xref: /linux/kernel/events/core.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 	struct event_function_struct efs = {
248 		.event = event,
249 		.func = func,
250 		.data = data,
251 	};
252 
253 	int ret = event_function(&efs);
254 	WARN_ON_ONCE(ret);
255 }
256 
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 	struct perf_event_context *ctx = event->ctx;
260 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 	struct event_function_struct efs = {
262 		.event = event,
263 		.func = func,
264 		.data = data,
265 	};
266 
267 	if (!event->parent) {
268 		/*
269 		 * If this is a !child event, we must hold ctx::mutex to
270 		 * stabilize the the event->ctx relation. See
271 		 * perf_event_ctx_lock().
272 		 */
273 		lockdep_assert_held(&ctx->mutex);
274 	}
275 
276 	if (!task) {
277 		cpu_function_call(event->cpu, event_function, &efs);
278 		return;
279 	}
280 
281 	if (task == TASK_TOMBSTONE)
282 		return;
283 
284 again:
285 	if (!task_function_call(task, event_function, &efs))
286 		return;
287 
288 	raw_spin_lock_irq(&ctx->lock);
289 	/*
290 	 * Reload the task pointer, it might have been changed by
291 	 * a concurrent perf_event_context_sched_out().
292 	 */
293 	task = ctx->task;
294 	if (task == TASK_TOMBSTONE) {
295 		raw_spin_unlock_irq(&ctx->lock);
296 		return;
297 	}
298 	if (ctx->is_active) {
299 		raw_spin_unlock_irq(&ctx->lock);
300 		goto again;
301 	}
302 	func(event, NULL, ctx, data);
303 	raw_spin_unlock_irq(&ctx->lock);
304 }
305 
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 		       PERF_FLAG_FD_OUTPUT  |\
308 		       PERF_FLAG_PID_CGROUP |\
309 		       PERF_FLAG_FD_CLOEXEC)
310 
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315 	(PERF_SAMPLE_BRANCH_KERNEL |\
316 	 PERF_SAMPLE_BRANCH_HV)
317 
318 enum event_type_t {
319 	EVENT_FLEXIBLE = 0x1,
320 	EVENT_PINNED = 0x2,
321 	EVENT_TIME = 0x4,
322 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324 
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329 
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335 
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339 
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345 
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349 
350 /*
351  * perf event paranoia level:
352  *  -1 - not paranoid at all
353  *   0 - disallow raw tracepoint access for unpriv
354  *   1 - disallow cpu events for unpriv
355  *   2 - disallow kernel profiling for unpriv
356  */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358 
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361 
362 /*
363  * max perf event sample rate
364  */
365 #define DEFAULT_MAX_SAMPLE_RATE		100000
366 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
368 
369 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
370 
371 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
373 
374 static int perf_sample_allowed_ns __read_mostly =
375 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376 
377 static void update_perf_cpu_limits(void)
378 {
379 	u64 tmp = perf_sample_period_ns;
380 
381 	tmp *= sysctl_perf_cpu_time_max_percent;
382 	tmp = div_u64(tmp, 100);
383 	if (!tmp)
384 		tmp = 1;
385 
386 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388 
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390 
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392 		void __user *buffer, size_t *lenp,
393 		loff_t *ppos)
394 {
395 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396 
397 	if (ret || !write)
398 		return ret;
399 
400 	/*
401 	 * If throttling is disabled don't allow the write:
402 	 */
403 	if (sysctl_perf_cpu_time_max_percent == 100 ||
404 	    sysctl_perf_cpu_time_max_percent == 0)
405 		return -EINVAL;
406 
407 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409 	update_perf_cpu_limits();
410 
411 	return 0;
412 }
413 
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415 
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417 				void __user *buffer, size_t *lenp,
418 				loff_t *ppos)
419 {
420 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421 
422 	if (ret || !write)
423 		return ret;
424 
425 	if (sysctl_perf_cpu_time_max_percent == 100 ||
426 	    sysctl_perf_cpu_time_max_percent == 0) {
427 		printk(KERN_WARNING
428 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429 		WRITE_ONCE(perf_sample_allowed_ns, 0);
430 	} else {
431 		update_perf_cpu_limits();
432 	}
433 
434 	return 0;
435 }
436 
437 /*
438  * perf samples are done in some very critical code paths (NMIs).
439  * If they take too much CPU time, the system can lock up and not
440  * get any real work done.  This will drop the sample rate when
441  * we detect that events are taking too long.
442  */
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
445 
446 static u64 __report_avg;
447 static u64 __report_allowed;
448 
449 static void perf_duration_warn(struct irq_work *w)
450 {
451 	printk_ratelimited(KERN_WARNING
452 		"perf: interrupt took too long (%lld > %lld), lowering "
453 		"kernel.perf_event_max_sample_rate to %d\n",
454 		__report_avg, __report_allowed,
455 		sysctl_perf_event_sample_rate);
456 }
457 
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459 
460 void perf_sample_event_took(u64 sample_len_ns)
461 {
462 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463 	u64 running_len;
464 	u64 avg_len;
465 	u32 max;
466 
467 	if (max_len == 0)
468 		return;
469 
470 	/* Decay the counter by 1 average sample. */
471 	running_len = __this_cpu_read(running_sample_length);
472 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473 	running_len += sample_len_ns;
474 	__this_cpu_write(running_sample_length, running_len);
475 
476 	/*
477 	 * Note: this will be biased artifically low until we have
478 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479 	 * from having to maintain a count.
480 	 */
481 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482 	if (avg_len <= max_len)
483 		return;
484 
485 	__report_avg = avg_len;
486 	__report_allowed = max_len;
487 
488 	/*
489 	 * Compute a throttle threshold 25% below the current duration.
490 	 */
491 	avg_len += avg_len / 4;
492 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493 	if (avg_len < max)
494 		max /= (u32)avg_len;
495 	else
496 		max = 1;
497 
498 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499 	WRITE_ONCE(max_samples_per_tick, max);
500 
501 	sysctl_perf_event_sample_rate = max * HZ;
502 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
503 
504 	if (!irq_work_queue(&perf_duration_work)) {
505 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506 			     "kernel.perf_event_max_sample_rate to %d\n",
507 			     __report_avg, __report_allowed,
508 			     sysctl_perf_event_sample_rate);
509 	}
510 }
511 
512 static atomic64_t perf_event_id;
513 
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515 			      enum event_type_t event_type);
516 
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518 			     enum event_type_t event_type,
519 			     struct task_struct *task);
520 
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
523 
524 void __weak perf_event_print_debug(void)	{ }
525 
526 extern __weak const char *perf_pmu_name(void)
527 {
528 	return "pmu";
529 }
530 
531 static inline u64 perf_clock(void)
532 {
533 	return local_clock();
534 }
535 
536 static inline u64 perf_event_clock(struct perf_event *event)
537 {
538 	return event->clock();
539 }
540 
541 #ifdef CONFIG_CGROUP_PERF
542 
543 static inline bool
544 perf_cgroup_match(struct perf_event *event)
545 {
546 	struct perf_event_context *ctx = event->ctx;
547 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548 
549 	/* @event doesn't care about cgroup */
550 	if (!event->cgrp)
551 		return true;
552 
553 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
554 	if (!cpuctx->cgrp)
555 		return false;
556 
557 	/*
558 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
559 	 * also enabled for all its descendant cgroups.  If @cpuctx's
560 	 * cgroup is a descendant of @event's (the test covers identity
561 	 * case), it's a match.
562 	 */
563 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564 				    event->cgrp->css.cgroup);
565 }
566 
567 static inline void perf_detach_cgroup(struct perf_event *event)
568 {
569 	css_put(&event->cgrp->css);
570 	event->cgrp = NULL;
571 }
572 
573 static inline int is_cgroup_event(struct perf_event *event)
574 {
575 	return event->cgrp != NULL;
576 }
577 
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
579 {
580 	struct perf_cgroup_info *t;
581 
582 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
583 	return t->time;
584 }
585 
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587 {
588 	struct perf_cgroup_info *info;
589 	u64 now;
590 
591 	now = perf_clock();
592 
593 	info = this_cpu_ptr(cgrp->info);
594 
595 	info->time += now - info->timestamp;
596 	info->timestamp = now;
597 }
598 
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600 {
601 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602 	if (cgrp_out)
603 		__update_cgrp_time(cgrp_out);
604 }
605 
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
607 {
608 	struct perf_cgroup *cgrp;
609 
610 	/*
611 	 * ensure we access cgroup data only when needed and
612 	 * when we know the cgroup is pinned (css_get)
613 	 */
614 	if (!is_cgroup_event(event))
615 		return;
616 
617 	cgrp = perf_cgroup_from_task(current, event->ctx);
618 	/*
619 	 * Do not update time when cgroup is not active
620 	 */
621 	if (cgrp == event->cgrp)
622 		__update_cgrp_time(event->cgrp);
623 }
624 
625 static inline void
626 perf_cgroup_set_timestamp(struct task_struct *task,
627 			  struct perf_event_context *ctx)
628 {
629 	struct perf_cgroup *cgrp;
630 	struct perf_cgroup_info *info;
631 
632 	/*
633 	 * ctx->lock held by caller
634 	 * ensure we do not access cgroup data
635 	 * unless we have the cgroup pinned (css_get)
636 	 */
637 	if (!task || !ctx->nr_cgroups)
638 		return;
639 
640 	cgrp = perf_cgroup_from_task(task, ctx);
641 	info = this_cpu_ptr(cgrp->info);
642 	info->timestamp = ctx->timestamp;
643 }
644 
645 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
647 
648 /*
649  * reschedule events based on the cgroup constraint of task.
650  *
651  * mode SWOUT : schedule out everything
652  * mode SWIN : schedule in based on cgroup for next
653  */
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
655 {
656 	struct perf_cpu_context *cpuctx;
657 	struct pmu *pmu;
658 	unsigned long flags;
659 
660 	/*
661 	 * disable interrupts to avoid geting nr_cgroup
662 	 * changes via __perf_event_disable(). Also
663 	 * avoids preemption.
664 	 */
665 	local_irq_save(flags);
666 
667 	/*
668 	 * we reschedule only in the presence of cgroup
669 	 * constrained events.
670 	 */
671 
672 	list_for_each_entry_rcu(pmu, &pmus, entry) {
673 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674 		if (cpuctx->unique_pmu != pmu)
675 			continue; /* ensure we process each cpuctx once */
676 
677 		/*
678 		 * perf_cgroup_events says at least one
679 		 * context on this CPU has cgroup events.
680 		 *
681 		 * ctx->nr_cgroups reports the number of cgroup
682 		 * events for a context.
683 		 */
684 		if (cpuctx->ctx.nr_cgroups > 0) {
685 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686 			perf_pmu_disable(cpuctx->ctx.pmu);
687 
688 			if (mode & PERF_CGROUP_SWOUT) {
689 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690 				/*
691 				 * must not be done before ctxswout due
692 				 * to event_filter_match() in event_sched_out()
693 				 */
694 				cpuctx->cgrp = NULL;
695 			}
696 
697 			if (mode & PERF_CGROUP_SWIN) {
698 				WARN_ON_ONCE(cpuctx->cgrp);
699 				/*
700 				 * set cgrp before ctxsw in to allow
701 				 * event_filter_match() to not have to pass
702 				 * task around
703 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
704 				 * because cgorup events are only per-cpu
705 				 */
706 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708 			}
709 			perf_pmu_enable(cpuctx->ctx.pmu);
710 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
711 		}
712 	}
713 
714 	local_irq_restore(flags);
715 }
716 
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718 					 struct task_struct *next)
719 {
720 	struct perf_cgroup *cgrp1;
721 	struct perf_cgroup *cgrp2 = NULL;
722 
723 	rcu_read_lock();
724 	/*
725 	 * we come here when we know perf_cgroup_events > 0
726 	 * we do not need to pass the ctx here because we know
727 	 * we are holding the rcu lock
728 	 */
729 	cgrp1 = perf_cgroup_from_task(task, NULL);
730 	cgrp2 = perf_cgroup_from_task(next, NULL);
731 
732 	/*
733 	 * only schedule out current cgroup events if we know
734 	 * that we are switching to a different cgroup. Otherwise,
735 	 * do no touch the cgroup events.
736 	 */
737 	if (cgrp1 != cgrp2)
738 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
739 
740 	rcu_read_unlock();
741 }
742 
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744 					struct task_struct *task)
745 {
746 	struct perf_cgroup *cgrp1;
747 	struct perf_cgroup *cgrp2 = NULL;
748 
749 	rcu_read_lock();
750 	/*
751 	 * we come here when we know perf_cgroup_events > 0
752 	 * we do not need to pass the ctx here because we know
753 	 * we are holding the rcu lock
754 	 */
755 	cgrp1 = perf_cgroup_from_task(task, NULL);
756 	cgrp2 = perf_cgroup_from_task(prev, NULL);
757 
758 	/*
759 	 * only need to schedule in cgroup events if we are changing
760 	 * cgroup during ctxsw. Cgroup events were not scheduled
761 	 * out of ctxsw out if that was not the case.
762 	 */
763 	if (cgrp1 != cgrp2)
764 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
765 
766 	rcu_read_unlock();
767 }
768 
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770 				      struct perf_event_attr *attr,
771 				      struct perf_event *group_leader)
772 {
773 	struct perf_cgroup *cgrp;
774 	struct cgroup_subsys_state *css;
775 	struct fd f = fdget(fd);
776 	int ret = 0;
777 
778 	if (!f.file)
779 		return -EBADF;
780 
781 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
782 					 &perf_event_cgrp_subsys);
783 	if (IS_ERR(css)) {
784 		ret = PTR_ERR(css);
785 		goto out;
786 	}
787 
788 	cgrp = container_of(css, struct perf_cgroup, css);
789 	event->cgrp = cgrp;
790 
791 	/*
792 	 * all events in a group must monitor
793 	 * the same cgroup because a task belongs
794 	 * to only one perf cgroup at a time
795 	 */
796 	if (group_leader && group_leader->cgrp != cgrp) {
797 		perf_detach_cgroup(event);
798 		ret = -EINVAL;
799 	}
800 out:
801 	fdput(f);
802 	return ret;
803 }
804 
805 static inline void
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807 {
808 	struct perf_cgroup_info *t;
809 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
810 	event->shadow_ctx_time = now - t->timestamp;
811 }
812 
813 static inline void
814 perf_cgroup_defer_enabled(struct perf_event *event)
815 {
816 	/*
817 	 * when the current task's perf cgroup does not match
818 	 * the event's, we need to remember to call the
819 	 * perf_mark_enable() function the first time a task with
820 	 * a matching perf cgroup is scheduled in.
821 	 */
822 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
823 		event->cgrp_defer_enabled = 1;
824 }
825 
826 static inline void
827 perf_cgroup_mark_enabled(struct perf_event *event,
828 			 struct perf_event_context *ctx)
829 {
830 	struct perf_event *sub;
831 	u64 tstamp = perf_event_time(event);
832 
833 	if (!event->cgrp_defer_enabled)
834 		return;
835 
836 	event->cgrp_defer_enabled = 0;
837 
838 	event->tstamp_enabled = tstamp - event->total_time_enabled;
839 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
840 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842 			sub->cgrp_defer_enabled = 0;
843 		}
844 	}
845 }
846 #else /* !CONFIG_CGROUP_PERF */
847 
848 static inline bool
849 perf_cgroup_match(struct perf_event *event)
850 {
851 	return true;
852 }
853 
854 static inline void perf_detach_cgroup(struct perf_event *event)
855 {}
856 
857 static inline int is_cgroup_event(struct perf_event *event)
858 {
859 	return 0;
860 }
861 
862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
863 {
864 	return 0;
865 }
866 
867 static inline void update_cgrp_time_from_event(struct perf_event *event)
868 {
869 }
870 
871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
872 {
873 }
874 
875 static inline void perf_cgroup_sched_out(struct task_struct *task,
876 					 struct task_struct *next)
877 {
878 }
879 
880 static inline void perf_cgroup_sched_in(struct task_struct *prev,
881 					struct task_struct *task)
882 {
883 }
884 
885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
886 				      struct perf_event_attr *attr,
887 				      struct perf_event *group_leader)
888 {
889 	return -EINVAL;
890 }
891 
892 static inline void
893 perf_cgroup_set_timestamp(struct task_struct *task,
894 			  struct perf_event_context *ctx)
895 {
896 }
897 
898 void
899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
900 {
901 }
902 
903 static inline void
904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
905 {
906 }
907 
908 static inline u64 perf_cgroup_event_time(struct perf_event *event)
909 {
910 	return 0;
911 }
912 
913 static inline void
914 perf_cgroup_defer_enabled(struct perf_event *event)
915 {
916 }
917 
918 static inline void
919 perf_cgroup_mark_enabled(struct perf_event *event,
920 			 struct perf_event_context *ctx)
921 {
922 }
923 #endif
924 
925 /*
926  * set default to be dependent on timer tick just
927  * like original code
928  */
929 #define PERF_CPU_HRTIMER (1000 / HZ)
930 /*
931  * function must be called with interrupts disbled
932  */
933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
934 {
935 	struct perf_cpu_context *cpuctx;
936 	int rotations = 0;
937 
938 	WARN_ON(!irqs_disabled());
939 
940 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
941 	rotations = perf_rotate_context(cpuctx);
942 
943 	raw_spin_lock(&cpuctx->hrtimer_lock);
944 	if (rotations)
945 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
946 	else
947 		cpuctx->hrtimer_active = 0;
948 	raw_spin_unlock(&cpuctx->hrtimer_lock);
949 
950 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
951 }
952 
953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
954 {
955 	struct hrtimer *timer = &cpuctx->hrtimer;
956 	struct pmu *pmu = cpuctx->ctx.pmu;
957 	u64 interval;
958 
959 	/* no multiplexing needed for SW PMU */
960 	if (pmu->task_ctx_nr == perf_sw_context)
961 		return;
962 
963 	/*
964 	 * check default is sane, if not set then force to
965 	 * default interval (1/tick)
966 	 */
967 	interval = pmu->hrtimer_interval_ms;
968 	if (interval < 1)
969 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
970 
971 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
972 
973 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
974 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
975 	timer->function = perf_mux_hrtimer_handler;
976 }
977 
978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
979 {
980 	struct hrtimer *timer = &cpuctx->hrtimer;
981 	struct pmu *pmu = cpuctx->ctx.pmu;
982 	unsigned long flags;
983 
984 	/* not for SW PMU */
985 	if (pmu->task_ctx_nr == perf_sw_context)
986 		return 0;
987 
988 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
989 	if (!cpuctx->hrtimer_active) {
990 		cpuctx->hrtimer_active = 1;
991 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
992 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
993 	}
994 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
995 
996 	return 0;
997 }
998 
999 void perf_pmu_disable(struct pmu *pmu)
1000 {
1001 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002 	if (!(*count)++)
1003 		pmu->pmu_disable(pmu);
1004 }
1005 
1006 void perf_pmu_enable(struct pmu *pmu)
1007 {
1008 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1009 	if (!--(*count))
1010 		pmu->pmu_enable(pmu);
1011 }
1012 
1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1014 
1015 /*
1016  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1017  * perf_event_task_tick() are fully serialized because they're strictly cpu
1018  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1019  * disabled, while perf_event_task_tick is called from IRQ context.
1020  */
1021 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1022 {
1023 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1024 
1025 	WARN_ON(!irqs_disabled());
1026 
1027 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1028 
1029 	list_add(&ctx->active_ctx_list, head);
1030 }
1031 
1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1033 {
1034 	WARN_ON(!irqs_disabled());
1035 
1036 	WARN_ON(list_empty(&ctx->active_ctx_list));
1037 
1038 	list_del_init(&ctx->active_ctx_list);
1039 }
1040 
1041 static void get_ctx(struct perf_event_context *ctx)
1042 {
1043 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1044 }
1045 
1046 static void free_ctx(struct rcu_head *head)
1047 {
1048 	struct perf_event_context *ctx;
1049 
1050 	ctx = container_of(head, struct perf_event_context, rcu_head);
1051 	kfree(ctx->task_ctx_data);
1052 	kfree(ctx);
1053 }
1054 
1055 static void put_ctx(struct perf_event_context *ctx)
1056 {
1057 	if (atomic_dec_and_test(&ctx->refcount)) {
1058 		if (ctx->parent_ctx)
1059 			put_ctx(ctx->parent_ctx);
1060 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1061 			put_task_struct(ctx->task);
1062 		call_rcu(&ctx->rcu_head, free_ctx);
1063 	}
1064 }
1065 
1066 /*
1067  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1068  * perf_pmu_migrate_context() we need some magic.
1069  *
1070  * Those places that change perf_event::ctx will hold both
1071  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1072  *
1073  * Lock ordering is by mutex address. There are two other sites where
1074  * perf_event_context::mutex nests and those are:
1075  *
1076  *  - perf_event_exit_task_context()	[ child , 0 ]
1077  *      perf_event_exit_event()
1078  *        put_event()			[ parent, 1 ]
1079  *
1080  *  - perf_event_init_context()		[ parent, 0 ]
1081  *      inherit_task_group()
1082  *        inherit_group()
1083  *          inherit_event()
1084  *            perf_event_alloc()
1085  *              perf_init_event()
1086  *                perf_try_init_event()	[ child , 1 ]
1087  *
1088  * While it appears there is an obvious deadlock here -- the parent and child
1089  * nesting levels are inverted between the two. This is in fact safe because
1090  * life-time rules separate them. That is an exiting task cannot fork, and a
1091  * spawning task cannot (yet) exit.
1092  *
1093  * But remember that that these are parent<->child context relations, and
1094  * migration does not affect children, therefore these two orderings should not
1095  * interact.
1096  *
1097  * The change in perf_event::ctx does not affect children (as claimed above)
1098  * because the sys_perf_event_open() case will install a new event and break
1099  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1100  * concerned with cpuctx and that doesn't have children.
1101  *
1102  * The places that change perf_event::ctx will issue:
1103  *
1104  *   perf_remove_from_context();
1105  *   synchronize_rcu();
1106  *   perf_install_in_context();
1107  *
1108  * to affect the change. The remove_from_context() + synchronize_rcu() should
1109  * quiesce the event, after which we can install it in the new location. This
1110  * means that only external vectors (perf_fops, prctl) can perturb the event
1111  * while in transit. Therefore all such accessors should also acquire
1112  * perf_event_context::mutex to serialize against this.
1113  *
1114  * However; because event->ctx can change while we're waiting to acquire
1115  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1116  * function.
1117  *
1118  * Lock order:
1119  *    cred_guard_mutex
1120  *	task_struct::perf_event_mutex
1121  *	  perf_event_context::mutex
1122  *	    perf_event::child_mutex;
1123  *	      perf_event_context::lock
1124  *	    perf_event::mmap_mutex
1125  *	    mmap_sem
1126  */
1127 static struct perf_event_context *
1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1129 {
1130 	struct perf_event_context *ctx;
1131 
1132 again:
1133 	rcu_read_lock();
1134 	ctx = ACCESS_ONCE(event->ctx);
1135 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1136 		rcu_read_unlock();
1137 		goto again;
1138 	}
1139 	rcu_read_unlock();
1140 
1141 	mutex_lock_nested(&ctx->mutex, nesting);
1142 	if (event->ctx != ctx) {
1143 		mutex_unlock(&ctx->mutex);
1144 		put_ctx(ctx);
1145 		goto again;
1146 	}
1147 
1148 	return ctx;
1149 }
1150 
1151 static inline struct perf_event_context *
1152 perf_event_ctx_lock(struct perf_event *event)
1153 {
1154 	return perf_event_ctx_lock_nested(event, 0);
1155 }
1156 
1157 static void perf_event_ctx_unlock(struct perf_event *event,
1158 				  struct perf_event_context *ctx)
1159 {
1160 	mutex_unlock(&ctx->mutex);
1161 	put_ctx(ctx);
1162 }
1163 
1164 /*
1165  * This must be done under the ctx->lock, such as to serialize against
1166  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1167  * calling scheduler related locks and ctx->lock nests inside those.
1168  */
1169 static __must_check struct perf_event_context *
1170 unclone_ctx(struct perf_event_context *ctx)
1171 {
1172 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1173 
1174 	lockdep_assert_held(&ctx->lock);
1175 
1176 	if (parent_ctx)
1177 		ctx->parent_ctx = NULL;
1178 	ctx->generation++;
1179 
1180 	return parent_ctx;
1181 }
1182 
1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1184 {
1185 	/*
1186 	 * only top level events have the pid namespace they were created in
1187 	 */
1188 	if (event->parent)
1189 		event = event->parent;
1190 
1191 	return task_tgid_nr_ns(p, event->ns);
1192 }
1193 
1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1195 {
1196 	/*
1197 	 * only top level events have the pid namespace they were created in
1198 	 */
1199 	if (event->parent)
1200 		event = event->parent;
1201 
1202 	return task_pid_nr_ns(p, event->ns);
1203 }
1204 
1205 /*
1206  * If we inherit events we want to return the parent event id
1207  * to userspace.
1208  */
1209 static u64 primary_event_id(struct perf_event *event)
1210 {
1211 	u64 id = event->id;
1212 
1213 	if (event->parent)
1214 		id = event->parent->id;
1215 
1216 	return id;
1217 }
1218 
1219 /*
1220  * Get the perf_event_context for a task and lock it.
1221  *
1222  * This has to cope with with the fact that until it is locked,
1223  * the context could get moved to another task.
1224  */
1225 static struct perf_event_context *
1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1227 {
1228 	struct perf_event_context *ctx;
1229 
1230 retry:
1231 	/*
1232 	 * One of the few rules of preemptible RCU is that one cannot do
1233 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1234 	 * part of the read side critical section was irqs-enabled -- see
1235 	 * rcu_read_unlock_special().
1236 	 *
1237 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1238 	 * side critical section has interrupts disabled.
1239 	 */
1240 	local_irq_save(*flags);
1241 	rcu_read_lock();
1242 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1243 	if (ctx) {
1244 		/*
1245 		 * If this context is a clone of another, it might
1246 		 * get swapped for another underneath us by
1247 		 * perf_event_task_sched_out, though the
1248 		 * rcu_read_lock() protects us from any context
1249 		 * getting freed.  Lock the context and check if it
1250 		 * got swapped before we could get the lock, and retry
1251 		 * if so.  If we locked the right context, then it
1252 		 * can't get swapped on us any more.
1253 		 */
1254 		raw_spin_lock(&ctx->lock);
1255 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1256 			raw_spin_unlock(&ctx->lock);
1257 			rcu_read_unlock();
1258 			local_irq_restore(*flags);
1259 			goto retry;
1260 		}
1261 
1262 		if (ctx->task == TASK_TOMBSTONE ||
1263 		    !atomic_inc_not_zero(&ctx->refcount)) {
1264 			raw_spin_unlock(&ctx->lock);
1265 			ctx = NULL;
1266 		} else {
1267 			WARN_ON_ONCE(ctx->task != task);
1268 		}
1269 	}
1270 	rcu_read_unlock();
1271 	if (!ctx)
1272 		local_irq_restore(*flags);
1273 	return ctx;
1274 }
1275 
1276 /*
1277  * Get the context for a task and increment its pin_count so it
1278  * can't get swapped to another task.  This also increments its
1279  * reference count so that the context can't get freed.
1280  */
1281 static struct perf_event_context *
1282 perf_pin_task_context(struct task_struct *task, int ctxn)
1283 {
1284 	struct perf_event_context *ctx;
1285 	unsigned long flags;
1286 
1287 	ctx = perf_lock_task_context(task, ctxn, &flags);
1288 	if (ctx) {
1289 		++ctx->pin_count;
1290 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1291 	}
1292 	return ctx;
1293 }
1294 
1295 static void perf_unpin_context(struct perf_event_context *ctx)
1296 {
1297 	unsigned long flags;
1298 
1299 	raw_spin_lock_irqsave(&ctx->lock, flags);
1300 	--ctx->pin_count;
1301 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1302 }
1303 
1304 /*
1305  * Update the record of the current time in a context.
1306  */
1307 static void update_context_time(struct perf_event_context *ctx)
1308 {
1309 	u64 now = perf_clock();
1310 
1311 	ctx->time += now - ctx->timestamp;
1312 	ctx->timestamp = now;
1313 }
1314 
1315 static u64 perf_event_time(struct perf_event *event)
1316 {
1317 	struct perf_event_context *ctx = event->ctx;
1318 
1319 	if (is_cgroup_event(event))
1320 		return perf_cgroup_event_time(event);
1321 
1322 	return ctx ? ctx->time : 0;
1323 }
1324 
1325 /*
1326  * Update the total_time_enabled and total_time_running fields for a event.
1327  */
1328 static void update_event_times(struct perf_event *event)
1329 {
1330 	struct perf_event_context *ctx = event->ctx;
1331 	u64 run_end;
1332 
1333 	lockdep_assert_held(&ctx->lock);
1334 
1335 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1336 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1337 		return;
1338 
1339 	/*
1340 	 * in cgroup mode, time_enabled represents
1341 	 * the time the event was enabled AND active
1342 	 * tasks were in the monitored cgroup. This is
1343 	 * independent of the activity of the context as
1344 	 * there may be a mix of cgroup and non-cgroup events.
1345 	 *
1346 	 * That is why we treat cgroup events differently
1347 	 * here.
1348 	 */
1349 	if (is_cgroup_event(event))
1350 		run_end = perf_cgroup_event_time(event);
1351 	else if (ctx->is_active)
1352 		run_end = ctx->time;
1353 	else
1354 		run_end = event->tstamp_stopped;
1355 
1356 	event->total_time_enabled = run_end - event->tstamp_enabled;
1357 
1358 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1359 		run_end = event->tstamp_stopped;
1360 	else
1361 		run_end = perf_event_time(event);
1362 
1363 	event->total_time_running = run_end - event->tstamp_running;
1364 
1365 }
1366 
1367 /*
1368  * Update total_time_enabled and total_time_running for all events in a group.
1369  */
1370 static void update_group_times(struct perf_event *leader)
1371 {
1372 	struct perf_event *event;
1373 
1374 	update_event_times(leader);
1375 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1376 		update_event_times(event);
1377 }
1378 
1379 static struct list_head *
1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1381 {
1382 	if (event->attr.pinned)
1383 		return &ctx->pinned_groups;
1384 	else
1385 		return &ctx->flexible_groups;
1386 }
1387 
1388 /*
1389  * Add a event from the lists for its context.
1390  * Must be called with ctx->mutex and ctx->lock held.
1391  */
1392 static void
1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395 	lockdep_assert_held(&ctx->lock);
1396 
1397 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1398 	event->attach_state |= PERF_ATTACH_CONTEXT;
1399 
1400 	/*
1401 	 * If we're a stand alone event or group leader, we go to the context
1402 	 * list, group events are kept attached to the group so that
1403 	 * perf_group_detach can, at all times, locate all siblings.
1404 	 */
1405 	if (event->group_leader == event) {
1406 		struct list_head *list;
1407 
1408 		if (is_software_event(event))
1409 			event->group_flags |= PERF_GROUP_SOFTWARE;
1410 
1411 		list = ctx_group_list(event, ctx);
1412 		list_add_tail(&event->group_entry, list);
1413 	}
1414 
1415 	if (is_cgroup_event(event))
1416 		ctx->nr_cgroups++;
1417 
1418 	list_add_rcu(&event->event_entry, &ctx->event_list);
1419 	ctx->nr_events++;
1420 	if (event->attr.inherit_stat)
1421 		ctx->nr_stat++;
1422 
1423 	ctx->generation++;
1424 }
1425 
1426 /*
1427  * Initialize event state based on the perf_event_attr::disabled.
1428  */
1429 static inline void perf_event__state_init(struct perf_event *event)
1430 {
1431 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1432 					      PERF_EVENT_STATE_INACTIVE;
1433 }
1434 
1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1436 {
1437 	int entry = sizeof(u64); /* value */
1438 	int size = 0;
1439 	int nr = 1;
1440 
1441 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442 		size += sizeof(u64);
1443 
1444 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445 		size += sizeof(u64);
1446 
1447 	if (event->attr.read_format & PERF_FORMAT_ID)
1448 		entry += sizeof(u64);
1449 
1450 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1451 		nr += nr_siblings;
1452 		size += sizeof(u64);
1453 	}
1454 
1455 	size += entry * nr;
1456 	event->read_size = size;
1457 }
1458 
1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1460 {
1461 	struct perf_sample_data *data;
1462 	u16 size = 0;
1463 
1464 	if (sample_type & PERF_SAMPLE_IP)
1465 		size += sizeof(data->ip);
1466 
1467 	if (sample_type & PERF_SAMPLE_ADDR)
1468 		size += sizeof(data->addr);
1469 
1470 	if (sample_type & PERF_SAMPLE_PERIOD)
1471 		size += sizeof(data->period);
1472 
1473 	if (sample_type & PERF_SAMPLE_WEIGHT)
1474 		size += sizeof(data->weight);
1475 
1476 	if (sample_type & PERF_SAMPLE_READ)
1477 		size += event->read_size;
1478 
1479 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1480 		size += sizeof(data->data_src.val);
1481 
1482 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1483 		size += sizeof(data->txn);
1484 
1485 	event->header_size = size;
1486 }
1487 
1488 /*
1489  * Called at perf_event creation and when events are attached/detached from a
1490  * group.
1491  */
1492 static void perf_event__header_size(struct perf_event *event)
1493 {
1494 	__perf_event_read_size(event,
1495 			       event->group_leader->nr_siblings);
1496 	__perf_event_header_size(event, event->attr.sample_type);
1497 }
1498 
1499 static void perf_event__id_header_size(struct perf_event *event)
1500 {
1501 	struct perf_sample_data *data;
1502 	u64 sample_type = event->attr.sample_type;
1503 	u16 size = 0;
1504 
1505 	if (sample_type & PERF_SAMPLE_TID)
1506 		size += sizeof(data->tid_entry);
1507 
1508 	if (sample_type & PERF_SAMPLE_TIME)
1509 		size += sizeof(data->time);
1510 
1511 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1512 		size += sizeof(data->id);
1513 
1514 	if (sample_type & PERF_SAMPLE_ID)
1515 		size += sizeof(data->id);
1516 
1517 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1518 		size += sizeof(data->stream_id);
1519 
1520 	if (sample_type & PERF_SAMPLE_CPU)
1521 		size += sizeof(data->cpu_entry);
1522 
1523 	event->id_header_size = size;
1524 }
1525 
1526 static bool perf_event_validate_size(struct perf_event *event)
1527 {
1528 	/*
1529 	 * The values computed here will be over-written when we actually
1530 	 * attach the event.
1531 	 */
1532 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1533 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1534 	perf_event__id_header_size(event);
1535 
1536 	/*
1537 	 * Sum the lot; should not exceed the 64k limit we have on records.
1538 	 * Conservative limit to allow for callchains and other variable fields.
1539 	 */
1540 	if (event->read_size + event->header_size +
1541 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1542 		return false;
1543 
1544 	return true;
1545 }
1546 
1547 static void perf_group_attach(struct perf_event *event)
1548 {
1549 	struct perf_event *group_leader = event->group_leader, *pos;
1550 
1551 	/*
1552 	 * We can have double attach due to group movement in perf_event_open.
1553 	 */
1554 	if (event->attach_state & PERF_ATTACH_GROUP)
1555 		return;
1556 
1557 	event->attach_state |= PERF_ATTACH_GROUP;
1558 
1559 	if (group_leader == event)
1560 		return;
1561 
1562 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1563 
1564 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1565 			!is_software_event(event))
1566 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1567 
1568 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1569 	group_leader->nr_siblings++;
1570 
1571 	perf_event__header_size(group_leader);
1572 
1573 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1574 		perf_event__header_size(pos);
1575 }
1576 
1577 /*
1578  * Remove a event from the lists for its context.
1579  * Must be called with ctx->mutex and ctx->lock held.
1580  */
1581 static void
1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584 	struct perf_cpu_context *cpuctx;
1585 
1586 	WARN_ON_ONCE(event->ctx != ctx);
1587 	lockdep_assert_held(&ctx->lock);
1588 
1589 	/*
1590 	 * We can have double detach due to exit/hot-unplug + close.
1591 	 */
1592 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1593 		return;
1594 
1595 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1596 
1597 	if (is_cgroup_event(event)) {
1598 		ctx->nr_cgroups--;
1599 		/*
1600 		 * Because cgroup events are always per-cpu events, this will
1601 		 * always be called from the right CPU.
1602 		 */
1603 		cpuctx = __get_cpu_context(ctx);
1604 		/*
1605 		 * If there are no more cgroup events then clear cgrp to avoid
1606 		 * stale pointer in update_cgrp_time_from_cpuctx().
1607 		 */
1608 		if (!ctx->nr_cgroups)
1609 			cpuctx->cgrp = NULL;
1610 	}
1611 
1612 	ctx->nr_events--;
1613 	if (event->attr.inherit_stat)
1614 		ctx->nr_stat--;
1615 
1616 	list_del_rcu(&event->event_entry);
1617 
1618 	if (event->group_leader == event)
1619 		list_del_init(&event->group_entry);
1620 
1621 	update_group_times(event);
1622 
1623 	/*
1624 	 * If event was in error state, then keep it
1625 	 * that way, otherwise bogus counts will be
1626 	 * returned on read(). The only way to get out
1627 	 * of error state is by explicit re-enabling
1628 	 * of the event
1629 	 */
1630 	if (event->state > PERF_EVENT_STATE_OFF)
1631 		event->state = PERF_EVENT_STATE_OFF;
1632 
1633 	ctx->generation++;
1634 }
1635 
1636 static void perf_group_detach(struct perf_event *event)
1637 {
1638 	struct perf_event *sibling, *tmp;
1639 	struct list_head *list = NULL;
1640 
1641 	/*
1642 	 * We can have double detach due to exit/hot-unplug + close.
1643 	 */
1644 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1645 		return;
1646 
1647 	event->attach_state &= ~PERF_ATTACH_GROUP;
1648 
1649 	/*
1650 	 * If this is a sibling, remove it from its group.
1651 	 */
1652 	if (event->group_leader != event) {
1653 		list_del_init(&event->group_entry);
1654 		event->group_leader->nr_siblings--;
1655 		goto out;
1656 	}
1657 
1658 	if (!list_empty(&event->group_entry))
1659 		list = &event->group_entry;
1660 
1661 	/*
1662 	 * If this was a group event with sibling events then
1663 	 * upgrade the siblings to singleton events by adding them
1664 	 * to whatever list we are on.
