xref: /linux/kernel/events/core.c (revision 48f7ab21f731f5a02ec34a4b83ae88c4a41d6a10)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (event->attr.read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (event->attr.read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	size += entry * nr;
1841 	event->read_size = size;
1842 }
1843 
1844 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1845 {
1846 	struct perf_sample_data *data;
1847 	u16 size = 0;
1848 
1849 	if (sample_type & PERF_SAMPLE_IP)
1850 		size += sizeof(data->ip);
1851 
1852 	if (sample_type & PERF_SAMPLE_ADDR)
1853 		size += sizeof(data->addr);
1854 
1855 	if (sample_type & PERF_SAMPLE_PERIOD)
1856 		size += sizeof(data->period);
1857 
1858 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1859 		size += sizeof(data->weight.full);
1860 
1861 	if (sample_type & PERF_SAMPLE_READ)
1862 		size += event->read_size;
1863 
1864 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1865 		size += sizeof(data->data_src.val);
1866 
1867 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1868 		size += sizeof(data->txn);
1869 
1870 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1871 		size += sizeof(data->phys_addr);
1872 
1873 	if (sample_type & PERF_SAMPLE_CGROUP)
1874 		size += sizeof(data->cgroup);
1875 
1876 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1877 		size += sizeof(data->data_page_size);
1878 
1879 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1880 		size += sizeof(data->code_page_size);
1881 
1882 	event->header_size = size;
1883 }
1884 
1885 /*
1886  * Called at perf_event creation and when events are attached/detached from a
1887  * group.
1888  */
1889 static void perf_event__header_size(struct perf_event *event)
1890 {
1891 	__perf_event_read_size(event,
1892 			       event->group_leader->nr_siblings);
1893 	__perf_event_header_size(event, event->attr.sample_type);
1894 }
1895 
1896 static void perf_event__id_header_size(struct perf_event *event)
1897 {
1898 	struct perf_sample_data *data;
1899 	u64 sample_type = event->attr.sample_type;
1900 	u16 size = 0;
1901 
1902 	if (sample_type & PERF_SAMPLE_TID)
1903 		size += sizeof(data->tid_entry);
1904 
1905 	if (sample_type & PERF_SAMPLE_TIME)
1906 		size += sizeof(data->time);
1907 
1908 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1909 		size += sizeof(data->id);
1910 
1911 	if (sample_type & PERF_SAMPLE_ID)
1912 		size += sizeof(data->id);
1913 
1914 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1915 		size += sizeof(data->stream_id);
1916 
1917 	if (sample_type & PERF_SAMPLE_CPU)
1918 		size += sizeof(data->cpu_entry);
1919 
1920 	event->id_header_size = size;
1921 }
1922 
1923 static bool perf_event_validate_size(struct perf_event *event)
1924 {
1925 	/*
1926 	 * The values computed here will be over-written when we actually
1927 	 * attach the event.
1928 	 */
1929 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1930 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1931 	perf_event__id_header_size(event);
1932 
1933 	/*
1934 	 * Sum the lot; should not exceed the 64k limit we have on records.
1935 	 * Conservative limit to allow for callchains and other variable fields.
1936 	 */
1937 	if (event->read_size + event->header_size +
1938 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1939 		return false;
1940 
1941 	return true;
1942 }
1943 
1944 static void perf_group_attach(struct perf_event *event)
1945 {
1946 	struct perf_event *group_leader = event->group_leader, *pos;
1947 
1948 	lockdep_assert_held(&event->ctx->lock);
1949 
1950 	/*
1951 	 * We can have double attach due to group movement (move_group) in
1952 	 * perf_event_open().
1953 	 */
1954 	if (event->attach_state & PERF_ATTACH_GROUP)
1955 		return;
1956 
1957 	event->attach_state |= PERF_ATTACH_GROUP;
1958 
1959 	if (group_leader == event)
1960 		return;
1961 
1962 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1963 
1964 	group_leader->group_caps &= event->event_caps;
1965 
1966 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1967 	group_leader->nr_siblings++;
1968 	group_leader->group_generation++;
1969 
1970 	perf_event__header_size(group_leader);
1971 
1972 	for_each_sibling_event(pos, group_leader)
1973 		perf_event__header_size(pos);
1974 }
1975 
1976 /*
1977  * Remove an event from the lists for its context.
1978  * Must be called with ctx->mutex and ctx->lock held.
1979  */
1980 static void
1981 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1982 {
1983 	WARN_ON_ONCE(event->ctx != ctx);
1984 	lockdep_assert_held(&ctx->lock);
1985 
1986 	/*
1987 	 * We can have double detach due to exit/hot-unplug + close.
1988 	 */
1989 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1990 		return;
1991 
1992 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1993 
1994 	ctx->nr_events--;
1995 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1996 		ctx->nr_user--;
1997 	if (event->attr.inherit_stat)
1998 		ctx->nr_stat--;
1999 
2000 	list_del_rcu(&event->event_entry);
2001 
2002 	if (event->group_leader == event)
2003 		del_event_from_groups(event, ctx);
2004 
2005 	/*
2006 	 * If event was in error state, then keep it
2007 	 * that way, otherwise bogus counts will be
2008 	 * returned on read(). The only way to get out
2009 	 * of error state is by explicit re-enabling
2010 	 * of the event
2011 	 */
2012 	if (event->state > PERF_EVENT_STATE_OFF) {
2013 		perf_cgroup_event_disable(event, ctx);
2014 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2015 	}
2016 
2017 	ctx->generation++;
2018 	event->pmu_ctx->nr_events--;
2019 }
2020 
2021 static int
2022 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2023 {
2024 	if (!has_aux(aux_event))
2025 		return 0;
2026 
2027 	if (!event->pmu->aux_output_match)
2028 		return 0;
2029 
2030 	return event->pmu->aux_output_match(aux_event);
2031 }
2032 
2033 static void put_event(struct perf_event *event);
2034 static void event_sched_out(struct perf_event *event,
2035 			    struct perf_event_context *ctx);
2036 
2037 static void perf_put_aux_event(struct perf_event *event)
2038 {
2039 	struct perf_event_context *ctx = event->ctx;
2040 	struct perf_event *iter;
2041 
2042 	/*
2043 	 * If event uses aux_event tear down the link
2044 	 */
2045 	if (event->aux_event) {
2046 		iter = event->aux_event;
2047 		event->aux_event = NULL;
2048 		put_event(iter);
2049 		return;
2050 	}
2051 
2052 	/*
2053 	 * If the event is an aux_event, tear down all links to
2054 	 * it from other events.
2055 	 */
2056 	for_each_sibling_event(iter, event->group_leader) {
2057 		if (iter->aux_event != event)
2058 			continue;
2059 
2060 		iter->aux_event = NULL;
2061 		put_event(event);
2062 
2063 		/*
2064 		 * If it's ACTIVE, schedule it out and put it into ERROR
2065 		 * state so that we don't try to schedule it again. Note
2066 		 * that perf_event_enable() will clear the ERROR status.
2067 		 */
2068 		event_sched_out(iter, ctx);
2069 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2070 	}
2071 }
2072 
2073 static bool perf_need_aux_event(struct perf_event *event)
2074 {
2075 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2076 }
2077 
2078 static int perf_get_aux_event(struct perf_event *event,
2079 			      struct perf_event *group_leader)
2080 {
2081 	/*
2082 	 * Our group leader must be an aux event if we want to be
2083 	 * an aux_output. This way, the aux event will precede its
2084 	 * aux_output events in the group, and therefore will always
2085 	 * schedule first.
2086 	 */
2087 	if (!group_leader)
2088 		return 0;
2089 
2090 	/*
2091 	 * aux_output and aux_sample_size are mutually exclusive.
2092 	 */
2093 	if (event->attr.aux_output && event->attr.aux_sample_size)
2094 		return 0;
2095 
2096 	if (event->attr.aux_output &&
2097 	    !perf_aux_output_match(event, group_leader))
2098 		return 0;
2099 
2100 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2101 		return 0;
2102 
2103 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2104 		return 0;
2105 
2106 	/*
2107 	 * Link aux_outputs to their aux event; this is undone in
2108 	 * perf_group_detach() by perf_put_aux_event(). When the
2109 	 * group in torn down, the aux_output events loose their
2110 	 * link to the aux_event and can't schedule any more.
2111 	 */
2112 	event->aux_event = group_leader;
2113 
2114 	return 1;
2115 }
2116 
2117 static inline struct list_head *get_event_list(struct perf_event *event)
2118 {
2119 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2120 				    &event->pmu_ctx->flexible_active;
2121 }
2122 
2123 /*
2124  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2125  * cannot exist on their own, schedule them out and move them into the ERROR
2126  * state. Also see _perf_event_enable(), it will not be able to recover
2127  * this ERROR state.
2128  */
2129 static inline void perf_remove_sibling_event(struct perf_event *event)
2130 {
2131 	event_sched_out(event, event->ctx);
2132 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2133 }
2134 
2135 static void perf_group_detach(struct perf_event *event)
2136 {
2137 	struct perf_event *leader = event->group_leader;
2138 	struct perf_event *sibling, *tmp;
2139 	struct perf_event_context *ctx = event->ctx;
2140 
2141 	lockdep_assert_held(&ctx->lock);
2142 
2143 	/*
2144 	 * We can have double detach due to exit/hot-unplug + close.
2145 	 */
2146 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2147 		return;
2148 
2149 	event->attach_state &= ~PERF_ATTACH_GROUP;
2150 
2151 	perf_put_aux_event(event);
2152 
2153 	/*
2154 	 * If this is a sibling, remove it from its group.
2155 	 */
2156 	if (leader != event) {
2157 		list_del_init(&event->sibling_list);
2158 		event->group_leader->nr_siblings--;
2159 		event->group_leader->group_generation++;
2160 		goto out;
2161 	}
2162 
2163 	/*
2164 	 * If this was a group event with sibling events then
2165 	 * upgrade the siblings to singleton events by adding them
2166 	 * to whatever list we are on.
2167 	 */
2168 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2169 
2170 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2171 			perf_remove_sibling_event(sibling);
2172 
2173 		sibling->group_leader = sibling;
2174 		list_del_init(&sibling->sibling_list);
2175 
2176 		/* Inherit group flags from the previous leader */
2177 		sibling->group_caps = event->group_caps;
2178 
2179 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2180 			add_event_to_groups(sibling, event->ctx);
2181 
2182 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2183 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2184 		}
2185 
2186 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2187 	}
2188 
2189 out:
2190 	for_each_sibling_event(tmp, leader)
2191 		perf_event__header_size(tmp);
2192 
2193 	perf_event__header_size(leader);
2194 }
2195 
2196 static void sync_child_event(struct perf_event *child_event);
2197 
2198 static void perf_child_detach(struct perf_event *event)
2199 {
2200 	struct perf_event *parent_event = event->parent;
2201 
2202 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2203 		return;
2204 
2205 	event->attach_state &= ~PERF_ATTACH_CHILD;
2206 
2207 	if (WARN_ON_ONCE(!parent_event))
2208 		return;
2209 
2210 	lockdep_assert_held(&parent_event->child_mutex);
2211 
2212 	sync_child_event(event);
2213 	list_del_init(&event->child_list);
2214 }
2215 
2216 static bool is_orphaned_event(struct perf_event *event)
2217 {
2218 	return event->state == PERF_EVENT_STATE_DEAD;
2219 }
2220 
2221 static inline int
2222 event_filter_match(struct perf_event *event)
2223 {
2224 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2225 	       perf_cgroup_match(event);
2226 }
2227 
2228 static void
2229 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2230 {
2231 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2232 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2233 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2234 
2235 	// XXX cpc serialization, probably per-cpu IRQ disabled
2236 
2237 	WARN_ON_ONCE(event->ctx != ctx);
2238 	lockdep_assert_held(&ctx->lock);
2239 
2240 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2241 		return;
2242 
2243 	/*
2244 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2245 	 * we can schedule events _OUT_ individually through things like
2246 	 * __perf_remove_from_context().
2247 	 */
2248 	list_del_init(&event->active_list);
2249 
2250 	perf_pmu_disable(event->pmu);
2251 
2252 	event->pmu->del(event, 0);
2253 	event->oncpu = -1;
2254 
2255 	if (event->pending_disable) {
2256 		event->pending_disable = 0;
2257 		perf_cgroup_event_disable(event, ctx);
2258 		state = PERF_EVENT_STATE_OFF;
2259 	}
2260 
2261 	if (event->pending_sigtrap) {
2262 		bool dec = true;
2263 
2264 		event->pending_sigtrap = 0;
2265 		if (state != PERF_EVENT_STATE_OFF &&
2266 		    !event->pending_work) {
2267 			event->pending_work = 1;
2268 			dec = false;
2269 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2270 			task_work_add(current, &event->pending_task, TWA_RESUME);
2271 		}
2272 		if (dec)
2273 			local_dec(&event->ctx->nr_pending);
2274 	}
2275 
2276 	perf_event_set_state(event, state);
2277 
2278 	if (!is_software_event(event))
2279 		cpc->active_oncpu--;
2280 	if (event->attr.freq && event->attr.sample_freq)
2281 		ctx->nr_freq--;
2282 	if (event->attr.exclusive || !cpc->active_oncpu)
2283 		cpc->exclusive = 0;
2284 
2285 	perf_pmu_enable(event->pmu);
2286 }
2287 
2288 static void
2289 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2290 {
2291 	struct perf_event *event;
2292 
2293 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2294 		return;
2295 
2296 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2297 
2298 	event_sched_out(group_event, ctx);
2299 
2300 	/*
2301 	 * Schedule out siblings (if any):
2302 	 */
2303 	for_each_sibling_event(event, group_event)
2304 		event_sched_out(event, ctx);
2305 }
2306 
2307 #define DETACH_GROUP	0x01UL
2308 #define DETACH_CHILD	0x02UL
2309 #define DETACH_DEAD	0x04UL
2310 
2311 /*
2312  * Cross CPU call to remove a performance event
2313  *
2314  * We disable the event on the hardware level first. After that we
2315  * remove it from the context list.
2316  */
2317 static void
2318 __perf_remove_from_context(struct perf_event *event,
2319 			   struct perf_cpu_context *cpuctx,
2320 			   struct perf_event_context *ctx,
2321 			   void *info)
2322 {
2323 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2324 	unsigned long flags = (unsigned long)info;
2325 
2326 	if (ctx->is_active & EVENT_TIME) {
2327 		update_context_time(ctx);
2328 		update_cgrp_time_from_cpuctx(cpuctx, false);
2329 	}
2330 
2331 	/*
2332 	 * Ensure event_sched_out() switches to OFF, at the very least
2333 	 * this avoids raising perf_pending_task() at this time.
2334 	 */
2335 	if (flags & DETACH_DEAD)
2336 		event->pending_disable = 1;
2337 	event_sched_out(event, ctx);
2338 	if (flags & DETACH_GROUP)
2339 		perf_group_detach(event);
2340 	if (flags & DETACH_CHILD)
2341 		perf_child_detach(event);
2342 	list_del_event(event, ctx);
2343 	if (flags & DETACH_DEAD)
2344 		event->state = PERF_EVENT_STATE_DEAD;
2345 
2346 	if (!pmu_ctx->nr_events) {
2347 		pmu_ctx->rotate_necessary = 0;
2348 
2349 		if (ctx->task && ctx->is_active) {
2350 			struct perf_cpu_pmu_context *cpc;
2351 
2352 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2353 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2354 			cpc->task_epc = NULL;
2355 		}
2356 	}
2357 
2358 	if (!ctx->nr_events && ctx->is_active) {
2359 		if (ctx == &cpuctx->ctx)
2360 			update_cgrp_time_from_cpuctx(cpuctx, true);
2361 
2362 		ctx->is_active = 0;
2363 		if (ctx->task) {
2364 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2365 			cpuctx->task_ctx = NULL;
2366 		}
2367 	}
2368 }
2369 
2370 /*
2371  * Remove the event from a task's (or a CPU's) list of events.
2372  *
2373  * If event->ctx is a cloned context, callers must make sure that
2374  * every task struct that event->ctx->task could possibly point to
2375  * remains valid.  This is OK when called from perf_release since
2376  * that only calls us on the top-level context, which can't be a clone.
2377  * When called from perf_event_exit_task, it's OK because the
2378  * context has been detached from its task.
2379  */
2380 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2381 {
2382 	struct perf_event_context *ctx = event->ctx;
2383 
2384 	lockdep_assert_held(&ctx->mutex);
2385 
2386 	/*
2387 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2388 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2389 	 * event_function_call() user.
2390 	 */
2391 	raw_spin_lock_irq(&ctx->lock);
2392 	if (!ctx->is_active) {
2393 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2394 					   ctx, (void *)flags);
2395 		raw_spin_unlock_irq(&ctx->lock);
2396 		return;
2397 	}
2398 	raw_spin_unlock_irq(&ctx->lock);
2399 
2400 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2401 }
2402 
2403 /*
2404  * Cross CPU call to disable a performance event
2405  */
2406 static void __perf_event_disable(struct perf_event *event,
2407 				 struct perf_cpu_context *cpuctx,
2408 				 struct perf_event_context *ctx,
2409 				 void *info)
2410 {
2411 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2412 		return;
2413 
2414 	if (ctx->is_active & EVENT_TIME) {
2415 		update_context_time(ctx);
2416 		update_cgrp_time_from_event(event);
2417 	}
2418 
2419 	perf_pmu_disable(event->pmu_ctx->pmu);
2420 
2421 	if (event == event->group_leader)
2422 		group_sched_out(event, ctx);
2423 	else
2424 		event_sched_out(event, ctx);
2425 
2426 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2427 	perf_cgroup_event_disable(event, ctx);
2428 
2429 	perf_pmu_enable(event->pmu_ctx->pmu);
2430 }
2431 
2432 /*
2433  * Disable an event.
2434  *
2435  * If event->ctx is a cloned context, callers must make sure that
2436  * every task struct that event->ctx->task could possibly point to
2437  * remains valid.  This condition is satisfied when called through
2438  * perf_event_for_each_child or perf_event_for_each because they
2439  * hold the top-level event's child_mutex, so any descendant that
2440  * goes to exit will block in perf_event_exit_event().
2441  *
2442  * When called from perf_pending_irq it's OK because event->ctx
2443  * is the current context on this CPU and preemption is disabled,
2444  * hence we can't get into perf_event_task_sched_out for this context.
2445  */
2446 static void _perf_event_disable(struct perf_event *event)
2447 {
2448 	struct perf_event_context *ctx = event->ctx;
2449 
2450 	raw_spin_lock_irq(&ctx->lock);
2451 	if (event->state <= PERF_EVENT_STATE_OFF) {
2452 		raw_spin_unlock_irq(&ctx->lock);
2453 		return;
2454 	}
2455 	raw_spin_unlock_irq(&ctx->lock);
2456 
2457 	event_function_call(event, __perf_event_disable, NULL);
2458 }
2459 
2460 void perf_event_disable_local(struct perf_event *event)
2461 {
2462 	event_function_local(event, __perf_event_disable, NULL);
2463 }
2464 
2465 /*
2466  * Strictly speaking kernel users cannot create groups and therefore this
2467  * interface does not need the perf_event_ctx_lock() magic.
2468  */
2469 void perf_event_disable(struct perf_event *event)
2470 {
2471 	struct perf_event_context *ctx;
2472 
2473 	ctx = perf_event_ctx_lock(event);
2474 	_perf_event_disable(event);
2475 	perf_event_ctx_unlock(event, ctx);
2476 }
2477 EXPORT_SYMBOL_GPL(perf_event_disable);
2478 
2479 void perf_event_disable_inatomic(struct perf_event *event)
2480 {
2481 	event->pending_disable = 1;
2482 	irq_work_queue(&event->pending_irq);
2483 }
2484 
2485 #define MAX_INTERRUPTS (~0ULL)
2486 
2487 static void perf_log_throttle(struct perf_event *event, int enable);
2488 static void perf_log_itrace_start(struct perf_event *event);
2489 
2490 static int
2491 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2492 {
2493 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2494 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2495 	int ret = 0;
2496 
2497 	WARN_ON_ONCE(event->ctx != ctx);
2498 
2499 	lockdep_assert_held(&ctx->lock);
2500 
2501 	if (event->state <= PERF_EVENT_STATE_OFF)
2502 		return 0;
2503 
2504 	WRITE_ONCE(event->oncpu, smp_processor_id());
2505 	/*
2506 	 * Order event::oncpu write to happen before the ACTIVE state is
2507 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2508 	 * ->oncpu if it sees ACTIVE.
2509 	 */
2510 	smp_wmb();
2511 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2512 
2513 	/*
2514 	 * Unthrottle events, since we scheduled we might have missed several
2515 	 * ticks already, also for a heavily scheduling task there is little
2516 	 * guarantee it'll get a tick in a timely manner.
2517 	 */
2518 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2519 		perf_log_throttle(event, 1);
2520 		event->hw.interrupts = 0;
2521 	}
2522 
2523 	perf_pmu_disable(event->pmu);
2524 
2525 	perf_log_itrace_start(event);
2526 
2527 	if (event->pmu->add(event, PERF_EF_START)) {
2528 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2529 		event->oncpu = -1;
2530 		ret = -EAGAIN;
2531 		goto out;
2532 	}
2533 
2534 	if (!is_software_event(event))
2535 		cpc->active_oncpu++;
2536 	if (event->attr.freq && event->attr.sample_freq)
2537 		ctx->nr_freq++;
2538 
2539 	if (event->attr.exclusive)
2540 		cpc->exclusive = 1;
2541 
2542 out:
2543 	perf_pmu_enable(event->pmu);
2544 
2545 	return ret;
2546 }
2547 
2548 static int
2549 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2550 {
2551 	struct perf_event *event, *partial_group = NULL;
2552 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2553 
2554 	if (group_event->state == PERF_EVENT_STATE_OFF)
2555 		return 0;
2556 
2557 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2558 
2559 	if (event_sched_in(group_event, ctx))
2560 		goto error;
2561 
2562 	/*
2563 	 * Schedule in siblings as one group (if any):
2564 	 */
2565 	for_each_sibling_event(event, group_event) {
2566 		if (event_sched_in(event, ctx)) {
2567 			partial_group = event;
2568 			goto group_error;
2569 		}
2570 	}
2571 
2572 	if (!pmu->commit_txn(pmu))
2573 		return 0;
2574 
2575 group_error:
2576 	/*
2577 	 * Groups can be scheduled in as one unit only, so undo any
2578 	 * partial group before returning:
2579 	 * The events up to the failed event are scheduled out normally.
2580 	 */
2581 	for_each_sibling_event(event, group_event) {
2582 		if (event == partial_group)
2583 			break;
2584 
2585 		event_sched_out(event, ctx);
2586 	}
2587 	event_sched_out(group_event, ctx);
2588 
2589 error:
2590 	pmu->cancel_txn(pmu);
2591 	return -EAGAIN;
2592 }
2593 
2594 /*
2595  * Work out whether we can put this event group on the CPU now.
2596  */
2597 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2598 {
2599 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2600 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2601 
2602 	/*
2603 	 * Groups consisting entirely of software events can always go on.
2604 	 */
2605 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2606 		return 1;
2607 	/*
2608 	 * If an exclusive group is already on, no other hardware
2609 	 * events can go on.
2610 	 */
2611 	if (cpc->exclusive)
2612 		return 0;
2613 	/*
2614 	 * If this group is exclusive and there are already
2615 	 * events on the CPU, it can't go on.
2616 	 */
2617 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2618 		return 0;
2619 	/*
2620 	 * Otherwise, try to add it if all previous groups were able
2621 	 * to go on.
2622 	 */
2623 	return can_add_hw;
2624 }
2625 
2626 static void add_event_to_ctx(struct perf_event *event,
2627 			       struct perf_event_context *ctx)
2628 {
2629 	list_add_event(event, ctx);
2630 	perf_group_attach(event);
2631 }
2632 
2633 static void task_ctx_sched_out(struct perf_event_context *ctx,
2634 				enum event_type_t event_type)
2635 {
2636 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2637 
2638 	if (!cpuctx->task_ctx)
2639 		return;
2640 
2641 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2642 		return;
2643 
2644 	ctx_sched_out(ctx, event_type);
2645 }
2646 
2647 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2648 				struct perf_event_context *ctx)
2649 {
2650 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2651 	if (ctx)
2652 		 ctx_sched_in(ctx, EVENT_PINNED);
2653 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2654 	if (ctx)
2655 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2656 }
2657 
2658 /*
2659  * We want to maintain the following priority of scheduling:
2660  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2661  *  - task pinned (EVENT_PINNED)
2662  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2663  *  - task flexible (EVENT_FLEXIBLE).
2664  *
2665  * In order to avoid unscheduling and scheduling back in everything every
2666  * time an event is added, only do it for the groups of equal priority and
2667  * below.
2668  *
2669  * This can be called after a batch operation on task events, in which case
2670  * event_type is a bit mask of the types of events involved. For CPU events,
2671  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2672  */
2673 /*
2674  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2675  * event to the context or enabling existing event in the context. We can
2676  * probably optimize it by rescheduling only affected pmu_ctx.
2677  */
2678 static void ctx_resched(struct perf_cpu_context *cpuctx,
2679 			struct perf_event_context *task_ctx,
2680 			enum event_type_t event_type)
2681 {
2682 	bool cpu_event = !!(event_type & EVENT_CPU);
2683 
2684 	/*
2685 	 * If pinned groups are involved, flexible groups also need to be
2686 	 * scheduled out.
2687 	 */
2688 	if (event_type & EVENT_PINNED)
2689 		event_type |= EVENT_FLEXIBLE;
2690 
2691 	event_type &= EVENT_ALL;
2692 
2693 	perf_ctx_disable(&cpuctx->ctx, false);
2694 	if (task_ctx) {
2695 		perf_ctx_disable(task_ctx, false);
2696 		task_ctx_sched_out(task_ctx, event_type);
2697 	}
2698 
2699 	/*
2700 	 * Decide which cpu ctx groups to schedule out based on the types
2701 	 * of events that caused rescheduling:
2702 	 *  - EVENT_CPU: schedule out corresponding groups;
2703 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2704 	 *  - otherwise, do nothing more.
2705 	 */
2706 	if (cpu_event)
2707 		ctx_sched_out(&cpuctx->ctx, event_type);
2708 	else if (event_type & EVENT_PINNED)
2709 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2710 
2711 	perf_event_sched_in(cpuctx, task_ctx);
2712 
2713 	perf_ctx_enable(&cpuctx->ctx, false);
2714 	if (task_ctx)
2715 		perf_ctx_enable(task_ctx, false);
2716 }
2717 
2718 void perf_pmu_resched(struct pmu *pmu)
2719 {
2720 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2721 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2722 
2723 	perf_ctx_lock(cpuctx, task_ctx);
2724 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2725 	perf_ctx_unlock(cpuctx, task_ctx);
2726 }
2727 
2728 /*
2729  * Cross CPU call to install and enable a performance event
2730  *
2731  * Very similar to remote_function() + event_function() but cannot assume that
2732  * things like ctx->is_active and cpuctx->task_ctx are set.
2733  */
2734 static int  __perf_install_in_context(void *info)
2735 {
2736 	struct perf_event *event = info;
2737 	struct perf_event_context *ctx = event->ctx;
2738 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2739 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2740 	bool reprogram = true;
2741 	int ret = 0;
2742 
2743 	raw_spin_lock(&cpuctx->ctx.lock);
2744 	if (ctx->task) {
2745 		raw_spin_lock(&ctx->lock);
2746 		task_ctx = ctx;
2747 
2748 		reprogram = (ctx->task == current);
2749 
2750 		/*
2751 		 * If the task is running, it must be running on this CPU,
2752 		 * otherwise we cannot reprogram things.
2753 		 *
2754 		 * If its not running, we don't care, ctx->lock will
2755 		 * serialize against it becoming runnable.
2756 		 */
2757 		if (task_curr(ctx->task) && !reprogram) {
2758 			ret = -ESRCH;
2759 			goto unlock;
2760 		}
2761 
2762 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2763 	} else if (task_ctx) {
2764 		raw_spin_lock(&task_ctx->lock);
2765 	}
2766 
2767 #ifdef CONFIG_CGROUP_PERF
2768 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2769 		/*
2770 		 * If the current cgroup doesn't match the event's
2771 		 * cgroup, we should not try to schedule it.
2772 		 */
2773 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2774 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2775 					event->cgrp->css.cgroup);
2776 	}
2777 #endif
2778 
2779 	if (reprogram) {
2780 		ctx_sched_out(ctx, EVENT_TIME);
2781 		add_event_to_ctx(event, ctx);
2782 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2783 	} else {
2784 		add_event_to_ctx(event, ctx);
2785 	}
2786 
2787 unlock:
2788 	perf_ctx_unlock(cpuctx, task_ctx);
2789 
2790 	return ret;
2791 }
2792 
2793 static bool exclusive_event_installable(struct perf_event *event,
2794 					struct perf_event_context *ctx);
2795 
2796 /*
2797  * Attach a performance event to a context.
2798  *
2799  * Very similar to event_function_call, see comment there.
2800  */
2801 static void
2802 perf_install_in_context(struct perf_event_context *ctx,
2803 			struct perf_event *event,
2804 			int cpu)
2805 {
2806 	struct task_struct *task = READ_ONCE(ctx->task);
2807 
2808 	lockdep_assert_held(&ctx->mutex);
2809 
2810 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2811 
2812 	if (event->cpu != -1)
2813 		WARN_ON_ONCE(event->cpu != cpu);
2814 
2815 	/*
2816 	 * Ensures that if we can observe event->ctx, both the event and ctx
2817 	 * will be 'complete'. See perf_iterate_sb_cpu().
2818 	 */
2819 	smp_store_release(&event->ctx, ctx);
2820 
2821 	/*
2822 	 * perf_event_attr::disabled events will not run and can be initialized
2823 	 * without IPI. Except when this is the first event for the context, in
2824 	 * that case we need the magic of the IPI to set ctx->is_active.
2825 	 *
2826 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2827 	 * event will issue the IPI and reprogram the hardware.
2828 	 */
2829 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2830 	    ctx->nr_events && !is_cgroup_event(event)) {
2831 		raw_spin_lock_irq(&ctx->lock);
2832 		if (ctx->task == TASK_TOMBSTONE) {
2833 			raw_spin_unlock_irq(&ctx->lock);
2834 			return;
2835 		}
2836 		add_event_to_ctx(event, ctx);
2837 		raw_spin_unlock_irq(&ctx->lock);
2838 		return;
2839 	}
2840 
2841 	if (!task) {
2842 		cpu_function_call(cpu, __perf_install_in_context, event);
2843 		return;
2844 	}
2845 
2846 	/*
2847 	 * Should not happen, we validate the ctx is still alive before calling.
2848 	 */
2849 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2850 		return;
2851 
2852 	/*
2853 	 * Installing events is tricky because we cannot rely on ctx->is_active
2854 	 * to be set in case this is the nr_events 0 -> 1 transition.
2855 	 *
2856 	 * Instead we use task_curr(), which tells us if the task is running.
2857 	 * However, since we use task_curr() outside of rq::lock, we can race
2858 	 * against the actual state. This means the result can be wrong.
2859 	 *
2860 	 * If we get a false positive, we retry, this is harmless.
2861 	 *
2862 	 * If we get a false negative, things are complicated. If we are after
2863 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2864 	 * value must be correct. If we're before, it doesn't matter since
2865 	 * perf_event_context_sched_in() will program the counter.
2866 	 *
2867 	 * However, this hinges on the remote context switch having observed
2868 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2869 	 * ctx::lock in perf_event_context_sched_in().
2870 	 *
2871 	 * We do this by task_function_call(), if the IPI fails to hit the task
2872 	 * we know any future context switch of task must see the
2873 	 * perf_event_ctpx[] store.
2874 	 */
2875 
2876 	/*
2877 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2878 	 * task_cpu() load, such that if the IPI then does not find the task
2879 	 * running, a future context switch of that task must observe the
2880 	 * store.
2881 	 */
2882 	smp_mb();
2883 again:
2884 	if (!task_function_call(task, __perf_install_in_context, event))
2885 		return;
2886 
2887 	raw_spin_lock_irq(&ctx->lock);
2888 	task = ctx->task;
2889 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2890 		/*
2891 		 * Cannot happen because we already checked above (which also
2892 		 * cannot happen), and we hold ctx->mutex, which serializes us
2893 		 * against perf_event_exit_task_context().
2894 		 */
2895 		raw_spin_unlock_irq(&ctx->lock);
2896 		return;
2897 	}
2898 	/*
2899 	 * If the task is not running, ctx->lock will avoid it becoming so,
2900 	 * thus we can safely install the event.
2901 	 */
2902 	if (task_curr(task)) {
2903 		raw_spin_unlock_irq(&ctx->lock);
2904 		goto again;
2905 	}
2906 	add_event_to_ctx(event, ctx);
2907 	raw_spin_unlock_irq(&ctx->lock);
2908 }
2909 
2910 /*
2911  * Cross CPU call to enable a performance event
2912  */
2913 static void __perf_event_enable(struct perf_event *event,
2914 				struct perf_cpu_context *cpuctx,
2915 				struct perf_event_context *ctx,
2916 				void *info)
2917 {
2918 	struct perf_event *leader = event->group_leader;
2919 	struct perf_event_context *task_ctx;
2920 
2921 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2922 	    event->state <= PERF_EVENT_STATE_ERROR)
2923 		return;
2924 
2925 	if (ctx->is_active)
2926 		ctx_sched_out(ctx, EVENT_TIME);
2927 
2928 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2929 	perf_cgroup_event_enable(event, ctx);
2930 
2931 	if (!ctx->is_active)
2932 		return;
2933 
2934 	if (!event_filter_match(event)) {
2935 		ctx_sched_in(ctx, EVENT_TIME);
2936 		return;
2937 	}
2938 
2939 	/*
2940 	 * If the event is in a group and isn't the group leader,
2941 	 * then don't put it on unless the group is on.
2942 	 */
2943 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2944 		ctx_sched_in(ctx, EVENT_TIME);
2945 		return;
2946 	}
2947 
2948 	task_ctx = cpuctx->task_ctx;
2949 	if (ctx->task)
2950 		WARN_ON_ONCE(task_ctx != ctx);
2951 
2952 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2953 }
2954 
2955 /*
2956  * Enable an event.
2957  *
2958  * If event->ctx is a cloned context, callers must make sure that
2959  * every task struct that event->ctx->task could possibly point to
2960  * remains valid.  This condition is satisfied when called through
2961  * perf_event_for_each_child or perf_event_for_each as described
2962  * for perf_event_disable.
2963  */
2964 static void _perf_event_enable(struct perf_event *event)
2965 {
2966 	struct perf_event_context *ctx = event->ctx;
2967 
2968 	raw_spin_lock_irq(&ctx->lock);
2969 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2970 	    event->state <  PERF_EVENT_STATE_ERROR) {
2971 out:
2972 		raw_spin_unlock_irq(&ctx->lock);
2973 		return;
2974 	}
2975 
2976 	/*
2977 	 * If the event is in error state, clear that first.
2978 	 *
2979 	 * That way, if we see the event in error state below, we know that it
2980 	 * has gone back into error state, as distinct from the task having
2981 	 * been scheduled away before the cross-call arrived.
2982 	 */
2983 	if (event->state == PERF_EVENT_STATE_ERROR) {
2984 		/*
2985 		 * Detached SIBLING events cannot leave ERROR state.
2986 		 */
2987 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
2988 		    event->group_leader == event)
2989 			goto out;
2990 
2991 		event->state = PERF_EVENT_STATE_OFF;
2992 	}
2993 	raw_spin_unlock_irq(&ctx->lock);
2994 
2995 	event_function_call(event, __perf_event_enable, NULL);
2996 }
2997 
2998 /*
2999  * See perf_event_disable();
3000  */
3001 void perf_event_enable(struct perf_event *event)
3002 {
3003 	struct perf_event_context *ctx;
3004 
3005 	ctx = perf_event_ctx_lock(event);
3006 	_perf_event_enable(event);
3007 	perf_event_ctx_unlock(event, ctx);
3008 }
3009 EXPORT_SYMBOL_GPL(perf_event_enable);
3010 
3011 struct stop_event_data {
3012 	struct perf_event	*event;
3013 	unsigned int		restart;
3014 };
3015 
3016 static int __perf_event_stop(void *info)
3017 {
3018 	struct stop_event_data *sd = info;
3019 	struct perf_event *event = sd->event;
3020 
3021 	/* if it's already INACTIVE, do nothing */
3022 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3023 		return 0;
3024 
3025 	/* matches smp_wmb() in event_sched_in() */
3026 	smp_rmb();
3027 
3028 	/*
3029 	 * There is a window with interrupts enabled before we get here,
3030 	 * so we need to check again lest we try to stop another CPU's event.
3031 	 */
3032 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3033 		return -EAGAIN;
3034 
3035 	event->pmu->stop(event, PERF_EF_UPDATE);
3036 
3037 	/*
3038 	 * May race with the actual stop (through perf_pmu_output_stop()),
3039 	 * but it is only used for events with AUX ring buffer, and such
3040 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3041 	 * see comments in perf_aux_output_begin().
3042 	 *
3043 	 * Since this is happening on an event-local CPU, no trace is lost
3044 	 * while restarting.
3045 	 */
3046 	if (sd->restart)
3047 		event->pmu->start(event, 0);
3048 
3049 	return 0;
3050 }
3051 
3052 static int perf_event_stop(struct perf_event *event, int restart)
3053 {
3054 	struct stop_event_data sd = {
3055 		.event		= event,
3056 		.restart	= restart,
3057 	};
3058 	int ret = 0;
3059 
3060 	do {
3061 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3062 			return 0;
3063 
3064 		/* matches smp_wmb() in event_sched_in() */
3065 		smp_rmb();
3066 
3067 		/*
3068 		 * We only want to restart ACTIVE events, so if the event goes
3069 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3070 		 * fall through with ret==-ENXIO.
3071 		 */
3072 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3073 					__perf_event_stop, &sd);
3074 	} while (ret == -EAGAIN);
3075 
3076 	return ret;
3077 }
3078 
3079 /*
3080  * In order to contain the amount of racy and tricky in the address filter
3081  * configuration management, it is a two part process:
3082  *
3083  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3084  *      we update the addresses of corresponding vmas in
3085  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3086  * (p2) when an event is scheduled in (pmu::add), it calls
3087  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3088  *      if the generation has changed since the previous call.
3089  *
3090  * If (p1) happens while the event is active, we restart it to force (p2).
3091  *
3092  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3093  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3094  *     ioctl;
3095  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3096  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3097  *     for reading;
3098  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3099  *     of exec.
3100  */
3101 void perf_event_addr_filters_sync(struct perf_event *event)
3102 {
3103 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3104 
3105 	if (!has_addr_filter(event))
3106 		return;
3107 
3108 	raw_spin_lock(&ifh->lock);
3109 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3110 		event->pmu->addr_filters_sync(event);
3111 		event->hw.addr_filters_gen = event->addr_filters_gen;
3112 	}
3113 	raw_spin_unlock(&ifh->lock);
3114 }
3115 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3116 
3117 static int _perf_event_refresh(struct perf_event *event, int refresh)
3118 {
3119 	/*
3120 	 * not supported on inherited events
3121 	 */
3122 	if (event->attr.inherit || !is_sampling_event(event))
3123 		return -EINVAL;
3124 
3125 	atomic_add(refresh, &event->event_limit);
3126 	_perf_event_enable(event);
3127 
3128 	return 0;
3129 }
3130 
3131 /*
3132  * See perf_event_disable()
3133  */
3134 int perf_event_refresh(struct perf_event *event, int refresh)
3135 {
3136 	struct perf_event_context *ctx;
3137 	int ret;
3138 
3139 	ctx = perf_event_ctx_lock(event);
3140 	ret = _perf_event_refresh(event, refresh);
3141 	perf_event_ctx_unlock(event, ctx);
3142 
3143 	return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(perf_event_refresh);
3146 
3147 static int perf_event_modify_breakpoint(struct perf_event *bp,
3148 					 struct perf_event_attr *attr)
3149 {
3150 	int err;
3151 
3152 	_perf_event_disable(bp);
3153 
3154 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3155 
3156 	if (!bp->attr.disabled)
3157 		_perf_event_enable(bp);
3158 
3159 	return err;
3160 }
3161 
3162 /*
3163  * Copy event-type-independent attributes that may be modified.
3164  */
3165 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3166 					const struct perf_event_attr *from)
3167 {
3168 	to->sig_data = from->sig_data;
3169 }
3170 
3171 static int perf_event_modify_attr(struct perf_event *event,
3172 				  struct perf_event_attr *attr)
3173 {
3174 	int (*func)(struct perf_event *, struct perf_event_attr *);
3175 	struct perf_event *child;
3176 	int err;
3177 
3178 	if (event->attr.type != attr->type)
3179 		return -EINVAL;
3180 
3181 	switch (event->attr.type) {
3182 	case PERF_TYPE_BREAKPOINT:
3183 		func = perf_event_modify_breakpoint;
3184 		break;
3185 	default:
3186 		/* Place holder for future additions. */
3187 		return -EOPNOTSUPP;
3188 	}
3189 
3190 	WARN_ON_ONCE(event->ctx->parent_ctx);
3191 
3192 	mutex_lock(&event->child_mutex);
3193 	/*
3194 	 * Event-type-independent attributes must be copied before event-type
3195 	 * modification, which will validate that final attributes match the
3196 	 * source attributes after all relevant attributes have been copied.
3197 	 */
3198 	perf_event_modify_copy_attr(&event->attr, attr);
3199 	err = func(event, attr);
3200 	if (err)
3201 		goto out;
3202 	list_for_each_entry(child, &event->child_list, child_list) {
3203 		perf_event_modify_copy_attr(&child->attr, attr);
3204 		err = func(child, attr);
3205 		if (err)
3206 			goto out;
3207 	}
3208 out:
3209 	mutex_unlock(&event->child_mutex);
3210 	return err;
3211 }
3212 
3213 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3214 				enum event_type_t event_type)
3215 {
3216 	struct perf_event_context *ctx = pmu_ctx->ctx;
3217 	struct perf_event *event, *tmp;
3218 	struct pmu *pmu = pmu_ctx->pmu;
3219 
3220 	if (ctx->task && !ctx->is_active) {
3221 		struct perf_cpu_pmu_context *cpc;
3222 
3223 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3224 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3225 		cpc->task_epc = NULL;
3226 	}
3227 
3228 	if (!event_type)
3229 		return;
3230 
3231 	perf_pmu_disable(pmu);
3232 	if (event_type & EVENT_PINNED) {
3233 		list_for_each_entry_safe(event, tmp,
3234 					 &pmu_ctx->pinned_active,
3235 					 active_list)
3236 			group_sched_out(event, ctx);
3237 	}
3238 
3239 	if (event_type & EVENT_FLEXIBLE) {
3240 		list_for_each_entry_safe(event, tmp,
3241 					 &pmu_ctx->flexible_active,
3242 					 active_list)
3243 			group_sched_out(event, ctx);
3244 		/*
3245 		 * Since we cleared EVENT_FLEXIBLE, also clear
3246 		 * rotate_necessary, is will be reset by
3247 		 * ctx_flexible_sched_in() when needed.
3248 		 */
3249 		pmu_ctx->rotate_necessary = 0;
3250 	}
3251 	perf_pmu_enable(pmu);
3252 }
3253 
3254 static void
3255 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3256 {
3257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3258 	struct perf_event_pmu_context *pmu_ctx;
3259 	int is_active = ctx->is_active;
3260 	bool cgroup = event_type & EVENT_CGROUP;
3261 
3262 	event_type &= ~EVENT_CGROUP;
3263 
3264 	lockdep_assert_held(&ctx->lock);
3265 
3266 	if (likely(!ctx->nr_events)) {
3267 		/*
3268 		 * See __perf_remove_from_context().
3269 		 */
3270 		WARN_ON_ONCE(ctx->is_active);
3271 		if (ctx->task)
3272 			WARN_ON_ONCE(cpuctx->task_ctx);
3273 		return;
3274 	}
3275 
3276 	/*
3277 	 * Always update time if it was set; not only when it changes.
3278 	 * Otherwise we can 'forget' to update time for any but the last
3279 	 * context we sched out. For example:
3280 	 *
3281 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3282 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3283 	 *
3284 	 * would only update time for the pinned events.
3285 	 */
3286 	if (is_active & EVENT_TIME) {
3287 		/* update (and stop) ctx time */
3288 		update_context_time(ctx);
3289 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3290 		/*
3291 		 * CPU-release for the below ->is_active store,
3292 		 * see __load_acquire() in perf_event_time_now()
3293 		 */
3294 		barrier();
3295 	}
3296 
3297 	ctx->is_active &= ~event_type;
3298 	if (!(ctx->is_active & EVENT_ALL))
3299 		ctx->is_active = 0;
3300 
3301 	if (ctx->task) {
3302 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3303 		if (!ctx->is_active)
3304 			cpuctx->task_ctx = NULL;
3305 	}
3306 
3307 	is_active ^= ctx->is_active; /* changed bits */
3308 
3309 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3310 		if (cgroup && !pmu_ctx->nr_cgroups)
3311 			continue;
3312 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3313 	}
3314 }
3315 
3316 /*
3317  * Test whether two contexts are equivalent, i.e. whether they have both been
3318  * cloned from the same version of the same context.
