1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 379 }; 380 381 /* 382 * perf_sched_events : >0 events exist 383 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 393 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 394 395 static atomic_t nr_mmap_events __read_mostly; 396 static atomic_t nr_comm_events __read_mostly; 397 static atomic_t nr_namespaces_events __read_mostly; 398 static atomic_t nr_task_events __read_mostly; 399 static atomic_t nr_freq_events __read_mostly; 400 static atomic_t nr_switch_events __read_mostly; 401 static atomic_t nr_ksymbol_events __read_mostly; 402 static atomic_t nr_bpf_events __read_mostly; 403 static atomic_t nr_cgroup_events __read_mostly; 404 static atomic_t nr_text_poke_events __read_mostly; 405 static atomic_t nr_build_id_events __read_mostly; 406 407 static LIST_HEAD(pmus); 408 static DEFINE_MUTEX(pmus_lock); 409 static struct srcu_struct pmus_srcu; 410 static cpumask_var_t perf_online_mask; 411 static struct kmem_cache *perf_event_cache; 412 413 /* 414 * perf event paranoia level: 415 * -1 - not paranoid at all 416 * 0 - disallow raw tracepoint access for unpriv 417 * 1 - disallow cpu events for unpriv 418 * 2 - disallow kernel profiling for unpriv 419 */ 420 int sysctl_perf_event_paranoid __read_mostly = 2; 421 422 /* Minimum for 512 kiB + 1 user control page */ 423 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 424 425 /* 426 * max perf event sample rate 427 */ 428 #define DEFAULT_MAX_SAMPLE_RATE 100000 429 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 430 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 431 432 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 433 434 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 435 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 436 437 static int perf_sample_allowed_ns __read_mostly = 438 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 439 440 static void update_perf_cpu_limits(void) 441 { 442 u64 tmp = perf_sample_period_ns; 443 444 tmp *= sysctl_perf_cpu_time_max_percent; 445 tmp = div_u64(tmp, 100); 446 if (!tmp) 447 tmp = 1; 448 449 WRITE_ONCE(perf_sample_allowed_ns, tmp); 450 } 451 452 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 453 454 int perf_proc_update_handler(struct ctl_table *table, int write, 455 void *buffer, size_t *lenp, loff_t *ppos) 456 { 457 int ret; 458 int perf_cpu = sysctl_perf_cpu_time_max_percent; 459 /* 460 * If throttling is disabled don't allow the write: 461 */ 462 if (write && (perf_cpu == 100 || perf_cpu == 0)) 463 return -EINVAL; 464 465 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 if (ret || !write) 467 return ret; 468 469 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 470 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 471 update_perf_cpu_limits(); 472 473 return 0; 474 } 475 476 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 477 478 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 479 void *buffer, size_t *lenp, loff_t *ppos) 480 { 481 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 482 483 if (ret || !write) 484 return ret; 485 486 if (sysctl_perf_cpu_time_max_percent == 100 || 487 sysctl_perf_cpu_time_max_percent == 0) { 488 printk(KERN_WARNING 489 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 490 WRITE_ONCE(perf_sample_allowed_ns, 0); 491 } else { 492 update_perf_cpu_limits(); 493 } 494 495 return 0; 496 } 497 498 /* 499 * perf samples are done in some very critical code paths (NMIs). 500 * If they take too much CPU time, the system can lock up and not 501 * get any real work done. This will drop the sample rate when 502 * we detect that events are taking too long. 503 */ 504 #define NR_ACCUMULATED_SAMPLES 128 505 static DEFINE_PER_CPU(u64, running_sample_length); 506 507 static u64 __report_avg; 508 static u64 __report_allowed; 509 510 static void perf_duration_warn(struct irq_work *w) 511 { 512 printk_ratelimited(KERN_INFO 513 "perf: interrupt took too long (%lld > %lld), lowering " 514 "kernel.perf_event_max_sample_rate to %d\n", 515 __report_avg, __report_allowed, 516 sysctl_perf_event_sample_rate); 517 } 518 519 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 520 521 void perf_sample_event_took(u64 sample_len_ns) 522 { 523 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 524 u64 running_len; 525 u64 avg_len; 526 u32 max; 527 528 if (max_len == 0) 529 return; 530 531 /* Decay the counter by 1 average sample. */ 532 running_len = __this_cpu_read(running_sample_length); 533 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 534 running_len += sample_len_ns; 535 __this_cpu_write(running_sample_length, running_len); 536 537 /* 538 * Note: this will be biased artifically low until we have 539 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 540 * from having to maintain a count. 541 */ 542 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 543 if (avg_len <= max_len) 544 return; 545 546 __report_avg = avg_len; 547 __report_allowed = max_len; 548 549 /* 550 * Compute a throttle threshold 25% below the current duration. 551 */ 552 avg_len += avg_len / 4; 553 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 554 if (avg_len < max) 555 max /= (u32)avg_len; 556 else 557 max = 1; 558 559 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 560 WRITE_ONCE(max_samples_per_tick, max); 561 562 sysctl_perf_event_sample_rate = max * HZ; 563 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 564 565 if (!irq_work_queue(&perf_duration_work)) { 566 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 567 "kernel.perf_event_max_sample_rate to %d\n", 568 __report_avg, __report_allowed, 569 sysctl_perf_event_sample_rate); 570 } 571 } 572 573 static atomic64_t perf_event_id; 574 575 static void update_context_time(struct perf_event_context *ctx); 576 static u64 perf_event_time(struct perf_event *event); 577 578 void __weak perf_event_print_debug(void) { } 579 580 static inline u64 perf_clock(void) 581 { 582 return local_clock(); 583 } 584 585 static inline u64 perf_event_clock(struct perf_event *event) 586 { 587 return event->clock(); 588 } 589 590 /* 591 * State based event timekeeping... 592 * 593 * The basic idea is to use event->state to determine which (if any) time 594 * fields to increment with the current delta. This means we only need to 595 * update timestamps when we change state or when they are explicitly requested 596 * (read). 597 * 598 * Event groups make things a little more complicated, but not terribly so. The 599 * rules for a group are that if the group leader is OFF the entire group is 600 * OFF, irrespecive of what the group member states are. This results in 601 * __perf_effective_state(). 602 * 603 * A futher ramification is that when a group leader flips between OFF and 604 * !OFF, we need to update all group member times. 605 * 606 * 607 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 608 * need to make sure the relevant context time is updated before we try and 609 * update our timestamps. 610 */ 611 612 static __always_inline enum perf_event_state 613 __perf_effective_state(struct perf_event *event) 614 { 615 struct perf_event *leader = event->group_leader; 616 617 if (leader->state <= PERF_EVENT_STATE_OFF) 618 return leader->state; 619 620 return event->state; 621 } 622 623 static __always_inline void 624 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 625 { 626 enum perf_event_state state = __perf_effective_state(event); 627 u64 delta = now - event->tstamp; 628 629 *enabled = event->total_time_enabled; 630 if (state >= PERF_EVENT_STATE_INACTIVE) 631 *enabled += delta; 632 633 *running = event->total_time_running; 634 if (state >= PERF_EVENT_STATE_ACTIVE) 635 *running += delta; 636 } 637 638 static void perf_event_update_time(struct perf_event *event) 639 { 640 u64 now = perf_event_time(event); 641 642 __perf_update_times(event, now, &event->total_time_enabled, 643 &event->total_time_running); 644 event->tstamp = now; 645 } 646 647 static void perf_event_update_sibling_time(struct perf_event *leader) 648 { 649 struct perf_event *sibling; 650 651 for_each_sibling_event(sibling, leader) 652 perf_event_update_time(sibling); 653 } 654 655 static void 656 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 657 { 658 if (event->state == state) 659 return; 660 661 perf_event_update_time(event); 662 /* 663 * If a group leader gets enabled/disabled all its siblings 664 * are affected too. 665 */ 666 if ((event->state < 0) ^ (state < 0)) 667 perf_event_update_sibling_time(event); 668 669 WRITE_ONCE(event->state, state); 670 } 671 672 /* 673 * UP store-release, load-acquire 674 */ 675 676 #define __store_release(ptr, val) \ 677 do { \ 678 barrier(); \ 679 WRITE_ONCE(*(ptr), (val)); \ 680 } while (0) 681 682 #define __load_acquire(ptr) \ 683 ({ \ 684 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 685 barrier(); \ 686 ___p; \ 687 }) 688 689 static void perf_ctx_disable(struct perf_event_context *ctx) 690 { 691 struct perf_event_pmu_context *pmu_ctx; 692 693 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 694 perf_pmu_disable(pmu_ctx->pmu); 695 } 696 697 static void perf_ctx_enable(struct perf_event_context *ctx) 698 { 699 struct perf_event_pmu_context *pmu_ctx; 700 701 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 702 perf_pmu_enable(pmu_ctx->pmu); 703 } 704 705 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 706 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 707 708 #ifdef CONFIG_CGROUP_PERF 709 710 static inline bool 711 perf_cgroup_match(struct perf_event *event) 712 { 713 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 714 715 /* @event doesn't care about cgroup */ 716 if (!event->cgrp) 717 return true; 718 719 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 720 if (!cpuctx->cgrp) 721 return false; 722 723 /* 724 * Cgroup scoping is recursive. An event enabled for a cgroup is 725 * also enabled for all its descendant cgroups. If @cpuctx's 726 * cgroup is a descendant of @event's (the test covers identity 727 * case), it's a match. 728 */ 729 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 730 event->cgrp->css.cgroup); 731 } 732 733 static inline void perf_detach_cgroup(struct perf_event *event) 734 { 735 css_put(&event->cgrp->css); 736 event->cgrp = NULL; 737 } 738 739 static inline int is_cgroup_event(struct perf_event *event) 740 { 741 return event->cgrp != NULL; 742 } 743 744 static inline u64 perf_cgroup_event_time(struct perf_event *event) 745 { 746 struct perf_cgroup_info *t; 747 748 t = per_cpu_ptr(event->cgrp->info, event->cpu); 749 return t->time; 750 } 751 752 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 753 { 754 struct perf_cgroup_info *t; 755 756 t = per_cpu_ptr(event->cgrp->info, event->cpu); 757 if (!__load_acquire(&t->active)) 758 return t->time; 759 now += READ_ONCE(t->timeoffset); 760 return now; 761 } 762 763 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 764 { 765 if (adv) 766 info->time += now - info->timestamp; 767 info->timestamp = now; 768 /* 769 * see update_context_time() 770 */ 771 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 772 } 773 774 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 775 { 776 struct perf_cgroup *cgrp = cpuctx->cgrp; 777 struct cgroup_subsys_state *css; 778 struct perf_cgroup_info *info; 779 780 if (cgrp) { 781 u64 now = perf_clock(); 782 783 for (css = &cgrp->css; css; css = css->parent) { 784 cgrp = container_of(css, struct perf_cgroup, css); 785 info = this_cpu_ptr(cgrp->info); 786 787 __update_cgrp_time(info, now, true); 788 if (final) 789 __store_release(&info->active, 0); 790 } 791 } 792 } 793 794 static inline void update_cgrp_time_from_event(struct perf_event *event) 795 { 796 struct perf_cgroup_info *info; 797 798 /* 799 * ensure we access cgroup data only when needed and 800 * when we know the cgroup is pinned (css_get) 801 */ 802 if (!is_cgroup_event(event)) 803 return; 804 805 info = this_cpu_ptr(event->cgrp->info); 806 /* 807 * Do not update time when cgroup is not active 808 */ 809 if (info->active) 810 __update_cgrp_time(info, perf_clock(), true); 811 } 812 813 static inline void 814 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 815 { 816 struct perf_event_context *ctx = &cpuctx->ctx; 817 struct perf_cgroup *cgrp = cpuctx->cgrp; 818 struct perf_cgroup_info *info; 819 struct cgroup_subsys_state *css; 820 821 /* 822 * ctx->lock held by caller 823 * ensure we do not access cgroup data 824 * unless we have the cgroup pinned (css_get) 825 */ 826 if (!cgrp) 827 return; 828 829 WARN_ON_ONCE(!ctx->nr_cgroups); 830 831 for (css = &cgrp->css; css; css = css->parent) { 832 cgrp = container_of(css, struct perf_cgroup, css); 833 info = this_cpu_ptr(cgrp->info); 834 __update_cgrp_time(info, ctx->timestamp, false); 835 __store_release(&info->active, 1); 836 } 837 } 838 839 /* 840 * reschedule events based on the cgroup constraint of task. 841 */ 842 static void perf_cgroup_switch(struct task_struct *task) 843 { 844 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 845 struct perf_cgroup *cgrp; 846 847 cgrp = perf_cgroup_from_task(task, NULL); 848 849 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 850 if (READ_ONCE(cpuctx->cgrp) == cgrp) 851 return; 852 853 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 854 perf_ctx_disable(&cpuctx->ctx); 855 856 ctx_sched_out(&cpuctx->ctx, EVENT_ALL); 857 /* 858 * must not be done before ctxswout due 859 * to update_cgrp_time_from_cpuctx() in 860 * ctx_sched_out() 861 */ 862 cpuctx->cgrp = cgrp; 863 /* 864 * set cgrp before ctxsw in to allow 865 * perf_cgroup_set_timestamp() in ctx_sched_in() 866 * to not have to pass task around 867 */ 868 ctx_sched_in(&cpuctx->ctx, EVENT_ALL); 869 870 perf_ctx_enable(&cpuctx->ctx); 871 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 872 } 873 874 static int perf_cgroup_ensure_storage(struct perf_event *event, 875 struct cgroup_subsys_state *css) 876 { 877 struct perf_cpu_context *cpuctx; 878 struct perf_event **storage; 879 int cpu, heap_size, ret = 0; 880 881 /* 882 * Allow storage to have sufficent space for an iterator for each 883 * possibly nested cgroup plus an iterator for events with no cgroup. 884 */ 885 for (heap_size = 1; css; css = css->parent) 886 heap_size++; 887 888 for_each_possible_cpu(cpu) { 889 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 890 if (heap_size <= cpuctx->heap_size) 891 continue; 892 893 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 894 GFP_KERNEL, cpu_to_node(cpu)); 895 if (!storage) { 896 ret = -ENOMEM; 897 break; 898 } 899 900 raw_spin_lock_irq(&cpuctx->ctx.lock); 901 if (cpuctx->heap_size < heap_size) { 902 swap(cpuctx->heap, storage); 903 if (storage == cpuctx->heap_default) 904 storage = NULL; 905 cpuctx->heap_size = heap_size; 906 } 907 raw_spin_unlock_irq(&cpuctx->ctx.lock); 908 909 kfree(storage); 910 } 911 912 return ret; 913 } 914 915 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 916 struct perf_event_attr *attr, 917 struct perf_event *group_leader) 918 { 919 struct perf_cgroup *cgrp; 920 struct cgroup_subsys_state *css; 921 struct fd f = fdget(fd); 922 int ret = 0; 923 924 if (!f.file) 925 return -EBADF; 926 927 css = css_tryget_online_from_dir(f.file->f_path.dentry, 928 &perf_event_cgrp_subsys); 929 if (IS_ERR(css)) { 930 ret = PTR_ERR(css); 931 goto out; 932 } 933 934 ret = perf_cgroup_ensure_storage(event, css); 935 if (ret) 936 goto out; 937 938 cgrp = container_of(css, struct perf_cgroup, css); 939 event->cgrp = cgrp; 940 941 /* 942 * all events in a group must monitor 943 * the same cgroup because a task belongs 944 * to only one perf cgroup at a time 945 */ 946 if (group_leader && group_leader->cgrp != cgrp) { 947 perf_detach_cgroup(event); 948 ret = -EINVAL; 949 } 950 out: 951 fdput(f); 952 return ret; 953 } 954 955 static inline void 956 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 957 { 958 struct perf_cpu_context *cpuctx; 959 960 if (!is_cgroup_event(event)) 961 return; 962 963 /* 964 * Because cgroup events are always per-cpu events, 965 * @ctx == &cpuctx->ctx. 966 */ 967 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 968 969 if (ctx->nr_cgroups++) 970 return; 971 972 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 973 } 974 975 static inline void 976 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 977 { 978 struct perf_cpu_context *cpuctx; 979 980 if (!is_cgroup_event(event)) 981 return; 982 983 /* 984 * Because cgroup events are always per-cpu events, 985 * @ctx == &cpuctx->ctx. 986 */ 987 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 988 989 if (--ctx->nr_cgroups) 990 return; 991 992 cpuctx->cgrp = NULL; 993 } 994 995 #else /* !CONFIG_CGROUP_PERF */ 996 997 static inline bool 998 perf_cgroup_match(struct perf_event *event) 999 { 1000 return true; 1001 } 1002 1003 static inline void perf_detach_cgroup(struct perf_event *event) 1004 {} 1005 1006 static inline int is_cgroup_event(struct perf_event *event) 1007 { 1008 return 0; 1009 } 1010 1011 static inline void update_cgrp_time_from_event(struct perf_event *event) 1012 { 1013 } 1014 1015 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1016 bool final) 1017 { 1018 } 1019 1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1021 struct perf_event_attr *attr, 1022 struct perf_event *group_leader) 1023 { 1024 return -EINVAL; 1025 } 1026 1027 static inline void 1028 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1029 { 1030 } 1031 1032 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1033 { 1034 return 0; 1035 } 1036 1037 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1038 { 1039 return 0; 1040 } 1041 1042 static inline void 1043 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1044 { 1045 } 1046 1047 static inline void 1048 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1049 { 1050 } 1051 1052 static void perf_cgroup_switch(struct task_struct *task) 1053 { 1054 } 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_pmu_context *cpc; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1073 rotations = perf_rotate_context(cpc); 1074 1075 raw_spin_lock(&cpc->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1078 else 1079 cpc->hrtimer_active = 0; 1080 raw_spin_unlock(&cpc->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1086 { 1087 struct hrtimer *timer = &cpc->hrtimer; 1088 struct pmu *pmu = cpc->epc.pmu; 1089 u64 interval; 1090 1091 /* 1092 * check default is sane, if not set then force to 1093 * default interval (1/tick) 1094 */ 1095 interval = pmu->hrtimer_interval_ms; 1096 if (interval < 1) 1097 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1098 1099 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1100 1101 raw_spin_lock_init(&cpc->hrtimer_lock); 1102 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1103 timer->function = perf_mux_hrtimer_handler; 1104 } 1105 1106 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1107 { 1108 struct hrtimer *timer = &cpc->hrtimer; 1109 unsigned long flags; 1110 1111 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1112 if (!cpc->hrtimer_active) { 1113 cpc->hrtimer_active = 1; 1114 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1115 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1116 } 1117 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1118 1119 return 0; 1120 } 1121 1122 static int perf_mux_hrtimer_restart_ipi(void *arg) 1123 { 1124 return perf_mux_hrtimer_restart(arg); 1125 } 1126 1127 void perf_pmu_disable(struct pmu *pmu) 1128 { 1129 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1130 if (!(*count)++) 1131 pmu->pmu_disable(pmu); 1132 } 1133 1134 void perf_pmu_enable(struct pmu *pmu) 1135 { 1136 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1137 if (!--(*count)) 1138 pmu->pmu_enable(pmu); 1139 } 1140 1141 static void perf_assert_pmu_disabled(struct pmu *pmu) 1142 { 1143 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1144 } 1145 1146 static void get_ctx(struct perf_event_context *ctx) 1147 { 1148 refcount_inc(&ctx->refcount); 1149 } 1150 1151 static void *alloc_task_ctx_data(struct pmu *pmu) 1152 { 1153 if (pmu->task_ctx_cache) 1154 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1155 1156 return NULL; 1157 } 1158 1159 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1160 { 1161 if (pmu->task_ctx_cache && task_ctx_data) 1162 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1163 } 1164 1165 static void free_ctx(struct rcu_head *head) 1166 { 1167 struct perf_event_context *ctx; 1168 1169 ctx = container_of(head, struct perf_event_context, rcu_head); 1170 kfree(ctx); 1171 } 1172 1173 static void put_ctx(struct perf_event_context *ctx) 1174 { 1175 if (refcount_dec_and_test(&ctx->refcount)) { 1176 if (ctx->parent_ctx) 1177 put_ctx(ctx->parent_ctx); 1178 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1179 put_task_struct(ctx->task); 1180 call_rcu(&ctx->rcu_head, free_ctx); 1181 } 1182 } 1183 1184 /* 1185 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1186 * perf_pmu_migrate_context() we need some magic. 1187 * 1188 * Those places that change perf_event::ctx will hold both 1189 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1190 * 1191 * Lock ordering is by mutex address. There are two other sites where 1192 * perf_event_context::mutex nests and those are: 1193 * 1194 * - perf_event_exit_task_context() [ child , 0 ] 1195 * perf_event_exit_event() 1196 * put_event() [ parent, 1 ] 1197 * 1198 * - perf_event_init_context() [ parent, 0 ] 1199 * inherit_task_group() 1200 * inherit_group() 1201 * inherit_event() 1202 * perf_event_alloc() 1203 * perf_init_event() 1204 * perf_try_init_event() [ child , 1 ] 1205 * 1206 * While it appears there is an obvious deadlock here -- the parent and child 1207 * nesting levels are inverted between the two. This is in fact safe because 1208 * life-time rules separate them. That is an exiting task cannot fork, and a 1209 * spawning task cannot (yet) exit. 1210 * 1211 * But remember that these are parent<->child context relations, and 1212 * migration does not affect children, therefore these two orderings should not 1213 * interact. 1214 * 1215 * The change in perf_event::ctx does not affect children (as claimed above) 1216 * because the sys_perf_event_open() case will install a new event and break 1217 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1218 * concerned with cpuctx and that doesn't have children. 1219 * 1220 * The places that change perf_event::ctx will issue: 1221 * 1222 * perf_remove_from_context(); 1223 * synchronize_rcu(); 1224 * perf_install_in_context(); 1225 * 1226 * to affect the change. The remove_from_context() + synchronize_rcu() should 1227 * quiesce the event, after which we can install it in the new location. This 1228 * means that only external vectors (perf_fops, prctl) can perturb the event 1229 * while in transit. Therefore all such accessors should also acquire 1230 * perf_event_context::mutex to serialize against this. 1231 * 1232 * However; because event->ctx can change while we're waiting to acquire 1233 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1234 * function. 1235 * 1236 * Lock order: 1237 * exec_update_lock 1238 * task_struct::perf_event_mutex 1239 * perf_event_context::mutex 1240 * perf_event::child_mutex; 1241 * perf_event_context::lock 1242 * perf_event::mmap_mutex 1243 * mmap_lock 1244 * perf_addr_filters_head::lock 1245 * 1246 * cpu_hotplug_lock 1247 * pmus_lock 1248 * cpuctx->mutex / perf_event_context::mutex 1249 */ 1250 static struct perf_event_context * 1251 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1252 { 1253 struct perf_event_context *ctx; 1254 1255 again: 1256 rcu_read_lock(); 1257 ctx = READ_ONCE(event->ctx); 1258 if (!refcount_inc_not_zero(&ctx->refcount)) { 1259 rcu_read_unlock(); 1260 goto again; 1261 } 1262 rcu_read_unlock(); 1263 1264 mutex_lock_nested(&ctx->mutex, nesting); 1265 if (event->ctx != ctx) { 1266 mutex_unlock(&ctx->mutex); 1267 put_ctx(ctx); 1268 goto again; 1269 } 1270 1271 return ctx; 1272 } 1273 1274 static inline struct perf_event_context * 1275 perf_event_ctx_lock(struct perf_event *event) 1276 { 1277 return perf_event_ctx_lock_nested(event, 0); 1278 } 1279 1280 static void perf_event_ctx_unlock(struct perf_event *event, 1281 struct perf_event_context *ctx) 1282 { 1283 mutex_unlock(&ctx->mutex); 1284 put_ctx(ctx); 1285 } 1286 1287 /* 1288 * This must be done under the ctx->lock, such as to serialize against 1289 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1290 * calling scheduler related locks and ctx->lock nests inside those. 1291 */ 1292 static __must_check struct perf_event_context * 1293 unclone_ctx(struct perf_event_context *ctx) 1294 { 1295 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1296 1297 lockdep_assert_held(&ctx->lock); 1298 1299 if (parent_ctx) 1300 ctx->parent_ctx = NULL; 1301 ctx->generation++; 1302 1303 return parent_ctx; 1304 } 1305 1306 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1307 enum pid_type type) 1308 { 1309 u32 nr; 1310 /* 1311 * only top level events have the pid namespace they were created in 1312 */ 1313 if (event->parent) 1314 event = event->parent; 1315 1316 nr = __task_pid_nr_ns(p, type, event->ns); 1317 /* avoid -1 if it is idle thread or runs in another ns */ 1318 if (!nr && !pid_alive(p)) 1319 nr = -1; 1320 return nr; 1321 } 1322 1323 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1324 { 1325 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1326 } 1327 1328 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1329 { 1330 return perf_event_pid_type(event, p, PIDTYPE_PID); 1331 } 1332 1333 /* 1334 * If we inherit events we want to return the parent event id 1335 * to userspace. 1336 */ 1337 static u64 primary_event_id(struct perf_event *event) 1338 { 1339 u64 id = event->id; 1340 1341 if (event->parent) 1342 id = event->parent->id; 1343 1344 return id; 1345 } 1346 1347 /* 1348 * Get the perf_event_context for a task and lock it. 1349 * 1350 * This has to cope with the fact that until it is locked, 1351 * the context could get moved to another task. 1352 */ 1353 static struct perf_event_context * 1354 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1355 { 1356 struct perf_event_context *ctx; 1357 1358 retry: 1359 /* 1360 * One of the few rules of preemptible RCU is that one cannot do 1361 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1362 * part of the read side critical section was irqs-enabled -- see 1363 * rcu_read_unlock_special(). 1364 * 1365 * Since ctx->lock nests under rq->lock we must ensure the entire read 1366 * side critical section has interrupts disabled. 1367 */ 1368 local_irq_save(*flags); 1369 rcu_read_lock(); 1370 ctx = rcu_dereference(task->perf_event_ctxp); 1371 if (ctx) { 1372 /* 1373 * If this context is a clone of another, it might 1374 * get swapped for another underneath us by 1375 * perf_event_task_sched_out, though the 1376 * rcu_read_lock() protects us from any context 1377 * getting freed. Lock the context and check if it 1378 * got swapped before we could get the lock, and retry 1379 * if so. If we locked the right context, then it 1380 * can't get swapped on us any more. 1381 */ 1382 raw_spin_lock(&ctx->lock); 1383 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1384 raw_spin_unlock(&ctx->lock); 1385 rcu_read_unlock(); 1386 local_irq_restore(*flags); 1387 goto retry; 1388 } 1389 1390 if (ctx->task == TASK_TOMBSTONE || 1391 !refcount_inc_not_zero(&ctx->refcount)) { 1392 raw_spin_unlock(&ctx->lock); 1393 ctx = NULL; 1394 } else { 1395 WARN_ON_ONCE(ctx->task != task); 1396 } 1397 } 1398 rcu_read_unlock(); 1399 if (!ctx) 1400 local_irq_restore(*flags); 1401 return ctx; 1402 } 1403 1404 /* 1405 * Get the context for a task and increment its pin_count so it 1406 * can't get swapped to another task. This also increments its 1407 * reference count so that the context can't get freed. 1408 */ 1409 static struct perf_event_context * 1410 perf_pin_task_context(struct task_struct *task) 1411 { 1412 struct perf_event_context *ctx; 1413 unsigned long flags; 1414 1415 ctx = perf_lock_task_context(task, &flags); 1416 if (ctx) { 1417 ++ctx->pin_count; 1418 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1419 } 1420 return ctx; 1421 } 1422 1423 static void perf_unpin_context(struct perf_event_context *ctx) 1424 { 1425 unsigned long flags; 1426 1427 raw_spin_lock_irqsave(&ctx->lock, flags); 1428 --ctx->pin_count; 1429 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1430 } 1431 1432 /* 1433 * Update the record of the current time in a context. 1434 */ 1435 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1436 { 1437 u64 now = perf_clock(); 1438 1439 lockdep_assert_held(&ctx->lock); 1440 1441 if (adv) 1442 ctx->time += now - ctx->timestamp; 1443 ctx->timestamp = now; 1444 1445 /* 1446 * The above: time' = time + (now - timestamp), can be re-arranged 1447 * into: time` = now + (time - timestamp), which gives a single value 1448 * offset to compute future time without locks on. 1449 * 1450 * See perf_event_time_now(), which can be used from NMI context where 1451 * it's (obviously) not possible to acquire ctx->lock in order to read 1452 * both the above values in a consistent manner. 1453 */ 1454 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1455 } 1456 1457 static void update_context_time(struct perf_event_context *ctx) 1458 { 1459 __update_context_time(ctx, true); 1460 } 1461 1462 static u64 perf_event_time(struct perf_event *event) 1463 { 1464 struct perf_event_context *ctx = event->ctx; 1465 1466 if (unlikely(!ctx)) 1467 return 0; 1468 1469 if (is_cgroup_event(event)) 1470 return perf_cgroup_event_time(event); 1471 1472 return ctx->time; 1473 } 1474 1475 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1476 { 1477 struct perf_event_context *ctx = event->ctx; 1478 1479 if (unlikely(!ctx)) 1480 return 0; 1481 1482 if (is_cgroup_event(event)) 1483 return perf_cgroup_event_time_now(event, now); 1484 1485 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1486 return ctx->time; 1487 1488 now += READ_ONCE(ctx->timeoffset); 1489 return now; 1490 } 1491 1492 static enum event_type_t get_event_type(struct perf_event *event) 1493 { 1494 struct perf_event_context *ctx = event->ctx; 1495 enum event_type_t event_type; 1496 1497 lockdep_assert_held(&ctx->lock); 1498 1499 /* 1500 * It's 'group type', really, because if our group leader is 1501 * pinned, so are we. 1502 */ 1503 if (event->group_leader != event) 1504 event = event->group_leader; 1505 1506 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1507 if (!ctx->task) 1508 event_type |= EVENT_CPU; 1509 1510 return event_type; 1511 } 1512 1513 /* 1514 * Helper function to initialize event group nodes. 1515 */ 1516 static void init_event_group(struct perf_event *event) 1517 { 1518 RB_CLEAR_NODE(&event->group_node); 1519 event->group_index = 0; 1520 } 1521 1522 /* 1523 * Extract pinned or flexible groups from the context 1524 * based on event attrs bits. 1525 */ 1526 static struct perf_event_groups * 1527 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1528 { 1529 if (event->attr.pinned) 1530 return &ctx->pinned_groups; 1531 else 1532 return &ctx->flexible_groups; 1533 } 1534 1535 /* 1536 * Helper function to initializes perf_event_group trees. 1537 */ 1538 static void perf_event_groups_init(struct perf_event_groups *groups) 1539 { 1540 groups->tree = RB_ROOT; 1541 groups->index = 0; 1542 } 1543 1544 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1545 { 1546 struct cgroup *cgroup = NULL; 1547 1548 #ifdef CONFIG_CGROUP_PERF 1549 if (event->cgrp) 1550 cgroup = event->cgrp->css.cgroup; 1551 #endif 1552 1553 return cgroup; 1554 } 1555 1556 /* 1557 * Compare function for event groups; 1558 * 1559 * Implements complex key that first sorts by CPU and then by virtual index 1560 * which provides ordering when rotating groups for the same CPU. 1561 */ 1562 static __always_inline int 1563 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1564 const struct cgroup *left_cgroup, const u64 left_group_index, 1565 const struct perf_event *right) 1566 { 1567 if (left_cpu < right->cpu) 1568 return -1; 1569 if (left_cpu > right->cpu) 1570 return 1; 1571 1572 if (left_pmu) { 1573 if (left_pmu < right->pmu_ctx->pmu) 1574 return -1; 1575 if (left_pmu > right->pmu_ctx->pmu) 1576 return 1; 1577 } 1578 1579 #ifdef CONFIG_CGROUP_PERF 1580 { 1581 const struct cgroup *right_cgroup = event_cgroup(right); 1582 1583 if (left_cgroup != right_cgroup) { 1584 if (!left_cgroup) { 1585 /* 1586 * Left has no cgroup but right does, no 1587 * cgroups come first. 1588 */ 1589 return -1; 1590 } 1591 if (!right_cgroup) { 1592 /* 1593 * Right has no cgroup but left does, no 1594 * cgroups come first. 1595 */ 1596 return 1; 1597 } 1598 /* Two dissimilar cgroups, order by id. */ 1599 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1600 return -1; 1601 1602 return 1; 1603 } 1604 } 1605 #endif 1606 1607 if (left_group_index < right->group_index) 1608 return -1; 1609 if (left_group_index > right->group_index) 1610 return 1; 1611 1612 return 0; 1613 } 1614 1615 #define __node_2_pe(node) \ 1616 rb_entry((node), struct perf_event, group_node) 1617 1618 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1619 { 1620 struct perf_event *e = __node_2_pe(a); 1621 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1622 e->group_index, __node_2_pe(b)) < 0; 1623 } 1624 1625 struct __group_key { 1626 int cpu; 1627 struct pmu *pmu; 1628 struct cgroup *cgroup; 1629 }; 1630 1631 static inline int __group_cmp(const void *key, const struct rb_node *node) 1632 { 1633 const struct __group_key *a = key; 1634 const struct perf_event *b = __node_2_pe(node); 1635 1636 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1637 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1638 } 1639 1640 static inline int 1641 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1642 { 1643 const struct __group_key *a = key; 1644 const struct perf_event *b = __node_2_pe(node); 1645 1646 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1647 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1648 b->group_index, b); 1649 } 1650 1651 /* 1652 * Insert @event into @groups' tree; using 1653 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1654 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1655 */ 1656 static void 1657 perf_event_groups_insert(struct perf_event_groups *groups, 1658 struct perf_event *event) 1659 { 1660 event->group_index = ++groups->index; 1661 1662 rb_add(&event->group_node, &groups->tree, __group_less); 1663 } 1664 1665 /* 1666 * Helper function to insert event into the pinned or flexible groups. 1667 */ 1668 static void 1669 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1670 { 1671 struct perf_event_groups *groups; 1672 1673 groups = get_event_groups(event, ctx); 1674 perf_event_groups_insert(groups, event); 1675 } 1676 1677 /* 1678 * Delete a group from a tree. 1679 */ 1680 static void 1681 perf_event_groups_delete(struct perf_event_groups *groups, 1682 struct perf_event *event) 1683 { 1684 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1685 RB_EMPTY_ROOT(&groups->tree)); 1686 1687 rb_erase(&event->group_node, &groups->tree); 1688 init_event_group(event); 1689 } 1690 1691 /* 1692 * Helper function to delete event from its groups. 1693 */ 1694 static void 1695 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1696 { 1697 struct perf_event_groups *groups; 1698 1699 groups = get_event_groups(event, ctx); 1700 perf_event_groups_delete(groups, event); 1701 } 1702 1703 /* 1704 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1705 */ 1706 static struct perf_event * 1707 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1708 struct pmu *pmu, struct cgroup *cgrp) 1709 { 1710 struct __group_key key = { 1711 .cpu = cpu, 1712 .pmu = pmu, 1713 .cgroup = cgrp, 1714 }; 1715 struct rb_node *node; 1716 1717 node = rb_find_first(&key, &groups->tree, __group_cmp); 1718 if (node) 1719 return __node_2_pe(node); 1720 1721 return NULL; 1722 } 1723 1724 static struct perf_event * 1725 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1726 { 1727 struct __group_key key = { 1728 .cpu = event->cpu, 1729 .pmu = pmu, 1730 .cgroup = event_cgroup(event), 1731 }; 1732 struct rb_node *next; 1733 1734 next = rb_next_match(&key, &event->group_node, __group_cmp); 1735 if (next) 1736 return __node_2_pe(next); 1737 1738 return NULL; 1739 } 1740 1741 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1742 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1743 event; event = perf_event_groups_next(event, pmu)) 1744 1745 /* 1746 * Iterate through the whole groups tree. 1747 */ 1748 #define perf_event_groups_for_each(event, groups) \ 1749 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1750 typeof(*event), group_node); event; \ 1751 event = rb_entry_safe(rb_next(&event->group_node), \ 1752 typeof(*event), group_node)) 1753 1754 /* 1755 * Add an event from the lists for its context. 1756 * Must be called with ctx->mutex and ctx->lock held. 1757 */ 1758 static void 1759 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1760 { 1761 lockdep_assert_held(&ctx->lock); 1762 1763 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1764 event->attach_state |= PERF_ATTACH_CONTEXT; 1765 1766 event->tstamp = perf_event_time(event); 1767 1768 /* 1769 * If we're a stand alone event or group leader, we go to the context 1770 * list, group events are kept attached to the group so that 1771 * perf_group_detach can, at all times, locate all siblings. 1772 */ 1773 if (event->group_leader == event) { 1774 event->group_caps = event->event_caps; 1775 add_event_to_groups(event, ctx); 1776 } 1777 1778 list_add_rcu(&event->event_entry, &ctx->event_list); 1779 ctx->nr_events++; 1780 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1781 ctx->nr_user++; 1782 if (event->attr.inherit_stat) 1783 ctx->nr_stat++; 1784 1785 if (event->state > PERF_EVENT_STATE_OFF) 1786 perf_cgroup_event_enable(event, ctx); 1787 1788 ctx->generation++; 1789 event->pmu_ctx->nr_events++; 1790 } 1791 1792 /* 1793 * Initialize event state based on the perf_event_attr::disabled. 1794 */ 1795 static inline void perf_event__state_init(struct perf_event *event) 1796 { 1797 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1798 PERF_EVENT_STATE_INACTIVE; 1799 } 1800 1801 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1802 { 1803 int entry = sizeof(u64); /* value */ 1804 int size = 0; 1805 int nr = 1; 1806 1807 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1808 size += sizeof(u64); 1809 1810 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1811 size += sizeof(u64); 1812 1813 if (event->attr.read_format & PERF_FORMAT_ID) 1814 entry += sizeof(u64); 1815 1816 if (event->attr.read_format & PERF_FORMAT_LOST) 1817 entry += sizeof(u64); 1818 1819 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1820 nr += nr_siblings; 1821 size += sizeof(u64); 1822 } 1823 1824 size += entry * nr; 1825 event->read_size = size; 1826 } 1827 1828 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1829 { 1830 struct perf_sample_data *data; 1831 u16 size = 0; 1832 1833 if (sample_type & PERF_SAMPLE_IP) 1834 size += sizeof(data->ip); 1835 1836 if (sample_type & PERF_SAMPLE_ADDR) 1837 size += sizeof(data->addr); 1838 1839 if (sample_type & PERF_SAMPLE_PERIOD) 1840 size += sizeof(data->period); 1841 1842 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1843 size += sizeof(data->weight.full); 1844 1845 if (sample_type & PERF_SAMPLE_READ) 1846 size += event->read_size; 1847 1848 if (sample_type & PERF_SAMPLE_DATA_SRC) 1849 size += sizeof(data->data_src.val); 1850 1851 if (sample_type & PERF_SAMPLE_TRANSACTION) 1852 size += sizeof(data->txn); 1853 1854 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1855 size += sizeof(data->phys_addr); 1856 1857 if (sample_type & PERF_SAMPLE_CGROUP) 1858 size += sizeof(data->cgroup); 1859 1860 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1861 size += sizeof(data->data_page_size); 1862 1863 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1864 size += sizeof(data->code_page_size); 1865 1866 event->header_size = size; 1867 } 1868 1869 /* 1870 * Called at perf_event creation and when events are attached/detached from a 1871 * group. 1872 */ 1873 static void perf_event__header_size(struct perf_event *event) 1874 { 1875 __perf_event_read_size(event, 1876 event->group_leader->nr_siblings); 1877 __perf_event_header_size(event, event->attr.sample_type); 1878 } 1879 1880 static void perf_event__id_header_size(struct perf_event *event) 1881 { 1882 struct perf_sample_data *data; 1883 u64 sample_type = event->attr.sample_type; 1884 u16 size = 0; 1885 1886 if (sample_type & PERF_SAMPLE_TID) 1887 size += sizeof(data->tid_entry); 1888 1889 if (sample_type & PERF_SAMPLE_TIME) 1890 size += sizeof(data->time); 1891 1892 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1893 size += sizeof(data->id); 1894 1895 if (sample_type & PERF_SAMPLE_ID) 1896 size += sizeof(data->id); 1897 1898 if (sample_type & PERF_SAMPLE_STREAM_ID) 1899 size += sizeof(data->stream_id); 1900 1901 if (sample_type & PERF_SAMPLE_CPU) 1902 size += sizeof(data->cpu_entry); 1903 1904 event->id_header_size = size; 1905 } 1906 1907 static bool perf_event_validate_size(struct perf_event *event) 1908 { 1909 /* 1910 * The values computed here will be over-written when we actually 1911 * attach the event. 1912 */ 1913 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1914 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1915 perf_event__id_header_size(event); 1916 1917 /* 1918 * Sum the lot; should not exceed the 64k limit we have on records. 1919 * Conservative limit to allow for callchains and other variable fields. 1920 */ 1921 if (event->read_size + event->header_size + 1922 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1923 return false; 1924 1925 return true; 1926 } 1927 1928 static void perf_group_attach(struct perf_event *event) 1929 { 1930 struct perf_event *group_leader = event->group_leader, *pos; 1931 1932 lockdep_assert_held(&event->ctx->lock); 1933 1934 /* 1935 * We can have double attach due to group movement (move_group) in 1936 * perf_event_open(). 1937 */ 1938 if (event->attach_state & PERF_ATTACH_GROUP) 1939 return; 1940 1941 event->attach_state |= PERF_ATTACH_GROUP; 1942 1943 if (group_leader == event) 1944 return; 1945 1946 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1947 1948 group_leader->group_caps &= event->event_caps; 1949 1950 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1951 group_leader->nr_siblings++; 1952 1953 perf_event__header_size(group_leader); 1954 1955 for_each_sibling_event(pos, group_leader) 1956 perf_event__header_size(pos); 1957 } 1958 1959 /* 1960 * Remove an event from the lists for its context. 1961 * Must be called with ctx->mutex and ctx->lock held. 1962 */ 1963 static void 1964 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1965 { 1966 WARN_ON_ONCE(event->ctx != ctx); 1967 lockdep_assert_held(&ctx->lock); 1968 1969 /* 1970 * We can have double detach due to exit/hot-unplug + close. 1971 */ 1972 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1973 return; 1974 1975 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1976 1977 ctx->nr_events--; 1978 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1979 ctx->nr_user--; 1980 if (event->attr.inherit_stat) 1981 ctx->nr_stat--; 1982 1983 list_del_rcu(&event->event_entry); 1984 1985 if (event->group_leader == event) 1986 del_event_from_groups(event, ctx); 1987 1988 /* 1989 * If event was in error state, then keep it 1990 * that way, otherwise bogus counts will be 1991 * returned on read(). The only way to get out 1992 * of error state is by explicit re-enabling 1993 * of the event 1994 */ 1995 if (event->state > PERF_EVENT_STATE_OFF) { 1996 perf_cgroup_event_disable(event, ctx); 1997 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1998 } 1999 2000 ctx->generation++; 2001 event->pmu_ctx->nr_events--; 2002 } 2003 2004 static int 2005 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2006 { 2007 if (!has_aux(aux_event)) 2008 return 0; 2009 2010 if (!event->pmu->aux_output_match) 2011 return 0; 2012 2013 return event->pmu->aux_output_match(aux_event); 2014 } 2015 2016 static void put_event(struct perf_event *event); 2017 static void event_sched_out(struct perf_event *event, 2018 struct perf_event_context *ctx); 2019 2020 static void perf_put_aux_event(struct perf_event *event) 2021 { 2022 struct perf_event_context *ctx = event->ctx; 2023 struct perf_event *iter; 2024 2025 /* 2026 * If event uses aux_event tear down the link 2027 */ 2028 if (event->aux_event) { 2029 iter = event->aux_event; 2030 event->aux_event = NULL; 2031 put_event(iter); 2032 return; 2033 } 2034 2035 /* 2036 * If the event is an aux_event, tear down all links to 2037 * it from other events. 2038 */ 2039 for_each_sibling_event(iter, event->group_leader) { 2040 if (iter->aux_event != event) 2041 continue; 2042 2043 iter->aux_event = NULL; 2044 put_event(event); 2045 2046 /* 2047 * If it's ACTIVE, schedule it out and put it into ERROR 2048 * state so that we don't try to schedule it again. Note 2049 * that perf_event_enable() will clear the ERROR status. 2050 */ 2051 event_sched_out(iter, ctx); 2052 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2053 } 2054 } 2055 2056 static bool perf_need_aux_event(struct perf_event *event) 2057 { 2058 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2059 } 2060 2061 static int perf_get_aux_event(struct perf_event *event, 2062 struct perf_event *group_leader) 2063 { 2064 /* 2065 * Our group leader must be an aux event if we want to be 2066 * an aux_output. This way, the aux event will precede its 2067 * aux_output events in the group, and therefore will always 2068 * schedule first. 2069 */ 2070 if (!group_leader) 2071 return 0; 2072 2073 /* 2074 * aux_output and aux_sample_size are mutually exclusive. 