1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/mm_types.h> 40 41 #include "internal.h" 42 43 #include <asm/irq_regs.h> 44 45 struct remote_function_call { 46 struct task_struct *p; 47 int (*func)(void *info); 48 void *info; 49 int ret; 50 }; 51 52 static void remote_function(void *data) 53 { 54 struct remote_function_call *tfc = data; 55 struct task_struct *p = tfc->p; 56 57 if (p) { 58 tfc->ret = -EAGAIN; 59 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 60 return; 61 } 62 63 tfc->ret = tfc->func(tfc->info); 64 } 65 66 /** 67 * task_function_call - call a function on the cpu on which a task runs 68 * @p: the task to evaluate 69 * @func: the function to be called 70 * @info: the function call argument 71 * 72 * Calls the function @func when the task is currently running. This might 73 * be on the current CPU, which just calls the function directly 74 * 75 * returns: @func return value, or 76 * -ESRCH - when the process isn't running 77 * -EAGAIN - when the process moved away 78 */ 79 static int 80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 81 { 82 struct remote_function_call data = { 83 .p = p, 84 .func = func, 85 .info = info, 86 .ret = -ESRCH, /* No such (running) process */ 87 }; 88 89 if (task_curr(p)) 90 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 91 92 return data.ret; 93 } 94 95 /** 96 * cpu_function_call - call a function on the cpu 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func on the remote cpu. 101 * 102 * returns: @func return value or -ENXIO when the cpu is offline 103 */ 104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 105 { 106 struct remote_function_call data = { 107 .p = NULL, 108 .func = func, 109 .info = info, 110 .ret = -ENXIO, /* No such CPU */ 111 }; 112 113 smp_call_function_single(cpu, remote_function, &data, 1); 114 115 return data.ret; 116 } 117 118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 119 PERF_FLAG_FD_OUTPUT |\ 120 PERF_FLAG_PID_CGROUP) 121 122 /* 123 * branch priv levels that need permission checks 124 */ 125 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 126 (PERF_SAMPLE_BRANCH_KERNEL |\ 127 PERF_SAMPLE_BRANCH_HV) 128 129 enum event_type_t { 130 EVENT_FLEXIBLE = 0x1, 131 EVENT_PINNED = 0x2, 132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 133 }; 134 135 /* 136 * perf_sched_events : >0 events exist 137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 138 */ 139 struct static_key_deferred perf_sched_events __read_mostly; 140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 142 143 static atomic_t nr_mmap_events __read_mostly; 144 static atomic_t nr_comm_events __read_mostly; 145 static atomic_t nr_task_events __read_mostly; 146 147 static LIST_HEAD(pmus); 148 static DEFINE_MUTEX(pmus_lock); 149 static struct srcu_struct pmus_srcu; 150 151 /* 152 * perf event paranoia level: 153 * -1 - not paranoid at all 154 * 0 - disallow raw tracepoint access for unpriv 155 * 1 - disallow cpu events for unpriv 156 * 2 - disallow kernel profiling for unpriv 157 */ 158 int sysctl_perf_event_paranoid __read_mostly = 1; 159 160 /* Minimum for 512 kiB + 1 user control page */ 161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 162 163 /* 164 * max perf event sample rate 165 */ 166 #define DEFAULT_MAX_SAMPLE_RATE 100000 167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 168 static int max_samples_per_tick __read_mostly = 169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 170 171 int perf_proc_update_handler(struct ctl_table *table, int write, 172 void __user *buffer, size_t *lenp, 173 loff_t *ppos) 174 { 175 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 176 177 if (ret || !write) 178 return ret; 179 180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 181 182 return 0; 183 } 184 185 static atomic64_t perf_event_id; 186 187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 188 enum event_type_t event_type); 189 190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 191 enum event_type_t event_type, 192 struct task_struct *task); 193 194 static void update_context_time(struct perf_event_context *ctx); 195 static u64 perf_event_time(struct perf_event *event); 196 197 static void ring_buffer_attach(struct perf_event *event, 198 struct ring_buffer *rb); 199 200 void __weak perf_event_print_debug(void) { } 201 202 extern __weak const char *perf_pmu_name(void) 203 { 204 return "pmu"; 205 } 206 207 static inline u64 perf_clock(void) 208 { 209 return local_clock(); 210 } 211 212 static inline struct perf_cpu_context * 213 __get_cpu_context(struct perf_event_context *ctx) 214 { 215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 216 } 217 218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 219 struct perf_event_context *ctx) 220 { 221 raw_spin_lock(&cpuctx->ctx.lock); 222 if (ctx) 223 raw_spin_lock(&ctx->lock); 224 } 225 226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 227 struct perf_event_context *ctx) 228 { 229 if (ctx) 230 raw_spin_unlock(&ctx->lock); 231 raw_spin_unlock(&cpuctx->ctx.lock); 232 } 233 234 #ifdef CONFIG_CGROUP_PERF 235 236 /* 237 * Must ensure cgroup is pinned (css_get) before calling 238 * this function. In other words, we cannot call this function 239 * if there is no cgroup event for the current CPU context. 240 */ 241 static inline struct perf_cgroup * 242 perf_cgroup_from_task(struct task_struct *task) 243 { 244 return container_of(task_subsys_state(task, perf_subsys_id), 245 struct perf_cgroup, css); 246 } 247 248 static inline bool 249 perf_cgroup_match(struct perf_event *event) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 253 254 return !event->cgrp || event->cgrp == cpuctx->cgrp; 255 } 256 257 static inline bool perf_tryget_cgroup(struct perf_event *event) 258 { 259 return css_tryget(&event->cgrp->css); 260 } 261 262 static inline void perf_put_cgroup(struct perf_event *event) 263 { 264 css_put(&event->cgrp->css); 265 } 266 267 static inline void perf_detach_cgroup(struct perf_event *event) 268 { 269 perf_put_cgroup(event); 270 event->cgrp = NULL; 271 } 272 273 static inline int is_cgroup_event(struct perf_event *event) 274 { 275 return event->cgrp != NULL; 276 } 277 278 static inline u64 perf_cgroup_event_time(struct perf_event *event) 279 { 280 struct perf_cgroup_info *t; 281 282 t = per_cpu_ptr(event->cgrp->info, event->cpu); 283 return t->time; 284 } 285 286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 287 { 288 struct perf_cgroup_info *info; 289 u64 now; 290 291 now = perf_clock(); 292 293 info = this_cpu_ptr(cgrp->info); 294 295 info->time += now - info->timestamp; 296 info->timestamp = now; 297 } 298 299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 300 { 301 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 302 if (cgrp_out) 303 __update_cgrp_time(cgrp_out); 304 } 305 306 static inline void update_cgrp_time_from_event(struct perf_event *event) 307 { 308 struct perf_cgroup *cgrp; 309 310 /* 311 * ensure we access cgroup data only when needed and 312 * when we know the cgroup is pinned (css_get) 313 */ 314 if (!is_cgroup_event(event)) 315 return; 316 317 cgrp = perf_cgroup_from_task(current); 318 /* 319 * Do not update time when cgroup is not active 320 */ 321 if (cgrp == event->cgrp) 322 __update_cgrp_time(event->cgrp); 323 } 324 325 static inline void 326 perf_cgroup_set_timestamp(struct task_struct *task, 327 struct perf_event_context *ctx) 328 { 329 struct perf_cgroup *cgrp; 330 struct perf_cgroup_info *info; 331 332 /* 333 * ctx->lock held by caller 334 * ensure we do not access cgroup data 335 * unless we have the cgroup pinned (css_get) 336 */ 337 if (!task || !ctx->nr_cgroups) 338 return; 339 340 cgrp = perf_cgroup_from_task(task); 341 info = this_cpu_ptr(cgrp->info); 342 info->timestamp = ctx->timestamp; 343 } 344 345 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 346 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 347 348 /* 349 * reschedule events based on the cgroup constraint of task. 350 * 351 * mode SWOUT : schedule out everything 352 * mode SWIN : schedule in based on cgroup for next 353 */ 354 void perf_cgroup_switch(struct task_struct *task, int mode) 355 { 356 struct perf_cpu_context *cpuctx; 357 struct pmu *pmu; 358 unsigned long flags; 359 360 /* 361 * disable interrupts to avoid geting nr_cgroup 362 * changes via __perf_event_disable(). Also 363 * avoids preemption. 364 */ 365 local_irq_save(flags); 366 367 /* 368 * we reschedule only in the presence of cgroup 369 * constrained events. 370 */ 371 rcu_read_lock(); 372 373 list_for_each_entry_rcu(pmu, &pmus, entry) { 374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 375 376 /* 377 * perf_cgroup_events says at least one 378 * context on this CPU has cgroup events. 379 * 380 * ctx->nr_cgroups reports the number of cgroup 381 * events for a context. 382 */ 383 if (cpuctx->ctx.nr_cgroups > 0) { 384 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 385 perf_pmu_disable(cpuctx->ctx.pmu); 386 387 if (mode & PERF_CGROUP_SWOUT) { 388 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 389 /* 390 * must not be done before ctxswout due 391 * to event_filter_match() in event_sched_out() 392 */ 393 cpuctx->cgrp = NULL; 394 } 395 396 if (mode & PERF_CGROUP_SWIN) { 397 WARN_ON_ONCE(cpuctx->cgrp); 398 /* set cgrp before ctxsw in to 399 * allow event_filter_match() to not 400 * have to pass task around 401 */ 402 cpuctx->cgrp = perf_cgroup_from_task(task); 403 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 404 } 405 perf_pmu_enable(cpuctx->ctx.pmu); 406 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 407 } 408 } 409 410 rcu_read_unlock(); 411 412 local_irq_restore(flags); 413 } 414 415 static inline void perf_cgroup_sched_out(struct task_struct *task, 416 struct task_struct *next) 417 { 418 struct perf_cgroup *cgrp1; 419 struct perf_cgroup *cgrp2 = NULL; 420 421 /* 422 * we come here when we know perf_cgroup_events > 0 423 */ 424 cgrp1 = perf_cgroup_from_task(task); 425 426 /* 427 * next is NULL when called from perf_event_enable_on_exec() 428 * that will systematically cause a cgroup_switch() 429 */ 430 if (next) 431 cgrp2 = perf_cgroup_from_task(next); 432 433 /* 434 * only schedule out current cgroup events if we know 435 * that we are switching to a different cgroup. Otherwise, 436 * do no touch the cgroup events. 437 */ 438 if (cgrp1 != cgrp2) 439 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 440 } 441 442 static inline void perf_cgroup_sched_in(struct task_struct *prev, 443 struct task_struct *task) 444 { 445 struct perf_cgroup *cgrp1; 446 struct perf_cgroup *cgrp2 = NULL; 447 448 /* 449 * we come here when we know perf_cgroup_events > 0 450 */ 451 cgrp1 = perf_cgroup_from_task(task); 452 453 /* prev can never be NULL */ 454 cgrp2 = perf_cgroup_from_task(prev); 455 456 /* 457 * only need to schedule in cgroup events if we are changing 458 * cgroup during ctxsw. Cgroup events were not scheduled 459 * out of ctxsw out if that was not the case. 460 */ 461 if (cgrp1 != cgrp2) 462 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 463 } 464 465 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 466 struct perf_event_attr *attr, 467 struct perf_event *group_leader) 468 { 469 struct perf_cgroup *cgrp; 470 struct cgroup_subsys_state *css; 471 struct file *file; 472 int ret = 0, fput_needed; 473 474 file = fget_light(fd, &fput_needed); 475 if (!file) 476 return -EBADF; 477 478 css = cgroup_css_from_dir(file, perf_subsys_id); 479 if (IS_ERR(css)) { 480 ret = PTR_ERR(css); 481 goto out; 482 } 483 484 cgrp = container_of(css, struct perf_cgroup, css); 485 event->cgrp = cgrp; 486 487 /* must be done before we fput() the file */ 488 if (!perf_tryget_cgroup(event)) { 489 event->cgrp = NULL; 490 ret = -ENOENT; 491 goto out; 492 } 493 494 /* 495 * all events in a group must monitor 496 * the same cgroup because a task belongs 497 * to only one perf cgroup at a time 498 */ 499 if (group_leader && group_leader->cgrp != cgrp) { 500 perf_detach_cgroup(event); 501 ret = -EINVAL; 502 } 503 out: 504 fput_light(file, fput_needed); 505 return ret; 506 } 507 508 static inline void 509 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 510 { 511 struct perf_cgroup_info *t; 512 t = per_cpu_ptr(event->cgrp->info, event->cpu); 513 event->shadow_ctx_time = now - t->timestamp; 514 } 515 516 static inline void 517 perf_cgroup_defer_enabled(struct perf_event *event) 518 { 519 /* 520 * when the current task's perf cgroup does not match 521 * the event's, we need to remember to call the 522 * perf_mark_enable() function the first time a task with 523 * a matching perf cgroup is scheduled in. 524 */ 525 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 526 event->cgrp_defer_enabled = 1; 527 } 528 529 static inline void 530 perf_cgroup_mark_enabled(struct perf_event *event, 531 struct perf_event_context *ctx) 532 { 533 struct perf_event *sub; 534 u64 tstamp = perf_event_time(event); 535 536 if (!event->cgrp_defer_enabled) 537 return; 538 539 event->cgrp_defer_enabled = 0; 540 541 event->tstamp_enabled = tstamp - event->total_time_enabled; 542 list_for_each_entry(sub, &event->sibling_list, group_entry) { 543 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 544 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 545 sub->cgrp_defer_enabled = 0; 546 } 547 } 548 } 549 #else /* !CONFIG_CGROUP_PERF */ 550 551 static inline bool 552 perf_cgroup_match(struct perf_event *event) 553 { 554 return true; 555 } 556 557 static inline void perf_detach_cgroup(struct perf_event *event) 558 {} 559 560 static inline int is_cgroup_event(struct perf_event *event) 561 { 562 return 0; 563 } 564 565 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 566 { 567 return 0; 568 } 569 570 static inline void update_cgrp_time_from_event(struct perf_event *event) 571 { 572 } 573 574 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 575 { 576 } 577 578 static inline void perf_cgroup_sched_out(struct task_struct *task, 579 struct task_struct *next) 580 { 581 } 582 583 static inline void perf_cgroup_sched_in(struct task_struct *prev, 584 struct task_struct *task) 585 { 586 } 587 588 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 589 struct perf_event_attr *attr, 590 struct perf_event *group_leader) 591 { 592 return -EINVAL; 593 } 594 595 static inline void 596 perf_cgroup_set_timestamp(struct task_struct *task, 597 struct perf_event_context *ctx) 598 { 599 } 600 601 void 602 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 603 { 604 } 605 606 static inline void 607 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 608 { 609 } 610 611 static inline u64 perf_cgroup_event_time(struct perf_event *event) 612 { 613 return 0; 614 } 615 616 static inline void 617 perf_cgroup_defer_enabled(struct perf_event *event) 618 { 619 } 620 621 static inline void 622 perf_cgroup_mark_enabled(struct perf_event *event, 623 struct perf_event_context *ctx) 624 { 625 } 626 #endif 627 628 void perf_pmu_disable(struct pmu *pmu) 629 { 630 int *count = this_cpu_ptr(pmu->pmu_disable_count); 631 if (!(*count)++) 632 pmu->pmu_disable(pmu); 633 } 634 635 void perf_pmu_enable(struct pmu *pmu) 636 { 637 int *count = this_cpu_ptr(pmu->pmu_disable_count); 638 if (!--(*count)) 639 pmu->pmu_enable(pmu); 640 } 641 642 static DEFINE_PER_CPU(struct list_head, rotation_list); 643 644 /* 645 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 646 * because they're strictly cpu affine and rotate_start is called with IRQs 647 * disabled, while rotate_context is called from IRQ context. 648 */ 649 static void perf_pmu_rotate_start(struct pmu *pmu) 650 { 651 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 652 struct list_head *head = &__get_cpu_var(rotation_list); 653 654 WARN_ON(!irqs_disabled()); 655 656 if (list_empty(&cpuctx->rotation_list)) 657 list_add(&cpuctx->rotation_list, head); 658 } 659 660 static void get_ctx(struct perf_event_context *ctx) 661 { 662 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 663 } 664 665 static void put_ctx(struct perf_event_context *ctx) 666 { 667 if (atomic_dec_and_test(&ctx->refcount)) { 668 if (ctx->parent_ctx) 669 put_ctx(ctx->parent_ctx); 670 if (ctx->task) 671 put_task_struct(ctx->task); 672 kfree_rcu(ctx, rcu_head); 673 } 674 } 675 676 static void unclone_ctx(struct perf_event_context *ctx) 677 { 678 if (ctx->parent_ctx) { 679 put_ctx(ctx->parent_ctx); 680 ctx->parent_ctx = NULL; 681 } 682 } 683 684 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 685 { 686 /* 687 * only top level events have the pid namespace they were created in 688 */ 689 if (event->parent) 690 event = event->parent; 691 692 return task_tgid_nr_ns(p, event->ns); 693 } 694 695 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 696 { 697 /* 698 * only top level events have the pid namespace they were created in 699 */ 700 if (event->parent) 701 event = event->parent; 702 703 return task_pid_nr_ns(p, event->ns); 704 } 705 706 /* 707 * If we inherit events we want to return the parent event id 708 * to userspace. 709 */ 710 static u64 primary_event_id(struct perf_event *event) 711 { 712 u64 id = event->id; 713 714 if (event->parent) 715 id = event->parent->id; 716 717 return id; 718 } 719 720 /* 721 * Get the perf_event_context for a task and lock it. 722 * This has to cope with with the fact that until it is locked, 723 * the context could get moved to another task. 724 */ 725 static struct perf_event_context * 726 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 727 { 728 struct perf_event_context *ctx; 729 730 rcu_read_lock(); 731 retry: 732 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 733 if (ctx) { 734 /* 735 * If this context is a clone of another, it might 736 * get swapped for another underneath us by 737 * perf_event_task_sched_out, though the 738 * rcu_read_lock() protects us from any context 739 * getting freed. Lock the context and check if it 740 * got swapped before we could get the lock, and retry 741 * if so. If we locked the right context, then it 742 * can't get swapped on us any more. 743 */ 744 raw_spin_lock_irqsave(&ctx->lock, *flags); 745 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 746 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 747 goto retry; 748 } 749 750 if (!atomic_inc_not_zero(&ctx->refcount)) { 751 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 752 ctx = NULL; 753 } 754 } 755 rcu_read_unlock(); 756 return ctx; 757 } 758 759 /* 760 * Get the context for a task and increment its pin_count so it 761 * can't get swapped to another task. This also increments its 762 * reference count so that the context can't get freed. 763 */ 764 static struct perf_event_context * 765 perf_pin_task_context(struct task_struct *task, int ctxn) 766 { 767 struct perf_event_context *ctx; 768 unsigned long flags; 769 770 ctx = perf_lock_task_context(task, ctxn, &flags); 771 if (ctx) { 772 ++ctx->pin_count; 773 raw_spin_unlock_irqrestore(&ctx->lock, flags); 774 } 775 return ctx; 776 } 777 778 static void perf_unpin_context(struct perf_event_context *ctx) 779 { 780 unsigned long flags; 781 782 raw_spin_lock_irqsave(&ctx->lock, flags); 783 --ctx->pin_count; 784 raw_spin_unlock_irqrestore(&ctx->lock, flags); 785 } 786 787 /* 788 * Update the record of the current time in a context. 789 */ 790 static void update_context_time(struct perf_event_context *ctx) 791 { 792 u64 now = perf_clock(); 793 794 ctx->time += now - ctx->timestamp; 795 ctx->timestamp = now; 796 } 797 798 static u64 perf_event_time(struct perf_event *event) 799 { 800 struct perf_event_context *ctx = event->ctx; 801 802 if (is_cgroup_event(event)) 803 return perf_cgroup_event_time(event); 804 805 return ctx ? ctx->time : 0; 806 } 807 808 /* 809 * Update the total_time_enabled and total_time_running fields for a event. 810 * The caller of this function needs to hold the ctx->lock. 811 */ 812 static void update_event_times(struct perf_event *event) 813 { 814 struct perf_event_context *ctx = event->ctx; 815 u64 run_end; 816 817 if (event->state < PERF_EVENT_STATE_INACTIVE || 818 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 819 return; 820 /* 821 * in cgroup mode, time_enabled represents 822 * the time the event was enabled AND active 823 * tasks were in the monitored cgroup. This is 824 * independent of the activity of the context as 825 * there may be a mix of cgroup and non-cgroup events. 