1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_local(struct perf_event *event, event_f func, void *data) 246 { 247 struct event_function_struct efs = { 248 .event = event, 249 .func = func, 250 .data = data, 251 }; 252 253 int ret = event_function(&efs); 254 WARN_ON_ONCE(ret); 255 } 256 257 static void event_function_call(struct perf_event *event, event_f func, void *data) 258 { 259 struct perf_event_context *ctx = event->ctx; 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 261 struct event_function_struct efs = { 262 .event = event, 263 .func = func, 264 .data = data, 265 }; 266 267 if (!event->parent) { 268 /* 269 * If this is a !child event, we must hold ctx::mutex to 270 * stabilize the the event->ctx relation. See 271 * perf_event_ctx_lock(). 272 */ 273 lockdep_assert_held(&ctx->mutex); 274 } 275 276 if (!task) { 277 cpu_function_call(event->cpu, event_function, &efs); 278 return; 279 } 280 281 if (task == TASK_TOMBSTONE) 282 return; 283 284 again: 285 if (!task_function_call(task, event_function, &efs)) 286 return; 287 288 raw_spin_lock_irq(&ctx->lock); 289 /* 290 * Reload the task pointer, it might have been changed by 291 * a concurrent perf_event_context_sched_out(). 292 */ 293 task = ctx->task; 294 if (task == TASK_TOMBSTONE) { 295 raw_spin_unlock_irq(&ctx->lock); 296 return; 297 } 298 if (ctx->is_active) { 299 raw_spin_unlock_irq(&ctx->lock); 300 goto again; 301 } 302 func(event, NULL, ctx, data); 303 raw_spin_unlock_irq(&ctx->lock); 304 } 305 306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 307 PERF_FLAG_FD_OUTPUT |\ 308 PERF_FLAG_PID_CGROUP |\ 309 PERF_FLAG_FD_CLOEXEC) 310 311 /* 312 * branch priv levels that need permission checks 313 */ 314 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 315 (PERF_SAMPLE_BRANCH_KERNEL |\ 316 PERF_SAMPLE_BRANCH_HV) 317 318 enum event_type_t { 319 EVENT_FLEXIBLE = 0x1, 320 EVENT_PINNED = 0x2, 321 EVENT_TIME = 0x4, 322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 323 }; 324 325 /* 326 * perf_sched_events : >0 events exist 327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 328 */ 329 330 static void perf_sched_delayed(struct work_struct *work); 331 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 333 static DEFINE_MUTEX(perf_sched_mutex); 334 static atomic_t perf_sched_count; 335 336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 337 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 339 340 static atomic_t nr_mmap_events __read_mostly; 341 static atomic_t nr_comm_events __read_mostly; 342 static atomic_t nr_task_events __read_mostly; 343 static atomic_t nr_freq_events __read_mostly; 344 static atomic_t nr_switch_events __read_mostly; 345 346 static LIST_HEAD(pmus); 347 static DEFINE_MUTEX(pmus_lock); 348 static struct srcu_struct pmus_srcu; 349 350 /* 351 * perf event paranoia level: 352 * -1 - not paranoid at all 353 * 0 - disallow raw tracepoint access for unpriv 354 * 1 - disallow cpu events for unpriv 355 * 2 - disallow kernel profiling for unpriv 356 */ 357 int sysctl_perf_event_paranoid __read_mostly = 2; 358 359 /* Minimum for 512 kiB + 1 user control page */ 360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 361 362 /* 363 * max perf event sample rate 364 */ 365 #define DEFAULT_MAX_SAMPLE_RATE 100000 366 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 367 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 368 369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 370 371 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 372 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 373 374 static int perf_sample_allowed_ns __read_mostly = 375 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 376 377 static void update_perf_cpu_limits(void) 378 { 379 u64 tmp = perf_sample_period_ns; 380 381 tmp *= sysctl_perf_cpu_time_max_percent; 382 tmp = div_u64(tmp, 100); 383 if (!tmp) 384 tmp = 1; 385 386 WRITE_ONCE(perf_sample_allowed_ns, tmp); 387 } 388 389 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 390 391 int perf_proc_update_handler(struct ctl_table *table, int write, 392 void __user *buffer, size_t *lenp, 393 loff_t *ppos) 394 { 395 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 396 397 if (ret || !write) 398 return ret; 399 400 /* 401 * If throttling is disabled don't allow the write: 402 */ 403 if (sysctl_perf_cpu_time_max_percent == 100 || 404 sysctl_perf_cpu_time_max_percent == 0) 405 return -EINVAL; 406 407 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 408 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 409 update_perf_cpu_limits(); 410 411 return 0; 412 } 413 414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 415 416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 417 void __user *buffer, size_t *lenp, 418 loff_t *ppos) 419 { 420 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 421 422 if (ret || !write) 423 return ret; 424 425 if (sysctl_perf_cpu_time_max_percent == 100 || 426 sysctl_perf_cpu_time_max_percent == 0) { 427 printk(KERN_WARNING 428 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 429 WRITE_ONCE(perf_sample_allowed_ns, 0); 430 } else { 431 update_perf_cpu_limits(); 432 } 433 434 return 0; 435 } 436 437 /* 438 * perf samples are done in some very critical code paths (NMIs). 439 * If they take too much CPU time, the system can lock up and not 440 * get any real work done. This will drop the sample rate when 441 * we detect that events are taking too long. 442 */ 443 #define NR_ACCUMULATED_SAMPLES 128 444 static DEFINE_PER_CPU(u64, running_sample_length); 445 446 static u64 __report_avg; 447 static u64 __report_allowed; 448 449 static void perf_duration_warn(struct irq_work *w) 450 { 451 printk_ratelimited(KERN_WARNING 452 "perf: interrupt took too long (%lld > %lld), lowering " 453 "kernel.perf_event_max_sample_rate to %d\n", 454 __report_avg, __report_allowed, 455 sysctl_perf_event_sample_rate); 456 } 457 458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 459 460 void perf_sample_event_took(u64 sample_len_ns) 461 { 462 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 463 u64 running_len; 464 u64 avg_len; 465 u32 max; 466 467 if (max_len == 0) 468 return; 469 470 /* Decay the counter by 1 average sample. */ 471 running_len = __this_cpu_read(running_sample_length); 472 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 473 running_len += sample_len_ns; 474 __this_cpu_write(running_sample_length, running_len); 475 476 /* 477 * Note: this will be biased artifically low until we have 478 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 479 * from having to maintain a count. 480 */ 481 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 482 if (avg_len <= max_len) 483 return; 484 485 __report_avg = avg_len; 486 __report_allowed = max_len; 487 488 /* 489 * Compute a throttle threshold 25% below the current duration. 490 */ 491 avg_len += avg_len / 4; 492 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 493 if (avg_len < max) 494 max /= (u32)avg_len; 495 else 496 max = 1; 497 498 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 499 WRITE_ONCE(max_samples_per_tick, max); 500 501 sysctl_perf_event_sample_rate = max * HZ; 502 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 503 504 if (!irq_work_queue(&perf_duration_work)) { 505 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 506 "kernel.perf_event_max_sample_rate to %d\n", 507 __report_avg, __report_allowed, 508 sysctl_perf_event_sample_rate); 509 } 510 } 511 512 static atomic64_t perf_event_id; 513 514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 515 enum event_type_t event_type); 516 517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 518 enum event_type_t event_type, 519 struct task_struct *task); 520 521 static void update_context_time(struct perf_event_context *ctx); 522 static u64 perf_event_time(struct perf_event *event); 523 524 void __weak perf_event_print_debug(void) { } 525 526 extern __weak const char *perf_pmu_name(void) 527 { 528 return "pmu"; 529 } 530 531 static inline u64 perf_clock(void) 532 { 533 return local_clock(); 534 } 535 536 static inline u64 perf_event_clock(struct perf_event *event) 537 { 538 return event->clock(); 539 } 540 541 #ifdef CONFIG_CGROUP_PERF 542 543 static inline bool 544 perf_cgroup_match(struct perf_event *event) 545 { 546 struct perf_event_context *ctx = event->ctx; 547 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 548 549 /* @event doesn't care about cgroup */ 550 if (!event->cgrp) 551 return true; 552 553 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 554 if (!cpuctx->cgrp) 555 return false; 556 557 /* 558 * Cgroup scoping is recursive. An event enabled for a cgroup is 559 * also enabled for all its descendant cgroups. If @cpuctx's 560 * cgroup is a descendant of @event's (the test covers identity 561 * case), it's a match. 562 */ 563 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 564 event->cgrp->css.cgroup); 565 } 566 567 static inline void perf_detach_cgroup(struct perf_event *event) 568 { 569 css_put(&event->cgrp->css); 570 event->cgrp = NULL; 571 } 572 573 static inline int is_cgroup_event(struct perf_event *event) 574 { 575 return event->cgrp != NULL; 576 } 577 578 static inline u64 perf_cgroup_event_time(struct perf_event *event) 579 { 580 struct perf_cgroup_info *t; 581 582 t = per_cpu_ptr(event->cgrp->info, event->cpu); 583 return t->time; 584 } 585 586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 587 { 588 struct perf_cgroup_info *info; 589 u64 now; 590 591 now = perf_clock(); 592 593 info = this_cpu_ptr(cgrp->info); 594 595 info->time += now - info->timestamp; 596 info->timestamp = now; 597 } 598 599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 600 { 601 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 602 if (cgrp_out) 603 __update_cgrp_time(cgrp_out); 604 } 605 606 static inline void update_cgrp_time_from_event(struct perf_event *event) 607 { 608 struct perf_cgroup *cgrp; 609 610 /* 611 * ensure we access cgroup data only when needed and 612 * when we know the cgroup is pinned (css_get) 613 */ 614 if (!is_cgroup_event(event)) 615 return; 616 617 cgrp = perf_cgroup_from_task(current, event->ctx); 618 /* 619 * Do not update time when cgroup is not active 620 */ 621 if (cgrp == event->cgrp) 622 __update_cgrp_time(event->cgrp); 623 } 624 625 static inline void 626 perf_cgroup_set_timestamp(struct task_struct *task, 627 struct perf_event_context *ctx) 628 { 629 struct perf_cgroup *cgrp; 630 struct perf_cgroup_info *info; 631 632 /* 633 * ctx->lock held by caller 634 * ensure we do not access cgroup data 635 * unless we have the cgroup pinned (css_get) 636 */ 637 if (!task || !ctx->nr_cgroups) 638 return; 639 640 cgrp = perf_cgroup_from_task(task, ctx); 641 info = this_cpu_ptr(cgrp->info); 642 info->timestamp = ctx->timestamp; 643 } 644 645 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 646 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 647 648 /* 649 * reschedule events based on the cgroup constraint of task. 650 * 651 * mode SWOUT : schedule out everything 652 * mode SWIN : schedule in based on cgroup for next 653 */ 654 static void perf_cgroup_switch(struct task_struct *task, int mode) 655 { 656 struct perf_cpu_context *cpuctx; 657 struct pmu *pmu; 658 unsigned long flags; 659 660 /* 661 * disable interrupts to avoid geting nr_cgroup 662 * changes via __perf_event_disable(). Also 663 * avoids preemption. 664 */ 665 local_irq_save(flags); 666 667 /* 668 * we reschedule only in the presence of cgroup 669 * constrained events. 670 */ 671 672 list_for_each_entry_rcu(pmu, &pmus, entry) { 673 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 674 if (cpuctx->unique_pmu != pmu) 675 continue; /* ensure we process each cpuctx once */ 676 677 /* 678 * perf_cgroup_events says at least one 679 * context on this CPU has cgroup events. 680 * 681 * ctx->nr_cgroups reports the number of cgroup 682 * events for a context. 683 */ 684 if (cpuctx->ctx.nr_cgroups > 0) { 685 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 686 perf_pmu_disable(cpuctx->ctx.pmu); 687 688 if (mode & PERF_CGROUP_SWOUT) { 689 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 690 /* 691 * must not be done before ctxswout due 692 * to event_filter_match() in event_sched_out() 693 */ 694 cpuctx->cgrp = NULL; 695 } 696 697 if (mode & PERF_CGROUP_SWIN) { 698 WARN_ON_ONCE(cpuctx->cgrp); 699 /* 700 * set cgrp before ctxsw in to allow 701 * event_filter_match() to not have to pass 702 * task around 703 * we pass the cpuctx->ctx to perf_cgroup_from_task() 704 * because cgorup events are only per-cpu 705 */ 706 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 707 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 708 } 709 perf_pmu_enable(cpuctx->ctx.pmu); 710 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 711 } 712 } 713 714 local_irq_restore(flags); 715 } 716 717 static inline void perf_cgroup_sched_out(struct task_struct *task, 718 struct task_struct *next) 719 { 720 struct perf_cgroup *cgrp1; 721 struct perf_cgroup *cgrp2 = NULL; 722 723 rcu_read_lock(); 724 /* 725 * we come here when we know perf_cgroup_events > 0 726 * we do not need to pass the ctx here because we know 727 * we are holding the rcu lock 728 */ 729 cgrp1 = perf_cgroup_from_task(task, NULL); 730 cgrp2 = perf_cgroup_from_task(next, NULL); 731 732 /* 733 * only schedule out current cgroup events if we know 734 * that we are switching to a different cgroup. Otherwise, 735 * do no touch the cgroup events. 736 */ 737 if (cgrp1 != cgrp2) 738 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 739 740 rcu_read_unlock(); 741 } 742 743 static inline void perf_cgroup_sched_in(struct task_struct *prev, 744 struct task_struct *task) 745 { 746 struct perf_cgroup *cgrp1; 747 struct perf_cgroup *cgrp2 = NULL; 748 749 rcu_read_lock(); 750 /* 751 * we come here when we know perf_cgroup_events > 0 752 * we do not need to pass the ctx here because we know 753 * we are holding the rcu lock 754 */ 755 cgrp1 = perf_cgroup_from_task(task, NULL); 756 cgrp2 = perf_cgroup_from_task(prev, NULL); 757 758 /* 759 * only need to schedule in cgroup events if we are changing 760 * cgroup during ctxsw. Cgroup events were not scheduled 761 * out of ctxsw out if that was not the case. 762 */ 763 if (cgrp1 != cgrp2) 764 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 765 766 rcu_read_unlock(); 767 } 768 769 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 770 struct perf_event_attr *attr, 771 struct perf_event *group_leader) 772 { 773 struct perf_cgroup *cgrp; 774 struct cgroup_subsys_state *css; 775 struct fd f = fdget(fd); 776 int ret = 0; 777 778 if (!f.file) 779 return -EBADF; 780 781 css = css_tryget_online_from_dir(f.file->f_path.dentry, 782 &perf_event_cgrp_subsys); 783 if (IS_ERR(css)) { 784 ret = PTR_ERR(css); 785 goto out; 786 } 787 788 cgrp = container_of(css, struct perf_cgroup, css); 789 event->cgrp = cgrp; 790 791 /* 792 * all events in a group must monitor 793 * the same cgroup because a task belongs 794 * to only one perf cgroup at a time 795 */ 796 if (group_leader && group_leader->cgrp != cgrp) { 797 perf_detach_cgroup(event); 798 ret = -EINVAL; 799 } 800 out: 801 fdput(f); 802 return ret; 803 } 804 805 static inline void 806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 807 { 808 struct perf_cgroup_info *t; 809 t = per_cpu_ptr(event->cgrp->info, event->cpu); 810 event->shadow_ctx_time = now - t->timestamp; 811 } 812 813 static inline void 814 perf_cgroup_defer_enabled(struct perf_event *event) 815 { 816 /* 817 * when the current task's perf cgroup does not match 818 * the event's, we need to remember to call the 819 * perf_mark_enable() function the first time a task with 820 * a matching perf cgroup is scheduled in. 821 */ 822 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 823 event->cgrp_defer_enabled = 1; 824 } 825 826 static inline void 827 perf_cgroup_mark_enabled(struct perf_event *event, 828 struct perf_event_context *ctx) 829 { 830 struct perf_event *sub; 831 u64 tstamp = perf_event_time(event); 832 833 if (!event->cgrp_defer_enabled) 834 return; 835 836 event->cgrp_defer_enabled = 0; 837 838 event->tstamp_enabled = tstamp - event->total_time_enabled; 839 list_for_each_entry(sub, &event->sibling_list, group_entry) { 840 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 841 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 842 sub->cgrp_defer_enabled = 0; 843 } 844 } 845 } 846 #else /* !CONFIG_CGROUP_PERF */ 847 848 static inline bool 849 perf_cgroup_match(struct perf_event *event) 850 { 851 return true; 852 } 853 854 static inline void perf_detach_cgroup(struct perf_event *event) 855 {} 856 857 static inline int is_cgroup_event(struct perf_event *event) 858 { 859 return 0; 860 } 861 862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 863 { 864 return 0; 865 } 866 867 static inline void update_cgrp_time_from_event(struct perf_event *event) 868 { 869 } 870 871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 872 { 873 } 874 875 static inline void perf_cgroup_sched_out(struct task_struct *task, 876 struct task_struct *next) 877 { 878 } 879 880 static inline void perf_cgroup_sched_in(struct task_struct *prev, 881 struct task_struct *task) 882 { 883 } 884 885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 886 struct perf_event_attr *attr, 887 struct perf_event *group_leader) 888 { 889 return -EINVAL; 890 } 891 892 static inline void 893 perf_cgroup_set_timestamp(struct task_struct *task, 894 struct perf_event_context *ctx) 895 { 896 } 897 898 void 899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 900 { 901 } 902 903 static inline void 904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 905 { 906 } 907 908 static inline u64 perf_cgroup_event_time(struct perf_event *event) 909 { 910 return 0; 911 } 912 913 static inline void 914 perf_cgroup_defer_enabled(struct perf_event *event) 915 { 916 } 917 918 static inline void 919 perf_cgroup_mark_enabled(struct perf_event *event, 920 struct perf_event_context *ctx) 921 { 922 } 923 #endif 924 925 /* 926 * set default to be dependent on timer tick just 927 * like original code 928 */ 929 #define PERF_CPU_HRTIMER (1000 / HZ) 930 /* 931 * function must be called with interrupts disbled 932 */ 933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 934 { 935 struct perf_cpu_context *cpuctx; 936 int rotations = 0; 937 938 WARN_ON(!irqs_disabled()); 939 940 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 941 rotations = perf_rotate_context(cpuctx); 942 943 raw_spin_lock(&cpuctx->hrtimer_lock); 944 if (rotations) 945 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 946 else 947 cpuctx->hrtimer_active = 0; 948 raw_spin_unlock(&cpuctx->hrtimer_lock); 949 950 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 951 } 952 953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 954 { 955 struct hrtimer *timer = &cpuctx->hrtimer; 956 struct pmu *pmu = cpuctx->ctx.pmu; 957 u64 interval; 958 959 /* no multiplexing needed for SW PMU */ 960 if (pmu->task_ctx_nr == perf_sw_context) 961 return; 962 963 /* 964 * check default is sane, if not set then force to 965 * default interval (1/tick) 966 */ 967 interval = pmu->hrtimer_interval_ms; 968 if (interval < 1) 969 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 970 971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 972 973 raw_spin_lock_init(&cpuctx->hrtimer_lock); 974 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 975 timer->function = perf_mux_hrtimer_handler; 976 } 977 978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 979 { 980 struct hrtimer *timer = &cpuctx->hrtimer; 981 struct pmu *pmu = cpuctx->ctx.pmu; 982 unsigned long flags; 983 984 /* not for SW PMU */ 985 if (pmu->task_ctx_nr == perf_sw_context) 986 return 0; 987 988 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 989 if (!cpuctx->hrtimer_active) { 990 cpuctx->hrtimer_active = 1; 991 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 992 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 993 } 994 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 995 996 return 0; 997 } 998 999 void perf_pmu_disable(struct pmu *pmu) 1000 { 1001 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1002 if (!(*count)++) 1003 pmu->pmu_disable(pmu); 1004 } 1005 1006 void perf_pmu_enable(struct pmu *pmu) 1007 { 1008 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1009 if (!--(*count)) 1010 pmu->pmu_enable(pmu); 1011 } 1012 1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1014 1015 /* 1016 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1017 * perf_event_task_tick() are fully serialized because they're strictly cpu 1018 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1019 * disabled, while perf_event_task_tick is called from IRQ context. 1020 */ 1021 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1022 { 1023 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1024 1025 WARN_ON(!irqs_disabled()); 1026 1027 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1028 1029 list_add(&ctx->active_ctx_list, head); 1030 } 1031 1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1033 { 1034 WARN_ON(!irqs_disabled()); 1035 1036 WARN_ON(list_empty(&ctx->active_ctx_list)); 1037 1038 list_del_init(&ctx->active_ctx_list); 1039 } 1040 1041 static void get_ctx(struct perf_event_context *ctx) 1042 { 1043 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1044 } 1045 1046 static void free_ctx(struct rcu_head *head) 1047 { 1048 struct perf_event_context *ctx; 1049 1050 ctx = container_of(head, struct perf_event_context, rcu_head); 1051 kfree(ctx->task_ctx_data); 1052 kfree(ctx); 1053 } 1054 1055 static void put_ctx(struct perf_event_context *ctx) 1056 { 1057 if (atomic_dec_and_test(&ctx->refcount)) { 1058 if (ctx->parent_ctx) 1059 put_ctx(ctx->parent_ctx); 1060 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1061 put_task_struct(ctx->task); 1062 call_rcu(&ctx->rcu_head, free_ctx); 1063 } 1064 } 1065 1066 /* 1067 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1068 * perf_pmu_migrate_context() we need some magic. 1069 * 1070 * Those places that change perf_event::ctx will hold both 1071 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1072 * 1073 * Lock ordering is by mutex address. There are two other sites where 1074 * perf_event_context::mutex nests and those are: 1075 * 1076 * - perf_event_exit_task_context() [ child , 0 ] 1077 * perf_event_exit_event() 1078 * put_event() [ parent, 1 ] 1079 * 1080 * - perf_event_init_context() [ parent, 0 ] 1081 * inherit_task_group() 1082 * inherit_group() 1083 * inherit_event() 1084 * perf_event_alloc() 1085 * perf_init_event() 1086 * perf_try_init_event() [ child , 1 ] 1087 * 1088 * While it appears there is an obvious deadlock here -- the parent and child 1089 * nesting levels are inverted between the two. This is in fact safe because 1090 * life-time rules separate them. That is an exiting task cannot fork, and a 1091 * spawning task cannot (yet) exit. 1092 * 1093 * But remember that that these are parent<->child context relations, and 1094 * migration does not affect children, therefore these two orderings should not 1095 * interact. 1096 * 1097 * The change in perf_event::ctx does not affect children (as claimed above) 1098 * because the sys_perf_event_open() case will install a new event and break 1099 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1100 * concerned with cpuctx and that doesn't have children. 1101 * 1102 * The places that change perf_event::ctx will issue: 1103 * 1104 * perf_remove_from_context(); 1105 * synchronize_rcu(); 1106 * perf_install_in_context(); 1107 * 1108 * to affect the change. The remove_from_context() + synchronize_rcu() should 1109 * quiesce the event, after which we can install it in the new location. This 1110 * means that only external vectors (perf_fops, prctl) can perturb the event 1111 * while in transit. Therefore all such accessors should also acquire 1112 * perf_event_context::mutex to serialize against this. 1113 * 1114 * However; because event->ctx can change while we're waiting to acquire 1115 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1116 * function. 1117 * 1118 * Lock order: 1119 * cred_guard_mutex 1120 * task_struct::perf_event_mutex 1121 * perf_event_context::mutex 1122 * perf_event::child_mutex; 1123 * perf_event_context::lock 1124 * perf_event::mmap_mutex 1125 * mmap_sem 1126 */ 1127 static struct perf_event_context * 1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1129 { 1130 struct perf_event_context *ctx; 1131 1132 again: 1133 rcu_read_lock(); 1134 ctx = ACCESS_ONCE(event->ctx); 1135 if (!atomic_inc_not_zero(&ctx->refcount)) { 1136 rcu_read_unlock(); 1137 goto again; 1138 } 1139 rcu_read_unlock(); 1140 1141 mutex_lock_nested(&ctx->mutex, nesting); 1142 if (event->ctx != ctx) { 1143 mutex_unlock(&ctx->mutex); 1144 put_ctx(ctx); 1145 goto again; 1146 } 1147 1148 return ctx; 1149 } 1150 1151 static inline struct perf_event_context * 1152 perf_event_ctx_lock(struct perf_event *event) 1153 { 1154 return perf_event_ctx_lock_nested(event, 0); 1155 } 1156 1157 static void perf_event_ctx_unlock(struct perf_event *event, 1158 struct perf_event_context *ctx) 1159 { 1160 mutex_unlock(&ctx->mutex); 1161 put_ctx(ctx); 1162 } 1163 1164 /* 1165 * This must be done under the ctx->lock, such as to serialize against 1166 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1167 * calling scheduler related locks and ctx->lock nests inside those. 1168 */ 1169 static __must_check struct perf_event_context * 1170 unclone_ctx(struct perf_event_context *ctx) 1171 { 1172 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1173 1174 lockdep_assert_held(&ctx->lock); 1175 1176 if (parent_ctx) 1177 ctx->parent_ctx = NULL; 1178 ctx->generation++; 1179 1180 return parent_ctx; 1181 } 1182 1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1184 { 1185 /* 1186 * only top level events have the pid namespace they were created in 1187 */ 1188 if (event->parent) 1189 event = event->parent; 1190 1191 return task_tgid_nr_ns(p, event->ns); 1192 } 1193 1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1195 { 1196 /* 1197 * only top level events have the pid namespace they were created in 1198 */ 1199 if (event->parent) 1200 event = event->parent; 1201 1202 return task_pid_nr_ns(p, event->ns); 1203 } 1204 1205 /* 1206 * If we inherit events we want to return the parent event id 1207 * to userspace. 1208 */ 1209 static u64 primary_event_id(struct perf_event *event) 1210 { 1211 u64 id = event->id; 1212 1213 if (event->parent) 1214 id = event->parent->id; 1215 1216 return id; 1217 } 1218 1219 /* 1220 * Get the perf_event_context for a task and lock it. 1221 * 1222 * This has to cope with with the fact that until it is locked, 1223 * the context could get moved to another task. 1224 */ 1225 static struct perf_event_context * 1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1227 { 1228 struct perf_event_context *ctx; 1229 1230 retry: 1231 /* 1232 * One of the few rules of preemptible RCU is that one cannot do 1233 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1234 * part of the read side critical section was irqs-enabled -- see 1235 * rcu_read_unlock_special(). 1236 * 1237 * Since ctx->lock nests under rq->lock we must ensure the entire read 1238 * side critical section has interrupts disabled. 1239 */ 1240 local_irq_save(*flags); 1241 rcu_read_lock(); 1242 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1243 if (ctx) { 1244 /* 1245 * If this context is a clone of another, it might 1246 * get swapped for another underneath us by 1247 * perf_event_task_sched_out, though the 1248 * rcu_read_lock() protects us from any context 1249 * getting freed. Lock the context and check if it 1250 * got swapped before we could get the lock, and retry 1251 * if so. If we locked the right context, then it 1252 * can't get swapped on us any more. 1253 */ 1254 raw_spin_lock(&ctx->lock); 1255 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1256 raw_spin_unlock(&ctx->lock); 1257 rcu_read_unlock(); 1258 local_irq_restore(*flags); 1259 goto retry; 1260 } 1261 1262 if (ctx->task == TASK_TOMBSTONE || 1263 !atomic_inc_not_zero(&ctx->refcount)) { 1264 raw_spin_unlock(&ctx->lock); 1265 ctx = NULL; 1266 } else { 1267 WARN_ON_ONCE(ctx->task != task); 1268 } 1269 } 1270 rcu_read_unlock(); 1271 if (!ctx) 1272 local_irq_restore(*flags); 1273 return ctx; 1274 } 1275 1276 /* 1277 * Get the context for a task and increment its pin_count so it 1278 * can't get swapped to another task. This also increments its 1279 * reference count so that the context can't get freed. 1280 */ 1281 static struct perf_event_context * 1282 perf_pin_task_context(struct task_struct *task, int ctxn) 1283 { 1284 struct perf_event_context *ctx; 1285 unsigned long flags; 1286 1287 ctx = perf_lock_task_context(task, ctxn, &flags); 1288 if (ctx) { 1289 ++ctx->pin_count; 1290 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1291 } 1292 return ctx; 1293 } 1294 1295 static void perf_unpin_context(struct perf_event_context *ctx) 1296 { 1297 unsigned long flags; 1298 1299 raw_spin_lock_irqsave(&ctx->lock, flags); 1300 --ctx->pin_count; 1301 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1302 } 1303 1304 /* 1305 * Update the record of the current time in a context. 1306 */ 1307 static void update_context_time(struct perf_event_context *ctx) 1308 { 1309 u64 now = perf_clock(); 1310 1311 ctx->time += now - ctx->timestamp; 1312 ctx->timestamp = now; 1313 } 1314 1315 static u64 perf_event_time(struct perf_event *event) 1316 { 1317 struct perf_event_context *ctx = event->ctx; 1318 1319 if (is_cgroup_event(event)) 1320 return perf_cgroup_event_time(event); 1321 1322 return ctx ? ctx->time : 0; 1323 } 1324 1325 /* 1326 * Update the total_time_enabled and total_time_running fields for a event. 1327 */ 1328 static void update_event_times(struct perf_event *event) 1329 { 1330 struct perf_event_context *ctx = event->ctx; 1331 u64 run_end; 1332 1333 lockdep_assert_held(&ctx->lock); 1334 1335 if (event->state < PERF_EVENT_STATE_INACTIVE || 1336 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1337 return; 1338 1339 /* 1340 * in cgroup mode, time_enabled represents 1341 * the time the event was enabled AND active 1342 * tasks were in the monitored cgroup. This is 1343 * independent of the activity of the context as 1344 * there may be a mix of cgroup and non-cgroup events. 1345 * 1346 * That is why we treat cgroup events differently 1347 * here. 1348 */ 1349 if (is_cgroup_event(event)) 1350 run_end = perf_cgroup_event_time(event); 1351 else if (ctx->is_active) 1352 run_end = ctx->time; 1353 else 1354 run_end = event->tstamp_stopped; 1355 1356 event->total_time_enabled = run_end - event->tstamp_enabled; 1357 1358 if (event->state == PERF_EVENT_STATE_INACTIVE) 1359 run_end = event->tstamp_stopped; 1360 else 1361 run_end = perf_event_time(event); 1362 1363 event->total_time_running = run_end - event->tstamp_running; 1364 1365 } 1366 1367 /* 1368 * Update total_time_enabled and total_time_running for all events in a group. 1369 */ 1370 static void update_group_times(struct perf_event *leader) 1371 { 1372 struct perf_event *event; 1373 1374 update_event_times(leader); 1375 list_for_each_entry(event, &leader->sibling_list, group_entry) 1376 update_event_times(event); 1377 } 1378 1379 static struct list_head * 1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1381 { 1382 if (event->attr.pinned) 1383 return &ctx->pinned_groups; 1384 else 1385 return &ctx->flexible_groups; 1386 } 1387 1388 /* 1389 * Add a event from the lists for its context. 1390 * Must be called with ctx->mutex and ctx->lock held. 1391 */ 1392 static void 1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1394 { 1395 lockdep_assert_held(&ctx->lock); 1396 1397 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1398 event->attach_state |= PERF_ATTACH_CONTEXT; 1399 1400 /* 1401 * If we're a stand alone event or group leader, we go to the context 1402 * list, group events are kept attached to the group so that 1403 * perf_group_detach can, at all times, locate all siblings. 1404 */ 1405 if (event->group_leader == event) { 1406 struct list_head *list; 1407 1408 if (is_software_event(event)) 1409 event->group_flags |= PERF_GROUP_SOFTWARE; 1410 1411 list = ctx_group_list(event, ctx); 1412 list_add_tail(&event->group_entry, list); 1413 } 1414 1415 if (is_cgroup_event(event)) 1416 ctx->nr_cgroups++; 1417 1418 list_add_rcu(&event->event_entry, &ctx->event_list); 1419 ctx->nr_events++; 1420 if (event->attr.inherit_stat) 1421 ctx->nr_stat++; 1422 1423 ctx->generation++; 1424 } 1425 1426 /* 1427 * Initialize event state based on the perf_event_attr::disabled. 1428 */ 1429 static inline void perf_event__state_init(struct perf_event *event) 1430 { 1431 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1432 PERF_EVENT_STATE_INACTIVE; 1433 } 1434 1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1436 { 1437 int entry = sizeof(u64); /* value */ 1438 int size = 0; 1439 int nr = 1; 1440 1441 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1442 size += sizeof(u64); 1443 1444 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1445 size += sizeof(u64); 1446 1447 if (event->attr.read_format & PERF_FORMAT_ID) 1448 entry += sizeof(u64); 1449 1450 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1451 nr += nr_siblings; 1452 size += sizeof(u64); 1453 } 1454 1455 size += entry * nr; 1456 event->read_size = size; 1457 } 1458 1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1460 { 1461 struct perf_sample_data *data; 1462 u16 size = 0; 1463 1464 if (sample_type & PERF_SAMPLE_IP) 1465 size += sizeof(data->ip); 1466 1467 if (sample_type & PERF_SAMPLE_ADDR) 1468 size += sizeof(data->addr); 1469 1470 if (sample_type & PERF_SAMPLE_PERIOD) 1471 size += sizeof(data->period); 1472 1473 if (sample_type & PERF_SAMPLE_WEIGHT) 1474 size += sizeof(data->weight); 1475 1476 if (sample_type & PERF_SAMPLE_READ) 1477 size += event->read_size; 1478 1479 if (sample_type & PERF_SAMPLE_DATA_SRC) 1480 size += sizeof(data->data_src.val); 1481 1482 if (sample_type & PERF_SAMPLE_TRANSACTION) 1483 size += sizeof(data->txn); 1484 1485 event->header_size = size; 1486 } 1487 1488 /* 1489 * Called at perf_event creation and when events are attached/detached from a 1490 * group. 