xref: /linux/kernel/events/core.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/mm_types.h>
40 
41 #include "internal.h"
42 
43 #include <asm/irq_regs.h>
44 
45 struct remote_function_call {
46 	struct task_struct	*p;
47 	int			(*func)(void *info);
48 	void			*info;
49 	int			ret;
50 };
51 
52 static void remote_function(void *data)
53 {
54 	struct remote_function_call *tfc = data;
55 	struct task_struct *p = tfc->p;
56 
57 	if (p) {
58 		tfc->ret = -EAGAIN;
59 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 			return;
61 	}
62 
63 	tfc->ret = tfc->func(tfc->info);
64 }
65 
66 /**
67  * task_function_call - call a function on the cpu on which a task runs
68  * @p:		the task to evaluate
69  * @func:	the function to be called
70  * @info:	the function call argument
71  *
72  * Calls the function @func when the task is currently running. This might
73  * be on the current CPU, which just calls the function directly
74  *
75  * returns: @func return value, or
76  *	    -ESRCH  - when the process isn't running
77  *	    -EAGAIN - when the process moved away
78  */
79 static int
80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 {
82 	struct remote_function_call data = {
83 		.p	= p,
84 		.func	= func,
85 		.info	= info,
86 		.ret	= -ESRCH, /* No such (running) process */
87 	};
88 
89 	if (task_curr(p))
90 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91 
92 	return data.ret;
93 }
94 
95 /**
96  * cpu_function_call - call a function on the cpu
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func on the remote cpu.
101  *
102  * returns: @func return value or -ENXIO when the cpu is offline
103  */
104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= NULL,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -ENXIO, /* No such CPU */
111 	};
112 
113 	smp_call_function_single(cpu, remote_function, &data, 1);
114 
115 	return data.ret;
116 }
117 
118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 		       PERF_FLAG_FD_OUTPUT  |\
120 		       PERF_FLAG_PID_CGROUP)
121 
122 /*
123  * branch priv levels that need permission checks
124  */
125 #define PERF_SAMPLE_BRANCH_PERM_PLM \
126 	(PERF_SAMPLE_BRANCH_KERNEL |\
127 	 PERF_SAMPLE_BRANCH_HV)
128 
129 enum event_type_t {
130 	EVENT_FLEXIBLE = 0x1,
131 	EVENT_PINNED = 0x2,
132 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
133 };
134 
135 /*
136  * perf_sched_events : >0 events exist
137  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138  */
139 struct static_key_deferred perf_sched_events __read_mostly;
140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
142 
143 static atomic_t nr_mmap_events __read_mostly;
144 static atomic_t nr_comm_events __read_mostly;
145 static atomic_t nr_task_events __read_mostly;
146 
147 static LIST_HEAD(pmus);
148 static DEFINE_MUTEX(pmus_lock);
149 static struct srcu_struct pmus_srcu;
150 
151 /*
152  * perf event paranoia level:
153  *  -1 - not paranoid at all
154  *   0 - disallow raw tracepoint access for unpriv
155  *   1 - disallow cpu events for unpriv
156  *   2 - disallow kernel profiling for unpriv
157  */
158 int sysctl_perf_event_paranoid __read_mostly = 1;
159 
160 /* Minimum for 512 kiB + 1 user control page */
161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162 
163 /*
164  * max perf event sample rate
165  */
166 #define DEFAULT_MAX_SAMPLE_RATE 100000
167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
168 static int max_samples_per_tick __read_mostly =
169 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170 
171 int perf_proc_update_handler(struct ctl_table *table, int write,
172 		void __user *buffer, size_t *lenp,
173 		loff_t *ppos)
174 {
175 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176 
177 	if (ret || !write)
178 		return ret;
179 
180 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181 
182 	return 0;
183 }
184 
185 static atomic64_t perf_event_id;
186 
187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
188 			      enum event_type_t event_type);
189 
190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
191 			     enum event_type_t event_type,
192 			     struct task_struct *task);
193 
194 static void update_context_time(struct perf_event_context *ctx);
195 static u64 perf_event_time(struct perf_event *event);
196 
197 static void ring_buffer_attach(struct perf_event *event,
198 			       struct ring_buffer *rb);
199 
200 void __weak perf_event_print_debug(void)	{ }
201 
202 extern __weak const char *perf_pmu_name(void)
203 {
204 	return "pmu";
205 }
206 
207 static inline u64 perf_clock(void)
208 {
209 	return local_clock();
210 }
211 
212 static inline struct perf_cpu_context *
213 __get_cpu_context(struct perf_event_context *ctx)
214 {
215 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
216 }
217 
218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
219 			  struct perf_event_context *ctx)
220 {
221 	raw_spin_lock(&cpuctx->ctx.lock);
222 	if (ctx)
223 		raw_spin_lock(&ctx->lock);
224 }
225 
226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
227 			    struct perf_event_context *ctx)
228 {
229 	if (ctx)
230 		raw_spin_unlock(&ctx->lock);
231 	raw_spin_unlock(&cpuctx->ctx.lock);
232 }
233 
234 #ifdef CONFIG_CGROUP_PERF
235 
236 /*
237  * Must ensure cgroup is pinned (css_get) before calling
238  * this function. In other words, we cannot call this function
239  * if there is no cgroup event for the current CPU context.
240  */
241 static inline struct perf_cgroup *
242 perf_cgroup_from_task(struct task_struct *task)
243 {
244 	return container_of(task_subsys_state(task, perf_subsys_id),
245 			struct perf_cgroup, css);
246 }
247 
248 static inline bool
249 perf_cgroup_match(struct perf_event *event)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253 
254 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
255 }
256 
257 static inline bool perf_tryget_cgroup(struct perf_event *event)
258 {
259 	return css_tryget(&event->cgrp->css);
260 }
261 
262 static inline void perf_put_cgroup(struct perf_event *event)
263 {
264 	css_put(&event->cgrp->css);
265 }
266 
267 static inline void perf_detach_cgroup(struct perf_event *event)
268 {
269 	perf_put_cgroup(event);
270 	event->cgrp = NULL;
271 }
272 
273 static inline int is_cgroup_event(struct perf_event *event)
274 {
275 	return event->cgrp != NULL;
276 }
277 
278 static inline u64 perf_cgroup_event_time(struct perf_event *event)
279 {
280 	struct perf_cgroup_info *t;
281 
282 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
283 	return t->time;
284 }
285 
286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287 {
288 	struct perf_cgroup_info *info;
289 	u64 now;
290 
291 	now = perf_clock();
292 
293 	info = this_cpu_ptr(cgrp->info);
294 
295 	info->time += now - info->timestamp;
296 	info->timestamp = now;
297 }
298 
299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300 {
301 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
302 	if (cgrp_out)
303 		__update_cgrp_time(cgrp_out);
304 }
305 
306 static inline void update_cgrp_time_from_event(struct perf_event *event)
307 {
308 	struct perf_cgroup *cgrp;
309 
310 	/*
311 	 * ensure we access cgroup data only when needed and
312 	 * when we know the cgroup is pinned (css_get)
313 	 */
314 	if (!is_cgroup_event(event))
315 		return;
316 
317 	cgrp = perf_cgroup_from_task(current);
318 	/*
319 	 * Do not update time when cgroup is not active
320 	 */
321 	if (cgrp == event->cgrp)
322 		__update_cgrp_time(event->cgrp);
323 }
324 
325 static inline void
326 perf_cgroup_set_timestamp(struct task_struct *task,
327 			  struct perf_event_context *ctx)
328 {
329 	struct perf_cgroup *cgrp;
330 	struct perf_cgroup_info *info;
331 
332 	/*
333 	 * ctx->lock held by caller
334 	 * ensure we do not access cgroup data
335 	 * unless we have the cgroup pinned (css_get)
336 	 */
337 	if (!task || !ctx->nr_cgroups)
338 		return;
339 
340 	cgrp = perf_cgroup_from_task(task);
341 	info = this_cpu_ptr(cgrp->info);
342 	info->timestamp = ctx->timestamp;
343 }
344 
345 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
346 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
347 
348 /*
349  * reschedule events based on the cgroup constraint of task.
350  *
351  * mode SWOUT : schedule out everything
352  * mode SWIN : schedule in based on cgroup for next
353  */
354 void perf_cgroup_switch(struct task_struct *task, int mode)
355 {
356 	struct perf_cpu_context *cpuctx;
357 	struct pmu *pmu;
358 	unsigned long flags;
359 
360 	/*
361 	 * disable interrupts to avoid geting nr_cgroup
362 	 * changes via __perf_event_disable(). Also
363 	 * avoids preemption.
364 	 */
365 	local_irq_save(flags);
366 
367 	/*
368 	 * we reschedule only in the presence of cgroup
369 	 * constrained events.
370 	 */
371 	rcu_read_lock();
372 
373 	list_for_each_entry_rcu(pmu, &pmus, entry) {
374 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375 
376 		/*
377 		 * perf_cgroup_events says at least one
378 		 * context on this CPU has cgroup events.
379 		 *
380 		 * ctx->nr_cgroups reports the number of cgroup
381 		 * events for a context.
382 		 */
383 		if (cpuctx->ctx.nr_cgroups > 0) {
384 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
385 			perf_pmu_disable(cpuctx->ctx.pmu);
386 
387 			if (mode & PERF_CGROUP_SWOUT) {
388 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
389 				/*
390 				 * must not be done before ctxswout due
391 				 * to event_filter_match() in event_sched_out()
392 				 */
393 				cpuctx->cgrp = NULL;
394 			}
395 
396 			if (mode & PERF_CGROUP_SWIN) {
397 				WARN_ON_ONCE(cpuctx->cgrp);
398 				/* set cgrp before ctxsw in to
399 				 * allow event_filter_match() to not
400 				 * have to pass task around
401 				 */
402 				cpuctx->cgrp = perf_cgroup_from_task(task);
403 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
404 			}
405 			perf_pmu_enable(cpuctx->ctx.pmu);
406 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
407 		}
408 	}
409 
410 	rcu_read_unlock();
411 
412 	local_irq_restore(flags);
413 }
414 
415 static inline void perf_cgroup_sched_out(struct task_struct *task,
416 					 struct task_struct *next)
417 {
418 	struct perf_cgroup *cgrp1;
419 	struct perf_cgroup *cgrp2 = NULL;
420 
421 	/*
422 	 * we come here when we know perf_cgroup_events > 0
423 	 */
424 	cgrp1 = perf_cgroup_from_task(task);
425 
426 	/*
427 	 * next is NULL when called from perf_event_enable_on_exec()
428 	 * that will systematically cause a cgroup_switch()
429 	 */
430 	if (next)
431 		cgrp2 = perf_cgroup_from_task(next);
432 
433 	/*
434 	 * only schedule out current cgroup events if we know
435 	 * that we are switching to a different cgroup. Otherwise,
436 	 * do no touch the cgroup events.
437 	 */
438 	if (cgrp1 != cgrp2)
439 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
440 }
441 
442 static inline void perf_cgroup_sched_in(struct task_struct *prev,
443 					struct task_struct *task)
444 {
445 	struct perf_cgroup *cgrp1;
446 	struct perf_cgroup *cgrp2 = NULL;
447 
448 	/*
449 	 * we come here when we know perf_cgroup_events > 0
450 	 */
451 	cgrp1 = perf_cgroup_from_task(task);
452 
453 	/* prev can never be NULL */
454 	cgrp2 = perf_cgroup_from_task(prev);
455 
456 	/*
457 	 * only need to schedule in cgroup events if we are changing
458 	 * cgroup during ctxsw. Cgroup events were not scheduled
459 	 * out of ctxsw out if that was not the case.
460 	 */
461 	if (cgrp1 != cgrp2)
462 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
463 }
464 
465 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
466 				      struct perf_event_attr *attr,
467 				      struct perf_event *group_leader)
468 {
469 	struct perf_cgroup *cgrp;
470 	struct cgroup_subsys_state *css;
471 	struct file *file;
472 	int ret = 0, fput_needed;
473 
474 	file = fget_light(fd, &fput_needed);
475 	if (!file)
476 		return -EBADF;
477 
478 	css = cgroup_css_from_dir(file, perf_subsys_id);
479 	if (IS_ERR(css)) {
480 		ret = PTR_ERR(css);
481 		goto out;
482 	}
483 
484 	cgrp = container_of(css, struct perf_cgroup, css);
485 	event->cgrp = cgrp;
486 
487 	/* must be done before we fput() the file */
488 	if (!perf_tryget_cgroup(event)) {
489 		event->cgrp = NULL;
490 		ret = -ENOENT;
491 		goto out;
492 	}
493 
494 	/*
495 	 * all events in a group must monitor
496 	 * the same cgroup because a task belongs
497 	 * to only one perf cgroup at a time
498 	 */
499 	if (group_leader && group_leader->cgrp != cgrp) {
500 		perf_detach_cgroup(event);
501 		ret = -EINVAL;
502 	}
503 out:
504 	fput_light(file, fput_needed);
505 	return ret;
506 }
507 
508 static inline void
509 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
510 {
511 	struct perf_cgroup_info *t;
512 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
513 	event->shadow_ctx_time = now - t->timestamp;
514 }
515 
516 static inline void
517 perf_cgroup_defer_enabled(struct perf_event *event)
518 {
519 	/*
520 	 * when the current task's perf cgroup does not match
521 	 * the event's, we need to remember to call the
522 	 * perf_mark_enable() function the first time a task with
523 	 * a matching perf cgroup is scheduled in.
524 	 */
525 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
526 		event->cgrp_defer_enabled = 1;
527 }
528 
529 static inline void
530 perf_cgroup_mark_enabled(struct perf_event *event,
531 			 struct perf_event_context *ctx)
532 {
533 	struct perf_event *sub;
534 	u64 tstamp = perf_event_time(event);
535 
536 	if (!event->cgrp_defer_enabled)
537 		return;
538 
539 	event->cgrp_defer_enabled = 0;
540 
541 	event->tstamp_enabled = tstamp - event->total_time_enabled;
542 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
543 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
544 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
545 			sub->cgrp_defer_enabled = 0;
546 		}
547 	}
548 }
549 #else /* !CONFIG_CGROUP_PERF */
550 
551 static inline bool
552 perf_cgroup_match(struct perf_event *event)
553 {
554 	return true;
555 }
556 
557 static inline void perf_detach_cgroup(struct perf_event *event)
558 {}
559 
560 static inline int is_cgroup_event(struct perf_event *event)
561 {
562 	return 0;
563 }
564 
565 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
566 {
567 	return 0;
568 }
569 
570 static inline void update_cgrp_time_from_event(struct perf_event *event)
571 {
572 }
573 
574 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
575 {
576 }
577 
578 static inline void perf_cgroup_sched_out(struct task_struct *task,
579 					 struct task_struct *next)
580 {
581 }
582 
583 static inline void perf_cgroup_sched_in(struct task_struct *prev,
584 					struct task_struct *task)
585 {
586 }
587 
588 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
589 				      struct perf_event_attr *attr,
590 				      struct perf_event *group_leader)
591 {
592 	return -EINVAL;
593 }
594 
595 static inline void
596 perf_cgroup_set_timestamp(struct task_struct *task,
597 			  struct perf_event_context *ctx)
598 {
599 }
600 
601 void
602 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
603 {
604 }
605 
606 static inline void
607 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
608 {
609 }
610 
611 static inline u64 perf_cgroup_event_time(struct perf_event *event)
612 {
613 	return 0;
614 }
615 
616 static inline void
617 perf_cgroup_defer_enabled(struct perf_event *event)
618 {
619 }
620 
621 static inline void
622 perf_cgroup_mark_enabled(struct perf_event *event,
623 			 struct perf_event_context *ctx)
624 {
625 }
626 #endif
627 
628 void perf_pmu_disable(struct pmu *pmu)
629 {
630 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
631 	if (!(*count)++)
632 		pmu->pmu_disable(pmu);
633 }
634 
635 void perf_pmu_enable(struct pmu *pmu)
636 {
637 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
638 	if (!--(*count))
639 		pmu->pmu_enable(pmu);
640 }
641 
642 static DEFINE_PER_CPU(struct list_head, rotation_list);
643 
644 /*
645  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
646  * because they're strictly cpu affine and rotate_start is called with IRQs
647  * disabled, while rotate_context is called from IRQ context.
648  */
649 static void perf_pmu_rotate_start(struct pmu *pmu)
650 {
651 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
652 	struct list_head *head = &__get_cpu_var(rotation_list);
653 
654 	WARN_ON(!irqs_disabled());
655 
656 	if (list_empty(&cpuctx->rotation_list))
657 		list_add(&cpuctx->rotation_list, head);
658 }
659 
660 static void get_ctx(struct perf_event_context *ctx)
661 {
662 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
663 }
664 
665 static void put_ctx(struct perf_event_context *ctx)
666 {
667 	if (atomic_dec_and_test(&ctx->refcount)) {
668 		if (ctx->parent_ctx)
669 			put_ctx(ctx->parent_ctx);
670 		if (ctx->task)
671 			put_task_struct(ctx->task);
672 		kfree_rcu(ctx, rcu_head);
673 	}
674 }
675 
676 static void unclone_ctx(struct perf_event_context *ctx)
677 {
678 	if (ctx->parent_ctx) {
679 		put_ctx(ctx->parent_ctx);
680 		ctx->parent_ctx = NULL;
681 	}
682 }
683 
684 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
685 {
686 	/*
687 	 * only top level events have the pid namespace they were created in
688 	 */
689 	if (event->parent)
690 		event = event->parent;
691 
692 	return task_tgid_nr_ns(p, event->ns);
693 }
694 
695 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
696 {
697 	/*
698 	 * only top level events have the pid namespace they were created in
699 	 */
700 	if (event->parent)
701 		event = event->parent;
702 
703 	return task_pid_nr_ns(p, event->ns);
704 }
705 
706 /*
707  * If we inherit events we want to return the parent event id
708  * to userspace.
709  */
710 static u64 primary_event_id(struct perf_event *event)
711 {
712 	u64 id = event->id;
713 
714 	if (event->parent)
715 		id = event->parent->id;
716 
717 	return id;
718 }
719 
720 /*
721  * Get the perf_event_context for a task and lock it.
722  * This has to cope with with the fact that until it is locked,
723  * the context could get moved to another task.
724  */
725 static struct perf_event_context *
726 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
727 {
728 	struct perf_event_context *ctx;
729 
730 	rcu_read_lock();
731 retry:
732 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
733 	if (ctx) {
734 		/*
735 		 * If this context is a clone of another, it might
736 		 * get swapped for another underneath us by
737 		 * perf_event_task_sched_out, though the
738 		 * rcu_read_lock() protects us from any context
739 		 * getting freed.  Lock the context and check if it
740 		 * got swapped before we could get the lock, and retry
741 		 * if so.  If we locked the right context, then it
742 		 * can't get swapped on us any more.
743 		 */
744 		raw_spin_lock_irqsave(&ctx->lock, *flags);
745 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
746 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 			goto retry;
748 		}
749 
750 		if (!atomic_inc_not_zero(&ctx->refcount)) {
751 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
752 			ctx = NULL;
753 		}
754 	}
755 	rcu_read_unlock();
756 	return ctx;
757 }
758 
759 /*
760  * Get the context for a task and increment its pin_count so it
761  * can't get swapped to another task.  This also increments its
762  * reference count so that the context can't get freed.
763  */
764 static struct perf_event_context *
765 perf_pin_task_context(struct task_struct *task, int ctxn)
766 {
767 	struct perf_event_context *ctx;
768 	unsigned long flags;
769 
770 	ctx = perf_lock_task_context(task, ctxn, &flags);
771 	if (ctx) {
772 		++ctx->pin_count;
773 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
774 	}
775 	return ctx;
776 }
777 
778 static void perf_unpin_context(struct perf_event_context *ctx)
779 {
780 	unsigned long flags;
781 
782 	raw_spin_lock_irqsave(&ctx->lock, flags);
783 	--ctx->pin_count;
784 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
785 }
786 
787 /*
788  * Update the record of the current time in a context.
789  */
790 static void update_context_time(struct perf_event_context *ctx)
791 {
792 	u64 now = perf_clock();
793 
794 	ctx->time += now - ctx->timestamp;
795 	ctx->timestamp = now;
796 }
797 
798 static u64 perf_event_time(struct perf_event *event)
799 {
800 	struct perf_event_context *ctx = event->ctx;
801 
802 	if (is_cgroup_event(event))
803 		return perf_cgroup_event_time(event);
804 
805 	return ctx ? ctx->time : 0;
806 }
807 
808 /*
809  * Update the total_time_enabled and total_time_running fields for a event.
810  * The caller of this function needs to hold the ctx->lock.
811  */
812 static void update_event_times(struct perf_event *event)
813 {
814 	struct perf_event_context *ctx = event->ctx;
815 	u64 run_end;
816 
817 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
818 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
819 		return;
820 	/*
821 	 * in cgroup mode, time_enabled represents
822 	 * the time the event was enabled AND active
823 	 * tasks were in the monitored cgroup. This is
824 	 * independent of the activity of the context as
825 	 * there may be a mix of cgroup and non-cgroup events.
826 	 *
827 	 * That is why we treat cgroup events differently
828 	 * here.
829 	 */
830 	if (is_cgroup_event(event))
831 		run_end = perf_cgroup_event_time(event);
832 	else if (ctx->is_active)
833 		run_end = ctx->time;
834 	else
835 		run_end = event->tstamp_stopped;
836 
837 	event->total_time_enabled = run_end - event->tstamp_enabled;
838 
839 	if (event->state == PERF_EVENT_STATE_INACTIVE)
840 		run_end = event->tstamp_stopped;
841 	else
842 		run_end = perf_event_time(event);
843 
844 	event->total_time_running = run_end - event->tstamp_running;
845 
846 }
847 
848 /*
849  * Update total_time_enabled and total_time_running for all events in a group.
850  */
851 static void update_group_times(struct perf_event *leader)
852 {
853 	struct perf_event *event;
854 
855 	update_event_times(leader);
856 	list_for_each_entry(event, &leader->sibling_list, group_entry)
857 		update_event_times(event);
858 }
859 
860 static struct list_head *
861 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 	if (event->attr.pinned)
864 		return &ctx->pinned_groups;
865 	else
866 		return &ctx->flexible_groups;
867 }
868 
869 /*
870  * Add a event from the lists for its context.
871  * Must be called with ctx->mutex and ctx->lock held.
872  */
873 static void
874 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
875 {
876 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
877 	event->attach_state |= PERF_ATTACH_CONTEXT;
878 
879 	/*
880 	 * If we're a stand alone event or group leader, we go to the context
881 	 * list, group events are kept attached to the group so that
882 	 * perf_group_detach can, at all times, locate all siblings.
883 	 */
884 	if (event->group_leader == event) {
885 		struct list_head *list;
886 
887 		if (is_software_event(event))
888 			event->group_flags |= PERF_GROUP_SOFTWARE;
889 
890 		list = ctx_group_list(event, ctx);
891 		list_add_tail(&event->group_entry, list);
892 	}
893 
894 	if (is_cgroup_event(event))
895 		ctx->nr_cgroups++;
896 
897 	if (has_branch_stack(event))
898 		ctx->nr_branch_stack++;
899 
900 	list_add_rcu(&event->event_entry, &ctx->event_list);
901 	if (!ctx->nr_events)
902 		perf_pmu_rotate_start(ctx->pmu);
903 	ctx->nr_events++;
904 	if (event->attr.inherit_stat)
905 		ctx->nr_stat++;
906 }
907 
908 /*
909  * Called at perf_event creation and when events are attached/detached from a
910  * group.
911  */
912 static void perf_event__read_size(struct perf_event *event)
913 {
914 	int entry = sizeof(u64); /* value */
915 	int size = 0;
916 	int nr = 1;
917 
918 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
919 		size += sizeof(u64);
920 
921 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
922 		size += sizeof(u64);
923 
924 	if (event->attr.read_format & PERF_FORMAT_ID)
925 		entry += sizeof(u64);
926 
927 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
928 		nr += event->group_leader->nr_siblings;
929 		size += sizeof(u64);
930 	}
931 
932 	size += entry * nr;
933 	event->read_size = size;
934 }
935 
936 static void perf_event__header_size(struct perf_event *event)
937 {
938 	struct perf_sample_data *data;
939 	u64 sample_type = event->attr.sample_type;
940 	u16 size = 0;
941 
942 	perf_event__read_size(event);
943 
944 	if (sample_type & PERF_SAMPLE_IP)
945 		size += sizeof(data->ip);
946 
947 	if (sample_type & PERF_SAMPLE_ADDR)
948 		size += sizeof(data->addr);
949 
950 	if (sample_type & PERF_SAMPLE_PERIOD)
951 		size += sizeof(data->period);
952 
953 	if (sample_type & PERF_SAMPLE_READ)
954 		size += event->read_size;
955 
956 	event->header_size = size;
957 }
958 
959 static void perf_event__id_header_size(struct perf_event *event)
960 {
961 	struct perf_sample_data *data;
962 	u64 sample_type = event->attr.sample_type;
963 	u16 size = 0;
964 
965 	if (sample_type & PERF_SAMPLE_TID)
966 		size += sizeof(data->tid_entry);
967 
968 	if (sample_type & PERF_SAMPLE_TIME)
969 		size += sizeof(data->time);
970 
971 	if (sample_type & PERF_SAMPLE_ID)
972 		size += sizeof(data->id);
973 
974 	if (sample_type & PERF_SAMPLE_STREAM_ID)
975 		size += sizeof(data->stream_id);
976 
977 	if (sample_type & PERF_SAMPLE_CPU)
978 		size += sizeof(data->cpu_entry);
979 
980 	event->id_header_size = size;
981 }
982 
983 static void perf_group_attach(struct perf_event *event)
984 {
985 	struct perf_event *group_leader = event->group_leader, *pos;
986 
987 	/*
988 	 * We can have double attach due to group movement in perf_event_open.
989 	 */
990 	if (event->attach_state & PERF_ATTACH_GROUP)
991 		return;
992 
993 	event->attach_state |= PERF_ATTACH_GROUP;
994 
995 	if (group_leader == event)
996 		return;
997 
998 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
999 			!is_software_event(event))
1000 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1001 
1002 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1003 	group_leader->nr_siblings++;
1004 
1005 	perf_event__header_size(group_leader);
1006 
1007 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1008 		perf_event__header_size(pos);
1009 }
1010 
1011 /*
1012  * Remove a event from the lists for its context.
1013  * Must be called with ctx->mutex and ctx->lock held.
1014  */
1015 static void
1016 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1017 {
1018 	struct perf_cpu_context *cpuctx;
1019 	/*
1020 	 * We can have double detach due to exit/hot-unplug + close.
1021 	 */
1022 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1023 		return;
1024 
1025 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1026 
1027 	if (is_cgroup_event(event)) {
1028 		ctx->nr_cgroups--;
1029 		cpuctx = __get_cpu_context(ctx);
1030 		/*
1031 		 * if there are no more cgroup events
1032 		 * then cler cgrp to avoid stale pointer
1033 		 * in update_cgrp_time_from_cpuctx()
1034 		 */
1035 		if (!ctx->nr_cgroups)
1036 			cpuctx->cgrp = NULL;
1037 	}
1038 
1039 	if (has_branch_stack(event))
1040 		ctx->nr_branch_stack--;
1041 
1042 	ctx->nr_events--;
1043 	if (event->attr.inherit_stat)
1044 		ctx->nr_stat--;
1045 
1046 	list_del_rcu(&event->event_entry);
1047 
1048 	if (event->group_leader == event)
1049 		list_del_init(&event->group_entry);
1050 
1051 	update_group_times(event);
1052 
1053 	/*
1054 	 * If event was in error state, then keep it
1055 	 * that way, otherwise bogus counts will be
1056 	 * returned on read(). The only way to get out
1057 	 * of error state is by explicit re-enabling
1058 	 * of the event
1059 	 */
1060 	if (event->state > PERF_EVENT_STATE_OFF)
1061 		event->state = PERF_EVENT_STATE_OFF;
1062 }
1063 
1064 static void perf_group_detach(struct perf_event *event)
1065 {
1066 	struct perf_event *sibling, *tmp;
1067 	struct list_head *list = NULL;
1068 
1069 	/*
1070 	 * We can have double detach due to exit/hot-unplug + close.