1665 	 */
1666 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1667 		if (list)
1668 			list_move_tail(&sibling->group_entry, list);
1669 		sibling->group_leader = sibling;
1670 
1671 		/* Inherit group flags from the previous leader */
1672 		sibling->group_flags = event->group_flags;
1673 
1674 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1675 	}
1676 
1677 out:
1678 	perf_event__header_size(event->group_leader);
1679 
1680 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1681 		perf_event__header_size(tmp);
1682 }
1683 
1684 static bool is_orphaned_event(struct perf_event *event)
1685 {
1686 	return event->state == PERF_EVENT_STATE_DEAD;
1687 }
1688 
1689 static inline int pmu_filter_match(struct perf_event *event)
1690 {
1691 	struct pmu *pmu = event->pmu;
1692 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1693 }
1694 
1695 static inline int
1696 event_filter_match(struct perf_event *event)
1697 {
1698 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1699 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1700 }
1701 
1702 static void
1703 event_sched_out(struct perf_event *event,
1704 		  struct perf_cpu_context *cpuctx,
1705 		  struct perf_event_context *ctx)
1706 {
1707 	u64 tstamp = perf_event_time(event);
1708 	u64 delta;
1709 
1710 	WARN_ON_ONCE(event->ctx != ctx);
1711 	lockdep_assert_held(&ctx->lock);
1712 
1713 	/*
1714 	 * An event which could not be activated because of
1715 	 * filter mismatch still needs to have its timings
1716 	 * maintained, otherwise bogus information is return
1717 	 * via read() for time_enabled, time_running:
1718 	 */
1719 	if (event->state == PERF_EVENT_STATE_INACTIVE
1720 	    && !event_filter_match(event)) {
1721 		delta = tstamp - event->tstamp_stopped;
1722 		event->tstamp_running += delta;
1723 		event->tstamp_stopped = tstamp;
1724 	}
1725 
1726 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1727 		return;
1728 
1729 	perf_pmu_disable(event->pmu);
1730 
1731 	event->tstamp_stopped = tstamp;
1732 	event->pmu->del(event, 0);
1733 	event->oncpu = -1;
1734 	event->state = PERF_EVENT_STATE_INACTIVE;
1735 	if (event->pending_disable) {
1736 		event->pending_disable = 0;
1737 		event->state = PERF_EVENT_STATE_OFF;
1738 	}
1739 
1740 	if (!is_software_event(event))
1741 		cpuctx->active_oncpu--;
1742 	if (!--ctx->nr_active)
1743 		perf_event_ctx_deactivate(ctx);
1744 	if (event->attr.freq && event->attr.sample_freq)
1745 		ctx->nr_freq--;
1746 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1747 		cpuctx->exclusive = 0;
1748 
1749 	perf_pmu_enable(event->pmu);
1750 }
1751 
1752 static void
1753 group_sched_out(struct perf_event *group_event,
1754 		struct perf_cpu_context *cpuctx,
1755 		struct perf_event_context *ctx)
1756 {
1757 	struct perf_event *event;
1758 	int state = group_event->state;
1759 
1760 	event_sched_out(group_event, cpuctx, ctx);
1761 
1762 	/*
1763 	 * Schedule out siblings (if any):
1764 	 */
1765 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1766 		event_sched_out(event, cpuctx, ctx);
1767 
1768 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1769 		cpuctx->exclusive = 0;
1770 }
1771 
1772 #define DETACH_GROUP	0x01UL
1773 
1774 /*
1775  * Cross CPU call to remove a performance event
1776  *
1777  * We disable the event on the hardware level first. After that we
1778  * remove it from the context list.
1779  */
1780 static void
1781 __perf_remove_from_context(struct perf_event *event,
1782 			   struct perf_cpu_context *cpuctx,
1783 			   struct perf_event_context *ctx,
1784 			   void *info)
1785 {
1786 	unsigned long flags = (unsigned long)info;
1787 
1788 	event_sched_out(event, cpuctx, ctx);
1789 	if (flags & DETACH_GROUP)
1790 		perf_group_detach(event);
1791 	list_del_event(event, ctx);
1792 
1793 	if (!ctx->nr_events && ctx->is_active) {
1794 		ctx->is_active = 0;
1795 		if (ctx->task) {
1796 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797 			cpuctx->task_ctx = NULL;
1798 		}
1799 	}
1800 }
1801 
1802 /*
1803  * Remove the event from a task's (or a CPU's) list of events.
1804  *
1805  * If event->ctx is a cloned context, callers must make sure that
1806  * every task struct that event->ctx->task could possibly point to
1807  * remains valid.  This is OK when called from perf_release since
1808  * that only calls us on the top-level context, which can't be a clone.
1809  * When called from perf_event_exit_task, it's OK because the
1810  * context has been detached from its task.
1811  */
1812 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1813 {
1814 	lockdep_assert_held(&event->ctx->mutex);
1815 
1816 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1817 }
1818 
1819 /*
1820  * Cross CPU call to disable a performance event
1821  */
1822 static void __perf_event_disable(struct perf_event *event,
1823 				 struct perf_cpu_context *cpuctx,
1824 				 struct perf_event_context *ctx,
1825 				 void *info)
1826 {
1827 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1828 		return;
1829 
1830 	update_context_time(ctx);
1831 	update_cgrp_time_from_event(event);
1832 	update_group_times(event);
1833 	if (event == event->group_leader)
1834 		group_sched_out(event, cpuctx, ctx);
1835 	else
1836 		event_sched_out(event, cpuctx, ctx);
1837 	event->state = PERF_EVENT_STATE_OFF;
1838 }
1839 
1840 /*
1841  * Disable a event.
1842  *
1843  * If event->ctx is a cloned context, callers must make sure that
1844  * every task struct that event->ctx->task could possibly point to
1845  * remains valid.  This condition is satisifed when called through
1846  * perf_event_for_each_child or perf_event_for_each because they
1847  * hold the top-level event's child_mutex, so any descendant that
1848  * goes to exit will block in perf_event_exit_event().
1849  *
1850  * When called from perf_pending_event it's OK because event->ctx
1851  * is the current context on this CPU and preemption is disabled,
1852  * hence we can't get into perf_event_task_sched_out for this context.
1853  */
1854 static void _perf_event_disable(struct perf_event *event)
1855 {
1856 	struct perf_event_context *ctx = event->ctx;
1857 
1858 	raw_spin_lock_irq(&ctx->lock);
1859 	if (event->state <= PERF_EVENT_STATE_OFF) {
1860 		raw_spin_unlock_irq(&ctx->lock);
1861 		return;
1862 	}
1863 	raw_spin_unlock_irq(&ctx->lock);
1864 
1865 	event_function_call(event, __perf_event_disable, NULL);
1866 }
1867 
1868 void perf_event_disable_local(struct perf_event *event)
1869 {
1870 	event_function_local(event, __perf_event_disable, NULL);
1871 }
1872 
1873 /*
1874  * Strictly speaking kernel users cannot create groups and therefore this
1875  * interface does not need the perf_event_ctx_lock() magic.
1876  */
1877 void perf_event_disable(struct perf_event *event)
1878 {
1879 	struct perf_event_context *ctx;
1880 
1881 	ctx = perf_event_ctx_lock(event);
1882 	_perf_event_disable(event);
1883 	perf_event_ctx_unlock(event, ctx);
1884 }
1885 EXPORT_SYMBOL_GPL(perf_event_disable);
1886 
1887 static void perf_set_shadow_time(struct perf_event *event,
1888 				 struct perf_event_context *ctx,
1889 				 u64 tstamp)
1890 {
1891 	/*
1892 	 * use the correct time source for the time snapshot
1893 	 *
1894 	 * We could get by without this by leveraging the
1895 	 * fact that to get to this function, the caller
1896 	 * has most likely already called update_context_time()
1897 	 * and update_cgrp_time_xx() and thus both timestamp
1898 	 * are identical (or very close). Given that tstamp is,
1899 	 * already adjusted for cgroup, we could say that:
1900 	 *    tstamp - ctx->timestamp
1901 	 * is equivalent to
1902 	 *    tstamp - cgrp->timestamp.
1903 	 *
1904 	 * Then, in perf_output_read(), the calculation would
1905 	 * work with no changes because:
1906 	 * - event is guaranteed scheduled in
1907 	 * - no scheduled out in between
1908 	 * - thus the timestamp would be the same
1909 	 *
1910 	 * But this is a bit hairy.
1911 	 *
1912 	 * So instead, we have an explicit cgroup call to remain
1913 	 * within the time time source all along. We believe it
1914 	 * is cleaner and simpler to understand.
1915 	 */
1916 	if (is_cgroup_event(event))
1917 		perf_cgroup_set_shadow_time(event, tstamp);
1918 	else
1919 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1920 }
1921 
1922 #define MAX_INTERRUPTS (~0ULL)
1923 
1924 static void perf_log_throttle(struct perf_event *event, int enable);
1925 static void perf_log_itrace_start(struct perf_event *event);
1926 
1927 static int
1928 event_sched_in(struct perf_event *event,
1929 		 struct perf_cpu_context *cpuctx,
1930 		 struct perf_event_context *ctx)
1931 {
1932 	u64 tstamp = perf_event_time(event);
1933 	int ret = 0;
1934 
1935 	lockdep_assert_held(&ctx->lock);
1936 
1937 	if (event->state <= PERF_EVENT_STATE_OFF)
1938 		return 0;
1939 
1940 	WRITE_ONCE(event->oncpu, smp_processor_id());
1941 	/*
1942 	 * Order event::oncpu write to happen before the ACTIVE state
1943 	 * is visible.
1944 	 */
1945 	smp_wmb();
1946 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1947 
1948 	/*
1949 	 * Unthrottle events, since we scheduled we might have missed several
1950 	 * ticks already, also for a heavily scheduling task there is little
1951 	 * guarantee it'll get a tick in a timely manner.
1952 	 */
1953 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1954 		perf_log_throttle(event, 1);
1955 		event->hw.interrupts = 0;
1956 	}
1957 
1958 	/*
1959 	 * The new state must be visible before we turn it on in the hardware:
1960 	 */
1961 	smp_wmb();
1962 
1963 	perf_pmu_disable(event->pmu);
1964 
1965 	perf_set_shadow_time(event, ctx, tstamp);
1966 
1967 	perf_log_itrace_start(event);
1968 
1969 	if (event->pmu->add(event, PERF_EF_START)) {
1970 		event->state = PERF_EVENT_STATE_INACTIVE;
1971 		event->oncpu = -1;
1972 		ret = -EAGAIN;
1973 		goto out;
1974 	}
1975 
1976 	event->tstamp_running += tstamp - event->tstamp_stopped;
1977 
1978 	if (!is_software_event(event))
1979 		cpuctx->active_oncpu++;
1980 	if (!ctx->nr_active++)
1981 		perf_event_ctx_activate(ctx);
1982 	if (event->attr.freq && event->attr.sample_freq)
1983 		ctx->nr_freq++;
1984 
1985 	if (event->attr.exclusive)
1986 		cpuctx->exclusive = 1;
1987 
1988 out:
1989 	perf_pmu_enable(event->pmu);
1990 
1991 	return ret;
1992 }
1993 
1994 static int
1995 group_sched_in(struct perf_event *group_event,
1996 	       struct perf_cpu_context *cpuctx,
1997 	       struct perf_event_context *ctx)
1998 {
1999 	struct perf_event *event, *partial_group = NULL;
2000 	struct pmu *pmu = ctx->pmu;
2001 	u64 now = ctx->time;
2002 	bool simulate = false;
2003 
2004 	if (group_event->state == PERF_EVENT_STATE_OFF)
2005 		return 0;
2006 
2007 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2008 
2009 	if (event_sched_in(group_event, cpuctx, ctx)) {
2010 		pmu->cancel_txn(pmu);
2011 		perf_mux_hrtimer_restart(cpuctx);
2012 		return -EAGAIN;
2013 	}
2014 
2015 	/*
2016 	 * Schedule in siblings as one group (if any):
2017 	 */
2018 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2019 		if (event_sched_in(event, cpuctx, ctx)) {
2020 			partial_group = event;
2021 			goto group_error;
2022 		}
2023 	}
2024 
2025 	if (!pmu->commit_txn(pmu))
2026 		return 0;
2027 
2028 group_error:
2029 	/*
2030 	 * Groups can be scheduled in as one unit only, so undo any
2031 	 * partial group before returning:
2032 	 * The events up to the failed event are scheduled out normally,
2033 	 * tstamp_stopped will be updated.
2034 	 *
2035 	 * The failed events and the remaining siblings need to have
2036 	 * their timings updated as if they had gone thru event_sched_in()
2037 	 * and event_sched_out(). This is required to get consistent timings
2038 	 * across the group. This also takes care of the case where the group
2039 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2040 	 * the time the event was actually stopped, such that time delta
2041 	 * calculation in update_event_times() is correct.
2042 	 */
2043 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2044 		if (event == partial_group)
2045 			simulate = true;
2046 
2047 		if (simulate) {
2048 			event->tstamp_running += now - event->tstamp_stopped;
2049 			event->tstamp_stopped = now;
2050 		} else {
2051 			event_sched_out(event, cpuctx, ctx);
2052 		}
2053 	}
2054 	event_sched_out(group_event, cpuctx, ctx);
2055 
2056 	pmu->cancel_txn(pmu);
2057 
2058 	perf_mux_hrtimer_restart(cpuctx);
2059 
2060 	return -EAGAIN;
2061 }
2062 
2063 /*
2064  * Work out whether we can put this event group on the CPU now.
2065  */
2066 static int group_can_go_on(struct perf_event *event,
2067 			   struct perf_cpu_context *cpuctx,
2068 			   int can_add_hw)
2069 {
2070 	/*
2071 	 * Groups consisting entirely of software events can always go on.
2072 	 */
2073 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2074 		return 1;
2075 	/*
2076 	 * If an exclusive group is already on, no other hardware
2077 	 * events can go on.
2078 	 */
2079 	if (cpuctx->exclusive)
2080 		return 0;
2081 	/*
2082 	 * If this group is exclusive and there are already
2083 	 * events on the CPU, it can't go on.
2084 	 */
2085 	if (event->attr.exclusive && cpuctx->active_oncpu)
2086 		return 0;
2087 	/*
2088 	 * Otherwise, try to add it if all previous groups were able
2089 	 * to go on.
2090 	 */
2091 	return can_add_hw;
2092 }
2093 
2094 static void add_event_to_ctx(struct perf_event *event,
2095 			       struct perf_event_context *ctx)
2096 {
2097 	u64 tstamp = perf_event_time(event);
2098 
2099 	list_add_event(event, ctx);
2100 	perf_group_attach(event);
2101 	event->tstamp_enabled = tstamp;
2102 	event->tstamp_running = tstamp;
2103 	event->tstamp_stopped = tstamp;
2104 }
2105 
2106 static void ctx_sched_out(struct perf_event_context *ctx,
2107 			  struct perf_cpu_context *cpuctx,
2108 			  enum event_type_t event_type);
2109 static void
2110 ctx_sched_in(struct perf_event_context *ctx,
2111 	     struct perf_cpu_context *cpuctx,
2112 	     enum event_type_t event_type,
2113 	     struct task_struct *task);
2114 
2115 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2116 			       struct perf_event_context *ctx)
2117 {
2118 	if (!cpuctx->task_ctx)
2119 		return;
2120 
2121 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2122 		return;
2123 
2124 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2125 }
2126 
2127 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2128 				struct perf_event_context *ctx,
2129 				struct task_struct *task)
2130 {
2131 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2132 	if (ctx)
2133 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2134 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2135 	if (ctx)
2136 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2137 }
2138 
2139 static void ctx_resched(struct perf_cpu_context *cpuctx,
2140 			struct perf_event_context *task_ctx)
2141 {
2142 	perf_pmu_disable(cpuctx->ctx.pmu);
2143 	if (task_ctx)
2144 		task_ctx_sched_out(cpuctx, task_ctx);
2145 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2146 	perf_event_sched_in(cpuctx, task_ctx, current);
2147 	perf_pmu_enable(cpuctx->ctx.pmu);
2148 }
2149 
2150 /*
2151  * Cross CPU call to install and enable a performance event
2152  *
2153  * Very similar to remote_function() + event_function() but cannot assume that
2154  * things like ctx->is_active and cpuctx->task_ctx are set.
2155  */
2156 static int  __perf_install_in_context(void *info)
2157 {
2158 	struct perf_event *event = info;
2159 	struct perf_event_context *ctx = event->ctx;
2160 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2161 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2162 	bool activate = true;
2163 	int ret = 0;
2164 
2165 	raw_spin_lock(&cpuctx->ctx.lock);
2166 	if (ctx->task) {
2167 		raw_spin_lock(&ctx->lock);
2168 		task_ctx = ctx;
2169 
2170 		/* If we're on the wrong CPU, try again */
2171 		if (task_cpu(ctx->task) != smp_processor_id()) {
2172 			ret = -ESRCH;
2173 			goto unlock;
2174 		}
2175 
2176 		/*
2177 		 * If we're on the right CPU, see if the task we target is
2178 		 * current, if not we don't have to activate the ctx, a future
2179 		 * context switch will do that for us.
2180 		 */
2181 		if (ctx->task != current)
2182 			activate = false;
2183 		else
2184 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2185 
2186 	} else if (task_ctx) {
2187 		raw_spin_lock(&task_ctx->lock);
2188 	}
2189 
2190 	if (activate) {
2191 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2192 		add_event_to_ctx(event, ctx);
2193 		ctx_resched(cpuctx, task_ctx);
2194 	} else {
2195 		add_event_to_ctx(event, ctx);
2196 	}
2197 
2198 unlock:
2199 	perf_ctx_unlock(cpuctx, task_ctx);
2200 
2201 	return ret;
2202 }
2203 
2204 /*
2205  * Attach a performance event to a context.
2206  *
2207  * Very similar to event_function_call, see comment there.
2208  */
2209 static void
2210 perf_install_in_context(struct perf_event_context *ctx,
2211 			struct perf_event *event,
2212 			int cpu)
2213 {
2214 	struct task_struct *task = READ_ONCE(ctx->task);
2215 
2216 	lockdep_assert_held(&ctx->mutex);
2217 
2218 	event->ctx = ctx;
2219 	if (event->cpu != -1)
2220 		event->cpu = cpu;
2221 
2222 	if (!task) {
2223 		cpu_function_call(cpu, __perf_install_in_context, event);
2224 		return;
2225 	}
2226 
2227 	/*
2228 	 * Should not happen, we validate the ctx is still alive before calling.
2229 	 */
2230 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2231 		return;
2232 
2233 	/*
2234 	 * Installing events is tricky because we cannot rely on ctx->is_active
2235 	 * to be set in case this is the nr_events 0 -> 1 transition.
2236 	 */
2237 again:
2238 	/*
2239 	 * Cannot use task_function_call() because we need to run on the task's
2240 	 * CPU regardless of whether its current or not.
2241 	 */
2242 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2243 		return;
2244 
2245 	raw_spin_lock_irq(&ctx->lock);
2246 	task = ctx->task;
2247 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2248 		/*
2249 		 * Cannot happen because we already checked above (which also
2250 		 * cannot happen), and we hold ctx->mutex, which serializes us
2251 		 * against perf_event_exit_task_context().
2252 		 */
2253 		raw_spin_unlock_irq(&ctx->lock);
2254 		return;
2255 	}
2256 	raw_spin_unlock_irq(&ctx->lock);
2257 	/*
2258 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2259 	 * unconditionally.
2260 	 */
2261 	goto again;
2262 }
2263 
2264 /*
2265  * Put a event into inactive state and update time fields.
2266  * Enabling the leader of a group effectively enables all
2267  * the group members that aren't explicitly disabled, so we
2268  * have to update their ->tstamp_enabled also.
2269  * Note: this works for group members as well as group leaders
2270  * since the non-leader members' sibling_lists will be empty.
2271  */
2272 static void __perf_event_mark_enabled(struct perf_event *event)
2273 {
2274 	struct perf_event *sub;
2275 	u64 tstamp = perf_event_time(event);
2276 
2277 	event->state = PERF_EVENT_STATE_INACTIVE;
2278 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2279 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2280 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2281 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2282 	}
2283 }
2284 
2285 /*
2286  * Cross CPU call to enable a performance event
2287  */
2288 static void __perf_event_enable(struct perf_event *event,
2289 				struct perf_cpu_context *cpuctx,
2290 				struct perf_event_context *ctx,
2291 				void *info)
2292 {
2293 	struct perf_event *leader = event->group_leader;
2294 	struct perf_event_context *task_ctx;
2295 
2296 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2297 	    event->state <= PERF_EVENT_STATE_ERROR)
2298 		return;
2299 
2300 	if (ctx->is_active)
2301 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2302 
2303 	__perf_event_mark_enabled(event);
2304 
2305 	if (!ctx->is_active)
2306 		return;
2307 
2308 	if (!event_filter_match(event)) {
2309 		if (is_cgroup_event(event))
2310 			perf_cgroup_defer_enabled(event);
2311 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2312 		return;
2313 	}
2314 
2315 	/*
2316 	 * If the event is in a group and isn't the group leader,
2317 	 * then don't put it on unless the group is on.
2318 	 */
2319 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2320 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2321 		return;
2322 	}
2323 
2324 	task_ctx = cpuctx->task_ctx;
2325 	if (ctx->task)
2326 		WARN_ON_ONCE(task_ctx != ctx);
2327 
2328 	ctx_resched(cpuctx, task_ctx);
2329 }
2330 
2331 /*
2332  * Enable a event.
2333  *
2334  * If event->ctx is a cloned context, callers must make sure that
2335  * every task struct that event->ctx->task could possibly point to
2336  * remains valid.  This condition is satisfied when called through
2337  * perf_event_for_each_child or perf_event_for_each as described
2338  * for perf_event_disable.
2339  */
2340 static void _perf_event_enable(struct perf_event *event)
2341 {
2342 	struct perf_event_context *ctx = event->ctx;
2343 
2344 	raw_spin_lock_irq(&ctx->lock);
2345 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2346 	    event->state <  PERF_EVENT_STATE_ERROR) {
2347 		raw_spin_unlock_irq(&ctx->lock);
2348 		return;
2349 	}
2350 
2351 	/*
2352 	 * If the event is in error state, clear that first.
2353 	 *
2354 	 * That way, if we see the event in error state below, we know that it
2355 	 * has gone back into error state, as distinct from the task having
2356 	 * been scheduled away before the cross-call arrived.
2357 	 */
2358 	if (event->state == PERF_EVENT_STATE_ERROR)
2359 		event->state = PERF_EVENT_STATE_OFF;
2360 	raw_spin_unlock_irq(&ctx->lock);
2361 
2362 	event_function_call(event, __perf_event_enable, NULL);
2363 }
2364 
2365 /*
2366  * See perf_event_disable();
2367  */
2368 void perf_event_enable(struct perf_event *event)
2369 {
2370 	struct perf_event_context *ctx;
2371 
2372 	ctx = perf_event_ctx_lock(event);
2373 	_perf_event_enable(event);
2374 	perf_event_ctx_unlock(event, ctx);
2375 }
2376 EXPORT_SYMBOL_GPL(perf_event_enable);
2377 
2378 struct stop_event_data {
2379 	struct perf_event	*event;
2380 	unsigned int		restart;
2381 };
2382 
2383 static int __perf_event_stop(void *info)
2384 {
2385 	struct stop_event_data *sd = info;
2386 	struct perf_event *event = sd->event;
2387 
2388 	/* if it's already INACTIVE, do nothing */
2389 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2390 		return 0;
2391 
2392 	/* matches smp_wmb() in event_sched_in() */
2393 	smp_rmb();
2394 
2395 	/*
2396 	 * There is a window with interrupts enabled before we get here,
2397 	 * so we need to check again lest we try to stop another CPU's event.
2398 	 */
2399 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2400 		return -EAGAIN;
2401 
2402 	event->pmu->stop(event, PERF_EF_UPDATE);
2403 
2404 	/*
2405 	 * May race with the actual stop (through perf_pmu_output_stop()),
2406 	 * but it is only used for events with AUX ring buffer, and such
2407 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2408 	 * see comments in perf_aux_output_begin().
2409 	 *
2410 	 * Since this is happening on a event-local CPU, no trace is lost
2411 	 * while restarting.
2412 	 */
2413 	if (sd->restart)
2414 		event->pmu->start(event, PERF_EF_START);
2415 
2416 	return 0;
2417 }
2418 
2419 static int perf_event_restart(struct perf_event *event)
2420 {
2421 	struct stop_event_data sd = {
2422 		.event		= event,
2423 		.restart	= 1,
2424 	};
2425 	int ret = 0;
2426 
2427 	do {
2428 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2429 			return 0;
2430 
2431 		/* matches smp_wmb() in event_sched_in() */
2432 		smp_rmb();
2433 
2434 		/*
2435 		 * We only want to restart ACTIVE events, so if the event goes
2436 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2437 		 * fall through with ret==-ENXIO.
2438 		 */
2439 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2440 					__perf_event_stop, &sd);
2441 	} while (ret == -EAGAIN);
2442 
2443 	return ret;
2444 }
2445 
2446 /*
2447  * In order to contain the amount of racy and tricky in the address filter
2448  * configuration management, it is a two part process:
2449  *
2450  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2451  *      we update the addresses of corresponding vmas in
2452  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2453  * (p2) when an event is scheduled in (pmu::add), it calls
2454  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2455  *      if the generation has changed since the previous call.
2456  *
2457  * If (p1) happens while the event is active, we restart it to force (p2).
2458  *
2459  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2460  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2461  *     ioctl;
2462  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2463  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2464  *     for reading;
2465  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2466  *     of exec.
2467  */
2468 void perf_event_addr_filters_sync(struct perf_event *event)
2469 {
2470 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2471 
2472 	if (!has_addr_filter(event))
2473 		return;
2474 
2475 	raw_spin_lock(&ifh->lock);
2476 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2477 		event->pmu->addr_filters_sync(event);
2478 		event->hw.addr_filters_gen = event->addr_filters_gen;
2479 	}
2480 	raw_spin_unlock(&ifh->lock);
2481 }
2482 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2483 
2484 static int _perf_event_refresh(struct perf_event *event, int refresh)
2485 {
2486 	/*
2487 	 * not supported on inherited events
2488 	 */
2489 	if (event->attr.inherit || !is_sampling_event(event))
2490 		return -EINVAL;
2491 
2492 	atomic_add(refresh, &event->event_limit);
2493 	_perf_event_enable(event);
2494 
2495 	return 0;
2496 }
2497 
2498 /*
2499  * See perf_event_disable()
2500  */
2501 int perf_event_refresh(struct perf_event *event, int refresh)
2502 {
2503 	struct perf_event_context *ctx;
2504 	int ret;
2505 
2506 	ctx = perf_event_ctx_lock(event);
2507 	ret = _perf_event_refresh(event, refresh);
2508 	perf_event_ctx_unlock(event, ctx);
2509 
2510 	return ret;
2511 }
2512 EXPORT_SYMBOL_GPL(perf_event_refresh);
2513 
2514 static void ctx_sched_out(struct perf_event_context *ctx,
2515 			  struct perf_cpu_context *cpuctx,
2516 			  enum event_type_t event_type)
2517 {
2518 	int is_active = ctx->is_active;
2519 	struct perf_event *event;
2520 
2521 	lockdep_assert_held(&ctx->lock);
2522 
2523 	if (likely(!ctx->nr_events)) {
2524 		/*
2525 		 * See __perf_remove_from_context().
2526 		 */
2527 		WARN_ON_ONCE(ctx->is_active);
2528 		if (ctx->task)
2529 			WARN_ON_ONCE(cpuctx->task_ctx);
2530 		return;
2531 	}
2532 
2533 	ctx->is_active &= ~event_type;
2534 	if (!(ctx->is_active & EVENT_ALL))
2535 		ctx->is_active = 0;
2536 
2537 	if (ctx->task) {
2538 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2539 		if (!ctx->is_active)
2540 			cpuctx->task_ctx = NULL;
2541 	}
2542 
2543 	/*
2544 	 * Always update time if it was set; not only when it changes.
2545 	 * Otherwise we can 'forget' to update time for any but the last
2546 	 * context we sched out. For example:
2547 	 *
2548 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2549 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2550 	 *
2551 	 * would only update time for the pinned events.
2552 	 */
2553 	if (is_active & EVENT_TIME) {
2554 		/* update (and stop) ctx time */
2555 		update_context_time(ctx);
2556 		update_cgrp_time_from_cpuctx(cpuctx);
2557 	}
2558 
2559 	is_active ^= ctx->is_active; /* changed bits */
2560 
2561 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2562 		return;
2563 
2564 	perf_pmu_disable(ctx->pmu);
2565 	if (is_active & EVENT_PINNED) {
2566 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2567 			group_sched_out(event, cpuctx, ctx);
2568 	}
2569 
2570 	if (is_active & EVENT_FLEXIBLE) {
2571 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2572 			group_sched_out(event, cpuctx, ctx);
2573 	}
2574 	perf_pmu_enable(ctx->pmu);
2575 }
2576 
2577 /*
2578  * Test whether two contexts are equivalent, i.e. whether they have both been
2579  * cloned from the same version of the same context.
2580  *
2581  * Equivalence is measured using a generation number in the context that is
2582  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2583  * and list_del_event().
2584  */
2585 static int context_equiv(struct perf_event_context *ctx1,
2586 			 struct perf_event_context *ctx2)
2587 {
2588 	lockdep_assert_held(&ctx1->lock);
2589 	lockdep_assert_held(&ctx2->lock);
2590 
2591 	/* Pinning disables the swap optimization */
2592 	if (ctx1->pin_count || ctx2->pin_count)
2593 		return 0;
2594 
2595 	/* If ctx1 is the parent of ctx2 */
2596 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2597 		return 1;
2598 
2599 	/* If ctx2 is the parent of ctx1 */
2600 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2601 		return 1;
2602 
2603 	/*
2604 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2605 	 * hierarchy, see perf_event_init_context().
2606 	 */
2607 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2608 			ctx1->parent_gen == ctx2->parent_gen)
2609 		return 1;
2610 
2611 	/* Unmatched */
2612 	return 0;
2613 }
2614 
2615 static void __perf_event_sync_stat(struct perf_event *event,
2616 				     struct perf_event *next_event)
2617 {
2618 	u64 value;
2619 
2620 	if (!event->attr.inherit_stat)
2621 		return;
2622 
2623 	/*
2624 	 * Update the event value, we cannot use perf_event_read()
2625 	 * because we're in the middle of a context switch and have IRQs
2626 	 * disabled, which upsets smp_call_function_single(), however
2627 	 * we know the event must be on the current CPU, therefore we
2628 	 * don't need to use it.
2629 	 */
2630 	switch (event->state) {
2631 	case PERF_EVENT_STATE_ACTIVE:
2632 		event->pmu->read(event);
2633 		/* fall-through */
2634 
2635 	case PERF_EVENT_STATE_INACTIVE:
2636 		update_event_times(event);
2637 		break;
2638 
2639 	default:
2640 		break;
2641 	}
2642 
2643 	/*
2644 	 * In order to keep per-task stats reliable we need to flip the event
2645 	 * values when we flip the contexts.
2646 	 */
2647 	value = local64_read(&next_event->count);
2648 	value = local64_xchg(&event->count, value);
2649 	local64_set(&next_event->count, value);
2650 
2651 	swap(event->total_time_enabled, next_event->total_time_enabled);
2652 	swap(event->total_time_running, next_event->total_time_running);
2653 
2654 	/*
2655 	 * Since we swizzled the values, update the user visible data too.
2656 	 */
2657 	perf_event_update_userpage(event);
2658 	perf_event_update_userpage(next_event);
2659 }
2660 
2661 static void perf_event_sync_stat(struct perf_event_context *ctx,
2662 				   struct perf_event_context *next_ctx)
2663 {
2664 	struct perf_event *event, *next_event;
2665 
2666 	if (!ctx->nr_stat)
2667 		return;
2668 
2669 	update_context_time(ctx);
2670 
2671 	event = list_first_entry(&ctx->event_list,
2672 				   struct perf_event, event_entry);
2673 
2674 	next_event = list_first_entry(&next_ctx->event_list,
2675 					struct perf_event, event_entry);
2676 
2677 	while (&event->event_entry != &ctx->event_list &&
2678 	       &next_event->event_entry != &next_ctx->event_list) {
2679 
2680 		__perf_event_sync_stat(event, next_event);
2681 
2682 		event = list_next_entry(event, event_entry);
2683 		next_event = list_next_entry(next_event, event_entry);
2684 	}
2685 }
2686 
2687 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2688 					 struct task_struct *next)
2689 {
2690 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2691 	struct perf_event_context *next_ctx;
2692 	struct perf_event_context *parent, *next_parent;
2693 	struct perf_cpu_context *cpuctx;
2694 	int do_switch = 1;
2695 
2696 	if (likely(!ctx))
2697 		return;
2698 
2699 	cpuctx = __get_cpu_context(ctx);
2700 	if (!cpuctx->task_ctx)
2701 		return;
2702 
2703 	rcu_read_lock();
2704 	next_ctx = next->perf_event_ctxp[ctxn];
2705 	if (!next_ctx)
2706 		goto unlock;
2707 
2708 	parent = rcu_dereference(ctx->parent_ctx);
2709 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2710 
2711 	/* If neither context have a parent context; they cannot be clones. */
2712 	if (!parent && !next_parent)
2713 		goto unlock;
2714 
2715 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2716 		/*
2717 		 * Looks like the two contexts are clones, so we might be
2718 		 * able to optimize the context switch.  We lock both
2719 		 * contexts and check that they are clones under the
2720 		 * lock (including re-checking that neither has been
2721 		 * uncloned in the meantime).  It doesn't matter which
2722 		 * order we take the locks because no other cpu could
2723 		 * be trying to lock both of these tasks.
2724 		 */
2725 		raw_spin_lock(&ctx->lock);
2726 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2727 		if (context_equiv(ctx, next_ctx)) {
2728 			WRITE_ONCE(ctx->task, next);
2729 			WRITE_ONCE(next_ctx->task, task);
2730 
2731 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2732 
2733 			/*
2734 			 * RCU_INIT_POINTER here is safe because we've not
2735 			 * modified the ctx and the above modification of
2736 			 * ctx->task and ctx->task_ctx_data are immaterial
2737 			 * since those values are always verified under
2738 			 * ctx->lock which we're now holding.
2739 			 */
2740 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2741 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2742 
2743 			do_switch = 0;
2744 
2745 			perf_event_sync_stat(ctx, next_ctx);
2746 		}
2747 		raw_spin_unlock(&next_ctx->lock);
2748 		raw_spin_unlock(&ctx->lock);
2749 	}
2750 unlock:
2751 	rcu_read_unlock();
2752 
2753 	if (do_switch) {
2754 		raw_spin_lock(&ctx->lock);
2755 		task_ctx_sched_out(cpuctx, ctx);
2756 		raw_spin_unlock(&ctx->lock);
2757 	}
2758 }
2759 
2760 void perf_sched_cb_dec(struct pmu *pmu)
2761 {
2762 	this_cpu_dec(perf_sched_cb_usages);
2763 }
2764 
2765 void perf_sched_cb_inc(struct pmu *pmu)
2766 {
2767 	this_cpu_inc(perf_sched_cb_usages);
2768 }
2769 
2770 /*
2771  * This function provides the context switch callback to the lower code
2772  * layer. It is invoked ONLY when the context switch callback is enabled.
2773  */
2774 static void perf_pmu_sched_task(struct task_struct *prev,
2775 				struct task_struct *next,
2776 				bool sched_in)
2777 {
2778 	struct perf_cpu_context *cpuctx;
2779 	struct pmu *pmu;
2780 	unsigned long flags;
2781 
2782 	if (prev == next)
2783 		return;
2784 
2785 	local_irq_save(flags);
2786 
2787 	rcu_read_lock();
2788 
2789 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2790 		if (pmu->sched_task) {
2791 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2792 
2793 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2794 
2795 			perf_pmu_disable(pmu);
2796 
2797 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2798 
2799 			perf_pmu_enable(pmu);
2800 
2801 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2802 		}
2803 	}
2804 
2805 	rcu_read_unlock();
2806 
2807 	local_irq_restore(flags);
2808 }
2809 
2810 static void perf_event_switch(struct task_struct *task,
2811 			      struct task_struct *next_prev, bool sched_in);
2812 
2813 #define for_each_task_context_nr(ctxn)					\
2814 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2815 
2816 /*
2817  * Called from scheduler to remove the events of the current task,
2818  * with interrupts disabled.
2819  *
2820  * We stop each event and update the event value in event->count.
2821  *
2822  * This does not protect us against NMI, but disable()
2823  * sets the disabled bit in the control field of event _before_
2824  * accessing the event control register. If a NMI hits, then it will
2825  * not restart the event.
2826  */
2827 void __perf_event_task_sched_out(struct task_struct *task,
2828 				 struct task_struct *next)
2829 {
2830 	int ctxn;
2831 
2832 	if (__this_cpu_read(perf_sched_cb_usages))
2833 		perf_pmu_sched_task(task, next, false);
2834 
2835 	if (atomic_read(&nr_switch_events))
2836 		perf_event_switch(task, next, false);
2837 
2838 	for_each_task_context_nr(ctxn)
2839 		perf_event_context_sched_out(task, ctxn, next);
2840 
2841 	/*
2842 	 * if cgroup events exist on this CPU, then we need
2843 	 * to check if we have to switch out PMU state.
2844 	 * cgroup event are system-wide mode only
2845 	 */
2846 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2847 		perf_cgroup_sched_out(task, next);
2848 }
2849 
2850 /*
2851  * Called with IRQs disabled
2852  */
2853 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2854 			      enum event_type_t event_type)
2855 {
2856 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2857 }
2858 
2859 static void
2860 ctx_pinned_sched_in(struct perf_event_context *ctx,
2861 		    struct perf_cpu_context *cpuctx)
2862 {
2863 	struct perf_event *event;
2864 
2865 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2866 		if (event->state <= PERF_EVENT_STATE_OFF)
2867 			continue;
2868 		if (!event_filter_match(event))
2869 			continue;
2870 
2871 		/* may need to reset tstamp_enabled */
2872 		if (is_cgroup_event(event))
2873 			perf_cgroup_mark_enabled(event, ctx);
2874 
2875 		if (group_can_go_on(event, cpuctx, 1))
2876 			group_sched_in(event, cpuctx, ctx);
2877 
2878 		/*
2879 		 * If this pinned group hasn't been scheduled,
2880 		 * put it in error state.
