xref: /linux/kernel/events/core.c (revision 571d91dcadfa3cef499010b4eddb9b58b0da4d24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (event->attr.read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (event->attr.read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	size += entry * nr;
1841 	event->read_size = size;
1842 }
1843 
1844 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1845 {
1846 	struct perf_sample_data *data;
1847 	u16 size = 0;
1848 
1849 	if (sample_type & PERF_SAMPLE_IP)
1850 		size += sizeof(data->ip);
1851 
1852 	if (sample_type & PERF_SAMPLE_ADDR)
1853 		size += sizeof(data->addr);
1854 
1855 	if (sample_type & PERF_SAMPLE_PERIOD)
1856 		size += sizeof(data->period);
1857 
1858 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1859 		size += sizeof(data->weight.full);
1860 
1861 	if (sample_type & PERF_SAMPLE_READ)
1862 		size += event->read_size;
1863 
1864 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1865 		size += sizeof(data->data_src.val);
1866 
1867 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1868 		size += sizeof(data->txn);
1869 
1870 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1871 		size += sizeof(data->phys_addr);
1872 
1873 	if (sample_type & PERF_SAMPLE_CGROUP)
1874 		size += sizeof(data->cgroup);
1875 
1876 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1877 		size += sizeof(data->data_page_size);
1878 
1879 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1880 		size += sizeof(data->code_page_size);
1881 
1882 	event->header_size = size;
1883 }
1884 
1885 /*
1886  * Called at perf_event creation and when events are attached/detached from a
1887  * group.
1888  */
1889 static void perf_event__header_size(struct perf_event *event)
1890 {
1891 	__perf_event_read_size(event,
1892 			       event->group_leader->nr_siblings);
1893 	__perf_event_header_size(event, event->attr.sample_type);
1894 }
1895 
1896 static void perf_event__id_header_size(struct perf_event *event)
1897 {
1898 	struct perf_sample_data *data;
1899 	u64 sample_type = event->attr.sample_type;
1900 	u16 size = 0;
1901 
1902 	if (sample_type & PERF_SAMPLE_TID)
1903 		size += sizeof(data->tid_entry);
1904 
1905 	if (sample_type & PERF_SAMPLE_TIME)
1906 		size += sizeof(data->time);
1907 
1908 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1909 		size += sizeof(data->id);
1910 
1911 	if (sample_type & PERF_SAMPLE_ID)
1912 		size += sizeof(data->id);
1913 
1914 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1915 		size += sizeof(data->stream_id);
1916 
1917 	if (sample_type & PERF_SAMPLE_CPU)
1918 		size += sizeof(data->cpu_entry);
1919 
1920 	event->id_header_size = size;
1921 }
1922 
1923 static bool perf_event_validate_size(struct perf_event *event)
1924 {
1925 	/*
1926 	 * The values computed here will be over-written when we actually
1927 	 * attach the event.
1928 	 */
1929 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1930 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1931 	perf_event__id_header_size(event);
1932 
1933 	/*
1934 	 * Sum the lot; should not exceed the 64k limit we have on records.
1935 	 * Conservative limit to allow for callchains and other variable fields.
1936 	 */
1937 	if (event->read_size + event->header_size +
1938 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1939 		return false;
1940 
1941 	return true;
1942 }
1943 
1944 static void perf_group_attach(struct perf_event *event)
1945 {
1946 	struct perf_event *group_leader = event->group_leader, *pos;
1947 
1948 	lockdep_assert_held(&event->ctx->lock);
1949 
1950 	/*
1951 	 * We can have double attach due to group movement (move_group) in
1952 	 * perf_event_open().
1953 	 */
1954 	if (event->attach_state & PERF_ATTACH_GROUP)
1955 		return;
1956 
1957 	event->attach_state |= PERF_ATTACH_GROUP;
1958 
1959 	if (group_leader == event)
1960 		return;
1961 
1962 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1963 
1964 	group_leader->group_caps &= event->event_caps;
1965 
1966 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1967 	group_leader->nr_siblings++;
1968 
1969 	perf_event__header_size(group_leader);
1970 
1971 	for_each_sibling_event(pos, group_leader)
1972 		perf_event__header_size(pos);
1973 }
1974 
1975 /*
1976  * Remove an event from the lists for its context.
1977  * Must be called with ctx->mutex and ctx->lock held.
1978  */
1979 static void
1980 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1981 {
1982 	WARN_ON_ONCE(event->ctx != ctx);
1983 	lockdep_assert_held(&ctx->lock);
1984 
1985 	/*
1986 	 * We can have double detach due to exit/hot-unplug + close.
1987 	 */
1988 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1989 		return;
1990 
1991 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1992 
1993 	ctx->nr_events--;
1994 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1995 		ctx->nr_user--;
1996 	if (event->attr.inherit_stat)
1997 		ctx->nr_stat--;
1998 
1999 	list_del_rcu(&event->event_entry);
2000 
2001 	if (event->group_leader == event)
2002 		del_event_from_groups(event, ctx);
2003 
2004 	/*
2005 	 * If event was in error state, then keep it
2006 	 * that way, otherwise bogus counts will be
2007 	 * returned on read(). The only way to get out
2008 	 * of error state is by explicit re-enabling
2009 	 * of the event
2010 	 */
2011 	if (event->state > PERF_EVENT_STATE_OFF) {
2012 		perf_cgroup_event_disable(event, ctx);
2013 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2014 	}
2015 
2016 	ctx->generation++;
2017 	event->pmu_ctx->nr_events--;
2018 }
2019 
2020 static int
2021 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2022 {
2023 	if (!has_aux(aux_event))
2024 		return 0;
2025 
2026 	if (!event->pmu->aux_output_match)
2027 		return 0;
2028 
2029 	return event->pmu->aux_output_match(aux_event);
2030 }
2031 
2032 static void put_event(struct perf_event *event);
2033 static void event_sched_out(struct perf_event *event,
2034 			    struct perf_event_context *ctx);
2035 
2036 static void perf_put_aux_event(struct perf_event *event)
2037 {
2038 	struct perf_event_context *ctx = event->ctx;
2039 	struct perf_event *iter;
2040 
2041 	/*
2042 	 * If event uses aux_event tear down the link
2043 	 */
2044 	if (event->aux_event) {
2045 		iter = event->aux_event;
2046 		event->aux_event = NULL;
2047 		put_event(iter);
2048 		return;
2049 	}
2050 
2051 	/*
2052 	 * If the event is an aux_event, tear down all links to
2053 	 * it from other events.
2054 	 */
2055 	for_each_sibling_event(iter, event->group_leader) {
2056 		if (iter->aux_event != event)
2057 			continue;
2058 
2059 		iter->aux_event = NULL;
2060 		put_event(event);
2061 
2062 		/*
2063 		 * If it's ACTIVE, schedule it out and put it into ERROR
2064 		 * state so that we don't try to schedule it again. Note
2065 		 * that perf_event_enable() will clear the ERROR status.
2066 		 */
2067 		event_sched_out(iter, ctx);
2068 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2069 	}
2070 }
2071 
2072 static bool perf_need_aux_event(struct perf_event *event)
2073 {
2074 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2075 }
2076 
2077 static int perf_get_aux_event(struct perf_event *event,
2078 			      struct perf_event *group_leader)
2079 {
2080 	/*
2081 	 * Our group leader must be an aux event if we want to be
2082 	 * an aux_output. This way, the aux event will precede its
2083 	 * aux_output events in the group, and therefore will always
2084 	 * schedule first.
2085 	 */
2086 	if (!group_leader)
2087 		return 0;
2088 
2089 	/*
2090 	 * aux_output and aux_sample_size are mutually exclusive.
2091 	 */
2092 	if (event->attr.aux_output && event->attr.aux_sample_size)
2093 		return 0;
2094 
2095 	if (event->attr.aux_output &&
2096 	    !perf_aux_output_match(event, group_leader))
2097 		return 0;
2098 
2099 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2100 		return 0;
2101 
2102 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2103 		return 0;
2104 
2105 	/*
2106 	 * Link aux_outputs to their aux event; this is undone in
2107 	 * perf_group_detach() by perf_put_aux_event(). When the
2108 	 * group in torn down, the aux_output events loose their
2109 	 * link to the aux_event and can't schedule any more.
2110 	 */
2111 	event->aux_event = group_leader;
2112 
2113 	return 1;
2114 }
2115 
2116 static inline struct list_head *get_event_list(struct perf_event *event)
2117 {
2118 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2119 				    &event->pmu_ctx->flexible_active;
2120 }
2121 
2122 /*
2123  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2124  * cannot exist on their own, schedule them out and move them into the ERROR
2125  * state. Also see _perf_event_enable(), it will not be able to recover
2126  * this ERROR state.
2127  */
2128 static inline void perf_remove_sibling_event(struct perf_event *event)
2129 {
2130 	event_sched_out(event, event->ctx);
2131 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2132 }
2133 
2134 static void perf_group_detach(struct perf_event *event)
2135 {
2136 	struct perf_event *leader = event->group_leader;
2137 	struct perf_event *sibling, *tmp;
2138 	struct perf_event_context *ctx = event->ctx;
2139 
2140 	lockdep_assert_held(&ctx->lock);
2141 
2142 	/*
2143 	 * We can have double detach due to exit/hot-unplug + close.
2144 	 */
2145 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2146 		return;
2147 
2148 	event->attach_state &= ~PERF_ATTACH_GROUP;
2149 
2150 	perf_put_aux_event(event);
2151 
2152 	/*
2153 	 * If this is a sibling, remove it from its group.
2154 	 */
2155 	if (leader != event) {
2156 		list_del_init(&event->sibling_list);
2157 		event->group_leader->nr_siblings--;
2158 		goto out;
2159 	}
2160 
2161 	/*
2162 	 * If this was a group event with sibling events then
2163 	 * upgrade the siblings to singleton events by adding them
2164 	 * to whatever list we are on.
2165 	 */
2166 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2167 
2168 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2169 			perf_remove_sibling_event(sibling);
2170 
2171 		sibling->group_leader = sibling;
2172 		list_del_init(&sibling->sibling_list);
2173 
2174 		/* Inherit group flags from the previous leader */
2175 		sibling->group_caps = event->group_caps;
2176 
2177 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2178 			add_event_to_groups(sibling, event->ctx);
2179 
2180 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2181 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2182 		}
2183 
2184 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2185 	}
2186 
2187 out:
2188 	for_each_sibling_event(tmp, leader)
2189 		perf_event__header_size(tmp);
2190 
2191 	perf_event__header_size(leader);
2192 }
2193 
2194 static void sync_child_event(struct perf_event *child_event);
2195 
2196 static void perf_child_detach(struct perf_event *event)
2197 {
2198 	struct perf_event *parent_event = event->parent;
2199 
2200 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2201 		return;
2202 
2203 	event->attach_state &= ~PERF_ATTACH_CHILD;
2204 
2205 	if (WARN_ON_ONCE(!parent_event))
2206 		return;
2207 
2208 	lockdep_assert_held(&parent_event->child_mutex);
2209 
2210 	sync_child_event(event);
2211 	list_del_init(&event->child_list);
2212 }
2213 
2214 static bool is_orphaned_event(struct perf_event *event)
2215 {
2216 	return event->state == PERF_EVENT_STATE_DEAD;
2217 }
2218 
2219 static inline int
2220 event_filter_match(struct perf_event *event)
2221 {
2222 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2223 	       perf_cgroup_match(event);
2224 }
2225 
2226 static void
2227 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2228 {
2229 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2230 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2231 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2232 
2233 	// XXX cpc serialization, probably per-cpu IRQ disabled
2234 
2235 	WARN_ON_ONCE(event->ctx != ctx);
2236 	lockdep_assert_held(&ctx->lock);
2237 
2238 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2239 		return;
2240 
2241 	/*
2242 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2243 	 * we can schedule events _OUT_ individually through things like
2244 	 * __perf_remove_from_context().
2245 	 */
2246 	list_del_init(&event->active_list);
2247 
2248 	perf_pmu_disable(event->pmu);
2249 
2250 	event->pmu->del(event, 0);
2251 	event->oncpu = -1;
2252 
2253 	if (event->pending_disable) {
2254 		event->pending_disable = 0;
2255 		perf_cgroup_event_disable(event, ctx);
2256 		state = PERF_EVENT_STATE_OFF;
2257 	}
2258 
2259 	if (event->pending_sigtrap) {
2260 		bool dec = true;
2261 
2262 		event->pending_sigtrap = 0;
2263 		if (state != PERF_EVENT_STATE_OFF &&
2264 		    !event->pending_work) {
2265 			event->pending_work = 1;
2266 			dec = false;
2267 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2268 			task_work_add(current, &event->pending_task, TWA_RESUME);
2269 		}
2270 		if (dec)
2271 			local_dec(&event->ctx->nr_pending);
2272 	}
2273 
2274 	perf_event_set_state(event, state);
2275 
2276 	if (!is_software_event(event))
2277 		cpc->active_oncpu--;
2278 	if (event->attr.freq && event->attr.sample_freq)
2279 		ctx->nr_freq--;
2280 	if (event->attr.exclusive || !cpc->active_oncpu)
2281 		cpc->exclusive = 0;
2282 
2283 	perf_pmu_enable(event->pmu);
2284 }
2285 
2286 static void
2287 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2288 {
2289 	struct perf_event *event;
2290 
2291 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2292 		return;
2293 
2294 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2295 
2296 	event_sched_out(group_event, ctx);
2297 
2298 	/*
2299 	 * Schedule out siblings (if any):
2300 	 */
2301 	for_each_sibling_event(event, group_event)
2302 		event_sched_out(event, ctx);
2303 }
2304 
2305 #define DETACH_GROUP	0x01UL
2306 #define DETACH_CHILD	0x02UL
2307 #define DETACH_DEAD	0x04UL
2308 
2309 /*
2310  * Cross CPU call to remove a performance event
2311  *
2312  * We disable the event on the hardware level first. After that we
2313  * remove it from the context list.
2314  */
2315 static void
2316 __perf_remove_from_context(struct perf_event *event,
2317 			   struct perf_cpu_context *cpuctx,
2318 			   struct perf_event_context *ctx,
2319 			   void *info)
2320 {
2321 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2322 	unsigned long flags = (unsigned long)info;
2323 
2324 	if (ctx->is_active & EVENT_TIME) {
2325 		update_context_time(ctx);
2326 		update_cgrp_time_from_cpuctx(cpuctx, false);
2327 	}
2328 
2329 	/*
2330 	 * Ensure event_sched_out() switches to OFF, at the very least
2331 	 * this avoids raising perf_pending_task() at this time.
2332 	 */
2333 	if (flags & DETACH_DEAD)
2334 		event->pending_disable = 1;
2335 	event_sched_out(event, ctx);
2336 	if (flags & DETACH_GROUP)
2337 		perf_group_detach(event);
2338 	if (flags & DETACH_CHILD)
2339 		perf_child_detach(event);
2340 	list_del_event(event, ctx);
2341 	if (flags & DETACH_DEAD)
2342 		event->state = PERF_EVENT_STATE_DEAD;
2343 
2344 	if (!pmu_ctx->nr_events) {
2345 		pmu_ctx->rotate_necessary = 0;
2346 
2347 		if (ctx->task && ctx->is_active) {
2348 			struct perf_cpu_pmu_context *cpc;
2349 
2350 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2351 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2352 			cpc->task_epc = NULL;
2353 		}
2354 	}
2355 
2356 	if (!ctx->nr_events && ctx->is_active) {
2357 		if (ctx == &cpuctx->ctx)
2358 			update_cgrp_time_from_cpuctx(cpuctx, true);
2359 
2360 		ctx->is_active = 0;
2361 		if (ctx->task) {
2362 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2363 			cpuctx->task_ctx = NULL;
2364 		}
2365 	}
2366 }
2367 
2368 /*
2369  * Remove the event from a task's (or a CPU's) list of events.
2370  *
2371  * If event->ctx is a cloned context, callers must make sure that
2372  * every task struct that event->ctx->task could possibly point to
2373  * remains valid.  This is OK when called from perf_release since
2374  * that only calls us on the top-level context, which can't be a clone.
2375  * When called from perf_event_exit_task, it's OK because the
2376  * context has been detached from its task.
2377  */
2378 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2379 {
2380 	struct perf_event_context *ctx = event->ctx;
2381 
2382 	lockdep_assert_held(&ctx->mutex);
2383 
2384 	/*
2385 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2386 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2387 	 * event_function_call() user.
2388 	 */
2389 	raw_spin_lock_irq(&ctx->lock);
2390 	if (!ctx->is_active) {
2391 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2392 					   ctx, (void *)flags);
2393 		raw_spin_unlock_irq(&ctx->lock);
2394 		return;
2395 	}
2396 	raw_spin_unlock_irq(&ctx->lock);
2397 
2398 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2399 }
2400 
2401 /*
2402  * Cross CPU call to disable a performance event
2403  */
2404 static void __perf_event_disable(struct perf_event *event,
2405 				 struct perf_cpu_context *cpuctx,
2406 				 struct perf_event_context *ctx,
2407 				 void *info)
2408 {
2409 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2410 		return;
2411 
2412 	if (ctx->is_active & EVENT_TIME) {
2413 		update_context_time(ctx);
2414 		update_cgrp_time_from_event(event);
2415 	}
2416 
2417 	perf_pmu_disable(event->pmu_ctx->pmu);
2418 
2419 	if (event == event->group_leader)
2420 		group_sched_out(event, ctx);
2421 	else
2422 		event_sched_out(event, ctx);
2423 
2424 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2425 	perf_cgroup_event_disable(event, ctx);
2426 
2427 	perf_pmu_enable(event->pmu_ctx->pmu);
2428 }
2429 
2430 /*
2431  * Disable an event.
2432  *
2433  * If event->ctx is a cloned context, callers must make sure that
2434  * every task struct that event->ctx->task could possibly point to
2435  * remains valid.  This condition is satisfied when called through
2436  * perf_event_for_each_child or perf_event_for_each because they
2437  * hold the top-level event's child_mutex, so any descendant that
2438  * goes to exit will block in perf_event_exit_event().
2439  *
2440  * When called from perf_pending_irq it's OK because event->ctx
2441  * is the current context on this CPU and preemption is disabled,
2442  * hence we can't get into perf_event_task_sched_out for this context.
2443  */
2444 static void _perf_event_disable(struct perf_event *event)
2445 {
2446 	struct perf_event_context *ctx = event->ctx;
2447 
2448 	raw_spin_lock_irq(&ctx->lock);
2449 	if (event->state <= PERF_EVENT_STATE_OFF) {
2450 		raw_spin_unlock_irq(&ctx->lock);
2451 		return;
2452 	}
2453 	raw_spin_unlock_irq(&ctx->lock);
2454 
2455 	event_function_call(event, __perf_event_disable, NULL);
2456 }
2457 
2458 void perf_event_disable_local(struct perf_event *event)
2459 {
2460 	event_function_local(event, __perf_event_disable, NULL);
2461 }
2462 
2463 /*
2464  * Strictly speaking kernel users cannot create groups and therefore this
2465  * interface does not need the perf_event_ctx_lock() magic.
2466  */
2467 void perf_event_disable(struct perf_event *event)
2468 {
2469 	struct perf_event_context *ctx;
2470 
2471 	ctx = perf_event_ctx_lock(event);
2472 	_perf_event_disable(event);
2473 	perf_event_ctx_unlock(event, ctx);
2474 }
2475 EXPORT_SYMBOL_GPL(perf_event_disable);
2476 
2477 void perf_event_disable_inatomic(struct perf_event *event)
2478 {
2479 	event->pending_disable = 1;
2480 	irq_work_queue(&event->pending_irq);
2481 }
2482 
2483 #define MAX_INTERRUPTS (~0ULL)
2484 
2485 static void perf_log_throttle(struct perf_event *event, int enable);
2486 static void perf_log_itrace_start(struct perf_event *event);
2487 
2488 static int
2489 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2490 {
2491 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2492 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2493 	int ret = 0;
2494 
2495 	WARN_ON_ONCE(event->ctx != ctx);
2496 
2497 	lockdep_assert_held(&ctx->lock);
2498 
2499 	if (event->state <= PERF_EVENT_STATE_OFF)
2500 		return 0;
2501 
2502 	WRITE_ONCE(event->oncpu, smp_processor_id());
2503 	/*
2504 	 * Order event::oncpu write to happen before the ACTIVE state is
2505 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2506 	 * ->oncpu if it sees ACTIVE.
2507 	 */
2508 	smp_wmb();
2509 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2510 
2511 	/*
2512 	 * Unthrottle events, since we scheduled we might have missed several
2513 	 * ticks already, also for a heavily scheduling task there is little
2514 	 * guarantee it'll get a tick in a timely manner.
2515 	 */
2516 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2517 		perf_log_throttle(event, 1);
2518 		event->hw.interrupts = 0;
2519 	}
2520 
2521 	perf_pmu_disable(event->pmu);
2522 
2523 	perf_log_itrace_start(event);
2524 
2525 	if (event->pmu->add(event, PERF_EF_START)) {
2526 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2527 		event->oncpu = -1;
2528 		ret = -EAGAIN;
2529 		goto out;
2530 	}
2531 
2532 	if (!is_software_event(event))
2533 		cpc->active_oncpu++;
2534 	if (event->attr.freq && event->attr.sample_freq)
2535 		ctx->nr_freq++;
2536 
2537 	if (event->attr.exclusive)
2538 		cpc->exclusive = 1;
2539 
2540 out:
2541 	perf_pmu_enable(event->pmu);
2542 
2543 	return ret;
2544 }
2545 
2546 static int
2547 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2548 {
2549 	struct perf_event *event, *partial_group = NULL;
2550 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2551 
2552 	if (group_event->state == PERF_EVENT_STATE_OFF)
2553 		return 0;
2554 
2555 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2556 
2557 	if (event_sched_in(group_event, ctx))
2558 		goto error;
2559 
2560 	/*
2561 	 * Schedule in siblings as one group (if any):
2562 	 */
2563 	for_each_sibling_event(event, group_event) {
2564 		if (event_sched_in(event, ctx)) {
2565 			partial_group = event;
2566 			goto group_error;
2567 		}
2568 	}
2569 
2570 	if (!pmu->commit_txn(pmu))
2571 		return 0;
2572 
2573 group_error:
2574 	/*
2575 	 * Groups can be scheduled in as one unit only, so undo any
2576 	 * partial group before returning:
2577 	 * The events up to the failed event are scheduled out normally.
2578 	 */
2579 	for_each_sibling_event(event, group_event) {
2580 		if (event == partial_group)
2581 			break;
2582 
2583 		event_sched_out(event, ctx);
2584 	}
2585 	event_sched_out(group_event, ctx);
2586 
2587 error:
2588 	pmu->cancel_txn(pmu);
2589 	return -EAGAIN;
2590 }
2591 
2592 /*
2593  * Work out whether we can put this event group on the CPU now.
2594  */
2595 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2596 {
2597 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2598 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2599 
2600 	/*
2601 	 * Groups consisting entirely of software events can always go on.
2602 	 */
2603 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2604 		return 1;
2605 	/*
2606 	 * If an exclusive group is already on, no other hardware
2607 	 * events can go on.
2608 	 */
2609 	if (cpc->exclusive)
2610 		return 0;
2611 	/*
2612 	 * If this group is exclusive and there are already
2613 	 * events on the CPU, it can't go on.
2614 	 */
2615 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2616 		return 0;
2617 	/*
2618 	 * Otherwise, try to add it if all previous groups were able
2619 	 * to go on.
2620 	 */
2621 	return can_add_hw;
2622 }
2623 
2624 static void add_event_to_ctx(struct perf_event *event,
2625 			       struct perf_event_context *ctx)
2626 {
2627 	list_add_event(event, ctx);
2628 	perf_group_attach(event);
2629 }
2630 
2631 static void task_ctx_sched_out(struct perf_event_context *ctx,
2632 				enum event_type_t event_type)
2633 {
2634 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2635 
2636 	if (!cpuctx->task_ctx)
2637 		return;
2638 
2639 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2640 		return;
2641 
2642 	ctx_sched_out(ctx, event_type);
2643 }
2644 
2645 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2646 				struct perf_event_context *ctx)
2647 {
2648 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2649 	if (ctx)
2650 		 ctx_sched_in(ctx, EVENT_PINNED);
2651 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2652 	if (ctx)
2653 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2654 }
2655 
2656 /*
2657  * We want to maintain the following priority of scheduling:
2658  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2659  *  - task pinned (EVENT_PINNED)
2660  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2661  *  - task flexible (EVENT_FLEXIBLE).
2662  *
2663  * In order to avoid unscheduling and scheduling back in everything every
2664  * time an event is added, only do it for the groups of equal priority and
2665  * below.
2666  *
2667  * This can be called after a batch operation on task events, in which case
2668  * event_type is a bit mask of the types of events involved. For CPU events,
2669  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2670  */
2671 /*
2672  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2673  * event to the context or enabling existing event in the context. We can
2674  * probably optimize it by rescheduling only affected pmu_ctx.
2675  */
2676 static void ctx_resched(struct perf_cpu_context *cpuctx,
2677 			struct perf_event_context *task_ctx,
2678 			enum event_type_t event_type)
2679 {
2680 	bool cpu_event = !!(event_type & EVENT_CPU);
2681 
2682 	/*
2683 	 * If pinned groups are involved, flexible groups also need to be
2684 	 * scheduled out.
2685 	 */
2686 	if (event_type & EVENT_PINNED)
2687 		event_type |= EVENT_FLEXIBLE;
2688 
2689 	event_type &= EVENT_ALL;
2690 
2691 	perf_ctx_disable(&cpuctx->ctx, false);
2692 	if (task_ctx) {
2693 		perf_ctx_disable(task_ctx, false);
2694 		task_ctx_sched_out(task_ctx, event_type);
2695 	}
2696 
2697 	/*
2698 	 * Decide which cpu ctx groups to schedule out based on the types
2699 	 * of events that caused rescheduling:
2700 	 *  - EVENT_CPU: schedule out corresponding groups;
2701 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2702 	 *  - otherwise, do nothing more.
2703 	 */
2704 	if (cpu_event)
2705 		ctx_sched_out(&cpuctx->ctx, event_type);
2706 	else if (event_type & EVENT_PINNED)
2707 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2708 
2709 	perf_event_sched_in(cpuctx, task_ctx);
2710 
2711 	perf_ctx_enable(&cpuctx->ctx, false);
2712 	if (task_ctx)
2713 		perf_ctx_enable(task_ctx, false);
2714 }
2715 
2716 void perf_pmu_resched(struct pmu *pmu)
2717 {
2718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2719 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2720 
2721 	perf_ctx_lock(cpuctx, task_ctx);
2722 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2723 	perf_ctx_unlock(cpuctx, task_ctx);
2724 }
2725 
2726 /*
2727  * Cross CPU call to install and enable a performance event
2728  *
2729  * Very similar to remote_function() + event_function() but cannot assume that
2730  * things like ctx->is_active and cpuctx->task_ctx are set.
2731  */
2732 static int  __perf_install_in_context(void *info)
2733 {
2734 	struct perf_event *event = info;
2735 	struct perf_event_context *ctx = event->ctx;
2736 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2737 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2738 	bool reprogram = true;
2739 	int ret = 0;
2740 
2741 	raw_spin_lock(&cpuctx->ctx.lock);
2742 	if (ctx->task) {
2743 		raw_spin_lock(&ctx->lock);
2744 		task_ctx = ctx;
2745 
2746 		reprogram = (ctx->task == current);
2747 
2748 		/*
2749 		 * If the task is running, it must be running on this CPU,
2750 		 * otherwise we cannot reprogram things.
2751 		 *
2752 		 * If its not running, we don't care, ctx->lock will
2753 		 * serialize against it becoming runnable.
2754 		 */
2755 		if (task_curr(ctx->task) && !reprogram) {
2756 			ret = -ESRCH;
2757 			goto unlock;
2758 		}
2759 
2760 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2761 	} else if (task_ctx) {
2762 		raw_spin_lock(&task_ctx->lock);
2763 	}
2764 
2765 #ifdef CONFIG_CGROUP_PERF
2766 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2767 		/*
2768 		 * If the current cgroup doesn't match the event's
2769 		 * cgroup, we should not try to schedule it.
2770 		 */
2771 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2772 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2773 					event->cgrp->css.cgroup);
2774 	}
2775 #endif
2776 
2777 	if (reprogram) {
2778 		ctx_sched_out(ctx, EVENT_TIME);
2779 		add_event_to_ctx(event, ctx);
2780 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2781 	} else {
2782 		add_event_to_ctx(event, ctx);
2783 	}
2784 
2785 unlock:
2786 	perf_ctx_unlock(cpuctx, task_ctx);
2787 
2788 	return ret;
2789 }
2790 
2791 static bool exclusive_event_installable(struct perf_event *event,
2792 					struct perf_event_context *ctx);
2793 
2794 /*
2795  * Attach a performance event to a context.
2796  *
2797  * Very similar to event_function_call, see comment there.
2798  */
2799 static void
2800 perf_install_in_context(struct perf_event_context *ctx,
2801 			struct perf_event *event,
2802 			int cpu)
2803 {
2804 	struct task_struct *task = READ_ONCE(ctx->task);
2805 
2806 	lockdep_assert_held(&ctx->mutex);
2807 
2808 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2809 
2810 	if (event->cpu != -1)
2811 		WARN_ON_ONCE(event->cpu != cpu);
2812 
2813 	/*
2814 	 * Ensures that if we can observe event->ctx, both the event and ctx
2815 	 * will be 'complete'. See perf_iterate_sb_cpu().
2816 	 */
2817 	smp_store_release(&event->ctx, ctx);
2818 
2819 	/*
2820 	 * perf_event_attr::disabled events will not run and can be initialized
2821 	 * without IPI. Except when this is the first event for the context, in
2822 	 * that case we need the magic of the IPI to set ctx->is_active.
2823 	 *
2824 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2825 	 * event will issue the IPI and reprogram the hardware.
2826 	 */
2827 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2828 	    ctx->nr_events && !is_cgroup_event(event)) {
2829 		raw_spin_lock_irq(&ctx->lock);
2830 		if (ctx->task == TASK_TOMBSTONE) {
2831 			raw_spin_unlock_irq(&ctx->lock);
2832 			return;
2833 		}
2834 		add_event_to_ctx(event, ctx);
2835 		raw_spin_unlock_irq(&ctx->lock);
2836 		return;
2837 	}
2838 
2839 	if (!task) {
2840 		cpu_function_call(cpu, __perf_install_in_context, event);
2841 		return;
2842 	}
2843 
2844 	/*
2845 	 * Should not happen, we validate the ctx is still alive before calling.
2846 	 */
2847 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2848 		return;
2849 
2850 	/*
2851 	 * Installing events is tricky because we cannot rely on ctx->is_active
2852 	 * to be set in case this is the nr_events 0 -> 1 transition.
2853 	 *
2854 	 * Instead we use task_curr(), which tells us if the task is running.
2855 	 * However, since we use task_curr() outside of rq::lock, we can race
2856 	 * against the actual state. This means the result can be wrong.
2857 	 *
2858 	 * If we get a false positive, we retry, this is harmless.
2859 	 *
2860 	 * If we get a false negative, things are complicated. If we are after
2861 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2862 	 * value must be correct. If we're before, it doesn't matter since
2863 	 * perf_event_context_sched_in() will program the counter.
2864 	 *
2865 	 * However, this hinges on the remote context switch having observed
2866 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2867 	 * ctx::lock in perf_event_context_sched_in().
2868 	 *
2869 	 * We do this by task_function_call(), if the IPI fails to hit the task
2870 	 * we know any future context switch of task must see the
2871 	 * perf_event_ctpx[] store.
2872 	 */
2873 
2874 	/*
2875 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2876 	 * task_cpu() load, such that if the IPI then does not find the task
2877 	 * running, a future context switch of that task must observe the
2878 	 * store.
2879 	 */
2880 	smp_mb();
2881 again:
2882 	if (!task_function_call(task, __perf_install_in_context, event))
2883 		return;
2884 
2885 	raw_spin_lock_irq(&ctx->lock);
2886 	task = ctx->task;
2887 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2888 		/*
2889 		 * Cannot happen because we already checked above (which also
2890 		 * cannot happen), and we hold ctx->mutex, which serializes us
2891 		 * against perf_event_exit_task_context().
2892 		 */
2893 		raw_spin_unlock_irq(&ctx->lock);
2894 		return;
2895 	}
2896 	/*
2897 	 * If the task is not running, ctx->lock will avoid it becoming so,
2898 	 * thus we can safely install the event.
2899 	 */
2900 	if (task_curr(task)) {
2901 		raw_spin_unlock_irq(&ctx->lock);
2902 		goto again;
2903 	}
2904 	add_event_to_ctx(event, ctx);
2905 	raw_spin_unlock_irq(&ctx->lock);
2906 }
2907 
2908 /*
2909  * Cross CPU call to enable a performance event
2910  */
2911 static void __perf_event_enable(struct perf_event *event,
2912 				struct perf_cpu_context *cpuctx,
2913 				struct perf_event_context *ctx,
2914 				void *info)
2915 {
2916 	struct perf_event *leader = event->group_leader;
2917 	struct perf_event_context *task_ctx;
2918 
2919 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2920 	    event->state <= PERF_EVENT_STATE_ERROR)
2921 		return;
2922 
2923 	if (ctx->is_active)
2924 		ctx_sched_out(ctx, EVENT_TIME);
2925 
2926 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2927 	perf_cgroup_event_enable(event, ctx);
2928 
2929 	if (!ctx->is_active)
2930 		return;
2931 
2932 	if (!event_filter_match(event)) {
2933 		ctx_sched_in(ctx, EVENT_TIME);
2934 		return;
2935 	}
2936 
2937 	/*
2938 	 * If the event is in a group and isn't the group leader,
2939 	 * then don't put it on unless the group is on.
2940 	 */
2941 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2942 		ctx_sched_in(ctx, EVENT_TIME);
2943 		return;
2944 	}
2945 
2946 	task_ctx = cpuctx->task_ctx;
2947 	if (ctx->task)
2948 		WARN_ON_ONCE(task_ctx != ctx);
2949 
2950 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2951 }
2952 
2953 /*
2954  * Enable an event.
2955  *
2956  * If event->ctx is a cloned context, callers must make sure that
2957  * every task struct that event->ctx->task could possibly point to
2958  * remains valid.  This condition is satisfied when called through
2959  * perf_event_for_each_child or perf_event_for_each as described
2960  * for perf_event_disable.
2961  */
2962 static void _perf_event_enable(struct perf_event *event)
2963 {
2964 	struct perf_event_context *ctx = event->ctx;
2965 
2966 	raw_spin_lock_irq(&ctx->lock);
2967 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2968 	    event->state <  PERF_EVENT_STATE_ERROR) {
2969 out:
2970 		raw_spin_unlock_irq(&ctx->lock);
2971 		return;
2972 	}
2973 
2974 	/*
2975 	 * If the event is in error state, clear that first.
2976 	 *
2977 	 * That way, if we see the event in error state below, we know that it
2978 	 * has gone back into error state, as distinct from the task having
2979 	 * been scheduled away before the cross-call arrived.
2980 	 */
2981 	if (event->state == PERF_EVENT_STATE_ERROR) {
2982 		/*
2983 		 * Detached SIBLING events cannot leave ERROR state.
2984 		 */
2985 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
2986 		    event->group_leader == event)
2987 			goto out;
2988 
2989 		event->state = PERF_EVENT_STATE_OFF;
2990 	}
2991 	raw_spin_unlock_irq(&ctx->lock);
2992 
2993 	event_function_call(event, __perf_event_enable, NULL);
2994 }
2995 
2996 /*
2997  * See perf_event_disable();
2998  */
2999 void perf_event_enable(struct perf_event *event)
3000 {
3001 	struct perf_event_context *ctx;
3002 
3003 	ctx = perf_event_ctx_lock(event);
3004 	_perf_event_enable(event);
3005 	perf_event_ctx_unlock(event, ctx);
3006 }
3007 EXPORT_SYMBOL_GPL(perf_event_enable);
3008 
3009 struct stop_event_data {
3010 	struct perf_event	*event;
3011 	unsigned int		restart;
3012 };
3013 
3014 static int __perf_event_stop(void *info)
3015 {
3016 	struct stop_event_data *sd = info;
3017 	struct perf_event *event = sd->event;
3018 
3019 	/* if it's already INACTIVE, do nothing */
3020 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3021 		return 0;
3022 
3023 	/* matches smp_wmb() in event_sched_in() */
3024 	smp_rmb();
3025 
3026 	/*
3027 	 * There is a window with interrupts enabled before we get here,
3028 	 * so we need to check again lest we try to stop another CPU's event.
3029 	 */
3030 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3031 		return -EAGAIN;
3032 
3033 	event->pmu->stop(event, PERF_EF_UPDATE);
3034 
3035 	/*
3036 	 * May race with the actual stop (through perf_pmu_output_stop()),
3037 	 * but it is only used for events with AUX ring buffer, and such
3038 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3039 	 * see comments in perf_aux_output_begin().
3040 	 *
3041 	 * Since this is happening on an event-local CPU, no trace is lost
3042 	 * while restarting.
3043 	 */
3044 	if (sd->restart)
3045 		event->pmu->start(event, 0);
3046 
3047 	return 0;
3048 }
3049 
3050 static int perf_event_stop(struct perf_event *event, int restart)
3051 {
3052 	struct stop_event_data sd = {
3053 		.event		= event,
3054 		.restart	= restart,
3055 	};
3056 	int ret = 0;
3057 
3058 	do {
3059 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3060 			return 0;
3061 
3062 		/* matches smp_wmb() in event_sched_in() */
3063 		smp_rmb();
3064 
3065 		/*
3066 		 * We only want to restart ACTIVE events, so if the event goes
3067 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3068 		 * fall through with ret==-ENXIO.
3069 		 */
3070 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3071 					__perf_event_stop, &sd);
3072 	} while (ret == -EAGAIN);
3073 
3074 	return ret;
3075 }
3076 
3077 /*
3078  * In order to contain the amount of racy and tricky in the address filter
3079  * configuration management, it is a two part process:
3080  *
3081  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3082  *      we update the addresses of corresponding vmas in
3083  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3084  * (p2) when an event is scheduled in (pmu::add), it calls
3085  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3086  *      if the generation has changed since the previous call.
3087  *
3088  * If (p1) happens while the event is active, we restart it to force (p2).
3089  *
3090  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3091  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3092  *     ioctl;
3093  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3094  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3095  *     for reading;
3096  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3097  *     of exec.
3098  */
3099 void perf_event_addr_filters_sync(struct perf_event *event)
3100 {
3101 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3102 
3103 	if (!has_addr_filter(event))
3104 		return;
3105 
3106 	raw_spin_lock(&ifh->lock);
3107 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3108 		event->pmu->addr_filters_sync(event);
3109 		event->hw.addr_filters_gen = event->addr_filters_gen;
3110 	}
3111 	raw_spin_unlock(&ifh->lock);
3112 }
3113 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3114 
3115 static int _perf_event_refresh(struct perf_event *event, int refresh)
3116 {
3117 	/*
3118 	 * not supported on inherited events
3119 	 */
3120 	if (event->attr.inherit || !is_sampling_event(event))
3121 		return -EINVAL;
3122 
3123 	atomic_add(refresh, &event->event_limit);
3124 	_perf_event_enable(event);
3125 
3126 	return 0;
3127 }
3128 
3129 /*
3130  * See perf_event_disable()
3131  */
3132 int perf_event_refresh(struct perf_event *event, int refresh)
3133 {
3134 	struct perf_event_context *ctx;
3135 	int ret;
3136 
3137 	ctx = perf_event_ctx_lock(event);
3138 	ret = _perf_event_refresh(event, refresh);
3139 	perf_event_ctx_unlock(event, ctx);
3140 
3141 	return ret;
3142 }
3143 EXPORT_SYMBOL_GPL(perf_event_refresh);
3144 
3145 static int perf_event_modify_breakpoint(struct perf_event *bp,
3146 					 struct perf_event_attr *attr)
3147 {
3148 	int err;
3149 
3150 	_perf_event_disable(bp);
3151 
3152 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3153 
3154 	if (!bp->attr.disabled)
3155 		_perf_event_enable(bp);
3156 
3157 	return err;
3158 }
3159 
3160 /*
3161  * Copy event-type-independent attributes that may be modified.
3162  */
3163 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3164 					const struct perf_event_attr *from)
3165 {
3166 	to->sig_data = from->sig_data;
3167 }
3168 
3169 static int perf_event_modify_attr(struct perf_event *event,
3170 				  struct perf_event_attr *attr)
3171 {
3172 	int (*func)(struct perf_event *, struct perf_event_attr *);
3173 	struct perf_event *child;
3174 	int err;
3175 
3176 	if (event->attr.type != attr->type)
3177 		return -EINVAL;
3178 
3179 	switch (event->attr.type) {
3180 	case PERF_TYPE_BREAKPOINT:
3181 		func = perf_event_modify_breakpoint;
3182 		break;
3183 	default:
3184 		/* Place holder for future additions. */
3185 		return -EOPNOTSUPP;
3186 	}
3187 
3188 	WARN_ON_ONCE(event->ctx->parent_ctx);
3189 
3190 	mutex_lock(&event->child_mutex);
3191 	/*
3192 	 * Event-type-independent attributes must be copied before event-type
3193 	 * modification, which will validate that final attributes match the
3194 	 * source attributes after all relevant attributes have been copied.
3195 	 */
3196 	perf_event_modify_copy_attr(&event->attr, attr);
3197 	err = func(event, attr);
3198 	if (err)
3199 		goto out;
3200 	list_for_each_entry(child, &event->child_list, child_list) {
3201 		perf_event_modify_copy_attr(&child->attr, attr);
3202 		err = func(child, attr);
3203 		if (err)
3204 			goto out;
3205 	}
3206 out:
3207 	mutex_unlock(&event->child_mutex);
3208 	return err;
3209 }
3210 
3211 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3212 				enum event_type_t event_type)
3213 {
3214 	struct perf_event_context *ctx = pmu_ctx->ctx;
3215 	struct perf_event *event, *tmp;
3216 	struct pmu *pmu = pmu_ctx->pmu;
3217 
3218 	if (ctx->task && !ctx->is_active) {
3219 		struct perf_cpu_pmu_context *cpc;
3220 
3221 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3222 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3223 		cpc->task_epc = NULL;
3224 	}
3225 
3226 	if (!event_type)
3227 		return;
3228 
3229 	perf_pmu_disable(pmu);
3230 	if (event_type & EVENT_PINNED) {
3231 		list_for_each_entry_safe(event, tmp,
3232 					 &pmu_ctx->pinned_active,
3233 					 active_list)
3234 			group_sched_out(event, ctx);
3235 	}
3236 
3237 	if (event_type & EVENT_FLEXIBLE) {
3238 		list_for_each_entry_safe(event, tmp,
3239 					 &pmu_ctx->flexible_active,
3240 					 active_list)
3241 			group_sched_out(event, ctx);
3242 		/*
3243 		 * Since we cleared EVENT_FLEXIBLE, also clear
3244 		 * rotate_necessary, is will be reset by
3245 		 * ctx_flexible_sched_in() when needed.
3246 		 */
3247 		pmu_ctx->rotate_necessary = 0;
3248 	}
3249 	perf_pmu_enable(pmu);
3250 }
3251 
3252 static void
3253 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3254 {
3255 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3256 	struct perf_event_pmu_context *pmu_ctx;
3257 	int is_active = ctx->is_active;
3258 	bool cgroup = event_type & EVENT_CGROUP;
3259 
3260 	event_type &= ~EVENT_CGROUP;
3261 
3262 	lockdep_assert_held(&ctx->lock);
3263 
3264 	if (likely(!ctx->nr_events)) {
3265 		/*
3266 		 * See __perf_remove_from_context().
3267 		 */
3268 		WARN_ON_ONCE(ctx->is_active);
3269 		if (ctx->task)
3270 			WARN_ON_ONCE(cpuctx->task_ctx);
3271 		return;
3272 	}
3273 
3274 	/*
3275 	 * Always update time if it was set; not only when it changes.
3276 	 * Otherwise we can 'forget' to update time for any but the last
3277 	 * context we sched out. For example:
3278 	 *
3279 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3280 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3281 	 *
3282 	 * would only update time for the pinned events.
3283 	 */
3284 	if (is_active & EVENT_TIME) {
3285 		/* update (and stop) ctx time */
3286 		update_context_time(ctx);
3287 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3288 		/*
3289 		 * CPU-release for the below ->is_active store,
3290 		 * see __load_acquire() in perf_event_time_now()
3291 		 */
3292 		barrier();
3293 	}
3294 
3295 	ctx->is_active &= ~event_type;
3296 	if (!(ctx->is_active & EVENT_ALL))
3297 		ctx->is_active = 0;
3298 
3299 	if (ctx->task) {
3300 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3301 		if (!ctx->is_active)
3302 			cpuctx->task_ctx = NULL;
3303 	}
3304 
3305 	is_active ^= ctx->is_active; /* changed bits */
3306 
3307 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3308 		if (cgroup && !pmu_ctx->nr_cgroups)
3309 			continue;
3310 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3311 	}
3312 }
3313 
3314 /*
3315  * Test whether two contexts are equivalent, i.e. whether they have both been
3316  * cloned from the same version of the same context.