1071 	 */
1072 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1073 		return;
1074 
1075 	event->attach_state &= ~PERF_ATTACH_GROUP;
1076 
1077 	/*
1078 	 * If this is a sibling, remove it from its group.
1079 	 */
1080 	if (event->group_leader != event) {
1081 		list_del_init(&event->group_entry);
1082 		event->group_leader->nr_siblings--;
1083 		goto out;
1084 	}
1085 
1086 	if (!list_empty(&event->group_entry))
1087 		list = &event->group_entry;
1088 
1089 	/*
1090 	 * If this was a group event with sibling events then
1091 	 * upgrade the siblings to singleton events by adding them
1092 	 * to whatever list we are on.
1093 	 */
1094 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1095 		if (list)
1096 			list_move_tail(&sibling->group_entry, list);
1097 		sibling->group_leader = sibling;
1098 
1099 		/* Inherit group flags from the previous leader */
1100 		sibling->group_flags = event->group_flags;
1101 	}
1102 
1103 out:
1104 	perf_event__header_size(event->group_leader);
1105 
1106 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1107 		perf_event__header_size(tmp);
1108 }
1109 
1110 static inline int
1111 event_filter_match(struct perf_event *event)
1112 {
1113 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1114 	    && perf_cgroup_match(event);
1115 }
1116 
1117 static void
1118 event_sched_out(struct perf_event *event,
1119 		  struct perf_cpu_context *cpuctx,
1120 		  struct perf_event_context *ctx)
1121 {
1122 	u64 tstamp = perf_event_time(event);
1123 	u64 delta;
1124 	/*
1125 	 * An event which could not be activated because of
1126 	 * filter mismatch still needs to have its timings
1127 	 * maintained, otherwise bogus information is return
1128 	 * via read() for time_enabled, time_running:
1129 	 */
1130 	if (event->state == PERF_EVENT_STATE_INACTIVE
1131 	    && !event_filter_match(event)) {
1132 		delta = tstamp - event->tstamp_stopped;
1133 		event->tstamp_running += delta;
1134 		event->tstamp_stopped = tstamp;
1135 	}
1136 
1137 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1138 		return;
1139 
1140 	event->state = PERF_EVENT_STATE_INACTIVE;
1141 	if (event->pending_disable) {
1142 		event->pending_disable = 0;
1143 		event->state = PERF_EVENT_STATE_OFF;
1144 	}
1145 	event->tstamp_stopped = tstamp;
1146 	event->pmu->del(event, 0);
1147 	event->oncpu = -1;
1148 
1149 	if (!is_software_event(event))
1150 		cpuctx->active_oncpu--;
1151 	ctx->nr_active--;
1152 	if (event->attr.freq && event->attr.sample_freq)
1153 		ctx->nr_freq--;
1154 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1155 		cpuctx->exclusive = 0;
1156 }
1157 
1158 static void
1159 group_sched_out(struct perf_event *group_event,
1160 		struct perf_cpu_context *cpuctx,
1161 		struct perf_event_context *ctx)
1162 {
1163 	struct perf_event *event;
1164 	int state = group_event->state;
1165 
1166 	event_sched_out(group_event, cpuctx, ctx);
1167 
1168 	/*
1169 	 * Schedule out siblings (if any):
1170 	 */
1171 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1172 		event_sched_out(event, cpuctx, ctx);
1173 
1174 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1175 		cpuctx->exclusive = 0;
1176 }
1177 
1178 /*
1179  * Cross CPU call to remove a performance event
1180  *
1181  * We disable the event on the hardware level first. After that we
1182  * remove it from the context list.
1183  */
1184 static int __perf_remove_from_context(void *info)
1185 {
1186 	struct perf_event *event = info;
1187 	struct perf_event_context *ctx = event->ctx;
1188 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1189 
1190 	raw_spin_lock(&ctx->lock);
1191 	event_sched_out(event, cpuctx, ctx);
1192 	list_del_event(event, ctx);
1193 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1194 		ctx->is_active = 0;
1195 		cpuctx->task_ctx = NULL;
1196 	}
1197 	raw_spin_unlock(&ctx->lock);
1198 
1199 	return 0;
1200 }
1201 
1202 
1203 /*
1204  * Remove the event from a task's (or a CPU's) list of events.
1205  *
1206  * CPU events are removed with a smp call. For task events we only
1207  * call when the task is on a CPU.
1208  *
1209  * If event->ctx is a cloned context, callers must make sure that
1210  * every task struct that event->ctx->task could possibly point to
1211  * remains valid.  This is OK when called from perf_release since
1212  * that only calls us on the top-level context, which can't be a clone.
1213  * When called from perf_event_exit_task, it's OK because the
1214  * context has been detached from its task.
1215  */
1216 static void perf_remove_from_context(struct perf_event *event)
1217 {
1218 	struct perf_event_context *ctx = event->ctx;
1219 	struct task_struct *task = ctx->task;
1220 
1221 	lockdep_assert_held(&ctx->mutex);
1222 
1223 	if (!task) {
1224 		/*
1225 		 * Per cpu events are removed via an smp call and
1226 		 * the removal is always successful.
1227 		 */
1228 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1229 		return;
1230 	}
1231 
1232 retry:
1233 	if (!task_function_call(task, __perf_remove_from_context, event))
1234 		return;
1235 
1236 	raw_spin_lock_irq(&ctx->lock);
1237 	/*
1238 	 * If we failed to find a running task, but find the context active now
1239 	 * that we've acquired the ctx->lock, retry.
1240 	 */
1241 	if (ctx->is_active) {
1242 		raw_spin_unlock_irq(&ctx->lock);
1243 		goto retry;
1244 	}
1245 
1246 	/*
1247 	 * Since the task isn't running, its safe to remove the event, us
1248 	 * holding the ctx->lock ensures the task won't get scheduled in.
1249 	 */
1250 	list_del_event(event, ctx);
1251 	raw_spin_unlock_irq(&ctx->lock);
1252 }
1253 
1254 /*
1255  * Cross CPU call to disable a performance event
1256  */
1257 int __perf_event_disable(void *info)
1258 {
1259 	struct perf_event *event = info;
1260 	struct perf_event_context *ctx = event->ctx;
1261 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1262 
1263 	/*
1264 	 * If this is a per-task event, need to check whether this
1265 	 * event's task is the current task on this cpu.
1266 	 *
1267 	 * Can trigger due to concurrent perf_event_context_sched_out()
1268 	 * flipping contexts around.
1269 	 */
1270 	if (ctx->task && cpuctx->task_ctx != ctx)
1271 		return -EINVAL;
1272 
1273 	raw_spin_lock(&ctx->lock);
1274 
1275 	/*
1276 	 * If the event is on, turn it off.
1277 	 * If it is in error state, leave it in error state.
1278 	 */
1279 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1280 		update_context_time(ctx);
1281 		update_cgrp_time_from_event(event);
1282 		update_group_times(event);
1283 		if (event == event->group_leader)
1284 			group_sched_out(event, cpuctx, ctx);
1285 		else
1286 			event_sched_out(event, cpuctx, ctx);
1287 		event->state = PERF_EVENT_STATE_OFF;
1288 	}
1289 
1290 	raw_spin_unlock(&ctx->lock);
1291 
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Disable a event.
1297  *
1298  * If event->ctx is a cloned context, callers must make sure that
1299  * every task struct that event->ctx->task could possibly point to
1300  * remains valid.  This condition is satisifed when called through
1301  * perf_event_for_each_child or perf_event_for_each because they
1302  * hold the top-level event's child_mutex, so any descendant that
1303  * goes to exit will block in sync_child_event.
1304  * When called from perf_pending_event it's OK because event->ctx
1305  * is the current context on this CPU and preemption is disabled,
1306  * hence we can't get into perf_event_task_sched_out for this context.
1307  */
1308 void perf_event_disable(struct perf_event *event)
1309 {
1310 	struct perf_event_context *ctx = event->ctx;
1311 	struct task_struct *task = ctx->task;
1312 
1313 	if (!task) {
1314 		/*
1315 		 * Disable the event on the cpu that it's on
1316 		 */
1317 		cpu_function_call(event->cpu, __perf_event_disable, event);
1318 		return;
1319 	}
1320 
1321 retry:
1322 	if (!task_function_call(task, __perf_event_disable, event))
1323 		return;
1324 
1325 	raw_spin_lock_irq(&ctx->lock);
1326 	/*
1327 	 * If the event is still active, we need to retry the cross-call.
1328 	 */
1329 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1330 		raw_spin_unlock_irq(&ctx->lock);
1331 		/*
1332 		 * Reload the task pointer, it might have been changed by
1333 		 * a concurrent perf_event_context_sched_out().
1334 		 */
1335 		task = ctx->task;
1336 		goto retry;
1337 	}
1338 
1339 	/*
1340 	 * Since we have the lock this context can't be scheduled
1341 	 * in, so we can change the state safely.
1342 	 */
1343 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1344 		update_group_times(event);
1345 		event->state = PERF_EVENT_STATE_OFF;
1346 	}
1347 	raw_spin_unlock_irq(&ctx->lock);
1348 }
1349 EXPORT_SYMBOL_GPL(perf_event_disable);
1350 
1351 static void perf_set_shadow_time(struct perf_event *event,
1352 				 struct perf_event_context *ctx,
1353 				 u64 tstamp)
1354 {
1355 	/*
1356 	 * use the correct time source for the time snapshot
1357 	 *
1358 	 * We could get by without this by leveraging the
1359 	 * fact that to get to this function, the caller
1360 	 * has most likely already called update_context_time()
1361 	 * and update_cgrp_time_xx() and thus both timestamp
1362 	 * are identical (or very close). Given that tstamp is,
1363 	 * already adjusted for cgroup, we could say that:
1364 	 *    tstamp - ctx->timestamp
1365 	 * is equivalent to
1366 	 *    tstamp - cgrp->timestamp.
1367 	 *
1368 	 * Then, in perf_output_read(), the calculation would
1369 	 * work with no changes because:
1370 	 * - event is guaranteed scheduled in
1371 	 * - no scheduled out in between
1372 	 * - thus the timestamp would be the same
1373 	 *
1374 	 * But this is a bit hairy.
1375 	 *
1376 	 * So instead, we have an explicit cgroup call to remain
1377 	 * within the time time source all along. We believe it
1378 	 * is cleaner and simpler to understand.
1379 	 */
1380 	if (is_cgroup_event(event))
1381 		perf_cgroup_set_shadow_time(event, tstamp);
1382 	else
1383 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1384 }
1385 
1386 #define MAX_INTERRUPTS (~0ULL)
1387 
1388 static void perf_log_throttle(struct perf_event *event, int enable);
1389 
1390 static int
1391 event_sched_in(struct perf_event *event,
1392 		 struct perf_cpu_context *cpuctx,
1393 		 struct perf_event_context *ctx)
1394 {
1395 	u64 tstamp = perf_event_time(event);
1396 
1397 	if (event->state <= PERF_EVENT_STATE_OFF)
1398 		return 0;
1399 
1400 	event->state = PERF_EVENT_STATE_ACTIVE;
1401 	event->oncpu = smp_processor_id();
1402 
1403 	/*
1404 	 * Unthrottle events, since we scheduled we might have missed several
1405 	 * ticks already, also for a heavily scheduling task there is little
1406 	 * guarantee it'll get a tick in a timely manner.
1407 	 */
1408 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1409 		perf_log_throttle(event, 1);
1410 		event->hw.interrupts = 0;
1411 	}
1412 
1413 	/*
1414 	 * The new state must be visible before we turn it on in the hardware:
1415 	 */
1416 	smp_wmb();
1417 
1418 	if (event->pmu->add(event, PERF_EF_START)) {
1419 		event->state = PERF_EVENT_STATE_INACTIVE;
1420 		event->oncpu = -1;
1421 		return -EAGAIN;
1422 	}
1423 
1424 	event->tstamp_running += tstamp - event->tstamp_stopped;
1425 
1426 	perf_set_shadow_time(event, ctx, tstamp);
1427 
1428 	if (!is_software_event(event))
1429 		cpuctx->active_oncpu++;
1430 	ctx->nr_active++;
1431 	if (event->attr.freq && event->attr.sample_freq)
1432 		ctx->nr_freq++;
1433 
1434 	if (event->attr.exclusive)
1435 		cpuctx->exclusive = 1;
1436 
1437 	return 0;
1438 }
1439 
1440 static int
1441 group_sched_in(struct perf_event *group_event,
1442 	       struct perf_cpu_context *cpuctx,
1443 	       struct perf_event_context *ctx)
1444 {
1445 	struct perf_event *event, *partial_group = NULL;
1446 	struct pmu *pmu = group_event->pmu;
1447 	u64 now = ctx->time;
1448 	bool simulate = false;
1449 
1450 	if (group_event->state == PERF_EVENT_STATE_OFF)
1451 		return 0;
1452 
1453 	pmu->start_txn(pmu);
1454 
1455 	if (event_sched_in(group_event, cpuctx, ctx)) {
1456 		pmu->cancel_txn(pmu);
1457 		return -EAGAIN;
1458 	}
1459 
1460 	/*
1461 	 * Schedule in siblings as one group (if any):
1462 	 */
1463 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1464 		if (event_sched_in(event, cpuctx, ctx)) {
1465 			partial_group = event;
1466 			goto group_error;
1467 		}
1468 	}
1469 
1470 	if (!pmu->commit_txn(pmu))
1471 		return 0;
1472 
1473 group_error:
1474 	/*
1475 	 * Groups can be scheduled in as one unit only, so undo any
1476 	 * partial group before returning:
1477 	 * The events up to the failed event are scheduled out normally,
1478 	 * tstamp_stopped will be updated.
1479 	 *
1480 	 * The failed events and the remaining siblings need to have
1481 	 * their timings updated as if they had gone thru event_sched_in()
1482 	 * and event_sched_out(). This is required to get consistent timings
1483 	 * across the group. This also takes care of the case where the group
1484 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1485 	 * the time the event was actually stopped, such that time delta
1486 	 * calculation in update_event_times() is correct.
1487 	 */
1488 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1489 		if (event == partial_group)
1490 			simulate = true;
1491 
1492 		if (simulate) {
1493 			event->tstamp_running += now - event->tstamp_stopped;
1494 			event->tstamp_stopped = now;
1495 		} else {
1496 			event_sched_out(event, cpuctx, ctx);
1497 		}
1498 	}
1499 	event_sched_out(group_event, cpuctx, ctx);
1500 
1501 	pmu->cancel_txn(pmu);
1502 
1503 	return -EAGAIN;
1504 }
1505 
1506 /*
1507  * Work out whether we can put this event group on the CPU now.
1508  */
1509 static int group_can_go_on(struct perf_event *event,
1510 			   struct perf_cpu_context *cpuctx,
1511 			   int can_add_hw)
1512 {
1513 	/*
1514 	 * Groups consisting entirely of software events can always go on.
1515 	 */
1516 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1517 		return 1;
1518 	/*
1519 	 * If an exclusive group is already on, no other hardware
1520 	 * events can go on.
1521 	 */
1522 	if (cpuctx->exclusive)
1523 		return 0;
1524 	/*
1525 	 * If this group is exclusive and there are already
1526 	 * events on the CPU, it can't go on.
1527 	 */
1528 	if (event->attr.exclusive && cpuctx->active_oncpu)
1529 		return 0;
1530 	/*
1531 	 * Otherwise, try to add it if all previous groups were able
1532 	 * to go on.
1533 	 */
1534 	return can_add_hw;
1535 }
1536 
1537 static void add_event_to_ctx(struct perf_event *event,
1538 			       struct perf_event_context *ctx)
1539 {
1540 	u64 tstamp = perf_event_time(event);
1541 
1542 	list_add_event(event, ctx);
1543 	perf_group_attach(event);
1544 	event->tstamp_enabled = tstamp;
1545 	event->tstamp_running = tstamp;
1546 	event->tstamp_stopped = tstamp;
1547 }
1548 
1549 static void task_ctx_sched_out(struct perf_event_context *ctx);
1550 static void
1551 ctx_sched_in(struct perf_event_context *ctx,
1552 	     struct perf_cpu_context *cpuctx,
1553 	     enum event_type_t event_type,
1554 	     struct task_struct *task);
1555 
1556 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1557 				struct perf_event_context *ctx,
1558 				struct task_struct *task)
1559 {
1560 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1561 	if (ctx)
1562 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1563 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1564 	if (ctx)
1565 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1566 }
1567 
1568 /*
1569  * Cross CPU call to install and enable a performance event
1570  *
1571  * Must be called with ctx->mutex held
1572  */
1573 static int  __perf_install_in_context(void *info)
1574 {
1575 	struct perf_event *event = info;
1576 	struct perf_event_context *ctx = event->ctx;
1577 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1578 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1579 	struct task_struct *task = current;
1580 
1581 	perf_ctx_lock(cpuctx, task_ctx);
1582 	perf_pmu_disable(cpuctx->ctx.pmu);
1583 
1584 	/*
1585 	 * If there was an active task_ctx schedule it out.
1586 	 */
1587 	if (task_ctx)
1588 		task_ctx_sched_out(task_ctx);
1589 
1590 	/*
1591 	 * If the context we're installing events in is not the
1592 	 * active task_ctx, flip them.
1593 	 */
1594 	if (ctx->task && task_ctx != ctx) {
1595 		if (task_ctx)
1596 			raw_spin_unlock(&task_ctx->lock);
1597 		raw_spin_lock(&ctx->lock);
1598 		task_ctx = ctx;
1599 	}
1600 
1601 	if (task_ctx) {
1602 		cpuctx->task_ctx = task_ctx;
1603 		task = task_ctx->task;
1604 	}
1605 
1606 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1607 
1608 	update_context_time(ctx);
1609 	/*
1610 	 * update cgrp time only if current cgrp
1611 	 * matches event->cgrp. Must be done before
1612 	 * calling add_event_to_ctx()
1613 	 */
1614 	update_cgrp_time_from_event(event);
1615 
1616 	add_event_to_ctx(event, ctx);
1617 
1618 	/*
1619 	 * Schedule everything back in
1620 	 */
1621 	perf_event_sched_in(cpuctx, task_ctx, task);
1622 
1623 	perf_pmu_enable(cpuctx->ctx.pmu);
1624 	perf_ctx_unlock(cpuctx, task_ctx);
1625 
1626 	return 0;
1627 }
1628 
1629 /*
1630  * Attach a performance event to a context
1631  *
1632  * First we add the event to the list with the hardware enable bit
1633  * in event->hw_config cleared.
1634  *
1635  * If the event is attached to a task which is on a CPU we use a smp
1636  * call to enable it in the task context. The task might have been
1637  * scheduled away, but we check this in the smp call again.
1638  */
1639 static void
1640 perf_install_in_context(struct perf_event_context *ctx,
1641 			struct perf_event *event,
1642 			int cpu)
1643 {
1644 	struct task_struct *task = ctx->task;
1645 
1646 	lockdep_assert_held(&ctx->mutex);
1647 
1648 	event->ctx = ctx;
1649 	if (event->cpu != -1)
1650 		event->cpu = cpu;
1651 
1652 	if (!task) {
1653 		/*
1654 		 * Per cpu events are installed via an smp call and
1655 		 * the install is always successful.
1656 		 */
1657 		cpu_function_call(cpu, __perf_install_in_context, event);
1658 		return;
1659 	}
1660 
1661 retry:
1662 	if (!task_function_call(task, __perf_install_in_context, event))
1663 		return;
1664 
1665 	raw_spin_lock_irq(&ctx->lock);
1666 	/*
1667 	 * If we failed to find a running task, but find the context active now
1668 	 * that we've acquired the ctx->lock, retry.
1669 	 */
1670 	if (ctx->is_active) {
1671 		raw_spin_unlock_irq(&ctx->lock);
1672 		goto retry;
1673 	}
1674 
1675 	/*
1676 	 * Since the task isn't running, its safe to add the event, us holding
1677 	 * the ctx->lock ensures the task won't get scheduled in.
1678 	 */
1679 	add_event_to_ctx(event, ctx);
1680 	raw_spin_unlock_irq(&ctx->lock);
1681 }
1682 
1683 /*
1684  * Put a event into inactive state and update time fields.
1685  * Enabling the leader of a group effectively enables all
1686  * the group members that aren't explicitly disabled, so we
1687  * have to update their ->tstamp_enabled also.
1688  * Note: this works for group members as well as group leaders
1689  * since the non-leader members' sibling_lists will be empty.
1690  */
1691 static void __perf_event_mark_enabled(struct perf_event *event)
1692 {
1693 	struct perf_event *sub;
1694 	u64 tstamp = perf_event_time(event);
1695 
1696 	event->state = PERF_EVENT_STATE_INACTIVE;
1697 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1698 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1699 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1700 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1701 	}
1702 }
1703 
1704 /*
1705  * Cross CPU call to enable a performance event
1706  */
1707 static int __perf_event_enable(void *info)
1708 {
1709 	struct perf_event *event = info;
1710 	struct perf_event_context *ctx = event->ctx;
1711 	struct perf_event *leader = event->group_leader;
1712 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1713 	int err;
1714 
1715 	if (WARN_ON_ONCE(!ctx->is_active))
1716 		return -EINVAL;
1717 
1718 	raw_spin_lock(&ctx->lock);
1719 	update_context_time(ctx);
1720 
1721 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1722 		goto unlock;
1723 
1724 	/*
1725 	 * set current task's cgroup time reference point
1726 	 */
1727 	perf_cgroup_set_timestamp(current, ctx);
1728 
1729 	__perf_event_mark_enabled(event);
1730 
1731 	if (!event_filter_match(event)) {
1732 		if (is_cgroup_event(event))
1733 			perf_cgroup_defer_enabled(event);
1734 		goto unlock;
1735 	}
1736 
1737 	/*
1738 	 * If the event is in a group and isn't the group leader,
1739 	 * then don't put it on unless the group is on.
1740 	 */
1741 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1742 		goto unlock;
1743 
1744 	if (!group_can_go_on(event, cpuctx, 1)) {
1745 		err = -EEXIST;
1746 	} else {
1747 		if (event == leader)
1748 			err = group_sched_in(event, cpuctx, ctx);
1749 		else
1750 			err = event_sched_in(event, cpuctx, ctx);
1751 	}
1752 
1753 	if (err) {
1754 		/*
1755 		 * If this event can't go on and it's part of a
1756 		 * group, then the whole group has to come off.
1757 		 */
1758 		if (leader != event)
1759 			group_sched_out(leader, cpuctx, ctx);
1760 		if (leader->attr.pinned) {
1761 			update_group_times(leader);
1762 			leader->state = PERF_EVENT_STATE_ERROR;
1763 		}
1764 	}
1765 
1766 unlock:
1767 	raw_spin_unlock(&ctx->lock);
1768 
1769 	return 0;
1770 }
1771 
1772 /*
1773  * Enable a event.
1774  *
1775  * If event->ctx is a cloned context, callers must make sure that
1776  * every task struct that event->ctx->task could possibly point to
1777  * remains valid.  This condition is satisfied when called through
1778  * perf_event_for_each_child or perf_event_for_each as described
1779  * for perf_event_disable.
1780  */
1781 void perf_event_enable(struct perf_event *event)
1782 {
1783 	struct perf_event_context *ctx = event->ctx;
1784 	struct task_struct *task = ctx->task;
1785 
1786 	if (!task) {
1787 		/*
1788 		 * Enable the event on the cpu that it's on
1789 		 */
1790 		cpu_function_call(event->cpu, __perf_event_enable, event);
1791 		return;
1792 	}
1793 
1794 	raw_spin_lock_irq(&ctx->lock);
1795 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1796 		goto out;
1797 
1798 	/*
1799 	 * If the event is in error state, clear that first.
1800 	 * That way, if we see the event in error state below, we
1801 	 * know that it has gone back into error state, as distinct
1802 	 * from the task having been scheduled away before the
1803 	 * cross-call arrived.
1804 	 */
1805 	if (event->state == PERF_EVENT_STATE_ERROR)
1806 		event->state = PERF_EVENT_STATE_OFF;
1807 
1808 retry:
1809 	if (!ctx->is_active) {
1810 		__perf_event_mark_enabled(event);
1811 		goto out;
1812 	}
1813 
1814 	raw_spin_unlock_irq(&ctx->lock);
1815 
1816 	if (!task_function_call(task, __perf_event_enable, event))
1817 		return;
1818 
1819 	raw_spin_lock_irq(&ctx->lock);
1820 
1821 	/*
1822 	 * If the context is active and the event is still off,
1823 	 * we need to retry the cross-call.
1824 	 */
1825 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1826 		/*
1827 		 * task could have been flipped by a concurrent
1828 		 * perf_event_context_sched_out()
1829 		 */
1830 		task = ctx->task;
1831 		goto retry;
1832 	}
1833 
1834 out:
1835 	raw_spin_unlock_irq(&ctx->lock);
1836 }
1837 EXPORT_SYMBOL_GPL(perf_event_enable);
1838 
1839 int perf_event_refresh(struct perf_event *event, int refresh)
1840 {
1841 	/*
1842 	 * not supported on inherited events
1843 	 */
1844 	if (event->attr.inherit || !is_sampling_event(event))
1845 		return -EINVAL;
1846 
1847 	atomic_add(refresh, &event->event_limit);
1848 	perf_event_enable(event);
1849 
1850 	return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(perf_event_refresh);
1853 
1854 static void ctx_sched_out(struct perf_event_context *ctx,
1855 			  struct perf_cpu_context *cpuctx,
1856 			  enum event_type_t event_type)
1857 {
1858 	struct perf_event *event;
1859 	int is_active = ctx->is_active;
1860 
1861 	ctx->is_active &= ~event_type;
1862 	if (likely(!ctx->nr_events))
1863 		return;
1864 
1865 	update_context_time(ctx);
1866 	update_cgrp_time_from_cpuctx(cpuctx);
1867 	if (!ctx->nr_active)
1868 		return;
1869 
1870 	perf_pmu_disable(ctx->pmu);
1871 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1872 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1873 			group_sched_out(event, cpuctx, ctx);
1874 	}
1875 
1876 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1877 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1878 			group_sched_out(event, cpuctx, ctx);
1879 	}
1880 	perf_pmu_enable(ctx->pmu);
1881 }
1882 
1883 /*
1884  * Test whether two contexts are equivalent, i.e. whether they
1885  * have both been cloned from the same version of the same context
1886  * and they both have the same number of enabled events.
1887  * If the number of enabled events is the same, then the set
1888  * of enabled events should be the same, because these are both
1889  * inherited contexts, therefore we can't access individual events
1890  * in them directly with an fd; we can only enable/disable all
1891  * events via prctl, or enable/disable all events in a family
1892  * via ioctl, which will have the same effect on both contexts.
1893  */
1894 static int context_equiv(struct perf_event_context *ctx1,
1895 			 struct perf_event_context *ctx2)
1896 {
1897 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1898 		&& ctx1->parent_gen == ctx2->parent_gen
1899 		&& !ctx1->pin_count && !ctx2->pin_count;
1900 }
1901 
1902 static void __perf_event_sync_stat(struct perf_event *event,
1903 				     struct perf_event *next_event)
1904 {
1905 	u64 value;
1906 
1907 	if (!event->attr.inherit_stat)
1908 		return;
1909 
1910 	/*
1911 	 * Update the event value, we cannot use perf_event_read()
1912 	 * because we're in the middle of a context switch and have IRQs
1913 	 * disabled, which upsets smp_call_function_single(), however
1914 	 * we know the event must be on the current CPU, therefore we
1915 	 * don't need to use it.
1916 	 */
1917 	switch (event->state) {
1918 	case PERF_EVENT_STATE_ACTIVE:
1919 		event->pmu->read(event);
1920 		/* fall-through */
1921 
1922 	case PERF_EVENT_STATE_INACTIVE:
1923 		update_event_times(event);
1924 		break;
1925 
1926 	default:
1927 		break;
1928 	}
1929 
1930 	/*
1931 	 * In order to keep per-task stats reliable we need to flip the event
1932 	 * values when we flip the contexts.
1933 	 */
1934 	value = local64_read(&next_event->count);
1935 	value = local64_xchg(&event->count, value);
1936 	local64_set(&next_event->count, value);
1937 
1938 	swap(event->total_time_enabled, next_event->total_time_enabled);
1939 	swap(event->total_time_running, next_event->total_time_running);
1940 
1941 	/*
1942 	 * Since we swizzled the values, update the user visible data too.
