xref: /linux/kernel/events/core.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 
46 #include "internal.h"
47 
48 #include <asm/irq_regs.h>
49 
50 static struct workqueue_struct *perf_wq;
51 
52 struct remote_function_call {
53 	struct task_struct	*p;
54 	int			(*func)(void *info);
55 	void			*info;
56 	int			ret;
57 };
58 
59 static void remote_function(void *data)
60 {
61 	struct remote_function_call *tfc = data;
62 	struct task_struct *p = tfc->p;
63 
64 	if (p) {
65 		tfc->ret = -EAGAIN;
66 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 			return;
68 	}
69 
70 	tfc->ret = tfc->func(tfc->info);
71 }
72 
73 /**
74  * task_function_call - call a function on the cpu on which a task runs
75  * @p:		the task to evaluate
76  * @func:	the function to be called
77  * @info:	the function call argument
78  *
79  * Calls the function @func when the task is currently running. This might
80  * be on the current CPU, which just calls the function directly
81  *
82  * returns: @func return value, or
83  *	    -ESRCH  - when the process isn't running
84  *	    -EAGAIN - when the process moved away
85  */
86 static int
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88 {
89 	struct remote_function_call data = {
90 		.p	= p,
91 		.func	= func,
92 		.info	= info,
93 		.ret	= -ESRCH, /* No such (running) process */
94 	};
95 
96 	if (task_curr(p))
97 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98 
99 	return data.ret;
100 }
101 
102 /**
103  * cpu_function_call - call a function on the cpu
104  * @func:	the function to be called
105  * @info:	the function call argument
106  *
107  * Calls the function @func on the remote cpu.
108  *
109  * returns: @func return value or -ENXIO when the cpu is offline
110  */
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112 {
113 	struct remote_function_call data = {
114 		.p	= NULL,
115 		.func	= func,
116 		.info	= info,
117 		.ret	= -ENXIO, /* No such CPU */
118 	};
119 
120 	smp_call_function_single(cpu, remote_function, &data, 1);
121 
122 	return data.ret;
123 }
124 
125 #define EVENT_OWNER_KERNEL ((void *) -1)
126 
127 static bool is_kernel_event(struct perf_event *event)
128 {
129 	return event->owner == EVENT_OWNER_KERNEL;
130 }
131 
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 		       PERF_FLAG_FD_OUTPUT  |\
134 		       PERF_FLAG_PID_CGROUP |\
135 		       PERF_FLAG_FD_CLOEXEC)
136 
137 /*
138  * branch priv levels that need permission checks
139  */
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 	(PERF_SAMPLE_BRANCH_KERNEL |\
142 	 PERF_SAMPLE_BRANCH_HV)
143 
144 enum event_type_t {
145 	EVENT_FLEXIBLE = 0x1,
146 	EVENT_PINNED = 0x2,
147 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148 };
149 
150 /*
151  * perf_sched_events : >0 events exist
152  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153  */
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157 
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
162 
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
166 
167 /*
168  * perf event paranoia level:
169  *  -1 - not paranoid at all
170  *   0 - disallow raw tracepoint access for unpriv
171  *   1 - disallow cpu events for unpriv
172  *   2 - disallow kernel profiling for unpriv
173  */
174 int sysctl_perf_event_paranoid __read_mostly = 1;
175 
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 
179 /*
180  * max perf event sample rate
181  */
182 #define DEFAULT_MAX_SAMPLE_RATE		100000
183 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
185 
186 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
187 
188 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
190 
191 static int perf_sample_allowed_ns __read_mostly =
192 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 
194 void update_perf_cpu_limits(void)
195 {
196 	u64 tmp = perf_sample_period_ns;
197 
198 	tmp *= sysctl_perf_cpu_time_max_percent;
199 	do_div(tmp, 100);
200 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201 }
202 
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204 
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 		void __user *buffer, size_t *lenp,
207 		loff_t *ppos)
208 {
209 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210 
211 	if (ret || !write)
212 		return ret;
213 
214 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 	update_perf_cpu_limits();
217 
218 	return 0;
219 }
220 
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222 
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 				void __user *buffer, size_t *lenp,
225 				loff_t *ppos)
226 {
227 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228 
229 	if (ret || !write)
230 		return ret;
231 
232 	update_perf_cpu_limits();
233 
234 	return 0;
235 }
236 
237 /*
238  * perf samples are done in some very critical code paths (NMIs).
239  * If they take too much CPU time, the system can lock up and not
240  * get any real work done.  This will drop the sample rate when
241  * we detect that events are taking too long.
242  */
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
245 
246 static void perf_duration_warn(struct irq_work *w)
247 {
248 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 	u64 avg_local_sample_len;
250 	u64 local_samples_len;
251 
252 	local_samples_len = __this_cpu_read(running_sample_length);
253 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 
255 	printk_ratelimited(KERN_WARNING
256 			"perf interrupt took too long (%lld > %lld), lowering "
257 			"kernel.perf_event_max_sample_rate to %d\n",
258 			avg_local_sample_len, allowed_ns >> 1,
259 			sysctl_perf_event_sample_rate);
260 }
261 
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263 
264 void perf_sample_event_took(u64 sample_len_ns)
265 {
266 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 	u64 avg_local_sample_len;
268 	u64 local_samples_len;
269 
270 	if (allowed_ns == 0)
271 		return;
272 
273 	/* decay the counter by 1 average sample */
274 	local_samples_len = __this_cpu_read(running_sample_length);
275 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 	local_samples_len += sample_len_ns;
277 	__this_cpu_write(running_sample_length, local_samples_len);
278 
279 	/*
280 	 * note: this will be biased artifically low until we have
281 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
282 	 * from having to maintain a count.
283 	 */
284 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285 
286 	if (avg_local_sample_len <= allowed_ns)
287 		return;
288 
289 	if (max_samples_per_tick <= 1)
290 		return;
291 
292 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295 
296 	update_perf_cpu_limits();
297 
298 	if (!irq_work_queue(&perf_duration_work)) {
299 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 			     "kernel.perf_event_max_sample_rate to %d\n",
301 			     avg_local_sample_len, allowed_ns >> 1,
302 			     sysctl_perf_event_sample_rate);
303 	}
304 }
305 
306 static atomic64_t perf_event_id;
307 
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 			      enum event_type_t event_type);
310 
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 			     enum event_type_t event_type,
313 			     struct task_struct *task);
314 
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
317 
318 void __weak perf_event_print_debug(void)	{ }
319 
320 extern __weak const char *perf_pmu_name(void)
321 {
322 	return "pmu";
323 }
324 
325 static inline u64 perf_clock(void)
326 {
327 	return local_clock();
328 }
329 
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
332 {
333 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334 }
335 
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 			  struct perf_event_context *ctx)
338 {
339 	raw_spin_lock(&cpuctx->ctx.lock);
340 	if (ctx)
341 		raw_spin_lock(&ctx->lock);
342 }
343 
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 			    struct perf_event_context *ctx)
346 {
347 	if (ctx)
348 		raw_spin_unlock(&ctx->lock);
349 	raw_spin_unlock(&cpuctx->ctx.lock);
350 }
351 
352 #ifdef CONFIG_CGROUP_PERF
353 
354 /*
355  * perf_cgroup_info keeps track of time_enabled for a cgroup.
356  * This is a per-cpu dynamically allocated data structure.
357  */
358 struct perf_cgroup_info {
359 	u64				time;
360 	u64				timestamp;
361 };
362 
363 struct perf_cgroup {
364 	struct cgroup_subsys_state	css;
365 	struct perf_cgroup_info	__percpu *info;
366 };
367 
368 /*
369  * Must ensure cgroup is pinned (css_get) before calling
370  * this function. In other words, we cannot call this function
371  * if there is no cgroup event for the current CPU context.
372  */
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
375 {
376 	return container_of(task_css(task, perf_event_cgrp_id),
377 			    struct perf_cgroup, css);
378 }
379 
380 static inline bool
381 perf_cgroup_match(struct perf_event *event)
382 {
383 	struct perf_event_context *ctx = event->ctx;
384 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385 
386 	/* @event doesn't care about cgroup */
387 	if (!event->cgrp)
388 		return true;
389 
390 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
391 	if (!cpuctx->cgrp)
392 		return false;
393 
394 	/*
395 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
396 	 * also enabled for all its descendant cgroups.  If @cpuctx's
397 	 * cgroup is a descendant of @event's (the test covers identity
398 	 * case), it's a match.
399 	 */
400 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 				    event->cgrp->css.cgroup);
402 }
403 
404 static inline void perf_detach_cgroup(struct perf_event *event)
405 {
406 	css_put(&event->cgrp->css);
407 	event->cgrp = NULL;
408 }
409 
410 static inline int is_cgroup_event(struct perf_event *event)
411 {
412 	return event->cgrp != NULL;
413 }
414 
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
416 {
417 	struct perf_cgroup_info *t;
418 
419 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 	return t->time;
421 }
422 
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424 {
425 	struct perf_cgroup_info *info;
426 	u64 now;
427 
428 	now = perf_clock();
429 
430 	info = this_cpu_ptr(cgrp->info);
431 
432 	info->time += now - info->timestamp;
433 	info->timestamp = now;
434 }
435 
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437 {
438 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 	if (cgrp_out)
440 		__update_cgrp_time(cgrp_out);
441 }
442 
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
444 {
445 	struct perf_cgroup *cgrp;
446 
447 	/*
448 	 * ensure we access cgroup data only when needed and
449 	 * when we know the cgroup is pinned (css_get)
450 	 */
451 	if (!is_cgroup_event(event))
452 		return;
453 
454 	cgrp = perf_cgroup_from_task(current);
455 	/*
456 	 * Do not update time when cgroup is not active
457 	 */
458 	if (cgrp == event->cgrp)
459 		__update_cgrp_time(event->cgrp);
460 }
461 
462 static inline void
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 			  struct perf_event_context *ctx)
465 {
466 	struct perf_cgroup *cgrp;
467 	struct perf_cgroup_info *info;
468 
469 	/*
470 	 * ctx->lock held by caller
471 	 * ensure we do not access cgroup data
472 	 * unless we have the cgroup pinned (css_get)
473 	 */
474 	if (!task || !ctx->nr_cgroups)
475 		return;
476 
477 	cgrp = perf_cgroup_from_task(task);
478 	info = this_cpu_ptr(cgrp->info);
479 	info->timestamp = ctx->timestamp;
480 }
481 
482 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
484 
485 /*
486  * reschedule events based on the cgroup constraint of task.
487  *
488  * mode SWOUT : schedule out everything
489  * mode SWIN : schedule in based on cgroup for next
490  */
491 void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 	struct perf_cpu_context *cpuctx;
494 	struct pmu *pmu;
495 	unsigned long flags;
496 
497 	/*
498 	 * disable interrupts to avoid geting nr_cgroup
499 	 * changes via __perf_event_disable(). Also
500 	 * avoids preemption.
501 	 */
502 	local_irq_save(flags);
503 
504 	/*
505 	 * we reschedule only in the presence of cgroup
506 	 * constrained events.
507 	 */
508 	rcu_read_lock();
509 
510 	list_for_each_entry_rcu(pmu, &pmus, entry) {
511 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 		if (cpuctx->unique_pmu != pmu)
513 			continue; /* ensure we process each cpuctx once */
514 
515 		/*
516 		 * perf_cgroup_events says at least one
517 		 * context on this CPU has cgroup events.
518 		 *
519 		 * ctx->nr_cgroups reports the number of cgroup
520 		 * events for a context.
521 		 */
522 		if (cpuctx->ctx.nr_cgroups > 0) {
523 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 			perf_pmu_disable(cpuctx->ctx.pmu);
525 
526 			if (mode & PERF_CGROUP_SWOUT) {
527 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 				/*
529 				 * must not be done before ctxswout due
530 				 * to event_filter_match() in event_sched_out()
531 				 */
532 				cpuctx->cgrp = NULL;
533 			}
534 
535 			if (mode & PERF_CGROUP_SWIN) {
536 				WARN_ON_ONCE(cpuctx->cgrp);
537 				/*
538 				 * set cgrp before ctxsw in to allow
539 				 * event_filter_match() to not have to pass
540 				 * task around
541 				 */
542 				cpuctx->cgrp = perf_cgroup_from_task(task);
543 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 			}
545 			perf_pmu_enable(cpuctx->ctx.pmu);
546 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 		}
548 	}
549 
550 	rcu_read_unlock();
551 
552 	local_irq_restore(flags);
553 }
554 
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 					 struct task_struct *next)
557 {
558 	struct perf_cgroup *cgrp1;
559 	struct perf_cgroup *cgrp2 = NULL;
560 
561 	/*
562 	 * we come here when we know perf_cgroup_events > 0
563 	 */
564 	cgrp1 = perf_cgroup_from_task(task);
565 
566 	/*
567 	 * next is NULL when called from perf_event_enable_on_exec()
568 	 * that will systematically cause a cgroup_switch()
569 	 */
570 	if (next)
571 		cgrp2 = perf_cgroup_from_task(next);
572 
573 	/*
574 	 * only schedule out current cgroup events if we know
575 	 * that we are switching to a different cgroup. Otherwise,
576 	 * do no touch the cgroup events.
577 	 */
578 	if (cgrp1 != cgrp2)
579 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580 }
581 
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 					struct task_struct *task)
584 {
585 	struct perf_cgroup *cgrp1;
586 	struct perf_cgroup *cgrp2 = NULL;
587 
588 	/*
589 	 * we come here when we know perf_cgroup_events > 0
590 	 */
591 	cgrp1 = perf_cgroup_from_task(task);
592 
593 	/* prev can never be NULL */
594 	cgrp2 = perf_cgroup_from_task(prev);
595 
596 	/*
597 	 * only need to schedule in cgroup events if we are changing
598 	 * cgroup during ctxsw. Cgroup events were not scheduled
599 	 * out of ctxsw out if that was not the case.
600 	 */
601 	if (cgrp1 != cgrp2)
602 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603 }
604 
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 				      struct perf_event_attr *attr,
607 				      struct perf_event *group_leader)
608 {
609 	struct perf_cgroup *cgrp;
610 	struct cgroup_subsys_state *css;
611 	struct fd f = fdget(fd);
612 	int ret = 0;
613 
614 	if (!f.file)
615 		return -EBADF;
616 
617 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618 					 &perf_event_cgrp_subsys);
619 	if (IS_ERR(css)) {
620 		ret = PTR_ERR(css);
621 		goto out;
622 	}
623 
624 	cgrp = container_of(css, struct perf_cgroup, css);
625 	event->cgrp = cgrp;
626 
627 	/*
628 	 * all events in a group must monitor
629 	 * the same cgroup because a task belongs
630 	 * to only one perf cgroup at a time
631 	 */
632 	if (group_leader && group_leader->cgrp != cgrp) {
633 		perf_detach_cgroup(event);
634 		ret = -EINVAL;
635 	}
636 out:
637 	fdput(f);
638 	return ret;
639 }
640 
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 	struct perf_cgroup_info *t;
645 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 	event->shadow_ctx_time = now - t->timestamp;
647 }
648 
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 	/*
653 	 * when the current task's perf cgroup does not match
654 	 * the event's, we need to remember to call the
655 	 * perf_mark_enable() function the first time a task with
656 	 * a matching perf cgroup is scheduled in.
657 	 */
658 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 		event->cgrp_defer_enabled = 1;
660 }
661 
662 static inline void
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 			 struct perf_event_context *ctx)
665 {
666 	struct perf_event *sub;
667 	u64 tstamp = perf_event_time(event);
668 
669 	if (!event->cgrp_defer_enabled)
670 		return;
671 
672 	event->cgrp_defer_enabled = 0;
673 
674 	event->tstamp_enabled = tstamp - event->total_time_enabled;
675 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 			sub->cgrp_defer_enabled = 0;
679 		}
680 	}
681 }
682 #else /* !CONFIG_CGROUP_PERF */
683 
684 static inline bool
685 perf_cgroup_match(struct perf_event *event)
686 {
687 	return true;
688 }
689 
690 static inline void perf_detach_cgroup(struct perf_event *event)
691 {}
692 
693 static inline int is_cgroup_event(struct perf_event *event)
694 {
695 	return 0;
696 }
697 
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699 {
700 	return 0;
701 }
702 
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
704 {
705 }
706 
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708 {
709 }
710 
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 					 struct task_struct *next)
713 {
714 }
715 
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 					struct task_struct *task)
718 {
719 }
720 
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 				      struct perf_event_attr *attr,
723 				      struct perf_event *group_leader)
724 {
725 	return -EINVAL;
726 }
727 
728 static inline void
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 			  struct perf_event_context *ctx)
731 {
732 }
733 
734 void
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736 {
737 }
738 
739 static inline void
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741 {
742 }
743 
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746 	return 0;
747 }
748 
749 static inline void
750 perf_cgroup_defer_enabled(struct perf_event *event)
751 {
752 }
753 
754 static inline void
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 			 struct perf_event_context *ctx)
757 {
758 }
759 #endif
760 
761 /*
762  * set default to be dependent on timer tick just
763  * like original code
764  */
765 #define PERF_CPU_HRTIMER (1000 / HZ)
766 /*
767  * function must be called with interrupts disbled
768  */
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770 {
771 	struct perf_cpu_context *cpuctx;
772 	enum hrtimer_restart ret = HRTIMER_NORESTART;
773 	int rotations = 0;
774 
775 	WARN_ON(!irqs_disabled());
776 
777 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778 
779 	rotations = perf_rotate_context(cpuctx);
780 
781 	/*
782 	 * arm timer if needed
783 	 */
784 	if (rotations) {
785 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 		ret = HRTIMER_RESTART;
787 	}
788 
789 	return ret;
790 }
791 
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct pmu *pmu;
797 	unsigned long flags;
798 
799 	if (WARN_ON(cpu != smp_processor_id()))
800 		return;
801 
802 	local_irq_save(flags);
803 
804 	rcu_read_lock();
805 
806 	list_for_each_entry_rcu(pmu, &pmus, entry) {
807 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808 
809 		if (pmu->task_ctx_nr == perf_sw_context)
810 			continue;
811 
812 		hrtimer_cancel(&cpuctx->hrtimer);
813 	}
814 
815 	rcu_read_unlock();
816 
817 	local_irq_restore(flags);
818 }
819 
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821 {
822 	struct hrtimer *hr = &cpuctx->hrtimer;
823 	struct pmu *pmu = cpuctx->ctx.pmu;
824 	int timer;
825 
826 	/* no multiplexing needed for SW PMU */
827 	if (pmu->task_ctx_nr == perf_sw_context)
828 		return;
829 
830 	/*
831 	 * check default is sane, if not set then force to
832 	 * default interval (1/tick)
833 	 */
834 	timer = pmu->hrtimer_interval_ms;
835 	if (timer < 1)
836 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837 
838 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 
840 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 	hr->function = perf_cpu_hrtimer_handler;
842 }
843 
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845 {
846 	struct hrtimer *hr = &cpuctx->hrtimer;
847 	struct pmu *pmu = cpuctx->ctx.pmu;
848 
849 	/* not for SW PMU */
850 	if (pmu->task_ctx_nr == perf_sw_context)
851 		return;
852 
853 	if (hrtimer_active(hr))
854 		return;
855 
856 	if (!hrtimer_callback_running(hr))
857 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 					 0, HRTIMER_MODE_REL_PINNED, 0);
859 }
860 
861 void perf_pmu_disable(struct pmu *pmu)
862 {
863 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 	if (!(*count)++)
865 		pmu->pmu_disable(pmu);
866 }
867 
868 void perf_pmu_enable(struct pmu *pmu)
869 {
870 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 	if (!--(*count))
872 		pmu->pmu_enable(pmu);
873 }
874 
875 static DEFINE_PER_CPU(struct list_head, rotation_list);
876 
877 /*
878  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879  * because they're strictly cpu affine and rotate_start is called with IRQs
880  * disabled, while rotate_context is called from IRQ context.
881  */
882 static void perf_pmu_rotate_start(struct pmu *pmu)
883 {
884 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885 	struct list_head *head = this_cpu_ptr(&rotation_list);
886 
887 	WARN_ON(!irqs_disabled());
888 
889 	if (list_empty(&cpuctx->rotation_list))
890 		list_add(&cpuctx->rotation_list, head);
891 }
892 
893 static void get_ctx(struct perf_event_context *ctx)
894 {
895 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 }
897 
898 static void put_ctx(struct perf_event_context *ctx)
899 {
900 	if (atomic_dec_and_test(&ctx->refcount)) {
901 		if (ctx->parent_ctx)
902 			put_ctx(ctx->parent_ctx);
903 		if (ctx->task)
904 			put_task_struct(ctx->task);
905 		kfree_rcu(ctx, rcu_head);
906 	}
907 }
908 
909 /*
910  * This must be done under the ctx->lock, such as to serialize against
911  * context_equiv(), therefore we cannot call put_ctx() since that might end up
912  * calling scheduler related locks and ctx->lock nests inside those.
913  */
914 static __must_check struct perf_event_context *
915 unclone_ctx(struct perf_event_context *ctx)
916 {
917 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
918 
919 	lockdep_assert_held(&ctx->lock);
920 
921 	if (parent_ctx)
922 		ctx->parent_ctx = NULL;
923 	ctx->generation++;
924 
925 	return parent_ctx;
926 }
927 
928 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
929 {
930 	/*
931 	 * only top level events have the pid namespace they were created in
932 	 */
933 	if (event->parent)
934 		event = event->parent;
935 
936 	return task_tgid_nr_ns(p, event->ns);
937 }
938 
939 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
940 {
941 	/*
942 	 * only top level events have the pid namespace they were created in
943 	 */
944 	if (event->parent)
945 		event = event->parent;
946 
947 	return task_pid_nr_ns(p, event->ns);
948 }
949 
950 /*
951  * If we inherit events we want to return the parent event id
952  * to userspace.
953  */
954 static u64 primary_event_id(struct perf_event *event)
955 {
956 	u64 id = event->id;
957 
958 	if (event->parent)
959 		id = event->parent->id;
960 
961 	return id;
962 }
963 
964 /*
965  * Get the perf_event_context for a task and lock it.
966  * This has to cope with with the fact that until it is locked,
967  * the context could get moved to another task.
968  */
969 static struct perf_event_context *
970 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971 {
972 	struct perf_event_context *ctx;
973 
974 retry:
975 	/*
976 	 * One of the few rules of preemptible RCU is that one cannot do
977 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978 	 * part of the read side critical section was preemptible -- see
979 	 * rcu_read_unlock_special().
980 	 *
981 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
982 	 * side critical section is non-preemptible.
983 	 */
984 	preempt_disable();
985 	rcu_read_lock();
986 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987 	if (ctx) {
988 		/*
989 		 * If this context is a clone of another, it might
990 		 * get swapped for another underneath us by
991 		 * perf_event_task_sched_out, though the
992 		 * rcu_read_lock() protects us from any context
993 		 * getting freed.  Lock the context and check if it
994 		 * got swapped before we could get the lock, and retry
995 		 * if so.  If we locked the right context, then it
996 		 * can't get swapped on us any more.
997 		 */
998 		raw_spin_lock_irqsave(&ctx->lock, *flags);
999 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001 			rcu_read_unlock();
1002 			preempt_enable();
1003 			goto retry;
1004 		}
1005 
1006 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1007 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008 			ctx = NULL;
1009 		}
1010 	}
1011 	rcu_read_unlock();
1012 	preempt_enable();
1013 	return ctx;
1014 }
1015 
1016 /*
1017  * Get the context for a task and increment its pin_count so it
1018  * can't get swapped to another task.  This also increments its
1019  * reference count so that the context can't get freed.
1020  */
1021 static struct perf_event_context *
1022 perf_pin_task_context(struct task_struct *task, int ctxn)
1023 {
1024 	struct perf_event_context *ctx;
1025 	unsigned long flags;
1026 
1027 	ctx = perf_lock_task_context(task, ctxn, &flags);
1028 	if (ctx) {
1029 		++ctx->pin_count;
1030 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031 	}
1032 	return ctx;
1033 }
1034 
1035 static void perf_unpin_context(struct perf_event_context *ctx)
1036 {
1037 	unsigned long flags;
1038 
1039 	raw_spin_lock_irqsave(&ctx->lock, flags);
1040 	--ctx->pin_count;
1041 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042 }
1043 
1044 /*
1045  * Update the record of the current time in a context.
1046  */
1047 static void update_context_time(struct perf_event_context *ctx)
1048 {
1049 	u64 now = perf_clock();
1050 
1051 	ctx->time += now - ctx->timestamp;
1052 	ctx->timestamp = now;
1053 }
1054 
1055 static u64 perf_event_time(struct perf_event *event)
1056 {
1057 	struct perf_event_context *ctx = event->ctx;
1058 
1059 	if (is_cgroup_event(event))
1060 		return perf_cgroup_event_time(event);
1061 
1062 	return ctx ? ctx->time : 0;
1063 }
1064 
1065 /*
1066  * Update the total_time_enabled and total_time_running fields for a event.
1067  * The caller of this function needs to hold the ctx->lock.
1068  */
1069 static void update_event_times(struct perf_event *event)
1070 {
1071 	struct perf_event_context *ctx = event->ctx;
1072 	u64 run_end;
1073 
1074 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1075 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1076 		return;
1077 	/*
1078 	 * in cgroup mode, time_enabled represents
1079 	 * the time the event was enabled AND active
1080 	 * tasks were in the monitored cgroup. This is
1081 	 * independent of the activity of the context as
1082 	 * there may be a mix of cgroup and non-cgroup events.
1083 	 *
1084 	 * That is why we treat cgroup events differently
1085 	 * here.
1086 	 */
1087 	if (is_cgroup_event(event))
1088 		run_end = perf_cgroup_event_time(event);
1089 	else if (ctx->is_active)
1090 		run_end = ctx->time;
1091 	else
1092 		run_end = event->tstamp_stopped;
1093 
1094 	event->total_time_enabled = run_end - event->tstamp_enabled;
1095 
1096 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1097 		run_end = event->tstamp_stopped;
1098 	else
1099 		run_end = perf_event_time(event);
1100 
1101 	event->total_time_running = run_end - event->tstamp_running;
1102 
1103 }
1104 
1105 /*
1106  * Update total_time_enabled and total_time_running for all events in a group.
1107  */
1108 static void update_group_times(struct perf_event *leader)
1109 {
1110 	struct perf_event *event;
1111 
1112 	update_event_times(leader);
1113 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1114 		update_event_times(event);
1115 }
1116 
1117 static struct list_head *
1118 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1119 {
1120 	if (event->attr.pinned)
1121 		return &ctx->pinned_groups;
1122 	else
1123 		return &ctx->flexible_groups;
1124 }
1125 
1126 /*
1127  * Add a event from the lists for its context.
1128  * Must be called with ctx->mutex and ctx->lock held.
1129  */
1130 static void
1131 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132 {
1133 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1134 	event->attach_state |= PERF_ATTACH_CONTEXT;
1135 
1136 	/*
1137 	 * If we're a stand alone event or group leader, we go to the context
1138 	 * list, group events are kept attached to the group so that
1139 	 * perf_group_detach can, at all times, locate all siblings.
1140 	 */
1141 	if (event->group_leader == event) {
1142 		struct list_head *list;
1143 
1144 		if (is_software_event(event))
1145 			event->group_flags |= PERF_GROUP_SOFTWARE;
1146 
1147 		list = ctx_group_list(event, ctx);
1148 		list_add_tail(&event->group_entry, list);
1149 	}
1150 
1151 	if (is_cgroup_event(event))
1152 		ctx->nr_cgroups++;
1153 
1154 	if (has_branch_stack(event))
1155 		ctx->nr_branch_stack++;
1156 
1157 	list_add_rcu(&event->event_entry, &ctx->event_list);
1158 	if (!ctx->nr_events)
1159 		perf_pmu_rotate_start(ctx->pmu);
1160 	ctx->nr_events++;
1161 	if (event->attr.inherit_stat)
1162 		ctx->nr_stat++;
1163 
1164 	ctx->generation++;
1165 }
1166 
1167 /*
1168  * Initialize event state based on the perf_event_attr::disabled.
1169  */
1170 static inline void perf_event__state_init(struct perf_event *event)
1171 {
1172 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1173 					      PERF_EVENT_STATE_INACTIVE;
1174 }
1175 
1176 /*
1177  * Called at perf_event creation and when events are attached/detached from a
1178  * group.
1179  */
1180 static void perf_event__read_size(struct perf_event *event)
1181 {
1182 	int entry = sizeof(u64); /* value */
1183 	int size = 0;
1184 	int nr = 1;
1185 
1186 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1187 		size += sizeof(u64);
1188 
1189 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1190 		size += sizeof(u64);
1191 
1192 	if (event->attr.read_format & PERF_FORMAT_ID)
1193 		entry += sizeof(u64);
1194 
1195 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1196 		nr += event->group_leader->nr_siblings;
1197 		size += sizeof(u64);
1198 	}
1199 
1200 	size += entry * nr;
1201 	event->read_size = size;
1202 }
1203 
1204 static void perf_event__header_size(struct perf_event *event)
1205 {
1206 	struct perf_sample_data *data;
1207 	u64 sample_type = event->attr.sample_type;
1208 	u16 size = 0;
1209 
1210 	perf_event__read_size(event);
1211 
1212 	if (sample_type & PERF_SAMPLE_IP)
1213 		size += sizeof(data->ip);
1214 
1215 	if (sample_type & PERF_SAMPLE_ADDR)
1216 		size += sizeof(data->addr);
1217 
1218 	if (sample_type & PERF_SAMPLE_PERIOD)
1219 		size += sizeof(data->period);
1220 
1221 	if (sample_type & PERF_SAMPLE_WEIGHT)
1222 		size += sizeof(data->weight);
1223 
1224 	if (sample_type & PERF_SAMPLE_READ)
1225 		size += event->read_size;
1226 
1227 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1228 		size += sizeof(data->data_src.val);
1229 
1230 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1231 		size += sizeof(data->txn);
1232 
1233 	event->header_size = size;
1234 }
1235 
1236 static void perf_event__id_header_size(struct perf_event *event)
1237 {
1238 	struct perf_sample_data *data;
1239 	u64 sample_type = event->attr.sample_type;
1240 	u16 size = 0;
1241 
1242 	if (sample_type & PERF_SAMPLE_TID)
1243 		size += sizeof(data->tid_entry);
1244 
1245 	if (sample_type & PERF_SAMPLE_TIME)
1246 		size += sizeof(data->time);
1247 
1248 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1249 		size += sizeof(data->id);
1250 
1251 	if (sample_type & PERF_SAMPLE_ID)
1252 		size += sizeof(data->id);
1253 
1254 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1255 		size += sizeof(data->stream_id);
1256 
1257 	if (sample_type & PERF_SAMPLE_CPU)
1258 		size += sizeof(data->cpu_entry);
1259 
1260 	event->id_header_size = size;
1261 }
1262 
1263 static void perf_group_attach(struct perf_event *event)
1264 {
1265 	struct perf_event *group_leader = event->group_leader, *pos;
1266 
1267 	/*
1268 	 * We can have double attach due to group movement in perf_event_open.