1491 */ 1492 static void perf_event__header_size(struct perf_event *event) 1493 { 1494 __perf_event_read_size(event, 1495 event->group_leader->nr_siblings); 1496 __perf_event_header_size(event, event->attr.sample_type); 1497 } 1498 1499 static void perf_event__id_header_size(struct perf_event *event) 1500 { 1501 struct perf_sample_data *data; 1502 u64 sample_type = event->attr.sample_type; 1503 u16 size = 0; 1504 1505 if (sample_type & PERF_SAMPLE_TID) 1506 size += sizeof(data->tid_entry); 1507 1508 if (sample_type & PERF_SAMPLE_TIME) 1509 size += sizeof(data->time); 1510 1511 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1512 size += sizeof(data->id); 1513 1514 if (sample_type & PERF_SAMPLE_ID) 1515 size += sizeof(data->id); 1516 1517 if (sample_type & PERF_SAMPLE_STREAM_ID) 1518 size += sizeof(data->stream_id); 1519 1520 if (sample_type & PERF_SAMPLE_CPU) 1521 size += sizeof(data->cpu_entry); 1522 1523 event->id_header_size = size; 1524 } 1525 1526 static bool perf_event_validate_size(struct perf_event *event) 1527 { 1528 /* 1529 * The values computed here will be over-written when we actually 1530 * attach the event. 1531 */ 1532 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1533 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1534 perf_event__id_header_size(event); 1535 1536 /* 1537 * Sum the lot; should not exceed the 64k limit we have on records. 1538 * Conservative limit to allow for callchains and other variable fields. 1539 */ 1540 if (event->read_size + event->header_size + 1541 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1542 return false; 1543 1544 return true; 1545 } 1546 1547 static void perf_group_attach(struct perf_event *event) 1548 { 1549 struct perf_event *group_leader = event->group_leader, *pos; 1550 1551 /* 1552 * We can have double attach due to group movement in perf_event_open. 1553 */ 1554 if (event->attach_state & PERF_ATTACH_GROUP) 1555 return; 1556 1557 event->attach_state |= PERF_ATTACH_GROUP; 1558 1559 if (group_leader == event) 1560 return; 1561 1562 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1563 1564 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1565 !is_software_event(event)) 1566 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1567 1568 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1569 group_leader->nr_siblings++; 1570 1571 perf_event__header_size(group_leader); 1572 1573 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1574 perf_event__header_size(pos); 1575 } 1576 1577 /* 1578 * Remove a event from the lists for its context. 1579 * Must be called with ctx->mutex and ctx->lock held. 1580 */ 1581 static void 1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1583 { 1584 struct perf_cpu_context *cpuctx; 1585 1586 WARN_ON_ONCE(event->ctx != ctx); 1587 lockdep_assert_held(&ctx->lock); 1588 1589 /* 1590 * We can have double detach due to exit/hot-unplug + close. 1591 */ 1592 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1593 return; 1594 1595 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1596 1597 if (is_cgroup_event(event)) { 1598 ctx->nr_cgroups--; 1599 /* 1600 * Because cgroup events are always per-cpu events, this will 1601 * always be called from the right CPU. 1602 */ 1603 cpuctx = __get_cpu_context(ctx); 1604 /* 1605 * If there are no more cgroup events then clear cgrp to avoid 1606 * stale pointer in update_cgrp_time_from_cpuctx(). 1607 */ 1608 if (!ctx->nr_cgroups) 1609 cpuctx->cgrp = NULL; 1610 } 1611 1612 ctx->nr_events--; 1613 if (event->attr.inherit_stat) 1614 ctx->nr_stat--; 1615 1616 list_del_rcu(&event->event_entry); 1617 1618 if (event->group_leader == event) 1619 list_del_init(&event->group_entry); 1620 1621 update_group_times(event); 1622 1623 /* 1624 * If event was in error state, then keep it 1625 * that way, otherwise bogus counts will be 1626 * returned on read(). The only way to get out 1627 * of error state is by explicit re-enabling 1628 * of the event 1629 */ 1630 if (event->state > PERF_EVENT_STATE_OFF) 1631 event->state = PERF_EVENT_STATE_OFF; 1632 1633 ctx->generation++; 1634 } 1635 1636 static void perf_group_detach(struct perf_event *event) 1637 { 1638 struct perf_event *sibling, *tmp; 1639 struct list_head *list = NULL; 1640 1641 /* 1642 * We can have double detach due to exit/hot-unplug + close. 1643 */ 1644 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1645 return; 1646 1647 event->attach_state &= ~PERF_ATTACH_GROUP; 1648 1649 /* 1650 * If this is a sibling, remove it from its group. 1651 */ 1652 if (event->group_leader != event) { 1653 list_del_init(&event->group_entry); 1654 event->group_leader->nr_siblings--; 1655 goto out; 1656 } 1657 1658 if (!list_empty(&event->group_entry)) 1659 list = &event->group_entry; 1660 1661 /* 1662 * If this was a group event with sibling events then 1663 * upgrade the siblings to singleton events by adding them 1664 * to whatever list we are on. 1665 */ 1666 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1667 if (list) 1668 list_move_tail(&sibling->group_entry, list); 1669 sibling->group_leader = sibling; 1670 1671 /* Inherit group flags from the previous leader */ 1672 sibling->group_flags = event->group_flags; 1673 1674 WARN_ON_ONCE(sibling->ctx != event->ctx); 1675 } 1676 1677 out: 1678 perf_event__header_size(event->group_leader); 1679 1680 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1681 perf_event__header_size(tmp); 1682 } 1683 1684 static bool is_orphaned_event(struct perf_event *event) 1685 { 1686 return event->state == PERF_EVENT_STATE_DEAD; 1687 } 1688 1689 static inline int pmu_filter_match(struct perf_event *event) 1690 { 1691 struct pmu *pmu = event->pmu; 1692 return pmu->filter_match ? pmu->filter_match(event) : 1; 1693 } 1694 1695 static inline int 1696 event_filter_match(struct perf_event *event) 1697 { 1698 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1699 && perf_cgroup_match(event) && pmu_filter_match(event); 1700 } 1701 1702 static void 1703 event_sched_out(struct perf_event *event, 1704 struct perf_cpu_context *cpuctx, 1705 struct perf_event_context *ctx) 1706 { 1707 u64 tstamp = perf_event_time(event); 1708 u64 delta; 1709 1710 WARN_ON_ONCE(event->ctx != ctx); 1711 lockdep_assert_held(&ctx->lock); 1712 1713 /* 1714 * An event which could not be activated because of 1715 * filter mismatch still needs to have its timings 1716 * maintained, otherwise bogus information is return 1717 * via read() for time_enabled, time_running: 1718 */ 1719 if (event->state == PERF_EVENT_STATE_INACTIVE 1720 && !event_filter_match(event)) { 1721 delta = tstamp - event->tstamp_stopped; 1722 event->tstamp_running += delta; 1723 event->tstamp_stopped = tstamp; 1724 } 1725 1726 if (event->state != PERF_EVENT_STATE_ACTIVE) 1727 return; 1728 1729 perf_pmu_disable(event->pmu); 1730 1731 event->tstamp_stopped = tstamp; 1732 event->pmu->del(event, 0); 1733 event->oncpu = -1; 1734 event->state = PERF_EVENT_STATE_INACTIVE; 1735 if (event->pending_disable) { 1736 event->pending_disable = 0; 1737 event->state = PERF_EVENT_STATE_OFF; 1738 } 1739 1740 if (!is_software_event(event)) 1741 cpuctx->active_oncpu--; 1742 if (!--ctx->nr_active) 1743 perf_event_ctx_deactivate(ctx); 1744 if (event->attr.freq && event->attr.sample_freq) 1745 ctx->nr_freq--; 1746 if (event->attr.exclusive || !cpuctx->active_oncpu) 1747 cpuctx->exclusive = 0; 1748 1749 perf_pmu_enable(event->pmu); 1750 } 1751 1752 static void 1753 group_sched_out(struct perf_event *group_event, 1754 struct perf_cpu_context *cpuctx, 1755 struct perf_event_context *ctx) 1756 { 1757 struct perf_event *event; 1758 int state = group_event->state; 1759 1760 event_sched_out(group_event, cpuctx, ctx); 1761 1762 /* 1763 * Schedule out siblings (if any): 1764 */ 1765 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1766 event_sched_out(event, cpuctx, ctx); 1767 1768 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1769 cpuctx->exclusive = 0; 1770 } 1771 1772 #define DETACH_GROUP 0x01UL 1773 1774 /* 1775 * Cross CPU call to remove a performance event 1776 * 1777 * We disable the event on the hardware level first. After that we 1778 * remove it from the context list. 1779 */ 1780 static void 1781 __perf_remove_from_context(struct perf_event *event, 1782 struct perf_cpu_context *cpuctx, 1783 struct perf_event_context *ctx, 1784 void *info) 1785 { 1786 unsigned long flags = (unsigned long)info; 1787 1788 event_sched_out(event, cpuctx, ctx); 1789 if (flags & DETACH_GROUP) 1790 perf_group_detach(event); 1791 list_del_event(event, ctx); 1792 1793 if (!ctx->nr_events && ctx->is_active) { 1794 ctx->is_active = 0; 1795 if (ctx->task) { 1796 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1797 cpuctx->task_ctx = NULL; 1798 } 1799 } 1800 } 1801 1802 /* 1803 * Remove the event from a task's (or a CPU's) list of events. 1804 * 1805 * If event->ctx is a cloned context, callers must make sure that 1806 * every task struct that event->ctx->task could possibly point to 1807 * remains valid. This is OK when called from perf_release since 1808 * that only calls us on the top-level context, which can't be a clone. 1809 * When called from perf_event_exit_task, it's OK because the 1810 * context has been detached from its task. 1811 */ 1812 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1813 { 1814 lockdep_assert_held(&event->ctx->mutex); 1815 1816 event_function_call(event, __perf_remove_from_context, (void *)flags); 1817 } 1818 1819 /* 1820 * Cross CPU call to disable a performance event 1821 */ 1822 static void __perf_event_disable(struct perf_event *event, 1823 struct perf_cpu_context *cpuctx, 1824 struct perf_event_context *ctx, 1825 void *info) 1826 { 1827 if (event->state < PERF_EVENT_STATE_INACTIVE) 1828 return; 1829 1830 update_context_time(ctx); 1831 update_cgrp_time_from_event(event); 1832 update_group_times(event); 1833 if (event == event->group_leader) 1834 group_sched_out(event, cpuctx, ctx); 1835 else 1836 event_sched_out(event, cpuctx, ctx); 1837 event->state = PERF_EVENT_STATE_OFF; 1838 } 1839 1840 /* 1841 * Disable a event. 1842 * 1843 * If event->ctx is a cloned context, callers must make sure that 1844 * every task struct that event->ctx->task could possibly point to 1845 * remains valid. This condition is satisifed when called through 1846 * perf_event_for_each_child or perf_event_for_each because they 1847 * hold the top-level event's child_mutex, so any descendant that 1848 * goes to exit will block in perf_event_exit_event(). 1849 * 1850 * When called from perf_pending_event it's OK because event->ctx 1851 * is the current context on this CPU and preemption is disabled, 1852 * hence we can't get into perf_event_task_sched_out for this context. 1853 */ 1854 static void _perf_event_disable(struct perf_event *event) 1855 { 1856 struct perf_event_context *ctx = event->ctx; 1857 1858 raw_spin_lock_irq(&ctx->lock); 1859 if (event->state <= PERF_EVENT_STATE_OFF) { 1860 raw_spin_unlock_irq(&ctx->lock); 1861 return; 1862 } 1863 raw_spin_unlock_irq(&ctx->lock); 1864 1865 event_function_call(event, __perf_event_disable, NULL); 1866 } 1867 1868 void perf_event_disable_local(struct perf_event *event) 1869 { 1870 event_function_local(event, __perf_event_disable, NULL); 1871 } 1872 1873 /* 1874 * Strictly speaking kernel users cannot create groups and therefore this 1875 * interface does not need the perf_event_ctx_lock() magic. 1876 */ 1877 void perf_event_disable(struct perf_event *event) 1878 { 1879 struct perf_event_context *ctx; 1880 1881 ctx = perf_event_ctx_lock(event); 1882 _perf_event_disable(event); 1883 perf_event_ctx_unlock(event, ctx); 1884 } 1885 EXPORT_SYMBOL_GPL(perf_event_disable); 1886 1887 static void perf_set_shadow_time(struct perf_event *event, 1888 struct perf_event_context *ctx, 1889 u64 tstamp) 1890 { 1891 /* 1892 * use the correct time source for the time snapshot 1893 * 1894 * We could get by without this by leveraging the 1895 * fact that to get to this function, the caller 1896 * has most likely already called update_context_time() 1897 * and update_cgrp_time_xx() and thus both timestamp 1898 * are identical (or very close). Given that tstamp is, 1899 * already adjusted for cgroup, we could say that: 1900 * tstamp - ctx->timestamp 1901 * is equivalent to 1902 * tstamp - cgrp->timestamp. 1903 * 1904 * Then, in perf_output_read(), the calculation would 1905 * work with no changes because: 1906 * - event is guaranteed scheduled in 1907 * - no scheduled out in between 1908 * - thus the timestamp would be the same 1909 * 1910 * But this is a bit hairy. 1911 * 1912 * So instead, we have an explicit cgroup call to remain 1913 * within the time time source all along. We believe it 1914 * is cleaner and simpler to understand. 1915 */ 1916 if (is_cgroup_event(event)) 1917 perf_cgroup_set_shadow_time(event, tstamp); 1918 else 1919 event->shadow_ctx_time = tstamp - ctx->timestamp; 1920 } 1921 1922 #define MAX_INTERRUPTS (~0ULL) 1923 1924 static void perf_log_throttle(struct perf_event *event, int enable); 1925 static void perf_log_itrace_start(struct perf_event *event); 1926 1927 static int 1928 event_sched_in(struct perf_event *event, 1929 struct perf_cpu_context *cpuctx, 1930 struct perf_event_context *ctx) 1931 { 1932 u64 tstamp = perf_event_time(event); 1933 int ret = 0; 1934 1935 lockdep_assert_held(&ctx->lock); 1936 1937 if (event->state <= PERF_EVENT_STATE_OFF) 1938 return 0; 1939 1940 WRITE_ONCE(event->oncpu, smp_processor_id()); 1941 /* 1942 * Order event::oncpu write to happen before the ACTIVE state 1943 * is visible. 1944 */ 1945 smp_wmb(); 1946 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 1947 1948 /* 1949 * Unthrottle events, since we scheduled we might have missed several 1950 * ticks already, also for a heavily scheduling task there is little 1951 * guarantee it'll get a tick in a timely manner. 1952 */ 1953 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1954 perf_log_throttle(event, 1); 1955 event->hw.interrupts = 0; 1956 } 1957 1958 /* 1959 * The new state must be visible before we turn it on in the hardware: 1960 */ 1961 smp_wmb(); 1962 1963 perf_pmu_disable(event->pmu); 1964 1965 perf_set_shadow_time(event, ctx, tstamp); 1966 1967 perf_log_itrace_start(event); 1968 1969 if (event->pmu->add(event, PERF_EF_START)) { 1970 event->state = PERF_EVENT_STATE_INACTIVE; 1971 event->oncpu = -1; 1972 ret = -EAGAIN; 1973 goto out; 1974 } 1975 1976 event->tstamp_running += tstamp - event->tstamp_stopped; 1977 1978 if (!is_software_event(event)) 1979 cpuctx->active_oncpu++; 1980 if (!ctx->nr_active++) 1981 perf_event_ctx_activate(ctx); 1982 if (event->attr.freq && event->attr.sample_freq) 1983 ctx->nr_freq++; 1984 1985 if (event->attr.exclusive) 1986 cpuctx->exclusive = 1; 1987 1988 out: 1989 perf_pmu_enable(event->pmu); 1990 1991 return ret; 1992 } 1993 1994 static int 1995 group_sched_in(struct perf_event *group_event, 1996 struct perf_cpu_context *cpuctx, 1997 struct perf_event_context *ctx) 1998 { 1999 struct perf_event *event, *partial_group = NULL; 2000 struct pmu *pmu = ctx->pmu; 2001 u64 now = ctx->time; 2002 bool simulate = false; 2003 2004 if (group_event->state == PERF_EVENT_STATE_OFF) 2005 return 0; 2006 2007 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2008 2009 if (event_sched_in(group_event, cpuctx, ctx)) { 2010 pmu->cancel_txn(pmu); 2011 perf_mux_hrtimer_restart(cpuctx); 2012 return -EAGAIN; 2013 } 2014 2015 /* 2016 * Schedule in siblings as one group (if any): 2017 */ 2018 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2019 if (event_sched_in(event, cpuctx, ctx)) { 2020 partial_group = event; 2021 goto group_error; 2022 } 2023 } 2024 2025 if (!pmu->commit_txn(pmu)) 2026 return 0; 2027 2028 group_error: 2029 /* 2030 * Groups can be scheduled in as one unit only, so undo any 2031 * partial group before returning: 2032 * The events up to the failed event are scheduled out normally, 2033 * tstamp_stopped will be updated. 2034 * 2035 * The failed events and the remaining siblings need to have 2036 * their timings updated as if they had gone thru event_sched_in() 2037 * and event_sched_out(). This is required to get consistent timings 2038 * across the group. This also takes care of the case where the group 2039 * could never be scheduled by ensuring tstamp_stopped is set to mark 2040 * the time the event was actually stopped, such that time delta 2041 * calculation in update_event_times() is correct. 2042 */ 2043 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2044 if (event == partial_group) 2045 simulate = true; 2046 2047 if (simulate) { 2048 event->tstamp_running += now - event->tstamp_stopped; 2049 event->tstamp_stopped = now; 2050 } else { 2051 event_sched_out(event, cpuctx, ctx); 2052 } 2053 } 2054 event_sched_out(group_event, cpuctx, ctx); 2055 2056 pmu->cancel_txn(pmu); 2057 2058 perf_mux_hrtimer_restart(cpuctx); 2059 2060 return -EAGAIN; 2061 } 2062 2063 /* 2064 * Work out whether we can put this event group on the CPU now. 2065 */ 2066 static int group_can_go_on(struct perf_event *event, 2067 struct perf_cpu_context *cpuctx, 2068 int can_add_hw) 2069 { 2070 /* 2071 * Groups consisting entirely of software events can always go on. 2072 */ 2073 if (event->group_flags & PERF_GROUP_SOFTWARE) 2074 return 1; 2075 /* 2076 * If an exclusive group is already on, no other hardware 2077 * events can go on. 2078 */ 2079 if (cpuctx->exclusive) 2080 return 0; 2081 /* 2082 * If this group is exclusive and there are already 2083 * events on the CPU, it can't go on. 2084 */ 2085 if (event->attr.exclusive && cpuctx->active_oncpu) 2086 return 0; 2087 /* 2088 * Otherwise, try to add it if all previous groups were able 2089 * to go on. 2090 */ 2091 return can_add_hw; 2092 } 2093 2094 static void add_event_to_ctx(struct perf_event *event, 2095 struct perf_event_context *ctx) 2096 { 2097 u64 tstamp = perf_event_time(event); 2098 2099 list_add_event(event, ctx); 2100 perf_group_attach(event); 2101 event->tstamp_enabled = tstamp; 2102 event->tstamp_running = tstamp; 2103 event->tstamp_stopped = tstamp; 2104 } 2105 2106 static void ctx_sched_out(struct perf_event_context *ctx, 2107 struct perf_cpu_context *cpuctx, 2108 enum event_type_t event_type); 2109 static void 2110 ctx_sched_in(struct perf_event_context *ctx, 2111 struct perf_cpu_context *cpuctx, 2112 enum event_type_t event_type, 2113 struct task_struct *task); 2114 2115 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2116 struct perf_event_context *ctx) 2117 { 2118 if (!cpuctx->task_ctx) 2119 return; 2120 2121 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2122 return; 2123 2124 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2125 } 2126 2127 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2128 struct perf_event_context *ctx, 2129 struct task_struct *task) 2130 { 2131 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2132 if (ctx) 2133 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2134 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2135 if (ctx) 2136 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2137 } 2138 2139 static void ctx_resched(struct perf_cpu_context *cpuctx, 2140 struct perf_event_context *task_ctx) 2141 { 2142 perf_pmu_disable(cpuctx->ctx.pmu); 2143 if (task_ctx) 2144 task_ctx_sched_out(cpuctx, task_ctx); 2145 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2146 perf_event_sched_in(cpuctx, task_ctx, current); 2147 perf_pmu_enable(cpuctx->ctx.pmu); 2148 } 2149 2150 /* 2151 * Cross CPU call to install and enable a performance event 2152 * 2153 * Very similar to remote_function() + event_function() but cannot assume that 2154 * things like ctx->is_active and cpuctx->task_ctx are set. 2155 */ 2156 static int __perf_install_in_context(void *info) 2157 { 2158 struct perf_event *event = info; 2159 struct perf_event_context *ctx = event->ctx; 2160 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2161 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2162 bool activate = true; 2163 int ret = 0; 2164 2165 raw_spin_lock(&cpuctx->ctx.lock); 2166 if (ctx->task) { 2167 raw_spin_lock(&ctx->lock); 2168 task_ctx = ctx; 2169 2170 /* If we're on the wrong CPU, try again */ 2171 if (task_cpu(ctx->task) != smp_processor_id()) { 2172 ret = -ESRCH; 2173 goto unlock; 2174 } 2175 2176 /* 2177 * If we're on the right CPU, see if the task we target is 2178 * current, if not we don't have to activate the ctx, a future 2179 * context switch will do that for us. 2180 */ 2181 if (ctx->task != current) 2182 activate = false; 2183 else 2184 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2185 2186 } else if (task_ctx) { 2187 raw_spin_lock(&task_ctx->lock); 2188 } 2189 2190 if (activate) { 2191 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2192 add_event_to_ctx(event, ctx); 2193 ctx_resched(cpuctx, task_ctx); 2194 } else { 2195 add_event_to_ctx(event, ctx); 2196 } 2197 2198 unlock: 2199 perf_ctx_unlock(cpuctx, task_ctx); 2200 2201 return ret; 2202 } 2203 2204 /* 2205 * Attach a performance event to a context. 2206 * 2207 * Very similar to event_function_call, see comment there. 2208 */ 2209 static void 2210 perf_install_in_context(struct perf_event_context *ctx, 2211 struct perf_event *event, 2212 int cpu) 2213 { 2214 struct task_struct *task = READ_ONCE(ctx->task); 2215 2216 lockdep_assert_held(&ctx->mutex); 2217 2218 event->ctx = ctx; 2219 if (event->cpu != -1) 2220 event->cpu = cpu; 2221 2222 if (!task) { 2223 cpu_function_call(cpu, __perf_install_in_context, event); 2224 return; 2225 } 2226 2227 /* 2228 * Should not happen, we validate the ctx is still alive before calling. 2229 */ 2230 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2231 return; 2232 2233 /* 2234 * Installing events is tricky because we cannot rely on ctx->is_active 2235 * to be set in case this is the nr_events 0 -> 1 transition. 2236 */ 2237 again: 2238 /* 2239 * Cannot use task_function_call() because we need to run on the task's 2240 * CPU regardless of whether its current or not. 2241 */ 2242 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2243 return; 2244 2245 raw_spin_lock_irq(&ctx->lock); 2246 task = ctx->task; 2247 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2248 /* 2249 * Cannot happen because we already checked above (which also 2250 * cannot happen), and we hold ctx->mutex, which serializes us 2251 * against perf_event_exit_task_context(). 2252 */ 2253 raw_spin_unlock_irq(&ctx->lock); 2254 return; 2255 } 2256 raw_spin_unlock_irq(&ctx->lock); 2257 /* 2258 * Since !ctx->is_active doesn't mean anything, we must IPI 2259 * unconditionally. 2260 */ 2261 goto again; 2262 } 2263 2264 /* 2265 * Put a event into inactive state and update time fields. 2266 * Enabling the leader of a group effectively enables all 2267 * the group members that aren't explicitly disabled, so we 2268 * have to update their ->tstamp_enabled also. 2269 * Note: this works for group members as well as group leaders 2270 * since the non-leader members' sibling_lists will be empty. 2271 */ 2272 static void __perf_event_mark_enabled(struct perf_event *event) 2273 { 2274 struct perf_event *sub; 2275 u64 tstamp = perf_event_time(event); 2276 2277 event->state = PERF_EVENT_STATE_INACTIVE; 2278 event->tstamp_enabled = tstamp - event->total_time_enabled; 2279 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2280 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2281 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2282 } 2283 } 2284 2285 /* 2286 * Cross CPU call to enable a performance event 2287 */ 2288 static void __perf_event_enable(struct perf_event *event, 2289 struct perf_cpu_context *cpuctx, 2290 struct perf_event_context *ctx, 2291 void *info) 2292 { 2293 struct perf_event *leader = event->group_leader; 2294 struct perf_event_context *task_ctx; 2295 2296 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2297 event->state <= PERF_EVENT_STATE_ERROR) 2298 return; 2299 2300 if (ctx->is_active) 2301 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2302 2303 __perf_event_mark_enabled(event); 2304 2305 if (!ctx->is_active) 2306 return; 2307 2308 if (!event_filter_match(event)) { 2309 if (is_cgroup_event(event)) 2310 perf_cgroup_defer_enabled(event); 2311 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2312 return; 2313 } 2314 2315 /* 2316 * If the event is in a group and isn't the group leader, 2317 * then don't put it on unless the group is on. 2318 */ 2319 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2320 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2321 return; 2322 } 2323 2324 task_ctx = cpuctx->task_ctx; 2325 if (ctx->task) 2326 WARN_ON_ONCE(task_ctx != ctx); 2327 2328 ctx_resched(cpuctx, task_ctx); 2329 } 2330 2331 /* 2332 * Enable a event. 2333 * 2334 * If event->ctx is a cloned context, callers must make sure that 2335 * every task struct that event->ctx->task could possibly point to 2336 * remains valid. This condition is satisfied when called through 2337 * perf_event_for_each_child or perf_event_for_each as described 2338 * for perf_event_disable. 2339 */ 2340 static void _perf_event_enable(struct perf_event *event) 2341 { 2342 struct perf_event_context *ctx = event->ctx; 2343 2344 raw_spin_lock_irq(&ctx->lock); 2345 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2346 event->state < PERF_EVENT_STATE_ERROR) { 2347 raw_spin_unlock_irq(&ctx->lock); 2348 return; 2349 } 2350 2351 /* 2352 * If the event is in error state, clear that first. 2353 * 2354 * That way, if we see the event in error state below, we know that it 2355 * has gone back into error state, as distinct from the task having 2356 * been scheduled away before the cross-call arrived. 2357 */ 2358 if (event->state == PERF_EVENT_STATE_ERROR) 2359 event->state = PERF_EVENT_STATE_OFF; 2360 raw_spin_unlock_irq(&ctx->lock); 2361 2362 event_function_call(event, __perf_event_enable, NULL); 2363 } 2364 2365 /* 2366 * See perf_event_disable(); 2367 */ 2368 void perf_event_enable(struct perf_event *event) 2369 { 2370 struct perf_event_context *ctx; 2371 2372 ctx = perf_event_ctx_lock(event); 2373 _perf_event_enable(event); 2374 perf_event_ctx_unlock(event, ctx); 2375 } 2376 EXPORT_SYMBOL_GPL(perf_event_enable); 2377 2378 struct stop_event_data { 2379 struct perf_event *event; 2380 unsigned int restart; 2381 }; 2382 2383 static int __perf_event_stop(void *info) 2384 { 2385 struct stop_event_data *sd = info; 2386 struct perf_event *event = sd->event; 2387 2388 /* if it's already INACTIVE, do nothing */ 2389 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2390 return 0; 2391 2392 /* matches smp_wmb() in event_sched_in() */ 2393 smp_rmb(); 2394 2395 /* 2396 * There is a window with interrupts enabled before we get here, 2397 * so we need to check again lest we try to stop another CPU's event. 2398 */ 2399 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2400 return -EAGAIN; 2401 2402 event->pmu->stop(event, PERF_EF_UPDATE); 2403 2404 /* 2405 * May race with the actual stop (through perf_pmu_output_stop()), 2406 * but it is only used for events with AUX ring buffer, and such 2407 * events will refuse to restart because of rb::aux_mmap_count==0, 2408 * see comments in perf_aux_output_begin(). 2409 * 2410 * Since this is happening on a event-local CPU, no trace is lost 2411 * while restarting. 2412 */ 2413 if (sd->restart) 2414 event->pmu->start(event, PERF_EF_START); 2415 2416 return 0; 2417 } 2418 2419 static int perf_event_restart(struct perf_event *event) 2420 { 2421 struct stop_event_data sd = { 2422 .event = event, 2423 .restart = 1, 2424 }; 2425 int ret = 0; 2426 2427 do { 2428 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2429 return 0; 2430 2431 /* matches smp_wmb() in event_sched_in() */ 2432 smp_rmb(); 2433 2434 /* 2435 * We only want to restart ACTIVE events, so if the event goes 2436 * inactive here (event->oncpu==-1), there's nothing more to do; 2437 * fall through with ret==-ENXIO. 2438 */ 2439 ret = cpu_function_call(READ_ONCE(event->oncpu), 2440 __perf_event_stop, &sd); 2441 } while (ret == -EAGAIN); 2442 2443 return ret; 2444 } 2445 2446 /* 2447 * In order to contain the amount of racy and tricky in the address filter 2448 * configuration management, it is a two part process: 2449 * 2450 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2451 * we update the addresses of corresponding vmas in 2452 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2453 * (p2) when an event is scheduled in (pmu::add), it calls 2454 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2455 * if the generation has changed since the previous call. 2456 * 2457 * If (p1) happens while the event is active, we restart it to force (p2). 2458 * 2459 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2460 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2461 * ioctl; 2462 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2463 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2464 * for reading; 2465 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2466 * of exec. 2467 */ 2468 void perf_event_addr_filters_sync(struct perf_event *event) 2469 { 2470 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2471 2472 if (!has_addr_filter(event)) 2473 return; 2474 2475 raw_spin_lock(&ifh->lock); 2476 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2477 event->pmu->addr_filters_sync(event); 2478 event->hw.addr_filters_gen = event->addr_filters_gen; 2479 } 2480 raw_spin_unlock(&ifh->lock); 2481 } 2482 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2483 2484 static int _perf_event_refresh(struct perf_event *event, int refresh) 2485 { 2486 /* 2487 * not supported on inherited events 2488 */ 2489 if (event->attr.inherit || !is_sampling_event(event)) 2490 return -EINVAL; 2491 2492 atomic_add(refresh, &event->event_limit); 2493 _perf_event_enable(event); 2494 2495 return 0; 2496 } 2497 2498 /* 2499 * See perf_event_disable() 2500 */ 2501 int perf_event_refresh(struct perf_event *event, int refresh) 2502 { 2503 struct perf_event_context *ctx; 2504 int ret; 2505 2506 ctx = perf_event_ctx_lock(event); 2507 ret = _perf_event_refresh(event, refresh); 2508 perf_event_ctx_unlock(event, ctx); 2509 2510 return ret; 2511 } 2512 EXPORT_SYMBOL_GPL(perf_event_refresh); 2513 2514 static void ctx_sched_out(struct perf_event_context *ctx, 2515 struct perf_cpu_context *cpuctx, 2516 enum event_type_t event_type) 2517 { 2518 int is_active = ctx->is_active; 2519 struct perf_event *event; 2520 2521 lockdep_assert_held(&ctx->lock); 2522 2523 if (likely(!ctx->nr_events)) { 2524 /* 2525 * See __perf_remove_from_context(). 2526 */ 2527 WARN_ON_ONCE(ctx->is_active); 2528 if (ctx->task) 2529 WARN_ON_ONCE(cpuctx->task_ctx); 2530 return; 2531 } 2532 2533 ctx->is_active &= ~event_type; 2534 if (!(ctx->is_active & EVENT_ALL)) 2535 ctx->is_active = 0; 2536 2537 if (ctx->task) { 2538 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2539 if (!ctx->is_active) 2540 cpuctx->task_ctx = NULL; 2541 } 2542 2543 /* 2544 * Always update time if it was set; not only when it changes. 2545 * Otherwise we can 'forget' to update time for any but the last 2546 * context we sched out. For example: 2547 * 2548 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2549 * ctx_sched_out(.event_type = EVENT_PINNED) 2550 * 2551 * would only update time for the pinned events. 2552 */ 2553 if (is_active & EVENT_TIME) { 2554 /* update (and stop) ctx time */ 2555 update_context_time(ctx); 2556 update_cgrp_time_from_cpuctx(cpuctx); 2557 } 2558 2559 is_active ^= ctx->is_active; /* changed bits */ 2560 2561 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2562 return; 2563 2564 perf_pmu_disable(ctx->pmu); 2565 if (is_active & EVENT_PINNED) { 2566 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2567 group_sched_out(event, cpuctx, ctx); 2568 } 2569 2570 if (is_active & EVENT_FLEXIBLE) { 2571 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2572 group_sched_out(event, cpuctx, ctx); 2573 } 2574 perf_pmu_enable(ctx->pmu); 2575 } 2576 2577 /* 2578 * Test whether two contexts are equivalent, i.e. whether they have both been 2579 * cloned from the same version of the same context. 2580 * 2581 * Equivalence is measured using a generation number in the context that is 2582 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2583 * and list_del_event(). 2584 */ 2585 static int context_equiv(struct perf_event_context *ctx1, 2586 struct perf_event_context *ctx2) 2587 { 2588 lockdep_assert_held(&ctx1->lock); 2589 lockdep_assert_held(&ctx2->lock); 2590 2591 /* Pinning disables the swap optimization */ 2592 if (ctx1->pin_count || ctx2->pin_count) 2593 return 0; 2594 2595 /* If ctx1 is the parent of ctx2 */ 2596 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2597 return 1; 2598 2599 /* If ctx2 is the parent of ctx1 */ 2600 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2601 return 1; 2602 2603 /* 2604 * If ctx1 and ctx2 have the same parent; we flatten the parent 2605 * hierarchy, see perf_event_init_context(). 2606 */ 2607 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2608 ctx1->parent_gen == ctx2->parent_gen) 2609 return 1; 2610 2611 /* Unmatched */ 2612 return 0; 2613 } 2614 2615 static void __perf_event_sync_stat(struct perf_event *event, 2616 struct perf_event *next_event) 2617 { 2618 u64 value; 2619 2620 if (!event->attr.inherit_stat) 2621 return; 2622 2623 /* 2624 * Update the event value, we cannot use perf_event_read() 2625 * because we're in the middle of a context switch and have IRQs 2626 * disabled, which upsets smp_call_function_single(), however 2627 * we know the event must be on the current CPU, therefore we 2628 * don't need to use it. 2629 */ 2630 switch (event->state) { 2631 case PERF_EVENT_STATE_ACTIVE: 2632 event->pmu->read(event); 2633 /* fall-through */ 2634 2635 case PERF_EVENT_STATE_INACTIVE: 2636 update_event_times(event); 2637 break; 2638 2639 default: 2640 break; 2641 } 2642 2643 /* 2644 * In order to keep per-task stats reliable we need to flip the event 2645 * values when we flip the contexts. 