1943 	 */
1944 	perf_event_update_userpage(event);
1945 	perf_event_update_userpage(next_event);
1946 }
1947 
1948 #define list_next_entry(pos, member) \
1949 	list_entry(pos->member.next, typeof(*pos), member)
1950 
1951 static void perf_event_sync_stat(struct perf_event_context *ctx,
1952 				   struct perf_event_context *next_ctx)
1953 {
1954 	struct perf_event *event, *next_event;
1955 
1956 	if (!ctx->nr_stat)
1957 		return;
1958 
1959 	update_context_time(ctx);
1960 
1961 	event = list_first_entry(&ctx->event_list,
1962 				   struct perf_event, event_entry);
1963 
1964 	next_event = list_first_entry(&next_ctx->event_list,
1965 					struct perf_event, event_entry);
1966 
1967 	while (&event->event_entry != &ctx->event_list &&
1968 	       &next_event->event_entry != &next_ctx->event_list) {
1969 
1970 		__perf_event_sync_stat(event, next_event);
1971 
1972 		event = list_next_entry(event, event_entry);
1973 		next_event = list_next_entry(next_event, event_entry);
1974 	}
1975 }
1976 
1977 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1978 					 struct task_struct *next)
1979 {
1980 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1981 	struct perf_event_context *next_ctx;
1982 	struct perf_event_context *parent;
1983 	struct perf_cpu_context *cpuctx;
1984 	int do_switch = 1;
1985 
1986 	if (likely(!ctx))
1987 		return;
1988 
1989 	cpuctx = __get_cpu_context(ctx);
1990 	if (!cpuctx->task_ctx)
1991 		return;
1992 
1993 	rcu_read_lock();
1994 	parent = rcu_dereference(ctx->parent_ctx);
1995 	next_ctx = next->perf_event_ctxp[ctxn];
1996 	if (parent && next_ctx &&
1997 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1998 		/*
1999 		 * Looks like the two contexts are clones, so we might be
2000 		 * able to optimize the context switch.  We lock both
2001 		 * contexts and check that they are clones under the
2002 		 * lock (including re-checking that neither has been
2003 		 * uncloned in the meantime).  It doesn't matter which
2004 		 * order we take the locks because no other cpu could
2005 		 * be trying to lock both of these tasks.
2006 		 */
2007 		raw_spin_lock(&ctx->lock);
2008 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2009 		if (context_equiv(ctx, next_ctx)) {
2010 			/*
2011 			 * XXX do we need a memory barrier of sorts
2012 			 * wrt to rcu_dereference() of perf_event_ctxp
2013 			 */
2014 			task->perf_event_ctxp[ctxn] = next_ctx;
2015 			next->perf_event_ctxp[ctxn] = ctx;
2016 			ctx->task = next;
2017 			next_ctx->task = task;
2018 			do_switch = 0;
2019 
2020 			perf_event_sync_stat(ctx, next_ctx);
2021 		}
2022 		raw_spin_unlock(&next_ctx->lock);
2023 		raw_spin_unlock(&ctx->lock);
2024 	}
2025 	rcu_read_unlock();
2026 
2027 	if (do_switch) {
2028 		raw_spin_lock(&ctx->lock);
2029 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2030 		cpuctx->task_ctx = NULL;
2031 		raw_spin_unlock(&ctx->lock);
2032 	}
2033 }
2034 
2035 #define for_each_task_context_nr(ctxn)					\
2036 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2037 
2038 /*
2039  * Called from scheduler to remove the events of the current task,
2040  * with interrupts disabled.
2041  *
2042  * We stop each event and update the event value in event->count.
2043  *
2044  * This does not protect us against NMI, but disable()
2045  * sets the disabled bit in the control field of event _before_
2046  * accessing the event control register. If a NMI hits, then it will
2047  * not restart the event.
2048  */
2049 void __perf_event_task_sched_out(struct task_struct *task,
2050 				 struct task_struct *next)
2051 {
2052 	int ctxn;
2053 
2054 	for_each_task_context_nr(ctxn)
2055 		perf_event_context_sched_out(task, ctxn, next);
2056 
2057 	/*
2058 	 * if cgroup events exist on this CPU, then we need
2059 	 * to check if we have to switch out PMU state.
2060 	 * cgroup event are system-wide mode only
2061 	 */
2062 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2063 		perf_cgroup_sched_out(task, next);
2064 }
2065 
2066 static void task_ctx_sched_out(struct perf_event_context *ctx)
2067 {
2068 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2069 
2070 	if (!cpuctx->task_ctx)
2071 		return;
2072 
2073 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2074 		return;
2075 
2076 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2077 	cpuctx->task_ctx = NULL;
2078 }
2079 
2080 /*
2081  * Called with IRQs disabled
2082  */
2083 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2084 			      enum event_type_t event_type)
2085 {
2086 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2087 }
2088 
2089 static void
2090 ctx_pinned_sched_in(struct perf_event_context *ctx,
2091 		    struct perf_cpu_context *cpuctx)
2092 {
2093 	struct perf_event *event;
2094 
2095 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2096 		if (event->state <= PERF_EVENT_STATE_OFF)
2097 			continue;
2098 		if (!event_filter_match(event))
2099 			continue;
2100 
2101 		/* may need to reset tstamp_enabled */
2102 		if (is_cgroup_event(event))
2103 			perf_cgroup_mark_enabled(event, ctx);
2104 
2105 		if (group_can_go_on(event, cpuctx, 1))
2106 			group_sched_in(event, cpuctx, ctx);
2107 
2108 		/*
2109 		 * If this pinned group hasn't been scheduled,
2110 		 * put it in error state.
2111 		 */
2112 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2113 			update_group_times(event);
2114 			event->state = PERF_EVENT_STATE_ERROR;
2115 		}
2116 	}
2117 }
2118 
2119 static void
2120 ctx_flexible_sched_in(struct perf_event_context *ctx,
2121 		      struct perf_cpu_context *cpuctx)
2122 {
2123 	struct perf_event *event;
2124 	int can_add_hw = 1;
2125 
2126 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2127 		/* Ignore events in OFF or ERROR state */
2128 		if (event->state <= PERF_EVENT_STATE_OFF)
2129 			continue;
2130 		/*
2131 		 * Listen to the 'cpu' scheduling filter constraint
2132 		 * of events:
2133 		 */
2134 		if (!event_filter_match(event))
2135 			continue;
2136 
2137 		/* may need to reset tstamp_enabled */
2138 		if (is_cgroup_event(event))
2139 			perf_cgroup_mark_enabled(event, ctx);
2140 
2141 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2142 			if (group_sched_in(event, cpuctx, ctx))
2143 				can_add_hw = 0;
2144 		}
2145 	}
2146 }
2147 
2148 static void
2149 ctx_sched_in(struct perf_event_context *ctx,
2150 	     struct perf_cpu_context *cpuctx,
2151 	     enum event_type_t event_type,
2152 	     struct task_struct *task)
2153 {
2154 	u64 now;
2155 	int is_active = ctx->is_active;
2156 
2157 	ctx->is_active |= event_type;
2158 	if (likely(!ctx->nr_events))
2159 		return;
2160 
2161 	now = perf_clock();
2162 	ctx->timestamp = now;
2163 	perf_cgroup_set_timestamp(task, ctx);
2164 	/*
2165 	 * First go through the list and put on any pinned groups
2166 	 * in order to give them the best chance of going on.
2167 	 */
2168 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2169 		ctx_pinned_sched_in(ctx, cpuctx);
2170 
2171 	/* Then walk through the lower prio flexible groups */
2172 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2173 		ctx_flexible_sched_in(ctx, cpuctx);
2174 }
2175 
2176 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2177 			     enum event_type_t event_type,
2178 			     struct task_struct *task)
2179 {
2180 	struct perf_event_context *ctx = &cpuctx->ctx;
2181 
2182 	ctx_sched_in(ctx, cpuctx, event_type, task);
2183 }
2184 
2185 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2186 					struct task_struct *task)
2187 {
2188 	struct perf_cpu_context *cpuctx;
2189 
2190 	cpuctx = __get_cpu_context(ctx);
2191 	if (cpuctx->task_ctx == ctx)
2192 		return;
2193 
2194 	perf_ctx_lock(cpuctx, ctx);
2195 	perf_pmu_disable(ctx->pmu);
2196 	/*
2197 	 * We want to keep the following priority order:
2198 	 * cpu pinned (that don't need to move), task pinned,
2199 	 * cpu flexible, task flexible.
2200 	 */
2201 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2202 
2203 	if (ctx->nr_events)
2204 		cpuctx->task_ctx = ctx;
2205 
2206 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2207 
2208 	perf_pmu_enable(ctx->pmu);
2209 	perf_ctx_unlock(cpuctx, ctx);
2210 
2211 	/*
2212 	 * Since these rotations are per-cpu, we need to ensure the
2213 	 * cpu-context we got scheduled on is actually rotating.
2214 	 */
2215 	perf_pmu_rotate_start(ctx->pmu);
2216 }
2217 
2218 /*
2219  * When sampling the branck stack in system-wide, it may be necessary
2220  * to flush the stack on context switch. This happens when the branch
2221  * stack does not tag its entries with the pid of the current task.
2222  * Otherwise it becomes impossible to associate a branch entry with a
2223  * task. This ambiguity is more likely to appear when the branch stack
2224  * supports priv level filtering and the user sets it to monitor only
2225  * at the user level (which could be a useful measurement in system-wide
2226  * mode). In that case, the risk is high of having a branch stack with
2227  * branch from multiple tasks. Flushing may mean dropping the existing
2228  * entries or stashing them somewhere in the PMU specific code layer.
2229  *
2230  * This function provides the context switch callback to the lower code
2231  * layer. It is invoked ONLY when there is at least one system-wide context
2232  * with at least one active event using taken branch sampling.
2233  */
2234 static void perf_branch_stack_sched_in(struct task_struct *prev,
2235 				       struct task_struct *task)
2236 {
2237 	struct perf_cpu_context *cpuctx;
2238 	struct pmu *pmu;
2239 	unsigned long flags;
2240 
2241 	/* no need to flush branch stack if not changing task */
2242 	if (prev == task)
2243 		return;
2244 
2245 	local_irq_save(flags);
2246 
2247 	rcu_read_lock();
2248 
2249 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2250 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2251 
2252 		/*
2253 		 * check if the context has at least one
2254 		 * event using PERF_SAMPLE_BRANCH_STACK
2255 		 */
2256 		if (cpuctx->ctx.nr_branch_stack > 0
2257 		    && pmu->flush_branch_stack) {
2258 
2259 			pmu = cpuctx->ctx.pmu;
2260 
2261 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2262 
2263 			perf_pmu_disable(pmu);
2264 
2265 			pmu->flush_branch_stack();
2266 
2267 			perf_pmu_enable(pmu);
2268 
2269 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2270 		}
2271 	}
2272 
2273 	rcu_read_unlock();
2274 
2275 	local_irq_restore(flags);
2276 }
2277 
2278 /*
2279  * Called from scheduler to add the events of the current task
2280  * with interrupts disabled.
2281  *
2282  * We restore the event value and then enable it.
2283  *
2284  * This does not protect us against NMI, but enable()
2285  * sets the enabled bit in the control field of event _before_
2286  * accessing the event control register. If a NMI hits, then it will
2287  * keep the event running.
2288  */
2289 void __perf_event_task_sched_in(struct task_struct *prev,
2290 				struct task_struct *task)
2291 {
2292 	struct perf_event_context *ctx;
2293 	int ctxn;
2294 
2295 	for_each_task_context_nr(ctxn) {
2296 		ctx = task->perf_event_ctxp[ctxn];
2297 		if (likely(!ctx))
2298 			continue;
2299 
2300 		perf_event_context_sched_in(ctx, task);
2301 	}
2302 	/*
2303 	 * if cgroup events exist on this CPU, then we need
2304 	 * to check if we have to switch in PMU state.
2305 	 * cgroup event are system-wide mode only
2306 	 */
2307 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2308 		perf_cgroup_sched_in(prev, task);
2309 
2310 	/* check for system-wide branch_stack events */
2311 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2312 		perf_branch_stack_sched_in(prev, task);
2313 }
2314 
2315 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2316 {
2317 	u64 frequency = event->attr.sample_freq;
2318 	u64 sec = NSEC_PER_SEC;
2319 	u64 divisor, dividend;
2320 
2321 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2322 
2323 	count_fls = fls64(count);
2324 	nsec_fls = fls64(nsec);
2325 	frequency_fls = fls64(frequency);
2326 	sec_fls = 30;
2327 
2328 	/*
2329 	 * We got @count in @nsec, with a target of sample_freq HZ
2330 	 * the target period becomes:
2331 	 *
2332 	 *             @count * 10^9
2333 	 * period = -------------------
2334 	 *          @nsec * sample_freq
2335 	 *
2336 	 */
2337 
2338 	/*
2339 	 * Reduce accuracy by one bit such that @a and @b converge
2340 	 * to a similar magnitude.
2341 	 */
2342 #define REDUCE_FLS(a, b)		\
2343 do {					\
2344 	if (a##_fls > b##_fls) {	\
2345 		a >>= 1;		\
2346 		a##_fls--;		\
2347 	} else {			\
2348 		b >>= 1;		\
2349 		b##_fls--;		\
2350 	}				\
2351 } while (0)
2352 
2353 	/*
2354 	 * Reduce accuracy until either term fits in a u64, then proceed with
2355 	 * the other, so that finally we can do a u64/u64 division.
2356 	 */
2357 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2358 		REDUCE_FLS(nsec, frequency);
2359 		REDUCE_FLS(sec, count);
2360 	}
2361 
2362 	if (count_fls + sec_fls > 64) {
2363 		divisor = nsec * frequency;
2364 
2365 		while (count_fls + sec_fls > 64) {
2366 			REDUCE_FLS(count, sec);
2367 			divisor >>= 1;
2368 		}
2369 
2370 		dividend = count * sec;
2371 	} else {
2372 		dividend = count * sec;
2373 
2374 		while (nsec_fls + frequency_fls > 64) {
2375 			REDUCE_FLS(nsec, frequency);
2376 			dividend >>= 1;
2377 		}
2378 
2379 		divisor = nsec * frequency;
2380 	}
2381 
2382 	if (!divisor)
2383 		return dividend;
2384 
2385 	return div64_u64(dividend, divisor);
2386 }
2387 
2388 static DEFINE_PER_CPU(int, perf_throttled_count);
2389 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2390 
2391 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2392 {
2393 	struct hw_perf_event *hwc = &event->hw;
2394 	s64 period, sample_period;
2395 	s64 delta;
2396 
2397 	period = perf_calculate_period(event, nsec, count);
2398 
2399 	delta = (s64)(period - hwc->sample_period);
2400 	delta = (delta + 7) / 8; /* low pass filter */
2401 
2402 	sample_period = hwc->sample_period + delta;
2403 
2404 	if (!sample_period)
2405 		sample_period = 1;
2406 
2407 	hwc->sample_period = sample_period;
2408 
2409 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2410 		if (disable)
2411 			event->pmu->stop(event, PERF_EF_UPDATE);
2412 
2413 		local64_set(&hwc->period_left, 0);
2414 
2415 		if (disable)
2416 			event->pmu->start(event, PERF_EF_RELOAD);
2417 	}
2418 }
2419 
2420 /*
2421  * combine freq adjustment with unthrottling to avoid two passes over the
2422  * events. At the same time, make sure, having freq events does not change
2423  * the rate of unthrottling as that would introduce bias.
2424  */
2425 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2426 					   int needs_unthr)
2427 {
2428 	struct perf_event *event;
2429 	struct hw_perf_event *hwc;
2430 	u64 now, period = TICK_NSEC;
2431 	s64 delta;
2432 
2433 	/*
2434 	 * only need to iterate over all events iff:
2435 	 * - context have events in frequency mode (needs freq adjust)
2436 	 * - there are events to unthrottle on this cpu
2437 	 */
2438 	if (!(ctx->nr_freq || needs_unthr))
2439 		return;
2440 
2441 	raw_spin_lock(&ctx->lock);
2442 	perf_pmu_disable(ctx->pmu);
2443 
2444 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2445 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2446 			continue;
2447 
2448 		if (!event_filter_match(event))
2449 			continue;
2450 
2451 		hwc = &event->hw;
2452 
2453 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2454 			hwc->interrupts = 0;
2455 			perf_log_throttle(event, 1);
2456 			event->pmu->start(event, 0);
2457 		}
2458 
2459 		if (!event->attr.freq || !event->attr.sample_freq)
2460 			continue;
2461 
2462 		/*
2463 		 * stop the event and update event->count
2464 		 */
2465 		event->pmu->stop(event, PERF_EF_UPDATE);
2466 
2467 		now = local64_read(&event->count);
2468 		delta = now - hwc->freq_count_stamp;
2469 		hwc->freq_count_stamp = now;
2470 
2471 		/*
2472 		 * restart the event
2473 		 * reload only if value has changed
2474 		 * we have stopped the event so tell that
2475 		 * to perf_adjust_period() to avoid stopping it
2476 		 * twice.
2477 		 */
2478 		if (delta > 0)
2479 			perf_adjust_period(event, period, delta, false);
2480 
2481 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2482 	}
2483 
2484 	perf_pmu_enable(ctx->pmu);
2485 	raw_spin_unlock(&ctx->lock);
2486 }
2487 
2488 /*
2489  * Round-robin a context's events:
2490  */
2491 static void rotate_ctx(struct perf_event_context *ctx)
2492 {
2493 	/*
2494 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2495 	 * disabled by the inheritance code.
2496 	 */
2497 	if (!ctx->rotate_disable)
2498 		list_rotate_left(&ctx->flexible_groups);
2499 }
2500 
2501 /*
2502  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2503  * because they're strictly cpu affine and rotate_start is called with IRQs
2504  * disabled, while rotate_context is called from IRQ context.
2505  */
2506 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2507 {
2508 	struct perf_event_context *ctx = NULL;
2509 	int rotate = 0, remove = 1;
2510 
2511 	if (cpuctx->ctx.nr_events) {
2512 		remove = 0;
2513 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2514 			rotate = 1;
2515 	}
2516 
2517 	ctx = cpuctx->task_ctx;
2518 	if (ctx && ctx->nr_events) {
2519 		remove = 0;
2520 		if (ctx->nr_events != ctx->nr_active)
2521 			rotate = 1;
2522 	}
2523 
2524 	if (!rotate)
2525 		goto done;
2526 
2527 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2528 	perf_pmu_disable(cpuctx->ctx.pmu);
2529 
2530 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2531 	if (ctx)
2532 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2533 
2534 	rotate_ctx(&cpuctx->ctx);
2535 	if (ctx)
2536 		rotate_ctx(ctx);
2537 
2538 	perf_event_sched_in(cpuctx, ctx, current);
2539 
2540 	perf_pmu_enable(cpuctx->ctx.pmu);
2541 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2542 done:
2543 	if (remove)
2544 		list_del_init(&cpuctx->rotation_list);
2545 }
2546 
2547 void perf_event_task_tick(void)
2548 {
2549 	struct list_head *head = &__get_cpu_var(rotation_list);
2550 	struct perf_cpu_context *cpuctx, *tmp;
2551 	struct perf_event_context *ctx;
2552 	int throttled;
2553 
2554 	WARN_ON(!irqs_disabled());
2555 
2556 	__this_cpu_inc(perf_throttled_seq);
2557 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2558 
2559 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2560 		ctx = &cpuctx->ctx;
2561 		perf_adjust_freq_unthr_context(ctx, throttled);
2562 
2563 		ctx = cpuctx->task_ctx;
2564 		if (ctx)
2565 			perf_adjust_freq_unthr_context(ctx, throttled);
2566 
2567 		if (cpuctx->jiffies_interval == 1 ||
2568 				!(jiffies % cpuctx->jiffies_interval))
2569 			perf_rotate_context(cpuctx);
2570 	}
2571 }
2572 
2573 static int event_enable_on_exec(struct perf_event *event,
2574 				struct perf_event_context *ctx)
2575 {
2576 	if (!event->attr.enable_on_exec)
2577 		return 0;
2578 
2579 	event->attr.enable_on_exec = 0;
2580 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2581 		return 0;
2582 
2583 	__perf_event_mark_enabled(event);
2584 
2585 	return 1;
2586 }
2587 
2588 /*
2589  * Enable all of a task's events that have been marked enable-on-exec.
2590  * This expects task == current.
2591  */
2592 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2593 {
2594 	struct perf_event *event;
2595 	unsigned long flags;
2596 	int enabled = 0;
2597 	int ret;
2598 
2599 	local_irq_save(flags);
2600 	if (!ctx || !ctx->nr_events)
2601 		goto out;
2602 
2603 	/*
2604 	 * We must ctxsw out cgroup events to avoid conflict
2605 	 * when invoking perf_task_event_sched_in() later on
2606 	 * in this function. Otherwise we end up trying to
2607 	 * ctxswin cgroup events which are already scheduled
2608 	 * in.
2609 	 */
2610 	perf_cgroup_sched_out(current, NULL);
2611 
2612 	raw_spin_lock(&ctx->lock);
2613 	task_ctx_sched_out(ctx);
2614 
2615 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2616 		ret = event_enable_on_exec(event, ctx);
2617 		if (ret)
2618 			enabled = 1;
2619 	}
2620 
2621 	/*
2622 	 * Unclone this context if we enabled any event.
2623 	 */
2624 	if (enabled)
2625 		unclone_ctx(ctx);
2626 
2627 	raw_spin_unlock(&ctx->lock);
2628 
2629 	/*
2630 	 * Also calls ctxswin for cgroup events, if any:
2631 	 */
2632 	perf_event_context_sched_in(ctx, ctx->task);
2633 out:
2634 	local_irq_restore(flags);
2635 }
2636 
2637 /*
2638  * Cross CPU call to read the hardware event
2639  */
2640 static void __perf_event_read(void *info)
2641 {
2642 	struct perf_event *event = info;
2643 	struct perf_event_context *ctx = event->ctx;
2644 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2645 
2646 	/*
2647 	 * If this is a task context, we need to check whether it is
2648 	 * the current task context of this cpu.  If not it has been
2649 	 * scheduled out before the smp call arrived.  In that case
2650 	 * event->count would have been updated to a recent sample
2651 	 * when the event was scheduled out.
2652 	 */
2653 	if (ctx->task && cpuctx->task_ctx != ctx)
2654 		return;
2655 
2656 	raw_spin_lock(&ctx->lock);
2657 	if (ctx->is_active) {
2658 		update_context_time(ctx);
2659 		update_cgrp_time_from_event(event);
2660 	}
2661 	update_event_times(event);
2662 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2663 		event->pmu->read(event);
2664 	raw_spin_unlock(&ctx->lock);
2665 }
2666 
2667 static inline u64 perf_event_count(struct perf_event *event)
2668 {
2669 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2670 }
2671 
2672 static u64 perf_event_read(struct perf_event *event)
2673 {
2674 	/*
2675 	 * If event is enabled and currently active on a CPU, update the
2676 	 * value in the event structure:
2677 	 */
2678 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2679 		smp_call_function_single(event->oncpu,
2680 					 __perf_event_read, event, 1);
2681 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2682 		struct perf_event_context *ctx = event->ctx;
2683 		unsigned long flags;
2684 
2685 		raw_spin_lock_irqsave(&ctx->lock, flags);
2686 		/*
2687 		 * may read while context is not active
2688 		 * (e.g., thread is blocked), in that case
2689 		 * we cannot update context time
2690 		 */
2691 		if (ctx->is_active) {
2692 			update_context_time(ctx);
2693 			update_cgrp_time_from_event(event);
2694 		}
2695 		update_event_times(event);
2696 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2697 	}
2698 
2699 	return perf_event_count(event);
2700 }
2701 
2702 /*
2703  * Initialize the perf_event context in a task_struct:
2704  */
2705 static void __perf_event_init_context(struct perf_event_context *ctx)
2706 {
2707 	raw_spin_lock_init(&ctx->lock);
2708 	mutex_init(&ctx->mutex);
2709 	INIT_LIST_HEAD(&ctx->pinned_groups);
2710 	INIT_LIST_HEAD(&ctx->flexible_groups);
2711 	INIT_LIST_HEAD(&ctx->event_list);
2712 	atomic_set(&ctx->refcount, 1);
2713 }
2714 
2715 static struct perf_event_context *
2716 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2717 {
2718 	struct perf_event_context *ctx;
2719 
2720 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2721 	if (!ctx)
2722 		return NULL;
2723 
2724 	__perf_event_init_context(ctx);
2725 	if (task) {
2726 		ctx->task = task;
2727 		get_task_struct(task);
2728 	}
2729 	ctx->pmu = pmu;
2730 
2731 	return ctx;
2732 }
2733 
2734 static struct task_struct *
2735 find_lively_task_by_vpid(pid_t vpid)
2736 {
2737 	struct task_struct *task;
2738 	int err;
2739 
2740 	rcu_read_lock();
2741 	if (!vpid)
2742 		task = current;
2743 	else
2744 		task = find_task_by_vpid(vpid);
2745 	if (task)
2746 		get_task_struct(task);
2747 	rcu_read_unlock();
2748 
2749 	if (!task)
2750 		return ERR_PTR(-ESRCH);
2751 
2752 	/* Reuse ptrace permission checks for now. */
2753 	err = -EACCES;
2754 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2755 		goto errout;
2756 
2757 	return task;
2758 errout:
2759 	put_task_struct(task);
2760 	return ERR_PTR(err);
2761 
2762 }
2763 
2764 /*
2765  * Returns a matching context with refcount and pincount.
2766  */
2767 static struct perf_event_context *
2768 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2769 {
2770 	struct perf_event_context *ctx;
2771 	struct perf_cpu_context *cpuctx;
2772 	unsigned long flags;
2773 	int ctxn, err;
2774 
2775 	if (!task) {
2776 		/* Must be root to operate on a CPU event: */
2777 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2778 			return ERR_PTR(-EACCES);
2779 
2780 		/*
2781 		 * We could be clever and allow to attach a event to an
2782 		 * offline CPU and activate it when the CPU comes up, but
2783 		 * that's for later.
2784 		 */
2785 		if (!cpu_online(cpu))
2786 			return ERR_PTR(-ENODEV);
2787 
2788 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2789 		ctx = &cpuctx->ctx;
2790 		get_ctx(ctx);
2791 		++ctx->pin_count;
2792 
2793 		return ctx;
2794 	}
2795 
2796 	err = -EINVAL;
2797 	ctxn = pmu->task_ctx_nr;
2798 	if (ctxn < 0)
2799 		goto errout;
2800 
2801 retry:
2802 	ctx = perf_lock_task_context(task, ctxn, &flags);
2803 	if (ctx) {
2804 		unclone_ctx(ctx);
2805 		++ctx->pin_count;
2806 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2807 	} else {
2808 		ctx = alloc_perf_context(pmu, task);
2809 		err = -ENOMEM;
2810 		if (!ctx)
2811 			goto errout;
2812 
2813 		err = 0;
2814 		mutex_lock(&task->perf_event_mutex);
2815 		/*
2816 		 * If it has already passed perf_event_exit_task().
2817 		 * we must see PF_EXITING, it takes this mutex too.