2075 */ 2076 if (event->attr.aux_output && event->attr.aux_sample_size) 2077 return 0; 2078 2079 if (event->attr.aux_output && 2080 !perf_aux_output_match(event, group_leader)) 2081 return 0; 2082 2083 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2084 return 0; 2085 2086 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2087 return 0; 2088 2089 /* 2090 * Link aux_outputs to their aux event; this is undone in 2091 * perf_group_detach() by perf_put_aux_event(). When the 2092 * group in torn down, the aux_output events loose their 2093 * link to the aux_event and can't schedule any more. 2094 */ 2095 event->aux_event = group_leader; 2096 2097 return 1; 2098 } 2099 2100 static inline struct list_head *get_event_list(struct perf_event *event) 2101 { 2102 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2103 &event->pmu_ctx->flexible_active; 2104 } 2105 2106 /* 2107 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2108 * cannot exist on their own, schedule them out and move them into the ERROR 2109 * state. Also see _perf_event_enable(), it will not be able to recover 2110 * this ERROR state. 2111 */ 2112 static inline void perf_remove_sibling_event(struct perf_event *event) 2113 { 2114 event_sched_out(event, event->ctx); 2115 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2116 } 2117 2118 static void perf_group_detach(struct perf_event *event) 2119 { 2120 struct perf_event *leader = event->group_leader; 2121 struct perf_event *sibling, *tmp; 2122 struct perf_event_context *ctx = event->ctx; 2123 2124 lockdep_assert_held(&ctx->lock); 2125 2126 /* 2127 * We can have double detach due to exit/hot-unplug + close. 2128 */ 2129 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2130 return; 2131 2132 event->attach_state &= ~PERF_ATTACH_GROUP; 2133 2134 perf_put_aux_event(event); 2135 2136 /* 2137 * If this is a sibling, remove it from its group. 2138 */ 2139 if (leader != event) { 2140 list_del_init(&event->sibling_list); 2141 event->group_leader->nr_siblings--; 2142 goto out; 2143 } 2144 2145 /* 2146 * If this was a group event with sibling events then 2147 * upgrade the siblings to singleton events by adding them 2148 * to whatever list we are on. 2149 */ 2150 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2151 2152 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2153 perf_remove_sibling_event(sibling); 2154 2155 sibling->group_leader = sibling; 2156 list_del_init(&sibling->sibling_list); 2157 2158 /* Inherit group flags from the previous leader */ 2159 sibling->group_caps = event->group_caps; 2160 2161 if (!RB_EMPTY_NODE(&event->group_node)) { 2162 add_event_to_groups(sibling, event->ctx); 2163 2164 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2165 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2166 } 2167 2168 WARN_ON_ONCE(sibling->ctx != event->ctx); 2169 } 2170 2171 out: 2172 for_each_sibling_event(tmp, leader) 2173 perf_event__header_size(tmp); 2174 2175 perf_event__header_size(leader); 2176 } 2177 2178 static void sync_child_event(struct perf_event *child_event); 2179 2180 static void perf_child_detach(struct perf_event *event) 2181 { 2182 struct perf_event *parent_event = event->parent; 2183 2184 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2185 return; 2186 2187 event->attach_state &= ~PERF_ATTACH_CHILD; 2188 2189 if (WARN_ON_ONCE(!parent_event)) 2190 return; 2191 2192 lockdep_assert_held(&parent_event->child_mutex); 2193 2194 sync_child_event(event); 2195 list_del_init(&event->child_list); 2196 } 2197 2198 static bool is_orphaned_event(struct perf_event *event) 2199 { 2200 return event->state == PERF_EVENT_STATE_DEAD; 2201 } 2202 2203 static inline int 2204 event_filter_match(struct perf_event *event) 2205 { 2206 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2207 perf_cgroup_match(event); 2208 } 2209 2210 static void 2211 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2212 { 2213 struct perf_event_pmu_context *epc = event->pmu_ctx; 2214 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2215 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2216 2217 // XXX cpc serialization, probably per-cpu IRQ disabled 2218 2219 WARN_ON_ONCE(event->ctx != ctx); 2220 lockdep_assert_held(&ctx->lock); 2221 2222 if (event->state != PERF_EVENT_STATE_ACTIVE) 2223 return; 2224 2225 /* 2226 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2227 * we can schedule events _OUT_ individually through things like 2228 * __perf_remove_from_context(). 2229 */ 2230 list_del_init(&event->active_list); 2231 2232 perf_pmu_disable(event->pmu); 2233 2234 event->pmu->del(event, 0); 2235 event->oncpu = -1; 2236 2237 if (event->pending_disable) { 2238 event->pending_disable = 0; 2239 perf_cgroup_event_disable(event, ctx); 2240 state = PERF_EVENT_STATE_OFF; 2241 } 2242 2243 if (event->pending_sigtrap) { 2244 bool dec = true; 2245 2246 event->pending_sigtrap = 0; 2247 if (state != PERF_EVENT_STATE_OFF && 2248 !event->pending_work) { 2249 event->pending_work = 1; 2250 dec = false; 2251 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2252 task_work_add(current, &event->pending_task, TWA_RESUME); 2253 } 2254 if (dec) 2255 local_dec(&event->ctx->nr_pending); 2256 } 2257 2258 perf_event_set_state(event, state); 2259 2260 if (!is_software_event(event)) 2261 cpc->active_oncpu--; 2262 if (event->attr.freq && event->attr.sample_freq) 2263 ctx->nr_freq--; 2264 if (event->attr.exclusive || !cpc->active_oncpu) 2265 cpc->exclusive = 0; 2266 2267 perf_pmu_enable(event->pmu); 2268 } 2269 2270 static void 2271 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2272 { 2273 struct perf_event *event; 2274 2275 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2276 return; 2277 2278 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2279 2280 event_sched_out(group_event, ctx); 2281 2282 /* 2283 * Schedule out siblings (if any): 2284 */ 2285 for_each_sibling_event(event, group_event) 2286 event_sched_out(event, ctx); 2287 } 2288 2289 #define DETACH_GROUP 0x01UL 2290 #define DETACH_CHILD 0x02UL 2291 #define DETACH_DEAD 0x04UL 2292 2293 /* 2294 * Cross CPU call to remove a performance event 2295 * 2296 * We disable the event on the hardware level first. After that we 2297 * remove it from the context list. 2298 */ 2299 static void 2300 __perf_remove_from_context(struct perf_event *event, 2301 struct perf_cpu_context *cpuctx, 2302 struct perf_event_context *ctx, 2303 void *info) 2304 { 2305 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2306 unsigned long flags = (unsigned long)info; 2307 2308 if (ctx->is_active & EVENT_TIME) { 2309 update_context_time(ctx); 2310 update_cgrp_time_from_cpuctx(cpuctx, false); 2311 } 2312 2313 /* 2314 * Ensure event_sched_out() switches to OFF, at the very least 2315 * this avoids raising perf_pending_task() at this time. 2316 */ 2317 if (flags & DETACH_DEAD) 2318 event->pending_disable = 1; 2319 event_sched_out(event, ctx); 2320 if (flags & DETACH_GROUP) 2321 perf_group_detach(event); 2322 if (flags & DETACH_CHILD) 2323 perf_child_detach(event); 2324 list_del_event(event, ctx); 2325 if (flags & DETACH_DEAD) 2326 event->state = PERF_EVENT_STATE_DEAD; 2327 2328 if (!pmu_ctx->nr_events) { 2329 pmu_ctx->rotate_necessary = 0; 2330 2331 if (ctx->task && ctx->is_active) { 2332 struct perf_cpu_pmu_context *cpc; 2333 2334 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2335 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2336 cpc->task_epc = NULL; 2337 } 2338 } 2339 2340 if (!ctx->nr_events && ctx->is_active) { 2341 if (ctx == &cpuctx->ctx) 2342 update_cgrp_time_from_cpuctx(cpuctx, true); 2343 2344 ctx->is_active = 0; 2345 if (ctx->task) { 2346 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2347 cpuctx->task_ctx = NULL; 2348 } 2349 } 2350 } 2351 2352 /* 2353 * Remove the event from a task's (or a CPU's) list of events. 2354 * 2355 * If event->ctx is a cloned context, callers must make sure that 2356 * every task struct that event->ctx->task could possibly point to 2357 * remains valid. This is OK when called from perf_release since 2358 * that only calls us on the top-level context, which can't be a clone. 2359 * When called from perf_event_exit_task, it's OK because the 2360 * context has been detached from its task. 2361 */ 2362 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2363 { 2364 struct perf_event_context *ctx = event->ctx; 2365 2366 lockdep_assert_held(&ctx->mutex); 2367 2368 /* 2369 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2370 * to work in the face of TASK_TOMBSTONE, unlike every other 2371 * event_function_call() user. 2372 */ 2373 raw_spin_lock_irq(&ctx->lock); 2374 if (!ctx->is_active) { 2375 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2376 ctx, (void *)flags); 2377 raw_spin_unlock_irq(&ctx->lock); 2378 return; 2379 } 2380 raw_spin_unlock_irq(&ctx->lock); 2381 2382 event_function_call(event, __perf_remove_from_context, (void *)flags); 2383 } 2384 2385 /* 2386 * Cross CPU call to disable a performance event 2387 */ 2388 static void __perf_event_disable(struct perf_event *event, 2389 struct perf_cpu_context *cpuctx, 2390 struct perf_event_context *ctx, 2391 void *info) 2392 { 2393 if (event->state < PERF_EVENT_STATE_INACTIVE) 2394 return; 2395 2396 if (ctx->is_active & EVENT_TIME) { 2397 update_context_time(ctx); 2398 update_cgrp_time_from_event(event); 2399 } 2400 2401 perf_pmu_disable(event->pmu_ctx->pmu); 2402 2403 if (event == event->group_leader) 2404 group_sched_out(event, ctx); 2405 else 2406 event_sched_out(event, ctx); 2407 2408 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2409 perf_cgroup_event_disable(event, ctx); 2410 2411 perf_pmu_enable(event->pmu_ctx->pmu); 2412 } 2413 2414 /* 2415 * Disable an event. 2416 * 2417 * If event->ctx is a cloned context, callers must make sure that 2418 * every task struct that event->ctx->task could possibly point to 2419 * remains valid. This condition is satisfied when called through 2420 * perf_event_for_each_child or perf_event_for_each because they 2421 * hold the top-level event's child_mutex, so any descendant that 2422 * goes to exit will block in perf_event_exit_event(). 2423 * 2424 * When called from perf_pending_irq it's OK because event->ctx 2425 * is the current context on this CPU and preemption is disabled, 2426 * hence we can't get into perf_event_task_sched_out for this context. 2427 */ 2428 static void _perf_event_disable(struct perf_event *event) 2429 { 2430 struct perf_event_context *ctx = event->ctx; 2431 2432 raw_spin_lock_irq(&ctx->lock); 2433 if (event->state <= PERF_EVENT_STATE_OFF) { 2434 raw_spin_unlock_irq(&ctx->lock); 2435 return; 2436 } 2437 raw_spin_unlock_irq(&ctx->lock); 2438 2439 event_function_call(event, __perf_event_disable, NULL); 2440 } 2441 2442 void perf_event_disable_local(struct perf_event *event) 2443 { 2444 event_function_local(event, __perf_event_disable, NULL); 2445 } 2446 2447 /* 2448 * Strictly speaking kernel users cannot create groups and therefore this 2449 * interface does not need the perf_event_ctx_lock() magic. 2450 */ 2451 void perf_event_disable(struct perf_event *event) 2452 { 2453 struct perf_event_context *ctx; 2454 2455 ctx = perf_event_ctx_lock(event); 2456 _perf_event_disable(event); 2457 perf_event_ctx_unlock(event, ctx); 2458 } 2459 EXPORT_SYMBOL_GPL(perf_event_disable); 2460 2461 void perf_event_disable_inatomic(struct perf_event *event) 2462 { 2463 event->pending_disable = 1; 2464 irq_work_queue(&event->pending_irq); 2465 } 2466 2467 #define MAX_INTERRUPTS (~0ULL) 2468 2469 static void perf_log_throttle(struct perf_event *event, int enable); 2470 static void perf_log_itrace_start(struct perf_event *event); 2471 2472 static int 2473 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2474 { 2475 struct perf_event_pmu_context *epc = event->pmu_ctx; 2476 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2477 int ret = 0; 2478 2479 WARN_ON_ONCE(event->ctx != ctx); 2480 2481 lockdep_assert_held(&ctx->lock); 2482 2483 if (event->state <= PERF_EVENT_STATE_OFF) 2484 return 0; 2485 2486 WRITE_ONCE(event->oncpu, smp_processor_id()); 2487 /* 2488 * Order event::oncpu write to happen before the ACTIVE state is 2489 * visible. This allows perf_event_{stop,read}() to observe the correct 2490 * ->oncpu if it sees ACTIVE. 2491 */ 2492 smp_wmb(); 2493 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2494 2495 /* 2496 * Unthrottle events, since we scheduled we might have missed several 2497 * ticks already, also for a heavily scheduling task there is little 2498 * guarantee it'll get a tick in a timely manner. 2499 */ 2500 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2501 perf_log_throttle(event, 1); 2502 event->hw.interrupts = 0; 2503 } 2504 2505 perf_pmu_disable(event->pmu); 2506 2507 perf_log_itrace_start(event); 2508 2509 if (event->pmu->add(event, PERF_EF_START)) { 2510 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2511 event->oncpu = -1; 2512 ret = -EAGAIN; 2513 goto out; 2514 } 2515 2516 if (!is_software_event(event)) 2517 cpc->active_oncpu++; 2518 if (event->attr.freq && event->attr.sample_freq) 2519 ctx->nr_freq++; 2520 2521 if (event->attr.exclusive) 2522 cpc->exclusive = 1; 2523 2524 out: 2525 perf_pmu_enable(event->pmu); 2526 2527 return ret; 2528 } 2529 2530 static int 2531 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2532 { 2533 struct perf_event *event, *partial_group = NULL; 2534 struct pmu *pmu = group_event->pmu_ctx->pmu; 2535 2536 if (group_event->state == PERF_EVENT_STATE_OFF) 2537 return 0; 2538 2539 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2540 2541 if (event_sched_in(group_event, ctx)) 2542 goto error; 2543 2544 /* 2545 * Schedule in siblings as one group (if any): 2546 */ 2547 for_each_sibling_event(event, group_event) { 2548 if (event_sched_in(event, ctx)) { 2549 partial_group = event; 2550 goto group_error; 2551 } 2552 } 2553 2554 if (!pmu->commit_txn(pmu)) 2555 return 0; 2556 2557 group_error: 2558 /* 2559 * Groups can be scheduled in as one unit only, so undo any 2560 * partial group before returning: 2561 * The events up to the failed event are scheduled out normally. 2562 */ 2563 for_each_sibling_event(event, group_event) { 2564 if (event == partial_group) 2565 break; 2566 2567 event_sched_out(event, ctx); 2568 } 2569 event_sched_out(group_event, ctx); 2570 2571 error: 2572 pmu->cancel_txn(pmu); 2573 return -EAGAIN; 2574 } 2575 2576 /* 2577 * Work out whether we can put this event group on the CPU now. 2578 */ 2579 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2580 { 2581 struct perf_event_pmu_context *epc = event->pmu_ctx; 2582 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2583 2584 /* 2585 * Groups consisting entirely of software events can always go on. 2586 */ 2587 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2588 return 1; 2589 /* 2590 * If an exclusive group is already on, no other hardware 2591 * events can go on. 2592 */ 2593 if (cpc->exclusive) 2594 return 0; 2595 /* 2596 * If this group is exclusive and there are already 2597 * events on the CPU, it can't go on. 2598 */ 2599 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2600 return 0; 2601 /* 2602 * Otherwise, try to add it if all previous groups were able 2603 * to go on. 2604 */ 2605 return can_add_hw; 2606 } 2607 2608 static void add_event_to_ctx(struct perf_event *event, 2609 struct perf_event_context *ctx) 2610 { 2611 list_add_event(event, ctx); 2612 perf_group_attach(event); 2613 } 2614 2615 static void task_ctx_sched_out(struct perf_event_context *ctx, 2616 enum event_type_t event_type) 2617 { 2618 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2619 2620 if (!cpuctx->task_ctx) 2621 return; 2622 2623 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2624 return; 2625 2626 ctx_sched_out(ctx, event_type); 2627 } 2628 2629 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2630 struct perf_event_context *ctx) 2631 { 2632 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2633 if (ctx) 2634 ctx_sched_in(ctx, EVENT_PINNED); 2635 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2636 if (ctx) 2637 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2638 } 2639 2640 /* 2641 * We want to maintain the following priority of scheduling: 2642 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2643 * - task pinned (EVENT_PINNED) 2644 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2645 * - task flexible (EVENT_FLEXIBLE). 2646 * 2647 * In order to avoid unscheduling and scheduling back in everything every 2648 * time an event is added, only do it for the groups of equal priority and 2649 * below. 2650 * 2651 * This can be called after a batch operation on task events, in which case 2652 * event_type is a bit mask of the types of events involved. For CPU events, 2653 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2654 */ 2655 /* 2656 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2657 * event to the context or enabling existing event in the context. We can 2658 * probably optimize it by rescheduling only affected pmu_ctx. 2659 */ 2660 static void ctx_resched(struct perf_cpu_context *cpuctx, 2661 struct perf_event_context *task_ctx, 2662 enum event_type_t event_type) 2663 { 2664 bool cpu_event = !!(event_type & EVENT_CPU); 2665 2666 /* 2667 * If pinned groups are involved, flexible groups also need to be 2668 * scheduled out. 2669 */ 2670 if (event_type & EVENT_PINNED) 2671 event_type |= EVENT_FLEXIBLE; 2672 2673 event_type &= EVENT_ALL; 2674 2675 perf_ctx_disable(&cpuctx->ctx); 2676 if (task_ctx) { 2677 perf_ctx_disable(task_ctx); 2678 task_ctx_sched_out(task_ctx, event_type); 2679 } 2680 2681 /* 2682 * Decide which cpu ctx groups to schedule out based on the types 2683 * of events that caused rescheduling: 2684 * - EVENT_CPU: schedule out corresponding groups; 2685 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2686 * - otherwise, do nothing more. 2687 */ 2688 if (cpu_event) 2689 ctx_sched_out(&cpuctx->ctx, event_type); 2690 else if (event_type & EVENT_PINNED) 2691 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2692 2693 perf_event_sched_in(cpuctx, task_ctx); 2694 2695 perf_ctx_enable(&cpuctx->ctx); 2696 if (task_ctx) 2697 perf_ctx_enable(task_ctx); 2698 } 2699 2700 void perf_pmu_resched(struct pmu *pmu) 2701 { 2702 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2703 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2704 2705 perf_ctx_lock(cpuctx, task_ctx); 2706 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2707 perf_ctx_unlock(cpuctx, task_ctx); 2708 } 2709 2710 /* 2711 * Cross CPU call to install and enable a performance event 2712 * 2713 * Very similar to remote_function() + event_function() but cannot assume that 2714 * things like ctx->is_active and cpuctx->task_ctx are set. 2715 */ 2716 static int __perf_install_in_context(void *info) 2717 { 2718 struct perf_event *event = info; 2719 struct perf_event_context *ctx = event->ctx; 2720 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2721 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2722 bool reprogram = true; 2723 int ret = 0; 2724 2725 raw_spin_lock(&cpuctx->ctx.lock); 2726 if (ctx->task) { 2727 raw_spin_lock(&ctx->lock); 2728 task_ctx = ctx; 2729 2730 reprogram = (ctx->task == current); 2731 2732 /* 2733 * If the task is running, it must be running on this CPU, 2734 * otherwise we cannot reprogram things. 2735 * 2736 * If its not running, we don't care, ctx->lock will 2737 * serialize against it becoming runnable. 2738 */ 2739 if (task_curr(ctx->task) && !reprogram) { 2740 ret = -ESRCH; 2741 goto unlock; 2742 } 2743 2744 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2745 } else if (task_ctx) { 2746 raw_spin_lock(&task_ctx->lock); 2747 } 2748 2749 #ifdef CONFIG_CGROUP_PERF 2750 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2751 /* 2752 * If the current cgroup doesn't match the event's 2753 * cgroup, we should not try to schedule it. 2754 */ 2755 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2756 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2757 event->cgrp->css.cgroup); 2758 } 2759 #endif 2760 2761 if (reprogram) { 2762 ctx_sched_out(ctx, EVENT_TIME); 2763 add_event_to_ctx(event, ctx); 2764 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2765 } else { 2766 add_event_to_ctx(event, ctx); 2767 } 2768 2769 unlock: 2770 perf_ctx_unlock(cpuctx, task_ctx); 2771 2772 return ret; 2773 } 2774 2775 static bool exclusive_event_installable(struct perf_event *event, 2776 struct perf_event_context *ctx); 2777 2778 /* 2779 * Attach a performance event to a context. 2780 * 2781 * Very similar to event_function_call, see comment there. 2782 */ 2783 static void 2784 perf_install_in_context(struct perf_event_context *ctx, 2785 struct perf_event *event, 2786 int cpu) 2787 { 2788 struct task_struct *task = READ_ONCE(ctx->task); 2789 2790 lockdep_assert_held(&ctx->mutex); 2791 2792 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2793 2794 if (event->cpu != -1) 2795 WARN_ON_ONCE(event->cpu != cpu); 2796 2797 /* 2798 * Ensures that if we can observe event->ctx, both the event and ctx 2799 * will be 'complete'. See perf_iterate_sb_cpu(). 2800 */ 2801 smp_store_release(&event->ctx, ctx); 2802 2803 /* 2804 * perf_event_attr::disabled events will not run and can be initialized 2805 * without IPI. Except when this is the first event for the context, in 2806 * that case we need the magic of the IPI to set ctx->is_active. 2807 * 2808 * The IOC_ENABLE that is sure to follow the creation of a disabled 2809 * event will issue the IPI and reprogram the hardware. 2810 */ 2811 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2812 ctx->nr_events && !is_cgroup_event(event)) { 2813 raw_spin_lock_irq(&ctx->lock); 2814 if (ctx->task == TASK_TOMBSTONE) { 2815 raw_spin_unlock_irq(&ctx->lock); 2816 return; 2817 } 2818 add_event_to_ctx(event, ctx); 2819 raw_spin_unlock_irq(&ctx->lock); 2820 return; 2821 } 2822 2823 if (!task) { 2824 cpu_function_call(cpu, __perf_install_in_context, event); 2825 return; 2826 } 2827 2828 /* 2829 * Should not happen, we validate the ctx is still alive before calling. 2830 */ 2831 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2832 return; 2833 2834 /* 2835 * Installing events is tricky because we cannot rely on ctx->is_active 2836 * to be set in case this is the nr_events 0 -> 1 transition. 2837 * 2838 * Instead we use task_curr(), which tells us if the task is running. 2839 * However, since we use task_curr() outside of rq::lock, we can race 2840 * against the actual state. This means the result can be wrong. 2841 * 2842 * If we get a false positive, we retry, this is harmless. 2843 * 2844 * If we get a false negative, things are complicated. If we are after 2845 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2846 * value must be correct. If we're before, it doesn't matter since 2847 * perf_event_context_sched_in() will program the counter. 2848 * 2849 * However, this hinges on the remote context switch having observed 2850 * our task->perf_event_ctxp[] store, such that it will in fact take 2851 * ctx::lock in perf_event_context_sched_in(). 2852 * 2853 * We do this by task_function_call(), if the IPI fails to hit the task 2854 * we know any future context switch of task must see the 2855 * perf_event_ctpx[] store. 2856 */ 2857 2858 /* 2859 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2860 * task_cpu() load, such that if the IPI then does not find the task 2861 * running, a future context switch of that task must observe the 2862 * store. 2863 */ 2864 smp_mb(); 2865 again: 2866 if (!task_function_call(task, __perf_install_in_context, event)) 2867 return; 2868 2869 raw_spin_lock_irq(&ctx->lock); 2870 task = ctx->task; 2871 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2872 /* 2873 * Cannot happen because we already checked above (which also 2874 * cannot happen), and we hold ctx->mutex, which serializes us 2875 * against perf_event_exit_task_context(). 2876 */ 2877 raw_spin_unlock_irq(&ctx->lock); 2878 return; 2879 } 2880 /* 2881 * If the task is not running, ctx->lock will avoid it becoming so, 2882 * thus we can safely install the event. 2883 */ 2884 if (task_curr(task)) { 2885 raw_spin_unlock_irq(&ctx->lock); 2886 goto again; 2887 } 2888 add_event_to_ctx(event, ctx); 2889 raw_spin_unlock_irq(&ctx->lock); 2890 } 2891 2892 /* 2893 * Cross CPU call to enable a performance event 2894 */ 2895 static void __perf_event_enable(struct perf_event *event, 2896 struct perf_cpu_context *cpuctx, 2897 struct perf_event_context *ctx, 2898 void *info) 2899 { 2900 struct perf_event *leader = event->group_leader; 2901 struct perf_event_context *task_ctx; 2902 2903 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2904 event->state <= PERF_EVENT_STATE_ERROR) 2905 return; 2906 2907 if (ctx->is_active) 2908 ctx_sched_out(ctx, EVENT_TIME); 2909 2910 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2911 perf_cgroup_event_enable(event, ctx); 2912 2913 if (!ctx->is_active) 2914 return; 2915 2916 if (!event_filter_match(event)) { 2917 ctx_sched_in(ctx, EVENT_TIME); 2918 return; 2919 } 2920 2921 /* 2922 * If the event is in a group and isn't the group leader, 2923 * then don't put it on unless the group is on. 2924 */ 2925 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2926 ctx_sched_in(ctx, EVENT_TIME); 2927 return; 2928 } 2929 2930 task_ctx = cpuctx->task_ctx; 2931 if (ctx->task) 2932 WARN_ON_ONCE(task_ctx != ctx); 2933 2934 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2935 } 2936 2937 /* 2938 * Enable an event. 2939 * 2940 * If event->ctx is a cloned context, callers must make sure that 2941 * every task struct that event->ctx->task could possibly point to 2942 * remains valid. This condition is satisfied when called through 2943 * perf_event_for_each_child or perf_event_for_each as described 2944 * for perf_event_disable. 2945 */ 2946 static void _perf_event_enable(struct perf_event *event) 2947 { 2948 struct perf_event_context *ctx = event->ctx; 2949 2950 raw_spin_lock_irq(&ctx->lock); 2951 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2952 event->state < PERF_EVENT_STATE_ERROR) { 2953 out: 2954 raw_spin_unlock_irq(&ctx->lock); 2955 return; 2956 } 2957 2958 /* 2959 * If the event is in error state, clear that first. 2960 * 2961 * That way, if we see the event in error state below, we know that it 2962 * has gone back into error state, as distinct from the task having 2963 * been scheduled away before the cross-call arrived. 2964 */ 2965 if (event->state == PERF_EVENT_STATE_ERROR) { 2966 /* 2967 * Detached SIBLING events cannot leave ERROR state. 2968 */ 2969 if (event->event_caps & PERF_EV_CAP_SIBLING && 2970 event->group_leader == event) 2971 goto out; 2972 2973 event->state = PERF_EVENT_STATE_OFF; 2974 } 2975 raw_spin_unlock_irq(&ctx->lock); 2976 2977 event_function_call(event, __perf_event_enable, NULL); 2978 } 2979 2980 /* 2981 * See perf_event_disable(); 2982 */ 2983 void perf_event_enable(struct perf_event *event) 2984 { 2985 struct perf_event_context *ctx; 2986 2987 ctx = perf_event_ctx_lock(event); 2988 _perf_event_enable(event); 2989 perf_event_ctx_unlock(event, ctx); 2990 } 2991 EXPORT_SYMBOL_GPL(perf_event_enable); 2992 2993 struct stop_event_data { 2994 struct perf_event *event; 2995 unsigned int restart; 2996 }; 2997 2998 static int __perf_event_stop(void *info) 2999 { 3000 struct stop_event_data *sd = info; 3001 struct perf_event *event = sd->event; 3002 3003 /* if it's already INACTIVE, do nothing */ 3004 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3005 return 0; 3006 3007 /* matches smp_wmb() in event_sched_in() */ 3008 smp_rmb(); 3009 3010 /* 3011 * There is a window with interrupts enabled before we get here, 3012 * so we need to check again lest we try to stop another CPU's event. 3013 */ 3014 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3015 return -EAGAIN; 3016 3017 event->pmu->stop(event, PERF_EF_UPDATE); 3018 3019 /* 3020 * May race with the actual stop (through perf_pmu_output_stop()), 3021 * but it is only used for events with AUX ring buffer, and such 3022 * events will refuse to restart because of rb::aux_mmap_count==0, 3023 * see comments in perf_aux_output_begin(). 3024 * 3025 * Since this is happening on an event-local CPU, no trace is lost 3026 * while restarting. 3027 */ 3028 if (sd->restart) 3029 event->pmu->start(event, 0); 3030 3031 return 0; 3032 } 3033 3034 static int perf_event_stop(struct perf_event *event, int restart) 3035 { 3036 struct stop_event_data sd = { 3037 .event = event, 3038 .restart = restart, 3039 }; 3040 int ret = 0; 3041 3042 do { 3043 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3044 return 0; 3045 3046 /* matches smp_wmb() in event_sched_in() */ 3047 smp_rmb(); 3048 3049 /* 3050 * We only want to restart ACTIVE events, so if the event goes 3051 * inactive here (event->oncpu==-1), there's nothing more to do; 3052 * fall through with ret==-ENXIO. 3053 */ 3054 ret = cpu_function_call(READ_ONCE(event->oncpu), 3055 __perf_event_stop, &sd); 3056 } while (ret == -EAGAIN); 3057 3058 return ret; 3059 } 3060 3061 /* 3062 * In order to contain the amount of racy and tricky in the address filter 3063 * configuration management, it is a two part process: 3064 * 3065 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3066 * we update the addresses of corresponding vmas in 3067 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3068 * (p2) when an event is scheduled in (pmu::add), it calls 3069 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3070 * if the generation has changed since the previous call. 3071 * 3072 * If (p1) happens while the event is active, we restart it to force (p2). 3073 * 3074 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3075 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3076 * ioctl; 3077 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3078 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3079 * for reading; 3080 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3081 * of exec. 3082 */ 3083 void perf_event_addr_filters_sync(struct perf_event *event) 3084 { 3085 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3086 3087 if (!has_addr_filter(event)) 3088 return; 3089 3090 raw_spin_lock(&ifh->lock); 3091 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3092 event->pmu->addr_filters_sync(event); 3093 event->hw.addr_filters_gen = event->addr_filters_gen; 3094 } 3095 raw_spin_unlock(&ifh->lock); 3096 } 3097 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3098 3099 static int _perf_event_refresh(struct perf_event *event, int refresh) 3100 { 3101 /* 3102 * not supported on inherited events 3103 */ 3104 if (event->attr.inherit || !is_sampling_event(event)) 3105 return -EINVAL; 3106 3107 atomic_add(refresh, &event->event_limit); 3108 _perf_event_enable(event); 3109 3110 return 0; 3111 } 3112 3113 /* 3114 * See perf_event_disable() 3115 */ 3116 int perf_event_refresh(struct perf_event *event, int refresh) 3117 { 3118 struct perf_event_context *ctx; 3119 int ret; 3120 3121 ctx = perf_event_ctx_lock(event); 3122 ret = _perf_event_refresh(event, refresh); 3123 perf_event_ctx_unlock(event, ctx); 3124 3125 return ret; 3126 } 3127 EXPORT_SYMBOL_GPL(perf_event_refresh); 3128 3129 static int perf_event_modify_breakpoint(struct perf_event *bp, 3130 struct perf_event_attr *attr) 3131 { 3132 int err; 3133 3134 _perf_event_disable(bp); 3135 3136 err = modify_user_hw_breakpoint_check(bp, attr, true); 3137 3138 if (!bp->attr.disabled) 3139 _perf_event_enable(bp); 3140 3141 return err; 3142 } 3143 3144 /* 3145 * Copy event-type-independent attributes that may be modified. 3146 */ 3147 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3148 const struct perf_event_attr *from) 3149 { 3150 to->sig_data = from->sig_data; 3151 } 3152 3153 static int perf_event_modify_attr(struct perf_event *event, 3154 struct perf_event_attr *attr) 3155 { 3156 int (*func)(struct perf_event *, struct perf_event_attr *); 3157 struct perf_event *child; 3158 int err; 3159 3160 if (event->attr.type != attr->type) 3161 return -EINVAL; 3162 3163 switch (event->attr.type) { 3164 case PERF_TYPE_BREAKPOINT: 3165 func = perf_event_modify_breakpoint; 3166 break; 3167 default: 3168 /* Place holder for future additions. */ 3169 return -EOPNOTSUPP; 3170 } 3171 3172 WARN_ON_ONCE(event->ctx->parent_ctx); 3173 3174 mutex_lock(&event->child_mutex); 3175 /* 3176 * Event-type-independent attributes must be copied before event-type 3177 * modification, which will validate that final attributes match the 3178 * source attributes after all relevant attributes have been copied. 3179 */ 3180 perf_event_modify_copy_attr(&event->attr, attr); 3181 err = func(event, attr); 3182 if (err) 3183 goto out; 3184 list_for_each_entry(child, &event->child_list, child_list) { 3185 perf_event_modify_copy_attr(&child->attr, attr); 3186 err = func(child, attr); 3187 if (err) 3188 goto out; 3189 } 3190 out: 3191 mutex_unlock(&event->child_mutex); 3192 return err; 3193 } 3194 3195 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3196 enum event_type_t event_type) 3197 { 3198 struct perf_event_context *ctx = pmu_ctx->ctx; 3199 struct perf_event *event, *tmp; 3200 struct pmu *pmu = pmu_ctx->pmu; 3201 3202 if (ctx->task && !ctx->is_active) { 3203 struct perf_cpu_pmu_context *cpc; 3204 3205 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3206 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3207 cpc->task_epc = NULL; 3208 } 3209 3210 if (!event_type) 3211 return; 3212 3213 perf_pmu_disable(pmu); 3214 if (event_type & EVENT_PINNED) { 3215 list_for_each_entry_safe(event, tmp, 3216 &pmu_ctx->pinned_active, 3217 active_list) 3218 group_sched_out(event, ctx); 3219 } 3220 3221 if (event_type & EVENT_FLEXIBLE) { 3222 list_for_each_entry_safe(event, tmp, 3223 &pmu_ctx->flexible_active, 3224 active_list) 3225 group_sched_out(event, ctx); 3226 /* 3227 * Since we cleared EVENT_FLEXIBLE, also clear 3228 * rotate_necessary, is will be reset by 3229 * ctx_flexible_sched_in() when needed. 3230 */ 3231 pmu_ctx->rotate_necessary = 0; 3232 } 3233 perf_pmu_enable(pmu); 3234 } 3235 3236 static void 3237 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3238 { 3239 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3240 struct perf_event_pmu_context *pmu_ctx; 3241 int is_active = ctx->is_active; 3242 3243 lockdep_assert_held(&ctx->lock); 3244 3245 if (likely(!ctx->nr_events)) { 3246 /* 3247 * See __perf_remove_from_context(). 3248 */ 3249 WARN_ON_ONCE(ctx->is_active); 3250 if (ctx->task) 3251 WARN_ON_ONCE(cpuctx->task_ctx); 3252 return; 3253 } 3254 3255 /* 3256 * Always update time if it was set; not only when it changes. 3257 * Otherwise we can 'forget' to update time for any but the last 3258 * context we sched out. For example: 3259 * 3260 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3261 * ctx_sched_out(.event_type = EVENT_PINNED) 3262 * 3263 * would only update time for the pinned events. 3264 */ 3265 if (is_active & EVENT_TIME) { 3266 /* update (and stop) ctx time */ 3267 update_context_time(ctx); 3268 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3269 /* 3270 * CPU-release for the below ->is_active store, 3271 * see __load_acquire() in perf_event_time_now() 3272 */ 3273 barrier(); 3274 } 3275 3276 ctx->is_active &= ~event_type; 3277 if (!(ctx->is_active & EVENT_ALL)) 3278 ctx->is_active = 0; 3279 3280 if (ctx->task) { 3281 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3282 if (!ctx->is_active) 3283 cpuctx->task_ctx = NULL; 3284 } 3285 3286 is_active ^= ctx->is_active; /* changed bits */ 3287 3288 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 3289 __pmu_ctx_sched_out(pmu_ctx, is_active); 3290 } 3291 3292 /* 3293 * Test whether two contexts are equivalent, i.e. whether they have both been 3294 * cloned from the same version of the same context. 3295 * 3296 * Equivalence is measured using a generation number in the context that is 3297 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3298 * and list_del_event(). 3299 */ 3300 static int context_equiv(struct perf_event_context *ctx1, 3301 struct perf_event_context *ctx2) 3302 { 3303 lockdep_assert_held(&ctx1->lock); 3304 lockdep_assert_held(&ctx2->lock); 3305 3306 /* Pinning disables the swap optimization */ 3307 if (ctx1->pin_count || ctx2->pin_count) 3308 return 0; 3309 3310 /* If ctx1 is the parent of ctx2 */ 3311 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3312 return 1; 3313 3314 /* If ctx2 is the parent of ctx1 */ 3315 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3316 return 1; 3317 3318 /* 3319 * If ctx1 and ctx2 have the same parent; we flatten the parent 3320 * hierarchy, see perf_event_init_context(). 3321 */ 3322 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3323 ctx1->parent_gen == ctx2->parent_gen) 3324 return 1; 3325 3326 /* Unmatched */ 3327 return 0; 3328 } 3329 3330 static void __perf_event_sync_stat(struct perf_event *event, 3331 struct perf_event *next_event) 3332 { 3333 u64 value; 3334 3335 if (!event->attr.inherit_stat) 3336 return; 3337 3338 /* 3339 * Update the event value, we cannot use perf_event_read() 3340 * because we're in the middle of a context switch and have IRQs 3341 * disabled, which upsets smp_call_function_single(), however 3342 * we know the event must be on the current CPU, therefore we 3343 * don't need to use it. 3344 */ 3345 if (event->state == PERF_EVENT_STATE_ACTIVE) 3346 event->pmu->read(event); 3347 3348 perf_event_update_time(event); 3349 3350 /* 3351 * In order to keep per-task stats reliable we need to flip the event 3352 * values when we flip the contexts. 3353 */ 3354 value = local64_read(&next_event->count); 3355 value = local64_xchg(&event->count, value); 3356 local64_set(&next_event->count, value); 3357 3358 swap(event->total_time_enabled, next_event->total_time_enabled); 3359 swap(event->total_time_running, next_event->total_time_running); 3360 3361 /* 3362 * Since we swizzled the values, update the user visible data too. 3363 */ 3364 perf_event_update_userpage(event); 3365 perf_event_update_userpage(next_event); 3366 } 3367 3368 static void perf_event_sync_stat(struct perf_event_context *ctx, 3369 struct perf_event_context *next_ctx) 3370 { 3371 struct perf_event *event, *next_event; 3372 3373 if (!ctx->nr_stat) 3374 return; 3375 3376 update_context_time(ctx); 3377 3378 event = list_first_entry(&ctx->event_list, 3379 struct perf_event, event_entry); 3380 3381 next_event = list_first_entry(&next_ctx->event_list, 3382 struct perf_event, event_entry); 3383 3384 while (&event->event_entry != &ctx->event_list && 3385 &next_event->event_entry != &next_ctx->event_list) { 3386 3387 __perf_event_sync_stat(event, next_event); 3388 3389 event = list_next_entry(event, event_entry); 3390 next_event = list_next_entry(next_event, event_entry); 3391 } 3392 } 3393 3394 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3395 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3396 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3397 !list_entry_is_head(pos1, head1, member) && \ 3398 !list_entry_is_head(pos2, head2, member); \ 3399 pos1 = list_next_entry(pos1, member), \ 3400 pos2 = list_next_entry(pos2, member)) 3401 3402 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3403 struct perf_event_context *next_ctx) 3404 { 3405 struct perf_event_pmu_context *prev_epc, *next_epc; 3406 3407 if (!prev_ctx->nr_task_data) 3408 return; 3409 3410 double_list_for_each_entry(prev_epc, next_epc, 3411 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3412 pmu_ctx_entry) { 3413 3414 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3415 continue; 3416 3417 /* 3418 * PMU specific parts of task perf context can require 3419 * additional synchronization. As an example of such 3420 * synchronization see implementation details of Intel 3421 * LBR call stack data profiling; 3422 */ 3423 if (prev_epc->pmu->swap_task_ctx) 3424 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3425 else 3426 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3427 } 3428 } 3429 3430 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3431 { 3432 struct perf_event_pmu_context *pmu_ctx; 3433 struct perf_cpu_pmu_context *cpc; 3434 3435 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3436 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3437 3438 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3439 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3440 } 3441 } 3442 3443 static void 3444 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3445 { 3446 struct perf_event_context *ctx = task->perf_event_ctxp; 3447 struct perf_event_context *next_ctx; 3448 struct perf_event_context *parent, *next_parent; 3449 int do_switch = 1; 3450 3451 if (likely(!ctx)) 3452 return; 3453 3454 rcu_read_lock(); 3455 next_ctx = rcu_dereference(next->perf_event_ctxp); 3456 if (!next_ctx) 3457 goto unlock; 3458 3459 parent = rcu_dereference(ctx->parent_ctx); 3460 next_parent = rcu_dereference(next_ctx->parent_ctx); 3461 3462 /* If neither context have a parent context; they cannot be clones. */ 3463 if (!parent && !next_parent) 3464 goto unlock; 3465 3466 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3467 /* 3468 * Looks like the two contexts are clones, so we might be 3469 * able to optimize the context switch. We lock both 3470 * contexts and check that they are clones under the 3471 * lock (including re-checking that neither has been 3472 * uncloned in the meantime). It doesn't matter which 3473 * order we take the locks because no other cpu could 3474 * be trying to lock both of these tasks. 3475 */ 3476 raw_spin_lock(&ctx->lock); 3477 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3478 if (context_equiv(ctx, next_ctx)) { 3479 3480 perf_ctx_disable(ctx); 3481 3482 /* PMIs are disabled; ctx->nr_pending is stable. */ 3483 if (local_read(&ctx->nr_pending) || 3484 local_read(&next_ctx->nr_pending)) { 3485 /* 3486 * Must not swap out ctx when there's pending 3487 * events that rely on the ctx->task relation. 3488 */ 3489 raw_spin_unlock(&next_ctx->lock); 3490 rcu_read_unlock(); 3491 goto inside_switch; 3492 } 3493 3494 WRITE_ONCE(ctx->task, next); 3495 WRITE_ONCE(next_ctx->task, task); 3496 3497 perf_ctx_sched_task_cb(ctx, false); 3498 perf_event_swap_task_ctx_data(ctx, next_ctx); 3499 3500 perf_ctx_enable(ctx); 3501 3502 /* 3503 * RCU_INIT_POINTER here is safe because we've not 3504 * modified the ctx and the above modification of 3505 * ctx->task and ctx->task_ctx_data are immaterial 3506 * since those values are always verified under 3507 * ctx->lock which we're now holding. 3508 */ 3509 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3510 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3511 3512 do_switch = 0; 3513 3514 perf_event_sync_stat(ctx, next_ctx); 3515 } 3516 raw_spin_unlock(&next_ctx->lock); 3517 raw_spin_unlock(&ctx->lock); 3518 } 3519 unlock: 3520 rcu_read_unlock(); 3521 3522 if (do_switch) { 3523 raw_spin_lock(&ctx->lock); 3524 perf_ctx_disable(ctx); 3525 3526 inside_switch: 3527 perf_ctx_sched_task_cb(ctx, false); 3528 task_ctx_sched_out(ctx, EVENT_ALL); 3529 3530 perf_ctx_enable(ctx); 3531 raw_spin_unlock(&ctx->lock); 3532 } 3533 } 3534 3535 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3536 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3537 3538 void perf_sched_cb_dec(struct pmu *pmu) 3539 { 3540 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3541 3542 this_cpu_dec(perf_sched_cb_usages); 3543 barrier(); 3544 3545 if (!--cpc->sched_cb_usage) 3546 list_del(&cpc->sched_cb_entry); 3547 } 3548 3549 3550 void perf_sched_cb_inc(struct pmu *pmu) 3551 { 3552 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3553 3554 if (!cpc->sched_cb_usage++) 3555 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3556 3557 barrier(); 3558 this_cpu_inc(perf_sched_cb_usages); 3559 } 3560 3561 /* 3562 * This function provides the context switch callback to the lower code 3563 * layer. It is invoked ONLY when the context switch callback is enabled. 3564 * 3565 * This callback is relevant even to per-cpu events; for example multi event 3566 * PEBS requires this to provide PID/TID information. This requires we flush 3567 * all queued PEBS records before we context switch to a new task. 3568 */ 3569 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3570 { 3571 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3572 struct pmu *pmu; 3573 3574 pmu = cpc->epc.pmu; 3575 3576 /* software PMUs will not have sched_task */ 3577 if (WARN_ON_ONCE(!pmu->sched_task)) 3578 return; 3579 3580 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3581 perf_pmu_disable(pmu); 3582 3583 pmu->sched_task(cpc->task_epc, sched_in); 3584 3585 perf_pmu_enable(pmu); 3586 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3587 } 3588 3589 static void perf_pmu_sched_task(struct task_struct *prev, 3590 struct task_struct *next, 3591 bool sched_in) 3592 { 3593 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3594 struct perf_cpu_pmu_context *cpc; 3595 3596 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3597 if (prev == next || cpuctx->task_ctx) 3598 return; 3599 3600 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3601 __perf_pmu_sched_task(cpc, sched_in); 3602 } 3603 3604 static void perf_event_switch(struct task_struct *task, 3605 struct task_struct *next_prev, bool sched_in); 3606 3607 /* 3608 * Called from scheduler to remove the events of the current task, 3609 * with interrupts disabled. 3610 * 3611 * We stop each event and update the event value in event->count. 3612 * 3613 * This does not protect us against NMI, but disable() 3614 * sets the disabled bit in the control field of event _before_ 3615 * accessing the event control register. If a NMI hits, then it will 3616 * not restart the event. 3617 */ 3618 void __perf_event_task_sched_out(struct task_struct *task, 3619 struct task_struct *next) 3620 { 3621 if (__this_cpu_read(perf_sched_cb_usages)) 3622 perf_pmu_sched_task(task, next, false); 3623 3624 if (atomic_read(&nr_switch_events)) 3625 perf_event_switch(task, next, false); 3626 3627 perf_event_context_sched_out(task, next); 3628 3629 /* 3630 * if cgroup events exist on this CPU, then we need 3631 * to check if we have to switch out PMU state. 