
2730  *
2731  * Very similar to remote_function() + event_function() but cannot assume that
2732  * things like ctx->is_active and cpuctx->task_ctx are set.
2733  */
2734 static int  __perf_install_in_context(void *info)
2735 {
2736 	struct perf_event *event = info;
2737 	struct perf_event_context *ctx = event->ctx;
2738 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2739 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2740 	bool reprogram = true;
2741 	int ret = 0;
2742 
2743 	raw_spin_lock(&cpuctx->ctx.lock);
2744 	if (ctx->task) {
2745 		raw_spin_lock(&ctx->lock);
2746 		task_ctx = ctx;
2747 
2748 		reprogram = (ctx->task == current);
2749 
2750 		/*
2751 		 * If the task is running, it must be running on this CPU,
2752 		 * otherwise we cannot reprogram things.
2753 		 *
2754 		 * If its not running, we don't care, ctx->lock will
2755 		 * serialize against it becoming runnable.
2756 		 */
2757 		if (task_curr(ctx->task) && !reprogram) {
2758 			ret = -ESRCH;
2759 			goto unlock;
2760 		}
2761 
2762 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2763 	} else if (task_ctx) {
2764 		raw_spin_lock(&task_ctx->lock);
2765 	}
2766 
2767 #ifdef CONFIG_CGROUP_PERF
2768 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2769 		/*
2770 		 * If the current cgroup doesn't match the event's
2771 		 * cgroup, we should not try to schedule it.
2772 		 */
2773 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2774 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2775 					event->cgrp->css.cgroup);
2776 	}
2777 #endif
2778 
2779 	if (reprogram) {
2780 		ctx_sched_out(ctx, EVENT_TIME);
2781 		add_event_to_ctx(event, ctx);
2782 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2783 	} else {
2784 		add_event_to_ctx(event, ctx);
2785 	}
2786 
2787 unlock:
2788 	perf_ctx_unlock(cpuctx, task_ctx);
2789 
2790 	return ret;
2791 }
2792 
2793 static bool exclusive_event_installable(struct perf_event *event,
2794 					struct perf_event_context *ctx);
2795 
2796 /*
2797  * Attach a performance event to a context.
2798  *
2799  * Very similar to event_function_call, see comment there.
2800  */
2801 static void
2802 perf_install_in_context(struct perf_event_context *ctx,
2803 			struct perf_event *event,
2804 			int cpu)
2805 {
2806 	struct task_struct *task = READ_ONCE(ctx->task);
2807 
2808 	lockdep_assert_held(&ctx->mutex);
2809 
2810 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2811 
2812 	if (event->cpu != -1)
2813 		WARN_ON_ONCE(event->cpu != cpu);
2814 
2815 	/*
2816 	 * Ensures that if we can observe event->ctx, both the event and ctx
2817 	 * will be 'complete'. See perf_iterate_sb_cpu().
2818 	 */
2819 	smp_store_release(&event->ctx, ctx);
2820 
2821 	/*
2822 	 * perf_event_attr::disabled events will not run and can be initialized
2823 	 * without IPI. Except when this is the first event for the context, in
2824 	 * that case we need the magic of the IPI to set ctx->is_active.
2825 	 *
2826 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2827 	 * event will issue the IPI and reprogram the hardware.
2828 	 */
2829 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2830 	    ctx->nr_events && !is_cgroup_event(event)) {
2831 		raw_spin_lock_irq(&ctx->lock);
2832 		if (ctx->task == TASK_TOMBSTONE) {
2833 			raw_spin_unlock_irq(&ctx->lock);
2834 			return;
2835 		}
2836 		add_event_to_ctx(event, ctx);
2837 		raw_spin_unlock_irq(&ctx->lock);
2838 		return;
2839 	}
2840 
2841 	if (!task) {
2842 		cpu_function_call(cpu, __perf_install_in_context, event);
2843 		return;
2844 	}
2845 
2846 	/*
2847 	 * Should not happen, we validate the ctx is still alive before calling.
2848 	 */
2849 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2850 		return;
2851 
2852 	/*
2853 	 * Installing events is tricky because we cannot rely on ctx->is_active
2854 	 * to be set in case this is the nr_events 0 -> 1 transition.
2855 	 *
2856 	 * Instead we use task_curr(), which tells us if the task is running.
2857 	 * However, since we use task_curr() outside of rq::lock, we can race
2858 	 * against the actual state. This means the result can be wrong.
2859 	 *
2860 	 * If we get a false positive, we retry, this is harmless.
2861 	 *
2862 	 * If we get a false negative, things are complicated. If we are after
2863 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2864 	 * value must be correct. If we're before, it doesn't matter since
2865 	 * perf_event_context_sched_in() will program the counter.
2866 	 *
2867 	 * However, this hinges on the remote context switch having observed
2868 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2869 	 * ctx::lock in perf_event_context_sched_in().
2870 	 *
2871 	 * We do this by task_function_call(), if the IPI fails to hit the task
2872 	 * we know any future context switch of task must see the
2873 	 * perf_event_ctpx[] store.
2874 	 */
2875 
2876 	/*
2877 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2878 	 * task_cpu() load, such that if the IPI then does not find the task
2879 	 * running, a future context switch of that task must observe the
2880 	 * store.
2881 	 */
2882 	smp_mb();
2883 again:
2884 	if (!task_function_call(task, __perf_install_in_context, event))
2885 		return;
2886 
2887 	raw_spin_lock_irq(&ctx->lock);
2888 	task = ctx->task;
2889 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2890 		/*
2891 		 * Cannot happen because we already checked above (which also
2892 		 * cannot happen), and we hold ctx->mutex, which serializes us
2893 		 * against perf_event_exit_task_context().
2894 		 */
2895 		raw_spin_unlock_irq(&ctx->lock);
2896 		return;
2897 	}
2898 	/*
2899 	 * If the task is not running, ctx->lock will avoid it becoming so,
2900 	 * thus we can safely install the event.
2901 	 */
2902 	if (task_curr(task)) {
2903 		raw_spin_unlock_irq(&ctx->lock);
2904 		goto again;
2905 	}
2906 	add_event_to_ctx(event, ctx);
2907 	raw_spin_unlock_irq(&ctx->lock);
2908 }
2909 
2910 /*
2911  * Cross CPU call to enable a performance event
2912  */
2913 static void __perf_event_enable(struct perf_event *event,
2914 				struct perf_cpu_context *cpuctx,
2915 				struct perf_event_context *ctx,
2916 				void *info)
2917 {
2918 	struct perf_event *leader = event->group_leader;
2919 	struct perf_event_context *task_ctx;
2920 
2921 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2922 	    event->state <= PERF_EVENT_STATE_ERROR)
2923 		return;
2924 
2925 	if (ctx->is_active)
2926 		ctx_sched_out(ctx, EVENT_TIME);
2927 
2928 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2929 	perf_cgroup_event_enable(event, ctx);
2930 
2931 	if (!ctx->is_active)
2932 		return;
2933 
2934 	if (!event_filter_match(event)) {
2935 		ctx_sched_in(ctx, EVENT_TIME);
2936 		return;
2937 	}
2938 
2939 	/*
2940 	 * If the event is in a group and isn't the group leader,
2941 	 * then don't put it on unless the group is on.
2942 	 */
2943 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2944 		ctx_sched_in(ctx, EVENT_TIME);
2945 		return;
2946 	}
2947 
2948 	task_ctx = cpuctx->task_ctx;
2949 	if (ctx->task)
2950 		WARN_ON_ONCE(task_ctx != ctx);
2951 
2952 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2953 }
2954 
2955 /*
2956  * Enable an event.
2957  *
2958  * If event->ctx is a cloned context, callers must make sure that
2959  * every task struct that event->ctx->task could possibly point to
2960  * remains valid.  This condition is satisfied when called through
2961  * perf_event_for_each_child or perf_event_for_each as described
2962  * for perf_event_disable.
2963  */
2964 static void _perf_event_enable(struct perf_event *event)
2965 {
2966 	struct perf_event_context *ctx = event->ctx;
2967 
2968 	raw_spin_lock_irq(&ctx->lock);
2969 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2970 	    event->state <  PERF_EVENT_STATE_ERROR) {
2971 out:
2972 		raw_spin_unlock_irq(&ctx->lock);
2973 		return;
2974 	}
2975 
2976 	/*
2977 	 * If the event is in error state, clear that first.
2978 	 *
2979 	 * That way, if we see the event in error state below, we know that it
2980 	 * has gone back into error state, as distinct from the task having
2981 	 * been scheduled away before the cross-call arrived.
2982 	 */
2983 	if (event->state == PERF_EVENT_STATE_ERROR) {
2984 		/*
2985 		 * Detached SIBLING events cannot leave ERROR state.
2986 		 */
2987 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
2988 		    event->group_leader == event)
2989 			goto out;
2990 
2991 		event->state = PERF_EVENT_STATE_OFF;
2992 	}
2993 	raw_spin_unlock_irq(&ctx->lock);
2994 
2995 	event_function_call(event, __perf_event_enable, NULL);
2996 }
2997 
2998 /*
2999  * See perf_event_disable();
3000  */
3001 void perf_event_enable(struct perf_event *event)
3002 {
3003 	struct perf_event_context *ctx;
3004 
3005 	ctx = perf_event_ctx_lock(event);
3006 	_perf_event_enable(event);
3007 	perf_event_ctx_unlock(event, ctx);
3008 }
3009 EXPORT_SYMBOL_GPL(perf_event_enable);
3010 
3011 struct stop_event_data {
3012 	struct perf_event	*event;
3013 	unsigned int		restart;
3014 };
3015 
3016 static int __perf_event_stop(void *info)
3017 {
3018 	struct stop_event_data *sd = info;
3019 	struct perf_event *event = sd->event;
3020 
3021 	/* if it's already INACTIVE, do nothing */
3022 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3023 		return 0;
3024 
3025 	/* matches smp_wmb() in event_sched_in() */
3026 	smp_rmb();
3027 
3028 	/*
3029 	 * There is a window with interrupts enabled before we get here,
3030 	 * so we need to check again lest we try to stop another CPU's event.
3031 	 */
3032 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3033 		return -EAGAIN;
3034 
3035 	event->pmu->stop(event, PERF_EF_UPDATE);
3036 
3037 	/*
3038 	 * May race with the actual stop (through perf_pmu_output_stop()),
3039 	 * but it is only used for events with AUX ring buffer, and such
3040 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3041 	 * see comments in perf_aux_output_begin().
3042 	 *
3043 	 * Since this is happening on an event-local CPU, no trace is lost
3044 	 * while restarting.
3045 	 */
3046 	if (sd->restart)
3047 		event->pmu->start(event, 0);
3048 
3049 	return 0;
3050 }
3051 
3052 static int perf_event_stop(struct perf_event *event, int restart)
3053 {
3054 	struct stop_event_data sd = {
3055 		.event		= event,
3056 		.restart	= restart,
3057 	};
3058 	int ret = 0;
3059 
3060 	do {
3061 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3062 			return 0;
3063 
3064 		/* matches smp_wmb() in event_sched_in() */
3065 		smp_rmb();
3066 
3067 		/*
3068 		 * We only want to restart ACTIVE events, so if the event goes
3069 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3070 		 * fall through with ret==-ENXIO.
3071 		 */
3072 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3073 					__perf_event_stop, &sd);
3074 	} while (ret == -EAGAIN);
3075 
3076 	return ret;
3077 }
3078 
3079 /*
3080  * In order to contain the amount of racy and tricky in the address filter
3081  * configuration management, it is a two part process:
3082  *
3083  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3084  *      we update the addresses of corresponding vmas in
3085  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3086  * (p2) when an event is scheduled in (pmu::add), it calls
3087  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3088  *      if the generation has changed since the previous call.
3089  *
3090  * If (p1) happens while the event is active, we restart it to force (p2).
3091  *
3092  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3093  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3094  *     ioctl;
3095  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3096  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3097  *     for reading;
3098  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3099  *     of exec.
3100  */
3101 void perf_event_addr_filters_sync(struct perf_event *event)
3102 {
3103 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3104 
3105 	if (!has_addr_filter(event))
3106 		return;
3107 
3108 	raw_spin_lock(&ifh->lock);
3109 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3110 		event->pmu->addr_filters_sync(event);
3111 		event->hw.addr_filters_gen = event->addr_filters_gen;
3112 	}
3113 	raw_spin_unlock(&ifh->lock);
3114 }
3115 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3116 
3117 static int _perf_event_refresh(struct perf_event *event, int refresh)
3118 {
3119 	/*
3120 	 * not supported on inherited events
3121 	 */
3122 	if (event->attr.inherit || !is_sampling_event(event))
3123 		return -EINVAL;
3124 
3125 	atomic_add(refresh, &event->event_limit);
3126 	_perf_event_enable(event);
3127 
3128 	return 0;
3129 }
3130 
3131 /*
3132  * See perf_event_disable()
3133  */
3134 int perf_event_refresh(struct perf_event *event, int refresh)
3135 {
3136 	struct perf_event_context *ctx;
3137 	int ret;
3138 
3139 	ctx = perf_event_ctx_lock(event);
3140 	ret = _perf_event_refresh(event, refresh);
3141 	perf_event_ctx_unlock(event, ctx);
3142 
3143 	return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(perf_event_refresh);
3146 
3147 static int perf_event_modify_breakpoint(struct perf_event *bp,
3148 					 struct perf_event_attr *attr)
3149 {
3150 	int err;
3151 
3152 	_perf_event_disable(bp);
3153 
3154 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3155 
3156 	if (!bp->attr.disabled)
3157 		_perf_event_enable(bp);
3158 
3159 	return err;
3160 }
3161 
3162 /*
3163  * Copy event-type-independent attributes that may be modified.
3164  */
3165 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3166 					const struct perf_event_attr *from)
3167 {
3168 	to->sig_data = from->sig_data;
3169 }
3170 
3171 static int perf_event_modify_attr(struct perf_event *event,
3172 				  struct perf_event_attr *attr)
3173 {
3174 	int (*func)(struct perf_event *, struct perf_event_attr *);
3175 	struct perf_event *child;
3176 	int err;
3177 
3178 	if (event->attr.type != attr->type)
3179 		return -EINVAL;
3180 
3181 	switch (event->attr.type) {
3182 	case PERF_TYPE_BREAKPOINT:
3183 		func = perf_event_modify_breakpoint;
3184 		break;
3185 	default:
3186 		/* Place holder for future additions. */
3187 		return -EOPNOTSUPP;
3188 	}
3189 
3190 	WARN_ON_ONCE(event->ctx->parent_ctx);
3191 
3192 	mutex_lock(&event->child_mutex);
3193 	/*
3194 	 * Event-type-independent attributes must be copied before event-type
3195 	 * modification, which will validate that final attributes match the
3196 	 * source attributes after all relevant attributes have been copied.
3197 	 */
3198 	perf_event_modify_copy_attr(&event->attr, attr);
3199 	err = func(event, attr);
3200 	if (err)
3201 		goto out;
3202 	list_for_each_entry(child, &event->child_list, child_list) {
3203 		perf_event_modify_copy_attr(&child->attr, attr);
3204 		err = func(child, attr);
3205 		if (err)
3206 			goto out;
3207 	}
3208 out:
3209 	mutex_unlock(&event->child_mutex);
3210 	return err;
3211 }
3212 
3213 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3214 				enum event_type_t event_type)
3215 {
3216 	struct perf_event_context *ctx = pmu_ctx->ctx;
3217 	struct perf_event *event, *tmp;
3218 	struct pmu *pmu = pmu_ctx->pmu;
3219 
3220 	if (ctx->task && !ctx->is_active) {
3221 		struct perf_cpu_pmu_context *cpc;
3222 
3223 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3224 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3225 		cpc->task_epc = NULL;
3226 	}
3227 
3228 	if (!event_type)
3229 		return;
3230 
3231 	perf_pmu_disable(pmu);
3232 	if (event_type & EVENT_PINNED) {
3233 		list_for_each_entry_safe(event, tmp,
3234 					 &pmu_ctx->pinned_active,
3235 					 active_list)
3236 			group_sched_out(event, ctx);
3237 	}
3238 
3239 	if (event_type & EVENT_FLEXIBLE) {
3240 		list_for_each_entry_safe(event, tmp,
3241 					 &pmu_ctx->flexible_active,
3242 					 active_list)
3243 			group_sched_out(event, ctx);
3244 		/*
3245 		 * Since we cleared EVENT_FLEXIBLE, also clear
3246 		 * rotate_necessary, is will be reset by
3247 		 * ctx_flexible_sched_in() when needed.
3248 		 */
3249 		pmu_ctx->rotate_necessary = 0;
3250 	}
3251 	perf_pmu_enable(pmu);
3252 }
3253 
3254 static void
3255 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3256 {
3257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3258 	struct perf_event_pmu_context *pmu_ctx;
3259 	int is_active = ctx->is_active;
3260 	bool cgroup = event_type & EVENT_CGROUP;
3261 
3262 	event_type &= ~EVENT_CGROUP;
3263 
3264 	lockdep_assert_held(&ctx->lock);
3265 
3266 	if (likely(!ctx->nr_events)) {
3267 		/*
3268 		 * See __perf_remove_from_context().
3269 		 */
3270 		WARN_ON_ONCE(ctx->is_active);
3271 		if (ctx->task)
3272 			WARN_ON_ONCE(cpuctx->task_ctx);
3273 		return;
3274 	}
3275 
3276 	/*
3277 	 * Always update time if it was set; not only when it changes.
3278 	 * Otherwise we can 'forget' to update time for any but the last
3279 	 * context we sched out. For example:
3280 	 *
3281 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3282 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3283 	 *
3284 	 * would only update time for the pinned events.
3285 	 */
3286 	if (is_active & EVENT_TIME) {
3287 		/* update (and stop) ctx time */
3288 		update_context_time(ctx);
3289 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3290 		/*
3291 		 * CPU-release for the below ->is_active store,
3292 		 * see __load_acquire() in perf_event_time_now()
3293 		 */
3294 		barrier();
3295 	}
3296 
3297 	ctx->is_active &= ~event_type;
3298 	if (!(ctx->is_active & EVENT_ALL))
3299 		ctx->is_active = 0;
3300 
3301 	if (ctx->task) {
3302 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3303 		if (!ctx->is_active)
3304 			cpuctx->task_ctx = NULL;
3305 	}
3306 
3307 	is_active ^= ctx->is_active; /* changed bits */
3308 
3309 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3310 		if (cgroup && !pmu_ctx->nr_cgroups)
3311 			continue;
3312 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3313 	}
3314 }
3315 
3316 /*
3317  * Test whether two contexts are equivalent, i.e. whether they have both been
3318  * cloned from the same version of the same context.
3319  *
3320  * Equivalence is measured using a generation number in the context that is
3321  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3322  * and list_del_event().
3323  */
3324 static int context_equiv(struct perf_event_context *ctx1,
3325 			 struct perf_event_context *ctx2)
3326 {
3327 	lockdep_assert_held(&ctx1->lock);
3328 	lockdep_assert_held(&ctx2->lock);
3329 
3330 	/* Pinning disables the swap optimization */
3331 	if (ctx1->pin_count || ctx2->pin_count)
3332 		return 0;
3333 
3334 	/* If ctx1 is the parent of ctx2 */
3335 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3336 		return 1;
3337 
3338 	/* If ctx2 is the parent of ctx1 */
3339 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3340 		return 1;
3341 
3342 	/*
3343 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3344 	 * hierarchy, see perf_event_init_context().
3345 	 */
3346 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3347 			ctx1->parent_gen == ctx2->parent_gen)
3348 		return 1;
3349 
3350 	/* Unmatched */
3351 	return 0;
3352 }
3353 
3354 static void __perf_event_sync_stat(struct perf_event *event,
3355 				     struct perf_event *next_event)
3356 {
3357 	u64 value;
3358 
3359 	if (!event->attr.inherit_stat)
3360 		return;
3361 
3362 	/*
3363 	 * Update the event value, we cannot use perf_event_read()
3364 	 * because we're in the middle of a context switch and have IRQs
3365 	 * disabled, which upsets smp_call_function_single(), however
3366 	 * we know the event must be on the current CPU, therefore we
3367 	 * don't need to use it.
3368 	 */
3369 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3370 		event->pmu->read(event);
3371 
3372 	perf_event_update_time(event);
3373 
3374 	/*
3375 	 * In order to keep per-task stats reliable we need to flip the event
3376 	 * values when we flip the contexts.
3377 	 */
3378 	value = local64_read(&next_event->count);
3379 	value = local64_xchg(&event->count, value);
3380 	local64_set(&next_event->count, value);
3381 
3382 	swap(event->total_time_enabled, next_event->total_time_enabled);
3383 	swap(event->total_time_running, next_event->total_time_running);
3384 
3385 	/*
3386 	 * Since we swizzled the values, update the user visible data too.
3387 	 */
3388 	perf_event_update_userpage(event);
3389 	perf_event_update_userpage(next_event);
3390 }
3391 
3392 static void perf_event_sync_stat(struct perf_event_context *ctx,
3393 				   struct perf_event_context *next_ctx)
3394 {
3395 	struct perf_event *event, *next_event;
3396 
3397 	if (!ctx->nr_stat)
3398 		return;
3399 
3400 	update_context_time(ctx);
3401 
3402 	event = list_first_entry(&ctx->event_list,
3403 				   struct perf_event, event_entry);
3404 
3405 	next_event = list_first_entry(&next_ctx->event_list,
3406 					struct perf_event, event_entry);
3407 
3408 	while (&event->event_entry != &ctx->event_list &&
3409 	       &next_event->event_entry != &next_ctx->event_list) {
3410 
3411 		__perf_event_sync_stat(event, next_event);
3412 
3413 		event = list_next_entry(event, event_entry);
3414 		next_event = list_next_entry(next_event, event_entry);
3415 	}
3416 }
3417 
3418 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3419 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3420 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3421 	     !list_entry_is_head(pos1, head1, member) &&		\
3422 	     !list_entry_is_head(pos2, head2, member);			\
3423 	     pos1 = list_next_entry(pos1, member),			\
3424 	     pos2 = list_next_entry(pos2, member))
3425 
3426 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3427 					  struct perf_event_context *next_ctx)
3428 {
3429 	struct perf_event_pmu_context *prev_epc, *next_epc;
3430 
3431 	if (!prev_ctx->nr_task_data)
3432 		return;
3433 
3434 	double_list_for_each_entry(prev_epc, next_epc,
3435 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3436 				   pmu_ctx_entry) {
3437 
3438 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3439 			continue;
3440 
3441 		/*
3442 		 * PMU specific parts of task perf context can require
3443 		 * additional synchronization. As an example of such
3444 		 * synchronization see implementation details of Intel
3445 		 * LBR call stack data profiling;
3446 		 */
3447 		if (prev_epc->pmu->swap_task_ctx)
3448 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3449 		else
3450 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3451 	}
3452 }
3453 
3454 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3455 {
3456 	struct perf_event_pmu_context *pmu_ctx;
3457 	struct perf_cpu_pmu_context *cpc;
3458 
3459 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3460 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3461 
3462 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3463 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3464 	}
3465 }
3466 
3467 static void
3468 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3469 {
3470 	struct perf_event_context *ctx = task->perf_event_ctxp;
3471 	struct perf_event_context *next_ctx;
3472 	struct perf_event_context *parent, *next_parent;
3473 	int do_switch = 1;
3474 
3475 	if (likely(!ctx))
3476 		return;
3477 
3478 	rcu_read_lock();
3479 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3480 	if (!next_ctx)
3481 		goto unlock;
3482 
3483 	parent = rcu_dereference(ctx->parent_ctx);
3484 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3485 
3486 	/* If neither context have a parent context; they cannot be clones. */
3487 	if (!parent && !next_parent)
3488 		goto unlock;
3489 
3490 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3491 		/*
3492 		 * Looks like the two contexts are clones, so we might be
3493 		 * able to optimize the context switch.  We lock both
3494 		 * contexts and check that they are clones under the
3495 		 * lock (including re-checking that neither has been
3496 		 * uncloned in the meantime).  It doesn't matter which
3497 		 * order we take the locks because no other cpu could
3498 		 * be trying to lock both of these tasks.
3499 		 */
3500 		raw_spin_lock(&ctx->lock);
3501 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3502 		if (context_equiv(ctx, next_ctx)) {
3503 
3504 			perf_ctx_disable(ctx, false);
3505 
3506 			/* PMIs are disabled; ctx->nr_pending is stable. */
3507 			if (local_read(&ctx->nr_pending) ||
3508 			    local_read(&next_ctx->nr_pending)) {
3509 				/*
3510 				 * Must not swap out ctx when there's pending
3511 				 * events that rely on the ctx->task relation.
3512 				 */
3513 				raw_spin_unlock(&next_ctx->lock);
3514 				rcu_read_unlock();
3515 				goto inside_switch;
3516 			}
3517 
3518 			WRITE_ONCE(ctx->task, next);
3519 			WRITE_ONCE(next_ctx->task, task);
3520 
3521 			perf_ctx_sched_task_cb(ctx, false);
3522 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3523 
3524 			perf_ctx_enable(ctx, false);
3525 
3526 			/*
3527 			 * RCU_INIT_POINTER here is safe because we've not
3528 			 * modified the ctx and the above modification of
3529 			 * ctx->task and ctx->task_ctx_data are immaterial
3530 			 * since those values are always verified under
3531 			 * ctx->lock which we're now holding.
3532 			 */
3533 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3534 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3535 
3536 			do_switch = 0;
3537 
3538 			perf_event_sync_stat(ctx, next_ctx);
3539 		}
3540 		raw_spin_unlock(&next_ctx->lock);
3541 		raw_spin_unlock(&ctx->lock);
3542 	}
3543 unlock:
3544 	rcu_read_unlock();
3545 
3546 	if (do_switch) {
3547 		raw_spin_lock(&ctx->lock);
3548 		perf_ctx_disable(ctx, false);
3549 
3550 inside_switch:
3551 		perf_ctx_sched_task_cb(ctx, false);
3552 		task_ctx_sched_out(ctx, EVENT_ALL);
3553 
3554 		perf_ctx_enable(ctx, false);
3555 		raw_spin_unlock(&ctx->lock);
3556 	}
3557 }
3558 
3559 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3560 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3561 
3562 void perf_sched_cb_dec(struct pmu *pmu)
3563 {
3564 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3565 
3566 	this_cpu_dec(perf_sched_cb_usages);
3567 	barrier();
3568 
3569 	if (!--cpc->sched_cb_usage)
3570 		list_del(&cpc->sched_cb_entry);
3571 }
3572 
3573 
3574 void perf_sched_cb_inc(struct pmu *pmu)
3575 {
3576 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3577 
3578 	if (!cpc->sched_cb_usage++)
3579 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3580 
3581 	barrier();
3582 	this_cpu_inc(perf_sched_cb_usages);
3583 }
3584 
3585 /*
3586  * This function provides the context switch callback to the lower code
3587  * layer. It is invoked ONLY when the context switch callback is enabled.
3588  *
3589  * This callback is relevant even to per-cpu events; for example multi event
3590  * PEBS requires this to provide PID/TID information. This requires we flush
3591  * all queued PEBS records before we context switch to a new task.
3592  */
3593 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3594 {
3595 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3596 	struct pmu *pmu;
3597 
3598 	pmu = cpc->epc.pmu;
3599 
3600 	/* software PMUs will not have sched_task */
3601 	if (WARN_ON_ONCE(!pmu->sched_task))
3602 		return;
3603 
3604 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3605 	perf_pmu_disable(pmu);
3606 
3607 	pmu->sched_task(cpc->task_epc, sched_in);
3608 
3609 	perf_pmu_enable(pmu);
3610 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3611 }
3612 
3613 static void perf_pmu_sched_task(struct task_struct *prev,
3614 				struct task_struct *next,
3615 				bool sched_in)
3616 {
3617 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3618 	struct perf_cpu_pmu_context *cpc;
3619 
3620 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3621 	if (prev == next || cpuctx->task_ctx)
3622 		return;
3623 
3624 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3625 		__perf_pmu_sched_task(cpc, sched_in);
3626 }
3627 
3628 static void perf_event_switch(struct task_struct *task,
3629 			      struct task_struct *next_prev, bool sched_in);
3630 
3631 /*
3632  * Called from scheduler to remove the events of the current task,
3633  * with interrupts disabled.
3634  *
3635  * We stop each event and update the event value in event->count.
3636  *
3637  * This does not protect us against NMI, but disable()
3638  * sets the disabled bit in the control field of event _before_
3639  * accessing the event control register. If a NMI hits, then it will
3640  * not restart the event.
3641  */
3642 void __perf_event_task_sched_out(struct task_struct *task,
3643 				 struct task_struct *next)
3644 {
3645 	if (__this_cpu_read(perf_sched_cb_usages))
3646 		perf_pmu_sched_task(task, next, false);
3647 
3648 	if (atomic_read(&nr_switch_events))
3649 		perf_event_switch(task, next, false);
3650 
3651 	perf_event_context_sched_out(task, next);
3652 
3653 	/*
3654 	 * if cgroup events exist on this CPU, then we need
3655 	 * to check if we have to switch out PMU state.
3656 	 * cgroup event are system-wide mode only
3657 	 */
3658 	perf_cgroup_switch(next);
3659 }
3660 
3661 static bool perf_less_group_idx(const void *l, const void *r)
3662 {
3663 	const struct perf_event *le = *(const struct perf_event **)l;
3664 	const struct perf_event *re = *(const struct perf_event **)r;
3665 
3666 	return le->group_index < re->group_index;
3667 }
3668 
3669 static void swap_ptr(void *l, void *r)
3670 {
3671 	void **lp = l, **rp = r;
3672 
3673 	swap(*lp, *rp);
3674 }
3675 
3676 static const struct min_heap_callbacks perf_min_heap = {
3677 	.elem_size = sizeof(struct perf_event *),
3678 	.less = perf_less_group_idx,
3679 	.swp = swap_ptr,
3680 };
3681 
3682 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3683 {
3684 	struct perf_event **itrs = heap->data;
3685 
3686 	if (event) {
3687 		itrs[heap->nr] = event;
3688 		heap->nr++;
3689 	}
3690 }
3691 
3692 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3693 {
3694 	struct perf_cpu_pmu_context *cpc;
3695 
3696 	if (!pmu_ctx->ctx->task)
3697 		return;
3698 
3699 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3700 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3701 	cpc->task_epc = pmu_ctx;
3702 }
3703 
3704 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3705 				struct perf_event_groups *groups, int cpu,
3706 				struct pmu *pmu,
3707 				int (*func)(struct perf_event *, void *),
3708 				void *data)
3709 {
3710 #ifdef CONFIG_CGROUP_PERF
3711 	struct cgroup_subsys_state *css = NULL;
3712 #endif
3713 	struct perf_cpu_context *cpuctx = NULL;
3714 	/* Space for per CPU and/or any CPU event iterators. */
3715 	struct perf_event *itrs[2];
3716 	struct min_heap event_heap;
3717 	struct perf_event **evt;
3718 	int ret;
3719 
3720 	if (pmu->filter && pmu->filter(pmu, cpu))
3721 		return 0;
3722 
3723 	if (!ctx->task) {
3724 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3725 		event_heap = (struct min_heap){
3726 			.data = cpuctx->heap,
3727 			.nr = 0,
3728 			.size = cpuctx->heap_size,
3729 		};
3730 
3731 		lockdep_assert_held(&cpuctx->ctx.lock);
3732 
3733 #ifdef CONFIG_CGROUP_PERF
3734 		if (cpuctx->cgrp)
3735 			css = &cpuctx->cgrp->css;
3736 #endif
3737 	} else {
3738 		event_heap = (struct min_heap){
3739 			.data = itrs,
3740 			.nr = 0,
3741 			.size = ARRAY_SIZE(itrs),
3742 		};
3743 		/* Events not within a CPU context may be on any CPU. */
3744 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3745 	}
3746 	evt = event_heap.data;
3747 
3748 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3749 
3750 #ifdef CONFIG_CGROUP_PERF
3751 	for (; css; css = css->parent)
3752 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3753 #endif
3754 
3755 	if (event_heap.nr) {
3756 		__link_epc((*evt)->pmu_ctx);
3757 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3758 	}
3759 
3760 	min_heapify_all(&event_heap, &perf_min_heap);
3761 
3762 	while (event_heap.nr) {
3763 		ret = func(*evt, data);
3764 		if (ret)
3765 			return ret;
3766 
3767 		*evt = perf_event_groups_next(*evt, pmu);
3768 		if (*evt)
3769 			min_heapify(&event_heap, 0, &perf_min_heap);
3770 		else
3771 			min_heap_pop(&event_heap, &perf_min_heap);
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 /*
3778  * Because the userpage is strictly per-event (there is no concept of context,
3779  * so there cannot be a context indirection), every userpage must be updated
3780  * when context time starts :-(
3781  *
3782  * IOW, we must not miss EVENT_TIME edges.
3783  */
3784 static inline bool event_update_userpage(struct perf_event *event)
3785 {
3786 	if (likely(!atomic_read(&event->mmap_count)))
3787 		return false;
3788 
3789 	perf_event_update_time(event);
3790 	perf_event_update_userpage(event);
3791 
3792 	return true;
3793 }
3794 
3795 static inline void group_update_userpage(struct perf_event *group_event)
3796 {
3797 	struct perf_event *event;
3798 
3799 	if (!event_update_userpage(group_event))
3800 		return;
3801 
3802 	for_each_sibling_event(event, group_event)
3803 		event_update_userpage(event);
3804 }
3805 
3806 static int merge_sched_in(struct perf_event *event, void *data)
3807 {
3808 	struct perf_event_context *ctx = event->ctx;
3809 	int *can_add_hw = data;
3810 
3811 	if (event->state <= PERF_EVENT_STATE_OFF)
3812 		return 0;
3813 
3814 	if (!event_filter_match(event))
3815 		return 0;
3816 
3817 	if (group_can_go_on(event, *can_add_hw)) {
3818 		if (!group_sched_in(event, ctx))
3819 			list_add_tail(&event->active_list, get_event_list(event));
3820 	}
3821 
3822 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823 		*can_add_hw = 0;
3824 		if (event->attr.pinned) {
3825 			perf_cgroup_event_disable(event, ctx);
3826 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3827 		} else {
3828 			struct perf_cpu_pmu_context *cpc;
3829 
3830 			event->pmu_ctx->rotate_necessary = 1;
3831 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3832 			perf_mux_hrtimer_restart(cpc);
3833 			group_update_userpage(event);
3834 		}
3835 	}
3836 
3837 	return 0;
3838 }
3839 
3840 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3841 				struct perf_event_groups *groups,
3842 				struct pmu *pmu)
3843 {
3844 	int can_add_hw = 1;
3845 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3846 			   merge_sched_in, &can_add_hw);
3847 }
3848 
3849 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3850 				struct perf_event_groups *groups,
3851 				bool cgroup)
3852 {
3853 	struct perf_event_pmu_context *pmu_ctx;
3854 
3855 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3856 		if (cgroup && !pmu_ctx->nr_cgroups)
3857 			continue;
3858 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3859 	}
3860 }
3861 
3862 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3863 			       struct pmu *pmu)
3864 {
3865 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3866 }
3867 
3868 static void
3869 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3870 {
3871 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3872 	int is_active = ctx->is_active;
3873 	bool cgroup = event_type & EVENT_CGROUP;
3874 
3875 	event_type &= ~EVENT_CGROUP;
3876 
3877 	lockdep_assert_held(&ctx->lock);
3878 
3879 	if (likely(!ctx->nr_events))
3880 		return;
3881 
3882 	if (!(is_active & EVENT_TIME)) {
3883 		/* start ctx time */
3884 		__update_context_time(ctx, false);
3885 		perf_cgroup_set_timestamp(cpuctx);
3886 		/*
3887 		 * CPU-release for the below ->is_active store,
3888 		 * see __load_acquire() in perf_event_time_now()
3889 		 */
3890 		barrier();
3891 	}
3892 
3893 	ctx->is_active |= (event_type | EVENT_TIME);
3894 	if (ctx->task) {
3895 		if (!is_active)
3896 			cpuctx->task_ctx = ctx;
3897 		else
3898 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3899 	}
3900 
3901 	is_active ^= ctx->is_active; /* changed bits */
3902 
3903 	/*
3904 	 * First go through the list and put on any pinned groups
3905 	 * in order to give them the best chance of going on.
3906 	 */
3907 	if (is_active & EVENT_PINNED)
3908 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3909 
3910 	/* Then walk through the lower prio flexible groups */
3911 	if (is_active & EVENT_FLEXIBLE)
3912 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3913 }
3914 
3915 static void perf_event_context_sched_in(struct task_struct *task)
3916 {
3917 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3918 	struct perf_event_context *ctx;
3919 
3920 	rcu_read_lock();
3921 	ctx = rcu_dereference(task->perf_event_ctxp);
3922 	if (!ctx)
3923 		goto rcu_unlock;
3924 
3925 	if (cpuctx->task_ctx == ctx) {
3926 		perf_ctx_lock(cpuctx, ctx);
3927 		perf_ctx_disable(ctx, false);
3928 
3929 		perf_ctx_sched_task_cb(ctx, true);
3930 
3931 		perf_ctx_enable(ctx, false);
3932 		perf_ctx_unlock(cpuctx, ctx);
3933 		goto rcu_unlock;
3934 	}
3935 
3936 	perf_ctx_lock(cpuctx, ctx);
3937 	/*
3938 	 * We must check ctx->nr_events while holding ctx->lock, such
3939 	 * that we serialize against perf_install_in_context().
3940 	 */
3941 	if (!ctx->nr_events)
3942 		goto unlock;
3943 
3944 	perf_ctx_disable(ctx, false);
3945 	/*
3946 	 * We want to keep the following priority order:
3947 	 * cpu pinned (that don't need to move), task pinned,
3948 	 * cpu flexible, task flexible.
3949 	 *
3950 	 * However, if task's ctx is not carrying any pinned
3951 	 * events, no need to flip the cpuctx's events around.
3952 	 */
3953 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3954 		perf_ctx_disable(&cpuctx->ctx, false);
3955 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3956 	}
3957 
3958 	perf_event_sched_in(cpuctx, ctx);
3959 
3960 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3961 
3962 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3963 		perf_ctx_enable(&cpuctx->ctx, false);
3964 
3965 	perf_ctx_enable(ctx, false);
3966 
3967 unlock:
3968 	perf_ctx_unlock(cpuctx, ctx);
3969 rcu_unlock:
3970 	rcu_read_unlock();
3971 }
3972 
3973 /*
3974  * Called from scheduler to add the events of the current task
3975  * with interrupts disabled.
3976  *
3977  * We restore the event value and then enable it.
3978  *
3979  * This does not protect us against NMI, but enable()
3980  * sets the enabled bit in the control field of event _before_
3981  * accessing the event control register. If a NMI hits, then it will
3982  * keep the event running.
3983  */
3984 void __perf_event_task_sched_in(struct task_struct *prev,
3985 				struct task_struct *task)
3986 {
3987 	perf_event_context_sched_in(task);
3988 
3989 	if (atomic_read(&nr_switch_events))
3990 		perf_event_switch(task, prev, true);
3991 
3992 	if (__this_cpu_read(perf_sched_cb_usages))
3993 		perf_pmu_sched_task(prev, task, true);
3994 }
3995 
3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3997 {
3998 	u64 frequency = event->attr.sample_freq;
3999 	u64 sec = NSEC_PER_SEC;
4000 	u64 divisor, dividend;
4001 
4002 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4003 
4004 	count_fls = fls64(count);
4005 	nsec_fls = fls64(nsec);
4006 	frequency_fls = fls64(frequency);
4007 	sec_fls = 30;
4008 
4009 	/*
4010 	 * We got @count in @nsec, with a target of sample_freq HZ
4011 	 * the target period becomes:
4012 	 *
4013 	 *             @count * 10^9
4014 	 * period = -------------------
4015 	 *          @nsec * sample_freq
4016 	 *
4017 	 */
4018 
4019 	/*
4020 	 * Reduce accuracy by one bit such that @a and @b converge
4021 	 * to a similar magnitude.
4022 	 */
4023 #define REDUCE_FLS(a, b)		\
4024 do {					\
4025 	if (a##_fls > b##_fls) {	\
4026 		a >>= 1;		\
4027 		a##_fls--;		\
4028 	} else {			\
4029 		b >>= 1;		\
4030 		b##_fls--;		\
4031 	}				\
4032 } while (0)
4033 
4034 	/*
4035 	 * Reduce accuracy until either term fits in a u64, then proceed with
4036 	 * the other, so that finally we can do a u64/u64 division.
4037 	 */
4038 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4039 		REDUCE_FLS(nsec, frequency);
4040 		REDUCE_FLS(sec, count);
4041 	}
4042 
4043 	if (count_fls + sec_fls > 64) {
4044 		divisor = nsec * frequency;
4045 
4046 		while (count_fls + sec_fls > 64) {
4047 			REDUCE_FLS(count, sec);
4048 			divisor >>= 1;
4049 		}
4050 
4051 		dividend = count * sec;
4052 	} else {
4053 		dividend = count * sec;
4054 
4055 		while (nsec_fls + frequency_fls > 64) {
4056 			REDUCE_FLS(nsec, frequency);
4057 			dividend >>= 1;
4058 		}
4059 
4060 		divisor = nsec * frequency;
4061 	}
4062 
4063 	if (!divisor)
4064 		return dividend;
4065 
4066 	return div64_u64(dividend, divisor);
4067 }
4068 
4069 static DEFINE_PER_CPU(int, perf_throttled_count);
4070 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4071 
4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4073 {
4074 	struct hw_perf_event *hwc = &event->hw;
4075 	s64 period, sample_period;
4076 	s64 delta;
4077 
4078 	period = perf_calculate_period(event, nsec, count);
4079 
4080 	delta = (s64)(period - hwc->sample_period);
4081 	delta = (delta + 7) / 8; /* low pass filter */
4082 
4083 	sample_period = hwc->sample_period + delta;
4084 
4085 	if (!sample_period)
4086 		sample_period = 1;
4087 
4088 	hwc->sample_period = sample_period;
4089 
4090 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4091 		if (disable)
4092 			event->pmu->stop(event, PERF_EF_UPDATE);
4093 
4094 		local64_set(&hwc->period_left, 0);
4095 
4096 		if (disable)
4097 			event->pmu->start(event, PERF_EF_RELOAD);
4098 	}
4099 }
4100 
4101 /*
4102  * combine freq adjustment with unthrottling to avoid two passes over the
4103  * events. At the same time, make sure, having freq events does not change
4104  * the rate of unthrottling as that would introduce bias.