1269 	 */
1270 	if (event->attach_state & PERF_ATTACH_GROUP)
1271 		return;
1272 
1273 	event->attach_state |= PERF_ATTACH_GROUP;
1274 
1275 	if (group_leader == event)
1276 		return;
1277 
1278 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1279 			!is_software_event(event))
1280 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1281 
1282 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1283 	group_leader->nr_siblings++;
1284 
1285 	perf_event__header_size(group_leader);
1286 
1287 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1288 		perf_event__header_size(pos);
1289 }
1290 
1291 /*
1292  * Remove a event from the lists for its context.
1293  * Must be called with ctx->mutex and ctx->lock held.
1294  */
1295 static void
1296 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1297 {
1298 	struct perf_cpu_context *cpuctx;
1299 	/*
1300 	 * We can have double detach due to exit/hot-unplug + close.
1301 	 */
1302 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1303 		return;
1304 
1305 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1306 
1307 	if (is_cgroup_event(event)) {
1308 		ctx->nr_cgroups--;
1309 		cpuctx = __get_cpu_context(ctx);
1310 		/*
1311 		 * if there are no more cgroup events
1312 		 * then cler cgrp to avoid stale pointer
1313 		 * in update_cgrp_time_from_cpuctx()
1314 		 */
1315 		if (!ctx->nr_cgroups)
1316 			cpuctx->cgrp = NULL;
1317 	}
1318 
1319 	if (has_branch_stack(event))
1320 		ctx->nr_branch_stack--;
1321 
1322 	ctx->nr_events--;
1323 	if (event->attr.inherit_stat)
1324 		ctx->nr_stat--;
1325 
1326 	list_del_rcu(&event->event_entry);
1327 
1328 	if (event->group_leader == event)
1329 		list_del_init(&event->group_entry);
1330 
1331 	update_group_times(event);
1332 
1333 	/*
1334 	 * If event was in error state, then keep it
1335 	 * that way, otherwise bogus counts will be
1336 	 * returned on read(). The only way to get out
1337 	 * of error state is by explicit re-enabling
1338 	 * of the event
1339 	 */
1340 	if (event->state > PERF_EVENT_STATE_OFF)
1341 		event->state = PERF_EVENT_STATE_OFF;
1342 
1343 	ctx->generation++;
1344 }
1345 
1346 static void perf_group_detach(struct perf_event *event)
1347 {
1348 	struct perf_event *sibling, *tmp;
1349 	struct list_head *list = NULL;
1350 
1351 	/*
1352 	 * We can have double detach due to exit/hot-unplug + close.
1353 	 */
1354 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1355 		return;
1356 
1357 	event->attach_state &= ~PERF_ATTACH_GROUP;
1358 
1359 	/*
1360 	 * If this is a sibling, remove it from its group.
1361 	 */
1362 	if (event->group_leader != event) {
1363 		list_del_init(&event->group_entry);
1364 		event->group_leader->nr_siblings--;
1365 		goto out;
1366 	}
1367 
1368 	if (!list_empty(&event->group_entry))
1369 		list = &event->group_entry;
1370 
1371 	/*
1372 	 * If this was a group event with sibling events then
1373 	 * upgrade the siblings to singleton events by adding them
1374 	 * to whatever list we are on.
1375 	 */
1376 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1377 		if (list)
1378 			list_move_tail(&sibling->group_entry, list);
1379 		sibling->group_leader = sibling;
1380 
1381 		/* Inherit group flags from the previous leader */
1382 		sibling->group_flags = event->group_flags;
1383 	}
1384 
1385 out:
1386 	perf_event__header_size(event->group_leader);
1387 
1388 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1389 		perf_event__header_size(tmp);
1390 }
1391 
1392 /*
1393  * User event without the task.
1394  */
1395 static bool is_orphaned_event(struct perf_event *event)
1396 {
1397 	return event && !is_kernel_event(event) && !event->owner;
1398 }
1399 
1400 /*
1401  * Event has a parent but parent's task finished and it's
1402  * alive only because of children holding refference.
1403  */
1404 static bool is_orphaned_child(struct perf_event *event)
1405 {
1406 	return is_orphaned_event(event->parent);
1407 }
1408 
1409 static void orphans_remove_work(struct work_struct *work);
1410 
1411 static void schedule_orphans_remove(struct perf_event_context *ctx)
1412 {
1413 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1414 		return;
1415 
1416 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1417 		get_ctx(ctx);
1418 		ctx->orphans_remove_sched = true;
1419 	}
1420 }
1421 
1422 static int __init perf_workqueue_init(void)
1423 {
1424 	perf_wq = create_singlethread_workqueue("perf");
1425 	WARN(!perf_wq, "failed to create perf workqueue\n");
1426 	return perf_wq ? 0 : -1;
1427 }
1428 
1429 core_initcall(perf_workqueue_init);
1430 
1431 static inline int
1432 event_filter_match(struct perf_event *event)
1433 {
1434 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1435 	    && perf_cgroup_match(event);
1436 }
1437 
1438 static void
1439 event_sched_out(struct perf_event *event,
1440 		  struct perf_cpu_context *cpuctx,
1441 		  struct perf_event_context *ctx)
1442 {
1443 	u64 tstamp = perf_event_time(event);
1444 	u64 delta;
1445 	/*
1446 	 * An event which could not be activated because of
1447 	 * filter mismatch still needs to have its timings
1448 	 * maintained, otherwise bogus information is return
1449 	 * via read() for time_enabled, time_running:
1450 	 */
1451 	if (event->state == PERF_EVENT_STATE_INACTIVE
1452 	    && !event_filter_match(event)) {
1453 		delta = tstamp - event->tstamp_stopped;
1454 		event->tstamp_running += delta;
1455 		event->tstamp_stopped = tstamp;
1456 	}
1457 
1458 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1459 		return;
1460 
1461 	perf_pmu_disable(event->pmu);
1462 
1463 	event->state = PERF_EVENT_STATE_INACTIVE;
1464 	if (event->pending_disable) {
1465 		event->pending_disable = 0;
1466 		event->state = PERF_EVENT_STATE_OFF;
1467 	}
1468 	event->tstamp_stopped = tstamp;
1469 	event->pmu->del(event, 0);
1470 	event->oncpu = -1;
1471 
1472 	if (!is_software_event(event))
1473 		cpuctx->active_oncpu--;
1474 	ctx->nr_active--;
1475 	if (event->attr.freq && event->attr.sample_freq)
1476 		ctx->nr_freq--;
1477 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1478 		cpuctx->exclusive = 0;
1479 
1480 	if (is_orphaned_child(event))
1481 		schedule_orphans_remove(ctx);
1482 
1483 	perf_pmu_enable(event->pmu);
1484 }
1485 
1486 static void
1487 group_sched_out(struct perf_event *group_event,
1488 		struct perf_cpu_context *cpuctx,
1489 		struct perf_event_context *ctx)
1490 {
1491 	struct perf_event *event;
1492 	int state = group_event->state;
1493 
1494 	event_sched_out(group_event, cpuctx, ctx);
1495 
1496 	/*
1497 	 * Schedule out siblings (if any):
1498 	 */
1499 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1500 		event_sched_out(event, cpuctx, ctx);
1501 
1502 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1503 		cpuctx->exclusive = 0;
1504 }
1505 
1506 struct remove_event {
1507 	struct perf_event *event;
1508 	bool detach_group;
1509 };
1510 
1511 /*
1512  * Cross CPU call to remove a performance event
1513  *
1514  * We disable the event on the hardware level first. After that we
1515  * remove it from the context list.
1516  */
1517 static int __perf_remove_from_context(void *info)
1518 {
1519 	struct remove_event *re = info;
1520 	struct perf_event *event = re->event;
1521 	struct perf_event_context *ctx = event->ctx;
1522 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1523 
1524 	raw_spin_lock(&ctx->lock);
1525 	event_sched_out(event, cpuctx, ctx);
1526 	if (re->detach_group)
1527 		perf_group_detach(event);
1528 	list_del_event(event, ctx);
1529 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1530 		ctx->is_active = 0;
1531 		cpuctx->task_ctx = NULL;
1532 	}
1533 	raw_spin_unlock(&ctx->lock);
1534 
1535 	return 0;
1536 }
1537 
1538 
1539 /*
1540  * Remove the event from a task's (or a CPU's) list of events.
1541  *
1542  * CPU events are removed with a smp call. For task events we only
1543  * call when the task is on a CPU.
1544  *
1545  * If event->ctx is a cloned context, callers must make sure that
1546  * every task struct that event->ctx->task could possibly point to
1547  * remains valid.  This is OK when called from perf_release since
1548  * that only calls us on the top-level context, which can't be a clone.
1549  * When called from perf_event_exit_task, it's OK because the
1550  * context has been detached from its task.
1551  */
1552 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1553 {
1554 	struct perf_event_context *ctx = event->ctx;
1555 	struct task_struct *task = ctx->task;
1556 	struct remove_event re = {
1557 		.event = event,
1558 		.detach_group = detach_group,
1559 	};
1560 
1561 	lockdep_assert_held(&ctx->mutex);
1562 
1563 	if (!task) {
1564 		/*
1565 		 * Per cpu events are removed via an smp call. The removal can
1566 		 * fail if the CPU is currently offline, but in that case we
1567 		 * already called __perf_remove_from_context from
1568 		 * perf_event_exit_cpu.
1569 		 */
1570 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1571 		return;
1572 	}
1573 
1574 retry:
1575 	if (!task_function_call(task, __perf_remove_from_context, &re))
1576 		return;
1577 
1578 	raw_spin_lock_irq(&ctx->lock);
1579 	/*
1580 	 * If we failed to find a running task, but find the context active now
1581 	 * that we've acquired the ctx->lock, retry.
1582 	 */
1583 	if (ctx->is_active) {
1584 		raw_spin_unlock_irq(&ctx->lock);
1585 		/*
1586 		 * Reload the task pointer, it might have been changed by
1587 		 * a concurrent perf_event_context_sched_out().
1588 		 */
1589 		task = ctx->task;
1590 		goto retry;
1591 	}
1592 
1593 	/*
1594 	 * Since the task isn't running, its safe to remove the event, us
1595 	 * holding the ctx->lock ensures the task won't get scheduled in.
1596 	 */
1597 	if (detach_group)
1598 		perf_group_detach(event);
1599 	list_del_event(event, ctx);
1600 	raw_spin_unlock_irq(&ctx->lock);
1601 }
1602 
1603 /*
1604  * Cross CPU call to disable a performance event
1605  */
1606 int __perf_event_disable(void *info)
1607 {
1608 	struct perf_event *event = info;
1609 	struct perf_event_context *ctx = event->ctx;
1610 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1611 
1612 	/*
1613 	 * If this is a per-task event, need to check whether this
1614 	 * event's task is the current task on this cpu.
1615 	 *
1616 	 * Can trigger due to concurrent perf_event_context_sched_out()
1617 	 * flipping contexts around.
1618 	 */
1619 	if (ctx->task && cpuctx->task_ctx != ctx)
1620 		return -EINVAL;
1621 
1622 	raw_spin_lock(&ctx->lock);
1623 
1624 	/*
1625 	 * If the event is on, turn it off.
1626 	 * If it is in error state, leave it in error state.
1627 	 */
1628 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1629 		update_context_time(ctx);
1630 		update_cgrp_time_from_event(event);
1631 		update_group_times(event);
1632 		if (event == event->group_leader)
1633 			group_sched_out(event, cpuctx, ctx);
1634 		else
1635 			event_sched_out(event, cpuctx, ctx);
1636 		event->state = PERF_EVENT_STATE_OFF;
1637 	}
1638 
1639 	raw_spin_unlock(&ctx->lock);
1640 
1641 	return 0;
1642 }
1643 
1644 /*
1645  * Disable a event.
1646  *
1647  * If event->ctx is a cloned context, callers must make sure that
1648  * every task struct that event->ctx->task could possibly point to
1649  * remains valid.  This condition is satisifed when called through
1650  * perf_event_for_each_child or perf_event_for_each because they
1651  * hold the top-level event's child_mutex, so any descendant that
1652  * goes to exit will block in sync_child_event.
1653  * When called from perf_pending_event it's OK because event->ctx
1654  * is the current context on this CPU and preemption is disabled,
1655  * hence we can't get into perf_event_task_sched_out for this context.
1656  */
1657 void perf_event_disable(struct perf_event *event)
1658 {
1659 	struct perf_event_context *ctx = event->ctx;
1660 	struct task_struct *task = ctx->task;
1661 
1662 	if (!task) {
1663 		/*
1664 		 * Disable the event on the cpu that it's on
1665 		 */
1666 		cpu_function_call(event->cpu, __perf_event_disable, event);
1667 		return;
1668 	}
1669 
1670 retry:
1671 	if (!task_function_call(task, __perf_event_disable, event))
1672 		return;
1673 
1674 	raw_spin_lock_irq(&ctx->lock);
1675 	/*
1676 	 * If the event is still active, we need to retry the cross-call.
1677 	 */
1678 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1679 		raw_spin_unlock_irq(&ctx->lock);
1680 		/*
1681 		 * Reload the task pointer, it might have been changed by
1682 		 * a concurrent perf_event_context_sched_out().
1683 		 */
1684 		task = ctx->task;
1685 		goto retry;
1686 	}
1687 
1688 	/*
1689 	 * Since we have the lock this context can't be scheduled
1690 	 * in, so we can change the state safely.
1691 	 */
1692 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1693 		update_group_times(event);
1694 		event->state = PERF_EVENT_STATE_OFF;
1695 	}
1696 	raw_spin_unlock_irq(&ctx->lock);
1697 }
1698 EXPORT_SYMBOL_GPL(perf_event_disable);
1699 
1700 static void perf_set_shadow_time(struct perf_event *event,
1701 				 struct perf_event_context *ctx,
1702 				 u64 tstamp)
1703 {
1704 	/*
1705 	 * use the correct time source for the time snapshot
1706 	 *
1707 	 * We could get by without this by leveraging the
1708 	 * fact that to get to this function, the caller
1709 	 * has most likely already called update_context_time()
1710 	 * and update_cgrp_time_xx() and thus both timestamp
1711 	 * are identical (or very close). Given that tstamp is,
1712 	 * already adjusted for cgroup, we could say that:
1713 	 *    tstamp - ctx->timestamp
1714 	 * is equivalent to
1715 	 *    tstamp - cgrp->timestamp.
1716 	 *
1717 	 * Then, in perf_output_read(), the calculation would
1718 	 * work with no changes because:
1719 	 * - event is guaranteed scheduled in
1720 	 * - no scheduled out in between
1721 	 * - thus the timestamp would be the same
1722 	 *
1723 	 * But this is a bit hairy.
1724 	 *
1725 	 * So instead, we have an explicit cgroup call to remain
1726 	 * within the time time source all along. We believe it
1727 	 * is cleaner and simpler to understand.
1728 	 */
1729 	if (is_cgroup_event(event))
1730 		perf_cgroup_set_shadow_time(event, tstamp);
1731 	else
1732 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1733 }
1734 
1735 #define MAX_INTERRUPTS (~0ULL)
1736 
1737 static void perf_log_throttle(struct perf_event *event, int enable);
1738 
1739 static int
1740 event_sched_in(struct perf_event *event,
1741 		 struct perf_cpu_context *cpuctx,
1742 		 struct perf_event_context *ctx)
1743 {
1744 	u64 tstamp = perf_event_time(event);
1745 	int ret = 0;
1746 
1747 	lockdep_assert_held(&ctx->lock);
1748 
1749 	if (event->state <= PERF_EVENT_STATE_OFF)
1750 		return 0;
1751 
1752 	event->state = PERF_EVENT_STATE_ACTIVE;
1753 	event->oncpu = smp_processor_id();
1754 
1755 	/*
1756 	 * Unthrottle events, since we scheduled we might have missed several
1757 	 * ticks already, also for a heavily scheduling task there is little
1758 	 * guarantee it'll get a tick in a timely manner.
1759 	 */
1760 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1761 		perf_log_throttle(event, 1);
1762 		event->hw.interrupts = 0;
1763 	}
1764 
1765 	/*
1766 	 * The new state must be visible before we turn it on in the hardware:
1767 	 */
1768 	smp_wmb();
1769 
1770 	perf_pmu_disable(event->pmu);
1771 
1772 	if (event->pmu->add(event, PERF_EF_START)) {
1773 		event->state = PERF_EVENT_STATE_INACTIVE;
1774 		event->oncpu = -1;
1775 		ret = -EAGAIN;
1776 		goto out;
1777 	}
1778 
1779 	event->tstamp_running += tstamp - event->tstamp_stopped;
1780 
1781 	perf_set_shadow_time(event, ctx, tstamp);
1782 
1783 	if (!is_software_event(event))
1784 		cpuctx->active_oncpu++;
1785 	ctx->nr_active++;
1786 	if (event->attr.freq && event->attr.sample_freq)
1787 		ctx->nr_freq++;
1788 
1789 	if (event->attr.exclusive)
1790 		cpuctx->exclusive = 1;
1791 
1792 	if (is_orphaned_child(event))
1793 		schedule_orphans_remove(ctx);
1794 
1795 out:
1796 	perf_pmu_enable(event->pmu);
1797 
1798 	return ret;
1799 }
1800 
1801 static int
1802 group_sched_in(struct perf_event *group_event,
1803 	       struct perf_cpu_context *cpuctx,
1804 	       struct perf_event_context *ctx)
1805 {
1806 	struct perf_event *event, *partial_group = NULL;
1807 	struct pmu *pmu = ctx->pmu;
1808 	u64 now = ctx->time;
1809 	bool simulate = false;
1810 
1811 	if (group_event->state == PERF_EVENT_STATE_OFF)
1812 		return 0;
1813 
1814 	pmu->start_txn(pmu);
1815 
1816 	if (event_sched_in(group_event, cpuctx, ctx)) {
1817 		pmu->cancel_txn(pmu);
1818 		perf_cpu_hrtimer_restart(cpuctx);
1819 		return -EAGAIN;
1820 	}
1821 
1822 	/*
1823 	 * Schedule in siblings as one group (if any):
1824 	 */
1825 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1826 		if (event_sched_in(event, cpuctx, ctx)) {
1827 			partial_group = event;
1828 			goto group_error;
1829 		}
1830 	}
1831 
1832 	if (!pmu->commit_txn(pmu))
1833 		return 0;
1834 
1835 group_error:
1836 	/*
1837 	 * Groups can be scheduled in as one unit only, so undo any
1838 	 * partial group before returning:
1839 	 * The events up to the failed event are scheduled out normally,
1840 	 * tstamp_stopped will be updated.
1841 	 *
1842 	 * The failed events and the remaining siblings need to have
1843 	 * their timings updated as if they had gone thru event_sched_in()
1844 	 * and event_sched_out(). This is required to get consistent timings
1845 	 * across the group. This also takes care of the case where the group
1846 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1847 	 * the time the event was actually stopped, such that time delta
1848 	 * calculation in update_event_times() is correct.
1849 	 */
1850 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1851 		if (event == partial_group)
1852 			simulate = true;
1853 
1854 		if (simulate) {
1855 			event->tstamp_running += now - event->tstamp_stopped;
1856 			event->tstamp_stopped = now;
1857 		} else {
1858 			event_sched_out(event, cpuctx, ctx);
1859 		}
1860 	}
1861 	event_sched_out(group_event, cpuctx, ctx);
1862 
1863 	pmu->cancel_txn(pmu);
1864 
1865 	perf_cpu_hrtimer_restart(cpuctx);
1866 
1867 	return -EAGAIN;
1868 }
1869 
1870 /*
1871  * Work out whether we can put this event group on the CPU now.
1872  */
1873 static int group_can_go_on(struct perf_event *event,
1874 			   struct perf_cpu_context *cpuctx,
1875 			   int can_add_hw)
1876 {
1877 	/*
1878 	 * Groups consisting entirely of software events can always go on.
1879 	 */
1880 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1881 		return 1;
1882 	/*
1883 	 * If an exclusive group is already on, no other hardware
1884 	 * events can go on.
1885 	 */
1886 	if (cpuctx->exclusive)
1887 		return 0;
1888 	/*
1889 	 * If this group is exclusive and there are already
1890 	 * events on the CPU, it can't go on.
1891 	 */
1892 	if (event->attr.exclusive && cpuctx->active_oncpu)
1893 		return 0;
1894 	/*
1895 	 * Otherwise, try to add it if all previous groups were able
1896 	 * to go on.
1897 	 */
1898 	return can_add_hw;
1899 }
1900 
1901 static void add_event_to_ctx(struct perf_event *event,
1902 			       struct perf_event_context *ctx)
1903 {
1904 	u64 tstamp = perf_event_time(event);
1905 
1906 	list_add_event(event, ctx);
1907 	perf_group_attach(event);
1908 	event->tstamp_enabled = tstamp;
1909 	event->tstamp_running = tstamp;
1910 	event->tstamp_stopped = tstamp;
1911 }
1912 
1913 static void task_ctx_sched_out(struct perf_event_context *ctx);
1914 static void
1915 ctx_sched_in(struct perf_event_context *ctx,
1916 	     struct perf_cpu_context *cpuctx,
1917 	     enum event_type_t event_type,
1918 	     struct task_struct *task);
1919 
1920 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1921 				struct perf_event_context *ctx,
1922 				struct task_struct *task)
1923 {
1924 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1925 	if (ctx)
1926 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1927 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1928 	if (ctx)
1929 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1930 }
1931 
1932 /*
1933  * Cross CPU call to install and enable a performance event
1934  *
1935  * Must be called with ctx->mutex held
1936  */
1937 static int  __perf_install_in_context(void *info)
1938 {
1939 	struct perf_event *event = info;
1940 	struct perf_event_context *ctx = event->ctx;
1941 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1942 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1943 	struct task_struct *task = current;
1944 
1945 	perf_ctx_lock(cpuctx, task_ctx);
1946 	perf_pmu_disable(cpuctx->ctx.pmu);
1947 
1948 	/*
1949 	 * If there was an active task_ctx schedule it out.
1950 	 */
1951 	if (task_ctx)
1952 		task_ctx_sched_out(task_ctx);
1953 
1954 	/*
1955 	 * If the context we're installing events in is not the
1956 	 * active task_ctx, flip them.
1957 	 */
1958 	if (ctx->task && task_ctx != ctx) {
1959 		if (task_ctx)
1960 			raw_spin_unlock(&task_ctx->lock);
1961 		raw_spin_lock(&ctx->lock);
1962 		task_ctx = ctx;
1963 	}
1964 
1965 	if (task_ctx) {
1966 		cpuctx->task_ctx = task_ctx;
1967 		task = task_ctx->task;
1968 	}
1969 
1970 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1971 
1972 	update_context_time(ctx);
1973 	/*
1974 	 * update cgrp time only if current cgrp
1975 	 * matches event->cgrp. Must be done before
1976 	 * calling add_event_to_ctx()
1977 	 */
1978 	update_cgrp_time_from_event(event);
1979 
1980 	add_event_to_ctx(event, ctx);
1981 
1982 	/*
1983 	 * Schedule everything back in
1984 	 */
1985 	perf_event_sched_in(cpuctx, task_ctx, task);
1986 
1987 	perf_pmu_enable(cpuctx->ctx.pmu);
1988 	perf_ctx_unlock(cpuctx, task_ctx);
1989 
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Attach a performance event to a context
1995  *
1996  * First we add the event to the list with the hardware enable bit
1997  * in event->hw_config cleared.
1998  *
1999  * If the event is attached to a task which is on a CPU we use a smp
2000  * call to enable it in the task context. The task might have been
2001  * scheduled away, but we check this in the smp call again.
2002  */
2003 static void
2004 perf_install_in_context(struct perf_event_context *ctx,
2005 			struct perf_event *event,
2006 			int cpu)
2007 {
2008 	struct task_struct *task = ctx->task;
2009 
2010 	lockdep_assert_held(&ctx->mutex);
2011 
2012 	event->ctx = ctx;
2013 	if (event->cpu != -1)
2014 		event->cpu = cpu;
2015 
2016 	if (!task) {
2017 		/*
2018 		 * Per cpu events are installed via an smp call and
2019 		 * the install is always successful.
2020 		 */
2021 		cpu_function_call(cpu, __perf_install_in_context, event);
2022 		return;
2023 	}
2024 
2025 retry:
2026 	if (!task_function_call(task, __perf_install_in_context, event))
2027 		return;
2028 
2029 	raw_spin_lock_irq(&ctx->lock);
2030 	/*
2031 	 * If we failed to find a running task, but find the context active now
2032 	 * that we've acquired the ctx->lock, retry.
2033 	 */
2034 	if (ctx->is_active) {
2035 		raw_spin_unlock_irq(&ctx->lock);
2036 		/*
2037 		 * Reload the task pointer, it might have been changed by
2038 		 * a concurrent perf_event_context_sched_out().
2039 		 */
2040 		task = ctx->task;
2041 		goto retry;
2042 	}
2043 
2044 	/*
2045 	 * Since the task isn't running, its safe to add the event, us holding
2046 	 * the ctx->lock ensures the task won't get scheduled in.
2047 	 */
2048 	add_event_to_ctx(event, ctx);
2049 	raw_spin_unlock_irq(&ctx->lock);
2050 }
2051 
2052 /*
2053  * Put a event into inactive state and update time fields.
2054  * Enabling the leader of a group effectively enables all
2055  * the group members that aren't explicitly disabled, so we
2056  * have to update their ->tstamp_enabled also.
2057  * Note: this works for group members as well as group leaders
2058  * since the non-leader members' sibling_lists will be empty.
2059  */
2060 static void __perf_event_mark_enabled(struct perf_event *event)
2061 {
2062 	struct perf_event *sub;
2063 	u64 tstamp = perf_event_time(event);
2064 
2065 	event->state = PERF_EVENT_STATE_INACTIVE;
2066 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2067 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2068 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2069 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2070 	}
2071 }
2072 
2073 /*
2074  * Cross CPU call to enable a performance event
2075  */
2076 static int __perf_event_enable(void *info)
2077 {
2078 	struct perf_event *event = info;
2079 	struct perf_event_context *ctx = event->ctx;
2080 	struct perf_event *leader = event->group_leader;
2081 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2082 	int err;
2083 
2084 	/*
2085 	 * There's a time window between 'ctx->is_active' check
2086 	 * in perf_event_enable function and this place having:
2087 	 *   - IRQs on
2088 	 *   - ctx->lock unlocked
2089 	 *
2090 	 * where the task could be killed and 'ctx' deactivated
2091 	 * by perf_event_exit_task.
2092 	 */
2093 	if (!ctx->is_active)
2094 		return -EINVAL;
2095 
2096 	raw_spin_lock(&ctx->lock);
2097 	update_context_time(ctx);
2098 
2099 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2100 		goto unlock;
2101 
2102 	/*
2103 	 * set current task's cgroup time reference point
2104 	 */
2105 	perf_cgroup_set_timestamp(current, ctx);
2106 
2107 	__perf_event_mark_enabled(event);
2108 
2109 	if (!event_filter_match(event)) {
2110 		if (is_cgroup_event(event))
2111 			perf_cgroup_defer_enabled(event);
2112 		goto unlock;
2113 	}
2114 
2115 	/*
2116 	 * If the event is in a group and isn't the group leader,
2117 	 * then don't put it on unless the group is on.
2118 	 */
2119 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2120 		goto unlock;
2121 
2122 	if (!group_can_go_on(event, cpuctx, 1)) {
2123 		err = -EEXIST;
2124 	} else {
2125 		if (event == leader)
2126 			err = group_sched_in(event, cpuctx, ctx);
2127 		else
2128 			err = event_sched_in(event, cpuctx, ctx);
2129 	}
2130 
2131 	if (err) {
2132 		/*
2133 		 * If this event can't go on and it's part of a
2134 		 * group, then the whole group has to come off.
2135 		 */
2136 		if (leader != event) {
2137 			group_sched_out(leader, cpuctx, ctx);
2138 			perf_cpu_hrtimer_restart(cpuctx);
2139 		}
2140 		if (leader->attr.pinned) {
2141 			update_group_times(leader);
2142 			leader->state = PERF_EVENT_STATE_ERROR;
2143 		}
2144 	}
2145 
2146 unlock:
2147 	raw_spin_unlock(&ctx->lock);
2148 
2149 	return 0;
2150 }
2151 
2152 /*
2153  * Enable a event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisfied when called through
2158  * perf_event_for_each_child or perf_event_for_each as described
2159  * for perf_event_disable.
2160  */
2161 void perf_event_enable(struct perf_event *event)
2162 {
2163 	struct perf_event_context *ctx = event->ctx;
2164 	struct task_struct *task = ctx->task;
2165 
2166 	if (!task) {
2167 		/*
2168 		 * Enable the event on the cpu that it's on
2169 		 */
2170 		cpu_function_call(event->cpu, __perf_event_enable, event);
2171 		return;
2172 	}
2173 
2174 	raw_spin_lock_irq(&ctx->lock);
2175 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2176 		goto out;
2177 
2178 	/*
2179 	 * If the event is in error state, clear that first.
2180 	 * That way, if we see the event in error state below, we
2181 	 * know that it has gone back into error state, as distinct
2182 	 * from the task having been scheduled away before the
2183 	 * cross-call arrived.
2184 	 */
2185 	if (event->state == PERF_EVENT_STATE_ERROR)
2186 		event->state = PERF_EVENT_STATE_OFF;
2187 
2188 retry:
2189 	if (!ctx->is_active) {
2190 		__perf_event_mark_enabled(event);
2191 		goto out;
2192 	}
2193 
2194 	raw_spin_unlock_irq(&ctx->lock);
2195 
2196 	if (!task_function_call(task, __perf_event_enable, event))
2197 		return;
2198 
2199 	raw_spin_lock_irq(&ctx->lock);
2200 
2201 	/*
2202 	 * If the context is active and the event is still off,
2203 	 * we need to retry the cross-call.
2204 	 */
2205 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2206 		/*
2207 		 * task could have been flipped by a concurrent
2208 		 * perf_event_context_sched_out()
2209 		 */
2210 		task = ctx->task;
2211 		goto retry;
2212 	}
2213 
2214 out:
2215 	raw_spin_unlock_irq(&ctx->lock);
2216 }
2217 EXPORT_SYMBOL_GPL(perf_event_enable);
2218 
2219 int perf_event_refresh(struct perf_event *event, int refresh)
2220 {
2221 	/*
2222 	 * not supported on inherited events
2223 	 */
2224 	if (event->attr.inherit || !is_sampling_event(event))
2225 		return -EINVAL;
2226 
2227 	atomic_add(refresh, &event->event_limit);
2228 	perf_event_enable(event);
2229 
2230 	return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(perf_event_refresh);
2233 
2234 static void ctx_sched_out(struct perf_event_context *ctx,
2235 			  struct perf_cpu_context *cpuctx,
2236 			  enum event_type_t event_type)
2237 {
2238 	struct perf_event *event;
2239 	int is_active = ctx->is_active;
2240 
2241 	ctx->is_active &= ~event_type;
2242 	if (likely(!ctx->nr_events))
2243 		return;
2244 
2245 	update_context_time(ctx);
2246 	update_cgrp_time_from_cpuctx(cpuctx);
2247 	if (!ctx->nr_active)
2248 		return;
2249 
2250 	perf_pmu_disable(ctx->pmu);
2251 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2252 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2253 			group_sched_out(event, cpuctx, ctx);
2254 	}
2255 
2256 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2257 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2258 			group_sched_out(event, cpuctx, ctx);
2259 	}
2260 	perf_pmu_enable(ctx->pmu);
2261 }
2262 
2263 /*
2264  * Test whether two contexts are equivalent, i.e. whether they have both been
2265  * cloned from the same version of the same context.