3319  *
3320  * Equivalence is measured using a generation number in the context that is
3321  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3322  * and list_del_event().
3323  */
3324 static int context_equiv(struct perf_event_context *ctx1,
3325 			 struct perf_event_context *ctx2)
3326 {
3327 	lockdep_assert_held(&ctx1->lock);
3328 	lockdep_assert_held(&ctx2->lock);
3329 
3330 	/* Pinning disables the swap optimization */
3331 	if (ctx1->pin_count || ctx2->pin_count)
3332 		return 0;
3333 
3334 	/* If ctx1 is the parent of ctx2 */
3335 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3336 		return 1;
3337 
3338 	/* If ctx2 is the parent of ctx1 */
3339 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3340 		return 1;
3341 
3342 	/*
3343 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3344 	 * hierarchy, see perf_event_init_context().
3345 	 */
3346 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3347 			ctx1->parent_gen == ctx2->parent_gen)
3348 		return 1;
3349 
3350 	/* Unmatched */
3351 	return 0;
3352 }
3353 
3354 static void __perf_event_sync_stat(struct perf_event *event,
3355 				     struct perf_event *next_event)
3356 {
3357 	u64 value;
3358 
3359 	if (!event->attr.inherit_stat)
3360 		return;
3361 
3362 	/*
3363 	 * Update the event value, we cannot use perf_event_read()
3364 	 * because we're in the middle of a context switch and have IRQs
3365 	 * disabled, which upsets smp_call_function_single(), however
3366 	 * we know the event must be on the current CPU, therefore we
3367 	 * don't need to use it.
3368 	 */
3369 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3370 		event->pmu->read(event);
3371 
3372 	perf_event_update_time(event);
3373 
3374 	/*
3375 	 * In order to keep per-task stats reliable we need to flip the event
3376 	 * values when we flip the contexts.
3377 	 */
3378 	value = local64_read(&next_event->count);
3379 	value = local64_xchg(&event->count, value);
3380 	local64_set(&next_event->count, value);
3381 
3382 	swap(event->total_time_enabled, next_event->total_time_enabled);
3383 	swap(event->total_time_running, next_event->total_time_running);
3384 
3385 	/*
3386 	 * Since we swizzled the values, update the user visible data too.
3387 	 */
3388 	perf_event_update_userpage(event);
3389 	perf_event_update_userpage(next_event);
3390 }
3391 
3392 static void perf_event_sync_stat(struct perf_event_context *ctx,
3393 				   struct perf_event_context *next_ctx)
3394 {
3395 	struct perf_event *event, *next_event;
3396 
3397 	if (!ctx->nr_stat)
3398 		return;
3399 
3400 	update_context_time(ctx);
3401 
3402 	event = list_first_entry(&ctx->event_list,
3403 				   struct perf_event, event_entry);
3404 
3405 	next_event = list_first_entry(&next_ctx->event_list,
3406 					struct perf_event, event_entry);
3407 
3408 	while (&event->event_entry != &ctx->event_list &&
3409 	       &next_event->event_entry != &next_ctx->event_list) {
3410 
3411 		__perf_event_sync_stat(event, next_event);
3412 
3413 		event = list_next_entry(event, event_entry);
3414 		next_event = list_next_entry(next_event, event_entry);
3415 	}
3416 }
3417 
3418 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3419 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3420 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3421 	     !list_entry_is_head(pos1, head1, member) &&		\
3422 	     !list_entry_is_head(pos2, head2, member);			\
3423 	     pos1 = list_next_entry(pos1, member),			\
3424 	     pos2 = list_next_entry(pos2, member))
3425 
3426 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3427 					  struct perf_event_context *next_ctx)
3428 {
3429 	struct perf_event_pmu_context *prev_epc, *next_epc;
3430 
3431 	if (!prev_ctx->nr_task_data)
3432 		return;
3433 
3434 	double_list_for_each_entry(prev_epc, next_epc,
3435 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3436 				   pmu_ctx_entry) {
3437 
3438 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3439 			continue;
3440 
3441 		/*
3442 		 * PMU specific parts of task perf context can require
3443 		 * additional synchronization. As an example of such
3444 		 * synchronization see implementation details of Intel
3445 		 * LBR call stack data profiling;
3446 		 */
3447 		if (prev_epc->pmu->swap_task_ctx)
3448 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3449 		else
3450 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3451 	}
3452 }
3453 
3454 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3455 {
3456 	struct perf_event_pmu_context *pmu_ctx;
3457 	struct perf_cpu_pmu_context *cpc;
3458 
3459 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3460 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3461 
3462 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3463 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3464 	}
3465 }
3466 
3467 static void
3468 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3469 {
3470 	struct perf_event_context *ctx = task->perf_event_ctxp;
3471 	struct perf_event_context *next_ctx;
3472 	struct perf_event_context *parent, *next_parent;
3473 	int do_switch = 1;
3474 
3475 	if (likely(!ctx))
3476 		return;
3477 
3478 	rcu_read_lock();
3479 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3480 	if (!next_ctx)
3481 		goto unlock;
3482 
3483 	parent = rcu_dereference(ctx->parent_ctx);
3484 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3485 
3486 	/* If neither context have a parent context; they cannot be clones. */
3487 	if (!parent && !next_parent)
3488 		goto unlock;
3489 
3490 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3491 		/*
3492 		 * Looks like the two contexts are clones, so we might be
3493 		 * able to optimize the context switch.  We lock both
3494 		 * contexts and check that they are clones under the
3495 		 * lock (including re-checking that neither has been
3496 		 * uncloned in the meantime).  It doesn't matter which
3497 		 * order we take the locks because no other cpu could
3498 		 * be trying to lock both of these tasks.
3499 		 */
3500 		raw_spin_lock(&ctx->lock);
3501 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3502 		if (context_equiv(ctx, next_ctx)) {
3503 
3504 			perf_ctx_disable(ctx, false);
3505 
3506 			/* PMIs are disabled; ctx->nr_pending is stable. */
3507 			if (local_read(&ctx->nr_pending) ||
3508 			    local_read(&next_ctx->nr_pending)) {
3509 				/*
3510 				 * Must not swap out ctx when there's pending
3511 				 * events that rely on the ctx->task relation.
3512 				 */
3513 				raw_spin_unlock(&next_ctx->lock);
3514 				rcu_read_unlock();
3515 				goto inside_switch;
3516 			}
3517 
3518 			WRITE_ONCE(ctx->task, next);
3519 			WRITE_ONCE(next_ctx->task, task);
3520 
3521 			perf_ctx_sched_task_cb(ctx, false);
3522 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3523 
3524 			perf_ctx_enable(ctx, false);
3525 
3526 			/*
3527 			 * RCU_INIT_POINTER here is safe because we've not
3528 			 * modified the ctx and the above modification of
3529 			 * ctx->task and ctx->task_ctx_data are immaterial
3530 			 * since those values are always verified under
3531 			 * ctx->lock which we're now holding.
3532 			 */
3533 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3534 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3535 
3536 			do_switch = 0;
3537 
3538 			perf_event_sync_stat(ctx, next_ctx);
3539 		}
3540 		raw_spin_unlock(&next_ctx->lock);
3541 		raw_spin_unlock(&ctx->lock);
3542 	}
3543 unlock:
3544 	rcu_read_unlock();
3545 
3546 	if (do_switch) {
3547 		raw_spin_lock(&ctx->lock);
3548 		perf_ctx_disable(ctx, false);
3549 
3550 inside_switch:
3551 		perf_ctx_sched_task_cb(ctx, false);
3552 		task_ctx_sched_out(ctx, EVENT_ALL);
3553 
3554 		perf_ctx_enable(ctx, false);
3555 		raw_spin_unlock(&ctx->lock);
3556 	}
3557 }
3558 
3559 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3560 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3561 
3562 void perf_sched_cb_dec(struct pmu *pmu)
3563 {
3564 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3565 
3566 	this_cpu_dec(perf_sched_cb_usages);
3567 	barrier();
3568 
3569 	if (!--cpc->sched_cb_usage)
3570 		list_del(&cpc->sched_cb_entry);
3571 }
3572 
3573 
3574 void perf_sched_cb_inc(struct pmu *pmu)
3575 {
3576 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3577 
3578 	if (!cpc->sched_cb_usage++)
3579 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3580 
3581 	barrier();
3582 	this_cpu_inc(perf_sched_cb_usages);
3583 }
3584 
3585 /*
3586  * This function provides the context switch callback to the lower code
3587  * layer. It is invoked ONLY when the context switch callback is enabled.
3588  *
3589  * This callback is relevant even to per-cpu events; for example multi event
3590  * PEBS requires this to provide PID/TID information. This requires we flush
3591  * all queued PEBS records before we context switch to a new task.
3592  */
3593 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3594 {
3595 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3596 	struct pmu *pmu;
3597 
3598 	pmu = cpc->epc.pmu;
3599 
3600 	/* software PMUs will not have sched_task */
3601 	if (WARN_ON_ONCE(!pmu->sched_task))
3602 		return;
3603 
3604 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3605 	perf_pmu_disable(pmu);
3606 
3607 	pmu->sched_task(cpc->task_epc, sched_in);
3608 
3609 	perf_pmu_enable(pmu);
3610 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3611 }
3612 
3613 static void perf_pmu_sched_task(struct task_struct *prev,
3614 				struct task_struct *next,
3615 				bool sched_in)
3616 {
3617 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3618 	struct perf_cpu_pmu_context *cpc;
3619 
3620 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3621 	if (prev == next || cpuctx->task_ctx)
3622 		return;
3623 
3624 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3625 		__perf_pmu_sched_task(cpc, sched_in);
3626 }
3627 
3628 static void perf_event_switch(struct task_struct *task,
3629 			      struct task_struct *next_prev, bool sched_in);
3630 
3631 /*
3632  * Called from scheduler to remove the events of the current task,
3633  * with interrupts disabled.
3634  *
3635  * We stop each event and update the event value in event->count.
3636  *
3637  * This does not protect us against NMI, but disable()
3638  * sets the disabled bit in the control field of event _before_
3639  * accessing the event control register. If a NMI hits, then it will
3640  * not restart the event.
3641  */
3642 void __perf_event_task_sched_out(struct task_struct *task,
3643 				 struct task_struct *next)
3644 {
3645 	if (__this_cpu_read(perf_sched_cb_usages))
3646 		perf_pmu_sched_task(task, next, false);
3647 
3648 	if (atomic_read(&nr_switch_events))
3649 		perf_event_switch(task, next, false);
3650 
3651 	perf_event_context_sched_out(task, next);
3652 
3653 	/*
3654 	 * if cgroup events exist on this CPU, then we need
3655 	 * to check if we have to switch out PMU state.
3656 	 * cgroup event are system-wide mode only
3657 	 */
3658 	perf_cgroup_switch(next);
3659 }
3660 
3661 static bool perf_less_group_idx(const void *l, const void *r)
3662 {
3663 	const struct perf_event *le = *(const struct perf_event **)l;
3664 	const struct perf_event *re = *(const struct perf_event **)r;
3665 
3666 	return le->group_index < re->group_index;
3667 }
3668 
3669 static void swap_ptr(void *l, void *r)
3670 {
3671 	void **lp = l, **rp = r;
3672 
3673 	swap(*lp, *rp);
3674 }
3675 
3676 static const struct min_heap_callbacks perf_min_heap = {
3677 	.elem_size = sizeof(struct perf_event *),
3678 	.less = perf_less_group_idx,
3679 	.swp = swap_ptr,
3680 };
3681 
3682 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3683 {
3684 	struct perf_event **itrs = heap->data;
3685 
3686 	if (event) {
3687 		itrs[heap->nr] = event;
3688 		heap->nr++;
3689 	}
3690 }
3691 
3692 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3693 {
3694 	struct perf_cpu_pmu_context *cpc;
3695 
3696 	if (!pmu_ctx->ctx->task)
3697 		return;
3698 
3699 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3700 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3701 	cpc->task_epc = pmu_ctx;
3702 }
3703 
3704 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3705 				struct perf_event_groups *groups, int cpu,
3706 				struct pmu *pmu,
3707 				int (*func)(struct perf_event *, void *),
3708 				void *data)
3709 {
3710 #ifdef CONFIG_CGROUP_PERF
3711 	struct cgroup_subsys_state *css = NULL;
3712 #endif
3713 	struct perf_cpu_context *cpuctx = NULL;
3714 	/* Space for per CPU and/or any CPU event iterators. */
3715 	struct perf_event *itrs[2];
3716 	struct min_heap event_heap;
3717 	struct perf_event **evt;
3718 	int ret;
3719 
3720 	if (pmu->filter && pmu->filter(pmu, cpu))
3721 		return 0;
3722 
3723 	if (!ctx->task) {
3724 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3725 		event_heap = (struct min_heap){
3726 			.data = cpuctx->heap,
3727 			.nr = 0,
3728 			.size = cpuctx->heap_size,
3729 		};
3730 
3731 		lockdep_assert_held(&cpuctx->ctx.lock);
3732 
3733 #ifdef CONFIG_CGROUP_PERF
3734 		if (cpuctx->cgrp)
3735 			css = &cpuctx->cgrp->css;
3736 #endif
3737 	} else {
3738 		event_heap = (struct min_heap){
3739 			.data = itrs,
3740 			.nr = 0,
3741 			.size = ARRAY_SIZE(itrs),
3742 		};
3743 		/* Events not within a CPU context may be on any CPU. */
3744 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3745 	}
3746 	evt = event_heap.data;
3747 
3748 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3749 
3750 #ifdef CONFIG_CGROUP_PERF
3751 	for (; css; css = css->parent)
3752 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3753 #endif
3754 
3755 	if (event_heap.nr) {
3756 		__link_epc((*evt)->pmu_ctx);
3757 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3758 	}
3759 
3760 	min_heapify_all(&event_heap, &perf_min_heap);
3761 
3762 	while (event_heap.nr) {
3763 		ret = func(*evt, data);
3764 		if (ret)
3765 			return ret;
3766 
3767 		*evt = perf_event_groups_next(*evt, pmu);
3768 		if (*evt)
3769 			min_heapify(&event_heap, 0, &perf_min_heap);
3770 		else
3771 			min_heap_pop(&event_heap, &perf_min_heap);
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 /*
3778  * Because the userpage is strictly per-event (there is no concept of context,
3779  * so there cannot be a context indirection), every userpage must be updated
3780  * when context time starts :-(
3781  *
3782  * IOW, we must not miss EVENT_TIME edges.
3783  */
3784 static inline bool event_update_userpage(struct perf_event *event)
3785 {
3786 	if (likely(!atomic_read(&event->mmap_count)))
3787 		return false;
3788 
3789 	perf_event_update_time(event);
3790 	perf_event_update_userpage(event);
3791 
3792 	return true;
3793 }
3794 
3795 static inline void group_update_userpage(struct perf_event *group_event)
3796 {
3797 	struct perf_event *event;
3798 
3799 	if (!event_update_userpage(group_event))
3800 		return;
3801 
3802 	for_each_sibling_event(event, group_event)
3803 		event_update_userpage(event);
3804 }
3805 
3806 static int merge_sched_in(struct perf_event *event, void *data)
3807 {
3808 	struct perf_event_context *ctx = event->ctx;
3809 	int *can_add_hw = data;
3810 
3811 	if (event->state <= PERF_EVENT_STATE_OFF)
3812 		return 0;
3813 
3814 	if (!event_filter_match(event))
3815 		return 0;
3816 
3817 	if (group_can_go_on(event, *can_add_hw)) {
3818 		if (!group_sched_in(event, ctx))
3819 			list_add_tail(&event->active_list, get_event_list(event));
3820 	}
3821 
3822 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823 		*can_add_hw = 0;
3824 		if (event->attr.pinned) {
3825 			perf_cgroup_event_disable(event, ctx);
3826 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3827 		} else {
3828 			struct perf_cpu_pmu_context *cpc;
3829 
3830 			event->pmu_ctx->rotate_necessary = 1;
3831 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3832 			perf_mux_hrtimer_restart(cpc);
3833 			group_update_userpage(event);
3834 		}
3835 	}
3836 
3837 	return 0;
3838 }
3839 
3840 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3841 				struct perf_event_groups *groups,
3842 				struct pmu *pmu)
3843 {
3844 	int can_add_hw = 1;
3845 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3846 			   merge_sched_in, &can_add_hw);
3847 }
3848 
3849 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3850 				struct perf_event_groups *groups,
3851 				bool cgroup)
3852 {
3853 	struct perf_event_pmu_context *pmu_ctx;
3854 
3855 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3856 		if (cgroup && !pmu_ctx->nr_cgroups)
3857 			continue;
3858 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3859 	}
3860 }
3861 
3862 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3863 			       struct pmu *pmu)
3864 {
3865 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3866 }
3867 
3868 static void
3869 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3870 {
3871 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3872 	int is_active = ctx->is_active;
3873 	bool cgroup = event_type & EVENT_CGROUP;
3874 
3875 	event_type &= ~EVENT_CGROUP;
3876 
3877 	lockdep_assert_held(&ctx->lock);
3878 
3879 	if (likely(!ctx->nr_events))
3880 		return;
3881 
3882 	if (!(is_active & EVENT_TIME)) {
3883 		/* start ctx time */
3884 		__update_context_time(ctx, false);
3885 		perf_cgroup_set_timestamp(cpuctx);
3886 		/*
3887 		 * CPU-release for the below ->is_active store,
3888 		 * see __load_acquire() in perf_event_time_now()
3889 		 */
3890 		barrier();
3891 	}
3892 
3893 	ctx->is_active |= (event_type | EVENT_TIME);
3894 	if (ctx->task) {
3895 		if (!is_active)
3896 			cpuctx->task_ctx = ctx;
3897 		else
3898 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3899 	}
3900 
3901 	is_active ^= ctx->is_active; /* changed bits */
3902 
3903 	/*
3904 	 * First go through the list and put on any pinned groups
3905 	 * in order to give them the best chance of going on.
3906 	 */
3907 	if (is_active & EVENT_PINNED)
3908 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3909 
3910 	/* Then walk through the lower prio flexible groups */
3911 	if (is_active & EVENT_FLEXIBLE)
3912 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3913 }
3914 
3915 static void perf_event_context_sched_in(struct task_struct *task)
3916 {
3917 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3918 	struct perf_event_context *ctx;
3919 
3920 	rcu_read_lock();
3921 	ctx = rcu_dereference(task->perf_event_ctxp);
3922 	if (!ctx)
3923 		goto rcu_unlock;
3924 
3925 	if (cpuctx->task_ctx == ctx) {
3926 		perf_ctx_lock(cpuctx, ctx);
3927 		perf_ctx_disable(ctx, false);
3928 
3929 		perf_ctx_sched_task_cb(ctx, true);
3930 
3931 		perf_ctx_enable(ctx, false);
3932 		perf_ctx_unlock(cpuctx, ctx);
3933 		goto rcu_unlock;
3934 	}
3935 
3936 	perf_ctx_lock(cpuctx, ctx);
3937 	/*
3938 	 * We must check ctx->nr_events while holding ctx->lock, such
3939 	 * that we serialize against perf_install_in_context().
3940 	 */
3941 	if (!ctx->nr_events)
3942 		goto unlock;
3943 
3944 	perf_ctx_disable(ctx, false);
3945 	/*
3946 	 * We want to keep the following priority order:
3947 	 * cpu pinned (that don't need to move), task pinned,
3948 	 * cpu flexible, task flexible.
3949 	 *
3950 	 * However, if task's ctx is not carrying any pinned
3951 	 * events, no need to flip the cpuctx's events around.
3952 	 */
3953 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3954 		perf_ctx_disable(&cpuctx->ctx, false);
3955 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3956 	}
3957 
3958 	perf_event_sched_in(cpuctx, ctx);
3959 
3960 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3961 
3962 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3963 		perf_ctx_enable(&cpuctx->ctx, false);
3964 
3965 	perf_ctx_enable(ctx, false);
3966 
3967 unlock:
3968 	perf_ctx_unlock(cpuctx, ctx);
3969 rcu_unlock:
3970 	rcu_read_unlock();
3971 }
3972 
3973 /*
3974  * Called from scheduler to add the events of the current task
3975  * with interrupts disabled.
3976  *
3977  * We restore the event value and then enable it.
3978  *
3979  * This does not protect us against NMI, but enable()
3980  * sets the enabled bit in the control field of event _before_
3981  * accessing the event control register. If a NMI hits, then it will
3982  * keep the event running.
3983  */
3984 void __perf_event_task_sched_in(struct task_struct *prev,
3985 				struct task_struct *task)
3986 {
3987 	perf_event_context_sched_in(task);
3988 
3989 	if (atomic_read(&nr_switch_events))
3990 		perf_event_switch(task, prev, true);
3991 
3992 	if (__this_cpu_read(perf_sched_cb_usages))
3993 		perf_pmu_sched_task(prev, task, true);
3994 }
3995 
3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3997 {
3998 	u64 frequency = event->attr.sample_freq;
3999 	u64 sec = NSEC_PER_SEC;
4000 	u64 divisor, dividend;
4001 
4002 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4003 
4004 	count_fls = fls64(count);
4005 	nsec_fls = fls64(nsec);
4006 	frequency_fls = fls64(frequency);
4007 	sec_fls = 30;
4008 
4009 	/*
4010 	 * We got @count in @nsec, with a target of sample_freq HZ
4011 	 * the target period becomes:
4012 	 *
4013 	 *             @count * 10^9
4014 	 * period = -------------------
4015 	 *          @nsec * sample_freq
4016 	 *
4017 	 */
4018 
4019 	/*
4020 	 * Reduce accuracy by one bit such that @a and @b converge
4021 	 * to a similar magnitude.
4022 	 */
4023 #define REDUCE_FLS(a, b)		\
4024 do {					\
4025 	if (a##_fls > b##_fls) {	\
4026 		a >>= 1;		\
4027 		a##_fls--;		\
4028 	} else {			\
4029 		b >>= 1;		\
4030 		b##_fls--;		\
4031 	}				\
4032 } while (0)
4033 
4034 	/*
4035 	 * Reduce accuracy until either term fits in a u64, then proceed with
4036 	 * the other, so that finally we can do a u64/u64 division.
4037 	 */
4038 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4039 		REDUCE_FLS(nsec, frequency);
4040 		REDUCE_FLS(sec, count);
4041 	}
4042 
4043 	if (count_fls + sec_fls > 64) {
4044 		divisor = nsec * frequency;
4045 
4046 		while (count_fls + sec_fls > 64) {
4047 			REDUCE_FLS(count, sec);
4048 			divisor >>= 1;
4049 		}
4050 
4051 		dividend = count * sec;
4052 	} else {
4053 		dividend = count * sec;
4054 
4055 		while (nsec_fls + frequency_fls > 64) {
4056 			REDUCE_FLS(nsec, frequency);
4057 			dividend >>= 1;
4058 		}
4059 
4060 		divisor = nsec * frequency;
4061 	}
4062 
4063 	if (!divisor)
4064 		return dividend;
4065 
4066 	return div64_u64(dividend, divisor);
4067 }
4068 
4069 static DEFINE_PER_CPU(int, perf_throttled_count);
4070 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4071 
4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4073 {
4074 	struct hw_perf_event *hwc = &event->hw;
4075 	s64 period, sample_period;
4076 	s64 delta;
4077 
4078 	period = perf_calculate_period(event, nsec, count);
4079 
4080 	delta = (s64)(period - hwc->sample_period);
4081 	delta = (delta + 7) / 8; /* low pass filter */
4082 
4083 	sample_period = hwc->sample_period + delta;
4084 
4085 	if (!sample_period)
4086 		sample_period = 1;
4087 
4088 	hwc->sample_period = sample_period;
4089 
4090 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4091 		if (disable)
4092 			event->pmu->stop(event, PERF_EF_UPDATE);
4093 
4094 		local64_set(&hwc->period_left, 0);
4095 
4096 		if (disable)
4097 			event->pmu->start(event, PERF_EF_RELOAD);
4098 	}
4099 }
4100 
4101 /*
4102  * combine freq adjustment with unthrottling to avoid two passes over the
4103  * events. At the same time, make sure, having freq events does not change
4104  * the rate of unthrottling as that would introduce bias.
4105  */
4106 static void
4107 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4108 {
4109 	struct perf_event *event;
4110 	struct hw_perf_event *hwc;
4111 	u64 now, period = TICK_NSEC;
4112 	s64 delta;
4113 
4114 	/*
4115 	 * only need to iterate over all events iff:
4116 	 * - context have events in frequency mode (needs freq adjust)
4117 	 * - there are events to unthrottle on this cpu
4118 	 */
4119 	if (!(ctx->nr_freq || unthrottle))
4120 		return;
4121 
4122 	raw_spin_lock(&ctx->lock);
4123 
4124 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4125 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4126 			continue;
4127 
4128 		// XXX use visit thingy to avoid the -1,cpu match
4129 		if (!event_filter_match(event))
4130 			continue;
4131 
4132 		perf_pmu_disable(event->pmu);
4133 
4134 		hwc = &event->hw;
4135 
4136 		if (hwc->interrupts == MAX_INTERRUPTS) {
4137 			hwc->interrupts = 0;
4138 			perf_log_throttle(event, 1);
4139 			event->pmu->start(event, 0);
4140 		}
4141 
4142 		if (!event->attr.freq || !event->attr.sample_freq)
4143 			goto next;
4144 
4145 		/*
4146 		 * stop the event and update event->count
4147 		 */
4148 		event->pmu->stop(event, PERF_EF_UPDATE);
4149 
4150 		now = local64_read(&event->count);
4151 		delta = now - hwc->freq_count_stamp;
4152 		hwc->freq_count_stamp = now;
4153 
4154 		/*
4155 		 * restart the event
4156 		 * reload only if value has changed
4157 		 * we have stopped the event so tell that
4158 		 * to perf_adjust_period() to avoid stopping it
4159 		 * twice.
4160 		 */
4161 		if (delta > 0)
4162 			perf_adjust_period(event, period, delta, false);
4163 
4164 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4165 	next:
4166 		perf_pmu_enable(event->pmu);
4167 	}
4168 
4169 	raw_spin_unlock(&ctx->lock);
4170 }
4171 
4172 /*
4173  * Move @event to the tail of the @ctx's elegible events.
4174  */
4175 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4176 {
4177 	/*
4178 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4179 	 * disabled by the inheritance code.
4180 	 */
4181 	if (ctx->rotate_disable)
4182 		return;
4183 
4184 	perf_event_groups_delete(&ctx->flexible_groups, event);
4185 	perf_event_groups_insert(&ctx->flexible_groups, event);
4186 }
4187 
4188 /* pick an event from the flexible_groups to rotate */
4189 static inline struct perf_event *
4190 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4191 {
4192 	struct perf_event *event;
4193 	struct rb_node *node;
4194 	struct rb_root *tree;
4195 	struct __group_key key = {
4196 		.pmu = pmu_ctx->pmu,
4197 	};
4198 
4199 	/* pick the first active flexible event */
4200 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4201 					 struct perf_event, active_list);
4202 	if (event)
4203 		goto out;
4204 
4205 	/* if no active flexible event, pick the first event */
4206 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4207 
4208 	if (!pmu_ctx->ctx->task) {
4209 		key.cpu = smp_processor_id();
4210 
4211 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4212 		if (node)
4213 			event = __node_2_pe(node);
4214 		goto out;
4215 	}
4216 
4217 	key.cpu = -1;
4218 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4219 	if (node) {
4220 		event = __node_2_pe(node);
4221 		goto out;
4222 	}
4223 
4224 	key.cpu = smp_processor_id();
4225 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4226 	if (node)
4227 		event = __node_2_pe(node);
4228 
4229 out:
4230 	/*
4231 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4232 	 * finds there are unschedulable events, it will set it again.
4233 	 */
4234 	pmu_ctx->rotate_necessary = 0;
4235 
4236 	return event;
4237 }
4238 
4239 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4240 {
4241 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4242 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4243 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4244 	int cpu_rotate, task_rotate;
4245 	struct pmu *pmu;
4246 
4247 	/*
4248 	 * Since we run this from IRQ context, nobody can install new
4249 	 * events, thus the event count values are stable.
4250 	 */
4251 
4252 	cpu_epc = &cpc->epc;
4253 	pmu = cpu_epc->pmu;
4254 	task_epc = cpc->task_epc;
4255 
4256 	cpu_rotate = cpu_epc->rotate_necessary;
4257 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4258 
4259 	if (!(cpu_rotate || task_rotate))
4260 		return false;
4261 
4262 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4263 	perf_pmu_disable(pmu);
4264 
4265 	if (task_rotate)
4266 		task_event = ctx_event_to_rotate(task_epc);
4267 	if (cpu_rotate)
4268 		cpu_event = ctx_event_to_rotate(cpu_epc);
4269 
4270 	/*
4271 	 * As per the order given at ctx_resched() first 'pop' task flexible
4272 	 * and then, if needed CPU flexible.
4273 	 */
4274 	if (task_event || (task_epc && cpu_event)) {
4275 		update_context_time(task_epc->ctx);
4276 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4277 	}
4278 
4279 	if (cpu_event) {
4280 		update_context_time(&cpuctx->ctx);
4281 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4282 		rotate_ctx(&cpuctx->ctx, cpu_event);
4283 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4284 	}
4285 
4286 	if (task_event)
4287 		rotate_ctx(task_epc->ctx, task_event);
4288 
4289 	if (task_event || (task_epc && cpu_event))
4290 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4291 
4292 	perf_pmu_enable(pmu);
4293 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4294 
4295 	return true;
4296 }
4297 
4298 void perf_event_task_tick(void)
4299 {
4300 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4301 	struct perf_event_context *ctx;
4302 	int throttled;
4303 
4304 	lockdep_assert_irqs_disabled();
4305 
4306 	__this_cpu_inc(perf_throttled_seq);
4307 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4308 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4309 
4310 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4311 
4312 	rcu_read_lock();
4313 	ctx = rcu_dereference(current->perf_event_ctxp);
4314 	if (ctx)
4315 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4316 	rcu_read_unlock();
4317 }
4318 
4319 static int event_enable_on_exec(struct perf_event *event,
4320 				struct perf_event_context *ctx)
4321 {
4322 	if (!event->attr.enable_on_exec)
4323 		return 0;
4324 
4325 	event->attr.enable_on_exec = 0;
4326 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4327 		return 0;
4328 
4329 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4330 
4331 	return 1;
4332 }
4333 
4334 /*
4335  * Enable all of a task's events that have been marked enable-on-exec.
4336  * This expects task == current.
4337  */
4338 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4339 {
4340 	struct perf_event_context *clone_ctx = NULL;
4341 	enum event_type_t event_type = 0;
4342 	struct perf_cpu_context *cpuctx;
4343 	struct perf_event *event;
4344 	unsigned long flags;
4345 	int enabled = 0;
4346 
4347 	local_irq_save(flags);
4348 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4349 		goto out;
4350 
4351 	if (!ctx->nr_events)
4352 		goto out;
4353 
4354 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4355 	perf_ctx_lock(cpuctx, ctx);
4356 	ctx_sched_out(ctx, EVENT_TIME);
4357 
4358 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4359 		enabled |= event_enable_on_exec(event, ctx);
4360 		event_type |= get_event_type(event);
4361 	}
4362 
4363 	/*
4364 	 * Unclone and reschedule this context if we enabled any event.
4365 	 */
4366 	if (enabled) {
4367 		clone_ctx = unclone_ctx(ctx);
4368 		ctx_resched(cpuctx, ctx, event_type);
4369 	} else {
4370 		ctx_sched_in(ctx, EVENT_TIME);
4371 	}
4372 	perf_ctx_unlock(cpuctx, ctx);
4373 
4374 out:
4375 	local_irq_restore(flags);
4376 
4377 	if (clone_ctx)
4378 		put_ctx(clone_ctx);
4379 }
4380 
4381 static void perf_remove_from_owner(struct perf_event *event);
4382 static void perf_event_exit_event(struct perf_event *event,
4383 				  struct perf_event_context *ctx);
4384 
4385 /*
4386  * Removes all events from the current task that have been marked
4387  * remove-on-exec, and feeds their values back to parent events.
4388  */
4389 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4390 {
4391 	struct perf_event_context *clone_ctx = NULL;
4392 	struct perf_event *event, *next;
4393 	unsigned long flags;
4394 	bool modified = false;
4395 
4396 	mutex_lock(&ctx->mutex);
4397 
4398 	if (WARN_ON_ONCE(ctx->task != current))
4399 		goto unlock;
4400 
4401 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4402 		if (!event->attr.remove_on_exec)
4403 			continue;
4404 
4405 		if (!is_kernel_event(event))
4406 			perf_remove_from_owner(event);
4407 
4408 		modified = true;
4409 
4410 		perf_event_exit_event(event, ctx);
4411 	}
4412 
4413 	raw_spin_lock_irqsave(&ctx->lock, flags);
4414 	if (modified)
4415 		clone_ctx = unclone_ctx(ctx);
4416 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4417 
4418 unlock:
4419 	mutex_unlock(&ctx->mutex);
4420 
4421 	if (clone_ctx)
4422 		put_ctx(clone_ctx);
4423 }
4424 
4425 struct perf_read_data {
4426 	struct perf_event *event;
4427 	bool group;
4428 	int ret;
4429 };
4430 
4431 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4432 {
4433 	u16 local_pkg, event_pkg;
4434 
4435 	if ((unsigned)event_cpu >= nr_cpu_ids)
4436 		return event_cpu;
4437 
4438 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4439 		int local_cpu = smp_processor_id();
4440 
4441 		event_pkg = topology_physical_package_id(event_cpu);
4442 		local_pkg = topology_physical_package_id(local_cpu);
4443 
4444 		if (event_pkg == local_pkg)
4445 			return local_cpu;
4446 	}
4447 
4448 	return event_cpu;
4449 }
4450 
4451 /*
4452  * Cross CPU call to read the hardware event
4453  */
4454 static void __perf_event_read(void *info)
4455 {
4456 	struct perf_read_data *data = info;
4457 	struct perf_event *sub, *event = data->event;
4458 	struct perf_event_context *ctx = event->ctx;
4459 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4460 	struct pmu *pmu = event->pmu;
4461 
4462 	/*
4463 	 * If this is a task context, we need to check whether it is
4464 	 * the current task context of this cpu.  If not it has been
4465 	 * scheduled out before the smp call arrived.  In that case
4466 	 * event->count would have been updated to a recent sample
4467 	 * when the event was scheduled out.
4468 	 */
4469 	if (ctx->task && cpuctx->task_ctx != ctx)
4470 		return;
4471 
4472 	raw_spin_lock(&ctx->lock);
4473 	if (ctx->is_active & EVENT_TIME) {
4474 		update_context_time(ctx);
4475 		update_cgrp_time_from_event(event);
4476 	}
4477 
4478 	perf_event_update_time(event);
4479 	if (data->group)
4480 		perf_event_update_sibling_time(event);
4481 
4482 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4483 		goto unlock;
4484 
4485 	if (!data->group) {
4486 		pmu->read(event);
4487 		data->ret = 0;
4488 		goto unlock;
4489 	}
4490 
4491 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4492 
4493 	pmu->read(event);
4494 
4495 	for_each_sibling_event(sub, event) {
4496 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4497 			/*
4498 			 * Use sibling's PMU rather than @event's since
4499 			 * sibling could be on different (eg: software) PMU.
4500 			 */
4501 			sub->pmu->read(sub);
4502 		}
4503 	}
4504 
4505 	data->ret = pmu->commit_txn(pmu);
4506 
4507 unlock:
4508 	raw_spin_unlock(&ctx->lock);
4509 }
4510 
4511 static inline u64 perf_event_count(struct perf_event *event)
4512 {
4513 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4514 }
4515 
4516 static void calc_timer_values(struct perf_event *event,
4517 				u64 *now,
4518 				u64 *enabled,
4519 				u64 *running)
4520 {
4521 	u64 ctx_time;
4522 
4523 	*now = perf_clock();
4524 	ctx_time = perf_event_time_now(event, *now);
4525 	__perf_update_times(event, ctx_time, enabled, running);
4526 }
4527 
4528 /*
4529  * NMI-safe method to read a local event, that is an event that
4530  * is:
4531  *   - either for the current task, or for this CPU
4532  *   - does not have inherit set, for inherited task events
4533  *     will not be local and we cannot read them atomically
4534  *   - must not have a pmu::count method
4535  */
4536 int perf_event_read_local(struct perf_event *event, u64 *value,
4537 			  u64 *enabled, u64 *running)
4538 {
4539 	unsigned long flags;
4540 	int event_oncpu;
4541 	int event_cpu;
4542 	int ret = 0;
4543 
4544 	/*
4545 	 * Disabling interrupts avoids all counter scheduling (context
4546 	 * switches, timer based rotation and IPIs).
4547 	 */
4548 	local_irq_save(flags);
4549 
4550 	/*
4551 	 * It must not be an event with inherit set, we cannot read
4552 	 * all child counters from atomic context.
4553 	 */
4554 	if (event->attr.inherit) {
4555 		ret = -EOPNOTSUPP;
4556 		goto out;
4557 	}
4558 
4559 	/* If this is a per-task event, it must be for current */
4560 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4561 	    event->hw.target != current) {
4562 		ret = -EINVAL;
4563 		goto out;
4564 	}
4565 
4566 	/*
4567 	 * Get the event CPU numbers, and adjust them to local if the event is
4568 	 * a per-package event that can be read locally
4569 	 */
4570 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4571 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4572 
4573 	/* If this is a per-CPU event, it must be for this CPU */
4574 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4575 	    event_cpu != smp_processor_id()) {
4576 		ret = -EINVAL;
4577 		goto out;
4578 	}
4579 
4580 	/* If this is a pinned event it must be running on this CPU */
4581 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4582 		ret = -EBUSY;
4583 		goto out;
4584 	}
4585 
4586 	/*
4587 	 * If the event is currently on this CPU, its either a per-task event,
4588 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4589 	 * oncpu == -1).
4590 	 */
4591 	if (event_oncpu == smp_processor_id())
4592 		event->pmu->read(event);
4593 
4594 	*value = local64_read(&event->count);
4595 	if (enabled || running) {
4596 		u64 __enabled, __running, __now;
4597 
4598 		calc_timer_values(event, &__now, &__enabled, &__running);
4599 		if (enabled)
4600 			*enabled = __enabled;
4601 		if (running)
4602 			*running = __running;
4603 	}
4604 out:
4605 	local_irq_restore(flags);
4606 
4607 	return ret;
4608 }
4609 
4610 static int perf_event_read(struct perf_event *event, bool group)
4611 {
4612 	enum perf_event_state state = READ_ONCE(event->state);
4613 	int event_cpu, ret = 0;
4614 
4615 	/*
4616 	 * If event is enabled and currently active on a CPU, update the
4617 	 * value in the event structure:
4618 	 */
4619 again:
4620 	if (state == PERF_EVENT_STATE_ACTIVE) {
4621 		struct perf_read_data data;
4622 
4623 		/*
4624 		 * Orders the ->state and ->oncpu loads such that if we see
4625 		 * ACTIVE we must also see the right ->oncpu.
4626 		 *
4627 		 * Matches the smp_wmb() from event_sched_in().
4628 		 */
4629 		smp_rmb();
4630 
4631 		event_cpu = READ_ONCE(event->oncpu);
4632 		if ((unsigned)event_cpu >= nr_cpu_ids)
4633 			return 0;
4634 
4635 		data = (struct perf_read_data){
4636 			.event = event,
4637 			.group = group,
4638 			.ret = 0,
4639 		};
4640 
4641 		preempt_disable();
4642 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4643 
4644 		/*
4645 		 * Purposely ignore the smp_call_function_single() return
4646 		 * value.
4647 		 *
4648 		 * If event_cpu isn't a valid CPU it means the event got
4649 		 * scheduled out and that will have updated the event count.
4650 		 *
4651 		 * Therefore, either way, we'll have an up-to-date event count
4652 		 * after this.
4653 		 */
4654 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4655 		preempt_enable();
4656 		ret = data.ret;
4657 
4658 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4659 		struct perf_event_context *ctx = event->ctx;
4660 		unsigned long flags;
4661 
4662 		raw_spin_lock_irqsave(&ctx->lock, flags);
4663 		state = event->state;
4664 		if (state != PERF_EVENT_STATE_INACTIVE) {
4665 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4666 			goto again;
4667 		}
4668 
4669 		/*
4670 		 * May read while context is not active (e.g., thread is
4671 		 * blocked), in that case we cannot update context time
4672 		 */
4673 		if (ctx->is_active & EVENT_TIME) {
4674 			update_context_time(ctx);
4675 			update_cgrp_time_from_event(event);
4676 		}
4677 
4678 		perf_event_update_time(event);
4679 		if (group)
4680 			perf_event_update_sibling_time(event);
4681 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4682 	}
4683 
4684 	return ret;
4685 }
4686 
4687 /*
4688  * Initialize the perf_event context in a task_struct:
4689  */
4690 static void __perf_event_init_context(struct perf_event_context *ctx)
4691 {
4692 	raw_spin_lock_init(&ctx->lock);
4693 	mutex_init(&ctx->mutex);
4694 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4695 	perf_event_groups_init(&ctx->pinned_groups);
4696 	perf_event_groups_init(&ctx->flexible_groups);
4697 	INIT_LIST_HEAD(&ctx->event_list);
4698 	refcount_set(&ctx->refcount, 1);
4699 }
4700 
4701 static void
4702 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4703 {
4704 	epc->pmu = pmu;
4705 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4706 	INIT_LIST_HEAD(&epc->pinned_active);
4707 	INIT_LIST_HEAD(&epc->flexible_active);
4708 	atomic_set(&epc->refcount, 1);
4709 }
4710 
4711 static struct perf_event_context *
4712 alloc_perf_context(struct task_struct *task)
4713 {
4714 	struct perf_event_context *ctx;
4715 
4716 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4717 	if (!ctx)
4718 		return NULL;
4719 
4720 	__perf_event_init_context(ctx);
4721 	if (task)
4722 		ctx->task = get_task_struct(task);
4723 
4724 	return ctx;
4725 }
4726 
4727 static struct task_struct *
4728 find_lively_task_by_vpid(pid_t vpid)
4729 {
4730 	struct task_struct *task;
4731 
4732 	rcu_read_lock();
4733 	if (!vpid)
4734 		task = current;
4735 	else
4736 		task = find_task_by_vpid(vpid);
4737 	if (task)
4738 		get_task_struct(task);
4739 	rcu_read_unlock();
4740 
4741 	if (!task)
4742 		return ERR_PTR(-ESRCH);
4743 
4744 	return task;
4745 }
4746 
4747 /*
4748  * Returns a matching context with refcount and pincount.
4749  */
4750 static struct perf_event_context *
4751 find_get_context(struct task_struct *task, struct perf_event *event)
4752 {
4753 	struct perf_event_context *ctx, *clone_ctx = NULL;
4754 	struct perf_cpu_context *cpuctx;
4755 	unsigned long flags;
4756 	int err;
4757 
4758 	if (!task) {
4759 		/* Must be root to operate on a CPU event: */
4760 		err = perf_allow_cpu(&event->attr);
4761 		if (err)
4762 			return ERR_PTR(err);
4763 
4764 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4765 		ctx = &cpuctx->ctx;
4766 		get_ctx(ctx);
4767 		raw_spin_lock_irqsave(&ctx->lock, flags);
4768 		++ctx->pin_count;
4769 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4770 
4771 		return ctx;
4772 	}
4773 
4774 	err = -EINVAL;
4775 retry:
4776 	ctx = perf_lock_task_context(task, &flags);
4777 	if (ctx) {
4778 		clone_ctx = unclone_ctx(ctx);
4779 		++ctx->pin_count;
4780 
4781 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4782 
4783 		if (clone_ctx)
4784 			put_ctx(clone_ctx);
4785 	} else {
4786 		ctx = alloc_perf_context(task);
4787 		err = -ENOMEM;
4788 		if (!ctx)
4789 			goto errout;
4790 
4791 		err = 0;
4792 		mutex_lock(&task->perf_event_mutex);
4793 		/*
4794 		 * If it has already passed perf_event_exit_task().
4795 		 * we must see PF_EXITING, it takes this mutex too.
4796 		 */
4797 		if (task->flags & PF_EXITING)
4798 			err = -ESRCH;
4799 		else if (task->perf_event_ctxp)
4800 			err = -EAGAIN;
4801 		else {
4802 			get_ctx(ctx);
4803 			++ctx->pin_count;
4804 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4805 		}
4806 		mutex_unlock(&task->perf_event_mutex);
4807 
4808 		if (unlikely(err)) {
4809 			put_ctx(ctx);
4810 
4811 			if (err == -EAGAIN)
4812 				goto retry;
4813 			goto errout;
4814 		}
4815 	}
4816 
4817 	return ctx;
4818 
4819 errout:
4820 	return ERR_PTR(err);
4821 }
4822 
4823 static struct perf_event_pmu_context *
4824 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4825 		     struct perf_event *event)
4826 {
4827 	struct perf_event_pmu_context *new = NULL, *epc;
4828 	void *task_ctx_data = NULL;
4829 
4830 	if (!ctx->task) {
4831 		/*
4832 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4833 		 * relies on the fact that find_get_pmu_context() cannot fail
4834 		 * for CPU contexts.