4105  */
4106 static void
4107 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4108 {
4109 	struct perf_event *event;
4110 	struct hw_perf_event *hwc;
4111 	u64 now, period = TICK_NSEC;
4112 	s64 delta;
4113 
4114 	/*
4115 	 * only need to iterate over all events iff:
4116 	 * - context have events in frequency mode (needs freq adjust)
4117 	 * - there are events to unthrottle on this cpu
4118 	 */
4119 	if (!(ctx->nr_freq || unthrottle))
4120 		return;
4121 
4122 	raw_spin_lock(&ctx->lock);
4123 
4124 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4125 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4126 			continue;
4127 
4128 		// XXX use visit thingy to avoid the -1,cpu match
4129 		if (!event_filter_match(event))
4130 			continue;
4131 
4132 		perf_pmu_disable(event->pmu);
4133 
4134 		hwc = &event->hw;
4135 
4136 		if (hwc->interrupts == MAX_INTERRUPTS) {
4137 			hwc->interrupts = 0;
4138 			perf_log_throttle(event, 1);
4139 			event->pmu->start(event, 0);
4140 		}
4141 
4142 		if (!event->attr.freq || !event->attr.sample_freq)
4143 			goto next;
4144 
4145 		/*
4146 		 * stop the event and update event->count
4147 		 */
4148 		event->pmu->stop(event, PERF_EF_UPDATE);
4149 
4150 		now = local64_read(&event->count);
4151 		delta = now - hwc->freq_count_stamp;
4152 		hwc->freq_count_stamp = now;
4153 
4154 		/*
4155 		 * restart the event
4156 		 * reload only if value has changed
4157 		 * we have stopped the event so tell that
4158 		 * to perf_adjust_period() to avoid stopping it
4159 		 * twice.
4160 		 */
4161 		if (delta > 0)
4162 			perf_adjust_period(event, period, delta, false);
4163 
4164 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4165 	next:
4166 		perf_pmu_enable(event->pmu);
4167 	}
4168 
4169 	raw_spin_unlock(&ctx->lock);
4170 }
4171 
4172 /*
4173  * Move @event to the tail of the @ctx's elegible events.
4174  */
4175 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4176 {
4177 	/*
4178 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4179 	 * disabled by the inheritance code.
4180 	 */
4181 	if (ctx->rotate_disable)
4182 		return;
4183 
4184 	perf_event_groups_delete(&ctx->flexible_groups, event);
4185 	perf_event_groups_insert(&ctx->flexible_groups, event);
4186 }
4187 
4188 /* pick an event from the flexible_groups to rotate */
4189 static inline struct perf_event *
4190 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4191 {
4192 	struct perf_event *event;
4193 	struct rb_node *node;
4194 	struct rb_root *tree;
4195 	struct __group_key key = {
4196 		.pmu = pmu_ctx->pmu,
4197 	};
4198 
4199 	/* pick the first active flexible event */
4200 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4201 					 struct perf_event, active_list);
4202 	if (event)
4203 		goto out;
4204 
4205 	/* if no active flexible event, pick the first event */
4206 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4207 
4208 	if (!pmu_ctx->ctx->task) {
4209 		key.cpu = smp_processor_id();
4210 
4211 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4212 		if (node)
4213 			event = __node_2_pe(node);
4214 		goto out;
4215 	}
4216 
4217 	key.cpu = -1;
4218 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4219 	if (node) {
4220 		event = __node_2_pe(node);
4221 		goto out;
4222 	}
4223 
4224 	key.cpu = smp_processor_id();
4225 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4226 	if (node)
4227 		event = __node_2_pe(node);
4228 
4229 out:
4230 	/*
4231 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4232 	 * finds there are unschedulable events, it will set it again.
4233 	 */
4234 	pmu_ctx->rotate_necessary = 0;
4235 
4236 	return event;
4237 }
4238 
4239 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4240 {
4241 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4242 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4243 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4244 	int cpu_rotate, task_rotate;
4245 	struct pmu *pmu;
4246 
4247 	/*
4248 	 * Since we run this from IRQ context, nobody can install new
4249 	 * events, thus the event count values are stable.
4250 	 */
4251 
4252 	cpu_epc = &cpc->epc;
4253 	pmu = cpu_epc->pmu;
4254 	task_epc = cpc->task_epc;
4255 
4256 	cpu_rotate = cpu_epc->rotate_necessary;
4257 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4258 
4259 	if (!(cpu_rotate || task_rotate))
4260 		return false;
4261 
4262 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4263 	perf_pmu_disable(pmu);
4264 
4265 	if (task_rotate)
4266 		task_event = ctx_event_to_rotate(task_epc);
4267 	if (cpu_rotate)
4268 		cpu_event = ctx_event_to_rotate(cpu_epc);
4269 
4270 	/*
4271 	 * As per the order given at ctx_resched() first 'pop' task flexible
4272 	 * and then, if needed CPU flexible.
4273 	 */
4274 	if (task_event || (task_epc && cpu_event)) {
4275 		update_context_time(task_epc->ctx);
4276 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4277 	}
4278 
4279 	if (cpu_event) {
4280 		update_context_time(&cpuctx->ctx);
4281 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4282 		rotate_ctx(&cpuctx->ctx, cpu_event);
4283 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4284 	}
4285 
4286 	if (task_event)
4287 		rotate_ctx(task_epc->ctx, task_event);
4288 
4289 	if (task_event || (task_epc && cpu_event))
4290 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4291 
4292 	perf_pmu_enable(pmu);
4293 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4294 
4295 	return true;
4296 }
4297 
4298 void perf_event_task_tick(void)
4299 {
4300 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4301 	struct perf_event_context *ctx;
4302 	int throttled;
4303 
4304 	lockdep_assert_irqs_disabled();
4305 
4306 	__this_cpu_inc(perf_throttled_seq);
4307 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4308 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4309 
4310 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4311 
4312 	rcu_read_lock();
4313 	ctx = rcu_dereference(current->perf_event_ctxp);
4314 	if (ctx)
4315 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4316 	rcu_read_unlock();
4317 }
4318 
4319 static int event_enable_on_exec(struct perf_event *event,
4320 				struct perf_event_context *ctx)
4321 {
4322 	if (!event->attr.enable_on_exec)
4323 		return 0;
4324 
4325 	event->attr.enable_on_exec = 0;
4326 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4327 		return 0;
4328 
4329 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4330 
4331 	return 1;
4332 }
4333 
4334 /*
4335  * Enable all of a task's events that have been marked enable-on-exec.
4336  * This expects task == current.
4337  */
4338 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4339 {
4340 	struct perf_event_context *clone_ctx = NULL;
4341 	enum event_type_t event_type = 0;
4342 	struct perf_cpu_context *cpuctx;
4343 	struct perf_event *event;
4344 	unsigned long flags;
4345 	int enabled = 0;
4346 
4347 	local_irq_save(flags);
4348 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4349 		goto out;
4350 
4351 	if (!ctx->nr_events)
4352 		goto out;
4353 
4354 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4355 	perf_ctx_lock(cpuctx, ctx);
4356 	ctx_sched_out(ctx, EVENT_TIME);
4357 
4358 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4359 		enabled |= event_enable_on_exec(event, ctx);
4360 		event_type |= get_event_type(event);
4361 	}
4362 
4363 	/*
4364 	 * Unclone and reschedule this context if we enabled any event.
4365 	 */
4366 	if (enabled) {
4367 		clone_ctx = unclone_ctx(ctx);
4368 		ctx_resched(cpuctx, ctx, event_type);
4369 	} else {
4370 		ctx_sched_in(ctx, EVENT_TIME);
4371 	}
4372 	perf_ctx_unlock(cpuctx, ctx);
4373 
4374 out:
4375 	local_irq_restore(flags);
4376 
4377 	if (clone_ctx)
4378 		put_ctx(clone_ctx);
4379 }
4380 
4381 static void perf_remove_from_owner(struct perf_event *event);
4382 static void perf_event_exit_event(struct perf_event *event,
4383 				  struct perf_event_context *ctx);
4384 
4385 /*
4386  * Removes all events from the current task that have been marked
4387  * remove-on-exec, and feeds their values back to parent events.
4388  */
4389 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4390 {
4391 	struct perf_event_context *clone_ctx = NULL;
4392 	struct perf_event *event, *next;
4393 	unsigned long flags;
4394 	bool modified = false;
4395 
4396 	mutex_lock(&ctx->mutex);
4397 
4398 	if (WARN_ON_ONCE(ctx->task != current))
4399 		goto unlock;
4400 
4401 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4402 		if (!event->attr.remove_on_exec)
4403 			continue;
4404 
4405 		if (!is_kernel_event(event))
4406 			perf_remove_from_owner(event);
4407 
4408 		modified = true;
4409 
4410 		perf_event_exit_event(event, ctx);
4411 	}
4412 
4413 	raw_spin_lock_irqsave(&ctx->lock, flags);
4414 	if (modified)
4415 		clone_ctx = unclone_ctx(ctx);
4416 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4417 
4418 unlock:
4419 	mutex_unlock(&ctx->mutex);
4420 
4421 	if (clone_ctx)
4422 		put_ctx(clone_ctx);
4423 }
4424 
4425 struct perf_read_data {
4426 	struct perf_event *event;
4427 	bool group;
4428 	int ret;
4429 };
4430 
4431 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4432 {
4433 	u16 local_pkg, event_pkg;
4434 
4435 	if ((unsigned)event_cpu >= nr_cpu_ids)
4436 		return event_cpu;
4437 
4438 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4439 		int local_cpu = smp_processor_id();
4440 
4441 		event_pkg = topology_physical_package_id(event_cpu);
4442 		local_pkg = topology_physical_package_id(local_cpu);
4443 
4444 		if (event_pkg == local_pkg)
4445 			return local_cpu;
4446 	}
4447 
4448 	return event_cpu;
4449 }
4450 
4451 /*
4452  * Cross CPU call to read the hardware event
4453  */
4454 static void __perf_event_read(void *info)
4455 {
4456 	struct perf_read_data *data = info;
4457 	struct perf_event *sub, *event = data->event;
4458 	struct perf_event_context *ctx = event->ctx;
4459 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4460 	struct pmu *pmu = event->pmu;
4461 
4462 	/*
4463 	 * If this is a task context, we need to check whether it is
4464 	 * the current task context of this cpu.  If not it has been
4465 	 * scheduled out before the smp call arrived.  In that case
4466 	 * event->count would have been updated to a recent sample
4467 	 * when the event was scheduled out.
4468 	 */
4469 	if (ctx->task && cpuctx->task_ctx != ctx)
4470 		return;
4471 
4472 	raw_spin_lock(&ctx->lock);
4473 	if (ctx->is_active & EVENT_TIME) {
4474 		update_context_time(ctx);
4475 		update_cgrp_time_from_event(event);
4476 	}
4477 
4478 	perf_event_update_time(event);
4479 	if (data->group)
4480 		perf_event_update_sibling_time(event);
4481 
4482 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4483 		goto unlock;
4484 
4485 	if (!data->group) {
4486 		pmu->read(event);
4487 		data->ret = 0;
4488 		goto unlock;
4489 	}
4490 
4491 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4492 
4493 	pmu->read(event);
4494 
4495 	for_each_sibling_event(sub, event) {
4496 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4497 			/*
4498 			 * Use sibling's PMU rather than @event's since
4499 			 * sibling could be on different (eg: software) PMU.
4500 			 */
4501 			sub->pmu->read(sub);
4502 		}
4503 	}
4504 
4505 	data->ret = pmu->commit_txn(pmu);
4506 
4507 unlock:
4508 	raw_spin_unlock(&ctx->lock);
4509 }
4510 
4511 static inline u64 perf_event_count(struct perf_event *event)
4512 {
4513 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4514 }
4515 
4516 static void calc_timer_values(struct perf_event *event,
4517 				u64 *now,
4518 				u64 *enabled,
4519 				u64 *running)
4520 {
4521 	u64 ctx_time;
4522 
4523 	*now = perf_clock();
4524 	ctx_time = perf_event_time_now(event, *now);
4525 	__perf_update_times(event, ctx_time, enabled, running);
4526 }
4527 
4528 /*
4529  * NMI-safe method to read a local event, that is an event that
4530  * is:
4531  *   - either for the current task, or for this CPU
4532  *   - does not have inherit set, for inherited task events
4533  *     will not be local and we cannot read them atomically
4534  *   - must not have a pmu::count method
4535  */
4536 int perf_event_read_local(struct perf_event *event, u64 *value,
4537 			  u64 *enabled, u64 *running)
4538 {
4539 	unsigned long flags;
4540 	int event_oncpu;
4541 	int event_cpu;
4542 	int ret = 0;
4543 
4544 	/*
4545 	 * Disabling interrupts avoids all counter scheduling (context
4546 	 * switches, timer based rotation and IPIs).
4547 	 */
4548 	local_irq_save(flags);
4549 
4550 	/*
4551 	 * It must not be an event with inherit set, we cannot read
4552 	 * all child counters from atomic context.
4553 	 */
4554 	if (event->attr.inherit) {
4555 		ret = -EOPNOTSUPP;
4556 		goto out;
4557 	}
4558 
4559 	/* If this is a per-task event, it must be for current */
4560 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4561 	    event->hw.target != current) {
4562 		ret = -EINVAL;
4563 		goto out;
4564 	}
4565 
4566 	/*
4567 	 * Get the event CPU numbers, and adjust them to local if the event is
4568 	 * a per-package event that can be read locally
4569 	 */
4570 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4571 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4572 
4573 	/* If this is a per-CPU event, it must be for this CPU */
4574 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4575 	    event_cpu != smp_processor_id()) {
4576 		ret = -EINVAL;
4577 		goto out;
4578 	}
4579 
4580 	/* If this is a pinned event it must be running on this CPU */
4581 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4582 		ret = -EBUSY;
4583 		goto out;
4584 	}
4585 
4586 	/*
4587 	 * If the event is currently on this CPU, its either a per-task event,
4588 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4589 	 * oncpu == -1).
4590 	 */
4591 	if (event_oncpu == smp_processor_id())
4592 		event->pmu->read(event);
4593 
4594 	*value = local64_read(&event->count);
4595 	if (enabled || running) {
4596 		u64 __enabled, __running, __now;
4597 
4598 		calc_timer_values(event, &__now, &__enabled, &__running);
4599 		if (enabled)
4600 			*enabled = __enabled;
4601 		if (running)
4602 			*running = __running;
4603 	}
4604 out:
4605 	local_irq_restore(flags);
4606 
4607 	return ret;
4608 }
4609 
4610 static int perf_event_read(struct perf_event *event, bool group)
4611 {
4612 	enum perf_event_state state = READ_ONCE(event->state);
4613 	int event_cpu, ret = 0;
4614 
4615 	/*
4616 	 * If event is enabled and currently active on a CPU, update the
4617 	 * value in the event structure:
4618 	 */
4619 again:
4620 	if (state == PERF_EVENT_STATE_ACTIVE) {
4621 		struct perf_read_data data;
4622 
4623 		/*
4624 		 * Orders the ->state and ->oncpu loads such that if we see
4625 		 * ACTIVE we must also see the right ->oncpu.
4626 		 *
4627 		 * Matches the smp_wmb() from event_sched_in().
4628 		 */
4629 		smp_rmb();
4630 
4631 		event_cpu = READ_ONCE(event->oncpu);
4632 		if ((unsigned)event_cpu >= nr_cpu_ids)
4633 			return 0;
4634 
4635 		data = (struct perf_read_data){
4636 			.event = event,
4637 			.group = group,
4638 			.ret = 0,
4639 		};
4640 
4641 		preempt_disable();
4642 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4643 
4644 		/*
4645 		 * Purposely ignore the smp_call_function_single() return
4646 		 * value.
4647 		 *
4648 		 * If event_cpu isn't a valid CPU it means the event got
4649 		 * scheduled out and that will have updated the event count.
4650 		 *
4651 		 * Therefore, either way, we'll have an up-to-date event count
4652 		 * after this.
4653 		 */
4654 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4655 		preempt_enable();
4656 		ret = data.ret;
4657 
4658 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4659 		struct perf_event_context *ctx = event->ctx;
4660 		unsigned long flags;
4661 
4662 		raw_spin_lock_irqsave(&ctx->lock, flags);
4663 		state = event->state;
4664 		if (state != PERF_EVENT_STATE_INACTIVE) {
4665 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4666 			goto again;
4667 		}
4668 
4669 		/*
4670 		 * May read while context is not active (e.g., thread is
4671 		 * blocked), in that case we cannot update context time
4672 		 */
4673 		if (ctx->is_active & EVENT_TIME) {
4674 			update_context_time(ctx);
4675 			update_cgrp_time_from_event(event);
4676 		}
4677 
4678 		perf_event_update_time(event);
4679 		if (group)
4680 			perf_event_update_sibling_time(event);
4681 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4682 	}
4683 
4684 	return ret;
4685 }
4686 
4687 /*
4688  * Initialize the perf_event context in a task_struct:
4689  */
4690 static void __perf_event_init_context(struct perf_event_context *ctx)
4691 {
4692 	raw_spin_lock_init(&ctx->lock);
4693 	mutex_init(&ctx->mutex);
4694 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4695 	perf_event_groups_init(&ctx->pinned_groups);
4696 	perf_event_groups_init(&ctx->flexible_groups);
4697 	INIT_LIST_HEAD(&ctx->event_list);
4698 	refcount_set(&ctx->refcount, 1);
4699 }
4700 
4701 static void
4702 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4703 {
4704 	epc->pmu = pmu;
4705 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4706 	INIT_LIST_HEAD(&epc->pinned_active);
4707 	INIT_LIST_HEAD(&epc->flexible_active);
4708 	atomic_set(&epc->refcount, 1);
4709 }
4710 
4711 static struct perf_event_context *
4712 alloc_perf_context(struct task_struct *task)
4713 {
4714 	struct perf_event_context *ctx;
4715 
4716 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4717 	if (!ctx)
4718 		return NULL;
4719 
4720 	__perf_event_init_context(ctx);
4721 	if (task)
4722 		ctx->task = get_task_struct(task);
4723 
4724 	return ctx;
4725 }
4726 
4727 static struct task_struct *
4728 find_lively_task_by_vpid(pid_t vpid)
4729 {
4730 	struct task_struct *task;
4731 
4732 	rcu_read_lock();
4733 	if (!vpid)
4734 		task = current;
4735 	else
4736 		task = find_task_by_vpid(vpid);
4737 	if (task)
4738 		get_task_struct(task);
4739 	rcu_read_unlock();
4740 
4741 	if (!task)
4742 		return ERR_PTR(-ESRCH);
4743 
4744 	return task;
4745 }
4746 
4747 /*
4748  * Returns a matching context with refcount and pincount.
4749  */
4750 static struct perf_event_context *
4751 find_get_context(struct task_struct *task, struct perf_event *event)
4752 {
4753 	struct perf_event_context *ctx, *clone_ctx = NULL;
4754 	struct perf_cpu_context *cpuctx;
4755 	unsigned long flags;
4756 	int err;
4757 
4758 	if (!task) {
4759 		/* Must be root to operate on a CPU event: */
4760 		err = perf_allow_cpu(&event->attr);
4761 		if (err)
4762 			return ERR_PTR(err);
4763 
4764 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4765 		ctx = &cpuctx->ctx;
4766 		get_ctx(ctx);
4767 		raw_spin_lock_irqsave(&ctx->lock, flags);
4768 		++ctx->pin_count;
4769 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4770 
4771 		return ctx;
4772 	}
4773 
4774 	err = -EINVAL;
4775 retry:
4776 	ctx = perf_lock_task_context(task, &flags);
4777 	if (ctx) {
4778 		clone_ctx = unclone_ctx(ctx);
4779 		++ctx->pin_count;
4780 
4781 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4782 
4783 		if (clone_ctx)
4784 			put_ctx(clone_ctx);
4785 	} else {
4786 		ctx = alloc_perf_context(task);
4787 		err = -ENOMEM;
4788 		if (!ctx)
4789 			goto errout;
4790 
4791 		err = 0;
4792 		mutex_lock(&task->perf_event_mutex);
4793 		/*
4794 		 * If it has already passed perf_event_exit_task().
4795 		 * we must see PF_EXITING, it takes this mutex too.
4796 		 */
4797 		if (task->flags & PF_EXITING)
4798 			err = -ESRCH;
4799 		else if (task->perf_event_ctxp)
4800 			err = -EAGAIN;
4801 		else {
4802 			get_ctx(ctx);
4803 			++ctx->pin_count;
4804 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4805 		}
4806 		mutex_unlock(&task->perf_event_mutex);
4807 
4808 		if (unlikely(err)) {
4809 			put_ctx(ctx);
4810 
4811 			if (err == -EAGAIN)
4812 				goto retry;
4813 			goto errout;
4814 		}
4815 	}
4816 
4817 	return ctx;
4818 
4819 errout:
4820 	return ERR_PTR(err);
4821 }
4822 
4823 static struct perf_event_pmu_context *
4824 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4825 		     struct perf_event *event)
4826 {
4827 	struct perf_event_pmu_context *new = NULL, *epc;
4828 	void *task_ctx_data = NULL;
4829 
4830 	if (!ctx->task) {
4831 		struct perf_cpu_pmu_context *cpc;
4832 
4833 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4834 		epc = &cpc->epc;
4835 		raw_spin_lock_irq(&ctx->lock);
4836 		if (!epc->ctx) {
4837 			atomic_set(&epc->refcount, 1);
4838 			epc->embedded = 1;
4839 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4840 			epc->ctx = ctx;
4841 		} else {
4842 			WARN_ON_ONCE(epc->ctx != ctx);
4843 			atomic_inc(&epc->refcount);
4844 		}
4845 		raw_spin_unlock_irq(&ctx->lock);
4846 		return epc;
4847 	}
4848 
4849 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4850 	if (!new)
4851 		return ERR_PTR(-ENOMEM);
4852 
4853 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4854 		task_ctx_data = alloc_task_ctx_data(pmu);
4855 		if (!task_ctx_data) {
4856 			kfree(new);
4857 			return ERR_PTR(-ENOMEM);
4858 		}
4859 	}
4860 
4861 	__perf_init_event_pmu_context(new, pmu);
4862 
4863 	/*
4864 	 * XXX
4865 	 *
4866 	 * lockdep_assert_held(&ctx->mutex);
4867 	 *
4868 	 * can't because perf_event_init_task() doesn't actually hold the
4869 	 * child_ctx->mutex.
4870 	 */
4871 
4872 	raw_spin_lock_irq(&ctx->lock);
4873 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4874 		if (epc->pmu == pmu) {
4875 			WARN_ON_ONCE(epc->ctx != ctx);
4876 			atomic_inc(&epc->refcount);
4877 			goto found_epc;
4878 		}
4879 	}
4880 
4881 	epc = new;
4882 	new = NULL;
4883 
4884 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4885 	epc->ctx = ctx;
4886 
4887 found_epc:
4888 	if (task_ctx_data && !epc->task_ctx_data) {
4889 		epc->task_ctx_data = task_ctx_data;
4890 		task_ctx_data = NULL;
4891 		ctx->nr_task_data++;
4892 	}
4893 	raw_spin_unlock_irq(&ctx->lock);
4894 
4895 	free_task_ctx_data(pmu, task_ctx_data);
4896 	kfree(new);
4897 
4898 	return epc;
4899 }
4900 
4901 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4902 {
4903 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4904 }
4905 
4906 static void free_epc_rcu(struct rcu_head *head)
4907 {
4908 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4909 
4910 	kfree(epc->task_ctx_data);
4911 	kfree(epc);
4912 }
4913 
4914 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4915 {
4916 	struct perf_event_context *ctx = epc->ctx;
4917 	unsigned long flags;
4918 
4919 	/*
4920 	 * XXX
4921 	 *
4922 	 * lockdep_assert_held(&ctx->mutex);
4923 	 *
4924 	 * can't because of the call-site in _free_event()/put_event()
4925 	 * which isn't always called under ctx->mutex.
4926 	 */
4927 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4928 		return;
4929 
4930 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4931 
4932 	list_del_init(&epc->pmu_ctx_entry);
4933 	epc->ctx = NULL;
4934 
4935 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4936 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4937 
4938 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4939 
4940 	if (epc->embedded)
4941 		return;
4942 
4943 	call_rcu(&epc->rcu_head, free_epc_rcu);
4944 }
4945 
4946 static void perf_event_free_filter(struct perf_event *event);
4947 
4948 static void free_event_rcu(struct rcu_head *head)
4949 {
4950 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4951 
4952 	if (event->ns)
4953 		put_pid_ns(event->ns);
4954 	perf_event_free_filter(event);
4955 	kmem_cache_free(perf_event_cache, event);
4956 }
4957 
4958 static void ring_buffer_attach(struct perf_event *event,
4959 			       struct perf_buffer *rb);
4960 
4961 static void detach_sb_event(struct perf_event *event)
4962 {
4963 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4964 
4965 	raw_spin_lock(&pel->lock);
4966 	list_del_rcu(&event->sb_list);
4967 	raw_spin_unlock(&pel->lock);
4968 }
4969 
4970 static bool is_sb_event(struct perf_event *event)
4971 {
4972 	struct perf_event_attr *attr = &event->attr;
4973 
4974 	if (event->parent)
4975 		return false;
4976 
4977 	if (event->attach_state & PERF_ATTACH_TASK)
4978 		return false;
4979 
4980 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4981 	    attr->comm || attr->comm_exec ||
4982 	    attr->task || attr->ksymbol ||
4983 	    attr->context_switch || attr->text_poke ||
4984 	    attr->bpf_event)
4985 		return true;
4986 	return false;
4987 }
4988 
4989 static void unaccount_pmu_sb_event(struct perf_event *event)
4990 {
4991 	if (is_sb_event(event))
4992 		detach_sb_event(event);
4993 }
4994 
4995 #ifdef CONFIG_NO_HZ_FULL
4996 static DEFINE_SPINLOCK(nr_freq_lock);
4997 #endif
4998 
4999 static void unaccount_freq_event_nohz(void)
5000 {
5001 #ifdef CONFIG_NO_HZ_FULL
5002 	spin_lock(&nr_freq_lock);
5003 	if (atomic_dec_and_test(&nr_freq_events))
5004 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5005 	spin_unlock(&nr_freq_lock);
5006 #endif
5007 }
5008 
5009 static void unaccount_freq_event(void)
5010 {
5011 	if (tick_nohz_full_enabled())
5012 		unaccount_freq_event_nohz();
5013 	else
5014 		atomic_dec(&nr_freq_events);
5015 }
5016 
5017 static void unaccount_event(struct perf_event *event)
5018 {
5019 	bool dec = false;
5020 
5021 	if (event->parent)
5022 		return;
5023 
5024 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5025 		dec = true;
5026 	if (event->attr.mmap || event->attr.mmap_data)
5027 		atomic_dec(&nr_mmap_events);
5028 	if (event->attr.build_id)
5029 		atomic_dec(&nr_build_id_events);
5030 	if (event->attr.comm)
5031 		atomic_dec(&nr_comm_events);
5032 	if (event->attr.namespaces)
5033 		atomic_dec(&nr_namespaces_events);
5034 	if (event->attr.cgroup)
5035 		atomic_dec(&nr_cgroup_events);
5036 	if (event->attr.task)
5037 		atomic_dec(&nr_task_events);
5038 	if (event->attr.freq)
5039 		unaccount_freq_event();
5040 	if (event->attr.context_switch) {
5041 		dec = true;
5042 		atomic_dec(&nr_switch_events);
5043 	}
5044 	if (is_cgroup_event(event))
5045 		dec = true;
5046 	if (has_branch_stack(event))
5047 		dec = true;
5048 	if (event->attr.ksymbol)
5049 		atomic_dec(&nr_ksymbol_events);
5050 	if (event->attr.bpf_event)
5051 		atomic_dec(&nr_bpf_events);
5052 	if (event->attr.text_poke)
5053 		atomic_dec(&nr_text_poke_events);
5054 
5055 	if (dec) {
5056 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5057 			schedule_delayed_work(&perf_sched_work, HZ);
5058 	}
5059 
5060 	unaccount_pmu_sb_event(event);
5061 }
5062 
5063 static void perf_sched_delayed(struct work_struct *work)
5064 {
5065 	mutex_lock(&perf_sched_mutex);
5066 	if (atomic_dec_and_test(&perf_sched_count))
5067 		static_branch_disable(&perf_sched_events);
5068 	mutex_unlock(&perf_sched_mutex);
5069 }
5070 
5071 /*
5072  * The following implement mutual exclusion of events on "exclusive" pmus
5073  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5074  * at a time, so we disallow creating events that might conflict, namely:
5075  *
5076  *  1) cpu-wide events in the presence of per-task events,
5077  *  2) per-task events in the presence of cpu-wide events,
5078  *  3) two matching events on the same perf_event_context.
5079  *
5080  * The former two cases are handled in the allocation path (perf_event_alloc(),
5081  * _free_event()), the latter -- before the first perf_install_in_context().
5082  */
5083 static int exclusive_event_init(struct perf_event *event)
5084 {
5085 	struct pmu *pmu = event->pmu;
5086 
5087 	if (!is_exclusive_pmu(pmu))
5088 		return 0;
5089 
5090 	/*
5091 	 * Prevent co-existence of per-task and cpu-wide events on the
5092 	 * same exclusive pmu.
5093 	 *
5094 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5095 	 * events on this "exclusive" pmu, positive means there are
5096 	 * per-task events.
5097 	 *
5098 	 * Since this is called in perf_event_alloc() path, event::ctx
5099 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5100 	 * to mean "per-task event", because unlike other attach states it
5101 	 * never gets cleared.
5102 	 */
5103 	if (event->attach_state & PERF_ATTACH_TASK) {
5104 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5105 			return -EBUSY;
5106 	} else {
5107 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5108 			return -EBUSY;
5109 	}
5110 
5111 	return 0;
5112 }
5113 
5114 static void exclusive_event_destroy(struct perf_event *event)
5115 {
5116 	struct pmu *pmu = event->pmu;
5117 
5118 	if (!is_exclusive_pmu(pmu))
5119 		return;
5120 
5121 	/* see comment in exclusive_event_init() */
5122 	if (event->attach_state & PERF_ATTACH_TASK)
5123 		atomic_dec(&pmu->exclusive_cnt);
5124 	else
5125 		atomic_inc(&pmu->exclusive_cnt);
5126 }
5127 
5128 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5129 {
5130 	if ((e1->pmu == e2->pmu) &&
5131 	    (e1->cpu == e2->cpu ||
5132 	     e1->cpu == -1 ||
5133 	     e2->cpu == -1))
5134 		return true;
5135 	return false;
5136 }
5137 
5138 static bool exclusive_event_installable(struct perf_event *event,
5139 					struct perf_event_context *ctx)
5140 {
5141 	struct perf_event *iter_event;
5142 	struct pmu *pmu = event->pmu;
5143 
5144 	lockdep_assert_held(&ctx->mutex);
5145 
5146 	if (!is_exclusive_pmu(pmu))
5147 		return true;
5148 
5149 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5150 		if (exclusive_event_match(iter_event, event))
5151 			return false;
5152 	}
5153 
5154 	return true;
5155 }
5156 
5157 static void perf_addr_filters_splice(struct perf_event *event,
5158 				       struct list_head *head);
5159 
5160 static void _free_event(struct perf_event *event)
5161 {
5162 	irq_work_sync(&event->pending_irq);
5163 
5164 	unaccount_event(event);
5165 
5166 	security_perf_event_free(event);
5167 
5168 	if (event->rb) {
5169 		/*
5170 		 * Can happen when we close an event with re-directed output.
5171 		 *
5172 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5173 		 * over us; possibly making our ring_buffer_put() the last.
5174 		 */
5175 		mutex_lock(&event->mmap_mutex);
5176 		ring_buffer_attach(event, NULL);
5177 		mutex_unlock(&event->mmap_mutex);
5178 	}
5179 
5180 	if (is_cgroup_event(event))
5181 		perf_detach_cgroup(event);
5182 
5183 	if (!event->parent) {
5184 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5185 			put_callchain_buffers();
5186 	}
5187 
5188 	perf_event_free_bpf_prog(event);
5189 	perf_addr_filters_splice(event, NULL);
5190 	kfree(event->addr_filter_ranges);
5191 
5192 	if (event->destroy)
5193 		event->destroy(event);
5194 
5195 	/*
5196 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5197 	 * hw.target.
5198 	 */
5199 	if (event->hw.target)
5200 		put_task_struct(event->hw.target);
5201 
5202 	if (event->pmu_ctx)
5203 		put_pmu_ctx(event->pmu_ctx);
5204 
5205 	/*
5206 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5207 	 * all task references must be cleaned up.
5208 	 */
5209 	if (event->ctx)
5210 		put_ctx(event->ctx);
5211 
5212 	exclusive_event_destroy(event);
5213 	module_put(event->pmu->module);
5214 
5215 	call_rcu(&event->rcu_head, free_event_rcu);
5216 }
5217 
5218 /*
5219  * Used to free events which have a known refcount of 1, such as in error paths
5220  * where the event isn't exposed yet and inherited events.
5221  */
5222 static void free_event(struct perf_event *event)
5223 {
5224 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5225 				"unexpected event refcount: %ld; ptr=%p\n",
5226 				atomic_long_read(&event->refcount), event)) {
5227 		/* leak to avoid use-after-free */
5228 		return;
5229 	}
5230 
5231 	_free_event(event);
5232 }
5233 
5234 /*
5235  * Remove user event from the owner task.
5236  */
5237 static void perf_remove_from_owner(struct perf_event *event)
5238 {
5239 	struct task_struct *owner;
5240 
5241 	rcu_read_lock();
5242 	/*
5243 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5244 	 * observe !owner it means the list deletion is complete and we can
5245 	 * indeed free this event, otherwise we need to serialize on
5246 	 * owner->perf_event_mutex.
5247 	 */
5248 	owner = READ_ONCE(event->owner);
5249 	if (owner) {
5250 		/*
5251 		 * Since delayed_put_task_struct() also drops the last
5252 		 * task reference we can safely take a new reference
5253 		 * while holding the rcu_read_lock().
5254 		 */
5255 		get_task_struct(owner);
5256 	}
5257 	rcu_read_unlock();
5258 
5259 	if (owner) {
5260 		/*
5261 		 * If we're here through perf_event_exit_task() we're already
5262 		 * holding ctx->mutex which would be an inversion wrt. the
5263 		 * normal lock order.
5264 		 *
5265 		 * However we can safely take this lock because its the child
5266 		 * ctx->mutex.
5267 		 */
5268 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5269 
5270 		/*
5271 		 * We have to re-check the event->owner field, if it is cleared
5272 		 * we raced with perf_event_exit_task(), acquiring the mutex
5273 		 * ensured they're done, and we can proceed with freeing the
5274 		 * event.
5275 		 */
5276 		if (event->owner) {
5277 			list_del_init(&event->owner_entry);
5278 			smp_store_release(&event->owner, NULL);
5279 		}
5280 		mutex_unlock(&owner->perf_event_mutex);
5281 		put_task_struct(owner);
5282 	}
5283 }
5284 
5285 static void put_event(struct perf_event *event)
5286 {
5287 	if (!atomic_long_dec_and_test(&event->refcount))
5288 		return;
5289 
5290 	_free_event(event);
5291 }
5292 
5293 /*
5294  * Kill an event dead; while event:refcount will preserve the event
5295  * object, it will not preserve its functionality. Once the last 'user'
5296  * gives up the object, we'll destroy the thing.
5297  */
5298 int perf_event_release_kernel(struct perf_event *event)
5299 {
5300 	struct perf_event_context *ctx = event->ctx;
5301 	struct perf_event *child, *tmp;
5302 	LIST_HEAD(free_list);
5303 
5304 	/*
5305 	 * If we got here through err_alloc: free_event(event); we will not
5306 	 * have attached to a context yet.
5307 	 */
5308 	if (!ctx) {
5309 		WARN_ON_ONCE(event->attach_state &
5310 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5311 		goto no_ctx;
5312 	}
5313 
5314 	if (!is_kernel_event(event))
5315 		perf_remove_from_owner(event);
5316 
5317 	ctx = perf_event_ctx_lock(event);
5318 	WARN_ON_ONCE(ctx->parent_ctx);
5319 
5320 	/*
5321 	 * Mark this event as STATE_DEAD, there is no external reference to it
5322 	 * anymore.
5323 	 *
5324 	 * Anybody acquiring event->child_mutex after the below loop _must_
5325 	 * also see this, most importantly inherit_event() which will avoid
5326 	 * placing more children on the list.
5327 	 *
5328 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5329 	 * child events.
5330 	 */
5331 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5332 
5333 	perf_event_ctx_unlock(event, ctx);
5334 
5335 again:
5336 	mutex_lock(&event->child_mutex);
5337 	list_for_each_entry(child, &event->child_list, child_list) {
5338 
5339 		/*
5340 		 * Cannot change, child events are not migrated, see the
5341 		 * comment with perf_event_ctx_lock_nested().
5342 		 */
5343 		ctx = READ_ONCE(child->ctx);
5344 		/*
5345 		 * Since child_mutex nests inside ctx::mutex, we must jump
5346 		 * through hoops. We start by grabbing a reference on the ctx.
5347 		 *
5348 		 * Since the event cannot get freed while we hold the
5349 		 * child_mutex, the context must also exist and have a !0
5350 		 * reference count.
5351 		 */
5352 		get_ctx(ctx);
5353 
5354 		/*
5355 		 * Now that we have a ctx ref, we can drop child_mutex, and
5356 		 * acquire ctx::mutex without fear of it going away. Then we
5357 		 * can re-acquire child_mutex.
5358 		 */
5359 		mutex_unlock(&event->child_mutex);
5360 		mutex_lock(&ctx->mutex);
5361 		mutex_lock(&event->child_mutex);
5362 
5363 		/*
5364 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5365 		 * state, if child is still the first entry, it didn't get freed
5366 		 * and we can continue doing so.
5367 		 */
5368 		tmp = list_first_entry_or_null(&event->child_list,
5369 					       struct perf_event, child_list);
5370 		if (tmp == child) {
5371 			perf_remove_from_context(child, DETACH_GROUP);
5372 			list_move(&child->child_list, &free_list);
5373 			/*
5374 			 * This matches the refcount bump in inherit_event();
5375 			 * this can't be the last reference.
5376 			 */
5377 			put_event(event);
5378 		}
5379 
5380 		mutex_unlock(&event->child_mutex);
5381 		mutex_unlock(&ctx->mutex);
5382 		put_ctx(ctx);
5383 		goto again;
5384 	}
5385 	mutex_unlock(&event->child_mutex);
5386 
5387 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5388 		void *var = &child->ctx->refcount;
5389 
5390 		list_del(&child->child_list);
5391 		free_event(child);
5392 
5393 		/*
5394 		 * Wake any perf_event_free_task() waiting for this event to be
5395 		 * freed.
5396 		 */
5397 		smp_mb(); /* pairs with wait_var_event() */
5398 		wake_up_var(var);
5399 	}
5400 
5401 no_ctx:
5402 	put_event(event); /* Must be the 'last' reference */
5403 	return 0;
5404 }
5405 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5406 
5407 /*
5408  * Called when the last reference to the file is gone.
5409  */
5410 static int perf_release(struct inode *inode, struct file *file)
5411 {
5412 	perf_event_release_kernel(file->private_data);
5413 	return 0;
5414 }
5415 
5416 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5417 {
5418 	struct perf_event *child;
5419 	u64 total = 0;
5420 
5421 	*enabled = 0;
5422 	*running = 0;
5423 
5424 	mutex_lock(&event->child_mutex);
5425 
5426 	(void)perf_event_read(event, false);
5427 	total += perf_event_count(event);
5428 
5429 	*enabled += event->total_time_enabled +
5430 			atomic64_read(&event->child_total_time_enabled);
5431 	*running += event->total_time_running +
5432 			atomic64_read(&event->child_total_time_running);
5433 
5434 	list_for_each_entry(child, &event->child_list, child_list) {
5435 		(void)perf_event_read(child, false);
5436 		total += perf_event_count(child);
5437 		*enabled += child->total_time_enabled;
5438 		*running += child->total_time_running;
5439 	}
5440 	mutex_unlock(&event->child_mutex);
5441 
5442 	return total;
5443 }
5444 
5445 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5446 {
5447 	struct perf_event_context *ctx;
5448 	u64 count;
5449 
5450 	ctx = perf_event_ctx_lock(event);
5451 	count = __perf_event_read_value(event, enabled, running);
5452 	perf_event_ctx_unlock(event, ctx);
5453 
5454 	return count;
5455 }
5456 EXPORT_SYMBOL_GPL(perf_event_read_value);
5457 
5458 static int __perf_read_group_add(struct perf_event *leader,
5459 					u64 read_format, u64 *values)
5460 {
5461 	struct perf_event_context *ctx = leader->ctx;
5462 	struct perf_event *sub, *parent;
5463 	unsigned long flags;
5464 	int n = 1; /* skip @nr */
5465 	int ret;
5466 
5467 	ret = perf_event_read(leader, true);
5468 	if (ret)
5469 		return ret;
5470 
5471 	raw_spin_lock_irqsave(&ctx->lock, flags);
5472 	/*
5473 	 * Verify the grouping between the parent and child (inherited)
5474 	 * events is still in tact.