826 * 827 * That is why we treat cgroup events differently 828 * here. 829 */ 830 if (is_cgroup_event(event)) 831 run_end = perf_cgroup_event_time(event); 832 else if (ctx->is_active) 833 run_end = ctx->time; 834 else 835 run_end = event->tstamp_stopped; 836 837 event->total_time_enabled = run_end - event->tstamp_enabled; 838 839 if (event->state == PERF_EVENT_STATE_INACTIVE) 840 run_end = event->tstamp_stopped; 841 else 842 run_end = perf_event_time(event); 843 844 event->total_time_running = run_end - event->tstamp_running; 845 846 } 847 848 /* 849 * Update total_time_enabled and total_time_running for all events in a group. 850 */ 851 static void update_group_times(struct perf_event *leader) 852 { 853 struct perf_event *event; 854 855 update_event_times(leader); 856 list_for_each_entry(event, &leader->sibling_list, group_entry) 857 update_event_times(event); 858 } 859 860 static struct list_head * 861 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 862 { 863 if (event->attr.pinned) 864 return &ctx->pinned_groups; 865 else 866 return &ctx->flexible_groups; 867 } 868 869 /* 870 * Add a event from the lists for its context. 871 * Must be called with ctx->mutex and ctx->lock held. 872 */ 873 static void 874 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 875 { 876 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 877 event->attach_state |= PERF_ATTACH_CONTEXT; 878 879 /* 880 * If we're a stand alone event or group leader, we go to the context 881 * list, group events are kept attached to the group so that 882 * perf_group_detach can, at all times, locate all siblings. 883 */ 884 if (event->group_leader == event) { 885 struct list_head *list; 886 887 if (is_software_event(event)) 888 event->group_flags |= PERF_GROUP_SOFTWARE; 889 890 list = ctx_group_list(event, ctx); 891 list_add_tail(&event->group_entry, list); 892 } 893 894 if (is_cgroup_event(event)) 895 ctx->nr_cgroups++; 896 897 if (has_branch_stack(event)) 898 ctx->nr_branch_stack++; 899 900 list_add_rcu(&event->event_entry, &ctx->event_list); 901 if (!ctx->nr_events) 902 perf_pmu_rotate_start(ctx->pmu); 903 ctx->nr_events++; 904 if (event->attr.inherit_stat) 905 ctx->nr_stat++; 906 } 907 908 /* 909 * Called at perf_event creation and when events are attached/detached from a 910 * group. 911 */ 912 static void perf_event__read_size(struct perf_event *event) 913 { 914 int entry = sizeof(u64); /* value */ 915 int size = 0; 916 int nr = 1; 917 918 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 919 size += sizeof(u64); 920 921 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 922 size += sizeof(u64); 923 924 if (event->attr.read_format & PERF_FORMAT_ID) 925 entry += sizeof(u64); 926 927 if (event->attr.read_format & PERF_FORMAT_GROUP) { 928 nr += event->group_leader->nr_siblings; 929 size += sizeof(u64); 930 } 931 932 size += entry * nr; 933 event->read_size = size; 934 } 935 936 static void perf_event__header_size(struct perf_event *event) 937 { 938 struct perf_sample_data *data; 939 u64 sample_type = event->attr.sample_type; 940 u16 size = 0; 941 942 perf_event__read_size(event); 943 944 if (sample_type & PERF_SAMPLE_IP) 945 size += sizeof(data->ip); 946 947 if (sample_type & PERF_SAMPLE_ADDR) 948 size += sizeof(data->addr); 949 950 if (sample_type & PERF_SAMPLE_PERIOD) 951 size += sizeof(data->period); 952 953 if (sample_type & PERF_SAMPLE_READ) 954 size += event->read_size; 955 956 event->header_size = size; 957 } 958 959 static void perf_event__id_header_size(struct perf_event *event) 960 { 961 struct perf_sample_data *data; 962 u64 sample_type = event->attr.sample_type; 963 u16 size = 0; 964 965 if (sample_type & PERF_SAMPLE_TID) 966 size += sizeof(data->tid_entry); 967 968 if (sample_type & PERF_SAMPLE_TIME) 969 size += sizeof(data->time); 970 971 if (sample_type & PERF_SAMPLE_ID) 972 size += sizeof(data->id); 973 974 if (sample_type & PERF_SAMPLE_STREAM_ID) 975 size += sizeof(data->stream_id); 976 977 if (sample_type & PERF_SAMPLE_CPU) 978 size += sizeof(data->cpu_entry); 979 980 event->id_header_size = size; 981 } 982 983 static void perf_group_attach(struct perf_event *event) 984 { 985 struct perf_event *group_leader = event->group_leader, *pos; 986 987 /* 988 * We can have double attach due to group movement in perf_event_open. 989 */ 990 if (event->attach_state & PERF_ATTACH_GROUP) 991 return; 992 993 event->attach_state |= PERF_ATTACH_GROUP; 994 995 if (group_leader == event) 996 return; 997 998 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 999 !is_software_event(event)) 1000 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1001 1002 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1003 group_leader->nr_siblings++; 1004 1005 perf_event__header_size(group_leader); 1006 1007 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1008 perf_event__header_size(pos); 1009 } 1010 1011 /* 1012 * Remove a event from the lists for its context. 1013 * Must be called with ctx->mutex and ctx->lock held. 1014 */ 1015 static void 1016 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1017 { 1018 struct perf_cpu_context *cpuctx; 1019 /* 1020 * We can have double detach due to exit/hot-unplug + close. 1021 */ 1022 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1023 return; 1024 1025 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1026 1027 if (is_cgroup_event(event)) { 1028 ctx->nr_cgroups--; 1029 cpuctx = __get_cpu_context(ctx); 1030 /* 1031 * if there are no more cgroup events 1032 * then cler cgrp to avoid stale pointer 1033 * in update_cgrp_time_from_cpuctx() 1034 */ 1035 if (!ctx->nr_cgroups) 1036 cpuctx->cgrp = NULL; 1037 } 1038 1039 if (has_branch_stack(event)) 1040 ctx->nr_branch_stack--; 1041 1042 ctx->nr_events--; 1043 if (event->attr.inherit_stat) 1044 ctx->nr_stat--; 1045 1046 list_del_rcu(&event->event_entry); 1047 1048 if (event->group_leader == event) 1049 list_del_init(&event->group_entry); 1050 1051 update_group_times(event); 1052 1053 /* 1054 * If event was in error state, then keep it 1055 * that way, otherwise bogus counts will be 1056 * returned on read(). The only way to get out 1057 * of error state is by explicit re-enabling 1058 * of the event 1059 */ 1060 if (event->state > PERF_EVENT_STATE_OFF) 1061 event->state = PERF_EVENT_STATE_OFF; 1062 } 1063 1064 static void perf_group_detach(struct perf_event *event) 1065 { 1066 struct perf_event *sibling, *tmp; 1067 struct list_head *list = NULL; 1068 1069 /* 1070 * We can have double detach due to exit/hot-unplug + close. 1071 */ 1072 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1073 return; 1074 1075 event->attach_state &= ~PERF_ATTACH_GROUP; 1076 1077 /* 1078 * If this is a sibling, remove it from its group. 1079 */ 1080 if (event->group_leader != event) { 1081 list_del_init(&event->group_entry); 1082 event->group_leader->nr_siblings--; 1083 goto out; 1084 } 1085 1086 if (!list_empty(&event->group_entry)) 1087 list = &event->group_entry; 1088 1089 /* 1090 * If this was a group event with sibling events then 1091 * upgrade the siblings to singleton events by adding them 1092 * to whatever list we are on. 1093 */ 1094 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1095 if (list) 1096 list_move_tail(&sibling->group_entry, list); 1097 sibling->group_leader = sibling; 1098 1099 /* Inherit group flags from the previous leader */ 1100 sibling->group_flags = event->group_flags; 1101 } 1102 1103 out: 1104 perf_event__header_size(event->group_leader); 1105 1106 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1107 perf_event__header_size(tmp); 1108 } 1109 1110 static inline int 1111 event_filter_match(struct perf_event *event) 1112 { 1113 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1114 && perf_cgroup_match(event); 1115 } 1116 1117 static void 1118 event_sched_out(struct perf_event *event, 1119 struct perf_cpu_context *cpuctx, 1120 struct perf_event_context *ctx) 1121 { 1122 u64 tstamp = perf_event_time(event); 1123 u64 delta; 1124 /* 1125 * An event which could not be activated because of 1126 * filter mismatch still needs to have its timings 1127 * maintained, otherwise bogus information is return 1128 * via read() for time_enabled, time_running: 1129 */ 1130 if (event->state == PERF_EVENT_STATE_INACTIVE 1131 && !event_filter_match(event)) { 1132 delta = tstamp - event->tstamp_stopped; 1133 event->tstamp_running += delta; 1134 event->tstamp_stopped = tstamp; 1135 } 1136 1137 if (event->state != PERF_EVENT_STATE_ACTIVE) 1138 return; 1139 1140 event->state = PERF_EVENT_STATE_INACTIVE; 1141 if (event->pending_disable) { 1142 event->pending_disable = 0; 1143 event->state = PERF_EVENT_STATE_OFF; 1144 } 1145 event->tstamp_stopped = tstamp; 1146 event->pmu->del(event, 0); 1147 event->oncpu = -1; 1148 1149 if (!is_software_event(event)) 1150 cpuctx->active_oncpu--; 1151 ctx->nr_active--; 1152 if (event->attr.freq && event->attr.sample_freq) 1153 ctx->nr_freq--; 1154 if (event->attr.exclusive || !cpuctx->active_oncpu) 1155 cpuctx->exclusive = 0; 1156 } 1157 1158 static void 1159 group_sched_out(struct perf_event *group_event, 1160 struct perf_cpu_context *cpuctx, 1161 struct perf_event_context *ctx) 1162 { 1163 struct perf_event *event; 1164 int state = group_event->state; 1165 1166 event_sched_out(group_event, cpuctx, ctx); 1167 1168 /* 1169 * Schedule out siblings (if any): 1170 */ 1171 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1172 event_sched_out(event, cpuctx, ctx); 1173 1174 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1175 cpuctx->exclusive = 0; 1176 } 1177 1178 /* 1179 * Cross CPU call to remove a performance event 1180 * 1181 * We disable the event on the hardware level first. After that we 1182 * remove it from the context list. 1183 */ 1184 static int __perf_remove_from_context(void *info) 1185 { 1186 struct perf_event *event = info; 1187 struct perf_event_context *ctx = event->ctx; 1188 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1189 1190 raw_spin_lock(&ctx->lock); 1191 event_sched_out(event, cpuctx, ctx); 1192 list_del_event(event, ctx); 1193 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1194 ctx->is_active = 0; 1195 cpuctx->task_ctx = NULL; 1196 } 1197 raw_spin_unlock(&ctx->lock); 1198 1199 return 0; 1200 } 1201 1202 1203 /* 1204 * Remove the event from a task's (or a CPU's) list of events. 1205 * 1206 * CPU events are removed with a smp call. For task events we only 1207 * call when the task is on a CPU. 1208 * 1209 * If event->ctx is a cloned context, callers must make sure that 1210 * every task struct that event->ctx->task could possibly point to 1211 * remains valid. This is OK when called from perf_release since 1212 * that only calls us on the top-level context, which can't be a clone. 1213 * When called from perf_event_exit_task, it's OK because the 1214 * context has been detached from its task. 1215 */ 1216 static void perf_remove_from_context(struct perf_event *event) 1217 { 1218 struct perf_event_context *ctx = event->ctx; 1219 struct task_struct *task = ctx->task; 1220 1221 lockdep_assert_held(&ctx->mutex); 1222 1223 if (!task) { 1224 /* 1225 * Per cpu events are removed via an smp call and 1226 * the removal is always successful. 1227 */ 1228 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1229 return; 1230 } 1231 1232 retry: 1233 if (!task_function_call(task, __perf_remove_from_context, event)) 1234 return; 1235 1236 raw_spin_lock_irq(&ctx->lock); 1237 /* 1238 * If we failed to find a running task, but find the context active now 1239 * that we've acquired the ctx->lock, retry. 1240 */ 1241 if (ctx->is_active) { 1242 raw_spin_unlock_irq(&ctx->lock); 1243 goto retry; 1244 } 1245 1246 /* 1247 * Since the task isn't running, its safe to remove the event, us 1248 * holding the ctx->lock ensures the task won't get scheduled in. 1249 */ 1250 list_del_event(event, ctx); 1251 raw_spin_unlock_irq(&ctx->lock); 1252 } 1253 1254 /* 1255 * Cross CPU call to disable a performance event 1256 */ 1257 int __perf_event_disable(void *info) 1258 { 1259 struct perf_event *event = info; 1260 struct perf_event_context *ctx = event->ctx; 1261 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1262 1263 /* 1264 * If this is a per-task event, need to check whether this 1265 * event's task is the current task on this cpu. 1266 * 1267 * Can trigger due to concurrent perf_event_context_sched_out() 1268 * flipping contexts around. 1269 */ 1270 if (ctx->task && cpuctx->task_ctx != ctx) 1271 return -EINVAL; 1272 1273 raw_spin_lock(&ctx->lock); 1274 1275 /* 1276 * If the event is on, turn it off. 1277 * If it is in error state, leave it in error state. 1278 */ 1279 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1280 update_context_time(ctx); 1281 update_cgrp_time_from_event(event); 1282 update_group_times(event); 1283 if (event == event->group_leader) 1284 group_sched_out(event, cpuctx, ctx); 1285 else 1286 event_sched_out(event, cpuctx, ctx); 1287 event->state = PERF_EVENT_STATE_OFF; 1288 } 1289 1290 raw_spin_unlock(&ctx->lock); 1291 1292 return 0; 1293 } 1294 1295 /* 1296 * Disable a event. 1297 * 1298 * If event->ctx is a cloned context, callers must make sure that 1299 * every task struct that event->ctx->task could possibly point to 1300 * remains valid. This condition is satisifed when called through 1301 * perf_event_for_each_child or perf_event_for_each because they 1302 * hold the top-level event's child_mutex, so any descendant that 1303 * goes to exit will block in sync_child_event. 1304 * When called from perf_pending_event it's OK because event->ctx 1305 * is the current context on this CPU and preemption is disabled, 1306 * hence we can't get into perf_event_task_sched_out for this context. 1307 */ 1308 void perf_event_disable(struct perf_event *event) 1309 { 1310 struct perf_event_context *ctx = event->ctx; 1311 struct task_struct *task = ctx->task; 1312 1313 if (!task) { 1314 /* 1315 * Disable the event on the cpu that it's on 1316 */ 1317 cpu_function_call(event->cpu, __perf_event_disable, event); 1318 return; 1319 } 1320 1321 retry: 1322 if (!task_function_call(task, __perf_event_disable, event)) 1323 return; 1324 1325 raw_spin_lock_irq(&ctx->lock); 1326 /* 1327 * If the event is still active, we need to retry the cross-call. 1328 */ 1329 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1330 raw_spin_unlock_irq(&ctx->lock); 1331 /* 1332 * Reload the task pointer, it might have been changed by 1333 * a concurrent perf_event_context_sched_out(). 1334 */ 1335 task = ctx->task; 1336 goto retry; 1337 } 1338 1339 /* 1340 * Since we have the lock this context can't be scheduled 1341 * in, so we can change the state safely. 1342 */ 1343 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1344 update_group_times(event); 1345 event->state = PERF_EVENT_STATE_OFF; 1346 } 1347 raw_spin_unlock_irq(&ctx->lock); 1348 } 1349 EXPORT_SYMBOL_GPL(perf_event_disable); 1350 1351 static void perf_set_shadow_time(struct perf_event *event, 1352 struct perf_event_context *ctx, 1353 u64 tstamp) 1354 { 1355 /* 1356 * use the correct time source for the time snapshot 1357 * 1358 * We could get by without this by leveraging the 1359 * fact that to get to this function, the caller 1360 * has most likely already called update_context_time() 1361 * and update_cgrp_time_xx() and thus both timestamp 1362 * are identical (or very close). Given that tstamp is, 1363 * already adjusted for cgroup, we could say that: 1364 * tstamp - ctx->timestamp 1365 * is equivalent to 1366 * tstamp - cgrp->timestamp. 1367 * 1368 * Then, in perf_output_read(), the calculation would 1369 * work with no changes because: 1370 * - event is guaranteed scheduled in 1371 * - no scheduled out in between 1372 * - thus the timestamp would be the same 1373 * 1374 * But this is a bit hairy. 1375 * 1376 * So instead, we have an explicit cgroup call to remain 1377 * within the time time source all along. We believe it 1378 * is cleaner and simpler to understand. 1379 */ 1380 if (is_cgroup_event(event)) 1381 perf_cgroup_set_shadow_time(event, tstamp); 1382 else 1383 event->shadow_ctx_time = tstamp - ctx->timestamp; 1384 } 1385 1386 #define MAX_INTERRUPTS (~0ULL) 1387 1388 static void perf_log_throttle(struct perf_event *event, int enable); 1389 1390 static int 1391 event_sched_in(struct perf_event *event, 1392 struct perf_cpu_context *cpuctx, 1393 struct perf_event_context *ctx) 1394 { 1395 u64 tstamp = perf_event_time(event); 1396 1397 if (event->state <= PERF_EVENT_STATE_OFF) 1398 return 0; 1399 1400 event->state = PERF_EVENT_STATE_ACTIVE; 1401 event->oncpu = smp_processor_id(); 1402 1403 /* 1404 * Unthrottle events, since we scheduled we might have missed several 1405 * ticks already, also for a heavily scheduling task there is little 1406 * guarantee it'll get a tick in a timely manner. 1407 */ 1408 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1409 perf_log_throttle(event, 1); 1410 event->hw.interrupts = 0; 1411 } 1412 1413 /* 1414 * The new state must be visible before we turn it on in the hardware: 1415 */ 1416 smp_wmb(); 1417 1418 if (event->pmu->add(event, PERF_EF_START)) { 1419 event->state = PERF_EVENT_STATE_INACTIVE; 1420 event->oncpu = -1; 1421 return -EAGAIN; 1422 } 1423 1424 event->tstamp_running += tstamp - event->tstamp_stopped; 1425 1426 perf_set_shadow_time(event, ctx, tstamp); 1427 1428 if (!is_software_event(event)) 1429 cpuctx->active_oncpu++; 1430 ctx->nr_active++; 1431 if (event->attr.freq && event->attr.sample_freq) 1432 ctx->nr_freq++; 1433 1434 if (event->attr.exclusive) 1435 cpuctx->exclusive = 1; 1436 1437 return 0; 1438 } 1439 1440 static int 1441 group_sched_in(struct perf_event *group_event, 1442 struct perf_cpu_context *cpuctx, 1443 struct perf_event_context *ctx) 1444 { 1445 struct perf_event *event, *partial_group = NULL; 1446 struct pmu *pmu = group_event->pmu; 1447 u64 now = ctx->time; 1448 bool simulate = false; 1449 1450 if (group_event->state == PERF_EVENT_STATE_OFF) 1451 return 0; 1452 1453 pmu->start_txn(pmu); 1454 1455 if (event_sched_in(group_event, cpuctx, ctx)) { 1456 pmu->cancel_txn(pmu); 1457 return -EAGAIN; 1458 } 1459 1460 /* 1461 * Schedule in siblings as one group (if any): 1462 */ 1463 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1464 if (event_sched_in(event, cpuctx, ctx)) { 1465 partial_group = event; 1466 goto group_error; 1467 } 1468 } 1469 1470 if (!pmu->commit_txn(pmu)) 1471 return 0; 1472 1473 group_error: 1474 /* 1475 * Groups can be scheduled in as one unit only, so undo any 1476 * partial group before returning: 1477 * The events up to the failed event are scheduled out normally, 1478 * tstamp_stopped will be updated. 1479 * 1480 * The failed events and the remaining siblings need to have 1481 * their timings updated as if they had gone thru event_sched_in() 1482 * and event_sched_out(). This is required to get consistent timings 1483 * across the group. This also takes care of the case where the group 1484 * could never be scheduled by ensuring tstamp_stopped is set to mark 1485 * the time the event was actually stopped, such that time delta 1486 * calculation in update_event_times() is correct. 