2818 		 */
2819 		if (task->flags & PF_EXITING)
2820 			err = -ESRCH;
2821 		else if (task->perf_event_ctxp[ctxn])
2822 			err = -EAGAIN;
2823 		else {
2824 			get_ctx(ctx);
2825 			++ctx->pin_count;
2826 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2827 		}
2828 		mutex_unlock(&task->perf_event_mutex);
2829 
2830 		if (unlikely(err)) {
2831 			put_ctx(ctx);
2832 
2833 			if (err == -EAGAIN)
2834 				goto retry;
2835 			goto errout;
2836 		}
2837 	}
2838 
2839 	return ctx;
2840 
2841 errout:
2842 	return ERR_PTR(err);
2843 }
2844 
2845 static void perf_event_free_filter(struct perf_event *event);
2846 
2847 static void free_event_rcu(struct rcu_head *head)
2848 {
2849 	struct perf_event *event;
2850 
2851 	event = container_of(head, struct perf_event, rcu_head);
2852 	if (event->ns)
2853 		put_pid_ns(event->ns);
2854 	perf_event_free_filter(event);
2855 	kfree(event);
2856 }
2857 
2858 static void ring_buffer_put(struct ring_buffer *rb);
2859 
2860 static void free_event(struct perf_event *event)
2861 {
2862 	irq_work_sync(&event->pending);
2863 
2864 	if (!event->parent) {
2865 		if (event->attach_state & PERF_ATTACH_TASK)
2866 			static_key_slow_dec_deferred(&perf_sched_events);
2867 		if (event->attr.mmap || event->attr.mmap_data)
2868 			atomic_dec(&nr_mmap_events);
2869 		if (event->attr.comm)
2870 			atomic_dec(&nr_comm_events);
2871 		if (event->attr.task)
2872 			atomic_dec(&nr_task_events);
2873 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2874 			put_callchain_buffers();
2875 		if (is_cgroup_event(event)) {
2876 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2877 			static_key_slow_dec_deferred(&perf_sched_events);
2878 		}
2879 
2880 		if (has_branch_stack(event)) {
2881 			static_key_slow_dec_deferred(&perf_sched_events);
2882 			/* is system-wide event */
2883 			if (!(event->attach_state & PERF_ATTACH_TASK))
2884 				atomic_dec(&per_cpu(perf_branch_stack_events,
2885 						    event->cpu));
2886 		}
2887 	}
2888 
2889 	if (event->rb) {
2890 		ring_buffer_put(event->rb);
2891 		event->rb = NULL;
2892 	}
2893 
2894 	if (is_cgroup_event(event))
2895 		perf_detach_cgroup(event);
2896 
2897 	if (event->destroy)
2898 		event->destroy(event);
2899 
2900 	if (event->ctx)
2901 		put_ctx(event->ctx);
2902 
2903 	call_rcu(&event->rcu_head, free_event_rcu);
2904 }
2905 
2906 int perf_event_release_kernel(struct perf_event *event)
2907 {
2908 	struct perf_event_context *ctx = event->ctx;
2909 
2910 	WARN_ON_ONCE(ctx->parent_ctx);
2911 	/*
2912 	 * There are two ways this annotation is useful:
2913 	 *
2914 	 *  1) there is a lock recursion from perf_event_exit_task
2915 	 *     see the comment there.
2916 	 *
2917 	 *  2) there is a lock-inversion with mmap_sem through
2918 	 *     perf_event_read_group(), which takes faults while
2919 	 *     holding ctx->mutex, however this is called after
2920 	 *     the last filedesc died, so there is no possibility
2921 	 *     to trigger the AB-BA case.
2922 	 */
2923 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2924 	raw_spin_lock_irq(&ctx->lock);
2925 	perf_group_detach(event);
2926 	raw_spin_unlock_irq(&ctx->lock);
2927 	perf_remove_from_context(event);
2928 	mutex_unlock(&ctx->mutex);
2929 
2930 	free_event(event);
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2935 
2936 /*
2937  * Called when the last reference to the file is gone.
2938  */
2939 static void put_event(struct perf_event *event)
2940 {
2941 	struct task_struct *owner;
2942 
2943 	if (!atomic_long_dec_and_test(&event->refcount))
2944 		return;
2945 
2946 	rcu_read_lock();
2947 	owner = ACCESS_ONCE(event->owner);
2948 	/*
2949 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2950 	 * !owner it means the list deletion is complete and we can indeed
2951 	 * free this event, otherwise we need to serialize on
2952 	 * owner->perf_event_mutex.
2953 	 */
2954 	smp_read_barrier_depends();
2955 	if (owner) {
2956 		/*
2957 		 * Since delayed_put_task_struct() also drops the last
2958 		 * task reference we can safely take a new reference
2959 		 * while holding the rcu_read_lock().
2960 		 */
2961 		get_task_struct(owner);
2962 	}
2963 	rcu_read_unlock();
2964 
2965 	if (owner) {
2966 		mutex_lock(&owner->perf_event_mutex);
2967 		/*
2968 		 * We have to re-check the event->owner field, if it is cleared
2969 		 * we raced with perf_event_exit_task(), acquiring the mutex
2970 		 * ensured they're done, and we can proceed with freeing the
2971 		 * event.
2972 		 */
2973 		if (event->owner)
2974 			list_del_init(&event->owner_entry);
2975 		mutex_unlock(&owner->perf_event_mutex);
2976 		put_task_struct(owner);
2977 	}
2978 
2979 	perf_event_release_kernel(event);
2980 }
2981 
2982 static int perf_release(struct inode *inode, struct file *file)
2983 {
2984 	put_event(file->private_data);
2985 	return 0;
2986 }
2987 
2988 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2989 {
2990 	struct perf_event *child;
2991 	u64 total = 0;
2992 
2993 	*enabled = 0;
2994 	*running = 0;
2995 
2996 	mutex_lock(&event->child_mutex);
2997 	total += perf_event_read(event);
2998 	*enabled += event->total_time_enabled +
2999 			atomic64_read(&event->child_total_time_enabled);
3000 	*running += event->total_time_running +
3001 			atomic64_read(&event->child_total_time_running);
3002 
3003 	list_for_each_entry(child, &event->child_list, child_list) {
3004 		total += perf_event_read(child);
3005 		*enabled += child->total_time_enabled;
3006 		*running += child->total_time_running;
3007 	}
3008 	mutex_unlock(&event->child_mutex);
3009 
3010 	return total;
3011 }
3012 EXPORT_SYMBOL_GPL(perf_event_read_value);
3013 
3014 static int perf_event_read_group(struct perf_event *event,
3015 				   u64 read_format, char __user *buf)
3016 {
3017 	struct perf_event *leader = event->group_leader, *sub;
3018 	int n = 0, size = 0, ret = -EFAULT;
3019 	struct perf_event_context *ctx = leader->ctx;
3020 	u64 values[5];
3021 	u64 count, enabled, running;
3022 
3023 	mutex_lock(&ctx->mutex);
3024 	count = perf_event_read_value(leader, &enabled, &running);
3025 
3026 	values[n++] = 1 + leader->nr_siblings;
3027 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3028 		values[n++] = enabled;
3029 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3030 		values[n++] = running;
3031 	values[n++] = count;
3032 	if (read_format & PERF_FORMAT_ID)
3033 		values[n++] = primary_event_id(leader);
3034 
3035 	size = n * sizeof(u64);
3036 
3037 	if (copy_to_user(buf, values, size))
3038 		goto unlock;
3039 
3040 	ret = size;
3041 
3042 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3043 		n = 0;
3044 
3045 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3046 		if (read_format & PERF_FORMAT_ID)
3047 			values[n++] = primary_event_id(sub);
3048 
3049 		size = n * sizeof(u64);
3050 
3051 		if (copy_to_user(buf + ret, values, size)) {
3052 			ret = -EFAULT;
3053 			goto unlock;
3054 		}
3055 
3056 		ret += size;
3057 	}
3058 unlock:
3059 	mutex_unlock(&ctx->mutex);
3060 
3061 	return ret;
3062 }
3063 
3064 static int perf_event_read_one(struct perf_event *event,
3065 				 u64 read_format, char __user *buf)
3066 {
3067 	u64 enabled, running;
3068 	u64 values[4];
3069 	int n = 0;
3070 
3071 	values[n++] = perf_event_read_value(event, &enabled, &running);
3072 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3073 		values[n++] = enabled;
3074 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3075 		values[n++] = running;
3076 	if (read_format & PERF_FORMAT_ID)
3077 		values[n++] = primary_event_id(event);
3078 
3079 	if (copy_to_user(buf, values, n * sizeof(u64)))
3080 		return -EFAULT;
3081 
3082 	return n * sizeof(u64);
3083 }
3084 
3085 /*
3086  * Read the performance event - simple non blocking version for now
3087  */
3088 static ssize_t
3089 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3090 {
3091 	u64 read_format = event->attr.read_format;
3092 	int ret;
3093 
3094 	/*
3095 	 * Return end-of-file for a read on a event that is in
3096 	 * error state (i.e. because it was pinned but it couldn't be
3097 	 * scheduled on to the CPU at some point).
3098 	 */
3099 	if (event->state == PERF_EVENT_STATE_ERROR)
3100 		return 0;
3101 
3102 	if (count < event->read_size)
3103 		return -ENOSPC;
3104 
3105 	WARN_ON_ONCE(event->ctx->parent_ctx);
3106 	if (read_format & PERF_FORMAT_GROUP)
3107 		ret = perf_event_read_group(event, read_format, buf);
3108 	else
3109 		ret = perf_event_read_one(event, read_format, buf);
3110 
3111 	return ret;
3112 }
3113 
3114 static ssize_t
3115 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3116 {
3117 	struct perf_event *event = file->private_data;
3118 
3119 	return perf_read_hw(event, buf, count);
3120 }
3121 
3122 static unsigned int perf_poll(struct file *file, poll_table *wait)
3123 {
3124 	struct perf_event *event = file->private_data;
3125 	struct ring_buffer *rb;
3126 	unsigned int events = POLL_HUP;
3127 
3128 	/*
3129 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3130 	 * grabs the rb reference but perf_event_set_output() overrides it.
3131 	 * Here is the timeline for two threads T1, T2:
3132 	 * t0: T1, rb = rcu_dereference(event->rb)
3133 	 * t1: T2, old_rb = event->rb
3134 	 * t2: T2, event->rb = new rb
3135 	 * t3: T2, ring_buffer_detach(old_rb)
3136 	 * t4: T1, ring_buffer_attach(rb1)
3137 	 * t5: T1, poll_wait(event->waitq)
3138 	 *
3139 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3140 	 * thereby ensuring that the assignment of the new ring buffer
3141 	 * and the detachment of the old buffer appear atomic to perf_poll()
3142 	 */
3143 	mutex_lock(&event->mmap_mutex);
3144 
3145 	rcu_read_lock();
3146 	rb = rcu_dereference(event->rb);
3147 	if (rb) {
3148 		ring_buffer_attach(event, rb);
3149 		events = atomic_xchg(&rb->poll, 0);
3150 	}
3151 	rcu_read_unlock();
3152 
3153 	mutex_unlock(&event->mmap_mutex);
3154 
3155 	poll_wait(file, &event->waitq, wait);
3156 
3157 	return events;
3158 }
3159 
3160 static void perf_event_reset(struct perf_event *event)
3161 {
3162 	(void)perf_event_read(event);
3163 	local64_set(&event->count, 0);
3164 	perf_event_update_userpage(event);
3165 }
3166 
3167 /*
3168  * Holding the top-level event's child_mutex means that any
3169  * descendant process that has inherited this event will block
3170  * in sync_child_event if it goes to exit, thus satisfying the
3171  * task existence requirements of perf_event_enable/disable.
3172  */
3173 static void perf_event_for_each_child(struct perf_event *event,
3174 					void (*func)(struct perf_event *))
3175 {
3176 	struct perf_event *child;
3177 
3178 	WARN_ON_ONCE(event->ctx->parent_ctx);
3179 	mutex_lock(&event->child_mutex);
3180 	func(event);
3181 	list_for_each_entry(child, &event->child_list, child_list)
3182 		func(child);
3183 	mutex_unlock(&event->child_mutex);
3184 }
3185 
3186 static void perf_event_for_each(struct perf_event *event,
3187 				  void (*func)(struct perf_event *))
3188 {
3189 	struct perf_event_context *ctx = event->ctx;
3190 	struct perf_event *sibling;
3191 
3192 	WARN_ON_ONCE(ctx->parent_ctx);
3193 	mutex_lock(&ctx->mutex);
3194 	event = event->group_leader;
3195 
3196 	perf_event_for_each_child(event, func);
3197 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3198 		perf_event_for_each_child(sibling, func);
3199 	mutex_unlock(&ctx->mutex);
3200 }
3201 
3202 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3203 {
3204 	struct perf_event_context *ctx = event->ctx;
3205 	int ret = 0;
3206 	u64 value;
3207 
3208 	if (!is_sampling_event(event))
3209 		return -EINVAL;
3210 
3211 	if (copy_from_user(&value, arg, sizeof(value)))
3212 		return -EFAULT;
3213 
3214 	if (!value)
3215 		return -EINVAL;
3216 
3217 	raw_spin_lock_irq(&ctx->lock);
3218 	if (event->attr.freq) {
3219 		if (value > sysctl_perf_event_sample_rate) {
3220 			ret = -EINVAL;
3221 			goto unlock;
3222 		}
3223 
3224 		event->attr.sample_freq = value;
3225 	} else {
3226 		event->attr.sample_period = value;
3227 		event->hw.sample_period = value;
3228 	}
3229 unlock:
3230 	raw_spin_unlock_irq(&ctx->lock);
3231 
3232 	return ret;
3233 }
3234 
3235 static const struct file_operations perf_fops;
3236 
3237 static struct file *perf_fget_light(int fd, int *fput_needed)
3238 {
3239 	struct file *file;
3240 
3241 	file = fget_light(fd, fput_needed);
3242 	if (!file)
3243 		return ERR_PTR(-EBADF);
3244 
3245 	if (file->f_op != &perf_fops) {
3246 		fput_light(file, *fput_needed);
3247 		*fput_needed = 0;
3248 		return ERR_PTR(-EBADF);
3249 	}
3250 
3251 	return file;
3252 }
3253 
3254 static int perf_event_set_output(struct perf_event *event,
3255 				 struct perf_event *output_event);
3256 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3257 
3258 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3259 {
3260 	struct perf_event *event = file->private_data;
3261 	void (*func)(struct perf_event *);
3262 	u32 flags = arg;
3263 
3264 	switch (cmd) {
3265 	case PERF_EVENT_IOC_ENABLE:
3266 		func = perf_event_enable;
3267 		break;
3268 	case PERF_EVENT_IOC_DISABLE:
3269 		func = perf_event_disable;
3270 		break;
3271 	case PERF_EVENT_IOC_RESET:
3272 		func = perf_event_reset;
3273 		break;
3274 
3275 	case PERF_EVENT_IOC_REFRESH:
3276 		return perf_event_refresh(event, arg);
3277 
3278 	case PERF_EVENT_IOC_PERIOD:
3279 		return perf_event_period(event, (u64 __user *)arg);
3280 
3281 	case PERF_EVENT_IOC_SET_OUTPUT:
3282 	{
3283 		struct file *output_file = NULL;
3284 		struct perf_event *output_event = NULL;
3285 		int fput_needed = 0;
3286 		int ret;
3287 
3288 		if (arg != -1) {
3289 			output_file = perf_fget_light(arg, &fput_needed);
3290 			if (IS_ERR(output_file))
3291 				return PTR_ERR(output_file);
3292 			output_event = output_file->private_data;
3293 		}
3294 
3295 		ret = perf_event_set_output(event, output_event);
3296 		if (output_event)
3297 			fput_light(output_file, fput_needed);
3298 
3299 		return ret;
3300 	}
3301 
3302 	case PERF_EVENT_IOC_SET_FILTER:
3303 		return perf_event_set_filter(event, (void __user *)arg);
3304 
3305 	default:
3306 		return -ENOTTY;
3307 	}
3308 
3309 	if (flags & PERF_IOC_FLAG_GROUP)
3310 		perf_event_for_each(event, func);
3311 	else
3312 		perf_event_for_each_child(event, func);
3313 
3314 	return 0;
3315 }
3316 
3317 int perf_event_task_enable(void)
3318 {
3319 	struct perf_event *event;
3320 
3321 	mutex_lock(&current->perf_event_mutex);
3322 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3323 		perf_event_for_each_child(event, perf_event_enable);
3324 	mutex_unlock(&current->perf_event_mutex);
3325 
3326 	return 0;
3327 }
3328 
3329 int perf_event_task_disable(void)
3330 {
3331 	struct perf_event *event;
3332 
3333 	mutex_lock(&current->perf_event_mutex);
3334 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3335 		perf_event_for_each_child(event, perf_event_disable);
3336 	mutex_unlock(&current->perf_event_mutex);
3337 
3338 	return 0;
3339 }
3340 
3341 static int perf_event_index(struct perf_event *event)
3342 {
3343 	if (event->hw.state & PERF_HES_STOPPED)
3344 		return 0;
3345 
3346 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3347 		return 0;
3348 
3349 	return event->pmu->event_idx(event);
3350 }
3351 
3352 static void calc_timer_values(struct perf_event *event,
3353 				u64 *now,
3354 				u64 *enabled,
3355 				u64 *running)
3356 {
3357 	u64 ctx_time;
3358 
3359 	*now = perf_clock();
3360 	ctx_time = event->shadow_ctx_time + *now;
3361 	*enabled = ctx_time - event->tstamp_enabled;
3362 	*running = ctx_time - event->tstamp_running;
3363 }
3364 
3365 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3366 {
3367 }
3368 
3369 /*
3370  * Callers need to ensure there can be no nesting of this function, otherwise
3371  * the seqlock logic goes bad. We can not serialize this because the arch
3372  * code calls this from NMI context.
3373  */
3374 void perf_event_update_userpage(struct perf_event *event)
3375 {
3376 	struct perf_event_mmap_page *userpg;
3377 	struct ring_buffer *rb;
3378 	u64 enabled, running, now;
3379 
3380 	rcu_read_lock();
3381 	/*
3382 	 * compute total_time_enabled, total_time_running
3383 	 * based on snapshot values taken when the event
3384 	 * was last scheduled in.
3385 	 *
3386 	 * we cannot simply called update_context_time()
3387 	 * because of locking issue as we can be called in
3388 	 * NMI context
3389 	 */
3390 	calc_timer_values(event, &now, &enabled, &running);
3391 	rb = rcu_dereference(event->rb);
3392 	if (!rb)
3393 		goto unlock;
3394 
3395 	userpg = rb->user_page;
3396 
3397 	/*
3398 	 * Disable preemption so as to not let the corresponding user-space
3399 	 * spin too long if we get preempted.
3400 	 */
3401 	preempt_disable();
3402 	++userpg->lock;
3403 	barrier();
3404 	userpg->index = perf_event_index(event);
3405 	userpg->offset = perf_event_count(event);
3406 	if (userpg->index)
3407 		userpg->offset -= local64_read(&event->hw.prev_count);
3408 
3409 	userpg->time_enabled = enabled +
3410 			atomic64_read(&event->child_total_time_enabled);
3411 
3412 	userpg->time_running = running +
3413 			atomic64_read(&event->child_total_time_running);
3414 
3415 	arch_perf_update_userpage(userpg, now);
3416 
3417 	barrier();
3418 	++userpg->lock;
3419 	preempt_enable();
3420 unlock:
3421 	rcu_read_unlock();
3422 }
3423 
3424 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3425 {
3426 	struct perf_event *event = vma->vm_file->private_data;
3427 	struct ring_buffer *rb;
3428 	int ret = VM_FAULT_SIGBUS;
3429 
3430 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3431 		if (vmf->pgoff == 0)
3432 			ret = 0;
3433 		return ret;
3434 	}
3435 
3436 	rcu_read_lock();
3437 	rb = rcu_dereference(event->rb);
3438 	if (!rb)
3439 		goto unlock;
3440 
3441 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3442 		goto unlock;
3443 
3444 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3445 	if (!vmf->page)
3446 		goto unlock;
3447 
3448 	get_page(vmf->page);
3449 	vmf->page->mapping = vma->vm_file->f_mapping;
3450 	vmf->page->index   = vmf->pgoff;
3451 
3452 	ret = 0;
3453 unlock:
3454 	rcu_read_unlock();
3455 
3456 	return ret;
3457 }
3458 
3459 static void ring_buffer_attach(struct perf_event *event,
3460 			       struct ring_buffer *rb)
3461 {
3462 	unsigned long flags;
3463 
3464 	if (!list_empty(&event->rb_entry))
3465 		return;
3466 
3467 	spin_lock_irqsave(&rb->event_lock, flags);
3468 	if (!list_empty(&event->rb_entry))
3469 		goto unlock;
3470 
3471 	list_add(&event->rb_entry, &rb->event_list);
3472 unlock:
3473 	spin_unlock_irqrestore(&rb->event_lock, flags);
3474 }
3475 
3476 static void ring_buffer_detach(struct perf_event *event,
3477 			       struct ring_buffer *rb)
3478 {
3479 	unsigned long flags;
3480 
3481 	if (list_empty(&event->rb_entry))
3482 		return;
3483 
3484 	spin_lock_irqsave(&rb->event_lock, flags);
3485 	list_del_init(&event->rb_entry);
3486 	wake_up_all(&event->waitq);
3487 	spin_unlock_irqrestore(&rb->event_lock, flags);
3488 }
3489 
3490 static void ring_buffer_wakeup(struct perf_event *event)
3491 {
3492 	struct ring_buffer *rb;
3493 
3494 	rcu_read_lock();
3495 	rb = rcu_dereference(event->rb);
3496 	if (!rb)
3497 		goto unlock;
3498 
3499 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3500 		wake_up_all(&event->waitq);
3501 
3502 unlock:
3503 	rcu_read_unlock();
3504 }
3505 
3506 static void rb_free_rcu(struct rcu_head *rcu_head)
3507 {
3508 	struct ring_buffer *rb;
3509 
3510 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3511 	rb_free(rb);
3512 }
3513 
3514 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3515 {
3516 	struct ring_buffer *rb;
3517 
3518 	rcu_read_lock();
3519 	rb = rcu_dereference(event->rb);
3520 	if (rb) {
3521 		if (!atomic_inc_not_zero(&rb->refcount))
3522 			rb = NULL;
3523 	}
3524 	rcu_read_unlock();
3525 
3526 	return rb;
3527 }
3528 
3529 static void ring_buffer_put(struct ring_buffer *rb)
3530 {
3531 	struct perf_event *event, *n;
3532 	unsigned long flags;
3533 
3534 	if (!atomic_dec_and_test(&rb->refcount))
3535 		return;
3536 
3537 	spin_lock_irqsave(&rb->event_lock, flags);
3538 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3539 		list_del_init(&event->rb_entry);
3540 		wake_up_all(&event->waitq);
3541 	}
3542 	spin_unlock_irqrestore(&rb->event_lock, flags);
3543 
3544 	call_rcu(&rb->rcu_head, rb_free_rcu);
3545 }
3546 
3547 static void perf_mmap_open(struct vm_area_struct *vma)
3548 {
3549 	struct perf_event *event = vma->vm_file->private_data;
3550 
3551 	atomic_inc(&event->mmap_count);
3552 }
3553 
3554 static void perf_mmap_close(struct vm_area_struct *vma)
3555 {
3556 	struct perf_event *event = vma->vm_file->private_data;
3557 
3558 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3559 		unsigned long size = perf_data_size(event->rb);
3560 		struct user_struct *user = event->mmap_user;
3561 		struct ring_buffer *rb = event->rb;
3562 
3563 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3564 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3565 		rcu_assign_pointer(event->rb, NULL);
3566 		ring_buffer_detach(event, rb);
3567 		mutex_unlock(&event->mmap_mutex);
3568 
3569 		ring_buffer_put(rb);
3570 		free_uid(user);
3571 	}
3572 }
3573 
3574 static const struct vm_operations_struct perf_mmap_vmops = {
3575 	.open		= perf_mmap_open,
3576 	.close		= perf_mmap_close,
3577 	.fault		= perf_mmap_fault,
3578 	.page_mkwrite	= perf_mmap_fault,
3579 };
3580 
3581 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3582 {
3583 	struct perf_event *event = file->private_data;
3584 	unsigned long user_locked, user_lock_limit;
3585 	struct user_struct *user = current_user();
3586 	unsigned long locked, lock_limit;
3587 	struct ring_buffer *rb;
3588 	unsigned long vma_size;
3589 	unsigned long nr_pages;
3590 	long user_extra, extra;
3591 	int ret = 0, flags = 0;
3592 
3593 	/*
3594 	 * Don't allow mmap() of inherited per-task counters. This would
3595 	 * create a performance issue due to all children writing to the
3596 	 * same rb.
3597 	 */
3598 	if (event->cpu == -1 && event->attr.inherit)
3599 		return -EINVAL;
3600 
3601 	if (!(vma->vm_flags & VM_SHARED))
3602 		return -EINVAL;
3603 
3604 	vma_size = vma->vm_end - vma->vm_start;
3605 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3606 
3607 	/*
3608 	 * If we have rb pages ensure they're a power-of-two number, so we
3609 	 * can do bitmasks instead of modulo.
3610 	 */
3611 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3612 		return -EINVAL;
3613 
3614 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3615 		return -EINVAL;
3616 
3617 	if (vma->vm_pgoff != 0)
3618 		return -EINVAL;
3619 
3620 	WARN_ON_ONCE(event->ctx->parent_ctx);
3621 	mutex_lock(&event->mmap_mutex);
3622 	if (event->rb) {
3623 		if (event->rb->nr_pages == nr_pages)
3624 			atomic_inc(&event->rb->refcount);
3625 		else
3626 			ret = -EINVAL;
3627 		goto unlock;
3628 	}
3629 
3630 	user_extra = nr_pages + 1;
3631 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3632 
3633 	/*
3634 	 * Increase the limit linearly with more CPUs:
3635 	 */
3636 	user_lock_limit *= num_online_cpus();
3637 
3638 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3639 
3640 	extra = 0;
3641 	if (user_locked > user_lock_limit)
3642 		extra = user_locked - user_lock_limit;
3643 
3644 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3645 	lock_limit >>= PAGE_SHIFT;
3646 	locked = vma->vm_mm->pinned_vm + extra;
3647 
3648 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3649 		!capable(CAP_IPC_LOCK)) {
3650 		ret = -EPERM;
3651 		goto unlock;
3652 	}
3653 
3654 	WARN_ON(event->rb);
3655 
3656 	if (vma->vm_flags & VM_WRITE)
3657 		flags |= RING_BUFFER_WRITABLE;
3658 
3659 	rb = rb_alloc(nr_pages,
3660 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3661 		event->cpu, flags);
3662 
3663 	if (!rb) {
3664 		ret = -ENOMEM;
3665 		goto unlock;
3666 	}
3667 	rcu_assign_pointer(event->rb, rb);
3668 
3669 	atomic_long_add(user_extra, &user->locked_vm);
3670 	event->mmap_locked = extra;
3671 	event->mmap_user = get_current_user();
3672 	vma->vm_mm->pinned_vm += event->mmap_locked;
3673 
3674 	perf_event_update_userpage(event);
3675 
3676 unlock:
3677 	if (!ret)
3678 		atomic_inc(&event->mmap_count);
3679 	mutex_unlock(&event->mmap_mutex);
3680 
3681 	vma->vm_flags |= VM_RESERVED;
3682 	vma->vm_ops = &perf_mmap_vmops;
3683 
3684 	return ret;
3685 }
3686 
3687 static int perf_fasync(int fd, struct file *filp, int on)
3688 {
3689 	struct inode *inode = filp->f_path.dentry->d_inode;
3690 	struct perf_event *event = filp->private_data;
3691 	int retval;
3692 
3693 	mutex_lock(&inode->i_mutex);
3694 	retval = fasync_helper(fd, filp, on, &event->fasync);
3695 	mutex_unlock(&inode->i_mutex);
3696 
3697 	if (retval < 0)
3698 		return retval;
3699 
3700 	return 0;
3701 }
3702 
3703 static const struct file_operations perf_fops = {
3704 	.llseek			= no_llseek,
3705 	.release		= perf_release,
3706 	.read			= perf_read,
3707 	.poll			= perf_poll,
3708 	.unlocked_ioctl		= perf_ioctl,
3709 	.compat_ioctl		= perf_ioctl,
3710 	.mmap			= perf_mmap,
3711 	.fasync			= perf_fasync,
3712 };
3713 
3714 /*
3715  * Perf event wakeup
3716  *
3717  * If there's data, ensure we set the poll() state and publish everything
3718  * to user-space before waking everybody up.
3719  */
3720 
3721 void perf_event_wakeup(struct perf_event *event)
3722 {
3723 	ring_buffer_wakeup(event);
3724 
3725 	if (event->pending_kill) {
3726 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3727 		event->pending_kill = 0;
3728 	}
3729 }
3730 
3731 static void perf_pending_event(struct irq_work *entry)
3732 {
3733 	struct perf_event *event = container_of(entry,
3734 			struct perf_event, pending);
3735 
3736 	if (event->pending_disable) {
3737 		event->pending_disable = 0;
3738 		__perf_event_disable(event);
3739 	}
3740 
3741 	if (event->pending_wakeup) {
3742 		event->pending_wakeup = 0;
3743 		perf_event_wakeup(event);
3744 	}
3745 }
3746 
3747 /*
3748  * We assume there is only KVM supporting the callbacks.