2881 		 */
2882 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2883 			update_group_times(event);
2884 			event->state = PERF_EVENT_STATE_ERROR;
2885 		}
2886 	}
2887 }
2888 
2889 static void
2890 ctx_flexible_sched_in(struct perf_event_context *ctx,
2891 		      struct perf_cpu_context *cpuctx)
2892 {
2893 	struct perf_event *event;
2894 	int can_add_hw = 1;
2895 
2896 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2897 		/* Ignore events in OFF or ERROR state */
2898 		if (event->state <= PERF_EVENT_STATE_OFF)
2899 			continue;
2900 		/*
2901 		 * Listen to the 'cpu' scheduling filter constraint
2902 		 * of events:
2903 		 */
2904 		if (!event_filter_match(event))
2905 			continue;
2906 
2907 		/* may need to reset tstamp_enabled */
2908 		if (is_cgroup_event(event))
2909 			perf_cgroup_mark_enabled(event, ctx);
2910 
2911 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2912 			if (group_sched_in(event, cpuctx, ctx))
2913 				can_add_hw = 0;
2914 		}
2915 	}
2916 }
2917 
2918 static void
2919 ctx_sched_in(struct perf_event_context *ctx,
2920 	     struct perf_cpu_context *cpuctx,
2921 	     enum event_type_t event_type,
2922 	     struct task_struct *task)
2923 {
2924 	int is_active = ctx->is_active;
2925 	u64 now;
2926 
2927 	lockdep_assert_held(&ctx->lock);
2928 
2929 	if (likely(!ctx->nr_events))
2930 		return;
2931 
2932 	ctx->is_active |= (event_type | EVENT_TIME);
2933 	if (ctx->task) {
2934 		if (!is_active)
2935 			cpuctx->task_ctx = ctx;
2936 		else
2937 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2938 	}
2939 
2940 	is_active ^= ctx->is_active; /* changed bits */
2941 
2942 	if (is_active & EVENT_TIME) {
2943 		/* start ctx time */
2944 		now = perf_clock();
2945 		ctx->timestamp = now;
2946 		perf_cgroup_set_timestamp(task, ctx);
2947 	}
2948 
2949 	/*
2950 	 * First go through the list and put on any pinned groups
2951 	 * in order to give them the best chance of going on.
2952 	 */
2953 	if (is_active & EVENT_PINNED)
2954 		ctx_pinned_sched_in(ctx, cpuctx);
2955 
2956 	/* Then walk through the lower prio flexible groups */
2957 	if (is_active & EVENT_FLEXIBLE)
2958 		ctx_flexible_sched_in(ctx, cpuctx);
2959 }
2960 
2961 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2962 			     enum event_type_t event_type,
2963 			     struct task_struct *task)
2964 {
2965 	struct perf_event_context *ctx = &cpuctx->ctx;
2966 
2967 	ctx_sched_in(ctx, cpuctx, event_type, task);
2968 }
2969 
2970 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2971 					struct task_struct *task)
2972 {
2973 	struct perf_cpu_context *cpuctx;
2974 
2975 	cpuctx = __get_cpu_context(ctx);
2976 	if (cpuctx->task_ctx == ctx)
2977 		return;
2978 
2979 	perf_ctx_lock(cpuctx, ctx);
2980 	perf_pmu_disable(ctx->pmu);
2981 	/*
2982 	 * We want to keep the following priority order:
2983 	 * cpu pinned (that don't need to move), task pinned,
2984 	 * cpu flexible, task flexible.
2985 	 */
2986 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2987 	perf_event_sched_in(cpuctx, ctx, task);
2988 	perf_pmu_enable(ctx->pmu);
2989 	perf_ctx_unlock(cpuctx, ctx);
2990 }
2991 
2992 /*
2993  * Called from scheduler to add the events of the current task
2994  * with interrupts disabled.
2995  *
2996  * We restore the event value and then enable it.
2997  *
2998  * This does not protect us against NMI, but enable()
2999  * sets the enabled bit in the control field of event _before_
3000  * accessing the event control register. If a NMI hits, then it will
3001  * keep the event running.
3002  */
3003 void __perf_event_task_sched_in(struct task_struct *prev,
3004 				struct task_struct *task)
3005 {
3006 	struct perf_event_context *ctx;
3007 	int ctxn;
3008 
3009 	/*
3010 	 * If cgroup events exist on this CPU, then we need to check if we have
3011 	 * to switch in PMU state; cgroup event are system-wide mode only.
3012 	 *
3013 	 * Since cgroup events are CPU events, we must schedule these in before
3014 	 * we schedule in the task events.
3015 	 */
3016 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3017 		perf_cgroup_sched_in(prev, task);
3018 
3019 	for_each_task_context_nr(ctxn) {
3020 		ctx = task->perf_event_ctxp[ctxn];
3021 		if (likely(!ctx))
3022 			continue;
3023 
3024 		perf_event_context_sched_in(ctx, task);
3025 	}
3026 
3027 	if (atomic_read(&nr_switch_events))
3028 		perf_event_switch(task, prev, true);
3029 
3030 	if (__this_cpu_read(perf_sched_cb_usages))
3031 		perf_pmu_sched_task(prev, task, true);
3032 }
3033 
3034 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3035 {
3036 	u64 frequency = event->attr.sample_freq;
3037 	u64 sec = NSEC_PER_SEC;
3038 	u64 divisor, dividend;
3039 
3040 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3041 
3042 	count_fls = fls64(count);
3043 	nsec_fls = fls64(nsec);
3044 	frequency_fls = fls64(frequency);
3045 	sec_fls = 30;
3046 
3047 	/*
3048 	 * We got @count in @nsec, with a target of sample_freq HZ
3049 	 * the target period becomes:
3050 	 *
3051 	 *             @count * 10^9
3052 	 * period = -------------------
3053 	 *          @nsec * sample_freq
3054 	 *
3055 	 */
3056 
3057 	/*
3058 	 * Reduce accuracy by one bit such that @a and @b converge
3059 	 * to a similar magnitude.
3060 	 */
3061 #define REDUCE_FLS(a, b)		\
3062 do {					\
3063 	if (a##_fls > b##_fls) {	\
3064 		a >>= 1;		\
3065 		a##_fls--;		\
3066 	} else {			\
3067 		b >>= 1;		\
3068 		b##_fls--;		\
3069 	}				\
3070 } while (0)
3071 
3072 	/*
3073 	 * Reduce accuracy until either term fits in a u64, then proceed with
3074 	 * the other, so that finally we can do a u64/u64 division.
3075 	 */
3076 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3077 		REDUCE_FLS(nsec, frequency);
3078 		REDUCE_FLS(sec, count);
3079 	}
3080 
3081 	if (count_fls + sec_fls > 64) {
3082 		divisor = nsec * frequency;
3083 
3084 		while (count_fls + sec_fls > 64) {
3085 			REDUCE_FLS(count, sec);
3086 			divisor >>= 1;
3087 		}
3088 
3089 		dividend = count * sec;
3090 	} else {
3091 		dividend = count * sec;
3092 
3093 		while (nsec_fls + frequency_fls > 64) {
3094 			REDUCE_FLS(nsec, frequency);
3095 			dividend >>= 1;
3096 		}
3097 
3098 		divisor = nsec * frequency;
3099 	}
3100 
3101 	if (!divisor)
3102 		return dividend;
3103 
3104 	return div64_u64(dividend, divisor);
3105 }
3106 
3107 static DEFINE_PER_CPU(int, perf_throttled_count);
3108 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3109 
3110 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3111 {
3112 	struct hw_perf_event *hwc = &event->hw;
3113 	s64 period, sample_period;
3114 	s64 delta;
3115 
3116 	period = perf_calculate_period(event, nsec, count);
3117 
3118 	delta = (s64)(period - hwc->sample_period);
3119 	delta = (delta + 7) / 8; /* low pass filter */
3120 
3121 	sample_period = hwc->sample_period + delta;
3122 
3123 	if (!sample_period)
3124 		sample_period = 1;
3125 
3126 	hwc->sample_period = sample_period;
3127 
3128 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3129 		if (disable)
3130 			event->pmu->stop(event, PERF_EF_UPDATE);
3131 
3132 		local64_set(&hwc->period_left, 0);
3133 
3134 		if (disable)
3135 			event->pmu->start(event, PERF_EF_RELOAD);
3136 	}
3137 }
3138 
3139 /*
3140  * combine freq adjustment with unthrottling to avoid two passes over the
3141  * events. At the same time, make sure, having freq events does not change
3142  * the rate of unthrottling as that would introduce bias.
3143  */
3144 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3145 					   int needs_unthr)
3146 {
3147 	struct perf_event *event;
3148 	struct hw_perf_event *hwc;
3149 	u64 now, period = TICK_NSEC;
3150 	s64 delta;
3151 
3152 	/*
3153 	 * only need to iterate over all events iff:
3154 	 * - context have events in frequency mode (needs freq adjust)
3155 	 * - there are events to unthrottle on this cpu
3156 	 */
3157 	if (!(ctx->nr_freq || needs_unthr))
3158 		return;
3159 
3160 	raw_spin_lock(&ctx->lock);
3161 	perf_pmu_disable(ctx->pmu);
3162 
3163 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3164 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3165 			continue;
3166 
3167 		if (!event_filter_match(event))
3168 			continue;
3169 
3170 		perf_pmu_disable(event->pmu);
3171 
3172 		hwc = &event->hw;
3173 
3174 		if (hwc->interrupts == MAX_INTERRUPTS) {
3175 			hwc->interrupts = 0;
3176 			perf_log_throttle(event, 1);
3177 			event->pmu->start(event, 0);
3178 		}
3179 
3180 		if (!event->attr.freq || !event->attr.sample_freq)
3181 			goto next;
3182 
3183 		/*
3184 		 * stop the event and update event->count
3185 		 */
3186 		event->pmu->stop(event, PERF_EF_UPDATE);
3187 
3188 		now = local64_read(&event->count);
3189 		delta = now - hwc->freq_count_stamp;
3190 		hwc->freq_count_stamp = now;
3191 
3192 		/*
3193 		 * restart the event
3194 		 * reload only if value has changed
3195 		 * we have stopped the event so tell that
3196 		 * to perf_adjust_period() to avoid stopping it
3197 		 * twice.
3198 		 */
3199 		if (delta > 0)
3200 			perf_adjust_period(event, period, delta, false);
3201 
3202 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3203 	next:
3204 		perf_pmu_enable(event->pmu);
3205 	}
3206 
3207 	perf_pmu_enable(ctx->pmu);
3208 	raw_spin_unlock(&ctx->lock);
3209 }
3210 
3211 /*
3212  * Round-robin a context's events:
3213  */
3214 static void rotate_ctx(struct perf_event_context *ctx)
3215 {
3216 	/*
3217 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3218 	 * disabled by the inheritance code.
3219 	 */
3220 	if (!ctx->rotate_disable)
3221 		list_rotate_left(&ctx->flexible_groups);
3222 }
3223 
3224 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3225 {
3226 	struct perf_event_context *ctx = NULL;
3227 	int rotate = 0;
3228 
3229 	if (cpuctx->ctx.nr_events) {
3230 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3231 			rotate = 1;
3232 	}
3233 
3234 	ctx = cpuctx->task_ctx;
3235 	if (ctx && ctx->nr_events) {
3236 		if (ctx->nr_events != ctx->nr_active)
3237 			rotate = 1;
3238 	}
3239 
3240 	if (!rotate)
3241 		goto done;
3242 
3243 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3244 	perf_pmu_disable(cpuctx->ctx.pmu);
3245 
3246 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3247 	if (ctx)
3248 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3249 
3250 	rotate_ctx(&cpuctx->ctx);
3251 	if (ctx)
3252 		rotate_ctx(ctx);
3253 
3254 	perf_event_sched_in(cpuctx, ctx, current);
3255 
3256 	perf_pmu_enable(cpuctx->ctx.pmu);
3257 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3258 done:
3259 
3260 	return rotate;
3261 }
3262 
3263 void perf_event_task_tick(void)
3264 {
3265 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3266 	struct perf_event_context *ctx, *tmp;
3267 	int throttled;
3268 
3269 	WARN_ON(!irqs_disabled());
3270 
3271 	__this_cpu_inc(perf_throttled_seq);
3272 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3273 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3274 
3275 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3276 		perf_adjust_freq_unthr_context(ctx, throttled);
3277 }
3278 
3279 static int event_enable_on_exec(struct perf_event *event,
3280 				struct perf_event_context *ctx)
3281 {
3282 	if (!event->attr.enable_on_exec)
3283 		return 0;
3284 
3285 	event->attr.enable_on_exec = 0;
3286 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3287 		return 0;
3288 
3289 	__perf_event_mark_enabled(event);
3290 
3291 	return 1;
3292 }
3293 
3294 /*
3295  * Enable all of a task's events that have been marked enable-on-exec.
3296  * This expects task == current.
3297  */
3298 static void perf_event_enable_on_exec(int ctxn)
3299 {
3300 	struct perf_event_context *ctx, *clone_ctx = NULL;
3301 	struct perf_cpu_context *cpuctx;
3302 	struct perf_event *event;
3303 	unsigned long flags;
3304 	int enabled = 0;
3305 
3306 	local_irq_save(flags);
3307 	ctx = current->perf_event_ctxp[ctxn];
3308 	if (!ctx || !ctx->nr_events)
3309 		goto out;
3310 
3311 	cpuctx = __get_cpu_context(ctx);
3312 	perf_ctx_lock(cpuctx, ctx);
3313 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3314 	list_for_each_entry(event, &ctx->event_list, event_entry)
3315 		enabled |= event_enable_on_exec(event, ctx);
3316 
3317 	/*
3318 	 * Unclone and reschedule this context if we enabled any event.
3319 	 */
3320 	if (enabled) {
3321 		clone_ctx = unclone_ctx(ctx);
3322 		ctx_resched(cpuctx, ctx);
3323 	}
3324 	perf_ctx_unlock(cpuctx, ctx);
3325 
3326 out:
3327 	local_irq_restore(flags);
3328 
3329 	if (clone_ctx)
3330 		put_ctx(clone_ctx);
3331 }
3332 
3333 struct perf_read_data {
3334 	struct perf_event *event;
3335 	bool group;
3336 	int ret;
3337 };
3338 
3339 /*
3340  * Cross CPU call to read the hardware event
3341  */
3342 static void __perf_event_read(void *info)
3343 {
3344 	struct perf_read_data *data = info;
3345 	struct perf_event *sub, *event = data->event;
3346 	struct perf_event_context *ctx = event->ctx;
3347 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3348 	struct pmu *pmu = event->pmu;
3349 
3350 	/*
3351 	 * If this is a task context, we need to check whether it is
3352 	 * the current task context of this cpu.  If not it has been
3353 	 * scheduled out before the smp call arrived.  In that case
3354 	 * event->count would have been updated to a recent sample
3355 	 * when the event was scheduled out.
3356 	 */
3357 	if (ctx->task && cpuctx->task_ctx != ctx)
3358 		return;
3359 
3360 	raw_spin_lock(&ctx->lock);
3361 	if (ctx->is_active) {
3362 		update_context_time(ctx);
3363 		update_cgrp_time_from_event(event);
3364 	}
3365 
3366 	update_event_times(event);
3367 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3368 		goto unlock;
3369 
3370 	if (!data->group) {
3371 		pmu->read(event);
3372 		data->ret = 0;
3373 		goto unlock;
3374 	}
3375 
3376 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3377 
3378 	pmu->read(event);
3379 
3380 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3381 		update_event_times(sub);
3382 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3383 			/*
3384 			 * Use sibling's PMU rather than @event's since
3385 			 * sibling could be on different (eg: software) PMU.
3386 			 */
3387 			sub->pmu->read(sub);
3388 		}
3389 	}
3390 
3391 	data->ret = pmu->commit_txn(pmu);
3392 
3393 unlock:
3394 	raw_spin_unlock(&ctx->lock);
3395 }
3396 
3397 static inline u64 perf_event_count(struct perf_event *event)
3398 {
3399 	if (event->pmu->count)
3400 		return event->pmu->count(event);
3401 
3402 	return __perf_event_count(event);
3403 }
3404 
3405 /*
3406  * NMI-safe method to read a local event, that is an event that
3407  * is:
3408  *   - either for the current task, or for this CPU
3409  *   - does not have inherit set, for inherited task events
3410  *     will not be local and we cannot read them atomically
3411  *   - must not have a pmu::count method
3412  */
3413 u64 perf_event_read_local(struct perf_event *event)
3414 {
3415 	unsigned long flags;
3416 	u64 val;
3417 
3418 	/*
3419 	 * Disabling interrupts avoids all counter scheduling (context
3420 	 * switches, timer based rotation and IPIs).
3421 	 */
3422 	local_irq_save(flags);
3423 
3424 	/* If this is a per-task event, it must be for current */
3425 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3426 		     event->hw.target != current);
3427 
3428 	/* If this is a per-CPU event, it must be for this CPU */
3429 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3430 		     event->cpu != smp_processor_id());
3431 
3432 	/*
3433 	 * It must not be an event with inherit set, we cannot read
3434 	 * all child counters from atomic context.
3435 	 */
3436 	WARN_ON_ONCE(event->attr.inherit);
3437 
3438 	/*
3439 	 * It must not have a pmu::count method, those are not
3440 	 * NMI safe.
3441 	 */
3442 	WARN_ON_ONCE(event->pmu->count);
3443 
3444 	/*
3445 	 * If the event is currently on this CPU, its either a per-task event,
3446 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3447 	 * oncpu == -1).
3448 	 */
3449 	if (event->oncpu == smp_processor_id())
3450 		event->pmu->read(event);
3451 
3452 	val = local64_read(&event->count);
3453 	local_irq_restore(flags);
3454 
3455 	return val;
3456 }
3457 
3458 static int perf_event_read(struct perf_event *event, bool group)
3459 {
3460 	int ret = 0;
3461 
3462 	/*
3463 	 * If event is enabled and currently active on a CPU, update the
3464 	 * value in the event structure:
3465 	 */
3466 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3467 		struct perf_read_data data = {
3468 			.event = event,
3469 			.group = group,
3470 			.ret = 0,
3471 		};
3472 		smp_call_function_single(event->oncpu,
3473 					 __perf_event_read, &data, 1);
3474 		ret = data.ret;
3475 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3476 		struct perf_event_context *ctx = event->ctx;
3477 		unsigned long flags;
3478 
3479 		raw_spin_lock_irqsave(&ctx->lock, flags);
3480 		/*
3481 		 * may read while context is not active
3482 		 * (e.g., thread is blocked), in that case
3483 		 * we cannot update context time
3484 		 */
3485 		if (ctx->is_active) {
3486 			update_context_time(ctx);
3487 			update_cgrp_time_from_event(event);
3488 		}
3489 		if (group)
3490 			update_group_times(event);
3491 		else
3492 			update_event_times(event);
3493 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3494 	}
3495 
3496 	return ret;
3497 }
3498 
3499 /*
3500  * Initialize the perf_event context in a task_struct:
3501  */
3502 static void __perf_event_init_context(struct perf_event_context *ctx)
3503 {
3504 	raw_spin_lock_init(&ctx->lock);
3505 	mutex_init(&ctx->mutex);
3506 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3507 	INIT_LIST_HEAD(&ctx->pinned_groups);
3508 	INIT_LIST_HEAD(&ctx->flexible_groups);
3509 	INIT_LIST_HEAD(&ctx->event_list);
3510 	atomic_set(&ctx->refcount, 1);
3511 }
3512 
3513 static struct perf_event_context *
3514 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3515 {
3516 	struct perf_event_context *ctx;
3517 
3518 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3519 	if (!ctx)
3520 		return NULL;
3521 
3522 	__perf_event_init_context(ctx);
3523 	if (task) {
3524 		ctx->task = task;
3525 		get_task_struct(task);
3526 	}
3527 	ctx->pmu = pmu;
3528 
3529 	return ctx;
3530 }
3531 
3532 static struct task_struct *
3533 find_lively_task_by_vpid(pid_t vpid)
3534 {
3535 	struct task_struct *task;
3536 
3537 	rcu_read_lock();
3538 	if (!vpid)
3539 		task = current;
3540 	else
3541 		task = find_task_by_vpid(vpid);
3542 	if (task)
3543 		get_task_struct(task);
3544 	rcu_read_unlock();
3545 
3546 	if (!task)
3547 		return ERR_PTR(-ESRCH);
3548 
3549 	return task;
3550 }
3551 
3552 /*
3553  * Returns a matching context with refcount and pincount.
3554  */
3555 static struct perf_event_context *
3556 find_get_context(struct pmu *pmu, struct task_struct *task,
3557 		struct perf_event *event)
3558 {
3559 	struct perf_event_context *ctx, *clone_ctx = NULL;
3560 	struct perf_cpu_context *cpuctx;
3561 	void *task_ctx_data = NULL;
3562 	unsigned long flags;
3563 	int ctxn, err;
3564 	int cpu = event->cpu;
3565 
3566 	if (!task) {
3567 		/* Must be root to operate on a CPU event: */
3568 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3569 			return ERR_PTR(-EACCES);
3570 
3571 		/*
3572 		 * We could be clever and allow to attach a event to an
3573 		 * offline CPU and activate it when the CPU comes up, but
3574 		 * that's for later.
3575 		 */
3576 		if (!cpu_online(cpu))
3577 			return ERR_PTR(-ENODEV);
3578 
3579 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3580 		ctx = &cpuctx->ctx;
3581 		get_ctx(ctx);
3582 		++ctx->pin_count;
3583 
3584 		return ctx;
3585 	}
3586 
3587 	err = -EINVAL;
3588 	ctxn = pmu->task_ctx_nr;
3589 	if (ctxn < 0)
3590 		goto errout;
3591 
3592 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3593 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3594 		if (!task_ctx_data) {
3595 			err = -ENOMEM;
3596 			goto errout;
3597 		}
3598 	}
3599 
3600 retry:
3601 	ctx = perf_lock_task_context(task, ctxn, &flags);
3602 	if (ctx) {
3603 		clone_ctx = unclone_ctx(ctx);
3604 		++ctx->pin_count;
3605 
3606 		if (task_ctx_data && !ctx->task_ctx_data) {
3607 			ctx->task_ctx_data = task_ctx_data;
3608 			task_ctx_data = NULL;
3609 		}
3610 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3611 
3612 		if (clone_ctx)
3613 			put_ctx(clone_ctx);
3614 	} else {
3615 		ctx = alloc_perf_context(pmu, task);
3616 		err = -ENOMEM;
3617 		if (!ctx)
3618 			goto errout;
3619 
3620 		if (task_ctx_data) {
3621 			ctx->task_ctx_data = task_ctx_data;
3622 			task_ctx_data = NULL;
3623 		}
3624 
3625 		err = 0;
3626 		mutex_lock(&task->perf_event_mutex);
3627 		/*
3628 		 * If it has already passed perf_event_exit_task().
3629 		 * we must see PF_EXITING, it takes this mutex too.
3630 		 */
3631 		if (task->flags & PF_EXITING)
3632 			err = -ESRCH;
3633 		else if (task->perf_event_ctxp[ctxn])
3634 			err = -EAGAIN;
3635 		else {
3636 			get_ctx(ctx);
3637 			++ctx->pin_count;
3638 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3639 		}
3640 		mutex_unlock(&task->perf_event_mutex);
3641 
3642 		if (unlikely(err)) {
3643 			put_ctx(ctx);
3644 
3645 			if (err == -EAGAIN)
3646 				goto retry;
3647 			goto errout;
3648 		}
3649 	}
3650 
3651 	kfree(task_ctx_data);
3652 	return ctx;
3653 
3654 errout:
3655 	kfree(task_ctx_data);
3656 	return ERR_PTR(err);
3657 }
3658 
3659 static void perf_event_free_filter(struct perf_event *event);
3660 static void perf_event_free_bpf_prog(struct perf_event *event);
3661 
3662 static void free_event_rcu(struct rcu_head *head)
3663 {
3664 	struct perf_event *event;
3665 
3666 	event = container_of(head, struct perf_event, rcu_head);
3667 	if (event->ns)
3668 		put_pid_ns(event->ns);
3669 	perf_event_free_filter(event);
3670 	kfree(event);
3671 }
3672 
3673 static void ring_buffer_attach(struct perf_event *event,
3674 			       struct ring_buffer *rb);
3675 
3676 static void detach_sb_event(struct perf_event *event)
3677 {
3678 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3679 
3680 	raw_spin_lock(&pel->lock);
3681 	list_del_rcu(&event->sb_list);
3682 	raw_spin_unlock(&pel->lock);
3683 }
3684 
3685 static void unaccount_pmu_sb_event(struct perf_event *event)
3686 {
3687 	if (event->parent)
3688 		return;
3689 
3690 	if (event->attach_state & PERF_ATTACH_TASK)
3691 		return;
3692 
3693 	detach_sb_event(event);
3694 }
3695 
3696 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3697 {
3698 	if (event->parent)
3699 		return;
3700 
3701 	if (is_cgroup_event(event))
3702 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3703 }
3704 
3705 #ifdef CONFIG_NO_HZ_FULL
3706 static DEFINE_SPINLOCK(nr_freq_lock);
3707 #endif
3708 
3709 static void unaccount_freq_event_nohz(void)
3710 {
3711 #ifdef CONFIG_NO_HZ_FULL
3712 	spin_lock(&nr_freq_lock);
3713 	if (atomic_dec_and_test(&nr_freq_events))
3714 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3715 	spin_unlock(&nr_freq_lock);
3716 #endif
3717 }
3718 
3719 static void unaccount_freq_event(void)
3720 {
3721 	if (tick_nohz_full_enabled())
3722 		unaccount_freq_event_nohz();
3723 	else
3724 		atomic_dec(&nr_freq_events);
3725 }
3726 
3727 static void unaccount_event(struct perf_event *event)
3728 {
3729 	bool dec = false;
3730 
3731 	if (event->parent)
3732 		return;
3733 
3734 	if (event->attach_state & PERF_ATTACH_TASK)
3735 		dec = true;
3736 	if (event->attr.mmap || event->attr.mmap_data)
3737 		atomic_dec(&nr_mmap_events);
3738 	if (event->attr.comm)
3739 		atomic_dec(&nr_comm_events);
3740 	if (event->attr.task)
3741 		atomic_dec(&nr_task_events);
3742 	if (event->attr.freq)
3743 		unaccount_freq_event();
3744 	if (event->attr.context_switch) {
3745 		dec = true;
3746 		atomic_dec(&nr_switch_events);
3747 	}
3748 	if (is_cgroup_event(event))
3749 		dec = true;
3750 	if (has_branch_stack(event))
3751 		dec = true;
3752 
3753 	if (dec) {
3754 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3755 			schedule_delayed_work(&perf_sched_work, HZ);
3756 	}
3757 
3758 	unaccount_event_cpu(event, event->cpu);
3759 
3760 	unaccount_pmu_sb_event(event);
3761 }
3762 
3763 static void perf_sched_delayed(struct work_struct *work)
3764 {
3765 	mutex_lock(&perf_sched_mutex);
3766 	if (atomic_dec_and_test(&perf_sched_count))
3767 		static_branch_disable(&perf_sched_events);
3768 	mutex_unlock(&perf_sched_mutex);
3769 }
3770 
3771 /*
3772  * The following implement mutual exclusion of events on "exclusive" pmus
3773  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3774  * at a time, so we disallow creating events that might conflict, namely:
3775  *
3776  *  1) cpu-wide events in the presence of per-task events,
3777  *  2) per-task events in the presence of cpu-wide events,
3778  *  3) two matching events on the same context.
3779  *
3780  * The former two cases are handled in the allocation path (perf_event_alloc(),
3781  * _free_event()), the latter -- before the first perf_install_in_context().
3782  */
3783 static int exclusive_event_init(struct perf_event *event)
3784 {
3785 	struct pmu *pmu = event->pmu;
3786 
3787 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3788 		return 0;
3789 
3790 	/*
3791 	 * Prevent co-existence of per-task and cpu-wide events on the
3792 	 * same exclusive pmu.
3793 	 *
3794 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3795 	 * events on this "exclusive" pmu, positive means there are
3796 	 * per-task events.
3797 	 *
3798 	 * Since this is called in perf_event_alloc() path, event::ctx
3799 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3800 	 * to mean "per-task event", because unlike other attach states it
3801 	 * never gets cleared.
3802 	 */
3803 	if (event->attach_state & PERF_ATTACH_TASK) {
3804 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3805 			return -EBUSY;
3806 	} else {
3807 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3808 			return -EBUSY;
3809 	}
3810 
3811 	return 0;
3812 }
3813 
3814 static void exclusive_event_destroy(struct perf_event *event)
3815 {
3816 	struct pmu *pmu = event->pmu;
3817 
3818 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3819 		return;
3820 
3821 	/* see comment in exclusive_event_init() */
3822 	if (event->attach_state & PERF_ATTACH_TASK)
3823 		atomic_dec(&pmu->exclusive_cnt);
3824 	else
3825 		atomic_inc(&pmu->exclusive_cnt);
3826 }
3827 
3828 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3829 {
3830 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3831 	    (e1->cpu == e2->cpu ||
3832 	     e1->cpu == -1 ||
3833 	     e2->cpu == -1))
3834 		return true;
3835 	return false;
3836 }
3837 
3838 /* Called under the same ctx::mutex as perf_install_in_context() */
3839 static bool exclusive_event_installable(struct perf_event *event,
3840 					struct perf_event_context *ctx)
3841 {
3842 	struct perf_event *iter_event;
3843 	struct pmu *pmu = event->pmu;
3844 
3845 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3846 		return true;
3847 
3848 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3849 		if (exclusive_event_match(iter_event, event))
3850 			return false;
3851 	}
3852 
3853 	return true;
3854 }
3855 
3856 static void perf_addr_filters_splice(struct perf_event *event,
3857 				       struct list_head *head);
3858 
3859 static void _free_event(struct perf_event *event)
3860 {
3861 	irq_work_sync(&event->pending);
3862 
3863 	unaccount_event(event);
3864 
3865 	if (event->rb) {
3866 		/*
3867 		 * Can happen when we close an event with re-directed output.
3868 		 *
3869 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3870 		 * over us; possibly making our ring_buffer_put() the last.
3871 		 */
3872 		mutex_lock(&event->mmap_mutex);
3873 		ring_buffer_attach(event, NULL);
3874 		mutex_unlock(&event->mmap_mutex);
3875 	}
3876 
3877 	if (is_cgroup_event(event))
3878 		perf_detach_cgroup(event);
3879 
3880 	if (!event->parent) {
3881 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3882 			put_callchain_buffers();
3883 	}
3884 
3885 	perf_event_free_bpf_prog(event);
3886 	perf_addr_filters_splice(event, NULL);
3887 	kfree(event->addr_filters_offs);
3888 
3889 	if (event->destroy)
3890 		event->destroy(event);
3891 
3892 	if (event->ctx)
3893 		put_ctx(event->ctx);
3894 
3895 	if (event->pmu) {
3896 		exclusive_event_destroy(event);
3897 		module_put(event->pmu->module);
3898 	}
3899 
3900 	call_rcu(&event->rcu_head, free_event_rcu);
3901 }
3902 
3903 /*
3904  * Used to free events which have a known refcount of 1, such as in error paths
3905  * where the event isn't exposed yet and inherited events.
3906  */
3907 static void free_event(struct perf_event *event)
3908 {
3909 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3910 				"unexpected event refcount: %ld; ptr=%p\n",
3911 				atomic_long_read(&event->refcount), event)) {
3912 		/* leak to avoid use-after-free */
3913 		return;
3914 	}
3915 
3916 	_free_event(event);
3917 }
3918 
3919 /*
3920  * Remove user event from the owner task.
3921  */
3922 static void perf_remove_from_owner(struct perf_event *event)
3923 {
3924 	struct task_struct *owner;
3925 
3926 	rcu_read_lock();
3927 	/*
3928 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3929 	 * observe !owner it means the list deletion is complete and we can
3930 	 * indeed free this event, otherwise we need to serialize on
3931 	 * owner->perf_event_mutex.
3932 	 */
3933 	owner = lockless_dereference(event->owner);
3934 	if (owner) {
3935 		/*
3936 		 * Since delayed_put_task_struct() also drops the last
3937 		 * task reference we can safely take a new reference
3938 		 * while holding the rcu_read_lock().
3939 		 */
3940 		get_task_struct(owner);
3941 	}
3942 	rcu_read_unlock();
3943 
3944 	if (owner) {
3945 		/*
3946 		 * If we're here through perf_event_exit_task() we're already
3947 		 * holding ctx->mutex which would be an inversion wrt. the
3948 		 * normal lock order.
3949 		 *
3950 		 * However we can safely take this lock because its the child
3951 		 * ctx->mutex.
3952 		 */
3953 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3954 
3955 		/*
3956 		 * We have to re-check the event->owner field, if it is cleared
3957 		 * we raced with perf_event_exit_task(), acquiring the mutex
3958 		 * ensured they're done, and we can proceed with freeing the
3959 		 * event.
3960 		 */
3961 		if (event->owner) {
3962 			list_del_init(&event->owner_entry);
3963 			smp_store_release(&event->owner, NULL);
3964 		}
3965 		mutex_unlock(&owner->perf_event_mutex);
3966 		put_task_struct(owner);
3967 	}
3968 }
3969 
3970 static void put_event(struct perf_event *event)
3971 {
3972 	if (!atomic_long_dec_and_test(&event->refcount))
3973 		return;
3974 
3975 	_free_event(event);
3976 }
3977 
3978 /*
3979  * Kill an event dead; while event:refcount will preserve the event
3980  * object, it will not preserve its functionality. Once the last 'user'
3981  * gives up the object, we'll destroy the thing.
3982  */
3983 int perf_event_release_kernel(struct perf_event *event)
3984 {
3985 	struct perf_event_context *ctx = event->ctx;
3986 	struct perf_event *child, *tmp;
3987 
3988 	/*
3989 	 * If we got here through err_file: fput(event_file); we will not have
3990 	 * attached to a context yet.
3991 	 */
3992 	if (!ctx) {
3993 		WARN_ON_ONCE(event->attach_state &
3994 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3995 		goto no_ctx;
3996 	}
3997 
3998 	if (!is_kernel_event(event))
3999 		perf_remove_from_owner(event);
4000 
4001 	ctx = perf_event_ctx_lock(event);
4002 	WARN_ON_ONCE(ctx->parent_ctx);
4003 	perf_remove_from_context(event, DETACH_GROUP);
4004 
4005 	raw_spin_lock_irq(&ctx->lock);
4006 	/*
4007 	 * Mark this even as STATE_DEAD, there is no external reference to it
4008 	 * anymore.
4009 	 *
4010 	 * Anybody acquiring event->child_mutex after the below loop _must_
4011 	 * also see this, most importantly inherit_event() which will avoid
4012 	 * placing more children on the list.
4013 	 *
4014 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4015 	 * child events.
4016 	 */
4017 	event->state = PERF_EVENT_STATE_DEAD;
4018 	raw_spin_unlock_irq(&ctx->lock);
4019 
4020 	perf_event_ctx_unlock(event, ctx);
4021 
4022 again:
4023 	mutex_lock(&event->child_mutex);
4024 	list_for_each_entry(child, &event->child_list, child_list) {
4025 
4026 		/*
4027 		 * Cannot change, child events are not migrated, see the
4028 		 * comment with perf_event_ctx_lock_nested().
4029 		 */
4030 		ctx = lockless_dereference(child->ctx);
4031 		/*
4032 		 * Since child_mutex nests inside ctx::mutex, we must jump
4033 		 * through hoops. We start by grabbing a reference on the ctx.
4034 		 *
4035 		 * Since the event cannot get freed while we hold the
4036 		 * child_mutex, the context must also exist and have a !0
4037 		 * reference count.
4038 		 */
4039 		get_ctx(ctx);
4040 
4041 		/*
4042 		 * Now that we have a ctx ref, we can drop child_mutex, and
4043 		 * acquire ctx::mutex without fear of it going away. Then we
4044 		 * can re-acquire child_mutex.
4045 		 */
4046 		mutex_unlock(&event->child_mutex);
4047 		mutex_lock(&ctx->mutex);
4048 		mutex_lock(&event->child_mutex);
4049 
4050 		/*
4051 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4052 		 * state, if child is still the first entry, it didn't get freed
4053 		 * and we can continue doing so.
4054 		 */
4055 		tmp = list_first_entry_or_null(&event->child_list,
4056 					       struct perf_event, child_list);
4057 		if (tmp == child) {
4058 			perf_remove_from_context(child, DETACH_GROUP);
4059 			list_del(&child->child_list);
4060 			free_event(child);
4061 			/*
4062 			 * This matches the refcount bump in inherit_event();
4063 			 * this can't be the last reference.
4064 			 */
4065 			put_event(event);
4066 		}
4067 
4068 		mutex_unlock(&event->child_mutex);
4069 		mutex_unlock(&ctx->mutex);
4070 		put_ctx(ctx);
4071 		goto again;
4072 	}
4073 	mutex_unlock(&event->child_mutex);
4074 
4075 no_ctx:
4076 	put_event(event); /* Must be the 'last' reference */
4077 	return 0;
4078 }
4079 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4080 
4081 /*
4082  * Called when the last reference to the file is gone.
4083  */
4084 static int perf_release(struct inode *inode, struct file *file)
4085 {
4086 	perf_event_release_kernel(file->private_data);
4087 	return 0;
4088 }
4089 
4090 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4091 {
4092 	struct perf_event *child;
4093 	u64 total = 0;
4094 
4095 	*enabled = 0;
4096 	*running = 0;
4097 
4098 	mutex_lock(&event->child_mutex);
4099 
4100 	(void)perf_event_read(event, false);
4101 	total += perf_event_count(event);
4102 
4103 	*enabled += event->total_time_enabled +
4104 			atomic64_read(&event->child_total_time_enabled);
4105 	*running += event->total_time_running +
4106 			atomic64_read(&event->child_total_time_running);
4107 
4108 	list_for_each_entry(child, &event->child_list, child_list) {
4109 		(void)perf_event_read(child, false);
4110 		total += perf_event_count(child);
4111 		*enabled += child->total_time_enabled;
4112 		*running += child->total_time_running;
4113 	}
4114 	mutex_unlock(&event->child_mutex);
4115 
4116 	return total;
4117 }
4118 EXPORT_SYMBOL_GPL(perf_event_read_value);
4119 
4120 static int __perf_read_group_add(struct perf_event *leader,
4121 					u64 read_format, u64 *values)
4122 {
4123 	struct perf_event *sub;
4124 	int n = 1; /* skip @nr */
4125 	int ret;
4126 
4127 	ret = perf_event_read(leader, true);
4128 	if (ret)
4129 		return ret;
4130 
4131 	/*
4132 	 * Since we co-schedule groups, {enabled,running} times of siblings
4133 	 * will be identical to those of the leader, so we only publish one
4134 	 * set.