2646 */ 2647 value = local64_read(&next_event->count); 2648 value = local64_xchg(&event->count, value); 2649 local64_set(&next_event->count, value); 2650 2651 swap(event->total_time_enabled, next_event->total_time_enabled); 2652 swap(event->total_time_running, next_event->total_time_running); 2653 2654 /* 2655 * Since we swizzled the values, update the user visible data too. 2656 */ 2657 perf_event_update_userpage(event); 2658 perf_event_update_userpage(next_event); 2659 } 2660 2661 static void perf_event_sync_stat(struct perf_event_context *ctx, 2662 struct perf_event_context *next_ctx) 2663 { 2664 struct perf_event *event, *next_event; 2665 2666 if (!ctx->nr_stat) 2667 return; 2668 2669 update_context_time(ctx); 2670 2671 event = list_first_entry(&ctx->event_list, 2672 struct perf_event, event_entry); 2673 2674 next_event = list_first_entry(&next_ctx->event_list, 2675 struct perf_event, event_entry); 2676 2677 while (&event->event_entry != &ctx->event_list && 2678 &next_event->event_entry != &next_ctx->event_list) { 2679 2680 __perf_event_sync_stat(event, next_event); 2681 2682 event = list_next_entry(event, event_entry); 2683 next_event = list_next_entry(next_event, event_entry); 2684 } 2685 } 2686 2687 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2688 struct task_struct *next) 2689 { 2690 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2691 struct perf_event_context *next_ctx; 2692 struct perf_event_context *parent, *next_parent; 2693 struct perf_cpu_context *cpuctx; 2694 int do_switch = 1; 2695 2696 if (likely(!ctx)) 2697 return; 2698 2699 cpuctx = __get_cpu_context(ctx); 2700 if (!cpuctx->task_ctx) 2701 return; 2702 2703 rcu_read_lock(); 2704 next_ctx = next->perf_event_ctxp[ctxn]; 2705 if (!next_ctx) 2706 goto unlock; 2707 2708 parent = rcu_dereference(ctx->parent_ctx); 2709 next_parent = rcu_dereference(next_ctx->parent_ctx); 2710 2711 /* If neither context have a parent context; they cannot be clones. */ 2712 if (!parent && !next_parent) 2713 goto unlock; 2714 2715 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2716 /* 2717 * Looks like the two contexts are clones, so we might be 2718 * able to optimize the context switch. We lock both 2719 * contexts and check that they are clones under the 2720 * lock (including re-checking that neither has been 2721 * uncloned in the meantime). It doesn't matter which 2722 * order we take the locks because no other cpu could 2723 * be trying to lock both of these tasks. 2724 */ 2725 raw_spin_lock(&ctx->lock); 2726 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2727 if (context_equiv(ctx, next_ctx)) { 2728 WRITE_ONCE(ctx->task, next); 2729 WRITE_ONCE(next_ctx->task, task); 2730 2731 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2732 2733 /* 2734 * RCU_INIT_POINTER here is safe because we've not 2735 * modified the ctx and the above modification of 2736 * ctx->task and ctx->task_ctx_data are immaterial 2737 * since those values are always verified under 2738 * ctx->lock which we're now holding. 2739 */ 2740 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2741 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2742 2743 do_switch = 0; 2744 2745 perf_event_sync_stat(ctx, next_ctx); 2746 } 2747 raw_spin_unlock(&next_ctx->lock); 2748 raw_spin_unlock(&ctx->lock); 2749 } 2750 unlock: 2751 rcu_read_unlock(); 2752 2753 if (do_switch) { 2754 raw_spin_lock(&ctx->lock); 2755 task_ctx_sched_out(cpuctx, ctx); 2756 raw_spin_unlock(&ctx->lock); 2757 } 2758 } 2759 2760 void perf_sched_cb_dec(struct pmu *pmu) 2761 { 2762 this_cpu_dec(perf_sched_cb_usages); 2763 } 2764 2765 void perf_sched_cb_inc(struct pmu *pmu) 2766 { 2767 this_cpu_inc(perf_sched_cb_usages); 2768 } 2769 2770 /* 2771 * This function provides the context switch callback to the lower code 2772 * layer. It is invoked ONLY when the context switch callback is enabled. 2773 */ 2774 static void perf_pmu_sched_task(struct task_struct *prev, 2775 struct task_struct *next, 2776 bool sched_in) 2777 { 2778 struct perf_cpu_context *cpuctx; 2779 struct pmu *pmu; 2780 unsigned long flags; 2781 2782 if (prev == next) 2783 return; 2784 2785 local_irq_save(flags); 2786 2787 rcu_read_lock(); 2788 2789 list_for_each_entry_rcu(pmu, &pmus, entry) { 2790 if (pmu->sched_task) { 2791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2792 2793 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2794 2795 perf_pmu_disable(pmu); 2796 2797 pmu->sched_task(cpuctx->task_ctx, sched_in); 2798 2799 perf_pmu_enable(pmu); 2800 2801 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2802 } 2803 } 2804 2805 rcu_read_unlock(); 2806 2807 local_irq_restore(flags); 2808 } 2809 2810 static void perf_event_switch(struct task_struct *task, 2811 struct task_struct *next_prev, bool sched_in); 2812 2813 #define for_each_task_context_nr(ctxn) \ 2814 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2815 2816 /* 2817 * Called from scheduler to remove the events of the current task, 2818 * with interrupts disabled. 2819 * 2820 * We stop each event and update the event value in event->count. 2821 * 2822 * This does not protect us against NMI, but disable() 2823 * sets the disabled bit in the control field of event _before_ 2824 * accessing the event control register. If a NMI hits, then it will 2825 * not restart the event. 2826 */ 2827 void __perf_event_task_sched_out(struct task_struct *task, 2828 struct task_struct *next) 2829 { 2830 int ctxn; 2831 2832 if (__this_cpu_read(perf_sched_cb_usages)) 2833 perf_pmu_sched_task(task, next, false); 2834 2835 if (atomic_read(&nr_switch_events)) 2836 perf_event_switch(task, next, false); 2837 2838 for_each_task_context_nr(ctxn) 2839 perf_event_context_sched_out(task, ctxn, next); 2840 2841 /* 2842 * if cgroup events exist on this CPU, then we need 2843 * to check if we have to switch out PMU state. 2844 * cgroup event are system-wide mode only 2845 */ 2846 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2847 perf_cgroup_sched_out(task, next); 2848 } 2849 2850 /* 2851 * Called with IRQs disabled 2852 */ 2853 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2854 enum event_type_t event_type) 2855 { 2856 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2857 } 2858 2859 static void 2860 ctx_pinned_sched_in(struct perf_event_context *ctx, 2861 struct perf_cpu_context *cpuctx) 2862 { 2863 struct perf_event *event; 2864 2865 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2866 if (event->state <= PERF_EVENT_STATE_OFF) 2867 continue; 2868 if (!event_filter_match(event)) 2869 continue; 2870 2871 /* may need to reset tstamp_enabled */ 2872 if (is_cgroup_event(event)) 2873 perf_cgroup_mark_enabled(event, ctx); 2874 2875 if (group_can_go_on(event, cpuctx, 1)) 2876 group_sched_in(event, cpuctx, ctx); 2877 2878 /* 2879 * If this pinned group hasn't been scheduled, 2880 * put it in error state. 2881 */ 2882 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2883 update_group_times(event); 2884 event->state = PERF_EVENT_STATE_ERROR; 2885 } 2886 } 2887 } 2888 2889 static void 2890 ctx_flexible_sched_in(struct perf_event_context *ctx, 2891 struct perf_cpu_context *cpuctx) 2892 { 2893 struct perf_event *event; 2894 int can_add_hw = 1; 2895 2896 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2897 /* Ignore events in OFF or ERROR state */ 2898 if (event->state <= PERF_EVENT_STATE_OFF) 2899 continue; 2900 /* 2901 * Listen to the 'cpu' scheduling filter constraint 2902 * of events: 2903 */ 2904 if (!event_filter_match(event)) 2905 continue; 2906 2907 /* may need to reset tstamp_enabled */ 2908 if (is_cgroup_event(event)) 2909 perf_cgroup_mark_enabled(event, ctx); 2910 2911 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2912 if (group_sched_in(event, cpuctx, ctx)) 2913 can_add_hw = 0; 2914 } 2915 } 2916 } 2917 2918 static void 2919 ctx_sched_in(struct perf_event_context *ctx, 2920 struct perf_cpu_context *cpuctx, 2921 enum event_type_t event_type, 2922 struct task_struct *task) 2923 { 2924 int is_active = ctx->is_active; 2925 u64 now; 2926 2927 lockdep_assert_held(&ctx->lock); 2928 2929 if (likely(!ctx->nr_events)) 2930 return; 2931 2932 ctx->is_active |= (event_type | EVENT_TIME); 2933 if (ctx->task) { 2934 if (!is_active) 2935 cpuctx->task_ctx = ctx; 2936 else 2937 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2938 } 2939 2940 is_active ^= ctx->is_active; /* changed bits */ 2941 2942 if (is_active & EVENT_TIME) { 2943 /* start ctx time */ 2944 now = perf_clock(); 2945 ctx->timestamp = now; 2946 perf_cgroup_set_timestamp(task, ctx); 2947 } 2948 2949 /* 2950 * First go through the list and put on any pinned groups 2951 * in order to give them the best chance of going on. 2952 */ 2953 if (is_active & EVENT_PINNED) 2954 ctx_pinned_sched_in(ctx, cpuctx); 2955 2956 /* Then walk through the lower prio flexible groups */ 2957 if (is_active & EVENT_FLEXIBLE) 2958 ctx_flexible_sched_in(ctx, cpuctx); 2959 } 2960 2961 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2962 enum event_type_t event_type, 2963 struct task_struct *task) 2964 { 2965 struct perf_event_context *ctx = &cpuctx->ctx; 2966 2967 ctx_sched_in(ctx, cpuctx, event_type, task); 2968 } 2969 2970 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2971 struct task_struct *task) 2972 { 2973 struct perf_cpu_context *cpuctx; 2974 2975 cpuctx = __get_cpu_context(ctx); 2976 if (cpuctx->task_ctx == ctx) 2977 return; 2978 2979 perf_ctx_lock(cpuctx, ctx); 2980 perf_pmu_disable(ctx->pmu); 2981 /* 2982 * We want to keep the following priority order: 2983 * cpu pinned (that don't need to move), task pinned, 2984 * cpu flexible, task flexible. 2985 */ 2986 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2987 perf_event_sched_in(cpuctx, ctx, task); 2988 perf_pmu_enable(ctx->pmu); 2989 perf_ctx_unlock(cpuctx, ctx); 2990 } 2991 2992 /* 2993 * Called from scheduler to add the events of the current task 2994 * with interrupts disabled. 2995 * 2996 * We restore the event value and then enable it. 2997 * 2998 * This does not protect us against NMI, but enable() 2999 * sets the enabled bit in the control field of event _before_ 3000 * accessing the event control register. If a NMI hits, then it will 3001 * keep the event running. 3002 */ 3003 void __perf_event_task_sched_in(struct task_struct *prev, 3004 struct task_struct *task) 3005 { 3006 struct perf_event_context *ctx; 3007 int ctxn; 3008 3009 /* 3010 * If cgroup events exist on this CPU, then we need to check if we have 3011 * to switch in PMU state; cgroup event are system-wide mode only. 3012 * 3013 * Since cgroup events are CPU events, we must schedule these in before 3014 * we schedule in the task events. 3015 */ 3016 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3017 perf_cgroup_sched_in(prev, task); 3018 3019 for_each_task_context_nr(ctxn) { 3020 ctx = task->perf_event_ctxp[ctxn]; 3021 if (likely(!ctx)) 3022 continue; 3023 3024 perf_event_context_sched_in(ctx, task); 3025 } 3026 3027 if (atomic_read(&nr_switch_events)) 3028 perf_event_switch(task, prev, true); 3029 3030 if (__this_cpu_read(perf_sched_cb_usages)) 3031 perf_pmu_sched_task(prev, task, true); 3032 } 3033 3034 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3035 { 3036 u64 frequency = event->attr.sample_freq; 3037 u64 sec = NSEC_PER_SEC; 3038 u64 divisor, dividend; 3039 3040 int count_fls, nsec_fls, frequency_fls, sec_fls; 3041 3042 count_fls = fls64(count); 3043 nsec_fls = fls64(nsec); 3044 frequency_fls = fls64(frequency); 3045 sec_fls = 30; 3046 3047 /* 3048 * We got @count in @nsec, with a target of sample_freq HZ 3049 * the target period becomes: 3050 * 3051 * @count * 10^9 3052 * period = ------------------- 3053 * @nsec * sample_freq 3054 * 3055 */ 3056 3057 /* 3058 * Reduce accuracy by one bit such that @a and @b converge 3059 * to a similar magnitude. 3060 */ 3061 #define REDUCE_FLS(a, b) \ 3062 do { \ 3063 if (a##_fls > b##_fls) { \ 3064 a >>= 1; \ 3065 a##_fls--; \ 3066 } else { \ 3067 b >>= 1; \ 3068 b##_fls--; \ 3069 } \ 3070 } while (0) 3071 3072 /* 3073 * Reduce accuracy until either term fits in a u64, then proceed with 3074 * the other, so that finally we can do a u64/u64 division. 3075 */ 3076 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3077 REDUCE_FLS(nsec, frequency); 3078 REDUCE_FLS(sec, count); 3079 } 3080 3081 if (count_fls + sec_fls > 64) { 3082 divisor = nsec * frequency; 3083 3084 while (count_fls + sec_fls > 64) { 3085 REDUCE_FLS(count, sec); 3086 divisor >>= 1; 3087 } 3088 3089 dividend = count * sec; 3090 } else { 3091 dividend = count * sec; 3092 3093 while (nsec_fls + frequency_fls > 64) { 3094 REDUCE_FLS(nsec, frequency); 3095 dividend >>= 1; 3096 } 3097 3098 divisor = nsec * frequency; 3099 } 3100 3101 if (!divisor) 3102 return dividend; 3103 3104 return div64_u64(dividend, divisor); 3105 } 3106 3107 static DEFINE_PER_CPU(int, perf_throttled_count); 3108 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3109 3110 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3111 { 3112 struct hw_perf_event *hwc = &event->hw; 3113 s64 period, sample_period; 3114 s64 delta; 3115 3116 period = perf_calculate_period(event, nsec, count); 3117 3118 delta = (s64)(period - hwc->sample_period); 3119 delta = (delta + 7) / 8; /* low pass filter */ 3120 3121 sample_period = hwc->sample_period + delta; 3122 3123 if (!sample_period) 3124 sample_period = 1; 3125 3126 hwc->sample_period = sample_period; 3127 3128 if (local64_read(&hwc->period_left) > 8*sample_period) { 3129 if (disable) 3130 event->pmu->stop(event, PERF_EF_UPDATE); 3131 3132 local64_set(&hwc->period_left, 0); 3133 3134 if (disable) 3135 event->pmu->start(event, PERF_EF_RELOAD); 3136 } 3137 } 3138 3139 /* 3140 * combine freq adjustment with unthrottling to avoid two passes over the 3141 * events. At the same time, make sure, having freq events does not change 3142 * the rate of unthrottling as that would introduce bias. 3143 */ 3144 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3145 int needs_unthr) 3146 { 3147 struct perf_event *event; 3148 struct hw_perf_event *hwc; 3149 u64 now, period = TICK_NSEC; 3150 s64 delta; 3151 3152 /* 3153 * only need to iterate over all events iff: 3154 * - context have events in frequency mode (needs freq adjust) 3155 * - there are events to unthrottle on this cpu 3156 */ 3157 if (!(ctx->nr_freq || needs_unthr)) 3158 return; 3159 3160 raw_spin_lock(&ctx->lock); 3161 perf_pmu_disable(ctx->pmu); 3162 3163 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3164 if (event->state != PERF_EVENT_STATE_ACTIVE) 3165 continue; 3166 3167 if (!event_filter_match(event)) 3168 continue; 3169 3170 perf_pmu_disable(event->pmu); 3171 3172 hwc = &event->hw; 3173 3174 if (hwc->interrupts == MAX_INTERRUPTS) { 3175 hwc->interrupts = 0; 3176 perf_log_throttle(event, 1); 3177 event->pmu->start(event, 0); 3178 } 3179 3180 if (!event->attr.freq || !event->attr.sample_freq) 3181 goto next; 3182 3183 /* 3184 * stop the event and update event->count 3185 */ 3186 event->pmu->stop(event, PERF_EF_UPDATE); 3187 3188 now = local64_read(&event->count); 3189 delta = now - hwc->freq_count_stamp; 3190 hwc->freq_count_stamp = now; 3191 3192 /* 3193 * restart the event 3194 * reload only if value has changed 3195 * we have stopped the event so tell that 3196 * to perf_adjust_period() to avoid stopping it 3197 * twice. 3198 */ 3199 if (delta > 0) 3200 perf_adjust_period(event, period, delta, false); 3201 3202 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3203 next: 3204 perf_pmu_enable(event->pmu); 3205 } 3206 3207 perf_pmu_enable(ctx->pmu); 3208 raw_spin_unlock(&ctx->lock); 3209 } 3210 3211 /* 3212 * Round-robin a context's events: 3213 */ 3214 static void rotate_ctx(struct perf_event_context *ctx) 3215 { 3216 /* 3217 * Rotate the first entry last of non-pinned groups. Rotation might be 3218 * disabled by the inheritance code. 3219 */ 3220 if (!ctx->rotate_disable) 3221 list_rotate_left(&ctx->flexible_groups); 3222 } 3223 3224 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3225 { 3226 struct perf_event_context *ctx = NULL; 3227 int rotate = 0; 3228 3229 if (cpuctx->ctx.nr_events) { 3230 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3231 rotate = 1; 3232 } 3233 3234 ctx = cpuctx->task_ctx; 3235 if (ctx && ctx->nr_events) { 3236 if (ctx->nr_events != ctx->nr_active) 3237 rotate = 1; 3238 } 3239 3240 if (!rotate) 3241 goto done; 3242 3243 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3244 perf_pmu_disable(cpuctx->ctx.pmu); 3245 3246 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3247 if (ctx) 3248 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3249 3250 rotate_ctx(&cpuctx->ctx); 3251 if (ctx) 3252 rotate_ctx(ctx); 3253 3254 perf_event_sched_in(cpuctx, ctx, current); 3255 3256 perf_pmu_enable(cpuctx->ctx.pmu); 3257 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3258 done: 3259 3260 return rotate; 3261 } 3262 3263 void perf_event_task_tick(void) 3264 { 3265 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3266 struct perf_event_context *ctx, *tmp; 3267 int throttled; 3268 3269 WARN_ON(!irqs_disabled()); 3270 3271 __this_cpu_inc(perf_throttled_seq); 3272 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3273 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3274 3275 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3276 perf_adjust_freq_unthr_context(ctx, throttled); 3277 } 3278 3279 static int event_enable_on_exec(struct perf_event *event, 3280 struct perf_event_context *ctx) 3281 { 3282 if (!event->attr.enable_on_exec) 3283 return 0; 3284 3285 event->attr.enable_on_exec = 0; 3286 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3287 return 0; 3288 3289 __perf_event_mark_enabled(event); 3290 3291 return 1; 3292 } 3293 3294 /* 3295 * Enable all of a task's events that have been marked enable-on-exec. 3296 * This expects task == current. 3297 */ 3298 static void perf_event_enable_on_exec(int ctxn) 3299 { 3300 struct perf_event_context *ctx, *clone_ctx = NULL; 3301 struct perf_cpu_context *cpuctx; 3302 struct perf_event *event; 3303 unsigned long flags; 3304 int enabled = 0; 3305 3306 local_irq_save(flags); 3307 ctx = current->perf_event_ctxp[ctxn]; 3308 if (!ctx || !ctx->nr_events) 3309 goto out; 3310 3311 cpuctx = __get_cpu_context(ctx); 3312 perf_ctx_lock(cpuctx, ctx); 3313 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3314 list_for_each_entry(event, &ctx->event_list, event_entry) 3315 enabled |= event_enable_on_exec(event, ctx); 3316 3317 /* 3318 * Unclone and reschedule this context if we enabled any event. 3319 */ 3320 if (enabled) { 3321 clone_ctx = unclone_ctx(ctx); 3322 ctx_resched(cpuctx, ctx); 3323 } 3324 perf_ctx_unlock(cpuctx, ctx); 3325 3326 out: 3327 local_irq_restore(flags); 3328 3329 if (clone_ctx) 3330 put_ctx(clone_ctx); 3331 } 3332 3333 struct perf_read_data { 3334 struct perf_event *event; 3335 bool group; 3336 int ret; 3337 }; 3338 3339 /* 3340 * Cross CPU call to read the hardware event 3341 */ 3342 static void __perf_event_read(void *info) 3343 { 3344 struct perf_read_data *data = info; 3345 struct perf_event *sub, *event = data->event; 3346 struct perf_event_context *ctx = event->ctx; 3347 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3348 struct pmu *pmu = event->pmu; 3349 3350 /* 3351 * If this is a task context, we need to check whether it is 3352 * the current task context of this cpu. If not it has been 3353 * scheduled out before the smp call arrived. In that case 3354 * event->count would have been updated to a recent sample 3355 * when the event was scheduled out. 3356 */ 3357 if (ctx->task && cpuctx->task_ctx != ctx) 3358 return; 3359 3360 raw_spin_lock(&ctx->lock); 3361 if (ctx->is_active) { 3362 update_context_time(ctx); 3363 update_cgrp_time_from_event(event); 3364 } 3365 3366 update_event_times(event); 3367 if (event->state != PERF_EVENT_STATE_ACTIVE) 3368 goto unlock; 3369 3370 if (!data->group) { 3371 pmu->read(event); 3372 data->ret = 0; 3373 goto unlock; 3374 } 3375 3376 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3377 3378 pmu->read(event); 3379 3380 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3381 update_event_times(sub); 3382 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3383 /* 3384 * Use sibling's PMU rather than @event's since 3385 * sibling could be on different (eg: software) PMU. 3386 */ 3387 sub->pmu->read(sub); 3388 } 3389 } 3390 3391 data->ret = pmu->commit_txn(pmu); 3392 3393 unlock: 3394 raw_spin_unlock(&ctx->lock); 3395 } 3396 3397 static inline u64 perf_event_count(struct perf_event *event) 3398 { 3399 if (event->pmu->count) 3400 return event->pmu->count(event); 3401 3402 return __perf_event_count(event); 3403 } 3404 3405 /* 3406 * NMI-safe method to read a local event, that is an event that 3407 * is: 3408 * - either for the current task, or for this CPU 3409 * - does not have inherit set, for inherited task events 3410 * will not be local and we cannot read them atomically 3411 * - must not have a pmu::count method 3412 */ 3413 u64 perf_event_read_local(struct perf_event *event) 3414 { 3415 unsigned long flags; 3416 u64 val; 3417 3418 /* 3419 * Disabling interrupts avoids all counter scheduling (context 3420 * switches, timer based rotation and IPIs). 3421 */ 3422 local_irq_save(flags); 3423 3424 /* If this is a per-task event, it must be for current */ 3425 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3426 event->hw.target != current); 3427 3428 /* If this is a per-CPU event, it must be for this CPU */ 3429 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3430 event->cpu != smp_processor_id()); 3431 3432 /* 3433 * It must not be an event with inherit set, we cannot read 3434 * all child counters from atomic context. 3435 */ 3436 WARN_ON_ONCE(event->attr.inherit); 3437 3438 /* 3439 * It must not have a pmu::count method, those are not 3440 * NMI safe. 3441 */ 3442 WARN_ON_ONCE(event->pmu->count); 3443 3444 /* 3445 * If the event is currently on this CPU, its either a per-task event, 3446 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3447 * oncpu == -1). 3448 */ 3449 if (event->oncpu == smp_processor_id()) 3450 event->pmu->read(event); 3451 3452 val = local64_read(&event->count); 3453 local_irq_restore(flags); 3454 3455 return val; 3456 } 3457 3458 static int perf_event_read(struct perf_event *event, bool group) 3459 { 3460 int ret = 0; 3461 3462 /* 3463 * If event is enabled and currently active on a CPU, update the 3464 * value in the event structure: 3465 */ 3466 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3467 struct perf_read_data data = { 3468 .event = event, 3469 .group = group, 3470 .ret = 0, 3471 }; 3472 smp_call_function_single(event->oncpu, 3473 __perf_event_read, &data, 1); 3474 ret = data.ret; 3475 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3476 struct perf_event_context *ctx = event->ctx; 3477 unsigned long flags; 3478 3479 raw_spin_lock_irqsave(&ctx->lock, flags); 3480 /* 3481 * may read while context is not active 3482 * (e.g., thread is blocked), in that case 3483 * we cannot update context time 3484 */ 3485 if (ctx->is_active) { 3486 update_context_time(ctx); 3487 update_cgrp_time_from_event(event); 3488 } 3489 if (group) 3490 update_group_times(event); 3491 else 3492 update_event_times(event); 3493 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3494 } 3495 3496 return ret; 3497 } 3498 3499 /* 3500 * Initialize the perf_event context in a task_struct: 3501 */ 3502 static void __perf_event_init_context(struct perf_event_context *ctx) 3503 { 3504 raw_spin_lock_init(&ctx->lock); 3505 mutex_init(&ctx->mutex); 3506 INIT_LIST_HEAD(&ctx->active_ctx_list); 3507 INIT_LIST_HEAD(&ctx->pinned_groups); 3508 INIT_LIST_HEAD(&ctx->flexible_groups); 3509 INIT_LIST_HEAD(&ctx->event_list); 3510 atomic_set(&ctx->refcount, 1); 3511 } 3512 3513 static struct perf_event_context * 3514 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3515 { 3516 struct perf_event_context *ctx; 3517 3518 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3519 if (!ctx) 3520 return NULL; 3521 3522 __perf_event_init_context(ctx); 3523 if (task) { 3524 ctx->task = task; 3525 get_task_struct(task); 3526 } 3527 ctx->pmu = pmu; 3528 3529 return ctx; 3530 } 3531 3532 static struct task_struct * 3533 find_lively_task_by_vpid(pid_t vpid) 3534 { 3535 struct task_struct *task; 3536 3537 rcu_read_lock(); 3538 if (!vpid) 3539 task = current; 3540 else 3541 task = find_task_by_vpid(vpid); 3542 if (task) 3543 get_task_struct(task); 3544 rcu_read_unlock(); 3545 3546 if (!task) 3547 return ERR_PTR(-ESRCH); 3548 3549 return task; 3550 } 3551 3552 /* 3553 * Returns a matching context with refcount and pincount. 3554 */ 3555 static struct perf_event_context * 3556 find_get_context(struct pmu *pmu, struct task_struct *task, 3557 struct perf_event *event) 3558 { 3559 struct perf_event_context *ctx, *clone_ctx = NULL; 3560 struct perf_cpu_context *cpuctx; 3561 void *task_ctx_data = NULL; 3562 unsigned long flags; 3563 int ctxn, err; 3564 int cpu = event->cpu; 3565 3566 if (!task) { 3567 /* Must be root to operate on a CPU event: */ 3568 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3569 return ERR_PTR(-EACCES); 3570 3571 /* 3572 * We could be clever and allow to attach a event to an 3573 * offline CPU and activate it when the CPU comes up, but 3574 * that's for later. 3575 */ 3576 if (!cpu_online(cpu)) 3577 return ERR_PTR(-ENODEV); 3578 3579 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3580 ctx = &cpuctx->ctx; 3581 get_ctx(ctx); 3582 ++ctx->pin_count; 3583 3584 return ctx; 3585 } 3586 3587 err = -EINVAL; 3588 ctxn = pmu->task_ctx_nr; 3589 if (ctxn < 0) 3590 goto errout; 3591 3592 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3593 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3594 if (!task_ctx_data) { 3595 err = -ENOMEM; 3596 goto errout; 3597 } 3598 } 3599 3600 retry: 3601 ctx = perf_lock_task_context(task, ctxn, &flags); 3602 if (ctx) { 3603 clone_ctx = unclone_ctx(ctx); 3604 ++ctx->pin_count; 3605 3606 if (task_ctx_data && !ctx->task_ctx_data) { 3607 ctx->task_ctx_data = task_ctx_data; 3608 task_ctx_data = NULL; 3609 } 3610 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3611 3612 if (clone_ctx) 3613 put_ctx(clone_ctx); 3614 } else { 3615 ctx = alloc_perf_context(pmu, task); 3616 err = -ENOMEM; 3617 if (!ctx) 3618 goto errout; 3619 3620 if (task_ctx_data) { 3621 ctx->task_ctx_data = task_ctx_data; 3622 task_ctx_data = NULL; 3623 } 3624 3625 err = 0; 3626 mutex_lock(&task->perf_event_mutex); 3627 /* 3628 * If it has already passed perf_event_exit_task(). 3629 * we must see PF_EXITING, it takes this mutex too. 3630 */ 3631 if (task->flags & PF_EXITING) 3632 err = -ESRCH; 3633 else if (task->perf_event_ctxp[ctxn]) 3634 err = -EAGAIN; 3635 else { 3636 get_ctx(ctx); 3637 ++ctx->pin_count; 3638 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3639 } 3640 mutex_unlock(&task->perf_event_mutex); 3641 3642 if (unlikely(err)) { 3643 put_ctx(ctx); 3644 3645 if (err == -EAGAIN) 3646 goto retry; 3647 goto errout; 3648 } 3649 } 3650 3651 kfree(task_ctx_data); 3652 return ctx; 3653 3654 errout: 3655 kfree(task_ctx_data); 3656 return ERR_PTR(err); 3657 } 3658 3659 static void perf_event_free_filter(struct perf_event *event); 3660 static void perf_event_free_bpf_prog(struct perf_event *event); 3661 3662 static void free_event_rcu(struct rcu_head *head) 3663 { 3664 struct perf_event *event; 3665 3666 event = container_of(head, struct perf_event, rcu_head); 3667 if (event->ns) 3668 put_pid_ns(event->ns); 3669 perf_event_free_filter(event); 3670 kfree(event); 3671 } 3672 3673 static void ring_buffer_attach(struct perf_event *event, 3674 struct ring_buffer *rb); 3675 3676 static void detach_sb_event(struct perf_event *event) 3677 { 3678 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3679 3680 raw_spin_lock(&pel->lock); 3681 list_del_rcu(&event->sb_list); 3682 raw_spin_unlock(&pel->lock); 3683 } 3684 3685 static void unaccount_pmu_sb_event(struct perf_event *event) 3686 { 3687 if (event->parent) 3688 return; 3689 3690 if (event->attach_state & PERF_ATTACH_TASK) 3691 return; 3692 3693 detach_sb_event(event); 3694 } 3695 3696 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3697 { 3698 if (event->parent) 3699 return; 3700 3701 if (is_cgroup_event(event)) 3702 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3703 } 3704 3705 #ifdef CONFIG_NO_HZ_FULL 3706 static DEFINE_SPINLOCK(nr_freq_lock); 3707 #endif 3708 3709 static void unaccount_freq_event_nohz(void) 3710 { 3711 #ifdef CONFIG_NO_HZ_FULL 3712 spin_lock(&nr_freq_lock); 3713 if (atomic_dec_and_test(&nr_freq_events)) 3714 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3715 spin_unlock(&nr_freq_lock); 3716 #endif 3717 } 3718 3719 static void unaccount_freq_event(void) 3720 { 3721 if (tick_nohz_full_enabled()) 3722 unaccount_freq_event_nohz(); 3723 else 3724 atomic_dec(&nr_freq_events); 3725 } 3726 3727 static void unaccount_event(struct perf_event *event) 3728 { 3729 bool dec = false; 3730 3731 if (event->parent) 3732 return; 3733 3734 if (event->attach_state & PERF_ATTACH_TASK) 3735 dec = true; 3736 if (event->attr.mmap || event->attr.mmap_data) 3737 atomic_dec(&nr_mmap_events); 3738 if (event->attr.comm) 3739 atomic_dec(&nr_comm_events); 3740 if (event->attr.task) 3741 atomic_dec(&nr_task_events); 3742 if (event->attr.freq) 3743 unaccount_freq_event(); 3744 if (event->attr.context_switch) { 3745 dec = true; 3746 atomic_dec(&nr_switch_events); 3747 } 3748 if (is_cgroup_event(event)) 3749 dec = true; 3750 if (has_branch_stack(event)) 3751 dec = true; 3752 3753 if (dec) { 3754 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3755 schedule_delayed_work(&perf_sched_work, HZ); 3756 } 3757 3758 unaccount_event_cpu(event, event->cpu); 3759 3760 unaccount_pmu_sb_event(event); 3761 } 3762 3763 static void perf_sched_delayed(struct work_struct *work) 3764 { 3765 mutex_lock(&perf_sched_mutex); 3766 if (atomic_dec_and_test(&perf_sched_count)) 3767 static_branch_disable(&perf_sched_events); 3768 mutex_unlock(&perf_sched_mutex); 3769 } 3770 3771 /* 3772 * The following implement mutual exclusion of events on "exclusive" pmus 3773 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3774 * at a time, so we disallow creating events that might conflict, namely: 3775 * 3776 * 1) cpu-wide events in the presence of per-task events, 3777 * 2) per-task events in the presence of cpu-wide events, 3778 * 3) two matching events on the same context. 3779 * 3780 * The former two cases are handled in the allocation path (perf_event_alloc(), 3781 * _free_event()), the latter -- before the first perf_install_in_context(). 3782 */ 3783 static int exclusive_event_init(struct perf_event *event) 3784 { 3785 struct pmu *pmu = event->pmu; 3786 3787 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3788 return 0; 3789 3790 /* 3791 * Prevent co-existence of per-task and cpu-wide events on the 3792 * same exclusive pmu. 3793 * 3794 * Negative pmu::exclusive_cnt means there are cpu-wide 3795 * events on this "exclusive" pmu, positive means there are 3796 * per-task events. 3797 * 3798 * Since this is called in perf_event_alloc() path, event::ctx 3799 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3800 * to mean "per-task event", because unlike other attach states it 3801 * never gets cleared. 3802 */ 3803 if (event->attach_state & PERF_ATTACH_TASK) { 3804 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3805 return -EBUSY; 3806 } else { 3807 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3808 return -EBUSY; 3809 } 3810 3811 return 0; 3812 } 3813 3814 static void exclusive_event_destroy(struct perf_event *event) 3815 { 3816 struct pmu *pmu = event->pmu; 3817 3818 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3819 return; 3820 3821 /* see comment in exclusive_event_init() */ 3822 if (event->attach_state & PERF_ATTACH_TASK) 3823 atomic_dec(&pmu->exclusive_cnt); 3824 else 3825 atomic_inc(&pmu->exclusive_cnt); 3826 } 3827 3828 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3829 { 3830 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3831 (e1->cpu == e2->cpu || 3832 e1->cpu == -1 || 3833 e2->cpu == -1)) 3834 return true; 3835 return false; 3836 } 3837 3838 /* Called under the same ctx::mutex as perf_install_in_context() */ 3839 static bool exclusive_event_installable(struct perf_event *event, 3840 struct perf_event_context *ctx) 3841 { 3842 struct perf_event *iter_event; 3843 struct pmu *pmu = event->pmu; 3844 3845 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3846 return true; 3847 3848 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3849 if (exclusive_event_match(iter_event, event)) 3850 return false; 3851 } 3852 3853 return true; 3854 } 3855 3856 static void perf_addr_filters_splice(struct perf_event *event, 3857 struct list_head *head); 3858 3859 static void _free_event(struct perf_event *event) 3860 { 3861 irq_work_sync(&event->pending); 3862 3863 unaccount_event(event); 3864 3865 if (event->rb) { 3866 /* 3867 * Can happen when we close an event with re-directed output. 3868 * 3869 * Since we have a 0 refcount, perf_mmap_close() will skip 3870 * over us; possibly making our ring_buffer_put() the last. 3871 */ 3872 mutex_lock(&event->mmap_mutex); 3873 ring_buffer_attach(event, NULL); 3874 mutex_unlock(&event->mmap_mutex); 3875 } 3876 3877 if (is_cgroup_event(event)) 3878 perf_detach_cgroup(event); 3879 3880 if (!event->parent) { 3881 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3882 put_callchain_buffers(); 3883 } 3884 3885 perf_event_free_bpf_prog(event); 3886 perf_addr_filters_splice(event, NULL); 3887 kfree(event->addr_filters_offs); 3888 3889 if (event->destroy) 3890 event->destroy(event); 3891 3892 if (event->ctx) 3893 put_ctx(event->ctx); 3894 3895 if (event->pmu) { 3896 exclusive_event_destroy(event); 3897 module_put(event->pmu->module); 3898 } 3899 3900 call_rcu(&event->rcu_head, free_event_rcu); 3901 } 3902 3903 /* 3904 * Used to free events which have a known refcount of 1, such as in error paths 3905 * where the event isn't exposed yet and inherited events. 3906 */ 3907 static void free_event(struct perf_event *event) 3908 { 3909 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3910 "unexpected event refcount: %ld; ptr=%p\n", 3911 atomic_long_read(&event->refcount), event)) { 3912 /* leak to avoid use-after-free */ 3913 return; 3914 } 3915 3916 _free_event(event); 3917 } 3918 3919 /* 3920 * Remove user event from the owner task. 3921 */ 3922 static void perf_remove_from_owner(struct perf_event *event) 3923 { 3924 struct task_struct *owner; 3925 3926 rcu_read_lock(); 3927 /* 3928 * Matches the smp_store_release() in perf_event_exit_task(). If we 3929 * observe !owner it means the list deletion is complete and we can 3930 * indeed free this event, otherwise we need to serialize on 3931 * owner->perf_event_mutex. 3932 */ 3933 owner = lockless_dereference(event->owner); 3934 if (owner) { 3935 /* 3936 * Since delayed_put_task_struct() also drops the last 3937 * task reference we can safely take a new reference 3938 * while holding the rcu_read_lock(). 3939 */ 3940 get_task_struct(owner); 3941 } 3942 rcu_read_unlock(); 3943 3944 if (owner) { 3945 /* 3946 * If we're here through perf_event_exit_task() we're already 3947 * holding ctx->mutex which would be an inversion wrt. the 3948 * normal lock order. 3949 * 3950 * However we can safely take this lock because its the child 3951 * ctx->mutex. 3952 */ 3953 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3954 3955 /* 3956 * We have to re-check the event->owner field, if it is cleared 3957 * we raced with perf_event_exit_task(), acquiring the mutex 3958 * ensured they're done, and we can proceed with freeing the 3959 * event. 