5475 	 *
5476 	 * Specifically:
5477 	 *  - leader->ctx->lock pins leader->sibling_list
5478 	 *  - parent->child_mutex pins parent->child_list
5479 	 *  - parent->ctx->mutex pins parent->sibling_list
5480 	 *
5481 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5482 	 * ctx->mutex), group destruction is not atomic between children, also
5483 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5484 	 * group.
5485 	 *
5486 	 * Therefore it is possible to have parent and child groups in a
5487 	 * different configuration and summing over such a beast makes no sense
5488 	 * what so ever.
5489 	 *
5490 	 * Reject this.
5491 	 */
5492 	parent = leader->parent;
5493 	if (parent &&
5494 	    (parent->group_generation != leader->group_generation ||
5495 	     parent->nr_siblings != leader->nr_siblings)) {
5496 		ret = -ECHILD;
5497 		goto unlock;
5498 	}
5499 
5500 	/*
5501 	 * Since we co-schedule groups, {enabled,running} times of siblings
5502 	 * will be identical to those of the leader, so we only publish one
5503 	 * set.
5504 	 */
5505 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5506 		values[n++] += leader->total_time_enabled +
5507 			atomic64_read(&leader->child_total_time_enabled);
5508 	}
5509 
5510 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5511 		values[n++] += leader->total_time_running +
5512 			atomic64_read(&leader->child_total_time_running);
5513 	}
5514 
5515 	/*
5516 	 * Write {count,id} tuples for every sibling.
5517 	 */
5518 	values[n++] += perf_event_count(leader);
5519 	if (read_format & PERF_FORMAT_ID)
5520 		values[n++] = primary_event_id(leader);
5521 	if (read_format & PERF_FORMAT_LOST)
5522 		values[n++] = atomic64_read(&leader->lost_samples);
5523 
5524 	for_each_sibling_event(sub, leader) {
5525 		values[n++] += perf_event_count(sub);
5526 		if (read_format & PERF_FORMAT_ID)
5527 			values[n++] = primary_event_id(sub);
5528 		if (read_format & PERF_FORMAT_LOST)
5529 			values[n++] = atomic64_read(&sub->lost_samples);
5530 	}
5531 
5532 unlock:
5533 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5534 	return ret;
5535 }
5536 
5537 static int perf_read_group(struct perf_event *event,
5538 				   u64 read_format, char __user *buf)
5539 {
5540 	struct perf_event *leader = event->group_leader, *child;
5541 	struct perf_event_context *ctx = leader->ctx;
5542 	int ret;
5543 	u64 *values;
5544 
5545 	lockdep_assert_held(&ctx->mutex);
5546 
5547 	values = kzalloc(event->read_size, GFP_KERNEL);
5548 	if (!values)
5549 		return -ENOMEM;
5550 
5551 	values[0] = 1 + leader->nr_siblings;
5552 
5553 	mutex_lock(&leader->child_mutex);
5554 
5555 	ret = __perf_read_group_add(leader, read_format, values);
5556 	if (ret)
5557 		goto unlock;
5558 
5559 	list_for_each_entry(child, &leader->child_list, child_list) {
5560 		ret = __perf_read_group_add(child, read_format, values);
5561 		if (ret)
5562 			goto unlock;
5563 	}
5564 
5565 	mutex_unlock(&leader->child_mutex);
5566 
5567 	ret = event->read_size;
5568 	if (copy_to_user(buf, values, event->read_size))
5569 		ret = -EFAULT;
5570 	goto out;
5571 
5572 unlock:
5573 	mutex_unlock(&leader->child_mutex);
5574 out:
5575 	kfree(values);
5576 	return ret;
5577 }
5578 
5579 static int perf_read_one(struct perf_event *event,
5580 				 u64 read_format, char __user *buf)
5581 {
5582 	u64 enabled, running;
5583 	u64 values[5];
5584 	int n = 0;
5585 
5586 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5587 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5588 		values[n++] = enabled;
5589 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5590 		values[n++] = running;
5591 	if (read_format & PERF_FORMAT_ID)
5592 		values[n++] = primary_event_id(event);
5593 	if (read_format & PERF_FORMAT_LOST)
5594 		values[n++] = atomic64_read(&event->lost_samples);
5595 
5596 	if (copy_to_user(buf, values, n * sizeof(u64)))
5597 		return -EFAULT;
5598 
5599 	return n * sizeof(u64);
5600 }
5601 
5602 static bool is_event_hup(struct perf_event *event)
5603 {
5604 	bool no_children;
5605 
5606 	if (event->state > PERF_EVENT_STATE_EXIT)
5607 		return false;
5608 
5609 	mutex_lock(&event->child_mutex);
5610 	no_children = list_empty(&event->child_list);
5611 	mutex_unlock(&event->child_mutex);
5612 	return no_children;
5613 }
5614 
5615 /*
5616  * Read the performance event - simple non blocking version for now
5617  */
5618 static ssize_t
5619 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5620 {
5621 	u64 read_format = event->attr.read_format;
5622 	int ret;
5623 
5624 	/*
5625 	 * Return end-of-file for a read on an event that is in
5626 	 * error state (i.e. because it was pinned but it couldn't be
5627 	 * scheduled on to the CPU at some point).
5628 	 */
5629 	if (event->state == PERF_EVENT_STATE_ERROR)
5630 		return 0;
5631 
5632 	if (count < event->read_size)
5633 		return -ENOSPC;
5634 
5635 	WARN_ON_ONCE(event->ctx->parent_ctx);
5636 	if (read_format & PERF_FORMAT_GROUP)
5637 		ret = perf_read_group(event, read_format, buf);
5638 	else
5639 		ret = perf_read_one(event, read_format, buf);
5640 
5641 	return ret;
5642 }
5643 
5644 static ssize_t
5645 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5646 {
5647 	struct perf_event *event = file->private_data;
5648 	struct perf_event_context *ctx;
5649 	int ret;
5650 
5651 	ret = security_perf_event_read(event);
5652 	if (ret)
5653 		return ret;
5654 
5655 	ctx = perf_event_ctx_lock(event);
5656 	ret = __perf_read(event, buf, count);
5657 	perf_event_ctx_unlock(event, ctx);
5658 
5659 	return ret;
5660 }
5661 
5662 static __poll_t perf_poll(struct file *file, poll_table *wait)
5663 {
5664 	struct perf_event *event = file->private_data;
5665 	struct perf_buffer *rb;
5666 	__poll_t events = EPOLLHUP;
5667 
5668 	poll_wait(file, &event->waitq, wait);
5669 
5670 	if (is_event_hup(event))
5671 		return events;
5672 
5673 	/*
5674 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5675 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5676 	 */
5677 	mutex_lock(&event->mmap_mutex);
5678 	rb = event->rb;
5679 	if (rb)
5680 		events = atomic_xchg(&rb->poll, 0);
5681 	mutex_unlock(&event->mmap_mutex);
5682 	return events;
5683 }
5684 
5685 static void _perf_event_reset(struct perf_event *event)
5686 {
5687 	(void)perf_event_read(event, false);
5688 	local64_set(&event->count, 0);
5689 	perf_event_update_userpage(event);
5690 }
5691 
5692 /* Assume it's not an event with inherit set. */
5693 u64 perf_event_pause(struct perf_event *event, bool reset)
5694 {
5695 	struct perf_event_context *ctx;
5696 	u64 count;
5697 
5698 	ctx = perf_event_ctx_lock(event);
5699 	WARN_ON_ONCE(event->attr.inherit);
5700 	_perf_event_disable(event);
5701 	count = local64_read(&event->count);
5702 	if (reset)
5703 		local64_set(&event->count, 0);
5704 	perf_event_ctx_unlock(event, ctx);
5705 
5706 	return count;
5707 }
5708 EXPORT_SYMBOL_GPL(perf_event_pause);
5709 
5710 /*
5711  * Holding the top-level event's child_mutex means that any
5712  * descendant process that has inherited this event will block
5713  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5714  * task existence requirements of perf_event_enable/disable.
5715  */
5716 static void perf_event_for_each_child(struct perf_event *event,
5717 					void (*func)(struct perf_event *))
5718 {
5719 	struct perf_event *child;
5720 
5721 	WARN_ON_ONCE(event->ctx->parent_ctx);
5722 
5723 	mutex_lock(&event->child_mutex);
5724 	func(event);
5725 	list_for_each_entry(child, &event->child_list, child_list)
5726 		func(child);
5727 	mutex_unlock(&event->child_mutex);
5728 }
5729 
5730 static void perf_event_for_each(struct perf_event *event,
5731 				  void (*func)(struct perf_event *))
5732 {
5733 	struct perf_event_context *ctx = event->ctx;
5734 	struct perf_event *sibling;
5735 
5736 	lockdep_assert_held(&ctx->mutex);
5737 
5738 	event = event->group_leader;
5739 
5740 	perf_event_for_each_child(event, func);
5741 	for_each_sibling_event(sibling, event)
5742 		perf_event_for_each_child(sibling, func);
5743 }
5744 
5745 static void __perf_event_period(struct perf_event *event,
5746 				struct perf_cpu_context *cpuctx,
5747 				struct perf_event_context *ctx,
5748 				void *info)
5749 {
5750 	u64 value = *((u64 *)info);
5751 	bool active;
5752 
5753 	if (event->attr.freq) {
5754 		event->attr.sample_freq = value;
5755 	} else {
5756 		event->attr.sample_period = value;
5757 		event->hw.sample_period = value;
5758 	}
5759 
5760 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5761 	if (active) {
5762 		perf_pmu_disable(event->pmu);
5763 		/*
5764 		 * We could be throttled; unthrottle now to avoid the tick
5765 		 * trying to unthrottle while we already re-started the event.
5766 		 */
5767 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5768 			event->hw.interrupts = 0;
5769 			perf_log_throttle(event, 1);
5770 		}
5771 		event->pmu->stop(event, PERF_EF_UPDATE);
5772 	}
5773 
5774 	local64_set(&event->hw.period_left, 0);
5775 
5776 	if (active) {
5777 		event->pmu->start(event, PERF_EF_RELOAD);
5778 		perf_pmu_enable(event->pmu);
5779 	}
5780 }
5781 
5782 static int perf_event_check_period(struct perf_event *event, u64 value)
5783 {
5784 	return event->pmu->check_period(event, value);
5785 }
5786 
5787 static int _perf_event_period(struct perf_event *event, u64 value)
5788 {
5789 	if (!is_sampling_event(event))
5790 		return -EINVAL;
5791 
5792 	if (!value)
5793 		return -EINVAL;
5794 
5795 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5796 		return -EINVAL;
5797 
5798 	if (perf_event_check_period(event, value))
5799 		return -EINVAL;
5800 
5801 	if (!event->attr.freq && (value & (1ULL << 63)))
5802 		return -EINVAL;
5803 
5804 	event_function_call(event, __perf_event_period, &value);
5805 
5806 	return 0;
5807 }
5808 
5809 int perf_event_period(struct perf_event *event, u64 value)
5810 {
5811 	struct perf_event_context *ctx;
5812 	int ret;
5813 
5814 	ctx = perf_event_ctx_lock(event);
5815 	ret = _perf_event_period(event, value);
5816 	perf_event_ctx_unlock(event, ctx);
5817 
5818 	return ret;
5819 }
5820 EXPORT_SYMBOL_GPL(perf_event_period);
5821 
5822 static const struct file_operations perf_fops;
5823 
5824 static inline int perf_fget_light(int fd, struct fd *p)
5825 {
5826 	struct fd f = fdget(fd);
5827 	if (!f.file)
5828 		return -EBADF;
5829 
5830 	if (f.file->f_op != &perf_fops) {
5831 		fdput(f);
5832 		return -EBADF;
5833 	}
5834 	*p = f;
5835 	return 0;
5836 }
5837 
5838 static int perf_event_set_output(struct perf_event *event,
5839 				 struct perf_event *output_event);
5840 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5841 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5842 			  struct perf_event_attr *attr);
5843 
5844 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5845 {
5846 	void (*func)(struct perf_event *);
5847 	u32 flags = arg;
5848 
5849 	switch (cmd) {
5850 	case PERF_EVENT_IOC_ENABLE:
5851 		func = _perf_event_enable;
5852 		break;
5853 	case PERF_EVENT_IOC_DISABLE:
5854 		func = _perf_event_disable;
5855 		break;
5856 	case PERF_EVENT_IOC_RESET:
5857 		func = _perf_event_reset;
5858 		break;
5859 
5860 	case PERF_EVENT_IOC_REFRESH:
5861 		return _perf_event_refresh(event, arg);
5862 
5863 	case PERF_EVENT_IOC_PERIOD:
5864 	{
5865 		u64 value;
5866 
5867 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5868 			return -EFAULT;
5869 
5870 		return _perf_event_period(event, value);
5871 	}
5872 	case PERF_EVENT_IOC_ID:
5873 	{
5874 		u64 id = primary_event_id(event);
5875 
5876 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5877 			return -EFAULT;
5878 		return 0;
5879 	}
5880 
5881 	case PERF_EVENT_IOC_SET_OUTPUT:
5882 	{
5883 		int ret;
5884 		if (arg != -1) {
5885 			struct perf_event *output_event;
5886 			struct fd output;
5887 			ret = perf_fget_light(arg, &output);
5888 			if (ret)
5889 				return ret;
5890 			output_event = output.file->private_data;
5891 			ret = perf_event_set_output(event, output_event);
5892 			fdput(output);
5893 		} else {
5894 			ret = perf_event_set_output(event, NULL);
5895 		}
5896 		return ret;
5897 	}
5898 
5899 	case PERF_EVENT_IOC_SET_FILTER:
5900 		return perf_event_set_filter(event, (void __user *)arg);
5901 
5902 	case PERF_EVENT_IOC_SET_BPF:
5903 	{
5904 		struct bpf_prog *prog;
5905 		int err;
5906 
5907 		prog = bpf_prog_get(arg);
5908 		if (IS_ERR(prog))
5909 			return PTR_ERR(prog);
5910 
5911 		err = perf_event_set_bpf_prog(event, prog, 0);
5912 		if (err) {
5913 			bpf_prog_put(prog);
5914 			return err;
5915 		}
5916 
5917 		return 0;
5918 	}
5919 
5920 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5921 		struct perf_buffer *rb;
5922 
5923 		rcu_read_lock();
5924 		rb = rcu_dereference(event->rb);
5925 		if (!rb || !rb->nr_pages) {
5926 			rcu_read_unlock();
5927 			return -EINVAL;
5928 		}
5929 		rb_toggle_paused(rb, !!arg);
5930 		rcu_read_unlock();
5931 		return 0;
5932 	}
5933 
5934 	case PERF_EVENT_IOC_QUERY_BPF:
5935 		return perf_event_query_prog_array(event, (void __user *)arg);
5936 
5937 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5938 		struct perf_event_attr new_attr;
5939 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5940 					 &new_attr);
5941 
5942 		if (err)
5943 			return err;
5944 
5945 		return perf_event_modify_attr(event,  &new_attr);
5946 	}
5947 	default:
5948 		return -ENOTTY;
5949 	}
5950 
5951 	if (flags & PERF_IOC_FLAG_GROUP)
5952 		perf_event_for_each(event, func);
5953 	else
5954 		perf_event_for_each_child(event, func);
5955 
5956 	return 0;
5957 }
5958 
5959 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5960 {
5961 	struct perf_event *event = file->private_data;
5962 	struct perf_event_context *ctx;
5963 	long ret;
5964 
5965 	/* Treat ioctl like writes as it is likely a mutating operation. */
5966 	ret = security_perf_event_write(event);
5967 	if (ret)
5968 		return ret;
5969 
5970 	ctx = perf_event_ctx_lock(event);
5971 	ret = _perf_ioctl(event, cmd, arg);
5972 	perf_event_ctx_unlock(event, ctx);
5973 
5974 	return ret;
5975 }
5976 
5977 #ifdef CONFIG_COMPAT
5978 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5979 				unsigned long arg)
5980 {
5981 	switch (_IOC_NR(cmd)) {
5982 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5983 	case _IOC_NR(PERF_EVENT_IOC_ID):
5984 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5985 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5986 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5987 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5988 			cmd &= ~IOCSIZE_MASK;
5989 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5990 		}
5991 		break;
5992 	}
5993 	return perf_ioctl(file, cmd, arg);
5994 }
5995 #else
5996 # define perf_compat_ioctl NULL
5997 #endif
5998 
5999 int perf_event_task_enable(void)
6000 {
6001 	struct perf_event_context *ctx;
6002 	struct perf_event *event;
6003 
6004 	mutex_lock(&current->perf_event_mutex);
6005 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6006 		ctx = perf_event_ctx_lock(event);
6007 		perf_event_for_each_child(event, _perf_event_enable);
6008 		perf_event_ctx_unlock(event, ctx);
6009 	}
6010 	mutex_unlock(&current->perf_event_mutex);
6011 
6012 	return 0;
6013 }
6014 
6015 int perf_event_task_disable(void)
6016 {
6017 	struct perf_event_context *ctx;
6018 	struct perf_event *event;
6019 
6020 	mutex_lock(&current->perf_event_mutex);
6021 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6022 		ctx = perf_event_ctx_lock(event);
6023 		perf_event_for_each_child(event, _perf_event_disable);
6024 		perf_event_ctx_unlock(event, ctx);
6025 	}
6026 	mutex_unlock(&current->perf_event_mutex);
6027 
6028 	return 0;
6029 }
6030 
6031 static int perf_event_index(struct perf_event *event)
6032 {
6033 	if (event->hw.state & PERF_HES_STOPPED)
6034 		return 0;
6035 
6036 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6037 		return 0;
6038 
6039 	return event->pmu->event_idx(event);
6040 }
6041 
6042 static void perf_event_init_userpage(struct perf_event *event)
6043 {
6044 	struct perf_event_mmap_page *userpg;
6045 	struct perf_buffer *rb;
6046 
6047 	rcu_read_lock();
6048 	rb = rcu_dereference(event->rb);
6049 	if (!rb)
6050 		goto unlock;
6051 
6052 	userpg = rb->user_page;
6053 
6054 	/* Allow new userspace to detect that bit 0 is deprecated */
6055 	userpg->cap_bit0_is_deprecated = 1;
6056 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6057 	userpg->data_offset = PAGE_SIZE;
6058 	userpg->data_size = perf_data_size(rb);
6059 
6060 unlock:
6061 	rcu_read_unlock();
6062 }
6063 
6064 void __weak arch_perf_update_userpage(
6065 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6066 {
6067 }
6068 
6069 /*
6070  * Callers need to ensure there can be no nesting of this function, otherwise
6071  * the seqlock logic goes bad. We can not serialize this because the arch
6072  * code calls this from NMI context.
6073  */
6074 void perf_event_update_userpage(struct perf_event *event)
6075 {
6076 	struct perf_event_mmap_page *userpg;
6077 	struct perf_buffer *rb;
6078 	u64 enabled, running, now;
6079 
6080 	rcu_read_lock();
6081 	rb = rcu_dereference(event->rb);
6082 	if (!rb)
6083 		goto unlock;
6084 
6085 	/*
6086 	 * compute total_time_enabled, total_time_running
6087 	 * based on snapshot values taken when the event
6088 	 * was last scheduled in.
6089 	 *
6090 	 * we cannot simply called update_context_time()
6091 	 * because of locking issue as we can be called in
6092 	 * NMI context
6093 	 */
6094 	calc_timer_values(event, &now, &enabled, &running);
6095 
6096 	userpg = rb->user_page;
6097 	/*
6098 	 * Disable preemption to guarantee consistent time stamps are stored to
6099 	 * the user page.
6100 	 */
6101 	preempt_disable();
6102 	++userpg->lock;
6103 	barrier();
6104 	userpg->index = perf_event_index(event);
6105 	userpg->offset = perf_event_count(event);
6106 	if (userpg->index)
6107 		userpg->offset -= local64_read(&event->hw.prev_count);
6108 
6109 	userpg->time_enabled = enabled +
6110 			atomic64_read(&event->child_total_time_enabled);
6111 
6112 	userpg->time_running = running +
6113 			atomic64_read(&event->child_total_time_running);
6114 
6115 	arch_perf_update_userpage(event, userpg, now);
6116 
6117 	barrier();
6118 	++userpg->lock;
6119 	preempt_enable();
6120 unlock:
6121 	rcu_read_unlock();
6122 }
6123 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6124 
6125 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6126 {
6127 	struct perf_event *event = vmf->vma->vm_file->private_data;
6128 	struct perf_buffer *rb;
6129 	vm_fault_t ret = VM_FAULT_SIGBUS;
6130 
6131 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6132 		if (vmf->pgoff == 0)
6133 			ret = 0;
6134 		return ret;
6135 	}
6136 
6137 	rcu_read_lock();
6138 	rb = rcu_dereference(event->rb);
6139 	if (!rb)
6140 		goto unlock;
6141 
6142 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6143 		goto unlock;
6144 
6145 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6146 	if (!vmf->page)
6147 		goto unlock;
6148 
6149 	get_page(vmf->page);
6150 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6151 	vmf->page->index   = vmf->pgoff;
6152 
6153 	ret = 0;
6154 unlock:
6155 	rcu_read_unlock();
6156 
6157 	return ret;
6158 }
6159 
6160 static void ring_buffer_attach(struct perf_event *event,
6161 			       struct perf_buffer *rb)
6162 {
6163 	struct perf_buffer *old_rb = NULL;
6164 	unsigned long flags;
6165 
6166 	WARN_ON_ONCE(event->parent);
6167 
6168 	if (event->rb) {
6169 		/*
6170 		 * Should be impossible, we set this when removing
6171 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6172 		 */
6173 		WARN_ON_ONCE(event->rcu_pending);
6174 
6175 		old_rb = event->rb;
6176 		spin_lock_irqsave(&old_rb->event_lock, flags);
6177 		list_del_rcu(&event->rb_entry);
6178 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6179 
6180 		event->rcu_batches = get_state_synchronize_rcu();
6181 		event->rcu_pending = 1;
6182 	}
6183 
6184 	if (rb) {
6185 		if (event->rcu_pending) {
6186 			cond_synchronize_rcu(event->rcu_batches);
6187 			event->rcu_pending = 0;
6188 		}
6189 
6190 		spin_lock_irqsave(&rb->event_lock, flags);
6191 		list_add_rcu(&event->rb_entry, &rb->event_list);
6192 		spin_unlock_irqrestore(&rb->event_lock, flags);
6193 	}
6194 
6195 	/*
6196 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6197 	 * before swizzling the event::rb pointer; if it's getting
6198 	 * unmapped, its aux_mmap_count will be 0 and it won't
6199 	 * restart. See the comment in __perf_pmu_output_stop().
6200 	 *
6201 	 * Data will inevitably be lost when set_output is done in
6202 	 * mid-air, but then again, whoever does it like this is
6203 	 * not in for the data anyway.
6204 	 */
6205 	if (has_aux(event))
6206 		perf_event_stop(event, 0);
6207 
6208 	rcu_assign_pointer(event->rb, rb);
6209 
6210 	if (old_rb) {
6211 		ring_buffer_put(old_rb);
6212 		/*
6213 		 * Since we detached before setting the new rb, so that we
6214 		 * could attach the new rb, we could have missed a wakeup.
6215 		 * Provide it now.
6216 		 */
6217 		wake_up_all(&event->waitq);
6218 	}
6219 }
6220 
6221 static void ring_buffer_wakeup(struct perf_event *event)
6222 {
6223 	struct perf_buffer *rb;
6224 
6225 	if (event->parent)
6226 		event = event->parent;
6227 
6228 	rcu_read_lock();
6229 	rb = rcu_dereference(event->rb);
6230 	if (rb) {
6231 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6232 			wake_up_all(&event->waitq);
6233 	}
6234 	rcu_read_unlock();
6235 }
6236 
6237 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6238 {
6239 	struct perf_buffer *rb;
6240 
6241 	if (event->parent)
6242 		event = event->parent;
6243 
6244 	rcu_read_lock();
6245 	rb = rcu_dereference(event->rb);
6246 	if (rb) {
6247 		if (!refcount_inc_not_zero(&rb->refcount))
6248 			rb = NULL;
6249 	}
6250 	rcu_read_unlock();
6251 
6252 	return rb;
6253 }
6254 
6255 void ring_buffer_put(struct perf_buffer *rb)
6256 {
6257 	if (!refcount_dec_and_test(&rb->refcount))
6258 		return;
6259 
6260 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6261 
6262 	call_rcu(&rb->rcu_head, rb_free_rcu);
6263 }
6264 
6265 static void perf_mmap_open(struct vm_area_struct *vma)
6266 {
6267 	struct perf_event *event = vma->vm_file->private_data;
6268 
6269 	atomic_inc(&event->mmap_count);
6270 	atomic_inc(&event->rb->mmap_count);
6271 
6272 	if (vma->vm_pgoff)
6273 		atomic_inc(&event->rb->aux_mmap_count);
6274 
6275 	if (event->pmu->event_mapped)
6276 		event->pmu->event_mapped(event, vma->vm_mm);
6277 }
6278 
6279 static void perf_pmu_output_stop(struct perf_event *event);
6280 
6281 /*
6282  * A buffer can be mmap()ed multiple times; either directly through the same
6283  * event, or through other events by use of perf_event_set_output().
6284  *
6285  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6286  * the buffer here, where we still have a VM context. This means we need
6287  * to detach all events redirecting to us.
6288  */
6289 static void perf_mmap_close(struct vm_area_struct *vma)
6290 {
6291 	struct perf_event *event = vma->vm_file->private_data;
6292 	struct perf_buffer *rb = ring_buffer_get(event);
6293 	struct user_struct *mmap_user = rb->mmap_user;
6294 	int mmap_locked = rb->mmap_locked;
6295 	unsigned long size = perf_data_size(rb);
6296 	bool detach_rest = false;
6297 
6298 	if (event->pmu->event_unmapped)
6299 		event->pmu->event_unmapped(event, vma->vm_mm);
6300 
6301 	/*
6302 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6303 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6304 	 * serialize with perf_mmap here.
6305 	 */
6306 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6307 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6308 		/*
6309 		 * Stop all AUX events that are writing to this buffer,
6310 		 * so that we can free its AUX pages and corresponding PMU
6311 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6312 		 * they won't start any more (see perf_aux_output_begin()).
6313 		 */
6314 		perf_pmu_output_stop(event);
6315 
6316 		/* now it's safe to free the pages */
6317 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6318 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6319 
6320 		/* this has to be the last one */
6321 		rb_free_aux(rb);
6322 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6323 
6324 		mutex_unlock(&event->mmap_mutex);
6325 	}
6326 
6327 	if (atomic_dec_and_test(&rb->mmap_count))
6328 		detach_rest = true;
6329 
6330 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6331 		goto out_put;
6332 
6333 	ring_buffer_attach(event, NULL);
6334 	mutex_unlock(&event->mmap_mutex);
6335 
6336 	/* If there's still other mmap()s of this buffer, we're done. */
6337 	if (!detach_rest)
6338 		goto out_put;
6339 
6340 	/*
6341 	 * No other mmap()s, detach from all other events that might redirect
6342 	 * into the now unreachable buffer. Somewhat complicated by the
6343 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6344 	 */
6345 again:
6346 	rcu_read_lock();
6347 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6348 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6349 			/*
6350 			 * This event is en-route to free_event() which will
6351 			 * detach it and remove it from the list.
6352 			 */
6353 			continue;
6354 		}
6355 		rcu_read_unlock();
6356 
6357 		mutex_lock(&event->mmap_mutex);
6358 		/*
6359 		 * Check we didn't race with perf_event_set_output() which can
6360 		 * swizzle the rb from under us while we were waiting to
6361 		 * acquire mmap_mutex.
6362 		 *
6363 		 * If we find a different rb; ignore this event, a next
6364 		 * iteration will no longer find it on the list. We have to
6365 		 * still restart the iteration to make sure we're not now
6366 		 * iterating the wrong list.
6367 		 */
6368 		if (event->rb == rb)
6369 			ring_buffer_attach(event, NULL);
6370 
6371 		mutex_unlock(&event->mmap_mutex);
6372 		put_event(event);
6373 
6374 		/*
6375 		 * Restart the iteration; either we're on the wrong list or
6376 		 * destroyed its integrity by doing a deletion.
6377 		 */
6378 		goto again;
6379 	}
6380 	rcu_read_unlock();
6381 
6382 	/*
6383 	 * It could be there's still a few 0-ref events on the list; they'll
6384 	 * get cleaned up by free_event() -- they'll also still have their
6385 	 * ref on the rb and will free it whenever they are done with it.
6386 	 *
6387 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6388 	 * undo the VM accounting.
6389 	 */
6390 
6391 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6392 			&mmap_user->locked_vm);
6393 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6394 	free_uid(mmap_user);
6395 
6396 out_put:
6397 	ring_buffer_put(rb); /* could be last */
6398 }
6399 
6400 static const struct vm_operations_struct perf_mmap_vmops = {
6401 	.open		= perf_mmap_open,
6402 	.close		= perf_mmap_close, /* non mergeable */
6403 	.fault		= perf_mmap_fault,
6404 	.page_mkwrite	= perf_mmap_fault,
6405 };
6406 
6407 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6408 {
6409 	struct perf_event *event = file->private_data;
6410 	unsigned long user_locked, user_lock_limit;
6411 	struct user_struct *user = current_user();
6412 	struct perf_buffer *rb = NULL;
6413 	unsigned long locked, lock_limit;
6414 	unsigned long vma_size;
6415 	unsigned long nr_pages;
6416 	long user_extra = 0, extra = 0;
6417 	int ret = 0, flags = 0;
6418 
6419 	/*
6420 	 * Don't allow mmap() of inherited per-task counters. This would
6421 	 * create a performance issue due to all children writing to the
6422 	 * same rb.
6423 	 */
6424 	if (event->cpu == -1 && event->attr.inherit)
6425 		return -EINVAL;
6426 
6427 	if (!(vma->vm_flags & VM_SHARED))
6428 		return -EINVAL;
6429 
6430 	ret = security_perf_event_read(event);
6431 	if (ret)
6432 		return ret;
6433 
6434 	vma_size = vma->vm_end - vma->vm_start;
6435 
6436 	if (vma->vm_pgoff == 0) {
6437 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6438 	} else {
6439 		/*
6440 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6441 		 * mapped, all subsequent mappings should have the same size
6442 		 * and offset. Must be above the normal perf buffer.
6443 		 */
6444 		u64 aux_offset, aux_size;
6445 
6446 		if (!event->rb)
6447 			return -EINVAL;
6448 
6449 		nr_pages = vma_size / PAGE_SIZE;
6450 
6451 		mutex_lock(&event->mmap_mutex);
6452 		ret = -EINVAL;
6453 
6454 		rb = event->rb;
6455 		if (!rb)
6456 			goto aux_unlock;
6457 
6458 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6459 		aux_size = READ_ONCE(rb->user_page->aux_size);
6460 
6461 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6462 			goto aux_unlock;
6463 
6464 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6465 			goto aux_unlock;
6466 
6467 		/* already mapped with a different offset */
6468 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6469 			goto aux_unlock;
6470 
6471 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6472 			goto aux_unlock;
6473 
6474 		/* already mapped with a different size */
6475 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6476 			goto aux_unlock;
6477 
6478 		if (!is_power_of_2(nr_pages))
6479 			goto aux_unlock;
6480 
6481 		if (!atomic_inc_not_zero(&rb->mmap_count))
6482 			goto aux_unlock;
6483 
6484 		if (rb_has_aux(rb)) {
6485 			atomic_inc(&rb->aux_mmap_count);
6486 			ret = 0;
6487 			goto unlock;
6488 		}
6489 
6490 		atomic_set(&rb->aux_mmap_count, 1);
6491 		user_extra = nr_pages;
6492 
6493 		goto accounting;
6494 	}
6495 
6496 	/*
6497 	 * If we have rb pages ensure they're a power-of-two number, so we
6498 	 * can do bitmasks instead of modulo.
6499 	 */
6500 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6501 		return -EINVAL;
6502 
6503 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6504 		return -EINVAL;
6505 
6506 	WARN_ON_ONCE(event->ctx->parent_ctx);
6507 again:
6508 	mutex_lock(&event->mmap_mutex);
6509 	if (event->rb) {
6510 		if (data_page_nr(event->rb) != nr_pages) {
6511 			ret = -EINVAL;
6512 			goto unlock;
6513 		}
6514 
6515 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6516 			/*
6517 			 * Raced against perf_mmap_close(); remove the
6518 			 * event and try again.
6519 			 */
6520 			ring_buffer_attach(event, NULL);
6521 			mutex_unlock(&event->mmap_mutex);
6522 			goto again;
6523 		}
6524 
6525 		goto unlock;
6526 	}
6527 
6528 	user_extra = nr_pages + 1;
6529 
6530 accounting:
6531 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6532 
6533 	/*
6534 	 * Increase the limit linearly with more CPUs:
6535 	 */
6536 	user_lock_limit *= num_online_cpus();
6537 
6538 	user_locked = atomic_long_read(&user->locked_vm);
6539 
6540 	/*
6541 	 * sysctl_perf_event_mlock may have changed, so that
6542 	 *     user->locked_vm > user_lock_limit
6543 	 */
6544 	if (user_locked > user_lock_limit)
6545 		user_locked = user_lock_limit;
6546 	user_locked += user_extra;
6547 
6548 	if (user_locked > user_lock_limit) {
6549 		/*
6550 		 * charge locked_vm until it hits user_lock_limit;
6551 		 * charge the rest from pinned_vm
6552 		 */
6553 		extra = user_locked - user_lock_limit;
6554 		user_extra -= extra;
6555 	}
6556 
6557 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6558 	lock_limit >>= PAGE_SHIFT;
6559 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6560 
6561 	if ((locked > lock_limit) && perf_is_paranoid() &&
6562 		!capable(CAP_IPC_LOCK)) {
6563 		ret = -EPERM;
6564 		goto unlock;
6565 	}
6566 
6567 	WARN_ON(!rb && event->rb);
6568 
6569 	if (vma->vm_flags & VM_WRITE)
6570 		flags |= RING_BUFFER_WRITABLE;
6571 
6572 	if (!rb) {
6573 		rb = rb_alloc(nr_pages,
6574 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6575 			      event->cpu, flags);
6576 
6577 		if (!rb) {
6578 			ret = -ENOMEM;
6579 			goto unlock;
6580 		}
6581 
6582 		atomic_set(&rb->mmap_count, 1);
6583 		rb->mmap_user = get_current_user();
6584 		rb->mmap_locked = extra;
6585 
6586 		ring_buffer_attach(event, rb);
6587 
6588 		perf_event_update_time(event);
6589 		perf_event_init_userpage(event);
6590 		perf_event_update_userpage(event);
6591 	} else {
6592 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6593 				   event->attr.aux_watermark, flags);
6594 		if (!ret)
6595 			rb->aux_mmap_locked = extra;
6596 	}
6597 
6598 unlock:
6599 	if (!ret) {
6600 		atomic_long_add(user_extra, &user->locked_vm);
6601 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6602 
6603 		atomic_inc(&event->mmap_count);
6604 	} else if (rb) {
6605 		atomic_dec(&rb->mmap_count);
6606 	}
6607 aux_unlock:
6608 	mutex_unlock(&event->mmap_mutex);
6609 
6610 	/*
6611 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6612 	 * vma.
6613 	 */
6614 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6615 	vma->vm_ops = &perf_mmap_vmops;
6616 
6617 	if (event->pmu->event_mapped)
6618 		event->pmu->event_mapped(event, vma->vm_mm);
6619 
6620 	return ret;
6621 }
6622 
6623 static int perf_fasync(int fd, struct file *filp, int on)
6624 {
6625 	struct inode *inode = file_inode(filp);
6626 	struct perf_event *event = filp->private_data;
6627 	int retval;
6628 
6629 	inode_lock(inode);
6630 	retval = fasync_helper(fd, filp, on, &event->fasync);
6631 	inode_unlock(inode);
6632 
6633 	if (retval < 0)
6634 		return retval;
6635 
6636 	return 0;
6637 }
6638 
6639 static const struct file_operations perf_fops = {
6640 	.llseek			= no_llseek,
6641 	.release		= perf_release,
6642 	.read			= perf_read,
6643 	.poll			= perf_poll,
6644 	.unlocked_ioctl		= perf_ioctl,
6645 	.compat_ioctl		= perf_compat_ioctl,
6646 	.mmap			= perf_mmap,
6647 	.fasync			= perf_fasync,
6648 };
6649 
6650 /*
6651  * Perf event wakeup
6652  *
6653  * If there's data, ensure we set the poll() state and publish everything
6654  * to user-space before waking everybody up.
6655  */
6656 
6657 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6658 {
6659 	/* only the parent has fasync state */
6660 	if (event->parent)
6661 		event = event->parent;
6662 	return &event->fasync;
6663 }
6664 
6665 void perf_event_wakeup(struct perf_event *event)
6666 {
6667 	ring_buffer_wakeup(event);
6668 
6669 	if (event->pending_kill) {
6670 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6671 		event->pending_kill = 0;
6672 	}
6673 }
6674 
6675 static void perf_sigtrap(struct perf_event *event)
6676 {
6677 	/*
6678 	 * We'd expect this to only occur if the irq_work is delayed and either
6679 	 * ctx->task or current has changed in the meantime. This can be the
6680 	 * case on architectures that do not implement arch_irq_work_raise().
6681 	 */
6682 	if (WARN_ON_ONCE(event->ctx->task != current))
6683 		return;
6684 
6685 	/*
6686 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6687 	 * task exiting.
6688 	 */
6689 	if (current->flags & PF_EXITING)
6690 		return;
6691 
6692 	send_sig_perf((void __user *)event->pending_addr,
6693 		      event->orig_type, event->attr.sig_data);
6694 }
6695 
6696 /*
6697  * Deliver the pending work in-event-context or follow the context.
6698  */
6699 static void __perf_pending_irq(struct perf_event *event)
6700 {
6701 	int cpu = READ_ONCE(event->oncpu);
6702 
6703 	/*
6704 	 * If the event isn't running; we done. event_sched_out() will have
6705 	 * taken care of things.
6706 	 */
6707 	if (cpu < 0)
6708 		return;
6709 
6710 	/*
6711 	 * Yay, we hit home and are in the context of the event.
6712 	 */
6713 	if (cpu == smp_processor_id()) {
6714 		if (event->pending_sigtrap) {
6715 			event->pending_sigtrap = 0;
6716 			perf_sigtrap(event);
6717 			local_dec(&event->ctx->nr_pending);
6718 		}
6719 		if (event->pending_disable) {
6720 			event->pending_disable = 0;
6721 			perf_event_disable_local(event);
6722 		}
6723 		return;
6724 	}
6725 
6726 	/*
6727 	 *  CPU-A			CPU-B
6728 	 *
6729 	 *  perf_event_disable_inatomic()
6730 	 *    @pending_disable = CPU-A;
6731 	 *    irq_work_queue();
6732 	 *
6733 	 *  sched-out
6734 	 *    @pending_disable = -1;
6735 	 *
6736 	 *				sched-in
6737 	 *				perf_event_disable_inatomic()
6738 	 *				  @pending_disable = CPU-B;
6739 	 *				  irq_work_queue(); // FAILS
6740 	 *
6741 	 *  irq_work_run()
6742 	 *    perf_pending_irq()
6743 	 *
6744 	 * But the event runs on CPU-B and wants disabling there.
6745 	 */
6746 	irq_work_queue_on(&event->pending_irq, cpu);
6747 }
6748 
6749 static void perf_pending_irq(struct irq_work *entry)
6750 {
6751 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6752 	int rctx;
6753 
6754 	/*
6755 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6756 	 * and we won't recurse 'further'.
6757 	 */
6758 	rctx = perf_swevent_get_recursion_context();
6759 
6760 	/*
6761 	 * The wakeup isn't bound to the context of the event -- it can happen
6762 	 * irrespective of where the event is.
6763 	 */
6764 	if (event->pending_wakeup) {
6765 		event->pending_wakeup = 0;
6766 		perf_event_wakeup(event);
6767 	}
6768 
6769 	__perf_pending_irq(event);
6770 
6771 	if (rctx >= 0)
6772 		perf_swevent_put_recursion_context(rctx);
6773 }
6774 
6775 static void perf_pending_task(struct callback_head *head)
6776 {
6777 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6778 	int rctx;
6779 
6780 	/*
6781 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6782 	 * and we won't recurse 'further'.
6783 	 */
6784 	preempt_disable_notrace();
6785 	rctx = perf_swevent_get_recursion_context();
6786 
6787 	if (event->pending_work) {
6788 		event->pending_work = 0;
6789 		perf_sigtrap(event);
6790 		local_dec(&event->ctx->nr_pending);
6791 	}
6792 
6793 	if (rctx >= 0)
6794 		perf_swevent_put_recursion_context(rctx);
6795 	preempt_enable_notrace();
6796 
6797 	put_event(event);
6798 }
6799 
6800 #ifdef CONFIG_GUEST_PERF_EVENTS
6801 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6802 
6803 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6804 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6805 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6806 
6807 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6808 {
6809 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6810 		return;
6811 
6812 	rcu_assign_pointer(perf_guest_cbs, cbs);
6813 	static_call_update(__perf_guest_state, cbs->state);
6814 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6815 
6816 	/* Implementing ->handle_intel_pt_intr is optional. */
6817 	if (cbs->handle_intel_pt_intr)
6818 		static_call_update(__perf_guest_handle_intel_pt_intr,
6819 				   cbs->handle_intel_pt_intr);
6820 }
6821 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6822 
6823 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6824 {
6825 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6826 		return;
6827 
6828 	rcu_assign_pointer(perf_guest_cbs, NULL);
6829 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6830 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6831 	static_call_update(__perf_guest_handle_intel_pt_intr,
6832 			   (void *)&__static_call_return0);
6833 	synchronize_rcu();
6834 }
6835 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6836 #endif
6837 
6838 static void
6839 perf_output_sample_regs(struct perf_output_handle *handle,
6840 			struct pt_regs *regs, u64 mask)
6841 {
6842 	int bit;
6843 	DECLARE_BITMAP(_mask, 64);
6844 
6845 	bitmap_from_u64(_mask, mask);
6846 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6847 		u64 val;
6848 
6849 		val = perf_reg_value(regs, bit);
6850 		perf_output_put(handle, val);
6851 	}
6852 }
6853 
6854 static void perf_sample_regs_user(struct perf_regs *regs_user,
6855 				  struct pt_regs *regs)
6856 {
6857 	if (user_mode(regs)) {
6858 		regs_user->abi = perf_reg_abi(current);
6859 		regs_user->regs = regs;
6860 	} else if (!(current->flags & PF_KTHREAD)) {
6861 		perf_get_regs_user(regs_user, regs);
6862 	} else {
6863 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6864 		regs_user->regs = NULL;
6865 	}
6866 }
6867 
6868 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6869 				  struct pt_regs *regs)
6870 {
6871 	regs_intr->regs = regs;
6872 	regs_intr->abi  = perf_reg_abi(current);
6873 }
6874 
6875 
6876 /*
6877  * Get remaining task size from user stack pointer.