2266  *
2267  * Equivalence is measured using a generation number in the context that is
2268  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2269  * and list_del_event().
2270  */
2271 static int context_equiv(struct perf_event_context *ctx1,
2272 			 struct perf_event_context *ctx2)
2273 {
2274 	lockdep_assert_held(&ctx1->lock);
2275 	lockdep_assert_held(&ctx2->lock);
2276 
2277 	/* Pinning disables the swap optimization */
2278 	if (ctx1->pin_count || ctx2->pin_count)
2279 		return 0;
2280 
2281 	/* If ctx1 is the parent of ctx2 */
2282 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2283 		return 1;
2284 
2285 	/* If ctx2 is the parent of ctx1 */
2286 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2287 		return 1;
2288 
2289 	/*
2290 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2291 	 * hierarchy, see perf_event_init_context().
2292 	 */
2293 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2294 			ctx1->parent_gen == ctx2->parent_gen)
2295 		return 1;
2296 
2297 	/* Unmatched */
2298 	return 0;
2299 }
2300 
2301 static void __perf_event_sync_stat(struct perf_event *event,
2302 				     struct perf_event *next_event)
2303 {
2304 	u64 value;
2305 
2306 	if (!event->attr.inherit_stat)
2307 		return;
2308 
2309 	/*
2310 	 * Update the event value, we cannot use perf_event_read()
2311 	 * because we're in the middle of a context switch and have IRQs
2312 	 * disabled, which upsets smp_call_function_single(), however
2313 	 * we know the event must be on the current CPU, therefore we
2314 	 * don't need to use it.
2315 	 */
2316 	switch (event->state) {
2317 	case PERF_EVENT_STATE_ACTIVE:
2318 		event->pmu->read(event);
2319 		/* fall-through */
2320 
2321 	case PERF_EVENT_STATE_INACTIVE:
2322 		update_event_times(event);
2323 		break;
2324 
2325 	default:
2326 		break;
2327 	}
2328 
2329 	/*
2330 	 * In order to keep per-task stats reliable we need to flip the event
2331 	 * values when we flip the contexts.
2332 	 */
2333 	value = local64_read(&next_event->count);
2334 	value = local64_xchg(&event->count, value);
2335 	local64_set(&next_event->count, value);
2336 
2337 	swap(event->total_time_enabled, next_event->total_time_enabled);
2338 	swap(event->total_time_running, next_event->total_time_running);
2339 
2340 	/*
2341 	 * Since we swizzled the values, update the user visible data too.
2342 	 */
2343 	perf_event_update_userpage(event);
2344 	perf_event_update_userpage(next_event);
2345 }
2346 
2347 static void perf_event_sync_stat(struct perf_event_context *ctx,
2348 				   struct perf_event_context *next_ctx)
2349 {
2350 	struct perf_event *event, *next_event;
2351 
2352 	if (!ctx->nr_stat)
2353 		return;
2354 
2355 	update_context_time(ctx);
2356 
2357 	event = list_first_entry(&ctx->event_list,
2358 				   struct perf_event, event_entry);
2359 
2360 	next_event = list_first_entry(&next_ctx->event_list,
2361 					struct perf_event, event_entry);
2362 
2363 	while (&event->event_entry != &ctx->event_list &&
2364 	       &next_event->event_entry != &next_ctx->event_list) {
2365 
2366 		__perf_event_sync_stat(event, next_event);
2367 
2368 		event = list_next_entry(event, event_entry);
2369 		next_event = list_next_entry(next_event, event_entry);
2370 	}
2371 }
2372 
2373 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2374 					 struct task_struct *next)
2375 {
2376 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2377 	struct perf_event_context *next_ctx;
2378 	struct perf_event_context *parent, *next_parent;
2379 	struct perf_cpu_context *cpuctx;
2380 	int do_switch = 1;
2381 
2382 	if (likely(!ctx))
2383 		return;
2384 
2385 	cpuctx = __get_cpu_context(ctx);
2386 	if (!cpuctx->task_ctx)
2387 		return;
2388 
2389 	rcu_read_lock();
2390 	next_ctx = next->perf_event_ctxp[ctxn];
2391 	if (!next_ctx)
2392 		goto unlock;
2393 
2394 	parent = rcu_dereference(ctx->parent_ctx);
2395 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2396 
2397 	/* If neither context have a parent context; they cannot be clones. */
2398 	if (!parent && !next_parent)
2399 		goto unlock;
2400 
2401 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2402 		/*
2403 		 * Looks like the two contexts are clones, so we might be
2404 		 * able to optimize the context switch.  We lock both
2405 		 * contexts and check that they are clones under the
2406 		 * lock (including re-checking that neither has been
2407 		 * uncloned in the meantime).  It doesn't matter which
2408 		 * order we take the locks because no other cpu could
2409 		 * be trying to lock both of these tasks.
2410 		 */
2411 		raw_spin_lock(&ctx->lock);
2412 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2413 		if (context_equiv(ctx, next_ctx)) {
2414 			/*
2415 			 * XXX do we need a memory barrier of sorts
2416 			 * wrt to rcu_dereference() of perf_event_ctxp
2417 			 */
2418 			task->perf_event_ctxp[ctxn] = next_ctx;
2419 			next->perf_event_ctxp[ctxn] = ctx;
2420 			ctx->task = next;
2421 			next_ctx->task = task;
2422 			do_switch = 0;
2423 
2424 			perf_event_sync_stat(ctx, next_ctx);
2425 		}
2426 		raw_spin_unlock(&next_ctx->lock);
2427 		raw_spin_unlock(&ctx->lock);
2428 	}
2429 unlock:
2430 	rcu_read_unlock();
2431 
2432 	if (do_switch) {
2433 		raw_spin_lock(&ctx->lock);
2434 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2435 		cpuctx->task_ctx = NULL;
2436 		raw_spin_unlock(&ctx->lock);
2437 	}
2438 }
2439 
2440 #define for_each_task_context_nr(ctxn)					\
2441 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2442 
2443 /*
2444  * Called from scheduler to remove the events of the current task,
2445  * with interrupts disabled.
2446  *
2447  * We stop each event and update the event value in event->count.
2448  *
2449  * This does not protect us against NMI, but disable()
2450  * sets the disabled bit in the control field of event _before_
2451  * accessing the event control register. If a NMI hits, then it will
2452  * not restart the event.
2453  */
2454 void __perf_event_task_sched_out(struct task_struct *task,
2455 				 struct task_struct *next)
2456 {
2457 	int ctxn;
2458 
2459 	for_each_task_context_nr(ctxn)
2460 		perf_event_context_sched_out(task, ctxn, next);
2461 
2462 	/*
2463 	 * if cgroup events exist on this CPU, then we need
2464 	 * to check if we have to switch out PMU state.
2465 	 * cgroup event are system-wide mode only
2466 	 */
2467 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2468 		perf_cgroup_sched_out(task, next);
2469 }
2470 
2471 static void task_ctx_sched_out(struct perf_event_context *ctx)
2472 {
2473 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2474 
2475 	if (!cpuctx->task_ctx)
2476 		return;
2477 
2478 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2479 		return;
2480 
2481 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2482 	cpuctx->task_ctx = NULL;
2483 }
2484 
2485 /*
2486  * Called with IRQs disabled
2487  */
2488 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2489 			      enum event_type_t event_type)
2490 {
2491 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2492 }
2493 
2494 static void
2495 ctx_pinned_sched_in(struct perf_event_context *ctx,
2496 		    struct perf_cpu_context *cpuctx)
2497 {
2498 	struct perf_event *event;
2499 
2500 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2501 		if (event->state <= PERF_EVENT_STATE_OFF)
2502 			continue;
2503 		if (!event_filter_match(event))
2504 			continue;
2505 
2506 		/* may need to reset tstamp_enabled */
2507 		if (is_cgroup_event(event))
2508 			perf_cgroup_mark_enabled(event, ctx);
2509 
2510 		if (group_can_go_on(event, cpuctx, 1))
2511 			group_sched_in(event, cpuctx, ctx);
2512 
2513 		/*
2514 		 * If this pinned group hasn't been scheduled,
2515 		 * put it in error state.
2516 		 */
2517 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2518 			update_group_times(event);
2519 			event->state = PERF_EVENT_STATE_ERROR;
2520 		}
2521 	}
2522 }
2523 
2524 static void
2525 ctx_flexible_sched_in(struct perf_event_context *ctx,
2526 		      struct perf_cpu_context *cpuctx)
2527 {
2528 	struct perf_event *event;
2529 	int can_add_hw = 1;
2530 
2531 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2532 		/* Ignore events in OFF or ERROR state */
2533 		if (event->state <= PERF_EVENT_STATE_OFF)
2534 			continue;
2535 		/*
2536 		 * Listen to the 'cpu' scheduling filter constraint
2537 		 * of events:
2538 		 */
2539 		if (!event_filter_match(event))
2540 			continue;
2541 
2542 		/* may need to reset tstamp_enabled */
2543 		if (is_cgroup_event(event))
2544 			perf_cgroup_mark_enabled(event, ctx);
2545 
2546 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2547 			if (group_sched_in(event, cpuctx, ctx))
2548 				can_add_hw = 0;
2549 		}
2550 	}
2551 }
2552 
2553 static void
2554 ctx_sched_in(struct perf_event_context *ctx,
2555 	     struct perf_cpu_context *cpuctx,
2556 	     enum event_type_t event_type,
2557 	     struct task_struct *task)
2558 {
2559 	u64 now;
2560 	int is_active = ctx->is_active;
2561 
2562 	ctx->is_active |= event_type;
2563 	if (likely(!ctx->nr_events))
2564 		return;
2565 
2566 	now = perf_clock();
2567 	ctx->timestamp = now;
2568 	perf_cgroup_set_timestamp(task, ctx);
2569 	/*
2570 	 * First go through the list and put on any pinned groups
2571 	 * in order to give them the best chance of going on.
2572 	 */
2573 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2574 		ctx_pinned_sched_in(ctx, cpuctx);
2575 
2576 	/* Then walk through the lower prio flexible groups */
2577 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2578 		ctx_flexible_sched_in(ctx, cpuctx);
2579 }
2580 
2581 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2582 			     enum event_type_t event_type,
2583 			     struct task_struct *task)
2584 {
2585 	struct perf_event_context *ctx = &cpuctx->ctx;
2586 
2587 	ctx_sched_in(ctx, cpuctx, event_type, task);
2588 }
2589 
2590 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2591 					struct task_struct *task)
2592 {
2593 	struct perf_cpu_context *cpuctx;
2594 
2595 	cpuctx = __get_cpu_context(ctx);
2596 	if (cpuctx->task_ctx == ctx)
2597 		return;
2598 
2599 	perf_ctx_lock(cpuctx, ctx);
2600 	perf_pmu_disable(ctx->pmu);
2601 	/*
2602 	 * We want to keep the following priority order:
2603 	 * cpu pinned (that don't need to move), task pinned,
2604 	 * cpu flexible, task flexible.
2605 	 */
2606 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2607 
2608 	if (ctx->nr_events)
2609 		cpuctx->task_ctx = ctx;
2610 
2611 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2612 
2613 	perf_pmu_enable(ctx->pmu);
2614 	perf_ctx_unlock(cpuctx, ctx);
2615 
2616 	/*
2617 	 * Since these rotations are per-cpu, we need to ensure the
2618 	 * cpu-context we got scheduled on is actually rotating.
2619 	 */
2620 	perf_pmu_rotate_start(ctx->pmu);
2621 }
2622 
2623 /*
2624  * When sampling the branck stack in system-wide, it may be necessary
2625  * to flush the stack on context switch. This happens when the branch
2626  * stack does not tag its entries with the pid of the current task.
2627  * Otherwise it becomes impossible to associate a branch entry with a
2628  * task. This ambiguity is more likely to appear when the branch stack
2629  * supports priv level filtering and the user sets it to monitor only
2630  * at the user level (which could be a useful measurement in system-wide
2631  * mode). In that case, the risk is high of having a branch stack with
2632  * branch from multiple tasks. Flushing may mean dropping the existing
2633  * entries or stashing them somewhere in the PMU specific code layer.
2634  *
2635  * This function provides the context switch callback to the lower code
2636  * layer. It is invoked ONLY when there is at least one system-wide context
2637  * with at least one active event using taken branch sampling.
2638  */
2639 static void perf_branch_stack_sched_in(struct task_struct *prev,
2640 				       struct task_struct *task)
2641 {
2642 	struct perf_cpu_context *cpuctx;
2643 	struct pmu *pmu;
2644 	unsigned long flags;
2645 
2646 	/* no need to flush branch stack if not changing task */
2647 	if (prev == task)
2648 		return;
2649 
2650 	local_irq_save(flags);
2651 
2652 	rcu_read_lock();
2653 
2654 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2655 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2656 
2657 		/*
2658 		 * check if the context has at least one
2659 		 * event using PERF_SAMPLE_BRANCH_STACK
2660 		 */
2661 		if (cpuctx->ctx.nr_branch_stack > 0
2662 		    && pmu->flush_branch_stack) {
2663 
2664 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2665 
2666 			perf_pmu_disable(pmu);
2667 
2668 			pmu->flush_branch_stack();
2669 
2670 			perf_pmu_enable(pmu);
2671 
2672 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2673 		}
2674 	}
2675 
2676 	rcu_read_unlock();
2677 
2678 	local_irq_restore(flags);
2679 }
2680 
2681 /*
2682  * Called from scheduler to add the events of the current task
2683  * with interrupts disabled.
2684  *
2685  * We restore the event value and then enable it.
2686  *
2687  * This does not protect us against NMI, but enable()
2688  * sets the enabled bit in the control field of event _before_
2689  * accessing the event control register. If a NMI hits, then it will
2690  * keep the event running.
2691  */
2692 void __perf_event_task_sched_in(struct task_struct *prev,
2693 				struct task_struct *task)
2694 {
2695 	struct perf_event_context *ctx;
2696 	int ctxn;
2697 
2698 	for_each_task_context_nr(ctxn) {
2699 		ctx = task->perf_event_ctxp[ctxn];
2700 		if (likely(!ctx))
2701 			continue;
2702 
2703 		perf_event_context_sched_in(ctx, task);
2704 	}
2705 	/*
2706 	 * if cgroup events exist on this CPU, then we need
2707 	 * to check if we have to switch in PMU state.
2708 	 * cgroup event are system-wide mode only
2709 	 */
2710 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2711 		perf_cgroup_sched_in(prev, task);
2712 
2713 	/* check for system-wide branch_stack events */
2714 	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2715 		perf_branch_stack_sched_in(prev, task);
2716 }
2717 
2718 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2719 {
2720 	u64 frequency = event->attr.sample_freq;
2721 	u64 sec = NSEC_PER_SEC;
2722 	u64 divisor, dividend;
2723 
2724 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2725 
2726 	count_fls = fls64(count);
2727 	nsec_fls = fls64(nsec);
2728 	frequency_fls = fls64(frequency);
2729 	sec_fls = 30;
2730 
2731 	/*
2732 	 * We got @count in @nsec, with a target of sample_freq HZ
2733 	 * the target period becomes:
2734 	 *
2735 	 *             @count * 10^9
2736 	 * period = -------------------
2737 	 *          @nsec * sample_freq
2738 	 *
2739 	 */
2740 
2741 	/*
2742 	 * Reduce accuracy by one bit such that @a and @b converge
2743 	 * to a similar magnitude.
2744 	 */
2745 #define REDUCE_FLS(a, b)		\
2746 do {					\
2747 	if (a##_fls > b##_fls) {	\
2748 		a >>= 1;		\
2749 		a##_fls--;		\
2750 	} else {			\
2751 		b >>= 1;		\
2752 		b##_fls--;		\
2753 	}				\
2754 } while (0)
2755 
2756 	/*
2757 	 * Reduce accuracy until either term fits in a u64, then proceed with
2758 	 * the other, so that finally we can do a u64/u64 division.
2759 	 */
2760 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2761 		REDUCE_FLS(nsec, frequency);
2762 		REDUCE_FLS(sec, count);
2763 	}
2764 
2765 	if (count_fls + sec_fls > 64) {
2766 		divisor = nsec * frequency;
2767 
2768 		while (count_fls + sec_fls > 64) {
2769 			REDUCE_FLS(count, sec);
2770 			divisor >>= 1;
2771 		}
2772 
2773 		dividend = count * sec;
2774 	} else {
2775 		dividend = count * sec;
2776 
2777 		while (nsec_fls + frequency_fls > 64) {
2778 			REDUCE_FLS(nsec, frequency);
2779 			dividend >>= 1;
2780 		}
2781 
2782 		divisor = nsec * frequency;
2783 	}
2784 
2785 	if (!divisor)
2786 		return dividend;
2787 
2788 	return div64_u64(dividend, divisor);
2789 }
2790 
2791 static DEFINE_PER_CPU(int, perf_throttled_count);
2792 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2793 
2794 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2795 {
2796 	struct hw_perf_event *hwc = &event->hw;
2797 	s64 period, sample_period;
2798 	s64 delta;
2799 
2800 	period = perf_calculate_period(event, nsec, count);
2801 
2802 	delta = (s64)(period - hwc->sample_period);
2803 	delta = (delta + 7) / 8; /* low pass filter */
2804 
2805 	sample_period = hwc->sample_period + delta;
2806 
2807 	if (!sample_period)
2808 		sample_period = 1;
2809 
2810 	hwc->sample_period = sample_period;
2811 
2812 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2813 		if (disable)
2814 			event->pmu->stop(event, PERF_EF_UPDATE);
2815 
2816 		local64_set(&hwc->period_left, 0);
2817 
2818 		if (disable)
2819 			event->pmu->start(event, PERF_EF_RELOAD);
2820 	}
2821 }
2822 
2823 /*
2824  * combine freq adjustment with unthrottling to avoid two passes over the
2825  * events. At the same time, make sure, having freq events does not change
2826  * the rate of unthrottling as that would introduce bias.
2827  */
2828 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2829 					   int needs_unthr)
2830 {
2831 	struct perf_event *event;
2832 	struct hw_perf_event *hwc;
2833 	u64 now, period = TICK_NSEC;
2834 	s64 delta;
2835 
2836 	/*
2837 	 * only need to iterate over all events iff:
2838 	 * - context have events in frequency mode (needs freq adjust)
2839 	 * - there are events to unthrottle on this cpu
2840 	 */
2841 	if (!(ctx->nr_freq || needs_unthr))
2842 		return;
2843 
2844 	raw_spin_lock(&ctx->lock);
2845 	perf_pmu_disable(ctx->pmu);
2846 
2847 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2848 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2849 			continue;
2850 
2851 		if (!event_filter_match(event))
2852 			continue;
2853 
2854 		perf_pmu_disable(event->pmu);
2855 
2856 		hwc = &event->hw;
2857 
2858 		if (hwc->interrupts == MAX_INTERRUPTS) {
2859 			hwc->interrupts = 0;
2860 			perf_log_throttle(event, 1);
2861 			event->pmu->start(event, 0);
2862 		}
2863 
2864 		if (!event->attr.freq || !event->attr.sample_freq)
2865 			goto next;
2866 
2867 		/*
2868 		 * stop the event and update event->count
2869 		 */
2870 		event->pmu->stop(event, PERF_EF_UPDATE);
2871 
2872 		now = local64_read(&event->count);
2873 		delta = now - hwc->freq_count_stamp;
2874 		hwc->freq_count_stamp = now;
2875 
2876 		/*
2877 		 * restart the event
2878 		 * reload only if value has changed
2879 		 * we have stopped the event so tell that
2880 		 * to perf_adjust_period() to avoid stopping it
2881 		 * twice.
2882 		 */
2883 		if (delta > 0)
2884 			perf_adjust_period(event, period, delta, false);
2885 
2886 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2887 	next:
2888 		perf_pmu_enable(event->pmu);
2889 	}
2890 
2891 	perf_pmu_enable(ctx->pmu);
2892 	raw_spin_unlock(&ctx->lock);
2893 }
2894 
2895 /*
2896  * Round-robin a context's events:
2897  */
2898 static void rotate_ctx(struct perf_event_context *ctx)
2899 {
2900 	/*
2901 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2902 	 * disabled by the inheritance code.
2903 	 */
2904 	if (!ctx->rotate_disable)
2905 		list_rotate_left(&ctx->flexible_groups);
2906 }
2907 
2908 /*
2909  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2910  * because they're strictly cpu affine and rotate_start is called with IRQs
2911  * disabled, while rotate_context is called from IRQ context.
2912  */
2913 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2914 {
2915 	struct perf_event_context *ctx = NULL;
2916 	int rotate = 0, remove = 1;
2917 
2918 	if (cpuctx->ctx.nr_events) {
2919 		remove = 0;
2920 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2921 			rotate = 1;
2922 	}
2923 
2924 	ctx = cpuctx->task_ctx;
2925 	if (ctx && ctx->nr_events) {
2926 		remove = 0;
2927 		if (ctx->nr_events != ctx->nr_active)
2928 			rotate = 1;
2929 	}
2930 
2931 	if (!rotate)
2932 		goto done;
2933 
2934 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2935 	perf_pmu_disable(cpuctx->ctx.pmu);
2936 
2937 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2938 	if (ctx)
2939 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2940 
2941 	rotate_ctx(&cpuctx->ctx);
2942 	if (ctx)
2943 		rotate_ctx(ctx);
2944 
2945 	perf_event_sched_in(cpuctx, ctx, current);
2946 
2947 	perf_pmu_enable(cpuctx->ctx.pmu);
2948 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2949 done:
2950 	if (remove)
2951 		list_del_init(&cpuctx->rotation_list);
2952 
2953 	return rotate;
2954 }
2955 
2956 #ifdef CONFIG_NO_HZ_FULL
2957 bool perf_event_can_stop_tick(void)
2958 {
2959 	if (atomic_read(&nr_freq_events) ||
2960 	    __this_cpu_read(perf_throttled_count))
2961 		return false;
2962 	else
2963 		return true;
2964 }
2965 #endif
2966 
2967 void perf_event_task_tick(void)
2968 {
2969 	struct list_head *head = this_cpu_ptr(&rotation_list);
2970 	struct perf_cpu_context *cpuctx, *tmp;
2971 	struct perf_event_context *ctx;
2972 	int throttled;
2973 
2974 	WARN_ON(!irqs_disabled());
2975 
2976 	__this_cpu_inc(perf_throttled_seq);
2977 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2978 
2979 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2980 		ctx = &cpuctx->ctx;
2981 		perf_adjust_freq_unthr_context(ctx, throttled);
2982 
2983 		ctx = cpuctx->task_ctx;
2984 		if (ctx)
2985 			perf_adjust_freq_unthr_context(ctx, throttled);
2986 	}
2987 }
2988 
2989 static int event_enable_on_exec(struct perf_event *event,
2990 				struct perf_event_context *ctx)
2991 {
2992 	if (!event->attr.enable_on_exec)
2993 		return 0;
2994 
2995 	event->attr.enable_on_exec = 0;
2996 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2997 		return 0;
2998 
2999 	__perf_event_mark_enabled(event);
3000 
3001 	return 1;
3002 }
3003 
3004 /*
3005  * Enable all of a task's events that have been marked enable-on-exec.
3006  * This expects task == current.
3007  */
3008 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3009 {
3010 	struct perf_event_context *clone_ctx = NULL;
3011 	struct perf_event *event;
3012 	unsigned long flags;
3013 	int enabled = 0;
3014 	int ret;
3015 
3016 	local_irq_save(flags);
3017 	if (!ctx || !ctx->nr_events)
3018 		goto out;
3019 
3020 	/*
3021 	 * We must ctxsw out cgroup events to avoid conflict
3022 	 * when invoking perf_task_event_sched_in() later on
3023 	 * in this function. Otherwise we end up trying to
3024 	 * ctxswin cgroup events which are already scheduled
3025 	 * in.
3026 	 */
3027 	perf_cgroup_sched_out(current, NULL);
3028 
3029 	raw_spin_lock(&ctx->lock);
3030 	task_ctx_sched_out(ctx);
3031 
3032 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3033 		ret = event_enable_on_exec(event, ctx);
3034 		if (ret)
3035 			enabled = 1;
3036 	}
3037 
3038 	/*
3039 	 * Unclone this context if we enabled any event.
3040 	 */
3041 	if (enabled)
3042 		clone_ctx = unclone_ctx(ctx);
3043 
3044 	raw_spin_unlock(&ctx->lock);
3045 
3046 	/*
3047 	 * Also calls ctxswin for cgroup events, if any:
3048 	 */
3049 	perf_event_context_sched_in(ctx, ctx->task);
3050 out:
3051 	local_irq_restore(flags);
3052 
3053 	if (clone_ctx)
3054 		put_ctx(clone_ctx);
3055 }
3056 
3057 void perf_event_exec(void)
3058 {
3059 	struct perf_event_context *ctx;
3060 	int ctxn;
3061 
3062 	rcu_read_lock();
3063 	for_each_task_context_nr(ctxn) {
3064 		ctx = current->perf_event_ctxp[ctxn];
3065 		if (!ctx)
3066 			continue;
3067 
3068 		perf_event_enable_on_exec(ctx);
3069 	}
3070 	rcu_read_unlock();
3071 }
3072 
3073 /*
3074  * Cross CPU call to read the hardware event
3075  */
3076 static void __perf_event_read(void *info)
3077 {
3078 	struct perf_event *event = info;
3079 	struct perf_event_context *ctx = event->ctx;
3080 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3081 
3082 	/*
3083 	 * If this is a task context, we need to check whether it is
3084 	 * the current task context of this cpu.  If not it has been
3085 	 * scheduled out before the smp call arrived.  In that case
3086 	 * event->count would have been updated to a recent sample
3087 	 * when the event was scheduled out.
3088 	 */
3089 	if (ctx->task && cpuctx->task_ctx != ctx)
3090 		return;
3091 
3092 	raw_spin_lock(&ctx->lock);
3093 	if (ctx->is_active) {
3094 		update_context_time(ctx);
3095 		update_cgrp_time_from_event(event);
3096 	}
3097 	update_event_times(event);
3098 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3099 		event->pmu->read(event);
3100 	raw_spin_unlock(&ctx->lock);
3101 }
3102 
3103 static inline u64 perf_event_count(struct perf_event *event)
3104 {
3105 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3106 }
3107 
3108 static u64 perf_event_read(struct perf_event *event)
3109 {
3110 	/*
3111 	 * If event is enabled and currently active on a CPU, update the
3112 	 * value in the event structure:
3113 	 */
3114 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3115 		smp_call_function_single(event->oncpu,
3116 					 __perf_event_read, event, 1);
3117 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3118 		struct perf_event_context *ctx = event->ctx;
3119 		unsigned long flags;
3120 
3121 		raw_spin_lock_irqsave(&ctx->lock, flags);
3122 		/*
3123 		 * may read while context is not active
3124 		 * (e.g., thread is blocked), in that case
3125 		 * we cannot update context time
3126 		 */
3127 		if (ctx->is_active) {
3128 			update_context_time(ctx);
3129 			update_cgrp_time_from_event(event);
3130 		}
3131 		update_event_times(event);
3132 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3133 	}
3134 
3135 	return perf_event_count(event);
3136 }
3137 
3138 /*
3139  * Initialize the perf_event context in a task_struct:
3140  */
3141 static void __perf_event_init_context(struct perf_event_context *ctx)
3142 {
3143 	raw_spin_lock_init(&ctx->lock);
3144 	mutex_init(&ctx->mutex);
3145 	INIT_LIST_HEAD(&ctx->pinned_groups);
3146 	INIT_LIST_HEAD(&ctx->flexible_groups);
3147 	INIT_LIST_HEAD(&ctx->event_list);
3148 	atomic_set(&ctx->refcount, 1);
3149 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3150 }
3151 
3152 static struct perf_event_context *
3153 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3154 {
3155 	struct perf_event_context *ctx;
3156 
3157 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3158 	if (!ctx)
3159 		return NULL;
3160 
3161 	__perf_event_init_context(ctx);
3162 	if (task) {
3163 		ctx->task = task;
3164 		get_task_struct(task);
3165 	}
3166 	ctx->pmu = pmu;
3167 
3168 	return ctx;
3169 }
3170 
3171 static struct task_struct *
3172 find_lively_task_by_vpid(pid_t vpid)
3173 {
3174 	struct task_struct *task;
3175 	int err;
3176 
3177 	rcu_read_lock();
3178 	if (!vpid)
3179 		task = current;
3180 	else
3181 		task = find_task_by_vpid(vpid);
3182 	if (task)
3183 		get_task_struct(task);
3184 	rcu_read_unlock();
3185 
3186 	if (!task)
3187 		return ERR_PTR(-ESRCH);
3188 
3189 	/* Reuse ptrace permission checks for now. */
3190 	err = -EACCES;
3191 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3192 		goto errout;
3193 
3194 	return task;
3195 errout:
3196 	put_task_struct(task);
3197 	return ERR_PTR(err);
3198 
3199 }
3200 
3201 /*
3202  * Returns a matching context with refcount and pincount.
3203  */
3204 static struct perf_event_context *
3205 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3206 {
3207 	struct perf_event_context *ctx, *clone_ctx = NULL;
3208 	struct perf_cpu_context *cpuctx;
3209 	unsigned long flags;
3210 	int ctxn, err;
3211 
3212 	if (!task) {
3213 		/* Must be root to operate on a CPU event: */
3214 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3215 			return ERR_PTR(-EACCES);
3216 
3217 		/*
3218 		 * We could be clever and allow to attach a event to an
3219 		 * offline CPU and activate it when the CPU comes up, but
3220 		 * that's for later.
3221 		 */
3222 		if (!cpu_online(cpu))
3223 			return ERR_PTR(-ENODEV);
3224 
3225 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3226 		ctx = &cpuctx->ctx;
3227 		get_ctx(ctx);
3228 		++ctx->pin_count;
3229 
3230 		return ctx;
3231 	}
3232 
3233 	err = -EINVAL;
3234 	ctxn = pmu->task_ctx_nr;
3235 	if (ctxn < 0)
3236 		goto errout;
3237 
3238 retry:
3239 	ctx = perf_lock_task_context(task, ctxn, &flags);
3240 	if (ctx) {
3241 		clone_ctx = unclone_ctx(ctx);
3242 		++ctx->pin_count;
3243 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3244 
3245 		if (clone_ctx)
3246 			put_ctx(clone_ctx);
3247 	} else {
3248 		ctx = alloc_perf_context(pmu, task);
3249 		err = -ENOMEM;
3250 		if (!ctx)
3251 			goto errout;
3252 
3253 		err = 0;
3254 		mutex_lock(&task->perf_event_mutex);
3255 		/*
3256 		 * If it has already passed perf_event_exit_task().