3749  * Later on, we might change it to a list if there is
3750  * another virtualization implementation supporting the callbacks.
3751  */
3752 struct perf_guest_info_callbacks *perf_guest_cbs;
3753 
3754 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3755 {
3756 	perf_guest_cbs = cbs;
3757 	return 0;
3758 }
3759 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3760 
3761 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3762 {
3763 	perf_guest_cbs = NULL;
3764 	return 0;
3765 }
3766 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3767 
3768 static void
3769 perf_output_sample_regs(struct perf_output_handle *handle,
3770 			struct pt_regs *regs, u64 mask)
3771 {
3772 	int bit;
3773 
3774 	for_each_set_bit(bit, (const unsigned long *) &mask,
3775 			 sizeof(mask) * BITS_PER_BYTE) {
3776 		u64 val;
3777 
3778 		val = perf_reg_value(regs, bit);
3779 		perf_output_put(handle, val);
3780 	}
3781 }
3782 
3783 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3784 				  struct pt_regs *regs)
3785 {
3786 	if (!user_mode(regs)) {
3787 		if (current->mm)
3788 			regs = task_pt_regs(current);
3789 		else
3790 			regs = NULL;
3791 	}
3792 
3793 	if (regs) {
3794 		regs_user->regs = regs;
3795 		regs_user->abi  = perf_reg_abi(current);
3796 	}
3797 }
3798 
3799 /*
3800  * Get remaining task size from user stack pointer.
3801  *
3802  * It'd be better to take stack vma map and limit this more
3803  * precisly, but there's no way to get it safely under interrupt,
3804  * so using TASK_SIZE as limit.
3805  */
3806 static u64 perf_ustack_task_size(struct pt_regs *regs)
3807 {
3808 	unsigned long addr = perf_user_stack_pointer(regs);
3809 
3810 	if (!addr || addr >= TASK_SIZE)
3811 		return 0;
3812 
3813 	return TASK_SIZE - addr;
3814 }
3815 
3816 static u16
3817 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3818 			struct pt_regs *regs)
3819 {
3820 	u64 task_size;
3821 
3822 	/* No regs, no stack pointer, no dump. */
3823 	if (!regs)
3824 		return 0;
3825 
3826 	/*
3827 	 * Check if we fit in with the requested stack size into the:
3828 	 * - TASK_SIZE
3829 	 *   If we don't, we limit the size to the TASK_SIZE.
3830 	 *
3831 	 * - remaining sample size
3832 	 *   If we don't, we customize the stack size to
3833 	 *   fit in to the remaining sample size.
3834 	 */
3835 
3836 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3837 	stack_size = min(stack_size, (u16) task_size);
3838 
3839 	/* Current header size plus static size and dynamic size. */
3840 	header_size += 2 * sizeof(u64);
3841 
3842 	/* Do we fit in with the current stack dump size? */
3843 	if ((u16) (header_size + stack_size) < header_size) {
3844 		/*
3845 		 * If we overflow the maximum size for the sample,
3846 		 * we customize the stack dump size to fit in.
3847 		 */
3848 		stack_size = USHRT_MAX - header_size - sizeof(u64);
3849 		stack_size = round_up(stack_size, sizeof(u64));
3850 	}
3851 
3852 	return stack_size;
3853 }
3854 
3855 static void
3856 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3857 			  struct pt_regs *regs)
3858 {
3859 	/* Case of a kernel thread, nothing to dump */
3860 	if (!regs) {
3861 		u64 size = 0;
3862 		perf_output_put(handle, size);
3863 	} else {
3864 		unsigned long sp;
3865 		unsigned int rem;
3866 		u64 dyn_size;
3867 
3868 		/*
3869 		 * We dump:
3870 		 * static size
3871 		 *   - the size requested by user or the best one we can fit
3872 		 *     in to the sample max size
3873 		 * data
3874 		 *   - user stack dump data
3875 		 * dynamic size
3876 		 *   - the actual dumped size
3877 		 */
3878 
3879 		/* Static size. */
3880 		perf_output_put(handle, dump_size);
3881 
3882 		/* Data. */
3883 		sp = perf_user_stack_pointer(regs);
3884 		rem = __output_copy_user(handle, (void *) sp, dump_size);
3885 		dyn_size = dump_size - rem;
3886 
3887 		perf_output_skip(handle, rem);
3888 
3889 		/* Dynamic size. */
3890 		perf_output_put(handle, dyn_size);
3891 	}
3892 }
3893 
3894 static void __perf_event_header__init_id(struct perf_event_header *header,
3895 					 struct perf_sample_data *data,
3896 					 struct perf_event *event)
3897 {
3898 	u64 sample_type = event->attr.sample_type;
3899 
3900 	data->type = sample_type;
3901 	header->size += event->id_header_size;
3902 
3903 	if (sample_type & PERF_SAMPLE_TID) {
3904 		/* namespace issues */
3905 		data->tid_entry.pid = perf_event_pid(event, current);
3906 		data->tid_entry.tid = perf_event_tid(event, current);
3907 	}
3908 
3909 	if (sample_type & PERF_SAMPLE_TIME)
3910 		data->time = perf_clock();
3911 
3912 	if (sample_type & PERF_SAMPLE_ID)
3913 		data->id = primary_event_id(event);
3914 
3915 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3916 		data->stream_id = event->id;
3917 
3918 	if (sample_type & PERF_SAMPLE_CPU) {
3919 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3920 		data->cpu_entry.reserved = 0;
3921 	}
3922 }
3923 
3924 void perf_event_header__init_id(struct perf_event_header *header,
3925 				struct perf_sample_data *data,
3926 				struct perf_event *event)
3927 {
3928 	if (event->attr.sample_id_all)
3929 		__perf_event_header__init_id(header, data, event);
3930 }
3931 
3932 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3933 					   struct perf_sample_data *data)
3934 {
3935 	u64 sample_type = data->type;
3936 
3937 	if (sample_type & PERF_SAMPLE_TID)
3938 		perf_output_put(handle, data->tid_entry);
3939 
3940 	if (sample_type & PERF_SAMPLE_TIME)
3941 		perf_output_put(handle, data->time);
3942 
3943 	if (sample_type & PERF_SAMPLE_ID)
3944 		perf_output_put(handle, data->id);
3945 
3946 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3947 		perf_output_put(handle, data->stream_id);
3948 
3949 	if (sample_type & PERF_SAMPLE_CPU)
3950 		perf_output_put(handle, data->cpu_entry);
3951 }
3952 
3953 void perf_event__output_id_sample(struct perf_event *event,
3954 				  struct perf_output_handle *handle,
3955 				  struct perf_sample_data *sample)
3956 {
3957 	if (event->attr.sample_id_all)
3958 		__perf_event__output_id_sample(handle, sample);
3959 }
3960 
3961 static void perf_output_read_one(struct perf_output_handle *handle,
3962 				 struct perf_event *event,
3963 				 u64 enabled, u64 running)
3964 {
3965 	u64 read_format = event->attr.read_format;
3966 	u64 values[4];
3967 	int n = 0;
3968 
3969 	values[n++] = perf_event_count(event);
3970 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3971 		values[n++] = enabled +
3972 			atomic64_read(&event->child_total_time_enabled);
3973 	}
3974 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3975 		values[n++] = running +
3976 			atomic64_read(&event->child_total_time_running);
3977 	}
3978 	if (read_format & PERF_FORMAT_ID)
3979 		values[n++] = primary_event_id(event);
3980 
3981 	__output_copy(handle, values, n * sizeof(u64));
3982 }
3983 
3984 /*
3985  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3986  */
3987 static void perf_output_read_group(struct perf_output_handle *handle,
3988 			    struct perf_event *event,
3989 			    u64 enabled, u64 running)
3990 {
3991 	struct perf_event *leader = event->group_leader, *sub;
3992 	u64 read_format = event->attr.read_format;
3993 	u64 values[5];
3994 	int n = 0;
3995 
3996 	values[n++] = 1 + leader->nr_siblings;
3997 
3998 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3999 		values[n++] = enabled;
4000 
4001 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4002 		values[n++] = running;
4003 
4004 	if (leader != event)
4005 		leader->pmu->read(leader);
4006 
4007 	values[n++] = perf_event_count(leader);
4008 	if (read_format & PERF_FORMAT_ID)
4009 		values[n++] = primary_event_id(leader);
4010 
4011 	__output_copy(handle, values, n * sizeof(u64));
4012 
4013 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4014 		n = 0;
4015 
4016 		if (sub != event)
4017 			sub->pmu->read(sub);
4018 
4019 		values[n++] = perf_event_count(sub);
4020 		if (read_format & PERF_FORMAT_ID)
4021 			values[n++] = primary_event_id(sub);
4022 
4023 		__output_copy(handle, values, n * sizeof(u64));
4024 	}
4025 }
4026 
4027 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4028 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4029 
4030 static void perf_output_read(struct perf_output_handle *handle,
4031 			     struct perf_event *event)
4032 {
4033 	u64 enabled = 0, running = 0, now;
4034 	u64 read_format = event->attr.read_format;
4035 
4036 	/*
4037 	 * compute total_time_enabled, total_time_running
4038 	 * based on snapshot values taken when the event
4039 	 * was last scheduled in.
4040 	 *
4041 	 * we cannot simply called update_context_time()
4042 	 * because of locking issue as we are called in
4043 	 * NMI context
4044 	 */
4045 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4046 		calc_timer_values(event, &now, &enabled, &running);
4047 
4048 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4049 		perf_output_read_group(handle, event, enabled, running);
4050 	else
4051 		perf_output_read_one(handle, event, enabled, running);
4052 }
4053 
4054 void perf_output_sample(struct perf_output_handle *handle,
4055 			struct perf_event_header *header,
4056 			struct perf_sample_data *data,
4057 			struct perf_event *event)
4058 {
4059 	u64 sample_type = data->type;
4060 
4061 	perf_output_put(handle, *header);
4062 
4063 	if (sample_type & PERF_SAMPLE_IP)
4064 		perf_output_put(handle, data->ip);
4065 
4066 	if (sample_type & PERF_SAMPLE_TID)
4067 		perf_output_put(handle, data->tid_entry);
4068 
4069 	if (sample_type & PERF_SAMPLE_TIME)
4070 		perf_output_put(handle, data->time);
4071 
4072 	if (sample_type & PERF_SAMPLE_ADDR)
4073 		perf_output_put(handle, data->addr);
4074 
4075 	if (sample_type & PERF_SAMPLE_ID)
4076 		perf_output_put(handle, data->id);
4077 
4078 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4079 		perf_output_put(handle, data->stream_id);
4080 
4081 	if (sample_type & PERF_SAMPLE_CPU)
4082 		perf_output_put(handle, data->cpu_entry);
4083 
4084 	if (sample_type & PERF_SAMPLE_PERIOD)
4085 		perf_output_put(handle, data->period);
4086 
4087 	if (sample_type & PERF_SAMPLE_READ)
4088 		perf_output_read(handle, event);
4089 
4090 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4091 		if (data->callchain) {
4092 			int size = 1;
4093 
4094 			if (data->callchain)
4095 				size += data->callchain->nr;
4096 
4097 			size *= sizeof(u64);
4098 
4099 			__output_copy(handle, data->callchain, size);
4100 		} else {
4101 			u64 nr = 0;
4102 			perf_output_put(handle, nr);
4103 		}
4104 	}
4105 
4106 	if (sample_type & PERF_SAMPLE_RAW) {
4107 		if (data->raw) {
4108 			perf_output_put(handle, data->raw->size);
4109 			__output_copy(handle, data->raw->data,
4110 					   data->raw->size);
4111 		} else {
4112 			struct {
4113 				u32	size;
4114 				u32	data;
4115 			} raw = {
4116 				.size = sizeof(u32),
4117 				.data = 0,
4118 			};
4119 			perf_output_put(handle, raw);
4120 		}
4121 	}
4122 
4123 	if (!event->attr.watermark) {
4124 		int wakeup_events = event->attr.wakeup_events;
4125 
4126 		if (wakeup_events) {
4127 			struct ring_buffer *rb = handle->rb;
4128 			int events = local_inc_return(&rb->events);
4129 
4130 			if (events >= wakeup_events) {
4131 				local_sub(wakeup_events, &rb->events);
4132 				local_inc(&rb->wakeup);
4133 			}
4134 		}
4135 	}
4136 
4137 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4138 		if (data->br_stack) {
4139 			size_t size;
4140 
4141 			size = data->br_stack->nr
4142 			     * sizeof(struct perf_branch_entry);
4143 
4144 			perf_output_put(handle, data->br_stack->nr);
4145 			perf_output_copy(handle, data->br_stack->entries, size);
4146 		} else {
4147 			/*
4148 			 * we always store at least the value of nr
4149 			 */
4150 			u64 nr = 0;
4151 			perf_output_put(handle, nr);
4152 		}
4153 	}
4154 
4155 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4156 		u64 abi = data->regs_user.abi;
4157 
4158 		/*
4159 		 * If there are no regs to dump, notice it through
4160 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4161 		 */
4162 		perf_output_put(handle, abi);
4163 
4164 		if (abi) {
4165 			u64 mask = event->attr.sample_regs_user;
4166 			perf_output_sample_regs(handle,
4167 						data->regs_user.regs,
4168 						mask);
4169 		}
4170 	}
4171 
4172 	if (sample_type & PERF_SAMPLE_STACK_USER)
4173 		perf_output_sample_ustack(handle,
4174 					  data->stack_user_size,
4175 					  data->regs_user.regs);
4176 }
4177 
4178 void perf_prepare_sample(struct perf_event_header *header,
4179 			 struct perf_sample_data *data,
4180 			 struct perf_event *event,
4181 			 struct pt_regs *regs)
4182 {
4183 	u64 sample_type = event->attr.sample_type;
4184 
4185 	header->type = PERF_RECORD_SAMPLE;
4186 	header->size = sizeof(*header) + event->header_size;
4187 
4188 	header->misc = 0;
4189 	header->misc |= perf_misc_flags(regs);
4190 
4191 	__perf_event_header__init_id(header, data, event);
4192 
4193 	if (sample_type & PERF_SAMPLE_IP)
4194 		data->ip = perf_instruction_pointer(regs);
4195 
4196 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4197 		int size = 1;
4198 
4199 		data->callchain = perf_callchain(event, regs);
4200 
4201 		if (data->callchain)
4202 			size += data->callchain->nr;
4203 
4204 		header->size += size * sizeof(u64);
4205 	}
4206 
4207 	if (sample_type & PERF_SAMPLE_RAW) {
4208 		int size = sizeof(u32);
4209 
4210 		if (data->raw)
4211 			size += data->raw->size;
4212 		else
4213 			size += sizeof(u32);
4214 
4215 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4216 		header->size += size;
4217 	}
4218 
4219 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4220 		int size = sizeof(u64); /* nr */
4221 		if (data->br_stack) {
4222 			size += data->br_stack->nr
4223 			      * sizeof(struct perf_branch_entry);
4224 		}
4225 		header->size += size;
4226 	}
4227 
4228 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4229 		/* regs dump ABI info */
4230 		int size = sizeof(u64);
4231 
4232 		perf_sample_regs_user(&data->regs_user, regs);
4233 
4234 		if (data->regs_user.regs) {
4235 			u64 mask = event->attr.sample_regs_user;
4236 			size += hweight64(mask) * sizeof(u64);
4237 		}
4238 
4239 		header->size += size;
4240 	}
4241 
4242 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4243 		/*
4244 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4245 		 * processed as the last one or have additional check added
4246 		 * in case new sample type is added, because we could eat
4247 		 * up the rest of the sample size.
4248 		 */
4249 		struct perf_regs_user *uregs = &data->regs_user;
4250 		u16 stack_size = event->attr.sample_stack_user;
4251 		u16 size = sizeof(u64);
4252 
4253 		if (!uregs->abi)
4254 			perf_sample_regs_user(uregs, regs);
4255 
4256 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4257 						     uregs->regs);
4258 
4259 		/*
4260 		 * If there is something to dump, add space for the dump
4261 		 * itself and for the field that tells the dynamic size,
4262 		 * which is how many have been actually dumped.
4263 		 */
4264 		if (stack_size)
4265 			size += sizeof(u64) + stack_size;
4266 
4267 		data->stack_user_size = stack_size;
4268 		header->size += size;
4269 	}
4270 }
4271 
4272 static void perf_event_output(struct perf_event *event,
4273 				struct perf_sample_data *data,
4274 				struct pt_regs *regs)
4275 {
4276 	struct perf_output_handle handle;
4277 	struct perf_event_header header;
4278 
4279 	/* protect the callchain buffers */
4280 	rcu_read_lock();
4281 
4282 	perf_prepare_sample(&header, data, event, regs);
4283 
4284 	if (perf_output_begin(&handle, event, header.size))
4285 		goto exit;
4286 
4287 	perf_output_sample(&handle, &header, data, event);
4288 
4289 	perf_output_end(&handle);
4290 
4291 exit:
4292 	rcu_read_unlock();
4293 }
4294 
4295 /*
4296  * read event_id
4297  */
4298 
4299 struct perf_read_event {
4300 	struct perf_event_header	header;
4301 
4302 	u32				pid;
4303 	u32				tid;
4304 };
4305 
4306 static void
4307 perf_event_read_event(struct perf_event *event,
4308 			struct task_struct *task)
4309 {
4310 	struct perf_output_handle handle;
4311 	struct perf_sample_data sample;
4312 	struct perf_read_event read_event = {
4313 		.header = {
4314 			.type = PERF_RECORD_READ,
4315 			.misc = 0,
4316 			.size = sizeof(read_event) + event->read_size,
4317 		},
4318 		.pid = perf_event_pid(event, task),
4319 		.tid = perf_event_tid(event, task),
4320 	};
4321 	int ret;
4322 
4323 	perf_event_header__init_id(&read_event.header, &sample, event);
4324 	ret = perf_output_begin(&handle, event, read_event.header.size);
4325 	if (ret)
4326 		return;
4327 
4328 	perf_output_put(&handle, read_event);
4329 	perf_output_read(&handle, event);
4330 	perf_event__output_id_sample(event, &handle, &sample);
4331 
4332 	perf_output_end(&handle);
4333 }
4334 
4335 /*
4336  * task tracking -- fork/exit
4337  *
4338  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4339  */
4340 
4341 struct perf_task_event {
4342 	struct task_struct		*task;
4343 	struct perf_event_context	*task_ctx;
4344 
4345 	struct {
4346 		struct perf_event_header	header;
4347 
4348 		u32				pid;
4349 		u32				ppid;
4350 		u32				tid;
4351 		u32				ptid;
4352 		u64				time;
4353 	} event_id;
4354 };
4355 
4356 static void perf_event_task_output(struct perf_event *event,
4357 				     struct perf_task_event *task_event)
4358 {
4359 	struct perf_output_handle handle;
4360 	struct perf_sample_data	sample;
4361 	struct task_struct *task = task_event->task;
4362 	int ret, size = task_event->event_id.header.size;
4363 
4364 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4365 
4366 	ret = perf_output_begin(&handle, event,
4367 				task_event->event_id.header.size);
4368 	if (ret)
4369 		goto out;
4370 
4371 	task_event->event_id.pid = perf_event_pid(event, task);
4372 	task_event->event_id.ppid = perf_event_pid(event, current);
4373 
4374 	task_event->event_id.tid = perf_event_tid(event, task);
4375 	task_event->event_id.ptid = perf_event_tid(event, current);
4376 
4377 	perf_output_put(&handle, task_event->event_id);
4378 
4379 	perf_event__output_id_sample(event, &handle, &sample);
4380 
4381 	perf_output_end(&handle);
4382 out:
4383 	task_event->event_id.header.size = size;
4384 }
4385 
4386 static int perf_event_task_match(struct perf_event *event)
4387 {
4388 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4389 		return 0;
4390 
4391 	if (!event_filter_match(event))
4392 		return 0;
4393 
4394 	if (event->attr.comm || event->attr.mmap ||
4395 	    event->attr.mmap_data || event->attr.task)
4396 		return 1;
4397 
4398 	return 0;
4399 }
4400 
4401 static void perf_event_task_ctx(struct perf_event_context *ctx,
4402 				  struct perf_task_event *task_event)
4403 {
4404 	struct perf_event *event;
4405 
4406 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4407 		if (perf_event_task_match(event))
4408 			perf_event_task_output(event, task_event);
4409 	}
4410 }
4411 
4412 static void perf_event_task_event(struct perf_task_event *task_event)
4413 {
4414 	struct perf_cpu_context *cpuctx;
4415 	struct perf_event_context *ctx;
4416 	struct pmu *pmu;
4417 	int ctxn;
4418 
4419 	rcu_read_lock();
4420 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4421 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4422 		if (cpuctx->active_pmu != pmu)
4423 			goto next;
4424 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4425 
4426 		ctx = task_event->task_ctx;
4427 		if (!ctx) {
4428 			ctxn = pmu->task_ctx_nr;
4429 			if (ctxn < 0)
4430 				goto next;
4431 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4432 		}
4433 		if (ctx)
4434 			perf_event_task_ctx(ctx, task_event);
4435 next:
4436 		put_cpu_ptr(pmu->pmu_cpu_context);
4437 	}
4438 	rcu_read_unlock();
4439 }
4440 
4441 static void perf_event_task(struct task_struct *task,
4442 			      struct perf_event_context *task_ctx,
4443 			      int new)
4444 {
4445 	struct perf_task_event task_event;
4446 
4447 	if (!atomic_read(&nr_comm_events) &&
4448 	    !atomic_read(&nr_mmap_events) &&
4449 	    !atomic_read(&nr_task_events))
4450 		return;
4451 
4452 	task_event = (struct perf_task_event){
4453 		.task	  = task,
4454 		.task_ctx = task_ctx,
4455 		.event_id    = {
4456 			.header = {
4457 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4458 				.misc = 0,
4459 				.size = sizeof(task_event.event_id),
4460 			},
4461 			/* .pid  */
4462 			/* .ppid */
4463 			/* .tid  */
4464 			/* .ptid */
4465 			.time = perf_clock(),
4466 		},
4467 	};
4468 
4469 	perf_event_task_event(&task_event);
4470 }
4471 
4472 void perf_event_fork(struct task_struct *task)
4473 {
4474 	perf_event_task(task, NULL, 1);
4475 }
4476 
4477 /*
4478  * comm tracking
4479  */
4480 
4481 struct perf_comm_event {
4482 	struct task_struct	*task;
4483 	char			*comm;
4484 	int			comm_size;
4485 
4486 	struct {
4487 		struct perf_event_header	header;
4488 
4489 		u32				pid;
4490 		u32				tid;
4491 	} event_id;
4492 };
4493 
4494 static void perf_event_comm_output(struct perf_event *event,
4495 				     struct perf_comm_event *comm_event)
4496 {
4497 	struct perf_output_handle handle;
4498 	struct perf_sample_data sample;
4499 	int size = comm_event->event_id.header.size;
4500 	int ret;
4501 
4502 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4503 	ret = perf_output_begin(&handle, event,
4504 				comm_event->event_id.header.size);
4505 
4506 	if (ret)
4507 		goto out;
4508 
4509 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4510 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4511 
4512 	perf_output_put(&handle, comm_event->event_id);
4513 	__output_copy(&handle, comm_event->comm,
4514 				   comm_event->comm_size);
4515 
4516 	perf_event__output_id_sample(event, &handle, &sample);
4517 
4518 	perf_output_end(&handle);
4519 out:
4520 	comm_event->event_id.header.size = size;
4521 }
4522 
4523 static int perf_event_comm_match(struct perf_event *event)
4524 {
4525 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4526 		return 0;
4527 
4528 	if (!event_filter_match(event))
4529 		return 0;
4530 
4531 	if (event->attr.comm)
4532 		return 1;
4533 
4534 	return 0;
4535 }
4536 
4537 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4538 				  struct perf_comm_event *comm_event)
4539 {
4540 	struct perf_event *event;
4541 
4542 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4543 		if (perf_event_comm_match(event))
4544 			perf_event_comm_output(event, comm_event);
4545 	}
4546 }
4547 
4548 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4549 {
4550 	struct perf_cpu_context *cpuctx;
4551 	struct perf_event_context *ctx;
4552 	char comm[TASK_COMM_LEN];
4553 	unsigned int size;
4554 	struct pmu *pmu;
4555 	int ctxn;
4556 
4557 	memset(comm, 0, sizeof(comm));
4558 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4559 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4560 
4561 	comm_event->comm = comm;
4562 	comm_event->comm_size = size;
4563 
4564 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4565 	rcu_read_lock();
4566 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4567 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4568 		if (cpuctx->active_pmu != pmu)
4569 			goto next;
4570 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4571 
4572 		ctxn = pmu->task_ctx_nr;
4573 		if (ctxn < 0)
4574 			goto next;
4575 
4576 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4577 		if (ctx)
4578 			perf_event_comm_ctx(ctx, comm_event);
4579 next:
4580 		put_cpu_ptr(pmu->pmu_cpu_context);
4581 	}
4582 	rcu_read_unlock();
4583 }
4584 
4585 void perf_event_comm(struct task_struct *task)
4586 {
4587 	struct perf_comm_event comm_event;
4588 	struct perf_event_context *ctx;
4589 	int ctxn;
4590 
4591 	for_each_task_context_nr(ctxn) {
4592 		ctx = task->perf_event_ctxp[ctxn];
4593 		if (!ctx)
4594 			continue;
4595 
4596 		perf_event_enable_on_exec(ctx);
4597 	}
4598 
4599 	if (!atomic_read(&nr_comm_events))
4600 		return;
4601 
4602 	comm_event = (struct perf_comm_event){
4603 		.task	= task,
4604 		/* .comm      */
4605 		/* .comm_size */
4606 		.event_id  = {
4607 			.header = {
4608 				.type = PERF_RECORD_COMM,
4609 				.misc = 0,
4610 				/* .size */
4611 			},
4612 			/* .pid */
4613 			/* .tid */
4614 		},
4615 	};
4616 
4617 	perf_event_comm_event(&comm_event);
4618 }
4619 
4620 /*
4621  * mmap tracking
4622  */
4623 
4624 struct perf_mmap_event {
4625 	struct vm_area_struct	*vma;
4626 
4627 	const char		*file_name;
4628 	int			file_size;
4629 
4630 	struct {
4631 		struct perf_event_header	header;
4632 
4633 		u32				pid;
4634 		u32				tid;
4635 		u64				start;
4636 		u64				len;
4637 		u64				pgoff;
4638 	} event_id;
4639 };
4640 
4641 static void perf_event_mmap_output(struct perf_event *event,
4642 				     struct perf_mmap_event *mmap_event)
4643 {
4644 	struct perf_output_handle handle;
4645 	struct perf_sample_data sample;
4646 	int size = mmap_event->event_id.header.size;
4647 	int ret;
4648 
4649 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4650 	ret = perf_output_begin(&handle, event,
4651 				mmap_event->event_id.header.size);
4652 	if (ret)
4653 		goto out;
4654 
4655 	mmap_event->event_id.pid = perf_event_pid(event, current);
4656 	mmap_event->event_id.tid = perf_event_tid(event, current);
4657 
4658 	perf_output_put(&handle, mmap_event->event_id);
4659 	__output_copy(&handle, mmap_event->file_name,
4660 				   mmap_event->file_size);
4661 
4662 	perf_event__output_id_sample(event, &handle, &sample);
4663 
4664 	perf_output_end(&handle);
4665 out:
4666 	mmap_event->event_id.header.size = size;
4667 }
4668 
4669 static int perf_event_mmap_match(struct perf_event *event,
4670 				   struct perf_mmap_event *mmap_event,
4671 				   int executable)
4672 {
4673 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4674 		return 0;
4675 
4676 	if (!event_filter_match(event))
4677 		return 0;
4678 
4679 	if ((!executable && event->attr.mmap_data) ||
4680 	    (executable && event->attr.mmap))
4681 		return 1;
4682 
4683 	return 0;
4684 }
4685 
4686 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4687 				  struct perf_mmap_event *mmap_event,
4688 				  int executable)
4689 {
4690 	struct perf_event *event;
4691 
4692 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4693 		if (perf_event_mmap_match(event, mmap_event, executable))
4694 			perf_event_mmap_output(event, mmap_event);
4695 	}
4696 }
4697 
4698 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4699 {
4700 	struct perf_cpu_context *cpuctx;
4701 	struct perf_event_context *ctx;
4702 	struct vm_area_struct *vma = mmap_event->vma;
4703 	struct file *file = vma->vm_file;
4704 	unsigned int size;
4705 	char tmp[16];
4706 	char *buf = NULL;
4707 	const char *name;
4708 	struct pmu *pmu;
4709 	int ctxn;
4710 
4711 	memset(tmp, 0, sizeof(tmp));
4712 
4713 	if (file) {
4714 		/*
4715 		 * d_path works from the end of the rb backwards, so we
4716 		 * need to add enough zero bytes after the string to handle
4717 		 * the 64bit alignment we do later.