6878  *
6879  * It'd be better to take stack vma map and limit this more
6880  * precisely, but there's no way to get it safely under interrupt,
6881  * so using TASK_SIZE as limit.
6882  */
6883 static u64 perf_ustack_task_size(struct pt_regs *regs)
6884 {
6885 	unsigned long addr = perf_user_stack_pointer(regs);
6886 
6887 	if (!addr || addr >= TASK_SIZE)
6888 		return 0;
6889 
6890 	return TASK_SIZE - addr;
6891 }
6892 
6893 static u16
6894 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6895 			struct pt_regs *regs)
6896 {
6897 	u64 task_size;
6898 
6899 	/* No regs, no stack pointer, no dump. */
6900 	if (!regs)
6901 		return 0;
6902 
6903 	/*
6904 	 * Check if we fit in with the requested stack size into the:
6905 	 * - TASK_SIZE
6906 	 *   If we don't, we limit the size to the TASK_SIZE.
6907 	 *
6908 	 * - remaining sample size
6909 	 *   If we don't, we customize the stack size to
6910 	 *   fit in to the remaining sample size.
6911 	 */
6912 
6913 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6914 	stack_size = min(stack_size, (u16) task_size);
6915 
6916 	/* Current header size plus static size and dynamic size. */
6917 	header_size += 2 * sizeof(u64);
6918 
6919 	/* Do we fit in with the current stack dump size? */
6920 	if ((u16) (header_size + stack_size) < header_size) {
6921 		/*
6922 		 * If we overflow the maximum size for the sample,
6923 		 * we customize the stack dump size to fit in.
6924 		 */
6925 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6926 		stack_size = round_up(stack_size, sizeof(u64));
6927 	}
6928 
6929 	return stack_size;
6930 }
6931 
6932 static void
6933 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6934 			  struct pt_regs *regs)
6935 {
6936 	/* Case of a kernel thread, nothing to dump */
6937 	if (!regs) {
6938 		u64 size = 0;
6939 		perf_output_put(handle, size);
6940 	} else {
6941 		unsigned long sp;
6942 		unsigned int rem;
6943 		u64 dyn_size;
6944 
6945 		/*
6946 		 * We dump:
6947 		 * static size
6948 		 *   - the size requested by user or the best one we can fit
6949 		 *     in to the sample max size
6950 		 * data
6951 		 *   - user stack dump data
6952 		 * dynamic size
6953 		 *   - the actual dumped size
6954 		 */
6955 
6956 		/* Static size. */
6957 		perf_output_put(handle, dump_size);
6958 
6959 		/* Data. */
6960 		sp = perf_user_stack_pointer(regs);
6961 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6962 		dyn_size = dump_size - rem;
6963 
6964 		perf_output_skip(handle, rem);
6965 
6966 		/* Dynamic size. */
6967 		perf_output_put(handle, dyn_size);
6968 	}
6969 }
6970 
6971 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6972 					  struct perf_sample_data *data,
6973 					  size_t size)
6974 {
6975 	struct perf_event *sampler = event->aux_event;
6976 	struct perf_buffer *rb;
6977 
6978 	data->aux_size = 0;
6979 
6980 	if (!sampler)
6981 		goto out;
6982 
6983 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6984 		goto out;
6985 
6986 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6987 		goto out;
6988 
6989 	rb = ring_buffer_get(sampler);
6990 	if (!rb)
6991 		goto out;
6992 
6993 	/*
6994 	 * If this is an NMI hit inside sampling code, don't take
6995 	 * the sample. See also perf_aux_sample_output().
6996 	 */
6997 	if (READ_ONCE(rb->aux_in_sampling)) {
6998 		data->aux_size = 0;
6999 	} else {
7000 		size = min_t(size_t, size, perf_aux_size(rb));
7001 		data->aux_size = ALIGN(size, sizeof(u64));
7002 	}
7003 	ring_buffer_put(rb);
7004 
7005 out:
7006 	return data->aux_size;
7007 }
7008 
7009 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7010                                  struct perf_event *event,
7011                                  struct perf_output_handle *handle,
7012                                  unsigned long size)
7013 {
7014 	unsigned long flags;
7015 	long ret;
7016 
7017 	/*
7018 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7019 	 * paths. If we start calling them in NMI context, they may race with
7020 	 * the IRQ ones, that is, for example, re-starting an event that's just
7021 	 * been stopped, which is why we're using a separate callback that
7022 	 * doesn't change the event state.
7023 	 *
7024 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7025 	 */
7026 	local_irq_save(flags);
7027 	/*
7028 	 * Guard against NMI hits inside the critical section;
7029 	 * see also perf_prepare_sample_aux().
7030 	 */
7031 	WRITE_ONCE(rb->aux_in_sampling, 1);
7032 	barrier();
7033 
7034 	ret = event->pmu->snapshot_aux(event, handle, size);
7035 
7036 	barrier();
7037 	WRITE_ONCE(rb->aux_in_sampling, 0);
7038 	local_irq_restore(flags);
7039 
7040 	return ret;
7041 }
7042 
7043 static void perf_aux_sample_output(struct perf_event *event,
7044 				   struct perf_output_handle *handle,
7045 				   struct perf_sample_data *data)
7046 {
7047 	struct perf_event *sampler = event->aux_event;
7048 	struct perf_buffer *rb;
7049 	unsigned long pad;
7050 	long size;
7051 
7052 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7053 		return;
7054 
7055 	rb = ring_buffer_get(sampler);
7056 	if (!rb)
7057 		return;
7058 
7059 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7060 
7061 	/*
7062 	 * An error here means that perf_output_copy() failed (returned a
7063 	 * non-zero surplus that it didn't copy), which in its current
7064 	 * enlightened implementation is not possible. If that changes, we'd
7065 	 * like to know.
7066 	 */
7067 	if (WARN_ON_ONCE(size < 0))
7068 		goto out_put;
7069 
7070 	/*
7071 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7072 	 * perf_prepare_sample_aux(), so should not be more than that.
7073 	 */
7074 	pad = data->aux_size - size;
7075 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7076 		pad = 8;
7077 
7078 	if (pad) {
7079 		u64 zero = 0;
7080 		perf_output_copy(handle, &zero, pad);
7081 	}
7082 
7083 out_put:
7084 	ring_buffer_put(rb);
7085 }
7086 
7087 /*
7088  * A set of common sample data types saved even for non-sample records
7089  * when event->attr.sample_id_all is set.
7090  */
7091 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7092 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7093 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7094 
7095 static void __perf_event_header__init_id(struct perf_sample_data *data,
7096 					 struct perf_event *event,
7097 					 u64 sample_type)
7098 {
7099 	data->type = event->attr.sample_type;
7100 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7101 
7102 	if (sample_type & PERF_SAMPLE_TID) {
7103 		/* namespace issues */
7104 		data->tid_entry.pid = perf_event_pid(event, current);
7105 		data->tid_entry.tid = perf_event_tid(event, current);
7106 	}
7107 
7108 	if (sample_type & PERF_SAMPLE_TIME)
7109 		data->time = perf_event_clock(event);
7110 
7111 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7112 		data->id = primary_event_id(event);
7113 
7114 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7115 		data->stream_id = event->id;
7116 
7117 	if (sample_type & PERF_SAMPLE_CPU) {
7118 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7119 		data->cpu_entry.reserved = 0;
7120 	}
7121 }
7122 
7123 void perf_event_header__init_id(struct perf_event_header *header,
7124 				struct perf_sample_data *data,
7125 				struct perf_event *event)
7126 {
7127 	if (event->attr.sample_id_all) {
7128 		header->size += event->id_header_size;
7129 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7130 	}
7131 }
7132 
7133 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7134 					   struct perf_sample_data *data)
7135 {
7136 	u64 sample_type = data->type;
7137 
7138 	if (sample_type & PERF_SAMPLE_TID)
7139 		perf_output_put(handle, data->tid_entry);
7140 
7141 	if (sample_type & PERF_SAMPLE_TIME)
7142 		perf_output_put(handle, data->time);
7143 
7144 	if (sample_type & PERF_SAMPLE_ID)
7145 		perf_output_put(handle, data->id);
7146 
7147 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7148 		perf_output_put(handle, data->stream_id);
7149 
7150 	if (sample_type & PERF_SAMPLE_CPU)
7151 		perf_output_put(handle, data->cpu_entry);
7152 
7153 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7154 		perf_output_put(handle, data->id);
7155 }
7156 
7157 void perf_event__output_id_sample(struct perf_event *event,
7158 				  struct perf_output_handle *handle,
7159 				  struct perf_sample_data *sample)
7160 {
7161 	if (event->attr.sample_id_all)
7162 		__perf_event__output_id_sample(handle, sample);
7163 }
7164 
7165 static void perf_output_read_one(struct perf_output_handle *handle,
7166 				 struct perf_event *event,
7167 				 u64 enabled, u64 running)
7168 {
7169 	u64 read_format = event->attr.read_format;
7170 	u64 values[5];
7171 	int n = 0;
7172 
7173 	values[n++] = perf_event_count(event);
7174 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7175 		values[n++] = enabled +
7176 			atomic64_read(&event->child_total_time_enabled);
7177 	}
7178 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7179 		values[n++] = running +
7180 			atomic64_read(&event->child_total_time_running);
7181 	}
7182 	if (read_format & PERF_FORMAT_ID)
7183 		values[n++] = primary_event_id(event);
7184 	if (read_format & PERF_FORMAT_LOST)
7185 		values[n++] = atomic64_read(&event->lost_samples);
7186 
7187 	__output_copy(handle, values, n * sizeof(u64));
7188 }
7189 
7190 static void perf_output_read_group(struct perf_output_handle *handle,
7191 			    struct perf_event *event,
7192 			    u64 enabled, u64 running)
7193 {
7194 	struct perf_event *leader = event->group_leader, *sub;
7195 	u64 read_format = event->attr.read_format;
7196 	unsigned long flags;
7197 	u64 values[6];
7198 	int n = 0;
7199 
7200 	/*
7201 	 * Disabling interrupts avoids all counter scheduling
7202 	 * (context switches, timer based rotation and IPIs).
7203 	 */
7204 	local_irq_save(flags);
7205 
7206 	values[n++] = 1 + leader->nr_siblings;
7207 
7208 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7209 		values[n++] = enabled;
7210 
7211 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7212 		values[n++] = running;
7213 
7214 	if ((leader != event) &&
7215 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7216 		leader->pmu->read(leader);
7217 
7218 	values[n++] = perf_event_count(leader);
7219 	if (read_format & PERF_FORMAT_ID)
7220 		values[n++] = primary_event_id(leader);
7221 	if (read_format & PERF_FORMAT_LOST)
7222 		values[n++] = atomic64_read(&leader->lost_samples);
7223 
7224 	__output_copy(handle, values, n * sizeof(u64));
7225 
7226 	for_each_sibling_event(sub, leader) {
7227 		n = 0;
7228 
7229 		if ((sub != event) &&
7230 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7231 			sub->pmu->read(sub);
7232 
7233 		values[n++] = perf_event_count(sub);
7234 		if (read_format & PERF_FORMAT_ID)
7235 			values[n++] = primary_event_id(sub);
7236 		if (read_format & PERF_FORMAT_LOST)
7237 			values[n++] = atomic64_read(&sub->lost_samples);
7238 
7239 		__output_copy(handle, values, n * sizeof(u64));
7240 	}
7241 
7242 	local_irq_restore(flags);
7243 }
7244 
7245 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7246 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7247 
7248 /*
7249  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7250  *
7251  * The problem is that its both hard and excessively expensive to iterate the
7252  * child list, not to mention that its impossible to IPI the children running
7253  * on another CPU, from interrupt/NMI context.
7254  */
7255 static void perf_output_read(struct perf_output_handle *handle,
7256 			     struct perf_event *event)
7257 {
7258 	u64 enabled = 0, running = 0, now;
7259 	u64 read_format = event->attr.read_format;
7260 
7261 	/*
7262 	 * compute total_time_enabled, total_time_running
7263 	 * based on snapshot values taken when the event
7264 	 * was last scheduled in.
7265 	 *
7266 	 * we cannot simply called update_context_time()
7267 	 * because of locking issue as we are called in
7268 	 * NMI context
7269 	 */
7270 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7271 		calc_timer_values(event, &now, &enabled, &running);
7272 
7273 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7274 		perf_output_read_group(handle, event, enabled, running);
7275 	else
7276 		perf_output_read_one(handle, event, enabled, running);
7277 }
7278 
7279 void perf_output_sample(struct perf_output_handle *handle,
7280 			struct perf_event_header *header,
7281 			struct perf_sample_data *data,
7282 			struct perf_event *event)
7283 {
7284 	u64 sample_type = data->type;
7285 
7286 	perf_output_put(handle, *header);
7287 
7288 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7289 		perf_output_put(handle, data->id);
7290 
7291 	if (sample_type & PERF_SAMPLE_IP)
7292 		perf_output_put(handle, data->ip);
7293 
7294 	if (sample_type & PERF_SAMPLE_TID)
7295 		perf_output_put(handle, data->tid_entry);
7296 
7297 	if (sample_type & PERF_SAMPLE_TIME)
7298 		perf_output_put(handle, data->time);
7299 
7300 	if (sample_type & PERF_SAMPLE_ADDR)
7301 		perf_output_put(handle, data->addr);
7302 
7303 	if (sample_type & PERF_SAMPLE_ID)
7304 		perf_output_put(handle, data->id);
7305 
7306 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7307 		perf_output_put(handle, data->stream_id);
7308 
7309 	if (sample_type & PERF_SAMPLE_CPU)
7310 		perf_output_put(handle, data->cpu_entry);
7311 
7312 	if (sample_type & PERF_SAMPLE_PERIOD)
7313 		perf_output_put(handle, data->period);
7314 
7315 	if (sample_type & PERF_SAMPLE_READ)
7316 		perf_output_read(handle, event);
7317 
7318 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7319 		int size = 1;
7320 
7321 		size += data->callchain->nr;
7322 		size *= sizeof(u64);
7323 		__output_copy(handle, data->callchain, size);
7324 	}
7325 
7326 	if (sample_type & PERF_SAMPLE_RAW) {
7327 		struct perf_raw_record *raw = data->raw;
7328 
7329 		if (raw) {
7330 			struct perf_raw_frag *frag = &raw->frag;
7331 
7332 			perf_output_put(handle, raw->size);
7333 			do {
7334 				if (frag->copy) {
7335 					__output_custom(handle, frag->copy,
7336 							frag->data, frag->size);
7337 				} else {
7338 					__output_copy(handle, frag->data,
7339 						      frag->size);
7340 				}
7341 				if (perf_raw_frag_last(frag))
7342 					break;
7343 				frag = frag->next;
7344 			} while (1);
7345 			if (frag->pad)
7346 				__output_skip(handle, NULL, frag->pad);
7347 		} else {
7348 			struct {
7349 				u32	size;
7350 				u32	data;
7351 			} raw = {
7352 				.size = sizeof(u32),
7353 				.data = 0,
7354 			};
7355 			perf_output_put(handle, raw);
7356 		}
7357 	}
7358 
7359 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7360 		if (data->br_stack) {
7361 			size_t size;
7362 
7363 			size = data->br_stack->nr
7364 			     * sizeof(struct perf_branch_entry);
7365 
7366 			perf_output_put(handle, data->br_stack->nr);
7367 			if (branch_sample_hw_index(event))
7368 				perf_output_put(handle, data->br_stack->hw_idx);
7369 			perf_output_copy(handle, data->br_stack->entries, size);
7370 		} else {
7371 			/*
7372 			 * we always store at least the value of nr
7373 			 */
7374 			u64 nr = 0;
7375 			perf_output_put(handle, nr);
7376 		}
7377 	}
7378 
7379 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7380 		u64 abi = data->regs_user.abi;
7381 
7382 		/*
7383 		 * If there are no regs to dump, notice it through
7384 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7385 		 */
7386 		perf_output_put(handle, abi);
7387 
7388 		if (abi) {
7389 			u64 mask = event->attr.sample_regs_user;
7390 			perf_output_sample_regs(handle,
7391 						data->regs_user.regs,
7392 						mask);
7393 		}
7394 	}
7395 
7396 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7397 		perf_output_sample_ustack(handle,
7398 					  data->stack_user_size,
7399 					  data->regs_user.regs);
7400 	}
7401 
7402 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7403 		perf_output_put(handle, data->weight.full);
7404 
7405 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7406 		perf_output_put(handle, data->data_src.val);
7407 
7408 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7409 		perf_output_put(handle, data->txn);
7410 
7411 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7412 		u64 abi = data->regs_intr.abi;
7413 		/*
7414 		 * If there are no regs to dump, notice it through
7415 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7416 		 */
7417 		perf_output_put(handle, abi);
7418 
7419 		if (abi) {
7420 			u64 mask = event->attr.sample_regs_intr;
7421 
7422 			perf_output_sample_regs(handle,
7423 						data->regs_intr.regs,
7424 						mask);
7425 		}
7426 	}
7427 
7428 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7429 		perf_output_put(handle, data->phys_addr);
7430 
7431 	if (sample_type & PERF_SAMPLE_CGROUP)
7432 		perf_output_put(handle, data->cgroup);
7433 
7434 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7435 		perf_output_put(handle, data->data_page_size);
7436 
7437 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7438 		perf_output_put(handle, data->code_page_size);
7439 
7440 	if (sample_type & PERF_SAMPLE_AUX) {
7441 		perf_output_put(handle, data->aux_size);
7442 
7443 		if (data->aux_size)
7444 			perf_aux_sample_output(event, handle, data);
7445 	}
7446 
7447 	if (!event->attr.watermark) {
7448 		int wakeup_events = event->attr.wakeup_events;
7449 
7450 		if (wakeup_events) {
7451 			struct perf_buffer *rb = handle->rb;
7452 			int events = local_inc_return(&rb->events);
7453 
7454 			if (events >= wakeup_events) {
7455 				local_sub(wakeup_events, &rb->events);
7456 				local_inc(&rb->wakeup);
7457 			}
7458 		}
7459 	}
7460 }
7461 
7462 static u64 perf_virt_to_phys(u64 virt)
7463 {
7464 	u64 phys_addr = 0;
7465 
7466 	if (!virt)
7467 		return 0;
7468 
7469 	if (virt >= TASK_SIZE) {
7470 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7471 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7472 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7473 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7474 	} else {
7475 		/*
7476 		 * Walking the pages tables for user address.
7477 		 * Interrupts are disabled, so it prevents any tear down
7478 		 * of the page tables.
7479 		 * Try IRQ-safe get_user_page_fast_only first.
7480 		 * If failed, leave phys_addr as 0.
7481 		 */
7482 		if (current->mm != NULL) {
7483 			struct page *p;
7484 
7485 			pagefault_disable();
7486 			if (get_user_page_fast_only(virt, 0, &p)) {
7487 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7488 				put_page(p);
7489 			}
7490 			pagefault_enable();
7491 		}
7492 	}
7493 
7494 	return phys_addr;
7495 }
7496 
7497 /*
7498  * Return the pagetable size of a given virtual address.
7499  */
7500 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7501 {
7502 	u64 size = 0;
7503 
7504 #ifdef CONFIG_HAVE_FAST_GUP
7505 	pgd_t *pgdp, pgd;
7506 	p4d_t *p4dp, p4d;
7507 	pud_t *pudp, pud;
7508 	pmd_t *pmdp, pmd;
7509 	pte_t *ptep, pte;
7510 
7511 	pgdp = pgd_offset(mm, addr);
7512 	pgd = READ_ONCE(*pgdp);
7513 	if (pgd_none(pgd))
7514 		return 0;
7515 
7516 	if (pgd_leaf(pgd))
7517 		return pgd_leaf_size(pgd);
7518 
7519 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7520 	p4d = READ_ONCE(*p4dp);
7521 	if (!p4d_present(p4d))
7522 		return 0;
7523 
7524 	if (p4d_leaf(p4d))
7525 		return p4d_leaf_size(p4d);
7526 
7527 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7528 	pud = READ_ONCE(*pudp);
7529 	if (!pud_present(pud))
7530 		return 0;
7531 
7532 	if (pud_leaf(pud))
7533 		return pud_leaf_size(pud);
7534 
7535 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7536 again:
7537 	pmd = pmdp_get_lockless(pmdp);
7538 	if (!pmd_present(pmd))
7539 		return 0;
7540 
7541 	if (pmd_leaf(pmd))
7542 		return pmd_leaf_size(pmd);
7543 
7544 	ptep = pte_offset_map(&pmd, addr);
7545 	if (!ptep)
7546 		goto again;
7547 
7548 	pte = ptep_get_lockless(ptep);
7549 	if (pte_present(pte))
7550 		size = pte_leaf_size(pte);
7551 	pte_unmap(ptep);
7552 #endif /* CONFIG_HAVE_FAST_GUP */
7553 
7554 	return size;
7555 }
7556 
7557 static u64 perf_get_page_size(unsigned long addr)
7558 {
7559 	struct mm_struct *mm;
7560 	unsigned long flags;
7561 	u64 size;
7562 
7563 	if (!addr)
7564 		return 0;
7565 
7566 	/*
7567 	 * Software page-table walkers must disable IRQs,
7568 	 * which prevents any tear down of the page tables.
7569 	 */
7570 	local_irq_save(flags);
7571 
7572 	mm = current->mm;
7573 	if (!mm) {
7574 		/*
7575 		 * For kernel threads and the like, use init_mm so that
7576 		 * we can find kernel memory.
7577 		 */
7578 		mm = &init_mm;
7579 	}
7580 
7581 	size = perf_get_pgtable_size(mm, addr);
7582 
7583 	local_irq_restore(flags);
7584 
7585 	return size;
7586 }
7587 
7588 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7589 
7590 struct perf_callchain_entry *
7591 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7592 {
7593 	bool kernel = !event->attr.exclude_callchain_kernel;
7594 	bool user   = !event->attr.exclude_callchain_user;
7595 	/* Disallow cross-task user callchains. */
7596 	bool crosstask = event->ctx->task && event->ctx->task != current;
7597 	const u32 max_stack = event->attr.sample_max_stack;
7598 	struct perf_callchain_entry *callchain;
7599 
7600 	if (!kernel && !user)
7601 		return &__empty_callchain;
7602 
7603 	callchain = get_perf_callchain(regs, 0, kernel, user,
7604 				       max_stack, crosstask, true);
7605 	return callchain ?: &__empty_callchain;
7606 }
7607 
7608 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7609 {
7610 	return d * !!(flags & s);
7611 }
7612 
7613 void perf_prepare_sample(struct perf_sample_data *data,
7614 			 struct perf_event *event,
7615 			 struct pt_regs *regs)
7616 {
7617 	u64 sample_type = event->attr.sample_type;
7618 	u64 filtered_sample_type;
7619 
7620 	/*
7621 	 * Add the sample flags that are dependent to others.  And clear the
7622 	 * sample flags that have already been done by the PMU driver.
7623 	 */
7624 	filtered_sample_type = sample_type;
7625 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7626 					   PERF_SAMPLE_IP);
7627 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7628 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7629 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7630 					   PERF_SAMPLE_REGS_USER);
7631 	filtered_sample_type &= ~data->sample_flags;
7632 
7633 	if (filtered_sample_type == 0) {
7634 		/* Make sure it has the correct data->type for output */
7635 		data->type = event->attr.sample_type;
7636 		return;
7637 	}
7638 
7639 	__perf_event_header__init_id(data, event, filtered_sample_type);
7640 
7641 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7642 		data->ip = perf_instruction_pointer(regs);
7643 		data->sample_flags |= PERF_SAMPLE_IP;
7644 	}
7645 
7646 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7647 		perf_sample_save_callchain(data, event, regs);
7648 
7649 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7650 		data->raw = NULL;
7651 		data->dyn_size += sizeof(u64);
7652 		data->sample_flags |= PERF_SAMPLE_RAW;
7653 	}
7654 
7655 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7656 		data->br_stack = NULL;
7657 		data->dyn_size += sizeof(u64);
7658 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7659 	}
7660 
7661 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7662 		perf_sample_regs_user(&data->regs_user, regs);
7663 
7664 	/*
7665 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7666 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7667 	 * the dyn_size if it's not requested by users.
7668 	 */
7669 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7670 		/* regs dump ABI info */
7671 		int size = sizeof(u64);
7672 
7673 		if (data->regs_user.regs) {
7674 			u64 mask = event->attr.sample_regs_user;
7675 			size += hweight64(mask) * sizeof(u64);
7676 		}
7677 
7678 		data->dyn_size += size;
7679 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7680 	}
7681 
7682 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7683 		/*
7684 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7685 		 * processed as the last one or have additional check added
7686 		 * in case new sample type is added, because we could eat
7687 		 * up the rest of the sample size.
7688 		 */
7689 		u16 stack_size = event->attr.sample_stack_user;
7690 		u16 header_size = perf_sample_data_size(data, event);
7691 		u16 size = sizeof(u64);
7692 
7693 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7694 						     data->regs_user.regs);
7695 
7696 		/*
7697 		 * If there is something to dump, add space for the dump
7698 		 * itself and for the field that tells the dynamic size,
7699 		 * which is how many have been actually dumped.
7700 		 */
7701 		if (stack_size)
7702 			size += sizeof(u64) + stack_size;
7703 
7704 		data->stack_user_size = stack_size;
7705 		data->dyn_size += size;
7706 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7707 	}
7708 
7709 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7710 		data->weight.full = 0;
7711 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7712 	}
7713 
7714 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7715 		data->data_src.val = PERF_MEM_NA;
7716 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7717 	}
7718 
7719 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7720 		data->txn = 0;
7721 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7722 	}
7723 
7724 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7725 		data->addr = 0;
7726 		data->sample_flags |= PERF_SAMPLE_ADDR;
7727 	}
7728 
7729 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7730 		/* regs dump ABI info */
7731 		int size = sizeof(u64);
7732 
7733 		perf_sample_regs_intr(&data->regs_intr, regs);
7734 
7735 		if (data->regs_intr.regs) {
7736 			u64 mask = event->attr.sample_regs_intr;
7737 
7738 			size += hweight64(mask) * sizeof(u64);
7739 		}
7740 
7741 		data->dyn_size += size;
7742 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7743 	}
7744 
7745 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7746 		data->phys_addr = perf_virt_to_phys(data->addr);
7747 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7748 	}
7749 
7750 #ifdef CONFIG_CGROUP_PERF
7751 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7752 		struct cgroup *cgrp;
7753 
7754 		/* protected by RCU */
7755 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7756 		data->cgroup = cgroup_id(cgrp);
7757 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7758 	}
7759 #endif
7760 
7761 	/*
7762 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7763 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7764 	 * but the value will not dump to the userspace.
7765 	 */
7766 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7767 		data->data_page_size = perf_get_page_size(data->addr);
7768 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7769 	}
7770 
7771 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7772 		data->code_page_size = perf_get_page_size(data->ip);
7773 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7774 	}
7775 
7776 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7777 		u64 size;
7778 		u16 header_size = perf_sample_data_size(data, event);
7779 
7780 		header_size += sizeof(u64); /* size */
7781 
7782 		/*
7783 		 * Given the 16bit nature of header::size, an AUX sample can
7784 		 * easily overflow it, what with all the preceding sample bits.
7785 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7786 		 * per sample in total (rounded down to 8 byte boundary).
7787 		 */
7788 		size = min_t(size_t, U16_MAX - header_size,
7789 			     event->attr.aux_sample_size);
7790 		size = rounddown(size, 8);
7791 		size = perf_prepare_sample_aux(event, data, size);
7792 
7793 		WARN_ON_ONCE(size + header_size > U16_MAX);
7794 		data->dyn_size += size + sizeof(u64); /* size above */
7795 		data->sample_flags |= PERF_SAMPLE_AUX;
7796 	}
7797 }
7798 
7799 void perf_prepare_header(struct perf_event_header *header,
7800 			 struct perf_sample_data *data,
7801 			 struct perf_event *event,
7802 			 struct pt_regs *regs)
7803 {
7804 	header->type = PERF_RECORD_SAMPLE;
7805 	header->size = perf_sample_data_size(data, event);
7806 	header->misc = perf_misc_flags(regs);
7807 
7808 	/*
7809 	 * If you're adding more sample types here, you likely need to do
7810 	 * something about the overflowing header::size, like repurpose the
7811 	 * lowest 3 bits of size, which should be always zero at the moment.
7812 	 * This raises a more important question, do we really need 512k sized
7813 	 * samples and why, so good argumentation is in order for whatever you
7814 	 * do here next.
7815 	 */
7816 	WARN_ON_ONCE(header->size & 7);
7817 }
7818 
7819 static __always_inline int
7820 __perf_event_output(struct perf_event *event,
7821 		    struct perf_sample_data *data,
7822 		    struct pt_regs *regs,
7823 		    int (*output_begin)(struct perf_output_handle *,
7824 					struct perf_sample_data *,
7825 					struct perf_event *,
7826 					unsigned int))
7827 {
7828 	struct perf_output_handle handle;
7829 	struct perf_event_header header;
7830 	int err;
7831 
7832 	/* protect the callchain buffers */
7833 	rcu_read_lock();
7834 
7835 	perf_prepare_sample(data, event, regs);
7836 	perf_prepare_header(&header, data, event, regs);
7837 
7838 	err = output_begin(&handle, data, event, header.size);
7839 	if (err)
7840 		goto exit;
7841 
7842 	perf_output_sample(&handle, &header, data, event);
7843 
7844 	perf_output_end(&handle);
7845 
7846 exit:
7847 	rcu_read_unlock();
7848 	return err;
7849 }
7850 
7851 void
7852 perf_event_output_forward(struct perf_event *event,
7853 			 struct perf_sample_data *data,
7854 			 struct pt_regs *regs)
7855 {
7856 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7857 }
7858 
7859 void
7860 perf_event_output_backward(struct perf_event *event,
7861 			   struct perf_sample_data *data,
7862 			   struct pt_regs *regs)
7863 {
7864 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7865 }
7866 
7867 int
7868 perf_event_output(struct perf_event *event,
7869 		  struct perf_sample_data *data,
7870 		  struct pt_regs *regs)
7871 {
7872 	return __perf_event_output(event, data, regs, perf_output_begin);
7873 }
7874 
7875 /*
7876  * read event_id
7877  */
7878 
7879 struct perf_read_event {
7880 	struct perf_event_header	header;
7881 
7882 	u32				pid;
7883 	u32				tid;
7884 };
7885 
7886 static void
7887 perf_event_read_event(struct perf_event *event,
7888 			struct task_struct *task)
7889 {
7890 	struct perf_output_handle handle;
7891 	struct perf_sample_data sample;
7892 	struct perf_read_event read_event = {
7893 		.header = {
7894 			.type = PERF_RECORD_READ,
7895 			.misc = 0,
7896 			.size = sizeof(read_event) + event->read_size,
7897 		},
7898 		.pid = perf_event_pid(event, task),
7899 		.tid = perf_event_tid(event, task),
7900 	};
7901 	int ret;
7902 
7903 	perf_event_header__init_id(&read_event.header, &sample, event);
7904 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7905 	if (ret)
7906 		return;
7907 
7908 	perf_output_put(&handle, read_event);
7909 	perf_output_read(&handle, event);
7910 	perf_event__output_id_sample(event, &handle, &sample);
7911 
7912 	perf_output_end(&handle);
7913 }
7914 
7915 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7916 
7917 static void
7918 perf_iterate_ctx(struct perf_event_context *ctx,
7919 		   perf_iterate_f output,
7920 		   void *data, bool all)
7921 {
7922 	struct perf_event *event;
7923 
7924 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7925 		if (!all) {
7926 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7927 				continue;
7928 			if (!event_filter_match(event))
7929 				continue;
7930 		}
7931 
7932 		output(event, data);
7933 	}
7934 }
7935 
7936 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7937 {
7938 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7939 	struct perf_event *event;
7940 
7941 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7942 		/*
7943 		 * Skip events that are not fully formed yet; ensure that
7944 		 * if we observe event->ctx, both event and ctx will be
7945 		 * complete enough. See perf_install_in_context().
7946 		 */
7947 		if (!smp_load_acquire(&event->ctx))
7948 			continue;
7949 
7950 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7951 			continue;
7952 		if (!event_filter_match(event))
7953 			continue;
7954 		output(event, data);
7955 	}
7956 }
7957 
7958 /*
7959  * Iterate all events that need to receive side-band events.
7960  *
7961  * For new callers; ensure that account_pmu_sb_event() includes
7962  * your event, otherwise it might not get delivered.
7963  */
7964 static void
7965 perf_iterate_sb(perf_iterate_f output, void *data,
7966 	       struct perf_event_context *task_ctx)
7967 {
7968 	struct perf_event_context *ctx;
7969 
7970 	rcu_read_lock();
7971 	preempt_disable();
7972 
7973 	/*
7974 	 * If we have task_ctx != NULL we only notify the task context itself.
7975 	 * The task_ctx is set only for EXIT events before releasing task
7976 	 * context.
7977 	 */
7978 	if (task_ctx) {
7979 		perf_iterate_ctx(task_ctx, output, data, false);
7980 		goto done;
7981 	}
7982 
7983 	perf_iterate_sb_cpu(output, data);
7984 
7985 	ctx = rcu_dereference(current->perf_event_ctxp);
7986 	if (ctx)
7987 		perf_iterate_ctx(ctx, output, data, false);
7988 done:
7989 	preempt_enable();
7990 	rcu_read_unlock();
7991 }
7992 
7993 /*
7994  * Clear all file-based filters at exec, they'll have to be
7995  * re-instated when/if these objects are mmapped again.
7996  */
7997 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7998 {
7999 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8000 	struct perf_addr_filter *filter;
8001 	unsigned int restart = 0, count = 0;
8002 	unsigned long flags;
8003 
8004 	if (!has_addr_filter(event))
8005 		return;
8006 
8007 	raw_spin_lock_irqsave(&ifh->lock, flags);
8008 	list_for_each_entry(filter, &ifh->list, entry) {
8009 		if (filter->path.dentry) {
8010 			event->addr_filter_ranges[count].start = 0;
8011 			event->addr_filter_ranges[count].size = 0;
8012 			restart++;
8013 		}
8014 
8015 		count++;
8016 	}
8017 
8018 	if (restart)
8019 		event->addr_filters_gen++;
8020 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8021 
8022 	if (restart)
8023 		perf_event_stop(event, 1);
8024 }
8025 
8026 void perf_event_exec(void)
8027 {
8028 	struct perf_event_context *ctx;
8029 
8030 	ctx = perf_pin_task_context(current);
8031 	if (!ctx)
8032 		return;
8033 
8034 	perf_event_enable_on_exec(ctx);
8035 	perf_event_remove_on_exec(ctx);
8036 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8037 
8038 	perf_unpin_context(ctx);
8039 	put_ctx(ctx);
8040 }
8041 
8042 struct remote_output {
8043 	struct perf_buffer	*rb;
8044 	int			err;
8045 };
8046 
8047 static void __perf_event_output_stop(struct perf_event *event, void *data)
8048 {
8049 	struct perf_event *parent = event->parent;
8050 	struct remote_output *ro = data;
8051 	struct perf_buffer *rb = ro->rb;
8052 	struct stop_event_data sd = {
8053 		.event	= event,
8054 	};
8055 
8056 	if (!has_aux(event))
8057 		return;
8058 
8059 	if (!parent)
8060 		parent = event;
8061 
8062 	/*
8063 	 * In case of inheritance, it will be the parent that links to the
8064 	 * ring-buffer, but it will be the child that's actually using it.
8065 	 *
8066 	 * We are using event::rb to determine if the event should be stopped,
8067 	 * however this may race with ring_buffer_attach() (through set_output),
8068 	 * which will make us skip the event that actually needs to be stopped.
8069 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8070 	 * its rb pointer.
8071 	 */
8072 	if (rcu_dereference(parent->rb) == rb)
8073 		ro->err = __perf_event_stop(&sd);
8074 }
8075 
8076 static int __perf_pmu_output_stop(void *info)
8077 {
8078 	struct perf_event *event = info;
8079 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8080 	struct remote_output ro = {
8081 		.rb	= event->rb,
8082 	};
8083 
8084 	rcu_read_lock();
8085 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8086 	if (cpuctx->task_ctx)
8087 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8088 				   &ro, false);
8089 	rcu_read_unlock();
8090 
8091 	return ro.err;
8092 }
8093 
8094 static void perf_pmu_output_stop(struct perf_event *event)
8095 {
8096 	struct perf_event *iter;
8097 	int err, cpu;
8098 
8099 restart:
8100 	rcu_read_lock();
8101 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8102 		/*
8103 		 * For per-CPU events, we need to make sure that neither they
8104 		 * nor their children are running; for cpu==-1 events it's
8105 		 * sufficient to stop the event itself if it's active, since
8106 		 * it can't have children.