3257 		 * we must see PF_EXITING, it takes this mutex too.
3258 		 */
3259 		if (task->flags & PF_EXITING)
3260 			err = -ESRCH;
3261 		else if (task->perf_event_ctxp[ctxn])
3262 			err = -EAGAIN;
3263 		else {
3264 			get_ctx(ctx);
3265 			++ctx->pin_count;
3266 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3267 		}
3268 		mutex_unlock(&task->perf_event_mutex);
3269 
3270 		if (unlikely(err)) {
3271 			put_ctx(ctx);
3272 
3273 			if (err == -EAGAIN)
3274 				goto retry;
3275 			goto errout;
3276 		}
3277 	}
3278 
3279 	return ctx;
3280 
3281 errout:
3282 	return ERR_PTR(err);
3283 }
3284 
3285 static void perf_event_free_filter(struct perf_event *event);
3286 
3287 static void free_event_rcu(struct rcu_head *head)
3288 {
3289 	struct perf_event *event;
3290 
3291 	event = container_of(head, struct perf_event, rcu_head);
3292 	if (event->ns)
3293 		put_pid_ns(event->ns);
3294 	perf_event_free_filter(event);
3295 	kfree(event);
3296 }
3297 
3298 static void ring_buffer_put(struct ring_buffer *rb);
3299 static void ring_buffer_attach(struct perf_event *event,
3300 			       struct ring_buffer *rb);
3301 
3302 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3303 {
3304 	if (event->parent)
3305 		return;
3306 
3307 	if (has_branch_stack(event)) {
3308 		if (!(event->attach_state & PERF_ATTACH_TASK))
3309 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3310 	}
3311 	if (is_cgroup_event(event))
3312 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3313 }
3314 
3315 static void unaccount_event(struct perf_event *event)
3316 {
3317 	if (event->parent)
3318 		return;
3319 
3320 	if (event->attach_state & PERF_ATTACH_TASK)
3321 		static_key_slow_dec_deferred(&perf_sched_events);
3322 	if (event->attr.mmap || event->attr.mmap_data)
3323 		atomic_dec(&nr_mmap_events);
3324 	if (event->attr.comm)
3325 		atomic_dec(&nr_comm_events);
3326 	if (event->attr.task)
3327 		atomic_dec(&nr_task_events);
3328 	if (event->attr.freq)
3329 		atomic_dec(&nr_freq_events);
3330 	if (is_cgroup_event(event))
3331 		static_key_slow_dec_deferred(&perf_sched_events);
3332 	if (has_branch_stack(event))
3333 		static_key_slow_dec_deferred(&perf_sched_events);
3334 
3335 	unaccount_event_cpu(event, event->cpu);
3336 }
3337 
3338 static void __free_event(struct perf_event *event)
3339 {
3340 	if (!event->parent) {
3341 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3342 			put_callchain_buffers();
3343 	}
3344 
3345 	if (event->destroy)
3346 		event->destroy(event);
3347 
3348 	if (event->ctx)
3349 		put_ctx(event->ctx);
3350 
3351 	if (event->pmu)
3352 		module_put(event->pmu->module);
3353 
3354 	call_rcu(&event->rcu_head, free_event_rcu);
3355 }
3356 
3357 static void _free_event(struct perf_event *event)
3358 {
3359 	irq_work_sync(&event->pending);
3360 
3361 	unaccount_event(event);
3362 
3363 	if (event->rb) {
3364 		/*
3365 		 * Can happen when we close an event with re-directed output.
3366 		 *
3367 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3368 		 * over us; possibly making our ring_buffer_put() the last.
3369 		 */
3370 		mutex_lock(&event->mmap_mutex);
3371 		ring_buffer_attach(event, NULL);
3372 		mutex_unlock(&event->mmap_mutex);
3373 	}
3374 
3375 	if (is_cgroup_event(event))
3376 		perf_detach_cgroup(event);
3377 
3378 	__free_event(event);
3379 }
3380 
3381 /*
3382  * Used to free events which have a known refcount of 1, such as in error paths
3383  * where the event isn't exposed yet and inherited events.
3384  */
3385 static void free_event(struct perf_event *event)
3386 {
3387 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3388 				"unexpected event refcount: %ld; ptr=%p\n",
3389 				atomic_long_read(&event->refcount), event)) {
3390 		/* leak to avoid use-after-free */
3391 		return;
3392 	}
3393 
3394 	_free_event(event);
3395 }
3396 
3397 /*
3398  * Remove user event from the owner task.
3399  */
3400 static void perf_remove_from_owner(struct perf_event *event)
3401 {
3402 	struct task_struct *owner;
3403 
3404 	rcu_read_lock();
3405 	owner = ACCESS_ONCE(event->owner);
3406 	/*
3407 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3408 	 * !owner it means the list deletion is complete and we can indeed
3409 	 * free this event, otherwise we need to serialize on
3410 	 * owner->perf_event_mutex.
3411 	 */
3412 	smp_read_barrier_depends();
3413 	if (owner) {
3414 		/*
3415 		 * Since delayed_put_task_struct() also drops the last
3416 		 * task reference we can safely take a new reference
3417 		 * while holding the rcu_read_lock().
3418 		 */
3419 		get_task_struct(owner);
3420 	}
3421 	rcu_read_unlock();
3422 
3423 	if (owner) {
3424 		mutex_lock(&owner->perf_event_mutex);
3425 		/*
3426 		 * We have to re-check the event->owner field, if it is cleared
3427 		 * we raced with perf_event_exit_task(), acquiring the mutex
3428 		 * ensured they're done, and we can proceed with freeing the
3429 		 * event.
3430 		 */
3431 		if (event->owner)
3432 			list_del_init(&event->owner_entry);
3433 		mutex_unlock(&owner->perf_event_mutex);
3434 		put_task_struct(owner);
3435 	}
3436 }
3437 
3438 /*
3439  * Called when the last reference to the file is gone.
3440  */
3441 static void put_event(struct perf_event *event)
3442 {
3443 	struct perf_event_context *ctx = event->ctx;
3444 
3445 	if (!atomic_long_dec_and_test(&event->refcount))
3446 		return;
3447 
3448 	if (!is_kernel_event(event))
3449 		perf_remove_from_owner(event);
3450 
3451 	WARN_ON_ONCE(ctx->parent_ctx);
3452 	/*
3453 	 * There are two ways this annotation is useful:
3454 	 *
3455 	 *  1) there is a lock recursion from perf_event_exit_task
3456 	 *     see the comment there.
3457 	 *
3458 	 *  2) there is a lock-inversion with mmap_sem through
3459 	 *     perf_event_read_group(), which takes faults while
3460 	 *     holding ctx->mutex, however this is called after
3461 	 *     the last filedesc died, so there is no possibility
3462 	 *     to trigger the AB-BA case.
3463 	 */
3464 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3465 	perf_remove_from_context(event, true);
3466 	mutex_unlock(&ctx->mutex);
3467 
3468 	_free_event(event);
3469 }
3470 
3471 int perf_event_release_kernel(struct perf_event *event)
3472 {
3473 	put_event(event);
3474 	return 0;
3475 }
3476 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3477 
3478 static int perf_release(struct inode *inode, struct file *file)
3479 {
3480 	put_event(file->private_data);
3481 	return 0;
3482 }
3483 
3484 /*
3485  * Remove all orphanes events from the context.
3486  */
3487 static void orphans_remove_work(struct work_struct *work)
3488 {
3489 	struct perf_event_context *ctx;
3490 	struct perf_event *event, *tmp;
3491 
3492 	ctx = container_of(work, struct perf_event_context,
3493 			   orphans_remove.work);
3494 
3495 	mutex_lock(&ctx->mutex);
3496 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3497 		struct perf_event *parent_event = event->parent;
3498 
3499 		if (!is_orphaned_child(event))
3500 			continue;
3501 
3502 		perf_remove_from_context(event, true);
3503 
3504 		mutex_lock(&parent_event->child_mutex);
3505 		list_del_init(&event->child_list);
3506 		mutex_unlock(&parent_event->child_mutex);
3507 
3508 		free_event(event);
3509 		put_event(parent_event);
3510 	}
3511 
3512 	raw_spin_lock_irq(&ctx->lock);
3513 	ctx->orphans_remove_sched = false;
3514 	raw_spin_unlock_irq(&ctx->lock);
3515 	mutex_unlock(&ctx->mutex);
3516 
3517 	put_ctx(ctx);
3518 }
3519 
3520 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3521 {
3522 	struct perf_event *child;
3523 	u64 total = 0;
3524 
3525 	*enabled = 0;
3526 	*running = 0;
3527 
3528 	mutex_lock(&event->child_mutex);
3529 	total += perf_event_read(event);
3530 	*enabled += event->total_time_enabled +
3531 			atomic64_read(&event->child_total_time_enabled);
3532 	*running += event->total_time_running +
3533 			atomic64_read(&event->child_total_time_running);
3534 
3535 	list_for_each_entry(child, &event->child_list, child_list) {
3536 		total += perf_event_read(child);
3537 		*enabled += child->total_time_enabled;
3538 		*running += child->total_time_running;
3539 	}
3540 	mutex_unlock(&event->child_mutex);
3541 
3542 	return total;
3543 }
3544 EXPORT_SYMBOL_GPL(perf_event_read_value);
3545 
3546 static int perf_event_read_group(struct perf_event *event,
3547 				   u64 read_format, char __user *buf)
3548 {
3549 	struct perf_event *leader = event->group_leader, *sub;
3550 	int n = 0, size = 0, ret = -EFAULT;
3551 	struct perf_event_context *ctx = leader->ctx;
3552 	u64 values[5];
3553 	u64 count, enabled, running;
3554 
3555 	mutex_lock(&ctx->mutex);
3556 	count = perf_event_read_value(leader, &enabled, &running);
3557 
3558 	values[n++] = 1 + leader->nr_siblings;
3559 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3560 		values[n++] = enabled;
3561 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3562 		values[n++] = running;
3563 	values[n++] = count;
3564 	if (read_format & PERF_FORMAT_ID)
3565 		values[n++] = primary_event_id(leader);
3566 
3567 	size = n * sizeof(u64);
3568 
3569 	if (copy_to_user(buf, values, size))
3570 		goto unlock;
3571 
3572 	ret = size;
3573 
3574 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3575 		n = 0;
3576 
3577 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3578 		if (read_format & PERF_FORMAT_ID)
3579 			values[n++] = primary_event_id(sub);
3580 
3581 		size = n * sizeof(u64);
3582 
3583 		if (copy_to_user(buf + ret, values, size)) {
3584 			ret = -EFAULT;
3585 			goto unlock;
3586 		}
3587 
3588 		ret += size;
3589 	}
3590 unlock:
3591 	mutex_unlock(&ctx->mutex);
3592 
3593 	return ret;
3594 }
3595 
3596 static int perf_event_read_one(struct perf_event *event,
3597 				 u64 read_format, char __user *buf)
3598 {
3599 	u64 enabled, running;
3600 	u64 values[4];
3601 	int n = 0;
3602 
3603 	values[n++] = perf_event_read_value(event, &enabled, &running);
3604 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3605 		values[n++] = enabled;
3606 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3607 		values[n++] = running;
3608 	if (read_format & PERF_FORMAT_ID)
3609 		values[n++] = primary_event_id(event);
3610 
3611 	if (copy_to_user(buf, values, n * sizeof(u64)))
3612 		return -EFAULT;
3613 
3614 	return n * sizeof(u64);
3615 }
3616 
3617 static bool is_event_hup(struct perf_event *event)
3618 {
3619 	bool no_children;
3620 
3621 	if (event->state != PERF_EVENT_STATE_EXIT)
3622 		return false;
3623 
3624 	mutex_lock(&event->child_mutex);
3625 	no_children = list_empty(&event->child_list);
3626 	mutex_unlock(&event->child_mutex);
3627 	return no_children;
3628 }
3629 
3630 /*
3631  * Read the performance event - simple non blocking version for now
3632  */
3633 static ssize_t
3634 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3635 {
3636 	u64 read_format = event->attr.read_format;
3637 	int ret;
3638 
3639 	/*
3640 	 * Return end-of-file for a read on a event that is in
3641 	 * error state (i.e. because it was pinned but it couldn't be
3642 	 * scheduled on to the CPU at some point).
3643 	 */
3644 	if (event->state == PERF_EVENT_STATE_ERROR)
3645 		return 0;
3646 
3647 	if (count < event->read_size)
3648 		return -ENOSPC;
3649 
3650 	WARN_ON_ONCE(event->ctx->parent_ctx);
3651 	if (read_format & PERF_FORMAT_GROUP)
3652 		ret = perf_event_read_group(event, read_format, buf);
3653 	else
3654 		ret = perf_event_read_one(event, read_format, buf);
3655 
3656 	return ret;
3657 }
3658 
3659 static ssize_t
3660 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3661 {
3662 	struct perf_event *event = file->private_data;
3663 
3664 	return perf_read_hw(event, buf, count);
3665 }
3666 
3667 static unsigned int perf_poll(struct file *file, poll_table *wait)
3668 {
3669 	struct perf_event *event = file->private_data;
3670 	struct ring_buffer *rb;
3671 	unsigned int events = POLLHUP;
3672 
3673 	poll_wait(file, &event->waitq, wait);
3674 
3675 	if (is_event_hup(event))
3676 		return events;
3677 
3678 	/*
3679 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3680 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3681 	 */
3682 	mutex_lock(&event->mmap_mutex);
3683 	rb = event->rb;
3684 	if (rb)
3685 		events = atomic_xchg(&rb->poll, 0);
3686 	mutex_unlock(&event->mmap_mutex);
3687 	return events;
3688 }
3689 
3690 static void perf_event_reset(struct perf_event *event)
3691 {
3692 	(void)perf_event_read(event);
3693 	local64_set(&event->count, 0);
3694 	perf_event_update_userpage(event);
3695 }
3696 
3697 /*
3698  * Holding the top-level event's child_mutex means that any
3699  * descendant process that has inherited this event will block
3700  * in sync_child_event if it goes to exit, thus satisfying the
3701  * task existence requirements of perf_event_enable/disable.
3702  */
3703 static void perf_event_for_each_child(struct perf_event *event,
3704 					void (*func)(struct perf_event *))
3705 {
3706 	struct perf_event *child;
3707 
3708 	WARN_ON_ONCE(event->ctx->parent_ctx);
3709 	mutex_lock(&event->child_mutex);
3710 	func(event);
3711 	list_for_each_entry(child, &event->child_list, child_list)
3712 		func(child);
3713 	mutex_unlock(&event->child_mutex);
3714 }
3715 
3716 static void perf_event_for_each(struct perf_event *event,
3717 				  void (*func)(struct perf_event *))
3718 {
3719 	struct perf_event_context *ctx = event->ctx;
3720 	struct perf_event *sibling;
3721 
3722 	WARN_ON_ONCE(ctx->parent_ctx);
3723 	mutex_lock(&ctx->mutex);
3724 	event = event->group_leader;
3725 
3726 	perf_event_for_each_child(event, func);
3727 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3728 		perf_event_for_each_child(sibling, func);
3729 	mutex_unlock(&ctx->mutex);
3730 }
3731 
3732 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3733 {
3734 	struct perf_event_context *ctx = event->ctx;
3735 	int ret = 0, active;
3736 	u64 value;
3737 
3738 	if (!is_sampling_event(event))
3739 		return -EINVAL;
3740 
3741 	if (copy_from_user(&value, arg, sizeof(value)))
3742 		return -EFAULT;
3743 
3744 	if (!value)
3745 		return -EINVAL;
3746 
3747 	raw_spin_lock_irq(&ctx->lock);
3748 	if (event->attr.freq) {
3749 		if (value > sysctl_perf_event_sample_rate) {
3750 			ret = -EINVAL;
3751 			goto unlock;
3752 		}
3753 
3754 		event->attr.sample_freq = value;
3755 	} else {
3756 		event->attr.sample_period = value;
3757 		event->hw.sample_period = value;
3758 	}
3759 
3760 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3761 	if (active) {
3762 		perf_pmu_disable(ctx->pmu);
3763 		event->pmu->stop(event, PERF_EF_UPDATE);
3764 	}
3765 
3766 	local64_set(&event->hw.period_left, 0);
3767 
3768 	if (active) {
3769 		event->pmu->start(event, PERF_EF_RELOAD);
3770 		perf_pmu_enable(ctx->pmu);
3771 	}
3772 
3773 unlock:
3774 	raw_spin_unlock_irq(&ctx->lock);
3775 
3776 	return ret;
3777 }
3778 
3779 static const struct file_operations perf_fops;
3780 
3781 static inline int perf_fget_light(int fd, struct fd *p)
3782 {
3783 	struct fd f = fdget(fd);
3784 	if (!f.file)
3785 		return -EBADF;
3786 
3787 	if (f.file->f_op != &perf_fops) {
3788 		fdput(f);
3789 		return -EBADF;
3790 	}
3791 	*p = f;
3792 	return 0;
3793 }
3794 
3795 static int perf_event_set_output(struct perf_event *event,
3796 				 struct perf_event *output_event);
3797 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3798 
3799 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3800 {
3801 	struct perf_event *event = file->private_data;
3802 	void (*func)(struct perf_event *);
3803 	u32 flags = arg;
3804 
3805 	switch (cmd) {
3806 	case PERF_EVENT_IOC_ENABLE:
3807 		func = perf_event_enable;
3808 		break;
3809 	case PERF_EVENT_IOC_DISABLE:
3810 		func = perf_event_disable;
3811 		break;
3812 	case PERF_EVENT_IOC_RESET:
3813 		func = perf_event_reset;
3814 		break;
3815 
3816 	case PERF_EVENT_IOC_REFRESH:
3817 		return perf_event_refresh(event, arg);
3818 
3819 	case PERF_EVENT_IOC_PERIOD:
3820 		return perf_event_period(event, (u64 __user *)arg);
3821 
3822 	case PERF_EVENT_IOC_ID:
3823 	{
3824 		u64 id = primary_event_id(event);
3825 
3826 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3827 			return -EFAULT;
3828 		return 0;
3829 	}
3830 
3831 	case PERF_EVENT_IOC_SET_OUTPUT:
3832 	{
3833 		int ret;
3834 		if (arg != -1) {
3835 			struct perf_event *output_event;
3836 			struct fd output;
3837 			ret = perf_fget_light(arg, &output);
3838 			if (ret)
3839 				return ret;
3840 			output_event = output.file->private_data;
3841 			ret = perf_event_set_output(event, output_event);
3842 			fdput(output);
3843 		} else {
3844 			ret = perf_event_set_output(event, NULL);
3845 		}
3846 		return ret;
3847 	}
3848 
3849 	case PERF_EVENT_IOC_SET_FILTER:
3850 		return perf_event_set_filter(event, (void __user *)arg);
3851 
3852 	default:
3853 		return -ENOTTY;
3854 	}
3855 
3856 	if (flags & PERF_IOC_FLAG_GROUP)
3857 		perf_event_for_each(event, func);
3858 	else
3859 		perf_event_for_each_child(event, func);
3860 
3861 	return 0;
3862 }
3863 
3864 #ifdef CONFIG_COMPAT
3865 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3866 				unsigned long arg)
3867 {
3868 	switch (_IOC_NR(cmd)) {
3869 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3870 	case _IOC_NR(PERF_EVENT_IOC_ID):
3871 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3872 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3873 			cmd &= ~IOCSIZE_MASK;
3874 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3875 		}
3876 		break;
3877 	}
3878 	return perf_ioctl(file, cmd, arg);
3879 }
3880 #else
3881 # define perf_compat_ioctl NULL
3882 #endif
3883 
3884 int perf_event_task_enable(void)
3885 {
3886 	struct perf_event *event;
3887 
3888 	mutex_lock(&current->perf_event_mutex);
3889 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3890 		perf_event_for_each_child(event, perf_event_enable);
3891 	mutex_unlock(&current->perf_event_mutex);
3892 
3893 	return 0;
3894 }
3895 
3896 int perf_event_task_disable(void)
3897 {
3898 	struct perf_event *event;
3899 
3900 	mutex_lock(&current->perf_event_mutex);
3901 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3902 		perf_event_for_each_child(event, perf_event_disable);
3903 	mutex_unlock(&current->perf_event_mutex);
3904 
3905 	return 0;
3906 }
3907 
3908 static int perf_event_index(struct perf_event *event)
3909 {
3910 	if (event->hw.state & PERF_HES_STOPPED)
3911 		return 0;
3912 
3913 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3914 		return 0;
3915 
3916 	return event->pmu->event_idx(event);
3917 }
3918 
3919 static void calc_timer_values(struct perf_event *event,
3920 				u64 *now,
3921 				u64 *enabled,
3922 				u64 *running)
3923 {
3924 	u64 ctx_time;
3925 
3926 	*now = perf_clock();
3927 	ctx_time = event->shadow_ctx_time + *now;
3928 	*enabled = ctx_time - event->tstamp_enabled;
3929 	*running = ctx_time - event->tstamp_running;
3930 }
3931 
3932 static void perf_event_init_userpage(struct perf_event *event)
3933 {
3934 	struct perf_event_mmap_page *userpg;
3935 	struct ring_buffer *rb;
3936 
3937 	rcu_read_lock();
3938 	rb = rcu_dereference(event->rb);
3939 	if (!rb)
3940 		goto unlock;
3941 
3942 	userpg = rb->user_page;
3943 
3944 	/* Allow new userspace to detect that bit 0 is deprecated */
3945 	userpg->cap_bit0_is_deprecated = 1;
3946 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3947 
3948 unlock:
3949 	rcu_read_unlock();
3950 }
3951 
3952 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3953 {
3954 }
3955 
3956 /*
3957  * Callers need to ensure there can be no nesting of this function, otherwise
3958  * the seqlock logic goes bad. We can not serialize this because the arch
3959  * code calls this from NMI context.
3960  */
3961 void perf_event_update_userpage(struct perf_event *event)
3962 {
3963 	struct perf_event_mmap_page *userpg;
3964 	struct ring_buffer *rb;
3965 	u64 enabled, running, now;
3966 
3967 	rcu_read_lock();
3968 	rb = rcu_dereference(event->rb);
3969 	if (!rb)
3970 		goto unlock;
3971 
3972 	/*
3973 	 * compute total_time_enabled, total_time_running
3974 	 * based on snapshot values taken when the event
3975 	 * was last scheduled in.
3976 	 *
3977 	 * we cannot simply called update_context_time()
3978 	 * because of locking issue as we can be called in
3979 	 * NMI context
3980 	 */
3981 	calc_timer_values(event, &now, &enabled, &running);
3982 
3983 	userpg = rb->user_page;
3984 	/*
3985 	 * Disable preemption so as to not let the corresponding user-space
3986 	 * spin too long if we get preempted.
3987 	 */
3988 	preempt_disable();
3989 	++userpg->lock;
3990 	barrier();
3991 	userpg->index = perf_event_index(event);
3992 	userpg->offset = perf_event_count(event);
3993 	if (userpg->index)
3994 		userpg->offset -= local64_read(&event->hw.prev_count);
3995 
3996 	userpg->time_enabled = enabled +
3997 			atomic64_read(&event->child_total_time_enabled);
3998 
3999 	userpg->time_running = running +
4000 			atomic64_read(&event->child_total_time_running);
4001 
4002 	arch_perf_update_userpage(userpg, now);
4003 
4004 	barrier();
4005 	++userpg->lock;
4006 	preempt_enable();
4007 unlock:
4008 	rcu_read_unlock();
4009 }
4010 
4011 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4012 {
4013 	struct perf_event *event = vma->vm_file->private_data;
4014 	struct ring_buffer *rb;
4015 	int ret = VM_FAULT_SIGBUS;
4016 
4017 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4018 		if (vmf->pgoff == 0)
4019 			ret = 0;
4020 		return ret;
4021 	}
4022 
4023 	rcu_read_lock();
4024 	rb = rcu_dereference(event->rb);
4025 	if (!rb)
4026 		goto unlock;
4027 
4028 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4029 		goto unlock;
4030 
4031 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4032 	if (!vmf->page)
4033 		goto unlock;
4034 
4035 	get_page(vmf->page);
4036 	vmf->page->mapping = vma->vm_file->f_mapping;
4037 	vmf->page->index   = vmf->pgoff;
4038 
4039 	ret = 0;
4040 unlock:
4041 	rcu_read_unlock();
4042 
4043 	return ret;
4044 }
4045 
4046 static void ring_buffer_attach(struct perf_event *event,
4047 			       struct ring_buffer *rb)
4048 {
4049 	struct ring_buffer *old_rb = NULL;
4050 	unsigned long flags;
4051 
4052 	if (event->rb) {
4053 		/*
4054 		 * Should be impossible, we set this when removing
4055 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4056 		 */
4057 		WARN_ON_ONCE(event->rcu_pending);
4058 
4059 		old_rb = event->rb;
4060 		event->rcu_batches = get_state_synchronize_rcu();
4061 		event->rcu_pending = 1;
4062 
4063 		spin_lock_irqsave(&old_rb->event_lock, flags);
4064 		list_del_rcu(&event->rb_entry);
4065 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4066 	}
4067 
4068 	if (event->rcu_pending && rb) {
4069 		cond_synchronize_rcu(event->rcu_batches);
4070 		event->rcu_pending = 0;
4071 	}
4072 
4073 	if (rb) {
4074 		spin_lock_irqsave(&rb->event_lock, flags);
4075 		list_add_rcu(&event->rb_entry, &rb->event_list);
4076 		spin_unlock_irqrestore(&rb->event_lock, flags);
4077 	}
4078 
4079 	rcu_assign_pointer(event->rb, rb);
4080 
4081 	if (old_rb) {
4082 		ring_buffer_put(old_rb);
4083 		/*
4084 		 * Since we detached before setting the new rb, so that we
4085 		 * could attach the new rb, we could have missed a wakeup.
4086 		 * Provide it now.
4087 		 */
4088 		wake_up_all(&event->waitq);
4089 	}
4090 }
4091 
4092 static void ring_buffer_wakeup(struct perf_event *event)
4093 {
4094 	struct ring_buffer *rb;
4095 
4096 	rcu_read_lock();
4097 	rb = rcu_dereference(event->rb);
4098 	if (rb) {
4099 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4100 			wake_up_all(&event->waitq);
4101 	}
4102 	rcu_read_unlock();
4103 }
4104 
4105 static void rb_free_rcu(struct rcu_head *rcu_head)
4106 {
4107 	struct ring_buffer *rb;
4108 
4109 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4110 	rb_free(rb);
4111 }
4112 
4113 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4114 {
4115 	struct ring_buffer *rb;
4116 
4117 	rcu_read_lock();
4118 	rb = rcu_dereference(event->rb);
4119 	if (rb) {
4120 		if (!atomic_inc_not_zero(&rb->refcount))
4121 			rb = NULL;
4122 	}
4123 	rcu_read_unlock();
4124 
4125 	return rb;
4126 }
4127 
4128 static void ring_buffer_put(struct ring_buffer *rb)
4129 {
4130 	if (!atomic_dec_and_test(&rb->refcount))
4131 		return;
4132 
4133 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4134 
4135 	call_rcu(&rb->rcu_head, rb_free_rcu);
4136 }
4137 
4138 static void perf_mmap_open(struct vm_area_struct *vma)
4139 {
4140 	struct perf_event *event = vma->vm_file->private_data;
4141 
4142 	atomic_inc(&event->mmap_count);
4143 	atomic_inc(&event->rb->mmap_count);
4144 }
4145 
4146 /*
4147  * A buffer can be mmap()ed multiple times; either directly through the same
4148  * event, or through other events by use of perf_event_set_output().
4149  *
4150  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4151  * the buffer here, where we still have a VM context. This means we need
4152  * to detach all events redirecting to us.
4153  */
4154 static void perf_mmap_close(struct vm_area_struct *vma)
4155 {
4156 	struct perf_event *event = vma->vm_file->private_data;
4157 
4158 	struct ring_buffer *rb = ring_buffer_get(event);
4159 	struct user_struct *mmap_user = rb->mmap_user;
4160 	int mmap_locked = rb->mmap_locked;
4161 	unsigned long size = perf_data_size(rb);
4162 
4163 	atomic_dec(&rb->mmap_count);
4164 
4165 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4166 		goto out_put;
4167 
4168 	ring_buffer_attach(event, NULL);
4169 	mutex_unlock(&event->mmap_mutex);
4170 
4171 	/* If there's still other mmap()s of this buffer, we're done. */
4172 	if (atomic_read(&rb->mmap_count))
4173 		goto out_put;
4174 
4175 	/*
4176 	 * No other mmap()s, detach from all other events that might redirect
4177 	 * into the now unreachable buffer. Somewhat complicated by the
4178 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4179 	 */
4180 again:
4181 	rcu_read_lock();
4182 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4183 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4184 			/*
4185 			 * This event is en-route to free_event() which will
4186 			 * detach it and remove it from the list.
4187 			 */
4188 			continue;
4189 		}
4190 		rcu_read_unlock();
4191 
4192 		mutex_lock(&event->mmap_mutex);
4193 		/*
4194 		 * Check we didn't race with perf_event_set_output() which can
4195 		 * swizzle the rb from under us while we were waiting to
4196 		 * acquire mmap_mutex.
4197 		 *
4198 		 * If we find a different rb; ignore this event, a next
4199 		 * iteration will no longer find it on the list. We have to
4200 		 * still restart the iteration to make sure we're not now
4201 		 * iterating the wrong list.
4202 		 */
4203 		if (event->rb == rb)
4204 			ring_buffer_attach(event, NULL);
4205 
4206 		mutex_unlock(&event->mmap_mutex);
4207 		put_event(event);
4208 
4209 		/*
4210 		 * Restart the iteration; either we're on the wrong list or
4211 		 * destroyed its integrity by doing a deletion.
4212 		 */
4213 		goto again;
4214 	}
4215 	rcu_read_unlock();
4216 
4217 	/*
4218 	 * It could be there's still a few 0-ref events on the list; they'll
4219 	 * get cleaned up by free_event() -- they'll also still have their
4220 	 * ref on the rb and will free it whenever they are done with it.
4221 	 *
4222 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4223 	 * undo the VM accounting.
4224 	 */
4225 
4226 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4227 	vma->vm_mm->pinned_vm -= mmap_locked;
4228 	free_uid(mmap_user);
4229 
4230 out_put:
4231 	ring_buffer_put(rb); /* could be last */
4232 }
4233 
4234 static const struct vm_operations_struct perf_mmap_vmops = {
4235 	.open		= perf_mmap_open,
4236 	.close		= perf_mmap_close,
4237 	.fault		= perf_mmap_fault,
4238 	.page_mkwrite	= perf_mmap_fault,
4239 };
4240 
4241 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4242 {
4243 	struct perf_event *event = file->private_data;
4244 	unsigned long user_locked, user_lock_limit;
4245 	struct user_struct *user = current_user();
4246 	unsigned long locked, lock_limit;
4247 	struct ring_buffer *rb;
4248 	unsigned long vma_size;
4249 	unsigned long nr_pages;
4250 	long user_extra, extra;
4251 	int ret = 0, flags = 0;
4252 
4253 	/*
4254 	 * Don't allow mmap() of inherited per-task counters. This would
4255 	 * create a performance issue due to all children writing to the
4256 	 * same rb.