1487 */ 1488 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1489 if (event == partial_group) 1490 simulate = true; 1491 1492 if (simulate) { 1493 event->tstamp_running += now - event->tstamp_stopped; 1494 event->tstamp_stopped = now; 1495 } else { 1496 event_sched_out(event, cpuctx, ctx); 1497 } 1498 } 1499 event_sched_out(group_event, cpuctx, ctx); 1500 1501 pmu->cancel_txn(pmu); 1502 1503 return -EAGAIN; 1504 } 1505 1506 /* 1507 * Work out whether we can put this event group on the CPU now. 1508 */ 1509 static int group_can_go_on(struct perf_event *event, 1510 struct perf_cpu_context *cpuctx, 1511 int can_add_hw) 1512 { 1513 /* 1514 * Groups consisting entirely of software events can always go on. 1515 */ 1516 if (event->group_flags & PERF_GROUP_SOFTWARE) 1517 return 1; 1518 /* 1519 * If an exclusive group is already on, no other hardware 1520 * events can go on. 1521 */ 1522 if (cpuctx->exclusive) 1523 return 0; 1524 /* 1525 * If this group is exclusive and there are already 1526 * events on the CPU, it can't go on. 1527 */ 1528 if (event->attr.exclusive && cpuctx->active_oncpu) 1529 return 0; 1530 /* 1531 * Otherwise, try to add it if all previous groups were able 1532 * to go on. 1533 */ 1534 return can_add_hw; 1535 } 1536 1537 static void add_event_to_ctx(struct perf_event *event, 1538 struct perf_event_context *ctx) 1539 { 1540 u64 tstamp = perf_event_time(event); 1541 1542 list_add_event(event, ctx); 1543 perf_group_attach(event); 1544 event->tstamp_enabled = tstamp; 1545 event->tstamp_running = tstamp; 1546 event->tstamp_stopped = tstamp; 1547 } 1548 1549 static void task_ctx_sched_out(struct perf_event_context *ctx); 1550 static void 1551 ctx_sched_in(struct perf_event_context *ctx, 1552 struct perf_cpu_context *cpuctx, 1553 enum event_type_t event_type, 1554 struct task_struct *task); 1555 1556 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1557 struct perf_event_context *ctx, 1558 struct task_struct *task) 1559 { 1560 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1561 if (ctx) 1562 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1563 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1564 if (ctx) 1565 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1566 } 1567 1568 /* 1569 * Cross CPU call to install and enable a performance event 1570 * 1571 * Must be called with ctx->mutex held 1572 */ 1573 static int __perf_install_in_context(void *info) 1574 { 1575 struct perf_event *event = info; 1576 struct perf_event_context *ctx = event->ctx; 1577 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1578 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1579 struct task_struct *task = current; 1580 1581 perf_ctx_lock(cpuctx, task_ctx); 1582 perf_pmu_disable(cpuctx->ctx.pmu); 1583 1584 /* 1585 * If there was an active task_ctx schedule it out. 1586 */ 1587 if (task_ctx) 1588 task_ctx_sched_out(task_ctx); 1589 1590 /* 1591 * If the context we're installing events in is not the 1592 * active task_ctx, flip them. 1593 */ 1594 if (ctx->task && task_ctx != ctx) { 1595 if (task_ctx) 1596 raw_spin_unlock(&task_ctx->lock); 1597 raw_spin_lock(&ctx->lock); 1598 task_ctx = ctx; 1599 } 1600 1601 if (task_ctx) { 1602 cpuctx->task_ctx = task_ctx; 1603 task = task_ctx->task; 1604 } 1605 1606 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1607 1608 update_context_time(ctx); 1609 /* 1610 * update cgrp time only if current cgrp 1611 * matches event->cgrp. Must be done before 1612 * calling add_event_to_ctx() 1613 */ 1614 update_cgrp_time_from_event(event); 1615 1616 add_event_to_ctx(event, ctx); 1617 1618 /* 1619 * Schedule everything back in 1620 */ 1621 perf_event_sched_in(cpuctx, task_ctx, task); 1622 1623 perf_pmu_enable(cpuctx->ctx.pmu); 1624 perf_ctx_unlock(cpuctx, task_ctx); 1625 1626 return 0; 1627 } 1628 1629 /* 1630 * Attach a performance event to a context 1631 * 1632 * First we add the event to the list with the hardware enable bit 1633 * in event->hw_config cleared. 1634 * 1635 * If the event is attached to a task which is on a CPU we use a smp 1636 * call to enable it in the task context. The task might have been 1637 * scheduled away, but we check this in the smp call again. 1638 */ 1639 static void 1640 perf_install_in_context(struct perf_event_context *ctx, 1641 struct perf_event *event, 1642 int cpu) 1643 { 1644 struct task_struct *task = ctx->task; 1645 1646 lockdep_assert_held(&ctx->mutex); 1647 1648 event->ctx = ctx; 1649 if (event->cpu != -1) 1650 event->cpu = cpu; 1651 1652 if (!task) { 1653 /* 1654 * Per cpu events are installed via an smp call and 1655 * the install is always successful. 1656 */ 1657 cpu_function_call(cpu, __perf_install_in_context, event); 1658 return; 1659 } 1660 1661 retry: 1662 if (!task_function_call(task, __perf_install_in_context, event)) 1663 return; 1664 1665 raw_spin_lock_irq(&ctx->lock); 1666 /* 1667 * If we failed to find a running task, but find the context active now 1668 * that we've acquired the ctx->lock, retry. 1669 */ 1670 if (ctx->is_active) { 1671 raw_spin_unlock_irq(&ctx->lock); 1672 goto retry; 1673 } 1674 1675 /* 1676 * Since the task isn't running, its safe to add the event, us holding 1677 * the ctx->lock ensures the task won't get scheduled in. 1678 */ 1679 add_event_to_ctx(event, ctx); 1680 raw_spin_unlock_irq(&ctx->lock); 1681 } 1682 1683 /* 1684 * Put a event into inactive state and update time fields. 1685 * Enabling the leader of a group effectively enables all 1686 * the group members that aren't explicitly disabled, so we 1687 * have to update their ->tstamp_enabled also. 1688 * Note: this works for group members as well as group leaders 1689 * since the non-leader members' sibling_lists will be empty. 1690 */ 1691 static void __perf_event_mark_enabled(struct perf_event *event) 1692 { 1693 struct perf_event *sub; 1694 u64 tstamp = perf_event_time(event); 1695 1696 event->state = PERF_EVENT_STATE_INACTIVE; 1697 event->tstamp_enabled = tstamp - event->total_time_enabled; 1698 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1699 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1700 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1701 } 1702 } 1703 1704 /* 1705 * Cross CPU call to enable a performance event 1706 */ 1707 static int __perf_event_enable(void *info) 1708 { 1709 struct perf_event *event = info; 1710 struct perf_event_context *ctx = event->ctx; 1711 struct perf_event *leader = event->group_leader; 1712 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1713 int err; 1714 1715 if (WARN_ON_ONCE(!ctx->is_active)) 1716 return -EINVAL; 1717 1718 raw_spin_lock(&ctx->lock); 1719 update_context_time(ctx); 1720 1721 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1722 goto unlock; 1723 1724 /* 1725 * set current task's cgroup time reference point 1726 */ 1727 perf_cgroup_set_timestamp(current, ctx); 1728 1729 __perf_event_mark_enabled(event); 1730 1731 if (!event_filter_match(event)) { 1732 if (is_cgroup_event(event)) 1733 perf_cgroup_defer_enabled(event); 1734 goto unlock; 1735 } 1736 1737 /* 1738 * If the event is in a group and isn't the group leader, 1739 * then don't put it on unless the group is on. 1740 */ 1741 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1742 goto unlock; 1743 1744 if (!group_can_go_on(event, cpuctx, 1)) { 1745 err = -EEXIST; 1746 } else { 1747 if (event == leader) 1748 err = group_sched_in(event, cpuctx, ctx); 1749 else 1750 err = event_sched_in(event, cpuctx, ctx); 1751 } 1752 1753 if (err) { 1754 /* 1755 * If this event can't go on and it's part of a 1756 * group, then the whole group has to come off. 1757 */ 1758 if (leader != event) 1759 group_sched_out(leader, cpuctx, ctx); 1760 if (leader->attr.pinned) { 1761 update_group_times(leader); 1762 leader->state = PERF_EVENT_STATE_ERROR; 1763 } 1764 } 1765 1766 unlock: 1767 raw_spin_unlock(&ctx->lock); 1768 1769 return 0; 1770 } 1771 1772 /* 1773 * Enable a event. 1774 * 1775 * If event->ctx is a cloned context, callers must make sure that 1776 * every task struct that event->ctx->task could possibly point to 1777 * remains valid. This condition is satisfied when called through 1778 * perf_event_for_each_child or perf_event_for_each as described 1779 * for perf_event_disable. 1780 */ 1781 void perf_event_enable(struct perf_event *event) 1782 { 1783 struct perf_event_context *ctx = event->ctx; 1784 struct task_struct *task = ctx->task; 1785 1786 if (!task) { 1787 /* 1788 * Enable the event on the cpu that it's on 1789 */ 1790 cpu_function_call(event->cpu, __perf_event_enable, event); 1791 return; 1792 } 1793 1794 raw_spin_lock_irq(&ctx->lock); 1795 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1796 goto out; 1797 1798 /* 1799 * If the event is in error state, clear that first. 1800 * That way, if we see the event in error state below, we 1801 * know that it has gone back into error state, as distinct 1802 * from the task having been scheduled away before the 1803 * cross-call arrived. 1804 */ 1805 if (event->state == PERF_EVENT_STATE_ERROR) 1806 event->state = PERF_EVENT_STATE_OFF; 1807 1808 retry: 1809 if (!ctx->is_active) { 1810 __perf_event_mark_enabled(event); 1811 goto out; 1812 } 1813 1814 raw_spin_unlock_irq(&ctx->lock); 1815 1816 if (!task_function_call(task, __perf_event_enable, event)) 1817 return; 1818 1819 raw_spin_lock_irq(&ctx->lock); 1820 1821 /* 1822 * If the context is active and the event is still off, 1823 * we need to retry the cross-call. 1824 */ 1825 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1826 /* 1827 * task could have been flipped by a concurrent 1828 * perf_event_context_sched_out() 1829 */ 1830 task = ctx->task; 1831 goto retry; 1832 } 1833 1834 out: 1835 raw_spin_unlock_irq(&ctx->lock); 1836 } 1837 EXPORT_SYMBOL_GPL(perf_event_enable); 1838 1839 int perf_event_refresh(struct perf_event *event, int refresh) 1840 { 1841 /* 1842 * not supported on inherited events 1843 */ 1844 if (event->attr.inherit || !is_sampling_event(event)) 1845 return -EINVAL; 1846 1847 atomic_add(refresh, &event->event_limit); 1848 perf_event_enable(event); 1849 1850 return 0; 1851 } 1852 EXPORT_SYMBOL_GPL(perf_event_refresh); 1853 1854 static void ctx_sched_out(struct perf_event_context *ctx, 1855 struct perf_cpu_context *cpuctx, 1856 enum event_type_t event_type) 1857 { 1858 struct perf_event *event; 1859 int is_active = ctx->is_active; 1860 1861 ctx->is_active &= ~event_type; 1862 if (likely(!ctx->nr_events)) 1863 return; 1864 1865 update_context_time(ctx); 1866 update_cgrp_time_from_cpuctx(cpuctx); 1867 if (!ctx->nr_active) 1868 return; 1869 1870 perf_pmu_disable(ctx->pmu); 1871 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1872 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1873 group_sched_out(event, cpuctx, ctx); 1874 } 1875 1876 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1877 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1878 group_sched_out(event, cpuctx, ctx); 1879 } 1880 perf_pmu_enable(ctx->pmu); 1881 } 1882 1883 /* 1884 * Test whether two contexts are equivalent, i.e. whether they 1885 * have both been cloned from the same version of the same context 1886 * and they both have the same number of enabled events. 1887 * If the number of enabled events is the same, then the set 1888 * of enabled events should be the same, because these are both 1889 * inherited contexts, therefore we can't access individual events 1890 * in them directly with an fd; we can only enable/disable all 1891 * events via prctl, or enable/disable all events in a family 1892 * via ioctl, which will have the same effect on both contexts. 1893 */ 1894 static int context_equiv(struct perf_event_context *ctx1, 1895 struct perf_event_context *ctx2) 1896 { 1897 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1898 && ctx1->parent_gen == ctx2->parent_gen 1899 && !ctx1->pin_count && !ctx2->pin_count; 1900 } 1901 1902 static void __perf_event_sync_stat(struct perf_event *event, 1903 struct perf_event *next_event) 1904 { 1905 u64 value; 1906 1907 if (!event->attr.inherit_stat) 1908 return; 1909 1910 /* 1911 * Update the event value, we cannot use perf_event_read() 1912 * because we're in the middle of a context switch and have IRQs 1913 * disabled, which upsets smp_call_function_single(), however 1914 * we know the event must be on the current CPU, therefore we 1915 * don't need to use it. 1916 */ 1917 switch (event->state) { 1918 case PERF_EVENT_STATE_ACTIVE: 1919 event->pmu->read(event); 1920 /* fall-through */ 1921 1922 case PERF_EVENT_STATE_INACTIVE: 1923 update_event_times(event); 1924 break; 1925 1926 default: 1927 break; 1928 } 1929 1930 /* 1931 * In order to keep per-task stats reliable we need to flip the event 1932 * values when we flip the contexts. 1933 */ 1934 value = local64_read(&next_event->count); 1935 value = local64_xchg(&event->count, value); 1936 local64_set(&next_event->count, value); 1937 1938 swap(event->total_time_enabled, next_event->total_time_enabled); 1939 swap(event->total_time_running, next_event->total_time_running); 1940 1941 /* 1942 * Since we swizzled the values, update the user visible data too. 1943 */ 1944 perf_event_update_userpage(event); 1945 perf_event_update_userpage(next_event); 1946 } 1947 1948 #define list_next_entry(pos, member) \ 1949 list_entry(pos->member.next, typeof(*pos), member) 1950 1951 static void perf_event_sync_stat(struct perf_event_context *ctx, 1952 struct perf_event_context *next_ctx) 1953 { 1954 struct perf_event *event, *next_event; 1955 1956 if (!ctx->nr_stat) 1957 return; 1958 1959 update_context_time(ctx); 1960 1961 event = list_first_entry(&ctx->event_list, 1962 struct perf_event, event_entry); 1963 1964 next_event = list_first_entry(&next_ctx->event_list, 1965 struct perf_event, event_entry); 1966 1967 while (&event->event_entry != &ctx->event_list && 1968 &next_event->event_entry != &next_ctx->event_list) { 1969 1970 __perf_event_sync_stat(event, next_event); 1971 1972 event = list_next_entry(event, event_entry); 1973 next_event = list_next_entry(next_event, event_entry); 1974 } 1975 } 1976 1977 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1978 struct task_struct *next) 1979 { 1980 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1981 struct perf_event_context *next_ctx; 1982 struct perf_event_context *parent; 1983 struct perf_cpu_context *cpuctx; 1984 int do_switch = 1; 1985 1986 if (likely(!ctx)) 1987 return; 1988 1989 cpuctx = __get_cpu_context(ctx); 1990 if (!cpuctx->task_ctx) 1991 return; 1992 1993 rcu_read_lock(); 1994 parent = rcu_dereference(ctx->parent_ctx); 1995 next_ctx = next->perf_event_ctxp[ctxn]; 1996 if (parent && next_ctx && 1997 rcu_dereference(next_ctx->parent_ctx) == parent) { 1998 /* 1999 * Looks like the two contexts are clones, so we might be 2000 * able to optimize the context switch. We lock both 2001 * contexts and check that they are clones under the 2002 * lock (including re-checking that neither has been 2003 * uncloned in the meantime). It doesn't matter which 2004 * order we take the locks because no other cpu could 2005 * be trying to lock both of these tasks. 2006 */ 2007 raw_spin_lock(&ctx->lock); 2008 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2009 if (context_equiv(ctx, next_ctx)) { 2010 /* 2011 * XXX do we need a memory barrier of sorts 2012 * wrt to rcu_dereference() of perf_event_ctxp 2013 */ 2014 task->perf_event_ctxp[ctxn] = next_ctx; 2015 next->perf_event_ctxp[ctxn] = ctx; 2016 ctx->task = next; 2017 next_ctx->task = task; 2018 do_switch = 0; 2019 2020 perf_event_sync_stat(ctx, next_ctx); 2021 } 2022 raw_spin_unlock(&next_ctx->lock); 2023 raw_spin_unlock(&ctx->lock); 2024 } 2025 rcu_read_unlock(); 2026 2027 if (do_switch) { 2028 raw_spin_lock(&ctx->lock); 2029 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2030 cpuctx->task_ctx = NULL; 2031 raw_spin_unlock(&ctx->lock); 2032 } 2033 } 2034 2035 #define for_each_task_context_nr(ctxn) \ 2036 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2037 2038 /* 2039 * Called from scheduler to remove the events of the current task, 2040 * with interrupts disabled. 2041 * 2042 * We stop each event and update the event value in event->count. 2043 * 2044 * This does not protect us against NMI, but disable() 2045 * sets the disabled bit in the control field of event _before_ 2046 * accessing the event control register. If a NMI hits, then it will 2047 * not restart the event. 2048 */ 2049 void __perf_event_task_sched_out(struct task_struct *task, 2050 struct task_struct *next) 2051 { 2052 int ctxn; 2053 2054 for_each_task_context_nr(ctxn) 2055 perf_event_context_sched_out(task, ctxn, next); 2056 2057 /* 2058 * if cgroup events exist on this CPU, then we need 2059 * to check if we have to switch out PMU state. 2060 * cgroup event are system-wide mode only 2061 */ 2062 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2063 perf_cgroup_sched_out(task, next); 2064 } 2065 2066 static void task_ctx_sched_out(struct perf_event_context *ctx) 2067 { 2068 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2069 2070 if (!cpuctx->task_ctx) 2071 return; 2072 2073 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2074 return; 2075 2076 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2077 cpuctx->task_ctx = NULL; 2078 } 2079 2080 /* 2081 * Called with IRQs disabled 2082 */ 2083 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2084 enum event_type_t event_type) 2085 { 2086 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2087 } 2088 2089 static void 2090 ctx_pinned_sched_in(struct perf_event_context *ctx, 2091 struct perf_cpu_context *cpuctx) 2092 { 2093 struct perf_event *event; 2094 2095 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2096 if (event->state <= PERF_EVENT_STATE_OFF) 2097 continue; 2098 if (!event_filter_match(event)) 2099 continue; 2100 2101 /* may need to reset tstamp_enabled */ 2102 if (is_cgroup_event(event)) 2103 perf_cgroup_mark_enabled(event, ctx); 2104 2105 if (group_can_go_on(event, cpuctx, 1)) 2106 group_sched_in(event, cpuctx, ctx); 2107 2108 /* 2109 * If this pinned group hasn't been scheduled, 2110 * put it in error state. 2111 */ 2112 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2113 update_group_times(event); 2114 event->state = PERF_EVENT_STATE_ERROR; 2115 } 2116 } 2117 } 2118 2119 static void 2120 ctx_flexible_sched_in(struct perf_event_context *ctx, 2121 struct perf_cpu_context *cpuctx) 2122 { 2123 struct perf_event *event; 2124 int can_add_hw = 1; 2125 2126 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2127 /* Ignore events in OFF or ERROR state */ 2128 if (event->state <= PERF_EVENT_STATE_OFF) 2129 continue; 2130 /* 2131 * Listen to the 'cpu' scheduling filter constraint 2132 * of events: 2133 */ 2134 if (!event_filter_match(event)) 2135 continue; 2136 2137 /* may need to reset tstamp_enabled */ 2138 if (is_cgroup_event(event)) 2139 perf_cgroup_mark_enabled(event, ctx); 2140 2141 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2142 if (group_sched_in(event, cpuctx, ctx)) 2143 can_add_hw = 0; 2144 } 2145 } 2146 } 2147 2148 static void 2149 ctx_sched_in(struct perf_event_context *ctx, 2150 struct perf_cpu_context *cpuctx, 2151 enum event_type_t event_type, 2152 struct task_struct *task) 2153 { 2154 u64 now; 2155 int is_active = ctx->is_active; 2156 2157 ctx->is_active |= event_type; 2158 if (likely(!ctx->nr_events)) 2159 return; 2160 2161 now = perf_clock(); 2162 ctx->timestamp = now; 2163 perf_cgroup_set_timestamp(task, ctx); 2164 /* 2165 * First go through the list and put on any pinned groups 2166 * in order to give them the best chance of going on. 2167 */ 2168 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2169 ctx_pinned_sched_in(ctx, cpuctx); 2170 2171 /* Then walk through the lower prio flexible groups */ 2172 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2173 ctx_flexible_sched_in(ctx, cpuctx); 2174 } 2175 2176 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2177 enum event_type_t event_type, 2178 struct task_struct *task) 2179 { 2180 struct perf_event_context *ctx = &cpuctx->ctx; 2181 2182 ctx_sched_in(ctx, cpuctx, event_type, task); 2183 } 2184 2185 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2186 struct task_struct *task) 2187 { 2188 struct perf_cpu_context *cpuctx; 2189 2190 cpuctx = __get_cpu_context(ctx); 2191 if (cpuctx->task_ctx == ctx) 2192 return; 2193 2194 perf_ctx_lock(cpuctx, ctx); 2195 perf_pmu_disable(ctx->pmu); 2196 /* 2197 * We want to keep the following priority order: 2198 * cpu pinned (that don't need to move), task pinned, 2199 * cpu flexible, task flexible. 2200 */ 2201 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2202 2203 if (ctx->nr_events) 2204 cpuctx->task_ctx = ctx; 2205 2206 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2207 2208 perf_pmu_enable(ctx->pmu); 2209 perf_ctx_unlock(cpuctx, ctx); 2210 2211 /* 2212 * Since these rotations are per-cpu, we need to ensure the 2213 * cpu-context we got scheduled on is actually rotating. 2214 */ 2215 perf_pmu_rotate_start(ctx->pmu); 2216 } 2217 2218 /* 2219 * When sampling the branck stack in system-wide, it may be necessary 2220 * to flush the stack on context switch. This happens when the branch 2221 * stack does not tag its entries with the pid of the current task. 2222 * Otherwise it becomes impossible to associate a branch entry with a 2223 * task. This ambiguity is more likely to appear when the branch stack 2224 * supports priv level filtering and the user sets it to monitor only 2225 * at the user level (which could be a useful measurement in system-wide 2226 * mode). In that case, the risk is high of having a branch stack with 2227 * branch from multiple tasks. Flushing may mean dropping the existing 2228 * entries or stashing them somewhere in the PMU specific code layer. 