8107 		 */
8108 		cpu = iter->cpu;
8109 		if (cpu == -1)
8110 			cpu = READ_ONCE(iter->oncpu);
8111 
8112 		if (cpu == -1)
8113 			continue;
8114 
8115 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8116 		if (err == -EAGAIN) {
8117 			rcu_read_unlock();
8118 			goto restart;
8119 		}
8120 	}
8121 	rcu_read_unlock();
8122 }
8123 
8124 /*
8125  * task tracking -- fork/exit
8126  *
8127  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8128  */
8129 
8130 struct perf_task_event {
8131 	struct task_struct		*task;
8132 	struct perf_event_context	*task_ctx;
8133 
8134 	struct {
8135 		struct perf_event_header	header;
8136 
8137 		u32				pid;
8138 		u32				ppid;
8139 		u32				tid;
8140 		u32				ptid;
8141 		u64				time;
8142 	} event_id;
8143 };
8144 
8145 static int perf_event_task_match(struct perf_event *event)
8146 {
8147 	return event->attr.comm  || event->attr.mmap ||
8148 	       event->attr.mmap2 || event->attr.mmap_data ||
8149 	       event->attr.task;
8150 }
8151 
8152 static void perf_event_task_output(struct perf_event *event,
8153 				   void *data)
8154 {
8155 	struct perf_task_event *task_event = data;
8156 	struct perf_output_handle handle;
8157 	struct perf_sample_data	sample;
8158 	struct task_struct *task = task_event->task;
8159 	int ret, size = task_event->event_id.header.size;
8160 
8161 	if (!perf_event_task_match(event))
8162 		return;
8163 
8164 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8165 
8166 	ret = perf_output_begin(&handle, &sample, event,
8167 				task_event->event_id.header.size);
8168 	if (ret)
8169 		goto out;
8170 
8171 	task_event->event_id.pid = perf_event_pid(event, task);
8172 	task_event->event_id.tid = perf_event_tid(event, task);
8173 
8174 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8175 		task_event->event_id.ppid = perf_event_pid(event,
8176 							task->real_parent);
8177 		task_event->event_id.ptid = perf_event_pid(event,
8178 							task->real_parent);
8179 	} else {  /* PERF_RECORD_FORK */
8180 		task_event->event_id.ppid = perf_event_pid(event, current);
8181 		task_event->event_id.ptid = perf_event_tid(event, current);
8182 	}
8183 
8184 	task_event->event_id.time = perf_event_clock(event);
8185 
8186 	perf_output_put(&handle, task_event->event_id);
8187 
8188 	perf_event__output_id_sample(event, &handle, &sample);
8189 
8190 	perf_output_end(&handle);
8191 out:
8192 	task_event->event_id.header.size = size;
8193 }
8194 
8195 static void perf_event_task(struct task_struct *task,
8196 			      struct perf_event_context *task_ctx,
8197 			      int new)
8198 {
8199 	struct perf_task_event task_event;
8200 
8201 	if (!atomic_read(&nr_comm_events) &&
8202 	    !atomic_read(&nr_mmap_events) &&
8203 	    !atomic_read(&nr_task_events))
8204 		return;
8205 
8206 	task_event = (struct perf_task_event){
8207 		.task	  = task,
8208 		.task_ctx = task_ctx,
8209 		.event_id    = {
8210 			.header = {
8211 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8212 				.misc = 0,
8213 				.size = sizeof(task_event.event_id),
8214 			},
8215 			/* .pid  */
8216 			/* .ppid */
8217 			/* .tid  */
8218 			/* .ptid */
8219 			/* .time */
8220 		},
8221 	};
8222 
8223 	perf_iterate_sb(perf_event_task_output,
8224 		       &task_event,
8225 		       task_ctx);
8226 }
8227 
8228 void perf_event_fork(struct task_struct *task)
8229 {
8230 	perf_event_task(task, NULL, 1);
8231 	perf_event_namespaces(task);
8232 }
8233 
8234 /*
8235  * comm tracking
8236  */
8237 
8238 struct perf_comm_event {
8239 	struct task_struct	*task;
8240 	char			*comm;
8241 	int			comm_size;
8242 
8243 	struct {
8244 		struct perf_event_header	header;
8245 
8246 		u32				pid;
8247 		u32				tid;
8248 	} event_id;
8249 };
8250 
8251 static int perf_event_comm_match(struct perf_event *event)
8252 {
8253 	return event->attr.comm;
8254 }
8255 
8256 static void perf_event_comm_output(struct perf_event *event,
8257 				   void *data)
8258 {
8259 	struct perf_comm_event *comm_event = data;
8260 	struct perf_output_handle handle;
8261 	struct perf_sample_data sample;
8262 	int size = comm_event->event_id.header.size;
8263 	int ret;
8264 
8265 	if (!perf_event_comm_match(event))
8266 		return;
8267 
8268 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8269 	ret = perf_output_begin(&handle, &sample, event,
8270 				comm_event->event_id.header.size);
8271 
8272 	if (ret)
8273 		goto out;
8274 
8275 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8276 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8277 
8278 	perf_output_put(&handle, comm_event->event_id);
8279 	__output_copy(&handle, comm_event->comm,
8280 				   comm_event->comm_size);
8281 
8282 	perf_event__output_id_sample(event, &handle, &sample);
8283 
8284 	perf_output_end(&handle);
8285 out:
8286 	comm_event->event_id.header.size = size;
8287 }
8288 
8289 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8290 {
8291 	char comm[TASK_COMM_LEN];
8292 	unsigned int size;
8293 
8294 	memset(comm, 0, sizeof(comm));
8295 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8296 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8297 
8298 	comm_event->comm = comm;
8299 	comm_event->comm_size = size;
8300 
8301 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8302 
8303 	perf_iterate_sb(perf_event_comm_output,
8304 		       comm_event,
8305 		       NULL);
8306 }
8307 
8308 void perf_event_comm(struct task_struct *task, bool exec)
8309 {
8310 	struct perf_comm_event comm_event;
8311 
8312 	if (!atomic_read(&nr_comm_events))
8313 		return;
8314 
8315 	comm_event = (struct perf_comm_event){
8316 		.task	= task,
8317 		/* .comm      */
8318 		/* .comm_size */
8319 		.event_id  = {
8320 			.header = {
8321 				.type = PERF_RECORD_COMM,
8322 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8323 				/* .size */
8324 			},
8325 			/* .pid */
8326 			/* .tid */
8327 		},
8328 	};
8329 
8330 	perf_event_comm_event(&comm_event);
8331 }
8332 
8333 /*
8334  * namespaces tracking
8335  */
8336 
8337 struct perf_namespaces_event {
8338 	struct task_struct		*task;
8339 
8340 	struct {
8341 		struct perf_event_header	header;
8342 
8343 		u32				pid;
8344 		u32				tid;
8345 		u64				nr_namespaces;
8346 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8347 	} event_id;
8348 };
8349 
8350 static int perf_event_namespaces_match(struct perf_event *event)
8351 {
8352 	return event->attr.namespaces;
8353 }
8354 
8355 static void perf_event_namespaces_output(struct perf_event *event,
8356 					 void *data)
8357 {
8358 	struct perf_namespaces_event *namespaces_event = data;
8359 	struct perf_output_handle handle;
8360 	struct perf_sample_data sample;
8361 	u16 header_size = namespaces_event->event_id.header.size;
8362 	int ret;
8363 
8364 	if (!perf_event_namespaces_match(event))
8365 		return;
8366 
8367 	perf_event_header__init_id(&namespaces_event->event_id.header,
8368 				   &sample, event);
8369 	ret = perf_output_begin(&handle, &sample, event,
8370 				namespaces_event->event_id.header.size);
8371 	if (ret)
8372 		goto out;
8373 
8374 	namespaces_event->event_id.pid = perf_event_pid(event,
8375 							namespaces_event->task);
8376 	namespaces_event->event_id.tid = perf_event_tid(event,
8377 							namespaces_event->task);
8378 
8379 	perf_output_put(&handle, namespaces_event->event_id);
8380 
8381 	perf_event__output_id_sample(event, &handle, &sample);
8382 
8383 	perf_output_end(&handle);
8384 out:
8385 	namespaces_event->event_id.header.size = header_size;
8386 }
8387 
8388 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8389 				   struct task_struct *task,
8390 				   const struct proc_ns_operations *ns_ops)
8391 {
8392 	struct path ns_path;
8393 	struct inode *ns_inode;
8394 	int error;
8395 
8396 	error = ns_get_path(&ns_path, task, ns_ops);
8397 	if (!error) {
8398 		ns_inode = ns_path.dentry->d_inode;
8399 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8400 		ns_link_info->ino = ns_inode->i_ino;
8401 		path_put(&ns_path);
8402 	}
8403 }
8404 
8405 void perf_event_namespaces(struct task_struct *task)
8406 {
8407 	struct perf_namespaces_event namespaces_event;
8408 	struct perf_ns_link_info *ns_link_info;
8409 
8410 	if (!atomic_read(&nr_namespaces_events))
8411 		return;
8412 
8413 	namespaces_event = (struct perf_namespaces_event){
8414 		.task	= task,
8415 		.event_id  = {
8416 			.header = {
8417 				.type = PERF_RECORD_NAMESPACES,
8418 				.misc = 0,
8419 				.size = sizeof(namespaces_event.event_id),
8420 			},
8421 			/* .pid */
8422 			/* .tid */
8423 			.nr_namespaces = NR_NAMESPACES,
8424 			/* .link_info[NR_NAMESPACES] */
8425 		},
8426 	};
8427 
8428 	ns_link_info = namespaces_event.event_id.link_info;
8429 
8430 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8431 			       task, &mntns_operations);
8432 
8433 #ifdef CONFIG_USER_NS
8434 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8435 			       task, &userns_operations);
8436 #endif
8437 #ifdef CONFIG_NET_NS
8438 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8439 			       task, &netns_operations);
8440 #endif
8441 #ifdef CONFIG_UTS_NS
8442 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8443 			       task, &utsns_operations);
8444 #endif
8445 #ifdef CONFIG_IPC_NS
8446 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8447 			       task, &ipcns_operations);
8448 #endif
8449 #ifdef CONFIG_PID_NS
8450 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8451 			       task, &pidns_operations);
8452 #endif
8453 #ifdef CONFIG_CGROUPS
8454 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8455 			       task, &cgroupns_operations);
8456 #endif
8457 
8458 	perf_iterate_sb(perf_event_namespaces_output,
8459 			&namespaces_event,
8460 			NULL);
8461 }
8462 
8463 /*
8464  * cgroup tracking
8465  */
8466 #ifdef CONFIG_CGROUP_PERF
8467 
8468 struct perf_cgroup_event {
8469 	char				*path;
8470 	int				path_size;
8471 	struct {
8472 		struct perf_event_header	header;
8473 		u64				id;
8474 		char				path[];
8475 	} event_id;
8476 };
8477 
8478 static int perf_event_cgroup_match(struct perf_event *event)
8479 {
8480 	return event->attr.cgroup;
8481 }
8482 
8483 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8484 {
8485 	struct perf_cgroup_event *cgroup_event = data;
8486 	struct perf_output_handle handle;
8487 	struct perf_sample_data sample;
8488 	u16 header_size = cgroup_event->event_id.header.size;
8489 	int ret;
8490 
8491 	if (!perf_event_cgroup_match(event))
8492 		return;
8493 
8494 	perf_event_header__init_id(&cgroup_event->event_id.header,
8495 				   &sample, event);
8496 	ret = perf_output_begin(&handle, &sample, event,
8497 				cgroup_event->event_id.header.size);
8498 	if (ret)
8499 		goto out;
8500 
8501 	perf_output_put(&handle, cgroup_event->event_id);
8502 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8503 
8504 	perf_event__output_id_sample(event, &handle, &sample);
8505 
8506 	perf_output_end(&handle);
8507 out:
8508 	cgroup_event->event_id.header.size = header_size;
8509 }
8510 
8511 static void perf_event_cgroup(struct cgroup *cgrp)
8512 {
8513 	struct perf_cgroup_event cgroup_event;
8514 	char path_enomem[16] = "//enomem";
8515 	char *pathname;
8516 	size_t size;
8517 
8518 	if (!atomic_read(&nr_cgroup_events))
8519 		return;
8520 
8521 	cgroup_event = (struct perf_cgroup_event){
8522 		.event_id  = {
8523 			.header = {
8524 				.type = PERF_RECORD_CGROUP,
8525 				.misc = 0,
8526 				.size = sizeof(cgroup_event.event_id),
8527 			},
8528 			.id = cgroup_id(cgrp),
8529 		},
8530 	};
8531 
8532 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8533 	if (pathname == NULL) {
8534 		cgroup_event.path = path_enomem;
8535 	} else {
8536 		/* just to be sure to have enough space for alignment */
8537 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8538 		cgroup_event.path = pathname;
8539 	}
8540 
8541 	/*
8542 	 * Since our buffer works in 8 byte units we need to align our string
8543 	 * size to a multiple of 8. However, we must guarantee the tail end is
8544 	 * zero'd out to avoid leaking random bits to userspace.
8545 	 */
8546 	size = strlen(cgroup_event.path) + 1;
8547 	while (!IS_ALIGNED(size, sizeof(u64)))
8548 		cgroup_event.path[size++] = '\0';
8549 
8550 	cgroup_event.event_id.header.size += size;
8551 	cgroup_event.path_size = size;
8552 
8553 	perf_iterate_sb(perf_event_cgroup_output,
8554 			&cgroup_event,
8555 			NULL);
8556 
8557 	kfree(pathname);
8558 }
8559 
8560 #endif
8561 
8562 /*
8563  * mmap tracking
8564  */
8565 
8566 struct perf_mmap_event {
8567 	struct vm_area_struct	*vma;
8568 
8569 	const char		*file_name;
8570 	int			file_size;
8571 	int			maj, min;
8572 	u64			ino;
8573 	u64			ino_generation;
8574 	u32			prot, flags;
8575 	u8			build_id[BUILD_ID_SIZE_MAX];
8576 	u32			build_id_size;
8577 
8578 	struct {
8579 		struct perf_event_header	header;
8580 
8581 		u32				pid;
8582 		u32				tid;
8583 		u64				start;
8584 		u64				len;
8585 		u64				pgoff;
8586 	} event_id;
8587 };
8588 
8589 static int perf_event_mmap_match(struct perf_event *event,
8590 				 void *data)
8591 {
8592 	struct perf_mmap_event *mmap_event = data;
8593 	struct vm_area_struct *vma = mmap_event->vma;
8594 	int executable = vma->vm_flags & VM_EXEC;
8595 
8596 	return (!executable && event->attr.mmap_data) ||
8597 	       (executable && (event->attr.mmap || event->attr.mmap2));
8598 }
8599 
8600 static void perf_event_mmap_output(struct perf_event *event,
8601 				   void *data)
8602 {
8603 	struct perf_mmap_event *mmap_event = data;
8604 	struct perf_output_handle handle;
8605 	struct perf_sample_data sample;
8606 	int size = mmap_event->event_id.header.size;
8607 	u32 type = mmap_event->event_id.header.type;
8608 	bool use_build_id;
8609 	int ret;
8610 
8611 	if (!perf_event_mmap_match(event, data))
8612 		return;
8613 
8614 	if (event->attr.mmap2) {
8615 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8616 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8617 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8618 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8619 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8620 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8621 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8622 	}
8623 
8624 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8625 	ret = perf_output_begin(&handle, &sample, event,
8626 				mmap_event->event_id.header.size);
8627 	if (ret)
8628 		goto out;
8629 
8630 	mmap_event->event_id.pid = perf_event_pid(event, current);
8631 	mmap_event->event_id.tid = perf_event_tid(event, current);
8632 
8633 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8634 
8635 	if (event->attr.mmap2 && use_build_id)
8636 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8637 
8638 	perf_output_put(&handle, mmap_event->event_id);
8639 
8640 	if (event->attr.mmap2) {
8641 		if (use_build_id) {
8642 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8643 
8644 			__output_copy(&handle, size, 4);
8645 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8646 		} else {
8647 			perf_output_put(&handle, mmap_event->maj);
8648 			perf_output_put(&handle, mmap_event->min);
8649 			perf_output_put(&handle, mmap_event->ino);
8650 			perf_output_put(&handle, mmap_event->ino_generation);
8651 		}
8652 		perf_output_put(&handle, mmap_event->prot);
8653 		perf_output_put(&handle, mmap_event->flags);
8654 	}
8655 
8656 	__output_copy(&handle, mmap_event->file_name,
8657 				   mmap_event->file_size);
8658 
8659 	perf_event__output_id_sample(event, &handle, &sample);
8660 
8661 	perf_output_end(&handle);
8662 out:
8663 	mmap_event->event_id.header.size = size;
8664 	mmap_event->event_id.header.type = type;
8665 }
8666 
8667 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8668 {
8669 	struct vm_area_struct *vma = mmap_event->vma;
8670 	struct file *file = vma->vm_file;
8671 	int maj = 0, min = 0;
8672 	u64 ino = 0, gen = 0;
8673 	u32 prot = 0, flags = 0;
8674 	unsigned int size;
8675 	char tmp[16];
8676 	char *buf = NULL;
8677 	char *name = NULL;
8678 
8679 	if (vma->vm_flags & VM_READ)
8680 		prot |= PROT_READ;
8681 	if (vma->vm_flags & VM_WRITE)
8682 		prot |= PROT_WRITE;
8683 	if (vma->vm_flags & VM_EXEC)
8684 		prot |= PROT_EXEC;
8685 
8686 	if (vma->vm_flags & VM_MAYSHARE)
8687 		flags = MAP_SHARED;
8688 	else
8689 		flags = MAP_PRIVATE;
8690 
8691 	if (vma->vm_flags & VM_LOCKED)
8692 		flags |= MAP_LOCKED;
8693 	if (is_vm_hugetlb_page(vma))
8694 		flags |= MAP_HUGETLB;
8695 
8696 	if (file) {
8697 		struct inode *inode;
8698 		dev_t dev;
8699 
8700 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8701 		if (!buf) {
8702 			name = "//enomem";
8703 			goto cpy_name;
8704 		}
8705 		/*
8706 		 * d_path() works from the end of the rb backwards, so we
8707 		 * need to add enough zero bytes after the string to handle
8708 		 * the 64bit alignment we do later.
8709 		 */
8710 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8711 		if (IS_ERR(name)) {
8712 			name = "//toolong";
8713 			goto cpy_name;
8714 		}
8715 		inode = file_inode(vma->vm_file);
8716 		dev = inode->i_sb->s_dev;
8717 		ino = inode->i_ino;
8718 		gen = inode->i_generation;
8719 		maj = MAJOR(dev);
8720 		min = MINOR(dev);
8721 
8722 		goto got_name;
8723 	} else {
8724 		if (vma->vm_ops && vma->vm_ops->name)
8725 			name = (char *) vma->vm_ops->name(vma);
8726 		if (!name)
8727 			name = (char *)arch_vma_name(vma);
8728 		if (!name) {
8729 			if (vma_is_initial_heap(vma))
8730 				name = "[heap]";
8731 			else if (vma_is_initial_stack(vma))
8732 				name = "[stack]";
8733 			else
8734 				name = "//anon";
8735 		}
8736 	}
8737 
8738 cpy_name:
8739 	strscpy(tmp, name, sizeof(tmp));
8740 	name = tmp;
8741 got_name:
8742 	/*
8743 	 * Since our buffer works in 8 byte units we need to align our string
8744 	 * size to a multiple of 8. However, we must guarantee the tail end is
8745 	 * zero'd out to avoid leaking random bits to userspace.
8746 	 */
8747 	size = strlen(name)+1;
8748 	while (!IS_ALIGNED(size, sizeof(u64)))
8749 		name[size++] = '\0';
8750 
8751 	mmap_event->file_name = name;
8752 	mmap_event->file_size = size;
8753 	mmap_event->maj = maj;
8754 	mmap_event->min = min;
8755 	mmap_event->ino = ino;
8756 	mmap_event->ino_generation = gen;
8757 	mmap_event->prot = prot;
8758 	mmap_event->flags = flags;
8759 
8760 	if (!(vma->vm_flags & VM_EXEC))
8761 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8762 
8763 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8764 
8765 	if (atomic_read(&nr_build_id_events))
8766 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8767 
8768 	perf_iterate_sb(perf_event_mmap_output,
8769 		       mmap_event,
8770 		       NULL);
8771 
8772 	kfree(buf);
8773 }
8774 
8775 /*
8776  * Check whether inode and address range match filter criteria.
8777  */
8778 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8779 				     struct file *file, unsigned long offset,
8780 				     unsigned long size)
8781 {
8782 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8783 	if (!filter->path.dentry)
8784 		return false;
8785 
8786 	if (d_inode(filter->path.dentry) != file_inode(file))
8787 		return false;
8788 
8789 	if (filter->offset > offset + size)
8790 		return false;
8791 
8792 	if (filter->offset + filter->size < offset)
8793 		return false;
8794 
8795 	return true;
8796 }
8797 
8798 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8799 					struct vm_area_struct *vma,
8800 					struct perf_addr_filter_range *fr)
8801 {
8802 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8803 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8804 	struct file *file = vma->vm_file;
8805 
8806 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8807 		return false;
8808 
8809 	if (filter->offset < off) {
8810 		fr->start = vma->vm_start;
8811 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8812 	} else {
8813 		fr->start = vma->vm_start + filter->offset - off;
8814 		fr->size = min(vma->vm_end - fr->start, filter->size);
8815 	}
8816 
8817 	return true;
8818 }
8819 
8820 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8821 {
8822 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8823 	struct vm_area_struct *vma = data;
8824 	struct perf_addr_filter *filter;
8825 	unsigned int restart = 0, count = 0;
8826 	unsigned long flags;
8827 
8828 	if (!has_addr_filter(event))
8829 		return;
8830 
8831 	if (!vma->vm_file)
8832 		return;
8833 
8834 	raw_spin_lock_irqsave(&ifh->lock, flags);
8835 	list_for_each_entry(filter, &ifh->list, entry) {
8836 		if (perf_addr_filter_vma_adjust(filter, vma,
8837 						&event->addr_filter_ranges[count]))
8838 			restart++;
8839 
8840 		count++;
8841 	}
8842 
8843 	if (restart)
8844 		event->addr_filters_gen++;
8845 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8846 
8847 	if (restart)
8848 		perf_event_stop(event, 1);
8849 }
8850 
8851 /*
8852  * Adjust all task's events' filters to the new vma
8853  */
8854 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8855 {
8856 	struct perf_event_context *ctx;
8857 
8858 	/*
8859 	 * Data tracing isn't supported yet and as such there is no need
8860 	 * to keep track of anything that isn't related to executable code:
8861 	 */
8862 	if (!(vma->vm_flags & VM_EXEC))
8863 		return;
8864 
8865 	rcu_read_lock();
8866 	ctx = rcu_dereference(current->perf_event_ctxp);
8867 	if (ctx)
8868 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8869 	rcu_read_unlock();
8870 }
8871 
8872 void perf_event_mmap(struct vm_area_struct *vma)
8873 {
8874 	struct perf_mmap_event mmap_event;
8875 
8876 	if (!atomic_read(&nr_mmap_events))
8877 		return;
8878 
8879 	mmap_event = (struct perf_mmap_event){
8880 		.vma	= vma,
8881 		/* .file_name */
8882 		/* .file_size */
8883 		.event_id  = {
8884 			.header = {
8885 				.type = PERF_RECORD_MMAP,
8886 				.misc = PERF_RECORD_MISC_USER,
8887 				/* .size */
8888 			},
8889 			/* .pid */
8890 			/* .tid */
8891 			.start  = vma->vm_start,
8892 			.len    = vma->vm_end - vma->vm_start,
8893 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8894 		},
8895 		/* .maj (attr_mmap2 only) */
8896 		/* .min (attr_mmap2 only) */
8897 		/* .ino (attr_mmap2 only) */
8898 		/* .ino_generation (attr_mmap2 only) */
8899 		/* .prot (attr_mmap2 only) */
8900 		/* .flags (attr_mmap2 only) */
8901 	};
8902 
8903 	perf_addr_filters_adjust(vma);
8904 	perf_event_mmap_event(&mmap_event);
8905 }
8906 
8907 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8908 			  unsigned long size, u64 flags)
8909 {
8910 	struct perf_output_handle handle;
8911 	struct perf_sample_data sample;
8912 	struct perf_aux_event {
8913 		struct perf_event_header	header;
8914 		u64				offset;
8915 		u64				size;
8916 		u64				flags;
8917 	} rec = {
8918 		.header = {
8919 			.type = PERF_RECORD_AUX,
8920 			.misc = 0,
8921 			.size = sizeof(rec),
8922 		},
8923 		.offset		= head,
8924 		.size		= size,
8925 		.flags		= flags,
8926 	};
8927 	int ret;
8928 
8929 	perf_event_header__init_id(&rec.header, &sample, event);
8930 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8931 
8932 	if (ret)
8933 		return;
8934 
8935 	perf_output_put(&handle, rec);
8936 	perf_event__output_id_sample(event, &handle, &sample);
8937 
8938 	perf_output_end(&handle);
8939 }
8940 
8941 /*
8942  * Lost/dropped samples logging
8943  */
8944 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8945 {
8946 	struct perf_output_handle handle;
8947 	struct perf_sample_data sample;
8948 	int ret;
8949 
8950 	struct {
8951 		struct perf_event_header	header;
8952 		u64				lost;
8953 	} lost_samples_event = {
8954 		.header = {
8955 			.type = PERF_RECORD_LOST_SAMPLES,
8956 			.misc = 0,
8957 			.size = sizeof(lost_samples_event),
8958 		},
8959 		.lost		= lost,
8960 	};
8961 
8962 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8963 
8964 	ret = perf_output_begin(&handle, &sample, event,
8965 				lost_samples_event.header.size);
8966 	if (ret)
8967 		return;
8968 
8969 	perf_output_put(&handle, lost_samples_event);
8970 	perf_event__output_id_sample(event, &handle, &sample);
8971 	perf_output_end(&handle);
8972 }
8973 
8974 /*
8975  * context_switch tracking
8976  */
8977 
8978 struct perf_switch_event {
8979 	struct task_struct	*task;
8980 	struct task_struct	*next_prev;
8981 
8982 	struct {
8983 		struct perf_event_header	header;
8984 		u32				next_prev_pid;
8985 		u32				next_prev_tid;
8986 	} event_id;
8987 };
8988 
8989 static int perf_event_switch_match(struct perf_event *event)
8990 {
8991 	return event->attr.context_switch;
8992 }
8993 
8994 static void perf_event_switch_output(struct perf_event *event, void *data)
8995 {
8996 	struct perf_switch_event *se = data;
8997 	struct perf_output_handle handle;
8998 	struct perf_sample_data sample;
8999 	int ret;
9000 
9001 	if (!perf_event_switch_match(event))
9002 		return;
9003 
9004 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9005 	if (event->ctx->task) {
9006 		se->event_id.header.type = PERF_RECORD_SWITCH;
9007 		se->event_id.header.size = sizeof(se->event_id.header);
9008 	} else {
9009 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9010 		se->event_id.header.size = sizeof(se->event_id);
9011 		se->event_id.next_prev_pid =
9012 					perf_event_pid(event, se->next_prev);
9013 		se->event_id.next_prev_tid =
9014 					perf_event_tid(event, se->next_prev);
9015 	}
9016 
9017 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9018 
9019 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9020 	if (ret)
9021 		return;
9022 
9023 	if (event->ctx->task)
9024 		perf_output_put(&handle, se->event_id.header);
9025 	else
9026 		perf_output_put(&handle, se->event_id);
9027 
9028 	perf_event__output_id_sample(event, &handle, &sample);
9029 
9030 	perf_output_end(&handle);
9031 }
9032 
9033 static void perf_event_switch(struct task_struct *task,
9034 			      struct task_struct *next_prev, bool sched_in)
9035 {
9036 	struct perf_switch_event switch_event;
9037 
9038 	/* N.B. caller checks nr_switch_events != 0 */
9039 
9040 	switch_event = (struct perf_switch_event){
9041 		.task		= task,
9042 		.next_prev	= next_prev,
9043 		.event_id	= {
9044 			.header = {
9045 				/* .type */
9046 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9047 				/* .size */
9048 			},
9049 			/* .next_prev_pid */
9050 			/* .next_prev_tid */
9051 		},
9052 	};
9053 
9054 	if (!sched_in && task->on_rq) {
9055 		switch_event.event_id.header.misc |=
9056 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9057 	}
9058 
9059 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9060 }
9061 
9062 /*
9063  * IRQ throttle logging
9064  */
9065 
9066 static void perf_log_throttle(struct perf_event *event, int enable)
9067 {
9068 	struct perf_output_handle handle;
9069 	struct perf_sample_data sample;
9070 	int ret;
9071 
9072 	struct {
9073 		struct perf_event_header	header;
9074 		u64				time;
9075 		u64				id;
9076 		u64				stream_id;
9077 	} throttle_event = {
9078 		.header = {
9079 			.type = PERF_RECORD_THROTTLE,
9080 			.misc = 0,
9081 			.size = sizeof(throttle_event),
9082 		},
9083 		.time		= perf_event_clock(event),
9084 		.id		= primary_event_id(event),
9085 		.stream_id	= event->id,
9086 	};
9087 
9088 	if (enable)
9089 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9090 
9091 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9092 
9093 	ret = perf_output_begin(&handle, &sample, event,
9094 				throttle_event.header.size);
9095 	if (ret)
9096 		return;
9097 
9098 	perf_output_put(&handle, throttle_event);
9099 	perf_event__output_id_sample(event, &handle, &sample);
9100 	perf_output_end(&handle);
9101 }
9102 
9103 /*
9104  * ksymbol register/unregister tracking
9105  */
9106 
9107 struct perf_ksymbol_event {
9108 	const char	*name;
9109 	int		name_len;
9110 	struct {
9111 		struct perf_event_header        header;
9112 		u64				addr;
9113 		u32				len;
9114 		u16				ksym_type;
9115 		u16				flags;
9116 	} event_id;
9117 };
9118 
9119 static int perf_event_ksymbol_match(struct perf_event *event)
9120 {
9121 	return event->attr.ksymbol;
9122 }
9123 
9124 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9125 {
9126 	struct perf_ksymbol_event *ksymbol_event = data;
9127 	struct perf_output_handle handle;
9128 	struct perf_sample_data sample;
9129 	int ret;
9130 
9131 	if (!perf_event_ksymbol_match(event))
9132 		return;
9133 
9134 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9135 				   &sample, event);
9136 	ret = perf_output_begin(&handle, &sample, event,
9137 				ksymbol_event->event_id.header.size);
9138 	if (ret)
9139 		return;
9140 
9141 	perf_output_put(&handle, ksymbol_event->event_id);
9142 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9143 	perf_event__output_id_sample(event, &handle, &sample);
9144 
9145 	perf_output_end(&handle);
9146 }
9147 
9148 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9149 			const char *sym)
9150 {
9151 	struct perf_ksymbol_event ksymbol_event;
9152 	char name[KSYM_NAME_LEN];
9153 	u16 flags = 0;
9154 	int name_len;
9155 
9156 	if (!atomic_read(&nr_ksymbol_events))
9157 		return;
9158 
9159 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9160 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9161 		goto err;
9162 
9163 	strscpy(name, sym, KSYM_NAME_LEN);
9164 	name_len = strlen(name) + 1;
9165 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9166 		name[name_len++] = '\0';
9167 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9168 
9169 	if (unregister)
9170 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9171 
9172 	ksymbol_event = (struct perf_ksymbol_event){
9173 		.name = name,
9174 		.name_len = name_len,
9175 		.event_id = {
9176 			.header = {
9177 				.type = PERF_RECORD_KSYMBOL,
9178 				.size = sizeof(ksymbol_event.event_id) +
9179 					name_len,
9180 			},
9181 			.addr = addr,
9182 			.len = len,
9183 			.ksym_type = ksym_type,
9184 			.flags = flags,
9185 		},
9186 	};
9187 
9188 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9189 	return;
9190 err:
9191 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9192 }
9193 
9194 /*
9195  * bpf program load/unload tracking
9196  */
9197 
9198 struct perf_bpf_event {
9199 	struct bpf_prog	*prog;
9200 	struct {
9201 		struct perf_event_header        header;
9202 		u16				type;
9203 		u16				flags;
9204 		u32				id;
9205 		u8				tag[BPF_TAG_SIZE];
9206 	} event_id;
9207 };
9208 
9209 static int perf_event_bpf_match(struct perf_event *event)
9210 {
9211 	return event->attr.bpf_event;
9212 }
9213 
9214 static void perf_event_bpf_output(struct perf_event *event, void *data)
9215 {
9216 	struct perf_bpf_event *bpf_event = data;
9217 	struct perf_output_handle handle;
9218 	struct perf_sample_data sample;
9219 	int ret;
9220 
9221 	if (!perf_event_bpf_match(event))
9222 		return;
9223 
9224 	perf_event_header__init_id(&bpf_event->event_id.header,
9225 				   &sample, event);
9226 	ret = perf_output_begin(&handle, &sample, event,
9227 				bpf_event->event_id.header.size);
9228 	if (ret)
9229 		return;
9230 
9231 	perf_output_put(&handle, bpf_event->event_id);
9232 	perf_event__output_id_sample(event, &handle, &sample);
9233 
9234 	perf_output_end(&handle);
9235 }
9236 
9237 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9238 					 enum perf_bpf_event_type type)
9239 {
9240 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9241 	int i;
9242 
9243 	if (prog->aux->func_cnt == 0) {
9244 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9245 				   (u64)(unsigned long)prog->bpf_func,
9246 				   prog->jited_len, unregister,
9247 				   prog->aux->ksym.name);
9248 	} else {
9249 		for (i = 0; i < prog->aux->func_cnt; i++) {
9250 			struct bpf_prog *subprog = prog->aux->func[i];
9251 
9252 			perf_event_ksymbol(
9253 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9254 				(u64)(unsigned long)subprog->bpf_func,
9255 				subprog->jited_len, unregister,
9256 				subprog->aux->ksym.name);
9257 		}
9258 	}
9259 }
9260 
9261 void perf_event_bpf_event(struct bpf_prog *prog,
9262 			  enum perf_bpf_event_type type,
9263 			  u16 flags)
9264 {
9265 	struct perf_bpf_event bpf_event;
9266 
9267 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9268 	    type >= PERF_BPF_EVENT_MAX)
9269 		return;
9270 
9271 	switch (type) {
9272 	case PERF_BPF_EVENT_PROG_LOAD:
9273 	case PERF_BPF_EVENT_PROG_UNLOAD:
9274 		if (atomic_read(&nr_ksymbol_events))
9275 			perf_event_bpf_emit_ksymbols(prog, type);
9276 		break;
9277 	default:
9278 		break;
9279 	}
9280 
9281 	if (!atomic_read(&nr_bpf_events))
9282 		return;
9283 
9284 	bpf_event = (struct perf_bpf_event){
9285 		.prog = prog,
9286 		.event_id = {
9287 			.header = {
9288 				.type = PERF_RECORD_BPF_EVENT,
9289 				.size = sizeof(bpf_event.event_id),
9290 			},
9291 			.type = type,
9292 			.flags = flags,
9293 			.id = prog->aux->id,
9294 		},
9295 	};
9296 
9297 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9298 
9299 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9300 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9301 }
9302 
9303 struct perf_text_poke_event {
9304 	const void		*old_bytes;
9305 	const void		*new_bytes;
9306 	size_t			pad;
9307 	u16			old_len;
9308 	u16			new_len;
9309 
9310 	struct {
9311 		struct perf_event_header	header;
9312 
9313 		u64				addr;
9314 	} event_id;
9315 };
9316 
9317 static int perf_event_text_poke_match(struct perf_event *event)
9318 {
9319 	return event->attr.text_poke;
9320 }
9321 
9322 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9323 {
9324 	struct perf_text_poke_event *text_poke_event = data;
9325 	struct perf_output_handle handle;
9326 	struct perf_sample_data sample;
9327 	u64 padding = 0;
9328 	int ret;
9329 
9330 	if (!perf_event_text_poke_match(event))
9331 		return;
9332 
9333 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9334 
9335 	ret = perf_output_begin(&handle, &sample, event,
9336 				text_poke_event->event_id.header.size);
9337 	if (ret)
9338 		return;
9339 
9340 	perf_output_put(&handle, text_poke_event->event_id);
9341 	perf_output_put(&handle, text_poke_event->old_len);
9342 	perf_output_put(&handle, text_poke_event->new_len);
9343 
9344 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9345 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9346 
9347 	if (text_poke_event->pad)
9348 		__output_copy(&handle, &padding, text_poke_event->pad);
9349 
9350 	perf_event__output_id_sample(event, &handle, &sample);
9351 
9352 	perf_output_end(&handle);
9353 }
9354 
9355 void perf_event_text_poke(const void *addr, const void *old_bytes,
9356 			  size_t old_len, const void *new_bytes, size_t new_len)
9357 {
9358 	struct perf_text_poke_event text_poke_event;
9359 	size_t tot, pad;
9360 
9361 	if (!atomic_read(&nr_text_poke_events))
9362 		return;
9363 
9364 	tot  = sizeof(text_poke_event.old_len) + old_len;
9365 	tot += sizeof(text_poke_event.new_len) + new_len;
9366 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9367 
9368 	text_poke_event = (struct perf_text_poke_event){
9369 		.old_bytes    = old_bytes,
9370 		.new_bytes    = new_bytes,
9371 		.pad          = pad,
9372 		.old_len      = old_len,
9373 		.new_len      = new_len,
9374 		.event_id  = {
9375 			.header = {
9376 				.type = PERF_RECORD_TEXT_POKE,
9377 				.misc = PERF_RECORD_MISC_KERNEL,
9378 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9379 			},
9380 			.addr = (unsigned long)addr,
9381 		},
9382 	};
9383 
9384 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9385 }
9386 
9387 void perf_event_itrace_started(struct perf_event *event)
9388 {
9389 	event->attach_state |= PERF_ATTACH_ITRACE;
9390 }
9391 
9392 static void perf_log_itrace_start(struct perf_event *event)
9393 {
9394 	struct perf_output_handle handle;
9395 	struct perf_sample_data sample;
9396 	struct perf_aux_event {
9397 		struct perf_event_header        header;
9398 		u32				pid;
9399 		u32				tid;
9400 	} rec;
9401 	int ret;
9402 
9403 	if (event->parent)
9404 		event = event->parent;
9405 
9406 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9407 	    event->attach_state & PERF_ATTACH_ITRACE)
9408 		return;
9409 
9410 	rec.header.type	= PERF_RECORD_ITRACE_START;
9411 	rec.header.misc	= 0;
9412 	rec.header.size	= sizeof(rec);
9413 	rec.pid	= perf_event_pid(event, current);
9414 	rec.tid	= perf_event_tid(event, current);
9415 
9416 	perf_event_header__init_id(&rec.header, &sample, event);
9417 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9418 
9419 	if (ret)
9420 		return;
9421 
9422 	perf_output_put(&handle, rec);
9423 	perf_event__output_id_sample(event, &handle, &sample);
9424 
9425 	perf_output_end(&handle);
9426 }
9427 
9428 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9429 {
9430 	struct perf_output_handle handle;
9431 	struct perf_sample_data sample;
9432 	struct perf_aux_event {
9433 		struct perf_event_header        header;
9434 		u64				hw_id;
9435 	} rec;
9436 	int ret;
9437 
9438 	if (event->parent)
9439 		event = event->parent;
9440 
9441 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9442 	rec.header.misc	= 0;
9443 	rec.header.size	= sizeof(rec);
9444 	rec.hw_id	= hw_id;
9445 
9446 	perf_event_header__init_id(&rec.header, &sample, event);
9447 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9448 
9449 	if (ret)
9450 		return;
9451 
9452 	perf_output_put(&handle, rec);
9453 	perf_event__output_id_sample(event, &handle, &sample);
9454 
9455 	perf_output_end(&handle);
9456 }
9457 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9458 
9459 static int
9460 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9461 {
9462 	struct hw_perf_event *hwc = &event->hw;
9463 	int ret = 0;
9464 	u64 seq;
9465 
9466 	seq = __this_cpu_read(perf_throttled_seq);
9467 	if (seq != hwc->interrupts_seq) {
9468 		hwc->interrupts_seq = seq;
9469 		hwc->interrupts = 1;
9470 	} else {
9471 		hwc->interrupts++;
9472 		if (unlikely(throttle &&
9473 			     hwc->interrupts > max_samples_per_tick)) {
9474 			__this_cpu_inc(perf_throttled_count);
9475 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9476 			hwc->interrupts = MAX_INTERRUPTS;
9477 			perf_log_throttle(event, 0);
9478 			ret = 1;
9479 		}
9480 	}
9481 
9482 	if (event->attr.freq) {
9483 		u64 now = perf_clock();
9484 		s64 delta = now - hwc->freq_time_stamp;
9485 
9486 		hwc->freq_time_stamp = now;
9487 
9488 		if (delta > 0 && delta < 2*TICK_NSEC)
9489 			perf_adjust_period(event, delta, hwc->last_period, true);
9490 	}
9491 
9492 	return ret;
9493 }
9494 
9495 int perf_event_account_interrupt(struct perf_event *event)
9496 {
9497 	return __perf_event_account_interrupt(event, 1);
9498 }
9499 
9500 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9501 {
9502 	/*
9503 	 * Due to interrupt latency (AKA "skid"), we may enter the
9504 	 * kernel before taking an overflow, even if the PMU is only
9505 	 * counting user events.
9506 	 */
9507 	if (event->attr.exclude_kernel && !user_mode(regs))
9508 		return false;
9509 
9510 	return true;
9511 }
9512 
9513 /*
9514  * Generic event overflow handling, sampling.
9515  */
9516 
9517 static int __perf_event_overflow(struct perf_event *event,
9518 				 int throttle, struct perf_sample_data *data,
9519 				 struct pt_regs *regs)
9520 {
9521 	int events = atomic_read(&event->event_limit);
9522 	int ret = 0;
9523 
9524 	/*
9525 	 * Non-sampling counters might still use the PMI to fold short
9526 	 * hardware counters, ignore those.
9527 	 */
9528 	if (unlikely(!is_sampling_event(event)))
9529 		return 0;
9530 
9531 	ret = __perf_event_account_interrupt(event, throttle);
9532 
9533 	/*
9534 	 * XXX event_limit might not quite work as expected on inherited
9535 	 * events
9536 	 */
9537 
9538 	event->pending_kill = POLL_IN;
9539 	if (events && atomic_dec_and_test(&event->event_limit)) {
9540 		ret = 1;
9541 		event->pending_kill = POLL_HUP;
9542 		perf_event_disable_inatomic(event);
9543 	}
9544 
9545 	if (event->attr.sigtrap) {
9546 		/*
9547 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9548 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9549 		 * it is the first event, on the other hand, we should also not
9550 		 * trigger the WARN or override the data address.
9551 		 */
9552 		bool valid_sample = sample_is_allowed(event, regs);
9553 		unsigned int pending_id = 1;
9554 
9555 		if (regs)
9556 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9557 		if (!event->pending_sigtrap) {
9558 			event->pending_sigtrap = pending_id;
9559 			local_inc(&event->ctx->nr_pending);
9560 		} else if (event->attr.exclude_kernel && valid_sample) {
9561 			/*
9562 			 * Should not be able to return to user space without
9563 			 * consuming pending_sigtrap; with exceptions:
9564 			 *
9565 			 *  1. Where !exclude_kernel, events can overflow again
9566 			 *     in the kernel without returning to user space.
9567 			 *
9568 			 *  2. Events that can overflow again before the IRQ-
9569 			 *     work without user space progress (e.g. hrtimer).
9570 			 *     To approximate progress (with false negatives),
9571 			 *     check 32-bit hash of the current IP.
9572 			 */
9573 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9574 		}
9575 
9576 		event->pending_addr = 0;
9577 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9578 			event->pending_addr = data->addr;
9579 		irq_work_queue(&event->pending_irq);
9580 	}
9581 
9582 	READ_ONCE(event->overflow_handler)(event, data, regs);
9583 
9584 	if (*perf_event_fasync(event) && event->pending_kill) {
9585 		event->pending_wakeup = 1;
9586 		irq_work_queue(&event->pending_irq);
9587 	}
9588 
9589 	return ret;
9590 }
9591 
9592 int perf_event_overflow(struct perf_event *event,
9593 			struct perf_sample_data *data,
9594 			struct pt_regs *regs)
9595 {
9596 	return __perf_event_overflow(event, 1, data, regs);
9597 }
9598 
9599 /*
9600  * Generic software event infrastructure
9601  */
9602 
9603 struct swevent_htable {
9604 	struct swevent_hlist		*swevent_hlist;
9605 	struct mutex			hlist_mutex;
9606 	int				hlist_refcount;
9607 
9608 	/* Recursion avoidance in each contexts */
9609 	int				recursion[PERF_NR_CONTEXTS];
9610 };
9611 
9612 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9613 
9614 /*
9615  * We directly increment event->count and keep a second value in
9616  * event->hw.period_left to count intervals. This period event
9617  * is kept in the range [-sample_period, 0] so that we can use the
9618  * sign as trigger.
9619  */
9620 
9621 u64 perf_swevent_set_period(struct perf_event *event)
9622 {
9623 	struct hw_perf_event *hwc = &event->hw;
9624 	u64 period = hwc->last_period;
9625 	u64 nr, offset;
9626 	s64 old, val;
9627 
9628 	hwc->last_period = hwc->sample_period;
9629 
9630 	old = local64_read(&hwc->period_left);
9631 	do {
9632 		val = old;
9633 		if (val < 0)
9634 			return 0;
9635 
9636 		nr = div64_u64(period + val, period);
9637 		offset = nr * period;
9638 		val -= offset;
9639 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9640 
9641 	return nr;
9642 }
9643 
9644 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9645 				    struct perf_sample_data *data,
9646 				    struct pt_regs *regs)
9647 {
9648 	struct hw_perf_event *hwc = &event->hw;
9649 	int throttle = 0;
9650 
9651 	if (!overflow)
9652 		overflow = perf_swevent_set_period(event);
9653 
9654 	if (hwc->interrupts == MAX_INTERRUPTS)
9655 		return;
9656 
9657 	for (; overflow; overflow--) {
9658 		if (__perf_event_overflow(event, throttle,
9659 					    data, regs)) {
9660 			/*
9661 			 * We inhibit the overflow from happening when
9662 			 * hwc->interrupts == MAX_INTERRUPTS.