4835 		 */
4836 		struct perf_cpu_pmu_context *cpc;
4837 
4838 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4839 		epc = &cpc->epc;
4840 		raw_spin_lock_irq(&ctx->lock);
4841 		if (!epc->ctx) {
4842 			atomic_set(&epc->refcount, 1);
4843 			epc->embedded = 1;
4844 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4845 			epc->ctx = ctx;
4846 		} else {
4847 			WARN_ON_ONCE(epc->ctx != ctx);
4848 			atomic_inc(&epc->refcount);
4849 		}
4850 		raw_spin_unlock_irq(&ctx->lock);
4851 		return epc;
4852 	}
4853 
4854 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4855 	if (!new)
4856 		return ERR_PTR(-ENOMEM);
4857 
4858 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4859 		task_ctx_data = alloc_task_ctx_data(pmu);
4860 		if (!task_ctx_data) {
4861 			kfree(new);
4862 			return ERR_PTR(-ENOMEM);
4863 		}
4864 	}
4865 
4866 	__perf_init_event_pmu_context(new, pmu);
4867 
4868 	/*
4869 	 * XXX
4870 	 *
4871 	 * lockdep_assert_held(&ctx->mutex);
4872 	 *
4873 	 * can't because perf_event_init_task() doesn't actually hold the
4874 	 * child_ctx->mutex.
4875 	 */
4876 
4877 	raw_spin_lock_irq(&ctx->lock);
4878 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4879 		if (epc->pmu == pmu) {
4880 			WARN_ON_ONCE(epc->ctx != ctx);
4881 			atomic_inc(&epc->refcount);
4882 			goto found_epc;
4883 		}
4884 	}
4885 
4886 	epc = new;
4887 	new = NULL;
4888 
4889 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4890 	epc->ctx = ctx;
4891 
4892 found_epc:
4893 	if (task_ctx_data && !epc->task_ctx_data) {
4894 		epc->task_ctx_data = task_ctx_data;
4895 		task_ctx_data = NULL;
4896 		ctx->nr_task_data++;
4897 	}
4898 	raw_spin_unlock_irq(&ctx->lock);
4899 
4900 	free_task_ctx_data(pmu, task_ctx_data);
4901 	kfree(new);
4902 
4903 	return epc;
4904 }
4905 
4906 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4907 {
4908 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4909 }
4910 
4911 static void free_epc_rcu(struct rcu_head *head)
4912 {
4913 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4914 
4915 	kfree(epc->task_ctx_data);
4916 	kfree(epc);
4917 }
4918 
4919 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4920 {
4921 	struct perf_event_context *ctx = epc->ctx;
4922 	unsigned long flags;
4923 
4924 	/*
4925 	 * XXX
4926 	 *
4927 	 * lockdep_assert_held(&ctx->mutex);
4928 	 *
4929 	 * can't because of the call-site in _free_event()/put_event()
4930 	 * which isn't always called under ctx->mutex.
4931 	 */
4932 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4933 		return;
4934 
4935 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4936 
4937 	list_del_init(&epc->pmu_ctx_entry);
4938 	epc->ctx = NULL;
4939 
4940 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4941 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4942 
4943 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4944 
4945 	if (epc->embedded)
4946 		return;
4947 
4948 	call_rcu(&epc->rcu_head, free_epc_rcu);
4949 }
4950 
4951 static void perf_event_free_filter(struct perf_event *event);
4952 
4953 static void free_event_rcu(struct rcu_head *head)
4954 {
4955 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4956 
4957 	if (event->ns)
4958 		put_pid_ns(event->ns);
4959 	perf_event_free_filter(event);
4960 	kmem_cache_free(perf_event_cache, event);
4961 }
4962 
4963 static void ring_buffer_attach(struct perf_event *event,
4964 			       struct perf_buffer *rb);
4965 
4966 static void detach_sb_event(struct perf_event *event)
4967 {
4968 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4969 
4970 	raw_spin_lock(&pel->lock);
4971 	list_del_rcu(&event->sb_list);
4972 	raw_spin_unlock(&pel->lock);
4973 }
4974 
4975 static bool is_sb_event(struct perf_event *event)
4976 {
4977 	struct perf_event_attr *attr = &event->attr;
4978 
4979 	if (event->parent)
4980 		return false;
4981 
4982 	if (event->attach_state & PERF_ATTACH_TASK)
4983 		return false;
4984 
4985 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4986 	    attr->comm || attr->comm_exec ||
4987 	    attr->task || attr->ksymbol ||
4988 	    attr->context_switch || attr->text_poke ||
4989 	    attr->bpf_event)
4990 		return true;
4991 	return false;
4992 }
4993 
4994 static void unaccount_pmu_sb_event(struct perf_event *event)
4995 {
4996 	if (is_sb_event(event))
4997 		detach_sb_event(event);
4998 }
4999 
5000 #ifdef CONFIG_NO_HZ_FULL
5001 static DEFINE_SPINLOCK(nr_freq_lock);
5002 #endif
5003 
5004 static void unaccount_freq_event_nohz(void)
5005 {
5006 #ifdef CONFIG_NO_HZ_FULL
5007 	spin_lock(&nr_freq_lock);
5008 	if (atomic_dec_and_test(&nr_freq_events))
5009 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5010 	spin_unlock(&nr_freq_lock);
5011 #endif
5012 }
5013 
5014 static void unaccount_freq_event(void)
5015 {
5016 	if (tick_nohz_full_enabled())
5017 		unaccount_freq_event_nohz();
5018 	else
5019 		atomic_dec(&nr_freq_events);
5020 }
5021 
5022 static void unaccount_event(struct perf_event *event)
5023 {
5024 	bool dec = false;
5025 
5026 	if (event->parent)
5027 		return;
5028 
5029 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5030 		dec = true;
5031 	if (event->attr.mmap || event->attr.mmap_data)
5032 		atomic_dec(&nr_mmap_events);
5033 	if (event->attr.build_id)
5034 		atomic_dec(&nr_build_id_events);
5035 	if (event->attr.comm)
5036 		atomic_dec(&nr_comm_events);
5037 	if (event->attr.namespaces)
5038 		atomic_dec(&nr_namespaces_events);
5039 	if (event->attr.cgroup)
5040 		atomic_dec(&nr_cgroup_events);
5041 	if (event->attr.task)
5042 		atomic_dec(&nr_task_events);
5043 	if (event->attr.freq)
5044 		unaccount_freq_event();
5045 	if (event->attr.context_switch) {
5046 		dec = true;
5047 		atomic_dec(&nr_switch_events);
5048 	}
5049 	if (is_cgroup_event(event))
5050 		dec = true;
5051 	if (has_branch_stack(event))
5052 		dec = true;
5053 	if (event->attr.ksymbol)
5054 		atomic_dec(&nr_ksymbol_events);
5055 	if (event->attr.bpf_event)
5056 		atomic_dec(&nr_bpf_events);
5057 	if (event->attr.text_poke)
5058 		atomic_dec(&nr_text_poke_events);
5059 
5060 	if (dec) {
5061 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5062 			schedule_delayed_work(&perf_sched_work, HZ);
5063 	}
5064 
5065 	unaccount_pmu_sb_event(event);
5066 }
5067 
5068 static void perf_sched_delayed(struct work_struct *work)
5069 {
5070 	mutex_lock(&perf_sched_mutex);
5071 	if (atomic_dec_and_test(&perf_sched_count))
5072 		static_branch_disable(&perf_sched_events);
5073 	mutex_unlock(&perf_sched_mutex);
5074 }
5075 
5076 /*
5077  * The following implement mutual exclusion of events on "exclusive" pmus
5078  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5079  * at a time, so we disallow creating events that might conflict, namely:
5080  *
5081  *  1) cpu-wide events in the presence of per-task events,
5082  *  2) per-task events in the presence of cpu-wide events,
5083  *  3) two matching events on the same perf_event_context.
5084  *
5085  * The former two cases are handled in the allocation path (perf_event_alloc(),
5086  * _free_event()), the latter -- before the first perf_install_in_context().
5087  */
5088 static int exclusive_event_init(struct perf_event *event)
5089 {
5090 	struct pmu *pmu = event->pmu;
5091 
5092 	if (!is_exclusive_pmu(pmu))
5093 		return 0;
5094 
5095 	/*
5096 	 * Prevent co-existence of per-task and cpu-wide events on the
5097 	 * same exclusive pmu.
5098 	 *
5099 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5100 	 * events on this "exclusive" pmu, positive means there are
5101 	 * per-task events.
5102 	 *
5103 	 * Since this is called in perf_event_alloc() path, event::ctx
5104 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5105 	 * to mean "per-task event", because unlike other attach states it
5106 	 * never gets cleared.
5107 	 */
5108 	if (event->attach_state & PERF_ATTACH_TASK) {
5109 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5110 			return -EBUSY;
5111 	} else {
5112 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5113 			return -EBUSY;
5114 	}
5115 
5116 	return 0;
5117 }
5118 
5119 static void exclusive_event_destroy(struct perf_event *event)
5120 {
5121 	struct pmu *pmu = event->pmu;
5122 
5123 	if (!is_exclusive_pmu(pmu))
5124 		return;
5125 
5126 	/* see comment in exclusive_event_init() */
5127 	if (event->attach_state & PERF_ATTACH_TASK)
5128 		atomic_dec(&pmu->exclusive_cnt);
5129 	else
5130 		atomic_inc(&pmu->exclusive_cnt);
5131 }
5132 
5133 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5134 {
5135 	if ((e1->pmu == e2->pmu) &&
5136 	    (e1->cpu == e2->cpu ||
5137 	     e1->cpu == -1 ||
5138 	     e2->cpu == -1))
5139 		return true;
5140 	return false;
5141 }
5142 
5143 static bool exclusive_event_installable(struct perf_event *event,
5144 					struct perf_event_context *ctx)
5145 {
5146 	struct perf_event *iter_event;
5147 	struct pmu *pmu = event->pmu;
5148 
5149 	lockdep_assert_held(&ctx->mutex);
5150 
5151 	if (!is_exclusive_pmu(pmu))
5152 		return true;
5153 
5154 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5155 		if (exclusive_event_match(iter_event, event))
5156 			return false;
5157 	}
5158 
5159 	return true;
5160 }
5161 
5162 static void perf_addr_filters_splice(struct perf_event *event,
5163 				       struct list_head *head);
5164 
5165 static void _free_event(struct perf_event *event)
5166 {
5167 	irq_work_sync(&event->pending_irq);
5168 
5169 	unaccount_event(event);
5170 
5171 	security_perf_event_free(event);
5172 
5173 	if (event->rb) {
5174 		/*
5175 		 * Can happen when we close an event with re-directed output.
5176 		 *
5177 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5178 		 * over us; possibly making our ring_buffer_put() the last.
5179 		 */
5180 		mutex_lock(&event->mmap_mutex);
5181 		ring_buffer_attach(event, NULL);
5182 		mutex_unlock(&event->mmap_mutex);
5183 	}
5184 
5185 	if (is_cgroup_event(event))
5186 		perf_detach_cgroup(event);
5187 
5188 	if (!event->parent) {
5189 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5190 			put_callchain_buffers();
5191 	}
5192 
5193 	perf_event_free_bpf_prog(event);
5194 	perf_addr_filters_splice(event, NULL);
5195 	kfree(event->addr_filter_ranges);
5196 
5197 	if (event->destroy)
5198 		event->destroy(event);
5199 
5200 	/*
5201 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5202 	 * hw.target.
5203 	 */
5204 	if (event->hw.target)
5205 		put_task_struct(event->hw.target);
5206 
5207 	if (event->pmu_ctx)
5208 		put_pmu_ctx(event->pmu_ctx);
5209 
5210 	/*
5211 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5212 	 * all task references must be cleaned up.
5213 	 */
5214 	if (event->ctx)
5215 		put_ctx(event->ctx);
5216 
5217 	exclusive_event_destroy(event);
5218 	module_put(event->pmu->module);
5219 
5220 	call_rcu(&event->rcu_head, free_event_rcu);
5221 }
5222 
5223 /*
5224  * Used to free events which have a known refcount of 1, such as in error paths
5225  * where the event isn't exposed yet and inherited events.
5226  */
5227 static void free_event(struct perf_event *event)
5228 {
5229 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5230 				"unexpected event refcount: %ld; ptr=%p\n",
5231 				atomic_long_read(&event->refcount), event)) {
5232 		/* leak to avoid use-after-free */
5233 		return;
5234 	}
5235 
5236 	_free_event(event);
5237 }
5238 
5239 /*
5240  * Remove user event from the owner task.
5241  */
5242 static void perf_remove_from_owner(struct perf_event *event)
5243 {
5244 	struct task_struct *owner;
5245 
5246 	rcu_read_lock();
5247 	/*
5248 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5249 	 * observe !owner it means the list deletion is complete and we can
5250 	 * indeed free this event, otherwise we need to serialize on
5251 	 * owner->perf_event_mutex.
5252 	 */
5253 	owner = READ_ONCE(event->owner);
5254 	if (owner) {
5255 		/*
5256 		 * Since delayed_put_task_struct() also drops the last
5257 		 * task reference we can safely take a new reference
5258 		 * while holding the rcu_read_lock().
5259 		 */
5260 		get_task_struct(owner);
5261 	}
5262 	rcu_read_unlock();
5263 
5264 	if (owner) {
5265 		/*
5266 		 * If we're here through perf_event_exit_task() we're already
5267 		 * holding ctx->mutex which would be an inversion wrt. the
5268 		 * normal lock order.
5269 		 *
5270 		 * However we can safely take this lock because its the child
5271 		 * ctx->mutex.
5272 		 */
5273 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5274 
5275 		/*
5276 		 * We have to re-check the event->owner field, if it is cleared
5277 		 * we raced with perf_event_exit_task(), acquiring the mutex
5278 		 * ensured they're done, and we can proceed with freeing the
5279 		 * event.
5280 		 */
5281 		if (event->owner) {
5282 			list_del_init(&event->owner_entry);
5283 			smp_store_release(&event->owner, NULL);
5284 		}
5285 		mutex_unlock(&owner->perf_event_mutex);
5286 		put_task_struct(owner);
5287 	}
5288 }
5289 
5290 static void put_event(struct perf_event *event)
5291 {
5292 	if (!atomic_long_dec_and_test(&event->refcount))
5293 		return;
5294 
5295 	_free_event(event);
5296 }
5297 
5298 /*
5299  * Kill an event dead; while event:refcount will preserve the event
5300  * object, it will not preserve its functionality. Once the last 'user'
5301  * gives up the object, we'll destroy the thing.
5302  */
5303 int perf_event_release_kernel(struct perf_event *event)
5304 {
5305 	struct perf_event_context *ctx = event->ctx;
5306 	struct perf_event *child, *tmp;
5307 	LIST_HEAD(free_list);
5308 
5309 	/*
5310 	 * If we got here through err_alloc: free_event(event); we will not
5311 	 * have attached to a context yet.
5312 	 */
5313 	if (!ctx) {
5314 		WARN_ON_ONCE(event->attach_state &
5315 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5316 		goto no_ctx;
5317 	}
5318 
5319 	if (!is_kernel_event(event))
5320 		perf_remove_from_owner(event);
5321 
5322 	ctx = perf_event_ctx_lock(event);
5323 	WARN_ON_ONCE(ctx->parent_ctx);
5324 
5325 	/*
5326 	 * Mark this event as STATE_DEAD, there is no external reference to it
5327 	 * anymore.
5328 	 *
5329 	 * Anybody acquiring event->child_mutex after the below loop _must_
5330 	 * also see this, most importantly inherit_event() which will avoid
5331 	 * placing more children on the list.
5332 	 *
5333 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5334 	 * child events.
5335 	 */
5336 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5337 
5338 	perf_event_ctx_unlock(event, ctx);
5339 
5340 again:
5341 	mutex_lock(&event->child_mutex);
5342 	list_for_each_entry(child, &event->child_list, child_list) {
5343 
5344 		/*
5345 		 * Cannot change, child events are not migrated, see the
5346 		 * comment with perf_event_ctx_lock_nested().
5347 		 */
5348 		ctx = READ_ONCE(child->ctx);
5349 		/*
5350 		 * Since child_mutex nests inside ctx::mutex, we must jump
5351 		 * through hoops. We start by grabbing a reference on the ctx.
5352 		 *
5353 		 * Since the event cannot get freed while we hold the
5354 		 * child_mutex, the context must also exist and have a !0
5355 		 * reference count.
5356 		 */
5357 		get_ctx(ctx);
5358 
5359 		/*
5360 		 * Now that we have a ctx ref, we can drop child_mutex, and
5361 		 * acquire ctx::mutex without fear of it going away. Then we
5362 		 * can re-acquire child_mutex.
5363 		 */
5364 		mutex_unlock(&event->child_mutex);
5365 		mutex_lock(&ctx->mutex);
5366 		mutex_lock(&event->child_mutex);
5367 
5368 		/*
5369 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5370 		 * state, if child is still the first entry, it didn't get freed
5371 		 * and we can continue doing so.
5372 		 */
5373 		tmp = list_first_entry_or_null(&event->child_list,
5374 					       struct perf_event, child_list);
5375 		if (tmp == child) {
5376 			perf_remove_from_context(child, DETACH_GROUP);
5377 			list_move(&child->child_list, &free_list);
5378 			/*
5379 			 * This matches the refcount bump in inherit_event();
5380 			 * this can't be the last reference.
5381 			 */
5382 			put_event(event);
5383 		}
5384 
5385 		mutex_unlock(&event->child_mutex);
5386 		mutex_unlock(&ctx->mutex);
5387 		put_ctx(ctx);
5388 		goto again;
5389 	}
5390 	mutex_unlock(&event->child_mutex);
5391 
5392 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5393 		void *var = &child->ctx->refcount;
5394 
5395 		list_del(&child->child_list);
5396 		free_event(child);
5397 
5398 		/*
5399 		 * Wake any perf_event_free_task() waiting for this event to be
5400 		 * freed.
5401 		 */
5402 		smp_mb(); /* pairs with wait_var_event() */
5403 		wake_up_var(var);
5404 	}
5405 
5406 no_ctx:
5407 	put_event(event); /* Must be the 'last' reference */
5408 	return 0;
5409 }
5410 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5411 
5412 /*
5413  * Called when the last reference to the file is gone.
5414  */
5415 static int perf_release(struct inode *inode, struct file *file)
5416 {
5417 	perf_event_release_kernel(file->private_data);
5418 	return 0;
5419 }
5420 
5421 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5422 {
5423 	struct perf_event *child;
5424 	u64 total = 0;
5425 
5426 	*enabled = 0;
5427 	*running = 0;
5428 
5429 	mutex_lock(&event->child_mutex);
5430 
5431 	(void)perf_event_read(event, false);
5432 	total += perf_event_count(event);
5433 
5434 	*enabled += event->total_time_enabled +
5435 			atomic64_read(&event->child_total_time_enabled);
5436 	*running += event->total_time_running +
5437 			atomic64_read(&event->child_total_time_running);
5438 
5439 	list_for_each_entry(child, &event->child_list, child_list) {
5440 		(void)perf_event_read(child, false);
5441 		total += perf_event_count(child);
5442 		*enabled += child->total_time_enabled;
5443 		*running += child->total_time_running;
5444 	}
5445 	mutex_unlock(&event->child_mutex);
5446 
5447 	return total;
5448 }
5449 
5450 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5451 {
5452 	struct perf_event_context *ctx;
5453 	u64 count;
5454 
5455 	ctx = perf_event_ctx_lock(event);
5456 	count = __perf_event_read_value(event, enabled, running);
5457 	perf_event_ctx_unlock(event, ctx);
5458 
5459 	return count;
5460 }
5461 EXPORT_SYMBOL_GPL(perf_event_read_value);
5462 
5463 static int __perf_read_group_add(struct perf_event *leader,
5464 					u64 read_format, u64 *values)
5465 {
5466 	struct perf_event_context *ctx = leader->ctx;
5467 	struct perf_event *sub, *parent;
5468 	unsigned long flags;
5469 	int n = 1; /* skip @nr */
5470 	int ret;
5471 
5472 	ret = perf_event_read(leader, true);
5473 	if (ret)
5474 		return ret;
5475 
5476 	raw_spin_lock_irqsave(&ctx->lock, flags);
5477 	/*
5478 	 * Verify the grouping between the parent and child (inherited)
5479 	 * events is still in tact.
5480 	 *
5481 	 * Specifically:
5482 	 *  - leader->ctx->lock pins leader->sibling_list
5483 	 *  - parent->child_mutex pins parent->child_list
5484 	 *  - parent->ctx->mutex pins parent->sibling_list
5485 	 *
5486 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5487 	 * ctx->mutex), group destruction is not atomic between children, also
5488 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5489 	 * group.
5490 	 *
5491 	 * Therefore it is possible to have parent and child groups in a
5492 	 * different configuration and summing over such a beast makes no sense
5493 	 * what so ever.
5494 	 *
5495 	 * Reject this.
5496 	 */
5497 	parent = leader->parent;
5498 	if (parent &&
5499 	    (parent->group_generation != leader->group_generation ||
5500 	     parent->nr_siblings != leader->nr_siblings)) {
5501 		ret = -ECHILD;
5502 		goto unlock;
5503 	}
5504 
5505 	/*
5506 	 * Since we co-schedule groups, {enabled,running} times of siblings
5507 	 * will be identical to those of the leader, so we only publish one
5508 	 * set.
5509 	 */
5510 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5511 		values[n++] += leader->total_time_enabled +
5512 			atomic64_read(&leader->child_total_time_enabled);
5513 	}
5514 
5515 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5516 		values[n++] += leader->total_time_running +
5517 			atomic64_read(&leader->child_total_time_running);
5518 	}
5519 
5520 	/*
5521 	 * Write {count,id} tuples for every sibling.
5522 	 */
5523 	values[n++] += perf_event_count(leader);
5524 	if (read_format & PERF_FORMAT_ID)
5525 		values[n++] = primary_event_id(leader);
5526 	if (read_format & PERF_FORMAT_LOST)
5527 		values[n++] = atomic64_read(&leader->lost_samples);
5528 
5529 	for_each_sibling_event(sub, leader) {
5530 		values[n++] += perf_event_count(sub);
5531 		if (read_format & PERF_FORMAT_ID)
5532 			values[n++] = primary_event_id(sub);
5533 		if (read_format & PERF_FORMAT_LOST)
5534 			values[n++] = atomic64_read(&sub->lost_samples);
5535 	}
5536 
5537 unlock:
5538 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5539 	return ret;
5540 }
5541 
5542 static int perf_read_group(struct perf_event *event,
5543 				   u64 read_format, char __user *buf)
5544 {
5545 	struct perf_event *leader = event->group_leader, *child;
5546 	struct perf_event_context *ctx = leader->ctx;
5547 	int ret;
5548 	u64 *values;
5549 
5550 	lockdep_assert_held(&ctx->mutex);
5551 
5552 	values = kzalloc(event->read_size, GFP_KERNEL);
5553 	if (!values)
5554 		return -ENOMEM;
5555 
5556 	values[0] = 1 + leader->nr_siblings;
5557 
5558 	mutex_lock(&leader->child_mutex);
5559 
5560 	ret = __perf_read_group_add(leader, read_format, values);
5561 	if (ret)
5562 		goto unlock;
5563 
5564 	list_for_each_entry(child, &leader->child_list, child_list) {
5565 		ret = __perf_read_group_add(child, read_format, values);
5566 		if (ret)
5567 			goto unlock;
5568 	}
5569 
5570 	mutex_unlock(&leader->child_mutex);
5571 
5572 	ret = event->read_size;
5573 	if (copy_to_user(buf, values, event->read_size))
5574 		ret = -EFAULT;
5575 	goto out;
5576 
5577 unlock:
5578 	mutex_unlock(&leader->child_mutex);
5579 out:
5580 	kfree(values);
5581 	return ret;
5582 }
5583 
5584 static int perf_read_one(struct perf_event *event,
5585 				 u64 read_format, char __user *buf)
5586 {
5587 	u64 enabled, running;
5588 	u64 values[5];
5589 	int n = 0;
5590 
5591 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5592 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5593 		values[n++] = enabled;
5594 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5595 		values[n++] = running;
5596 	if (read_format & PERF_FORMAT_ID)
5597 		values[n++] = primary_event_id(event);
5598 	if (read_format & PERF_FORMAT_LOST)
5599 		values[n++] = atomic64_read(&event->lost_samples);
5600 
5601 	if (copy_to_user(buf, values, n * sizeof(u64)))
5602 		return -EFAULT;
5603 
5604 	return n * sizeof(u64);
5605 }
5606 
5607 static bool is_event_hup(struct perf_event *event)
5608 {
5609 	bool no_children;
5610 
5611 	if (event->state > PERF_EVENT_STATE_EXIT)
5612 		return false;
5613 
5614 	mutex_lock(&event->child_mutex);
5615 	no_children = list_empty(&event->child_list);
5616 	mutex_unlock(&event->child_mutex);
5617 	return no_children;
5618 }
5619 
5620 /*
5621  * Read the performance event - simple non blocking version for now
5622  */
5623 static ssize_t
5624 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5625 {
5626 	u64 read_format = event->attr.read_format;
5627 	int ret;
5628 
5629 	/*
5630 	 * Return end-of-file for a read on an event that is in
5631 	 * error state (i.e. because it was pinned but it couldn't be
5632 	 * scheduled on to the CPU at some point).
5633 	 */
5634 	if (event->state == PERF_EVENT_STATE_ERROR)
5635 		return 0;
5636 
5637 	if (count < event->read_size)
5638 		return -ENOSPC;
5639 
5640 	WARN_ON_ONCE(event->ctx->parent_ctx);
5641 	if (read_format & PERF_FORMAT_GROUP)
5642 		ret = perf_read_group(event, read_format, buf);
5643 	else
5644 		ret = perf_read_one(event, read_format, buf);
5645 
5646 	return ret;
5647 }
5648 
5649 static ssize_t
5650 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5651 {
5652 	struct perf_event *event = file->private_data;
5653 	struct perf_event_context *ctx;
5654 	int ret;
5655 
5656 	ret = security_perf_event_read(event);
5657 	if (ret)
5658 		return ret;
5659 
5660 	ctx = perf_event_ctx_lock(event);
5661 	ret = __perf_read(event, buf, count);
5662 	perf_event_ctx_unlock(event, ctx);
5663 
5664 	return ret;
5665 }
5666 
5667 static __poll_t perf_poll(struct file *file, poll_table *wait)
5668 {
5669 	struct perf_event *event = file->private_data;
5670 	struct perf_buffer *rb;
5671 	__poll_t events = EPOLLHUP;
5672 
5673 	poll_wait(file, &event->waitq, wait);
5674 
5675 	if (is_event_hup(event))
5676 		return events;
5677 
5678 	/*
5679 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5680 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5681 	 */
5682 	mutex_lock(&event->mmap_mutex);
5683 	rb = event->rb;
5684 	if (rb)
5685 		events = atomic_xchg(&rb->poll, 0);
5686 	mutex_unlock(&event->mmap_mutex);
5687 	return events;
5688 }
5689 
5690 static void _perf_event_reset(struct perf_event *event)
5691 {
5692 	(void)perf_event_read(event, false);
5693 	local64_set(&event->count, 0);
5694 	perf_event_update_userpage(event);
5695 }
5696 
5697 /* Assume it's not an event with inherit set. */
5698 u64 perf_event_pause(struct perf_event *event, bool reset)
5699 {
5700 	struct perf_event_context *ctx;
5701 	u64 count;
5702 
5703 	ctx = perf_event_ctx_lock(event);
5704 	WARN_ON_ONCE(event->attr.inherit);
5705 	_perf_event_disable(event);
5706 	count = local64_read(&event->count);
5707 	if (reset)
5708 		local64_set(&event->count, 0);
5709 	perf_event_ctx_unlock(event, ctx);
5710 
5711 	return count;
5712 }
5713 EXPORT_SYMBOL_GPL(perf_event_pause);
5714 
5715 /*
5716  * Holding the top-level event's child_mutex means that any
5717  * descendant process that has inherited this event will block
5718  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5719  * task existence requirements of perf_event_enable/disable.
5720  */
5721 static void perf_event_for_each_child(struct perf_event *event,
5722 					void (*func)(struct perf_event *))
5723 {
5724 	struct perf_event *child;
5725 
5726 	WARN_ON_ONCE(event->ctx->parent_ctx);
5727 
5728 	mutex_lock(&event->child_mutex);
5729 	func(event);
5730 	list_for_each_entry(child, &event->child_list, child_list)
5731 		func(child);
5732 	mutex_unlock(&event->child_mutex);
5733 }
5734 
5735 static void perf_event_for_each(struct perf_event *event,
5736 				  void (*func)(struct perf_event *))
5737 {
5738 	struct perf_event_context *ctx = event->ctx;
5739 	struct perf_event *sibling;
5740 
5741 	lockdep_assert_held(&ctx->mutex);
5742 
5743 	event = event->group_leader;
5744 
5745 	perf_event_for_each_child(event, func);
5746 	for_each_sibling_event(sibling, event)
5747 		perf_event_for_each_child(sibling, func);
5748 }
5749 
5750 static void __perf_event_period(struct perf_event *event,
5751 				struct perf_cpu_context *cpuctx,
5752 				struct perf_event_context *ctx,
5753 				void *info)
5754 {
5755 	u64 value = *((u64 *)info);
5756 	bool active;
5757 
5758 	if (event->attr.freq) {
5759 		event->attr.sample_freq = value;
5760 	} else {
5761 		event->attr.sample_period = value;
5762 		event->hw.sample_period = value;
5763 	}
5764 
5765 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5766 	if (active) {
5767 		perf_pmu_disable(event->pmu);
5768 		/*
5769 		 * We could be throttled; unthrottle now to avoid the tick
5770 		 * trying to unthrottle while we already re-started the event.
5771 		 */
5772 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5773 			event->hw.interrupts = 0;
5774 			perf_log_throttle(event, 1);
5775 		}
5776 		event->pmu->stop(event, PERF_EF_UPDATE);
5777 	}
5778 
5779 	local64_set(&event->hw.period_left, 0);
5780 
5781 	if (active) {
5782 		event->pmu->start(event, PERF_EF_RELOAD);
5783 		perf_pmu_enable(event->pmu);
5784 	}
5785 }
5786 
5787 static int perf_event_check_period(struct perf_event *event, u64 value)
5788 {
5789 	return event->pmu->check_period(event, value);
5790 }
5791 
5792 static int _perf_event_period(struct perf_event *event, u64 value)
5793 {
5794 	if (!is_sampling_event(event))
5795 		return -EINVAL;
5796 
5797 	if (!value)
5798 		return -EINVAL;
5799 
5800 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5801 		return -EINVAL;
5802 
5803 	if (perf_event_check_period(event, value))
5804 		return -EINVAL;
5805 
5806 	if (!event->attr.freq && (value & (1ULL << 63)))
5807 		return -EINVAL;
5808 
5809 	event_function_call(event, __perf_event_period, &value);
5810 
5811 	return 0;
5812 }
5813 
5814 int perf_event_period(struct perf_event *event, u64 value)
5815 {
5816 	struct perf_event_context *ctx;
5817 	int ret;
5818 
5819 	ctx = perf_event_ctx_lock(event);
5820 	ret = _perf_event_period(event, value);
5821 	perf_event_ctx_unlock(event, ctx);
5822 
5823 	return ret;
5824 }
5825 EXPORT_SYMBOL_GPL(perf_event_period);
5826 
5827 static const struct file_operations perf_fops;
5828 
5829 static inline int perf_fget_light(int fd, struct fd *p)
5830 {
5831 	struct fd f = fdget(fd);
5832 	if (!f.file)
5833 		return -EBADF;
5834 
5835 	if (f.file->f_op != &perf_fops) {
5836 		fdput(f);
5837 		return -EBADF;
5838 	}
5839 	*p = f;
5840 	return 0;
5841 }
5842 
5843 static int perf_event_set_output(struct perf_event *event,
5844 				 struct perf_event *output_event);
5845 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5846 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5847 			  struct perf_event_attr *attr);
5848 
5849 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5850 {
5851 	void (*func)(struct perf_event *);
5852 	u32 flags = arg;
5853 
5854 	switch (cmd) {
5855 	case PERF_EVENT_IOC_ENABLE:
5856 		func = _perf_event_enable;
5857 		break;
5858 	case PERF_EVENT_IOC_DISABLE:
5859 		func = _perf_event_disable;
5860 		break;
5861 	case PERF_EVENT_IOC_RESET:
5862 		func = _perf_event_reset;
5863 		break;
5864 
5865 	case PERF_EVENT_IOC_REFRESH:
5866 		return _perf_event_refresh(event, arg);
5867 
5868 	case PERF_EVENT_IOC_PERIOD:
5869 	{
5870 		u64 value;
5871 
5872 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5873 			return -EFAULT;
5874 
5875 		return _perf_event_period(event, value);
5876 	}
5877 	case PERF_EVENT_IOC_ID:
5878 	{
5879 		u64 id = primary_event_id(event);
5880 
5881 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5882 			return -EFAULT;
5883 		return 0;
5884 	}
5885 
5886 	case PERF_EVENT_IOC_SET_OUTPUT:
5887 	{
5888 		int ret;
5889 		if (arg != -1) {
5890 			struct perf_event *output_event;
5891 			struct fd output;
5892 			ret = perf_fget_light(arg, &output);
5893 			if (ret)
5894 				return ret;
5895 			output_event = output.file->private_data;
5896 			ret = perf_event_set_output(event, output_event);
5897 			fdput(output);
5898 		} else {
5899 			ret = perf_event_set_output(event, NULL);
5900 		}
5901 		return ret;
5902 	}
5903 
5904 	case PERF_EVENT_IOC_SET_FILTER:
5905 		return perf_event_set_filter(event, (void __user *)arg);
5906 
5907 	case PERF_EVENT_IOC_SET_BPF:
5908 	{
5909 		struct bpf_prog *prog;
5910 		int err;
5911 
5912 		prog = bpf_prog_get(arg);
5913 		if (IS_ERR(prog))
5914 			return PTR_ERR(prog);
5915 
5916 		err = perf_event_set_bpf_prog(event, prog, 0);
5917 		if (err) {
5918 			bpf_prog_put(prog);
5919 			return err;
5920 		}
5921 
5922 		return 0;
5923 	}
5924 
5925 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5926 		struct perf_buffer *rb;
5927 
5928 		rcu_read_lock();
5929 		rb = rcu_dereference(event->rb);
5930 		if (!rb || !rb->nr_pages) {
5931 			rcu_read_unlock();
5932 			return -EINVAL;
5933 		}
5934 		rb_toggle_paused(rb, !!arg);
5935 		rcu_read_unlock();
5936 		return 0;
5937 	}
5938 
5939 	case PERF_EVENT_IOC_QUERY_BPF:
5940 		return perf_event_query_prog_array(event, (void __user *)arg);
5941 
5942 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5943 		struct perf_event_attr new_attr;
5944 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5945 					 &new_attr);
5946 
5947 		if (err)
5948 			return err;
5949 
5950 		return perf_event_modify_attr(event,  &new_attr);
5951 	}
5952 	default:
5953 		return -ENOTTY;
5954 	}
5955 
5956 	if (flags & PERF_IOC_FLAG_GROUP)
5957 		perf_event_for_each(event, func);
5958 	else
5959 		perf_event_for_each_child(event, func);
5960 
5961 	return 0;
5962 }
5963 
5964 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5965 {
5966 	struct perf_event *event = file->private_data;
5967 	struct perf_event_context *ctx;
5968 	long ret;
5969 
5970 	/* Treat ioctl like writes as it is likely a mutating operation. */
5971 	ret = security_perf_event_write(event);
5972 	if (ret)
5973 		return ret;
5974 
5975 	ctx = perf_event_ctx_lock(event);
5976 	ret = _perf_ioctl(event, cmd, arg);
5977 	perf_event_ctx_unlock(event, ctx);
5978 
5979 	return ret;
5980 }
5981 
5982 #ifdef CONFIG_COMPAT
5983 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5984 				unsigned long arg)
5985 {
5986 	switch (_IOC_NR(cmd)) {
5987 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5988 	case _IOC_NR(PERF_EVENT_IOC_ID):
5989 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5990 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5991 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5992 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5993 			cmd &= ~IOCSIZE_MASK;
5994 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5995 		}
5996 		break;
5997 	}
5998 	return perf_ioctl(file, cmd, arg);
5999 }
6000 #else
6001 # define perf_compat_ioctl NULL
6002 #endif
6003 
6004 int perf_event_task_enable(void)
6005 {
6006 	struct perf_event_context *ctx;
6007 	struct perf_event *event;
6008 
6009 	mutex_lock(&current->perf_event_mutex);
6010 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6011 		ctx = perf_event_ctx_lock(event);
6012 		perf_event_for_each_child(event, _perf_event_enable);
6013 		perf_event_ctx_unlock(event, ctx);
6014 	}
6015 	mutex_unlock(&current->perf_event_mutex);
6016 
6017 	return 0;
6018 }
6019 
6020 int perf_event_task_disable(void)
6021 {
6022 	struct perf_event_context *ctx;
6023 	struct perf_event *event;
6024 
6025 	mutex_lock(&current->perf_event_mutex);
6026 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6027 		ctx = perf_event_ctx_lock(event);
6028 		perf_event_for_each_child(event, _perf_event_disable);
6029 		perf_event_ctx_unlock(event, ctx);
6030 	}
6031 	mutex_unlock(&current->perf_event_mutex);
6032 
6033 	return 0;
6034 }
6035 
6036 static int perf_event_index(struct perf_event *event)
6037 {
6038 	if (event->hw.state & PERF_HES_STOPPED)
6039 		return 0;
6040 
6041 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6042 		return 0;
6043 
6044 	return event->pmu->event_idx(event);
6045 }
6046 
6047 static void perf_event_init_userpage(struct perf_event *event)
6048 {
6049 	struct perf_event_mmap_page *userpg;
6050 	struct perf_buffer *rb;
6051 
6052 	rcu_read_lock();
6053 	rb = rcu_dereference(event->rb);
6054 	if (!rb)
6055 		goto unlock;
6056 
6057 	userpg = rb->user_page;
6058 
6059 	/* Allow new userspace to detect that bit 0 is deprecated */
6060 	userpg->cap_bit0_is_deprecated = 1;
6061 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6062 	userpg->data_offset = PAGE_SIZE;
6063 	userpg->data_size = perf_data_size(rb);
6064 
6065 unlock:
6066 	rcu_read_unlock();
6067 }
6068 
6069 void __weak arch_perf_update_userpage(
6070 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6071 {
6072 }
6073 
6074 /*
6075  * Callers need to ensure there can be no nesting of this function, otherwise
6076  * the seqlock logic goes bad. We can not serialize this because the arch
6077  * code calls this from NMI context.
6078  */
6079 void perf_event_update_userpage(struct perf_event *event)
6080 {
6081 	struct perf_event_mmap_page *userpg;
6082 	struct perf_buffer *rb;
6083 	u64 enabled, running, now;
6084 
6085 	rcu_read_lock();
6086 	rb = rcu_dereference(event->rb);
6087 	if (!rb)
6088 		goto unlock;
6089 
6090 	/*
6091 	 * compute total_time_enabled, total_time_running
6092 	 * based on snapshot values taken when the event
6093 	 * was last scheduled in.
6094 	 *
6095 	 * we cannot simply called update_context_time()
6096 	 * because of locking issue as we can be called in
6097 	 * NMI context
6098 	 */
6099 	calc_timer_values(event, &now, &enabled, &running);
6100 
6101 	userpg = rb->user_page;
6102 	/*
6103 	 * Disable preemption to guarantee consistent time stamps are stored to
6104 	 * the user page.
6105 	 */
6106 	preempt_disable();
6107 	++userpg->lock;
6108 	barrier();
6109 	userpg->index = perf_event_index(event);
6110 	userpg->offset = perf_event_count(event);
6111 	if (userpg->index)
6112 		userpg->offset -= local64_read(&event->hw.prev_count);
6113 
6114 	userpg->time_enabled = enabled +
6115 			atomic64_read(&event->child_total_time_enabled);
6116 
6117 	userpg->time_running = running +
6118 			atomic64_read(&event->child_total_time_running);
6119 
6120 	arch_perf_update_userpage(event, userpg, now);
6121 
6122 	barrier();
6123 	++userpg->lock;
6124 	preempt_enable();
6125 unlock:
6126 	rcu_read_unlock();
6127 }
6128 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6129 
6130 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6131 {
6132 	struct perf_event *event = vmf->vma->vm_file->private_data;
6133 	struct perf_buffer *rb;
6134 	vm_fault_t ret = VM_FAULT_SIGBUS;
6135 
6136 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6137 		if (vmf->pgoff == 0)
6138 			ret = 0;
6139 		return ret;
6140 	}
6141 
6142 	rcu_read_lock();
6143 	rb = rcu_dereference(event->rb);
6144 	if (!rb)
6145 		goto unlock;
6146 
6147 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6148 		goto unlock;
6149 
6150 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6151 	if (!vmf->page)
6152 		goto unlock;
6153 
6154 	get_page(vmf->page);
6155 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6156 	vmf->page->index   = vmf->pgoff;
6157 
6158 	ret = 0;
6159 unlock:
6160 	rcu_read_unlock();
6161 
6162 	return ret;
6163 }
6164 
6165 static void ring_buffer_attach(struct perf_event *event,
6166 			       struct perf_buffer *rb)
6167 {
6168 	struct perf_buffer *old_rb = NULL;
6169 	unsigned long flags;
6170 
6171 	WARN_ON_ONCE(event->parent);
6172 
6173 	if (event->rb) {
6174 		/*
6175 		 * Should be impossible, we set this when removing
6176 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6177 		 */
6178 		WARN_ON_ONCE(event->rcu_pending);
6179 
6180 		old_rb = event->rb;
6181 		spin_lock_irqsave(&old_rb->event_lock, flags);
6182 		list_del_rcu(&event->rb_entry);
6183 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6184 
6185 		event->rcu_batches = get_state_synchronize_rcu();
6186 		event->rcu_pending = 1;
6187 	}
6188 
6189 	if (rb) {
6190 		if (event->rcu_pending) {
6191 			cond_synchronize_rcu(event->rcu_batches);
6192 			event->rcu_pending = 0;
6193 		}
6194 
6195 		spin_lock_irqsave(&rb->event_lock, flags);
6196 		list_add_rcu(&event->rb_entry, &rb->event_list);
6197 		spin_unlock_irqrestore(&rb->event_lock, flags);
6198 	}
6199 
6200 	/*
6201 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6202 	 * before swizzling the event::rb pointer; if it's getting
6203 	 * unmapped, its aux_mmap_count will be 0 and it won't
6204 	 * restart. See the comment in __perf_pmu_output_stop().
6205 	 *
6206 	 * Data will inevitably be lost when set_output is done in
6207 	 * mid-air, but then again, whoever does it like this is
6208 	 * not in for the data anyway.
6209 	 */
6210 	if (has_aux(event))
6211 		perf_event_stop(event, 0);
6212 
6213 	rcu_assign_pointer(event->rb, rb);
6214 
6215 	if (old_rb) {
6216 		ring_buffer_put(old_rb);
6217 		/*
6218 		 * Since we detached before setting the new rb, so that we
6219 		 * could attach the new rb, we could have missed a wakeup.
6220 		 * Provide it now.
6221 		 */
6222 		wake_up_all(&event->waitq);
6223 	}
6224 }
6225 
6226 static void ring_buffer_wakeup(struct perf_event *event)
6227 {
6228 	struct perf_buffer *rb;
6229 
6230 	if (event->parent)
6231 		event = event->parent;
6232 
6233 	rcu_read_lock();
6234 	rb = rcu_dereference(event->rb);
6235 	if (rb) {
6236 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6237 			wake_up_all(&event->waitq);
6238 	}
6239 	rcu_read_unlock();
6240 }
6241 
6242 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6243 {
6244 	struct perf_buffer *rb;
6245 
6246 	if (event->parent)
6247 		event = event->parent;
6248 
6249 	rcu_read_lock();
6250 	rb = rcu_dereference(event->rb);
6251 	if (rb) {
6252 		if (!refcount_inc_not_zero(&rb->refcount))
6253 			rb = NULL;
6254 	}
6255 	rcu_read_unlock();
6256 
6257 	return rb;
6258 }
6259 
6260 void ring_buffer_put(struct perf_buffer *rb)
6261 {
6262 	if (!refcount_dec_and_test(&rb->refcount))
6263 		return;
6264 
6265 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6266 
6267 	call_rcu(&rb->rcu_head, rb_free_rcu);
6268 }
6269 
6270 static void perf_mmap_open(struct vm_area_struct *vma)
6271 {
6272 	struct perf_event *event = vma->vm_file->private_data;
6273 
6274 	atomic_inc(&event->mmap_count);
6275 	atomic_inc(&event->rb->mmap_count);
6276 
6277 	if (vma->vm_pgoff)
6278 		atomic_inc(&event->rb->aux_mmap_count);
6279 
6280 	if (event->pmu->event_mapped)
6281 		event->pmu->event_mapped(event, vma->vm_mm);
6282 }
6283 
6284 static void perf_pmu_output_stop(struct perf_event *event);
6285 
6286 /*
6287  * A buffer can be mmap()ed multiple times; either directly through the same
6288  * event, or through other events by use of perf_event_set_output().
6289  *
6290  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6291  * the buffer here, where we still have a VM context. This means we need
6292  * to detach all events redirecting to us.