3632 * cgroup event are system-wide mode only 3633 */ 3634 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3635 perf_cgroup_switch(next); 3636 } 3637 3638 static bool perf_less_group_idx(const void *l, const void *r) 3639 { 3640 const struct perf_event *le = *(const struct perf_event **)l; 3641 const struct perf_event *re = *(const struct perf_event **)r; 3642 3643 return le->group_index < re->group_index; 3644 } 3645 3646 static void swap_ptr(void *l, void *r) 3647 { 3648 void **lp = l, **rp = r; 3649 3650 swap(*lp, *rp); 3651 } 3652 3653 static const struct min_heap_callbacks perf_min_heap = { 3654 .elem_size = sizeof(struct perf_event *), 3655 .less = perf_less_group_idx, 3656 .swp = swap_ptr, 3657 }; 3658 3659 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3660 { 3661 struct perf_event **itrs = heap->data; 3662 3663 if (event) { 3664 itrs[heap->nr] = event; 3665 heap->nr++; 3666 } 3667 } 3668 3669 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3670 { 3671 struct perf_cpu_pmu_context *cpc; 3672 3673 if (!pmu_ctx->ctx->task) 3674 return; 3675 3676 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3677 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3678 cpc->task_epc = pmu_ctx; 3679 } 3680 3681 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3682 struct perf_event_groups *groups, int cpu, 3683 struct pmu *pmu, 3684 int (*func)(struct perf_event *, void *), 3685 void *data) 3686 { 3687 #ifdef CONFIG_CGROUP_PERF 3688 struct cgroup_subsys_state *css = NULL; 3689 #endif 3690 struct perf_cpu_context *cpuctx = NULL; 3691 /* Space for per CPU and/or any CPU event iterators. */ 3692 struct perf_event *itrs[2]; 3693 struct min_heap event_heap; 3694 struct perf_event **evt; 3695 int ret; 3696 3697 if (pmu->filter && pmu->filter(pmu, cpu)) 3698 return 0; 3699 3700 if (!ctx->task) { 3701 cpuctx = this_cpu_ptr(&perf_cpu_context); 3702 event_heap = (struct min_heap){ 3703 .data = cpuctx->heap, 3704 .nr = 0, 3705 .size = cpuctx->heap_size, 3706 }; 3707 3708 lockdep_assert_held(&cpuctx->ctx.lock); 3709 3710 #ifdef CONFIG_CGROUP_PERF 3711 if (cpuctx->cgrp) 3712 css = &cpuctx->cgrp->css; 3713 #endif 3714 } else { 3715 event_heap = (struct min_heap){ 3716 .data = itrs, 3717 .nr = 0, 3718 .size = ARRAY_SIZE(itrs), 3719 }; 3720 /* Events not within a CPU context may be on any CPU. */ 3721 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3722 } 3723 evt = event_heap.data; 3724 3725 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3726 3727 #ifdef CONFIG_CGROUP_PERF 3728 for (; css; css = css->parent) 3729 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3730 #endif 3731 3732 if (event_heap.nr) { 3733 __link_epc((*evt)->pmu_ctx); 3734 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3735 } 3736 3737 min_heapify_all(&event_heap, &perf_min_heap); 3738 3739 while (event_heap.nr) { 3740 ret = func(*evt, data); 3741 if (ret) 3742 return ret; 3743 3744 *evt = perf_event_groups_next(*evt, pmu); 3745 if (*evt) 3746 min_heapify(&event_heap, 0, &perf_min_heap); 3747 else 3748 min_heap_pop(&event_heap, &perf_min_heap); 3749 } 3750 3751 return 0; 3752 } 3753 3754 /* 3755 * Because the userpage is strictly per-event (there is no concept of context, 3756 * so there cannot be a context indirection), every userpage must be updated 3757 * when context time starts :-( 3758 * 3759 * IOW, we must not miss EVENT_TIME edges. 3760 */ 3761 static inline bool event_update_userpage(struct perf_event *event) 3762 { 3763 if (likely(!atomic_read(&event->mmap_count))) 3764 return false; 3765 3766 perf_event_update_time(event); 3767 perf_event_update_userpage(event); 3768 3769 return true; 3770 } 3771 3772 static inline void group_update_userpage(struct perf_event *group_event) 3773 { 3774 struct perf_event *event; 3775 3776 if (!event_update_userpage(group_event)) 3777 return; 3778 3779 for_each_sibling_event(event, group_event) 3780 event_update_userpage(event); 3781 } 3782 3783 static int merge_sched_in(struct perf_event *event, void *data) 3784 { 3785 struct perf_event_context *ctx = event->ctx; 3786 int *can_add_hw = data; 3787 3788 if (event->state <= PERF_EVENT_STATE_OFF) 3789 return 0; 3790 3791 if (!event_filter_match(event)) 3792 return 0; 3793 3794 if (group_can_go_on(event, *can_add_hw)) { 3795 if (!group_sched_in(event, ctx)) 3796 list_add_tail(&event->active_list, get_event_list(event)); 3797 } 3798 3799 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3800 *can_add_hw = 0; 3801 if (event->attr.pinned) { 3802 perf_cgroup_event_disable(event, ctx); 3803 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3804 } else { 3805 struct perf_cpu_pmu_context *cpc; 3806 3807 event->pmu_ctx->rotate_necessary = 1; 3808 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3809 perf_mux_hrtimer_restart(cpc); 3810 group_update_userpage(event); 3811 } 3812 } 3813 3814 return 0; 3815 } 3816 3817 static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3818 { 3819 struct perf_event_pmu_context *pmu_ctx; 3820 int can_add_hw = 1; 3821 3822 if (pmu) { 3823 visit_groups_merge(ctx, &ctx->pinned_groups, 3824 smp_processor_id(), pmu, 3825 merge_sched_in, &can_add_hw); 3826 } else { 3827 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3828 can_add_hw = 1; 3829 visit_groups_merge(ctx, &ctx->pinned_groups, 3830 smp_processor_id(), pmu_ctx->pmu, 3831 merge_sched_in, &can_add_hw); 3832 } 3833 } 3834 } 3835 3836 static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3837 { 3838 struct perf_event_pmu_context *pmu_ctx; 3839 int can_add_hw = 1; 3840 3841 if (pmu) { 3842 visit_groups_merge(ctx, &ctx->flexible_groups, 3843 smp_processor_id(), pmu, 3844 merge_sched_in, &can_add_hw); 3845 } else { 3846 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3847 can_add_hw = 1; 3848 visit_groups_merge(ctx, &ctx->flexible_groups, 3849 smp_processor_id(), pmu_ctx->pmu, 3850 merge_sched_in, &can_add_hw); 3851 } 3852 } 3853 } 3854 3855 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3856 { 3857 ctx_flexible_sched_in(ctx, pmu); 3858 } 3859 3860 static void 3861 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3862 { 3863 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3864 int is_active = ctx->is_active; 3865 3866 lockdep_assert_held(&ctx->lock); 3867 3868 if (likely(!ctx->nr_events)) 3869 return; 3870 3871 if (is_active ^ EVENT_TIME) { 3872 /* start ctx time */ 3873 __update_context_time(ctx, false); 3874 perf_cgroup_set_timestamp(cpuctx); 3875 /* 3876 * CPU-release for the below ->is_active store, 3877 * see __load_acquire() in perf_event_time_now() 3878 */ 3879 barrier(); 3880 } 3881 3882 ctx->is_active |= (event_type | EVENT_TIME); 3883 if (ctx->task) { 3884 if (!is_active) 3885 cpuctx->task_ctx = ctx; 3886 else 3887 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3888 } 3889 3890 is_active ^= ctx->is_active; /* changed bits */ 3891 3892 /* 3893 * First go through the list and put on any pinned groups 3894 * in order to give them the best chance of going on. 3895 */ 3896 if (is_active & EVENT_PINNED) 3897 ctx_pinned_sched_in(ctx, NULL); 3898 3899 /* Then walk through the lower prio flexible groups */ 3900 if (is_active & EVENT_FLEXIBLE) 3901 ctx_flexible_sched_in(ctx, NULL); 3902 } 3903 3904 static void perf_event_context_sched_in(struct task_struct *task) 3905 { 3906 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3907 struct perf_event_context *ctx; 3908 3909 rcu_read_lock(); 3910 ctx = rcu_dereference(task->perf_event_ctxp); 3911 if (!ctx) 3912 goto rcu_unlock; 3913 3914 if (cpuctx->task_ctx == ctx) { 3915 perf_ctx_lock(cpuctx, ctx); 3916 perf_ctx_disable(ctx); 3917 3918 perf_ctx_sched_task_cb(ctx, true); 3919 3920 perf_ctx_enable(ctx); 3921 perf_ctx_unlock(cpuctx, ctx); 3922 goto rcu_unlock; 3923 } 3924 3925 perf_ctx_lock(cpuctx, ctx); 3926 /* 3927 * We must check ctx->nr_events while holding ctx->lock, such 3928 * that we serialize against perf_install_in_context(). 3929 */ 3930 if (!ctx->nr_events) 3931 goto unlock; 3932 3933 perf_ctx_disable(ctx); 3934 /* 3935 * We want to keep the following priority order: 3936 * cpu pinned (that don't need to move), task pinned, 3937 * cpu flexible, task flexible. 3938 * 3939 * However, if task's ctx is not carrying any pinned 3940 * events, no need to flip the cpuctx's events around. 3941 */ 3942 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3943 perf_ctx_disable(&cpuctx->ctx); 3944 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3945 } 3946 3947 perf_event_sched_in(cpuctx, ctx); 3948 3949 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3950 3951 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3952 perf_ctx_enable(&cpuctx->ctx); 3953 3954 perf_ctx_enable(ctx); 3955 3956 unlock: 3957 perf_ctx_unlock(cpuctx, ctx); 3958 rcu_unlock: 3959 rcu_read_unlock(); 3960 } 3961 3962 /* 3963 * Called from scheduler to add the events of the current task 3964 * with interrupts disabled. 3965 * 3966 * We restore the event value and then enable it. 3967 * 3968 * This does not protect us against NMI, but enable() 3969 * sets the enabled bit in the control field of event _before_ 3970 * accessing the event control register. If a NMI hits, then it will 3971 * keep the event running. 3972 */ 3973 void __perf_event_task_sched_in(struct task_struct *prev, 3974 struct task_struct *task) 3975 { 3976 perf_event_context_sched_in(task); 3977 3978 if (atomic_read(&nr_switch_events)) 3979 perf_event_switch(task, prev, true); 3980 3981 if (__this_cpu_read(perf_sched_cb_usages)) 3982 perf_pmu_sched_task(prev, task, true); 3983 } 3984 3985 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3986 { 3987 u64 frequency = event->attr.sample_freq; 3988 u64 sec = NSEC_PER_SEC; 3989 u64 divisor, dividend; 3990 3991 int count_fls, nsec_fls, frequency_fls, sec_fls; 3992 3993 count_fls = fls64(count); 3994 nsec_fls = fls64(nsec); 3995 frequency_fls = fls64(frequency); 3996 sec_fls = 30; 3997 3998 /* 3999 * We got @count in @nsec, with a target of sample_freq HZ 4000 * the target period becomes: 4001 * 4002 * @count * 10^9 4003 * period = ------------------- 4004 * @nsec * sample_freq 4005 * 4006 */ 4007 4008 /* 4009 * Reduce accuracy by one bit such that @a and @b converge 4010 * to a similar magnitude. 4011 */ 4012 #define REDUCE_FLS(a, b) \ 4013 do { \ 4014 if (a##_fls > b##_fls) { \ 4015 a >>= 1; \ 4016 a##_fls--; \ 4017 } else { \ 4018 b >>= 1; \ 4019 b##_fls--; \ 4020 } \ 4021 } while (0) 4022 4023 /* 4024 * Reduce accuracy until either term fits in a u64, then proceed with 4025 * the other, so that finally we can do a u64/u64 division. 4026 */ 4027 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4028 REDUCE_FLS(nsec, frequency); 4029 REDUCE_FLS(sec, count); 4030 } 4031 4032 if (count_fls + sec_fls > 64) { 4033 divisor = nsec * frequency; 4034 4035 while (count_fls + sec_fls > 64) { 4036 REDUCE_FLS(count, sec); 4037 divisor >>= 1; 4038 } 4039 4040 dividend = count * sec; 4041 } else { 4042 dividend = count * sec; 4043 4044 while (nsec_fls + frequency_fls > 64) { 4045 REDUCE_FLS(nsec, frequency); 4046 dividend >>= 1; 4047 } 4048 4049 divisor = nsec * frequency; 4050 } 4051 4052 if (!divisor) 4053 return dividend; 4054 4055 return div64_u64(dividend, divisor); 4056 } 4057 4058 static DEFINE_PER_CPU(int, perf_throttled_count); 4059 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4060 4061 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4062 { 4063 struct hw_perf_event *hwc = &event->hw; 4064 s64 period, sample_period; 4065 s64 delta; 4066 4067 period = perf_calculate_period(event, nsec, count); 4068 4069 delta = (s64)(period - hwc->sample_period); 4070 delta = (delta + 7) / 8; /* low pass filter */ 4071 4072 sample_period = hwc->sample_period + delta; 4073 4074 if (!sample_period) 4075 sample_period = 1; 4076 4077 hwc->sample_period = sample_period; 4078 4079 if (local64_read(&hwc->period_left) > 8*sample_period) { 4080 if (disable) 4081 event->pmu->stop(event, PERF_EF_UPDATE); 4082 4083 local64_set(&hwc->period_left, 0); 4084 4085 if (disable) 4086 event->pmu->start(event, PERF_EF_RELOAD); 4087 } 4088 } 4089 4090 /* 4091 * combine freq adjustment with unthrottling to avoid two passes over the 4092 * events. At the same time, make sure, having freq events does not change 4093 * the rate of unthrottling as that would introduce bias. 4094 */ 4095 static void 4096 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4097 { 4098 struct perf_event *event; 4099 struct hw_perf_event *hwc; 4100 u64 now, period = TICK_NSEC; 4101 s64 delta; 4102 4103 /* 4104 * only need to iterate over all events iff: 4105 * - context have events in frequency mode (needs freq adjust) 4106 * - there are events to unthrottle on this cpu 4107 */ 4108 if (!(ctx->nr_freq || unthrottle)) 4109 return; 4110 4111 raw_spin_lock(&ctx->lock); 4112 4113 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4114 if (event->state != PERF_EVENT_STATE_ACTIVE) 4115 continue; 4116 4117 // XXX use visit thingy to avoid the -1,cpu match 4118 if (!event_filter_match(event)) 4119 continue; 4120 4121 perf_pmu_disable(event->pmu); 4122 4123 hwc = &event->hw; 4124 4125 if (hwc->interrupts == MAX_INTERRUPTS) { 4126 hwc->interrupts = 0; 4127 perf_log_throttle(event, 1); 4128 event->pmu->start(event, 0); 4129 } 4130 4131 if (!event->attr.freq || !event->attr.sample_freq) 4132 goto next; 4133 4134 /* 4135 * stop the event and update event->count 4136 */ 4137 event->pmu->stop(event, PERF_EF_UPDATE); 4138 4139 now = local64_read(&event->count); 4140 delta = now - hwc->freq_count_stamp; 4141 hwc->freq_count_stamp = now; 4142 4143 /* 4144 * restart the event 4145 * reload only if value has changed 4146 * we have stopped the event so tell that 4147 * to perf_adjust_period() to avoid stopping it 4148 * twice. 4149 */ 4150 if (delta > 0) 4151 perf_adjust_period(event, period, delta, false); 4152 4153 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4154 next: 4155 perf_pmu_enable(event->pmu); 4156 } 4157 4158 raw_spin_unlock(&ctx->lock); 4159 } 4160 4161 /* 4162 * Move @event to the tail of the @ctx's elegible events. 4163 */ 4164 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4165 { 4166 /* 4167 * Rotate the first entry last of non-pinned groups. Rotation might be 4168 * disabled by the inheritance code. 4169 */ 4170 if (ctx->rotate_disable) 4171 return; 4172 4173 perf_event_groups_delete(&ctx->flexible_groups, event); 4174 perf_event_groups_insert(&ctx->flexible_groups, event); 4175 } 4176 4177 /* pick an event from the flexible_groups to rotate */ 4178 static inline struct perf_event * 4179 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4180 { 4181 struct perf_event *event; 4182 struct rb_node *node; 4183 struct rb_root *tree; 4184 struct __group_key key = { 4185 .pmu = pmu_ctx->pmu, 4186 }; 4187 4188 /* pick the first active flexible event */ 4189 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4190 struct perf_event, active_list); 4191 if (event) 4192 goto out; 4193 4194 /* if no active flexible event, pick the first event */ 4195 tree = &pmu_ctx->ctx->flexible_groups.tree; 4196 4197 if (!pmu_ctx->ctx->task) { 4198 key.cpu = smp_processor_id(); 4199 4200 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4201 if (node) 4202 event = __node_2_pe(node); 4203 goto out; 4204 } 4205 4206 key.cpu = -1; 4207 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4208 if (node) { 4209 event = __node_2_pe(node); 4210 goto out; 4211 } 4212 4213 key.cpu = smp_processor_id(); 4214 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4215 if (node) 4216 event = __node_2_pe(node); 4217 4218 out: 4219 /* 4220 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4221 * finds there are unschedulable events, it will set it again. 4222 */ 4223 pmu_ctx->rotate_necessary = 0; 4224 4225 return event; 4226 } 4227 4228 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4229 { 4230 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4231 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4232 struct perf_event *cpu_event = NULL, *task_event = NULL; 4233 int cpu_rotate, task_rotate; 4234 struct pmu *pmu; 4235 4236 /* 4237 * Since we run this from IRQ context, nobody can install new 4238 * events, thus the event count values are stable. 4239 */ 4240 4241 cpu_epc = &cpc->epc; 4242 pmu = cpu_epc->pmu; 4243 task_epc = cpc->task_epc; 4244 4245 cpu_rotate = cpu_epc->rotate_necessary; 4246 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4247 4248 if (!(cpu_rotate || task_rotate)) 4249 return false; 4250 4251 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4252 perf_pmu_disable(pmu); 4253 4254 if (task_rotate) 4255 task_event = ctx_event_to_rotate(task_epc); 4256 if (cpu_rotate) 4257 cpu_event = ctx_event_to_rotate(cpu_epc); 4258 4259 /* 4260 * As per the order given at ctx_resched() first 'pop' task flexible 4261 * and then, if needed CPU flexible. 4262 */ 4263 if (task_event || (task_epc && cpu_event)) { 4264 update_context_time(task_epc->ctx); 4265 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4266 } 4267 4268 if (cpu_event) { 4269 update_context_time(&cpuctx->ctx); 4270 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4271 rotate_ctx(&cpuctx->ctx, cpu_event); 4272 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4273 } 4274 4275 if (task_event) 4276 rotate_ctx(task_epc->ctx, task_event); 4277 4278 if (task_event || (task_epc && cpu_event)) 4279 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4280 4281 perf_pmu_enable(pmu); 4282 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4283 4284 return true; 4285 } 4286 4287 void perf_event_task_tick(void) 4288 { 4289 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4290 struct perf_event_context *ctx; 4291 int throttled; 4292 4293 lockdep_assert_irqs_disabled(); 4294 4295 __this_cpu_inc(perf_throttled_seq); 4296 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4297 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4298 4299 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4300 4301 rcu_read_lock(); 4302 ctx = rcu_dereference(current->perf_event_ctxp); 4303 if (ctx) 4304 perf_adjust_freq_unthr_context(ctx, !!throttled); 4305 rcu_read_unlock(); 4306 } 4307 4308 static int event_enable_on_exec(struct perf_event *event, 4309 struct perf_event_context *ctx) 4310 { 4311 if (!event->attr.enable_on_exec) 4312 return 0; 4313 4314 event->attr.enable_on_exec = 0; 4315 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4316 return 0; 4317 4318 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4319 4320 return 1; 4321 } 4322 4323 /* 4324 * Enable all of a task's events that have been marked enable-on-exec. 4325 * This expects task == current. 4326 */ 4327 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4328 { 4329 struct perf_event_context *clone_ctx = NULL; 4330 enum event_type_t event_type = 0; 4331 struct perf_cpu_context *cpuctx; 4332 struct perf_event *event; 4333 unsigned long flags; 4334 int enabled = 0; 4335 4336 local_irq_save(flags); 4337 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4338 goto out; 4339 4340 if (!ctx->nr_events) 4341 goto out; 4342 4343 cpuctx = this_cpu_ptr(&perf_cpu_context); 4344 perf_ctx_lock(cpuctx, ctx); 4345 ctx_sched_out(ctx, EVENT_TIME); 4346 4347 list_for_each_entry(event, &ctx->event_list, event_entry) { 4348 enabled |= event_enable_on_exec(event, ctx); 4349 event_type |= get_event_type(event); 4350 } 4351 4352 /* 4353 * Unclone and reschedule this context if we enabled any event. 4354 */ 4355 if (enabled) { 4356 clone_ctx = unclone_ctx(ctx); 4357 ctx_resched(cpuctx, ctx, event_type); 4358 } else { 4359 ctx_sched_in(ctx, EVENT_TIME); 4360 } 4361 perf_ctx_unlock(cpuctx, ctx); 4362 4363 out: 4364 local_irq_restore(flags); 4365 4366 if (clone_ctx) 4367 put_ctx(clone_ctx); 4368 } 4369 4370 static void perf_remove_from_owner(struct perf_event *event); 4371 static void perf_event_exit_event(struct perf_event *event, 4372 struct perf_event_context *ctx); 4373 4374 /* 4375 * Removes all events from the current task that have been marked 4376 * remove-on-exec, and feeds their values back to parent events. 4377 */ 4378 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4379 { 4380 struct perf_event_context *clone_ctx = NULL; 4381 struct perf_event *event, *next; 4382 unsigned long flags; 4383 bool modified = false; 4384 4385 mutex_lock(&ctx->mutex); 4386 4387 if (WARN_ON_ONCE(ctx->task != current)) 4388 goto unlock; 4389 4390 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4391 if (!event->attr.remove_on_exec) 4392 continue; 4393 4394 if (!is_kernel_event(event)) 4395 perf_remove_from_owner(event); 4396 4397 modified = true; 4398 4399 perf_event_exit_event(event, ctx); 4400 } 4401 4402 raw_spin_lock_irqsave(&ctx->lock, flags); 4403 if (modified) 4404 clone_ctx = unclone_ctx(ctx); 4405 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4406 4407 unlock: 4408 mutex_unlock(&ctx->mutex); 4409 4410 if (clone_ctx) 4411 put_ctx(clone_ctx); 4412 } 4413 4414 struct perf_read_data { 4415 struct perf_event *event; 4416 bool group; 4417 int ret; 4418 }; 4419 4420 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4421 { 4422 u16 local_pkg, event_pkg; 4423 4424 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4425 int local_cpu = smp_processor_id(); 4426 4427 event_pkg = topology_physical_package_id(event_cpu); 4428 local_pkg = topology_physical_package_id(local_cpu); 4429 4430 if (event_pkg == local_pkg) 4431 return local_cpu; 4432 } 4433 4434 return event_cpu; 4435 } 4436 4437 /* 4438 * Cross CPU call to read the hardware event 4439 */ 4440 static void __perf_event_read(void *info) 4441 { 4442 struct perf_read_data *data = info; 4443 struct perf_event *sub, *event = data->event; 4444 struct perf_event_context *ctx = event->ctx; 4445 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4446 struct pmu *pmu = event->pmu; 4447 4448 /* 4449 * If this is a task context, we need to check whether it is 4450 * the current task context of this cpu. If not it has been 4451 * scheduled out before the smp call arrived. In that case 4452 * event->count would have been updated to a recent sample 4453 * when the event was scheduled out. 4454 */ 4455 if (ctx->task && cpuctx->task_ctx != ctx) 4456 return; 4457 4458 raw_spin_lock(&ctx->lock); 4459 if (ctx->is_active & EVENT_TIME) { 4460 update_context_time(ctx); 4461 update_cgrp_time_from_event(event); 4462 } 4463 4464 perf_event_update_time(event); 4465 if (data->group) 4466 perf_event_update_sibling_time(event); 4467 4468 if (event->state != PERF_EVENT_STATE_ACTIVE) 4469 goto unlock; 4470 4471 if (!data->group) { 4472 pmu->read(event); 4473 data->ret = 0; 4474 goto unlock; 4475 } 4476 4477 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4478 4479 pmu->read(event); 4480 4481 for_each_sibling_event(sub, event) { 4482 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4483 /* 4484 * Use sibling's PMU rather than @event's since 4485 * sibling could be on different (eg: software) PMU. 4486 */ 4487 sub->pmu->read(sub); 4488 } 4489 } 4490 4491 data->ret = pmu->commit_txn(pmu); 4492 4493 unlock: 4494 raw_spin_unlock(&ctx->lock); 4495 } 4496 4497 static inline u64 perf_event_count(struct perf_event *event) 4498 { 4499 return local64_read(&event->count) + atomic64_read(&event->child_count); 4500 } 4501 4502 static void calc_timer_values(struct perf_event *event, 4503 u64 *now, 4504 u64 *enabled, 4505 u64 *running) 4506 { 4507 u64 ctx_time; 4508 4509 *now = perf_clock(); 4510 ctx_time = perf_event_time_now(event, *now); 4511 __perf_update_times(event, ctx_time, enabled, running); 4512 } 4513 4514 /* 4515 * NMI-safe method to read a local event, that is an event that 4516 * is: 4517 * - either for the current task, or for this CPU 4518 * - does not have inherit set, for inherited task events 4519 * will not be local and we cannot read them atomically 4520 * - must not have a pmu::count method 4521 */ 4522 int perf_event_read_local(struct perf_event *event, u64 *value, 4523 u64 *enabled, u64 *running) 4524 { 4525 unsigned long flags; 4526 int ret = 0; 4527 4528 /* 4529 * Disabling interrupts avoids all counter scheduling (context 4530 * switches, timer based rotation and IPIs). 4531 */ 4532 local_irq_save(flags); 4533 4534 /* 4535 * It must not be an event with inherit set, we cannot read 4536 * all child counters from atomic context. 4537 */ 4538 if (event->attr.inherit) { 4539 ret = -EOPNOTSUPP; 4540 goto out; 4541 } 4542 4543 /* If this is a per-task event, it must be for current */ 4544 if ((event->attach_state & PERF_ATTACH_TASK) && 4545 event->hw.target != current) { 4546 ret = -EINVAL; 4547 goto out; 4548 } 4549 4550 /* If this is a per-CPU event, it must be for this CPU */ 4551 if (!(event->attach_state & PERF_ATTACH_TASK) && 4552 event->cpu != smp_processor_id()) { 4553 ret = -EINVAL; 4554 goto out; 4555 } 4556 4557 /* If this is a pinned event it must be running on this CPU */ 4558 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4559 ret = -EBUSY; 4560 goto out; 4561 } 4562 4563 /* 4564 * If the event is currently on this CPU, its either a per-task event, 4565 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4566 * oncpu == -1). 4567 */ 4568 if (event->oncpu == smp_processor_id()) 4569 event->pmu->read(event); 4570 4571 *value = local64_read(&event->count); 4572 if (enabled || running) { 4573 u64 __enabled, __running, __now; 4574 4575 calc_timer_values(event, &__now, &__enabled, &__running); 4576 if (enabled) 4577 *enabled = __enabled; 4578 if (running) 4579 *running = __running; 4580 } 4581 out: 4582 local_irq_restore(flags); 4583 4584 return ret; 4585 } 4586 4587 static int perf_event_read(struct perf_event *event, bool group) 4588 { 4589 enum perf_event_state state = READ_ONCE(event->state); 4590 int event_cpu, ret = 0; 4591 4592 /* 4593 * If event is enabled and currently active on a CPU, update the 4594 * value in the event structure: 4595 */ 4596 again: 4597 if (state == PERF_EVENT_STATE_ACTIVE) { 4598 struct perf_read_data data; 4599 4600 /* 4601 * Orders the ->state and ->oncpu loads such that if we see 4602 * ACTIVE we must also see the right ->oncpu. 4603 * 4604 * Matches the smp_wmb() from event_sched_in(). 4605 */ 4606 smp_rmb(); 4607 4608 event_cpu = READ_ONCE(event->oncpu); 4609 if ((unsigned)event_cpu >= nr_cpu_ids) 4610 return 0; 4611 4612 data = (struct perf_read_data){ 4613 .event = event, 4614 .group = group, 4615 .ret = 0, 4616 }; 4617 4618 preempt_disable(); 4619 event_cpu = __perf_event_read_cpu(event, event_cpu); 4620 4621 /* 4622 * Purposely ignore the smp_call_function_single() return 4623 * value. 4624 * 4625 * If event_cpu isn't a valid CPU it means the event got 4626 * scheduled out and that will have updated the event count. 4627 * 4628 * Therefore, either way, we'll have an up-to-date event count 4629 * after this. 4630 */ 4631 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4632 preempt_enable(); 4633 ret = data.ret; 4634 4635 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4636 struct perf_event_context *ctx = event->ctx; 4637 unsigned long flags; 4638 4639 raw_spin_lock_irqsave(&ctx->lock, flags); 4640 state = event->state; 4641 if (state != PERF_EVENT_STATE_INACTIVE) { 4642 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4643 goto again; 4644 } 4645 4646 /* 4647 * May read while context is not active (e.g., thread is 4648 * blocked), in that case we cannot update context time 4649 */ 4650 if (ctx->is_active & EVENT_TIME) { 4651 update_context_time(ctx); 4652 update_cgrp_time_from_event(event); 4653 } 4654 4655 perf_event_update_time(event); 4656 if (group) 4657 perf_event_update_sibling_time(event); 4658 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4659 } 4660 4661 return ret; 4662 } 4663 4664 /* 4665 * Initialize the perf_event context in a task_struct: 4666 */ 4667 static void __perf_event_init_context(struct perf_event_context *ctx) 4668 { 4669 raw_spin_lock_init(&ctx->lock); 4670 mutex_init(&ctx->mutex); 4671 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4672 perf_event_groups_init(&ctx->pinned_groups); 4673 perf_event_groups_init(&ctx->flexible_groups); 4674 INIT_LIST_HEAD(&ctx->event_list); 4675 refcount_set(&ctx->refcount, 1); 4676 } 4677 4678 static void 4679 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4680 { 4681 epc->pmu = pmu; 4682 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4683 INIT_LIST_HEAD(&epc->pinned_active); 4684 INIT_LIST_HEAD(&epc->flexible_active); 4685 atomic_set(&epc->refcount, 1); 4686 } 4687 4688 static struct perf_event_context * 4689 alloc_perf_context(struct task_struct *task) 4690 { 4691 struct perf_event_context *ctx; 4692 4693 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4694 if (!ctx) 4695 return NULL; 4696 4697 __perf_event_init_context(ctx); 4698 if (task) 4699 ctx->task = get_task_struct(task); 4700 4701 return ctx; 4702 } 4703 4704 static struct task_struct * 4705 find_lively_task_by_vpid(pid_t vpid) 4706 { 4707 struct task_struct *task; 4708 4709 rcu_read_lock(); 4710 if (!vpid) 4711 task = current; 4712 else 4713 task = find_task_by_vpid(vpid); 4714 if (task) 4715 get_task_struct(task); 4716 rcu_read_unlock(); 4717 4718 if (!task) 4719 return ERR_PTR(-ESRCH); 4720 4721 return task; 4722 } 4723 4724 /* 4725 * Returns a matching context with refcount and pincount. 4726 */ 4727 static struct perf_event_context * 4728 find_get_context(struct task_struct *task, struct perf_event *event) 4729 { 4730 struct perf_event_context *ctx, *clone_ctx = NULL; 4731 struct perf_cpu_context *cpuctx; 4732 unsigned long flags; 4733 int err; 4734 4735 if (!task) { 4736 /* Must be root to operate on a CPU event: */ 4737 err = perf_allow_cpu(&event->attr); 4738 if (err) 4739 return ERR_PTR(err); 4740 4741 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4742 ctx = &cpuctx->ctx; 4743 get_ctx(ctx); 4744 raw_spin_lock_irqsave(&ctx->lock, flags); 4745 ++ctx->pin_count; 4746 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4747 4748 return ctx; 4749 } 4750 4751 err = -EINVAL; 4752 retry: 4753 ctx = perf_lock_task_context(task, &flags); 4754 if (ctx) { 4755 clone_ctx = unclone_ctx(ctx); 4756 ++ctx->pin_count; 4757 4758 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4759 4760 if (clone_ctx) 4761 put_ctx(clone_ctx); 4762 } else { 4763 ctx = alloc_perf_context(task); 4764 err = -ENOMEM; 4765 if (!ctx) 4766 goto errout; 4767 4768 err = 0; 4769 mutex_lock(&task->perf_event_mutex); 4770 /* 4771 * If it has already passed perf_event_exit_task(). 4772 * we must see PF_EXITING, it takes this mutex too. 4773 */ 4774 if (task->flags & PF_EXITING) 4775 err = -ESRCH; 4776 else if (task->perf_event_ctxp) 4777 err = -EAGAIN; 4778 else { 4779 get_ctx(ctx); 4780 ++ctx->pin_count; 4781 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4782 } 4783 mutex_unlock(&task->perf_event_mutex); 4784 4785 if (unlikely(err)) { 4786 put_ctx(ctx); 4787 4788 if (err == -EAGAIN) 4789 goto retry; 4790 goto errout; 4791 } 4792 } 4793 4794 return ctx; 4795 4796 errout: 4797 return ERR_PTR(err); 4798 } 4799 4800 static struct perf_event_pmu_context * 4801 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4802 struct perf_event *event) 4803 { 4804 struct perf_event_pmu_context *new = NULL, *epc; 4805 void *task_ctx_data = NULL; 4806 4807 if (!ctx->task) { 4808 struct perf_cpu_pmu_context *cpc; 4809 4810 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4811 epc = &cpc->epc; 4812 4813 if (!epc->ctx) { 4814 atomic_set(&epc->refcount, 1); 4815 epc->embedded = 1; 4816 raw_spin_lock_irq(&ctx->lock); 4817 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4818 epc->ctx = ctx; 4819 raw_spin_unlock_irq(&ctx->lock); 4820 } else { 4821 WARN_ON_ONCE(epc->ctx != ctx); 4822 atomic_inc(&epc->refcount); 4823 } 4824 4825 return epc; 4826 } 4827 4828 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4829 if (!new) 4830 return ERR_PTR(-ENOMEM); 4831 4832 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4833 task_ctx_data = alloc_task_ctx_data(pmu); 4834 if (!task_ctx_data) { 4835 kfree(new); 4836 return ERR_PTR(-ENOMEM); 4837 } 4838 } 4839 4840 __perf_init_event_pmu_context(new, pmu); 4841 4842 /* 4843 * XXX 4844 * 4845 * lockdep_assert_held(&ctx->mutex); 4846 * 4847 * can't because perf_event_init_task() doesn't actually hold the 4848 * child_ctx->mutex. 4849 */ 4850 4851 raw_spin_lock_irq(&ctx->lock); 4852 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4853 if (epc->pmu == pmu) { 4854 WARN_ON_ONCE(epc->ctx != ctx); 4855 atomic_inc(&epc->refcount); 4856 goto found_epc; 4857 } 4858 } 4859 4860 epc = new; 4861 new = NULL; 4862 4863 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4864 epc->ctx = ctx; 4865 4866 found_epc: 4867 if (task_ctx_data && !epc->task_ctx_data) { 4868 epc->task_ctx_data = task_ctx_data; 4869 task_ctx_data = NULL; 4870 ctx->nr_task_data++; 4871 } 4872 raw_spin_unlock_irq(&ctx->lock); 4873 4874 free_task_ctx_data(pmu, task_ctx_data); 4875 kfree(new); 4876 4877 return epc; 4878 } 4879 4880 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4881 { 4882 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4883 } 4884 4885 static void free_epc_rcu(struct rcu_head *head) 4886 { 4887 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4888 4889 kfree(epc->task_ctx_data); 4890 kfree(epc); 4891 } 4892 4893 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4894 { 4895 unsigned long flags; 4896 4897 if (!atomic_dec_and_test(&epc->refcount)) 4898 return; 4899 4900 if (epc->ctx) { 4901 struct perf_event_context *ctx = epc->ctx; 4902 4903 /* 4904 * XXX 4905 * 4906 * lockdep_assert_held(&ctx->mutex); 4907 * 4908 * can't because of the call-site in _free_event()/put_event() 4909 * which isn't always called under ctx->mutex. 4910 */ 4911 4912 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4913 raw_spin_lock_irqsave(&ctx->lock, flags); 4914 list_del_init(&epc->pmu_ctx_entry); 4915 epc->ctx = NULL; 4916 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4917 } 4918 4919 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4920 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4921 4922 if (epc->embedded) 4923 return; 4924 4925 call_rcu(&epc->rcu_head, free_epc_rcu); 4926 } 4927 4928 static void perf_event_free_filter(struct perf_event *event); 4929 4930 static void free_event_rcu(struct rcu_head *head) 4931 { 4932 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4933 4934 if (event->ns) 4935 put_pid_ns(event->ns); 4936 perf_event_free_filter(event); 4937 kmem_cache_free(perf_event_cache, event); 4938 } 4939 4940 static void ring_buffer_attach(struct perf_event *event, 4941 struct perf_buffer *rb); 4942 4943 static void detach_sb_event(struct perf_event *event) 4944 { 4945 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4946 4947 raw_spin_lock(&pel->lock); 4948 list_del_rcu(&event->sb_list); 4949 raw_spin_unlock(&pel->lock); 4950 } 4951 4952 static bool is_sb_event(struct perf_event *event) 4953 { 4954 struct perf_event_attr *attr = &event->attr; 4955 4956 if (event->parent) 4957 return false; 4958 4959 if (event->attach_state & PERF_ATTACH_TASK) 4960 return false; 4961 4962 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4963 attr->comm || attr->comm_exec || 4964 attr->task || attr->ksymbol || 4965 attr->context_switch || attr->text_poke || 4966 attr->bpf_event) 4967 return true; 4968 return false; 4969 } 4970 4971 static void unaccount_pmu_sb_event(struct perf_event *event) 4972 { 4973 if (is_sb_event(event)) 4974 detach_sb_event(event); 4975 } 4976 4977 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4978 { 4979 if (event->parent) 4980 return; 4981 4982 if (is_cgroup_event(event)) 4983 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4984 } 4985 4986 #ifdef CONFIG_NO_HZ_FULL 4987 static DEFINE_SPINLOCK(nr_freq_lock); 4988 #endif 4989 4990 static void unaccount_freq_event_nohz(void) 4991 { 4992 #ifdef CONFIG_NO_HZ_FULL 4993 spin_lock(&nr_freq_lock); 4994 if (atomic_dec_and_test(&nr_freq_events)) 4995 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4996 spin_unlock(&nr_freq_lock); 4997 #endif 4998 } 4999 5000 static void unaccount_freq_event(void) 5001 { 5002 if (tick_nohz_full_enabled()) 5003 unaccount_freq_event_nohz(); 5004 else 5005 atomic_dec(&nr_freq_events); 5006 } 5007 5008 static void unaccount_event(struct perf_event *event) 5009 { 5010 bool dec = false; 5011 5012 if (event->parent) 5013 return; 5014 5015 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5016 dec = true; 5017 if (event->attr.mmap || event->attr.mmap_data) 5018 atomic_dec(&nr_mmap_events); 5019 if (event->attr.build_id) 5020 atomic_dec(&nr_build_id_events); 5021 if (event->attr.comm) 5022 atomic_dec(&nr_comm_events); 5023 if (event->attr.namespaces) 5024 atomic_dec(&nr_namespaces_events); 5025 if (event->attr.cgroup) 5026 atomic_dec(&nr_cgroup_events); 5027 if (event->attr.task) 5028 atomic_dec(&nr_task_events); 5029 if (event->attr.freq) 5030 unaccount_freq_event(); 5031 if (event->attr.context_switch) { 5032 dec = true; 5033 atomic_dec(&nr_switch_events); 5034 } 5035 if (is_cgroup_event(event)) 5036 dec = true; 5037 if (has_branch_stack(event)) 5038 dec = true; 5039 if (event->attr.ksymbol) 5040 atomic_dec(&nr_ksymbol_events); 5041 if (event->attr.bpf_event) 5042 atomic_dec(&nr_bpf_events); 5043 if (event->attr.text_poke) 5044 atomic_dec(&nr_text_poke_events); 5045 5046 if (dec) { 5047 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5048 schedule_delayed_work(&perf_sched_work, HZ); 5049 } 5050 5051 unaccount_event_cpu(event, event->cpu); 5052 5053 unaccount_pmu_sb_event(event); 5054 } 5055 5056 static void perf_sched_delayed(struct work_struct *work) 5057 { 5058 mutex_lock(&perf_sched_mutex); 5059 if (atomic_dec_and_test(&perf_sched_count)) 5060 static_branch_disable(&perf_sched_events); 5061 mutex_unlock(&perf_sched_mutex); 5062 } 5063 5064 /* 5065 * The following implement mutual exclusion of events on "exclusive" pmus 5066 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5067 * at a time, so we disallow creating events that might conflict, namely: 5068 * 5069 * 1) cpu-wide events in the presence of per-task events, 5070 * 2) per-task events in the presence of cpu-wide events, 5071 * 3) two matching events on the same perf_event_context. 5072 * 5073 * The former two cases are handled in the allocation path (perf_event_alloc(), 5074 * _free_event()), the latter -- before the first perf_install_in_context(). 5075 */ 5076 static int exclusive_event_init(struct perf_event *event) 5077 { 5078 struct pmu *pmu = event->pmu; 5079 5080 if (!is_exclusive_pmu(pmu)) 5081 return 0; 5082 5083 /* 5084 * Prevent co-existence of per-task and cpu-wide events on the 5085 * same exclusive pmu. 5086 * 5087 * Negative pmu::exclusive_cnt means there are cpu-wide 5088 * events on this "exclusive" pmu, positive means there are 5089 * per-task events. 5090 * 5091 * Since this is called in perf_event_alloc() path, event::ctx 5092 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5093 * to mean "per-task event", because unlike other attach states it 5094 * never gets cleared. 5095 */ 5096 if (event->attach_state & PERF_ATTACH_TASK) { 5097 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5098 return -EBUSY; 5099 } else { 5100 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5101 return -EBUSY; 5102 } 5103 5104 return 0; 5105 } 5106 5107 static void exclusive_event_destroy(struct perf_event *event) 5108 { 5109 struct pmu *pmu = event->pmu; 5110 5111 if (!is_exclusive_pmu(pmu)) 5112 return; 5113 5114 /* see comment in exclusive_event_init() */ 5115 if (event->attach_state & PERF_ATTACH_TASK) 5116 atomic_dec(&pmu->exclusive_cnt); 5117 else 5118 atomic_inc(&pmu->exclusive_cnt); 5119 } 5120 5121 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5122 { 5123 if ((e1->pmu == e2->pmu) && 5124 (e1->cpu == e2->cpu || 5125 e1->cpu == -1 || 5126 e2->cpu == -1)) 5127 return true; 5128 return false; 5129 } 5130 5131 static bool exclusive_event_installable(struct perf_event *event, 5132 struct perf_event_context *ctx) 5133 { 5134 struct perf_event *iter_event; 5135 struct pmu *pmu = event->pmu; 5136 5137 lockdep_assert_held(&ctx->mutex); 5138 5139 if (!is_exclusive_pmu(pmu)) 5140 return true; 5141 5142 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5143 if (exclusive_event_match(iter_event, event)) 5144 return false; 5145 } 5146 5147 return true; 5148 } 5149 5150 static void perf_addr_filters_splice(struct perf_event *event, 5151 struct list_head *head); 5152 5153 static void _free_event(struct perf_event *event) 5154 { 5155 irq_work_sync(&event->pending_irq); 5156 5157 unaccount_event(event); 5158 5159 security_perf_event_free(event); 5160 5161 if (event->rb) { 5162 /* 5163 * Can happen when we close an event with re-directed output. 5164 * 5165 * Since we have a 0 refcount, perf_mmap_close() will skip 5166 * over us; possibly making our ring_buffer_put() the last. 5167 */ 5168 mutex_lock(&event->mmap_mutex); 5169 ring_buffer_attach(event, NULL); 5170 mutex_unlock(&event->mmap_mutex); 5171 } 5172 5173 if (is_cgroup_event(event)) 5174 perf_detach_cgroup(event); 5175 5176 if (!event->parent) { 5177 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5178 put_callchain_buffers(); 5179 } 5180 5181 perf_event_free_bpf_prog(event); 5182 perf_addr_filters_splice(event, NULL); 5183 kfree(event->addr_filter_ranges); 5184 5185 if (event->destroy) 5186 event->destroy(event); 5187 5188 /* 5189 * Must be after ->destroy(), due to uprobe_perf_close() using 5190 * hw.target. 5191 */ 5192 if (event->hw.target) 5193 put_task_struct(event->hw.target); 5194 5195 if (event->pmu_ctx) 5196 put_pmu_ctx(event->pmu_ctx); 5197 5198 /* 5199 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5200 * all task references must be cleaned up. 5201 */ 5202 if (event->ctx) 5203 put_ctx(event->ctx); 5204 5205 exclusive_event_destroy(event); 5206 module_put(event->pmu->module); 5207 5208 call_rcu(&event->rcu_head, free_event_rcu); 5209 } 5210 5211 /* 5212 * Used to free events which have a known refcount of 1, such as in error paths 5213 * where the event isn't exposed yet and inherited events. 5214 */ 5215 static void free_event(struct perf_event *event) 5216 { 5217 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5218 "unexpected event refcount: %ld; ptr=%p\n", 5219 atomic_long_read(&event->refcount), event)) { 5220 /* leak to avoid use-after-free */ 5221 return; 5222 } 5223 5224 _free_event(event); 5225 } 5226 5227 /* 5228 * Remove user event from the owner task. 5229 */ 5230 static void perf_remove_from_owner(struct perf_event *event) 5231 { 5232 struct task_struct *owner; 5233 5234 rcu_read_lock(); 5235 /* 5236 * Matches the smp_store_release() in perf_event_exit_task(). If we 5237 * observe !owner it means the list deletion is complete and we can 5238 * indeed free this event, otherwise we need to serialize on 5239 * owner->perf_event_mutex. 5240 */ 5241 owner = READ_ONCE(event->owner); 5242 if (owner) { 5243 /* 5244 * Since delayed_put_task_struct() also drops the last 5245 * task reference we can safely take a new reference 5246 * while holding the rcu_read_lock(). 5247 */ 5248 get_task_struct(owner); 5249 } 5250 rcu_read_unlock(); 5251 5252 if (owner) { 5253 /* 5254 * If we're here through perf_event_exit_task() we're already 5255 * holding ctx->mutex which would be an inversion wrt. the 5256 * normal lock order. 5257 * 5258 * However we can safely take this lock because its the child 5259 * ctx->mutex. 5260 */ 5261 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5262 5263 /* 5264 * We have to re-check the event->owner field, if it is cleared 5265 * we raced with perf_event_exit_task(), acquiring the mutex 5266 * ensured they're done, and we can proceed with freeing the 5267 * event. 5268 */ 5269 if (event->owner) { 5270 list_del_init(&event->owner_entry); 5271 smp_store_release(&event->owner, NULL); 5272 } 5273 mutex_unlock(&owner->perf_event_mutex); 5274 put_task_struct(owner); 5275 } 5276 } 5277 5278 static void put_event(struct perf_event *event) 5279 { 5280 if (!atomic_long_dec_and_test(&event->refcount)) 5281 return; 5282 5283 _free_event(event); 5284 } 5285 5286 /* 5287 * Kill an event dead; while event:refcount will preserve the event 5288 * object, it will not preserve its functionality. Once the last 'user' 5289 * gives up the object, we'll destroy the thing. 5290 */ 5291 int perf_event_release_kernel(struct perf_event *event) 5292 { 5293 struct perf_event_context *ctx = event->ctx; 5294 struct perf_event *child, *tmp; 5295 LIST_HEAD(free_list); 5296 5297 /* 5298 * If we got here through err_alloc: free_event(event); we will not 5299 * have attached to a context yet. 5300 */ 5301 if (!ctx) { 5302 WARN_ON_ONCE(event->attach_state & 5303 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5304 goto no_ctx; 5305 } 5306 5307 if (!is_kernel_event(event)) 5308 perf_remove_from_owner(event); 5309 5310 ctx = perf_event_ctx_lock(event); 5311 WARN_ON_ONCE(ctx->parent_ctx); 5312 5313 /* 5314 * Mark this event as STATE_DEAD, there is no external reference to it 5315 * anymore. 5316 * 5317 * Anybody acquiring event->child_mutex after the below loop _must_ 5318 * also see this, most importantly inherit_event() which will avoid 5319 * placing more children on the list. 5320 * 5321 * Thus this guarantees that we will in fact observe and kill _ALL_ 5322 * child events. 5323 */ 5324 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5325 5326 perf_event_ctx_unlock(event, ctx); 5327 5328 again: 5329 mutex_lock(&event->child_mutex); 5330 list_for_each_entry(child, &event->child_list, child_list) { 5331 5332 /* 5333 * Cannot change, child events are not migrated, see the 5334 * comment with perf_event_ctx_lock_nested(). 5335 */ 5336 ctx = READ_ONCE(child->ctx); 5337 /* 5338 * Since child_mutex nests inside ctx::mutex, we must jump 5339 * through hoops. We start by grabbing a reference on the ctx. 5340 * 5341 * Since the event cannot get freed while we hold the 5342 * child_mutex, the context must also exist and have a !0 5343 * reference count. 5344 */ 5345 get_ctx(ctx); 5346 5347 /* 5348 * Now that we have a ctx ref, we can drop child_mutex, and 5349 * acquire ctx::mutex without fear of it going away. Then we 5350 * can re-acquire child_mutex. 5351 */ 5352 mutex_unlock(&event->child_mutex); 5353 mutex_lock(&ctx->mutex); 5354 mutex_lock(&event->child_mutex); 5355 5356 /* 5357 * Now that we hold ctx::mutex and child_mutex, revalidate our 5358 * state, if child is still the first entry, it didn't get freed 5359 * and we can continue doing so. 5360 */ 5361 tmp = list_first_entry_or_null(&event->child_list, 5362 struct perf_event, child_list); 5363 if (tmp == child) { 5364 perf_remove_from_context(child, DETACH_GROUP); 5365 list_move(&child->child_list, &free_list); 5366 /* 5367 * This matches the refcount bump in inherit_event(); 5368 * this can't be the last reference. 