4135 	 */
4136 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4137 		values[n++] += leader->total_time_enabled +
4138 			atomic64_read(&leader->child_total_time_enabled);
4139 	}
4140 
4141 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4142 		values[n++] += leader->total_time_running +
4143 			atomic64_read(&leader->child_total_time_running);
4144 	}
4145 
4146 	/*
4147 	 * Write {count,id} tuples for every sibling.
4148 	 */
4149 	values[n++] += perf_event_count(leader);
4150 	if (read_format & PERF_FORMAT_ID)
4151 		values[n++] = primary_event_id(leader);
4152 
4153 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4154 		values[n++] += perf_event_count(sub);
4155 		if (read_format & PERF_FORMAT_ID)
4156 			values[n++] = primary_event_id(sub);
4157 	}
4158 
4159 	return 0;
4160 }
4161 
4162 static int perf_read_group(struct perf_event *event,
4163 				   u64 read_format, char __user *buf)
4164 {
4165 	struct perf_event *leader = event->group_leader, *child;
4166 	struct perf_event_context *ctx = leader->ctx;
4167 	int ret;
4168 	u64 *values;
4169 
4170 	lockdep_assert_held(&ctx->mutex);
4171 
4172 	values = kzalloc(event->read_size, GFP_KERNEL);
4173 	if (!values)
4174 		return -ENOMEM;
4175 
4176 	values[0] = 1 + leader->nr_siblings;
4177 
4178 	/*
4179 	 * By locking the child_mutex of the leader we effectively
4180 	 * lock the child list of all siblings.. XXX explain how.
4181 	 */
4182 	mutex_lock(&leader->child_mutex);
4183 
4184 	ret = __perf_read_group_add(leader, read_format, values);
4185 	if (ret)
4186 		goto unlock;
4187 
4188 	list_for_each_entry(child, &leader->child_list, child_list) {
4189 		ret = __perf_read_group_add(child, read_format, values);
4190 		if (ret)
4191 			goto unlock;
4192 	}
4193 
4194 	mutex_unlock(&leader->child_mutex);
4195 
4196 	ret = event->read_size;
4197 	if (copy_to_user(buf, values, event->read_size))
4198 		ret = -EFAULT;
4199 	goto out;
4200 
4201 unlock:
4202 	mutex_unlock(&leader->child_mutex);
4203 out:
4204 	kfree(values);
4205 	return ret;
4206 }
4207 
4208 static int perf_read_one(struct perf_event *event,
4209 				 u64 read_format, char __user *buf)
4210 {
4211 	u64 enabled, running;
4212 	u64 values[4];
4213 	int n = 0;
4214 
4215 	values[n++] = perf_event_read_value(event, &enabled, &running);
4216 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4217 		values[n++] = enabled;
4218 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4219 		values[n++] = running;
4220 	if (read_format & PERF_FORMAT_ID)
4221 		values[n++] = primary_event_id(event);
4222 
4223 	if (copy_to_user(buf, values, n * sizeof(u64)))
4224 		return -EFAULT;
4225 
4226 	return n * sizeof(u64);
4227 }
4228 
4229 static bool is_event_hup(struct perf_event *event)
4230 {
4231 	bool no_children;
4232 
4233 	if (event->state > PERF_EVENT_STATE_EXIT)
4234 		return false;
4235 
4236 	mutex_lock(&event->child_mutex);
4237 	no_children = list_empty(&event->child_list);
4238 	mutex_unlock(&event->child_mutex);
4239 	return no_children;
4240 }
4241 
4242 /*
4243  * Read the performance event - simple non blocking version for now
4244  */
4245 static ssize_t
4246 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4247 {
4248 	u64 read_format = event->attr.read_format;
4249 	int ret;
4250 
4251 	/*
4252 	 * Return end-of-file for a read on a event that is in
4253 	 * error state (i.e. because it was pinned but it couldn't be
4254 	 * scheduled on to the CPU at some point).
4255 	 */
4256 	if (event->state == PERF_EVENT_STATE_ERROR)
4257 		return 0;
4258 
4259 	if (count < event->read_size)
4260 		return -ENOSPC;
4261 
4262 	WARN_ON_ONCE(event->ctx->parent_ctx);
4263 	if (read_format & PERF_FORMAT_GROUP)
4264 		ret = perf_read_group(event, read_format, buf);
4265 	else
4266 		ret = perf_read_one(event, read_format, buf);
4267 
4268 	return ret;
4269 }
4270 
4271 static ssize_t
4272 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4273 {
4274 	struct perf_event *event = file->private_data;
4275 	struct perf_event_context *ctx;
4276 	int ret;
4277 
4278 	ctx = perf_event_ctx_lock(event);
4279 	ret = __perf_read(event, buf, count);
4280 	perf_event_ctx_unlock(event, ctx);
4281 
4282 	return ret;
4283 }
4284 
4285 static unsigned int perf_poll(struct file *file, poll_table *wait)
4286 {
4287 	struct perf_event *event = file->private_data;
4288 	struct ring_buffer *rb;
4289 	unsigned int events = POLLHUP;
4290 
4291 	poll_wait(file, &event->waitq, wait);
4292 
4293 	if (is_event_hup(event))
4294 		return events;
4295 
4296 	/*
4297 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4298 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4299 	 */
4300 	mutex_lock(&event->mmap_mutex);
4301 	rb = event->rb;
4302 	if (rb)
4303 		events = atomic_xchg(&rb->poll, 0);
4304 	mutex_unlock(&event->mmap_mutex);
4305 	return events;
4306 }
4307 
4308 static void _perf_event_reset(struct perf_event *event)
4309 {
4310 	(void)perf_event_read(event, false);
4311 	local64_set(&event->count, 0);
4312 	perf_event_update_userpage(event);
4313 }
4314 
4315 /*
4316  * Holding the top-level event's child_mutex means that any
4317  * descendant process that has inherited this event will block
4318  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4319  * task existence requirements of perf_event_enable/disable.
4320  */
4321 static void perf_event_for_each_child(struct perf_event *event,
4322 					void (*func)(struct perf_event *))
4323 {
4324 	struct perf_event *child;
4325 
4326 	WARN_ON_ONCE(event->ctx->parent_ctx);
4327 
4328 	mutex_lock(&event->child_mutex);
4329 	func(event);
4330 	list_for_each_entry(child, &event->child_list, child_list)
4331 		func(child);
4332 	mutex_unlock(&event->child_mutex);
4333 }
4334 
4335 static void perf_event_for_each(struct perf_event *event,
4336 				  void (*func)(struct perf_event *))
4337 {
4338 	struct perf_event_context *ctx = event->ctx;
4339 	struct perf_event *sibling;
4340 
4341 	lockdep_assert_held(&ctx->mutex);
4342 
4343 	event = event->group_leader;
4344 
4345 	perf_event_for_each_child(event, func);
4346 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4347 		perf_event_for_each_child(sibling, func);
4348 }
4349 
4350 static void __perf_event_period(struct perf_event *event,
4351 				struct perf_cpu_context *cpuctx,
4352 				struct perf_event_context *ctx,
4353 				void *info)
4354 {
4355 	u64 value = *((u64 *)info);
4356 	bool active;
4357 
4358 	if (event->attr.freq) {
4359 		event->attr.sample_freq = value;
4360 	} else {
4361 		event->attr.sample_period = value;
4362 		event->hw.sample_period = value;
4363 	}
4364 
4365 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4366 	if (active) {
4367 		perf_pmu_disable(ctx->pmu);
4368 		/*
4369 		 * We could be throttled; unthrottle now to avoid the tick
4370 		 * trying to unthrottle while we already re-started the event.
4371 		 */
4372 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4373 			event->hw.interrupts = 0;
4374 			perf_log_throttle(event, 1);
4375 		}
4376 		event->pmu->stop(event, PERF_EF_UPDATE);
4377 	}
4378 
4379 	local64_set(&event->hw.period_left, 0);
4380 
4381 	if (active) {
4382 		event->pmu->start(event, PERF_EF_RELOAD);
4383 		perf_pmu_enable(ctx->pmu);
4384 	}
4385 }
4386 
4387 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4388 {
4389 	u64 value;
4390 
4391 	if (!is_sampling_event(event))
4392 		return -EINVAL;
4393 
4394 	if (copy_from_user(&value, arg, sizeof(value)))
4395 		return -EFAULT;
4396 
4397 	if (!value)
4398 		return -EINVAL;
4399 
4400 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4401 		return -EINVAL;
4402 
4403 	event_function_call(event, __perf_event_period, &value);
4404 
4405 	return 0;
4406 }
4407 
4408 static const struct file_operations perf_fops;
4409 
4410 static inline int perf_fget_light(int fd, struct fd *p)
4411 {
4412 	struct fd f = fdget(fd);
4413 	if (!f.file)
4414 		return -EBADF;
4415 
4416 	if (f.file->f_op != &perf_fops) {
4417 		fdput(f);
4418 		return -EBADF;
4419 	}
4420 	*p = f;
4421 	return 0;
4422 }
4423 
4424 static int perf_event_set_output(struct perf_event *event,
4425 				 struct perf_event *output_event);
4426 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4427 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4428 
4429 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4430 {
4431 	void (*func)(struct perf_event *);
4432 	u32 flags = arg;
4433 
4434 	switch (cmd) {
4435 	case PERF_EVENT_IOC_ENABLE:
4436 		func = _perf_event_enable;
4437 		break;
4438 	case PERF_EVENT_IOC_DISABLE:
4439 		func = _perf_event_disable;
4440 		break;
4441 	case PERF_EVENT_IOC_RESET:
4442 		func = _perf_event_reset;
4443 		break;
4444 
4445 	case PERF_EVENT_IOC_REFRESH:
4446 		return _perf_event_refresh(event, arg);
4447 
4448 	case PERF_EVENT_IOC_PERIOD:
4449 		return perf_event_period(event, (u64 __user *)arg);
4450 
4451 	case PERF_EVENT_IOC_ID:
4452 	{
4453 		u64 id = primary_event_id(event);
4454 
4455 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4456 			return -EFAULT;
4457 		return 0;
4458 	}
4459 
4460 	case PERF_EVENT_IOC_SET_OUTPUT:
4461 	{
4462 		int ret;
4463 		if (arg != -1) {
4464 			struct perf_event *output_event;
4465 			struct fd output;
4466 			ret = perf_fget_light(arg, &output);
4467 			if (ret)
4468 				return ret;
4469 			output_event = output.file->private_data;
4470 			ret = perf_event_set_output(event, output_event);
4471 			fdput(output);
4472 		} else {
4473 			ret = perf_event_set_output(event, NULL);
4474 		}
4475 		return ret;
4476 	}
4477 
4478 	case PERF_EVENT_IOC_SET_FILTER:
4479 		return perf_event_set_filter(event, (void __user *)arg);
4480 
4481 	case PERF_EVENT_IOC_SET_BPF:
4482 		return perf_event_set_bpf_prog(event, arg);
4483 
4484 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4485 		struct ring_buffer *rb;
4486 
4487 		rcu_read_lock();
4488 		rb = rcu_dereference(event->rb);
4489 		if (!rb || !rb->nr_pages) {
4490 			rcu_read_unlock();
4491 			return -EINVAL;
4492 		}
4493 		rb_toggle_paused(rb, !!arg);
4494 		rcu_read_unlock();
4495 		return 0;
4496 	}
4497 	default:
4498 		return -ENOTTY;
4499 	}
4500 
4501 	if (flags & PERF_IOC_FLAG_GROUP)
4502 		perf_event_for_each(event, func);
4503 	else
4504 		perf_event_for_each_child(event, func);
4505 
4506 	return 0;
4507 }
4508 
4509 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4510 {
4511 	struct perf_event *event = file->private_data;
4512 	struct perf_event_context *ctx;
4513 	long ret;
4514 
4515 	ctx = perf_event_ctx_lock(event);
4516 	ret = _perf_ioctl(event, cmd, arg);
4517 	perf_event_ctx_unlock(event, ctx);
4518 
4519 	return ret;
4520 }
4521 
4522 #ifdef CONFIG_COMPAT
4523 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4524 				unsigned long arg)
4525 {
4526 	switch (_IOC_NR(cmd)) {
4527 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4528 	case _IOC_NR(PERF_EVENT_IOC_ID):
4529 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4530 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4531 			cmd &= ~IOCSIZE_MASK;
4532 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4533 		}
4534 		break;
4535 	}
4536 	return perf_ioctl(file, cmd, arg);
4537 }
4538 #else
4539 # define perf_compat_ioctl NULL
4540 #endif
4541 
4542 int perf_event_task_enable(void)
4543 {
4544 	struct perf_event_context *ctx;
4545 	struct perf_event *event;
4546 
4547 	mutex_lock(&current->perf_event_mutex);
4548 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4549 		ctx = perf_event_ctx_lock(event);
4550 		perf_event_for_each_child(event, _perf_event_enable);
4551 		perf_event_ctx_unlock(event, ctx);
4552 	}
4553 	mutex_unlock(&current->perf_event_mutex);
4554 
4555 	return 0;
4556 }
4557 
4558 int perf_event_task_disable(void)
4559 {
4560 	struct perf_event_context *ctx;
4561 	struct perf_event *event;
4562 
4563 	mutex_lock(&current->perf_event_mutex);
4564 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4565 		ctx = perf_event_ctx_lock(event);
4566 		perf_event_for_each_child(event, _perf_event_disable);
4567 		perf_event_ctx_unlock(event, ctx);
4568 	}
4569 	mutex_unlock(&current->perf_event_mutex);
4570 
4571 	return 0;
4572 }
4573 
4574 static int perf_event_index(struct perf_event *event)
4575 {
4576 	if (event->hw.state & PERF_HES_STOPPED)
4577 		return 0;
4578 
4579 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4580 		return 0;
4581 
4582 	return event->pmu->event_idx(event);
4583 }
4584 
4585 static void calc_timer_values(struct perf_event *event,
4586 				u64 *now,
4587 				u64 *enabled,
4588 				u64 *running)
4589 {
4590 	u64 ctx_time;
4591 
4592 	*now = perf_clock();
4593 	ctx_time = event->shadow_ctx_time + *now;
4594 	*enabled = ctx_time - event->tstamp_enabled;
4595 	*running = ctx_time - event->tstamp_running;
4596 }
4597 
4598 static void perf_event_init_userpage(struct perf_event *event)
4599 {
4600 	struct perf_event_mmap_page *userpg;
4601 	struct ring_buffer *rb;
4602 
4603 	rcu_read_lock();
4604 	rb = rcu_dereference(event->rb);
4605 	if (!rb)
4606 		goto unlock;
4607 
4608 	userpg = rb->user_page;
4609 
4610 	/* Allow new userspace to detect that bit 0 is deprecated */
4611 	userpg->cap_bit0_is_deprecated = 1;
4612 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4613 	userpg->data_offset = PAGE_SIZE;
4614 	userpg->data_size = perf_data_size(rb);
4615 
4616 unlock:
4617 	rcu_read_unlock();
4618 }
4619 
4620 void __weak arch_perf_update_userpage(
4621 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4622 {
4623 }
4624 
4625 /*
4626  * Callers need to ensure there can be no nesting of this function, otherwise
4627  * the seqlock logic goes bad. We can not serialize this because the arch
4628  * code calls this from NMI context.
4629  */
4630 void perf_event_update_userpage(struct perf_event *event)
4631 {
4632 	struct perf_event_mmap_page *userpg;
4633 	struct ring_buffer *rb;
4634 	u64 enabled, running, now;
4635 
4636 	rcu_read_lock();
4637 	rb = rcu_dereference(event->rb);
4638 	if (!rb)
4639 		goto unlock;
4640 
4641 	/*
4642 	 * compute total_time_enabled, total_time_running
4643 	 * based on snapshot values taken when the event
4644 	 * was last scheduled in.
4645 	 *
4646 	 * we cannot simply called update_context_time()
4647 	 * because of locking issue as we can be called in
4648 	 * NMI context
4649 	 */
4650 	calc_timer_values(event, &now, &enabled, &running);
4651 
4652 	userpg = rb->user_page;
4653 	/*
4654 	 * Disable preemption so as to not let the corresponding user-space
4655 	 * spin too long if we get preempted.
4656 	 */
4657 	preempt_disable();
4658 	++userpg->lock;
4659 	barrier();
4660 	userpg->index = perf_event_index(event);
4661 	userpg->offset = perf_event_count(event);
4662 	if (userpg->index)
4663 		userpg->offset -= local64_read(&event->hw.prev_count);
4664 
4665 	userpg->time_enabled = enabled +
4666 			atomic64_read(&event->child_total_time_enabled);
4667 
4668 	userpg->time_running = running +
4669 			atomic64_read(&event->child_total_time_running);
4670 
4671 	arch_perf_update_userpage(event, userpg, now);
4672 
4673 	barrier();
4674 	++userpg->lock;
4675 	preempt_enable();
4676 unlock:
4677 	rcu_read_unlock();
4678 }
4679 
4680 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4681 {
4682 	struct perf_event *event = vma->vm_file->private_data;
4683 	struct ring_buffer *rb;
4684 	int ret = VM_FAULT_SIGBUS;
4685 
4686 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4687 		if (vmf->pgoff == 0)
4688 			ret = 0;
4689 		return ret;
4690 	}
4691 
4692 	rcu_read_lock();
4693 	rb = rcu_dereference(event->rb);
4694 	if (!rb)
4695 		goto unlock;
4696 
4697 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4698 		goto unlock;
4699 
4700 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4701 	if (!vmf->page)
4702 		goto unlock;
4703 
4704 	get_page(vmf->page);
4705 	vmf->page->mapping = vma->vm_file->f_mapping;
4706 	vmf->page->index   = vmf->pgoff;
4707 
4708 	ret = 0;
4709 unlock:
4710 	rcu_read_unlock();
4711 
4712 	return ret;
4713 }
4714 
4715 static void ring_buffer_attach(struct perf_event *event,
4716 			       struct ring_buffer *rb)
4717 {
4718 	struct ring_buffer *old_rb = NULL;
4719 	unsigned long flags;
4720 
4721 	if (event->rb) {
4722 		/*
4723 		 * Should be impossible, we set this when removing
4724 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4725 		 */
4726 		WARN_ON_ONCE(event->rcu_pending);
4727 
4728 		old_rb = event->rb;
4729 		spin_lock_irqsave(&old_rb->event_lock, flags);
4730 		list_del_rcu(&event->rb_entry);
4731 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4732 
4733 		event->rcu_batches = get_state_synchronize_rcu();
4734 		event->rcu_pending = 1;
4735 	}
4736 
4737 	if (rb) {
4738 		if (event->rcu_pending) {
4739 			cond_synchronize_rcu(event->rcu_batches);
4740 			event->rcu_pending = 0;
4741 		}
4742 
4743 		spin_lock_irqsave(&rb->event_lock, flags);
4744 		list_add_rcu(&event->rb_entry, &rb->event_list);
4745 		spin_unlock_irqrestore(&rb->event_lock, flags);
4746 	}
4747 
4748 	rcu_assign_pointer(event->rb, rb);
4749 
4750 	if (old_rb) {
4751 		ring_buffer_put(old_rb);
4752 		/*
4753 		 * Since we detached before setting the new rb, so that we
4754 		 * could attach the new rb, we could have missed a wakeup.
4755 		 * Provide it now.
4756 		 */
4757 		wake_up_all(&event->waitq);
4758 	}
4759 }
4760 
4761 static void ring_buffer_wakeup(struct perf_event *event)
4762 {
4763 	struct ring_buffer *rb;
4764 
4765 	rcu_read_lock();
4766 	rb = rcu_dereference(event->rb);
4767 	if (rb) {
4768 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4769 			wake_up_all(&event->waitq);
4770 	}
4771 	rcu_read_unlock();
4772 }
4773 
4774 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4775 {
4776 	struct ring_buffer *rb;
4777 
4778 	rcu_read_lock();
4779 	rb = rcu_dereference(event->rb);
4780 	if (rb) {
4781 		if (!atomic_inc_not_zero(&rb->refcount))
4782 			rb = NULL;
4783 	}
4784 	rcu_read_unlock();
4785 
4786 	return rb;
4787 }
4788 
4789 void ring_buffer_put(struct ring_buffer *rb)
4790 {
4791 	if (!atomic_dec_and_test(&rb->refcount))
4792 		return;
4793 
4794 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4795 
4796 	call_rcu(&rb->rcu_head, rb_free_rcu);
4797 }
4798 
4799 static void perf_mmap_open(struct vm_area_struct *vma)
4800 {
4801 	struct perf_event *event = vma->vm_file->private_data;
4802 
4803 	atomic_inc(&event->mmap_count);
4804 	atomic_inc(&event->rb->mmap_count);
4805 
4806 	if (vma->vm_pgoff)
4807 		atomic_inc(&event->rb->aux_mmap_count);
4808 
4809 	if (event->pmu->event_mapped)
4810 		event->pmu->event_mapped(event);
4811 }
4812 
4813 static void perf_pmu_output_stop(struct perf_event *event);
4814 
4815 /*
4816  * A buffer can be mmap()ed multiple times; either directly through the same
4817  * event, or through other events by use of perf_event_set_output().
4818  *
4819  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4820  * the buffer here, where we still have a VM context. This means we need
4821  * to detach all events redirecting to us.
4822  */
4823 static void perf_mmap_close(struct vm_area_struct *vma)
4824 {
4825 	struct perf_event *event = vma->vm_file->private_data;
4826 
4827 	struct ring_buffer *rb = ring_buffer_get(event);
4828 	struct user_struct *mmap_user = rb->mmap_user;
4829 	int mmap_locked = rb->mmap_locked;
4830 	unsigned long size = perf_data_size(rb);
4831 
4832 	if (event->pmu->event_unmapped)
4833 		event->pmu->event_unmapped(event);
4834 
4835 	/*
4836 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4837 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4838 	 * serialize with perf_mmap here.
4839 	 */
4840 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4841 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4842 		/*
4843 		 * Stop all AUX events that are writing to this buffer,
4844 		 * so that we can free its AUX pages and corresponding PMU
4845 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4846 		 * they won't start any more (see perf_aux_output_begin()).
4847 		 */
4848 		perf_pmu_output_stop(event);
4849 
4850 		/* now it's safe to free the pages */
4851 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4852 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4853 
4854 		/* this has to be the last one */
4855 		rb_free_aux(rb);
4856 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4857 
4858 		mutex_unlock(&event->mmap_mutex);
4859 	}
4860 
4861 	atomic_dec(&rb->mmap_count);
4862 
4863 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4864 		goto out_put;
4865 
4866 	ring_buffer_attach(event, NULL);
4867 	mutex_unlock(&event->mmap_mutex);
4868 
4869 	/* If there's still other mmap()s of this buffer, we're done. */
4870 	if (atomic_read(&rb->mmap_count))
4871 		goto out_put;
4872 
4873 	/*
4874 	 * No other mmap()s, detach from all other events that might redirect
4875 	 * into the now unreachable buffer. Somewhat complicated by the
4876 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4877 	 */
4878 again:
4879 	rcu_read_lock();
4880 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4881 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4882 			/*
4883 			 * This event is en-route to free_event() which will
4884 			 * detach it and remove it from the list.
4885 			 */
4886 			continue;
4887 		}
4888 		rcu_read_unlock();
4889 
4890 		mutex_lock(&event->mmap_mutex);
4891 		/*
4892 		 * Check we didn't race with perf_event_set_output() which can
4893 		 * swizzle the rb from under us while we were waiting to
4894 		 * acquire mmap_mutex.
4895 		 *
4896 		 * If we find a different rb; ignore this event, a next
4897 		 * iteration will no longer find it on the list. We have to
4898 		 * still restart the iteration to make sure we're not now
4899 		 * iterating the wrong list.
4900 		 */
4901 		if (event->rb == rb)
4902 			ring_buffer_attach(event, NULL);
4903 
4904 		mutex_unlock(&event->mmap_mutex);
4905 		put_event(event);
4906 
4907 		/*
4908 		 * Restart the iteration; either we're on the wrong list or
4909 		 * destroyed its integrity by doing a deletion.
4910 		 */
4911 		goto again;
4912 	}
4913 	rcu_read_unlock();
4914 
4915 	/*
4916 	 * It could be there's still a few 0-ref events on the list; they'll
4917 	 * get cleaned up by free_event() -- they'll also still have their
4918 	 * ref on the rb and will free it whenever they are done with it.
4919 	 *
4920 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4921 	 * undo the VM accounting.
4922 	 */
4923 
4924 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4925 	vma->vm_mm->pinned_vm -= mmap_locked;
4926 	free_uid(mmap_user);
4927 
4928 out_put:
4929 	ring_buffer_put(rb); /* could be last */
4930 }
4931 
4932 static const struct vm_operations_struct perf_mmap_vmops = {
4933 	.open		= perf_mmap_open,
4934 	.close		= perf_mmap_close, /* non mergable */
4935 	.fault		= perf_mmap_fault,
4936 	.page_mkwrite	= perf_mmap_fault,
4937 };
4938 
4939 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4940 {
4941 	struct perf_event *event = file->private_data;
4942 	unsigned long user_locked, user_lock_limit;
4943 	struct user_struct *user = current_user();
4944 	unsigned long locked, lock_limit;
4945 	struct ring_buffer *rb = NULL;
4946 	unsigned long vma_size;
4947 	unsigned long nr_pages;
4948 	long user_extra = 0, extra = 0;
4949 	int ret = 0, flags = 0;
4950 
4951 	/*
4952 	 * Don't allow mmap() of inherited per-task counters. This would
4953 	 * create a performance issue due to all children writing to the
4954 	 * same rb.
4955 	 */
4956 	if (event->cpu == -1 && event->attr.inherit)
4957 		return -EINVAL;
4958 
4959 	if (!(vma->vm_flags & VM_SHARED))
4960 		return -EINVAL;
4961 
4962 	vma_size = vma->vm_end - vma->vm_start;
4963 
4964 	if (vma->vm_pgoff == 0) {
4965 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4966 	} else {
4967 		/*
4968 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4969 		 * mapped, all subsequent mappings should have the same size
4970 		 * and offset. Must be above the normal perf buffer.
4971 		 */
4972 		u64 aux_offset, aux_size;
4973 
4974 		if (!event->rb)
4975 			return -EINVAL;
4976 
4977 		nr_pages = vma_size / PAGE_SIZE;
4978 
4979 		mutex_lock(&event->mmap_mutex);
4980 		ret = -EINVAL;
4981 
4982 		rb = event->rb;
4983 		if (!rb)
4984 			goto aux_unlock;
4985 
4986 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4987 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4988 
4989 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4990 			goto aux_unlock;
4991 
4992 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4993 			goto aux_unlock;
4994 
4995 		/* already mapped with a different offset */
4996 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4997 			goto aux_unlock;
4998 
4999 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5000 			goto aux_unlock;
5001 
5002 		/* already mapped with a different size */
5003 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5004 			goto aux_unlock;
5005 
5006 		if (!is_power_of_2(nr_pages))
5007 			goto aux_unlock;
5008 
5009 		if (!atomic_inc_not_zero(&rb->mmap_count))
5010 			goto aux_unlock;
5011 
5012 		if (rb_has_aux(rb)) {
5013 			atomic_inc(&rb->aux_mmap_count);
5014 			ret = 0;
5015 			goto unlock;
5016 		}
5017 
5018 		atomic_set(&rb->aux_mmap_count, 1);
5019 		user_extra = nr_pages;
5020 
5021 		goto accounting;
5022 	}
5023 
5024 	/*
5025 	 * If we have rb pages ensure they're a power-of-two number, so we
5026 	 * can do bitmasks instead of modulo.
5027 	 */
5028 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5029 		return -EINVAL;
5030 
5031 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5032 		return -EINVAL;
5033 
5034 	WARN_ON_ONCE(event->ctx->parent_ctx);
5035 again:
5036 	mutex_lock(&event->mmap_mutex);
5037 	if (event->rb) {
5038 		if (event->rb->nr_pages != nr_pages) {
5039 			ret = -EINVAL;
5040 			goto unlock;
5041 		}
5042 
5043 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5044 			/*
5045 			 * Raced against perf_mmap_close() through
5046 			 * perf_event_set_output(). Try again, hope for better
5047 			 * luck.
5048 			 */
5049 			mutex_unlock(&event->mmap_mutex);
5050 			goto again;
5051 		}
5052 
5053 		goto unlock;
5054 	}
5055 
5056 	user_extra = nr_pages + 1;
5057 
5058 accounting:
5059 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5060 
5061 	/*
5062 	 * Increase the limit linearly with more CPUs:
5063 	 */
5064 	user_lock_limit *= num_online_cpus();
5065 
5066 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5067 
5068 	if (user_locked > user_lock_limit)
5069 		extra = user_locked - user_lock_limit;
5070 
5071 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5072 	lock_limit >>= PAGE_SHIFT;
5073 	locked = vma->vm_mm->pinned_vm + extra;
5074 
5075 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5076 		!capable(CAP_IPC_LOCK)) {
5077 		ret = -EPERM;
5078 		goto unlock;
5079 	}
5080 
5081 	WARN_ON(!rb && event->rb);
5082 
5083 	if (vma->vm_flags & VM_WRITE)
5084 		flags |= RING_BUFFER_WRITABLE;
5085 
5086 	if (!rb) {
5087 		rb = rb_alloc(nr_pages,
5088 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5089 			      event->cpu, flags);
5090 
5091 		if (!rb) {
5092 			ret = -ENOMEM;
5093 			goto unlock;
5094 		}
5095 
5096 		atomic_set(&rb->mmap_count, 1);
5097 		rb->mmap_user = get_current_user();
5098 		rb->mmap_locked = extra;
5099 
5100 		ring_buffer_attach(event, rb);
5101 
5102 		perf_event_init_userpage(event);
5103 		perf_event_update_userpage(event);
5104 	} else {
5105 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5106 				   event->attr.aux_watermark, flags);
5107 		if (!ret)
5108 			rb->aux_mmap_locked = extra;
5109 	}
5110 
5111 unlock:
5112 	if (!ret) {
5113 		atomic_long_add(user_extra, &user->locked_vm);
5114 		vma->vm_mm->pinned_vm += extra;
5115 
5116 		atomic_inc(&event->mmap_count);
5117 	} else if (rb) {
5118 		atomic_dec(&rb->mmap_count);
5119 	}
5120 aux_unlock:
5121 	mutex_unlock(&event->mmap_mutex);
5122 
5123 	/*
5124 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5125 	 * vma.
5126 	 */
5127 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5128 	vma->vm_ops = &perf_mmap_vmops;
5129 
5130 	if (event->pmu->event_mapped)
5131 		event->pmu->event_mapped(event);
5132 
5133 	return ret;
5134 }
5135 
5136 static int perf_fasync(int fd, struct file *filp, int on)
5137 {
5138 	struct inode *inode = file_inode(filp);
5139 	struct perf_event *event = filp->private_data;
5140 	int retval;
5141 
5142 	inode_lock(inode);
5143 	retval = fasync_helper(fd, filp, on, &event->fasync);
5144 	inode_unlock(inode);
5145 
5146 	if (retval < 0)
5147 		return retval;
5148 
5149 	return 0;
5150 }
5151 
5152 static const struct file_operations perf_fops = {
5153 	.llseek			= no_llseek,
5154 	.release		= perf_release,
5155 	.read			= perf_read,
5156 	.poll			= perf_poll,
5157 	.unlocked_ioctl		= perf_ioctl,
5158 	.compat_ioctl		= perf_compat_ioctl,
5159 	.mmap			= perf_mmap,
5160 	.fasync			= perf_fasync,
5161 };
5162 
5163 /*
5164  * Perf event wakeup
5165  *
5166  * If there's data, ensure we set the poll() state and publish everything
5167  * to user-space before waking everybody up.
5168  */
5169 
5170 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5171 {
5172 	/* only the parent has fasync state */
5173 	if (event->parent)
5174 		event = event->parent;
5175 	return &event->fasync;
5176 }
5177 
5178 void perf_event_wakeup(struct perf_event *event)
5179 {
5180 	ring_buffer_wakeup(event);
5181 
5182 	if (event->pending_kill) {
5183 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5184 		event->pending_kill = 0;
5185 	}
5186 }
5187 
5188 static void perf_pending_event(struct irq_work *entry)
5189 {
5190 	struct perf_event *event = container_of(entry,
5191 			struct perf_event, pending);
5192 	int rctx;
5193 
5194 	rctx = perf_swevent_get_recursion_context();
5195 	/*
5196 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5197 	 * and we won't recurse 'further'.
5198 	 */
5199 
5200 	if (event->pending_disable) {
5201 		event->pending_disable = 0;
5202 		perf_event_disable_local(event);
5203 	}
5204 
5205 	if (event->pending_wakeup) {
5206 		event->pending_wakeup = 0;
5207 		perf_event_wakeup(event);
5208 	}
5209 
5210 	if (rctx >= 0)
5211 		perf_swevent_put_recursion_context(rctx);
5212 }
5213 
5214 /*
5215  * We assume there is only KVM supporting the callbacks.
5216  * Later on, we might change it to a list if there is
5217  * another virtualization implementation supporting the callbacks.
5218  */
5219 struct perf_guest_info_callbacks *perf_guest_cbs;
5220 
5221 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5222 {
5223 	perf_guest_cbs = cbs;
5224 	return 0;
5225 }
5226 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5227 
5228 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5229 {
5230 	perf_guest_cbs = NULL;
5231 	return 0;
5232 }
5233 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5234 
5235 static void
5236 perf_output_sample_regs(struct perf_output_handle *handle,
5237 			struct pt_regs *regs, u64 mask)
5238 {
5239 	int bit;
5240 
5241 	for_each_set_bit(bit, (const unsigned long *) &mask,
5242 			 sizeof(mask) * BITS_PER_BYTE) {
5243 		u64 val;
5244 
5245 		val = perf_reg_value(regs, bit);
5246 		perf_output_put(handle, val);
5247 	}
5248 }
5249 
5250 static void perf_sample_regs_user(struct perf_regs *regs_user,
5251 				  struct pt_regs *regs,
5252 				  struct pt_regs *regs_user_copy)
5253 {
5254 	if (user_mode(regs)) {
5255 		regs_user->abi = perf_reg_abi(current);
5256 		regs_user->regs = regs;
5257 	} else if (current->mm) {
5258 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5259 	} else {
5260 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5261 		regs_user->regs = NULL;
5262 	}
5263 }
5264 
5265 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5266 				  struct pt_regs *regs)
5267 {
5268 	regs_intr->regs = regs;
5269 	regs_intr->abi  = perf_reg_abi(current);
5270 }
5271 
5272 
5273 /*
5274  * Get remaining task size from user stack pointer.
5275  *
5276  * It'd be better to take stack vma map and limit this more
5277  * precisly, but there's no way to get it safely under interrupt,
5278  * so using TASK_SIZE as limit.
5279  */
5280 static u64 perf_ustack_task_size(struct pt_regs *regs)
5281 {
5282 	unsigned long addr = perf_user_stack_pointer(regs);
5283 
5284 	if (!addr || addr >= TASK_SIZE)
5285 		return 0;
5286 
5287 	return TASK_SIZE - addr;
5288 }
5289 
5290 static u16
5291 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5292 			struct pt_regs *regs)
5293 {
5294 	u64 task_size;
5295 
5296 	/* No regs, no stack pointer, no dump. */
5297 	if (!regs)
5298 		return 0;
5299 
5300 	/*
5301 	 * Check if we fit in with the requested stack size into the:
5302 	 * - TASK_SIZE
5303 	 *   If we don't, we limit the size to the TASK_SIZE.
5304 	 *
5305 	 * - remaining sample size
5306 	 *   If we don't, we customize the stack size to
5307 	 *   fit in to the remaining sample size.
5308 	 */
5309 
5310 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5311 	stack_size = min(stack_size, (u16) task_size);
5312 
5313 	/* Current header size plus static size and dynamic size. */
5314 	header_size += 2 * sizeof(u64);
5315 
5316 	/* Do we fit in with the current stack dump size? */
5317 	if ((u16) (header_size + stack_size) < header_size) {
5318 		/*
5319 		 * If we overflow the maximum size for the sample,
5320 		 * we customize the stack dump size to fit in.