2229 * 2230 * This function provides the context switch callback to the lower code 2231 * layer. It is invoked ONLY when there is at least one system-wide context 2232 * with at least one active event using taken branch sampling. 2233 */ 2234 static void perf_branch_stack_sched_in(struct task_struct *prev, 2235 struct task_struct *task) 2236 { 2237 struct perf_cpu_context *cpuctx; 2238 struct pmu *pmu; 2239 unsigned long flags; 2240 2241 /* no need to flush branch stack if not changing task */ 2242 if (prev == task) 2243 return; 2244 2245 local_irq_save(flags); 2246 2247 rcu_read_lock(); 2248 2249 list_for_each_entry_rcu(pmu, &pmus, entry) { 2250 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2251 2252 /* 2253 * check if the context has at least one 2254 * event using PERF_SAMPLE_BRANCH_STACK 2255 */ 2256 if (cpuctx->ctx.nr_branch_stack > 0 2257 && pmu->flush_branch_stack) { 2258 2259 pmu = cpuctx->ctx.pmu; 2260 2261 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2262 2263 perf_pmu_disable(pmu); 2264 2265 pmu->flush_branch_stack(); 2266 2267 perf_pmu_enable(pmu); 2268 2269 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2270 } 2271 } 2272 2273 rcu_read_unlock(); 2274 2275 local_irq_restore(flags); 2276 } 2277 2278 /* 2279 * Called from scheduler to add the events of the current task 2280 * with interrupts disabled. 2281 * 2282 * We restore the event value and then enable it. 2283 * 2284 * This does not protect us against NMI, but enable() 2285 * sets the enabled bit in the control field of event _before_ 2286 * accessing the event control register. If a NMI hits, then it will 2287 * keep the event running. 2288 */ 2289 void __perf_event_task_sched_in(struct task_struct *prev, 2290 struct task_struct *task) 2291 { 2292 struct perf_event_context *ctx; 2293 int ctxn; 2294 2295 for_each_task_context_nr(ctxn) { 2296 ctx = task->perf_event_ctxp[ctxn]; 2297 if (likely(!ctx)) 2298 continue; 2299 2300 perf_event_context_sched_in(ctx, task); 2301 } 2302 /* 2303 * if cgroup events exist on this CPU, then we need 2304 * to check if we have to switch in PMU state. 2305 * cgroup event are system-wide mode only 2306 */ 2307 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2308 perf_cgroup_sched_in(prev, task); 2309 2310 /* check for system-wide branch_stack events */ 2311 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2312 perf_branch_stack_sched_in(prev, task); 2313 } 2314 2315 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2316 { 2317 u64 frequency = event->attr.sample_freq; 2318 u64 sec = NSEC_PER_SEC; 2319 u64 divisor, dividend; 2320 2321 int count_fls, nsec_fls, frequency_fls, sec_fls; 2322 2323 count_fls = fls64(count); 2324 nsec_fls = fls64(nsec); 2325 frequency_fls = fls64(frequency); 2326 sec_fls = 30; 2327 2328 /* 2329 * We got @count in @nsec, with a target of sample_freq HZ 2330 * the target period becomes: 2331 * 2332 * @count * 10^9 2333 * period = ------------------- 2334 * @nsec * sample_freq 2335 * 2336 */ 2337 2338 /* 2339 * Reduce accuracy by one bit such that @a and @b converge 2340 * to a similar magnitude. 2341 */ 2342 #define REDUCE_FLS(a, b) \ 2343 do { \ 2344 if (a##_fls > b##_fls) { \ 2345 a >>= 1; \ 2346 a##_fls--; \ 2347 } else { \ 2348 b >>= 1; \ 2349 b##_fls--; \ 2350 } \ 2351 } while (0) 2352 2353 /* 2354 * Reduce accuracy until either term fits in a u64, then proceed with 2355 * the other, so that finally we can do a u64/u64 division. 2356 */ 2357 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2358 REDUCE_FLS(nsec, frequency); 2359 REDUCE_FLS(sec, count); 2360 } 2361 2362 if (count_fls + sec_fls > 64) { 2363 divisor = nsec * frequency; 2364 2365 while (count_fls + sec_fls > 64) { 2366 REDUCE_FLS(count, sec); 2367 divisor >>= 1; 2368 } 2369 2370 dividend = count * sec; 2371 } else { 2372 dividend = count * sec; 2373 2374 while (nsec_fls + frequency_fls > 64) { 2375 REDUCE_FLS(nsec, frequency); 2376 dividend >>= 1; 2377 } 2378 2379 divisor = nsec * frequency; 2380 } 2381 2382 if (!divisor) 2383 return dividend; 2384 2385 return div64_u64(dividend, divisor); 2386 } 2387 2388 static DEFINE_PER_CPU(int, perf_throttled_count); 2389 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2390 2391 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2392 { 2393 struct hw_perf_event *hwc = &event->hw; 2394 s64 period, sample_period; 2395 s64 delta; 2396 2397 period = perf_calculate_period(event, nsec, count); 2398 2399 delta = (s64)(period - hwc->sample_period); 2400 delta = (delta + 7) / 8; /* low pass filter */ 2401 2402 sample_period = hwc->sample_period + delta; 2403 2404 if (!sample_period) 2405 sample_period = 1; 2406 2407 hwc->sample_period = sample_period; 2408 2409 if (local64_read(&hwc->period_left) > 8*sample_period) { 2410 if (disable) 2411 event->pmu->stop(event, PERF_EF_UPDATE); 2412 2413 local64_set(&hwc->period_left, 0); 2414 2415 if (disable) 2416 event->pmu->start(event, PERF_EF_RELOAD); 2417 } 2418 } 2419 2420 /* 2421 * combine freq adjustment with unthrottling to avoid two passes over the 2422 * events. At the same time, make sure, having freq events does not change 2423 * the rate of unthrottling as that would introduce bias. 2424 */ 2425 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2426 int needs_unthr) 2427 { 2428 struct perf_event *event; 2429 struct hw_perf_event *hwc; 2430 u64 now, period = TICK_NSEC; 2431 s64 delta; 2432 2433 /* 2434 * only need to iterate over all events iff: 2435 * - context have events in frequency mode (needs freq adjust) 2436 * - there are events to unthrottle on this cpu 2437 */ 2438 if (!(ctx->nr_freq || needs_unthr)) 2439 return; 2440 2441 raw_spin_lock(&ctx->lock); 2442 perf_pmu_disable(ctx->pmu); 2443 2444 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2445 if (event->state != PERF_EVENT_STATE_ACTIVE) 2446 continue; 2447 2448 if (!event_filter_match(event)) 2449 continue; 2450 2451 hwc = &event->hw; 2452 2453 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2454 hwc->interrupts = 0; 2455 perf_log_throttle(event, 1); 2456 event->pmu->start(event, 0); 2457 } 2458 2459 if (!event->attr.freq || !event->attr.sample_freq) 2460 continue; 2461 2462 /* 2463 * stop the event and update event->count 2464 */ 2465 event->pmu->stop(event, PERF_EF_UPDATE); 2466 2467 now = local64_read(&event->count); 2468 delta = now - hwc->freq_count_stamp; 2469 hwc->freq_count_stamp = now; 2470 2471 /* 2472 * restart the event 2473 * reload only if value has changed 2474 * we have stopped the event so tell that 2475 * to perf_adjust_period() to avoid stopping it 2476 * twice. 2477 */ 2478 if (delta > 0) 2479 perf_adjust_period(event, period, delta, false); 2480 2481 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2482 } 2483 2484 perf_pmu_enable(ctx->pmu); 2485 raw_spin_unlock(&ctx->lock); 2486 } 2487 2488 /* 2489 * Round-robin a context's events: 2490 */ 2491 static void rotate_ctx(struct perf_event_context *ctx) 2492 { 2493 /* 2494 * Rotate the first entry last of non-pinned groups. Rotation might be 2495 * disabled by the inheritance code. 2496 */ 2497 if (!ctx->rotate_disable) 2498 list_rotate_left(&ctx->flexible_groups); 2499 } 2500 2501 /* 2502 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2503 * because they're strictly cpu affine and rotate_start is called with IRQs 2504 * disabled, while rotate_context is called from IRQ context. 2505 */ 2506 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2507 { 2508 struct perf_event_context *ctx = NULL; 2509 int rotate = 0, remove = 1; 2510 2511 if (cpuctx->ctx.nr_events) { 2512 remove = 0; 2513 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2514 rotate = 1; 2515 } 2516 2517 ctx = cpuctx->task_ctx; 2518 if (ctx && ctx->nr_events) { 2519 remove = 0; 2520 if (ctx->nr_events != ctx->nr_active) 2521 rotate = 1; 2522 } 2523 2524 if (!rotate) 2525 goto done; 2526 2527 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2528 perf_pmu_disable(cpuctx->ctx.pmu); 2529 2530 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2531 if (ctx) 2532 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2533 2534 rotate_ctx(&cpuctx->ctx); 2535 if (ctx) 2536 rotate_ctx(ctx); 2537 2538 perf_event_sched_in(cpuctx, ctx, current); 2539 2540 perf_pmu_enable(cpuctx->ctx.pmu); 2541 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2542 done: 2543 if (remove) 2544 list_del_init(&cpuctx->rotation_list); 2545 } 2546 2547 void perf_event_task_tick(void) 2548 { 2549 struct list_head *head = &__get_cpu_var(rotation_list); 2550 struct perf_cpu_context *cpuctx, *tmp; 2551 struct perf_event_context *ctx; 2552 int throttled; 2553 2554 WARN_ON(!irqs_disabled()); 2555 2556 __this_cpu_inc(perf_throttled_seq); 2557 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2558 2559 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2560 ctx = &cpuctx->ctx; 2561 perf_adjust_freq_unthr_context(ctx, throttled); 2562 2563 ctx = cpuctx->task_ctx; 2564 if (ctx) 2565 perf_adjust_freq_unthr_context(ctx, throttled); 2566 2567 if (cpuctx->jiffies_interval == 1 || 2568 !(jiffies % cpuctx->jiffies_interval)) 2569 perf_rotate_context(cpuctx); 2570 } 2571 } 2572 2573 static int event_enable_on_exec(struct perf_event *event, 2574 struct perf_event_context *ctx) 2575 { 2576 if (!event->attr.enable_on_exec) 2577 return 0; 2578 2579 event->attr.enable_on_exec = 0; 2580 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2581 return 0; 2582 2583 __perf_event_mark_enabled(event); 2584 2585 return 1; 2586 } 2587 2588 /* 2589 * Enable all of a task's events that have been marked enable-on-exec. 2590 * This expects task == current. 2591 */ 2592 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2593 { 2594 struct perf_event *event; 2595 unsigned long flags; 2596 int enabled = 0; 2597 int ret; 2598 2599 local_irq_save(flags); 2600 if (!ctx || !ctx->nr_events) 2601 goto out; 2602 2603 /* 2604 * We must ctxsw out cgroup events to avoid conflict 2605 * when invoking perf_task_event_sched_in() later on 2606 * in this function. Otherwise we end up trying to 2607 * ctxswin cgroup events which are already scheduled 2608 * in. 2609 */ 2610 perf_cgroup_sched_out(current, NULL); 2611 2612 raw_spin_lock(&ctx->lock); 2613 task_ctx_sched_out(ctx); 2614 2615 list_for_each_entry(event, &ctx->event_list, event_entry) { 2616 ret = event_enable_on_exec(event, ctx); 2617 if (ret) 2618 enabled = 1; 2619 } 2620 2621 /* 2622 * Unclone this context if we enabled any event. 2623 */ 2624 if (enabled) 2625 unclone_ctx(ctx); 2626 2627 raw_spin_unlock(&ctx->lock); 2628 2629 /* 2630 * Also calls ctxswin for cgroup events, if any: 2631 */ 2632 perf_event_context_sched_in(ctx, ctx->task); 2633 out: 2634 local_irq_restore(flags); 2635 } 2636 2637 /* 2638 * Cross CPU call to read the hardware event 2639 */ 2640 static void __perf_event_read(void *info) 2641 { 2642 struct perf_event *event = info; 2643 struct perf_event_context *ctx = event->ctx; 2644 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2645 2646 /* 2647 * If this is a task context, we need to check whether it is 2648 * the current task context of this cpu. If not it has been 2649 * scheduled out before the smp call arrived. In that case 2650 * event->count would have been updated to a recent sample 2651 * when the event was scheduled out. 2652 */ 2653 if (ctx->task && cpuctx->task_ctx != ctx) 2654 return; 2655 2656 raw_spin_lock(&ctx->lock); 2657 if (ctx->is_active) { 2658 update_context_time(ctx); 2659 update_cgrp_time_from_event(event); 2660 } 2661 update_event_times(event); 2662 if (event->state == PERF_EVENT_STATE_ACTIVE) 2663 event->pmu->read(event); 2664 raw_spin_unlock(&ctx->lock); 2665 } 2666 2667 static inline u64 perf_event_count(struct perf_event *event) 2668 { 2669 return local64_read(&event->count) + atomic64_read(&event->child_count); 2670 } 2671 2672 static u64 perf_event_read(struct perf_event *event) 2673 { 2674 /* 2675 * If event is enabled and currently active on a CPU, update the 2676 * value in the event structure: 2677 */ 2678 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2679 smp_call_function_single(event->oncpu, 2680 __perf_event_read, event, 1); 2681 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2682 struct perf_event_context *ctx = event->ctx; 2683 unsigned long flags; 2684 2685 raw_spin_lock_irqsave(&ctx->lock, flags); 2686 /* 2687 * may read while context is not active 2688 * (e.g., thread is blocked), in that case 2689 * we cannot update context time 2690 */ 2691 if (ctx->is_active) { 2692 update_context_time(ctx); 2693 update_cgrp_time_from_event(event); 2694 } 2695 update_event_times(event); 2696 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2697 } 2698 2699 return perf_event_count(event); 2700 } 2701 2702 /* 2703 * Initialize the perf_event context in a task_struct: 2704 */ 2705 static void __perf_event_init_context(struct perf_event_context *ctx) 2706 { 2707 raw_spin_lock_init(&ctx->lock); 2708 mutex_init(&ctx->mutex); 2709 INIT_LIST_HEAD(&ctx->pinned_groups); 2710 INIT_LIST_HEAD(&ctx->flexible_groups); 2711 INIT_LIST_HEAD(&ctx->event_list); 2712 atomic_set(&ctx->refcount, 1); 2713 } 2714 2715 static struct perf_event_context * 2716 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2717 { 2718 struct perf_event_context *ctx; 2719 2720 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2721 if (!ctx) 2722 return NULL; 2723 2724 __perf_event_init_context(ctx); 2725 if (task) { 2726 ctx->task = task; 2727 get_task_struct(task); 2728 } 2729 ctx->pmu = pmu; 2730 2731 return ctx; 2732 } 2733 2734 static struct task_struct * 2735 find_lively_task_by_vpid(pid_t vpid) 2736 { 2737 struct task_struct *task; 2738 int err; 2739 2740 rcu_read_lock(); 2741 if (!vpid) 2742 task = current; 2743 else 2744 task = find_task_by_vpid(vpid); 2745 if (task) 2746 get_task_struct(task); 2747 rcu_read_unlock(); 2748 2749 if (!task) 2750 return ERR_PTR(-ESRCH); 2751 2752 /* Reuse ptrace permission checks for now. */ 2753 err = -EACCES; 2754 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2755 goto errout; 2756 2757 return task; 2758 errout: 2759 put_task_struct(task); 2760 return ERR_PTR(err); 2761 2762 } 2763 2764 /* 2765 * Returns a matching context with refcount and pincount. 2766 */ 2767 static struct perf_event_context * 2768 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2769 { 2770 struct perf_event_context *ctx; 2771 struct perf_cpu_context *cpuctx; 2772 unsigned long flags; 2773 int ctxn, err; 2774 2775 if (!task) { 2776 /* Must be root to operate on a CPU event: */ 2777 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2778 return ERR_PTR(-EACCES); 2779 2780 /* 2781 * We could be clever and allow to attach a event to an 2782 * offline CPU and activate it when the CPU comes up, but 2783 * that's for later. 2784 */ 2785 if (!cpu_online(cpu)) 2786 return ERR_PTR(-ENODEV); 2787 2788 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2789 ctx = &cpuctx->ctx; 2790 get_ctx(ctx); 2791 ++ctx->pin_count; 2792 2793 return ctx; 2794 } 2795 2796 err = -EINVAL; 2797 ctxn = pmu->task_ctx_nr; 2798 if (ctxn < 0) 2799 goto errout; 2800 2801 retry: 2802 ctx = perf_lock_task_context(task, ctxn, &flags); 2803 if (ctx) { 2804 unclone_ctx(ctx); 2805 ++ctx->pin_count; 2806 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2807 } else { 2808 ctx = alloc_perf_context(pmu, task); 2809 err = -ENOMEM; 2810 if (!ctx) 2811 goto errout; 2812 2813 err = 0; 2814 mutex_lock(&task->perf_event_mutex); 2815 /* 2816 * If it has already passed perf_event_exit_task(). 2817 * we must see PF_EXITING, it takes this mutex too. 2818 */ 2819 if (task->flags & PF_EXITING) 2820 err = -ESRCH; 2821 else if (task->perf_event_ctxp[ctxn]) 2822 err = -EAGAIN; 2823 else { 2824 get_ctx(ctx); 2825 ++ctx->pin_count; 2826 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2827 } 2828 mutex_unlock(&task->perf_event_mutex); 2829 2830 if (unlikely(err)) { 2831 put_ctx(ctx); 2832 2833 if (err == -EAGAIN) 2834 goto retry; 2835 goto errout; 2836 } 2837 } 2838 2839 return ctx; 2840 2841 errout: 2842 return ERR_PTR(err); 2843 } 2844 2845 static void perf_event_free_filter(struct perf_event *event); 2846 2847 static void free_event_rcu(struct rcu_head *head) 2848 { 2849 struct perf_event *event; 2850 2851 event = container_of(head, struct perf_event, rcu_head); 2852 if (event->ns) 2853 put_pid_ns(event->ns); 2854 perf_event_free_filter(event); 2855 kfree(event); 2856 } 2857 2858 static void ring_buffer_put(struct ring_buffer *rb); 2859 2860 static void free_event(struct perf_event *event) 2861 { 2862 irq_work_sync(&event->pending); 2863 2864 if (!event->parent) { 2865 if (event->attach_state & PERF_ATTACH_TASK) 2866 static_key_slow_dec_deferred(&perf_sched_events); 2867 if (event->attr.mmap || event->attr.mmap_data) 2868 atomic_dec(&nr_mmap_events); 2869 if (event->attr.comm) 2870 atomic_dec(&nr_comm_events); 2871 if (event->attr.task) 2872 atomic_dec(&nr_task_events); 2873 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2874 put_callchain_buffers(); 2875 if (is_cgroup_event(event)) { 2876 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2877 static_key_slow_dec_deferred(&perf_sched_events); 2878 } 2879 2880 if (has_branch_stack(event)) { 2881 static_key_slow_dec_deferred(&perf_sched_events); 2882 /* is system-wide event */ 2883 if (!(event->attach_state & PERF_ATTACH_TASK)) 2884 atomic_dec(&per_cpu(perf_branch_stack_events, 2885 event->cpu)); 2886 } 2887 } 2888 2889 if (event->rb) { 2890 ring_buffer_put(event->rb); 2891 event->rb = NULL; 2892 } 2893 2894 if (is_cgroup_event(event)) 2895 perf_detach_cgroup(event); 2896 2897 if (event->destroy) 2898 event->destroy(event); 2899 2900 if (event->ctx) 2901 put_ctx(event->ctx); 2902 2903 call_rcu(&event->rcu_head, free_event_rcu); 2904 } 2905 2906 int perf_event_release_kernel(struct perf_event *event) 2907 { 2908 struct perf_event_context *ctx = event->ctx; 2909 2910 WARN_ON_ONCE(ctx->parent_ctx); 2911 /* 2912 * There are two ways this annotation is useful: 2913 * 2914 * 1) there is a lock recursion from perf_event_exit_task 2915 * see the comment there. 2916 * 2917 * 2) there is a lock-inversion with mmap_sem through 2918 * perf_event_read_group(), which takes faults while 2919 * holding ctx->mutex, however this is called after 2920 * the last filedesc died, so there is no possibility 2921 * to trigger the AB-BA case. 2922 */ 2923 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2924 raw_spin_lock_irq(&ctx->lock); 2925 perf_group_detach(event); 2926 raw_spin_unlock_irq(&ctx->lock); 2927 perf_remove_from_context(event); 2928 mutex_unlock(&ctx->mutex); 2929 2930 free_event(event); 2931 2932 return 0; 2933 } 2934 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2935 2936 /* 2937 * Called when the last reference to the file is gone. 2938 */ 2939 static void put_event(struct perf_event *event) 2940 { 2941 struct task_struct *owner; 2942 2943 if (!atomic_long_dec_and_test(&event->refcount)) 2944 return; 2945 2946 rcu_read_lock(); 2947 owner = ACCESS_ONCE(event->owner); 2948 /* 2949 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2950 * !owner it means the list deletion is complete and we can indeed 2951 * free this event, otherwise we need to serialize on 2952 * owner->perf_event_mutex. 2953 */ 2954 smp_read_barrier_depends(); 2955 if (owner) { 2956 /* 2957 * Since delayed_put_task_struct() also drops the last 2958 * task reference we can safely take a new reference 2959 * while holding the rcu_read_lock(). 2960 */ 2961 get_task_struct(owner); 2962 } 2963 rcu_read_unlock(); 2964 2965 if (owner) { 2966 mutex_lock(&owner->perf_event_mutex); 2967 /* 2968 * We have to re-check the event->owner field, if it is cleared 2969 * we raced with perf_event_exit_task(), acquiring the mutex 2970 * ensured they're done, and we can proceed with freeing the 2971 * event. 