1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (event->attr.read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (event->attr.read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 size += entry * nr; 1841 event->read_size = size; 1842 } 1843 1844 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1845 { 1846 struct perf_sample_data *data; 1847 u16 size = 0; 1848 1849 if (sample_type & PERF_SAMPLE_IP) 1850 size += sizeof(data->ip); 1851 1852 if (sample_type & PERF_SAMPLE_ADDR) 1853 size += sizeof(data->addr); 1854 1855 if (sample_type & PERF_SAMPLE_PERIOD) 1856 size += sizeof(data->period); 1857 1858 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1859 size += sizeof(data->weight.full); 1860 1861 if (sample_type & PERF_SAMPLE_READ) 1862 size += event->read_size; 1863 1864 if (sample_type & PERF_SAMPLE_DATA_SRC) 1865 size += sizeof(data->data_src.val); 1866 1867 if (sample_type & PERF_SAMPLE_TRANSACTION) 1868 size += sizeof(data->txn); 1869 1870 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1871 size += sizeof(data->phys_addr); 1872 1873 if (sample_type & PERF_SAMPLE_CGROUP) 1874 size += sizeof(data->cgroup); 1875 1876 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1877 size += sizeof(data->data_page_size); 1878 1879 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1880 size += sizeof(data->code_page_size); 1881 1882 event->header_size = size; 1883 } 1884 1885 /* 1886 * Called at perf_event creation and when events are attached/detached from a 1887 * group. 1888 */ 1889 static void perf_event__header_size(struct perf_event *event) 1890 { 1891 __perf_event_read_size(event, 1892 event->group_leader->nr_siblings); 1893 __perf_event_header_size(event, event->attr.sample_type); 1894 } 1895 1896 static void perf_event__id_header_size(struct perf_event *event) 1897 { 1898 struct perf_sample_data *data; 1899 u64 sample_type = event->attr.sample_type; 1900 u16 size = 0; 1901 1902 if (sample_type & PERF_SAMPLE_TID) 1903 size += sizeof(data->tid_entry); 1904 1905 if (sample_type & PERF_SAMPLE_TIME) 1906 size += sizeof(data->time); 1907 1908 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1909 size += sizeof(data->id); 1910 1911 if (sample_type & PERF_SAMPLE_ID) 1912 size += sizeof(data->id); 1913 1914 if (sample_type & PERF_SAMPLE_STREAM_ID) 1915 size += sizeof(data->stream_id); 1916 1917 if (sample_type & PERF_SAMPLE_CPU) 1918 size += sizeof(data->cpu_entry); 1919 1920 event->id_header_size = size; 1921 } 1922 1923 static bool perf_event_validate_size(struct perf_event *event) 1924 { 1925 /* 1926 * The values computed here will be over-written when we actually 1927 * attach the event. 1928 */ 1929 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1930 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1931 perf_event__id_header_size(event); 1932 1933 /* 1934 * Sum the lot; should not exceed the 64k limit we have on records. 1935 * Conservative limit to allow for callchains and other variable fields. 1936 */ 1937 if (event->read_size + event->header_size + 1938 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1939 return false; 1940 1941 return true; 1942 } 1943 1944 static void perf_group_attach(struct perf_event *event) 1945 { 1946 struct perf_event *group_leader = event->group_leader, *pos; 1947 1948 lockdep_assert_held(&event->ctx->lock); 1949 1950 /* 1951 * We can have double attach due to group movement (move_group) in 1952 * perf_event_open(). 1953 */ 1954 if (event->attach_state & PERF_ATTACH_GROUP) 1955 return; 1956 1957 event->attach_state |= PERF_ATTACH_GROUP; 1958 1959 if (group_leader == event) 1960 return; 1961 1962 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1963 1964 group_leader->group_caps &= event->event_caps; 1965 1966 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1967 group_leader->nr_siblings++; 1968 group_leader->group_generation++; 1969 1970 perf_event__header_size(group_leader); 1971 1972 for_each_sibling_event(pos, group_leader) 1973 perf_event__header_size(pos); 1974 } 1975 1976 /* 1977 * Remove an event from the lists for its context. 1978 * Must be called with ctx->mutex and ctx->lock held. 1979 */ 1980 static void 1981 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1982 { 1983 WARN_ON_ONCE(event->ctx != ctx); 1984 lockdep_assert_held(&ctx->lock); 1985 1986 /* 1987 * We can have double detach due to exit/hot-unplug + close. 1988 */ 1989 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1990 return; 1991 1992 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1993 1994 ctx->nr_events--; 1995 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1996 ctx->nr_user--; 1997 if (event->attr.inherit_stat) 1998 ctx->nr_stat--; 1999 2000 list_del_rcu(&event->event_entry); 2001 2002 if (event->group_leader == event) 2003 del_event_from_groups(event, ctx); 2004 2005 /* 2006 * If event was in error state, then keep it 2007 * that way, otherwise bogus counts will be 2008 * returned on read(). The only way to get out 2009 * of error state is by explicit re-enabling 2010 * of the event 2011 */ 2012 if (event->state > PERF_EVENT_STATE_OFF) { 2013 perf_cgroup_event_disable(event, ctx); 2014 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2015 } 2016 2017 ctx->generation++; 2018 event->pmu_ctx->nr_events--; 2019 } 2020 2021 static int 2022 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2023 { 2024 if (!has_aux(aux_event)) 2025 return 0; 2026 2027 if (!event->pmu->aux_output_match) 2028 return 0; 2029 2030 return event->pmu->aux_output_match(aux_event); 2031 } 2032 2033 static void put_event(struct perf_event *event); 2034 static void event_sched_out(struct perf_event *event, 2035 struct perf_event_context *ctx); 2036 2037 static void perf_put_aux_event(struct perf_event *event) 2038 { 2039 struct perf_event_context *ctx = event->ctx; 2040 struct perf_event *iter; 2041 2042 /* 2043 * If event uses aux_event tear down the link 2044 */ 2045 if (event->aux_event) { 2046 iter = event->aux_event; 2047 event->aux_event = NULL; 2048 put_event(iter); 2049 return; 2050 } 2051 2052 /* 2053 * If the event is an aux_event, tear down all links to 2054 * it from other events. 2055 */ 2056 for_each_sibling_event(iter, event->group_leader) { 2057 if (iter->aux_event != event) 2058 continue; 2059 2060 iter->aux_event = NULL; 2061 put_event(event); 2062 2063 /* 2064 * If it's ACTIVE, schedule it out and put it into ERROR 2065 * state so that we don't try to schedule it again. Note 2066 * that perf_event_enable() will clear the ERROR status. 2067 */ 2068 event_sched_out(iter, ctx); 2069 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2070 } 2071 } 2072 2073 static bool perf_need_aux_event(struct perf_event *event) 2074 { 2075 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2076 } 2077 2078 static int perf_get_aux_event(struct perf_event *event, 2079 struct perf_event *group_leader) 2080 { 2081 /* 2082 * Our group leader must be an aux event if we want to be 2083 * an aux_output. This way, the aux event will precede its 2084 * aux_output events in the group, and therefore will always 2085 * schedule first. 2086 */ 2087 if (!group_leader) 2088 return 0; 2089 2090 /* 2091 * aux_output and aux_sample_size are mutually exclusive. 2092 */ 2093 if (event->attr.aux_output && event->attr.aux_sample_size) 2094 return 0; 2095 2096 if (event->attr.aux_output && 2097 !perf_aux_output_match(event, group_leader)) 2098 return 0; 2099 2100 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2101 return 0; 2102 2103 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2104 return 0; 2105 2106 /* 2107 * Link aux_outputs to their aux event; this is undone in 2108 * perf_group_detach() by perf_put_aux_event(). When the 2109 * group in torn down, the aux_output events loose their 2110 * link to the aux_event and can't schedule any more. 2111 */ 2112 event->aux_event = group_leader; 2113 2114 return 1; 2115 } 2116 2117 static inline struct list_head *get_event_list(struct perf_event *event) 2118 { 2119 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2120 &event->pmu_ctx->flexible_active; 2121 } 2122 2123 /* 2124 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2125 * cannot exist on their own, schedule them out and move them into the ERROR 2126 * state. Also see _perf_event_enable(), it will not be able to recover 2127 * this ERROR state. 2128 */ 2129 static inline void perf_remove_sibling_event(struct perf_event *event) 2130 { 2131 event_sched_out(event, event->ctx); 2132 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2133 } 2134 2135 static void perf_group_detach(struct perf_event *event) 2136 { 2137 struct perf_event *leader = event->group_leader; 2138 struct perf_event *sibling, *tmp; 2139 struct perf_event_context *ctx = event->ctx; 2140 2141 lockdep_assert_held(&ctx->lock); 2142 2143 /* 2144 * We can have double detach due to exit/hot-unplug + close. 2145 */ 2146 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2147 return; 2148 2149 event->attach_state &= ~PERF_ATTACH_GROUP; 2150 2151 perf_put_aux_event(event); 2152 2153 /* 2154 * If this is a sibling, remove it from its group. 2155 */ 2156 if (leader != event) { 2157 list_del_init(&event->sibling_list); 2158 event->group_leader->nr_siblings--; 2159 event->group_leader->group_generation++; 2160 goto out; 2161 } 2162 2163 /* 2164 * If this was a group event with sibling events then 2165 * upgrade the siblings to singleton events by adding them 2166 * to whatever list we are on. 2167 */ 2168 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2169 2170 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2171 perf_remove_sibling_event(sibling); 2172 2173 sibling->group_leader = sibling; 2174 list_del_init(&sibling->sibling_list); 2175 2176 /* Inherit group flags from the previous leader */ 2177 sibling->group_caps = event->group_caps; 2178 2179 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2180 add_event_to_groups(sibling, event->ctx); 2181 2182 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2183 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2184 } 2185 2186 WARN_ON_ONCE(sibling->ctx != event->ctx); 2187 } 2188 2189 out: 2190 for_each_sibling_event(tmp, leader) 2191 perf_event__header_size(tmp); 2192 2193 perf_event__header_size(leader); 2194 } 2195 2196 static void sync_child_event(struct perf_event *child_event); 2197 2198 static void perf_child_detach(struct perf_event *event) 2199 { 2200 struct perf_event *parent_event = event->parent; 2201 2202 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2203 return; 2204 2205 event->attach_state &= ~PERF_ATTACH_CHILD; 2206 2207 if (WARN_ON_ONCE(!parent_event)) 2208 return; 2209 2210 lockdep_assert_held(&parent_event->child_mutex); 2211 2212 sync_child_event(event); 2213 list_del_init(&event->child_list); 2214 } 2215 2216 static bool is_orphaned_event(struct perf_event *event) 2217 { 2218 return event->state == PERF_EVENT_STATE_DEAD; 2219 } 2220 2221 static inline int 2222 event_filter_match(struct perf_event *event) 2223 { 2224 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2225 perf_cgroup_match(event); 2226 } 2227 2228 static void 2229 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2230 { 2231 struct perf_event_pmu_context *epc = event->pmu_ctx; 2232 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2233 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2234 2235 // XXX cpc serialization, probably per-cpu IRQ disabled 2236 2237 WARN_ON_ONCE(event->ctx != ctx); 2238 lockdep_assert_held(&ctx->lock); 2239 2240 if (event->state != PERF_EVENT_STATE_ACTIVE) 2241 return; 2242 2243 /* 2244 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2245 * we can schedule events _OUT_ individually through things like 2246 * __perf_remove_from_context(). 2247 */ 2248 list_del_init(&event->active_list); 2249 2250 perf_pmu_disable(event->pmu); 2251 2252 event->pmu->del(event, 0); 2253 event->oncpu = -1; 2254 2255 if (event->pending_disable) { 2256 event->pending_disable = 0; 2257 perf_cgroup_event_disable(event, ctx); 2258 state = PERF_EVENT_STATE_OFF; 2259 } 2260 2261 if (event->pending_sigtrap) { 2262 bool dec = true; 2263 2264 event->pending_sigtrap = 0; 2265 if (state != PERF_EVENT_STATE_OFF && 2266 !event->pending_work) { 2267 event->pending_work = 1; 2268 dec = false; 2269 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2270 task_work_add(current, &event->pending_task, TWA_RESUME); 2271 } 2272 if (dec) 2273 local_dec(&event->ctx->nr_pending); 2274 } 2275 2276 perf_event_set_state(event, state); 2277 2278 if (!is_software_event(event)) 2279 cpc->active_oncpu--; 2280 if (event->attr.freq && event->attr.sample_freq) 2281 ctx->nr_freq--; 2282 if (event->attr.exclusive || !cpc->active_oncpu) 2283 cpc->exclusive = 0; 2284 2285 perf_pmu_enable(event->pmu); 2286 } 2287 2288 static void 2289 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2290 { 2291 struct perf_event *event; 2292 2293 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2294 return; 2295 2296 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2297 2298 event_sched_out(group_event, ctx); 2299 2300 /* 2301 * Schedule out siblings (if any): 2302 */ 2303 for_each_sibling_event(event, group_event) 2304 event_sched_out(event, ctx); 2305 } 2306 2307 #define DETACH_GROUP 0x01UL 2308 #define DETACH_CHILD 0x02UL 2309 #define DETACH_DEAD 0x04UL 2310 2311 /* 2312 * Cross CPU call to remove a performance event 2313 * 2314 * We disable the event on the hardware level first. After that we 2315 * remove it from the context list. 2316 */ 2317 static void 2318 __perf_remove_from_context(struct perf_event *event, 2319 struct perf_cpu_context *cpuctx, 2320 struct perf_event_context *ctx, 2321 void *info) 2322 { 2323 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2324 unsigned long flags = (unsigned long)info; 2325 2326 if (ctx->is_active & EVENT_TIME) { 2327 update_context_time(ctx); 2328 update_cgrp_time_from_cpuctx(cpuctx, false); 2329 } 2330 2331 /* 2332 * Ensure event_sched_out() switches to OFF, at the very least 2333 * this avoids raising perf_pending_task() at this time. 2334 */ 2335 if (flags & DETACH_DEAD) 2336 event->pending_disable = 1; 2337 event_sched_out(event, ctx); 2338 if (flags & DETACH_GROUP) 2339 perf_group_detach(event); 2340 if (flags & DETACH_CHILD) 2341 perf_child_detach(event); 2342 list_del_event(event, ctx); 2343 if (flags & DETACH_DEAD) 2344 event->state = PERF_EVENT_STATE_DEAD; 2345 2346 if (!pmu_ctx->nr_events) { 2347 pmu_ctx->rotate_necessary = 0; 2348 2349 if (ctx->task && ctx->is_active) { 2350 struct perf_cpu_pmu_context *cpc; 2351 2352 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2353 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2354 cpc->task_epc = NULL; 2355 } 2356 } 2357 2358 if (!ctx->nr_events && ctx->is_active) { 2359 if (ctx == &cpuctx->ctx) 2360 update_cgrp_time_from_cpuctx(cpuctx, true); 2361 2362 ctx->is_active = 0; 2363 if (ctx->task) { 2364 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2365 cpuctx->task_ctx = NULL; 2366 } 2367 } 2368 } 2369 2370 /* 2371 * Remove the event from a task's (or a CPU's) list of events. 2372 * 2373 * If event->ctx is a cloned context, callers must make sure that 2374 * every task struct that event->ctx->task could possibly point to 2375 * remains valid. This is OK when called from perf_release since 2376 * that only calls us on the top-level context, which can't be a clone. 2377 * When called from perf_event_exit_task, it's OK because the 2378 * context has been detached from its task. 2379 */ 2380 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2381 { 2382 struct perf_event_context *ctx = event->ctx; 2383 2384 lockdep_assert_held(&ctx->mutex); 2385 2386 /* 2387 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2388 * to work in the face of TASK_TOMBSTONE, unlike every other 2389 * event_function_call() user. 2390 */ 2391 raw_spin_lock_irq(&ctx->lock); 2392 if (!ctx->is_active) { 2393 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2394 ctx, (void *)flags); 2395 raw_spin_unlock_irq(&ctx->lock); 2396 return; 2397 } 2398 raw_spin_unlock_irq(&ctx->lock); 2399 2400 event_function_call(event, __perf_remove_from_context, (void *)flags); 2401 } 2402 2403 /* 2404 * Cross CPU call to disable a performance event 2405 */ 2406 static void __perf_event_disable(struct perf_event *event, 2407 struct perf_cpu_context *cpuctx, 2408 struct perf_event_context *ctx, 2409 void *info) 2410 { 2411 if (event->state < PERF_EVENT_STATE_INACTIVE) 2412 return; 2413 2414 if (ctx->is_active & EVENT_TIME) { 2415 update_context_time(ctx); 2416 update_cgrp_time_from_event(event); 2417 } 2418 2419 perf_pmu_disable(event->pmu_ctx->pmu); 2420 2421 if (event == event->group_leader) 2422 group_sched_out(event, ctx); 2423 else 2424 event_sched_out(event, ctx); 2425 2426 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2427 perf_cgroup_event_disable(event, ctx); 2428 2429 perf_pmu_enable(event->pmu_ctx->pmu); 2430 } 2431 2432 /* 2433 * Disable an event. 2434 * 2435 * If event->ctx is a cloned context, callers must make sure that 2436 * every task struct that event->ctx->task could possibly point to 2437 * remains valid. This condition is satisfied when called through 2438 * perf_event_for_each_child or perf_event_for_each because they 2439 * hold the top-level event's child_mutex, so any descendant that 2440 * goes to exit will block in perf_event_exit_event(). 2441 * 2442 * When called from perf_pending_irq it's OK because event->ctx 2443 * is the current context on this CPU and preemption is disabled, 2444 * hence we can't get into perf_event_task_sched_out for this context. 2445 */ 2446 static void _perf_event_disable(struct perf_event *event) 2447 { 2448 struct perf_event_context *ctx = event->ctx; 2449 2450 raw_spin_lock_irq(&ctx->lock); 2451 if (event->state <= PERF_EVENT_STATE_OFF) { 2452 raw_spin_unlock_irq(&ctx->lock); 2453 return; 2454 } 2455 raw_spin_unlock_irq(&ctx->lock); 2456 2457 event_function_call(event, __perf_event_disable, NULL); 2458 } 2459 2460 void perf_event_disable_local(struct perf_event *event) 2461 { 2462 event_function_local(event, __perf_event_disable, NULL); 2463 } 2464 2465 /* 2466 * Strictly speaking kernel users cannot create groups and therefore this 2467 * interface does not need the perf_event_ctx_lock() magic. 2468 */ 2469 void perf_event_disable(struct perf_event *event) 2470 { 2471 struct perf_event_context *ctx; 2472 2473 ctx = perf_event_ctx_lock(event); 2474 _perf_event_disable(event); 2475 perf_event_ctx_unlock(event, ctx); 2476 } 2477 EXPORT_SYMBOL_GPL(perf_event_disable); 2478 2479 void perf_event_disable_inatomic(struct perf_event *event) 2480 { 2481 event->pending_disable = 1; 2482 irq_work_queue(&event->pending_irq); 2483 } 2484 2485 #define MAX_INTERRUPTS (~0ULL) 2486 2487 static void perf_log_throttle(struct perf_event *event, int enable); 2488 static void perf_log_itrace_start(struct perf_event *event); 2489 2490 static int 2491 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2492 { 2493 struct perf_event_pmu_context *epc = event->pmu_ctx; 2494 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2495 int ret = 0; 2496 2497 WARN_ON_ONCE(event->ctx != ctx); 2498 2499 lockdep_assert_held(&ctx->lock); 2500 2501 if (event->state <= PERF_EVENT_STATE_OFF) 2502 return 0; 2503 2504 WRITE_ONCE(event->oncpu, smp_processor_id()); 2505 /* 2506 * Order event::oncpu write to happen before the ACTIVE state is 2507 * visible. This allows perf_event_{stop,read}() to observe the correct 2508 * ->oncpu if it sees ACTIVE. 2509 */ 2510 smp_wmb(); 2511 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2512 2513 /* 2514 * Unthrottle events, since we scheduled we might have missed several 2515 * ticks already, also for a heavily scheduling task there is little 2516 * guarantee it'll get a tick in a timely manner. 2517 */ 2518 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2519 perf_log_throttle(event, 1); 2520 event->hw.interrupts = 0; 2521 } 2522 2523 perf_pmu_disable(event->pmu); 2524 2525 perf_log_itrace_start(event); 2526 2527 if (event->pmu->add(event, PERF_EF_START)) { 2528 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2529 event->oncpu = -1; 2530 ret = -EAGAIN; 2531 goto out; 2532 } 2533 2534 if (!is_software_event(event)) 2535 cpc->active_oncpu++; 2536 if (event->attr.freq && event->attr.sample_freq) 2537 ctx->nr_freq++; 2538 2539 if (event->attr.exclusive) 2540 cpc->exclusive = 1; 2541 2542 out: 2543 perf_pmu_enable(event->pmu); 2544 2545 return ret; 2546 } 2547 2548 static int 2549 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2550 { 2551 struct perf_event *event, *partial_group = NULL; 2552 struct pmu *pmu = group_event->pmu_ctx->pmu; 2553 2554 if (group_event->state == PERF_EVENT_STATE_OFF) 2555 return 0; 2556 2557 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2558 2559 if (event_sched_in(group_event, ctx)) 2560 goto error; 2561 2562 /* 2563 * Schedule in siblings as one group (if any): 2564 */ 2565 for_each_sibling_event(event, group_event) { 2566 if (event_sched_in(event, ctx)) { 2567 partial_group = event; 2568 goto group_error; 2569 } 2570 } 2571 2572 if (!pmu->commit_txn(pmu)) 2573 return 0; 2574 2575 group_error: 2576 /* 2577 * Groups can be scheduled in as one unit only, so undo any 2578 * partial group before returning: 2579 * The events up to the failed event are scheduled out normally. 2580 */ 2581 for_each_sibling_event(event, group_event) { 2582 if (event == partial_group) 2583 break; 2584 2585 event_sched_out(event, ctx); 2586 } 2587 event_sched_out(group_event, ctx); 2588 2589 error: 2590 pmu->cancel_txn(pmu); 2591 return -EAGAIN; 2592 } 2593 2594 /* 2595 * Work out whether we can put this event group on the CPU now. 2596 */ 2597 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2598 { 2599 struct perf_event_pmu_context *epc = event->pmu_ctx; 2600 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2601 2602 /* 2603 * Groups consisting entirely of software events can always go on. 2604 */ 2605 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2606 return 1; 2607 /* 2608 * If an exclusive group is already on, no other hardware 2609 * events can go on. 2610 */ 2611 if (cpc->exclusive) 2612 return 0; 2613 /* 2614 * If this group is exclusive and there are already 2615 * events on the CPU, it can't go on. 2616 */ 2617 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2618 return 0; 2619 /* 2620 * Otherwise, try to add it if all previous groups were able 2621 * to go on. 2622 */ 2623 return can_add_hw; 2624 } 2625 2626 static void add_event_to_ctx(struct perf_event *event, 2627 struct perf_event_context *ctx) 2628 { 2629 list_add_event(event, ctx); 2630 perf_group_attach(event); 2631 } 2632 2633 static void task_ctx_sched_out(struct perf_event_context *ctx, 2634 enum event_type_t event_type) 2635 { 2636 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2637 2638 if (!cpuctx->task_ctx) 2639 return; 2640 2641 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2642 return; 2643 2644 ctx_sched_out(ctx, event_type); 2645 } 2646 2647 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2648 struct perf_event_context *ctx) 2649 { 2650 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2651 if (ctx) 2652 ctx_sched_in(ctx, EVENT_PINNED); 2653 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2654 if (ctx) 2655 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2656 } 2657 2658 /* 2659 * We want to maintain the following priority of scheduling: 2660 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2661 * - task pinned (EVENT_PINNED) 2662 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2663 * - task flexible (EVENT_FLEXIBLE). 2664 * 2665 * In order to avoid unscheduling and scheduling back in everything every 2666 * time an event is added, only do it for the groups of equal priority and 2667 * below. 2668 * 2669 * This can be called after a batch operation on task events, in which case 2670 * event_type is a bit mask of the types of events involved. For CPU events, 2671 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2672 */ 2673 /* 2674 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2675 * event to the context or enabling existing event in the context. We can 2676 * probably optimize it by rescheduling only affected pmu_ctx. 2677 */ 2678 static void ctx_resched(struct perf_cpu_context *cpuctx, 2679 struct perf_event_context *task_ctx, 2680 enum event_type_t event_type) 2681 { 2682 bool cpu_event = !!(event_type & EVENT_CPU); 2683 2684 /* 2685 * If pinned groups are involved, flexible groups also need to be 2686 * scheduled out. 2687 */ 2688 if (event_type & EVENT_PINNED) 2689 event_type |= EVENT_FLEXIBLE; 2690 2691 event_type &= EVENT_ALL; 2692 2693 perf_ctx_disable(&cpuctx->ctx, false); 2694 if (task_ctx) { 2695 perf_ctx_disable(task_ctx, false); 2696 task_ctx_sched_out(task_ctx, event_type); 2697 } 2698 2699 /* 2700 * Decide which cpu ctx groups to schedule out based on the types 2701 * of events that caused rescheduling: 2702 * - EVENT_CPU: schedule out corresponding groups; 2703 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2704 * - otherwise, do nothing more. 2705 */ 2706 if (cpu_event) 2707 ctx_sched_out(&cpuctx->ctx, event_type); 2708 else if (event_type & EVENT_PINNED) 2709 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2710 2711 perf_event_sched_in(cpuctx, task_ctx); 2712 2713 perf_ctx_enable(&cpuctx->ctx, false); 2714 if (task_ctx) 2715 perf_ctx_enable(task_ctx, false); 2716 } 2717 2718 void perf_pmu_resched(struct pmu *pmu) 2719 { 2720 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2721 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2722 2723 perf_ctx_lock(cpuctx, task_ctx); 2724 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2725 perf_ctx_unlock(cpuctx, task_ctx); 2726 } 2727 2728 /* 2729 * Cross CPU call to install and enable a performance event 2730 * 2731 * Very similar to remote_function() + event_function() but cannot assume that 2732 * things like ctx->is_active and cpuctx->task_ctx are set. 2733 */ 2734 static int __perf_install_in_context(void *info) 2735 { 2736 struct perf_event *event = info; 2737 struct perf_event_context *ctx = event->ctx; 2738 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2739 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2740 bool reprogram = true; 2741 int ret = 0; 2742 2743 raw_spin_lock(&cpuctx->ctx.lock); 2744 if (ctx->task) { 2745 raw_spin_lock(&ctx->lock); 2746 task_ctx = ctx; 2747 2748 reprogram = (ctx->task == current); 2749 2750 /* 2751 * If the task is running, it must be running on this CPU, 2752 * otherwise we cannot reprogram things. 2753 * 2754 * If its not running, we don't care, ctx->lock will 2755 * serialize against it becoming runnable. 2756 */ 2757 if (task_curr(ctx->task) && !reprogram) { 2758 ret = -ESRCH; 2759 goto unlock; 2760 } 2761 2762 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2763 } else if (task_ctx) { 2764 raw_spin_lock(&task_ctx->lock); 2765 } 2766 2767 #ifdef CONFIG_CGROUP_PERF 2768 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2769 /* 2770 * If the current cgroup doesn't match the event's 2771 * cgroup, we should not try to schedule it. 2772 */ 2773 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2774 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2775 event->cgrp->css.cgroup); 2776 } 2777 #endif 2778 2779 if (reprogram) { 2780 ctx_sched_out(ctx, EVENT_TIME); 2781 add_event_to_ctx(event, ctx); 2782 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2783 } else { 2784 add_event_to_ctx(event, ctx); 2785 } 2786 2787 unlock: 2788 perf_ctx_unlock(cpuctx, task_ctx); 2789 2790 return ret; 2791 } 2792 2793 static bool exclusive_event_installable(struct perf_event *event, 2794 struct perf_event_context *ctx); 2795 2796 /* 2797 * Attach a performance event to a context. 2798 * 2799 * Very similar to event_function_call, see comment there. 2800 */ 2801 static void 2802 perf_install_in_context(struct perf_event_context *ctx, 2803 struct perf_event *event, 2804 int cpu) 2805 { 2806 struct task_struct *task = READ_ONCE(ctx->task); 2807 2808 lockdep_assert_held(&ctx->mutex); 2809 2810 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2811 2812 if (event->cpu != -1) 2813 WARN_ON_ONCE(event->cpu != cpu); 2814 2815 /* 2816 * Ensures that if we can observe event->ctx, both the event and ctx 2817 * will be 'complete'. See perf_iterate_sb_cpu(). 2818 */ 2819 smp_store_release(&event->ctx, ctx); 2820 2821 /* 2822 * perf_event_attr::disabled events will not run and can be initialized 2823 * without IPI. Except when this is the first event for the context, in 2824 * that case we need the magic of the IPI to set ctx->is_active. 2825 * 2826 * The IOC_ENABLE that is sure to follow the creation of a disabled 2827 * event will issue the IPI and reprogram the hardware. 2828 */ 2829 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2830 ctx->nr_events && !is_cgroup_event(event)) { 2831 raw_spin_lock_irq(&ctx->lock); 2832 if (ctx->task == TASK_TOMBSTONE) { 2833 raw_spin_unlock_irq(&ctx->lock); 2834 return; 2835 } 2836 add_event_to_ctx(event, ctx); 2837 raw_spin_unlock_irq(&ctx->lock); 2838 return; 2839 } 2840 2841 if (!task) { 2842 cpu_function_call(cpu, __perf_install_in_context, event); 2843 return; 2844 } 2845 2846 /* 2847 * Should not happen, we validate the ctx is still alive before calling. 2848 */ 2849 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2850 return; 2851 2852 /* 2853 * Installing events is tricky because we cannot rely on ctx->is_active 2854 * to be set in case this is the nr_events 0 -> 1 transition. 2855 * 2856 * Instead we use task_curr(), which tells us if the task is running. 2857 * However, since we use task_curr() outside of rq::lock, we can race 2858 * against the actual state. This means the result can be wrong. 2859 * 2860 * If we get a false positive, we retry, this is harmless. 2861 * 2862 * If we get a false negative, things are complicated. If we are after 2863 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2864 * value must be correct. If we're before, it doesn't matter since 2865 * perf_event_context_sched_in() will program the counter. 2866 * 2867 * However, this hinges on the remote context switch having observed 2868 * our task->perf_event_ctxp[] store, such that it will in fact take 2869 * ctx::lock in perf_event_context_sched_in(). 2870 * 2871 * We do this by task_function_call(), if the IPI fails to hit the task 2872 * we know any future context switch of task must see the 2873 * perf_event_ctpx[] store. 2874 */ 2875 2876 /* 2877 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2878 * task_cpu() load, such that if the IPI then does not find the task 2879 * running, a future context switch of that task must observe the 2880 * store. 2881 */ 2882 smp_mb(); 2883 again: 2884 if (!task_function_call(task, __perf_install_in_context, event)) 2885 return; 2886 2887 raw_spin_lock_irq(&ctx->lock); 2888 task = ctx->task; 2889 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2890 /* 2891 * Cannot happen because we already checked above (which also 2892 * cannot happen), and we hold ctx->mutex, which serializes us 2893 * against perf_event_exit_task_context(). 2894 */ 2895 raw_spin_unlock_irq(&ctx->lock); 2896 return; 2897 } 2898 /* 2899 * If the task is not running, ctx->lock will avoid it becoming so, 2900 * thus we can safely install the event. 2901 */ 2902 if (task_curr(task)) { 2903 raw_spin_unlock_irq(&ctx->lock); 2904 goto again; 2905 } 2906 add_event_to_ctx(event, ctx); 2907 raw_spin_unlock_irq(&ctx->lock); 2908 } 2909 2910 /* 2911 * Cross CPU call to enable a performance event 2912 */ 2913 static void __perf_event_enable(struct perf_event *event, 2914 struct perf_cpu_context *cpuctx, 2915 struct perf_event_context *ctx, 2916 void *info) 2917 { 2918 struct perf_event *leader = event->group_leader; 2919 struct perf_event_context *task_ctx; 2920 2921 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2922 event->state <= PERF_EVENT_STATE_ERROR) 2923 return; 2924 2925 if (ctx->is_active) 2926 ctx_sched_out(ctx, EVENT_TIME); 2927 2928 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2929 perf_cgroup_event_enable(event, ctx); 2930 2931 if (!ctx->is_active) 2932 return; 2933 2934 if (!event_filter_match(event)) { 2935 ctx_sched_in(ctx, EVENT_TIME); 2936 return; 2937 } 2938 2939 /* 2940 * If the event is in a group and isn't the group leader, 2941 * then don't put it on unless the group is on. 2942 */ 2943 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2944 ctx_sched_in(ctx, EVENT_TIME); 2945 return; 2946 } 2947 2948 task_ctx = cpuctx->task_ctx; 2949 if (ctx->task) 2950 WARN_ON_ONCE(task_ctx != ctx); 2951 2952 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2953 } 2954 2955 /* 2956 * Enable an event. 2957 * 2958 * If event->ctx is a cloned context, callers must make sure that 2959 * every task struct that event->ctx->task could possibly point to 2960 * remains valid. This condition is satisfied when called through 2961 * perf_event_for_each_child or perf_event_for_each as described 2962 * for perf_event_disable. 2963 */ 2964 static void _perf_event_enable(struct perf_event *event) 2965 { 2966 struct perf_event_context *ctx = event->ctx; 2967 2968 raw_spin_lock_irq(&ctx->lock); 2969 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2970 event->state < PERF_EVENT_STATE_ERROR) { 2971 out: 2972 raw_spin_unlock_irq(&ctx->lock); 2973 return; 2974 } 2975 2976 /* 2977 * If the event is in error state, clear that first. 2978 * 2979 * That way, if we see the event in error state below, we know that it 2980 * has gone back into error state, as distinct from the task having 2981 * been scheduled away before the cross-call arrived. 2982 */ 2983 if (event->state == PERF_EVENT_STATE_ERROR) { 2984 /* 2985 * Detached SIBLING events cannot leave ERROR state. 2986 */ 2987 if (event->event_caps & PERF_EV_CAP_SIBLING && 2988 event->group_leader == event) 2989 goto out; 2990 2991 event->state = PERF_EVENT_STATE_OFF; 2992 } 2993 raw_spin_unlock_irq(&ctx->lock); 2994 2995 event_function_call(event, __perf_event_enable, NULL); 2996 } 2997 2998 /* 2999 * See perf_event_disable(); 3000 */ 3001 void perf_event_enable(struct perf_event *event) 3002 { 3003 struct perf_event_context *ctx; 3004 3005 ctx = perf_event_ctx_lock(event); 3006 _perf_event_enable(event); 3007 perf_event_ctx_unlock(event, ctx); 3008 } 3009 EXPORT_SYMBOL_GPL(perf_event_enable); 3010 3011 struct stop_event_data { 3012 struct perf_event *event; 3013 unsigned int restart; 3014 }; 3015 3016 static int __perf_event_stop(void *info) 3017 { 3018 struct stop_event_data *sd = info; 3019 struct perf_event *event = sd->event; 3020 3021 /* if it's already INACTIVE, do nothing */ 3022 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3023 return 0; 3024 3025 /* matches smp_wmb() in event_sched_in() */ 3026 smp_rmb(); 3027 3028 /* 3029 * There is a window with interrupts enabled before we get here, 3030 * so we need to check again lest we try to stop another CPU's event. 3031 */ 3032 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3033 return -EAGAIN; 3034 3035 event->pmu->stop(event, PERF_EF_UPDATE); 3036 3037 /* 3038 * May race with the actual stop (through perf_pmu_output_stop()), 3039 * but it is only used for events with AUX ring buffer, and such 3040 * events will refuse to restart because of rb::aux_mmap_count==0, 3041 * see comments in perf_aux_output_begin(). 3042 * 3043 * Since this is happening on an event-local CPU, no trace is lost 3044 * while restarting. 3045 */ 3046 if (sd->restart) 3047 event->pmu->start(event, 0); 3048 3049 return 0; 3050 } 3051 3052 static int perf_event_stop(struct perf_event *event, int restart) 3053 { 3054 struct stop_event_data sd = { 3055 .event = event, 3056 .restart = restart, 3057 }; 3058 int ret = 0; 3059 3060 do { 3061 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3062 return 0; 3063 3064 /* matches smp_wmb() in event_sched_in() */ 3065 smp_rmb(); 3066 3067 /* 3068 * We only want to restart ACTIVE events, so if the event goes 3069 * inactive here (event->oncpu==-1), there's nothing more to do; 3070 * fall through with ret==-ENXIO. 3071 */ 3072 ret = cpu_function_call(READ_ONCE(event->oncpu), 3073 __perf_event_stop, &sd); 3074 } while (ret == -EAGAIN); 3075 3076 return ret; 3077 } 3078 3079 /* 3080 * In order to contain the amount of racy and tricky in the address filter 3081 * configuration management, it is a two part process: 3082 * 3083 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3084 * we update the addresses of corresponding vmas in 3085 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3086 * (p2) when an event is scheduled in (pmu::add), it calls 3087 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3088 * if the generation has changed since the previous call. 3089 * 3090 * If (p1) happens while the event is active, we restart it to force (p2). 3091 * 3092 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3093 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3094 * ioctl; 3095 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3096 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3097 * for reading; 3098 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3099 * of exec. 3100 */ 3101 void perf_event_addr_filters_sync(struct perf_event *event) 3102 { 3103 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3104 3105 if (!has_addr_filter(event)) 3106 return; 3107 3108 raw_spin_lock(&ifh->lock); 3109 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3110 event->pmu->addr_filters_sync(event); 3111 event->hw.addr_filters_gen = event->addr_filters_gen; 3112 } 3113 raw_spin_unlock(&ifh->lock); 3114 } 3115 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3116 3117 static int _perf_event_refresh(struct perf_event *event, int refresh) 3118 { 3119 /* 3120 * not supported on inherited events 3121 */ 3122 if (event->attr.inherit || !is_sampling_event(event)) 3123 return -EINVAL; 3124 3125 atomic_add(refresh, &event->event_limit); 3126 _perf_event_enable(event); 3127 3128 return 0; 3129 } 3130 3131 /* 3132 * See perf_event_disable() 3133 */ 3134 int perf_event_refresh(struct perf_event *event, int refresh) 3135 { 3136 struct perf_event_context *ctx; 3137 int ret; 3138 3139 ctx = perf_event_ctx_lock(event); 3140 ret = _perf_event_refresh(event, refresh); 3141 perf_event_ctx_unlock(event, ctx); 3142 3143 return ret; 3144 } 3145 EXPORT_SYMBOL_GPL(perf_event_refresh); 3146 3147 static int perf_event_modify_breakpoint(struct perf_event *bp, 3148 struct perf_event_attr *attr) 3149 { 3150 int err; 3151 3152 _perf_event_disable(bp); 3153 3154 err = modify_user_hw_breakpoint_check(bp, attr, true); 3155 3156 if (!bp->attr.disabled) 3157 _perf_event_enable(bp); 3158 3159 return err; 3160 } 3161 3162 /* 3163 * Copy event-type-independent attributes that may be modified. 3164 */ 3165 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3166 const struct perf_event_attr *from) 3167 { 3168 to->sig_data = from->sig_data; 3169 } 3170 3171 static int perf_event_modify_attr(struct perf_event *event, 3172 struct perf_event_attr *attr) 3173 { 3174 int (*func)(struct perf_event *, struct perf_event_attr *); 3175 struct perf_event *child; 3176 int err; 3177 3178 if (event->attr.type != attr->type) 3179 return -EINVAL; 3180 3181 switch (event->attr.type) { 3182 case PERF_TYPE_BREAKPOINT: 3183 func = perf_event_modify_breakpoint; 3184 break; 3185 default: 3186 /* Place holder for future additions. */ 3187 return -EOPNOTSUPP; 3188 } 3189 3190 WARN_ON_ONCE(event->ctx->parent_ctx); 3191 3192 mutex_lock(&event->child_mutex); 3193 /* 3194 * Event-type-independent attributes must be copied before event-type 3195 * modification, which will validate that final attributes match the 3196 * source attributes after all relevant attributes have been copied. 3197 */ 3198 perf_event_modify_copy_attr(&event->attr, attr); 3199 err = func(event, attr); 3200 if (err) 3201 goto out; 3202 list_for_each_entry(child, &event->child_list, child_list) { 3203 perf_event_modify_copy_attr(&child->attr, attr); 3204 err = func(child, attr); 3205 if (err) 3206 goto out; 3207 } 3208 out: 3209 mutex_unlock(&event->child_mutex); 3210 return err; 3211 } 3212 3213 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3214 enum event_type_t event_type) 3215 { 3216 struct perf_event_context *ctx = pmu_ctx->ctx; 3217 struct perf_event *event, *tmp; 3218 struct pmu *pmu = pmu_ctx->pmu; 3219 3220 if (ctx->task && !ctx->is_active) { 3221 struct perf_cpu_pmu_context *cpc; 3222 3223 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3224 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3225 cpc->task_epc = NULL; 3226 } 3227 3228 if (!event_type) 3229 return; 3230 3231 perf_pmu_disable(pmu); 3232 if (event_type & EVENT_PINNED) { 3233 list_for_each_entry_safe(event, tmp, 3234 &pmu_ctx->pinned_active, 3235 active_list) 3236 group_sched_out(event, ctx); 3237 } 3238 3239 if (event_type & EVENT_FLEXIBLE) { 3240 list_for_each_entry_safe(event, tmp, 3241 &pmu_ctx->flexible_active, 3242 active_list) 3243 group_sched_out(event, ctx); 3244 /* 3245 * Since we cleared EVENT_FLEXIBLE, also clear 3246 * rotate_necessary, is will be reset by 3247 * ctx_flexible_sched_in() when needed. 3248 */ 3249 pmu_ctx->rotate_necessary = 0; 3250 } 3251 perf_pmu_enable(pmu); 3252 } 3253 3254 static void 3255 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3256 { 3257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3258 struct perf_event_pmu_context *pmu_ctx; 3259 int is_active = ctx->is_active; 3260 bool cgroup = event_type & EVENT_CGROUP; 3261 3262 event_type &= ~EVENT_CGROUP; 3263 3264 lockdep_assert_held(&ctx->lock); 3265 3266 if (likely(!ctx->nr_events)) { 3267 /* 3268 * See __perf_remove_from_context(). 