5321 		 */
5322 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5323 		stack_size = round_up(stack_size, sizeof(u64));
5324 	}
5325 
5326 	return stack_size;
5327 }
5328 
5329 static void
5330 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5331 			  struct pt_regs *regs)
5332 {
5333 	/* Case of a kernel thread, nothing to dump */
5334 	if (!regs) {
5335 		u64 size = 0;
5336 		perf_output_put(handle, size);
5337 	} else {
5338 		unsigned long sp;
5339 		unsigned int rem;
5340 		u64 dyn_size;
5341 
5342 		/*
5343 		 * We dump:
5344 		 * static size
5345 		 *   - the size requested by user or the best one we can fit
5346 		 *     in to the sample max size
5347 		 * data
5348 		 *   - user stack dump data
5349 		 * dynamic size
5350 		 *   - the actual dumped size
5351 		 */
5352 
5353 		/* Static size. */
5354 		perf_output_put(handle, dump_size);
5355 
5356 		/* Data. */
5357 		sp = perf_user_stack_pointer(regs);
5358 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5359 		dyn_size = dump_size - rem;
5360 
5361 		perf_output_skip(handle, rem);
5362 
5363 		/* Dynamic size. */
5364 		perf_output_put(handle, dyn_size);
5365 	}
5366 }
5367 
5368 static void __perf_event_header__init_id(struct perf_event_header *header,
5369 					 struct perf_sample_data *data,
5370 					 struct perf_event *event)
5371 {
5372 	u64 sample_type = event->attr.sample_type;
5373 
5374 	data->type = sample_type;
5375 	header->size += event->id_header_size;
5376 
5377 	if (sample_type & PERF_SAMPLE_TID) {
5378 		/* namespace issues */
5379 		data->tid_entry.pid = perf_event_pid(event, current);
5380 		data->tid_entry.tid = perf_event_tid(event, current);
5381 	}
5382 
5383 	if (sample_type & PERF_SAMPLE_TIME)
5384 		data->time = perf_event_clock(event);
5385 
5386 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5387 		data->id = primary_event_id(event);
5388 
5389 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5390 		data->stream_id = event->id;
5391 
5392 	if (sample_type & PERF_SAMPLE_CPU) {
5393 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5394 		data->cpu_entry.reserved = 0;
5395 	}
5396 }
5397 
5398 void perf_event_header__init_id(struct perf_event_header *header,
5399 				struct perf_sample_data *data,
5400 				struct perf_event *event)
5401 {
5402 	if (event->attr.sample_id_all)
5403 		__perf_event_header__init_id(header, data, event);
5404 }
5405 
5406 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5407 					   struct perf_sample_data *data)
5408 {
5409 	u64 sample_type = data->type;
5410 
5411 	if (sample_type & PERF_SAMPLE_TID)
5412 		perf_output_put(handle, data->tid_entry);
5413 
5414 	if (sample_type & PERF_SAMPLE_TIME)
5415 		perf_output_put(handle, data->time);
5416 
5417 	if (sample_type & PERF_SAMPLE_ID)
5418 		perf_output_put(handle, data->id);
5419 
5420 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5421 		perf_output_put(handle, data->stream_id);
5422 
5423 	if (sample_type & PERF_SAMPLE_CPU)
5424 		perf_output_put(handle, data->cpu_entry);
5425 
5426 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5427 		perf_output_put(handle, data->id);
5428 }
5429 
5430 void perf_event__output_id_sample(struct perf_event *event,
5431 				  struct perf_output_handle *handle,
5432 				  struct perf_sample_data *sample)
5433 {
5434 	if (event->attr.sample_id_all)
5435 		__perf_event__output_id_sample(handle, sample);
5436 }
5437 
5438 static void perf_output_read_one(struct perf_output_handle *handle,
5439 				 struct perf_event *event,
5440 				 u64 enabled, u64 running)
5441 {
5442 	u64 read_format = event->attr.read_format;
5443 	u64 values[4];
5444 	int n = 0;
5445 
5446 	values[n++] = perf_event_count(event);
5447 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5448 		values[n++] = enabled +
5449 			atomic64_read(&event->child_total_time_enabled);
5450 	}
5451 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5452 		values[n++] = running +
5453 			atomic64_read(&event->child_total_time_running);
5454 	}
5455 	if (read_format & PERF_FORMAT_ID)
5456 		values[n++] = primary_event_id(event);
5457 
5458 	__output_copy(handle, values, n * sizeof(u64));
5459 }
5460 
5461 /*
5462  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5463  */
5464 static void perf_output_read_group(struct perf_output_handle *handle,
5465 			    struct perf_event *event,
5466 			    u64 enabled, u64 running)
5467 {
5468 	struct perf_event *leader = event->group_leader, *sub;
5469 	u64 read_format = event->attr.read_format;
5470 	u64 values[5];
5471 	int n = 0;
5472 
5473 	values[n++] = 1 + leader->nr_siblings;
5474 
5475 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5476 		values[n++] = enabled;
5477 
5478 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5479 		values[n++] = running;
5480 
5481 	if (leader != event)
5482 		leader->pmu->read(leader);
5483 
5484 	values[n++] = perf_event_count(leader);
5485 	if (read_format & PERF_FORMAT_ID)
5486 		values[n++] = primary_event_id(leader);
5487 
5488 	__output_copy(handle, values, n * sizeof(u64));
5489 
5490 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5491 		n = 0;
5492 
5493 		if ((sub != event) &&
5494 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5495 			sub->pmu->read(sub);
5496 
5497 		values[n++] = perf_event_count(sub);
5498 		if (read_format & PERF_FORMAT_ID)
5499 			values[n++] = primary_event_id(sub);
5500 
5501 		__output_copy(handle, values, n * sizeof(u64));
5502 	}
5503 }
5504 
5505 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5506 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5507 
5508 static void perf_output_read(struct perf_output_handle *handle,
5509 			     struct perf_event *event)
5510 {
5511 	u64 enabled = 0, running = 0, now;
5512 	u64 read_format = event->attr.read_format;
5513 
5514 	/*
5515 	 * compute total_time_enabled, total_time_running
5516 	 * based on snapshot values taken when the event
5517 	 * was last scheduled in.
5518 	 *
5519 	 * we cannot simply called update_context_time()
5520 	 * because of locking issue as we are called in
5521 	 * NMI context
5522 	 */
5523 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5524 		calc_timer_values(event, &now, &enabled, &running);
5525 
5526 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5527 		perf_output_read_group(handle, event, enabled, running);
5528 	else
5529 		perf_output_read_one(handle, event, enabled, running);
5530 }
5531 
5532 void perf_output_sample(struct perf_output_handle *handle,
5533 			struct perf_event_header *header,
5534 			struct perf_sample_data *data,
5535 			struct perf_event *event)
5536 {
5537 	u64 sample_type = data->type;
5538 
5539 	perf_output_put(handle, *header);
5540 
5541 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5542 		perf_output_put(handle, data->id);
5543 
5544 	if (sample_type & PERF_SAMPLE_IP)
5545 		perf_output_put(handle, data->ip);
5546 
5547 	if (sample_type & PERF_SAMPLE_TID)
5548 		perf_output_put(handle, data->tid_entry);
5549 
5550 	if (sample_type & PERF_SAMPLE_TIME)
5551 		perf_output_put(handle, data->time);
5552 
5553 	if (sample_type & PERF_SAMPLE_ADDR)
5554 		perf_output_put(handle, data->addr);
5555 
5556 	if (sample_type & PERF_SAMPLE_ID)
5557 		perf_output_put(handle, data->id);
5558 
5559 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5560 		perf_output_put(handle, data->stream_id);
5561 
5562 	if (sample_type & PERF_SAMPLE_CPU)
5563 		perf_output_put(handle, data->cpu_entry);
5564 
5565 	if (sample_type & PERF_SAMPLE_PERIOD)
5566 		perf_output_put(handle, data->period);
5567 
5568 	if (sample_type & PERF_SAMPLE_READ)
5569 		perf_output_read(handle, event);
5570 
5571 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5572 		if (data->callchain) {
5573 			int size = 1;
5574 
5575 			if (data->callchain)
5576 				size += data->callchain->nr;
5577 
5578 			size *= sizeof(u64);
5579 
5580 			__output_copy(handle, data->callchain, size);
5581 		} else {
5582 			u64 nr = 0;
5583 			perf_output_put(handle, nr);
5584 		}
5585 	}
5586 
5587 	if (sample_type & PERF_SAMPLE_RAW) {
5588 		if (data->raw) {
5589 			u32 raw_size = data->raw->size;
5590 			u32 real_size = round_up(raw_size + sizeof(u32),
5591 						 sizeof(u64)) - sizeof(u32);
5592 			u64 zero = 0;
5593 
5594 			perf_output_put(handle, real_size);
5595 			__output_copy(handle, data->raw->data, raw_size);
5596 			if (real_size - raw_size)
5597 				__output_copy(handle, &zero, real_size - raw_size);
5598 		} else {
5599 			struct {
5600 				u32	size;
5601 				u32	data;
5602 			} raw = {
5603 				.size = sizeof(u32),
5604 				.data = 0,
5605 			};
5606 			perf_output_put(handle, raw);
5607 		}
5608 	}
5609 
5610 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5611 		if (data->br_stack) {
5612 			size_t size;
5613 
5614 			size = data->br_stack->nr
5615 			     * sizeof(struct perf_branch_entry);
5616 
5617 			perf_output_put(handle, data->br_stack->nr);
5618 			perf_output_copy(handle, data->br_stack->entries, size);
5619 		} else {
5620 			/*
5621 			 * we always store at least the value of nr
5622 			 */
5623 			u64 nr = 0;
5624 			perf_output_put(handle, nr);
5625 		}
5626 	}
5627 
5628 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5629 		u64 abi = data->regs_user.abi;
5630 
5631 		/*
5632 		 * If there are no regs to dump, notice it through
5633 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5634 		 */
5635 		perf_output_put(handle, abi);
5636 
5637 		if (abi) {
5638 			u64 mask = event->attr.sample_regs_user;
5639 			perf_output_sample_regs(handle,
5640 						data->regs_user.regs,
5641 						mask);
5642 		}
5643 	}
5644 
5645 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5646 		perf_output_sample_ustack(handle,
5647 					  data->stack_user_size,
5648 					  data->regs_user.regs);
5649 	}
5650 
5651 	if (sample_type & PERF_SAMPLE_WEIGHT)
5652 		perf_output_put(handle, data->weight);
5653 
5654 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5655 		perf_output_put(handle, data->data_src.val);
5656 
5657 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5658 		perf_output_put(handle, data->txn);
5659 
5660 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5661 		u64 abi = data->regs_intr.abi;
5662 		/*
5663 		 * If there are no regs to dump, notice it through
5664 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5665 		 */
5666 		perf_output_put(handle, abi);
5667 
5668 		if (abi) {
5669 			u64 mask = event->attr.sample_regs_intr;
5670 
5671 			perf_output_sample_regs(handle,
5672 						data->regs_intr.regs,
5673 						mask);
5674 		}
5675 	}
5676 
5677 	if (!event->attr.watermark) {
5678 		int wakeup_events = event->attr.wakeup_events;
5679 
5680 		if (wakeup_events) {
5681 			struct ring_buffer *rb = handle->rb;
5682 			int events = local_inc_return(&rb->events);
5683 
5684 			if (events >= wakeup_events) {
5685 				local_sub(wakeup_events, &rb->events);
5686 				local_inc(&rb->wakeup);
5687 			}
5688 		}
5689 	}
5690 }
5691 
5692 void perf_prepare_sample(struct perf_event_header *header,
5693 			 struct perf_sample_data *data,
5694 			 struct perf_event *event,
5695 			 struct pt_regs *regs)
5696 {
5697 	u64 sample_type = event->attr.sample_type;
5698 
5699 	header->type = PERF_RECORD_SAMPLE;
5700 	header->size = sizeof(*header) + event->header_size;
5701 
5702 	header->misc = 0;
5703 	header->misc |= perf_misc_flags(regs);
5704 
5705 	__perf_event_header__init_id(header, data, event);
5706 
5707 	if (sample_type & PERF_SAMPLE_IP)
5708 		data->ip = perf_instruction_pointer(regs);
5709 
5710 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5711 		int size = 1;
5712 
5713 		data->callchain = perf_callchain(event, regs);
5714 
5715 		if (data->callchain)
5716 			size += data->callchain->nr;
5717 
5718 		header->size += size * sizeof(u64);
5719 	}
5720 
5721 	if (sample_type & PERF_SAMPLE_RAW) {
5722 		int size = sizeof(u32);
5723 
5724 		if (data->raw)
5725 			size += data->raw->size;
5726 		else
5727 			size += sizeof(u32);
5728 
5729 		header->size += round_up(size, sizeof(u64));
5730 	}
5731 
5732 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5733 		int size = sizeof(u64); /* nr */
5734 		if (data->br_stack) {
5735 			size += data->br_stack->nr
5736 			      * sizeof(struct perf_branch_entry);
5737 		}
5738 		header->size += size;
5739 	}
5740 
5741 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5742 		perf_sample_regs_user(&data->regs_user, regs,
5743 				      &data->regs_user_copy);
5744 
5745 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5746 		/* regs dump ABI info */
5747 		int size = sizeof(u64);
5748 
5749 		if (data->regs_user.regs) {
5750 			u64 mask = event->attr.sample_regs_user;
5751 			size += hweight64(mask) * sizeof(u64);
5752 		}
5753 
5754 		header->size += size;
5755 	}
5756 
5757 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5758 		/*
5759 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5760 		 * processed as the last one or have additional check added
5761 		 * in case new sample type is added, because we could eat
5762 		 * up the rest of the sample size.
5763 		 */
5764 		u16 stack_size = event->attr.sample_stack_user;
5765 		u16 size = sizeof(u64);
5766 
5767 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5768 						     data->regs_user.regs);
5769 
5770 		/*
5771 		 * If there is something to dump, add space for the dump
5772 		 * itself and for the field that tells the dynamic size,
5773 		 * which is how many have been actually dumped.
5774 		 */
5775 		if (stack_size)
5776 			size += sizeof(u64) + stack_size;
5777 
5778 		data->stack_user_size = stack_size;
5779 		header->size += size;
5780 	}
5781 
5782 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5783 		/* regs dump ABI info */
5784 		int size = sizeof(u64);
5785 
5786 		perf_sample_regs_intr(&data->regs_intr, regs);
5787 
5788 		if (data->regs_intr.regs) {
5789 			u64 mask = event->attr.sample_regs_intr;
5790 
5791 			size += hweight64(mask) * sizeof(u64);
5792 		}
5793 
5794 		header->size += size;
5795 	}
5796 }
5797 
5798 static void __always_inline
5799 __perf_event_output(struct perf_event *event,
5800 		    struct perf_sample_data *data,
5801 		    struct pt_regs *regs,
5802 		    int (*output_begin)(struct perf_output_handle *,
5803 					struct perf_event *,
5804 					unsigned int))
5805 {
5806 	struct perf_output_handle handle;
5807 	struct perf_event_header header;
5808 
5809 	/* protect the callchain buffers */
5810 	rcu_read_lock();
5811 
5812 	perf_prepare_sample(&header, data, event, regs);
5813 
5814 	if (output_begin(&handle, event, header.size))
5815 		goto exit;
5816 
5817 	perf_output_sample(&handle, &header, data, event);
5818 
5819 	perf_output_end(&handle);
5820 
5821 exit:
5822 	rcu_read_unlock();
5823 }
5824 
5825 void
5826 perf_event_output_forward(struct perf_event *event,
5827 			 struct perf_sample_data *data,
5828 			 struct pt_regs *regs)
5829 {
5830 	__perf_event_output(event, data, regs, perf_output_begin_forward);
5831 }
5832 
5833 void
5834 perf_event_output_backward(struct perf_event *event,
5835 			   struct perf_sample_data *data,
5836 			   struct pt_regs *regs)
5837 {
5838 	__perf_event_output(event, data, regs, perf_output_begin_backward);
5839 }
5840 
5841 void
5842 perf_event_output(struct perf_event *event,
5843 		  struct perf_sample_data *data,
5844 		  struct pt_regs *regs)
5845 {
5846 	__perf_event_output(event, data, regs, perf_output_begin);
5847 }
5848 
5849 /*
5850  * read event_id
5851  */
5852 
5853 struct perf_read_event {
5854 	struct perf_event_header	header;
5855 
5856 	u32				pid;
5857 	u32				tid;
5858 };
5859 
5860 static void
5861 perf_event_read_event(struct perf_event *event,
5862 			struct task_struct *task)
5863 {
5864 	struct perf_output_handle handle;
5865 	struct perf_sample_data sample;
5866 	struct perf_read_event read_event = {
5867 		.header = {
5868 			.type = PERF_RECORD_READ,
5869 			.misc = 0,
5870 			.size = sizeof(read_event) + event->read_size,
5871 		},
5872 		.pid = perf_event_pid(event, task),
5873 		.tid = perf_event_tid(event, task),
5874 	};
5875 	int ret;
5876 
5877 	perf_event_header__init_id(&read_event.header, &sample, event);
5878 	ret = perf_output_begin(&handle, event, read_event.header.size);
5879 	if (ret)
5880 		return;
5881 
5882 	perf_output_put(&handle, read_event);
5883 	perf_output_read(&handle, event);
5884 	perf_event__output_id_sample(event, &handle, &sample);
5885 
5886 	perf_output_end(&handle);
5887 }
5888 
5889 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5890 
5891 static void
5892 perf_iterate_ctx(struct perf_event_context *ctx,
5893 		   perf_iterate_f output,
5894 		   void *data, bool all)
5895 {
5896 	struct perf_event *event;
5897 
5898 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5899 		if (!all) {
5900 			if (event->state < PERF_EVENT_STATE_INACTIVE)
5901 				continue;
5902 			if (!event_filter_match(event))
5903 				continue;
5904 		}
5905 
5906 		output(event, data);
5907 	}
5908 }
5909 
5910 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5911 {
5912 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5913 	struct perf_event *event;
5914 
5915 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
5916 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5917 			continue;
5918 		if (!event_filter_match(event))
5919 			continue;
5920 		output(event, data);
5921 	}
5922 }
5923 
5924 /*
5925  * Iterate all events that need to receive side-band events.
5926  *
5927  * For new callers; ensure that account_pmu_sb_event() includes
5928  * your event, otherwise it might not get delivered.
5929  */
5930 static void
5931 perf_iterate_sb(perf_iterate_f output, void *data,
5932 	       struct perf_event_context *task_ctx)
5933 {
5934 	struct perf_event_context *ctx;
5935 	int ctxn;
5936 
5937 	rcu_read_lock();
5938 	preempt_disable();
5939 
5940 	/*
5941 	 * If we have task_ctx != NULL we only notify the task context itself.
5942 	 * The task_ctx is set only for EXIT events before releasing task
5943 	 * context.
5944 	 */
5945 	if (task_ctx) {
5946 		perf_iterate_ctx(task_ctx, output, data, false);
5947 		goto done;
5948 	}
5949 
5950 	perf_iterate_sb_cpu(output, data);
5951 
5952 	for_each_task_context_nr(ctxn) {
5953 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5954 		if (ctx)
5955 			perf_iterate_ctx(ctx, output, data, false);
5956 	}
5957 done:
5958 	preempt_enable();
5959 	rcu_read_unlock();
5960 }
5961 
5962 /*
5963  * Clear all file-based filters at exec, they'll have to be
5964  * re-instated when/if these objects are mmapped again.
5965  */
5966 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5967 {
5968 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5969 	struct perf_addr_filter *filter;
5970 	unsigned int restart = 0, count = 0;
5971 	unsigned long flags;
5972 
5973 	if (!has_addr_filter(event))
5974 		return;
5975 
5976 	raw_spin_lock_irqsave(&ifh->lock, flags);
5977 	list_for_each_entry(filter, &ifh->list, entry) {
5978 		if (filter->inode) {
5979 			event->addr_filters_offs[count] = 0;
5980 			restart++;
5981 		}
5982 
5983 		count++;
5984 	}
5985 
5986 	if (restart)
5987 		event->addr_filters_gen++;
5988 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
5989 
5990 	if (restart)
5991 		perf_event_restart(event);
5992 }
5993 
5994 void perf_event_exec(void)
5995 {
5996 	struct perf_event_context *ctx;
5997 	int ctxn;
5998 
5999 	rcu_read_lock();
6000 	for_each_task_context_nr(ctxn) {
6001 		ctx = current->perf_event_ctxp[ctxn];
6002 		if (!ctx)
6003 			continue;
6004 
6005 		perf_event_enable_on_exec(ctxn);
6006 
6007 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6008 				   true);
6009 	}
6010 	rcu_read_unlock();
6011 }
6012 
6013 struct remote_output {
6014 	struct ring_buffer	*rb;
6015 	int			err;
6016 };
6017 
6018 static void __perf_event_output_stop(struct perf_event *event, void *data)
6019 {
6020 	struct perf_event *parent = event->parent;
6021 	struct remote_output *ro = data;
6022 	struct ring_buffer *rb = ro->rb;
6023 	struct stop_event_data sd = {
6024 		.event	= event,
6025 	};
6026 
6027 	if (!has_aux(event))
6028 		return;
6029 
6030 	if (!parent)
6031 		parent = event;
6032 
6033 	/*
6034 	 * In case of inheritance, it will be the parent that links to the
6035 	 * ring-buffer, but it will be the child that's actually using it:
6036 	 */
6037 	if (rcu_dereference(parent->rb) == rb)
6038 		ro->err = __perf_event_stop(&sd);
6039 }
6040 
6041 static int __perf_pmu_output_stop(void *info)
6042 {
6043 	struct perf_event *event = info;
6044 	struct pmu *pmu = event->pmu;
6045 	struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6046 	struct remote_output ro = {
6047 		.rb	= event->rb,
6048 	};
6049 
6050 	rcu_read_lock();
6051 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6052 	if (cpuctx->task_ctx)
6053 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6054 				   &ro, false);
6055 	rcu_read_unlock();
6056 
6057 	return ro.err;
6058 }
6059 
6060 static void perf_pmu_output_stop(struct perf_event *event)
6061 {
6062 	struct perf_event *iter;
6063 	int err, cpu;
6064 
6065 restart:
6066 	rcu_read_lock();
6067 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6068 		/*
6069 		 * For per-CPU events, we need to make sure that neither they
6070 		 * nor their children are running; for cpu==-1 events it's
6071 		 * sufficient to stop the event itself if it's active, since
6072 		 * it can't have children.
6073 		 */
6074 		cpu = iter->cpu;
6075 		if (cpu == -1)
6076 			cpu = READ_ONCE(iter->oncpu);
6077 
6078 		if (cpu == -1)
6079 			continue;
6080 
6081 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6082 		if (err == -EAGAIN) {
6083 			rcu_read_unlock();
6084 			goto restart;
6085 		}
6086 	}
6087 	rcu_read_unlock();
6088 }
6089 
6090 /*
6091  * task tracking -- fork/exit
6092  *
6093  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6094  */
6095 
6096 struct perf_task_event {
6097 	struct task_struct		*task;
6098 	struct perf_event_context	*task_ctx;
6099 
6100 	struct {
6101 		struct perf_event_header	header;
6102 
6103 		u32				pid;
6104 		u32				ppid;
6105 		u32				tid;
6106 		u32				ptid;
6107 		u64				time;
6108 	} event_id;
6109 };
6110 
6111 static int perf_event_task_match(struct perf_event *event)
6112 {
6113 	return event->attr.comm  || event->attr.mmap ||
6114 	       event->attr.mmap2 || event->attr.mmap_data ||
6115 	       event->attr.task;
6116 }
6117 
6118 static void perf_event_task_output(struct perf_event *event,
6119 				   void *data)
6120 {
6121 	struct perf_task_event *task_event = data;
6122 	struct perf_output_handle handle;
6123 	struct perf_sample_data	sample;
6124 	struct task_struct *task = task_event->task;
6125 	int ret, size = task_event->event_id.header.size;
6126 
6127 	if (!perf_event_task_match(event))
6128 		return;
6129 
6130 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6131 
6132 	ret = perf_output_begin(&handle, event,
6133 				task_event->event_id.header.size);
6134 	if (ret)
6135 		goto out;
6136 
6137 	task_event->event_id.pid = perf_event_pid(event, task);
6138 	task_event->event_id.ppid = perf_event_pid(event, current);
6139 
6140 	task_event->event_id.tid = perf_event_tid(event, task);
6141 	task_event->event_id.ptid = perf_event_tid(event, current);
6142 
6143 	task_event->event_id.time = perf_event_clock(event);
6144 
6145 	perf_output_put(&handle, task_event->event_id);
6146 
6147 	perf_event__output_id_sample(event, &handle, &sample);
6148 
6149 	perf_output_end(&handle);
6150 out:
6151 	task_event->event_id.header.size = size;
6152 }
6153 
6154 static void perf_event_task(struct task_struct *task,
6155 			      struct perf_event_context *task_ctx,
6156 			      int new)
6157 {
6158 	struct perf_task_event task_event;
6159 
6160 	if (!atomic_read(&nr_comm_events) &&
6161 	    !atomic_read(&nr_mmap_events) &&
6162 	    !atomic_read(&nr_task_events))
6163 		return;
6164 
6165 	task_event = (struct perf_task_event){
6166 		.task	  = task,
6167 		.task_ctx = task_ctx,
6168 		.event_id    = {
6169 			.header = {
6170 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6171 				.misc = 0,
6172 				.size = sizeof(task_event.event_id),
6173 			},
6174 			/* .pid  */
6175 			/* .ppid */
6176 			/* .tid  */
6177 			/* .ptid */
6178 			/* .time */
6179 		},
6180 	};
6181 
6182 	perf_iterate_sb(perf_event_task_output,
6183 		       &task_event,
6184 		       task_ctx);
6185 }
6186 
6187 void perf_event_fork(struct task_struct *task)
6188 {
6189 	perf_event_task(task, NULL, 1);
6190 }
6191 
6192 /*
6193  * comm tracking
6194  */
6195 
6196 struct perf_comm_event {
6197 	struct task_struct	*task;
6198 	char			*comm;
6199 	int			comm_size;
6200 
6201 	struct {
6202 		struct perf_event_header	header;
6203 
6204 		u32				pid;
6205 		u32				tid;
6206 	} event_id;
6207 };
6208 
6209 static int perf_event_comm_match(struct perf_event *event)
6210 {
6211 	return event->attr.comm;
6212 }
6213 
6214 static void perf_event_comm_output(struct perf_event *event,
6215 				   void *data)
6216 {
6217 	struct perf_comm_event *comm_event = data;
6218 	struct perf_output_handle handle;
6219 	struct perf_sample_data sample;
6220 	int size = comm_event->event_id.header.size;
6221 	int ret;
6222 
6223 	if (!perf_event_comm_match(event))
6224 		return;
6225 
6226 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6227 	ret = perf_output_begin(&handle, event,
6228 				comm_event->event_id.header.size);
6229 
6230 	if (ret)
6231 		goto out;
6232 
6233 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6234 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6235 
6236 	perf_output_put(&handle, comm_event->event_id);
6237 	__output_copy(&handle, comm_event->comm,
6238 				   comm_event->comm_size);
6239 
6240 	perf_event__output_id_sample(event, &handle, &sample);
6241 
6242 	perf_output_end(&handle);
6243 out:
6244 	comm_event->event_id.header.size = size;
6245 }
6246 
6247 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6248 {
6249 	char comm[TASK_COMM_LEN];
6250 	unsigned int size;
6251 
6252 	memset(comm, 0, sizeof(comm));
6253 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6254 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6255 
6256 	comm_event->comm = comm;
6257 	comm_event->comm_size = size;
6258 
6259 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6260 
6261 	perf_iterate_sb(perf_event_comm_output,
6262 		       comm_event,
6263 		       NULL);
6264 }
6265 
6266 void perf_event_comm(struct task_struct *task, bool exec)
6267 {
6268 	struct perf_comm_event comm_event;
6269 
6270 	if (!atomic_read(&nr_comm_events))
6271 		return;
6272 
6273 	comm_event = (struct perf_comm_event){
6274 		.task	= task,
6275 		/* .comm      */
6276 		/* .comm_size */
6277 		.event_id  = {
6278 			.header = {
6279 				.type = PERF_RECORD_COMM,
6280 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6281 				/* .size */
6282 			},
6283 			/* .pid */
6284 			/* .tid */
6285 		},
6286 	};
6287 
6288 	perf_event_comm_event(&comm_event);
6289 }
6290 
6291 /*
6292  * mmap tracking
6293  */
6294 
6295 struct perf_mmap_event {
6296 	struct vm_area_struct	*vma;
6297 
6298 	const char		*file_name;
6299 	int			file_size;
6300 	int			maj, min;
6301 	u64			ino;
6302 	u64			ino_generation;
6303 	u32			prot, flags;
6304 
6305 	struct {
6306 		struct perf_event_header	header;
6307 
6308 		u32				pid;
6309 		u32				tid;
6310 		u64				start;
6311 		u64				len;
6312 		u64				pgoff;
6313 	} event_id;
6314 };
6315 
6316 static int perf_event_mmap_match(struct perf_event *event,
6317 				 void *data)
6318 {
6319 	struct perf_mmap_event *mmap_event = data;
6320 	struct vm_area_struct *vma = mmap_event->vma;
6321 	int executable = vma->vm_flags & VM_EXEC;
6322 
6323 	return (!executable && event->attr.mmap_data) ||
6324 	       (executable && (event->attr.mmap || event->attr.mmap2));
6325 }
6326 
6327 static void perf_event_mmap_output(struct perf_event *event,
6328 				   void *data)
6329 {
6330 	struct perf_mmap_event *mmap_event = data;
6331 	struct perf_output_handle handle;
6332 	struct perf_sample_data sample;
6333 	int size = mmap_event->event_id.header.size;
6334 	int ret;
6335 
6336 	if (!perf_event_mmap_match(event, data))
6337 		return;
6338 
6339 	if (event->attr.mmap2) {
6340 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6341 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6342 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6343 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6344 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6345 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6346 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6347 	}
6348 
6349 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6350 	ret = perf_output_begin(&handle, event,
6351 				mmap_event->event_id.header.size);
6352 	if (ret)
6353 		goto out;
6354 
6355 	mmap_event->event_id.pid = perf_event_pid(event, current);
6356 	mmap_event->event_id.tid = perf_event_tid(event, current);
6357 
6358 	perf_output_put(&handle, mmap_event->event_id);
6359 
6360 	if (event->attr.mmap2) {
6361 		perf_output_put(&handle, mmap_event->maj);
6362 		perf_output_put(&handle, mmap_event->min);
6363 		perf_output_put(&handle, mmap_event->ino);
6364 		perf_output_put(&handle, mmap_event->ino_generation);
6365 		perf_output_put(&handle, mmap_event->prot);
6366 		perf_output_put(&handle, mmap_event->flags);
6367 	}
6368 
6369 	__output_copy(&handle, mmap_event->file_name,
6370 				   mmap_event->file_size);
6371 
6372 	perf_event__output_id_sample(event, &handle, &sample);
6373 
6374 	perf_output_end(&handle);
6375 out:
6376 	mmap_event->event_id.header.size = size;
6377 }
6378 
6379 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6380 {
6381 	struct vm_area_struct *vma = mmap_event->vma;
6382 	struct file *file = vma->vm_file;
6383 	int maj = 0, min = 0;
6384 	u64 ino = 0, gen = 0;
6385 	u32 prot = 0, flags = 0;
6386 	unsigned int size;
6387 	char tmp[16];
6388 	char *buf = NULL;
6389 	char *name;
6390 
6391 	if (file) {
6392 		struct inode *inode;
6393 		dev_t dev;
6394 
6395 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6396 		if (!buf) {
6397 			name = "//enomem";
6398 			goto cpy_name;
6399 		}
6400 		/*
6401 		 * d_path() works from the end of the rb backwards, so we
6402 		 * need to add enough zero bytes after the string to handle
6403 		 * the 64bit alignment we do later.
6404 		 */
6405 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6406 		if (IS_ERR(name)) {
6407 			name = "//toolong";
6408 			goto cpy_name;
6409 		}
6410 		inode = file_inode(vma->vm_file);
6411 		dev = inode->i_sb->s_dev;
6412 		ino = inode->i_ino;
6413 		gen = inode->i_generation;
6414 		maj = MAJOR(dev);
6415 		min = MINOR(dev);
6416 
6417 		if (vma->vm_flags & VM_READ)
6418 			prot |= PROT_READ;
6419 		if (vma->vm_flags & VM_WRITE)
6420 			prot |= PROT_WRITE;
6421 		if (vma->vm_flags & VM_EXEC)
6422 			prot |= PROT_EXEC;
6423 
6424 		if (vma->vm_flags & VM_MAYSHARE)
6425 			flags = MAP_SHARED;
6426 		else
6427 			flags = MAP_PRIVATE;
6428 
6429 		if (vma->vm_flags & VM_DENYWRITE)
6430 			flags |= MAP_DENYWRITE;
6431 		if (vma->vm_flags & VM_MAYEXEC)
6432 			flags |= MAP_EXECUTABLE;
6433 		if (vma->vm_flags & VM_LOCKED)
6434 			flags |= MAP_LOCKED;
6435 		if (vma->vm_flags & VM_HUGETLB)
6436 			flags |= MAP_HUGETLB;
6437 
6438 		goto got_name;
6439 	} else {
6440 		if (vma->vm_ops && vma->vm_ops->name) {
6441 			name = (char *) vma->vm_ops->name(vma);
6442 			if (name)
6443 				goto cpy_name;
6444 		}
6445 
6446 		name = (char *)arch_vma_name(vma);
6447 		if (name)
6448 			goto cpy_name;
6449 
6450 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6451 				vma->vm_end >= vma->vm_mm->brk) {
6452 			name = "[heap]";
6453 			goto cpy_name;
6454 		}
6455 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6456 				vma->vm_end >= vma->vm_mm->start_stack) {
6457 			name = "[stack]";
6458 			goto cpy_name;
6459 		}
6460 
6461 		name = "//anon";
6462 		goto cpy_name;
6463 	}
6464 
6465 cpy_name:
6466 	strlcpy(tmp, name, sizeof(tmp));
6467 	name = tmp;
6468 got_name:
6469 	/*
6470 	 * Since our buffer works in 8 byte units we need to align our string
6471 	 * size to a multiple of 8. However, we must guarantee the tail end is
6472 	 * zero'd out to avoid leaking random bits to userspace.
6473 	 */
6474 	size = strlen(name)+1;
6475 	while (!IS_ALIGNED(size, sizeof(u64)))
6476 		name[size++] = '\0';
6477 
6478 	mmap_event->file_name = name;
6479 	mmap_event->file_size = size;
6480 	mmap_event->maj = maj;
6481 	mmap_event->min = min;
6482 	mmap_event->ino = ino;
6483 	mmap_event->ino_generation = gen;
6484 	mmap_event->prot = prot;
6485 	mmap_event->flags = flags;
6486 
6487 	if (!(vma->vm_flags & VM_EXEC))
6488 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6489 
6490 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6491 
6492 	perf_iterate_sb(perf_event_mmap_output,
6493 		       mmap_event,
6494 		       NULL);
6495 
6496 	kfree(buf);
6497 }
6498 
6499 /*
6500  * Whether this @filter depends on a dynamic object which is not loaded
6501  * yet or its load addresses are not known.
6502  */
6503 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6504 {
6505 	return filter->filter && filter->inode;
6506 }
6507 
6508 /*
6509  * Check whether inode and address range match filter criteria.