9663 			 */
9664 			break;
9665 		}
9666 		throttle = 1;
9667 	}
9668 }
9669 
9670 static void perf_swevent_event(struct perf_event *event, u64 nr,
9671 			       struct perf_sample_data *data,
9672 			       struct pt_regs *regs)
9673 {
9674 	struct hw_perf_event *hwc = &event->hw;
9675 
9676 	local64_add(nr, &event->count);
9677 
9678 	if (!regs)
9679 		return;
9680 
9681 	if (!is_sampling_event(event))
9682 		return;
9683 
9684 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9685 		data->period = nr;
9686 		return perf_swevent_overflow(event, 1, data, regs);
9687 	} else
9688 		data->period = event->hw.last_period;
9689 
9690 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9691 		return perf_swevent_overflow(event, 1, data, regs);
9692 
9693 	if (local64_add_negative(nr, &hwc->period_left))
9694 		return;
9695 
9696 	perf_swevent_overflow(event, 0, data, regs);
9697 }
9698 
9699 static int perf_exclude_event(struct perf_event *event,
9700 			      struct pt_regs *regs)
9701 {
9702 	if (event->hw.state & PERF_HES_STOPPED)
9703 		return 1;
9704 
9705 	if (regs) {
9706 		if (event->attr.exclude_user && user_mode(regs))
9707 			return 1;
9708 
9709 		if (event->attr.exclude_kernel && !user_mode(regs))
9710 			return 1;
9711 	}
9712 
9713 	return 0;
9714 }
9715 
9716 static int perf_swevent_match(struct perf_event *event,
9717 				enum perf_type_id type,
9718 				u32 event_id,
9719 				struct perf_sample_data *data,
9720 				struct pt_regs *regs)
9721 {
9722 	if (event->attr.type != type)
9723 		return 0;
9724 
9725 	if (event->attr.config != event_id)
9726 		return 0;
9727 
9728 	if (perf_exclude_event(event, regs))
9729 		return 0;
9730 
9731 	return 1;
9732 }
9733 
9734 static inline u64 swevent_hash(u64 type, u32 event_id)
9735 {
9736 	u64 val = event_id | (type << 32);
9737 
9738 	return hash_64(val, SWEVENT_HLIST_BITS);
9739 }
9740 
9741 static inline struct hlist_head *
9742 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9743 {
9744 	u64 hash = swevent_hash(type, event_id);
9745 
9746 	return &hlist->heads[hash];
9747 }
9748 
9749 /* For the read side: events when they trigger */
9750 static inline struct hlist_head *
9751 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9752 {
9753 	struct swevent_hlist *hlist;
9754 
9755 	hlist = rcu_dereference(swhash->swevent_hlist);
9756 	if (!hlist)
9757 		return NULL;
9758 
9759 	return __find_swevent_head(hlist, type, event_id);
9760 }
9761 
9762 /* For the event head insertion and removal in the hlist */
9763 static inline struct hlist_head *
9764 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9765 {
9766 	struct swevent_hlist *hlist;
9767 	u32 event_id = event->attr.config;
9768 	u64 type = event->attr.type;
9769 
9770 	/*
9771 	 * Event scheduling is always serialized against hlist allocation
9772 	 * and release. Which makes the protected version suitable here.
9773 	 * The context lock guarantees that.
9774 	 */
9775 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9776 					  lockdep_is_held(&event->ctx->lock));
9777 	if (!hlist)
9778 		return NULL;
9779 
9780 	return __find_swevent_head(hlist, type, event_id);
9781 }
9782 
9783 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9784 				    u64 nr,
9785 				    struct perf_sample_data *data,
9786 				    struct pt_regs *regs)
9787 {
9788 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9789 	struct perf_event *event;
9790 	struct hlist_head *head;
9791 
9792 	rcu_read_lock();
9793 	head = find_swevent_head_rcu(swhash, type, event_id);
9794 	if (!head)
9795 		goto end;
9796 
9797 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9798 		if (perf_swevent_match(event, type, event_id, data, regs))
9799 			perf_swevent_event(event, nr, data, regs);
9800 	}
9801 end:
9802 	rcu_read_unlock();
9803 }
9804 
9805 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9806 
9807 int perf_swevent_get_recursion_context(void)
9808 {
9809 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9810 
9811 	return get_recursion_context(swhash->recursion);
9812 }
9813 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9814 
9815 void perf_swevent_put_recursion_context(int rctx)
9816 {
9817 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9818 
9819 	put_recursion_context(swhash->recursion, rctx);
9820 }
9821 
9822 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9823 {
9824 	struct perf_sample_data data;
9825 
9826 	if (WARN_ON_ONCE(!regs))
9827 		return;
9828 
9829 	perf_sample_data_init(&data, addr, 0);
9830 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9831 }
9832 
9833 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9834 {
9835 	int rctx;
9836 
9837 	preempt_disable_notrace();
9838 	rctx = perf_swevent_get_recursion_context();
9839 	if (unlikely(rctx < 0))
9840 		goto fail;
9841 
9842 	___perf_sw_event(event_id, nr, regs, addr);
9843 
9844 	perf_swevent_put_recursion_context(rctx);
9845 fail:
9846 	preempt_enable_notrace();
9847 }
9848 
9849 static void perf_swevent_read(struct perf_event *event)
9850 {
9851 }
9852 
9853 static int perf_swevent_add(struct perf_event *event, int flags)
9854 {
9855 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9856 	struct hw_perf_event *hwc = &event->hw;
9857 	struct hlist_head *head;
9858 
9859 	if (is_sampling_event(event)) {
9860 		hwc->last_period = hwc->sample_period;
9861 		perf_swevent_set_period(event);
9862 	}
9863 
9864 	hwc->state = !(flags & PERF_EF_START);
9865 
9866 	head = find_swevent_head(swhash, event);
9867 	if (WARN_ON_ONCE(!head))
9868 		return -EINVAL;
9869 
9870 	hlist_add_head_rcu(&event->hlist_entry, head);
9871 	perf_event_update_userpage(event);
9872 
9873 	return 0;
9874 }
9875 
9876 static void perf_swevent_del(struct perf_event *event, int flags)
9877 {
9878 	hlist_del_rcu(&event->hlist_entry);
9879 }
9880 
9881 static void perf_swevent_start(struct perf_event *event, int flags)
9882 {
9883 	event->hw.state = 0;
9884 }
9885 
9886 static void perf_swevent_stop(struct perf_event *event, int flags)
9887 {
9888 	event->hw.state = PERF_HES_STOPPED;
9889 }
9890 
9891 /* Deref the hlist from the update side */
9892 static inline struct swevent_hlist *
9893 swevent_hlist_deref(struct swevent_htable *swhash)
9894 {
9895 	return rcu_dereference_protected(swhash->swevent_hlist,
9896 					 lockdep_is_held(&swhash->hlist_mutex));
9897 }
9898 
9899 static void swevent_hlist_release(struct swevent_htable *swhash)
9900 {
9901 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9902 
9903 	if (!hlist)
9904 		return;
9905 
9906 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9907 	kfree_rcu(hlist, rcu_head);
9908 }
9909 
9910 static void swevent_hlist_put_cpu(int cpu)
9911 {
9912 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9913 
9914 	mutex_lock(&swhash->hlist_mutex);
9915 
9916 	if (!--swhash->hlist_refcount)
9917 		swevent_hlist_release(swhash);
9918 
9919 	mutex_unlock(&swhash->hlist_mutex);
9920 }
9921 
9922 static void swevent_hlist_put(void)
9923 {
9924 	int cpu;
9925 
9926 	for_each_possible_cpu(cpu)
9927 		swevent_hlist_put_cpu(cpu);
9928 }
9929 
9930 static int swevent_hlist_get_cpu(int cpu)
9931 {
9932 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9933 	int err = 0;
9934 
9935 	mutex_lock(&swhash->hlist_mutex);
9936 	if (!swevent_hlist_deref(swhash) &&
9937 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9938 		struct swevent_hlist *hlist;
9939 
9940 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9941 		if (!hlist) {
9942 			err = -ENOMEM;
9943 			goto exit;
9944 		}
9945 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9946 	}
9947 	swhash->hlist_refcount++;
9948 exit:
9949 	mutex_unlock(&swhash->hlist_mutex);
9950 
9951 	return err;
9952 }
9953 
9954 static int swevent_hlist_get(void)
9955 {
9956 	int err, cpu, failed_cpu;
9957 
9958 	mutex_lock(&pmus_lock);
9959 	for_each_possible_cpu(cpu) {
9960 		err = swevent_hlist_get_cpu(cpu);
9961 		if (err) {
9962 			failed_cpu = cpu;
9963 			goto fail;
9964 		}
9965 	}
9966 	mutex_unlock(&pmus_lock);
9967 	return 0;
9968 fail:
9969 	for_each_possible_cpu(cpu) {
9970 		if (cpu == failed_cpu)
9971 			break;
9972 		swevent_hlist_put_cpu(cpu);
9973 	}
9974 	mutex_unlock(&pmus_lock);
9975 	return err;
9976 }
9977 
9978 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9979 
9980 static void sw_perf_event_destroy(struct perf_event *event)
9981 {
9982 	u64 event_id = event->attr.config;
9983 
9984 	WARN_ON(event->parent);
9985 
9986 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9987 	swevent_hlist_put();
9988 }
9989 
9990 static struct pmu perf_cpu_clock; /* fwd declaration */
9991 static struct pmu perf_task_clock;
9992 
9993 static int perf_swevent_init(struct perf_event *event)
9994 {
9995 	u64 event_id = event->attr.config;
9996 
9997 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9998 		return -ENOENT;
9999 
10000 	/*
10001 	 * no branch sampling for software events
10002 	 */
10003 	if (has_branch_stack(event))
10004 		return -EOPNOTSUPP;
10005 
10006 	switch (event_id) {
10007 	case PERF_COUNT_SW_CPU_CLOCK:
10008 		event->attr.type = perf_cpu_clock.type;
10009 		return -ENOENT;
10010 	case PERF_COUNT_SW_TASK_CLOCK:
10011 		event->attr.type = perf_task_clock.type;
10012 		return -ENOENT;
10013 
10014 	default:
10015 		break;
10016 	}
10017 
10018 	if (event_id >= PERF_COUNT_SW_MAX)
10019 		return -ENOENT;
10020 
10021 	if (!event->parent) {
10022 		int err;
10023 
10024 		err = swevent_hlist_get();
10025 		if (err)
10026 			return err;
10027 
10028 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10029 		event->destroy = sw_perf_event_destroy;
10030 	}
10031 
10032 	return 0;
10033 }
10034 
10035 static struct pmu perf_swevent = {
10036 	.task_ctx_nr	= perf_sw_context,
10037 
10038 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10039 
10040 	.event_init	= perf_swevent_init,
10041 	.add		= perf_swevent_add,
10042 	.del		= perf_swevent_del,
10043 	.start		= perf_swevent_start,
10044 	.stop		= perf_swevent_stop,
10045 	.read		= perf_swevent_read,
10046 };
10047 
10048 #ifdef CONFIG_EVENT_TRACING
10049 
10050 static void tp_perf_event_destroy(struct perf_event *event)
10051 {
10052 	perf_trace_destroy(event);
10053 }
10054 
10055 static int perf_tp_event_init(struct perf_event *event)
10056 {
10057 	int err;
10058 
10059 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10060 		return -ENOENT;
10061 
10062 	/*
10063 	 * no branch sampling for tracepoint events
10064 	 */
10065 	if (has_branch_stack(event))
10066 		return -EOPNOTSUPP;
10067 
10068 	err = perf_trace_init(event);
10069 	if (err)
10070 		return err;
10071 
10072 	event->destroy = tp_perf_event_destroy;
10073 
10074 	return 0;
10075 }
10076 
10077 static struct pmu perf_tracepoint = {
10078 	.task_ctx_nr	= perf_sw_context,
10079 
10080 	.event_init	= perf_tp_event_init,
10081 	.add		= perf_trace_add,
10082 	.del		= perf_trace_del,
10083 	.start		= perf_swevent_start,
10084 	.stop		= perf_swevent_stop,
10085 	.read		= perf_swevent_read,
10086 };
10087 
10088 static int perf_tp_filter_match(struct perf_event *event,
10089 				struct perf_sample_data *data)
10090 {
10091 	void *record = data->raw->frag.data;
10092 
10093 	/* only top level events have filters set */
10094 	if (event->parent)
10095 		event = event->parent;
10096 
10097 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10098 		return 1;
10099 	return 0;
10100 }
10101 
10102 static int perf_tp_event_match(struct perf_event *event,
10103 				struct perf_sample_data *data,
10104 				struct pt_regs *regs)
10105 {
10106 	if (event->hw.state & PERF_HES_STOPPED)
10107 		return 0;
10108 	/*
10109 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10110 	 */
10111 	if (event->attr.exclude_kernel && !user_mode(regs))
10112 		return 0;
10113 
10114 	if (!perf_tp_filter_match(event, data))
10115 		return 0;
10116 
10117 	return 1;
10118 }
10119 
10120 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10121 			       struct trace_event_call *call, u64 count,
10122 			       struct pt_regs *regs, struct hlist_head *head,
10123 			       struct task_struct *task)
10124 {
10125 	if (bpf_prog_array_valid(call)) {
10126 		*(struct pt_regs **)raw_data = regs;
10127 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10128 			perf_swevent_put_recursion_context(rctx);
10129 			return;
10130 		}
10131 	}
10132 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10133 		      rctx, task);
10134 }
10135 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10136 
10137 static void __perf_tp_event_target_task(u64 count, void *record,
10138 					struct pt_regs *regs,
10139 					struct perf_sample_data *data,
10140 					struct perf_event *event)
10141 {
10142 	struct trace_entry *entry = record;
10143 
10144 	if (event->attr.config != entry->type)
10145 		return;
10146 	/* Cannot deliver synchronous signal to other task. */
10147 	if (event->attr.sigtrap)
10148 		return;
10149 	if (perf_tp_event_match(event, data, regs))
10150 		perf_swevent_event(event, count, data, regs);
10151 }
10152 
10153 static void perf_tp_event_target_task(u64 count, void *record,
10154 				      struct pt_regs *regs,
10155 				      struct perf_sample_data *data,
10156 				      struct perf_event_context *ctx)
10157 {
10158 	unsigned int cpu = smp_processor_id();
10159 	struct pmu *pmu = &perf_tracepoint;
10160 	struct perf_event *event, *sibling;
10161 
10162 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10163 		__perf_tp_event_target_task(count, record, regs, data, event);
10164 		for_each_sibling_event(sibling, event)
10165 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10166 	}
10167 
10168 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10169 		__perf_tp_event_target_task(count, record, regs, data, event);
10170 		for_each_sibling_event(sibling, event)
10171 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10172 	}
10173 }
10174 
10175 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10176 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10177 		   struct task_struct *task)
10178 {
10179 	struct perf_sample_data data;
10180 	struct perf_event *event;
10181 
10182 	struct perf_raw_record raw = {
10183 		.frag = {
10184 			.size = entry_size,
10185 			.data = record,
10186 		},
10187 	};
10188 
10189 	perf_sample_data_init(&data, 0, 0);
10190 	perf_sample_save_raw_data(&data, &raw);
10191 
10192 	perf_trace_buf_update(record, event_type);
10193 
10194 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10195 		if (perf_tp_event_match(event, &data, regs)) {
10196 			perf_swevent_event(event, count, &data, regs);
10197 
10198 			/*
10199 			 * Here use the same on-stack perf_sample_data,
10200 			 * some members in data are event-specific and
10201 			 * need to be re-computed for different sweveents.
10202 			 * Re-initialize data->sample_flags safely to avoid
10203 			 * the problem that next event skips preparing data
10204 			 * because data->sample_flags is set.
10205 			 */
10206 			perf_sample_data_init(&data, 0, 0);
10207 			perf_sample_save_raw_data(&data, &raw);
10208 		}
10209 	}
10210 
10211 	/*
10212 	 * If we got specified a target task, also iterate its context and
10213 	 * deliver this event there too.
10214 	 */
10215 	if (task && task != current) {
10216 		struct perf_event_context *ctx;
10217 
10218 		rcu_read_lock();
10219 		ctx = rcu_dereference(task->perf_event_ctxp);
10220 		if (!ctx)
10221 			goto unlock;
10222 
10223 		raw_spin_lock(&ctx->lock);
10224 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10225 		raw_spin_unlock(&ctx->lock);
10226 unlock:
10227 		rcu_read_unlock();
10228 	}
10229 
10230 	perf_swevent_put_recursion_context(rctx);
10231 }
10232 EXPORT_SYMBOL_GPL(perf_tp_event);
10233 
10234 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10235 /*
10236  * Flags in config, used by dynamic PMU kprobe and uprobe
10237  * The flags should match following PMU_FORMAT_ATTR().
10238  *
10239  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10240  *                               if not set, create kprobe/uprobe
10241  *
10242  * The following values specify a reference counter (or semaphore in the
10243  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10244  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10245  *
10246  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10247  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10248  */
10249 enum perf_probe_config {
10250 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10251 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10252 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10253 };
10254 
10255 PMU_FORMAT_ATTR(retprobe, "config:0");
10256 #endif
10257 
10258 #ifdef CONFIG_KPROBE_EVENTS
10259 static struct attribute *kprobe_attrs[] = {
10260 	&format_attr_retprobe.attr,
10261 	NULL,
10262 };
10263 
10264 static struct attribute_group kprobe_format_group = {
10265 	.name = "format",
10266 	.attrs = kprobe_attrs,
10267 };
10268 
10269 static const struct attribute_group *kprobe_attr_groups[] = {
10270 	&kprobe_format_group,
10271 	NULL,
10272 };
10273 
10274 static int perf_kprobe_event_init(struct perf_event *event);
10275 static struct pmu perf_kprobe = {
10276 	.task_ctx_nr	= perf_sw_context,
10277 	.event_init	= perf_kprobe_event_init,
10278 	.add		= perf_trace_add,
10279 	.del		= perf_trace_del,
10280 	.start		= perf_swevent_start,
10281 	.stop		= perf_swevent_stop,
10282 	.read		= perf_swevent_read,
10283 	.attr_groups	= kprobe_attr_groups,
10284 };
10285 
10286 static int perf_kprobe_event_init(struct perf_event *event)
10287 {
10288 	int err;
10289 	bool is_retprobe;
10290 
10291 	if (event->attr.type != perf_kprobe.type)
10292 		return -ENOENT;
10293 
10294 	if (!perfmon_capable())
10295 		return -EACCES;
10296 
10297 	/*
10298 	 * no branch sampling for probe events
10299 	 */
10300 	if (has_branch_stack(event))
10301 		return -EOPNOTSUPP;
10302 
10303 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10304 	err = perf_kprobe_init(event, is_retprobe);
10305 	if (err)
10306 		return err;
10307 
10308 	event->destroy = perf_kprobe_destroy;
10309 
10310 	return 0;
10311 }
10312 #endif /* CONFIG_KPROBE_EVENTS */
10313 
10314 #ifdef CONFIG_UPROBE_EVENTS
10315 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10316 
10317 static struct attribute *uprobe_attrs[] = {
10318 	&format_attr_retprobe.attr,
10319 	&format_attr_ref_ctr_offset.attr,
10320 	NULL,
10321 };
10322 
10323 static struct attribute_group uprobe_format_group = {
10324 	.name = "format",
10325 	.attrs = uprobe_attrs,
10326 };
10327 
10328 static const struct attribute_group *uprobe_attr_groups[] = {
10329 	&uprobe_format_group,
10330 	NULL,
10331 };
10332 
10333 static int perf_uprobe_event_init(struct perf_event *event);
10334 static struct pmu perf_uprobe = {
10335 	.task_ctx_nr	= perf_sw_context,
10336 	.event_init	= perf_uprobe_event_init,
10337 	.add		= perf_trace_add,
10338 	.del		= perf_trace_del,
10339 	.start		= perf_swevent_start,
10340 	.stop		= perf_swevent_stop,
10341 	.read		= perf_swevent_read,
10342 	.attr_groups	= uprobe_attr_groups,
10343 };
10344 
10345 static int perf_uprobe_event_init(struct perf_event *event)
10346 {
10347 	int err;
10348 	unsigned long ref_ctr_offset;
10349 	bool is_retprobe;
10350 
10351 	if (event->attr.type != perf_uprobe.type)
10352 		return -ENOENT;
10353 
10354 	if (!perfmon_capable())
10355 		return -EACCES;
10356 
10357 	/*
10358 	 * no branch sampling for probe events
10359 	 */
10360 	if (has_branch_stack(event))
10361 		return -EOPNOTSUPP;
10362 
10363 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10364 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10365 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10366 	if (err)
10367 		return err;
10368 
10369 	event->destroy = perf_uprobe_destroy;
10370 
10371 	return 0;
10372 }
10373 #endif /* CONFIG_UPROBE_EVENTS */
10374 
10375 static inline void perf_tp_register(void)
10376 {
10377 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10378 #ifdef CONFIG_KPROBE_EVENTS
10379 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10380 #endif
10381 #ifdef CONFIG_UPROBE_EVENTS
10382 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10383 #endif
10384 }
10385 
10386 static void perf_event_free_filter(struct perf_event *event)
10387 {
10388 	ftrace_profile_free_filter(event);
10389 }
10390 
10391 #ifdef CONFIG_BPF_SYSCALL
10392 static void bpf_overflow_handler(struct perf_event *event,
10393 				 struct perf_sample_data *data,
10394 				 struct pt_regs *regs)
10395 {
10396 	struct bpf_perf_event_data_kern ctx = {
10397 		.data = data,
10398 		.event = event,
10399 	};
10400 	struct bpf_prog *prog;
10401 	int ret = 0;
10402 
10403 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10404 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10405 		goto out;
10406 	rcu_read_lock();
10407 	prog = READ_ONCE(event->prog);
10408 	if (prog) {
10409 		perf_prepare_sample(data, event, regs);
10410 		ret = bpf_prog_run(prog, &ctx);
10411 	}
10412 	rcu_read_unlock();
10413 out:
10414 	__this_cpu_dec(bpf_prog_active);
10415 	if (!ret)
10416 		return;
10417 
10418 	event->orig_overflow_handler(event, data, regs);
10419 }
10420 
10421 static int perf_event_set_bpf_handler(struct perf_event *event,
10422 				      struct bpf_prog *prog,
10423 				      u64 bpf_cookie)
10424 {
10425 	if (event->overflow_handler_context)
10426 		/* hw breakpoint or kernel counter */
10427 		return -EINVAL;
10428 
10429 	if (event->prog)
10430 		return -EEXIST;
10431 
10432 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10433 		return -EINVAL;
10434 
10435 	if (event->attr.precise_ip &&
10436 	    prog->call_get_stack &&
10437 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10438 	     event->attr.exclude_callchain_kernel ||
10439 	     event->attr.exclude_callchain_user)) {
10440 		/*
10441 		 * On perf_event with precise_ip, calling bpf_get_stack()
10442 		 * may trigger unwinder warnings and occasional crashes.
10443 		 * bpf_get_[stack|stackid] works around this issue by using
10444 		 * callchain attached to perf_sample_data. If the
10445 		 * perf_event does not full (kernel and user) callchain
10446 		 * attached to perf_sample_data, do not allow attaching BPF
10447 		 * program that calls bpf_get_[stack|stackid].
10448 		 */
10449 		return -EPROTO;
10450 	}
10451 
10452 	event->prog = prog;
10453 	event->bpf_cookie = bpf_cookie;
10454 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10455 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10456 	return 0;
10457 }
10458 
10459 static void perf_event_free_bpf_handler(struct perf_event *event)
10460 {
10461 	struct bpf_prog *prog = event->prog;
10462 
10463 	if (!prog)
10464 		return;
10465 
10466 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10467 	event->prog = NULL;
10468 	bpf_prog_put(prog);
10469 }
10470 #else
10471 static int perf_event_set_bpf_handler(struct perf_event *event,
10472 				      struct bpf_prog *prog,
10473 				      u64 bpf_cookie)
10474 {
10475 	return -EOPNOTSUPP;
10476 }
10477 static void perf_event_free_bpf_handler(struct perf_event *event)
10478 {
10479 }
10480 #endif
10481 
10482 /*
10483  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10484  * with perf_event_open()
10485  */
10486 static inline bool perf_event_is_tracing(struct perf_event *event)
10487 {
10488 	if (event->pmu == &perf_tracepoint)
10489 		return true;
10490 #ifdef CONFIG_KPROBE_EVENTS
10491 	if (event->pmu == &perf_kprobe)
10492 		return true;
10493 #endif
10494 #ifdef CONFIG_UPROBE_EVENTS
10495 	if (event->pmu == &perf_uprobe)
10496 		return true;
10497 #endif
10498 	return false;
10499 }
10500 
10501 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10502 			    u64 bpf_cookie)
10503 {
10504 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10505 
10506 	if (!perf_event_is_tracing(event))
10507 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10508 
10509 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10510 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10511 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10512 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10513 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10514 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10515 		return -EINVAL;
10516 
10517 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10518 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10519 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10520 		return -EINVAL;
10521 
10522 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10523 		/* only uprobe programs are allowed to be sleepable */
10524 		return -EINVAL;
10525 
10526 	/* Kprobe override only works for kprobes, not uprobes. */
10527 	if (prog->kprobe_override && !is_kprobe)
10528 		return -EINVAL;
10529 
10530 	if (is_tracepoint || is_syscall_tp) {
10531 		int off = trace_event_get_offsets(event->tp_event);
10532 
10533 		if (prog->aux->max_ctx_offset > off)
10534 			return -EACCES;
10535 	}
10536 
10537 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10538 }
10539 
10540 void perf_event_free_bpf_prog(struct perf_event *event)
10541 {
10542 	if (!perf_event_is_tracing(event)) {
10543 		perf_event_free_bpf_handler(event);
10544 		return;
10545 	}
10546 	perf_event_detach_bpf_prog(event);
10547 }
10548 
10549 #else
10550 
10551 static inline void perf_tp_register(void)
10552 {
10553 }
10554 
10555 static void perf_event_free_filter(struct perf_event *event)
10556 {
10557 }
10558 
10559 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10560 			    u64 bpf_cookie)
10561 {
10562 	return -ENOENT;
10563 }
10564 
10565 void perf_event_free_bpf_prog(struct perf_event *event)
10566 {
10567 }
10568 #endif /* CONFIG_EVENT_TRACING */
10569 
10570 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10571 void perf_bp_event(struct perf_event *bp, void *data)
10572 {
10573 	struct perf_sample_data sample;
10574 	struct pt_regs *regs = data;
10575 
10576 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10577 
10578 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10579 		perf_swevent_event(bp, 1, &sample, regs);
10580 }
10581 #endif
10582 
10583 /*
10584  * Allocate a new address filter
10585  */
10586 static struct perf_addr_filter *
10587 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10588 {
10589 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10590 	struct perf_addr_filter *filter;
10591 
10592 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10593 	if (!filter)
10594 		return NULL;
10595 
10596 	INIT_LIST_HEAD(&filter->entry);
10597 	list_add_tail(&filter->entry, filters);
10598 
10599 	return filter;
10600 }
10601 
10602 static void free_filters_list(struct list_head *filters)
10603 {
10604 	struct perf_addr_filter *filter, *iter;
10605 
10606 	list_for_each_entry_safe(filter, iter, filters, entry) {
10607 		path_put(&filter->path);
10608 		list_del(&filter->entry);
10609 		kfree(filter);
10610 	}
10611 }
10612 
10613 /*
10614  * Free existing address filters and optionally install new ones
10615  */
10616 static void perf_addr_filters_splice(struct perf_event *event,
10617 				     struct list_head *head)
10618 {
10619 	unsigned long flags;
10620 	LIST_HEAD(list);
10621 
10622 	if (!has_addr_filter(event))
10623 		return;
10624 
10625 	/* don't bother with children, they don't have their own filters */
10626 	if (event->parent)
10627 		return;
10628 
10629 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10630 
10631 	list_splice_init(&event->addr_filters.list, &list);
10632 	if (head)
10633 		list_splice(head, &event->addr_filters.list);
10634 
10635 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10636 
10637 	free_filters_list(&list);
10638 }
10639 
10640 /*
10641  * Scan through mm's vmas and see if one of them matches the
10642  * @filter; if so, adjust filter's address range.
10643  * Called with mm::mmap_lock down for reading.
10644  */
10645 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10646 				   struct mm_struct *mm,
10647 				   struct perf_addr_filter_range *fr)
10648 {
10649 	struct vm_area_struct *vma;
10650 	VMA_ITERATOR(vmi, mm, 0);
10651 
10652 	for_each_vma(vmi, vma) {
10653 		if (!vma->vm_file)
10654 			continue;
10655 
10656 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10657 			return;
10658 	}
10659 }
10660 
10661 /*
10662  * Update event's address range filters based on the
10663  * task's existing mappings, if any.
10664  */
10665 static void perf_event_addr_filters_apply(struct perf_event *event)
10666 {
10667 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10668 	struct task_struct *task = READ_ONCE(event->ctx->task);
10669 	struct perf_addr_filter *filter;
10670 	struct mm_struct *mm = NULL;
10671 	unsigned int count = 0;
10672 	unsigned long flags;
10673 
10674 	/*
10675 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10676 	 * will stop on the parent's child_mutex that our caller is also holding
10677 	 */
10678 	if (task == TASK_TOMBSTONE)
10679 		return;
10680 
10681 	if (ifh->nr_file_filters) {
10682 		mm = get_task_mm(task);
10683 		if (!mm)
10684 			goto restart;
10685 
10686 		mmap_read_lock(mm);
10687 	}
10688 
10689 	raw_spin_lock_irqsave(&ifh->lock, flags);
10690 	list_for_each_entry(filter, &ifh->list, entry) {
10691 		if (filter->path.dentry) {
10692 			/*
10693 			 * Adjust base offset if the filter is associated to a
10694 			 * binary that needs to be mapped:
10695 			 */
10696 			event->addr_filter_ranges[count].start = 0;
10697 			event->addr_filter_ranges[count].size = 0;
10698 
10699 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10700 		} else {
10701 			event->addr_filter_ranges[count].start = filter->offset;
10702 			event->addr_filter_ranges[count].size  = filter->size;
10703 		}
10704 
10705 		count++;
10706 	}
10707 
10708 	event->addr_filters_gen++;
10709 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10710 
10711 	if (ifh->nr_file_filters) {
10712 		mmap_read_unlock(mm);
10713 
10714 		mmput(mm);
10715 	}
10716 
10717 restart:
10718 	perf_event_stop(event, 1);
10719 }
10720 
10721 /*
10722  * Address range filtering: limiting the data to certain
10723  * instruction address ranges. Filters are ioctl()ed to us from
10724  * userspace as ascii strings.
10725  *
10726  * Filter string format:
10727  *
10728  * ACTION RANGE_SPEC
10729  * where ACTION is one of the
10730  *  * "filter": limit the trace to this region
10731  *  * "start": start tracing from this address
10732  *  * "stop": stop tracing at this address/region;
10733  * RANGE_SPEC is
10734  *  * for kernel addresses: <start address>[/<size>]
10735  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10736  *
10737  * if <size> is not specified or is zero, the range is treated as a single
10738  * address; not valid for ACTION=="filter".
10739  */
10740 enum {
10741 	IF_ACT_NONE = -1,
10742 	IF_ACT_FILTER,
10743 	IF_ACT_START,
10744 	IF_ACT_STOP,
10745 	IF_SRC_FILE,
10746 	IF_SRC_KERNEL,
10747 	IF_SRC_FILEADDR,
10748 	IF_SRC_KERNELADDR,
10749 };
10750 
10751 enum {
10752 	IF_STATE_ACTION = 0,
10753 	IF_STATE_SOURCE,
10754 	IF_STATE_END,
10755 };
10756 
10757 static const match_table_t if_tokens = {
10758 	{ IF_ACT_FILTER,	"filter" },
10759 	{ IF_ACT_START,		"start" },
10760 	{ IF_ACT_STOP,		"stop" },
10761 	{ IF_SRC_FILE,		"%u/%u@%s" },
10762 	{ IF_SRC_KERNEL,	"%u/%u" },
10763 	{ IF_SRC_FILEADDR,	"%u@%s" },
10764 	{ IF_SRC_KERNELADDR,	"%u" },
10765 	{ IF_ACT_NONE,		NULL },
10766 };
10767 
10768 /*
10769  * Address filter string parser
10770  */
10771 static int
10772 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10773 			     struct list_head *filters)
10774 {
10775 	struct perf_addr_filter *filter = NULL;
10776 	char *start, *orig, *filename = NULL;
10777 	substring_t args[MAX_OPT_ARGS];
10778 	int state = IF_STATE_ACTION, token;
10779 	unsigned int kernel = 0;
10780 	int ret = -EINVAL;
10781 
10782 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10783 	if (!fstr)
10784 		return -ENOMEM;
10785 
10786 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10787 		static const enum perf_addr_filter_action_t actions[] = {
10788 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10789 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10790 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10791 		};
10792 		ret = -EINVAL;
10793 
10794 		if (!*start)
10795 			continue;
10796 
10797 		/* filter definition begins */
10798 		if (state == IF_STATE_ACTION) {
10799 			filter = perf_addr_filter_new(event, filters);
10800 			if (!filter)
10801 				goto fail;
10802 		}
10803 
10804 		token = match_token(start, if_tokens, args);
10805 		switch (token) {
10806 		case IF_ACT_FILTER:
10807 		case IF_ACT_START:
10808 		case IF_ACT_STOP:
10809 			if (state != IF_STATE_ACTION)
10810 				goto fail;
10811 
10812 			filter->action = actions[token];
10813 			state = IF_STATE_SOURCE;
10814 			break;
10815 
10816 		case IF_SRC_KERNELADDR:
10817 		case IF_SRC_KERNEL:
10818 			kernel = 1;
10819 			fallthrough;
10820 
10821 		case IF_SRC_FILEADDR:
10822 		case IF_SRC_FILE:
10823 			if (state != IF_STATE_SOURCE)
10824 				goto fail;
10825 
10826 			*args[0].to = 0;
10827 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10828 			if (ret)
10829 				goto fail;
10830 
10831 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10832 				*args[1].to = 0;
10833 				ret = kstrtoul(args[1].from, 0, &filter->size);
10834 				if (ret)
10835 					goto fail;
10836 			}
10837 
10838 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10839 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10840 
10841 				kfree(filename);
10842 				filename = match_strdup(&args[fpos]);
10843 				if (!filename) {
10844 					ret = -ENOMEM;
10845 					goto fail;
10846 				}
10847 			}
10848 
10849 			state = IF_STATE_END;
10850 			break;
10851 
10852 		default:
10853 			goto fail;
10854 		}
10855 
10856 		/*
10857 		 * Filter definition is fully parsed, validate and install it.
10858 		 * Make sure that it doesn't contradict itself or the event's
10859 		 * attribute.
10860 		 */
10861 		if (state == IF_STATE_END) {
10862 			ret = -EINVAL;
10863 
10864 			/*
10865 			 * ACTION "filter" must have a non-zero length region
10866 			 * specified.
10867 			 */
10868 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10869 			    !filter->size)
10870 				goto fail;
10871 
10872 			if (!kernel) {
10873 				if (!filename)
10874 					goto fail;
10875 
10876 				/*
10877 				 * For now, we only support file-based filters
10878 				 * in per-task events; doing so for CPU-wide
10879 				 * events requires additional context switching
10880 				 * trickery, since same object code will be
10881 				 * mapped at different virtual addresses in
10882 				 * different processes.
10883 				 */
10884 				ret = -EOPNOTSUPP;
10885 				if (!event->ctx->task)
10886 					goto fail;
10887 
10888 				/* look up the path and grab its inode */
10889 				ret = kern_path(filename, LOOKUP_FOLLOW,
10890 						&filter->path);
10891 				if (ret)
10892 					goto fail;
10893 
10894 				ret = -EINVAL;
10895 				if (!filter->path.dentry ||
10896 				    !S_ISREG(d_inode(filter->path.dentry)
10897 					     ->i_mode))
10898 					goto fail;
10899 
10900 				event->addr_filters.nr_file_filters++;
10901 			}
10902 
10903 			/* ready to consume more filters */
10904 			kfree(filename);
10905 			filename = NULL;
10906 			state = IF_STATE_ACTION;
10907 			filter = NULL;
10908 			kernel = 0;
10909 		}
10910 	}
10911 
10912 	if (state != IF_STATE_ACTION)
10913 		goto fail;
10914 
10915 	kfree(filename);
10916 	kfree(orig);
10917 
10918 	return 0;
10919 
10920 fail:
10921 	kfree(filename);
10922 	free_filters_list(filters);
10923 	kfree(orig);
10924 
10925 	return ret;
10926 }
10927 
10928 static int
10929 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10930 {
10931 	LIST_HEAD(filters);
10932 	int ret;
10933 
10934 	/*
10935 	 * Since this is called in perf_ioctl() path, we're already holding
10936 	 * ctx::mutex.
10937 	 */
10938 	lockdep_assert_held(&event->ctx->mutex);
10939 
10940 	if (WARN_ON_ONCE(event->parent))
10941 		return -EINVAL;
10942 
10943 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10944 	if (ret)
10945 		goto fail_clear_files;
10946 
10947 	ret = event->pmu->addr_filters_validate(&filters);
10948 	if (ret)
10949 		goto fail_free_filters;
10950 
10951 	/* remove existing filters, if any */
10952 	perf_addr_filters_splice(event, &filters);
10953 
10954 	/* install new filters */
10955 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10956 
10957 	return ret;
10958 
10959 fail_free_filters:
10960 	free_filters_list(&filters);
10961 
10962 fail_clear_files:
10963 	event->addr_filters.nr_file_filters = 0;
10964 
10965 	return ret;
10966 }
10967 
10968 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10969 {
10970 	int ret = -EINVAL;
10971 	char *filter_str;
10972 
10973 	filter_str = strndup_user(arg, PAGE_SIZE);
10974 	if (IS_ERR(filter_str))
10975 		return PTR_ERR(filter_str);
10976 
10977 #ifdef CONFIG_EVENT_TRACING
10978 	if (perf_event_is_tracing(event)) {
10979 		struct perf_event_context *ctx = event->ctx;
10980 
10981 		/*
10982 		 * Beware, here be dragons!!
10983 		 *
10984 		 * the tracepoint muck will deadlock against ctx->mutex, but
10985 		 * the tracepoint stuff does not actually need it. So
10986 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10987 		 * already have a reference on ctx.
10988 		 *
10989 		 * This can result in event getting moved to a different ctx,
10990 		 * but that does not affect the tracepoint state.
10991 		 */
10992 		mutex_unlock(&ctx->mutex);
10993 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10994 		mutex_lock(&ctx->mutex);
10995 	} else
10996 #endif
10997 	if (has_addr_filter(event))
10998 		ret = perf_event_set_addr_filter(event, filter_str);
10999 
11000 	kfree(filter_str);
11001 	return ret;
11002 }
11003 
11004 /*
11005  * hrtimer based swevent callback
11006  */
11007 
11008 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11009 {
11010 	enum hrtimer_restart ret = HRTIMER_RESTART;
11011 	struct perf_sample_data data;
11012 	struct pt_regs *regs;
11013 	struct perf_event *event;
11014 	u64 period;
11015 
11016 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11017 
11018 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11019 		return HRTIMER_NORESTART;
11020 
11021 	event->pmu->read(event);
11022 
11023 	perf_sample_data_init(&data, 0, event->hw.last_period);
11024 	regs = get_irq_regs();
11025 
11026 	if (regs && !perf_exclude_event(event, regs)) {
11027 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11028 			if (__perf_event_overflow(event, 1, &data, regs))
11029 				ret = HRTIMER_NORESTART;
11030 	}
11031 
11032 	period = max_t(u64, 10000, event->hw.sample_period);
11033 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11034 
11035 	return ret;
11036 }
11037 
11038 static void perf_swevent_start_hrtimer(struct perf_event *event)
11039 {
11040 	struct hw_perf_event *hwc = &event->hw;
11041 	s64 period;
11042 
11043 	if (!is_sampling_event(event))
11044 		return;
11045 
11046 	period = local64_read(&hwc->period_left);
11047 	if (period) {
11048 		if (period < 0)
11049 			period = 10000;
11050 
11051 		local64_set(&hwc->period_left, 0);
11052 	} else {
11053 		period = max_t(u64, 10000, hwc->sample_period);
11054 	}
11055 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11056 		      HRTIMER_MODE_REL_PINNED_HARD);
11057 }
11058 
11059 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11060 {
11061 	struct hw_perf_event *hwc = &event->hw;
11062 
11063 	if (is_sampling_event(event)) {
11064 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11065 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11066 
11067 		hrtimer_cancel(&hwc->hrtimer);
11068 	}
11069 }
11070 
11071 static void perf_swevent_init_hrtimer(struct perf_event *event)
11072 {
11073 	struct hw_perf_event *hwc = &event->hw;
11074 
11075 	if (!is_sampling_event(event))
11076 		return;
11077 
11078 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11079 	hwc->hrtimer.function = perf_swevent_hrtimer;
11080 
11081 	/*
11082 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11083 	 * mapping and avoid the whole period adjust feedback stuff.