3269 */ 3270 WARN_ON_ONCE(ctx->is_active); 3271 if (ctx->task) 3272 WARN_ON_ONCE(cpuctx->task_ctx); 3273 return; 3274 } 3275 3276 /* 3277 * Always update time if it was set; not only when it changes. 3278 * Otherwise we can 'forget' to update time for any but the last 3279 * context we sched out. For example: 3280 * 3281 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3282 * ctx_sched_out(.event_type = EVENT_PINNED) 3283 * 3284 * would only update time for the pinned events. 3285 */ 3286 if (is_active & EVENT_TIME) { 3287 /* update (and stop) ctx time */ 3288 update_context_time(ctx); 3289 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3290 /* 3291 * CPU-release for the below ->is_active store, 3292 * see __load_acquire() in perf_event_time_now() 3293 */ 3294 barrier(); 3295 } 3296 3297 ctx->is_active &= ~event_type; 3298 if (!(ctx->is_active & EVENT_ALL)) 3299 ctx->is_active = 0; 3300 3301 if (ctx->task) { 3302 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3303 if (!ctx->is_active) 3304 cpuctx->task_ctx = NULL; 3305 } 3306 3307 is_active ^= ctx->is_active; /* changed bits */ 3308 3309 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3310 if (cgroup && !pmu_ctx->nr_cgroups) 3311 continue; 3312 __pmu_ctx_sched_out(pmu_ctx, is_active); 3313 } 3314 } 3315 3316 /* 3317 * Test whether two contexts are equivalent, i.e. whether they have both been 3318 * cloned from the same version of the same context. 3319 * 3320 * Equivalence is measured using a generation number in the context that is 3321 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3322 * and list_del_event(). 3323 */ 3324 static int context_equiv(struct perf_event_context *ctx1, 3325 struct perf_event_context *ctx2) 3326 { 3327 lockdep_assert_held(&ctx1->lock); 3328 lockdep_assert_held(&ctx2->lock); 3329 3330 /* Pinning disables the swap optimization */ 3331 if (ctx1->pin_count || ctx2->pin_count) 3332 return 0; 3333 3334 /* If ctx1 is the parent of ctx2 */ 3335 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3336 return 1; 3337 3338 /* If ctx2 is the parent of ctx1 */ 3339 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3340 return 1; 3341 3342 /* 3343 * If ctx1 and ctx2 have the same parent; we flatten the parent 3344 * hierarchy, see perf_event_init_context(). 3345 */ 3346 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3347 ctx1->parent_gen == ctx2->parent_gen) 3348 return 1; 3349 3350 /* Unmatched */ 3351 return 0; 3352 } 3353 3354 static void __perf_event_sync_stat(struct perf_event *event, 3355 struct perf_event *next_event) 3356 { 3357 u64 value; 3358 3359 if (!event->attr.inherit_stat) 3360 return; 3361 3362 /* 3363 * Update the event value, we cannot use perf_event_read() 3364 * because we're in the middle of a context switch and have IRQs 3365 * disabled, which upsets smp_call_function_single(), however 3366 * we know the event must be on the current CPU, therefore we 3367 * don't need to use it. 3368 */ 3369 if (event->state == PERF_EVENT_STATE_ACTIVE) 3370 event->pmu->read(event); 3371 3372 perf_event_update_time(event); 3373 3374 /* 3375 * In order to keep per-task stats reliable we need to flip the event 3376 * values when we flip the contexts. 3377 */ 3378 value = local64_read(&next_event->count); 3379 value = local64_xchg(&event->count, value); 3380 local64_set(&next_event->count, value); 3381 3382 swap(event->total_time_enabled, next_event->total_time_enabled); 3383 swap(event->total_time_running, next_event->total_time_running); 3384 3385 /* 3386 * Since we swizzled the values, update the user visible data too. 3387 */ 3388 perf_event_update_userpage(event); 3389 perf_event_update_userpage(next_event); 3390 } 3391 3392 static void perf_event_sync_stat(struct perf_event_context *ctx, 3393 struct perf_event_context *next_ctx) 3394 { 3395 struct perf_event *event, *next_event; 3396 3397 if (!ctx->nr_stat) 3398 return; 3399 3400 update_context_time(ctx); 3401 3402 event = list_first_entry(&ctx->event_list, 3403 struct perf_event, event_entry); 3404 3405 next_event = list_first_entry(&next_ctx->event_list, 3406 struct perf_event, event_entry); 3407 3408 while (&event->event_entry != &ctx->event_list && 3409 &next_event->event_entry != &next_ctx->event_list) { 3410 3411 __perf_event_sync_stat(event, next_event); 3412 3413 event = list_next_entry(event, event_entry); 3414 next_event = list_next_entry(next_event, event_entry); 3415 } 3416 } 3417 3418 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3419 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3420 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3421 !list_entry_is_head(pos1, head1, member) && \ 3422 !list_entry_is_head(pos2, head2, member); \ 3423 pos1 = list_next_entry(pos1, member), \ 3424 pos2 = list_next_entry(pos2, member)) 3425 3426 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3427 struct perf_event_context *next_ctx) 3428 { 3429 struct perf_event_pmu_context *prev_epc, *next_epc; 3430 3431 if (!prev_ctx->nr_task_data) 3432 return; 3433 3434 double_list_for_each_entry(prev_epc, next_epc, 3435 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3436 pmu_ctx_entry) { 3437 3438 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3439 continue; 3440 3441 /* 3442 * PMU specific parts of task perf context can require 3443 * additional synchronization. As an example of such 3444 * synchronization see implementation details of Intel 3445 * LBR call stack data profiling; 3446 */ 3447 if (prev_epc->pmu->swap_task_ctx) 3448 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3449 else 3450 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3451 } 3452 } 3453 3454 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3455 { 3456 struct perf_event_pmu_context *pmu_ctx; 3457 struct perf_cpu_pmu_context *cpc; 3458 3459 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3460 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3461 3462 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3463 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3464 } 3465 } 3466 3467 static void 3468 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3469 { 3470 struct perf_event_context *ctx = task->perf_event_ctxp; 3471 struct perf_event_context *next_ctx; 3472 struct perf_event_context *parent, *next_parent; 3473 int do_switch = 1; 3474 3475 if (likely(!ctx)) 3476 return; 3477 3478 rcu_read_lock(); 3479 next_ctx = rcu_dereference(next->perf_event_ctxp); 3480 if (!next_ctx) 3481 goto unlock; 3482 3483 parent = rcu_dereference(ctx->parent_ctx); 3484 next_parent = rcu_dereference(next_ctx->parent_ctx); 3485 3486 /* If neither context have a parent context; they cannot be clones. */ 3487 if (!parent && !next_parent) 3488 goto unlock; 3489 3490 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3491 /* 3492 * Looks like the two contexts are clones, so we might be 3493 * able to optimize the context switch. We lock both 3494 * contexts and check that they are clones under the 3495 * lock (including re-checking that neither has been 3496 * uncloned in the meantime). It doesn't matter which 3497 * order we take the locks because no other cpu could 3498 * be trying to lock both of these tasks. 3499 */ 3500 raw_spin_lock(&ctx->lock); 3501 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3502 if (context_equiv(ctx, next_ctx)) { 3503 3504 perf_ctx_disable(ctx, false); 3505 3506 /* PMIs are disabled; ctx->nr_pending is stable. */ 3507 if (local_read(&ctx->nr_pending) || 3508 local_read(&next_ctx->nr_pending)) { 3509 /* 3510 * Must not swap out ctx when there's pending 3511 * events that rely on the ctx->task relation. 3512 */ 3513 raw_spin_unlock(&next_ctx->lock); 3514 rcu_read_unlock(); 3515 goto inside_switch; 3516 } 3517 3518 WRITE_ONCE(ctx->task, next); 3519 WRITE_ONCE(next_ctx->task, task); 3520 3521 perf_ctx_sched_task_cb(ctx, false); 3522 perf_event_swap_task_ctx_data(ctx, next_ctx); 3523 3524 perf_ctx_enable(ctx, false); 3525 3526 /* 3527 * RCU_INIT_POINTER here is safe because we've not 3528 * modified the ctx and the above modification of 3529 * ctx->task and ctx->task_ctx_data are immaterial 3530 * since those values are always verified under 3531 * ctx->lock which we're now holding. 3532 */ 3533 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3534 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3535 3536 do_switch = 0; 3537 3538 perf_event_sync_stat(ctx, next_ctx); 3539 } 3540 raw_spin_unlock(&next_ctx->lock); 3541 raw_spin_unlock(&ctx->lock); 3542 } 3543 unlock: 3544 rcu_read_unlock(); 3545 3546 if (do_switch) { 3547 raw_spin_lock(&ctx->lock); 3548 perf_ctx_disable(ctx, false); 3549 3550 inside_switch: 3551 perf_ctx_sched_task_cb(ctx, false); 3552 task_ctx_sched_out(ctx, EVENT_ALL); 3553 3554 perf_ctx_enable(ctx, false); 3555 raw_spin_unlock(&ctx->lock); 3556 } 3557 } 3558 3559 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3560 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3561 3562 void perf_sched_cb_dec(struct pmu *pmu) 3563 { 3564 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3565 3566 this_cpu_dec(perf_sched_cb_usages); 3567 barrier(); 3568 3569 if (!--cpc->sched_cb_usage) 3570 list_del(&cpc->sched_cb_entry); 3571 } 3572 3573 3574 void perf_sched_cb_inc(struct pmu *pmu) 3575 { 3576 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3577 3578 if (!cpc->sched_cb_usage++) 3579 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3580 3581 barrier(); 3582 this_cpu_inc(perf_sched_cb_usages); 3583 } 3584 3585 /* 3586 * This function provides the context switch callback to the lower code 3587 * layer. It is invoked ONLY when the context switch callback is enabled. 3588 * 3589 * This callback is relevant even to per-cpu events; for example multi event 3590 * PEBS requires this to provide PID/TID information. This requires we flush 3591 * all queued PEBS records before we context switch to a new task. 3592 */ 3593 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3594 { 3595 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3596 struct pmu *pmu; 3597 3598 pmu = cpc->epc.pmu; 3599 3600 /* software PMUs will not have sched_task */ 3601 if (WARN_ON_ONCE(!pmu->sched_task)) 3602 return; 3603 3604 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3605 perf_pmu_disable(pmu); 3606 3607 pmu->sched_task(cpc->task_epc, sched_in); 3608 3609 perf_pmu_enable(pmu); 3610 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3611 } 3612 3613 static void perf_pmu_sched_task(struct task_struct *prev, 3614 struct task_struct *next, 3615 bool sched_in) 3616 { 3617 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3618 struct perf_cpu_pmu_context *cpc; 3619 3620 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3621 if (prev == next || cpuctx->task_ctx) 3622 return; 3623 3624 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3625 __perf_pmu_sched_task(cpc, sched_in); 3626 } 3627 3628 static void perf_event_switch(struct task_struct *task, 3629 struct task_struct *next_prev, bool sched_in); 3630 3631 /* 3632 * Called from scheduler to remove the events of the current task, 3633 * with interrupts disabled. 3634 * 3635 * We stop each event and update the event value in event->count. 3636 * 3637 * This does not protect us against NMI, but disable() 3638 * sets the disabled bit in the control field of event _before_ 3639 * accessing the event control register. If a NMI hits, then it will 3640 * not restart the event. 3641 */ 3642 void __perf_event_task_sched_out(struct task_struct *task, 3643 struct task_struct *next) 3644 { 3645 if (__this_cpu_read(perf_sched_cb_usages)) 3646 perf_pmu_sched_task(task, next, false); 3647 3648 if (atomic_read(&nr_switch_events)) 3649 perf_event_switch(task, next, false); 3650 3651 perf_event_context_sched_out(task, next); 3652 3653 /* 3654 * if cgroup events exist on this CPU, then we need 3655 * to check if we have to switch out PMU state. 3656 * cgroup event are system-wide mode only 3657 */ 3658 perf_cgroup_switch(next); 3659 } 3660 3661 static bool perf_less_group_idx(const void *l, const void *r) 3662 { 3663 const struct perf_event *le = *(const struct perf_event **)l; 3664 const struct perf_event *re = *(const struct perf_event **)r; 3665 3666 return le->group_index < re->group_index; 3667 } 3668 3669 static void swap_ptr(void *l, void *r) 3670 { 3671 void **lp = l, **rp = r; 3672 3673 swap(*lp, *rp); 3674 } 3675 3676 static const struct min_heap_callbacks perf_min_heap = { 3677 .elem_size = sizeof(struct perf_event *), 3678 .less = perf_less_group_idx, 3679 .swp = swap_ptr, 3680 }; 3681 3682 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3683 { 3684 struct perf_event **itrs = heap->data; 3685 3686 if (event) { 3687 itrs[heap->nr] = event; 3688 heap->nr++; 3689 } 3690 } 3691 3692 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3693 { 3694 struct perf_cpu_pmu_context *cpc; 3695 3696 if (!pmu_ctx->ctx->task) 3697 return; 3698 3699 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3700 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3701 cpc->task_epc = pmu_ctx; 3702 } 3703 3704 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3705 struct perf_event_groups *groups, int cpu, 3706 struct pmu *pmu, 3707 int (*func)(struct perf_event *, void *), 3708 void *data) 3709 { 3710 #ifdef CONFIG_CGROUP_PERF 3711 struct cgroup_subsys_state *css = NULL; 3712 #endif 3713 struct perf_cpu_context *cpuctx = NULL; 3714 /* Space for per CPU and/or any CPU event iterators. */ 3715 struct perf_event *itrs[2]; 3716 struct min_heap event_heap; 3717 struct perf_event **evt; 3718 int ret; 3719 3720 if (pmu->filter && pmu->filter(pmu, cpu)) 3721 return 0; 3722 3723 if (!ctx->task) { 3724 cpuctx = this_cpu_ptr(&perf_cpu_context); 3725 event_heap = (struct min_heap){ 3726 .data = cpuctx->heap, 3727 .nr = 0, 3728 .size = cpuctx->heap_size, 3729 }; 3730 3731 lockdep_assert_held(&cpuctx->ctx.lock); 3732 3733 #ifdef CONFIG_CGROUP_PERF 3734 if (cpuctx->cgrp) 3735 css = &cpuctx->cgrp->css; 3736 #endif 3737 } else { 3738 event_heap = (struct min_heap){ 3739 .data = itrs, 3740 .nr = 0, 3741 .size = ARRAY_SIZE(itrs), 3742 }; 3743 /* Events not within a CPU context may be on any CPU. */ 3744 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3745 } 3746 evt = event_heap.data; 3747 3748 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3749 3750 #ifdef CONFIG_CGROUP_PERF 3751 for (; css; css = css->parent) 3752 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3753 #endif 3754 3755 if (event_heap.nr) { 3756 __link_epc((*evt)->pmu_ctx); 3757 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3758 } 3759 3760 min_heapify_all(&event_heap, &perf_min_heap); 3761 3762 while (event_heap.nr) { 3763 ret = func(*evt, data); 3764 if (ret) 3765 return ret; 3766 3767 *evt = perf_event_groups_next(*evt, pmu); 3768 if (*evt) 3769 min_heapify(&event_heap, 0, &perf_min_heap); 3770 else 3771 min_heap_pop(&event_heap, &perf_min_heap); 3772 } 3773 3774 return 0; 3775 } 3776 3777 /* 3778 * Because the userpage is strictly per-event (there is no concept of context, 3779 * so there cannot be a context indirection), every userpage must be updated 3780 * when context time starts :-( 3781 * 3782 * IOW, we must not miss EVENT_TIME edges. 3783 */ 3784 static inline bool event_update_userpage(struct perf_event *event) 3785 { 3786 if (likely(!atomic_read(&event->mmap_count))) 3787 return false; 3788 3789 perf_event_update_time(event); 3790 perf_event_update_userpage(event); 3791 3792 return true; 3793 } 3794 3795 static inline void group_update_userpage(struct perf_event *group_event) 3796 { 3797 struct perf_event *event; 3798 3799 if (!event_update_userpage(group_event)) 3800 return; 3801 3802 for_each_sibling_event(event, group_event) 3803 event_update_userpage(event); 3804 } 3805 3806 static int merge_sched_in(struct perf_event *event, void *data) 3807 { 3808 struct perf_event_context *ctx = event->ctx; 3809 int *can_add_hw = data; 3810 3811 if (event->state <= PERF_EVENT_STATE_OFF) 3812 return 0; 3813 3814 if (!event_filter_match(event)) 3815 return 0; 3816 3817 if (group_can_go_on(event, *can_add_hw)) { 3818 if (!group_sched_in(event, ctx)) 3819 list_add_tail(&event->active_list, get_event_list(event)); 3820 } 3821 3822 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3823 *can_add_hw = 0; 3824 if (event->attr.pinned) { 3825 perf_cgroup_event_disable(event, ctx); 3826 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3827 } else { 3828 struct perf_cpu_pmu_context *cpc; 3829 3830 event->pmu_ctx->rotate_necessary = 1; 3831 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3832 perf_mux_hrtimer_restart(cpc); 3833 group_update_userpage(event); 3834 } 3835 } 3836 3837 return 0; 3838 } 3839 3840 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3841 struct perf_event_groups *groups, 3842 struct pmu *pmu) 3843 { 3844 int can_add_hw = 1; 3845 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3846 merge_sched_in, &can_add_hw); 3847 } 3848 3849 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3850 struct perf_event_groups *groups, 3851 bool cgroup) 3852 { 3853 struct perf_event_pmu_context *pmu_ctx; 3854 3855 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3856 if (cgroup && !pmu_ctx->nr_cgroups) 3857 continue; 3858 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3859 } 3860 } 3861 3862 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3863 struct pmu *pmu) 3864 { 3865 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3866 } 3867 3868 static void 3869 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3870 { 3871 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3872 int is_active = ctx->is_active; 3873 bool cgroup = event_type & EVENT_CGROUP; 3874 3875 event_type &= ~EVENT_CGROUP; 3876 3877 lockdep_assert_held(&ctx->lock); 3878 3879 if (likely(!ctx->nr_events)) 3880 return; 3881 3882 if (!(is_active & EVENT_TIME)) { 3883 /* start ctx time */ 3884 __update_context_time(ctx, false); 3885 perf_cgroup_set_timestamp(cpuctx); 3886 /* 3887 * CPU-release for the below ->is_active store, 3888 * see __load_acquire() in perf_event_time_now() 3889 */ 3890 barrier(); 3891 } 3892 3893 ctx->is_active |= (event_type | EVENT_TIME); 3894 if (ctx->task) { 3895 if (!is_active) 3896 cpuctx->task_ctx = ctx; 3897 else 3898 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3899 } 3900 3901 is_active ^= ctx->is_active; /* changed bits */ 3902 3903 /* 3904 * First go through the list and put on any pinned groups 3905 * in order to give them the best chance of going on. 3906 */ 3907 if (is_active & EVENT_PINNED) 3908 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3909 3910 /* Then walk through the lower prio flexible groups */ 3911 if (is_active & EVENT_FLEXIBLE) 3912 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3913 } 3914 3915 static void perf_event_context_sched_in(struct task_struct *task) 3916 { 3917 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3918 struct perf_event_context *ctx; 3919 3920 rcu_read_lock(); 3921 ctx = rcu_dereference(task->perf_event_ctxp); 3922 if (!ctx) 3923 goto rcu_unlock; 3924 3925 if (cpuctx->task_ctx == ctx) { 3926 perf_ctx_lock(cpuctx, ctx); 3927 perf_ctx_disable(ctx, false); 3928 3929 perf_ctx_sched_task_cb(ctx, true); 3930 3931 perf_ctx_enable(ctx, false); 3932 perf_ctx_unlock(cpuctx, ctx); 3933 goto rcu_unlock; 3934 } 3935 3936 perf_ctx_lock(cpuctx, ctx); 3937 /* 3938 * We must check ctx->nr_events while holding ctx->lock, such 3939 * that we serialize against perf_install_in_context(). 3940 */ 3941 if (!ctx->nr_events) 3942 goto unlock; 3943 3944 perf_ctx_disable(ctx, false); 3945 /* 3946 * We want to keep the following priority order: 3947 * cpu pinned (that don't need to move), task pinned, 3948 * cpu flexible, task flexible. 3949 * 3950 * However, if task's ctx is not carrying any pinned 3951 * events, no need to flip the cpuctx's events around. 3952 */ 3953 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3954 perf_ctx_disable(&cpuctx->ctx, false); 3955 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3956 } 3957 3958 perf_event_sched_in(cpuctx, ctx); 3959 3960 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3961 3962 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3963 perf_ctx_enable(&cpuctx->ctx, false); 3964 3965 perf_ctx_enable(ctx, false); 3966 3967 unlock: 3968 perf_ctx_unlock(cpuctx, ctx); 3969 rcu_unlock: 3970 rcu_read_unlock(); 3971 } 3972 3973 /* 3974 * Called from scheduler to add the events of the current task 3975 * with interrupts disabled. 3976 * 3977 * We restore the event value and then enable it. 3978 * 3979 * This does not protect us against NMI, but enable() 3980 * sets the enabled bit in the control field of event _before_ 3981 * accessing the event control register. If a NMI hits, then it will 3982 * keep the event running. 3983 */ 3984 void __perf_event_task_sched_in(struct task_struct *prev, 3985 struct task_struct *task) 3986 { 3987 perf_event_context_sched_in(task); 3988 3989 if (atomic_read(&nr_switch_events)) 3990 perf_event_switch(task, prev, true); 3991 3992 if (__this_cpu_read(perf_sched_cb_usages)) 3993 perf_pmu_sched_task(prev, task, true); 3994 } 3995 3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3997 { 3998 u64 frequency = event->attr.sample_freq; 3999 u64 sec = NSEC_PER_SEC; 4000 u64 divisor, dividend; 4001 4002 int count_fls, nsec_fls, frequency_fls, sec_fls; 4003 4004 count_fls = fls64(count); 4005 nsec_fls = fls64(nsec); 4006 frequency_fls = fls64(frequency); 4007 sec_fls = 30; 4008 4009 /* 4010 * We got @count in @nsec, with a target of sample_freq HZ 4011 * the target period becomes: 4012 * 4013 * @count * 10^9 4014 * period = ------------------- 4015 * @nsec * sample_freq 4016 * 4017 */ 4018 4019 /* 4020 * Reduce accuracy by one bit such that @a and @b converge 4021 * to a similar magnitude. 4022 */ 4023 #define REDUCE_FLS(a, b) \ 4024 do { \ 4025 if (a##_fls > b##_fls) { \ 4026 a >>= 1; \ 4027 a##_fls--; \ 4028 } else { \ 4029 b >>= 1; \ 4030 b##_fls--; \ 4031 } \ 4032 } while (0) 4033 4034 /* 4035 * Reduce accuracy until either term fits in a u64, then proceed with 4036 * the other, so that finally we can do a u64/u64 division. 4037 */ 4038 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4039 REDUCE_FLS(nsec, frequency); 4040 REDUCE_FLS(sec, count); 4041 } 4042 4043 if (count_fls + sec_fls > 64) { 4044 divisor = nsec * frequency; 4045 4046 while (count_fls + sec_fls > 64) { 4047 REDUCE_FLS(count, sec); 4048 divisor >>= 1; 4049 } 4050 4051 dividend = count * sec; 4052 } else { 4053 dividend = count * sec; 4054 4055 while (nsec_fls + frequency_fls > 64) { 4056 REDUCE_FLS(nsec, frequency); 4057 dividend >>= 1; 4058 } 4059 4060 divisor = nsec * frequency; 4061 } 4062 4063 if (!divisor) 4064 return dividend; 4065 4066 return div64_u64(dividend, divisor); 4067 } 4068 4069 static DEFINE_PER_CPU(int, perf_throttled_count); 4070 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4071 4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4073 { 4074 struct hw_perf_event *hwc = &event->hw; 4075 s64 period, sample_period; 4076 s64 delta; 4077 4078 period = perf_calculate_period(event, nsec, count); 4079 4080 delta = (s64)(period - hwc->sample_period); 4081 delta = (delta + 7) / 8; /* low pass filter */ 4082 4083 sample_period = hwc->sample_period + delta; 4084 4085 if (!sample_period) 4086 sample_period = 1; 4087 4088 hwc->sample_period = sample_period; 4089 4090 if (local64_read(&hwc->period_left) > 8*sample_period) { 4091 if (disable) 4092 event->pmu->stop(event, PERF_EF_UPDATE); 4093 4094 local64_set(&hwc->period_left, 0); 4095 4096 if (disable) 4097 event->pmu->start(event, PERF_EF_RELOAD); 4098 } 4099 } 4100 4101 /* 4102 * combine freq adjustment with unthrottling to avoid two passes over the 4103 * events. At the same time, make sure, having freq events does not change 4104 * the rate of unthrottling as that would introduce bias. 4105 */ 4106 static void 4107 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4108 { 4109 struct perf_event *event; 4110 struct hw_perf_event *hwc; 4111 u64 now, period = TICK_NSEC; 4112 s64 delta; 4113 4114 /* 4115 * only need to iterate over all events iff: 4116 * - context have events in frequency mode (needs freq adjust) 4117 * - there are events to unthrottle on this cpu 4118 */ 4119 if (!(ctx->nr_freq || unthrottle)) 4120 return; 4121 4122 raw_spin_lock(&ctx->lock); 4123 4124 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4125 if (event->state != PERF_EVENT_STATE_ACTIVE) 4126 continue; 4127 4128 // XXX use visit thingy to avoid the -1,cpu match 4129 if (!event_filter_match(event)) 4130 continue; 4131 4132 perf_pmu_disable(event->pmu); 4133 4134 hwc = &event->hw; 4135 4136 if (hwc->interrupts == MAX_INTERRUPTS) { 4137 hwc->interrupts = 0; 4138 perf_log_throttle(event, 1); 4139 event->pmu->start(event, 0); 4140 } 4141 4142 if (!event->attr.freq || !event->attr.sample_freq) 4143 goto next; 4144 4145 /* 4146 * stop the event and update event->count 4147 */ 4148 event->pmu->stop(event, PERF_EF_UPDATE); 4149 4150 now = local64_read(&event->count); 4151 delta = now - hwc->freq_count_stamp; 4152 hwc->freq_count_stamp = now; 4153 4154 /* 4155 * restart the event 4156 * reload only if value has changed 4157 * we have stopped the event so tell that 4158 * to perf_adjust_period() to avoid stopping it 4159 * twice. 4160 */ 4161 if (delta > 0) 4162 perf_adjust_period(event, period, delta, false); 4163 4164 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4165 next: 4166 perf_pmu_enable(event->pmu); 4167 } 4168 4169 raw_spin_unlock(&ctx->lock); 4170 } 4171 4172 /* 4173 * Move @event to the tail of the @ctx's elegible events. 4174 */ 4175 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4176 { 4177 /* 4178 * Rotate the first entry last of non-pinned groups. Rotation might be 4179 * disabled by the inheritance code. 4180 */ 4181 if (ctx->rotate_disable) 4182 return; 4183 4184 perf_event_groups_delete(&ctx->flexible_groups, event); 4185 perf_event_groups_insert(&ctx->flexible_groups, event); 4186 } 4187 4188 /* pick an event from the flexible_groups to rotate */ 4189 static inline struct perf_event * 4190 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4191 { 4192 struct perf_event *event; 4193 struct rb_node *node; 4194 struct rb_root *tree; 4195 struct __group_key key = { 4196 .pmu = pmu_ctx->pmu, 4197 }; 4198 4199 /* pick the first active flexible event */ 4200 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4201 struct perf_event, active_list); 4202 if (event) 4203 goto out; 4204 4205 /* if no active flexible event, pick the first event */ 4206 tree = &pmu_ctx->ctx->flexible_groups.tree; 4207 4208 if (!pmu_ctx->ctx->task) { 4209 key.cpu = smp_processor_id(); 4210 4211 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4212 if (node) 4213 event = __node_2_pe(node); 4214 goto out; 4215 } 4216 4217 key.cpu = -1; 4218 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4219 if (node) { 4220 event = __node_2_pe(node); 4221 goto out; 4222 } 4223 4224 key.cpu = smp_processor_id(); 4225 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4226 if (node) 4227 event = __node_2_pe(node); 4228 4229 out: 4230 /* 4231 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4232 * finds there are unschedulable events, it will set it again. 4233 */ 4234 pmu_ctx->rotate_necessary = 0; 4235 4236 return event; 4237 } 4238 4239 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4240 { 4241 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4242 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4243 struct perf_event *cpu_event = NULL, *task_event = NULL; 4244 int cpu_rotate, task_rotate; 4245 struct pmu *pmu; 4246 4247 /* 4248 * Since we run this from IRQ context, nobody can install new 4249 * events, thus the event count values are stable. 4250 */ 4251 4252 cpu_epc = &cpc->epc; 4253 pmu = cpu_epc->pmu; 4254 task_epc = cpc->task_epc; 4255 4256 cpu_rotate = cpu_epc->rotate_necessary; 4257 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4258 4259 if (!(cpu_rotate || task_rotate)) 4260 return false; 4261 4262 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4263 perf_pmu_disable(pmu); 4264 4265 if (task_rotate) 4266 task_event = ctx_event_to_rotate(task_epc); 4267 if (cpu_rotate) 4268 cpu_event = ctx_event_to_rotate(cpu_epc); 4269 4270 /* 4271 * As per the order given at ctx_resched() first 'pop' task flexible 4272 * and then, if needed CPU flexible. 4273 */ 4274 if (task_event || (task_epc && cpu_event)) { 4275 update_context_time(task_epc->ctx); 4276 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4277 } 4278 4279 if (cpu_event) { 4280 update_context_time(&cpuctx->ctx); 4281 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4282 rotate_ctx(&cpuctx->ctx, cpu_event); 4283 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4284 } 4285 4286 if (task_event) 4287 rotate_ctx(task_epc->ctx, task_event); 4288 4289 if (task_event || (task_epc && cpu_event)) 4290 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4291 4292 perf_pmu_enable(pmu); 4293 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4294 4295 return true; 4296 } 4297 4298 void perf_event_task_tick(void) 4299 { 4300 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4301 struct perf_event_context *ctx; 4302 int throttled; 4303 4304 lockdep_assert_irqs_disabled(); 4305 4306 __this_cpu_inc(perf_throttled_seq); 4307 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4308 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4309 4310 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4311 4312 rcu_read_lock(); 4313 ctx = rcu_dereference(current->perf_event_ctxp); 4314 if (ctx) 4315 perf_adjust_freq_unthr_context(ctx, !!throttled); 4316 rcu_read_unlock(); 4317 } 4318 4319 static int event_enable_on_exec(struct perf_event *event, 4320 struct perf_event_context *ctx) 4321 { 4322 if (!event->attr.enable_on_exec) 4323 return 0; 4324 4325 event->attr.enable_on_exec = 0; 4326 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4327 return 0; 4328 4329 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4330 4331 return 1; 4332 } 4333 4334 /* 4335 * Enable all of a task's events that have been marked enable-on-exec. 4336 * This expects task == current. 4337 */ 4338 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4339 { 4340 struct perf_event_context *clone_ctx = NULL; 4341 enum event_type_t event_type = 0; 4342 struct perf_cpu_context *cpuctx; 4343 struct perf_event *event; 4344 unsigned long flags; 4345 int enabled = 0; 4346 4347 local_irq_save(flags); 4348 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4349 goto out; 4350 4351 if (!ctx->nr_events) 4352 goto out; 4353 4354 cpuctx = this_cpu_ptr(&perf_cpu_context); 4355 perf_ctx_lock(cpuctx, ctx); 4356 ctx_sched_out(ctx, EVENT_TIME); 4357 4358 list_for_each_entry(event, &ctx->event_list, event_entry) { 4359 enabled |= event_enable_on_exec(event, ctx); 4360 event_type |= get_event_type(event); 4361 } 4362 4363 /* 4364 * Unclone and reschedule this context if we enabled any event. 4365 */ 4366 if (enabled) { 4367 clone_ctx = unclone_ctx(ctx); 4368 ctx_resched(cpuctx, ctx, event_type); 4369 } else { 4370 ctx_sched_in(ctx, EVENT_TIME); 4371 } 4372 perf_ctx_unlock(cpuctx, ctx); 4373 4374 out: 4375 local_irq_restore(flags); 4376 4377 if (clone_ctx) 4378 put_ctx(clone_ctx); 4379 } 4380 4381 static void perf_remove_from_owner(struct perf_event *event); 4382 static void perf_event_exit_event(struct perf_event *event, 4383 struct perf_event_context *ctx); 4384 4385 /* 4386 * Removes all events from the current task that have been marked 4387 * remove-on-exec, and feeds their values back to parent events. 4388 */ 4389 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4390 { 4391 struct perf_event_context *clone_ctx = NULL; 4392 struct perf_event *event, *next; 4393 unsigned long flags; 4394 bool modified = false; 4395 4396 mutex_lock(&ctx->mutex); 4397 4398 if (WARN_ON_ONCE(ctx->task != current)) 4399 goto unlock; 4400 4401 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4402 if (!event->attr.remove_on_exec) 4403 continue; 4404 4405 if (!is_kernel_event(event)) 4406 perf_remove_from_owner(event); 4407 4408 modified = true; 4409 4410 perf_event_exit_event(event, ctx); 4411 } 4412 4413 raw_spin_lock_irqsave(&ctx->lock, flags); 4414 if (modified) 4415 clone_ctx = unclone_ctx(ctx); 4416 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4417 4418 unlock: 4419 mutex_unlock(&ctx->mutex); 4420 4421 if (clone_ctx) 4422 put_ctx(clone_ctx); 4423 } 4424 4425 struct perf_read_data { 4426 struct perf_event *event; 4427 bool group; 4428 int ret; 4429 }; 4430 4431 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4432 { 4433 u16 local_pkg, event_pkg; 4434 4435 if ((unsigned)event_cpu >= nr_cpu_ids) 4436 return event_cpu; 4437 4438 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4439 int local_cpu = smp_processor_id(); 4440 4441 event_pkg = topology_physical_package_id(event_cpu); 4442 local_pkg = topology_physical_package_id(local_cpu); 4443 4444 if (event_pkg == local_pkg) 4445 return local_cpu; 4446 } 4447 4448 return event_cpu; 4449 } 4450 4451 /* 4452 * Cross CPU call to read the hardware event 4453 */ 4454 static void __perf_event_read(void *info) 4455 { 4456 struct perf_read_data *data = info; 4457 struct perf_event *sub, *event = data->event; 4458 struct perf_event_context *ctx = event->ctx; 4459 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4460 struct pmu *pmu = event->pmu; 4461 4462 /* 4463 * If this is a task context, we need to check whether it is 4464 * the current task context of this cpu. If not it has been 4465 * scheduled out before the smp call arrived. In that case 4466 * event->count would have been updated to a recent sample 4467 * when the event was scheduled out. 4468 */ 4469 if (ctx->task && cpuctx->task_ctx != ctx) 4470 return; 4471 4472 raw_spin_lock(&ctx->lock); 4473 if (ctx->is_active & EVENT_TIME) { 4474 update_context_time(ctx); 4475 update_cgrp_time_from_event(event); 4476 } 4477 4478 perf_event_update_time(event); 4479 if (data->group) 4480 perf_event_update_sibling_time(event); 4481 4482 if (event->state != PERF_EVENT_STATE_ACTIVE) 4483 goto unlock; 4484 4485 if (!data->group) { 4486 pmu->read(event); 4487 data->ret = 0; 4488 goto unlock; 4489 } 4490 4491 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4492 4493 pmu->read(event); 4494 4495 for_each_sibling_event(sub, event) { 4496 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4497 /* 4498 * Use sibling's PMU rather than @event's since 4499 * sibling could be on different (eg: software) PMU. 4500 */ 4501 sub->pmu->read(sub); 4502 } 4503 } 4504 4505 data->ret = pmu->commit_txn(pmu); 4506 4507 unlock: 4508 raw_spin_unlock(&ctx->lock); 4509 } 4510 4511 static inline u64 perf_event_count(struct perf_event *event) 4512 { 4513 return local64_read(&event->count) + atomic64_read(&event->child_count); 4514 } 4515 4516 static void calc_timer_values(struct perf_event *event, 4517 u64 *now, 4518 u64 *enabled, 4519 u64 *running) 4520 { 4521 u64 ctx_time; 4522 4523 *now = perf_clock(); 4524 ctx_time = perf_event_time_now(event, *now); 4525 __perf_update_times(event, ctx_time, enabled, running); 4526 } 4527 4528 /* 4529 * NMI-safe method to read a local event, that is an event that 4530 * is: 4531 * - either for the current task, or for this CPU 4532 * - does not have inherit set, for inherited task events 4533 * will not be local and we cannot read them atomically 4534 * - must not have a pmu::count method 4535 */ 4536 int perf_event_read_local(struct perf_event *event, u64 *value, 4537 u64 *enabled, u64 *running) 4538 { 4539 unsigned long flags; 4540 int event_oncpu; 4541 int event_cpu; 4542 int ret = 0; 4543 4544 /* 4545 * Disabling interrupts avoids all counter scheduling (context 4546 * switches, timer based rotation and IPIs). 4547 */ 4548 local_irq_save(flags); 4549 4550 /* 4551 * It must not be an event with inherit set, we cannot read 4552 * all child counters from atomic context. 4553 */ 4554 if (event->attr.inherit) { 4555 ret = -EOPNOTSUPP; 4556 goto out; 4557 } 4558 4559 /* If this is a per-task event, it must be for current */ 4560 if ((event->attach_state & PERF_ATTACH_TASK) && 4561 event->hw.target != current) { 4562 ret = -EINVAL; 4563 goto out; 4564 } 4565 4566 /* 4567 * Get the event CPU numbers, and adjust them to local if the event is 4568 * a per-package event that can be read locally 4569 */ 4570 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4571 event_cpu = __perf_event_read_cpu(event, event->cpu); 4572 4573 /* If this is a per-CPU event, it must be for this CPU */ 4574 if (!(event->attach_state & PERF_ATTACH_TASK) && 4575 event_cpu != smp_processor_id()) { 4576 ret = -EINVAL; 4577 goto out; 4578 } 4579 4580 /* If this is a pinned event it must be running on this CPU */ 4581 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4582 ret = -EBUSY; 4583 goto out; 4584 } 4585 4586 /* 4587 * If the event is currently on this CPU, its either a per-task event, 4588 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4589 * oncpu == -1). 4590 */ 4591 if (event_oncpu == smp_processor_id()) 4592 event->pmu->read(event); 4593 4594 *value = local64_read(&event->count); 4595 if (enabled || running) { 4596 u64 __enabled, __running, __now; 4597 4598 calc_timer_values(event, &__now, &__enabled, &__running); 4599 if (enabled) 4600 *enabled = __enabled; 4601 if (running) 4602 *running = __running; 4603 } 4604 out: 4605 local_irq_restore(flags); 4606 4607 return ret; 4608 } 4609 4610 static int perf_event_read(struct perf_event *event, bool group) 4611 { 4612 enum perf_event_state state = READ_ONCE(event->state); 4613 int event_cpu, ret = 0; 4614 4615 /* 4616 * If event is enabled and currently active on a CPU, update the 4617 * value in the event structure: 4618 */ 4619 again: 4620 if (state == PERF_EVENT_STATE_ACTIVE) { 4621 struct perf_read_data data; 4622 4623 /* 4624 * Orders the ->state and ->oncpu loads such that if we see 4625 * ACTIVE we must also see the right ->oncpu. 4626 * 4627 * Matches the smp_wmb() from event_sched_in(). 4628 */ 4629 smp_rmb(); 4630 4631 event_cpu = READ_ONCE(event->oncpu); 4632 if ((unsigned)event_cpu >= nr_cpu_ids) 4633 return 0; 4634 4635 data = (struct perf_read_data){ 4636 .event = event, 4637 .group = group, 4638 .ret = 0, 4639 }; 4640 4641 preempt_disable(); 4642 event_cpu = __perf_event_read_cpu(event, event_cpu); 4643 4644 /* 4645 * Purposely ignore the smp_call_function_single() return 4646 * value. 4647 * 4648 * If event_cpu isn't a valid CPU it means the event got 4649 * scheduled out and that will have updated the event count. 4650 * 4651 * Therefore, either way, we'll have an up-to-date event count 4652 * after this. 4653 */ 4654 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4655 preempt_enable(); 4656 ret = data.ret; 4657 4658 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4659 struct perf_event_context *ctx = event->ctx; 4660 unsigned long flags; 4661 4662 raw_spin_lock_irqsave(&ctx->lock, flags); 4663 state = event->state; 4664 if (state != PERF_EVENT_STATE_INACTIVE) { 4665 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4666 goto again; 4667 } 4668 4669 /* 4670 * May read while context is not active (e.g., thread is 4671 * blocked), in that case we cannot update context time 4672 */ 4673 if (ctx->is_active & EVENT_TIME) { 4674 update_context_time(ctx); 4675 update_cgrp_time_from_event(event); 4676 } 4677 4678 perf_event_update_time(event); 4679 if (group) 4680 perf_event_update_sibling_time(event); 4681 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4682 } 4683 4684 return ret; 4685 } 4686 4687 /* 4688 * Initialize the perf_event context in a task_struct: 4689 */ 4690 static void __perf_event_init_context(struct perf_event_context *ctx) 4691 { 4692 raw_spin_lock_init(&ctx->lock); 4693 mutex_init(&ctx->mutex); 4694 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4695 perf_event_groups_init(&ctx->pinned_groups); 4696 perf_event_groups_init(&ctx->flexible_groups); 4697 INIT_LIST_HEAD(&ctx->event_list); 4698 refcount_set(&ctx->refcount, 1); 4699 } 4700 4701 static void 4702 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4703 { 4704 epc->pmu = pmu; 4705 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4706 INIT_LIST_HEAD(&epc->pinned_active); 4707 INIT_LIST_HEAD(&epc->flexible_active); 4708 atomic_set(&epc->refcount, 1); 4709 } 4710 4711 static struct perf_event_context * 4712 alloc_perf_context(struct task_struct *task) 4713 { 4714 struct perf_event_context *ctx; 4715 4716 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4717 if (!ctx) 4718 return NULL; 4719 4720 __perf_event_init_context(ctx); 4721 if (task) 4722 ctx->task = get_task_struct(task); 4723 4724 return ctx; 4725 } 4726 4727 static struct task_struct * 4728 find_lively_task_by_vpid(pid_t vpid) 4729 { 4730 struct task_struct *task; 4731 4732 rcu_read_lock(); 4733 if (!vpid) 4734 task = current; 4735 else 4736 task = find_task_by_vpid(vpid); 4737 if (task) 4738 get_task_struct(task); 4739 rcu_read_unlock(); 4740 4741 if (!task) 4742 return ERR_PTR(-ESRCH); 4743 4744 return task; 4745 } 4746 4747 /* 4748 * Returns a matching context with refcount and pincount. 