3317  *
3318  * Equivalence is measured using a generation number in the context that is
3319  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3320  * and list_del_event().
3321  */
3322 static int context_equiv(struct perf_event_context *ctx1,
3323 			 struct perf_event_context *ctx2)
3324 {
3325 	lockdep_assert_held(&ctx1->lock);
3326 	lockdep_assert_held(&ctx2->lock);
3327 
3328 	/* Pinning disables the swap optimization */
3329 	if (ctx1->pin_count || ctx2->pin_count)
3330 		return 0;
3331 
3332 	/* If ctx1 is the parent of ctx2 */
3333 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3334 		return 1;
3335 
3336 	/* If ctx2 is the parent of ctx1 */
3337 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3338 		return 1;
3339 
3340 	/*
3341 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3342 	 * hierarchy, see perf_event_init_context().
3343 	 */
3344 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3345 			ctx1->parent_gen == ctx2->parent_gen)
3346 		return 1;
3347 
3348 	/* Unmatched */
3349 	return 0;
3350 }
3351 
3352 static void __perf_event_sync_stat(struct perf_event *event,
3353 				     struct perf_event *next_event)
3354 {
3355 	u64 value;
3356 
3357 	if (!event->attr.inherit_stat)
3358 		return;
3359 
3360 	/*
3361 	 * Update the event value, we cannot use perf_event_read()
3362 	 * because we're in the middle of a context switch and have IRQs
3363 	 * disabled, which upsets smp_call_function_single(), however
3364 	 * we know the event must be on the current CPU, therefore we
3365 	 * don't need to use it.
3366 	 */
3367 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3368 		event->pmu->read(event);
3369 
3370 	perf_event_update_time(event);
3371 
3372 	/*
3373 	 * In order to keep per-task stats reliable we need to flip the event
3374 	 * values when we flip the contexts.
3375 	 */
3376 	value = local64_read(&next_event->count);
3377 	value = local64_xchg(&event->count, value);
3378 	local64_set(&next_event->count, value);
3379 
3380 	swap(event->total_time_enabled, next_event->total_time_enabled);
3381 	swap(event->total_time_running, next_event->total_time_running);
3382 
3383 	/*
3384 	 * Since we swizzled the values, update the user visible data too.
3385 	 */
3386 	perf_event_update_userpage(event);
3387 	perf_event_update_userpage(next_event);
3388 }
3389 
3390 static void perf_event_sync_stat(struct perf_event_context *ctx,
3391 				   struct perf_event_context *next_ctx)
3392 {
3393 	struct perf_event *event, *next_event;
3394 
3395 	if (!ctx->nr_stat)
3396 		return;
3397 
3398 	update_context_time(ctx);
3399 
3400 	event = list_first_entry(&ctx->event_list,
3401 				   struct perf_event, event_entry);
3402 
3403 	next_event = list_first_entry(&next_ctx->event_list,
3404 					struct perf_event, event_entry);
3405 
3406 	while (&event->event_entry != &ctx->event_list &&
3407 	       &next_event->event_entry != &next_ctx->event_list) {
3408 
3409 		__perf_event_sync_stat(event, next_event);
3410 
3411 		event = list_next_entry(event, event_entry);
3412 		next_event = list_next_entry(next_event, event_entry);
3413 	}
3414 }
3415 
3416 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3417 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3418 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3419 	     !list_entry_is_head(pos1, head1, member) &&		\
3420 	     !list_entry_is_head(pos2, head2, member);			\
3421 	     pos1 = list_next_entry(pos1, member),			\
3422 	     pos2 = list_next_entry(pos2, member))
3423 
3424 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3425 					  struct perf_event_context *next_ctx)
3426 {
3427 	struct perf_event_pmu_context *prev_epc, *next_epc;
3428 
3429 	if (!prev_ctx->nr_task_data)
3430 		return;
3431 
3432 	double_list_for_each_entry(prev_epc, next_epc,
3433 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3434 				   pmu_ctx_entry) {
3435 
3436 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3437 			continue;
3438 
3439 		/*
3440 		 * PMU specific parts of task perf context can require
3441 		 * additional synchronization. As an example of such
3442 		 * synchronization see implementation details of Intel
3443 		 * LBR call stack data profiling;
3444 		 */
3445 		if (prev_epc->pmu->swap_task_ctx)
3446 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3447 		else
3448 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3449 	}
3450 }
3451 
3452 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3453 {
3454 	struct perf_event_pmu_context *pmu_ctx;
3455 	struct perf_cpu_pmu_context *cpc;
3456 
3457 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3458 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3459 
3460 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3461 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3462 	}
3463 }
3464 
3465 static void
3466 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3467 {
3468 	struct perf_event_context *ctx = task->perf_event_ctxp;
3469 	struct perf_event_context *next_ctx;
3470 	struct perf_event_context *parent, *next_parent;
3471 	int do_switch = 1;
3472 
3473 	if (likely(!ctx))
3474 		return;
3475 
3476 	rcu_read_lock();
3477 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3478 	if (!next_ctx)
3479 		goto unlock;
3480 
3481 	parent = rcu_dereference(ctx->parent_ctx);
3482 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3483 
3484 	/* If neither context have a parent context; they cannot be clones. */
3485 	if (!parent && !next_parent)
3486 		goto unlock;
3487 
3488 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3489 		/*
3490 		 * Looks like the two contexts are clones, so we might be
3491 		 * able to optimize the context switch.  We lock both
3492 		 * contexts and check that they are clones under the
3493 		 * lock (including re-checking that neither has been
3494 		 * uncloned in the meantime).  It doesn't matter which
3495 		 * order we take the locks because no other cpu could
3496 		 * be trying to lock both of these tasks.
3497 		 */
3498 		raw_spin_lock(&ctx->lock);
3499 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3500 		if (context_equiv(ctx, next_ctx)) {
3501 
3502 			perf_ctx_disable(ctx, false);
3503 
3504 			/* PMIs are disabled; ctx->nr_pending is stable. */
3505 			if (local_read(&ctx->nr_pending) ||
3506 			    local_read(&next_ctx->nr_pending)) {
3507 				/*
3508 				 * Must not swap out ctx when there's pending
3509 				 * events that rely on the ctx->task relation.
3510 				 */
3511 				raw_spin_unlock(&next_ctx->lock);
3512 				rcu_read_unlock();
3513 				goto inside_switch;
3514 			}
3515 
3516 			WRITE_ONCE(ctx->task, next);
3517 			WRITE_ONCE(next_ctx->task, task);
3518 
3519 			perf_ctx_sched_task_cb(ctx, false);
3520 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3521 
3522 			perf_ctx_enable(ctx, false);
3523 
3524 			/*
3525 			 * RCU_INIT_POINTER here is safe because we've not
3526 			 * modified the ctx and the above modification of
3527 			 * ctx->task and ctx->task_ctx_data are immaterial
3528 			 * since those values are always verified under
3529 			 * ctx->lock which we're now holding.
3530 			 */
3531 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3532 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3533 
3534 			do_switch = 0;
3535 
3536 			perf_event_sync_stat(ctx, next_ctx);
3537 		}
3538 		raw_spin_unlock(&next_ctx->lock);
3539 		raw_spin_unlock(&ctx->lock);
3540 	}
3541 unlock:
3542 	rcu_read_unlock();
3543 
3544 	if (do_switch) {
3545 		raw_spin_lock(&ctx->lock);
3546 		perf_ctx_disable(ctx, false);
3547 
3548 inside_switch:
3549 		perf_ctx_sched_task_cb(ctx, false);
3550 		task_ctx_sched_out(ctx, EVENT_ALL);
3551 
3552 		perf_ctx_enable(ctx, false);
3553 		raw_spin_unlock(&ctx->lock);
3554 	}
3555 }
3556 
3557 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3558 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3559 
3560 void perf_sched_cb_dec(struct pmu *pmu)
3561 {
3562 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3563 
3564 	this_cpu_dec(perf_sched_cb_usages);
3565 	barrier();
3566 
3567 	if (!--cpc->sched_cb_usage)
3568 		list_del(&cpc->sched_cb_entry);
3569 }
3570 
3571 
3572 void perf_sched_cb_inc(struct pmu *pmu)
3573 {
3574 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3575 
3576 	if (!cpc->sched_cb_usage++)
3577 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3578 
3579 	barrier();
3580 	this_cpu_inc(perf_sched_cb_usages);
3581 }
3582 
3583 /*
3584  * This function provides the context switch callback to the lower code
3585  * layer. It is invoked ONLY when the context switch callback is enabled.
3586  *
3587  * This callback is relevant even to per-cpu events; for example multi event
3588  * PEBS requires this to provide PID/TID information. This requires we flush
3589  * all queued PEBS records before we context switch to a new task.
3590  */
3591 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3592 {
3593 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3594 	struct pmu *pmu;
3595 
3596 	pmu = cpc->epc.pmu;
3597 
3598 	/* software PMUs will not have sched_task */
3599 	if (WARN_ON_ONCE(!pmu->sched_task))
3600 		return;
3601 
3602 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3603 	perf_pmu_disable(pmu);
3604 
3605 	pmu->sched_task(cpc->task_epc, sched_in);
3606 
3607 	perf_pmu_enable(pmu);
3608 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3609 }
3610 
3611 static void perf_pmu_sched_task(struct task_struct *prev,
3612 				struct task_struct *next,
3613 				bool sched_in)
3614 {
3615 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3616 	struct perf_cpu_pmu_context *cpc;
3617 
3618 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3619 	if (prev == next || cpuctx->task_ctx)
3620 		return;
3621 
3622 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3623 		__perf_pmu_sched_task(cpc, sched_in);
3624 }
3625 
3626 static void perf_event_switch(struct task_struct *task,
3627 			      struct task_struct *next_prev, bool sched_in);
3628 
3629 /*
3630  * Called from scheduler to remove the events of the current task,
3631  * with interrupts disabled.
3632  *
3633  * We stop each event and update the event value in event->count.
3634  *
3635  * This does not protect us against NMI, but disable()
3636  * sets the disabled bit in the control field of event _before_
3637  * accessing the event control register. If a NMI hits, then it will
3638  * not restart the event.
3639  */
3640 void __perf_event_task_sched_out(struct task_struct *task,
3641 				 struct task_struct *next)
3642 {
3643 	if (__this_cpu_read(perf_sched_cb_usages))
3644 		perf_pmu_sched_task(task, next, false);
3645 
3646 	if (atomic_read(&nr_switch_events))
3647 		perf_event_switch(task, next, false);
3648 
3649 	perf_event_context_sched_out(task, next);
3650 
3651 	/*
3652 	 * if cgroup events exist on this CPU, then we need
3653 	 * to check if we have to switch out PMU state.
3654 	 * cgroup event are system-wide mode only
3655 	 */
3656 	perf_cgroup_switch(next);
3657 }
3658 
3659 static bool perf_less_group_idx(const void *l, const void *r)
3660 {
3661 	const struct perf_event *le = *(const struct perf_event **)l;
3662 	const struct perf_event *re = *(const struct perf_event **)r;
3663 
3664 	return le->group_index < re->group_index;
3665 }
3666 
3667 static void swap_ptr(void *l, void *r)
3668 {
3669 	void **lp = l, **rp = r;
3670 
3671 	swap(*lp, *rp);
3672 }
3673 
3674 static const struct min_heap_callbacks perf_min_heap = {
3675 	.elem_size = sizeof(struct perf_event *),
3676 	.less = perf_less_group_idx,
3677 	.swp = swap_ptr,
3678 };
3679 
3680 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3681 {
3682 	struct perf_event **itrs = heap->data;
3683 
3684 	if (event) {
3685 		itrs[heap->nr] = event;
3686 		heap->nr++;
3687 	}
3688 }
3689 
3690 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3691 {
3692 	struct perf_cpu_pmu_context *cpc;
3693 
3694 	if (!pmu_ctx->ctx->task)
3695 		return;
3696 
3697 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3698 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3699 	cpc->task_epc = pmu_ctx;
3700 }
3701 
3702 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3703 				struct perf_event_groups *groups, int cpu,
3704 				struct pmu *pmu,
3705 				int (*func)(struct perf_event *, void *),
3706 				void *data)
3707 {
3708 #ifdef CONFIG_CGROUP_PERF
3709 	struct cgroup_subsys_state *css = NULL;
3710 #endif
3711 	struct perf_cpu_context *cpuctx = NULL;
3712 	/* Space for per CPU and/or any CPU event iterators. */
3713 	struct perf_event *itrs[2];
3714 	struct min_heap event_heap;
3715 	struct perf_event **evt;
3716 	int ret;
3717 
3718 	if (pmu->filter && pmu->filter(pmu, cpu))
3719 		return 0;
3720 
3721 	if (!ctx->task) {
3722 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3723 		event_heap = (struct min_heap){
3724 			.data = cpuctx->heap,
3725 			.nr = 0,
3726 			.size = cpuctx->heap_size,
3727 		};
3728 
3729 		lockdep_assert_held(&cpuctx->ctx.lock);
3730 
3731 #ifdef CONFIG_CGROUP_PERF
3732 		if (cpuctx->cgrp)
3733 			css = &cpuctx->cgrp->css;
3734 #endif
3735 	} else {
3736 		event_heap = (struct min_heap){
3737 			.data = itrs,
3738 			.nr = 0,
3739 			.size = ARRAY_SIZE(itrs),
3740 		};
3741 		/* Events not within a CPU context may be on any CPU. */
3742 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3743 	}
3744 	evt = event_heap.data;
3745 
3746 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3747 
3748 #ifdef CONFIG_CGROUP_PERF
3749 	for (; css; css = css->parent)
3750 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3751 #endif
3752 
3753 	if (event_heap.nr) {
3754 		__link_epc((*evt)->pmu_ctx);
3755 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3756 	}
3757 
3758 	min_heapify_all(&event_heap, &perf_min_heap);
3759 
3760 	while (event_heap.nr) {
3761 		ret = func(*evt, data);
3762 		if (ret)
3763 			return ret;
3764 
3765 		*evt = perf_event_groups_next(*evt, pmu);
3766 		if (*evt)
3767 			min_heapify(&event_heap, 0, &perf_min_heap);
3768 		else
3769 			min_heap_pop(&event_heap, &perf_min_heap);
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 /*
3776  * Because the userpage is strictly per-event (there is no concept of context,
3777  * so there cannot be a context indirection), every userpage must be updated
3778  * when context time starts :-(
3779  *
3780  * IOW, we must not miss EVENT_TIME edges.
3781  */
3782 static inline bool event_update_userpage(struct perf_event *event)
3783 {
3784 	if (likely(!atomic_read(&event->mmap_count)))
3785 		return false;
3786 
3787 	perf_event_update_time(event);
3788 	perf_event_update_userpage(event);
3789 
3790 	return true;
3791 }
3792 
3793 static inline void group_update_userpage(struct perf_event *group_event)
3794 {
3795 	struct perf_event *event;
3796 
3797 	if (!event_update_userpage(group_event))
3798 		return;
3799 
3800 	for_each_sibling_event(event, group_event)
3801 		event_update_userpage(event);
3802 }
3803 
3804 static int merge_sched_in(struct perf_event *event, void *data)
3805 {
3806 	struct perf_event_context *ctx = event->ctx;
3807 	int *can_add_hw = data;
3808 
3809 	if (event->state <= PERF_EVENT_STATE_OFF)
3810 		return 0;
3811 
3812 	if (!event_filter_match(event))
3813 		return 0;
3814 
3815 	if (group_can_go_on(event, *can_add_hw)) {
3816 		if (!group_sched_in(event, ctx))
3817 			list_add_tail(&event->active_list, get_event_list(event));
3818 	}
3819 
3820 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3821 		*can_add_hw = 0;
3822 		if (event->attr.pinned) {
3823 			perf_cgroup_event_disable(event, ctx);
3824 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3825 		} else {
3826 			struct perf_cpu_pmu_context *cpc;
3827 
3828 			event->pmu_ctx->rotate_necessary = 1;
3829 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3830 			perf_mux_hrtimer_restart(cpc);
3831 			group_update_userpage(event);
3832 		}
3833 	}
3834 
3835 	return 0;
3836 }
3837 
3838 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3839 				struct perf_event_groups *groups,
3840 				struct pmu *pmu)
3841 {
3842 	int can_add_hw = 1;
3843 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3844 			   merge_sched_in, &can_add_hw);
3845 }
3846 
3847 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3848 				struct perf_event_groups *groups,
3849 				bool cgroup)
3850 {
3851 	struct perf_event_pmu_context *pmu_ctx;
3852 
3853 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3854 		if (cgroup && !pmu_ctx->nr_cgroups)
3855 			continue;
3856 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3857 	}
3858 }
3859 
3860 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3861 			       struct pmu *pmu)
3862 {
3863 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3864 }
3865 
3866 static void
3867 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3868 {
3869 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3870 	int is_active = ctx->is_active;
3871 	bool cgroup = event_type & EVENT_CGROUP;
3872 
3873 	event_type &= ~EVENT_CGROUP;
3874 
3875 	lockdep_assert_held(&ctx->lock);
3876 
3877 	if (likely(!ctx->nr_events))
3878 		return;
3879 
3880 	if (!(is_active & EVENT_TIME)) {
3881 		/* start ctx time */
3882 		__update_context_time(ctx, false);
3883 		perf_cgroup_set_timestamp(cpuctx);
3884 		/*
3885 		 * CPU-release for the below ->is_active store,
3886 		 * see __load_acquire() in perf_event_time_now()
3887 		 */
3888 		barrier();
3889 	}
3890 
3891 	ctx->is_active |= (event_type | EVENT_TIME);
3892 	if (ctx->task) {
3893 		if (!is_active)
3894 			cpuctx->task_ctx = ctx;
3895 		else
3896 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3897 	}
3898 
3899 	is_active ^= ctx->is_active; /* changed bits */
3900 
3901 	/*
3902 	 * First go through the list and put on any pinned groups
3903 	 * in order to give them the best chance of going on.
3904 	 */
3905 	if (is_active & EVENT_PINNED)
3906 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3907 
3908 	/* Then walk through the lower prio flexible groups */
3909 	if (is_active & EVENT_FLEXIBLE)
3910 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3911 }
3912 
3913 static void perf_event_context_sched_in(struct task_struct *task)
3914 {
3915 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3916 	struct perf_event_context *ctx;
3917 
3918 	rcu_read_lock();
3919 	ctx = rcu_dereference(task->perf_event_ctxp);
3920 	if (!ctx)
3921 		goto rcu_unlock;
3922 
3923 	if (cpuctx->task_ctx == ctx) {
3924 		perf_ctx_lock(cpuctx, ctx);
3925 		perf_ctx_disable(ctx, false);
3926 
3927 		perf_ctx_sched_task_cb(ctx, true);
3928 
3929 		perf_ctx_enable(ctx, false);
3930 		perf_ctx_unlock(cpuctx, ctx);
3931 		goto rcu_unlock;
3932 	}
3933 
3934 	perf_ctx_lock(cpuctx, ctx);
3935 	/*
3936 	 * We must check ctx->nr_events while holding ctx->lock, such
3937 	 * that we serialize against perf_install_in_context().
3938 	 */
3939 	if (!ctx->nr_events)
3940 		goto unlock;
3941 
3942 	perf_ctx_disable(ctx, false);
3943 	/*
3944 	 * We want to keep the following priority order:
3945 	 * cpu pinned (that don't need to move), task pinned,
3946 	 * cpu flexible, task flexible.
3947 	 *
3948 	 * However, if task's ctx is not carrying any pinned
3949 	 * events, no need to flip the cpuctx's events around.
3950 	 */
3951 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3952 		perf_ctx_disable(&cpuctx->ctx, false);
3953 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3954 	}
3955 
3956 	perf_event_sched_in(cpuctx, ctx);
3957 
3958 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3959 
3960 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3961 		perf_ctx_enable(&cpuctx->ctx, false);
3962 
3963 	perf_ctx_enable(ctx, false);
3964 
3965 unlock:
3966 	perf_ctx_unlock(cpuctx, ctx);
3967 rcu_unlock:
3968 	rcu_read_unlock();
3969 }
3970 
3971 /*
3972  * Called from scheduler to add the events of the current task
3973  * with interrupts disabled.
3974  *
3975  * We restore the event value and then enable it.
3976  *
3977  * This does not protect us against NMI, but enable()
3978  * sets the enabled bit in the control field of event _before_
3979  * accessing the event control register. If a NMI hits, then it will
3980  * keep the event running.
3981  */
3982 void __perf_event_task_sched_in(struct task_struct *prev,
3983 				struct task_struct *task)
3984 {
3985 	perf_event_context_sched_in(task);
3986 
3987 	if (atomic_read(&nr_switch_events))
3988 		perf_event_switch(task, prev, true);
3989 
3990 	if (__this_cpu_read(perf_sched_cb_usages))
3991 		perf_pmu_sched_task(prev, task, true);
3992 }
3993 
3994 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3995 {
3996 	u64 frequency = event->attr.sample_freq;
3997 	u64 sec = NSEC_PER_SEC;
3998 	u64 divisor, dividend;
3999 
4000 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4001 
4002 	count_fls = fls64(count);
4003 	nsec_fls = fls64(nsec);
4004 	frequency_fls = fls64(frequency);
4005 	sec_fls = 30;
4006 
4007 	/*
4008 	 * We got @count in @nsec, with a target of sample_freq HZ
4009 	 * the target period becomes:
4010 	 *
4011 	 *             @count * 10^9
4012 	 * period = -------------------
4013 	 *          @nsec * sample_freq
4014 	 *
4015 	 */
4016 
4017 	/*
4018 	 * Reduce accuracy by one bit such that @a and @b converge
4019 	 * to a similar magnitude.
4020 	 */
4021 #define REDUCE_FLS(a, b)		\
4022 do {					\
4023 	if (a##_fls > b##_fls) {	\
4024 		a >>= 1;		\
4025 		a##_fls--;		\
4026 	} else {			\
4027 		b >>= 1;		\
4028 		b##_fls--;		\
4029 	}				\
4030 } while (0)
4031 
4032 	/*
4033 	 * Reduce accuracy until either term fits in a u64, then proceed with
4034 	 * the other, so that finally we can do a u64/u64 division.
4035 	 */
4036 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4037 		REDUCE_FLS(nsec, frequency);
4038 		REDUCE_FLS(sec, count);
4039 	}
4040 
4041 	if (count_fls + sec_fls > 64) {
4042 		divisor = nsec * frequency;
4043 
4044 		while (count_fls + sec_fls > 64) {
4045 			REDUCE_FLS(count, sec);
4046 			divisor >>= 1;
4047 		}
4048 
4049 		dividend = count * sec;
4050 	} else {
4051 		dividend = count * sec;
4052 
4053 		while (nsec_fls + frequency_fls > 64) {
4054 			REDUCE_FLS(nsec, frequency);
4055 			dividend >>= 1;
4056 		}
4057 
4058 		divisor = nsec * frequency;
4059 	}
4060 
4061 	if (!divisor)
4062 		return dividend;
4063 
4064 	return div64_u64(dividend, divisor);
4065 }
4066 
4067 static DEFINE_PER_CPU(int, perf_throttled_count);
4068 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4069 
4070 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4071 {
4072 	struct hw_perf_event *hwc = &event->hw;
4073 	s64 period, sample_period;
4074 	s64 delta;
4075 
4076 	period = perf_calculate_period(event, nsec, count);
4077 
4078 	delta = (s64)(period - hwc->sample_period);
4079 	delta = (delta + 7) / 8; /* low pass filter */
4080 
4081 	sample_period = hwc->sample_period + delta;
4082 
4083 	if (!sample_period)
4084 		sample_period = 1;
4085 
4086 	hwc->sample_period = sample_period;
4087 
4088 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4089 		if (disable)
4090 			event->pmu->stop(event, PERF_EF_UPDATE);
4091 
4092 		local64_set(&hwc->period_left, 0);
4093 
4094 		if (disable)
4095 			event->pmu->start(event, PERF_EF_RELOAD);
4096 	}
4097 }
4098 
4099 /*
4100  * combine freq adjustment with unthrottling to avoid two passes over the
4101  * events. At the same time, make sure, having freq events does not change
4102  * the rate of unthrottling as that would introduce bias.
4103  */
4104 static void
4105 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4106 {
4107 	struct perf_event *event;
4108 	struct hw_perf_event *hwc;
4109 	u64 now, period = TICK_NSEC;
4110 	s64 delta;
4111 
4112 	/*
4113 	 * only need to iterate over all events iff:
4114 	 * - context have events in frequency mode (needs freq adjust)
4115 	 * - there are events to unthrottle on this cpu
4116 	 */
4117 	if (!(ctx->nr_freq || unthrottle))
4118 		return;
4119 
4120 	raw_spin_lock(&ctx->lock);
4121 
4122 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4123 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4124 			continue;
4125 
4126 		// XXX use visit thingy to avoid the -1,cpu match
4127 		if (!event_filter_match(event))
4128 			continue;
4129 
4130 		perf_pmu_disable(event->pmu);
4131 
4132 		hwc = &event->hw;
4133 
4134 		if (hwc->interrupts == MAX_INTERRUPTS) {
4135 			hwc->interrupts = 0;
4136 			perf_log_throttle(event, 1);
4137 			event->pmu->start(event, 0);
4138 		}
4139 
4140 		if (!event->attr.freq || !event->attr.sample_freq)
4141 			goto next;
4142 
4143 		/*
4144 		 * stop the event and update event->count
4145 		 */
4146 		event->pmu->stop(event, PERF_EF_UPDATE);
4147 
4148 		now = local64_read(&event->count);
4149 		delta = now - hwc->freq_count_stamp;
4150 		hwc->freq_count_stamp = now;
4151 
4152 		/*
4153 		 * restart the event
4154 		 * reload only if value has changed
4155 		 * we have stopped the event so tell that
4156 		 * to perf_adjust_period() to avoid stopping it
4157 		 * twice.
4158 		 */
4159 		if (delta > 0)
4160 			perf_adjust_period(event, period, delta, false);
4161 
4162 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4163 	next:
4164 		perf_pmu_enable(event->pmu);
4165 	}
4166 
4167 	raw_spin_unlock(&ctx->lock);
4168 }
4169 
4170 /*
4171  * Move @event to the tail of the @ctx's elegible events.
4172  */
4173 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4174 {
4175 	/*
4176 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4177 	 * disabled by the inheritance code.
4178 	 */
4179 	if (ctx->rotate_disable)
4180 		return;
4181 
4182 	perf_event_groups_delete(&ctx->flexible_groups, event);
4183 	perf_event_groups_insert(&ctx->flexible_groups, event);
4184 }
4185 
4186 /* pick an event from the flexible_groups to rotate */
4187 static inline struct perf_event *
4188 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4189 {
4190 	struct perf_event *event;
4191 	struct rb_node *node;
4192 	struct rb_root *tree;
4193 	struct __group_key key = {
4194 		.pmu = pmu_ctx->pmu,
4195 	};
4196 
4197 	/* pick the first active flexible event */
4198 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4199 					 struct perf_event, active_list);
4200 	if (event)
4201 		goto out;
4202 
4203 	/* if no active flexible event, pick the first event */
4204 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4205 
4206 	if (!pmu_ctx->ctx->task) {
4207 		key.cpu = smp_processor_id();
4208 
4209 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4210 		if (node)
4211 			event = __node_2_pe(node);
4212 		goto out;
4213 	}
4214 
4215 	key.cpu = -1;
4216 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4217 	if (node) {
4218 		event = __node_2_pe(node);
4219 		goto out;
4220 	}
4221 
4222 	key.cpu = smp_processor_id();
4223 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4224 	if (node)
4225 		event = __node_2_pe(node);
4226 
4227 out:
4228 	/*
4229 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4230 	 * finds there are unschedulable events, it will set it again.
4231 	 */
4232 	pmu_ctx->rotate_necessary = 0;
4233 
4234 	return event;
4235 }
4236 
4237 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4238 {
4239 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4240 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4241 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4242 	int cpu_rotate, task_rotate;
4243 	struct pmu *pmu;
4244 
4245 	/*
4246 	 * Since we run this from IRQ context, nobody can install new
4247 	 * events, thus the event count values are stable.
4248 	 */
4249 
4250 	cpu_epc = &cpc->epc;
4251 	pmu = cpu_epc->pmu;
4252 	task_epc = cpc->task_epc;
4253 
4254 	cpu_rotate = cpu_epc->rotate_necessary;
4255 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4256 
4257 	if (!(cpu_rotate || task_rotate))
4258 		return false;
4259 
4260 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4261 	perf_pmu_disable(pmu);
4262 
4263 	if (task_rotate)
4264 		task_event = ctx_event_to_rotate(task_epc);
4265 	if (cpu_rotate)
4266 		cpu_event = ctx_event_to_rotate(cpu_epc);
4267 
4268 	/*
4269 	 * As per the order given at ctx_resched() first 'pop' task flexible
4270 	 * and then, if needed CPU flexible.
4271 	 */
4272 	if (task_event || (task_epc && cpu_event)) {
4273 		update_context_time(task_epc->ctx);
4274 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4275 	}
4276 
4277 	if (cpu_event) {
4278 		update_context_time(&cpuctx->ctx);
4279 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4280 		rotate_ctx(&cpuctx->ctx, cpu_event);
4281 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4282 	}
4283 
4284 	if (task_event)
4285 		rotate_ctx(task_epc->ctx, task_event);
4286 
4287 	if (task_event || (task_epc && cpu_event))
4288 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4289 
4290 	perf_pmu_enable(pmu);
4291 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4292 
4293 	return true;
4294 }
4295 
4296 void perf_event_task_tick(void)
4297 {
4298 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4299 	struct perf_event_context *ctx;
4300 	int throttled;
4301 
4302 	lockdep_assert_irqs_disabled();
4303 
4304 	__this_cpu_inc(perf_throttled_seq);
4305 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4306 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4307 
4308 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4309 
4310 	rcu_read_lock();
4311 	ctx = rcu_dereference(current->perf_event_ctxp);
4312 	if (ctx)
4313 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4314 	rcu_read_unlock();
4315 }
4316 
4317 static int event_enable_on_exec(struct perf_event *event,
4318 				struct perf_event_context *ctx)
4319 {
4320 	if (!event->attr.enable_on_exec)
4321 		return 0;
4322 
4323 	event->attr.enable_on_exec = 0;
4324 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4325 		return 0;
4326 
4327 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4328 
4329 	return 1;
4330 }
4331 
4332 /*
4333  * Enable all of a task's events that have been marked enable-on-exec.
4334  * This expects task == current.
4335  */
4336 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4337 {
4338 	struct perf_event_context *clone_ctx = NULL;
4339 	enum event_type_t event_type = 0;
4340 	struct perf_cpu_context *cpuctx;
4341 	struct perf_event *event;
4342 	unsigned long flags;
4343 	int enabled = 0;
4344 
4345 	local_irq_save(flags);
4346 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4347 		goto out;
4348 
4349 	if (!ctx->nr_events)
4350 		goto out;
4351 
4352 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4353 	perf_ctx_lock(cpuctx, ctx);
4354 	ctx_sched_out(ctx, EVENT_TIME);
4355 
4356 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4357 		enabled |= event_enable_on_exec(event, ctx);
4358 		event_type |= get_event_type(event);
4359 	}
4360 
4361 	/*
4362 	 * Unclone and reschedule this context if we enabled any event.
4363 	 */
4364 	if (enabled) {
4365 		clone_ctx = unclone_ctx(ctx);
4366 		ctx_resched(cpuctx, ctx, event_type);
4367 	} else {
4368 		ctx_sched_in(ctx, EVENT_TIME);
4369 	}
4370 	perf_ctx_unlock(cpuctx, ctx);
4371 
4372 out:
4373 	local_irq_restore(flags);
4374 
4375 	if (clone_ctx)
4376 		put_ctx(clone_ctx);
4377 }
4378 
4379 static void perf_remove_from_owner(struct perf_event *event);
4380 static void perf_event_exit_event(struct perf_event *event,
4381 				  struct perf_event_context *ctx);
4382 
4383 /*
4384  * Removes all events from the current task that have been marked
4385  * remove-on-exec, and feeds their values back to parent events.
4386  */
4387 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4388 {
4389 	struct perf_event_context *clone_ctx = NULL;
4390 	struct perf_event *event, *next;
4391 	unsigned long flags;
4392 	bool modified = false;
4393 
4394 	mutex_lock(&ctx->mutex);
4395 
4396 	if (WARN_ON_ONCE(ctx->task != current))
4397 		goto unlock;
4398 
4399 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4400 		if (!event->attr.remove_on_exec)
4401 			continue;
4402 
4403 		if (!is_kernel_event(event))
4404 			perf_remove_from_owner(event);
4405 
4406 		modified = true;
4407 
4408 		perf_event_exit_event(event, ctx);
4409 	}
4410 
4411 	raw_spin_lock_irqsave(&ctx->lock, flags);
4412 	if (modified)
4413 		clone_ctx = unclone_ctx(ctx);
4414 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4415 
4416 unlock:
4417 	mutex_unlock(&ctx->mutex);
4418 
4419 	if (clone_ctx)
4420 		put_ctx(clone_ctx);
4421 }
4422 
4423 struct perf_read_data {
4424 	struct perf_event *event;
4425 	bool group;
4426 	int ret;
4427 };
4428 
4429 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4430 {
4431 	u16 local_pkg, event_pkg;
4432 
4433 	if ((unsigned)event_cpu >= nr_cpu_ids)
4434 		return event_cpu;
4435 
4436 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4437 		int local_cpu = smp_processor_id();
4438 
4439 		event_pkg = topology_physical_package_id(event_cpu);
4440 		local_pkg = topology_physical_package_id(local_cpu);
4441 
4442 		if (event_pkg == local_pkg)
4443 			return local_cpu;
4444 	}
4445 
4446 	return event_cpu;
4447 }
4448 
4449 /*
4450  * Cross CPU call to read the hardware event
4451  */
4452 static void __perf_event_read(void *info)
4453 {
4454 	struct perf_read_data *data = info;
4455 	struct perf_event *sub, *event = data->event;
4456 	struct perf_event_context *ctx = event->ctx;
4457 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4458 	struct pmu *pmu = event->pmu;
4459 
4460 	/*
4461 	 * If this is a task context, we need to check whether it is
4462 	 * the current task context of this cpu.  If not it has been
4463 	 * scheduled out before the smp call arrived.  In that case
4464 	 * event->count would have been updated to a recent sample
4465 	 * when the event was scheduled out.
4466 	 */
4467 	if (ctx->task && cpuctx->task_ctx != ctx)
4468 		return;
4469 
4470 	raw_spin_lock(&ctx->lock);
4471 	if (ctx->is_active & EVENT_TIME) {
4472 		update_context_time(ctx);
4473 		update_cgrp_time_from_event(event);
4474 	}
4475 
4476 	perf_event_update_time(event);
4477 	if (data->group)
4478 		perf_event_update_sibling_time(event);
4479 
4480 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4481 		goto unlock;
4482 
4483 	if (!data->group) {
4484 		pmu->read(event);
4485 		data->ret = 0;
4486 		goto unlock;
4487 	}
4488 
4489 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4490 
4491 	pmu->read(event);
4492 
4493 	for_each_sibling_event(sub, event) {
4494 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4495 			/*
4496 			 * Use sibling's PMU rather than @event's since
4497 			 * sibling could be on different (eg: software) PMU.
4498 			 */
4499 			sub->pmu->read(sub);
4500 		}
4501 	}
4502 
4503 	data->ret = pmu->commit_txn(pmu);
4504 
4505 unlock:
4506 	raw_spin_unlock(&ctx->lock);
4507 }
4508 
4509 static inline u64 perf_event_count(struct perf_event *event)
4510 {
4511 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4512 }
4513 
4514 static void calc_timer_values(struct perf_event *event,
4515 				u64 *now,
4516 				u64 *enabled,
4517 				u64 *running)
4518 {
4519 	u64 ctx_time;
4520 
4521 	*now = perf_clock();
4522 	ctx_time = perf_event_time_now(event, *now);
4523 	__perf_update_times(event, ctx_time, enabled, running);
4524 }
4525 
4526 /*
4527  * NMI-safe method to read a local event, that is an event that
4528  * is:
4529  *   - either for the current task, or for this CPU
4530  *   - does not have inherit set, for inherited task events
4531  *     will not be local and we cannot read them atomically
4532  *   - must not have a pmu::count method
4533  */
4534 int perf_event_read_local(struct perf_event *event, u64 *value,
4535 			  u64 *enabled, u64 *running)
4536 {
4537 	unsigned long flags;
4538 	int event_oncpu;
4539 	int event_cpu;
4540 	int ret = 0;
4541 
4542 	/*
4543 	 * Disabling interrupts avoids all counter scheduling (context
4544 	 * switches, timer based rotation and IPIs).
4545 	 */
4546 	local_irq_save(flags);
4547 
4548 	/*
4549 	 * It must not be an event with inherit set, we cannot read
4550 	 * all child counters from atomic context.
4551 	 */
4552 	if (event->attr.inherit) {
4553 		ret = -EOPNOTSUPP;
4554 		goto out;
4555 	}
4556 
4557 	/* If this is a per-task event, it must be for current */
4558 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4559 	    event->hw.target != current) {
4560 		ret = -EINVAL;
4561 		goto out;
4562 	}
4563 
4564 	/*
4565 	 * Get the event CPU numbers, and adjust them to local if the event is
4566 	 * a per-package event that can be read locally
4567 	 */
4568 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4569 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4570 
4571 	/* If this is a per-CPU event, it must be for this CPU */
4572 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4573 	    event_cpu != smp_processor_id()) {
4574 		ret = -EINVAL;
4575 		goto out;
4576 	}
4577 
4578 	/* If this is a pinned event it must be running on this CPU */
4579 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4580 		ret = -EBUSY;
4581 		goto out;
4582 	}
4583 
4584 	/*
4585 	 * If the event is currently on this CPU, its either a per-task event,
4586 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4587 	 * oncpu == -1).
4588 	 */
4589 	if (event_oncpu == smp_processor_id())
4590 		event->pmu->read(event);
4591 
4592 	*value = local64_read(&event->count);
4593 	if (enabled || running) {
4594 		u64 __enabled, __running, __now;
4595 
4596 		calc_timer_values(event, &__now, &__enabled, &__running);
4597 		if (enabled)
4598 			*enabled = __enabled;
4599 		if (running)
4600 			*running = __running;
4601 	}
4602 out:
4603 	local_irq_restore(flags);
4604 
4605 	return ret;
4606 }
4607 
4608 static int perf_event_read(struct perf_event *event, bool group)
4609 {
4610 	enum perf_event_state state = READ_ONCE(event->state);
4611 	int event_cpu, ret = 0;
4612 
4613 	/*
4614 	 * If event is enabled and currently active on a CPU, update the
4615 	 * value in the event structure:
4616 	 */
4617 again:
4618 	if (state == PERF_EVENT_STATE_ACTIVE) {
4619 		struct perf_read_data data;
4620 
4621 		/*
4622 		 * Orders the ->state and ->oncpu loads such that if we see
4623 		 * ACTIVE we must also see the right ->oncpu.
4624 		 *
4625 		 * Matches the smp_wmb() from event_sched_in().
4626 		 */
4627 		smp_rmb();
4628 
4629 		event_cpu = READ_ONCE(event->oncpu);
4630 		if ((unsigned)event_cpu >= nr_cpu_ids)
4631 			return 0;
4632 
4633 		data = (struct perf_read_data){
4634 			.event = event,
4635 			.group = group,
4636 			.ret = 0,
4637 		};
4638 
4639 		preempt_disable();
4640 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4641 
4642 		/*
4643 		 * Purposely ignore the smp_call_function_single() return
4644 		 * value.
4645 		 *
4646 		 * If event_cpu isn't a valid CPU it means the event got
4647 		 * scheduled out and that will have updated the event count.
4648 		 *
4649 		 * Therefore, either way, we'll have an up-to-date event count
4650 		 * after this.
4651 		 */
4652 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4653 		preempt_enable();
4654 		ret = data.ret;
4655 
4656 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4657 		struct perf_event_context *ctx = event->ctx;
4658 		unsigned long flags;
4659 
4660 		raw_spin_lock_irqsave(&ctx->lock, flags);
4661 		state = event->state;
4662 		if (state != PERF_EVENT_STATE_INACTIVE) {
4663 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4664 			goto again;
4665 		}
4666 
4667 		/*
4668 		 * May read while context is not active (e.g., thread is
4669 		 * blocked), in that case we cannot update context time
4670 		 */
4671 		if (ctx->is_active & EVENT_TIME) {
4672 			update_context_time(ctx);
4673 			update_cgrp_time_from_event(event);
4674 		}
4675 
4676 		perf_event_update_time(event);
4677 		if (group)
4678 			perf_event_update_sibling_time(event);
4679 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4680 	}
4681 
4682 	return ret;
4683 }
4684 
4685 /*
4686  * Initialize the perf_event context in a task_struct:
4687  */
4688 static void __perf_event_init_context(struct perf_event_context *ctx)
4689 {
4690 	raw_spin_lock_init(&ctx->lock);
4691 	mutex_init(&ctx->mutex);
4692 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4693 	perf_event_groups_init(&ctx->pinned_groups);
4694 	perf_event_groups_init(&ctx->flexible_groups);
4695 	INIT_LIST_HEAD(&ctx->event_list);
4696 	refcount_set(&ctx->refcount, 1);
4697 }
4698 
4699 static void
4700 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4701 {
4702 	epc->pmu = pmu;
4703 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4704 	INIT_LIST_HEAD(&epc->pinned_active);
4705 	INIT_LIST_HEAD(&epc->flexible_active);
4706 	atomic_set(&epc->refcount, 1);
4707 }
4708 
4709 static struct perf_event_context *
4710 alloc_perf_context(struct task_struct *task)
4711 {
4712 	struct perf_event_context *ctx;
4713 
4714 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4715 	if (!ctx)
4716 		return NULL;
4717 
4718 	__perf_event_init_context(ctx);
4719 	if (task)
4720 		ctx->task = get_task_struct(task);
4721 
4722 	return ctx;
4723 }
4724 
4725 static struct task_struct *
4726 find_lively_task_by_vpid(pid_t vpid)
4727 {
4728 	struct task_struct *task;
4729 
4730 	rcu_read_lock();
4731 	if (!vpid)
4732 		task = current;
4733 	else
4734 		task = find_task_by_vpid(vpid);
4735 	if (task)
4736 		get_task_struct(task);
4737 	rcu_read_unlock();
4738 
4739 	if (!task)
4740 		return ERR_PTR(-ESRCH);
4741 
4742 	return task;
4743 }
4744 
4745 /*
4746  * Returns a matching context with refcount and pincount.
4747  */
4748 static struct perf_event_context *
4749 find_get_context(struct task_struct *task, struct perf_event *event)
4750 {
4751 	struct perf_event_context *ctx, *clone_ctx = NULL;
4752 	struct perf_cpu_context *cpuctx;
4753 	unsigned long flags;
4754 	int err;
4755 
4756 	if (!task) {
4757 		/* Must be root to operate on a CPU event: */
4758 		err = perf_allow_cpu(&event->attr);
4759 		if (err)
4760 			return ERR_PTR(err);
4761 
4762 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4763 		ctx = &cpuctx->ctx;
4764 		get_ctx(ctx);
4765 		raw_spin_lock_irqsave(&ctx->lock, flags);
4766 		++ctx->pin_count;
4767 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4768 
4769 		return ctx;
4770 	}
4771 
4772 	err = -EINVAL;
4773 retry:
4774 	ctx = perf_lock_task_context(task, &flags);
4775 	if (ctx) {
4776 		clone_ctx = unclone_ctx(ctx);
4777 		++ctx->pin_count;
4778 
4779 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4780 
4781 		if (clone_ctx)
4782 			put_ctx(clone_ctx);
4783 	} else {
4784 		ctx = alloc_perf_context(task);
4785 		err = -ENOMEM;
4786 		if (!ctx)
4787 			goto errout;
4788 
4789 		err = 0;
4790 		mutex_lock(&task->perf_event_mutex);
4791 		/*
4792 		 * If it has already passed perf_event_exit_task().
4793 		 * we must see PF_EXITING, it takes this mutex too.