6293  */
6294 static void perf_mmap_close(struct vm_area_struct *vma)
6295 {
6296 	struct perf_event *event = vma->vm_file->private_data;
6297 	struct perf_buffer *rb = ring_buffer_get(event);
6298 	struct user_struct *mmap_user = rb->mmap_user;
6299 	int mmap_locked = rb->mmap_locked;
6300 	unsigned long size = perf_data_size(rb);
6301 	bool detach_rest = false;
6302 
6303 	if (event->pmu->event_unmapped)
6304 		event->pmu->event_unmapped(event, vma->vm_mm);
6305 
6306 	/*
6307 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6308 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6309 	 * serialize with perf_mmap here.
6310 	 */
6311 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6312 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6313 		/*
6314 		 * Stop all AUX events that are writing to this buffer,
6315 		 * so that we can free its AUX pages and corresponding PMU
6316 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6317 		 * they won't start any more (see perf_aux_output_begin()).
6318 		 */
6319 		perf_pmu_output_stop(event);
6320 
6321 		/* now it's safe to free the pages */
6322 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6323 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6324 
6325 		/* this has to be the last one */
6326 		rb_free_aux(rb);
6327 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6328 
6329 		mutex_unlock(&event->mmap_mutex);
6330 	}
6331 
6332 	if (atomic_dec_and_test(&rb->mmap_count))
6333 		detach_rest = true;
6334 
6335 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6336 		goto out_put;
6337 
6338 	ring_buffer_attach(event, NULL);
6339 	mutex_unlock(&event->mmap_mutex);
6340 
6341 	/* If there's still other mmap()s of this buffer, we're done. */
6342 	if (!detach_rest)
6343 		goto out_put;
6344 
6345 	/*
6346 	 * No other mmap()s, detach from all other events that might redirect
6347 	 * into the now unreachable buffer. Somewhat complicated by the
6348 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6349 	 */
6350 again:
6351 	rcu_read_lock();
6352 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6353 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6354 			/*
6355 			 * This event is en-route to free_event() which will
6356 			 * detach it and remove it from the list.
6357 			 */
6358 			continue;
6359 		}
6360 		rcu_read_unlock();
6361 
6362 		mutex_lock(&event->mmap_mutex);
6363 		/*
6364 		 * Check we didn't race with perf_event_set_output() which can
6365 		 * swizzle the rb from under us while we were waiting to
6366 		 * acquire mmap_mutex.
6367 		 *
6368 		 * If we find a different rb; ignore this event, a next
6369 		 * iteration will no longer find it on the list. We have to
6370 		 * still restart the iteration to make sure we're not now
6371 		 * iterating the wrong list.
6372 		 */
6373 		if (event->rb == rb)
6374 			ring_buffer_attach(event, NULL);
6375 
6376 		mutex_unlock(&event->mmap_mutex);
6377 		put_event(event);
6378 
6379 		/*
6380 		 * Restart the iteration; either we're on the wrong list or
6381 		 * destroyed its integrity by doing a deletion.
6382 		 */
6383 		goto again;
6384 	}
6385 	rcu_read_unlock();
6386 
6387 	/*
6388 	 * It could be there's still a few 0-ref events on the list; they'll
6389 	 * get cleaned up by free_event() -- they'll also still have their
6390 	 * ref on the rb and will free it whenever they are done with it.
6391 	 *
6392 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6393 	 * undo the VM accounting.
6394 	 */
6395 
6396 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6397 			&mmap_user->locked_vm);
6398 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6399 	free_uid(mmap_user);
6400 
6401 out_put:
6402 	ring_buffer_put(rb); /* could be last */
6403 }
6404 
6405 static const struct vm_operations_struct perf_mmap_vmops = {
6406 	.open		= perf_mmap_open,
6407 	.close		= perf_mmap_close, /* non mergeable */
6408 	.fault		= perf_mmap_fault,
6409 	.page_mkwrite	= perf_mmap_fault,
6410 };
6411 
6412 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6413 {
6414 	struct perf_event *event = file->private_data;
6415 	unsigned long user_locked, user_lock_limit;
6416 	struct user_struct *user = current_user();
6417 	struct perf_buffer *rb = NULL;
6418 	unsigned long locked, lock_limit;
6419 	unsigned long vma_size;
6420 	unsigned long nr_pages;
6421 	long user_extra = 0, extra = 0;
6422 	int ret = 0, flags = 0;
6423 
6424 	/*
6425 	 * Don't allow mmap() of inherited per-task counters. This would
6426 	 * create a performance issue due to all children writing to the
6427 	 * same rb.
6428 	 */
6429 	if (event->cpu == -1 && event->attr.inherit)
6430 		return -EINVAL;
6431 
6432 	if (!(vma->vm_flags & VM_SHARED))
6433 		return -EINVAL;
6434 
6435 	ret = security_perf_event_read(event);
6436 	if (ret)
6437 		return ret;
6438 
6439 	vma_size = vma->vm_end - vma->vm_start;
6440 
6441 	if (vma->vm_pgoff == 0) {
6442 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6443 	} else {
6444 		/*
6445 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6446 		 * mapped, all subsequent mappings should have the same size
6447 		 * and offset. Must be above the normal perf buffer.
6448 		 */
6449 		u64 aux_offset, aux_size;
6450 
6451 		if (!event->rb)
6452 			return -EINVAL;
6453 
6454 		nr_pages = vma_size / PAGE_SIZE;
6455 
6456 		mutex_lock(&event->mmap_mutex);
6457 		ret = -EINVAL;
6458 
6459 		rb = event->rb;
6460 		if (!rb)
6461 			goto aux_unlock;
6462 
6463 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6464 		aux_size = READ_ONCE(rb->user_page->aux_size);
6465 
6466 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6467 			goto aux_unlock;
6468 
6469 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6470 			goto aux_unlock;
6471 
6472 		/* already mapped with a different offset */
6473 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6474 			goto aux_unlock;
6475 
6476 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6477 			goto aux_unlock;
6478 
6479 		/* already mapped with a different size */
6480 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6481 			goto aux_unlock;
6482 
6483 		if (!is_power_of_2(nr_pages))
6484 			goto aux_unlock;
6485 
6486 		if (!atomic_inc_not_zero(&rb->mmap_count))
6487 			goto aux_unlock;
6488 
6489 		if (rb_has_aux(rb)) {
6490 			atomic_inc(&rb->aux_mmap_count);
6491 			ret = 0;
6492 			goto unlock;
6493 		}
6494 
6495 		atomic_set(&rb->aux_mmap_count, 1);
6496 		user_extra = nr_pages;
6497 
6498 		goto accounting;
6499 	}
6500 
6501 	/*
6502 	 * If we have rb pages ensure they're a power-of-two number, so we
6503 	 * can do bitmasks instead of modulo.
6504 	 */
6505 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6506 		return -EINVAL;
6507 
6508 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6509 		return -EINVAL;
6510 
6511 	WARN_ON_ONCE(event->ctx->parent_ctx);
6512 again:
6513 	mutex_lock(&event->mmap_mutex);
6514 	if (event->rb) {
6515 		if (data_page_nr(event->rb) != nr_pages) {
6516 			ret = -EINVAL;
6517 			goto unlock;
6518 		}
6519 
6520 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6521 			/*
6522 			 * Raced against perf_mmap_close(); remove the
6523 			 * event and try again.
6524 			 */
6525 			ring_buffer_attach(event, NULL);
6526 			mutex_unlock(&event->mmap_mutex);
6527 			goto again;
6528 		}
6529 
6530 		goto unlock;
6531 	}
6532 
6533 	user_extra = nr_pages + 1;
6534 
6535 accounting:
6536 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6537 
6538 	/*
6539 	 * Increase the limit linearly with more CPUs:
6540 	 */
6541 	user_lock_limit *= num_online_cpus();
6542 
6543 	user_locked = atomic_long_read(&user->locked_vm);
6544 
6545 	/*
6546 	 * sysctl_perf_event_mlock may have changed, so that
6547 	 *     user->locked_vm > user_lock_limit
6548 	 */
6549 	if (user_locked > user_lock_limit)
6550 		user_locked = user_lock_limit;
6551 	user_locked += user_extra;
6552 
6553 	if (user_locked > user_lock_limit) {
6554 		/*
6555 		 * charge locked_vm until it hits user_lock_limit;
6556 		 * charge the rest from pinned_vm
6557 		 */
6558 		extra = user_locked - user_lock_limit;
6559 		user_extra -= extra;
6560 	}
6561 
6562 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6563 	lock_limit >>= PAGE_SHIFT;
6564 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6565 
6566 	if ((locked > lock_limit) && perf_is_paranoid() &&
6567 		!capable(CAP_IPC_LOCK)) {
6568 		ret = -EPERM;
6569 		goto unlock;
6570 	}
6571 
6572 	WARN_ON(!rb && event->rb);
6573 
6574 	if (vma->vm_flags & VM_WRITE)
6575 		flags |= RING_BUFFER_WRITABLE;
6576 
6577 	if (!rb) {
6578 		rb = rb_alloc(nr_pages,
6579 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6580 			      event->cpu, flags);
6581 
6582 		if (!rb) {
6583 			ret = -ENOMEM;
6584 			goto unlock;
6585 		}
6586 
6587 		atomic_set(&rb->mmap_count, 1);
6588 		rb->mmap_user = get_current_user();
6589 		rb->mmap_locked = extra;
6590 
6591 		ring_buffer_attach(event, rb);
6592 
6593 		perf_event_update_time(event);
6594 		perf_event_init_userpage(event);
6595 		perf_event_update_userpage(event);
6596 	} else {
6597 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6598 				   event->attr.aux_watermark, flags);
6599 		if (!ret)
6600 			rb->aux_mmap_locked = extra;
6601 	}
6602 
6603 unlock:
6604 	if (!ret) {
6605 		atomic_long_add(user_extra, &user->locked_vm);
6606 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6607 
6608 		atomic_inc(&event->mmap_count);
6609 	} else if (rb) {
6610 		atomic_dec(&rb->mmap_count);
6611 	}
6612 aux_unlock:
6613 	mutex_unlock(&event->mmap_mutex);
6614 
6615 	/*
6616 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6617 	 * vma.
6618 	 */
6619 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6620 	vma->vm_ops = &perf_mmap_vmops;
6621 
6622 	if (event->pmu->event_mapped)
6623 		event->pmu->event_mapped(event, vma->vm_mm);
6624 
6625 	return ret;
6626 }
6627 
6628 static int perf_fasync(int fd, struct file *filp, int on)
6629 {
6630 	struct inode *inode = file_inode(filp);
6631 	struct perf_event *event = filp->private_data;
6632 	int retval;
6633 
6634 	inode_lock(inode);
6635 	retval = fasync_helper(fd, filp, on, &event->fasync);
6636 	inode_unlock(inode);
6637 
6638 	if (retval < 0)
6639 		return retval;
6640 
6641 	return 0;
6642 }
6643 
6644 static const struct file_operations perf_fops = {
6645 	.llseek			= no_llseek,
6646 	.release		= perf_release,
6647 	.read			= perf_read,
6648 	.poll			= perf_poll,
6649 	.unlocked_ioctl		= perf_ioctl,
6650 	.compat_ioctl		= perf_compat_ioctl,
6651 	.mmap			= perf_mmap,
6652 	.fasync			= perf_fasync,
6653 };
6654 
6655 /*
6656  * Perf event wakeup
6657  *
6658  * If there's data, ensure we set the poll() state and publish everything
6659  * to user-space before waking everybody up.
6660  */
6661 
6662 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6663 {
6664 	/* only the parent has fasync state */
6665 	if (event->parent)
6666 		event = event->parent;
6667 	return &event->fasync;
6668 }
6669 
6670 void perf_event_wakeup(struct perf_event *event)
6671 {
6672 	ring_buffer_wakeup(event);
6673 
6674 	if (event->pending_kill) {
6675 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6676 		event->pending_kill = 0;
6677 	}
6678 }
6679 
6680 static void perf_sigtrap(struct perf_event *event)
6681 {
6682 	/*
6683 	 * We'd expect this to only occur if the irq_work is delayed and either
6684 	 * ctx->task or current has changed in the meantime. This can be the
6685 	 * case on architectures that do not implement arch_irq_work_raise().
6686 	 */
6687 	if (WARN_ON_ONCE(event->ctx->task != current))
6688 		return;
6689 
6690 	/*
6691 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6692 	 * task exiting.
6693 	 */
6694 	if (current->flags & PF_EXITING)
6695 		return;
6696 
6697 	send_sig_perf((void __user *)event->pending_addr,
6698 		      event->orig_type, event->attr.sig_data);
6699 }
6700 
6701 /*
6702  * Deliver the pending work in-event-context or follow the context.
6703  */
6704 static void __perf_pending_irq(struct perf_event *event)
6705 {
6706 	int cpu = READ_ONCE(event->oncpu);
6707 
6708 	/*
6709 	 * If the event isn't running; we done. event_sched_out() will have
6710 	 * taken care of things.
6711 	 */
6712 	if (cpu < 0)
6713 		return;
6714 
6715 	/*
6716 	 * Yay, we hit home and are in the context of the event.
6717 	 */
6718 	if (cpu == smp_processor_id()) {
6719 		if (event->pending_sigtrap) {
6720 			event->pending_sigtrap = 0;
6721 			perf_sigtrap(event);
6722 			local_dec(&event->ctx->nr_pending);
6723 		}
6724 		if (event->pending_disable) {
6725 			event->pending_disable = 0;
6726 			perf_event_disable_local(event);
6727 		}
6728 		return;
6729 	}
6730 
6731 	/*
6732 	 *  CPU-A			CPU-B
6733 	 *
6734 	 *  perf_event_disable_inatomic()
6735 	 *    @pending_disable = CPU-A;
6736 	 *    irq_work_queue();
6737 	 *
6738 	 *  sched-out
6739 	 *    @pending_disable = -1;
6740 	 *
6741 	 *				sched-in
6742 	 *				perf_event_disable_inatomic()
6743 	 *				  @pending_disable = CPU-B;
6744 	 *				  irq_work_queue(); // FAILS
6745 	 *
6746 	 *  irq_work_run()
6747 	 *    perf_pending_irq()
6748 	 *
6749 	 * But the event runs on CPU-B and wants disabling there.
6750 	 */
6751 	irq_work_queue_on(&event->pending_irq, cpu);
6752 }
6753 
6754 static void perf_pending_irq(struct irq_work *entry)
6755 {
6756 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6757 	int rctx;
6758 
6759 	/*
6760 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6761 	 * and we won't recurse 'further'.
6762 	 */
6763 	rctx = perf_swevent_get_recursion_context();
6764 
6765 	/*
6766 	 * The wakeup isn't bound to the context of the event -- it can happen
6767 	 * irrespective of where the event is.
6768 	 */
6769 	if (event->pending_wakeup) {
6770 		event->pending_wakeup = 0;
6771 		perf_event_wakeup(event);
6772 	}
6773 
6774 	__perf_pending_irq(event);
6775 
6776 	if (rctx >= 0)
6777 		perf_swevent_put_recursion_context(rctx);
6778 }
6779 
6780 static void perf_pending_task(struct callback_head *head)
6781 {
6782 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6783 	int rctx;
6784 
6785 	/*
6786 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6787 	 * and we won't recurse 'further'.
6788 	 */
6789 	preempt_disable_notrace();
6790 	rctx = perf_swevent_get_recursion_context();
6791 
6792 	if (event->pending_work) {
6793 		event->pending_work = 0;
6794 		perf_sigtrap(event);
6795 		local_dec(&event->ctx->nr_pending);
6796 	}
6797 
6798 	if (rctx >= 0)
6799 		perf_swevent_put_recursion_context(rctx);
6800 	preempt_enable_notrace();
6801 
6802 	put_event(event);
6803 }
6804 
6805 #ifdef CONFIG_GUEST_PERF_EVENTS
6806 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6807 
6808 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6809 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6810 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6811 
6812 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6813 {
6814 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6815 		return;
6816 
6817 	rcu_assign_pointer(perf_guest_cbs, cbs);
6818 	static_call_update(__perf_guest_state, cbs->state);
6819 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6820 
6821 	/* Implementing ->handle_intel_pt_intr is optional. */
6822 	if (cbs->handle_intel_pt_intr)
6823 		static_call_update(__perf_guest_handle_intel_pt_intr,
6824 				   cbs->handle_intel_pt_intr);
6825 }
6826 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6827 
6828 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6829 {
6830 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6831 		return;
6832 
6833 	rcu_assign_pointer(perf_guest_cbs, NULL);
6834 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6835 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6836 	static_call_update(__perf_guest_handle_intel_pt_intr,
6837 			   (void *)&__static_call_return0);
6838 	synchronize_rcu();
6839 }
6840 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6841 #endif
6842 
6843 static void
6844 perf_output_sample_regs(struct perf_output_handle *handle,
6845 			struct pt_regs *regs, u64 mask)
6846 {
6847 	int bit;
6848 	DECLARE_BITMAP(_mask, 64);
6849 
6850 	bitmap_from_u64(_mask, mask);
6851 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6852 		u64 val;
6853 
6854 		val = perf_reg_value(regs, bit);
6855 		perf_output_put(handle, val);
6856 	}
6857 }
6858 
6859 static void perf_sample_regs_user(struct perf_regs *regs_user,
6860 				  struct pt_regs *regs)
6861 {
6862 	if (user_mode(regs)) {
6863 		regs_user->abi = perf_reg_abi(current);
6864 		regs_user->regs = regs;
6865 	} else if (!(current->flags & PF_KTHREAD)) {
6866 		perf_get_regs_user(regs_user, regs);
6867 	} else {
6868 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6869 		regs_user->regs = NULL;
6870 	}
6871 }
6872 
6873 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6874 				  struct pt_regs *regs)
6875 {
6876 	regs_intr->regs = regs;
6877 	regs_intr->abi  = perf_reg_abi(current);
6878 }
6879 
6880 
6881 /*
6882  * Get remaining task size from user stack pointer.
6883  *
6884  * It'd be better to take stack vma map and limit this more
6885  * precisely, but there's no way to get it safely under interrupt,
6886  * so using TASK_SIZE as limit.
6887  */
6888 static u64 perf_ustack_task_size(struct pt_regs *regs)
6889 {
6890 	unsigned long addr = perf_user_stack_pointer(regs);
6891 
6892 	if (!addr || addr >= TASK_SIZE)
6893 		return 0;
6894 
6895 	return TASK_SIZE - addr;
6896 }
6897 
6898 static u16
6899 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6900 			struct pt_regs *regs)
6901 {
6902 	u64 task_size;
6903 
6904 	/* No regs, no stack pointer, no dump. */
6905 	if (!regs)
6906 		return 0;
6907 
6908 	/*
6909 	 * Check if we fit in with the requested stack size into the:
6910 	 * - TASK_SIZE
6911 	 *   If we don't, we limit the size to the TASK_SIZE.
6912 	 *
6913 	 * - remaining sample size
6914 	 *   If we don't, we customize the stack size to
6915 	 *   fit in to the remaining sample size.
6916 	 */
6917 
6918 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6919 	stack_size = min(stack_size, (u16) task_size);
6920 
6921 	/* Current header size plus static size and dynamic size. */
6922 	header_size += 2 * sizeof(u64);
6923 
6924 	/* Do we fit in with the current stack dump size? */
6925 	if ((u16) (header_size + stack_size) < header_size) {
6926 		/*
6927 		 * If we overflow the maximum size for the sample,
6928 		 * we customize the stack dump size to fit in.
6929 		 */
6930 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6931 		stack_size = round_up(stack_size, sizeof(u64));
6932 	}
6933 
6934 	return stack_size;
6935 }
6936 
6937 static void
6938 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6939 			  struct pt_regs *regs)
6940 {
6941 	/* Case of a kernel thread, nothing to dump */
6942 	if (!regs) {
6943 		u64 size = 0;
6944 		perf_output_put(handle, size);
6945 	} else {
6946 		unsigned long sp;
6947 		unsigned int rem;
6948 		u64 dyn_size;
6949 
6950 		/*
6951 		 * We dump:
6952 		 * static size
6953 		 *   - the size requested by user or the best one we can fit
6954 		 *     in to the sample max size
6955 		 * data
6956 		 *   - user stack dump data
6957 		 * dynamic size
6958 		 *   - the actual dumped size
6959 		 */
6960 
6961 		/* Static size. */
6962 		perf_output_put(handle, dump_size);
6963 
6964 		/* Data. */
6965 		sp = perf_user_stack_pointer(regs);
6966 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6967 		dyn_size = dump_size - rem;
6968 
6969 		perf_output_skip(handle, rem);
6970 
6971 		/* Dynamic size. */
6972 		perf_output_put(handle, dyn_size);
6973 	}
6974 }
6975 
6976 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6977 					  struct perf_sample_data *data,
6978 					  size_t size)
6979 {
6980 	struct perf_event *sampler = event->aux_event;
6981 	struct perf_buffer *rb;
6982 
6983 	data->aux_size = 0;
6984 
6985 	if (!sampler)
6986 		goto out;
6987 
6988 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6989 		goto out;
6990 
6991 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6992 		goto out;
6993 
6994 	rb = ring_buffer_get(sampler);
6995 	if (!rb)
6996 		goto out;
6997 
6998 	/*
6999 	 * If this is an NMI hit inside sampling code, don't take
7000 	 * the sample. See also perf_aux_sample_output().
7001 	 */
7002 	if (READ_ONCE(rb->aux_in_sampling)) {
7003 		data->aux_size = 0;
7004 	} else {
7005 		size = min_t(size_t, size, perf_aux_size(rb));
7006 		data->aux_size = ALIGN(size, sizeof(u64));
7007 	}
7008 	ring_buffer_put(rb);
7009 
7010 out:
7011 	return data->aux_size;
7012 }
7013 
7014 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7015                                  struct perf_event *event,
7016                                  struct perf_output_handle *handle,
7017                                  unsigned long size)
7018 {
7019 	unsigned long flags;
7020 	long ret;
7021 
7022 	/*
7023 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7024 	 * paths. If we start calling them in NMI context, they may race with
7025 	 * the IRQ ones, that is, for example, re-starting an event that's just
7026 	 * been stopped, which is why we're using a separate callback that
7027 	 * doesn't change the event state.
7028 	 *
7029 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7030 	 */
7031 	local_irq_save(flags);
7032 	/*
7033 	 * Guard against NMI hits inside the critical section;
7034 	 * see also perf_prepare_sample_aux().
7035 	 */
7036 	WRITE_ONCE(rb->aux_in_sampling, 1);
7037 	barrier();
7038 
7039 	ret = event->pmu->snapshot_aux(event, handle, size);
7040 
7041 	barrier();
7042 	WRITE_ONCE(rb->aux_in_sampling, 0);
7043 	local_irq_restore(flags);
7044 
7045 	return ret;
7046 }
7047 
7048 static void perf_aux_sample_output(struct perf_event *event,
7049 				   struct perf_output_handle *handle,
7050 				   struct perf_sample_data *data)
7051 {
7052 	struct perf_event *sampler = event->aux_event;
7053 	struct perf_buffer *rb;
7054 	unsigned long pad;
7055 	long size;
7056 
7057 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7058 		return;
7059 
7060 	rb = ring_buffer_get(sampler);
7061 	if (!rb)
7062 		return;
7063 
7064 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7065 
7066 	/*
7067 	 * An error here means that perf_output_copy() failed (returned a
7068 	 * non-zero surplus that it didn't copy), which in its current
7069 	 * enlightened implementation is not possible. If that changes, we'd
7070 	 * like to know.
7071 	 */
7072 	if (WARN_ON_ONCE(size < 0))
7073 		goto out_put;
7074 
7075 	/*
7076 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7077 	 * perf_prepare_sample_aux(), so should not be more than that.
7078 	 */
7079 	pad = data->aux_size - size;
7080 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7081 		pad = 8;
7082 
7083 	if (pad) {
7084 		u64 zero = 0;
7085 		perf_output_copy(handle, &zero, pad);
7086 	}
7087 
7088 out_put:
7089 	ring_buffer_put(rb);
7090 }
7091 
7092 /*
7093  * A set of common sample data types saved even for non-sample records
7094  * when event->attr.sample_id_all is set.
7095  */
7096 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7097 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7098 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7099 
7100 static void __perf_event_header__init_id(struct perf_sample_data *data,
7101 					 struct perf_event *event,
7102 					 u64 sample_type)
7103 {
7104 	data->type = event->attr.sample_type;
7105 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7106 
7107 	if (sample_type & PERF_SAMPLE_TID) {
7108 		/* namespace issues */
7109 		data->tid_entry.pid = perf_event_pid(event, current);
7110 		data->tid_entry.tid = perf_event_tid(event, current);
7111 	}
7112 
7113 	if (sample_type & PERF_SAMPLE_TIME)
7114 		data->time = perf_event_clock(event);
7115 
7116 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7117 		data->id = primary_event_id(event);
7118 
7119 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7120 		data->stream_id = event->id;
7121 
7122 	if (sample_type & PERF_SAMPLE_CPU) {
7123 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7124 		data->cpu_entry.reserved = 0;
7125 	}
7126 }
7127 
7128 void perf_event_header__init_id(struct perf_event_header *header,
7129 				struct perf_sample_data *data,
7130 				struct perf_event *event)
7131 {
7132 	if (event->attr.sample_id_all) {
7133 		header->size += event->id_header_size;
7134 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7135 	}
7136 }
7137 
7138 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7139 					   struct perf_sample_data *data)
7140 {
7141 	u64 sample_type = data->type;
7142 
7143 	if (sample_type & PERF_SAMPLE_TID)
7144 		perf_output_put(handle, data->tid_entry);
7145 
7146 	if (sample_type & PERF_SAMPLE_TIME)
7147 		perf_output_put(handle, data->time);
7148 
7149 	if (sample_type & PERF_SAMPLE_ID)
7150 		perf_output_put(handle, data->id);
7151 
7152 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7153 		perf_output_put(handle, data->stream_id);
7154 
7155 	if (sample_type & PERF_SAMPLE_CPU)
7156 		perf_output_put(handle, data->cpu_entry);
7157 
7158 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7159 		perf_output_put(handle, data->id);
7160 }
7161 
7162 void perf_event__output_id_sample(struct perf_event *event,
7163 				  struct perf_output_handle *handle,
7164 				  struct perf_sample_data *sample)
7165 {
7166 	if (event->attr.sample_id_all)
7167 		__perf_event__output_id_sample(handle, sample);
7168 }
7169 
7170 static void perf_output_read_one(struct perf_output_handle *handle,
7171 				 struct perf_event *event,
7172 				 u64 enabled, u64 running)
7173 {
7174 	u64 read_format = event->attr.read_format;
7175 	u64 values[5];
7176 	int n = 0;
7177 
7178 	values[n++] = perf_event_count(event);
7179 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7180 		values[n++] = enabled +
7181 			atomic64_read(&event->child_total_time_enabled);
7182 	}
7183 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7184 		values[n++] = running +
7185 			atomic64_read(&event->child_total_time_running);
7186 	}
7187 	if (read_format & PERF_FORMAT_ID)
7188 		values[n++] = primary_event_id(event);
7189 	if (read_format & PERF_FORMAT_LOST)
7190 		values[n++] = atomic64_read(&event->lost_samples);
7191 
7192 	__output_copy(handle, values, n * sizeof(u64));
7193 }
7194 
7195 static void perf_output_read_group(struct perf_output_handle *handle,
7196 			    struct perf_event *event,
7197 			    u64 enabled, u64 running)
7198 {
7199 	struct perf_event *leader = event->group_leader, *sub;
7200 	u64 read_format = event->attr.read_format;
7201 	unsigned long flags;
7202 	u64 values[6];
7203 	int n = 0;
7204 
7205 	/*
7206 	 * Disabling interrupts avoids all counter scheduling
7207 	 * (context switches, timer based rotation and IPIs).
7208 	 */
7209 	local_irq_save(flags);
7210 
7211 	values[n++] = 1 + leader->nr_siblings;
7212 
7213 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7214 		values[n++] = enabled;
7215 
7216 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7217 		values[n++] = running;
7218 
7219 	if ((leader != event) &&
7220 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7221 		leader->pmu->read(leader);
7222 
7223 	values[n++] = perf_event_count(leader);
7224 	if (read_format & PERF_FORMAT_ID)
7225 		values[n++] = primary_event_id(leader);
7226 	if (read_format & PERF_FORMAT_LOST)
7227 		values[n++] = atomic64_read(&leader->lost_samples);
7228 
7229 	__output_copy(handle, values, n * sizeof(u64));
7230 
7231 	for_each_sibling_event(sub, leader) {
7232 		n = 0;
7233 
7234 		if ((sub != event) &&
7235 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7236 			sub->pmu->read(sub);
7237 
7238 		values[n++] = perf_event_count(sub);
7239 		if (read_format & PERF_FORMAT_ID)
7240 			values[n++] = primary_event_id(sub);
7241 		if (read_format & PERF_FORMAT_LOST)
7242 			values[n++] = atomic64_read(&sub->lost_samples);
7243 
7244 		__output_copy(handle, values, n * sizeof(u64));
7245 	}
7246 
7247 	local_irq_restore(flags);
7248 }
7249 
7250 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7251 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7252 
7253 /*
7254  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7255  *
7256  * The problem is that its both hard and excessively expensive to iterate the
7257  * child list, not to mention that its impossible to IPI the children running
7258  * on another CPU, from interrupt/NMI context.
7259  */
7260 static void perf_output_read(struct perf_output_handle *handle,
7261 			     struct perf_event *event)
7262 {
7263 	u64 enabled = 0, running = 0, now;
7264 	u64 read_format = event->attr.read_format;
7265 
7266 	/*
7267 	 * compute total_time_enabled, total_time_running
7268 	 * based on snapshot values taken when the event
7269 	 * was last scheduled in.
7270 	 *
7271 	 * we cannot simply called update_context_time()
7272 	 * because of locking issue as we are called in
7273 	 * NMI context
7274 	 */
7275 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7276 		calc_timer_values(event, &now, &enabled, &running);
7277 
7278 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7279 		perf_output_read_group(handle, event, enabled, running);
7280 	else
7281 		perf_output_read_one(handle, event, enabled, running);
7282 }
7283 
7284 void perf_output_sample(struct perf_output_handle *handle,
7285 			struct perf_event_header *header,
7286 			struct perf_sample_data *data,
7287 			struct perf_event *event)
7288 {
7289 	u64 sample_type = data->type;
7290 
7291 	perf_output_put(handle, *header);
7292 
7293 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7294 		perf_output_put(handle, data->id);
7295 
7296 	if (sample_type & PERF_SAMPLE_IP)
7297 		perf_output_put(handle, data->ip);
7298 
7299 	if (sample_type & PERF_SAMPLE_TID)
7300 		perf_output_put(handle, data->tid_entry);
7301 
7302 	if (sample_type & PERF_SAMPLE_TIME)
7303 		perf_output_put(handle, data->time);
7304 
7305 	if (sample_type & PERF_SAMPLE_ADDR)
7306 		perf_output_put(handle, data->addr);
7307 
7308 	if (sample_type & PERF_SAMPLE_ID)
7309 		perf_output_put(handle, data->id);
7310 
7311 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7312 		perf_output_put(handle, data->stream_id);
7313 
7314 	if (sample_type & PERF_SAMPLE_CPU)
7315 		perf_output_put(handle, data->cpu_entry);
7316 
7317 	if (sample_type & PERF_SAMPLE_PERIOD)
7318 		perf_output_put(handle, data->period);
7319 
7320 	if (sample_type & PERF_SAMPLE_READ)
7321 		perf_output_read(handle, event);
7322 
7323 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7324 		int size = 1;
7325 
7326 		size += data->callchain->nr;
7327 		size *= sizeof(u64);
7328 		__output_copy(handle, data->callchain, size);
7329 	}
7330 
7331 	if (sample_type & PERF_SAMPLE_RAW) {
7332 		struct perf_raw_record *raw = data->raw;
7333 
7334 		if (raw) {
7335 			struct perf_raw_frag *frag = &raw->frag;
7336 
7337 			perf_output_put(handle, raw->size);
7338 			do {
7339 				if (frag->copy) {
7340 					__output_custom(handle, frag->copy,
7341 							frag->data, frag->size);
7342 				} else {
7343 					__output_copy(handle, frag->data,
7344 						      frag->size);
7345 				}
7346 				if (perf_raw_frag_last(frag))
7347 					break;
7348 				frag = frag->next;
7349 			} while (1);
7350 			if (frag->pad)
7351 				__output_skip(handle, NULL, frag->pad);
7352 		} else {
7353 			struct {
7354 				u32	size;
7355 				u32	data;
7356 			} raw = {
7357 				.size = sizeof(u32),
7358 				.data = 0,
7359 			};
7360 			perf_output_put(handle, raw);
7361 		}
7362 	}
7363 
7364 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7365 		if (data->br_stack) {
7366 			size_t size;
7367 
7368 			size = data->br_stack->nr
7369 			     * sizeof(struct perf_branch_entry);
7370 
7371 			perf_output_put(handle, data->br_stack->nr);
7372 			if (branch_sample_hw_index(event))
7373 				perf_output_put(handle, data->br_stack->hw_idx);
7374 			perf_output_copy(handle, data->br_stack->entries, size);
7375 		} else {
7376 			/*
7377 			 * we always store at least the value of nr
7378 			 */
7379 			u64 nr = 0;
7380 			perf_output_put(handle, nr);
7381 		}
7382 	}
7383 
7384 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7385 		u64 abi = data->regs_user.abi;
7386 
7387 		/*
7388 		 * If there are no regs to dump, notice it through
7389 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7390 		 */
7391 		perf_output_put(handle, abi);
7392 
7393 		if (abi) {
7394 			u64 mask = event->attr.sample_regs_user;
7395 			perf_output_sample_regs(handle,
7396 						data->regs_user.regs,
7397 						mask);
7398 		}
7399 	}
7400 
7401 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7402 		perf_output_sample_ustack(handle,
7403 					  data->stack_user_size,
7404 					  data->regs_user.regs);
7405 	}
7406 
7407 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7408 		perf_output_put(handle, data->weight.full);
7409 
7410 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7411 		perf_output_put(handle, data->data_src.val);
7412 
7413 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7414 		perf_output_put(handle, data->txn);
7415 
7416 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7417 		u64 abi = data->regs_intr.abi;
7418 		/*
7419 		 * If there are no regs to dump, notice it through
7420 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7421 		 */
7422 		perf_output_put(handle, abi);
7423 
7424 		if (abi) {
7425 			u64 mask = event->attr.sample_regs_intr;
7426 
7427 			perf_output_sample_regs(handle,
7428 						data->regs_intr.regs,
7429 						mask);
7430 		}
7431 	}
7432 
7433 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7434 		perf_output_put(handle, data->phys_addr);
7435 
7436 	if (sample_type & PERF_SAMPLE_CGROUP)
7437 		perf_output_put(handle, data->cgroup);
7438 
7439 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7440 		perf_output_put(handle, data->data_page_size);
7441 
7442 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7443 		perf_output_put(handle, data->code_page_size);
7444 
7445 	if (sample_type & PERF_SAMPLE_AUX) {
7446 		perf_output_put(handle, data->aux_size);
7447 
7448 		if (data->aux_size)
7449 			perf_aux_sample_output(event, handle, data);
7450 	}
7451 
7452 	if (!event->attr.watermark) {
7453 		int wakeup_events = event->attr.wakeup_events;
7454 
7455 		if (wakeup_events) {
7456 			struct perf_buffer *rb = handle->rb;
7457 			int events = local_inc_return(&rb->events);
7458 
7459 			if (events >= wakeup_events) {
7460 				local_sub(wakeup_events, &rb->events);
7461 				local_inc(&rb->wakeup);
7462 			}
7463 		}
7464 	}
7465 }
7466 
7467 static u64 perf_virt_to_phys(u64 virt)
7468 {
7469 	u64 phys_addr = 0;
7470 
7471 	if (!virt)
7472 		return 0;
7473 
7474 	if (virt >= TASK_SIZE) {
7475 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7476 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7477 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7478 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7479 	} else {
7480 		/*
7481 		 * Walking the pages tables for user address.
7482 		 * Interrupts are disabled, so it prevents any tear down
7483 		 * of the page tables.
7484 		 * Try IRQ-safe get_user_page_fast_only first.
7485 		 * If failed, leave phys_addr as 0.
7486 		 */
7487 		if (current->mm != NULL) {
7488 			struct page *p;
7489 
7490 			pagefault_disable();
7491 			if (get_user_page_fast_only(virt, 0, &p)) {
7492 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7493 				put_page(p);
7494 			}
7495 			pagefault_enable();
7496 		}
7497 	}
7498 
7499 	return phys_addr;
7500 }
7501 
7502 /*
7503  * Return the pagetable size of a given virtual address.
7504  */
7505 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7506 {
7507 	u64 size = 0;
7508 
7509 #ifdef CONFIG_HAVE_FAST_GUP
7510 	pgd_t *pgdp, pgd;
7511 	p4d_t *p4dp, p4d;
7512 	pud_t *pudp, pud;
7513 	pmd_t *pmdp, pmd;
7514 	pte_t *ptep, pte;
7515 
7516 	pgdp = pgd_offset(mm, addr);
7517 	pgd = READ_ONCE(*pgdp);
7518 	if (pgd_none(pgd))
7519 		return 0;
7520 
7521 	if (pgd_leaf(pgd))
7522 		return pgd_leaf_size(pgd);
7523 
7524 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7525 	p4d = READ_ONCE(*p4dp);
7526 	if (!p4d_present(p4d))
7527 		return 0;
7528 
7529 	if (p4d_leaf(p4d))
7530 		return p4d_leaf_size(p4d);
7531 
7532 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7533 	pud = READ_ONCE(*pudp);
7534 	if (!pud_present(pud))
7535 		return 0;
7536 
7537 	if (pud_leaf(pud))
7538 		return pud_leaf_size(pud);
7539 
7540 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7541 again:
7542 	pmd = pmdp_get_lockless(pmdp);
7543 	if (!pmd_present(pmd))
7544 		return 0;
7545 
7546 	if (pmd_leaf(pmd))
7547 		return pmd_leaf_size(pmd);
7548 
7549 	ptep = pte_offset_map(&pmd, addr);
7550 	if (!ptep)
7551 		goto again;
7552 
7553 	pte = ptep_get_lockless(ptep);
7554 	if (pte_present(pte))
7555 		size = pte_leaf_size(pte);
7556 	pte_unmap(ptep);
7557 #endif /* CONFIG_HAVE_FAST_GUP */
7558 
7559 	return size;
7560 }
7561 
7562 static u64 perf_get_page_size(unsigned long addr)
7563 {
7564 	struct mm_struct *mm;
7565 	unsigned long flags;
7566 	u64 size;
7567 
7568 	if (!addr)
7569 		return 0;
7570 
7571 	/*
7572 	 * Software page-table walkers must disable IRQs,
7573 	 * which prevents any tear down of the page tables.
7574 	 */
7575 	local_irq_save(flags);
7576 
7577 	mm = current->mm;
7578 	if (!mm) {
7579 		/*
7580 		 * For kernel threads and the like, use init_mm so that
7581 		 * we can find kernel memory.
7582 		 */
7583 		mm = &init_mm;
7584 	}
7585 
7586 	size = perf_get_pgtable_size(mm, addr);
7587 
7588 	local_irq_restore(flags);
7589 
7590 	return size;
7591 }
7592 
7593 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7594 
7595 struct perf_callchain_entry *
7596 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7597 {
7598 	bool kernel = !event->attr.exclude_callchain_kernel;
7599 	bool user   = !event->attr.exclude_callchain_user;
7600 	/* Disallow cross-task user callchains. */
7601 	bool crosstask = event->ctx->task && event->ctx->task != current;
7602 	const u32 max_stack = event->attr.sample_max_stack;
7603 	struct perf_callchain_entry *callchain;
7604 
7605 	if (!kernel && !user)
7606 		return &__empty_callchain;
7607 
7608 	callchain = get_perf_callchain(regs, 0, kernel, user,
7609 				       max_stack, crosstask, true);
7610 	return callchain ?: &__empty_callchain;
7611 }
7612 
7613 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7614 {
7615 	return d * !!(flags & s);
7616 }
7617 
7618 void perf_prepare_sample(struct perf_sample_data *data,
7619 			 struct perf_event *event,
7620 			 struct pt_regs *regs)
7621 {
7622 	u64 sample_type = event->attr.sample_type;
7623 	u64 filtered_sample_type;
7624 
7625 	/*
7626 	 * Add the sample flags that are dependent to others.  And clear the
7627 	 * sample flags that have already been done by the PMU driver.
7628 	 */
7629 	filtered_sample_type = sample_type;
7630 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7631 					   PERF_SAMPLE_IP);
7632 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7633 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7634 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7635 					   PERF_SAMPLE_REGS_USER);
7636 	filtered_sample_type &= ~data->sample_flags;
7637 
7638 	if (filtered_sample_type == 0) {
7639 		/* Make sure it has the correct data->type for output */
7640 		data->type = event->attr.sample_type;
7641 		return;
7642 	}
7643 
7644 	__perf_event_header__init_id(data, event, filtered_sample_type);
7645 
7646 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7647 		data->ip = perf_instruction_pointer(regs);
7648 		data->sample_flags |= PERF_SAMPLE_IP;
7649 	}
7650 
7651 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7652 		perf_sample_save_callchain(data, event, regs);
7653 
7654 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7655 		data->raw = NULL;
7656 		data->dyn_size += sizeof(u64);
7657 		data->sample_flags |= PERF_SAMPLE_RAW;
7658 	}
7659 
7660 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7661 		data->br_stack = NULL;
7662 		data->dyn_size += sizeof(u64);
7663 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7664 	}
7665 
7666 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7667 		perf_sample_regs_user(&data->regs_user, regs);
7668 
7669 	/*
7670 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7671 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7672 	 * the dyn_size if it's not requested by users.
7673 	 */
7674 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7675 		/* regs dump ABI info */
7676 		int size = sizeof(u64);
7677 
7678 		if (data->regs_user.regs) {
7679 			u64 mask = event->attr.sample_regs_user;
7680 			size += hweight64(mask) * sizeof(u64);
7681 		}
7682 
7683 		data->dyn_size += size;
7684 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7685 	}
7686 
7687 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7688 		/*
7689 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7690 		 * processed as the last one or have additional check added
7691 		 * in case new sample type is added, because we could eat
7692 		 * up the rest of the sample size.
7693 		 */
7694 		u16 stack_size = event->attr.sample_stack_user;
7695 		u16 header_size = perf_sample_data_size(data, event);
7696 		u16 size = sizeof(u64);
7697 
7698 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7699 						     data->regs_user.regs);
7700 
7701 		/*
7702 		 * If there is something to dump, add space for the dump
7703 		 * itself and for the field that tells the dynamic size,
7704 		 * which is how many have been actually dumped.
7705 		 */
7706 		if (stack_size)
7707 			size += sizeof(u64) + stack_size;
7708 
7709 		data->stack_user_size = stack_size;
7710 		data->dyn_size += size;
7711 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7712 	}
7713 
7714 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7715 		data->weight.full = 0;
7716 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7717 	}
7718 
7719 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7720 		data->data_src.val = PERF_MEM_NA;
7721 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7722 	}
7723 
7724 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7725 		data->txn = 0;
7726 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7727 	}
7728 
7729 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7730 		data->addr = 0;
7731 		data->sample_flags |= PERF_SAMPLE_ADDR;
7732 	}
7733 
7734 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7735 		/* regs dump ABI info */
7736 		int size = sizeof(u64);
7737 
7738 		perf_sample_regs_intr(&data->regs_intr, regs);
7739 
7740 		if (data->regs_intr.regs) {
7741 			u64 mask = event->attr.sample_regs_intr;
7742 
7743 			size += hweight64(mask) * sizeof(u64);
7744 		}
7745 
7746 		data->dyn_size += size;
7747 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7748 	}
7749 
7750 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7751 		data->phys_addr = perf_virt_to_phys(data->addr);
7752 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7753 	}
7754 
7755 #ifdef CONFIG_CGROUP_PERF
7756 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7757 		struct cgroup *cgrp;
7758 
7759 		/* protected by RCU */
7760 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7761 		data->cgroup = cgroup_id(cgrp);
7762 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7763 	}
7764 #endif
7765 
7766 	/*
7767 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7768 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7769 	 * but the value will not dump to the userspace.
7770 	 */
7771 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7772 		data->data_page_size = perf_get_page_size(data->addr);
7773 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7774 	}
7775 
7776 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7777 		data->code_page_size = perf_get_page_size(data->ip);
7778 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7779 	}
7780 
7781 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7782 		u64 size;
7783 		u16 header_size = perf_sample_data_size(data, event);
7784 
7785 		header_size += sizeof(u64); /* size */
7786 
7787 		/*
7788 		 * Given the 16bit nature of header::size, an AUX sample can
7789 		 * easily overflow it, what with all the preceding sample bits.
7790 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7791 		 * per sample in total (rounded down to 8 byte boundary).