4749 */ 4750 static struct perf_event_context * 4751 find_get_context(struct task_struct *task, struct perf_event *event) 4752 { 4753 struct perf_event_context *ctx, *clone_ctx = NULL; 4754 struct perf_cpu_context *cpuctx; 4755 unsigned long flags; 4756 int err; 4757 4758 if (!task) { 4759 /* Must be root to operate on a CPU event: */ 4760 err = perf_allow_cpu(&event->attr); 4761 if (err) 4762 return ERR_PTR(err); 4763 4764 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4765 ctx = &cpuctx->ctx; 4766 get_ctx(ctx); 4767 raw_spin_lock_irqsave(&ctx->lock, flags); 4768 ++ctx->pin_count; 4769 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4770 4771 return ctx; 4772 } 4773 4774 err = -EINVAL; 4775 retry: 4776 ctx = perf_lock_task_context(task, &flags); 4777 if (ctx) { 4778 clone_ctx = unclone_ctx(ctx); 4779 ++ctx->pin_count; 4780 4781 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4782 4783 if (clone_ctx) 4784 put_ctx(clone_ctx); 4785 } else { 4786 ctx = alloc_perf_context(task); 4787 err = -ENOMEM; 4788 if (!ctx) 4789 goto errout; 4790 4791 err = 0; 4792 mutex_lock(&task->perf_event_mutex); 4793 /* 4794 * If it has already passed perf_event_exit_task(). 4795 * we must see PF_EXITING, it takes this mutex too. 4796 */ 4797 if (task->flags & PF_EXITING) 4798 err = -ESRCH; 4799 else if (task->perf_event_ctxp) 4800 err = -EAGAIN; 4801 else { 4802 get_ctx(ctx); 4803 ++ctx->pin_count; 4804 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4805 } 4806 mutex_unlock(&task->perf_event_mutex); 4807 4808 if (unlikely(err)) { 4809 put_ctx(ctx); 4810 4811 if (err == -EAGAIN) 4812 goto retry; 4813 goto errout; 4814 } 4815 } 4816 4817 return ctx; 4818 4819 errout: 4820 return ERR_PTR(err); 4821 } 4822 4823 static struct perf_event_pmu_context * 4824 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4825 struct perf_event *event) 4826 { 4827 struct perf_event_pmu_context *new = NULL, *epc; 4828 void *task_ctx_data = NULL; 4829 4830 if (!ctx->task) { 4831 struct perf_cpu_pmu_context *cpc; 4832 4833 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4834 epc = &cpc->epc; 4835 raw_spin_lock_irq(&ctx->lock); 4836 if (!epc->ctx) { 4837 atomic_set(&epc->refcount, 1); 4838 epc->embedded = 1; 4839 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4840 epc->ctx = ctx; 4841 } else { 4842 WARN_ON_ONCE(epc->ctx != ctx); 4843 atomic_inc(&epc->refcount); 4844 } 4845 raw_spin_unlock_irq(&ctx->lock); 4846 return epc; 4847 } 4848 4849 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4850 if (!new) 4851 return ERR_PTR(-ENOMEM); 4852 4853 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4854 task_ctx_data = alloc_task_ctx_data(pmu); 4855 if (!task_ctx_data) { 4856 kfree(new); 4857 return ERR_PTR(-ENOMEM); 4858 } 4859 } 4860 4861 __perf_init_event_pmu_context(new, pmu); 4862 4863 /* 4864 * XXX 4865 * 4866 * lockdep_assert_held(&ctx->mutex); 4867 * 4868 * can't because perf_event_init_task() doesn't actually hold the 4869 * child_ctx->mutex. 4870 */ 4871 4872 raw_spin_lock_irq(&ctx->lock); 4873 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4874 if (epc->pmu == pmu) { 4875 WARN_ON_ONCE(epc->ctx != ctx); 4876 atomic_inc(&epc->refcount); 4877 goto found_epc; 4878 } 4879 } 4880 4881 epc = new; 4882 new = NULL; 4883 4884 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4885 epc->ctx = ctx; 4886 4887 found_epc: 4888 if (task_ctx_data && !epc->task_ctx_data) { 4889 epc->task_ctx_data = task_ctx_data; 4890 task_ctx_data = NULL; 4891 ctx->nr_task_data++; 4892 } 4893 raw_spin_unlock_irq(&ctx->lock); 4894 4895 free_task_ctx_data(pmu, task_ctx_data); 4896 kfree(new); 4897 4898 return epc; 4899 } 4900 4901 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4902 { 4903 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4904 } 4905 4906 static void free_epc_rcu(struct rcu_head *head) 4907 { 4908 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4909 4910 kfree(epc->task_ctx_data); 4911 kfree(epc); 4912 } 4913 4914 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4915 { 4916 struct perf_event_context *ctx = epc->ctx; 4917 unsigned long flags; 4918 4919 /* 4920 * XXX 4921 * 4922 * lockdep_assert_held(&ctx->mutex); 4923 * 4924 * can't because of the call-site in _free_event()/put_event() 4925 * which isn't always called under ctx->mutex. 4926 */ 4927 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4928 return; 4929 4930 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4931 4932 list_del_init(&epc->pmu_ctx_entry); 4933 epc->ctx = NULL; 4934 4935 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4936 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4937 4938 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4939 4940 if (epc->embedded) 4941 return; 4942 4943 call_rcu(&epc->rcu_head, free_epc_rcu); 4944 } 4945 4946 static void perf_event_free_filter(struct perf_event *event); 4947 4948 static void free_event_rcu(struct rcu_head *head) 4949 { 4950 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4951 4952 if (event->ns) 4953 put_pid_ns(event->ns); 4954 perf_event_free_filter(event); 4955 kmem_cache_free(perf_event_cache, event); 4956 } 4957 4958 static void ring_buffer_attach(struct perf_event *event, 4959 struct perf_buffer *rb); 4960 4961 static void detach_sb_event(struct perf_event *event) 4962 { 4963 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4964 4965 raw_spin_lock(&pel->lock); 4966 list_del_rcu(&event->sb_list); 4967 raw_spin_unlock(&pel->lock); 4968 } 4969 4970 static bool is_sb_event(struct perf_event *event) 4971 { 4972 struct perf_event_attr *attr = &event->attr; 4973 4974 if (event->parent) 4975 return false; 4976 4977 if (event->attach_state & PERF_ATTACH_TASK) 4978 return false; 4979 4980 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4981 attr->comm || attr->comm_exec || 4982 attr->task || attr->ksymbol || 4983 attr->context_switch || attr->text_poke || 4984 attr->bpf_event) 4985 return true; 4986 return false; 4987 } 4988 4989 static void unaccount_pmu_sb_event(struct perf_event *event) 4990 { 4991 if (is_sb_event(event)) 4992 detach_sb_event(event); 4993 } 4994 4995 #ifdef CONFIG_NO_HZ_FULL 4996 static DEFINE_SPINLOCK(nr_freq_lock); 4997 #endif 4998 4999 static void unaccount_freq_event_nohz(void) 5000 { 5001 #ifdef CONFIG_NO_HZ_FULL 5002 spin_lock(&nr_freq_lock); 5003 if (atomic_dec_and_test(&nr_freq_events)) 5004 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5005 spin_unlock(&nr_freq_lock); 5006 #endif 5007 } 5008 5009 static void unaccount_freq_event(void) 5010 { 5011 if (tick_nohz_full_enabled()) 5012 unaccount_freq_event_nohz(); 5013 else 5014 atomic_dec(&nr_freq_events); 5015 } 5016 5017 static void unaccount_event(struct perf_event *event) 5018 { 5019 bool dec = false; 5020 5021 if (event->parent) 5022 return; 5023 5024 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5025 dec = true; 5026 if (event->attr.mmap || event->attr.mmap_data) 5027 atomic_dec(&nr_mmap_events); 5028 if (event->attr.build_id) 5029 atomic_dec(&nr_build_id_events); 5030 if (event->attr.comm) 5031 atomic_dec(&nr_comm_events); 5032 if (event->attr.namespaces) 5033 atomic_dec(&nr_namespaces_events); 5034 if (event->attr.cgroup) 5035 atomic_dec(&nr_cgroup_events); 5036 if (event->attr.task) 5037 atomic_dec(&nr_task_events); 5038 if (event->attr.freq) 5039 unaccount_freq_event(); 5040 if (event->attr.context_switch) { 5041 dec = true; 5042 atomic_dec(&nr_switch_events); 5043 } 5044 if (is_cgroup_event(event)) 5045 dec = true; 5046 if (has_branch_stack(event)) 5047 dec = true; 5048 if (event->attr.ksymbol) 5049 atomic_dec(&nr_ksymbol_events); 5050 if (event->attr.bpf_event) 5051 atomic_dec(&nr_bpf_events); 5052 if (event->attr.text_poke) 5053 atomic_dec(&nr_text_poke_events); 5054 5055 if (dec) { 5056 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5057 schedule_delayed_work(&perf_sched_work, HZ); 5058 } 5059 5060 unaccount_pmu_sb_event(event); 5061 } 5062 5063 static void perf_sched_delayed(struct work_struct *work) 5064 { 5065 mutex_lock(&perf_sched_mutex); 5066 if (atomic_dec_and_test(&perf_sched_count)) 5067 static_branch_disable(&perf_sched_events); 5068 mutex_unlock(&perf_sched_mutex); 5069 } 5070 5071 /* 5072 * The following implement mutual exclusion of events on "exclusive" pmus 5073 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5074 * at a time, so we disallow creating events that might conflict, namely: 5075 * 5076 * 1) cpu-wide events in the presence of per-task events, 5077 * 2) per-task events in the presence of cpu-wide events, 5078 * 3) two matching events on the same perf_event_context. 5079 * 5080 * The former two cases are handled in the allocation path (perf_event_alloc(), 5081 * _free_event()), the latter -- before the first perf_install_in_context(). 5082 */ 5083 static int exclusive_event_init(struct perf_event *event) 5084 { 5085 struct pmu *pmu = event->pmu; 5086 5087 if (!is_exclusive_pmu(pmu)) 5088 return 0; 5089 5090 /* 5091 * Prevent co-existence of per-task and cpu-wide events on the 5092 * same exclusive pmu. 5093 * 5094 * Negative pmu::exclusive_cnt means there are cpu-wide 5095 * events on this "exclusive" pmu, positive means there are 5096 * per-task events. 5097 * 5098 * Since this is called in perf_event_alloc() path, event::ctx 5099 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5100 * to mean "per-task event", because unlike other attach states it 5101 * never gets cleared. 5102 */ 5103 if (event->attach_state & PERF_ATTACH_TASK) { 5104 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5105 return -EBUSY; 5106 } else { 5107 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5108 return -EBUSY; 5109 } 5110 5111 return 0; 5112 } 5113 5114 static void exclusive_event_destroy(struct perf_event *event) 5115 { 5116 struct pmu *pmu = event->pmu; 5117 5118 if (!is_exclusive_pmu(pmu)) 5119 return; 5120 5121 /* see comment in exclusive_event_init() */ 5122 if (event->attach_state & PERF_ATTACH_TASK) 5123 atomic_dec(&pmu->exclusive_cnt); 5124 else 5125 atomic_inc(&pmu->exclusive_cnt); 5126 } 5127 5128 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5129 { 5130 if ((e1->pmu == e2->pmu) && 5131 (e1->cpu == e2->cpu || 5132 e1->cpu == -1 || 5133 e2->cpu == -1)) 5134 return true; 5135 return false; 5136 } 5137 5138 static bool exclusive_event_installable(struct perf_event *event, 5139 struct perf_event_context *ctx) 5140 { 5141 struct perf_event *iter_event; 5142 struct pmu *pmu = event->pmu; 5143 5144 lockdep_assert_held(&ctx->mutex); 5145 5146 if (!is_exclusive_pmu(pmu)) 5147 return true; 5148 5149 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5150 if (exclusive_event_match(iter_event, event)) 5151 return false; 5152 } 5153 5154 return true; 5155 } 5156 5157 static void perf_addr_filters_splice(struct perf_event *event, 5158 struct list_head *head); 5159 5160 static void _free_event(struct perf_event *event) 5161 { 5162 irq_work_sync(&event->pending_irq); 5163 5164 unaccount_event(event); 5165 5166 security_perf_event_free(event); 5167 5168 if (event->rb) { 5169 /* 5170 * Can happen when we close an event with re-directed output. 5171 * 5172 * Since we have a 0 refcount, perf_mmap_close() will skip 5173 * over us; possibly making our ring_buffer_put() the last. 5174 */ 5175 mutex_lock(&event->mmap_mutex); 5176 ring_buffer_attach(event, NULL); 5177 mutex_unlock(&event->mmap_mutex); 5178 } 5179 5180 if (is_cgroup_event(event)) 5181 perf_detach_cgroup(event); 5182 5183 if (!event->parent) { 5184 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5185 put_callchain_buffers(); 5186 } 5187 5188 perf_event_free_bpf_prog(event); 5189 perf_addr_filters_splice(event, NULL); 5190 kfree(event->addr_filter_ranges); 5191 5192 if (event->destroy) 5193 event->destroy(event); 5194 5195 /* 5196 * Must be after ->destroy(), due to uprobe_perf_close() using 5197 * hw.target. 5198 */ 5199 if (event->hw.target) 5200 put_task_struct(event->hw.target); 5201 5202 if (event->pmu_ctx) 5203 put_pmu_ctx(event->pmu_ctx); 5204 5205 /* 5206 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5207 * all task references must be cleaned up. 5208 */ 5209 if (event->ctx) 5210 put_ctx(event->ctx); 5211 5212 exclusive_event_destroy(event); 5213 module_put(event->pmu->module); 5214 5215 call_rcu(&event->rcu_head, free_event_rcu); 5216 } 5217 5218 /* 5219 * Used to free events which have a known refcount of 1, such as in error paths 5220 * where the event isn't exposed yet and inherited events. 5221 */ 5222 static void free_event(struct perf_event *event) 5223 { 5224 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5225 "unexpected event refcount: %ld; ptr=%p\n", 5226 atomic_long_read(&event->refcount), event)) { 5227 /* leak to avoid use-after-free */ 5228 return; 5229 } 5230 5231 _free_event(event); 5232 } 5233 5234 /* 5235 * Remove user event from the owner task. 5236 */ 5237 static void perf_remove_from_owner(struct perf_event *event) 5238 { 5239 struct task_struct *owner; 5240 5241 rcu_read_lock(); 5242 /* 5243 * Matches the smp_store_release() in perf_event_exit_task(). If we 5244 * observe !owner it means the list deletion is complete and we can 5245 * indeed free this event, otherwise we need to serialize on 5246 * owner->perf_event_mutex. 5247 */ 5248 owner = READ_ONCE(event->owner); 5249 if (owner) { 5250 /* 5251 * Since delayed_put_task_struct() also drops the last 5252 * task reference we can safely take a new reference 5253 * while holding the rcu_read_lock(). 5254 */ 5255 get_task_struct(owner); 5256 } 5257 rcu_read_unlock(); 5258 5259 if (owner) { 5260 /* 5261 * If we're here through perf_event_exit_task() we're already 5262 * holding ctx->mutex which would be an inversion wrt. the 5263 * normal lock order. 5264 * 5265 * However we can safely take this lock because its the child 5266 * ctx->mutex. 5267 */ 5268 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5269 5270 /* 5271 * We have to re-check the event->owner field, if it is cleared 5272 * we raced with perf_event_exit_task(), acquiring the mutex 5273 * ensured they're done, and we can proceed with freeing the 5274 * event. 5275 */ 5276 if (event->owner) { 5277 list_del_init(&event->owner_entry); 5278 smp_store_release(&event->owner, NULL); 5279 } 5280 mutex_unlock(&owner->perf_event_mutex); 5281 put_task_struct(owner); 5282 } 5283 } 5284 5285 static void put_event(struct perf_event *event) 5286 { 5287 if (!atomic_long_dec_and_test(&event->refcount)) 5288 return; 5289 5290 _free_event(event); 5291 } 5292 5293 /* 5294 * Kill an event dead; while event:refcount will preserve the event 5295 * object, it will not preserve its functionality. Once the last 'user' 5296 * gives up the object, we'll destroy the thing. 5297 */ 5298 int perf_event_release_kernel(struct perf_event *event) 5299 { 5300 struct perf_event_context *ctx = event->ctx; 5301 struct perf_event *child, *tmp; 5302 LIST_HEAD(free_list); 5303 5304 /* 5305 * If we got here through err_alloc: free_event(event); we will not 5306 * have attached to a context yet. 5307 */ 5308 if (!ctx) { 5309 WARN_ON_ONCE(event->attach_state & 5310 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5311 goto no_ctx; 5312 } 5313 5314 if (!is_kernel_event(event)) 5315 perf_remove_from_owner(event); 5316 5317 ctx = perf_event_ctx_lock(event); 5318 WARN_ON_ONCE(ctx->parent_ctx); 5319 5320 /* 5321 * Mark this event as STATE_DEAD, there is no external reference to it 5322 * anymore. 5323 * 5324 * Anybody acquiring event->child_mutex after the below loop _must_ 5325 * also see this, most importantly inherit_event() which will avoid 5326 * placing more children on the list. 5327 * 5328 * Thus this guarantees that we will in fact observe and kill _ALL_ 5329 * child events. 5330 */ 5331 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5332 5333 perf_event_ctx_unlock(event, ctx); 5334 5335 again: 5336 mutex_lock(&event->child_mutex); 5337 list_for_each_entry(child, &event->child_list, child_list) { 5338 5339 /* 5340 * Cannot change, child events are not migrated, see the 5341 * comment with perf_event_ctx_lock_nested(). 5342 */ 5343 ctx = READ_ONCE(child->ctx); 5344 /* 5345 * Since child_mutex nests inside ctx::mutex, we must jump 5346 * through hoops. We start by grabbing a reference on the ctx. 5347 * 5348 * Since the event cannot get freed while we hold the 5349 * child_mutex, the context must also exist and have a !0 5350 * reference count. 5351 */ 5352 get_ctx(ctx); 5353 5354 /* 5355 * Now that we have a ctx ref, we can drop child_mutex, and 5356 * acquire ctx::mutex without fear of it going away. Then we 5357 * can re-acquire child_mutex. 5358 */ 5359 mutex_unlock(&event->child_mutex); 5360 mutex_lock(&ctx->mutex); 5361 mutex_lock(&event->child_mutex); 5362 5363 /* 5364 * Now that we hold ctx::mutex and child_mutex, revalidate our 5365 * state, if child is still the first entry, it didn't get freed 5366 * and we can continue doing so. 5367 */ 5368 tmp = list_first_entry_or_null(&event->child_list, 5369 struct perf_event, child_list); 5370 if (tmp == child) { 5371 perf_remove_from_context(child, DETACH_GROUP); 5372 list_move(&child->child_list, &free_list); 5373 /* 5374 * This matches the refcount bump in inherit_event(); 5375 * this can't be the last reference. 5376 */ 5377 put_event(event); 5378 } 5379 5380 mutex_unlock(&event->child_mutex); 5381 mutex_unlock(&ctx->mutex); 5382 put_ctx(ctx); 5383 goto again; 5384 } 5385 mutex_unlock(&event->child_mutex); 5386 5387 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5388 void *var = &child->ctx->refcount; 5389 5390 list_del(&child->child_list); 5391 free_event(child); 5392 5393 /* 5394 * Wake any perf_event_free_task() waiting for this event to be 5395 * freed. 5396 */ 5397 smp_mb(); /* pairs with wait_var_event() */ 5398 wake_up_var(var); 5399 } 5400 5401 no_ctx: 5402 put_event(event); /* Must be the 'last' reference */ 5403 return 0; 5404 } 5405 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5406 5407 /* 5408 * Called when the last reference to the file is gone. 5409 */ 5410 static int perf_release(struct inode *inode, struct file *file) 5411 { 5412 perf_event_release_kernel(file->private_data); 5413 return 0; 5414 } 5415 5416 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5417 { 5418 struct perf_event *child; 5419 u64 total = 0; 5420 5421 *enabled = 0; 5422 *running = 0; 5423 5424 mutex_lock(&event->child_mutex); 5425 5426 (void)perf_event_read(event, false); 5427 total += perf_event_count(event); 5428 5429 *enabled += event->total_time_enabled + 5430 atomic64_read(&event->child_total_time_enabled); 5431 *running += event->total_time_running + 5432 atomic64_read(&event->child_total_time_running); 5433 5434 list_for_each_entry(child, &event->child_list, child_list) { 5435 (void)perf_event_read(child, false); 5436 total += perf_event_count(child); 5437 *enabled += child->total_time_enabled; 5438 *running += child->total_time_running; 5439 } 5440 mutex_unlock(&event->child_mutex); 5441 5442 return total; 5443 } 5444 5445 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5446 { 5447 struct perf_event_context *ctx; 5448 u64 count; 5449 5450 ctx = perf_event_ctx_lock(event); 5451 count = __perf_event_read_value(event, enabled, running); 5452 perf_event_ctx_unlock(event, ctx); 5453 5454 return count; 5455 } 5456 EXPORT_SYMBOL_GPL(perf_event_read_value); 5457 5458 static int __perf_read_group_add(struct perf_event *leader, 5459 u64 read_format, u64 *values) 5460 { 5461 struct perf_event_context *ctx = leader->ctx; 5462 struct perf_event *sub, *parent; 5463 unsigned long flags; 5464 int n = 1; /* skip @nr */ 5465 int ret; 5466 5467 ret = perf_event_read(leader, true); 5468 if (ret) 5469 return ret; 5470 5471 raw_spin_lock_irqsave(&ctx->lock, flags); 5472 /* 5473 * Verify the grouping between the parent and child (inherited) 5474 * events is still in tact. 5475 * 5476 * Specifically: 5477 * - leader->ctx->lock pins leader->sibling_list 5478 * - parent->child_mutex pins parent->child_list 5479 * - parent->ctx->mutex pins parent->sibling_list 5480 * 5481 * Because parent->ctx != leader->ctx (and child_list nests inside 5482 * ctx->mutex), group destruction is not atomic between children, also 5483 * see perf_event_release_kernel(). Additionally, parent can grow the 5484 * group. 5485 * 5486 * Therefore it is possible to have parent and child groups in a 5487 * different configuration and summing over such a beast makes no sense 5488 * what so ever. 5489 * 5490 * Reject this. 5491 */ 5492 parent = leader->parent; 5493 if (parent && 5494 (parent->group_generation != leader->group_generation || 5495 parent->nr_siblings != leader->nr_siblings)) { 5496 ret = -ECHILD; 5497 goto unlock; 5498 } 5499 5500 /* 5501 * Since we co-schedule groups, {enabled,running} times of siblings 5502 * will be identical to those of the leader, so we only publish one 5503 * set. 5504 */ 5505 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5506 values[n++] += leader->total_time_enabled + 5507 atomic64_read(&leader->child_total_time_enabled); 5508 } 5509 5510 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5511 values[n++] += leader->total_time_running + 5512 atomic64_read(&leader->child_total_time_running); 5513 } 5514 5515 /* 5516 * Write {count,id} tuples for every sibling. 5517 */ 5518 values[n++] += perf_event_count(leader); 5519 if (read_format & PERF_FORMAT_ID) 5520 values[n++] = primary_event_id(leader); 5521 if (read_format & PERF_FORMAT_LOST) 5522 values[n++] = atomic64_read(&leader->lost_samples); 5523 5524 for_each_sibling_event(sub, leader) { 5525 values[n++] += perf_event_count(sub); 5526 if (read_format & PERF_FORMAT_ID) 5527 values[n++] = primary_event_id(sub); 5528 if (read_format & PERF_FORMAT_LOST) 5529 values[n++] = atomic64_read(&sub->lost_samples); 5530 } 5531 5532 unlock: 5533 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5534 return ret; 5535 } 5536 5537 static int perf_read_group(struct perf_event *event, 5538 u64 read_format, char __user *buf) 5539 { 5540 struct perf_event *leader = event->group_leader, *child; 5541 struct perf_event_context *ctx = leader->ctx; 5542 int ret; 5543 u64 *values; 5544 5545 lockdep_assert_held(&ctx->mutex); 5546 5547 values = kzalloc(event->read_size, GFP_KERNEL); 5548 if (!values) 5549 return -ENOMEM; 5550 5551 values[0] = 1 + leader->nr_siblings; 5552 5553 mutex_lock(&leader->child_mutex); 5554 5555 ret = __perf_read_group_add(leader, read_format, values); 5556 if (ret) 5557 goto unlock; 5558 5559 list_for_each_entry(child, &leader->child_list, child_list) { 5560 ret = __perf_read_group_add(child, read_format, values); 5561 if (ret) 5562 goto unlock; 5563 } 5564 5565 mutex_unlock(&leader->child_mutex); 5566 5567 ret = event->read_size; 5568 if (copy_to_user(buf, values, event->read_size)) 5569 ret = -EFAULT; 5570 goto out; 5571 5572 unlock: 5573 mutex_unlock(&leader->child_mutex); 5574 out: 5575 kfree(values); 5576 return ret; 5577 } 5578 5579 static int perf_read_one(struct perf_event *event, 5580 u64 read_format, char __user *buf) 5581 { 5582 u64 enabled, running; 5583 u64 values[5]; 5584 int n = 0; 5585 5586 values[n++] = __perf_event_read_value(event, &enabled, &running); 5587 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5588 values[n++] = enabled; 5589 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5590 values[n++] = running; 5591 if (read_format & PERF_FORMAT_ID) 5592 values[n++] = primary_event_id(event); 5593 if (read_format & PERF_FORMAT_LOST) 5594 values[n++] = atomic64_read(&event->lost_samples); 5595 5596 if (copy_to_user(buf, values, n * sizeof(u64))) 5597 return -EFAULT; 5598 5599 return n * sizeof(u64); 5600 } 5601 5602 static bool is_event_hup(struct perf_event *event) 5603 { 5604 bool no_children; 5605 5606 if (event->state > PERF_EVENT_STATE_EXIT) 5607 return false; 5608 5609 mutex_lock(&event->child_mutex); 5610 no_children = list_empty(&event->child_list); 5611 mutex_unlock(&event->child_mutex); 5612 return no_children; 5613 } 5614 5615 /* 5616 * Read the performance event - simple non blocking version for now 5617 */ 5618 static ssize_t 5619 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5620 { 5621 u64 read_format = event->attr.read_format; 5622 int ret; 5623 5624 /* 5625 * Return end-of-file for a read on an event that is in 5626 * error state (i.e. because it was pinned but it couldn't be 5627 * scheduled on to the CPU at some point). 5628 */ 5629 if (event->state == PERF_EVENT_STATE_ERROR) 5630 return 0; 5631 5632 if (count < event->read_size) 5633 return -ENOSPC; 5634 5635 WARN_ON_ONCE(event->ctx->parent_ctx); 5636 if (read_format & PERF_FORMAT_GROUP) 5637 ret = perf_read_group(event, read_format, buf); 5638 else 5639 ret = perf_read_one(event, read_format, buf); 5640 5641 return ret; 5642 } 5643 5644 static ssize_t 5645 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5646 { 5647 struct perf_event *event = file->private_data; 5648 struct perf_event_context *ctx; 5649 int ret; 5650 5651 ret = security_perf_event_read(event); 5652 if (ret) 5653 return ret; 5654 5655 ctx = perf_event_ctx_lock(event); 5656 ret = __perf_read(event, buf, count); 5657 perf_event_ctx_unlock(event, ctx); 5658 5659 return ret; 5660 } 5661 5662 static __poll_t perf_poll(struct file *file, poll_table *wait) 5663 { 5664 struct perf_event *event = file->private_data; 5665 struct perf_buffer *rb; 5666 __poll_t events = EPOLLHUP; 5667 5668 poll_wait(file, &event->waitq, wait); 5669 5670 if (is_event_hup(event)) 5671 return events; 5672 5673 /* 5674 * Pin the event->rb by taking event->mmap_mutex; otherwise 5675 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5676 */ 5677 mutex_lock(&event->mmap_mutex); 5678 rb = event->rb; 5679 if (rb) 5680 events = atomic_xchg(&rb->poll, 0); 5681 mutex_unlock(&event->mmap_mutex); 5682 return events; 5683 } 5684 5685 static void _perf_event_reset(struct perf_event *event) 5686 { 5687 (void)perf_event_read(event, false); 5688 local64_set(&event->count, 0); 5689 perf_event_update_userpage(event); 5690 } 5691 5692 /* Assume it's not an event with inherit set. */ 5693 u64 perf_event_pause(struct perf_event *event, bool reset) 5694 { 5695 struct perf_event_context *ctx; 5696 u64 count; 5697 5698 ctx = perf_event_ctx_lock(event); 5699 WARN_ON_ONCE(event->attr.inherit); 5700 _perf_event_disable(event); 5701 count = local64_read(&event->count); 5702 if (reset) 5703 local64_set(&event->count, 0); 5704 perf_event_ctx_unlock(event, ctx); 5705 5706 return count; 5707 } 5708 EXPORT_SYMBOL_GPL(perf_event_pause); 5709 5710 /* 5711 * Holding the top-level event's child_mutex means that any 5712 * descendant process that has inherited this event will block 5713 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5714 * task existence requirements of perf_event_enable/disable. 5715 */ 5716 static void perf_event_for_each_child(struct perf_event *event, 5717 void (*func)(struct perf_event *)) 5718 { 5719 struct perf_event *child; 5720 5721 WARN_ON_ONCE(event->ctx->parent_ctx); 5722 5723 mutex_lock(&event->child_mutex); 5724 func(event); 5725 list_for_each_entry(child, &event->child_list, child_list) 5726 func(child); 5727 mutex_unlock(&event->child_mutex); 5728 } 5729 5730 static void perf_event_for_each(struct perf_event *event, 5731 void (*func)(struct perf_event *)) 5732 { 5733 struct perf_event_context *ctx = event->ctx; 5734 struct perf_event *sibling; 5735 5736 lockdep_assert_held(&ctx->mutex); 5737 5738 event = event->group_leader; 5739 5740 perf_event_for_each_child(event, func); 5741 for_each_sibling_event(sibling, event) 5742 perf_event_for_each_child(sibling, func); 5743 } 5744 5745 static void __perf_event_period(struct perf_event *event, 5746 struct perf_cpu_context *cpuctx, 5747 struct perf_event_context *ctx, 5748 void *info) 5749 { 5750 u64 value = *((u64 *)info); 5751 bool active; 5752 5753 if (event->attr.freq) { 5754 event->attr.sample_freq = value; 5755 } else { 5756 event->attr.sample_period = value; 5757 event->hw.sample_period = value; 5758 } 5759 5760 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5761 if (active) { 5762 perf_pmu_disable(event->pmu); 5763 /* 5764 * We could be throttled; unthrottle now to avoid the tick 5765 * trying to unthrottle while we already re-started the event. 5766 */ 5767 if (event->hw.interrupts == MAX_INTERRUPTS) { 5768 event->hw.interrupts = 0; 5769 perf_log_throttle(event, 1); 5770 } 5771 event->pmu->stop(event, PERF_EF_UPDATE); 5772 } 5773 5774 local64_set(&event->hw.period_left, 0); 5775 5776 if (active) { 5777 event->pmu->start(event, PERF_EF_RELOAD); 5778 perf_pmu_enable(event->pmu); 5779 } 5780 } 5781 5782 static int perf_event_check_period(struct perf_event *event, u64 value) 5783 { 5784 return event->pmu->check_period(event, value); 5785 } 5786 5787 static int _perf_event_period(struct perf_event *event, u64 value) 5788 { 5789 if (!is_sampling_event(event)) 5790 return -EINVAL; 5791 5792 if (!value) 5793 return -EINVAL; 5794 5795 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5796 return -EINVAL; 5797 5798 if (perf_event_check_period(event, value)) 5799 return -EINVAL; 5800 5801 if (!event->attr.freq && (value & (1ULL << 63))) 5802 return -EINVAL; 5803 5804 event_function_call(event, __perf_event_period, &value); 5805 5806 return 0; 5807 } 5808 5809 int perf_event_period(struct perf_event *event, u64 value) 5810 { 5811 struct perf_event_context *ctx; 5812 int ret; 5813 5814 ctx = perf_event_ctx_lock(event); 5815 ret = _perf_event_period(event, value); 5816 perf_event_ctx_unlock(event, ctx); 5817 5818 return ret; 5819 } 5820 EXPORT_SYMBOL_GPL(perf_event_period); 5821 5822 static const struct file_operations perf_fops; 5823 5824 static inline int perf_fget_light(int fd, struct fd *p) 5825 { 5826 struct fd f = fdget(fd); 5827 if (!f.file) 5828 return -EBADF; 5829 5830 if (f.file->f_op != &perf_fops) { 5831 fdput(f); 5832 return -EBADF; 5833 } 5834 *p = f; 5835 return 0; 5836 } 5837 5838 static int perf_event_set_output(struct perf_event *event, 5839 struct perf_event *output_event); 5840 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5841 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5842 struct perf_event_attr *attr); 5843 5844 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5845 { 5846 void (*func)(struct perf_event *); 5847 u32 flags = arg; 5848 5849 switch (cmd) { 5850 case PERF_EVENT_IOC_ENABLE: 5851 func = _perf_event_enable; 5852 break; 5853 case PERF_EVENT_IOC_DISABLE: 5854 func = _perf_event_disable; 5855 break; 5856 case PERF_EVENT_IOC_RESET: 5857 func = _perf_event_reset; 5858 break; 5859 5860 case PERF_EVENT_IOC_REFRESH: 5861 return _perf_event_refresh(event, arg); 5862 5863 case PERF_EVENT_IOC_PERIOD: 5864 { 5865 u64 value; 5866 5867 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5868 return -EFAULT; 5869 5870 return _perf_event_period(event, value); 5871 } 5872 case PERF_EVENT_IOC_ID: 5873 { 5874 u64 id = primary_event_id(event); 5875 5876 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5877 return -EFAULT; 5878 return 0; 5879 } 5880 5881 case PERF_EVENT_IOC_SET_OUTPUT: 5882 { 5883 int ret; 5884 if (arg != -1) { 5885 struct perf_event *output_event; 5886 struct fd output; 5887 ret = perf_fget_light(arg, &output); 5888 if (ret) 5889 return ret; 5890 output_event = output.file->private_data; 5891 ret = perf_event_set_output(event, output_event); 5892 fdput(output); 5893 } else { 5894 ret = perf_event_set_output(event, NULL); 5895 } 5896 return ret; 5897 } 5898 5899 case PERF_EVENT_IOC_SET_FILTER: 5900 return perf_event_set_filter(event, (void __user *)arg); 5901 5902 case PERF_EVENT_IOC_SET_BPF: 5903 { 5904 struct bpf_prog *prog; 5905 int err; 5906 5907 prog = bpf_prog_get(arg); 5908 if (IS_ERR(prog)) 5909 return PTR_ERR(prog); 5910 5911 err = perf_event_set_bpf_prog(event, prog, 0); 5912 if (err) { 5913 bpf_prog_put(prog); 5914 return err; 5915 } 5916 5917 return 0; 5918 } 5919 5920 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5921 struct perf_buffer *rb; 5922 5923 rcu_read_lock(); 5924 rb = rcu_dereference(event->rb); 5925 if (!rb || !rb->nr_pages) { 5926 rcu_read_unlock(); 5927 return -EINVAL; 5928 } 5929 rb_toggle_paused(rb, !!arg); 5930 rcu_read_unlock(); 5931 return 0; 5932 } 5933 5934 case PERF_EVENT_IOC_QUERY_BPF: 5935 return perf_event_query_prog_array(event, (void __user *)arg); 5936 5937 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5938 struct perf_event_attr new_attr; 5939 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5940 &new_attr); 5941 5942 if (err) 5943 return err; 5944 5945 return perf_event_modify_attr(event, &new_attr); 5946 } 5947 default: 5948 return -ENOTTY; 5949 } 5950 5951 if (flags & PERF_IOC_FLAG_GROUP) 5952 perf_event_for_each(event, func); 5953 else 5954 perf_event_for_each_child(event, func); 5955 5956 return 0; 5957 } 5958 5959 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5960 { 5961 struct perf_event *event = file->private_data; 5962 struct perf_event_context *ctx; 5963 long ret; 5964 5965 /* Treat ioctl like writes as it is likely a mutating operation. */ 5966 ret = security_perf_event_write(event); 5967 if (ret) 5968 return ret; 5969 5970 ctx = perf_event_ctx_lock(event); 5971 ret = _perf_ioctl(event, cmd, arg); 5972 perf_event_ctx_unlock(event, ctx); 5973 5974 return ret; 5975 } 5976 5977 #ifdef CONFIG_COMPAT 5978 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5979 unsigned long arg) 5980 { 5981 switch (_IOC_NR(cmd)) { 5982 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5983 case _IOC_NR(PERF_EVENT_IOC_ID): 5984 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5985 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5986 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5987 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5988 cmd &= ~IOCSIZE_MASK; 5989 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5990 } 5991 break; 5992 } 5993 return perf_ioctl(file, cmd, arg); 5994 } 5995 #else 5996 # define perf_compat_ioctl NULL 5997 #endif 5998 5999 int perf_event_task_enable(void) 6000 { 6001 struct perf_event_context *ctx; 6002 struct perf_event *event; 6003 6004 mutex_lock(¤t->perf_event_mutex); 6005 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6006 ctx = perf_event_ctx_lock(event); 6007 perf_event_for_each_child(event, _perf_event_enable); 6008 perf_event_ctx_unlock(event, ctx); 6009 } 6010 mutex_unlock(¤t->perf_event_mutex); 6011 6012 return 0; 6013 } 6014 6015 int perf_event_task_disable(void) 6016 { 6017 struct perf_event_context *ctx; 6018 struct perf_event *event; 6019 6020 mutex_lock(¤t->perf_event_mutex); 6021 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6022 ctx = perf_event_ctx_lock(event); 6023 perf_event_for_each_child(event, _perf_event_disable); 6024 perf_event_ctx_unlock(event, ctx); 6025 } 6026 mutex_unlock(¤t->perf_event_mutex); 6027 6028 return 0; 6029 } 6030 6031 static int perf_event_index(struct perf_event *event) 6032 { 6033 if (event->hw.state & PERF_HES_STOPPED) 6034 return 0; 6035 6036 if (event->state != PERF_EVENT_STATE_ACTIVE) 6037 return 0; 6038 6039 return event->pmu->event_idx(event); 6040 } 6041 6042 static void perf_event_init_userpage(struct perf_event *event) 6043 { 6044 struct perf_event_mmap_page *userpg; 6045 struct perf_buffer *rb; 6046 6047 rcu_read_lock(); 6048 rb = rcu_dereference(event->rb); 6049 if (!rb) 6050 goto unlock; 6051 6052 userpg = rb->user_page; 6053 6054 /* Allow new userspace to detect that bit 0 is deprecated */ 6055 userpg->cap_bit0_is_deprecated = 1; 6056 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6057 userpg->data_offset = PAGE_SIZE; 6058 userpg->data_size = perf_data_size(rb); 6059 6060 unlock: 6061 rcu_read_unlock(); 6062 } 6063 6064 void __weak arch_perf_update_userpage( 6065 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6066 { 6067 } 6068 6069 /* 6070 * Callers need to ensure there can be no nesting of this function, otherwise 6071 * the seqlock logic goes bad. We can not serialize this because the arch 6072 * code calls this from NMI context. 6073 */ 6074 void perf_event_update_userpage(struct perf_event *event) 6075 { 6076 struct perf_event_mmap_page *userpg; 6077 struct perf_buffer *rb; 6078 u64 enabled, running, now; 6079 6080 rcu_read_lock(); 6081 rb = rcu_dereference(event->rb); 6082 if (!rb) 6083 goto unlock; 6084 6085 /* 6086 * compute total_time_enabled, total_time_running 6087 * based on snapshot values taken when the event 6088 * was last scheduled in. 6089 * 6090 * we cannot simply called update_context_time() 6091 * because of locking issue as we can be called in 6092 * NMI context 6093 */ 6094 calc_timer_values(event, &now, &enabled, &running); 6095 6096 userpg = rb->user_page; 6097 /* 6098 * Disable preemption to guarantee consistent time stamps are stored to 6099 * the user page. 6100 */ 6101 preempt_disable(); 6102 ++userpg->lock; 6103 barrier(); 6104 userpg->index = perf_event_index(event); 6105 userpg->offset = perf_event_count(event); 6106 if (userpg->index) 6107 userpg->offset -= local64_read(&event->hw.prev_count); 6108 6109 userpg->time_enabled = enabled + 6110 atomic64_read(&event->child_total_time_enabled); 6111 6112 userpg->time_running = running + 6113 atomic64_read(&event->child_total_time_running); 6114 6115 arch_perf_update_userpage(event, userpg, now); 6116 6117 barrier(); 6118 ++userpg->lock; 6119 preempt_enable(); 6120 unlock: 6121 rcu_read_unlock(); 6122 } 6123 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6124 6125 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6126 { 6127 struct perf_event *event = vmf->vma->vm_file->private_data; 6128 struct perf_buffer *rb; 6129 vm_fault_t ret = VM_FAULT_SIGBUS; 6130 6131 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6132 if (vmf->pgoff == 0) 6133 ret = 0; 6134 return ret; 6135 } 6136 6137 rcu_read_lock(); 6138 rb = rcu_dereference(event->rb); 6139 if (!rb) 6140 goto unlock; 6141 6142 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6143 goto unlock; 6144 6145 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6146 if (!vmf->page) 6147 goto unlock; 6148 6149 get_page(vmf->page); 6150 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6151 vmf->page->index = vmf->pgoff; 6152 6153 ret = 0; 6154 unlock: 6155 rcu_read_unlock(); 6156 6157 return ret; 6158 } 6159 6160 static void ring_buffer_attach(struct perf_event *event, 6161 struct perf_buffer *rb) 6162 { 6163 struct perf_buffer *old_rb = NULL; 6164 unsigned long flags; 6165 6166 WARN_ON_ONCE(event->parent); 6167 6168 if (event->rb) { 6169 /* 6170 * Should be impossible, we set this when removing 6171 * event->rb_entry and wait/clear when adding event->rb_entry. 6172 */ 6173 WARN_ON_ONCE(event->rcu_pending); 6174 6175 old_rb = event->rb; 6176 spin_lock_irqsave(&old_rb->event_lock, flags); 6177 list_del_rcu(&event->rb_entry); 6178 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6179 6180 event->rcu_batches = get_state_synchronize_rcu(); 6181 event->rcu_pending = 1; 6182 } 6183 6184 if (rb) { 6185 if (event->rcu_pending) { 6186 cond_synchronize_rcu(event->rcu_batches); 6187 event->rcu_pending = 0; 6188 } 6189 6190 spin_lock_irqsave(&rb->event_lock, flags); 6191 list_add_rcu(&event->rb_entry, &rb->event_list); 6192 spin_unlock_irqrestore(&rb->event_lock, flags); 6193 } 6194 6195 /* 6196 * Avoid racing with perf_mmap_close(AUX): stop the event 6197 * before swizzling the event::rb pointer; if it's getting 6198 * unmapped, its aux_mmap_count will be 0 and it won't 6199 * restart. See the comment in __perf_pmu_output_stop(). 6200 * 6201 * Data will inevitably be lost when set_output is done in 6202 * mid-air, but then again, whoever does it like this is 6203 * not in for the data anyway. 6204 */ 6205 if (has_aux(event)) 6206 perf_event_stop(event, 0); 6207 6208 rcu_assign_pointer(event->rb, rb); 6209 6210 if (old_rb) { 6211 ring_buffer_put(old_rb); 6212 /* 6213 * Since we detached before setting the new rb, so that we 6214 * could attach the new rb, we could have missed a wakeup. 6215 * Provide it now. 6216 */ 6217 wake_up_all(&event->waitq); 6218 } 6219 } 6220 6221 static void ring_buffer_wakeup(struct perf_event *event) 6222 { 6223 struct perf_buffer *rb; 6224 6225 if (event->parent) 6226 event = event->parent; 6227 6228 rcu_read_lock(); 6229 rb = rcu_dereference(event->rb); 6230 if (rb) { 6231 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6232 wake_up_all(&event->waitq); 6233 } 6234 rcu_read_unlock(); 6235 } 6236 6237 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6238 { 6239 struct perf_buffer *rb; 6240 6241 if (event->parent) 6242 event = event->parent; 6243 6244 rcu_read_lock(); 6245 rb = rcu_dereference(event->rb); 6246 if (rb) { 6247 if (!refcount_inc_not_zero(&rb->refcount)) 6248 rb = NULL; 6249 } 6250 rcu_read_unlock(); 6251 6252 return rb; 6253 } 6254 6255 void ring_buffer_put(struct perf_buffer *rb) 6256 { 6257 if (!refcount_dec_and_test(&rb->refcount)) 6258 return; 6259 6260 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6261 6262 call_rcu(&rb->rcu_head, rb_free_rcu); 6263 } 6264 6265 static void perf_mmap_open(struct vm_area_struct *vma) 6266 { 6267 struct perf_event *event = vma->vm_file->private_data; 6268 6269 atomic_inc(&event->mmap_count); 6270 atomic_inc(&event->rb->mmap_count); 6271 6272 if (vma->vm_pgoff) 6273 atomic_inc(&event->rb->aux_mmap_count); 6274 6275 if (event->pmu->event_mapped) 6276 event->pmu->event_mapped(event, vma->vm_mm); 6277 } 6278 6279 static void perf_pmu_output_stop(struct perf_event *event); 6280 6281 /* 6282 * A buffer can be mmap()ed multiple times; either directly through the same 6283 * event, or through other events by use of perf_event_set_output(). 