4794 		 */
4795 		if (task->flags & PF_EXITING)
4796 			err = -ESRCH;
4797 		else if (task->perf_event_ctxp)
4798 			err = -EAGAIN;
4799 		else {
4800 			get_ctx(ctx);
4801 			++ctx->pin_count;
4802 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4803 		}
4804 		mutex_unlock(&task->perf_event_mutex);
4805 
4806 		if (unlikely(err)) {
4807 			put_ctx(ctx);
4808 
4809 			if (err == -EAGAIN)
4810 				goto retry;
4811 			goto errout;
4812 		}
4813 	}
4814 
4815 	return ctx;
4816 
4817 errout:
4818 	return ERR_PTR(err);
4819 }
4820 
4821 static struct perf_event_pmu_context *
4822 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4823 		     struct perf_event *event)
4824 {
4825 	struct perf_event_pmu_context *new = NULL, *epc;
4826 	void *task_ctx_data = NULL;
4827 
4828 	if (!ctx->task) {
4829 		struct perf_cpu_pmu_context *cpc;
4830 
4831 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4832 		epc = &cpc->epc;
4833 		raw_spin_lock_irq(&ctx->lock);
4834 		if (!epc->ctx) {
4835 			atomic_set(&epc->refcount, 1);
4836 			epc->embedded = 1;
4837 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4838 			epc->ctx = ctx;
4839 		} else {
4840 			WARN_ON_ONCE(epc->ctx != ctx);
4841 			atomic_inc(&epc->refcount);
4842 		}
4843 		raw_spin_unlock_irq(&ctx->lock);
4844 		return epc;
4845 	}
4846 
4847 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4848 	if (!new)
4849 		return ERR_PTR(-ENOMEM);
4850 
4851 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4852 		task_ctx_data = alloc_task_ctx_data(pmu);
4853 		if (!task_ctx_data) {
4854 			kfree(new);
4855 			return ERR_PTR(-ENOMEM);
4856 		}
4857 	}
4858 
4859 	__perf_init_event_pmu_context(new, pmu);
4860 
4861 	/*
4862 	 * XXX
4863 	 *
4864 	 * lockdep_assert_held(&ctx->mutex);
4865 	 *
4866 	 * can't because perf_event_init_task() doesn't actually hold the
4867 	 * child_ctx->mutex.
4868 	 */
4869 
4870 	raw_spin_lock_irq(&ctx->lock);
4871 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4872 		if (epc->pmu == pmu) {
4873 			WARN_ON_ONCE(epc->ctx != ctx);
4874 			atomic_inc(&epc->refcount);
4875 			goto found_epc;
4876 		}
4877 	}
4878 
4879 	epc = new;
4880 	new = NULL;
4881 
4882 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4883 	epc->ctx = ctx;
4884 
4885 found_epc:
4886 	if (task_ctx_data && !epc->task_ctx_data) {
4887 		epc->task_ctx_data = task_ctx_data;
4888 		task_ctx_data = NULL;
4889 		ctx->nr_task_data++;
4890 	}
4891 	raw_spin_unlock_irq(&ctx->lock);
4892 
4893 	free_task_ctx_data(pmu, task_ctx_data);
4894 	kfree(new);
4895 
4896 	return epc;
4897 }
4898 
4899 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4900 {
4901 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4902 }
4903 
4904 static void free_epc_rcu(struct rcu_head *head)
4905 {
4906 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4907 
4908 	kfree(epc->task_ctx_data);
4909 	kfree(epc);
4910 }
4911 
4912 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4913 {
4914 	struct perf_event_context *ctx = epc->ctx;
4915 	unsigned long flags;
4916 
4917 	/*
4918 	 * XXX
4919 	 *
4920 	 * lockdep_assert_held(&ctx->mutex);
4921 	 *
4922 	 * can't because of the call-site in _free_event()/put_event()
4923 	 * which isn't always called under ctx->mutex.
4924 	 */
4925 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4926 		return;
4927 
4928 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4929 
4930 	list_del_init(&epc->pmu_ctx_entry);
4931 	epc->ctx = NULL;
4932 
4933 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4934 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4935 
4936 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4937 
4938 	if (epc->embedded)
4939 		return;
4940 
4941 	call_rcu(&epc->rcu_head, free_epc_rcu);
4942 }
4943 
4944 static void perf_event_free_filter(struct perf_event *event);
4945 
4946 static void free_event_rcu(struct rcu_head *head)
4947 {
4948 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4949 
4950 	if (event->ns)
4951 		put_pid_ns(event->ns);
4952 	perf_event_free_filter(event);
4953 	kmem_cache_free(perf_event_cache, event);
4954 }
4955 
4956 static void ring_buffer_attach(struct perf_event *event,
4957 			       struct perf_buffer *rb);
4958 
4959 static void detach_sb_event(struct perf_event *event)
4960 {
4961 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4962 
4963 	raw_spin_lock(&pel->lock);
4964 	list_del_rcu(&event->sb_list);
4965 	raw_spin_unlock(&pel->lock);
4966 }
4967 
4968 static bool is_sb_event(struct perf_event *event)
4969 {
4970 	struct perf_event_attr *attr = &event->attr;
4971 
4972 	if (event->parent)
4973 		return false;
4974 
4975 	if (event->attach_state & PERF_ATTACH_TASK)
4976 		return false;
4977 
4978 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4979 	    attr->comm || attr->comm_exec ||
4980 	    attr->task || attr->ksymbol ||
4981 	    attr->context_switch || attr->text_poke ||
4982 	    attr->bpf_event)
4983 		return true;
4984 	return false;
4985 }
4986 
4987 static void unaccount_pmu_sb_event(struct perf_event *event)
4988 {
4989 	if (is_sb_event(event))
4990 		detach_sb_event(event);
4991 }
4992 
4993 #ifdef CONFIG_NO_HZ_FULL
4994 static DEFINE_SPINLOCK(nr_freq_lock);
4995 #endif
4996 
4997 static void unaccount_freq_event_nohz(void)
4998 {
4999 #ifdef CONFIG_NO_HZ_FULL
5000 	spin_lock(&nr_freq_lock);
5001 	if (atomic_dec_and_test(&nr_freq_events))
5002 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5003 	spin_unlock(&nr_freq_lock);
5004 #endif
5005 }
5006 
5007 static void unaccount_freq_event(void)
5008 {
5009 	if (tick_nohz_full_enabled())
5010 		unaccount_freq_event_nohz();
5011 	else
5012 		atomic_dec(&nr_freq_events);
5013 }
5014 
5015 static void unaccount_event(struct perf_event *event)
5016 {
5017 	bool dec = false;
5018 
5019 	if (event->parent)
5020 		return;
5021 
5022 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5023 		dec = true;
5024 	if (event->attr.mmap || event->attr.mmap_data)
5025 		atomic_dec(&nr_mmap_events);
5026 	if (event->attr.build_id)
5027 		atomic_dec(&nr_build_id_events);
5028 	if (event->attr.comm)
5029 		atomic_dec(&nr_comm_events);
5030 	if (event->attr.namespaces)
5031 		atomic_dec(&nr_namespaces_events);
5032 	if (event->attr.cgroup)
5033 		atomic_dec(&nr_cgroup_events);
5034 	if (event->attr.task)
5035 		atomic_dec(&nr_task_events);
5036 	if (event->attr.freq)
5037 		unaccount_freq_event();
5038 	if (event->attr.context_switch) {
5039 		dec = true;
5040 		atomic_dec(&nr_switch_events);
5041 	}
5042 	if (is_cgroup_event(event))
5043 		dec = true;
5044 	if (has_branch_stack(event))
5045 		dec = true;
5046 	if (event->attr.ksymbol)
5047 		atomic_dec(&nr_ksymbol_events);
5048 	if (event->attr.bpf_event)
5049 		atomic_dec(&nr_bpf_events);
5050 	if (event->attr.text_poke)
5051 		atomic_dec(&nr_text_poke_events);
5052 
5053 	if (dec) {
5054 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5055 			schedule_delayed_work(&perf_sched_work, HZ);
5056 	}
5057 
5058 	unaccount_pmu_sb_event(event);
5059 }
5060 
5061 static void perf_sched_delayed(struct work_struct *work)
5062 {
5063 	mutex_lock(&perf_sched_mutex);
5064 	if (atomic_dec_and_test(&perf_sched_count))
5065 		static_branch_disable(&perf_sched_events);
5066 	mutex_unlock(&perf_sched_mutex);
5067 }
5068 
5069 /*
5070  * The following implement mutual exclusion of events on "exclusive" pmus
5071  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5072  * at a time, so we disallow creating events that might conflict, namely:
5073  *
5074  *  1) cpu-wide events in the presence of per-task events,
5075  *  2) per-task events in the presence of cpu-wide events,
5076  *  3) two matching events on the same perf_event_context.
5077  *
5078  * The former two cases are handled in the allocation path (perf_event_alloc(),
5079  * _free_event()), the latter -- before the first perf_install_in_context().
5080  */
5081 static int exclusive_event_init(struct perf_event *event)
5082 {
5083 	struct pmu *pmu = event->pmu;
5084 
5085 	if (!is_exclusive_pmu(pmu))
5086 		return 0;
5087 
5088 	/*
5089 	 * Prevent co-existence of per-task and cpu-wide events on the
5090 	 * same exclusive pmu.
5091 	 *
5092 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5093 	 * events on this "exclusive" pmu, positive means there are
5094 	 * per-task events.
5095 	 *
5096 	 * Since this is called in perf_event_alloc() path, event::ctx
5097 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5098 	 * to mean "per-task event", because unlike other attach states it
5099 	 * never gets cleared.
5100 	 */
5101 	if (event->attach_state & PERF_ATTACH_TASK) {
5102 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5103 			return -EBUSY;
5104 	} else {
5105 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5106 			return -EBUSY;
5107 	}
5108 
5109 	return 0;
5110 }
5111 
5112 static void exclusive_event_destroy(struct perf_event *event)
5113 {
5114 	struct pmu *pmu = event->pmu;
5115 
5116 	if (!is_exclusive_pmu(pmu))
5117 		return;
5118 
5119 	/* see comment in exclusive_event_init() */
5120 	if (event->attach_state & PERF_ATTACH_TASK)
5121 		atomic_dec(&pmu->exclusive_cnt);
5122 	else
5123 		atomic_inc(&pmu->exclusive_cnt);
5124 }
5125 
5126 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5127 {
5128 	if ((e1->pmu == e2->pmu) &&
5129 	    (e1->cpu == e2->cpu ||
5130 	     e1->cpu == -1 ||
5131 	     e2->cpu == -1))
5132 		return true;
5133 	return false;
5134 }
5135 
5136 static bool exclusive_event_installable(struct perf_event *event,
5137 					struct perf_event_context *ctx)
5138 {
5139 	struct perf_event *iter_event;
5140 	struct pmu *pmu = event->pmu;
5141 
5142 	lockdep_assert_held(&ctx->mutex);
5143 
5144 	if (!is_exclusive_pmu(pmu))
5145 		return true;
5146 
5147 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5148 		if (exclusive_event_match(iter_event, event))
5149 			return false;
5150 	}
5151 
5152 	return true;
5153 }
5154 
5155 static void perf_addr_filters_splice(struct perf_event *event,
5156 				       struct list_head *head);
5157 
5158 static void _free_event(struct perf_event *event)
5159 {
5160 	irq_work_sync(&event->pending_irq);
5161 
5162 	unaccount_event(event);
5163 
5164 	security_perf_event_free(event);
5165 
5166 	if (event->rb) {
5167 		/*
5168 		 * Can happen when we close an event with re-directed output.
5169 		 *
5170 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5171 		 * over us; possibly making our ring_buffer_put() the last.
5172 		 */
5173 		mutex_lock(&event->mmap_mutex);
5174 		ring_buffer_attach(event, NULL);
5175 		mutex_unlock(&event->mmap_mutex);
5176 	}
5177 
5178 	if (is_cgroup_event(event))
5179 		perf_detach_cgroup(event);
5180 
5181 	if (!event->parent) {
5182 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5183 			put_callchain_buffers();
5184 	}
5185 
5186 	perf_event_free_bpf_prog(event);
5187 	perf_addr_filters_splice(event, NULL);
5188 	kfree(event->addr_filter_ranges);
5189 
5190 	if (event->destroy)
5191 		event->destroy(event);
5192 
5193 	/*
5194 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5195 	 * hw.target.
5196 	 */
5197 	if (event->hw.target)
5198 		put_task_struct(event->hw.target);
5199 
5200 	if (event->pmu_ctx)
5201 		put_pmu_ctx(event->pmu_ctx);
5202 
5203 	/*
5204 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5205 	 * all task references must be cleaned up.
5206 	 */
5207 	if (event->ctx)
5208 		put_ctx(event->ctx);
5209 
5210 	exclusive_event_destroy(event);
5211 	module_put(event->pmu->module);
5212 
5213 	call_rcu(&event->rcu_head, free_event_rcu);
5214 }
5215 
5216 /*
5217  * Used to free events which have a known refcount of 1, such as in error paths
5218  * where the event isn't exposed yet and inherited events.
5219  */
5220 static void free_event(struct perf_event *event)
5221 {
5222 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5223 				"unexpected event refcount: %ld; ptr=%p\n",
5224 				atomic_long_read(&event->refcount), event)) {
5225 		/* leak to avoid use-after-free */
5226 		return;
5227 	}
5228 
5229 	_free_event(event);
5230 }
5231 
5232 /*
5233  * Remove user event from the owner task.
5234  */
5235 static void perf_remove_from_owner(struct perf_event *event)
5236 {
5237 	struct task_struct *owner;
5238 
5239 	rcu_read_lock();
5240 	/*
5241 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5242 	 * observe !owner it means the list deletion is complete and we can
5243 	 * indeed free this event, otherwise we need to serialize on
5244 	 * owner->perf_event_mutex.
5245 	 */
5246 	owner = READ_ONCE(event->owner);
5247 	if (owner) {
5248 		/*
5249 		 * Since delayed_put_task_struct() also drops the last
5250 		 * task reference we can safely take a new reference
5251 		 * while holding the rcu_read_lock().
5252 		 */
5253 		get_task_struct(owner);
5254 	}
5255 	rcu_read_unlock();
5256 
5257 	if (owner) {
5258 		/*
5259 		 * If we're here through perf_event_exit_task() we're already
5260 		 * holding ctx->mutex which would be an inversion wrt. the
5261 		 * normal lock order.
5262 		 *
5263 		 * However we can safely take this lock because its the child
5264 		 * ctx->mutex.
5265 		 */
5266 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5267 
5268 		/*
5269 		 * We have to re-check the event->owner field, if it is cleared
5270 		 * we raced with perf_event_exit_task(), acquiring the mutex
5271 		 * ensured they're done, and we can proceed with freeing the
5272 		 * event.
5273 		 */
5274 		if (event->owner) {
5275 			list_del_init(&event->owner_entry);
5276 			smp_store_release(&event->owner, NULL);
5277 		}
5278 		mutex_unlock(&owner->perf_event_mutex);
5279 		put_task_struct(owner);
5280 	}
5281 }
5282 
5283 static void put_event(struct perf_event *event)
5284 {
5285 	if (!atomic_long_dec_and_test(&event->refcount))
5286 		return;
5287 
5288 	_free_event(event);
5289 }
5290 
5291 /*
5292  * Kill an event dead; while event:refcount will preserve the event
5293  * object, it will not preserve its functionality. Once the last 'user'
5294  * gives up the object, we'll destroy the thing.
5295  */
5296 int perf_event_release_kernel(struct perf_event *event)
5297 {
5298 	struct perf_event_context *ctx = event->ctx;
5299 	struct perf_event *child, *tmp;
5300 	LIST_HEAD(free_list);
5301 
5302 	/*
5303 	 * If we got here through err_alloc: free_event(event); we will not
5304 	 * have attached to a context yet.
5305 	 */
5306 	if (!ctx) {
5307 		WARN_ON_ONCE(event->attach_state &
5308 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5309 		goto no_ctx;
5310 	}
5311 
5312 	if (!is_kernel_event(event))
5313 		perf_remove_from_owner(event);
5314 
5315 	ctx = perf_event_ctx_lock(event);
5316 	WARN_ON_ONCE(ctx->parent_ctx);
5317 
5318 	/*
5319 	 * Mark this event as STATE_DEAD, there is no external reference to it
5320 	 * anymore.
5321 	 *
5322 	 * Anybody acquiring event->child_mutex after the below loop _must_
5323 	 * also see this, most importantly inherit_event() which will avoid
5324 	 * placing more children on the list.
5325 	 *
5326 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5327 	 * child events.
5328 	 */
5329 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5330 
5331 	perf_event_ctx_unlock(event, ctx);
5332 
5333 again:
5334 	mutex_lock(&event->child_mutex);
5335 	list_for_each_entry(child, &event->child_list, child_list) {
5336 
5337 		/*
5338 		 * Cannot change, child events are not migrated, see the
5339 		 * comment with perf_event_ctx_lock_nested().
5340 		 */
5341 		ctx = READ_ONCE(child->ctx);
5342 		/*
5343 		 * Since child_mutex nests inside ctx::mutex, we must jump
5344 		 * through hoops. We start by grabbing a reference on the ctx.
5345 		 *
5346 		 * Since the event cannot get freed while we hold the
5347 		 * child_mutex, the context must also exist and have a !0
5348 		 * reference count.
5349 		 */
5350 		get_ctx(ctx);
5351 
5352 		/*
5353 		 * Now that we have a ctx ref, we can drop child_mutex, and
5354 		 * acquire ctx::mutex without fear of it going away. Then we
5355 		 * can re-acquire child_mutex.
5356 		 */
5357 		mutex_unlock(&event->child_mutex);
5358 		mutex_lock(&ctx->mutex);
5359 		mutex_lock(&event->child_mutex);
5360 
5361 		/*
5362 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5363 		 * state, if child is still the first entry, it didn't get freed
5364 		 * and we can continue doing so.
5365 		 */
5366 		tmp = list_first_entry_or_null(&event->child_list,
5367 					       struct perf_event, child_list);
5368 		if (tmp == child) {
5369 			perf_remove_from_context(child, DETACH_GROUP);
5370 			list_move(&child->child_list, &free_list);
5371 			/*
5372 			 * This matches the refcount bump in inherit_event();
5373 			 * this can't be the last reference.
5374 			 */
5375 			put_event(event);
5376 		}
5377 
5378 		mutex_unlock(&event->child_mutex);
5379 		mutex_unlock(&ctx->mutex);
5380 		put_ctx(ctx);
5381 		goto again;
5382 	}
5383 	mutex_unlock(&event->child_mutex);
5384 
5385 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5386 		void *var = &child->ctx->refcount;
5387 
5388 		list_del(&child->child_list);
5389 		free_event(child);
5390 
5391 		/*
5392 		 * Wake any perf_event_free_task() waiting for this event to be
5393 		 * freed.
5394 		 */
5395 		smp_mb(); /* pairs with wait_var_event() */
5396 		wake_up_var(var);
5397 	}
5398 
5399 no_ctx:
5400 	put_event(event); /* Must be the 'last' reference */
5401 	return 0;
5402 }
5403 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5404 
5405 /*
5406  * Called when the last reference to the file is gone.
5407  */
5408 static int perf_release(struct inode *inode, struct file *file)
5409 {
5410 	perf_event_release_kernel(file->private_data);
5411 	return 0;
5412 }
5413 
5414 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5415 {
5416 	struct perf_event *child;
5417 	u64 total = 0;
5418 
5419 	*enabled = 0;
5420 	*running = 0;
5421 
5422 	mutex_lock(&event->child_mutex);
5423 
5424 	(void)perf_event_read(event, false);
5425 	total += perf_event_count(event);
5426 
5427 	*enabled += event->total_time_enabled +
5428 			atomic64_read(&event->child_total_time_enabled);
5429 	*running += event->total_time_running +
5430 			atomic64_read(&event->child_total_time_running);
5431 
5432 	list_for_each_entry(child, &event->child_list, child_list) {
5433 		(void)perf_event_read(child, false);
5434 		total += perf_event_count(child);
5435 		*enabled += child->total_time_enabled;
5436 		*running += child->total_time_running;
5437 	}
5438 	mutex_unlock(&event->child_mutex);
5439 
5440 	return total;
5441 }
5442 
5443 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5444 {
5445 	struct perf_event_context *ctx;
5446 	u64 count;
5447 
5448 	ctx = perf_event_ctx_lock(event);
5449 	count = __perf_event_read_value(event, enabled, running);
5450 	perf_event_ctx_unlock(event, ctx);
5451 
5452 	return count;
5453 }
5454 EXPORT_SYMBOL_GPL(perf_event_read_value);
5455 
5456 static int __perf_read_group_add(struct perf_event *leader,
5457 					u64 read_format, u64 *values)
5458 {
5459 	struct perf_event_context *ctx = leader->ctx;
5460 	struct perf_event *sub;
5461 	unsigned long flags;
5462 	int n = 1; /* skip @nr */
5463 	int ret;
5464 
5465 	ret = perf_event_read(leader, true);
5466 	if (ret)
5467 		return ret;
5468 
5469 	raw_spin_lock_irqsave(&ctx->lock, flags);
5470 
5471 	/*
5472 	 * Since we co-schedule groups, {enabled,running} times of siblings
5473 	 * will be identical to those of the leader, so we only publish one
5474 	 * set.
5475 	 */
5476 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5477 		values[n++] += leader->total_time_enabled +
5478 			atomic64_read(&leader->child_total_time_enabled);
5479 	}
5480 
5481 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5482 		values[n++] += leader->total_time_running +
5483 			atomic64_read(&leader->child_total_time_running);
5484 	}
5485 
5486 	/*
5487 	 * Write {count,id} tuples for every sibling.
5488 	 */
5489 	values[n++] += perf_event_count(leader);
5490 	if (read_format & PERF_FORMAT_ID)
5491 		values[n++] = primary_event_id(leader);
5492 	if (read_format & PERF_FORMAT_LOST)
5493 		values[n++] = atomic64_read(&leader->lost_samples);
5494 
5495 	for_each_sibling_event(sub, leader) {
5496 		values[n++] += perf_event_count(sub);
5497 		if (read_format & PERF_FORMAT_ID)
5498 			values[n++] = primary_event_id(sub);
5499 		if (read_format & PERF_FORMAT_LOST)
5500 			values[n++] = atomic64_read(&sub->lost_samples);
5501 	}
5502 
5503 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5504 	return 0;
5505 }
5506 
5507 static int perf_read_group(struct perf_event *event,
5508 				   u64 read_format, char __user *buf)
5509 {
5510 	struct perf_event *leader = event->group_leader, *child;
5511 	struct perf_event_context *ctx = leader->ctx;
5512 	int ret;
5513 	u64 *values;
5514 
5515 	lockdep_assert_held(&ctx->mutex);
5516 
5517 	values = kzalloc(event->read_size, GFP_KERNEL);
5518 	if (!values)
5519 		return -ENOMEM;
5520 
5521 	values[0] = 1 + leader->nr_siblings;
5522 
5523 	/*
5524 	 * By locking the child_mutex of the leader we effectively
5525 	 * lock the child list of all siblings.. XXX explain how.
5526 	 */
5527 	mutex_lock(&leader->child_mutex);
5528 
5529 	ret = __perf_read_group_add(leader, read_format, values);
5530 	if (ret)
5531 		goto unlock;
5532 
5533 	list_for_each_entry(child, &leader->child_list, child_list) {
5534 		ret = __perf_read_group_add(child, read_format, values);
5535 		if (ret)
5536 			goto unlock;
5537 	}
5538 
5539 	mutex_unlock(&leader->child_mutex);
5540 
5541 	ret = event->read_size;
5542 	if (copy_to_user(buf, values, event->read_size))
5543 		ret = -EFAULT;
5544 	goto out;
5545 
5546 unlock:
5547 	mutex_unlock(&leader->child_mutex);
5548 out:
5549 	kfree(values);
5550 	return ret;
5551 }
5552 
5553 static int perf_read_one(struct perf_event *event,
5554 				 u64 read_format, char __user *buf)
5555 {
5556 	u64 enabled, running;
5557 	u64 values[5];
5558 	int n = 0;
5559 
5560 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5561 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5562 		values[n++] = enabled;
5563 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5564 		values[n++] = running;
5565 	if (read_format & PERF_FORMAT_ID)
5566 		values[n++] = primary_event_id(event);
5567 	if (read_format & PERF_FORMAT_LOST)
5568 		values[n++] = atomic64_read(&event->lost_samples);
5569 
5570 	if (copy_to_user(buf, values, n * sizeof(u64)))
5571 		return -EFAULT;
5572 
5573 	return n * sizeof(u64);
5574 }
5575 
5576 static bool is_event_hup(struct perf_event *event)
5577 {
5578 	bool no_children;
5579 
5580 	if (event->state > PERF_EVENT_STATE_EXIT)
5581 		return false;
5582 
5583 	mutex_lock(&event->child_mutex);
5584 	no_children = list_empty(&event->child_list);
5585 	mutex_unlock(&event->child_mutex);
5586 	return no_children;
5587 }
5588 
5589 /*
5590  * Read the performance event - simple non blocking version for now
5591  */
5592 static ssize_t
5593 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5594 {
5595 	u64 read_format = event->attr.read_format;
5596 	int ret;
5597 
5598 	/*
5599 	 * Return end-of-file for a read on an event that is in
5600 	 * error state (i.e. because it was pinned but it couldn't be
5601 	 * scheduled on to the CPU at some point).
5602 	 */
5603 	if (event->state == PERF_EVENT_STATE_ERROR)
5604 		return 0;
5605 
5606 	if (count < event->read_size)
5607 		return -ENOSPC;
5608 
5609 	WARN_ON_ONCE(event->ctx->parent_ctx);
5610 	if (read_format & PERF_FORMAT_GROUP)
5611 		ret = perf_read_group(event, read_format, buf);
5612 	else
5613 		ret = perf_read_one(event, read_format, buf);
5614 
5615 	return ret;
5616 }
5617 
5618 static ssize_t
5619 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5620 {
5621 	struct perf_event *event = file->private_data;
5622 	struct perf_event_context *ctx;
5623 	int ret;
5624 
5625 	ret = security_perf_event_read(event);
5626 	if (ret)
5627 		return ret;
5628 
5629 	ctx = perf_event_ctx_lock(event);
5630 	ret = __perf_read(event, buf, count);
5631 	perf_event_ctx_unlock(event, ctx);
5632 
5633 	return ret;
5634 }
5635 
5636 static __poll_t perf_poll(struct file *file, poll_table *wait)
5637 {
5638 	struct perf_event *event = file->private_data;
5639 	struct perf_buffer *rb;
5640 	__poll_t events = EPOLLHUP;
5641 
5642 	poll_wait(file, &event->waitq, wait);
5643 
5644 	if (is_event_hup(event))
5645 		return events;
5646 
5647 	/*
5648 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5649 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5650 	 */
5651 	mutex_lock(&event->mmap_mutex);
5652 	rb = event->rb;
5653 	if (rb)
5654 		events = atomic_xchg(&rb->poll, 0);
5655 	mutex_unlock(&event->mmap_mutex);
5656 	return events;
5657 }
5658 
5659 static void _perf_event_reset(struct perf_event *event)
5660 {
5661 	(void)perf_event_read(event, false);
5662 	local64_set(&event->count, 0);
5663 	perf_event_update_userpage(event);
5664 }
5665 
5666 /* Assume it's not an event with inherit set. */
5667 u64 perf_event_pause(struct perf_event *event, bool reset)
5668 {
5669 	struct perf_event_context *ctx;
5670 	u64 count;
5671 
5672 	ctx = perf_event_ctx_lock(event);
5673 	WARN_ON_ONCE(event->attr.inherit);
5674 	_perf_event_disable(event);
5675 	count = local64_read(&event->count);
5676 	if (reset)
5677 		local64_set(&event->count, 0);
5678 	perf_event_ctx_unlock(event, ctx);
5679 
5680 	return count;
5681 }
5682 EXPORT_SYMBOL_GPL(perf_event_pause);
5683 
5684 /*
5685  * Holding the top-level event's child_mutex means that any
5686  * descendant process that has inherited this event will block
5687  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5688  * task existence requirements of perf_event_enable/disable.
5689  */
5690 static void perf_event_for_each_child(struct perf_event *event,
5691 					void (*func)(struct perf_event *))
5692 {
5693 	struct perf_event *child;
5694 
5695 	WARN_ON_ONCE(event->ctx->parent_ctx);
5696 
5697 	mutex_lock(&event->child_mutex);
5698 	func(event);
5699 	list_for_each_entry(child, &event->child_list, child_list)
5700 		func(child);
5701 	mutex_unlock(&event->child_mutex);
5702 }
5703 
5704 static void perf_event_for_each(struct perf_event *event,
5705 				  void (*func)(struct perf_event *))
5706 {
5707 	struct perf_event_context *ctx = event->ctx;
5708 	struct perf_event *sibling;
5709 
5710 	lockdep_assert_held(&ctx->mutex);
5711 
5712 	event = event->group_leader;
5713 
5714 	perf_event_for_each_child(event, func);
5715 	for_each_sibling_event(sibling, event)
5716 		perf_event_for_each_child(sibling, func);
5717 }
5718 
5719 static void __perf_event_period(struct perf_event *event,
5720 				struct perf_cpu_context *cpuctx,
5721 				struct perf_event_context *ctx,
5722 				void *info)
5723 {
5724 	u64 value = *((u64 *)info);
5725 	bool active;
5726 
5727 	if (event->attr.freq) {
5728 		event->attr.sample_freq = value;
5729 	} else {
5730 		event->attr.sample_period = value;
5731 		event->hw.sample_period = value;
5732 	}
5733 
5734 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5735 	if (active) {
5736 		perf_pmu_disable(event->pmu);
5737 		/*
5738 		 * We could be throttled; unthrottle now to avoid the tick
5739 		 * trying to unthrottle while we already re-started the event.
5740 		 */
5741 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5742 			event->hw.interrupts = 0;
5743 			perf_log_throttle(event, 1);
5744 		}
5745 		event->pmu->stop(event, PERF_EF_UPDATE);
5746 	}
5747 
5748 	local64_set(&event->hw.period_left, 0);
5749 
5750 	if (active) {
5751 		event->pmu->start(event, PERF_EF_RELOAD);
5752 		perf_pmu_enable(event->pmu);
5753 	}
5754 }
5755 
5756 static int perf_event_check_period(struct perf_event *event, u64 value)
5757 {
5758 	return event->pmu->check_period(event, value);
5759 }
5760 
5761 static int _perf_event_period(struct perf_event *event, u64 value)
5762 {
5763 	if (!is_sampling_event(event))
5764 		return -EINVAL;
5765 
5766 	if (!value)
5767 		return -EINVAL;
5768 
5769 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5770 		return -EINVAL;
5771 
5772 	if (perf_event_check_period(event, value))
5773 		return -EINVAL;
5774 
5775 	if (!event->attr.freq && (value & (1ULL << 63)))
5776 		return -EINVAL;
5777 
5778 	event_function_call(event, __perf_event_period, &value);
5779 
5780 	return 0;
5781 }
5782 
5783 int perf_event_period(struct perf_event *event, u64 value)
5784 {
5785 	struct perf_event_context *ctx;
5786 	int ret;
5787 
5788 	ctx = perf_event_ctx_lock(event);
5789 	ret = _perf_event_period(event, value);
5790 	perf_event_ctx_unlock(event, ctx);
5791 
5792 	return ret;
5793 }
5794 EXPORT_SYMBOL_GPL(perf_event_period);
5795 
5796 static const struct file_operations perf_fops;
5797 
5798 static inline int perf_fget_light(int fd, struct fd *p)
5799 {
5800 	struct fd f = fdget(fd);
5801 	if (!f.file)
5802 		return -EBADF;
5803 
5804 	if (f.file->f_op != &perf_fops) {
5805 		fdput(f);
5806 		return -EBADF;
5807 	}
5808 	*p = f;
5809 	return 0;
5810 }
5811 
5812 static int perf_event_set_output(struct perf_event *event,
5813 				 struct perf_event *output_event);
5814 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5815 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5816 			  struct perf_event_attr *attr);
5817 
5818 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5819 {
5820 	void (*func)(struct perf_event *);
5821 	u32 flags = arg;
5822 
5823 	switch (cmd) {
5824 	case PERF_EVENT_IOC_ENABLE:
5825 		func = _perf_event_enable;
5826 		break;
5827 	case PERF_EVENT_IOC_DISABLE:
5828 		func = _perf_event_disable;
5829 		break;
5830 	case PERF_EVENT_IOC_RESET:
5831 		func = _perf_event_reset;
5832 		break;
5833 
5834 	case PERF_EVENT_IOC_REFRESH:
5835 		return _perf_event_refresh(event, arg);
5836 
5837 	case PERF_EVENT_IOC_PERIOD:
5838 	{
5839 		u64 value;
5840 
5841 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5842 			return -EFAULT;
5843 
5844 		return _perf_event_period(event, value);
5845 	}
5846 	case PERF_EVENT_IOC_ID:
5847 	{
5848 		u64 id = primary_event_id(event);
5849 
5850 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5851 			return -EFAULT;
5852 		return 0;
5853 	}
5854 
5855 	case PERF_EVENT_IOC_SET_OUTPUT:
5856 	{
5857 		int ret;
5858 		if (arg != -1) {
5859 			struct perf_event *output_event;
5860 			struct fd output;
5861 			ret = perf_fget_light(arg, &output);
5862 			if (ret)
5863 				return ret;
5864 			output_event = output.file->private_data;
5865 			ret = perf_event_set_output(event, output_event);
5866 			fdput(output);
5867 		} else {
5868 			ret = perf_event_set_output(event, NULL);
5869 		}
5870 		return ret;
5871 	}
5872 
5873 	case PERF_EVENT_IOC_SET_FILTER:
5874 		return perf_event_set_filter(event, (void __user *)arg);
5875 
5876 	case PERF_EVENT_IOC_SET_BPF:
5877 	{
5878 		struct bpf_prog *prog;
5879 		int err;
5880 
5881 		prog = bpf_prog_get(arg);
5882 		if (IS_ERR(prog))
5883 			return PTR_ERR(prog);
5884 
5885 		err = perf_event_set_bpf_prog(event, prog, 0);
5886 		if (err) {
5887 			bpf_prog_put(prog);
5888 			return err;
5889 		}
5890 
5891 		return 0;
5892 	}
5893 
5894 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5895 		struct perf_buffer *rb;
5896 
5897 		rcu_read_lock();
5898 		rb = rcu_dereference(event->rb);
5899 		if (!rb || !rb->nr_pages) {
5900 			rcu_read_unlock();
5901 			return -EINVAL;
5902 		}
5903 		rb_toggle_paused(rb, !!arg);
5904 		rcu_read_unlock();
5905 		return 0;
5906 	}
5907 
5908 	case PERF_EVENT_IOC_QUERY_BPF:
5909 		return perf_event_query_prog_array(event, (void __user *)arg);
5910 
5911 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5912 		struct perf_event_attr new_attr;
5913 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5914 					 &new_attr);
5915 
5916 		if (err)
5917 			return err;
5918 
5919 		return perf_event_modify_attr(event,  &new_attr);
5920 	}
5921 	default:
5922 		return -ENOTTY;
5923 	}
5924 
5925 	if (flags & PERF_IOC_FLAG_GROUP)
5926 		perf_event_for_each(event, func);
5927 	else
5928 		perf_event_for_each_child(event, func);
5929 
5930 	return 0;
5931 }
5932 
5933 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5934 {
5935 	struct perf_event *event = file->private_data;
5936 	struct perf_event_context *ctx;
5937 	long ret;
5938 
5939 	/* Treat ioctl like writes as it is likely a mutating operation. */
5940 	ret = security_perf_event_write(event);
5941 	if (ret)
5942 		return ret;
5943 
5944 	ctx = perf_event_ctx_lock(event);
5945 	ret = _perf_ioctl(event, cmd, arg);
5946 	perf_event_ctx_unlock(event, ctx);
5947 
5948 	return ret;
5949 }
5950 
5951 #ifdef CONFIG_COMPAT
5952 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5953 				unsigned long arg)
5954 {
5955 	switch (_IOC_NR(cmd)) {
5956 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5957 	case _IOC_NR(PERF_EVENT_IOC_ID):
5958 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5959 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5960 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5961 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5962 			cmd &= ~IOCSIZE_MASK;
5963 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5964 		}
5965 		break;
5966 	}
5967 	return perf_ioctl(file, cmd, arg);
5968 }
5969 #else
5970 # define perf_compat_ioctl NULL
5971 #endif
5972 
5973 int perf_event_task_enable(void)
5974 {
5975 	struct perf_event_context *ctx;
5976 	struct perf_event *event;
5977 
5978 	mutex_lock(&current->perf_event_mutex);
5979 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5980 		ctx = perf_event_ctx_lock(event);
5981 		perf_event_for_each_child(event, _perf_event_enable);
5982 		perf_event_ctx_unlock(event, ctx);
5983 	}
5984 	mutex_unlock(&current->perf_event_mutex);
5985 
5986 	return 0;
5987 }
5988 
5989 int perf_event_task_disable(void)
5990 {
5991 	struct perf_event_context *ctx;
5992 	struct perf_event *event;
5993 
5994 	mutex_lock(&current->perf_event_mutex);
5995 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5996 		ctx = perf_event_ctx_lock(event);
5997 		perf_event_for_each_child(event, _perf_event_disable);
5998 		perf_event_ctx_unlock(event, ctx);
5999 	}
6000 	mutex_unlock(&current->perf_event_mutex);
6001 
6002 	return 0;
6003 }
6004 
6005 static int perf_event_index(struct perf_event *event)
6006 {
6007 	if (event->hw.state & PERF_HES_STOPPED)
6008 		return 0;
6009 
6010 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6011 		return 0;
6012 
6013 	return event->pmu->event_idx(event);
6014 }
6015 
6016 static void perf_event_init_userpage(struct perf_event *event)
6017 {
6018 	struct perf_event_mmap_page *userpg;
6019 	struct perf_buffer *rb;
6020 
6021 	rcu_read_lock();
6022 	rb = rcu_dereference(event->rb);
6023 	if (!rb)
6024 		goto unlock;
6025 
6026 	userpg = rb->user_page;
6027 
6028 	/* Allow new userspace to detect that bit 0 is deprecated */
6029 	userpg->cap_bit0_is_deprecated = 1;
6030 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6031 	userpg->data_offset = PAGE_SIZE;
6032 	userpg->data_size = perf_data_size(rb);
6033 
6034 unlock:
6035 	rcu_read_unlock();
6036 }
6037 
6038 void __weak arch_perf_update_userpage(
6039 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6040 {
6041 }
6042 
6043 /*
6044  * Callers need to ensure there can be no nesting of this function, otherwise
6045  * the seqlock logic goes bad. We can not serialize this because the arch
6046  * code calls this from NMI context.
6047  */
6048 void perf_event_update_userpage(struct perf_event *event)
6049 {
6050 	struct perf_event_mmap_page *userpg;
6051 	struct perf_buffer *rb;
6052 	u64 enabled, running, now;
6053 
6054 	rcu_read_lock();
6055 	rb = rcu_dereference(event->rb);
6056 	if (!rb)
6057 		goto unlock;
6058 
6059 	/*
6060 	 * compute total_time_enabled, total_time_running
6061 	 * based on snapshot values taken when the event
6062 	 * was last scheduled in.
6063 	 *
6064 	 * we cannot simply called update_context_time()
6065 	 * because of locking issue as we can be called in
6066 	 * NMI context
6067 	 */
6068 	calc_timer_values(event, &now, &enabled, &running);
6069 
6070 	userpg = rb->user_page;
6071 	/*
6072 	 * Disable preemption to guarantee consistent time stamps are stored to
6073 	 * the user page.
6074 	 */
6075 	preempt_disable();
6076 	++userpg->lock;
6077 	barrier();
6078 	userpg->index = perf_event_index(event);
6079 	userpg->offset = perf_event_count(event);
6080 	if (userpg->index)
6081 		userpg->offset -= local64_read(&event->hw.prev_count);
6082 
6083 	userpg->time_enabled = enabled +
6084 			atomic64_read(&event->child_total_time_enabled);
6085 
6086 	userpg->time_running = running +
6087 			atomic64_read(&event->child_total_time_running);
6088 
6089 	arch_perf_update_userpage(event, userpg, now);
6090 
6091 	barrier();
6092 	++userpg->lock;
6093 	preempt_enable();
6094 unlock:
6095 	rcu_read_unlock();
6096 }
6097 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6098 
6099 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6100 {
6101 	struct perf_event *event = vmf->vma->vm_file->private_data;
6102 	struct perf_buffer *rb;
6103 	vm_fault_t ret = VM_FAULT_SIGBUS;
6104 
6105 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6106 		if (vmf->pgoff == 0)
6107 			ret = 0;
6108 		return ret;
6109 	}
6110 
6111 	rcu_read_lock();
6112 	rb = rcu_dereference(event->rb);
6113 	if (!rb)
6114 		goto unlock;
6115 
6116 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6117 		goto unlock;
6118 
6119 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6120 	if (!vmf->page)
6121 		goto unlock;
6122 
6123 	get_page(vmf->page);
6124 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6125 	vmf->page->index   = vmf->pgoff;
6126 
6127 	ret = 0;
6128 unlock:
6129 	rcu_read_unlock();
6130 
6131 	return ret;
6132 }
6133 
6134 static void ring_buffer_attach(struct perf_event *event,
6135 			       struct perf_buffer *rb)
6136 {
6137 	struct perf_buffer *old_rb = NULL;
6138 	unsigned long flags;
6139 
6140 	WARN_ON_ONCE(event->parent);
6141 
6142 	if (event->rb) {
6143 		/*
6144 		 * Should be impossible, we set this when removing
6145 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6146 		 */
6147 		WARN_ON_ONCE(event->rcu_pending);
6148 
6149 		old_rb = event->rb;
6150 		spin_lock_irqsave(&old_rb->event_lock, flags);
6151 		list_del_rcu(&event->rb_entry);
6152 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6153 
6154 		event->rcu_batches = get_state_synchronize_rcu();
6155 		event->rcu_pending = 1;
6156 	}
6157 
6158 	if (rb) {
6159 		if (event->rcu_pending) {
6160 			cond_synchronize_rcu(event->rcu_batches);
6161 			event->rcu_pending = 0;
6162 		}
6163 
6164 		spin_lock_irqsave(&rb->event_lock, flags);
6165 		list_add_rcu(&event->rb_entry, &rb->event_list);
6166 		spin_unlock_irqrestore(&rb->event_lock, flags);
6167 	}
6168 
6169 	/*
6170 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6171 	 * before swizzling the event::rb pointer; if it's getting
6172 	 * unmapped, its aux_mmap_count will be 0 and it won't
6173 	 * restart. See the comment in __perf_pmu_output_stop().
6174 	 *
6175 	 * Data will inevitably be lost when set_output is done in
6176 	 * mid-air, but then again, whoever does it like this is
6177 	 * not in for the data anyway.
6178 	 */
6179 	if (has_aux(event))
6180 		perf_event_stop(event, 0);
6181 
6182 	rcu_assign_pointer(event->rb, rb);
6183 
6184 	if (old_rb) {
6185 		ring_buffer_put(old_rb);
6186 		/*
6187 		 * Since we detached before setting the new rb, so that we
6188 		 * could attach the new rb, we could have missed a wakeup.
6189 		 * Provide it now.
6190 		 */
6191 		wake_up_all(&event->waitq);
6192 	}
6193 }
6194 
6195 static void ring_buffer_wakeup(struct perf_event *event)
6196 {
6197 	struct perf_buffer *rb;
6198 
6199 	if (event->parent)
6200 		event = event->parent;
6201 
6202 	rcu_read_lock();
6203 	rb = rcu_dereference(event->rb);
6204 	if (rb) {
6205 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6206 			wake_up_all(&event->waitq);
6207 	}
6208 	rcu_read_unlock();
6209 }
6210 
6211 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6212 {
6213 	struct perf_buffer *rb;
6214 
6215 	if (event->parent)
6216 		event = event->parent;
6217 
6218 	rcu_read_lock();
6219 	rb = rcu_dereference(event->rb);
6220 	if (rb) {
6221 		if (!refcount_inc_not_zero(&rb->refcount))
6222 			rb = NULL;
6223 	}
6224 	rcu_read_unlock();
6225 
6226 	return rb;
6227 }
6228 
6229 void ring_buffer_put(struct perf_buffer *rb)
6230 {
6231 	if (!refcount_dec_and_test(&rb->refcount))
6232 		return;
6233 
6234 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6235 
6236 	call_rcu(&rb->rcu_head, rb_free_rcu);
6237 }
6238 
6239 static void perf_mmap_open(struct vm_area_struct *vma)
6240 {
6241 	struct perf_event *event = vma->vm_file->private_data;
6242 
6243 	atomic_inc(&event->mmap_count);
6244 	atomic_inc(&event->rb->mmap_count);
6245 
6246 	if (vma->vm_pgoff)
6247 		atomic_inc(&event->rb->aux_mmap_count);
6248 
6249 	if (event->pmu->event_mapped)
6250 		event->pmu->event_mapped(event, vma->vm_mm);
6251 }
6252 
6253 static void perf_pmu_output_stop(struct perf_event *event);
6254 
6255 /*
6256  * A buffer can be mmap()ed multiple times; either directly through the same
6257  * event, or through other events by use of perf_event_set_output().
6258  *
6259  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6260  * the buffer here, where we still have a VM context. This means we need
6261  * to detach all events redirecting to us.
6262  */
6263 static void perf_mmap_close(struct vm_area_struct *vma)
6264 {
6265 	struct perf_event *event = vma->vm_file->private_data;
6266 	struct perf_buffer *rb = ring_buffer_get(event);
6267 	struct user_struct *mmap_user = rb->mmap_user;
6268 	int mmap_locked = rb->mmap_locked;
6269 	unsigned long size = perf_data_size(rb);
6270 	bool detach_rest = false;
6271 
6272 	if (event->pmu->event_unmapped)
6273 		event->pmu->event_unmapped(event, vma->vm_mm);
6274 
6275 	/*
6276 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6277 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6278 	 * serialize with perf_mmap here.