5369 */ 5370 put_event(event); 5371 } 5372 5373 mutex_unlock(&event->child_mutex); 5374 mutex_unlock(&ctx->mutex); 5375 put_ctx(ctx); 5376 goto again; 5377 } 5378 mutex_unlock(&event->child_mutex); 5379 5380 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5381 void *var = &child->ctx->refcount; 5382 5383 list_del(&child->child_list); 5384 free_event(child); 5385 5386 /* 5387 * Wake any perf_event_free_task() waiting for this event to be 5388 * freed. 5389 */ 5390 smp_mb(); /* pairs with wait_var_event() */ 5391 wake_up_var(var); 5392 } 5393 5394 no_ctx: 5395 put_event(event); /* Must be the 'last' reference */ 5396 return 0; 5397 } 5398 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5399 5400 /* 5401 * Called when the last reference to the file is gone. 5402 */ 5403 static int perf_release(struct inode *inode, struct file *file) 5404 { 5405 perf_event_release_kernel(file->private_data); 5406 return 0; 5407 } 5408 5409 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5410 { 5411 struct perf_event *child; 5412 u64 total = 0; 5413 5414 *enabled = 0; 5415 *running = 0; 5416 5417 mutex_lock(&event->child_mutex); 5418 5419 (void)perf_event_read(event, false); 5420 total += perf_event_count(event); 5421 5422 *enabled += event->total_time_enabled + 5423 atomic64_read(&event->child_total_time_enabled); 5424 *running += event->total_time_running + 5425 atomic64_read(&event->child_total_time_running); 5426 5427 list_for_each_entry(child, &event->child_list, child_list) { 5428 (void)perf_event_read(child, false); 5429 total += perf_event_count(child); 5430 *enabled += child->total_time_enabled; 5431 *running += child->total_time_running; 5432 } 5433 mutex_unlock(&event->child_mutex); 5434 5435 return total; 5436 } 5437 5438 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5439 { 5440 struct perf_event_context *ctx; 5441 u64 count; 5442 5443 ctx = perf_event_ctx_lock(event); 5444 count = __perf_event_read_value(event, enabled, running); 5445 perf_event_ctx_unlock(event, ctx); 5446 5447 return count; 5448 } 5449 EXPORT_SYMBOL_GPL(perf_event_read_value); 5450 5451 static int __perf_read_group_add(struct perf_event *leader, 5452 u64 read_format, u64 *values) 5453 { 5454 struct perf_event_context *ctx = leader->ctx; 5455 struct perf_event *sub; 5456 unsigned long flags; 5457 int n = 1; /* skip @nr */ 5458 int ret; 5459 5460 ret = perf_event_read(leader, true); 5461 if (ret) 5462 return ret; 5463 5464 raw_spin_lock_irqsave(&ctx->lock, flags); 5465 5466 /* 5467 * Since we co-schedule groups, {enabled,running} times of siblings 5468 * will be identical to those of the leader, so we only publish one 5469 * set. 5470 */ 5471 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5472 values[n++] += leader->total_time_enabled + 5473 atomic64_read(&leader->child_total_time_enabled); 5474 } 5475 5476 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5477 values[n++] += leader->total_time_running + 5478 atomic64_read(&leader->child_total_time_running); 5479 } 5480 5481 /* 5482 * Write {count,id} tuples for every sibling. 5483 */ 5484 values[n++] += perf_event_count(leader); 5485 if (read_format & PERF_FORMAT_ID) 5486 values[n++] = primary_event_id(leader); 5487 if (read_format & PERF_FORMAT_LOST) 5488 values[n++] = atomic64_read(&leader->lost_samples); 5489 5490 for_each_sibling_event(sub, leader) { 5491 values[n++] += perf_event_count(sub); 5492 if (read_format & PERF_FORMAT_ID) 5493 values[n++] = primary_event_id(sub); 5494 if (read_format & PERF_FORMAT_LOST) 5495 values[n++] = atomic64_read(&sub->lost_samples); 5496 } 5497 5498 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5499 return 0; 5500 } 5501 5502 static int perf_read_group(struct perf_event *event, 5503 u64 read_format, char __user *buf) 5504 { 5505 struct perf_event *leader = event->group_leader, *child; 5506 struct perf_event_context *ctx = leader->ctx; 5507 int ret; 5508 u64 *values; 5509 5510 lockdep_assert_held(&ctx->mutex); 5511 5512 values = kzalloc(event->read_size, GFP_KERNEL); 5513 if (!values) 5514 return -ENOMEM; 5515 5516 values[0] = 1 + leader->nr_siblings; 5517 5518 /* 5519 * By locking the child_mutex of the leader we effectively 5520 * lock the child list of all siblings.. XXX explain how. 5521 */ 5522 mutex_lock(&leader->child_mutex); 5523 5524 ret = __perf_read_group_add(leader, read_format, values); 5525 if (ret) 5526 goto unlock; 5527 5528 list_for_each_entry(child, &leader->child_list, child_list) { 5529 ret = __perf_read_group_add(child, read_format, values); 5530 if (ret) 5531 goto unlock; 5532 } 5533 5534 mutex_unlock(&leader->child_mutex); 5535 5536 ret = event->read_size; 5537 if (copy_to_user(buf, values, event->read_size)) 5538 ret = -EFAULT; 5539 goto out; 5540 5541 unlock: 5542 mutex_unlock(&leader->child_mutex); 5543 out: 5544 kfree(values); 5545 return ret; 5546 } 5547 5548 static int perf_read_one(struct perf_event *event, 5549 u64 read_format, char __user *buf) 5550 { 5551 u64 enabled, running; 5552 u64 values[5]; 5553 int n = 0; 5554 5555 values[n++] = __perf_event_read_value(event, &enabled, &running); 5556 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5557 values[n++] = enabled; 5558 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5559 values[n++] = running; 5560 if (read_format & PERF_FORMAT_ID) 5561 values[n++] = primary_event_id(event); 5562 if (read_format & PERF_FORMAT_LOST) 5563 values[n++] = atomic64_read(&event->lost_samples); 5564 5565 if (copy_to_user(buf, values, n * sizeof(u64))) 5566 return -EFAULT; 5567 5568 return n * sizeof(u64); 5569 } 5570 5571 static bool is_event_hup(struct perf_event *event) 5572 { 5573 bool no_children; 5574 5575 if (event->state > PERF_EVENT_STATE_EXIT) 5576 return false; 5577 5578 mutex_lock(&event->child_mutex); 5579 no_children = list_empty(&event->child_list); 5580 mutex_unlock(&event->child_mutex); 5581 return no_children; 5582 } 5583 5584 /* 5585 * Read the performance event - simple non blocking version for now 5586 */ 5587 static ssize_t 5588 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5589 { 5590 u64 read_format = event->attr.read_format; 5591 int ret; 5592 5593 /* 5594 * Return end-of-file for a read on an event that is in 5595 * error state (i.e. because it was pinned but it couldn't be 5596 * scheduled on to the CPU at some point). 5597 */ 5598 if (event->state == PERF_EVENT_STATE_ERROR) 5599 return 0; 5600 5601 if (count < event->read_size) 5602 return -ENOSPC; 5603 5604 WARN_ON_ONCE(event->ctx->parent_ctx); 5605 if (read_format & PERF_FORMAT_GROUP) 5606 ret = perf_read_group(event, read_format, buf); 5607 else 5608 ret = perf_read_one(event, read_format, buf); 5609 5610 return ret; 5611 } 5612 5613 static ssize_t 5614 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5615 { 5616 struct perf_event *event = file->private_data; 5617 struct perf_event_context *ctx; 5618 int ret; 5619 5620 ret = security_perf_event_read(event); 5621 if (ret) 5622 return ret; 5623 5624 ctx = perf_event_ctx_lock(event); 5625 ret = __perf_read(event, buf, count); 5626 perf_event_ctx_unlock(event, ctx); 5627 5628 return ret; 5629 } 5630 5631 static __poll_t perf_poll(struct file *file, poll_table *wait) 5632 { 5633 struct perf_event *event = file->private_data; 5634 struct perf_buffer *rb; 5635 __poll_t events = EPOLLHUP; 5636 5637 poll_wait(file, &event->waitq, wait); 5638 5639 if (is_event_hup(event)) 5640 return events; 5641 5642 /* 5643 * Pin the event->rb by taking event->mmap_mutex; otherwise 5644 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5645 */ 5646 mutex_lock(&event->mmap_mutex); 5647 rb = event->rb; 5648 if (rb) 5649 events = atomic_xchg(&rb->poll, 0); 5650 mutex_unlock(&event->mmap_mutex); 5651 return events; 5652 } 5653 5654 static void _perf_event_reset(struct perf_event *event) 5655 { 5656 (void)perf_event_read(event, false); 5657 local64_set(&event->count, 0); 5658 perf_event_update_userpage(event); 5659 } 5660 5661 /* Assume it's not an event with inherit set. */ 5662 u64 perf_event_pause(struct perf_event *event, bool reset) 5663 { 5664 struct perf_event_context *ctx; 5665 u64 count; 5666 5667 ctx = perf_event_ctx_lock(event); 5668 WARN_ON_ONCE(event->attr.inherit); 5669 _perf_event_disable(event); 5670 count = local64_read(&event->count); 5671 if (reset) 5672 local64_set(&event->count, 0); 5673 perf_event_ctx_unlock(event, ctx); 5674 5675 return count; 5676 } 5677 EXPORT_SYMBOL_GPL(perf_event_pause); 5678 5679 /* 5680 * Holding the top-level event's child_mutex means that any 5681 * descendant process that has inherited this event will block 5682 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5683 * task existence requirements of perf_event_enable/disable. 5684 */ 5685 static void perf_event_for_each_child(struct perf_event *event, 5686 void (*func)(struct perf_event *)) 5687 { 5688 struct perf_event *child; 5689 5690 WARN_ON_ONCE(event->ctx->parent_ctx); 5691 5692 mutex_lock(&event->child_mutex); 5693 func(event); 5694 list_for_each_entry(child, &event->child_list, child_list) 5695 func(child); 5696 mutex_unlock(&event->child_mutex); 5697 } 5698 5699 static void perf_event_for_each(struct perf_event *event, 5700 void (*func)(struct perf_event *)) 5701 { 5702 struct perf_event_context *ctx = event->ctx; 5703 struct perf_event *sibling; 5704 5705 lockdep_assert_held(&ctx->mutex); 5706 5707 event = event->group_leader; 5708 5709 perf_event_for_each_child(event, func); 5710 for_each_sibling_event(sibling, event) 5711 perf_event_for_each_child(sibling, func); 5712 } 5713 5714 static void __perf_event_period(struct perf_event *event, 5715 struct perf_cpu_context *cpuctx, 5716 struct perf_event_context *ctx, 5717 void *info) 5718 { 5719 u64 value = *((u64 *)info); 5720 bool active; 5721 5722 if (event->attr.freq) { 5723 event->attr.sample_freq = value; 5724 } else { 5725 event->attr.sample_period = value; 5726 event->hw.sample_period = value; 5727 } 5728 5729 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5730 if (active) { 5731 perf_pmu_disable(event->pmu); 5732 /* 5733 * We could be throttled; unthrottle now to avoid the tick 5734 * trying to unthrottle while we already re-started the event. 5735 */ 5736 if (event->hw.interrupts == MAX_INTERRUPTS) { 5737 event->hw.interrupts = 0; 5738 perf_log_throttle(event, 1); 5739 } 5740 event->pmu->stop(event, PERF_EF_UPDATE); 5741 } 5742 5743 local64_set(&event->hw.period_left, 0); 5744 5745 if (active) { 5746 event->pmu->start(event, PERF_EF_RELOAD); 5747 perf_pmu_enable(event->pmu); 5748 } 5749 } 5750 5751 static int perf_event_check_period(struct perf_event *event, u64 value) 5752 { 5753 return event->pmu->check_period(event, value); 5754 } 5755 5756 static int _perf_event_period(struct perf_event *event, u64 value) 5757 { 5758 if (!is_sampling_event(event)) 5759 return -EINVAL; 5760 5761 if (!value) 5762 return -EINVAL; 5763 5764 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5765 return -EINVAL; 5766 5767 if (perf_event_check_period(event, value)) 5768 return -EINVAL; 5769 5770 if (!event->attr.freq && (value & (1ULL << 63))) 5771 return -EINVAL; 5772 5773 event_function_call(event, __perf_event_period, &value); 5774 5775 return 0; 5776 } 5777 5778 int perf_event_period(struct perf_event *event, u64 value) 5779 { 5780 struct perf_event_context *ctx; 5781 int ret; 5782 5783 ctx = perf_event_ctx_lock(event); 5784 ret = _perf_event_period(event, value); 5785 perf_event_ctx_unlock(event, ctx); 5786 5787 return ret; 5788 } 5789 EXPORT_SYMBOL_GPL(perf_event_period); 5790 5791 static const struct file_operations perf_fops; 5792 5793 static inline int perf_fget_light(int fd, struct fd *p) 5794 { 5795 struct fd f = fdget(fd); 5796 if (!f.file) 5797 return -EBADF; 5798 5799 if (f.file->f_op != &perf_fops) { 5800 fdput(f); 5801 return -EBADF; 5802 } 5803 *p = f; 5804 return 0; 5805 } 5806 5807 static int perf_event_set_output(struct perf_event *event, 5808 struct perf_event *output_event); 5809 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5810 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5811 struct perf_event_attr *attr); 5812 5813 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5814 { 5815 void (*func)(struct perf_event *); 5816 u32 flags = arg; 5817 5818 switch (cmd) { 5819 case PERF_EVENT_IOC_ENABLE: 5820 func = _perf_event_enable; 5821 break; 5822 case PERF_EVENT_IOC_DISABLE: 5823 func = _perf_event_disable; 5824 break; 5825 case PERF_EVENT_IOC_RESET: 5826 func = _perf_event_reset; 5827 break; 5828 5829 case PERF_EVENT_IOC_REFRESH: 5830 return _perf_event_refresh(event, arg); 5831 5832 case PERF_EVENT_IOC_PERIOD: 5833 { 5834 u64 value; 5835 5836 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5837 return -EFAULT; 5838 5839 return _perf_event_period(event, value); 5840 } 5841 case PERF_EVENT_IOC_ID: 5842 { 5843 u64 id = primary_event_id(event); 5844 5845 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5846 return -EFAULT; 5847 return 0; 5848 } 5849 5850 case PERF_EVENT_IOC_SET_OUTPUT: 5851 { 5852 int ret; 5853 if (arg != -1) { 5854 struct perf_event *output_event; 5855 struct fd output; 5856 ret = perf_fget_light(arg, &output); 5857 if (ret) 5858 return ret; 5859 output_event = output.file->private_data; 5860 ret = perf_event_set_output(event, output_event); 5861 fdput(output); 5862 } else { 5863 ret = perf_event_set_output(event, NULL); 5864 } 5865 return ret; 5866 } 5867 5868 case PERF_EVENT_IOC_SET_FILTER: 5869 return perf_event_set_filter(event, (void __user *)arg); 5870 5871 case PERF_EVENT_IOC_SET_BPF: 5872 { 5873 struct bpf_prog *prog; 5874 int err; 5875 5876 prog = bpf_prog_get(arg); 5877 if (IS_ERR(prog)) 5878 return PTR_ERR(prog); 5879 5880 err = perf_event_set_bpf_prog(event, prog, 0); 5881 if (err) { 5882 bpf_prog_put(prog); 5883 return err; 5884 } 5885 5886 return 0; 5887 } 5888 5889 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5890 struct perf_buffer *rb; 5891 5892 rcu_read_lock(); 5893 rb = rcu_dereference(event->rb); 5894 if (!rb || !rb->nr_pages) { 5895 rcu_read_unlock(); 5896 return -EINVAL; 5897 } 5898 rb_toggle_paused(rb, !!arg); 5899 rcu_read_unlock(); 5900 return 0; 5901 } 5902 5903 case PERF_EVENT_IOC_QUERY_BPF: 5904 return perf_event_query_prog_array(event, (void __user *)arg); 5905 5906 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5907 struct perf_event_attr new_attr; 5908 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5909 &new_attr); 5910 5911 if (err) 5912 return err; 5913 5914 return perf_event_modify_attr(event, &new_attr); 5915 } 5916 default: 5917 return -ENOTTY; 5918 } 5919 5920 if (flags & PERF_IOC_FLAG_GROUP) 5921 perf_event_for_each(event, func); 5922 else 5923 perf_event_for_each_child(event, func); 5924 5925 return 0; 5926 } 5927 5928 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5929 { 5930 struct perf_event *event = file->private_data; 5931 struct perf_event_context *ctx; 5932 long ret; 5933 5934 /* Treat ioctl like writes as it is likely a mutating operation. */ 5935 ret = security_perf_event_write(event); 5936 if (ret) 5937 return ret; 5938 5939 ctx = perf_event_ctx_lock(event); 5940 ret = _perf_ioctl(event, cmd, arg); 5941 perf_event_ctx_unlock(event, ctx); 5942 5943 return ret; 5944 } 5945 5946 #ifdef CONFIG_COMPAT 5947 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5948 unsigned long arg) 5949 { 5950 switch (_IOC_NR(cmd)) { 5951 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5952 case _IOC_NR(PERF_EVENT_IOC_ID): 5953 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5954 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5955 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5956 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5957 cmd &= ~IOCSIZE_MASK; 5958 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5959 } 5960 break; 5961 } 5962 return perf_ioctl(file, cmd, arg); 5963 } 5964 #else 5965 # define perf_compat_ioctl NULL 5966 #endif 5967 5968 int perf_event_task_enable(void) 5969 { 5970 struct perf_event_context *ctx; 5971 struct perf_event *event; 5972 5973 mutex_lock(¤t->perf_event_mutex); 5974 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5975 ctx = perf_event_ctx_lock(event); 5976 perf_event_for_each_child(event, _perf_event_enable); 5977 perf_event_ctx_unlock(event, ctx); 5978 } 5979 mutex_unlock(¤t->perf_event_mutex); 5980 5981 return 0; 5982 } 5983 5984 int perf_event_task_disable(void) 5985 { 5986 struct perf_event_context *ctx; 5987 struct perf_event *event; 5988 5989 mutex_lock(¤t->perf_event_mutex); 5990 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5991 ctx = perf_event_ctx_lock(event); 5992 perf_event_for_each_child(event, _perf_event_disable); 5993 perf_event_ctx_unlock(event, ctx); 5994 } 5995 mutex_unlock(¤t->perf_event_mutex); 5996 5997 return 0; 5998 } 5999 6000 static int perf_event_index(struct perf_event *event) 6001 { 6002 if (event->hw.state & PERF_HES_STOPPED) 6003 return 0; 6004 6005 if (event->state != PERF_EVENT_STATE_ACTIVE) 6006 return 0; 6007 6008 return event->pmu->event_idx(event); 6009 } 6010 6011 static void perf_event_init_userpage(struct perf_event *event) 6012 { 6013 struct perf_event_mmap_page *userpg; 6014 struct perf_buffer *rb; 6015 6016 rcu_read_lock(); 6017 rb = rcu_dereference(event->rb); 6018 if (!rb) 6019 goto unlock; 6020 6021 userpg = rb->user_page; 6022 6023 /* Allow new userspace to detect that bit 0 is deprecated */ 6024 userpg->cap_bit0_is_deprecated = 1; 6025 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6026 userpg->data_offset = PAGE_SIZE; 6027 userpg->data_size = perf_data_size(rb); 6028 6029 unlock: 6030 rcu_read_unlock(); 6031 } 6032 6033 void __weak arch_perf_update_userpage( 6034 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6035 { 6036 } 6037 6038 /* 6039 * Callers need to ensure there can be no nesting of this function, otherwise 6040 * the seqlock logic goes bad. We can not serialize this because the arch 6041 * code calls this from NMI context. 6042 */ 6043 void perf_event_update_userpage(struct perf_event *event) 6044 { 6045 struct perf_event_mmap_page *userpg; 6046 struct perf_buffer *rb; 6047 u64 enabled, running, now; 6048 6049 rcu_read_lock(); 6050 rb = rcu_dereference(event->rb); 6051 if (!rb) 6052 goto unlock; 6053 6054 /* 6055 * compute total_time_enabled, total_time_running 6056 * based on snapshot values taken when the event 6057 * was last scheduled in. 6058 * 6059 * we cannot simply called update_context_time() 6060 * because of locking issue as we can be called in 6061 * NMI context 6062 */ 6063 calc_timer_values(event, &now, &enabled, &running); 6064 6065 userpg = rb->user_page; 6066 /* 6067 * Disable preemption to guarantee consistent time stamps are stored to 6068 * the user page. 6069 */ 6070 preempt_disable(); 6071 ++userpg->lock; 6072 barrier(); 6073 userpg->index = perf_event_index(event); 6074 userpg->offset = perf_event_count(event); 6075 if (userpg->index) 6076 userpg->offset -= local64_read(&event->hw.prev_count); 6077 6078 userpg->time_enabled = enabled + 6079 atomic64_read(&event->child_total_time_enabled); 6080 6081 userpg->time_running = running + 6082 atomic64_read(&event->child_total_time_running); 6083 6084 arch_perf_update_userpage(event, userpg, now); 6085 6086 barrier(); 6087 ++userpg->lock; 6088 preempt_enable(); 6089 unlock: 6090 rcu_read_unlock(); 6091 } 6092 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6093 6094 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6095 { 6096 struct perf_event *event = vmf->vma->vm_file->private_data; 6097 struct perf_buffer *rb; 6098 vm_fault_t ret = VM_FAULT_SIGBUS; 6099 6100 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6101 if (vmf->pgoff == 0) 6102 ret = 0; 6103 return ret; 6104 } 6105 6106 rcu_read_lock(); 6107 rb = rcu_dereference(event->rb); 6108 if (!rb) 6109 goto unlock; 6110 6111 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6112 goto unlock; 6113 6114 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6115 if (!vmf->page) 6116 goto unlock; 6117 6118 get_page(vmf->page); 6119 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6120 vmf->page->index = vmf->pgoff; 6121 6122 ret = 0; 6123 unlock: 6124 rcu_read_unlock(); 6125 6126 return ret; 6127 } 6128 6129 static void ring_buffer_attach(struct perf_event *event, 6130 struct perf_buffer *rb) 6131 { 6132 struct perf_buffer *old_rb = NULL; 6133 unsigned long flags; 6134 6135 WARN_ON_ONCE(event->parent); 6136 6137 if (event->rb) { 6138 /* 6139 * Should be impossible, we set this when removing 6140 * event->rb_entry and wait/clear when adding event->rb_entry. 6141 */ 6142 WARN_ON_ONCE(event->rcu_pending); 6143 6144 old_rb = event->rb; 6145 spin_lock_irqsave(&old_rb->event_lock, flags); 6146 list_del_rcu(&event->rb_entry); 6147 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6148 6149 event->rcu_batches = get_state_synchronize_rcu(); 6150 event->rcu_pending = 1; 6151 } 6152 6153 if (rb) { 6154 if (event->rcu_pending) { 6155 cond_synchronize_rcu(event->rcu_batches); 6156 event->rcu_pending = 0; 6157 } 6158 6159 spin_lock_irqsave(&rb->event_lock, flags); 6160 list_add_rcu(&event->rb_entry, &rb->event_list); 6161 spin_unlock_irqrestore(&rb->event_lock, flags); 6162 } 6163 6164 /* 6165 * Avoid racing with perf_mmap_close(AUX): stop the event 6166 * before swizzling the event::rb pointer; if it's getting 6167 * unmapped, its aux_mmap_count will be 0 and it won't 6168 * restart. See the comment in __perf_pmu_output_stop(). 6169 * 6170 * Data will inevitably be lost when set_output is done in 6171 * mid-air, but then again, whoever does it like this is 6172 * not in for the data anyway. 6173 */ 6174 if (has_aux(event)) 6175 perf_event_stop(event, 0); 6176 6177 rcu_assign_pointer(event->rb, rb); 6178 6179 if (old_rb) { 6180 ring_buffer_put(old_rb); 6181 /* 6182 * Since we detached before setting the new rb, so that we 6183 * could attach the new rb, we could have missed a wakeup. 6184 * Provide it now. 6185 */ 6186 wake_up_all(&event->waitq); 6187 } 6188 } 6189 6190 static void ring_buffer_wakeup(struct perf_event *event) 6191 { 6192 struct perf_buffer *rb; 6193 6194 if (event->parent) 6195 event = event->parent; 6196 6197 rcu_read_lock(); 6198 rb = rcu_dereference(event->rb); 6199 if (rb) { 6200 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6201 wake_up_all(&event->waitq); 6202 } 6203 rcu_read_unlock(); 6204 } 6205 6206 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6207 { 6208 struct perf_buffer *rb; 6209 6210 if (event->parent) 6211 event = event->parent; 6212 6213 rcu_read_lock(); 6214 rb = rcu_dereference(event->rb); 6215 if (rb) { 6216 if (!refcount_inc_not_zero(&rb->refcount)) 6217 rb = NULL; 6218 } 6219 rcu_read_unlock(); 6220 6221 return rb; 6222 } 6223 6224 void ring_buffer_put(struct perf_buffer *rb) 6225 { 6226 if (!refcount_dec_and_test(&rb->refcount)) 6227 return; 6228 6229 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6230 6231 call_rcu(&rb->rcu_head, rb_free_rcu); 6232 } 6233 6234 static void perf_mmap_open(struct vm_area_struct *vma) 6235 { 6236 struct perf_event *event = vma->vm_file->private_data; 6237 6238 atomic_inc(&event->mmap_count); 6239 atomic_inc(&event->rb->mmap_count); 6240 6241 if (vma->vm_pgoff) 6242 atomic_inc(&event->rb->aux_mmap_count); 6243 6244 if (event->pmu->event_mapped) 6245 event->pmu->event_mapped(event, vma->vm_mm); 6246 } 6247 6248 static void perf_pmu_output_stop(struct perf_event *event); 6249 6250 /* 6251 * A buffer can be mmap()ed multiple times; either directly through the same 6252 * event, or through other events by use of perf_event_set_output(). 6253 * 6254 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6255 * the buffer here, where we still have a VM context. This means we need 6256 * to detach all events redirecting to us. 6257 */ 6258 static void perf_mmap_close(struct vm_area_struct *vma) 6259 { 6260 struct perf_event *event = vma->vm_file->private_data; 6261 struct perf_buffer *rb = ring_buffer_get(event); 6262 struct user_struct *mmap_user = rb->mmap_user; 6263 int mmap_locked = rb->mmap_locked; 6264 unsigned long size = perf_data_size(rb); 6265 bool detach_rest = false; 6266 6267 if (event->pmu->event_unmapped) 6268 event->pmu->event_unmapped(event, vma->vm_mm); 6269 6270 /* 6271 * rb->aux_mmap_count will always drop before rb->mmap_count and 6272 * event->mmap_count, so it is ok to use event->mmap_mutex to 6273 * serialize with perf_mmap here. 6274 */ 6275 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6276 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6277 /* 6278 * Stop all AUX events that are writing to this buffer, 6279 * so that we can free its AUX pages and corresponding PMU 6280 * data. Note that after rb::aux_mmap_count dropped to zero, 6281 * they won't start any more (see perf_aux_output_begin()). 6282 */ 6283 perf_pmu_output_stop(event); 6284 6285 /* now it's safe to free the pages */ 6286 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6287 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6288 6289 /* this has to be the last one */ 6290 rb_free_aux(rb); 6291 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6292 6293 mutex_unlock(&event->mmap_mutex); 6294 } 6295 6296 if (atomic_dec_and_test(&rb->mmap_count)) 6297 detach_rest = true; 6298 6299 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6300 goto out_put; 6301 6302 ring_buffer_attach(event, NULL); 6303 mutex_unlock(&event->mmap_mutex); 6304 6305 /* If there's still other mmap()s of this buffer, we're done. */ 6306 if (!detach_rest) 6307 goto out_put; 6308 6309 /* 6310 * No other mmap()s, detach from all other events that might redirect 6311 * into the now unreachable buffer. Somewhat complicated by the 6312 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6313 */ 6314 again: 6315 rcu_read_lock(); 6316 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6317 if (!atomic_long_inc_not_zero(&event->refcount)) { 6318 /* 6319 * This event is en-route to free_event() which will 6320 * detach it and remove it from the list. 6321 */ 6322 continue; 6323 } 6324 rcu_read_unlock(); 6325 6326 mutex_lock(&event->mmap_mutex); 6327 /* 6328 * Check we didn't race with perf_event_set_output() which can 6329 * swizzle the rb from under us while we were waiting to 6330 * acquire mmap_mutex. 6331 * 6332 * If we find a different rb; ignore this event, a next 6333 * iteration will no longer find it on the list. We have to 6334 * still restart the iteration to make sure we're not now 6335 * iterating the wrong list. 6336 */ 6337 if (event->rb == rb) 6338 ring_buffer_attach(event, NULL); 6339 6340 mutex_unlock(&event->mmap_mutex); 6341 put_event(event); 6342 6343 /* 6344 * Restart the iteration; either we're on the wrong list or 6345 * destroyed its integrity by doing a deletion. 6346 */ 6347 goto again; 6348 } 6349 rcu_read_unlock(); 6350 6351 /* 6352 * It could be there's still a few 0-ref events on the list; they'll 6353 * get cleaned up by free_event() -- they'll also still have their 6354 * ref on the rb and will free it whenever they are done with it. 6355 * 6356 * Aside from that, this buffer is 'fully' detached and unmapped, 6357 * undo the VM accounting. 6358 */ 6359 6360 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6361 &mmap_user->locked_vm); 6362 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6363 free_uid(mmap_user); 6364 6365 out_put: 6366 ring_buffer_put(rb); /* could be last */ 6367 } 6368 6369 static const struct vm_operations_struct perf_mmap_vmops = { 6370 .open = perf_mmap_open, 6371 .close = perf_mmap_close, /* non mergeable */ 6372 .fault = perf_mmap_fault, 6373 .page_mkwrite = perf_mmap_fault, 6374 }; 6375 6376 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6377 { 6378 struct perf_event *event = file->private_data; 6379 unsigned long user_locked, user_lock_limit; 6380 struct user_struct *user = current_user(); 6381 struct perf_buffer *rb = NULL; 6382 unsigned long locked, lock_limit; 6383 unsigned long vma_size; 6384 unsigned long nr_pages; 6385 long user_extra = 0, extra = 0; 6386 int ret = 0, flags = 0; 6387 6388 /* 6389 * Don't allow mmap() of inherited per-task counters. This would 6390 * create a performance issue due to all children writing to the 6391 * same rb. 6392 */ 6393 if (event->cpu == -1 && event->attr.inherit) 6394 return -EINVAL; 6395 6396 if (!(vma->vm_flags & VM_SHARED)) 6397 return -EINVAL; 6398 6399 ret = security_perf_event_read(event); 6400 if (ret) 6401 return ret; 6402 6403 vma_size = vma->vm_end - vma->vm_start; 6404 6405 if (vma->vm_pgoff == 0) { 6406 nr_pages = (vma_size / PAGE_SIZE) - 1; 6407 } else { 6408 /* 6409 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6410 * mapped, all subsequent mappings should have the same size 6411 * and offset. Must be above the normal perf buffer. 6412 */ 6413 u64 aux_offset, aux_size; 6414 6415 if (!event->rb) 6416 return -EINVAL; 6417 6418 nr_pages = vma_size / PAGE_SIZE; 6419 6420 mutex_lock(&event->mmap_mutex); 6421 ret = -EINVAL; 6422 6423 rb = event->rb; 6424 if (!rb) 6425 goto aux_unlock; 6426 6427 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6428 aux_size = READ_ONCE(rb->user_page->aux_size); 6429 6430 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6431 goto aux_unlock; 6432 6433 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6434 goto aux_unlock; 6435 6436 /* already mapped with a different offset */ 6437 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6438 goto aux_unlock; 6439 6440 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6441 goto aux_unlock; 6442 6443 /* already mapped with a different size */ 6444 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6445 goto aux_unlock; 6446 6447 if (!is_power_of_2(nr_pages)) 6448 goto aux_unlock; 6449 6450 if (!atomic_inc_not_zero(&rb->mmap_count)) 6451 goto aux_unlock; 6452 6453 if (rb_has_aux(rb)) { 6454 atomic_inc(&rb->aux_mmap_count); 6455 ret = 0; 6456 goto unlock; 6457 } 6458 6459 atomic_set(&rb->aux_mmap_count, 1); 6460 user_extra = nr_pages; 6461 6462 goto accounting; 6463 } 6464 6465 /* 6466 * If we have rb pages ensure they're a power-of-two number, so we 6467 * can do bitmasks instead of modulo. 6468 */ 6469 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6470 return -EINVAL; 6471 6472 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6473 return -EINVAL; 6474 6475 WARN_ON_ONCE(event->ctx->parent_ctx); 6476 again: 6477 mutex_lock(&event->mmap_mutex); 6478 if (event->rb) { 6479 if (data_page_nr(event->rb) != nr_pages) { 6480 ret = -EINVAL; 6481 goto unlock; 6482 } 6483 6484 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6485 /* 6486 * Raced against perf_mmap_close(); remove the 6487 * event and try again. 6488 */ 6489 ring_buffer_attach(event, NULL); 6490 mutex_unlock(&event->mmap_mutex); 6491 goto again; 6492 } 6493 6494 goto unlock; 6495 } 6496 6497 user_extra = nr_pages + 1; 6498 6499 accounting: 6500 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6501 6502 /* 6503 * Increase the limit linearly with more CPUs: 6504 */ 6505 user_lock_limit *= num_online_cpus(); 6506 6507 user_locked = atomic_long_read(&user->locked_vm); 6508 6509 /* 6510 * sysctl_perf_event_mlock may have changed, so that 6511 * user->locked_vm > user_lock_limit 6512 */ 6513 if (user_locked > user_lock_limit) 6514 user_locked = user_lock_limit; 6515 user_locked += user_extra; 6516 6517 if (user_locked > user_lock_limit) { 6518 /* 6519 * charge locked_vm until it hits user_lock_limit; 6520 * charge the rest from pinned_vm 6521 */ 6522 extra = user_locked - user_lock_limit; 6523 user_extra -= extra; 6524 } 6525 6526 lock_limit = rlimit(RLIMIT_MEMLOCK); 6527 lock_limit >>= PAGE_SHIFT; 6528 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6529 6530 if ((locked > lock_limit) && perf_is_paranoid() && 6531 !capable(CAP_IPC_LOCK)) { 6532 ret = -EPERM; 6533 goto unlock; 6534 } 6535 6536 WARN_ON(!rb && event->rb); 6537 6538 if (vma->vm_flags & VM_WRITE) 6539 flags |= RING_BUFFER_WRITABLE; 6540 6541 if (!rb) { 6542 rb = rb_alloc(nr_pages, 6543 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6544 event->cpu, flags); 6545 6546 if (!rb) { 6547 ret = -ENOMEM; 6548 goto unlock; 6549 } 6550 6551 atomic_set(&rb->mmap_count, 1); 6552 rb->mmap_user = get_current_user(); 6553 rb->mmap_locked = extra; 6554 6555 ring_buffer_attach(event, rb); 6556 6557 perf_event_update_time(event); 6558 perf_event_init_userpage(event); 6559 perf_event_update_userpage(event); 6560 } else { 6561 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6562 event->attr.aux_watermark, flags); 6563 if (!ret) 6564 rb->aux_mmap_locked = extra; 6565 } 6566 6567 unlock: 6568 if (!ret) { 6569 atomic_long_add(user_extra, &user->locked_vm); 6570 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6571 6572 atomic_inc(&event->mmap_count); 6573 } else if (rb) { 6574 atomic_dec(&rb->mmap_count); 6575 } 6576 aux_unlock: 6577 mutex_unlock(&event->mmap_mutex); 6578 6579 /* 6580 * Since pinned accounting is per vm we cannot allow fork() to copy our 6581 * vma. 6582 */ 6583 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6584 vma->vm_ops = &perf_mmap_vmops; 6585 6586 if (event->pmu->event_mapped) 6587 event->pmu->event_mapped(event, vma->vm_mm); 6588 6589 return ret; 6590 } 6591 6592 static int perf_fasync(int fd, struct file *filp, int on) 6593 { 6594 struct inode *inode = file_inode(filp); 6595 struct perf_event *event = filp->private_data; 6596 int retval; 6597 6598 inode_lock(inode); 6599 retval = fasync_helper(fd, filp, on, &event->fasync); 6600 inode_unlock(inode); 6601 6602 if (retval < 0) 6603 return retval; 6604 6605 return 0; 6606 } 6607 6608 static const struct file_operations perf_fops = { 6609 .llseek = no_llseek, 6610 .release = perf_release, 6611 .read = perf_read, 6612 .poll = perf_poll, 6613 .unlocked_ioctl = perf_ioctl, 6614 .compat_ioctl = perf_compat_ioctl, 6615 .mmap = perf_mmap, 6616 .fasync = perf_fasync, 6617 }; 6618 6619 /* 6620 * Perf event wakeup 6621 * 6622 * If there's data, ensure we set the poll() state and publish everything 6623 * to user-space before waking everybody up. 6624 */ 6625 6626 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6627 { 6628 /* only the parent has fasync state */ 6629 if (event->parent) 6630 event = event->parent; 6631 return &event->fasync; 6632 } 6633 6634 void perf_event_wakeup(struct perf_event *event) 6635 { 6636 ring_buffer_wakeup(event); 6637 6638 if (event->pending_kill) { 6639 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6640 event->pending_kill = 0; 6641 } 6642 } 6643 6644 static void perf_sigtrap(struct perf_event *event) 6645 { 6646 /* 6647 * We'd expect this to only occur if the irq_work is delayed and either 6648 * ctx->task or current has changed in the meantime. This can be the 6649 * case on architectures that do not implement arch_irq_work_raise(). 6650 */ 6651 if (WARN_ON_ONCE(event->ctx->task != current)) 6652 return; 6653 6654 /* 6655 * Both perf_pending_task() and perf_pending_irq() can race with the 6656 * task exiting. 6657 */ 6658 if (current->flags & PF_EXITING) 6659 return; 6660 6661 send_sig_perf((void __user *)event->pending_addr, 6662 event->attr.type, event->attr.sig_data); 6663 } 6664 6665 /* 6666 * Deliver the pending work in-event-context or follow the context. 6667 */ 6668 static void __perf_pending_irq(struct perf_event *event) 6669 { 6670 int cpu = READ_ONCE(event->oncpu); 6671 6672 /* 6673 * If the event isn't running; we done. event_sched_out() will have 6674 * taken care of things. 6675 */ 6676 if (cpu < 0) 6677 return; 6678 6679 /* 6680 * Yay, we hit home and are in the context of the event. 6681 */ 6682 if (cpu == smp_processor_id()) { 6683 if (event->pending_sigtrap) { 6684 event->pending_sigtrap = 0; 6685 perf_sigtrap(event); 6686 local_dec(&event->ctx->nr_pending); 6687 } 6688 if (event->pending_disable) { 6689 event->pending_disable = 0; 6690 perf_event_disable_local(event); 6691 } 6692 return; 6693 } 6694 6695 /* 6696 * CPU-A CPU-B 6697 * 6698 * perf_event_disable_inatomic() 6699 * @pending_disable = CPU-A; 6700 * irq_work_queue(); 6701 * 6702 * sched-out 6703 * @pending_disable = -1; 6704 * 6705 * sched-in 6706 * perf_event_disable_inatomic() 6707 * @pending_disable = CPU-B; 6708 * irq_work_queue(); // FAILS 6709 * 6710 * irq_work_run() 6711 * perf_pending_irq() 6712 * 6713 * But the event runs on CPU-B and wants disabling there. 6714 */ 6715 irq_work_queue_on(&event->pending_irq, cpu); 6716 } 6717 6718 static void perf_pending_irq(struct irq_work *entry) 6719 { 6720 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6721 int rctx; 6722 6723 /* 6724 * If we 'fail' here, that's OK, it means recursion is already disabled 6725 * and we won't recurse 'further'. 6726 */ 6727 rctx = perf_swevent_get_recursion_context(); 6728 6729 /* 6730 * The wakeup isn't bound to the context of the event -- it can happen 6731 * irrespective of where the event is. 6732 */ 6733 if (event->pending_wakeup) { 6734 event->pending_wakeup = 0; 6735 perf_event_wakeup(event); 6736 } 6737 6738 __perf_pending_irq(event); 6739 6740 if (rctx >= 0) 6741 perf_swevent_put_recursion_context(rctx); 6742 } 6743 6744 static void perf_pending_task(struct callback_head *head) 6745 { 6746 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6747 int rctx; 6748 6749 /* 6750 * If we 'fail' here, that's OK, it means recursion is already disabled 6751 * and we won't recurse 'further'. 6752 */ 6753 preempt_disable_notrace(); 6754 rctx = perf_swevent_get_recursion_context(); 6755 6756 if (event->pending_work) { 6757 event->pending_work = 0; 6758 perf_sigtrap(event); 6759 local_dec(&event->ctx->nr_pending); 6760 } 6761 6762 if (rctx >= 0) 6763 perf_swevent_put_recursion_context(rctx); 6764 preempt_enable_notrace(); 6765 6766 put_event(event); 6767 } 6768 6769 #ifdef CONFIG_GUEST_PERF_EVENTS 6770 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6771 6772 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6773 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6774 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6775 6776 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6777 { 6778 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6779 return; 6780 6781 rcu_assign_pointer(perf_guest_cbs, cbs); 6782 static_call_update(__perf_guest_state, cbs->state); 6783 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6784 6785 /* Implementing ->handle_intel_pt_intr is optional. */ 6786 if (cbs->handle_intel_pt_intr) 6787 static_call_update(__perf_guest_handle_intel_pt_intr, 6788 cbs->handle_intel_pt_intr); 6789 } 6790 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6791 6792 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6793 { 6794 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6795 return; 6796 6797 rcu_assign_pointer(perf_guest_cbs, NULL); 6798 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6799 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6800 static_call_update(__perf_guest_handle_intel_pt_intr, 6801 (void *)&__static_call_return0); 6802 synchronize_rcu(); 6803 } 6804 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6805 #endif 6806 6807 static void 6808 perf_output_sample_regs(struct perf_output_handle *handle, 6809 struct pt_regs *regs, u64 mask) 6810 { 6811 int bit; 6812 DECLARE_BITMAP(_mask, 64); 6813 6814 bitmap_from_u64(_mask, mask); 6815 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6816 u64 val; 6817 6818 val = perf_reg_value(regs, bit); 6819 perf_output_put(handle, val); 6820 } 6821 } 6822 6823 static void perf_sample_regs_user(struct perf_regs *regs_user, 6824 struct pt_regs *regs) 6825 { 6826 if (user_mode(regs)) { 6827 regs_user->abi = perf_reg_abi(current); 6828 regs_user->regs = regs; 6829 } else if (!(current->flags & PF_KTHREAD)) { 6830 perf_get_regs_user(regs_user, regs); 6831 } else { 6832 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6833 regs_user->regs = NULL; 6834 } 6835 } 6836 6837 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6838 struct pt_regs *regs) 6839 { 6840 regs_intr->regs = regs; 6841 regs_intr->abi = perf_reg_abi(current); 6842 } 6843 6844 6845 /* 6846 * Get remaining task size from user stack pointer. 6847 * 6848 * It'd be better to take stack vma map and limit this more 6849 * precisely, but there's no way to get it safely under interrupt, 6850 * so using TASK_SIZE as limit. 6851 */ 6852 static u64 perf_ustack_task_size(struct pt_regs *regs) 6853 { 6854 unsigned long addr = perf_user_stack_pointer(regs); 6855 6856 if (!addr || addr >= TASK_SIZE) 6857 return 0; 6858 6859 return TASK_SIZE - addr; 6860 } 6861 6862 static u16 6863 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6864 struct pt_regs *regs) 6865 { 6866 u64 task_size; 6867 6868 /* No regs, no stack pointer, no dump. */ 6869 if (!regs) 6870 return 0; 6871 6872 /* 6873 * Check if we fit in with the requested stack size into the: 6874 * - TASK_SIZE 6875 * If we don't, we limit the size to the TASK_SIZE. 6876 * 6877 * - remaining sample size 6878 * If we don't, we customize the stack size to 6879 * fit in to the remaining sample size. 6880 */ 6881 6882 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6883 stack_size = min(stack_size, (u16) task_size); 6884 6885 /* Current header size plus static size and dynamic size. */ 6886 header_size += 2 * sizeof(u64); 6887 6888 /* Do we fit in with the current stack dump size? */ 6889 if ((u16) (header_size + stack_size) < header_size) { 6890 /* 6891 * If we overflow the maximum size for the sample, 6892 * we customize the stack dump size to fit in. 6893 */ 6894 stack_size = USHRT_MAX - header_size - sizeof(u64); 6895 stack_size = round_up(stack_size, sizeof(u64)); 6896 } 6897 6898 return stack_size; 6899 } 6900 6901 static void 6902 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6903 struct pt_regs *regs) 6904 { 6905 /* Case of a kernel thread, nothing to dump */ 6906 if (!regs) { 6907 u64 size = 0; 6908 perf_output_put(handle, size); 6909 } else { 6910 unsigned long sp; 6911 unsigned int rem; 6912 u64 dyn_size; 6913 6914 /* 6915 * We dump: 6916 * static size 6917 * - the size requested by user or the best one we can fit 6918 * in to the sample max size 6919 * data 6920 * - user stack dump data 6921 * dynamic size 6922 * - the actual dumped size 6923 */ 6924 6925 /* Static size. */ 6926 perf_output_put(handle, dump_size); 6927 6928 /* Data. */ 6929 sp = perf_user_stack_pointer(regs); 6930 rem = __output_copy_user(handle, (void *) sp, dump_size); 6931 dyn_size = dump_size - rem; 6932 6933 perf_output_skip(handle, rem); 6934 6935 /* Dynamic size. */ 6936 perf_output_put(handle, dyn_size); 6937 } 6938 } 6939 6940 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6941 struct perf_sample_data *data, 6942 size_t size) 6943 { 6944 struct perf_event *sampler = event->aux_event; 6945 struct perf_buffer *rb; 6946 6947 data->aux_size = 0; 6948 6949 if (!sampler) 6950 goto out; 6951 6952 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6953 goto out; 6954 6955 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6956 goto out; 6957 6958 rb = ring_buffer_get(sampler); 6959 if (!rb) 6960 goto out; 6961 6962 /* 6963 * If this is an NMI hit inside sampling code, don't take 6964 * the sample. See also perf_aux_sample_output(). 6965 */ 6966 if (READ_ONCE(rb->aux_in_sampling)) { 6967 data->aux_size = 0; 6968 } else { 6969 size = min_t(size_t, size, perf_aux_size(rb)); 6970 data->aux_size = ALIGN(size, sizeof(u64)); 6971 } 6972 ring_buffer_put(rb); 6973 6974 out: 6975 return data->aux_size; 6976 } 6977 6978 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6979 struct perf_event *event, 6980 struct perf_output_handle *handle, 6981 unsigned long size) 6982 { 6983 unsigned long flags; 6984 long ret; 6985 6986 /* 6987 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6988 * paths. If we start calling them in NMI context, they may race with 6989 * the IRQ ones, that is, for example, re-starting an event that's just 6990 * been stopped, which is why we're using a separate callback that 6991 * doesn't change the event state. 6992 * 6993 * IRQs need to be disabled to prevent IPIs from racing with us. 6994 */ 6995 local_irq_save(flags); 6996 /* 6997 * Guard against NMI hits inside the critical section; 6998 * see also perf_prepare_sample_aux(). 