6510  */
6511 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6512 				     struct file *file, unsigned long offset,
6513 				     unsigned long size)
6514 {
6515 	if (filter->inode != file->f_inode)
6516 		return false;
6517 
6518 	if (filter->offset > offset + size)
6519 		return false;
6520 
6521 	if (filter->offset + filter->size < offset)
6522 		return false;
6523 
6524 	return true;
6525 }
6526 
6527 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6528 {
6529 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6530 	struct vm_area_struct *vma = data;
6531 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6532 	struct file *file = vma->vm_file;
6533 	struct perf_addr_filter *filter;
6534 	unsigned int restart = 0, count = 0;
6535 
6536 	if (!has_addr_filter(event))
6537 		return;
6538 
6539 	if (!file)
6540 		return;
6541 
6542 	raw_spin_lock_irqsave(&ifh->lock, flags);
6543 	list_for_each_entry(filter, &ifh->list, entry) {
6544 		if (perf_addr_filter_match(filter, file, off,
6545 					     vma->vm_end - vma->vm_start)) {
6546 			event->addr_filters_offs[count] = vma->vm_start;
6547 			restart++;
6548 		}
6549 
6550 		count++;
6551 	}
6552 
6553 	if (restart)
6554 		event->addr_filters_gen++;
6555 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6556 
6557 	if (restart)
6558 		perf_event_restart(event);
6559 }
6560 
6561 /*
6562  * Adjust all task's events' filters to the new vma
6563  */
6564 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6565 {
6566 	struct perf_event_context *ctx;
6567 	int ctxn;
6568 
6569 	rcu_read_lock();
6570 	for_each_task_context_nr(ctxn) {
6571 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6572 		if (!ctx)
6573 			continue;
6574 
6575 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6576 	}
6577 	rcu_read_unlock();
6578 }
6579 
6580 void perf_event_mmap(struct vm_area_struct *vma)
6581 {
6582 	struct perf_mmap_event mmap_event;
6583 
6584 	if (!atomic_read(&nr_mmap_events))
6585 		return;
6586 
6587 	mmap_event = (struct perf_mmap_event){
6588 		.vma	= vma,
6589 		/* .file_name */
6590 		/* .file_size */
6591 		.event_id  = {
6592 			.header = {
6593 				.type = PERF_RECORD_MMAP,
6594 				.misc = PERF_RECORD_MISC_USER,
6595 				/* .size */
6596 			},
6597 			/* .pid */
6598 			/* .tid */
6599 			.start  = vma->vm_start,
6600 			.len    = vma->vm_end - vma->vm_start,
6601 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6602 		},
6603 		/* .maj (attr_mmap2 only) */
6604 		/* .min (attr_mmap2 only) */
6605 		/* .ino (attr_mmap2 only) */
6606 		/* .ino_generation (attr_mmap2 only) */
6607 		/* .prot (attr_mmap2 only) */
6608 		/* .flags (attr_mmap2 only) */
6609 	};
6610 
6611 	perf_addr_filters_adjust(vma);
6612 	perf_event_mmap_event(&mmap_event);
6613 }
6614 
6615 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6616 			  unsigned long size, u64 flags)
6617 {
6618 	struct perf_output_handle handle;
6619 	struct perf_sample_data sample;
6620 	struct perf_aux_event {
6621 		struct perf_event_header	header;
6622 		u64				offset;
6623 		u64				size;
6624 		u64				flags;
6625 	} rec = {
6626 		.header = {
6627 			.type = PERF_RECORD_AUX,
6628 			.misc = 0,
6629 			.size = sizeof(rec),
6630 		},
6631 		.offset		= head,
6632 		.size		= size,
6633 		.flags		= flags,
6634 	};
6635 	int ret;
6636 
6637 	perf_event_header__init_id(&rec.header, &sample, event);
6638 	ret = perf_output_begin(&handle, event, rec.header.size);
6639 
6640 	if (ret)
6641 		return;
6642 
6643 	perf_output_put(&handle, rec);
6644 	perf_event__output_id_sample(event, &handle, &sample);
6645 
6646 	perf_output_end(&handle);
6647 }
6648 
6649 /*
6650  * Lost/dropped samples logging
6651  */
6652 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6653 {
6654 	struct perf_output_handle handle;
6655 	struct perf_sample_data sample;
6656 	int ret;
6657 
6658 	struct {
6659 		struct perf_event_header	header;
6660 		u64				lost;
6661 	} lost_samples_event = {
6662 		.header = {
6663 			.type = PERF_RECORD_LOST_SAMPLES,
6664 			.misc = 0,
6665 			.size = sizeof(lost_samples_event),
6666 		},
6667 		.lost		= lost,
6668 	};
6669 
6670 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6671 
6672 	ret = perf_output_begin(&handle, event,
6673 				lost_samples_event.header.size);
6674 	if (ret)
6675 		return;
6676 
6677 	perf_output_put(&handle, lost_samples_event);
6678 	perf_event__output_id_sample(event, &handle, &sample);
6679 	perf_output_end(&handle);
6680 }
6681 
6682 /*
6683  * context_switch tracking
6684  */
6685 
6686 struct perf_switch_event {
6687 	struct task_struct	*task;
6688 	struct task_struct	*next_prev;
6689 
6690 	struct {
6691 		struct perf_event_header	header;
6692 		u32				next_prev_pid;
6693 		u32				next_prev_tid;
6694 	} event_id;
6695 };
6696 
6697 static int perf_event_switch_match(struct perf_event *event)
6698 {
6699 	return event->attr.context_switch;
6700 }
6701 
6702 static void perf_event_switch_output(struct perf_event *event, void *data)
6703 {
6704 	struct perf_switch_event *se = data;
6705 	struct perf_output_handle handle;
6706 	struct perf_sample_data sample;
6707 	int ret;
6708 
6709 	if (!perf_event_switch_match(event))
6710 		return;
6711 
6712 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6713 	if (event->ctx->task) {
6714 		se->event_id.header.type = PERF_RECORD_SWITCH;
6715 		se->event_id.header.size = sizeof(se->event_id.header);
6716 	} else {
6717 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6718 		se->event_id.header.size = sizeof(se->event_id);
6719 		se->event_id.next_prev_pid =
6720 					perf_event_pid(event, se->next_prev);
6721 		se->event_id.next_prev_tid =
6722 					perf_event_tid(event, se->next_prev);
6723 	}
6724 
6725 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6726 
6727 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6728 	if (ret)
6729 		return;
6730 
6731 	if (event->ctx->task)
6732 		perf_output_put(&handle, se->event_id.header);
6733 	else
6734 		perf_output_put(&handle, se->event_id);
6735 
6736 	perf_event__output_id_sample(event, &handle, &sample);
6737 
6738 	perf_output_end(&handle);
6739 }
6740 
6741 static void perf_event_switch(struct task_struct *task,
6742 			      struct task_struct *next_prev, bool sched_in)
6743 {
6744 	struct perf_switch_event switch_event;
6745 
6746 	/* N.B. caller checks nr_switch_events != 0 */
6747 
6748 	switch_event = (struct perf_switch_event){
6749 		.task		= task,
6750 		.next_prev	= next_prev,
6751 		.event_id	= {
6752 			.header = {
6753 				/* .type */
6754 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6755 				/* .size */
6756 			},
6757 			/* .next_prev_pid */
6758 			/* .next_prev_tid */
6759 		},
6760 	};
6761 
6762 	perf_iterate_sb(perf_event_switch_output,
6763 		       &switch_event,
6764 		       NULL);
6765 }
6766 
6767 /*
6768  * IRQ throttle logging
6769  */
6770 
6771 static void perf_log_throttle(struct perf_event *event, int enable)
6772 {
6773 	struct perf_output_handle handle;
6774 	struct perf_sample_data sample;
6775 	int ret;
6776 
6777 	struct {
6778 		struct perf_event_header	header;
6779 		u64				time;
6780 		u64				id;
6781 		u64				stream_id;
6782 	} throttle_event = {
6783 		.header = {
6784 			.type = PERF_RECORD_THROTTLE,
6785 			.misc = 0,
6786 			.size = sizeof(throttle_event),
6787 		},
6788 		.time		= perf_event_clock(event),
6789 		.id		= primary_event_id(event),
6790 		.stream_id	= event->id,
6791 	};
6792 
6793 	if (enable)
6794 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6795 
6796 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6797 
6798 	ret = perf_output_begin(&handle, event,
6799 				throttle_event.header.size);
6800 	if (ret)
6801 		return;
6802 
6803 	perf_output_put(&handle, throttle_event);
6804 	perf_event__output_id_sample(event, &handle, &sample);
6805 	perf_output_end(&handle);
6806 }
6807 
6808 static void perf_log_itrace_start(struct perf_event *event)
6809 {
6810 	struct perf_output_handle handle;
6811 	struct perf_sample_data sample;
6812 	struct perf_aux_event {
6813 		struct perf_event_header        header;
6814 		u32				pid;
6815 		u32				tid;
6816 	} rec;
6817 	int ret;
6818 
6819 	if (event->parent)
6820 		event = event->parent;
6821 
6822 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6823 	    event->hw.itrace_started)
6824 		return;
6825 
6826 	rec.header.type	= PERF_RECORD_ITRACE_START;
6827 	rec.header.misc	= 0;
6828 	rec.header.size	= sizeof(rec);
6829 	rec.pid	= perf_event_pid(event, current);
6830 	rec.tid	= perf_event_tid(event, current);
6831 
6832 	perf_event_header__init_id(&rec.header, &sample, event);
6833 	ret = perf_output_begin(&handle, event, rec.header.size);
6834 
6835 	if (ret)
6836 		return;
6837 
6838 	perf_output_put(&handle, rec);
6839 	perf_event__output_id_sample(event, &handle, &sample);
6840 
6841 	perf_output_end(&handle);
6842 }
6843 
6844 /*
6845  * Generic event overflow handling, sampling.
6846  */
6847 
6848 static int __perf_event_overflow(struct perf_event *event,
6849 				   int throttle, struct perf_sample_data *data,
6850 				   struct pt_regs *regs)
6851 {
6852 	int events = atomic_read(&event->event_limit);
6853 	struct hw_perf_event *hwc = &event->hw;
6854 	u64 seq;
6855 	int ret = 0;
6856 
6857 	/*
6858 	 * Non-sampling counters might still use the PMI to fold short
6859 	 * hardware counters, ignore those.
6860 	 */
6861 	if (unlikely(!is_sampling_event(event)))
6862 		return 0;
6863 
6864 	seq = __this_cpu_read(perf_throttled_seq);
6865 	if (seq != hwc->interrupts_seq) {
6866 		hwc->interrupts_seq = seq;
6867 		hwc->interrupts = 1;
6868 	} else {
6869 		hwc->interrupts++;
6870 		if (unlikely(throttle
6871 			     && hwc->interrupts >= max_samples_per_tick)) {
6872 			__this_cpu_inc(perf_throttled_count);
6873 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6874 			hwc->interrupts = MAX_INTERRUPTS;
6875 			perf_log_throttle(event, 0);
6876 			ret = 1;
6877 		}
6878 	}
6879 
6880 	if (event->attr.freq) {
6881 		u64 now = perf_clock();
6882 		s64 delta = now - hwc->freq_time_stamp;
6883 
6884 		hwc->freq_time_stamp = now;
6885 
6886 		if (delta > 0 && delta < 2*TICK_NSEC)
6887 			perf_adjust_period(event, delta, hwc->last_period, true);
6888 	}
6889 
6890 	/*
6891 	 * XXX event_limit might not quite work as expected on inherited
6892 	 * events
6893 	 */
6894 
6895 	event->pending_kill = POLL_IN;
6896 	if (events && atomic_dec_and_test(&event->event_limit)) {
6897 		ret = 1;
6898 		event->pending_kill = POLL_HUP;
6899 		event->pending_disable = 1;
6900 		irq_work_queue(&event->pending);
6901 	}
6902 
6903 	event->overflow_handler(event, data, regs);
6904 
6905 	if (*perf_event_fasync(event) && event->pending_kill) {
6906 		event->pending_wakeup = 1;
6907 		irq_work_queue(&event->pending);
6908 	}
6909 
6910 	return ret;
6911 }
6912 
6913 int perf_event_overflow(struct perf_event *event,
6914 			  struct perf_sample_data *data,
6915 			  struct pt_regs *regs)
6916 {
6917 	return __perf_event_overflow(event, 1, data, regs);
6918 }
6919 
6920 /*
6921  * Generic software event infrastructure
6922  */
6923 
6924 struct swevent_htable {
6925 	struct swevent_hlist		*swevent_hlist;
6926 	struct mutex			hlist_mutex;
6927 	int				hlist_refcount;
6928 
6929 	/* Recursion avoidance in each contexts */
6930 	int				recursion[PERF_NR_CONTEXTS];
6931 };
6932 
6933 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6934 
6935 /*
6936  * We directly increment event->count and keep a second value in
6937  * event->hw.period_left to count intervals. This period event
6938  * is kept in the range [-sample_period, 0] so that we can use the
6939  * sign as trigger.
6940  */
6941 
6942 u64 perf_swevent_set_period(struct perf_event *event)
6943 {
6944 	struct hw_perf_event *hwc = &event->hw;
6945 	u64 period = hwc->last_period;
6946 	u64 nr, offset;
6947 	s64 old, val;
6948 
6949 	hwc->last_period = hwc->sample_period;
6950 
6951 again:
6952 	old = val = local64_read(&hwc->period_left);
6953 	if (val < 0)
6954 		return 0;
6955 
6956 	nr = div64_u64(period + val, period);
6957 	offset = nr * period;
6958 	val -= offset;
6959 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6960 		goto again;
6961 
6962 	return nr;
6963 }
6964 
6965 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6966 				    struct perf_sample_data *data,
6967 				    struct pt_regs *regs)
6968 {
6969 	struct hw_perf_event *hwc = &event->hw;
6970 	int throttle = 0;
6971 
6972 	if (!overflow)
6973 		overflow = perf_swevent_set_period(event);
6974 
6975 	if (hwc->interrupts == MAX_INTERRUPTS)
6976 		return;
6977 
6978 	for (; overflow; overflow--) {
6979 		if (__perf_event_overflow(event, throttle,
6980 					    data, regs)) {
6981 			/*
6982 			 * We inhibit the overflow from happening when
6983 			 * hwc->interrupts == MAX_INTERRUPTS.
6984 			 */
6985 			break;
6986 		}
6987 		throttle = 1;
6988 	}
6989 }
6990 
6991 static void perf_swevent_event(struct perf_event *event, u64 nr,
6992 			       struct perf_sample_data *data,
6993 			       struct pt_regs *regs)
6994 {
6995 	struct hw_perf_event *hwc = &event->hw;
6996 
6997 	local64_add(nr, &event->count);
6998 
6999 	if (!regs)
7000 		return;
7001 
7002 	if (!is_sampling_event(event))
7003 		return;
7004 
7005 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7006 		data->period = nr;
7007 		return perf_swevent_overflow(event, 1, data, regs);
7008 	} else
7009 		data->period = event->hw.last_period;
7010 
7011 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7012 		return perf_swevent_overflow(event, 1, data, regs);
7013 
7014 	if (local64_add_negative(nr, &hwc->period_left))
7015 		return;
7016 
7017 	perf_swevent_overflow(event, 0, data, regs);
7018 }
7019 
7020 static int perf_exclude_event(struct perf_event *event,
7021 			      struct pt_regs *regs)
7022 {
7023 	if (event->hw.state & PERF_HES_STOPPED)
7024 		return 1;
7025 
7026 	if (regs) {
7027 		if (event->attr.exclude_user && user_mode(regs))
7028 			return 1;
7029 
7030 		if (event->attr.exclude_kernel && !user_mode(regs))
7031 			return 1;
7032 	}
7033 
7034 	return 0;
7035 }
7036 
7037 static int perf_swevent_match(struct perf_event *event,
7038 				enum perf_type_id type,
7039 				u32 event_id,
7040 				struct perf_sample_data *data,
7041 				struct pt_regs *regs)
7042 {
7043 	if (event->attr.type != type)
7044 		return 0;
7045 
7046 	if (event->attr.config != event_id)
7047 		return 0;
7048 
7049 	if (perf_exclude_event(event, regs))
7050 		return 0;
7051 
7052 	return 1;
7053 }
7054 
7055 static inline u64 swevent_hash(u64 type, u32 event_id)
7056 {
7057 	u64 val = event_id | (type << 32);
7058 
7059 	return hash_64(val, SWEVENT_HLIST_BITS);
7060 }
7061 
7062 static inline struct hlist_head *
7063 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7064 {
7065 	u64 hash = swevent_hash(type, event_id);
7066 
7067 	return &hlist->heads[hash];
7068 }
7069 
7070 /* For the read side: events when they trigger */
7071 static inline struct hlist_head *
7072 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7073 {
7074 	struct swevent_hlist *hlist;
7075 
7076 	hlist = rcu_dereference(swhash->swevent_hlist);
7077 	if (!hlist)
7078 		return NULL;
7079 
7080 	return __find_swevent_head(hlist, type, event_id);
7081 }
7082 
7083 /* For the event head insertion and removal in the hlist */
7084 static inline struct hlist_head *
7085 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7086 {
7087 	struct swevent_hlist *hlist;
7088 	u32 event_id = event->attr.config;
7089 	u64 type = event->attr.type;
7090 
7091 	/*
7092 	 * Event scheduling is always serialized against hlist allocation
7093 	 * and release. Which makes the protected version suitable here.
7094 	 * The context lock guarantees that.
7095 	 */
7096 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7097 					  lockdep_is_held(&event->ctx->lock));
7098 	if (!hlist)
7099 		return NULL;
7100 
7101 	return __find_swevent_head(hlist, type, event_id);
7102 }
7103 
7104 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7105 				    u64 nr,
7106 				    struct perf_sample_data *data,
7107 				    struct pt_regs *regs)
7108 {
7109 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7110 	struct perf_event *event;
7111 	struct hlist_head *head;
7112 
7113 	rcu_read_lock();
7114 	head = find_swevent_head_rcu(swhash, type, event_id);
7115 	if (!head)
7116 		goto end;
7117 
7118 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7119 		if (perf_swevent_match(event, type, event_id, data, regs))
7120 			perf_swevent_event(event, nr, data, regs);
7121 	}
7122 end:
7123 	rcu_read_unlock();
7124 }
7125 
7126 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7127 
7128 int perf_swevent_get_recursion_context(void)
7129 {
7130 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7131 
7132 	return get_recursion_context(swhash->recursion);
7133 }
7134 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7135 
7136 inline void perf_swevent_put_recursion_context(int rctx)
7137 {
7138 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7139 
7140 	put_recursion_context(swhash->recursion, rctx);
7141 }
7142 
7143 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7144 {
7145 	struct perf_sample_data data;
7146 
7147 	if (WARN_ON_ONCE(!regs))
7148 		return;
7149 
7150 	perf_sample_data_init(&data, addr, 0);
7151 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7152 }
7153 
7154 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7155 {
7156 	int rctx;
7157 
7158 	preempt_disable_notrace();
7159 	rctx = perf_swevent_get_recursion_context();
7160 	if (unlikely(rctx < 0))
7161 		goto fail;
7162 
7163 	___perf_sw_event(event_id, nr, regs, addr);
7164 
7165 	perf_swevent_put_recursion_context(rctx);
7166 fail:
7167 	preempt_enable_notrace();
7168 }
7169 
7170 static void perf_swevent_read(struct perf_event *event)
7171 {
7172 }
7173 
7174 static int perf_swevent_add(struct perf_event *event, int flags)
7175 {
7176 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7177 	struct hw_perf_event *hwc = &event->hw;
7178 	struct hlist_head *head;
7179 
7180 	if (is_sampling_event(event)) {
7181 		hwc->last_period = hwc->sample_period;
7182 		perf_swevent_set_period(event);
7183 	}
7184 
7185 	hwc->state = !(flags & PERF_EF_START);
7186 
7187 	head = find_swevent_head(swhash, event);
7188 	if (WARN_ON_ONCE(!head))
7189 		return -EINVAL;
7190 
7191 	hlist_add_head_rcu(&event->hlist_entry, head);
7192 	perf_event_update_userpage(event);
7193 
7194 	return 0;
7195 }
7196 
7197 static void perf_swevent_del(struct perf_event *event, int flags)
7198 {
7199 	hlist_del_rcu(&event->hlist_entry);
7200 }
7201 
7202 static void perf_swevent_start(struct perf_event *event, int flags)
7203 {
7204 	event->hw.state = 0;
7205 }
7206 
7207 static void perf_swevent_stop(struct perf_event *event, int flags)
7208 {
7209 	event->hw.state = PERF_HES_STOPPED;
7210 }
7211 
7212 /* Deref the hlist from the update side */
7213 static inline struct swevent_hlist *
7214 swevent_hlist_deref(struct swevent_htable *swhash)
7215 {
7216 	return rcu_dereference_protected(swhash->swevent_hlist,
7217 					 lockdep_is_held(&swhash->hlist_mutex));
7218 }
7219 
7220 static void swevent_hlist_release(struct swevent_htable *swhash)
7221 {
7222 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7223 
7224 	if (!hlist)
7225 		return;
7226 
7227 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7228 	kfree_rcu(hlist, rcu_head);
7229 }
7230 
7231 static void swevent_hlist_put_cpu(int cpu)
7232 {
7233 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7234 
7235 	mutex_lock(&swhash->hlist_mutex);
7236 
7237 	if (!--swhash->hlist_refcount)
7238 		swevent_hlist_release(swhash);
7239 
7240 	mutex_unlock(&swhash->hlist_mutex);
7241 }
7242 
7243 static void swevent_hlist_put(void)
7244 {
7245 	int cpu;
7246 
7247 	for_each_possible_cpu(cpu)
7248 		swevent_hlist_put_cpu(cpu);
7249 }
7250 
7251 static int swevent_hlist_get_cpu(int cpu)
7252 {
7253 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7254 	int err = 0;
7255 
7256 	mutex_lock(&swhash->hlist_mutex);
7257 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7258 		struct swevent_hlist *hlist;
7259 
7260 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7261 		if (!hlist) {
7262 			err = -ENOMEM;
7263 			goto exit;
7264 		}
7265 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7266 	}
7267 	swhash->hlist_refcount++;
7268 exit:
7269 	mutex_unlock(&swhash->hlist_mutex);
7270 
7271 	return err;
7272 }
7273 
7274 static int swevent_hlist_get(void)
7275 {
7276 	int err, cpu, failed_cpu;
7277 
7278 	get_online_cpus();
7279 	for_each_possible_cpu(cpu) {
7280 		err = swevent_hlist_get_cpu(cpu);
7281 		if (err) {
7282 			failed_cpu = cpu;
7283 			goto fail;
7284 		}
7285 	}
7286 	put_online_cpus();
7287 
7288 	return 0;
7289 fail:
7290 	for_each_possible_cpu(cpu) {
7291 		if (cpu == failed_cpu)
7292 			break;
7293 		swevent_hlist_put_cpu(cpu);
7294 	}
7295 
7296 	put_online_cpus();
7297 	return err;
7298 }
7299 
7300 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7301 
7302 static void sw_perf_event_destroy(struct perf_event *event)
7303 {
7304 	u64 event_id = event->attr.config;
7305 
7306 	WARN_ON(event->parent);
7307 
7308 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7309 	swevent_hlist_put();
7310 }
7311 
7312 static int perf_swevent_init(struct perf_event *event)
7313 {
7314 	u64 event_id = event->attr.config;
7315 
7316 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7317 		return -ENOENT;
7318 
7319 	/*
7320 	 * no branch sampling for software events
7321 	 */
7322 	if (has_branch_stack(event))
7323 		return -EOPNOTSUPP;
7324 
7325 	switch (event_id) {
7326 	case PERF_COUNT_SW_CPU_CLOCK:
7327 	case PERF_COUNT_SW_TASK_CLOCK:
7328 		return -ENOENT;
7329 
7330 	default:
7331 		break;
7332 	}
7333 
7334 	if (event_id >= PERF_COUNT_SW_MAX)
7335 		return -ENOENT;
7336 
7337 	if (!event->parent) {
7338 		int err;
7339 
7340 		err = swevent_hlist_get();
7341 		if (err)
7342 			return err;
7343 
7344 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7345 		event->destroy = sw_perf_event_destroy;
7346 	}
7347 
7348 	return 0;
7349 }
7350 
7351 static struct pmu perf_swevent = {
7352 	.task_ctx_nr	= perf_sw_context,
7353 
7354 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7355 
7356 	.event_init	= perf_swevent_init,
7357 	.add		= perf_swevent_add,
7358 	.del		= perf_swevent_del,
7359 	.start		= perf_swevent_start,
7360 	.stop		= perf_swevent_stop,
7361 	.read		= perf_swevent_read,
7362 };
7363 
7364 #ifdef CONFIG_EVENT_TRACING
7365 
7366 static int perf_tp_filter_match(struct perf_event *event,
7367 				struct perf_sample_data *data)
7368 {
7369 	void *record = data->raw->data;
7370 
7371 	/* only top level events have filters set */
7372 	if (event->parent)
7373 		event = event->parent;
7374 
7375 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7376 		return 1;
7377 	return 0;
7378 }
7379 
7380 static int perf_tp_event_match(struct perf_event *event,
7381 				struct perf_sample_data *data,
7382 				struct pt_regs *regs)
7383 {
7384 	if (event->hw.state & PERF_HES_STOPPED)
7385 		return 0;
7386 	/*
7387 	 * All tracepoints are from kernel-space.
7388 	 */
7389 	if (event->attr.exclude_kernel)
7390 		return 0;
7391 
7392 	if (!perf_tp_filter_match(event, data))
7393 		return 0;
7394 
7395 	return 1;
7396 }
7397 
7398 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7399 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7400 		   struct task_struct *task)
7401 {
7402 	struct perf_sample_data data;
7403 	struct perf_event *event;
7404 
7405 	struct perf_raw_record raw = {
7406 		.size = entry_size,
7407 		.data = record,
7408 	};
7409 
7410 	perf_sample_data_init(&data, addr, 0);
7411 	data.raw = &raw;
7412 
7413 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7414 		if (perf_tp_event_match(event, &data, regs))
7415 			perf_swevent_event(event, count, &data, regs);
7416 	}
7417 
7418 	/*
7419 	 * If we got specified a target task, also iterate its context and
7420 	 * deliver this event there too.
7421 	 */
7422 	if (task && task != current) {
7423 		struct perf_event_context *ctx;
7424 		struct trace_entry *entry = record;
7425 
7426 		rcu_read_lock();
7427 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7428 		if (!ctx)
7429 			goto unlock;
7430 
7431 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7432 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7433 				continue;
7434 			if (event->attr.config != entry->type)
7435 				continue;
7436 			if (perf_tp_event_match(event, &data, regs))
7437 				perf_swevent_event(event, count, &data, regs);
7438 		}
7439 unlock:
7440 		rcu_read_unlock();
7441 	}
7442 
7443 	perf_swevent_put_recursion_context(rctx);
7444 }
7445 EXPORT_SYMBOL_GPL(perf_tp_event);
7446 
7447 static void tp_perf_event_destroy(struct perf_event *event)
7448 {
7449 	perf_trace_destroy(event);
7450 }
7451 
7452 static int perf_tp_event_init(struct perf_event *event)
7453 {
7454 	int err;
7455 
7456 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7457 		return -ENOENT;
7458 
7459 	/*
7460 	 * no branch sampling for tracepoint events
7461 	 */
7462 	if (has_branch_stack(event))
7463 		return -EOPNOTSUPP;
7464 
7465 	err = perf_trace_init(event);
7466 	if (err)
7467 		return err;
7468 
7469 	event->destroy = tp_perf_event_destroy;
7470 
7471 	return 0;
7472 }
7473 
7474 static struct pmu perf_tracepoint = {
7475 	.task_ctx_nr	= perf_sw_context,
7476 
7477 	.event_init	= perf_tp_event_init,
7478 	.add		= perf_trace_add,
7479 	.del		= perf_trace_del,
7480 	.start		= perf_swevent_start,
7481 	.stop		= perf_swevent_stop,
7482 	.read		= perf_swevent_read,
7483 };
7484 
7485 static inline void perf_tp_register(void)
7486 {
7487 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7488 }
7489 
7490 static void perf_event_free_filter(struct perf_event *event)
7491 {
7492 	ftrace_profile_free_filter(event);
7493 }
7494 
7495 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7496 {
7497 	struct bpf_prog *prog;
7498 
7499 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7500 		return -EINVAL;
7501 
7502 	if (event->tp_event->prog)
7503 		return -EEXIST;
7504 
7505 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7506 		/* bpf programs can only be attached to u/kprobes */
7507 		return -EINVAL;
7508 
7509 	prog = bpf_prog_get(prog_fd);
7510 	if (IS_ERR(prog))
7511 		return PTR_ERR(prog);
7512 
7513 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7514 		/* valid fd, but invalid bpf program type */
7515 		bpf_prog_put(prog);
7516 		return -EINVAL;
7517 	}
7518 
7519 	event->tp_event->prog = prog;
7520 
7521 	return 0;
7522 }
7523 
7524 static void perf_event_free_bpf_prog(struct perf_event *event)
7525 {
7526 	struct bpf_prog *prog;
7527 
7528 	if (!event->tp_event)
7529 		return;
7530 
7531 	prog = event->tp_event->prog;
7532 	if (prog) {
7533 		event->tp_event->prog = NULL;
7534 		bpf_prog_put(prog);
7535 	}
7536 }
7537 
7538 #else
7539 
7540 static inline void perf_tp_register(void)
7541 {
7542 }
7543 
7544 static void perf_event_free_filter(struct perf_event *event)
7545 {
7546 }
7547 
7548 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7549 {
7550 	return -ENOENT;
7551 }
7552 
7553 static void perf_event_free_bpf_prog(struct perf_event *event)
7554 {
7555 }
7556 #endif /* CONFIG_EVENT_TRACING */
7557 
7558 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7559 void perf_bp_event(struct perf_event *bp, void *data)
7560 {
7561 	struct perf_sample_data sample;
7562 	struct pt_regs *regs = data;
7563 
7564 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7565 
7566 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7567 		perf_swevent_event(bp, 1, &sample, regs);
7568 }
7569 #endif
7570 
7571 /*
7572  * Allocate a new address filter
7573  */
7574 static struct perf_addr_filter *
7575 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7576 {
7577 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7578 	struct perf_addr_filter *filter;
7579 
7580 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7581 	if (!filter)
7582 		return NULL;
7583 
7584 	INIT_LIST_HEAD(&filter->entry);
7585 	list_add_tail(&filter->entry, filters);
7586 
7587 	return filter;
7588 }
7589 
7590 static void free_filters_list(struct list_head *filters)
7591 {
7592 	struct perf_addr_filter *filter, *iter;
7593 
7594 	list_for_each_entry_safe(filter, iter, filters, entry) {
7595 		if (filter->inode)
7596 			iput(filter->inode);
7597 		list_del(&filter->entry);
7598 		kfree(filter);
7599 	}
7600 }
7601 
7602 /*
7603  * Free existing address filters and optionally install new ones
7604  */
7605 static void perf_addr_filters_splice(struct perf_event *event,
7606 				     struct list_head *head)
7607 {
7608 	unsigned long flags;
7609 	LIST_HEAD(list);
7610 
7611 	if (!has_addr_filter(event))
7612 		return;
7613 
7614 	/* don't bother with children, they don't have their own filters */
7615 	if (event->parent)
7616 		return;
7617 
7618 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7619 
7620 	list_splice_init(&event->addr_filters.list, &list);
7621 	if (head)
7622 		list_splice(head, &event->addr_filters.list);
7623 
7624 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7625 
7626 	free_filters_list(&list);
7627 }
7628 
7629 /*
7630  * Scan through mm's vmas and see if one of them matches the
7631  * @filter; if so, adjust filter's address range.
7632  * Called with mm::mmap_sem down for reading.
7633  */
7634 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7635 					    struct mm_struct *mm)
7636 {
7637 	struct vm_area_struct *vma;
7638 
7639 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7640 		struct file *file = vma->vm_file;
7641 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7642 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7643 
7644 		if (!file)
7645 			continue;
7646 
7647 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7648 			continue;
7649 
7650 		return vma->vm_start;
7651 	}
7652 
7653 	return 0;
7654 }
7655 
7656 /*
7657  * Update event's address range filters based on the
7658  * task's existing mappings, if any.
7659  */
7660 static void perf_event_addr_filters_apply(struct perf_event *event)
7661 {
7662 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7663 	struct task_struct *task = READ_ONCE(event->ctx->task);
7664 	struct perf_addr_filter *filter;
7665 	struct mm_struct *mm = NULL;
7666 	unsigned int count = 0;
7667 	unsigned long flags;
7668 
7669 	/*
7670 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7671 	 * will stop on the parent's child_mutex that our caller is also holding
7672 	 */
7673 	if (task == TASK_TOMBSTONE)
7674 		return;
7675 
7676 	mm = get_task_mm(event->ctx->task);
7677 	if (!mm)
7678 		goto restart;
7679 
7680 	down_read(&mm->mmap_sem);
7681 
7682 	raw_spin_lock_irqsave(&ifh->lock, flags);
7683 	list_for_each_entry(filter, &ifh->list, entry) {
7684 		event->addr_filters_offs[count] = 0;
7685 
7686 		if (perf_addr_filter_needs_mmap(filter))
7687 			event->addr_filters_offs[count] =
7688 				perf_addr_filter_apply(filter, mm);
7689 
7690 		count++;
7691 	}
7692 
7693 	event->addr_filters_gen++;
7694 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7695 
7696 	up_read(&mm->mmap_sem);
7697 
7698 	mmput(mm);
7699 
7700 restart:
7701 	perf_event_restart(event);
7702 }
7703 
7704 /*
7705  * Address range filtering: limiting the data to certain
7706  * instruction address ranges. Filters are ioctl()ed to us from
7707  * userspace as ascii strings.
7708  *
7709  * Filter string format:
7710  *
7711  * ACTION RANGE_SPEC
7712  * where ACTION is one of the
7713  *  * "filter": limit the trace to this region
7714  *  * "start": start tracing from this address
7715  *  * "stop": stop tracing at this address/region;
7716  * RANGE_SPEC is
7717  *  * for kernel addresses: <start address>[/<size>]
7718  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7719  *
7720  * if <size> is not specified, the range is treated as a single address.
7721  */
7722 enum {
7723 	IF_ACT_FILTER,
7724 	IF_ACT_START,
7725 	IF_ACT_STOP,
7726 	IF_SRC_FILE,
7727 	IF_SRC_KERNEL,
7728 	IF_SRC_FILEADDR,
7729 	IF_SRC_KERNELADDR,
7730 };
7731 
7732 enum {
7733 	IF_STATE_ACTION = 0,
7734 	IF_STATE_SOURCE,
7735 	IF_STATE_END,
7736 };
7737 
7738 static const match_table_t if_tokens = {
7739 	{ IF_ACT_FILTER,	"filter" },
7740 	{ IF_ACT_START,		"start" },
7741 	{ IF_ACT_STOP,		"stop" },
7742 	{ IF_SRC_FILE,		"%u/%u@%s" },
7743 	{ IF_SRC_KERNEL,	"%u/%u" },
7744 	{ IF_SRC_FILEADDR,	"%u@%s" },
7745 	{ IF_SRC_KERNELADDR,	"%u" },
7746 };
7747 
7748 /*
7749  * Address filter string parser
7750  */
7751 static int
7752 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7753 			     struct list_head *filters)
7754 {
7755 	struct perf_addr_filter *filter = NULL;
7756 	char *start, *orig, *filename = NULL;
7757 	struct path path;
7758 	substring_t args[MAX_OPT_ARGS];
7759 	int state = IF_STATE_ACTION, token;
7760 	unsigned int kernel = 0;
7761 	int ret = -EINVAL;
7762 
7763 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
7764 	if (!fstr)
7765 		return -ENOMEM;
7766 
7767 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
7768 		ret = -EINVAL;
7769 
7770 		if (!*start)
7771 			continue;
7772 
7773 		/* filter definition begins */
7774 		if (state == IF_STATE_ACTION) {
7775 			filter = perf_addr_filter_new(event, filters);
7776 			if (!filter)
7777 				goto fail;
7778 		}
7779 
7780 		token = match_token(start, if_tokens, args);
7781 		switch (token) {
7782 		case IF_ACT_FILTER:
7783 		case IF_ACT_START:
7784 			filter->filter = 1;
7785 
7786 		case IF_ACT_STOP:
7787 			if (state != IF_STATE_ACTION)
7788 				goto fail;
7789 
7790 			state = IF_STATE_SOURCE;
7791 			break;
7792 
7793 		case IF_SRC_KERNELADDR:
7794 		case IF_SRC_KERNEL:
7795 			kernel = 1;
7796 
7797 		case IF_SRC_FILEADDR:
7798 		case IF_SRC_FILE:
7799 			if (state != IF_STATE_SOURCE)
7800 				goto fail;
7801 
7802 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7803 				filter->range = 1;
7804 
7805 			*args[0].to = 0;
7806 			ret = kstrtoul(args[0].from, 0, &filter->offset);
7807 			if (ret)
7808 				goto fail;
7809 
7810 			if (filter->range) {
7811 				*args[1].to = 0;
7812 				ret = kstrtoul(args[1].from, 0, &filter->size);
7813 				if (ret)
7814 					goto fail;
7815 			}
7816 
7817 			if (token == IF_SRC_FILE) {
7818 				filename = match_strdup(&args[2]);
7819 				if (!filename) {
7820 					ret = -ENOMEM;
7821 					goto fail;
7822 				}
7823 			}
7824 
7825 			state = IF_STATE_END;
7826 			break;
7827 
7828 		default:
7829 			goto fail;
7830 		}
7831 
7832 		/*
7833 		 * Filter definition is fully parsed, validate and install it.
7834 		 * Make sure that it doesn't contradict itself or the event's
7835 		 * attribute.
7836 		 */
7837 		if (state == IF_STATE_END) {
7838 			if (kernel && event->attr.exclude_kernel)
7839 				goto fail;
7840 
7841 			if (!kernel) {
7842 				if (!filename)
7843 					goto fail;
7844 
7845 				/* look up the path and grab its inode */
7846 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7847 				if (ret)
7848 					goto fail_free_name;
7849 
7850 				filter->inode = igrab(d_inode(path.dentry));
7851 				path_put(&path);
7852 				kfree(filename);
7853 				filename = NULL;
7854 
7855 				ret = -EINVAL;
7856 				if (!filter->inode ||
7857 				    !S_ISREG(filter->inode->i_mode))
7858 					/* free_filters_list() will iput() */
7859 					goto fail;
7860 			}
7861 
7862 			/* ready to consume more filters */
7863 			state = IF_STATE_ACTION;
7864 			filter = NULL;
7865 		}
7866 	}
7867 
7868 	if (state != IF_STATE_ACTION)
7869 		goto fail;
7870 
7871 	kfree(orig);
7872 
7873 	return 0;
7874 
7875 fail_free_name:
7876 	kfree(filename);
7877 fail:
7878 	free_filters_list(filters);
7879 	kfree(orig);
7880 
7881 	return ret;
7882 }
7883 
7884 static int
7885 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7886 {
7887 	LIST_HEAD(filters);
7888 	int ret;
7889 
7890 	/*
7891 	 * Since this is called in perf_ioctl() path, we're already holding
7892 	 * ctx::mutex.
7893 	 */
7894 	lockdep_assert_held(&event->ctx->mutex);
7895 
7896 	if (WARN_ON_ONCE(event->parent))
7897 		return -EINVAL;
7898 
7899 	/*
7900 	 * For now, we only support filtering in per-task events; doing so
7901 	 * for CPU-wide events requires additional context switching trickery,
7902 	 * since same object code will be mapped at different virtual
7903 	 * addresses in different processes.
7904 	 */
7905 	if (!event->ctx->task)
7906 		return -EOPNOTSUPP;
7907 
7908 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7909 	if (ret)
7910 		return ret;
7911 
7912 	ret = event->pmu->addr_filters_validate(&filters);
7913 	if (ret) {
7914 		free_filters_list(&filters);
7915 		return ret;
7916 	}
7917 
7918 	/* remove existing filters, if any */
7919 	perf_addr_filters_splice(event, &filters);
7920 
7921 	/* install new filters */
7922 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
7923 
7924 	return ret;
7925 }
7926 
7927 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7928 {
7929 	char *filter_str;
7930 	int ret = -EINVAL;
7931 
7932 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7933 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7934 	    !has_addr_filter(event))
7935 		return -EINVAL;
7936 
7937 	filter_str = strndup_user(arg, PAGE_SIZE);
7938 	if (IS_ERR(filter_str))
7939 		return PTR_ERR(filter_str);
7940 
7941 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7942 	    event->attr.type == PERF_TYPE_TRACEPOINT)
7943 		ret = ftrace_profile_set_filter(event, event->attr.config,
7944 						filter_str);
7945 	else if (has_addr_filter(event))
7946 		ret = perf_event_set_addr_filter(event, filter_str);
7947 
7948 	kfree(filter_str);
7949 	return ret;
7950 }
7951 
7952 /*
7953  * hrtimer based swevent callback
7954  */
7955 
7956 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7957 {
7958 	enum hrtimer_restart ret = HRTIMER_RESTART;
7959 	struct perf_sample_data data;
7960 	struct pt_regs *regs;
7961 	struct perf_event *event;
7962 	u64 period;
7963 
7964 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7965 
7966 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7967 		return HRTIMER_NORESTART;
7968 
7969 	event->pmu->read(event);
7970 
7971 	perf_sample_data_init(&data, 0, event->hw.last_period);
7972 	regs = get_irq_regs();
7973 
7974 	if (regs && !perf_exclude_event(event, regs)) {
7975 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7976 			if (__perf_event_overflow(event, 1, &data, regs))
7977 				ret = HRTIMER_NORESTART;
7978 	}
7979 
7980 	period = max_t(u64, 10000, event->hw.sample_period);
7981 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7982 
7983 	return ret;
7984 }
7985 
7986 static void perf_swevent_start_hrtimer(struct perf_event *event)
7987 {
7988 	struct hw_perf_event *hwc = &event->hw;
7989 	s64 period;
7990 
7991 	if (!is_sampling_event(event))
7992 		return;
7993 
7994 	period = local64_read(&hwc->period_left);
7995 	if (period) {
7996 		if (period < 0)
7997 			period = 10000;
7998 
7999 		local64_set(&hwc->period_left, 0);
8000 	} else {
8001 		period = max_t(u64, 10000, hwc->sample_period);
8002 	}
8003 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8004 		      HRTIMER_MODE_REL_PINNED);
8005 }
8006 
8007 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8008 {
8009 	struct hw_perf_event *hwc = &event->hw;
8010 
8011 	if (is_sampling_event(event)) {
8012 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8013 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8014 
8015 		hrtimer_cancel(&hwc->hrtimer);
8016 	}
8017 }
8018 
8019 static void perf_swevent_init_hrtimer(struct perf_event *event)
8020 {
8021 	struct hw_perf_event *hwc = &event->hw;
8022 
8023 	if (!is_sampling_event(event))
8024 		return;
8025 
8026 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8027 	hwc->hrtimer.function = perf_swevent_hrtimer;
8028 
8029 	/*
8030 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8031 	 * mapping and avoid the whole period adjust feedback stuff.