4718 		 */
4719 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4720 		if (!buf) {
4721 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4722 			goto got_name;
4723 		}
4724 		name = d_path(&file->f_path, buf, PATH_MAX);
4725 		if (IS_ERR(name)) {
4726 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4727 			goto got_name;
4728 		}
4729 	} else {
4730 		if (arch_vma_name(mmap_event->vma)) {
4731 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4732 				       sizeof(tmp));
4733 			goto got_name;
4734 		}
4735 
4736 		if (!vma->vm_mm) {
4737 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4738 			goto got_name;
4739 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4740 				vma->vm_end >= vma->vm_mm->brk) {
4741 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4742 			goto got_name;
4743 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4744 				vma->vm_end >= vma->vm_mm->start_stack) {
4745 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4746 			goto got_name;
4747 		}
4748 
4749 		name = strncpy(tmp, "//anon", sizeof(tmp));
4750 		goto got_name;
4751 	}
4752 
4753 got_name:
4754 	size = ALIGN(strlen(name)+1, sizeof(u64));
4755 
4756 	mmap_event->file_name = name;
4757 	mmap_event->file_size = size;
4758 
4759 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4760 
4761 	rcu_read_lock();
4762 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4763 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4764 		if (cpuctx->active_pmu != pmu)
4765 			goto next;
4766 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4767 					vma->vm_flags & VM_EXEC);
4768 
4769 		ctxn = pmu->task_ctx_nr;
4770 		if (ctxn < 0)
4771 			goto next;
4772 
4773 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4774 		if (ctx) {
4775 			perf_event_mmap_ctx(ctx, mmap_event,
4776 					vma->vm_flags & VM_EXEC);
4777 		}
4778 next:
4779 		put_cpu_ptr(pmu->pmu_cpu_context);
4780 	}
4781 	rcu_read_unlock();
4782 
4783 	kfree(buf);
4784 }
4785 
4786 void perf_event_mmap(struct vm_area_struct *vma)
4787 {
4788 	struct perf_mmap_event mmap_event;
4789 
4790 	if (!atomic_read(&nr_mmap_events))
4791 		return;
4792 
4793 	mmap_event = (struct perf_mmap_event){
4794 		.vma	= vma,
4795 		/* .file_name */
4796 		/* .file_size */
4797 		.event_id  = {
4798 			.header = {
4799 				.type = PERF_RECORD_MMAP,
4800 				.misc = PERF_RECORD_MISC_USER,
4801 				/* .size */
4802 			},
4803 			/* .pid */
4804 			/* .tid */
4805 			.start  = vma->vm_start,
4806 			.len    = vma->vm_end - vma->vm_start,
4807 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4808 		},
4809 	};
4810 
4811 	perf_event_mmap_event(&mmap_event);
4812 }
4813 
4814 /*
4815  * IRQ throttle logging
4816  */
4817 
4818 static void perf_log_throttle(struct perf_event *event, int enable)
4819 {
4820 	struct perf_output_handle handle;
4821 	struct perf_sample_data sample;
4822 	int ret;
4823 
4824 	struct {
4825 		struct perf_event_header	header;
4826 		u64				time;
4827 		u64				id;
4828 		u64				stream_id;
4829 	} throttle_event = {
4830 		.header = {
4831 			.type = PERF_RECORD_THROTTLE,
4832 			.misc = 0,
4833 			.size = sizeof(throttle_event),
4834 		},
4835 		.time		= perf_clock(),
4836 		.id		= primary_event_id(event),
4837 		.stream_id	= event->id,
4838 	};
4839 
4840 	if (enable)
4841 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4842 
4843 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4844 
4845 	ret = perf_output_begin(&handle, event,
4846 				throttle_event.header.size);
4847 	if (ret)
4848 		return;
4849 
4850 	perf_output_put(&handle, throttle_event);
4851 	perf_event__output_id_sample(event, &handle, &sample);
4852 	perf_output_end(&handle);
4853 }
4854 
4855 /*
4856  * Generic event overflow handling, sampling.
4857  */
4858 
4859 static int __perf_event_overflow(struct perf_event *event,
4860 				   int throttle, struct perf_sample_data *data,
4861 				   struct pt_regs *regs)
4862 {
4863 	int events = atomic_read(&event->event_limit);
4864 	struct hw_perf_event *hwc = &event->hw;
4865 	u64 seq;
4866 	int ret = 0;
4867 
4868 	/*
4869 	 * Non-sampling counters might still use the PMI to fold short
4870 	 * hardware counters, ignore those.
4871 	 */
4872 	if (unlikely(!is_sampling_event(event)))
4873 		return 0;
4874 
4875 	seq = __this_cpu_read(perf_throttled_seq);
4876 	if (seq != hwc->interrupts_seq) {
4877 		hwc->interrupts_seq = seq;
4878 		hwc->interrupts = 1;
4879 	} else {
4880 		hwc->interrupts++;
4881 		if (unlikely(throttle
4882 			     && hwc->interrupts >= max_samples_per_tick)) {
4883 			__this_cpu_inc(perf_throttled_count);
4884 			hwc->interrupts = MAX_INTERRUPTS;
4885 			perf_log_throttle(event, 0);
4886 			ret = 1;
4887 		}
4888 	}
4889 
4890 	if (event->attr.freq) {
4891 		u64 now = perf_clock();
4892 		s64 delta = now - hwc->freq_time_stamp;
4893 
4894 		hwc->freq_time_stamp = now;
4895 
4896 		if (delta > 0 && delta < 2*TICK_NSEC)
4897 			perf_adjust_period(event, delta, hwc->last_period, true);
4898 	}
4899 
4900 	/*
4901 	 * XXX event_limit might not quite work as expected on inherited
4902 	 * events
4903 	 */
4904 
4905 	event->pending_kill = POLL_IN;
4906 	if (events && atomic_dec_and_test(&event->event_limit)) {
4907 		ret = 1;
4908 		event->pending_kill = POLL_HUP;
4909 		event->pending_disable = 1;
4910 		irq_work_queue(&event->pending);
4911 	}
4912 
4913 	if (event->overflow_handler)
4914 		event->overflow_handler(event, data, regs);
4915 	else
4916 		perf_event_output(event, data, regs);
4917 
4918 	if (event->fasync && event->pending_kill) {
4919 		event->pending_wakeup = 1;
4920 		irq_work_queue(&event->pending);
4921 	}
4922 
4923 	return ret;
4924 }
4925 
4926 int perf_event_overflow(struct perf_event *event,
4927 			  struct perf_sample_data *data,
4928 			  struct pt_regs *regs)
4929 {
4930 	return __perf_event_overflow(event, 1, data, regs);
4931 }
4932 
4933 /*
4934  * Generic software event infrastructure
4935  */
4936 
4937 struct swevent_htable {
4938 	struct swevent_hlist		*swevent_hlist;
4939 	struct mutex			hlist_mutex;
4940 	int				hlist_refcount;
4941 
4942 	/* Recursion avoidance in each contexts */
4943 	int				recursion[PERF_NR_CONTEXTS];
4944 };
4945 
4946 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4947 
4948 /*
4949  * We directly increment event->count and keep a second value in
4950  * event->hw.period_left to count intervals. This period event
4951  * is kept in the range [-sample_period, 0] so that we can use the
4952  * sign as trigger.
4953  */
4954 
4955 static u64 perf_swevent_set_period(struct perf_event *event)
4956 {
4957 	struct hw_perf_event *hwc = &event->hw;
4958 	u64 period = hwc->last_period;
4959 	u64 nr, offset;
4960 	s64 old, val;
4961 
4962 	hwc->last_period = hwc->sample_period;
4963 
4964 again:
4965 	old = val = local64_read(&hwc->period_left);
4966 	if (val < 0)
4967 		return 0;
4968 
4969 	nr = div64_u64(period + val, period);
4970 	offset = nr * period;
4971 	val -= offset;
4972 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4973 		goto again;
4974 
4975 	return nr;
4976 }
4977 
4978 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4979 				    struct perf_sample_data *data,
4980 				    struct pt_regs *regs)
4981 {
4982 	struct hw_perf_event *hwc = &event->hw;
4983 	int throttle = 0;
4984 
4985 	if (!overflow)
4986 		overflow = perf_swevent_set_period(event);
4987 
4988 	if (hwc->interrupts == MAX_INTERRUPTS)
4989 		return;
4990 
4991 	for (; overflow; overflow--) {
4992 		if (__perf_event_overflow(event, throttle,
4993 					    data, regs)) {
4994 			/*
4995 			 * We inhibit the overflow from happening when
4996 			 * hwc->interrupts == MAX_INTERRUPTS.
4997 			 */
4998 			break;
4999 		}
5000 		throttle = 1;
5001 	}
5002 }
5003 
5004 static void perf_swevent_event(struct perf_event *event, u64 nr,
5005 			       struct perf_sample_data *data,
5006 			       struct pt_regs *regs)
5007 {
5008 	struct hw_perf_event *hwc = &event->hw;
5009 
5010 	local64_add(nr, &event->count);
5011 
5012 	if (!regs)
5013 		return;
5014 
5015 	if (!is_sampling_event(event))
5016 		return;
5017 
5018 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5019 		data->period = nr;
5020 		return perf_swevent_overflow(event, 1, data, regs);
5021 	} else
5022 		data->period = event->hw.last_period;
5023 
5024 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5025 		return perf_swevent_overflow(event, 1, data, regs);
5026 
5027 	if (local64_add_negative(nr, &hwc->period_left))
5028 		return;
5029 
5030 	perf_swevent_overflow(event, 0, data, regs);
5031 }
5032 
5033 static int perf_exclude_event(struct perf_event *event,
5034 			      struct pt_regs *regs)
5035 {
5036 	if (event->hw.state & PERF_HES_STOPPED)
5037 		return 1;
5038 
5039 	if (regs) {
5040 		if (event->attr.exclude_user && user_mode(regs))
5041 			return 1;
5042 
5043 		if (event->attr.exclude_kernel && !user_mode(regs))
5044 			return 1;
5045 	}
5046 
5047 	return 0;
5048 }
5049 
5050 static int perf_swevent_match(struct perf_event *event,
5051 				enum perf_type_id type,
5052 				u32 event_id,
5053 				struct perf_sample_data *data,
5054 				struct pt_regs *regs)
5055 {
5056 	if (event->attr.type != type)
5057 		return 0;
5058 
5059 	if (event->attr.config != event_id)
5060 		return 0;
5061 
5062 	if (perf_exclude_event(event, regs))
5063 		return 0;
5064 
5065 	return 1;
5066 }
5067 
5068 static inline u64 swevent_hash(u64 type, u32 event_id)
5069 {
5070 	u64 val = event_id | (type << 32);
5071 
5072 	return hash_64(val, SWEVENT_HLIST_BITS);
5073 }
5074 
5075 static inline struct hlist_head *
5076 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5077 {
5078 	u64 hash = swevent_hash(type, event_id);
5079 
5080 	return &hlist->heads[hash];
5081 }
5082 
5083 /* For the read side: events when they trigger */
5084 static inline struct hlist_head *
5085 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5086 {
5087 	struct swevent_hlist *hlist;
5088 
5089 	hlist = rcu_dereference(swhash->swevent_hlist);
5090 	if (!hlist)
5091 		return NULL;
5092 
5093 	return __find_swevent_head(hlist, type, event_id);
5094 }
5095 
5096 /* For the event head insertion and removal in the hlist */
5097 static inline struct hlist_head *
5098 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5099 {
5100 	struct swevent_hlist *hlist;
5101 	u32 event_id = event->attr.config;
5102 	u64 type = event->attr.type;
5103 
5104 	/*
5105 	 * Event scheduling is always serialized against hlist allocation
5106 	 * and release. Which makes the protected version suitable here.
5107 	 * The context lock guarantees that.
5108 	 */
5109 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5110 					  lockdep_is_held(&event->ctx->lock));
5111 	if (!hlist)
5112 		return NULL;
5113 
5114 	return __find_swevent_head(hlist, type, event_id);
5115 }
5116 
5117 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5118 				    u64 nr,
5119 				    struct perf_sample_data *data,
5120 				    struct pt_regs *regs)
5121 {
5122 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5123 	struct perf_event *event;
5124 	struct hlist_node *node;
5125 	struct hlist_head *head;
5126 
5127 	rcu_read_lock();
5128 	head = find_swevent_head_rcu(swhash, type, event_id);
5129 	if (!head)
5130 		goto end;
5131 
5132 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5133 		if (perf_swevent_match(event, type, event_id, data, regs))
5134 			perf_swevent_event(event, nr, data, regs);
5135 	}
5136 end:
5137 	rcu_read_unlock();
5138 }
5139 
5140 int perf_swevent_get_recursion_context(void)
5141 {
5142 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5143 
5144 	return get_recursion_context(swhash->recursion);
5145 }
5146 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5147 
5148 inline void perf_swevent_put_recursion_context(int rctx)
5149 {
5150 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5151 
5152 	put_recursion_context(swhash->recursion, rctx);
5153 }
5154 
5155 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5156 {
5157 	struct perf_sample_data data;
5158 	int rctx;
5159 
5160 	preempt_disable_notrace();
5161 	rctx = perf_swevent_get_recursion_context();
5162 	if (rctx < 0)
5163 		return;
5164 
5165 	perf_sample_data_init(&data, addr, 0);
5166 
5167 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5168 
5169 	perf_swevent_put_recursion_context(rctx);
5170 	preempt_enable_notrace();
5171 }
5172 
5173 static void perf_swevent_read(struct perf_event *event)
5174 {
5175 }
5176 
5177 static int perf_swevent_add(struct perf_event *event, int flags)
5178 {
5179 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5180 	struct hw_perf_event *hwc = &event->hw;
5181 	struct hlist_head *head;
5182 
5183 	if (is_sampling_event(event)) {
5184 		hwc->last_period = hwc->sample_period;
5185 		perf_swevent_set_period(event);
5186 	}
5187 
5188 	hwc->state = !(flags & PERF_EF_START);
5189 
5190 	head = find_swevent_head(swhash, event);
5191 	if (WARN_ON_ONCE(!head))
5192 		return -EINVAL;
5193 
5194 	hlist_add_head_rcu(&event->hlist_entry, head);
5195 
5196 	return 0;
5197 }
5198 
5199 static void perf_swevent_del(struct perf_event *event, int flags)
5200 {
5201 	hlist_del_rcu(&event->hlist_entry);
5202 }
5203 
5204 static void perf_swevent_start(struct perf_event *event, int flags)
5205 {
5206 	event->hw.state = 0;
5207 }
5208 
5209 static void perf_swevent_stop(struct perf_event *event, int flags)
5210 {
5211 	event->hw.state = PERF_HES_STOPPED;
5212 }
5213 
5214 /* Deref the hlist from the update side */
5215 static inline struct swevent_hlist *
5216 swevent_hlist_deref(struct swevent_htable *swhash)
5217 {
5218 	return rcu_dereference_protected(swhash->swevent_hlist,
5219 					 lockdep_is_held(&swhash->hlist_mutex));
5220 }
5221 
5222 static void swevent_hlist_release(struct swevent_htable *swhash)
5223 {
5224 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5225 
5226 	if (!hlist)
5227 		return;
5228 
5229 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5230 	kfree_rcu(hlist, rcu_head);
5231 }
5232 
5233 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5234 {
5235 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5236 
5237 	mutex_lock(&swhash->hlist_mutex);
5238 
5239 	if (!--swhash->hlist_refcount)
5240 		swevent_hlist_release(swhash);
5241 
5242 	mutex_unlock(&swhash->hlist_mutex);
5243 }
5244 
5245 static void swevent_hlist_put(struct perf_event *event)
5246 {
5247 	int cpu;
5248 
5249 	if (event->cpu != -1) {
5250 		swevent_hlist_put_cpu(event, event->cpu);
5251 		return;
5252 	}
5253 
5254 	for_each_possible_cpu(cpu)
5255 		swevent_hlist_put_cpu(event, cpu);
5256 }
5257 
5258 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5259 {
5260 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5261 	int err = 0;
5262 
5263 	mutex_lock(&swhash->hlist_mutex);
5264 
5265 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5266 		struct swevent_hlist *hlist;
5267 
5268 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5269 		if (!hlist) {
5270 			err = -ENOMEM;
5271 			goto exit;
5272 		}
5273 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5274 	}
5275 	swhash->hlist_refcount++;
5276 exit:
5277 	mutex_unlock(&swhash->hlist_mutex);
5278 
5279 	return err;
5280 }
5281 
5282 static int swevent_hlist_get(struct perf_event *event)
5283 {
5284 	int err;
5285 	int cpu, failed_cpu;
5286 
5287 	if (event->cpu != -1)
5288 		return swevent_hlist_get_cpu(event, event->cpu);
5289 
5290 	get_online_cpus();
5291 	for_each_possible_cpu(cpu) {
5292 		err = swevent_hlist_get_cpu(event, cpu);
5293 		if (err) {
5294 			failed_cpu = cpu;
5295 			goto fail;
5296 		}
5297 	}
5298 	put_online_cpus();
5299 
5300 	return 0;
5301 fail:
5302 	for_each_possible_cpu(cpu) {
5303 		if (cpu == failed_cpu)
5304 			break;
5305 		swevent_hlist_put_cpu(event, cpu);
5306 	}
5307 
5308 	put_online_cpus();
5309 	return err;
5310 }
5311 
5312 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5313 
5314 static void sw_perf_event_destroy(struct perf_event *event)
5315 {
5316 	u64 event_id = event->attr.config;
5317 
5318 	WARN_ON(event->parent);
5319 
5320 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5321 	swevent_hlist_put(event);
5322 }
5323 
5324 static int perf_swevent_init(struct perf_event *event)
5325 {
5326 	int event_id = event->attr.config;
5327 
5328 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5329 		return -ENOENT;
5330 
5331 	/*
5332 	 * no branch sampling for software events
5333 	 */
5334 	if (has_branch_stack(event))
5335 		return -EOPNOTSUPP;
5336 
5337 	switch (event_id) {
5338 	case PERF_COUNT_SW_CPU_CLOCK:
5339 	case PERF_COUNT_SW_TASK_CLOCK:
5340 		return -ENOENT;
5341 
5342 	default:
5343 		break;
5344 	}
5345 
5346 	if (event_id >= PERF_COUNT_SW_MAX)
5347 		return -ENOENT;
5348 
5349 	if (!event->parent) {
5350 		int err;
5351 
5352 		err = swevent_hlist_get(event);
5353 		if (err)
5354 			return err;
5355 
5356 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5357 		event->destroy = sw_perf_event_destroy;
5358 	}
5359 
5360 	return 0;
5361 }
5362 
5363 static int perf_swevent_event_idx(struct perf_event *event)
5364 {
5365 	return 0;
5366 }
5367 
5368 static struct pmu perf_swevent = {
5369 	.task_ctx_nr	= perf_sw_context,
5370 
5371 	.event_init	= perf_swevent_init,
5372 	.add		= perf_swevent_add,
5373 	.del		= perf_swevent_del,
5374 	.start		= perf_swevent_start,
5375 	.stop		= perf_swevent_stop,
5376 	.read		= perf_swevent_read,
5377 
5378 	.event_idx	= perf_swevent_event_idx,
5379 };
5380 
5381 #ifdef CONFIG_EVENT_TRACING
5382 
5383 static int perf_tp_filter_match(struct perf_event *event,
5384 				struct perf_sample_data *data)
5385 {
5386 	void *record = data->raw->data;
5387 
5388 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5389 		return 1;
5390 	return 0;
5391 }
5392 
5393 static int perf_tp_event_match(struct perf_event *event,
5394 				struct perf_sample_data *data,
5395 				struct pt_regs *regs)
5396 {
5397 	if (event->hw.state & PERF_HES_STOPPED)
5398 		return 0;
5399 	/*
5400 	 * All tracepoints are from kernel-space.
5401 	 */
5402 	if (event->attr.exclude_kernel)
5403 		return 0;
5404 
5405 	if (!perf_tp_filter_match(event, data))
5406 		return 0;
5407 
5408 	return 1;
5409 }
5410 
5411 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5412 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5413 		   struct task_struct *task)
5414 {
5415 	struct perf_sample_data data;
5416 	struct perf_event *event;
5417 	struct hlist_node *node;
5418 
5419 	struct perf_raw_record raw = {
5420 		.size = entry_size,
5421 		.data = record,
5422 	};
5423 
5424 	perf_sample_data_init(&data, addr, 0);
5425 	data.raw = &raw;
5426 
5427 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5428 		if (perf_tp_event_match(event, &data, regs))
5429 			perf_swevent_event(event, count, &data, regs);
5430 	}
5431 
5432 	/*
5433 	 * If we got specified a target task, also iterate its context and
5434 	 * deliver this event there too.
5435 	 */
5436 	if (task && task != current) {
5437 		struct perf_event_context *ctx;
5438 		struct trace_entry *entry = record;
5439 
5440 		rcu_read_lock();
5441 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5442 		if (!ctx)
5443 			goto unlock;
5444 
5445 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5446 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5447 				continue;
5448 			if (event->attr.config != entry->type)
5449 				continue;
5450 			if (perf_tp_event_match(event, &data, regs))
5451 				perf_swevent_event(event, count, &data, regs);
5452 		}
5453 unlock:
5454 		rcu_read_unlock();
5455 	}
5456 
5457 	perf_swevent_put_recursion_context(rctx);
5458 }
5459 EXPORT_SYMBOL_GPL(perf_tp_event);
5460 
5461 static void tp_perf_event_destroy(struct perf_event *event)
5462 {
5463 	perf_trace_destroy(event);
5464 }
5465 
5466 static int perf_tp_event_init(struct perf_event *event)
5467 {
5468 	int err;
5469 
5470 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5471 		return -ENOENT;
5472 
5473 	/*
5474 	 * no branch sampling for tracepoint events
5475 	 */
5476 	if (has_branch_stack(event))
5477 		return -EOPNOTSUPP;
5478 
5479 	err = perf_trace_init(event);
5480 	if (err)
5481 		return err;
5482 
5483 	event->destroy = tp_perf_event_destroy;
5484 
5485 	return 0;
5486 }
5487 
5488 static struct pmu perf_tracepoint = {
5489 	.task_ctx_nr	= perf_sw_context,
5490 
5491 	.event_init	= perf_tp_event_init,
5492 	.add		= perf_trace_add,
5493 	.del		= perf_trace_del,
5494 	.start		= perf_swevent_start,
5495 	.stop		= perf_swevent_stop,
5496 	.read		= perf_swevent_read,
5497 
5498 	.event_idx	= perf_swevent_event_idx,
5499 };
5500 
5501 static inline void perf_tp_register(void)
5502 {
5503 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5504 }
5505 
5506 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5507 {
5508 	char *filter_str;
5509 	int ret;
5510 
5511 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5512 		return -EINVAL;
5513 
5514 	filter_str = strndup_user(arg, PAGE_SIZE);
5515 	if (IS_ERR(filter_str))
5516 		return PTR_ERR(filter_str);
5517 
5518 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5519 
5520 	kfree(filter_str);
5521 	return ret;
5522 }
5523 
5524 static void perf_event_free_filter(struct perf_event *event)
5525 {
5526 	ftrace_profile_free_filter(event);
5527 }
5528 
5529 #else
5530 
5531 static inline void perf_tp_register(void)
5532 {
5533 }
5534 
5535 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5536 {
5537 	return -ENOENT;
5538 }
5539 
5540 static void perf_event_free_filter(struct perf_event *event)
5541 {
5542 }
5543 
5544 #endif /* CONFIG_EVENT_TRACING */
5545 
5546 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5547 void perf_bp_event(struct perf_event *bp, void *data)
5548 {
5549 	struct perf_sample_data sample;
5550 	struct pt_regs *regs = data;
5551 
5552 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5553 
5554 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5555 		perf_swevent_event(bp, 1, &sample, regs);
5556 }
5557 #endif
5558 
5559 /*
5560  * hrtimer based swevent callback
5561  */
5562 
5563 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5564 {
5565 	enum hrtimer_restart ret = HRTIMER_RESTART;
5566 	struct perf_sample_data data;
5567 	struct pt_regs *regs;
5568 	struct perf_event *event;
5569 	u64 period;
5570 
5571 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5572 
5573 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5574 		return HRTIMER_NORESTART;
5575 
5576 	event->pmu->read(event);
5577 
5578 	perf_sample_data_init(&data, 0, event->hw.last_period);
5579 	regs = get_irq_regs();
5580 
5581 	if (regs && !perf_exclude_event(event, regs)) {
5582 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5583 			if (__perf_event_overflow(event, 1, &data, regs))
5584 				ret = HRTIMER_NORESTART;
5585 	}
5586 
5587 	period = max_t(u64, 10000, event->hw.sample_period);
5588 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5589 
5590 	return ret;
5591 }
5592 
5593 static void perf_swevent_start_hrtimer(struct perf_event *event)
5594 {
5595 	struct hw_perf_event *hwc = &event->hw;
5596 	s64 period;
5597 
5598 	if (!is_sampling_event(event))
5599 		return;
5600 
5601 	period = local64_read(&hwc->period_left);
5602 	if (period) {
5603 		if (period < 0)
5604 			period = 10000;
5605 
5606 		local64_set(&hwc->period_left, 0);
5607 	} else {
5608 		period = max_t(u64, 10000, hwc->sample_period);
5609 	}
5610 	__hrtimer_start_range_ns(&hwc->hrtimer,
5611 				ns_to_ktime(period), 0,
5612 				HRTIMER_MODE_REL_PINNED, 0);
5613 }
5614 
5615 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5616 {
5617 	struct hw_perf_event *hwc = &event->hw;
5618 
5619 	if (is_sampling_event(event)) {
5620 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5621 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5622 
5623 		hrtimer_cancel(&hwc->hrtimer);
5624 	}
5625 }
5626 
5627 static void perf_swevent_init_hrtimer(struct perf_event *event)
5628 {
5629 	struct hw_perf_event *hwc = &event->hw;
5630 
5631 	if (!is_sampling_event(event))
5632 		return;
5633 
5634 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5635 	hwc->hrtimer.function = perf_swevent_hrtimer;
5636 
5637 	/*
5638 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5639 	 * mapping and avoid the whole period adjust feedback stuff.