7792 		 */
7793 		size = min_t(size_t, U16_MAX - header_size,
7794 			     event->attr.aux_sample_size);
7795 		size = rounddown(size, 8);
7796 		size = perf_prepare_sample_aux(event, data, size);
7797 
7798 		WARN_ON_ONCE(size + header_size > U16_MAX);
7799 		data->dyn_size += size + sizeof(u64); /* size above */
7800 		data->sample_flags |= PERF_SAMPLE_AUX;
7801 	}
7802 }
7803 
7804 void perf_prepare_header(struct perf_event_header *header,
7805 			 struct perf_sample_data *data,
7806 			 struct perf_event *event,
7807 			 struct pt_regs *regs)
7808 {
7809 	header->type = PERF_RECORD_SAMPLE;
7810 	header->size = perf_sample_data_size(data, event);
7811 	header->misc = perf_misc_flags(regs);
7812 
7813 	/*
7814 	 * If you're adding more sample types here, you likely need to do
7815 	 * something about the overflowing header::size, like repurpose the
7816 	 * lowest 3 bits of size, which should be always zero at the moment.
7817 	 * This raises a more important question, do we really need 512k sized
7818 	 * samples and why, so good argumentation is in order for whatever you
7819 	 * do here next.
7820 	 */
7821 	WARN_ON_ONCE(header->size & 7);
7822 }
7823 
7824 static __always_inline int
7825 __perf_event_output(struct perf_event *event,
7826 		    struct perf_sample_data *data,
7827 		    struct pt_regs *regs,
7828 		    int (*output_begin)(struct perf_output_handle *,
7829 					struct perf_sample_data *,
7830 					struct perf_event *,
7831 					unsigned int))
7832 {
7833 	struct perf_output_handle handle;
7834 	struct perf_event_header header;
7835 	int err;
7836 
7837 	/* protect the callchain buffers */
7838 	rcu_read_lock();
7839 
7840 	perf_prepare_sample(data, event, regs);
7841 	perf_prepare_header(&header, data, event, regs);
7842 
7843 	err = output_begin(&handle, data, event, header.size);
7844 	if (err)
7845 		goto exit;
7846 
7847 	perf_output_sample(&handle, &header, data, event);
7848 
7849 	perf_output_end(&handle);
7850 
7851 exit:
7852 	rcu_read_unlock();
7853 	return err;
7854 }
7855 
7856 void
7857 perf_event_output_forward(struct perf_event *event,
7858 			 struct perf_sample_data *data,
7859 			 struct pt_regs *regs)
7860 {
7861 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7862 }
7863 
7864 void
7865 perf_event_output_backward(struct perf_event *event,
7866 			   struct perf_sample_data *data,
7867 			   struct pt_regs *regs)
7868 {
7869 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7870 }
7871 
7872 int
7873 perf_event_output(struct perf_event *event,
7874 		  struct perf_sample_data *data,
7875 		  struct pt_regs *regs)
7876 {
7877 	return __perf_event_output(event, data, regs, perf_output_begin);
7878 }
7879 
7880 /*
7881  * read event_id
7882  */
7883 
7884 struct perf_read_event {
7885 	struct perf_event_header	header;
7886 
7887 	u32				pid;
7888 	u32				tid;
7889 };
7890 
7891 static void
7892 perf_event_read_event(struct perf_event *event,
7893 			struct task_struct *task)
7894 {
7895 	struct perf_output_handle handle;
7896 	struct perf_sample_data sample;
7897 	struct perf_read_event read_event = {
7898 		.header = {
7899 			.type = PERF_RECORD_READ,
7900 			.misc = 0,
7901 			.size = sizeof(read_event) + event->read_size,
7902 		},
7903 		.pid = perf_event_pid(event, task),
7904 		.tid = perf_event_tid(event, task),
7905 	};
7906 	int ret;
7907 
7908 	perf_event_header__init_id(&read_event.header, &sample, event);
7909 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7910 	if (ret)
7911 		return;
7912 
7913 	perf_output_put(&handle, read_event);
7914 	perf_output_read(&handle, event);
7915 	perf_event__output_id_sample(event, &handle, &sample);
7916 
7917 	perf_output_end(&handle);
7918 }
7919 
7920 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7921 
7922 static void
7923 perf_iterate_ctx(struct perf_event_context *ctx,
7924 		   perf_iterate_f output,
7925 		   void *data, bool all)
7926 {
7927 	struct perf_event *event;
7928 
7929 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7930 		if (!all) {
7931 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7932 				continue;
7933 			if (!event_filter_match(event))
7934 				continue;
7935 		}
7936 
7937 		output(event, data);
7938 	}
7939 }
7940 
7941 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7942 {
7943 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7944 	struct perf_event *event;
7945 
7946 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7947 		/*
7948 		 * Skip events that are not fully formed yet; ensure that
7949 		 * if we observe event->ctx, both event and ctx will be
7950 		 * complete enough. See perf_install_in_context().
7951 		 */
7952 		if (!smp_load_acquire(&event->ctx))
7953 			continue;
7954 
7955 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7956 			continue;
7957 		if (!event_filter_match(event))
7958 			continue;
7959 		output(event, data);
7960 	}
7961 }
7962 
7963 /*
7964  * Iterate all events that need to receive side-band events.
7965  *
7966  * For new callers; ensure that account_pmu_sb_event() includes
7967  * your event, otherwise it might not get delivered.
7968  */
7969 static void
7970 perf_iterate_sb(perf_iterate_f output, void *data,
7971 	       struct perf_event_context *task_ctx)
7972 {
7973 	struct perf_event_context *ctx;
7974 
7975 	rcu_read_lock();
7976 	preempt_disable();
7977 
7978 	/*
7979 	 * If we have task_ctx != NULL we only notify the task context itself.
7980 	 * The task_ctx is set only for EXIT events before releasing task
7981 	 * context.
7982 	 */
7983 	if (task_ctx) {
7984 		perf_iterate_ctx(task_ctx, output, data, false);
7985 		goto done;
7986 	}
7987 
7988 	perf_iterate_sb_cpu(output, data);
7989 
7990 	ctx = rcu_dereference(current->perf_event_ctxp);
7991 	if (ctx)
7992 		perf_iterate_ctx(ctx, output, data, false);
7993 done:
7994 	preempt_enable();
7995 	rcu_read_unlock();
7996 }
7997 
7998 /*
7999  * Clear all file-based filters at exec, they'll have to be
8000  * re-instated when/if these objects are mmapped again.
8001  */
8002 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8003 {
8004 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8005 	struct perf_addr_filter *filter;
8006 	unsigned int restart = 0, count = 0;
8007 	unsigned long flags;
8008 
8009 	if (!has_addr_filter(event))
8010 		return;
8011 
8012 	raw_spin_lock_irqsave(&ifh->lock, flags);
8013 	list_for_each_entry(filter, &ifh->list, entry) {
8014 		if (filter->path.dentry) {
8015 			event->addr_filter_ranges[count].start = 0;
8016 			event->addr_filter_ranges[count].size = 0;
8017 			restart++;
8018 		}
8019 
8020 		count++;
8021 	}
8022 
8023 	if (restart)
8024 		event->addr_filters_gen++;
8025 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8026 
8027 	if (restart)
8028 		perf_event_stop(event, 1);
8029 }
8030 
8031 void perf_event_exec(void)
8032 {
8033 	struct perf_event_context *ctx;
8034 
8035 	ctx = perf_pin_task_context(current);
8036 	if (!ctx)
8037 		return;
8038 
8039 	perf_event_enable_on_exec(ctx);
8040 	perf_event_remove_on_exec(ctx);
8041 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8042 
8043 	perf_unpin_context(ctx);
8044 	put_ctx(ctx);
8045 }
8046 
8047 struct remote_output {
8048 	struct perf_buffer	*rb;
8049 	int			err;
8050 };
8051 
8052 static void __perf_event_output_stop(struct perf_event *event, void *data)
8053 {
8054 	struct perf_event *parent = event->parent;
8055 	struct remote_output *ro = data;
8056 	struct perf_buffer *rb = ro->rb;
8057 	struct stop_event_data sd = {
8058 		.event	= event,
8059 	};
8060 
8061 	if (!has_aux(event))
8062 		return;
8063 
8064 	if (!parent)
8065 		parent = event;
8066 
8067 	/*
8068 	 * In case of inheritance, it will be the parent that links to the
8069 	 * ring-buffer, but it will be the child that's actually using it.
8070 	 *
8071 	 * We are using event::rb to determine if the event should be stopped,
8072 	 * however this may race with ring_buffer_attach() (through set_output),
8073 	 * which will make us skip the event that actually needs to be stopped.
8074 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8075 	 * its rb pointer.
8076 	 */
8077 	if (rcu_dereference(parent->rb) == rb)
8078 		ro->err = __perf_event_stop(&sd);
8079 }
8080 
8081 static int __perf_pmu_output_stop(void *info)
8082 {
8083 	struct perf_event *event = info;
8084 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8085 	struct remote_output ro = {
8086 		.rb	= event->rb,
8087 	};
8088 
8089 	rcu_read_lock();
8090 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8091 	if (cpuctx->task_ctx)
8092 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8093 				   &ro, false);
8094 	rcu_read_unlock();
8095 
8096 	return ro.err;
8097 }
8098 
8099 static void perf_pmu_output_stop(struct perf_event *event)
8100 {
8101 	struct perf_event *iter;
8102 	int err, cpu;
8103 
8104 restart:
8105 	rcu_read_lock();
8106 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8107 		/*
8108 		 * For per-CPU events, we need to make sure that neither they
8109 		 * nor their children are running; for cpu==-1 events it's
8110 		 * sufficient to stop the event itself if it's active, since
8111 		 * it can't have children.
8112 		 */
8113 		cpu = iter->cpu;
8114 		if (cpu == -1)
8115 			cpu = READ_ONCE(iter->oncpu);
8116 
8117 		if (cpu == -1)
8118 			continue;
8119 
8120 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8121 		if (err == -EAGAIN) {
8122 			rcu_read_unlock();
8123 			goto restart;
8124 		}
8125 	}
8126 	rcu_read_unlock();
8127 }
8128 
8129 /*
8130  * task tracking -- fork/exit
8131  *
8132  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8133  */
8134 
8135 struct perf_task_event {
8136 	struct task_struct		*task;
8137 	struct perf_event_context	*task_ctx;
8138 
8139 	struct {
8140 		struct perf_event_header	header;
8141 
8142 		u32				pid;
8143 		u32				ppid;
8144 		u32				tid;
8145 		u32				ptid;
8146 		u64				time;
8147 	} event_id;
8148 };
8149 
8150 static int perf_event_task_match(struct perf_event *event)
8151 {
8152 	return event->attr.comm  || event->attr.mmap ||
8153 	       event->attr.mmap2 || event->attr.mmap_data ||
8154 	       event->attr.task;
8155 }
8156 
8157 static void perf_event_task_output(struct perf_event *event,
8158 				   void *data)
8159 {
8160 	struct perf_task_event *task_event = data;
8161 	struct perf_output_handle handle;
8162 	struct perf_sample_data	sample;
8163 	struct task_struct *task = task_event->task;
8164 	int ret, size = task_event->event_id.header.size;
8165 
8166 	if (!perf_event_task_match(event))
8167 		return;
8168 
8169 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8170 
8171 	ret = perf_output_begin(&handle, &sample, event,
8172 				task_event->event_id.header.size);
8173 	if (ret)
8174 		goto out;
8175 
8176 	task_event->event_id.pid = perf_event_pid(event, task);
8177 	task_event->event_id.tid = perf_event_tid(event, task);
8178 
8179 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8180 		task_event->event_id.ppid = perf_event_pid(event,
8181 							task->real_parent);
8182 		task_event->event_id.ptid = perf_event_pid(event,
8183 							task->real_parent);
8184 	} else {  /* PERF_RECORD_FORK */
8185 		task_event->event_id.ppid = perf_event_pid(event, current);
8186 		task_event->event_id.ptid = perf_event_tid(event, current);
8187 	}
8188 
8189 	task_event->event_id.time = perf_event_clock(event);
8190 
8191 	perf_output_put(&handle, task_event->event_id);
8192 
8193 	perf_event__output_id_sample(event, &handle, &sample);
8194 
8195 	perf_output_end(&handle);
8196 out:
8197 	task_event->event_id.header.size = size;
8198 }
8199 
8200 static void perf_event_task(struct task_struct *task,
8201 			      struct perf_event_context *task_ctx,
8202 			      int new)
8203 {
8204 	struct perf_task_event task_event;
8205 
8206 	if (!atomic_read(&nr_comm_events) &&
8207 	    !atomic_read(&nr_mmap_events) &&
8208 	    !atomic_read(&nr_task_events))
8209 		return;
8210 
8211 	task_event = (struct perf_task_event){
8212 		.task	  = task,
8213 		.task_ctx = task_ctx,
8214 		.event_id    = {
8215 			.header = {
8216 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8217 				.misc = 0,
8218 				.size = sizeof(task_event.event_id),
8219 			},
8220 			/* .pid  */
8221 			/* .ppid */
8222 			/* .tid  */
8223 			/* .ptid */
8224 			/* .time */
8225 		},
8226 	};
8227 
8228 	perf_iterate_sb(perf_event_task_output,
8229 		       &task_event,
8230 		       task_ctx);
8231 }
8232 
8233 void perf_event_fork(struct task_struct *task)
8234 {
8235 	perf_event_task(task, NULL, 1);
8236 	perf_event_namespaces(task);
8237 }
8238 
8239 /*
8240  * comm tracking
8241  */
8242 
8243 struct perf_comm_event {
8244 	struct task_struct	*task;
8245 	char			*comm;
8246 	int			comm_size;
8247 
8248 	struct {
8249 		struct perf_event_header	header;
8250 
8251 		u32				pid;
8252 		u32				tid;
8253 	} event_id;
8254 };
8255 
8256 static int perf_event_comm_match(struct perf_event *event)
8257 {
8258 	return event->attr.comm;
8259 }
8260 
8261 static void perf_event_comm_output(struct perf_event *event,
8262 				   void *data)
8263 {
8264 	struct perf_comm_event *comm_event = data;
8265 	struct perf_output_handle handle;
8266 	struct perf_sample_data sample;
8267 	int size = comm_event->event_id.header.size;
8268 	int ret;
8269 
8270 	if (!perf_event_comm_match(event))
8271 		return;
8272 
8273 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8274 	ret = perf_output_begin(&handle, &sample, event,
8275 				comm_event->event_id.header.size);
8276 
8277 	if (ret)
8278 		goto out;
8279 
8280 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8281 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8282 
8283 	perf_output_put(&handle, comm_event->event_id);
8284 	__output_copy(&handle, comm_event->comm,
8285 				   comm_event->comm_size);
8286 
8287 	perf_event__output_id_sample(event, &handle, &sample);
8288 
8289 	perf_output_end(&handle);
8290 out:
8291 	comm_event->event_id.header.size = size;
8292 }
8293 
8294 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8295 {
8296 	char comm[TASK_COMM_LEN];
8297 	unsigned int size;
8298 
8299 	memset(comm, 0, sizeof(comm));
8300 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8301 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8302 
8303 	comm_event->comm = comm;
8304 	comm_event->comm_size = size;
8305 
8306 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8307 
8308 	perf_iterate_sb(perf_event_comm_output,
8309 		       comm_event,
8310 		       NULL);
8311 }
8312 
8313 void perf_event_comm(struct task_struct *task, bool exec)
8314 {
8315 	struct perf_comm_event comm_event;
8316 
8317 	if (!atomic_read(&nr_comm_events))
8318 		return;
8319 
8320 	comm_event = (struct perf_comm_event){
8321 		.task	= task,
8322 		/* .comm      */
8323 		/* .comm_size */
8324 		.event_id  = {
8325 			.header = {
8326 				.type = PERF_RECORD_COMM,
8327 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8328 				/* .size */
8329 			},
8330 			/* .pid */
8331 			/* .tid */
8332 		},
8333 	};
8334 
8335 	perf_event_comm_event(&comm_event);
8336 }
8337 
8338 /*
8339  * namespaces tracking
8340  */
8341 
8342 struct perf_namespaces_event {
8343 	struct task_struct		*task;
8344 
8345 	struct {
8346 		struct perf_event_header	header;
8347 
8348 		u32				pid;
8349 		u32				tid;
8350 		u64				nr_namespaces;
8351 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8352 	} event_id;
8353 };
8354 
8355 static int perf_event_namespaces_match(struct perf_event *event)
8356 {
8357 	return event->attr.namespaces;
8358 }
8359 
8360 static void perf_event_namespaces_output(struct perf_event *event,
8361 					 void *data)
8362 {
8363 	struct perf_namespaces_event *namespaces_event = data;
8364 	struct perf_output_handle handle;
8365 	struct perf_sample_data sample;
8366 	u16 header_size = namespaces_event->event_id.header.size;
8367 	int ret;
8368 
8369 	if (!perf_event_namespaces_match(event))
8370 		return;
8371 
8372 	perf_event_header__init_id(&namespaces_event->event_id.header,
8373 				   &sample, event);
8374 	ret = perf_output_begin(&handle, &sample, event,
8375 				namespaces_event->event_id.header.size);
8376 	if (ret)
8377 		goto out;
8378 
8379 	namespaces_event->event_id.pid = perf_event_pid(event,
8380 							namespaces_event->task);
8381 	namespaces_event->event_id.tid = perf_event_tid(event,
8382 							namespaces_event->task);
8383 
8384 	perf_output_put(&handle, namespaces_event->event_id);
8385 
8386 	perf_event__output_id_sample(event, &handle, &sample);
8387 
8388 	perf_output_end(&handle);
8389 out:
8390 	namespaces_event->event_id.header.size = header_size;
8391 }
8392 
8393 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8394 				   struct task_struct *task,
8395 				   const struct proc_ns_operations *ns_ops)
8396 {
8397 	struct path ns_path;
8398 	struct inode *ns_inode;
8399 	int error;
8400 
8401 	error = ns_get_path(&ns_path, task, ns_ops);
8402 	if (!error) {
8403 		ns_inode = ns_path.dentry->d_inode;
8404 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8405 		ns_link_info->ino = ns_inode->i_ino;
8406 		path_put(&ns_path);
8407 	}
8408 }
8409 
8410 void perf_event_namespaces(struct task_struct *task)
8411 {
8412 	struct perf_namespaces_event namespaces_event;
8413 	struct perf_ns_link_info *ns_link_info;
8414 
8415 	if (!atomic_read(&nr_namespaces_events))
8416 		return;
8417 
8418 	namespaces_event = (struct perf_namespaces_event){
8419 		.task	= task,
8420 		.event_id  = {
8421 			.header = {
8422 				.type = PERF_RECORD_NAMESPACES,
8423 				.misc = 0,
8424 				.size = sizeof(namespaces_event.event_id),
8425 			},
8426 			/* .pid */
8427 			/* .tid */
8428 			.nr_namespaces = NR_NAMESPACES,
8429 			/* .link_info[NR_NAMESPACES] */
8430 		},
8431 	};
8432 
8433 	ns_link_info = namespaces_event.event_id.link_info;
8434 
8435 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8436 			       task, &mntns_operations);
8437 
8438 #ifdef CONFIG_USER_NS
8439 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8440 			       task, &userns_operations);
8441 #endif
8442 #ifdef CONFIG_NET_NS
8443 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8444 			       task, &netns_operations);
8445 #endif
8446 #ifdef CONFIG_UTS_NS
8447 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8448 			       task, &utsns_operations);
8449 #endif
8450 #ifdef CONFIG_IPC_NS
8451 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8452 			       task, &ipcns_operations);
8453 #endif
8454 #ifdef CONFIG_PID_NS
8455 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8456 			       task, &pidns_operations);
8457 #endif
8458 #ifdef CONFIG_CGROUPS
8459 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8460 			       task, &cgroupns_operations);
8461 #endif
8462 
8463 	perf_iterate_sb(perf_event_namespaces_output,
8464 			&namespaces_event,
8465 			NULL);
8466 }
8467 
8468 /*
8469  * cgroup tracking
8470  */
8471 #ifdef CONFIG_CGROUP_PERF
8472 
8473 struct perf_cgroup_event {
8474 	char				*path;
8475 	int				path_size;
8476 	struct {
8477 		struct perf_event_header	header;
8478 		u64				id;
8479 		char				path[];
8480 	} event_id;
8481 };
8482 
8483 static int perf_event_cgroup_match(struct perf_event *event)
8484 {
8485 	return event->attr.cgroup;
8486 }
8487 
8488 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8489 {
8490 	struct perf_cgroup_event *cgroup_event = data;
8491 	struct perf_output_handle handle;
8492 	struct perf_sample_data sample;
8493 	u16 header_size = cgroup_event->event_id.header.size;
8494 	int ret;
8495 
8496 	if (!perf_event_cgroup_match(event))
8497 		return;
8498 
8499 	perf_event_header__init_id(&cgroup_event->event_id.header,
8500 				   &sample, event);
8501 	ret = perf_output_begin(&handle, &sample, event,
8502 				cgroup_event->event_id.header.size);
8503 	if (ret)
8504 		goto out;
8505 
8506 	perf_output_put(&handle, cgroup_event->event_id);
8507 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8508 
8509 	perf_event__output_id_sample(event, &handle, &sample);
8510 
8511 	perf_output_end(&handle);
8512 out:
8513 	cgroup_event->event_id.header.size = header_size;
8514 }
8515 
8516 static void perf_event_cgroup(struct cgroup *cgrp)
8517 {
8518 	struct perf_cgroup_event cgroup_event;
8519 	char path_enomem[16] = "//enomem";
8520 	char *pathname;
8521 	size_t size;
8522 
8523 	if (!atomic_read(&nr_cgroup_events))
8524 		return;
8525 
8526 	cgroup_event = (struct perf_cgroup_event){
8527 		.event_id  = {
8528 			.header = {
8529 				.type = PERF_RECORD_CGROUP,
8530 				.misc = 0,
8531 				.size = sizeof(cgroup_event.event_id),
8532 			},
8533 			.id = cgroup_id(cgrp),
8534 		},
8535 	};
8536 
8537 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8538 	if (pathname == NULL) {
8539 		cgroup_event.path = path_enomem;
8540 	} else {
8541 		/* just to be sure to have enough space for alignment */
8542 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8543 		cgroup_event.path = pathname;
8544 	}
8545 
8546 	/*
8547 	 * Since our buffer works in 8 byte units we need to align our string
8548 	 * size to a multiple of 8. However, we must guarantee the tail end is
8549 	 * zero'd out to avoid leaking random bits to userspace.
8550 	 */
8551 	size = strlen(cgroup_event.path) + 1;
8552 	while (!IS_ALIGNED(size, sizeof(u64)))
8553 		cgroup_event.path[size++] = '\0';
8554 
8555 	cgroup_event.event_id.header.size += size;
8556 	cgroup_event.path_size = size;
8557 
8558 	perf_iterate_sb(perf_event_cgroup_output,
8559 			&cgroup_event,
8560 			NULL);
8561 
8562 	kfree(pathname);
8563 }
8564 
8565 #endif
8566 
8567 /*
8568  * mmap tracking
8569  */
8570 
8571 struct perf_mmap_event {
8572 	struct vm_area_struct	*vma;
8573 
8574 	const char		*file_name;
8575 	int			file_size;
8576 	int			maj, min;
8577 	u64			ino;
8578 	u64			ino_generation;
8579 	u32			prot, flags;
8580 	u8			build_id[BUILD_ID_SIZE_MAX];
8581 	u32			build_id_size;
8582 
8583 	struct {
8584 		struct perf_event_header	header;
8585 
8586 		u32				pid;
8587 		u32				tid;
8588 		u64				start;
8589 		u64				len;
8590 		u64				pgoff;
8591 	} event_id;
8592 };
8593 
8594 static int perf_event_mmap_match(struct perf_event *event,
8595 				 void *data)
8596 {
8597 	struct perf_mmap_event *mmap_event = data;
8598 	struct vm_area_struct *vma = mmap_event->vma;
8599 	int executable = vma->vm_flags & VM_EXEC;
8600 
8601 	return (!executable && event->attr.mmap_data) ||
8602 	       (executable && (event->attr.mmap || event->attr.mmap2));
8603 }
8604 
8605 static void perf_event_mmap_output(struct perf_event *event,
8606 				   void *data)
8607 {
8608 	struct perf_mmap_event *mmap_event = data;
8609 	struct perf_output_handle handle;
8610 	struct perf_sample_data sample;
8611 	int size = mmap_event->event_id.header.size;
8612 	u32 type = mmap_event->event_id.header.type;
8613 	bool use_build_id;
8614 	int ret;
8615 
8616 	if (!perf_event_mmap_match(event, data))
8617 		return;
8618 
8619 	if (event->attr.mmap2) {
8620 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8621 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8622 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8623 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8624 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8625 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8626 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8627 	}
8628 
8629 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8630 	ret = perf_output_begin(&handle, &sample, event,
8631 				mmap_event->event_id.header.size);
8632 	if (ret)
8633 		goto out;
8634 
8635 	mmap_event->event_id.pid = perf_event_pid(event, current);
8636 	mmap_event->event_id.tid = perf_event_tid(event, current);
8637 
8638 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8639 
8640 	if (event->attr.mmap2 && use_build_id)
8641 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8642 
8643 	perf_output_put(&handle, mmap_event->event_id);
8644 
8645 	if (event->attr.mmap2) {
8646 		if (use_build_id) {
8647 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8648 
8649 			__output_copy(&handle, size, 4);
8650 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8651 		} else {
8652 			perf_output_put(&handle, mmap_event->maj);
8653 			perf_output_put(&handle, mmap_event->min);
8654 			perf_output_put(&handle, mmap_event->ino);
8655 			perf_output_put(&handle, mmap_event->ino_generation);
8656 		}
8657 		perf_output_put(&handle, mmap_event->prot);
8658 		perf_output_put(&handle, mmap_event->flags);
8659 	}
8660 
8661 	__output_copy(&handle, mmap_event->file_name,
8662 				   mmap_event->file_size);
8663 
8664 	perf_event__output_id_sample(event, &handle, &sample);
8665 
8666 	perf_output_end(&handle);
8667 out:
8668 	mmap_event->event_id.header.size = size;
8669 	mmap_event->event_id.header.type = type;
8670 }
8671 
8672 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8673 {
8674 	struct vm_area_struct *vma = mmap_event->vma;
8675 	struct file *file = vma->vm_file;
8676 	int maj = 0, min = 0;
8677 	u64 ino = 0, gen = 0;
8678 	u32 prot = 0, flags = 0;
8679 	unsigned int size;
8680 	char tmp[16];
8681 	char *buf = NULL;
8682 	char *name = NULL;
8683 
8684 	if (vma->vm_flags & VM_READ)
8685 		prot |= PROT_READ;
8686 	if (vma->vm_flags & VM_WRITE)
8687 		prot |= PROT_WRITE;
8688 	if (vma->vm_flags & VM_EXEC)
8689 		prot |= PROT_EXEC;
8690 
8691 	if (vma->vm_flags & VM_MAYSHARE)
8692 		flags = MAP_SHARED;
8693 	else
8694 		flags = MAP_PRIVATE;
8695 
8696 	if (vma->vm_flags & VM_LOCKED)
8697 		flags |= MAP_LOCKED;
8698 	if (is_vm_hugetlb_page(vma))
8699 		flags |= MAP_HUGETLB;
8700 
8701 	if (file) {
8702 		struct inode *inode;
8703 		dev_t dev;
8704 
8705 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8706 		if (!buf) {
8707 			name = "//enomem";
8708 			goto cpy_name;
8709 		}
8710 		/*
8711 		 * d_path() works from the end of the rb backwards, so we
8712 		 * need to add enough zero bytes after the string to handle
8713 		 * the 64bit alignment we do later.
8714 		 */
8715 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8716 		if (IS_ERR(name)) {
8717 			name = "//toolong";
8718 			goto cpy_name;
8719 		}
8720 		inode = file_inode(vma->vm_file);
8721 		dev = inode->i_sb->s_dev;
8722 		ino = inode->i_ino;
8723 		gen = inode->i_generation;
8724 		maj = MAJOR(dev);
8725 		min = MINOR(dev);
8726 
8727 		goto got_name;
8728 	} else {
8729 		if (vma->vm_ops && vma->vm_ops->name)
8730 			name = (char *) vma->vm_ops->name(vma);
8731 		if (!name)
8732 			name = (char *)arch_vma_name(vma);
8733 		if (!name) {
8734 			if (vma_is_initial_heap(vma))
8735 				name = "[heap]";
8736 			else if (vma_is_initial_stack(vma))
8737 				name = "[stack]";
8738 			else
8739 				name = "//anon";
8740 		}
8741 	}
8742 
8743 cpy_name:
8744 	strscpy(tmp, name, sizeof(tmp));
8745 	name = tmp;
8746 got_name:
8747 	/*
8748 	 * Since our buffer works in 8 byte units we need to align our string
8749 	 * size to a multiple of 8. However, we must guarantee the tail end is
8750 	 * zero'd out to avoid leaking random bits to userspace.
8751 	 */
8752 	size = strlen(name)+1;
8753 	while (!IS_ALIGNED(size, sizeof(u64)))
8754 		name[size++] = '\0';
8755 
8756 	mmap_event->file_name = name;
8757 	mmap_event->file_size = size;
8758 	mmap_event->maj = maj;
8759 	mmap_event->min = min;
8760 	mmap_event->ino = ino;
8761 	mmap_event->ino_generation = gen;
8762 	mmap_event->prot = prot;
8763 	mmap_event->flags = flags;
8764 
8765 	if (!(vma->vm_flags & VM_EXEC))
8766 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8767 
8768 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8769 
8770 	if (atomic_read(&nr_build_id_events))
8771 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8772 
8773 	perf_iterate_sb(perf_event_mmap_output,
8774 		       mmap_event,
8775 		       NULL);
8776 
8777 	kfree(buf);
8778 }
8779 
8780 /*
8781  * Check whether inode and address range match filter criteria.
8782  */
8783 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8784 				     struct file *file, unsigned long offset,
8785 				     unsigned long size)
8786 {
8787 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8788 	if (!filter->path.dentry)
8789 		return false;
8790 
8791 	if (d_inode(filter->path.dentry) != file_inode(file))
8792 		return false;
8793 
8794 	if (filter->offset > offset + size)
8795 		return false;
8796 
8797 	if (filter->offset + filter->size < offset)
8798 		return false;
8799 
8800 	return true;
8801 }
8802 
8803 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8804 					struct vm_area_struct *vma,
8805 					struct perf_addr_filter_range *fr)
8806 {
8807 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8808 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8809 	struct file *file = vma->vm_file;
8810 
8811 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8812 		return false;
8813 
8814 	if (filter->offset < off) {
8815 		fr->start = vma->vm_start;
8816 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8817 	} else {
8818 		fr->start = vma->vm_start + filter->offset - off;
8819 		fr->size = min(vma->vm_end - fr->start, filter->size);
8820 	}
8821 
8822 	return true;
8823 }
8824 
8825 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8826 {
8827 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8828 	struct vm_area_struct *vma = data;
8829 	struct perf_addr_filter *filter;
8830 	unsigned int restart = 0, count = 0;
8831 	unsigned long flags;
8832 
8833 	if (!has_addr_filter(event))
8834 		return;
8835 
8836 	if (!vma->vm_file)
8837 		return;
8838 
8839 	raw_spin_lock_irqsave(&ifh->lock, flags);
8840 	list_for_each_entry(filter, &ifh->list, entry) {
8841 		if (perf_addr_filter_vma_adjust(filter, vma,
8842 						&event->addr_filter_ranges[count]))
8843 			restart++;
8844 
8845 		count++;
8846 	}
8847 
8848 	if (restart)
8849 		event->addr_filters_gen++;
8850 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8851 
8852 	if (restart)
8853 		perf_event_stop(event, 1);
8854 }
8855 
8856 /*
8857  * Adjust all task's events' filters to the new vma
8858  */
8859 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8860 {
8861 	struct perf_event_context *ctx;
8862 
8863 	/*
8864 	 * Data tracing isn't supported yet and as such there is no need
8865 	 * to keep track of anything that isn't related to executable code:
8866 	 */
8867 	if (!(vma->vm_flags & VM_EXEC))
8868 		return;
8869 
8870 	rcu_read_lock();
8871 	ctx = rcu_dereference(current->perf_event_ctxp);
8872 	if (ctx)
8873 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8874 	rcu_read_unlock();
8875 }
8876 
8877 void perf_event_mmap(struct vm_area_struct *vma)
8878 {
8879 	struct perf_mmap_event mmap_event;
8880 
8881 	if (!atomic_read(&nr_mmap_events))
8882 		return;
8883 
8884 	mmap_event = (struct perf_mmap_event){
8885 		.vma	= vma,
8886 		/* .file_name */
8887 		/* .file_size */
8888 		.event_id  = {
8889 			.header = {
8890 				.type = PERF_RECORD_MMAP,
8891 				.misc = PERF_RECORD_MISC_USER,
8892 				/* .size */
8893 			},
8894 			/* .pid */
8895 			/* .tid */
8896 			.start  = vma->vm_start,
8897 			.len    = vma->vm_end - vma->vm_start,
8898 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8899 		},
8900 		/* .maj (attr_mmap2 only) */
8901 		/* .min (attr_mmap2 only) */
8902 		/* .ino (attr_mmap2 only) */
8903 		/* .ino_generation (attr_mmap2 only) */
8904 		/* .prot (attr_mmap2 only) */
8905 		/* .flags (attr_mmap2 only) */
8906 	};
8907 
8908 	perf_addr_filters_adjust(vma);
8909 	perf_event_mmap_event(&mmap_event);
8910 }
8911 
8912 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8913 			  unsigned long size, u64 flags)
8914 {
8915 	struct perf_output_handle handle;
8916 	struct perf_sample_data sample;
8917 	struct perf_aux_event {
8918 		struct perf_event_header	header;
8919 		u64				offset;
8920 		u64				size;
8921 		u64				flags;
8922 	} rec = {
8923 		.header = {
8924 			.type = PERF_RECORD_AUX,
8925 			.misc = 0,
8926 			.size = sizeof(rec),
8927 		},
8928 		.offset		= head,
8929 		.size		= size,
8930 		.flags		= flags,
8931 	};
8932 	int ret;
8933 
8934 	perf_event_header__init_id(&rec.header, &sample, event);
8935 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8936 
8937 	if (ret)
8938 		return;
8939 
8940 	perf_output_put(&handle, rec);
8941 	perf_event__output_id_sample(event, &handle, &sample);
8942 
8943 	perf_output_end(&handle);
8944 }
8945 
8946 /*
8947  * Lost/dropped samples logging
8948  */
8949 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8950 {
8951 	struct perf_output_handle handle;
8952 	struct perf_sample_data sample;
8953 	int ret;
8954 
8955 	struct {
8956 		struct perf_event_header	header;
8957 		u64				lost;
8958 	} lost_samples_event = {
8959 		.header = {
8960 			.type = PERF_RECORD_LOST_SAMPLES,
8961 			.misc = 0,
8962 			.size = sizeof(lost_samples_event),
8963 		},
8964 		.lost		= lost,
8965 	};
8966 
8967 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8968 
8969 	ret = perf_output_begin(&handle, &sample, event,
8970 				lost_samples_event.header.size);
8971 	if (ret)
8972 		return;
8973 
8974 	perf_output_put(&handle, lost_samples_event);
8975 	perf_event__output_id_sample(event, &handle, &sample);
8976 	perf_output_end(&handle);
8977 }
8978 
8979 /*
8980  * context_switch tracking
8981  */
8982 
8983 struct perf_switch_event {
8984 	struct task_struct	*task;
8985 	struct task_struct	*next_prev;
8986 
8987 	struct {
8988 		struct perf_event_header	header;
8989 		u32				next_prev_pid;
8990 		u32				next_prev_tid;
8991 	} event_id;
8992 };
8993 
8994 static int perf_event_switch_match(struct perf_event *event)
8995 {
8996 	return event->attr.context_switch;
8997 }
8998 
8999 static void perf_event_switch_output(struct perf_event *event, void *data)
9000 {
9001 	struct perf_switch_event *se = data;
9002 	struct perf_output_handle handle;
9003 	struct perf_sample_data sample;
9004 	int ret;
9005 
9006 	if (!perf_event_switch_match(event))
9007 		return;
9008 
9009 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9010 	if (event->ctx->task) {
9011 		se->event_id.header.type = PERF_RECORD_SWITCH;
9012 		se->event_id.header.size = sizeof(se->event_id.header);
9013 	} else {
9014 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9015 		se->event_id.header.size = sizeof(se->event_id);
9016 		se->event_id.next_prev_pid =
9017 					perf_event_pid(event, se->next_prev);
9018 		se->event_id.next_prev_tid =
9019 					perf_event_tid(event, se->next_prev);
9020 	}
9021 
9022 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9023 
9024 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9025 	if (ret)
9026 		return;
9027 
9028 	if (event->ctx->task)
9029 		perf_output_put(&handle, se->event_id.header);
9030 	else
9031 		perf_output_put(&handle, se->event_id);
9032 
9033 	perf_event__output_id_sample(event, &handle, &sample);
9034 
9035 	perf_output_end(&handle);
9036 }
9037 
9038 static void perf_event_switch(struct task_struct *task,
9039 			      struct task_struct *next_prev, bool sched_in)
9040 {
9041 	struct perf_switch_event switch_event;
9042 
9043 	/* N.B. caller checks nr_switch_events != 0 */
9044 
9045 	switch_event = (struct perf_switch_event){
9046 		.task		= task,
9047 		.next_prev	= next_prev,
9048 		.event_id	= {
9049 			.header = {
9050 				/* .type */
9051 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9052 				/* .size */
9053 			},
9054 			/* .next_prev_pid */
9055 			/* .next_prev_tid */
9056 		},
9057 	};
9058 
9059 	if (!sched_in && task->on_rq) {
9060 		switch_event.event_id.header.misc |=
9061 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9062 	}
9063 
9064 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9065 }
9066 
9067 /*
9068  * IRQ throttle logging
9069  */
9070 
9071 static void perf_log_throttle(struct perf_event *event, int enable)
9072 {
9073 	struct perf_output_handle handle;
9074 	struct perf_sample_data sample;
9075 	int ret;
9076 
9077 	struct {
9078 		struct perf_event_header	header;
9079 		u64				time;
9080 		u64				id;
9081 		u64				stream_id;
9082 	} throttle_event = {
9083 		.header = {
9084 			.type = PERF_RECORD_THROTTLE,
9085 			.misc = 0,
9086 			.size = sizeof(throttle_event),
9087 		},
9088 		.time		= perf_event_clock(event),
9089 		.id		= primary_event_id(event),
9090 		.stream_id	= event->id,
9091 	};
9092 
9093 	if (enable)
9094 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9095 
9096 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9097 
9098 	ret = perf_output_begin(&handle, &sample, event,
9099 				throttle_event.header.size);
9100 	if (ret)
9101 		return;
9102 
9103 	perf_output_put(&handle, throttle_event);
9104 	perf_event__output_id_sample(event, &handle, &sample);
9105 	perf_output_end(&handle);
9106 }
9107 
9108 /*
9109  * ksymbol register/unregister tracking
9110  */
9111 
9112 struct perf_ksymbol_event {
9113 	const char	*name;
9114 	int		name_len;
9115 	struct {
9116 		struct perf_event_header        header;
9117 		u64				addr;
9118 		u32				len;
9119 		u16				ksym_type;
9120 		u16				flags;
9121 	} event_id;
9122 };
9123 
9124 static int perf_event_ksymbol_match(struct perf_event *event)
9125 {
9126 	return event->attr.ksymbol;
9127 }
9128 
9129 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9130 {
9131 	struct perf_ksymbol_event *ksymbol_event = data;
9132 	struct perf_output_handle handle;
9133 	struct perf_sample_data sample;
9134 	int ret;
9135 
9136 	if (!perf_event_ksymbol_match(event))
9137 		return;
9138 
9139 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9140 				   &sample, event);
9141 	ret = perf_output_begin(&handle, &sample, event,
9142 				ksymbol_event->event_id.header.size);
9143 	if (ret)
9144 		return;
9145 
9146 	perf_output_put(&handle, ksymbol_event->event_id);
9147 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9148 	perf_event__output_id_sample(event, &handle, &sample);
9149 
9150 	perf_output_end(&handle);
9151 }
9152 
9153 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9154 			const char *sym)
9155 {
9156 	struct perf_ksymbol_event ksymbol_event;
9157 	char name[KSYM_NAME_LEN];
9158 	u16 flags = 0;
9159 	int name_len;
9160 
9161 	if (!atomic_read(&nr_ksymbol_events))
9162 		return;
9163 
9164 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9165 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9166 		goto err;
9167 
9168 	strscpy(name, sym, KSYM_NAME_LEN);
9169 	name_len = strlen(name) + 1;
9170 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9171 		name[name_len++] = '\0';
9172 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9173 
9174 	if (unregister)
9175 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9176 
9177 	ksymbol_event = (struct perf_ksymbol_event){
9178 		.name = name,
9179 		.name_len = name_len,
9180 		.event_id = {
9181 			.header = {
9182 				.type = PERF_RECORD_KSYMBOL,
9183 				.size = sizeof(ksymbol_event.event_id) +
9184 					name_len,
9185 			},
9186 			.addr = addr,
9187 			.len = len,
9188 			.ksym_type = ksym_type,
9189 			.flags = flags,
9190 		},
9191 	};
9192 
9193 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9194 	return;
9195 err:
9196 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9197 }
9198 
9199 /*
9200  * bpf program load/unload tracking
9201  */
9202 
9203 struct perf_bpf_event {
9204 	struct bpf_prog	*prog;
9205 	struct {
9206 		struct perf_event_header        header;
9207 		u16				type;
9208 		u16				flags;
9209 		u32				id;
9210 		u8				tag[BPF_TAG_SIZE];
9211 	} event_id;
9212 };
9213 
9214 static int perf_event_bpf_match(struct perf_event *event)
9215 {
9216 	return event->attr.bpf_event;
9217 }
9218 
9219 static void perf_event_bpf_output(struct perf_event *event, void *data)
9220 {
9221 	struct perf_bpf_event *bpf_event = data;
9222 	struct perf_output_handle handle;
9223 	struct perf_sample_data sample;
9224 	int ret;
9225 
9226 	if (!perf_event_bpf_match(event))
9227 		return;
9228 
9229 	perf_event_header__init_id(&bpf_event->event_id.header,
9230 				   &sample, event);
9231 	ret = perf_output_begin(&handle, &sample, event,
9232 				bpf_event->event_id.header.size);
9233 	if (ret)
9234 		return;
9235 
9236 	perf_output_put(&handle, bpf_event->event_id);
9237 	perf_event__output_id_sample(event, &handle, &sample);
9238 
9239 	perf_output_end(&handle);
9240 }
9241 
9242 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9243 					 enum perf_bpf_event_type type)
9244 {
9245 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9246 	int i;
9247 
9248 	if (prog->aux->func_cnt == 0) {
9249 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9250 				   (u64)(unsigned long)prog->bpf_func,
9251 				   prog->jited_len, unregister,
9252 				   prog->aux->ksym.name);
9253 	} else {
9254 		for (i = 0; i < prog->aux->func_cnt; i++) {
9255 			struct bpf_prog *subprog = prog->aux->func[i];
9256 
9257 			perf_event_ksymbol(
9258 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9259 				(u64)(unsigned long)subprog->bpf_func,
9260 				subprog->jited_len, unregister,
9261 				subprog->aux->ksym.name);
9262 		}
9263 	}
9264 }
9265 
9266 void perf_event_bpf_event(struct bpf_prog *prog,
9267 			  enum perf_bpf_event_type type,
9268 			  u16 flags)
9269 {
9270 	struct perf_bpf_event bpf_event;
9271 
9272 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9273 	    type >= PERF_BPF_EVENT_MAX)
9274 		return;
9275 
9276 	switch (type) {
9277 	case PERF_BPF_EVENT_PROG_LOAD:
9278 	case PERF_BPF_EVENT_PROG_UNLOAD:
9279 		if (atomic_read(&nr_ksymbol_events))
9280 			perf_event_bpf_emit_ksymbols(prog, type);
9281 		break;
9282 	default:
9283 		break;
9284 	}
9285 
9286 	if (!atomic_read(&nr_bpf_events))
9287 		return;
9288 
9289 	bpf_event = (struct perf_bpf_event){
9290 		.prog = prog,
9291 		.event_id = {
9292 			.header = {
9293 				.type = PERF_RECORD_BPF_EVENT,
9294 				.size = sizeof(bpf_event.event_id),
9295 			},
9296 			.type = type,
9297 			.flags = flags,
9298 			.id = prog->aux->id,
9299 		},
9300 	};
9301 
9302 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9303 
9304 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9305 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9306 }
9307 
9308 struct perf_text_poke_event {
9309 	const void		*old_bytes;
9310 	const void		*new_bytes;
9311 	size_t			pad;
9312 	u16			old_len;
9313 	u16			new_len;
9314 
9315 	struct {
9316 		struct perf_event_header	header;
9317 
9318 		u64				addr;
9319 	} event_id;
9320 };
9321 
9322 static int perf_event_text_poke_match(struct perf_event *event)
9323 {
9324 	return event->attr.text_poke;
9325 }
9326 
9327 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9328 {
9329 	struct perf_text_poke_event *text_poke_event = data;
9330 	struct perf_output_handle handle;
9331 	struct perf_sample_data sample;
9332 	u64 padding = 0;
9333 	int ret;
9334 
9335 	if (!perf_event_text_poke_match(event))
9336 		return;
9337 
9338 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9339 
9340 	ret = perf_output_begin(&handle, &sample, event,
9341 				text_poke_event->event_id.header.size);
9342 	if (ret)
9343 		return;
9344 
9345 	perf_output_put(&handle, text_poke_event->event_id);
9346 	perf_output_put(&handle, text_poke_event->old_len);
9347 	perf_output_put(&handle, text_poke_event->new_len);
9348 
9349 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9350 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9351 
9352 	if (text_poke_event->pad)
9353 		__output_copy(&handle, &padding, text_poke_event->pad);
9354 
9355 	perf_event__output_id_sample(event, &handle, &sample);
9356 
9357 	perf_output_end(&handle);
9358 }
9359 
9360 void perf_event_text_poke(const void *addr, const void *old_bytes,
9361 			  size_t old_len, const void *new_bytes, size_t new_len)
9362 {
9363 	struct perf_text_poke_event text_poke_event;
9364 	size_t tot, pad;
9365 
9366 	if (!atomic_read(&nr_text_poke_events))
9367 		return;
9368 
9369 	tot  = sizeof(text_poke_event.old_len) + old_len;
9370 	tot += sizeof(text_poke_event.new_len) + new_len;
9371 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9372 
9373 	text_poke_event = (struct perf_text_poke_event){
9374 		.old_bytes    = old_bytes,
9375 		.new_bytes    = new_bytes,
9376 		.pad          = pad,
9377 		.old_len      = old_len,
9378 		.new_len      = new_len,
9379 		.event_id  = {
9380 			.header = {
9381 				.type = PERF_RECORD_TEXT_POKE,
9382 				.misc = PERF_RECORD_MISC_KERNEL,
9383 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9384 			},
9385 			.addr = (unsigned long)addr,
9386 		},
9387 	};
9388 
9389 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9390 }
9391 
9392 void perf_event_itrace_started(struct perf_event *event)
9393 {
9394 	event->attach_state |= PERF_ATTACH_ITRACE;
9395 }
9396 
9397 static void perf_log_itrace_start(struct perf_event *event)
9398 {
9399 	struct perf_output_handle handle;
9400 	struct perf_sample_data sample;
9401 	struct perf_aux_event {
9402 		struct perf_event_header        header;
9403 		u32				pid;
9404 		u32				tid;
9405 	} rec;
9406 	int ret;
9407 
9408 	if (event->parent)
9409 		event = event->parent;
9410 
9411 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9412 	    event->attach_state & PERF_ATTACH_ITRACE)
9413 		return;
9414 
9415 	rec.header.type	= PERF_RECORD_ITRACE_START;
9416 	rec.header.misc	= 0;
9417 	rec.header.size	= sizeof(rec);
9418 	rec.pid	= perf_event_pid(event, current);
9419 	rec.tid	= perf_event_tid(event, current);
9420 
9421 	perf_event_header__init_id(&rec.header, &sample, event);
9422 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9423 
9424 	if (ret)
9425 		return;
9426 
9427 	perf_output_put(&handle, rec);
9428 	perf_event__output_id_sample(event, &handle, &sample);
9429 
9430 	perf_output_end(&handle);
9431 }
9432 
9433 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9434 {
9435 	struct perf_output_handle handle;
9436 	struct perf_sample_data sample;
9437 	struct perf_aux_event {
9438 		struct perf_event_header        header;
9439 		u64				hw_id;
9440 	} rec;
9441 	int ret;
9442 
9443 	if (event->parent)
9444 		event = event->parent;
9445 
9446 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9447 	rec.header.misc	= 0;
9448 	rec.header.size	= sizeof(rec);
9449 	rec.hw_id	= hw_id;
9450 
9451 	perf_event_header__init_id(&rec.header, &sample, event);
9452 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9453 
9454 	if (ret)
9455 		return;
9456 
9457 	perf_output_put(&handle, rec);
9458 	perf_event__output_id_sample(event, &handle, &sample);
9459 
9460 	perf_output_end(&handle);
9461 }
9462 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9463 
9464 static int
9465 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9466 {
9467 	struct hw_perf_event *hwc = &event->hw;
9468 	int ret = 0;
9469 	u64 seq;
9470 
9471 	seq = __this_cpu_read(perf_throttled_seq);
9472 	if (seq != hwc->interrupts_seq) {
9473 		hwc->interrupts_seq = seq;
9474 		hwc->interrupts = 1;
9475 	} else {
9476 		hwc->interrupts++;
9477 		if (unlikely(throttle &&
9478 			     hwc->interrupts > max_samples_per_tick)) {
9479 			__this_cpu_inc(perf_throttled_count);
9480 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9481 			hwc->interrupts = MAX_INTERRUPTS;
9482 			perf_log_throttle(event, 0);
9483 			ret = 1;
9484 		}
9485 	}
9486 
9487 	if (event->attr.freq) {
9488 		u64 now = perf_clock();
9489 		s64 delta = now - hwc->freq_time_stamp;
9490 
9491 		hwc->freq_time_stamp = now;
9492 
9493 		if (delta > 0 && delta < 2*TICK_NSEC)
9494 			perf_adjust_period(event, delta, hwc->last_period, true);
9495 	}
9496 
9497 	return ret;
9498 }
9499 
9500 int perf_event_account_interrupt(struct perf_event *event)
9501 {
9502 	return __perf_event_account_interrupt(event, 1);
9503 }
9504 
9505 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9506 {
9507 	/*
9508 	 * Due to interrupt latency (AKA "skid"), we may enter the
9509 	 * kernel before taking an overflow, even if the PMU is only
9510 	 * counting user events.