3960 */ 3961 if (event->owner) { 3962 list_del_init(&event->owner_entry); 3963 smp_store_release(&event->owner, NULL); 3964 } 3965 mutex_unlock(&owner->perf_event_mutex); 3966 put_task_struct(owner); 3967 } 3968 } 3969 3970 static void put_event(struct perf_event *event) 3971 { 3972 if (!atomic_long_dec_and_test(&event->refcount)) 3973 return; 3974 3975 _free_event(event); 3976 } 3977 3978 /* 3979 * Kill an event dead; while event:refcount will preserve the event 3980 * object, it will not preserve its functionality. Once the last 'user' 3981 * gives up the object, we'll destroy the thing. 3982 */ 3983 int perf_event_release_kernel(struct perf_event *event) 3984 { 3985 struct perf_event_context *ctx = event->ctx; 3986 struct perf_event *child, *tmp; 3987 3988 /* 3989 * If we got here through err_file: fput(event_file); we will not have 3990 * attached to a context yet. 3991 */ 3992 if (!ctx) { 3993 WARN_ON_ONCE(event->attach_state & 3994 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 3995 goto no_ctx; 3996 } 3997 3998 if (!is_kernel_event(event)) 3999 perf_remove_from_owner(event); 4000 4001 ctx = perf_event_ctx_lock(event); 4002 WARN_ON_ONCE(ctx->parent_ctx); 4003 perf_remove_from_context(event, DETACH_GROUP); 4004 4005 raw_spin_lock_irq(&ctx->lock); 4006 /* 4007 * Mark this even as STATE_DEAD, there is no external reference to it 4008 * anymore. 4009 * 4010 * Anybody acquiring event->child_mutex after the below loop _must_ 4011 * also see this, most importantly inherit_event() which will avoid 4012 * placing more children on the list. 4013 * 4014 * Thus this guarantees that we will in fact observe and kill _ALL_ 4015 * child events. 4016 */ 4017 event->state = PERF_EVENT_STATE_DEAD; 4018 raw_spin_unlock_irq(&ctx->lock); 4019 4020 perf_event_ctx_unlock(event, ctx); 4021 4022 again: 4023 mutex_lock(&event->child_mutex); 4024 list_for_each_entry(child, &event->child_list, child_list) { 4025 4026 /* 4027 * Cannot change, child events are not migrated, see the 4028 * comment with perf_event_ctx_lock_nested(). 4029 */ 4030 ctx = lockless_dereference(child->ctx); 4031 /* 4032 * Since child_mutex nests inside ctx::mutex, we must jump 4033 * through hoops. We start by grabbing a reference on the ctx. 4034 * 4035 * Since the event cannot get freed while we hold the 4036 * child_mutex, the context must also exist and have a !0 4037 * reference count. 4038 */ 4039 get_ctx(ctx); 4040 4041 /* 4042 * Now that we have a ctx ref, we can drop child_mutex, and 4043 * acquire ctx::mutex without fear of it going away. Then we 4044 * can re-acquire child_mutex. 4045 */ 4046 mutex_unlock(&event->child_mutex); 4047 mutex_lock(&ctx->mutex); 4048 mutex_lock(&event->child_mutex); 4049 4050 /* 4051 * Now that we hold ctx::mutex and child_mutex, revalidate our 4052 * state, if child is still the first entry, it didn't get freed 4053 * and we can continue doing so. 4054 */ 4055 tmp = list_first_entry_or_null(&event->child_list, 4056 struct perf_event, child_list); 4057 if (tmp == child) { 4058 perf_remove_from_context(child, DETACH_GROUP); 4059 list_del(&child->child_list); 4060 free_event(child); 4061 /* 4062 * This matches the refcount bump in inherit_event(); 4063 * this can't be the last reference. 4064 */ 4065 put_event(event); 4066 } 4067 4068 mutex_unlock(&event->child_mutex); 4069 mutex_unlock(&ctx->mutex); 4070 put_ctx(ctx); 4071 goto again; 4072 } 4073 mutex_unlock(&event->child_mutex); 4074 4075 no_ctx: 4076 put_event(event); /* Must be the 'last' reference */ 4077 return 0; 4078 } 4079 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4080 4081 /* 4082 * Called when the last reference to the file is gone. 4083 */ 4084 static int perf_release(struct inode *inode, struct file *file) 4085 { 4086 perf_event_release_kernel(file->private_data); 4087 return 0; 4088 } 4089 4090 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4091 { 4092 struct perf_event *child; 4093 u64 total = 0; 4094 4095 *enabled = 0; 4096 *running = 0; 4097 4098 mutex_lock(&event->child_mutex); 4099 4100 (void)perf_event_read(event, false); 4101 total += perf_event_count(event); 4102 4103 *enabled += event->total_time_enabled + 4104 atomic64_read(&event->child_total_time_enabled); 4105 *running += event->total_time_running + 4106 atomic64_read(&event->child_total_time_running); 4107 4108 list_for_each_entry(child, &event->child_list, child_list) { 4109 (void)perf_event_read(child, false); 4110 total += perf_event_count(child); 4111 *enabled += child->total_time_enabled; 4112 *running += child->total_time_running; 4113 } 4114 mutex_unlock(&event->child_mutex); 4115 4116 return total; 4117 } 4118 EXPORT_SYMBOL_GPL(perf_event_read_value); 4119 4120 static int __perf_read_group_add(struct perf_event *leader, 4121 u64 read_format, u64 *values) 4122 { 4123 struct perf_event *sub; 4124 int n = 1; /* skip @nr */ 4125 int ret; 4126 4127 ret = perf_event_read(leader, true); 4128 if (ret) 4129 return ret; 4130 4131 /* 4132 * Since we co-schedule groups, {enabled,running} times of siblings 4133 * will be identical to those of the leader, so we only publish one 4134 * set. 4135 */ 4136 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4137 values[n++] += leader->total_time_enabled + 4138 atomic64_read(&leader->child_total_time_enabled); 4139 } 4140 4141 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4142 values[n++] += leader->total_time_running + 4143 atomic64_read(&leader->child_total_time_running); 4144 } 4145 4146 /* 4147 * Write {count,id} tuples for every sibling. 4148 */ 4149 values[n++] += perf_event_count(leader); 4150 if (read_format & PERF_FORMAT_ID) 4151 values[n++] = primary_event_id(leader); 4152 4153 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4154 values[n++] += perf_event_count(sub); 4155 if (read_format & PERF_FORMAT_ID) 4156 values[n++] = primary_event_id(sub); 4157 } 4158 4159 return 0; 4160 } 4161 4162 static int perf_read_group(struct perf_event *event, 4163 u64 read_format, char __user *buf) 4164 { 4165 struct perf_event *leader = event->group_leader, *child; 4166 struct perf_event_context *ctx = leader->ctx; 4167 int ret; 4168 u64 *values; 4169 4170 lockdep_assert_held(&ctx->mutex); 4171 4172 values = kzalloc(event->read_size, GFP_KERNEL); 4173 if (!values) 4174 return -ENOMEM; 4175 4176 values[0] = 1 + leader->nr_siblings; 4177 4178 /* 4179 * By locking the child_mutex of the leader we effectively 4180 * lock the child list of all siblings.. XXX explain how. 4181 */ 4182 mutex_lock(&leader->child_mutex); 4183 4184 ret = __perf_read_group_add(leader, read_format, values); 4185 if (ret) 4186 goto unlock; 4187 4188 list_for_each_entry(child, &leader->child_list, child_list) { 4189 ret = __perf_read_group_add(child, read_format, values); 4190 if (ret) 4191 goto unlock; 4192 } 4193 4194 mutex_unlock(&leader->child_mutex); 4195 4196 ret = event->read_size; 4197 if (copy_to_user(buf, values, event->read_size)) 4198 ret = -EFAULT; 4199 goto out; 4200 4201 unlock: 4202 mutex_unlock(&leader->child_mutex); 4203 out: 4204 kfree(values); 4205 return ret; 4206 } 4207 4208 static int perf_read_one(struct perf_event *event, 4209 u64 read_format, char __user *buf) 4210 { 4211 u64 enabled, running; 4212 u64 values[4]; 4213 int n = 0; 4214 4215 values[n++] = perf_event_read_value(event, &enabled, &running); 4216 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4217 values[n++] = enabled; 4218 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4219 values[n++] = running; 4220 if (read_format & PERF_FORMAT_ID) 4221 values[n++] = primary_event_id(event); 4222 4223 if (copy_to_user(buf, values, n * sizeof(u64))) 4224 return -EFAULT; 4225 4226 return n * sizeof(u64); 4227 } 4228 4229 static bool is_event_hup(struct perf_event *event) 4230 { 4231 bool no_children; 4232 4233 if (event->state > PERF_EVENT_STATE_EXIT) 4234 return false; 4235 4236 mutex_lock(&event->child_mutex); 4237 no_children = list_empty(&event->child_list); 4238 mutex_unlock(&event->child_mutex); 4239 return no_children; 4240 } 4241 4242 /* 4243 * Read the performance event - simple non blocking version for now 4244 */ 4245 static ssize_t 4246 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4247 { 4248 u64 read_format = event->attr.read_format; 4249 int ret; 4250 4251 /* 4252 * Return end-of-file for a read on a event that is in 4253 * error state (i.e. because it was pinned but it couldn't be 4254 * scheduled on to the CPU at some point). 4255 */ 4256 if (event->state == PERF_EVENT_STATE_ERROR) 4257 return 0; 4258 4259 if (count < event->read_size) 4260 return -ENOSPC; 4261 4262 WARN_ON_ONCE(event->ctx->parent_ctx); 4263 if (read_format & PERF_FORMAT_GROUP) 4264 ret = perf_read_group(event, read_format, buf); 4265 else 4266 ret = perf_read_one(event, read_format, buf); 4267 4268 return ret; 4269 } 4270 4271 static ssize_t 4272 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4273 { 4274 struct perf_event *event = file->private_data; 4275 struct perf_event_context *ctx; 4276 int ret; 4277 4278 ctx = perf_event_ctx_lock(event); 4279 ret = __perf_read(event, buf, count); 4280 perf_event_ctx_unlock(event, ctx); 4281 4282 return ret; 4283 } 4284 4285 static unsigned int perf_poll(struct file *file, poll_table *wait) 4286 { 4287 struct perf_event *event = file->private_data; 4288 struct ring_buffer *rb; 4289 unsigned int events = POLLHUP; 4290 4291 poll_wait(file, &event->waitq, wait); 4292 4293 if (is_event_hup(event)) 4294 return events; 4295 4296 /* 4297 * Pin the event->rb by taking event->mmap_mutex; otherwise 4298 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4299 */ 4300 mutex_lock(&event->mmap_mutex); 4301 rb = event->rb; 4302 if (rb) 4303 events = atomic_xchg(&rb->poll, 0); 4304 mutex_unlock(&event->mmap_mutex); 4305 return events; 4306 } 4307 4308 static void _perf_event_reset(struct perf_event *event) 4309 { 4310 (void)perf_event_read(event, false); 4311 local64_set(&event->count, 0); 4312 perf_event_update_userpage(event); 4313 } 4314 4315 /* 4316 * Holding the top-level event's child_mutex means that any 4317 * descendant process that has inherited this event will block 4318 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4319 * task existence requirements of perf_event_enable/disable. 4320 */ 4321 static void perf_event_for_each_child(struct perf_event *event, 4322 void (*func)(struct perf_event *)) 4323 { 4324 struct perf_event *child; 4325 4326 WARN_ON_ONCE(event->ctx->parent_ctx); 4327 4328 mutex_lock(&event->child_mutex); 4329 func(event); 4330 list_for_each_entry(child, &event->child_list, child_list) 4331 func(child); 4332 mutex_unlock(&event->child_mutex); 4333 } 4334 4335 static void perf_event_for_each(struct perf_event *event, 4336 void (*func)(struct perf_event *)) 4337 { 4338 struct perf_event_context *ctx = event->ctx; 4339 struct perf_event *sibling; 4340 4341 lockdep_assert_held(&ctx->mutex); 4342 4343 event = event->group_leader; 4344 4345 perf_event_for_each_child(event, func); 4346 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4347 perf_event_for_each_child(sibling, func); 4348 } 4349 4350 static void __perf_event_period(struct perf_event *event, 4351 struct perf_cpu_context *cpuctx, 4352 struct perf_event_context *ctx, 4353 void *info) 4354 { 4355 u64 value = *((u64 *)info); 4356 bool active; 4357 4358 if (event->attr.freq) { 4359 event->attr.sample_freq = value; 4360 } else { 4361 event->attr.sample_period = value; 4362 event->hw.sample_period = value; 4363 } 4364 4365 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4366 if (active) { 4367 perf_pmu_disable(ctx->pmu); 4368 /* 4369 * We could be throttled; unthrottle now to avoid the tick 4370 * trying to unthrottle while we already re-started the event. 4371 */ 4372 if (event->hw.interrupts == MAX_INTERRUPTS) { 4373 event->hw.interrupts = 0; 4374 perf_log_throttle(event, 1); 4375 } 4376 event->pmu->stop(event, PERF_EF_UPDATE); 4377 } 4378 4379 local64_set(&event->hw.period_left, 0); 4380 4381 if (active) { 4382 event->pmu->start(event, PERF_EF_RELOAD); 4383 perf_pmu_enable(ctx->pmu); 4384 } 4385 } 4386 4387 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4388 { 4389 u64 value; 4390 4391 if (!is_sampling_event(event)) 4392 return -EINVAL; 4393 4394 if (copy_from_user(&value, arg, sizeof(value))) 4395 return -EFAULT; 4396 4397 if (!value) 4398 return -EINVAL; 4399 4400 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4401 return -EINVAL; 4402 4403 event_function_call(event, __perf_event_period, &value); 4404 4405 return 0; 4406 } 4407 4408 static const struct file_operations perf_fops; 4409 4410 static inline int perf_fget_light(int fd, struct fd *p) 4411 { 4412 struct fd f = fdget(fd); 4413 if (!f.file) 4414 return -EBADF; 4415 4416 if (f.file->f_op != &perf_fops) { 4417 fdput(f); 4418 return -EBADF; 4419 } 4420 *p = f; 4421 return 0; 4422 } 4423 4424 static int perf_event_set_output(struct perf_event *event, 4425 struct perf_event *output_event); 4426 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4427 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4428 4429 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4430 { 4431 void (*func)(struct perf_event *); 4432 u32 flags = arg; 4433 4434 switch (cmd) { 4435 case PERF_EVENT_IOC_ENABLE: 4436 func = _perf_event_enable; 4437 break; 4438 case PERF_EVENT_IOC_DISABLE: 4439 func = _perf_event_disable; 4440 break; 4441 case PERF_EVENT_IOC_RESET: 4442 func = _perf_event_reset; 4443 break; 4444 4445 case PERF_EVENT_IOC_REFRESH: 4446 return _perf_event_refresh(event, arg); 4447 4448 case PERF_EVENT_IOC_PERIOD: 4449 return perf_event_period(event, (u64 __user *)arg); 4450 4451 case PERF_EVENT_IOC_ID: 4452 { 4453 u64 id = primary_event_id(event); 4454 4455 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4456 return -EFAULT; 4457 return 0; 4458 } 4459 4460 case PERF_EVENT_IOC_SET_OUTPUT: 4461 { 4462 int ret; 4463 if (arg != -1) { 4464 struct perf_event *output_event; 4465 struct fd output; 4466 ret = perf_fget_light(arg, &output); 4467 if (ret) 4468 return ret; 4469 output_event = output.file->private_data; 4470 ret = perf_event_set_output(event, output_event); 4471 fdput(output); 4472 } else { 4473 ret = perf_event_set_output(event, NULL); 4474 } 4475 return ret; 4476 } 4477 4478 case PERF_EVENT_IOC_SET_FILTER: 4479 return perf_event_set_filter(event, (void __user *)arg); 4480 4481 case PERF_EVENT_IOC_SET_BPF: 4482 return perf_event_set_bpf_prog(event, arg); 4483 4484 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4485 struct ring_buffer *rb; 4486 4487 rcu_read_lock(); 4488 rb = rcu_dereference(event->rb); 4489 if (!rb || !rb->nr_pages) { 4490 rcu_read_unlock(); 4491 return -EINVAL; 4492 } 4493 rb_toggle_paused(rb, !!arg); 4494 rcu_read_unlock(); 4495 return 0; 4496 } 4497 default: 4498 return -ENOTTY; 4499 } 4500 4501 if (flags & PERF_IOC_FLAG_GROUP) 4502 perf_event_for_each(event, func); 4503 else 4504 perf_event_for_each_child(event, func); 4505 4506 return 0; 4507 } 4508 4509 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4510 { 4511 struct perf_event *event = file->private_data; 4512 struct perf_event_context *ctx; 4513 long ret; 4514 4515 ctx = perf_event_ctx_lock(event); 4516 ret = _perf_ioctl(event, cmd, arg); 4517 perf_event_ctx_unlock(event, ctx); 4518 4519 return ret; 4520 } 4521 4522 #ifdef CONFIG_COMPAT 4523 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4524 unsigned long arg) 4525 { 4526 switch (_IOC_NR(cmd)) { 4527 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4528 case _IOC_NR(PERF_EVENT_IOC_ID): 4529 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4530 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4531 cmd &= ~IOCSIZE_MASK; 4532 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4533 } 4534 break; 4535 } 4536 return perf_ioctl(file, cmd, arg); 4537 } 4538 #else 4539 # define perf_compat_ioctl NULL 4540 #endif 4541 4542 int perf_event_task_enable(void) 4543 { 4544 struct perf_event_context *ctx; 4545 struct perf_event *event; 4546 4547 mutex_lock(¤t->perf_event_mutex); 4548 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4549 ctx = perf_event_ctx_lock(event); 4550 perf_event_for_each_child(event, _perf_event_enable); 4551 perf_event_ctx_unlock(event, ctx); 4552 } 4553 mutex_unlock(¤t->perf_event_mutex); 4554 4555 return 0; 4556 } 4557 4558 int perf_event_task_disable(void) 4559 { 4560 struct perf_event_context *ctx; 4561 struct perf_event *event; 4562 4563 mutex_lock(¤t->perf_event_mutex); 4564 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4565 ctx = perf_event_ctx_lock(event); 4566 perf_event_for_each_child(event, _perf_event_disable); 4567 perf_event_ctx_unlock(event, ctx); 4568 } 4569 mutex_unlock(¤t->perf_event_mutex); 4570 4571 return 0; 4572 } 4573 4574 static int perf_event_index(struct perf_event *event) 4575 { 4576 if (event->hw.state & PERF_HES_STOPPED) 4577 return 0; 4578 4579 if (event->state != PERF_EVENT_STATE_ACTIVE) 4580 return 0; 4581 4582 return event->pmu->event_idx(event); 4583 } 4584 4585 static void calc_timer_values(struct perf_event *event, 4586 u64 *now, 4587 u64 *enabled, 4588 u64 *running) 4589 { 4590 u64 ctx_time; 4591 4592 *now = perf_clock(); 4593 ctx_time = event->shadow_ctx_time + *now; 4594 *enabled = ctx_time - event->tstamp_enabled; 4595 *running = ctx_time - event->tstamp_running; 4596 } 4597 4598 static void perf_event_init_userpage(struct perf_event *event) 4599 { 4600 struct perf_event_mmap_page *userpg; 4601 struct ring_buffer *rb; 4602 4603 rcu_read_lock(); 4604 rb = rcu_dereference(event->rb); 4605 if (!rb) 4606 goto unlock; 4607 4608 userpg = rb->user_page; 4609 4610 /* Allow new userspace to detect that bit 0 is deprecated */ 4611 userpg->cap_bit0_is_deprecated = 1; 4612 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4613 userpg->data_offset = PAGE_SIZE; 4614 userpg->data_size = perf_data_size(rb); 4615 4616 unlock: 4617 rcu_read_unlock(); 4618 } 4619 4620 void __weak arch_perf_update_userpage( 4621 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4622 { 4623 } 4624 4625 /* 4626 * Callers need to ensure there can be no nesting of this function, otherwise 4627 * the seqlock logic goes bad. We can not serialize this because the arch 4628 * code calls this from NMI context. 4629 */ 4630 void perf_event_update_userpage(struct perf_event *event) 4631 { 4632 struct perf_event_mmap_page *userpg; 4633 struct ring_buffer *rb; 4634 u64 enabled, running, now; 4635 4636 rcu_read_lock(); 4637 rb = rcu_dereference(event->rb); 4638 if (!rb) 4639 goto unlock; 4640 4641 /* 4642 * compute total_time_enabled, total_time_running 4643 * based on snapshot values taken when the event 4644 * was last scheduled in. 4645 * 4646 * we cannot simply called update_context_time() 4647 * because of locking issue as we can be called in 4648 * NMI context 4649 */ 4650 calc_timer_values(event, &now, &enabled, &running); 4651 4652 userpg = rb->user_page; 4653 /* 4654 * Disable preemption so as to not let the corresponding user-space 4655 * spin too long if we get preempted. 4656 */ 4657 preempt_disable(); 4658 ++userpg->lock; 4659 barrier(); 4660 userpg->index = perf_event_index(event); 4661 userpg->offset = perf_event_count(event); 4662 if (userpg->index) 4663 userpg->offset -= local64_read(&event->hw.prev_count); 4664 4665 userpg->time_enabled = enabled + 4666 atomic64_read(&event->child_total_time_enabled); 4667 4668 userpg->time_running = running + 4669 atomic64_read(&event->child_total_time_running); 4670 4671 arch_perf_update_userpage(event, userpg, now); 4672 4673 barrier(); 4674 ++userpg->lock; 4675 preempt_enable(); 4676 unlock: 4677 rcu_read_unlock(); 4678 } 4679 4680 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4681 { 4682 struct perf_event *event = vma->vm_file->private_data; 4683 struct ring_buffer *rb; 4684 int ret = VM_FAULT_SIGBUS; 4685 4686 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4687 if (vmf->pgoff == 0) 4688 ret = 0; 4689 return ret; 4690 } 4691 4692 rcu_read_lock(); 4693 rb = rcu_dereference(event->rb); 4694 if (!rb) 4695 goto unlock; 4696 4697 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4698 goto unlock; 4699 4700 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4701 if (!vmf->page) 4702 goto unlock; 4703 4704 get_page(vmf->page); 4705 vmf->page->mapping = vma->vm_file->f_mapping; 4706 vmf->page->index = vmf->pgoff; 4707 4708 ret = 0; 4709 unlock: 4710 rcu_read_unlock(); 4711 4712 return ret; 4713 } 4714 4715 static void ring_buffer_attach(struct perf_event *event, 4716 struct ring_buffer *rb) 4717 { 4718 struct ring_buffer *old_rb = NULL; 4719 unsigned long flags; 4720 4721 if (event->rb) { 4722 /* 4723 * Should be impossible, we set this when removing 4724 * event->rb_entry and wait/clear when adding event->rb_entry. 4725 */ 4726 WARN_ON_ONCE(event->rcu_pending); 4727 4728 old_rb = event->rb; 4729 spin_lock_irqsave(&old_rb->event_lock, flags); 4730 list_del_rcu(&event->rb_entry); 4731 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4732 4733 event->rcu_batches = get_state_synchronize_rcu(); 4734 event->rcu_pending = 1; 4735 } 4736 4737 if (rb) { 4738 if (event->rcu_pending) { 4739 cond_synchronize_rcu(event->rcu_batches); 4740 event->rcu_pending = 0; 4741 } 4742 4743 spin_lock_irqsave(&rb->event_lock, flags); 4744 list_add_rcu(&event->rb_entry, &rb->event_list); 4745 spin_unlock_irqrestore(&rb->event_lock, flags); 4746 } 4747 4748 rcu_assign_pointer(event->rb, rb); 4749 4750 if (old_rb) { 4751 ring_buffer_put(old_rb); 4752 /* 4753 * Since we detached before setting the new rb, so that we 4754 * could attach the new rb, we could have missed a wakeup. 4755 * Provide it now. 4756 */ 4757 wake_up_all(&event->waitq); 4758 } 4759 } 4760 4761 static void ring_buffer_wakeup(struct perf_event *event) 4762 { 4763 struct ring_buffer *rb; 4764 4765 rcu_read_lock(); 4766 rb = rcu_dereference(event->rb); 4767 if (rb) { 4768 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4769 wake_up_all(&event->waitq); 4770 } 4771 rcu_read_unlock(); 4772 } 4773 4774 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4775 { 4776 struct ring_buffer *rb; 4777 4778 rcu_read_lock(); 4779 rb = rcu_dereference(event->rb); 4780 if (rb) { 4781 if (!atomic_inc_not_zero(&rb->refcount)) 4782 rb = NULL; 4783 } 4784 rcu_read_unlock(); 4785 4786 return rb; 4787 } 4788 4789 void ring_buffer_put(struct ring_buffer *rb) 4790 { 4791 if (!atomic_dec_and_test(&rb->refcount)) 4792 return; 4793 4794 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4795 4796 call_rcu(&rb->rcu_head, rb_free_rcu); 4797 } 4798 4799 static void perf_mmap_open(struct vm_area_struct *vma) 4800 { 4801 struct perf_event *event = vma->vm_file->private_data; 4802 4803 atomic_inc(&event->mmap_count); 4804 atomic_inc(&event->rb->mmap_count); 4805 4806 if (vma->vm_pgoff) 4807 atomic_inc(&event->rb->aux_mmap_count); 4808 4809 if (event->pmu->event_mapped) 4810 event->pmu->event_mapped(event); 4811 } 4812 4813 static void perf_pmu_output_stop(struct perf_event *event); 4814 4815 /* 4816 * A buffer can be mmap()ed multiple times; either directly through the same 4817 * event, or through other events by use of perf_event_set_output(). 4818 * 4819 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4820 * the buffer here, where we still have a VM context. This means we need 4821 * to detach all events redirecting to us. 4822 */ 4823 static void perf_mmap_close(struct vm_area_struct *vma) 4824 { 4825 struct perf_event *event = vma->vm_file->private_data; 4826 4827 struct ring_buffer *rb = ring_buffer_get(event); 4828 struct user_struct *mmap_user = rb->mmap_user; 4829 int mmap_locked = rb->mmap_locked; 4830 unsigned long size = perf_data_size(rb); 4831 4832 if (event->pmu->event_unmapped) 4833 event->pmu->event_unmapped(event); 4834 4835 /* 4836 * rb->aux_mmap_count will always drop before rb->mmap_count and 4837 * event->mmap_count, so it is ok to use event->mmap_mutex to 4838 * serialize with perf_mmap here. 4839 */ 4840 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4841 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4842 /* 4843 * Stop all AUX events that are writing to this buffer, 4844 * so that we can free its AUX pages and corresponding PMU 4845 * data. Note that after rb::aux_mmap_count dropped to zero, 4846 * they won't start any more (see perf_aux_output_begin()). 4847 */ 4848 perf_pmu_output_stop(event); 4849 4850 /* now it's safe to free the pages */ 4851 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4852 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4853 4854 /* this has to be the last one */ 4855 rb_free_aux(rb); 4856 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 4857 4858 mutex_unlock(&event->mmap_mutex); 4859 } 4860 4861 atomic_dec(&rb->mmap_count); 4862 4863 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4864 goto out_put; 4865 4866 ring_buffer_attach(event, NULL); 4867 mutex_unlock(&event->mmap_mutex); 4868 4869 /* If there's still other mmap()s of this buffer, we're done. */ 4870 if (atomic_read(&rb->mmap_count)) 4871 goto out_put; 4872 4873 /* 4874 * No other mmap()s, detach from all other events that might redirect 4875 * into the now unreachable buffer. Somewhat complicated by the 4876 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4877 */ 4878 again: 4879 rcu_read_lock(); 4880 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4881 if (!atomic_long_inc_not_zero(&event->refcount)) { 4882 /* 4883 * This event is en-route to free_event() which will 4884 * detach it and remove it from the list. 4885 */ 4886 continue; 4887 } 4888 rcu_read_unlock(); 4889 4890 mutex_lock(&event->mmap_mutex); 4891 /* 4892 * Check we didn't race with perf_event_set_output() which can 4893 * swizzle the rb from under us while we were waiting to 4894 * acquire mmap_mutex. 4895 * 4896 * If we find a different rb; ignore this event, a next 4897 * iteration will no longer find it on the list. We have to 4898 * still restart the iteration to make sure we're not now 4899 * iterating the wrong list. 4900 */ 4901 if (event->rb == rb) 4902 ring_buffer_attach(event, NULL); 4903 4904 mutex_unlock(&event->mmap_mutex); 4905 put_event(event); 4906 4907 /* 4908 * Restart the iteration; either we're on the wrong list or 4909 * destroyed its integrity by doing a deletion. 4910 */ 4911 goto again; 4912 } 4913 rcu_read_unlock(); 4914 4915 /* 4916 * It could be there's still a few 0-ref events on the list; they'll 4917 * get cleaned up by free_event() -- they'll also still have their 4918 * ref on the rb and will free it whenever they are done with it. 4919 * 4920 * Aside from that, this buffer is 'fully' detached and unmapped, 4921 * undo the VM accounting. 4922 */ 4923 4924 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4925 vma->vm_mm->pinned_vm -= mmap_locked; 4926 free_uid(mmap_user); 4927 4928 out_put: 4929 ring_buffer_put(rb); /* could be last */ 4930 } 4931 4932 static const struct vm_operations_struct perf_mmap_vmops = { 4933 .open = perf_mmap_open, 4934 .close = perf_mmap_close, /* non mergable */ 4935 .fault = perf_mmap_fault, 4936 .page_mkwrite = perf_mmap_fault, 4937 }; 4938 4939 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4940 { 4941 struct perf_event *event = file->private_data; 4942 unsigned long user_locked, user_lock_limit; 4943 struct user_struct *user = current_user(); 4944 unsigned long locked, lock_limit; 4945 struct ring_buffer *rb = NULL; 4946 unsigned long vma_size; 4947 unsigned long nr_pages; 4948 long user_extra = 0, extra = 0; 4949 int ret = 0, flags = 0; 4950 4951 /* 4952 * Don't allow mmap() of inherited per-task counters. This would 4953 * create a performance issue due to all children writing to the 4954 * same rb. 4955 */ 4956 if (event->cpu == -1 && event->attr.inherit) 4957 return -EINVAL; 4958 4959 if (!(vma->vm_flags & VM_SHARED)) 4960 return -EINVAL; 4961 4962 vma_size = vma->vm_end - vma->vm_start; 4963 4964 if (vma->vm_pgoff == 0) { 4965 nr_pages = (vma_size / PAGE_SIZE) - 1; 4966 } else { 4967 /* 4968 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4969 * mapped, all subsequent mappings should have the same size 4970 * and offset. Must be above the normal perf buffer. 4971 */ 4972 u64 aux_offset, aux_size; 4973 4974 if (!event->rb) 4975 return -EINVAL; 4976 4977 nr_pages = vma_size / PAGE_SIZE; 4978 4979 mutex_lock(&event->mmap_mutex); 4980 ret = -EINVAL; 4981 4982 rb = event->rb; 4983 if (!rb) 4984 goto aux_unlock; 4985 4986 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4987 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4988 4989 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4990 goto aux_unlock; 4991 4992 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4993 goto aux_unlock; 4994 4995 /* already mapped with a different offset */ 4996 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4997 goto aux_unlock; 4998 4999 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5000 goto aux_unlock; 5001 5002 /* already mapped with a different size */ 5003 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5004 goto aux_unlock; 5005 5006 if (!is_power_of_2(nr_pages)) 5007 goto aux_unlock; 5008 5009 if (!atomic_inc_not_zero(&rb->mmap_count)) 5010 goto aux_unlock; 5011 5012 if (rb_has_aux(rb)) { 5013 atomic_inc(&rb->aux_mmap_count); 5014 ret = 0; 5015 goto unlock; 5016 } 5017 5018 atomic_set(&rb->aux_mmap_count, 1); 5019 user_extra = nr_pages; 5020 5021 goto accounting; 5022 } 5023 5024 /* 5025 * If we have rb pages ensure they're a power-of-two number, so we 5026 * can do bitmasks instead of modulo. 5027 */ 5028 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5029 return -EINVAL; 5030 5031 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5032 return -EINVAL; 5033 5034 WARN_ON_ONCE(event->ctx->parent_ctx); 5035 again: 5036 mutex_lock(&event->mmap_mutex); 5037 if (event->rb) { 5038 if (event->rb->nr_pages != nr_pages) { 5039 ret = -EINVAL; 5040 goto unlock; 5041 } 5042 5043 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5044 /* 5045 * Raced against perf_mmap_close() through 5046 * perf_event_set_output(). Try again, hope for better 5047 * luck. 5048 */ 5049 mutex_unlock(&event->mmap_mutex); 5050 goto again; 5051 } 5052 5053 goto unlock; 5054 } 5055 5056 user_extra = nr_pages + 1; 5057 5058 accounting: 5059 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5060 5061 /* 5062 * Increase the limit linearly with more CPUs: 5063 */ 5064 user_lock_limit *= num_online_cpus(); 5065 5066 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5067 5068 if (user_locked > user_lock_limit) 5069 extra = user_locked - user_lock_limit; 5070 5071 lock_limit = rlimit(RLIMIT_MEMLOCK); 5072 lock_limit >>= PAGE_SHIFT; 5073 locked = vma->vm_mm->pinned_vm + extra; 5074 5075 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5076 !capable(CAP_IPC_LOCK)) { 5077 ret = -EPERM; 5078 goto unlock; 5079 } 5080 5081 WARN_ON(!rb && event->rb); 5082 5083 if (vma->vm_flags & VM_WRITE) 5084 flags |= RING_BUFFER_WRITABLE; 5085 5086 if (!rb) { 5087 rb = rb_alloc(nr_pages, 5088 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5089 event->cpu, flags); 5090 5091 if (!rb) { 5092 ret = -ENOMEM; 5093 goto unlock; 5094 } 5095 5096 atomic_set(&rb->mmap_count, 1); 5097 rb->mmap_user = get_current_user(); 5098 rb->mmap_locked = extra; 5099 5100 ring_buffer_attach(event, rb); 5101 5102 perf_event_init_userpage(event); 5103 perf_event_update_userpage(event); 5104 } else { 5105 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5106 event->attr.aux_watermark, flags); 5107 if (!ret) 5108 rb->aux_mmap_locked = extra; 5109 } 5110 5111 unlock: 5112 if (!ret) { 5113 atomic_long_add(user_extra, &user->locked_vm); 5114 vma->vm_mm->pinned_vm += extra; 5115 5116 atomic_inc(&event->mmap_count); 5117 } else if (rb) { 5118 atomic_dec(&rb->mmap_count); 5119 } 5120 aux_unlock: 5121 mutex_unlock(&event->mmap_mutex); 5122 5123 /* 5124 * Since pinned accounting is per vm we cannot allow fork() to copy our 5125 * vma. 5126 */ 5127 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5128 vma->vm_ops = &perf_mmap_vmops; 5129 5130 if (event->pmu->event_mapped) 5131 event->pmu->event_mapped(event); 5132 5133 return ret; 5134 } 5135 5136 static int perf_fasync(int fd, struct file *filp, int on) 5137 { 5138 struct inode *inode = file_inode(filp); 5139 struct perf_event *event = filp->private_data; 5140 int retval; 5141 5142 inode_lock(inode); 5143 retval = fasync_helper(fd, filp, on, &event->fasync); 5144 inode_unlock(inode); 5145 5146 if (retval < 0) 5147 return retval; 5148 5149 return 0; 5150 } 5151 5152 static const struct file_operations perf_fops = { 5153 .llseek = no_llseek, 5154 .release = perf_release, 5155 .read = perf_read, 5156 .poll = perf_poll, 5157 .unlocked_ioctl = perf_ioctl, 5158 .compat_ioctl = perf_compat_ioctl, 5159 .mmap = perf_mmap, 5160 .fasync = perf_fasync, 5161 }; 5162 5163 /* 5164 * Perf event wakeup 5165 * 5166 * If there's data, ensure we set the poll() state and publish everything 5167 * to user-space before waking everybody up. 5168 */ 5169 5170 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5171 { 5172 /* only the parent has fasync state */ 5173 if (event->parent) 5174 event = event->parent; 5175 return &event->fasync; 5176 } 5177 5178 void perf_event_wakeup(struct perf_event *event) 5179 { 5180 ring_buffer_wakeup(event); 5181 5182 if (event->pending_kill) { 5183 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5184 event->pending_kill = 0; 5185 } 5186 } 5187 5188 static void perf_pending_event(struct irq_work *entry) 5189 { 5190 struct perf_event *event = container_of(entry, 5191 struct perf_event, pending); 5192 int rctx; 5193 5194 rctx = perf_swevent_get_recursion_context(); 5195 /* 5196 * If we 'fail' here, that's OK, it means recursion is already disabled 5197 * and we won't recurse 'further'. 5198 */ 5199 5200 if (event->pending_disable) { 5201 event->pending_disable = 0; 5202 perf_event_disable_local(event); 5203 } 5204 5205 if (event->pending_wakeup) { 5206 event->pending_wakeup = 0; 5207 perf_event_wakeup(event); 5208 } 5209 5210 if (rctx >= 0) 5211 perf_swevent_put_recursion_context(rctx); 5212 } 5213 5214 /* 5215 * We assume there is only KVM supporting the callbacks. 5216 * Later on, we might change it to a list if there is 5217 * another virtualization implementation supporting the callbacks. 