2972 */ 2973 if (event->owner) 2974 list_del_init(&event->owner_entry); 2975 mutex_unlock(&owner->perf_event_mutex); 2976 put_task_struct(owner); 2977 } 2978 2979 perf_event_release_kernel(event); 2980 } 2981 2982 static int perf_release(struct inode *inode, struct file *file) 2983 { 2984 put_event(file->private_data); 2985 return 0; 2986 } 2987 2988 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2989 { 2990 struct perf_event *child; 2991 u64 total = 0; 2992 2993 *enabled = 0; 2994 *running = 0; 2995 2996 mutex_lock(&event->child_mutex); 2997 total += perf_event_read(event); 2998 *enabled += event->total_time_enabled + 2999 atomic64_read(&event->child_total_time_enabled); 3000 *running += event->total_time_running + 3001 atomic64_read(&event->child_total_time_running); 3002 3003 list_for_each_entry(child, &event->child_list, child_list) { 3004 total += perf_event_read(child); 3005 *enabled += child->total_time_enabled; 3006 *running += child->total_time_running; 3007 } 3008 mutex_unlock(&event->child_mutex); 3009 3010 return total; 3011 } 3012 EXPORT_SYMBOL_GPL(perf_event_read_value); 3013 3014 static int perf_event_read_group(struct perf_event *event, 3015 u64 read_format, char __user *buf) 3016 { 3017 struct perf_event *leader = event->group_leader, *sub; 3018 int n = 0, size = 0, ret = -EFAULT; 3019 struct perf_event_context *ctx = leader->ctx; 3020 u64 values[5]; 3021 u64 count, enabled, running; 3022 3023 mutex_lock(&ctx->mutex); 3024 count = perf_event_read_value(leader, &enabled, &running); 3025 3026 values[n++] = 1 + leader->nr_siblings; 3027 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3028 values[n++] = enabled; 3029 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3030 values[n++] = running; 3031 values[n++] = count; 3032 if (read_format & PERF_FORMAT_ID) 3033 values[n++] = primary_event_id(leader); 3034 3035 size = n * sizeof(u64); 3036 3037 if (copy_to_user(buf, values, size)) 3038 goto unlock; 3039 3040 ret = size; 3041 3042 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3043 n = 0; 3044 3045 values[n++] = perf_event_read_value(sub, &enabled, &running); 3046 if (read_format & PERF_FORMAT_ID) 3047 values[n++] = primary_event_id(sub); 3048 3049 size = n * sizeof(u64); 3050 3051 if (copy_to_user(buf + ret, values, size)) { 3052 ret = -EFAULT; 3053 goto unlock; 3054 } 3055 3056 ret += size; 3057 } 3058 unlock: 3059 mutex_unlock(&ctx->mutex); 3060 3061 return ret; 3062 } 3063 3064 static int perf_event_read_one(struct perf_event *event, 3065 u64 read_format, char __user *buf) 3066 { 3067 u64 enabled, running; 3068 u64 values[4]; 3069 int n = 0; 3070 3071 values[n++] = perf_event_read_value(event, &enabled, &running); 3072 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3073 values[n++] = enabled; 3074 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3075 values[n++] = running; 3076 if (read_format & PERF_FORMAT_ID) 3077 values[n++] = primary_event_id(event); 3078 3079 if (copy_to_user(buf, values, n * sizeof(u64))) 3080 return -EFAULT; 3081 3082 return n * sizeof(u64); 3083 } 3084 3085 /* 3086 * Read the performance event - simple non blocking version for now 3087 */ 3088 static ssize_t 3089 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3090 { 3091 u64 read_format = event->attr.read_format; 3092 int ret; 3093 3094 /* 3095 * Return end-of-file for a read on a event that is in 3096 * error state (i.e. because it was pinned but it couldn't be 3097 * scheduled on to the CPU at some point). 3098 */ 3099 if (event->state == PERF_EVENT_STATE_ERROR) 3100 return 0; 3101 3102 if (count < event->read_size) 3103 return -ENOSPC; 3104 3105 WARN_ON_ONCE(event->ctx->parent_ctx); 3106 if (read_format & PERF_FORMAT_GROUP) 3107 ret = perf_event_read_group(event, read_format, buf); 3108 else 3109 ret = perf_event_read_one(event, read_format, buf); 3110 3111 return ret; 3112 } 3113 3114 static ssize_t 3115 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3116 { 3117 struct perf_event *event = file->private_data; 3118 3119 return perf_read_hw(event, buf, count); 3120 } 3121 3122 static unsigned int perf_poll(struct file *file, poll_table *wait) 3123 { 3124 struct perf_event *event = file->private_data; 3125 struct ring_buffer *rb; 3126 unsigned int events = POLL_HUP; 3127 3128 /* 3129 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3130 * grabs the rb reference but perf_event_set_output() overrides it. 3131 * Here is the timeline for two threads T1, T2: 3132 * t0: T1, rb = rcu_dereference(event->rb) 3133 * t1: T2, old_rb = event->rb 3134 * t2: T2, event->rb = new rb 3135 * t3: T2, ring_buffer_detach(old_rb) 3136 * t4: T1, ring_buffer_attach(rb1) 3137 * t5: T1, poll_wait(event->waitq) 3138 * 3139 * To avoid this problem, we grab mmap_mutex in perf_poll() 3140 * thereby ensuring that the assignment of the new ring buffer 3141 * and the detachment of the old buffer appear atomic to perf_poll() 3142 */ 3143 mutex_lock(&event->mmap_mutex); 3144 3145 rcu_read_lock(); 3146 rb = rcu_dereference(event->rb); 3147 if (rb) { 3148 ring_buffer_attach(event, rb); 3149 events = atomic_xchg(&rb->poll, 0); 3150 } 3151 rcu_read_unlock(); 3152 3153 mutex_unlock(&event->mmap_mutex); 3154 3155 poll_wait(file, &event->waitq, wait); 3156 3157 return events; 3158 } 3159 3160 static void perf_event_reset(struct perf_event *event) 3161 { 3162 (void)perf_event_read(event); 3163 local64_set(&event->count, 0); 3164 perf_event_update_userpage(event); 3165 } 3166 3167 /* 3168 * Holding the top-level event's child_mutex means that any 3169 * descendant process that has inherited this event will block 3170 * in sync_child_event if it goes to exit, thus satisfying the 3171 * task existence requirements of perf_event_enable/disable. 3172 */ 3173 static void perf_event_for_each_child(struct perf_event *event, 3174 void (*func)(struct perf_event *)) 3175 { 3176 struct perf_event *child; 3177 3178 WARN_ON_ONCE(event->ctx->parent_ctx); 3179 mutex_lock(&event->child_mutex); 3180 func(event); 3181 list_for_each_entry(child, &event->child_list, child_list) 3182 func(child); 3183 mutex_unlock(&event->child_mutex); 3184 } 3185 3186 static void perf_event_for_each(struct perf_event *event, 3187 void (*func)(struct perf_event *)) 3188 { 3189 struct perf_event_context *ctx = event->ctx; 3190 struct perf_event *sibling; 3191 3192 WARN_ON_ONCE(ctx->parent_ctx); 3193 mutex_lock(&ctx->mutex); 3194 event = event->group_leader; 3195 3196 perf_event_for_each_child(event, func); 3197 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3198 perf_event_for_each_child(sibling, func); 3199 mutex_unlock(&ctx->mutex); 3200 } 3201 3202 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3203 { 3204 struct perf_event_context *ctx = event->ctx; 3205 int ret = 0; 3206 u64 value; 3207 3208 if (!is_sampling_event(event)) 3209 return -EINVAL; 3210 3211 if (copy_from_user(&value, arg, sizeof(value))) 3212 return -EFAULT; 3213 3214 if (!value) 3215 return -EINVAL; 3216 3217 raw_spin_lock_irq(&ctx->lock); 3218 if (event->attr.freq) { 3219 if (value > sysctl_perf_event_sample_rate) { 3220 ret = -EINVAL; 3221 goto unlock; 3222 } 3223 3224 event->attr.sample_freq = value; 3225 } else { 3226 event->attr.sample_period = value; 3227 event->hw.sample_period = value; 3228 } 3229 unlock: 3230 raw_spin_unlock_irq(&ctx->lock); 3231 3232 return ret; 3233 } 3234 3235 static const struct file_operations perf_fops; 3236 3237 static struct file *perf_fget_light(int fd, int *fput_needed) 3238 { 3239 struct file *file; 3240 3241 file = fget_light(fd, fput_needed); 3242 if (!file) 3243 return ERR_PTR(-EBADF); 3244 3245 if (file->f_op != &perf_fops) { 3246 fput_light(file, *fput_needed); 3247 *fput_needed = 0; 3248 return ERR_PTR(-EBADF); 3249 } 3250 3251 return file; 3252 } 3253 3254 static int perf_event_set_output(struct perf_event *event, 3255 struct perf_event *output_event); 3256 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3257 3258 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3259 { 3260 struct perf_event *event = file->private_data; 3261 void (*func)(struct perf_event *); 3262 u32 flags = arg; 3263 3264 switch (cmd) { 3265 case PERF_EVENT_IOC_ENABLE: 3266 func = perf_event_enable; 3267 break; 3268 case PERF_EVENT_IOC_DISABLE: 3269 func = perf_event_disable; 3270 break; 3271 case PERF_EVENT_IOC_RESET: 3272 func = perf_event_reset; 3273 break; 3274 3275 case PERF_EVENT_IOC_REFRESH: 3276 return perf_event_refresh(event, arg); 3277 3278 case PERF_EVENT_IOC_PERIOD: 3279 return perf_event_period(event, (u64 __user *)arg); 3280 3281 case PERF_EVENT_IOC_SET_OUTPUT: 3282 { 3283 struct file *output_file = NULL; 3284 struct perf_event *output_event = NULL; 3285 int fput_needed = 0; 3286 int ret; 3287 3288 if (arg != -1) { 3289 output_file = perf_fget_light(arg, &fput_needed); 3290 if (IS_ERR(output_file)) 3291 return PTR_ERR(output_file); 3292 output_event = output_file->private_data; 3293 } 3294 3295 ret = perf_event_set_output(event, output_event); 3296 if (output_event) 3297 fput_light(output_file, fput_needed); 3298 3299 return ret; 3300 } 3301 3302 case PERF_EVENT_IOC_SET_FILTER: 3303 return perf_event_set_filter(event, (void __user *)arg); 3304 3305 default: 3306 return -ENOTTY; 3307 } 3308 3309 if (flags & PERF_IOC_FLAG_GROUP) 3310 perf_event_for_each(event, func); 3311 else 3312 perf_event_for_each_child(event, func); 3313 3314 return 0; 3315 } 3316 3317 int perf_event_task_enable(void) 3318 { 3319 struct perf_event *event; 3320 3321 mutex_lock(¤t->perf_event_mutex); 3322 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3323 perf_event_for_each_child(event, perf_event_enable); 3324 mutex_unlock(¤t->perf_event_mutex); 3325 3326 return 0; 3327 } 3328 3329 int perf_event_task_disable(void) 3330 { 3331 struct perf_event *event; 3332 3333 mutex_lock(¤t->perf_event_mutex); 3334 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3335 perf_event_for_each_child(event, perf_event_disable); 3336 mutex_unlock(¤t->perf_event_mutex); 3337 3338 return 0; 3339 } 3340 3341 static int perf_event_index(struct perf_event *event) 3342 { 3343 if (event->hw.state & PERF_HES_STOPPED) 3344 return 0; 3345 3346 if (event->state != PERF_EVENT_STATE_ACTIVE) 3347 return 0; 3348 3349 return event->pmu->event_idx(event); 3350 } 3351 3352 static void calc_timer_values(struct perf_event *event, 3353 u64 *now, 3354 u64 *enabled, 3355 u64 *running) 3356 { 3357 u64 ctx_time; 3358 3359 *now = perf_clock(); 3360 ctx_time = event->shadow_ctx_time + *now; 3361 *enabled = ctx_time - event->tstamp_enabled; 3362 *running = ctx_time - event->tstamp_running; 3363 } 3364 3365 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3366 { 3367 } 3368 3369 /* 3370 * Callers need to ensure there can be no nesting of this function, otherwise 3371 * the seqlock logic goes bad. We can not serialize this because the arch 3372 * code calls this from NMI context. 3373 */ 3374 void perf_event_update_userpage(struct perf_event *event) 3375 { 3376 struct perf_event_mmap_page *userpg; 3377 struct ring_buffer *rb; 3378 u64 enabled, running, now; 3379 3380 rcu_read_lock(); 3381 /* 3382 * compute total_time_enabled, total_time_running 3383 * based on snapshot values taken when the event 3384 * was last scheduled in. 3385 * 3386 * we cannot simply called update_context_time() 3387 * because of locking issue as we can be called in 3388 * NMI context 3389 */ 3390 calc_timer_values(event, &now, &enabled, &running); 3391 rb = rcu_dereference(event->rb); 3392 if (!rb) 3393 goto unlock; 3394 3395 userpg = rb->user_page; 3396 3397 /* 3398 * Disable preemption so as to not let the corresponding user-space 3399 * spin too long if we get preempted. 3400 */ 3401 preempt_disable(); 3402 ++userpg->lock; 3403 barrier(); 3404 userpg->index = perf_event_index(event); 3405 userpg->offset = perf_event_count(event); 3406 if (userpg->index) 3407 userpg->offset -= local64_read(&event->hw.prev_count); 3408 3409 userpg->time_enabled = enabled + 3410 atomic64_read(&event->child_total_time_enabled); 3411 3412 userpg->time_running = running + 3413 atomic64_read(&event->child_total_time_running); 3414 3415 arch_perf_update_userpage(userpg, now); 3416 3417 barrier(); 3418 ++userpg->lock; 3419 preempt_enable(); 3420 unlock: 3421 rcu_read_unlock(); 3422 } 3423 3424 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3425 { 3426 struct perf_event *event = vma->vm_file->private_data; 3427 struct ring_buffer *rb; 3428 int ret = VM_FAULT_SIGBUS; 3429 3430 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3431 if (vmf->pgoff == 0) 3432 ret = 0; 3433 return ret; 3434 } 3435 3436 rcu_read_lock(); 3437 rb = rcu_dereference(event->rb); 3438 if (!rb) 3439 goto unlock; 3440 3441 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3442 goto unlock; 3443 3444 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3445 if (!vmf->page) 3446 goto unlock; 3447 3448 get_page(vmf->page); 3449 vmf->page->mapping = vma->vm_file->f_mapping; 3450 vmf->page->index = vmf->pgoff; 3451 3452 ret = 0; 3453 unlock: 3454 rcu_read_unlock(); 3455 3456 return ret; 3457 } 3458 3459 static void ring_buffer_attach(struct perf_event *event, 3460 struct ring_buffer *rb) 3461 { 3462 unsigned long flags; 3463 3464 if (!list_empty(&event->rb_entry)) 3465 return; 3466 3467 spin_lock_irqsave(&rb->event_lock, flags); 3468 if (!list_empty(&event->rb_entry)) 3469 goto unlock; 3470 3471 list_add(&event->rb_entry, &rb->event_list); 3472 unlock: 3473 spin_unlock_irqrestore(&rb->event_lock, flags); 3474 } 3475 3476 static void ring_buffer_detach(struct perf_event *event, 3477 struct ring_buffer *rb) 3478 { 3479 unsigned long flags; 3480 3481 if (list_empty(&event->rb_entry)) 3482 return; 3483 3484 spin_lock_irqsave(&rb->event_lock, flags); 3485 list_del_init(&event->rb_entry); 3486 wake_up_all(&event->waitq); 3487 spin_unlock_irqrestore(&rb->event_lock, flags); 3488 } 3489 3490 static void ring_buffer_wakeup(struct perf_event *event) 3491 { 3492 struct ring_buffer *rb; 3493 3494 rcu_read_lock(); 3495 rb = rcu_dereference(event->rb); 3496 if (!rb) 3497 goto unlock; 3498 3499 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3500 wake_up_all(&event->waitq); 3501 3502 unlock: 3503 rcu_read_unlock(); 3504 } 3505 3506 static void rb_free_rcu(struct rcu_head *rcu_head) 3507 { 3508 struct ring_buffer *rb; 3509 3510 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3511 rb_free(rb); 3512 } 3513 3514 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3515 { 3516 struct ring_buffer *rb; 3517 3518 rcu_read_lock(); 3519 rb = rcu_dereference(event->rb); 3520 if (rb) { 3521 if (!atomic_inc_not_zero(&rb->refcount)) 3522 rb = NULL; 3523 } 3524 rcu_read_unlock(); 3525 3526 return rb; 3527 } 3528 3529 static void ring_buffer_put(struct ring_buffer *rb) 3530 { 3531 struct perf_event *event, *n; 3532 unsigned long flags; 3533 3534 if (!atomic_dec_and_test(&rb->refcount)) 3535 return; 3536 3537 spin_lock_irqsave(&rb->event_lock, flags); 3538 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3539 list_del_init(&event->rb_entry); 3540 wake_up_all(&event->waitq); 3541 } 3542 spin_unlock_irqrestore(&rb->event_lock, flags); 3543 3544 call_rcu(&rb->rcu_head, rb_free_rcu); 3545 } 3546 3547 static void perf_mmap_open(struct vm_area_struct *vma) 3548 { 3549 struct perf_event *event = vma->vm_file->private_data; 3550 3551 atomic_inc(&event->mmap_count); 3552 } 3553 3554 static void perf_mmap_close(struct vm_area_struct *vma) 3555 { 3556 struct perf_event *event = vma->vm_file->private_data; 3557 3558 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3559 unsigned long size = perf_data_size(event->rb); 3560 struct user_struct *user = event->mmap_user; 3561 struct ring_buffer *rb = event->rb; 3562 3563 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3564 vma->vm_mm->pinned_vm -= event->mmap_locked; 3565 rcu_assign_pointer(event->rb, NULL); 3566 ring_buffer_detach(event, rb); 3567 mutex_unlock(&event->mmap_mutex); 3568 3569 ring_buffer_put(rb); 3570 free_uid(user); 3571 } 3572 } 3573 3574 static const struct vm_operations_struct perf_mmap_vmops = { 3575 .open = perf_mmap_open, 3576 .close = perf_mmap_close, 3577 .fault = perf_mmap_fault, 3578 .page_mkwrite = perf_mmap_fault, 3579 }; 3580 3581 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3582 { 3583 struct perf_event *event = file->private_data; 3584 unsigned long user_locked, user_lock_limit; 3585 struct user_struct *user = current_user(); 3586 unsigned long locked, lock_limit; 3587 struct ring_buffer *rb; 3588 unsigned long vma_size; 3589 unsigned long nr_pages; 3590 long user_extra, extra; 3591 int ret = 0, flags = 0; 3592 3593 /* 3594 * Don't allow mmap() of inherited per-task counters. This would 3595 * create a performance issue due to all children writing to the 3596 * same rb. 3597 */ 3598 if (event->cpu == -1 && event->attr.inherit) 3599 return -EINVAL; 3600 3601 if (!(vma->vm_flags & VM_SHARED)) 3602 return -EINVAL; 3603 3604 vma_size = vma->vm_end - vma->vm_start; 3605 nr_pages = (vma_size / PAGE_SIZE) - 1; 3606 3607 /* 3608 * If we have rb pages ensure they're a power-of-two number, so we 3609 * can do bitmasks instead of modulo. 3610 */ 3611 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3612 return -EINVAL; 3613 3614 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3615 return -EINVAL; 3616 3617 if (vma->vm_pgoff != 0) 3618 return -EINVAL; 3619 3620 WARN_ON_ONCE(event->ctx->parent_ctx); 3621 mutex_lock(&event->mmap_mutex); 3622 if (event->rb) { 3623 if (event->rb->nr_pages == nr_pages) 3624 atomic_inc(&event->rb->refcount); 3625 else 3626 ret = -EINVAL; 3627 goto unlock; 3628 } 3629 3630 user_extra = nr_pages + 1; 3631 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3632 3633 /* 3634 * Increase the limit linearly with more CPUs: 3635 */ 3636 user_lock_limit *= num_online_cpus(); 3637 3638 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3639 3640 extra = 0; 3641 if (user_locked > user_lock_limit) 3642 extra = user_locked - user_lock_limit; 3643 3644 lock_limit = rlimit(RLIMIT_MEMLOCK); 3645 lock_limit >>= PAGE_SHIFT; 3646 locked = vma->vm_mm->pinned_vm + extra; 3647 3648 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3649 !capable(CAP_IPC_LOCK)) { 3650 ret = -EPERM; 3651 goto unlock; 3652 } 3653 3654 WARN_ON(event->rb); 3655 3656 if (vma->vm_flags & VM_WRITE) 3657 flags |= RING_BUFFER_WRITABLE; 3658 3659 rb = rb_alloc(nr_pages, 3660 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3661 event->cpu, flags); 3662 3663 if (!rb) { 3664 ret = -ENOMEM; 3665 goto unlock; 3666 } 3667 rcu_assign_pointer(event->rb, rb); 3668 3669 atomic_long_add(user_extra, &user->locked_vm); 3670 event->mmap_locked = extra; 3671 event->mmap_user = get_current_user(); 3672 vma->vm_mm->pinned_vm += event->mmap_locked; 3673 3674 perf_event_update_userpage(event); 3675 3676 unlock: 3677 if (!ret) 3678 atomic_inc(&event->mmap_count); 3679 mutex_unlock(&event->mmap_mutex); 3680 3681 vma->vm_flags |= VM_RESERVED; 3682 vma->vm_ops = &perf_mmap_vmops; 3683 3684 return ret; 3685 } 3686 3687 static int perf_fasync(int fd, struct file *filp, int on) 3688 { 3689 struct inode *inode = filp->f_path.dentry->d_inode; 3690 struct perf_event *event = filp->private_data; 3691 int retval; 3692 3693 mutex_lock(&inode->i_mutex); 3694 retval = fasync_helper(fd, filp, on, &event->fasync); 3695 mutex_unlock(&inode->i_mutex); 3696 3697 if (retval < 0) 3698 return retval; 3699 3700 return 0; 3701 } 3702 3703 static const struct file_operations perf_fops = { 3704 .llseek = no_llseek, 3705 .release = perf_release, 3706 .read = perf_read, 3707 .poll = perf_poll, 3708 .unlocked_ioctl = perf_ioctl, 3709 .compat_ioctl = perf_ioctl, 3710 .mmap = perf_mmap, 3711 .fasync = perf_fasync, 3712 }; 3713 3714 /* 3715 * Perf event wakeup 3716 * 3717 * If there's data, ensure we set the poll() state and publish everything 3718 * to user-space before waking everybody up. 3719 */ 3720 3721 void perf_event_wakeup(struct perf_event *event) 3722 { 3723 ring_buffer_wakeup(event); 3724 3725 if (event->pending_kill) { 3726 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3727 event->pending_kill = 0; 3728 } 3729 } 3730 3731 static void perf_pending_event(struct irq_work *entry) 3732 { 3733 struct perf_event *event = container_of(entry, 3734 struct perf_event, pending); 3735 3736 if (event->pending_disable) { 3737 event->pending_disable = 0; 3738 __perf_event_disable(event); 3739 } 3740 3741 if (event->pending_wakeup) { 3742 event->pending_wakeup = 0; 3743 perf_event_wakeup(event); 3744 } 3745 } 3746 3747 /* 3748 * We assume there is only KVM supporting the callbacks. 3749 * Later on, we might change it to a list if there is 3750 * another virtualization implementation supporting the callbacks. 