6284 * 6285 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6286 * the buffer here, where we still have a VM context. This means we need 6287 * to detach all events redirecting to us. 6288 */ 6289 static void perf_mmap_close(struct vm_area_struct *vma) 6290 { 6291 struct perf_event *event = vma->vm_file->private_data; 6292 struct perf_buffer *rb = ring_buffer_get(event); 6293 struct user_struct *mmap_user = rb->mmap_user; 6294 int mmap_locked = rb->mmap_locked; 6295 unsigned long size = perf_data_size(rb); 6296 bool detach_rest = false; 6297 6298 if (event->pmu->event_unmapped) 6299 event->pmu->event_unmapped(event, vma->vm_mm); 6300 6301 /* 6302 * rb->aux_mmap_count will always drop before rb->mmap_count and 6303 * event->mmap_count, so it is ok to use event->mmap_mutex to 6304 * serialize with perf_mmap here. 6305 */ 6306 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6307 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6308 /* 6309 * Stop all AUX events that are writing to this buffer, 6310 * so that we can free its AUX pages and corresponding PMU 6311 * data. Note that after rb::aux_mmap_count dropped to zero, 6312 * they won't start any more (see perf_aux_output_begin()). 6313 */ 6314 perf_pmu_output_stop(event); 6315 6316 /* now it's safe to free the pages */ 6317 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6318 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6319 6320 /* this has to be the last one */ 6321 rb_free_aux(rb); 6322 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6323 6324 mutex_unlock(&event->mmap_mutex); 6325 } 6326 6327 if (atomic_dec_and_test(&rb->mmap_count)) 6328 detach_rest = true; 6329 6330 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6331 goto out_put; 6332 6333 ring_buffer_attach(event, NULL); 6334 mutex_unlock(&event->mmap_mutex); 6335 6336 /* If there's still other mmap()s of this buffer, we're done. */ 6337 if (!detach_rest) 6338 goto out_put; 6339 6340 /* 6341 * No other mmap()s, detach from all other events that might redirect 6342 * into the now unreachable buffer. Somewhat complicated by the 6343 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6344 */ 6345 again: 6346 rcu_read_lock(); 6347 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6348 if (!atomic_long_inc_not_zero(&event->refcount)) { 6349 /* 6350 * This event is en-route to free_event() which will 6351 * detach it and remove it from the list. 6352 */ 6353 continue; 6354 } 6355 rcu_read_unlock(); 6356 6357 mutex_lock(&event->mmap_mutex); 6358 /* 6359 * Check we didn't race with perf_event_set_output() which can 6360 * swizzle the rb from under us while we were waiting to 6361 * acquire mmap_mutex. 6362 * 6363 * If we find a different rb; ignore this event, a next 6364 * iteration will no longer find it on the list. We have to 6365 * still restart the iteration to make sure we're not now 6366 * iterating the wrong list. 6367 */ 6368 if (event->rb == rb) 6369 ring_buffer_attach(event, NULL); 6370 6371 mutex_unlock(&event->mmap_mutex); 6372 put_event(event); 6373 6374 /* 6375 * Restart the iteration; either we're on the wrong list or 6376 * destroyed its integrity by doing a deletion. 6377 */ 6378 goto again; 6379 } 6380 rcu_read_unlock(); 6381 6382 /* 6383 * It could be there's still a few 0-ref events on the list; they'll 6384 * get cleaned up by free_event() -- they'll also still have their 6385 * ref on the rb and will free it whenever they are done with it. 6386 * 6387 * Aside from that, this buffer is 'fully' detached and unmapped, 6388 * undo the VM accounting. 6389 */ 6390 6391 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6392 &mmap_user->locked_vm); 6393 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6394 free_uid(mmap_user); 6395 6396 out_put: 6397 ring_buffer_put(rb); /* could be last */ 6398 } 6399 6400 static const struct vm_operations_struct perf_mmap_vmops = { 6401 .open = perf_mmap_open, 6402 .close = perf_mmap_close, /* non mergeable */ 6403 .fault = perf_mmap_fault, 6404 .page_mkwrite = perf_mmap_fault, 6405 }; 6406 6407 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6408 { 6409 struct perf_event *event = file->private_data; 6410 unsigned long user_locked, user_lock_limit; 6411 struct user_struct *user = current_user(); 6412 struct perf_buffer *rb = NULL; 6413 unsigned long locked, lock_limit; 6414 unsigned long vma_size; 6415 unsigned long nr_pages; 6416 long user_extra = 0, extra = 0; 6417 int ret = 0, flags = 0; 6418 6419 /* 6420 * Don't allow mmap() of inherited per-task counters. This would 6421 * create a performance issue due to all children writing to the 6422 * same rb. 6423 */ 6424 if (event->cpu == -1 && event->attr.inherit) 6425 return -EINVAL; 6426 6427 if (!(vma->vm_flags & VM_SHARED)) 6428 return -EINVAL; 6429 6430 ret = security_perf_event_read(event); 6431 if (ret) 6432 return ret; 6433 6434 vma_size = vma->vm_end - vma->vm_start; 6435 6436 if (vma->vm_pgoff == 0) { 6437 nr_pages = (vma_size / PAGE_SIZE) - 1; 6438 } else { 6439 /* 6440 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6441 * mapped, all subsequent mappings should have the same size 6442 * and offset. Must be above the normal perf buffer. 6443 */ 6444 u64 aux_offset, aux_size; 6445 6446 if (!event->rb) 6447 return -EINVAL; 6448 6449 nr_pages = vma_size / PAGE_SIZE; 6450 6451 mutex_lock(&event->mmap_mutex); 6452 ret = -EINVAL; 6453 6454 rb = event->rb; 6455 if (!rb) 6456 goto aux_unlock; 6457 6458 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6459 aux_size = READ_ONCE(rb->user_page->aux_size); 6460 6461 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6462 goto aux_unlock; 6463 6464 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6465 goto aux_unlock; 6466 6467 /* already mapped with a different offset */ 6468 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6469 goto aux_unlock; 6470 6471 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6472 goto aux_unlock; 6473 6474 /* already mapped with a different size */ 6475 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6476 goto aux_unlock; 6477 6478 if (!is_power_of_2(nr_pages)) 6479 goto aux_unlock; 6480 6481 if (!atomic_inc_not_zero(&rb->mmap_count)) 6482 goto aux_unlock; 6483 6484 if (rb_has_aux(rb)) { 6485 atomic_inc(&rb->aux_mmap_count); 6486 ret = 0; 6487 goto unlock; 6488 } 6489 6490 atomic_set(&rb->aux_mmap_count, 1); 6491 user_extra = nr_pages; 6492 6493 goto accounting; 6494 } 6495 6496 /* 6497 * If we have rb pages ensure they're a power-of-two number, so we 6498 * can do bitmasks instead of modulo. 6499 */ 6500 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6501 return -EINVAL; 6502 6503 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6504 return -EINVAL; 6505 6506 WARN_ON_ONCE(event->ctx->parent_ctx); 6507 again: 6508 mutex_lock(&event->mmap_mutex); 6509 if (event->rb) { 6510 if (data_page_nr(event->rb) != nr_pages) { 6511 ret = -EINVAL; 6512 goto unlock; 6513 } 6514 6515 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6516 /* 6517 * Raced against perf_mmap_close(); remove the 6518 * event and try again. 6519 */ 6520 ring_buffer_attach(event, NULL); 6521 mutex_unlock(&event->mmap_mutex); 6522 goto again; 6523 } 6524 6525 goto unlock; 6526 } 6527 6528 user_extra = nr_pages + 1; 6529 6530 accounting: 6531 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6532 6533 /* 6534 * Increase the limit linearly with more CPUs: 6535 */ 6536 user_lock_limit *= num_online_cpus(); 6537 6538 user_locked = atomic_long_read(&user->locked_vm); 6539 6540 /* 6541 * sysctl_perf_event_mlock may have changed, so that 6542 * user->locked_vm > user_lock_limit 6543 */ 6544 if (user_locked > user_lock_limit) 6545 user_locked = user_lock_limit; 6546 user_locked += user_extra; 6547 6548 if (user_locked > user_lock_limit) { 6549 /* 6550 * charge locked_vm until it hits user_lock_limit; 6551 * charge the rest from pinned_vm 6552 */ 6553 extra = user_locked - user_lock_limit; 6554 user_extra -= extra; 6555 } 6556 6557 lock_limit = rlimit(RLIMIT_MEMLOCK); 6558 lock_limit >>= PAGE_SHIFT; 6559 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6560 6561 if ((locked > lock_limit) && perf_is_paranoid() && 6562 !capable(CAP_IPC_LOCK)) { 6563 ret = -EPERM; 6564 goto unlock; 6565 } 6566 6567 WARN_ON(!rb && event->rb); 6568 6569 if (vma->vm_flags & VM_WRITE) 6570 flags |= RING_BUFFER_WRITABLE; 6571 6572 if (!rb) { 6573 rb = rb_alloc(nr_pages, 6574 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6575 event->cpu, flags); 6576 6577 if (!rb) { 6578 ret = -ENOMEM; 6579 goto unlock; 6580 } 6581 6582 atomic_set(&rb->mmap_count, 1); 6583 rb->mmap_user = get_current_user(); 6584 rb->mmap_locked = extra; 6585 6586 ring_buffer_attach(event, rb); 6587 6588 perf_event_update_time(event); 6589 perf_event_init_userpage(event); 6590 perf_event_update_userpage(event); 6591 } else { 6592 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6593 event->attr.aux_watermark, flags); 6594 if (!ret) 6595 rb->aux_mmap_locked = extra; 6596 } 6597 6598 unlock: 6599 if (!ret) { 6600 atomic_long_add(user_extra, &user->locked_vm); 6601 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6602 6603 atomic_inc(&event->mmap_count); 6604 } else if (rb) { 6605 atomic_dec(&rb->mmap_count); 6606 } 6607 aux_unlock: 6608 mutex_unlock(&event->mmap_mutex); 6609 6610 /* 6611 * Since pinned accounting is per vm we cannot allow fork() to copy our 6612 * vma. 6613 */ 6614 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6615 vma->vm_ops = &perf_mmap_vmops; 6616 6617 if (event->pmu->event_mapped) 6618 event->pmu->event_mapped(event, vma->vm_mm); 6619 6620 return ret; 6621 } 6622 6623 static int perf_fasync(int fd, struct file *filp, int on) 6624 { 6625 struct inode *inode = file_inode(filp); 6626 struct perf_event *event = filp->private_data; 6627 int retval; 6628 6629 inode_lock(inode); 6630 retval = fasync_helper(fd, filp, on, &event->fasync); 6631 inode_unlock(inode); 6632 6633 if (retval < 0) 6634 return retval; 6635 6636 return 0; 6637 } 6638 6639 static const struct file_operations perf_fops = { 6640 .llseek = no_llseek, 6641 .release = perf_release, 6642 .read = perf_read, 6643 .poll = perf_poll, 6644 .unlocked_ioctl = perf_ioctl, 6645 .compat_ioctl = perf_compat_ioctl, 6646 .mmap = perf_mmap, 6647 .fasync = perf_fasync, 6648 }; 6649 6650 /* 6651 * Perf event wakeup 6652 * 6653 * If there's data, ensure we set the poll() state and publish everything 6654 * to user-space before waking everybody up. 6655 */ 6656 6657 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6658 { 6659 /* only the parent has fasync state */ 6660 if (event->parent) 6661 event = event->parent; 6662 return &event->fasync; 6663 } 6664 6665 void perf_event_wakeup(struct perf_event *event) 6666 { 6667 ring_buffer_wakeup(event); 6668 6669 if (event->pending_kill) { 6670 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6671 event->pending_kill = 0; 6672 } 6673 } 6674 6675 static void perf_sigtrap(struct perf_event *event) 6676 { 6677 /* 6678 * We'd expect this to only occur if the irq_work is delayed and either 6679 * ctx->task or current has changed in the meantime. This can be the 6680 * case on architectures that do not implement arch_irq_work_raise(). 6681 */ 6682 if (WARN_ON_ONCE(event->ctx->task != current)) 6683 return; 6684 6685 /* 6686 * Both perf_pending_task() and perf_pending_irq() can race with the 6687 * task exiting. 6688 */ 6689 if (current->flags & PF_EXITING) 6690 return; 6691 6692 send_sig_perf((void __user *)event->pending_addr, 6693 event->orig_type, event->attr.sig_data); 6694 } 6695 6696 /* 6697 * Deliver the pending work in-event-context or follow the context. 6698 */ 6699 static void __perf_pending_irq(struct perf_event *event) 6700 { 6701 int cpu = READ_ONCE(event->oncpu); 6702 6703 /* 6704 * If the event isn't running; we done. event_sched_out() will have 6705 * taken care of things. 6706 */ 6707 if (cpu < 0) 6708 return; 6709 6710 /* 6711 * Yay, we hit home and are in the context of the event. 6712 */ 6713 if (cpu == smp_processor_id()) { 6714 if (event->pending_sigtrap) { 6715 event->pending_sigtrap = 0; 6716 perf_sigtrap(event); 6717 local_dec(&event->ctx->nr_pending); 6718 } 6719 if (event->pending_disable) { 6720 event->pending_disable = 0; 6721 perf_event_disable_local(event); 6722 } 6723 return; 6724 } 6725 6726 /* 6727 * CPU-A CPU-B 6728 * 6729 * perf_event_disable_inatomic() 6730 * @pending_disable = CPU-A; 6731 * irq_work_queue(); 6732 * 6733 * sched-out 6734 * @pending_disable = -1; 6735 * 6736 * sched-in 6737 * perf_event_disable_inatomic() 6738 * @pending_disable = CPU-B; 6739 * irq_work_queue(); // FAILS 6740 * 6741 * irq_work_run() 6742 * perf_pending_irq() 6743 * 6744 * But the event runs on CPU-B and wants disabling there. 6745 */ 6746 irq_work_queue_on(&event->pending_irq, cpu); 6747 } 6748 6749 static void perf_pending_irq(struct irq_work *entry) 6750 { 6751 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6752 int rctx; 6753 6754 /* 6755 * If we 'fail' here, that's OK, it means recursion is already disabled 6756 * and we won't recurse 'further'. 6757 */ 6758 rctx = perf_swevent_get_recursion_context(); 6759 6760 /* 6761 * The wakeup isn't bound to the context of the event -- it can happen 6762 * irrespective of where the event is. 6763 */ 6764 if (event->pending_wakeup) { 6765 event->pending_wakeup = 0; 6766 perf_event_wakeup(event); 6767 } 6768 6769 __perf_pending_irq(event); 6770 6771 if (rctx >= 0) 6772 perf_swevent_put_recursion_context(rctx); 6773 } 6774 6775 static void perf_pending_task(struct callback_head *head) 6776 { 6777 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6778 int rctx; 6779 6780 /* 6781 * If we 'fail' here, that's OK, it means recursion is already disabled 6782 * and we won't recurse 'further'. 6783 */ 6784 preempt_disable_notrace(); 6785 rctx = perf_swevent_get_recursion_context(); 6786 6787 if (event->pending_work) { 6788 event->pending_work = 0; 6789 perf_sigtrap(event); 6790 local_dec(&event->ctx->nr_pending); 6791 } 6792 6793 if (rctx >= 0) 6794 perf_swevent_put_recursion_context(rctx); 6795 preempt_enable_notrace(); 6796 6797 put_event(event); 6798 } 6799 6800 #ifdef CONFIG_GUEST_PERF_EVENTS 6801 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6802 6803 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6804 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6805 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6806 6807 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6808 { 6809 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6810 return; 6811 6812 rcu_assign_pointer(perf_guest_cbs, cbs); 6813 static_call_update(__perf_guest_state, cbs->state); 6814 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6815 6816 /* Implementing ->handle_intel_pt_intr is optional. */ 6817 if (cbs->handle_intel_pt_intr) 6818 static_call_update(__perf_guest_handle_intel_pt_intr, 6819 cbs->handle_intel_pt_intr); 6820 } 6821 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6822 6823 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6824 { 6825 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6826 return; 6827 6828 rcu_assign_pointer(perf_guest_cbs, NULL); 6829 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6830 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6831 static_call_update(__perf_guest_handle_intel_pt_intr, 6832 (void *)&__static_call_return0); 6833 synchronize_rcu(); 6834 } 6835 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6836 #endif 6837 6838 static void 6839 perf_output_sample_regs(struct perf_output_handle *handle, 6840 struct pt_regs *regs, u64 mask) 6841 { 6842 int bit; 6843 DECLARE_BITMAP(_mask, 64); 6844 6845 bitmap_from_u64(_mask, mask); 6846 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6847 u64 val; 6848 6849 val = perf_reg_value(regs, bit); 6850 perf_output_put(handle, val); 6851 } 6852 } 6853 6854 static void perf_sample_regs_user(struct perf_regs *regs_user, 6855 struct pt_regs *regs) 6856 { 6857 if (user_mode(regs)) { 6858 regs_user->abi = perf_reg_abi(current); 6859 regs_user->regs = regs; 6860 } else if (!(current->flags & PF_KTHREAD)) { 6861 perf_get_regs_user(regs_user, regs); 6862 } else { 6863 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6864 regs_user->regs = NULL; 6865 } 6866 } 6867 6868 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6869 struct pt_regs *regs) 6870 { 6871 regs_intr->regs = regs; 6872 regs_intr->abi = perf_reg_abi(current); 6873 } 6874 6875 6876 /* 6877 * Get remaining task size from user stack pointer. 6878 * 6879 * It'd be better to take stack vma map and limit this more 6880 * precisely, but there's no way to get it safely under interrupt, 6881 * so using TASK_SIZE as limit. 6882 */ 6883 static u64 perf_ustack_task_size(struct pt_regs *regs) 6884 { 6885 unsigned long addr = perf_user_stack_pointer(regs); 6886 6887 if (!addr || addr >= TASK_SIZE) 6888 return 0; 6889 6890 return TASK_SIZE - addr; 6891 } 6892 6893 static u16 6894 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6895 struct pt_regs *regs) 6896 { 6897 u64 task_size; 6898 6899 /* No regs, no stack pointer, no dump. */ 6900 if (!regs) 6901 return 0; 6902 6903 /* 6904 * Check if we fit in with the requested stack size into the: 6905 * - TASK_SIZE 6906 * If we don't, we limit the size to the TASK_SIZE. 6907 * 6908 * - remaining sample size 6909 * If we don't, we customize the stack size to 6910 * fit in to the remaining sample size. 6911 */ 6912 6913 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6914 stack_size = min(stack_size, (u16) task_size); 6915 6916 /* Current header size plus static size and dynamic size. */ 6917 header_size += 2 * sizeof(u64); 6918 6919 /* Do we fit in with the current stack dump size? */ 6920 if ((u16) (header_size + stack_size) < header_size) { 6921 /* 6922 * If we overflow the maximum size for the sample, 6923 * we customize the stack dump size to fit in. 6924 */ 6925 stack_size = USHRT_MAX - header_size - sizeof(u64); 6926 stack_size = round_up(stack_size, sizeof(u64)); 6927 } 6928 6929 return stack_size; 6930 } 6931 6932 static void 6933 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6934 struct pt_regs *regs) 6935 { 6936 /* Case of a kernel thread, nothing to dump */ 6937 if (!regs) { 6938 u64 size = 0; 6939 perf_output_put(handle, size); 6940 } else { 6941 unsigned long sp; 6942 unsigned int rem; 6943 u64 dyn_size; 6944 6945 /* 6946 * We dump: 6947 * static size 6948 * - the size requested by user or the best one we can fit 6949 * in to the sample max size 6950 * data 6951 * - user stack dump data 6952 * dynamic size 6953 * - the actual dumped size 6954 */ 6955 6956 /* Static size. */ 6957 perf_output_put(handle, dump_size); 6958 6959 /* Data. */ 6960 sp = perf_user_stack_pointer(regs); 6961 rem = __output_copy_user(handle, (void *) sp, dump_size); 6962 dyn_size = dump_size - rem; 6963 6964 perf_output_skip(handle, rem); 6965 6966 /* Dynamic size. */ 6967 perf_output_put(handle, dyn_size); 6968 } 6969 } 6970 6971 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6972 struct perf_sample_data *data, 6973 size_t size) 6974 { 6975 struct perf_event *sampler = event->aux_event; 6976 struct perf_buffer *rb; 6977 6978 data->aux_size = 0; 6979 6980 if (!sampler) 6981 goto out; 6982 6983 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6984 goto out; 6985 6986 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6987 goto out; 6988 6989 rb = ring_buffer_get(sampler); 6990 if (!rb) 6991 goto out; 6992 6993 /* 6994 * If this is an NMI hit inside sampling code, don't take 6995 * the sample. See also perf_aux_sample_output(). 6996 */ 6997 if (READ_ONCE(rb->aux_in_sampling)) { 6998 data->aux_size = 0; 6999 } else { 7000 size = min_t(size_t, size, perf_aux_size(rb)); 7001 data->aux_size = ALIGN(size, sizeof(u64)); 7002 } 7003 ring_buffer_put(rb); 7004 7005 out: 7006 return data->aux_size; 7007 } 7008 7009 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7010 struct perf_event *event, 7011 struct perf_output_handle *handle, 7012 unsigned long size) 7013 { 7014 unsigned long flags; 7015 long ret; 7016 7017 /* 7018 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7019 * paths. If we start calling them in NMI context, they may race with 7020 * the IRQ ones, that is, for example, re-starting an event that's just 7021 * been stopped, which is why we're using a separate callback that 7022 * doesn't change the event state. 7023 * 7024 * IRQs need to be disabled to prevent IPIs from racing with us. 7025 */ 7026 local_irq_save(flags); 7027 /* 7028 * Guard against NMI hits inside the critical section; 7029 * see also perf_prepare_sample_aux(). 7030 */ 7031 WRITE_ONCE(rb->aux_in_sampling, 1); 7032 barrier(); 7033 7034 ret = event->pmu->snapshot_aux(event, handle, size); 7035 7036 barrier(); 7037 WRITE_ONCE(rb->aux_in_sampling, 0); 7038 local_irq_restore(flags); 7039 7040 return ret; 7041 } 7042 7043 static void perf_aux_sample_output(struct perf_event *event, 7044 struct perf_output_handle *handle, 7045 struct perf_sample_data *data) 7046 { 7047 struct perf_event *sampler = event->aux_event; 7048 struct perf_buffer *rb; 7049 unsigned long pad; 7050 long size; 7051 7052 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7053 return; 7054 7055 rb = ring_buffer_get(sampler); 7056 if (!rb) 7057 return; 7058 7059 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7060 7061 /* 7062 * An error here means that perf_output_copy() failed (returned a 7063 * non-zero surplus that it didn't copy), which in its current 7064 * enlightened implementation is not possible. If that changes, we'd 7065 * like to know. 7066 */ 7067 if (WARN_ON_ONCE(size < 0)) 7068 goto out_put; 7069 7070 /* 7071 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7072 * perf_prepare_sample_aux(), so should not be more than that. 7073 */ 7074 pad = data->aux_size - size; 7075 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7076 pad = 8; 7077 7078 if (pad) { 7079 u64 zero = 0; 7080 perf_output_copy(handle, &zero, pad); 7081 } 7082 7083 out_put: 7084 ring_buffer_put(rb); 7085 } 7086 7087 /* 7088 * A set of common sample data types saved even for non-sample records 7089 * when event->attr.sample_id_all is set. 7090 */ 7091 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7092 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7093 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7094 7095 static void __perf_event_header__init_id(struct perf_sample_data *data, 7096 struct perf_event *event, 7097 u64 sample_type) 7098 { 7099 data->type = event->attr.sample_type; 7100 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7101 7102 if (sample_type & PERF_SAMPLE_TID) { 7103 /* namespace issues */ 7104 data->tid_entry.pid = perf_event_pid(event, current); 7105 data->tid_entry.tid = perf_event_tid(event, current); 7106 } 7107 7108 if (sample_type & PERF_SAMPLE_TIME) 7109 data->time = perf_event_clock(event); 7110 7111 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7112 data->id = primary_event_id(event); 7113 7114 if (sample_type & PERF_SAMPLE_STREAM_ID) 7115 data->stream_id = event->id; 7116 7117 if (sample_type & PERF_SAMPLE_CPU) { 7118 data->cpu_entry.cpu = raw_smp_processor_id(); 7119 data->cpu_entry.reserved = 0; 7120 } 7121 } 7122 7123 void perf_event_header__init_id(struct perf_event_header *header, 7124 struct perf_sample_data *data, 7125 struct perf_event *event) 7126 { 7127 if (event->attr.sample_id_all) { 7128 header->size += event->id_header_size; 7129 __perf_event_header__init_id(data, event, event->attr.sample_type); 7130 } 7131 } 7132 7133 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7134 struct perf_sample_data *data) 7135 { 7136 u64 sample_type = data->type; 7137 7138 if (sample_type & PERF_SAMPLE_TID) 7139 perf_output_put(handle, data->tid_entry); 7140 7141 if (sample_type & PERF_SAMPLE_TIME) 7142 perf_output_put(handle, data->time); 7143 7144 if (sample_type & PERF_SAMPLE_ID) 7145 perf_output_put(handle, data->id); 7146 7147 if (sample_type & PERF_SAMPLE_STREAM_ID) 7148 perf_output_put(handle, data->stream_id); 7149 7150 if (sample_type & PERF_SAMPLE_CPU) 7151 perf_output_put(handle, data->cpu_entry); 7152 7153 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7154 perf_output_put(handle, data->id); 7155 } 7156 7157 void perf_event__output_id_sample(struct perf_event *event, 7158 struct perf_output_handle *handle, 7159 struct perf_sample_data *sample) 7160 { 7161 if (event->attr.sample_id_all) 7162 __perf_event__output_id_sample(handle, sample); 7163 } 7164 7165 static void perf_output_read_one(struct perf_output_handle *handle, 7166 struct perf_event *event, 7167 u64 enabled, u64 running) 7168 { 7169 u64 read_format = event->attr.read_format; 7170 u64 values[5]; 7171 int n = 0; 7172 7173 values[n++] = perf_event_count(event); 7174 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7175 values[n++] = enabled + 7176 atomic64_read(&event->child_total_time_enabled); 7177 } 7178 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7179 values[n++] = running + 7180 atomic64_read(&event->child_total_time_running); 7181 } 7182 if (read_format & PERF_FORMAT_ID) 7183 values[n++] = primary_event_id(event); 7184 if (read_format & PERF_FORMAT_LOST) 7185 values[n++] = atomic64_read(&event->lost_samples); 7186 7187 __output_copy(handle, values, n * sizeof(u64)); 7188 } 7189 7190 static void perf_output_read_group(struct perf_output_handle *handle, 7191 struct perf_event *event, 7192 u64 enabled, u64 running) 7193 { 7194 struct perf_event *leader = event->group_leader, *sub; 7195 u64 read_format = event->attr.read_format; 7196 unsigned long flags; 7197 u64 values[6]; 7198 int n = 0; 7199 7200 /* 7201 * Disabling interrupts avoids all counter scheduling 7202 * (context switches, timer based rotation and IPIs). 7203 */ 7204 local_irq_save(flags); 7205 7206 values[n++] = 1 + leader->nr_siblings; 7207 7208 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7209 values[n++] = enabled; 7210 7211 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7212 values[n++] = running; 7213 7214 if ((leader != event) && 7215 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7216 leader->pmu->read(leader); 7217 7218 values[n++] = perf_event_count(leader); 7219 if (read_format & PERF_FORMAT_ID) 7220 values[n++] = primary_event_id(leader); 7221 if (read_format & PERF_FORMAT_LOST) 7222 values[n++] = atomic64_read(&leader->lost_samples); 7223 7224 __output_copy(handle, values, n * sizeof(u64)); 7225 7226 for_each_sibling_event(sub, leader) { 7227 n = 0; 7228 7229 if ((sub != event) && 7230 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7231 sub->pmu->read(sub); 7232 7233 values[n++] = perf_event_count(sub); 7234 if (read_format & PERF_FORMAT_ID) 7235 values[n++] = primary_event_id(sub); 7236 if (read_format & PERF_FORMAT_LOST) 7237 values[n++] = atomic64_read(&sub->lost_samples); 7238 7239 __output_copy(handle, values, n * sizeof(u64)); 7240 } 7241 7242 local_irq_restore(flags); 7243 } 7244 7245 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7246 PERF_FORMAT_TOTAL_TIME_RUNNING) 7247 7248 /* 7249 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7250 * 7251 * The problem is that its both hard and excessively expensive to iterate the 7252 * child list, not to mention that its impossible to IPI the children running 7253 * on another CPU, from interrupt/NMI context. 7254 */ 7255 static void perf_output_read(struct perf_output_handle *handle, 7256 struct perf_event *event) 7257 { 7258 u64 enabled = 0, running = 0, now; 7259 u64 read_format = event->attr.read_format; 7260 7261 /* 7262 * compute total_time_enabled, total_time_running 7263 * based on snapshot values taken when the event 7264 * was last scheduled in. 7265 * 7266 * we cannot simply called update_context_time() 7267 * because of locking issue as we are called in 7268 * NMI context 7269 */ 7270 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7271 calc_timer_values(event, &now, &enabled, &running); 7272 7273 if (event->attr.read_format & PERF_FORMAT_GROUP) 7274 perf_output_read_group(handle, event, enabled, running); 7275 else 7276 perf_output_read_one(handle, event, enabled, running); 7277 } 7278 7279 void perf_output_sample(struct perf_output_handle *handle, 7280 struct perf_event_header *header, 7281 struct perf_sample_data *data, 7282 struct perf_event *event) 7283 { 7284 u64 sample_type = data->type; 7285 7286 perf_output_put(handle, *header); 7287 7288 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7289 perf_output_put(handle, data->id); 7290 7291 if (sample_type & PERF_SAMPLE_IP) 7292 perf_output_put(handle, data->ip); 7293 7294 if (sample_type & PERF_SAMPLE_TID) 7295 perf_output_put(handle, data->tid_entry); 7296 7297 if (sample_type & PERF_SAMPLE_TIME) 7298 perf_output_put(handle, data->time); 7299 7300 if (sample_type & PERF_SAMPLE_ADDR) 7301 perf_output_put(handle, data->addr); 7302 7303 if (sample_type & PERF_SAMPLE_ID) 7304 perf_output_put(handle, data->id); 7305 7306 if (sample_type & PERF_SAMPLE_STREAM_ID) 7307 perf_output_put(handle, data->stream_id); 7308 7309 if (sample_type & PERF_SAMPLE_CPU) 7310 perf_output_put(handle, data->cpu_entry); 7311 7312 if (sample_type & PERF_SAMPLE_PERIOD) 7313 perf_output_put(handle, data->period); 7314 7315 if (sample_type & PERF_SAMPLE_READ) 7316 perf_output_read(handle, event); 7317 7318 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7319 int size = 1; 7320 7321 size += data->callchain->nr; 7322 size *= sizeof(u64); 7323 __output_copy(handle, data->callchain, size); 7324 } 7325 7326 if (sample_type & PERF_SAMPLE_RAW) { 7327 struct perf_raw_record *raw = data->raw; 7328 7329 if (raw) { 7330 struct perf_raw_frag *frag = &raw->frag; 7331 7332 perf_output_put(handle, raw->size); 7333 do { 7334 if (frag->copy) { 7335 __output_custom(handle, frag->copy, 7336 frag->data, frag->size); 7337 } else { 7338 __output_copy(handle, frag->data, 7339 frag->size); 7340 } 7341 if (perf_raw_frag_last(frag)) 7342 break; 7343 frag = frag->next; 7344 } while (1); 7345 if (frag->pad) 7346 __output_skip(handle, NULL, frag->pad); 7347 } else { 7348 struct { 7349 u32 size; 7350 u32 data; 7351 } raw = { 7352 .size = sizeof(u32), 7353 .data = 0, 7354 }; 7355 perf_output_put(handle, raw); 7356 } 7357 } 7358 7359 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7360 if (data->br_stack) { 7361 size_t size; 7362 7363 size = data->br_stack->nr 7364 * sizeof(struct perf_branch_entry); 7365 7366 perf_output_put(handle, data->br_stack->nr); 7367 if (branch_sample_hw_index(event)) 7368 perf_output_put(handle, data->br_stack->hw_idx); 7369 perf_output_copy(handle, data->br_stack->entries, size); 7370 } else { 7371 /* 7372 * we always store at least the value of nr 7373 */ 7374 u64 nr = 0; 7375 perf_output_put(handle, nr); 7376 } 7377 } 7378 7379 if (sample_type & PERF_SAMPLE_REGS_USER) { 7380 u64 abi = data->regs_user.abi; 7381 7382 /* 7383 * If there are no regs to dump, notice it through 7384 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7385 */ 7386 perf_output_put(handle, abi); 7387 7388 if (abi) { 7389 u64 mask = event->attr.sample_regs_user; 7390 perf_output_sample_regs(handle, 7391 data->regs_user.regs, 7392 mask); 7393 } 7394 } 7395 7396 if (sample_type & PERF_SAMPLE_STACK_USER) { 7397 perf_output_sample_ustack(handle, 7398 data->stack_user_size, 7399 data->regs_user.regs); 7400 } 7401 7402 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7403 perf_output_put(handle, data->weight.full); 7404 7405 if (sample_type & PERF_SAMPLE_DATA_SRC) 7406 perf_output_put(handle, data->data_src.val); 7407 7408 if (sample_type & PERF_SAMPLE_TRANSACTION) 7409 perf_output_put(handle, data->txn); 7410 7411 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7412 u64 abi = data->regs_intr.abi; 7413 /* 7414 * If there are no regs to dump, notice it through 7415 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7416 */ 7417 perf_output_put(handle, abi); 7418 7419 if (abi) { 7420 u64 mask = event->attr.sample_regs_intr; 7421 7422 perf_output_sample_regs(handle, 7423 data->regs_intr.regs, 7424 mask); 7425 } 7426 } 7427 7428 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7429 perf_output_put(handle, data->phys_addr); 7430 7431 if (sample_type & PERF_SAMPLE_CGROUP) 7432 perf_output_put(handle, data->cgroup); 7433 7434 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7435 perf_output_put(handle, data->data_page_size); 7436 7437 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7438 perf_output_put(handle, data->code_page_size); 7439 7440 if (sample_type & PERF_SAMPLE_AUX) { 7441 perf_output_put(handle, data->aux_size); 7442 7443 if (data->aux_size) 7444 perf_aux_sample_output(event, handle, data); 7445 } 7446 7447 if (!event->attr.watermark) { 7448 int wakeup_events = event->attr.wakeup_events; 7449 7450 if (wakeup_events) { 7451 struct perf_buffer *rb = handle->rb; 7452 int events = local_inc_return(&rb->events); 7453 7454 if (events >= wakeup_events) { 7455 local_sub(wakeup_events, &rb->events); 7456 local_inc(&rb->wakeup); 7457 } 7458 } 7459 } 7460 } 7461 7462 static u64 perf_virt_to_phys(u64 virt) 7463 { 7464 u64 phys_addr = 0; 7465 7466 if (!virt) 7467 return 0; 7468 7469 if (virt >= TASK_SIZE) { 7470 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7471 if (virt_addr_valid((void *)(uintptr_t)virt) && 7472 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7473 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7474 } else { 7475 /* 7476 * Walking the pages tables for user address. 7477 * Interrupts are disabled, so it prevents any tear down 7478 * of the page tables. 7479 * Try IRQ-safe get_user_page_fast_only first. 7480 * If failed, leave phys_addr as 0. 7481 */ 7482 if (current->mm != NULL) { 7483 struct page *p; 7484 7485 pagefault_disable(); 7486 if (get_user_page_fast_only(virt, 0, &p)) { 7487 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7488 put_page(p); 7489 } 7490 pagefault_enable(); 7491 } 7492 } 7493 7494 return phys_addr; 7495 } 7496 7497 /* 7498 * Return the pagetable size of a given virtual address. 7499 */ 7500 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7501 { 7502 u64 size = 0; 7503 7504 #ifdef CONFIG_HAVE_FAST_GUP 7505 pgd_t *pgdp, pgd; 7506 p4d_t *p4dp, p4d; 7507 pud_t *pudp, pud; 7508 pmd_t *pmdp, pmd; 7509 pte_t *ptep, pte; 7510 7511 pgdp = pgd_offset(mm, addr); 7512 pgd = READ_ONCE(*pgdp); 7513 if (pgd_none(pgd)) 7514 return 0; 7515 7516 if (pgd_leaf(pgd)) 7517 return pgd_leaf_size(pgd); 7518 7519 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7520 p4d = READ_ONCE(*p4dp); 7521 if (!p4d_present(p4d)) 7522 return 0; 7523 7524 if (p4d_leaf(p4d)) 7525 return p4d_leaf_size(p4d); 7526 7527 pudp = pud_offset_lockless(p4dp, p4d, addr); 7528 pud = READ_ONCE(*pudp); 7529 if (!pud_present(pud)) 7530 return 0; 7531 7532 if (pud_leaf(pud)) 7533 return pud_leaf_size(pud); 7534 7535 pmdp = pmd_offset_lockless(pudp, pud, addr); 7536 again: 7537 pmd = pmdp_get_lockless(pmdp); 7538 if (!pmd_present(pmd)) 7539 return 0; 7540 7541 if (pmd_leaf(pmd)) 7542 return pmd_leaf_size(pmd); 7543 7544 ptep = pte_offset_map(&pmd, addr); 7545 if (!ptep) 7546 goto again; 7547 7548 pte = ptep_get_lockless(ptep); 7549 if (pte_present(pte)) 7550 size = pte_leaf_size(pte); 7551 pte_unmap(ptep); 7552 #endif /* CONFIG_HAVE_FAST_GUP */ 7553 7554 return size; 7555 } 7556 7557 static u64 perf_get_page_size(unsigned long addr) 7558 { 7559 struct mm_struct *mm; 7560 unsigned long flags; 7561 u64 size; 7562 7563 if (!addr) 7564 return 0; 7565 7566 /* 7567 * Software page-table walkers must disable IRQs, 7568 * which prevents any tear down of the page tables. 7569 */ 7570 local_irq_save(flags); 7571 7572 mm = current->mm; 7573 if (!mm) { 7574 /* 7575 * For kernel threads and the like, use init_mm so that 7576 * we can find kernel memory. 7577 */ 7578 mm = &init_mm; 7579 } 7580 7581 size = perf_get_pgtable_size(mm, addr); 7582 7583 local_irq_restore(flags); 7584 7585 return size; 7586 } 7587 7588 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7589 7590 struct perf_callchain_entry * 7591 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7592 { 7593 bool kernel = !event->attr.exclude_callchain_kernel; 7594 bool user = !event->attr.exclude_callchain_user; 7595 /* Disallow cross-task user callchains. */ 7596 bool crosstask = event->ctx->task && event->ctx->task != current; 7597 const u32 max_stack = event->attr.sample_max_stack; 7598 struct perf_callchain_entry *callchain; 7599 7600 if (!kernel && !user) 7601 return &__empty_callchain; 7602 7603 callchain = get_perf_callchain(regs, 0, kernel, user, 7604 max_stack, crosstask, true); 7605 return callchain ?: &__empty_callchain; 7606 } 7607 7608 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7609 { 7610 return d * !!(flags & s); 7611 } 7612 7613 void perf_prepare_sample(struct perf_sample_data *data, 7614 struct perf_event *event, 7615 struct pt_regs *regs) 7616 { 7617 u64 sample_type = event->attr.sample_type; 7618 u64 filtered_sample_type; 7619 7620 /* 7621 * Add the sample flags that are dependent to others. And clear the 7622 * sample flags that have already been done by the PMU driver. 7623 */ 7624 filtered_sample_type = sample_type; 7625 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7626 PERF_SAMPLE_IP); 7627 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7628 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7629 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7630 PERF_SAMPLE_REGS_USER); 7631 filtered_sample_type &= ~data->sample_flags; 7632 7633 if (filtered_sample_type == 0) { 7634 /* Make sure it has the correct data->type for output */ 7635 data->type = event->attr.sample_type; 7636 return; 7637 } 7638 7639 __perf_event_header__init_id(data, event, filtered_sample_type); 7640 7641 if (filtered_sample_type & PERF_SAMPLE_IP) { 7642 data->ip = perf_instruction_pointer(regs); 7643 data->sample_flags |= PERF_SAMPLE_IP; 7644 } 7645 7646 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7647 perf_sample_save_callchain(data, event, regs); 7648 7649 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7650 data->raw = NULL; 7651 data->dyn_size += sizeof(u64); 7652 data->sample_flags |= PERF_SAMPLE_RAW; 7653 } 7654 7655 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7656 data->br_stack = NULL; 7657 data->dyn_size += sizeof(u64); 7658 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7659 } 7660 7661 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7662 perf_sample_regs_user(&data->regs_user, regs); 7663 7664 /* 7665 * It cannot use the filtered_sample_type here as REGS_USER can be set 7666 * by STACK_USER (using __cond_set() above) and we don't want to update 7667 * the dyn_size if it's not requested by users. 7668 */ 7669 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7670 /* regs dump ABI info */ 7671 int size = sizeof(u64); 7672 7673 if (data->regs_user.regs) { 7674 u64 mask = event->attr.sample_regs_user; 7675 size += hweight64(mask) * sizeof(u64); 7676 } 7677 7678 data->dyn_size += size; 7679 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7680 } 7681 7682 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7683 /* 7684 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7685 * processed as the last one or have additional check added 7686 * in case new sample type is added, because we could eat 7687 * up the rest of the sample size. 7688 */ 7689 u16 stack_size = event->attr.sample_stack_user; 7690 u16 header_size = perf_sample_data_size(data, event); 7691 u16 size = sizeof(u64); 7692 7693 stack_size = perf_sample_ustack_size(stack_size, header_size, 7694 data->regs_user.regs); 7695 7696 /* 7697 * If there is something to dump, add space for the dump 7698 * itself and for the field that tells the dynamic size, 7699 * which is how many have been actually dumped. 7700 */ 7701 if (stack_size) 7702 size += sizeof(u64) + stack_size; 7703 7704 data->stack_user_size = stack_size; 7705 data->dyn_size += size; 7706 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7707 } 7708 7709 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7710 data->weight.full = 0; 7711 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7712 } 7713 7714 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7715 data->data_src.val = PERF_MEM_NA; 7716 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7717 } 7718 7719 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7720 data->txn = 0; 7721 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7722 } 7723 7724 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7725 data->addr = 0; 7726 data->sample_flags |= PERF_SAMPLE_ADDR; 7727 } 7728 7729 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7730 /* regs dump ABI info */ 7731 int size = sizeof(u64); 7732 7733 perf_sample_regs_intr(&data->regs_intr, regs); 7734 7735 if (data->regs_intr.regs) { 7736 u64 mask = event->attr.sample_regs_intr; 7737 7738 size += hweight64(mask) * sizeof(u64); 7739 } 7740 7741 data->dyn_size += size; 7742 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7743 } 7744 7745 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7746 data->phys_addr = perf_virt_to_phys(data->addr); 7747 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7748 } 7749 7750 #ifdef CONFIG_CGROUP_PERF 7751 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7752 struct cgroup *cgrp; 7753 7754 /* protected by RCU */ 7755 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7756 data->cgroup = cgroup_id(cgrp); 7757 data->sample_flags |= PERF_SAMPLE_CGROUP; 7758 } 7759 #endif 7760 7761 /* 7762 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7763 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7764 * but the value will not dump to the userspace. 