4257 	 */
4258 	if (event->cpu == -1 && event->attr.inherit)
4259 		return -EINVAL;
4260 
4261 	if (!(vma->vm_flags & VM_SHARED))
4262 		return -EINVAL;
4263 
4264 	vma_size = vma->vm_end - vma->vm_start;
4265 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4266 
4267 	/*
4268 	 * If we have rb pages ensure they're a power-of-two number, so we
4269 	 * can do bitmasks instead of modulo.
4270 	 */
4271 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4272 		return -EINVAL;
4273 
4274 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4275 		return -EINVAL;
4276 
4277 	if (vma->vm_pgoff != 0)
4278 		return -EINVAL;
4279 
4280 	WARN_ON_ONCE(event->ctx->parent_ctx);
4281 again:
4282 	mutex_lock(&event->mmap_mutex);
4283 	if (event->rb) {
4284 		if (event->rb->nr_pages != nr_pages) {
4285 			ret = -EINVAL;
4286 			goto unlock;
4287 		}
4288 
4289 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4290 			/*
4291 			 * Raced against perf_mmap_close() through
4292 			 * perf_event_set_output(). Try again, hope for better
4293 			 * luck.
4294 			 */
4295 			mutex_unlock(&event->mmap_mutex);
4296 			goto again;
4297 		}
4298 
4299 		goto unlock;
4300 	}
4301 
4302 	user_extra = nr_pages + 1;
4303 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4304 
4305 	/*
4306 	 * Increase the limit linearly with more CPUs:
4307 	 */
4308 	user_lock_limit *= num_online_cpus();
4309 
4310 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4311 
4312 	extra = 0;
4313 	if (user_locked > user_lock_limit)
4314 		extra = user_locked - user_lock_limit;
4315 
4316 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4317 	lock_limit >>= PAGE_SHIFT;
4318 	locked = vma->vm_mm->pinned_vm + extra;
4319 
4320 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4321 		!capable(CAP_IPC_LOCK)) {
4322 		ret = -EPERM;
4323 		goto unlock;
4324 	}
4325 
4326 	WARN_ON(event->rb);
4327 
4328 	if (vma->vm_flags & VM_WRITE)
4329 		flags |= RING_BUFFER_WRITABLE;
4330 
4331 	rb = rb_alloc(nr_pages,
4332 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4333 		event->cpu, flags);
4334 
4335 	if (!rb) {
4336 		ret = -ENOMEM;
4337 		goto unlock;
4338 	}
4339 
4340 	atomic_set(&rb->mmap_count, 1);
4341 	rb->mmap_locked = extra;
4342 	rb->mmap_user = get_current_user();
4343 
4344 	atomic_long_add(user_extra, &user->locked_vm);
4345 	vma->vm_mm->pinned_vm += extra;
4346 
4347 	ring_buffer_attach(event, rb);
4348 
4349 	perf_event_init_userpage(event);
4350 	perf_event_update_userpage(event);
4351 
4352 unlock:
4353 	if (!ret)
4354 		atomic_inc(&event->mmap_count);
4355 	mutex_unlock(&event->mmap_mutex);
4356 
4357 	/*
4358 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4359 	 * vma.
4360 	 */
4361 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4362 	vma->vm_ops = &perf_mmap_vmops;
4363 
4364 	return ret;
4365 }
4366 
4367 static int perf_fasync(int fd, struct file *filp, int on)
4368 {
4369 	struct inode *inode = file_inode(filp);
4370 	struct perf_event *event = filp->private_data;
4371 	int retval;
4372 
4373 	mutex_lock(&inode->i_mutex);
4374 	retval = fasync_helper(fd, filp, on, &event->fasync);
4375 	mutex_unlock(&inode->i_mutex);
4376 
4377 	if (retval < 0)
4378 		return retval;
4379 
4380 	return 0;
4381 }
4382 
4383 static const struct file_operations perf_fops = {
4384 	.llseek			= no_llseek,
4385 	.release		= perf_release,
4386 	.read			= perf_read,
4387 	.poll			= perf_poll,
4388 	.unlocked_ioctl		= perf_ioctl,
4389 	.compat_ioctl		= perf_compat_ioctl,
4390 	.mmap			= perf_mmap,
4391 	.fasync			= perf_fasync,
4392 };
4393 
4394 /*
4395  * Perf event wakeup
4396  *
4397  * If there's data, ensure we set the poll() state and publish everything
4398  * to user-space before waking everybody up.
4399  */
4400 
4401 void perf_event_wakeup(struct perf_event *event)
4402 {
4403 	ring_buffer_wakeup(event);
4404 
4405 	if (event->pending_kill) {
4406 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4407 		event->pending_kill = 0;
4408 	}
4409 }
4410 
4411 static void perf_pending_event(struct irq_work *entry)
4412 {
4413 	struct perf_event *event = container_of(entry,
4414 			struct perf_event, pending);
4415 
4416 	if (event->pending_disable) {
4417 		event->pending_disable = 0;
4418 		__perf_event_disable(event);
4419 	}
4420 
4421 	if (event->pending_wakeup) {
4422 		event->pending_wakeup = 0;
4423 		perf_event_wakeup(event);
4424 	}
4425 }
4426 
4427 /*
4428  * We assume there is only KVM supporting the callbacks.
4429  * Later on, we might change it to a list if there is
4430  * another virtualization implementation supporting the callbacks.
4431  */
4432 struct perf_guest_info_callbacks *perf_guest_cbs;
4433 
4434 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4435 {
4436 	perf_guest_cbs = cbs;
4437 	return 0;
4438 }
4439 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4440 
4441 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4442 {
4443 	perf_guest_cbs = NULL;
4444 	return 0;
4445 }
4446 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4447 
4448 static void
4449 perf_output_sample_regs(struct perf_output_handle *handle,
4450 			struct pt_regs *regs, u64 mask)
4451 {
4452 	int bit;
4453 
4454 	for_each_set_bit(bit, (const unsigned long *) &mask,
4455 			 sizeof(mask) * BITS_PER_BYTE) {
4456 		u64 val;
4457 
4458 		val = perf_reg_value(regs, bit);
4459 		perf_output_put(handle, val);
4460 	}
4461 }
4462 
4463 static void perf_sample_regs_user(struct perf_regs *regs_user,
4464 				  struct pt_regs *regs,
4465 				  struct pt_regs *regs_user_copy)
4466 {
4467 	if (user_mode(regs)) {
4468 		regs_user->abi = perf_reg_abi(current);
4469 		regs_user->regs = regs;
4470 	} else if (current->mm) {
4471 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4472 	} else {
4473 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4474 		regs_user->regs = NULL;
4475 	}
4476 }
4477 
4478 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4479 				  struct pt_regs *regs)
4480 {
4481 	regs_intr->regs = regs;
4482 	regs_intr->abi  = perf_reg_abi(current);
4483 }
4484 
4485 
4486 /*
4487  * Get remaining task size from user stack pointer.
4488  *
4489  * It'd be better to take stack vma map and limit this more
4490  * precisly, but there's no way to get it safely under interrupt,
4491  * so using TASK_SIZE as limit.
4492  */
4493 static u64 perf_ustack_task_size(struct pt_regs *regs)
4494 {
4495 	unsigned long addr = perf_user_stack_pointer(regs);
4496 
4497 	if (!addr || addr >= TASK_SIZE)
4498 		return 0;
4499 
4500 	return TASK_SIZE - addr;
4501 }
4502 
4503 static u16
4504 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4505 			struct pt_regs *regs)
4506 {
4507 	u64 task_size;
4508 
4509 	/* No regs, no stack pointer, no dump. */
4510 	if (!regs)
4511 		return 0;
4512 
4513 	/*
4514 	 * Check if we fit in with the requested stack size into the:
4515 	 * - TASK_SIZE
4516 	 *   If we don't, we limit the size to the TASK_SIZE.
4517 	 *
4518 	 * - remaining sample size
4519 	 *   If we don't, we customize the stack size to
4520 	 *   fit in to the remaining sample size.
4521 	 */
4522 
4523 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4524 	stack_size = min(stack_size, (u16) task_size);
4525 
4526 	/* Current header size plus static size and dynamic size. */
4527 	header_size += 2 * sizeof(u64);
4528 
4529 	/* Do we fit in with the current stack dump size? */
4530 	if ((u16) (header_size + stack_size) < header_size) {
4531 		/*
4532 		 * If we overflow the maximum size for the sample,
4533 		 * we customize the stack dump size to fit in.
4534 		 */
4535 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4536 		stack_size = round_up(stack_size, sizeof(u64));
4537 	}
4538 
4539 	return stack_size;
4540 }
4541 
4542 static void
4543 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4544 			  struct pt_regs *regs)
4545 {
4546 	/* Case of a kernel thread, nothing to dump */
4547 	if (!regs) {
4548 		u64 size = 0;
4549 		perf_output_put(handle, size);
4550 	} else {
4551 		unsigned long sp;
4552 		unsigned int rem;
4553 		u64 dyn_size;
4554 
4555 		/*
4556 		 * We dump:
4557 		 * static size
4558 		 *   - the size requested by user or the best one we can fit
4559 		 *     in to the sample max size
4560 		 * data
4561 		 *   - user stack dump data
4562 		 * dynamic size
4563 		 *   - the actual dumped size
4564 		 */
4565 
4566 		/* Static size. */
4567 		perf_output_put(handle, dump_size);
4568 
4569 		/* Data. */
4570 		sp = perf_user_stack_pointer(regs);
4571 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4572 		dyn_size = dump_size - rem;
4573 
4574 		perf_output_skip(handle, rem);
4575 
4576 		/* Dynamic size. */
4577 		perf_output_put(handle, dyn_size);
4578 	}
4579 }
4580 
4581 static void __perf_event_header__init_id(struct perf_event_header *header,
4582 					 struct perf_sample_data *data,
4583 					 struct perf_event *event)
4584 {
4585 	u64 sample_type = event->attr.sample_type;
4586 
4587 	data->type = sample_type;
4588 	header->size += event->id_header_size;
4589 
4590 	if (sample_type & PERF_SAMPLE_TID) {
4591 		/* namespace issues */
4592 		data->tid_entry.pid = perf_event_pid(event, current);
4593 		data->tid_entry.tid = perf_event_tid(event, current);
4594 	}
4595 
4596 	if (sample_type & PERF_SAMPLE_TIME)
4597 		data->time = perf_clock();
4598 
4599 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4600 		data->id = primary_event_id(event);
4601 
4602 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4603 		data->stream_id = event->id;
4604 
4605 	if (sample_type & PERF_SAMPLE_CPU) {
4606 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4607 		data->cpu_entry.reserved = 0;
4608 	}
4609 }
4610 
4611 void perf_event_header__init_id(struct perf_event_header *header,
4612 				struct perf_sample_data *data,
4613 				struct perf_event *event)
4614 {
4615 	if (event->attr.sample_id_all)
4616 		__perf_event_header__init_id(header, data, event);
4617 }
4618 
4619 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4620 					   struct perf_sample_data *data)
4621 {
4622 	u64 sample_type = data->type;
4623 
4624 	if (sample_type & PERF_SAMPLE_TID)
4625 		perf_output_put(handle, data->tid_entry);
4626 
4627 	if (sample_type & PERF_SAMPLE_TIME)
4628 		perf_output_put(handle, data->time);
4629 
4630 	if (sample_type & PERF_SAMPLE_ID)
4631 		perf_output_put(handle, data->id);
4632 
4633 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4634 		perf_output_put(handle, data->stream_id);
4635 
4636 	if (sample_type & PERF_SAMPLE_CPU)
4637 		perf_output_put(handle, data->cpu_entry);
4638 
4639 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4640 		perf_output_put(handle, data->id);
4641 }
4642 
4643 void perf_event__output_id_sample(struct perf_event *event,
4644 				  struct perf_output_handle *handle,
4645 				  struct perf_sample_data *sample)
4646 {
4647 	if (event->attr.sample_id_all)
4648 		__perf_event__output_id_sample(handle, sample);
4649 }
4650 
4651 static void perf_output_read_one(struct perf_output_handle *handle,
4652 				 struct perf_event *event,
4653 				 u64 enabled, u64 running)
4654 {
4655 	u64 read_format = event->attr.read_format;
4656 	u64 values[4];
4657 	int n = 0;
4658 
4659 	values[n++] = perf_event_count(event);
4660 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4661 		values[n++] = enabled +
4662 			atomic64_read(&event->child_total_time_enabled);
4663 	}
4664 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4665 		values[n++] = running +
4666 			atomic64_read(&event->child_total_time_running);
4667 	}
4668 	if (read_format & PERF_FORMAT_ID)
4669 		values[n++] = primary_event_id(event);
4670 
4671 	__output_copy(handle, values, n * sizeof(u64));
4672 }
4673 
4674 /*
4675  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4676  */
4677 static void perf_output_read_group(struct perf_output_handle *handle,
4678 			    struct perf_event *event,
4679 			    u64 enabled, u64 running)
4680 {
4681 	struct perf_event *leader = event->group_leader, *sub;
4682 	u64 read_format = event->attr.read_format;
4683 	u64 values[5];
4684 	int n = 0;
4685 
4686 	values[n++] = 1 + leader->nr_siblings;
4687 
4688 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4689 		values[n++] = enabled;
4690 
4691 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4692 		values[n++] = running;
4693 
4694 	if (leader != event)
4695 		leader->pmu->read(leader);
4696 
4697 	values[n++] = perf_event_count(leader);
4698 	if (read_format & PERF_FORMAT_ID)
4699 		values[n++] = primary_event_id(leader);
4700 
4701 	__output_copy(handle, values, n * sizeof(u64));
4702 
4703 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4704 		n = 0;
4705 
4706 		if ((sub != event) &&
4707 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4708 			sub->pmu->read(sub);
4709 
4710 		values[n++] = perf_event_count(sub);
4711 		if (read_format & PERF_FORMAT_ID)
4712 			values[n++] = primary_event_id(sub);
4713 
4714 		__output_copy(handle, values, n * sizeof(u64));
4715 	}
4716 }
4717 
4718 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4719 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4720 
4721 static void perf_output_read(struct perf_output_handle *handle,
4722 			     struct perf_event *event)
4723 {
4724 	u64 enabled = 0, running = 0, now;
4725 	u64 read_format = event->attr.read_format;
4726 
4727 	/*
4728 	 * compute total_time_enabled, total_time_running
4729 	 * based on snapshot values taken when the event
4730 	 * was last scheduled in.
4731 	 *
4732 	 * we cannot simply called update_context_time()
4733 	 * because of locking issue as we are called in
4734 	 * NMI context
4735 	 */
4736 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4737 		calc_timer_values(event, &now, &enabled, &running);
4738 
4739 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4740 		perf_output_read_group(handle, event, enabled, running);
4741 	else
4742 		perf_output_read_one(handle, event, enabled, running);
4743 }
4744 
4745 void perf_output_sample(struct perf_output_handle *handle,
4746 			struct perf_event_header *header,
4747 			struct perf_sample_data *data,
4748 			struct perf_event *event)
4749 {
4750 	u64 sample_type = data->type;
4751 
4752 	perf_output_put(handle, *header);
4753 
4754 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4755 		perf_output_put(handle, data->id);
4756 
4757 	if (sample_type & PERF_SAMPLE_IP)
4758 		perf_output_put(handle, data->ip);
4759 
4760 	if (sample_type & PERF_SAMPLE_TID)
4761 		perf_output_put(handle, data->tid_entry);
4762 
4763 	if (sample_type & PERF_SAMPLE_TIME)
4764 		perf_output_put(handle, data->time);
4765 
4766 	if (sample_type & PERF_SAMPLE_ADDR)
4767 		perf_output_put(handle, data->addr);
4768 
4769 	if (sample_type & PERF_SAMPLE_ID)
4770 		perf_output_put(handle, data->id);
4771 
4772 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4773 		perf_output_put(handle, data->stream_id);
4774 
4775 	if (sample_type & PERF_SAMPLE_CPU)
4776 		perf_output_put(handle, data->cpu_entry);
4777 
4778 	if (sample_type & PERF_SAMPLE_PERIOD)
4779 		perf_output_put(handle, data->period);
4780 
4781 	if (sample_type & PERF_SAMPLE_READ)
4782 		perf_output_read(handle, event);
4783 
4784 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4785 		if (data->callchain) {
4786 			int size = 1;
4787 
4788 			if (data->callchain)
4789 				size += data->callchain->nr;
4790 
4791 			size *= sizeof(u64);
4792 
4793 			__output_copy(handle, data->callchain, size);
4794 		} else {
4795 			u64 nr = 0;
4796 			perf_output_put(handle, nr);
4797 		}
4798 	}
4799 
4800 	if (sample_type & PERF_SAMPLE_RAW) {
4801 		if (data->raw) {
4802 			perf_output_put(handle, data->raw->size);
4803 			__output_copy(handle, data->raw->data,
4804 					   data->raw->size);
4805 		} else {
4806 			struct {
4807 				u32	size;
4808 				u32	data;
4809 			} raw = {
4810 				.size = sizeof(u32),
4811 				.data = 0,
4812 			};
4813 			perf_output_put(handle, raw);
4814 		}
4815 	}
4816 
4817 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4818 		if (data->br_stack) {
4819 			size_t size;
4820 
4821 			size = data->br_stack->nr
4822 			     * sizeof(struct perf_branch_entry);
4823 
4824 			perf_output_put(handle, data->br_stack->nr);
4825 			perf_output_copy(handle, data->br_stack->entries, size);
4826 		} else {
4827 			/*
4828 			 * we always store at least the value of nr
4829 			 */
4830 			u64 nr = 0;
4831 			perf_output_put(handle, nr);
4832 		}
4833 	}
4834 
4835 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4836 		u64 abi = data->regs_user.abi;
4837 
4838 		/*
4839 		 * If there are no regs to dump, notice it through
4840 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4841 		 */
4842 		perf_output_put(handle, abi);
4843 
4844 		if (abi) {
4845 			u64 mask = event->attr.sample_regs_user;
4846 			perf_output_sample_regs(handle,
4847 						data->regs_user.regs,
4848 						mask);
4849 		}
4850 	}
4851 
4852 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4853 		perf_output_sample_ustack(handle,
4854 					  data->stack_user_size,
4855 					  data->regs_user.regs);
4856 	}
4857 
4858 	if (sample_type & PERF_SAMPLE_WEIGHT)
4859 		perf_output_put(handle, data->weight);
4860 
4861 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4862 		perf_output_put(handle, data->data_src.val);
4863 
4864 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4865 		perf_output_put(handle, data->txn);
4866 
4867 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
4868 		u64 abi = data->regs_intr.abi;
4869 		/*
4870 		 * If there are no regs to dump, notice it through
4871 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4872 		 */
4873 		perf_output_put(handle, abi);
4874 
4875 		if (abi) {
4876 			u64 mask = event->attr.sample_regs_intr;
4877 
4878 			perf_output_sample_regs(handle,
4879 						data->regs_intr.regs,
4880 						mask);
4881 		}
4882 	}
4883 
4884 	if (!event->attr.watermark) {
4885 		int wakeup_events = event->attr.wakeup_events;
4886 
4887 		if (wakeup_events) {
4888 			struct ring_buffer *rb = handle->rb;
4889 			int events = local_inc_return(&rb->events);
4890 
4891 			if (events >= wakeup_events) {
4892 				local_sub(wakeup_events, &rb->events);
4893 				local_inc(&rb->wakeup);
4894 			}
4895 		}
4896 	}
4897 }
4898 
4899 void perf_prepare_sample(struct perf_event_header *header,
4900 			 struct perf_sample_data *data,
4901 			 struct perf_event *event,
4902 			 struct pt_regs *regs)
4903 {
4904 	u64 sample_type = event->attr.sample_type;
4905 
4906 	header->type = PERF_RECORD_SAMPLE;
4907 	header->size = sizeof(*header) + event->header_size;
4908 
4909 	header->misc = 0;
4910 	header->misc |= perf_misc_flags(regs);
4911 
4912 	__perf_event_header__init_id(header, data, event);
4913 
4914 	if (sample_type & PERF_SAMPLE_IP)
4915 		data->ip = perf_instruction_pointer(regs);
4916 
4917 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4918 		int size = 1;
4919 
4920 		data->callchain = perf_callchain(event, regs);
4921 
4922 		if (data->callchain)
4923 			size += data->callchain->nr;
4924 
4925 		header->size += size * sizeof(u64);
4926 	}
4927 
4928 	if (sample_type & PERF_SAMPLE_RAW) {
4929 		int size = sizeof(u32);
4930 
4931 		if (data->raw)
4932 			size += data->raw->size;
4933 		else
4934 			size += sizeof(u32);
4935 
4936 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4937 		header->size += size;
4938 	}
4939 
4940 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4941 		int size = sizeof(u64); /* nr */
4942 		if (data->br_stack) {
4943 			size += data->br_stack->nr
4944 			      * sizeof(struct perf_branch_entry);
4945 		}
4946 		header->size += size;
4947 	}
4948 
4949 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
4950 		perf_sample_regs_user(&data->regs_user, regs,
4951 				      &data->regs_user_copy);
4952 
4953 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4954 		/* regs dump ABI info */
4955 		int size = sizeof(u64);
4956 
4957 		if (data->regs_user.regs) {
4958 			u64 mask = event->attr.sample_regs_user;
4959 			size += hweight64(mask) * sizeof(u64);
4960 		}
4961 
4962 		header->size += size;
4963 	}
4964 
4965 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4966 		/*
4967 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4968 		 * processed as the last one or have additional check added
4969 		 * in case new sample type is added, because we could eat
4970 		 * up the rest of the sample size.
4971 		 */
4972 		u16 stack_size = event->attr.sample_stack_user;
4973 		u16 size = sizeof(u64);
4974 
4975 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4976 						     data->regs_user.regs);
4977 
4978 		/*
4979 		 * If there is something to dump, add space for the dump
4980 		 * itself and for the field that tells the dynamic size,
4981 		 * which is how many have been actually dumped.
4982 		 */
4983 		if (stack_size)
4984 			size += sizeof(u64) + stack_size;
4985 
4986 		data->stack_user_size = stack_size;
4987 		header->size += size;
4988 	}
4989 
4990 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
4991 		/* regs dump ABI info */
4992 		int size = sizeof(u64);
4993 
4994 		perf_sample_regs_intr(&data->regs_intr, regs);
4995 
4996 		if (data->regs_intr.regs) {
4997 			u64 mask = event->attr.sample_regs_intr;
4998 
4999 			size += hweight64(mask) * sizeof(u64);
5000 		}
5001 
5002 		header->size += size;
5003 	}
5004 }
5005 
5006 static void perf_event_output(struct perf_event *event,
5007 				struct perf_sample_data *data,
5008 				struct pt_regs *regs)
5009 {
5010 	struct perf_output_handle handle;
5011 	struct perf_event_header header;
5012 
5013 	/* protect the callchain buffers */
5014 	rcu_read_lock();
5015 
5016 	perf_prepare_sample(&header, data, event, regs);
5017 
5018 	if (perf_output_begin(&handle, event, header.size))
5019 		goto exit;
5020 
5021 	perf_output_sample(&handle, &header, data, event);
5022 
5023 	perf_output_end(&handle);
5024 
5025 exit:
5026 	rcu_read_unlock();
5027 }
5028 
5029 /*
5030  * read event_id
5031  */
5032 
5033 struct perf_read_event {
5034 	struct perf_event_header	header;
5035 
5036 	u32				pid;
5037 	u32				tid;
5038 };
5039 
5040 static void
5041 perf_event_read_event(struct perf_event *event,
5042 			struct task_struct *task)
5043 {
5044 	struct perf_output_handle handle;
5045 	struct perf_sample_data sample;
5046 	struct perf_read_event read_event = {
5047 		.header = {
5048 			.type = PERF_RECORD_READ,
5049 			.misc = 0,
5050 			.size = sizeof(read_event) + event->read_size,
5051 		},
5052 		.pid = perf_event_pid(event, task),
5053 		.tid = perf_event_tid(event, task),
5054 	};
5055 	int ret;
5056 
5057 	perf_event_header__init_id(&read_event.header, &sample, event);
5058 	ret = perf_output_begin(&handle, event, read_event.header.size);
5059 	if (ret)
5060 		return;
5061 
5062 	perf_output_put(&handle, read_event);
5063 	perf_output_read(&handle, event);
5064 	perf_event__output_id_sample(event, &handle, &sample);
5065 
5066 	perf_output_end(&handle);
5067 }
5068 
5069 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5070 
5071 static void
5072 perf_event_aux_ctx(struct perf_event_context *ctx,
5073 		   perf_event_aux_output_cb output,
5074 		   void *data)
5075 {
5076 	struct perf_event *event;
5077 
5078 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5079 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5080 			continue;
5081 		if (!event_filter_match(event))
5082 			continue;
5083 		output(event, data);
5084 	}
5085 }
5086 
5087 static void
5088 perf_event_aux(perf_event_aux_output_cb output, void *data,
5089 	       struct perf_event_context *task_ctx)
5090 {
5091 	struct perf_cpu_context *cpuctx;
5092 	struct perf_event_context *ctx;
5093 	struct pmu *pmu;
5094 	int ctxn;
5095 
5096 	rcu_read_lock();
5097 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5098 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5099 		if (cpuctx->unique_pmu != pmu)
5100 			goto next;
5101 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5102 		if (task_ctx)
5103 			goto next;
5104 		ctxn = pmu->task_ctx_nr;
5105 		if (ctxn < 0)
5106 			goto next;
5107 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5108 		if (ctx)
5109 			perf_event_aux_ctx(ctx, output, data);
5110 next:
5111 		put_cpu_ptr(pmu->pmu_cpu_context);
5112 	}
5113 
5114 	if (task_ctx) {
5115 		preempt_disable();
5116 		perf_event_aux_ctx(task_ctx, output, data);
5117 		preempt_enable();
5118 	}
5119 	rcu_read_unlock();
5120 }
5121 
5122 /*
5123  * task tracking -- fork/exit
5124  *
5125  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5126  */
5127 
5128 struct perf_task_event {
5129 	struct task_struct		*task;
5130 	struct perf_event_context	*task_ctx;
5131 
5132 	struct {
5133 		struct perf_event_header	header;
5134 
5135 		u32				pid;
5136 		u32				ppid;
5137 		u32				tid;
5138 		u32				ptid;
5139 		u64				time;
5140 	} event_id;
5141 };
5142 
5143 static int perf_event_task_match(struct perf_event *event)
5144 {
5145 	return event->attr.comm  || event->attr.mmap ||
5146 	       event->attr.mmap2 || event->attr.mmap_data ||
5147 	       event->attr.task;
5148 }
5149 
5150 static void perf_event_task_output(struct perf_event *event,
5151 				   void *data)
5152 {
5153 	struct perf_task_event *task_event = data;
5154 	struct perf_output_handle handle;
5155 	struct perf_sample_data	sample;
5156 	struct task_struct *task = task_event->task;
5157 	int ret, size = task_event->event_id.header.size;
5158 
5159 	if (!perf_event_task_match(event))
5160 		return;
5161 
5162 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5163 
5164 	ret = perf_output_begin(&handle, event,
5165 				task_event->event_id.header.size);
5166 	if (ret)
5167 		goto out;
5168 
5169 	task_event->event_id.pid = perf_event_pid(event, task);
5170 	task_event->event_id.ppid = perf_event_pid(event, current);
5171 
5172 	task_event->event_id.tid = perf_event_tid(event, task);
5173 	task_event->event_id.ptid = perf_event_tid(event, current);
5174 
5175 	perf_output_put(&handle, task_event->event_id);
5176 
5177 	perf_event__output_id_sample(event, &handle, &sample);
5178 
5179 	perf_output_end(&handle);
5180 out:
5181 	task_event->event_id.header.size = size;
5182 }
5183 
5184 static void perf_event_task(struct task_struct *task,
5185 			      struct perf_event_context *task_ctx,
5186 			      int new)
5187 {
5188 	struct perf_task_event task_event;
5189 
5190 	if (!atomic_read(&nr_comm_events) &&
5191 	    !atomic_read(&nr_mmap_events) &&
5192 	    !atomic_read(&nr_task_events))
5193 		return;
5194 
5195 	task_event = (struct perf_task_event){
5196 		.task	  = task,
5197 		.task_ctx = task_ctx,
5198 		.event_id    = {
5199 			.header = {
5200 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5201 				.misc = 0,
5202 				.size = sizeof(task_event.event_id),
5203 			},
5204 			/* .pid  */
5205 			/* .ppid */
5206 			/* .tid  */
5207 			/* .ptid */
5208 			.time = perf_clock(),
5209 		},
5210 	};
5211 
5212 	perf_event_aux(perf_event_task_output,
5213 		       &task_event,
5214 		       task_ctx);
5215 }
5216 
5217 void perf_event_fork(struct task_struct *task)
5218 {
5219 	perf_event_task(task, NULL, 1);
5220 }
5221 
5222 /*
5223  * comm tracking
5224  */
5225 
5226 struct perf_comm_event {
5227 	struct task_struct	*task;
5228 	char			*comm;
5229 	int			comm_size;
5230 
5231 	struct {
5232 		struct perf_event_header	header;
5233 
5234 		u32				pid;
5235 		u32				tid;
5236 	} event_id;
5237 };
5238 
5239 static int perf_event_comm_match(struct perf_event *event)
5240 {
5241 	return event->attr.comm;
5242 }
5243 
5244 static void perf_event_comm_output(struct perf_event *event,
5245 				   void *data)
5246 {
5247 	struct perf_comm_event *comm_event = data;
5248 	struct perf_output_handle handle;
5249 	struct perf_sample_data sample;
5250 	int size = comm_event->event_id.header.size;
5251 	int ret;
5252 
5253 	if (!perf_event_comm_match(event))
5254 		return;
5255 
5256 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5257 	ret = perf_output_begin(&handle, event,
5258 				comm_event->event_id.header.size);
5259 
5260 	if (ret)
5261 		goto out;
5262 
5263 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5264 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5265 
5266 	perf_output_put(&handle, comm_event->event_id);
5267 	__output_copy(&handle, comm_event->comm,
5268 				   comm_event->comm_size);
5269 
5270 	perf_event__output_id_sample(event, &handle, &sample);
5271 
5272 	perf_output_end(&handle);
5273 out:
5274 	comm_event->event_id.header.size = size;
5275 }
5276 
5277 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5278 {
5279 	char comm[TASK_COMM_LEN];
5280 	unsigned int size;
5281 
5282 	memset(comm, 0, sizeof(comm));
5283 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5284 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5285 
5286 	comm_event->comm = comm;
5287 	comm_event->comm_size = size;
5288 
5289 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5290 
5291 	perf_event_aux(perf_event_comm_output,
5292 		       comm_event,
5293 		       NULL);
5294 }
5295 
5296 void perf_event_comm(struct task_struct *task, bool exec)
5297 {
5298 	struct perf_comm_event comm_event;
5299 
5300 	if (!atomic_read(&nr_comm_events))
5301 		return;
5302 
5303 	comm_event = (struct perf_comm_event){
5304 		.task	= task,
5305 		/* .comm      */
5306 		/* .comm_size */
5307 		.event_id  = {
5308 			.header = {
5309 				.type = PERF_RECORD_COMM,
5310 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5311 				/* .size */
5312 			},
5313 			/* .pid */
5314 			/* .tid */
5315 		},
5316 	};
5317 
5318 	perf_event_comm_event(&comm_event);
5319 }
5320 
5321 /*
5322  * mmap tracking
5323  */
5324 
5325 struct perf_mmap_event {
5326 	struct vm_area_struct	*vma;
5327 
5328 	const char		*file_name;
5329 	int			file_size;
5330 	int			maj, min;
5331 	u64			ino;
5332 	u64			ino_generation;
5333 	u32			prot, flags;
5334 
5335 	struct {
5336 		struct perf_event_header	header;
5337 
5338 		u32				pid;
5339 		u32				tid;
5340 		u64				start;
5341 		u64				len;
5342 		u64				pgoff;
5343 	} event_id;
5344 };
5345 
5346 static int perf_event_mmap_match(struct perf_event *event,
5347 				 void *data)
5348 {
5349 	struct perf_mmap_event *mmap_event = data;
5350 	struct vm_area_struct *vma = mmap_event->vma;
5351 	int executable = vma->vm_flags & VM_EXEC;
5352 
5353 	return (!executable && event->attr.mmap_data) ||
5354 	       (executable && (event->attr.mmap || event->attr.mmap2));
5355 }
5356 
5357 static void perf_event_mmap_output(struct perf_event *event,
5358 				   void *data)
5359 {
5360 	struct perf_mmap_event *mmap_event = data;
5361 	struct perf_output_handle handle;
5362 	struct perf_sample_data sample;
5363 	int size = mmap_event->event_id.header.size;
5364 	int ret;
5365 
5366 	if (!perf_event_mmap_match(event, data))
5367 		return;
5368 
5369 	if (event->attr.mmap2) {
5370 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5371 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5372 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5373 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5374 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5375 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5376 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5377 	}
5378 
5379 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5380 	ret = perf_output_begin(&handle, event,
5381 				mmap_event->event_id.header.size);
5382 	if (ret)
5383 		goto out;
5384 
5385 	mmap_event->event_id.pid = perf_event_pid(event, current);
5386 	mmap_event->event_id.tid = perf_event_tid(event, current);
5387 
5388 	perf_output_put(&handle, mmap_event->event_id);
5389 
5390 	if (event->attr.mmap2) {
5391 		perf_output_put(&handle, mmap_event->maj);
5392 		perf_output_put(&handle, mmap_event->min);
5393 		perf_output_put(&handle, mmap_event->ino);
5394 		perf_output_put(&handle, mmap_event->ino_generation);
5395 		perf_output_put(&handle, mmap_event->prot);
5396 		perf_output_put(&handle, mmap_event->flags);
5397 	}
5398 
5399 	__output_copy(&handle, mmap_event->file_name,
5400 				   mmap_event->file_size);
5401 
5402 	perf_event__output_id_sample(event, &handle, &sample);
5403 
5404 	perf_output_end(&handle);
5405 out:
5406 	mmap_event->event_id.header.size = size;
5407 }
5408 
5409 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5410 {
5411 	struct vm_area_struct *vma = mmap_event->vma;
5412 	struct file *file = vma->vm_file;
5413 	int maj = 0, min = 0;
5414 	u64 ino = 0, gen = 0;
5415 	u32 prot = 0, flags = 0;
5416 	unsigned int size;
5417 	char tmp[16];
5418 	char *buf = NULL;
5419 	char *name;
5420 
5421 	if (file) {
5422 		struct inode *inode;
5423 		dev_t dev;
5424 
5425 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5426 		if (!buf) {
5427 			name = "//enomem";
5428 			goto cpy_name;
5429 		}
5430 		/*
5431 		 * d_path() works from the end of the rb backwards, so we
5432 		 * need to add enough zero bytes after the string to handle
5433 		 * the 64bit alignment we do later.