5218 */ 5219 struct perf_guest_info_callbacks *perf_guest_cbs; 5220 5221 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5222 { 5223 perf_guest_cbs = cbs; 5224 return 0; 5225 } 5226 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5227 5228 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5229 { 5230 perf_guest_cbs = NULL; 5231 return 0; 5232 } 5233 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5234 5235 static void 5236 perf_output_sample_regs(struct perf_output_handle *handle, 5237 struct pt_regs *regs, u64 mask) 5238 { 5239 int bit; 5240 5241 for_each_set_bit(bit, (const unsigned long *) &mask, 5242 sizeof(mask) * BITS_PER_BYTE) { 5243 u64 val; 5244 5245 val = perf_reg_value(regs, bit); 5246 perf_output_put(handle, val); 5247 } 5248 } 5249 5250 static void perf_sample_regs_user(struct perf_regs *regs_user, 5251 struct pt_regs *regs, 5252 struct pt_regs *regs_user_copy) 5253 { 5254 if (user_mode(regs)) { 5255 regs_user->abi = perf_reg_abi(current); 5256 regs_user->regs = regs; 5257 } else if (current->mm) { 5258 perf_get_regs_user(regs_user, regs, regs_user_copy); 5259 } else { 5260 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5261 regs_user->regs = NULL; 5262 } 5263 } 5264 5265 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5266 struct pt_regs *regs) 5267 { 5268 regs_intr->regs = regs; 5269 regs_intr->abi = perf_reg_abi(current); 5270 } 5271 5272 5273 /* 5274 * Get remaining task size from user stack pointer. 5275 * 5276 * It'd be better to take stack vma map and limit this more 5277 * precisly, but there's no way to get it safely under interrupt, 5278 * so using TASK_SIZE as limit. 5279 */ 5280 static u64 perf_ustack_task_size(struct pt_regs *regs) 5281 { 5282 unsigned long addr = perf_user_stack_pointer(regs); 5283 5284 if (!addr || addr >= TASK_SIZE) 5285 return 0; 5286 5287 return TASK_SIZE - addr; 5288 } 5289 5290 static u16 5291 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5292 struct pt_regs *regs) 5293 { 5294 u64 task_size; 5295 5296 /* No regs, no stack pointer, no dump. */ 5297 if (!regs) 5298 return 0; 5299 5300 /* 5301 * Check if we fit in with the requested stack size into the: 5302 * - TASK_SIZE 5303 * If we don't, we limit the size to the TASK_SIZE. 5304 * 5305 * - remaining sample size 5306 * If we don't, we customize the stack size to 5307 * fit in to the remaining sample size. 5308 */ 5309 5310 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5311 stack_size = min(stack_size, (u16) task_size); 5312 5313 /* Current header size plus static size and dynamic size. */ 5314 header_size += 2 * sizeof(u64); 5315 5316 /* Do we fit in with the current stack dump size? */ 5317 if ((u16) (header_size + stack_size) < header_size) { 5318 /* 5319 * If we overflow the maximum size for the sample, 5320 * we customize the stack dump size to fit in. 5321 */ 5322 stack_size = USHRT_MAX - header_size - sizeof(u64); 5323 stack_size = round_up(stack_size, sizeof(u64)); 5324 } 5325 5326 return stack_size; 5327 } 5328 5329 static void 5330 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5331 struct pt_regs *regs) 5332 { 5333 /* Case of a kernel thread, nothing to dump */ 5334 if (!regs) { 5335 u64 size = 0; 5336 perf_output_put(handle, size); 5337 } else { 5338 unsigned long sp; 5339 unsigned int rem; 5340 u64 dyn_size; 5341 5342 /* 5343 * We dump: 5344 * static size 5345 * - the size requested by user or the best one we can fit 5346 * in to the sample max size 5347 * data 5348 * - user stack dump data 5349 * dynamic size 5350 * - the actual dumped size 5351 */ 5352 5353 /* Static size. */ 5354 perf_output_put(handle, dump_size); 5355 5356 /* Data. */ 5357 sp = perf_user_stack_pointer(regs); 5358 rem = __output_copy_user(handle, (void *) sp, dump_size); 5359 dyn_size = dump_size - rem; 5360 5361 perf_output_skip(handle, rem); 5362 5363 /* Dynamic size. */ 5364 perf_output_put(handle, dyn_size); 5365 } 5366 } 5367 5368 static void __perf_event_header__init_id(struct perf_event_header *header, 5369 struct perf_sample_data *data, 5370 struct perf_event *event) 5371 { 5372 u64 sample_type = event->attr.sample_type; 5373 5374 data->type = sample_type; 5375 header->size += event->id_header_size; 5376 5377 if (sample_type & PERF_SAMPLE_TID) { 5378 /* namespace issues */ 5379 data->tid_entry.pid = perf_event_pid(event, current); 5380 data->tid_entry.tid = perf_event_tid(event, current); 5381 } 5382 5383 if (sample_type & PERF_SAMPLE_TIME) 5384 data->time = perf_event_clock(event); 5385 5386 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5387 data->id = primary_event_id(event); 5388 5389 if (sample_type & PERF_SAMPLE_STREAM_ID) 5390 data->stream_id = event->id; 5391 5392 if (sample_type & PERF_SAMPLE_CPU) { 5393 data->cpu_entry.cpu = raw_smp_processor_id(); 5394 data->cpu_entry.reserved = 0; 5395 } 5396 } 5397 5398 void perf_event_header__init_id(struct perf_event_header *header, 5399 struct perf_sample_data *data, 5400 struct perf_event *event) 5401 { 5402 if (event->attr.sample_id_all) 5403 __perf_event_header__init_id(header, data, event); 5404 } 5405 5406 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5407 struct perf_sample_data *data) 5408 { 5409 u64 sample_type = data->type; 5410 5411 if (sample_type & PERF_SAMPLE_TID) 5412 perf_output_put(handle, data->tid_entry); 5413 5414 if (sample_type & PERF_SAMPLE_TIME) 5415 perf_output_put(handle, data->time); 5416 5417 if (sample_type & PERF_SAMPLE_ID) 5418 perf_output_put(handle, data->id); 5419 5420 if (sample_type & PERF_SAMPLE_STREAM_ID) 5421 perf_output_put(handle, data->stream_id); 5422 5423 if (sample_type & PERF_SAMPLE_CPU) 5424 perf_output_put(handle, data->cpu_entry); 5425 5426 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5427 perf_output_put(handle, data->id); 5428 } 5429 5430 void perf_event__output_id_sample(struct perf_event *event, 5431 struct perf_output_handle *handle, 5432 struct perf_sample_data *sample) 5433 { 5434 if (event->attr.sample_id_all) 5435 __perf_event__output_id_sample(handle, sample); 5436 } 5437 5438 static void perf_output_read_one(struct perf_output_handle *handle, 5439 struct perf_event *event, 5440 u64 enabled, u64 running) 5441 { 5442 u64 read_format = event->attr.read_format; 5443 u64 values[4]; 5444 int n = 0; 5445 5446 values[n++] = perf_event_count(event); 5447 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5448 values[n++] = enabled + 5449 atomic64_read(&event->child_total_time_enabled); 5450 } 5451 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5452 values[n++] = running + 5453 atomic64_read(&event->child_total_time_running); 5454 } 5455 if (read_format & PERF_FORMAT_ID) 5456 values[n++] = primary_event_id(event); 5457 5458 __output_copy(handle, values, n * sizeof(u64)); 5459 } 5460 5461 /* 5462 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5463 */ 5464 static void perf_output_read_group(struct perf_output_handle *handle, 5465 struct perf_event *event, 5466 u64 enabled, u64 running) 5467 { 5468 struct perf_event *leader = event->group_leader, *sub; 5469 u64 read_format = event->attr.read_format; 5470 u64 values[5]; 5471 int n = 0; 5472 5473 values[n++] = 1 + leader->nr_siblings; 5474 5475 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5476 values[n++] = enabled; 5477 5478 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5479 values[n++] = running; 5480 5481 if (leader != event) 5482 leader->pmu->read(leader); 5483 5484 values[n++] = perf_event_count(leader); 5485 if (read_format & PERF_FORMAT_ID) 5486 values[n++] = primary_event_id(leader); 5487 5488 __output_copy(handle, values, n * sizeof(u64)); 5489 5490 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5491 n = 0; 5492 5493 if ((sub != event) && 5494 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5495 sub->pmu->read(sub); 5496 5497 values[n++] = perf_event_count(sub); 5498 if (read_format & PERF_FORMAT_ID) 5499 values[n++] = primary_event_id(sub); 5500 5501 __output_copy(handle, values, n * sizeof(u64)); 5502 } 5503 } 5504 5505 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5506 PERF_FORMAT_TOTAL_TIME_RUNNING) 5507 5508 static void perf_output_read(struct perf_output_handle *handle, 5509 struct perf_event *event) 5510 { 5511 u64 enabled = 0, running = 0, now; 5512 u64 read_format = event->attr.read_format; 5513 5514 /* 5515 * compute total_time_enabled, total_time_running 5516 * based on snapshot values taken when the event 5517 * was last scheduled in. 5518 * 5519 * we cannot simply called update_context_time() 5520 * because of locking issue as we are called in 5521 * NMI context 5522 */ 5523 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5524 calc_timer_values(event, &now, &enabled, &running); 5525 5526 if (event->attr.read_format & PERF_FORMAT_GROUP) 5527 perf_output_read_group(handle, event, enabled, running); 5528 else 5529 perf_output_read_one(handle, event, enabled, running); 5530 } 5531 5532 void perf_output_sample(struct perf_output_handle *handle, 5533 struct perf_event_header *header, 5534 struct perf_sample_data *data, 5535 struct perf_event *event) 5536 { 5537 u64 sample_type = data->type; 5538 5539 perf_output_put(handle, *header); 5540 5541 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5542 perf_output_put(handle, data->id); 5543 5544 if (sample_type & PERF_SAMPLE_IP) 5545 perf_output_put(handle, data->ip); 5546 5547 if (sample_type & PERF_SAMPLE_TID) 5548 perf_output_put(handle, data->tid_entry); 5549 5550 if (sample_type & PERF_SAMPLE_TIME) 5551 perf_output_put(handle, data->time); 5552 5553 if (sample_type & PERF_SAMPLE_ADDR) 5554 perf_output_put(handle, data->addr); 5555 5556 if (sample_type & PERF_SAMPLE_ID) 5557 perf_output_put(handle, data->id); 5558 5559 if (sample_type & PERF_SAMPLE_STREAM_ID) 5560 perf_output_put(handle, data->stream_id); 5561 5562 if (sample_type & PERF_SAMPLE_CPU) 5563 perf_output_put(handle, data->cpu_entry); 5564 5565 if (sample_type & PERF_SAMPLE_PERIOD) 5566 perf_output_put(handle, data->period); 5567 5568 if (sample_type & PERF_SAMPLE_READ) 5569 perf_output_read(handle, event); 5570 5571 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5572 if (data->callchain) { 5573 int size = 1; 5574 5575 if (data->callchain) 5576 size += data->callchain->nr; 5577 5578 size *= sizeof(u64); 5579 5580 __output_copy(handle, data->callchain, size); 5581 } else { 5582 u64 nr = 0; 5583 perf_output_put(handle, nr); 5584 } 5585 } 5586 5587 if (sample_type & PERF_SAMPLE_RAW) { 5588 if (data->raw) { 5589 u32 raw_size = data->raw->size; 5590 u32 real_size = round_up(raw_size + sizeof(u32), 5591 sizeof(u64)) - sizeof(u32); 5592 u64 zero = 0; 5593 5594 perf_output_put(handle, real_size); 5595 __output_copy(handle, data->raw->data, raw_size); 5596 if (real_size - raw_size) 5597 __output_copy(handle, &zero, real_size - raw_size); 5598 } else { 5599 struct { 5600 u32 size; 5601 u32 data; 5602 } raw = { 5603 .size = sizeof(u32), 5604 .data = 0, 5605 }; 5606 perf_output_put(handle, raw); 5607 } 5608 } 5609 5610 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5611 if (data->br_stack) { 5612 size_t size; 5613 5614 size = data->br_stack->nr 5615 * sizeof(struct perf_branch_entry); 5616 5617 perf_output_put(handle, data->br_stack->nr); 5618 perf_output_copy(handle, data->br_stack->entries, size); 5619 } else { 5620 /* 5621 * we always store at least the value of nr 5622 */ 5623 u64 nr = 0; 5624 perf_output_put(handle, nr); 5625 } 5626 } 5627 5628 if (sample_type & PERF_SAMPLE_REGS_USER) { 5629 u64 abi = data->regs_user.abi; 5630 5631 /* 5632 * If there are no regs to dump, notice it through 5633 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5634 */ 5635 perf_output_put(handle, abi); 5636 5637 if (abi) { 5638 u64 mask = event->attr.sample_regs_user; 5639 perf_output_sample_regs(handle, 5640 data->regs_user.regs, 5641 mask); 5642 } 5643 } 5644 5645 if (sample_type & PERF_SAMPLE_STACK_USER) { 5646 perf_output_sample_ustack(handle, 5647 data->stack_user_size, 5648 data->regs_user.regs); 5649 } 5650 5651 if (sample_type & PERF_SAMPLE_WEIGHT) 5652 perf_output_put(handle, data->weight); 5653 5654 if (sample_type & PERF_SAMPLE_DATA_SRC) 5655 perf_output_put(handle, data->data_src.val); 5656 5657 if (sample_type & PERF_SAMPLE_TRANSACTION) 5658 perf_output_put(handle, data->txn); 5659 5660 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5661 u64 abi = data->regs_intr.abi; 5662 /* 5663 * If there are no regs to dump, notice it through 5664 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5665 */ 5666 perf_output_put(handle, abi); 5667 5668 if (abi) { 5669 u64 mask = event->attr.sample_regs_intr; 5670 5671 perf_output_sample_regs(handle, 5672 data->regs_intr.regs, 5673 mask); 5674 } 5675 } 5676 5677 if (!event->attr.watermark) { 5678 int wakeup_events = event->attr.wakeup_events; 5679 5680 if (wakeup_events) { 5681 struct ring_buffer *rb = handle->rb; 5682 int events = local_inc_return(&rb->events); 5683 5684 if (events >= wakeup_events) { 5685 local_sub(wakeup_events, &rb->events); 5686 local_inc(&rb->wakeup); 5687 } 5688 } 5689 } 5690 } 5691 5692 void perf_prepare_sample(struct perf_event_header *header, 5693 struct perf_sample_data *data, 5694 struct perf_event *event, 5695 struct pt_regs *regs) 5696 { 5697 u64 sample_type = event->attr.sample_type; 5698 5699 header->type = PERF_RECORD_SAMPLE; 5700 header->size = sizeof(*header) + event->header_size; 5701 5702 header->misc = 0; 5703 header->misc |= perf_misc_flags(regs); 5704 5705 __perf_event_header__init_id(header, data, event); 5706 5707 if (sample_type & PERF_SAMPLE_IP) 5708 data->ip = perf_instruction_pointer(regs); 5709 5710 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5711 int size = 1; 5712 5713 data->callchain = perf_callchain(event, regs); 5714 5715 if (data->callchain) 5716 size += data->callchain->nr; 5717 5718 header->size += size * sizeof(u64); 5719 } 5720 5721 if (sample_type & PERF_SAMPLE_RAW) { 5722 int size = sizeof(u32); 5723 5724 if (data->raw) 5725 size += data->raw->size; 5726 else 5727 size += sizeof(u32); 5728 5729 header->size += round_up(size, sizeof(u64)); 5730 } 5731 5732 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5733 int size = sizeof(u64); /* nr */ 5734 if (data->br_stack) { 5735 size += data->br_stack->nr 5736 * sizeof(struct perf_branch_entry); 5737 } 5738 header->size += size; 5739 } 5740 5741 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5742 perf_sample_regs_user(&data->regs_user, regs, 5743 &data->regs_user_copy); 5744 5745 if (sample_type & PERF_SAMPLE_REGS_USER) { 5746 /* regs dump ABI info */ 5747 int size = sizeof(u64); 5748 5749 if (data->regs_user.regs) { 5750 u64 mask = event->attr.sample_regs_user; 5751 size += hweight64(mask) * sizeof(u64); 5752 } 5753 5754 header->size += size; 5755 } 5756 5757 if (sample_type & PERF_SAMPLE_STACK_USER) { 5758 /* 5759 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5760 * processed as the last one or have additional check added 5761 * in case new sample type is added, because we could eat 5762 * up the rest of the sample size. 5763 */ 5764 u16 stack_size = event->attr.sample_stack_user; 5765 u16 size = sizeof(u64); 5766 5767 stack_size = perf_sample_ustack_size(stack_size, header->size, 5768 data->regs_user.regs); 5769 5770 /* 5771 * If there is something to dump, add space for the dump 5772 * itself and for the field that tells the dynamic size, 5773 * which is how many have been actually dumped. 5774 */ 5775 if (stack_size) 5776 size += sizeof(u64) + stack_size; 5777 5778 data->stack_user_size = stack_size; 5779 header->size += size; 5780 } 5781 5782 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5783 /* regs dump ABI info */ 5784 int size = sizeof(u64); 5785 5786 perf_sample_regs_intr(&data->regs_intr, regs); 5787 5788 if (data->regs_intr.regs) { 5789 u64 mask = event->attr.sample_regs_intr; 5790 5791 size += hweight64(mask) * sizeof(u64); 5792 } 5793 5794 header->size += size; 5795 } 5796 } 5797 5798 static void __always_inline 5799 __perf_event_output(struct perf_event *event, 5800 struct perf_sample_data *data, 5801 struct pt_regs *regs, 5802 int (*output_begin)(struct perf_output_handle *, 5803 struct perf_event *, 5804 unsigned int)) 5805 { 5806 struct perf_output_handle handle; 5807 struct perf_event_header header; 5808 5809 /* protect the callchain buffers */ 5810 rcu_read_lock(); 5811 5812 perf_prepare_sample(&header, data, event, regs); 5813 5814 if (output_begin(&handle, event, header.size)) 5815 goto exit; 5816 5817 perf_output_sample(&handle, &header, data, event); 5818 5819 perf_output_end(&handle); 5820 5821 exit: 5822 rcu_read_unlock(); 5823 } 5824 5825 void 5826 perf_event_output_forward(struct perf_event *event, 5827 struct perf_sample_data *data, 5828 struct pt_regs *regs) 5829 { 5830 __perf_event_output(event, data, regs, perf_output_begin_forward); 5831 } 5832 5833 void 5834 perf_event_output_backward(struct perf_event *event, 5835 struct perf_sample_data *data, 5836 struct pt_regs *regs) 5837 { 5838 __perf_event_output(event, data, regs, perf_output_begin_backward); 5839 } 5840 5841 void 5842 perf_event_output(struct perf_event *event, 5843 struct perf_sample_data *data, 5844 struct pt_regs *regs) 5845 { 5846 __perf_event_output(event, data, regs, perf_output_begin); 5847 } 5848 5849 /* 5850 * read event_id 5851 */ 5852 5853 struct perf_read_event { 5854 struct perf_event_header header; 5855 5856 u32 pid; 5857 u32 tid; 5858 }; 5859 5860 static void 5861 perf_event_read_event(struct perf_event *event, 5862 struct task_struct *task) 5863 { 5864 struct perf_output_handle handle; 5865 struct perf_sample_data sample; 5866 struct perf_read_event read_event = { 5867 .header = { 5868 .type = PERF_RECORD_READ, 5869 .misc = 0, 5870 .size = sizeof(read_event) + event->read_size, 5871 }, 5872 .pid = perf_event_pid(event, task), 5873 .tid = perf_event_tid(event, task), 5874 }; 5875 int ret; 5876 5877 perf_event_header__init_id(&read_event.header, &sample, event); 5878 ret = perf_output_begin(&handle, event, read_event.header.size); 5879 if (ret) 5880 return; 5881 5882 perf_output_put(&handle, read_event); 5883 perf_output_read(&handle, event); 5884 perf_event__output_id_sample(event, &handle, &sample); 5885 5886 perf_output_end(&handle); 5887 } 5888 5889 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 5890 5891 static void 5892 perf_iterate_ctx(struct perf_event_context *ctx, 5893 perf_iterate_f output, 5894 void *data, bool all) 5895 { 5896 struct perf_event *event; 5897 5898 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5899 if (!all) { 5900 if (event->state < PERF_EVENT_STATE_INACTIVE) 5901 continue; 5902 if (!event_filter_match(event)) 5903 continue; 5904 } 5905 5906 output(event, data); 5907 } 5908 } 5909 5910 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 5911 { 5912 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 5913 struct perf_event *event; 5914 5915 list_for_each_entry_rcu(event, &pel->list, sb_list) { 5916 if (event->state < PERF_EVENT_STATE_INACTIVE) 5917 continue; 5918 if (!event_filter_match(event)) 5919 continue; 5920 output(event, data); 5921 } 5922 } 5923 5924 /* 5925 * Iterate all events that need to receive side-band events. 5926 * 5927 * For new callers; ensure that account_pmu_sb_event() includes 5928 * your event, otherwise it might not get delivered. 5929 */ 5930 static void 5931 perf_iterate_sb(perf_iterate_f output, void *data, 5932 struct perf_event_context *task_ctx) 5933 { 5934 struct perf_event_context *ctx; 5935 int ctxn; 5936 5937 rcu_read_lock(); 5938 preempt_disable(); 5939 5940 /* 5941 * If we have task_ctx != NULL we only notify the task context itself. 5942 * The task_ctx is set only for EXIT events before releasing task 5943 * context. 5944 */ 5945 if (task_ctx) { 5946 perf_iterate_ctx(task_ctx, output, data, false); 5947 goto done; 5948 } 5949 5950 perf_iterate_sb_cpu(output, data); 5951 5952 for_each_task_context_nr(ctxn) { 5953 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5954 if (ctx) 5955 perf_iterate_ctx(ctx, output, data, false); 5956 } 5957 done: 5958 preempt_enable(); 5959 rcu_read_unlock(); 5960 } 5961 5962 /* 5963 * Clear all file-based filters at exec, they'll have to be 5964 * re-instated when/if these objects are mmapped again. 5965 */ 5966 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 5967 { 5968 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 5969 struct perf_addr_filter *filter; 5970 unsigned int restart = 0, count = 0; 5971 unsigned long flags; 5972 5973 if (!has_addr_filter(event)) 5974 return; 5975 5976 raw_spin_lock_irqsave(&ifh->lock, flags); 5977 list_for_each_entry(filter, &ifh->list, entry) { 5978 if (filter->inode) { 5979 event->addr_filters_offs[count] = 0; 5980 restart++; 5981 } 5982 5983 count++; 5984 } 5985 5986 if (restart) 5987 event->addr_filters_gen++; 5988 raw_spin_unlock_irqrestore(&ifh->lock, flags); 5989 5990 if (restart) 5991 perf_event_restart(event); 5992 } 5993 5994 void perf_event_exec(void) 5995 { 5996 struct perf_event_context *ctx; 5997 int ctxn; 5998 5999 rcu_read_lock(); 6000 for_each_task_context_nr(ctxn) { 6001 ctx = current->perf_event_ctxp[ctxn]; 6002 if (!ctx) 6003 continue; 6004 6005 perf_event_enable_on_exec(ctxn); 6006 6007 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6008 true); 6009 } 6010 rcu_read_unlock(); 6011 } 6012 6013 struct remote_output { 6014 struct ring_buffer *rb; 6015 int err; 6016 }; 6017 6018 static void __perf_event_output_stop(struct perf_event *event, void *data) 6019 { 6020 struct perf_event *parent = event->parent; 6021 struct remote_output *ro = data; 6022 struct ring_buffer *rb = ro->rb; 6023 struct stop_event_data sd = { 6024 .event = event, 6025 }; 6026 6027 if (!has_aux(event)) 6028 return; 6029 6030 if (!parent) 6031 parent = event; 6032 6033 /* 6034 * In case of inheritance, it will be the parent that links to the 6035 * ring-buffer, but it will be the child that's actually using it: 6036 */ 6037 if (rcu_dereference(parent->rb) == rb) 6038 ro->err = __perf_event_stop(&sd); 6039 } 6040 6041 static int __perf_pmu_output_stop(void *info) 6042 { 6043 struct perf_event *event = info; 6044 struct pmu *pmu = event->pmu; 6045 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 6046 struct remote_output ro = { 6047 .rb = event->rb, 6048 }; 6049 6050 rcu_read_lock(); 6051 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6052 if (cpuctx->task_ctx) 6053 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6054 &ro, false); 6055 rcu_read_unlock(); 6056 6057 return ro.err; 6058 } 6059 6060 static void perf_pmu_output_stop(struct perf_event *event) 6061 { 6062 struct perf_event *iter; 6063 int err, cpu; 6064 6065 restart: 6066 rcu_read_lock(); 6067 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6068 /* 6069 * For per-CPU events, we need to make sure that neither they 6070 * nor their children are running; for cpu==-1 events it's 6071 * sufficient to stop the event itself if it's active, since 6072 * it can't have children. 6073 */ 6074 cpu = iter->cpu; 6075 if (cpu == -1) 6076 cpu = READ_ONCE(iter->oncpu); 6077 6078 if (cpu == -1) 6079 continue; 6080 6081 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6082 if (err == -EAGAIN) { 6083 rcu_read_unlock(); 6084 goto restart; 6085 } 6086 } 6087 rcu_read_unlock(); 6088 } 6089 6090 /* 6091 * task tracking -- fork/exit 6092 * 6093 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6094 */ 6095 6096 struct perf_task_event { 6097 struct task_struct *task; 6098 struct perf_event_context *task_ctx; 6099 6100 struct { 6101 struct perf_event_header header; 6102 6103 u32 pid; 6104 u32 ppid; 6105 u32 tid; 6106 u32 ptid; 6107 u64 time; 6108 } event_id; 6109 }; 6110 6111 static int perf_event_task_match(struct perf_event *event) 6112 { 6113 return event->attr.comm || event->attr.mmap || 6114 event->attr.mmap2 || event->attr.mmap_data || 6115 event->attr.task; 6116 } 6117 6118 static void perf_event_task_output(struct perf_event *event, 6119 void *data) 6120 { 6121 struct perf_task_event *task_event = data; 6122 struct perf_output_handle handle; 6123 struct perf_sample_data sample; 6124 struct task_struct *task = task_event->task; 6125 int ret, size = task_event->event_id.header.size; 6126 6127 if (!perf_event_task_match(event)) 6128 return; 6129 6130 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6131 6132 ret = perf_output_begin(&handle, event, 6133 task_event->event_id.header.size); 6134 if (ret) 6135 goto out; 6136 6137 task_event->event_id.pid = perf_event_pid(event, task); 6138 task_event->event_id.ppid = perf_event_pid(event, current); 6139 6140 task_event->event_id.tid = perf_event_tid(event, task); 6141 task_event->event_id.ptid = perf_event_tid(event, current); 6142 6143 task_event->event_id.time = perf_event_clock(event); 6144 6145 perf_output_put(&handle, task_event->event_id); 6146 6147 perf_event__output_id_sample(event, &handle, &sample); 6148 6149 perf_output_end(&handle); 6150 out: 6151 task_event->event_id.header.size = size; 6152 } 6153 6154 static void perf_event_task(struct task_struct *task, 6155 struct perf_event_context *task_ctx, 6156 int new) 6157 { 6158 struct perf_task_event task_event; 6159 6160 if (!atomic_read(&nr_comm_events) && 6161 !atomic_read(&nr_mmap_events) && 6162 !atomic_read(&nr_task_events)) 6163 return; 6164 6165 task_event = (struct perf_task_event){ 6166 .task = task, 6167 .task_ctx = task_ctx, 6168 .event_id = { 6169 .header = { 6170 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6171 .misc = 0, 6172 .size = sizeof(task_event.event_id), 6173 }, 6174 /* .pid */ 6175 /* .ppid */ 6176 /* .tid */ 6177 /* .ptid */ 6178 /* .time */ 6179 }, 6180 }; 6181 6182 perf_iterate_sb(perf_event_task_output, 6183 &task_event, 6184 task_ctx); 6185 } 6186 6187 void perf_event_fork(struct task_struct *task) 6188 { 6189 perf_event_task(task, NULL, 1); 6190 } 6191 6192 /* 6193 * comm tracking 6194 */ 6195 6196 struct perf_comm_event { 6197 struct task_struct *task; 6198 char *comm; 6199 int comm_size; 6200 6201 struct { 6202 struct perf_event_header header; 6203 6204 u32 pid; 6205 u32 tid; 6206 } event_id; 6207 }; 6208 6209 static int perf_event_comm_match(struct perf_event *event) 6210 { 6211 return event->attr.comm; 6212 } 6213 6214 static void perf_event_comm_output(struct perf_event *event, 6215 void *data) 6216 { 6217 struct perf_comm_event *comm_event = data; 6218 struct perf_output_handle handle; 6219 struct perf_sample_data sample; 6220 int size = comm_event->event_id.header.size; 6221 int ret; 6222 6223 if (!perf_event_comm_match(event)) 6224 return; 6225 6226 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6227 ret = perf_output_begin(&handle, event, 6228 comm_event->event_id.header.size); 6229 6230 if (ret) 6231 goto out; 6232 6233 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6234 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6235 6236 perf_output_put(&handle, comm_event->event_id); 6237 __output_copy(&handle, comm_event->comm, 6238 comm_event->comm_size); 6239 6240 perf_event__output_id_sample(event, &handle, &sample); 6241 6242 perf_output_end(&handle); 6243 out: 6244 comm_event->event_id.header.size = size; 6245 } 6246 6247 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6248 { 6249 char comm[TASK_COMM_LEN]; 6250 unsigned int size; 6251 6252 memset(comm, 0, sizeof(comm)); 6253 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6254 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6255 6256 comm_event->comm = comm; 6257 comm_event->comm_size = size; 6258 6259 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6260 6261 perf_iterate_sb(perf_event_comm_output, 6262 comm_event, 6263 NULL); 6264 } 6265 6266 void perf_event_comm(struct task_struct *task, bool exec) 6267 { 6268 struct perf_comm_event comm_event; 6269 6270 if (!atomic_read(&nr_comm_events)) 6271 return; 6272 6273 comm_event = (struct perf_comm_event){ 6274 .task = task, 6275 /* .comm */ 6276 /* .comm_size */ 6277 .event_id = { 6278 .header = { 6279 .type = PERF_RECORD_COMM, 6280 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6281 /* .size */ 6282 }, 6283 /* .pid */ 6284 /* .tid */ 6285 }, 6286 }; 6287 6288 perf_event_comm_event(&comm_event); 6289 } 6290 6291 /* 6292 * mmap tracking 6293 */ 6294 6295 struct perf_mmap_event { 6296 struct vm_area_struct *vma; 6297 6298 const char *file_name; 6299 int file_size; 6300 int maj, min; 6301 u64 ino; 6302 u64 ino_generation; 6303 u32 prot, flags; 6304 6305 struct { 6306 struct perf_event_header header; 6307 6308 u32 pid; 6309 u32 tid; 6310 u64 start; 6311 u64 len; 6312 u64 pgoff; 6313 } event_id; 6314 }; 6315 6316 static int perf_event_mmap_match(struct perf_event *event, 6317 void *data) 6318 { 6319 struct perf_mmap_event *mmap_event = data; 6320 struct vm_area_struct *vma = mmap_event->vma; 6321 int executable = vma->vm_flags & VM_EXEC; 6322 6323 return (!executable && event->attr.mmap_data) || 6324 (executable && (event->attr.mmap || event->attr.mmap2)); 6325 } 6326 6327 static void perf_event_mmap_output(struct perf_event *event, 6328 void *data) 6329 { 6330 struct perf_mmap_event *mmap_event = data; 6331 struct perf_output_handle handle; 6332 struct perf_sample_data sample; 6333 int size = mmap_event->event_id.header.size; 6334 int ret; 6335 6336 if (!perf_event_mmap_match(event, data)) 6337 return; 6338 6339 if (event->attr.mmap2) { 6340 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6341 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6342 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6343 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6344 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6345 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6346 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6347 } 6348 6349 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6350 ret = perf_output_begin(&handle, event, 6351 mmap_event->event_id.header.size); 6352 if (ret) 6353 goto out; 6354 6355 mmap_event->event_id.pid = perf_event_pid(event, current); 6356 mmap_event->event_id.tid = perf_event_tid(event, current); 6357 6358 perf_output_put(&handle, mmap_event->event_id); 6359 6360 if (event->attr.mmap2) { 6361 perf_output_put(&handle, mmap_event->maj); 6362 perf_output_put(&handle, mmap_event->min); 6363 perf_output_put(&handle, mmap_event->ino); 6364 perf_output_put(&handle, mmap_event->ino_generation); 6365 perf_output_put(&handle, mmap_event->prot); 6366 perf_output_put(&handle, mmap_event->flags); 6367 } 6368 6369 __output_copy(&handle, mmap_event->file_name, 6370 mmap_event->file_size); 6371 6372 perf_event__output_id_sample(event, &handle, &sample); 6373 6374 perf_output_end(&handle); 6375 out: 6376 mmap_event->event_id.header.size = size; 6377 } 6378 6379 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6380 { 6381 struct vm_area_struct *vma = mmap_event->vma; 6382 struct file *file = vma->vm_file; 6383 int maj = 0, min = 0; 6384 u64 ino = 0, gen = 0; 6385 u32 prot = 0, flags = 0; 6386 unsigned int size; 6387 char tmp[16]; 6388 char *buf = NULL; 6389 char *name; 6390 6391 if (file) { 6392 struct inode *inode; 6393 dev_t dev; 6394 6395 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6396 if (!buf) { 6397 name = "//enomem"; 6398 goto cpy_name; 6399 } 6400 /* 6401 * d_path() works from the end of the rb backwards, so we 6402 * need to add enough zero bytes after the string to handle 6403 * the 64bit alignment we do later. 6404 */ 6405 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6406 if (IS_ERR(name)) { 6407 name = "//toolong"; 6408 goto cpy_name; 6409 } 6410 inode = file_inode(vma->vm_file); 6411 dev = inode->i_sb->s_dev; 6412 ino = inode->i_ino; 6413 gen = inode->i_generation; 6414 maj = MAJOR(dev); 6415 min = MINOR(dev); 6416 6417 if (vma->vm_flags & VM_READ) 6418 prot |= PROT_READ; 6419 if (vma->vm_flags & VM_WRITE) 6420 prot |= PROT_WRITE; 6421 if (vma->vm_flags & VM_EXEC) 6422 prot |= PROT_EXEC; 6423 6424 if (vma->vm_flags & VM_MAYSHARE) 6425 flags = MAP_SHARED; 6426 else 6427 flags = MAP_PRIVATE; 6428 6429 if (vma->vm_flags & VM_DENYWRITE) 6430 flags |= MAP_DENYWRITE; 6431 if (vma->vm_flags & VM_MAYEXEC) 6432 flags |= MAP_EXECUTABLE; 6433 if (vma->vm_flags & VM_LOCKED) 6434 flags |= MAP_LOCKED; 6435 if (vma->vm_flags & VM_HUGETLB) 6436 flags |= MAP_HUGETLB; 6437 6438 goto got_name; 6439 } else { 6440 if (vma->vm_ops && vma->vm_ops->name) { 6441 name = (char *) vma->vm_ops->name(vma); 6442 if (name) 6443 goto cpy_name; 6444 } 6445 6446 name = (char *)arch_vma_name(vma); 6447 if (name) 6448 goto cpy_name; 6449 6450 if (vma->vm_start <= vma->vm_mm->start_brk && 6451 vma->vm_end >= vma->vm_mm->brk) { 6452 name = "[heap]"; 6453 goto cpy_name; 6454 } 6455 if (vma->vm_start <= vma->vm_mm->start_stack && 6456 vma->vm_end >= vma->vm_mm->start_stack) { 6457 name = "[stack]"; 6458 goto cpy_name; 6459 } 6460 6461 name = "//anon"; 6462 goto cpy_name; 6463 } 6464 6465 cpy_name: 6466 strlcpy(tmp, name, sizeof(tmp)); 6467 name = tmp; 6468 got_name: 6469 /* 6470 * Since our buffer works in 8 byte units we need to align our string 6471 * size to a multiple of 8. However, we must guarantee the tail end is 6472 * zero'd out to avoid leaking random bits to userspace. 6473 */ 6474 size = strlen(name)+1; 6475 while (!IS_ALIGNED(size, sizeof(u64))) 6476 name[size++] = '\0'; 6477 6478 mmap_event->file_name = name; 6479 mmap_event->file_size = size; 6480 mmap_event->maj = maj; 6481 mmap_event->min = min; 6482 mmap_event->ino = ino; 6483 mmap_event->ino_generation = gen; 6484 mmap_event->prot = prot; 6485 mmap_event->flags = flags; 6486 6487 if (!(vma->vm_flags & VM_EXEC)) 6488 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6489 6490 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6491 6492 perf_iterate_sb(perf_event_mmap_output, 6493 mmap_event, 6494 NULL); 6495 6496 kfree(buf); 6497 } 6498 6499 /* 6500 * Whether this @filter depends on a dynamic object which is not loaded 6501 * yet or its load addresses are not known. 6502 */ 6503 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter) 6504 { 6505 return filter->filter && filter->inode; 6506 } 6507 6508 /* 6509 * Check whether inode and address range match filter criteria. 