6279 	 */
6280 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6281 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6282 		/*
6283 		 * Stop all AUX events that are writing to this buffer,
6284 		 * so that we can free its AUX pages and corresponding PMU
6285 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6286 		 * they won't start any more (see perf_aux_output_begin()).
6287 		 */
6288 		perf_pmu_output_stop(event);
6289 
6290 		/* now it's safe to free the pages */
6291 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6292 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6293 
6294 		/* this has to be the last one */
6295 		rb_free_aux(rb);
6296 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6297 
6298 		mutex_unlock(&event->mmap_mutex);
6299 	}
6300 
6301 	if (atomic_dec_and_test(&rb->mmap_count))
6302 		detach_rest = true;
6303 
6304 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6305 		goto out_put;
6306 
6307 	ring_buffer_attach(event, NULL);
6308 	mutex_unlock(&event->mmap_mutex);
6309 
6310 	/* If there's still other mmap()s of this buffer, we're done. */
6311 	if (!detach_rest)
6312 		goto out_put;
6313 
6314 	/*
6315 	 * No other mmap()s, detach from all other events that might redirect
6316 	 * into the now unreachable buffer. Somewhat complicated by the
6317 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6318 	 */
6319 again:
6320 	rcu_read_lock();
6321 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6322 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6323 			/*
6324 			 * This event is en-route to free_event() which will
6325 			 * detach it and remove it from the list.
6326 			 */
6327 			continue;
6328 		}
6329 		rcu_read_unlock();
6330 
6331 		mutex_lock(&event->mmap_mutex);
6332 		/*
6333 		 * Check we didn't race with perf_event_set_output() which can
6334 		 * swizzle the rb from under us while we were waiting to
6335 		 * acquire mmap_mutex.
6336 		 *
6337 		 * If we find a different rb; ignore this event, a next
6338 		 * iteration will no longer find it on the list. We have to
6339 		 * still restart the iteration to make sure we're not now
6340 		 * iterating the wrong list.
6341 		 */
6342 		if (event->rb == rb)
6343 			ring_buffer_attach(event, NULL);
6344 
6345 		mutex_unlock(&event->mmap_mutex);
6346 		put_event(event);
6347 
6348 		/*
6349 		 * Restart the iteration; either we're on the wrong list or
6350 		 * destroyed its integrity by doing a deletion.
6351 		 */
6352 		goto again;
6353 	}
6354 	rcu_read_unlock();
6355 
6356 	/*
6357 	 * It could be there's still a few 0-ref events on the list; they'll
6358 	 * get cleaned up by free_event() -- they'll also still have their
6359 	 * ref on the rb and will free it whenever they are done with it.
6360 	 *
6361 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6362 	 * undo the VM accounting.
6363 	 */
6364 
6365 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6366 			&mmap_user->locked_vm);
6367 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6368 	free_uid(mmap_user);
6369 
6370 out_put:
6371 	ring_buffer_put(rb); /* could be last */
6372 }
6373 
6374 static const struct vm_operations_struct perf_mmap_vmops = {
6375 	.open		= perf_mmap_open,
6376 	.close		= perf_mmap_close, /* non mergeable */
6377 	.fault		= perf_mmap_fault,
6378 	.page_mkwrite	= perf_mmap_fault,
6379 };
6380 
6381 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6382 {
6383 	struct perf_event *event = file->private_data;
6384 	unsigned long user_locked, user_lock_limit;
6385 	struct user_struct *user = current_user();
6386 	struct perf_buffer *rb = NULL;
6387 	unsigned long locked, lock_limit;
6388 	unsigned long vma_size;
6389 	unsigned long nr_pages;
6390 	long user_extra = 0, extra = 0;
6391 	int ret = 0, flags = 0;
6392 
6393 	/*
6394 	 * Don't allow mmap() of inherited per-task counters. This would
6395 	 * create a performance issue due to all children writing to the
6396 	 * same rb.
6397 	 */
6398 	if (event->cpu == -1 && event->attr.inherit)
6399 		return -EINVAL;
6400 
6401 	if (!(vma->vm_flags & VM_SHARED))
6402 		return -EINVAL;
6403 
6404 	ret = security_perf_event_read(event);
6405 	if (ret)
6406 		return ret;
6407 
6408 	vma_size = vma->vm_end - vma->vm_start;
6409 
6410 	if (vma->vm_pgoff == 0) {
6411 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6412 	} else {
6413 		/*
6414 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6415 		 * mapped, all subsequent mappings should have the same size
6416 		 * and offset. Must be above the normal perf buffer.
6417 		 */
6418 		u64 aux_offset, aux_size;
6419 
6420 		if (!event->rb)
6421 			return -EINVAL;
6422 
6423 		nr_pages = vma_size / PAGE_SIZE;
6424 
6425 		mutex_lock(&event->mmap_mutex);
6426 		ret = -EINVAL;
6427 
6428 		rb = event->rb;
6429 		if (!rb)
6430 			goto aux_unlock;
6431 
6432 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6433 		aux_size = READ_ONCE(rb->user_page->aux_size);
6434 
6435 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6436 			goto aux_unlock;
6437 
6438 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6439 			goto aux_unlock;
6440 
6441 		/* already mapped with a different offset */
6442 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6443 			goto aux_unlock;
6444 
6445 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6446 			goto aux_unlock;
6447 
6448 		/* already mapped with a different size */
6449 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6450 			goto aux_unlock;
6451 
6452 		if (!is_power_of_2(nr_pages))
6453 			goto aux_unlock;
6454 
6455 		if (!atomic_inc_not_zero(&rb->mmap_count))
6456 			goto aux_unlock;
6457 
6458 		if (rb_has_aux(rb)) {
6459 			atomic_inc(&rb->aux_mmap_count);
6460 			ret = 0;
6461 			goto unlock;
6462 		}
6463 
6464 		atomic_set(&rb->aux_mmap_count, 1);
6465 		user_extra = nr_pages;
6466 
6467 		goto accounting;
6468 	}
6469 
6470 	/*
6471 	 * If we have rb pages ensure they're a power-of-two number, so we
6472 	 * can do bitmasks instead of modulo.
6473 	 */
6474 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6475 		return -EINVAL;
6476 
6477 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6478 		return -EINVAL;
6479 
6480 	WARN_ON_ONCE(event->ctx->parent_ctx);
6481 again:
6482 	mutex_lock(&event->mmap_mutex);
6483 	if (event->rb) {
6484 		if (data_page_nr(event->rb) != nr_pages) {
6485 			ret = -EINVAL;
6486 			goto unlock;
6487 		}
6488 
6489 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6490 			/*
6491 			 * Raced against perf_mmap_close(); remove the
6492 			 * event and try again.
6493 			 */
6494 			ring_buffer_attach(event, NULL);
6495 			mutex_unlock(&event->mmap_mutex);
6496 			goto again;
6497 		}
6498 
6499 		goto unlock;
6500 	}
6501 
6502 	user_extra = nr_pages + 1;
6503 
6504 accounting:
6505 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6506 
6507 	/*
6508 	 * Increase the limit linearly with more CPUs:
6509 	 */
6510 	user_lock_limit *= num_online_cpus();
6511 
6512 	user_locked = atomic_long_read(&user->locked_vm);
6513 
6514 	/*
6515 	 * sysctl_perf_event_mlock may have changed, so that
6516 	 *     user->locked_vm > user_lock_limit
6517 	 */
6518 	if (user_locked > user_lock_limit)
6519 		user_locked = user_lock_limit;
6520 	user_locked += user_extra;
6521 
6522 	if (user_locked > user_lock_limit) {
6523 		/*
6524 		 * charge locked_vm until it hits user_lock_limit;
6525 		 * charge the rest from pinned_vm
6526 		 */
6527 		extra = user_locked - user_lock_limit;
6528 		user_extra -= extra;
6529 	}
6530 
6531 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6532 	lock_limit >>= PAGE_SHIFT;
6533 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6534 
6535 	if ((locked > lock_limit) && perf_is_paranoid() &&
6536 		!capable(CAP_IPC_LOCK)) {
6537 		ret = -EPERM;
6538 		goto unlock;
6539 	}
6540 
6541 	WARN_ON(!rb && event->rb);
6542 
6543 	if (vma->vm_flags & VM_WRITE)
6544 		flags |= RING_BUFFER_WRITABLE;
6545 
6546 	if (!rb) {
6547 		rb = rb_alloc(nr_pages,
6548 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6549 			      event->cpu, flags);
6550 
6551 		if (!rb) {
6552 			ret = -ENOMEM;
6553 			goto unlock;
6554 		}
6555 
6556 		atomic_set(&rb->mmap_count, 1);
6557 		rb->mmap_user = get_current_user();
6558 		rb->mmap_locked = extra;
6559 
6560 		ring_buffer_attach(event, rb);
6561 
6562 		perf_event_update_time(event);
6563 		perf_event_init_userpage(event);
6564 		perf_event_update_userpage(event);
6565 	} else {
6566 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6567 				   event->attr.aux_watermark, flags);
6568 		if (!ret)
6569 			rb->aux_mmap_locked = extra;
6570 	}
6571 
6572 unlock:
6573 	if (!ret) {
6574 		atomic_long_add(user_extra, &user->locked_vm);
6575 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6576 
6577 		atomic_inc(&event->mmap_count);
6578 	} else if (rb) {
6579 		atomic_dec(&rb->mmap_count);
6580 	}
6581 aux_unlock:
6582 	mutex_unlock(&event->mmap_mutex);
6583 
6584 	/*
6585 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6586 	 * vma.
6587 	 */
6588 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6589 	vma->vm_ops = &perf_mmap_vmops;
6590 
6591 	if (event->pmu->event_mapped)
6592 		event->pmu->event_mapped(event, vma->vm_mm);
6593 
6594 	return ret;
6595 }
6596 
6597 static int perf_fasync(int fd, struct file *filp, int on)
6598 {
6599 	struct inode *inode = file_inode(filp);
6600 	struct perf_event *event = filp->private_data;
6601 	int retval;
6602 
6603 	inode_lock(inode);
6604 	retval = fasync_helper(fd, filp, on, &event->fasync);
6605 	inode_unlock(inode);
6606 
6607 	if (retval < 0)
6608 		return retval;
6609 
6610 	return 0;
6611 }
6612 
6613 static const struct file_operations perf_fops = {
6614 	.llseek			= no_llseek,
6615 	.release		= perf_release,
6616 	.read			= perf_read,
6617 	.poll			= perf_poll,
6618 	.unlocked_ioctl		= perf_ioctl,
6619 	.compat_ioctl		= perf_compat_ioctl,
6620 	.mmap			= perf_mmap,
6621 	.fasync			= perf_fasync,
6622 };
6623 
6624 /*
6625  * Perf event wakeup
6626  *
6627  * If there's data, ensure we set the poll() state and publish everything
6628  * to user-space before waking everybody up.
6629  */
6630 
6631 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6632 {
6633 	/* only the parent has fasync state */
6634 	if (event->parent)
6635 		event = event->parent;
6636 	return &event->fasync;
6637 }
6638 
6639 void perf_event_wakeup(struct perf_event *event)
6640 {
6641 	ring_buffer_wakeup(event);
6642 
6643 	if (event->pending_kill) {
6644 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6645 		event->pending_kill = 0;
6646 	}
6647 }
6648 
6649 static void perf_sigtrap(struct perf_event *event)
6650 {
6651 	/*
6652 	 * We'd expect this to only occur if the irq_work is delayed and either
6653 	 * ctx->task or current has changed in the meantime. This can be the
6654 	 * case on architectures that do not implement arch_irq_work_raise().
6655 	 */
6656 	if (WARN_ON_ONCE(event->ctx->task != current))
6657 		return;
6658 
6659 	/*
6660 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6661 	 * task exiting.
6662 	 */
6663 	if (current->flags & PF_EXITING)
6664 		return;
6665 
6666 	send_sig_perf((void __user *)event->pending_addr,
6667 		      event->orig_type, event->attr.sig_data);
6668 }
6669 
6670 /*
6671  * Deliver the pending work in-event-context or follow the context.
6672  */
6673 static void __perf_pending_irq(struct perf_event *event)
6674 {
6675 	int cpu = READ_ONCE(event->oncpu);
6676 
6677 	/*
6678 	 * If the event isn't running; we done. event_sched_out() will have
6679 	 * taken care of things.
6680 	 */
6681 	if (cpu < 0)
6682 		return;
6683 
6684 	/*
6685 	 * Yay, we hit home and are in the context of the event.
6686 	 */
6687 	if (cpu == smp_processor_id()) {
6688 		if (event->pending_sigtrap) {
6689 			event->pending_sigtrap = 0;
6690 			perf_sigtrap(event);
6691 			local_dec(&event->ctx->nr_pending);
6692 		}
6693 		if (event->pending_disable) {
6694 			event->pending_disable = 0;
6695 			perf_event_disable_local(event);
6696 		}
6697 		return;
6698 	}
6699 
6700 	/*
6701 	 *  CPU-A			CPU-B
6702 	 *
6703 	 *  perf_event_disable_inatomic()
6704 	 *    @pending_disable = CPU-A;
6705 	 *    irq_work_queue();
6706 	 *
6707 	 *  sched-out
6708 	 *    @pending_disable = -1;
6709 	 *
6710 	 *				sched-in
6711 	 *				perf_event_disable_inatomic()
6712 	 *				  @pending_disable = CPU-B;
6713 	 *				  irq_work_queue(); // FAILS
6714 	 *
6715 	 *  irq_work_run()
6716 	 *    perf_pending_irq()
6717 	 *
6718 	 * But the event runs on CPU-B and wants disabling there.
6719 	 */
6720 	irq_work_queue_on(&event->pending_irq, cpu);
6721 }
6722 
6723 static void perf_pending_irq(struct irq_work *entry)
6724 {
6725 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6726 	int rctx;
6727 
6728 	/*
6729 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6730 	 * and we won't recurse 'further'.
6731 	 */
6732 	rctx = perf_swevent_get_recursion_context();
6733 
6734 	/*
6735 	 * The wakeup isn't bound to the context of the event -- it can happen
6736 	 * irrespective of where the event is.
6737 	 */
6738 	if (event->pending_wakeup) {
6739 		event->pending_wakeup = 0;
6740 		perf_event_wakeup(event);
6741 	}
6742 
6743 	__perf_pending_irq(event);
6744 
6745 	if (rctx >= 0)
6746 		perf_swevent_put_recursion_context(rctx);
6747 }
6748 
6749 static void perf_pending_task(struct callback_head *head)
6750 {
6751 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6752 	int rctx;
6753 
6754 	/*
6755 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6756 	 * and we won't recurse 'further'.
6757 	 */
6758 	preempt_disable_notrace();
6759 	rctx = perf_swevent_get_recursion_context();
6760 
6761 	if (event->pending_work) {
6762 		event->pending_work = 0;
6763 		perf_sigtrap(event);
6764 		local_dec(&event->ctx->nr_pending);
6765 	}
6766 
6767 	if (rctx >= 0)
6768 		perf_swevent_put_recursion_context(rctx);
6769 	preempt_enable_notrace();
6770 
6771 	put_event(event);
6772 }
6773 
6774 #ifdef CONFIG_GUEST_PERF_EVENTS
6775 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6776 
6777 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6778 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6779 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6780 
6781 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6782 {
6783 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6784 		return;
6785 
6786 	rcu_assign_pointer(perf_guest_cbs, cbs);
6787 	static_call_update(__perf_guest_state, cbs->state);
6788 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6789 
6790 	/* Implementing ->handle_intel_pt_intr is optional. */
6791 	if (cbs->handle_intel_pt_intr)
6792 		static_call_update(__perf_guest_handle_intel_pt_intr,
6793 				   cbs->handle_intel_pt_intr);
6794 }
6795 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6796 
6797 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6798 {
6799 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6800 		return;
6801 
6802 	rcu_assign_pointer(perf_guest_cbs, NULL);
6803 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6804 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6805 	static_call_update(__perf_guest_handle_intel_pt_intr,
6806 			   (void *)&__static_call_return0);
6807 	synchronize_rcu();
6808 }
6809 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6810 #endif
6811 
6812 static void
6813 perf_output_sample_regs(struct perf_output_handle *handle,
6814 			struct pt_regs *regs, u64 mask)
6815 {
6816 	int bit;
6817 	DECLARE_BITMAP(_mask, 64);
6818 
6819 	bitmap_from_u64(_mask, mask);
6820 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6821 		u64 val;
6822 
6823 		val = perf_reg_value(regs, bit);
6824 		perf_output_put(handle, val);
6825 	}
6826 }
6827 
6828 static void perf_sample_regs_user(struct perf_regs *regs_user,
6829 				  struct pt_regs *regs)
6830 {
6831 	if (user_mode(regs)) {
6832 		regs_user->abi = perf_reg_abi(current);
6833 		regs_user->regs = regs;
6834 	} else if (!(current->flags & PF_KTHREAD)) {
6835 		perf_get_regs_user(regs_user, regs);
6836 	} else {
6837 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6838 		regs_user->regs = NULL;
6839 	}
6840 }
6841 
6842 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6843 				  struct pt_regs *regs)
6844 {
6845 	regs_intr->regs = regs;
6846 	regs_intr->abi  = perf_reg_abi(current);
6847 }
6848 
6849 
6850 /*
6851  * Get remaining task size from user stack pointer.
6852  *
6853  * It'd be better to take stack vma map and limit this more
6854  * precisely, but there's no way to get it safely under interrupt,
6855  * so using TASK_SIZE as limit.
6856  */
6857 static u64 perf_ustack_task_size(struct pt_regs *regs)
6858 {
6859 	unsigned long addr = perf_user_stack_pointer(regs);
6860 
6861 	if (!addr || addr >= TASK_SIZE)
6862 		return 0;
6863 
6864 	return TASK_SIZE - addr;
6865 }
6866 
6867 static u16
6868 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6869 			struct pt_regs *regs)
6870 {
6871 	u64 task_size;
6872 
6873 	/* No regs, no stack pointer, no dump. */
6874 	if (!regs)
6875 		return 0;
6876 
6877 	/*
6878 	 * Check if we fit in with the requested stack size into the:
6879 	 * - TASK_SIZE
6880 	 *   If we don't, we limit the size to the TASK_SIZE.
6881 	 *
6882 	 * - remaining sample size
6883 	 *   If we don't, we customize the stack size to
6884 	 *   fit in to the remaining sample size.
6885 	 */
6886 
6887 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6888 	stack_size = min(stack_size, (u16) task_size);
6889 
6890 	/* Current header size plus static size and dynamic size. */
6891 	header_size += 2 * sizeof(u64);
6892 
6893 	/* Do we fit in with the current stack dump size? */
6894 	if ((u16) (header_size + stack_size) < header_size) {
6895 		/*
6896 		 * If we overflow the maximum size for the sample,
6897 		 * we customize the stack dump size to fit in.
6898 		 */
6899 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6900 		stack_size = round_up(stack_size, sizeof(u64));
6901 	}
6902 
6903 	return stack_size;
6904 }
6905 
6906 static void
6907 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6908 			  struct pt_regs *regs)
6909 {
6910 	/* Case of a kernel thread, nothing to dump */
6911 	if (!regs) {
6912 		u64 size = 0;
6913 		perf_output_put(handle, size);
6914 	} else {
6915 		unsigned long sp;
6916 		unsigned int rem;
6917 		u64 dyn_size;
6918 
6919 		/*
6920 		 * We dump:
6921 		 * static size
6922 		 *   - the size requested by user or the best one we can fit
6923 		 *     in to the sample max size
6924 		 * data
6925 		 *   - user stack dump data
6926 		 * dynamic size
6927 		 *   - the actual dumped size
6928 		 */
6929 
6930 		/* Static size. */
6931 		perf_output_put(handle, dump_size);
6932 
6933 		/* Data. */
6934 		sp = perf_user_stack_pointer(regs);
6935 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6936 		dyn_size = dump_size - rem;
6937 
6938 		perf_output_skip(handle, rem);
6939 
6940 		/* Dynamic size. */
6941 		perf_output_put(handle, dyn_size);
6942 	}
6943 }
6944 
6945 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6946 					  struct perf_sample_data *data,
6947 					  size_t size)
6948 {
6949 	struct perf_event *sampler = event->aux_event;
6950 	struct perf_buffer *rb;
6951 
6952 	data->aux_size = 0;
6953 
6954 	if (!sampler)
6955 		goto out;
6956 
6957 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6958 		goto out;
6959 
6960 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6961 		goto out;
6962 
6963 	rb = ring_buffer_get(sampler);
6964 	if (!rb)
6965 		goto out;
6966 
6967 	/*
6968 	 * If this is an NMI hit inside sampling code, don't take
6969 	 * the sample. See also perf_aux_sample_output().
6970 	 */
6971 	if (READ_ONCE(rb->aux_in_sampling)) {
6972 		data->aux_size = 0;
6973 	} else {
6974 		size = min_t(size_t, size, perf_aux_size(rb));
6975 		data->aux_size = ALIGN(size, sizeof(u64));
6976 	}
6977 	ring_buffer_put(rb);
6978 
6979 out:
6980 	return data->aux_size;
6981 }
6982 
6983 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6984                                  struct perf_event *event,
6985                                  struct perf_output_handle *handle,
6986                                  unsigned long size)
6987 {
6988 	unsigned long flags;
6989 	long ret;
6990 
6991 	/*
6992 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6993 	 * paths. If we start calling them in NMI context, they may race with
6994 	 * the IRQ ones, that is, for example, re-starting an event that's just
6995 	 * been stopped, which is why we're using a separate callback that
6996 	 * doesn't change the event state.
6997 	 *
6998 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6999 	 */
7000 	local_irq_save(flags);
7001 	/*
7002 	 * Guard against NMI hits inside the critical section;
7003 	 * see also perf_prepare_sample_aux().
7004 	 */
7005 	WRITE_ONCE(rb->aux_in_sampling, 1);
7006 	barrier();
7007 
7008 	ret = event->pmu->snapshot_aux(event, handle, size);
7009 
7010 	barrier();
7011 	WRITE_ONCE(rb->aux_in_sampling, 0);
7012 	local_irq_restore(flags);
7013 
7014 	return ret;
7015 }
7016 
7017 static void perf_aux_sample_output(struct perf_event *event,
7018 				   struct perf_output_handle *handle,
7019 				   struct perf_sample_data *data)
7020 {
7021 	struct perf_event *sampler = event->aux_event;
7022 	struct perf_buffer *rb;
7023 	unsigned long pad;
7024 	long size;
7025 
7026 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7027 		return;
7028 
7029 	rb = ring_buffer_get(sampler);
7030 	if (!rb)
7031 		return;
7032 
7033 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7034 
7035 	/*
7036 	 * An error here means that perf_output_copy() failed (returned a
7037 	 * non-zero surplus that it didn't copy), which in its current
7038 	 * enlightened implementation is not possible. If that changes, we'd
7039 	 * like to know.
7040 	 */
7041 	if (WARN_ON_ONCE(size < 0))
7042 		goto out_put;
7043 
7044 	/*
7045 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7046 	 * perf_prepare_sample_aux(), so should not be more than that.
7047 	 */
7048 	pad = data->aux_size - size;
7049 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7050 		pad = 8;
7051 
7052 	if (pad) {
7053 		u64 zero = 0;
7054 		perf_output_copy(handle, &zero, pad);
7055 	}
7056 
7057 out_put:
7058 	ring_buffer_put(rb);
7059 }
7060 
7061 /*
7062  * A set of common sample data types saved even for non-sample records
7063  * when event->attr.sample_id_all is set.
7064  */
7065 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7066 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7067 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7068 
7069 static void __perf_event_header__init_id(struct perf_sample_data *data,
7070 					 struct perf_event *event,
7071 					 u64 sample_type)
7072 {
7073 	data->type = event->attr.sample_type;
7074 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7075 
7076 	if (sample_type & PERF_SAMPLE_TID) {
7077 		/* namespace issues */
7078 		data->tid_entry.pid = perf_event_pid(event, current);
7079 		data->tid_entry.tid = perf_event_tid(event, current);
7080 	}
7081 
7082 	if (sample_type & PERF_SAMPLE_TIME)
7083 		data->time = perf_event_clock(event);
7084 
7085 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7086 		data->id = primary_event_id(event);
7087 
7088 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7089 		data->stream_id = event->id;
7090 
7091 	if (sample_type & PERF_SAMPLE_CPU) {
7092 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7093 		data->cpu_entry.reserved = 0;
7094 	}
7095 }
7096 
7097 void perf_event_header__init_id(struct perf_event_header *header,
7098 				struct perf_sample_data *data,
7099 				struct perf_event *event)
7100 {
7101 	if (event->attr.sample_id_all) {
7102 		header->size += event->id_header_size;
7103 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7104 	}
7105 }
7106 
7107 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7108 					   struct perf_sample_data *data)
7109 {
7110 	u64 sample_type = data->type;
7111 
7112 	if (sample_type & PERF_SAMPLE_TID)
7113 		perf_output_put(handle, data->tid_entry);
7114 
7115 	if (sample_type & PERF_SAMPLE_TIME)
7116 		perf_output_put(handle, data->time);
7117 
7118 	if (sample_type & PERF_SAMPLE_ID)
7119 		perf_output_put(handle, data->id);
7120 
7121 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7122 		perf_output_put(handle, data->stream_id);
7123 
7124 	if (sample_type & PERF_SAMPLE_CPU)
7125 		perf_output_put(handle, data->cpu_entry);
7126 
7127 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7128 		perf_output_put(handle, data->id);
7129 }
7130 
7131 void perf_event__output_id_sample(struct perf_event *event,
7132 				  struct perf_output_handle *handle,
7133 				  struct perf_sample_data *sample)
7134 {
7135 	if (event->attr.sample_id_all)
7136 		__perf_event__output_id_sample(handle, sample);
7137 }
7138 
7139 static void perf_output_read_one(struct perf_output_handle *handle,
7140 				 struct perf_event *event,
7141 				 u64 enabled, u64 running)
7142 {
7143 	u64 read_format = event->attr.read_format;
7144 	u64 values[5];
7145 	int n = 0;
7146 
7147 	values[n++] = perf_event_count(event);
7148 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7149 		values[n++] = enabled +
7150 			atomic64_read(&event->child_total_time_enabled);
7151 	}
7152 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7153 		values[n++] = running +
7154 			atomic64_read(&event->child_total_time_running);
7155 	}
7156 	if (read_format & PERF_FORMAT_ID)
7157 		values[n++] = primary_event_id(event);
7158 	if (read_format & PERF_FORMAT_LOST)
7159 		values[n++] = atomic64_read(&event->lost_samples);
7160 
7161 	__output_copy(handle, values, n * sizeof(u64));
7162 }
7163 
7164 static void perf_output_read_group(struct perf_output_handle *handle,
7165 			    struct perf_event *event,
7166 			    u64 enabled, u64 running)
7167 {
7168 	struct perf_event *leader = event->group_leader, *sub;
7169 	u64 read_format = event->attr.read_format;
7170 	unsigned long flags;
7171 	u64 values[6];
7172 	int n = 0;
7173 
7174 	/*
7175 	 * Disabling interrupts avoids all counter scheduling
7176 	 * (context switches, timer based rotation and IPIs).
7177 	 */
7178 	local_irq_save(flags);
7179 
7180 	values[n++] = 1 + leader->nr_siblings;
7181 
7182 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7183 		values[n++] = enabled;
7184 
7185 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7186 		values[n++] = running;
7187 
7188 	if ((leader != event) &&
7189 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7190 		leader->pmu->read(leader);
7191 
7192 	values[n++] = perf_event_count(leader);
7193 	if (read_format & PERF_FORMAT_ID)
7194 		values[n++] = primary_event_id(leader);
7195 	if (read_format & PERF_FORMAT_LOST)
7196 		values[n++] = atomic64_read(&leader->lost_samples);
7197 
7198 	__output_copy(handle, values, n * sizeof(u64));
7199 
7200 	for_each_sibling_event(sub, leader) {
7201 		n = 0;
7202 
7203 		if ((sub != event) &&
7204 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7205 			sub->pmu->read(sub);
7206 
7207 		values[n++] = perf_event_count(sub);
7208 		if (read_format & PERF_FORMAT_ID)
7209 			values[n++] = primary_event_id(sub);
7210 		if (read_format & PERF_FORMAT_LOST)
7211 			values[n++] = atomic64_read(&sub->lost_samples);
7212 
7213 		__output_copy(handle, values, n * sizeof(u64));
7214 	}
7215 
7216 	local_irq_restore(flags);
7217 }
7218 
7219 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7220 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7221 
7222 /*
7223  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7224  *
7225  * The problem is that its both hard and excessively expensive to iterate the
7226  * child list, not to mention that its impossible to IPI the children running
7227  * on another CPU, from interrupt/NMI context.
7228  */
7229 static void perf_output_read(struct perf_output_handle *handle,
7230 			     struct perf_event *event)
7231 {
7232 	u64 enabled = 0, running = 0, now;
7233 	u64 read_format = event->attr.read_format;
7234 
7235 	/*
7236 	 * compute total_time_enabled, total_time_running
7237 	 * based on snapshot values taken when the event
7238 	 * was last scheduled in.
7239 	 *
7240 	 * we cannot simply called update_context_time()
7241 	 * because of locking issue as we are called in
7242 	 * NMI context
7243 	 */
7244 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7245 		calc_timer_values(event, &now, &enabled, &running);
7246 
7247 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7248 		perf_output_read_group(handle, event, enabled, running);
7249 	else
7250 		perf_output_read_one(handle, event, enabled, running);
7251 }
7252 
7253 void perf_output_sample(struct perf_output_handle *handle,
7254 			struct perf_event_header *header,
7255 			struct perf_sample_data *data,
7256 			struct perf_event *event)
7257 {
7258 	u64 sample_type = data->type;
7259 
7260 	perf_output_put(handle, *header);
7261 
7262 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7263 		perf_output_put(handle, data->id);
7264 
7265 	if (sample_type & PERF_SAMPLE_IP)
7266 		perf_output_put(handle, data->ip);
7267 
7268 	if (sample_type & PERF_SAMPLE_TID)
7269 		perf_output_put(handle, data->tid_entry);
7270 
7271 	if (sample_type & PERF_SAMPLE_TIME)
7272 		perf_output_put(handle, data->time);
7273 
7274 	if (sample_type & PERF_SAMPLE_ADDR)
7275 		perf_output_put(handle, data->addr);
7276 
7277 	if (sample_type & PERF_SAMPLE_ID)
7278 		perf_output_put(handle, data->id);
7279 
7280 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7281 		perf_output_put(handle, data->stream_id);
7282 
7283 	if (sample_type & PERF_SAMPLE_CPU)
7284 		perf_output_put(handle, data->cpu_entry);
7285 
7286 	if (sample_type & PERF_SAMPLE_PERIOD)
7287 		perf_output_put(handle, data->period);
7288 
7289 	if (sample_type & PERF_SAMPLE_READ)
7290 		perf_output_read(handle, event);
7291 
7292 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7293 		int size = 1;
7294 
7295 		size += data->callchain->nr;
7296 		size *= sizeof(u64);
7297 		__output_copy(handle, data->callchain, size);
7298 	}
7299 
7300 	if (sample_type & PERF_SAMPLE_RAW) {
7301 		struct perf_raw_record *raw = data->raw;
7302 
7303 		if (raw) {
7304 			struct perf_raw_frag *frag = &raw->frag;
7305 
7306 			perf_output_put(handle, raw->size);
7307 			do {
7308 				if (frag->copy) {
7309 					__output_custom(handle, frag->copy,
7310 							frag->data, frag->size);
7311 				} else {
7312 					__output_copy(handle, frag->data,
7313 						      frag->size);
7314 				}
7315 				if (perf_raw_frag_last(frag))
7316 					break;
7317 				frag = frag->next;
7318 			} while (1);
7319 			if (frag->pad)
7320 				__output_skip(handle, NULL, frag->pad);
7321 		} else {
7322 			struct {
7323 				u32	size;
7324 				u32	data;
7325 			} raw = {
7326 				.size = sizeof(u32),
7327 				.data = 0,
7328 			};
7329 			perf_output_put(handle, raw);
7330 		}
7331 	}
7332 
7333 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7334 		if (data->br_stack) {
7335 			size_t size;
7336 
7337 			size = data->br_stack->nr
7338 			     * sizeof(struct perf_branch_entry);
7339 
7340 			perf_output_put(handle, data->br_stack->nr);
7341 			if (branch_sample_hw_index(event))
7342 				perf_output_put(handle, data->br_stack->hw_idx);
7343 			perf_output_copy(handle, data->br_stack->entries, size);
7344 			/*
7345 			 * Add the extension space which is appended
7346 			 * right after the struct perf_branch_stack.
7347 			 */
7348 			if (data->br_stack_cntr) {
7349 				size = data->br_stack->nr * sizeof(u64);
7350 				perf_output_copy(handle, data->br_stack_cntr, size);
7351 			}
7352 		} else {
7353 			/*
7354 			 * we always store at least the value of nr
7355 			 */
7356 			u64 nr = 0;
7357 			perf_output_put(handle, nr);
7358 		}
7359 	}
7360 
7361 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7362 		u64 abi = data->regs_user.abi;
7363 
7364 		/*
7365 		 * If there are no regs to dump, notice it through
7366 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7367 		 */
7368 		perf_output_put(handle, abi);
7369 
7370 		if (abi) {
7371 			u64 mask = event->attr.sample_regs_user;
7372 			perf_output_sample_regs(handle,
7373 						data->regs_user.regs,
7374 						mask);
7375 		}
7376 	}
7377 
7378 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7379 		perf_output_sample_ustack(handle,
7380 					  data->stack_user_size,
7381 					  data->regs_user.regs);
7382 	}
7383 
7384 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7385 		perf_output_put(handle, data->weight.full);
7386 
7387 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7388 		perf_output_put(handle, data->data_src.val);
7389 
7390 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7391 		perf_output_put(handle, data->txn);
7392 
7393 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7394 		u64 abi = data->regs_intr.abi;
7395 		/*
7396 		 * If there are no regs to dump, notice it through
7397 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7398 		 */
7399 		perf_output_put(handle, abi);
7400 
7401 		if (abi) {
7402 			u64 mask = event->attr.sample_regs_intr;
7403 
7404 			perf_output_sample_regs(handle,
7405 						data->regs_intr.regs,
7406 						mask);
7407 		}
7408 	}
7409 
7410 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7411 		perf_output_put(handle, data->phys_addr);
7412 
7413 	if (sample_type & PERF_SAMPLE_CGROUP)
7414 		perf_output_put(handle, data->cgroup);
7415 
7416 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7417 		perf_output_put(handle, data->data_page_size);
7418 
7419 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7420 		perf_output_put(handle, data->code_page_size);
7421 
7422 	if (sample_type & PERF_SAMPLE_AUX) {
7423 		perf_output_put(handle, data->aux_size);
7424 
7425 		if (data->aux_size)
7426 			perf_aux_sample_output(event, handle, data);
7427 	}
7428 
7429 	if (!event->attr.watermark) {
7430 		int wakeup_events = event->attr.wakeup_events;
7431 
7432 		if (wakeup_events) {
7433 			struct perf_buffer *rb = handle->rb;
7434 			int events = local_inc_return(&rb->events);
7435 
7436 			if (events >= wakeup_events) {
7437 				local_sub(wakeup_events, &rb->events);
7438 				local_inc(&rb->wakeup);
7439 			}
7440 		}
7441 	}
7442 }
7443 
7444 static u64 perf_virt_to_phys(u64 virt)
7445 {
7446 	u64 phys_addr = 0;
7447 
7448 	if (!virt)
7449 		return 0;
7450 
7451 	if (virt >= TASK_SIZE) {
7452 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7453 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7454 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7455 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7456 	} else {
7457 		/*
7458 		 * Walking the pages tables for user address.
7459 		 * Interrupts are disabled, so it prevents any tear down
7460 		 * of the page tables.
7461 		 * Try IRQ-safe get_user_page_fast_only first.
7462 		 * If failed, leave phys_addr as 0.
7463 		 */
7464 		if (current->mm != NULL) {
7465 			struct page *p;
7466 
7467 			pagefault_disable();
7468 			if (get_user_page_fast_only(virt, 0, &p)) {
7469 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7470 				put_page(p);
7471 			}
7472 			pagefault_enable();
7473 		}
7474 	}
7475 
7476 	return phys_addr;
7477 }
7478 
7479 /*
7480  * Return the pagetable size of a given virtual address.
7481  */
7482 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7483 {
7484 	u64 size = 0;
7485 
7486 #ifdef CONFIG_HAVE_FAST_GUP
7487 	pgd_t *pgdp, pgd;
7488 	p4d_t *p4dp, p4d;
7489 	pud_t *pudp, pud;
7490 	pmd_t *pmdp, pmd;
7491 	pte_t *ptep, pte;
7492 
7493 	pgdp = pgd_offset(mm, addr);
7494 	pgd = READ_ONCE(*pgdp);
7495 	if (pgd_none(pgd))
7496 		return 0;
7497 
7498 	if (pgd_leaf(pgd))
7499 		return pgd_leaf_size(pgd);
7500 
7501 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7502 	p4d = READ_ONCE(*p4dp);
7503 	if (!p4d_present(p4d))
7504 		return 0;
7505 
7506 	if (p4d_leaf(p4d))
7507 		return p4d_leaf_size(p4d);
7508 
7509 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7510 	pud = READ_ONCE(*pudp);
7511 	if (!pud_present(pud))
7512 		return 0;
7513 
7514 	if (pud_leaf(pud))
7515 		return pud_leaf_size(pud);
7516 
7517 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7518 again:
7519 	pmd = pmdp_get_lockless(pmdp);
7520 	if (!pmd_present(pmd))
7521 		return 0;
7522 
7523 	if (pmd_leaf(pmd))
7524 		return pmd_leaf_size(pmd);
7525 
7526 	ptep = pte_offset_map(&pmd, addr);
7527 	if (!ptep)
7528 		goto again;
7529 
7530 	pte = ptep_get_lockless(ptep);
7531 	if (pte_present(pte))
7532 		size = pte_leaf_size(pte);
7533 	pte_unmap(ptep);
7534 #endif /* CONFIG_HAVE_FAST_GUP */
7535 
7536 	return size;
7537 }
7538 
7539 static u64 perf_get_page_size(unsigned long addr)
7540 {
7541 	struct mm_struct *mm;
7542 	unsigned long flags;
7543 	u64 size;
7544 
7545 	if (!addr)
7546 		return 0;
7547 
7548 	/*
7549 	 * Software page-table walkers must disable IRQs,
7550 	 * which prevents any tear down of the page tables.
7551 	 */
7552 	local_irq_save(flags);
7553 
7554 	mm = current->mm;
7555 	if (!mm) {
7556 		/*
7557 		 * For kernel threads and the like, use init_mm so that
7558 		 * we can find kernel memory.
7559 		 */
7560 		mm = &init_mm;
7561 	}
7562 
7563 	size = perf_get_pgtable_size(mm, addr);
7564 
7565 	local_irq_restore(flags);
7566 
7567 	return size;
7568 }
7569 
7570 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7571 
7572 struct perf_callchain_entry *
7573 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7574 {
7575 	bool kernel = !event->attr.exclude_callchain_kernel;
7576 	bool user   = !event->attr.exclude_callchain_user;
7577 	/* Disallow cross-task user callchains. */
7578 	bool crosstask = event->ctx->task && event->ctx->task != current;
7579 	const u32 max_stack = event->attr.sample_max_stack;
7580 	struct perf_callchain_entry *callchain;
7581 
7582 	if (!kernel && !user)
7583 		return &__empty_callchain;
7584 
7585 	callchain = get_perf_callchain(regs, 0, kernel, user,
7586 				       max_stack, crosstask, true);
7587 	return callchain ?: &__empty_callchain;
7588 }
7589 
7590 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7591 {
7592 	return d * !!(flags & s);
7593 }
7594 
7595 void perf_prepare_sample(struct perf_sample_data *data,
7596 			 struct perf_event *event,
7597 			 struct pt_regs *regs)
7598 {
7599 	u64 sample_type = event->attr.sample_type;
7600 	u64 filtered_sample_type;
7601 
7602 	/*
7603 	 * Add the sample flags that are dependent to others.  And clear the
7604 	 * sample flags that have already been done by the PMU driver.
7605 	 */
7606 	filtered_sample_type = sample_type;
7607 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7608 					   PERF_SAMPLE_IP);
7609 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7610 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7611 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7612 					   PERF_SAMPLE_REGS_USER);
7613 	filtered_sample_type &= ~data->sample_flags;
7614 
7615 	if (filtered_sample_type == 0) {
7616 		/* Make sure it has the correct data->type for output */
7617 		data->type = event->attr.sample_type;
7618 		return;
7619 	}
7620 
7621 	__perf_event_header__init_id(data, event, filtered_sample_type);
7622 
7623 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7624 		data->ip = perf_instruction_pointer(regs);
7625 		data->sample_flags |= PERF_SAMPLE_IP;
7626 	}
7627 
7628 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7629 		perf_sample_save_callchain(data, event, regs);
7630 
7631 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7632 		data->raw = NULL;
7633 		data->dyn_size += sizeof(u64);
7634 		data->sample_flags |= PERF_SAMPLE_RAW;
7635 	}
7636 
7637 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7638 		data->br_stack = NULL;
7639 		data->dyn_size += sizeof(u64);
7640 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7641 	}
7642 
7643 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7644 		perf_sample_regs_user(&data->regs_user, regs);
7645 
7646 	/*
7647 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7648 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7649 	 * the dyn_size if it's not requested by users.
7650 	 */
7651 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7652 		/* regs dump ABI info */
7653 		int size = sizeof(u64);
7654 
7655 		if (data->regs_user.regs) {
7656 			u64 mask = event->attr.sample_regs_user;
7657 			size += hweight64(mask) * sizeof(u64);
7658 		}
7659 
7660 		data->dyn_size += size;
7661 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7662 	}
7663 
7664 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7665 		/*
7666 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7667 		 * processed as the last one or have additional check added
7668 		 * in case new sample type is added, because we could eat
7669 		 * up the rest of the sample size.
7670 		 */
7671 		u16 stack_size = event->attr.sample_stack_user;
7672 		u16 header_size = perf_sample_data_size(data, event);
7673 		u16 size = sizeof(u64);
7674 
7675 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7676 						     data->regs_user.regs);
7677 
7678 		/*
7679 		 * If there is something to dump, add space for the dump
7680 		 * itself and for the field that tells the dynamic size,
7681 		 * which is how many have been actually dumped.
7682 		 */
7683 		if (stack_size)
7684 			size += sizeof(u64) + stack_size;
7685 
7686 		data->stack_user_size = stack_size;
7687 		data->dyn_size += size;
7688 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7689 	}
7690 
7691 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7692 		data->weight.full = 0;
7693 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7694 	}
7695 
7696 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7697 		data->data_src.val = PERF_MEM_NA;
7698 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7699 	}
7700 
7701 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7702 		data->txn = 0;
7703 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7704 	}
7705 
7706 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7707 		data->addr = 0;
7708 		data->sample_flags |= PERF_SAMPLE_ADDR;
7709 	}
7710 
7711 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7712 		/* regs dump ABI info */
7713 		int size = sizeof(u64);
7714 
7715 		perf_sample_regs_intr(&data->regs_intr, regs);
7716 
7717 		if (data->regs_intr.regs) {
7718 			u64 mask = event->attr.sample_regs_intr;
7719 
7720 			size += hweight64(mask) * sizeof(u64);
7721 		}
7722 
7723 		data->dyn_size += size;
7724 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7725 	}
7726 
7727 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7728 		data->phys_addr = perf_virt_to_phys(data->addr);
7729 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7730 	}
7731 
7732 #ifdef CONFIG_CGROUP_PERF
7733 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7734 		struct cgroup *cgrp;
7735 
7736 		/* protected by RCU */
7737 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7738 		data->cgroup = cgroup_id(cgrp);
7739 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7740 	}
7741 #endif
7742 
7743 	/*
7744 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7745 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7746 	 * but the value will not dump to the userspace.
7747 	 */
7748 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7749 		data->data_page_size = perf_get_page_size(data->addr);
7750 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7751 	}
7752 
7753 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7754 		data->code_page_size = perf_get_page_size(data->ip);
7755 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7756 	}
7757 
7758 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7759 		u64 size;
7760 		u16 header_size = perf_sample_data_size(data, event);
7761 
7762 		header_size += sizeof(u64); /* size */
7763 
7764 		/*
7765 		 * Given the 16bit nature of header::size, an AUX sample can
7766 		 * easily overflow it, what with all the preceding sample bits.
7767 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7768 		 * per sample in total (rounded down to 8 byte boundary).