5434 		 */
5435 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5436 		if (IS_ERR(name)) {
5437 			name = "//toolong";
5438 			goto cpy_name;
5439 		}
5440 		inode = file_inode(vma->vm_file);
5441 		dev = inode->i_sb->s_dev;
5442 		ino = inode->i_ino;
5443 		gen = inode->i_generation;
5444 		maj = MAJOR(dev);
5445 		min = MINOR(dev);
5446 
5447 		if (vma->vm_flags & VM_READ)
5448 			prot |= PROT_READ;
5449 		if (vma->vm_flags & VM_WRITE)
5450 			prot |= PROT_WRITE;
5451 		if (vma->vm_flags & VM_EXEC)
5452 			prot |= PROT_EXEC;
5453 
5454 		if (vma->vm_flags & VM_MAYSHARE)
5455 			flags = MAP_SHARED;
5456 		else
5457 			flags = MAP_PRIVATE;
5458 
5459 		if (vma->vm_flags & VM_DENYWRITE)
5460 			flags |= MAP_DENYWRITE;
5461 		if (vma->vm_flags & VM_MAYEXEC)
5462 			flags |= MAP_EXECUTABLE;
5463 		if (vma->vm_flags & VM_LOCKED)
5464 			flags |= MAP_LOCKED;
5465 		if (vma->vm_flags & VM_HUGETLB)
5466 			flags |= MAP_HUGETLB;
5467 
5468 		goto got_name;
5469 	} else {
5470 		if (vma->vm_ops && vma->vm_ops->name) {
5471 			name = (char *) vma->vm_ops->name(vma);
5472 			if (name)
5473 				goto cpy_name;
5474 		}
5475 
5476 		name = (char *)arch_vma_name(vma);
5477 		if (name)
5478 			goto cpy_name;
5479 
5480 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5481 				vma->vm_end >= vma->vm_mm->brk) {
5482 			name = "[heap]";
5483 			goto cpy_name;
5484 		}
5485 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5486 				vma->vm_end >= vma->vm_mm->start_stack) {
5487 			name = "[stack]";
5488 			goto cpy_name;
5489 		}
5490 
5491 		name = "//anon";
5492 		goto cpy_name;
5493 	}
5494 
5495 cpy_name:
5496 	strlcpy(tmp, name, sizeof(tmp));
5497 	name = tmp;
5498 got_name:
5499 	/*
5500 	 * Since our buffer works in 8 byte units we need to align our string
5501 	 * size to a multiple of 8. However, we must guarantee the tail end is
5502 	 * zero'd out to avoid leaking random bits to userspace.
5503 	 */
5504 	size = strlen(name)+1;
5505 	while (!IS_ALIGNED(size, sizeof(u64)))
5506 		name[size++] = '\0';
5507 
5508 	mmap_event->file_name = name;
5509 	mmap_event->file_size = size;
5510 	mmap_event->maj = maj;
5511 	mmap_event->min = min;
5512 	mmap_event->ino = ino;
5513 	mmap_event->ino_generation = gen;
5514 	mmap_event->prot = prot;
5515 	mmap_event->flags = flags;
5516 
5517 	if (!(vma->vm_flags & VM_EXEC))
5518 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5519 
5520 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5521 
5522 	perf_event_aux(perf_event_mmap_output,
5523 		       mmap_event,
5524 		       NULL);
5525 
5526 	kfree(buf);
5527 }
5528 
5529 void perf_event_mmap(struct vm_area_struct *vma)
5530 {
5531 	struct perf_mmap_event mmap_event;
5532 
5533 	if (!atomic_read(&nr_mmap_events))
5534 		return;
5535 
5536 	mmap_event = (struct perf_mmap_event){
5537 		.vma	= vma,
5538 		/* .file_name */
5539 		/* .file_size */
5540 		.event_id  = {
5541 			.header = {
5542 				.type = PERF_RECORD_MMAP,
5543 				.misc = PERF_RECORD_MISC_USER,
5544 				/* .size */
5545 			},
5546 			/* .pid */
5547 			/* .tid */
5548 			.start  = vma->vm_start,
5549 			.len    = vma->vm_end - vma->vm_start,
5550 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5551 		},
5552 		/* .maj (attr_mmap2 only) */
5553 		/* .min (attr_mmap2 only) */
5554 		/* .ino (attr_mmap2 only) */
5555 		/* .ino_generation (attr_mmap2 only) */
5556 		/* .prot (attr_mmap2 only) */
5557 		/* .flags (attr_mmap2 only) */
5558 	};
5559 
5560 	perf_event_mmap_event(&mmap_event);
5561 }
5562 
5563 /*
5564  * IRQ throttle logging
5565  */
5566 
5567 static void perf_log_throttle(struct perf_event *event, int enable)
5568 {
5569 	struct perf_output_handle handle;
5570 	struct perf_sample_data sample;
5571 	int ret;
5572 
5573 	struct {
5574 		struct perf_event_header	header;
5575 		u64				time;
5576 		u64				id;
5577 		u64				stream_id;
5578 	} throttle_event = {
5579 		.header = {
5580 			.type = PERF_RECORD_THROTTLE,
5581 			.misc = 0,
5582 			.size = sizeof(throttle_event),
5583 		},
5584 		.time		= perf_clock(),
5585 		.id		= primary_event_id(event),
5586 		.stream_id	= event->id,
5587 	};
5588 
5589 	if (enable)
5590 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5591 
5592 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5593 
5594 	ret = perf_output_begin(&handle, event,
5595 				throttle_event.header.size);
5596 	if (ret)
5597 		return;
5598 
5599 	perf_output_put(&handle, throttle_event);
5600 	perf_event__output_id_sample(event, &handle, &sample);
5601 	perf_output_end(&handle);
5602 }
5603 
5604 /*
5605  * Generic event overflow handling, sampling.
5606  */
5607 
5608 static int __perf_event_overflow(struct perf_event *event,
5609 				   int throttle, struct perf_sample_data *data,
5610 				   struct pt_regs *regs)
5611 {
5612 	int events = atomic_read(&event->event_limit);
5613 	struct hw_perf_event *hwc = &event->hw;
5614 	u64 seq;
5615 	int ret = 0;
5616 
5617 	/*
5618 	 * Non-sampling counters might still use the PMI to fold short
5619 	 * hardware counters, ignore those.
5620 	 */
5621 	if (unlikely(!is_sampling_event(event)))
5622 		return 0;
5623 
5624 	seq = __this_cpu_read(perf_throttled_seq);
5625 	if (seq != hwc->interrupts_seq) {
5626 		hwc->interrupts_seq = seq;
5627 		hwc->interrupts = 1;
5628 	} else {
5629 		hwc->interrupts++;
5630 		if (unlikely(throttle
5631 			     && hwc->interrupts >= max_samples_per_tick)) {
5632 			__this_cpu_inc(perf_throttled_count);
5633 			hwc->interrupts = MAX_INTERRUPTS;
5634 			perf_log_throttle(event, 0);
5635 			tick_nohz_full_kick();
5636 			ret = 1;
5637 		}
5638 	}
5639 
5640 	if (event->attr.freq) {
5641 		u64 now = perf_clock();
5642 		s64 delta = now - hwc->freq_time_stamp;
5643 
5644 		hwc->freq_time_stamp = now;
5645 
5646 		if (delta > 0 && delta < 2*TICK_NSEC)
5647 			perf_adjust_period(event, delta, hwc->last_period, true);
5648 	}
5649 
5650 	/*
5651 	 * XXX event_limit might not quite work as expected on inherited
5652 	 * events
5653 	 */
5654 
5655 	event->pending_kill = POLL_IN;
5656 	if (events && atomic_dec_and_test(&event->event_limit)) {
5657 		ret = 1;
5658 		event->pending_kill = POLL_HUP;
5659 		event->pending_disable = 1;
5660 		irq_work_queue(&event->pending);
5661 	}
5662 
5663 	if (event->overflow_handler)
5664 		event->overflow_handler(event, data, regs);
5665 	else
5666 		perf_event_output(event, data, regs);
5667 
5668 	if (event->fasync && event->pending_kill) {
5669 		event->pending_wakeup = 1;
5670 		irq_work_queue(&event->pending);
5671 	}
5672 
5673 	return ret;
5674 }
5675 
5676 int perf_event_overflow(struct perf_event *event,
5677 			  struct perf_sample_data *data,
5678 			  struct pt_regs *regs)
5679 {
5680 	return __perf_event_overflow(event, 1, data, regs);
5681 }
5682 
5683 /*
5684  * Generic software event infrastructure
5685  */
5686 
5687 struct swevent_htable {
5688 	struct swevent_hlist		*swevent_hlist;
5689 	struct mutex			hlist_mutex;
5690 	int				hlist_refcount;
5691 
5692 	/* Recursion avoidance in each contexts */
5693 	int				recursion[PERF_NR_CONTEXTS];
5694 
5695 	/* Keeps track of cpu being initialized/exited */
5696 	bool				online;
5697 };
5698 
5699 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5700 
5701 /*
5702  * We directly increment event->count and keep a second value in
5703  * event->hw.period_left to count intervals. This period event
5704  * is kept in the range [-sample_period, 0] so that we can use the
5705  * sign as trigger.
5706  */
5707 
5708 u64 perf_swevent_set_period(struct perf_event *event)
5709 {
5710 	struct hw_perf_event *hwc = &event->hw;
5711 	u64 period = hwc->last_period;
5712 	u64 nr, offset;
5713 	s64 old, val;
5714 
5715 	hwc->last_period = hwc->sample_period;
5716 
5717 again:
5718 	old = val = local64_read(&hwc->period_left);
5719 	if (val < 0)
5720 		return 0;
5721 
5722 	nr = div64_u64(period + val, period);
5723 	offset = nr * period;
5724 	val -= offset;
5725 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5726 		goto again;
5727 
5728 	return nr;
5729 }
5730 
5731 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5732 				    struct perf_sample_data *data,
5733 				    struct pt_regs *regs)
5734 {
5735 	struct hw_perf_event *hwc = &event->hw;
5736 	int throttle = 0;
5737 
5738 	if (!overflow)
5739 		overflow = perf_swevent_set_period(event);
5740 
5741 	if (hwc->interrupts == MAX_INTERRUPTS)
5742 		return;
5743 
5744 	for (; overflow; overflow--) {
5745 		if (__perf_event_overflow(event, throttle,
5746 					    data, regs)) {
5747 			/*
5748 			 * We inhibit the overflow from happening when
5749 			 * hwc->interrupts == MAX_INTERRUPTS.
5750 			 */
5751 			break;
5752 		}
5753 		throttle = 1;
5754 	}
5755 }
5756 
5757 static void perf_swevent_event(struct perf_event *event, u64 nr,
5758 			       struct perf_sample_data *data,
5759 			       struct pt_regs *regs)
5760 {
5761 	struct hw_perf_event *hwc = &event->hw;
5762 
5763 	local64_add(nr, &event->count);
5764 
5765 	if (!regs)
5766 		return;
5767 
5768 	if (!is_sampling_event(event))
5769 		return;
5770 
5771 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5772 		data->period = nr;
5773 		return perf_swevent_overflow(event, 1, data, regs);
5774 	} else
5775 		data->period = event->hw.last_period;
5776 
5777 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5778 		return perf_swevent_overflow(event, 1, data, regs);
5779 
5780 	if (local64_add_negative(nr, &hwc->period_left))
5781 		return;
5782 
5783 	perf_swevent_overflow(event, 0, data, regs);
5784 }
5785 
5786 static int perf_exclude_event(struct perf_event *event,
5787 			      struct pt_regs *regs)
5788 {
5789 	if (event->hw.state & PERF_HES_STOPPED)
5790 		return 1;
5791 
5792 	if (regs) {
5793 		if (event->attr.exclude_user && user_mode(regs))
5794 			return 1;
5795 
5796 		if (event->attr.exclude_kernel && !user_mode(regs))
5797 			return 1;
5798 	}
5799 
5800 	return 0;
5801 }
5802 
5803 static int perf_swevent_match(struct perf_event *event,
5804 				enum perf_type_id type,
5805 				u32 event_id,
5806 				struct perf_sample_data *data,
5807 				struct pt_regs *regs)
5808 {
5809 	if (event->attr.type != type)
5810 		return 0;
5811 
5812 	if (event->attr.config != event_id)
5813 		return 0;
5814 
5815 	if (perf_exclude_event(event, regs))
5816 		return 0;
5817 
5818 	return 1;
5819 }
5820 
5821 static inline u64 swevent_hash(u64 type, u32 event_id)
5822 {
5823 	u64 val = event_id | (type << 32);
5824 
5825 	return hash_64(val, SWEVENT_HLIST_BITS);
5826 }
5827 
5828 static inline struct hlist_head *
5829 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5830 {
5831 	u64 hash = swevent_hash(type, event_id);
5832 
5833 	return &hlist->heads[hash];
5834 }
5835 
5836 /* For the read side: events when they trigger */
5837 static inline struct hlist_head *
5838 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5839 {
5840 	struct swevent_hlist *hlist;
5841 
5842 	hlist = rcu_dereference(swhash->swevent_hlist);
5843 	if (!hlist)
5844 		return NULL;
5845 
5846 	return __find_swevent_head(hlist, type, event_id);
5847 }
5848 
5849 /* For the event head insertion and removal in the hlist */
5850 static inline struct hlist_head *
5851 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5852 {
5853 	struct swevent_hlist *hlist;
5854 	u32 event_id = event->attr.config;
5855 	u64 type = event->attr.type;
5856 
5857 	/*
5858 	 * Event scheduling is always serialized against hlist allocation
5859 	 * and release. Which makes the protected version suitable here.
5860 	 * The context lock guarantees that.
5861 	 */
5862 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5863 					  lockdep_is_held(&event->ctx->lock));
5864 	if (!hlist)
5865 		return NULL;
5866 
5867 	return __find_swevent_head(hlist, type, event_id);
5868 }
5869 
5870 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5871 				    u64 nr,
5872 				    struct perf_sample_data *data,
5873 				    struct pt_regs *regs)
5874 {
5875 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5876 	struct perf_event *event;
5877 	struct hlist_head *head;
5878 
5879 	rcu_read_lock();
5880 	head = find_swevent_head_rcu(swhash, type, event_id);
5881 	if (!head)
5882 		goto end;
5883 
5884 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5885 		if (perf_swevent_match(event, type, event_id, data, regs))
5886 			perf_swevent_event(event, nr, data, regs);
5887 	}
5888 end:
5889 	rcu_read_unlock();
5890 }
5891 
5892 int perf_swevent_get_recursion_context(void)
5893 {
5894 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5895 
5896 	return get_recursion_context(swhash->recursion);
5897 }
5898 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5899 
5900 inline void perf_swevent_put_recursion_context(int rctx)
5901 {
5902 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5903 
5904 	put_recursion_context(swhash->recursion, rctx);
5905 }
5906 
5907 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5908 {
5909 	struct perf_sample_data data;
5910 	int rctx;
5911 
5912 	preempt_disable_notrace();
5913 	rctx = perf_swevent_get_recursion_context();
5914 	if (rctx < 0)
5915 		return;
5916 
5917 	perf_sample_data_init(&data, addr, 0);
5918 
5919 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5920 
5921 	perf_swevent_put_recursion_context(rctx);
5922 	preempt_enable_notrace();
5923 }
5924 
5925 static void perf_swevent_read(struct perf_event *event)
5926 {
5927 }
5928 
5929 static int perf_swevent_add(struct perf_event *event, int flags)
5930 {
5931 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5932 	struct hw_perf_event *hwc = &event->hw;
5933 	struct hlist_head *head;
5934 
5935 	if (is_sampling_event(event)) {
5936 		hwc->last_period = hwc->sample_period;
5937 		perf_swevent_set_period(event);
5938 	}
5939 
5940 	hwc->state = !(flags & PERF_EF_START);
5941 
5942 	head = find_swevent_head(swhash, event);
5943 	if (!head) {
5944 		/*
5945 		 * We can race with cpu hotplug code. Do not
5946 		 * WARN if the cpu just got unplugged.
5947 		 */
5948 		WARN_ON_ONCE(swhash->online);
5949 		return -EINVAL;
5950 	}
5951 
5952 	hlist_add_head_rcu(&event->hlist_entry, head);
5953 
5954 	return 0;
5955 }
5956 
5957 static void perf_swevent_del(struct perf_event *event, int flags)
5958 {
5959 	hlist_del_rcu(&event->hlist_entry);
5960 }
5961 
5962 static void perf_swevent_start(struct perf_event *event, int flags)
5963 {
5964 	event->hw.state = 0;
5965 }
5966 
5967 static void perf_swevent_stop(struct perf_event *event, int flags)
5968 {
5969 	event->hw.state = PERF_HES_STOPPED;
5970 }
5971 
5972 /* Deref the hlist from the update side */
5973 static inline struct swevent_hlist *
5974 swevent_hlist_deref(struct swevent_htable *swhash)
5975 {
5976 	return rcu_dereference_protected(swhash->swevent_hlist,
5977 					 lockdep_is_held(&swhash->hlist_mutex));
5978 }
5979 
5980 static void swevent_hlist_release(struct swevent_htable *swhash)
5981 {
5982 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5983 
5984 	if (!hlist)
5985 		return;
5986 
5987 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5988 	kfree_rcu(hlist, rcu_head);
5989 }
5990 
5991 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5992 {
5993 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5994 
5995 	mutex_lock(&swhash->hlist_mutex);
5996 
5997 	if (!--swhash->hlist_refcount)
5998 		swevent_hlist_release(swhash);
5999 
6000 	mutex_unlock(&swhash->hlist_mutex);
6001 }
6002 
6003 static void swevent_hlist_put(struct perf_event *event)
6004 {
6005 	int cpu;
6006 
6007 	for_each_possible_cpu(cpu)
6008 		swevent_hlist_put_cpu(event, cpu);
6009 }
6010 
6011 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6012 {
6013 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6014 	int err = 0;
6015 
6016 	mutex_lock(&swhash->hlist_mutex);
6017 
6018 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6019 		struct swevent_hlist *hlist;
6020 
6021 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6022 		if (!hlist) {
6023 			err = -ENOMEM;
6024 			goto exit;
6025 		}
6026 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6027 	}
6028 	swhash->hlist_refcount++;
6029 exit:
6030 	mutex_unlock(&swhash->hlist_mutex);
6031 
6032 	return err;
6033 }
6034 
6035 static int swevent_hlist_get(struct perf_event *event)
6036 {
6037 	int err;
6038 	int cpu, failed_cpu;
6039 
6040 	get_online_cpus();
6041 	for_each_possible_cpu(cpu) {
6042 		err = swevent_hlist_get_cpu(event, cpu);
6043 		if (err) {
6044 			failed_cpu = cpu;
6045 			goto fail;
6046 		}
6047 	}
6048 	put_online_cpus();
6049 
6050 	return 0;
6051 fail:
6052 	for_each_possible_cpu(cpu) {
6053 		if (cpu == failed_cpu)
6054 			break;
6055 		swevent_hlist_put_cpu(event, cpu);
6056 	}
6057 
6058 	put_online_cpus();
6059 	return err;
6060 }
6061 
6062 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6063 
6064 static void sw_perf_event_destroy(struct perf_event *event)
6065 {
6066 	u64 event_id = event->attr.config;
6067 
6068 	WARN_ON(event->parent);
6069 
6070 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6071 	swevent_hlist_put(event);
6072 }
6073 
6074 static int perf_swevent_init(struct perf_event *event)
6075 {
6076 	u64 event_id = event->attr.config;
6077 
6078 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6079 		return -ENOENT;
6080 
6081 	/*
6082 	 * no branch sampling for software events
6083 	 */
6084 	if (has_branch_stack(event))
6085 		return -EOPNOTSUPP;
6086 
6087 	switch (event_id) {
6088 	case PERF_COUNT_SW_CPU_CLOCK:
6089 	case PERF_COUNT_SW_TASK_CLOCK:
6090 		return -ENOENT;
6091 
6092 	default:
6093 		break;
6094 	}
6095 
6096 	if (event_id >= PERF_COUNT_SW_MAX)
6097 		return -ENOENT;
6098 
6099 	if (!event->parent) {
6100 		int err;
6101 
6102 		err = swevent_hlist_get(event);
6103 		if (err)
6104 			return err;
6105 
6106 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6107 		event->destroy = sw_perf_event_destroy;
6108 	}
6109 
6110 	return 0;
6111 }
6112 
6113 static struct pmu perf_swevent = {
6114 	.task_ctx_nr	= perf_sw_context,
6115 
6116 	.event_init	= perf_swevent_init,
6117 	.add		= perf_swevent_add,
6118 	.del		= perf_swevent_del,
6119 	.start		= perf_swevent_start,
6120 	.stop		= perf_swevent_stop,
6121 	.read		= perf_swevent_read,
6122 };
6123 
6124 #ifdef CONFIG_EVENT_TRACING
6125 
6126 static int perf_tp_filter_match(struct perf_event *event,
6127 				struct perf_sample_data *data)
6128 {
6129 	void *record = data->raw->data;
6130 
6131 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6132 		return 1;
6133 	return 0;
6134 }
6135 
6136 static int perf_tp_event_match(struct perf_event *event,
6137 				struct perf_sample_data *data,
6138 				struct pt_regs *regs)
6139 {
6140 	if (event->hw.state & PERF_HES_STOPPED)
6141 		return 0;
6142 	/*
6143 	 * All tracepoints are from kernel-space.
6144 	 */
6145 	if (event->attr.exclude_kernel)
6146 		return 0;
6147 
6148 	if (!perf_tp_filter_match(event, data))
6149 		return 0;
6150 
6151 	return 1;
6152 }
6153 
6154 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6155 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6156 		   struct task_struct *task)
6157 {
6158 	struct perf_sample_data data;
6159 	struct perf_event *event;
6160 
6161 	struct perf_raw_record raw = {
6162 		.size = entry_size,
6163 		.data = record,
6164 	};
6165 
6166 	perf_sample_data_init(&data, addr, 0);
6167 	data.raw = &raw;
6168 
6169 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6170 		if (perf_tp_event_match(event, &data, regs))
6171 			perf_swevent_event(event, count, &data, regs);
6172 	}
6173 
6174 	/*
6175 	 * If we got specified a target task, also iterate its context and
6176 	 * deliver this event there too.
6177 	 */
6178 	if (task && task != current) {
6179 		struct perf_event_context *ctx;
6180 		struct trace_entry *entry = record;
6181 
6182 		rcu_read_lock();
6183 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6184 		if (!ctx)
6185 			goto unlock;
6186 
6187 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6188 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6189 				continue;
6190 			if (event->attr.config != entry->type)
6191 				continue;
6192 			if (perf_tp_event_match(event, &data, regs))
6193 				perf_swevent_event(event, count, &data, regs);
6194 		}
6195 unlock:
6196 		rcu_read_unlock();
6197 	}
6198 
6199 	perf_swevent_put_recursion_context(rctx);
6200 }
6201 EXPORT_SYMBOL_GPL(perf_tp_event);
6202 
6203 static void tp_perf_event_destroy(struct perf_event *event)
6204 {
6205 	perf_trace_destroy(event);
6206 }
6207 
6208 static int perf_tp_event_init(struct perf_event *event)
6209 {
6210 	int err;
6211 
6212 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6213 		return -ENOENT;
6214 
6215 	/*
6216 	 * no branch sampling for tracepoint events
6217 	 */
6218 	if (has_branch_stack(event))
6219 		return -EOPNOTSUPP;
6220 
6221 	err = perf_trace_init(event);
6222 	if (err)
6223 		return err;
6224 
6225 	event->destroy = tp_perf_event_destroy;
6226 
6227 	return 0;
6228 }
6229 
6230 static struct pmu perf_tracepoint = {
6231 	.task_ctx_nr	= perf_sw_context,
6232 
6233 	.event_init	= perf_tp_event_init,
6234 	.add		= perf_trace_add,
6235 	.del		= perf_trace_del,
6236 	.start		= perf_swevent_start,
6237 	.stop		= perf_swevent_stop,
6238 	.read		= perf_swevent_read,
6239 };
6240 
6241 static inline void perf_tp_register(void)
6242 {
6243 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6244 }
6245 
6246 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6247 {
6248 	char *filter_str;
6249 	int ret;
6250 
6251 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6252 		return -EINVAL;
6253 
6254 	filter_str = strndup_user(arg, PAGE_SIZE);
6255 	if (IS_ERR(filter_str))
6256 		return PTR_ERR(filter_str);
6257 
6258 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6259 
6260 	kfree(filter_str);
6261 	return ret;
6262 }
6263 
6264 static void perf_event_free_filter(struct perf_event *event)
6265 {
6266 	ftrace_profile_free_filter(event);
6267 }
6268 
6269 #else
6270 
6271 static inline void perf_tp_register(void)
6272 {
6273 }
6274 
6275 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6276 {
6277 	return -ENOENT;
6278 }
6279 
6280 static void perf_event_free_filter(struct perf_event *event)
6281 {
6282 }
6283 
6284 #endif /* CONFIG_EVENT_TRACING */
6285 
6286 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6287 void perf_bp_event(struct perf_event *bp, void *data)
6288 {
6289 	struct perf_sample_data sample;
6290 	struct pt_regs *regs = data;
6291 
6292 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6293 
6294 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6295 		perf_swevent_event(bp, 1, &sample, regs);
6296 }
6297 #endif
6298 
6299 /*
6300  * hrtimer based swevent callback
6301  */
6302 
6303 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6304 {
6305 	enum hrtimer_restart ret = HRTIMER_RESTART;
6306 	struct perf_sample_data data;
6307 	struct pt_regs *regs;
6308 	struct perf_event *event;
6309 	u64 period;
6310 
6311 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6312 
6313 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6314 		return HRTIMER_NORESTART;
6315 
6316 	event->pmu->read(event);
6317 
6318 	perf_sample_data_init(&data, 0, event->hw.last_period);
6319 	regs = get_irq_regs();
6320 
6321 	if (regs && !perf_exclude_event(event, regs)) {
6322 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6323 			if (__perf_event_overflow(event, 1, &data, regs))
6324 				ret = HRTIMER_NORESTART;
6325 	}
6326 
6327 	period = max_t(u64, 10000, event->hw.sample_period);
6328 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6329 
6330 	return ret;
6331 }
6332 
6333 static void perf_swevent_start_hrtimer(struct perf_event *event)
6334 {
6335 	struct hw_perf_event *hwc = &event->hw;
6336 	s64 period;
6337 
6338 	if (!is_sampling_event(event))
6339 		return;
6340 
6341 	period = local64_read(&hwc->period_left);
6342 	if (period) {
6343 		if (period < 0)
6344 			period = 10000;
6345 
6346 		local64_set(&hwc->period_left, 0);
6347 	} else {
6348 		period = max_t(u64, 10000, hwc->sample_period);
6349 	}
6350 	__hrtimer_start_range_ns(&hwc->hrtimer,
6351 				ns_to_ktime(period), 0,
6352 				HRTIMER_MODE_REL_PINNED, 0);
6353 }
6354 
6355 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6356 {
6357 	struct hw_perf_event *hwc = &event->hw;
6358 
6359 	if (is_sampling_event(event)) {
6360 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6361 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6362 
6363 		hrtimer_cancel(&hwc->hrtimer);
6364 	}
6365 }
6366 
6367 static void perf_swevent_init_hrtimer(struct perf_event *event)
6368 {
6369 	struct hw_perf_event *hwc = &event->hw;
6370 
6371 	if (!is_sampling_event(event))
6372 		return;
6373 
6374 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6375 	hwc->hrtimer.function = perf_swevent_hrtimer;
6376 
6377 	/*
6378 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6379 	 * mapping and avoid the whole period adjust feedback stuff.