6999 */ 7000 WRITE_ONCE(rb->aux_in_sampling, 1); 7001 barrier(); 7002 7003 ret = event->pmu->snapshot_aux(event, handle, size); 7004 7005 barrier(); 7006 WRITE_ONCE(rb->aux_in_sampling, 0); 7007 local_irq_restore(flags); 7008 7009 return ret; 7010 } 7011 7012 static void perf_aux_sample_output(struct perf_event *event, 7013 struct perf_output_handle *handle, 7014 struct perf_sample_data *data) 7015 { 7016 struct perf_event *sampler = event->aux_event; 7017 struct perf_buffer *rb; 7018 unsigned long pad; 7019 long size; 7020 7021 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7022 return; 7023 7024 rb = ring_buffer_get(sampler); 7025 if (!rb) 7026 return; 7027 7028 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7029 7030 /* 7031 * An error here means that perf_output_copy() failed (returned a 7032 * non-zero surplus that it didn't copy), which in its current 7033 * enlightened implementation is not possible. If that changes, we'd 7034 * like to know. 7035 */ 7036 if (WARN_ON_ONCE(size < 0)) 7037 goto out_put; 7038 7039 /* 7040 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7041 * perf_prepare_sample_aux(), so should not be more than that. 7042 */ 7043 pad = data->aux_size - size; 7044 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7045 pad = 8; 7046 7047 if (pad) { 7048 u64 zero = 0; 7049 perf_output_copy(handle, &zero, pad); 7050 } 7051 7052 out_put: 7053 ring_buffer_put(rb); 7054 } 7055 7056 static void __perf_event_header__init_id(struct perf_event_header *header, 7057 struct perf_sample_data *data, 7058 struct perf_event *event, 7059 u64 sample_type) 7060 { 7061 data->type = event->attr.sample_type; 7062 header->size += event->id_header_size; 7063 7064 if (sample_type & PERF_SAMPLE_TID) { 7065 /* namespace issues */ 7066 data->tid_entry.pid = perf_event_pid(event, current); 7067 data->tid_entry.tid = perf_event_tid(event, current); 7068 } 7069 7070 if (sample_type & PERF_SAMPLE_TIME) 7071 data->time = perf_event_clock(event); 7072 7073 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7074 data->id = primary_event_id(event); 7075 7076 if (sample_type & PERF_SAMPLE_STREAM_ID) 7077 data->stream_id = event->id; 7078 7079 if (sample_type & PERF_SAMPLE_CPU) { 7080 data->cpu_entry.cpu = raw_smp_processor_id(); 7081 data->cpu_entry.reserved = 0; 7082 } 7083 } 7084 7085 void perf_event_header__init_id(struct perf_event_header *header, 7086 struct perf_sample_data *data, 7087 struct perf_event *event) 7088 { 7089 if (event->attr.sample_id_all) 7090 __perf_event_header__init_id(header, data, event, event->attr.sample_type); 7091 } 7092 7093 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7094 struct perf_sample_data *data) 7095 { 7096 u64 sample_type = data->type; 7097 7098 if (sample_type & PERF_SAMPLE_TID) 7099 perf_output_put(handle, data->tid_entry); 7100 7101 if (sample_type & PERF_SAMPLE_TIME) 7102 perf_output_put(handle, data->time); 7103 7104 if (sample_type & PERF_SAMPLE_ID) 7105 perf_output_put(handle, data->id); 7106 7107 if (sample_type & PERF_SAMPLE_STREAM_ID) 7108 perf_output_put(handle, data->stream_id); 7109 7110 if (sample_type & PERF_SAMPLE_CPU) 7111 perf_output_put(handle, data->cpu_entry); 7112 7113 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7114 perf_output_put(handle, data->id); 7115 } 7116 7117 void perf_event__output_id_sample(struct perf_event *event, 7118 struct perf_output_handle *handle, 7119 struct perf_sample_data *sample) 7120 { 7121 if (event->attr.sample_id_all) 7122 __perf_event__output_id_sample(handle, sample); 7123 } 7124 7125 static void perf_output_read_one(struct perf_output_handle *handle, 7126 struct perf_event *event, 7127 u64 enabled, u64 running) 7128 { 7129 u64 read_format = event->attr.read_format; 7130 u64 values[5]; 7131 int n = 0; 7132 7133 values[n++] = perf_event_count(event); 7134 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7135 values[n++] = enabled + 7136 atomic64_read(&event->child_total_time_enabled); 7137 } 7138 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7139 values[n++] = running + 7140 atomic64_read(&event->child_total_time_running); 7141 } 7142 if (read_format & PERF_FORMAT_ID) 7143 values[n++] = primary_event_id(event); 7144 if (read_format & PERF_FORMAT_LOST) 7145 values[n++] = atomic64_read(&event->lost_samples); 7146 7147 __output_copy(handle, values, n * sizeof(u64)); 7148 } 7149 7150 static void perf_output_read_group(struct perf_output_handle *handle, 7151 struct perf_event *event, 7152 u64 enabled, u64 running) 7153 { 7154 struct perf_event *leader = event->group_leader, *sub; 7155 u64 read_format = event->attr.read_format; 7156 unsigned long flags; 7157 u64 values[6]; 7158 int n = 0; 7159 7160 /* 7161 * Disabling interrupts avoids all counter scheduling 7162 * (context switches, timer based rotation and IPIs). 7163 */ 7164 local_irq_save(flags); 7165 7166 values[n++] = 1 + leader->nr_siblings; 7167 7168 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7169 values[n++] = enabled; 7170 7171 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7172 values[n++] = running; 7173 7174 if ((leader != event) && 7175 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7176 leader->pmu->read(leader); 7177 7178 values[n++] = perf_event_count(leader); 7179 if (read_format & PERF_FORMAT_ID) 7180 values[n++] = primary_event_id(leader); 7181 if (read_format & PERF_FORMAT_LOST) 7182 values[n++] = atomic64_read(&leader->lost_samples); 7183 7184 __output_copy(handle, values, n * sizeof(u64)); 7185 7186 for_each_sibling_event(sub, leader) { 7187 n = 0; 7188 7189 if ((sub != event) && 7190 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7191 sub->pmu->read(sub); 7192 7193 values[n++] = perf_event_count(sub); 7194 if (read_format & PERF_FORMAT_ID) 7195 values[n++] = primary_event_id(sub); 7196 if (read_format & PERF_FORMAT_LOST) 7197 values[n++] = atomic64_read(&sub->lost_samples); 7198 7199 __output_copy(handle, values, n * sizeof(u64)); 7200 } 7201 7202 local_irq_restore(flags); 7203 } 7204 7205 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7206 PERF_FORMAT_TOTAL_TIME_RUNNING) 7207 7208 /* 7209 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7210 * 7211 * The problem is that its both hard and excessively expensive to iterate the 7212 * child list, not to mention that its impossible to IPI the children running 7213 * on another CPU, from interrupt/NMI context. 7214 */ 7215 static void perf_output_read(struct perf_output_handle *handle, 7216 struct perf_event *event) 7217 { 7218 u64 enabled = 0, running = 0, now; 7219 u64 read_format = event->attr.read_format; 7220 7221 /* 7222 * compute total_time_enabled, total_time_running 7223 * based on snapshot values taken when the event 7224 * was last scheduled in. 7225 * 7226 * we cannot simply called update_context_time() 7227 * because of locking issue as we are called in 7228 * NMI context 7229 */ 7230 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7231 calc_timer_values(event, &now, &enabled, &running); 7232 7233 if (event->attr.read_format & PERF_FORMAT_GROUP) 7234 perf_output_read_group(handle, event, enabled, running); 7235 else 7236 perf_output_read_one(handle, event, enabled, running); 7237 } 7238 7239 void perf_output_sample(struct perf_output_handle *handle, 7240 struct perf_event_header *header, 7241 struct perf_sample_data *data, 7242 struct perf_event *event) 7243 { 7244 u64 sample_type = data->type; 7245 7246 perf_output_put(handle, *header); 7247 7248 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7249 perf_output_put(handle, data->id); 7250 7251 if (sample_type & PERF_SAMPLE_IP) 7252 perf_output_put(handle, data->ip); 7253 7254 if (sample_type & PERF_SAMPLE_TID) 7255 perf_output_put(handle, data->tid_entry); 7256 7257 if (sample_type & PERF_SAMPLE_TIME) 7258 perf_output_put(handle, data->time); 7259 7260 if (sample_type & PERF_SAMPLE_ADDR) 7261 perf_output_put(handle, data->addr); 7262 7263 if (sample_type & PERF_SAMPLE_ID) 7264 perf_output_put(handle, data->id); 7265 7266 if (sample_type & PERF_SAMPLE_STREAM_ID) 7267 perf_output_put(handle, data->stream_id); 7268 7269 if (sample_type & PERF_SAMPLE_CPU) 7270 perf_output_put(handle, data->cpu_entry); 7271 7272 if (sample_type & PERF_SAMPLE_PERIOD) 7273 perf_output_put(handle, data->period); 7274 7275 if (sample_type & PERF_SAMPLE_READ) 7276 perf_output_read(handle, event); 7277 7278 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7279 int size = 1; 7280 7281 size += data->callchain->nr; 7282 size *= sizeof(u64); 7283 __output_copy(handle, data->callchain, size); 7284 } 7285 7286 if (sample_type & PERF_SAMPLE_RAW) { 7287 struct perf_raw_record *raw = data->raw; 7288 7289 if (raw) { 7290 struct perf_raw_frag *frag = &raw->frag; 7291 7292 perf_output_put(handle, raw->size); 7293 do { 7294 if (frag->copy) { 7295 __output_custom(handle, frag->copy, 7296 frag->data, frag->size); 7297 } else { 7298 __output_copy(handle, frag->data, 7299 frag->size); 7300 } 7301 if (perf_raw_frag_last(frag)) 7302 break; 7303 frag = frag->next; 7304 } while (1); 7305 if (frag->pad) 7306 __output_skip(handle, NULL, frag->pad); 7307 } else { 7308 struct { 7309 u32 size; 7310 u32 data; 7311 } raw = { 7312 .size = sizeof(u32), 7313 .data = 0, 7314 }; 7315 perf_output_put(handle, raw); 7316 } 7317 } 7318 7319 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7320 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { 7321 size_t size; 7322 7323 size = data->br_stack->nr 7324 * sizeof(struct perf_branch_entry); 7325 7326 perf_output_put(handle, data->br_stack->nr); 7327 if (branch_sample_hw_index(event)) 7328 perf_output_put(handle, data->br_stack->hw_idx); 7329 perf_output_copy(handle, data->br_stack->entries, size); 7330 } else { 7331 /* 7332 * we always store at least the value of nr 7333 */ 7334 u64 nr = 0; 7335 perf_output_put(handle, nr); 7336 } 7337 } 7338 7339 if (sample_type & PERF_SAMPLE_REGS_USER) { 7340 u64 abi = data->regs_user.abi; 7341 7342 /* 7343 * If there are no regs to dump, notice it through 7344 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7345 */ 7346 perf_output_put(handle, abi); 7347 7348 if (abi) { 7349 u64 mask = event->attr.sample_regs_user; 7350 perf_output_sample_regs(handle, 7351 data->regs_user.regs, 7352 mask); 7353 } 7354 } 7355 7356 if (sample_type & PERF_SAMPLE_STACK_USER) { 7357 perf_output_sample_ustack(handle, 7358 data->stack_user_size, 7359 data->regs_user.regs); 7360 } 7361 7362 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7363 perf_output_put(handle, data->weight.full); 7364 7365 if (sample_type & PERF_SAMPLE_DATA_SRC) 7366 perf_output_put(handle, data->data_src.val); 7367 7368 if (sample_type & PERF_SAMPLE_TRANSACTION) 7369 perf_output_put(handle, data->txn); 7370 7371 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7372 u64 abi = data->regs_intr.abi; 7373 /* 7374 * If there are no regs to dump, notice it through 7375 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7376 */ 7377 perf_output_put(handle, abi); 7378 7379 if (abi) { 7380 u64 mask = event->attr.sample_regs_intr; 7381 7382 perf_output_sample_regs(handle, 7383 data->regs_intr.regs, 7384 mask); 7385 } 7386 } 7387 7388 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7389 perf_output_put(handle, data->phys_addr); 7390 7391 if (sample_type & PERF_SAMPLE_CGROUP) 7392 perf_output_put(handle, data->cgroup); 7393 7394 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7395 perf_output_put(handle, data->data_page_size); 7396 7397 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7398 perf_output_put(handle, data->code_page_size); 7399 7400 if (sample_type & PERF_SAMPLE_AUX) { 7401 perf_output_put(handle, data->aux_size); 7402 7403 if (data->aux_size) 7404 perf_aux_sample_output(event, handle, data); 7405 } 7406 7407 if (!event->attr.watermark) { 7408 int wakeup_events = event->attr.wakeup_events; 7409 7410 if (wakeup_events) { 7411 struct perf_buffer *rb = handle->rb; 7412 int events = local_inc_return(&rb->events); 7413 7414 if (events >= wakeup_events) { 7415 local_sub(wakeup_events, &rb->events); 7416 local_inc(&rb->wakeup); 7417 } 7418 } 7419 } 7420 } 7421 7422 static u64 perf_virt_to_phys(u64 virt) 7423 { 7424 u64 phys_addr = 0; 7425 7426 if (!virt) 7427 return 0; 7428 7429 if (virt >= TASK_SIZE) { 7430 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7431 if (virt_addr_valid((void *)(uintptr_t)virt) && 7432 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7433 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7434 } else { 7435 /* 7436 * Walking the pages tables for user address. 7437 * Interrupts are disabled, so it prevents any tear down 7438 * of the page tables. 7439 * Try IRQ-safe get_user_page_fast_only first. 7440 * If failed, leave phys_addr as 0. 7441 */ 7442 if (current->mm != NULL) { 7443 struct page *p; 7444 7445 pagefault_disable(); 7446 if (get_user_page_fast_only(virt, 0, &p)) { 7447 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7448 put_page(p); 7449 } 7450 pagefault_enable(); 7451 } 7452 } 7453 7454 return phys_addr; 7455 } 7456 7457 /* 7458 * Return the pagetable size of a given virtual address. 7459 */ 7460 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7461 { 7462 u64 size = 0; 7463 7464 #ifdef CONFIG_HAVE_FAST_GUP 7465 pgd_t *pgdp, pgd; 7466 p4d_t *p4dp, p4d; 7467 pud_t *pudp, pud; 7468 pmd_t *pmdp, pmd; 7469 pte_t *ptep, pte; 7470 7471 pgdp = pgd_offset(mm, addr); 7472 pgd = READ_ONCE(*pgdp); 7473 if (pgd_none(pgd)) 7474 return 0; 7475 7476 if (pgd_leaf(pgd)) 7477 return pgd_leaf_size(pgd); 7478 7479 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7480 p4d = READ_ONCE(*p4dp); 7481 if (!p4d_present(p4d)) 7482 return 0; 7483 7484 if (p4d_leaf(p4d)) 7485 return p4d_leaf_size(p4d); 7486 7487 pudp = pud_offset_lockless(p4dp, p4d, addr); 7488 pud = READ_ONCE(*pudp); 7489 if (!pud_present(pud)) 7490 return 0; 7491 7492 if (pud_leaf(pud)) 7493 return pud_leaf_size(pud); 7494 7495 pmdp = pmd_offset_lockless(pudp, pud, addr); 7496 pmd = pmdp_get_lockless(pmdp); 7497 if (!pmd_present(pmd)) 7498 return 0; 7499 7500 if (pmd_leaf(pmd)) 7501 return pmd_leaf_size(pmd); 7502 7503 ptep = pte_offset_map(&pmd, addr); 7504 pte = ptep_get_lockless(ptep); 7505 if (pte_present(pte)) 7506 size = pte_leaf_size(pte); 7507 pte_unmap(ptep); 7508 #endif /* CONFIG_HAVE_FAST_GUP */ 7509 7510 return size; 7511 } 7512 7513 static u64 perf_get_page_size(unsigned long addr) 7514 { 7515 struct mm_struct *mm; 7516 unsigned long flags; 7517 u64 size; 7518 7519 if (!addr) 7520 return 0; 7521 7522 /* 7523 * Software page-table walkers must disable IRQs, 7524 * which prevents any tear down of the page tables. 7525 */ 7526 local_irq_save(flags); 7527 7528 mm = current->mm; 7529 if (!mm) { 7530 /* 7531 * For kernel threads and the like, use init_mm so that 7532 * we can find kernel memory. 7533 */ 7534 mm = &init_mm; 7535 } 7536 7537 size = perf_get_pgtable_size(mm, addr); 7538 7539 local_irq_restore(flags); 7540 7541 return size; 7542 } 7543 7544 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7545 7546 struct perf_callchain_entry * 7547 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7548 { 7549 bool kernel = !event->attr.exclude_callchain_kernel; 7550 bool user = !event->attr.exclude_callchain_user; 7551 /* Disallow cross-task user callchains. */ 7552 bool crosstask = event->ctx->task && event->ctx->task != current; 7553 const u32 max_stack = event->attr.sample_max_stack; 7554 struct perf_callchain_entry *callchain; 7555 7556 if (!kernel && !user) 7557 return &__empty_callchain; 7558 7559 callchain = get_perf_callchain(regs, 0, kernel, user, 7560 max_stack, crosstask, true); 7561 return callchain ?: &__empty_callchain; 7562 } 7563 7564 void perf_prepare_sample(struct perf_event_header *header, 7565 struct perf_sample_data *data, 7566 struct perf_event *event, 7567 struct pt_regs *regs) 7568 { 7569 u64 sample_type = event->attr.sample_type; 7570 u64 filtered_sample_type; 7571 7572 header->type = PERF_RECORD_SAMPLE; 7573 header->size = sizeof(*header) + event->header_size; 7574 7575 header->misc = 0; 7576 header->misc |= perf_misc_flags(regs); 7577 7578 /* 7579 * Clear the sample flags that have already been done by the 7580 * PMU driver. 7581 */ 7582 filtered_sample_type = sample_type & ~data->sample_flags; 7583 __perf_event_header__init_id(header, data, event, filtered_sample_type); 7584 7585 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7586 data->ip = perf_instruction_pointer(regs); 7587 7588 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7589 int size = 1; 7590 7591 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7592 data->callchain = perf_callchain(event, regs); 7593 7594 size += data->callchain->nr; 7595 7596 header->size += size * sizeof(u64); 7597 } 7598 7599 if (sample_type & PERF_SAMPLE_RAW) { 7600 struct perf_raw_record *raw = data->raw; 7601 int size; 7602 7603 if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) { 7604 struct perf_raw_frag *frag = &raw->frag; 7605 u32 sum = 0; 7606 7607 do { 7608 sum += frag->size; 7609 if (perf_raw_frag_last(frag)) 7610 break; 7611 frag = frag->next; 7612 } while (1); 7613 7614 size = round_up(sum + sizeof(u32), sizeof(u64)); 7615 raw->size = size - sizeof(u32); 7616 frag->pad = raw->size - sum; 7617 } else { 7618 size = sizeof(u64); 7619 data->raw = NULL; 7620 } 7621 7622 header->size += size; 7623 } 7624 7625 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7626 int size = sizeof(u64); /* nr */ 7627 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { 7628 if (branch_sample_hw_index(event)) 7629 size += sizeof(u64); 7630 7631 size += data->br_stack->nr 7632 * sizeof(struct perf_branch_entry); 7633 } 7634 header->size += size; 7635 } 7636 7637 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7638 perf_sample_regs_user(&data->regs_user, regs); 7639 7640 if (sample_type & PERF_SAMPLE_REGS_USER) { 7641 /* regs dump ABI info */ 7642 int size = sizeof(u64); 7643 7644 if (data->regs_user.regs) { 7645 u64 mask = event->attr.sample_regs_user; 7646 size += hweight64(mask) * sizeof(u64); 7647 } 7648 7649 header->size += size; 7650 } 7651 7652 if (sample_type & PERF_SAMPLE_STACK_USER) { 7653 /* 7654 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7655 * processed as the last one or have additional check added 7656 * in case new sample type is added, because we could eat 7657 * up the rest of the sample size. 7658 */ 7659 u16 stack_size = event->attr.sample_stack_user; 7660 u16 size = sizeof(u64); 7661 7662 stack_size = perf_sample_ustack_size(stack_size, header->size, 7663 data->regs_user.regs); 7664 7665 /* 7666 * If there is something to dump, add space for the dump 7667 * itself and for the field that tells the dynamic size, 7668 * which is how many have been actually dumped. 7669 */ 7670 if (stack_size) 7671 size += sizeof(u64) + stack_size; 7672 7673 data->stack_user_size = stack_size; 7674 header->size += size; 7675 } 7676 7677 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7678 data->weight.full = 0; 7679 7680 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) 7681 data->data_src.val = PERF_MEM_NA; 7682 7683 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) 7684 data->txn = 0; 7685 7686 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) { 7687 if (filtered_sample_type & PERF_SAMPLE_ADDR) 7688 data->addr = 0; 7689 } 7690 7691 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7692 /* regs dump ABI info */ 7693 int size = sizeof(u64); 7694 7695 perf_sample_regs_intr(&data->regs_intr, regs); 7696 7697 if (data->regs_intr.regs) { 7698 u64 mask = event->attr.sample_regs_intr; 7699 7700 size += hweight64(mask) * sizeof(u64); 7701 } 7702 7703 header->size += size; 7704 } 7705 7706 if (sample_type & PERF_SAMPLE_PHYS_ADDR && 7707 filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) 7708 data->phys_addr = perf_virt_to_phys(data->addr); 7709 7710 #ifdef CONFIG_CGROUP_PERF 7711 if (sample_type & PERF_SAMPLE_CGROUP) { 7712 struct cgroup *cgrp; 7713 7714 /* protected by RCU */ 7715 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7716 data->cgroup = cgroup_id(cgrp); 7717 } 7718 #endif 7719 7720 /* 7721 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7722 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7723 * but the value will not dump to the userspace. 7724 */ 7725 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7726 data->data_page_size = perf_get_page_size(data->addr); 7727 7728 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7729 data->code_page_size = perf_get_page_size(data->ip); 7730 7731 if (sample_type & PERF_SAMPLE_AUX) { 7732 u64 size; 7733 7734 header->size += sizeof(u64); /* size */ 7735 7736 /* 7737 * Given the 16bit nature of header::size, an AUX sample can 7738 * easily overflow it, what with all the preceding sample bits. 7739 * Make sure this doesn't happen by using up to U16_MAX bytes 7740 * per sample in total (rounded down to 8 byte boundary). 7741 */ 7742 size = min_t(size_t, U16_MAX - header->size, 7743 event->attr.aux_sample_size); 7744 size = rounddown(size, 8); 7745 size = perf_prepare_sample_aux(event, data, size); 7746 7747 WARN_ON_ONCE(size + header->size > U16_MAX); 7748 header->size += size; 7749 } 7750 /* 7751 * If you're adding more sample types here, you likely need to do 7752 * something about the overflowing header::size, like repurpose the 7753 * lowest 3 bits of size, which should be always zero at the moment. 7754 * This raises a more important question, do we really need 512k sized 7755 * samples and why, so good argumentation is in order for whatever you 7756 * do here next. 7757 */ 7758 WARN_ON_ONCE(header->size & 7); 7759 } 7760 7761 static __always_inline int 7762 __perf_event_output(struct perf_event *event, 7763 struct perf_sample_data *data, 7764 struct pt_regs *regs, 7765 int (*output_begin)(struct perf_output_handle *, 7766 struct perf_sample_data *, 7767 struct perf_event *, 7768 unsigned int)) 7769 { 7770 struct perf_output_handle handle; 7771 struct perf_event_header header; 7772 int err; 7773 7774 /* protect the callchain buffers */ 7775 rcu_read_lock(); 7776 7777 perf_prepare_sample(&header, data, event, regs); 7778 7779 err = output_begin(&handle, data, event, header.size); 7780 if (err) 7781 goto exit; 7782 7783 perf_output_sample(&handle, &header, data, event); 7784 7785 perf_output_end(&handle); 7786 7787 exit: 7788 rcu_read_unlock(); 7789 return err; 7790 } 7791 7792 void 7793 perf_event_output_forward(struct perf_event *event, 7794 struct perf_sample_data *data, 7795 struct pt_regs *regs) 7796 { 7797 __perf_event_output(event, data, regs, perf_output_begin_forward); 7798 } 7799 7800 void 7801 perf_event_output_backward(struct perf_event *event, 7802 struct perf_sample_data *data, 7803 struct pt_regs *regs) 7804 { 7805 __perf_event_output(event, data, regs, perf_output_begin_backward); 7806 } 7807 7808 int 7809 perf_event_output(struct perf_event *event, 7810 struct perf_sample_data *data, 7811 struct pt_regs *regs) 7812 { 7813 return __perf_event_output(event, data, regs, perf_output_begin); 7814 } 7815 7816 /* 7817 * read event_id 7818 */ 7819 7820 struct perf_read_event { 7821 struct perf_event_header header; 7822 7823 u32 pid; 7824 u32 tid; 7825 }; 7826 7827 static void 7828 perf_event_read_event(struct perf_event *event, 7829 struct task_struct *task) 7830 { 7831 struct perf_output_handle handle; 7832 struct perf_sample_data sample; 7833 struct perf_read_event read_event = { 7834 .header = { 7835 .type = PERF_RECORD_READ, 7836 .misc = 0, 7837 .size = sizeof(read_event) + event->read_size, 7838 }, 7839 .pid = perf_event_pid(event, task), 7840 .tid = perf_event_tid(event, task), 7841 }; 7842 int ret; 7843 7844 perf_event_header__init_id(&read_event.header, &sample, event); 7845 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7846 if (ret) 7847 return; 7848 7849 perf_output_put(&handle, read_event); 7850 perf_output_read(&handle, event); 7851 perf_event__output_id_sample(event, &handle, &sample); 7852 7853 perf_output_end(&handle); 7854 } 7855 7856 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7857 7858 static void 7859 perf_iterate_ctx(struct perf_event_context *ctx, 7860 perf_iterate_f output, 7861 void *data, bool all) 7862 { 7863 struct perf_event *event; 7864 7865 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7866 if (!all) { 7867 if (event->state < PERF_EVENT_STATE_INACTIVE) 7868 continue; 7869 if (!event_filter_match(event)) 7870 continue; 7871 } 7872 7873 output(event, data); 7874 } 7875 } 7876 7877 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7878 { 7879 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7880 struct perf_event *event; 7881 7882 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7883 /* 7884 * Skip events that are not fully formed yet; ensure that 7885 * if we observe event->ctx, both event and ctx will be 7886 * complete enough. See perf_install_in_context(). 7887 */ 7888 if (!smp_load_acquire(&event->ctx)) 7889 continue; 7890 7891 if (event->state < PERF_EVENT_STATE_INACTIVE) 7892 continue; 7893 if (!event_filter_match(event)) 7894 continue; 7895 output(event, data); 7896 } 7897 } 7898 7899 /* 7900 * Iterate all events that need to receive side-band events. 7901 * 7902 * For new callers; ensure that account_pmu_sb_event() includes 7903 * your event, otherwise it might not get delivered. 7904 */ 7905 static void 7906 perf_iterate_sb(perf_iterate_f output, void *data, 7907 struct perf_event_context *task_ctx) 7908 { 7909 struct perf_event_context *ctx; 7910 7911 rcu_read_lock(); 7912 preempt_disable(); 7913 7914 /* 7915 * If we have task_ctx != NULL we only notify the task context itself. 7916 * The task_ctx is set only for EXIT events before releasing task 7917 * context. 7918 */ 7919 if (task_ctx) { 7920 perf_iterate_ctx(task_ctx, output, data, false); 7921 goto done; 7922 } 7923 7924 perf_iterate_sb_cpu(output, data); 7925 7926 ctx = rcu_dereference(current->perf_event_ctxp); 7927 if (ctx) 7928 perf_iterate_ctx(ctx, output, data, false); 7929 done: 7930 preempt_enable(); 7931 rcu_read_unlock(); 7932 } 7933 7934 /* 7935 * Clear all file-based filters at exec, they'll have to be 7936 * re-instated when/if these objects are mmapped again. 7937 */ 7938 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7939 { 7940 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7941 struct perf_addr_filter *filter; 7942 unsigned int restart = 0, count = 0; 7943 unsigned long flags; 7944 7945 if (!has_addr_filter(event)) 7946 return; 7947 7948 raw_spin_lock_irqsave(&ifh->lock, flags); 7949 list_for_each_entry(filter, &ifh->list, entry) { 7950 if (filter->path.dentry) { 7951 event->addr_filter_ranges[count].start = 0; 7952 event->addr_filter_ranges[count].size = 0; 7953 restart++; 7954 } 7955 7956 count++; 7957 } 7958 7959 if (restart) 7960 event->addr_filters_gen++; 7961 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7962 7963 if (restart) 7964 perf_event_stop(event, 1); 7965 } 7966 7967 void perf_event_exec(void) 7968 { 7969 struct perf_event_context *ctx; 7970 7971 ctx = perf_pin_task_context(current); 7972 if (!ctx) 7973 return; 7974 7975 perf_event_enable_on_exec(ctx); 7976 perf_event_remove_on_exec(ctx); 7977 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 7978 7979 perf_unpin_context(ctx); 7980 put_ctx(ctx); 7981 } 7982 7983 struct remote_output { 7984 struct perf_buffer *rb; 7985 int err; 7986 }; 7987 7988 static void __perf_event_output_stop(struct perf_event *event, void *data) 7989 { 7990 struct perf_event *parent = event->parent; 7991 struct remote_output *ro = data; 7992 struct perf_buffer *rb = ro->rb; 7993 struct stop_event_data sd = { 7994 .event = event, 7995 }; 7996 7997 if (!has_aux(event)) 7998 return; 7999 8000 if (!parent) 8001 parent = event; 8002 8003 /* 8004 * In case of inheritance, it will be the parent that links to the 8005 * ring-buffer, but it will be the child that's actually using it. 8006 * 8007 * We are using event::rb to determine if the event should be stopped, 8008 * however this may race with ring_buffer_attach() (through set_output), 8009 * which will make us skip the event that actually needs to be stopped. 8010 * So ring_buffer_attach() has to stop an aux event before re-assigning 8011 * its rb pointer. 8012 */ 8013 if (rcu_dereference(parent->rb) == rb) 8014 ro->err = __perf_event_stop(&sd); 8015 } 8016 8017 static int __perf_pmu_output_stop(void *info) 8018 { 8019 struct perf_event *event = info; 8020 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8021 struct remote_output ro = { 8022 .rb = event->rb, 8023 }; 8024 8025 rcu_read_lock(); 8026 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8027 if (cpuctx->task_ctx) 8028 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8029 &ro, false); 8030 rcu_read_unlock(); 8031 8032 return ro.err; 8033 } 8034 8035 static void perf_pmu_output_stop(struct perf_event *event) 8036 { 8037 struct perf_event *iter; 8038 int err, cpu; 8039 8040 restart: 8041 rcu_read_lock(); 8042 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8043 /* 8044 * For per-CPU events, we need to make sure that neither they 8045 * nor their children are running; for cpu==-1 events it's 8046 * sufficient to stop the event itself if it's active, since 8047 * it can't have children. 8048 */ 8049 cpu = iter->cpu; 8050 if (cpu == -1) 8051 cpu = READ_ONCE(iter->oncpu); 8052 8053 if (cpu == -1) 8054 continue; 8055 8056 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8057 if (err == -EAGAIN) { 8058 rcu_read_unlock(); 8059 goto restart; 8060 } 8061 } 8062 rcu_read_unlock(); 8063 } 8064 8065 /* 8066 * task tracking -- fork/exit 8067 * 8068 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8069 */ 8070 8071 struct perf_task_event { 8072 struct task_struct *task; 8073 struct perf_event_context *task_ctx; 8074 8075 struct { 8076 struct perf_event_header header; 8077 8078 u32 pid; 8079 u32 ppid; 8080 u32 tid; 8081 u32 ptid; 8082 u64 time; 8083 } event_id; 8084 }; 8085 8086 static int perf_event_task_match(struct perf_event *event) 8087 { 8088 return event->attr.comm || event->attr.mmap || 8089 event->attr.mmap2 || event->attr.mmap_data || 8090 event->attr.task; 8091 } 8092 8093 static void perf_event_task_output(struct perf_event *event, 8094 void *data) 8095 { 8096 struct perf_task_event *task_event = data; 8097 struct perf_output_handle handle; 8098 struct perf_sample_data sample; 8099 struct task_struct *task = task_event->task; 8100 int ret, size = task_event->event_id.header.size; 8101 8102 if (!perf_event_task_match(event)) 8103 return; 8104 8105 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8106 8107 ret = perf_output_begin(&handle, &sample, event, 8108 task_event->event_id.header.size); 8109 if (ret) 8110 goto out; 8111 8112 task_event->event_id.pid = perf_event_pid(event, task); 8113 task_event->event_id.tid = perf_event_tid(event, task); 8114 8115 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8116 task_event->event_id.ppid = perf_event_pid(event, 8117 task->real_parent); 8118 task_event->event_id.ptid = perf_event_pid(event, 8119 task->real_parent); 8120 } else { /* PERF_RECORD_FORK */ 8121 task_event->event_id.ppid = perf_event_pid(event, current); 8122 task_event->event_id.ptid = perf_event_tid(event, current); 8123 } 8124 8125 task_event->event_id.time = perf_event_clock(event); 8126 8127 perf_output_put(&handle, task_event->event_id); 8128 8129 perf_event__output_id_sample(event, &handle, &sample); 8130 8131 perf_output_end(&handle); 8132 out: 8133 task_event->event_id.header.size = size; 8134 } 8135 8136 static void perf_event_task(struct task_struct *task, 8137 struct perf_event_context *task_ctx, 8138 int new) 8139 { 8140 struct perf_task_event task_event; 8141 8142 if (!atomic_read(&nr_comm_events) && 8143 !atomic_read(&nr_mmap_events) && 8144 !atomic_read(&nr_task_events)) 8145 return; 8146 8147 task_event = (struct perf_task_event){ 8148 .task = task, 8149 .task_ctx = task_ctx, 8150 .event_id = { 8151 .header = { 8152 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8153 .misc = 0, 8154 .size = sizeof(task_event.event_id), 8155 }, 8156 /* .pid */ 8157 /* .ppid */ 8158 /* .tid */ 8159 /* .ptid */ 8160 /* .time */ 8161 }, 8162 }; 8163 8164 perf_iterate_sb(perf_event_task_output, 8165 &task_event, 8166 task_ctx); 8167 } 8168 8169 void perf_event_fork(struct task_struct *task) 8170 { 8171 perf_event_task(task, NULL, 1); 8172 perf_event_namespaces(task); 8173 } 8174 8175 /* 8176 * comm tracking 8177 */ 8178 8179 struct perf_comm_event { 8180 struct task_struct *task; 8181 char *comm; 8182 int comm_size; 8183 8184 struct { 8185 struct perf_event_header header; 8186 8187 u32 pid; 8188 u32 tid; 8189 } event_id; 8190 }; 8191 8192 static int perf_event_comm_match(struct perf_event *event) 8193 { 8194 return event->attr.comm; 8195 } 8196 8197 static void perf_event_comm_output(struct perf_event *event, 8198 void *data) 8199 { 8200 struct perf_comm_event *comm_event = data; 8201 struct perf_output_handle handle; 8202 struct perf_sample_data sample; 8203 int size = comm_event->event_id.header.size; 8204 int ret; 8205 8206 if (!perf_event_comm_match(event)) 8207 return; 8208 8209 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8210 ret = perf_output_begin(&handle, &sample, event, 8211 comm_event->event_id.header.size); 8212 8213 if (ret) 8214 goto out; 8215 8216 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8217 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8218 8219 perf_output_put(&handle, comm_event->event_id); 8220 __output_copy(&handle, comm_event->comm, 8221 comm_event->comm_size); 8222 8223 perf_event__output_id_sample(event, &handle, &sample); 8224 8225 perf_output_end(&handle); 8226 out: 8227 comm_event->event_id.header.size = size; 8228 } 8229 8230 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8231 { 8232 char comm[TASK_COMM_LEN]; 8233 unsigned int size; 8234 8235 memset(comm, 0, sizeof(comm)); 8236 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 8237 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8238 8239 comm_event->comm = comm; 8240 comm_event->comm_size = size; 8241 8242 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8243 8244 perf_iterate_sb(perf_event_comm_output, 8245 comm_event, 8246 NULL); 8247 } 8248 8249 void perf_event_comm(struct task_struct *task, bool exec) 8250 { 8251 struct perf_comm_event comm_event; 8252 8253 if (!atomic_read(&nr_comm_events)) 8254 return; 8255 8256 comm_event = (struct perf_comm_event){ 8257 .task = task, 8258 /* .comm */ 8259 /* .comm_size */ 8260 .event_id = { 8261 .header = { 8262 .type = PERF_RECORD_COMM, 8263 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8264 /* .size */ 8265 }, 8266 /* .pid */ 8267 /* .tid */ 8268 }, 8269 }; 8270 8271 perf_event_comm_event(&comm_event); 8272 } 8273 8274 /* 8275 * namespaces tracking 8276 */ 8277 8278 struct perf_namespaces_event { 8279 struct task_struct *task; 8280 8281 struct { 8282 struct perf_event_header header; 8283 8284 u32 pid; 8285 u32 tid; 8286 u64 nr_namespaces; 8287 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8288 } event_id; 8289 }; 8290 8291 static int perf_event_namespaces_match(struct perf_event *event) 8292 { 8293 return event->attr.namespaces; 8294 } 8295 8296 static void perf_event_namespaces_output(struct perf_event *event, 8297 void *data) 8298 { 8299 struct perf_namespaces_event *namespaces_event = data; 8300 struct perf_output_handle handle; 8301 struct perf_sample_data sample; 8302 u16 header_size = namespaces_event->event_id.header.size; 8303 int ret; 8304 8305 if (!perf_event_namespaces_match(event)) 8306 return; 8307 8308 perf_event_header__init_id(&namespaces_event->event_id.header, 8309 &sample, event); 8310 ret = perf_output_begin(&handle, &sample, event, 8311 namespaces_event->event_id.header.size); 8312 if (ret) 8313 goto out; 8314 8315 namespaces_event->event_id.pid = perf_event_pid(event, 8316 namespaces_event->task); 8317 namespaces_event->event_id.tid = perf_event_tid(event, 8318 namespaces_event->task); 8319 8320 perf_output_put(&handle, namespaces_event->event_id); 8321 8322 perf_event__output_id_sample(event, &handle, &sample); 8323 8324 perf_output_end(&handle); 8325 out: 8326 namespaces_event->event_id.header.size = header_size; 8327 } 8328 8329 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8330 struct task_struct *task, 8331 const struct proc_ns_operations *ns_ops) 8332 { 8333 struct path ns_path; 8334 struct inode *ns_inode; 8335 int error; 8336 8337 error = ns_get_path(&ns_path, task, ns_ops); 8338 if (!error) { 8339 ns_inode = ns_path.dentry->d_inode; 8340 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8341 ns_link_info->ino = ns_inode->i_ino; 8342 path_put(&ns_path); 8343 } 8344 } 8345 8346 void perf_event_namespaces(struct task_struct *task) 8347 { 8348 struct perf_namespaces_event namespaces_event; 8349 struct perf_ns_link_info *ns_link_info; 8350 8351 if (!atomic_read(&nr_namespaces_events)) 8352 return; 8353 8354 namespaces_event = (struct perf_namespaces_event){ 8355 .task = task, 8356 .event_id = { 8357 .header = { 8358 .type = PERF_RECORD_NAMESPACES, 8359 .misc = 0, 8360 .size = sizeof(namespaces_event.event_id), 8361 }, 8362 /* .pid */ 8363 /* .tid */ 8364 .nr_namespaces = NR_NAMESPACES, 8365 /* .link_info[NR_NAMESPACES] */ 8366 }, 8367 }; 8368 8369 ns_link_info = namespaces_event.event_id.link_info; 8370 8371 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8372 task, &mntns_operations); 8373 8374 #ifdef CONFIG_USER_NS 8375 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8376 task, &userns_operations); 8377 #endif 8378 #ifdef CONFIG_NET_NS 8379 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8380 task, &netns_operations); 8381 #endif 8382 #ifdef CONFIG_UTS_NS 8383 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8384 task, &utsns_operations); 8385 #endif 8386 #ifdef CONFIG_IPC_NS 8387 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8388 task, &ipcns_operations); 8389 #endif 8390 #ifdef CONFIG_PID_NS 8391 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8392 task, &pidns_operations); 8393 #endif 8394 #ifdef CONFIG_CGROUPS 8395 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8396 task, &cgroupns_operations); 8397 #endif 8398 8399 perf_iterate_sb(perf_event_namespaces_output, 8400 &namespaces_event, 8401 NULL); 8402 } 8403 8404 /* 8405 * cgroup tracking 8406 */ 8407 #ifdef CONFIG_CGROUP_PERF 8408 8409 struct perf_cgroup_event { 8410 char *path; 8411 int path_size; 8412 struct { 8413 struct perf_event_header header; 8414 u64 id; 8415 char path[]; 8416 } event_id; 8417 }; 8418 8419 static int perf_event_cgroup_match(struct perf_event *event) 8420 { 8421 return event->attr.cgroup; 8422 } 8423 8424 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8425 { 8426 struct perf_cgroup_event *cgroup_event = data; 8427 struct perf_output_handle handle; 8428 struct perf_sample_data sample; 8429 u16 header_size = cgroup_event->event_id.header.size; 8430 int ret; 8431 8432 if (!perf_event_cgroup_match(event)) 8433 return; 8434 8435 perf_event_header__init_id(&cgroup_event->event_id.header, 8436 &sample, event); 8437 ret = perf_output_begin(&handle, &sample, event, 8438 cgroup_event->event_id.header.size); 8439 if (ret) 8440 goto out; 8441 8442 perf_output_put(&handle, cgroup_event->event_id); 8443 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8444 8445 perf_event__output_id_sample(event, &handle, &sample); 8446 8447 perf_output_end(&handle); 8448 out: 8449 cgroup_event->event_id.header.size = header_size; 8450 } 8451 8452 static void perf_event_cgroup(struct cgroup *cgrp) 8453 { 8454 struct perf_cgroup_event cgroup_event; 8455 char path_enomem[16] = "//enomem"; 8456 char *pathname; 8457 size_t size; 8458 8459 if (!atomic_read(&nr_cgroup_events)) 8460 return; 8461 8462 cgroup_event = (struct perf_cgroup_event){ 8463 .event_id = { 8464 .header = { 8465 .type = PERF_RECORD_CGROUP, 8466 .misc = 0, 8467 .size = sizeof(cgroup_event.event_id), 8468 }, 8469 .id = cgroup_id(cgrp), 8470 }, 8471 }; 8472 8473 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8474 if (pathname == NULL) { 8475 cgroup_event.path = path_enomem; 8476 } else { 8477 /* just to be sure to have enough space for alignment */ 8478 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8479 cgroup_event.path = pathname; 8480 } 8481 8482 /* 8483 * Since our buffer works in 8 byte units we need to align our string 8484 * size to a multiple of 8. However, we must guarantee the tail end is 8485 * zero'd out to avoid leaking random bits to userspace. 8486 */ 8487 size = strlen(cgroup_event.path) + 1; 8488 while (!IS_ALIGNED(size, sizeof(u64))) 8489 cgroup_event.path[size++] = '\0'; 8490 8491 cgroup_event.event_id.header.size += size; 8492 cgroup_event.path_size = size; 8493 8494 perf_iterate_sb(perf_event_cgroup_output, 8495 &cgroup_event, 8496 NULL); 8497 8498 kfree(pathname); 8499 } 8500 8501 #endif 8502 8503 /* 8504 * mmap tracking 8505 */ 8506 8507 struct perf_mmap_event { 8508 struct vm_area_struct *vma; 8509 8510 const char *file_name; 8511 int file_size; 8512 int maj, min; 8513 u64 ino; 8514 u64 ino_generation; 8515 u32 prot, flags; 8516 u8 build_id[BUILD_ID_SIZE_MAX]; 8517 u32 build_id_size; 8518 8519 struct { 8520 struct perf_event_header header; 8521 8522 u32 pid; 8523 u32 tid; 8524 u64 start; 8525 u64 len; 8526 u64 pgoff; 8527 } event_id; 8528 }; 8529 8530 static int perf_event_mmap_match(struct perf_event *event, 8531 void *data) 8532 { 8533 struct perf_mmap_event *mmap_event = data; 8534 struct vm_area_struct *vma = mmap_event->vma; 8535 int executable = vma->vm_flags & VM_EXEC; 8536 8537 return (!executable && event->attr.mmap_data) || 8538 (executable && (event->attr.mmap || event->attr.mmap2)); 8539 } 8540 8541 static void perf_event_mmap_output(struct perf_event *event, 8542 void *data) 8543 { 8544 struct perf_mmap_event *mmap_event = data; 8545 struct perf_output_handle handle; 8546 struct perf_sample_data sample; 8547 int size = mmap_event->event_id.header.size; 8548 u32 type = mmap_event->event_id.header.type; 8549 bool use_build_id; 8550 int ret; 8551 8552 if (!perf_event_mmap_match(event, data)) 8553 return; 8554 8555 if (event->attr.mmap2) { 8556 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8557 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8558 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8559 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8560 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8561 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8562 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8563 } 8564 8565 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8566 ret = perf_output_begin(&handle, &sample, event, 8567 mmap_event->event_id.header.size); 8568 if (ret) 8569 goto out; 8570 8571 mmap_event->event_id.pid = perf_event_pid(event, current); 8572 mmap_event->event_id.tid = perf_event_tid(event, current); 8573 8574 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8575 8576 if (event->attr.mmap2 && use_build_id) 8577 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8578 8579 perf_output_put(&handle, mmap_event->event_id); 8580 8581 if (event->attr.mmap2) { 8582 if (use_build_id) { 8583 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8584 8585 __output_copy(&handle, size, 4); 8586 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8587 } else { 8588 perf_output_put(&handle, mmap_event->maj); 8589 perf_output_put(&handle, mmap_event->min); 8590 perf_output_put(&handle, mmap_event->ino); 8591 perf_output_put(&handle, mmap_event->ino_generation); 8592 } 8593 perf_output_put(&handle, mmap_event->prot); 8594 perf_output_put(&handle, mmap_event->flags); 8595 } 8596 8597 __output_copy(&handle, mmap_event->file_name, 8598 mmap_event->file_size); 8599 8600 perf_event__output_id_sample(event, &handle, &sample); 8601 8602 perf_output_end(&handle); 8603 out: 8604 mmap_event->event_id.header.size = size; 8605 mmap_event->event_id.header.type = type; 8606 } 8607 8608 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8609 { 8610 struct vm_area_struct *vma = mmap_event->vma; 8611 struct file *file = vma->vm_file; 8612 int maj = 0, min = 0; 8613 u64 ino = 0, gen = 0; 8614 u32 prot = 0, flags = 0; 8615 unsigned int size; 8616 char tmp[16]; 8617 char *buf = NULL; 8618 char *name; 8619 8620 if (vma->vm_flags & VM_READ) 8621 prot |= PROT_READ; 8622 if (vma->vm_flags & VM_WRITE) 8623 prot |= PROT_WRITE; 8624 if (vma->vm_flags & VM_EXEC) 8625 prot |= PROT_EXEC; 8626 8627 if (vma->vm_flags & VM_MAYSHARE) 8628 flags = MAP_SHARED; 8629 else 8630 flags = MAP_PRIVATE; 8631 8632 if (vma->vm_flags & VM_LOCKED) 8633 flags |= MAP_LOCKED; 8634 if (is_vm_hugetlb_page(vma)) 8635 flags |= MAP_HUGETLB; 8636 8637 if (file) { 8638 struct inode *inode; 8639 dev_t dev; 8640 8641 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8642 if (!buf) { 8643 name = "//enomem"; 8644 goto cpy_name; 8645 } 8646 /* 8647 * d_path() works from the end of the rb backwards, so we 8648 * need to add enough zero bytes after the string to handle 8649 * the 64bit alignment we do later. 8650 */ 8651 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8652 if (IS_ERR(name)) { 8653 name = "//toolong"; 8654 goto cpy_name; 8655 } 8656 inode = file_inode(vma->vm_file); 8657 dev = inode->i_sb->s_dev; 8658 ino = inode->i_ino; 8659 gen = inode->i_generation; 8660 maj = MAJOR(dev); 8661 min = MINOR(dev); 8662 8663 goto got_name; 8664 } else { 8665 if (vma->vm_ops && vma->vm_ops->name) { 8666 name = (char *) vma->vm_ops->name(vma); 8667 if (name) 8668 goto cpy_name; 8669 } 8670 8671 name = (char *)arch_vma_name(vma); 8672 if (name) 8673 goto cpy_name; 8674 8675 if (vma->vm_start <= vma->vm_mm->start_brk && 8676 vma->vm_end >= vma->vm_mm->brk) { 8677 name = "[heap]"; 8678 goto cpy_name; 8679 } 8680 if (vma->vm_start <= vma->vm_mm->start_stack && 8681 vma->vm_end >= vma->vm_mm->start_stack) { 8682 name = "[stack]"; 8683 goto cpy_name; 8684 } 8685 8686 name = "//anon"; 8687 goto cpy_name; 8688 } 8689 8690 cpy_name: 8691 strlcpy(tmp, name, sizeof(tmp)); 8692 name = tmp; 8693 got_name: 8694 /* 8695 * Since our buffer works in 8 byte units we need to align our string 8696 * size to a multiple of 8. However, we must guarantee the tail end is 8697 * zero'd out to avoid leaking random bits to userspace. 8698 */ 8699 size = strlen(name)+1; 8700 while (!IS_ALIGNED(size, sizeof(u64))) 8701 name[size++] = '\0'; 8702 8703 mmap_event->file_name = name; 8704 mmap_event->file_size = size; 8705 mmap_event->maj = maj; 8706 mmap_event->min = min; 8707 mmap_event->ino = ino; 8708 mmap_event->ino_generation = gen; 8709 mmap_event->prot = prot; 8710 mmap_event->flags = flags; 8711 8712 if (!(vma->vm_flags & VM_EXEC)) 8713 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8714 8715 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8716 8717 if (atomic_read(&nr_build_id_events)) 8718 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8719 8720 perf_iterate_sb(perf_event_mmap_output, 8721 mmap_event, 8722 NULL); 8723 8724 kfree(buf); 8725 } 8726 8727 /* 8728 * Check whether inode and address range match filter criteria. 