7769 		 */
7770 		size = min_t(size_t, U16_MAX - header_size,
7771 			     event->attr.aux_sample_size);
7772 		size = rounddown(size, 8);
7773 		size = perf_prepare_sample_aux(event, data, size);
7774 
7775 		WARN_ON_ONCE(size + header_size > U16_MAX);
7776 		data->dyn_size += size + sizeof(u64); /* size above */
7777 		data->sample_flags |= PERF_SAMPLE_AUX;
7778 	}
7779 }
7780 
7781 void perf_prepare_header(struct perf_event_header *header,
7782 			 struct perf_sample_data *data,
7783 			 struct perf_event *event,
7784 			 struct pt_regs *regs)
7785 {
7786 	header->type = PERF_RECORD_SAMPLE;
7787 	header->size = perf_sample_data_size(data, event);
7788 	header->misc = perf_misc_flags(regs);
7789 
7790 	/*
7791 	 * If you're adding more sample types here, you likely need to do
7792 	 * something about the overflowing header::size, like repurpose the
7793 	 * lowest 3 bits of size, which should be always zero at the moment.
7794 	 * This raises a more important question, do we really need 512k sized
7795 	 * samples and why, so good argumentation is in order for whatever you
7796 	 * do here next.
7797 	 */
7798 	WARN_ON_ONCE(header->size & 7);
7799 }
7800 
7801 static __always_inline int
7802 __perf_event_output(struct perf_event *event,
7803 		    struct perf_sample_data *data,
7804 		    struct pt_regs *regs,
7805 		    int (*output_begin)(struct perf_output_handle *,
7806 					struct perf_sample_data *,
7807 					struct perf_event *,
7808 					unsigned int))
7809 {
7810 	struct perf_output_handle handle;
7811 	struct perf_event_header header;
7812 	int err;
7813 
7814 	/* protect the callchain buffers */
7815 	rcu_read_lock();
7816 
7817 	perf_prepare_sample(data, event, regs);
7818 	perf_prepare_header(&header, data, event, regs);
7819 
7820 	err = output_begin(&handle, data, event, header.size);
7821 	if (err)
7822 		goto exit;
7823 
7824 	perf_output_sample(&handle, &header, data, event);
7825 
7826 	perf_output_end(&handle);
7827 
7828 exit:
7829 	rcu_read_unlock();
7830 	return err;
7831 }
7832 
7833 void
7834 perf_event_output_forward(struct perf_event *event,
7835 			 struct perf_sample_data *data,
7836 			 struct pt_regs *regs)
7837 {
7838 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7839 }
7840 
7841 void
7842 perf_event_output_backward(struct perf_event *event,
7843 			   struct perf_sample_data *data,
7844 			   struct pt_regs *regs)
7845 {
7846 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7847 }
7848 
7849 int
7850 perf_event_output(struct perf_event *event,
7851 		  struct perf_sample_data *data,
7852 		  struct pt_regs *regs)
7853 {
7854 	return __perf_event_output(event, data, regs, perf_output_begin);
7855 }
7856 
7857 /*
7858  * read event_id
7859  */
7860 
7861 struct perf_read_event {
7862 	struct perf_event_header	header;
7863 
7864 	u32				pid;
7865 	u32				tid;
7866 };
7867 
7868 static void
7869 perf_event_read_event(struct perf_event *event,
7870 			struct task_struct *task)
7871 {
7872 	struct perf_output_handle handle;
7873 	struct perf_sample_data sample;
7874 	struct perf_read_event read_event = {
7875 		.header = {
7876 			.type = PERF_RECORD_READ,
7877 			.misc = 0,
7878 			.size = sizeof(read_event) + event->read_size,
7879 		},
7880 		.pid = perf_event_pid(event, task),
7881 		.tid = perf_event_tid(event, task),
7882 	};
7883 	int ret;
7884 
7885 	perf_event_header__init_id(&read_event.header, &sample, event);
7886 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7887 	if (ret)
7888 		return;
7889 
7890 	perf_output_put(&handle, read_event);
7891 	perf_output_read(&handle, event);
7892 	perf_event__output_id_sample(event, &handle, &sample);
7893 
7894 	perf_output_end(&handle);
7895 }
7896 
7897 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7898 
7899 static void
7900 perf_iterate_ctx(struct perf_event_context *ctx,
7901 		   perf_iterate_f output,
7902 		   void *data, bool all)
7903 {
7904 	struct perf_event *event;
7905 
7906 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7907 		if (!all) {
7908 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7909 				continue;
7910 			if (!event_filter_match(event))
7911 				continue;
7912 		}
7913 
7914 		output(event, data);
7915 	}
7916 }
7917 
7918 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7919 {
7920 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7921 	struct perf_event *event;
7922 
7923 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7924 		/*
7925 		 * Skip events that are not fully formed yet; ensure that
7926 		 * if we observe event->ctx, both event and ctx will be
7927 		 * complete enough. See perf_install_in_context().
7928 		 */
7929 		if (!smp_load_acquire(&event->ctx))
7930 			continue;
7931 
7932 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7933 			continue;
7934 		if (!event_filter_match(event))
7935 			continue;
7936 		output(event, data);
7937 	}
7938 }
7939 
7940 /*
7941  * Iterate all events that need to receive side-band events.
7942  *
7943  * For new callers; ensure that account_pmu_sb_event() includes
7944  * your event, otherwise it might not get delivered.
7945  */
7946 static void
7947 perf_iterate_sb(perf_iterate_f output, void *data,
7948 	       struct perf_event_context *task_ctx)
7949 {
7950 	struct perf_event_context *ctx;
7951 
7952 	rcu_read_lock();
7953 	preempt_disable();
7954 
7955 	/*
7956 	 * If we have task_ctx != NULL we only notify the task context itself.
7957 	 * The task_ctx is set only for EXIT events before releasing task
7958 	 * context.
7959 	 */
7960 	if (task_ctx) {
7961 		perf_iterate_ctx(task_ctx, output, data, false);
7962 		goto done;
7963 	}
7964 
7965 	perf_iterate_sb_cpu(output, data);
7966 
7967 	ctx = rcu_dereference(current->perf_event_ctxp);
7968 	if (ctx)
7969 		perf_iterate_ctx(ctx, output, data, false);
7970 done:
7971 	preempt_enable();
7972 	rcu_read_unlock();
7973 }
7974 
7975 /*
7976  * Clear all file-based filters at exec, they'll have to be
7977  * re-instated when/if these objects are mmapped again.
7978  */
7979 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7980 {
7981 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7982 	struct perf_addr_filter *filter;
7983 	unsigned int restart = 0, count = 0;
7984 	unsigned long flags;
7985 
7986 	if (!has_addr_filter(event))
7987 		return;
7988 
7989 	raw_spin_lock_irqsave(&ifh->lock, flags);
7990 	list_for_each_entry(filter, &ifh->list, entry) {
7991 		if (filter->path.dentry) {
7992 			event->addr_filter_ranges[count].start = 0;
7993 			event->addr_filter_ranges[count].size = 0;
7994 			restart++;
7995 		}
7996 
7997 		count++;
7998 	}
7999 
8000 	if (restart)
8001 		event->addr_filters_gen++;
8002 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8003 
8004 	if (restart)
8005 		perf_event_stop(event, 1);
8006 }
8007 
8008 void perf_event_exec(void)
8009 {
8010 	struct perf_event_context *ctx;
8011 
8012 	ctx = perf_pin_task_context(current);
8013 	if (!ctx)
8014 		return;
8015 
8016 	perf_event_enable_on_exec(ctx);
8017 	perf_event_remove_on_exec(ctx);
8018 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8019 
8020 	perf_unpin_context(ctx);
8021 	put_ctx(ctx);
8022 }
8023 
8024 struct remote_output {
8025 	struct perf_buffer	*rb;
8026 	int			err;
8027 };
8028 
8029 static void __perf_event_output_stop(struct perf_event *event, void *data)
8030 {
8031 	struct perf_event *parent = event->parent;
8032 	struct remote_output *ro = data;
8033 	struct perf_buffer *rb = ro->rb;
8034 	struct stop_event_data sd = {
8035 		.event	= event,
8036 	};
8037 
8038 	if (!has_aux(event))
8039 		return;
8040 
8041 	if (!parent)
8042 		parent = event;
8043 
8044 	/*
8045 	 * In case of inheritance, it will be the parent that links to the
8046 	 * ring-buffer, but it will be the child that's actually using it.
8047 	 *
8048 	 * We are using event::rb to determine if the event should be stopped,
8049 	 * however this may race with ring_buffer_attach() (through set_output),
8050 	 * which will make us skip the event that actually needs to be stopped.
8051 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8052 	 * its rb pointer.
8053 	 */
8054 	if (rcu_dereference(parent->rb) == rb)
8055 		ro->err = __perf_event_stop(&sd);
8056 }
8057 
8058 static int __perf_pmu_output_stop(void *info)
8059 {
8060 	struct perf_event *event = info;
8061 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8062 	struct remote_output ro = {
8063 		.rb	= event->rb,
8064 	};
8065 
8066 	rcu_read_lock();
8067 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8068 	if (cpuctx->task_ctx)
8069 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8070 				   &ro, false);
8071 	rcu_read_unlock();
8072 
8073 	return ro.err;
8074 }
8075 
8076 static void perf_pmu_output_stop(struct perf_event *event)
8077 {
8078 	struct perf_event *iter;
8079 	int err, cpu;
8080 
8081 restart:
8082 	rcu_read_lock();
8083 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8084 		/*
8085 		 * For per-CPU events, we need to make sure that neither they
8086 		 * nor their children are running; for cpu==-1 events it's
8087 		 * sufficient to stop the event itself if it's active, since
8088 		 * it can't have children.
8089 		 */
8090 		cpu = iter->cpu;
8091 		if (cpu == -1)
8092 			cpu = READ_ONCE(iter->oncpu);
8093 
8094 		if (cpu == -1)
8095 			continue;
8096 
8097 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8098 		if (err == -EAGAIN) {
8099 			rcu_read_unlock();
8100 			goto restart;
8101 		}
8102 	}
8103 	rcu_read_unlock();
8104 }
8105 
8106 /*
8107  * task tracking -- fork/exit
8108  *
8109  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8110  */
8111 
8112 struct perf_task_event {
8113 	struct task_struct		*task;
8114 	struct perf_event_context	*task_ctx;
8115 
8116 	struct {
8117 		struct perf_event_header	header;
8118 
8119 		u32				pid;
8120 		u32				ppid;
8121 		u32				tid;
8122 		u32				ptid;
8123 		u64				time;
8124 	} event_id;
8125 };
8126 
8127 static int perf_event_task_match(struct perf_event *event)
8128 {
8129 	return event->attr.comm  || event->attr.mmap ||
8130 	       event->attr.mmap2 || event->attr.mmap_data ||
8131 	       event->attr.task;
8132 }
8133 
8134 static void perf_event_task_output(struct perf_event *event,
8135 				   void *data)
8136 {
8137 	struct perf_task_event *task_event = data;
8138 	struct perf_output_handle handle;
8139 	struct perf_sample_data	sample;
8140 	struct task_struct *task = task_event->task;
8141 	int ret, size = task_event->event_id.header.size;
8142 
8143 	if (!perf_event_task_match(event))
8144 		return;
8145 
8146 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8147 
8148 	ret = perf_output_begin(&handle, &sample, event,
8149 				task_event->event_id.header.size);
8150 	if (ret)
8151 		goto out;
8152 
8153 	task_event->event_id.pid = perf_event_pid(event, task);
8154 	task_event->event_id.tid = perf_event_tid(event, task);
8155 
8156 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8157 		task_event->event_id.ppid = perf_event_pid(event,
8158 							task->real_parent);
8159 		task_event->event_id.ptid = perf_event_pid(event,
8160 							task->real_parent);
8161 	} else {  /* PERF_RECORD_FORK */
8162 		task_event->event_id.ppid = perf_event_pid(event, current);
8163 		task_event->event_id.ptid = perf_event_tid(event, current);
8164 	}
8165 
8166 	task_event->event_id.time = perf_event_clock(event);
8167 
8168 	perf_output_put(&handle, task_event->event_id);
8169 
8170 	perf_event__output_id_sample(event, &handle, &sample);
8171 
8172 	perf_output_end(&handle);
8173 out:
8174 	task_event->event_id.header.size = size;
8175 }
8176 
8177 static void perf_event_task(struct task_struct *task,
8178 			      struct perf_event_context *task_ctx,
8179 			      int new)
8180 {
8181 	struct perf_task_event task_event;
8182 
8183 	if (!atomic_read(&nr_comm_events) &&
8184 	    !atomic_read(&nr_mmap_events) &&
8185 	    !atomic_read(&nr_task_events))
8186 		return;
8187 
8188 	task_event = (struct perf_task_event){
8189 		.task	  = task,
8190 		.task_ctx = task_ctx,
8191 		.event_id    = {
8192 			.header = {
8193 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8194 				.misc = 0,
8195 				.size = sizeof(task_event.event_id),
8196 			},
8197 			/* .pid  */
8198 			/* .ppid */
8199 			/* .tid  */
8200 			/* .ptid */
8201 			/* .time */
8202 		},
8203 	};
8204 
8205 	perf_iterate_sb(perf_event_task_output,
8206 		       &task_event,
8207 		       task_ctx);
8208 }
8209 
8210 void perf_event_fork(struct task_struct *task)
8211 {
8212 	perf_event_task(task, NULL, 1);
8213 	perf_event_namespaces(task);
8214 }
8215 
8216 /*
8217  * comm tracking
8218  */
8219 
8220 struct perf_comm_event {
8221 	struct task_struct	*task;
8222 	char			*comm;
8223 	int			comm_size;
8224 
8225 	struct {
8226 		struct perf_event_header	header;
8227 
8228 		u32				pid;
8229 		u32				tid;
8230 	} event_id;
8231 };
8232 
8233 static int perf_event_comm_match(struct perf_event *event)
8234 {
8235 	return event->attr.comm;
8236 }
8237 
8238 static void perf_event_comm_output(struct perf_event *event,
8239 				   void *data)
8240 {
8241 	struct perf_comm_event *comm_event = data;
8242 	struct perf_output_handle handle;
8243 	struct perf_sample_data sample;
8244 	int size = comm_event->event_id.header.size;
8245 	int ret;
8246 
8247 	if (!perf_event_comm_match(event))
8248 		return;
8249 
8250 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8251 	ret = perf_output_begin(&handle, &sample, event,
8252 				comm_event->event_id.header.size);
8253 
8254 	if (ret)
8255 		goto out;
8256 
8257 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8258 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8259 
8260 	perf_output_put(&handle, comm_event->event_id);
8261 	__output_copy(&handle, comm_event->comm,
8262 				   comm_event->comm_size);
8263 
8264 	perf_event__output_id_sample(event, &handle, &sample);
8265 
8266 	perf_output_end(&handle);
8267 out:
8268 	comm_event->event_id.header.size = size;
8269 }
8270 
8271 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8272 {
8273 	char comm[TASK_COMM_LEN];
8274 	unsigned int size;
8275 
8276 	memset(comm, 0, sizeof(comm));
8277 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8278 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8279 
8280 	comm_event->comm = comm;
8281 	comm_event->comm_size = size;
8282 
8283 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8284 
8285 	perf_iterate_sb(perf_event_comm_output,
8286 		       comm_event,
8287 		       NULL);
8288 }
8289 
8290 void perf_event_comm(struct task_struct *task, bool exec)
8291 {
8292 	struct perf_comm_event comm_event;
8293 
8294 	if (!atomic_read(&nr_comm_events))
8295 		return;
8296 
8297 	comm_event = (struct perf_comm_event){
8298 		.task	= task,
8299 		/* .comm      */
8300 		/* .comm_size */
8301 		.event_id  = {
8302 			.header = {
8303 				.type = PERF_RECORD_COMM,
8304 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8305 				/* .size */
8306 			},
8307 			/* .pid */
8308 			/* .tid */
8309 		},
8310 	};
8311 
8312 	perf_event_comm_event(&comm_event);
8313 }
8314 
8315 /*
8316  * namespaces tracking
8317  */
8318 
8319 struct perf_namespaces_event {
8320 	struct task_struct		*task;
8321 
8322 	struct {
8323 		struct perf_event_header	header;
8324 
8325 		u32				pid;
8326 		u32				tid;
8327 		u64				nr_namespaces;
8328 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8329 	} event_id;
8330 };
8331 
8332 static int perf_event_namespaces_match(struct perf_event *event)
8333 {
8334 	return event->attr.namespaces;
8335 }
8336 
8337 static void perf_event_namespaces_output(struct perf_event *event,
8338 					 void *data)
8339 {
8340 	struct perf_namespaces_event *namespaces_event = data;
8341 	struct perf_output_handle handle;
8342 	struct perf_sample_data sample;
8343 	u16 header_size = namespaces_event->event_id.header.size;
8344 	int ret;
8345 
8346 	if (!perf_event_namespaces_match(event))
8347 		return;
8348 
8349 	perf_event_header__init_id(&namespaces_event->event_id.header,
8350 				   &sample, event);
8351 	ret = perf_output_begin(&handle, &sample, event,
8352 				namespaces_event->event_id.header.size);
8353 	if (ret)
8354 		goto out;
8355 
8356 	namespaces_event->event_id.pid = perf_event_pid(event,
8357 							namespaces_event->task);
8358 	namespaces_event->event_id.tid = perf_event_tid(event,
8359 							namespaces_event->task);
8360 
8361 	perf_output_put(&handle, namespaces_event->event_id);
8362 
8363 	perf_event__output_id_sample(event, &handle, &sample);
8364 
8365 	perf_output_end(&handle);
8366 out:
8367 	namespaces_event->event_id.header.size = header_size;
8368 }
8369 
8370 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8371 				   struct task_struct *task,
8372 				   const struct proc_ns_operations *ns_ops)
8373 {
8374 	struct path ns_path;
8375 	struct inode *ns_inode;
8376 	int error;
8377 
8378 	error = ns_get_path(&ns_path, task, ns_ops);
8379 	if (!error) {
8380 		ns_inode = ns_path.dentry->d_inode;
8381 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8382 		ns_link_info->ino = ns_inode->i_ino;
8383 		path_put(&ns_path);
8384 	}
8385 }
8386 
8387 void perf_event_namespaces(struct task_struct *task)
8388 {
8389 	struct perf_namespaces_event namespaces_event;
8390 	struct perf_ns_link_info *ns_link_info;
8391 
8392 	if (!atomic_read(&nr_namespaces_events))
8393 		return;
8394 
8395 	namespaces_event = (struct perf_namespaces_event){
8396 		.task	= task,
8397 		.event_id  = {
8398 			.header = {
8399 				.type = PERF_RECORD_NAMESPACES,
8400 				.misc = 0,
8401 				.size = sizeof(namespaces_event.event_id),
8402 			},
8403 			/* .pid */
8404 			/* .tid */
8405 			.nr_namespaces = NR_NAMESPACES,
8406 			/* .link_info[NR_NAMESPACES] */
8407 		},
8408 	};
8409 
8410 	ns_link_info = namespaces_event.event_id.link_info;
8411 
8412 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8413 			       task, &mntns_operations);
8414 
8415 #ifdef CONFIG_USER_NS
8416 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8417 			       task, &userns_operations);
8418 #endif
8419 #ifdef CONFIG_NET_NS
8420 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8421 			       task, &netns_operations);
8422 #endif
8423 #ifdef CONFIG_UTS_NS
8424 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8425 			       task, &utsns_operations);
8426 #endif
8427 #ifdef CONFIG_IPC_NS
8428 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8429 			       task, &ipcns_operations);
8430 #endif
8431 #ifdef CONFIG_PID_NS
8432 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8433 			       task, &pidns_operations);
8434 #endif
8435 #ifdef CONFIG_CGROUPS
8436 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8437 			       task, &cgroupns_operations);
8438 #endif
8439 
8440 	perf_iterate_sb(perf_event_namespaces_output,
8441 			&namespaces_event,
8442 			NULL);
8443 }
8444 
8445 /*
8446  * cgroup tracking
8447  */
8448 #ifdef CONFIG_CGROUP_PERF
8449 
8450 struct perf_cgroup_event {
8451 	char				*path;
8452 	int				path_size;
8453 	struct {
8454 		struct perf_event_header	header;
8455 		u64				id;
8456 		char				path[];
8457 	} event_id;
8458 };
8459 
8460 static int perf_event_cgroup_match(struct perf_event *event)
8461 {
8462 	return event->attr.cgroup;
8463 }
8464 
8465 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8466 {
8467 	struct perf_cgroup_event *cgroup_event = data;
8468 	struct perf_output_handle handle;
8469 	struct perf_sample_data sample;
8470 	u16 header_size = cgroup_event->event_id.header.size;
8471 	int ret;
8472 
8473 	if (!perf_event_cgroup_match(event))
8474 		return;
8475 
8476 	perf_event_header__init_id(&cgroup_event->event_id.header,
8477 				   &sample, event);
8478 	ret = perf_output_begin(&handle, &sample, event,
8479 				cgroup_event->event_id.header.size);
8480 	if (ret)
8481 		goto out;
8482 
8483 	perf_output_put(&handle, cgroup_event->event_id);
8484 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8485 
8486 	perf_event__output_id_sample(event, &handle, &sample);
8487 
8488 	perf_output_end(&handle);
8489 out:
8490 	cgroup_event->event_id.header.size = header_size;
8491 }
8492 
8493 static void perf_event_cgroup(struct cgroup *cgrp)
8494 {
8495 	struct perf_cgroup_event cgroup_event;
8496 	char path_enomem[16] = "//enomem";
8497 	char *pathname;
8498 	size_t size;
8499 
8500 	if (!atomic_read(&nr_cgroup_events))
8501 		return;
8502 
8503 	cgroup_event = (struct perf_cgroup_event){
8504 		.event_id  = {
8505 			.header = {
8506 				.type = PERF_RECORD_CGROUP,
8507 				.misc = 0,
8508 				.size = sizeof(cgroup_event.event_id),
8509 			},
8510 			.id = cgroup_id(cgrp),
8511 		},
8512 	};
8513 
8514 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8515 	if (pathname == NULL) {
8516 		cgroup_event.path = path_enomem;
8517 	} else {
8518 		/* just to be sure to have enough space for alignment */
8519 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8520 		cgroup_event.path = pathname;
8521 	}
8522 
8523 	/*
8524 	 * Since our buffer works in 8 byte units we need to align our string
8525 	 * size to a multiple of 8. However, we must guarantee the tail end is
8526 	 * zero'd out to avoid leaking random bits to userspace.
8527 	 */
8528 	size = strlen(cgroup_event.path) + 1;
8529 	while (!IS_ALIGNED(size, sizeof(u64)))
8530 		cgroup_event.path[size++] = '\0';
8531 
8532 	cgroup_event.event_id.header.size += size;
8533 	cgroup_event.path_size = size;
8534 
8535 	perf_iterate_sb(perf_event_cgroup_output,
8536 			&cgroup_event,
8537 			NULL);
8538 
8539 	kfree(pathname);
8540 }
8541 
8542 #endif
8543 
8544 /*
8545  * mmap tracking
8546  */
8547 
8548 struct perf_mmap_event {
8549 	struct vm_area_struct	*vma;
8550 
8551 	const char		*file_name;
8552 	int			file_size;
8553 	int			maj, min;
8554 	u64			ino;
8555 	u64			ino_generation;
8556 	u32			prot, flags;
8557 	u8			build_id[BUILD_ID_SIZE_MAX];
8558 	u32			build_id_size;
8559 
8560 	struct {
8561 		struct perf_event_header	header;
8562 
8563 		u32				pid;
8564 		u32				tid;
8565 		u64				start;
8566 		u64				len;
8567 		u64				pgoff;
8568 	} event_id;
8569 };
8570 
8571 static int perf_event_mmap_match(struct perf_event *event,
8572 				 void *data)
8573 {
8574 	struct perf_mmap_event *mmap_event = data;
8575 	struct vm_area_struct *vma = mmap_event->vma;
8576 	int executable = vma->vm_flags & VM_EXEC;
8577 
8578 	return (!executable && event->attr.mmap_data) ||
8579 	       (executable && (event->attr.mmap || event->attr.mmap2));
8580 }
8581 
8582 static void perf_event_mmap_output(struct perf_event *event,
8583 				   void *data)
8584 {
8585 	struct perf_mmap_event *mmap_event = data;
8586 	struct perf_output_handle handle;
8587 	struct perf_sample_data sample;
8588 	int size = mmap_event->event_id.header.size;
8589 	u32 type = mmap_event->event_id.header.type;
8590 	bool use_build_id;
8591 	int ret;
8592 
8593 	if (!perf_event_mmap_match(event, data))
8594 		return;
8595 
8596 	if (event->attr.mmap2) {
8597 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8598 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8599 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8600 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8601 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8602 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8603 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8604 	}
8605 
8606 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8607 	ret = perf_output_begin(&handle, &sample, event,
8608 				mmap_event->event_id.header.size);
8609 	if (ret)
8610 		goto out;
8611 
8612 	mmap_event->event_id.pid = perf_event_pid(event, current);
8613 	mmap_event->event_id.tid = perf_event_tid(event, current);
8614 
8615 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8616 
8617 	if (event->attr.mmap2 && use_build_id)
8618 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8619 
8620 	perf_output_put(&handle, mmap_event->event_id);
8621 
8622 	if (event->attr.mmap2) {
8623 		if (use_build_id) {
8624 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8625 
8626 			__output_copy(&handle, size, 4);
8627 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8628 		} else {
8629 			perf_output_put(&handle, mmap_event->maj);
8630 			perf_output_put(&handle, mmap_event->min);
8631 			perf_output_put(&handle, mmap_event->ino);
8632 			perf_output_put(&handle, mmap_event->ino_generation);
8633 		}
8634 		perf_output_put(&handle, mmap_event->prot);
8635 		perf_output_put(&handle, mmap_event->flags);
8636 	}
8637 
8638 	__output_copy(&handle, mmap_event->file_name,
8639 				   mmap_event->file_size);
8640 
8641 	perf_event__output_id_sample(event, &handle, &sample);
8642 
8643 	perf_output_end(&handle);
8644 out:
8645 	mmap_event->event_id.header.size = size;
8646 	mmap_event->event_id.header.type = type;
8647 }
8648 
8649 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8650 {
8651 	struct vm_area_struct *vma = mmap_event->vma;
8652 	struct file *file = vma->vm_file;
8653 	int maj = 0, min = 0;
8654 	u64 ino = 0, gen = 0;
8655 	u32 prot = 0, flags = 0;
8656 	unsigned int size;
8657 	char tmp[16];
8658 	char *buf = NULL;
8659 	char *name = NULL;
8660 
8661 	if (vma->vm_flags & VM_READ)
8662 		prot |= PROT_READ;
8663 	if (vma->vm_flags & VM_WRITE)
8664 		prot |= PROT_WRITE;
8665 	if (vma->vm_flags & VM_EXEC)
8666 		prot |= PROT_EXEC;
8667 
8668 	if (vma->vm_flags & VM_MAYSHARE)
8669 		flags = MAP_SHARED;
8670 	else
8671 		flags = MAP_PRIVATE;
8672 
8673 	if (vma->vm_flags & VM_LOCKED)
8674 		flags |= MAP_LOCKED;
8675 	if (is_vm_hugetlb_page(vma))
8676 		flags |= MAP_HUGETLB;
8677 
8678 	if (file) {
8679 		struct inode *inode;
8680 		dev_t dev;
8681 
8682 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8683 		if (!buf) {
8684 			name = "//enomem";
8685 			goto cpy_name;
8686 		}
8687 		/*
8688 		 * d_path() works from the end of the rb backwards, so we
8689 		 * need to add enough zero bytes after the string to handle
8690 		 * the 64bit alignment we do later.
8691 		 */
8692 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8693 		if (IS_ERR(name)) {
8694 			name = "//toolong";
8695 			goto cpy_name;
8696 		}
8697 		inode = file_inode(vma->vm_file);
8698 		dev = inode->i_sb->s_dev;
8699 		ino = inode->i_ino;
8700 		gen = inode->i_generation;
8701 		maj = MAJOR(dev);
8702 		min = MINOR(dev);
8703 
8704 		goto got_name;
8705 	} else {
8706 		if (vma->vm_ops && vma->vm_ops->name)
8707 			name = (char *) vma->vm_ops->name(vma);
8708 		if (!name)
8709 			name = (char *)arch_vma_name(vma);
8710 		if (!name) {
8711 			if (vma_is_initial_heap(vma))
8712 				name = "[heap]";
8713 			else if (vma_is_initial_stack(vma))
8714 				name = "[stack]";
8715 			else
8716 				name = "//anon";
8717 		}
8718 	}
8719 
8720 cpy_name:
8721 	strscpy(tmp, name, sizeof(tmp));
8722 	name = tmp;
8723 got_name:
8724 	/*
8725 	 * Since our buffer works in 8 byte units we need to align our string
8726 	 * size to a multiple of 8. However, we must guarantee the tail end is
8727 	 * zero'd out to avoid leaking random bits to userspace.
8728 	 */
8729 	size = strlen(name)+1;
8730 	while (!IS_ALIGNED(size, sizeof(u64)))
8731 		name[size++] = '\0';
8732 
8733 	mmap_event->file_name = name;
8734 	mmap_event->file_size = size;
8735 	mmap_event->maj = maj;
8736 	mmap_event->min = min;
8737 	mmap_event->ino = ino;
8738 	mmap_event->ino_generation = gen;
8739 	mmap_event->prot = prot;
8740 	mmap_event->flags = flags;
8741 
8742 	if (!(vma->vm_flags & VM_EXEC))
8743 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8744 
8745 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8746 
8747 	if (atomic_read(&nr_build_id_events))
8748 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8749 
8750 	perf_iterate_sb(perf_event_mmap_output,
8751 		       mmap_event,
8752 		       NULL);
8753 
8754 	kfree(buf);
8755 }
8756 
8757 /*
8758  * Check whether inode and address range match filter criteria.
8759  */
8760 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8761 				     struct file *file, unsigned long offset,
8762 				     unsigned long size)
8763 {
8764 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8765 	if (!filter->path.dentry)
8766 		return false;
8767 
8768 	if (d_inode(filter->path.dentry) != file_inode(file))
8769 		return false;
8770 
8771 	if (filter->offset > offset + size)
8772 		return false;
8773 
8774 	if (filter->offset + filter->size < offset)
8775 		return false;
8776 
8777 	return true;
8778 }
8779 
8780 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8781 					struct vm_area_struct *vma,
8782 					struct perf_addr_filter_range *fr)
8783 {
8784 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8785 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8786 	struct file *file = vma->vm_file;
8787 
8788 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8789 		return false;
8790 
8791 	if (filter->offset < off) {
8792 		fr->start = vma->vm_start;
8793 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8794 	} else {
8795 		fr->start = vma->vm_start + filter->offset - off;
8796 		fr->size = min(vma->vm_end - fr->start, filter->size);
8797 	}
8798 
8799 	return true;
8800 }
8801 
8802 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8803 {
8804 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8805 	struct vm_area_struct *vma = data;
8806 	struct perf_addr_filter *filter;
8807 	unsigned int restart = 0, count = 0;
8808 	unsigned long flags;
8809 
8810 	if (!has_addr_filter(event))
8811 		return;
8812 
8813 	if (!vma->vm_file)
8814 		return;
8815 
8816 	raw_spin_lock_irqsave(&ifh->lock, flags);
8817 	list_for_each_entry(filter, &ifh->list, entry) {
8818 		if (perf_addr_filter_vma_adjust(filter, vma,
8819 						&event->addr_filter_ranges[count]))
8820 			restart++;
8821 
8822 		count++;
8823 	}
8824 
8825 	if (restart)
8826 		event->addr_filters_gen++;
8827 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8828 
8829 	if (restart)
8830 		perf_event_stop(event, 1);
8831 }
8832 
8833 /*
8834  * Adjust all task's events' filters to the new vma
8835  */
8836 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8837 {
8838 	struct perf_event_context *ctx;
8839 
8840 	/*
8841 	 * Data tracing isn't supported yet and as such there is no need
8842 	 * to keep track of anything that isn't related to executable code:
8843 	 */
8844 	if (!(vma->vm_flags & VM_EXEC))
8845 		return;
8846 
8847 	rcu_read_lock();
8848 	ctx = rcu_dereference(current->perf_event_ctxp);
8849 	if (ctx)
8850 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8851 	rcu_read_unlock();
8852 }
8853 
8854 void perf_event_mmap(struct vm_area_struct *vma)
8855 {
8856 	struct perf_mmap_event mmap_event;
8857 
8858 	if (!atomic_read(&nr_mmap_events))
8859 		return;
8860 
8861 	mmap_event = (struct perf_mmap_event){
8862 		.vma	= vma,
8863 		/* .file_name */
8864 		/* .file_size */
8865 		.event_id  = {
8866 			.header = {
8867 				.type = PERF_RECORD_MMAP,
8868 				.misc = PERF_RECORD_MISC_USER,
8869 				/* .size */
8870 			},
8871 			/* .pid */
8872 			/* .tid */
8873 			.start  = vma->vm_start,
8874 			.len    = vma->vm_end - vma->vm_start,
8875 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8876 		},
8877 		/* .maj (attr_mmap2 only) */
8878 		/* .min (attr_mmap2 only) */
8879 		/* .ino (attr_mmap2 only) */
8880 		/* .ino_generation (attr_mmap2 only) */
8881 		/* .prot (attr_mmap2 only) */
8882 		/* .flags (attr_mmap2 only) */
8883 	};
8884 
8885 	perf_addr_filters_adjust(vma);
8886 	perf_event_mmap_event(&mmap_event);
8887 }
8888 
8889 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8890 			  unsigned long size, u64 flags)
8891 {
8892 	struct perf_output_handle handle;
8893 	struct perf_sample_data sample;
8894 	struct perf_aux_event {
8895 		struct perf_event_header	header;
8896 		u64				offset;
8897 		u64				size;
8898 		u64				flags;
8899 	} rec = {
8900 		.header = {
8901 			.type = PERF_RECORD_AUX,
8902 			.misc = 0,
8903 			.size = sizeof(rec),
8904 		},
8905 		.offset		= head,
8906 		.size		= size,
8907 		.flags		= flags,
8908 	};
8909 	int ret;
8910 
8911 	perf_event_header__init_id(&rec.header, &sample, event);
8912 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8913 
8914 	if (ret)
8915 		return;
8916 
8917 	perf_output_put(&handle, rec);
8918 	perf_event__output_id_sample(event, &handle, &sample);
8919 
8920 	perf_output_end(&handle);
8921 }
8922 
8923 /*
8924  * Lost/dropped samples logging
8925  */
8926 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8927 {
8928 	struct perf_output_handle handle;
8929 	struct perf_sample_data sample;
8930 	int ret;
8931 
8932 	struct {
8933 		struct perf_event_header	header;
8934 		u64				lost;
8935 	} lost_samples_event = {
8936 		.header = {
8937 			.type = PERF_RECORD_LOST_SAMPLES,
8938 			.misc = 0,
8939 			.size = sizeof(lost_samples_event),
8940 		},
8941 		.lost		= lost,
8942 	};
8943 
8944 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8945 
8946 	ret = perf_output_begin(&handle, &sample, event,
8947 				lost_samples_event.header.size);
8948 	if (ret)
8949 		return;
8950 
8951 	perf_output_put(&handle, lost_samples_event);
8952 	perf_event__output_id_sample(event, &handle, &sample);
8953 	perf_output_end(&handle);
8954 }
8955 
8956 /*
8957  * context_switch tracking
8958  */
8959 
8960 struct perf_switch_event {
8961 	struct task_struct	*task;
8962 	struct task_struct	*next_prev;
8963 
8964 	struct {
8965 		struct perf_event_header	header;
8966 		u32				next_prev_pid;
8967 		u32				next_prev_tid;
8968 	} event_id;
8969 };
8970 
8971 static int perf_event_switch_match(struct perf_event *event)
8972 {
8973 	return event->attr.context_switch;
8974 }
8975 
8976 static void perf_event_switch_output(struct perf_event *event, void *data)
8977 {
8978 	struct perf_switch_event *se = data;
8979 	struct perf_output_handle handle;
8980 	struct perf_sample_data sample;
8981 	int ret;
8982 
8983 	if (!perf_event_switch_match(event))
8984 		return;
8985 
8986 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8987 	if (event->ctx->task) {
8988 		se->event_id.header.type = PERF_RECORD_SWITCH;
8989 		se->event_id.header.size = sizeof(se->event_id.header);
8990 	} else {
8991 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8992 		se->event_id.header.size = sizeof(se->event_id);
8993 		se->event_id.next_prev_pid =
8994 					perf_event_pid(event, se->next_prev);
8995 		se->event_id.next_prev_tid =
8996 					perf_event_tid(event, se->next_prev);
8997 	}
8998 
8999 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9000 
9001 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9002 	if (ret)
9003 		return;
9004 
9005 	if (event->ctx->task)
9006 		perf_output_put(&handle, se->event_id.header);
9007 	else
9008 		perf_output_put(&handle, se->event_id);
9009 
9010 	perf_event__output_id_sample(event, &handle, &sample);
9011 
9012 	perf_output_end(&handle);
9013 }
9014 
9015 static void perf_event_switch(struct task_struct *task,
9016 			      struct task_struct *next_prev, bool sched_in)
9017 {
9018 	struct perf_switch_event switch_event;
9019 
9020 	/* N.B. caller checks nr_switch_events != 0 */
9021 
9022 	switch_event = (struct perf_switch_event){
9023 		.task		= task,
9024 		.next_prev	= next_prev,
9025 		.event_id	= {
9026 			.header = {
9027 				/* .type */
9028 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9029 				/* .size */
9030 			},
9031 			/* .next_prev_pid */
9032 			/* .next_prev_tid */
9033 		},
9034 	};
9035 
9036 	if (!sched_in && task->on_rq) {
9037 		switch_event.event_id.header.misc |=
9038 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9039 	}
9040 
9041 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9042 }
9043 
9044 /*
9045  * IRQ throttle logging
9046  */
9047 
9048 static void perf_log_throttle(struct perf_event *event, int enable)
9049 {
9050 	struct perf_output_handle handle;
9051 	struct perf_sample_data sample;
9052 	int ret;
9053 
9054 	struct {
9055 		struct perf_event_header	header;
9056 		u64				time;
9057 		u64				id;
9058 		u64				stream_id;
9059 	} throttle_event = {
9060 		.header = {
9061 			.type = PERF_RECORD_THROTTLE,
9062 			.misc = 0,
9063 			.size = sizeof(throttle_event),
9064 		},
9065 		.time		= perf_event_clock(event),
9066 		.id		= primary_event_id(event),
9067 		.stream_id	= event->id,
9068 	};
9069 
9070 	if (enable)
9071 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9072 
9073 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9074 
9075 	ret = perf_output_begin(&handle, &sample, event,
9076 				throttle_event.header.size);
9077 	if (ret)
9078 		return;
9079 
9080 	perf_output_put(&handle, throttle_event);
9081 	perf_event__output_id_sample(event, &handle, &sample);
9082 	perf_output_end(&handle);
9083 }
9084 
9085 /*
9086  * ksymbol register/unregister tracking
9087  */
9088 
9089 struct perf_ksymbol_event {
9090 	const char	*name;
9091 	int		name_len;
9092 	struct {
9093 		struct perf_event_header        header;
9094 		u64				addr;
9095 		u32				len;
9096 		u16				ksym_type;
9097 		u16				flags;
9098 	} event_id;
9099 };
9100 
9101 static int perf_event_ksymbol_match(struct perf_event *event)
9102 {
9103 	return event->attr.ksymbol;
9104 }
9105 
9106 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9107 {
9108 	struct perf_ksymbol_event *ksymbol_event = data;
9109 	struct perf_output_handle handle;
9110 	struct perf_sample_data sample;
9111 	int ret;
9112 
9113 	if (!perf_event_ksymbol_match(event))
9114 		return;
9115 
9116 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9117 				   &sample, event);
9118 	ret = perf_output_begin(&handle, &sample, event,
9119 				ksymbol_event->event_id.header.size);
9120 	if (ret)
9121 		return;
9122 
9123 	perf_output_put(&handle, ksymbol_event->event_id);
9124 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9125 	perf_event__output_id_sample(event, &handle, &sample);
9126 
9127 	perf_output_end(&handle);
9128 }
9129 
9130 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9131 			const char *sym)
9132 {
9133 	struct perf_ksymbol_event ksymbol_event;
9134 	char name[KSYM_NAME_LEN];
9135 	u16 flags = 0;
9136 	int name_len;
9137 
9138 	if (!atomic_read(&nr_ksymbol_events))
9139 		return;
9140 
9141 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9142 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9143 		goto err;
9144 
9145 	strscpy(name, sym, KSYM_NAME_LEN);
9146 	name_len = strlen(name) + 1;
9147 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9148 		name[name_len++] = '\0';
9149 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9150 
9151 	if (unregister)
9152 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9153 
9154 	ksymbol_event = (struct perf_ksymbol_event){
9155 		.name = name,
9156 		.name_len = name_len,
9157 		.event_id = {
9158 			.header = {
9159 				.type = PERF_RECORD_KSYMBOL,
9160 				.size = sizeof(ksymbol_event.event_id) +
9161 					name_len,
9162 			},
9163 			.addr = addr,
9164 			.len = len,
9165 			.ksym_type = ksym_type,
9166 			.flags = flags,
9167 		},
9168 	};
9169 
9170 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9171 	return;
9172 err:
9173 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9174 }
9175 
9176 /*
9177  * bpf program load/unload tracking
9178  */
9179 
9180 struct perf_bpf_event {
9181 	struct bpf_prog	*prog;
9182 	struct {
9183 		struct perf_event_header        header;
9184 		u16				type;
9185 		u16				flags;
9186 		u32				id;
9187 		u8				tag[BPF_TAG_SIZE];
9188 	} event_id;
9189 };
9190 
9191 static int perf_event_bpf_match(struct perf_event *event)
9192 {
9193 	return event->attr.bpf_event;
9194 }
9195 
9196 static void perf_event_bpf_output(struct perf_event *event, void *data)
9197 {
9198 	struct perf_bpf_event *bpf_event = data;
9199 	struct perf_output_handle handle;
9200 	struct perf_sample_data sample;
9201 	int ret;
9202 
9203 	if (!perf_event_bpf_match(event))
9204 		return;
9205 
9206 	perf_event_header__init_id(&bpf_event->event_id.header,
9207 				   &sample, event);
9208 	ret = perf_output_begin(&handle, &sample, event,
9209 				bpf_event->event_id.header.size);
9210 	if (ret)
9211 		return;
9212 
9213 	perf_output_put(&handle, bpf_event->event_id);
9214 	perf_event__output_id_sample(event, &handle, &sample);
9215 
9216 	perf_output_end(&handle);
9217 }
9218 
9219 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9220 					 enum perf_bpf_event_type type)
9221 {
9222 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9223 	int i;
9224 
9225 	if (prog->aux->func_cnt == 0) {
9226 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9227 				   (u64)(unsigned long)prog->bpf_func,
9228 				   prog->jited_len, unregister,
9229 				   prog->aux->ksym.name);
9230 	} else {
9231 		for (i = 0; i < prog->aux->func_cnt; i++) {
9232 			struct bpf_prog *subprog = prog->aux->func[i];
9233 
9234 			perf_event_ksymbol(
9235 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9236 				(u64)(unsigned long)subprog->bpf_func,
9237 				subprog->jited_len, unregister,
9238 				subprog->aux->ksym.name);
9239 		}
9240 	}
9241 }
9242 
9243 void perf_event_bpf_event(struct bpf_prog *prog,
9244 			  enum perf_bpf_event_type type,
9245 			  u16 flags)
9246 {
9247 	struct perf_bpf_event bpf_event;
9248 
9249 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9250 	    type >= PERF_BPF_EVENT_MAX)
9251 		return;
9252 
9253 	switch (type) {
9254 	case PERF_BPF_EVENT_PROG_LOAD:
9255 	case PERF_BPF_EVENT_PROG_UNLOAD:
9256 		if (atomic_read(&nr_ksymbol_events))
9257 			perf_event_bpf_emit_ksymbols(prog, type);
9258 		break;
9259 	default:
9260 		break;
9261 	}
9262 
9263 	if (!atomic_read(&nr_bpf_events))
9264 		return;
9265 
9266 	bpf_event = (struct perf_bpf_event){
9267 		.prog = prog,
9268 		.event_id = {
9269 			.header = {
9270 				.type = PERF_RECORD_BPF_EVENT,
9271 				.size = sizeof(bpf_event.event_id),
9272 			},
9273 			.type = type,
9274 			.flags = flags,
9275 			.id = prog->aux->id,
9276 		},
9277 	};
9278 
9279 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9280 
9281 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9282 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9283 }
9284 
9285 struct perf_text_poke_event {
9286 	const void		*old_bytes;
9287 	const void		*new_bytes;
9288 	size_t			pad;
9289 	u16			old_len;
9290 	u16			new_len;
9291 
9292 	struct {
9293 		struct perf_event_header	header;
9294 
9295 		u64				addr;
9296 	} event_id;
9297 };
9298 
9299 static int perf_event_text_poke_match(struct perf_event *event)
9300 {
9301 	return event->attr.text_poke;
9302 }
9303 
9304 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9305 {
9306 	struct perf_text_poke_event *text_poke_event = data;
9307 	struct perf_output_handle handle;
9308 	struct perf_sample_data sample;
9309 	u64 padding = 0;
9310 	int ret;
9311 
9312 	if (!perf_event_text_poke_match(event))
9313 		return;
9314 
9315 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9316 
9317 	ret = perf_output_begin(&handle, &sample, event,
9318 				text_poke_event->event_id.header.size);
9319 	if (ret)
9320 		return;
9321 
9322 	perf_output_put(&handle, text_poke_event->event_id);
9323 	perf_output_put(&handle, text_poke_event->old_len);
9324 	perf_output_put(&handle, text_poke_event->new_len);
9325 
9326 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9327 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9328 
9329 	if (text_poke_event->pad)
9330 		__output_copy(&handle, &padding, text_poke_event->pad);
9331 
9332 	perf_event__output_id_sample(event, &handle, &sample);
9333 
9334 	perf_output_end(&handle);
9335 }
9336 
9337 void perf_event_text_poke(const void *addr, const void *old_bytes,
9338 			  size_t old_len, const void *new_bytes, size_t new_len)
9339 {
9340 	struct perf_text_poke_event text_poke_event;
9341 	size_t tot, pad;
9342 
9343 	if (!atomic_read(&nr_text_poke_events))
9344 		return;
9345 
9346 	tot  = sizeof(text_poke_event.old_len) + old_len;
9347 	tot += sizeof(text_poke_event.new_len) + new_len;
9348 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9349 
9350 	text_poke_event = (struct perf_text_poke_event){
9351 		.old_bytes    = old_bytes,
9352 		.new_bytes    = new_bytes,
9353 		.pad          = pad,
9354 		.old_len      = old_len,
9355 		.new_len      = new_len,
9356 		.event_id  = {
9357 			.header = {
9358 				.type = PERF_RECORD_TEXT_POKE,
9359 				.misc = PERF_RECORD_MISC_KERNEL,
9360 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9361 			},
9362 			.addr = (unsigned long)addr,
9363 		},
9364 	};
9365 
9366 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9367 }
9368 
9369 void perf_event_itrace_started(struct perf_event *event)
9370 {
9371 	event->attach_state |= PERF_ATTACH_ITRACE;
9372 }
9373 
9374 static void perf_log_itrace_start(struct perf_event *event)
9375 {
9376 	struct perf_output_handle handle;
9377 	struct perf_sample_data sample;
9378 	struct perf_aux_event {
9379 		struct perf_event_header        header;
9380 		u32				pid;
9381 		u32				tid;
9382 	} rec;
9383 	int ret;
9384 
9385 	if (event->parent)
9386 		event = event->parent;
9387 
9388 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9389 	    event->attach_state & PERF_ATTACH_ITRACE)
9390 		return;
9391 
9392 	rec.header.type	= PERF_RECORD_ITRACE_START;
9393 	rec.header.misc	= 0;
9394 	rec.header.size	= sizeof(rec);
9395 	rec.pid	= perf_event_pid(event, current);
9396 	rec.tid	= perf_event_tid(event, current);
9397 
9398 	perf_event_header__init_id(&rec.header, &sample, event);
9399 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9400 
9401 	if (ret)
9402 		return;
9403 
9404 	perf_output_put(&handle, rec);
9405 	perf_event__output_id_sample(event, &handle, &sample);
9406 
9407 	perf_output_end(&handle);
9408 }
9409 
9410 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9411 {
9412 	struct perf_output_handle handle;
9413 	struct perf_sample_data sample;
9414 	struct perf_aux_event {
9415 		struct perf_event_header        header;
9416 		u64				hw_id;
9417 	} rec;
9418 	int ret;
9419 
9420 	if (event->parent)
9421 		event = event->parent;
9422 
9423 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9424 	rec.header.misc	= 0;
9425 	rec.header.size	= sizeof(rec);
9426 	rec.hw_id	= hw_id;
9427 
9428 	perf_event_header__init_id(&rec.header, &sample, event);
9429 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9430 
9431 	if (ret)
9432 		return;
9433 
9434 	perf_output_put(&handle, rec);
9435 	perf_event__output_id_sample(event, &handle, &sample);
9436 
9437 	perf_output_end(&handle);
9438 }
9439 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9440 
9441 static int
9442 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9443 {
9444 	struct hw_perf_event *hwc = &event->hw;
9445 	int ret = 0;
9446 	u64 seq;
9447 
9448 	seq = __this_cpu_read(perf_throttled_seq);
9449 	if (seq != hwc->interrupts_seq) {
9450 		hwc->interrupts_seq = seq;
9451 		hwc->interrupts = 1;
9452 	} else {
9453 		hwc->interrupts++;
9454 		if (unlikely(throttle &&
9455 			     hwc->interrupts > max_samples_per_tick)) {
9456 			__this_cpu_inc(perf_throttled_count);
9457 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9458 			hwc->interrupts = MAX_INTERRUPTS;
9459 			perf_log_throttle(event, 0);
9460 			ret = 1;
9461 		}
9462 	}
9463 
9464 	if (event->attr.freq) {
9465 		u64 now = perf_clock();
9466 		s64 delta = now - hwc->freq_time_stamp;
9467 
9468 		hwc->freq_time_stamp = now;
9469 
9470 		if (delta > 0 && delta < 2*TICK_NSEC)
9471 			perf_adjust_period(event, delta, hwc->last_period, true);
9472 	}
9473 
9474 	return ret;
9475 }
9476 
9477 int perf_event_account_interrupt(struct perf_event *event)
9478 {
9479 	return __perf_event_account_interrupt(event, 1);
9480 }
9481 
9482 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9483 {
9484 	/*
9485 	 * Due to interrupt latency (AKA "skid"), we may enter the
9486 	 * kernel before taking an overflow, even if the PMU is only
9487 	 * counting user events.