6510 */ 6511 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6512 struct file *file, unsigned long offset, 6513 unsigned long size) 6514 { 6515 if (filter->inode != file->f_inode) 6516 return false; 6517 6518 if (filter->offset > offset + size) 6519 return false; 6520 6521 if (filter->offset + filter->size < offset) 6522 return false; 6523 6524 return true; 6525 } 6526 6527 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6528 { 6529 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6530 struct vm_area_struct *vma = data; 6531 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6532 struct file *file = vma->vm_file; 6533 struct perf_addr_filter *filter; 6534 unsigned int restart = 0, count = 0; 6535 6536 if (!has_addr_filter(event)) 6537 return; 6538 6539 if (!file) 6540 return; 6541 6542 raw_spin_lock_irqsave(&ifh->lock, flags); 6543 list_for_each_entry(filter, &ifh->list, entry) { 6544 if (perf_addr_filter_match(filter, file, off, 6545 vma->vm_end - vma->vm_start)) { 6546 event->addr_filters_offs[count] = vma->vm_start; 6547 restart++; 6548 } 6549 6550 count++; 6551 } 6552 6553 if (restart) 6554 event->addr_filters_gen++; 6555 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6556 6557 if (restart) 6558 perf_event_restart(event); 6559 } 6560 6561 /* 6562 * Adjust all task's events' filters to the new vma 6563 */ 6564 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6565 { 6566 struct perf_event_context *ctx; 6567 int ctxn; 6568 6569 rcu_read_lock(); 6570 for_each_task_context_nr(ctxn) { 6571 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6572 if (!ctx) 6573 continue; 6574 6575 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6576 } 6577 rcu_read_unlock(); 6578 } 6579 6580 void perf_event_mmap(struct vm_area_struct *vma) 6581 { 6582 struct perf_mmap_event mmap_event; 6583 6584 if (!atomic_read(&nr_mmap_events)) 6585 return; 6586 6587 mmap_event = (struct perf_mmap_event){ 6588 .vma = vma, 6589 /* .file_name */ 6590 /* .file_size */ 6591 .event_id = { 6592 .header = { 6593 .type = PERF_RECORD_MMAP, 6594 .misc = PERF_RECORD_MISC_USER, 6595 /* .size */ 6596 }, 6597 /* .pid */ 6598 /* .tid */ 6599 .start = vma->vm_start, 6600 .len = vma->vm_end - vma->vm_start, 6601 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6602 }, 6603 /* .maj (attr_mmap2 only) */ 6604 /* .min (attr_mmap2 only) */ 6605 /* .ino (attr_mmap2 only) */ 6606 /* .ino_generation (attr_mmap2 only) */ 6607 /* .prot (attr_mmap2 only) */ 6608 /* .flags (attr_mmap2 only) */ 6609 }; 6610 6611 perf_addr_filters_adjust(vma); 6612 perf_event_mmap_event(&mmap_event); 6613 } 6614 6615 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6616 unsigned long size, u64 flags) 6617 { 6618 struct perf_output_handle handle; 6619 struct perf_sample_data sample; 6620 struct perf_aux_event { 6621 struct perf_event_header header; 6622 u64 offset; 6623 u64 size; 6624 u64 flags; 6625 } rec = { 6626 .header = { 6627 .type = PERF_RECORD_AUX, 6628 .misc = 0, 6629 .size = sizeof(rec), 6630 }, 6631 .offset = head, 6632 .size = size, 6633 .flags = flags, 6634 }; 6635 int ret; 6636 6637 perf_event_header__init_id(&rec.header, &sample, event); 6638 ret = perf_output_begin(&handle, event, rec.header.size); 6639 6640 if (ret) 6641 return; 6642 6643 perf_output_put(&handle, rec); 6644 perf_event__output_id_sample(event, &handle, &sample); 6645 6646 perf_output_end(&handle); 6647 } 6648 6649 /* 6650 * Lost/dropped samples logging 6651 */ 6652 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6653 { 6654 struct perf_output_handle handle; 6655 struct perf_sample_data sample; 6656 int ret; 6657 6658 struct { 6659 struct perf_event_header header; 6660 u64 lost; 6661 } lost_samples_event = { 6662 .header = { 6663 .type = PERF_RECORD_LOST_SAMPLES, 6664 .misc = 0, 6665 .size = sizeof(lost_samples_event), 6666 }, 6667 .lost = lost, 6668 }; 6669 6670 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6671 6672 ret = perf_output_begin(&handle, event, 6673 lost_samples_event.header.size); 6674 if (ret) 6675 return; 6676 6677 perf_output_put(&handle, lost_samples_event); 6678 perf_event__output_id_sample(event, &handle, &sample); 6679 perf_output_end(&handle); 6680 } 6681 6682 /* 6683 * context_switch tracking 6684 */ 6685 6686 struct perf_switch_event { 6687 struct task_struct *task; 6688 struct task_struct *next_prev; 6689 6690 struct { 6691 struct perf_event_header header; 6692 u32 next_prev_pid; 6693 u32 next_prev_tid; 6694 } event_id; 6695 }; 6696 6697 static int perf_event_switch_match(struct perf_event *event) 6698 { 6699 return event->attr.context_switch; 6700 } 6701 6702 static void perf_event_switch_output(struct perf_event *event, void *data) 6703 { 6704 struct perf_switch_event *se = data; 6705 struct perf_output_handle handle; 6706 struct perf_sample_data sample; 6707 int ret; 6708 6709 if (!perf_event_switch_match(event)) 6710 return; 6711 6712 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6713 if (event->ctx->task) { 6714 se->event_id.header.type = PERF_RECORD_SWITCH; 6715 se->event_id.header.size = sizeof(se->event_id.header); 6716 } else { 6717 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6718 se->event_id.header.size = sizeof(se->event_id); 6719 se->event_id.next_prev_pid = 6720 perf_event_pid(event, se->next_prev); 6721 se->event_id.next_prev_tid = 6722 perf_event_tid(event, se->next_prev); 6723 } 6724 6725 perf_event_header__init_id(&se->event_id.header, &sample, event); 6726 6727 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6728 if (ret) 6729 return; 6730 6731 if (event->ctx->task) 6732 perf_output_put(&handle, se->event_id.header); 6733 else 6734 perf_output_put(&handle, se->event_id); 6735 6736 perf_event__output_id_sample(event, &handle, &sample); 6737 6738 perf_output_end(&handle); 6739 } 6740 6741 static void perf_event_switch(struct task_struct *task, 6742 struct task_struct *next_prev, bool sched_in) 6743 { 6744 struct perf_switch_event switch_event; 6745 6746 /* N.B. caller checks nr_switch_events != 0 */ 6747 6748 switch_event = (struct perf_switch_event){ 6749 .task = task, 6750 .next_prev = next_prev, 6751 .event_id = { 6752 .header = { 6753 /* .type */ 6754 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6755 /* .size */ 6756 }, 6757 /* .next_prev_pid */ 6758 /* .next_prev_tid */ 6759 }, 6760 }; 6761 6762 perf_iterate_sb(perf_event_switch_output, 6763 &switch_event, 6764 NULL); 6765 } 6766 6767 /* 6768 * IRQ throttle logging 6769 */ 6770 6771 static void perf_log_throttle(struct perf_event *event, int enable) 6772 { 6773 struct perf_output_handle handle; 6774 struct perf_sample_data sample; 6775 int ret; 6776 6777 struct { 6778 struct perf_event_header header; 6779 u64 time; 6780 u64 id; 6781 u64 stream_id; 6782 } throttle_event = { 6783 .header = { 6784 .type = PERF_RECORD_THROTTLE, 6785 .misc = 0, 6786 .size = sizeof(throttle_event), 6787 }, 6788 .time = perf_event_clock(event), 6789 .id = primary_event_id(event), 6790 .stream_id = event->id, 6791 }; 6792 6793 if (enable) 6794 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6795 6796 perf_event_header__init_id(&throttle_event.header, &sample, event); 6797 6798 ret = perf_output_begin(&handle, event, 6799 throttle_event.header.size); 6800 if (ret) 6801 return; 6802 6803 perf_output_put(&handle, throttle_event); 6804 perf_event__output_id_sample(event, &handle, &sample); 6805 perf_output_end(&handle); 6806 } 6807 6808 static void perf_log_itrace_start(struct perf_event *event) 6809 { 6810 struct perf_output_handle handle; 6811 struct perf_sample_data sample; 6812 struct perf_aux_event { 6813 struct perf_event_header header; 6814 u32 pid; 6815 u32 tid; 6816 } rec; 6817 int ret; 6818 6819 if (event->parent) 6820 event = event->parent; 6821 6822 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6823 event->hw.itrace_started) 6824 return; 6825 6826 rec.header.type = PERF_RECORD_ITRACE_START; 6827 rec.header.misc = 0; 6828 rec.header.size = sizeof(rec); 6829 rec.pid = perf_event_pid(event, current); 6830 rec.tid = perf_event_tid(event, current); 6831 6832 perf_event_header__init_id(&rec.header, &sample, event); 6833 ret = perf_output_begin(&handle, event, rec.header.size); 6834 6835 if (ret) 6836 return; 6837 6838 perf_output_put(&handle, rec); 6839 perf_event__output_id_sample(event, &handle, &sample); 6840 6841 perf_output_end(&handle); 6842 } 6843 6844 /* 6845 * Generic event overflow handling, sampling. 6846 */ 6847 6848 static int __perf_event_overflow(struct perf_event *event, 6849 int throttle, struct perf_sample_data *data, 6850 struct pt_regs *regs) 6851 { 6852 int events = atomic_read(&event->event_limit); 6853 struct hw_perf_event *hwc = &event->hw; 6854 u64 seq; 6855 int ret = 0; 6856 6857 /* 6858 * Non-sampling counters might still use the PMI to fold short 6859 * hardware counters, ignore those. 6860 */ 6861 if (unlikely(!is_sampling_event(event))) 6862 return 0; 6863 6864 seq = __this_cpu_read(perf_throttled_seq); 6865 if (seq != hwc->interrupts_seq) { 6866 hwc->interrupts_seq = seq; 6867 hwc->interrupts = 1; 6868 } else { 6869 hwc->interrupts++; 6870 if (unlikely(throttle 6871 && hwc->interrupts >= max_samples_per_tick)) { 6872 __this_cpu_inc(perf_throttled_count); 6873 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6874 hwc->interrupts = MAX_INTERRUPTS; 6875 perf_log_throttle(event, 0); 6876 ret = 1; 6877 } 6878 } 6879 6880 if (event->attr.freq) { 6881 u64 now = perf_clock(); 6882 s64 delta = now - hwc->freq_time_stamp; 6883 6884 hwc->freq_time_stamp = now; 6885 6886 if (delta > 0 && delta < 2*TICK_NSEC) 6887 perf_adjust_period(event, delta, hwc->last_period, true); 6888 } 6889 6890 /* 6891 * XXX event_limit might not quite work as expected on inherited 6892 * events 6893 */ 6894 6895 event->pending_kill = POLL_IN; 6896 if (events && atomic_dec_and_test(&event->event_limit)) { 6897 ret = 1; 6898 event->pending_kill = POLL_HUP; 6899 event->pending_disable = 1; 6900 irq_work_queue(&event->pending); 6901 } 6902 6903 event->overflow_handler(event, data, regs); 6904 6905 if (*perf_event_fasync(event) && event->pending_kill) { 6906 event->pending_wakeup = 1; 6907 irq_work_queue(&event->pending); 6908 } 6909 6910 return ret; 6911 } 6912 6913 int perf_event_overflow(struct perf_event *event, 6914 struct perf_sample_data *data, 6915 struct pt_regs *regs) 6916 { 6917 return __perf_event_overflow(event, 1, data, regs); 6918 } 6919 6920 /* 6921 * Generic software event infrastructure 6922 */ 6923 6924 struct swevent_htable { 6925 struct swevent_hlist *swevent_hlist; 6926 struct mutex hlist_mutex; 6927 int hlist_refcount; 6928 6929 /* Recursion avoidance in each contexts */ 6930 int recursion[PERF_NR_CONTEXTS]; 6931 }; 6932 6933 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6934 6935 /* 6936 * We directly increment event->count and keep a second value in 6937 * event->hw.period_left to count intervals. This period event 6938 * is kept in the range [-sample_period, 0] so that we can use the 6939 * sign as trigger. 6940 */ 6941 6942 u64 perf_swevent_set_period(struct perf_event *event) 6943 { 6944 struct hw_perf_event *hwc = &event->hw; 6945 u64 period = hwc->last_period; 6946 u64 nr, offset; 6947 s64 old, val; 6948 6949 hwc->last_period = hwc->sample_period; 6950 6951 again: 6952 old = val = local64_read(&hwc->period_left); 6953 if (val < 0) 6954 return 0; 6955 6956 nr = div64_u64(period + val, period); 6957 offset = nr * period; 6958 val -= offset; 6959 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6960 goto again; 6961 6962 return nr; 6963 } 6964 6965 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6966 struct perf_sample_data *data, 6967 struct pt_regs *regs) 6968 { 6969 struct hw_perf_event *hwc = &event->hw; 6970 int throttle = 0; 6971 6972 if (!overflow) 6973 overflow = perf_swevent_set_period(event); 6974 6975 if (hwc->interrupts == MAX_INTERRUPTS) 6976 return; 6977 6978 for (; overflow; overflow--) { 6979 if (__perf_event_overflow(event, throttle, 6980 data, regs)) { 6981 /* 6982 * We inhibit the overflow from happening when 6983 * hwc->interrupts == MAX_INTERRUPTS. 6984 */ 6985 break; 6986 } 6987 throttle = 1; 6988 } 6989 } 6990 6991 static void perf_swevent_event(struct perf_event *event, u64 nr, 6992 struct perf_sample_data *data, 6993 struct pt_regs *regs) 6994 { 6995 struct hw_perf_event *hwc = &event->hw; 6996 6997 local64_add(nr, &event->count); 6998 6999 if (!regs) 7000 return; 7001 7002 if (!is_sampling_event(event)) 7003 return; 7004 7005 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7006 data->period = nr; 7007 return perf_swevent_overflow(event, 1, data, regs); 7008 } else 7009 data->period = event->hw.last_period; 7010 7011 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7012 return perf_swevent_overflow(event, 1, data, regs); 7013 7014 if (local64_add_negative(nr, &hwc->period_left)) 7015 return; 7016 7017 perf_swevent_overflow(event, 0, data, regs); 7018 } 7019 7020 static int perf_exclude_event(struct perf_event *event, 7021 struct pt_regs *regs) 7022 { 7023 if (event->hw.state & PERF_HES_STOPPED) 7024 return 1; 7025 7026 if (regs) { 7027 if (event->attr.exclude_user && user_mode(regs)) 7028 return 1; 7029 7030 if (event->attr.exclude_kernel && !user_mode(regs)) 7031 return 1; 7032 } 7033 7034 return 0; 7035 } 7036 7037 static int perf_swevent_match(struct perf_event *event, 7038 enum perf_type_id type, 7039 u32 event_id, 7040 struct perf_sample_data *data, 7041 struct pt_regs *regs) 7042 { 7043 if (event->attr.type != type) 7044 return 0; 7045 7046 if (event->attr.config != event_id) 7047 return 0; 7048 7049 if (perf_exclude_event(event, regs)) 7050 return 0; 7051 7052 return 1; 7053 } 7054 7055 static inline u64 swevent_hash(u64 type, u32 event_id) 7056 { 7057 u64 val = event_id | (type << 32); 7058 7059 return hash_64(val, SWEVENT_HLIST_BITS); 7060 } 7061 7062 static inline struct hlist_head * 7063 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7064 { 7065 u64 hash = swevent_hash(type, event_id); 7066 7067 return &hlist->heads[hash]; 7068 } 7069 7070 /* For the read side: events when they trigger */ 7071 static inline struct hlist_head * 7072 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7073 { 7074 struct swevent_hlist *hlist; 7075 7076 hlist = rcu_dereference(swhash->swevent_hlist); 7077 if (!hlist) 7078 return NULL; 7079 7080 return __find_swevent_head(hlist, type, event_id); 7081 } 7082 7083 /* For the event head insertion and removal in the hlist */ 7084 static inline struct hlist_head * 7085 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7086 { 7087 struct swevent_hlist *hlist; 7088 u32 event_id = event->attr.config; 7089 u64 type = event->attr.type; 7090 7091 /* 7092 * Event scheduling is always serialized against hlist allocation 7093 * and release. Which makes the protected version suitable here. 7094 * The context lock guarantees that. 7095 */ 7096 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7097 lockdep_is_held(&event->ctx->lock)); 7098 if (!hlist) 7099 return NULL; 7100 7101 return __find_swevent_head(hlist, type, event_id); 7102 } 7103 7104 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7105 u64 nr, 7106 struct perf_sample_data *data, 7107 struct pt_regs *regs) 7108 { 7109 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7110 struct perf_event *event; 7111 struct hlist_head *head; 7112 7113 rcu_read_lock(); 7114 head = find_swevent_head_rcu(swhash, type, event_id); 7115 if (!head) 7116 goto end; 7117 7118 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7119 if (perf_swevent_match(event, type, event_id, data, regs)) 7120 perf_swevent_event(event, nr, data, regs); 7121 } 7122 end: 7123 rcu_read_unlock(); 7124 } 7125 7126 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7127 7128 int perf_swevent_get_recursion_context(void) 7129 { 7130 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7131 7132 return get_recursion_context(swhash->recursion); 7133 } 7134 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7135 7136 inline void perf_swevent_put_recursion_context(int rctx) 7137 { 7138 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7139 7140 put_recursion_context(swhash->recursion, rctx); 7141 } 7142 7143 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7144 { 7145 struct perf_sample_data data; 7146 7147 if (WARN_ON_ONCE(!regs)) 7148 return; 7149 7150 perf_sample_data_init(&data, addr, 0); 7151 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7152 } 7153 7154 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7155 { 7156 int rctx; 7157 7158 preempt_disable_notrace(); 7159 rctx = perf_swevent_get_recursion_context(); 7160 if (unlikely(rctx < 0)) 7161 goto fail; 7162 7163 ___perf_sw_event(event_id, nr, regs, addr); 7164 7165 perf_swevent_put_recursion_context(rctx); 7166 fail: 7167 preempt_enable_notrace(); 7168 } 7169 7170 static void perf_swevent_read(struct perf_event *event) 7171 { 7172 } 7173 7174 static int perf_swevent_add(struct perf_event *event, int flags) 7175 { 7176 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7177 struct hw_perf_event *hwc = &event->hw; 7178 struct hlist_head *head; 7179 7180 if (is_sampling_event(event)) { 7181 hwc->last_period = hwc->sample_period; 7182 perf_swevent_set_period(event); 7183 } 7184 7185 hwc->state = !(flags & PERF_EF_START); 7186 7187 head = find_swevent_head(swhash, event); 7188 if (WARN_ON_ONCE(!head)) 7189 return -EINVAL; 7190 7191 hlist_add_head_rcu(&event->hlist_entry, head); 7192 perf_event_update_userpage(event); 7193 7194 return 0; 7195 } 7196 7197 static void perf_swevent_del(struct perf_event *event, int flags) 7198 { 7199 hlist_del_rcu(&event->hlist_entry); 7200 } 7201 7202 static void perf_swevent_start(struct perf_event *event, int flags) 7203 { 7204 event->hw.state = 0; 7205 } 7206 7207 static void perf_swevent_stop(struct perf_event *event, int flags) 7208 { 7209 event->hw.state = PERF_HES_STOPPED; 7210 } 7211 7212 /* Deref the hlist from the update side */ 7213 static inline struct swevent_hlist * 7214 swevent_hlist_deref(struct swevent_htable *swhash) 7215 { 7216 return rcu_dereference_protected(swhash->swevent_hlist, 7217 lockdep_is_held(&swhash->hlist_mutex)); 7218 } 7219 7220 static void swevent_hlist_release(struct swevent_htable *swhash) 7221 { 7222 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7223 7224 if (!hlist) 7225 return; 7226 7227 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7228 kfree_rcu(hlist, rcu_head); 7229 } 7230 7231 static void swevent_hlist_put_cpu(int cpu) 7232 { 7233 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7234 7235 mutex_lock(&swhash->hlist_mutex); 7236 7237 if (!--swhash->hlist_refcount) 7238 swevent_hlist_release(swhash); 7239 7240 mutex_unlock(&swhash->hlist_mutex); 7241 } 7242 7243 static void swevent_hlist_put(void) 7244 { 7245 int cpu; 7246 7247 for_each_possible_cpu(cpu) 7248 swevent_hlist_put_cpu(cpu); 7249 } 7250 7251 static int swevent_hlist_get_cpu(int cpu) 7252 { 7253 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7254 int err = 0; 7255 7256 mutex_lock(&swhash->hlist_mutex); 7257 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7258 struct swevent_hlist *hlist; 7259 7260 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7261 if (!hlist) { 7262 err = -ENOMEM; 7263 goto exit; 7264 } 7265 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7266 } 7267 swhash->hlist_refcount++; 7268 exit: 7269 mutex_unlock(&swhash->hlist_mutex); 7270 7271 return err; 7272 } 7273 7274 static int swevent_hlist_get(void) 7275 { 7276 int err, cpu, failed_cpu; 7277 7278 get_online_cpus(); 7279 for_each_possible_cpu(cpu) { 7280 err = swevent_hlist_get_cpu(cpu); 7281 if (err) { 7282 failed_cpu = cpu; 7283 goto fail; 7284 } 7285 } 7286 put_online_cpus(); 7287 7288 return 0; 7289 fail: 7290 for_each_possible_cpu(cpu) { 7291 if (cpu == failed_cpu) 7292 break; 7293 swevent_hlist_put_cpu(cpu); 7294 } 7295 7296 put_online_cpus(); 7297 return err; 7298 } 7299 7300 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7301 7302 static void sw_perf_event_destroy(struct perf_event *event) 7303 { 7304 u64 event_id = event->attr.config; 7305 7306 WARN_ON(event->parent); 7307 7308 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7309 swevent_hlist_put(); 7310 } 7311 7312 static int perf_swevent_init(struct perf_event *event) 7313 { 7314 u64 event_id = event->attr.config; 7315 7316 if (event->attr.type != PERF_TYPE_SOFTWARE) 7317 return -ENOENT; 7318 7319 /* 7320 * no branch sampling for software events 7321 */ 7322 if (has_branch_stack(event)) 7323 return -EOPNOTSUPP; 7324 7325 switch (event_id) { 7326 case PERF_COUNT_SW_CPU_CLOCK: 7327 case PERF_COUNT_SW_TASK_CLOCK: 7328 return -ENOENT; 7329 7330 default: 7331 break; 7332 } 7333 7334 if (event_id >= PERF_COUNT_SW_MAX) 7335 return -ENOENT; 7336 7337 if (!event->parent) { 7338 int err; 7339 7340 err = swevent_hlist_get(); 7341 if (err) 7342 return err; 7343 7344 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7345 event->destroy = sw_perf_event_destroy; 7346 } 7347 7348 return 0; 7349 } 7350 7351 static struct pmu perf_swevent = { 7352 .task_ctx_nr = perf_sw_context, 7353 7354 .capabilities = PERF_PMU_CAP_NO_NMI, 7355 7356 .event_init = perf_swevent_init, 7357 .add = perf_swevent_add, 7358 .del = perf_swevent_del, 7359 .start = perf_swevent_start, 7360 .stop = perf_swevent_stop, 7361 .read = perf_swevent_read, 7362 }; 7363 7364 #ifdef CONFIG_EVENT_TRACING 7365 7366 static int perf_tp_filter_match(struct perf_event *event, 7367 struct perf_sample_data *data) 7368 { 7369 void *record = data->raw->data; 7370 7371 /* only top level events have filters set */ 7372 if (event->parent) 7373 event = event->parent; 7374 7375 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7376 return 1; 7377 return 0; 7378 } 7379 7380 static int perf_tp_event_match(struct perf_event *event, 7381 struct perf_sample_data *data, 7382 struct pt_regs *regs) 7383 { 7384 if (event->hw.state & PERF_HES_STOPPED) 7385 return 0; 7386 /* 7387 * All tracepoints are from kernel-space. 7388 */ 7389 if (event->attr.exclude_kernel) 7390 return 0; 7391 7392 if (!perf_tp_filter_match(event, data)) 7393 return 0; 7394 7395 return 1; 7396 } 7397 7398 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 7399 struct pt_regs *regs, struct hlist_head *head, int rctx, 7400 struct task_struct *task) 7401 { 7402 struct perf_sample_data data; 7403 struct perf_event *event; 7404 7405 struct perf_raw_record raw = { 7406 .size = entry_size, 7407 .data = record, 7408 }; 7409 7410 perf_sample_data_init(&data, addr, 0); 7411 data.raw = &raw; 7412 7413 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7414 if (perf_tp_event_match(event, &data, regs)) 7415 perf_swevent_event(event, count, &data, regs); 7416 } 7417 7418 /* 7419 * If we got specified a target task, also iterate its context and 7420 * deliver this event there too. 7421 */ 7422 if (task && task != current) { 7423 struct perf_event_context *ctx; 7424 struct trace_entry *entry = record; 7425 7426 rcu_read_lock(); 7427 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7428 if (!ctx) 7429 goto unlock; 7430 7431 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7432 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7433 continue; 7434 if (event->attr.config != entry->type) 7435 continue; 7436 if (perf_tp_event_match(event, &data, regs)) 7437 perf_swevent_event(event, count, &data, regs); 7438 } 7439 unlock: 7440 rcu_read_unlock(); 7441 } 7442 7443 perf_swevent_put_recursion_context(rctx); 7444 } 7445 EXPORT_SYMBOL_GPL(perf_tp_event); 7446 7447 static void tp_perf_event_destroy(struct perf_event *event) 7448 { 7449 perf_trace_destroy(event); 7450 } 7451 7452 static int perf_tp_event_init(struct perf_event *event) 7453 { 7454 int err; 7455 7456 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7457 return -ENOENT; 7458 7459 /* 7460 * no branch sampling for tracepoint events 7461 */ 7462 if (has_branch_stack(event)) 7463 return -EOPNOTSUPP; 7464 7465 err = perf_trace_init(event); 7466 if (err) 7467 return err; 7468 7469 event->destroy = tp_perf_event_destroy; 7470 7471 return 0; 7472 } 7473 7474 static struct pmu perf_tracepoint = { 7475 .task_ctx_nr = perf_sw_context, 7476 7477 .event_init = perf_tp_event_init, 7478 .add = perf_trace_add, 7479 .del = perf_trace_del, 7480 .start = perf_swevent_start, 7481 .stop = perf_swevent_stop, 7482 .read = perf_swevent_read, 7483 }; 7484 7485 static inline void perf_tp_register(void) 7486 { 7487 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7488 } 7489 7490 static void perf_event_free_filter(struct perf_event *event) 7491 { 7492 ftrace_profile_free_filter(event); 7493 } 7494 7495 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7496 { 7497 struct bpf_prog *prog; 7498 7499 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7500 return -EINVAL; 7501 7502 if (event->tp_event->prog) 7503 return -EEXIST; 7504 7505 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 7506 /* bpf programs can only be attached to u/kprobes */ 7507 return -EINVAL; 7508 7509 prog = bpf_prog_get(prog_fd); 7510 if (IS_ERR(prog)) 7511 return PTR_ERR(prog); 7512 7513 if (prog->type != BPF_PROG_TYPE_KPROBE) { 7514 /* valid fd, but invalid bpf program type */ 7515 bpf_prog_put(prog); 7516 return -EINVAL; 7517 } 7518 7519 event->tp_event->prog = prog; 7520 7521 return 0; 7522 } 7523 7524 static void perf_event_free_bpf_prog(struct perf_event *event) 7525 { 7526 struct bpf_prog *prog; 7527 7528 if (!event->tp_event) 7529 return; 7530 7531 prog = event->tp_event->prog; 7532 if (prog) { 7533 event->tp_event->prog = NULL; 7534 bpf_prog_put(prog); 7535 } 7536 } 7537 7538 #else 7539 7540 static inline void perf_tp_register(void) 7541 { 7542 } 7543 7544 static void perf_event_free_filter(struct perf_event *event) 7545 { 7546 } 7547 7548 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7549 { 7550 return -ENOENT; 7551 } 7552 7553 static void perf_event_free_bpf_prog(struct perf_event *event) 7554 { 7555 } 7556 #endif /* CONFIG_EVENT_TRACING */ 7557 7558 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7559 void perf_bp_event(struct perf_event *bp, void *data) 7560 { 7561 struct perf_sample_data sample; 7562 struct pt_regs *regs = data; 7563 7564 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7565 7566 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7567 perf_swevent_event(bp, 1, &sample, regs); 7568 } 7569 #endif 7570 7571 /* 7572 * Allocate a new address filter 7573 */ 7574 static struct perf_addr_filter * 7575 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7576 { 7577 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7578 struct perf_addr_filter *filter; 7579 7580 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7581 if (!filter) 7582 return NULL; 7583 7584 INIT_LIST_HEAD(&filter->entry); 7585 list_add_tail(&filter->entry, filters); 7586 7587 return filter; 7588 } 7589 7590 static void free_filters_list(struct list_head *filters) 7591 { 7592 struct perf_addr_filter *filter, *iter; 7593 7594 list_for_each_entry_safe(filter, iter, filters, entry) { 7595 if (filter->inode) 7596 iput(filter->inode); 7597 list_del(&filter->entry); 7598 kfree(filter); 7599 } 7600 } 7601 7602 /* 7603 * Free existing address filters and optionally install new ones 7604 */ 7605 static void perf_addr_filters_splice(struct perf_event *event, 7606 struct list_head *head) 7607 { 7608 unsigned long flags; 7609 LIST_HEAD(list); 7610 7611 if (!has_addr_filter(event)) 7612 return; 7613 7614 /* don't bother with children, they don't have their own filters */ 7615 if (event->parent) 7616 return; 7617 7618 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7619 7620 list_splice_init(&event->addr_filters.list, &list); 7621 if (head) 7622 list_splice(head, &event->addr_filters.list); 7623 7624 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7625 7626 free_filters_list(&list); 7627 } 7628 7629 /* 7630 * Scan through mm's vmas and see if one of them matches the 7631 * @filter; if so, adjust filter's address range. 7632 * Called with mm::mmap_sem down for reading. 7633 */ 7634 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7635 struct mm_struct *mm) 7636 { 7637 struct vm_area_struct *vma; 7638 7639 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7640 struct file *file = vma->vm_file; 7641 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7642 unsigned long vma_size = vma->vm_end - vma->vm_start; 7643 7644 if (!file) 7645 continue; 7646 7647 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7648 continue; 7649 7650 return vma->vm_start; 7651 } 7652 7653 return 0; 7654 } 7655 7656 /* 7657 * Update event's address range filters based on the 7658 * task's existing mappings, if any. 7659 */ 7660 static void perf_event_addr_filters_apply(struct perf_event *event) 7661 { 7662 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7663 struct task_struct *task = READ_ONCE(event->ctx->task); 7664 struct perf_addr_filter *filter; 7665 struct mm_struct *mm = NULL; 7666 unsigned int count = 0; 7667 unsigned long flags; 7668 7669 /* 7670 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7671 * will stop on the parent's child_mutex that our caller is also holding 7672 */ 7673 if (task == TASK_TOMBSTONE) 7674 return; 7675 7676 mm = get_task_mm(event->ctx->task); 7677 if (!mm) 7678 goto restart; 7679 7680 down_read(&mm->mmap_sem); 7681 7682 raw_spin_lock_irqsave(&ifh->lock, flags); 7683 list_for_each_entry(filter, &ifh->list, entry) { 7684 event->addr_filters_offs[count] = 0; 7685 7686 if (perf_addr_filter_needs_mmap(filter)) 7687 event->addr_filters_offs[count] = 7688 perf_addr_filter_apply(filter, mm); 7689 7690 count++; 7691 } 7692 7693 event->addr_filters_gen++; 7694 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7695 7696 up_read(&mm->mmap_sem); 7697 7698 mmput(mm); 7699 7700 restart: 7701 perf_event_restart(event); 7702 } 7703 7704 /* 7705 * Address range filtering: limiting the data to certain 7706 * instruction address ranges. Filters are ioctl()ed to us from 7707 * userspace as ascii strings. 7708 * 7709 * Filter string format: 7710 * 7711 * ACTION RANGE_SPEC 7712 * where ACTION is one of the 7713 * * "filter": limit the trace to this region 7714 * * "start": start tracing from this address 7715 * * "stop": stop tracing at this address/region; 7716 * RANGE_SPEC is 7717 * * for kernel addresses: <start address>[/<size>] 7718 * * for object files: <start address>[/<size>]@</path/to/object/file> 7719 * 7720 * if <size> is not specified, the range is treated as a single address. 7721 */ 7722 enum { 7723 IF_ACT_FILTER, 7724 IF_ACT_START, 7725 IF_ACT_STOP, 7726 IF_SRC_FILE, 7727 IF_SRC_KERNEL, 7728 IF_SRC_FILEADDR, 7729 IF_SRC_KERNELADDR, 7730 }; 7731 7732 enum { 7733 IF_STATE_ACTION = 0, 7734 IF_STATE_SOURCE, 7735 IF_STATE_END, 7736 }; 7737 7738 static const match_table_t if_tokens = { 7739 { IF_ACT_FILTER, "filter" }, 7740 { IF_ACT_START, "start" }, 7741 { IF_ACT_STOP, "stop" }, 7742 { IF_SRC_FILE, "%u/%u@%s" }, 7743 { IF_SRC_KERNEL, "%u/%u" }, 7744 { IF_SRC_FILEADDR, "%u@%s" }, 7745 { IF_SRC_KERNELADDR, "%u" }, 7746 }; 7747 7748 /* 7749 * Address filter string parser 7750 */ 7751 static int 7752 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 7753 struct list_head *filters) 7754 { 7755 struct perf_addr_filter *filter = NULL; 7756 char *start, *orig, *filename = NULL; 7757 struct path path; 7758 substring_t args[MAX_OPT_ARGS]; 7759 int state = IF_STATE_ACTION, token; 7760 unsigned int kernel = 0; 7761 int ret = -EINVAL; 7762 7763 orig = fstr = kstrdup(fstr, GFP_KERNEL); 7764 if (!fstr) 7765 return -ENOMEM; 7766 7767 while ((start = strsep(&fstr, " ,\n")) != NULL) { 7768 ret = -EINVAL; 7769 7770 if (!*start) 7771 continue; 7772 7773 /* filter definition begins */ 7774 if (state == IF_STATE_ACTION) { 7775 filter = perf_addr_filter_new(event, filters); 7776 if (!filter) 7777 goto fail; 7778 } 7779 7780 token = match_token(start, if_tokens, args); 7781 switch (token) { 7782 case IF_ACT_FILTER: 7783 case IF_ACT_START: 7784 filter->filter = 1; 7785 7786 case IF_ACT_STOP: 7787 if (state != IF_STATE_ACTION) 7788 goto fail; 7789 7790 state = IF_STATE_SOURCE; 7791 break; 7792 7793 case IF_SRC_KERNELADDR: 7794 case IF_SRC_KERNEL: 7795 kernel = 1; 7796 7797 case IF_SRC_FILEADDR: 7798 case IF_SRC_FILE: 7799 if (state != IF_STATE_SOURCE) 7800 goto fail; 7801 7802 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 7803 filter->range = 1; 7804 7805 *args[0].to = 0; 7806 ret = kstrtoul(args[0].from, 0, &filter->offset); 7807 if (ret) 7808 goto fail; 7809 7810 if (filter->range) { 7811 *args[1].to = 0; 7812 ret = kstrtoul(args[1].from, 0, &filter->size); 7813 if (ret) 7814 goto fail; 7815 } 7816 7817 if (token == IF_SRC_FILE) { 7818 filename = match_strdup(&args[2]); 7819 if (!filename) { 7820 ret = -ENOMEM; 7821 goto fail; 7822 } 7823 } 7824 7825 state = IF_STATE_END; 7826 break; 7827 7828 default: 7829 goto fail; 7830 } 7831 7832 /* 7833 * Filter definition is fully parsed, validate and install it. 7834 * Make sure that it doesn't contradict itself or the event's 7835 * attribute. 7836 */ 7837 if (state == IF_STATE_END) { 7838 if (kernel && event->attr.exclude_kernel) 7839 goto fail; 7840 7841 if (!kernel) { 7842 if (!filename) 7843 goto fail; 7844 7845 /* look up the path and grab its inode */ 7846 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 7847 if (ret) 7848 goto fail_free_name; 7849 7850 filter->inode = igrab(d_inode(path.dentry)); 7851 path_put(&path); 7852 kfree(filename); 7853 filename = NULL; 7854 7855 ret = -EINVAL; 7856 if (!filter->inode || 7857 !S_ISREG(filter->inode->i_mode)) 7858 /* free_filters_list() will iput() */ 7859 goto fail; 7860 } 7861 7862 /* ready to consume more filters */ 7863 state = IF_STATE_ACTION; 7864 filter = NULL; 7865 } 7866 } 7867 7868 if (state != IF_STATE_ACTION) 7869 goto fail; 7870 7871 kfree(orig); 7872 7873 return 0; 7874 7875 fail_free_name: 7876 kfree(filename); 7877 fail: 7878 free_filters_list(filters); 7879 kfree(orig); 7880 7881 return ret; 7882 } 7883 7884 static int 7885 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 7886 { 7887 LIST_HEAD(filters); 7888 int ret; 7889 7890 /* 7891 * Since this is called in perf_ioctl() path, we're already holding 7892 * ctx::mutex. 7893 */ 7894 lockdep_assert_held(&event->ctx->mutex); 7895 7896 if (WARN_ON_ONCE(event->parent)) 7897 return -EINVAL; 7898 7899 /* 7900 * For now, we only support filtering in per-task events; doing so 7901 * for CPU-wide events requires additional context switching trickery, 7902 * since same object code will be mapped at different virtual 7903 * addresses in different processes. 