6380 	 */
6381 	if (event->attr.freq) {
6382 		long freq = event->attr.sample_freq;
6383 
6384 		event->attr.sample_period = NSEC_PER_SEC / freq;
6385 		hwc->sample_period = event->attr.sample_period;
6386 		local64_set(&hwc->period_left, hwc->sample_period);
6387 		hwc->last_period = hwc->sample_period;
6388 		event->attr.freq = 0;
6389 	}
6390 }
6391 
6392 /*
6393  * Software event: cpu wall time clock
6394  */
6395 
6396 static void cpu_clock_event_update(struct perf_event *event)
6397 {
6398 	s64 prev;
6399 	u64 now;
6400 
6401 	now = local_clock();
6402 	prev = local64_xchg(&event->hw.prev_count, now);
6403 	local64_add(now - prev, &event->count);
6404 }
6405 
6406 static void cpu_clock_event_start(struct perf_event *event, int flags)
6407 {
6408 	local64_set(&event->hw.prev_count, local_clock());
6409 	perf_swevent_start_hrtimer(event);
6410 }
6411 
6412 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6413 {
6414 	perf_swevent_cancel_hrtimer(event);
6415 	cpu_clock_event_update(event);
6416 }
6417 
6418 static int cpu_clock_event_add(struct perf_event *event, int flags)
6419 {
6420 	if (flags & PERF_EF_START)
6421 		cpu_clock_event_start(event, flags);
6422 
6423 	return 0;
6424 }
6425 
6426 static void cpu_clock_event_del(struct perf_event *event, int flags)
6427 {
6428 	cpu_clock_event_stop(event, flags);
6429 }
6430 
6431 static void cpu_clock_event_read(struct perf_event *event)
6432 {
6433 	cpu_clock_event_update(event);
6434 }
6435 
6436 static int cpu_clock_event_init(struct perf_event *event)
6437 {
6438 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6439 		return -ENOENT;
6440 
6441 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6442 		return -ENOENT;
6443 
6444 	/*
6445 	 * no branch sampling for software events
6446 	 */
6447 	if (has_branch_stack(event))
6448 		return -EOPNOTSUPP;
6449 
6450 	perf_swevent_init_hrtimer(event);
6451 
6452 	return 0;
6453 }
6454 
6455 static struct pmu perf_cpu_clock = {
6456 	.task_ctx_nr	= perf_sw_context,
6457 
6458 	.event_init	= cpu_clock_event_init,
6459 	.add		= cpu_clock_event_add,
6460 	.del		= cpu_clock_event_del,
6461 	.start		= cpu_clock_event_start,
6462 	.stop		= cpu_clock_event_stop,
6463 	.read		= cpu_clock_event_read,
6464 };
6465 
6466 /*
6467  * Software event: task time clock
6468  */
6469 
6470 static void task_clock_event_update(struct perf_event *event, u64 now)
6471 {
6472 	u64 prev;
6473 	s64 delta;
6474 
6475 	prev = local64_xchg(&event->hw.prev_count, now);
6476 	delta = now - prev;
6477 	local64_add(delta, &event->count);
6478 }
6479 
6480 static void task_clock_event_start(struct perf_event *event, int flags)
6481 {
6482 	local64_set(&event->hw.prev_count, event->ctx->time);
6483 	perf_swevent_start_hrtimer(event);
6484 }
6485 
6486 static void task_clock_event_stop(struct perf_event *event, int flags)
6487 {
6488 	perf_swevent_cancel_hrtimer(event);
6489 	task_clock_event_update(event, event->ctx->time);
6490 }
6491 
6492 static int task_clock_event_add(struct perf_event *event, int flags)
6493 {
6494 	if (flags & PERF_EF_START)
6495 		task_clock_event_start(event, flags);
6496 
6497 	return 0;
6498 }
6499 
6500 static void task_clock_event_del(struct perf_event *event, int flags)
6501 {
6502 	task_clock_event_stop(event, PERF_EF_UPDATE);
6503 }
6504 
6505 static void task_clock_event_read(struct perf_event *event)
6506 {
6507 	u64 now = perf_clock();
6508 	u64 delta = now - event->ctx->timestamp;
6509 	u64 time = event->ctx->time + delta;
6510 
6511 	task_clock_event_update(event, time);
6512 }
6513 
6514 static int task_clock_event_init(struct perf_event *event)
6515 {
6516 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6517 		return -ENOENT;
6518 
6519 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6520 		return -ENOENT;
6521 
6522 	/*
6523 	 * no branch sampling for software events
6524 	 */
6525 	if (has_branch_stack(event))
6526 		return -EOPNOTSUPP;
6527 
6528 	perf_swevent_init_hrtimer(event);
6529 
6530 	return 0;
6531 }
6532 
6533 static struct pmu perf_task_clock = {
6534 	.task_ctx_nr	= perf_sw_context,
6535 
6536 	.event_init	= task_clock_event_init,
6537 	.add		= task_clock_event_add,
6538 	.del		= task_clock_event_del,
6539 	.start		= task_clock_event_start,
6540 	.stop		= task_clock_event_stop,
6541 	.read		= task_clock_event_read,
6542 };
6543 
6544 static void perf_pmu_nop_void(struct pmu *pmu)
6545 {
6546 }
6547 
6548 static int perf_pmu_nop_int(struct pmu *pmu)
6549 {
6550 	return 0;
6551 }
6552 
6553 static void perf_pmu_start_txn(struct pmu *pmu)
6554 {
6555 	perf_pmu_disable(pmu);
6556 }
6557 
6558 static int perf_pmu_commit_txn(struct pmu *pmu)
6559 {
6560 	perf_pmu_enable(pmu);
6561 	return 0;
6562 }
6563 
6564 static void perf_pmu_cancel_txn(struct pmu *pmu)
6565 {
6566 	perf_pmu_enable(pmu);
6567 }
6568 
6569 static int perf_event_idx_default(struct perf_event *event)
6570 {
6571 	return 0;
6572 }
6573 
6574 /*
6575  * Ensures all contexts with the same task_ctx_nr have the same
6576  * pmu_cpu_context too.
6577  */
6578 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6579 {
6580 	struct pmu *pmu;
6581 
6582 	if (ctxn < 0)
6583 		return NULL;
6584 
6585 	list_for_each_entry(pmu, &pmus, entry) {
6586 		if (pmu->task_ctx_nr == ctxn)
6587 			return pmu->pmu_cpu_context;
6588 	}
6589 
6590 	return NULL;
6591 }
6592 
6593 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6594 {
6595 	int cpu;
6596 
6597 	for_each_possible_cpu(cpu) {
6598 		struct perf_cpu_context *cpuctx;
6599 
6600 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6601 
6602 		if (cpuctx->unique_pmu == old_pmu)
6603 			cpuctx->unique_pmu = pmu;
6604 	}
6605 }
6606 
6607 static void free_pmu_context(struct pmu *pmu)
6608 {
6609 	struct pmu *i;
6610 
6611 	mutex_lock(&pmus_lock);
6612 	/*
6613 	 * Like a real lame refcount.
6614 	 */
6615 	list_for_each_entry(i, &pmus, entry) {
6616 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6617 			update_pmu_context(i, pmu);
6618 			goto out;
6619 		}
6620 	}
6621 
6622 	free_percpu(pmu->pmu_cpu_context);
6623 out:
6624 	mutex_unlock(&pmus_lock);
6625 }
6626 static struct idr pmu_idr;
6627 
6628 static ssize_t
6629 type_show(struct device *dev, struct device_attribute *attr, char *page)
6630 {
6631 	struct pmu *pmu = dev_get_drvdata(dev);
6632 
6633 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6634 }
6635 static DEVICE_ATTR_RO(type);
6636 
6637 static ssize_t
6638 perf_event_mux_interval_ms_show(struct device *dev,
6639 				struct device_attribute *attr,
6640 				char *page)
6641 {
6642 	struct pmu *pmu = dev_get_drvdata(dev);
6643 
6644 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6645 }
6646 
6647 static ssize_t
6648 perf_event_mux_interval_ms_store(struct device *dev,
6649 				 struct device_attribute *attr,
6650 				 const char *buf, size_t count)
6651 {
6652 	struct pmu *pmu = dev_get_drvdata(dev);
6653 	int timer, cpu, ret;
6654 
6655 	ret = kstrtoint(buf, 0, &timer);
6656 	if (ret)
6657 		return ret;
6658 
6659 	if (timer < 1)
6660 		return -EINVAL;
6661 
6662 	/* same value, noting to do */
6663 	if (timer == pmu->hrtimer_interval_ms)
6664 		return count;
6665 
6666 	pmu->hrtimer_interval_ms = timer;
6667 
6668 	/* update all cpuctx for this PMU */
6669 	for_each_possible_cpu(cpu) {
6670 		struct perf_cpu_context *cpuctx;
6671 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6672 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6673 
6674 		if (hrtimer_active(&cpuctx->hrtimer))
6675 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6676 	}
6677 
6678 	return count;
6679 }
6680 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6681 
6682 static struct attribute *pmu_dev_attrs[] = {
6683 	&dev_attr_type.attr,
6684 	&dev_attr_perf_event_mux_interval_ms.attr,
6685 	NULL,
6686 };
6687 ATTRIBUTE_GROUPS(pmu_dev);
6688 
6689 static int pmu_bus_running;
6690 static struct bus_type pmu_bus = {
6691 	.name		= "event_source",
6692 	.dev_groups	= pmu_dev_groups,
6693 };
6694 
6695 static void pmu_dev_release(struct device *dev)
6696 {
6697 	kfree(dev);
6698 }
6699 
6700 static int pmu_dev_alloc(struct pmu *pmu)
6701 {
6702 	int ret = -ENOMEM;
6703 
6704 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6705 	if (!pmu->dev)
6706 		goto out;
6707 
6708 	pmu->dev->groups = pmu->attr_groups;
6709 	device_initialize(pmu->dev);
6710 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6711 	if (ret)
6712 		goto free_dev;
6713 
6714 	dev_set_drvdata(pmu->dev, pmu);
6715 	pmu->dev->bus = &pmu_bus;
6716 	pmu->dev->release = pmu_dev_release;
6717 	ret = device_add(pmu->dev);
6718 	if (ret)
6719 		goto free_dev;
6720 
6721 out:
6722 	return ret;
6723 
6724 free_dev:
6725 	put_device(pmu->dev);
6726 	goto out;
6727 }
6728 
6729 static struct lock_class_key cpuctx_mutex;
6730 static struct lock_class_key cpuctx_lock;
6731 
6732 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6733 {
6734 	int cpu, ret;
6735 
6736 	mutex_lock(&pmus_lock);
6737 	ret = -ENOMEM;
6738 	pmu->pmu_disable_count = alloc_percpu(int);
6739 	if (!pmu->pmu_disable_count)
6740 		goto unlock;
6741 
6742 	pmu->type = -1;
6743 	if (!name)
6744 		goto skip_type;
6745 	pmu->name = name;
6746 
6747 	if (type < 0) {
6748 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6749 		if (type < 0) {
6750 			ret = type;
6751 			goto free_pdc;
6752 		}
6753 	}
6754 	pmu->type = type;
6755 
6756 	if (pmu_bus_running) {
6757 		ret = pmu_dev_alloc(pmu);
6758 		if (ret)
6759 			goto free_idr;
6760 	}
6761 
6762 skip_type:
6763 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6764 	if (pmu->pmu_cpu_context)
6765 		goto got_cpu_context;
6766 
6767 	ret = -ENOMEM;
6768 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6769 	if (!pmu->pmu_cpu_context)
6770 		goto free_dev;
6771 
6772 	for_each_possible_cpu(cpu) {
6773 		struct perf_cpu_context *cpuctx;
6774 
6775 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6776 		__perf_event_init_context(&cpuctx->ctx);
6777 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6778 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6779 		cpuctx->ctx.pmu = pmu;
6780 
6781 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6782 
6783 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6784 		cpuctx->unique_pmu = pmu;
6785 	}
6786 
6787 got_cpu_context:
6788 	if (!pmu->start_txn) {
6789 		if (pmu->pmu_enable) {
6790 			/*
6791 			 * If we have pmu_enable/pmu_disable calls, install
6792 			 * transaction stubs that use that to try and batch
6793 			 * hardware accesses.
6794 			 */
6795 			pmu->start_txn  = perf_pmu_start_txn;
6796 			pmu->commit_txn = perf_pmu_commit_txn;
6797 			pmu->cancel_txn = perf_pmu_cancel_txn;
6798 		} else {
6799 			pmu->start_txn  = perf_pmu_nop_void;
6800 			pmu->commit_txn = perf_pmu_nop_int;
6801 			pmu->cancel_txn = perf_pmu_nop_void;
6802 		}
6803 	}
6804 
6805 	if (!pmu->pmu_enable) {
6806 		pmu->pmu_enable  = perf_pmu_nop_void;
6807 		pmu->pmu_disable = perf_pmu_nop_void;
6808 	}
6809 
6810 	if (!pmu->event_idx)
6811 		pmu->event_idx = perf_event_idx_default;
6812 
6813 	list_add_rcu(&pmu->entry, &pmus);
6814 	ret = 0;
6815 unlock:
6816 	mutex_unlock(&pmus_lock);
6817 
6818 	return ret;
6819 
6820 free_dev:
6821 	device_del(pmu->dev);
6822 	put_device(pmu->dev);
6823 
6824 free_idr:
6825 	if (pmu->type >= PERF_TYPE_MAX)
6826 		idr_remove(&pmu_idr, pmu->type);
6827 
6828 free_pdc:
6829 	free_percpu(pmu->pmu_disable_count);
6830 	goto unlock;
6831 }
6832 EXPORT_SYMBOL_GPL(perf_pmu_register);
6833 
6834 void perf_pmu_unregister(struct pmu *pmu)
6835 {
6836 	mutex_lock(&pmus_lock);
6837 	list_del_rcu(&pmu->entry);
6838 	mutex_unlock(&pmus_lock);
6839 
6840 	/*
6841 	 * We dereference the pmu list under both SRCU and regular RCU, so
6842 	 * synchronize against both of those.
6843 	 */
6844 	synchronize_srcu(&pmus_srcu);
6845 	synchronize_rcu();
6846 
6847 	free_percpu(pmu->pmu_disable_count);
6848 	if (pmu->type >= PERF_TYPE_MAX)
6849 		idr_remove(&pmu_idr, pmu->type);
6850 	device_del(pmu->dev);
6851 	put_device(pmu->dev);
6852 	free_pmu_context(pmu);
6853 }
6854 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6855 
6856 struct pmu *perf_init_event(struct perf_event *event)
6857 {
6858 	struct pmu *pmu = NULL;
6859 	int idx;
6860 	int ret;
6861 
6862 	idx = srcu_read_lock(&pmus_srcu);
6863 
6864 	rcu_read_lock();
6865 	pmu = idr_find(&pmu_idr, event->attr.type);
6866 	rcu_read_unlock();
6867 	if (pmu) {
6868 		if (!try_module_get(pmu->module)) {
6869 			pmu = ERR_PTR(-ENODEV);
6870 			goto unlock;
6871 		}
6872 		event->pmu = pmu;
6873 		ret = pmu->event_init(event);
6874 		if (ret)
6875 			pmu = ERR_PTR(ret);
6876 		goto unlock;
6877 	}
6878 
6879 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6880 		if (!try_module_get(pmu->module)) {
6881 			pmu = ERR_PTR(-ENODEV);
6882 			goto unlock;
6883 		}
6884 		event->pmu = pmu;
6885 		ret = pmu->event_init(event);
6886 		if (!ret)
6887 			goto unlock;
6888 
6889 		if (ret != -ENOENT) {
6890 			pmu = ERR_PTR(ret);
6891 			goto unlock;
6892 		}
6893 	}
6894 	pmu = ERR_PTR(-ENOENT);
6895 unlock:
6896 	srcu_read_unlock(&pmus_srcu, idx);
6897 
6898 	return pmu;
6899 }
6900 
6901 static void account_event_cpu(struct perf_event *event, int cpu)
6902 {
6903 	if (event->parent)
6904 		return;
6905 
6906 	if (has_branch_stack(event)) {
6907 		if (!(event->attach_state & PERF_ATTACH_TASK))
6908 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6909 	}
6910 	if (is_cgroup_event(event))
6911 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6912 }
6913 
6914 static void account_event(struct perf_event *event)
6915 {
6916 	if (event->parent)
6917 		return;
6918 
6919 	if (event->attach_state & PERF_ATTACH_TASK)
6920 		static_key_slow_inc(&perf_sched_events.key);
6921 	if (event->attr.mmap || event->attr.mmap_data)
6922 		atomic_inc(&nr_mmap_events);
6923 	if (event->attr.comm)
6924 		atomic_inc(&nr_comm_events);
6925 	if (event->attr.task)
6926 		atomic_inc(&nr_task_events);
6927 	if (event->attr.freq) {
6928 		if (atomic_inc_return(&nr_freq_events) == 1)
6929 			tick_nohz_full_kick_all();
6930 	}
6931 	if (has_branch_stack(event))
6932 		static_key_slow_inc(&perf_sched_events.key);
6933 	if (is_cgroup_event(event))
6934 		static_key_slow_inc(&perf_sched_events.key);
6935 
6936 	account_event_cpu(event, event->cpu);
6937 }
6938 
6939 /*
6940  * Allocate and initialize a event structure
6941  */
6942 static struct perf_event *
6943 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6944 		 struct task_struct *task,
6945 		 struct perf_event *group_leader,
6946 		 struct perf_event *parent_event,
6947 		 perf_overflow_handler_t overflow_handler,
6948 		 void *context)
6949 {
6950 	struct pmu *pmu;
6951 	struct perf_event *event;
6952 	struct hw_perf_event *hwc;
6953 	long err = -EINVAL;
6954 
6955 	if ((unsigned)cpu >= nr_cpu_ids) {
6956 		if (!task || cpu != -1)
6957 			return ERR_PTR(-EINVAL);
6958 	}
6959 
6960 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6961 	if (!event)
6962 		return ERR_PTR(-ENOMEM);
6963 
6964 	/*
6965 	 * Single events are their own group leaders, with an
6966 	 * empty sibling list:
6967 	 */
6968 	if (!group_leader)
6969 		group_leader = event;
6970 
6971 	mutex_init(&event->child_mutex);
6972 	INIT_LIST_HEAD(&event->child_list);
6973 
6974 	INIT_LIST_HEAD(&event->group_entry);
6975 	INIT_LIST_HEAD(&event->event_entry);
6976 	INIT_LIST_HEAD(&event->sibling_list);
6977 	INIT_LIST_HEAD(&event->rb_entry);
6978 	INIT_LIST_HEAD(&event->active_entry);
6979 	INIT_HLIST_NODE(&event->hlist_entry);
6980 
6981 
6982 	init_waitqueue_head(&event->waitq);
6983 	init_irq_work(&event->pending, perf_pending_event);
6984 
6985 	mutex_init(&event->mmap_mutex);
6986 
6987 	atomic_long_set(&event->refcount, 1);
6988 	event->cpu		= cpu;
6989 	event->attr		= *attr;
6990 	event->group_leader	= group_leader;
6991 	event->pmu		= NULL;
6992 	event->oncpu		= -1;
6993 
6994 	event->parent		= parent_event;
6995 
6996 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6997 	event->id		= atomic64_inc_return(&perf_event_id);
6998 
6999 	event->state		= PERF_EVENT_STATE_INACTIVE;
7000 
7001 	if (task) {
7002 		event->attach_state = PERF_ATTACH_TASK;
7003 
7004 		if (attr->type == PERF_TYPE_TRACEPOINT)
7005 			event->hw.tp_target = task;
7006 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7007 		/*
7008 		 * hw_breakpoint is a bit difficult here..
7009 		 */
7010 		else if (attr->type == PERF_TYPE_BREAKPOINT)
7011 			event->hw.bp_target = task;
7012 #endif
7013 	}
7014 
7015 	if (!overflow_handler && parent_event) {
7016 		overflow_handler = parent_event->overflow_handler;
7017 		context = parent_event->overflow_handler_context;
7018 	}
7019 
7020 	event->overflow_handler	= overflow_handler;
7021 	event->overflow_handler_context = context;
7022 
7023 	perf_event__state_init(event);
7024 
7025 	pmu = NULL;
7026 
7027 	hwc = &event->hw;
7028 	hwc->sample_period = attr->sample_period;
7029 	if (attr->freq && attr->sample_freq)
7030 		hwc->sample_period = 1;
7031 	hwc->last_period = hwc->sample_period;
7032 
7033 	local64_set(&hwc->period_left, hwc->sample_period);
7034 
7035 	/*
7036 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7037 	 */
7038 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7039 		goto err_ns;
7040 
7041 	pmu = perf_init_event(event);
7042 	if (!pmu)
7043 		goto err_ns;
7044 	else if (IS_ERR(pmu)) {
7045 		err = PTR_ERR(pmu);
7046 		goto err_ns;
7047 	}
7048 
7049 	if (!event->parent) {
7050 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7051 			err = get_callchain_buffers();
7052 			if (err)
7053 				goto err_pmu;
7054 		}
7055 	}
7056 
7057 	return event;
7058 
7059 err_pmu:
7060 	if (event->destroy)
7061 		event->destroy(event);
7062 	module_put(pmu->module);
7063 err_ns:
7064 	if (event->ns)
7065 		put_pid_ns(event->ns);
7066 	kfree(event);
7067 
7068 	return ERR_PTR(err);
7069 }
7070 
7071 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7072 			  struct perf_event_attr *attr)
7073 {
7074 	u32 size;
7075 	int ret;
7076 
7077 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7078 		return -EFAULT;
7079 
7080 	/*
7081 	 * zero the full structure, so that a short copy will be nice.
7082 	 */
7083 	memset(attr, 0, sizeof(*attr));
7084 
7085 	ret = get_user(size, &uattr->size);
7086 	if (ret)
7087 		return ret;
7088 
7089 	if (size > PAGE_SIZE)	/* silly large */
7090 		goto err_size;
7091 
7092 	if (!size)		/* abi compat */
7093 		size = PERF_ATTR_SIZE_VER0;
7094 
7095 	if (size < PERF_ATTR_SIZE_VER0)
7096 		goto err_size;
7097 
7098 	/*
7099 	 * If we're handed a bigger struct than we know of,
7100 	 * ensure all the unknown bits are 0 - i.e. new
7101 	 * user-space does not rely on any kernel feature
7102 	 * extensions we dont know about yet.
7103 	 */
7104 	if (size > sizeof(*attr)) {
7105 		unsigned char __user *addr;
7106 		unsigned char __user *end;
7107 		unsigned char val;
7108 
7109 		addr = (void __user *)uattr + sizeof(*attr);
7110 		end  = (void __user *)uattr + size;
7111 
7112 		for (; addr < end; addr++) {
7113 			ret = get_user(val, addr);
7114 			if (ret)
7115 				return ret;
7116 			if (val)
7117 				goto err_size;
7118 		}
7119 		size = sizeof(*attr);
7120 	}
7121 
7122 	ret = copy_from_user(attr, uattr, size);
7123 	if (ret)
7124 		return -EFAULT;
7125 
7126 	if (attr->__reserved_1)
7127 		return -EINVAL;
7128 
7129 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7130 		return -EINVAL;
7131 
7132 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7133 		return -EINVAL;
7134 
7135 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7136 		u64 mask = attr->branch_sample_type;
7137 
7138 		/* only using defined bits */
7139 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7140 			return -EINVAL;
7141 
7142 		/* at least one branch bit must be set */
7143 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7144 			return -EINVAL;
7145 
7146 		/* propagate priv level, when not set for branch */
7147 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7148 
7149 			/* exclude_kernel checked on syscall entry */
7150 			if (!attr->exclude_kernel)
7151 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7152 
7153 			if (!attr->exclude_user)
7154 				mask |= PERF_SAMPLE_BRANCH_USER;
7155 
7156 			if (!attr->exclude_hv)
7157 				mask |= PERF_SAMPLE_BRANCH_HV;
7158 			/*
7159 			 * adjust user setting (for HW filter setup)
7160 			 */
7161 			attr->branch_sample_type = mask;
7162 		}
7163 		/* privileged levels capture (kernel, hv): check permissions */
7164 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7165 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7166 			return -EACCES;
7167 	}
7168 
7169 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7170 		ret = perf_reg_validate(attr->sample_regs_user);
7171 		if (ret)
7172 			return ret;
7173 	}
7174 
7175 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7176 		if (!arch_perf_have_user_stack_dump())
7177 			return -ENOSYS;
7178 
7179 		/*
7180 		 * We have __u32 type for the size, but so far
7181 		 * we can only use __u16 as maximum due to the
7182 		 * __u16 sample size limit.
7183 		 */
7184 		if (attr->sample_stack_user >= USHRT_MAX)
7185 			ret = -EINVAL;
7186 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7187 			ret = -EINVAL;
7188 	}
7189 
7190 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7191 		ret = perf_reg_validate(attr->sample_regs_intr);
7192 out:
7193 	return ret;
7194 
7195 err_size:
7196 	put_user(sizeof(*attr), &uattr->size);
7197 	ret = -E2BIG;
7198 	goto out;
7199 }
7200 
7201 static int
7202 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7203 {
7204 	struct ring_buffer *rb = NULL;
7205 	int ret = -EINVAL;
7206 
7207 	if (!output_event)
7208 		goto set;
7209 
7210 	/* don't allow circular references */
7211 	if (event == output_event)
7212 		goto out;
7213 
7214 	/*
7215 	 * Don't allow cross-cpu buffers
7216 	 */
7217 	if (output_event->cpu != event->cpu)
7218 		goto out;
7219 
7220 	/*
7221 	 * If its not a per-cpu rb, it must be the same task.
7222 	 */
7223 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7224 		goto out;
7225 
7226 set:
7227 	mutex_lock(&event->mmap_mutex);
7228 	/* Can't redirect output if we've got an active mmap() */
7229 	if (atomic_read(&event->mmap_count))
7230 		goto unlock;
7231 
7232 	if (output_event) {
7233 		/* get the rb we want to redirect to */
7234 		rb = ring_buffer_get(output_event);
7235 		if (!rb)
7236 			goto unlock;
7237 	}
7238 
7239 	ring_buffer_attach(event, rb);
7240 
7241 	ret = 0;
7242 unlock:
7243 	mutex_unlock(&event->mmap_mutex);
7244 
7245 out:
7246 	return ret;
7247 }
7248 
7249 /**
7250  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7251  *
7252  * @attr_uptr:	event_id type attributes for monitoring/sampling
7253  * @pid:		target pid
7254  * @cpu:		target cpu
7255  * @group_fd:		group leader event fd
7256  */
7257 SYSCALL_DEFINE5(perf_event_open,
7258 		struct perf_event_attr __user *, attr_uptr,
7259 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7260 {
7261 	struct perf_event *group_leader = NULL, *output_event = NULL;
7262 	struct perf_event *event, *sibling;
7263 	struct perf_event_attr attr;
7264 	struct perf_event_context *ctx;
7265 	struct file *event_file = NULL;
7266 	struct fd group = {NULL, 0};
7267 	struct task_struct *task = NULL;
7268 	struct pmu *pmu;
7269 	int event_fd;
7270 	int move_group = 0;
7271 	int err;
7272 	int f_flags = O_RDWR;
7273 
7274 	/* for future expandability... */
7275 	if (flags & ~PERF_FLAG_ALL)
7276 		return -EINVAL;
7277 
7278 	err = perf_copy_attr(attr_uptr, &attr);
7279 	if (err)
7280 		return err;
7281 
7282 	if (!attr.exclude_kernel) {
7283 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7284 			return -EACCES;
7285 	}
7286 
7287 	if (attr.freq) {
7288 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7289 			return -EINVAL;
7290 	} else {
7291 		if (attr.sample_period & (1ULL << 63))
7292 			return -EINVAL;
7293 	}
7294 
7295 	/*
7296 	 * In cgroup mode, the pid argument is used to pass the fd
7297 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7298 	 * designates the cpu on which to monitor threads from that
7299 	 * cgroup.
7300 	 */
7301 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7302 		return -EINVAL;
7303 
7304 	if (flags & PERF_FLAG_FD_CLOEXEC)
7305 		f_flags |= O_CLOEXEC;
7306 
7307 	event_fd = get_unused_fd_flags(f_flags);
7308 	if (event_fd < 0)
7309 		return event_fd;
7310 
7311 	if (group_fd != -1) {
7312 		err = perf_fget_light(group_fd, &group);
7313 		if (err)
7314 			goto err_fd;
7315 		group_leader = group.file->private_data;
7316 		if (flags & PERF_FLAG_FD_OUTPUT)
7317 			output_event = group_leader;
7318 		if (flags & PERF_FLAG_FD_NO_GROUP)
7319 			group_leader = NULL;
7320 	}
7321 
7322 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7323 		task = find_lively_task_by_vpid(pid);
7324 		if (IS_ERR(task)) {
7325 			err = PTR_ERR(task);
7326 			goto err_group_fd;
7327 		}
7328 	}
7329 
7330 	if (task && group_leader &&
7331 	    group_leader->attr.inherit != attr.inherit) {
7332 		err = -EINVAL;
7333 		goto err_task;
7334 	}
7335 
7336 	get_online_cpus();
7337 
7338 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7339 				 NULL, NULL);
7340 	if (IS_ERR(event)) {
7341 		err = PTR_ERR(event);
7342 		goto err_cpus;
7343 	}
7344 
7345 	if (flags & PERF_FLAG_PID_CGROUP) {
7346 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7347 		if (err) {
7348 			__free_event(event);
7349 			goto err_cpus;
7350 		}
7351 	}
7352 
7353 	if (is_sampling_event(event)) {
7354 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7355 			err = -ENOTSUPP;
7356 			goto err_alloc;
7357 		}
7358 	}
7359 
7360 	account_event(event);
7361 
7362 	/*
7363 	 * Special case software events and allow them to be part of
7364 	 * any hardware group.
7365 	 */
7366 	pmu = event->pmu;
7367 
7368 	if (group_leader &&
7369 	    (is_software_event(event) != is_software_event(group_leader))) {
7370 		if (is_software_event(event)) {
7371 			/*
7372 			 * If event and group_leader are not both a software
7373 			 * event, and event is, then group leader is not.
7374 			 *
7375 			 * Allow the addition of software events to !software
7376 			 * groups, this is safe because software events never
7377 			 * fail to schedule.
7378 			 */
7379 			pmu = group_leader->pmu;
7380 		} else if (is_software_event(group_leader) &&
7381 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7382 			/*
7383 			 * In case the group is a pure software group, and we
7384 			 * try to add a hardware event, move the whole group to
7385 			 * the hardware context.