7765 */ 7766 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7767 data->data_page_size = perf_get_page_size(data->addr); 7768 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7769 } 7770 7771 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7772 data->code_page_size = perf_get_page_size(data->ip); 7773 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7774 } 7775 7776 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7777 u64 size; 7778 u16 header_size = perf_sample_data_size(data, event); 7779 7780 header_size += sizeof(u64); /* size */ 7781 7782 /* 7783 * Given the 16bit nature of header::size, an AUX sample can 7784 * easily overflow it, what with all the preceding sample bits. 7785 * Make sure this doesn't happen by using up to U16_MAX bytes 7786 * per sample in total (rounded down to 8 byte boundary). 7787 */ 7788 size = min_t(size_t, U16_MAX - header_size, 7789 event->attr.aux_sample_size); 7790 size = rounddown(size, 8); 7791 size = perf_prepare_sample_aux(event, data, size); 7792 7793 WARN_ON_ONCE(size + header_size > U16_MAX); 7794 data->dyn_size += size + sizeof(u64); /* size above */ 7795 data->sample_flags |= PERF_SAMPLE_AUX; 7796 } 7797 } 7798 7799 void perf_prepare_header(struct perf_event_header *header, 7800 struct perf_sample_data *data, 7801 struct perf_event *event, 7802 struct pt_regs *regs) 7803 { 7804 header->type = PERF_RECORD_SAMPLE; 7805 header->size = perf_sample_data_size(data, event); 7806 header->misc = perf_misc_flags(regs); 7807 7808 /* 7809 * If you're adding more sample types here, you likely need to do 7810 * something about the overflowing header::size, like repurpose the 7811 * lowest 3 bits of size, which should be always zero at the moment. 7812 * This raises a more important question, do we really need 512k sized 7813 * samples and why, so good argumentation is in order for whatever you 7814 * do here next. 7815 */ 7816 WARN_ON_ONCE(header->size & 7); 7817 } 7818 7819 static __always_inline int 7820 __perf_event_output(struct perf_event *event, 7821 struct perf_sample_data *data, 7822 struct pt_regs *regs, 7823 int (*output_begin)(struct perf_output_handle *, 7824 struct perf_sample_data *, 7825 struct perf_event *, 7826 unsigned int)) 7827 { 7828 struct perf_output_handle handle; 7829 struct perf_event_header header; 7830 int err; 7831 7832 /* protect the callchain buffers */ 7833 rcu_read_lock(); 7834 7835 perf_prepare_sample(data, event, regs); 7836 perf_prepare_header(&header, data, event, regs); 7837 7838 err = output_begin(&handle, data, event, header.size); 7839 if (err) 7840 goto exit; 7841 7842 perf_output_sample(&handle, &header, data, event); 7843 7844 perf_output_end(&handle); 7845 7846 exit: 7847 rcu_read_unlock(); 7848 return err; 7849 } 7850 7851 void 7852 perf_event_output_forward(struct perf_event *event, 7853 struct perf_sample_data *data, 7854 struct pt_regs *regs) 7855 { 7856 __perf_event_output(event, data, regs, perf_output_begin_forward); 7857 } 7858 7859 void 7860 perf_event_output_backward(struct perf_event *event, 7861 struct perf_sample_data *data, 7862 struct pt_regs *regs) 7863 { 7864 __perf_event_output(event, data, regs, perf_output_begin_backward); 7865 } 7866 7867 int 7868 perf_event_output(struct perf_event *event, 7869 struct perf_sample_data *data, 7870 struct pt_regs *regs) 7871 { 7872 return __perf_event_output(event, data, regs, perf_output_begin); 7873 } 7874 7875 /* 7876 * read event_id 7877 */ 7878 7879 struct perf_read_event { 7880 struct perf_event_header header; 7881 7882 u32 pid; 7883 u32 tid; 7884 }; 7885 7886 static void 7887 perf_event_read_event(struct perf_event *event, 7888 struct task_struct *task) 7889 { 7890 struct perf_output_handle handle; 7891 struct perf_sample_data sample; 7892 struct perf_read_event read_event = { 7893 .header = { 7894 .type = PERF_RECORD_READ, 7895 .misc = 0, 7896 .size = sizeof(read_event) + event->read_size, 7897 }, 7898 .pid = perf_event_pid(event, task), 7899 .tid = perf_event_tid(event, task), 7900 }; 7901 int ret; 7902 7903 perf_event_header__init_id(&read_event.header, &sample, event); 7904 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7905 if (ret) 7906 return; 7907 7908 perf_output_put(&handle, read_event); 7909 perf_output_read(&handle, event); 7910 perf_event__output_id_sample(event, &handle, &sample); 7911 7912 perf_output_end(&handle); 7913 } 7914 7915 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7916 7917 static void 7918 perf_iterate_ctx(struct perf_event_context *ctx, 7919 perf_iterate_f output, 7920 void *data, bool all) 7921 { 7922 struct perf_event *event; 7923 7924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7925 if (!all) { 7926 if (event->state < PERF_EVENT_STATE_INACTIVE) 7927 continue; 7928 if (!event_filter_match(event)) 7929 continue; 7930 } 7931 7932 output(event, data); 7933 } 7934 } 7935 7936 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7937 { 7938 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7939 struct perf_event *event; 7940 7941 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7942 /* 7943 * Skip events that are not fully formed yet; ensure that 7944 * if we observe event->ctx, both event and ctx will be 7945 * complete enough. See perf_install_in_context(). 7946 */ 7947 if (!smp_load_acquire(&event->ctx)) 7948 continue; 7949 7950 if (event->state < PERF_EVENT_STATE_INACTIVE) 7951 continue; 7952 if (!event_filter_match(event)) 7953 continue; 7954 output(event, data); 7955 } 7956 } 7957 7958 /* 7959 * Iterate all events that need to receive side-band events. 7960 * 7961 * For new callers; ensure that account_pmu_sb_event() includes 7962 * your event, otherwise it might not get delivered. 7963 */ 7964 static void 7965 perf_iterate_sb(perf_iterate_f output, void *data, 7966 struct perf_event_context *task_ctx) 7967 { 7968 struct perf_event_context *ctx; 7969 7970 rcu_read_lock(); 7971 preempt_disable(); 7972 7973 /* 7974 * If we have task_ctx != NULL we only notify the task context itself. 7975 * The task_ctx is set only for EXIT events before releasing task 7976 * context. 7977 */ 7978 if (task_ctx) { 7979 perf_iterate_ctx(task_ctx, output, data, false); 7980 goto done; 7981 } 7982 7983 perf_iterate_sb_cpu(output, data); 7984 7985 ctx = rcu_dereference(current->perf_event_ctxp); 7986 if (ctx) 7987 perf_iterate_ctx(ctx, output, data, false); 7988 done: 7989 preempt_enable(); 7990 rcu_read_unlock(); 7991 } 7992 7993 /* 7994 * Clear all file-based filters at exec, they'll have to be 7995 * re-instated when/if these objects are mmapped again. 7996 */ 7997 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7998 { 7999 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8000 struct perf_addr_filter *filter; 8001 unsigned int restart = 0, count = 0; 8002 unsigned long flags; 8003 8004 if (!has_addr_filter(event)) 8005 return; 8006 8007 raw_spin_lock_irqsave(&ifh->lock, flags); 8008 list_for_each_entry(filter, &ifh->list, entry) { 8009 if (filter->path.dentry) { 8010 event->addr_filter_ranges[count].start = 0; 8011 event->addr_filter_ranges[count].size = 0; 8012 restart++; 8013 } 8014 8015 count++; 8016 } 8017 8018 if (restart) 8019 event->addr_filters_gen++; 8020 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8021 8022 if (restart) 8023 perf_event_stop(event, 1); 8024 } 8025 8026 void perf_event_exec(void) 8027 { 8028 struct perf_event_context *ctx; 8029 8030 ctx = perf_pin_task_context(current); 8031 if (!ctx) 8032 return; 8033 8034 perf_event_enable_on_exec(ctx); 8035 perf_event_remove_on_exec(ctx); 8036 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8037 8038 perf_unpin_context(ctx); 8039 put_ctx(ctx); 8040 } 8041 8042 struct remote_output { 8043 struct perf_buffer *rb; 8044 int err; 8045 }; 8046 8047 static void __perf_event_output_stop(struct perf_event *event, void *data) 8048 { 8049 struct perf_event *parent = event->parent; 8050 struct remote_output *ro = data; 8051 struct perf_buffer *rb = ro->rb; 8052 struct stop_event_data sd = { 8053 .event = event, 8054 }; 8055 8056 if (!has_aux(event)) 8057 return; 8058 8059 if (!parent) 8060 parent = event; 8061 8062 /* 8063 * In case of inheritance, it will be the parent that links to the 8064 * ring-buffer, but it will be the child that's actually using it. 8065 * 8066 * We are using event::rb to determine if the event should be stopped, 8067 * however this may race with ring_buffer_attach() (through set_output), 8068 * which will make us skip the event that actually needs to be stopped. 8069 * So ring_buffer_attach() has to stop an aux event before re-assigning 8070 * its rb pointer. 8071 */ 8072 if (rcu_dereference(parent->rb) == rb) 8073 ro->err = __perf_event_stop(&sd); 8074 } 8075 8076 static int __perf_pmu_output_stop(void *info) 8077 { 8078 struct perf_event *event = info; 8079 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8080 struct remote_output ro = { 8081 .rb = event->rb, 8082 }; 8083 8084 rcu_read_lock(); 8085 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8086 if (cpuctx->task_ctx) 8087 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8088 &ro, false); 8089 rcu_read_unlock(); 8090 8091 return ro.err; 8092 } 8093 8094 static void perf_pmu_output_stop(struct perf_event *event) 8095 { 8096 struct perf_event *iter; 8097 int err, cpu; 8098 8099 restart: 8100 rcu_read_lock(); 8101 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8102 /* 8103 * For per-CPU events, we need to make sure that neither they 8104 * nor their children are running; for cpu==-1 events it's 8105 * sufficient to stop the event itself if it's active, since 8106 * it can't have children. 8107 */ 8108 cpu = iter->cpu; 8109 if (cpu == -1) 8110 cpu = READ_ONCE(iter->oncpu); 8111 8112 if (cpu == -1) 8113 continue; 8114 8115 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8116 if (err == -EAGAIN) { 8117 rcu_read_unlock(); 8118 goto restart; 8119 } 8120 } 8121 rcu_read_unlock(); 8122 } 8123 8124 /* 8125 * task tracking -- fork/exit 8126 * 8127 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8128 */ 8129 8130 struct perf_task_event { 8131 struct task_struct *task; 8132 struct perf_event_context *task_ctx; 8133 8134 struct { 8135 struct perf_event_header header; 8136 8137 u32 pid; 8138 u32 ppid; 8139 u32 tid; 8140 u32 ptid; 8141 u64 time; 8142 } event_id; 8143 }; 8144 8145 static int perf_event_task_match(struct perf_event *event) 8146 { 8147 return event->attr.comm || event->attr.mmap || 8148 event->attr.mmap2 || event->attr.mmap_data || 8149 event->attr.task; 8150 } 8151 8152 static void perf_event_task_output(struct perf_event *event, 8153 void *data) 8154 { 8155 struct perf_task_event *task_event = data; 8156 struct perf_output_handle handle; 8157 struct perf_sample_data sample; 8158 struct task_struct *task = task_event->task; 8159 int ret, size = task_event->event_id.header.size; 8160 8161 if (!perf_event_task_match(event)) 8162 return; 8163 8164 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8165 8166 ret = perf_output_begin(&handle, &sample, event, 8167 task_event->event_id.header.size); 8168 if (ret) 8169 goto out; 8170 8171 task_event->event_id.pid = perf_event_pid(event, task); 8172 task_event->event_id.tid = perf_event_tid(event, task); 8173 8174 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8175 task_event->event_id.ppid = perf_event_pid(event, 8176 task->real_parent); 8177 task_event->event_id.ptid = perf_event_pid(event, 8178 task->real_parent); 8179 } else { /* PERF_RECORD_FORK */ 8180 task_event->event_id.ppid = perf_event_pid(event, current); 8181 task_event->event_id.ptid = perf_event_tid(event, current); 8182 } 8183 8184 task_event->event_id.time = perf_event_clock(event); 8185 8186 perf_output_put(&handle, task_event->event_id); 8187 8188 perf_event__output_id_sample(event, &handle, &sample); 8189 8190 perf_output_end(&handle); 8191 out: 8192 task_event->event_id.header.size = size; 8193 } 8194 8195 static void perf_event_task(struct task_struct *task, 8196 struct perf_event_context *task_ctx, 8197 int new) 8198 { 8199 struct perf_task_event task_event; 8200 8201 if (!atomic_read(&nr_comm_events) && 8202 !atomic_read(&nr_mmap_events) && 8203 !atomic_read(&nr_task_events)) 8204 return; 8205 8206 task_event = (struct perf_task_event){ 8207 .task = task, 8208 .task_ctx = task_ctx, 8209 .event_id = { 8210 .header = { 8211 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8212 .misc = 0, 8213 .size = sizeof(task_event.event_id), 8214 }, 8215 /* .pid */ 8216 /* .ppid */ 8217 /* .tid */ 8218 /* .ptid */ 8219 /* .time */ 8220 }, 8221 }; 8222 8223 perf_iterate_sb(perf_event_task_output, 8224 &task_event, 8225 task_ctx); 8226 } 8227 8228 void perf_event_fork(struct task_struct *task) 8229 { 8230 perf_event_task(task, NULL, 1); 8231 perf_event_namespaces(task); 8232 } 8233 8234 /* 8235 * comm tracking 8236 */ 8237 8238 struct perf_comm_event { 8239 struct task_struct *task; 8240 char *comm; 8241 int comm_size; 8242 8243 struct { 8244 struct perf_event_header header; 8245 8246 u32 pid; 8247 u32 tid; 8248 } event_id; 8249 }; 8250 8251 static int perf_event_comm_match(struct perf_event *event) 8252 { 8253 return event->attr.comm; 8254 } 8255 8256 static void perf_event_comm_output(struct perf_event *event, 8257 void *data) 8258 { 8259 struct perf_comm_event *comm_event = data; 8260 struct perf_output_handle handle; 8261 struct perf_sample_data sample; 8262 int size = comm_event->event_id.header.size; 8263 int ret; 8264 8265 if (!perf_event_comm_match(event)) 8266 return; 8267 8268 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8269 ret = perf_output_begin(&handle, &sample, event, 8270 comm_event->event_id.header.size); 8271 8272 if (ret) 8273 goto out; 8274 8275 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8276 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8277 8278 perf_output_put(&handle, comm_event->event_id); 8279 __output_copy(&handle, comm_event->comm, 8280 comm_event->comm_size); 8281 8282 perf_event__output_id_sample(event, &handle, &sample); 8283 8284 perf_output_end(&handle); 8285 out: 8286 comm_event->event_id.header.size = size; 8287 } 8288 8289 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8290 { 8291 char comm[TASK_COMM_LEN]; 8292 unsigned int size; 8293 8294 memset(comm, 0, sizeof(comm)); 8295 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8296 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8297 8298 comm_event->comm = comm; 8299 comm_event->comm_size = size; 8300 8301 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8302 8303 perf_iterate_sb(perf_event_comm_output, 8304 comm_event, 8305 NULL); 8306 } 8307 8308 void perf_event_comm(struct task_struct *task, bool exec) 8309 { 8310 struct perf_comm_event comm_event; 8311 8312 if (!atomic_read(&nr_comm_events)) 8313 return; 8314 8315 comm_event = (struct perf_comm_event){ 8316 .task = task, 8317 /* .comm */ 8318 /* .comm_size */ 8319 .event_id = { 8320 .header = { 8321 .type = PERF_RECORD_COMM, 8322 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8323 /* .size */ 8324 }, 8325 /* .pid */ 8326 /* .tid */ 8327 }, 8328 }; 8329 8330 perf_event_comm_event(&comm_event); 8331 } 8332 8333 /* 8334 * namespaces tracking 8335 */ 8336 8337 struct perf_namespaces_event { 8338 struct task_struct *task; 8339 8340 struct { 8341 struct perf_event_header header; 8342 8343 u32 pid; 8344 u32 tid; 8345 u64 nr_namespaces; 8346 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8347 } event_id; 8348 }; 8349 8350 static int perf_event_namespaces_match(struct perf_event *event) 8351 { 8352 return event->attr.namespaces; 8353 } 8354 8355 static void perf_event_namespaces_output(struct perf_event *event, 8356 void *data) 8357 { 8358 struct perf_namespaces_event *namespaces_event = data; 8359 struct perf_output_handle handle; 8360 struct perf_sample_data sample; 8361 u16 header_size = namespaces_event->event_id.header.size; 8362 int ret; 8363 8364 if (!perf_event_namespaces_match(event)) 8365 return; 8366 8367 perf_event_header__init_id(&namespaces_event->event_id.header, 8368 &sample, event); 8369 ret = perf_output_begin(&handle, &sample, event, 8370 namespaces_event->event_id.header.size); 8371 if (ret) 8372 goto out; 8373 8374 namespaces_event->event_id.pid = perf_event_pid(event, 8375 namespaces_event->task); 8376 namespaces_event->event_id.tid = perf_event_tid(event, 8377 namespaces_event->task); 8378 8379 perf_output_put(&handle, namespaces_event->event_id); 8380 8381 perf_event__output_id_sample(event, &handle, &sample); 8382 8383 perf_output_end(&handle); 8384 out: 8385 namespaces_event->event_id.header.size = header_size; 8386 } 8387 8388 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8389 struct task_struct *task, 8390 const struct proc_ns_operations *ns_ops) 8391 { 8392 struct path ns_path; 8393 struct inode *ns_inode; 8394 int error; 8395 8396 error = ns_get_path(&ns_path, task, ns_ops); 8397 if (!error) { 8398 ns_inode = ns_path.dentry->d_inode; 8399 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8400 ns_link_info->ino = ns_inode->i_ino; 8401 path_put(&ns_path); 8402 } 8403 } 8404 8405 void perf_event_namespaces(struct task_struct *task) 8406 { 8407 struct perf_namespaces_event namespaces_event; 8408 struct perf_ns_link_info *ns_link_info; 8409 8410 if (!atomic_read(&nr_namespaces_events)) 8411 return; 8412 8413 namespaces_event = (struct perf_namespaces_event){ 8414 .task = task, 8415 .event_id = { 8416 .header = { 8417 .type = PERF_RECORD_NAMESPACES, 8418 .misc = 0, 8419 .size = sizeof(namespaces_event.event_id), 8420 }, 8421 /* .pid */ 8422 /* .tid */ 8423 .nr_namespaces = NR_NAMESPACES, 8424 /* .link_info[NR_NAMESPACES] */ 8425 }, 8426 }; 8427 8428 ns_link_info = namespaces_event.event_id.link_info; 8429 8430 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8431 task, &mntns_operations); 8432 8433 #ifdef CONFIG_USER_NS 8434 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8435 task, &userns_operations); 8436 #endif 8437 #ifdef CONFIG_NET_NS 8438 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8439 task, &netns_operations); 8440 #endif 8441 #ifdef CONFIG_UTS_NS 8442 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8443 task, &utsns_operations); 8444 #endif 8445 #ifdef CONFIG_IPC_NS 8446 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8447 task, &ipcns_operations); 8448 #endif 8449 #ifdef CONFIG_PID_NS 8450 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8451 task, &pidns_operations); 8452 #endif 8453 #ifdef CONFIG_CGROUPS 8454 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8455 task, &cgroupns_operations); 8456 #endif 8457 8458 perf_iterate_sb(perf_event_namespaces_output, 8459 &namespaces_event, 8460 NULL); 8461 } 8462 8463 /* 8464 * cgroup tracking 8465 */ 8466 #ifdef CONFIG_CGROUP_PERF 8467 8468 struct perf_cgroup_event { 8469 char *path; 8470 int path_size; 8471 struct { 8472 struct perf_event_header header; 8473 u64 id; 8474 char path[]; 8475 } event_id; 8476 }; 8477 8478 static int perf_event_cgroup_match(struct perf_event *event) 8479 { 8480 return event->attr.cgroup; 8481 } 8482 8483 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8484 { 8485 struct perf_cgroup_event *cgroup_event = data; 8486 struct perf_output_handle handle; 8487 struct perf_sample_data sample; 8488 u16 header_size = cgroup_event->event_id.header.size; 8489 int ret; 8490 8491 if (!perf_event_cgroup_match(event)) 8492 return; 8493 8494 perf_event_header__init_id(&cgroup_event->event_id.header, 8495 &sample, event); 8496 ret = perf_output_begin(&handle, &sample, event, 8497 cgroup_event->event_id.header.size); 8498 if (ret) 8499 goto out; 8500 8501 perf_output_put(&handle, cgroup_event->event_id); 8502 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8503 8504 perf_event__output_id_sample(event, &handle, &sample); 8505 8506 perf_output_end(&handle); 8507 out: 8508 cgroup_event->event_id.header.size = header_size; 8509 } 8510 8511 static void perf_event_cgroup(struct cgroup *cgrp) 8512 { 8513 struct perf_cgroup_event cgroup_event; 8514 char path_enomem[16] = "//enomem"; 8515 char *pathname; 8516 size_t size; 8517 8518 if (!atomic_read(&nr_cgroup_events)) 8519 return; 8520 8521 cgroup_event = (struct perf_cgroup_event){ 8522 .event_id = { 8523 .header = { 8524 .type = PERF_RECORD_CGROUP, 8525 .misc = 0, 8526 .size = sizeof(cgroup_event.event_id), 8527 }, 8528 .id = cgroup_id(cgrp), 8529 }, 8530 }; 8531 8532 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8533 if (pathname == NULL) { 8534 cgroup_event.path = path_enomem; 8535 } else { 8536 /* just to be sure to have enough space for alignment */ 8537 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8538 cgroup_event.path = pathname; 8539 } 8540 8541 /* 8542 * Since our buffer works in 8 byte units we need to align our string 8543 * size to a multiple of 8. However, we must guarantee the tail end is 8544 * zero'd out to avoid leaking random bits to userspace. 8545 */ 8546 size = strlen(cgroup_event.path) + 1; 8547 while (!IS_ALIGNED(size, sizeof(u64))) 8548 cgroup_event.path[size++] = '\0'; 8549 8550 cgroup_event.event_id.header.size += size; 8551 cgroup_event.path_size = size; 8552 8553 perf_iterate_sb(perf_event_cgroup_output, 8554 &cgroup_event, 8555 NULL); 8556 8557 kfree(pathname); 8558 } 8559 8560 #endif 8561 8562 /* 8563 * mmap tracking 8564 */ 8565 8566 struct perf_mmap_event { 8567 struct vm_area_struct *vma; 8568 8569 const char *file_name; 8570 int file_size; 8571 int maj, min; 8572 u64 ino; 8573 u64 ino_generation; 8574 u32 prot, flags; 8575 u8 build_id[BUILD_ID_SIZE_MAX]; 8576 u32 build_id_size; 8577 8578 struct { 8579 struct perf_event_header header; 8580 8581 u32 pid; 8582 u32 tid; 8583 u64 start; 8584 u64 len; 8585 u64 pgoff; 8586 } event_id; 8587 }; 8588 8589 static int perf_event_mmap_match(struct perf_event *event, 8590 void *data) 8591 { 8592 struct perf_mmap_event *mmap_event = data; 8593 struct vm_area_struct *vma = mmap_event->vma; 8594 int executable = vma->vm_flags & VM_EXEC; 8595 8596 return (!executable && event->attr.mmap_data) || 8597 (executable && (event->attr.mmap || event->attr.mmap2)); 8598 } 8599 8600 static void perf_event_mmap_output(struct perf_event *event, 8601 void *data) 8602 { 8603 struct perf_mmap_event *mmap_event = data; 8604 struct perf_output_handle handle; 8605 struct perf_sample_data sample; 8606 int size = mmap_event->event_id.header.size; 8607 u32 type = mmap_event->event_id.header.type; 8608 bool use_build_id; 8609 int ret; 8610 8611 if (!perf_event_mmap_match(event, data)) 8612 return; 8613 8614 if (event->attr.mmap2) { 8615 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8616 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8617 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8618 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8619 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8620 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8621 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8622 } 8623 8624 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8625 ret = perf_output_begin(&handle, &sample, event, 8626 mmap_event->event_id.header.size); 8627 if (ret) 8628 goto out; 8629 8630 mmap_event->event_id.pid = perf_event_pid(event, current); 8631 mmap_event->event_id.tid = perf_event_tid(event, current); 8632 8633 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8634 8635 if (event->attr.mmap2 && use_build_id) 8636 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8637 8638 perf_output_put(&handle, mmap_event->event_id); 8639 8640 if (event->attr.mmap2) { 8641 if (use_build_id) { 8642 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8643 8644 __output_copy(&handle, size, 4); 8645 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8646 } else { 8647 perf_output_put(&handle, mmap_event->maj); 8648 perf_output_put(&handle, mmap_event->min); 8649 perf_output_put(&handle, mmap_event->ino); 8650 perf_output_put(&handle, mmap_event->ino_generation); 8651 } 8652 perf_output_put(&handle, mmap_event->prot); 8653 perf_output_put(&handle, mmap_event->flags); 8654 } 8655 8656 __output_copy(&handle, mmap_event->file_name, 8657 mmap_event->file_size); 8658 8659 perf_event__output_id_sample(event, &handle, &sample); 8660 8661 perf_output_end(&handle); 8662 out: 8663 mmap_event->event_id.header.size = size; 8664 mmap_event->event_id.header.type = type; 8665 } 8666 8667 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8668 { 8669 struct vm_area_struct *vma = mmap_event->vma; 8670 struct file *file = vma->vm_file; 8671 int maj = 0, min = 0; 8672 u64 ino = 0, gen = 0; 8673 u32 prot = 0, flags = 0; 8674 unsigned int size; 8675 char tmp[16]; 8676 char *buf = NULL; 8677 char *name = NULL; 8678 8679 if (vma->vm_flags & VM_READ) 8680 prot |= PROT_READ; 8681 if (vma->vm_flags & VM_WRITE) 8682 prot |= PROT_WRITE; 8683 if (vma->vm_flags & VM_EXEC) 8684 prot |= PROT_EXEC; 8685 8686 if (vma->vm_flags & VM_MAYSHARE) 8687 flags = MAP_SHARED; 8688 else 8689 flags = MAP_PRIVATE; 8690 8691 if (vma->vm_flags & VM_LOCKED) 8692 flags |= MAP_LOCKED; 8693 if (is_vm_hugetlb_page(vma)) 8694 flags |= MAP_HUGETLB; 8695 8696 if (file) { 8697 struct inode *inode; 8698 dev_t dev; 8699 8700 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8701 if (!buf) { 8702 name = "//enomem"; 8703 goto cpy_name; 8704 } 8705 /* 8706 * d_path() works from the end of the rb backwards, so we 8707 * need to add enough zero bytes after the string to handle 8708 * the 64bit alignment we do later. 8709 */ 8710 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8711 if (IS_ERR(name)) { 8712 name = "//toolong"; 8713 goto cpy_name; 8714 } 8715 inode = file_inode(vma->vm_file); 8716 dev = inode->i_sb->s_dev; 8717 ino = inode->i_ino; 8718 gen = inode->i_generation; 8719 maj = MAJOR(dev); 8720 min = MINOR(dev); 8721 8722 goto got_name; 8723 } else { 8724 if (vma->vm_ops && vma->vm_ops->name) 8725 name = (char *) vma->vm_ops->name(vma); 8726 if (!name) 8727 name = (char *)arch_vma_name(vma); 8728 if (!name) { 8729 if (vma_is_initial_heap(vma)) 8730 name = "[heap]"; 8731 else if (vma_is_initial_stack(vma)) 8732 name = "[stack]"; 8733 else 8734 name = "//anon"; 8735 } 8736 } 8737 8738 cpy_name: 8739 strscpy(tmp, name, sizeof(tmp)); 8740 name = tmp; 8741 got_name: 8742 /* 8743 * Since our buffer works in 8 byte units we need to align our string 8744 * size to a multiple of 8. However, we must guarantee the tail end is 8745 * zero'd out to avoid leaking random bits to userspace. 8746 */ 8747 size = strlen(name)+1; 8748 while (!IS_ALIGNED(size, sizeof(u64))) 8749 name[size++] = '\0'; 8750 8751 mmap_event->file_name = name; 8752 mmap_event->file_size = size; 8753 mmap_event->maj = maj; 8754 mmap_event->min = min; 8755 mmap_event->ino = ino; 8756 mmap_event->ino_generation = gen; 8757 mmap_event->prot = prot; 8758 mmap_event->flags = flags; 8759 8760 if (!(vma->vm_flags & VM_EXEC)) 8761 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8762 8763 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8764 8765 if (atomic_read(&nr_build_id_events)) 8766 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8767 8768 perf_iterate_sb(perf_event_mmap_output, 8769 mmap_event, 8770 NULL); 8771 8772 kfree(buf); 8773 } 8774 8775 /* 8776 * Check whether inode and address range match filter criteria. 8777 */ 8778 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8779 struct file *file, unsigned long offset, 8780 unsigned long size) 8781 { 8782 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8783 if (!filter->path.dentry) 8784 return false; 8785 8786 if (d_inode(filter->path.dentry) != file_inode(file)) 8787 return false; 8788 8789 if (filter->offset > offset + size) 8790 return false; 8791 8792 if (filter->offset + filter->size < offset) 8793 return false; 8794 8795 return true; 8796 } 8797 8798 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8799 struct vm_area_struct *vma, 8800 struct perf_addr_filter_range *fr) 8801 { 8802 unsigned long vma_size = vma->vm_end - vma->vm_start; 8803 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8804 struct file *file = vma->vm_file; 8805 8806 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8807 return false; 8808 8809 if (filter->offset < off) { 8810 fr->start = vma->vm_start; 8811 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8812 } else { 8813 fr->start = vma->vm_start + filter->offset - off; 8814 fr->size = min(vma->vm_end - fr->start, filter->size); 8815 } 8816 8817 return true; 8818 } 8819 8820 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8821 { 8822 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8823 struct vm_area_struct *vma = data; 8824 struct perf_addr_filter *filter; 8825 unsigned int restart = 0, count = 0; 8826 unsigned long flags; 8827 8828 if (!has_addr_filter(event)) 8829 return; 8830 8831 if (!vma->vm_file) 8832 return; 8833 8834 raw_spin_lock_irqsave(&ifh->lock, flags); 8835 list_for_each_entry(filter, &ifh->list, entry) { 8836 if (perf_addr_filter_vma_adjust(filter, vma, 8837 &event->addr_filter_ranges[count])) 8838 restart++; 8839 8840 count++; 8841 } 8842 8843 if (restart) 8844 event->addr_filters_gen++; 8845 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8846 8847 if (restart) 8848 perf_event_stop(event, 1); 8849 } 8850 8851 /* 8852 * Adjust all task's events' filters to the new vma 8853 */ 8854 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8855 { 8856 struct perf_event_context *ctx; 8857 8858 /* 8859 * Data tracing isn't supported yet and as such there is no need 8860 * to keep track of anything that isn't related to executable code: 8861 */ 8862 if (!(vma->vm_flags & VM_EXEC)) 8863 return; 8864 8865 rcu_read_lock(); 8866 ctx = rcu_dereference(current->perf_event_ctxp); 8867 if (ctx) 8868 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8869 rcu_read_unlock(); 8870 } 8871 8872 void perf_event_mmap(struct vm_area_struct *vma) 8873 { 8874 struct perf_mmap_event mmap_event; 8875 8876 if (!atomic_read(&nr_mmap_events)) 8877 return; 8878 8879 mmap_event = (struct perf_mmap_event){ 8880 .vma = vma, 8881 /* .file_name */ 8882 /* .file_size */ 8883 .event_id = { 8884 .header = { 8885 .type = PERF_RECORD_MMAP, 8886 .misc = PERF_RECORD_MISC_USER, 8887 /* .size */ 8888 }, 8889 /* .pid */ 8890 /* .tid */ 8891 .start = vma->vm_start, 8892 .len = vma->vm_end - vma->vm_start, 8893 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8894 }, 8895 /* .maj (attr_mmap2 only) */ 8896 /* .min (attr_mmap2 only) */ 8897 /* .ino (attr_mmap2 only) */ 8898 /* .ino_generation (attr_mmap2 only) */ 8899 /* .prot (attr_mmap2 only) */ 8900 /* .flags (attr_mmap2 only) */ 8901 }; 8902 8903 perf_addr_filters_adjust(vma); 8904 perf_event_mmap_event(&mmap_event); 8905 } 8906 8907 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8908 unsigned long size, u64 flags) 8909 { 8910 struct perf_output_handle handle; 8911 struct perf_sample_data sample; 8912 struct perf_aux_event { 8913 struct perf_event_header header; 8914 u64 offset; 8915 u64 size; 8916 u64 flags; 8917 } rec = { 8918 .header = { 8919 .type = PERF_RECORD_AUX, 8920 .misc = 0, 8921 .size = sizeof(rec), 8922 }, 8923 .offset = head, 8924 .size = size, 8925 .flags = flags, 8926 }; 8927 int ret; 8928 8929 perf_event_header__init_id(&rec.header, &sample, event); 8930 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8931 8932 if (ret) 8933 return; 8934 8935 perf_output_put(&handle, rec); 8936 perf_event__output_id_sample(event, &handle, &sample); 8937 8938 perf_output_end(&handle); 8939 } 8940 8941 /* 8942 * Lost/dropped samples logging 8943 */ 8944 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8945 { 8946 struct perf_output_handle handle; 8947 struct perf_sample_data sample; 8948 int ret; 8949 8950 struct { 8951 struct perf_event_header header; 8952 u64 lost; 8953 } lost_samples_event = { 8954 .header = { 8955 .type = PERF_RECORD_LOST_SAMPLES, 8956 .misc = 0, 8957 .size = sizeof(lost_samples_event), 8958 }, 8959 .lost = lost, 8960 }; 8961 8962 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8963 8964 ret = perf_output_begin(&handle, &sample, event, 8965 lost_samples_event.header.size); 8966 if (ret) 8967 return; 8968 8969 perf_output_put(&handle, lost_samples_event); 8970 perf_event__output_id_sample(event, &handle, &sample); 8971 perf_output_end(&handle); 8972 } 8973 8974 /* 8975 * context_switch tracking 8976 */ 8977 8978 struct perf_switch_event { 8979 struct task_struct *task; 8980 struct task_struct *next_prev; 8981 8982 struct { 8983 struct perf_event_header header; 8984 u32 next_prev_pid; 8985 u32 next_prev_tid; 8986 } event_id; 8987 }; 8988 8989 static int perf_event_switch_match(struct perf_event *event) 8990 { 8991 return event->attr.context_switch; 8992 } 8993 8994 static void perf_event_switch_output(struct perf_event *event, void *data) 8995 { 8996 struct perf_switch_event *se = data; 8997 struct perf_output_handle handle; 8998 struct perf_sample_data sample; 8999 int ret; 9000 9001 if (!perf_event_switch_match(event)) 9002 return; 9003 9004 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9005 if (event->ctx->task) { 9006 se->event_id.header.type = PERF_RECORD_SWITCH; 9007 se->event_id.header.size = sizeof(se->event_id.header); 9008 } else { 9009 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9010 se->event_id.header.size = sizeof(se->event_id); 9011 se->event_id.next_prev_pid = 9012 perf_event_pid(event, se->next_prev); 9013 se->event_id.next_prev_tid = 9014 perf_event_tid(event, se->next_prev); 9015 } 9016 9017 perf_event_header__init_id(&se->event_id.header, &sample, event); 9018 9019 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9020 if (ret) 9021 return; 9022 9023 if (event->ctx->task) 9024 perf_output_put(&handle, se->event_id.header); 9025 else 9026 perf_output_put(&handle, se->event_id); 9027 9028 perf_event__output_id_sample(event, &handle, &sample); 9029 9030 perf_output_end(&handle); 9031 } 9032 9033 static void perf_event_switch(struct task_struct *task, 9034 struct task_struct *next_prev, bool sched_in) 9035 { 9036 struct perf_switch_event switch_event; 9037 9038 /* N.B. caller checks nr_switch_events != 0 */ 9039 9040 switch_event = (struct perf_switch_event){ 9041 .task = task, 9042 .next_prev = next_prev, 9043 .event_id = { 9044 .header = { 9045 /* .type */ 9046 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9047 /* .size */ 9048 }, 9049 /* .next_prev_pid */ 9050 /* .next_prev_tid */ 9051 }, 9052 }; 9053 9054 if (!sched_in && task->on_rq) { 9055 switch_event.event_id.header.misc |= 9056 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9057 } 9058 9059 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9060 } 9061 9062 /* 9063 * IRQ throttle logging 9064 */ 9065 9066 static void perf_log_throttle(struct perf_event *event, int enable) 9067 { 9068 struct perf_output_handle handle; 9069 struct perf_sample_data sample; 9070 int ret; 9071 9072 struct { 9073 struct perf_event_header header; 9074 u64 time; 9075 u64 id; 9076 u64 stream_id; 9077 } throttle_event = { 9078 .header = { 9079 .type = PERF_RECORD_THROTTLE, 9080 .misc = 0, 9081 .size = sizeof(throttle_event), 9082 }, 9083 .time = perf_event_clock(event), 9084 .id = primary_event_id(event), 9085 .stream_id = event->id, 9086 }; 9087 9088 if (enable) 9089 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9090 9091 perf_event_header__init_id(&throttle_event.header, &sample, event); 9092 9093 ret = perf_output_begin(&handle, &sample, event, 9094 throttle_event.header.size); 9095 if (ret) 9096 return; 9097 9098 perf_output_put(&handle, throttle_event); 9099 perf_event__output_id_sample(event, &handle, &sample); 9100 perf_output_end(&handle); 9101 } 9102 9103 /* 9104 * ksymbol register/unregister tracking 9105 */ 9106 9107 struct perf_ksymbol_event { 9108 const char *name; 9109 int name_len; 9110 struct { 9111 struct perf_event_header header; 9112 u64 addr; 9113 u32 len; 9114 u16 ksym_type; 9115 u16 flags; 9116 } event_id; 9117 }; 9118 9119 static int perf_event_ksymbol_match(struct perf_event *event) 9120 { 9121 return event->attr.ksymbol; 9122 } 9123 9124 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9125 { 9126 struct perf_ksymbol_event *ksymbol_event = data; 9127 struct perf_output_handle handle; 9128 struct perf_sample_data sample; 9129 int ret; 9130 9131 if (!perf_event_ksymbol_match(event)) 9132 return; 9133 9134 perf_event_header__init_id(&ksymbol_event->event_id.header, 9135 &sample, event); 9136 ret = perf_output_begin(&handle, &sample, event, 9137 ksymbol_event->event_id.header.size); 9138 if (ret) 9139 return; 9140 9141 perf_output_put(&handle, ksymbol_event->event_id); 9142 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9143 perf_event__output_id_sample(event, &handle, &sample); 9144 9145 perf_output_end(&handle); 9146 } 9147 9148 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9149 const char *sym) 9150 { 9151 struct perf_ksymbol_event ksymbol_event; 9152 char name[KSYM_NAME_LEN]; 9153 u16 flags = 0; 9154 int name_len; 9155 9156 if (!atomic_read(&nr_ksymbol_events)) 9157 return; 9158 9159 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9160 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9161 goto err; 9162 9163 strscpy(name, sym, KSYM_NAME_LEN); 9164 name_len = strlen(name) + 1; 9165 while (!IS_ALIGNED(name_len, sizeof(u64))) 9166 name[name_len++] = '\0'; 9167 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9168 9169 if (unregister) 9170 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9171 9172 ksymbol_event = (struct perf_ksymbol_event){ 9173 .name = name, 9174 .name_len = name_len, 9175 .event_id = { 9176 .header = { 9177 .type = PERF_RECORD_KSYMBOL, 9178 .size = sizeof(ksymbol_event.event_id) + 9179 name_len, 9180 }, 9181 .addr = addr, 9182 .len = len, 9183 .ksym_type = ksym_type, 9184 .flags = flags, 9185 }, 9186 }; 9187 9188 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9189 return; 9190 err: 9191 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9192 } 9193 9194 /* 9195 * bpf program load/unload tracking 9196 */ 9197 9198 struct perf_bpf_event { 9199 struct bpf_prog *prog; 9200 struct { 9201 struct perf_event_header header; 9202 u16 type; 9203 u16 flags; 9204 u32 id; 9205 u8 tag[BPF_TAG_SIZE]; 9206 } event_id; 9207 }; 9208 9209 static int perf_event_bpf_match(struct perf_event *event) 9210 { 9211 return event->attr.bpf_event; 9212 } 9213 9214 static void perf_event_bpf_output(struct perf_event *event, void *data) 9215 { 9216 struct perf_bpf_event *bpf_event = data; 9217 struct perf_output_handle handle; 9218 struct perf_sample_data sample; 9219 int ret; 9220 9221 if (!perf_event_bpf_match(event)) 9222 return; 9223 9224 perf_event_header__init_id(&bpf_event->event_id.header, 9225 &sample, event); 9226 ret = perf_output_begin(&handle, &sample, event, 9227 bpf_event->event_id.header.size); 9228 if (ret) 9229 return; 9230 9231 perf_output_put(&handle, bpf_event->event_id); 9232 perf_event__output_id_sample(event, &handle, &sample); 9233 9234 perf_output_end(&handle); 9235 } 9236 9237 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9238 enum perf_bpf_event_type type) 9239 { 9240 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9241 int i; 9242 9243 if (prog->aux->func_cnt == 0) { 9244 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9245 (u64)(unsigned long)prog->bpf_func, 9246 prog->jited_len, unregister, 9247 prog->aux->ksym.name); 9248 } else { 9249 for (i = 0; i < prog->aux->func_cnt; i++) { 9250 struct bpf_prog *subprog = prog->aux->func[i]; 9251 9252 perf_event_ksymbol( 9253 PERF_RECORD_KSYMBOL_TYPE_BPF, 9254 (u64)(unsigned long)subprog->bpf_func, 9255 subprog->jited_len, unregister, 9256 subprog->aux->ksym.name); 9257 } 9258 } 9259 } 9260 9261 void perf_event_bpf_event(struct bpf_prog *prog, 9262 enum perf_bpf_event_type type, 9263 u16 flags) 9264 { 9265 struct perf_bpf_event bpf_event; 9266 9267 if (type <= PERF_BPF_EVENT_UNKNOWN || 9268 type >= PERF_BPF_EVENT_MAX) 9269 return; 9270 9271 switch (type) { 9272 case PERF_BPF_EVENT_PROG_LOAD: 9273 case PERF_BPF_EVENT_PROG_UNLOAD: 9274 if (atomic_read(&nr_ksymbol_events)) 9275 perf_event_bpf_emit_ksymbols(prog, type); 9276 break; 9277 default: 9278 break; 9279 } 9280 9281 if (!atomic_read(&nr_bpf_events)) 9282 return; 9283 9284 bpf_event = (struct perf_bpf_event){ 9285 .prog = prog, 9286 .event_id = { 9287 .header = { 9288 .type = PERF_RECORD_BPF_EVENT, 9289 .size = sizeof(bpf_event.event_id), 9290 }, 9291 .type = type, 9292 .flags = flags, 9293 .id = prog->aux->id, 9294 }, 9295 }; 9296 9297 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9298 9299 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9300 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9301 } 9302 9303 struct perf_text_poke_event { 9304 const void *old_bytes; 9305 const void *new_bytes; 9306 size_t pad; 9307 u16 old_len; 9308 u16 new_len; 9309 9310 struct { 9311 struct perf_event_header header; 9312 9313 u64 addr; 9314 } event_id; 9315 }; 9316 9317 static int perf_event_text_poke_match(struct perf_event *event) 9318 { 9319 return event->attr.text_poke; 9320 } 9321 9322 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9323 { 9324 struct perf_text_poke_event *text_poke_event = data; 9325 struct perf_output_handle handle; 9326 struct perf_sample_data sample; 9327 u64 padding = 0; 9328 int ret; 9329 9330 if (!perf_event_text_poke_match(event)) 9331 return; 9332 9333 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9334 9335 ret = perf_output_begin(&handle, &sample, event, 9336 text_poke_event->event_id.header.size); 9337 if (ret) 9338 return; 9339 9340 perf_output_put(&handle, text_poke_event->event_id); 9341 perf_output_put(&handle, text_poke_event->old_len); 9342 perf_output_put(&handle, text_poke_event->new_len); 9343 9344 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9345 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9346 9347 if (text_poke_event->pad) 9348 __output_copy(&handle, &padding, text_poke_event->pad); 9349 9350 perf_event__output_id_sample(event, &handle, &sample); 9351 9352 perf_output_end(&handle); 9353 } 9354 9355 void perf_event_text_poke(const void *addr, const void *old_bytes, 9356 size_t old_len, const void *new_bytes, size_t new_len) 9357 { 9358 struct perf_text_poke_event text_poke_event; 9359 size_t tot, pad; 9360 9361 if (!atomic_read(&nr_text_poke_events)) 9362 return; 9363 9364 tot = sizeof(text_poke_event.old_len) + old_len; 9365 tot += sizeof(text_poke_event.new_len) + new_len; 9366 pad = ALIGN(tot, sizeof(u64)) - tot; 9367 9368 text_poke_event = (struct perf_text_poke_event){ 9369 .old_bytes = old_bytes, 9370 .new_bytes = new_bytes, 9371 .pad = pad, 9372 .old_len = old_len, 9373 .new_len = new_len, 9374 .event_id = { 9375 .header = { 9376 .type = PERF_RECORD_TEXT_POKE, 9377 .misc = PERF_RECORD_MISC_KERNEL, 9378 .size = sizeof(text_poke_event.event_id) + tot + pad, 9379 }, 9380 .addr = (unsigned long)addr, 9381 }, 9382 }; 9383 9384 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9385 } 9386 9387 void perf_event_itrace_started(struct perf_event *event) 9388 { 9389 event->attach_state |= PERF_ATTACH_ITRACE; 9390 } 9391 9392 static void perf_log_itrace_start(struct perf_event *event) 9393 { 9394 struct perf_output_handle handle; 9395 struct perf_sample_data sample; 9396 struct perf_aux_event { 9397 struct perf_event_header header; 9398 u32 pid; 9399 u32 tid; 9400 } rec; 9401 int ret; 9402 9403 if (event->parent) 9404 event = event->parent; 9405 9406 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9407 event->attach_state & PERF_ATTACH_ITRACE) 9408 return; 9409 9410 rec.header.type = PERF_RECORD_ITRACE_START; 9411 rec.header.misc = 0; 9412 rec.header.size = sizeof(rec); 9413 rec.pid = perf_event_pid(event, current); 9414 rec.tid = perf_event_tid(event, current); 9415 9416 perf_event_header__init_id(&rec.header, &sample, event); 9417 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9418 9419 if (ret) 9420 return; 9421 9422 perf_output_put(&handle, rec); 9423 perf_event__output_id_sample(event, &handle, &sample); 9424 9425 perf_output_end(&handle); 9426 } 9427 9428 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9429 { 9430 struct perf_output_handle handle; 9431 struct perf_sample_data sample; 9432 struct perf_aux_event { 9433 struct perf_event_header header; 9434 u64 hw_id; 9435 } rec; 9436 int ret; 9437 9438 if (event->parent) 9439 event = event->parent; 9440 9441 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9442 rec.header.misc = 0; 9443 rec.header.size = sizeof(rec); 9444 rec.hw_id = hw_id; 9445 9446 perf_event_header__init_id(&rec.header, &sample, event); 9447 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9448 9449 if (ret) 9450 return; 9451 9452 perf_output_put(&handle, rec); 9453 perf_event__output_id_sample(event, &handle, &sample); 9454 9455 perf_output_end(&handle); 9456 } 9457 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9458 9459 static int 9460 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9461 { 9462 struct hw_perf_event *hwc = &event->hw; 9463 int ret = 0; 9464 u64 seq; 9465 9466 seq = __this_cpu_read(perf_throttled_seq); 9467 if (seq != hwc->interrupts_seq) { 9468 hwc->interrupts_seq = seq; 9469 hwc->interrupts = 1; 9470 } else { 9471 hwc->interrupts++; 9472 if (unlikely(throttle && 9473 hwc->interrupts > max_samples_per_tick)) { 9474 __this_cpu_inc(perf_throttled_count); 9475 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9476 hwc->interrupts = MAX_INTERRUPTS; 9477 perf_log_throttle(event, 0); 9478 ret = 1; 9479 } 9480 } 9481 9482 if (event->attr.freq) { 9483 u64 now = perf_clock(); 9484 s64 delta = now - hwc->freq_time_stamp; 9485 9486 hwc->freq_time_stamp = now; 9487 9488 if (delta > 0 && delta < 2*TICK_NSEC) 9489 perf_adjust_period(event, delta, hwc->last_period, true); 9490 } 9491 9492 return ret; 9493 } 9494 9495 int perf_event_account_interrupt(struct perf_event *event) 9496 { 9497 return __perf_event_account_interrupt(event, 1); 9498 } 9499 9500 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9501 { 9502 /* 9503 * Due to interrupt latency (AKA "skid"), we may enter the 9504 * kernel before taking an overflow, even if the PMU is only 9505 * counting user events. 