8729 */ 8730 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8731 struct file *file, unsigned long offset, 8732 unsigned long size) 8733 { 8734 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8735 if (!filter->path.dentry) 8736 return false; 8737 8738 if (d_inode(filter->path.dentry) != file_inode(file)) 8739 return false; 8740 8741 if (filter->offset > offset + size) 8742 return false; 8743 8744 if (filter->offset + filter->size < offset) 8745 return false; 8746 8747 return true; 8748 } 8749 8750 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8751 struct vm_area_struct *vma, 8752 struct perf_addr_filter_range *fr) 8753 { 8754 unsigned long vma_size = vma->vm_end - vma->vm_start; 8755 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8756 struct file *file = vma->vm_file; 8757 8758 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8759 return false; 8760 8761 if (filter->offset < off) { 8762 fr->start = vma->vm_start; 8763 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8764 } else { 8765 fr->start = vma->vm_start + filter->offset - off; 8766 fr->size = min(vma->vm_end - fr->start, filter->size); 8767 } 8768 8769 return true; 8770 } 8771 8772 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8773 { 8774 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8775 struct vm_area_struct *vma = data; 8776 struct perf_addr_filter *filter; 8777 unsigned int restart = 0, count = 0; 8778 unsigned long flags; 8779 8780 if (!has_addr_filter(event)) 8781 return; 8782 8783 if (!vma->vm_file) 8784 return; 8785 8786 raw_spin_lock_irqsave(&ifh->lock, flags); 8787 list_for_each_entry(filter, &ifh->list, entry) { 8788 if (perf_addr_filter_vma_adjust(filter, vma, 8789 &event->addr_filter_ranges[count])) 8790 restart++; 8791 8792 count++; 8793 } 8794 8795 if (restart) 8796 event->addr_filters_gen++; 8797 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8798 8799 if (restart) 8800 perf_event_stop(event, 1); 8801 } 8802 8803 /* 8804 * Adjust all task's events' filters to the new vma 8805 */ 8806 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8807 { 8808 struct perf_event_context *ctx; 8809 8810 /* 8811 * Data tracing isn't supported yet and as such there is no need 8812 * to keep track of anything that isn't related to executable code: 8813 */ 8814 if (!(vma->vm_flags & VM_EXEC)) 8815 return; 8816 8817 rcu_read_lock(); 8818 ctx = rcu_dereference(current->perf_event_ctxp); 8819 if (ctx) 8820 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8821 rcu_read_unlock(); 8822 } 8823 8824 void perf_event_mmap(struct vm_area_struct *vma) 8825 { 8826 struct perf_mmap_event mmap_event; 8827 8828 if (!atomic_read(&nr_mmap_events)) 8829 return; 8830 8831 mmap_event = (struct perf_mmap_event){ 8832 .vma = vma, 8833 /* .file_name */ 8834 /* .file_size */ 8835 .event_id = { 8836 .header = { 8837 .type = PERF_RECORD_MMAP, 8838 .misc = PERF_RECORD_MISC_USER, 8839 /* .size */ 8840 }, 8841 /* .pid */ 8842 /* .tid */ 8843 .start = vma->vm_start, 8844 .len = vma->vm_end - vma->vm_start, 8845 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8846 }, 8847 /* .maj (attr_mmap2 only) */ 8848 /* .min (attr_mmap2 only) */ 8849 /* .ino (attr_mmap2 only) */ 8850 /* .ino_generation (attr_mmap2 only) */ 8851 /* .prot (attr_mmap2 only) */ 8852 /* .flags (attr_mmap2 only) */ 8853 }; 8854 8855 perf_addr_filters_adjust(vma); 8856 perf_event_mmap_event(&mmap_event); 8857 } 8858 8859 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8860 unsigned long size, u64 flags) 8861 { 8862 struct perf_output_handle handle; 8863 struct perf_sample_data sample; 8864 struct perf_aux_event { 8865 struct perf_event_header header; 8866 u64 offset; 8867 u64 size; 8868 u64 flags; 8869 } rec = { 8870 .header = { 8871 .type = PERF_RECORD_AUX, 8872 .misc = 0, 8873 .size = sizeof(rec), 8874 }, 8875 .offset = head, 8876 .size = size, 8877 .flags = flags, 8878 }; 8879 int ret; 8880 8881 perf_event_header__init_id(&rec.header, &sample, event); 8882 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8883 8884 if (ret) 8885 return; 8886 8887 perf_output_put(&handle, rec); 8888 perf_event__output_id_sample(event, &handle, &sample); 8889 8890 perf_output_end(&handle); 8891 } 8892 8893 /* 8894 * Lost/dropped samples logging 8895 */ 8896 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8897 { 8898 struct perf_output_handle handle; 8899 struct perf_sample_data sample; 8900 int ret; 8901 8902 struct { 8903 struct perf_event_header header; 8904 u64 lost; 8905 } lost_samples_event = { 8906 .header = { 8907 .type = PERF_RECORD_LOST_SAMPLES, 8908 .misc = 0, 8909 .size = sizeof(lost_samples_event), 8910 }, 8911 .lost = lost, 8912 }; 8913 8914 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8915 8916 ret = perf_output_begin(&handle, &sample, event, 8917 lost_samples_event.header.size); 8918 if (ret) 8919 return; 8920 8921 perf_output_put(&handle, lost_samples_event); 8922 perf_event__output_id_sample(event, &handle, &sample); 8923 perf_output_end(&handle); 8924 } 8925 8926 /* 8927 * context_switch tracking 8928 */ 8929 8930 struct perf_switch_event { 8931 struct task_struct *task; 8932 struct task_struct *next_prev; 8933 8934 struct { 8935 struct perf_event_header header; 8936 u32 next_prev_pid; 8937 u32 next_prev_tid; 8938 } event_id; 8939 }; 8940 8941 static int perf_event_switch_match(struct perf_event *event) 8942 { 8943 return event->attr.context_switch; 8944 } 8945 8946 static void perf_event_switch_output(struct perf_event *event, void *data) 8947 { 8948 struct perf_switch_event *se = data; 8949 struct perf_output_handle handle; 8950 struct perf_sample_data sample; 8951 int ret; 8952 8953 if (!perf_event_switch_match(event)) 8954 return; 8955 8956 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8957 if (event->ctx->task) { 8958 se->event_id.header.type = PERF_RECORD_SWITCH; 8959 se->event_id.header.size = sizeof(se->event_id.header); 8960 } else { 8961 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8962 se->event_id.header.size = sizeof(se->event_id); 8963 se->event_id.next_prev_pid = 8964 perf_event_pid(event, se->next_prev); 8965 se->event_id.next_prev_tid = 8966 perf_event_tid(event, se->next_prev); 8967 } 8968 8969 perf_event_header__init_id(&se->event_id.header, &sample, event); 8970 8971 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8972 if (ret) 8973 return; 8974 8975 if (event->ctx->task) 8976 perf_output_put(&handle, se->event_id.header); 8977 else 8978 perf_output_put(&handle, se->event_id); 8979 8980 perf_event__output_id_sample(event, &handle, &sample); 8981 8982 perf_output_end(&handle); 8983 } 8984 8985 static void perf_event_switch(struct task_struct *task, 8986 struct task_struct *next_prev, bool sched_in) 8987 { 8988 struct perf_switch_event switch_event; 8989 8990 /* N.B. caller checks nr_switch_events != 0 */ 8991 8992 switch_event = (struct perf_switch_event){ 8993 .task = task, 8994 .next_prev = next_prev, 8995 .event_id = { 8996 .header = { 8997 /* .type */ 8998 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8999 /* .size */ 9000 }, 9001 /* .next_prev_pid */ 9002 /* .next_prev_tid */ 9003 }, 9004 }; 9005 9006 if (!sched_in && task->on_rq) { 9007 switch_event.event_id.header.misc |= 9008 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9009 } 9010 9011 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9012 } 9013 9014 /* 9015 * IRQ throttle logging 9016 */ 9017 9018 static void perf_log_throttle(struct perf_event *event, int enable) 9019 { 9020 struct perf_output_handle handle; 9021 struct perf_sample_data sample; 9022 int ret; 9023 9024 struct { 9025 struct perf_event_header header; 9026 u64 time; 9027 u64 id; 9028 u64 stream_id; 9029 } throttle_event = { 9030 .header = { 9031 .type = PERF_RECORD_THROTTLE, 9032 .misc = 0, 9033 .size = sizeof(throttle_event), 9034 }, 9035 .time = perf_event_clock(event), 9036 .id = primary_event_id(event), 9037 .stream_id = event->id, 9038 }; 9039 9040 if (enable) 9041 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9042 9043 perf_event_header__init_id(&throttle_event.header, &sample, event); 9044 9045 ret = perf_output_begin(&handle, &sample, event, 9046 throttle_event.header.size); 9047 if (ret) 9048 return; 9049 9050 perf_output_put(&handle, throttle_event); 9051 perf_event__output_id_sample(event, &handle, &sample); 9052 perf_output_end(&handle); 9053 } 9054 9055 /* 9056 * ksymbol register/unregister tracking 9057 */ 9058 9059 struct perf_ksymbol_event { 9060 const char *name; 9061 int name_len; 9062 struct { 9063 struct perf_event_header header; 9064 u64 addr; 9065 u32 len; 9066 u16 ksym_type; 9067 u16 flags; 9068 } event_id; 9069 }; 9070 9071 static int perf_event_ksymbol_match(struct perf_event *event) 9072 { 9073 return event->attr.ksymbol; 9074 } 9075 9076 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9077 { 9078 struct perf_ksymbol_event *ksymbol_event = data; 9079 struct perf_output_handle handle; 9080 struct perf_sample_data sample; 9081 int ret; 9082 9083 if (!perf_event_ksymbol_match(event)) 9084 return; 9085 9086 perf_event_header__init_id(&ksymbol_event->event_id.header, 9087 &sample, event); 9088 ret = perf_output_begin(&handle, &sample, event, 9089 ksymbol_event->event_id.header.size); 9090 if (ret) 9091 return; 9092 9093 perf_output_put(&handle, ksymbol_event->event_id); 9094 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9095 perf_event__output_id_sample(event, &handle, &sample); 9096 9097 perf_output_end(&handle); 9098 } 9099 9100 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9101 const char *sym) 9102 { 9103 struct perf_ksymbol_event ksymbol_event; 9104 char name[KSYM_NAME_LEN]; 9105 u16 flags = 0; 9106 int name_len; 9107 9108 if (!atomic_read(&nr_ksymbol_events)) 9109 return; 9110 9111 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9112 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9113 goto err; 9114 9115 strlcpy(name, sym, KSYM_NAME_LEN); 9116 name_len = strlen(name) + 1; 9117 while (!IS_ALIGNED(name_len, sizeof(u64))) 9118 name[name_len++] = '\0'; 9119 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9120 9121 if (unregister) 9122 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9123 9124 ksymbol_event = (struct perf_ksymbol_event){ 9125 .name = name, 9126 .name_len = name_len, 9127 .event_id = { 9128 .header = { 9129 .type = PERF_RECORD_KSYMBOL, 9130 .size = sizeof(ksymbol_event.event_id) + 9131 name_len, 9132 }, 9133 .addr = addr, 9134 .len = len, 9135 .ksym_type = ksym_type, 9136 .flags = flags, 9137 }, 9138 }; 9139 9140 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9141 return; 9142 err: 9143 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9144 } 9145 9146 /* 9147 * bpf program load/unload tracking 9148 */ 9149 9150 struct perf_bpf_event { 9151 struct bpf_prog *prog; 9152 struct { 9153 struct perf_event_header header; 9154 u16 type; 9155 u16 flags; 9156 u32 id; 9157 u8 tag[BPF_TAG_SIZE]; 9158 } event_id; 9159 }; 9160 9161 static int perf_event_bpf_match(struct perf_event *event) 9162 { 9163 return event->attr.bpf_event; 9164 } 9165 9166 static void perf_event_bpf_output(struct perf_event *event, void *data) 9167 { 9168 struct perf_bpf_event *bpf_event = data; 9169 struct perf_output_handle handle; 9170 struct perf_sample_data sample; 9171 int ret; 9172 9173 if (!perf_event_bpf_match(event)) 9174 return; 9175 9176 perf_event_header__init_id(&bpf_event->event_id.header, 9177 &sample, event); 9178 ret = perf_output_begin(&handle, data, event, 9179 bpf_event->event_id.header.size); 9180 if (ret) 9181 return; 9182 9183 perf_output_put(&handle, bpf_event->event_id); 9184 perf_event__output_id_sample(event, &handle, &sample); 9185 9186 perf_output_end(&handle); 9187 } 9188 9189 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9190 enum perf_bpf_event_type type) 9191 { 9192 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9193 int i; 9194 9195 if (prog->aux->func_cnt == 0) { 9196 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9197 (u64)(unsigned long)prog->bpf_func, 9198 prog->jited_len, unregister, 9199 prog->aux->ksym.name); 9200 } else { 9201 for (i = 0; i < prog->aux->func_cnt; i++) { 9202 struct bpf_prog *subprog = prog->aux->func[i]; 9203 9204 perf_event_ksymbol( 9205 PERF_RECORD_KSYMBOL_TYPE_BPF, 9206 (u64)(unsigned long)subprog->bpf_func, 9207 subprog->jited_len, unregister, 9208 subprog->aux->ksym.name); 9209 } 9210 } 9211 } 9212 9213 void perf_event_bpf_event(struct bpf_prog *prog, 9214 enum perf_bpf_event_type type, 9215 u16 flags) 9216 { 9217 struct perf_bpf_event bpf_event; 9218 9219 if (type <= PERF_BPF_EVENT_UNKNOWN || 9220 type >= PERF_BPF_EVENT_MAX) 9221 return; 9222 9223 switch (type) { 9224 case PERF_BPF_EVENT_PROG_LOAD: 9225 case PERF_BPF_EVENT_PROG_UNLOAD: 9226 if (atomic_read(&nr_ksymbol_events)) 9227 perf_event_bpf_emit_ksymbols(prog, type); 9228 break; 9229 default: 9230 break; 9231 } 9232 9233 if (!atomic_read(&nr_bpf_events)) 9234 return; 9235 9236 bpf_event = (struct perf_bpf_event){ 9237 .prog = prog, 9238 .event_id = { 9239 .header = { 9240 .type = PERF_RECORD_BPF_EVENT, 9241 .size = sizeof(bpf_event.event_id), 9242 }, 9243 .type = type, 9244 .flags = flags, 9245 .id = prog->aux->id, 9246 }, 9247 }; 9248 9249 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9250 9251 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9252 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9253 } 9254 9255 struct perf_text_poke_event { 9256 const void *old_bytes; 9257 const void *new_bytes; 9258 size_t pad; 9259 u16 old_len; 9260 u16 new_len; 9261 9262 struct { 9263 struct perf_event_header header; 9264 9265 u64 addr; 9266 } event_id; 9267 }; 9268 9269 static int perf_event_text_poke_match(struct perf_event *event) 9270 { 9271 return event->attr.text_poke; 9272 } 9273 9274 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9275 { 9276 struct perf_text_poke_event *text_poke_event = data; 9277 struct perf_output_handle handle; 9278 struct perf_sample_data sample; 9279 u64 padding = 0; 9280 int ret; 9281 9282 if (!perf_event_text_poke_match(event)) 9283 return; 9284 9285 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9286 9287 ret = perf_output_begin(&handle, &sample, event, 9288 text_poke_event->event_id.header.size); 9289 if (ret) 9290 return; 9291 9292 perf_output_put(&handle, text_poke_event->event_id); 9293 perf_output_put(&handle, text_poke_event->old_len); 9294 perf_output_put(&handle, text_poke_event->new_len); 9295 9296 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9297 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9298 9299 if (text_poke_event->pad) 9300 __output_copy(&handle, &padding, text_poke_event->pad); 9301 9302 perf_event__output_id_sample(event, &handle, &sample); 9303 9304 perf_output_end(&handle); 9305 } 9306 9307 void perf_event_text_poke(const void *addr, const void *old_bytes, 9308 size_t old_len, const void *new_bytes, size_t new_len) 9309 { 9310 struct perf_text_poke_event text_poke_event; 9311 size_t tot, pad; 9312 9313 if (!atomic_read(&nr_text_poke_events)) 9314 return; 9315 9316 tot = sizeof(text_poke_event.old_len) + old_len; 9317 tot += sizeof(text_poke_event.new_len) + new_len; 9318 pad = ALIGN(tot, sizeof(u64)) - tot; 9319 9320 text_poke_event = (struct perf_text_poke_event){ 9321 .old_bytes = old_bytes, 9322 .new_bytes = new_bytes, 9323 .pad = pad, 9324 .old_len = old_len, 9325 .new_len = new_len, 9326 .event_id = { 9327 .header = { 9328 .type = PERF_RECORD_TEXT_POKE, 9329 .misc = PERF_RECORD_MISC_KERNEL, 9330 .size = sizeof(text_poke_event.event_id) + tot + pad, 9331 }, 9332 .addr = (unsigned long)addr, 9333 }, 9334 }; 9335 9336 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9337 } 9338 9339 void perf_event_itrace_started(struct perf_event *event) 9340 { 9341 event->attach_state |= PERF_ATTACH_ITRACE; 9342 } 9343 9344 static void perf_log_itrace_start(struct perf_event *event) 9345 { 9346 struct perf_output_handle handle; 9347 struct perf_sample_data sample; 9348 struct perf_aux_event { 9349 struct perf_event_header header; 9350 u32 pid; 9351 u32 tid; 9352 } rec; 9353 int ret; 9354 9355 if (event->parent) 9356 event = event->parent; 9357 9358 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9359 event->attach_state & PERF_ATTACH_ITRACE) 9360 return; 9361 9362 rec.header.type = PERF_RECORD_ITRACE_START; 9363 rec.header.misc = 0; 9364 rec.header.size = sizeof(rec); 9365 rec.pid = perf_event_pid(event, current); 9366 rec.tid = perf_event_tid(event, current); 9367 9368 perf_event_header__init_id(&rec.header, &sample, event); 9369 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9370 9371 if (ret) 9372 return; 9373 9374 perf_output_put(&handle, rec); 9375 perf_event__output_id_sample(event, &handle, &sample); 9376 9377 perf_output_end(&handle); 9378 } 9379 9380 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9381 { 9382 struct perf_output_handle handle; 9383 struct perf_sample_data sample; 9384 struct perf_aux_event { 9385 struct perf_event_header header; 9386 u64 hw_id; 9387 } rec; 9388 int ret; 9389 9390 if (event->parent) 9391 event = event->parent; 9392 9393 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9394 rec.header.misc = 0; 9395 rec.header.size = sizeof(rec); 9396 rec.hw_id = hw_id; 9397 9398 perf_event_header__init_id(&rec.header, &sample, event); 9399 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9400 9401 if (ret) 9402 return; 9403 9404 perf_output_put(&handle, rec); 9405 perf_event__output_id_sample(event, &handle, &sample); 9406 9407 perf_output_end(&handle); 9408 } 9409 9410 static int 9411 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9412 { 9413 struct hw_perf_event *hwc = &event->hw; 9414 int ret = 0; 9415 u64 seq; 9416 9417 seq = __this_cpu_read(perf_throttled_seq); 9418 if (seq != hwc->interrupts_seq) { 9419 hwc->interrupts_seq = seq; 9420 hwc->interrupts = 1; 9421 } else { 9422 hwc->interrupts++; 9423 if (unlikely(throttle 9424 && hwc->interrupts >= max_samples_per_tick)) { 9425 __this_cpu_inc(perf_throttled_count); 9426 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9427 hwc->interrupts = MAX_INTERRUPTS; 9428 perf_log_throttle(event, 0); 9429 ret = 1; 9430 } 9431 } 9432 9433 if (event->attr.freq) { 9434 u64 now = perf_clock(); 9435 s64 delta = now - hwc->freq_time_stamp; 9436 9437 hwc->freq_time_stamp = now; 9438 9439 if (delta > 0 && delta < 2*TICK_NSEC) 9440 perf_adjust_period(event, delta, hwc->last_period, true); 9441 } 9442 9443 return ret; 9444 } 9445 9446 int perf_event_account_interrupt(struct perf_event *event) 9447 { 9448 return __perf_event_account_interrupt(event, 1); 9449 } 9450 9451 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9452 { 9453 /* 9454 * Due to interrupt latency (AKA "skid"), we may enter the 9455 * kernel before taking an overflow, even if the PMU is only 9456 * counting user events. 9457 */ 9458 if (event->attr.exclude_kernel && !user_mode(regs)) 9459 return false; 9460 9461 return true; 9462 } 9463 9464 /* 9465 * Generic event overflow handling, sampling. 9466 */ 9467 9468 static int __perf_event_overflow(struct perf_event *event, 9469 int throttle, struct perf_sample_data *data, 9470 struct pt_regs *regs) 9471 { 9472 int events = atomic_read(&event->event_limit); 9473 int ret = 0; 9474 9475 /* 9476 * Non-sampling counters might still use the PMI to fold short 9477 * hardware counters, ignore those. 9478 */ 9479 if (unlikely(!is_sampling_event(event))) 9480 return 0; 9481 9482 ret = __perf_event_account_interrupt(event, throttle); 9483 9484 /* 9485 * XXX event_limit might not quite work as expected on inherited 9486 * events 9487 */ 9488 9489 event->pending_kill = POLL_IN; 9490 if (events && atomic_dec_and_test(&event->event_limit)) { 9491 ret = 1; 9492 event->pending_kill = POLL_HUP; 9493 perf_event_disable_inatomic(event); 9494 } 9495 9496 if (event->attr.sigtrap) { 9497 /* 9498 * The desired behaviour of sigtrap vs invalid samples is a bit 9499 * tricky; on the one hand, one should not loose the SIGTRAP if 9500 * it is the first event, on the other hand, we should also not 9501 * trigger the WARN or override the data address. 9502 */ 9503 bool valid_sample = sample_is_allowed(event, regs); 9504 unsigned int pending_id = 1; 9505 9506 if (regs) 9507 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9508 if (!event->pending_sigtrap) { 9509 event->pending_sigtrap = pending_id; 9510 local_inc(&event->ctx->nr_pending); 9511 } else if (event->attr.exclude_kernel && valid_sample) { 9512 /* 9513 * Should not be able to return to user space without 9514 * consuming pending_sigtrap; with exceptions: 9515 * 9516 * 1. Where !exclude_kernel, events can overflow again 9517 * in the kernel without returning to user space. 9518 * 9519 * 2. Events that can overflow again before the IRQ- 9520 * work without user space progress (e.g. hrtimer). 9521 * To approximate progress (with false negatives), 9522 * check 32-bit hash of the current IP. 9523 */ 9524 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9525 } 9526 9527 event->pending_addr = 0; 9528 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9529 event->pending_addr = data->addr; 9530 irq_work_queue(&event->pending_irq); 9531 } 9532 9533 READ_ONCE(event->overflow_handler)(event, data, regs); 9534 9535 if (*perf_event_fasync(event) && event->pending_kill) { 9536 event->pending_wakeup = 1; 9537 irq_work_queue(&event->pending_irq); 9538 } 9539 9540 return ret; 9541 } 9542 9543 int perf_event_overflow(struct perf_event *event, 9544 struct perf_sample_data *data, 9545 struct pt_regs *regs) 9546 { 9547 return __perf_event_overflow(event, 1, data, regs); 9548 } 9549 9550 /* 9551 * Generic software event infrastructure 9552 */ 9553 9554 struct swevent_htable { 9555 struct swevent_hlist *swevent_hlist; 9556 struct mutex hlist_mutex; 9557 int hlist_refcount; 9558 9559 /* Recursion avoidance in each contexts */ 9560 int recursion[PERF_NR_CONTEXTS]; 9561 }; 9562 9563 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9564 9565 /* 9566 * We directly increment event->count and keep a second value in 9567 * event->hw.period_left to count intervals. This period event 9568 * is kept in the range [-sample_period, 0] so that we can use the 9569 * sign as trigger. 9570 */ 9571 9572 u64 perf_swevent_set_period(struct perf_event *event) 9573 { 9574 struct hw_perf_event *hwc = &event->hw; 9575 u64 period = hwc->last_period; 9576 u64 nr, offset; 9577 s64 old, val; 9578 9579 hwc->last_period = hwc->sample_period; 9580 9581 again: 9582 old = val = local64_read(&hwc->period_left); 9583 if (val < 0) 9584 return 0; 9585 9586 nr = div64_u64(period + val, period); 9587 offset = nr * period; 9588 val -= offset; 9589 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9590 goto again; 9591 9592 return nr; 9593 } 9594 9595 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9596 struct perf_sample_data *data, 9597 struct pt_regs *regs) 9598 { 9599 struct hw_perf_event *hwc = &event->hw; 9600 int throttle = 0; 9601 9602 if (!overflow) 9603 overflow = perf_swevent_set_period(event); 9604 9605 if (hwc->interrupts == MAX_INTERRUPTS) 9606 return; 9607 9608 for (; overflow; overflow--) { 9609 if (__perf_event_overflow(event, throttle, 9610 data, regs)) { 9611 /* 9612 * We inhibit the overflow from happening when 9613 * hwc->interrupts == MAX_INTERRUPTS. 9614 */ 9615 break; 9616 } 9617 throttle = 1; 9618 } 9619 } 9620 9621 static void perf_swevent_event(struct perf_event *event, u64 nr, 9622 struct perf_sample_data *data, 9623 struct pt_regs *regs) 9624 { 9625 struct hw_perf_event *hwc = &event->hw; 9626 9627 local64_add(nr, &event->count); 9628 9629 if (!regs) 9630 return; 9631 9632 if (!is_sampling_event(event)) 9633 return; 9634 9635 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9636 data->period = nr; 9637 return perf_swevent_overflow(event, 1, data, regs); 9638 } else 9639 data->period = event->hw.last_period; 9640 9641 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9642 return perf_swevent_overflow(event, 1, data, regs); 9643 9644 if (local64_add_negative(nr, &hwc->period_left)) 9645 return; 9646 9647 perf_swevent_overflow(event, 0, data, regs); 9648 } 9649 9650 static int perf_exclude_event(struct perf_event *event, 9651 struct pt_regs *regs) 9652 { 9653 if (event->hw.state & PERF_HES_STOPPED) 9654 return 1; 9655 9656 if (regs) { 9657 if (event->attr.exclude_user && user_mode(regs)) 9658 return 1; 9659 9660 if (event->attr.exclude_kernel && !user_mode(regs)) 9661 return 1; 9662 } 9663 9664 return 0; 9665 } 9666 9667 static int perf_swevent_match(struct perf_event *event, 9668 enum perf_type_id type, 9669 u32 event_id, 9670 struct perf_sample_data *data, 9671 struct pt_regs *regs) 9672 { 9673 if (event->attr.type != type) 9674 return 0; 9675 9676 if (event->attr.config != event_id) 9677 return 0; 9678 9679 if (perf_exclude_event(event, regs)) 9680 return 0; 9681 9682 return 1; 9683 } 9684 9685 static inline u64 swevent_hash(u64 type, u32 event_id) 9686 { 9687 u64 val = event_id | (type << 32); 9688 9689 return hash_64(val, SWEVENT_HLIST_BITS); 9690 } 9691 9692 static inline struct hlist_head * 9693 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9694 { 9695 u64 hash = swevent_hash(type, event_id); 9696 9697 return &hlist->heads[hash]; 9698 } 9699 9700 /* For the read side: events when they trigger */ 9701 static inline struct hlist_head * 9702 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9703 { 9704 struct swevent_hlist *hlist; 9705 9706 hlist = rcu_dereference(swhash->swevent_hlist); 9707 if (!hlist) 9708 return NULL; 9709 9710 return __find_swevent_head(hlist, type, event_id); 9711 } 9712 9713 /* For the event head insertion and removal in the hlist */ 9714 static inline struct hlist_head * 9715 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9716 { 9717 struct swevent_hlist *hlist; 9718 u32 event_id = event->attr.config; 9719 u64 type = event->attr.type; 9720 9721 /* 9722 * Event scheduling is always serialized against hlist allocation 9723 * and release. Which makes the protected version suitable here. 9724 * The context lock guarantees that. 9725 */ 9726 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9727 lockdep_is_held(&event->ctx->lock)); 9728 if (!hlist) 9729 return NULL; 9730 9731 return __find_swevent_head(hlist, type, event_id); 9732 } 9733 9734 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9735 u64 nr, 9736 struct perf_sample_data *data, 9737 struct pt_regs *regs) 9738 { 9739 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9740 struct perf_event *event; 9741 struct hlist_head *head; 9742 9743 rcu_read_lock(); 9744 head = find_swevent_head_rcu(swhash, type, event_id); 9745 if (!head) 9746 goto end; 9747 9748 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9749 if (perf_swevent_match(event, type, event_id, data, regs)) 9750 perf_swevent_event(event, nr, data, regs); 9751 } 9752 end: 9753 rcu_read_unlock(); 9754 } 9755 9756 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9757 9758 int perf_swevent_get_recursion_context(void) 9759 { 9760 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9761 9762 return get_recursion_context(swhash->recursion); 9763 } 9764 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9765 9766 void perf_swevent_put_recursion_context(int rctx) 9767 { 9768 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9769 9770 put_recursion_context(swhash->recursion, rctx); 9771 } 9772 9773 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9774 { 9775 struct perf_sample_data data; 9776 9777 if (WARN_ON_ONCE(!regs)) 9778 return; 9779 9780 perf_sample_data_init(&data, addr, 0); 9781 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9782 } 9783 9784 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9785 { 9786 int rctx; 9787 9788 preempt_disable_notrace(); 9789 rctx = perf_swevent_get_recursion_context(); 9790 if (unlikely(rctx < 0)) 9791 goto fail; 9792 9793 ___perf_sw_event(event_id, nr, regs, addr); 9794 9795 perf_swevent_put_recursion_context(rctx); 9796 fail: 9797 preempt_enable_notrace(); 9798 } 9799 9800 static void perf_swevent_read(struct perf_event *event) 9801 { 9802 } 9803 9804 static int perf_swevent_add(struct perf_event *event, int flags) 9805 { 9806 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9807 struct hw_perf_event *hwc = &event->hw; 9808 struct hlist_head *head; 9809 9810 if (is_sampling_event(event)) { 9811 hwc->last_period = hwc->sample_period; 9812 perf_swevent_set_period(event); 9813 } 9814 9815 hwc->state = !(flags & PERF_EF_START); 9816 9817 head = find_swevent_head(swhash, event); 9818 if (WARN_ON_ONCE(!head)) 9819 return -EINVAL; 9820 9821 hlist_add_head_rcu(&event->hlist_entry, head); 9822 perf_event_update_userpage(event); 9823 9824 return 0; 9825 } 9826 9827 static void perf_swevent_del(struct perf_event *event, int flags) 9828 { 9829 hlist_del_rcu(&event->hlist_entry); 9830 } 9831 9832 static void perf_swevent_start(struct perf_event *event, int flags) 9833 { 9834 event->hw.state = 0; 9835 } 9836 9837 static void perf_swevent_stop(struct perf_event *event, int flags) 9838 { 9839 event->hw.state = PERF_HES_STOPPED; 9840 } 9841 9842 /* Deref the hlist from the update side */ 9843 static inline struct swevent_hlist * 9844 swevent_hlist_deref(struct swevent_htable *swhash) 9845 { 9846 return rcu_dereference_protected(swhash->swevent_hlist, 9847 lockdep_is_held(&swhash->hlist_mutex)); 9848 } 9849 9850 static void swevent_hlist_release(struct swevent_htable *swhash) 9851 { 9852 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9853 9854 if (!hlist) 9855 return; 9856 9857 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9858 kfree_rcu(hlist, rcu_head); 9859 } 9860 9861 static void swevent_hlist_put_cpu(int cpu) 9862 { 9863 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9864 9865 mutex_lock(&swhash->hlist_mutex); 9866 9867 if (!--swhash->hlist_refcount) 9868 swevent_hlist_release(swhash); 9869 9870 mutex_unlock(&swhash->hlist_mutex); 9871 } 9872 9873 static void swevent_hlist_put(void) 9874 { 9875 int cpu; 9876 9877 for_each_possible_cpu(cpu) 9878 swevent_hlist_put_cpu(cpu); 9879 } 9880 9881 static int swevent_hlist_get_cpu(int cpu) 9882 { 9883 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9884 int err = 0; 9885 9886 mutex_lock(&swhash->hlist_mutex); 9887 if (!swevent_hlist_deref(swhash) && 9888 cpumask_test_cpu(cpu, perf_online_mask)) { 9889 struct swevent_hlist *hlist; 9890 9891 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9892 if (!hlist) { 9893 err = -ENOMEM; 9894 goto exit; 9895 } 9896 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9897 } 9898 swhash->hlist_refcount++; 9899 exit: 9900 mutex_unlock(&swhash->hlist_mutex); 9901 9902 return err; 9903 } 9904 9905 static int swevent_hlist_get(void) 9906 { 9907 int err, cpu, failed_cpu; 9908 9909 mutex_lock(&pmus_lock); 9910 for_each_possible_cpu(cpu) { 9911 err = swevent_hlist_get_cpu(cpu); 9912 if (err) { 9913 failed_cpu = cpu; 9914 goto fail; 9915 } 9916 } 9917 mutex_unlock(&pmus_lock); 9918 return 0; 9919 fail: 9920 for_each_possible_cpu(cpu) { 9921 if (cpu == failed_cpu) 9922 break; 9923 swevent_hlist_put_cpu(cpu); 9924 } 9925 mutex_unlock(&pmus_lock); 9926 return err; 9927 } 9928 9929 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9930 9931 static void sw_perf_event_destroy(struct perf_event *event) 9932 { 9933 u64 event_id = event->attr.config; 9934 9935 WARN_ON(event->parent); 9936 9937 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9938 swevent_hlist_put(); 9939 } 9940 9941 static int perf_swevent_init(struct perf_event *event) 9942 { 9943 u64 event_id = event->attr.config; 9944 9945 if (event->attr.type != PERF_TYPE_SOFTWARE) 9946 return -ENOENT; 9947 9948 /* 9949 * no branch sampling for software events 9950 */ 9951 if (has_branch_stack(event)) 9952 return -EOPNOTSUPP; 9953 9954 switch (event_id) { 9955 case PERF_COUNT_SW_CPU_CLOCK: 9956 case PERF_COUNT_SW_TASK_CLOCK: 9957 return -ENOENT; 9958 9959 default: 9960 break; 9961 } 9962 9963 if (event_id >= PERF_COUNT_SW_MAX) 9964 return -ENOENT; 9965 9966 if (!event->parent) { 9967 int err; 9968 9969 err = swevent_hlist_get(); 9970 if (err) 9971 return err; 9972 9973 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9974 event->destroy = sw_perf_event_destroy; 9975 } 9976 9977 return 0; 9978 } 9979 9980 static struct pmu perf_swevent = { 9981 .task_ctx_nr = perf_sw_context, 9982 9983 .capabilities = PERF_PMU_CAP_NO_NMI, 9984 9985 .event_init = perf_swevent_init, 9986 .add = perf_swevent_add, 9987 .del = perf_swevent_del, 9988 .start = perf_swevent_start, 9989 .stop = perf_swevent_stop, 9990 .read = perf_swevent_read, 9991 }; 9992 9993 #ifdef CONFIG_EVENT_TRACING 9994 9995 static void tp_perf_event_destroy(struct perf_event *event) 9996 { 9997 perf_trace_destroy(event); 9998 } 9999 10000 static int perf_tp_event_init(struct perf_event *event) 10001 { 10002 int err; 10003 10004 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10005 return -ENOENT; 10006 10007 /* 10008 * no branch sampling for tracepoint events 10009 */ 10010 if (has_branch_stack(event)) 10011 return -EOPNOTSUPP; 10012 10013 err = perf_trace_init(event); 10014 if (err) 10015 return err; 10016 10017 event->destroy = tp_perf_event_destroy; 10018 10019 return 0; 10020 } 10021 10022 static struct pmu perf_tracepoint = { 10023 .task_ctx_nr = perf_sw_context, 10024 10025 .event_init = perf_tp_event_init, 10026 .add = perf_trace_add, 10027 .del = perf_trace_del, 10028 .start = perf_swevent_start, 10029 .stop = perf_swevent_stop, 10030 .read = perf_swevent_read, 10031 }; 10032 10033 static int perf_tp_filter_match(struct perf_event *event, 10034 struct perf_sample_data *data) 10035 { 10036 void *record = data->raw->frag.data; 10037 10038 /* only top level events have filters set */ 10039 if (event->parent) 10040 event = event->parent; 10041 10042 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10043 return 1; 10044 return 0; 10045 } 10046 10047 static int perf_tp_event_match(struct perf_event *event, 10048 struct perf_sample_data *data, 10049 struct pt_regs *regs) 10050 { 10051 if (event->hw.state & PERF_HES_STOPPED) 10052 return 0; 10053 /* 10054 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10055 */ 10056 if (event->attr.exclude_kernel && !user_mode(regs)) 10057 return 0; 10058 10059 if (!perf_tp_filter_match(event, data)) 10060 return 0; 10061 10062 return 1; 10063 } 10064 10065 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10066 struct trace_event_call *call, u64 count, 10067 struct pt_regs *regs, struct hlist_head *head, 10068 struct task_struct *task) 10069 { 10070 if (bpf_prog_array_valid(call)) { 10071 *(struct pt_regs **)raw_data = regs; 10072 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10073 perf_swevent_put_recursion_context(rctx); 10074 return; 10075 } 10076 } 10077 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10078 rctx, task); 10079 } 10080 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10081 10082 static void __perf_tp_event_target_task(u64 count, void *record, 10083 struct pt_regs *regs, 10084 struct perf_sample_data *data, 10085 struct perf_event *event) 10086 { 10087 struct trace_entry *entry = record; 10088 10089 if (event->attr.config != entry->type) 10090 return; 10091 /* Cannot deliver synchronous signal to other task. */ 10092 if (event->attr.sigtrap) 10093 return; 10094 if (perf_tp_event_match(event, data, regs)) 10095 perf_swevent_event(event, count, data, regs); 10096 } 10097 10098 static void perf_tp_event_target_task(u64 count, void *record, 10099 struct pt_regs *regs, 10100 struct perf_sample_data *data, 10101 struct perf_event_context *ctx) 10102 { 10103 unsigned int cpu = smp_processor_id(); 10104 struct pmu *pmu = &perf_tracepoint; 10105 struct perf_event *event, *sibling; 10106 10107 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10108 __perf_tp_event_target_task(count, record, regs, data, event); 10109 for_each_sibling_event(sibling, event) 10110 __perf_tp_event_target_task(count, record, regs, data, sibling); 10111 } 10112 10113 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10114 __perf_tp_event_target_task(count, record, regs, data, event); 10115 for_each_sibling_event(sibling, event) 10116 __perf_tp_event_target_task(count, record, regs, data, sibling); 10117 } 10118 } 10119 10120 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10121 struct pt_regs *regs, struct hlist_head *head, int rctx, 10122 struct task_struct *task) 10123 { 10124 struct perf_sample_data data; 10125 struct perf_event *event; 10126 10127 struct perf_raw_record raw = { 10128 .frag = { 10129 .size = entry_size, 10130 .data = record, 10131 }, 10132 }; 10133 10134 perf_sample_data_init(&data, 0, 0); 10135 data.raw = &raw; 10136 data.sample_flags |= PERF_SAMPLE_RAW; 10137 10138 perf_trace_buf_update(record, event_type); 10139 10140 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10141 if (perf_tp_event_match(event, &data, regs)) 10142 perf_swevent_event(event, count, &data, regs); 10143 } 10144 10145 /* 10146 * If we got specified a target task, also iterate its context and 10147 * deliver this event there too. 10148 */ 10149 if (task && task != current) { 10150 struct perf_event_context *ctx; 10151 10152 rcu_read_lock(); 10153 ctx = rcu_dereference(task->perf_event_ctxp); 10154 if (!ctx) 10155 goto unlock; 10156 10157 raw_spin_lock(&ctx->lock); 10158 perf_tp_event_target_task(count, record, regs, &data, ctx); 10159 raw_spin_unlock(&ctx->lock); 10160 unlock: 10161 rcu_read_unlock(); 10162 } 10163 10164 perf_swevent_put_recursion_context(rctx); 10165 } 10166 EXPORT_SYMBOL_GPL(perf_tp_event); 10167 10168 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10169 /* 10170 * Flags in config, used by dynamic PMU kprobe and uprobe 10171 * The flags should match following PMU_FORMAT_ATTR(). 10172 * 10173 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10174 * if not set, create kprobe/uprobe 10175 * 10176 * The following values specify a reference counter (or semaphore in the 10177 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10178 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10179 * 10180 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10181 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10182 */ 10183 enum perf_probe_config { 10184 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10185 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10186 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10187 }; 10188 10189 PMU_FORMAT_ATTR(retprobe, "config:0"); 10190 #endif 10191 10192 #ifdef CONFIG_KPROBE_EVENTS 10193 static struct attribute *kprobe_attrs[] = { 10194 &format_attr_retprobe.attr, 10195 NULL, 10196 }; 10197 10198 static struct attribute_group kprobe_format_group = { 10199 .name = "format", 10200 .attrs = kprobe_attrs, 10201 }; 10202 10203 static const struct attribute_group *kprobe_attr_groups[] = { 10204 &kprobe_format_group, 10205 NULL, 10206 }; 10207 10208 static int perf_kprobe_event_init(struct perf_event *event); 10209 static struct pmu perf_kprobe = { 10210 .task_ctx_nr = perf_sw_context, 10211 .event_init = perf_kprobe_event_init, 10212 .add = perf_trace_add, 10213 .del = perf_trace_del, 10214 .start = perf_swevent_start, 10215 .stop = perf_swevent_stop, 10216 .read = perf_swevent_read, 10217 .attr_groups = kprobe_attr_groups, 10218 }; 10219 10220 static int perf_kprobe_event_init(struct perf_event *event) 10221 { 10222 int err; 10223 bool is_retprobe; 10224 10225 if (event->attr.type != perf_kprobe.type) 10226 return -ENOENT; 10227 10228 if (!perfmon_capable()) 10229 return -EACCES; 10230 10231 /* 10232 * no branch sampling for probe events 10233 */ 10234 if (has_branch_stack(event)) 10235 return -EOPNOTSUPP; 10236 10237 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10238 err = perf_kprobe_init(event, is_retprobe); 10239 if (err) 10240 return err; 10241 10242 event->destroy = perf_kprobe_destroy; 10243 10244 return 0; 10245 } 10246 #endif /* CONFIG_KPROBE_EVENTS */ 10247 10248 #ifdef CONFIG_UPROBE_EVENTS 10249 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10250 10251 static struct attribute *uprobe_attrs[] = { 10252 &format_attr_retprobe.attr, 10253 &format_attr_ref_ctr_offset.attr, 10254 NULL, 10255 }; 10256 10257 static struct attribute_group uprobe_format_group = { 10258 .name = "format", 10259 .attrs = uprobe_attrs, 10260 }; 10261 10262 static const struct attribute_group *uprobe_attr_groups[] = { 10263 &uprobe_format_group, 10264 NULL, 10265 }; 10266 10267 static int perf_uprobe_event_init(struct perf_event *event); 10268 static struct pmu perf_uprobe = { 10269 .task_ctx_nr = perf_sw_context, 10270 .event_init = perf_uprobe_event_init, 10271 .add = perf_trace_add, 10272 .del = perf_trace_del, 10273 .start = perf_swevent_start, 10274 .stop = perf_swevent_stop, 10275 .read = perf_swevent_read, 10276 .attr_groups = uprobe_attr_groups, 10277 }; 10278 10279 static int perf_uprobe_event_init(struct perf_event *event) 10280 { 10281 int err; 10282 unsigned long ref_ctr_offset; 10283 bool is_retprobe; 10284 10285 if (event->attr.type != perf_uprobe.type) 10286 return -ENOENT; 10287 10288 if (!perfmon_capable()) 10289 return -EACCES; 10290 10291 /* 10292 * no branch sampling for probe events 10293 */ 10294 if (has_branch_stack(event)) 10295 return -EOPNOTSUPP; 10296 10297 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10298 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10299 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10300 if (err) 10301 return err; 10302 10303 event->destroy = perf_uprobe_destroy; 10304 10305 return 0; 10306 } 10307 #endif /* CONFIG_UPROBE_EVENTS */ 10308 10309 static inline void perf_tp_register(void) 10310 { 10311 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10312 #ifdef CONFIG_KPROBE_EVENTS 10313 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10314 #endif 10315 #ifdef CONFIG_UPROBE_EVENTS 10316 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10317 #endif 10318 } 10319 10320 static void perf_event_free_filter(struct perf_event *event) 10321 { 10322 ftrace_profile_free_filter(event); 10323 } 10324 10325 #ifdef CONFIG_BPF_SYSCALL 10326 static void bpf_overflow_handler(struct perf_event *event, 10327 struct perf_sample_data *data, 10328 struct pt_regs *regs) 10329 { 10330 struct bpf_perf_event_data_kern ctx = { 10331 .data = data, 10332 .event = event, 10333 }; 10334 struct bpf_prog *prog; 10335 int ret = 0; 10336 10337 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10338 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10339 goto out; 10340 rcu_read_lock(); 10341 prog = READ_ONCE(event->prog); 10342 if (prog) { 10343 if (prog->call_get_stack && 10344 (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) && 10345 !(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) { 10346 data->callchain = perf_callchain(event, regs); 10347 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 10348 } 10349 10350 ret = bpf_prog_run(prog, &ctx); 10351 } 10352 rcu_read_unlock(); 10353 out: 10354 __this_cpu_dec(bpf_prog_active); 10355 if (!ret) 10356 return; 10357 10358 event->orig_overflow_handler(event, data, regs); 10359 } 10360 10361 static int perf_event_set_bpf_handler(struct perf_event *event, 10362 struct bpf_prog *prog, 10363 u64 bpf_cookie) 10364 { 10365 if (event->overflow_handler_context) 10366 /* hw breakpoint or kernel counter */ 10367 return -EINVAL; 10368 10369 if (event->prog) 10370 return -EEXIST; 10371 10372 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10373 return -EINVAL; 10374 10375 if (event->attr.precise_ip && 10376 prog->call_get_stack && 10377 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10378 event->attr.exclude_callchain_kernel || 10379 event->attr.exclude_callchain_user)) { 10380 /* 10381 * On perf_event with precise_ip, calling bpf_get_stack() 10382 * may trigger unwinder warnings and occasional crashes. 10383 * bpf_get_[stack|stackid] works around this issue by using 10384 * callchain attached to perf_sample_data. If the 10385 * perf_event does not full (kernel and user) callchain 10386 * attached to perf_sample_data, do not allow attaching BPF 10387 * program that calls bpf_get_[stack|stackid]. 10388 */ 10389 return -EPROTO; 10390 } 10391 10392 event->prog = prog; 10393 event->bpf_cookie = bpf_cookie; 10394 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10395 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10396 return 0; 10397 } 10398 10399 static void perf_event_free_bpf_handler(struct perf_event *event) 10400 { 10401 struct bpf_prog *prog = event->prog; 10402 10403 if (!prog) 10404 return; 10405 10406 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10407 event->prog = NULL; 10408 bpf_prog_put(prog); 10409 } 10410 #else 10411 static int perf_event_set_bpf_handler(struct perf_event *event, 10412 struct bpf_prog *prog, 10413 u64 bpf_cookie) 10414 { 10415 return -EOPNOTSUPP; 10416 } 10417 static void perf_event_free_bpf_handler(struct perf_event *event) 10418 { 10419 } 10420 #endif 10421 10422 /* 10423 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10424 * with perf_event_open() 10425 */ 10426 static inline bool perf_event_is_tracing(struct perf_event *event) 10427 { 10428 if (event->pmu == &perf_tracepoint) 10429 return true; 10430 #ifdef CONFIG_KPROBE_EVENTS 10431 if (event->pmu == &perf_kprobe) 10432 return true; 10433 #endif 10434 #ifdef CONFIG_UPROBE_EVENTS 10435 if (event->pmu == &perf_uprobe) 10436 return true; 10437 #endif 10438 return false; 10439 } 10440 10441 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10442 u64 bpf_cookie) 10443 { 10444 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10445 10446 if (!perf_event_is_tracing(event)) 10447 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10448 10449 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10450 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10451 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10452 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10453 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10454 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10455 return -EINVAL; 10456 10457 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10458 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10459 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10460 return -EINVAL; 10461 10462 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10463 /* only uprobe programs are allowed to be sleepable */ 10464 return -EINVAL; 10465 10466 /* Kprobe override only works for kprobes, not uprobes. */ 10467 if (prog->kprobe_override && !is_kprobe) 10468 return -EINVAL; 10469 10470 if (is_tracepoint || is_syscall_tp) { 10471 int off = trace_event_get_offsets(event->tp_event); 10472 10473 if (prog->aux->max_ctx_offset > off) 10474 return -EACCES; 10475 } 10476 10477 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10478 } 10479 10480 void perf_event_free_bpf_prog(struct perf_event *event) 10481 { 10482 if (!perf_event_is_tracing(event)) { 10483 perf_event_free_bpf_handler(event); 10484 return; 10485 } 10486 perf_event_detach_bpf_prog(event); 10487 } 10488 10489 #else 10490 10491 static inline void perf_tp_register(void) 10492 { 10493 } 10494 10495 static void perf_event_free_filter(struct perf_event *event) 10496 { 10497 } 10498 10499 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10500 u64 bpf_cookie) 10501 { 10502 return -ENOENT; 10503 } 10504 10505 void perf_event_free_bpf_prog(struct perf_event *event) 10506 { 10507 } 10508 #endif /* CONFIG_EVENT_TRACING */ 10509 10510 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10511 void perf_bp_event(struct perf_event *bp, void *data) 10512 { 10513 struct perf_sample_data sample; 10514 struct pt_regs *regs = data; 10515 10516 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10517 10518 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10519 perf_swevent_event(bp, 1, &sample, regs); 10520 } 10521 #endif 10522 10523 /* 10524 * Allocate a new address filter 10525 */ 10526 static struct perf_addr_filter * 10527 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10528 { 10529 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10530 struct perf_addr_filter *filter; 10531 10532 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10533 if (!filter) 10534 return NULL; 10535 10536 INIT_LIST_HEAD(&filter->entry); 10537 list_add_tail(&filter->entry, filters); 10538 10539 return filter; 10540 } 10541 10542 static void free_filters_list(struct list_head *filters) 10543 { 10544 struct perf_addr_filter *filter, *iter; 10545 10546 list_for_each_entry_safe(filter, iter, filters, entry) { 10547 path_put(&filter->path); 10548 list_del(&filter->entry); 10549 kfree(filter); 10550 } 10551 } 10552 10553 /* 10554 * Free existing address filters and optionally install new ones 10555 */ 10556 static void perf_addr_filters_splice(struct perf_event *event, 10557 struct list_head *head) 10558 { 10559 unsigned long flags; 10560 LIST_HEAD(list); 10561 10562 if (!has_addr_filter(event)) 10563 return; 10564 10565 /* don't bother with children, they don't have their own filters */ 10566 if (event->parent) 10567 return; 10568 10569 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10570 10571 list_splice_init(&event->addr_filters.list, &list); 10572 if (head) 10573 list_splice(head, &event->addr_filters.list); 10574 10575 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10576 10577 free_filters_list(&list); 10578 } 10579 10580 /* 10581 * Scan through mm's vmas and see if one of them matches the 10582 * @filter; if so, adjust filter's address range. 