7904 */ 7905 if (!event->ctx->task) 7906 return -EOPNOTSUPP; 7907 7908 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 7909 if (ret) 7910 return ret; 7911 7912 ret = event->pmu->addr_filters_validate(&filters); 7913 if (ret) { 7914 free_filters_list(&filters); 7915 return ret; 7916 } 7917 7918 /* remove existing filters, if any */ 7919 perf_addr_filters_splice(event, &filters); 7920 7921 /* install new filters */ 7922 perf_event_for_each_child(event, perf_event_addr_filters_apply); 7923 7924 return ret; 7925 } 7926 7927 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7928 { 7929 char *filter_str; 7930 int ret = -EINVAL; 7931 7932 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 7933 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 7934 !has_addr_filter(event)) 7935 return -EINVAL; 7936 7937 filter_str = strndup_user(arg, PAGE_SIZE); 7938 if (IS_ERR(filter_str)) 7939 return PTR_ERR(filter_str); 7940 7941 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 7942 event->attr.type == PERF_TYPE_TRACEPOINT) 7943 ret = ftrace_profile_set_filter(event, event->attr.config, 7944 filter_str); 7945 else if (has_addr_filter(event)) 7946 ret = perf_event_set_addr_filter(event, filter_str); 7947 7948 kfree(filter_str); 7949 return ret; 7950 } 7951 7952 /* 7953 * hrtimer based swevent callback 7954 */ 7955 7956 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7957 { 7958 enum hrtimer_restart ret = HRTIMER_RESTART; 7959 struct perf_sample_data data; 7960 struct pt_regs *regs; 7961 struct perf_event *event; 7962 u64 period; 7963 7964 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7965 7966 if (event->state != PERF_EVENT_STATE_ACTIVE) 7967 return HRTIMER_NORESTART; 7968 7969 event->pmu->read(event); 7970 7971 perf_sample_data_init(&data, 0, event->hw.last_period); 7972 regs = get_irq_regs(); 7973 7974 if (regs && !perf_exclude_event(event, regs)) { 7975 if (!(event->attr.exclude_idle && is_idle_task(current))) 7976 if (__perf_event_overflow(event, 1, &data, regs)) 7977 ret = HRTIMER_NORESTART; 7978 } 7979 7980 period = max_t(u64, 10000, event->hw.sample_period); 7981 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7982 7983 return ret; 7984 } 7985 7986 static void perf_swevent_start_hrtimer(struct perf_event *event) 7987 { 7988 struct hw_perf_event *hwc = &event->hw; 7989 s64 period; 7990 7991 if (!is_sampling_event(event)) 7992 return; 7993 7994 period = local64_read(&hwc->period_left); 7995 if (period) { 7996 if (period < 0) 7997 period = 10000; 7998 7999 local64_set(&hwc->period_left, 0); 8000 } else { 8001 period = max_t(u64, 10000, hwc->sample_period); 8002 } 8003 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8004 HRTIMER_MODE_REL_PINNED); 8005 } 8006 8007 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8008 { 8009 struct hw_perf_event *hwc = &event->hw; 8010 8011 if (is_sampling_event(event)) { 8012 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8013 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8014 8015 hrtimer_cancel(&hwc->hrtimer); 8016 } 8017 } 8018 8019 static void perf_swevent_init_hrtimer(struct perf_event *event) 8020 { 8021 struct hw_perf_event *hwc = &event->hw; 8022 8023 if (!is_sampling_event(event)) 8024 return; 8025 8026 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8027 hwc->hrtimer.function = perf_swevent_hrtimer; 8028 8029 /* 8030 * Since hrtimers have a fixed rate, we can do a static freq->period 8031 * mapping and avoid the whole period adjust feedback stuff. 8032 */ 8033 if (event->attr.freq) { 8034 long freq = event->attr.sample_freq; 8035 8036 event->attr.sample_period = NSEC_PER_SEC / freq; 8037 hwc->sample_period = event->attr.sample_period; 8038 local64_set(&hwc->period_left, hwc->sample_period); 8039 hwc->last_period = hwc->sample_period; 8040 event->attr.freq = 0; 8041 } 8042 } 8043 8044 /* 8045 * Software event: cpu wall time clock 8046 */ 8047 8048 static void cpu_clock_event_update(struct perf_event *event) 8049 { 8050 s64 prev; 8051 u64 now; 8052 8053 now = local_clock(); 8054 prev = local64_xchg(&event->hw.prev_count, now); 8055 local64_add(now - prev, &event->count); 8056 } 8057 8058 static void cpu_clock_event_start(struct perf_event *event, int flags) 8059 { 8060 local64_set(&event->hw.prev_count, local_clock()); 8061 perf_swevent_start_hrtimer(event); 8062 } 8063 8064 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8065 { 8066 perf_swevent_cancel_hrtimer(event); 8067 cpu_clock_event_update(event); 8068 } 8069 8070 static int cpu_clock_event_add(struct perf_event *event, int flags) 8071 { 8072 if (flags & PERF_EF_START) 8073 cpu_clock_event_start(event, flags); 8074 perf_event_update_userpage(event); 8075 8076 return 0; 8077 } 8078 8079 static void cpu_clock_event_del(struct perf_event *event, int flags) 8080 { 8081 cpu_clock_event_stop(event, flags); 8082 } 8083 8084 static void cpu_clock_event_read(struct perf_event *event) 8085 { 8086 cpu_clock_event_update(event); 8087 } 8088 8089 static int cpu_clock_event_init(struct perf_event *event) 8090 { 8091 if (event->attr.type != PERF_TYPE_SOFTWARE) 8092 return -ENOENT; 8093 8094 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8095 return -ENOENT; 8096 8097 /* 8098 * no branch sampling for software events 8099 */ 8100 if (has_branch_stack(event)) 8101 return -EOPNOTSUPP; 8102 8103 perf_swevent_init_hrtimer(event); 8104 8105 return 0; 8106 } 8107 8108 static struct pmu perf_cpu_clock = { 8109 .task_ctx_nr = perf_sw_context, 8110 8111 .capabilities = PERF_PMU_CAP_NO_NMI, 8112 8113 .event_init = cpu_clock_event_init, 8114 .add = cpu_clock_event_add, 8115 .del = cpu_clock_event_del, 8116 .start = cpu_clock_event_start, 8117 .stop = cpu_clock_event_stop, 8118 .read = cpu_clock_event_read, 8119 }; 8120 8121 /* 8122 * Software event: task time clock 8123 */ 8124 8125 static void task_clock_event_update(struct perf_event *event, u64 now) 8126 { 8127 u64 prev; 8128 s64 delta; 8129 8130 prev = local64_xchg(&event->hw.prev_count, now); 8131 delta = now - prev; 8132 local64_add(delta, &event->count); 8133 } 8134 8135 static void task_clock_event_start(struct perf_event *event, int flags) 8136 { 8137 local64_set(&event->hw.prev_count, event->ctx->time); 8138 perf_swevent_start_hrtimer(event); 8139 } 8140 8141 static void task_clock_event_stop(struct perf_event *event, int flags) 8142 { 8143 perf_swevent_cancel_hrtimer(event); 8144 task_clock_event_update(event, event->ctx->time); 8145 } 8146 8147 static int task_clock_event_add(struct perf_event *event, int flags) 8148 { 8149 if (flags & PERF_EF_START) 8150 task_clock_event_start(event, flags); 8151 perf_event_update_userpage(event); 8152 8153 return 0; 8154 } 8155 8156 static void task_clock_event_del(struct perf_event *event, int flags) 8157 { 8158 task_clock_event_stop(event, PERF_EF_UPDATE); 8159 } 8160 8161 static void task_clock_event_read(struct perf_event *event) 8162 { 8163 u64 now = perf_clock(); 8164 u64 delta = now - event->ctx->timestamp; 8165 u64 time = event->ctx->time + delta; 8166 8167 task_clock_event_update(event, time); 8168 } 8169 8170 static int task_clock_event_init(struct perf_event *event) 8171 { 8172 if (event->attr.type != PERF_TYPE_SOFTWARE) 8173 return -ENOENT; 8174 8175 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8176 return -ENOENT; 8177 8178 /* 8179 * no branch sampling for software events 8180 */ 8181 if (has_branch_stack(event)) 8182 return -EOPNOTSUPP; 8183 8184 perf_swevent_init_hrtimer(event); 8185 8186 return 0; 8187 } 8188 8189 static struct pmu perf_task_clock = { 8190 .task_ctx_nr = perf_sw_context, 8191 8192 .capabilities = PERF_PMU_CAP_NO_NMI, 8193 8194 .event_init = task_clock_event_init, 8195 .add = task_clock_event_add, 8196 .del = task_clock_event_del, 8197 .start = task_clock_event_start, 8198 .stop = task_clock_event_stop, 8199 .read = task_clock_event_read, 8200 }; 8201 8202 static void perf_pmu_nop_void(struct pmu *pmu) 8203 { 8204 } 8205 8206 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8207 { 8208 } 8209 8210 static int perf_pmu_nop_int(struct pmu *pmu) 8211 { 8212 return 0; 8213 } 8214 8215 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8216 8217 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8218 { 8219 __this_cpu_write(nop_txn_flags, flags); 8220 8221 if (flags & ~PERF_PMU_TXN_ADD) 8222 return; 8223 8224 perf_pmu_disable(pmu); 8225 } 8226 8227 static int perf_pmu_commit_txn(struct pmu *pmu) 8228 { 8229 unsigned int flags = __this_cpu_read(nop_txn_flags); 8230 8231 __this_cpu_write(nop_txn_flags, 0); 8232 8233 if (flags & ~PERF_PMU_TXN_ADD) 8234 return 0; 8235 8236 perf_pmu_enable(pmu); 8237 return 0; 8238 } 8239 8240 static void perf_pmu_cancel_txn(struct pmu *pmu) 8241 { 8242 unsigned int flags = __this_cpu_read(nop_txn_flags); 8243 8244 __this_cpu_write(nop_txn_flags, 0); 8245 8246 if (flags & ~PERF_PMU_TXN_ADD) 8247 return; 8248 8249 perf_pmu_enable(pmu); 8250 } 8251 8252 static int perf_event_idx_default(struct perf_event *event) 8253 { 8254 return 0; 8255 } 8256 8257 /* 8258 * Ensures all contexts with the same task_ctx_nr have the same 8259 * pmu_cpu_context too. 8260 */ 8261 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8262 { 8263 struct pmu *pmu; 8264 8265 if (ctxn < 0) 8266 return NULL; 8267 8268 list_for_each_entry(pmu, &pmus, entry) { 8269 if (pmu->task_ctx_nr == ctxn) 8270 return pmu->pmu_cpu_context; 8271 } 8272 8273 return NULL; 8274 } 8275 8276 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8277 { 8278 int cpu; 8279 8280 for_each_possible_cpu(cpu) { 8281 struct perf_cpu_context *cpuctx; 8282 8283 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8284 8285 if (cpuctx->unique_pmu == old_pmu) 8286 cpuctx->unique_pmu = pmu; 8287 } 8288 } 8289 8290 static void free_pmu_context(struct pmu *pmu) 8291 { 8292 struct pmu *i; 8293 8294 mutex_lock(&pmus_lock); 8295 /* 8296 * Like a real lame refcount. 8297 */ 8298 list_for_each_entry(i, &pmus, entry) { 8299 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8300 update_pmu_context(i, pmu); 8301 goto out; 8302 } 8303 } 8304 8305 free_percpu(pmu->pmu_cpu_context); 8306 out: 8307 mutex_unlock(&pmus_lock); 8308 } 8309 8310 /* 8311 * Let userspace know that this PMU supports address range filtering: 8312 */ 8313 static ssize_t nr_addr_filters_show(struct device *dev, 8314 struct device_attribute *attr, 8315 char *page) 8316 { 8317 struct pmu *pmu = dev_get_drvdata(dev); 8318 8319 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8320 } 8321 DEVICE_ATTR_RO(nr_addr_filters); 8322 8323 static struct idr pmu_idr; 8324 8325 static ssize_t 8326 type_show(struct device *dev, struct device_attribute *attr, char *page) 8327 { 8328 struct pmu *pmu = dev_get_drvdata(dev); 8329 8330 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8331 } 8332 static DEVICE_ATTR_RO(type); 8333 8334 static ssize_t 8335 perf_event_mux_interval_ms_show(struct device *dev, 8336 struct device_attribute *attr, 8337 char *page) 8338 { 8339 struct pmu *pmu = dev_get_drvdata(dev); 8340 8341 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8342 } 8343 8344 static DEFINE_MUTEX(mux_interval_mutex); 8345 8346 static ssize_t 8347 perf_event_mux_interval_ms_store(struct device *dev, 8348 struct device_attribute *attr, 8349 const char *buf, size_t count) 8350 { 8351 struct pmu *pmu = dev_get_drvdata(dev); 8352 int timer, cpu, ret; 8353 8354 ret = kstrtoint(buf, 0, &timer); 8355 if (ret) 8356 return ret; 8357 8358 if (timer < 1) 8359 return -EINVAL; 8360 8361 /* same value, noting to do */ 8362 if (timer == pmu->hrtimer_interval_ms) 8363 return count; 8364 8365 mutex_lock(&mux_interval_mutex); 8366 pmu->hrtimer_interval_ms = timer; 8367 8368 /* update all cpuctx for this PMU */ 8369 get_online_cpus(); 8370 for_each_online_cpu(cpu) { 8371 struct perf_cpu_context *cpuctx; 8372 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8373 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8374 8375 cpu_function_call(cpu, 8376 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8377 } 8378 put_online_cpus(); 8379 mutex_unlock(&mux_interval_mutex); 8380 8381 return count; 8382 } 8383 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8384 8385 static struct attribute *pmu_dev_attrs[] = { 8386 &dev_attr_type.attr, 8387 &dev_attr_perf_event_mux_interval_ms.attr, 8388 NULL, 8389 }; 8390 ATTRIBUTE_GROUPS(pmu_dev); 8391 8392 static int pmu_bus_running; 8393 static struct bus_type pmu_bus = { 8394 .name = "event_source", 8395 .dev_groups = pmu_dev_groups, 8396 }; 8397 8398 static void pmu_dev_release(struct device *dev) 8399 { 8400 kfree(dev); 8401 } 8402 8403 static int pmu_dev_alloc(struct pmu *pmu) 8404 { 8405 int ret = -ENOMEM; 8406 8407 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8408 if (!pmu->dev) 8409 goto out; 8410 8411 pmu->dev->groups = pmu->attr_groups; 8412 device_initialize(pmu->dev); 8413 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8414 if (ret) 8415 goto free_dev; 8416 8417 dev_set_drvdata(pmu->dev, pmu); 8418 pmu->dev->bus = &pmu_bus; 8419 pmu->dev->release = pmu_dev_release; 8420 ret = device_add(pmu->dev); 8421 if (ret) 8422 goto free_dev; 8423 8424 /* For PMUs with address filters, throw in an extra attribute: */ 8425 if (pmu->nr_addr_filters) 8426 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8427 8428 if (ret) 8429 goto del_dev; 8430 8431 out: 8432 return ret; 8433 8434 del_dev: 8435 device_del(pmu->dev); 8436 8437 free_dev: 8438 put_device(pmu->dev); 8439 goto out; 8440 } 8441 8442 static struct lock_class_key cpuctx_mutex; 8443 static struct lock_class_key cpuctx_lock; 8444 8445 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8446 { 8447 int cpu, ret; 8448 8449 mutex_lock(&pmus_lock); 8450 ret = -ENOMEM; 8451 pmu->pmu_disable_count = alloc_percpu(int); 8452 if (!pmu->pmu_disable_count) 8453 goto unlock; 8454 8455 pmu->type = -1; 8456 if (!name) 8457 goto skip_type; 8458 pmu->name = name; 8459 8460 if (type < 0) { 8461 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8462 if (type < 0) { 8463 ret = type; 8464 goto free_pdc; 8465 } 8466 } 8467 pmu->type = type; 8468 8469 if (pmu_bus_running) { 8470 ret = pmu_dev_alloc(pmu); 8471 if (ret) 8472 goto free_idr; 8473 } 8474 8475 skip_type: 8476 if (pmu->task_ctx_nr == perf_hw_context) { 8477 static int hw_context_taken = 0; 8478 8479 /* 8480 * Other than systems with heterogeneous CPUs, it never makes 8481 * sense for two PMUs to share perf_hw_context. PMUs which are 8482 * uncore must use perf_invalid_context. 8483 */ 8484 if (WARN_ON_ONCE(hw_context_taken && 8485 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8486 pmu->task_ctx_nr = perf_invalid_context; 8487 8488 hw_context_taken = 1; 8489 } 8490 8491 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8492 if (pmu->pmu_cpu_context) 8493 goto got_cpu_context; 8494 8495 ret = -ENOMEM; 8496 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8497 if (!pmu->pmu_cpu_context) 8498 goto free_dev; 8499 8500 for_each_possible_cpu(cpu) { 8501 struct perf_cpu_context *cpuctx; 8502 8503 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8504 __perf_event_init_context(&cpuctx->ctx); 8505 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8506 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8507 cpuctx->ctx.pmu = pmu; 8508 8509 __perf_mux_hrtimer_init(cpuctx, cpu); 8510 8511 cpuctx->unique_pmu = pmu; 8512 } 8513 8514 got_cpu_context: 8515 if (!pmu->start_txn) { 8516 if (pmu->pmu_enable) { 8517 /* 8518 * If we have pmu_enable/pmu_disable calls, install 8519 * transaction stubs that use that to try and batch 8520 * hardware accesses. 8521 */ 8522 pmu->start_txn = perf_pmu_start_txn; 8523 pmu->commit_txn = perf_pmu_commit_txn; 8524 pmu->cancel_txn = perf_pmu_cancel_txn; 8525 } else { 8526 pmu->start_txn = perf_pmu_nop_txn; 8527 pmu->commit_txn = perf_pmu_nop_int; 8528 pmu->cancel_txn = perf_pmu_nop_void; 8529 } 8530 } 8531 8532 if (!pmu->pmu_enable) { 8533 pmu->pmu_enable = perf_pmu_nop_void; 8534 pmu->pmu_disable = perf_pmu_nop_void; 8535 } 8536 8537 if (!pmu->event_idx) 8538 pmu->event_idx = perf_event_idx_default; 8539 8540 list_add_rcu(&pmu->entry, &pmus); 8541 atomic_set(&pmu->exclusive_cnt, 0); 8542 ret = 0; 8543 unlock: 8544 mutex_unlock(&pmus_lock); 8545 8546 return ret; 8547 8548 free_dev: 8549 device_del(pmu->dev); 8550 put_device(pmu->dev); 8551 8552 free_idr: 8553 if (pmu->type >= PERF_TYPE_MAX) 8554 idr_remove(&pmu_idr, pmu->type); 8555 8556 free_pdc: 8557 free_percpu(pmu->pmu_disable_count); 8558 goto unlock; 8559 } 8560 EXPORT_SYMBOL_GPL(perf_pmu_register); 8561 8562 void perf_pmu_unregister(struct pmu *pmu) 8563 { 8564 mutex_lock(&pmus_lock); 8565 list_del_rcu(&pmu->entry); 8566 mutex_unlock(&pmus_lock); 8567 8568 /* 8569 * We dereference the pmu list under both SRCU and regular RCU, so 8570 * synchronize against both of those. 8571 */ 8572 synchronize_srcu(&pmus_srcu); 8573 synchronize_rcu(); 8574 8575 free_percpu(pmu->pmu_disable_count); 8576 if (pmu->type >= PERF_TYPE_MAX) 8577 idr_remove(&pmu_idr, pmu->type); 8578 if (pmu->nr_addr_filters) 8579 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8580 device_del(pmu->dev); 8581 put_device(pmu->dev); 8582 free_pmu_context(pmu); 8583 } 8584 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8585 8586 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8587 { 8588 struct perf_event_context *ctx = NULL; 8589 int ret; 8590 8591 if (!try_module_get(pmu->module)) 8592 return -ENODEV; 8593 8594 if (event->group_leader != event) { 8595 /* 8596 * This ctx->mutex can nest when we're called through 8597 * inheritance. See the perf_event_ctx_lock_nested() comment. 8598 */ 8599 ctx = perf_event_ctx_lock_nested(event->group_leader, 8600 SINGLE_DEPTH_NESTING); 8601 BUG_ON(!ctx); 8602 } 8603 8604 event->pmu = pmu; 8605 ret = pmu->event_init(event); 8606 8607 if (ctx) 8608 perf_event_ctx_unlock(event->group_leader, ctx); 8609 8610 if (ret) 8611 module_put(pmu->module); 8612 8613 return ret; 8614 } 8615 8616 static struct pmu *perf_init_event(struct perf_event *event) 8617 { 8618 struct pmu *pmu = NULL; 8619 int idx; 8620 int ret; 8621 8622 idx = srcu_read_lock(&pmus_srcu); 8623 8624 rcu_read_lock(); 8625 pmu = idr_find(&pmu_idr, event->attr.type); 8626 rcu_read_unlock(); 8627 if (pmu) { 8628 ret = perf_try_init_event(pmu, event); 8629 if (ret) 8630 pmu = ERR_PTR(ret); 8631 goto unlock; 8632 } 8633 8634 list_for_each_entry_rcu(pmu, &pmus, entry) { 8635 ret = perf_try_init_event(pmu, event); 8636 if (!ret) 8637 goto unlock; 8638 8639 if (ret != -ENOENT) { 8640 pmu = ERR_PTR(ret); 8641 goto unlock; 8642 } 8643 } 8644 pmu = ERR_PTR(-ENOENT); 8645 unlock: 8646 srcu_read_unlock(&pmus_srcu, idx); 8647 8648 return pmu; 8649 } 8650 8651 static void attach_sb_event(struct perf_event *event) 8652 { 8653 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 8654 8655 raw_spin_lock(&pel->lock); 8656 list_add_rcu(&event->sb_list, &pel->list); 8657 raw_spin_unlock(&pel->lock); 8658 } 8659 8660 /* 8661 * We keep a list of all !task (and therefore per-cpu) events 8662 * that need to receive side-band records. 8663 * 8664 * This avoids having to scan all the various PMU per-cpu contexts 8665 * looking for them. 8666 */ 8667 static void account_pmu_sb_event(struct perf_event *event) 8668 { 8669 struct perf_event_attr *attr = &event->attr; 8670 8671 if (event->parent) 8672 return; 8673 8674 if (event->attach_state & PERF_ATTACH_TASK) 8675 return; 8676 8677 if (attr->mmap || attr->mmap_data || attr->mmap2 || 8678 attr->comm || attr->comm_exec || 8679 attr->task || 8680 attr->context_switch) 8681 attach_sb_event(event); 8682 } 8683 8684 static void account_event_cpu(struct perf_event *event, int cpu) 8685 { 8686 if (event->parent) 8687 return; 8688 8689 if (is_cgroup_event(event)) 8690 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8691 } 8692 8693 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 8694 static void account_freq_event_nohz(void) 8695 { 8696 #ifdef CONFIG_NO_HZ_FULL 8697 /* Lock so we don't race with concurrent unaccount */ 8698 spin_lock(&nr_freq_lock); 8699 if (atomic_inc_return(&nr_freq_events) == 1) 8700 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 8701 spin_unlock(&nr_freq_lock); 8702 #endif 8703 } 8704 8705 static void account_freq_event(void) 8706 { 8707 if (tick_nohz_full_enabled()) 8708 account_freq_event_nohz(); 8709 else 8710 atomic_inc(&nr_freq_events); 8711 } 8712 8713 8714 static void account_event(struct perf_event *event) 8715 { 8716 bool inc = false; 8717 8718 if (event->parent) 8719 return; 8720 8721 if (event->attach_state & PERF_ATTACH_TASK) 8722 inc = true; 8723 if (event->attr.mmap || event->attr.mmap_data) 8724 atomic_inc(&nr_mmap_events); 8725 if (event->attr.comm) 8726 atomic_inc(&nr_comm_events); 8727 if (event->attr.task) 8728 atomic_inc(&nr_task_events); 8729 if (event->attr.freq) 8730 account_freq_event(); 8731 if (event->attr.context_switch) { 8732 atomic_inc(&nr_switch_events); 8733 inc = true; 8734 } 8735 if (has_branch_stack(event)) 8736 inc = true; 8737 if (is_cgroup_event(event)) 8738 inc = true; 8739 8740 if (inc) { 8741 if (atomic_inc_not_zero(&perf_sched_count)) 8742 goto enabled; 8743 8744 mutex_lock(&perf_sched_mutex); 8745 if (!atomic_read(&perf_sched_count)) { 8746 static_branch_enable(&perf_sched_events); 8747 /* 8748 * Guarantee that all CPUs observe they key change and 8749 * call the perf scheduling hooks before proceeding to 8750 * install events that need them. 8751 */ 8752 synchronize_sched(); 8753 } 8754 /* 8755 * Now that we have waited for the sync_sched(), allow further 8756 * increments to by-pass the mutex. 8757 */ 8758 atomic_inc(&perf_sched_count); 8759 mutex_unlock(&perf_sched_mutex); 8760 } 8761 enabled: 8762 8763 account_event_cpu(event, event->cpu); 8764 8765 account_pmu_sb_event(event); 8766 } 8767 8768 /* 8769 * Allocate and initialize a event structure 8770 */ 8771 static struct perf_event * 8772 perf_event_alloc(struct perf_event_attr *attr, int cpu, 8773 struct task_struct *task, 8774 struct perf_event *group_leader, 8775 struct perf_event *parent_event, 8776 perf_overflow_handler_t overflow_handler, 8777 void *context, int cgroup_fd) 8778 { 8779 struct pmu *pmu; 8780 struct perf_event *event; 8781 struct hw_perf_event *hwc; 8782 long err = -EINVAL; 8783 8784 if ((unsigned)cpu >= nr_cpu_ids) { 8785 if (!task || cpu != -1) 8786 return ERR_PTR(-EINVAL); 8787 } 8788 8789 event = kzalloc(sizeof(*event), GFP_KERNEL); 8790 if (!event) 8791 return ERR_PTR(-ENOMEM); 8792 8793 /* 8794 * Single events are their own group leaders, with an 8795 * empty sibling list: 8796 */ 8797 if (!group_leader) 8798 group_leader = event; 8799 8800 mutex_init(&event->child_mutex); 8801 INIT_LIST_HEAD(&event->child_list); 8802 8803 INIT_LIST_HEAD(&event->group_entry); 8804 INIT_LIST_HEAD(&event->event_entry); 8805 INIT_LIST_HEAD(&event->sibling_list); 8806 INIT_LIST_HEAD(&event->rb_entry); 8807 INIT_LIST_HEAD(&event->active_entry); 8808 INIT_LIST_HEAD(&event->addr_filters.list); 8809 INIT_HLIST_NODE(&event->hlist_entry); 8810 8811 8812 init_waitqueue_head(&event->waitq); 8813 init_irq_work(&event->pending, perf_pending_event); 8814 8815 mutex_init(&event->mmap_mutex); 8816 raw_spin_lock_init(&event->addr_filters.lock); 8817 8818 atomic_long_set(&event->refcount, 1); 8819 event->cpu = cpu; 8820 event->attr = *attr; 8821 event->group_leader = group_leader; 8822 event->pmu = NULL; 8823 event->oncpu = -1; 8824 8825 event->parent = parent_event; 8826 8827 event->ns = get_pid_ns(task_active_pid_ns(current)); 8828 event->id = atomic64_inc_return(&perf_event_id); 8829 8830 event->state = PERF_EVENT_STATE_INACTIVE; 8831 8832 if (task) { 8833 event->attach_state = PERF_ATTACH_TASK; 8834 /* 8835 * XXX pmu::event_init needs to know what task to account to 8836 * and we cannot use the ctx information because we need the 8837 * pmu before we get a ctx. 8838 */ 8839 event->hw.target = task; 8840 } 8841 8842 event->clock = &local_clock; 8843 if (parent_event) 8844 event->clock = parent_event->clock; 8845 8846 if (!overflow_handler && parent_event) { 8847 overflow_handler = parent_event->overflow_handler; 8848 context = parent_event->overflow_handler_context; 8849 } 8850 8851 if (overflow_handler) { 8852 event->overflow_handler = overflow_handler; 8853 event->overflow_handler_context = context; 8854 } else if (is_write_backward(event)){ 8855 event->overflow_handler = perf_event_output_backward; 8856 event->overflow_handler_context = NULL; 8857 } else { 8858 event->overflow_handler = perf_event_output_forward; 8859 event->overflow_handler_context = NULL; 8860 } 8861 8862 perf_event__state_init(event); 8863 8864 pmu = NULL; 8865 8866 hwc = &event->hw; 8867 hwc->sample_period = attr->sample_period; 8868 if (attr->freq && attr->sample_freq) 8869 hwc->sample_period = 1; 8870 hwc->last_period = hwc->sample_period; 8871 8872 local64_set(&hwc->period_left, hwc->sample_period); 8873 8874 /* 8875 * we currently do not support PERF_FORMAT_GROUP on inherited events 8876 */ 8877 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8878 goto err_ns; 8879 8880 if (!has_branch_stack(event)) 8881 event->attr.branch_sample_type = 0; 8882 8883 if (cgroup_fd != -1) { 8884 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8885 if (err) 8886 goto err_ns; 8887 } 8888 8889 pmu = perf_init_event(event); 8890 if (!pmu) 8891 goto err_ns; 8892 else if (IS_ERR(pmu)) { 8893 err = PTR_ERR(pmu); 8894 goto err_ns; 8895 } 8896 8897 err = exclusive_event_init(event); 8898 if (err) 8899 goto err_pmu; 8900 8901 if (has_addr_filter(event)) { 8902 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 8903 sizeof(unsigned long), 8904 GFP_KERNEL); 8905 if (!event->addr_filters_offs) 8906 goto err_per_task; 8907 8908 /* force hw sync on the address filters */ 8909 event->addr_filters_gen = 1; 8910 } 8911 8912 if (!event->parent) { 8913 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8914 err = get_callchain_buffers(attr->sample_max_stack); 8915 if (err) 8916 goto err_addr_filters; 8917 } 8918 } 8919 8920 /* symmetric to unaccount_event() in _free_event() */ 8921 account_event(event); 8922 8923 return event; 8924 8925 err_addr_filters: 8926 kfree(event->addr_filters_offs); 8927 8928 err_per_task: 8929 exclusive_event_destroy(event); 8930 8931 err_pmu: 8932 if (event->destroy) 8933 event->destroy(event); 8934 module_put(pmu->module); 8935 err_ns: 8936 if (is_cgroup_event(event)) 8937 perf_detach_cgroup(event); 8938 if (event->ns) 8939 put_pid_ns(event->ns); 8940 kfree(event); 8941 8942 return ERR_PTR(err); 8943 } 8944 8945 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8946 struct perf_event_attr *attr) 8947 { 8948 u32 size; 8949 int ret; 8950 8951 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8952 return -EFAULT; 8953 8954 /* 8955 * zero the full structure, so that a short copy will be nice. 8956 */ 8957 memset(attr, 0, sizeof(*attr)); 8958 8959 ret = get_user(size, &uattr->size); 8960 if (ret) 8961 return ret; 8962 8963 if (size > PAGE_SIZE) /* silly large */ 8964 goto err_size; 8965 8966 if (!size) /* abi compat */ 8967 size = PERF_ATTR_SIZE_VER0; 8968 8969 if (size < PERF_ATTR_SIZE_VER0) 8970 goto err_size; 8971 8972 /* 8973 * If we're handed a bigger struct than we know of, 8974 * ensure all the unknown bits are 0 - i.e. new 8975 * user-space does not rely on any kernel feature 8976 * extensions we dont know about yet. 8977 */ 8978 if (size > sizeof(*attr)) { 8979 unsigned char __user *addr; 8980 unsigned char __user *end; 8981 unsigned char val; 8982 8983 addr = (void __user *)uattr + sizeof(*attr); 8984 end = (void __user *)uattr + size; 8985 8986 for (; addr < end; addr++) { 8987 ret = get_user(val, addr); 8988 if (ret) 8989 return ret; 8990 if (val) 8991 goto err_size; 8992 } 8993 size = sizeof(*attr); 8994 } 8995 8996 ret = copy_from_user(attr, uattr, size); 8997 if (ret) 8998 return -EFAULT; 8999 9000 if (attr->__reserved_1) 9001 return -EINVAL; 9002 9003 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9004 return -EINVAL; 9005 9006 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9007 return -EINVAL; 9008 9009 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9010 u64 mask = attr->branch_sample_type; 9011 9012 /* only using defined bits */ 9013 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9014 return -EINVAL; 9015 9016 /* at least one branch bit must be set */ 9017 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9018 return -EINVAL; 9019 9020 /* propagate priv level, when not set for branch */ 9021 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9022 9023 /* exclude_kernel checked on syscall entry */ 9024 if (!attr->exclude_kernel) 9025 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9026 9027 if (!attr->exclude_user) 9028 mask |= PERF_SAMPLE_BRANCH_USER; 9029 9030 if (!attr->exclude_hv) 9031 mask |= PERF_SAMPLE_BRANCH_HV; 9032 /* 9033 * adjust user setting (for HW filter setup) 9034 */ 9035 attr->branch_sample_type = mask; 9036 } 9037 /* privileged levels capture (kernel, hv): check permissions */ 9038 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9039 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9040 return -EACCES; 9041 } 9042 9043 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9044 ret = perf_reg_validate(attr->sample_regs_user); 9045 if (ret) 9046 return ret; 9047 } 9048 9049 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9050 if (!arch_perf_have_user_stack_dump()) 9051 return -ENOSYS; 9052 9053 /* 9054 * We have __u32 type for the size, but so far 9055 * we can only use __u16 as maximum due to the 9056 * __u16 sample size limit. 9057 */ 9058 if (attr->sample_stack_user >= USHRT_MAX) 9059 ret = -EINVAL; 9060 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9061 ret = -EINVAL; 9062 } 9063 9064 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9065 ret = perf_reg_validate(attr->sample_regs_intr); 9066 out: 9067 return ret; 9068 9069 err_size: 9070 put_user(sizeof(*attr), &uattr->size); 9071 ret = -E2BIG; 9072 goto out; 9073 } 9074 9075 static int 9076 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9077 { 9078 struct ring_buffer *rb = NULL; 9079 int ret = -EINVAL; 9080 9081 if (!output_event) 9082 goto set; 9083 9084 /* don't allow circular references */ 9085 if (event == output_event) 9086 goto out; 9087 9088 /* 9089 * Don't allow cross-cpu buffers 9090 */ 9091 if (output_event->cpu != event->cpu) 9092 goto out; 9093 9094 /* 9095 * If its not a per-cpu rb, it must be the same task. 9096 */ 9097 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9098 goto out; 9099 9100 /* 9101 * Mixing clocks in the same buffer is trouble you don't need. 9102 */ 9103 if (output_event->clock != event->clock) 9104 goto out; 9105 9106 /* 9107 * Either writing ring buffer from beginning or from end. 9108 * Mixing is not allowed. 9109 */ 9110 if (is_write_backward(output_event) != is_write_backward(event)) 9111 goto out; 9112 9113 /* 9114 * If both events generate aux data, they must be on the same PMU 9115 */ 9116 if (has_aux(event) && has_aux(output_event) && 9117 event->pmu != output_event->pmu) 9118 goto out; 9119 9120 set: 9121 mutex_lock(&event->mmap_mutex); 9122 /* Can't redirect output if we've got an active mmap() */ 9123 if (atomic_read(&event->mmap_count)) 9124 goto unlock; 9125 9126 if (output_event) { 9127 /* get the rb we want to redirect to */ 9128 rb = ring_buffer_get(output_event); 9129 if (!rb) 9130 goto unlock; 9131 } 9132 9133 ring_buffer_attach(event, rb); 9134 9135 ret = 0; 9136 unlock: 9137 mutex_unlock(&event->mmap_mutex); 9138 9139 out: 9140 return ret; 9141 } 9142 9143 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9144 { 9145 if (b < a) 9146 swap(a, b); 9147 9148 mutex_lock(a); 9149 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9150 } 9151 9152 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9153 { 9154 bool nmi_safe = false; 9155 9156 switch (clk_id) { 9157 case CLOCK_MONOTONIC: 9158 event->clock = &ktime_get_mono_fast_ns; 9159 nmi_safe = true; 9160 break; 9161 9162 case CLOCK_MONOTONIC_RAW: 9163 event->clock = &ktime_get_raw_fast_ns; 9164 nmi_safe = true; 9165 break; 9166 9167 case CLOCK_REALTIME: 9168 event->clock = &ktime_get_real_ns; 9169 break; 9170 9171 case CLOCK_BOOTTIME: 9172 event->clock = &ktime_get_boot_ns; 9173 break; 9174 9175 case CLOCK_TAI: 9176 event->clock = &ktime_get_tai_ns; 9177 break; 9178 9179 default: 9180 return -EINVAL; 9181 } 9182 9183 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9184 return -EINVAL; 9185 9186 return 0; 9187 } 9188 9189 /** 9190 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9191 * 9192 * @attr_uptr: event_id type attributes for monitoring/sampling 9193 * @pid: target pid 9194 * @cpu: target cpu 9195 * @group_fd: group leader event fd 9196 */ 9197 SYSCALL_DEFINE5(perf_event_open, 9198 struct perf_event_attr __user *, attr_uptr, 9199 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9200 { 9201 struct perf_event *group_leader = NULL, *output_event = NULL; 9202 struct perf_event *event, *sibling; 9203 struct perf_event_attr attr; 9204 struct perf_event_context *ctx, *uninitialized_var(gctx); 9205 struct file *event_file = NULL; 9206 struct fd group = {NULL, 0}; 9207 struct task_struct *task = NULL; 9208 struct pmu *pmu; 9209 int event_fd; 9210 int move_group = 0; 9211 int err; 9212 int f_flags = O_RDWR; 9213 int cgroup_fd = -1; 9214 9215 /* for future expandability... */ 9216 if (flags & ~PERF_FLAG_ALL) 9217 return -EINVAL; 9218 9219 err = perf_copy_attr(attr_uptr, &attr); 9220 if (err) 9221 return err; 9222 9223 if (!attr.exclude_kernel) { 9224 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9225 return -EACCES; 9226 } 9227 9228 if (attr.freq) { 9229 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9230 return -EINVAL; 9231 } else { 9232 if (attr.sample_period & (1ULL << 63)) 9233 return -EINVAL; 9234 } 9235 9236 if (!attr.sample_max_stack) 9237 attr.sample_max_stack = sysctl_perf_event_max_stack; 9238 9239 /* 9240 * In cgroup mode, the pid argument is used to pass the fd 9241 * opened to the cgroup directory in cgroupfs. The cpu argument 9242 * designates the cpu on which to monitor threads from that 9243 * cgroup. 9244 */ 9245 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9246 return -EINVAL; 9247 9248 if (flags & PERF_FLAG_FD_CLOEXEC) 9249 f_flags |= O_CLOEXEC; 9250 9251 event_fd = get_unused_fd_flags(f_flags); 9252 if (event_fd < 0) 9253 return event_fd; 9254 9255 if (group_fd != -1) { 9256 err = perf_fget_light(group_fd, &group); 9257 if (err) 9258 goto err_fd; 9259 group_leader = group.file->private_data; 9260 if (flags & PERF_FLAG_FD_OUTPUT) 9261 output_event = group_leader; 9262 if (flags & PERF_FLAG_FD_NO_GROUP) 9263 group_leader = NULL; 9264 } 9265 9266 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9267 task = find_lively_task_by_vpid(pid); 9268 if (IS_ERR(task)) { 9269 err = PTR_ERR(task); 9270 goto err_group_fd; 9271 } 9272 } 9273 9274 if (task && group_leader && 9275 group_leader->attr.inherit != attr.inherit) { 9276 err = -EINVAL; 9277 goto err_task; 9278 } 9279 9280 get_online_cpus(); 9281 9282 if (task) { 9283 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9284 if (err) 9285 goto err_cpus; 9286 9287 /* 9288 * Reuse ptrace permission checks for now. 9289 * 9290 * We must hold cred_guard_mutex across this and any potential 9291 * perf_install_in_context() call for this new event to 9292 * serialize against exec() altering our credentials (and the 9293 * perf_event_exit_task() that could imply). 