9511 	 */
9512 	if (event->attr.exclude_kernel && !user_mode(regs))
9513 		return false;
9514 
9515 	return true;
9516 }
9517 
9518 /*
9519  * Generic event overflow handling, sampling.
9520  */
9521 
9522 static int __perf_event_overflow(struct perf_event *event,
9523 				 int throttle, struct perf_sample_data *data,
9524 				 struct pt_regs *regs)
9525 {
9526 	int events = atomic_read(&event->event_limit);
9527 	int ret = 0;
9528 
9529 	/*
9530 	 * Non-sampling counters might still use the PMI to fold short
9531 	 * hardware counters, ignore those.
9532 	 */
9533 	if (unlikely(!is_sampling_event(event)))
9534 		return 0;
9535 
9536 	ret = __perf_event_account_interrupt(event, throttle);
9537 
9538 	/*
9539 	 * XXX event_limit might not quite work as expected on inherited
9540 	 * events
9541 	 */
9542 
9543 	event->pending_kill = POLL_IN;
9544 	if (events && atomic_dec_and_test(&event->event_limit)) {
9545 		ret = 1;
9546 		event->pending_kill = POLL_HUP;
9547 		perf_event_disable_inatomic(event);
9548 	}
9549 
9550 	if (event->attr.sigtrap) {
9551 		/*
9552 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9553 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9554 		 * it is the first event, on the other hand, we should also not
9555 		 * trigger the WARN or override the data address.
9556 		 */
9557 		bool valid_sample = sample_is_allowed(event, regs);
9558 		unsigned int pending_id = 1;
9559 
9560 		if (regs)
9561 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9562 		if (!event->pending_sigtrap) {
9563 			event->pending_sigtrap = pending_id;
9564 			local_inc(&event->ctx->nr_pending);
9565 		} else if (event->attr.exclude_kernel && valid_sample) {
9566 			/*
9567 			 * Should not be able to return to user space without
9568 			 * consuming pending_sigtrap; with exceptions:
9569 			 *
9570 			 *  1. Where !exclude_kernel, events can overflow again
9571 			 *     in the kernel without returning to user space.
9572 			 *
9573 			 *  2. Events that can overflow again before the IRQ-
9574 			 *     work without user space progress (e.g. hrtimer).
9575 			 *     To approximate progress (with false negatives),
9576 			 *     check 32-bit hash of the current IP.
9577 			 */
9578 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9579 		}
9580 
9581 		event->pending_addr = 0;
9582 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9583 			event->pending_addr = data->addr;
9584 		irq_work_queue(&event->pending_irq);
9585 	}
9586 
9587 	READ_ONCE(event->overflow_handler)(event, data, regs);
9588 
9589 	if (*perf_event_fasync(event) && event->pending_kill) {
9590 		event->pending_wakeup = 1;
9591 		irq_work_queue(&event->pending_irq);
9592 	}
9593 
9594 	return ret;
9595 }
9596 
9597 int perf_event_overflow(struct perf_event *event,
9598 			struct perf_sample_data *data,
9599 			struct pt_regs *regs)
9600 {
9601 	return __perf_event_overflow(event, 1, data, regs);
9602 }
9603 
9604 /*
9605  * Generic software event infrastructure
9606  */
9607 
9608 struct swevent_htable {
9609 	struct swevent_hlist		*swevent_hlist;
9610 	struct mutex			hlist_mutex;
9611 	int				hlist_refcount;
9612 
9613 	/* Recursion avoidance in each contexts */
9614 	int				recursion[PERF_NR_CONTEXTS];
9615 };
9616 
9617 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9618 
9619 /*
9620  * We directly increment event->count and keep a second value in
9621  * event->hw.period_left to count intervals. This period event
9622  * is kept in the range [-sample_period, 0] so that we can use the
9623  * sign as trigger.
9624  */
9625 
9626 u64 perf_swevent_set_period(struct perf_event *event)
9627 {
9628 	struct hw_perf_event *hwc = &event->hw;
9629 	u64 period = hwc->last_period;
9630 	u64 nr, offset;
9631 	s64 old, val;
9632 
9633 	hwc->last_period = hwc->sample_period;
9634 
9635 	old = local64_read(&hwc->period_left);
9636 	do {
9637 		val = old;
9638 		if (val < 0)
9639 			return 0;
9640 
9641 		nr = div64_u64(period + val, period);
9642 		offset = nr * period;
9643 		val -= offset;
9644 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9645 
9646 	return nr;
9647 }
9648 
9649 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9650 				    struct perf_sample_data *data,
9651 				    struct pt_regs *regs)
9652 {
9653 	struct hw_perf_event *hwc = &event->hw;
9654 	int throttle = 0;
9655 
9656 	if (!overflow)
9657 		overflow = perf_swevent_set_period(event);
9658 
9659 	if (hwc->interrupts == MAX_INTERRUPTS)
9660 		return;
9661 
9662 	for (; overflow; overflow--) {
9663 		if (__perf_event_overflow(event, throttle,
9664 					    data, regs)) {
9665 			/*
9666 			 * We inhibit the overflow from happening when
9667 			 * hwc->interrupts == MAX_INTERRUPTS.
9668 			 */
9669 			break;
9670 		}
9671 		throttle = 1;
9672 	}
9673 }
9674 
9675 static void perf_swevent_event(struct perf_event *event, u64 nr,
9676 			       struct perf_sample_data *data,
9677 			       struct pt_regs *regs)
9678 {
9679 	struct hw_perf_event *hwc = &event->hw;
9680 
9681 	local64_add(nr, &event->count);
9682 
9683 	if (!regs)
9684 		return;
9685 
9686 	if (!is_sampling_event(event))
9687 		return;
9688 
9689 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9690 		data->period = nr;
9691 		return perf_swevent_overflow(event, 1, data, regs);
9692 	} else
9693 		data->period = event->hw.last_period;
9694 
9695 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9696 		return perf_swevent_overflow(event, 1, data, regs);
9697 
9698 	if (local64_add_negative(nr, &hwc->period_left))
9699 		return;
9700 
9701 	perf_swevent_overflow(event, 0, data, regs);
9702 }
9703 
9704 static int perf_exclude_event(struct perf_event *event,
9705 			      struct pt_regs *regs)
9706 {
9707 	if (event->hw.state & PERF_HES_STOPPED)
9708 		return 1;
9709 
9710 	if (regs) {
9711 		if (event->attr.exclude_user && user_mode(regs))
9712 			return 1;
9713 
9714 		if (event->attr.exclude_kernel && !user_mode(regs))
9715 			return 1;
9716 	}
9717 
9718 	return 0;
9719 }
9720 
9721 static int perf_swevent_match(struct perf_event *event,
9722 				enum perf_type_id type,
9723 				u32 event_id,
9724 				struct perf_sample_data *data,
9725 				struct pt_regs *regs)
9726 {
9727 	if (event->attr.type != type)
9728 		return 0;
9729 
9730 	if (event->attr.config != event_id)
9731 		return 0;
9732 
9733 	if (perf_exclude_event(event, regs))
9734 		return 0;
9735 
9736 	return 1;
9737 }
9738 
9739 static inline u64 swevent_hash(u64 type, u32 event_id)
9740 {
9741 	u64 val = event_id | (type << 32);
9742 
9743 	return hash_64(val, SWEVENT_HLIST_BITS);
9744 }
9745 
9746 static inline struct hlist_head *
9747 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9748 {
9749 	u64 hash = swevent_hash(type, event_id);
9750 
9751 	return &hlist->heads[hash];
9752 }
9753 
9754 /* For the read side: events when they trigger */
9755 static inline struct hlist_head *
9756 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9757 {
9758 	struct swevent_hlist *hlist;
9759 
9760 	hlist = rcu_dereference(swhash->swevent_hlist);
9761 	if (!hlist)
9762 		return NULL;
9763 
9764 	return __find_swevent_head(hlist, type, event_id);
9765 }
9766 
9767 /* For the event head insertion and removal in the hlist */
9768 static inline struct hlist_head *
9769 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9770 {
9771 	struct swevent_hlist *hlist;
9772 	u32 event_id = event->attr.config;
9773 	u64 type = event->attr.type;
9774 
9775 	/*
9776 	 * Event scheduling is always serialized against hlist allocation
9777 	 * and release. Which makes the protected version suitable here.
9778 	 * The context lock guarantees that.
9779 	 */
9780 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9781 					  lockdep_is_held(&event->ctx->lock));
9782 	if (!hlist)
9783 		return NULL;
9784 
9785 	return __find_swevent_head(hlist, type, event_id);
9786 }
9787 
9788 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9789 				    u64 nr,
9790 				    struct perf_sample_data *data,
9791 				    struct pt_regs *regs)
9792 {
9793 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9794 	struct perf_event *event;
9795 	struct hlist_head *head;
9796 
9797 	rcu_read_lock();
9798 	head = find_swevent_head_rcu(swhash, type, event_id);
9799 	if (!head)
9800 		goto end;
9801 
9802 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9803 		if (perf_swevent_match(event, type, event_id, data, regs))
9804 			perf_swevent_event(event, nr, data, regs);
9805 	}
9806 end:
9807 	rcu_read_unlock();
9808 }
9809 
9810 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9811 
9812 int perf_swevent_get_recursion_context(void)
9813 {
9814 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9815 
9816 	return get_recursion_context(swhash->recursion);
9817 }
9818 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9819 
9820 void perf_swevent_put_recursion_context(int rctx)
9821 {
9822 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9823 
9824 	put_recursion_context(swhash->recursion, rctx);
9825 }
9826 
9827 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9828 {
9829 	struct perf_sample_data data;
9830 
9831 	if (WARN_ON_ONCE(!regs))
9832 		return;
9833 
9834 	perf_sample_data_init(&data, addr, 0);
9835 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9836 }
9837 
9838 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9839 {
9840 	int rctx;
9841 
9842 	preempt_disable_notrace();
9843 	rctx = perf_swevent_get_recursion_context();
9844 	if (unlikely(rctx < 0))
9845 		goto fail;
9846 
9847 	___perf_sw_event(event_id, nr, regs, addr);
9848 
9849 	perf_swevent_put_recursion_context(rctx);
9850 fail:
9851 	preempt_enable_notrace();
9852 }
9853 
9854 static void perf_swevent_read(struct perf_event *event)
9855 {
9856 }
9857 
9858 static int perf_swevent_add(struct perf_event *event, int flags)
9859 {
9860 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9861 	struct hw_perf_event *hwc = &event->hw;
9862 	struct hlist_head *head;
9863 
9864 	if (is_sampling_event(event)) {
9865 		hwc->last_period = hwc->sample_period;
9866 		perf_swevent_set_period(event);
9867 	}
9868 
9869 	hwc->state = !(flags & PERF_EF_START);
9870 
9871 	head = find_swevent_head(swhash, event);
9872 	if (WARN_ON_ONCE(!head))
9873 		return -EINVAL;
9874 
9875 	hlist_add_head_rcu(&event->hlist_entry, head);
9876 	perf_event_update_userpage(event);
9877 
9878 	return 0;
9879 }
9880 
9881 static void perf_swevent_del(struct perf_event *event, int flags)
9882 {
9883 	hlist_del_rcu(&event->hlist_entry);
9884 }
9885 
9886 static void perf_swevent_start(struct perf_event *event, int flags)
9887 {
9888 	event->hw.state = 0;
9889 }
9890 
9891 static void perf_swevent_stop(struct perf_event *event, int flags)
9892 {
9893 	event->hw.state = PERF_HES_STOPPED;
9894 }
9895 
9896 /* Deref the hlist from the update side */
9897 static inline struct swevent_hlist *
9898 swevent_hlist_deref(struct swevent_htable *swhash)
9899 {
9900 	return rcu_dereference_protected(swhash->swevent_hlist,
9901 					 lockdep_is_held(&swhash->hlist_mutex));
9902 }
9903 
9904 static void swevent_hlist_release(struct swevent_htable *swhash)
9905 {
9906 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9907 
9908 	if (!hlist)
9909 		return;
9910 
9911 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9912 	kfree_rcu(hlist, rcu_head);
9913 }
9914 
9915 static void swevent_hlist_put_cpu(int cpu)
9916 {
9917 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9918 
9919 	mutex_lock(&swhash->hlist_mutex);
9920 
9921 	if (!--swhash->hlist_refcount)
9922 		swevent_hlist_release(swhash);
9923 
9924 	mutex_unlock(&swhash->hlist_mutex);
9925 }
9926 
9927 static void swevent_hlist_put(void)
9928 {
9929 	int cpu;
9930 
9931 	for_each_possible_cpu(cpu)
9932 		swevent_hlist_put_cpu(cpu);
9933 }
9934 
9935 static int swevent_hlist_get_cpu(int cpu)
9936 {
9937 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9938 	int err = 0;
9939 
9940 	mutex_lock(&swhash->hlist_mutex);
9941 	if (!swevent_hlist_deref(swhash) &&
9942 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9943 		struct swevent_hlist *hlist;
9944 
9945 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9946 		if (!hlist) {
9947 			err = -ENOMEM;
9948 			goto exit;
9949 		}
9950 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9951 	}
9952 	swhash->hlist_refcount++;
9953 exit:
9954 	mutex_unlock(&swhash->hlist_mutex);
9955 
9956 	return err;
9957 }
9958 
9959 static int swevent_hlist_get(void)
9960 {
9961 	int err, cpu, failed_cpu;
9962 
9963 	mutex_lock(&pmus_lock);
9964 	for_each_possible_cpu(cpu) {
9965 		err = swevent_hlist_get_cpu(cpu);
9966 		if (err) {
9967 			failed_cpu = cpu;
9968 			goto fail;
9969 		}
9970 	}
9971 	mutex_unlock(&pmus_lock);
9972 	return 0;
9973 fail:
9974 	for_each_possible_cpu(cpu) {
9975 		if (cpu == failed_cpu)
9976 			break;
9977 		swevent_hlist_put_cpu(cpu);
9978 	}
9979 	mutex_unlock(&pmus_lock);
9980 	return err;
9981 }
9982 
9983 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9984 
9985 static void sw_perf_event_destroy(struct perf_event *event)
9986 {
9987 	u64 event_id = event->attr.config;
9988 
9989 	WARN_ON(event->parent);
9990 
9991 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9992 	swevent_hlist_put();
9993 }
9994 
9995 static struct pmu perf_cpu_clock; /* fwd declaration */
9996 static struct pmu perf_task_clock;
9997 
9998 static int perf_swevent_init(struct perf_event *event)
9999 {
10000 	u64 event_id = event->attr.config;
10001 
10002 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10003 		return -ENOENT;
10004 
10005 	/*
10006 	 * no branch sampling for software events
10007 	 */
10008 	if (has_branch_stack(event))
10009 		return -EOPNOTSUPP;
10010 
10011 	switch (event_id) {
10012 	case PERF_COUNT_SW_CPU_CLOCK:
10013 		event->attr.type = perf_cpu_clock.type;
10014 		return -ENOENT;
10015 	case PERF_COUNT_SW_TASK_CLOCK:
10016 		event->attr.type = perf_task_clock.type;
10017 		return -ENOENT;
10018 
10019 	default:
10020 		break;
10021 	}
10022 
10023 	if (event_id >= PERF_COUNT_SW_MAX)
10024 		return -ENOENT;
10025 
10026 	if (!event->parent) {
10027 		int err;
10028 
10029 		err = swevent_hlist_get();
10030 		if (err)
10031 			return err;
10032 
10033 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10034 		event->destroy = sw_perf_event_destroy;
10035 	}
10036 
10037 	return 0;
10038 }
10039 
10040 static struct pmu perf_swevent = {
10041 	.task_ctx_nr	= perf_sw_context,
10042 
10043 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10044 
10045 	.event_init	= perf_swevent_init,
10046 	.add		= perf_swevent_add,
10047 	.del		= perf_swevent_del,
10048 	.start		= perf_swevent_start,
10049 	.stop		= perf_swevent_stop,
10050 	.read		= perf_swevent_read,
10051 };
10052 
10053 #ifdef CONFIG_EVENT_TRACING
10054 
10055 static void tp_perf_event_destroy(struct perf_event *event)
10056 {
10057 	perf_trace_destroy(event);
10058 }
10059 
10060 static int perf_tp_event_init(struct perf_event *event)
10061 {
10062 	int err;
10063 
10064 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10065 		return -ENOENT;
10066 
10067 	/*
10068 	 * no branch sampling for tracepoint events
10069 	 */
10070 	if (has_branch_stack(event))
10071 		return -EOPNOTSUPP;
10072 
10073 	err = perf_trace_init(event);
10074 	if (err)
10075 		return err;
10076 
10077 	event->destroy = tp_perf_event_destroy;
10078 
10079 	return 0;
10080 }
10081 
10082 static struct pmu perf_tracepoint = {
10083 	.task_ctx_nr	= perf_sw_context,
10084 
10085 	.event_init	= perf_tp_event_init,
10086 	.add		= perf_trace_add,
10087 	.del		= perf_trace_del,
10088 	.start		= perf_swevent_start,
10089 	.stop		= perf_swevent_stop,
10090 	.read		= perf_swevent_read,
10091 };
10092 
10093 static int perf_tp_filter_match(struct perf_event *event,
10094 				struct perf_sample_data *data)
10095 {
10096 	void *record = data->raw->frag.data;
10097 
10098 	/* only top level events have filters set */
10099 	if (event->parent)
10100 		event = event->parent;
10101 
10102 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10103 		return 1;
10104 	return 0;
10105 }
10106 
10107 static int perf_tp_event_match(struct perf_event *event,
10108 				struct perf_sample_data *data,
10109 				struct pt_regs *regs)
10110 {
10111 	if (event->hw.state & PERF_HES_STOPPED)
10112 		return 0;
10113 	/*
10114 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10115 	 */
10116 	if (event->attr.exclude_kernel && !user_mode(regs))
10117 		return 0;
10118 
10119 	if (!perf_tp_filter_match(event, data))
10120 		return 0;
10121 
10122 	return 1;
10123 }
10124 
10125 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10126 			       struct trace_event_call *call, u64 count,
10127 			       struct pt_regs *regs, struct hlist_head *head,
10128 			       struct task_struct *task)
10129 {
10130 	if (bpf_prog_array_valid(call)) {
10131 		*(struct pt_regs **)raw_data = regs;
10132 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10133 			perf_swevent_put_recursion_context(rctx);
10134 			return;
10135 		}
10136 	}
10137 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10138 		      rctx, task);
10139 }
10140 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10141 
10142 static void __perf_tp_event_target_task(u64 count, void *record,
10143 					struct pt_regs *regs,
10144 					struct perf_sample_data *data,
10145 					struct perf_event *event)
10146 {
10147 	struct trace_entry *entry = record;
10148 
10149 	if (event->attr.config != entry->type)
10150 		return;
10151 	/* Cannot deliver synchronous signal to other task. */
10152 	if (event->attr.sigtrap)
10153 		return;
10154 	if (perf_tp_event_match(event, data, regs))
10155 		perf_swevent_event(event, count, data, regs);
10156 }
10157 
10158 static void perf_tp_event_target_task(u64 count, void *record,
10159 				      struct pt_regs *regs,
10160 				      struct perf_sample_data *data,
10161 				      struct perf_event_context *ctx)
10162 {
10163 	unsigned int cpu = smp_processor_id();
10164 	struct pmu *pmu = &perf_tracepoint;
10165 	struct perf_event *event, *sibling;
10166 
10167 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10168 		__perf_tp_event_target_task(count, record, regs, data, event);
10169 		for_each_sibling_event(sibling, event)
10170 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10171 	}
10172 
10173 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10174 		__perf_tp_event_target_task(count, record, regs, data, event);
10175 		for_each_sibling_event(sibling, event)
10176 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10177 	}
10178 }
10179 
10180 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10181 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10182 		   struct task_struct *task)
10183 {
10184 	struct perf_sample_data data;
10185 	struct perf_event *event;
10186 
10187 	struct perf_raw_record raw = {
10188 		.frag = {
10189 			.size = entry_size,
10190 			.data = record,
10191 		},
10192 	};
10193 
10194 	perf_sample_data_init(&data, 0, 0);
10195 	perf_sample_save_raw_data(&data, &raw);
10196 
10197 	perf_trace_buf_update(record, event_type);
10198 
10199 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10200 		if (perf_tp_event_match(event, &data, regs)) {
10201 			perf_swevent_event(event, count, &data, regs);
10202 
10203 			/*
10204 			 * Here use the same on-stack perf_sample_data,
10205 			 * some members in data are event-specific and
10206 			 * need to be re-computed for different sweveents.
10207 			 * Re-initialize data->sample_flags safely to avoid
10208 			 * the problem that next event skips preparing data
10209 			 * because data->sample_flags is set.
10210 			 */
10211 			perf_sample_data_init(&data, 0, 0);
10212 			perf_sample_save_raw_data(&data, &raw);
10213 		}
10214 	}
10215 
10216 	/*
10217 	 * If we got specified a target task, also iterate its context and
10218 	 * deliver this event there too.
10219 	 */
10220 	if (task && task != current) {
10221 		struct perf_event_context *ctx;
10222 
10223 		rcu_read_lock();
10224 		ctx = rcu_dereference(task->perf_event_ctxp);
10225 		if (!ctx)
10226 			goto unlock;
10227 
10228 		raw_spin_lock(&ctx->lock);
10229 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10230 		raw_spin_unlock(&ctx->lock);
10231 unlock:
10232 		rcu_read_unlock();
10233 	}
10234 
10235 	perf_swevent_put_recursion_context(rctx);
10236 }
10237 EXPORT_SYMBOL_GPL(perf_tp_event);
10238 
10239 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10240 /*
10241  * Flags in config, used by dynamic PMU kprobe and uprobe
10242  * The flags should match following PMU_FORMAT_ATTR().
10243  *
10244  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10245  *                               if not set, create kprobe/uprobe
10246  *
10247  * The following values specify a reference counter (or semaphore in the
10248  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10249  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10250  *
10251  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10252  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10253  */
10254 enum perf_probe_config {
10255 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10256 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10257 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10258 };
10259 
10260 PMU_FORMAT_ATTR(retprobe, "config:0");
10261 #endif
10262 
10263 #ifdef CONFIG_KPROBE_EVENTS
10264 static struct attribute *kprobe_attrs[] = {
10265 	&format_attr_retprobe.attr,
10266 	NULL,
10267 };
10268 
10269 static struct attribute_group kprobe_format_group = {
10270 	.name = "format",
10271 	.attrs = kprobe_attrs,
10272 };
10273 
10274 static const struct attribute_group *kprobe_attr_groups[] = {
10275 	&kprobe_format_group,
10276 	NULL,
10277 };
10278 
10279 static int perf_kprobe_event_init(struct perf_event *event);
10280 static struct pmu perf_kprobe = {
10281 	.task_ctx_nr	= perf_sw_context,
10282 	.event_init	= perf_kprobe_event_init,
10283 	.add		= perf_trace_add,
10284 	.del		= perf_trace_del,
10285 	.start		= perf_swevent_start,
10286 	.stop		= perf_swevent_stop,
10287 	.read		= perf_swevent_read,
10288 	.attr_groups	= kprobe_attr_groups,
10289 };
10290 
10291 static int perf_kprobe_event_init(struct perf_event *event)
10292 {
10293 	int err;
10294 	bool is_retprobe;
10295 
10296 	if (event->attr.type != perf_kprobe.type)
10297 		return -ENOENT;
10298 
10299 	if (!perfmon_capable())
10300 		return -EACCES;
10301 
10302 	/*
10303 	 * no branch sampling for probe events
10304 	 */
10305 	if (has_branch_stack(event))
10306 		return -EOPNOTSUPP;
10307 
10308 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10309 	err = perf_kprobe_init(event, is_retprobe);
10310 	if (err)
10311 		return err;
10312 
10313 	event->destroy = perf_kprobe_destroy;
10314 
10315 	return 0;
10316 }
10317 #endif /* CONFIG_KPROBE_EVENTS */
10318 
10319 #ifdef CONFIG_UPROBE_EVENTS
10320 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10321 
10322 static struct attribute *uprobe_attrs[] = {
10323 	&format_attr_retprobe.attr,
10324 	&format_attr_ref_ctr_offset.attr,
10325 	NULL,
10326 };
10327 
10328 static struct attribute_group uprobe_format_group = {
10329 	.name = "format",
10330 	.attrs = uprobe_attrs,
10331 };
10332 
10333 static const struct attribute_group *uprobe_attr_groups[] = {
10334 	&uprobe_format_group,
10335 	NULL,
10336 };
10337 
10338 static int perf_uprobe_event_init(struct perf_event *event);
10339 static struct pmu perf_uprobe = {
10340 	.task_ctx_nr	= perf_sw_context,
10341 	.event_init	= perf_uprobe_event_init,
10342 	.add		= perf_trace_add,
10343 	.del		= perf_trace_del,
10344 	.start		= perf_swevent_start,
10345 	.stop		= perf_swevent_stop,
10346 	.read		= perf_swevent_read,
10347 	.attr_groups	= uprobe_attr_groups,
10348 };
10349 
10350 static int perf_uprobe_event_init(struct perf_event *event)
10351 {
10352 	int err;
10353 	unsigned long ref_ctr_offset;
10354 	bool is_retprobe;
10355 
10356 	if (event->attr.type != perf_uprobe.type)
10357 		return -ENOENT;
10358 
10359 	if (!perfmon_capable())
10360 		return -EACCES;
10361 
10362 	/*
10363 	 * no branch sampling for probe events
10364 	 */
10365 	if (has_branch_stack(event))
10366 		return -EOPNOTSUPP;
10367 
10368 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10369 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10370 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10371 	if (err)
10372 		return err;
10373 
10374 	event->destroy = perf_uprobe_destroy;
10375 
10376 	return 0;
10377 }
10378 #endif /* CONFIG_UPROBE_EVENTS */
10379 
10380 static inline void perf_tp_register(void)
10381 {
10382 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10383 #ifdef CONFIG_KPROBE_EVENTS
10384 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10385 #endif
10386 #ifdef CONFIG_UPROBE_EVENTS
10387 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10388 #endif
10389 }
10390 
10391 static void perf_event_free_filter(struct perf_event *event)
10392 {
10393 	ftrace_profile_free_filter(event);
10394 }
10395 
10396 #ifdef CONFIG_BPF_SYSCALL
10397 static void bpf_overflow_handler(struct perf_event *event,
10398 				 struct perf_sample_data *data,
10399 				 struct pt_regs *regs)
10400 {
10401 	struct bpf_perf_event_data_kern ctx = {
10402 		.data = data,
10403 		.event = event,
10404 	};
10405 	struct bpf_prog *prog;
10406 	int ret = 0;
10407 
10408 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10409 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10410 		goto out;
10411 	rcu_read_lock();
10412 	prog = READ_ONCE(event->prog);
10413 	if (prog) {
10414 		perf_prepare_sample(data, event, regs);
10415 		ret = bpf_prog_run(prog, &ctx);
10416 	}
10417 	rcu_read_unlock();
10418 out:
10419 	__this_cpu_dec(bpf_prog_active);
10420 	if (!ret)
10421 		return;
10422 
10423 	event->orig_overflow_handler(event, data, regs);
10424 }
10425 
10426 static int perf_event_set_bpf_handler(struct perf_event *event,
10427 				      struct bpf_prog *prog,
10428 				      u64 bpf_cookie)
10429 {
10430 	if (event->overflow_handler_context)
10431 		/* hw breakpoint or kernel counter */
10432 		return -EINVAL;
10433 
10434 	if (event->prog)
10435 		return -EEXIST;
10436 
10437 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10438 		return -EINVAL;
10439 
10440 	if (event->attr.precise_ip &&
10441 	    prog->call_get_stack &&
10442 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10443 	     event->attr.exclude_callchain_kernel ||
10444 	     event->attr.exclude_callchain_user)) {
10445 		/*
10446 		 * On perf_event with precise_ip, calling bpf_get_stack()
10447 		 * may trigger unwinder warnings and occasional crashes.
10448 		 * bpf_get_[stack|stackid] works around this issue by using
10449 		 * callchain attached to perf_sample_data. If the
10450 		 * perf_event does not full (kernel and user) callchain
10451 		 * attached to perf_sample_data, do not allow attaching BPF
10452 		 * program that calls bpf_get_[stack|stackid].
10453 		 */
10454 		return -EPROTO;
10455 	}
10456 
10457 	event->prog = prog;
10458 	event->bpf_cookie = bpf_cookie;
10459 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10460 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10461 	return 0;
10462 }
10463 
10464 static void perf_event_free_bpf_handler(struct perf_event *event)
10465 {
10466 	struct bpf_prog *prog = event->prog;
10467 
10468 	if (!prog)
10469 		return;
10470 
10471 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10472 	event->prog = NULL;
10473 	bpf_prog_put(prog);
10474 }
10475 #else
10476 static int perf_event_set_bpf_handler(struct perf_event *event,
10477 				      struct bpf_prog *prog,
10478 				      u64 bpf_cookie)
10479 {
10480 	return -EOPNOTSUPP;
10481 }
10482 static void perf_event_free_bpf_handler(struct perf_event *event)
10483 {
10484 }
10485 #endif
10486 
10487 /*
10488  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10489  * with perf_event_open()
10490  */
10491 static inline bool perf_event_is_tracing(struct perf_event *event)
10492 {
10493 	if (event->pmu == &perf_tracepoint)
10494 		return true;
10495 #ifdef CONFIG_KPROBE_EVENTS
10496 	if (event->pmu == &perf_kprobe)
10497 		return true;
10498 #endif
10499 #ifdef CONFIG_UPROBE_EVENTS
10500 	if (event->pmu == &perf_uprobe)
10501 		return true;
10502 #endif
10503 	return false;
10504 }
10505 
10506 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10507 			    u64 bpf_cookie)
10508 {
10509 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10510 
10511 	if (!perf_event_is_tracing(event))
10512 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10513 
10514 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10515 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10516 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10517 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10518 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10519 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10520 		return -EINVAL;
10521 
10522 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10523 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10524 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10525 		return -EINVAL;
10526 
10527 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10528 		/* only uprobe programs are allowed to be sleepable */
10529 		return -EINVAL;
10530 
10531 	/* Kprobe override only works for kprobes, not uprobes. */
10532 	if (prog->kprobe_override && !is_kprobe)
10533 		return -EINVAL;
10534 
10535 	if (is_tracepoint || is_syscall_tp) {
10536 		int off = trace_event_get_offsets(event->tp_event);
10537 
10538 		if (prog->aux->max_ctx_offset > off)
10539 			return -EACCES;
10540 	}
10541 
10542 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10543 }
10544 
10545 void perf_event_free_bpf_prog(struct perf_event *event)
10546 {
10547 	if (!perf_event_is_tracing(event)) {
10548 		perf_event_free_bpf_handler(event);
10549 		return;
10550 	}
10551 	perf_event_detach_bpf_prog(event);
10552 }
10553 
10554 #else
10555 
10556 static inline void perf_tp_register(void)
10557 {
10558 }
10559 
10560 static void perf_event_free_filter(struct perf_event *event)
10561 {
10562 }
10563 
10564 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10565 			    u64 bpf_cookie)
10566 {
10567 	return -ENOENT;
10568 }
10569 
10570 void perf_event_free_bpf_prog(struct perf_event *event)
10571 {
10572 }
10573 #endif /* CONFIG_EVENT_TRACING */
10574 
10575 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10576 void perf_bp_event(struct perf_event *bp, void *data)
10577 {
10578 	struct perf_sample_data sample;
10579 	struct pt_regs *regs = data;
10580 
10581 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10582 
10583 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10584 		perf_swevent_event(bp, 1, &sample, regs);
10585 }
10586 #endif
10587 
10588 /*
10589  * Allocate a new address filter
10590  */
10591 static struct perf_addr_filter *
10592 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10593 {
10594 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10595 	struct perf_addr_filter *filter;
10596 
10597 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10598 	if (!filter)
10599 		return NULL;
10600 
10601 	INIT_LIST_HEAD(&filter->entry);
10602 	list_add_tail(&filter->entry, filters);
10603 
10604 	return filter;
10605 }
10606 
10607 static void free_filters_list(struct list_head *filters)
10608 {
10609 	struct perf_addr_filter *filter, *iter;
10610 
10611 	list_for_each_entry_safe(filter, iter, filters, entry) {
10612 		path_put(&filter->path);
10613 		list_del(&filter->entry);
10614 		kfree(filter);
10615 	}
10616 }
10617 
10618 /*
10619  * Free existing address filters and optionally install new ones
10620  */
10621 static void perf_addr_filters_splice(struct perf_event *event,
10622 				     struct list_head *head)
10623 {
10624 	unsigned long flags;
10625 	LIST_HEAD(list);
10626 
10627 	if (!has_addr_filter(event))
10628 		return;
10629 
10630 	/* don't bother with children, they don't have their own filters */
10631 	if (event->parent)
10632 		return;
10633 
10634 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10635 
10636 	list_splice_init(&event->addr_filters.list, &list);
10637 	if (head)
10638 		list_splice(head, &event->addr_filters.list);
10639 
10640 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10641 
10642 	free_filters_list(&list);
10643 }
10644 
10645 /*
10646  * Scan through mm's vmas and see if one of them matches the
10647  * @filter; if so, adjust filter's address range.
10648  * Called with mm::mmap_lock down for reading.
10649  */
10650 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10651 				   struct mm_struct *mm,
10652 				   struct perf_addr_filter_range *fr)
10653 {
10654 	struct vm_area_struct *vma;
10655 	VMA_ITERATOR(vmi, mm, 0);
10656 
10657 	for_each_vma(vmi, vma) {
10658 		if (!vma->vm_file)
10659 			continue;
10660 
10661 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10662 			return;
10663 	}
10664 }
10665 
10666 /*
10667  * Update event's address range filters based on the
10668  * task's existing mappings, if any.
10669  */
10670 static void perf_event_addr_filters_apply(struct perf_event *event)
10671 {
10672 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10673 	struct task_struct *task = READ_ONCE(event->ctx->task);
10674 	struct perf_addr_filter *filter;
10675 	struct mm_struct *mm = NULL;
10676 	unsigned int count = 0;
10677 	unsigned long flags;
10678 
10679 	/*
10680 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10681 	 * will stop on the parent's child_mutex that our caller is also holding
10682 	 */
10683 	if (task == TASK_TOMBSTONE)
10684 		return;
10685 
10686 	if (ifh->nr_file_filters) {
10687 		mm = get_task_mm(task);
10688 		if (!mm)
10689 			goto restart;
10690 
10691 		mmap_read_lock(mm);
10692 	}
10693 
10694 	raw_spin_lock_irqsave(&ifh->lock, flags);
10695 	list_for_each_entry(filter, &ifh->list, entry) {
10696 		if (filter->path.dentry) {
10697 			/*
10698 			 * Adjust base offset if the filter is associated to a
10699 			 * binary that needs to be mapped:
10700 			 */
10701 			event->addr_filter_ranges[count].start = 0;
10702 			event->addr_filter_ranges[count].size = 0;
10703 
10704 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10705 		} else {
10706 			event->addr_filter_ranges[count].start = filter->offset;
10707 			event->addr_filter_ranges[count].size  = filter->size;
10708 		}
10709 
10710 		count++;
10711 	}
10712 
10713 	event->addr_filters_gen++;
10714 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10715 
10716 	if (ifh->nr_file_filters) {
10717 		mmap_read_unlock(mm);
10718 
10719 		mmput(mm);
10720 	}
10721 
10722 restart:
10723 	perf_event_stop(event, 1);
10724 }
10725 
10726 /*
10727  * Address range filtering: limiting the data to certain
10728  * instruction address ranges. Filters are ioctl()ed to us from
10729  * userspace as ascii strings.
10730  *
10731  * Filter string format:
10732  *
10733  * ACTION RANGE_SPEC
10734  * where ACTION is one of the
10735  *  * "filter": limit the trace to this region
10736  *  * "start": start tracing from this address
10737  *  * "stop": stop tracing at this address/region;
10738  * RANGE_SPEC is
10739  *  * for kernel addresses: <start address>[/<size>]
10740  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10741  *
10742  * if <size> is not specified or is zero, the range is treated as a single
10743  * address; not valid for ACTION=="filter".
10744  */
10745 enum {
10746 	IF_ACT_NONE = -1,
10747 	IF_ACT_FILTER,
10748 	IF_ACT_START,
10749 	IF_ACT_STOP,
10750 	IF_SRC_FILE,
10751 	IF_SRC_KERNEL,
10752 	IF_SRC_FILEADDR,
10753 	IF_SRC_KERNELADDR,
10754 };
10755 
10756 enum {
10757 	IF_STATE_ACTION = 0,
10758 	IF_STATE_SOURCE,
10759 	IF_STATE_END,
10760 };
10761 
10762 static const match_table_t if_tokens = {
10763 	{ IF_ACT_FILTER,	"filter" },
10764 	{ IF_ACT_START,		"start" },
10765 	{ IF_ACT_STOP,		"stop" },
10766 	{ IF_SRC_FILE,		"%u/%u@%s" },
10767 	{ IF_SRC_KERNEL,	"%u/%u" },
10768 	{ IF_SRC_FILEADDR,	"%u@%s" },
10769 	{ IF_SRC_KERNELADDR,	"%u" },
10770 	{ IF_ACT_NONE,		NULL },
10771 };
10772 
10773 /*
10774  * Address filter string parser
10775  */
10776 static int
10777 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10778 			     struct list_head *filters)
10779 {
10780 	struct perf_addr_filter *filter = NULL;
10781 	char *start, *orig, *filename = NULL;
10782 	substring_t args[MAX_OPT_ARGS];
10783 	int state = IF_STATE_ACTION, token;
10784 	unsigned int kernel = 0;
10785 	int ret = -EINVAL;
10786 
10787 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10788 	if (!fstr)
10789 		return -ENOMEM;
10790 
10791 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10792 		static const enum perf_addr_filter_action_t actions[] = {
10793 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10794 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10795 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10796 		};
10797 		ret = -EINVAL;
10798 
10799 		if (!*start)
10800 			continue;
10801 
10802 		/* filter definition begins */
10803 		if (state == IF_STATE_ACTION) {
10804 			filter = perf_addr_filter_new(event, filters);
10805 			if (!filter)
10806 				goto fail;
10807 		}
10808 
10809 		token = match_token(start, if_tokens, args);
10810 		switch (token) {
10811 		case IF_ACT_FILTER:
10812 		case IF_ACT_START:
10813 		case IF_ACT_STOP:
10814 			if (state != IF_STATE_ACTION)
10815 				goto fail;
10816 
10817 			filter->action = actions[token];
10818 			state = IF_STATE_SOURCE;
10819 			break;
10820 
10821 		case IF_SRC_KERNELADDR:
10822 		case IF_SRC_KERNEL:
10823 			kernel = 1;
10824 			fallthrough;
10825 
10826 		case IF_SRC_FILEADDR:
10827 		case IF_SRC_FILE:
10828 			if (state != IF_STATE_SOURCE)
10829 				goto fail;
10830 
10831 			*args[0].to = 0;
10832 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10833 			if (ret)
10834 				goto fail;
10835 
10836 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10837 				*args[1].to = 0;
10838 				ret = kstrtoul(args[1].from, 0, &filter->size);
10839 				if (ret)
10840 					goto fail;
10841 			}
10842 
10843 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10844 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10845 
10846 				kfree(filename);
10847 				filename = match_strdup(&args[fpos]);
10848 				if (!filename) {
10849 					ret = -ENOMEM;
10850 					goto fail;
10851 				}
10852 			}
10853 
10854 			state = IF_STATE_END;
10855 			break;
10856 
10857 		default:
10858 			goto fail;
10859 		}
10860 
10861 		/*
10862 		 * Filter definition is fully parsed, validate and install it.
10863 		 * Make sure that it doesn't contradict itself or the event's
10864 		 * attribute.
10865 		 */
10866 		if (state == IF_STATE_END) {
10867 			ret = -EINVAL;
10868 
10869 			/*
10870 			 * ACTION "filter" must have a non-zero length region
10871 			 * specified.