9506 */ 9507 if (event->attr.exclude_kernel && !user_mode(regs)) 9508 return false; 9509 9510 return true; 9511 } 9512 9513 /* 9514 * Generic event overflow handling, sampling. 9515 */ 9516 9517 static int __perf_event_overflow(struct perf_event *event, 9518 int throttle, struct perf_sample_data *data, 9519 struct pt_regs *regs) 9520 { 9521 int events = atomic_read(&event->event_limit); 9522 int ret = 0; 9523 9524 /* 9525 * Non-sampling counters might still use the PMI to fold short 9526 * hardware counters, ignore those. 9527 */ 9528 if (unlikely(!is_sampling_event(event))) 9529 return 0; 9530 9531 ret = __perf_event_account_interrupt(event, throttle); 9532 9533 /* 9534 * XXX event_limit might not quite work as expected on inherited 9535 * events 9536 */ 9537 9538 event->pending_kill = POLL_IN; 9539 if (events && atomic_dec_and_test(&event->event_limit)) { 9540 ret = 1; 9541 event->pending_kill = POLL_HUP; 9542 perf_event_disable_inatomic(event); 9543 } 9544 9545 if (event->attr.sigtrap) { 9546 /* 9547 * The desired behaviour of sigtrap vs invalid samples is a bit 9548 * tricky; on the one hand, one should not loose the SIGTRAP if 9549 * it is the first event, on the other hand, we should also not 9550 * trigger the WARN or override the data address. 9551 */ 9552 bool valid_sample = sample_is_allowed(event, regs); 9553 unsigned int pending_id = 1; 9554 9555 if (regs) 9556 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9557 if (!event->pending_sigtrap) { 9558 event->pending_sigtrap = pending_id; 9559 local_inc(&event->ctx->nr_pending); 9560 } else if (event->attr.exclude_kernel && valid_sample) { 9561 /* 9562 * Should not be able to return to user space without 9563 * consuming pending_sigtrap; with exceptions: 9564 * 9565 * 1. Where !exclude_kernel, events can overflow again 9566 * in the kernel without returning to user space. 9567 * 9568 * 2. Events that can overflow again before the IRQ- 9569 * work without user space progress (e.g. hrtimer). 9570 * To approximate progress (with false negatives), 9571 * check 32-bit hash of the current IP. 9572 */ 9573 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9574 } 9575 9576 event->pending_addr = 0; 9577 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9578 event->pending_addr = data->addr; 9579 irq_work_queue(&event->pending_irq); 9580 } 9581 9582 READ_ONCE(event->overflow_handler)(event, data, regs); 9583 9584 if (*perf_event_fasync(event) && event->pending_kill) { 9585 event->pending_wakeup = 1; 9586 irq_work_queue(&event->pending_irq); 9587 } 9588 9589 return ret; 9590 } 9591 9592 int perf_event_overflow(struct perf_event *event, 9593 struct perf_sample_data *data, 9594 struct pt_regs *regs) 9595 { 9596 return __perf_event_overflow(event, 1, data, regs); 9597 } 9598 9599 /* 9600 * Generic software event infrastructure 9601 */ 9602 9603 struct swevent_htable { 9604 struct swevent_hlist *swevent_hlist; 9605 struct mutex hlist_mutex; 9606 int hlist_refcount; 9607 9608 /* Recursion avoidance in each contexts */ 9609 int recursion[PERF_NR_CONTEXTS]; 9610 }; 9611 9612 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9613 9614 /* 9615 * We directly increment event->count and keep a second value in 9616 * event->hw.period_left to count intervals. This period event 9617 * is kept in the range [-sample_period, 0] so that we can use the 9618 * sign as trigger. 9619 */ 9620 9621 u64 perf_swevent_set_period(struct perf_event *event) 9622 { 9623 struct hw_perf_event *hwc = &event->hw; 9624 u64 period = hwc->last_period; 9625 u64 nr, offset; 9626 s64 old, val; 9627 9628 hwc->last_period = hwc->sample_period; 9629 9630 old = local64_read(&hwc->period_left); 9631 do { 9632 val = old; 9633 if (val < 0) 9634 return 0; 9635 9636 nr = div64_u64(period + val, period); 9637 offset = nr * period; 9638 val -= offset; 9639 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9640 9641 return nr; 9642 } 9643 9644 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9645 struct perf_sample_data *data, 9646 struct pt_regs *regs) 9647 { 9648 struct hw_perf_event *hwc = &event->hw; 9649 int throttle = 0; 9650 9651 if (!overflow) 9652 overflow = perf_swevent_set_period(event); 9653 9654 if (hwc->interrupts == MAX_INTERRUPTS) 9655 return; 9656 9657 for (; overflow; overflow--) { 9658 if (__perf_event_overflow(event, throttle, 9659 data, regs)) { 9660 /* 9661 * We inhibit the overflow from happening when 9662 * hwc->interrupts == MAX_INTERRUPTS. 9663 */ 9664 break; 9665 } 9666 throttle = 1; 9667 } 9668 } 9669 9670 static void perf_swevent_event(struct perf_event *event, u64 nr, 9671 struct perf_sample_data *data, 9672 struct pt_regs *regs) 9673 { 9674 struct hw_perf_event *hwc = &event->hw; 9675 9676 local64_add(nr, &event->count); 9677 9678 if (!regs) 9679 return; 9680 9681 if (!is_sampling_event(event)) 9682 return; 9683 9684 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9685 data->period = nr; 9686 return perf_swevent_overflow(event, 1, data, regs); 9687 } else 9688 data->period = event->hw.last_period; 9689 9690 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9691 return perf_swevent_overflow(event, 1, data, regs); 9692 9693 if (local64_add_negative(nr, &hwc->period_left)) 9694 return; 9695 9696 perf_swevent_overflow(event, 0, data, regs); 9697 } 9698 9699 static int perf_exclude_event(struct perf_event *event, 9700 struct pt_regs *regs) 9701 { 9702 if (event->hw.state & PERF_HES_STOPPED) 9703 return 1; 9704 9705 if (regs) { 9706 if (event->attr.exclude_user && user_mode(regs)) 9707 return 1; 9708 9709 if (event->attr.exclude_kernel && !user_mode(regs)) 9710 return 1; 9711 } 9712 9713 return 0; 9714 } 9715 9716 static int perf_swevent_match(struct perf_event *event, 9717 enum perf_type_id type, 9718 u32 event_id, 9719 struct perf_sample_data *data, 9720 struct pt_regs *regs) 9721 { 9722 if (event->attr.type != type) 9723 return 0; 9724 9725 if (event->attr.config != event_id) 9726 return 0; 9727 9728 if (perf_exclude_event(event, regs)) 9729 return 0; 9730 9731 return 1; 9732 } 9733 9734 static inline u64 swevent_hash(u64 type, u32 event_id) 9735 { 9736 u64 val = event_id | (type << 32); 9737 9738 return hash_64(val, SWEVENT_HLIST_BITS); 9739 } 9740 9741 static inline struct hlist_head * 9742 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9743 { 9744 u64 hash = swevent_hash(type, event_id); 9745 9746 return &hlist->heads[hash]; 9747 } 9748 9749 /* For the read side: events when they trigger */ 9750 static inline struct hlist_head * 9751 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9752 { 9753 struct swevent_hlist *hlist; 9754 9755 hlist = rcu_dereference(swhash->swevent_hlist); 9756 if (!hlist) 9757 return NULL; 9758 9759 return __find_swevent_head(hlist, type, event_id); 9760 } 9761 9762 /* For the event head insertion and removal in the hlist */ 9763 static inline struct hlist_head * 9764 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9765 { 9766 struct swevent_hlist *hlist; 9767 u32 event_id = event->attr.config; 9768 u64 type = event->attr.type; 9769 9770 /* 9771 * Event scheduling is always serialized against hlist allocation 9772 * and release. Which makes the protected version suitable here. 9773 * The context lock guarantees that. 9774 */ 9775 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9776 lockdep_is_held(&event->ctx->lock)); 9777 if (!hlist) 9778 return NULL; 9779 9780 return __find_swevent_head(hlist, type, event_id); 9781 } 9782 9783 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9784 u64 nr, 9785 struct perf_sample_data *data, 9786 struct pt_regs *regs) 9787 { 9788 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9789 struct perf_event *event; 9790 struct hlist_head *head; 9791 9792 rcu_read_lock(); 9793 head = find_swevent_head_rcu(swhash, type, event_id); 9794 if (!head) 9795 goto end; 9796 9797 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9798 if (perf_swevent_match(event, type, event_id, data, regs)) 9799 perf_swevent_event(event, nr, data, regs); 9800 } 9801 end: 9802 rcu_read_unlock(); 9803 } 9804 9805 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9806 9807 int perf_swevent_get_recursion_context(void) 9808 { 9809 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9810 9811 return get_recursion_context(swhash->recursion); 9812 } 9813 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9814 9815 void perf_swevent_put_recursion_context(int rctx) 9816 { 9817 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9818 9819 put_recursion_context(swhash->recursion, rctx); 9820 } 9821 9822 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9823 { 9824 struct perf_sample_data data; 9825 9826 if (WARN_ON_ONCE(!regs)) 9827 return; 9828 9829 perf_sample_data_init(&data, addr, 0); 9830 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9831 } 9832 9833 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9834 { 9835 int rctx; 9836 9837 preempt_disable_notrace(); 9838 rctx = perf_swevent_get_recursion_context(); 9839 if (unlikely(rctx < 0)) 9840 goto fail; 9841 9842 ___perf_sw_event(event_id, nr, regs, addr); 9843 9844 perf_swevent_put_recursion_context(rctx); 9845 fail: 9846 preempt_enable_notrace(); 9847 } 9848 9849 static void perf_swevent_read(struct perf_event *event) 9850 { 9851 } 9852 9853 static int perf_swevent_add(struct perf_event *event, int flags) 9854 { 9855 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9856 struct hw_perf_event *hwc = &event->hw; 9857 struct hlist_head *head; 9858 9859 if (is_sampling_event(event)) { 9860 hwc->last_period = hwc->sample_period; 9861 perf_swevent_set_period(event); 9862 } 9863 9864 hwc->state = !(flags & PERF_EF_START); 9865 9866 head = find_swevent_head(swhash, event); 9867 if (WARN_ON_ONCE(!head)) 9868 return -EINVAL; 9869 9870 hlist_add_head_rcu(&event->hlist_entry, head); 9871 perf_event_update_userpage(event); 9872 9873 return 0; 9874 } 9875 9876 static void perf_swevent_del(struct perf_event *event, int flags) 9877 { 9878 hlist_del_rcu(&event->hlist_entry); 9879 } 9880 9881 static void perf_swevent_start(struct perf_event *event, int flags) 9882 { 9883 event->hw.state = 0; 9884 } 9885 9886 static void perf_swevent_stop(struct perf_event *event, int flags) 9887 { 9888 event->hw.state = PERF_HES_STOPPED; 9889 } 9890 9891 /* Deref the hlist from the update side */ 9892 static inline struct swevent_hlist * 9893 swevent_hlist_deref(struct swevent_htable *swhash) 9894 { 9895 return rcu_dereference_protected(swhash->swevent_hlist, 9896 lockdep_is_held(&swhash->hlist_mutex)); 9897 } 9898 9899 static void swevent_hlist_release(struct swevent_htable *swhash) 9900 { 9901 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9902 9903 if (!hlist) 9904 return; 9905 9906 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9907 kfree_rcu(hlist, rcu_head); 9908 } 9909 9910 static void swevent_hlist_put_cpu(int cpu) 9911 { 9912 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9913 9914 mutex_lock(&swhash->hlist_mutex); 9915 9916 if (!--swhash->hlist_refcount) 9917 swevent_hlist_release(swhash); 9918 9919 mutex_unlock(&swhash->hlist_mutex); 9920 } 9921 9922 static void swevent_hlist_put(void) 9923 { 9924 int cpu; 9925 9926 for_each_possible_cpu(cpu) 9927 swevent_hlist_put_cpu(cpu); 9928 } 9929 9930 static int swevent_hlist_get_cpu(int cpu) 9931 { 9932 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9933 int err = 0; 9934 9935 mutex_lock(&swhash->hlist_mutex); 9936 if (!swevent_hlist_deref(swhash) && 9937 cpumask_test_cpu(cpu, perf_online_mask)) { 9938 struct swevent_hlist *hlist; 9939 9940 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9941 if (!hlist) { 9942 err = -ENOMEM; 9943 goto exit; 9944 } 9945 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9946 } 9947 swhash->hlist_refcount++; 9948 exit: 9949 mutex_unlock(&swhash->hlist_mutex); 9950 9951 return err; 9952 } 9953 9954 static int swevent_hlist_get(void) 9955 { 9956 int err, cpu, failed_cpu; 9957 9958 mutex_lock(&pmus_lock); 9959 for_each_possible_cpu(cpu) { 9960 err = swevent_hlist_get_cpu(cpu); 9961 if (err) { 9962 failed_cpu = cpu; 9963 goto fail; 9964 } 9965 } 9966 mutex_unlock(&pmus_lock); 9967 return 0; 9968 fail: 9969 for_each_possible_cpu(cpu) { 9970 if (cpu == failed_cpu) 9971 break; 9972 swevent_hlist_put_cpu(cpu); 9973 } 9974 mutex_unlock(&pmus_lock); 9975 return err; 9976 } 9977 9978 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9979 9980 static void sw_perf_event_destroy(struct perf_event *event) 9981 { 9982 u64 event_id = event->attr.config; 9983 9984 WARN_ON(event->parent); 9985 9986 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9987 swevent_hlist_put(); 9988 } 9989 9990 static struct pmu perf_cpu_clock; /* fwd declaration */ 9991 static struct pmu perf_task_clock; 9992 9993 static int perf_swevent_init(struct perf_event *event) 9994 { 9995 u64 event_id = event->attr.config; 9996 9997 if (event->attr.type != PERF_TYPE_SOFTWARE) 9998 return -ENOENT; 9999 10000 /* 10001 * no branch sampling for software events 10002 */ 10003 if (has_branch_stack(event)) 10004 return -EOPNOTSUPP; 10005 10006 switch (event_id) { 10007 case PERF_COUNT_SW_CPU_CLOCK: 10008 event->attr.type = perf_cpu_clock.type; 10009 return -ENOENT; 10010 case PERF_COUNT_SW_TASK_CLOCK: 10011 event->attr.type = perf_task_clock.type; 10012 return -ENOENT; 10013 10014 default: 10015 break; 10016 } 10017 10018 if (event_id >= PERF_COUNT_SW_MAX) 10019 return -ENOENT; 10020 10021 if (!event->parent) { 10022 int err; 10023 10024 err = swevent_hlist_get(); 10025 if (err) 10026 return err; 10027 10028 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10029 event->destroy = sw_perf_event_destroy; 10030 } 10031 10032 return 0; 10033 } 10034 10035 static struct pmu perf_swevent = { 10036 .task_ctx_nr = perf_sw_context, 10037 10038 .capabilities = PERF_PMU_CAP_NO_NMI, 10039 10040 .event_init = perf_swevent_init, 10041 .add = perf_swevent_add, 10042 .del = perf_swevent_del, 10043 .start = perf_swevent_start, 10044 .stop = perf_swevent_stop, 10045 .read = perf_swevent_read, 10046 }; 10047 10048 #ifdef CONFIG_EVENT_TRACING 10049 10050 static void tp_perf_event_destroy(struct perf_event *event) 10051 { 10052 perf_trace_destroy(event); 10053 } 10054 10055 static int perf_tp_event_init(struct perf_event *event) 10056 { 10057 int err; 10058 10059 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10060 return -ENOENT; 10061 10062 /* 10063 * no branch sampling for tracepoint events 10064 */ 10065 if (has_branch_stack(event)) 10066 return -EOPNOTSUPP; 10067 10068 err = perf_trace_init(event); 10069 if (err) 10070 return err; 10071 10072 event->destroy = tp_perf_event_destroy; 10073 10074 return 0; 10075 } 10076 10077 static struct pmu perf_tracepoint = { 10078 .task_ctx_nr = perf_sw_context, 10079 10080 .event_init = perf_tp_event_init, 10081 .add = perf_trace_add, 10082 .del = perf_trace_del, 10083 .start = perf_swevent_start, 10084 .stop = perf_swevent_stop, 10085 .read = perf_swevent_read, 10086 }; 10087 10088 static int perf_tp_filter_match(struct perf_event *event, 10089 struct perf_sample_data *data) 10090 { 10091 void *record = data->raw->frag.data; 10092 10093 /* only top level events have filters set */ 10094 if (event->parent) 10095 event = event->parent; 10096 10097 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10098 return 1; 10099 return 0; 10100 } 10101 10102 static int perf_tp_event_match(struct perf_event *event, 10103 struct perf_sample_data *data, 10104 struct pt_regs *regs) 10105 { 10106 if (event->hw.state & PERF_HES_STOPPED) 10107 return 0; 10108 /* 10109 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10110 */ 10111 if (event->attr.exclude_kernel && !user_mode(regs)) 10112 return 0; 10113 10114 if (!perf_tp_filter_match(event, data)) 10115 return 0; 10116 10117 return 1; 10118 } 10119 10120 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10121 struct trace_event_call *call, u64 count, 10122 struct pt_regs *regs, struct hlist_head *head, 10123 struct task_struct *task) 10124 { 10125 if (bpf_prog_array_valid(call)) { 10126 *(struct pt_regs **)raw_data = regs; 10127 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10128 perf_swevent_put_recursion_context(rctx); 10129 return; 10130 } 10131 } 10132 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10133 rctx, task); 10134 } 10135 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10136 10137 static void __perf_tp_event_target_task(u64 count, void *record, 10138 struct pt_regs *regs, 10139 struct perf_sample_data *data, 10140 struct perf_event *event) 10141 { 10142 struct trace_entry *entry = record; 10143 10144 if (event->attr.config != entry->type) 10145 return; 10146 /* Cannot deliver synchronous signal to other task. */ 10147 if (event->attr.sigtrap) 10148 return; 10149 if (perf_tp_event_match(event, data, regs)) 10150 perf_swevent_event(event, count, data, regs); 10151 } 10152 10153 static void perf_tp_event_target_task(u64 count, void *record, 10154 struct pt_regs *regs, 10155 struct perf_sample_data *data, 10156 struct perf_event_context *ctx) 10157 { 10158 unsigned int cpu = smp_processor_id(); 10159 struct pmu *pmu = &perf_tracepoint; 10160 struct perf_event *event, *sibling; 10161 10162 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10163 __perf_tp_event_target_task(count, record, regs, data, event); 10164 for_each_sibling_event(sibling, event) 10165 __perf_tp_event_target_task(count, record, regs, data, sibling); 10166 } 10167 10168 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10169 __perf_tp_event_target_task(count, record, regs, data, event); 10170 for_each_sibling_event(sibling, event) 10171 __perf_tp_event_target_task(count, record, regs, data, sibling); 10172 } 10173 } 10174 10175 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10176 struct pt_regs *regs, struct hlist_head *head, int rctx, 10177 struct task_struct *task) 10178 { 10179 struct perf_sample_data data; 10180 struct perf_event *event; 10181 10182 struct perf_raw_record raw = { 10183 .frag = { 10184 .size = entry_size, 10185 .data = record, 10186 }, 10187 }; 10188 10189 perf_sample_data_init(&data, 0, 0); 10190 perf_sample_save_raw_data(&data, &raw); 10191 10192 perf_trace_buf_update(record, event_type); 10193 10194 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10195 if (perf_tp_event_match(event, &data, regs)) { 10196 perf_swevent_event(event, count, &data, regs); 10197 10198 /* 10199 * Here use the same on-stack perf_sample_data, 10200 * some members in data are event-specific and 10201 * need to be re-computed for different sweveents. 10202 * Re-initialize data->sample_flags safely to avoid 10203 * the problem that next event skips preparing data 10204 * because data->sample_flags is set. 10205 */ 10206 perf_sample_data_init(&data, 0, 0); 10207 perf_sample_save_raw_data(&data, &raw); 10208 } 10209 } 10210 10211 /* 10212 * If we got specified a target task, also iterate its context and 10213 * deliver this event there too. 10214 */ 10215 if (task && task != current) { 10216 struct perf_event_context *ctx; 10217 10218 rcu_read_lock(); 10219 ctx = rcu_dereference(task->perf_event_ctxp); 10220 if (!ctx) 10221 goto unlock; 10222 10223 raw_spin_lock(&ctx->lock); 10224 perf_tp_event_target_task(count, record, regs, &data, ctx); 10225 raw_spin_unlock(&ctx->lock); 10226 unlock: 10227 rcu_read_unlock(); 10228 } 10229 10230 perf_swevent_put_recursion_context(rctx); 10231 } 10232 EXPORT_SYMBOL_GPL(perf_tp_event); 10233 10234 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10235 /* 10236 * Flags in config, used by dynamic PMU kprobe and uprobe 10237 * The flags should match following PMU_FORMAT_ATTR(). 10238 * 10239 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10240 * if not set, create kprobe/uprobe 10241 * 10242 * The following values specify a reference counter (or semaphore in the 10243 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10244 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10245 * 10246 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10247 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10248 */ 10249 enum perf_probe_config { 10250 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10251 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10252 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10253 }; 10254 10255 PMU_FORMAT_ATTR(retprobe, "config:0"); 10256 #endif 10257 10258 #ifdef CONFIG_KPROBE_EVENTS 10259 static struct attribute *kprobe_attrs[] = { 10260 &format_attr_retprobe.attr, 10261 NULL, 10262 }; 10263 10264 static struct attribute_group kprobe_format_group = { 10265 .name = "format", 10266 .attrs = kprobe_attrs, 10267 }; 10268 10269 static const struct attribute_group *kprobe_attr_groups[] = { 10270 &kprobe_format_group, 10271 NULL, 10272 }; 10273 10274 static int perf_kprobe_event_init(struct perf_event *event); 10275 static struct pmu perf_kprobe = { 10276 .task_ctx_nr = perf_sw_context, 10277 .event_init = perf_kprobe_event_init, 10278 .add = perf_trace_add, 10279 .del = perf_trace_del, 10280 .start = perf_swevent_start, 10281 .stop = perf_swevent_stop, 10282 .read = perf_swevent_read, 10283 .attr_groups = kprobe_attr_groups, 10284 }; 10285 10286 static int perf_kprobe_event_init(struct perf_event *event) 10287 { 10288 int err; 10289 bool is_retprobe; 10290 10291 if (event->attr.type != perf_kprobe.type) 10292 return -ENOENT; 10293 10294 if (!perfmon_capable()) 10295 return -EACCES; 10296 10297 /* 10298 * no branch sampling for probe events 10299 */ 10300 if (has_branch_stack(event)) 10301 return -EOPNOTSUPP; 10302 10303 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10304 err = perf_kprobe_init(event, is_retprobe); 10305 if (err) 10306 return err; 10307 10308 event->destroy = perf_kprobe_destroy; 10309 10310 return 0; 10311 } 10312 #endif /* CONFIG_KPROBE_EVENTS */ 10313 10314 #ifdef CONFIG_UPROBE_EVENTS 10315 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10316 10317 static struct attribute *uprobe_attrs[] = { 10318 &format_attr_retprobe.attr, 10319 &format_attr_ref_ctr_offset.attr, 10320 NULL, 10321 }; 10322 10323 static struct attribute_group uprobe_format_group = { 10324 .name = "format", 10325 .attrs = uprobe_attrs, 10326 }; 10327 10328 static const struct attribute_group *uprobe_attr_groups[] = { 10329 &uprobe_format_group, 10330 NULL, 10331 }; 10332 10333 static int perf_uprobe_event_init(struct perf_event *event); 10334 static struct pmu perf_uprobe = { 10335 .task_ctx_nr = perf_sw_context, 10336 .event_init = perf_uprobe_event_init, 10337 .add = perf_trace_add, 10338 .del = perf_trace_del, 10339 .start = perf_swevent_start, 10340 .stop = perf_swevent_stop, 10341 .read = perf_swevent_read, 10342 .attr_groups = uprobe_attr_groups, 10343 }; 10344 10345 static int perf_uprobe_event_init(struct perf_event *event) 10346 { 10347 int err; 10348 unsigned long ref_ctr_offset; 10349 bool is_retprobe; 10350 10351 if (event->attr.type != perf_uprobe.type) 10352 return -ENOENT; 10353 10354 if (!perfmon_capable()) 10355 return -EACCES; 10356 10357 /* 10358 * no branch sampling for probe events 10359 */ 10360 if (has_branch_stack(event)) 10361 return -EOPNOTSUPP; 10362 10363 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10364 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10365 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10366 if (err) 10367 return err; 10368 10369 event->destroy = perf_uprobe_destroy; 10370 10371 return 0; 10372 } 10373 #endif /* CONFIG_UPROBE_EVENTS */ 10374 10375 static inline void perf_tp_register(void) 10376 { 10377 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10378 #ifdef CONFIG_KPROBE_EVENTS 10379 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10380 #endif 10381 #ifdef CONFIG_UPROBE_EVENTS 10382 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10383 #endif 10384 } 10385 10386 static void perf_event_free_filter(struct perf_event *event) 10387 { 10388 ftrace_profile_free_filter(event); 10389 } 10390 10391 #ifdef CONFIG_BPF_SYSCALL 10392 static void bpf_overflow_handler(struct perf_event *event, 10393 struct perf_sample_data *data, 10394 struct pt_regs *regs) 10395 { 10396 struct bpf_perf_event_data_kern ctx = { 10397 .data = data, 10398 .event = event, 10399 }; 10400 struct bpf_prog *prog; 10401 int ret = 0; 10402 10403 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10404 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10405 goto out; 10406 rcu_read_lock(); 10407 prog = READ_ONCE(event->prog); 10408 if (prog) { 10409 perf_prepare_sample(data, event, regs); 10410 ret = bpf_prog_run(prog, &ctx); 10411 } 10412 rcu_read_unlock(); 10413 out: 10414 __this_cpu_dec(bpf_prog_active); 10415 if (!ret) 10416 return; 10417 10418 event->orig_overflow_handler(event, data, regs); 10419 } 10420 10421 static int perf_event_set_bpf_handler(struct perf_event *event, 10422 struct bpf_prog *prog, 10423 u64 bpf_cookie) 10424 { 10425 if (event->overflow_handler_context) 10426 /* hw breakpoint or kernel counter */ 10427 return -EINVAL; 10428 10429 if (event->prog) 10430 return -EEXIST; 10431 10432 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10433 return -EINVAL; 10434 10435 if (event->attr.precise_ip && 10436 prog->call_get_stack && 10437 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10438 event->attr.exclude_callchain_kernel || 10439 event->attr.exclude_callchain_user)) { 10440 /* 10441 * On perf_event with precise_ip, calling bpf_get_stack() 10442 * may trigger unwinder warnings and occasional crashes. 10443 * bpf_get_[stack|stackid] works around this issue by using 10444 * callchain attached to perf_sample_data. If the 10445 * perf_event does not full (kernel and user) callchain 10446 * attached to perf_sample_data, do not allow attaching BPF 10447 * program that calls bpf_get_[stack|stackid]. 10448 */ 10449 return -EPROTO; 10450 } 10451 10452 event->prog = prog; 10453 event->bpf_cookie = bpf_cookie; 10454 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10455 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10456 return 0; 10457 } 10458 10459 static void perf_event_free_bpf_handler(struct perf_event *event) 10460 { 10461 struct bpf_prog *prog = event->prog; 10462 10463 if (!prog) 10464 return; 10465 10466 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10467 event->prog = NULL; 10468 bpf_prog_put(prog); 10469 } 10470 #else 10471 static int perf_event_set_bpf_handler(struct perf_event *event, 10472 struct bpf_prog *prog, 10473 u64 bpf_cookie) 10474 { 10475 return -EOPNOTSUPP; 10476 } 10477 static void perf_event_free_bpf_handler(struct perf_event *event) 10478 { 10479 } 10480 #endif 10481 10482 /* 10483 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10484 * with perf_event_open() 10485 */ 10486 static inline bool perf_event_is_tracing(struct perf_event *event) 10487 { 10488 if (event->pmu == &perf_tracepoint) 10489 return true; 10490 #ifdef CONFIG_KPROBE_EVENTS 10491 if (event->pmu == &perf_kprobe) 10492 return true; 10493 #endif 10494 #ifdef CONFIG_UPROBE_EVENTS 10495 if (event->pmu == &perf_uprobe) 10496 return true; 10497 #endif 10498 return false; 10499 } 10500 10501 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10502 u64 bpf_cookie) 10503 { 10504 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10505 10506 if (!perf_event_is_tracing(event)) 10507 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10508 10509 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10510 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10511 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10512 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10513 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10514 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10515 return -EINVAL; 10516 10517 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10518 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10519 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10520 return -EINVAL; 10521 10522 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10523 /* only uprobe programs are allowed to be sleepable */ 10524 return -EINVAL; 10525 10526 /* Kprobe override only works for kprobes, not uprobes. */ 10527 if (prog->kprobe_override && !is_kprobe) 10528 return -EINVAL; 10529 10530 if (is_tracepoint || is_syscall_tp) { 10531 int off = trace_event_get_offsets(event->tp_event); 10532 10533 if (prog->aux->max_ctx_offset > off) 10534 return -EACCES; 10535 } 10536 10537 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10538 } 10539 10540 void perf_event_free_bpf_prog(struct perf_event *event) 10541 { 10542 if (!perf_event_is_tracing(event)) { 10543 perf_event_free_bpf_handler(event); 10544 return; 10545 } 10546 perf_event_detach_bpf_prog(event); 10547 } 10548 10549 #else 10550 10551 static inline void perf_tp_register(void) 10552 { 10553 } 10554 10555 static void perf_event_free_filter(struct perf_event *event) 10556 { 10557 } 10558 10559 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10560 u64 bpf_cookie) 10561 { 10562 return -ENOENT; 10563 } 10564 10565 void perf_event_free_bpf_prog(struct perf_event *event) 10566 { 10567 } 10568 #endif /* CONFIG_EVENT_TRACING */ 10569 10570 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10571 void perf_bp_event(struct perf_event *bp, void *data) 10572 { 10573 struct perf_sample_data sample; 10574 struct pt_regs *regs = data; 10575 10576 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10577 10578 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10579 perf_swevent_event(bp, 1, &sample, regs); 10580 } 10581 #endif 10582 10583 /* 10584 * Allocate a new address filter 10585 */ 10586 static struct perf_addr_filter * 10587 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10588 { 10589 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10590 struct perf_addr_filter *filter; 10591 10592 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10593 if (!filter) 10594 return NULL; 10595 10596 INIT_LIST_HEAD(&filter->entry); 10597 list_add_tail(&filter->entry, filters); 10598 10599 return filter; 10600 } 10601 10602 static void free_filters_list(struct list_head *filters) 10603 { 10604 struct perf_addr_filter *filter, *iter; 10605 10606 list_for_each_entry_safe(filter, iter, filters, entry) { 10607 path_put(&filter->path); 10608 list_del(&filter->entry); 10609 kfree(filter); 10610 } 10611 } 10612 10613 /* 10614 * Free existing address filters and optionally install new ones 10615 */ 10616 static void perf_addr_filters_splice(struct perf_event *event, 10617 struct list_head *head) 10618 { 10619 unsigned long flags; 10620 LIST_HEAD(list); 10621 10622 if (!has_addr_filter(event)) 10623 return; 10624 10625 /* don't bother with children, they don't have their own filters */ 10626 if (event->parent) 10627 return; 10628 10629 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10630 10631 list_splice_init(&event->addr_filters.list, &list); 10632 if (head) 10633 list_splice(head, &event->addr_filters.list); 10634 10635 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10636 10637 free_filters_list(&list); 10638 } 10639 10640 /* 10641 * Scan through mm's vmas and see if one of them matches the 10642 * @filter; if so, adjust filter's address range. 10643 * Called with mm::mmap_lock down for reading. 10644 */ 10645 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10646 struct mm_struct *mm, 10647 struct perf_addr_filter_range *fr) 10648 { 10649 struct vm_area_struct *vma; 10650 VMA_ITERATOR(vmi, mm, 0); 10651 10652 for_each_vma(vmi, vma) { 10653 if (!vma->vm_file) 10654 continue; 10655 10656 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10657 return; 10658 } 10659 } 10660 10661 /* 10662 * Update event's address range filters based on the 10663 * task's existing mappings, if any. 10664 */ 10665 static void perf_event_addr_filters_apply(struct perf_event *event) 10666 { 10667 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10668 struct task_struct *task = READ_ONCE(event->ctx->task); 10669 struct perf_addr_filter *filter; 10670 struct mm_struct *mm = NULL; 10671 unsigned int count = 0; 10672 unsigned long flags; 10673 10674 /* 10675 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10676 * will stop on the parent's child_mutex that our caller is also holding 10677 */ 10678 if (task == TASK_TOMBSTONE) 10679 return; 10680 10681 if (ifh->nr_file_filters) { 10682 mm = get_task_mm(task); 10683 if (!mm) 10684 goto restart; 10685 10686 mmap_read_lock(mm); 10687 } 10688 10689 raw_spin_lock_irqsave(&ifh->lock, flags); 10690 list_for_each_entry(filter, &ifh->list, entry) { 10691 if (filter->path.dentry) { 10692 /* 10693 * Adjust base offset if the filter is associated to a 10694 * binary that needs to be mapped: 10695 */ 10696 event->addr_filter_ranges[count].start = 0; 10697 event->addr_filter_ranges[count].size = 0; 10698 10699 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10700 } else { 10701 event->addr_filter_ranges[count].start = filter->offset; 10702 event->addr_filter_ranges[count].size = filter->size; 10703 } 10704 10705 count++; 10706 } 10707 10708 event->addr_filters_gen++; 10709 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10710 10711 if (ifh->nr_file_filters) { 10712 mmap_read_unlock(mm); 10713 10714 mmput(mm); 10715 } 10716 10717 restart: 10718 perf_event_stop(event, 1); 10719 } 10720 10721 /* 10722 * Address range filtering: limiting the data to certain 10723 * instruction address ranges. Filters are ioctl()ed to us from 10724 * userspace as ascii strings. 10725 * 10726 * Filter string format: 10727 * 10728 * ACTION RANGE_SPEC 10729 * where ACTION is one of the 10730 * * "filter": limit the trace to this region 10731 * * "start": start tracing from this address 10732 * * "stop": stop tracing at this address/region; 10733 * RANGE_SPEC is 10734 * * for kernel addresses: <start address>[/<size>] 10735 * * for object files: <start address>[/<size>]@</path/to/object/file> 10736 * 10737 * if <size> is not specified or is zero, the range is treated as a single 10738 * address; not valid for ACTION=="filter". 10739 */ 10740 enum { 10741 IF_ACT_NONE = -1, 10742 IF_ACT_FILTER, 10743 IF_ACT_START, 10744 IF_ACT_STOP, 10745 IF_SRC_FILE, 10746 IF_SRC_KERNEL, 10747 IF_SRC_FILEADDR, 10748 IF_SRC_KERNELADDR, 10749 }; 10750 10751 enum { 10752 IF_STATE_ACTION = 0, 10753 IF_STATE_SOURCE, 10754 IF_STATE_END, 10755 }; 10756 10757 static const match_table_t if_tokens = { 10758 { IF_ACT_FILTER, "filter" }, 10759 { IF_ACT_START, "start" }, 10760 { IF_ACT_STOP, "stop" }, 10761 { IF_SRC_FILE, "%u/%u@%s" }, 10762 { IF_SRC_KERNEL, "%u/%u" }, 10763 { IF_SRC_FILEADDR, "%u@%s" }, 10764 { IF_SRC_KERNELADDR, "%u" }, 10765 { IF_ACT_NONE, NULL }, 10766 }; 10767 10768 /* 10769 * Address filter string parser 10770 */ 10771 static int 10772 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10773 struct list_head *filters) 10774 { 10775 struct perf_addr_filter *filter = NULL; 10776 char *start, *orig, *filename = NULL; 10777 substring_t args[MAX_OPT_ARGS]; 10778 int state = IF_STATE_ACTION, token; 10779 unsigned int kernel = 0; 10780 int ret = -EINVAL; 10781 10782 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10783 if (!fstr) 10784 return -ENOMEM; 10785 10786 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10787 static const enum perf_addr_filter_action_t actions[] = { 10788 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10789 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10790 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10791 }; 10792 ret = -EINVAL; 10793 10794 if (!*start) 10795 continue; 10796 10797 /* filter definition begins */ 10798 if (state == IF_STATE_ACTION) { 10799 filter = perf_addr_filter_new(event, filters); 10800 if (!filter) 10801 goto fail; 10802 } 10803 10804 token = match_token(start, if_tokens, args); 10805 switch (token) { 10806 case IF_ACT_FILTER: 10807 case IF_ACT_START: 10808 case IF_ACT_STOP: 10809 if (state != IF_STATE_ACTION) 10810 goto fail; 10811 10812 filter->action = actions[token]; 10813 state = IF_STATE_SOURCE; 10814 break; 10815 10816 case IF_SRC_KERNELADDR: 10817 case IF_SRC_KERNEL: 10818 kernel = 1; 10819 fallthrough; 10820 10821 case IF_SRC_FILEADDR: 10822 case IF_SRC_FILE: 10823 if (state != IF_STATE_SOURCE) 10824 goto fail; 10825 10826 *args[0].to = 0; 10827 ret = kstrtoul(args[0].from, 0, &filter->offset); 10828 if (ret) 10829 goto fail; 10830 10831 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10832 *args[1].to = 0; 10833 ret = kstrtoul(args[1].from, 0, &filter->size); 10834 if (ret) 10835 goto fail; 10836 } 10837 10838 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10839 int fpos = token == IF_SRC_FILE ? 2 : 1; 10840 10841 kfree(filename); 10842 filename = match_strdup(&args[fpos]); 10843 if (!filename) { 10844 ret = -ENOMEM; 10845 goto fail; 10846 } 10847 } 10848 10849 state = IF_STATE_END; 10850 break; 10851 10852 default: 10853 goto fail; 10854 } 10855 10856 /* 10857 * Filter definition is fully parsed, validate and install it. 10858 * Make sure that it doesn't contradict itself or the event's 10859 * attribute. 10860 */ 10861 if (state == IF_STATE_END) { 10862 ret = -EINVAL; 10863 10864 /* 10865 * ACTION "filter" must have a non-zero length region 10866 * specified. 10867 */ 10868 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10869 !filter->size) 10870 goto fail; 10871 10872 if (!kernel) { 10873 if (!filename) 10874 goto fail; 10875 10876 /* 10877 * For now, we only support file-based filters 10878 * in per-task events; doing so for CPU-wide 10879 * events requires additional context switching 10880 * trickery, since same object code will be 10881 * mapped at different virtual addresses in 10882 * different processes. 