3751 */ 3752 struct perf_guest_info_callbacks *perf_guest_cbs; 3753 3754 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3755 { 3756 perf_guest_cbs = cbs; 3757 return 0; 3758 } 3759 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3760 3761 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3762 { 3763 perf_guest_cbs = NULL; 3764 return 0; 3765 } 3766 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3767 3768 static void 3769 perf_output_sample_regs(struct perf_output_handle *handle, 3770 struct pt_regs *regs, u64 mask) 3771 { 3772 int bit; 3773 3774 for_each_set_bit(bit, (const unsigned long *) &mask, 3775 sizeof(mask) * BITS_PER_BYTE) { 3776 u64 val; 3777 3778 val = perf_reg_value(regs, bit); 3779 perf_output_put(handle, val); 3780 } 3781 } 3782 3783 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 3784 struct pt_regs *regs) 3785 { 3786 if (!user_mode(regs)) { 3787 if (current->mm) 3788 regs = task_pt_regs(current); 3789 else 3790 regs = NULL; 3791 } 3792 3793 if (regs) { 3794 regs_user->regs = regs; 3795 regs_user->abi = perf_reg_abi(current); 3796 } 3797 } 3798 3799 /* 3800 * Get remaining task size from user stack pointer. 3801 * 3802 * It'd be better to take stack vma map and limit this more 3803 * precisly, but there's no way to get it safely under interrupt, 3804 * so using TASK_SIZE as limit. 3805 */ 3806 static u64 perf_ustack_task_size(struct pt_regs *regs) 3807 { 3808 unsigned long addr = perf_user_stack_pointer(regs); 3809 3810 if (!addr || addr >= TASK_SIZE) 3811 return 0; 3812 3813 return TASK_SIZE - addr; 3814 } 3815 3816 static u16 3817 perf_sample_ustack_size(u16 stack_size, u16 header_size, 3818 struct pt_regs *regs) 3819 { 3820 u64 task_size; 3821 3822 /* No regs, no stack pointer, no dump. */ 3823 if (!regs) 3824 return 0; 3825 3826 /* 3827 * Check if we fit in with the requested stack size into the: 3828 * - TASK_SIZE 3829 * If we don't, we limit the size to the TASK_SIZE. 3830 * 3831 * - remaining sample size 3832 * If we don't, we customize the stack size to 3833 * fit in to the remaining sample size. 3834 */ 3835 3836 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 3837 stack_size = min(stack_size, (u16) task_size); 3838 3839 /* Current header size plus static size and dynamic size. */ 3840 header_size += 2 * sizeof(u64); 3841 3842 /* Do we fit in with the current stack dump size? */ 3843 if ((u16) (header_size + stack_size) < header_size) { 3844 /* 3845 * If we overflow the maximum size for the sample, 3846 * we customize the stack dump size to fit in. 3847 */ 3848 stack_size = USHRT_MAX - header_size - sizeof(u64); 3849 stack_size = round_up(stack_size, sizeof(u64)); 3850 } 3851 3852 return stack_size; 3853 } 3854 3855 static void 3856 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 3857 struct pt_regs *regs) 3858 { 3859 /* Case of a kernel thread, nothing to dump */ 3860 if (!regs) { 3861 u64 size = 0; 3862 perf_output_put(handle, size); 3863 } else { 3864 unsigned long sp; 3865 unsigned int rem; 3866 u64 dyn_size; 3867 3868 /* 3869 * We dump: 3870 * static size 3871 * - the size requested by user or the best one we can fit 3872 * in to the sample max size 3873 * data 3874 * - user stack dump data 3875 * dynamic size 3876 * - the actual dumped size 3877 */ 3878 3879 /* Static size. */ 3880 perf_output_put(handle, dump_size); 3881 3882 /* Data. */ 3883 sp = perf_user_stack_pointer(regs); 3884 rem = __output_copy_user(handle, (void *) sp, dump_size); 3885 dyn_size = dump_size - rem; 3886 3887 perf_output_skip(handle, rem); 3888 3889 /* Dynamic size. */ 3890 perf_output_put(handle, dyn_size); 3891 } 3892 } 3893 3894 static void __perf_event_header__init_id(struct perf_event_header *header, 3895 struct perf_sample_data *data, 3896 struct perf_event *event) 3897 { 3898 u64 sample_type = event->attr.sample_type; 3899 3900 data->type = sample_type; 3901 header->size += event->id_header_size; 3902 3903 if (sample_type & PERF_SAMPLE_TID) { 3904 /* namespace issues */ 3905 data->tid_entry.pid = perf_event_pid(event, current); 3906 data->tid_entry.tid = perf_event_tid(event, current); 3907 } 3908 3909 if (sample_type & PERF_SAMPLE_TIME) 3910 data->time = perf_clock(); 3911 3912 if (sample_type & PERF_SAMPLE_ID) 3913 data->id = primary_event_id(event); 3914 3915 if (sample_type & PERF_SAMPLE_STREAM_ID) 3916 data->stream_id = event->id; 3917 3918 if (sample_type & PERF_SAMPLE_CPU) { 3919 data->cpu_entry.cpu = raw_smp_processor_id(); 3920 data->cpu_entry.reserved = 0; 3921 } 3922 } 3923 3924 void perf_event_header__init_id(struct perf_event_header *header, 3925 struct perf_sample_data *data, 3926 struct perf_event *event) 3927 { 3928 if (event->attr.sample_id_all) 3929 __perf_event_header__init_id(header, data, event); 3930 } 3931 3932 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3933 struct perf_sample_data *data) 3934 { 3935 u64 sample_type = data->type; 3936 3937 if (sample_type & PERF_SAMPLE_TID) 3938 perf_output_put(handle, data->tid_entry); 3939 3940 if (sample_type & PERF_SAMPLE_TIME) 3941 perf_output_put(handle, data->time); 3942 3943 if (sample_type & PERF_SAMPLE_ID) 3944 perf_output_put(handle, data->id); 3945 3946 if (sample_type & PERF_SAMPLE_STREAM_ID) 3947 perf_output_put(handle, data->stream_id); 3948 3949 if (sample_type & PERF_SAMPLE_CPU) 3950 perf_output_put(handle, data->cpu_entry); 3951 } 3952 3953 void perf_event__output_id_sample(struct perf_event *event, 3954 struct perf_output_handle *handle, 3955 struct perf_sample_data *sample) 3956 { 3957 if (event->attr.sample_id_all) 3958 __perf_event__output_id_sample(handle, sample); 3959 } 3960 3961 static void perf_output_read_one(struct perf_output_handle *handle, 3962 struct perf_event *event, 3963 u64 enabled, u64 running) 3964 { 3965 u64 read_format = event->attr.read_format; 3966 u64 values[4]; 3967 int n = 0; 3968 3969 values[n++] = perf_event_count(event); 3970 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3971 values[n++] = enabled + 3972 atomic64_read(&event->child_total_time_enabled); 3973 } 3974 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3975 values[n++] = running + 3976 atomic64_read(&event->child_total_time_running); 3977 } 3978 if (read_format & PERF_FORMAT_ID) 3979 values[n++] = primary_event_id(event); 3980 3981 __output_copy(handle, values, n * sizeof(u64)); 3982 } 3983 3984 /* 3985 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3986 */ 3987 static void perf_output_read_group(struct perf_output_handle *handle, 3988 struct perf_event *event, 3989 u64 enabled, u64 running) 3990 { 3991 struct perf_event *leader = event->group_leader, *sub; 3992 u64 read_format = event->attr.read_format; 3993 u64 values[5]; 3994 int n = 0; 3995 3996 values[n++] = 1 + leader->nr_siblings; 3997 3998 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3999 values[n++] = enabled; 4000 4001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4002 values[n++] = running; 4003 4004 if (leader != event) 4005 leader->pmu->read(leader); 4006 4007 values[n++] = perf_event_count(leader); 4008 if (read_format & PERF_FORMAT_ID) 4009 values[n++] = primary_event_id(leader); 4010 4011 __output_copy(handle, values, n * sizeof(u64)); 4012 4013 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4014 n = 0; 4015 4016 if (sub != event) 4017 sub->pmu->read(sub); 4018 4019 values[n++] = perf_event_count(sub); 4020 if (read_format & PERF_FORMAT_ID) 4021 values[n++] = primary_event_id(sub); 4022 4023 __output_copy(handle, values, n * sizeof(u64)); 4024 } 4025 } 4026 4027 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4028 PERF_FORMAT_TOTAL_TIME_RUNNING) 4029 4030 static void perf_output_read(struct perf_output_handle *handle, 4031 struct perf_event *event) 4032 { 4033 u64 enabled = 0, running = 0, now; 4034 u64 read_format = event->attr.read_format; 4035 4036 /* 4037 * compute total_time_enabled, total_time_running 4038 * based on snapshot values taken when the event 4039 * was last scheduled in. 4040 * 4041 * we cannot simply called update_context_time() 4042 * because of locking issue as we are called in 4043 * NMI context 4044 */ 4045 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4046 calc_timer_values(event, &now, &enabled, &running); 4047 4048 if (event->attr.read_format & PERF_FORMAT_GROUP) 4049 perf_output_read_group(handle, event, enabled, running); 4050 else 4051 perf_output_read_one(handle, event, enabled, running); 4052 } 4053 4054 void perf_output_sample(struct perf_output_handle *handle, 4055 struct perf_event_header *header, 4056 struct perf_sample_data *data, 4057 struct perf_event *event) 4058 { 4059 u64 sample_type = data->type; 4060 4061 perf_output_put(handle, *header); 4062 4063 if (sample_type & PERF_SAMPLE_IP) 4064 perf_output_put(handle, data->ip); 4065 4066 if (sample_type & PERF_SAMPLE_TID) 4067 perf_output_put(handle, data->tid_entry); 4068 4069 if (sample_type & PERF_SAMPLE_TIME) 4070 perf_output_put(handle, data->time); 4071 4072 if (sample_type & PERF_SAMPLE_ADDR) 4073 perf_output_put(handle, data->addr); 4074 4075 if (sample_type & PERF_SAMPLE_ID) 4076 perf_output_put(handle, data->id); 4077 4078 if (sample_type & PERF_SAMPLE_STREAM_ID) 4079 perf_output_put(handle, data->stream_id); 4080 4081 if (sample_type & PERF_SAMPLE_CPU) 4082 perf_output_put(handle, data->cpu_entry); 4083 4084 if (sample_type & PERF_SAMPLE_PERIOD) 4085 perf_output_put(handle, data->period); 4086 4087 if (sample_type & PERF_SAMPLE_READ) 4088 perf_output_read(handle, event); 4089 4090 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4091 if (data->callchain) { 4092 int size = 1; 4093 4094 if (data->callchain) 4095 size += data->callchain->nr; 4096 4097 size *= sizeof(u64); 4098 4099 __output_copy(handle, data->callchain, size); 4100 } else { 4101 u64 nr = 0; 4102 perf_output_put(handle, nr); 4103 } 4104 } 4105 4106 if (sample_type & PERF_SAMPLE_RAW) { 4107 if (data->raw) { 4108 perf_output_put(handle, data->raw->size); 4109 __output_copy(handle, data->raw->data, 4110 data->raw->size); 4111 } else { 4112 struct { 4113 u32 size; 4114 u32 data; 4115 } raw = { 4116 .size = sizeof(u32), 4117 .data = 0, 4118 }; 4119 perf_output_put(handle, raw); 4120 } 4121 } 4122 4123 if (!event->attr.watermark) { 4124 int wakeup_events = event->attr.wakeup_events; 4125 4126 if (wakeup_events) { 4127 struct ring_buffer *rb = handle->rb; 4128 int events = local_inc_return(&rb->events); 4129 4130 if (events >= wakeup_events) { 4131 local_sub(wakeup_events, &rb->events); 4132 local_inc(&rb->wakeup); 4133 } 4134 } 4135 } 4136 4137 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4138 if (data->br_stack) { 4139 size_t size; 4140 4141 size = data->br_stack->nr 4142 * sizeof(struct perf_branch_entry); 4143 4144 perf_output_put(handle, data->br_stack->nr); 4145 perf_output_copy(handle, data->br_stack->entries, size); 4146 } else { 4147 /* 4148 * we always store at least the value of nr 4149 */ 4150 u64 nr = 0; 4151 perf_output_put(handle, nr); 4152 } 4153 } 4154 4155 if (sample_type & PERF_SAMPLE_REGS_USER) { 4156 u64 abi = data->regs_user.abi; 4157 4158 /* 4159 * If there are no regs to dump, notice it through 4160 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4161 */ 4162 perf_output_put(handle, abi); 4163 4164 if (abi) { 4165 u64 mask = event->attr.sample_regs_user; 4166 perf_output_sample_regs(handle, 4167 data->regs_user.regs, 4168 mask); 4169 } 4170 } 4171 4172 if (sample_type & PERF_SAMPLE_STACK_USER) 4173 perf_output_sample_ustack(handle, 4174 data->stack_user_size, 4175 data->regs_user.regs); 4176 } 4177 4178 void perf_prepare_sample(struct perf_event_header *header, 4179 struct perf_sample_data *data, 4180 struct perf_event *event, 4181 struct pt_regs *regs) 4182 { 4183 u64 sample_type = event->attr.sample_type; 4184 4185 header->type = PERF_RECORD_SAMPLE; 4186 header->size = sizeof(*header) + event->header_size; 4187 4188 header->misc = 0; 4189 header->misc |= perf_misc_flags(regs); 4190 4191 __perf_event_header__init_id(header, data, event); 4192 4193 if (sample_type & PERF_SAMPLE_IP) 4194 data->ip = perf_instruction_pointer(regs); 4195 4196 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4197 int size = 1; 4198 4199 data->callchain = perf_callchain(event, regs); 4200 4201 if (data->callchain) 4202 size += data->callchain->nr; 4203 4204 header->size += size * sizeof(u64); 4205 } 4206 4207 if (sample_type & PERF_SAMPLE_RAW) { 4208 int size = sizeof(u32); 4209 4210 if (data->raw) 4211 size += data->raw->size; 4212 else 4213 size += sizeof(u32); 4214 4215 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4216 header->size += size; 4217 } 4218 4219 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4220 int size = sizeof(u64); /* nr */ 4221 if (data->br_stack) { 4222 size += data->br_stack->nr 4223 * sizeof(struct perf_branch_entry); 4224 } 4225 header->size += size; 4226 } 4227 4228 if (sample_type & PERF_SAMPLE_REGS_USER) { 4229 /* regs dump ABI info */ 4230 int size = sizeof(u64); 4231 4232 perf_sample_regs_user(&data->regs_user, regs); 4233 4234 if (data->regs_user.regs) { 4235 u64 mask = event->attr.sample_regs_user; 4236 size += hweight64(mask) * sizeof(u64); 4237 } 4238 4239 header->size += size; 4240 } 4241 4242 if (sample_type & PERF_SAMPLE_STACK_USER) { 4243 /* 4244 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4245 * processed as the last one or have additional check added 4246 * in case new sample type is added, because we could eat 4247 * up the rest of the sample size. 4248 */ 4249 struct perf_regs_user *uregs = &data->regs_user; 4250 u16 stack_size = event->attr.sample_stack_user; 4251 u16 size = sizeof(u64); 4252 4253 if (!uregs->abi) 4254 perf_sample_regs_user(uregs, regs); 4255 4256 stack_size = perf_sample_ustack_size(stack_size, header->size, 4257 uregs->regs); 4258 4259 /* 4260 * If there is something to dump, add space for the dump 4261 * itself and for the field that tells the dynamic size, 4262 * which is how many have been actually dumped. 4263 */ 4264 if (stack_size) 4265 size += sizeof(u64) + stack_size; 4266 4267 data->stack_user_size = stack_size; 4268 header->size += size; 4269 } 4270 } 4271 4272 static void perf_event_output(struct perf_event *event, 4273 struct perf_sample_data *data, 4274 struct pt_regs *regs) 4275 { 4276 struct perf_output_handle handle; 4277 struct perf_event_header header; 4278 4279 /* protect the callchain buffers */ 4280 rcu_read_lock(); 4281 4282 perf_prepare_sample(&header, data, event, regs); 4283 4284 if (perf_output_begin(&handle, event, header.size)) 4285 goto exit; 4286 4287 perf_output_sample(&handle, &header, data, event); 4288 4289 perf_output_end(&handle); 4290 4291 exit: 4292 rcu_read_unlock(); 4293 } 4294 4295 /* 4296 * read event_id 4297 */ 4298 4299 struct perf_read_event { 4300 struct perf_event_header header; 4301 4302 u32 pid; 4303 u32 tid; 4304 }; 4305 4306 static void 4307 perf_event_read_event(struct perf_event *event, 4308 struct task_struct *task) 4309 { 4310 struct perf_output_handle handle; 4311 struct perf_sample_data sample; 4312 struct perf_read_event read_event = { 4313 .header = { 4314 .type = PERF_RECORD_READ, 4315 .misc = 0, 4316 .size = sizeof(read_event) + event->read_size, 4317 }, 4318 .pid = perf_event_pid(event, task), 4319 .tid = perf_event_tid(event, task), 4320 }; 4321 int ret; 4322 4323 perf_event_header__init_id(&read_event.header, &sample, event); 4324 ret = perf_output_begin(&handle, event, read_event.header.size); 4325 if (ret) 4326 return; 4327 4328 perf_output_put(&handle, read_event); 4329 perf_output_read(&handle, event); 4330 perf_event__output_id_sample(event, &handle, &sample); 4331 4332 perf_output_end(&handle); 4333 } 4334 4335 /* 4336 * task tracking -- fork/exit 4337 * 4338 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4339 */ 4340 4341 struct perf_task_event { 4342 struct task_struct *task; 4343 struct perf_event_context *task_ctx; 4344 4345 struct { 4346 struct perf_event_header header; 4347 4348 u32 pid; 4349 u32 ppid; 4350 u32 tid; 4351 u32 ptid; 4352 u64 time; 4353 } event_id; 4354 }; 4355 4356 static void perf_event_task_output(struct perf_event *event, 4357 struct perf_task_event *task_event) 4358 { 4359 struct perf_output_handle handle; 4360 struct perf_sample_data sample; 4361 struct task_struct *task = task_event->task; 4362 int ret, size = task_event->event_id.header.size; 4363 4364 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4365 4366 ret = perf_output_begin(&handle, event, 4367 task_event->event_id.header.size); 4368 if (ret) 4369 goto out; 4370 4371 task_event->event_id.pid = perf_event_pid(event, task); 4372 task_event->event_id.ppid = perf_event_pid(event, current); 4373 4374 task_event->event_id.tid = perf_event_tid(event, task); 4375 task_event->event_id.ptid = perf_event_tid(event, current); 4376 4377 perf_output_put(&handle, task_event->event_id); 4378 4379 perf_event__output_id_sample(event, &handle, &sample); 4380 4381 perf_output_end(&handle); 4382 out: 4383 task_event->event_id.header.size = size; 4384 } 4385 4386 static int perf_event_task_match(struct perf_event *event) 4387 { 4388 if (event->state < PERF_EVENT_STATE_INACTIVE) 4389 return 0; 4390 4391 if (!event_filter_match(event)) 4392 return 0; 4393 4394 if (event->attr.comm || event->attr.mmap || 4395 event->attr.mmap_data || event->attr.task) 4396 return 1; 4397 4398 return 0; 4399 } 4400 4401 static void perf_event_task_ctx(struct perf_event_context *ctx, 4402 struct perf_task_event *task_event) 4403 { 4404 struct perf_event *event; 4405 4406 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4407 if (perf_event_task_match(event)) 4408 perf_event_task_output(event, task_event); 4409 } 4410 } 4411 4412 static void perf_event_task_event(struct perf_task_event *task_event) 4413 { 4414 struct perf_cpu_context *cpuctx; 4415 struct perf_event_context *ctx; 4416 struct pmu *pmu; 4417 int ctxn; 4418 4419 rcu_read_lock(); 4420 list_for_each_entry_rcu(pmu, &pmus, entry) { 4421 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4422 if (cpuctx->active_pmu != pmu) 4423 goto next; 4424 perf_event_task_ctx(&cpuctx->ctx, task_event); 4425 4426 ctx = task_event->task_ctx; 4427 if (!ctx) { 4428 ctxn = pmu->task_ctx_nr; 4429 if (ctxn < 0) 4430 goto next; 4431 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4432 } 4433 if (ctx) 4434 perf_event_task_ctx(ctx, task_event); 4435 next: 4436 put_cpu_ptr(pmu->pmu_cpu_context); 4437 } 4438 rcu_read_unlock(); 4439 } 4440 4441 static void perf_event_task(struct task_struct *task, 4442 struct perf_event_context *task_ctx, 4443 int new) 4444 { 4445 struct perf_task_event task_event; 4446 4447 if (!atomic_read(&nr_comm_events) && 4448 !atomic_read(&nr_mmap_events) && 4449 !atomic_read(&nr_task_events)) 4450 return; 4451 4452 task_event = (struct perf_task_event){ 4453 .task = task, 4454 .task_ctx = task_ctx, 4455 .event_id = { 4456 .header = { 4457 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4458 .misc = 0, 4459 .size = sizeof(task_event.event_id), 4460 }, 4461 /* .pid */ 4462 /* .ppid */ 4463 /* .tid */ 4464 /* .ptid */ 4465 .time = perf_clock(), 4466 }, 4467 }; 4468 4469 perf_event_task_event(&task_event); 4470 } 4471 4472 void perf_event_fork(struct task_struct *task) 4473 { 4474 perf_event_task(task, NULL, 1); 4475 } 4476 4477 /* 4478 * comm tracking 4479 */ 4480 4481 struct perf_comm_event { 4482 struct task_struct *task; 4483 char *comm; 4484 int comm_size; 4485 4486 struct { 4487 struct perf_event_header header; 4488 4489 u32 pid; 4490 u32 tid; 4491 } event_id; 4492 }; 4493 4494 static void perf_event_comm_output(struct perf_event *event, 4495 struct perf_comm_event *comm_event) 4496 { 4497 struct perf_output_handle handle; 4498 struct perf_sample_data sample; 4499 int size = comm_event->event_id.header.size; 4500 int ret; 4501 4502 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4503 ret = perf_output_begin(&handle, event, 4504 comm_event->event_id.header.size); 4505 4506 if (ret) 4507 goto out; 4508 4509 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4510 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4511 4512 perf_output_put(&handle, comm_event->event_id); 4513 __output_copy(&handle, comm_event->comm, 4514 comm_event->comm_size); 4515 4516 perf_event__output_id_sample(event, &handle, &sample); 4517 4518 perf_output_end(&handle); 4519 out: 4520 comm_event->event_id.header.size = size; 4521 } 4522 4523 static int perf_event_comm_match(struct perf_event *event) 4524 { 4525 if (event->state < PERF_EVENT_STATE_INACTIVE) 4526 return 0; 4527 4528 if (!event_filter_match(event)) 4529 return 0; 4530 4531 if (event->attr.comm) 4532 return 1; 4533 4534 return 0; 4535 } 4536 4537 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4538 struct perf_comm_event *comm_event) 4539 { 4540 struct perf_event *event; 4541 4542 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4543 if (perf_event_comm_match(event)) 4544 perf_event_comm_output(event, comm_event); 4545 } 4546 } 4547 4548 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4549 { 4550 struct perf_cpu_context *cpuctx; 4551 struct perf_event_context *ctx; 4552 char comm[TASK_COMM_LEN]; 4553 unsigned int size; 4554 struct pmu *pmu; 4555 int ctxn; 4556 4557 memset(comm, 0, sizeof(comm)); 4558 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4559 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4560 4561 comm_event->comm = comm; 4562 comm_event->comm_size = size; 4563 4564 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4565 rcu_read_lock(); 4566 list_for_each_entry_rcu(pmu, &pmus, entry) { 4567 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4568 if (cpuctx->active_pmu != pmu) 4569 goto next; 4570 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4571 4572 ctxn = pmu->task_ctx_nr; 4573 if (ctxn < 0) 4574 goto next; 4575 4576 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4577 if (ctx) 4578 perf_event_comm_ctx(ctx, comm_event); 4579 next: 4580 put_cpu_ptr(pmu->pmu_cpu_context); 4581 } 4582 rcu_read_unlock(); 4583 } 4584 4585 void perf_event_comm(struct task_struct *task) 4586 { 4587 struct perf_comm_event comm_event; 4588 struct perf_event_context *ctx; 4589 int ctxn; 4590 4591 for_each_task_context_nr(ctxn) { 4592 ctx = task->perf_event_ctxp[ctxn]; 4593 if (!ctx) 4594 continue; 4595 4596 perf_event_enable_on_exec(ctx); 4597 } 4598 4599 if (!atomic_read(&nr_comm_events)) 4600 return; 4601 4602 comm_event = (struct perf_comm_event){ 4603 .task = task, 4604 /* .comm */ 4605 /* .comm_size */ 4606 .event_id = { 4607 .header = { 4608 .type = PERF_RECORD_COMM, 4609 .misc = 0, 4610 /* .size */ 4611 }, 4612 /* .pid */ 4613 /* .tid */ 4614 }, 4615 }; 4616 4617 perf_event_comm_event(&comm_event); 4618 } 4619 4620 /* 4621 * mmap tracking 4622 */ 4623 4624 struct perf_mmap_event { 4625 struct vm_area_struct *vma; 4626 4627 const char *file_name; 4628 int file_size; 4629 4630 struct { 4631 struct perf_event_header header; 4632 4633 u32 pid; 4634 u32 tid; 4635 u64 start; 4636 u64 len; 4637 u64 pgoff; 4638 } event_id; 4639 }; 4640 4641 static void perf_event_mmap_output(struct perf_event *event, 4642 struct perf_mmap_event *mmap_event) 4643 { 4644 struct perf_output_handle handle; 4645 struct perf_sample_data sample; 4646 int size = mmap_event->event_id.header.size; 4647 int ret; 4648 4649 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4650 ret = perf_output_begin(&handle, event, 4651 mmap_event->event_id.header.size); 4652 if (ret) 4653 goto out; 4654 4655 mmap_event->event_id.pid = perf_event_pid(event, current); 4656 mmap_event->event_id.tid = perf_event_tid(event, current); 4657 4658 perf_output_put(&handle, mmap_event->event_id); 4659 __output_copy(&handle, mmap_event->file_name, 4660 mmap_event->file_size); 4661 4662 perf_event__output_id_sample(event, &handle, &sample); 4663 4664 perf_output_end(&handle); 4665 out: 4666 mmap_event->event_id.header.size = size; 4667 } 4668 4669 static int perf_event_mmap_match(struct perf_event *event, 4670 struct perf_mmap_event *mmap_event, 4671 int executable) 4672 { 4673 if (event->state < PERF_EVENT_STATE_INACTIVE) 4674 return 0; 4675 4676 if (!event_filter_match(event)) 4677 return 0; 4678 4679 if ((!executable && event->attr.mmap_data) || 4680 (executable && event->attr.mmap)) 4681 return 1; 4682 4683 return 0; 4684 } 4685 4686 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4687 struct perf_mmap_event *mmap_event, 4688 int executable) 4689 { 4690 struct perf_event *event; 4691 4692 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4693 if (perf_event_mmap_match(event, mmap_event, executable)) 4694 perf_event_mmap_output(event, mmap_event); 4695 } 4696 } 4697 4698 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4699 { 4700 struct perf_cpu_context *cpuctx; 4701 struct perf_event_context *ctx; 4702 struct vm_area_struct *vma = mmap_event->vma; 4703 struct file *file = vma->vm_file; 4704 unsigned int size; 4705 char tmp[16]; 4706 char *buf = NULL; 4707 const char *name; 4708 struct pmu *pmu; 4709 int ctxn; 4710 4711 memset(tmp, 0, sizeof(tmp)); 4712 4713 if (file) { 4714 /* 4715 * d_path works from the end of the rb backwards, so we 4716 * need to add enough zero bytes after the string to handle 4717 * the 64bit alignment we do later. 4718 */ 4719 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4720 if (!buf) { 4721 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4722 goto got_name; 4723 } 4724 name = d_path(&file->f_path, buf, PATH_MAX); 4725 if (IS_ERR(name)) { 4726 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4727 goto got_name; 4728 } 4729 } else { 4730 if (arch_vma_name(mmap_event->vma)) { 4731 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4732 sizeof(tmp)); 4733 goto got_name; 4734 } 4735 4736 if (!vma->vm_mm) { 4737 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4738 goto got_name; 4739 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4740 vma->vm_end >= vma->vm_mm->brk) { 4741 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4742 goto got_name; 4743 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4744 vma->vm_end >= vma->vm_mm->start_stack) { 4745 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4746 goto got_name; 4747 } 4748 4749 name = strncpy(tmp, "//anon", sizeof(tmp)); 4750 goto got_name; 4751 } 4752 4753 got_name: 4754 size = ALIGN(strlen(name)+1, sizeof(u64)); 4755 4756 mmap_event->file_name = name; 4757 mmap_event->file_size = size; 4758 4759 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4760 4761 rcu_read_lock(); 4762 list_for_each_entry_rcu(pmu, &pmus, entry) { 4763 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4764 if (cpuctx->active_pmu != pmu) 4765 goto next; 4766 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4767 vma->vm_flags & VM_EXEC); 4768 4769 ctxn = pmu->task_ctx_nr; 4770 if (ctxn < 0) 4771 goto next; 4772 4773 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4774 if (ctx) { 4775 perf_event_mmap_ctx(ctx, mmap_event, 4776 vma->vm_flags & VM_EXEC); 4777 } 4778 next: 4779 put_cpu_ptr(pmu->pmu_cpu_context); 4780 } 4781 rcu_read_unlock(); 4782 4783 kfree(buf); 4784 } 4785 4786 void perf_event_mmap(struct vm_area_struct *vma) 4787 { 4788 struct perf_mmap_event mmap_event; 4789 4790 if (!atomic_read(&nr_mmap_events)) 4791 return; 4792 4793 mmap_event = (struct perf_mmap_event){ 4794 .vma = vma, 4795 /* .file_name */ 4796 /* .file_size */ 4797 .event_id = { 4798 .header = { 4799 .type = PERF_RECORD_MMAP, 4800 .misc = PERF_RECORD_MISC_USER, 4801 /* .size */ 4802 }, 4803 /* .pid */ 4804 /* .tid */ 4805 .start = vma->vm_start, 4806 .len = vma->vm_end - vma->vm_start, 4807 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4808 }, 4809 }; 4810 4811 perf_event_mmap_event(&mmap_event); 4812 } 4813 4814 /* 4815 * IRQ throttle logging 4816 */ 4817 4818 static void perf_log_throttle(struct perf_event *event, int enable) 4819 { 4820 struct perf_output_handle handle; 4821 struct perf_sample_data sample; 4822 int ret; 4823 4824 struct { 4825 struct perf_event_header header; 4826 u64 time; 4827 u64 id; 4828 u64 stream_id; 4829 } throttle_event = { 4830 .header = { 4831 .type = PERF_RECORD_THROTTLE, 4832 .misc = 0, 4833 .size = sizeof(throttle_event), 4834 }, 4835 .time = perf_clock(), 4836 .id = primary_event_id(event), 4837 .stream_id = event->id, 4838 }; 4839 4840 if (enable) 4841 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4842 4843 perf_event_header__init_id(&throttle_event.header, &sample, event); 4844 4845 ret = perf_output_begin(&handle, event, 4846 throttle_event.header.size); 4847 if (ret) 4848 return; 4849 4850 perf_output_put(&handle, throttle_event); 4851 perf_event__output_id_sample(event, &handle, &sample); 4852 perf_output_end(&handle); 4853 } 4854 4855 /* 4856 * Generic event overflow handling, sampling. 4857 */ 4858 4859 static int __perf_event_overflow(struct perf_event *event, 4860 int throttle, struct perf_sample_data *data, 4861 struct pt_regs *regs) 4862 { 4863 int events = atomic_read(&event->event_limit); 4864 struct hw_perf_event *hwc = &event->hw; 4865 u64 seq; 4866 int ret = 0; 4867 4868 /* 4869 * Non-sampling counters might still use the PMI to fold short 4870 * hardware counters, ignore those. 4871 */ 4872 if (unlikely(!is_sampling_event(event))) 4873 return 0; 4874 4875 seq = __this_cpu_read(perf_throttled_seq); 4876 if (seq != hwc->interrupts_seq) { 4877 hwc->interrupts_seq = seq; 4878 hwc->interrupts = 1; 4879 } else { 4880 hwc->interrupts++; 4881 if (unlikely(throttle 4882 && hwc->interrupts >= max_samples_per_tick)) { 4883 __this_cpu_inc(perf_throttled_count); 4884 hwc->interrupts = MAX_INTERRUPTS; 4885 perf_log_throttle(event, 0); 4886 ret = 1; 4887 } 4888 } 4889 4890 if (event->attr.freq) { 4891 u64 now = perf_clock(); 4892 s64 delta = now - hwc->freq_time_stamp; 4893 4894 hwc->freq_time_stamp = now; 4895 4896 if (delta > 0 && delta < 2*TICK_NSEC) 4897 perf_adjust_period(event, delta, hwc->last_period, true); 4898 } 4899 4900 /* 4901 * XXX event_limit might not quite work as expected on inherited 4902 * events 4903 */ 4904 4905 event->pending_kill = POLL_IN; 4906 if (events && atomic_dec_and_test(&event->event_limit)) { 4907 ret = 1; 4908 event->pending_kill = POLL_HUP; 4909 event->pending_disable = 1; 4910 irq_work_queue(&event->pending); 4911 } 4912 4913 if (event->overflow_handler) 4914 event->overflow_handler(event, data, regs); 4915 else 4916 perf_event_output(event, data, regs); 4917 4918 if (event->fasync && event->pending_kill) { 4919 event->pending_wakeup = 1; 4920 irq_work_queue(&event->pending); 4921 } 4922 4923 return ret; 4924 } 4925 4926 int perf_event_overflow(struct perf_event *event, 4927 struct perf_sample_data *data, 4928 struct pt_regs *regs) 4929 { 4930 return __perf_event_overflow(event, 1, data, regs); 4931 } 4932 4933 /* 4934 * Generic software event infrastructure 4935 */ 4936 4937 struct swevent_htable { 4938 struct swevent_hlist *swevent_hlist; 4939 struct mutex hlist_mutex; 4940 int hlist_refcount; 4941 4942 /* Recursion avoidance in each contexts */ 4943 int recursion[PERF_NR_CONTEXTS]; 4944 }; 4945 4946 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4947 4948 /* 4949 * We directly increment event->count and keep a second value in 4950 * event->hw.period_left to count intervals. This period event 4951 * is kept in the range [-sample_period, 0] so that we can use the 4952 * sign as trigger. 4953 */ 4954 4955 static u64 perf_swevent_set_period(struct perf_event *event) 4956 { 4957 struct hw_perf_event *hwc = &event->hw; 4958 u64 period = hwc->last_period; 4959 u64 nr, offset; 4960 s64 old, val; 4961 4962 hwc->last_period = hwc->sample_period; 4963 4964 again: 4965 old = val = local64_read(&hwc->period_left); 4966 if (val < 0) 4967 return 0; 4968 4969 nr = div64_u64(period + val, period); 4970 offset = nr * period; 4971 val -= offset; 4972 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4973 goto again; 4974 4975 return nr; 4976 } 4977 4978 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4979 struct perf_sample_data *data, 4980 struct pt_regs *regs) 4981 { 4982 struct hw_perf_event *hwc = &event->hw; 4983 int throttle = 0; 4984 4985 if (!overflow) 4986 overflow = perf_swevent_set_period(event); 4987 4988 if (hwc->interrupts == MAX_INTERRUPTS) 4989 return; 4990 4991 for (; overflow; overflow--) { 4992 if (__perf_event_overflow(event, throttle, 4993 data, regs)) { 4994 /* 4995 * We inhibit the overflow from happening when 4996 * hwc->interrupts == MAX_INTERRUPTS. 4997 */ 4998 break; 4999 } 5000 throttle = 1; 5001 } 5002 } 5003 5004 static void perf_swevent_event(struct perf_event *event, u64 nr, 5005 struct perf_sample_data *data, 5006 struct pt_regs *regs) 5007 { 5008 struct hw_perf_event *hwc = &event->hw; 5009 5010 local64_add(nr, &event->count); 5011 5012 if (!regs) 5013 return; 5014 5015 if (!is_sampling_event(event)) 5016 return; 5017 5018 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5019 data->period = nr; 5020 return perf_swevent_overflow(event, 1, data, regs); 5021 } else 5022 data->period = event->hw.last_period; 5023 5024 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5025 return perf_swevent_overflow(event, 1, data, regs); 5026 5027 if (local64_add_negative(nr, &hwc->period_left)) 5028 return; 5029 5030 perf_swevent_overflow(event, 0, data, regs); 5031 } 5032 5033 static int perf_exclude_event(struct perf_event *event, 5034 struct pt_regs *regs) 5035 { 5036 if (event->hw.state & PERF_HES_STOPPED) 5037 return 1; 5038 5039 if (regs) { 5040 if (event->attr.exclude_user && user_mode(regs)) 5041 return 1; 5042 5043 if (event->attr.exclude_kernel && !user_mode(regs)) 5044 return 1; 5045 } 5046 5047 return 0; 5048 } 5049 5050 static int perf_swevent_match(struct perf_event *event, 5051 enum perf_type_id type, 5052 u32 event_id, 5053 struct perf_sample_data *data, 5054 struct pt_regs *regs) 5055 { 5056 if (event->attr.type != type) 5057 return 0; 5058 5059 if (event->attr.config != event_id) 5060 return 0; 5061 5062 if (perf_exclude_event(event, regs)) 5063 return 0; 5064 5065 return 1; 5066 } 5067 5068 static inline u64 swevent_hash(u64 type, u32 event_id) 5069 { 5070 u64 val = event_id | (type << 32); 5071 5072 return hash_64(val, SWEVENT_HLIST_BITS); 5073 } 5074 5075 static inline struct hlist_head * 5076 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5077 { 5078 u64 hash = swevent_hash(type, event_id); 5079 5080 return &hlist->heads[hash]; 5081 } 5082 5083 /* For the read side: events when they trigger */ 5084 static inline struct hlist_head * 5085 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5086 { 5087 struct swevent_hlist *hlist; 5088 5089 hlist = rcu_dereference(swhash->swevent_hlist); 5090 if (!hlist) 5091 return NULL; 5092 5093 return __find_swevent_head(hlist, type, event_id); 5094 } 5095 5096 /* For the event head insertion and removal in the hlist */ 5097 static inline struct hlist_head * 5098 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5099 { 5100 struct swevent_hlist *hlist; 5101 u32 event_id = event->attr.config; 5102 u64 type = event->attr.type; 5103 5104 /* 5105 * Event scheduling is always serialized against hlist allocation 5106 * and release. Which makes the protected version suitable here. 5107 * The context lock guarantees that. 5108 */ 5109 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5110 lockdep_is_held(&event->ctx->lock)); 5111 if (!hlist) 5112 return NULL; 5113 5114 return __find_swevent_head(hlist, type, event_id); 5115 } 5116 5117 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5118 u64 nr, 5119 struct perf_sample_data *data, 5120 struct pt_regs *regs) 5121 { 5122 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5123 struct perf_event *event; 5124 struct hlist_node *node; 5125 struct hlist_head *head; 5126 5127 rcu_read_lock(); 5128 head = find_swevent_head_rcu(swhash, type, event_id); 5129 if (!head) 5130 goto end; 5131 5132 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5133 if (perf_swevent_match(event, type, event_id, data, regs)) 5134 perf_swevent_event(event, nr, data, regs); 5135 } 5136 end: 5137 rcu_read_unlock(); 5138 } 5139 5140 int perf_swevent_get_recursion_context(void) 5141 { 5142 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5143 5144 return get_recursion_context(swhash->recursion); 5145 } 5146 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5147 5148 inline void perf_swevent_put_recursion_context(int rctx) 5149 { 5150 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5151 5152 put_recursion_context(swhash->recursion, rctx); 5153 } 5154 5155 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5156 { 5157 struct perf_sample_data data; 5158 int rctx; 5159 5160 preempt_disable_notrace(); 5161 rctx = perf_swevent_get_recursion_context(); 5162 if (rctx < 0) 5163 return; 5164 5165 perf_sample_data_init(&data, addr, 0); 5166 5167 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5168 5169 perf_swevent_put_recursion_context(rctx); 5170 preempt_enable_notrace(); 5171 } 5172 5173 static void perf_swevent_read(struct perf_event *event) 5174 { 5175 } 5176 5177 static int perf_swevent_add(struct perf_event *event, int flags) 5178 { 5179 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5180 struct hw_perf_event *hwc = &event->hw; 5181 struct hlist_head *head; 5182 5183 if (is_sampling_event(event)) { 5184 hwc->last_period = hwc->sample_period; 5185 perf_swevent_set_period(event); 5186 } 5187 5188 hwc->state = !(flags & PERF_EF_START); 5189 5190 head = find_swevent_head(swhash, event); 5191 if (WARN_ON_ONCE(!head)) 5192 return -EINVAL; 5193 5194 hlist_add_head_rcu(&event->hlist_entry, head); 5195 5196 return 0; 5197 } 5198 5199 static void perf_swevent_del(struct perf_event *event, int flags) 5200 { 5201 hlist_del_rcu(&event->hlist_entry); 5202 } 5203 5204 static void perf_swevent_start(struct perf_event *event, int flags) 5205 { 5206 event->hw.state = 0; 5207 } 5208 5209 static void perf_swevent_stop(struct perf_event *event, int flags) 5210 { 5211 event->hw.state = PERF_HES_STOPPED; 5212 } 5213 5214 /* Deref the hlist from the update side */ 5215 static inline struct swevent_hlist * 5216 swevent_hlist_deref(struct swevent_htable *swhash) 5217 { 5218 return rcu_dereference_protected(swhash->swevent_hlist, 5219 lockdep_is_held(&swhash->hlist_mutex)); 5220 } 5221 5222 static void swevent_hlist_release(struct swevent_htable *swhash) 5223 { 5224 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5225 5226 if (!hlist) 5227 return; 5228 5229 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5230 kfree_rcu(hlist, rcu_head); 5231 } 5232 5233 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5234 { 5235 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5236 5237 mutex_lock(&swhash->hlist_mutex); 5238 5239 if (!--swhash->hlist_refcount) 5240 swevent_hlist_release(swhash); 5241 5242 mutex_unlock(&swhash->hlist_mutex); 5243 } 5244 5245 static void swevent_hlist_put(struct perf_event *event) 5246 { 5247 int cpu; 5248 5249 if (event->cpu != -1) { 5250 swevent_hlist_put_cpu(event, event->cpu); 5251 return; 5252 } 5253 5254 for_each_possible_cpu(cpu) 5255 swevent_hlist_put_cpu(event, cpu); 5256 } 5257 5258 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5259 { 5260 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5261 int err = 0; 5262 5263 mutex_lock(&swhash->hlist_mutex); 5264 5265 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5266 struct swevent_hlist *hlist; 5267 5268 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5269 if (!hlist) { 5270 err = -ENOMEM; 5271 goto exit; 5272 } 5273 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5274 } 5275 swhash->hlist_refcount++; 5276 exit: 5277 mutex_unlock(&swhash->hlist_mutex); 5278 5279 return err; 5280 } 5281 5282 static int swevent_hlist_get(struct perf_event *event) 5283 { 5284 int err; 5285 int cpu, failed_cpu; 5286 5287 if (event->cpu != -1) 5288 return swevent_hlist_get_cpu(event, event->cpu); 5289 5290 get_online_cpus(); 5291 for_each_possible_cpu(cpu) { 5292 err = swevent_hlist_get_cpu(event, cpu); 5293 if (err) { 5294 failed_cpu = cpu; 5295 goto fail; 5296 } 5297 } 5298 put_online_cpus(); 5299 5300 return 0; 5301 fail: 5302 for_each_possible_cpu(cpu) { 5303 if (cpu == failed_cpu) 5304 break; 5305 swevent_hlist_put_cpu(event, cpu); 5306 } 5307 5308 put_online_cpus(); 5309 return err; 5310 } 5311 5312 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5313 5314 static void sw_perf_event_destroy(struct perf_event *event) 5315 { 5316 u64 event_id = event->attr.config; 5317 5318 WARN_ON(event->parent); 5319 5320 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5321 swevent_hlist_put(event); 5322 } 5323 5324 static int perf_swevent_init(struct perf_event *event) 5325 { 5326 int event_id = event->attr.config; 5327 5328 if (event->attr.type != PERF_TYPE_SOFTWARE) 5329 return -ENOENT; 5330 5331 /* 5332 * no branch sampling for software events 5333 */ 5334 if (has_branch_stack(event)) 5335 return -EOPNOTSUPP; 5336 5337 switch (event_id) { 5338 case PERF_COUNT_SW_CPU_CLOCK: 5339 case PERF_COUNT_SW_TASK_CLOCK: 5340 return -ENOENT; 5341 5342 default: 5343 break; 5344 } 5345 5346 if (event_id >= PERF_COUNT_SW_MAX) 5347 return -ENOENT; 5348 5349 if (!event->parent) { 5350 int err; 5351 5352 err = swevent_hlist_get(event); 5353 if (err) 5354 return err; 5355 5356 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5357 event->destroy = sw_perf_event_destroy; 5358 } 5359 5360 return 0; 5361 } 5362 5363 static int perf_swevent_event_idx(struct perf_event *event) 5364 { 5365 return 0; 5366 } 5367 5368 static struct pmu perf_swevent = { 5369 .task_ctx_nr = perf_sw_context, 5370 5371 .event_init = perf_swevent_init, 5372 .add = perf_swevent_add, 5373 .del = perf_swevent_del, 5374 .start = perf_swevent_start, 5375 .stop = perf_swevent_stop, 5376 .read = perf_swevent_read, 5377 5378 .event_idx = perf_swevent_event_idx, 5379 }; 5380 5381 #ifdef CONFIG_EVENT_TRACING 5382 5383 static int perf_tp_filter_match(struct perf_event *event, 5384 struct perf_sample_data *data) 5385 { 5386 void *record = data->raw->data; 5387 5388 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5389 return 1; 5390 return 0; 5391 } 5392 5393 static int perf_tp_event_match(struct perf_event *event, 5394 struct perf_sample_data *data, 5395 struct pt_regs *regs) 5396 { 5397 if (event->hw.state & PERF_HES_STOPPED) 5398 return 0; 5399 /* 5400 * All tracepoints are from kernel-space. 