11084 	 */
11085 	if (event->attr.freq) {
11086 		long freq = event->attr.sample_freq;
11087 
11088 		event->attr.sample_period = NSEC_PER_SEC / freq;
11089 		hwc->sample_period = event->attr.sample_period;
11090 		local64_set(&hwc->period_left, hwc->sample_period);
11091 		hwc->last_period = hwc->sample_period;
11092 		event->attr.freq = 0;
11093 	}
11094 }
11095 
11096 /*
11097  * Software event: cpu wall time clock
11098  */
11099 
11100 static void cpu_clock_event_update(struct perf_event *event)
11101 {
11102 	s64 prev;
11103 	u64 now;
11104 
11105 	now = local_clock();
11106 	prev = local64_xchg(&event->hw.prev_count, now);
11107 	local64_add(now - prev, &event->count);
11108 }
11109 
11110 static void cpu_clock_event_start(struct perf_event *event, int flags)
11111 {
11112 	local64_set(&event->hw.prev_count, local_clock());
11113 	perf_swevent_start_hrtimer(event);
11114 }
11115 
11116 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11117 {
11118 	perf_swevent_cancel_hrtimer(event);
11119 	cpu_clock_event_update(event);
11120 }
11121 
11122 static int cpu_clock_event_add(struct perf_event *event, int flags)
11123 {
11124 	if (flags & PERF_EF_START)
11125 		cpu_clock_event_start(event, flags);
11126 	perf_event_update_userpage(event);
11127 
11128 	return 0;
11129 }
11130 
11131 static void cpu_clock_event_del(struct perf_event *event, int flags)
11132 {
11133 	cpu_clock_event_stop(event, flags);
11134 }
11135 
11136 static void cpu_clock_event_read(struct perf_event *event)
11137 {
11138 	cpu_clock_event_update(event);
11139 }
11140 
11141 static int cpu_clock_event_init(struct perf_event *event)
11142 {
11143 	if (event->attr.type != perf_cpu_clock.type)
11144 		return -ENOENT;
11145 
11146 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11147 		return -ENOENT;
11148 
11149 	/*
11150 	 * no branch sampling for software events
11151 	 */
11152 	if (has_branch_stack(event))
11153 		return -EOPNOTSUPP;
11154 
11155 	perf_swevent_init_hrtimer(event);
11156 
11157 	return 0;
11158 }
11159 
11160 static struct pmu perf_cpu_clock = {
11161 	.task_ctx_nr	= perf_sw_context,
11162 
11163 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11164 	.dev		= PMU_NULL_DEV,
11165 
11166 	.event_init	= cpu_clock_event_init,
11167 	.add		= cpu_clock_event_add,
11168 	.del		= cpu_clock_event_del,
11169 	.start		= cpu_clock_event_start,
11170 	.stop		= cpu_clock_event_stop,
11171 	.read		= cpu_clock_event_read,
11172 };
11173 
11174 /*
11175  * Software event: task time clock
11176  */
11177 
11178 static void task_clock_event_update(struct perf_event *event, u64 now)
11179 {
11180 	u64 prev;
11181 	s64 delta;
11182 
11183 	prev = local64_xchg(&event->hw.prev_count, now);
11184 	delta = now - prev;
11185 	local64_add(delta, &event->count);
11186 }
11187 
11188 static void task_clock_event_start(struct perf_event *event, int flags)
11189 {
11190 	local64_set(&event->hw.prev_count, event->ctx->time);
11191 	perf_swevent_start_hrtimer(event);
11192 }
11193 
11194 static void task_clock_event_stop(struct perf_event *event, int flags)
11195 {
11196 	perf_swevent_cancel_hrtimer(event);
11197 	task_clock_event_update(event, event->ctx->time);
11198 }
11199 
11200 static int task_clock_event_add(struct perf_event *event, int flags)
11201 {
11202 	if (flags & PERF_EF_START)
11203 		task_clock_event_start(event, flags);
11204 	perf_event_update_userpage(event);
11205 
11206 	return 0;
11207 }
11208 
11209 static void task_clock_event_del(struct perf_event *event, int flags)
11210 {
11211 	task_clock_event_stop(event, PERF_EF_UPDATE);
11212 }
11213 
11214 static void task_clock_event_read(struct perf_event *event)
11215 {
11216 	u64 now = perf_clock();
11217 	u64 delta = now - event->ctx->timestamp;
11218 	u64 time = event->ctx->time + delta;
11219 
11220 	task_clock_event_update(event, time);
11221 }
11222 
11223 static int task_clock_event_init(struct perf_event *event)
11224 {
11225 	if (event->attr.type != perf_task_clock.type)
11226 		return -ENOENT;
11227 
11228 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11229 		return -ENOENT;
11230 
11231 	/*
11232 	 * no branch sampling for software events
11233 	 */
11234 	if (has_branch_stack(event))
11235 		return -EOPNOTSUPP;
11236 
11237 	perf_swevent_init_hrtimer(event);
11238 
11239 	return 0;
11240 }
11241 
11242 static struct pmu perf_task_clock = {
11243 	.task_ctx_nr	= perf_sw_context,
11244 
11245 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11246 	.dev		= PMU_NULL_DEV,
11247 
11248 	.event_init	= task_clock_event_init,
11249 	.add		= task_clock_event_add,
11250 	.del		= task_clock_event_del,
11251 	.start		= task_clock_event_start,
11252 	.stop		= task_clock_event_stop,
11253 	.read		= task_clock_event_read,
11254 };
11255 
11256 static void perf_pmu_nop_void(struct pmu *pmu)
11257 {
11258 }
11259 
11260 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11261 {
11262 }
11263 
11264 static int perf_pmu_nop_int(struct pmu *pmu)
11265 {
11266 	return 0;
11267 }
11268 
11269 static int perf_event_nop_int(struct perf_event *event, u64 value)
11270 {
11271 	return 0;
11272 }
11273 
11274 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11275 
11276 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11277 {
11278 	__this_cpu_write(nop_txn_flags, flags);
11279 
11280 	if (flags & ~PERF_PMU_TXN_ADD)
11281 		return;
11282 
11283 	perf_pmu_disable(pmu);
11284 }
11285 
11286 static int perf_pmu_commit_txn(struct pmu *pmu)
11287 {
11288 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11289 
11290 	__this_cpu_write(nop_txn_flags, 0);
11291 
11292 	if (flags & ~PERF_PMU_TXN_ADD)
11293 		return 0;
11294 
11295 	perf_pmu_enable(pmu);
11296 	return 0;
11297 }
11298 
11299 static void perf_pmu_cancel_txn(struct pmu *pmu)
11300 {
11301 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11302 
11303 	__this_cpu_write(nop_txn_flags, 0);
11304 
11305 	if (flags & ~PERF_PMU_TXN_ADD)
11306 		return;
11307 
11308 	perf_pmu_enable(pmu);
11309 }
11310 
11311 static int perf_event_idx_default(struct perf_event *event)
11312 {
11313 	return 0;
11314 }
11315 
11316 static void free_pmu_context(struct pmu *pmu)
11317 {
11318 	free_percpu(pmu->cpu_pmu_context);
11319 }
11320 
11321 /*
11322  * Let userspace know that this PMU supports address range filtering:
11323  */
11324 static ssize_t nr_addr_filters_show(struct device *dev,
11325 				    struct device_attribute *attr,
11326 				    char *page)
11327 {
11328 	struct pmu *pmu = dev_get_drvdata(dev);
11329 
11330 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11331 }
11332 DEVICE_ATTR_RO(nr_addr_filters);
11333 
11334 static struct idr pmu_idr;
11335 
11336 static ssize_t
11337 type_show(struct device *dev, struct device_attribute *attr, char *page)
11338 {
11339 	struct pmu *pmu = dev_get_drvdata(dev);
11340 
11341 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11342 }
11343 static DEVICE_ATTR_RO(type);
11344 
11345 static ssize_t
11346 perf_event_mux_interval_ms_show(struct device *dev,
11347 				struct device_attribute *attr,
11348 				char *page)
11349 {
11350 	struct pmu *pmu = dev_get_drvdata(dev);
11351 
11352 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11353 }
11354 
11355 static DEFINE_MUTEX(mux_interval_mutex);
11356 
11357 static ssize_t
11358 perf_event_mux_interval_ms_store(struct device *dev,
11359 				 struct device_attribute *attr,
11360 				 const char *buf, size_t count)
11361 {
11362 	struct pmu *pmu = dev_get_drvdata(dev);
11363 	int timer, cpu, ret;
11364 
11365 	ret = kstrtoint(buf, 0, &timer);
11366 	if (ret)
11367 		return ret;
11368 
11369 	if (timer < 1)
11370 		return -EINVAL;
11371 
11372 	/* same value, noting to do */
11373 	if (timer == pmu->hrtimer_interval_ms)
11374 		return count;
11375 
11376 	mutex_lock(&mux_interval_mutex);
11377 	pmu->hrtimer_interval_ms = timer;
11378 
11379 	/* update all cpuctx for this PMU */
11380 	cpus_read_lock();
11381 	for_each_online_cpu(cpu) {
11382 		struct perf_cpu_pmu_context *cpc;
11383 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11384 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11385 
11386 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11387 	}
11388 	cpus_read_unlock();
11389 	mutex_unlock(&mux_interval_mutex);
11390 
11391 	return count;
11392 }
11393 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11394 
11395 static struct attribute *pmu_dev_attrs[] = {
11396 	&dev_attr_type.attr,
11397 	&dev_attr_perf_event_mux_interval_ms.attr,
11398 	NULL,
11399 };
11400 ATTRIBUTE_GROUPS(pmu_dev);
11401 
11402 static int pmu_bus_running;
11403 static struct bus_type pmu_bus = {
11404 	.name		= "event_source",
11405 	.dev_groups	= pmu_dev_groups,
11406 };
11407 
11408 static void pmu_dev_release(struct device *dev)
11409 {
11410 	kfree(dev);
11411 }
11412 
11413 static int pmu_dev_alloc(struct pmu *pmu)
11414 {
11415 	int ret = -ENOMEM;
11416 
11417 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11418 	if (!pmu->dev)
11419 		goto out;
11420 
11421 	pmu->dev->groups = pmu->attr_groups;
11422 	device_initialize(pmu->dev);
11423 
11424 	dev_set_drvdata(pmu->dev, pmu);
11425 	pmu->dev->bus = &pmu_bus;
11426 	pmu->dev->parent = pmu->parent;
11427 	pmu->dev->release = pmu_dev_release;
11428 
11429 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11430 	if (ret)
11431 		goto free_dev;
11432 
11433 	ret = device_add(pmu->dev);
11434 	if (ret)
11435 		goto free_dev;
11436 
11437 	/* For PMUs with address filters, throw in an extra attribute: */
11438 	if (pmu->nr_addr_filters)
11439 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11440 
11441 	if (ret)
11442 		goto del_dev;
11443 
11444 	if (pmu->attr_update)
11445 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11446 
11447 	if (ret)
11448 		goto del_dev;
11449 
11450 out:
11451 	return ret;
11452 
11453 del_dev:
11454 	device_del(pmu->dev);
11455 
11456 free_dev:
11457 	put_device(pmu->dev);
11458 	goto out;
11459 }
11460 
11461 static struct lock_class_key cpuctx_mutex;
11462 static struct lock_class_key cpuctx_lock;
11463 
11464 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11465 {
11466 	int cpu, ret, max = PERF_TYPE_MAX;
11467 
11468 	mutex_lock(&pmus_lock);
11469 	ret = -ENOMEM;
11470 	pmu->pmu_disable_count = alloc_percpu(int);
11471 	if (!pmu->pmu_disable_count)
11472 		goto unlock;
11473 
11474 	pmu->type = -1;
11475 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11476 		ret = -EINVAL;
11477 		goto free_pdc;
11478 	}
11479 
11480 	pmu->name = name;
11481 
11482 	if (type >= 0)
11483 		max = type;
11484 
11485 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11486 	if (ret < 0)
11487 		goto free_pdc;
11488 
11489 	WARN_ON(type >= 0 && ret != type);
11490 
11491 	type = ret;
11492 	pmu->type = type;
11493 
11494 	if (pmu_bus_running && !pmu->dev) {
11495 		ret = pmu_dev_alloc(pmu);
11496 		if (ret)
11497 			goto free_idr;
11498 	}
11499 
11500 	ret = -ENOMEM;
11501 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11502 	if (!pmu->cpu_pmu_context)
11503 		goto free_dev;
11504 
11505 	for_each_possible_cpu(cpu) {
11506 		struct perf_cpu_pmu_context *cpc;
11507 
11508 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11509 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11510 		__perf_mux_hrtimer_init(cpc, cpu);
11511 	}
11512 
11513 	if (!pmu->start_txn) {
11514 		if (pmu->pmu_enable) {
11515 			/*
11516 			 * If we have pmu_enable/pmu_disable calls, install
11517 			 * transaction stubs that use that to try and batch
11518 			 * hardware accesses.
11519 			 */
11520 			pmu->start_txn  = perf_pmu_start_txn;
11521 			pmu->commit_txn = perf_pmu_commit_txn;
11522 			pmu->cancel_txn = perf_pmu_cancel_txn;
11523 		} else {
11524 			pmu->start_txn  = perf_pmu_nop_txn;
11525 			pmu->commit_txn = perf_pmu_nop_int;
11526 			pmu->cancel_txn = perf_pmu_nop_void;
11527 		}
11528 	}
11529 
11530 	if (!pmu->pmu_enable) {
11531 		pmu->pmu_enable  = perf_pmu_nop_void;
11532 		pmu->pmu_disable = perf_pmu_nop_void;
11533 	}
11534 
11535 	if (!pmu->check_period)
11536 		pmu->check_period = perf_event_nop_int;
11537 
11538 	if (!pmu->event_idx)
11539 		pmu->event_idx = perf_event_idx_default;
11540 
11541 	list_add_rcu(&pmu->entry, &pmus);
11542 	atomic_set(&pmu->exclusive_cnt, 0);
11543 	ret = 0;
11544 unlock:
11545 	mutex_unlock(&pmus_lock);
11546 
11547 	return ret;
11548 
11549 free_dev:
11550 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11551 		device_del(pmu->dev);
11552 		put_device(pmu->dev);
11553 	}
11554 
11555 free_idr:
11556 	idr_remove(&pmu_idr, pmu->type);
11557 
11558 free_pdc:
11559 	free_percpu(pmu->pmu_disable_count);
11560 	goto unlock;
11561 }
11562 EXPORT_SYMBOL_GPL(perf_pmu_register);
11563 
11564 void perf_pmu_unregister(struct pmu *pmu)
11565 {
11566 	mutex_lock(&pmus_lock);
11567 	list_del_rcu(&pmu->entry);
11568 
11569 	/*
11570 	 * We dereference the pmu list under both SRCU and regular RCU, so
11571 	 * synchronize against both of those.
11572 	 */
11573 	synchronize_srcu(&pmus_srcu);
11574 	synchronize_rcu();
11575 
11576 	free_percpu(pmu->pmu_disable_count);
11577 	idr_remove(&pmu_idr, pmu->type);
11578 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11579 		if (pmu->nr_addr_filters)
11580 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11581 		device_del(pmu->dev);
11582 		put_device(pmu->dev);
11583 	}
11584 	free_pmu_context(pmu);
11585 	mutex_unlock(&pmus_lock);
11586 }
11587 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11588 
11589 static inline bool has_extended_regs(struct perf_event *event)
11590 {
11591 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11592 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11593 }
11594 
11595 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11596 {
11597 	struct perf_event_context *ctx = NULL;
11598 	int ret;
11599 
11600 	if (!try_module_get(pmu->module))
11601 		return -ENODEV;
11602 
11603 	/*
11604 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11605 	 * for example, validate if the group fits on the PMU. Therefore,
11606 	 * if this is a sibling event, acquire the ctx->mutex to protect
11607 	 * the sibling_list.
11608 	 */
11609 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11610 		/*
11611 		 * This ctx->mutex can nest when we're called through
11612 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11613 		 */
11614 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11615 						 SINGLE_DEPTH_NESTING);
11616 		BUG_ON(!ctx);
11617 	}
11618 
11619 	event->pmu = pmu;
11620 	ret = pmu->event_init(event);
11621 
11622 	if (ctx)
11623 		perf_event_ctx_unlock(event->group_leader, ctx);
11624 
11625 	if (!ret) {
11626 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11627 		    has_extended_regs(event))
11628 			ret = -EOPNOTSUPP;
11629 
11630 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11631 		    event_has_any_exclude_flag(event))
11632 			ret = -EINVAL;
11633 
11634 		if (ret && event->destroy)
11635 			event->destroy(event);
11636 	}
11637 
11638 	if (ret)
11639 		module_put(pmu->module);
11640 
11641 	return ret;
11642 }
11643 
11644 static struct pmu *perf_init_event(struct perf_event *event)
11645 {
11646 	bool extended_type = false;
11647 	int idx, type, ret;
11648 	struct pmu *pmu;
11649 
11650 	idx = srcu_read_lock(&pmus_srcu);
11651 
11652 	/*
11653 	 * Save original type before calling pmu->event_init() since certain
11654 	 * pmus overwrites event->attr.type to forward event to another pmu.
11655 	 */
11656 	event->orig_type = event->attr.type;
11657 
11658 	/* Try parent's PMU first: */
11659 	if (event->parent && event->parent->pmu) {
11660 		pmu = event->parent->pmu;
11661 		ret = perf_try_init_event(pmu, event);
11662 		if (!ret)
11663 			goto unlock;
11664 	}
11665 
11666 	/*
11667 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11668 	 * are often aliases for PERF_TYPE_RAW.
11669 	 */
11670 	type = event->attr.type;
11671 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11672 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11673 		if (!type) {
11674 			type = PERF_TYPE_RAW;
11675 		} else {
11676 			extended_type = true;
11677 			event->attr.config &= PERF_HW_EVENT_MASK;
11678 		}
11679 	}
11680 
11681 again:
11682 	rcu_read_lock();
11683 	pmu = idr_find(&pmu_idr, type);
11684 	rcu_read_unlock();
11685 	if (pmu) {
11686 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11687 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11688 			goto fail;
11689 
11690 		ret = perf_try_init_event(pmu, event);
11691 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11692 			type = event->attr.type;
11693 			goto again;
11694 		}
11695 
11696 		if (ret)
11697 			pmu = ERR_PTR(ret);
11698 
11699 		goto unlock;
11700 	}
11701 
11702 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11703 		ret = perf_try_init_event(pmu, event);
11704 		if (!ret)
11705 			goto unlock;
11706 
11707 		if (ret != -ENOENT) {
11708 			pmu = ERR_PTR(ret);
11709 			goto unlock;
11710 		}
11711 	}
11712 fail:
11713 	pmu = ERR_PTR(-ENOENT);
11714 unlock:
11715 	srcu_read_unlock(&pmus_srcu, idx);
11716 
11717 	return pmu;
11718 }
11719 
11720 static void attach_sb_event(struct perf_event *event)
11721 {
11722 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11723 
11724 	raw_spin_lock(&pel->lock);
11725 	list_add_rcu(&event->sb_list, &pel->list);
11726 	raw_spin_unlock(&pel->lock);
11727 }
11728 
11729 /*
11730  * We keep a list of all !task (and therefore per-cpu) events
11731  * that need to receive side-band records.
11732  *
11733  * This avoids having to scan all the various PMU per-cpu contexts
11734  * looking for them.
11735  */
11736 static void account_pmu_sb_event(struct perf_event *event)
11737 {
11738 	if (is_sb_event(event))
11739 		attach_sb_event(event);
11740 }
11741 
11742 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11743 static void account_freq_event_nohz(void)
11744 {
11745 #ifdef CONFIG_NO_HZ_FULL
11746 	/* Lock so we don't race with concurrent unaccount */
11747 	spin_lock(&nr_freq_lock);
11748 	if (atomic_inc_return(&nr_freq_events) == 1)
11749 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11750 	spin_unlock(&nr_freq_lock);
11751 #endif
11752 }
11753 
11754 static void account_freq_event(void)
11755 {
11756 	if (tick_nohz_full_enabled())
11757 		account_freq_event_nohz();
11758 	else
11759 		atomic_inc(&nr_freq_events);
11760 }
11761 
11762 
11763 static void account_event(struct perf_event *event)
11764 {
11765 	bool inc = false;
11766 
11767 	if (event->parent)
11768 		return;
11769 
11770 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11771 		inc = true;
11772 	if (event->attr.mmap || event->attr.mmap_data)
11773 		atomic_inc(&nr_mmap_events);
11774 	if (event->attr.build_id)
11775 		atomic_inc(&nr_build_id_events);
11776 	if (event->attr.comm)
11777 		atomic_inc(&nr_comm_events);
11778 	if (event->attr.namespaces)
11779 		atomic_inc(&nr_namespaces_events);
11780 	if (event->attr.cgroup)
11781 		atomic_inc(&nr_cgroup_events);
11782 	if (event->attr.task)
11783 		atomic_inc(&nr_task_events);
11784 	if (event->attr.freq)
11785 		account_freq_event();
11786 	if (event->attr.context_switch) {
11787 		atomic_inc(&nr_switch_events);
11788 		inc = true;
11789 	}
11790 	if (has_branch_stack(event))
11791 		inc = true;
11792 	if (is_cgroup_event(event))
11793 		inc = true;
11794 	if (event->attr.ksymbol)
11795 		atomic_inc(&nr_ksymbol_events);
11796 	if (event->attr.bpf_event)
11797 		atomic_inc(&nr_bpf_events);
11798 	if (event->attr.text_poke)
11799 		atomic_inc(&nr_text_poke_events);
11800 
11801 	if (inc) {
11802 		/*
11803 		 * We need the mutex here because static_branch_enable()
11804 		 * must complete *before* the perf_sched_count increment
11805 		 * becomes visible.
11806 		 */
11807 		if (atomic_inc_not_zero(&perf_sched_count))
11808 			goto enabled;
11809 
11810 		mutex_lock(&perf_sched_mutex);
11811 		if (!atomic_read(&perf_sched_count)) {
11812 			static_branch_enable(&perf_sched_events);
11813 			/*
11814 			 * Guarantee that all CPUs observe they key change and
11815 			 * call the perf scheduling hooks before proceeding to
11816 			 * install events that need them.
11817 			 */
11818 			synchronize_rcu();
11819 		}
11820 		/*
11821 		 * Now that we have waited for the sync_sched(), allow further
11822 		 * increments to by-pass the mutex.
11823 		 */
11824 		atomic_inc(&perf_sched_count);
11825 		mutex_unlock(&perf_sched_mutex);
11826 	}
11827 enabled:
11828 
11829 	account_pmu_sb_event(event);
11830 }
11831 
11832 /*
11833  * Allocate and initialize an event structure
11834  */
11835 static struct perf_event *
11836 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11837 		 struct task_struct *task,
11838 		 struct perf_event *group_leader,
11839 		 struct perf_event *parent_event,
11840 		 perf_overflow_handler_t overflow_handler,
11841 		 void *context, int cgroup_fd)
11842 {
11843 	struct pmu *pmu;
11844 	struct perf_event *event;
11845 	struct hw_perf_event *hwc;
11846 	long err = -EINVAL;
11847 	int node;
11848 
11849 	if ((unsigned)cpu >= nr_cpu_ids) {
11850 		if (!task || cpu != -1)
11851 			return ERR_PTR(-EINVAL);
11852 	}
11853 	if (attr->sigtrap && !task) {
11854 		/* Requires a task: avoid signalling random tasks. */
11855 		return ERR_PTR(-EINVAL);
11856 	}
11857 
11858 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11859 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11860 				      node);
11861 	if (!event)
11862 		return ERR_PTR(-ENOMEM);
11863 
11864 	/*
11865 	 * Single events are their own group leaders, with an
11866 	 * empty sibling list:
11867 	 */
11868 	if (!group_leader)
11869 		group_leader = event;
11870 
11871 	mutex_init(&event->child_mutex);
11872 	INIT_LIST_HEAD(&event->child_list);
11873 
11874 	INIT_LIST_HEAD(&event->event_entry);
11875 	INIT_LIST_HEAD(&event->sibling_list);
11876 	INIT_LIST_HEAD(&event->active_list);
11877 	init_event_group(event);
11878 	INIT_LIST_HEAD(&event->rb_entry);
11879 	INIT_LIST_HEAD(&event->active_entry);
11880 	INIT_LIST_HEAD(&event->addr_filters.list);
11881 	INIT_HLIST_NODE(&event->hlist_entry);
11882 
11883 
11884 	init_waitqueue_head(&event->waitq);
11885 	init_irq_work(&event->pending_irq, perf_pending_irq);
11886 	init_task_work(&event->pending_task, perf_pending_task);
11887 
11888 	mutex_init(&event->mmap_mutex);
11889 	raw_spin_lock_init(&event->addr_filters.lock);
11890 
11891 	atomic_long_set(&event->refcount, 1);
11892 	event->cpu		= cpu;
11893 	event->attr		= *attr;
11894 	event->group_leader	= group_leader;
11895 	event->pmu		= NULL;
11896 	event->oncpu		= -1;
11897 
11898 	event->parent		= parent_event;
11899 
11900 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11901 	event->id		= atomic64_inc_return(&perf_event_id);
11902 
11903 	event->state		= PERF_EVENT_STATE_INACTIVE;
11904 
11905 	if (parent_event)
11906 		event->event_caps = parent_event->event_caps;
11907 
11908 	if (task) {
11909 		event->attach_state = PERF_ATTACH_TASK;
11910 		/*
11911 		 * XXX pmu::event_init needs to know what task to account to
11912 		 * and we cannot use the ctx information because we need the
11913 		 * pmu before we get a ctx.
11914 		 */
11915 		event->hw.target = get_task_struct(task);
11916 	}
11917 
11918 	event->clock = &local_clock;
11919 	if (parent_event)
11920 		event->clock = parent_event->clock;
11921 
11922 	if (!overflow_handler && parent_event) {
11923 		overflow_handler = parent_event->overflow_handler;
11924 		context = parent_event->overflow_handler_context;
11925 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11926 		if (overflow_handler == bpf_overflow_handler) {
11927 			struct bpf_prog *prog = parent_event->prog;
11928 
11929 			bpf_prog_inc(prog);
11930 			event->prog = prog;
11931 			event->orig_overflow_handler =
11932 				parent_event->orig_overflow_handler;
11933 		}
11934 #endif
11935 	}
11936 
11937 	if (overflow_handler) {
11938 		event->overflow_handler	= overflow_handler;
11939 		event->overflow_handler_context = context;
11940 	} else if (is_write_backward(event)){
11941 		event->overflow_handler = perf_event_output_backward;
11942 		event->overflow_handler_context = NULL;
11943 	} else {
11944 		event->overflow_handler = perf_event_output_forward;
11945 		event->overflow_handler_context = NULL;
11946 	}
11947 
11948 	perf_event__state_init(event);
11949 
11950 	pmu = NULL;
11951 
11952 	hwc = &event->hw;
11953 	hwc->sample_period = attr->sample_period;
11954 	if (attr->freq && attr->sample_freq)
11955 		hwc->sample_period = 1;
11956 	hwc->last_period = hwc->sample_period;
11957 
11958 	local64_set(&hwc->period_left, hwc->sample_period);
11959 
11960 	/*
11961 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11962 	 * See perf_output_read().
11963 	 */
11964 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11965 		goto err_ns;
11966 
11967 	if (!has_branch_stack(event))
11968 		event->attr.branch_sample_type = 0;
11969 
11970 	pmu = perf_init_event(event);
11971 	if (IS_ERR(pmu)) {
11972 		err = PTR_ERR(pmu);
11973 		goto err_ns;
11974 	}
11975 
11976 	/*
11977 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11978 	 * events (they don't make sense as the cgroup will be different
11979 	 * on other CPUs in the uncore mask).
11980 	 */
11981 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11982 		err = -EINVAL;
11983 		goto err_pmu;
11984 	}
11985 
11986 	if (event->attr.aux_output &&
11987 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11988 		err = -EOPNOTSUPP;
11989 		goto err_pmu;
11990 	}
11991 
11992 	if (cgroup_fd != -1) {
11993 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11994 		if (err)
11995 			goto err_pmu;
11996 	}
11997 
11998 	err = exclusive_event_init(event);
11999 	if (err)
12000 		goto err_pmu;
12001 
12002 	if (has_addr_filter(event)) {
12003 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12004 						    sizeof(struct perf_addr_filter_range),
12005 						    GFP_KERNEL);
12006 		if (!event->addr_filter_ranges) {
12007 			err = -ENOMEM;
12008 			goto err_per_task;
12009 		}
12010 
12011 		/*
12012 		 * Clone the parent's vma offsets: they are valid until exec()
12013 		 * even if the mm is not shared with the parent.
12014 		 */
12015 		if (event->parent) {
12016 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12017 
12018 			raw_spin_lock_irq(&ifh->lock);
12019 			memcpy(event->addr_filter_ranges,
12020 			       event->parent->addr_filter_ranges,
12021 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12022 			raw_spin_unlock_irq(&ifh->lock);
12023 		}
12024 
12025 		/* force hw sync on the address filters */
12026 		event->addr_filters_gen = 1;
12027 	}
12028 
12029 	if (!event->parent) {
12030 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12031 			err = get_callchain_buffers(attr->sample_max_stack);
12032 			if (err)
12033 				goto err_addr_filters;
12034 		}
12035 	}
12036 
12037 	err = security_perf_event_alloc(event);
12038 	if (err)
12039 		goto err_callchain_buffer;
12040 
12041 	/* symmetric to unaccount_event() in _free_event() */
12042 	account_event(event);
12043 
12044 	return event;
12045 
12046 err_callchain_buffer:
12047 	if (!event->parent) {
12048 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12049 			put_callchain_buffers();
12050 	}
12051 err_addr_filters:
12052 	kfree(event->addr_filter_ranges);
12053 
12054 err_per_task:
12055 	exclusive_event_destroy(event);
12056 
12057 err_pmu:
12058 	if (is_cgroup_event(event))
12059 		perf_detach_cgroup(event);
12060 	if (event->destroy)
12061 		event->destroy(event);
12062 	module_put(pmu->module);
12063 err_ns:
12064 	if (event->hw.target)
12065 		put_task_struct(event->hw.target);
12066 	call_rcu(&event->rcu_head, free_event_rcu);
12067 
12068 	return ERR_PTR(err);
12069 }
12070 
12071 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12072 			  struct perf_event_attr *attr)
12073 {
12074 	u32 size;
12075 	int ret;
12076 
12077 	/* Zero the full structure, so that a short copy will be nice. */
12078 	memset(attr, 0, sizeof(*attr));
12079 
12080 	ret = get_user(size, &uattr->size);
12081 	if (ret)
12082 		return ret;
12083 
12084 	/* ABI compatibility quirk: */
12085 	if (!size)
12086 		size = PERF_ATTR_SIZE_VER0;
12087 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12088 		goto err_size;
12089 
12090 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12091 	if (ret) {
12092 		if (ret == -E2BIG)
12093 			goto err_size;
12094 		return ret;
12095 	}
12096 
12097 	attr->size = size;
12098 
12099 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12100 		return -EINVAL;
12101 
12102 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12103 		return -EINVAL;
12104 
12105 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12106 		return -EINVAL;
12107 
12108 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12109 		u64 mask = attr->branch_sample_type;
12110 
12111 		/* only using defined bits */
12112 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12113 			return -EINVAL;
12114 
12115 		/* at least one branch bit must be set */
12116 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12117 			return -EINVAL;
12118 
12119 		/* propagate priv level, when not set for branch */
12120 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12121 
12122 			/* exclude_kernel checked on syscall entry */
12123 			if (!attr->exclude_kernel)
12124 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12125 
12126 			if (!attr->exclude_user)
12127 				mask |= PERF_SAMPLE_BRANCH_USER;
12128 
12129 			if (!attr->exclude_hv)
12130 				mask |= PERF_SAMPLE_BRANCH_HV;
12131 			/*
12132 			 * adjust user setting (for HW filter setup)
12133 			 */
12134 			attr->branch_sample_type = mask;
12135 		}
12136 		/* privileged levels capture (kernel, hv): check permissions */
12137 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12138 			ret = perf_allow_kernel(attr);
12139 			if (ret)
12140 				return ret;
12141 		}
12142 	}
12143 
12144 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12145 		ret = perf_reg_validate(attr->sample_regs_user);
12146 		if (ret)
12147 			return ret;
12148 	}
12149 
12150 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12151 		if (!arch_perf_have_user_stack_dump())
12152 			return -ENOSYS;
12153 
12154 		/*
12155 		 * We have __u32 type for the size, but so far
12156 		 * we can only use __u16 as maximum due to the
12157 		 * __u16 sample size limit.
12158 		 */
12159 		if (attr->sample_stack_user >= USHRT_MAX)
12160 			return -EINVAL;
12161 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12162 			return -EINVAL;
12163 	}
12164 
12165 	if (!attr->sample_max_stack)
12166 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12167 
12168 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12169 		ret = perf_reg_validate(attr->sample_regs_intr);
12170 
12171 #ifndef CONFIG_CGROUP_PERF
12172 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12173 		return -EINVAL;
12174 #endif
12175 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12176 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12177 		return -EINVAL;
12178 
12179 	if (!attr->inherit && attr->inherit_thread)
12180 		return -EINVAL;
12181 
12182 	if (attr->remove_on_exec && attr->enable_on_exec)
12183 		return -EINVAL;
12184 
12185 	if (attr->sigtrap && !attr->remove_on_exec)
12186 		return -EINVAL;
12187 
12188 out:
12189 	return ret;
12190 
12191 err_size:
12192 	put_user(sizeof(*attr), &uattr->size);
12193 	ret = -E2BIG;
12194 	goto out;
12195 }
12196 
12197 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12198 {
12199 	if (b < a)
12200 		swap(a, b);
12201 
12202 	mutex_lock(a);
12203 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12204 }
12205 
12206 static int
12207 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12208 {
12209 	struct perf_buffer *rb = NULL;
12210 	int ret = -EINVAL;
12211 
12212 	if (!output_event) {
12213 		mutex_lock(&event->mmap_mutex);
12214 		goto set;
12215 	}
12216 
12217 	/* don't allow circular references */
12218 	if (event == output_event)
12219 		goto out;
12220 
12221 	/*
12222 	 * Don't allow cross-cpu buffers
12223 	 */
12224 	if (output_event->cpu != event->cpu)
12225 		goto out;
12226 
12227 	/*
12228 	 * If its not a per-cpu rb, it must be the same task.
12229 	 */
12230 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12231 		goto out;
12232 
12233 	/*
12234 	 * Mixing clocks in the same buffer is trouble you don't need.
12235 	 */
12236 	if (output_event->clock != event->clock)
12237 		goto out;
12238 
12239 	/*
12240 	 * Either writing ring buffer from beginning or from end.
12241 	 * Mixing is not allowed.
12242 	 */
12243 	if (is_write_backward(output_event) != is_write_backward(event))
12244 		goto out;
12245 
12246 	/*
12247 	 * If both events generate aux data, they must be on the same PMU
12248 	 */
12249 	if (has_aux(event) && has_aux(output_event) &&
12250 	    event->pmu != output_event->pmu)
12251 		goto out;
12252 
12253 	/*
12254 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12255 	 * output_event is already on rb->event_list, and the list iteration
12256 	 * restarts after every removal, it is guaranteed this new event is
12257 	 * observed *OR* if output_event is already removed, it's guaranteed we
12258 	 * observe !rb->mmap_count.
12259 	 */
12260 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12261 set:
12262 	/* Can't redirect output if we've got an active mmap() */
12263 	if (atomic_read(&event->mmap_count))
12264 		goto unlock;
12265 
12266 	if (output_event) {
12267 		/* get the rb we want to redirect to */
12268 		rb = ring_buffer_get(output_event);
12269 		if (!rb)
12270 			goto unlock;
12271 
12272 		/* did we race against perf_mmap_close() */
12273 		if (!atomic_read(&rb->mmap_count)) {
12274 			ring_buffer_put(rb);
12275 			goto unlock;
12276 		}
12277 	}
12278 
12279 	ring_buffer_attach(event, rb);
12280 
12281 	ret = 0;
12282 unlock:
12283 	mutex_unlock(&event->mmap_mutex);
12284 	if (output_event)
12285 		mutex_unlock(&output_event->mmap_mutex);
12286 
12287 out:
12288 	return ret;
12289 }
12290 
12291 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12292 {
12293 	bool nmi_safe = false;
12294 
12295 	switch (clk_id) {
12296 	case CLOCK_MONOTONIC:
12297 		event->clock = &ktime_get_mono_fast_ns;
12298 		nmi_safe = true;
12299 		break;
12300 
12301 	case CLOCK_MONOTONIC_RAW:
12302 		event->clock = &ktime_get_raw_fast_ns;
12303 		nmi_safe = true;
12304 		break;
12305 
12306 	case CLOCK_REALTIME:
12307 		event->clock = &ktime_get_real_ns;
12308 		break;
12309 
12310 	case CLOCK_BOOTTIME:
12311 		event->clock = &ktime_get_boottime_ns;
12312 		break;
12313 
12314 	case CLOCK_TAI:
12315 		event->clock = &ktime_get_clocktai_ns;
12316 		break;
12317 
12318 	default:
12319 		return -EINVAL;
12320 	}
12321 
12322 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12323 		return -EINVAL;
12324 
12325 	return 0;
12326 }
12327 
12328 static bool
12329 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12330 {
12331 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12332 	bool is_capable = perfmon_capable();
12333 
12334 	if (attr->sigtrap) {
12335 		/*
12336 		 * perf_event_attr::sigtrap sends signals to the other task.
12337 		 * Require the current task to also have CAP_KILL.
12338 		 */
12339 		rcu_read_lock();
12340 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12341 		rcu_read_unlock();
12342 
12343 		/*
12344 		 * If the required capabilities aren't available, checks for
12345 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12346 		 * can effectively change the target task.
12347 		 */
12348 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12349 	}
12350 
12351 	/*
12352 	 * Preserve ptrace permission check for backwards compatibility. The
12353 	 * ptrace check also includes checks that the current task and other
12354 	 * task have matching uids, and is therefore not done here explicitly.
12355 	 */
12356 	return is_capable || ptrace_may_access(task, ptrace_mode);
12357 }
12358 
12359 /**
12360  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12361  *
12362  * @attr_uptr:	event_id type attributes for monitoring/sampling
12363  * @pid:		target pid
12364  * @cpu:		target cpu
12365  * @group_fd:		group leader event fd
12366  * @flags:		perf event open flags
12367  */
12368 SYSCALL_DEFINE5(perf_event_open,
12369 		struct perf_event_attr __user *, attr_uptr,
12370 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12371 {
12372 	struct perf_event *group_leader = NULL, *output_event = NULL;
12373 	struct perf_event_pmu_context *pmu_ctx;
12374 	struct perf_event *event, *sibling;
12375 	struct perf_event_attr attr;
12376 	struct perf_event_context *ctx;
12377 	struct file *event_file = NULL;
12378 	struct fd group = {NULL, 0};
12379 	struct task_struct *task = NULL;
12380 	struct pmu *pmu;
12381 	int event_fd;
12382 	int move_group = 0;
12383 	int err;
12384 	int f_flags = O_RDWR;
12385 	int cgroup_fd = -1;
12386 
12387 	/* for future expandability... */
12388 	if (flags & ~PERF_FLAG_ALL)
12389 		return -EINVAL;
12390 
12391 	err = perf_copy_attr(attr_uptr, &attr);
12392 	if (err)
12393 		return err;
12394 
12395 	/* Do we allow access to perf_event_open(2) ? */
12396 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12397 	if (err)
12398 		return err;
12399 
12400 	if (!attr.exclude_kernel) {
12401 		err = perf_allow_kernel(&attr);
12402 		if (err)
12403 			return err;
12404 	}
12405 
12406 	if (attr.namespaces) {
12407 		if (!perfmon_capable())
12408 			return -EACCES;
12409 	}
12410 
12411 	if (attr.freq) {
12412 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12413 			return -EINVAL;
12414 	} else {
12415 		if (attr.sample_period & (1ULL << 63))
12416 			return -EINVAL;
12417 	}
12418 
12419 	/* Only privileged users can get physical addresses */
12420 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12421 		err = perf_allow_kernel(&attr);
12422 		if (err)
12423 			return err;
12424 	}
12425 
12426 	/* REGS_INTR can leak data, lockdown must prevent this */
12427 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12428 		err = security_locked_down(LOCKDOWN_PERF);
12429 		if (err)
12430 			return err;
12431 	}
12432 
12433 	/*
12434 	 * In cgroup mode, the pid argument is used to pass the fd
12435 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12436 	 * designates the cpu on which to monitor threads from that
12437 	 * cgroup.
12438 	 */
12439 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12440 		return -EINVAL;
12441 
12442 	if (flags & PERF_FLAG_FD_CLOEXEC)
12443 		f_flags |= O_CLOEXEC;
12444 
12445 	event_fd = get_unused_fd_flags(f_flags);
12446 	if (event_fd < 0)
12447 		return event_fd;
12448 
12449 	if (group_fd != -1) {
12450 		err = perf_fget_light(group_fd, &group);
12451 		if (err)
12452 			goto err_fd;
12453 		group_leader = group.file->private_data;
12454 		if (flags & PERF_FLAG_FD_OUTPUT)
12455 			output_event = group_leader;
12456 		if (flags & PERF_FLAG_FD_NO_GROUP)
12457 			group_leader = NULL;
12458 	}
12459 
12460 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12461 		task = find_lively_task_by_vpid(pid);
12462 		if (IS_ERR(task)) {
12463 			err = PTR_ERR(task);
12464 			goto err_group_fd;
12465 		}
12466 	}
12467 
12468 	if (task && group_leader &&
12469 	    group_leader->attr.inherit != attr.inherit) {
12470 		err = -EINVAL;
12471 		goto err_task;
12472 	}
12473 
12474 	if (flags & PERF_FLAG_PID_CGROUP)
12475 		cgroup_fd = pid;
12476 
12477 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12478 				 NULL, NULL, cgroup_fd);
12479 	if (IS_ERR(event)) {
12480 		err = PTR_ERR(event);
12481 		goto err_task;
12482 	}
12483 
12484 	if (is_sampling_event(event)) {
12485 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12486 			err = -EOPNOTSUPP;
12487 			goto err_alloc;
12488 		}
12489 	}
12490 
12491 	/*
12492 	 * Special case software events and allow them to be part of
12493 	 * any hardware group.