10872 			 */
10873 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10874 			    !filter->size)
10875 				goto fail;
10876 
10877 			if (!kernel) {
10878 				if (!filename)
10879 					goto fail;
10880 
10881 				/*
10882 				 * For now, we only support file-based filters
10883 				 * in per-task events; doing so for CPU-wide
10884 				 * events requires additional context switching
10885 				 * trickery, since same object code will be
10886 				 * mapped at different virtual addresses in
10887 				 * different processes.
10888 				 */
10889 				ret = -EOPNOTSUPP;
10890 				if (!event->ctx->task)
10891 					goto fail;
10892 
10893 				/* look up the path and grab its inode */
10894 				ret = kern_path(filename, LOOKUP_FOLLOW,
10895 						&filter->path);
10896 				if (ret)
10897 					goto fail;
10898 
10899 				ret = -EINVAL;
10900 				if (!filter->path.dentry ||
10901 				    !S_ISREG(d_inode(filter->path.dentry)
10902 					     ->i_mode))
10903 					goto fail;
10904 
10905 				event->addr_filters.nr_file_filters++;
10906 			}
10907 
10908 			/* ready to consume more filters */
10909 			kfree(filename);
10910 			filename = NULL;
10911 			state = IF_STATE_ACTION;
10912 			filter = NULL;
10913 			kernel = 0;
10914 		}
10915 	}
10916 
10917 	if (state != IF_STATE_ACTION)
10918 		goto fail;
10919 
10920 	kfree(filename);
10921 	kfree(orig);
10922 
10923 	return 0;
10924 
10925 fail:
10926 	kfree(filename);
10927 	free_filters_list(filters);
10928 	kfree(orig);
10929 
10930 	return ret;
10931 }
10932 
10933 static int
10934 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10935 {
10936 	LIST_HEAD(filters);
10937 	int ret;
10938 
10939 	/*
10940 	 * Since this is called in perf_ioctl() path, we're already holding
10941 	 * ctx::mutex.
10942 	 */
10943 	lockdep_assert_held(&event->ctx->mutex);
10944 
10945 	if (WARN_ON_ONCE(event->parent))
10946 		return -EINVAL;
10947 
10948 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10949 	if (ret)
10950 		goto fail_clear_files;
10951 
10952 	ret = event->pmu->addr_filters_validate(&filters);
10953 	if (ret)
10954 		goto fail_free_filters;
10955 
10956 	/* remove existing filters, if any */
10957 	perf_addr_filters_splice(event, &filters);
10958 
10959 	/* install new filters */
10960 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10961 
10962 	return ret;
10963 
10964 fail_free_filters:
10965 	free_filters_list(&filters);
10966 
10967 fail_clear_files:
10968 	event->addr_filters.nr_file_filters = 0;
10969 
10970 	return ret;
10971 }
10972 
10973 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10974 {
10975 	int ret = -EINVAL;
10976 	char *filter_str;
10977 
10978 	filter_str = strndup_user(arg, PAGE_SIZE);
10979 	if (IS_ERR(filter_str))
10980 		return PTR_ERR(filter_str);
10981 
10982 #ifdef CONFIG_EVENT_TRACING
10983 	if (perf_event_is_tracing(event)) {
10984 		struct perf_event_context *ctx = event->ctx;
10985 
10986 		/*
10987 		 * Beware, here be dragons!!
10988 		 *
10989 		 * the tracepoint muck will deadlock against ctx->mutex, but
10990 		 * the tracepoint stuff does not actually need it. So
10991 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10992 		 * already have a reference on ctx.
10993 		 *
10994 		 * This can result in event getting moved to a different ctx,
10995 		 * but that does not affect the tracepoint state.
10996 		 */
10997 		mutex_unlock(&ctx->mutex);
10998 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10999 		mutex_lock(&ctx->mutex);
11000 	} else
11001 #endif
11002 	if (has_addr_filter(event))
11003 		ret = perf_event_set_addr_filter(event, filter_str);
11004 
11005 	kfree(filter_str);
11006 	return ret;
11007 }
11008 
11009 /*
11010  * hrtimer based swevent callback
11011  */
11012 
11013 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11014 {
11015 	enum hrtimer_restart ret = HRTIMER_RESTART;
11016 	struct perf_sample_data data;
11017 	struct pt_regs *regs;
11018 	struct perf_event *event;
11019 	u64 period;
11020 
11021 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11022 
11023 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11024 		return HRTIMER_NORESTART;
11025 
11026 	event->pmu->read(event);
11027 
11028 	perf_sample_data_init(&data, 0, event->hw.last_period);
11029 	regs = get_irq_regs();
11030 
11031 	if (regs && !perf_exclude_event(event, regs)) {
11032 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11033 			if (__perf_event_overflow(event, 1, &data, regs))
11034 				ret = HRTIMER_NORESTART;
11035 	}
11036 
11037 	period = max_t(u64, 10000, event->hw.sample_period);
11038 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11039 
11040 	return ret;
11041 }
11042 
11043 static void perf_swevent_start_hrtimer(struct perf_event *event)
11044 {
11045 	struct hw_perf_event *hwc = &event->hw;
11046 	s64 period;
11047 
11048 	if (!is_sampling_event(event))
11049 		return;
11050 
11051 	period = local64_read(&hwc->period_left);
11052 	if (period) {
11053 		if (period < 0)
11054 			period = 10000;
11055 
11056 		local64_set(&hwc->period_left, 0);
11057 	} else {
11058 		period = max_t(u64, 10000, hwc->sample_period);
11059 	}
11060 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11061 		      HRTIMER_MODE_REL_PINNED_HARD);
11062 }
11063 
11064 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11065 {
11066 	struct hw_perf_event *hwc = &event->hw;
11067 
11068 	if (is_sampling_event(event)) {
11069 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11070 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11071 
11072 		hrtimer_cancel(&hwc->hrtimer);
11073 	}
11074 }
11075 
11076 static void perf_swevent_init_hrtimer(struct perf_event *event)
11077 {
11078 	struct hw_perf_event *hwc = &event->hw;
11079 
11080 	if (!is_sampling_event(event))
11081 		return;
11082 
11083 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11084 	hwc->hrtimer.function = perf_swevent_hrtimer;
11085 
11086 	/*
11087 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11088 	 * mapping and avoid the whole period adjust feedback stuff.
11089 	 */
11090 	if (event->attr.freq) {
11091 		long freq = event->attr.sample_freq;
11092 
11093 		event->attr.sample_period = NSEC_PER_SEC / freq;
11094 		hwc->sample_period = event->attr.sample_period;
11095 		local64_set(&hwc->period_left, hwc->sample_period);
11096 		hwc->last_period = hwc->sample_period;
11097 		event->attr.freq = 0;
11098 	}
11099 }
11100 
11101 /*
11102  * Software event: cpu wall time clock
11103  */
11104 
11105 static void cpu_clock_event_update(struct perf_event *event)
11106 {
11107 	s64 prev;
11108 	u64 now;
11109 
11110 	now = local_clock();
11111 	prev = local64_xchg(&event->hw.prev_count, now);
11112 	local64_add(now - prev, &event->count);
11113 }
11114 
11115 static void cpu_clock_event_start(struct perf_event *event, int flags)
11116 {
11117 	local64_set(&event->hw.prev_count, local_clock());
11118 	perf_swevent_start_hrtimer(event);
11119 }
11120 
11121 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11122 {
11123 	perf_swevent_cancel_hrtimer(event);
11124 	cpu_clock_event_update(event);
11125 }
11126 
11127 static int cpu_clock_event_add(struct perf_event *event, int flags)
11128 {
11129 	if (flags & PERF_EF_START)
11130 		cpu_clock_event_start(event, flags);
11131 	perf_event_update_userpage(event);
11132 
11133 	return 0;
11134 }
11135 
11136 static void cpu_clock_event_del(struct perf_event *event, int flags)
11137 {
11138 	cpu_clock_event_stop(event, flags);
11139 }
11140 
11141 static void cpu_clock_event_read(struct perf_event *event)
11142 {
11143 	cpu_clock_event_update(event);
11144 }
11145 
11146 static int cpu_clock_event_init(struct perf_event *event)
11147 {
11148 	if (event->attr.type != perf_cpu_clock.type)
11149 		return -ENOENT;
11150 
11151 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11152 		return -ENOENT;
11153 
11154 	/*
11155 	 * no branch sampling for software events
11156 	 */
11157 	if (has_branch_stack(event))
11158 		return -EOPNOTSUPP;
11159 
11160 	perf_swevent_init_hrtimer(event);
11161 
11162 	return 0;
11163 }
11164 
11165 static struct pmu perf_cpu_clock = {
11166 	.task_ctx_nr	= perf_sw_context,
11167 
11168 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11169 	.dev		= PMU_NULL_DEV,
11170 
11171 	.event_init	= cpu_clock_event_init,
11172 	.add		= cpu_clock_event_add,
11173 	.del		= cpu_clock_event_del,
11174 	.start		= cpu_clock_event_start,
11175 	.stop		= cpu_clock_event_stop,
11176 	.read		= cpu_clock_event_read,
11177 };
11178 
11179 /*
11180  * Software event: task time clock
11181  */
11182 
11183 static void task_clock_event_update(struct perf_event *event, u64 now)
11184 {
11185 	u64 prev;
11186 	s64 delta;
11187 
11188 	prev = local64_xchg(&event->hw.prev_count, now);
11189 	delta = now - prev;
11190 	local64_add(delta, &event->count);
11191 }
11192 
11193 static void task_clock_event_start(struct perf_event *event, int flags)
11194 {
11195 	local64_set(&event->hw.prev_count, event->ctx->time);
11196 	perf_swevent_start_hrtimer(event);
11197 }
11198 
11199 static void task_clock_event_stop(struct perf_event *event, int flags)
11200 {
11201 	perf_swevent_cancel_hrtimer(event);
11202 	task_clock_event_update(event, event->ctx->time);
11203 }
11204 
11205 static int task_clock_event_add(struct perf_event *event, int flags)
11206 {
11207 	if (flags & PERF_EF_START)
11208 		task_clock_event_start(event, flags);
11209 	perf_event_update_userpage(event);
11210 
11211 	return 0;
11212 }
11213 
11214 static void task_clock_event_del(struct perf_event *event, int flags)
11215 {
11216 	task_clock_event_stop(event, PERF_EF_UPDATE);
11217 }
11218 
11219 static void task_clock_event_read(struct perf_event *event)
11220 {
11221 	u64 now = perf_clock();
11222 	u64 delta = now - event->ctx->timestamp;
11223 	u64 time = event->ctx->time + delta;
11224 
11225 	task_clock_event_update(event, time);
11226 }
11227 
11228 static int task_clock_event_init(struct perf_event *event)
11229 {
11230 	if (event->attr.type != perf_task_clock.type)
11231 		return -ENOENT;
11232 
11233 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11234 		return -ENOENT;
11235 
11236 	/*
11237 	 * no branch sampling for software events
11238 	 */
11239 	if (has_branch_stack(event))
11240 		return -EOPNOTSUPP;
11241 
11242 	perf_swevent_init_hrtimer(event);
11243 
11244 	return 0;
11245 }
11246 
11247 static struct pmu perf_task_clock = {
11248 	.task_ctx_nr	= perf_sw_context,
11249 
11250 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11251 	.dev		= PMU_NULL_DEV,
11252 
11253 	.event_init	= task_clock_event_init,
11254 	.add		= task_clock_event_add,
11255 	.del		= task_clock_event_del,
11256 	.start		= task_clock_event_start,
11257 	.stop		= task_clock_event_stop,
11258 	.read		= task_clock_event_read,
11259 };
11260 
11261 static void perf_pmu_nop_void(struct pmu *pmu)
11262 {
11263 }
11264 
11265 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11266 {
11267 }
11268 
11269 static int perf_pmu_nop_int(struct pmu *pmu)
11270 {
11271 	return 0;
11272 }
11273 
11274 static int perf_event_nop_int(struct perf_event *event, u64 value)
11275 {
11276 	return 0;
11277 }
11278 
11279 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11280 
11281 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11282 {
11283 	__this_cpu_write(nop_txn_flags, flags);
11284 
11285 	if (flags & ~PERF_PMU_TXN_ADD)
11286 		return;
11287 
11288 	perf_pmu_disable(pmu);
11289 }
11290 
11291 static int perf_pmu_commit_txn(struct pmu *pmu)
11292 {
11293 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11294 
11295 	__this_cpu_write(nop_txn_flags, 0);
11296 
11297 	if (flags & ~PERF_PMU_TXN_ADD)
11298 		return 0;
11299 
11300 	perf_pmu_enable(pmu);
11301 	return 0;
11302 }
11303 
11304 static void perf_pmu_cancel_txn(struct pmu *pmu)
11305 {
11306 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11307 
11308 	__this_cpu_write(nop_txn_flags, 0);
11309 
11310 	if (flags & ~PERF_PMU_TXN_ADD)
11311 		return;
11312 
11313 	perf_pmu_enable(pmu);
11314 }
11315 
11316 static int perf_event_idx_default(struct perf_event *event)
11317 {
11318 	return 0;
11319 }
11320 
11321 static void free_pmu_context(struct pmu *pmu)
11322 {
11323 	free_percpu(pmu->cpu_pmu_context);
11324 }
11325 
11326 /*
11327  * Let userspace know that this PMU supports address range filtering:
11328  */
11329 static ssize_t nr_addr_filters_show(struct device *dev,
11330 				    struct device_attribute *attr,
11331 				    char *page)
11332 {
11333 	struct pmu *pmu = dev_get_drvdata(dev);
11334 
11335 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11336 }
11337 DEVICE_ATTR_RO(nr_addr_filters);
11338 
11339 static struct idr pmu_idr;
11340 
11341 static ssize_t
11342 type_show(struct device *dev, struct device_attribute *attr, char *page)
11343 {
11344 	struct pmu *pmu = dev_get_drvdata(dev);
11345 
11346 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11347 }
11348 static DEVICE_ATTR_RO(type);
11349 
11350 static ssize_t
11351 perf_event_mux_interval_ms_show(struct device *dev,
11352 				struct device_attribute *attr,
11353 				char *page)
11354 {
11355 	struct pmu *pmu = dev_get_drvdata(dev);
11356 
11357 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11358 }
11359 
11360 static DEFINE_MUTEX(mux_interval_mutex);
11361 
11362 static ssize_t
11363 perf_event_mux_interval_ms_store(struct device *dev,
11364 				 struct device_attribute *attr,
11365 				 const char *buf, size_t count)
11366 {
11367 	struct pmu *pmu = dev_get_drvdata(dev);
11368 	int timer, cpu, ret;
11369 
11370 	ret = kstrtoint(buf, 0, &timer);
11371 	if (ret)
11372 		return ret;
11373 
11374 	if (timer < 1)
11375 		return -EINVAL;
11376 
11377 	/* same value, noting to do */
11378 	if (timer == pmu->hrtimer_interval_ms)
11379 		return count;
11380 
11381 	mutex_lock(&mux_interval_mutex);
11382 	pmu->hrtimer_interval_ms = timer;
11383 
11384 	/* update all cpuctx for this PMU */
11385 	cpus_read_lock();
11386 	for_each_online_cpu(cpu) {
11387 		struct perf_cpu_pmu_context *cpc;
11388 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11389 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11390 
11391 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11392 	}
11393 	cpus_read_unlock();
11394 	mutex_unlock(&mux_interval_mutex);
11395 
11396 	return count;
11397 }
11398 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11399 
11400 static struct attribute *pmu_dev_attrs[] = {
11401 	&dev_attr_type.attr,
11402 	&dev_attr_perf_event_mux_interval_ms.attr,
11403 	NULL,
11404 };
11405 ATTRIBUTE_GROUPS(pmu_dev);
11406 
11407 static int pmu_bus_running;
11408 static struct bus_type pmu_bus = {
11409 	.name		= "event_source",
11410 	.dev_groups	= pmu_dev_groups,
11411 };
11412 
11413 static void pmu_dev_release(struct device *dev)
11414 {
11415 	kfree(dev);
11416 }
11417 
11418 static int pmu_dev_alloc(struct pmu *pmu)
11419 {
11420 	int ret = -ENOMEM;
11421 
11422 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11423 	if (!pmu->dev)
11424 		goto out;
11425 
11426 	pmu->dev->groups = pmu->attr_groups;
11427 	device_initialize(pmu->dev);
11428 
11429 	dev_set_drvdata(pmu->dev, pmu);
11430 	pmu->dev->bus = &pmu_bus;
11431 	pmu->dev->parent = pmu->parent;
11432 	pmu->dev->release = pmu_dev_release;
11433 
11434 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11435 	if (ret)
11436 		goto free_dev;
11437 
11438 	ret = device_add(pmu->dev);
11439 	if (ret)
11440 		goto free_dev;
11441 
11442 	/* For PMUs with address filters, throw in an extra attribute: */
11443 	if (pmu->nr_addr_filters)
11444 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11445 
11446 	if (ret)
11447 		goto del_dev;
11448 
11449 	if (pmu->attr_update)
11450 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11451 
11452 	if (ret)
11453 		goto del_dev;
11454 
11455 out:
11456 	return ret;
11457 
11458 del_dev:
11459 	device_del(pmu->dev);
11460 
11461 free_dev:
11462 	put_device(pmu->dev);
11463 	goto out;
11464 }
11465 
11466 static struct lock_class_key cpuctx_mutex;
11467 static struct lock_class_key cpuctx_lock;
11468 
11469 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11470 {
11471 	int cpu, ret, max = PERF_TYPE_MAX;
11472 
11473 	mutex_lock(&pmus_lock);
11474 	ret = -ENOMEM;
11475 	pmu->pmu_disable_count = alloc_percpu(int);
11476 	if (!pmu->pmu_disable_count)
11477 		goto unlock;
11478 
11479 	pmu->type = -1;
11480 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11481 		ret = -EINVAL;
11482 		goto free_pdc;
11483 	}
11484 
11485 	pmu->name = name;
11486 
11487 	if (type >= 0)
11488 		max = type;
11489 
11490 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11491 	if (ret < 0)
11492 		goto free_pdc;
11493 
11494 	WARN_ON(type >= 0 && ret != type);
11495 
11496 	type = ret;
11497 	pmu->type = type;
11498 
11499 	if (pmu_bus_running && !pmu->dev) {
11500 		ret = pmu_dev_alloc(pmu);
11501 		if (ret)
11502 			goto free_idr;
11503 	}
11504 
11505 	ret = -ENOMEM;
11506 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11507 	if (!pmu->cpu_pmu_context)
11508 		goto free_dev;
11509 
11510 	for_each_possible_cpu(cpu) {
11511 		struct perf_cpu_pmu_context *cpc;
11512 
11513 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11514 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11515 		__perf_mux_hrtimer_init(cpc, cpu);
11516 	}
11517 
11518 	if (!pmu->start_txn) {
11519 		if (pmu->pmu_enable) {
11520 			/*
11521 			 * If we have pmu_enable/pmu_disable calls, install
11522 			 * transaction stubs that use that to try and batch
11523 			 * hardware accesses.
11524 			 */
11525 			pmu->start_txn  = perf_pmu_start_txn;
11526 			pmu->commit_txn = perf_pmu_commit_txn;
11527 			pmu->cancel_txn = perf_pmu_cancel_txn;
11528 		} else {
11529 			pmu->start_txn  = perf_pmu_nop_txn;
11530 			pmu->commit_txn = perf_pmu_nop_int;
11531 			pmu->cancel_txn = perf_pmu_nop_void;
11532 		}
11533 	}
11534 
11535 	if (!pmu->pmu_enable) {
11536 		pmu->pmu_enable  = perf_pmu_nop_void;
11537 		pmu->pmu_disable = perf_pmu_nop_void;
11538 	}
11539 
11540 	if (!pmu->check_period)
11541 		pmu->check_period = perf_event_nop_int;
11542 
11543 	if (!pmu->event_idx)
11544 		pmu->event_idx = perf_event_idx_default;
11545 
11546 	list_add_rcu(&pmu->entry, &pmus);
11547 	atomic_set(&pmu->exclusive_cnt, 0);
11548 	ret = 0;
11549 unlock:
11550 	mutex_unlock(&pmus_lock);
11551 
11552 	return ret;
11553 
11554 free_dev:
11555 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11556 		device_del(pmu->dev);
11557 		put_device(pmu->dev);
11558 	}
11559 
11560 free_idr:
11561 	idr_remove(&pmu_idr, pmu->type);
11562 
11563 free_pdc:
11564 	free_percpu(pmu->pmu_disable_count);
11565 	goto unlock;
11566 }
11567 EXPORT_SYMBOL_GPL(perf_pmu_register);
11568 
11569 void perf_pmu_unregister(struct pmu *pmu)
11570 {
11571 	mutex_lock(&pmus_lock);
11572 	list_del_rcu(&pmu->entry);
11573 
11574 	/*
11575 	 * We dereference the pmu list under both SRCU and regular RCU, so
11576 	 * synchronize against both of those.
11577 	 */
11578 	synchronize_srcu(&pmus_srcu);
11579 	synchronize_rcu();
11580 
11581 	free_percpu(pmu->pmu_disable_count);
11582 	idr_remove(&pmu_idr, pmu->type);
11583 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11584 		if (pmu->nr_addr_filters)
11585 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11586 		device_del(pmu->dev);
11587 		put_device(pmu->dev);
11588 	}
11589 	free_pmu_context(pmu);
11590 	mutex_unlock(&pmus_lock);
11591 }
11592 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11593 
11594 static inline bool has_extended_regs(struct perf_event *event)
11595 {
11596 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11597 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11598 }
11599 
11600 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11601 {
11602 	struct perf_event_context *ctx = NULL;
11603 	int ret;
11604 
11605 	if (!try_module_get(pmu->module))
11606 		return -ENODEV;
11607 
11608 	/*
11609 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11610 	 * for example, validate if the group fits on the PMU. Therefore,
11611 	 * if this is a sibling event, acquire the ctx->mutex to protect
11612 	 * the sibling_list.
11613 	 */
11614 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11615 		/*
11616 		 * This ctx->mutex can nest when we're called through
11617 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11618 		 */
11619 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11620 						 SINGLE_DEPTH_NESTING);
11621 		BUG_ON(!ctx);
11622 	}
11623 
11624 	event->pmu = pmu;
11625 	ret = pmu->event_init(event);
11626 
11627 	if (ctx)
11628 		perf_event_ctx_unlock(event->group_leader, ctx);
11629 
11630 	if (!ret) {
11631 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11632 		    has_extended_regs(event))
11633 			ret = -EOPNOTSUPP;
11634 
11635 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11636 		    event_has_any_exclude_flag(event))
11637 			ret = -EINVAL;
11638 
11639 		if (ret && event->destroy)
11640 			event->destroy(event);
11641 	}
11642 
11643 	if (ret)
11644 		module_put(pmu->module);
11645 
11646 	return ret;
11647 }
11648 
11649 static struct pmu *perf_init_event(struct perf_event *event)
11650 {
11651 	bool extended_type = false;
11652 	int idx, type, ret;
11653 	struct pmu *pmu;
11654 
11655 	idx = srcu_read_lock(&pmus_srcu);
11656 
11657 	/*
11658 	 * Save original type before calling pmu->event_init() since certain
11659 	 * pmus overwrites event->attr.type to forward event to another pmu.
11660 	 */
11661 	event->orig_type = event->attr.type;
11662 
11663 	/* Try parent's PMU first: */
11664 	if (event->parent && event->parent->pmu) {
11665 		pmu = event->parent->pmu;
11666 		ret = perf_try_init_event(pmu, event);
11667 		if (!ret)
11668 			goto unlock;
11669 	}
11670 
11671 	/*
11672 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11673 	 * are often aliases for PERF_TYPE_RAW.
11674 	 */
11675 	type = event->attr.type;
11676 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11677 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11678 		if (!type) {
11679 			type = PERF_TYPE_RAW;
11680 		} else {
11681 			extended_type = true;
11682 			event->attr.config &= PERF_HW_EVENT_MASK;
11683 		}
11684 	}
11685 
11686 again:
11687 	rcu_read_lock();
11688 	pmu = idr_find(&pmu_idr, type);
11689 	rcu_read_unlock();
11690 	if (pmu) {
11691 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11692 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11693 			goto fail;
11694 
11695 		ret = perf_try_init_event(pmu, event);
11696 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11697 			type = event->attr.type;
11698 			goto again;
11699 		}
11700 
11701 		if (ret)
11702 			pmu = ERR_PTR(ret);
11703 
11704 		goto unlock;
11705 	}
11706 
11707 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11708 		ret = perf_try_init_event(pmu, event);
11709 		if (!ret)
11710 			goto unlock;
11711 
11712 		if (ret != -ENOENT) {
11713 			pmu = ERR_PTR(ret);
11714 			goto unlock;
11715 		}
11716 	}
11717 fail:
11718 	pmu = ERR_PTR(-ENOENT);
11719 unlock:
11720 	srcu_read_unlock(&pmus_srcu, idx);
11721 
11722 	return pmu;
11723 }
11724 
11725 static void attach_sb_event(struct perf_event *event)
11726 {
11727 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11728 
11729 	raw_spin_lock(&pel->lock);
11730 	list_add_rcu(&event->sb_list, &pel->list);
11731 	raw_spin_unlock(&pel->lock);
11732 }
11733 
11734 /*
11735  * We keep a list of all !task (and therefore per-cpu) events
11736  * that need to receive side-band records.
11737  *
11738  * This avoids having to scan all the various PMU per-cpu contexts
11739  * looking for them.
11740  */
11741 static void account_pmu_sb_event(struct perf_event *event)
11742 {
11743 	if (is_sb_event(event))
11744 		attach_sb_event(event);
11745 }
11746 
11747 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11748 static void account_freq_event_nohz(void)
11749 {
11750 #ifdef CONFIG_NO_HZ_FULL
11751 	/* Lock so we don't race with concurrent unaccount */
11752 	spin_lock(&nr_freq_lock);
11753 	if (atomic_inc_return(&nr_freq_events) == 1)
11754 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11755 	spin_unlock(&nr_freq_lock);
11756 #endif
11757 }
11758 
11759 static void account_freq_event(void)
11760 {
11761 	if (tick_nohz_full_enabled())
11762 		account_freq_event_nohz();
11763 	else
11764 		atomic_inc(&nr_freq_events);
11765 }
11766 
11767 
11768 static void account_event(struct perf_event *event)
11769 {
11770 	bool inc = false;
11771 
11772 	if (event->parent)
11773 		return;
11774 
11775 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11776 		inc = true;
11777 	if (event->attr.mmap || event->attr.mmap_data)
11778 		atomic_inc(&nr_mmap_events);
11779 	if (event->attr.build_id)
11780 		atomic_inc(&nr_build_id_events);
11781 	if (event->attr.comm)
11782 		atomic_inc(&nr_comm_events);
11783 	if (event->attr.namespaces)
11784 		atomic_inc(&nr_namespaces_events);
11785 	if (event->attr.cgroup)
11786 		atomic_inc(&nr_cgroup_events);
11787 	if (event->attr.task)
11788 		atomic_inc(&nr_task_events);
11789 	if (event->attr.freq)
11790 		account_freq_event();
11791 	if (event->attr.context_switch) {
11792 		atomic_inc(&nr_switch_events);
11793 		inc = true;
11794 	}
11795 	if (has_branch_stack(event))
11796 		inc = true;
11797 	if (is_cgroup_event(event))
11798 		inc = true;
11799 	if (event->attr.ksymbol)
11800 		atomic_inc(&nr_ksymbol_events);
11801 	if (event->attr.bpf_event)
11802 		atomic_inc(&nr_bpf_events);
11803 	if (event->attr.text_poke)
11804 		atomic_inc(&nr_text_poke_events);
11805 
11806 	if (inc) {
11807 		/*
11808 		 * We need the mutex here because static_branch_enable()
11809 		 * must complete *before* the perf_sched_count increment
11810 		 * becomes visible.
11811 		 */
11812 		if (atomic_inc_not_zero(&perf_sched_count))
11813 			goto enabled;
11814 
11815 		mutex_lock(&perf_sched_mutex);
11816 		if (!atomic_read(&perf_sched_count)) {
11817 			static_branch_enable(&perf_sched_events);
11818 			/*
11819 			 * Guarantee that all CPUs observe they key change and
11820 			 * call the perf scheduling hooks before proceeding to
11821 			 * install events that need them.
11822 			 */
11823 			synchronize_rcu();
11824 		}
11825 		/*
11826 		 * Now that we have waited for the sync_sched(), allow further
11827 		 * increments to by-pass the mutex.
11828 		 */
11829 		atomic_inc(&perf_sched_count);
11830 		mutex_unlock(&perf_sched_mutex);
11831 	}
11832 enabled:
11833 
11834 	account_pmu_sb_event(event);
11835 }
11836 
11837 /*
11838  * Allocate and initialize an event structure
11839  */
11840 static struct perf_event *
11841 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11842 		 struct task_struct *task,
11843 		 struct perf_event *group_leader,
11844 		 struct perf_event *parent_event,
11845 		 perf_overflow_handler_t overflow_handler,
11846 		 void *context, int cgroup_fd)
11847 {
11848 	struct pmu *pmu;
11849 	struct perf_event *event;
11850 	struct hw_perf_event *hwc;
11851 	long err = -EINVAL;
11852 	int node;
11853 
11854 	if ((unsigned)cpu >= nr_cpu_ids) {
11855 		if (!task || cpu != -1)
11856 			return ERR_PTR(-EINVAL);
11857 	}
11858 	if (attr->sigtrap && !task) {
11859 		/* Requires a task: avoid signalling random tasks. */
11860 		return ERR_PTR(-EINVAL);
11861 	}
11862 
11863 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11864 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11865 				      node);
11866 	if (!event)
11867 		return ERR_PTR(-ENOMEM);
11868 
11869 	/*
11870 	 * Single events are their own group leaders, with an
11871 	 * empty sibling list:
11872 	 */
11873 	if (!group_leader)
11874 		group_leader = event;
11875 
11876 	mutex_init(&event->child_mutex);
11877 	INIT_LIST_HEAD(&event->child_list);
11878 
11879 	INIT_LIST_HEAD(&event->event_entry);
11880 	INIT_LIST_HEAD(&event->sibling_list);
11881 	INIT_LIST_HEAD(&event->active_list);
11882 	init_event_group(event);
11883 	INIT_LIST_HEAD(&event->rb_entry);
11884 	INIT_LIST_HEAD(&event->active_entry);
11885 	INIT_LIST_HEAD(&event->addr_filters.list);
11886 	INIT_HLIST_NODE(&event->hlist_entry);
11887 
11888 
11889 	init_waitqueue_head(&event->waitq);
11890 	init_irq_work(&event->pending_irq, perf_pending_irq);
11891 	init_task_work(&event->pending_task, perf_pending_task);
11892 
11893 	mutex_init(&event->mmap_mutex);
11894 	raw_spin_lock_init(&event->addr_filters.lock);
11895 
11896 	atomic_long_set(&event->refcount, 1);
11897 	event->cpu		= cpu;
11898 	event->attr		= *attr;
11899 	event->group_leader	= group_leader;
11900 	event->pmu		= NULL;
11901 	event->oncpu		= -1;
11902 
11903 	event->parent		= parent_event;
11904 
11905 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11906 	event->id		= atomic64_inc_return(&perf_event_id);
11907 
11908 	event->state		= PERF_EVENT_STATE_INACTIVE;
11909 
11910 	if (parent_event)
11911 		event->event_caps = parent_event->event_caps;
11912 
11913 	if (task) {
11914 		event->attach_state = PERF_ATTACH_TASK;
11915 		/*
11916 		 * XXX pmu::event_init needs to know what task to account to
11917 		 * and we cannot use the ctx information because we need the
11918 		 * pmu before we get a ctx.
11919 		 */
11920 		event->hw.target = get_task_struct(task);
11921 	}
11922 
11923 	event->clock = &local_clock;
11924 	if (parent_event)
11925 		event->clock = parent_event->clock;
11926 
11927 	if (!overflow_handler && parent_event) {
11928 		overflow_handler = parent_event->overflow_handler;
11929 		context = parent_event->overflow_handler_context;
11930 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11931 		if (overflow_handler == bpf_overflow_handler) {
11932 			struct bpf_prog *prog = parent_event->prog;
11933 
11934 			bpf_prog_inc(prog);
11935 			event->prog = prog;
11936 			event->orig_overflow_handler =
11937 				parent_event->orig_overflow_handler;
11938 		}
11939 #endif
11940 	}
11941 
11942 	if (overflow_handler) {
11943 		event->overflow_handler	= overflow_handler;
11944 		event->overflow_handler_context = context;
11945 	} else if (is_write_backward(event)){
11946 		event->overflow_handler = perf_event_output_backward;
11947 		event->overflow_handler_context = NULL;
11948 	} else {
11949 		event->overflow_handler = perf_event_output_forward;
11950 		event->overflow_handler_context = NULL;
11951 	}
11952 
11953 	perf_event__state_init(event);
11954 
11955 	pmu = NULL;
11956 
11957 	hwc = &event->hw;
11958 	hwc->sample_period = attr->sample_period;
11959 	if (attr->freq && attr->sample_freq)
11960 		hwc->sample_period = 1;
11961 	hwc->last_period = hwc->sample_period;
11962 
11963 	local64_set(&hwc->period_left, hwc->sample_period);
11964 
11965 	/*
11966 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11967 	 * See perf_output_read().
11968 	 */
11969 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11970 		goto err_ns;
11971 
11972 	if (!has_branch_stack(event))
11973 		event->attr.branch_sample_type = 0;
11974 
11975 	pmu = perf_init_event(event);
11976 	if (IS_ERR(pmu)) {
11977 		err = PTR_ERR(pmu);
11978 		goto err_ns;
11979 	}
11980 
11981 	/*
11982 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11983 	 * events (they don't make sense as the cgroup will be different
11984 	 * on other CPUs in the uncore mask).
11985 	 */
11986 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11987 		err = -EINVAL;
11988 		goto err_pmu;
11989 	}
11990 
11991 	if (event->attr.aux_output &&
11992 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11993 		err = -EOPNOTSUPP;
11994 		goto err_pmu;
11995 	}
11996 
11997 	if (cgroup_fd != -1) {
11998 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11999 		if (err)
12000 			goto err_pmu;
12001 	}
12002 
12003 	err = exclusive_event_init(event);
12004 	if (err)
12005 		goto err_pmu;
12006 
12007 	if (has_addr_filter(event)) {
12008 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12009 						    sizeof(struct perf_addr_filter_range),
12010 						    GFP_KERNEL);
12011 		if (!event->addr_filter_ranges) {
12012 			err = -ENOMEM;
12013 			goto err_per_task;
12014 		}
12015 
12016 		/*
12017 		 * Clone the parent's vma offsets: they are valid until exec()
12018 		 * even if the mm is not shared with the parent.
12019 		 */
12020 		if (event->parent) {
12021 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12022 
12023 			raw_spin_lock_irq(&ifh->lock);
12024 			memcpy(event->addr_filter_ranges,
12025 			       event->parent->addr_filter_ranges,
12026 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12027 			raw_spin_unlock_irq(&ifh->lock);
12028 		}
12029 
12030 		/* force hw sync on the address filters */
12031 		event->addr_filters_gen = 1;
12032 	}
12033 
12034 	if (!event->parent) {
12035 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12036 			err = get_callchain_buffers(attr->sample_max_stack);
12037 			if (err)
12038 				goto err_addr_filters;
12039 		}
12040 	}
12041 
12042 	err = security_perf_event_alloc(event);
12043 	if (err)
12044 		goto err_callchain_buffer;
12045 
12046 	/* symmetric to unaccount_event() in _free_event() */
12047 	account_event(event);
12048 
12049 	return event;
12050 
12051 err_callchain_buffer:
12052 	if (!event->parent) {
12053 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12054 			put_callchain_buffers();
12055 	}
12056 err_addr_filters:
12057 	kfree(event->addr_filter_ranges);
12058 
12059 err_per_task:
12060 	exclusive_event_destroy(event);
12061 
12062 err_pmu:
12063 	if (is_cgroup_event(event))
12064 		perf_detach_cgroup(event);
12065 	if (event->destroy)
12066 		event->destroy(event);
12067 	module_put(pmu->module);
12068 err_ns:
12069 	if (event->hw.target)
12070 		put_task_struct(event->hw.target);
12071 	call_rcu(&event->rcu_head, free_event_rcu);
12072 
12073 	return ERR_PTR(err);
12074 }
12075 
12076 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12077 			  struct perf_event_attr *attr)
12078 {
12079 	u32 size;
12080 	int ret;
12081 
12082 	/* Zero the full structure, so that a short copy will be nice. */
12083 	memset(attr, 0, sizeof(*attr));
12084 
12085 	ret = get_user(size, &uattr->size);
12086 	if (ret)
12087 		return ret;
12088 
12089 	/* ABI compatibility quirk: */
12090 	if (!size)
12091 		size = PERF_ATTR_SIZE_VER0;
12092 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12093 		goto err_size;
12094 
12095 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12096 	if (ret) {
12097 		if (ret == -E2BIG)
12098 			goto err_size;
12099 		return ret;
12100 	}
12101 
12102 	attr->size = size;
12103 
12104 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12105 		return -EINVAL;
12106 
12107 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12108 		return -EINVAL;
12109 
12110 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12111 		return -EINVAL;
12112 
12113 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12114 		u64 mask = attr->branch_sample_type;
12115 
12116 		/* only using defined bits */
12117 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12118 			return -EINVAL;
12119 
12120 		/* at least one branch bit must be set */
12121 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12122 			return -EINVAL;
12123 
12124 		/* propagate priv level, when not set for branch */
12125 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12126 
12127 			/* exclude_kernel checked on syscall entry */
12128 			if (!attr->exclude_kernel)
12129 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12130 
12131 			if (!attr->exclude_user)
12132 				mask |= PERF_SAMPLE_BRANCH_USER;
12133 
12134 			if (!attr->exclude_hv)
12135 				mask |= PERF_SAMPLE_BRANCH_HV;
12136 			/*
12137 			 * adjust user setting (for HW filter setup)
12138 			 */
12139 			attr->branch_sample_type = mask;
12140 		}
12141 		/* privileged levels capture (kernel, hv): check permissions */
12142 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12143 			ret = perf_allow_kernel(attr);
12144 			if (ret)
12145 				return ret;
12146 		}
12147 	}
12148 
12149 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12150 		ret = perf_reg_validate(attr->sample_regs_user);
12151 		if (ret)
12152 			return ret;
12153 	}
12154 
12155 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12156 		if (!arch_perf_have_user_stack_dump())
12157 			return -ENOSYS;
12158 
12159 		/*
12160 		 * We have __u32 type for the size, but so far
12161 		 * we can only use __u16 as maximum due to the
12162 		 * __u16 sample size limit.
12163 		 */
12164 		if (attr->sample_stack_user >= USHRT_MAX)
12165 			return -EINVAL;
12166 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12167 			return -EINVAL;
12168 	}
12169 
12170 	if (!attr->sample_max_stack)
12171 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12172 
12173 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12174 		ret = perf_reg_validate(attr->sample_regs_intr);
12175 
12176 #ifndef CONFIG_CGROUP_PERF
12177 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12178 		return -EINVAL;
12179 #endif
12180 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12181 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12182 		return -EINVAL;
12183 
12184 	if (!attr->inherit && attr->inherit_thread)
12185 		return -EINVAL;
12186 
12187 	if (attr->remove_on_exec && attr->enable_on_exec)
12188 		return -EINVAL;
12189 
12190 	if (attr->sigtrap && !attr->remove_on_exec)
12191 		return -EINVAL;
12192 
12193 out:
12194 	return ret;
12195 
12196 err_size:
12197 	put_user(sizeof(*attr), &uattr->size);
12198 	ret = -E2BIG;
12199 	goto out;
12200 }
12201 
12202 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12203 {
12204 	if (b < a)
12205 		swap(a, b);
12206 
12207 	mutex_lock(a);
12208 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12209 }
12210 
12211 static int
12212 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12213 {
12214 	struct perf_buffer *rb = NULL;
12215 	int ret = -EINVAL;
12216 
12217 	if (!output_event) {
12218 		mutex_lock(&event->mmap_mutex);
12219 		goto set;
12220 	}
12221 
12222 	/* don't allow circular references */
12223 	if (event == output_event)
12224 		goto out;
12225 
12226 	/*
12227 	 * Don't allow cross-cpu buffers
12228 	 */
12229 	if (output_event->cpu != event->cpu)
12230 		goto out;
12231 
12232 	/*
12233 	 * If its not a per-cpu rb, it must be the same task.
12234 	 */
12235 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12236 		goto out;
12237 
12238 	/*
12239 	 * Mixing clocks in the same buffer is trouble you don't need.
12240 	 */
12241 	if (output_event->clock != event->clock)
12242 		goto out;
12243 
12244 	/*
12245 	 * Either writing ring buffer from beginning or from end.
12246 	 * Mixing is not allowed.
12247 	 */
12248 	if (is_write_backward(output_event) != is_write_backward(event))
12249 		goto out;
12250 
12251 	/*
12252 	 * If both events generate aux data, they must be on the same PMU
12253 	 */
12254 	if (has_aux(event) && has_aux(output_event) &&
12255 	    event->pmu != output_event->pmu)
12256 		goto out;
12257 
12258 	/*
12259 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12260 	 * output_event is already on rb->event_list, and the list iteration
12261 	 * restarts after every removal, it is guaranteed this new event is
12262 	 * observed *OR* if output_event is already removed, it's guaranteed we
12263 	 * observe !rb->mmap_count.
12264 	 */
12265 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12266 set:
12267 	/* Can't redirect output if we've got an active mmap() */
12268 	if (atomic_read(&event->mmap_count))
12269 		goto unlock;
12270 
12271 	if (output_event) {
12272 		/* get the rb we want to redirect to */
12273 		rb = ring_buffer_get(output_event);
12274 		if (!rb)
12275 			goto unlock;
12276 
12277 		/* did we race against perf_mmap_close() */
12278 		if (!atomic_read(&rb->mmap_count)) {
12279 			ring_buffer_put(rb);
12280 			goto unlock;
12281 		}
12282 	}
12283 
12284 	ring_buffer_attach(event, rb);
12285 
12286 	ret = 0;
12287 unlock:
12288 	mutex_unlock(&event->mmap_mutex);
12289 	if (output_event)
12290 		mutex_unlock(&output_event->mmap_mutex);
12291 
12292 out:
12293 	return ret;
12294 }
12295 
12296 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12297 {
12298 	bool nmi_safe = false;
12299 
12300 	switch (clk_id) {
12301 	case CLOCK_MONOTONIC:
12302 		event->clock = &ktime_get_mono_fast_ns;
12303 		nmi_safe = true;
12304 		break;
12305 
12306 	case CLOCK_MONOTONIC_RAW:
12307 		event->clock = &ktime_get_raw_fast_ns;
12308 		nmi_safe = true;
12309 		break;
12310 
12311 	case CLOCK_REALTIME:
12312 		event->clock = &ktime_get_real_ns;
12313 		break;
12314 
12315 	case CLOCK_BOOTTIME:
12316 		event->clock = &ktime_get_boottime_ns;
12317 		break;
12318 
12319 	case CLOCK_TAI:
12320 		event->clock = &ktime_get_clocktai_ns;
12321 		break;
12322 
12323 	default:
12324 		return -EINVAL;
12325 	}
12326 
12327 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12328 		return -EINVAL;
12329 
12330 	return 0;
12331 }
12332 
12333 static bool
12334 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12335 {
12336 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12337 	bool is_capable = perfmon_capable();
12338 
12339 	if (attr->sigtrap) {
12340 		/*
12341 		 * perf_event_attr::sigtrap sends signals to the other task.
12342 		 * Require the current task to also have CAP_KILL.
12343 		 */
12344 		rcu_read_lock();
12345 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12346 		rcu_read_unlock();
12347 
12348 		/*
12349 		 * If the required capabilities aren't available, checks for
12350 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12351 		 * can effectively change the target task.
12352 		 */
12353 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12354 	}
12355 
12356 	/*
12357 	 * Preserve ptrace permission check for backwards compatibility. The
12358 	 * ptrace check also includes checks that the current task and other
12359 	 * task have matching uids, and is therefore not done here explicitly.