10583 * Called with mm::mmap_lock down for reading. 10584 */ 10585 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10586 struct mm_struct *mm, 10587 struct perf_addr_filter_range *fr) 10588 { 10589 struct vm_area_struct *vma; 10590 VMA_ITERATOR(vmi, mm, 0); 10591 10592 for_each_vma(vmi, vma) { 10593 if (!vma->vm_file) 10594 continue; 10595 10596 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10597 return; 10598 } 10599 } 10600 10601 /* 10602 * Update event's address range filters based on the 10603 * task's existing mappings, if any. 10604 */ 10605 static void perf_event_addr_filters_apply(struct perf_event *event) 10606 { 10607 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10608 struct task_struct *task = READ_ONCE(event->ctx->task); 10609 struct perf_addr_filter *filter; 10610 struct mm_struct *mm = NULL; 10611 unsigned int count = 0; 10612 unsigned long flags; 10613 10614 /* 10615 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10616 * will stop on the parent's child_mutex that our caller is also holding 10617 */ 10618 if (task == TASK_TOMBSTONE) 10619 return; 10620 10621 if (ifh->nr_file_filters) { 10622 mm = get_task_mm(task); 10623 if (!mm) 10624 goto restart; 10625 10626 mmap_read_lock(mm); 10627 } 10628 10629 raw_spin_lock_irqsave(&ifh->lock, flags); 10630 list_for_each_entry(filter, &ifh->list, entry) { 10631 if (filter->path.dentry) { 10632 /* 10633 * Adjust base offset if the filter is associated to a 10634 * binary that needs to be mapped: 10635 */ 10636 event->addr_filter_ranges[count].start = 0; 10637 event->addr_filter_ranges[count].size = 0; 10638 10639 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10640 } else { 10641 event->addr_filter_ranges[count].start = filter->offset; 10642 event->addr_filter_ranges[count].size = filter->size; 10643 } 10644 10645 count++; 10646 } 10647 10648 event->addr_filters_gen++; 10649 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10650 10651 if (ifh->nr_file_filters) { 10652 mmap_read_unlock(mm); 10653 10654 mmput(mm); 10655 } 10656 10657 restart: 10658 perf_event_stop(event, 1); 10659 } 10660 10661 /* 10662 * Address range filtering: limiting the data to certain 10663 * instruction address ranges. Filters are ioctl()ed to us from 10664 * userspace as ascii strings. 10665 * 10666 * Filter string format: 10667 * 10668 * ACTION RANGE_SPEC 10669 * where ACTION is one of the 10670 * * "filter": limit the trace to this region 10671 * * "start": start tracing from this address 10672 * * "stop": stop tracing at this address/region; 10673 * RANGE_SPEC is 10674 * * for kernel addresses: <start address>[/<size>] 10675 * * for object files: <start address>[/<size>]@</path/to/object/file> 10676 * 10677 * if <size> is not specified or is zero, the range is treated as a single 10678 * address; not valid for ACTION=="filter". 10679 */ 10680 enum { 10681 IF_ACT_NONE = -1, 10682 IF_ACT_FILTER, 10683 IF_ACT_START, 10684 IF_ACT_STOP, 10685 IF_SRC_FILE, 10686 IF_SRC_KERNEL, 10687 IF_SRC_FILEADDR, 10688 IF_SRC_KERNELADDR, 10689 }; 10690 10691 enum { 10692 IF_STATE_ACTION = 0, 10693 IF_STATE_SOURCE, 10694 IF_STATE_END, 10695 }; 10696 10697 static const match_table_t if_tokens = { 10698 { IF_ACT_FILTER, "filter" }, 10699 { IF_ACT_START, "start" }, 10700 { IF_ACT_STOP, "stop" }, 10701 { IF_SRC_FILE, "%u/%u@%s" }, 10702 { IF_SRC_KERNEL, "%u/%u" }, 10703 { IF_SRC_FILEADDR, "%u@%s" }, 10704 { IF_SRC_KERNELADDR, "%u" }, 10705 { IF_ACT_NONE, NULL }, 10706 }; 10707 10708 /* 10709 * Address filter string parser 10710 */ 10711 static int 10712 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10713 struct list_head *filters) 10714 { 10715 struct perf_addr_filter *filter = NULL; 10716 char *start, *orig, *filename = NULL; 10717 substring_t args[MAX_OPT_ARGS]; 10718 int state = IF_STATE_ACTION, token; 10719 unsigned int kernel = 0; 10720 int ret = -EINVAL; 10721 10722 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10723 if (!fstr) 10724 return -ENOMEM; 10725 10726 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10727 static const enum perf_addr_filter_action_t actions[] = { 10728 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10729 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10730 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10731 }; 10732 ret = -EINVAL; 10733 10734 if (!*start) 10735 continue; 10736 10737 /* filter definition begins */ 10738 if (state == IF_STATE_ACTION) { 10739 filter = perf_addr_filter_new(event, filters); 10740 if (!filter) 10741 goto fail; 10742 } 10743 10744 token = match_token(start, if_tokens, args); 10745 switch (token) { 10746 case IF_ACT_FILTER: 10747 case IF_ACT_START: 10748 case IF_ACT_STOP: 10749 if (state != IF_STATE_ACTION) 10750 goto fail; 10751 10752 filter->action = actions[token]; 10753 state = IF_STATE_SOURCE; 10754 break; 10755 10756 case IF_SRC_KERNELADDR: 10757 case IF_SRC_KERNEL: 10758 kernel = 1; 10759 fallthrough; 10760 10761 case IF_SRC_FILEADDR: 10762 case IF_SRC_FILE: 10763 if (state != IF_STATE_SOURCE) 10764 goto fail; 10765 10766 *args[0].to = 0; 10767 ret = kstrtoul(args[0].from, 0, &filter->offset); 10768 if (ret) 10769 goto fail; 10770 10771 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10772 *args[1].to = 0; 10773 ret = kstrtoul(args[1].from, 0, &filter->size); 10774 if (ret) 10775 goto fail; 10776 } 10777 10778 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10779 int fpos = token == IF_SRC_FILE ? 2 : 1; 10780 10781 kfree(filename); 10782 filename = match_strdup(&args[fpos]); 10783 if (!filename) { 10784 ret = -ENOMEM; 10785 goto fail; 10786 } 10787 } 10788 10789 state = IF_STATE_END; 10790 break; 10791 10792 default: 10793 goto fail; 10794 } 10795 10796 /* 10797 * Filter definition is fully parsed, validate and install it. 10798 * Make sure that it doesn't contradict itself or the event's 10799 * attribute. 10800 */ 10801 if (state == IF_STATE_END) { 10802 ret = -EINVAL; 10803 10804 /* 10805 * ACTION "filter" must have a non-zero length region 10806 * specified. 10807 */ 10808 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10809 !filter->size) 10810 goto fail; 10811 10812 if (!kernel) { 10813 if (!filename) 10814 goto fail; 10815 10816 /* 10817 * For now, we only support file-based filters 10818 * in per-task events; doing so for CPU-wide 10819 * events requires additional context switching 10820 * trickery, since same object code will be 10821 * mapped at different virtual addresses in 10822 * different processes. 10823 */ 10824 ret = -EOPNOTSUPP; 10825 if (!event->ctx->task) 10826 goto fail; 10827 10828 /* look up the path and grab its inode */ 10829 ret = kern_path(filename, LOOKUP_FOLLOW, 10830 &filter->path); 10831 if (ret) 10832 goto fail; 10833 10834 ret = -EINVAL; 10835 if (!filter->path.dentry || 10836 !S_ISREG(d_inode(filter->path.dentry) 10837 ->i_mode)) 10838 goto fail; 10839 10840 event->addr_filters.nr_file_filters++; 10841 } 10842 10843 /* ready to consume more filters */ 10844 kfree(filename); 10845 filename = NULL; 10846 state = IF_STATE_ACTION; 10847 filter = NULL; 10848 kernel = 0; 10849 } 10850 } 10851 10852 if (state != IF_STATE_ACTION) 10853 goto fail; 10854 10855 kfree(filename); 10856 kfree(orig); 10857 10858 return 0; 10859 10860 fail: 10861 kfree(filename); 10862 free_filters_list(filters); 10863 kfree(orig); 10864 10865 return ret; 10866 } 10867 10868 static int 10869 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10870 { 10871 LIST_HEAD(filters); 10872 int ret; 10873 10874 /* 10875 * Since this is called in perf_ioctl() path, we're already holding 10876 * ctx::mutex. 10877 */ 10878 lockdep_assert_held(&event->ctx->mutex); 10879 10880 if (WARN_ON_ONCE(event->parent)) 10881 return -EINVAL; 10882 10883 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10884 if (ret) 10885 goto fail_clear_files; 10886 10887 ret = event->pmu->addr_filters_validate(&filters); 10888 if (ret) 10889 goto fail_free_filters; 10890 10891 /* remove existing filters, if any */ 10892 perf_addr_filters_splice(event, &filters); 10893 10894 /* install new filters */ 10895 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10896 10897 return ret; 10898 10899 fail_free_filters: 10900 free_filters_list(&filters); 10901 10902 fail_clear_files: 10903 event->addr_filters.nr_file_filters = 0; 10904 10905 return ret; 10906 } 10907 10908 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10909 { 10910 int ret = -EINVAL; 10911 char *filter_str; 10912 10913 filter_str = strndup_user(arg, PAGE_SIZE); 10914 if (IS_ERR(filter_str)) 10915 return PTR_ERR(filter_str); 10916 10917 #ifdef CONFIG_EVENT_TRACING 10918 if (perf_event_is_tracing(event)) { 10919 struct perf_event_context *ctx = event->ctx; 10920 10921 /* 10922 * Beware, here be dragons!! 10923 * 10924 * the tracepoint muck will deadlock against ctx->mutex, but 10925 * the tracepoint stuff does not actually need it. So 10926 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10927 * already have a reference on ctx. 10928 * 10929 * This can result in event getting moved to a different ctx, 10930 * but that does not affect the tracepoint state. 10931 */ 10932 mutex_unlock(&ctx->mutex); 10933 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10934 mutex_lock(&ctx->mutex); 10935 } else 10936 #endif 10937 if (has_addr_filter(event)) 10938 ret = perf_event_set_addr_filter(event, filter_str); 10939 10940 kfree(filter_str); 10941 return ret; 10942 } 10943 10944 /* 10945 * hrtimer based swevent callback 10946 */ 10947 10948 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10949 { 10950 enum hrtimer_restart ret = HRTIMER_RESTART; 10951 struct perf_sample_data data; 10952 struct pt_regs *regs; 10953 struct perf_event *event; 10954 u64 period; 10955 10956 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10957 10958 if (event->state != PERF_EVENT_STATE_ACTIVE) 10959 return HRTIMER_NORESTART; 10960 10961 event->pmu->read(event); 10962 10963 perf_sample_data_init(&data, 0, event->hw.last_period); 10964 regs = get_irq_regs(); 10965 10966 if (regs && !perf_exclude_event(event, regs)) { 10967 if (!(event->attr.exclude_idle && is_idle_task(current))) 10968 if (__perf_event_overflow(event, 1, &data, regs)) 10969 ret = HRTIMER_NORESTART; 10970 } 10971 10972 period = max_t(u64, 10000, event->hw.sample_period); 10973 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10974 10975 return ret; 10976 } 10977 10978 static void perf_swevent_start_hrtimer(struct perf_event *event) 10979 { 10980 struct hw_perf_event *hwc = &event->hw; 10981 s64 period; 10982 10983 if (!is_sampling_event(event)) 10984 return; 10985 10986 period = local64_read(&hwc->period_left); 10987 if (period) { 10988 if (period < 0) 10989 period = 10000; 10990 10991 local64_set(&hwc->period_left, 0); 10992 } else { 10993 period = max_t(u64, 10000, hwc->sample_period); 10994 } 10995 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10996 HRTIMER_MODE_REL_PINNED_HARD); 10997 } 10998 10999 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11000 { 11001 struct hw_perf_event *hwc = &event->hw; 11002 11003 if (is_sampling_event(event)) { 11004 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11005 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11006 11007 hrtimer_cancel(&hwc->hrtimer); 11008 } 11009 } 11010 11011 static void perf_swevent_init_hrtimer(struct perf_event *event) 11012 { 11013 struct hw_perf_event *hwc = &event->hw; 11014 11015 if (!is_sampling_event(event)) 11016 return; 11017 11018 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11019 hwc->hrtimer.function = perf_swevent_hrtimer; 11020 11021 /* 11022 * Since hrtimers have a fixed rate, we can do a static freq->period 11023 * mapping and avoid the whole period adjust feedback stuff. 11024 */ 11025 if (event->attr.freq) { 11026 long freq = event->attr.sample_freq; 11027 11028 event->attr.sample_period = NSEC_PER_SEC / freq; 11029 hwc->sample_period = event->attr.sample_period; 11030 local64_set(&hwc->period_left, hwc->sample_period); 11031 hwc->last_period = hwc->sample_period; 11032 event->attr.freq = 0; 11033 } 11034 } 11035 11036 /* 11037 * Software event: cpu wall time clock 11038 */ 11039 11040 static void cpu_clock_event_update(struct perf_event *event) 11041 { 11042 s64 prev; 11043 u64 now; 11044 11045 now = local_clock(); 11046 prev = local64_xchg(&event->hw.prev_count, now); 11047 local64_add(now - prev, &event->count); 11048 } 11049 11050 static void cpu_clock_event_start(struct perf_event *event, int flags) 11051 { 11052 local64_set(&event->hw.prev_count, local_clock()); 11053 perf_swevent_start_hrtimer(event); 11054 } 11055 11056 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11057 { 11058 perf_swevent_cancel_hrtimer(event); 11059 cpu_clock_event_update(event); 11060 } 11061 11062 static int cpu_clock_event_add(struct perf_event *event, int flags) 11063 { 11064 if (flags & PERF_EF_START) 11065 cpu_clock_event_start(event, flags); 11066 perf_event_update_userpage(event); 11067 11068 return 0; 11069 } 11070 11071 static void cpu_clock_event_del(struct perf_event *event, int flags) 11072 { 11073 cpu_clock_event_stop(event, flags); 11074 } 11075 11076 static void cpu_clock_event_read(struct perf_event *event) 11077 { 11078 cpu_clock_event_update(event); 11079 } 11080 11081 static int cpu_clock_event_init(struct perf_event *event) 11082 { 11083 if (event->attr.type != PERF_TYPE_SOFTWARE) 11084 return -ENOENT; 11085 11086 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11087 return -ENOENT; 11088 11089 /* 11090 * no branch sampling for software events 11091 */ 11092 if (has_branch_stack(event)) 11093 return -EOPNOTSUPP; 11094 11095 perf_swevent_init_hrtimer(event); 11096 11097 return 0; 11098 } 11099 11100 static struct pmu perf_cpu_clock = { 11101 .task_ctx_nr = perf_sw_context, 11102 11103 .capabilities = PERF_PMU_CAP_NO_NMI, 11104 11105 .event_init = cpu_clock_event_init, 11106 .add = cpu_clock_event_add, 11107 .del = cpu_clock_event_del, 11108 .start = cpu_clock_event_start, 11109 .stop = cpu_clock_event_stop, 11110 .read = cpu_clock_event_read, 11111 }; 11112 11113 /* 11114 * Software event: task time clock 11115 */ 11116 11117 static void task_clock_event_update(struct perf_event *event, u64 now) 11118 { 11119 u64 prev; 11120 s64 delta; 11121 11122 prev = local64_xchg(&event->hw.prev_count, now); 11123 delta = now - prev; 11124 local64_add(delta, &event->count); 11125 } 11126 11127 static void task_clock_event_start(struct perf_event *event, int flags) 11128 { 11129 local64_set(&event->hw.prev_count, event->ctx->time); 11130 perf_swevent_start_hrtimer(event); 11131 } 11132 11133 static void task_clock_event_stop(struct perf_event *event, int flags) 11134 { 11135 perf_swevent_cancel_hrtimer(event); 11136 task_clock_event_update(event, event->ctx->time); 11137 } 11138 11139 static int task_clock_event_add(struct perf_event *event, int flags) 11140 { 11141 if (flags & PERF_EF_START) 11142 task_clock_event_start(event, flags); 11143 perf_event_update_userpage(event); 11144 11145 return 0; 11146 } 11147 11148 static void task_clock_event_del(struct perf_event *event, int flags) 11149 { 11150 task_clock_event_stop(event, PERF_EF_UPDATE); 11151 } 11152 11153 static void task_clock_event_read(struct perf_event *event) 11154 { 11155 u64 now = perf_clock(); 11156 u64 delta = now - event->ctx->timestamp; 11157 u64 time = event->ctx->time + delta; 11158 11159 task_clock_event_update(event, time); 11160 } 11161 11162 static int task_clock_event_init(struct perf_event *event) 11163 { 11164 if (event->attr.type != PERF_TYPE_SOFTWARE) 11165 return -ENOENT; 11166 11167 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11168 return -ENOENT; 11169 11170 /* 11171 * no branch sampling for software events 11172 */ 11173 if (has_branch_stack(event)) 11174 return -EOPNOTSUPP; 11175 11176 perf_swevent_init_hrtimer(event); 11177 11178 return 0; 11179 } 11180 11181 static struct pmu perf_task_clock = { 11182 .task_ctx_nr = perf_sw_context, 11183 11184 .capabilities = PERF_PMU_CAP_NO_NMI, 11185 11186 .event_init = task_clock_event_init, 11187 .add = task_clock_event_add, 11188 .del = task_clock_event_del, 11189 .start = task_clock_event_start, 11190 .stop = task_clock_event_stop, 11191 .read = task_clock_event_read, 11192 }; 11193 11194 static void perf_pmu_nop_void(struct pmu *pmu) 11195 { 11196 } 11197 11198 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11199 { 11200 } 11201 11202 static int perf_pmu_nop_int(struct pmu *pmu) 11203 { 11204 return 0; 11205 } 11206 11207 static int perf_event_nop_int(struct perf_event *event, u64 value) 11208 { 11209 return 0; 11210 } 11211 11212 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11213 11214 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11215 { 11216 __this_cpu_write(nop_txn_flags, flags); 11217 11218 if (flags & ~PERF_PMU_TXN_ADD) 11219 return; 11220 11221 perf_pmu_disable(pmu); 11222 } 11223 11224 static int perf_pmu_commit_txn(struct pmu *pmu) 11225 { 11226 unsigned int flags = __this_cpu_read(nop_txn_flags); 11227 11228 __this_cpu_write(nop_txn_flags, 0); 11229 11230 if (flags & ~PERF_PMU_TXN_ADD) 11231 return 0; 11232 11233 perf_pmu_enable(pmu); 11234 return 0; 11235 } 11236 11237 static void perf_pmu_cancel_txn(struct pmu *pmu) 11238 { 11239 unsigned int flags = __this_cpu_read(nop_txn_flags); 11240 11241 __this_cpu_write(nop_txn_flags, 0); 11242 11243 if (flags & ~PERF_PMU_TXN_ADD) 11244 return; 11245 11246 perf_pmu_enable(pmu); 11247 } 11248 11249 static int perf_event_idx_default(struct perf_event *event) 11250 { 11251 return 0; 11252 } 11253 11254 static void free_pmu_context(struct pmu *pmu) 11255 { 11256 free_percpu(pmu->cpu_pmu_context); 11257 } 11258 11259 /* 11260 * Let userspace know that this PMU supports address range filtering: 11261 */ 11262 static ssize_t nr_addr_filters_show(struct device *dev, 11263 struct device_attribute *attr, 11264 char *page) 11265 { 11266 struct pmu *pmu = dev_get_drvdata(dev); 11267 11268 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11269 } 11270 DEVICE_ATTR_RO(nr_addr_filters); 11271 11272 static struct idr pmu_idr; 11273 11274 static ssize_t 11275 type_show(struct device *dev, struct device_attribute *attr, char *page) 11276 { 11277 struct pmu *pmu = dev_get_drvdata(dev); 11278 11279 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11280 } 11281 static DEVICE_ATTR_RO(type); 11282 11283 static ssize_t 11284 perf_event_mux_interval_ms_show(struct device *dev, 11285 struct device_attribute *attr, 11286 char *page) 11287 { 11288 struct pmu *pmu = dev_get_drvdata(dev); 11289 11290 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11291 } 11292 11293 static DEFINE_MUTEX(mux_interval_mutex); 11294 11295 static ssize_t 11296 perf_event_mux_interval_ms_store(struct device *dev, 11297 struct device_attribute *attr, 11298 const char *buf, size_t count) 11299 { 11300 struct pmu *pmu = dev_get_drvdata(dev); 11301 int timer, cpu, ret; 11302 11303 ret = kstrtoint(buf, 0, &timer); 11304 if (ret) 11305 return ret; 11306 11307 if (timer < 1) 11308 return -EINVAL; 11309 11310 /* same value, noting to do */ 11311 if (timer == pmu->hrtimer_interval_ms) 11312 return count; 11313 11314 mutex_lock(&mux_interval_mutex); 11315 pmu->hrtimer_interval_ms = timer; 11316 11317 /* update all cpuctx for this PMU */ 11318 cpus_read_lock(); 11319 for_each_online_cpu(cpu) { 11320 struct perf_cpu_pmu_context *cpc; 11321 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11322 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11323 11324 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11325 } 11326 cpus_read_unlock(); 11327 mutex_unlock(&mux_interval_mutex); 11328 11329 return count; 11330 } 11331 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11332 11333 static struct attribute *pmu_dev_attrs[] = { 11334 &dev_attr_type.attr, 11335 &dev_attr_perf_event_mux_interval_ms.attr, 11336 NULL, 11337 }; 11338 ATTRIBUTE_GROUPS(pmu_dev); 11339 11340 static int pmu_bus_running; 11341 static struct bus_type pmu_bus = { 11342 .name = "event_source", 11343 .dev_groups = pmu_dev_groups, 11344 }; 11345 11346 static void pmu_dev_release(struct device *dev) 11347 { 11348 kfree(dev); 11349 } 11350 11351 static int pmu_dev_alloc(struct pmu *pmu) 11352 { 11353 int ret = -ENOMEM; 11354 11355 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11356 if (!pmu->dev) 11357 goto out; 11358 11359 pmu->dev->groups = pmu->attr_groups; 11360 device_initialize(pmu->dev); 11361 11362 dev_set_drvdata(pmu->dev, pmu); 11363 pmu->dev->bus = &pmu_bus; 11364 pmu->dev->release = pmu_dev_release; 11365 11366 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11367 if (ret) 11368 goto free_dev; 11369 11370 ret = device_add(pmu->dev); 11371 if (ret) 11372 goto free_dev; 11373 11374 /* For PMUs with address filters, throw in an extra attribute: */ 11375 if (pmu->nr_addr_filters) 11376 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11377 11378 if (ret) 11379 goto del_dev; 11380 11381 if (pmu->attr_update) 11382 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11383 11384 if (ret) 11385 goto del_dev; 11386 11387 out: 11388 return ret; 11389 11390 del_dev: 11391 device_del(pmu->dev); 11392 11393 free_dev: 11394 put_device(pmu->dev); 11395 goto out; 11396 } 11397 11398 static struct lock_class_key cpuctx_mutex; 11399 static struct lock_class_key cpuctx_lock; 11400 11401 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11402 { 11403 int cpu, ret, max = PERF_TYPE_MAX; 11404 11405 mutex_lock(&pmus_lock); 11406 ret = -ENOMEM; 11407 pmu->pmu_disable_count = alloc_percpu(int); 11408 if (!pmu->pmu_disable_count) 11409 goto unlock; 11410 11411 pmu->type = -1; 11412 if (!name) 11413 goto skip_type; 11414 pmu->name = name; 11415 11416 if (type != PERF_TYPE_SOFTWARE) { 11417 if (type >= 0) 11418 max = type; 11419 11420 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11421 if (ret < 0) 11422 goto free_pdc; 11423 11424 WARN_ON(type >= 0 && ret != type); 11425 11426 type = ret; 11427 } 11428 pmu->type = type; 11429 11430 if (pmu_bus_running) { 11431 ret = pmu_dev_alloc(pmu); 11432 if (ret) 11433 goto free_idr; 11434 } 11435 11436 skip_type: 11437 ret = -ENOMEM; 11438 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11439 if (!pmu->cpu_pmu_context) 11440 goto free_dev; 11441 11442 for_each_possible_cpu(cpu) { 11443 struct perf_cpu_pmu_context *cpc; 11444 11445 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11446 __perf_init_event_pmu_context(&cpc->epc, pmu); 11447 __perf_mux_hrtimer_init(cpc, cpu); 11448 } 11449 11450 if (!pmu->start_txn) { 11451 if (pmu->pmu_enable) { 11452 /* 11453 * If we have pmu_enable/pmu_disable calls, install 11454 * transaction stubs that use that to try and batch 11455 * hardware accesses. 11456 */ 11457 pmu->start_txn = perf_pmu_start_txn; 11458 pmu->commit_txn = perf_pmu_commit_txn; 11459 pmu->cancel_txn = perf_pmu_cancel_txn; 11460 } else { 11461 pmu->start_txn = perf_pmu_nop_txn; 11462 pmu->commit_txn = perf_pmu_nop_int; 11463 pmu->cancel_txn = perf_pmu_nop_void; 11464 } 11465 } 11466 11467 if (!pmu->pmu_enable) { 11468 pmu->pmu_enable = perf_pmu_nop_void; 11469 pmu->pmu_disable = perf_pmu_nop_void; 11470 } 11471 11472 if (!pmu->check_period) 11473 pmu->check_period = perf_event_nop_int; 11474 11475 if (!pmu->event_idx) 11476 pmu->event_idx = perf_event_idx_default; 11477 11478 /* 11479 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11480 * since these cannot be in the IDR. This way the linear search 11481 * is fast, provided a valid software event is provided. 11482 */ 11483 if (type == PERF_TYPE_SOFTWARE || !name) 11484 list_add_rcu(&pmu->entry, &pmus); 11485 else 11486 list_add_tail_rcu(&pmu->entry, &pmus); 11487 11488 atomic_set(&pmu->exclusive_cnt, 0); 11489 ret = 0; 11490 unlock: 11491 mutex_unlock(&pmus_lock); 11492 11493 return ret; 11494 11495 free_dev: 11496 device_del(pmu->dev); 11497 put_device(pmu->dev); 11498 11499 free_idr: 11500 if (pmu->type != PERF_TYPE_SOFTWARE) 11501 idr_remove(&pmu_idr, pmu->type); 11502 11503 free_pdc: 11504 free_percpu(pmu->pmu_disable_count); 11505 goto unlock; 11506 } 11507 EXPORT_SYMBOL_GPL(perf_pmu_register); 11508 11509 void perf_pmu_unregister(struct pmu *pmu) 11510 { 11511 mutex_lock(&pmus_lock); 11512 list_del_rcu(&pmu->entry); 11513 11514 /* 11515 * We dereference the pmu list under both SRCU and regular RCU, so 11516 * synchronize against both of those. 11517 */ 11518 synchronize_srcu(&pmus_srcu); 11519 synchronize_rcu(); 11520 11521 free_percpu(pmu->pmu_disable_count); 11522 if (pmu->type != PERF_TYPE_SOFTWARE) 11523 idr_remove(&pmu_idr, pmu->type); 11524 if (pmu_bus_running) { 11525 if (pmu->nr_addr_filters) 11526 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11527 device_del(pmu->dev); 11528 put_device(pmu->dev); 11529 } 11530 free_pmu_context(pmu); 11531 mutex_unlock(&pmus_lock); 11532 } 11533 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11534 11535 static inline bool has_extended_regs(struct perf_event *event) 11536 { 11537 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11538 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11539 } 11540 11541 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11542 { 11543 struct perf_event_context *ctx = NULL; 11544 int ret; 11545 11546 if (!try_module_get(pmu->module)) 11547 return -ENODEV; 11548 11549 /* 11550 * A number of pmu->event_init() methods iterate the sibling_list to, 11551 * for example, validate if the group fits on the PMU. Therefore, 11552 * if this is a sibling event, acquire the ctx->mutex to protect 11553 * the sibling_list. 11554 */ 11555 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11556 /* 11557 * This ctx->mutex can nest when we're called through 11558 * inheritance. See the perf_event_ctx_lock_nested() comment. 11559 */ 11560 ctx = perf_event_ctx_lock_nested(event->group_leader, 11561 SINGLE_DEPTH_NESTING); 11562 BUG_ON(!ctx); 11563 } 11564 11565 event->pmu = pmu; 11566 ret = pmu->event_init(event); 11567 11568 if (ctx) 11569 perf_event_ctx_unlock(event->group_leader, ctx); 11570 11571 if (!ret) { 11572 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11573 has_extended_regs(event)) 11574 ret = -EOPNOTSUPP; 11575 11576 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11577 event_has_any_exclude_flag(event)) 11578 ret = -EINVAL; 11579 11580 if (ret && event->destroy) 11581 event->destroy(event); 11582 } 11583 11584 if (ret) 11585 module_put(pmu->module); 11586 11587 return ret; 11588 } 11589 11590 static struct pmu *perf_init_event(struct perf_event *event) 11591 { 11592 bool extended_type = false; 11593 int idx, type, ret; 11594 struct pmu *pmu; 11595 11596 idx = srcu_read_lock(&pmus_srcu); 11597 11598 /* Try parent's PMU first: */ 11599 if (event->parent && event->parent->pmu) { 11600 pmu = event->parent->pmu; 11601 ret = perf_try_init_event(pmu, event); 11602 if (!ret) 11603 goto unlock; 11604 } 11605 11606 /* 11607 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11608 * are often aliases for PERF_TYPE_RAW. 11609 */ 11610 type = event->attr.type; 11611 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11612 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11613 if (!type) { 11614 type = PERF_TYPE_RAW; 11615 } else { 11616 extended_type = true; 11617 event->attr.config &= PERF_HW_EVENT_MASK; 11618 } 11619 } 11620 11621 again: 11622 rcu_read_lock(); 11623 pmu = idr_find(&pmu_idr, type); 11624 rcu_read_unlock(); 11625 if (pmu) { 11626 if (event->attr.type != type && type != PERF_TYPE_RAW && 11627 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11628 goto fail; 11629 11630 ret = perf_try_init_event(pmu, event); 11631 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11632 type = event->attr.type; 11633 goto again; 11634 } 11635 11636 if (ret) 11637 pmu = ERR_PTR(ret); 11638 11639 goto unlock; 11640 } 11641 11642 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11643 ret = perf_try_init_event(pmu, event); 11644 if (!ret) 11645 goto unlock; 11646 11647 if (ret != -ENOENT) { 11648 pmu = ERR_PTR(ret); 11649 goto unlock; 11650 } 11651 } 11652 fail: 11653 pmu = ERR_PTR(-ENOENT); 11654 unlock: 11655 srcu_read_unlock(&pmus_srcu, idx); 11656 11657 return pmu; 11658 } 11659 11660 static void attach_sb_event(struct perf_event *event) 11661 { 11662 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11663 11664 raw_spin_lock(&pel->lock); 11665 list_add_rcu(&event->sb_list, &pel->list); 11666 raw_spin_unlock(&pel->lock); 11667 } 11668 11669 /* 11670 * We keep a list of all !task (and therefore per-cpu) events 11671 * that need to receive side-band records. 11672 * 11673 * This avoids having to scan all the various PMU per-cpu contexts 11674 * looking for them. 11675 */ 11676 static void account_pmu_sb_event(struct perf_event *event) 11677 { 11678 if (is_sb_event(event)) 11679 attach_sb_event(event); 11680 } 11681 11682 static void account_event_cpu(struct perf_event *event, int cpu) 11683 { 11684 if (event->parent) 11685 return; 11686 11687 if (is_cgroup_event(event)) 11688 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11689 } 11690 11691 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11692 static void account_freq_event_nohz(void) 11693 { 11694 #ifdef CONFIG_NO_HZ_FULL 11695 /* Lock so we don't race with concurrent unaccount */ 11696 spin_lock(&nr_freq_lock); 11697 if (atomic_inc_return(&nr_freq_events) == 1) 11698 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11699 spin_unlock(&nr_freq_lock); 11700 #endif 11701 } 11702 11703 static void account_freq_event(void) 11704 { 11705 if (tick_nohz_full_enabled()) 11706 account_freq_event_nohz(); 11707 else 11708 atomic_inc(&nr_freq_events); 11709 } 11710 11711 11712 static void account_event(struct perf_event *event) 11713 { 11714 bool inc = false; 11715 11716 if (event->parent) 11717 return; 11718 11719 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11720 inc = true; 11721 if (event->attr.mmap || event->attr.mmap_data) 11722 atomic_inc(&nr_mmap_events); 11723 if (event->attr.build_id) 11724 atomic_inc(&nr_build_id_events); 11725 if (event->attr.comm) 11726 atomic_inc(&nr_comm_events); 11727 if (event->attr.namespaces) 11728 atomic_inc(&nr_namespaces_events); 11729 if (event->attr.cgroup) 11730 atomic_inc(&nr_cgroup_events); 11731 if (event->attr.task) 11732 atomic_inc(&nr_task_events); 11733 if (event->attr.freq) 11734 account_freq_event(); 11735 if (event->attr.context_switch) { 11736 atomic_inc(&nr_switch_events); 11737 inc = true; 11738 } 11739 if (has_branch_stack(event)) 11740 inc = true; 11741 if (is_cgroup_event(event)) 11742 inc = true; 11743 if (event->attr.ksymbol) 11744 atomic_inc(&nr_ksymbol_events); 11745 if (event->attr.bpf_event) 11746 atomic_inc(&nr_bpf_events); 11747 if (event->attr.text_poke) 11748 atomic_inc(&nr_text_poke_events); 11749 11750 if (inc) { 11751 /* 11752 * We need the mutex here because static_branch_enable() 11753 * must complete *before* the perf_sched_count increment 11754 * becomes visible. 11755 */ 11756 if (atomic_inc_not_zero(&perf_sched_count)) 11757 goto enabled; 11758 11759 mutex_lock(&perf_sched_mutex); 11760 if (!atomic_read(&perf_sched_count)) { 11761 static_branch_enable(&perf_sched_events); 11762 /* 11763 * Guarantee that all CPUs observe they key change and 11764 * call the perf scheduling hooks before proceeding to 11765 * install events that need them. 11766 */ 11767 synchronize_rcu(); 11768 } 11769 /* 11770 * Now that we have waited for the sync_sched(), allow further 11771 * increments to by-pass the mutex. 11772 */ 11773 atomic_inc(&perf_sched_count); 11774 mutex_unlock(&perf_sched_mutex); 11775 } 11776 enabled: 11777 11778 account_event_cpu(event, event->cpu); 11779 11780 account_pmu_sb_event(event); 11781 } 11782 11783 /* 11784 * Allocate and initialize an event structure 11785 */ 11786 static struct perf_event * 11787 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11788 struct task_struct *task, 11789 struct perf_event *group_leader, 11790 struct perf_event *parent_event, 11791 perf_overflow_handler_t overflow_handler, 11792 void *context, int cgroup_fd) 11793 { 11794 struct pmu *pmu; 11795 struct perf_event *event; 11796 struct hw_perf_event *hwc; 11797 long err = -EINVAL; 11798 int node; 11799 11800 if ((unsigned)cpu >= nr_cpu_ids) { 11801 if (!task || cpu != -1) 11802 return ERR_PTR(-EINVAL); 11803 } 11804 if (attr->sigtrap && !task) { 11805 /* Requires a task: avoid signalling random tasks. */ 11806 return ERR_PTR(-EINVAL); 11807 } 11808 11809 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11810 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11811 node); 11812 if (!event) 11813 return ERR_PTR(-ENOMEM); 11814 11815 /* 11816 * Single events are their own group leaders, with an 11817 * empty sibling list: 11818 */ 11819 if (!group_leader) 11820 group_leader = event; 11821 11822 mutex_init(&event->child_mutex); 11823 INIT_LIST_HEAD(&event->child_list); 11824 11825 INIT_LIST_HEAD(&event->event_entry); 11826 INIT_LIST_HEAD(&event->sibling_list); 11827 INIT_LIST_HEAD(&event->active_list); 11828 init_event_group(event); 11829 INIT_LIST_HEAD(&event->rb_entry); 11830 INIT_LIST_HEAD(&event->active_entry); 11831 INIT_LIST_HEAD(&event->addr_filters.list); 11832 INIT_HLIST_NODE(&event->hlist_entry); 11833 11834 11835 init_waitqueue_head(&event->waitq); 11836 init_irq_work(&event->pending_irq, perf_pending_irq); 11837 init_task_work(&event->pending_task, perf_pending_task); 11838 11839 mutex_init(&event->mmap_mutex); 11840 raw_spin_lock_init(&event->addr_filters.lock); 11841 11842 atomic_long_set(&event->refcount, 1); 11843 event->cpu = cpu; 11844 event->attr = *attr; 11845 event->group_leader = group_leader; 11846 event->pmu = NULL; 11847 event->oncpu = -1; 11848 11849 event->parent = parent_event; 11850 11851 event->ns = get_pid_ns(task_active_pid_ns(current)); 11852 event->id = atomic64_inc_return(&perf_event_id); 11853 11854 event->state = PERF_EVENT_STATE_INACTIVE; 11855 11856 if (parent_event) 11857 event->event_caps = parent_event->event_caps; 11858 11859 if (task) { 11860 event->attach_state = PERF_ATTACH_TASK; 11861 /* 11862 * XXX pmu::event_init needs to know what task to account to 11863 * and we cannot use the ctx information because we need the 11864 * pmu before we get a ctx. 11865 */ 11866 event->hw.target = get_task_struct(task); 11867 } 11868 11869 event->clock = &local_clock; 11870 if (parent_event) 11871 event->clock = parent_event->clock; 11872 11873 if (!overflow_handler && parent_event) { 11874 overflow_handler = parent_event->overflow_handler; 11875 context = parent_event->overflow_handler_context; 11876 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11877 if (overflow_handler == bpf_overflow_handler) { 11878 struct bpf_prog *prog = parent_event->prog; 11879 11880 bpf_prog_inc(prog); 11881 event->prog = prog; 11882 event->orig_overflow_handler = 11883 parent_event->orig_overflow_handler; 11884 } 11885 #endif 11886 } 11887 11888 if (overflow_handler) { 11889 event->overflow_handler = overflow_handler; 11890 event->overflow_handler_context = context; 11891 } else if (is_write_backward(event)){ 11892 event->overflow_handler = perf_event_output_backward; 11893 event->overflow_handler_context = NULL; 11894 } else { 11895 event->overflow_handler = perf_event_output_forward; 11896 event->overflow_handler_context = NULL; 11897 } 11898 11899 perf_event__state_init(event); 11900 11901 pmu = NULL; 11902 11903 hwc = &event->hw; 11904 hwc->sample_period = attr->sample_period; 11905 if (attr->freq && attr->sample_freq) 11906 hwc->sample_period = 1; 11907 hwc->last_period = hwc->sample_period; 11908 11909 local64_set(&hwc->period_left, hwc->sample_period); 11910 11911 /* 11912 * We currently do not support PERF_SAMPLE_READ on inherited events. 11913 * See perf_output_read(). 11914 */ 11915 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11916 goto err_ns; 11917 11918 if (!has_branch_stack(event)) 11919 event->attr.branch_sample_type = 0; 11920 11921 pmu = perf_init_event(event); 11922 if (IS_ERR(pmu)) { 11923 err = PTR_ERR(pmu); 11924 goto err_ns; 11925 } 11926 11927 /* 11928 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 11929 * events (they don't make sense as the cgroup will be different 11930 * on other CPUs in the uncore mask). 11931 */ 11932 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 11933 err = -EINVAL; 11934 goto err_pmu; 11935 } 11936 11937 if (event->attr.aux_output && 11938 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11939 err = -EOPNOTSUPP; 11940 goto err_pmu; 11941 } 11942 11943 if (cgroup_fd != -1) { 11944 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11945 if (err) 11946 goto err_pmu; 11947 } 11948 11949 err = exclusive_event_init(event); 11950 if (err) 11951 goto err_pmu; 11952 11953 if (has_addr_filter(event)) { 11954 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11955 sizeof(struct perf_addr_filter_range), 11956 GFP_KERNEL); 11957 if (!event->addr_filter_ranges) { 11958 err = -ENOMEM; 11959 goto err_per_task; 11960 } 11961 11962 /* 11963 * Clone the parent's vma offsets: they are valid until exec() 11964 * even if the mm is not shared with the parent. 11965 */ 11966 if (event->parent) { 11967 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11968 11969 raw_spin_lock_irq(&ifh->lock); 11970 memcpy(event->addr_filter_ranges, 11971 event->parent->addr_filter_ranges, 11972 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11973 raw_spin_unlock_irq(&ifh->lock); 11974 } 11975 11976 /* force hw sync on the address filters */ 11977 event->addr_filters_gen = 1; 11978 } 11979 11980 if (!event->parent) { 11981 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11982 err = get_callchain_buffers(attr->sample_max_stack); 11983 if (err) 11984 goto err_addr_filters; 11985 } 11986 } 11987 11988 err = security_perf_event_alloc(event); 11989 if (err) 11990 goto err_callchain_buffer; 11991 11992 /* symmetric to unaccount_event() in _free_event() */ 11993 account_event(event); 11994 11995 return event; 11996 11997 err_callchain_buffer: 11998 if (!event->parent) { 11999 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12000 put_callchain_buffers(); 12001 } 12002 err_addr_filters: 12003 kfree(event->addr_filter_ranges); 12004 12005 err_per_task: 12006 exclusive_event_destroy(event); 12007 12008 err_pmu: 12009 if (is_cgroup_event(event)) 12010 perf_detach_cgroup(event); 12011 if (event->destroy) 12012 event->destroy(event); 12013 module_put(pmu->module); 12014 err_ns: 12015 if (event->hw.target) 12016 put_task_struct(event->hw.target); 12017 call_rcu(&event->rcu_head, free_event_rcu); 12018 12019 return ERR_PTR(err); 12020 } 12021 12022 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12023 struct perf_event_attr *attr) 12024 { 12025 u32 size; 12026 int ret; 12027 12028 /* Zero the full structure, so that a short copy will be nice. */ 12029 memset(attr, 0, sizeof(*attr)); 12030 12031 ret = get_user(size, &uattr->size); 12032 if (ret) 12033 return ret; 12034 12035 /* ABI compatibility quirk: */ 12036 if (!size) 12037 size = PERF_ATTR_SIZE_VER0; 12038 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12039 goto err_size; 12040 12041 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12042 if (ret) { 12043 if (ret == -E2BIG) 12044 goto err_size; 12045 return ret; 12046 } 12047 12048 attr->size = size; 12049 12050 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12051 return -EINVAL; 12052 12053 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12054 return -EINVAL; 12055 12056 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12057 return -EINVAL; 12058 12059 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12060 u64 mask = attr->branch_sample_type; 12061 12062 /* only using defined bits */ 12063 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12064 return -EINVAL; 12065 12066 /* at least one branch bit must be set */ 12067 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12068 return -EINVAL; 12069 12070 /* propagate priv level, when not set for branch */ 12071 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12072 12073 /* exclude_kernel checked on syscall entry */ 12074 if (!attr->exclude_kernel) 12075 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12076 12077 if (!attr->exclude_user) 12078 mask |= PERF_SAMPLE_BRANCH_USER; 12079 12080 if (!attr->exclude_hv) 12081 mask |= PERF_SAMPLE_BRANCH_HV; 12082 /* 12083 * adjust user setting (for HW filter setup) 12084 */ 12085 attr->branch_sample_type = mask; 12086 } 12087 /* privileged levels capture (kernel, hv): check permissions */ 12088 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12089 ret = perf_allow_kernel(attr); 12090 if (ret) 12091 return ret; 12092 } 12093 } 12094 12095 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12096 ret = perf_reg_validate(attr->sample_regs_user); 12097 if (ret) 12098 return ret; 12099 } 12100 12101 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12102 if (!arch_perf_have_user_stack_dump()) 12103 return -ENOSYS; 12104 12105 /* 12106 * We have __u32 type for the size, but so far 12107 * we can only use __u16 as maximum due to the 12108 * __u16 sample size limit. 12109 */ 12110 if (attr->sample_stack_user >= USHRT_MAX) 12111 return -EINVAL; 12112 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12113 return -EINVAL; 12114 } 12115 12116 if (!attr->sample_max_stack) 12117 attr->sample_max_stack = sysctl_perf_event_max_stack; 12118 12119 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12120 ret = perf_reg_validate(attr->sample_regs_intr); 12121 12122 #ifndef CONFIG_CGROUP_PERF 12123 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12124 return -EINVAL; 12125 #endif 12126 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12127 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12128 return -EINVAL; 12129 12130 if (!attr->inherit && attr->inherit_thread) 12131 return -EINVAL; 12132 12133 if (attr->remove_on_exec && attr->enable_on_exec) 12134 return -EINVAL; 12135 12136 if (attr->sigtrap && !attr->remove_on_exec) 12137 return -EINVAL; 12138 12139 out: 12140 return ret; 12141 12142 err_size: 12143 put_user(sizeof(*attr), &uattr->size); 12144 ret = -E2BIG; 12145 goto out; 12146 } 12147 12148 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12149 { 12150 if (b < a) 12151 swap(a, b); 12152 12153 mutex_lock(a); 12154 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12155 } 12156 12157 static int 12158 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12159 { 12160 struct perf_buffer *rb = NULL; 12161 int ret = -EINVAL; 12162 12163 if (!output_event) { 12164 mutex_lock(&event->mmap_mutex); 12165 goto set; 12166 } 12167 12168 /* don't allow circular references */ 12169 if (event == output_event) 12170 goto out; 12171 12172 /* 12173 * Don't allow cross-cpu buffers 12174 */ 12175 if (output_event->cpu != event->cpu) 12176 goto out; 12177 12178 /* 12179 * If its not a per-cpu rb, it must be the same task. 12180 */ 12181 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 12182 goto out; 12183 12184 /* 12185 * Mixing clocks in the same buffer is trouble you don't need. 12186 */ 12187 if (output_event->clock != event->clock) 12188 goto out; 12189 12190 /* 12191 * Either writing ring buffer from beginning or from end. 12192 * Mixing is not allowed. 12193 */ 12194 if (is_write_backward(output_event) != is_write_backward(event)) 12195 goto out; 12196 12197 /* 12198 * If both events generate aux data, they must be on the same PMU 12199 */ 12200 if (has_aux(event) && has_aux(output_event) && 12201 event->pmu != output_event->pmu) 12202 goto out; 12203 12204 /* 12205 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12206 * output_event is already on rb->event_list, and the list iteration 12207 * restarts after every removal, it is guaranteed this new event is 12208 * observed *OR* if output_event is already removed, it's guaranteed we 12209 * observe !rb->mmap_count. 