10883 */ 10884 ret = -EOPNOTSUPP; 10885 if (!event->ctx->task) 10886 goto fail; 10887 10888 /* look up the path and grab its inode */ 10889 ret = kern_path(filename, LOOKUP_FOLLOW, 10890 &filter->path); 10891 if (ret) 10892 goto fail; 10893 10894 ret = -EINVAL; 10895 if (!filter->path.dentry || 10896 !S_ISREG(d_inode(filter->path.dentry) 10897 ->i_mode)) 10898 goto fail; 10899 10900 event->addr_filters.nr_file_filters++; 10901 } 10902 10903 /* ready to consume more filters */ 10904 kfree(filename); 10905 filename = NULL; 10906 state = IF_STATE_ACTION; 10907 filter = NULL; 10908 kernel = 0; 10909 } 10910 } 10911 10912 if (state != IF_STATE_ACTION) 10913 goto fail; 10914 10915 kfree(filename); 10916 kfree(orig); 10917 10918 return 0; 10919 10920 fail: 10921 kfree(filename); 10922 free_filters_list(filters); 10923 kfree(orig); 10924 10925 return ret; 10926 } 10927 10928 static int 10929 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10930 { 10931 LIST_HEAD(filters); 10932 int ret; 10933 10934 /* 10935 * Since this is called in perf_ioctl() path, we're already holding 10936 * ctx::mutex. 10937 */ 10938 lockdep_assert_held(&event->ctx->mutex); 10939 10940 if (WARN_ON_ONCE(event->parent)) 10941 return -EINVAL; 10942 10943 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10944 if (ret) 10945 goto fail_clear_files; 10946 10947 ret = event->pmu->addr_filters_validate(&filters); 10948 if (ret) 10949 goto fail_free_filters; 10950 10951 /* remove existing filters, if any */ 10952 perf_addr_filters_splice(event, &filters); 10953 10954 /* install new filters */ 10955 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10956 10957 return ret; 10958 10959 fail_free_filters: 10960 free_filters_list(&filters); 10961 10962 fail_clear_files: 10963 event->addr_filters.nr_file_filters = 0; 10964 10965 return ret; 10966 } 10967 10968 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10969 { 10970 int ret = -EINVAL; 10971 char *filter_str; 10972 10973 filter_str = strndup_user(arg, PAGE_SIZE); 10974 if (IS_ERR(filter_str)) 10975 return PTR_ERR(filter_str); 10976 10977 #ifdef CONFIG_EVENT_TRACING 10978 if (perf_event_is_tracing(event)) { 10979 struct perf_event_context *ctx = event->ctx; 10980 10981 /* 10982 * Beware, here be dragons!! 10983 * 10984 * the tracepoint muck will deadlock against ctx->mutex, but 10985 * the tracepoint stuff does not actually need it. So 10986 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10987 * already have a reference on ctx. 10988 * 10989 * This can result in event getting moved to a different ctx, 10990 * but that does not affect the tracepoint state. 10991 */ 10992 mutex_unlock(&ctx->mutex); 10993 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10994 mutex_lock(&ctx->mutex); 10995 } else 10996 #endif 10997 if (has_addr_filter(event)) 10998 ret = perf_event_set_addr_filter(event, filter_str); 10999 11000 kfree(filter_str); 11001 return ret; 11002 } 11003 11004 /* 11005 * hrtimer based swevent callback 11006 */ 11007 11008 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11009 { 11010 enum hrtimer_restart ret = HRTIMER_RESTART; 11011 struct perf_sample_data data; 11012 struct pt_regs *regs; 11013 struct perf_event *event; 11014 u64 period; 11015 11016 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11017 11018 if (event->state != PERF_EVENT_STATE_ACTIVE) 11019 return HRTIMER_NORESTART; 11020 11021 event->pmu->read(event); 11022 11023 perf_sample_data_init(&data, 0, event->hw.last_period); 11024 regs = get_irq_regs(); 11025 11026 if (regs && !perf_exclude_event(event, regs)) { 11027 if (!(event->attr.exclude_idle && is_idle_task(current))) 11028 if (__perf_event_overflow(event, 1, &data, regs)) 11029 ret = HRTIMER_NORESTART; 11030 } 11031 11032 period = max_t(u64, 10000, event->hw.sample_period); 11033 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11034 11035 return ret; 11036 } 11037 11038 static void perf_swevent_start_hrtimer(struct perf_event *event) 11039 { 11040 struct hw_perf_event *hwc = &event->hw; 11041 s64 period; 11042 11043 if (!is_sampling_event(event)) 11044 return; 11045 11046 period = local64_read(&hwc->period_left); 11047 if (period) { 11048 if (period < 0) 11049 period = 10000; 11050 11051 local64_set(&hwc->period_left, 0); 11052 } else { 11053 period = max_t(u64, 10000, hwc->sample_period); 11054 } 11055 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11056 HRTIMER_MODE_REL_PINNED_HARD); 11057 } 11058 11059 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11060 { 11061 struct hw_perf_event *hwc = &event->hw; 11062 11063 if (is_sampling_event(event)) { 11064 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11065 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11066 11067 hrtimer_cancel(&hwc->hrtimer); 11068 } 11069 } 11070 11071 static void perf_swevent_init_hrtimer(struct perf_event *event) 11072 { 11073 struct hw_perf_event *hwc = &event->hw; 11074 11075 if (!is_sampling_event(event)) 11076 return; 11077 11078 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11079 hwc->hrtimer.function = perf_swevent_hrtimer; 11080 11081 /* 11082 * Since hrtimers have a fixed rate, we can do a static freq->period 11083 * mapping and avoid the whole period adjust feedback stuff. 11084 */ 11085 if (event->attr.freq) { 11086 long freq = event->attr.sample_freq; 11087 11088 event->attr.sample_period = NSEC_PER_SEC / freq; 11089 hwc->sample_period = event->attr.sample_period; 11090 local64_set(&hwc->period_left, hwc->sample_period); 11091 hwc->last_period = hwc->sample_period; 11092 event->attr.freq = 0; 11093 } 11094 } 11095 11096 /* 11097 * Software event: cpu wall time clock 11098 */ 11099 11100 static void cpu_clock_event_update(struct perf_event *event) 11101 { 11102 s64 prev; 11103 u64 now; 11104 11105 now = local_clock(); 11106 prev = local64_xchg(&event->hw.prev_count, now); 11107 local64_add(now - prev, &event->count); 11108 } 11109 11110 static void cpu_clock_event_start(struct perf_event *event, int flags) 11111 { 11112 local64_set(&event->hw.prev_count, local_clock()); 11113 perf_swevent_start_hrtimer(event); 11114 } 11115 11116 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11117 { 11118 perf_swevent_cancel_hrtimer(event); 11119 cpu_clock_event_update(event); 11120 } 11121 11122 static int cpu_clock_event_add(struct perf_event *event, int flags) 11123 { 11124 if (flags & PERF_EF_START) 11125 cpu_clock_event_start(event, flags); 11126 perf_event_update_userpage(event); 11127 11128 return 0; 11129 } 11130 11131 static void cpu_clock_event_del(struct perf_event *event, int flags) 11132 { 11133 cpu_clock_event_stop(event, flags); 11134 } 11135 11136 static void cpu_clock_event_read(struct perf_event *event) 11137 { 11138 cpu_clock_event_update(event); 11139 } 11140 11141 static int cpu_clock_event_init(struct perf_event *event) 11142 { 11143 if (event->attr.type != perf_cpu_clock.type) 11144 return -ENOENT; 11145 11146 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11147 return -ENOENT; 11148 11149 /* 11150 * no branch sampling for software events 11151 */ 11152 if (has_branch_stack(event)) 11153 return -EOPNOTSUPP; 11154 11155 perf_swevent_init_hrtimer(event); 11156 11157 return 0; 11158 } 11159 11160 static struct pmu perf_cpu_clock = { 11161 .task_ctx_nr = perf_sw_context, 11162 11163 .capabilities = PERF_PMU_CAP_NO_NMI, 11164 .dev = PMU_NULL_DEV, 11165 11166 .event_init = cpu_clock_event_init, 11167 .add = cpu_clock_event_add, 11168 .del = cpu_clock_event_del, 11169 .start = cpu_clock_event_start, 11170 .stop = cpu_clock_event_stop, 11171 .read = cpu_clock_event_read, 11172 }; 11173 11174 /* 11175 * Software event: task time clock 11176 */ 11177 11178 static void task_clock_event_update(struct perf_event *event, u64 now) 11179 { 11180 u64 prev; 11181 s64 delta; 11182 11183 prev = local64_xchg(&event->hw.prev_count, now); 11184 delta = now - prev; 11185 local64_add(delta, &event->count); 11186 } 11187 11188 static void task_clock_event_start(struct perf_event *event, int flags) 11189 { 11190 local64_set(&event->hw.prev_count, event->ctx->time); 11191 perf_swevent_start_hrtimer(event); 11192 } 11193 11194 static void task_clock_event_stop(struct perf_event *event, int flags) 11195 { 11196 perf_swevent_cancel_hrtimer(event); 11197 task_clock_event_update(event, event->ctx->time); 11198 } 11199 11200 static int task_clock_event_add(struct perf_event *event, int flags) 11201 { 11202 if (flags & PERF_EF_START) 11203 task_clock_event_start(event, flags); 11204 perf_event_update_userpage(event); 11205 11206 return 0; 11207 } 11208 11209 static void task_clock_event_del(struct perf_event *event, int flags) 11210 { 11211 task_clock_event_stop(event, PERF_EF_UPDATE); 11212 } 11213 11214 static void task_clock_event_read(struct perf_event *event) 11215 { 11216 u64 now = perf_clock(); 11217 u64 delta = now - event->ctx->timestamp; 11218 u64 time = event->ctx->time + delta; 11219 11220 task_clock_event_update(event, time); 11221 } 11222 11223 static int task_clock_event_init(struct perf_event *event) 11224 { 11225 if (event->attr.type != perf_task_clock.type) 11226 return -ENOENT; 11227 11228 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11229 return -ENOENT; 11230 11231 /* 11232 * no branch sampling for software events 11233 */ 11234 if (has_branch_stack(event)) 11235 return -EOPNOTSUPP; 11236 11237 perf_swevent_init_hrtimer(event); 11238 11239 return 0; 11240 } 11241 11242 static struct pmu perf_task_clock = { 11243 .task_ctx_nr = perf_sw_context, 11244 11245 .capabilities = PERF_PMU_CAP_NO_NMI, 11246 .dev = PMU_NULL_DEV, 11247 11248 .event_init = task_clock_event_init, 11249 .add = task_clock_event_add, 11250 .del = task_clock_event_del, 11251 .start = task_clock_event_start, 11252 .stop = task_clock_event_stop, 11253 .read = task_clock_event_read, 11254 }; 11255 11256 static void perf_pmu_nop_void(struct pmu *pmu) 11257 { 11258 } 11259 11260 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11261 { 11262 } 11263 11264 static int perf_pmu_nop_int(struct pmu *pmu) 11265 { 11266 return 0; 11267 } 11268 11269 static int perf_event_nop_int(struct perf_event *event, u64 value) 11270 { 11271 return 0; 11272 } 11273 11274 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11275 11276 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11277 { 11278 __this_cpu_write(nop_txn_flags, flags); 11279 11280 if (flags & ~PERF_PMU_TXN_ADD) 11281 return; 11282 11283 perf_pmu_disable(pmu); 11284 } 11285 11286 static int perf_pmu_commit_txn(struct pmu *pmu) 11287 { 11288 unsigned int flags = __this_cpu_read(nop_txn_flags); 11289 11290 __this_cpu_write(nop_txn_flags, 0); 11291 11292 if (flags & ~PERF_PMU_TXN_ADD) 11293 return 0; 11294 11295 perf_pmu_enable(pmu); 11296 return 0; 11297 } 11298 11299 static void perf_pmu_cancel_txn(struct pmu *pmu) 11300 { 11301 unsigned int flags = __this_cpu_read(nop_txn_flags); 11302 11303 __this_cpu_write(nop_txn_flags, 0); 11304 11305 if (flags & ~PERF_PMU_TXN_ADD) 11306 return; 11307 11308 perf_pmu_enable(pmu); 11309 } 11310 11311 static int perf_event_idx_default(struct perf_event *event) 11312 { 11313 return 0; 11314 } 11315 11316 static void free_pmu_context(struct pmu *pmu) 11317 { 11318 free_percpu(pmu->cpu_pmu_context); 11319 } 11320 11321 /* 11322 * Let userspace know that this PMU supports address range filtering: 11323 */ 11324 static ssize_t nr_addr_filters_show(struct device *dev, 11325 struct device_attribute *attr, 11326 char *page) 11327 { 11328 struct pmu *pmu = dev_get_drvdata(dev); 11329 11330 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11331 } 11332 DEVICE_ATTR_RO(nr_addr_filters); 11333 11334 static struct idr pmu_idr; 11335 11336 static ssize_t 11337 type_show(struct device *dev, struct device_attribute *attr, char *page) 11338 { 11339 struct pmu *pmu = dev_get_drvdata(dev); 11340 11341 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11342 } 11343 static DEVICE_ATTR_RO(type); 11344 11345 static ssize_t 11346 perf_event_mux_interval_ms_show(struct device *dev, 11347 struct device_attribute *attr, 11348 char *page) 11349 { 11350 struct pmu *pmu = dev_get_drvdata(dev); 11351 11352 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11353 } 11354 11355 static DEFINE_MUTEX(mux_interval_mutex); 11356 11357 static ssize_t 11358 perf_event_mux_interval_ms_store(struct device *dev, 11359 struct device_attribute *attr, 11360 const char *buf, size_t count) 11361 { 11362 struct pmu *pmu = dev_get_drvdata(dev); 11363 int timer, cpu, ret; 11364 11365 ret = kstrtoint(buf, 0, &timer); 11366 if (ret) 11367 return ret; 11368 11369 if (timer < 1) 11370 return -EINVAL; 11371 11372 /* same value, noting to do */ 11373 if (timer == pmu->hrtimer_interval_ms) 11374 return count; 11375 11376 mutex_lock(&mux_interval_mutex); 11377 pmu->hrtimer_interval_ms = timer; 11378 11379 /* update all cpuctx for this PMU */ 11380 cpus_read_lock(); 11381 for_each_online_cpu(cpu) { 11382 struct perf_cpu_pmu_context *cpc; 11383 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11384 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11385 11386 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11387 } 11388 cpus_read_unlock(); 11389 mutex_unlock(&mux_interval_mutex); 11390 11391 return count; 11392 } 11393 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11394 11395 static struct attribute *pmu_dev_attrs[] = { 11396 &dev_attr_type.attr, 11397 &dev_attr_perf_event_mux_interval_ms.attr, 11398 NULL, 11399 }; 11400 ATTRIBUTE_GROUPS(pmu_dev); 11401 11402 static int pmu_bus_running; 11403 static struct bus_type pmu_bus = { 11404 .name = "event_source", 11405 .dev_groups = pmu_dev_groups, 11406 }; 11407 11408 static void pmu_dev_release(struct device *dev) 11409 { 11410 kfree(dev); 11411 } 11412 11413 static int pmu_dev_alloc(struct pmu *pmu) 11414 { 11415 int ret = -ENOMEM; 11416 11417 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11418 if (!pmu->dev) 11419 goto out; 11420 11421 pmu->dev->groups = pmu->attr_groups; 11422 device_initialize(pmu->dev); 11423 11424 dev_set_drvdata(pmu->dev, pmu); 11425 pmu->dev->bus = &pmu_bus; 11426 pmu->dev->parent = pmu->parent; 11427 pmu->dev->release = pmu_dev_release; 11428 11429 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11430 if (ret) 11431 goto free_dev; 11432 11433 ret = device_add(pmu->dev); 11434 if (ret) 11435 goto free_dev; 11436 11437 /* For PMUs with address filters, throw in an extra attribute: */ 11438 if (pmu->nr_addr_filters) 11439 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11440 11441 if (ret) 11442 goto del_dev; 11443 11444 if (pmu->attr_update) 11445 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11446 11447 if (ret) 11448 goto del_dev; 11449 11450 out: 11451 return ret; 11452 11453 del_dev: 11454 device_del(pmu->dev); 11455 11456 free_dev: 11457 put_device(pmu->dev); 11458 goto out; 11459 } 11460 11461 static struct lock_class_key cpuctx_mutex; 11462 static struct lock_class_key cpuctx_lock; 11463 11464 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11465 { 11466 int cpu, ret, max = PERF_TYPE_MAX; 11467 11468 mutex_lock(&pmus_lock); 11469 ret = -ENOMEM; 11470 pmu->pmu_disable_count = alloc_percpu(int); 11471 if (!pmu->pmu_disable_count) 11472 goto unlock; 11473 11474 pmu->type = -1; 11475 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11476 ret = -EINVAL; 11477 goto free_pdc; 11478 } 11479 11480 pmu->name = name; 11481 11482 if (type >= 0) 11483 max = type; 11484 11485 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11486 if (ret < 0) 11487 goto free_pdc; 11488 11489 WARN_ON(type >= 0 && ret != type); 11490 11491 type = ret; 11492 pmu->type = type; 11493 11494 if (pmu_bus_running && !pmu->dev) { 11495 ret = pmu_dev_alloc(pmu); 11496 if (ret) 11497 goto free_idr; 11498 } 11499 11500 ret = -ENOMEM; 11501 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11502 if (!pmu->cpu_pmu_context) 11503 goto free_dev; 11504 11505 for_each_possible_cpu(cpu) { 11506 struct perf_cpu_pmu_context *cpc; 11507 11508 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11509 __perf_init_event_pmu_context(&cpc->epc, pmu); 11510 __perf_mux_hrtimer_init(cpc, cpu); 11511 } 11512 11513 if (!pmu->start_txn) { 11514 if (pmu->pmu_enable) { 11515 /* 11516 * If we have pmu_enable/pmu_disable calls, install 11517 * transaction stubs that use that to try and batch 11518 * hardware accesses. 11519 */ 11520 pmu->start_txn = perf_pmu_start_txn; 11521 pmu->commit_txn = perf_pmu_commit_txn; 11522 pmu->cancel_txn = perf_pmu_cancel_txn; 11523 } else { 11524 pmu->start_txn = perf_pmu_nop_txn; 11525 pmu->commit_txn = perf_pmu_nop_int; 11526 pmu->cancel_txn = perf_pmu_nop_void; 11527 } 11528 } 11529 11530 if (!pmu->pmu_enable) { 11531 pmu->pmu_enable = perf_pmu_nop_void; 11532 pmu->pmu_disable = perf_pmu_nop_void; 11533 } 11534 11535 if (!pmu->check_period) 11536 pmu->check_period = perf_event_nop_int; 11537 11538 if (!pmu->event_idx) 11539 pmu->event_idx = perf_event_idx_default; 11540 11541 list_add_rcu(&pmu->entry, &pmus); 11542 atomic_set(&pmu->exclusive_cnt, 0); 11543 ret = 0; 11544 unlock: 11545 mutex_unlock(&pmus_lock); 11546 11547 return ret; 11548 11549 free_dev: 11550 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11551 device_del(pmu->dev); 11552 put_device(pmu->dev); 11553 } 11554 11555 free_idr: 11556 idr_remove(&pmu_idr, pmu->type); 11557 11558 free_pdc: 11559 free_percpu(pmu->pmu_disable_count); 11560 goto unlock; 11561 } 11562 EXPORT_SYMBOL_GPL(perf_pmu_register); 11563 11564 void perf_pmu_unregister(struct pmu *pmu) 11565 { 11566 mutex_lock(&pmus_lock); 11567 list_del_rcu(&pmu->entry); 11568 11569 /* 11570 * We dereference the pmu list under both SRCU and regular RCU, so 11571 * synchronize against both of those. 11572 */ 11573 synchronize_srcu(&pmus_srcu); 11574 synchronize_rcu(); 11575 11576 free_percpu(pmu->pmu_disable_count); 11577 idr_remove(&pmu_idr, pmu->type); 11578 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11579 if (pmu->nr_addr_filters) 11580 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11581 device_del(pmu->dev); 11582 put_device(pmu->dev); 11583 } 11584 free_pmu_context(pmu); 11585 mutex_unlock(&pmus_lock); 11586 } 11587 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11588 11589 static inline bool has_extended_regs(struct perf_event *event) 11590 { 11591 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11592 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11593 } 11594 11595 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11596 { 11597 struct perf_event_context *ctx = NULL; 11598 int ret; 11599 11600 if (!try_module_get(pmu->module)) 11601 return -ENODEV; 11602 11603 /* 11604 * A number of pmu->event_init() methods iterate the sibling_list to, 11605 * for example, validate if the group fits on the PMU. Therefore, 11606 * if this is a sibling event, acquire the ctx->mutex to protect 11607 * the sibling_list. 11608 */ 11609 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11610 /* 11611 * This ctx->mutex can nest when we're called through 11612 * inheritance. See the perf_event_ctx_lock_nested() comment. 11613 */ 11614 ctx = perf_event_ctx_lock_nested(event->group_leader, 11615 SINGLE_DEPTH_NESTING); 11616 BUG_ON(!ctx); 11617 } 11618 11619 event->pmu = pmu; 11620 ret = pmu->event_init(event); 11621 11622 if (ctx) 11623 perf_event_ctx_unlock(event->group_leader, ctx); 11624 11625 if (!ret) { 11626 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11627 has_extended_regs(event)) 11628 ret = -EOPNOTSUPP; 11629 11630 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11631 event_has_any_exclude_flag(event)) 11632 ret = -EINVAL; 11633 11634 if (ret && event->destroy) 11635 event->destroy(event); 11636 } 11637 11638 if (ret) 11639 module_put(pmu->module); 11640 11641 return ret; 11642 } 11643 11644 static struct pmu *perf_init_event(struct perf_event *event) 11645 { 11646 bool extended_type = false; 11647 int idx, type, ret; 11648 struct pmu *pmu; 11649 11650 idx = srcu_read_lock(&pmus_srcu); 11651 11652 /* 11653 * Save original type before calling pmu->event_init() since certain 11654 * pmus overwrites event->attr.type to forward event to another pmu. 11655 */ 11656 event->orig_type = event->attr.type; 11657 11658 /* Try parent's PMU first: */ 11659 if (event->parent && event->parent->pmu) { 11660 pmu = event->parent->pmu; 11661 ret = perf_try_init_event(pmu, event); 11662 if (!ret) 11663 goto unlock; 11664 } 11665 11666 /* 11667 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11668 * are often aliases for PERF_TYPE_RAW. 11669 */ 11670 type = event->attr.type; 11671 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11672 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11673 if (!type) { 11674 type = PERF_TYPE_RAW; 11675 } else { 11676 extended_type = true; 11677 event->attr.config &= PERF_HW_EVENT_MASK; 11678 } 11679 } 11680 11681 again: 11682 rcu_read_lock(); 11683 pmu = idr_find(&pmu_idr, type); 11684 rcu_read_unlock(); 11685 if (pmu) { 11686 if (event->attr.type != type && type != PERF_TYPE_RAW && 11687 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11688 goto fail; 11689 11690 ret = perf_try_init_event(pmu, event); 11691 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11692 type = event->attr.type; 11693 goto again; 11694 } 11695 11696 if (ret) 11697 pmu = ERR_PTR(ret); 11698 11699 goto unlock; 11700 } 11701 11702 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11703 ret = perf_try_init_event(pmu, event); 11704 if (!ret) 11705 goto unlock; 11706 11707 if (ret != -ENOENT) { 11708 pmu = ERR_PTR(ret); 11709 goto unlock; 11710 } 11711 } 11712 fail: 11713 pmu = ERR_PTR(-ENOENT); 11714 unlock: 11715 srcu_read_unlock(&pmus_srcu, idx); 11716 11717 return pmu; 11718 } 11719 11720 static void attach_sb_event(struct perf_event *event) 11721 { 11722 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11723 11724 raw_spin_lock(&pel->lock); 11725 list_add_rcu(&event->sb_list, &pel->list); 11726 raw_spin_unlock(&pel->lock); 11727 } 11728 11729 /* 11730 * We keep a list of all !task (and therefore per-cpu) events 11731 * that need to receive side-band records. 11732 * 11733 * This avoids having to scan all the various PMU per-cpu contexts 11734 * looking for them. 11735 */ 11736 static void account_pmu_sb_event(struct perf_event *event) 11737 { 11738 if (is_sb_event(event)) 11739 attach_sb_event(event); 11740 } 11741 11742 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11743 static void account_freq_event_nohz(void) 11744 { 11745 #ifdef CONFIG_NO_HZ_FULL 11746 /* Lock so we don't race with concurrent unaccount */ 11747 spin_lock(&nr_freq_lock); 11748 if (atomic_inc_return(&nr_freq_events) == 1) 11749 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11750 spin_unlock(&nr_freq_lock); 11751 #endif 11752 } 11753 11754 static void account_freq_event(void) 11755 { 11756 if (tick_nohz_full_enabled()) 11757 account_freq_event_nohz(); 11758 else 11759 atomic_inc(&nr_freq_events); 11760 } 11761 11762 11763 static void account_event(struct perf_event *event) 11764 { 11765 bool inc = false; 11766 11767 if (event->parent) 11768 return; 11769 11770 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11771 inc = true; 11772 if (event->attr.mmap || event->attr.mmap_data) 11773 atomic_inc(&nr_mmap_events); 11774 if (event->attr.build_id) 11775 atomic_inc(&nr_build_id_events); 11776 if (event->attr.comm) 11777 atomic_inc(&nr_comm_events); 11778 if (event->attr.namespaces) 11779 atomic_inc(&nr_namespaces_events); 11780 if (event->attr.cgroup) 11781 atomic_inc(&nr_cgroup_events); 11782 if (event->attr.task) 11783 atomic_inc(&nr_task_events); 11784 if (event->attr.freq) 11785 account_freq_event(); 11786 if (event->attr.context_switch) { 11787 atomic_inc(&nr_switch_events); 11788 inc = true; 11789 } 11790 if (has_branch_stack(event)) 11791 inc = true; 11792 if (is_cgroup_event(event)) 11793 inc = true; 11794 if (event->attr.ksymbol) 11795 atomic_inc(&nr_ksymbol_events); 11796 if (event->attr.bpf_event) 11797 atomic_inc(&nr_bpf_events); 11798 if (event->attr.text_poke) 11799 atomic_inc(&nr_text_poke_events); 11800 11801 if (inc) { 11802 /* 11803 * We need the mutex here because static_branch_enable() 11804 * must complete *before* the perf_sched_count increment 11805 * becomes visible. 11806 */ 11807 if (atomic_inc_not_zero(&perf_sched_count)) 11808 goto enabled; 11809 11810 mutex_lock(&perf_sched_mutex); 11811 if (!atomic_read(&perf_sched_count)) { 11812 static_branch_enable(&perf_sched_events); 11813 /* 11814 * Guarantee that all CPUs observe they key change and 11815 * call the perf scheduling hooks before proceeding to 11816 * install events that need them. 11817 */ 11818 synchronize_rcu(); 11819 } 11820 /* 11821 * Now that we have waited for the sync_sched(), allow further 11822 * increments to by-pass the mutex. 11823 */ 11824 atomic_inc(&perf_sched_count); 11825 mutex_unlock(&perf_sched_mutex); 11826 } 11827 enabled: 11828 11829 account_pmu_sb_event(event); 11830 } 11831 11832 /* 11833 * Allocate and initialize an event structure 11834 */ 11835 static struct perf_event * 11836 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11837 struct task_struct *task, 11838 struct perf_event *group_leader, 11839 struct perf_event *parent_event, 11840 perf_overflow_handler_t overflow_handler, 11841 void *context, int cgroup_fd) 11842 { 11843 struct pmu *pmu; 11844 struct perf_event *event; 11845 struct hw_perf_event *hwc; 11846 long err = -EINVAL; 11847 int node; 11848 11849 if ((unsigned)cpu >= nr_cpu_ids) { 11850 if (!task || cpu != -1) 11851 return ERR_PTR(-EINVAL); 11852 } 11853 if (attr->sigtrap && !task) { 11854 /* Requires a task: avoid signalling random tasks. */ 11855 return ERR_PTR(-EINVAL); 11856 } 11857 11858 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11859 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11860 node); 11861 if (!event) 11862 return ERR_PTR(-ENOMEM); 11863 11864 /* 11865 * Single events are their own group leaders, with an 11866 * empty sibling list: 11867 */ 11868 if (!group_leader) 11869 group_leader = event; 11870 11871 mutex_init(&event->child_mutex); 11872 INIT_LIST_HEAD(&event->child_list); 11873 11874 INIT_LIST_HEAD(&event->event_entry); 11875 INIT_LIST_HEAD(&event->sibling_list); 11876 INIT_LIST_HEAD(&event->active_list); 11877 init_event_group(event); 11878 INIT_LIST_HEAD(&event->rb_entry); 11879 INIT_LIST_HEAD(&event->active_entry); 11880 INIT_LIST_HEAD(&event->addr_filters.list); 11881 INIT_HLIST_NODE(&event->hlist_entry); 11882 11883 11884 init_waitqueue_head(&event->waitq); 11885 init_irq_work(&event->pending_irq, perf_pending_irq); 11886 init_task_work(&event->pending_task, perf_pending_task); 11887 11888 mutex_init(&event->mmap_mutex); 11889 raw_spin_lock_init(&event->addr_filters.lock); 11890 11891 atomic_long_set(&event->refcount, 1); 11892 event->cpu = cpu; 11893 event->attr = *attr; 11894 event->group_leader = group_leader; 11895 event->pmu = NULL; 11896 event->oncpu = -1; 11897 11898 event->parent = parent_event; 11899 11900 event->ns = get_pid_ns(task_active_pid_ns(current)); 11901 event->id = atomic64_inc_return(&perf_event_id); 11902 11903 event->state = PERF_EVENT_STATE_INACTIVE; 11904 11905 if (parent_event) 11906 event->event_caps = parent_event->event_caps; 11907 11908 if (task) { 11909 event->attach_state = PERF_ATTACH_TASK; 11910 /* 11911 * XXX pmu::event_init needs to know what task to account to 11912 * and we cannot use the ctx information because we need the 11913 * pmu before we get a ctx. 11914 */ 11915 event->hw.target = get_task_struct(task); 11916 } 11917 11918 event->clock = &local_clock; 11919 if (parent_event) 11920 event->clock = parent_event->clock; 11921 11922 if (!overflow_handler && parent_event) { 11923 overflow_handler = parent_event->overflow_handler; 11924 context = parent_event->overflow_handler_context; 11925 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11926 if (overflow_handler == bpf_overflow_handler) { 11927 struct bpf_prog *prog = parent_event->prog; 11928 11929 bpf_prog_inc(prog); 11930 event->prog = prog; 11931 event->orig_overflow_handler = 11932 parent_event->orig_overflow_handler; 11933 } 11934 #endif 11935 } 11936 11937 if (overflow_handler) { 11938 event->overflow_handler = overflow_handler; 11939 event->overflow_handler_context = context; 11940 } else if (is_write_backward(event)){ 11941 event->overflow_handler = perf_event_output_backward; 11942 event->overflow_handler_context = NULL; 11943 } else { 11944 event->overflow_handler = perf_event_output_forward; 11945 event->overflow_handler_context = NULL; 11946 } 11947 11948 perf_event__state_init(event); 11949 11950 pmu = NULL; 11951 11952 hwc = &event->hw; 11953 hwc->sample_period = attr->sample_period; 11954 if (attr->freq && attr->sample_freq) 11955 hwc->sample_period = 1; 11956 hwc->last_period = hwc->sample_period; 11957 11958 local64_set(&hwc->period_left, hwc->sample_period); 11959 11960 /* 11961 * We currently do not support PERF_SAMPLE_READ on inherited events. 11962 * See perf_output_read(). 11963 */ 11964 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11965 goto err_ns; 11966 11967 if (!has_branch_stack(event)) 11968 event->attr.branch_sample_type = 0; 11969 11970 pmu = perf_init_event(event); 11971 if (IS_ERR(pmu)) { 11972 err = PTR_ERR(pmu); 11973 goto err_ns; 11974 } 11975 11976 /* 11977 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 11978 * events (they don't make sense as the cgroup will be different 11979 * on other CPUs in the uncore mask). 11980 */ 11981 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 11982 err = -EINVAL; 11983 goto err_pmu; 11984 } 11985 11986 if (event->attr.aux_output && 11987 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11988 err = -EOPNOTSUPP; 11989 goto err_pmu; 11990 } 11991 11992 if (cgroup_fd != -1) { 11993 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11994 if (err) 11995 goto err_pmu; 11996 } 11997 11998 err = exclusive_event_init(event); 11999 if (err) 12000 goto err_pmu; 12001 12002 if (has_addr_filter(event)) { 12003 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12004 sizeof(struct perf_addr_filter_range), 12005 GFP_KERNEL); 12006 if (!event->addr_filter_ranges) { 12007 err = -ENOMEM; 12008 goto err_per_task; 12009 } 12010 12011 /* 12012 * Clone the parent's vma offsets: they are valid until exec() 12013 * even if the mm is not shared with the parent. 12014 */ 12015 if (event->parent) { 12016 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12017 12018 raw_spin_lock_irq(&ifh->lock); 12019 memcpy(event->addr_filter_ranges, 12020 event->parent->addr_filter_ranges, 12021 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12022 raw_spin_unlock_irq(&ifh->lock); 12023 } 12024 12025 /* force hw sync on the address filters */ 12026 event->addr_filters_gen = 1; 12027 } 12028 12029 if (!event->parent) { 12030 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12031 err = get_callchain_buffers(attr->sample_max_stack); 12032 if (err) 12033 goto err_addr_filters; 12034 } 12035 } 12036 12037 err = security_perf_event_alloc(event); 12038 if (err) 12039 goto err_callchain_buffer; 12040 12041 /* symmetric to unaccount_event() in _free_event() */ 12042 account_event(event); 12043 12044 return event; 12045 12046 err_callchain_buffer: 12047 if (!event->parent) { 12048 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12049 put_callchain_buffers(); 12050 } 12051 err_addr_filters: 12052 kfree(event->addr_filter_ranges); 12053 12054 err_per_task: 12055 exclusive_event_destroy(event); 12056 12057 err_pmu: 12058 if (is_cgroup_event(event)) 12059 perf_detach_cgroup(event); 12060 if (event->destroy) 12061 event->destroy(event); 12062 module_put(pmu->module); 12063 err_ns: 12064 if (event->hw.target) 12065 put_task_struct(event->hw.target); 12066 call_rcu(&event->rcu_head, free_event_rcu); 12067 12068 return ERR_PTR(err); 12069 } 12070 12071 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12072 struct perf_event_attr *attr) 12073 { 12074 u32 size; 12075 int ret; 12076 12077 /* Zero the full structure, so that a short copy will be nice. */ 12078 memset(attr, 0, sizeof(*attr)); 12079 12080 ret = get_user(size, &uattr->size); 12081 if (ret) 12082 return ret; 12083 12084 /* ABI compatibility quirk: */ 12085 if (!size) 12086 size = PERF_ATTR_SIZE_VER0; 12087 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12088 goto err_size; 12089 12090 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12091 if (ret) { 12092 if (ret == -E2BIG) 12093 goto err_size; 12094 return ret; 12095 } 12096 12097 attr->size = size; 12098 12099 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12100 return -EINVAL; 12101 12102 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12103 return -EINVAL; 12104 12105 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12106 return -EINVAL; 12107 12108 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12109 u64 mask = attr->branch_sample_type; 12110 12111 /* only using defined bits */ 12112 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12113 return -EINVAL; 12114 12115 /* at least one branch bit must be set */ 12116 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12117 return -EINVAL; 12118 12119 /* propagate priv level, when not set for branch */ 12120 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12121 12122 /* exclude_kernel checked on syscall entry */ 12123 if (!attr->exclude_kernel) 12124 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12125 12126 if (!attr->exclude_user) 12127 mask |= PERF_SAMPLE_BRANCH_USER; 12128 12129 if (!attr->exclude_hv) 12130 mask |= PERF_SAMPLE_BRANCH_HV; 12131 /* 12132 * adjust user setting (for HW filter setup) 12133 */ 12134 attr->branch_sample_type = mask; 12135 } 12136 /* privileged levels capture (kernel, hv): check permissions */ 12137 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12138 ret = perf_allow_kernel(attr); 12139 if (ret) 12140 return ret; 12141 } 12142 } 12143 12144 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12145 ret = perf_reg_validate(attr->sample_regs_user); 12146 if (ret) 12147 return ret; 12148 } 12149 12150 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12151 if (!arch_perf_have_user_stack_dump()) 12152 return -ENOSYS; 12153 12154 /* 12155 * We have __u32 type for the size, but so far 12156 * we can only use __u16 as maximum due to the 12157 * __u16 sample size limit. 12158 */ 12159 if (attr->sample_stack_user >= USHRT_MAX) 12160 return -EINVAL; 12161 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12162 return -EINVAL; 12163 } 12164 12165 if (!attr->sample_max_stack) 12166 attr->sample_max_stack = sysctl_perf_event_max_stack; 12167 12168 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12169 ret = perf_reg_validate(attr->sample_regs_intr); 12170 12171 #ifndef CONFIG_CGROUP_PERF 12172 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12173 return -EINVAL; 12174 #endif 12175 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12176 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12177 return -EINVAL; 12178 12179 if (!attr->inherit && attr->inherit_thread) 12180 return -EINVAL; 12181 12182 if (attr->remove_on_exec && attr->enable_on_exec) 12183 return -EINVAL; 12184 12185 if (attr->sigtrap && !attr->remove_on_exec) 12186 return -EINVAL; 12187 12188 out: 12189 return ret; 12190 12191 err_size: 12192 put_user(sizeof(*attr), &uattr->size); 12193 ret = -E2BIG; 12194 goto out; 12195 } 12196 12197 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12198 { 12199 if (b < a) 12200 swap(a, b); 12201 12202 mutex_lock(a); 12203 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12204 } 12205 12206 static int 12207 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12208 { 12209 struct perf_buffer *rb = NULL; 12210 int ret = -EINVAL; 12211 12212 if (!output_event) { 12213 mutex_lock(&event->mmap_mutex); 12214 goto set; 12215 } 12216 12217 /* don't allow circular references */ 12218 if (event == output_event) 12219 goto out; 12220 12221 /* 12222 * Don't allow cross-cpu buffers 12223 */ 12224 if (output_event->cpu != event->cpu) 12225 goto out; 12226 12227 /* 12228 * If its not a per-cpu rb, it must be the same task. 12229 */ 12230 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12231 goto out; 12232 12233 /* 12234 * Mixing clocks in the same buffer is trouble you don't need. 12235 */ 12236 if (output_event->clock != event->clock) 12237 goto out; 12238 12239 /* 12240 * Either writing ring buffer from beginning or from end. 12241 * Mixing is not allowed. 12242 */ 12243 if (is_write_backward(output_event) != is_write_backward(event)) 12244 goto out; 12245 12246 /* 12247 * If both events generate aux data, they must be on the same PMU 12248 */ 12249 if (has_aux(event) && has_aux(output_event) && 12250 event->pmu != output_event->pmu) 12251 goto out; 12252 12253 /* 12254 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12255 * output_event is already on rb->event_list, and the list iteration 12256 * restarts after every removal, it is guaranteed this new event is 12257 * observed *OR* if output_event is already removed, it's guaranteed we 12258 * observe !rb->mmap_count. 12259 */ 12260 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12261 set: 12262 /* Can't redirect output if we've got an active mmap() */ 12263 if (atomic_read(&event->mmap_count)) 12264 goto unlock; 12265 12266 if (output_event) { 12267 /* get the rb we want to redirect to */ 12268 rb = ring_buffer_get(output_event); 12269 if (!rb) 12270 goto unlock; 12271 12272 /* did we race against perf_mmap_close() */ 12273 if (!atomic_read(&rb->mmap_count)) { 12274 ring_buffer_put(rb); 12275 goto unlock; 12276 } 12277 } 12278 12279 ring_buffer_attach(event, rb); 12280 12281 ret = 0; 12282 unlock: 12283 mutex_unlock(&event->mmap_mutex); 12284 if (output_event) 12285 mutex_unlock(&output_event->mmap_mutex); 12286 12287 out: 12288 return ret; 12289 } 12290 12291 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12292 { 12293 bool nmi_safe = false; 12294 12295 switch (clk_id) { 12296 case CLOCK_MONOTONIC: 12297 event->clock = &ktime_get_mono_fast_ns; 12298 nmi_safe = true; 12299 break; 12300 12301 case CLOCK_MONOTONIC_RAW: 12302 event->clock = &ktime_get_raw_fast_ns; 12303 nmi_safe = true; 12304 break; 12305 12306 case CLOCK_REALTIME: 12307 event->clock = &ktime_get_real_ns; 12308 break; 12309 12310 case CLOCK_BOOTTIME: 12311 event->clock = &ktime_get_boottime_ns; 12312 break; 12313 12314 case CLOCK_TAI: 12315 event->clock = &ktime_get_clocktai_ns; 12316 break; 12317 12318 default: 12319 return -EINVAL; 12320 } 12321 12322 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12323 return -EINVAL; 12324 12325 return 0; 12326 } 12327 12328 static bool 12329 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12330 { 12331 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12332 bool is_capable = perfmon_capable(); 12333 12334 if (attr->sigtrap) { 12335 /* 12336 * perf_event_attr::sigtrap sends signals to the other task. 12337 * Require the current task to also have CAP_KILL. 12338 */ 12339 rcu_read_lock(); 12340 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12341 rcu_read_unlock(); 12342 12343 /* 12344 * If the required capabilities aren't available, checks for 12345 * ptrace permissions: upgrade to ATTACH, since sending signals 12346 * can effectively change the target task. 12347 */ 12348 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12349 } 12350 12351 /* 12352 * Preserve ptrace permission check for backwards compatibility. The 12353 * ptrace check also includes checks that the current task and other 12354 * task have matching uids, and is therefore not done here explicitly. 12355 */ 12356 return is_capable || ptrace_may_access(task, ptrace_mode); 12357 } 12358 12359 /** 12360 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12361 * 12362 * @attr_uptr: event_id type attributes for monitoring/sampling 12363 * @pid: target pid 12364 * @cpu: target cpu 12365 * @group_fd: group leader event fd 12366 * @flags: perf event open flags 12367 */ 12368 SYSCALL_DEFINE5(perf_event_open, 12369 struct perf_event_attr __user *, attr_uptr, 12370 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12371 { 12372 struct perf_event *group_leader = NULL, *output_event = NULL; 12373 struct perf_event_pmu_context *pmu_ctx; 12374 struct perf_event *event, *sibling; 12375 struct perf_event_attr attr; 12376 struct perf_event_context *ctx; 12377 struct file *event_file = NULL; 12378 struct fd group = {NULL, 0}; 12379 struct task_struct *task = NULL; 12380 struct pmu *pmu; 12381 int event_fd; 12382 int move_group = 0; 12383 int err; 12384 int f_flags = O_RDWR; 12385 int cgroup_fd = -1; 12386 12387 /* for future expandability... */ 12388 if (flags & ~PERF_FLAG_ALL) 12389 return -EINVAL; 12390 12391 err = perf_copy_attr(attr_uptr, &attr); 12392 if (err) 12393 return err; 12394 12395 /* Do we allow access to perf_event_open(2) ? */ 12396 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12397 if (err) 12398 return err; 12399 12400 if (!attr.exclude_kernel) { 12401 err = perf_allow_kernel(&attr); 12402 if (err) 12403 return err; 12404 } 12405 12406 if (attr.namespaces) { 12407 if (!perfmon_capable()) 12408 return -EACCES; 12409 } 12410 12411 if (attr.freq) { 12412 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12413 return -EINVAL; 12414 } else { 12415 if (attr.sample_period & (1ULL << 63)) 12416 return -EINVAL; 12417 } 12418 12419 /* Only privileged users can get physical addresses */ 12420 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12421 err = perf_allow_kernel(&attr); 12422 if (err) 12423 return err; 12424 } 12425 12426 /* REGS_INTR can leak data, lockdown must prevent this */ 12427 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12428 err = security_locked_down(LOCKDOWN_PERF); 12429 if (err) 12430 return err; 12431 } 12432 12433 /* 12434 * In cgroup mode, the pid argument is used to pass the fd 12435 * opened to the cgroup directory in cgroupfs. The cpu argument 12436 * designates the cpu on which to monitor threads from that 12437 * cgroup. 