12360 	 */
12361 	return is_capable || ptrace_may_access(task, ptrace_mode);
12362 }
12363 
12364 /**
12365  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12366  *
12367  * @attr_uptr:	event_id type attributes for monitoring/sampling
12368  * @pid:		target pid
12369  * @cpu:		target cpu
12370  * @group_fd:		group leader event fd
12371  * @flags:		perf event open flags
12372  */
12373 SYSCALL_DEFINE5(perf_event_open,
12374 		struct perf_event_attr __user *, attr_uptr,
12375 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12376 {
12377 	struct perf_event *group_leader = NULL, *output_event = NULL;
12378 	struct perf_event_pmu_context *pmu_ctx;
12379 	struct perf_event *event, *sibling;
12380 	struct perf_event_attr attr;
12381 	struct perf_event_context *ctx;
12382 	struct file *event_file = NULL;
12383 	struct fd group = {NULL, 0};
12384 	struct task_struct *task = NULL;
12385 	struct pmu *pmu;
12386 	int event_fd;
12387 	int move_group = 0;
12388 	int err;
12389 	int f_flags = O_RDWR;
12390 	int cgroup_fd = -1;
12391 
12392 	/* for future expandability... */
12393 	if (flags & ~PERF_FLAG_ALL)
12394 		return -EINVAL;
12395 
12396 	err = perf_copy_attr(attr_uptr, &attr);
12397 	if (err)
12398 		return err;
12399 
12400 	/* Do we allow access to perf_event_open(2) ? */
12401 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12402 	if (err)
12403 		return err;
12404 
12405 	if (!attr.exclude_kernel) {
12406 		err = perf_allow_kernel(&attr);
12407 		if (err)
12408 			return err;
12409 	}
12410 
12411 	if (attr.namespaces) {
12412 		if (!perfmon_capable())
12413 			return -EACCES;
12414 	}
12415 
12416 	if (attr.freq) {
12417 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12418 			return -EINVAL;
12419 	} else {
12420 		if (attr.sample_period & (1ULL << 63))
12421 			return -EINVAL;
12422 	}
12423 
12424 	/* Only privileged users can get physical addresses */
12425 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12426 		err = perf_allow_kernel(&attr);
12427 		if (err)
12428 			return err;
12429 	}
12430 
12431 	/* REGS_INTR can leak data, lockdown must prevent this */
12432 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12433 		err = security_locked_down(LOCKDOWN_PERF);
12434 		if (err)
12435 			return err;
12436 	}
12437 
12438 	/*
12439 	 * In cgroup mode, the pid argument is used to pass the fd
12440 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12441 	 * designates the cpu on which to monitor threads from that
12442 	 * cgroup.
12443 	 */
12444 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12445 		return -EINVAL;
12446 
12447 	if (flags & PERF_FLAG_FD_CLOEXEC)
12448 		f_flags |= O_CLOEXEC;
12449 
12450 	event_fd = get_unused_fd_flags(f_flags);
12451 	if (event_fd < 0)
12452 		return event_fd;
12453 
12454 	if (group_fd != -1) {
12455 		err = perf_fget_light(group_fd, &group);
12456 		if (err)
12457 			goto err_fd;
12458 		group_leader = group.file->private_data;
12459 		if (flags & PERF_FLAG_FD_OUTPUT)
12460 			output_event = group_leader;
12461 		if (flags & PERF_FLAG_FD_NO_GROUP)
12462 			group_leader = NULL;
12463 	}
12464 
12465 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12466 		task = find_lively_task_by_vpid(pid);
12467 		if (IS_ERR(task)) {
12468 			err = PTR_ERR(task);
12469 			goto err_group_fd;
12470 		}
12471 	}
12472 
12473 	if (task && group_leader &&
12474 	    group_leader->attr.inherit != attr.inherit) {
12475 		err = -EINVAL;
12476 		goto err_task;
12477 	}
12478 
12479 	if (flags & PERF_FLAG_PID_CGROUP)
12480 		cgroup_fd = pid;
12481 
12482 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12483 				 NULL, NULL, cgroup_fd);
12484 	if (IS_ERR(event)) {
12485 		err = PTR_ERR(event);
12486 		goto err_task;
12487 	}
12488 
12489 	if (is_sampling_event(event)) {
12490 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12491 			err = -EOPNOTSUPP;
12492 			goto err_alloc;
12493 		}
12494 	}
12495 
12496 	/*
12497 	 * Special case software events and allow them to be part of
12498 	 * any hardware group.
12499 	 */
12500 	pmu = event->pmu;
12501 
12502 	if (attr.use_clockid) {
12503 		err = perf_event_set_clock(event, attr.clockid);
12504 		if (err)
12505 			goto err_alloc;
12506 	}
12507 
12508 	if (pmu->task_ctx_nr == perf_sw_context)
12509 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12510 
12511 	if (task) {
12512 		err = down_read_interruptible(&task->signal->exec_update_lock);
12513 		if (err)
12514 			goto err_alloc;
12515 
12516 		/*
12517 		 * We must hold exec_update_lock across this and any potential
12518 		 * perf_install_in_context() call for this new event to
12519 		 * serialize against exec() altering our credentials (and the
12520 		 * perf_event_exit_task() that could imply).
12521 		 */
12522 		err = -EACCES;
12523 		if (!perf_check_permission(&attr, task))
12524 			goto err_cred;
12525 	}
12526 
12527 	/*
12528 	 * Get the target context (task or percpu):
12529 	 */
12530 	ctx = find_get_context(task, event);
12531 	if (IS_ERR(ctx)) {
12532 		err = PTR_ERR(ctx);
12533 		goto err_cred;
12534 	}
12535 
12536 	mutex_lock(&ctx->mutex);
12537 
12538 	if (ctx->task == TASK_TOMBSTONE) {
12539 		err = -ESRCH;
12540 		goto err_locked;
12541 	}
12542 
12543 	if (!task) {
12544 		/*
12545 		 * Check if the @cpu we're creating an event for is online.
12546 		 *
12547 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12548 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12549 		 */
12550 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12551 
12552 		if (!cpuctx->online) {
12553 			err = -ENODEV;
12554 			goto err_locked;
12555 		}
12556 	}
12557 
12558 	if (group_leader) {
12559 		err = -EINVAL;
12560 
12561 		/*
12562 		 * Do not allow a recursive hierarchy (this new sibling
12563 		 * becoming part of another group-sibling):
12564 		 */
12565 		if (group_leader->group_leader != group_leader)
12566 			goto err_locked;
12567 
12568 		/* All events in a group should have the same clock */
12569 		if (group_leader->clock != event->clock)
12570 			goto err_locked;
12571 
12572 		/*
12573 		 * Make sure we're both events for the same CPU;
12574 		 * grouping events for different CPUs is broken; since
12575 		 * you can never concurrently schedule them anyhow.
12576 		 */
12577 		if (group_leader->cpu != event->cpu)
12578 			goto err_locked;
12579 
12580 		/*
12581 		 * Make sure we're both on the same context; either task or cpu.
12582 		 */
12583 		if (group_leader->ctx != ctx)
12584 			goto err_locked;
12585 
12586 		/*
12587 		 * Only a group leader can be exclusive or pinned
12588 		 */
12589 		if (attr.exclusive || attr.pinned)
12590 			goto err_locked;
12591 
12592 		if (is_software_event(event) &&
12593 		    !in_software_context(group_leader)) {
12594 			/*
12595 			 * If the event is a sw event, but the group_leader
12596 			 * is on hw context.
12597 			 *
12598 			 * Allow the addition of software events to hw
12599 			 * groups, this is safe because software events
12600 			 * never fail to schedule.
12601 			 *
12602 			 * Note the comment that goes with struct
12603 			 * perf_event_pmu_context.
12604 			 */
12605 			pmu = group_leader->pmu_ctx->pmu;
12606 		} else if (!is_software_event(event)) {
12607 			if (is_software_event(group_leader) &&
12608 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12609 				/*
12610 				 * In case the group is a pure software group, and we
12611 				 * try to add a hardware event, move the whole group to
12612 				 * the hardware context.
12613 				 */
12614 				move_group = 1;
12615 			}
12616 
12617 			/* Don't allow group of multiple hw events from different pmus */
12618 			if (!in_software_context(group_leader) &&
12619 			    group_leader->pmu_ctx->pmu != pmu)
12620 				goto err_locked;
12621 		}
12622 	}
12623 
12624 	/*
12625 	 * Now that we're certain of the pmu; find the pmu_ctx.
12626 	 */
12627 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12628 	if (IS_ERR(pmu_ctx)) {
12629 		err = PTR_ERR(pmu_ctx);
12630 		goto err_locked;
12631 	}
12632 	event->pmu_ctx = pmu_ctx;
12633 
12634 	if (output_event) {
12635 		err = perf_event_set_output(event, output_event);
12636 		if (err)
12637 			goto err_context;
12638 	}
12639 
12640 	if (!perf_event_validate_size(event)) {
12641 		err = -E2BIG;
12642 		goto err_context;
12643 	}
12644 
12645 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12646 		err = -EINVAL;
12647 		goto err_context;
12648 	}
12649 
12650 	/*
12651 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12652 	 * because we need to serialize with concurrent event creation.
12653 	 */
12654 	if (!exclusive_event_installable(event, ctx)) {
12655 		err = -EBUSY;
12656 		goto err_context;
12657 	}
12658 
12659 	WARN_ON_ONCE(ctx->parent_ctx);
12660 
12661 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12662 	if (IS_ERR(event_file)) {
12663 		err = PTR_ERR(event_file);
12664 		event_file = NULL;
12665 		goto err_context;
12666 	}
12667 
12668 	/*
12669 	 * This is the point on no return; we cannot fail hereafter. This is
12670 	 * where we start modifying current state.
12671 	 */
12672 
12673 	if (move_group) {
12674 		perf_remove_from_context(group_leader, 0);
12675 		put_pmu_ctx(group_leader->pmu_ctx);
12676 
12677 		for_each_sibling_event(sibling, group_leader) {
12678 			perf_remove_from_context(sibling, 0);
12679 			put_pmu_ctx(sibling->pmu_ctx);
12680 		}
12681 
12682 		/*
12683 		 * Install the group siblings before the group leader.
12684 		 *
12685 		 * Because a group leader will try and install the entire group
12686 		 * (through the sibling list, which is still in-tact), we can
12687 		 * end up with siblings installed in the wrong context.
12688 		 *
12689 		 * By installing siblings first we NO-OP because they're not
12690 		 * reachable through the group lists.
12691 		 */
12692 		for_each_sibling_event(sibling, group_leader) {
12693 			sibling->pmu_ctx = pmu_ctx;
12694 			get_pmu_ctx(pmu_ctx);
12695 			perf_event__state_init(sibling);
12696 			perf_install_in_context(ctx, sibling, sibling->cpu);
12697 		}
12698 
12699 		/*
12700 		 * Removing from the context ends up with disabled
12701 		 * event. What we want here is event in the initial
12702 		 * startup state, ready to be add into new context.
12703 		 */
12704 		group_leader->pmu_ctx = pmu_ctx;
12705 		get_pmu_ctx(pmu_ctx);
12706 		perf_event__state_init(group_leader);
12707 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12708 	}
12709 
12710 	/*
12711 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12712 	 * that we're serialized against further additions and before
12713 	 * perf_install_in_context() which is the point the event is active and
12714 	 * can use these values.
12715 	 */
12716 	perf_event__header_size(event);
12717 	perf_event__id_header_size(event);
12718 
12719 	event->owner = current;
12720 
12721 	perf_install_in_context(ctx, event, event->cpu);
12722 	perf_unpin_context(ctx);
12723 
12724 	mutex_unlock(&ctx->mutex);
12725 
12726 	if (task) {
12727 		up_read(&task->signal->exec_update_lock);
12728 		put_task_struct(task);
12729 	}
12730 
12731 	mutex_lock(&current->perf_event_mutex);
12732 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12733 	mutex_unlock(&current->perf_event_mutex);
12734 
12735 	/*
12736 	 * Drop the reference on the group_event after placing the
12737 	 * new event on the sibling_list. This ensures destruction
12738 	 * of the group leader will find the pointer to itself in
12739 	 * perf_group_detach().
12740 	 */
12741 	fdput(group);
12742 	fd_install(event_fd, event_file);
12743 	return event_fd;
12744 
12745 err_context:
12746 	put_pmu_ctx(event->pmu_ctx);
12747 	event->pmu_ctx = NULL; /* _free_event() */
12748 err_locked:
12749 	mutex_unlock(&ctx->mutex);
12750 	perf_unpin_context(ctx);
12751 	put_ctx(ctx);
12752 err_cred:
12753 	if (task)
12754 		up_read(&task->signal->exec_update_lock);
12755 err_alloc:
12756 	free_event(event);
12757 err_task:
12758 	if (task)
12759 		put_task_struct(task);
12760 err_group_fd:
12761 	fdput(group);
12762 err_fd:
12763 	put_unused_fd(event_fd);
12764 	return err;
12765 }
12766 
12767 /**
12768  * perf_event_create_kernel_counter
12769  *
12770  * @attr: attributes of the counter to create
12771  * @cpu: cpu in which the counter is bound
12772  * @task: task to profile (NULL for percpu)
12773  * @overflow_handler: callback to trigger when we hit the event
12774  * @context: context data could be used in overflow_handler callback
12775  */
12776 struct perf_event *
12777 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12778 				 struct task_struct *task,
12779 				 perf_overflow_handler_t overflow_handler,
12780 				 void *context)
12781 {
12782 	struct perf_event_pmu_context *pmu_ctx;
12783 	struct perf_event_context *ctx;
12784 	struct perf_event *event;
12785 	struct pmu *pmu;
12786 	int err;
12787 
12788 	/*
12789 	 * Grouping is not supported for kernel events, neither is 'AUX',
12790 	 * make sure the caller's intentions are adjusted.
12791 	 */
12792 	if (attr->aux_output)
12793 		return ERR_PTR(-EINVAL);
12794 
12795 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12796 				 overflow_handler, context, -1);
12797 	if (IS_ERR(event)) {
12798 		err = PTR_ERR(event);
12799 		goto err;
12800 	}
12801 
12802 	/* Mark owner so we could distinguish it from user events. */
12803 	event->owner = TASK_TOMBSTONE;
12804 	pmu = event->pmu;
12805 
12806 	if (pmu->task_ctx_nr == perf_sw_context)
12807 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12808 
12809 	/*
12810 	 * Get the target context (task or percpu):
12811 	 */
12812 	ctx = find_get_context(task, event);
12813 	if (IS_ERR(ctx)) {
12814 		err = PTR_ERR(ctx);
12815 		goto err_alloc;
12816 	}
12817 
12818 	WARN_ON_ONCE(ctx->parent_ctx);
12819 	mutex_lock(&ctx->mutex);
12820 	if (ctx->task == TASK_TOMBSTONE) {
12821 		err = -ESRCH;
12822 		goto err_unlock;
12823 	}
12824 
12825 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12826 	if (IS_ERR(pmu_ctx)) {
12827 		err = PTR_ERR(pmu_ctx);
12828 		goto err_unlock;
12829 	}
12830 	event->pmu_ctx = pmu_ctx;
12831 
12832 	if (!task) {
12833 		/*
12834 		 * Check if the @cpu we're creating an event for is online.
12835 		 *
12836 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12837 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12838 		 */
12839 		struct perf_cpu_context *cpuctx =
12840 			container_of(ctx, struct perf_cpu_context, ctx);
12841 		if (!cpuctx->online) {
12842 			err = -ENODEV;
12843 			goto err_pmu_ctx;
12844 		}
12845 	}
12846 
12847 	if (!exclusive_event_installable(event, ctx)) {
12848 		err = -EBUSY;
12849 		goto err_pmu_ctx;
12850 	}
12851 
12852 	perf_install_in_context(ctx, event, event->cpu);
12853 	perf_unpin_context(ctx);
12854 	mutex_unlock(&ctx->mutex);
12855 
12856 	return event;
12857 
12858 err_pmu_ctx:
12859 	put_pmu_ctx(pmu_ctx);
12860 	event->pmu_ctx = NULL; /* _free_event() */
12861 err_unlock:
12862 	mutex_unlock(&ctx->mutex);
12863 	perf_unpin_context(ctx);
12864 	put_ctx(ctx);
12865 err_alloc:
12866 	free_event(event);
12867 err:
12868 	return ERR_PTR(err);
12869 }
12870 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12871 
12872 static void __perf_pmu_remove(struct perf_event_context *ctx,
12873 			      int cpu, struct pmu *pmu,
12874 			      struct perf_event_groups *groups,
12875 			      struct list_head *events)
12876 {
12877 	struct perf_event *event, *sibling;
12878 
12879 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12880 		perf_remove_from_context(event, 0);
12881 		put_pmu_ctx(event->pmu_ctx);
12882 		list_add(&event->migrate_entry, events);
12883 
12884 		for_each_sibling_event(sibling, event) {
12885 			perf_remove_from_context(sibling, 0);
12886 			put_pmu_ctx(sibling->pmu_ctx);
12887 			list_add(&sibling->migrate_entry, events);
12888 		}
12889 	}
12890 }
12891 
12892 static void __perf_pmu_install_event(struct pmu *pmu,
12893 				     struct perf_event_context *ctx,
12894 				     int cpu, struct perf_event *event)
12895 {
12896 	struct perf_event_pmu_context *epc;
12897 	struct perf_event_context *old_ctx = event->ctx;
12898 
12899 	get_ctx(ctx); /* normally find_get_context() */
12900 
12901 	event->cpu = cpu;
12902 	epc = find_get_pmu_context(pmu, ctx, event);
12903 	event->pmu_ctx = epc;
12904 
12905 	if (event->state >= PERF_EVENT_STATE_OFF)
12906 		event->state = PERF_EVENT_STATE_INACTIVE;
12907 	perf_install_in_context(ctx, event, cpu);
12908 
12909 	/*
12910 	 * Now that event->ctx is updated and visible, put the old ctx.
12911 	 */
12912 	put_ctx(old_ctx);
12913 }
12914 
12915 static void __perf_pmu_install(struct perf_event_context *ctx,
12916 			       int cpu, struct pmu *pmu, struct list_head *events)
12917 {
12918 	struct perf_event *event, *tmp;
12919 
12920 	/*
12921 	 * Re-instate events in 2 passes.
12922 	 *
12923 	 * Skip over group leaders and only install siblings on this first
12924 	 * pass, siblings will not get enabled without a leader, however a
12925 	 * leader will enable its siblings, even if those are still on the old
12926 	 * context.
12927 	 */
12928 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12929 		if (event->group_leader == event)
12930 			continue;
12931 
12932 		list_del(&event->migrate_entry);
12933 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12934 	}
12935 
12936 	/*
12937 	 * Once all the siblings are setup properly, install the group leaders
12938 	 * to make it go.
12939 	 */
12940 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12941 		list_del(&event->migrate_entry);
12942 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12943 	}
12944 }
12945 
12946 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12947 {
12948 	struct perf_event_context *src_ctx, *dst_ctx;
12949 	LIST_HEAD(events);
12950 
12951 	/*
12952 	 * Since per-cpu context is persistent, no need to grab an extra
12953 	 * reference.
12954 	 */
12955 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12956 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12957 
12958 	/*
12959 	 * See perf_event_ctx_lock() for comments on the details
12960 	 * of swizzling perf_event::ctx.
12961 	 */
12962 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12963 
12964 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12965 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12966 
12967 	if (!list_empty(&events)) {
12968 		/*
12969 		 * Wait for the events to quiesce before re-instating them.
12970 		 */
12971 		synchronize_rcu();
12972 
12973 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12974 	}
12975 
12976 	mutex_unlock(&dst_ctx->mutex);
12977 	mutex_unlock(&src_ctx->mutex);
12978 }
12979 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12980 
12981 static void sync_child_event(struct perf_event *child_event)
12982 {
12983 	struct perf_event *parent_event = child_event->parent;
12984 	u64 child_val;
12985 
12986 	if (child_event->attr.inherit_stat) {
12987 		struct task_struct *task = child_event->ctx->task;
12988 
12989 		if (task && task != TASK_TOMBSTONE)
12990 			perf_event_read_event(child_event, task);
12991 	}
12992 
12993 	child_val = perf_event_count(child_event);
12994 
12995 	/*
12996 	 * Add back the child's count to the parent's count:
12997 	 */
12998 	atomic64_add(child_val, &parent_event->child_count);
12999 	atomic64_add(child_event->total_time_enabled,
13000 		     &parent_event->child_total_time_enabled);
13001 	atomic64_add(child_event->total_time_running,
13002 		     &parent_event->child_total_time_running);
13003 }
13004 
13005 static void
13006 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13007 {
13008 	struct perf_event *parent_event = event->parent;
13009 	unsigned long detach_flags = 0;
13010 
13011 	if (parent_event) {
13012 		/*
13013 		 * Do not destroy the 'original' grouping; because of the
13014 		 * context switch optimization the original events could've
13015 		 * ended up in a random child task.
13016 		 *
13017 		 * If we were to destroy the original group, all group related
13018 		 * operations would cease to function properly after this
13019 		 * random child dies.
13020 		 *
13021 		 * Do destroy all inherited groups, we don't care about those
13022 		 * and being thorough is better.
13023 		 */
13024 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13025 		mutex_lock(&parent_event->child_mutex);
13026 	}
13027 
13028 	perf_remove_from_context(event, detach_flags);
13029 
13030 	raw_spin_lock_irq(&ctx->lock);
13031 	if (event->state > PERF_EVENT_STATE_EXIT)
13032 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13033 	raw_spin_unlock_irq(&ctx->lock);
13034 
13035 	/*
13036 	 * Child events can be freed.
13037 	 */
13038 	if (parent_event) {
13039 		mutex_unlock(&parent_event->child_mutex);
13040 		/*
13041 		 * Kick perf_poll() for is_event_hup();
13042 		 */
13043 		perf_event_wakeup(parent_event);
13044 		free_event(event);
13045 		put_event(parent_event);
13046 		return;
13047 	}
13048 
13049 	/*
13050 	 * Parent events are governed by their filedesc, retain them.
13051 	 */
13052 	perf_event_wakeup(event);
13053 }
13054 
13055 static void perf_event_exit_task_context(struct task_struct *child)
13056 {
13057 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13058 	struct perf_event *child_event, *next;
13059 
13060 	WARN_ON_ONCE(child != current);
13061 
13062 	child_ctx = perf_pin_task_context(child);
13063 	if (!child_ctx)
13064 		return;
13065 
13066 	/*
13067 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13068 	 * ctx::mutex over the entire thing. This serializes against almost
13069 	 * everything that wants to access the ctx.
13070 	 *
13071 	 * The exception is sys_perf_event_open() /
13072 	 * perf_event_create_kernel_count() which does find_get_context()
13073 	 * without ctx::mutex (it cannot because of the move_group double mutex
13074 	 * lock thing). See the comments in perf_install_in_context().
13075 	 */
13076 	mutex_lock(&child_ctx->mutex);
13077 
13078 	/*
13079 	 * In a single ctx::lock section, de-schedule the events and detach the
13080 	 * context from the task such that we cannot ever get it scheduled back
13081 	 * in.
13082 	 */
13083 	raw_spin_lock_irq(&child_ctx->lock);
13084 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13085 
13086 	/*
13087 	 * Now that the context is inactive, destroy the task <-> ctx relation
13088 	 * and mark the context dead.
13089 	 */
13090 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13091 	put_ctx(child_ctx); /* cannot be last */
13092 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13093 	put_task_struct(current); /* cannot be last */
13094 
13095 	clone_ctx = unclone_ctx(child_ctx);
13096 	raw_spin_unlock_irq(&child_ctx->lock);
13097 
13098 	if (clone_ctx)
13099 		put_ctx(clone_ctx);
13100 
13101 	/*
13102 	 * Report the task dead after unscheduling the events so that we
13103 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13104 	 * get a few PERF_RECORD_READ events.
13105 	 */
13106 	perf_event_task(child, child_ctx, 0);
13107 
13108 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13109 		perf_event_exit_event(child_event, child_ctx);
13110 
13111 	mutex_unlock(&child_ctx->mutex);
13112 
13113 	put_ctx(child_ctx);
13114 }
13115 
13116 /*
13117  * When a child task exits, feed back event values to parent events.
13118  *
13119  * Can be called with exec_update_lock held when called from
13120  * setup_new_exec().
13121  */
13122 void perf_event_exit_task(struct task_struct *child)
13123 {
13124 	struct perf_event *event, *tmp;
13125 
13126 	mutex_lock(&child->perf_event_mutex);
13127 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13128 				 owner_entry) {
13129 		list_del_init(&event->owner_entry);
13130 
13131 		/*
13132 		 * Ensure the list deletion is visible before we clear
13133 		 * the owner, closes a race against perf_release() where
13134 		 * we need to serialize on the owner->perf_event_mutex.
13135 		 */
13136 		smp_store_release(&event->owner, NULL);
13137 	}
13138 	mutex_unlock(&child->perf_event_mutex);
13139 
13140 	perf_event_exit_task_context(child);
13141 
13142 	/*
13143 	 * The perf_event_exit_task_context calls perf_event_task
13144 	 * with child's task_ctx, which generates EXIT events for
13145 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13146 	 * At this point we need to send EXIT events to cpu contexts.
13147 	 */
13148 	perf_event_task(child, NULL, 0);
13149 }
13150 
13151 static void perf_free_event(struct perf_event *event,
13152 			    struct perf_event_context *ctx)
13153 {
13154 	struct perf_event *parent = event->parent;
13155 
13156 	if (WARN_ON_ONCE(!parent))
13157 		return;
13158 
13159 	mutex_lock(&parent->child_mutex);
13160 	list_del_init(&event->child_list);
13161 	mutex_unlock(&parent->child_mutex);
13162 
13163 	put_event(parent);
13164 
13165 	raw_spin_lock_irq(&ctx->lock);
13166 	perf_group_detach(event);
13167 	list_del_event(event, ctx);
13168 	raw_spin_unlock_irq(&ctx->lock);
13169 	free_event(event);
13170 }
13171 
13172 /*
13173  * Free a context as created by inheritance by perf_event_init_task() below,
13174  * used by fork() in case of fail.
13175  *
13176  * Even though the task has never lived, the context and events have been
13177  * exposed through the child_list, so we must take care tearing it all down.
13178  */
13179 void perf_event_free_task(struct task_struct *task)
13180 {
13181 	struct perf_event_context *ctx;
13182 	struct perf_event *event, *tmp;
13183 
13184 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13185 	if (!ctx)
13186 		return;
13187 
13188 	mutex_lock(&ctx->mutex);
13189 	raw_spin_lock_irq(&ctx->lock);
13190 	/*
13191 	 * Destroy the task <-> ctx relation and mark the context dead.
13192 	 *
13193 	 * This is important because even though the task hasn't been
13194 	 * exposed yet the context has been (through child_list).
13195 	 */
13196 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13197 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13198 	put_task_struct(task); /* cannot be last */
13199 	raw_spin_unlock_irq(&ctx->lock);
13200 
13201 
13202 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13203 		perf_free_event(event, ctx);
13204 
13205 	mutex_unlock(&ctx->mutex);
13206 
13207 	/*
13208 	 * perf_event_release_kernel() could've stolen some of our
13209 	 * child events and still have them on its free_list. In that
13210 	 * case we must wait for these events to have been freed (in
13211 	 * particular all their references to this task must've been
13212 	 * dropped).
13213 	 *
13214 	 * Without this copy_process() will unconditionally free this
13215 	 * task (irrespective of its reference count) and
13216 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13217 	 * use-after-free.
13218 	 *
13219 	 * Wait for all events to drop their context reference.
13220 	 */
13221 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13222 	put_ctx(ctx); /* must be last */
13223 }
13224 
13225 void perf_event_delayed_put(struct task_struct *task)
13226 {
13227 	WARN_ON_ONCE(task->perf_event_ctxp);
13228 }
13229 
13230 struct file *perf_event_get(unsigned int fd)
13231 {
13232 	struct file *file = fget(fd);
13233 	if (!file)
13234 		return ERR_PTR(-EBADF);
13235 
13236 	if (file->f_op != &perf_fops) {
13237 		fput(file);
13238 		return ERR_PTR(-EBADF);
13239 	}
13240 
13241 	return file;
13242 }
13243 
13244 const struct perf_event *perf_get_event(struct file *file)
13245 {
13246 	if (file->f_op != &perf_fops)
13247 		return ERR_PTR(-EINVAL);
13248 
13249 	return file->private_data;
13250 }
13251 
13252 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13253 {
13254 	if (!event)
13255 		return ERR_PTR(-EINVAL);
13256 
13257 	return &event->attr;
13258 }
13259 
13260 /*
13261  * Inherit an event from parent task to child task.
13262  *
13263  * Returns:
13264  *  - valid pointer on success
13265  *  - NULL for orphaned events
13266  *  - IS_ERR() on error
13267  */
13268 static struct perf_event *
13269 inherit_event(struct perf_event *parent_event,
13270 	      struct task_struct *parent,
13271 	      struct perf_event_context *parent_ctx,
13272 	      struct task_struct *child,
13273 	      struct perf_event *group_leader,
13274 	      struct perf_event_context *child_ctx)
13275 {
13276 	enum perf_event_state parent_state = parent_event->state;
13277 	struct perf_event_pmu_context *pmu_ctx;
13278 	struct perf_event *child_event;
13279 	unsigned long flags;
13280 
13281 	/*
13282 	 * Instead of creating recursive hierarchies of events,
13283 	 * we link inherited events back to the original parent,
13284 	 * which has a filp for sure, which we use as the reference
13285 	 * count:
13286 	 */
13287 	if (parent_event->parent)
13288 		parent_event = parent_event->parent;
13289 
13290 	child_event = perf_event_alloc(&parent_event->attr,
13291 					   parent_event->cpu,
13292 					   child,
13293 					   group_leader, parent_event,
13294 					   NULL, NULL, -1);
13295 	if (IS_ERR(child_event))
13296 		return child_event;
13297 
13298 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13299 	if (IS_ERR(pmu_ctx)) {
13300 		free_event(child_event);
13301 		return ERR_CAST(pmu_ctx);
13302 	}
13303 	child_event->pmu_ctx = pmu_ctx;
13304 
13305 	/*
13306 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13307 	 * must be under the same lock in order to serialize against
13308 	 * perf_event_release_kernel(), such that either we must observe
13309 	 * is_orphaned_event() or they will observe us on the child_list.
13310 	 */
13311 	mutex_lock(&parent_event->child_mutex);
13312 	if (is_orphaned_event(parent_event) ||
13313 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13314 		mutex_unlock(&parent_event->child_mutex);
13315 		/* task_ctx_data is freed with child_ctx */
13316 		free_event(child_event);
13317 		return NULL;
13318 	}
13319 
13320 	get_ctx(child_ctx);
13321 
13322 	/*
13323 	 * Make the child state follow the state of the parent event,
13324 	 * not its attr.disabled bit.  We hold the parent's mutex,
13325 	 * so we won't race with perf_event_{en, dis}able_family.
13326 	 */
13327 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13328 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13329 	else
13330 		child_event->state = PERF_EVENT_STATE_OFF;
13331 
13332 	if (parent_event->attr.freq) {
13333 		u64 sample_period = parent_event->hw.sample_period;
13334 		struct hw_perf_event *hwc = &child_event->hw;
13335 
13336 		hwc->sample_period = sample_period;
13337 		hwc->last_period   = sample_period;
13338 
13339 		local64_set(&hwc->period_left, sample_period);
13340 	}
13341 
13342 	child_event->ctx = child_ctx;
13343 	child_event->overflow_handler = parent_event->overflow_handler;
13344 	child_event->overflow_handler_context
13345 		= parent_event->overflow_handler_context;
13346 
13347 	/*
13348 	 * Precalculate sample_data sizes
13349 	 */
13350 	perf_event__header_size(child_event);
13351 	perf_event__id_header_size(child_event);
13352 
13353 	/*
13354 	 * Link it up in the child's context:
13355 	 */
13356 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13357 	add_event_to_ctx(child_event, child_ctx);
13358 	child_event->attach_state |= PERF_ATTACH_CHILD;
13359 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13360 
13361 	/*
13362 	 * Link this into the parent event's child list
13363 	 */
13364 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13365 	mutex_unlock(&parent_event->child_mutex);
13366 
13367 	return child_event;
13368 }
13369 
13370 /*
13371  * Inherits an event group.
13372  *
13373  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13374  * This matches with perf_event_release_kernel() removing all child events.
13375  *
13376  * Returns:
13377  *  - 0 on success
13378  *  - <0 on error
13379  */
13380 static int inherit_group(struct perf_event *parent_event,
13381 	      struct task_struct *parent,
13382 	      struct perf_event_context *parent_ctx,
13383 	      struct task_struct *child,
13384 	      struct perf_event_context *child_ctx)
13385 {
13386 	struct perf_event *leader;
13387 	struct perf_event *sub;
13388 	struct perf_event *child_ctr;
13389 
13390 	leader = inherit_event(parent_event, parent, parent_ctx,
13391 				 child, NULL, child_ctx);
13392 	if (IS_ERR(leader))
13393 		return PTR_ERR(leader);
13394 	/*
13395 	 * @leader can be NULL here because of is_orphaned_event(). In this
13396 	 * case inherit_event() will create individual events, similar to what
13397 	 * perf_group_detach() would do anyway.
13398 	 */
13399 	for_each_sibling_event(sub, parent_event) {
13400 		child_ctr = inherit_event(sub, parent, parent_ctx,
13401 					    child, leader, child_ctx);
13402 		if (IS_ERR(child_ctr))
13403 			return PTR_ERR(child_ctr);
13404 
13405 		if (sub->aux_event == parent_event && child_ctr &&
13406 		    !perf_get_aux_event(child_ctr, leader))
13407 			return -EINVAL;
13408 	}
13409 	if (leader)
13410 		leader->group_generation = parent_event->group_generation;
13411 	return 0;
13412 }
13413 
13414 /*
13415  * Creates the child task context and tries to inherit the event-group.
13416  *
13417  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13418  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13419  * consistent with perf_event_release_kernel() removing all child events.
13420  *
13421  * Returns:
13422  *  - 0 on success
13423  *  - <0 on error
13424  */
13425 static int
13426 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13427 		   struct perf_event_context *parent_ctx,
13428 		   struct task_struct *child,
13429 		   u64 clone_flags, int *inherited_all)
13430 {
13431 	struct perf_event_context *child_ctx;
13432 	int ret;
13433 
13434 	if (!event->attr.inherit ||
13435 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13436 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13437 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13438 		*inherited_all = 0;
13439 		return 0;
13440 	}
13441 
13442 	child_ctx = child->perf_event_ctxp;
13443 	if (!child_ctx) {
13444 		/*
13445 		 * This is executed from the parent task context, so
13446 		 * inherit events that have been marked for cloning.
13447 		 * First allocate and initialize a context for the
13448 		 * child.
13449 		 */
13450 		child_ctx = alloc_perf_context(child);
13451 		if (!child_ctx)
13452 			return -ENOMEM;
13453 
13454 		child->perf_event_ctxp = child_ctx;
13455 	}
13456 
13457 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13458 	if (ret)
13459 		*inherited_all = 0;
13460 
13461 	return ret;
13462 }
13463 
13464 /*
13465  * Initialize the perf_event context in task_struct
13466  */
13467 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13468 {
13469 	struct perf_event_context *child_ctx, *parent_ctx;
13470 	struct perf_event_context *cloned_ctx;
13471 	struct perf_event *event;
13472 	struct task_struct *parent = current;
13473 	int inherited_all = 1;
13474 	unsigned long flags;
13475 	int ret = 0;
13476 
13477 	if (likely(!parent->perf_event_ctxp))
13478 		return 0;
13479 
13480 	/*
13481 	 * If the parent's context is a clone, pin it so it won't get
13482 	 * swapped under us.
13483 	 */
13484 	parent_ctx = perf_pin_task_context(parent);
13485 	if (!parent_ctx)
13486 		return 0;
13487 
13488 	/*
13489 	 * No need to check if parent_ctx != NULL here; since we saw
13490 	 * it non-NULL earlier, the only reason for it to become NULL
13491 	 * is if we exit, and since we're currently in the middle of
13492 	 * a fork we can't be exiting at the same time.
13493 	 */
13494 
13495 	/*
13496 	 * Lock the parent list. No need to lock the child - not PID
13497 	 * hashed yet and not running, so nobody can access it.
13498 	 */
13499 	mutex_lock(&parent_ctx->mutex);
13500 
13501 	/*
13502 	 * We dont have to disable NMIs - we are only looking at
13503 	 * the list, not manipulating it:
13504 	 */
13505 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13506 		ret = inherit_task_group(event, parent, parent_ctx,
13507 					 child, clone_flags, &inherited_all);
13508 		if (ret)
13509 			goto out_unlock;
13510 	}
13511 
13512 	/*
13513 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13514 	 * to allocations, but we need to prevent rotation because
13515 	 * rotate_ctx() will change the list from interrupt context.
13516 	 */
13517 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13518 	parent_ctx->rotate_disable = 1;
13519 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13520 
13521 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13522 		ret = inherit_task_group(event, parent, parent_ctx,
13523 					 child, clone_flags, &inherited_all);
13524 		if (ret)
13525 			goto out_unlock;
13526 	}
13527 
13528 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13529 	parent_ctx->rotate_disable = 0;
13530 
13531 	child_ctx = child->perf_event_ctxp;
13532 
13533 	if (child_ctx && inherited_all) {
13534 		/*
13535 		 * Mark the child context as a clone of the parent
13536 		 * context, or of whatever the parent is a clone of.
13537 		 *
13538 		 * Note that if the parent is a clone, the holding of
13539 		 * parent_ctx->lock avoids it from being uncloned.
13540 		 */
13541 		cloned_ctx = parent_ctx->parent_ctx;
13542 		if (cloned_ctx) {
13543 			child_ctx->parent_ctx = cloned_ctx;
13544 			child_ctx->parent_gen = parent_ctx->parent_gen;
13545 		} else {
13546 			child_ctx->parent_ctx = parent_ctx;
13547 			child_ctx->parent_gen = parent_ctx->generation;
13548 		}
13549 		get_ctx(child_ctx->parent_ctx);
13550 	}
13551 
13552 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13553 out_unlock:
13554 	mutex_unlock(&parent_ctx->mutex);
13555 
13556 	perf_unpin_context(parent_ctx);
13557 	put_ctx(parent_ctx);
13558 
13559 	return ret;
13560 }
13561 
13562 /*
13563  * Initialize the perf_event context in task_struct
13564  */
13565 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13566 {
13567 	int ret;
13568 
13569 	child->perf_event_ctxp = NULL;
13570 	mutex_init(&child->perf_event_mutex);
13571 	INIT_LIST_HEAD(&child->perf_event_list);
13572 
13573 	ret = perf_event_init_context(child, clone_flags);
13574 	if (ret) {
13575 		perf_event_free_task(child);
13576 		return ret;
13577 	}
13578 
13579 	return 0;
13580 }
13581 
13582 static void __init perf_event_init_all_cpus(void)
13583 {
13584 	struct swevent_htable *swhash;
13585 	struct perf_cpu_context *cpuctx;
13586 	int cpu;
13587 
13588 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13589 
13590 	for_each_possible_cpu(cpu) {
13591 		swhash = &per_cpu(swevent_htable, cpu);
13592 		mutex_init(&swhash->hlist_mutex);
13593 
13594 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13595 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13596 
13597 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13598 
13599 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13600 		__perf_event_init_context(&cpuctx->ctx);
13601 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13602 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13603 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13604 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13605 		cpuctx->heap = cpuctx->heap_default;
13606 	}
13607 }
13608 
13609 static void perf_swevent_init_cpu(unsigned int cpu)
13610 {
13611 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13612 
13613 	mutex_lock(&swhash->hlist_mutex);
13614 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13615 		struct swevent_hlist *hlist;
13616 
13617 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13618 		WARN_ON(!hlist);
13619 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13620 	}
13621 	mutex_unlock(&swhash->hlist_mutex);
13622 }
13623 
13624 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13625 static void __perf_event_exit_context(void *__info)
13626 {
13627 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13628 	struct perf_event_context *ctx = __info;
13629 	struct perf_event *event;
13630 
13631 	raw_spin_lock(&ctx->lock);
13632 	ctx_sched_out(ctx, EVENT_TIME);
13633 	list_for_each_entry(event, &ctx->event_list, event_entry)
13634 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13635 	raw_spin_unlock(&ctx->lock);
13636 }
13637 
13638 static void perf_event_exit_cpu_context(int cpu)
13639 {
13640 	struct perf_cpu_context *cpuctx;
13641 	struct perf_event_context *ctx;
13642 
13643 	// XXX simplify cpuctx->online
13644 	mutex_lock(&pmus_lock);
13645 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13646 	ctx = &cpuctx->ctx;
13647 
13648 	mutex_lock(&ctx->mutex);
13649 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13650 	cpuctx->online = 0;
13651 	mutex_unlock(&ctx->mutex);
13652 	cpumask_clear_cpu(cpu, perf_online_mask);
13653 	mutex_unlock(&pmus_lock);
13654 }
13655 #else
13656 
13657 static void perf_event_exit_cpu_context(int cpu) { }
13658 
13659 #endif
13660 
13661 int perf_event_init_cpu(unsigned int cpu)
13662 {
13663 	struct perf_cpu_context *cpuctx;
13664 	struct perf_event_context *ctx;
13665 
13666 	perf_swevent_init_cpu(cpu);
13667 
13668 	mutex_lock(&pmus_lock);
13669 	cpumask_set_cpu(cpu, perf_online_mask);
13670 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13671 	ctx = &cpuctx->ctx;
13672 
13673 	mutex_lock(&ctx->mutex);
13674 	cpuctx->online = 1;
13675 	mutex_unlock(&ctx->mutex);
13676 	mutex_unlock(&pmus_lock);
13677 
13678 	return 0;
13679 }
13680 
13681 int perf_event_exit_cpu(unsigned int cpu)
13682 {
13683 	perf_event_exit_cpu_context(cpu);
13684 	return 0;
13685 }
13686 
13687 static int
13688 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13689 {
13690 	int cpu;
13691 
13692 	for_each_online_cpu(cpu)
13693 		perf_event_exit_cpu(cpu);
13694 
13695 	return NOTIFY_OK;
13696 }
13697 
13698 /*
13699  * Run the perf reboot notifier at the very last possible moment so that
13700  * the generic watchdog code runs as long as possible.
13701  */
13702 static struct notifier_block perf_reboot_notifier = {
13703 	.notifier_call = perf_reboot,
13704 	.priority = INT_MIN,
13705 };
13706 
13707 void __init perf_event_init(void)
13708 {
13709 	int ret;
13710 
13711 	idr_init(&pmu_idr);
13712 
13713 	perf_event_init_all_cpus();
13714 	init_srcu_struct(&pmus_srcu);
13715 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13716 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13717 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13718 	perf_tp_register();
13719 	perf_event_init_cpu(smp_processor_id());
13720 	register_reboot_notifier(&perf_reboot_notifier);
13721 
13722 	ret = init_hw_breakpoint();
13723 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13724 
13725 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13726 
13727 	/*
13728 	 * Build time assertion that we keep the data_head at the intended
13729 	 * location.  IOW, validation we got the __reserved[] size right.
13730 	 */
13731 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13732 		     != 1024);
13733 }
13734 
13735 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13736 			      char *page)
13737 {
13738 	struct perf_pmu_events_attr *pmu_attr =
13739 		container_of(attr, struct perf_pmu_events_attr, attr);
13740 
13741 	if (pmu_attr->event_str)
13742 		return sprintf(page, "%s\n", pmu_attr->event_str);
13743 
13744 	return 0;
13745 }
13746 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13747 
13748 static int __init perf_event_sysfs_init(void)
13749 {
13750 	struct pmu *pmu;
13751 	int ret;
13752 
13753 	mutex_lock(&pmus_lock);
13754 
13755 	ret = bus_register(&pmu_bus);
13756 	if (ret)
13757 		goto unlock;
13758 
13759 	list_for_each_entry(pmu, &pmus, entry) {
13760 		if (pmu->dev)
13761 			continue;
13762 
13763 		ret = pmu_dev_alloc(pmu);
13764 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13765 	}
13766 	pmu_bus_running = 1;
13767 	ret = 0;
13768 
13769 unlock:
13770 	mutex_unlock(&pmus_lock);
13771 
13772 	return ret;
13773 }
13774 device_initcall(perf_event_sysfs_init);
13775 
13776 #ifdef CONFIG_CGROUP_PERF
13777 static struct cgroup_subsys_state *
13778 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13779 {
13780 	struct perf_cgroup *jc;
13781 
13782 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13783 	if (!jc)
13784 		return ERR_PTR(-ENOMEM);
13785 
13786 	jc->info = alloc_percpu(struct perf_cgroup_info);
13787 	if (!jc->info) {
13788 		kfree(jc);
13789 		return ERR_PTR(-ENOMEM);
13790 	}
13791 
13792 	return &jc->css;
13793 }
13794 
13795 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13796 {
13797 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13798 
13799 	free_percpu(jc->info);
13800 	kfree(jc);
13801 }
13802 
13803 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13804 {
13805 	perf_event_cgroup(css->cgroup);
13806 	return 0;
13807 }
13808 
13809 static int __perf_cgroup_move(void *info)
13810 {
13811 	struct task_struct *task = info;
13812 
13813 	preempt_disable();
13814 	perf_cgroup_switch(task);
13815 	preempt_enable();
13816 
13817 	return 0;
13818 }
13819 
13820 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13821 {
13822 	struct task_struct *task;
13823 	struct cgroup_subsys_state *css;
13824 
13825 	cgroup_taskset_for_each(task, css, tset)
13826 		task_function_call(task, __perf_cgroup_move, task);
13827 }
13828 
13829 struct cgroup_subsys perf_event_cgrp_subsys = {
13830 	.css_alloc	= perf_cgroup_css_alloc,
13831 	.css_free	= perf_cgroup_css_free,
13832 	.css_online	= perf_cgroup_css_online,
13833 	.attach		= perf_cgroup_attach,
13834 	/*
13835 	 * Implicitly enable on dfl hierarchy so that perf events can
13836 	 * always be filtered by cgroup2 path as long as perf_event
13837 	 * controller is not mounted on a legacy hierarchy.
13838 	 */
13839 	.implicit_on_dfl = true,
13840 	.threaded	= true,
13841 };
13842 #endif /* CONFIG_CGROUP_PERF */
13843 
13844 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13845