7386 			 */
7387 			move_group = 1;
7388 		}
7389 	}
7390 
7391 	/*
7392 	 * Get the target context (task or percpu):
7393 	 */
7394 	ctx = find_get_context(pmu, task, event->cpu);
7395 	if (IS_ERR(ctx)) {
7396 		err = PTR_ERR(ctx);
7397 		goto err_alloc;
7398 	}
7399 
7400 	if (task) {
7401 		put_task_struct(task);
7402 		task = NULL;
7403 	}
7404 
7405 	/*
7406 	 * Look up the group leader (we will attach this event to it):
7407 	 */
7408 	if (group_leader) {
7409 		err = -EINVAL;
7410 
7411 		/*
7412 		 * Do not allow a recursive hierarchy (this new sibling
7413 		 * becoming part of another group-sibling):
7414 		 */
7415 		if (group_leader->group_leader != group_leader)
7416 			goto err_context;
7417 		/*
7418 		 * Do not allow to attach to a group in a different
7419 		 * task or CPU context:
7420 		 */
7421 		if (move_group) {
7422 			/*
7423 			 * Make sure we're both on the same task, or both
7424 			 * per-cpu events.
7425 			 */
7426 			if (group_leader->ctx->task != ctx->task)
7427 				goto err_context;
7428 
7429 			/*
7430 			 * Make sure we're both events for the same CPU;
7431 			 * grouping events for different CPUs is broken; since
7432 			 * you can never concurrently schedule them anyhow.
7433 			 */
7434 			if (group_leader->cpu != event->cpu)
7435 				goto err_context;
7436 		} else {
7437 			if (group_leader->ctx != ctx)
7438 				goto err_context;
7439 		}
7440 
7441 		/*
7442 		 * Only a group leader can be exclusive or pinned
7443 		 */
7444 		if (attr.exclusive || attr.pinned)
7445 			goto err_context;
7446 	}
7447 
7448 	if (output_event) {
7449 		err = perf_event_set_output(event, output_event);
7450 		if (err)
7451 			goto err_context;
7452 	}
7453 
7454 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7455 					f_flags);
7456 	if (IS_ERR(event_file)) {
7457 		err = PTR_ERR(event_file);
7458 		goto err_context;
7459 	}
7460 
7461 	if (move_group) {
7462 		struct perf_event_context *gctx = group_leader->ctx;
7463 
7464 		mutex_lock(&gctx->mutex);
7465 		perf_remove_from_context(group_leader, false);
7466 
7467 		/*
7468 		 * Removing from the context ends up with disabled
7469 		 * event. What we want here is event in the initial
7470 		 * startup state, ready to be add into new context.
7471 		 */
7472 		perf_event__state_init(group_leader);
7473 		list_for_each_entry(sibling, &group_leader->sibling_list,
7474 				    group_entry) {
7475 			perf_remove_from_context(sibling, false);
7476 			perf_event__state_init(sibling);
7477 			put_ctx(gctx);
7478 		}
7479 		mutex_unlock(&gctx->mutex);
7480 		put_ctx(gctx);
7481 	}
7482 
7483 	WARN_ON_ONCE(ctx->parent_ctx);
7484 	mutex_lock(&ctx->mutex);
7485 
7486 	if (move_group) {
7487 		synchronize_rcu();
7488 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
7489 		get_ctx(ctx);
7490 		list_for_each_entry(sibling, &group_leader->sibling_list,
7491 				    group_entry) {
7492 			perf_install_in_context(ctx, sibling, sibling->cpu);
7493 			get_ctx(ctx);
7494 		}
7495 	}
7496 
7497 	perf_install_in_context(ctx, event, event->cpu);
7498 	perf_unpin_context(ctx);
7499 	mutex_unlock(&ctx->mutex);
7500 
7501 	put_online_cpus();
7502 
7503 	event->owner = current;
7504 
7505 	mutex_lock(&current->perf_event_mutex);
7506 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7507 	mutex_unlock(&current->perf_event_mutex);
7508 
7509 	/*
7510 	 * Precalculate sample_data sizes
7511 	 */
7512 	perf_event__header_size(event);
7513 	perf_event__id_header_size(event);
7514 
7515 	/*
7516 	 * Drop the reference on the group_event after placing the
7517 	 * new event on the sibling_list. This ensures destruction
7518 	 * of the group leader will find the pointer to itself in
7519 	 * perf_group_detach().
7520 	 */
7521 	fdput(group);
7522 	fd_install(event_fd, event_file);
7523 	return event_fd;
7524 
7525 err_context:
7526 	perf_unpin_context(ctx);
7527 	put_ctx(ctx);
7528 err_alloc:
7529 	free_event(event);
7530 err_cpus:
7531 	put_online_cpus();
7532 err_task:
7533 	if (task)
7534 		put_task_struct(task);
7535 err_group_fd:
7536 	fdput(group);
7537 err_fd:
7538 	put_unused_fd(event_fd);
7539 	return err;
7540 }
7541 
7542 /**
7543  * perf_event_create_kernel_counter
7544  *
7545  * @attr: attributes of the counter to create
7546  * @cpu: cpu in which the counter is bound
7547  * @task: task to profile (NULL for percpu)
7548  */
7549 struct perf_event *
7550 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7551 				 struct task_struct *task,
7552 				 perf_overflow_handler_t overflow_handler,
7553 				 void *context)
7554 {
7555 	struct perf_event_context *ctx;
7556 	struct perf_event *event;
7557 	int err;
7558 
7559 	/*
7560 	 * Get the target context (task or percpu):
7561 	 */
7562 
7563 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7564 				 overflow_handler, context);
7565 	if (IS_ERR(event)) {
7566 		err = PTR_ERR(event);
7567 		goto err;
7568 	}
7569 
7570 	/* Mark owner so we could distinguish it from user events. */
7571 	event->owner = EVENT_OWNER_KERNEL;
7572 
7573 	account_event(event);
7574 
7575 	ctx = find_get_context(event->pmu, task, cpu);
7576 	if (IS_ERR(ctx)) {
7577 		err = PTR_ERR(ctx);
7578 		goto err_free;
7579 	}
7580 
7581 	WARN_ON_ONCE(ctx->parent_ctx);
7582 	mutex_lock(&ctx->mutex);
7583 	perf_install_in_context(ctx, event, cpu);
7584 	perf_unpin_context(ctx);
7585 	mutex_unlock(&ctx->mutex);
7586 
7587 	return event;
7588 
7589 err_free:
7590 	free_event(event);
7591 err:
7592 	return ERR_PTR(err);
7593 }
7594 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7595 
7596 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7597 {
7598 	struct perf_event_context *src_ctx;
7599 	struct perf_event_context *dst_ctx;
7600 	struct perf_event *event, *tmp;
7601 	LIST_HEAD(events);
7602 
7603 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7604 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7605 
7606 	mutex_lock(&src_ctx->mutex);
7607 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7608 				 event_entry) {
7609 		perf_remove_from_context(event, false);
7610 		unaccount_event_cpu(event, src_cpu);
7611 		put_ctx(src_ctx);
7612 		list_add(&event->migrate_entry, &events);
7613 	}
7614 	mutex_unlock(&src_ctx->mutex);
7615 
7616 	synchronize_rcu();
7617 
7618 	mutex_lock(&dst_ctx->mutex);
7619 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7620 		list_del(&event->migrate_entry);
7621 		if (event->state >= PERF_EVENT_STATE_OFF)
7622 			event->state = PERF_EVENT_STATE_INACTIVE;
7623 		account_event_cpu(event, dst_cpu);
7624 		perf_install_in_context(dst_ctx, event, dst_cpu);
7625 		get_ctx(dst_ctx);
7626 	}
7627 	mutex_unlock(&dst_ctx->mutex);
7628 }
7629 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7630 
7631 static void sync_child_event(struct perf_event *child_event,
7632 			       struct task_struct *child)
7633 {
7634 	struct perf_event *parent_event = child_event->parent;
7635 	u64 child_val;
7636 
7637 	if (child_event->attr.inherit_stat)
7638 		perf_event_read_event(child_event, child);
7639 
7640 	child_val = perf_event_count(child_event);
7641 
7642 	/*
7643 	 * Add back the child's count to the parent's count:
7644 	 */
7645 	atomic64_add(child_val, &parent_event->child_count);
7646 	atomic64_add(child_event->total_time_enabled,
7647 		     &parent_event->child_total_time_enabled);
7648 	atomic64_add(child_event->total_time_running,
7649 		     &parent_event->child_total_time_running);
7650 
7651 	/*
7652 	 * Remove this event from the parent's list
7653 	 */
7654 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7655 	mutex_lock(&parent_event->child_mutex);
7656 	list_del_init(&child_event->child_list);
7657 	mutex_unlock(&parent_event->child_mutex);
7658 
7659 	/*
7660 	 * Make sure user/parent get notified, that we just
7661 	 * lost one event.
7662 	 */
7663 	perf_event_wakeup(parent_event);
7664 
7665 	/*
7666 	 * Release the parent event, if this was the last
7667 	 * reference to it.
7668 	 */
7669 	put_event(parent_event);
7670 }
7671 
7672 static void
7673 __perf_event_exit_task(struct perf_event *child_event,
7674 			 struct perf_event_context *child_ctx,
7675 			 struct task_struct *child)
7676 {
7677 	/*
7678 	 * Do not destroy the 'original' grouping; because of the context
7679 	 * switch optimization the original events could've ended up in a
7680 	 * random child task.
7681 	 *
7682 	 * If we were to destroy the original group, all group related
7683 	 * operations would cease to function properly after this random
7684 	 * child dies.
7685 	 *
7686 	 * Do destroy all inherited groups, we don't care about those
7687 	 * and being thorough is better.
7688 	 */
7689 	perf_remove_from_context(child_event, !!child_event->parent);
7690 
7691 	/*
7692 	 * It can happen that the parent exits first, and has events
7693 	 * that are still around due to the child reference. These
7694 	 * events need to be zapped.
7695 	 */
7696 	if (child_event->parent) {
7697 		sync_child_event(child_event, child);
7698 		free_event(child_event);
7699 	} else {
7700 		child_event->state = PERF_EVENT_STATE_EXIT;
7701 		perf_event_wakeup(child_event);
7702 	}
7703 }
7704 
7705 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7706 {
7707 	struct perf_event *child_event, *next;
7708 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7709 	unsigned long flags;
7710 
7711 	if (likely(!child->perf_event_ctxp[ctxn])) {
7712 		perf_event_task(child, NULL, 0);
7713 		return;
7714 	}
7715 
7716 	local_irq_save(flags);
7717 	/*
7718 	 * We can't reschedule here because interrupts are disabled,
7719 	 * and either child is current or it is a task that can't be
7720 	 * scheduled, so we are now safe from rescheduling changing
7721 	 * our context.
7722 	 */
7723 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7724 
7725 	/*
7726 	 * Take the context lock here so that if find_get_context is
7727 	 * reading child->perf_event_ctxp, we wait until it has
7728 	 * incremented the context's refcount before we do put_ctx below.
7729 	 */
7730 	raw_spin_lock(&child_ctx->lock);
7731 	task_ctx_sched_out(child_ctx);
7732 	child->perf_event_ctxp[ctxn] = NULL;
7733 
7734 	/*
7735 	 * If this context is a clone; unclone it so it can't get
7736 	 * swapped to another process while we're removing all
7737 	 * the events from it.
7738 	 */
7739 	clone_ctx = unclone_ctx(child_ctx);
7740 	update_context_time(child_ctx);
7741 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7742 
7743 	if (clone_ctx)
7744 		put_ctx(clone_ctx);
7745 
7746 	/*
7747 	 * Report the task dead after unscheduling the events so that we
7748 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7749 	 * get a few PERF_RECORD_READ events.
7750 	 */
7751 	perf_event_task(child, child_ctx, 0);
7752 
7753 	/*
7754 	 * We can recurse on the same lock type through:
7755 	 *
7756 	 *   __perf_event_exit_task()
7757 	 *     sync_child_event()
7758 	 *       put_event()
7759 	 *         mutex_lock(&ctx->mutex)
7760 	 *
7761 	 * But since its the parent context it won't be the same instance.
7762 	 */
7763 	mutex_lock(&child_ctx->mutex);
7764 
7765 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7766 		__perf_event_exit_task(child_event, child_ctx, child);
7767 
7768 	mutex_unlock(&child_ctx->mutex);
7769 
7770 	put_ctx(child_ctx);
7771 }
7772 
7773 /*
7774  * When a child task exits, feed back event values to parent events.
7775  */
7776 void perf_event_exit_task(struct task_struct *child)
7777 {
7778 	struct perf_event *event, *tmp;
7779 	int ctxn;
7780 
7781 	mutex_lock(&child->perf_event_mutex);
7782 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7783 				 owner_entry) {
7784 		list_del_init(&event->owner_entry);
7785 
7786 		/*
7787 		 * Ensure the list deletion is visible before we clear
7788 		 * the owner, closes a race against perf_release() where
7789 		 * we need to serialize on the owner->perf_event_mutex.
7790 		 */
7791 		smp_wmb();
7792 		event->owner = NULL;
7793 	}
7794 	mutex_unlock(&child->perf_event_mutex);
7795 
7796 	for_each_task_context_nr(ctxn)
7797 		perf_event_exit_task_context(child, ctxn);
7798 }
7799 
7800 static void perf_free_event(struct perf_event *event,
7801 			    struct perf_event_context *ctx)
7802 {
7803 	struct perf_event *parent = event->parent;
7804 
7805 	if (WARN_ON_ONCE(!parent))
7806 		return;
7807 
7808 	mutex_lock(&parent->child_mutex);
7809 	list_del_init(&event->child_list);
7810 	mutex_unlock(&parent->child_mutex);
7811 
7812 	put_event(parent);
7813 
7814 	perf_group_detach(event);
7815 	list_del_event(event, ctx);
7816 	free_event(event);
7817 }
7818 
7819 /*
7820  * free an unexposed, unused context as created by inheritance by
7821  * perf_event_init_task below, used by fork() in case of fail.
7822  */
7823 void perf_event_free_task(struct task_struct *task)
7824 {
7825 	struct perf_event_context *ctx;
7826 	struct perf_event *event, *tmp;
7827 	int ctxn;
7828 
7829 	for_each_task_context_nr(ctxn) {
7830 		ctx = task->perf_event_ctxp[ctxn];
7831 		if (!ctx)
7832 			continue;
7833 
7834 		mutex_lock(&ctx->mutex);
7835 again:
7836 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7837 				group_entry)
7838 			perf_free_event(event, ctx);
7839 
7840 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7841 				group_entry)
7842 			perf_free_event(event, ctx);
7843 
7844 		if (!list_empty(&ctx->pinned_groups) ||
7845 				!list_empty(&ctx->flexible_groups))
7846 			goto again;
7847 
7848 		mutex_unlock(&ctx->mutex);
7849 
7850 		put_ctx(ctx);
7851 	}
7852 }
7853 
7854 void perf_event_delayed_put(struct task_struct *task)
7855 {
7856 	int ctxn;
7857 
7858 	for_each_task_context_nr(ctxn)
7859 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7860 }
7861 
7862 /*
7863  * inherit a event from parent task to child task:
7864  */
7865 static struct perf_event *
7866 inherit_event(struct perf_event *parent_event,
7867 	      struct task_struct *parent,
7868 	      struct perf_event_context *parent_ctx,
7869 	      struct task_struct *child,
7870 	      struct perf_event *group_leader,
7871 	      struct perf_event_context *child_ctx)
7872 {
7873 	enum perf_event_active_state parent_state = parent_event->state;
7874 	struct perf_event *child_event;
7875 	unsigned long flags;
7876 
7877 	/*
7878 	 * Instead of creating recursive hierarchies of events,
7879 	 * we link inherited events back to the original parent,
7880 	 * which has a filp for sure, which we use as the reference
7881 	 * count:
7882 	 */
7883 	if (parent_event->parent)
7884 		parent_event = parent_event->parent;
7885 
7886 	child_event = perf_event_alloc(&parent_event->attr,
7887 					   parent_event->cpu,
7888 					   child,
7889 					   group_leader, parent_event,
7890 				           NULL, NULL);
7891 	if (IS_ERR(child_event))
7892 		return child_event;
7893 
7894 	if (is_orphaned_event(parent_event) ||
7895 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
7896 		free_event(child_event);
7897 		return NULL;
7898 	}
7899 
7900 	get_ctx(child_ctx);
7901 
7902 	/*
7903 	 * Make the child state follow the state of the parent event,
7904 	 * not its attr.disabled bit.  We hold the parent's mutex,
7905 	 * so we won't race with perf_event_{en, dis}able_family.
7906 	 */
7907 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
7908 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7909 	else
7910 		child_event->state = PERF_EVENT_STATE_OFF;
7911 
7912 	if (parent_event->attr.freq) {
7913 		u64 sample_period = parent_event->hw.sample_period;
7914 		struct hw_perf_event *hwc = &child_event->hw;
7915 
7916 		hwc->sample_period = sample_period;
7917 		hwc->last_period   = sample_period;
7918 
7919 		local64_set(&hwc->period_left, sample_period);
7920 	}
7921 
7922 	child_event->ctx = child_ctx;
7923 	child_event->overflow_handler = parent_event->overflow_handler;
7924 	child_event->overflow_handler_context
7925 		= parent_event->overflow_handler_context;
7926 
7927 	/*
7928 	 * Precalculate sample_data sizes
7929 	 */
7930 	perf_event__header_size(child_event);
7931 	perf_event__id_header_size(child_event);
7932 
7933 	/*
7934 	 * Link it up in the child's context:
7935 	 */
7936 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7937 	add_event_to_ctx(child_event, child_ctx);
7938 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7939 
7940 	/*
7941 	 * Link this into the parent event's child list
7942 	 */
7943 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7944 	mutex_lock(&parent_event->child_mutex);
7945 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7946 	mutex_unlock(&parent_event->child_mutex);
7947 
7948 	return child_event;
7949 }
7950 
7951 static int inherit_group(struct perf_event *parent_event,
7952 	      struct task_struct *parent,
7953 	      struct perf_event_context *parent_ctx,
7954 	      struct task_struct *child,
7955 	      struct perf_event_context *child_ctx)
7956 {
7957 	struct perf_event *leader;
7958 	struct perf_event *sub;
7959 	struct perf_event *child_ctr;
7960 
7961 	leader = inherit_event(parent_event, parent, parent_ctx,
7962 				 child, NULL, child_ctx);
7963 	if (IS_ERR(leader))
7964 		return PTR_ERR(leader);
7965 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7966 		child_ctr = inherit_event(sub, parent, parent_ctx,
7967 					    child, leader, child_ctx);
7968 		if (IS_ERR(child_ctr))
7969 			return PTR_ERR(child_ctr);
7970 	}
7971 	return 0;
7972 }
7973 
7974 static int
7975 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7976 		   struct perf_event_context *parent_ctx,
7977 		   struct task_struct *child, int ctxn,
7978 		   int *inherited_all)
7979 {
7980 	int ret;
7981 	struct perf_event_context *child_ctx;
7982 
7983 	if (!event->attr.inherit) {
7984 		*inherited_all = 0;
7985 		return 0;
7986 	}
7987 
7988 	child_ctx = child->perf_event_ctxp[ctxn];
7989 	if (!child_ctx) {
7990 		/*
7991 		 * This is executed from the parent task context, so
7992 		 * inherit events that have been marked for cloning.
7993 		 * First allocate and initialize a context for the
7994 		 * child.
7995 		 */
7996 
7997 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7998 		if (!child_ctx)
7999 			return -ENOMEM;
8000 
8001 		child->perf_event_ctxp[ctxn] = child_ctx;
8002 	}
8003 
8004 	ret = inherit_group(event, parent, parent_ctx,
8005 			    child, child_ctx);
8006 
8007 	if (ret)
8008 		*inherited_all = 0;
8009 
8010 	return ret;
8011 }
8012 
8013 /*
8014  * Initialize the perf_event context in task_struct
8015  */
8016 static int perf_event_init_context(struct task_struct *child, int ctxn)
8017 {
8018 	struct perf_event_context *child_ctx, *parent_ctx;
8019 	struct perf_event_context *cloned_ctx;
8020 	struct perf_event *event;
8021 	struct task_struct *parent = current;
8022 	int inherited_all = 1;
8023 	unsigned long flags;
8024 	int ret = 0;
8025 
8026 	if (likely(!parent->perf_event_ctxp[ctxn]))
8027 		return 0;
8028 
8029 	/*
8030 	 * If the parent's context is a clone, pin it so it won't get
8031 	 * swapped under us.
8032 	 */
8033 	parent_ctx = perf_pin_task_context(parent, ctxn);
8034 	if (!parent_ctx)
8035 		return 0;
8036 
8037 	/*
8038 	 * No need to check if parent_ctx != NULL here; since we saw
8039 	 * it non-NULL earlier, the only reason for it to become NULL
8040 	 * is if we exit, and since we're currently in the middle of
8041 	 * a fork we can't be exiting at the same time.
8042 	 */
8043 
8044 	/*
8045 	 * Lock the parent list. No need to lock the child - not PID
8046 	 * hashed yet and not running, so nobody can access it.
8047 	 */
8048 	mutex_lock(&parent_ctx->mutex);
8049 
8050 	/*
8051 	 * We dont have to disable NMIs - we are only looking at
8052 	 * the list, not manipulating it:
8053 	 */
8054 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8055 		ret = inherit_task_group(event, parent, parent_ctx,
8056 					 child, ctxn, &inherited_all);
8057 		if (ret)
8058 			break;
8059 	}
8060 
8061 	/*
8062 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8063 	 * to allocations, but we need to prevent rotation because
8064 	 * rotate_ctx() will change the list from interrupt context.
8065 	 */
8066 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8067 	parent_ctx->rotate_disable = 1;
8068 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8069 
8070 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8071 		ret = inherit_task_group(event, parent, parent_ctx,
8072 					 child, ctxn, &inherited_all);
8073 		if (ret)
8074 			break;
8075 	}
8076 
8077 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8078 	parent_ctx->rotate_disable = 0;
8079 
8080 	child_ctx = child->perf_event_ctxp[ctxn];
8081 
8082 	if (child_ctx && inherited_all) {
8083 		/*
8084 		 * Mark the child context as a clone of the parent
8085 		 * context, or of whatever the parent is a clone of.
8086 		 *
8087 		 * Note that if the parent is a clone, the holding of
8088 		 * parent_ctx->lock avoids it from being uncloned.
8089 		 */
8090 		cloned_ctx = parent_ctx->parent_ctx;
8091 		if (cloned_ctx) {
8092 			child_ctx->parent_ctx = cloned_ctx;
8093 			child_ctx->parent_gen = parent_ctx->parent_gen;
8094 		} else {
8095 			child_ctx->parent_ctx = parent_ctx;
8096 			child_ctx->parent_gen = parent_ctx->generation;
8097 		}
8098 		get_ctx(child_ctx->parent_ctx);
8099 	}
8100 
8101 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8102 	mutex_unlock(&parent_ctx->mutex);
8103 
8104 	perf_unpin_context(parent_ctx);
8105 	put_ctx(parent_ctx);
8106 
8107 	return ret;
8108 }
8109 
8110 /*
8111  * Initialize the perf_event context in task_struct
8112  */
8113 int perf_event_init_task(struct task_struct *child)
8114 {
8115 	int ctxn, ret;
8116 
8117 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8118 	mutex_init(&child->perf_event_mutex);
8119 	INIT_LIST_HEAD(&child->perf_event_list);
8120 
8121 	for_each_task_context_nr(ctxn) {
8122 		ret = perf_event_init_context(child, ctxn);
8123 		if (ret) {
8124 			perf_event_free_task(child);
8125 			return ret;
8126 		}
8127 	}
8128 
8129 	return 0;
8130 }
8131 
8132 static void __init perf_event_init_all_cpus(void)
8133 {
8134 	struct swevent_htable *swhash;
8135 	int cpu;
8136 
8137 	for_each_possible_cpu(cpu) {
8138 		swhash = &per_cpu(swevent_htable, cpu);
8139 		mutex_init(&swhash->hlist_mutex);
8140 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8141 	}
8142 }
8143 
8144 static void perf_event_init_cpu(int cpu)
8145 {
8146 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8147 
8148 	mutex_lock(&swhash->hlist_mutex);
8149 	swhash->online = true;
8150 	if (swhash->hlist_refcount > 0) {
8151 		struct swevent_hlist *hlist;
8152 
8153 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8154 		WARN_ON(!hlist);
8155 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8156 	}
8157 	mutex_unlock(&swhash->hlist_mutex);
8158 }
8159 
8160 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8161 static void perf_pmu_rotate_stop(struct pmu *pmu)
8162 {
8163 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8164 
8165 	WARN_ON(!irqs_disabled());
8166 
8167 	list_del_init(&cpuctx->rotation_list);
8168 }
8169 
8170 static void __perf_event_exit_context(void *__info)
8171 {
8172 	struct remove_event re = { .detach_group = true };
8173 	struct perf_event_context *ctx = __info;
8174 
8175 	perf_pmu_rotate_stop(ctx->pmu);
8176 
8177 	rcu_read_lock();
8178 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8179 		__perf_remove_from_context(&re);
8180 	rcu_read_unlock();
8181 }
8182 
8183 static void perf_event_exit_cpu_context(int cpu)
8184 {
8185 	struct perf_event_context *ctx;
8186 	struct pmu *pmu;
8187 	int idx;
8188 
8189 	idx = srcu_read_lock(&pmus_srcu);
8190 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8191 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8192 
8193 		mutex_lock(&ctx->mutex);
8194 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8195 		mutex_unlock(&ctx->mutex);
8196 	}
8197 	srcu_read_unlock(&pmus_srcu, idx);
8198 }
8199 
8200 static void perf_event_exit_cpu(int cpu)
8201 {
8202 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8203 
8204 	perf_event_exit_cpu_context(cpu);
8205 
8206 	mutex_lock(&swhash->hlist_mutex);
8207 	swhash->online = false;
8208 	swevent_hlist_release(swhash);
8209 	mutex_unlock(&swhash->hlist_mutex);
8210 }
8211 #else
8212 static inline void perf_event_exit_cpu(int cpu) { }
8213 #endif
8214 
8215 static int
8216 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8217 {
8218 	int cpu;
8219 
8220 	for_each_online_cpu(cpu)
8221 		perf_event_exit_cpu(cpu);
8222 
8223 	return NOTIFY_OK;
8224 }
8225 
8226 /*
8227  * Run the perf reboot notifier at the very last possible moment so that
8228  * the generic watchdog code runs as long as possible.
8229  */
8230 static struct notifier_block perf_reboot_notifier = {
8231 	.notifier_call = perf_reboot,
8232 	.priority = INT_MIN,
8233 };
8234 
8235 static int
8236 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8237 {
8238 	unsigned int cpu = (long)hcpu;
8239 
8240 	switch (action & ~CPU_TASKS_FROZEN) {
8241 
8242 	case CPU_UP_PREPARE:
8243 	case CPU_DOWN_FAILED:
8244 		perf_event_init_cpu(cpu);
8245 		break;
8246 
8247 	case CPU_UP_CANCELED:
8248 	case CPU_DOWN_PREPARE:
8249 		perf_event_exit_cpu(cpu);
8250 		break;
8251 	default:
8252 		break;
8253 	}
8254 
8255 	return NOTIFY_OK;
8256 }
8257 
8258 void __init perf_event_init(void)
8259 {
8260 	int ret;
8261 
8262 	idr_init(&pmu_idr);
8263 
8264 	perf_event_init_all_cpus();
8265 	init_srcu_struct(&pmus_srcu);
8266 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8267 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8268 	perf_pmu_register(&perf_task_clock, NULL, -1);
8269 	perf_tp_register();
8270 	perf_cpu_notifier(perf_cpu_notify);
8271 	register_reboot_notifier(&perf_reboot_notifier);
8272 
8273 	ret = init_hw_breakpoint();
8274 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8275 
8276 	/* do not patch jump label more than once per second */
8277 	jump_label_rate_limit(&perf_sched_events, HZ);
8278 
8279 	/*
8280 	 * Build time assertion that we keep the data_head at the intended
8281 	 * location.  IOW, validation we got the __reserved[] size right.
8282 	 */
8283 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8284 		     != 1024);
8285 }
8286 
8287 static int __init perf_event_sysfs_init(void)
8288 {
8289 	struct pmu *pmu;
8290 	int ret;
8291 
8292 	mutex_lock(&pmus_lock);
8293 
8294 	ret = bus_register(&pmu_bus);
8295 	if (ret)
8296 		goto unlock;
8297 
8298 	list_for_each_entry(pmu, &pmus, entry) {
8299 		if (!pmu->name || pmu->type < 0)
8300 			continue;
8301 
8302 		ret = pmu_dev_alloc(pmu);
8303 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8304 	}
8305 	pmu_bus_running = 1;
8306 	ret = 0;
8307 
8308 unlock:
8309 	mutex_unlock(&pmus_lock);
8310 
8311 	return ret;
8312 }
8313 device_initcall(perf_event_sysfs_init);
8314 
8315 #ifdef CONFIG_CGROUP_PERF
8316 static struct cgroup_subsys_state *
8317 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8318 {
8319 	struct perf_cgroup *jc;
8320 
8321 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8322 	if (!jc)
8323 		return ERR_PTR(-ENOMEM);
8324 
8325 	jc->info = alloc_percpu(struct perf_cgroup_info);
8326 	if (!jc->info) {
8327 		kfree(jc);
8328 		return ERR_PTR(-ENOMEM);
8329 	}
8330 
8331 	return &jc->css;
8332 }
8333 
8334 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8335 {
8336 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8337 
8338 	free_percpu(jc->info);
8339 	kfree(jc);
8340 }
8341 
8342 static int __perf_cgroup_move(void *info)
8343 {
8344 	struct task_struct *task = info;
8345 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8346 	return 0;
8347 }
8348 
8349 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8350 			       struct cgroup_taskset *tset)
8351 {
8352 	struct task_struct *task;
8353 
8354 	cgroup_taskset_for_each(task, tset)
8355 		task_function_call(task, __perf_cgroup_move, task);
8356 }
8357 
8358 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8359 			     struct cgroup_subsys_state *old_css,
8360 			     struct task_struct *task)
8361 {
8362 	/*
8363 	 * cgroup_exit() is called in the copy_process() failure path.
8364 	 * Ignore this case since the task hasn't ran yet, this avoids
8365 	 * trying to poke a half freed task state from generic code.
8366 	 */
8367 	if (!(task->flags & PF_EXITING))
8368 		return;
8369 
8370 	task_function_call(task, __perf_cgroup_move, task);
8371 }
8372 
8373 struct cgroup_subsys perf_event_cgrp_subsys = {
8374 	.css_alloc	= perf_cgroup_css_alloc,
8375 	.css_free	= perf_cgroup_css_free,
8376 	.exit		= perf_cgroup_exit,
8377 	.attach		= perf_cgroup_attach,
8378 };
8379 #endif /* CONFIG_CGROUP_PERF */
8380