9488 	 */
9489 	if (event->attr.exclude_kernel && !user_mode(regs))
9490 		return false;
9491 
9492 	return true;
9493 }
9494 
9495 /*
9496  * Generic event overflow handling, sampling.
9497  */
9498 
9499 static int __perf_event_overflow(struct perf_event *event,
9500 				 int throttle, struct perf_sample_data *data,
9501 				 struct pt_regs *regs)
9502 {
9503 	int events = atomic_read(&event->event_limit);
9504 	int ret = 0;
9505 
9506 	/*
9507 	 * Non-sampling counters might still use the PMI to fold short
9508 	 * hardware counters, ignore those.
9509 	 */
9510 	if (unlikely(!is_sampling_event(event)))
9511 		return 0;
9512 
9513 	ret = __perf_event_account_interrupt(event, throttle);
9514 
9515 	/*
9516 	 * XXX event_limit might not quite work as expected on inherited
9517 	 * events
9518 	 */
9519 
9520 	event->pending_kill = POLL_IN;
9521 	if (events && atomic_dec_and_test(&event->event_limit)) {
9522 		ret = 1;
9523 		event->pending_kill = POLL_HUP;
9524 		perf_event_disable_inatomic(event);
9525 	}
9526 
9527 	if (event->attr.sigtrap) {
9528 		/*
9529 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9530 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9531 		 * it is the first event, on the other hand, we should also not
9532 		 * trigger the WARN or override the data address.
9533 		 */
9534 		bool valid_sample = sample_is_allowed(event, regs);
9535 		unsigned int pending_id = 1;
9536 
9537 		if (regs)
9538 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9539 		if (!event->pending_sigtrap) {
9540 			event->pending_sigtrap = pending_id;
9541 			local_inc(&event->ctx->nr_pending);
9542 		} else if (event->attr.exclude_kernel && valid_sample) {
9543 			/*
9544 			 * Should not be able to return to user space without
9545 			 * consuming pending_sigtrap; with exceptions:
9546 			 *
9547 			 *  1. Where !exclude_kernel, events can overflow again
9548 			 *     in the kernel without returning to user space.
9549 			 *
9550 			 *  2. Events that can overflow again before the IRQ-
9551 			 *     work without user space progress (e.g. hrtimer).
9552 			 *     To approximate progress (with false negatives),
9553 			 *     check 32-bit hash of the current IP.
9554 			 */
9555 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9556 		}
9557 
9558 		event->pending_addr = 0;
9559 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9560 			event->pending_addr = data->addr;
9561 		irq_work_queue(&event->pending_irq);
9562 	}
9563 
9564 	READ_ONCE(event->overflow_handler)(event, data, regs);
9565 
9566 	if (*perf_event_fasync(event) && event->pending_kill) {
9567 		event->pending_wakeup = 1;
9568 		irq_work_queue(&event->pending_irq);
9569 	}
9570 
9571 	return ret;
9572 }
9573 
9574 int perf_event_overflow(struct perf_event *event,
9575 			struct perf_sample_data *data,
9576 			struct pt_regs *regs)
9577 {
9578 	return __perf_event_overflow(event, 1, data, regs);
9579 }
9580 
9581 /*
9582  * Generic software event infrastructure
9583  */
9584 
9585 struct swevent_htable {
9586 	struct swevent_hlist		*swevent_hlist;
9587 	struct mutex			hlist_mutex;
9588 	int				hlist_refcount;
9589 
9590 	/* Recursion avoidance in each contexts */
9591 	int				recursion[PERF_NR_CONTEXTS];
9592 };
9593 
9594 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9595 
9596 /*
9597  * We directly increment event->count and keep a second value in
9598  * event->hw.period_left to count intervals. This period event
9599  * is kept in the range [-sample_period, 0] so that we can use the
9600  * sign as trigger.
9601  */
9602 
9603 u64 perf_swevent_set_period(struct perf_event *event)
9604 {
9605 	struct hw_perf_event *hwc = &event->hw;
9606 	u64 period = hwc->last_period;
9607 	u64 nr, offset;
9608 	s64 old, val;
9609 
9610 	hwc->last_period = hwc->sample_period;
9611 
9612 	old = local64_read(&hwc->period_left);
9613 	do {
9614 		val = old;
9615 		if (val < 0)
9616 			return 0;
9617 
9618 		nr = div64_u64(period + val, period);
9619 		offset = nr * period;
9620 		val -= offset;
9621 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9622 
9623 	return nr;
9624 }
9625 
9626 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9627 				    struct perf_sample_data *data,
9628 				    struct pt_regs *regs)
9629 {
9630 	struct hw_perf_event *hwc = &event->hw;
9631 	int throttle = 0;
9632 
9633 	if (!overflow)
9634 		overflow = perf_swevent_set_period(event);
9635 
9636 	if (hwc->interrupts == MAX_INTERRUPTS)
9637 		return;
9638 
9639 	for (; overflow; overflow--) {
9640 		if (__perf_event_overflow(event, throttle,
9641 					    data, regs)) {
9642 			/*
9643 			 * We inhibit the overflow from happening when
9644 			 * hwc->interrupts == MAX_INTERRUPTS.
9645 			 */
9646 			break;
9647 		}
9648 		throttle = 1;
9649 	}
9650 }
9651 
9652 static void perf_swevent_event(struct perf_event *event, u64 nr,
9653 			       struct perf_sample_data *data,
9654 			       struct pt_regs *regs)
9655 {
9656 	struct hw_perf_event *hwc = &event->hw;
9657 
9658 	local64_add(nr, &event->count);
9659 
9660 	if (!regs)
9661 		return;
9662 
9663 	if (!is_sampling_event(event))
9664 		return;
9665 
9666 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9667 		data->period = nr;
9668 		return perf_swevent_overflow(event, 1, data, regs);
9669 	} else
9670 		data->period = event->hw.last_period;
9671 
9672 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9673 		return perf_swevent_overflow(event, 1, data, regs);
9674 
9675 	if (local64_add_negative(nr, &hwc->period_left))
9676 		return;
9677 
9678 	perf_swevent_overflow(event, 0, data, regs);
9679 }
9680 
9681 static int perf_exclude_event(struct perf_event *event,
9682 			      struct pt_regs *regs)
9683 {
9684 	if (event->hw.state & PERF_HES_STOPPED)
9685 		return 1;
9686 
9687 	if (regs) {
9688 		if (event->attr.exclude_user && user_mode(regs))
9689 			return 1;
9690 
9691 		if (event->attr.exclude_kernel && !user_mode(regs))
9692 			return 1;
9693 	}
9694 
9695 	return 0;
9696 }
9697 
9698 static int perf_swevent_match(struct perf_event *event,
9699 				enum perf_type_id type,
9700 				u32 event_id,
9701 				struct perf_sample_data *data,
9702 				struct pt_regs *regs)
9703 {
9704 	if (event->attr.type != type)
9705 		return 0;
9706 
9707 	if (event->attr.config != event_id)
9708 		return 0;
9709 
9710 	if (perf_exclude_event(event, regs))
9711 		return 0;
9712 
9713 	return 1;
9714 }
9715 
9716 static inline u64 swevent_hash(u64 type, u32 event_id)
9717 {
9718 	u64 val = event_id | (type << 32);
9719 
9720 	return hash_64(val, SWEVENT_HLIST_BITS);
9721 }
9722 
9723 static inline struct hlist_head *
9724 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9725 {
9726 	u64 hash = swevent_hash(type, event_id);
9727 
9728 	return &hlist->heads[hash];
9729 }
9730 
9731 /* For the read side: events when they trigger */
9732 static inline struct hlist_head *
9733 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9734 {
9735 	struct swevent_hlist *hlist;
9736 
9737 	hlist = rcu_dereference(swhash->swevent_hlist);
9738 	if (!hlist)
9739 		return NULL;
9740 
9741 	return __find_swevent_head(hlist, type, event_id);
9742 }
9743 
9744 /* For the event head insertion and removal in the hlist */
9745 static inline struct hlist_head *
9746 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9747 {
9748 	struct swevent_hlist *hlist;
9749 	u32 event_id = event->attr.config;
9750 	u64 type = event->attr.type;
9751 
9752 	/*
9753 	 * Event scheduling is always serialized against hlist allocation
9754 	 * and release. Which makes the protected version suitable here.
9755 	 * The context lock guarantees that.
9756 	 */
9757 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9758 					  lockdep_is_held(&event->ctx->lock));
9759 	if (!hlist)
9760 		return NULL;
9761 
9762 	return __find_swevent_head(hlist, type, event_id);
9763 }
9764 
9765 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9766 				    u64 nr,
9767 				    struct perf_sample_data *data,
9768 				    struct pt_regs *regs)
9769 {
9770 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9771 	struct perf_event *event;
9772 	struct hlist_head *head;
9773 
9774 	rcu_read_lock();
9775 	head = find_swevent_head_rcu(swhash, type, event_id);
9776 	if (!head)
9777 		goto end;
9778 
9779 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9780 		if (perf_swevent_match(event, type, event_id, data, regs))
9781 			perf_swevent_event(event, nr, data, regs);
9782 	}
9783 end:
9784 	rcu_read_unlock();
9785 }
9786 
9787 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9788 
9789 int perf_swevent_get_recursion_context(void)
9790 {
9791 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9792 
9793 	return get_recursion_context(swhash->recursion);
9794 }
9795 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9796 
9797 void perf_swevent_put_recursion_context(int rctx)
9798 {
9799 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9800 
9801 	put_recursion_context(swhash->recursion, rctx);
9802 }
9803 
9804 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9805 {
9806 	struct perf_sample_data data;
9807 
9808 	if (WARN_ON_ONCE(!regs))
9809 		return;
9810 
9811 	perf_sample_data_init(&data, addr, 0);
9812 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9813 }
9814 
9815 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9816 {
9817 	int rctx;
9818 
9819 	preempt_disable_notrace();
9820 	rctx = perf_swevent_get_recursion_context();
9821 	if (unlikely(rctx < 0))
9822 		goto fail;
9823 
9824 	___perf_sw_event(event_id, nr, regs, addr);
9825 
9826 	perf_swevent_put_recursion_context(rctx);
9827 fail:
9828 	preempt_enable_notrace();
9829 }
9830 
9831 static void perf_swevent_read(struct perf_event *event)
9832 {
9833 }
9834 
9835 static int perf_swevent_add(struct perf_event *event, int flags)
9836 {
9837 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9838 	struct hw_perf_event *hwc = &event->hw;
9839 	struct hlist_head *head;
9840 
9841 	if (is_sampling_event(event)) {
9842 		hwc->last_period = hwc->sample_period;
9843 		perf_swevent_set_period(event);
9844 	}
9845 
9846 	hwc->state = !(flags & PERF_EF_START);
9847 
9848 	head = find_swevent_head(swhash, event);
9849 	if (WARN_ON_ONCE(!head))
9850 		return -EINVAL;
9851 
9852 	hlist_add_head_rcu(&event->hlist_entry, head);
9853 	perf_event_update_userpage(event);
9854 
9855 	return 0;
9856 }
9857 
9858 static void perf_swevent_del(struct perf_event *event, int flags)
9859 {
9860 	hlist_del_rcu(&event->hlist_entry);
9861 }
9862 
9863 static void perf_swevent_start(struct perf_event *event, int flags)
9864 {
9865 	event->hw.state = 0;
9866 }
9867 
9868 static void perf_swevent_stop(struct perf_event *event, int flags)
9869 {
9870 	event->hw.state = PERF_HES_STOPPED;
9871 }
9872 
9873 /* Deref the hlist from the update side */
9874 static inline struct swevent_hlist *
9875 swevent_hlist_deref(struct swevent_htable *swhash)
9876 {
9877 	return rcu_dereference_protected(swhash->swevent_hlist,
9878 					 lockdep_is_held(&swhash->hlist_mutex));
9879 }
9880 
9881 static void swevent_hlist_release(struct swevent_htable *swhash)
9882 {
9883 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9884 
9885 	if (!hlist)
9886 		return;
9887 
9888 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9889 	kfree_rcu(hlist, rcu_head);
9890 }
9891 
9892 static void swevent_hlist_put_cpu(int cpu)
9893 {
9894 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9895 
9896 	mutex_lock(&swhash->hlist_mutex);
9897 
9898 	if (!--swhash->hlist_refcount)
9899 		swevent_hlist_release(swhash);
9900 
9901 	mutex_unlock(&swhash->hlist_mutex);
9902 }
9903 
9904 static void swevent_hlist_put(void)
9905 {
9906 	int cpu;
9907 
9908 	for_each_possible_cpu(cpu)
9909 		swevent_hlist_put_cpu(cpu);
9910 }
9911 
9912 static int swevent_hlist_get_cpu(int cpu)
9913 {
9914 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9915 	int err = 0;
9916 
9917 	mutex_lock(&swhash->hlist_mutex);
9918 	if (!swevent_hlist_deref(swhash) &&
9919 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9920 		struct swevent_hlist *hlist;
9921 
9922 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9923 		if (!hlist) {
9924 			err = -ENOMEM;
9925 			goto exit;
9926 		}
9927 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9928 	}
9929 	swhash->hlist_refcount++;
9930 exit:
9931 	mutex_unlock(&swhash->hlist_mutex);
9932 
9933 	return err;
9934 }
9935 
9936 static int swevent_hlist_get(void)
9937 {
9938 	int err, cpu, failed_cpu;
9939 
9940 	mutex_lock(&pmus_lock);
9941 	for_each_possible_cpu(cpu) {
9942 		err = swevent_hlist_get_cpu(cpu);
9943 		if (err) {
9944 			failed_cpu = cpu;
9945 			goto fail;
9946 		}
9947 	}
9948 	mutex_unlock(&pmus_lock);
9949 	return 0;
9950 fail:
9951 	for_each_possible_cpu(cpu) {
9952 		if (cpu == failed_cpu)
9953 			break;
9954 		swevent_hlist_put_cpu(cpu);
9955 	}
9956 	mutex_unlock(&pmus_lock);
9957 	return err;
9958 }
9959 
9960 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9961 
9962 static void sw_perf_event_destroy(struct perf_event *event)
9963 {
9964 	u64 event_id = event->attr.config;
9965 
9966 	WARN_ON(event->parent);
9967 
9968 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9969 	swevent_hlist_put();
9970 }
9971 
9972 static struct pmu perf_cpu_clock; /* fwd declaration */
9973 static struct pmu perf_task_clock;
9974 
9975 static int perf_swevent_init(struct perf_event *event)
9976 {
9977 	u64 event_id = event->attr.config;
9978 
9979 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9980 		return -ENOENT;
9981 
9982 	/*
9983 	 * no branch sampling for software events
9984 	 */
9985 	if (has_branch_stack(event))
9986 		return -EOPNOTSUPP;
9987 
9988 	switch (event_id) {
9989 	case PERF_COUNT_SW_CPU_CLOCK:
9990 		event->attr.type = perf_cpu_clock.type;
9991 		return -ENOENT;
9992 	case PERF_COUNT_SW_TASK_CLOCK:
9993 		event->attr.type = perf_task_clock.type;
9994 		return -ENOENT;
9995 
9996 	default:
9997 		break;
9998 	}
9999 
10000 	if (event_id >= PERF_COUNT_SW_MAX)
10001 		return -ENOENT;
10002 
10003 	if (!event->parent) {
10004 		int err;
10005 
10006 		err = swevent_hlist_get();
10007 		if (err)
10008 			return err;
10009 
10010 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10011 		event->destroy = sw_perf_event_destroy;
10012 	}
10013 
10014 	return 0;
10015 }
10016 
10017 static struct pmu perf_swevent = {
10018 	.task_ctx_nr	= perf_sw_context,
10019 
10020 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10021 
10022 	.event_init	= perf_swevent_init,
10023 	.add		= perf_swevent_add,
10024 	.del		= perf_swevent_del,
10025 	.start		= perf_swevent_start,
10026 	.stop		= perf_swevent_stop,
10027 	.read		= perf_swevent_read,
10028 };
10029 
10030 #ifdef CONFIG_EVENT_TRACING
10031 
10032 static void tp_perf_event_destroy(struct perf_event *event)
10033 {
10034 	perf_trace_destroy(event);
10035 }
10036 
10037 static int perf_tp_event_init(struct perf_event *event)
10038 {
10039 	int err;
10040 
10041 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10042 		return -ENOENT;
10043 
10044 	/*
10045 	 * no branch sampling for tracepoint events
10046 	 */
10047 	if (has_branch_stack(event))
10048 		return -EOPNOTSUPP;
10049 
10050 	err = perf_trace_init(event);
10051 	if (err)
10052 		return err;
10053 
10054 	event->destroy = tp_perf_event_destroy;
10055 
10056 	return 0;
10057 }
10058 
10059 static struct pmu perf_tracepoint = {
10060 	.task_ctx_nr	= perf_sw_context,
10061 
10062 	.event_init	= perf_tp_event_init,
10063 	.add		= perf_trace_add,
10064 	.del		= perf_trace_del,
10065 	.start		= perf_swevent_start,
10066 	.stop		= perf_swevent_stop,
10067 	.read		= perf_swevent_read,
10068 };
10069 
10070 static int perf_tp_filter_match(struct perf_event *event,
10071 				struct perf_sample_data *data)
10072 {
10073 	void *record = data->raw->frag.data;
10074 
10075 	/* only top level events have filters set */
10076 	if (event->parent)
10077 		event = event->parent;
10078 
10079 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10080 		return 1;
10081 	return 0;
10082 }
10083 
10084 static int perf_tp_event_match(struct perf_event *event,
10085 				struct perf_sample_data *data,
10086 				struct pt_regs *regs)
10087 {
10088 	if (event->hw.state & PERF_HES_STOPPED)
10089 		return 0;
10090 	/*
10091 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10092 	 */
10093 	if (event->attr.exclude_kernel && !user_mode(regs))
10094 		return 0;
10095 
10096 	if (!perf_tp_filter_match(event, data))
10097 		return 0;
10098 
10099 	return 1;
10100 }
10101 
10102 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10103 			       struct trace_event_call *call, u64 count,
10104 			       struct pt_regs *regs, struct hlist_head *head,
10105 			       struct task_struct *task)
10106 {
10107 	if (bpf_prog_array_valid(call)) {
10108 		*(struct pt_regs **)raw_data = regs;
10109 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10110 			perf_swevent_put_recursion_context(rctx);
10111 			return;
10112 		}
10113 	}
10114 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10115 		      rctx, task);
10116 }
10117 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10118 
10119 static void __perf_tp_event_target_task(u64 count, void *record,
10120 					struct pt_regs *regs,
10121 					struct perf_sample_data *data,
10122 					struct perf_event *event)
10123 {
10124 	struct trace_entry *entry = record;
10125 
10126 	if (event->attr.config != entry->type)
10127 		return;
10128 	/* Cannot deliver synchronous signal to other task. */
10129 	if (event->attr.sigtrap)
10130 		return;
10131 	if (perf_tp_event_match(event, data, regs))
10132 		perf_swevent_event(event, count, data, regs);
10133 }
10134 
10135 static void perf_tp_event_target_task(u64 count, void *record,
10136 				      struct pt_regs *regs,
10137 				      struct perf_sample_data *data,
10138 				      struct perf_event_context *ctx)
10139 {
10140 	unsigned int cpu = smp_processor_id();
10141 	struct pmu *pmu = &perf_tracepoint;
10142 	struct perf_event *event, *sibling;
10143 
10144 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10145 		__perf_tp_event_target_task(count, record, regs, data, event);
10146 		for_each_sibling_event(sibling, event)
10147 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10148 	}
10149 
10150 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10151 		__perf_tp_event_target_task(count, record, regs, data, event);
10152 		for_each_sibling_event(sibling, event)
10153 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10154 	}
10155 }
10156 
10157 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10158 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10159 		   struct task_struct *task)
10160 {
10161 	struct perf_sample_data data;
10162 	struct perf_event *event;
10163 
10164 	struct perf_raw_record raw = {
10165 		.frag = {
10166 			.size = entry_size,
10167 			.data = record,
10168 		},
10169 	};
10170 
10171 	perf_sample_data_init(&data, 0, 0);
10172 	perf_sample_save_raw_data(&data, &raw);
10173 
10174 	perf_trace_buf_update(record, event_type);
10175 
10176 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10177 		if (perf_tp_event_match(event, &data, regs)) {
10178 			perf_swevent_event(event, count, &data, regs);
10179 
10180 			/*
10181 			 * Here use the same on-stack perf_sample_data,
10182 			 * some members in data are event-specific and
10183 			 * need to be re-computed for different sweveents.
10184 			 * Re-initialize data->sample_flags safely to avoid
10185 			 * the problem that next event skips preparing data
10186 			 * because data->sample_flags is set.
10187 			 */
10188 			perf_sample_data_init(&data, 0, 0);
10189 			perf_sample_save_raw_data(&data, &raw);
10190 		}
10191 	}
10192 
10193 	/*
10194 	 * If we got specified a target task, also iterate its context and
10195 	 * deliver this event there too.
10196 	 */
10197 	if (task && task != current) {
10198 		struct perf_event_context *ctx;
10199 
10200 		rcu_read_lock();
10201 		ctx = rcu_dereference(task->perf_event_ctxp);
10202 		if (!ctx)
10203 			goto unlock;
10204 
10205 		raw_spin_lock(&ctx->lock);
10206 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10207 		raw_spin_unlock(&ctx->lock);
10208 unlock:
10209 		rcu_read_unlock();
10210 	}
10211 
10212 	perf_swevent_put_recursion_context(rctx);
10213 }
10214 EXPORT_SYMBOL_GPL(perf_tp_event);
10215 
10216 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10217 /*
10218  * Flags in config, used by dynamic PMU kprobe and uprobe
10219  * The flags should match following PMU_FORMAT_ATTR().
10220  *
10221  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10222  *                               if not set, create kprobe/uprobe
10223  *
10224  * The following values specify a reference counter (or semaphore in the
10225  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10226  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10227  *
10228  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10229  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10230  */
10231 enum perf_probe_config {
10232 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10233 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10234 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10235 };
10236 
10237 PMU_FORMAT_ATTR(retprobe, "config:0");
10238 #endif
10239 
10240 #ifdef CONFIG_KPROBE_EVENTS
10241 static struct attribute *kprobe_attrs[] = {
10242 	&format_attr_retprobe.attr,
10243 	NULL,
10244 };
10245 
10246 static struct attribute_group kprobe_format_group = {
10247 	.name = "format",
10248 	.attrs = kprobe_attrs,
10249 };
10250 
10251 static const struct attribute_group *kprobe_attr_groups[] = {
10252 	&kprobe_format_group,
10253 	NULL,
10254 };
10255 
10256 static int perf_kprobe_event_init(struct perf_event *event);
10257 static struct pmu perf_kprobe = {
10258 	.task_ctx_nr	= perf_sw_context,
10259 	.event_init	= perf_kprobe_event_init,
10260 	.add		= perf_trace_add,
10261 	.del		= perf_trace_del,
10262 	.start		= perf_swevent_start,
10263 	.stop		= perf_swevent_stop,
10264 	.read		= perf_swevent_read,
10265 	.attr_groups	= kprobe_attr_groups,
10266 };
10267 
10268 static int perf_kprobe_event_init(struct perf_event *event)
10269 {
10270 	int err;
10271 	bool is_retprobe;
10272 
10273 	if (event->attr.type != perf_kprobe.type)
10274 		return -ENOENT;
10275 
10276 	if (!perfmon_capable())
10277 		return -EACCES;
10278 
10279 	/*
10280 	 * no branch sampling for probe events
10281 	 */
10282 	if (has_branch_stack(event))
10283 		return -EOPNOTSUPP;
10284 
10285 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10286 	err = perf_kprobe_init(event, is_retprobe);
10287 	if (err)
10288 		return err;
10289 
10290 	event->destroy = perf_kprobe_destroy;
10291 
10292 	return 0;
10293 }
10294 #endif /* CONFIG_KPROBE_EVENTS */
10295 
10296 #ifdef CONFIG_UPROBE_EVENTS
10297 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10298 
10299 static struct attribute *uprobe_attrs[] = {
10300 	&format_attr_retprobe.attr,
10301 	&format_attr_ref_ctr_offset.attr,
10302 	NULL,
10303 };
10304 
10305 static struct attribute_group uprobe_format_group = {
10306 	.name = "format",
10307 	.attrs = uprobe_attrs,
10308 };
10309 
10310 static const struct attribute_group *uprobe_attr_groups[] = {
10311 	&uprobe_format_group,
10312 	NULL,
10313 };
10314 
10315 static int perf_uprobe_event_init(struct perf_event *event);
10316 static struct pmu perf_uprobe = {
10317 	.task_ctx_nr	= perf_sw_context,
10318 	.event_init	= perf_uprobe_event_init,
10319 	.add		= perf_trace_add,
10320 	.del		= perf_trace_del,
10321 	.start		= perf_swevent_start,
10322 	.stop		= perf_swevent_stop,
10323 	.read		= perf_swevent_read,
10324 	.attr_groups	= uprobe_attr_groups,
10325 };
10326 
10327 static int perf_uprobe_event_init(struct perf_event *event)
10328 {
10329 	int err;
10330 	unsigned long ref_ctr_offset;
10331 	bool is_retprobe;
10332 
10333 	if (event->attr.type != perf_uprobe.type)
10334 		return -ENOENT;
10335 
10336 	if (!perfmon_capable())
10337 		return -EACCES;
10338 
10339 	/*
10340 	 * no branch sampling for probe events
10341 	 */
10342 	if (has_branch_stack(event))
10343 		return -EOPNOTSUPP;
10344 
10345 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10346 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10347 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10348 	if (err)
10349 		return err;
10350 
10351 	event->destroy = perf_uprobe_destroy;
10352 
10353 	return 0;
10354 }
10355 #endif /* CONFIG_UPROBE_EVENTS */
10356 
10357 static inline void perf_tp_register(void)
10358 {
10359 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10360 #ifdef CONFIG_KPROBE_EVENTS
10361 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10362 #endif
10363 #ifdef CONFIG_UPROBE_EVENTS
10364 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10365 #endif
10366 }
10367 
10368 static void perf_event_free_filter(struct perf_event *event)
10369 {
10370 	ftrace_profile_free_filter(event);
10371 }
10372 
10373 #ifdef CONFIG_BPF_SYSCALL
10374 static void bpf_overflow_handler(struct perf_event *event,
10375 				 struct perf_sample_data *data,
10376 				 struct pt_regs *regs)
10377 {
10378 	struct bpf_perf_event_data_kern ctx = {
10379 		.data = data,
10380 		.event = event,
10381 	};
10382 	struct bpf_prog *prog;
10383 	int ret = 0;
10384 
10385 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10386 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10387 		goto out;
10388 	rcu_read_lock();
10389 	prog = READ_ONCE(event->prog);
10390 	if (prog) {
10391 		perf_prepare_sample(data, event, regs);
10392 		ret = bpf_prog_run(prog, &ctx);
10393 	}
10394 	rcu_read_unlock();
10395 out:
10396 	__this_cpu_dec(bpf_prog_active);
10397 	if (!ret)
10398 		return;
10399 
10400 	event->orig_overflow_handler(event, data, regs);
10401 }
10402 
10403 static int perf_event_set_bpf_handler(struct perf_event *event,
10404 				      struct bpf_prog *prog,
10405 				      u64 bpf_cookie)
10406 {
10407 	if (event->overflow_handler_context)
10408 		/* hw breakpoint or kernel counter */
10409 		return -EINVAL;
10410 
10411 	if (event->prog)
10412 		return -EEXIST;
10413 
10414 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10415 		return -EINVAL;
10416 
10417 	if (event->attr.precise_ip &&
10418 	    prog->call_get_stack &&
10419 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10420 	     event->attr.exclude_callchain_kernel ||
10421 	     event->attr.exclude_callchain_user)) {
10422 		/*
10423 		 * On perf_event with precise_ip, calling bpf_get_stack()
10424 		 * may trigger unwinder warnings and occasional crashes.
10425 		 * bpf_get_[stack|stackid] works around this issue by using
10426 		 * callchain attached to perf_sample_data. If the
10427 		 * perf_event does not full (kernel and user) callchain
10428 		 * attached to perf_sample_data, do not allow attaching BPF
10429 		 * program that calls bpf_get_[stack|stackid].
10430 		 */
10431 		return -EPROTO;
10432 	}
10433 
10434 	event->prog = prog;
10435 	event->bpf_cookie = bpf_cookie;
10436 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10437 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10438 	return 0;
10439 }
10440 
10441 static void perf_event_free_bpf_handler(struct perf_event *event)
10442 {
10443 	struct bpf_prog *prog = event->prog;
10444 
10445 	if (!prog)
10446 		return;
10447 
10448 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10449 	event->prog = NULL;
10450 	bpf_prog_put(prog);
10451 }
10452 #else
10453 static int perf_event_set_bpf_handler(struct perf_event *event,
10454 				      struct bpf_prog *prog,
10455 				      u64 bpf_cookie)
10456 {
10457 	return -EOPNOTSUPP;
10458 }
10459 static void perf_event_free_bpf_handler(struct perf_event *event)
10460 {
10461 }
10462 #endif
10463 
10464 /*
10465  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10466  * with perf_event_open()
10467  */
10468 static inline bool perf_event_is_tracing(struct perf_event *event)
10469 {
10470 	if (event->pmu == &perf_tracepoint)
10471 		return true;
10472 #ifdef CONFIG_KPROBE_EVENTS
10473 	if (event->pmu == &perf_kprobe)
10474 		return true;
10475 #endif
10476 #ifdef CONFIG_UPROBE_EVENTS
10477 	if (event->pmu == &perf_uprobe)
10478 		return true;
10479 #endif
10480 	return false;
10481 }
10482 
10483 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10484 			    u64 bpf_cookie)
10485 {
10486 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10487 
10488 	if (!perf_event_is_tracing(event))
10489 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10490 
10491 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10492 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10493 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10494 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10495 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10496 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10497 		return -EINVAL;
10498 
10499 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10500 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10501 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10502 		return -EINVAL;
10503 
10504 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10505 		/* only uprobe programs are allowed to be sleepable */
10506 		return -EINVAL;
10507 
10508 	/* Kprobe override only works for kprobes, not uprobes. */
10509 	if (prog->kprobe_override && !is_kprobe)
10510 		return -EINVAL;
10511 
10512 	if (is_tracepoint || is_syscall_tp) {
10513 		int off = trace_event_get_offsets(event->tp_event);
10514 
10515 		if (prog->aux->max_ctx_offset > off)
10516 			return -EACCES;
10517 	}
10518 
10519 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10520 }
10521 
10522 void perf_event_free_bpf_prog(struct perf_event *event)
10523 {
10524 	if (!perf_event_is_tracing(event)) {
10525 		perf_event_free_bpf_handler(event);
10526 		return;
10527 	}
10528 	perf_event_detach_bpf_prog(event);
10529 }
10530 
10531 #else
10532 
10533 static inline void perf_tp_register(void)
10534 {
10535 }
10536 
10537 static void perf_event_free_filter(struct perf_event *event)
10538 {
10539 }
10540 
10541 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10542 			    u64 bpf_cookie)
10543 {
10544 	return -ENOENT;
10545 }
10546 
10547 void perf_event_free_bpf_prog(struct perf_event *event)
10548 {
10549 }
10550 #endif /* CONFIG_EVENT_TRACING */
10551 
10552 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10553 void perf_bp_event(struct perf_event *bp, void *data)
10554 {
10555 	struct perf_sample_data sample;
10556 	struct pt_regs *regs = data;
10557 
10558 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10559 
10560 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10561 		perf_swevent_event(bp, 1, &sample, regs);
10562 }
10563 #endif
10564 
10565 /*
10566  * Allocate a new address filter
10567  */
10568 static struct perf_addr_filter *
10569 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10570 {
10571 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10572 	struct perf_addr_filter *filter;
10573 
10574 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10575 	if (!filter)
10576 		return NULL;
10577 
10578 	INIT_LIST_HEAD(&filter->entry);
10579 	list_add_tail(&filter->entry, filters);
10580 
10581 	return filter;
10582 }
10583 
10584 static void free_filters_list(struct list_head *filters)
10585 {
10586 	struct perf_addr_filter *filter, *iter;
10587 
10588 	list_for_each_entry_safe(filter, iter, filters, entry) {
10589 		path_put(&filter->path);
10590 		list_del(&filter->entry);
10591 		kfree(filter);
10592 	}
10593 }
10594 
10595 /*
10596  * Free existing address filters and optionally install new ones
10597  */
10598 static void perf_addr_filters_splice(struct perf_event *event,
10599 				     struct list_head *head)
10600 {
10601 	unsigned long flags;
10602 	LIST_HEAD(list);
10603 
10604 	if (!has_addr_filter(event))
10605 		return;
10606 
10607 	/* don't bother with children, they don't have their own filters */
10608 	if (event->parent)
10609 		return;
10610 
10611 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10612 
10613 	list_splice_init(&event->addr_filters.list, &list);
10614 	if (head)
10615 		list_splice(head, &event->addr_filters.list);
10616 
10617 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10618 
10619 	free_filters_list(&list);
10620 }
10621 
10622 /*
10623  * Scan through mm's vmas and see if one of them matches the
10624  * @filter; if so, adjust filter's address range.
10625  * Called with mm::mmap_lock down for reading.
10626  */
10627 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10628 				   struct mm_struct *mm,
10629 				   struct perf_addr_filter_range *fr)
10630 {
10631 	struct vm_area_struct *vma;
10632 	VMA_ITERATOR(vmi, mm, 0);
10633 
10634 	for_each_vma(vmi, vma) {
10635 		if (!vma->vm_file)
10636 			continue;
10637 
10638 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10639 			return;
10640 	}
10641 }
10642 
10643 /*
10644  * Update event's address range filters based on the
10645  * task's existing mappings, if any.
10646  */
10647 static void perf_event_addr_filters_apply(struct perf_event *event)
10648 {
10649 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10650 	struct task_struct *task = READ_ONCE(event->ctx->task);
10651 	struct perf_addr_filter *filter;
10652 	struct mm_struct *mm = NULL;
10653 	unsigned int count = 0;
10654 	unsigned long flags;
10655 
10656 	/*
10657 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10658 	 * will stop on the parent's child_mutex that our caller is also holding
10659 	 */
10660 	if (task == TASK_TOMBSTONE)
10661 		return;
10662 
10663 	if (ifh->nr_file_filters) {
10664 		mm = get_task_mm(task);
10665 		if (!mm)
10666 			goto restart;
10667 
10668 		mmap_read_lock(mm);
10669 	}
10670 
10671 	raw_spin_lock_irqsave(&ifh->lock, flags);
10672 	list_for_each_entry(filter, &ifh->list, entry) {
10673 		if (filter->path.dentry) {
10674 			/*
10675 			 * Adjust base offset if the filter is associated to a
10676 			 * binary that needs to be mapped:
10677 			 */
10678 			event->addr_filter_ranges[count].start = 0;
10679 			event->addr_filter_ranges[count].size = 0;
10680 
10681 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10682 		} else {
10683 			event->addr_filter_ranges[count].start = filter->offset;
10684 			event->addr_filter_ranges[count].size  = filter->size;
10685 		}
10686 
10687 		count++;
10688 	}
10689 
10690 	event->addr_filters_gen++;
10691 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10692 
10693 	if (ifh->nr_file_filters) {
10694 		mmap_read_unlock(mm);
10695 
10696 		mmput(mm);
10697 	}
10698 
10699 restart:
10700 	perf_event_stop(event, 1);
10701 }
10702 
10703 /*
10704  * Address range filtering: limiting the data to certain
10705  * instruction address ranges. Filters are ioctl()ed to us from
10706  * userspace as ascii strings.
10707  *
10708  * Filter string format:
10709  *
10710  * ACTION RANGE_SPEC
10711  * where ACTION is one of the
10712  *  * "filter": limit the trace to this region
10713  *  * "start": start tracing from this address
10714  *  * "stop": stop tracing at this address/region;
10715  * RANGE_SPEC is
10716  *  * for kernel addresses: <start address>[/<size>]
10717  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10718  *
10719  * if <size> is not specified or is zero, the range is treated as a single
10720  * address; not valid for ACTION=="filter".
10721  */
10722 enum {
10723 	IF_ACT_NONE = -1,
10724 	IF_ACT_FILTER,
10725 	IF_ACT_START,
10726 	IF_ACT_STOP,
10727 	IF_SRC_FILE,
10728 	IF_SRC_KERNEL,
10729 	IF_SRC_FILEADDR,
10730 	IF_SRC_KERNELADDR,
10731 };
10732 
10733 enum {
10734 	IF_STATE_ACTION = 0,
10735 	IF_STATE_SOURCE,
10736 	IF_STATE_END,
10737 };
10738 
10739 static const match_table_t if_tokens = {
10740 	{ IF_ACT_FILTER,	"filter" },
10741 	{ IF_ACT_START,		"start" },
10742 	{ IF_ACT_STOP,		"stop" },
10743 	{ IF_SRC_FILE,		"%u/%u@%s" },
10744 	{ IF_SRC_KERNEL,	"%u/%u" },
10745 	{ IF_SRC_FILEADDR,	"%u@%s" },
10746 	{ IF_SRC_KERNELADDR,	"%u" },
10747 	{ IF_ACT_NONE,		NULL },
10748 };
10749 
10750 /*
10751  * Address filter string parser
10752  */
10753 static int
10754 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10755 			     struct list_head *filters)
10756 {
10757 	struct perf_addr_filter *filter = NULL;
10758 	char *start, *orig, *filename = NULL;
10759 	substring_t args[MAX_OPT_ARGS];
10760 	int state = IF_STATE_ACTION, token;
10761 	unsigned int kernel = 0;
10762 	int ret = -EINVAL;
10763 
10764 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10765 	if (!fstr)
10766 		return -ENOMEM;
10767 
10768 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10769 		static const enum perf_addr_filter_action_t actions[] = {
10770 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10771 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10772 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10773 		};
10774 		ret = -EINVAL;
10775 
10776 		if (!*start)
10777 			continue;
10778 
10779 		/* filter definition begins */
10780 		if (state == IF_STATE_ACTION) {
10781 			filter = perf_addr_filter_new(event, filters);
10782 			if (!filter)
10783 				goto fail;
10784 		}
10785 
10786 		token = match_token(start, if_tokens, args);
10787 		switch (token) {
10788 		case IF_ACT_FILTER:
10789 		case IF_ACT_START:
10790 		case IF_ACT_STOP:
10791 			if (state != IF_STATE_ACTION)
10792 				goto fail;
10793 
10794 			filter->action = actions[token];
10795 			state = IF_STATE_SOURCE;
10796 			break;
10797 
10798 		case IF_SRC_KERNELADDR:
10799 		case IF_SRC_KERNEL:
10800 			kernel = 1;
10801 			fallthrough;
10802 
10803 		case IF_SRC_FILEADDR:
10804 		case IF_SRC_FILE:
10805 			if (state != IF_STATE_SOURCE)
10806 				goto fail;
10807 
10808 			*args[0].to = 0;
10809 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10810 			if (ret)
10811 				goto fail;
10812 
10813 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10814 				*args[1].to = 0;
10815 				ret = kstrtoul(args[1].from, 0, &filter->size);
10816 				if (ret)
10817 					goto fail;
10818 			}
10819 
10820 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10821 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10822 
10823 				kfree(filename);
10824 				filename = match_strdup(&args[fpos]);
10825 				if (!filename) {
10826 					ret = -ENOMEM;
10827 					goto fail;
10828 				}
10829 			}
10830 
10831 			state = IF_STATE_END;
10832 			break;
10833 
10834 		default:
10835 			goto fail;
10836 		}
10837 
10838 		/*
10839 		 * Filter definition is fully parsed, validate and install it.
10840 		 * Make sure that it doesn't contradict itself or the event's
10841 		 * attribute.