5640 	 */
5641 	if (event->attr.freq) {
5642 		long freq = event->attr.sample_freq;
5643 
5644 		event->attr.sample_period = NSEC_PER_SEC / freq;
5645 		hwc->sample_period = event->attr.sample_period;
5646 		local64_set(&hwc->period_left, hwc->sample_period);
5647 		event->attr.freq = 0;
5648 	}
5649 }
5650 
5651 /*
5652  * Software event: cpu wall time clock
5653  */
5654 
5655 static void cpu_clock_event_update(struct perf_event *event)
5656 {
5657 	s64 prev;
5658 	u64 now;
5659 
5660 	now = local_clock();
5661 	prev = local64_xchg(&event->hw.prev_count, now);
5662 	local64_add(now - prev, &event->count);
5663 }
5664 
5665 static void cpu_clock_event_start(struct perf_event *event, int flags)
5666 {
5667 	local64_set(&event->hw.prev_count, local_clock());
5668 	perf_swevent_start_hrtimer(event);
5669 }
5670 
5671 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5672 {
5673 	perf_swevent_cancel_hrtimer(event);
5674 	cpu_clock_event_update(event);
5675 }
5676 
5677 static int cpu_clock_event_add(struct perf_event *event, int flags)
5678 {
5679 	if (flags & PERF_EF_START)
5680 		cpu_clock_event_start(event, flags);
5681 
5682 	return 0;
5683 }
5684 
5685 static void cpu_clock_event_del(struct perf_event *event, int flags)
5686 {
5687 	cpu_clock_event_stop(event, flags);
5688 }
5689 
5690 static void cpu_clock_event_read(struct perf_event *event)
5691 {
5692 	cpu_clock_event_update(event);
5693 }
5694 
5695 static int cpu_clock_event_init(struct perf_event *event)
5696 {
5697 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5698 		return -ENOENT;
5699 
5700 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5701 		return -ENOENT;
5702 
5703 	/*
5704 	 * no branch sampling for software events
5705 	 */
5706 	if (has_branch_stack(event))
5707 		return -EOPNOTSUPP;
5708 
5709 	perf_swevent_init_hrtimer(event);
5710 
5711 	return 0;
5712 }
5713 
5714 static struct pmu perf_cpu_clock = {
5715 	.task_ctx_nr	= perf_sw_context,
5716 
5717 	.event_init	= cpu_clock_event_init,
5718 	.add		= cpu_clock_event_add,
5719 	.del		= cpu_clock_event_del,
5720 	.start		= cpu_clock_event_start,
5721 	.stop		= cpu_clock_event_stop,
5722 	.read		= cpu_clock_event_read,
5723 
5724 	.event_idx	= perf_swevent_event_idx,
5725 };
5726 
5727 /*
5728  * Software event: task time clock
5729  */
5730 
5731 static void task_clock_event_update(struct perf_event *event, u64 now)
5732 {
5733 	u64 prev;
5734 	s64 delta;
5735 
5736 	prev = local64_xchg(&event->hw.prev_count, now);
5737 	delta = now - prev;
5738 	local64_add(delta, &event->count);
5739 }
5740 
5741 static void task_clock_event_start(struct perf_event *event, int flags)
5742 {
5743 	local64_set(&event->hw.prev_count, event->ctx->time);
5744 	perf_swevent_start_hrtimer(event);
5745 }
5746 
5747 static void task_clock_event_stop(struct perf_event *event, int flags)
5748 {
5749 	perf_swevent_cancel_hrtimer(event);
5750 	task_clock_event_update(event, event->ctx->time);
5751 }
5752 
5753 static int task_clock_event_add(struct perf_event *event, int flags)
5754 {
5755 	if (flags & PERF_EF_START)
5756 		task_clock_event_start(event, flags);
5757 
5758 	return 0;
5759 }
5760 
5761 static void task_clock_event_del(struct perf_event *event, int flags)
5762 {
5763 	task_clock_event_stop(event, PERF_EF_UPDATE);
5764 }
5765 
5766 static void task_clock_event_read(struct perf_event *event)
5767 {
5768 	u64 now = perf_clock();
5769 	u64 delta = now - event->ctx->timestamp;
5770 	u64 time = event->ctx->time + delta;
5771 
5772 	task_clock_event_update(event, time);
5773 }
5774 
5775 static int task_clock_event_init(struct perf_event *event)
5776 {
5777 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5778 		return -ENOENT;
5779 
5780 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5781 		return -ENOENT;
5782 
5783 	/*
5784 	 * no branch sampling for software events
5785 	 */
5786 	if (has_branch_stack(event))
5787 		return -EOPNOTSUPP;
5788 
5789 	perf_swevent_init_hrtimer(event);
5790 
5791 	return 0;
5792 }
5793 
5794 static struct pmu perf_task_clock = {
5795 	.task_ctx_nr	= perf_sw_context,
5796 
5797 	.event_init	= task_clock_event_init,
5798 	.add		= task_clock_event_add,
5799 	.del		= task_clock_event_del,
5800 	.start		= task_clock_event_start,
5801 	.stop		= task_clock_event_stop,
5802 	.read		= task_clock_event_read,
5803 
5804 	.event_idx	= perf_swevent_event_idx,
5805 };
5806 
5807 static void perf_pmu_nop_void(struct pmu *pmu)
5808 {
5809 }
5810 
5811 static int perf_pmu_nop_int(struct pmu *pmu)
5812 {
5813 	return 0;
5814 }
5815 
5816 static void perf_pmu_start_txn(struct pmu *pmu)
5817 {
5818 	perf_pmu_disable(pmu);
5819 }
5820 
5821 static int perf_pmu_commit_txn(struct pmu *pmu)
5822 {
5823 	perf_pmu_enable(pmu);
5824 	return 0;
5825 }
5826 
5827 static void perf_pmu_cancel_txn(struct pmu *pmu)
5828 {
5829 	perf_pmu_enable(pmu);
5830 }
5831 
5832 static int perf_event_idx_default(struct perf_event *event)
5833 {
5834 	return event->hw.idx + 1;
5835 }
5836 
5837 /*
5838  * Ensures all contexts with the same task_ctx_nr have the same
5839  * pmu_cpu_context too.
5840  */
5841 static void *find_pmu_context(int ctxn)
5842 {
5843 	struct pmu *pmu;
5844 
5845 	if (ctxn < 0)
5846 		return NULL;
5847 
5848 	list_for_each_entry(pmu, &pmus, entry) {
5849 		if (pmu->task_ctx_nr == ctxn)
5850 			return pmu->pmu_cpu_context;
5851 	}
5852 
5853 	return NULL;
5854 }
5855 
5856 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5857 {
5858 	int cpu;
5859 
5860 	for_each_possible_cpu(cpu) {
5861 		struct perf_cpu_context *cpuctx;
5862 
5863 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5864 
5865 		if (cpuctx->active_pmu == old_pmu)
5866 			cpuctx->active_pmu = pmu;
5867 	}
5868 }
5869 
5870 static void free_pmu_context(struct pmu *pmu)
5871 {
5872 	struct pmu *i;
5873 
5874 	mutex_lock(&pmus_lock);
5875 	/*
5876 	 * Like a real lame refcount.
5877 	 */
5878 	list_for_each_entry(i, &pmus, entry) {
5879 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5880 			update_pmu_context(i, pmu);
5881 			goto out;
5882 		}
5883 	}
5884 
5885 	free_percpu(pmu->pmu_cpu_context);
5886 out:
5887 	mutex_unlock(&pmus_lock);
5888 }
5889 static struct idr pmu_idr;
5890 
5891 static ssize_t
5892 type_show(struct device *dev, struct device_attribute *attr, char *page)
5893 {
5894 	struct pmu *pmu = dev_get_drvdata(dev);
5895 
5896 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5897 }
5898 
5899 static struct device_attribute pmu_dev_attrs[] = {
5900        __ATTR_RO(type),
5901        __ATTR_NULL,
5902 };
5903 
5904 static int pmu_bus_running;
5905 static struct bus_type pmu_bus = {
5906 	.name		= "event_source",
5907 	.dev_attrs	= pmu_dev_attrs,
5908 };
5909 
5910 static void pmu_dev_release(struct device *dev)
5911 {
5912 	kfree(dev);
5913 }
5914 
5915 static int pmu_dev_alloc(struct pmu *pmu)
5916 {
5917 	int ret = -ENOMEM;
5918 
5919 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5920 	if (!pmu->dev)
5921 		goto out;
5922 
5923 	pmu->dev->groups = pmu->attr_groups;
5924 	device_initialize(pmu->dev);
5925 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5926 	if (ret)
5927 		goto free_dev;
5928 
5929 	dev_set_drvdata(pmu->dev, pmu);
5930 	pmu->dev->bus = &pmu_bus;
5931 	pmu->dev->release = pmu_dev_release;
5932 	ret = device_add(pmu->dev);
5933 	if (ret)
5934 		goto free_dev;
5935 
5936 out:
5937 	return ret;
5938 
5939 free_dev:
5940 	put_device(pmu->dev);
5941 	goto out;
5942 }
5943 
5944 static struct lock_class_key cpuctx_mutex;
5945 static struct lock_class_key cpuctx_lock;
5946 
5947 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5948 {
5949 	int cpu, ret;
5950 
5951 	mutex_lock(&pmus_lock);
5952 	ret = -ENOMEM;
5953 	pmu->pmu_disable_count = alloc_percpu(int);
5954 	if (!pmu->pmu_disable_count)
5955 		goto unlock;
5956 
5957 	pmu->type = -1;
5958 	if (!name)
5959 		goto skip_type;
5960 	pmu->name = name;
5961 
5962 	if (type < 0) {
5963 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5964 		if (!err)
5965 			goto free_pdc;
5966 
5967 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5968 		if (err) {
5969 			ret = err;
5970 			goto free_pdc;
5971 		}
5972 	}
5973 	pmu->type = type;
5974 
5975 	if (pmu_bus_running) {
5976 		ret = pmu_dev_alloc(pmu);
5977 		if (ret)
5978 			goto free_idr;
5979 	}
5980 
5981 skip_type:
5982 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5983 	if (pmu->pmu_cpu_context)
5984 		goto got_cpu_context;
5985 
5986 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5987 	if (!pmu->pmu_cpu_context)
5988 		goto free_dev;
5989 
5990 	for_each_possible_cpu(cpu) {
5991 		struct perf_cpu_context *cpuctx;
5992 
5993 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5994 		__perf_event_init_context(&cpuctx->ctx);
5995 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5996 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5997 		cpuctx->ctx.type = cpu_context;
5998 		cpuctx->ctx.pmu = pmu;
5999 		cpuctx->jiffies_interval = 1;
6000 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6001 		cpuctx->active_pmu = pmu;
6002 	}
6003 
6004 got_cpu_context:
6005 	if (!pmu->start_txn) {
6006 		if (pmu->pmu_enable) {
6007 			/*
6008 			 * If we have pmu_enable/pmu_disable calls, install
6009 			 * transaction stubs that use that to try and batch
6010 			 * hardware accesses.
6011 			 */
6012 			pmu->start_txn  = perf_pmu_start_txn;
6013 			pmu->commit_txn = perf_pmu_commit_txn;
6014 			pmu->cancel_txn = perf_pmu_cancel_txn;
6015 		} else {
6016 			pmu->start_txn  = perf_pmu_nop_void;
6017 			pmu->commit_txn = perf_pmu_nop_int;
6018 			pmu->cancel_txn = perf_pmu_nop_void;
6019 		}
6020 	}
6021 
6022 	if (!pmu->pmu_enable) {
6023 		pmu->pmu_enable  = perf_pmu_nop_void;
6024 		pmu->pmu_disable = perf_pmu_nop_void;
6025 	}
6026 
6027 	if (!pmu->event_idx)
6028 		pmu->event_idx = perf_event_idx_default;
6029 
6030 	list_add_rcu(&pmu->entry, &pmus);
6031 	ret = 0;
6032 unlock:
6033 	mutex_unlock(&pmus_lock);
6034 
6035 	return ret;
6036 
6037 free_dev:
6038 	device_del(pmu->dev);
6039 	put_device(pmu->dev);
6040 
6041 free_idr:
6042 	if (pmu->type >= PERF_TYPE_MAX)
6043 		idr_remove(&pmu_idr, pmu->type);
6044 
6045 free_pdc:
6046 	free_percpu(pmu->pmu_disable_count);
6047 	goto unlock;
6048 }
6049 
6050 void perf_pmu_unregister(struct pmu *pmu)
6051 {
6052 	mutex_lock(&pmus_lock);
6053 	list_del_rcu(&pmu->entry);
6054 	mutex_unlock(&pmus_lock);
6055 
6056 	/*
6057 	 * We dereference the pmu list under both SRCU and regular RCU, so
6058 	 * synchronize against both of those.
6059 	 */
6060 	synchronize_srcu(&pmus_srcu);
6061 	synchronize_rcu();
6062 
6063 	free_percpu(pmu->pmu_disable_count);
6064 	if (pmu->type >= PERF_TYPE_MAX)
6065 		idr_remove(&pmu_idr, pmu->type);
6066 	device_del(pmu->dev);
6067 	put_device(pmu->dev);
6068 	free_pmu_context(pmu);
6069 }
6070 
6071 struct pmu *perf_init_event(struct perf_event *event)
6072 {
6073 	struct pmu *pmu = NULL;
6074 	int idx;
6075 	int ret;
6076 
6077 	idx = srcu_read_lock(&pmus_srcu);
6078 
6079 	rcu_read_lock();
6080 	pmu = idr_find(&pmu_idr, event->attr.type);
6081 	rcu_read_unlock();
6082 	if (pmu) {
6083 		event->pmu = pmu;
6084 		ret = pmu->event_init(event);
6085 		if (ret)
6086 			pmu = ERR_PTR(ret);
6087 		goto unlock;
6088 	}
6089 
6090 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6091 		event->pmu = pmu;
6092 		ret = pmu->event_init(event);
6093 		if (!ret)
6094 			goto unlock;
6095 
6096 		if (ret != -ENOENT) {
6097 			pmu = ERR_PTR(ret);
6098 			goto unlock;
6099 		}
6100 	}
6101 	pmu = ERR_PTR(-ENOENT);
6102 unlock:
6103 	srcu_read_unlock(&pmus_srcu, idx);
6104 
6105 	return pmu;
6106 }
6107 
6108 /*
6109  * Allocate and initialize a event structure
6110  */
6111 static struct perf_event *
6112 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6113 		 struct task_struct *task,
6114 		 struct perf_event *group_leader,
6115 		 struct perf_event *parent_event,
6116 		 perf_overflow_handler_t overflow_handler,
6117 		 void *context)
6118 {
6119 	struct pmu *pmu;
6120 	struct perf_event *event;
6121 	struct hw_perf_event *hwc;
6122 	long err;
6123 
6124 	if ((unsigned)cpu >= nr_cpu_ids) {
6125 		if (!task || cpu != -1)
6126 			return ERR_PTR(-EINVAL);
6127 	}
6128 
6129 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6130 	if (!event)
6131 		return ERR_PTR(-ENOMEM);
6132 
6133 	/*
6134 	 * Single events are their own group leaders, with an
6135 	 * empty sibling list:
6136 	 */
6137 	if (!group_leader)
6138 		group_leader = event;
6139 
6140 	mutex_init(&event->child_mutex);
6141 	INIT_LIST_HEAD(&event->child_list);
6142 
6143 	INIT_LIST_HEAD(&event->group_entry);
6144 	INIT_LIST_HEAD(&event->event_entry);
6145 	INIT_LIST_HEAD(&event->sibling_list);
6146 	INIT_LIST_HEAD(&event->rb_entry);
6147 
6148 	init_waitqueue_head(&event->waitq);
6149 	init_irq_work(&event->pending, perf_pending_event);
6150 
6151 	mutex_init(&event->mmap_mutex);
6152 
6153 	atomic_long_set(&event->refcount, 1);
6154 	event->cpu		= cpu;
6155 	event->attr		= *attr;
6156 	event->group_leader	= group_leader;
6157 	event->pmu		= NULL;
6158 	event->oncpu		= -1;
6159 
6160 	event->parent		= parent_event;
6161 
6162 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
6163 	event->id		= atomic64_inc_return(&perf_event_id);
6164 
6165 	event->state		= PERF_EVENT_STATE_INACTIVE;
6166 
6167 	if (task) {
6168 		event->attach_state = PERF_ATTACH_TASK;
6169 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6170 		/*
6171 		 * hw_breakpoint is a bit difficult here..
6172 		 */
6173 		if (attr->type == PERF_TYPE_BREAKPOINT)
6174 			event->hw.bp_target = task;
6175 #endif
6176 	}
6177 
6178 	if (!overflow_handler && parent_event) {
6179 		overflow_handler = parent_event->overflow_handler;
6180 		context = parent_event->overflow_handler_context;
6181 	}
6182 
6183 	event->overflow_handler	= overflow_handler;
6184 	event->overflow_handler_context = context;
6185 
6186 	if (attr->disabled)
6187 		event->state = PERF_EVENT_STATE_OFF;
6188 
6189 	pmu = NULL;
6190 
6191 	hwc = &event->hw;
6192 	hwc->sample_period = attr->sample_period;
6193 	if (attr->freq && attr->sample_freq)
6194 		hwc->sample_period = 1;
6195 	hwc->last_period = hwc->sample_period;
6196 
6197 	local64_set(&hwc->period_left, hwc->sample_period);
6198 
6199 	/*
6200 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6201 	 */
6202 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6203 		goto done;
6204 
6205 	pmu = perf_init_event(event);
6206 
6207 done:
6208 	err = 0;
6209 	if (!pmu)
6210 		err = -EINVAL;
6211 	else if (IS_ERR(pmu))
6212 		err = PTR_ERR(pmu);
6213 
6214 	if (err) {
6215 		if (event->ns)
6216 			put_pid_ns(event->ns);
6217 		kfree(event);
6218 		return ERR_PTR(err);
6219 	}
6220 
6221 	if (!event->parent) {
6222 		if (event->attach_state & PERF_ATTACH_TASK)
6223 			static_key_slow_inc(&perf_sched_events.key);
6224 		if (event->attr.mmap || event->attr.mmap_data)
6225 			atomic_inc(&nr_mmap_events);
6226 		if (event->attr.comm)
6227 			atomic_inc(&nr_comm_events);
6228 		if (event->attr.task)
6229 			atomic_inc(&nr_task_events);
6230 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6231 			err = get_callchain_buffers();
6232 			if (err) {
6233 				free_event(event);
6234 				return ERR_PTR(err);
6235 			}
6236 		}
6237 		if (has_branch_stack(event)) {
6238 			static_key_slow_inc(&perf_sched_events.key);
6239 			if (!(event->attach_state & PERF_ATTACH_TASK))
6240 				atomic_inc(&per_cpu(perf_branch_stack_events,
6241 						    event->cpu));
6242 		}
6243 	}
6244 
6245 	return event;
6246 }
6247 
6248 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6249 			  struct perf_event_attr *attr)
6250 {
6251 	u32 size;
6252 	int ret;
6253 
6254 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6255 		return -EFAULT;
6256 
6257 	/*
6258 	 * zero the full structure, so that a short copy will be nice.
6259 	 */
6260 	memset(attr, 0, sizeof(*attr));
6261 
6262 	ret = get_user(size, &uattr->size);
6263 	if (ret)
6264 		return ret;
6265 
6266 	if (size > PAGE_SIZE)	/* silly large */
6267 		goto err_size;
6268 
6269 	if (!size)		/* abi compat */
6270 		size = PERF_ATTR_SIZE_VER0;
6271 
6272 	if (size < PERF_ATTR_SIZE_VER0)
6273 		goto err_size;
6274 
6275 	/*
6276 	 * If we're handed a bigger struct than we know of,
6277 	 * ensure all the unknown bits are 0 - i.e. new
6278 	 * user-space does not rely on any kernel feature
6279 	 * extensions we dont know about yet.
6280 	 */
6281 	if (size > sizeof(*attr)) {
6282 		unsigned char __user *addr;
6283 		unsigned char __user *end;
6284 		unsigned char val;
6285 
6286 		addr = (void __user *)uattr + sizeof(*attr);
6287 		end  = (void __user *)uattr + size;
6288 
6289 		for (; addr < end; addr++) {
6290 			ret = get_user(val, addr);
6291 			if (ret)
6292 				return ret;
6293 			if (val)
6294 				goto err_size;
6295 		}
6296 		size = sizeof(*attr);
6297 	}
6298 
6299 	ret = copy_from_user(attr, uattr, size);
6300 	if (ret)
6301 		return -EFAULT;
6302 
6303 	if (attr->__reserved_1)
6304 		return -EINVAL;
6305 
6306 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6307 		return -EINVAL;
6308 
6309 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6310 		return -EINVAL;
6311 
6312 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6313 		u64 mask = attr->branch_sample_type;
6314 
6315 		/* only using defined bits */
6316 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6317 			return -EINVAL;
6318 
6319 		/* at least one branch bit must be set */
6320 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6321 			return -EINVAL;
6322 
6323 		/* kernel level capture: check permissions */
6324 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6325 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6326 			return -EACCES;
6327 
6328 		/* propagate priv level, when not set for branch */
6329 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6330 
6331 			/* exclude_kernel checked on syscall entry */
6332 			if (!attr->exclude_kernel)
6333 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6334 
6335 			if (!attr->exclude_user)
6336 				mask |= PERF_SAMPLE_BRANCH_USER;
6337 
6338 			if (!attr->exclude_hv)
6339 				mask |= PERF_SAMPLE_BRANCH_HV;
6340 			/*
6341 			 * adjust user setting (for HW filter setup)
6342 			 */
6343 			attr->branch_sample_type = mask;
6344 		}
6345 	}
6346 
6347 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6348 		ret = perf_reg_validate(attr->sample_regs_user);
6349 		if (ret)
6350 			return ret;
6351 	}
6352 
6353 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6354 		if (!arch_perf_have_user_stack_dump())
6355 			return -ENOSYS;
6356 
6357 		/*
6358 		 * We have __u32 type for the size, but so far
6359 		 * we can only use __u16 as maximum due to the
6360 		 * __u16 sample size limit.
6361 		 */
6362 		if (attr->sample_stack_user >= USHRT_MAX)
6363 			ret = -EINVAL;
6364 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6365 			ret = -EINVAL;
6366 	}
6367 
6368 out:
6369 	return ret;
6370 
6371 err_size:
6372 	put_user(sizeof(*attr), &uattr->size);
6373 	ret = -E2BIG;
6374 	goto out;
6375 }
6376 
6377 static int
6378 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6379 {
6380 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6381 	int ret = -EINVAL;
6382 
6383 	if (!output_event)
6384 		goto set;
6385 
6386 	/* don't allow circular references */
6387 	if (event == output_event)
6388 		goto out;
6389 
6390 	/*
6391 	 * Don't allow cross-cpu buffers
6392 	 */
6393 	if (output_event->cpu != event->cpu)
6394 		goto out;
6395 
6396 	/*
6397 	 * If its not a per-cpu rb, it must be the same task.
6398 	 */
6399 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6400 		goto out;
6401 
6402 set:
6403 	mutex_lock(&event->mmap_mutex);
6404 	/* Can't redirect output if we've got an active mmap() */
6405 	if (atomic_read(&event->mmap_count))
6406 		goto unlock;
6407 
6408 	if (output_event) {
6409 		/* get the rb we want to redirect to */
6410 		rb = ring_buffer_get(output_event);
6411 		if (!rb)
6412 			goto unlock;
6413 	}
6414 
6415 	old_rb = event->rb;
6416 	rcu_assign_pointer(event->rb, rb);
6417 	if (old_rb)
6418 		ring_buffer_detach(event, old_rb);
6419 	ret = 0;
6420 unlock:
6421 	mutex_unlock(&event->mmap_mutex);
6422 
6423 	if (old_rb)
6424 		ring_buffer_put(old_rb);
6425 out:
6426 	return ret;
6427 }
6428 
6429 /**
6430  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6431  *
6432  * @attr_uptr:	event_id type attributes for monitoring/sampling
6433  * @pid:		target pid
6434  * @cpu:		target cpu
6435  * @group_fd:		group leader event fd
6436  */
6437 SYSCALL_DEFINE5(perf_event_open,
6438 		struct perf_event_attr __user *, attr_uptr,
6439 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6440 {
6441 	struct perf_event *group_leader = NULL, *output_event = NULL;
6442 	struct perf_event *event, *sibling;
6443 	struct perf_event_attr attr;
6444 	struct perf_event_context *ctx;
6445 	struct file *event_file = NULL;
6446 	struct file *group_file = NULL;
6447 	struct task_struct *task = NULL;
6448 	struct pmu *pmu;
6449 	int event_fd;
6450 	int move_group = 0;
6451 	int fput_needed = 0;
6452 	int err;
6453 
6454 	/* for future expandability... */
6455 	if (flags & ~PERF_FLAG_ALL)
6456 		return -EINVAL;
6457 
6458 	err = perf_copy_attr(attr_uptr, &attr);
6459 	if (err)
6460 		return err;
6461 
6462 	if (!attr.exclude_kernel) {
6463 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6464 			return -EACCES;
6465 	}
6466 
6467 	if (attr.freq) {
6468 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6469 			return -EINVAL;
6470 	}
6471 
6472 	/*
6473 	 * In cgroup mode, the pid argument is used to pass the fd
6474 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6475 	 * designates the cpu on which to monitor threads from that
6476 	 * cgroup.
6477 	 */
6478 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6479 		return -EINVAL;
6480 
6481 	event_fd = get_unused_fd_flags(O_RDWR);
6482 	if (event_fd < 0)
6483 		return event_fd;
6484 
6485 	if (group_fd != -1) {
6486 		group_file = perf_fget_light(group_fd, &fput_needed);
6487 		if (IS_ERR(group_file)) {
6488 			err = PTR_ERR(group_file);
6489 			goto err_fd;
6490 		}
6491 		group_leader = group_file->private_data;
6492 		if (flags & PERF_FLAG_FD_OUTPUT)
6493 			output_event = group_leader;
6494 		if (flags & PERF_FLAG_FD_NO_GROUP)
6495 			group_leader = NULL;
6496 	}
6497 
6498 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6499 		task = find_lively_task_by_vpid(pid);
6500 		if (IS_ERR(task)) {
6501 			err = PTR_ERR(task);
6502 			goto err_group_fd;
6503 		}
6504 	}
6505 
6506 	get_online_cpus();
6507 
6508 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6509 				 NULL, NULL);
6510 	if (IS_ERR(event)) {
6511 		err = PTR_ERR(event);
6512 		goto err_task;
6513 	}
6514 
6515 	if (flags & PERF_FLAG_PID_CGROUP) {
6516 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6517 		if (err)
6518 			goto err_alloc;
6519 		/*
6520 		 * one more event:
6521 		 * - that has cgroup constraint on event->cpu
6522 		 * - that may need work on context switch
6523 		 */
6524 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6525 		static_key_slow_inc(&perf_sched_events.key);
6526 	}
6527 
6528 	/*
6529 	 * Special case software events and allow them to be part of
6530 	 * any hardware group.
6531 	 */
6532 	pmu = event->pmu;
6533 
6534 	if (group_leader &&
6535 	    (is_software_event(event) != is_software_event(group_leader))) {
6536 		if (is_software_event(event)) {
6537 			/*
6538 			 * If event and group_leader are not both a software
6539 			 * event, and event is, then group leader is not.
6540 			 *
6541 			 * Allow the addition of software events to !software
6542 			 * groups, this is safe because software events never
6543 			 * fail to schedule.
6544 			 */
6545 			pmu = group_leader->pmu;
6546 		} else if (is_software_event(group_leader) &&
6547 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6548 			/*
6549 			 * In case the group is a pure software group, and we
6550 			 * try to add a hardware event, move the whole group to
6551 			 * the hardware context.