12494 	 */
12495 	pmu = event->pmu;
12496 
12497 	if (attr.use_clockid) {
12498 		err = perf_event_set_clock(event, attr.clockid);
12499 		if (err)
12500 			goto err_alloc;
12501 	}
12502 
12503 	if (pmu->task_ctx_nr == perf_sw_context)
12504 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12505 
12506 	if (task) {
12507 		err = down_read_interruptible(&task->signal->exec_update_lock);
12508 		if (err)
12509 			goto err_alloc;
12510 
12511 		/*
12512 		 * We must hold exec_update_lock across this and any potential
12513 		 * perf_install_in_context() call for this new event to
12514 		 * serialize against exec() altering our credentials (and the
12515 		 * perf_event_exit_task() that could imply).
12516 		 */
12517 		err = -EACCES;
12518 		if (!perf_check_permission(&attr, task))
12519 			goto err_cred;
12520 	}
12521 
12522 	/*
12523 	 * Get the target context (task or percpu):
12524 	 */
12525 	ctx = find_get_context(task, event);
12526 	if (IS_ERR(ctx)) {
12527 		err = PTR_ERR(ctx);
12528 		goto err_cred;
12529 	}
12530 
12531 	mutex_lock(&ctx->mutex);
12532 
12533 	if (ctx->task == TASK_TOMBSTONE) {
12534 		err = -ESRCH;
12535 		goto err_locked;
12536 	}
12537 
12538 	if (!task) {
12539 		/*
12540 		 * Check if the @cpu we're creating an event for is online.
12541 		 *
12542 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12543 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12544 		 */
12545 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12546 
12547 		if (!cpuctx->online) {
12548 			err = -ENODEV;
12549 			goto err_locked;
12550 		}
12551 	}
12552 
12553 	if (group_leader) {
12554 		err = -EINVAL;
12555 
12556 		/*
12557 		 * Do not allow a recursive hierarchy (this new sibling
12558 		 * becoming part of another group-sibling):
12559 		 */
12560 		if (group_leader->group_leader != group_leader)
12561 			goto err_locked;
12562 
12563 		/* All events in a group should have the same clock */
12564 		if (group_leader->clock != event->clock)
12565 			goto err_locked;
12566 
12567 		/*
12568 		 * Make sure we're both events for the same CPU;
12569 		 * grouping events for different CPUs is broken; since
12570 		 * you can never concurrently schedule them anyhow.
12571 		 */
12572 		if (group_leader->cpu != event->cpu)
12573 			goto err_locked;
12574 
12575 		/*
12576 		 * Make sure we're both on the same context; either task or cpu.
12577 		 */
12578 		if (group_leader->ctx != ctx)
12579 			goto err_locked;
12580 
12581 		/*
12582 		 * Only a group leader can be exclusive or pinned
12583 		 */
12584 		if (attr.exclusive || attr.pinned)
12585 			goto err_locked;
12586 
12587 		if (is_software_event(event) &&
12588 		    !in_software_context(group_leader)) {
12589 			/*
12590 			 * If the event is a sw event, but the group_leader
12591 			 * is on hw context.
12592 			 *
12593 			 * Allow the addition of software events to hw
12594 			 * groups, this is safe because software events
12595 			 * never fail to schedule.
12596 			 *
12597 			 * Note the comment that goes with struct
12598 			 * perf_event_pmu_context.
12599 			 */
12600 			pmu = group_leader->pmu_ctx->pmu;
12601 		} else if (!is_software_event(event)) {
12602 			if (is_software_event(group_leader) &&
12603 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12604 				/*
12605 				 * In case the group is a pure software group, and we
12606 				 * try to add a hardware event, move the whole group to
12607 				 * the hardware context.
12608 				 */
12609 				move_group = 1;
12610 			}
12611 
12612 			/* Don't allow group of multiple hw events from different pmus */
12613 			if (!in_software_context(group_leader) &&
12614 			    group_leader->pmu_ctx->pmu != pmu)
12615 				goto err_locked;
12616 		}
12617 	}
12618 
12619 	/*
12620 	 * Now that we're certain of the pmu; find the pmu_ctx.
12621 	 */
12622 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12623 	if (IS_ERR(pmu_ctx)) {
12624 		err = PTR_ERR(pmu_ctx);
12625 		goto err_locked;
12626 	}
12627 	event->pmu_ctx = pmu_ctx;
12628 
12629 	if (output_event) {
12630 		err = perf_event_set_output(event, output_event);
12631 		if (err)
12632 			goto err_context;
12633 	}
12634 
12635 	if (!perf_event_validate_size(event)) {
12636 		err = -E2BIG;
12637 		goto err_context;
12638 	}
12639 
12640 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12641 		err = -EINVAL;
12642 		goto err_context;
12643 	}
12644 
12645 	/*
12646 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12647 	 * because we need to serialize with concurrent event creation.
12648 	 */
12649 	if (!exclusive_event_installable(event, ctx)) {
12650 		err = -EBUSY;
12651 		goto err_context;
12652 	}
12653 
12654 	WARN_ON_ONCE(ctx->parent_ctx);
12655 
12656 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12657 	if (IS_ERR(event_file)) {
12658 		err = PTR_ERR(event_file);
12659 		event_file = NULL;
12660 		goto err_context;
12661 	}
12662 
12663 	/*
12664 	 * This is the point on no return; we cannot fail hereafter. This is
12665 	 * where we start modifying current state.
12666 	 */
12667 
12668 	if (move_group) {
12669 		perf_remove_from_context(group_leader, 0);
12670 		put_pmu_ctx(group_leader->pmu_ctx);
12671 
12672 		for_each_sibling_event(sibling, group_leader) {
12673 			perf_remove_from_context(sibling, 0);
12674 			put_pmu_ctx(sibling->pmu_ctx);
12675 		}
12676 
12677 		/*
12678 		 * Install the group siblings before the group leader.
12679 		 *
12680 		 * Because a group leader will try and install the entire group
12681 		 * (through the sibling list, which is still in-tact), we can
12682 		 * end up with siblings installed in the wrong context.
12683 		 *
12684 		 * By installing siblings first we NO-OP because they're not
12685 		 * reachable through the group lists.
12686 		 */
12687 		for_each_sibling_event(sibling, group_leader) {
12688 			sibling->pmu_ctx = pmu_ctx;
12689 			get_pmu_ctx(pmu_ctx);
12690 			perf_event__state_init(sibling);
12691 			perf_install_in_context(ctx, sibling, sibling->cpu);
12692 		}
12693 
12694 		/*
12695 		 * Removing from the context ends up with disabled
12696 		 * event. What we want here is event in the initial
12697 		 * startup state, ready to be add into new context.
12698 		 */
12699 		group_leader->pmu_ctx = pmu_ctx;
12700 		get_pmu_ctx(pmu_ctx);
12701 		perf_event__state_init(group_leader);
12702 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12703 	}
12704 
12705 	/*
12706 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12707 	 * that we're serialized against further additions and before
12708 	 * perf_install_in_context() which is the point the event is active and
12709 	 * can use these values.
12710 	 */
12711 	perf_event__header_size(event);
12712 	perf_event__id_header_size(event);
12713 
12714 	event->owner = current;
12715 
12716 	perf_install_in_context(ctx, event, event->cpu);
12717 	perf_unpin_context(ctx);
12718 
12719 	mutex_unlock(&ctx->mutex);
12720 
12721 	if (task) {
12722 		up_read(&task->signal->exec_update_lock);
12723 		put_task_struct(task);
12724 	}
12725 
12726 	mutex_lock(&current->perf_event_mutex);
12727 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12728 	mutex_unlock(&current->perf_event_mutex);
12729 
12730 	/*
12731 	 * Drop the reference on the group_event after placing the
12732 	 * new event on the sibling_list. This ensures destruction
12733 	 * of the group leader will find the pointer to itself in
12734 	 * perf_group_detach().
12735 	 */
12736 	fdput(group);
12737 	fd_install(event_fd, event_file);
12738 	return event_fd;
12739 
12740 err_context:
12741 	put_pmu_ctx(event->pmu_ctx);
12742 	event->pmu_ctx = NULL; /* _free_event() */
12743 err_locked:
12744 	mutex_unlock(&ctx->mutex);
12745 	perf_unpin_context(ctx);
12746 	put_ctx(ctx);
12747 err_cred:
12748 	if (task)
12749 		up_read(&task->signal->exec_update_lock);
12750 err_alloc:
12751 	free_event(event);
12752 err_task:
12753 	if (task)
12754 		put_task_struct(task);
12755 err_group_fd:
12756 	fdput(group);
12757 err_fd:
12758 	put_unused_fd(event_fd);
12759 	return err;
12760 }
12761 
12762 /**
12763  * perf_event_create_kernel_counter
12764  *
12765  * @attr: attributes of the counter to create
12766  * @cpu: cpu in which the counter is bound
12767  * @task: task to profile (NULL for percpu)
12768  * @overflow_handler: callback to trigger when we hit the event
12769  * @context: context data could be used in overflow_handler callback
12770  */
12771 struct perf_event *
12772 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12773 				 struct task_struct *task,
12774 				 perf_overflow_handler_t overflow_handler,
12775 				 void *context)
12776 {
12777 	struct perf_event_pmu_context *pmu_ctx;
12778 	struct perf_event_context *ctx;
12779 	struct perf_event *event;
12780 	struct pmu *pmu;
12781 	int err;
12782 
12783 	/*
12784 	 * Grouping is not supported for kernel events, neither is 'AUX',
12785 	 * make sure the caller's intentions are adjusted.
12786 	 */
12787 	if (attr->aux_output)
12788 		return ERR_PTR(-EINVAL);
12789 
12790 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12791 				 overflow_handler, context, -1);
12792 	if (IS_ERR(event)) {
12793 		err = PTR_ERR(event);
12794 		goto err;
12795 	}
12796 
12797 	/* Mark owner so we could distinguish it from user events. */
12798 	event->owner = TASK_TOMBSTONE;
12799 	pmu = event->pmu;
12800 
12801 	if (pmu->task_ctx_nr == perf_sw_context)
12802 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12803 
12804 	/*
12805 	 * Get the target context (task or percpu):
12806 	 */
12807 	ctx = find_get_context(task, event);
12808 	if (IS_ERR(ctx)) {
12809 		err = PTR_ERR(ctx);
12810 		goto err_alloc;
12811 	}
12812 
12813 	WARN_ON_ONCE(ctx->parent_ctx);
12814 	mutex_lock(&ctx->mutex);
12815 	if (ctx->task == TASK_TOMBSTONE) {
12816 		err = -ESRCH;
12817 		goto err_unlock;
12818 	}
12819 
12820 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12821 	if (IS_ERR(pmu_ctx)) {
12822 		err = PTR_ERR(pmu_ctx);
12823 		goto err_unlock;
12824 	}
12825 	event->pmu_ctx = pmu_ctx;
12826 
12827 	if (!task) {
12828 		/*
12829 		 * Check if the @cpu we're creating an event for is online.
12830 		 *
12831 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12832 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12833 		 */
12834 		struct perf_cpu_context *cpuctx =
12835 			container_of(ctx, struct perf_cpu_context, ctx);
12836 		if (!cpuctx->online) {
12837 			err = -ENODEV;
12838 			goto err_pmu_ctx;
12839 		}
12840 	}
12841 
12842 	if (!exclusive_event_installable(event, ctx)) {
12843 		err = -EBUSY;
12844 		goto err_pmu_ctx;
12845 	}
12846 
12847 	perf_install_in_context(ctx, event, event->cpu);
12848 	perf_unpin_context(ctx);
12849 	mutex_unlock(&ctx->mutex);
12850 
12851 	return event;
12852 
12853 err_pmu_ctx:
12854 	put_pmu_ctx(pmu_ctx);
12855 	event->pmu_ctx = NULL; /* _free_event() */
12856 err_unlock:
12857 	mutex_unlock(&ctx->mutex);
12858 	perf_unpin_context(ctx);
12859 	put_ctx(ctx);
12860 err_alloc:
12861 	free_event(event);
12862 err:
12863 	return ERR_PTR(err);
12864 }
12865 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12866 
12867 static void __perf_pmu_remove(struct perf_event_context *ctx,
12868 			      int cpu, struct pmu *pmu,
12869 			      struct perf_event_groups *groups,
12870 			      struct list_head *events)
12871 {
12872 	struct perf_event *event, *sibling;
12873 
12874 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12875 		perf_remove_from_context(event, 0);
12876 		put_pmu_ctx(event->pmu_ctx);
12877 		list_add(&event->migrate_entry, events);
12878 
12879 		for_each_sibling_event(sibling, event) {
12880 			perf_remove_from_context(sibling, 0);
12881 			put_pmu_ctx(sibling->pmu_ctx);
12882 			list_add(&sibling->migrate_entry, events);
12883 		}
12884 	}
12885 }
12886 
12887 static void __perf_pmu_install_event(struct pmu *pmu,
12888 				     struct perf_event_context *ctx,
12889 				     int cpu, struct perf_event *event)
12890 {
12891 	struct perf_event_pmu_context *epc;
12892 
12893 	event->cpu = cpu;
12894 	epc = find_get_pmu_context(pmu, ctx, event);
12895 	event->pmu_ctx = epc;
12896 
12897 	if (event->state >= PERF_EVENT_STATE_OFF)
12898 		event->state = PERF_EVENT_STATE_INACTIVE;
12899 	perf_install_in_context(ctx, event, cpu);
12900 }
12901 
12902 static void __perf_pmu_install(struct perf_event_context *ctx,
12903 			       int cpu, struct pmu *pmu, struct list_head *events)
12904 {
12905 	struct perf_event *event, *tmp;
12906 
12907 	/*
12908 	 * Re-instate events in 2 passes.
12909 	 *
12910 	 * Skip over group leaders and only install siblings on this first
12911 	 * pass, siblings will not get enabled without a leader, however a
12912 	 * leader will enable its siblings, even if those are still on the old
12913 	 * context.
12914 	 */
12915 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12916 		if (event->group_leader == event)
12917 			continue;
12918 
12919 		list_del(&event->migrate_entry);
12920 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12921 	}
12922 
12923 	/*
12924 	 * Once all the siblings are setup properly, install the group leaders
12925 	 * to make it go.
12926 	 */
12927 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12928 		list_del(&event->migrate_entry);
12929 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12930 	}
12931 }
12932 
12933 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12934 {
12935 	struct perf_event_context *src_ctx, *dst_ctx;
12936 	LIST_HEAD(events);
12937 
12938 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12939 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12940 
12941 	/*
12942 	 * See perf_event_ctx_lock() for comments on the details
12943 	 * of swizzling perf_event::ctx.
12944 	 */
12945 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12946 
12947 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12948 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12949 
12950 	if (!list_empty(&events)) {
12951 		/*
12952 		 * Wait for the events to quiesce before re-instating them.
12953 		 */
12954 		synchronize_rcu();
12955 
12956 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12957 	}
12958 
12959 	mutex_unlock(&dst_ctx->mutex);
12960 	mutex_unlock(&src_ctx->mutex);
12961 }
12962 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12963 
12964 static void sync_child_event(struct perf_event *child_event)
12965 {
12966 	struct perf_event *parent_event = child_event->parent;
12967 	u64 child_val;
12968 
12969 	if (child_event->attr.inherit_stat) {
12970 		struct task_struct *task = child_event->ctx->task;
12971 
12972 		if (task && task != TASK_TOMBSTONE)
12973 			perf_event_read_event(child_event, task);
12974 	}
12975 
12976 	child_val = perf_event_count(child_event);
12977 
12978 	/*
12979 	 * Add back the child's count to the parent's count:
12980 	 */
12981 	atomic64_add(child_val, &parent_event->child_count);
12982 	atomic64_add(child_event->total_time_enabled,
12983 		     &parent_event->child_total_time_enabled);
12984 	atomic64_add(child_event->total_time_running,
12985 		     &parent_event->child_total_time_running);
12986 }
12987 
12988 static void
12989 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12990 {
12991 	struct perf_event *parent_event = event->parent;
12992 	unsigned long detach_flags = 0;
12993 
12994 	if (parent_event) {
12995 		/*
12996 		 * Do not destroy the 'original' grouping; because of the
12997 		 * context switch optimization the original events could've
12998 		 * ended up in a random child task.
12999 		 *
13000 		 * If we were to destroy the original group, all group related
13001 		 * operations would cease to function properly after this
13002 		 * random child dies.
13003 		 *
13004 		 * Do destroy all inherited groups, we don't care about those
13005 		 * and being thorough is better.
13006 		 */
13007 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13008 		mutex_lock(&parent_event->child_mutex);
13009 	}
13010 
13011 	perf_remove_from_context(event, detach_flags);
13012 
13013 	raw_spin_lock_irq(&ctx->lock);
13014 	if (event->state > PERF_EVENT_STATE_EXIT)
13015 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13016 	raw_spin_unlock_irq(&ctx->lock);
13017 
13018 	/*
13019 	 * Child events can be freed.
13020 	 */
13021 	if (parent_event) {
13022 		mutex_unlock(&parent_event->child_mutex);
13023 		/*
13024 		 * Kick perf_poll() for is_event_hup();
13025 		 */
13026 		perf_event_wakeup(parent_event);
13027 		free_event(event);
13028 		put_event(parent_event);
13029 		return;
13030 	}
13031 
13032 	/*
13033 	 * Parent events are governed by their filedesc, retain them.
13034 	 */
13035 	perf_event_wakeup(event);
13036 }
13037 
13038 static void perf_event_exit_task_context(struct task_struct *child)
13039 {
13040 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13041 	struct perf_event *child_event, *next;
13042 
13043 	WARN_ON_ONCE(child != current);
13044 
13045 	child_ctx = perf_pin_task_context(child);
13046 	if (!child_ctx)
13047 		return;
13048 
13049 	/*
13050 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13051 	 * ctx::mutex over the entire thing. This serializes against almost
13052 	 * everything that wants to access the ctx.
13053 	 *
13054 	 * The exception is sys_perf_event_open() /
13055 	 * perf_event_create_kernel_count() which does find_get_context()
13056 	 * without ctx::mutex (it cannot because of the move_group double mutex
13057 	 * lock thing). See the comments in perf_install_in_context().
13058 	 */
13059 	mutex_lock(&child_ctx->mutex);
13060 
13061 	/*
13062 	 * In a single ctx::lock section, de-schedule the events and detach the
13063 	 * context from the task such that we cannot ever get it scheduled back
13064 	 * in.
13065 	 */
13066 	raw_spin_lock_irq(&child_ctx->lock);
13067 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13068 
13069 	/*
13070 	 * Now that the context is inactive, destroy the task <-> ctx relation
13071 	 * and mark the context dead.
13072 	 */
13073 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13074 	put_ctx(child_ctx); /* cannot be last */
13075 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13076 	put_task_struct(current); /* cannot be last */
13077 
13078 	clone_ctx = unclone_ctx(child_ctx);
13079 	raw_spin_unlock_irq(&child_ctx->lock);
13080 
13081 	if (clone_ctx)
13082 		put_ctx(clone_ctx);
13083 
13084 	/*
13085 	 * Report the task dead after unscheduling the events so that we
13086 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13087 	 * get a few PERF_RECORD_READ events.
13088 	 */
13089 	perf_event_task(child, child_ctx, 0);
13090 
13091 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13092 		perf_event_exit_event(child_event, child_ctx);
13093 
13094 	mutex_unlock(&child_ctx->mutex);
13095 
13096 	put_ctx(child_ctx);
13097 }
13098 
13099 /*
13100  * When a child task exits, feed back event values to parent events.
13101  *
13102  * Can be called with exec_update_lock held when called from
13103  * setup_new_exec().
13104  */
13105 void perf_event_exit_task(struct task_struct *child)
13106 {
13107 	struct perf_event *event, *tmp;
13108 
13109 	mutex_lock(&child->perf_event_mutex);
13110 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13111 				 owner_entry) {
13112 		list_del_init(&event->owner_entry);
13113 
13114 		/*
13115 		 * Ensure the list deletion is visible before we clear
13116 		 * the owner, closes a race against perf_release() where
13117 		 * we need to serialize on the owner->perf_event_mutex.
13118 		 */
13119 		smp_store_release(&event->owner, NULL);
13120 	}
13121 	mutex_unlock(&child->perf_event_mutex);
13122 
13123 	perf_event_exit_task_context(child);
13124 
13125 	/*
13126 	 * The perf_event_exit_task_context calls perf_event_task
13127 	 * with child's task_ctx, which generates EXIT events for
13128 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13129 	 * At this point we need to send EXIT events to cpu contexts.
13130 	 */
13131 	perf_event_task(child, NULL, 0);
13132 }
13133 
13134 static void perf_free_event(struct perf_event *event,
13135 			    struct perf_event_context *ctx)
13136 {
13137 	struct perf_event *parent = event->parent;
13138 
13139 	if (WARN_ON_ONCE(!parent))
13140 		return;
13141 
13142 	mutex_lock(&parent->child_mutex);
13143 	list_del_init(&event->child_list);
13144 	mutex_unlock(&parent->child_mutex);
13145 
13146 	put_event(parent);
13147 
13148 	raw_spin_lock_irq(&ctx->lock);
13149 	perf_group_detach(event);
13150 	list_del_event(event, ctx);
13151 	raw_spin_unlock_irq(&ctx->lock);
13152 	free_event(event);
13153 }
13154 
13155 /*
13156  * Free a context as created by inheritance by perf_event_init_task() below,
13157  * used by fork() in case of fail.
13158  *
13159  * Even though the task has never lived, the context and events have been
13160  * exposed through the child_list, so we must take care tearing it all down.
13161  */
13162 void perf_event_free_task(struct task_struct *task)
13163 {
13164 	struct perf_event_context *ctx;
13165 	struct perf_event *event, *tmp;
13166 
13167 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13168 	if (!ctx)
13169 		return;
13170 
13171 	mutex_lock(&ctx->mutex);
13172 	raw_spin_lock_irq(&ctx->lock);
13173 	/*
13174 	 * Destroy the task <-> ctx relation and mark the context dead.
13175 	 *
13176 	 * This is important because even though the task hasn't been
13177 	 * exposed yet the context has been (through child_list).
13178 	 */
13179 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13180 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13181 	put_task_struct(task); /* cannot be last */
13182 	raw_spin_unlock_irq(&ctx->lock);
13183 
13184 
13185 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13186 		perf_free_event(event, ctx);
13187 
13188 	mutex_unlock(&ctx->mutex);
13189 
13190 	/*
13191 	 * perf_event_release_kernel() could've stolen some of our
13192 	 * child events and still have them on its free_list. In that
13193 	 * case we must wait for these events to have been freed (in
13194 	 * particular all their references to this task must've been
13195 	 * dropped).
13196 	 *
13197 	 * Without this copy_process() will unconditionally free this
13198 	 * task (irrespective of its reference count) and
13199 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13200 	 * use-after-free.
13201 	 *
13202 	 * Wait for all events to drop their context reference.
13203 	 */
13204 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13205 	put_ctx(ctx); /* must be last */
13206 }
13207 
13208 void perf_event_delayed_put(struct task_struct *task)
13209 {
13210 	WARN_ON_ONCE(task->perf_event_ctxp);
13211 }
13212 
13213 struct file *perf_event_get(unsigned int fd)
13214 {
13215 	struct file *file = fget(fd);
13216 	if (!file)
13217 		return ERR_PTR(-EBADF);
13218 
13219 	if (file->f_op != &perf_fops) {
13220 		fput(file);
13221 		return ERR_PTR(-EBADF);
13222 	}
13223 
13224 	return file;
13225 }
13226 
13227 const struct perf_event *perf_get_event(struct file *file)
13228 {
13229 	if (file->f_op != &perf_fops)
13230 		return ERR_PTR(-EINVAL);
13231 
13232 	return file->private_data;
13233 }
13234 
13235 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13236 {
13237 	if (!event)
13238 		return ERR_PTR(-EINVAL);
13239 
13240 	return &event->attr;
13241 }
13242 
13243 /*
13244  * Inherit an event from parent task to child task.
13245  *
13246  * Returns:
13247  *  - valid pointer on success
13248  *  - NULL for orphaned events
13249  *  - IS_ERR() on error
13250  */
13251 static struct perf_event *
13252 inherit_event(struct perf_event *parent_event,
13253 	      struct task_struct *parent,
13254 	      struct perf_event_context *parent_ctx,
13255 	      struct task_struct *child,
13256 	      struct perf_event *group_leader,
13257 	      struct perf_event_context *child_ctx)
13258 {
13259 	enum perf_event_state parent_state = parent_event->state;
13260 	struct perf_event_pmu_context *pmu_ctx;
13261 	struct perf_event *child_event;
13262 	unsigned long flags;
13263 
13264 	/*
13265 	 * Instead of creating recursive hierarchies of events,
13266 	 * we link inherited events back to the original parent,
13267 	 * which has a filp for sure, which we use as the reference
13268 	 * count:
13269 	 */
13270 	if (parent_event->parent)
13271 		parent_event = parent_event->parent;
13272 
13273 	child_event = perf_event_alloc(&parent_event->attr,
13274 					   parent_event->cpu,
13275 					   child,
13276 					   group_leader, parent_event,
13277 					   NULL, NULL, -1);
13278 	if (IS_ERR(child_event))
13279 		return child_event;
13280 
13281 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13282 	if (IS_ERR(pmu_ctx)) {
13283 		free_event(child_event);
13284 		return ERR_CAST(pmu_ctx);
13285 	}
13286 	child_event->pmu_ctx = pmu_ctx;
13287 
13288 	/*
13289 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13290 	 * must be under the same lock in order to serialize against
13291 	 * perf_event_release_kernel(), such that either we must observe
13292 	 * is_orphaned_event() or they will observe us on the child_list.
13293 	 */
13294 	mutex_lock(&parent_event->child_mutex);
13295 	if (is_orphaned_event(parent_event) ||
13296 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13297 		mutex_unlock(&parent_event->child_mutex);
13298 		/* task_ctx_data is freed with child_ctx */
13299 		free_event(child_event);
13300 		return NULL;
13301 	}
13302 
13303 	get_ctx(child_ctx);
13304 
13305 	/*
13306 	 * Make the child state follow the state of the parent event,
13307 	 * not its attr.disabled bit.  We hold the parent's mutex,
13308 	 * so we won't race with perf_event_{en, dis}able_family.
13309 	 */
13310 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13311 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13312 	else
13313 		child_event->state = PERF_EVENT_STATE_OFF;
13314 
13315 	if (parent_event->attr.freq) {
13316 		u64 sample_period = parent_event->hw.sample_period;
13317 		struct hw_perf_event *hwc = &child_event->hw;
13318 
13319 		hwc->sample_period = sample_period;
13320 		hwc->last_period   = sample_period;
13321 
13322 		local64_set(&hwc->period_left, sample_period);
13323 	}
13324 
13325 	child_event->ctx = child_ctx;
13326 	child_event->overflow_handler = parent_event->overflow_handler;
13327 	child_event->overflow_handler_context
13328 		= parent_event->overflow_handler_context;
13329 
13330 	/*
13331 	 * Precalculate sample_data sizes
13332 	 */
13333 	perf_event__header_size(child_event);
13334 	perf_event__id_header_size(child_event);
13335 
13336 	/*
13337 	 * Link it up in the child's context:
13338 	 */
13339 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13340 	add_event_to_ctx(child_event, child_ctx);
13341 	child_event->attach_state |= PERF_ATTACH_CHILD;
13342 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13343 
13344 	/*
13345 	 * Link this into the parent event's child list
13346 	 */
13347 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13348 	mutex_unlock(&parent_event->child_mutex);
13349 
13350 	return child_event;
13351 }
13352 
13353 /*
13354  * Inherits an event group.
13355  *
13356  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13357  * This matches with perf_event_release_kernel() removing all child events.
13358  *
13359  * Returns:
13360  *  - 0 on success
13361  *  - <0 on error
13362  */
13363 static int inherit_group(struct perf_event *parent_event,
13364 	      struct task_struct *parent,
13365 	      struct perf_event_context *parent_ctx,
13366 	      struct task_struct *child,
13367 	      struct perf_event_context *child_ctx)
13368 {
13369 	struct perf_event *leader;
13370 	struct perf_event *sub;
13371 	struct perf_event *child_ctr;
13372 
13373 	leader = inherit_event(parent_event, parent, parent_ctx,
13374 				 child, NULL, child_ctx);
13375 	if (IS_ERR(leader))
13376 		return PTR_ERR(leader);
13377 	/*
13378 	 * @leader can be NULL here because of is_orphaned_event(). In this
13379 	 * case inherit_event() will create individual events, similar to what
13380 	 * perf_group_detach() would do anyway.
13381 	 */
13382 	for_each_sibling_event(sub, parent_event) {
13383 		child_ctr = inherit_event(sub, parent, parent_ctx,
13384 					    child, leader, child_ctx);
13385 		if (IS_ERR(child_ctr))
13386 			return PTR_ERR(child_ctr);
13387 
13388 		if (sub->aux_event == parent_event && child_ctr &&
13389 		    !perf_get_aux_event(child_ctr, leader))
13390 			return -EINVAL;
13391 	}
13392 	if (leader)
13393 		leader->group_generation = parent_event->group_generation;
13394 	return 0;
13395 }
13396 
13397 /*
13398  * Creates the child task context and tries to inherit the event-group.
13399  *
13400  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13401  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13402  * consistent with perf_event_release_kernel() removing all child events.
13403  *
13404  * Returns:
13405  *  - 0 on success
13406  *  - <0 on error
13407  */
13408 static int
13409 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13410 		   struct perf_event_context *parent_ctx,
13411 		   struct task_struct *child,
13412 		   u64 clone_flags, int *inherited_all)
13413 {
13414 	struct perf_event_context *child_ctx;
13415 	int ret;
13416 
13417 	if (!event->attr.inherit ||
13418 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13419 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13420 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13421 		*inherited_all = 0;
13422 		return 0;
13423 	}
13424 
13425 	child_ctx = child->perf_event_ctxp;
13426 	if (!child_ctx) {
13427 		/*
13428 		 * This is executed from the parent task context, so
13429 		 * inherit events that have been marked for cloning.
13430 		 * First allocate and initialize a context for the
13431 		 * child.
13432 		 */
13433 		child_ctx = alloc_perf_context(child);
13434 		if (!child_ctx)
13435 			return -ENOMEM;
13436 
13437 		child->perf_event_ctxp = child_ctx;
13438 	}
13439 
13440 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13441 	if (ret)
13442 		*inherited_all = 0;
13443 
13444 	return ret;
13445 }
13446 
13447 /*
13448  * Initialize the perf_event context in task_struct
13449  */
13450 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13451 {
13452 	struct perf_event_context *child_ctx, *parent_ctx;
13453 	struct perf_event_context *cloned_ctx;
13454 	struct perf_event *event;
13455 	struct task_struct *parent = current;
13456 	int inherited_all = 1;
13457 	unsigned long flags;
13458 	int ret = 0;
13459 
13460 	if (likely(!parent->perf_event_ctxp))
13461 		return 0;
13462 
13463 	/*
13464 	 * If the parent's context is a clone, pin it so it won't get
13465 	 * swapped under us.
13466 	 */
13467 	parent_ctx = perf_pin_task_context(parent);
13468 	if (!parent_ctx)
13469 		return 0;
13470 
13471 	/*
13472 	 * No need to check if parent_ctx != NULL here; since we saw
13473 	 * it non-NULL earlier, the only reason for it to become NULL
13474 	 * is if we exit, and since we're currently in the middle of
13475 	 * a fork we can't be exiting at the same time.
13476 	 */
13477 
13478 	/*
13479 	 * Lock the parent list. No need to lock the child - not PID
13480 	 * hashed yet and not running, so nobody can access it.
13481 	 */
13482 	mutex_lock(&parent_ctx->mutex);
13483 
13484 	/*
13485 	 * We dont have to disable NMIs - we are only looking at
13486 	 * the list, not manipulating it:
13487 	 */
13488 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13489 		ret = inherit_task_group(event, parent, parent_ctx,
13490 					 child, clone_flags, &inherited_all);
13491 		if (ret)
13492 			goto out_unlock;
13493 	}
13494 
13495 	/*
13496 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13497 	 * to allocations, but we need to prevent rotation because
13498 	 * rotate_ctx() will change the list from interrupt context.
13499 	 */
13500 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13501 	parent_ctx->rotate_disable = 1;
13502 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13503 
13504 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13505 		ret = inherit_task_group(event, parent, parent_ctx,
13506 					 child, clone_flags, &inherited_all);
13507 		if (ret)
13508 			goto out_unlock;
13509 	}
13510 
13511 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13512 	parent_ctx->rotate_disable = 0;
13513 
13514 	child_ctx = child->perf_event_ctxp;
13515 
13516 	if (child_ctx && inherited_all) {
13517 		/*
13518 		 * Mark the child context as a clone of the parent
13519 		 * context, or of whatever the parent is a clone of.
13520 		 *
13521 		 * Note that if the parent is a clone, the holding of
13522 		 * parent_ctx->lock avoids it from being uncloned.
13523 		 */
13524 		cloned_ctx = parent_ctx->parent_ctx;
13525 		if (cloned_ctx) {
13526 			child_ctx->parent_ctx = cloned_ctx;
13527 			child_ctx->parent_gen = parent_ctx->parent_gen;
13528 		} else {
13529 			child_ctx->parent_ctx = parent_ctx;
13530 			child_ctx->parent_gen = parent_ctx->generation;
13531 		}
13532 		get_ctx(child_ctx->parent_ctx);
13533 	}
13534 
13535 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13536 out_unlock:
13537 	mutex_unlock(&parent_ctx->mutex);
13538 
13539 	perf_unpin_context(parent_ctx);
13540 	put_ctx(parent_ctx);
13541 
13542 	return ret;
13543 }
13544 
13545 /*
13546  * Initialize the perf_event context in task_struct
13547  */
13548 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13549 {
13550 	int ret;
13551 
13552 	child->perf_event_ctxp = NULL;
13553 	mutex_init(&child->perf_event_mutex);
13554 	INIT_LIST_HEAD(&child->perf_event_list);
13555 
13556 	ret = perf_event_init_context(child, clone_flags);
13557 	if (ret) {
13558 		perf_event_free_task(child);
13559 		return ret;
13560 	}
13561 
13562 	return 0;
13563 }
13564 
13565 static void __init perf_event_init_all_cpus(void)
13566 {
13567 	struct swevent_htable *swhash;
13568 	struct perf_cpu_context *cpuctx;
13569 	int cpu;
13570 
13571 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13572 
13573 	for_each_possible_cpu(cpu) {
13574 		swhash = &per_cpu(swevent_htable, cpu);
13575 		mutex_init(&swhash->hlist_mutex);
13576 
13577 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13578 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13579 
13580 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13581 
13582 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13583 		__perf_event_init_context(&cpuctx->ctx);
13584 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13585 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13586 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13587 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13588 		cpuctx->heap = cpuctx->heap_default;
13589 	}
13590 }
13591 
13592 static void perf_swevent_init_cpu(unsigned int cpu)
13593 {
13594 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13595 
13596 	mutex_lock(&swhash->hlist_mutex);
13597 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13598 		struct swevent_hlist *hlist;
13599 
13600 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13601 		WARN_ON(!hlist);
13602 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13603 	}
13604 	mutex_unlock(&swhash->hlist_mutex);
13605 }
13606 
13607 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13608 static void __perf_event_exit_context(void *__info)
13609 {
13610 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13611 	struct perf_event_context *ctx = __info;
13612 	struct perf_event *event;
13613 
13614 	raw_spin_lock(&ctx->lock);
13615 	ctx_sched_out(ctx, EVENT_TIME);
13616 	list_for_each_entry(event, &ctx->event_list, event_entry)
13617 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13618 	raw_spin_unlock(&ctx->lock);
13619 }
13620 
13621 static void perf_event_exit_cpu_context(int cpu)
13622 {
13623 	struct perf_cpu_context *cpuctx;
13624 	struct perf_event_context *ctx;
13625 
13626 	// XXX simplify cpuctx->online
13627 	mutex_lock(&pmus_lock);
13628 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13629 	ctx = &cpuctx->ctx;
13630 
13631 	mutex_lock(&ctx->mutex);
13632 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13633 	cpuctx->online = 0;
13634 	mutex_unlock(&ctx->mutex);
13635 	cpumask_clear_cpu(cpu, perf_online_mask);
13636 	mutex_unlock(&pmus_lock);
13637 }
13638 #else
13639 
13640 static void perf_event_exit_cpu_context(int cpu) { }
13641 
13642 #endif
13643 
13644 int perf_event_init_cpu(unsigned int cpu)
13645 {
13646 	struct perf_cpu_context *cpuctx;
13647 	struct perf_event_context *ctx;
13648 
13649 	perf_swevent_init_cpu(cpu);
13650 
13651 	mutex_lock(&pmus_lock);
13652 	cpumask_set_cpu(cpu, perf_online_mask);
13653 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13654 	ctx = &cpuctx->ctx;
13655 
13656 	mutex_lock(&ctx->mutex);
13657 	cpuctx->online = 1;
13658 	mutex_unlock(&ctx->mutex);
13659 	mutex_unlock(&pmus_lock);
13660 
13661 	return 0;
13662 }
13663 
13664 int perf_event_exit_cpu(unsigned int cpu)
13665 {
13666 	perf_event_exit_cpu_context(cpu);
13667 	return 0;
13668 }
13669 
13670 static int
13671 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13672 {
13673 	int cpu;
13674 
13675 	for_each_online_cpu(cpu)
13676 		perf_event_exit_cpu(cpu);
13677 
13678 	return NOTIFY_OK;
13679 }
13680 
13681 /*
13682  * Run the perf reboot notifier at the very last possible moment so that
13683  * the generic watchdog code runs as long as possible.
13684  */
13685 static struct notifier_block perf_reboot_notifier = {
13686 	.notifier_call = perf_reboot,
13687 	.priority = INT_MIN,
13688 };
13689 
13690 void __init perf_event_init(void)
13691 {
13692 	int ret;
13693 
13694 	idr_init(&pmu_idr);
13695 
13696 	perf_event_init_all_cpus();
13697 	init_srcu_struct(&pmus_srcu);
13698 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13699 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13700 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13701 	perf_tp_register();
13702 	perf_event_init_cpu(smp_processor_id());
13703 	register_reboot_notifier(&perf_reboot_notifier);
13704 
13705 	ret = init_hw_breakpoint();
13706 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13707 
13708 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13709 
13710 	/*
13711 	 * Build time assertion that we keep the data_head at the intended
13712 	 * location.  IOW, validation we got the __reserved[] size right.
13713 	 */
13714 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13715 		     != 1024);
13716 }
13717 
13718 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13719 			      char *page)
13720 {
13721 	struct perf_pmu_events_attr *pmu_attr =
13722 		container_of(attr, struct perf_pmu_events_attr, attr);
13723 
13724 	if (pmu_attr->event_str)
13725 		return sprintf(page, "%s\n", pmu_attr->event_str);
13726 
13727 	return 0;
13728 }
13729 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13730 
13731 static int __init perf_event_sysfs_init(void)
13732 {
13733 	struct pmu *pmu;
13734 	int ret;
13735 
13736 	mutex_lock(&pmus_lock);
13737 
13738 	ret = bus_register(&pmu_bus);
13739 	if (ret)
13740 		goto unlock;
13741 
13742 	list_for_each_entry(pmu, &pmus, entry) {
13743 		if (pmu->dev)
13744 			continue;
13745 
13746 		ret = pmu_dev_alloc(pmu);
13747 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13748 	}
13749 	pmu_bus_running = 1;
13750 	ret = 0;
13751 
13752 unlock:
13753 	mutex_unlock(&pmus_lock);
13754 
13755 	return ret;
13756 }
13757 device_initcall(perf_event_sysfs_init);
13758 
13759 #ifdef CONFIG_CGROUP_PERF
13760 static struct cgroup_subsys_state *
13761 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13762 {
13763 	struct perf_cgroup *jc;
13764 
13765 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13766 	if (!jc)
13767 		return ERR_PTR(-ENOMEM);
13768 
13769 	jc->info = alloc_percpu(struct perf_cgroup_info);
13770 	if (!jc->info) {
13771 		kfree(jc);
13772 		return ERR_PTR(-ENOMEM);
13773 	}
13774 
13775 	return &jc->css;
13776 }
13777 
13778 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13779 {
13780 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13781 
13782 	free_percpu(jc->info);
13783 	kfree(jc);
13784 }
13785 
13786 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13787 {
13788 	perf_event_cgroup(css->cgroup);
13789 	return 0;
13790 }
13791 
13792 static int __perf_cgroup_move(void *info)
13793 {
13794 	struct task_struct *task = info;
13795 
13796 	preempt_disable();
13797 	perf_cgroup_switch(task);
13798 	preempt_enable();
13799 
13800 	return 0;
13801 }
13802 
13803 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13804 {
13805 	struct task_struct *task;
13806 	struct cgroup_subsys_state *css;
13807 
13808 	cgroup_taskset_for_each(task, css, tset)
13809 		task_function_call(task, __perf_cgroup_move, task);
13810 }
13811 
13812 struct cgroup_subsys perf_event_cgrp_subsys = {
13813 	.css_alloc	= perf_cgroup_css_alloc,
13814 	.css_free	= perf_cgroup_css_free,
13815 	.css_online	= perf_cgroup_css_online,
13816 	.attach		= perf_cgroup_attach,
13817 	/*
13818 	 * Implicitly enable on dfl hierarchy so that perf events can
13819 	 * always be filtered by cgroup2 path as long as perf_event
13820 	 * controller is not mounted on a legacy hierarchy.
13821 	 */
13822 	.implicit_on_dfl = true,
13823 	.threaded	= true,
13824 };
13825 #endif /* CONFIG_CGROUP_PERF */
13826 
13827 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13828