12438 */ 12439 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12440 return -EINVAL; 12441 12442 if (flags & PERF_FLAG_FD_CLOEXEC) 12443 f_flags |= O_CLOEXEC; 12444 12445 event_fd = get_unused_fd_flags(f_flags); 12446 if (event_fd < 0) 12447 return event_fd; 12448 12449 if (group_fd != -1) { 12450 err = perf_fget_light(group_fd, &group); 12451 if (err) 12452 goto err_fd; 12453 group_leader = group.file->private_data; 12454 if (flags & PERF_FLAG_FD_OUTPUT) 12455 output_event = group_leader; 12456 if (flags & PERF_FLAG_FD_NO_GROUP) 12457 group_leader = NULL; 12458 } 12459 12460 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12461 task = find_lively_task_by_vpid(pid); 12462 if (IS_ERR(task)) { 12463 err = PTR_ERR(task); 12464 goto err_group_fd; 12465 } 12466 } 12467 12468 if (task && group_leader && 12469 group_leader->attr.inherit != attr.inherit) { 12470 err = -EINVAL; 12471 goto err_task; 12472 } 12473 12474 if (flags & PERF_FLAG_PID_CGROUP) 12475 cgroup_fd = pid; 12476 12477 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12478 NULL, NULL, cgroup_fd); 12479 if (IS_ERR(event)) { 12480 err = PTR_ERR(event); 12481 goto err_task; 12482 } 12483 12484 if (is_sampling_event(event)) { 12485 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12486 err = -EOPNOTSUPP; 12487 goto err_alloc; 12488 } 12489 } 12490 12491 /* 12492 * Special case software events and allow them to be part of 12493 * any hardware group. 12494 */ 12495 pmu = event->pmu; 12496 12497 if (attr.use_clockid) { 12498 err = perf_event_set_clock(event, attr.clockid); 12499 if (err) 12500 goto err_alloc; 12501 } 12502 12503 if (pmu->task_ctx_nr == perf_sw_context) 12504 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12505 12506 if (task) { 12507 err = down_read_interruptible(&task->signal->exec_update_lock); 12508 if (err) 12509 goto err_alloc; 12510 12511 /* 12512 * We must hold exec_update_lock across this and any potential 12513 * perf_install_in_context() call for this new event to 12514 * serialize against exec() altering our credentials (and the 12515 * perf_event_exit_task() that could imply). 12516 */ 12517 err = -EACCES; 12518 if (!perf_check_permission(&attr, task)) 12519 goto err_cred; 12520 } 12521 12522 /* 12523 * Get the target context (task or percpu): 12524 */ 12525 ctx = find_get_context(task, event); 12526 if (IS_ERR(ctx)) { 12527 err = PTR_ERR(ctx); 12528 goto err_cred; 12529 } 12530 12531 mutex_lock(&ctx->mutex); 12532 12533 if (ctx->task == TASK_TOMBSTONE) { 12534 err = -ESRCH; 12535 goto err_locked; 12536 } 12537 12538 if (!task) { 12539 /* 12540 * Check if the @cpu we're creating an event for is online. 12541 * 12542 * We use the perf_cpu_context::ctx::mutex to serialize against 12543 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12544 */ 12545 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12546 12547 if (!cpuctx->online) { 12548 err = -ENODEV; 12549 goto err_locked; 12550 } 12551 } 12552 12553 if (group_leader) { 12554 err = -EINVAL; 12555 12556 /* 12557 * Do not allow a recursive hierarchy (this new sibling 12558 * becoming part of another group-sibling): 12559 */ 12560 if (group_leader->group_leader != group_leader) 12561 goto err_locked; 12562 12563 /* All events in a group should have the same clock */ 12564 if (group_leader->clock != event->clock) 12565 goto err_locked; 12566 12567 /* 12568 * Make sure we're both events for the same CPU; 12569 * grouping events for different CPUs is broken; since 12570 * you can never concurrently schedule them anyhow. 12571 */ 12572 if (group_leader->cpu != event->cpu) 12573 goto err_locked; 12574 12575 /* 12576 * Make sure we're both on the same context; either task or cpu. 12577 */ 12578 if (group_leader->ctx != ctx) 12579 goto err_locked; 12580 12581 /* 12582 * Only a group leader can be exclusive or pinned 12583 */ 12584 if (attr.exclusive || attr.pinned) 12585 goto err_locked; 12586 12587 if (is_software_event(event) && 12588 !in_software_context(group_leader)) { 12589 /* 12590 * If the event is a sw event, but the group_leader 12591 * is on hw context. 12592 * 12593 * Allow the addition of software events to hw 12594 * groups, this is safe because software events 12595 * never fail to schedule. 12596 * 12597 * Note the comment that goes with struct 12598 * perf_event_pmu_context. 12599 */ 12600 pmu = group_leader->pmu_ctx->pmu; 12601 } else if (!is_software_event(event)) { 12602 if (is_software_event(group_leader) && 12603 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12604 /* 12605 * In case the group is a pure software group, and we 12606 * try to add a hardware event, move the whole group to 12607 * the hardware context. 12608 */ 12609 move_group = 1; 12610 } 12611 12612 /* Don't allow group of multiple hw events from different pmus */ 12613 if (!in_software_context(group_leader) && 12614 group_leader->pmu_ctx->pmu != pmu) 12615 goto err_locked; 12616 } 12617 } 12618 12619 /* 12620 * Now that we're certain of the pmu; find the pmu_ctx. 12621 */ 12622 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12623 if (IS_ERR(pmu_ctx)) { 12624 err = PTR_ERR(pmu_ctx); 12625 goto err_locked; 12626 } 12627 event->pmu_ctx = pmu_ctx; 12628 12629 if (output_event) { 12630 err = perf_event_set_output(event, output_event); 12631 if (err) 12632 goto err_context; 12633 } 12634 12635 if (!perf_event_validate_size(event)) { 12636 err = -E2BIG; 12637 goto err_context; 12638 } 12639 12640 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12641 err = -EINVAL; 12642 goto err_context; 12643 } 12644 12645 /* 12646 * Must be under the same ctx::mutex as perf_install_in_context(), 12647 * because we need to serialize with concurrent event creation. 12648 */ 12649 if (!exclusive_event_installable(event, ctx)) { 12650 err = -EBUSY; 12651 goto err_context; 12652 } 12653 12654 WARN_ON_ONCE(ctx->parent_ctx); 12655 12656 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12657 if (IS_ERR(event_file)) { 12658 err = PTR_ERR(event_file); 12659 event_file = NULL; 12660 goto err_context; 12661 } 12662 12663 /* 12664 * This is the point on no return; we cannot fail hereafter. This is 12665 * where we start modifying current state. 12666 */ 12667 12668 if (move_group) { 12669 perf_remove_from_context(group_leader, 0); 12670 put_pmu_ctx(group_leader->pmu_ctx); 12671 12672 for_each_sibling_event(sibling, group_leader) { 12673 perf_remove_from_context(sibling, 0); 12674 put_pmu_ctx(sibling->pmu_ctx); 12675 } 12676 12677 /* 12678 * Install the group siblings before the group leader. 12679 * 12680 * Because a group leader will try and install the entire group 12681 * (through the sibling list, which is still in-tact), we can 12682 * end up with siblings installed in the wrong context. 12683 * 12684 * By installing siblings first we NO-OP because they're not 12685 * reachable through the group lists. 12686 */ 12687 for_each_sibling_event(sibling, group_leader) { 12688 sibling->pmu_ctx = pmu_ctx; 12689 get_pmu_ctx(pmu_ctx); 12690 perf_event__state_init(sibling); 12691 perf_install_in_context(ctx, sibling, sibling->cpu); 12692 } 12693 12694 /* 12695 * Removing from the context ends up with disabled 12696 * event. What we want here is event in the initial 12697 * startup state, ready to be add into new context. 12698 */ 12699 group_leader->pmu_ctx = pmu_ctx; 12700 get_pmu_ctx(pmu_ctx); 12701 perf_event__state_init(group_leader); 12702 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12703 } 12704 12705 /* 12706 * Precalculate sample_data sizes; do while holding ctx::mutex such 12707 * that we're serialized against further additions and before 12708 * perf_install_in_context() which is the point the event is active and 12709 * can use these values. 12710 */ 12711 perf_event__header_size(event); 12712 perf_event__id_header_size(event); 12713 12714 event->owner = current; 12715 12716 perf_install_in_context(ctx, event, event->cpu); 12717 perf_unpin_context(ctx); 12718 12719 mutex_unlock(&ctx->mutex); 12720 12721 if (task) { 12722 up_read(&task->signal->exec_update_lock); 12723 put_task_struct(task); 12724 } 12725 12726 mutex_lock(¤t->perf_event_mutex); 12727 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12728 mutex_unlock(¤t->perf_event_mutex); 12729 12730 /* 12731 * Drop the reference on the group_event after placing the 12732 * new event on the sibling_list. This ensures destruction 12733 * of the group leader will find the pointer to itself in 12734 * perf_group_detach(). 12735 */ 12736 fdput(group); 12737 fd_install(event_fd, event_file); 12738 return event_fd; 12739 12740 err_context: 12741 put_pmu_ctx(event->pmu_ctx); 12742 event->pmu_ctx = NULL; /* _free_event() */ 12743 err_locked: 12744 mutex_unlock(&ctx->mutex); 12745 perf_unpin_context(ctx); 12746 put_ctx(ctx); 12747 err_cred: 12748 if (task) 12749 up_read(&task->signal->exec_update_lock); 12750 err_alloc: 12751 free_event(event); 12752 err_task: 12753 if (task) 12754 put_task_struct(task); 12755 err_group_fd: 12756 fdput(group); 12757 err_fd: 12758 put_unused_fd(event_fd); 12759 return err; 12760 } 12761 12762 /** 12763 * perf_event_create_kernel_counter 12764 * 12765 * @attr: attributes of the counter to create 12766 * @cpu: cpu in which the counter is bound 12767 * @task: task to profile (NULL for percpu) 12768 * @overflow_handler: callback to trigger when we hit the event 12769 * @context: context data could be used in overflow_handler callback 12770 */ 12771 struct perf_event * 12772 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12773 struct task_struct *task, 12774 perf_overflow_handler_t overflow_handler, 12775 void *context) 12776 { 12777 struct perf_event_pmu_context *pmu_ctx; 12778 struct perf_event_context *ctx; 12779 struct perf_event *event; 12780 struct pmu *pmu; 12781 int err; 12782 12783 /* 12784 * Grouping is not supported for kernel events, neither is 'AUX', 12785 * make sure the caller's intentions are adjusted. 12786 */ 12787 if (attr->aux_output) 12788 return ERR_PTR(-EINVAL); 12789 12790 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12791 overflow_handler, context, -1); 12792 if (IS_ERR(event)) { 12793 err = PTR_ERR(event); 12794 goto err; 12795 } 12796 12797 /* Mark owner so we could distinguish it from user events. */ 12798 event->owner = TASK_TOMBSTONE; 12799 pmu = event->pmu; 12800 12801 if (pmu->task_ctx_nr == perf_sw_context) 12802 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12803 12804 /* 12805 * Get the target context (task or percpu): 12806 */ 12807 ctx = find_get_context(task, event); 12808 if (IS_ERR(ctx)) { 12809 err = PTR_ERR(ctx); 12810 goto err_alloc; 12811 } 12812 12813 WARN_ON_ONCE(ctx->parent_ctx); 12814 mutex_lock(&ctx->mutex); 12815 if (ctx->task == TASK_TOMBSTONE) { 12816 err = -ESRCH; 12817 goto err_unlock; 12818 } 12819 12820 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12821 if (IS_ERR(pmu_ctx)) { 12822 err = PTR_ERR(pmu_ctx); 12823 goto err_unlock; 12824 } 12825 event->pmu_ctx = pmu_ctx; 12826 12827 if (!task) { 12828 /* 12829 * Check if the @cpu we're creating an event for is online. 12830 * 12831 * We use the perf_cpu_context::ctx::mutex to serialize against 12832 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12833 */ 12834 struct perf_cpu_context *cpuctx = 12835 container_of(ctx, struct perf_cpu_context, ctx); 12836 if (!cpuctx->online) { 12837 err = -ENODEV; 12838 goto err_pmu_ctx; 12839 } 12840 } 12841 12842 if (!exclusive_event_installable(event, ctx)) { 12843 err = -EBUSY; 12844 goto err_pmu_ctx; 12845 } 12846 12847 perf_install_in_context(ctx, event, event->cpu); 12848 perf_unpin_context(ctx); 12849 mutex_unlock(&ctx->mutex); 12850 12851 return event; 12852 12853 err_pmu_ctx: 12854 put_pmu_ctx(pmu_ctx); 12855 event->pmu_ctx = NULL; /* _free_event() */ 12856 err_unlock: 12857 mutex_unlock(&ctx->mutex); 12858 perf_unpin_context(ctx); 12859 put_ctx(ctx); 12860 err_alloc: 12861 free_event(event); 12862 err: 12863 return ERR_PTR(err); 12864 } 12865 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12866 12867 static void __perf_pmu_remove(struct perf_event_context *ctx, 12868 int cpu, struct pmu *pmu, 12869 struct perf_event_groups *groups, 12870 struct list_head *events) 12871 { 12872 struct perf_event *event, *sibling; 12873 12874 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12875 perf_remove_from_context(event, 0); 12876 put_pmu_ctx(event->pmu_ctx); 12877 list_add(&event->migrate_entry, events); 12878 12879 for_each_sibling_event(sibling, event) { 12880 perf_remove_from_context(sibling, 0); 12881 put_pmu_ctx(sibling->pmu_ctx); 12882 list_add(&sibling->migrate_entry, events); 12883 } 12884 } 12885 } 12886 12887 static void __perf_pmu_install_event(struct pmu *pmu, 12888 struct perf_event_context *ctx, 12889 int cpu, struct perf_event *event) 12890 { 12891 struct perf_event_pmu_context *epc; 12892 12893 event->cpu = cpu; 12894 epc = find_get_pmu_context(pmu, ctx, event); 12895 event->pmu_ctx = epc; 12896 12897 if (event->state >= PERF_EVENT_STATE_OFF) 12898 event->state = PERF_EVENT_STATE_INACTIVE; 12899 perf_install_in_context(ctx, event, cpu); 12900 } 12901 12902 static void __perf_pmu_install(struct perf_event_context *ctx, 12903 int cpu, struct pmu *pmu, struct list_head *events) 12904 { 12905 struct perf_event *event, *tmp; 12906 12907 /* 12908 * Re-instate events in 2 passes. 12909 * 12910 * Skip over group leaders and only install siblings on this first 12911 * pass, siblings will not get enabled without a leader, however a 12912 * leader will enable its siblings, even if those are still on the old 12913 * context. 12914 */ 12915 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12916 if (event->group_leader == event) 12917 continue; 12918 12919 list_del(&event->migrate_entry); 12920 __perf_pmu_install_event(pmu, ctx, cpu, event); 12921 } 12922 12923 /* 12924 * Once all the siblings are setup properly, install the group leaders 12925 * to make it go. 12926 */ 12927 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12928 list_del(&event->migrate_entry); 12929 __perf_pmu_install_event(pmu, ctx, cpu, event); 12930 } 12931 } 12932 12933 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12934 { 12935 struct perf_event_context *src_ctx, *dst_ctx; 12936 LIST_HEAD(events); 12937 12938 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12939 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12940 12941 /* 12942 * See perf_event_ctx_lock() for comments on the details 12943 * of swizzling perf_event::ctx. 12944 */ 12945 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12946 12947 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12948 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12949 12950 if (!list_empty(&events)) { 12951 /* 12952 * Wait for the events to quiesce before re-instating them. 12953 */ 12954 synchronize_rcu(); 12955 12956 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 12957 } 12958 12959 mutex_unlock(&dst_ctx->mutex); 12960 mutex_unlock(&src_ctx->mutex); 12961 } 12962 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12963 12964 static void sync_child_event(struct perf_event *child_event) 12965 { 12966 struct perf_event *parent_event = child_event->parent; 12967 u64 child_val; 12968 12969 if (child_event->attr.inherit_stat) { 12970 struct task_struct *task = child_event->ctx->task; 12971 12972 if (task && task != TASK_TOMBSTONE) 12973 perf_event_read_event(child_event, task); 12974 } 12975 12976 child_val = perf_event_count(child_event); 12977 12978 /* 12979 * Add back the child's count to the parent's count: 12980 */ 12981 atomic64_add(child_val, &parent_event->child_count); 12982 atomic64_add(child_event->total_time_enabled, 12983 &parent_event->child_total_time_enabled); 12984 atomic64_add(child_event->total_time_running, 12985 &parent_event->child_total_time_running); 12986 } 12987 12988 static void 12989 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12990 { 12991 struct perf_event *parent_event = event->parent; 12992 unsigned long detach_flags = 0; 12993 12994 if (parent_event) { 12995 /* 12996 * Do not destroy the 'original' grouping; because of the 12997 * context switch optimization the original events could've 12998 * ended up in a random child task. 12999 * 13000 * If we were to destroy the original group, all group related 13001 * operations would cease to function properly after this 13002 * random child dies. 13003 * 13004 * Do destroy all inherited groups, we don't care about those 13005 * and being thorough is better. 13006 */ 13007 detach_flags = DETACH_GROUP | DETACH_CHILD; 13008 mutex_lock(&parent_event->child_mutex); 13009 } 13010 13011 perf_remove_from_context(event, detach_flags); 13012 13013 raw_spin_lock_irq(&ctx->lock); 13014 if (event->state > PERF_EVENT_STATE_EXIT) 13015 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13016 raw_spin_unlock_irq(&ctx->lock); 13017 13018 /* 13019 * Child events can be freed. 13020 */ 13021 if (parent_event) { 13022 mutex_unlock(&parent_event->child_mutex); 13023 /* 13024 * Kick perf_poll() for is_event_hup(); 13025 */ 13026 perf_event_wakeup(parent_event); 13027 free_event(event); 13028 put_event(parent_event); 13029 return; 13030 } 13031 13032 /* 13033 * Parent events are governed by their filedesc, retain them. 13034 */ 13035 perf_event_wakeup(event); 13036 } 13037 13038 static void perf_event_exit_task_context(struct task_struct *child) 13039 { 13040 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13041 struct perf_event *child_event, *next; 13042 13043 WARN_ON_ONCE(child != current); 13044 13045 child_ctx = perf_pin_task_context(child); 13046 if (!child_ctx) 13047 return; 13048 13049 /* 13050 * In order to reduce the amount of tricky in ctx tear-down, we hold 13051 * ctx::mutex over the entire thing. This serializes against almost 13052 * everything that wants to access the ctx. 13053 * 13054 * The exception is sys_perf_event_open() / 13055 * perf_event_create_kernel_count() which does find_get_context() 13056 * without ctx::mutex (it cannot because of the move_group double mutex 13057 * lock thing). See the comments in perf_install_in_context(). 13058 */ 13059 mutex_lock(&child_ctx->mutex); 13060 13061 /* 13062 * In a single ctx::lock section, de-schedule the events and detach the 13063 * context from the task such that we cannot ever get it scheduled back 13064 * in. 13065 */ 13066 raw_spin_lock_irq(&child_ctx->lock); 13067 task_ctx_sched_out(child_ctx, EVENT_ALL); 13068 13069 /* 13070 * Now that the context is inactive, destroy the task <-> ctx relation 13071 * and mark the context dead. 13072 */ 13073 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13074 put_ctx(child_ctx); /* cannot be last */ 13075 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13076 put_task_struct(current); /* cannot be last */ 13077 13078 clone_ctx = unclone_ctx(child_ctx); 13079 raw_spin_unlock_irq(&child_ctx->lock); 13080 13081 if (clone_ctx) 13082 put_ctx(clone_ctx); 13083 13084 /* 13085 * Report the task dead after unscheduling the events so that we 13086 * won't get any samples after PERF_RECORD_EXIT. We can however still 13087 * get a few PERF_RECORD_READ events. 13088 */ 13089 perf_event_task(child, child_ctx, 0); 13090 13091 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13092 perf_event_exit_event(child_event, child_ctx); 13093 13094 mutex_unlock(&child_ctx->mutex); 13095 13096 put_ctx(child_ctx); 13097 } 13098 13099 /* 13100 * When a child task exits, feed back event values to parent events. 13101 * 13102 * Can be called with exec_update_lock held when called from 13103 * setup_new_exec(). 13104 */ 13105 void perf_event_exit_task(struct task_struct *child) 13106 { 13107 struct perf_event *event, *tmp; 13108 13109 mutex_lock(&child->perf_event_mutex); 13110 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13111 owner_entry) { 13112 list_del_init(&event->owner_entry); 13113 13114 /* 13115 * Ensure the list deletion is visible before we clear 13116 * the owner, closes a race against perf_release() where 13117 * we need to serialize on the owner->perf_event_mutex. 13118 */ 13119 smp_store_release(&event->owner, NULL); 13120 } 13121 mutex_unlock(&child->perf_event_mutex); 13122 13123 perf_event_exit_task_context(child); 13124 13125 /* 13126 * The perf_event_exit_task_context calls perf_event_task 13127 * with child's task_ctx, which generates EXIT events for 13128 * child contexts and sets child->perf_event_ctxp[] to NULL. 13129 * At this point we need to send EXIT events to cpu contexts. 13130 */ 13131 perf_event_task(child, NULL, 0); 13132 } 13133 13134 static void perf_free_event(struct perf_event *event, 13135 struct perf_event_context *ctx) 13136 { 13137 struct perf_event *parent = event->parent; 13138 13139 if (WARN_ON_ONCE(!parent)) 13140 return; 13141 13142 mutex_lock(&parent->child_mutex); 13143 list_del_init(&event->child_list); 13144 mutex_unlock(&parent->child_mutex); 13145 13146 put_event(parent); 13147 13148 raw_spin_lock_irq(&ctx->lock); 13149 perf_group_detach(event); 13150 list_del_event(event, ctx); 13151 raw_spin_unlock_irq(&ctx->lock); 13152 free_event(event); 13153 } 13154 13155 /* 13156 * Free a context as created by inheritance by perf_event_init_task() below, 13157 * used by fork() in case of fail. 13158 * 13159 * Even though the task has never lived, the context and events have been 13160 * exposed through the child_list, so we must take care tearing it all down. 13161 */ 13162 void perf_event_free_task(struct task_struct *task) 13163 { 13164 struct perf_event_context *ctx; 13165 struct perf_event *event, *tmp; 13166 13167 ctx = rcu_access_pointer(task->perf_event_ctxp); 13168 if (!ctx) 13169 return; 13170 13171 mutex_lock(&ctx->mutex); 13172 raw_spin_lock_irq(&ctx->lock); 13173 /* 13174 * Destroy the task <-> ctx relation and mark the context dead. 13175 * 13176 * This is important because even though the task hasn't been 13177 * exposed yet the context has been (through child_list). 13178 */ 13179 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13180 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13181 put_task_struct(task); /* cannot be last */ 13182 raw_spin_unlock_irq(&ctx->lock); 13183 13184 13185 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13186 perf_free_event(event, ctx); 13187 13188 mutex_unlock(&ctx->mutex); 13189 13190 /* 13191 * perf_event_release_kernel() could've stolen some of our 13192 * child events and still have them on its free_list. In that 13193 * case we must wait for these events to have been freed (in 13194 * particular all their references to this task must've been 13195 * dropped). 13196 * 13197 * Without this copy_process() will unconditionally free this 13198 * task (irrespective of its reference count) and 13199 * _free_event()'s put_task_struct(event->hw.target) will be a 13200 * use-after-free. 13201 * 13202 * Wait for all events to drop their context reference. 13203 */ 13204 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13205 put_ctx(ctx); /* must be last */ 13206 } 13207 13208 void perf_event_delayed_put(struct task_struct *task) 13209 { 13210 WARN_ON_ONCE(task->perf_event_ctxp); 13211 } 13212 13213 struct file *perf_event_get(unsigned int fd) 13214 { 13215 struct file *file = fget(fd); 13216 if (!file) 13217 return ERR_PTR(-EBADF); 13218 13219 if (file->f_op != &perf_fops) { 13220 fput(file); 13221 return ERR_PTR(-EBADF); 13222 } 13223 13224 return file; 13225 } 13226 13227 const struct perf_event *perf_get_event(struct file *file) 13228 { 13229 if (file->f_op != &perf_fops) 13230 return ERR_PTR(-EINVAL); 13231 13232 return file->private_data; 13233 } 13234 13235 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13236 { 13237 if (!event) 13238 return ERR_PTR(-EINVAL); 13239 13240 return &event->attr; 13241 } 13242 13243 /* 13244 * Inherit an event from parent task to child task. 13245 * 13246 * Returns: 13247 * - valid pointer on success 13248 * - NULL for orphaned events 13249 * - IS_ERR() on error 13250 */ 13251 static struct perf_event * 13252 inherit_event(struct perf_event *parent_event, 13253 struct task_struct *parent, 13254 struct perf_event_context *parent_ctx, 13255 struct task_struct *child, 13256 struct perf_event *group_leader, 13257 struct perf_event_context *child_ctx) 13258 { 13259 enum perf_event_state parent_state = parent_event->state; 13260 struct perf_event_pmu_context *pmu_ctx; 13261 struct perf_event *child_event; 13262 unsigned long flags; 13263 13264 /* 13265 * Instead of creating recursive hierarchies of events, 13266 * we link inherited events back to the original parent, 13267 * which has a filp for sure, which we use as the reference 13268 * count: 13269 */ 13270 if (parent_event->parent) 13271 parent_event = parent_event->parent; 13272 13273 child_event = perf_event_alloc(&parent_event->attr, 13274 parent_event->cpu, 13275 child, 13276 group_leader, parent_event, 13277 NULL, NULL, -1); 13278 if (IS_ERR(child_event)) 13279 return child_event; 13280 13281 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13282 if (IS_ERR(pmu_ctx)) { 13283 free_event(child_event); 13284 return ERR_CAST(pmu_ctx); 13285 } 13286 child_event->pmu_ctx = pmu_ctx; 13287 13288 /* 13289 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13290 * must be under the same lock in order to serialize against 13291 * perf_event_release_kernel(), such that either we must observe 13292 * is_orphaned_event() or they will observe us on the child_list. 13293 */ 13294 mutex_lock(&parent_event->child_mutex); 13295 if (is_orphaned_event(parent_event) || 13296 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13297 mutex_unlock(&parent_event->child_mutex); 13298 /* task_ctx_data is freed with child_ctx */ 13299 free_event(child_event); 13300 return NULL; 13301 } 13302 13303 get_ctx(child_ctx); 13304 13305 /* 13306 * Make the child state follow the state of the parent event, 13307 * not its attr.disabled bit. We hold the parent's mutex, 13308 * so we won't race with perf_event_{en, dis}able_family. 13309 */ 13310 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13311 child_event->state = PERF_EVENT_STATE_INACTIVE; 13312 else 13313 child_event->state = PERF_EVENT_STATE_OFF; 13314 13315 if (parent_event->attr.freq) { 13316 u64 sample_period = parent_event->hw.sample_period; 13317 struct hw_perf_event *hwc = &child_event->hw; 13318 13319 hwc->sample_period = sample_period; 13320 hwc->last_period = sample_period; 13321 13322 local64_set(&hwc->period_left, sample_period); 13323 } 13324 13325 child_event->ctx = child_ctx; 13326 child_event->overflow_handler = parent_event->overflow_handler; 13327 child_event->overflow_handler_context 13328 = parent_event->overflow_handler_context; 13329 13330 /* 13331 * Precalculate sample_data sizes 13332 */ 13333 perf_event__header_size(child_event); 13334 perf_event__id_header_size(child_event); 13335 13336 /* 13337 * Link it up in the child's context: 13338 */ 13339 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13340 add_event_to_ctx(child_event, child_ctx); 13341 child_event->attach_state |= PERF_ATTACH_CHILD; 13342 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13343 13344 /* 13345 * Link this into the parent event's child list 13346 */ 13347 list_add_tail(&child_event->child_list, &parent_event->child_list); 13348 mutex_unlock(&parent_event->child_mutex); 13349 13350 return child_event; 13351 } 13352 13353 /* 13354 * Inherits an event group. 13355 * 13356 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13357 * This matches with perf_event_release_kernel() removing all child events. 13358 * 13359 * Returns: 13360 * - 0 on success 13361 * - <0 on error 13362 */ 13363 static int inherit_group(struct perf_event *parent_event, 13364 struct task_struct *parent, 13365 struct perf_event_context *parent_ctx, 13366 struct task_struct *child, 13367 struct perf_event_context *child_ctx) 13368 { 13369 struct perf_event *leader; 13370 struct perf_event *sub; 13371 struct perf_event *child_ctr; 13372 13373 leader = inherit_event(parent_event, parent, parent_ctx, 13374 child, NULL, child_ctx); 13375 if (IS_ERR(leader)) 13376 return PTR_ERR(leader); 13377 /* 13378 * @leader can be NULL here because of is_orphaned_event(). In this 13379 * case inherit_event() will create individual events, similar to what 13380 * perf_group_detach() would do anyway. 13381 */ 13382 for_each_sibling_event(sub, parent_event) { 13383 child_ctr = inherit_event(sub, parent, parent_ctx, 13384 child, leader, child_ctx); 13385 if (IS_ERR(child_ctr)) 13386 return PTR_ERR(child_ctr); 13387 13388 if (sub->aux_event == parent_event && child_ctr && 13389 !perf_get_aux_event(child_ctr, leader)) 13390 return -EINVAL; 13391 } 13392 if (leader) 13393 leader->group_generation = parent_event->group_generation; 13394 return 0; 13395 } 13396 13397 /* 13398 * Creates the child task context and tries to inherit the event-group. 13399 * 13400 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13401 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13402 * consistent with perf_event_release_kernel() removing all child events. 13403 * 13404 * Returns: 13405 * - 0 on success 13406 * - <0 on error 13407 */ 13408 static int 13409 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13410 struct perf_event_context *parent_ctx, 13411 struct task_struct *child, 13412 u64 clone_flags, int *inherited_all) 13413 { 13414 struct perf_event_context *child_ctx; 13415 int ret; 13416 13417 if (!event->attr.inherit || 13418 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13419 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13420 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13421 *inherited_all = 0; 13422 return 0; 13423 } 13424 13425 child_ctx = child->perf_event_ctxp; 13426 if (!child_ctx) { 13427 /* 13428 * This is executed from the parent task context, so 13429 * inherit events that have been marked for cloning. 13430 * First allocate and initialize a context for the 13431 * child. 13432 */ 13433 child_ctx = alloc_perf_context(child); 13434 if (!child_ctx) 13435 return -ENOMEM; 13436 13437 child->perf_event_ctxp = child_ctx; 13438 } 13439 13440 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13441 if (ret) 13442 *inherited_all = 0; 13443 13444 return ret; 13445 } 13446 13447 /* 13448 * Initialize the perf_event context in task_struct 13449 */ 13450 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13451 { 13452 struct perf_event_context *child_ctx, *parent_ctx; 13453 struct perf_event_context *cloned_ctx; 13454 struct perf_event *event; 13455 struct task_struct *parent = current; 13456 int inherited_all = 1; 13457 unsigned long flags; 13458 int ret = 0; 13459 13460 if (likely(!parent->perf_event_ctxp)) 13461 return 0; 13462 13463 /* 13464 * If the parent's context is a clone, pin it so it won't get 13465 * swapped under us. 13466 */ 13467 parent_ctx = perf_pin_task_context(parent); 13468 if (!parent_ctx) 13469 return 0; 13470 13471 /* 13472 * No need to check if parent_ctx != NULL here; since we saw 13473 * it non-NULL earlier, the only reason for it to become NULL 13474 * is if we exit, and since we're currently in the middle of 13475 * a fork we can't be exiting at the same time. 13476 */ 13477 13478 /* 13479 * Lock the parent list. No need to lock the child - not PID 13480 * hashed yet and not running, so nobody can access it. 13481 */ 13482 mutex_lock(&parent_ctx->mutex); 13483 13484 /* 13485 * We dont have to disable NMIs - we are only looking at 13486 * the list, not manipulating it: 13487 */ 13488 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13489 ret = inherit_task_group(event, parent, parent_ctx, 13490 child, clone_flags, &inherited_all); 13491 if (ret) 13492 goto out_unlock; 13493 } 13494 13495 /* 13496 * We can't hold ctx->lock when iterating the ->flexible_group list due 13497 * to allocations, but we need to prevent rotation because 13498 * rotate_ctx() will change the list from interrupt context. 13499 */ 13500 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13501 parent_ctx->rotate_disable = 1; 13502 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13503 13504 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13505 ret = inherit_task_group(event, parent, parent_ctx, 13506 child, clone_flags, &inherited_all); 13507 if (ret) 13508 goto out_unlock; 13509 } 13510 13511 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13512 parent_ctx->rotate_disable = 0; 13513 13514 child_ctx = child->perf_event_ctxp; 13515 13516 if (child_ctx && inherited_all) { 13517 /* 13518 * Mark the child context as a clone of the parent 13519 * context, or of whatever the parent is a clone of. 13520 * 13521 * Note that if the parent is a clone, the holding of 13522 * parent_ctx->lock avoids it from being uncloned. 13523 */ 13524 cloned_ctx = parent_ctx->parent_ctx; 13525 if (cloned_ctx) { 13526 child_ctx->parent_ctx = cloned_ctx; 13527 child_ctx->parent_gen = parent_ctx->parent_gen; 13528 } else { 13529 child_ctx->parent_ctx = parent_ctx; 13530 child_ctx->parent_gen = parent_ctx->generation; 13531 } 13532 get_ctx(child_ctx->parent_ctx); 13533 } 13534 13535 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13536 out_unlock: 13537 mutex_unlock(&parent_ctx->mutex); 13538 13539 perf_unpin_context(parent_ctx); 13540 put_ctx(parent_ctx); 13541 13542 return ret; 13543 } 13544 13545 /* 13546 * Initialize the perf_event context in task_struct 13547 */ 13548 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13549 { 13550 int ret; 13551 13552 child->perf_event_ctxp = NULL; 13553 mutex_init(&child->perf_event_mutex); 13554 INIT_LIST_HEAD(&child->perf_event_list); 13555 13556 ret = perf_event_init_context(child, clone_flags); 13557 if (ret) { 13558 perf_event_free_task(child); 13559 return ret; 13560 } 13561 13562 return 0; 13563 } 13564 13565 static void __init perf_event_init_all_cpus(void) 13566 { 13567 struct swevent_htable *swhash; 13568 struct perf_cpu_context *cpuctx; 13569 int cpu; 13570 13571 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13572 13573 for_each_possible_cpu(cpu) { 13574 swhash = &per_cpu(swevent_htable, cpu); 13575 mutex_init(&swhash->hlist_mutex); 13576 13577 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13578 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13579 13580 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13581 13582 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13583 __perf_event_init_context(&cpuctx->ctx); 13584 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13585 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13586 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13587 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13588 cpuctx->heap = cpuctx->heap_default; 13589 } 13590 } 13591 13592 static void perf_swevent_init_cpu(unsigned int cpu) 13593 { 13594 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13595 13596 mutex_lock(&swhash->hlist_mutex); 13597 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13598 struct swevent_hlist *hlist; 13599 13600 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13601 WARN_ON(!hlist); 13602 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13603 } 13604 mutex_unlock(&swhash->hlist_mutex); 13605 } 13606 13607 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13608 static void __perf_event_exit_context(void *__info) 13609 { 13610 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13611 struct perf_event_context *ctx = __info; 13612 struct perf_event *event; 13613 13614 raw_spin_lock(&ctx->lock); 13615 ctx_sched_out(ctx, EVENT_TIME); 13616 list_for_each_entry(event, &ctx->event_list, event_entry) 13617 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13618 raw_spin_unlock(&ctx->lock); 13619 } 13620 13621 static void perf_event_exit_cpu_context(int cpu) 13622 { 13623 struct perf_cpu_context *cpuctx; 13624 struct perf_event_context *ctx; 13625 13626 // XXX simplify cpuctx->online 13627 mutex_lock(&pmus_lock); 13628 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13629 ctx = &cpuctx->ctx; 13630 13631 mutex_lock(&ctx->mutex); 13632 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13633 cpuctx->online = 0; 13634 mutex_unlock(&ctx->mutex); 13635 cpumask_clear_cpu(cpu, perf_online_mask); 13636 mutex_unlock(&pmus_lock); 13637 } 13638 #else 13639 13640 static void perf_event_exit_cpu_context(int cpu) { } 13641 13642 #endif 13643 13644 int perf_event_init_cpu(unsigned int cpu) 13645 { 13646 struct perf_cpu_context *cpuctx; 13647 struct perf_event_context *ctx; 13648 13649 perf_swevent_init_cpu(cpu); 13650 13651 mutex_lock(&pmus_lock); 13652 cpumask_set_cpu(cpu, perf_online_mask); 13653 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13654 ctx = &cpuctx->ctx; 13655 13656 mutex_lock(&ctx->mutex); 13657 cpuctx->online = 1; 13658 mutex_unlock(&ctx->mutex); 13659 mutex_unlock(&pmus_lock); 13660 13661 return 0; 13662 } 13663 13664 int perf_event_exit_cpu(unsigned int cpu) 13665 { 13666 perf_event_exit_cpu_context(cpu); 13667 return 0; 13668 } 13669 13670 static int 13671 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13672 { 13673 int cpu; 13674 13675 for_each_online_cpu(cpu) 13676 perf_event_exit_cpu(cpu); 13677 13678 return NOTIFY_OK; 13679 } 13680 13681 /* 13682 * Run the perf reboot notifier at the very last possible moment so that 13683 * the generic watchdog code runs as long as possible. 13684 */ 13685 static struct notifier_block perf_reboot_notifier = { 13686 .notifier_call = perf_reboot, 13687 .priority = INT_MIN, 13688 }; 13689 13690 void __init perf_event_init(void) 13691 { 13692 int ret; 13693 13694 idr_init(&pmu_idr); 13695 13696 perf_event_init_all_cpus(); 13697 init_srcu_struct(&pmus_srcu); 13698 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13699 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13700 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13701 perf_tp_register(); 13702 perf_event_init_cpu(smp_processor_id()); 13703 register_reboot_notifier(&perf_reboot_notifier); 13704 13705 ret = init_hw_breakpoint(); 13706 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13707 13708 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13709 13710 /* 13711 * Build time assertion that we keep the data_head at the intended 13712 * location. IOW, validation we got the __reserved[] size right. 13713 */ 13714 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13715 != 1024); 13716 } 13717 13718 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13719 char *page) 13720 { 13721 struct perf_pmu_events_attr *pmu_attr = 13722 container_of(attr, struct perf_pmu_events_attr, attr); 13723 13724 if (pmu_attr->event_str) 13725 return sprintf(page, "%s\n", pmu_attr->event_str); 13726 13727 return 0; 13728 } 13729 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13730 13731 static int __init perf_event_sysfs_init(void) 13732 { 13733 struct pmu *pmu; 13734 int ret; 13735 13736 mutex_lock(&pmus_lock); 13737 13738 ret = bus_register(&pmu_bus); 13739 if (ret) 13740 goto unlock; 13741 13742 list_for_each_entry(pmu, &pmus, entry) { 13743 if (pmu->dev) 13744 continue; 13745 13746 ret = pmu_dev_alloc(pmu); 13747 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13748 } 13749 pmu_bus_running = 1; 13750 ret = 0; 13751 13752 unlock: 13753 mutex_unlock(&pmus_lock); 13754 13755 return ret; 13756 } 13757 device_initcall(perf_event_sysfs_init); 13758 13759 #ifdef CONFIG_CGROUP_PERF 13760 static struct cgroup_subsys_state * 13761 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13762 { 13763 struct perf_cgroup *jc; 13764 13765 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13766 if (!jc) 13767 return ERR_PTR(-ENOMEM); 13768 13769 jc->info = alloc_percpu(struct perf_cgroup_info); 13770 if (!jc->info) { 13771 kfree(jc); 13772 return ERR_PTR(-ENOMEM); 13773 } 13774 13775 return &jc->css; 13776 } 13777 13778 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13779 { 13780 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13781 13782 free_percpu(jc->info); 13783 kfree(jc); 13784 } 13785 13786 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13787 { 13788 perf_event_cgroup(css->cgroup); 13789 return 0; 13790 } 13791 13792 static int __perf_cgroup_move(void *info) 13793 { 13794 struct task_struct *task = info; 13795 13796 preempt_disable(); 13797 perf_cgroup_switch(task); 13798 preempt_enable(); 13799 13800 return 0; 13801 } 13802 13803 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13804 { 13805 struct task_struct *task; 13806 struct cgroup_subsys_state *css; 13807 13808 cgroup_taskset_for_each(task, css, tset) 13809 task_function_call(task, __perf_cgroup_move, task); 13810 } 13811 13812 struct cgroup_subsys perf_event_cgrp_subsys = { 13813 .css_alloc = perf_cgroup_css_alloc, 13814 .css_free = perf_cgroup_css_free, 13815 .css_online = perf_cgroup_css_online, 13816 .attach = perf_cgroup_attach, 13817 /* 13818 * Implicitly enable on dfl hierarchy so that perf events can 13819 * always be filtered by cgroup2 path as long as perf_event 13820 * controller is not mounted on a legacy hierarchy. 13821 */ 13822 .implicit_on_dfl = true, 13823 .threaded = true, 13824 }; 13825 #endif /* CONFIG_CGROUP_PERF */ 13826 13827 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13828