6552 			 */
6553 			move_group = 1;
6554 		}
6555 	}
6556 
6557 	/*
6558 	 * Get the target context (task or percpu):
6559 	 */
6560 	ctx = find_get_context(pmu, task, event->cpu);
6561 	if (IS_ERR(ctx)) {
6562 		err = PTR_ERR(ctx);
6563 		goto err_alloc;
6564 	}
6565 
6566 	if (task) {
6567 		put_task_struct(task);
6568 		task = NULL;
6569 	}
6570 
6571 	/*
6572 	 * Look up the group leader (we will attach this event to it):
6573 	 */
6574 	if (group_leader) {
6575 		err = -EINVAL;
6576 
6577 		/*
6578 		 * Do not allow a recursive hierarchy (this new sibling
6579 		 * becoming part of another group-sibling):
6580 		 */
6581 		if (group_leader->group_leader != group_leader)
6582 			goto err_context;
6583 		/*
6584 		 * Do not allow to attach to a group in a different
6585 		 * task or CPU context:
6586 		 */
6587 		if (move_group) {
6588 			if (group_leader->ctx->type != ctx->type)
6589 				goto err_context;
6590 		} else {
6591 			if (group_leader->ctx != ctx)
6592 				goto err_context;
6593 		}
6594 
6595 		/*
6596 		 * Only a group leader can be exclusive or pinned
6597 		 */
6598 		if (attr.exclusive || attr.pinned)
6599 			goto err_context;
6600 	}
6601 
6602 	if (output_event) {
6603 		err = perf_event_set_output(event, output_event);
6604 		if (err)
6605 			goto err_context;
6606 	}
6607 
6608 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6609 	if (IS_ERR(event_file)) {
6610 		err = PTR_ERR(event_file);
6611 		goto err_context;
6612 	}
6613 
6614 	if (move_group) {
6615 		struct perf_event_context *gctx = group_leader->ctx;
6616 
6617 		mutex_lock(&gctx->mutex);
6618 		perf_remove_from_context(group_leader);
6619 		list_for_each_entry(sibling, &group_leader->sibling_list,
6620 				    group_entry) {
6621 			perf_remove_from_context(sibling);
6622 			put_ctx(gctx);
6623 		}
6624 		mutex_unlock(&gctx->mutex);
6625 		put_ctx(gctx);
6626 	}
6627 
6628 	WARN_ON_ONCE(ctx->parent_ctx);
6629 	mutex_lock(&ctx->mutex);
6630 
6631 	if (move_group) {
6632 		synchronize_rcu();
6633 		perf_install_in_context(ctx, group_leader, event->cpu);
6634 		get_ctx(ctx);
6635 		list_for_each_entry(sibling, &group_leader->sibling_list,
6636 				    group_entry) {
6637 			perf_install_in_context(ctx, sibling, event->cpu);
6638 			get_ctx(ctx);
6639 		}
6640 	}
6641 
6642 	perf_install_in_context(ctx, event, event->cpu);
6643 	++ctx->generation;
6644 	perf_unpin_context(ctx);
6645 	mutex_unlock(&ctx->mutex);
6646 
6647 	put_online_cpus();
6648 
6649 	event->owner = current;
6650 
6651 	mutex_lock(&current->perf_event_mutex);
6652 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6653 	mutex_unlock(&current->perf_event_mutex);
6654 
6655 	/*
6656 	 * Precalculate sample_data sizes
6657 	 */
6658 	perf_event__header_size(event);
6659 	perf_event__id_header_size(event);
6660 
6661 	/*
6662 	 * Drop the reference on the group_event after placing the
6663 	 * new event on the sibling_list. This ensures destruction
6664 	 * of the group leader will find the pointer to itself in
6665 	 * perf_group_detach().
6666 	 */
6667 	fput_light(group_file, fput_needed);
6668 	fd_install(event_fd, event_file);
6669 	return event_fd;
6670 
6671 err_context:
6672 	perf_unpin_context(ctx);
6673 	put_ctx(ctx);
6674 err_alloc:
6675 	free_event(event);
6676 err_task:
6677 	put_online_cpus();
6678 	if (task)
6679 		put_task_struct(task);
6680 err_group_fd:
6681 	fput_light(group_file, fput_needed);
6682 err_fd:
6683 	put_unused_fd(event_fd);
6684 	return err;
6685 }
6686 
6687 /**
6688  * perf_event_create_kernel_counter
6689  *
6690  * @attr: attributes of the counter to create
6691  * @cpu: cpu in which the counter is bound
6692  * @task: task to profile (NULL for percpu)
6693  */
6694 struct perf_event *
6695 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6696 				 struct task_struct *task,
6697 				 perf_overflow_handler_t overflow_handler,
6698 				 void *context)
6699 {
6700 	struct perf_event_context *ctx;
6701 	struct perf_event *event;
6702 	int err;
6703 
6704 	/*
6705 	 * Get the target context (task or percpu):
6706 	 */
6707 
6708 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6709 				 overflow_handler, context);
6710 	if (IS_ERR(event)) {
6711 		err = PTR_ERR(event);
6712 		goto err;
6713 	}
6714 
6715 	ctx = find_get_context(event->pmu, task, cpu);
6716 	if (IS_ERR(ctx)) {
6717 		err = PTR_ERR(ctx);
6718 		goto err_free;
6719 	}
6720 
6721 	WARN_ON_ONCE(ctx->parent_ctx);
6722 	mutex_lock(&ctx->mutex);
6723 	perf_install_in_context(ctx, event, cpu);
6724 	++ctx->generation;
6725 	perf_unpin_context(ctx);
6726 	mutex_unlock(&ctx->mutex);
6727 
6728 	return event;
6729 
6730 err_free:
6731 	free_event(event);
6732 err:
6733 	return ERR_PTR(err);
6734 }
6735 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6736 
6737 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6738 {
6739 	struct perf_event_context *src_ctx;
6740 	struct perf_event_context *dst_ctx;
6741 	struct perf_event *event, *tmp;
6742 	LIST_HEAD(events);
6743 
6744 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6745 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6746 
6747 	mutex_lock(&src_ctx->mutex);
6748 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6749 				 event_entry) {
6750 		perf_remove_from_context(event);
6751 		put_ctx(src_ctx);
6752 		list_add(&event->event_entry, &events);
6753 	}
6754 	mutex_unlock(&src_ctx->mutex);
6755 
6756 	synchronize_rcu();
6757 
6758 	mutex_lock(&dst_ctx->mutex);
6759 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
6760 		list_del(&event->event_entry);
6761 		if (event->state >= PERF_EVENT_STATE_OFF)
6762 			event->state = PERF_EVENT_STATE_INACTIVE;
6763 		perf_install_in_context(dst_ctx, event, dst_cpu);
6764 		get_ctx(dst_ctx);
6765 	}
6766 	mutex_unlock(&dst_ctx->mutex);
6767 }
6768 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6769 
6770 static void sync_child_event(struct perf_event *child_event,
6771 			       struct task_struct *child)
6772 {
6773 	struct perf_event *parent_event = child_event->parent;
6774 	u64 child_val;
6775 
6776 	if (child_event->attr.inherit_stat)
6777 		perf_event_read_event(child_event, child);
6778 
6779 	child_val = perf_event_count(child_event);
6780 
6781 	/*
6782 	 * Add back the child's count to the parent's count:
6783 	 */
6784 	atomic64_add(child_val, &parent_event->child_count);
6785 	atomic64_add(child_event->total_time_enabled,
6786 		     &parent_event->child_total_time_enabled);
6787 	atomic64_add(child_event->total_time_running,
6788 		     &parent_event->child_total_time_running);
6789 
6790 	/*
6791 	 * Remove this event from the parent's list
6792 	 */
6793 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6794 	mutex_lock(&parent_event->child_mutex);
6795 	list_del_init(&child_event->child_list);
6796 	mutex_unlock(&parent_event->child_mutex);
6797 
6798 	/*
6799 	 * Release the parent event, if this was the last
6800 	 * reference to it.
6801 	 */
6802 	put_event(parent_event);
6803 }
6804 
6805 static void
6806 __perf_event_exit_task(struct perf_event *child_event,
6807 			 struct perf_event_context *child_ctx,
6808 			 struct task_struct *child)
6809 {
6810 	if (child_event->parent) {
6811 		raw_spin_lock_irq(&child_ctx->lock);
6812 		perf_group_detach(child_event);
6813 		raw_spin_unlock_irq(&child_ctx->lock);
6814 	}
6815 
6816 	perf_remove_from_context(child_event);
6817 
6818 	/*
6819 	 * It can happen that the parent exits first, and has events
6820 	 * that are still around due to the child reference. These
6821 	 * events need to be zapped.
6822 	 */
6823 	if (child_event->parent) {
6824 		sync_child_event(child_event, child);
6825 		free_event(child_event);
6826 	}
6827 }
6828 
6829 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6830 {
6831 	struct perf_event *child_event, *tmp;
6832 	struct perf_event_context *child_ctx;
6833 	unsigned long flags;
6834 
6835 	if (likely(!child->perf_event_ctxp[ctxn])) {
6836 		perf_event_task(child, NULL, 0);
6837 		return;
6838 	}
6839 
6840 	local_irq_save(flags);
6841 	/*
6842 	 * We can't reschedule here because interrupts are disabled,
6843 	 * and either child is current or it is a task that can't be
6844 	 * scheduled, so we are now safe from rescheduling changing
6845 	 * our context.
6846 	 */
6847 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6848 
6849 	/*
6850 	 * Take the context lock here so that if find_get_context is
6851 	 * reading child->perf_event_ctxp, we wait until it has
6852 	 * incremented the context's refcount before we do put_ctx below.
6853 	 */
6854 	raw_spin_lock(&child_ctx->lock);
6855 	task_ctx_sched_out(child_ctx);
6856 	child->perf_event_ctxp[ctxn] = NULL;
6857 	/*
6858 	 * If this context is a clone; unclone it so it can't get
6859 	 * swapped to another process while we're removing all
6860 	 * the events from it.
6861 	 */
6862 	unclone_ctx(child_ctx);
6863 	update_context_time(child_ctx);
6864 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6865 
6866 	/*
6867 	 * Report the task dead after unscheduling the events so that we
6868 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6869 	 * get a few PERF_RECORD_READ events.
6870 	 */
6871 	perf_event_task(child, child_ctx, 0);
6872 
6873 	/*
6874 	 * We can recurse on the same lock type through:
6875 	 *
6876 	 *   __perf_event_exit_task()
6877 	 *     sync_child_event()
6878 	 *       put_event()
6879 	 *         mutex_lock(&ctx->mutex)
6880 	 *
6881 	 * But since its the parent context it won't be the same instance.
6882 	 */
6883 	mutex_lock(&child_ctx->mutex);
6884 
6885 again:
6886 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6887 				 group_entry)
6888 		__perf_event_exit_task(child_event, child_ctx, child);
6889 
6890 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6891 				 group_entry)
6892 		__perf_event_exit_task(child_event, child_ctx, child);
6893 
6894 	/*
6895 	 * If the last event was a group event, it will have appended all
6896 	 * its siblings to the list, but we obtained 'tmp' before that which
6897 	 * will still point to the list head terminating the iteration.
6898 	 */
6899 	if (!list_empty(&child_ctx->pinned_groups) ||
6900 	    !list_empty(&child_ctx->flexible_groups))
6901 		goto again;
6902 
6903 	mutex_unlock(&child_ctx->mutex);
6904 
6905 	put_ctx(child_ctx);
6906 }
6907 
6908 /*
6909  * When a child task exits, feed back event values to parent events.
6910  */
6911 void perf_event_exit_task(struct task_struct *child)
6912 {
6913 	struct perf_event *event, *tmp;
6914 	int ctxn;
6915 
6916 	mutex_lock(&child->perf_event_mutex);
6917 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6918 				 owner_entry) {
6919 		list_del_init(&event->owner_entry);
6920 
6921 		/*
6922 		 * Ensure the list deletion is visible before we clear
6923 		 * the owner, closes a race against perf_release() where
6924 		 * we need to serialize on the owner->perf_event_mutex.
6925 		 */
6926 		smp_wmb();
6927 		event->owner = NULL;
6928 	}
6929 	mutex_unlock(&child->perf_event_mutex);
6930 
6931 	for_each_task_context_nr(ctxn)
6932 		perf_event_exit_task_context(child, ctxn);
6933 }
6934 
6935 static void perf_free_event(struct perf_event *event,
6936 			    struct perf_event_context *ctx)
6937 {
6938 	struct perf_event *parent = event->parent;
6939 
6940 	if (WARN_ON_ONCE(!parent))
6941 		return;
6942 
6943 	mutex_lock(&parent->child_mutex);
6944 	list_del_init(&event->child_list);
6945 	mutex_unlock(&parent->child_mutex);
6946 
6947 	put_event(parent);
6948 
6949 	perf_group_detach(event);
6950 	list_del_event(event, ctx);
6951 	free_event(event);
6952 }
6953 
6954 /*
6955  * free an unexposed, unused context as created by inheritance by
6956  * perf_event_init_task below, used by fork() in case of fail.
6957  */
6958 void perf_event_free_task(struct task_struct *task)
6959 {
6960 	struct perf_event_context *ctx;
6961 	struct perf_event *event, *tmp;
6962 	int ctxn;
6963 
6964 	for_each_task_context_nr(ctxn) {
6965 		ctx = task->perf_event_ctxp[ctxn];
6966 		if (!ctx)
6967 			continue;
6968 
6969 		mutex_lock(&ctx->mutex);
6970 again:
6971 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6972 				group_entry)
6973 			perf_free_event(event, ctx);
6974 
6975 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6976 				group_entry)
6977 			perf_free_event(event, ctx);
6978 
6979 		if (!list_empty(&ctx->pinned_groups) ||
6980 				!list_empty(&ctx->flexible_groups))
6981 			goto again;
6982 
6983 		mutex_unlock(&ctx->mutex);
6984 
6985 		put_ctx(ctx);
6986 	}
6987 }
6988 
6989 void perf_event_delayed_put(struct task_struct *task)
6990 {
6991 	int ctxn;
6992 
6993 	for_each_task_context_nr(ctxn)
6994 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6995 }
6996 
6997 /*
6998  * inherit a event from parent task to child task:
6999  */
7000 static struct perf_event *
7001 inherit_event(struct perf_event *parent_event,
7002 	      struct task_struct *parent,
7003 	      struct perf_event_context *parent_ctx,
7004 	      struct task_struct *child,
7005 	      struct perf_event *group_leader,
7006 	      struct perf_event_context *child_ctx)
7007 {
7008 	struct perf_event *child_event;
7009 	unsigned long flags;
7010 
7011 	/*
7012 	 * Instead of creating recursive hierarchies of events,
7013 	 * we link inherited events back to the original parent,
7014 	 * which has a filp for sure, which we use as the reference
7015 	 * count:
7016 	 */
7017 	if (parent_event->parent)
7018 		parent_event = parent_event->parent;
7019 
7020 	child_event = perf_event_alloc(&parent_event->attr,
7021 					   parent_event->cpu,
7022 					   child,
7023 					   group_leader, parent_event,
7024 				           NULL, NULL);
7025 	if (IS_ERR(child_event))
7026 		return child_event;
7027 
7028 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7029 		free_event(child_event);
7030 		return NULL;
7031 	}
7032 
7033 	get_ctx(child_ctx);
7034 
7035 	/*
7036 	 * Make the child state follow the state of the parent event,
7037 	 * not its attr.disabled bit.  We hold the parent's mutex,
7038 	 * so we won't race with perf_event_{en, dis}able_family.
7039 	 */
7040 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7041 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7042 	else
7043 		child_event->state = PERF_EVENT_STATE_OFF;
7044 
7045 	if (parent_event->attr.freq) {
7046 		u64 sample_period = parent_event->hw.sample_period;
7047 		struct hw_perf_event *hwc = &child_event->hw;
7048 
7049 		hwc->sample_period = sample_period;
7050 		hwc->last_period   = sample_period;
7051 
7052 		local64_set(&hwc->period_left, sample_period);
7053 	}
7054 
7055 	child_event->ctx = child_ctx;
7056 	child_event->overflow_handler = parent_event->overflow_handler;
7057 	child_event->overflow_handler_context
7058 		= parent_event->overflow_handler_context;
7059 
7060 	/*
7061 	 * Precalculate sample_data sizes
7062 	 */
7063 	perf_event__header_size(child_event);
7064 	perf_event__id_header_size(child_event);
7065 
7066 	/*
7067 	 * Link it up in the child's context:
7068 	 */
7069 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7070 	add_event_to_ctx(child_event, child_ctx);
7071 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7072 
7073 	/*
7074 	 * Link this into the parent event's child list
7075 	 */
7076 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7077 	mutex_lock(&parent_event->child_mutex);
7078 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7079 	mutex_unlock(&parent_event->child_mutex);
7080 
7081 	return child_event;
7082 }
7083 
7084 static int inherit_group(struct perf_event *parent_event,
7085 	      struct task_struct *parent,
7086 	      struct perf_event_context *parent_ctx,
7087 	      struct task_struct *child,
7088 	      struct perf_event_context *child_ctx)
7089 {
7090 	struct perf_event *leader;
7091 	struct perf_event *sub;
7092 	struct perf_event *child_ctr;
7093 
7094 	leader = inherit_event(parent_event, parent, parent_ctx,
7095 				 child, NULL, child_ctx);
7096 	if (IS_ERR(leader))
7097 		return PTR_ERR(leader);
7098 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7099 		child_ctr = inherit_event(sub, parent, parent_ctx,
7100 					    child, leader, child_ctx);
7101 		if (IS_ERR(child_ctr))
7102 			return PTR_ERR(child_ctr);
7103 	}
7104 	return 0;
7105 }
7106 
7107 static int
7108 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7109 		   struct perf_event_context *parent_ctx,
7110 		   struct task_struct *child, int ctxn,
7111 		   int *inherited_all)
7112 {
7113 	int ret;
7114 	struct perf_event_context *child_ctx;
7115 
7116 	if (!event->attr.inherit) {
7117 		*inherited_all = 0;
7118 		return 0;
7119 	}
7120 
7121 	child_ctx = child->perf_event_ctxp[ctxn];
7122 	if (!child_ctx) {
7123 		/*
7124 		 * This is executed from the parent task context, so
7125 		 * inherit events that have been marked for cloning.
7126 		 * First allocate and initialize a context for the
7127 		 * child.
7128 		 */
7129 
7130 		child_ctx = alloc_perf_context(event->pmu, child);
7131 		if (!child_ctx)
7132 			return -ENOMEM;
7133 
7134 		child->perf_event_ctxp[ctxn] = child_ctx;
7135 	}
7136 
7137 	ret = inherit_group(event, parent, parent_ctx,
7138 			    child, child_ctx);
7139 
7140 	if (ret)
7141 		*inherited_all = 0;
7142 
7143 	return ret;
7144 }
7145 
7146 /*
7147  * Initialize the perf_event context in task_struct
7148  */
7149 int perf_event_init_context(struct task_struct *child, int ctxn)
7150 {
7151 	struct perf_event_context *child_ctx, *parent_ctx;
7152 	struct perf_event_context *cloned_ctx;
7153 	struct perf_event *event;
7154 	struct task_struct *parent = current;
7155 	int inherited_all = 1;
7156 	unsigned long flags;
7157 	int ret = 0;
7158 
7159 	if (likely(!parent->perf_event_ctxp[ctxn]))
7160 		return 0;
7161 
7162 	/*
7163 	 * If the parent's context is a clone, pin it so it won't get
7164 	 * swapped under us.
7165 	 */
7166 	parent_ctx = perf_pin_task_context(parent, ctxn);
7167 
7168 	/*
7169 	 * No need to check if parent_ctx != NULL here; since we saw
7170 	 * it non-NULL earlier, the only reason for it to become NULL
7171 	 * is if we exit, and since we're currently in the middle of
7172 	 * a fork we can't be exiting at the same time.
7173 	 */
7174 
7175 	/*
7176 	 * Lock the parent list. No need to lock the child - not PID
7177 	 * hashed yet and not running, so nobody can access it.
7178 	 */
7179 	mutex_lock(&parent_ctx->mutex);
7180 
7181 	/*
7182 	 * We dont have to disable NMIs - we are only looking at
7183 	 * the list, not manipulating it:
7184 	 */
7185 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7186 		ret = inherit_task_group(event, parent, parent_ctx,
7187 					 child, ctxn, &inherited_all);
7188 		if (ret)
7189 			break;
7190 	}
7191 
7192 	/*
7193 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7194 	 * to allocations, but we need to prevent rotation because
7195 	 * rotate_ctx() will change the list from interrupt context.
7196 	 */
7197 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7198 	parent_ctx->rotate_disable = 1;
7199 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7200 
7201 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7202 		ret = inherit_task_group(event, parent, parent_ctx,
7203 					 child, ctxn, &inherited_all);
7204 		if (ret)
7205 			break;
7206 	}
7207 
7208 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7209 	parent_ctx->rotate_disable = 0;
7210 
7211 	child_ctx = child->perf_event_ctxp[ctxn];
7212 
7213 	if (child_ctx && inherited_all) {
7214 		/*
7215 		 * Mark the child context as a clone of the parent
7216 		 * context, or of whatever the parent is a clone of.
7217 		 *
7218 		 * Note that if the parent is a clone, the holding of
7219 		 * parent_ctx->lock avoids it from being uncloned.
7220 		 */
7221 		cloned_ctx = parent_ctx->parent_ctx;
7222 		if (cloned_ctx) {
7223 			child_ctx->parent_ctx = cloned_ctx;
7224 			child_ctx->parent_gen = parent_ctx->parent_gen;
7225 		} else {
7226 			child_ctx->parent_ctx = parent_ctx;
7227 			child_ctx->parent_gen = parent_ctx->generation;
7228 		}
7229 		get_ctx(child_ctx->parent_ctx);
7230 	}
7231 
7232 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7233 	mutex_unlock(&parent_ctx->mutex);
7234 
7235 	perf_unpin_context(parent_ctx);
7236 	put_ctx(parent_ctx);
7237 
7238 	return ret;
7239 }
7240 
7241 /*
7242  * Initialize the perf_event context in task_struct
7243  */
7244 int perf_event_init_task(struct task_struct *child)
7245 {
7246 	int ctxn, ret;
7247 
7248 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7249 	mutex_init(&child->perf_event_mutex);
7250 	INIT_LIST_HEAD(&child->perf_event_list);
7251 
7252 	for_each_task_context_nr(ctxn) {
7253 		ret = perf_event_init_context(child, ctxn);
7254 		if (ret)
7255 			return ret;
7256 	}
7257 
7258 	return 0;
7259 }
7260 
7261 static void __init perf_event_init_all_cpus(void)
7262 {
7263 	struct swevent_htable *swhash;
7264 	int cpu;
7265 
7266 	for_each_possible_cpu(cpu) {
7267 		swhash = &per_cpu(swevent_htable, cpu);
7268 		mutex_init(&swhash->hlist_mutex);
7269 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7270 	}
7271 }
7272 
7273 static void __cpuinit perf_event_init_cpu(int cpu)
7274 {
7275 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7276 
7277 	mutex_lock(&swhash->hlist_mutex);
7278 	if (swhash->hlist_refcount > 0) {
7279 		struct swevent_hlist *hlist;
7280 
7281 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7282 		WARN_ON(!hlist);
7283 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7284 	}
7285 	mutex_unlock(&swhash->hlist_mutex);
7286 }
7287 
7288 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7289 static void perf_pmu_rotate_stop(struct pmu *pmu)
7290 {
7291 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7292 
7293 	WARN_ON(!irqs_disabled());
7294 
7295 	list_del_init(&cpuctx->rotation_list);
7296 }
7297 
7298 static void __perf_event_exit_context(void *__info)
7299 {
7300 	struct perf_event_context *ctx = __info;
7301 	struct perf_event *event, *tmp;
7302 
7303 	perf_pmu_rotate_stop(ctx->pmu);
7304 
7305 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7306 		__perf_remove_from_context(event);
7307 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7308 		__perf_remove_from_context(event);
7309 }
7310 
7311 static void perf_event_exit_cpu_context(int cpu)
7312 {
7313 	struct perf_event_context *ctx;
7314 	struct pmu *pmu;
7315 	int idx;
7316 
7317 	idx = srcu_read_lock(&pmus_srcu);
7318 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7319 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7320 
7321 		mutex_lock(&ctx->mutex);
7322 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7323 		mutex_unlock(&ctx->mutex);
7324 	}
7325 	srcu_read_unlock(&pmus_srcu, idx);
7326 }
7327 
7328 static void perf_event_exit_cpu(int cpu)
7329 {
7330 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7331 
7332 	mutex_lock(&swhash->hlist_mutex);
7333 	swevent_hlist_release(swhash);
7334 	mutex_unlock(&swhash->hlist_mutex);
7335 
7336 	perf_event_exit_cpu_context(cpu);
7337 }
7338 #else
7339 static inline void perf_event_exit_cpu(int cpu) { }
7340 #endif
7341 
7342 static int
7343 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7344 {
7345 	int cpu;
7346 
7347 	for_each_online_cpu(cpu)
7348 		perf_event_exit_cpu(cpu);
7349 
7350 	return NOTIFY_OK;
7351 }
7352 
7353 /*
7354  * Run the perf reboot notifier at the very last possible moment so that
7355  * the generic watchdog code runs as long as possible.
7356  */
7357 static struct notifier_block perf_reboot_notifier = {
7358 	.notifier_call = perf_reboot,
7359 	.priority = INT_MIN,
7360 };
7361 
7362 static int __cpuinit
7363 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7364 {
7365 	unsigned int cpu = (long)hcpu;
7366 
7367 	switch (action & ~CPU_TASKS_FROZEN) {
7368 
7369 	case CPU_UP_PREPARE:
7370 	case CPU_DOWN_FAILED:
7371 		perf_event_init_cpu(cpu);
7372 		break;
7373 
7374 	case CPU_UP_CANCELED:
7375 	case CPU_DOWN_PREPARE:
7376 		perf_event_exit_cpu(cpu);
7377 		break;
7378 
7379 	default:
7380 		break;
7381 	}
7382 
7383 	return NOTIFY_OK;
7384 }
7385 
7386 void __init perf_event_init(void)
7387 {
7388 	int ret;
7389 
7390 	idr_init(&pmu_idr);
7391 
7392 	perf_event_init_all_cpus();
7393 	init_srcu_struct(&pmus_srcu);
7394 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7395 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7396 	perf_pmu_register(&perf_task_clock, NULL, -1);
7397 	perf_tp_register();
7398 	perf_cpu_notifier(perf_cpu_notify);
7399 	register_reboot_notifier(&perf_reboot_notifier);
7400 
7401 	ret = init_hw_breakpoint();
7402 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7403 
7404 	/* do not patch jump label more than once per second */
7405 	jump_label_rate_limit(&perf_sched_events, HZ);
7406 
7407 	/*
7408 	 * Build time assertion that we keep the data_head at the intended
7409 	 * location.  IOW, validation we got the __reserved[] size right.
7410 	 */
7411 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7412 		     != 1024);
7413 }
7414 
7415 static int __init perf_event_sysfs_init(void)
7416 {
7417 	struct pmu *pmu;
7418 	int ret;
7419 
7420 	mutex_lock(&pmus_lock);
7421 
7422 	ret = bus_register(&pmu_bus);
7423 	if (ret)
7424 		goto unlock;
7425 
7426 	list_for_each_entry(pmu, &pmus, entry) {
7427 		if (!pmu->name || pmu->type < 0)
7428 			continue;
7429 
7430 		ret = pmu_dev_alloc(pmu);
7431 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7432 	}
7433 	pmu_bus_running = 1;
7434 	ret = 0;
7435 
7436 unlock:
7437 	mutex_unlock(&pmus_lock);
7438 
7439 	return ret;
7440 }
7441 device_initcall(perf_event_sysfs_init);
7442 
7443 #ifdef CONFIG_CGROUP_PERF
7444 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7445 {
7446 	struct perf_cgroup *jc;
7447 
7448 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7449 	if (!jc)
7450 		return ERR_PTR(-ENOMEM);
7451 
7452 	jc->info = alloc_percpu(struct perf_cgroup_info);
7453 	if (!jc->info) {
7454 		kfree(jc);
7455 		return ERR_PTR(-ENOMEM);
7456 	}
7457 
7458 	return &jc->css;
7459 }
7460 
7461 static void perf_cgroup_destroy(struct cgroup *cont)
7462 {
7463 	struct perf_cgroup *jc;
7464 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7465 			  struct perf_cgroup, css);
7466 	free_percpu(jc->info);
7467 	kfree(jc);
7468 }
7469 
7470 static int __perf_cgroup_move(void *info)
7471 {
7472 	struct task_struct *task = info;
7473 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7474 	return 0;
7475 }
7476 
7477 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7478 {
7479 	struct task_struct *task;
7480 
7481 	cgroup_taskset_for_each(task, cgrp, tset)
7482 		task_function_call(task, __perf_cgroup_move, task);
7483 }
7484 
7485 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7486 			     struct task_struct *task)
7487 {
7488 	/*
7489 	 * cgroup_exit() is called in the copy_process() failure path.
7490 	 * Ignore this case since the task hasn't ran yet, this avoids
7491 	 * trying to poke a half freed task state from generic code.
7492 	 */
7493 	if (!(task->flags & PF_EXITING))
7494 		return;
7495 
7496 	task_function_call(task, __perf_cgroup_move, task);
7497 }
7498 
7499 struct cgroup_subsys perf_subsys = {
7500 	.name		= "perf_event",
7501 	.subsys_id	= perf_subsys_id,
7502 	.create		= perf_cgroup_create,
7503 	.destroy	= perf_cgroup_destroy,
7504 	.exit		= perf_cgroup_exit,
7505 	.attach		= perf_cgroup_attach,
7506 };
7507 #endif /* CONFIG_CGROUP_PERF */
7508