10842 		 */
10843 		if (state == IF_STATE_END) {
10844 			ret = -EINVAL;
10845 
10846 			/*
10847 			 * ACTION "filter" must have a non-zero length region
10848 			 * specified.
10849 			 */
10850 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10851 			    !filter->size)
10852 				goto fail;
10853 
10854 			if (!kernel) {
10855 				if (!filename)
10856 					goto fail;
10857 
10858 				/*
10859 				 * For now, we only support file-based filters
10860 				 * in per-task events; doing so for CPU-wide
10861 				 * events requires additional context switching
10862 				 * trickery, since same object code will be
10863 				 * mapped at different virtual addresses in
10864 				 * different processes.
10865 				 */
10866 				ret = -EOPNOTSUPP;
10867 				if (!event->ctx->task)
10868 					goto fail;
10869 
10870 				/* look up the path and grab its inode */
10871 				ret = kern_path(filename, LOOKUP_FOLLOW,
10872 						&filter->path);
10873 				if (ret)
10874 					goto fail;
10875 
10876 				ret = -EINVAL;
10877 				if (!filter->path.dentry ||
10878 				    !S_ISREG(d_inode(filter->path.dentry)
10879 					     ->i_mode))
10880 					goto fail;
10881 
10882 				event->addr_filters.nr_file_filters++;
10883 			}
10884 
10885 			/* ready to consume more filters */
10886 			kfree(filename);
10887 			filename = NULL;
10888 			state = IF_STATE_ACTION;
10889 			filter = NULL;
10890 			kernel = 0;
10891 		}
10892 	}
10893 
10894 	if (state != IF_STATE_ACTION)
10895 		goto fail;
10896 
10897 	kfree(filename);
10898 	kfree(orig);
10899 
10900 	return 0;
10901 
10902 fail:
10903 	kfree(filename);
10904 	free_filters_list(filters);
10905 	kfree(orig);
10906 
10907 	return ret;
10908 }
10909 
10910 static int
10911 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10912 {
10913 	LIST_HEAD(filters);
10914 	int ret;
10915 
10916 	/*
10917 	 * Since this is called in perf_ioctl() path, we're already holding
10918 	 * ctx::mutex.
10919 	 */
10920 	lockdep_assert_held(&event->ctx->mutex);
10921 
10922 	if (WARN_ON_ONCE(event->parent))
10923 		return -EINVAL;
10924 
10925 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10926 	if (ret)
10927 		goto fail_clear_files;
10928 
10929 	ret = event->pmu->addr_filters_validate(&filters);
10930 	if (ret)
10931 		goto fail_free_filters;
10932 
10933 	/* remove existing filters, if any */
10934 	perf_addr_filters_splice(event, &filters);
10935 
10936 	/* install new filters */
10937 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10938 
10939 	return ret;
10940 
10941 fail_free_filters:
10942 	free_filters_list(&filters);
10943 
10944 fail_clear_files:
10945 	event->addr_filters.nr_file_filters = 0;
10946 
10947 	return ret;
10948 }
10949 
10950 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10951 {
10952 	int ret = -EINVAL;
10953 	char *filter_str;
10954 
10955 	filter_str = strndup_user(arg, PAGE_SIZE);
10956 	if (IS_ERR(filter_str))
10957 		return PTR_ERR(filter_str);
10958 
10959 #ifdef CONFIG_EVENT_TRACING
10960 	if (perf_event_is_tracing(event)) {
10961 		struct perf_event_context *ctx = event->ctx;
10962 
10963 		/*
10964 		 * Beware, here be dragons!!
10965 		 *
10966 		 * the tracepoint muck will deadlock against ctx->mutex, but
10967 		 * the tracepoint stuff does not actually need it. So
10968 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10969 		 * already have a reference on ctx.
10970 		 *
10971 		 * This can result in event getting moved to a different ctx,
10972 		 * but that does not affect the tracepoint state.
10973 		 */
10974 		mutex_unlock(&ctx->mutex);
10975 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10976 		mutex_lock(&ctx->mutex);
10977 	} else
10978 #endif
10979 	if (has_addr_filter(event))
10980 		ret = perf_event_set_addr_filter(event, filter_str);
10981 
10982 	kfree(filter_str);
10983 	return ret;
10984 }
10985 
10986 /*
10987  * hrtimer based swevent callback
10988  */
10989 
10990 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10991 {
10992 	enum hrtimer_restart ret = HRTIMER_RESTART;
10993 	struct perf_sample_data data;
10994 	struct pt_regs *regs;
10995 	struct perf_event *event;
10996 	u64 period;
10997 
10998 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10999 
11000 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11001 		return HRTIMER_NORESTART;
11002 
11003 	event->pmu->read(event);
11004 
11005 	perf_sample_data_init(&data, 0, event->hw.last_period);
11006 	regs = get_irq_regs();
11007 
11008 	if (regs && !perf_exclude_event(event, regs)) {
11009 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11010 			if (__perf_event_overflow(event, 1, &data, regs))
11011 				ret = HRTIMER_NORESTART;
11012 	}
11013 
11014 	period = max_t(u64, 10000, event->hw.sample_period);
11015 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11016 
11017 	return ret;
11018 }
11019 
11020 static void perf_swevent_start_hrtimer(struct perf_event *event)
11021 {
11022 	struct hw_perf_event *hwc = &event->hw;
11023 	s64 period;
11024 
11025 	if (!is_sampling_event(event))
11026 		return;
11027 
11028 	period = local64_read(&hwc->period_left);
11029 	if (period) {
11030 		if (period < 0)
11031 			period = 10000;
11032 
11033 		local64_set(&hwc->period_left, 0);
11034 	} else {
11035 		period = max_t(u64, 10000, hwc->sample_period);
11036 	}
11037 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11038 		      HRTIMER_MODE_REL_PINNED_HARD);
11039 }
11040 
11041 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11042 {
11043 	struct hw_perf_event *hwc = &event->hw;
11044 
11045 	if (is_sampling_event(event)) {
11046 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11047 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11048 
11049 		hrtimer_cancel(&hwc->hrtimer);
11050 	}
11051 }
11052 
11053 static void perf_swevent_init_hrtimer(struct perf_event *event)
11054 {
11055 	struct hw_perf_event *hwc = &event->hw;
11056 
11057 	if (!is_sampling_event(event))
11058 		return;
11059 
11060 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11061 	hwc->hrtimer.function = perf_swevent_hrtimer;
11062 
11063 	/*
11064 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11065 	 * mapping and avoid the whole period adjust feedback stuff.
11066 	 */
11067 	if (event->attr.freq) {
11068 		long freq = event->attr.sample_freq;
11069 
11070 		event->attr.sample_period = NSEC_PER_SEC / freq;
11071 		hwc->sample_period = event->attr.sample_period;
11072 		local64_set(&hwc->period_left, hwc->sample_period);
11073 		hwc->last_period = hwc->sample_period;
11074 		event->attr.freq = 0;
11075 	}
11076 }
11077 
11078 /*
11079  * Software event: cpu wall time clock
11080  */
11081 
11082 static void cpu_clock_event_update(struct perf_event *event)
11083 {
11084 	s64 prev;
11085 	u64 now;
11086 
11087 	now = local_clock();
11088 	prev = local64_xchg(&event->hw.prev_count, now);
11089 	local64_add(now - prev, &event->count);
11090 }
11091 
11092 static void cpu_clock_event_start(struct perf_event *event, int flags)
11093 {
11094 	local64_set(&event->hw.prev_count, local_clock());
11095 	perf_swevent_start_hrtimer(event);
11096 }
11097 
11098 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11099 {
11100 	perf_swevent_cancel_hrtimer(event);
11101 	cpu_clock_event_update(event);
11102 }
11103 
11104 static int cpu_clock_event_add(struct perf_event *event, int flags)
11105 {
11106 	if (flags & PERF_EF_START)
11107 		cpu_clock_event_start(event, flags);
11108 	perf_event_update_userpage(event);
11109 
11110 	return 0;
11111 }
11112 
11113 static void cpu_clock_event_del(struct perf_event *event, int flags)
11114 {
11115 	cpu_clock_event_stop(event, flags);
11116 }
11117 
11118 static void cpu_clock_event_read(struct perf_event *event)
11119 {
11120 	cpu_clock_event_update(event);
11121 }
11122 
11123 static int cpu_clock_event_init(struct perf_event *event)
11124 {
11125 	if (event->attr.type != perf_cpu_clock.type)
11126 		return -ENOENT;
11127 
11128 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11129 		return -ENOENT;
11130 
11131 	/*
11132 	 * no branch sampling for software events
11133 	 */
11134 	if (has_branch_stack(event))
11135 		return -EOPNOTSUPP;
11136 
11137 	perf_swevent_init_hrtimer(event);
11138 
11139 	return 0;
11140 }
11141 
11142 static struct pmu perf_cpu_clock = {
11143 	.task_ctx_nr	= perf_sw_context,
11144 
11145 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11146 	.dev		= PMU_NULL_DEV,
11147 
11148 	.event_init	= cpu_clock_event_init,
11149 	.add		= cpu_clock_event_add,
11150 	.del		= cpu_clock_event_del,
11151 	.start		= cpu_clock_event_start,
11152 	.stop		= cpu_clock_event_stop,
11153 	.read		= cpu_clock_event_read,
11154 };
11155 
11156 /*
11157  * Software event: task time clock
11158  */
11159 
11160 static void task_clock_event_update(struct perf_event *event, u64 now)
11161 {
11162 	u64 prev;
11163 	s64 delta;
11164 
11165 	prev = local64_xchg(&event->hw.prev_count, now);
11166 	delta = now - prev;
11167 	local64_add(delta, &event->count);
11168 }
11169 
11170 static void task_clock_event_start(struct perf_event *event, int flags)
11171 {
11172 	local64_set(&event->hw.prev_count, event->ctx->time);
11173 	perf_swevent_start_hrtimer(event);
11174 }
11175 
11176 static void task_clock_event_stop(struct perf_event *event, int flags)
11177 {
11178 	perf_swevent_cancel_hrtimer(event);
11179 	task_clock_event_update(event, event->ctx->time);
11180 }
11181 
11182 static int task_clock_event_add(struct perf_event *event, int flags)
11183 {
11184 	if (flags & PERF_EF_START)
11185 		task_clock_event_start(event, flags);
11186 	perf_event_update_userpage(event);
11187 
11188 	return 0;
11189 }
11190 
11191 static void task_clock_event_del(struct perf_event *event, int flags)
11192 {
11193 	task_clock_event_stop(event, PERF_EF_UPDATE);
11194 }
11195 
11196 static void task_clock_event_read(struct perf_event *event)
11197 {
11198 	u64 now = perf_clock();
11199 	u64 delta = now - event->ctx->timestamp;
11200 	u64 time = event->ctx->time + delta;
11201 
11202 	task_clock_event_update(event, time);
11203 }
11204 
11205 static int task_clock_event_init(struct perf_event *event)
11206 {
11207 	if (event->attr.type != perf_task_clock.type)
11208 		return -ENOENT;
11209 
11210 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11211 		return -ENOENT;
11212 
11213 	/*
11214 	 * no branch sampling for software events
11215 	 */
11216 	if (has_branch_stack(event))
11217 		return -EOPNOTSUPP;
11218 
11219 	perf_swevent_init_hrtimer(event);
11220 
11221 	return 0;
11222 }
11223 
11224 static struct pmu perf_task_clock = {
11225 	.task_ctx_nr	= perf_sw_context,
11226 
11227 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11228 	.dev		= PMU_NULL_DEV,
11229 
11230 	.event_init	= task_clock_event_init,
11231 	.add		= task_clock_event_add,
11232 	.del		= task_clock_event_del,
11233 	.start		= task_clock_event_start,
11234 	.stop		= task_clock_event_stop,
11235 	.read		= task_clock_event_read,
11236 };
11237 
11238 static void perf_pmu_nop_void(struct pmu *pmu)
11239 {
11240 }
11241 
11242 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11243 {
11244 }
11245 
11246 static int perf_pmu_nop_int(struct pmu *pmu)
11247 {
11248 	return 0;
11249 }
11250 
11251 static int perf_event_nop_int(struct perf_event *event, u64 value)
11252 {
11253 	return 0;
11254 }
11255 
11256 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11257 
11258 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11259 {
11260 	__this_cpu_write(nop_txn_flags, flags);
11261 
11262 	if (flags & ~PERF_PMU_TXN_ADD)
11263 		return;
11264 
11265 	perf_pmu_disable(pmu);
11266 }
11267 
11268 static int perf_pmu_commit_txn(struct pmu *pmu)
11269 {
11270 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11271 
11272 	__this_cpu_write(nop_txn_flags, 0);
11273 
11274 	if (flags & ~PERF_PMU_TXN_ADD)
11275 		return 0;
11276 
11277 	perf_pmu_enable(pmu);
11278 	return 0;
11279 }
11280 
11281 static void perf_pmu_cancel_txn(struct pmu *pmu)
11282 {
11283 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11284 
11285 	__this_cpu_write(nop_txn_flags, 0);
11286 
11287 	if (flags & ~PERF_PMU_TXN_ADD)
11288 		return;
11289 
11290 	perf_pmu_enable(pmu);
11291 }
11292 
11293 static int perf_event_idx_default(struct perf_event *event)
11294 {
11295 	return 0;
11296 }
11297 
11298 static void free_pmu_context(struct pmu *pmu)
11299 {
11300 	free_percpu(pmu->cpu_pmu_context);
11301 }
11302 
11303 /*
11304  * Let userspace know that this PMU supports address range filtering:
11305  */
11306 static ssize_t nr_addr_filters_show(struct device *dev,
11307 				    struct device_attribute *attr,
11308 				    char *page)
11309 {
11310 	struct pmu *pmu = dev_get_drvdata(dev);
11311 
11312 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11313 }
11314 DEVICE_ATTR_RO(nr_addr_filters);
11315 
11316 static struct idr pmu_idr;
11317 
11318 static ssize_t
11319 type_show(struct device *dev, struct device_attribute *attr, char *page)
11320 {
11321 	struct pmu *pmu = dev_get_drvdata(dev);
11322 
11323 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11324 }
11325 static DEVICE_ATTR_RO(type);
11326 
11327 static ssize_t
11328 perf_event_mux_interval_ms_show(struct device *dev,
11329 				struct device_attribute *attr,
11330 				char *page)
11331 {
11332 	struct pmu *pmu = dev_get_drvdata(dev);
11333 
11334 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11335 }
11336 
11337 static DEFINE_MUTEX(mux_interval_mutex);
11338 
11339 static ssize_t
11340 perf_event_mux_interval_ms_store(struct device *dev,
11341 				 struct device_attribute *attr,
11342 				 const char *buf, size_t count)
11343 {
11344 	struct pmu *pmu = dev_get_drvdata(dev);
11345 	int timer, cpu, ret;
11346 
11347 	ret = kstrtoint(buf, 0, &timer);
11348 	if (ret)
11349 		return ret;
11350 
11351 	if (timer < 1)
11352 		return -EINVAL;
11353 
11354 	/* same value, noting to do */
11355 	if (timer == pmu->hrtimer_interval_ms)
11356 		return count;
11357 
11358 	mutex_lock(&mux_interval_mutex);
11359 	pmu->hrtimer_interval_ms = timer;
11360 
11361 	/* update all cpuctx for this PMU */
11362 	cpus_read_lock();
11363 	for_each_online_cpu(cpu) {
11364 		struct perf_cpu_pmu_context *cpc;
11365 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11366 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11367 
11368 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11369 	}
11370 	cpus_read_unlock();
11371 	mutex_unlock(&mux_interval_mutex);
11372 
11373 	return count;
11374 }
11375 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11376 
11377 static struct attribute *pmu_dev_attrs[] = {
11378 	&dev_attr_type.attr,
11379 	&dev_attr_perf_event_mux_interval_ms.attr,
11380 	NULL,
11381 };
11382 ATTRIBUTE_GROUPS(pmu_dev);
11383 
11384 static int pmu_bus_running;
11385 static struct bus_type pmu_bus = {
11386 	.name		= "event_source",
11387 	.dev_groups	= pmu_dev_groups,
11388 };
11389 
11390 static void pmu_dev_release(struct device *dev)
11391 {
11392 	kfree(dev);
11393 }
11394 
11395 static int pmu_dev_alloc(struct pmu *pmu)
11396 {
11397 	int ret = -ENOMEM;
11398 
11399 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11400 	if (!pmu->dev)
11401 		goto out;
11402 
11403 	pmu->dev->groups = pmu->attr_groups;
11404 	device_initialize(pmu->dev);
11405 
11406 	dev_set_drvdata(pmu->dev, pmu);
11407 	pmu->dev->bus = &pmu_bus;
11408 	pmu->dev->parent = pmu->parent;
11409 	pmu->dev->release = pmu_dev_release;
11410 
11411 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11412 	if (ret)
11413 		goto free_dev;
11414 
11415 	ret = device_add(pmu->dev);
11416 	if (ret)
11417 		goto free_dev;
11418 
11419 	/* For PMUs with address filters, throw in an extra attribute: */
11420 	if (pmu->nr_addr_filters)
11421 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11422 
11423 	if (ret)
11424 		goto del_dev;
11425 
11426 	if (pmu->attr_update)
11427 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11428 
11429 	if (ret)
11430 		goto del_dev;
11431 
11432 out:
11433 	return ret;
11434 
11435 del_dev:
11436 	device_del(pmu->dev);
11437 
11438 free_dev:
11439 	put_device(pmu->dev);
11440 	goto out;
11441 }
11442 
11443 static struct lock_class_key cpuctx_mutex;
11444 static struct lock_class_key cpuctx_lock;
11445 
11446 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11447 {
11448 	int cpu, ret, max = PERF_TYPE_MAX;
11449 
11450 	mutex_lock(&pmus_lock);
11451 	ret = -ENOMEM;
11452 	pmu->pmu_disable_count = alloc_percpu(int);
11453 	if (!pmu->pmu_disable_count)
11454 		goto unlock;
11455 
11456 	pmu->type = -1;
11457 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11458 		ret = -EINVAL;
11459 		goto free_pdc;
11460 	}
11461 
11462 	pmu->name = name;
11463 
11464 	if (type >= 0)
11465 		max = type;
11466 
11467 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11468 	if (ret < 0)
11469 		goto free_pdc;
11470 
11471 	WARN_ON(type >= 0 && ret != type);
11472 
11473 	type = ret;
11474 	pmu->type = type;
11475 
11476 	if (pmu_bus_running && !pmu->dev) {
11477 		ret = pmu_dev_alloc(pmu);
11478 		if (ret)
11479 			goto free_idr;
11480 	}
11481 
11482 	ret = -ENOMEM;
11483 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11484 	if (!pmu->cpu_pmu_context)
11485 		goto free_dev;
11486 
11487 	for_each_possible_cpu(cpu) {
11488 		struct perf_cpu_pmu_context *cpc;
11489 
11490 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11491 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11492 		__perf_mux_hrtimer_init(cpc, cpu);
11493 	}
11494 
11495 	if (!pmu->start_txn) {
11496 		if (pmu->pmu_enable) {
11497 			/*
11498 			 * If we have pmu_enable/pmu_disable calls, install
11499 			 * transaction stubs that use that to try and batch
11500 			 * hardware accesses.
11501 			 */
11502 			pmu->start_txn  = perf_pmu_start_txn;
11503 			pmu->commit_txn = perf_pmu_commit_txn;
11504 			pmu->cancel_txn = perf_pmu_cancel_txn;
11505 		} else {
11506 			pmu->start_txn  = perf_pmu_nop_txn;
11507 			pmu->commit_txn = perf_pmu_nop_int;
11508 			pmu->cancel_txn = perf_pmu_nop_void;
11509 		}
11510 	}
11511 
11512 	if (!pmu->pmu_enable) {
11513 		pmu->pmu_enable  = perf_pmu_nop_void;
11514 		pmu->pmu_disable = perf_pmu_nop_void;
11515 	}
11516 
11517 	if (!pmu->check_period)
11518 		pmu->check_period = perf_event_nop_int;
11519 
11520 	if (!pmu->event_idx)
11521 		pmu->event_idx = perf_event_idx_default;
11522 
11523 	list_add_rcu(&pmu->entry, &pmus);
11524 	atomic_set(&pmu->exclusive_cnt, 0);
11525 	ret = 0;
11526 unlock:
11527 	mutex_unlock(&pmus_lock);
11528 
11529 	return ret;
11530 
11531 free_dev:
11532 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11533 		device_del(pmu->dev);
11534 		put_device(pmu->dev);
11535 	}
11536 
11537 free_idr:
11538 	idr_remove(&pmu_idr, pmu->type);
11539 
11540 free_pdc:
11541 	free_percpu(pmu->pmu_disable_count);
11542 	goto unlock;
11543 }
11544 EXPORT_SYMBOL_GPL(perf_pmu_register);
11545 
11546 void perf_pmu_unregister(struct pmu *pmu)
11547 {
11548 	mutex_lock(&pmus_lock);
11549 	list_del_rcu(&pmu->entry);
11550 
11551 	/*
11552 	 * We dereference the pmu list under both SRCU and regular RCU, so
11553 	 * synchronize against both of those.
11554 	 */
11555 	synchronize_srcu(&pmus_srcu);
11556 	synchronize_rcu();
11557 
11558 	free_percpu(pmu->pmu_disable_count);
11559 	idr_remove(&pmu_idr, pmu->type);
11560 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11561 		if (pmu->nr_addr_filters)
11562 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11563 		device_del(pmu->dev);
11564 		put_device(pmu->dev);
11565 	}
11566 	free_pmu_context(pmu);
11567 	mutex_unlock(&pmus_lock);
11568 }
11569 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11570 
11571 static inline bool has_extended_regs(struct perf_event *event)
11572 {
11573 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11574 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11575 }
11576 
11577 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11578 {
11579 	struct perf_event_context *ctx = NULL;
11580 	int ret;
11581 
11582 	if (!try_module_get(pmu->module))
11583 		return -ENODEV;
11584 
11585 	/*
11586 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11587 	 * for example, validate if the group fits on the PMU. Therefore,
11588 	 * if this is a sibling event, acquire the ctx->mutex to protect
11589 	 * the sibling_list.
11590 	 */
11591 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11592 		/*
11593 		 * This ctx->mutex can nest when we're called through
11594 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11595 		 */
11596 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11597 						 SINGLE_DEPTH_NESTING);
11598 		BUG_ON(!ctx);
11599 	}
11600 
11601 	event->pmu = pmu;
11602 	ret = pmu->event_init(event);
11603 
11604 	if (ctx)
11605 		perf_event_ctx_unlock(event->group_leader, ctx);
11606 
11607 	if (!ret) {
11608 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11609 		    has_extended_regs(event))
11610 			ret = -EOPNOTSUPP;
11611 
11612 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11613 		    event_has_any_exclude_flag(event))
11614 			ret = -EINVAL;
11615 
11616 		if (ret && event->destroy)
11617 			event->destroy(event);
11618 	}
11619 
11620 	if (ret)
11621 		module_put(pmu->module);
11622 
11623 	return ret;
11624 }
11625 
11626 static struct pmu *perf_init_event(struct perf_event *event)
11627 {
11628 	bool extended_type = false;
11629 	int idx, type, ret;
11630 	struct pmu *pmu;
11631 
11632 	idx = srcu_read_lock(&pmus_srcu);
11633 
11634 	/*
11635 	 * Save original type before calling pmu->event_init() since certain
11636 	 * pmus overwrites event->attr.type to forward event to another pmu.
11637 	 */
11638 	event->orig_type = event->attr.type;
11639 
11640 	/* Try parent's PMU first: */
11641 	if (event->parent && event->parent->pmu) {
11642 		pmu = event->parent->pmu;
11643 		ret = perf_try_init_event(pmu, event);
11644 		if (!ret)
11645 			goto unlock;
11646 	}
11647 
11648 	/*
11649 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11650 	 * are often aliases for PERF_TYPE_RAW.
11651 	 */
11652 	type = event->attr.type;
11653 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11654 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11655 		if (!type) {
11656 			type = PERF_TYPE_RAW;
11657 		} else {
11658 			extended_type = true;
11659 			event->attr.config &= PERF_HW_EVENT_MASK;
11660 		}
11661 	}
11662 
11663 again:
11664 	rcu_read_lock();
11665 	pmu = idr_find(&pmu_idr, type);
11666 	rcu_read_unlock();
11667 	if (pmu) {
11668 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11669 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11670 			goto fail;
11671 
11672 		ret = perf_try_init_event(pmu, event);
11673 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11674 			type = event->attr.type;
11675 			goto again;
11676 		}
11677 
11678 		if (ret)
11679 			pmu = ERR_PTR(ret);
11680 
11681 		goto unlock;
11682 	}
11683 
11684 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11685 		ret = perf_try_init_event(pmu, event);
11686 		if (!ret)
11687 			goto unlock;
11688 
11689 		if (ret != -ENOENT) {
11690 			pmu = ERR_PTR(ret);
11691 			goto unlock;
11692 		}
11693 	}
11694 fail:
11695 	pmu = ERR_PTR(-ENOENT);
11696 unlock:
11697 	srcu_read_unlock(&pmus_srcu, idx);
11698 
11699 	return pmu;
11700 }
11701 
11702 static void attach_sb_event(struct perf_event *event)
11703 {
11704 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11705 
11706 	raw_spin_lock(&pel->lock);
11707 	list_add_rcu(&event->sb_list, &pel->list);
11708 	raw_spin_unlock(&pel->lock);
11709 }
11710 
11711 /*
11712  * We keep a list of all !task (and therefore per-cpu) events
11713  * that need to receive side-band records.
11714  *
11715  * This avoids having to scan all the various PMU per-cpu contexts
11716  * looking for them.
11717  */
11718 static void account_pmu_sb_event(struct perf_event *event)
11719 {
11720 	if (is_sb_event(event))
11721 		attach_sb_event(event);
11722 }
11723 
11724 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11725 static void account_freq_event_nohz(void)
11726 {
11727 #ifdef CONFIG_NO_HZ_FULL
11728 	/* Lock so we don't race with concurrent unaccount */
11729 	spin_lock(&nr_freq_lock);
11730 	if (atomic_inc_return(&nr_freq_events) == 1)
11731 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11732 	spin_unlock(&nr_freq_lock);
11733 #endif
11734 }
11735 
11736 static void account_freq_event(void)
11737 {
11738 	if (tick_nohz_full_enabled())
11739 		account_freq_event_nohz();
11740 	else
11741 		atomic_inc(&nr_freq_events);
11742 }
11743 
11744 
11745 static void account_event(struct perf_event *event)
11746 {
11747 	bool inc = false;
11748 
11749 	if (event->parent)
11750 		return;
11751 
11752 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11753 		inc = true;
11754 	if (event->attr.mmap || event->attr.mmap_data)
11755 		atomic_inc(&nr_mmap_events);
11756 	if (event->attr.build_id)
11757 		atomic_inc(&nr_build_id_events);
11758 	if (event->attr.comm)
11759 		atomic_inc(&nr_comm_events);
11760 	if (event->attr.namespaces)
11761 		atomic_inc(&nr_namespaces_events);
11762 	if (event->attr.cgroup)
11763 		atomic_inc(&nr_cgroup_events);
11764 	if (event->attr.task)
11765 		atomic_inc(&nr_task_events);
11766 	if (event->attr.freq)
11767 		account_freq_event();
11768 	if (event->attr.context_switch) {
11769 		atomic_inc(&nr_switch_events);
11770 		inc = true;
11771 	}
11772 	if (has_branch_stack(event))
11773 		inc = true;
11774 	if (is_cgroup_event(event))
11775 		inc = true;
11776 	if (event->attr.ksymbol)
11777 		atomic_inc(&nr_ksymbol_events);
11778 	if (event->attr.bpf_event)
11779 		atomic_inc(&nr_bpf_events);
11780 	if (event->attr.text_poke)
11781 		atomic_inc(&nr_text_poke_events);
11782 
11783 	if (inc) {
11784 		/*
11785 		 * We need the mutex here because static_branch_enable()
11786 		 * must complete *before* the perf_sched_count increment
11787 		 * becomes visible.
11788 		 */
11789 		if (atomic_inc_not_zero(&perf_sched_count))
11790 			goto enabled;
11791 
11792 		mutex_lock(&perf_sched_mutex);
11793 		if (!atomic_read(&perf_sched_count)) {
11794 			static_branch_enable(&perf_sched_events);
11795 			/*
11796 			 * Guarantee that all CPUs observe they key change and
11797 			 * call the perf scheduling hooks before proceeding to
11798 			 * install events that need them.
11799 			 */
11800 			synchronize_rcu();
11801 		}
11802 		/*
11803 		 * Now that we have waited for the sync_sched(), allow further
11804 		 * increments to by-pass the mutex.
11805 		 */
11806 		atomic_inc(&perf_sched_count);
11807 		mutex_unlock(&perf_sched_mutex);
11808 	}
11809 enabled:
11810 
11811 	account_pmu_sb_event(event);
11812 }
11813 
11814 /*
11815  * Allocate and initialize an event structure
11816  */
11817 static struct perf_event *
11818 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11819 		 struct task_struct *task,
11820 		 struct perf_event *group_leader,
11821 		 struct perf_event *parent_event,
11822 		 perf_overflow_handler_t overflow_handler,
11823 		 void *context, int cgroup_fd)
11824 {
11825 	struct pmu *pmu;
11826 	struct perf_event *event;
11827 	struct hw_perf_event *hwc;
11828 	long err = -EINVAL;
11829 	int node;
11830 
11831 	if ((unsigned)cpu >= nr_cpu_ids) {
11832 		if (!task || cpu != -1)
11833 			return ERR_PTR(-EINVAL);
11834 	}
11835 	if (attr->sigtrap && !task) {
11836 		/* Requires a task: avoid signalling random tasks. */
11837 		return ERR_PTR(-EINVAL);
11838 	}
11839 
11840 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11841 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11842 				      node);
11843 	if (!event)
11844 		return ERR_PTR(-ENOMEM);
11845 
11846 	/*
11847 	 * Single events are their own group leaders, with an
11848 	 * empty sibling list:
11849 	 */
11850 	if (!group_leader)
11851 		group_leader = event;
11852 
11853 	mutex_init(&event->child_mutex);
11854 	INIT_LIST_HEAD(&event->child_list);
11855 
11856 	INIT_LIST_HEAD(&event->event_entry);
11857 	INIT_LIST_HEAD(&event->sibling_list);
11858 	INIT_LIST_HEAD(&event->active_list);
11859 	init_event_group(event);
11860 	INIT_LIST_HEAD(&event->rb_entry);
11861 	INIT_LIST_HEAD(&event->active_entry);
11862 	INIT_LIST_HEAD(&event->addr_filters.list);
11863 	INIT_HLIST_NODE(&event->hlist_entry);
11864 
11865 
11866 	init_waitqueue_head(&event->waitq);
11867 	init_irq_work(&event->pending_irq, perf_pending_irq);
11868 	init_task_work(&event->pending_task, perf_pending_task);
11869 
11870 	mutex_init(&event->mmap_mutex);
11871 	raw_spin_lock_init(&event->addr_filters.lock);
11872 
11873 	atomic_long_set(&event->refcount, 1);
11874 	event->cpu		= cpu;
11875 	event->attr		= *attr;
11876 	event->group_leader	= group_leader;
11877 	event->pmu		= NULL;
11878 	event->oncpu		= -1;
11879 
11880 	event->parent		= parent_event;
11881 
11882 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11883 	event->id		= atomic64_inc_return(&perf_event_id);
11884 
11885 	event->state		= PERF_EVENT_STATE_INACTIVE;
11886 
11887 	if (parent_event)
11888 		event->event_caps = parent_event->event_caps;
11889 
11890 	if (task) {
11891 		event->attach_state = PERF_ATTACH_TASK;
11892 		/*
11893 		 * XXX pmu::event_init needs to know what task to account to
11894 		 * and we cannot use the ctx information because we need the
11895 		 * pmu before we get a ctx.
11896 		 */
11897 		event->hw.target = get_task_struct(task);
11898 	}
11899 
11900 	event->clock = &local_clock;
11901 	if (parent_event)
11902 		event->clock = parent_event->clock;
11903 
11904 	if (!overflow_handler && parent_event) {
11905 		overflow_handler = parent_event->overflow_handler;
11906 		context = parent_event->overflow_handler_context;
11907 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11908 		if (overflow_handler == bpf_overflow_handler) {
11909 			struct bpf_prog *prog = parent_event->prog;
11910 
11911 			bpf_prog_inc(prog);
11912 			event->prog = prog;
11913 			event->orig_overflow_handler =
11914 				parent_event->orig_overflow_handler;
11915 		}
11916 #endif
11917 	}
11918 
11919 	if (overflow_handler) {
11920 		event->overflow_handler	= overflow_handler;
11921 		event->overflow_handler_context = context;
11922 	} else if (is_write_backward(event)){
11923 		event->overflow_handler = perf_event_output_backward;
11924 		event->overflow_handler_context = NULL;
11925 	} else {
11926 		event->overflow_handler = perf_event_output_forward;
11927 		event->overflow_handler_context = NULL;
11928 	}
11929 
11930 	perf_event__state_init(event);
11931 
11932 	pmu = NULL;
11933 
11934 	hwc = &event->hw;
11935 	hwc->sample_period = attr->sample_period;
11936 	if (attr->freq && attr->sample_freq)
11937 		hwc->sample_period = 1;
11938 	hwc->last_period = hwc->sample_period;
11939 
11940 	local64_set(&hwc->period_left, hwc->sample_period);
11941 
11942 	/*
11943 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11944 	 * See perf_output_read().
11945 	 */
11946 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11947 		goto err_ns;
11948 
11949 	if (!has_branch_stack(event))
11950 		event->attr.branch_sample_type = 0;
11951 
11952 	pmu = perf_init_event(event);
11953 	if (IS_ERR(pmu)) {
11954 		err = PTR_ERR(pmu);
11955 		goto err_ns;
11956 	}
11957 
11958 	/*
11959 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11960 	 * events (they don't make sense as the cgroup will be different
11961 	 * on other CPUs in the uncore mask).
11962 	 */
11963 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11964 		err = -EINVAL;
11965 		goto err_pmu;
11966 	}
11967 
11968 	if (event->attr.aux_output &&
11969 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11970 		err = -EOPNOTSUPP;
11971 		goto err_pmu;
11972 	}
11973 
11974 	if (cgroup_fd != -1) {
11975 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11976 		if (err)
11977 			goto err_pmu;
11978 	}
11979 
11980 	err = exclusive_event_init(event);
11981 	if (err)
11982 		goto err_pmu;
11983 
11984 	if (has_addr_filter(event)) {
11985 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11986 						    sizeof(struct perf_addr_filter_range),
11987 						    GFP_KERNEL);
11988 		if (!event->addr_filter_ranges) {
11989 			err = -ENOMEM;
11990 			goto err_per_task;
11991 		}
11992 
11993 		/*
11994 		 * Clone the parent's vma offsets: they are valid until exec()
11995 		 * even if the mm is not shared with the parent.
11996 		 */
11997 		if (event->parent) {
11998 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11999 
12000 			raw_spin_lock_irq(&ifh->lock);
12001 			memcpy(event->addr_filter_ranges,
12002 			       event->parent->addr_filter_ranges,
12003 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12004 			raw_spin_unlock_irq(&ifh->lock);
12005 		}
12006 
12007 		/* force hw sync on the address filters */
12008 		event->addr_filters_gen = 1;
12009 	}
12010 
12011 	if (!event->parent) {
12012 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12013 			err = get_callchain_buffers(attr->sample_max_stack);
12014 			if (err)
12015 				goto err_addr_filters;
12016 		}
12017 	}
12018 
12019 	err = security_perf_event_alloc(event);
12020 	if (err)
12021 		goto err_callchain_buffer;
12022 
12023 	/* symmetric to unaccount_event() in _free_event() */
12024 	account_event(event);
12025 
12026 	return event;
12027 
12028 err_callchain_buffer:
12029 	if (!event->parent) {
12030 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12031 			put_callchain_buffers();
12032 	}
12033 err_addr_filters:
12034 	kfree(event->addr_filter_ranges);
12035 
12036 err_per_task:
12037 	exclusive_event_destroy(event);
12038 
12039 err_pmu:
12040 	if (is_cgroup_event(event))
12041 		perf_detach_cgroup(event);
12042 	if (event->destroy)
12043 		event->destroy(event);
12044 	module_put(pmu->module);
12045 err_ns:
12046 	if (event->hw.target)
12047 		put_task_struct(event->hw.target);
12048 	call_rcu(&event->rcu_head, free_event_rcu);
12049 
12050 	return ERR_PTR(err);
12051 }
12052 
12053 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12054 			  struct perf_event_attr *attr)
12055 {
12056 	u32 size;
12057 	int ret;
12058 
12059 	/* Zero the full structure, so that a short copy will be nice. */
12060 	memset(attr, 0, sizeof(*attr));
12061 
12062 	ret = get_user(size, &uattr->size);
12063 	if (ret)
12064 		return ret;
12065 
12066 	/* ABI compatibility quirk: */
12067 	if (!size)
12068 		size = PERF_ATTR_SIZE_VER0;
12069 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12070 		goto err_size;
12071 
12072 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12073 	if (ret) {
12074 		if (ret == -E2BIG)
12075 			goto err_size;
12076 		return ret;
12077 	}
12078 
12079 	attr->size = size;
12080 
12081 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12082 		return -EINVAL;
12083 
12084 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12085 		return -EINVAL;
12086 
12087 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12088 		return -EINVAL;
12089 
12090 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12091 		u64 mask = attr->branch_sample_type;
12092 
12093 		/* only using defined bits */
12094 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12095 			return -EINVAL;
12096 
12097 		/* at least one branch bit must be set */
12098 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12099 			return -EINVAL;
12100 
12101 		/* propagate priv level, when not set for branch */
12102 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12103 
12104 			/* exclude_kernel checked on syscall entry */
12105 			if (!attr->exclude_kernel)
12106 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12107 
12108 			if (!attr->exclude_user)
12109 				mask |= PERF_SAMPLE_BRANCH_USER;
12110 
12111 			if (!attr->exclude_hv)
12112 				mask |= PERF_SAMPLE_BRANCH_HV;
12113 			/*
12114 			 * adjust user setting (for HW filter setup)
12115 			 */
12116 			attr->branch_sample_type = mask;
12117 		}
12118 		/* privileged levels capture (kernel, hv): check permissions */
12119 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12120 			ret = perf_allow_kernel(attr);
12121 			if (ret)
12122 				return ret;
12123 		}
12124 	}
12125 
12126 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12127 		ret = perf_reg_validate(attr->sample_regs_user);
12128 		if (ret)
12129 			return ret;
12130 	}
12131 
12132 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12133 		if (!arch_perf_have_user_stack_dump())
12134 			return -ENOSYS;
12135 
12136 		/*
12137 		 * We have __u32 type for the size, but so far
12138 		 * we can only use __u16 as maximum due to the
12139 		 * __u16 sample size limit.
12140 		 */
12141 		if (attr->sample_stack_user >= USHRT_MAX)
12142 			return -EINVAL;
12143 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12144 			return -EINVAL;
12145 	}
12146 
12147 	if (!attr->sample_max_stack)
12148 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12149 
12150 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12151 		ret = perf_reg_validate(attr->sample_regs_intr);
12152 
12153 #ifndef CONFIG_CGROUP_PERF
12154 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12155 		return -EINVAL;
12156 #endif
12157 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12158 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12159 		return -EINVAL;
12160 
12161 	if (!attr->inherit && attr->inherit_thread)
12162 		return -EINVAL;
12163 
12164 	if (attr->remove_on_exec && attr->enable_on_exec)
12165 		return -EINVAL;
12166 
12167 	if (attr->sigtrap && !attr->remove_on_exec)
12168 		return -EINVAL;
12169 
12170 out:
12171 	return ret;
12172 
12173 err_size:
12174 	put_user(sizeof(*attr), &uattr->size);
12175 	ret = -E2BIG;
12176 	goto out;
12177 }
12178 
12179 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12180 {
12181 	if (b < a)
12182 		swap(a, b);
12183 
12184 	mutex_lock(a);
12185 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12186 }
12187 
12188 static int
12189 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12190 {
12191 	struct perf_buffer *rb = NULL;
12192 	int ret = -EINVAL;
12193 
12194 	if (!output_event) {
12195 		mutex_lock(&event->mmap_mutex);
12196 		goto set;
12197 	}
12198 
12199 	/* don't allow circular references */
12200 	if (event == output_event)
12201 		goto out;
12202 
12203 	/*
12204 	 * Don't allow cross-cpu buffers
12205 	 */
12206 	if (output_event->cpu != event->cpu)
12207 		goto out;
12208 
12209 	/*
12210 	 * If its not a per-cpu rb, it must be the same task.
12211 	 */
12212 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12213 		goto out;
12214 
12215 	/*
12216 	 * Mixing clocks in the same buffer is trouble you don't need.
12217 	 */
12218 	if (output_event->clock != event->clock)
12219 		goto out;
12220 
12221 	/*
12222 	 * Either writing ring buffer from beginning or from end.
12223 	 * Mixing is not allowed.
12224 	 */
12225 	if (is_write_backward(output_event) != is_write_backward(event))
12226 		goto out;
12227 
12228 	/*
12229 	 * If both events generate aux data, they must be on the same PMU
12230 	 */
12231 	if (has_aux(event) && has_aux(output_event) &&
12232 	    event->pmu != output_event->pmu)
12233 		goto out;
12234 
12235 	/*
12236 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12237 	 * output_event is already on rb->event_list, and the list iteration
12238 	 * restarts after every removal, it is guaranteed this new event is
12239 	 * observed *OR* if output_event is already removed, it's guaranteed we
12240 	 * observe !rb->mmap_count.
12241 	 */
12242 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12243 set:
12244 	/* Can't redirect output if we've got an active mmap() */
12245 	if (atomic_read(&event->mmap_count))
12246 		goto unlock;
12247 
12248 	if (output_event) {
12249 		/* get the rb we want to redirect to */
12250 		rb = ring_buffer_get(output_event);
12251 		if (!rb)
12252 			goto unlock;
12253 
12254 		/* did we race against perf_mmap_close() */
12255 		if (!atomic_read(&rb->mmap_count)) {
12256 			ring_buffer_put(rb);
12257 			goto unlock;
12258 		}
12259 	}
12260 
12261 	ring_buffer_attach(event, rb);
12262 
12263 	ret = 0;
12264 unlock:
12265 	mutex_unlock(&event->mmap_mutex);
12266 	if (output_event)
12267 		mutex_unlock(&output_event->mmap_mutex);
12268 
12269 out:
12270 	return ret;
12271 }
12272 
12273 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12274 {
12275 	bool nmi_safe = false;
12276 
12277 	switch (clk_id) {
12278 	case CLOCK_MONOTONIC:
12279 		event->clock = &ktime_get_mono_fast_ns;
12280 		nmi_safe = true;
12281 		break;
12282 
12283 	case CLOCK_MONOTONIC_RAW:
12284 		event->clock = &ktime_get_raw_fast_ns;
12285 		nmi_safe = true;
12286 		break;
12287 
12288 	case CLOCK_REALTIME:
12289 		event->clock = &ktime_get_real_ns;
12290 		break;
12291 
12292 	case CLOCK_BOOTTIME:
12293 		event->clock = &ktime_get_boottime_ns;
12294 		break;
12295 
12296 	case CLOCK_TAI:
12297 		event->clock = &ktime_get_clocktai_ns;
12298 		break;
12299 
12300 	default:
12301 		return -EINVAL;
12302 	}
12303 
12304 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12305 		return -EINVAL;
12306 
12307 	return 0;
12308 }
12309 
12310 static bool
12311 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12312 {
12313 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12314 	bool is_capable = perfmon_capable();
12315 
12316 	if (attr->sigtrap) {
12317 		/*
12318 		 * perf_event_attr::sigtrap sends signals to the other task.
12319 		 * Require the current task to also have CAP_KILL.
12320 		 */
12321 		rcu_read_lock();
12322 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12323 		rcu_read_unlock();
12324 
12325 		/*
12326 		 * If the required capabilities aren't available, checks for
12327 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12328 		 * can effectively change the target task.
12329 		 */
12330 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12331 	}
12332 
12333 	/*
12334 	 * Preserve ptrace permission check for backwards compatibility. The
12335 	 * ptrace check also includes checks that the current task and other
12336 	 * task have matching uids, and is therefore not done here explicitly.