12210 */ 12211 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12212 set: 12213 /* Can't redirect output if we've got an active mmap() */ 12214 if (atomic_read(&event->mmap_count)) 12215 goto unlock; 12216 12217 if (output_event) { 12218 /* get the rb we want to redirect to */ 12219 rb = ring_buffer_get(output_event); 12220 if (!rb) 12221 goto unlock; 12222 12223 /* did we race against perf_mmap_close() */ 12224 if (!atomic_read(&rb->mmap_count)) { 12225 ring_buffer_put(rb); 12226 goto unlock; 12227 } 12228 } 12229 12230 ring_buffer_attach(event, rb); 12231 12232 ret = 0; 12233 unlock: 12234 mutex_unlock(&event->mmap_mutex); 12235 if (output_event) 12236 mutex_unlock(&output_event->mmap_mutex); 12237 12238 out: 12239 return ret; 12240 } 12241 12242 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12243 { 12244 bool nmi_safe = false; 12245 12246 switch (clk_id) { 12247 case CLOCK_MONOTONIC: 12248 event->clock = &ktime_get_mono_fast_ns; 12249 nmi_safe = true; 12250 break; 12251 12252 case CLOCK_MONOTONIC_RAW: 12253 event->clock = &ktime_get_raw_fast_ns; 12254 nmi_safe = true; 12255 break; 12256 12257 case CLOCK_REALTIME: 12258 event->clock = &ktime_get_real_ns; 12259 break; 12260 12261 case CLOCK_BOOTTIME: 12262 event->clock = &ktime_get_boottime_ns; 12263 break; 12264 12265 case CLOCK_TAI: 12266 event->clock = &ktime_get_clocktai_ns; 12267 break; 12268 12269 default: 12270 return -EINVAL; 12271 } 12272 12273 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12274 return -EINVAL; 12275 12276 return 0; 12277 } 12278 12279 static bool 12280 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12281 { 12282 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12283 bool is_capable = perfmon_capable(); 12284 12285 if (attr->sigtrap) { 12286 /* 12287 * perf_event_attr::sigtrap sends signals to the other task. 12288 * Require the current task to also have CAP_KILL. 12289 */ 12290 rcu_read_lock(); 12291 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12292 rcu_read_unlock(); 12293 12294 /* 12295 * If the required capabilities aren't available, checks for 12296 * ptrace permissions: upgrade to ATTACH, since sending signals 12297 * can effectively change the target task. 12298 */ 12299 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12300 } 12301 12302 /* 12303 * Preserve ptrace permission check for backwards compatibility. The 12304 * ptrace check also includes checks that the current task and other 12305 * task have matching uids, and is therefore not done here explicitly. 12306 */ 12307 return is_capable || ptrace_may_access(task, ptrace_mode); 12308 } 12309 12310 /** 12311 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12312 * 12313 * @attr_uptr: event_id type attributes for monitoring/sampling 12314 * @pid: target pid 12315 * @cpu: target cpu 12316 * @group_fd: group leader event fd 12317 * @flags: perf event open flags 12318 */ 12319 SYSCALL_DEFINE5(perf_event_open, 12320 struct perf_event_attr __user *, attr_uptr, 12321 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12322 { 12323 struct perf_event *group_leader = NULL, *output_event = NULL; 12324 struct perf_event_pmu_context *pmu_ctx; 12325 struct perf_event *event, *sibling; 12326 struct perf_event_attr attr; 12327 struct perf_event_context *ctx; 12328 struct file *event_file = NULL; 12329 struct fd group = {NULL, 0}; 12330 struct task_struct *task = NULL; 12331 struct pmu *pmu; 12332 int event_fd; 12333 int move_group = 0; 12334 int err; 12335 int f_flags = O_RDWR; 12336 int cgroup_fd = -1; 12337 12338 /* for future expandability... */ 12339 if (flags & ~PERF_FLAG_ALL) 12340 return -EINVAL; 12341 12342 /* Do we allow access to perf_event_open(2) ? */ 12343 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12344 if (err) 12345 return err; 12346 12347 err = perf_copy_attr(attr_uptr, &attr); 12348 if (err) 12349 return err; 12350 12351 if (!attr.exclude_kernel) { 12352 err = perf_allow_kernel(&attr); 12353 if (err) 12354 return err; 12355 } 12356 12357 if (attr.namespaces) { 12358 if (!perfmon_capable()) 12359 return -EACCES; 12360 } 12361 12362 if (attr.freq) { 12363 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12364 return -EINVAL; 12365 } else { 12366 if (attr.sample_period & (1ULL << 63)) 12367 return -EINVAL; 12368 } 12369 12370 /* Only privileged users can get physical addresses */ 12371 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12372 err = perf_allow_kernel(&attr); 12373 if (err) 12374 return err; 12375 } 12376 12377 /* REGS_INTR can leak data, lockdown must prevent this */ 12378 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12379 err = security_locked_down(LOCKDOWN_PERF); 12380 if (err) 12381 return err; 12382 } 12383 12384 /* 12385 * In cgroup mode, the pid argument is used to pass the fd 12386 * opened to the cgroup directory in cgroupfs. The cpu argument 12387 * designates the cpu on which to monitor threads from that 12388 * cgroup. 12389 */ 12390 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12391 return -EINVAL; 12392 12393 if (flags & PERF_FLAG_FD_CLOEXEC) 12394 f_flags |= O_CLOEXEC; 12395 12396 event_fd = get_unused_fd_flags(f_flags); 12397 if (event_fd < 0) 12398 return event_fd; 12399 12400 if (group_fd != -1) { 12401 err = perf_fget_light(group_fd, &group); 12402 if (err) 12403 goto err_fd; 12404 group_leader = group.file->private_data; 12405 if (flags & PERF_FLAG_FD_OUTPUT) 12406 output_event = group_leader; 12407 if (flags & PERF_FLAG_FD_NO_GROUP) 12408 group_leader = NULL; 12409 } 12410 12411 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12412 task = find_lively_task_by_vpid(pid); 12413 if (IS_ERR(task)) { 12414 err = PTR_ERR(task); 12415 goto err_group_fd; 12416 } 12417 } 12418 12419 if (task && group_leader && 12420 group_leader->attr.inherit != attr.inherit) { 12421 err = -EINVAL; 12422 goto err_task; 12423 } 12424 12425 if (flags & PERF_FLAG_PID_CGROUP) 12426 cgroup_fd = pid; 12427 12428 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12429 NULL, NULL, cgroup_fd); 12430 if (IS_ERR(event)) { 12431 err = PTR_ERR(event); 12432 goto err_task; 12433 } 12434 12435 if (is_sampling_event(event)) { 12436 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12437 err = -EOPNOTSUPP; 12438 goto err_alloc; 12439 } 12440 } 12441 12442 /* 12443 * Special case software events and allow them to be part of 12444 * any hardware group. 12445 */ 12446 pmu = event->pmu; 12447 12448 if (attr.use_clockid) { 12449 err = perf_event_set_clock(event, attr.clockid); 12450 if (err) 12451 goto err_alloc; 12452 } 12453 12454 if (pmu->task_ctx_nr == perf_sw_context) 12455 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12456 12457 if (task) { 12458 err = down_read_interruptible(&task->signal->exec_update_lock); 12459 if (err) 12460 goto err_alloc; 12461 12462 /* 12463 * We must hold exec_update_lock across this and any potential 12464 * perf_install_in_context() call for this new event to 12465 * serialize against exec() altering our credentials (and the 12466 * perf_event_exit_task() that could imply). 12467 */ 12468 err = -EACCES; 12469 if (!perf_check_permission(&attr, task)) 12470 goto err_cred; 12471 } 12472 12473 /* 12474 * Get the target context (task or percpu): 12475 */ 12476 ctx = find_get_context(task, event); 12477 if (IS_ERR(ctx)) { 12478 err = PTR_ERR(ctx); 12479 goto err_cred; 12480 } 12481 12482 mutex_lock(&ctx->mutex); 12483 12484 if (ctx->task == TASK_TOMBSTONE) { 12485 err = -ESRCH; 12486 goto err_locked; 12487 } 12488 12489 if (!task) { 12490 /* 12491 * Check if the @cpu we're creating an event for is online. 12492 * 12493 * We use the perf_cpu_context::ctx::mutex to serialize against 12494 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12495 */ 12496 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12497 12498 if (!cpuctx->online) { 12499 err = -ENODEV; 12500 goto err_locked; 12501 } 12502 } 12503 12504 if (group_leader) { 12505 err = -EINVAL; 12506 12507 /* 12508 * Do not allow a recursive hierarchy (this new sibling 12509 * becoming part of another group-sibling): 12510 */ 12511 if (group_leader->group_leader != group_leader) 12512 goto err_locked; 12513 12514 /* All events in a group should have the same clock */ 12515 if (group_leader->clock != event->clock) 12516 goto err_locked; 12517 12518 /* 12519 * Make sure we're both events for the same CPU; 12520 * grouping events for different CPUs is broken; since 12521 * you can never concurrently schedule them anyhow. 12522 */ 12523 if (group_leader->cpu != event->cpu) 12524 goto err_locked; 12525 12526 /* 12527 * Make sure we're both on the same context; either task or cpu. 12528 */ 12529 if (group_leader->ctx != ctx) 12530 goto err_locked; 12531 12532 /* 12533 * Only a group leader can be exclusive or pinned 12534 */ 12535 if (attr.exclusive || attr.pinned) 12536 goto err_locked; 12537 12538 if (is_software_event(event) && 12539 !in_software_context(group_leader)) { 12540 /* 12541 * If the event is a sw event, but the group_leader 12542 * is on hw context. 12543 * 12544 * Allow the addition of software events to hw 12545 * groups, this is safe because software events 12546 * never fail to schedule. 12547 * 12548 * Note the comment that goes with struct 12549 * perf_event_pmu_context. 12550 */ 12551 pmu = group_leader->pmu_ctx->pmu; 12552 } else if (!is_software_event(event)) { 12553 if (is_software_event(group_leader) && 12554 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12555 /* 12556 * In case the group is a pure software group, and we 12557 * try to add a hardware event, move the whole group to 12558 * the hardware context. 12559 */ 12560 move_group = 1; 12561 } 12562 12563 /* Don't allow group of multiple hw events from different pmus */ 12564 if (!in_software_context(group_leader) && 12565 group_leader->pmu_ctx->pmu != pmu) 12566 goto err_locked; 12567 } 12568 } 12569 12570 /* 12571 * Now that we're certain of the pmu; find the pmu_ctx. 12572 */ 12573 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12574 if (IS_ERR(pmu_ctx)) { 12575 err = PTR_ERR(pmu_ctx); 12576 goto err_locked; 12577 } 12578 event->pmu_ctx = pmu_ctx; 12579 12580 if (output_event) { 12581 err = perf_event_set_output(event, output_event); 12582 if (err) 12583 goto err_context; 12584 } 12585 12586 if (!perf_event_validate_size(event)) { 12587 err = -E2BIG; 12588 goto err_context; 12589 } 12590 12591 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12592 err = -EINVAL; 12593 goto err_context; 12594 } 12595 12596 /* 12597 * Must be under the same ctx::mutex as perf_install_in_context(), 12598 * because we need to serialize with concurrent event creation. 12599 */ 12600 if (!exclusive_event_installable(event, ctx)) { 12601 err = -EBUSY; 12602 goto err_context; 12603 } 12604 12605 WARN_ON_ONCE(ctx->parent_ctx); 12606 12607 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12608 if (IS_ERR(event_file)) { 12609 err = PTR_ERR(event_file); 12610 event_file = NULL; 12611 goto err_context; 12612 } 12613 12614 /* 12615 * This is the point on no return; we cannot fail hereafter. This is 12616 * where we start modifying current state. 12617 */ 12618 12619 if (move_group) { 12620 perf_remove_from_context(group_leader, 0); 12621 put_pmu_ctx(group_leader->pmu_ctx); 12622 12623 for_each_sibling_event(sibling, group_leader) { 12624 perf_remove_from_context(sibling, 0); 12625 put_pmu_ctx(sibling->pmu_ctx); 12626 } 12627 12628 /* 12629 * Install the group siblings before the group leader. 12630 * 12631 * Because a group leader will try and install the entire group 12632 * (through the sibling list, which is still in-tact), we can 12633 * end up with siblings installed in the wrong context. 12634 * 12635 * By installing siblings first we NO-OP because they're not 12636 * reachable through the group lists. 12637 */ 12638 for_each_sibling_event(sibling, group_leader) { 12639 sibling->pmu_ctx = pmu_ctx; 12640 get_pmu_ctx(pmu_ctx); 12641 perf_event__state_init(sibling); 12642 perf_install_in_context(ctx, sibling, sibling->cpu); 12643 } 12644 12645 /* 12646 * Removing from the context ends up with disabled 12647 * event. What we want here is event in the initial 12648 * startup state, ready to be add into new context. 12649 */ 12650 group_leader->pmu_ctx = pmu_ctx; 12651 get_pmu_ctx(pmu_ctx); 12652 perf_event__state_init(group_leader); 12653 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12654 } 12655 12656 /* 12657 * Precalculate sample_data sizes; do while holding ctx::mutex such 12658 * that we're serialized against further additions and before 12659 * perf_install_in_context() which is the point the event is active and 12660 * can use these values. 12661 */ 12662 perf_event__header_size(event); 12663 perf_event__id_header_size(event); 12664 12665 event->owner = current; 12666 12667 perf_install_in_context(ctx, event, event->cpu); 12668 perf_unpin_context(ctx); 12669 12670 mutex_unlock(&ctx->mutex); 12671 12672 if (task) { 12673 up_read(&task->signal->exec_update_lock); 12674 put_task_struct(task); 12675 } 12676 12677 mutex_lock(¤t->perf_event_mutex); 12678 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12679 mutex_unlock(¤t->perf_event_mutex); 12680 12681 /* 12682 * Drop the reference on the group_event after placing the 12683 * new event on the sibling_list. This ensures destruction 12684 * of the group leader will find the pointer to itself in 12685 * perf_group_detach(). 12686 */ 12687 fdput(group); 12688 fd_install(event_fd, event_file); 12689 return event_fd; 12690 12691 err_context: 12692 /* event->pmu_ctx freed by free_event() */ 12693 err_locked: 12694 mutex_unlock(&ctx->mutex); 12695 perf_unpin_context(ctx); 12696 put_ctx(ctx); 12697 err_cred: 12698 if (task) 12699 up_read(&task->signal->exec_update_lock); 12700 err_alloc: 12701 free_event(event); 12702 err_task: 12703 if (task) 12704 put_task_struct(task); 12705 err_group_fd: 12706 fdput(group); 12707 err_fd: 12708 put_unused_fd(event_fd); 12709 return err; 12710 } 12711 12712 /** 12713 * perf_event_create_kernel_counter 12714 * 12715 * @attr: attributes of the counter to create 12716 * @cpu: cpu in which the counter is bound 12717 * @task: task to profile (NULL for percpu) 12718 * @overflow_handler: callback to trigger when we hit the event 12719 * @context: context data could be used in overflow_handler callback 12720 */ 12721 struct perf_event * 12722 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12723 struct task_struct *task, 12724 perf_overflow_handler_t overflow_handler, 12725 void *context) 12726 { 12727 struct perf_event_pmu_context *pmu_ctx; 12728 struct perf_event_context *ctx; 12729 struct perf_event *event; 12730 struct pmu *pmu; 12731 int err; 12732 12733 /* 12734 * Grouping is not supported for kernel events, neither is 'AUX', 12735 * make sure the caller's intentions are adjusted. 12736 */ 12737 if (attr->aux_output) 12738 return ERR_PTR(-EINVAL); 12739 12740 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12741 overflow_handler, context, -1); 12742 if (IS_ERR(event)) { 12743 err = PTR_ERR(event); 12744 goto err; 12745 } 12746 12747 /* Mark owner so we could distinguish it from user events. */ 12748 event->owner = TASK_TOMBSTONE; 12749 pmu = event->pmu; 12750 12751 if (pmu->task_ctx_nr == perf_sw_context) 12752 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12753 12754 /* 12755 * Get the target context (task or percpu): 12756 */ 12757 ctx = find_get_context(task, event); 12758 if (IS_ERR(ctx)) { 12759 err = PTR_ERR(ctx); 12760 goto err_alloc; 12761 } 12762 12763 WARN_ON_ONCE(ctx->parent_ctx); 12764 mutex_lock(&ctx->mutex); 12765 if (ctx->task == TASK_TOMBSTONE) { 12766 err = -ESRCH; 12767 goto err_unlock; 12768 } 12769 12770 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12771 if (IS_ERR(pmu_ctx)) { 12772 err = PTR_ERR(pmu_ctx); 12773 goto err_unlock; 12774 } 12775 event->pmu_ctx = pmu_ctx; 12776 12777 if (!task) { 12778 /* 12779 * Check if the @cpu we're creating an event for is online. 12780 * 12781 * We use the perf_cpu_context::ctx::mutex to serialize against 12782 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12783 */ 12784 struct perf_cpu_context *cpuctx = 12785 container_of(ctx, struct perf_cpu_context, ctx); 12786 if (!cpuctx->online) { 12787 err = -ENODEV; 12788 goto err_pmu_ctx; 12789 } 12790 } 12791 12792 if (!exclusive_event_installable(event, ctx)) { 12793 err = -EBUSY; 12794 goto err_pmu_ctx; 12795 } 12796 12797 perf_install_in_context(ctx, event, event->cpu); 12798 perf_unpin_context(ctx); 12799 mutex_unlock(&ctx->mutex); 12800 12801 return event; 12802 12803 err_pmu_ctx: 12804 put_pmu_ctx(pmu_ctx); 12805 err_unlock: 12806 mutex_unlock(&ctx->mutex); 12807 perf_unpin_context(ctx); 12808 put_ctx(ctx); 12809 err_alloc: 12810 free_event(event); 12811 err: 12812 return ERR_PTR(err); 12813 } 12814 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12815 12816 static void __perf_pmu_remove(struct perf_event_context *ctx, 12817 int cpu, struct pmu *pmu, 12818 struct perf_event_groups *groups, 12819 struct list_head *events) 12820 { 12821 struct perf_event *event, *sibling; 12822 12823 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12824 perf_remove_from_context(event, 0); 12825 unaccount_event_cpu(event, cpu); 12826 put_pmu_ctx(event->pmu_ctx); 12827 list_add(&event->migrate_entry, events); 12828 12829 for_each_sibling_event(sibling, event) { 12830 perf_remove_from_context(sibling, 0); 12831 unaccount_event_cpu(sibling, cpu); 12832 put_pmu_ctx(sibling->pmu_ctx); 12833 list_add(&sibling->migrate_entry, events); 12834 } 12835 } 12836 } 12837 12838 static void __perf_pmu_install_event(struct pmu *pmu, 12839 struct perf_event_context *ctx, 12840 int cpu, struct perf_event *event) 12841 { 12842 struct perf_event_pmu_context *epc; 12843 12844 event->cpu = cpu; 12845 epc = find_get_pmu_context(pmu, ctx, event); 12846 event->pmu_ctx = epc; 12847 12848 if (event->state >= PERF_EVENT_STATE_OFF) 12849 event->state = PERF_EVENT_STATE_INACTIVE; 12850 account_event_cpu(event, cpu); 12851 perf_install_in_context(ctx, event, cpu); 12852 } 12853 12854 static void __perf_pmu_install(struct perf_event_context *ctx, 12855 int cpu, struct pmu *pmu, struct list_head *events) 12856 { 12857 struct perf_event *event, *tmp; 12858 12859 /* 12860 * Re-instate events in 2 passes. 12861 * 12862 * Skip over group leaders and only install siblings on this first 12863 * pass, siblings will not get enabled without a leader, however a 12864 * leader will enable its siblings, even if those are still on the old 12865 * context. 12866 */ 12867 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12868 if (event->group_leader == event) 12869 continue; 12870 12871 list_del(&event->migrate_entry); 12872 __perf_pmu_install_event(pmu, ctx, cpu, event); 12873 } 12874 12875 /* 12876 * Once all the siblings are setup properly, install the group leaders 12877 * to make it go. 12878 */ 12879 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12880 list_del(&event->migrate_entry); 12881 __perf_pmu_install_event(pmu, ctx, cpu, event); 12882 } 12883 } 12884 12885 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12886 { 12887 struct perf_event_context *src_ctx, *dst_ctx; 12888 LIST_HEAD(events); 12889 12890 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12891 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12892 12893 /* 12894 * See perf_event_ctx_lock() for comments on the details 12895 * of swizzling perf_event::ctx. 12896 */ 12897 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12898 12899 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12900 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12901 12902 /* 12903 * Wait for the events to quiesce before re-instating them. 12904 */ 12905 synchronize_rcu(); 12906 12907 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 12908 12909 mutex_unlock(&dst_ctx->mutex); 12910 mutex_unlock(&src_ctx->mutex); 12911 } 12912 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12913 12914 static void sync_child_event(struct perf_event *child_event) 12915 { 12916 struct perf_event *parent_event = child_event->parent; 12917 u64 child_val; 12918 12919 if (child_event->attr.inherit_stat) { 12920 struct task_struct *task = child_event->ctx->task; 12921 12922 if (task && task != TASK_TOMBSTONE) 12923 perf_event_read_event(child_event, task); 12924 } 12925 12926 child_val = perf_event_count(child_event); 12927 12928 /* 12929 * Add back the child's count to the parent's count: 12930 */ 12931 atomic64_add(child_val, &parent_event->child_count); 12932 atomic64_add(child_event->total_time_enabled, 12933 &parent_event->child_total_time_enabled); 12934 atomic64_add(child_event->total_time_running, 12935 &parent_event->child_total_time_running); 12936 } 12937 12938 static void 12939 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12940 { 12941 struct perf_event *parent_event = event->parent; 12942 unsigned long detach_flags = 0; 12943 12944 if (parent_event) { 12945 /* 12946 * Do not destroy the 'original' grouping; because of the 12947 * context switch optimization the original events could've 12948 * ended up in a random child task. 12949 * 12950 * If we were to destroy the original group, all group related 12951 * operations would cease to function properly after this 12952 * random child dies. 12953 * 12954 * Do destroy all inherited groups, we don't care about those 12955 * and being thorough is better. 12956 */ 12957 detach_flags = DETACH_GROUP | DETACH_CHILD; 12958 mutex_lock(&parent_event->child_mutex); 12959 } 12960 12961 perf_remove_from_context(event, detach_flags); 12962 12963 raw_spin_lock_irq(&ctx->lock); 12964 if (event->state > PERF_EVENT_STATE_EXIT) 12965 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12966 raw_spin_unlock_irq(&ctx->lock); 12967 12968 /* 12969 * Child events can be freed. 12970 */ 12971 if (parent_event) { 12972 mutex_unlock(&parent_event->child_mutex); 12973 /* 12974 * Kick perf_poll() for is_event_hup(); 12975 */ 12976 perf_event_wakeup(parent_event); 12977 free_event(event); 12978 put_event(parent_event); 12979 return; 12980 } 12981 12982 /* 12983 * Parent events are governed by their filedesc, retain them. 12984 */ 12985 perf_event_wakeup(event); 12986 } 12987 12988 static void perf_event_exit_task_context(struct task_struct *child) 12989 { 12990 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12991 struct perf_event *child_event, *next; 12992 12993 WARN_ON_ONCE(child != current); 12994 12995 child_ctx = perf_pin_task_context(child); 12996 if (!child_ctx) 12997 return; 12998 12999 /* 13000 * In order to reduce the amount of tricky in ctx tear-down, we hold 13001 * ctx::mutex over the entire thing. This serializes against almost 13002 * everything that wants to access the ctx. 13003 * 13004 * The exception is sys_perf_event_open() / 13005 * perf_event_create_kernel_count() which does find_get_context() 13006 * without ctx::mutex (it cannot because of the move_group double mutex 13007 * lock thing). See the comments in perf_install_in_context(). 13008 */ 13009 mutex_lock(&child_ctx->mutex); 13010 13011 /* 13012 * In a single ctx::lock section, de-schedule the events and detach the 13013 * context from the task such that we cannot ever get it scheduled back 13014 * in. 13015 */ 13016 raw_spin_lock_irq(&child_ctx->lock); 13017 task_ctx_sched_out(child_ctx, EVENT_ALL); 13018 13019 /* 13020 * Now that the context is inactive, destroy the task <-> ctx relation 13021 * and mark the context dead. 13022 */ 13023 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13024 put_ctx(child_ctx); /* cannot be last */ 13025 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13026 put_task_struct(current); /* cannot be last */ 13027 13028 clone_ctx = unclone_ctx(child_ctx); 13029 raw_spin_unlock_irq(&child_ctx->lock); 13030 13031 if (clone_ctx) 13032 put_ctx(clone_ctx); 13033 13034 /* 13035 * Report the task dead after unscheduling the events so that we 13036 * won't get any samples after PERF_RECORD_EXIT. We can however still 13037 * get a few PERF_RECORD_READ events. 13038 */ 13039 perf_event_task(child, child_ctx, 0); 13040 13041 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13042 perf_event_exit_event(child_event, child_ctx); 13043 13044 mutex_unlock(&child_ctx->mutex); 13045 13046 put_ctx(child_ctx); 13047 } 13048 13049 /* 13050 * When a child task exits, feed back event values to parent events. 13051 * 13052 * Can be called with exec_update_lock held when called from 13053 * setup_new_exec(). 13054 */ 13055 void perf_event_exit_task(struct task_struct *child) 13056 { 13057 struct perf_event *event, *tmp; 13058 13059 mutex_lock(&child->perf_event_mutex); 13060 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13061 owner_entry) { 13062 list_del_init(&event->owner_entry); 13063 13064 /* 13065 * Ensure the list deletion is visible before we clear 13066 * the owner, closes a race against perf_release() where 13067 * we need to serialize on the owner->perf_event_mutex. 13068 */ 13069 smp_store_release(&event->owner, NULL); 13070 } 13071 mutex_unlock(&child->perf_event_mutex); 13072 13073 perf_event_exit_task_context(child); 13074 13075 /* 13076 * The perf_event_exit_task_context calls perf_event_task 13077 * with child's task_ctx, which generates EXIT events for 13078 * child contexts and sets child->perf_event_ctxp[] to NULL. 13079 * At this point we need to send EXIT events to cpu contexts. 13080 */ 13081 perf_event_task(child, NULL, 0); 13082 } 13083 13084 static void perf_free_event(struct perf_event *event, 13085 struct perf_event_context *ctx) 13086 { 13087 struct perf_event *parent = event->parent; 13088 13089 if (WARN_ON_ONCE(!parent)) 13090 return; 13091 13092 mutex_lock(&parent->child_mutex); 13093 list_del_init(&event->child_list); 13094 mutex_unlock(&parent->child_mutex); 13095 13096 put_event(parent); 13097 13098 raw_spin_lock_irq(&ctx->lock); 13099 perf_group_detach(event); 13100 list_del_event(event, ctx); 13101 raw_spin_unlock_irq(&ctx->lock); 13102 free_event(event); 13103 } 13104 13105 /* 13106 * Free a context as created by inheritance by perf_event_init_task() below, 13107 * used by fork() in case of fail. 13108 * 13109 * Even though the task has never lived, the context and events have been 13110 * exposed through the child_list, so we must take care tearing it all down. 13111 */ 13112 void perf_event_free_task(struct task_struct *task) 13113 { 13114 struct perf_event_context *ctx; 13115 struct perf_event *event, *tmp; 13116 13117 ctx = rcu_access_pointer(task->perf_event_ctxp); 13118 if (!ctx) 13119 return; 13120 13121 mutex_lock(&ctx->mutex); 13122 raw_spin_lock_irq(&ctx->lock); 13123 /* 13124 * Destroy the task <-> ctx relation and mark the context dead. 13125 * 13126 * This is important because even though the task hasn't been 13127 * exposed yet the context has been (through child_list). 13128 */ 13129 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13130 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13131 put_task_struct(task); /* cannot be last */ 13132 raw_spin_unlock_irq(&ctx->lock); 13133 13134 13135 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13136 perf_free_event(event, ctx); 13137 13138 mutex_unlock(&ctx->mutex); 13139 13140 /* 13141 * perf_event_release_kernel() could've stolen some of our 13142 * child events and still have them on its free_list. In that 13143 * case we must wait for these events to have been freed (in 13144 * particular all their references to this task must've been 13145 * dropped). 13146 * 13147 * Without this copy_process() will unconditionally free this 13148 * task (irrespective of its reference count) and 13149 * _free_event()'s put_task_struct(event->hw.target) will be a 13150 * use-after-free. 13151 * 13152 * Wait for all events to drop their context reference. 13153 */ 13154 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13155 put_ctx(ctx); /* must be last */ 13156 } 13157 13158 void perf_event_delayed_put(struct task_struct *task) 13159 { 13160 WARN_ON_ONCE(task->perf_event_ctxp); 13161 } 13162 13163 struct file *perf_event_get(unsigned int fd) 13164 { 13165 struct file *file = fget(fd); 13166 if (!file) 13167 return ERR_PTR(-EBADF); 13168 13169 if (file->f_op != &perf_fops) { 13170 fput(file); 13171 return ERR_PTR(-EBADF); 13172 } 13173 13174 return file; 13175 } 13176 13177 const struct perf_event *perf_get_event(struct file *file) 13178 { 13179 if (file->f_op != &perf_fops) 13180 return ERR_PTR(-EINVAL); 13181 13182 return file->private_data; 13183 } 13184 13185 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13186 { 13187 if (!event) 13188 return ERR_PTR(-EINVAL); 13189 13190 return &event->attr; 13191 } 13192 13193 /* 13194 * Inherit an event from parent task to child task. 13195 * 13196 * Returns: 13197 * - valid pointer on success 13198 * - NULL for orphaned events 13199 * - IS_ERR() on error 13200 */ 13201 static struct perf_event * 13202 inherit_event(struct perf_event *parent_event, 13203 struct task_struct *parent, 13204 struct perf_event_context *parent_ctx, 13205 struct task_struct *child, 13206 struct perf_event *group_leader, 13207 struct perf_event_context *child_ctx) 13208 { 13209 enum perf_event_state parent_state = parent_event->state; 13210 struct perf_event_pmu_context *pmu_ctx; 13211 struct perf_event *child_event; 13212 unsigned long flags; 13213 13214 /* 13215 * Instead of creating recursive hierarchies of events, 13216 * we link inherited events back to the original parent, 13217 * which has a filp for sure, which we use as the reference 13218 * count: 13219 */ 13220 if (parent_event->parent) 13221 parent_event = parent_event->parent; 13222 13223 child_event = perf_event_alloc(&parent_event->attr, 13224 parent_event->cpu, 13225 child, 13226 group_leader, parent_event, 13227 NULL, NULL, -1); 13228 if (IS_ERR(child_event)) 13229 return child_event; 13230 13231 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13232 if (IS_ERR(pmu_ctx)) { 13233 free_event(child_event); 13234 return NULL; 13235 } 13236 child_event->pmu_ctx = pmu_ctx; 13237 13238 /* 13239 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13240 * must be under the same lock in order to serialize against 13241 * perf_event_release_kernel(), such that either we must observe 13242 * is_orphaned_event() or they will observe us on the child_list. 13243 */ 13244 mutex_lock(&parent_event->child_mutex); 13245 if (is_orphaned_event(parent_event) || 13246 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13247 mutex_unlock(&parent_event->child_mutex); 13248 /* task_ctx_data is freed with child_ctx */ 13249 free_event(child_event); 13250 return NULL; 13251 } 13252 13253 get_ctx(child_ctx); 13254 13255 /* 13256 * Make the child state follow the state of the parent event, 13257 * not its attr.disabled bit. We hold the parent's mutex, 13258 * so we won't race with perf_event_{en, dis}able_family. 13259 */ 13260 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13261 child_event->state = PERF_EVENT_STATE_INACTIVE; 13262 else 13263 child_event->state = PERF_EVENT_STATE_OFF; 13264 13265 if (parent_event->attr.freq) { 13266 u64 sample_period = parent_event->hw.sample_period; 13267 struct hw_perf_event *hwc = &child_event->hw; 13268 13269 hwc->sample_period = sample_period; 13270 hwc->last_period = sample_period; 13271 13272 local64_set(&hwc->period_left, sample_period); 13273 } 13274 13275 child_event->ctx = child_ctx; 13276 child_event->overflow_handler = parent_event->overflow_handler; 13277 child_event->overflow_handler_context 13278 = parent_event->overflow_handler_context; 13279 13280 /* 13281 * Precalculate sample_data sizes 13282 */ 13283 perf_event__header_size(child_event); 13284 perf_event__id_header_size(child_event); 13285 13286 /* 13287 * Link it up in the child's context: 13288 */ 13289 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13290 add_event_to_ctx(child_event, child_ctx); 13291 child_event->attach_state |= PERF_ATTACH_CHILD; 13292 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13293 13294 /* 13295 * Link this into the parent event's child list 13296 */ 13297 list_add_tail(&child_event->child_list, &parent_event->child_list); 13298 mutex_unlock(&parent_event->child_mutex); 13299 13300 return child_event; 13301 } 13302 13303 /* 13304 * Inherits an event group. 13305 * 13306 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13307 * This matches with perf_event_release_kernel() removing all child events. 13308 * 13309 * Returns: 13310 * - 0 on success 13311 * - <0 on error 13312 */ 13313 static int inherit_group(struct perf_event *parent_event, 13314 struct task_struct *parent, 13315 struct perf_event_context *parent_ctx, 13316 struct task_struct *child, 13317 struct perf_event_context *child_ctx) 13318 { 13319 struct perf_event *leader; 13320 struct perf_event *sub; 13321 struct perf_event *child_ctr; 13322 13323 leader = inherit_event(parent_event, parent, parent_ctx, 13324 child, NULL, child_ctx); 13325 if (IS_ERR(leader)) 13326 return PTR_ERR(leader); 13327 /* 13328 * @leader can be NULL here because of is_orphaned_event(). In this 13329 * case inherit_event() will create individual events, similar to what 13330 * perf_group_detach() would do anyway. 13331 */ 13332 for_each_sibling_event(sub, parent_event) { 13333 child_ctr = inherit_event(sub, parent, parent_ctx, 13334 child, leader, child_ctx); 13335 if (IS_ERR(child_ctr)) 13336 return PTR_ERR(child_ctr); 13337 13338 if (sub->aux_event == parent_event && child_ctr && 13339 !perf_get_aux_event(child_ctr, leader)) 13340 return -EINVAL; 13341 } 13342 return 0; 13343 } 13344 13345 /* 13346 * Creates the child task context and tries to inherit the event-group. 13347 * 13348 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13349 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13350 * consistent with perf_event_release_kernel() removing all child events. 13351 * 13352 * Returns: 13353 * - 0 on success 13354 * - <0 on error 13355 */ 13356 static int 13357 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13358 struct perf_event_context *parent_ctx, 13359 struct task_struct *child, 13360 u64 clone_flags, int *inherited_all) 13361 { 13362 struct perf_event_context *child_ctx; 13363 int ret; 13364 13365 if (!event->attr.inherit || 13366 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13367 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13368 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13369 *inherited_all = 0; 13370 return 0; 13371 } 13372 13373 child_ctx = child->perf_event_ctxp; 13374 if (!child_ctx) { 13375 /* 13376 * This is executed from the parent task context, so 13377 * inherit events that have been marked for cloning. 13378 * First allocate and initialize a context for the 13379 * child. 13380 */ 13381 child_ctx = alloc_perf_context(child); 13382 if (!child_ctx) 13383 return -ENOMEM; 13384 13385 child->perf_event_ctxp = child_ctx; 13386 } 13387 13388 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13389 if (ret) 13390 *inherited_all = 0; 13391 13392 return ret; 13393 } 13394 13395 /* 13396 * Initialize the perf_event context in task_struct 13397 */ 13398 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13399 { 13400 struct perf_event_context *child_ctx, *parent_ctx; 13401 struct perf_event_context *cloned_ctx; 13402 struct perf_event *event; 13403 struct task_struct *parent = current; 13404 int inherited_all = 1; 13405 unsigned long flags; 13406 int ret = 0; 13407 13408 if (likely(!parent->perf_event_ctxp)) 13409 return 0; 13410 13411 /* 13412 * If the parent's context is a clone, pin it so it won't get 13413 * swapped under us. 13414 */ 13415 parent_ctx = perf_pin_task_context(parent); 13416 if (!parent_ctx) 13417 return 0; 13418 13419 /* 13420 * No need to check if parent_ctx != NULL here; since we saw 13421 * it non-NULL earlier, the only reason for it to become NULL 13422 * is if we exit, and since we're currently in the middle of 13423 * a fork we can't be exiting at the same time. 13424 */ 13425 13426 /* 13427 * Lock the parent list. No need to lock the child - not PID 13428 * hashed yet and not running, so nobody can access it. 13429 */ 13430 mutex_lock(&parent_ctx->mutex); 13431 13432 /* 13433 * We dont have to disable NMIs - we are only looking at 13434 * the list, not manipulating it: 13435 */ 13436 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13437 ret = inherit_task_group(event, parent, parent_ctx, 13438 child, clone_flags, &inherited_all); 13439 if (ret) 13440 goto out_unlock; 13441 } 13442 13443 /* 13444 * We can't hold ctx->lock when iterating the ->flexible_group list due 13445 * to allocations, but we need to prevent rotation because 13446 * rotate_ctx() will change the list from interrupt context. 13447 */ 13448 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13449 parent_ctx->rotate_disable = 1; 13450 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13451 13452 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13453 ret = inherit_task_group(event, parent, parent_ctx, 13454 child, clone_flags, &inherited_all); 13455 if (ret) 13456 goto out_unlock; 13457 } 13458 13459 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13460 parent_ctx->rotate_disable = 0; 13461 13462 child_ctx = child->perf_event_ctxp; 13463 13464 if (child_ctx && inherited_all) { 13465 /* 13466 * Mark the child context as a clone of the parent 13467 * context, or of whatever the parent is a clone of. 13468 * 13469 * Note that if the parent is a clone, the holding of 13470 * parent_ctx->lock avoids it from being uncloned. 13471 */ 13472 cloned_ctx = parent_ctx->parent_ctx; 13473 if (cloned_ctx) { 13474 child_ctx->parent_ctx = cloned_ctx; 13475 child_ctx->parent_gen = parent_ctx->parent_gen; 13476 } else { 13477 child_ctx->parent_ctx = parent_ctx; 13478 child_ctx->parent_gen = parent_ctx->generation; 13479 } 13480 get_ctx(child_ctx->parent_ctx); 13481 } 13482 13483 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13484 out_unlock: 13485 mutex_unlock(&parent_ctx->mutex); 13486 13487 perf_unpin_context(parent_ctx); 13488 put_ctx(parent_ctx); 13489 13490 return ret; 13491 } 13492 13493 /* 13494 * Initialize the perf_event context in task_struct 13495 */ 13496 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13497 { 13498 int ret; 13499 13500 child->perf_event_ctxp = NULL; 13501 mutex_init(&child->perf_event_mutex); 13502 INIT_LIST_HEAD(&child->perf_event_list); 13503 13504 ret = perf_event_init_context(child, clone_flags); 13505 if (ret) { 13506 perf_event_free_task(child); 13507 return ret; 13508 } 13509 13510 return 0; 13511 } 13512 13513 static void __init perf_event_init_all_cpus(void) 13514 { 13515 struct swevent_htable *swhash; 13516 struct perf_cpu_context *cpuctx; 13517 int cpu; 13518 13519 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13520 13521 for_each_possible_cpu(cpu) { 13522 swhash = &per_cpu(swevent_htable, cpu); 13523 mutex_init(&swhash->hlist_mutex); 13524 13525 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13526 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13527 13528 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13529 13530 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13531 __perf_event_init_context(&cpuctx->ctx); 13532 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13533 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13534 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13535 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13536 cpuctx->heap = cpuctx->heap_default; 13537 } 13538 } 13539 13540 static void perf_swevent_init_cpu(unsigned int cpu) 13541 { 13542 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13543 13544 mutex_lock(&swhash->hlist_mutex); 13545 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13546 struct swevent_hlist *hlist; 13547 13548 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13549 WARN_ON(!hlist); 13550 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13551 } 13552 mutex_unlock(&swhash->hlist_mutex); 13553 } 13554 13555 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13556 static void __perf_event_exit_context(void *__info) 13557 { 13558 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13559 struct perf_event_context *ctx = __info; 13560 struct perf_event *event; 13561 13562 raw_spin_lock(&ctx->lock); 13563 ctx_sched_out(ctx, EVENT_TIME); 13564 list_for_each_entry(event, &ctx->event_list, event_entry) 13565 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13566 raw_spin_unlock(&ctx->lock); 13567 } 13568 13569 static void perf_event_exit_cpu_context(int cpu) 13570 { 13571 struct perf_cpu_context *cpuctx; 13572 struct perf_event_context *ctx; 13573 13574 // XXX simplify cpuctx->online 13575 mutex_lock(&pmus_lock); 13576 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13577 ctx = &cpuctx->ctx; 13578 13579 mutex_lock(&ctx->mutex); 13580 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13581 cpuctx->online = 0; 13582 mutex_unlock(&ctx->mutex); 13583 cpumask_clear_cpu(cpu, perf_online_mask); 13584 mutex_unlock(&pmus_lock); 13585 } 13586 #else 13587 13588 static void perf_event_exit_cpu_context(int cpu) { } 13589 13590 #endif 13591 13592 int perf_event_init_cpu(unsigned int cpu) 13593 { 13594 struct perf_cpu_context *cpuctx; 13595 struct perf_event_context *ctx; 13596 13597 perf_swevent_init_cpu(cpu); 13598 13599 mutex_lock(&pmus_lock); 13600 cpumask_set_cpu(cpu, perf_online_mask); 13601 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13602 ctx = &cpuctx->ctx; 13603 13604 mutex_lock(&ctx->mutex); 13605 cpuctx->online = 1; 13606 mutex_unlock(&ctx->mutex); 13607 mutex_unlock(&pmus_lock); 13608 13609 return 0; 13610 } 13611 13612 int perf_event_exit_cpu(unsigned int cpu) 13613 { 13614 perf_event_exit_cpu_context(cpu); 13615 return 0; 13616 } 13617 13618 static int 13619 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13620 { 13621 int cpu; 13622 13623 for_each_online_cpu(cpu) 13624 perf_event_exit_cpu(cpu); 13625 13626 return NOTIFY_OK; 13627 } 13628 13629 /* 13630 * Run the perf reboot notifier at the very last possible moment so that 13631 * the generic watchdog code runs as long as possible. 13632 */ 13633 static struct notifier_block perf_reboot_notifier = { 13634 .notifier_call = perf_reboot, 13635 .priority = INT_MIN, 13636 }; 13637 13638 void __init perf_event_init(void) 13639 { 13640 int ret; 13641 13642 idr_init(&pmu_idr); 13643 13644 perf_event_init_all_cpus(); 13645 init_srcu_struct(&pmus_srcu); 13646 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13647 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13648 perf_pmu_register(&perf_task_clock, NULL, -1); 13649 perf_tp_register(); 13650 perf_event_init_cpu(smp_processor_id()); 13651 register_reboot_notifier(&perf_reboot_notifier); 13652 13653 ret = init_hw_breakpoint(); 13654 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13655 13656 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13657 13658 /* 13659 * Build time assertion that we keep the data_head at the intended 13660 * location. IOW, validation we got the __reserved[] size right. 13661 */ 13662 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13663 != 1024); 13664 } 13665 13666 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13667 char *page) 13668 { 13669 struct perf_pmu_events_attr *pmu_attr = 13670 container_of(attr, struct perf_pmu_events_attr, attr); 13671 13672 if (pmu_attr->event_str) 13673 return sprintf(page, "%s\n", pmu_attr->event_str); 13674 13675 return 0; 13676 } 13677 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13678 13679 static int __init perf_event_sysfs_init(void) 13680 { 13681 struct pmu *pmu; 13682 int ret; 13683 13684 mutex_lock(&pmus_lock); 13685 13686 ret = bus_register(&pmu_bus); 13687 if (ret) 13688 goto unlock; 13689 13690 list_for_each_entry(pmu, &pmus, entry) { 13691 if (!pmu->name || pmu->type < 0) 13692 continue; 13693 13694 ret = pmu_dev_alloc(pmu); 13695 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13696 } 13697 pmu_bus_running = 1; 13698 ret = 0; 13699 13700 unlock: 13701 mutex_unlock(&pmus_lock); 13702 13703 return ret; 13704 } 13705 device_initcall(perf_event_sysfs_init); 13706 13707 #ifdef CONFIG_CGROUP_PERF 13708 static struct cgroup_subsys_state * 13709 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13710 { 13711 struct perf_cgroup *jc; 13712 13713 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13714 if (!jc) 13715 return ERR_PTR(-ENOMEM); 13716 13717 jc->info = alloc_percpu(struct perf_cgroup_info); 13718 if (!jc->info) { 13719 kfree(jc); 13720 return ERR_PTR(-ENOMEM); 13721 } 13722 13723 return &jc->css; 13724 } 13725 13726 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13727 { 13728 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13729 13730 free_percpu(jc->info); 13731 kfree(jc); 13732 } 13733 13734 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13735 { 13736 perf_event_cgroup(css->cgroup); 13737 return 0; 13738 } 13739 13740 static int __perf_cgroup_move(void *info) 13741 { 13742 struct task_struct *task = info; 13743 13744 preempt_disable(); 13745 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 13746 perf_cgroup_switch(task); 13747 preempt_enable(); 13748 13749 return 0; 13750 } 13751 13752 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13753 { 13754 struct task_struct *task; 13755 struct cgroup_subsys_state *css; 13756 13757 cgroup_taskset_for_each(task, css, tset) 13758 task_function_call(task, __perf_cgroup_move, task); 13759 } 13760 13761 struct cgroup_subsys perf_event_cgrp_subsys = { 13762 .css_alloc = perf_cgroup_css_alloc, 13763 .css_free = perf_cgroup_css_free, 13764 .css_online = perf_cgroup_css_online, 13765 .attach = perf_cgroup_attach, 13766 /* 13767 * Implicitly enable on dfl hierarchy so that perf events can 13768 * always be filtered by cgroup2 path as long as perf_event 13769 * controller is not mounted on a legacy hierarchy. 13770 */ 13771 .implicit_on_dfl = true, 13772 .threaded = true, 13773 }; 13774 #endif /* CONFIG_CGROUP_PERF */ 13775 13776 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13777