9294 */ 9295 err = -EACCES; 9296 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9297 goto err_cred; 9298 } 9299 9300 if (flags & PERF_FLAG_PID_CGROUP) 9301 cgroup_fd = pid; 9302 9303 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9304 NULL, NULL, cgroup_fd); 9305 if (IS_ERR(event)) { 9306 err = PTR_ERR(event); 9307 goto err_cred; 9308 } 9309 9310 if (is_sampling_event(event)) { 9311 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9312 err = -EOPNOTSUPP; 9313 goto err_alloc; 9314 } 9315 } 9316 9317 /* 9318 * Special case software events and allow them to be part of 9319 * any hardware group. 9320 */ 9321 pmu = event->pmu; 9322 9323 if (attr.use_clockid) { 9324 err = perf_event_set_clock(event, attr.clockid); 9325 if (err) 9326 goto err_alloc; 9327 } 9328 9329 if (group_leader && 9330 (is_software_event(event) != is_software_event(group_leader))) { 9331 if (is_software_event(event)) { 9332 /* 9333 * If event and group_leader are not both a software 9334 * event, and event is, then group leader is not. 9335 * 9336 * Allow the addition of software events to !software 9337 * groups, this is safe because software events never 9338 * fail to schedule. 9339 */ 9340 pmu = group_leader->pmu; 9341 } else if (is_software_event(group_leader) && 9342 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 9343 /* 9344 * In case the group is a pure software group, and we 9345 * try to add a hardware event, move the whole group to 9346 * the hardware context. 9347 */ 9348 move_group = 1; 9349 } 9350 } 9351 9352 /* 9353 * Get the target context (task or percpu): 9354 */ 9355 ctx = find_get_context(pmu, task, event); 9356 if (IS_ERR(ctx)) { 9357 err = PTR_ERR(ctx); 9358 goto err_alloc; 9359 } 9360 9361 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9362 err = -EBUSY; 9363 goto err_context; 9364 } 9365 9366 /* 9367 * Look up the group leader (we will attach this event to it): 9368 */ 9369 if (group_leader) { 9370 err = -EINVAL; 9371 9372 /* 9373 * Do not allow a recursive hierarchy (this new sibling 9374 * becoming part of another group-sibling): 9375 */ 9376 if (group_leader->group_leader != group_leader) 9377 goto err_context; 9378 9379 /* All events in a group should have the same clock */ 9380 if (group_leader->clock != event->clock) 9381 goto err_context; 9382 9383 /* 9384 * Do not allow to attach to a group in a different 9385 * task or CPU context: 9386 */ 9387 if (move_group) { 9388 /* 9389 * Make sure we're both on the same task, or both 9390 * per-cpu events. 9391 */ 9392 if (group_leader->ctx->task != ctx->task) 9393 goto err_context; 9394 9395 /* 9396 * Make sure we're both events for the same CPU; 9397 * grouping events for different CPUs is broken; since 9398 * you can never concurrently schedule them anyhow. 9399 */ 9400 if (group_leader->cpu != event->cpu) 9401 goto err_context; 9402 } else { 9403 if (group_leader->ctx != ctx) 9404 goto err_context; 9405 } 9406 9407 /* 9408 * Only a group leader can be exclusive or pinned 9409 */ 9410 if (attr.exclusive || attr.pinned) 9411 goto err_context; 9412 } 9413 9414 if (output_event) { 9415 err = perf_event_set_output(event, output_event); 9416 if (err) 9417 goto err_context; 9418 } 9419 9420 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9421 f_flags); 9422 if (IS_ERR(event_file)) { 9423 err = PTR_ERR(event_file); 9424 event_file = NULL; 9425 goto err_context; 9426 } 9427 9428 if (move_group) { 9429 gctx = group_leader->ctx; 9430 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9431 if (gctx->task == TASK_TOMBSTONE) { 9432 err = -ESRCH; 9433 goto err_locked; 9434 } 9435 } else { 9436 mutex_lock(&ctx->mutex); 9437 } 9438 9439 if (ctx->task == TASK_TOMBSTONE) { 9440 err = -ESRCH; 9441 goto err_locked; 9442 } 9443 9444 if (!perf_event_validate_size(event)) { 9445 err = -E2BIG; 9446 goto err_locked; 9447 } 9448 9449 /* 9450 * Must be under the same ctx::mutex as perf_install_in_context(), 9451 * because we need to serialize with concurrent event creation. 9452 */ 9453 if (!exclusive_event_installable(event, ctx)) { 9454 /* exclusive and group stuff are assumed mutually exclusive */ 9455 WARN_ON_ONCE(move_group); 9456 9457 err = -EBUSY; 9458 goto err_locked; 9459 } 9460 9461 WARN_ON_ONCE(ctx->parent_ctx); 9462 9463 /* 9464 * This is the point on no return; we cannot fail hereafter. This is 9465 * where we start modifying current state. 9466 */ 9467 9468 if (move_group) { 9469 /* 9470 * See perf_event_ctx_lock() for comments on the details 9471 * of swizzling perf_event::ctx. 9472 */ 9473 perf_remove_from_context(group_leader, 0); 9474 9475 list_for_each_entry(sibling, &group_leader->sibling_list, 9476 group_entry) { 9477 perf_remove_from_context(sibling, 0); 9478 put_ctx(gctx); 9479 } 9480 9481 /* 9482 * Wait for everybody to stop referencing the events through 9483 * the old lists, before installing it on new lists. 9484 */ 9485 synchronize_rcu(); 9486 9487 /* 9488 * Install the group siblings before the group leader. 9489 * 9490 * Because a group leader will try and install the entire group 9491 * (through the sibling list, which is still in-tact), we can 9492 * end up with siblings installed in the wrong context. 9493 * 9494 * By installing siblings first we NO-OP because they're not 9495 * reachable through the group lists. 9496 */ 9497 list_for_each_entry(sibling, &group_leader->sibling_list, 9498 group_entry) { 9499 perf_event__state_init(sibling); 9500 perf_install_in_context(ctx, sibling, sibling->cpu); 9501 get_ctx(ctx); 9502 } 9503 9504 /* 9505 * Removing from the context ends up with disabled 9506 * event. What we want here is event in the initial 9507 * startup state, ready to be add into new context. 9508 */ 9509 perf_event__state_init(group_leader); 9510 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9511 get_ctx(ctx); 9512 9513 /* 9514 * Now that all events are installed in @ctx, nothing 9515 * references @gctx anymore, so drop the last reference we have 9516 * on it. 9517 */ 9518 put_ctx(gctx); 9519 } 9520 9521 /* 9522 * Precalculate sample_data sizes; do while holding ctx::mutex such 9523 * that we're serialized against further additions and before 9524 * perf_install_in_context() which is the point the event is active and 9525 * can use these values. 9526 */ 9527 perf_event__header_size(event); 9528 perf_event__id_header_size(event); 9529 9530 event->owner = current; 9531 9532 perf_install_in_context(ctx, event, event->cpu); 9533 perf_unpin_context(ctx); 9534 9535 if (move_group) 9536 mutex_unlock(&gctx->mutex); 9537 mutex_unlock(&ctx->mutex); 9538 9539 if (task) { 9540 mutex_unlock(&task->signal->cred_guard_mutex); 9541 put_task_struct(task); 9542 } 9543 9544 put_online_cpus(); 9545 9546 mutex_lock(¤t->perf_event_mutex); 9547 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9548 mutex_unlock(¤t->perf_event_mutex); 9549 9550 /* 9551 * Drop the reference on the group_event after placing the 9552 * new event on the sibling_list. This ensures destruction 9553 * of the group leader will find the pointer to itself in 9554 * perf_group_detach(). 9555 */ 9556 fdput(group); 9557 fd_install(event_fd, event_file); 9558 return event_fd; 9559 9560 err_locked: 9561 if (move_group) 9562 mutex_unlock(&gctx->mutex); 9563 mutex_unlock(&ctx->mutex); 9564 /* err_file: */ 9565 fput(event_file); 9566 err_context: 9567 perf_unpin_context(ctx); 9568 put_ctx(ctx); 9569 err_alloc: 9570 /* 9571 * If event_file is set, the fput() above will have called ->release() 9572 * and that will take care of freeing the event. 9573 */ 9574 if (!event_file) 9575 free_event(event); 9576 err_cred: 9577 if (task) 9578 mutex_unlock(&task->signal->cred_guard_mutex); 9579 err_cpus: 9580 put_online_cpus(); 9581 err_task: 9582 if (task) 9583 put_task_struct(task); 9584 err_group_fd: 9585 fdput(group); 9586 err_fd: 9587 put_unused_fd(event_fd); 9588 return err; 9589 } 9590 9591 /** 9592 * perf_event_create_kernel_counter 9593 * 9594 * @attr: attributes of the counter to create 9595 * @cpu: cpu in which the counter is bound 9596 * @task: task to profile (NULL for percpu) 9597 */ 9598 struct perf_event * 9599 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9600 struct task_struct *task, 9601 perf_overflow_handler_t overflow_handler, 9602 void *context) 9603 { 9604 struct perf_event_context *ctx; 9605 struct perf_event *event; 9606 int err; 9607 9608 /* 9609 * Get the target context (task or percpu): 9610 */ 9611 9612 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9613 overflow_handler, context, -1); 9614 if (IS_ERR(event)) { 9615 err = PTR_ERR(event); 9616 goto err; 9617 } 9618 9619 /* Mark owner so we could distinguish it from user events. */ 9620 event->owner = TASK_TOMBSTONE; 9621 9622 ctx = find_get_context(event->pmu, task, event); 9623 if (IS_ERR(ctx)) { 9624 err = PTR_ERR(ctx); 9625 goto err_free; 9626 } 9627 9628 WARN_ON_ONCE(ctx->parent_ctx); 9629 mutex_lock(&ctx->mutex); 9630 if (ctx->task == TASK_TOMBSTONE) { 9631 err = -ESRCH; 9632 goto err_unlock; 9633 } 9634 9635 if (!exclusive_event_installable(event, ctx)) { 9636 err = -EBUSY; 9637 goto err_unlock; 9638 } 9639 9640 perf_install_in_context(ctx, event, cpu); 9641 perf_unpin_context(ctx); 9642 mutex_unlock(&ctx->mutex); 9643 9644 return event; 9645 9646 err_unlock: 9647 mutex_unlock(&ctx->mutex); 9648 perf_unpin_context(ctx); 9649 put_ctx(ctx); 9650 err_free: 9651 free_event(event); 9652 err: 9653 return ERR_PTR(err); 9654 } 9655 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9656 9657 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9658 { 9659 struct perf_event_context *src_ctx; 9660 struct perf_event_context *dst_ctx; 9661 struct perf_event *event, *tmp; 9662 LIST_HEAD(events); 9663 9664 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9665 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9666 9667 /* 9668 * See perf_event_ctx_lock() for comments on the details 9669 * of swizzling perf_event::ctx. 9670 */ 9671 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9672 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9673 event_entry) { 9674 perf_remove_from_context(event, 0); 9675 unaccount_event_cpu(event, src_cpu); 9676 put_ctx(src_ctx); 9677 list_add(&event->migrate_entry, &events); 9678 } 9679 9680 /* 9681 * Wait for the events to quiesce before re-instating them. 9682 */ 9683 synchronize_rcu(); 9684 9685 /* 9686 * Re-instate events in 2 passes. 9687 * 9688 * Skip over group leaders and only install siblings on this first 9689 * pass, siblings will not get enabled without a leader, however a 9690 * leader will enable its siblings, even if those are still on the old 9691 * context. 9692 */ 9693 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9694 if (event->group_leader == event) 9695 continue; 9696 9697 list_del(&event->migrate_entry); 9698 if (event->state >= PERF_EVENT_STATE_OFF) 9699 event->state = PERF_EVENT_STATE_INACTIVE; 9700 account_event_cpu(event, dst_cpu); 9701 perf_install_in_context(dst_ctx, event, dst_cpu); 9702 get_ctx(dst_ctx); 9703 } 9704 9705 /* 9706 * Once all the siblings are setup properly, install the group leaders 9707 * to make it go. 9708 */ 9709 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9710 list_del(&event->migrate_entry); 9711 if (event->state >= PERF_EVENT_STATE_OFF) 9712 event->state = PERF_EVENT_STATE_INACTIVE; 9713 account_event_cpu(event, dst_cpu); 9714 perf_install_in_context(dst_ctx, event, dst_cpu); 9715 get_ctx(dst_ctx); 9716 } 9717 mutex_unlock(&dst_ctx->mutex); 9718 mutex_unlock(&src_ctx->mutex); 9719 } 9720 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 9721 9722 static void sync_child_event(struct perf_event *child_event, 9723 struct task_struct *child) 9724 { 9725 struct perf_event *parent_event = child_event->parent; 9726 u64 child_val; 9727 9728 if (child_event->attr.inherit_stat) 9729 perf_event_read_event(child_event, child); 9730 9731 child_val = perf_event_count(child_event); 9732 9733 /* 9734 * Add back the child's count to the parent's count: 9735 */ 9736 atomic64_add(child_val, &parent_event->child_count); 9737 atomic64_add(child_event->total_time_enabled, 9738 &parent_event->child_total_time_enabled); 9739 atomic64_add(child_event->total_time_running, 9740 &parent_event->child_total_time_running); 9741 } 9742 9743 static void 9744 perf_event_exit_event(struct perf_event *child_event, 9745 struct perf_event_context *child_ctx, 9746 struct task_struct *child) 9747 { 9748 struct perf_event *parent_event = child_event->parent; 9749 9750 /* 9751 * Do not destroy the 'original' grouping; because of the context 9752 * switch optimization the original events could've ended up in a 9753 * random child task. 9754 * 9755 * If we were to destroy the original group, all group related 9756 * operations would cease to function properly after this random 9757 * child dies. 9758 * 9759 * Do destroy all inherited groups, we don't care about those 9760 * and being thorough is better. 9761 */ 9762 raw_spin_lock_irq(&child_ctx->lock); 9763 WARN_ON_ONCE(child_ctx->is_active); 9764 9765 if (parent_event) 9766 perf_group_detach(child_event); 9767 list_del_event(child_event, child_ctx); 9768 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 9769 raw_spin_unlock_irq(&child_ctx->lock); 9770 9771 /* 9772 * Parent events are governed by their filedesc, retain them. 9773 */ 9774 if (!parent_event) { 9775 perf_event_wakeup(child_event); 9776 return; 9777 } 9778 /* 9779 * Child events can be cleaned up. 9780 */ 9781 9782 sync_child_event(child_event, child); 9783 9784 /* 9785 * Remove this event from the parent's list 9786 */ 9787 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9788 mutex_lock(&parent_event->child_mutex); 9789 list_del_init(&child_event->child_list); 9790 mutex_unlock(&parent_event->child_mutex); 9791 9792 /* 9793 * Kick perf_poll() for is_event_hup(). 9794 */ 9795 perf_event_wakeup(parent_event); 9796 free_event(child_event); 9797 put_event(parent_event); 9798 } 9799 9800 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 9801 { 9802 struct perf_event_context *child_ctx, *clone_ctx = NULL; 9803 struct perf_event *child_event, *next; 9804 9805 WARN_ON_ONCE(child != current); 9806 9807 child_ctx = perf_pin_task_context(child, ctxn); 9808 if (!child_ctx) 9809 return; 9810 9811 /* 9812 * In order to reduce the amount of tricky in ctx tear-down, we hold 9813 * ctx::mutex over the entire thing. This serializes against almost 9814 * everything that wants to access the ctx. 9815 * 9816 * The exception is sys_perf_event_open() / 9817 * perf_event_create_kernel_count() which does find_get_context() 9818 * without ctx::mutex (it cannot because of the move_group double mutex 9819 * lock thing). See the comments in perf_install_in_context(). 9820 */ 9821 mutex_lock(&child_ctx->mutex); 9822 9823 /* 9824 * In a single ctx::lock section, de-schedule the events and detach the 9825 * context from the task such that we cannot ever get it scheduled back 9826 * in. 9827 */ 9828 raw_spin_lock_irq(&child_ctx->lock); 9829 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 9830 9831 /* 9832 * Now that the context is inactive, destroy the task <-> ctx relation 9833 * and mark the context dead. 9834 */ 9835 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 9836 put_ctx(child_ctx); /* cannot be last */ 9837 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 9838 put_task_struct(current); /* cannot be last */ 9839 9840 clone_ctx = unclone_ctx(child_ctx); 9841 raw_spin_unlock_irq(&child_ctx->lock); 9842 9843 if (clone_ctx) 9844 put_ctx(clone_ctx); 9845 9846 /* 9847 * Report the task dead after unscheduling the events so that we 9848 * won't get any samples after PERF_RECORD_EXIT. We can however still 9849 * get a few PERF_RECORD_READ events. 9850 */ 9851 perf_event_task(child, child_ctx, 0); 9852 9853 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 9854 perf_event_exit_event(child_event, child_ctx, child); 9855 9856 mutex_unlock(&child_ctx->mutex); 9857 9858 put_ctx(child_ctx); 9859 } 9860 9861 /* 9862 * When a child task exits, feed back event values to parent events. 9863 * 9864 * Can be called with cred_guard_mutex held when called from 9865 * install_exec_creds(). 9866 */ 9867 void perf_event_exit_task(struct task_struct *child) 9868 { 9869 struct perf_event *event, *tmp; 9870 int ctxn; 9871 9872 mutex_lock(&child->perf_event_mutex); 9873 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 9874 owner_entry) { 9875 list_del_init(&event->owner_entry); 9876 9877 /* 9878 * Ensure the list deletion is visible before we clear 9879 * the owner, closes a race against perf_release() where 9880 * we need to serialize on the owner->perf_event_mutex. 9881 */ 9882 smp_store_release(&event->owner, NULL); 9883 } 9884 mutex_unlock(&child->perf_event_mutex); 9885 9886 for_each_task_context_nr(ctxn) 9887 perf_event_exit_task_context(child, ctxn); 9888 9889 /* 9890 * The perf_event_exit_task_context calls perf_event_task 9891 * with child's task_ctx, which generates EXIT events for 9892 * child contexts and sets child->perf_event_ctxp[] to NULL. 9893 * At this point we need to send EXIT events to cpu contexts. 9894 */ 9895 perf_event_task(child, NULL, 0); 9896 } 9897 9898 static void perf_free_event(struct perf_event *event, 9899 struct perf_event_context *ctx) 9900 { 9901 struct perf_event *parent = event->parent; 9902 9903 if (WARN_ON_ONCE(!parent)) 9904 return; 9905 9906 mutex_lock(&parent->child_mutex); 9907 list_del_init(&event->child_list); 9908 mutex_unlock(&parent->child_mutex); 9909 9910 put_event(parent); 9911 9912 raw_spin_lock_irq(&ctx->lock); 9913 perf_group_detach(event); 9914 list_del_event(event, ctx); 9915 raw_spin_unlock_irq(&ctx->lock); 9916 free_event(event); 9917 } 9918 9919 /* 9920 * Free an unexposed, unused context as created by inheritance by 9921 * perf_event_init_task below, used by fork() in case of fail. 9922 * 9923 * Not all locks are strictly required, but take them anyway to be nice and 9924 * help out with the lockdep assertions. 9925 */ 9926 void perf_event_free_task(struct task_struct *task) 9927 { 9928 struct perf_event_context *ctx; 9929 struct perf_event *event, *tmp; 9930 int ctxn; 9931 9932 for_each_task_context_nr(ctxn) { 9933 ctx = task->perf_event_ctxp[ctxn]; 9934 if (!ctx) 9935 continue; 9936 9937 mutex_lock(&ctx->mutex); 9938 again: 9939 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 9940 group_entry) 9941 perf_free_event(event, ctx); 9942 9943 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 9944 group_entry) 9945 perf_free_event(event, ctx); 9946 9947 if (!list_empty(&ctx->pinned_groups) || 9948 !list_empty(&ctx->flexible_groups)) 9949 goto again; 9950 9951 mutex_unlock(&ctx->mutex); 9952 9953 put_ctx(ctx); 9954 } 9955 } 9956 9957 void perf_event_delayed_put(struct task_struct *task) 9958 { 9959 int ctxn; 9960 9961 for_each_task_context_nr(ctxn) 9962 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 9963 } 9964 9965 struct file *perf_event_get(unsigned int fd) 9966 { 9967 struct file *file; 9968 9969 file = fget_raw(fd); 9970 if (!file) 9971 return ERR_PTR(-EBADF); 9972 9973 if (file->f_op != &perf_fops) { 9974 fput(file); 9975 return ERR_PTR(-EBADF); 9976 } 9977 9978 return file; 9979 } 9980 9981 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 9982 { 9983 if (!event) 9984 return ERR_PTR(-EINVAL); 9985 9986 return &event->attr; 9987 } 9988 9989 /* 9990 * inherit a event from parent task to child task: 9991 */ 9992 static struct perf_event * 9993 inherit_event(struct perf_event *parent_event, 9994 struct task_struct *parent, 9995 struct perf_event_context *parent_ctx, 9996 struct task_struct *child, 9997 struct perf_event *group_leader, 9998 struct perf_event_context *child_ctx) 9999 { 10000 enum perf_event_active_state parent_state = parent_event->state; 10001 struct perf_event *child_event; 10002 unsigned long flags; 10003 10004 /* 10005 * Instead of creating recursive hierarchies of events, 10006 * we link inherited events back to the original parent, 10007 * which has a filp for sure, which we use as the reference 10008 * count: 10009 */ 10010 if (parent_event->parent) 10011 parent_event = parent_event->parent; 10012 10013 child_event = perf_event_alloc(&parent_event->attr, 10014 parent_event->cpu, 10015 child, 10016 group_leader, parent_event, 10017 NULL, NULL, -1); 10018 if (IS_ERR(child_event)) 10019 return child_event; 10020 10021 /* 10022 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10023 * must be under the same lock in order to serialize against 10024 * perf_event_release_kernel(), such that either we must observe 10025 * is_orphaned_event() or they will observe us on the child_list. 10026 */ 10027 mutex_lock(&parent_event->child_mutex); 10028 if (is_orphaned_event(parent_event) || 10029 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10030 mutex_unlock(&parent_event->child_mutex); 10031 free_event(child_event); 10032 return NULL; 10033 } 10034 10035 get_ctx(child_ctx); 10036 10037 /* 10038 * Make the child state follow the state of the parent event, 10039 * not its attr.disabled bit. We hold the parent's mutex, 10040 * so we won't race with perf_event_{en, dis}able_family. 10041 */ 10042 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10043 child_event->state = PERF_EVENT_STATE_INACTIVE; 10044 else 10045 child_event->state = PERF_EVENT_STATE_OFF; 10046 10047 if (parent_event->attr.freq) { 10048 u64 sample_period = parent_event->hw.sample_period; 10049 struct hw_perf_event *hwc = &child_event->hw; 10050 10051 hwc->sample_period = sample_period; 10052 hwc->last_period = sample_period; 10053 10054 local64_set(&hwc->period_left, sample_period); 10055 } 10056 10057 child_event->ctx = child_ctx; 10058 child_event->overflow_handler = parent_event->overflow_handler; 10059 child_event->overflow_handler_context 10060 = parent_event->overflow_handler_context; 10061 10062 /* 10063 * Precalculate sample_data sizes 10064 */ 10065 perf_event__header_size(child_event); 10066 perf_event__id_header_size(child_event); 10067 10068 /* 10069 * Link it up in the child's context: 10070 */ 10071 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10072 add_event_to_ctx(child_event, child_ctx); 10073 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10074 10075 /* 10076 * Link this into the parent event's child list 10077 */ 10078 list_add_tail(&child_event->child_list, &parent_event->child_list); 10079 mutex_unlock(&parent_event->child_mutex); 10080 10081 return child_event; 10082 } 10083 10084 static int inherit_group(struct perf_event *parent_event, 10085 struct task_struct *parent, 10086 struct perf_event_context *parent_ctx, 10087 struct task_struct *child, 10088 struct perf_event_context *child_ctx) 10089 { 10090 struct perf_event *leader; 10091 struct perf_event *sub; 10092 struct perf_event *child_ctr; 10093 10094 leader = inherit_event(parent_event, parent, parent_ctx, 10095 child, NULL, child_ctx); 10096 if (IS_ERR(leader)) 10097 return PTR_ERR(leader); 10098 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10099 child_ctr = inherit_event(sub, parent, parent_ctx, 10100 child, leader, child_ctx); 10101 if (IS_ERR(child_ctr)) 10102 return PTR_ERR(child_ctr); 10103 } 10104 return 0; 10105 } 10106 10107 static int 10108 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10109 struct perf_event_context *parent_ctx, 10110 struct task_struct *child, int ctxn, 10111 int *inherited_all) 10112 { 10113 int ret; 10114 struct perf_event_context *child_ctx; 10115 10116 if (!event->attr.inherit) { 10117 *inherited_all = 0; 10118 return 0; 10119 } 10120 10121 child_ctx = child->perf_event_ctxp[ctxn]; 10122 if (!child_ctx) { 10123 /* 10124 * This is executed from the parent task context, so 10125 * inherit events that have been marked for cloning. 10126 * First allocate and initialize a context for the 10127 * child. 10128 */ 10129 10130 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10131 if (!child_ctx) 10132 return -ENOMEM; 10133 10134 child->perf_event_ctxp[ctxn] = child_ctx; 10135 } 10136 10137 ret = inherit_group(event, parent, parent_ctx, 10138 child, child_ctx); 10139 10140 if (ret) 10141 *inherited_all = 0; 10142 10143 return ret; 10144 } 10145 10146 /* 10147 * Initialize the perf_event context in task_struct 10148 */ 10149 static int perf_event_init_context(struct task_struct *child, int ctxn) 10150 { 10151 struct perf_event_context *child_ctx, *parent_ctx; 10152 struct perf_event_context *cloned_ctx; 10153 struct perf_event *event; 10154 struct task_struct *parent = current; 10155 int inherited_all = 1; 10156 unsigned long flags; 10157 int ret = 0; 10158 10159 if (likely(!parent->perf_event_ctxp[ctxn])) 10160 return 0; 10161 10162 /* 10163 * If the parent's context is a clone, pin it so it won't get 10164 * swapped under us. 10165 */ 10166 parent_ctx = perf_pin_task_context(parent, ctxn); 10167 if (!parent_ctx) 10168 return 0; 10169 10170 /* 10171 * No need to check if parent_ctx != NULL here; since we saw 10172 * it non-NULL earlier, the only reason for it to become NULL 10173 * is if we exit, and since we're currently in the middle of 10174 * a fork we can't be exiting at the same time. 10175 */ 10176 10177 /* 10178 * Lock the parent list. No need to lock the child - not PID 10179 * hashed yet and not running, so nobody can access it. 10180 */ 10181 mutex_lock(&parent_ctx->mutex); 10182 10183 /* 10184 * We dont have to disable NMIs - we are only looking at 10185 * the list, not manipulating it: 10186 */ 10187 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10188 ret = inherit_task_group(event, parent, parent_ctx, 10189 child, ctxn, &inherited_all); 10190 if (ret) 10191 break; 10192 } 10193 10194 /* 10195 * We can't hold ctx->lock when iterating the ->flexible_group list due 10196 * to allocations, but we need to prevent rotation because 10197 * rotate_ctx() will change the list from interrupt context. 10198 */ 10199 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10200 parent_ctx->rotate_disable = 1; 10201 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10202 10203 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10204 ret = inherit_task_group(event, parent, parent_ctx, 10205 child, ctxn, &inherited_all); 10206 if (ret) 10207 break; 10208 } 10209 10210 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10211 parent_ctx->rotate_disable = 0; 10212 10213 child_ctx = child->perf_event_ctxp[ctxn]; 10214 10215 if (child_ctx && inherited_all) { 10216 /* 10217 * Mark the child context as a clone of the parent 10218 * context, or of whatever the parent is a clone of. 10219 * 10220 * Note that if the parent is a clone, the holding of 10221 * parent_ctx->lock avoids it from being uncloned. 10222 */ 10223 cloned_ctx = parent_ctx->parent_ctx; 10224 if (cloned_ctx) { 10225 child_ctx->parent_ctx = cloned_ctx; 10226 child_ctx->parent_gen = parent_ctx->parent_gen; 10227 } else { 10228 child_ctx->parent_ctx = parent_ctx; 10229 child_ctx->parent_gen = parent_ctx->generation; 10230 } 10231 get_ctx(child_ctx->parent_ctx); 10232 } 10233 10234 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10235 mutex_unlock(&parent_ctx->mutex); 10236 10237 perf_unpin_context(parent_ctx); 10238 put_ctx(parent_ctx); 10239 10240 return ret; 10241 } 10242 10243 /* 10244 * Initialize the perf_event context in task_struct 10245 */ 10246 int perf_event_init_task(struct task_struct *child) 10247 { 10248 int ctxn, ret; 10249 10250 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10251 mutex_init(&child->perf_event_mutex); 10252 INIT_LIST_HEAD(&child->perf_event_list); 10253 10254 for_each_task_context_nr(ctxn) { 10255 ret = perf_event_init_context(child, ctxn); 10256 if (ret) { 10257 perf_event_free_task(child); 10258 return ret; 10259 } 10260 } 10261 10262 return 0; 10263 } 10264 10265 static void __init perf_event_init_all_cpus(void) 10266 { 10267 struct swevent_htable *swhash; 10268 int cpu; 10269 10270 for_each_possible_cpu(cpu) { 10271 swhash = &per_cpu(swevent_htable, cpu); 10272 mutex_init(&swhash->hlist_mutex); 10273 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10274 10275 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10276 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10277 } 10278 } 10279 10280 static void perf_event_init_cpu(int cpu) 10281 { 10282 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10283 10284 mutex_lock(&swhash->hlist_mutex); 10285 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10286 struct swevent_hlist *hlist; 10287 10288 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10289 WARN_ON(!hlist); 10290 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10291 } 10292 mutex_unlock(&swhash->hlist_mutex); 10293 } 10294 10295 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10296 static void __perf_event_exit_context(void *__info) 10297 { 10298 struct perf_event_context *ctx = __info; 10299 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10300 struct perf_event *event; 10301 10302 raw_spin_lock(&ctx->lock); 10303 list_for_each_entry(event, &ctx->event_list, event_entry) 10304 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10305 raw_spin_unlock(&ctx->lock); 10306 } 10307 10308 static void perf_event_exit_cpu_context(int cpu) 10309 { 10310 struct perf_event_context *ctx; 10311 struct pmu *pmu; 10312 int idx; 10313 10314 idx = srcu_read_lock(&pmus_srcu); 10315 list_for_each_entry_rcu(pmu, &pmus, entry) { 10316 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10317 10318 mutex_lock(&ctx->mutex); 10319 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10320 mutex_unlock(&ctx->mutex); 10321 } 10322 srcu_read_unlock(&pmus_srcu, idx); 10323 } 10324 10325 static void perf_event_exit_cpu(int cpu) 10326 { 10327 perf_event_exit_cpu_context(cpu); 10328 } 10329 #else 10330 static inline void perf_event_exit_cpu(int cpu) { } 10331 #endif 10332 10333 static int 10334 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10335 { 10336 int cpu; 10337 10338 for_each_online_cpu(cpu) 10339 perf_event_exit_cpu(cpu); 10340 10341 return NOTIFY_OK; 10342 } 10343 10344 /* 10345 * Run the perf reboot notifier at the very last possible moment so that 10346 * the generic watchdog code runs as long as possible. 10347 */ 10348 static struct notifier_block perf_reboot_notifier = { 10349 .notifier_call = perf_reboot, 10350 .priority = INT_MIN, 10351 }; 10352 10353 static int 10354 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 10355 { 10356 unsigned int cpu = (long)hcpu; 10357 10358 switch (action & ~CPU_TASKS_FROZEN) { 10359 10360 case CPU_UP_PREPARE: 10361 /* 10362 * This must be done before the CPU comes alive, because the 10363 * moment we can run tasks we can encounter (software) events. 10364 * 10365 * Specifically, someone can have inherited events on kthreadd 10366 * or a pre-existing worker thread that gets re-bound. 10367 */ 10368 perf_event_init_cpu(cpu); 10369 break; 10370 10371 case CPU_DOWN_PREPARE: 10372 /* 10373 * This must be done before the CPU dies because after that an 10374 * active event might want to IPI the CPU and that'll not work 10375 * so great for dead CPUs. 10376 * 10377 * XXX smp_call_function_single() return -ENXIO without a warn 10378 * so we could possibly deal with this. 10379 * 10380 * This is safe against new events arriving because 10381 * sys_perf_event_open() serializes against hotplug using 10382 * get_online_cpus(). 10383 */ 10384 perf_event_exit_cpu(cpu); 10385 break; 10386 default: 10387 break; 10388 } 10389 10390 return NOTIFY_OK; 10391 } 10392 10393 void __init perf_event_init(void) 10394 { 10395 int ret; 10396 10397 idr_init(&pmu_idr); 10398 10399 perf_event_init_all_cpus(); 10400 init_srcu_struct(&pmus_srcu); 10401 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10402 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10403 perf_pmu_register(&perf_task_clock, NULL, -1); 10404 perf_tp_register(); 10405 perf_cpu_notifier(perf_cpu_notify); 10406 register_reboot_notifier(&perf_reboot_notifier); 10407 10408 ret = init_hw_breakpoint(); 10409 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10410 10411 /* 10412 * Build time assertion that we keep the data_head at the intended 10413 * location. IOW, validation we got the __reserved[] size right. 10414 */ 10415 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10416 != 1024); 10417 } 10418 10419 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10420 char *page) 10421 { 10422 struct perf_pmu_events_attr *pmu_attr = 10423 container_of(attr, struct perf_pmu_events_attr, attr); 10424 10425 if (pmu_attr->event_str) 10426 return sprintf(page, "%s\n", pmu_attr->event_str); 10427 10428 return 0; 10429 } 10430 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10431 10432 static int __init perf_event_sysfs_init(void) 10433 { 10434 struct pmu *pmu; 10435 int ret; 10436 10437 mutex_lock(&pmus_lock); 10438 10439 ret = bus_register(&pmu_bus); 10440 if (ret) 10441 goto unlock; 10442 10443 list_for_each_entry(pmu, &pmus, entry) { 10444 if (!pmu->name || pmu->type < 0) 10445 continue; 10446 10447 ret = pmu_dev_alloc(pmu); 10448 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10449 } 10450 pmu_bus_running = 1; 10451 ret = 0; 10452 10453 unlock: 10454 mutex_unlock(&pmus_lock); 10455 10456 return ret; 10457 } 10458 device_initcall(perf_event_sysfs_init); 10459 10460 #ifdef CONFIG_CGROUP_PERF 10461 static struct cgroup_subsys_state * 10462 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10463 { 10464 struct perf_cgroup *jc; 10465 10466 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10467 if (!jc) 10468 return ERR_PTR(-ENOMEM); 10469 10470 jc->info = alloc_percpu(struct perf_cgroup_info); 10471 if (!jc->info) { 10472 kfree(jc); 10473 return ERR_PTR(-ENOMEM); 10474 } 10475 10476 return &jc->css; 10477 } 10478 10479 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10480 { 10481 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10482 10483 free_percpu(jc->info); 10484 kfree(jc); 10485 } 10486 10487 static int __perf_cgroup_move(void *info) 10488 { 10489 struct task_struct *task = info; 10490 rcu_read_lock(); 10491 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10492 rcu_read_unlock(); 10493 return 0; 10494 } 10495 10496 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10497 { 10498 struct task_struct *task; 10499 struct cgroup_subsys_state *css; 10500 10501 cgroup_taskset_for_each(task, css, tset) 10502 task_function_call(task, __perf_cgroup_move, task); 10503 } 10504 10505 struct cgroup_subsys perf_event_cgrp_subsys = { 10506 .css_alloc = perf_cgroup_css_alloc, 10507 .css_free = perf_cgroup_css_free, 10508 .attach = perf_cgroup_attach, 10509 }; 10510 #endif /* CONFIG_CGROUP_PERF */ 10511