12337 	 */
12338 	return is_capable || ptrace_may_access(task, ptrace_mode);
12339 }
12340 
12341 /**
12342  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12343  *
12344  * @attr_uptr:	event_id type attributes for monitoring/sampling
12345  * @pid:		target pid
12346  * @cpu:		target cpu
12347  * @group_fd:		group leader event fd
12348  * @flags:		perf event open flags
12349  */
12350 SYSCALL_DEFINE5(perf_event_open,
12351 		struct perf_event_attr __user *, attr_uptr,
12352 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12353 {
12354 	struct perf_event *group_leader = NULL, *output_event = NULL;
12355 	struct perf_event_pmu_context *pmu_ctx;
12356 	struct perf_event *event, *sibling;
12357 	struct perf_event_attr attr;
12358 	struct perf_event_context *ctx;
12359 	struct file *event_file = NULL;
12360 	struct fd group = {NULL, 0};
12361 	struct task_struct *task = NULL;
12362 	struct pmu *pmu;
12363 	int event_fd;
12364 	int move_group = 0;
12365 	int err;
12366 	int f_flags = O_RDWR;
12367 	int cgroup_fd = -1;
12368 
12369 	/* for future expandability... */
12370 	if (flags & ~PERF_FLAG_ALL)
12371 		return -EINVAL;
12372 
12373 	err = perf_copy_attr(attr_uptr, &attr);
12374 	if (err)
12375 		return err;
12376 
12377 	/* Do we allow access to perf_event_open(2) ? */
12378 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12379 	if (err)
12380 		return err;
12381 
12382 	if (!attr.exclude_kernel) {
12383 		err = perf_allow_kernel(&attr);
12384 		if (err)
12385 			return err;
12386 	}
12387 
12388 	if (attr.namespaces) {
12389 		if (!perfmon_capable())
12390 			return -EACCES;
12391 	}
12392 
12393 	if (attr.freq) {
12394 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12395 			return -EINVAL;
12396 	} else {
12397 		if (attr.sample_period & (1ULL << 63))
12398 			return -EINVAL;
12399 	}
12400 
12401 	/* Only privileged users can get physical addresses */
12402 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12403 		err = perf_allow_kernel(&attr);
12404 		if (err)
12405 			return err;
12406 	}
12407 
12408 	/* REGS_INTR can leak data, lockdown must prevent this */
12409 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12410 		err = security_locked_down(LOCKDOWN_PERF);
12411 		if (err)
12412 			return err;
12413 	}
12414 
12415 	/*
12416 	 * In cgroup mode, the pid argument is used to pass the fd
12417 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12418 	 * designates the cpu on which to monitor threads from that
12419 	 * cgroup.
12420 	 */
12421 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12422 		return -EINVAL;
12423 
12424 	if (flags & PERF_FLAG_FD_CLOEXEC)
12425 		f_flags |= O_CLOEXEC;
12426 
12427 	event_fd = get_unused_fd_flags(f_flags);
12428 	if (event_fd < 0)
12429 		return event_fd;
12430 
12431 	if (group_fd != -1) {
12432 		err = perf_fget_light(group_fd, &group);
12433 		if (err)
12434 			goto err_fd;
12435 		group_leader = group.file->private_data;
12436 		if (flags & PERF_FLAG_FD_OUTPUT)
12437 			output_event = group_leader;
12438 		if (flags & PERF_FLAG_FD_NO_GROUP)
12439 			group_leader = NULL;
12440 	}
12441 
12442 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12443 		task = find_lively_task_by_vpid(pid);
12444 		if (IS_ERR(task)) {
12445 			err = PTR_ERR(task);
12446 			goto err_group_fd;
12447 		}
12448 	}
12449 
12450 	if (task && group_leader &&
12451 	    group_leader->attr.inherit != attr.inherit) {
12452 		err = -EINVAL;
12453 		goto err_task;
12454 	}
12455 
12456 	if (flags & PERF_FLAG_PID_CGROUP)
12457 		cgroup_fd = pid;
12458 
12459 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12460 				 NULL, NULL, cgroup_fd);
12461 	if (IS_ERR(event)) {
12462 		err = PTR_ERR(event);
12463 		goto err_task;
12464 	}
12465 
12466 	if (is_sampling_event(event)) {
12467 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12468 			err = -EOPNOTSUPP;
12469 			goto err_alloc;
12470 		}
12471 	}
12472 
12473 	/*
12474 	 * Special case software events and allow them to be part of
12475 	 * any hardware group.
12476 	 */
12477 	pmu = event->pmu;
12478 
12479 	if (attr.use_clockid) {
12480 		err = perf_event_set_clock(event, attr.clockid);
12481 		if (err)
12482 			goto err_alloc;
12483 	}
12484 
12485 	if (pmu->task_ctx_nr == perf_sw_context)
12486 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12487 
12488 	if (task) {
12489 		err = down_read_interruptible(&task->signal->exec_update_lock);
12490 		if (err)
12491 			goto err_alloc;
12492 
12493 		/*
12494 		 * We must hold exec_update_lock across this and any potential
12495 		 * perf_install_in_context() call for this new event to
12496 		 * serialize against exec() altering our credentials (and the
12497 		 * perf_event_exit_task() that could imply).
12498 		 */
12499 		err = -EACCES;
12500 		if (!perf_check_permission(&attr, task))
12501 			goto err_cred;
12502 	}
12503 
12504 	/*
12505 	 * Get the target context (task or percpu):
12506 	 */
12507 	ctx = find_get_context(task, event);
12508 	if (IS_ERR(ctx)) {
12509 		err = PTR_ERR(ctx);
12510 		goto err_cred;
12511 	}
12512 
12513 	mutex_lock(&ctx->mutex);
12514 
12515 	if (ctx->task == TASK_TOMBSTONE) {
12516 		err = -ESRCH;
12517 		goto err_locked;
12518 	}
12519 
12520 	if (!task) {
12521 		/*
12522 		 * Check if the @cpu we're creating an event for is online.
12523 		 *
12524 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12525 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12526 		 */
12527 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12528 
12529 		if (!cpuctx->online) {
12530 			err = -ENODEV;
12531 			goto err_locked;
12532 		}
12533 	}
12534 
12535 	if (group_leader) {
12536 		err = -EINVAL;
12537 
12538 		/*
12539 		 * Do not allow a recursive hierarchy (this new sibling
12540 		 * becoming part of another group-sibling):
12541 		 */
12542 		if (group_leader->group_leader != group_leader)
12543 			goto err_locked;
12544 
12545 		/* All events in a group should have the same clock */
12546 		if (group_leader->clock != event->clock)
12547 			goto err_locked;
12548 
12549 		/*
12550 		 * Make sure we're both events for the same CPU;
12551 		 * grouping events for different CPUs is broken; since
12552 		 * you can never concurrently schedule them anyhow.
12553 		 */
12554 		if (group_leader->cpu != event->cpu)
12555 			goto err_locked;
12556 
12557 		/*
12558 		 * Make sure we're both on the same context; either task or cpu.
12559 		 */
12560 		if (group_leader->ctx != ctx)
12561 			goto err_locked;
12562 
12563 		/*
12564 		 * Only a group leader can be exclusive or pinned
12565 		 */
12566 		if (attr.exclusive || attr.pinned)
12567 			goto err_locked;
12568 
12569 		if (is_software_event(event) &&
12570 		    !in_software_context(group_leader)) {
12571 			/*
12572 			 * If the event is a sw event, but the group_leader
12573 			 * is on hw context.
12574 			 *
12575 			 * Allow the addition of software events to hw
12576 			 * groups, this is safe because software events
12577 			 * never fail to schedule.
12578 			 *
12579 			 * Note the comment that goes with struct
12580 			 * perf_event_pmu_context.
12581 			 */
12582 			pmu = group_leader->pmu_ctx->pmu;
12583 		} else if (!is_software_event(event)) {
12584 			if (is_software_event(group_leader) &&
12585 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12586 				/*
12587 				 * In case the group is a pure software group, and we
12588 				 * try to add a hardware event, move the whole group to
12589 				 * the hardware context.
12590 				 */
12591 				move_group = 1;
12592 			}
12593 
12594 			/* Don't allow group of multiple hw events from different pmus */
12595 			if (!in_software_context(group_leader) &&
12596 			    group_leader->pmu_ctx->pmu != pmu)
12597 				goto err_locked;
12598 		}
12599 	}
12600 
12601 	/*
12602 	 * Now that we're certain of the pmu; find the pmu_ctx.
12603 	 */
12604 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12605 	if (IS_ERR(pmu_ctx)) {
12606 		err = PTR_ERR(pmu_ctx);
12607 		goto err_locked;
12608 	}
12609 	event->pmu_ctx = pmu_ctx;
12610 
12611 	if (output_event) {
12612 		err = perf_event_set_output(event, output_event);
12613 		if (err)
12614 			goto err_context;
12615 	}
12616 
12617 	if (!perf_event_validate_size(event)) {
12618 		err = -E2BIG;
12619 		goto err_context;
12620 	}
12621 
12622 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12623 		err = -EINVAL;
12624 		goto err_context;
12625 	}
12626 
12627 	/*
12628 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12629 	 * because we need to serialize with concurrent event creation.
12630 	 */
12631 	if (!exclusive_event_installable(event, ctx)) {
12632 		err = -EBUSY;
12633 		goto err_context;
12634 	}
12635 
12636 	WARN_ON_ONCE(ctx->parent_ctx);
12637 
12638 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12639 	if (IS_ERR(event_file)) {
12640 		err = PTR_ERR(event_file);
12641 		event_file = NULL;
12642 		goto err_context;
12643 	}
12644 
12645 	/*
12646 	 * This is the point on no return; we cannot fail hereafter. This is
12647 	 * where we start modifying current state.
12648 	 */
12649 
12650 	if (move_group) {
12651 		perf_remove_from_context(group_leader, 0);
12652 		put_pmu_ctx(group_leader->pmu_ctx);
12653 
12654 		for_each_sibling_event(sibling, group_leader) {
12655 			perf_remove_from_context(sibling, 0);
12656 			put_pmu_ctx(sibling->pmu_ctx);
12657 		}
12658 
12659 		/*
12660 		 * Install the group siblings before the group leader.
12661 		 *
12662 		 * Because a group leader will try and install the entire group
12663 		 * (through the sibling list, which is still in-tact), we can
12664 		 * end up with siblings installed in the wrong context.
12665 		 *
12666 		 * By installing siblings first we NO-OP because they're not
12667 		 * reachable through the group lists.
12668 		 */
12669 		for_each_sibling_event(sibling, group_leader) {
12670 			sibling->pmu_ctx = pmu_ctx;
12671 			get_pmu_ctx(pmu_ctx);
12672 			perf_event__state_init(sibling);
12673 			perf_install_in_context(ctx, sibling, sibling->cpu);
12674 		}
12675 
12676 		/*
12677 		 * Removing from the context ends up with disabled
12678 		 * event. What we want here is event in the initial
12679 		 * startup state, ready to be add into new context.
12680 		 */
12681 		group_leader->pmu_ctx = pmu_ctx;
12682 		get_pmu_ctx(pmu_ctx);
12683 		perf_event__state_init(group_leader);
12684 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12685 	}
12686 
12687 	/*
12688 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12689 	 * that we're serialized against further additions and before
12690 	 * perf_install_in_context() which is the point the event is active and
12691 	 * can use these values.
12692 	 */
12693 	perf_event__header_size(event);
12694 	perf_event__id_header_size(event);
12695 
12696 	event->owner = current;
12697 
12698 	perf_install_in_context(ctx, event, event->cpu);
12699 	perf_unpin_context(ctx);
12700 
12701 	mutex_unlock(&ctx->mutex);
12702 
12703 	if (task) {
12704 		up_read(&task->signal->exec_update_lock);
12705 		put_task_struct(task);
12706 	}
12707 
12708 	mutex_lock(&current->perf_event_mutex);
12709 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12710 	mutex_unlock(&current->perf_event_mutex);
12711 
12712 	/*
12713 	 * Drop the reference on the group_event after placing the
12714 	 * new event on the sibling_list. This ensures destruction
12715 	 * of the group leader will find the pointer to itself in
12716 	 * perf_group_detach().
12717 	 */
12718 	fdput(group);
12719 	fd_install(event_fd, event_file);
12720 	return event_fd;
12721 
12722 err_context:
12723 	put_pmu_ctx(event->pmu_ctx);
12724 	event->pmu_ctx = NULL; /* _free_event() */
12725 err_locked:
12726 	mutex_unlock(&ctx->mutex);
12727 	perf_unpin_context(ctx);
12728 	put_ctx(ctx);
12729 err_cred:
12730 	if (task)
12731 		up_read(&task->signal->exec_update_lock);
12732 err_alloc:
12733 	free_event(event);
12734 err_task:
12735 	if (task)
12736 		put_task_struct(task);
12737 err_group_fd:
12738 	fdput(group);
12739 err_fd:
12740 	put_unused_fd(event_fd);
12741 	return err;
12742 }
12743 
12744 /**
12745  * perf_event_create_kernel_counter
12746  *
12747  * @attr: attributes of the counter to create
12748  * @cpu: cpu in which the counter is bound
12749  * @task: task to profile (NULL for percpu)
12750  * @overflow_handler: callback to trigger when we hit the event
12751  * @context: context data could be used in overflow_handler callback
12752  */
12753 struct perf_event *
12754 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12755 				 struct task_struct *task,
12756 				 perf_overflow_handler_t overflow_handler,
12757 				 void *context)
12758 {
12759 	struct perf_event_pmu_context *pmu_ctx;
12760 	struct perf_event_context *ctx;
12761 	struct perf_event *event;
12762 	struct pmu *pmu;
12763 	int err;
12764 
12765 	/*
12766 	 * Grouping is not supported for kernel events, neither is 'AUX',
12767 	 * make sure the caller's intentions are adjusted.
12768 	 */
12769 	if (attr->aux_output)
12770 		return ERR_PTR(-EINVAL);
12771 
12772 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12773 				 overflow_handler, context, -1);
12774 	if (IS_ERR(event)) {
12775 		err = PTR_ERR(event);
12776 		goto err;
12777 	}
12778 
12779 	/* Mark owner so we could distinguish it from user events. */
12780 	event->owner = TASK_TOMBSTONE;
12781 	pmu = event->pmu;
12782 
12783 	if (pmu->task_ctx_nr == perf_sw_context)
12784 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12785 
12786 	/*
12787 	 * Get the target context (task or percpu):
12788 	 */
12789 	ctx = find_get_context(task, event);
12790 	if (IS_ERR(ctx)) {
12791 		err = PTR_ERR(ctx);
12792 		goto err_alloc;
12793 	}
12794 
12795 	WARN_ON_ONCE(ctx->parent_ctx);
12796 	mutex_lock(&ctx->mutex);
12797 	if (ctx->task == TASK_TOMBSTONE) {
12798 		err = -ESRCH;
12799 		goto err_unlock;
12800 	}
12801 
12802 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12803 	if (IS_ERR(pmu_ctx)) {
12804 		err = PTR_ERR(pmu_ctx);
12805 		goto err_unlock;
12806 	}
12807 	event->pmu_ctx = pmu_ctx;
12808 
12809 	if (!task) {
12810 		/*
12811 		 * Check if the @cpu we're creating an event for is online.
12812 		 *
12813 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12814 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12815 		 */
12816 		struct perf_cpu_context *cpuctx =
12817 			container_of(ctx, struct perf_cpu_context, ctx);
12818 		if (!cpuctx->online) {
12819 			err = -ENODEV;
12820 			goto err_pmu_ctx;
12821 		}
12822 	}
12823 
12824 	if (!exclusive_event_installable(event, ctx)) {
12825 		err = -EBUSY;
12826 		goto err_pmu_ctx;
12827 	}
12828 
12829 	perf_install_in_context(ctx, event, event->cpu);
12830 	perf_unpin_context(ctx);
12831 	mutex_unlock(&ctx->mutex);
12832 
12833 	return event;
12834 
12835 err_pmu_ctx:
12836 	put_pmu_ctx(pmu_ctx);
12837 	event->pmu_ctx = NULL; /* _free_event() */
12838 err_unlock:
12839 	mutex_unlock(&ctx->mutex);
12840 	perf_unpin_context(ctx);
12841 	put_ctx(ctx);
12842 err_alloc:
12843 	free_event(event);
12844 err:
12845 	return ERR_PTR(err);
12846 }
12847 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12848 
12849 static void __perf_pmu_remove(struct perf_event_context *ctx,
12850 			      int cpu, struct pmu *pmu,
12851 			      struct perf_event_groups *groups,
12852 			      struct list_head *events)
12853 {
12854 	struct perf_event *event, *sibling;
12855 
12856 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12857 		perf_remove_from_context(event, 0);
12858 		put_pmu_ctx(event->pmu_ctx);
12859 		list_add(&event->migrate_entry, events);
12860 
12861 		for_each_sibling_event(sibling, event) {
12862 			perf_remove_from_context(sibling, 0);
12863 			put_pmu_ctx(sibling->pmu_ctx);
12864 			list_add(&sibling->migrate_entry, events);
12865 		}
12866 	}
12867 }
12868 
12869 static void __perf_pmu_install_event(struct pmu *pmu,
12870 				     struct perf_event_context *ctx,
12871 				     int cpu, struct perf_event *event)
12872 {
12873 	struct perf_event_pmu_context *epc;
12874 
12875 	event->cpu = cpu;
12876 	epc = find_get_pmu_context(pmu, ctx, event);
12877 	event->pmu_ctx = epc;
12878 
12879 	if (event->state >= PERF_EVENT_STATE_OFF)
12880 		event->state = PERF_EVENT_STATE_INACTIVE;
12881 	perf_install_in_context(ctx, event, cpu);
12882 }
12883 
12884 static void __perf_pmu_install(struct perf_event_context *ctx,
12885 			       int cpu, struct pmu *pmu, struct list_head *events)
12886 {
12887 	struct perf_event *event, *tmp;
12888 
12889 	/*
12890 	 * Re-instate events in 2 passes.
12891 	 *
12892 	 * Skip over group leaders and only install siblings on this first
12893 	 * pass, siblings will not get enabled without a leader, however a
12894 	 * leader will enable its siblings, even if those are still on the old
12895 	 * context.
12896 	 */
12897 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12898 		if (event->group_leader == event)
12899 			continue;
12900 
12901 		list_del(&event->migrate_entry);
12902 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12903 	}
12904 
12905 	/*
12906 	 * Once all the siblings are setup properly, install the group leaders
12907 	 * to make it go.
12908 	 */
12909 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12910 		list_del(&event->migrate_entry);
12911 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12912 	}
12913 }
12914 
12915 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12916 {
12917 	struct perf_event_context *src_ctx, *dst_ctx;
12918 	LIST_HEAD(events);
12919 
12920 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12921 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12922 
12923 	/*
12924 	 * See perf_event_ctx_lock() for comments on the details
12925 	 * of swizzling perf_event::ctx.
12926 	 */
12927 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12928 
12929 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12930 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12931 
12932 	if (!list_empty(&events)) {
12933 		/*
12934 		 * Wait for the events to quiesce before re-instating them.
12935 		 */
12936 		synchronize_rcu();
12937 
12938 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12939 	}
12940 
12941 	mutex_unlock(&dst_ctx->mutex);
12942 	mutex_unlock(&src_ctx->mutex);
12943 }
12944 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12945 
12946 static void sync_child_event(struct perf_event *child_event)
12947 {
12948 	struct perf_event *parent_event = child_event->parent;
12949 	u64 child_val;
12950 
12951 	if (child_event->attr.inherit_stat) {
12952 		struct task_struct *task = child_event->ctx->task;
12953 
12954 		if (task && task != TASK_TOMBSTONE)
12955 			perf_event_read_event(child_event, task);
12956 	}
12957 
12958 	child_val = perf_event_count(child_event);
12959 
12960 	/*
12961 	 * Add back the child's count to the parent's count:
12962 	 */
12963 	atomic64_add(child_val, &parent_event->child_count);
12964 	atomic64_add(child_event->total_time_enabled,
12965 		     &parent_event->child_total_time_enabled);
12966 	atomic64_add(child_event->total_time_running,
12967 		     &parent_event->child_total_time_running);
12968 }
12969 
12970 static void
12971 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12972 {
12973 	struct perf_event *parent_event = event->parent;
12974 	unsigned long detach_flags = 0;
12975 
12976 	if (parent_event) {
12977 		/*
12978 		 * Do not destroy the 'original' grouping; because of the
12979 		 * context switch optimization the original events could've
12980 		 * ended up in a random child task.
12981 		 *
12982 		 * If we were to destroy the original group, all group related
12983 		 * operations would cease to function properly after this
12984 		 * random child dies.
12985 		 *
12986 		 * Do destroy all inherited groups, we don't care about those
12987 		 * and being thorough is better.
12988 		 */
12989 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12990 		mutex_lock(&parent_event->child_mutex);
12991 	}
12992 
12993 	perf_remove_from_context(event, detach_flags);
12994 
12995 	raw_spin_lock_irq(&ctx->lock);
12996 	if (event->state > PERF_EVENT_STATE_EXIT)
12997 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12998 	raw_spin_unlock_irq(&ctx->lock);
12999 
13000 	/*
13001 	 * Child events can be freed.
13002 	 */
13003 	if (parent_event) {
13004 		mutex_unlock(&parent_event->child_mutex);
13005 		/*
13006 		 * Kick perf_poll() for is_event_hup();
13007 		 */
13008 		perf_event_wakeup(parent_event);
13009 		free_event(event);
13010 		put_event(parent_event);
13011 		return;
13012 	}
13013 
13014 	/*
13015 	 * Parent events are governed by their filedesc, retain them.
13016 	 */
13017 	perf_event_wakeup(event);
13018 }
13019 
13020 static void perf_event_exit_task_context(struct task_struct *child)
13021 {
13022 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13023 	struct perf_event *child_event, *next;
13024 
13025 	WARN_ON_ONCE(child != current);
13026 
13027 	child_ctx = perf_pin_task_context(child);
13028 	if (!child_ctx)
13029 		return;
13030 
13031 	/*
13032 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13033 	 * ctx::mutex over the entire thing. This serializes against almost
13034 	 * everything that wants to access the ctx.
13035 	 *
13036 	 * The exception is sys_perf_event_open() /
13037 	 * perf_event_create_kernel_count() which does find_get_context()
13038 	 * without ctx::mutex (it cannot because of the move_group double mutex
13039 	 * lock thing). See the comments in perf_install_in_context().
13040 	 */
13041 	mutex_lock(&child_ctx->mutex);
13042 
13043 	/*
13044 	 * In a single ctx::lock section, de-schedule the events and detach the
13045 	 * context from the task such that we cannot ever get it scheduled back
13046 	 * in.
13047 	 */
13048 	raw_spin_lock_irq(&child_ctx->lock);
13049 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13050 
13051 	/*
13052 	 * Now that the context is inactive, destroy the task <-> ctx relation
13053 	 * and mark the context dead.
13054 	 */
13055 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13056 	put_ctx(child_ctx); /* cannot be last */
13057 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13058 	put_task_struct(current); /* cannot be last */
13059 
13060 	clone_ctx = unclone_ctx(child_ctx);
13061 	raw_spin_unlock_irq(&child_ctx->lock);
13062 
13063 	if (clone_ctx)
13064 		put_ctx(clone_ctx);
13065 
13066 	/*
13067 	 * Report the task dead after unscheduling the events so that we
13068 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13069 	 * get a few PERF_RECORD_READ events.
13070 	 */
13071 	perf_event_task(child, child_ctx, 0);
13072 
13073 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13074 		perf_event_exit_event(child_event, child_ctx);
13075 
13076 	mutex_unlock(&child_ctx->mutex);
13077 
13078 	put_ctx(child_ctx);
13079 }
13080 
13081 /*
13082  * When a child task exits, feed back event values to parent events.
13083  *
13084  * Can be called with exec_update_lock held when called from
13085  * setup_new_exec().
13086  */
13087 void perf_event_exit_task(struct task_struct *child)
13088 {
13089 	struct perf_event *event, *tmp;
13090 
13091 	mutex_lock(&child->perf_event_mutex);
13092 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13093 				 owner_entry) {
13094 		list_del_init(&event->owner_entry);
13095 
13096 		/*
13097 		 * Ensure the list deletion is visible before we clear
13098 		 * the owner, closes a race against perf_release() where
13099 		 * we need to serialize on the owner->perf_event_mutex.
13100 		 */
13101 		smp_store_release(&event->owner, NULL);
13102 	}
13103 	mutex_unlock(&child->perf_event_mutex);
13104 
13105 	perf_event_exit_task_context(child);
13106 
13107 	/*
13108 	 * The perf_event_exit_task_context calls perf_event_task
13109 	 * with child's task_ctx, which generates EXIT events for
13110 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13111 	 * At this point we need to send EXIT events to cpu contexts.
13112 	 */
13113 	perf_event_task(child, NULL, 0);
13114 }
13115 
13116 static void perf_free_event(struct perf_event *event,
13117 			    struct perf_event_context *ctx)
13118 {
13119 	struct perf_event *parent = event->parent;
13120 
13121 	if (WARN_ON_ONCE(!parent))
13122 		return;
13123 
13124 	mutex_lock(&parent->child_mutex);
13125 	list_del_init(&event->child_list);
13126 	mutex_unlock(&parent->child_mutex);
13127 
13128 	put_event(parent);
13129 
13130 	raw_spin_lock_irq(&ctx->lock);
13131 	perf_group_detach(event);
13132 	list_del_event(event, ctx);
13133 	raw_spin_unlock_irq(&ctx->lock);
13134 	free_event(event);
13135 }
13136 
13137 /*
13138  * Free a context as created by inheritance by perf_event_init_task() below,
13139  * used by fork() in case of fail.
13140  *
13141  * Even though the task has never lived, the context and events have been
13142  * exposed through the child_list, so we must take care tearing it all down.
13143  */
13144 void perf_event_free_task(struct task_struct *task)
13145 {
13146 	struct perf_event_context *ctx;
13147 	struct perf_event *event, *tmp;
13148 
13149 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13150 	if (!ctx)
13151 		return;
13152 
13153 	mutex_lock(&ctx->mutex);
13154 	raw_spin_lock_irq(&ctx->lock);
13155 	/*
13156 	 * Destroy the task <-> ctx relation and mark the context dead.
13157 	 *
13158 	 * This is important because even though the task hasn't been
13159 	 * exposed yet the context has been (through child_list).
13160 	 */
13161 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13162 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13163 	put_task_struct(task); /* cannot be last */
13164 	raw_spin_unlock_irq(&ctx->lock);
13165 
13166 
13167 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13168 		perf_free_event(event, ctx);
13169 
13170 	mutex_unlock(&ctx->mutex);
13171 
13172 	/*
13173 	 * perf_event_release_kernel() could've stolen some of our
13174 	 * child events and still have them on its free_list. In that
13175 	 * case we must wait for these events to have been freed (in
13176 	 * particular all their references to this task must've been
13177 	 * dropped).
13178 	 *
13179 	 * Without this copy_process() will unconditionally free this
13180 	 * task (irrespective of its reference count) and
13181 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13182 	 * use-after-free.
13183 	 *
13184 	 * Wait for all events to drop their context reference.
13185 	 */
13186 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13187 	put_ctx(ctx); /* must be last */
13188 }
13189 
13190 void perf_event_delayed_put(struct task_struct *task)
13191 {
13192 	WARN_ON_ONCE(task->perf_event_ctxp);
13193 }
13194 
13195 struct file *perf_event_get(unsigned int fd)
13196 {
13197 	struct file *file = fget(fd);
13198 	if (!file)
13199 		return ERR_PTR(-EBADF);
13200 
13201 	if (file->f_op != &perf_fops) {
13202 		fput(file);
13203 		return ERR_PTR(-EBADF);
13204 	}
13205 
13206 	return file;
13207 }
13208 
13209 const struct perf_event *perf_get_event(struct file *file)
13210 {
13211 	if (file->f_op != &perf_fops)
13212 		return ERR_PTR(-EINVAL);
13213 
13214 	return file->private_data;
13215 }
13216 
13217 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13218 {
13219 	if (!event)
13220 		return ERR_PTR(-EINVAL);
13221 
13222 	return &event->attr;
13223 }
13224 
13225 /*
13226  * Inherit an event from parent task to child task.
13227  *
13228  * Returns:
13229  *  - valid pointer on success
13230  *  - NULL for orphaned events
13231  *  - IS_ERR() on error
13232  */
13233 static struct perf_event *
13234 inherit_event(struct perf_event *parent_event,
13235 	      struct task_struct *parent,
13236 	      struct perf_event_context *parent_ctx,
13237 	      struct task_struct *child,
13238 	      struct perf_event *group_leader,
13239 	      struct perf_event_context *child_ctx)
13240 {
13241 	enum perf_event_state parent_state = parent_event->state;
13242 	struct perf_event_pmu_context *pmu_ctx;
13243 	struct perf_event *child_event;
13244 	unsigned long flags;
13245 
13246 	/*
13247 	 * Instead of creating recursive hierarchies of events,
13248 	 * we link inherited events back to the original parent,
13249 	 * which has a filp for sure, which we use as the reference
13250 	 * count:
13251 	 */
13252 	if (parent_event->parent)
13253 		parent_event = parent_event->parent;
13254 
13255 	child_event = perf_event_alloc(&parent_event->attr,
13256 					   parent_event->cpu,
13257 					   child,
13258 					   group_leader, parent_event,
13259 					   NULL, NULL, -1);
13260 	if (IS_ERR(child_event))
13261 		return child_event;
13262 
13263 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13264 	if (IS_ERR(pmu_ctx)) {
13265 		free_event(child_event);
13266 		return ERR_CAST(pmu_ctx);
13267 	}
13268 	child_event->pmu_ctx = pmu_ctx;
13269 
13270 	/*
13271 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13272 	 * must be under the same lock in order to serialize against
13273 	 * perf_event_release_kernel(), such that either we must observe
13274 	 * is_orphaned_event() or they will observe us on the child_list.
13275 	 */
13276 	mutex_lock(&parent_event->child_mutex);
13277 	if (is_orphaned_event(parent_event) ||
13278 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13279 		mutex_unlock(&parent_event->child_mutex);
13280 		/* task_ctx_data is freed with child_ctx */
13281 		free_event(child_event);
13282 		return NULL;
13283 	}
13284 
13285 	get_ctx(child_ctx);
13286 
13287 	/*
13288 	 * Make the child state follow the state of the parent event,
13289 	 * not its attr.disabled bit.  We hold the parent's mutex,
13290 	 * so we won't race with perf_event_{en, dis}able_family.
13291 	 */
13292 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13293 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13294 	else
13295 		child_event->state = PERF_EVENT_STATE_OFF;
13296 
13297 	if (parent_event->attr.freq) {
13298 		u64 sample_period = parent_event->hw.sample_period;
13299 		struct hw_perf_event *hwc = &child_event->hw;
13300 
13301 		hwc->sample_period = sample_period;
13302 		hwc->last_period   = sample_period;
13303 
13304 		local64_set(&hwc->period_left, sample_period);
13305 	}
13306 
13307 	child_event->ctx = child_ctx;
13308 	child_event->overflow_handler = parent_event->overflow_handler;
13309 	child_event->overflow_handler_context
13310 		= parent_event->overflow_handler_context;
13311 
13312 	/*
13313 	 * Precalculate sample_data sizes
13314 	 */
13315 	perf_event__header_size(child_event);
13316 	perf_event__id_header_size(child_event);
13317 
13318 	/*
13319 	 * Link it up in the child's context:
13320 	 */
13321 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13322 	add_event_to_ctx(child_event, child_ctx);
13323 	child_event->attach_state |= PERF_ATTACH_CHILD;
13324 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13325 
13326 	/*
13327 	 * Link this into the parent event's child list
13328 	 */
13329 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13330 	mutex_unlock(&parent_event->child_mutex);
13331 
13332 	return child_event;
13333 }
13334 
13335 /*
13336  * Inherits an event group.
13337  *
13338  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13339  * This matches with perf_event_release_kernel() removing all child events.
13340  *
13341  * Returns:
13342  *  - 0 on success
13343  *  - <0 on error
13344  */
13345 static int inherit_group(struct perf_event *parent_event,
13346 	      struct task_struct *parent,
13347 	      struct perf_event_context *parent_ctx,
13348 	      struct task_struct *child,
13349 	      struct perf_event_context *child_ctx)
13350 {
13351 	struct perf_event *leader;
13352 	struct perf_event *sub;
13353 	struct perf_event *child_ctr;
13354 
13355 	leader = inherit_event(parent_event, parent, parent_ctx,
13356 				 child, NULL, child_ctx);
13357 	if (IS_ERR(leader))
13358 		return PTR_ERR(leader);
13359 	/*
13360 	 * @leader can be NULL here because of is_orphaned_event(). In this
13361 	 * case inherit_event() will create individual events, similar to what
13362 	 * perf_group_detach() would do anyway.
13363 	 */
13364 	for_each_sibling_event(sub, parent_event) {
13365 		child_ctr = inherit_event(sub, parent, parent_ctx,
13366 					    child, leader, child_ctx);
13367 		if (IS_ERR(child_ctr))
13368 			return PTR_ERR(child_ctr);
13369 
13370 		if (sub->aux_event == parent_event && child_ctr &&
13371 		    !perf_get_aux_event(child_ctr, leader))
13372 			return -EINVAL;
13373 	}
13374 	return 0;
13375 }
13376 
13377 /*
13378  * Creates the child task context and tries to inherit the event-group.
13379  *
13380  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13381  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13382  * consistent with perf_event_release_kernel() removing all child events.
13383  *
13384  * Returns:
13385  *  - 0 on success
13386  *  - <0 on error
13387  */
13388 static int
13389 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13390 		   struct perf_event_context *parent_ctx,
13391 		   struct task_struct *child,
13392 		   u64 clone_flags, int *inherited_all)
13393 {
13394 	struct perf_event_context *child_ctx;
13395 	int ret;
13396 
13397 	if (!event->attr.inherit ||
13398 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13399 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13400 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13401 		*inherited_all = 0;
13402 		return 0;
13403 	}
13404 
13405 	child_ctx = child->perf_event_ctxp;
13406 	if (!child_ctx) {
13407 		/*
13408 		 * This is executed from the parent task context, so
13409 		 * inherit events that have been marked for cloning.
13410 		 * First allocate and initialize a context for the
13411 		 * child.
13412 		 */
13413 		child_ctx = alloc_perf_context(child);
13414 		if (!child_ctx)
13415 			return -ENOMEM;
13416 
13417 		child->perf_event_ctxp = child_ctx;
13418 	}
13419 
13420 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13421 	if (ret)
13422 		*inherited_all = 0;
13423 
13424 	return ret;
13425 }
13426 
13427 /*
13428  * Initialize the perf_event context in task_struct
13429  */
13430 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13431 {
13432 	struct perf_event_context *child_ctx, *parent_ctx;
13433 	struct perf_event_context *cloned_ctx;
13434 	struct perf_event *event;
13435 	struct task_struct *parent = current;
13436 	int inherited_all = 1;
13437 	unsigned long flags;
13438 	int ret = 0;
13439 
13440 	if (likely(!parent->perf_event_ctxp))
13441 		return 0;
13442 
13443 	/*
13444 	 * If the parent's context is a clone, pin it so it won't get
13445 	 * swapped under us.
13446 	 */
13447 	parent_ctx = perf_pin_task_context(parent);
13448 	if (!parent_ctx)
13449 		return 0;
13450 
13451 	/*
13452 	 * No need to check if parent_ctx != NULL here; since we saw
13453 	 * it non-NULL earlier, the only reason for it to become NULL
13454 	 * is if we exit, and since we're currently in the middle of
13455 	 * a fork we can't be exiting at the same time.
13456 	 */
13457 
13458 	/*
13459 	 * Lock the parent list. No need to lock the child - not PID
13460 	 * hashed yet and not running, so nobody can access it.
13461 	 */
13462 	mutex_lock(&parent_ctx->mutex);
13463 
13464 	/*
13465 	 * We dont have to disable NMIs - we are only looking at
13466 	 * the list, not manipulating it:
13467 	 */
13468 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13469 		ret = inherit_task_group(event, parent, parent_ctx,
13470 					 child, clone_flags, &inherited_all);
13471 		if (ret)
13472 			goto out_unlock;
13473 	}
13474 
13475 	/*
13476 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13477 	 * to allocations, but we need to prevent rotation because
13478 	 * rotate_ctx() will change the list from interrupt context.
13479 	 */
13480 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13481 	parent_ctx->rotate_disable = 1;
13482 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13483 
13484 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13485 		ret = inherit_task_group(event, parent, parent_ctx,
13486 					 child, clone_flags, &inherited_all);
13487 		if (ret)
13488 			goto out_unlock;
13489 	}
13490 
13491 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13492 	parent_ctx->rotate_disable = 0;
13493 
13494 	child_ctx = child->perf_event_ctxp;
13495 
13496 	if (child_ctx && inherited_all) {
13497 		/*
13498 		 * Mark the child context as a clone of the parent
13499 		 * context, or of whatever the parent is a clone of.
13500 		 *
13501 		 * Note that if the parent is a clone, the holding of
13502 		 * parent_ctx->lock avoids it from being uncloned.
13503 		 */
13504 		cloned_ctx = parent_ctx->parent_ctx;
13505 		if (cloned_ctx) {
13506 			child_ctx->parent_ctx = cloned_ctx;
13507 			child_ctx->parent_gen = parent_ctx->parent_gen;
13508 		} else {
13509 			child_ctx->parent_ctx = parent_ctx;
13510 			child_ctx->parent_gen = parent_ctx->generation;
13511 		}
13512 		get_ctx(child_ctx->parent_ctx);
13513 	}
13514 
13515 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13516 out_unlock:
13517 	mutex_unlock(&parent_ctx->mutex);
13518 
13519 	perf_unpin_context(parent_ctx);
13520 	put_ctx(parent_ctx);
13521 
13522 	return ret;
13523 }
13524 
13525 /*
13526  * Initialize the perf_event context in task_struct
13527  */
13528 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13529 {
13530 	int ret;
13531 
13532 	child->perf_event_ctxp = NULL;
13533 	mutex_init(&child->perf_event_mutex);
13534 	INIT_LIST_HEAD(&child->perf_event_list);
13535 
13536 	ret = perf_event_init_context(child, clone_flags);
13537 	if (ret) {
13538 		perf_event_free_task(child);
13539 		return ret;
13540 	}
13541 
13542 	return 0;
13543 }
13544 
13545 static void __init perf_event_init_all_cpus(void)
13546 {
13547 	struct swevent_htable *swhash;
13548 	struct perf_cpu_context *cpuctx;
13549 	int cpu;
13550 
13551 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13552 
13553 	for_each_possible_cpu(cpu) {
13554 		swhash = &per_cpu(swevent_htable, cpu);
13555 		mutex_init(&swhash->hlist_mutex);
13556 
13557 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13558 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13559 
13560 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13561 
13562 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13563 		__perf_event_init_context(&cpuctx->ctx);
13564 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13565 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13566 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13567 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13568 		cpuctx->heap = cpuctx->heap_default;
13569 	}
13570 }
13571 
13572 static void perf_swevent_init_cpu(unsigned int cpu)
13573 {
13574 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13575 
13576 	mutex_lock(&swhash->hlist_mutex);
13577 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13578 		struct swevent_hlist *hlist;
13579 
13580 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13581 		WARN_ON(!hlist);
13582 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13583 	}
13584 	mutex_unlock(&swhash->hlist_mutex);
13585 }
13586 
13587 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13588 static void __perf_event_exit_context(void *__info)
13589 {
13590 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13591 	struct perf_event_context *ctx = __info;
13592 	struct perf_event *event;
13593 
13594 	raw_spin_lock(&ctx->lock);
13595 	ctx_sched_out(ctx, EVENT_TIME);
13596 	list_for_each_entry(event, &ctx->event_list, event_entry)
13597 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13598 	raw_spin_unlock(&ctx->lock);
13599 }
13600 
13601 static void perf_event_exit_cpu_context(int cpu)
13602 {
13603 	struct perf_cpu_context *cpuctx;
13604 	struct perf_event_context *ctx;
13605 
13606 	// XXX simplify cpuctx->online
13607 	mutex_lock(&pmus_lock);
13608 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13609 	ctx = &cpuctx->ctx;
13610 
13611 	mutex_lock(&ctx->mutex);
13612 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13613 	cpuctx->online = 0;
13614 	mutex_unlock(&ctx->mutex);
13615 	cpumask_clear_cpu(cpu, perf_online_mask);
13616 	mutex_unlock(&pmus_lock);
13617 }
13618 #else
13619 
13620 static void perf_event_exit_cpu_context(int cpu) { }
13621 
13622 #endif
13623 
13624 int perf_event_init_cpu(unsigned int cpu)
13625 {
13626 	struct perf_cpu_context *cpuctx;
13627 	struct perf_event_context *ctx;
13628 
13629 	perf_swevent_init_cpu(cpu);
13630 
13631 	mutex_lock(&pmus_lock);
13632 	cpumask_set_cpu(cpu, perf_online_mask);
13633 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13634 	ctx = &cpuctx->ctx;
13635 
13636 	mutex_lock(&ctx->mutex);
13637 	cpuctx->online = 1;
13638 	mutex_unlock(&ctx->mutex);
13639 	mutex_unlock(&pmus_lock);
13640 
13641 	return 0;
13642 }
13643 
13644 int perf_event_exit_cpu(unsigned int cpu)
13645 {
13646 	perf_event_exit_cpu_context(cpu);
13647 	return 0;
13648 }
13649 
13650 static int
13651 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13652 {
13653 	int cpu;
13654 
13655 	for_each_online_cpu(cpu)
13656 		perf_event_exit_cpu(cpu);
13657 
13658 	return NOTIFY_OK;
13659 }
13660 
13661 /*
13662  * Run the perf reboot notifier at the very last possible moment so that
13663  * the generic watchdog code runs as long as possible.
13664  */
13665 static struct notifier_block perf_reboot_notifier = {
13666 	.notifier_call = perf_reboot,
13667 	.priority = INT_MIN,
13668 };
13669 
13670 void __init perf_event_init(void)
13671 {
13672 	int ret;
13673 
13674 	idr_init(&pmu_idr);
13675 
13676 	perf_event_init_all_cpus();
13677 	init_srcu_struct(&pmus_srcu);
13678 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13679 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13680 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13681 	perf_tp_register();
13682 	perf_event_init_cpu(smp_processor_id());
13683 	register_reboot_notifier(&perf_reboot_notifier);
13684 
13685 	ret = init_hw_breakpoint();
13686 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13687 
13688 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13689 
13690 	/*
13691 	 * Build time assertion that we keep the data_head at the intended
13692 	 * location.  IOW, validation we got the __reserved[] size right.
13693 	 */
13694 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13695 		     != 1024);
13696 }
13697 
13698 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13699 			      char *page)
13700 {
13701 	struct perf_pmu_events_attr *pmu_attr =
13702 		container_of(attr, struct perf_pmu_events_attr, attr);
13703 
13704 	if (pmu_attr->event_str)
13705 		return sprintf(page, "%s\n", pmu_attr->event_str);
13706 
13707 	return 0;
13708 }
13709 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13710 
13711 static int __init perf_event_sysfs_init(void)
13712 {
13713 	struct pmu *pmu;
13714 	int ret;
13715 
13716 	mutex_lock(&pmus_lock);
13717 
13718 	ret = bus_register(&pmu_bus);
13719 	if (ret)
13720 		goto unlock;
13721 
13722 	list_for_each_entry(pmu, &pmus, entry) {
13723 		if (pmu->dev)
13724 			continue;
13725 
13726 		ret = pmu_dev_alloc(pmu);
13727 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13728 	}
13729 	pmu_bus_running = 1;
13730 	ret = 0;
13731 
13732 unlock:
13733 	mutex_unlock(&pmus_lock);
13734 
13735 	return ret;
13736 }
13737 device_initcall(perf_event_sysfs_init);
13738 
13739 #ifdef CONFIG_CGROUP_PERF
13740 static struct cgroup_subsys_state *
13741 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13742 {
13743 	struct perf_cgroup *jc;
13744 
13745 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13746 	if (!jc)
13747 		return ERR_PTR(-ENOMEM);
13748 
13749 	jc->info = alloc_percpu(struct perf_cgroup_info);
13750 	if (!jc->info) {
13751 		kfree(jc);
13752 		return ERR_PTR(-ENOMEM);
13753 	}
13754 
13755 	return &jc->css;
13756 }
13757 
13758 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13759 {
13760 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13761 
13762 	free_percpu(jc->info);
13763 	kfree(jc);
13764 }
13765 
13766 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13767 {
13768 	perf_event_cgroup(css->cgroup);
13769 	return 0;
13770 }
13771 
13772 static int __perf_cgroup_move(void *info)
13773 {
13774 	struct task_struct *task = info;
13775 
13776 	preempt_disable();
13777 	perf_cgroup_switch(task);
13778 	preempt_enable();
13779 
13780 	return 0;
13781 }
13782 
13783 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13784 {
13785 	struct task_struct *task;
13786 	struct cgroup_subsys_state *css;
13787 
13788 	cgroup_taskset_for_each(task, css, tset)
13789 		task_function_call(task, __perf_cgroup_move, task);
13790 }
13791 
13792 struct cgroup_subsys perf_event_cgrp_subsys = {
13793 	.css_alloc	= perf_cgroup_css_alloc,
13794 	.css_free	= perf_cgroup_css_free,
13795 	.css_online	= perf_cgroup_css_online,
13796 	.attach		= perf_cgroup_attach,
13797 	/*
13798 	 * Implicitly enable on dfl hierarchy so that perf events can
13799 	 * always be filtered by cgroup2 path as long as perf_event
13800 	 * controller is not mounted on a legacy hierarchy.
13801 	 */
13802 	.implicit_on_dfl = true,
13803 	.threaded	= true,
13804 };
13805 #endif /* CONFIG_CGROUP_PERF */
13806 
13807 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13808