8032 	 */
8033 	if (event->attr.freq) {
8034 		long freq = event->attr.sample_freq;
8035 
8036 		event->attr.sample_period = NSEC_PER_SEC / freq;
8037 		hwc->sample_period = event->attr.sample_period;
8038 		local64_set(&hwc->period_left, hwc->sample_period);
8039 		hwc->last_period = hwc->sample_period;
8040 		event->attr.freq = 0;
8041 	}
8042 }
8043 
8044 /*
8045  * Software event: cpu wall time clock
8046  */
8047 
8048 static void cpu_clock_event_update(struct perf_event *event)
8049 {
8050 	s64 prev;
8051 	u64 now;
8052 
8053 	now = local_clock();
8054 	prev = local64_xchg(&event->hw.prev_count, now);
8055 	local64_add(now - prev, &event->count);
8056 }
8057 
8058 static void cpu_clock_event_start(struct perf_event *event, int flags)
8059 {
8060 	local64_set(&event->hw.prev_count, local_clock());
8061 	perf_swevent_start_hrtimer(event);
8062 }
8063 
8064 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8065 {
8066 	perf_swevent_cancel_hrtimer(event);
8067 	cpu_clock_event_update(event);
8068 }
8069 
8070 static int cpu_clock_event_add(struct perf_event *event, int flags)
8071 {
8072 	if (flags & PERF_EF_START)
8073 		cpu_clock_event_start(event, flags);
8074 	perf_event_update_userpage(event);
8075 
8076 	return 0;
8077 }
8078 
8079 static void cpu_clock_event_del(struct perf_event *event, int flags)
8080 {
8081 	cpu_clock_event_stop(event, flags);
8082 }
8083 
8084 static void cpu_clock_event_read(struct perf_event *event)
8085 {
8086 	cpu_clock_event_update(event);
8087 }
8088 
8089 static int cpu_clock_event_init(struct perf_event *event)
8090 {
8091 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8092 		return -ENOENT;
8093 
8094 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8095 		return -ENOENT;
8096 
8097 	/*
8098 	 * no branch sampling for software events
8099 	 */
8100 	if (has_branch_stack(event))
8101 		return -EOPNOTSUPP;
8102 
8103 	perf_swevent_init_hrtimer(event);
8104 
8105 	return 0;
8106 }
8107 
8108 static struct pmu perf_cpu_clock = {
8109 	.task_ctx_nr	= perf_sw_context,
8110 
8111 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8112 
8113 	.event_init	= cpu_clock_event_init,
8114 	.add		= cpu_clock_event_add,
8115 	.del		= cpu_clock_event_del,
8116 	.start		= cpu_clock_event_start,
8117 	.stop		= cpu_clock_event_stop,
8118 	.read		= cpu_clock_event_read,
8119 };
8120 
8121 /*
8122  * Software event: task time clock
8123  */
8124 
8125 static void task_clock_event_update(struct perf_event *event, u64 now)
8126 {
8127 	u64 prev;
8128 	s64 delta;
8129 
8130 	prev = local64_xchg(&event->hw.prev_count, now);
8131 	delta = now - prev;
8132 	local64_add(delta, &event->count);
8133 }
8134 
8135 static void task_clock_event_start(struct perf_event *event, int flags)
8136 {
8137 	local64_set(&event->hw.prev_count, event->ctx->time);
8138 	perf_swevent_start_hrtimer(event);
8139 }
8140 
8141 static void task_clock_event_stop(struct perf_event *event, int flags)
8142 {
8143 	perf_swevent_cancel_hrtimer(event);
8144 	task_clock_event_update(event, event->ctx->time);
8145 }
8146 
8147 static int task_clock_event_add(struct perf_event *event, int flags)
8148 {
8149 	if (flags & PERF_EF_START)
8150 		task_clock_event_start(event, flags);
8151 	perf_event_update_userpage(event);
8152 
8153 	return 0;
8154 }
8155 
8156 static void task_clock_event_del(struct perf_event *event, int flags)
8157 {
8158 	task_clock_event_stop(event, PERF_EF_UPDATE);
8159 }
8160 
8161 static void task_clock_event_read(struct perf_event *event)
8162 {
8163 	u64 now = perf_clock();
8164 	u64 delta = now - event->ctx->timestamp;
8165 	u64 time = event->ctx->time + delta;
8166 
8167 	task_clock_event_update(event, time);
8168 }
8169 
8170 static int task_clock_event_init(struct perf_event *event)
8171 {
8172 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8173 		return -ENOENT;
8174 
8175 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8176 		return -ENOENT;
8177 
8178 	/*
8179 	 * no branch sampling for software events
8180 	 */
8181 	if (has_branch_stack(event))
8182 		return -EOPNOTSUPP;
8183 
8184 	perf_swevent_init_hrtimer(event);
8185 
8186 	return 0;
8187 }
8188 
8189 static struct pmu perf_task_clock = {
8190 	.task_ctx_nr	= perf_sw_context,
8191 
8192 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8193 
8194 	.event_init	= task_clock_event_init,
8195 	.add		= task_clock_event_add,
8196 	.del		= task_clock_event_del,
8197 	.start		= task_clock_event_start,
8198 	.stop		= task_clock_event_stop,
8199 	.read		= task_clock_event_read,
8200 };
8201 
8202 static void perf_pmu_nop_void(struct pmu *pmu)
8203 {
8204 }
8205 
8206 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8207 {
8208 }
8209 
8210 static int perf_pmu_nop_int(struct pmu *pmu)
8211 {
8212 	return 0;
8213 }
8214 
8215 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8216 
8217 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8218 {
8219 	__this_cpu_write(nop_txn_flags, flags);
8220 
8221 	if (flags & ~PERF_PMU_TXN_ADD)
8222 		return;
8223 
8224 	perf_pmu_disable(pmu);
8225 }
8226 
8227 static int perf_pmu_commit_txn(struct pmu *pmu)
8228 {
8229 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8230 
8231 	__this_cpu_write(nop_txn_flags, 0);
8232 
8233 	if (flags & ~PERF_PMU_TXN_ADD)
8234 		return 0;
8235 
8236 	perf_pmu_enable(pmu);
8237 	return 0;
8238 }
8239 
8240 static void perf_pmu_cancel_txn(struct pmu *pmu)
8241 {
8242 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8243 
8244 	__this_cpu_write(nop_txn_flags, 0);
8245 
8246 	if (flags & ~PERF_PMU_TXN_ADD)
8247 		return;
8248 
8249 	perf_pmu_enable(pmu);
8250 }
8251 
8252 static int perf_event_idx_default(struct perf_event *event)
8253 {
8254 	return 0;
8255 }
8256 
8257 /*
8258  * Ensures all contexts with the same task_ctx_nr have the same
8259  * pmu_cpu_context too.
8260  */
8261 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8262 {
8263 	struct pmu *pmu;
8264 
8265 	if (ctxn < 0)
8266 		return NULL;
8267 
8268 	list_for_each_entry(pmu, &pmus, entry) {
8269 		if (pmu->task_ctx_nr == ctxn)
8270 			return pmu->pmu_cpu_context;
8271 	}
8272 
8273 	return NULL;
8274 }
8275 
8276 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8277 {
8278 	int cpu;
8279 
8280 	for_each_possible_cpu(cpu) {
8281 		struct perf_cpu_context *cpuctx;
8282 
8283 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8284 
8285 		if (cpuctx->unique_pmu == old_pmu)
8286 			cpuctx->unique_pmu = pmu;
8287 	}
8288 }
8289 
8290 static void free_pmu_context(struct pmu *pmu)
8291 {
8292 	struct pmu *i;
8293 
8294 	mutex_lock(&pmus_lock);
8295 	/*
8296 	 * Like a real lame refcount.
8297 	 */
8298 	list_for_each_entry(i, &pmus, entry) {
8299 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8300 			update_pmu_context(i, pmu);
8301 			goto out;
8302 		}
8303 	}
8304 
8305 	free_percpu(pmu->pmu_cpu_context);
8306 out:
8307 	mutex_unlock(&pmus_lock);
8308 }
8309 
8310 /*
8311  * Let userspace know that this PMU supports address range filtering:
8312  */
8313 static ssize_t nr_addr_filters_show(struct device *dev,
8314 				    struct device_attribute *attr,
8315 				    char *page)
8316 {
8317 	struct pmu *pmu = dev_get_drvdata(dev);
8318 
8319 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8320 }
8321 DEVICE_ATTR_RO(nr_addr_filters);
8322 
8323 static struct idr pmu_idr;
8324 
8325 static ssize_t
8326 type_show(struct device *dev, struct device_attribute *attr, char *page)
8327 {
8328 	struct pmu *pmu = dev_get_drvdata(dev);
8329 
8330 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8331 }
8332 static DEVICE_ATTR_RO(type);
8333 
8334 static ssize_t
8335 perf_event_mux_interval_ms_show(struct device *dev,
8336 				struct device_attribute *attr,
8337 				char *page)
8338 {
8339 	struct pmu *pmu = dev_get_drvdata(dev);
8340 
8341 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8342 }
8343 
8344 static DEFINE_MUTEX(mux_interval_mutex);
8345 
8346 static ssize_t
8347 perf_event_mux_interval_ms_store(struct device *dev,
8348 				 struct device_attribute *attr,
8349 				 const char *buf, size_t count)
8350 {
8351 	struct pmu *pmu = dev_get_drvdata(dev);
8352 	int timer, cpu, ret;
8353 
8354 	ret = kstrtoint(buf, 0, &timer);
8355 	if (ret)
8356 		return ret;
8357 
8358 	if (timer < 1)
8359 		return -EINVAL;
8360 
8361 	/* same value, noting to do */
8362 	if (timer == pmu->hrtimer_interval_ms)
8363 		return count;
8364 
8365 	mutex_lock(&mux_interval_mutex);
8366 	pmu->hrtimer_interval_ms = timer;
8367 
8368 	/* update all cpuctx for this PMU */
8369 	get_online_cpus();
8370 	for_each_online_cpu(cpu) {
8371 		struct perf_cpu_context *cpuctx;
8372 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8373 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8374 
8375 		cpu_function_call(cpu,
8376 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8377 	}
8378 	put_online_cpus();
8379 	mutex_unlock(&mux_interval_mutex);
8380 
8381 	return count;
8382 }
8383 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8384 
8385 static struct attribute *pmu_dev_attrs[] = {
8386 	&dev_attr_type.attr,
8387 	&dev_attr_perf_event_mux_interval_ms.attr,
8388 	NULL,
8389 };
8390 ATTRIBUTE_GROUPS(pmu_dev);
8391 
8392 static int pmu_bus_running;
8393 static struct bus_type pmu_bus = {
8394 	.name		= "event_source",
8395 	.dev_groups	= pmu_dev_groups,
8396 };
8397 
8398 static void pmu_dev_release(struct device *dev)
8399 {
8400 	kfree(dev);
8401 }
8402 
8403 static int pmu_dev_alloc(struct pmu *pmu)
8404 {
8405 	int ret = -ENOMEM;
8406 
8407 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8408 	if (!pmu->dev)
8409 		goto out;
8410 
8411 	pmu->dev->groups = pmu->attr_groups;
8412 	device_initialize(pmu->dev);
8413 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8414 	if (ret)
8415 		goto free_dev;
8416 
8417 	dev_set_drvdata(pmu->dev, pmu);
8418 	pmu->dev->bus = &pmu_bus;
8419 	pmu->dev->release = pmu_dev_release;
8420 	ret = device_add(pmu->dev);
8421 	if (ret)
8422 		goto free_dev;
8423 
8424 	/* For PMUs with address filters, throw in an extra attribute: */
8425 	if (pmu->nr_addr_filters)
8426 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8427 
8428 	if (ret)
8429 		goto del_dev;
8430 
8431 out:
8432 	return ret;
8433 
8434 del_dev:
8435 	device_del(pmu->dev);
8436 
8437 free_dev:
8438 	put_device(pmu->dev);
8439 	goto out;
8440 }
8441 
8442 static struct lock_class_key cpuctx_mutex;
8443 static struct lock_class_key cpuctx_lock;
8444 
8445 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8446 {
8447 	int cpu, ret;
8448 
8449 	mutex_lock(&pmus_lock);
8450 	ret = -ENOMEM;
8451 	pmu->pmu_disable_count = alloc_percpu(int);
8452 	if (!pmu->pmu_disable_count)
8453 		goto unlock;
8454 
8455 	pmu->type = -1;
8456 	if (!name)
8457 		goto skip_type;
8458 	pmu->name = name;
8459 
8460 	if (type < 0) {
8461 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8462 		if (type < 0) {
8463 			ret = type;
8464 			goto free_pdc;
8465 		}
8466 	}
8467 	pmu->type = type;
8468 
8469 	if (pmu_bus_running) {
8470 		ret = pmu_dev_alloc(pmu);
8471 		if (ret)
8472 			goto free_idr;
8473 	}
8474 
8475 skip_type:
8476 	if (pmu->task_ctx_nr == perf_hw_context) {
8477 		static int hw_context_taken = 0;
8478 
8479 		/*
8480 		 * Other than systems with heterogeneous CPUs, it never makes
8481 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8482 		 * uncore must use perf_invalid_context.
8483 		 */
8484 		if (WARN_ON_ONCE(hw_context_taken &&
8485 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8486 			pmu->task_ctx_nr = perf_invalid_context;
8487 
8488 		hw_context_taken = 1;
8489 	}
8490 
8491 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8492 	if (pmu->pmu_cpu_context)
8493 		goto got_cpu_context;
8494 
8495 	ret = -ENOMEM;
8496 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8497 	if (!pmu->pmu_cpu_context)
8498 		goto free_dev;
8499 
8500 	for_each_possible_cpu(cpu) {
8501 		struct perf_cpu_context *cpuctx;
8502 
8503 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8504 		__perf_event_init_context(&cpuctx->ctx);
8505 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8506 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8507 		cpuctx->ctx.pmu = pmu;
8508 
8509 		__perf_mux_hrtimer_init(cpuctx, cpu);
8510 
8511 		cpuctx->unique_pmu = pmu;
8512 	}
8513 
8514 got_cpu_context:
8515 	if (!pmu->start_txn) {
8516 		if (pmu->pmu_enable) {
8517 			/*
8518 			 * If we have pmu_enable/pmu_disable calls, install
8519 			 * transaction stubs that use that to try and batch
8520 			 * hardware accesses.
8521 			 */
8522 			pmu->start_txn  = perf_pmu_start_txn;
8523 			pmu->commit_txn = perf_pmu_commit_txn;
8524 			pmu->cancel_txn = perf_pmu_cancel_txn;
8525 		} else {
8526 			pmu->start_txn  = perf_pmu_nop_txn;
8527 			pmu->commit_txn = perf_pmu_nop_int;
8528 			pmu->cancel_txn = perf_pmu_nop_void;
8529 		}
8530 	}
8531 
8532 	if (!pmu->pmu_enable) {
8533 		pmu->pmu_enable  = perf_pmu_nop_void;
8534 		pmu->pmu_disable = perf_pmu_nop_void;
8535 	}
8536 
8537 	if (!pmu->event_idx)
8538 		pmu->event_idx = perf_event_idx_default;
8539 
8540 	list_add_rcu(&pmu->entry, &pmus);
8541 	atomic_set(&pmu->exclusive_cnt, 0);
8542 	ret = 0;
8543 unlock:
8544 	mutex_unlock(&pmus_lock);
8545 
8546 	return ret;
8547 
8548 free_dev:
8549 	device_del(pmu->dev);
8550 	put_device(pmu->dev);
8551 
8552 free_idr:
8553 	if (pmu->type >= PERF_TYPE_MAX)
8554 		idr_remove(&pmu_idr, pmu->type);
8555 
8556 free_pdc:
8557 	free_percpu(pmu->pmu_disable_count);
8558 	goto unlock;
8559 }
8560 EXPORT_SYMBOL_GPL(perf_pmu_register);
8561 
8562 void perf_pmu_unregister(struct pmu *pmu)
8563 {
8564 	mutex_lock(&pmus_lock);
8565 	list_del_rcu(&pmu->entry);
8566 	mutex_unlock(&pmus_lock);
8567 
8568 	/*
8569 	 * We dereference the pmu list under both SRCU and regular RCU, so
8570 	 * synchronize against both of those.
8571 	 */
8572 	synchronize_srcu(&pmus_srcu);
8573 	synchronize_rcu();
8574 
8575 	free_percpu(pmu->pmu_disable_count);
8576 	if (pmu->type >= PERF_TYPE_MAX)
8577 		idr_remove(&pmu_idr, pmu->type);
8578 	if (pmu->nr_addr_filters)
8579 		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8580 	device_del(pmu->dev);
8581 	put_device(pmu->dev);
8582 	free_pmu_context(pmu);
8583 }
8584 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8585 
8586 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8587 {
8588 	struct perf_event_context *ctx = NULL;
8589 	int ret;
8590 
8591 	if (!try_module_get(pmu->module))
8592 		return -ENODEV;
8593 
8594 	if (event->group_leader != event) {
8595 		/*
8596 		 * This ctx->mutex can nest when we're called through
8597 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8598 		 */
8599 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8600 						 SINGLE_DEPTH_NESTING);
8601 		BUG_ON(!ctx);
8602 	}
8603 
8604 	event->pmu = pmu;
8605 	ret = pmu->event_init(event);
8606 
8607 	if (ctx)
8608 		perf_event_ctx_unlock(event->group_leader, ctx);
8609 
8610 	if (ret)
8611 		module_put(pmu->module);
8612 
8613 	return ret;
8614 }
8615 
8616 static struct pmu *perf_init_event(struct perf_event *event)
8617 {
8618 	struct pmu *pmu = NULL;
8619 	int idx;
8620 	int ret;
8621 
8622 	idx = srcu_read_lock(&pmus_srcu);
8623 
8624 	rcu_read_lock();
8625 	pmu = idr_find(&pmu_idr, event->attr.type);
8626 	rcu_read_unlock();
8627 	if (pmu) {
8628 		ret = perf_try_init_event(pmu, event);
8629 		if (ret)
8630 			pmu = ERR_PTR(ret);
8631 		goto unlock;
8632 	}
8633 
8634 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8635 		ret = perf_try_init_event(pmu, event);
8636 		if (!ret)
8637 			goto unlock;
8638 
8639 		if (ret != -ENOENT) {
8640 			pmu = ERR_PTR(ret);
8641 			goto unlock;
8642 		}
8643 	}
8644 	pmu = ERR_PTR(-ENOENT);
8645 unlock:
8646 	srcu_read_unlock(&pmus_srcu, idx);
8647 
8648 	return pmu;
8649 }
8650 
8651 static void attach_sb_event(struct perf_event *event)
8652 {
8653 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8654 
8655 	raw_spin_lock(&pel->lock);
8656 	list_add_rcu(&event->sb_list, &pel->list);
8657 	raw_spin_unlock(&pel->lock);
8658 }
8659 
8660 /*
8661  * We keep a list of all !task (and therefore per-cpu) events
8662  * that need to receive side-band records.
8663  *
8664  * This avoids having to scan all the various PMU per-cpu contexts
8665  * looking for them.
8666  */
8667 static void account_pmu_sb_event(struct perf_event *event)
8668 {
8669 	struct perf_event_attr *attr = &event->attr;
8670 
8671 	if (event->parent)
8672 		return;
8673 
8674 	if (event->attach_state & PERF_ATTACH_TASK)
8675 		return;
8676 
8677 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
8678 	    attr->comm || attr->comm_exec ||
8679 	    attr->task ||
8680 	    attr->context_switch)
8681 		attach_sb_event(event);
8682 }
8683 
8684 static void account_event_cpu(struct perf_event *event, int cpu)
8685 {
8686 	if (event->parent)
8687 		return;
8688 
8689 	if (is_cgroup_event(event))
8690 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8691 }
8692 
8693 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8694 static void account_freq_event_nohz(void)
8695 {
8696 #ifdef CONFIG_NO_HZ_FULL
8697 	/* Lock so we don't race with concurrent unaccount */
8698 	spin_lock(&nr_freq_lock);
8699 	if (atomic_inc_return(&nr_freq_events) == 1)
8700 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8701 	spin_unlock(&nr_freq_lock);
8702 #endif
8703 }
8704 
8705 static void account_freq_event(void)
8706 {
8707 	if (tick_nohz_full_enabled())
8708 		account_freq_event_nohz();
8709 	else
8710 		atomic_inc(&nr_freq_events);
8711 }
8712 
8713 
8714 static void account_event(struct perf_event *event)
8715 {
8716 	bool inc = false;
8717 
8718 	if (event->parent)
8719 		return;
8720 
8721 	if (event->attach_state & PERF_ATTACH_TASK)
8722 		inc = true;
8723 	if (event->attr.mmap || event->attr.mmap_data)
8724 		atomic_inc(&nr_mmap_events);
8725 	if (event->attr.comm)
8726 		atomic_inc(&nr_comm_events);
8727 	if (event->attr.task)
8728 		atomic_inc(&nr_task_events);
8729 	if (event->attr.freq)
8730 		account_freq_event();
8731 	if (event->attr.context_switch) {
8732 		atomic_inc(&nr_switch_events);
8733 		inc = true;
8734 	}
8735 	if (has_branch_stack(event))
8736 		inc = true;
8737 	if (is_cgroup_event(event))
8738 		inc = true;
8739 
8740 	if (inc) {
8741 		if (atomic_inc_not_zero(&perf_sched_count))
8742 			goto enabled;
8743 
8744 		mutex_lock(&perf_sched_mutex);
8745 		if (!atomic_read(&perf_sched_count)) {
8746 			static_branch_enable(&perf_sched_events);
8747 			/*
8748 			 * Guarantee that all CPUs observe they key change and
8749 			 * call the perf scheduling hooks before proceeding to
8750 			 * install events that need them.
8751 			 */
8752 			synchronize_sched();
8753 		}
8754 		/*
8755 		 * Now that we have waited for the sync_sched(), allow further
8756 		 * increments to by-pass the mutex.
8757 		 */
8758 		atomic_inc(&perf_sched_count);
8759 		mutex_unlock(&perf_sched_mutex);
8760 	}
8761 enabled:
8762 
8763 	account_event_cpu(event, event->cpu);
8764 
8765 	account_pmu_sb_event(event);
8766 }
8767 
8768 /*
8769  * Allocate and initialize a event structure
8770  */
8771 static struct perf_event *
8772 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8773 		 struct task_struct *task,
8774 		 struct perf_event *group_leader,
8775 		 struct perf_event *parent_event,
8776 		 perf_overflow_handler_t overflow_handler,
8777 		 void *context, int cgroup_fd)
8778 {
8779 	struct pmu *pmu;
8780 	struct perf_event *event;
8781 	struct hw_perf_event *hwc;
8782 	long err = -EINVAL;
8783 
8784 	if ((unsigned)cpu >= nr_cpu_ids) {
8785 		if (!task || cpu != -1)
8786 			return ERR_PTR(-EINVAL);
8787 	}
8788 
8789 	event = kzalloc(sizeof(*event), GFP_KERNEL);
8790 	if (!event)
8791 		return ERR_PTR(-ENOMEM);
8792 
8793 	/*
8794 	 * Single events are their own group leaders, with an
8795 	 * empty sibling list:
8796 	 */
8797 	if (!group_leader)
8798 		group_leader = event;
8799 
8800 	mutex_init(&event->child_mutex);
8801 	INIT_LIST_HEAD(&event->child_list);
8802 
8803 	INIT_LIST_HEAD(&event->group_entry);
8804 	INIT_LIST_HEAD(&event->event_entry);
8805 	INIT_LIST_HEAD(&event->sibling_list);
8806 	INIT_LIST_HEAD(&event->rb_entry);
8807 	INIT_LIST_HEAD(&event->active_entry);
8808 	INIT_LIST_HEAD(&event->addr_filters.list);
8809 	INIT_HLIST_NODE(&event->hlist_entry);
8810 
8811 
8812 	init_waitqueue_head(&event->waitq);
8813 	init_irq_work(&event->pending, perf_pending_event);
8814 
8815 	mutex_init(&event->mmap_mutex);
8816 	raw_spin_lock_init(&event->addr_filters.lock);
8817 
8818 	atomic_long_set(&event->refcount, 1);
8819 	event->cpu		= cpu;
8820 	event->attr		= *attr;
8821 	event->group_leader	= group_leader;
8822 	event->pmu		= NULL;
8823 	event->oncpu		= -1;
8824 
8825 	event->parent		= parent_event;
8826 
8827 	event->ns		= get_pid_ns(task_active_pid_ns(current));
8828 	event->id		= atomic64_inc_return(&perf_event_id);
8829 
8830 	event->state		= PERF_EVENT_STATE_INACTIVE;
8831 
8832 	if (task) {
8833 		event->attach_state = PERF_ATTACH_TASK;
8834 		/*
8835 		 * XXX pmu::event_init needs to know what task to account to
8836 		 * and we cannot use the ctx information because we need the
8837 		 * pmu before we get a ctx.
8838 		 */
8839 		event->hw.target = task;
8840 	}
8841 
8842 	event->clock = &local_clock;
8843 	if (parent_event)
8844 		event->clock = parent_event->clock;
8845 
8846 	if (!overflow_handler && parent_event) {
8847 		overflow_handler = parent_event->overflow_handler;
8848 		context = parent_event->overflow_handler_context;
8849 	}
8850 
8851 	if (overflow_handler) {
8852 		event->overflow_handler	= overflow_handler;
8853 		event->overflow_handler_context = context;
8854 	} else if (is_write_backward(event)){
8855 		event->overflow_handler = perf_event_output_backward;
8856 		event->overflow_handler_context = NULL;
8857 	} else {
8858 		event->overflow_handler = perf_event_output_forward;
8859 		event->overflow_handler_context = NULL;
8860 	}
8861 
8862 	perf_event__state_init(event);
8863 
8864 	pmu = NULL;
8865 
8866 	hwc = &event->hw;
8867 	hwc->sample_period = attr->sample_period;
8868 	if (attr->freq && attr->sample_freq)
8869 		hwc->sample_period = 1;
8870 	hwc->last_period = hwc->sample_period;
8871 
8872 	local64_set(&hwc->period_left, hwc->sample_period);
8873 
8874 	/*
8875 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8876 	 */
8877 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8878 		goto err_ns;
8879 
8880 	if (!has_branch_stack(event))
8881 		event->attr.branch_sample_type = 0;
8882 
8883 	if (cgroup_fd != -1) {
8884 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8885 		if (err)
8886 			goto err_ns;
8887 	}
8888 
8889 	pmu = perf_init_event(event);
8890 	if (!pmu)
8891 		goto err_ns;
8892 	else if (IS_ERR(pmu)) {
8893 		err = PTR_ERR(pmu);
8894 		goto err_ns;
8895 	}
8896 
8897 	err = exclusive_event_init(event);
8898 	if (err)
8899 		goto err_pmu;
8900 
8901 	if (has_addr_filter(event)) {
8902 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8903 						   sizeof(unsigned long),
8904 						   GFP_KERNEL);
8905 		if (!event->addr_filters_offs)
8906 			goto err_per_task;
8907 
8908 		/* force hw sync on the address filters */
8909 		event->addr_filters_gen = 1;
8910 	}
8911 
8912 	if (!event->parent) {
8913 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8914 			err = get_callchain_buffers(attr->sample_max_stack);
8915 			if (err)
8916 				goto err_addr_filters;
8917 		}
8918 	}
8919 
8920 	/* symmetric to unaccount_event() in _free_event() */
8921 	account_event(event);
8922 
8923 	return event;
8924 
8925 err_addr_filters:
8926 	kfree(event->addr_filters_offs);
8927 
8928 err_per_task:
8929 	exclusive_event_destroy(event);
8930 
8931 err_pmu:
8932 	if (event->destroy)
8933 		event->destroy(event);
8934 	module_put(pmu->module);
8935 err_ns:
8936 	if (is_cgroup_event(event))
8937 		perf_detach_cgroup(event);
8938 	if (event->ns)
8939 		put_pid_ns(event->ns);
8940 	kfree(event);
8941 
8942 	return ERR_PTR(err);
8943 }
8944 
8945 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8946 			  struct perf_event_attr *attr)
8947 {
8948 	u32 size;
8949 	int ret;
8950 
8951 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8952 		return -EFAULT;
8953 
8954 	/*
8955 	 * zero the full structure, so that a short copy will be nice.
8956 	 */
8957 	memset(attr, 0, sizeof(*attr));
8958 
8959 	ret = get_user(size, &uattr->size);
8960 	if (ret)
8961 		return ret;
8962 
8963 	if (size > PAGE_SIZE)	/* silly large */
8964 		goto err_size;
8965 
8966 	if (!size)		/* abi compat */
8967 		size = PERF_ATTR_SIZE_VER0;
8968 
8969 	if (size < PERF_ATTR_SIZE_VER0)
8970 		goto err_size;
8971 
8972 	/*
8973 	 * If we're handed a bigger struct than we know of,
8974 	 * ensure all the unknown bits are 0 - i.e. new
8975 	 * user-space does not rely on any kernel feature
8976 	 * extensions we dont know about yet.
8977 	 */
8978 	if (size > sizeof(*attr)) {
8979 		unsigned char __user *addr;
8980 		unsigned char __user *end;
8981 		unsigned char val;
8982 
8983 		addr = (void __user *)uattr + sizeof(*attr);
8984 		end  = (void __user *)uattr + size;
8985 
8986 		for (; addr < end; addr++) {
8987 			ret = get_user(val, addr);
8988 			if (ret)
8989 				return ret;
8990 			if (val)
8991 				goto err_size;
8992 		}
8993 		size = sizeof(*attr);
8994 	}
8995 
8996 	ret = copy_from_user(attr, uattr, size);
8997 	if (ret)
8998 		return -EFAULT;
8999 
9000 	if (attr->__reserved_1)
9001 		return -EINVAL;
9002 
9003 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9004 		return -EINVAL;
9005 
9006 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9007 		return -EINVAL;
9008 
9009 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9010 		u64 mask = attr->branch_sample_type;
9011 
9012 		/* only using defined bits */
9013 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9014 			return -EINVAL;
9015 
9016 		/* at least one branch bit must be set */
9017 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9018 			return -EINVAL;
9019 
9020 		/* propagate priv level, when not set for branch */
9021 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9022 
9023 			/* exclude_kernel checked on syscall entry */
9024 			if (!attr->exclude_kernel)
9025 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9026 
9027 			if (!attr->exclude_user)
9028 				mask |= PERF_SAMPLE_BRANCH_USER;
9029 
9030 			if (!attr->exclude_hv)
9031 				mask |= PERF_SAMPLE_BRANCH_HV;
9032 			/*
9033 			 * adjust user setting (for HW filter setup)
9034 			 */
9035 			attr->branch_sample_type = mask;
9036 		}
9037 		/* privileged levels capture (kernel, hv): check permissions */
9038 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9039 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9040 			return -EACCES;
9041 	}
9042 
9043 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9044 		ret = perf_reg_validate(attr->sample_regs_user);
9045 		if (ret)
9046 			return ret;
9047 	}
9048 
9049 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9050 		if (!arch_perf_have_user_stack_dump())
9051 			return -ENOSYS;
9052 
9053 		/*
9054 		 * We have __u32 type for the size, but so far
9055 		 * we can only use __u16 as maximum due to the
9056 		 * __u16 sample size limit.
9057 		 */
9058 		if (attr->sample_stack_user >= USHRT_MAX)
9059 			ret = -EINVAL;
9060 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9061 			ret = -EINVAL;
9062 	}
9063 
9064 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9065 		ret = perf_reg_validate(attr->sample_regs_intr);
9066 out:
9067 	return ret;
9068 
9069 err_size:
9070 	put_user(sizeof(*attr), &uattr->size);
9071 	ret = -E2BIG;
9072 	goto out;
9073 }
9074 
9075 static int
9076 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9077 {
9078 	struct ring_buffer *rb = NULL;
9079 	int ret = -EINVAL;
9080 
9081 	if (!output_event)
9082 		goto set;
9083 
9084 	/* don't allow circular references */
9085 	if (event == output_event)
9086 		goto out;
9087 
9088 	/*
9089 	 * Don't allow cross-cpu buffers
9090 	 */
9091 	if (output_event->cpu != event->cpu)
9092 		goto out;
9093 
9094 	/*
9095 	 * If its not a per-cpu rb, it must be the same task.
9096 	 */
9097 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9098 		goto out;
9099 
9100 	/*
9101 	 * Mixing clocks in the same buffer is trouble you don't need.
9102 	 */
9103 	if (output_event->clock != event->clock)
9104 		goto out;
9105 
9106 	/*
9107 	 * Either writing ring buffer from beginning or from end.
9108 	 * Mixing is not allowed.
9109 	 */
9110 	if (is_write_backward(output_event) != is_write_backward(event))
9111 		goto out;
9112 
9113 	/*
9114 	 * If both events generate aux data, they must be on the same PMU
9115 	 */
9116 	if (has_aux(event) && has_aux(output_event) &&
9117 	    event->pmu != output_event->pmu)
9118 		goto out;
9119 
9120 set:
9121 	mutex_lock(&event->mmap_mutex);
9122 	/* Can't redirect output if we've got an active mmap() */
9123 	if (atomic_read(&event->mmap_count))
9124 		goto unlock;
9125 
9126 	if (output_event) {
9127 		/* get the rb we want to redirect to */
9128 		rb = ring_buffer_get(output_event);
9129 		if (!rb)
9130 			goto unlock;
9131 	}
9132 
9133 	ring_buffer_attach(event, rb);
9134 
9135 	ret = 0;
9136 unlock:
9137 	mutex_unlock(&event->mmap_mutex);
9138 
9139 out:
9140 	return ret;
9141 }
9142 
9143 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9144 {
9145 	if (b < a)
9146 		swap(a, b);
9147 
9148 	mutex_lock(a);
9149 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9150 }
9151 
9152 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9153 {
9154 	bool nmi_safe = false;
9155 
9156 	switch (clk_id) {
9157 	case CLOCK_MONOTONIC:
9158 		event->clock = &ktime_get_mono_fast_ns;
9159 		nmi_safe = true;
9160 		break;
9161 
9162 	case CLOCK_MONOTONIC_RAW:
9163 		event->clock = &ktime_get_raw_fast_ns;
9164 		nmi_safe = true;
9165 		break;
9166 
9167 	case CLOCK_REALTIME:
9168 		event->clock = &ktime_get_real_ns;
9169 		break;
9170 
9171 	case CLOCK_BOOTTIME:
9172 		event->clock = &ktime_get_boot_ns;
9173 		break;
9174 
9175 	case CLOCK_TAI:
9176 		event->clock = &ktime_get_tai_ns;
9177 		break;
9178 
9179 	default:
9180 		return -EINVAL;
9181 	}
9182 
9183 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9184 		return -EINVAL;
9185 
9186 	return 0;
9187 }
9188 
9189 /**
9190  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9191  *
9192  * @attr_uptr:	event_id type attributes for monitoring/sampling
9193  * @pid:		target pid
9194  * @cpu:		target cpu
9195  * @group_fd:		group leader event fd
9196  */
9197 SYSCALL_DEFINE5(perf_event_open,
9198 		struct perf_event_attr __user *, attr_uptr,
9199 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9200 {
9201 	struct perf_event *group_leader = NULL, *output_event = NULL;
9202 	struct perf_event *event, *sibling;
9203 	struct perf_event_attr attr;
9204 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9205 	struct file *event_file = NULL;
9206 	struct fd group = {NULL, 0};
9207 	struct task_struct *task = NULL;
9208 	struct pmu *pmu;
9209 	int event_fd;
9210 	int move_group = 0;
9211 	int err;
9212 	int f_flags = O_RDWR;
9213 	int cgroup_fd = -1;
9214 
9215 	/* for future expandability... */
9216 	if (flags & ~PERF_FLAG_ALL)
9217 		return -EINVAL;
9218 
9219 	err = perf_copy_attr(attr_uptr, &attr);
9220 	if (err)
9221 		return err;
9222 
9223 	if (!attr.exclude_kernel) {
9224 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9225 			return -EACCES;
9226 	}
9227 
9228 	if (attr.freq) {
9229 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9230 			return -EINVAL;
9231 	} else {
9232 		if (attr.sample_period & (1ULL << 63))
9233 			return -EINVAL;
9234 	}
9235 
9236 	if (!attr.sample_max_stack)
9237 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9238 
9239 	/*
9240 	 * In cgroup mode, the pid argument is used to pass the fd
9241 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9242 	 * designates the cpu on which to monitor threads from that
9243 	 * cgroup.
9244 	 */
9245 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9246 		return -EINVAL;
9247 
9248 	if (flags & PERF_FLAG_FD_CLOEXEC)
9249 		f_flags |= O_CLOEXEC;
9250 
9251 	event_fd = get_unused_fd_flags(f_flags);
9252 	if (event_fd < 0)
9253 		return event_fd;
9254 
9255 	if (group_fd != -1) {
9256 		err = perf_fget_light(group_fd, &group);
9257 		if (err)
9258 			goto err_fd;
9259 		group_leader = group.file->private_data;
9260 		if (flags & PERF_FLAG_FD_OUTPUT)
9261 			output_event = group_leader;
9262 		if (flags & PERF_FLAG_FD_NO_GROUP)
9263 			group_leader = NULL;
9264 	}
9265 
9266 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9267 		task = find_lively_task_by_vpid(pid);
9268 		if (IS_ERR(task)) {
9269 			err = PTR_ERR(task);
9270 			goto err_group_fd;
9271 		}
9272 	}
9273 
9274 	if (task && group_leader &&
9275 	    group_leader->attr.inherit != attr.inherit) {
9276 		err = -EINVAL;
9277 		goto err_task;
9278 	}
9279 
9280 	get_online_cpus();
9281 
9282 	if (task) {
9283 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9284 		if (err)
9285 			goto err_cpus;
9286 
9287 		/*
9288 		 * Reuse ptrace permission checks for now.
9289 		 *
9290 		 * We must hold cred_guard_mutex across this and any potential
9291 		 * perf_install_in_context() call for this new event to
9292 		 * serialize against exec() altering our credentials (and the
9293 		 * perf_event_exit_task() that could imply).
9294 		 */
9295 		err = -EACCES;
9296 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9297 			goto err_cred;
9298 	}
9299 
9300 	if (flags & PERF_FLAG_PID_CGROUP)
9301 		cgroup_fd = pid;
9302 
9303 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9304 				 NULL, NULL, cgroup_fd);
9305 	if (IS_ERR(event)) {
9306 		err = PTR_ERR(event);
9307 		goto err_cred;
9308 	}
9309 
9310 	if (is_sampling_event(event)) {
9311 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9312 			err = -EOPNOTSUPP;
9313 			goto err_alloc;
9314 		}
9315 	}
9316 
9317 	/*
9318 	 * Special case software events and allow them to be part of
9319 	 * any hardware group.
9320 	 */
9321 	pmu = event->pmu;
9322 
9323 	if (attr.use_clockid) {
9324 		err = perf_event_set_clock(event, attr.clockid);
9325 		if (err)
9326 			goto err_alloc;
9327 	}
9328 
9329 	if (group_leader &&
9330 	    (is_software_event(event) != is_software_event(group_leader))) {
9331 		if (is_software_event(event)) {
9332 			/*
9333 			 * If event and group_leader are not both a software
9334 			 * event, and event is, then group leader is not.
9335 			 *
9336 			 * Allow the addition of software events to !software
9337 			 * groups, this is safe because software events never
9338 			 * fail to schedule.
9339 			 */
9340 			pmu = group_leader->pmu;
9341 		} else if (is_software_event(group_leader) &&
9342 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9343 			/*
9344 			 * In case the group is a pure software group, and we
9345 			 * try to add a hardware event, move the whole group to
9346 			 * the hardware context.
9347 			 */
9348 			move_group = 1;
9349 		}
9350 	}
9351 
9352 	/*
9353 	 * Get the target context (task or percpu):
9354 	 */
9355 	ctx = find_get_context(pmu, task, event);
9356 	if (IS_ERR(ctx)) {
9357 		err = PTR_ERR(ctx);
9358 		goto err_alloc;
9359 	}
9360 
9361 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9362 		err = -EBUSY;
9363 		goto err_context;
9364 	}
9365 
9366 	/*
9367 	 * Look up the group leader (we will attach this event to it):
9368 	 */
9369 	if (group_leader) {
9370 		err = -EINVAL;
9371 
9372 		/*
9373 		 * Do not allow a recursive hierarchy (this new sibling
9374 		 * becoming part of another group-sibling):
9375 		 */
9376 		if (group_leader->group_leader != group_leader)
9377 			goto err_context;
9378 
9379 		/* All events in a group should have the same clock */
9380 		if (group_leader->clock != event->clock)
9381 			goto err_context;
9382 
9383 		/*
9384 		 * Do not allow to attach to a group in a different
9385 		 * task or CPU context:
9386 		 */
9387 		if (move_group) {
9388 			/*
9389 			 * Make sure we're both on the same task, or both
9390 			 * per-cpu events.
9391 			 */
9392 			if (group_leader->ctx->task != ctx->task)
9393 				goto err_context;
9394 
9395 			/*
9396 			 * Make sure we're both events for the same CPU;
9397 			 * grouping events for different CPUs is broken; since
9398 			 * you can never concurrently schedule them anyhow.
9399 			 */
9400 			if (group_leader->cpu != event->cpu)
9401 				goto err_context;
9402 		} else {
9403 			if (group_leader->ctx != ctx)
9404 				goto err_context;
9405 		}
9406 
9407 		/*
9408 		 * Only a group leader can be exclusive or pinned
9409 		 */
9410 		if (attr.exclusive || attr.pinned)
9411 			goto err_context;
9412 	}
9413 
9414 	if (output_event) {
9415 		err = perf_event_set_output(event, output_event);
9416 		if (err)
9417 			goto err_context;
9418 	}
9419 
9420 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9421 					f_flags);
9422 	if (IS_ERR(event_file)) {
9423 		err = PTR_ERR(event_file);
9424 		event_file = NULL;
9425 		goto err_context;
9426 	}
9427 
9428 	if (move_group) {
9429 		gctx = group_leader->ctx;
9430 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9431 		if (gctx->task == TASK_TOMBSTONE) {
9432 			err = -ESRCH;
9433 			goto err_locked;
9434 		}
9435 	} else {
9436 		mutex_lock(&ctx->mutex);
9437 	}
9438 
9439 	if (ctx->task == TASK_TOMBSTONE) {
9440 		err = -ESRCH;
9441 		goto err_locked;
9442 	}
9443 
9444 	if (!perf_event_validate_size(event)) {
9445 		err = -E2BIG;
9446 		goto err_locked;
9447 	}
9448 
9449 	/*
9450 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9451 	 * because we need to serialize with concurrent event creation.
9452 	 */
9453 	if (!exclusive_event_installable(event, ctx)) {
9454 		/* exclusive and group stuff are assumed mutually exclusive */
9455 		WARN_ON_ONCE(move_group);
9456 
9457 		err = -EBUSY;
9458 		goto err_locked;
9459 	}
9460 
9461 	WARN_ON_ONCE(ctx->parent_ctx);
9462 
9463 	/*
9464 	 * This is the point on no return; we cannot fail hereafter. This is
9465 	 * where we start modifying current state.
9466 	 */
9467 
9468 	if (move_group) {
9469 		/*
9470 		 * See perf_event_ctx_lock() for comments on the details
9471 		 * of swizzling perf_event::ctx.
9472 		 */
9473 		perf_remove_from_context(group_leader, 0);
9474 
9475 		list_for_each_entry(sibling, &group_leader->sibling_list,
9476 				    group_entry) {
9477 			perf_remove_from_context(sibling, 0);
9478 			put_ctx(gctx);
9479 		}
9480 
9481 		/*
9482 		 * Wait for everybody to stop referencing the events through
9483 		 * the old lists, before installing it on new lists.
9484 		 */
9485 		synchronize_rcu();
9486 
9487 		/*
9488 		 * Install the group siblings before the group leader.
9489 		 *
9490 		 * Because a group leader will try and install the entire group
9491 		 * (through the sibling list, which is still in-tact), we can
9492 		 * end up with siblings installed in the wrong context.
9493 		 *
9494 		 * By installing siblings first we NO-OP because they're not
9495 		 * reachable through the group lists.
9496 		 */
9497 		list_for_each_entry(sibling, &group_leader->sibling_list,
9498 				    group_entry) {
9499 			perf_event__state_init(sibling);
9500 			perf_install_in_context(ctx, sibling, sibling->cpu);
9501 			get_ctx(ctx);
9502 		}
9503 
9504 		/*
9505 		 * Removing from the context ends up with disabled
9506 		 * event. What we want here is event in the initial
9507 		 * startup state, ready to be add into new context.
9508 		 */
9509 		perf_event__state_init(group_leader);
9510 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9511 		get_ctx(ctx);
9512 
9513 		/*
9514 		 * Now that all events are installed in @ctx, nothing
9515 		 * references @gctx anymore, so drop the last reference we have
9516 		 * on it.
9517 		 */
9518 		put_ctx(gctx);
9519 	}
9520 
9521 	/*
9522 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9523 	 * that we're serialized against further additions and before
9524 	 * perf_install_in_context() which is the point the event is active and
9525 	 * can use these values.
9526 	 */
9527 	perf_event__header_size(event);
9528 	perf_event__id_header_size(event);
9529 
9530 	event->owner = current;
9531 
9532 	perf_install_in_context(ctx, event, event->cpu);
9533 	perf_unpin_context(ctx);
9534 
9535 	if (move_group)
9536 		mutex_unlock(&gctx->mutex);
9537 	mutex_unlock(&ctx->mutex);
9538 
9539 	if (task) {
9540 		mutex_unlock(&task->signal->cred_guard_mutex);
9541 		put_task_struct(task);
9542 	}
9543 
9544 	put_online_cpus();
9545 
9546 	mutex_lock(&current->perf_event_mutex);
9547 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9548 	mutex_unlock(&current->perf_event_mutex);
9549 
9550 	/*
9551 	 * Drop the reference on the group_event after placing the
9552 	 * new event on the sibling_list. This ensures destruction
9553 	 * of the group leader will find the pointer to itself in
9554 	 * perf_group_detach().
9555 	 */
9556 	fdput(group);
9557 	fd_install(event_fd, event_file);
9558 	return event_fd;
9559 
9560 err_locked:
9561 	if (move_group)
9562 		mutex_unlock(&gctx->mutex);
9563 	mutex_unlock(&ctx->mutex);
9564 /* err_file: */
9565 	fput(event_file);
9566 err_context:
9567 	perf_unpin_context(ctx);
9568 	put_ctx(ctx);
9569 err_alloc:
9570 	/*
9571 	 * If event_file is set, the fput() above will have called ->release()
9572 	 * and that will take care of freeing the event.
9573 	 */
9574 	if (!event_file)
9575 		free_event(event);
9576 err_cred:
9577 	if (task)
9578 		mutex_unlock(&task->signal->cred_guard_mutex);
9579 err_cpus:
9580 	put_online_cpus();
9581 err_task:
9582 	if (task)
9583 		put_task_struct(task);
9584 err_group_fd:
9585 	fdput(group);
9586 err_fd:
9587 	put_unused_fd(event_fd);
9588 	return err;
9589 }
9590 
9591 /**
9592  * perf_event_create_kernel_counter
9593  *
9594  * @attr: attributes of the counter to create
9595  * @cpu: cpu in which the counter is bound
9596  * @task: task to profile (NULL for percpu)
9597  */
9598 struct perf_event *
9599 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9600 				 struct task_struct *task,
9601 				 perf_overflow_handler_t overflow_handler,
9602 				 void *context)
9603 {
9604 	struct perf_event_context *ctx;
9605 	struct perf_event *event;
9606 	int err;
9607 
9608 	/*
9609 	 * Get the target context (task or percpu):
9610 	 */
9611 
9612 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9613 				 overflow_handler, context, -1);
9614 	if (IS_ERR(event)) {
9615 		err = PTR_ERR(event);
9616 		goto err;
9617 	}
9618 
9619 	/* Mark owner so we could distinguish it from user events. */
9620 	event->owner = TASK_TOMBSTONE;
9621 
9622 	ctx = find_get_context(event->pmu, task, event);
9623 	if (IS_ERR(ctx)) {
9624 		err = PTR_ERR(ctx);
9625 		goto err_free;
9626 	}
9627 
9628 	WARN_ON_ONCE(ctx->parent_ctx);
9629 	mutex_lock(&ctx->mutex);
9630 	if (ctx->task == TASK_TOMBSTONE) {
9631 		err = -ESRCH;
9632 		goto err_unlock;
9633 	}
9634 
9635 	if (!exclusive_event_installable(event, ctx)) {
9636 		err = -EBUSY;
9637 		goto err_unlock;
9638 	}
9639 
9640 	perf_install_in_context(ctx, event, cpu);
9641 	perf_unpin_context(ctx);
9642 	mutex_unlock(&ctx->mutex);
9643 
9644 	return event;
9645 
9646 err_unlock:
9647 	mutex_unlock(&ctx->mutex);
9648 	perf_unpin_context(ctx);
9649 	put_ctx(ctx);
9650 err_free:
9651 	free_event(event);
9652 err:
9653 	return ERR_PTR(err);
9654 }
9655 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9656 
9657 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9658 {
9659 	struct perf_event_context *src_ctx;
9660 	struct perf_event_context *dst_ctx;
9661 	struct perf_event *event, *tmp;
9662 	LIST_HEAD(events);
9663 
9664 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9665 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9666 
9667 	/*
9668 	 * See perf_event_ctx_lock() for comments on the details
9669 	 * of swizzling perf_event::ctx.
9670 	 */
9671 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9672 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9673 				 event_entry) {
9674 		perf_remove_from_context(event, 0);
9675 		unaccount_event_cpu(event, src_cpu);
9676 		put_ctx(src_ctx);
9677 		list_add(&event->migrate_entry, &events);
9678 	}
9679 
9680 	/*
9681 	 * Wait for the events to quiesce before re-instating them.
9682 	 */
9683 	synchronize_rcu();
9684 
9685 	/*
9686 	 * Re-instate events in 2 passes.
9687 	 *
9688 	 * Skip over group leaders and only install siblings on this first
9689 	 * pass, siblings will not get enabled without a leader, however a
9690 	 * leader will enable its siblings, even if those are still on the old
9691 	 * context.
9692 	 */
9693 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9694 		if (event->group_leader == event)
9695 			continue;
9696 
9697 		list_del(&event->migrate_entry);
9698 		if (event->state >= PERF_EVENT_STATE_OFF)
9699 			event->state = PERF_EVENT_STATE_INACTIVE;
9700 		account_event_cpu(event, dst_cpu);
9701 		perf_install_in_context(dst_ctx, event, dst_cpu);
9702 		get_ctx(dst_ctx);
9703 	}
9704 
9705 	/*
9706 	 * Once all the siblings are setup properly, install the group leaders
9707 	 * to make it go.
9708 	 */
9709 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9710 		list_del(&event->migrate_entry);
9711 		if (event->state >= PERF_EVENT_STATE_OFF)
9712 			event->state = PERF_EVENT_STATE_INACTIVE;
9713 		account_event_cpu(event, dst_cpu);
9714 		perf_install_in_context(dst_ctx, event, dst_cpu);
9715 		get_ctx(dst_ctx);
9716 	}
9717 	mutex_unlock(&dst_ctx->mutex);
9718 	mutex_unlock(&src_ctx->mutex);
9719 }
9720 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9721 
9722 static void sync_child_event(struct perf_event *child_event,
9723 			       struct task_struct *child)
9724 {
9725 	struct perf_event *parent_event = child_event->parent;
9726 	u64 child_val;
9727 
9728 	if (child_event->attr.inherit_stat)
9729 		perf_event_read_event(child_event, child);
9730 
9731 	child_val = perf_event_count(child_event);
9732 
9733 	/*
9734 	 * Add back the child's count to the parent's count:
9735 	 */
9736 	atomic64_add(child_val, &parent_event->child_count);
9737 	atomic64_add(child_event->total_time_enabled,
9738 		     &parent_event->child_total_time_enabled);
9739 	atomic64_add(child_event->total_time_running,
9740 		     &parent_event->child_total_time_running);
9741 }
9742 
9743 static void
9744 perf_event_exit_event(struct perf_event *child_event,
9745 		      struct perf_event_context *child_ctx,
9746 		      struct task_struct *child)
9747 {
9748 	struct perf_event *parent_event = child_event->parent;
9749 
9750 	/*
9751 	 * Do not destroy the 'original' grouping; because of the context
9752 	 * switch optimization the original events could've ended up in a
9753 	 * random child task.
9754 	 *
9755 	 * If we were to destroy the original group, all group related
9756 	 * operations would cease to function properly after this random
9757 	 * child dies.
9758 	 *
9759 	 * Do destroy all inherited groups, we don't care about those
9760 	 * and being thorough is better.
9761 	 */
9762 	raw_spin_lock_irq(&child_ctx->lock);
9763 	WARN_ON_ONCE(child_ctx->is_active);
9764 
9765 	if (parent_event)
9766 		perf_group_detach(child_event);
9767 	list_del_event(child_event, child_ctx);
9768 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9769 	raw_spin_unlock_irq(&child_ctx->lock);
9770 
9771 	/*
9772 	 * Parent events are governed by their filedesc, retain them.
9773 	 */
9774 	if (!parent_event) {
9775 		perf_event_wakeup(child_event);
9776 		return;
9777 	}
9778 	/*
9779 	 * Child events can be cleaned up.
9780 	 */
9781 
9782 	sync_child_event(child_event, child);
9783 
9784 	/*
9785 	 * Remove this event from the parent's list
9786 	 */
9787 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9788 	mutex_lock(&parent_event->child_mutex);
9789 	list_del_init(&child_event->child_list);
9790 	mutex_unlock(&parent_event->child_mutex);
9791 
9792 	/*
9793 	 * Kick perf_poll() for is_event_hup().
9794 	 */
9795 	perf_event_wakeup(parent_event);
9796 	free_event(child_event);
9797 	put_event(parent_event);
9798 }
9799 
9800 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9801 {
9802 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9803 	struct perf_event *child_event, *next;
9804 
9805 	WARN_ON_ONCE(child != current);
9806 
9807 	child_ctx = perf_pin_task_context(child, ctxn);
9808 	if (!child_ctx)
9809 		return;
9810 
9811 	/*
9812 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
9813 	 * ctx::mutex over the entire thing. This serializes against almost
9814 	 * everything that wants to access the ctx.
9815 	 *
9816 	 * The exception is sys_perf_event_open() /
9817 	 * perf_event_create_kernel_count() which does find_get_context()
9818 	 * without ctx::mutex (it cannot because of the move_group double mutex
9819 	 * lock thing). See the comments in perf_install_in_context().
9820 	 */
9821 	mutex_lock(&child_ctx->mutex);
9822 
9823 	/*
9824 	 * In a single ctx::lock section, de-schedule the events and detach the
9825 	 * context from the task such that we cannot ever get it scheduled back
9826 	 * in.
9827 	 */
9828 	raw_spin_lock_irq(&child_ctx->lock);
9829 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9830 
9831 	/*
9832 	 * Now that the context is inactive, destroy the task <-> ctx relation
9833 	 * and mark the context dead.
9834 	 */
9835 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9836 	put_ctx(child_ctx); /* cannot be last */
9837 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9838 	put_task_struct(current); /* cannot be last */
9839 
9840 	clone_ctx = unclone_ctx(child_ctx);
9841 	raw_spin_unlock_irq(&child_ctx->lock);
9842 
9843 	if (clone_ctx)
9844 		put_ctx(clone_ctx);
9845 
9846 	/*
9847 	 * Report the task dead after unscheduling the events so that we
9848 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
9849 	 * get a few PERF_RECORD_READ events.
9850 	 */
9851 	perf_event_task(child, child_ctx, 0);
9852 
9853 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9854 		perf_event_exit_event(child_event, child_ctx, child);
9855 
9856 	mutex_unlock(&child_ctx->mutex);
9857 
9858 	put_ctx(child_ctx);
9859 }
9860 
9861 /*
9862  * When a child task exits, feed back event values to parent events.
9863  *
9864  * Can be called with cred_guard_mutex held when called from
9865  * install_exec_creds().
9866  */
9867 void perf_event_exit_task(struct task_struct *child)
9868 {
9869 	struct perf_event *event, *tmp;
9870 	int ctxn;
9871 
9872 	mutex_lock(&child->perf_event_mutex);
9873 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9874 				 owner_entry) {
9875 		list_del_init(&event->owner_entry);
9876 
9877 		/*
9878 		 * Ensure the list deletion is visible before we clear
9879 		 * the owner, closes a race against perf_release() where
9880 		 * we need to serialize on the owner->perf_event_mutex.
9881 		 */
9882 		smp_store_release(&event->owner, NULL);
9883 	}
9884 	mutex_unlock(&child->perf_event_mutex);
9885 
9886 	for_each_task_context_nr(ctxn)
9887 		perf_event_exit_task_context(child, ctxn);
9888 
9889 	/*
9890 	 * The perf_event_exit_task_context calls perf_event_task
9891 	 * with child's task_ctx, which generates EXIT events for
9892 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
9893 	 * At this point we need to send EXIT events to cpu contexts.
9894 	 */
9895 	perf_event_task(child, NULL, 0);
9896 }
9897 
9898 static void perf_free_event(struct perf_event *event,
9899 			    struct perf_event_context *ctx)
9900 {
9901 	struct perf_event *parent = event->parent;
9902 
9903 	if (WARN_ON_ONCE(!parent))
9904 		return;
9905 
9906 	mutex_lock(&parent->child_mutex);
9907 	list_del_init(&event->child_list);
9908 	mutex_unlock(&parent->child_mutex);
9909 
9910 	put_event(parent);
9911 
9912 	raw_spin_lock_irq(&ctx->lock);
9913 	perf_group_detach(event);
9914 	list_del_event(event, ctx);
9915 	raw_spin_unlock_irq(&ctx->lock);
9916 	free_event(event);
9917 }
9918 
9919 /*
9920  * Free an unexposed, unused context as created by inheritance by
9921  * perf_event_init_task below, used by fork() in case of fail.
9922  *
9923  * Not all locks are strictly required, but take them anyway to be nice and
9924  * help out with the lockdep assertions.
9925  */
9926 void perf_event_free_task(struct task_struct *task)
9927 {
9928 	struct perf_event_context *ctx;
9929 	struct perf_event *event, *tmp;
9930 	int ctxn;
9931 
9932 	for_each_task_context_nr(ctxn) {
9933 		ctx = task->perf_event_ctxp[ctxn];
9934 		if (!ctx)
9935 			continue;
9936 
9937 		mutex_lock(&ctx->mutex);
9938 again:
9939 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9940 				group_entry)
9941 			perf_free_event(event, ctx);
9942 
9943 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9944 				group_entry)
9945 			perf_free_event(event, ctx);
9946 
9947 		if (!list_empty(&ctx->pinned_groups) ||
9948 				!list_empty(&ctx->flexible_groups))
9949 			goto again;
9950 
9951 		mutex_unlock(&ctx->mutex);
9952 
9953 		put_ctx(ctx);
9954 	}
9955 }
9956 
9957 void perf_event_delayed_put(struct task_struct *task)
9958 {
9959 	int ctxn;
9960 
9961 	for_each_task_context_nr(ctxn)
9962 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9963 }
9964 
9965 struct file *perf_event_get(unsigned int fd)
9966 {
9967 	struct file *file;
9968 
9969 	file = fget_raw(fd);
9970 	if (!file)
9971 		return ERR_PTR(-EBADF);
9972 
9973 	if (file->f_op != &perf_fops) {
9974 		fput(file);
9975 		return ERR_PTR(-EBADF);
9976 	}
9977 
9978 	return file;
9979 }
9980 
9981 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9982 {
9983 	if (!event)
9984 		return ERR_PTR(-EINVAL);
9985 
9986 	return &event->attr;
9987 }
9988 
9989 /*
9990  * inherit a event from parent task to child task:
9991  */
9992 static struct perf_event *
9993 inherit_event(struct perf_event *parent_event,
9994 	      struct task_struct *parent,
9995 	      struct perf_event_context *parent_ctx,
9996 	      struct task_struct *child,
9997 	      struct perf_event *group_leader,
9998 	      struct perf_event_context *child_ctx)
9999 {
10000 	enum perf_event_active_state parent_state = parent_event->state;
10001 	struct perf_event *child_event;
10002 	unsigned long flags;
10003 
10004 	/*
10005 	 * Instead of creating recursive hierarchies of events,
10006 	 * we link inherited events back to the original parent,
10007 	 * which has a filp for sure, which we use as the reference
10008 	 * count:
10009 	 */
10010 	if (parent_event->parent)
10011 		parent_event = parent_event->parent;
10012 
10013 	child_event = perf_event_alloc(&parent_event->attr,
10014 					   parent_event->cpu,
10015 					   child,
10016 					   group_leader, parent_event,
10017 					   NULL, NULL, -1);
10018 	if (IS_ERR(child_event))
10019 		return child_event;
10020 
10021 	/*
10022 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10023 	 * must be under the same lock in order to serialize against
10024 	 * perf_event_release_kernel(), such that either we must observe
10025 	 * is_orphaned_event() or they will observe us on the child_list.
10026 	 */
10027 	mutex_lock(&parent_event->child_mutex);
10028 	if (is_orphaned_event(parent_event) ||
10029 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10030 		mutex_unlock(&parent_event->child_mutex);
10031 		free_event(child_event);
10032 		return NULL;
10033 	}
10034 
10035 	get_ctx(child_ctx);
10036 
10037 	/*
10038 	 * Make the child state follow the state of the parent event,
10039 	 * not its attr.disabled bit.  We hold the parent's mutex,
10040 	 * so we won't race with perf_event_{en, dis}able_family.
10041 	 */
10042 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10043 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10044 	else
10045 		child_event->state = PERF_EVENT_STATE_OFF;
10046 
10047 	if (parent_event->attr.freq) {
10048 		u64 sample_period = parent_event->hw.sample_period;
10049 		struct hw_perf_event *hwc = &child_event->hw;
10050 
10051 		hwc->sample_period = sample_period;
10052 		hwc->last_period   = sample_period;
10053 
10054 		local64_set(&hwc->period_left, sample_period);
10055 	}
10056 
10057 	child_event->ctx = child_ctx;
10058 	child_event->overflow_handler = parent_event->overflow_handler;
10059 	child_event->overflow_handler_context
10060 		= parent_event->overflow_handler_context;
10061 
10062 	/*
10063 	 * Precalculate sample_data sizes
10064 	 */
10065 	perf_event__header_size(child_event);
10066 	perf_event__id_header_size(child_event);
10067 
10068 	/*
10069 	 * Link it up in the child's context:
10070 	 */
10071 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10072 	add_event_to_ctx(child_event, child_ctx);
10073 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10074 
10075 	/*
10076 	 * Link this into the parent event's child list
10077 	 */
10078 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10079 	mutex_unlock(&parent_event->child_mutex);
10080 
10081 	return child_event;
10082 }
10083 
10084 static int inherit_group(struct perf_event *parent_event,
10085 	      struct task_struct *parent,
10086 	      struct perf_event_context *parent_ctx,
10087 	      struct task_struct *child,
10088 	      struct perf_event_context *child_ctx)
10089 {
10090 	struct perf_event *leader;
10091 	struct perf_event *sub;
10092 	struct perf_event *child_ctr;
10093 
10094 	leader = inherit_event(parent_event, parent, parent_ctx,
10095 				 child, NULL, child_ctx);
10096 	if (IS_ERR(leader))
10097 		return PTR_ERR(leader);
10098 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10099 		child_ctr = inherit_event(sub, parent, parent_ctx,
10100 					    child, leader, child_ctx);
10101 		if (IS_ERR(child_ctr))
10102 			return PTR_ERR(child_ctr);
10103 	}
10104 	return 0;
10105 }
10106 
10107 static int
10108 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10109 		   struct perf_event_context *parent_ctx,
10110 		   struct task_struct *child, int ctxn,
10111 		   int *inherited_all)
10112 {
10113 	int ret;
10114 	struct perf_event_context *child_ctx;
10115 
10116 	if (!event->attr.inherit) {
10117 		*inherited_all = 0;
10118 		return 0;
10119 	}
10120 
10121 	child_ctx = child->perf_event_ctxp[ctxn];
10122 	if (!child_ctx) {
10123 		/*
10124 		 * This is executed from the parent task context, so
10125 		 * inherit events that have been marked for cloning.
10126 		 * First allocate and initialize a context for the
10127 		 * child.
10128 		 */
10129 
10130 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10131 		if (!child_ctx)
10132 			return -ENOMEM;
10133 
10134 		child->perf_event_ctxp[ctxn] = child_ctx;
10135 	}
10136 
10137 	ret = inherit_group(event, parent, parent_ctx,
10138 			    child, child_ctx);
10139 
10140 	if (ret)
10141 		*inherited_all = 0;
10142 
10143 	return ret;
10144 }
10145 
10146 /*
10147  * Initialize the perf_event context in task_struct
10148  */
10149 static int perf_event_init_context(struct task_struct *child, int ctxn)
10150 {
10151 	struct perf_event_context *child_ctx, *parent_ctx;
10152 	struct perf_event_context *cloned_ctx;
10153 	struct perf_event *event;
10154 	struct task_struct *parent = current;
10155 	int inherited_all = 1;
10156 	unsigned long flags;
10157 	int ret = 0;
10158 
10159 	if (likely(!parent->perf_event_ctxp[ctxn]))
10160 		return 0;
10161 
10162 	/*
10163 	 * If the parent's context is a clone, pin it so it won't get
10164 	 * swapped under us.
10165 	 */
10166 	parent_ctx = perf_pin_task_context(parent, ctxn);
10167 	if (!parent_ctx)
10168 		return 0;
10169 
10170 	/*
10171 	 * No need to check if parent_ctx != NULL here; since we saw
10172 	 * it non-NULL earlier, the only reason for it to become NULL
10173 	 * is if we exit, and since we're currently in the middle of
10174 	 * a fork we can't be exiting at the same time.
10175 	 */
10176 
10177 	/*
10178 	 * Lock the parent list. No need to lock the child - not PID
10179 	 * hashed yet and not running, so nobody can access it.
10180 	 */
10181 	mutex_lock(&parent_ctx->mutex);
10182 
10183 	/*
10184 	 * We dont have to disable NMIs - we are only looking at
10185 	 * the list, not manipulating it:
10186 	 */
10187 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10188 		ret = inherit_task_group(event, parent, parent_ctx,
10189 					 child, ctxn, &inherited_all);
10190 		if (ret)
10191 			break;
10192 	}
10193 
10194 	/*
10195 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10196 	 * to allocations, but we need to prevent rotation because
10197 	 * rotate_ctx() will change the list from interrupt context.
10198 	 */
10199 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10200 	parent_ctx->rotate_disable = 1;
10201 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10202 
10203 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10204 		ret = inherit_task_group(event, parent, parent_ctx,
10205 					 child, ctxn, &inherited_all);
10206 		if (ret)
10207 			break;
10208 	}
10209 
10210 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10211 	parent_ctx->rotate_disable = 0;
10212 
10213 	child_ctx = child->perf_event_ctxp[ctxn];
10214 
10215 	if (child_ctx && inherited_all) {
10216 		/*
10217 		 * Mark the child context as a clone of the parent
10218 		 * context, or of whatever the parent is a clone of.
10219 		 *
10220 		 * Note that if the parent is a clone, the holding of
10221 		 * parent_ctx->lock avoids it from being uncloned.
10222 		 */
10223 		cloned_ctx = parent_ctx->parent_ctx;
10224 		if (cloned_ctx) {
10225 			child_ctx->parent_ctx = cloned_ctx;
10226 			child_ctx->parent_gen = parent_ctx->parent_gen;
10227 		} else {
10228 			child_ctx->parent_ctx = parent_ctx;
10229 			child_ctx->parent_gen = parent_ctx->generation;
10230 		}
10231 		get_ctx(child_ctx->parent_ctx);
10232 	}
10233 
10234 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10235 	mutex_unlock(&parent_ctx->mutex);
10236 
10237 	perf_unpin_context(parent_ctx);
10238 	put_ctx(parent_ctx);
10239 
10240 	return ret;
10241 }
10242 
10243 /*
10244  * Initialize the perf_event context in task_struct
10245  */
10246 int perf_event_init_task(struct task_struct *child)
10247 {
10248 	int ctxn, ret;
10249 
10250 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10251 	mutex_init(&child->perf_event_mutex);
10252 	INIT_LIST_HEAD(&child->perf_event_list);
10253 
10254 	for_each_task_context_nr(ctxn) {
10255 		ret = perf_event_init_context(child, ctxn);
10256 		if (ret) {
10257 			perf_event_free_task(child);
10258 			return ret;
10259 		}
10260 	}
10261 
10262 	return 0;
10263 }
10264 
10265 static void __init perf_event_init_all_cpus(void)
10266 {
10267 	struct swevent_htable *swhash;
10268 	int cpu;
10269 
10270 	for_each_possible_cpu(cpu) {
10271 		swhash = &per_cpu(swevent_htable, cpu);
10272 		mutex_init(&swhash->hlist_mutex);
10273 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10274 
10275 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10276 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10277 	}
10278 }
10279 
10280 static void perf_event_init_cpu(int cpu)
10281 {
10282 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10283 
10284 	mutex_lock(&swhash->hlist_mutex);
10285 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10286 		struct swevent_hlist *hlist;
10287 
10288 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10289 		WARN_ON(!hlist);
10290 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10291 	}
10292 	mutex_unlock(&swhash->hlist_mutex);
10293 }
10294 
10295 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10296 static void __perf_event_exit_context(void *__info)
10297 {
10298 	struct perf_event_context *ctx = __info;
10299 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10300 	struct perf_event *event;
10301 
10302 	raw_spin_lock(&ctx->lock);
10303 	list_for_each_entry(event, &ctx->event_list, event_entry)
10304 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10305 	raw_spin_unlock(&ctx->lock);
10306 }
10307 
10308 static void perf_event_exit_cpu_context(int cpu)
10309 {
10310 	struct perf_event_context *ctx;
10311 	struct pmu *pmu;
10312 	int idx;
10313 
10314 	idx = srcu_read_lock(&pmus_srcu);
10315 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10316 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10317 
10318 		mutex_lock(&ctx->mutex);
10319 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10320 		mutex_unlock(&ctx->mutex);
10321 	}
10322 	srcu_read_unlock(&pmus_srcu, idx);
10323 }
10324 
10325 static void perf_event_exit_cpu(int cpu)
10326 {
10327 	perf_event_exit_cpu_context(cpu);
10328 }
10329 #else
10330 static inline void perf_event_exit_cpu(int cpu) { }
10331 #endif
10332 
10333 static int
10334 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10335 {
10336 	int cpu;
10337 
10338 	for_each_online_cpu(cpu)
10339 		perf_event_exit_cpu(cpu);
10340 
10341 	return NOTIFY_OK;
10342 }
10343 
10344 /*
10345  * Run the perf reboot notifier at the very last possible moment so that
10346  * the generic watchdog code runs as long as possible.
10347  */
10348 static struct notifier_block perf_reboot_notifier = {
10349 	.notifier_call = perf_reboot,
10350 	.priority = INT_MIN,
10351 };
10352 
10353 static int
10354 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10355 {
10356 	unsigned int cpu = (long)hcpu;
10357 
10358 	switch (action & ~CPU_TASKS_FROZEN) {
10359 
10360 	case CPU_UP_PREPARE:
10361 		/*
10362 		 * This must be done before the CPU comes alive, because the
10363 		 * moment we can run tasks we can encounter (software) events.
10364 		 *
10365 		 * Specifically, someone can have inherited events on kthreadd
10366 		 * or a pre-existing worker thread that gets re-bound.
10367 		 */
10368 		perf_event_init_cpu(cpu);
10369 		break;
10370 
10371 	case CPU_DOWN_PREPARE:
10372 		/*
10373 		 * This must be done before the CPU dies because after that an
10374 		 * active event might want to IPI the CPU and that'll not work
10375 		 * so great for dead CPUs.
10376 		 *
10377 		 * XXX smp_call_function_single() return -ENXIO without a warn
10378 		 * so we could possibly deal with this.
10379 		 *
10380 		 * This is safe against new events arriving because
10381 		 * sys_perf_event_open() serializes against hotplug using
10382 		 * get_online_cpus().
10383 		 */
10384 		perf_event_exit_cpu(cpu);
10385 		break;
10386 	default:
10387 		break;
10388 	}
10389 
10390 	return NOTIFY_OK;
10391 }
10392 
10393 void __init perf_event_init(void)
10394 {
10395 	int ret;
10396 
10397 	idr_init(&pmu_idr);
10398 
10399 	perf_event_init_all_cpus();
10400 	init_srcu_struct(&pmus_srcu);
10401 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10402 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10403 	perf_pmu_register(&perf_task_clock, NULL, -1);
10404 	perf_tp_register();
10405 	perf_cpu_notifier(perf_cpu_notify);
10406 	register_reboot_notifier(&perf_reboot_notifier);
10407 
10408 	ret = init_hw_breakpoint();
10409 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10410 
10411 	/*
10412 	 * Build time assertion that we keep the data_head at the intended
10413 	 * location.  IOW, validation we got the __reserved[] size right.
10414 	 */
10415 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10416 		     != 1024);
10417 }
10418 
10419 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10420 			      char *page)
10421 {
10422 	struct perf_pmu_events_attr *pmu_attr =
10423 		container_of(attr, struct perf_pmu_events_attr, attr);
10424 
10425 	if (pmu_attr->event_str)
10426 		return sprintf(page, "%s\n", pmu_attr->event_str);
10427 
10428 	return 0;
10429 }
10430 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10431 
10432 static int __init perf_event_sysfs_init(void)
10433 {
10434 	struct pmu *pmu;
10435 	int ret;
10436 
10437 	mutex_lock(&pmus_lock);
10438 
10439 	ret = bus_register(&pmu_bus);
10440 	if (ret)
10441 		goto unlock;
10442 
10443 	list_for_each_entry(pmu, &pmus, entry) {
10444 		if (!pmu->name || pmu->type < 0)
10445 			continue;
10446 
10447 		ret = pmu_dev_alloc(pmu);
10448 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10449 	}
10450 	pmu_bus_running = 1;
10451 	ret = 0;
10452 
10453 unlock:
10454 	mutex_unlock(&pmus_lock);
10455 
10456 	return ret;
10457 }
10458 device_initcall(perf_event_sysfs_init);
10459 
10460 #ifdef CONFIG_CGROUP_PERF
10461 static struct cgroup_subsys_state *
10462 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10463 {
10464 	struct perf_cgroup *jc;
10465 
10466 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10467 	if (!jc)
10468 		return ERR_PTR(-ENOMEM);
10469 
10470 	jc->info = alloc_percpu(struct perf_cgroup_info);
10471 	if (!jc->info) {
10472 		kfree(jc);
10473 		return ERR_PTR(-ENOMEM);
10474 	}
10475 
10476 	return &jc->css;
10477 }
10478 
10479 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10480 {
10481 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10482 
10483 	free_percpu(jc->info);
10484 	kfree(jc);
10485 }
10486 
10487 static int __perf_cgroup_move(void *info)
10488 {
10489 	struct task_struct *task = info;
10490 	rcu_read_lock();
10491 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10492 	rcu_read_unlock();
10493 	return 0;
10494 }
10495 
10496 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10497 {
10498 	struct task_struct *task;
10499 	struct cgroup_subsys_state *css;
10500 
10501 	cgroup_taskset_for_each(task, css, tset)
10502 		task_function_call(task, __perf_cgroup_move, task);
10503 }
10504 
10505 struct cgroup_subsys perf_event_cgrp_subsys = {
10506 	.css_alloc	= perf_cgroup_css_alloc,
10507 	.css_free	= perf_cgroup_css_free,
10508 	.attach		= perf_cgroup_attach,
10509 };
10510 #endif /* CONFIG_CGROUP_PERF */
10511