5401 */ 5402 if (event->attr.exclude_kernel) 5403 return 0; 5404 5405 if (!perf_tp_filter_match(event, data)) 5406 return 0; 5407 5408 return 1; 5409 } 5410 5411 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5412 struct pt_regs *regs, struct hlist_head *head, int rctx, 5413 struct task_struct *task) 5414 { 5415 struct perf_sample_data data; 5416 struct perf_event *event; 5417 struct hlist_node *node; 5418 5419 struct perf_raw_record raw = { 5420 .size = entry_size, 5421 .data = record, 5422 }; 5423 5424 perf_sample_data_init(&data, addr, 0); 5425 data.raw = &raw; 5426 5427 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5428 if (perf_tp_event_match(event, &data, regs)) 5429 perf_swevent_event(event, count, &data, regs); 5430 } 5431 5432 /* 5433 * If we got specified a target task, also iterate its context and 5434 * deliver this event there too. 5435 */ 5436 if (task && task != current) { 5437 struct perf_event_context *ctx; 5438 struct trace_entry *entry = record; 5439 5440 rcu_read_lock(); 5441 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5442 if (!ctx) 5443 goto unlock; 5444 5445 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5446 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5447 continue; 5448 if (event->attr.config != entry->type) 5449 continue; 5450 if (perf_tp_event_match(event, &data, regs)) 5451 perf_swevent_event(event, count, &data, regs); 5452 } 5453 unlock: 5454 rcu_read_unlock(); 5455 } 5456 5457 perf_swevent_put_recursion_context(rctx); 5458 } 5459 EXPORT_SYMBOL_GPL(perf_tp_event); 5460 5461 static void tp_perf_event_destroy(struct perf_event *event) 5462 { 5463 perf_trace_destroy(event); 5464 } 5465 5466 static int perf_tp_event_init(struct perf_event *event) 5467 { 5468 int err; 5469 5470 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5471 return -ENOENT; 5472 5473 /* 5474 * no branch sampling for tracepoint events 5475 */ 5476 if (has_branch_stack(event)) 5477 return -EOPNOTSUPP; 5478 5479 err = perf_trace_init(event); 5480 if (err) 5481 return err; 5482 5483 event->destroy = tp_perf_event_destroy; 5484 5485 return 0; 5486 } 5487 5488 static struct pmu perf_tracepoint = { 5489 .task_ctx_nr = perf_sw_context, 5490 5491 .event_init = perf_tp_event_init, 5492 .add = perf_trace_add, 5493 .del = perf_trace_del, 5494 .start = perf_swevent_start, 5495 .stop = perf_swevent_stop, 5496 .read = perf_swevent_read, 5497 5498 .event_idx = perf_swevent_event_idx, 5499 }; 5500 5501 static inline void perf_tp_register(void) 5502 { 5503 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5504 } 5505 5506 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5507 { 5508 char *filter_str; 5509 int ret; 5510 5511 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5512 return -EINVAL; 5513 5514 filter_str = strndup_user(arg, PAGE_SIZE); 5515 if (IS_ERR(filter_str)) 5516 return PTR_ERR(filter_str); 5517 5518 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5519 5520 kfree(filter_str); 5521 return ret; 5522 } 5523 5524 static void perf_event_free_filter(struct perf_event *event) 5525 { 5526 ftrace_profile_free_filter(event); 5527 } 5528 5529 #else 5530 5531 static inline void perf_tp_register(void) 5532 { 5533 } 5534 5535 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5536 { 5537 return -ENOENT; 5538 } 5539 5540 static void perf_event_free_filter(struct perf_event *event) 5541 { 5542 } 5543 5544 #endif /* CONFIG_EVENT_TRACING */ 5545 5546 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5547 void perf_bp_event(struct perf_event *bp, void *data) 5548 { 5549 struct perf_sample_data sample; 5550 struct pt_regs *regs = data; 5551 5552 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5553 5554 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5555 perf_swevent_event(bp, 1, &sample, regs); 5556 } 5557 #endif 5558 5559 /* 5560 * hrtimer based swevent callback 5561 */ 5562 5563 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5564 { 5565 enum hrtimer_restart ret = HRTIMER_RESTART; 5566 struct perf_sample_data data; 5567 struct pt_regs *regs; 5568 struct perf_event *event; 5569 u64 period; 5570 5571 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5572 5573 if (event->state != PERF_EVENT_STATE_ACTIVE) 5574 return HRTIMER_NORESTART; 5575 5576 event->pmu->read(event); 5577 5578 perf_sample_data_init(&data, 0, event->hw.last_period); 5579 regs = get_irq_regs(); 5580 5581 if (regs && !perf_exclude_event(event, regs)) { 5582 if (!(event->attr.exclude_idle && is_idle_task(current))) 5583 if (__perf_event_overflow(event, 1, &data, regs)) 5584 ret = HRTIMER_NORESTART; 5585 } 5586 5587 period = max_t(u64, 10000, event->hw.sample_period); 5588 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5589 5590 return ret; 5591 } 5592 5593 static void perf_swevent_start_hrtimer(struct perf_event *event) 5594 { 5595 struct hw_perf_event *hwc = &event->hw; 5596 s64 period; 5597 5598 if (!is_sampling_event(event)) 5599 return; 5600 5601 period = local64_read(&hwc->period_left); 5602 if (period) { 5603 if (period < 0) 5604 period = 10000; 5605 5606 local64_set(&hwc->period_left, 0); 5607 } else { 5608 period = max_t(u64, 10000, hwc->sample_period); 5609 } 5610 __hrtimer_start_range_ns(&hwc->hrtimer, 5611 ns_to_ktime(period), 0, 5612 HRTIMER_MODE_REL_PINNED, 0); 5613 } 5614 5615 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5616 { 5617 struct hw_perf_event *hwc = &event->hw; 5618 5619 if (is_sampling_event(event)) { 5620 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5621 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5622 5623 hrtimer_cancel(&hwc->hrtimer); 5624 } 5625 } 5626 5627 static void perf_swevent_init_hrtimer(struct perf_event *event) 5628 { 5629 struct hw_perf_event *hwc = &event->hw; 5630 5631 if (!is_sampling_event(event)) 5632 return; 5633 5634 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5635 hwc->hrtimer.function = perf_swevent_hrtimer; 5636 5637 /* 5638 * Since hrtimers have a fixed rate, we can do a static freq->period 5639 * mapping and avoid the whole period adjust feedback stuff. 5640 */ 5641 if (event->attr.freq) { 5642 long freq = event->attr.sample_freq; 5643 5644 event->attr.sample_period = NSEC_PER_SEC / freq; 5645 hwc->sample_period = event->attr.sample_period; 5646 local64_set(&hwc->period_left, hwc->sample_period); 5647 event->attr.freq = 0; 5648 } 5649 } 5650 5651 /* 5652 * Software event: cpu wall time clock 5653 */ 5654 5655 static void cpu_clock_event_update(struct perf_event *event) 5656 { 5657 s64 prev; 5658 u64 now; 5659 5660 now = local_clock(); 5661 prev = local64_xchg(&event->hw.prev_count, now); 5662 local64_add(now - prev, &event->count); 5663 } 5664 5665 static void cpu_clock_event_start(struct perf_event *event, int flags) 5666 { 5667 local64_set(&event->hw.prev_count, local_clock()); 5668 perf_swevent_start_hrtimer(event); 5669 } 5670 5671 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5672 { 5673 perf_swevent_cancel_hrtimer(event); 5674 cpu_clock_event_update(event); 5675 } 5676 5677 static int cpu_clock_event_add(struct perf_event *event, int flags) 5678 { 5679 if (flags & PERF_EF_START) 5680 cpu_clock_event_start(event, flags); 5681 5682 return 0; 5683 } 5684 5685 static void cpu_clock_event_del(struct perf_event *event, int flags) 5686 { 5687 cpu_clock_event_stop(event, flags); 5688 } 5689 5690 static void cpu_clock_event_read(struct perf_event *event) 5691 { 5692 cpu_clock_event_update(event); 5693 } 5694 5695 static int cpu_clock_event_init(struct perf_event *event) 5696 { 5697 if (event->attr.type != PERF_TYPE_SOFTWARE) 5698 return -ENOENT; 5699 5700 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5701 return -ENOENT; 5702 5703 /* 5704 * no branch sampling for software events 5705 */ 5706 if (has_branch_stack(event)) 5707 return -EOPNOTSUPP; 5708 5709 perf_swevent_init_hrtimer(event); 5710 5711 return 0; 5712 } 5713 5714 static struct pmu perf_cpu_clock = { 5715 .task_ctx_nr = perf_sw_context, 5716 5717 .event_init = cpu_clock_event_init, 5718 .add = cpu_clock_event_add, 5719 .del = cpu_clock_event_del, 5720 .start = cpu_clock_event_start, 5721 .stop = cpu_clock_event_stop, 5722 .read = cpu_clock_event_read, 5723 5724 .event_idx = perf_swevent_event_idx, 5725 }; 5726 5727 /* 5728 * Software event: task time clock 5729 */ 5730 5731 static void task_clock_event_update(struct perf_event *event, u64 now) 5732 { 5733 u64 prev; 5734 s64 delta; 5735 5736 prev = local64_xchg(&event->hw.prev_count, now); 5737 delta = now - prev; 5738 local64_add(delta, &event->count); 5739 } 5740 5741 static void task_clock_event_start(struct perf_event *event, int flags) 5742 { 5743 local64_set(&event->hw.prev_count, event->ctx->time); 5744 perf_swevent_start_hrtimer(event); 5745 } 5746 5747 static void task_clock_event_stop(struct perf_event *event, int flags) 5748 { 5749 perf_swevent_cancel_hrtimer(event); 5750 task_clock_event_update(event, event->ctx->time); 5751 } 5752 5753 static int task_clock_event_add(struct perf_event *event, int flags) 5754 { 5755 if (flags & PERF_EF_START) 5756 task_clock_event_start(event, flags); 5757 5758 return 0; 5759 } 5760 5761 static void task_clock_event_del(struct perf_event *event, int flags) 5762 { 5763 task_clock_event_stop(event, PERF_EF_UPDATE); 5764 } 5765 5766 static void task_clock_event_read(struct perf_event *event) 5767 { 5768 u64 now = perf_clock(); 5769 u64 delta = now - event->ctx->timestamp; 5770 u64 time = event->ctx->time + delta; 5771 5772 task_clock_event_update(event, time); 5773 } 5774 5775 static int task_clock_event_init(struct perf_event *event) 5776 { 5777 if (event->attr.type != PERF_TYPE_SOFTWARE) 5778 return -ENOENT; 5779 5780 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5781 return -ENOENT; 5782 5783 /* 5784 * no branch sampling for software events 5785 */ 5786 if (has_branch_stack(event)) 5787 return -EOPNOTSUPP; 5788 5789 perf_swevent_init_hrtimer(event); 5790 5791 return 0; 5792 } 5793 5794 static struct pmu perf_task_clock = { 5795 .task_ctx_nr = perf_sw_context, 5796 5797 .event_init = task_clock_event_init, 5798 .add = task_clock_event_add, 5799 .del = task_clock_event_del, 5800 .start = task_clock_event_start, 5801 .stop = task_clock_event_stop, 5802 .read = task_clock_event_read, 5803 5804 .event_idx = perf_swevent_event_idx, 5805 }; 5806 5807 static void perf_pmu_nop_void(struct pmu *pmu) 5808 { 5809 } 5810 5811 static int perf_pmu_nop_int(struct pmu *pmu) 5812 { 5813 return 0; 5814 } 5815 5816 static void perf_pmu_start_txn(struct pmu *pmu) 5817 { 5818 perf_pmu_disable(pmu); 5819 } 5820 5821 static int perf_pmu_commit_txn(struct pmu *pmu) 5822 { 5823 perf_pmu_enable(pmu); 5824 return 0; 5825 } 5826 5827 static void perf_pmu_cancel_txn(struct pmu *pmu) 5828 { 5829 perf_pmu_enable(pmu); 5830 } 5831 5832 static int perf_event_idx_default(struct perf_event *event) 5833 { 5834 return event->hw.idx + 1; 5835 } 5836 5837 /* 5838 * Ensures all contexts with the same task_ctx_nr have the same 5839 * pmu_cpu_context too. 5840 */ 5841 static void *find_pmu_context(int ctxn) 5842 { 5843 struct pmu *pmu; 5844 5845 if (ctxn < 0) 5846 return NULL; 5847 5848 list_for_each_entry(pmu, &pmus, entry) { 5849 if (pmu->task_ctx_nr == ctxn) 5850 return pmu->pmu_cpu_context; 5851 } 5852 5853 return NULL; 5854 } 5855 5856 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5857 { 5858 int cpu; 5859 5860 for_each_possible_cpu(cpu) { 5861 struct perf_cpu_context *cpuctx; 5862 5863 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5864 5865 if (cpuctx->active_pmu == old_pmu) 5866 cpuctx->active_pmu = pmu; 5867 } 5868 } 5869 5870 static void free_pmu_context(struct pmu *pmu) 5871 { 5872 struct pmu *i; 5873 5874 mutex_lock(&pmus_lock); 5875 /* 5876 * Like a real lame refcount. 5877 */ 5878 list_for_each_entry(i, &pmus, entry) { 5879 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5880 update_pmu_context(i, pmu); 5881 goto out; 5882 } 5883 } 5884 5885 free_percpu(pmu->pmu_cpu_context); 5886 out: 5887 mutex_unlock(&pmus_lock); 5888 } 5889 static struct idr pmu_idr; 5890 5891 static ssize_t 5892 type_show(struct device *dev, struct device_attribute *attr, char *page) 5893 { 5894 struct pmu *pmu = dev_get_drvdata(dev); 5895 5896 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5897 } 5898 5899 static struct device_attribute pmu_dev_attrs[] = { 5900 __ATTR_RO(type), 5901 __ATTR_NULL, 5902 }; 5903 5904 static int pmu_bus_running; 5905 static struct bus_type pmu_bus = { 5906 .name = "event_source", 5907 .dev_attrs = pmu_dev_attrs, 5908 }; 5909 5910 static void pmu_dev_release(struct device *dev) 5911 { 5912 kfree(dev); 5913 } 5914 5915 static int pmu_dev_alloc(struct pmu *pmu) 5916 { 5917 int ret = -ENOMEM; 5918 5919 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5920 if (!pmu->dev) 5921 goto out; 5922 5923 pmu->dev->groups = pmu->attr_groups; 5924 device_initialize(pmu->dev); 5925 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5926 if (ret) 5927 goto free_dev; 5928 5929 dev_set_drvdata(pmu->dev, pmu); 5930 pmu->dev->bus = &pmu_bus; 5931 pmu->dev->release = pmu_dev_release; 5932 ret = device_add(pmu->dev); 5933 if (ret) 5934 goto free_dev; 5935 5936 out: 5937 return ret; 5938 5939 free_dev: 5940 put_device(pmu->dev); 5941 goto out; 5942 } 5943 5944 static struct lock_class_key cpuctx_mutex; 5945 static struct lock_class_key cpuctx_lock; 5946 5947 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5948 { 5949 int cpu, ret; 5950 5951 mutex_lock(&pmus_lock); 5952 ret = -ENOMEM; 5953 pmu->pmu_disable_count = alloc_percpu(int); 5954 if (!pmu->pmu_disable_count) 5955 goto unlock; 5956 5957 pmu->type = -1; 5958 if (!name) 5959 goto skip_type; 5960 pmu->name = name; 5961 5962 if (type < 0) { 5963 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5964 if (!err) 5965 goto free_pdc; 5966 5967 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5968 if (err) { 5969 ret = err; 5970 goto free_pdc; 5971 } 5972 } 5973 pmu->type = type; 5974 5975 if (pmu_bus_running) { 5976 ret = pmu_dev_alloc(pmu); 5977 if (ret) 5978 goto free_idr; 5979 } 5980 5981 skip_type: 5982 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5983 if (pmu->pmu_cpu_context) 5984 goto got_cpu_context; 5985 5986 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5987 if (!pmu->pmu_cpu_context) 5988 goto free_dev; 5989 5990 for_each_possible_cpu(cpu) { 5991 struct perf_cpu_context *cpuctx; 5992 5993 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5994 __perf_event_init_context(&cpuctx->ctx); 5995 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5996 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5997 cpuctx->ctx.type = cpu_context; 5998 cpuctx->ctx.pmu = pmu; 5999 cpuctx->jiffies_interval = 1; 6000 INIT_LIST_HEAD(&cpuctx->rotation_list); 6001 cpuctx->active_pmu = pmu; 6002 } 6003 6004 got_cpu_context: 6005 if (!pmu->start_txn) { 6006 if (pmu->pmu_enable) { 6007 /* 6008 * If we have pmu_enable/pmu_disable calls, install 6009 * transaction stubs that use that to try and batch 6010 * hardware accesses. 6011 */ 6012 pmu->start_txn = perf_pmu_start_txn; 6013 pmu->commit_txn = perf_pmu_commit_txn; 6014 pmu->cancel_txn = perf_pmu_cancel_txn; 6015 } else { 6016 pmu->start_txn = perf_pmu_nop_void; 6017 pmu->commit_txn = perf_pmu_nop_int; 6018 pmu->cancel_txn = perf_pmu_nop_void; 6019 } 6020 } 6021 6022 if (!pmu->pmu_enable) { 6023 pmu->pmu_enable = perf_pmu_nop_void; 6024 pmu->pmu_disable = perf_pmu_nop_void; 6025 } 6026 6027 if (!pmu->event_idx) 6028 pmu->event_idx = perf_event_idx_default; 6029 6030 list_add_rcu(&pmu->entry, &pmus); 6031 ret = 0; 6032 unlock: 6033 mutex_unlock(&pmus_lock); 6034 6035 return ret; 6036 6037 free_dev: 6038 device_del(pmu->dev); 6039 put_device(pmu->dev); 6040 6041 free_idr: 6042 if (pmu->type >= PERF_TYPE_MAX) 6043 idr_remove(&pmu_idr, pmu->type); 6044 6045 free_pdc: 6046 free_percpu(pmu->pmu_disable_count); 6047 goto unlock; 6048 } 6049 6050 void perf_pmu_unregister(struct pmu *pmu) 6051 { 6052 mutex_lock(&pmus_lock); 6053 list_del_rcu(&pmu->entry); 6054 mutex_unlock(&pmus_lock); 6055 6056 /* 6057 * We dereference the pmu list under both SRCU and regular RCU, so 6058 * synchronize against both of those. 6059 */ 6060 synchronize_srcu(&pmus_srcu); 6061 synchronize_rcu(); 6062 6063 free_percpu(pmu->pmu_disable_count); 6064 if (pmu->type >= PERF_TYPE_MAX) 6065 idr_remove(&pmu_idr, pmu->type); 6066 device_del(pmu->dev); 6067 put_device(pmu->dev); 6068 free_pmu_context(pmu); 6069 } 6070 6071 struct pmu *perf_init_event(struct perf_event *event) 6072 { 6073 struct pmu *pmu = NULL; 6074 int idx; 6075 int ret; 6076 6077 idx = srcu_read_lock(&pmus_srcu); 6078 6079 rcu_read_lock(); 6080 pmu = idr_find(&pmu_idr, event->attr.type); 6081 rcu_read_unlock(); 6082 if (pmu) { 6083 event->pmu = pmu; 6084 ret = pmu->event_init(event); 6085 if (ret) 6086 pmu = ERR_PTR(ret); 6087 goto unlock; 6088 } 6089 6090 list_for_each_entry_rcu(pmu, &pmus, entry) { 6091 event->pmu = pmu; 6092 ret = pmu->event_init(event); 6093 if (!ret) 6094 goto unlock; 6095 6096 if (ret != -ENOENT) { 6097 pmu = ERR_PTR(ret); 6098 goto unlock; 6099 } 6100 } 6101 pmu = ERR_PTR(-ENOENT); 6102 unlock: 6103 srcu_read_unlock(&pmus_srcu, idx); 6104 6105 return pmu; 6106 } 6107 6108 /* 6109 * Allocate and initialize a event structure 6110 */ 6111 static struct perf_event * 6112 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6113 struct task_struct *task, 6114 struct perf_event *group_leader, 6115 struct perf_event *parent_event, 6116 perf_overflow_handler_t overflow_handler, 6117 void *context) 6118 { 6119 struct pmu *pmu; 6120 struct perf_event *event; 6121 struct hw_perf_event *hwc; 6122 long err; 6123 6124 if ((unsigned)cpu >= nr_cpu_ids) { 6125 if (!task || cpu != -1) 6126 return ERR_PTR(-EINVAL); 6127 } 6128 6129 event = kzalloc(sizeof(*event), GFP_KERNEL); 6130 if (!event) 6131 return ERR_PTR(-ENOMEM); 6132 6133 /* 6134 * Single events are their own group leaders, with an 6135 * empty sibling list: 6136 */ 6137 if (!group_leader) 6138 group_leader = event; 6139 6140 mutex_init(&event->child_mutex); 6141 INIT_LIST_HEAD(&event->child_list); 6142 6143 INIT_LIST_HEAD(&event->group_entry); 6144 INIT_LIST_HEAD(&event->event_entry); 6145 INIT_LIST_HEAD(&event->sibling_list); 6146 INIT_LIST_HEAD(&event->rb_entry); 6147 6148 init_waitqueue_head(&event->waitq); 6149 init_irq_work(&event->pending, perf_pending_event); 6150 6151 mutex_init(&event->mmap_mutex); 6152 6153 atomic_long_set(&event->refcount, 1); 6154 event->cpu = cpu; 6155 event->attr = *attr; 6156 event->group_leader = group_leader; 6157 event->pmu = NULL; 6158 event->oncpu = -1; 6159 6160 event->parent = parent_event; 6161 6162 event->ns = get_pid_ns(current->nsproxy->pid_ns); 6163 event->id = atomic64_inc_return(&perf_event_id); 6164 6165 event->state = PERF_EVENT_STATE_INACTIVE; 6166 6167 if (task) { 6168 event->attach_state = PERF_ATTACH_TASK; 6169 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6170 /* 6171 * hw_breakpoint is a bit difficult here.. 6172 */ 6173 if (attr->type == PERF_TYPE_BREAKPOINT) 6174 event->hw.bp_target = task; 6175 #endif 6176 } 6177 6178 if (!overflow_handler && parent_event) { 6179 overflow_handler = parent_event->overflow_handler; 6180 context = parent_event->overflow_handler_context; 6181 } 6182 6183 event->overflow_handler = overflow_handler; 6184 event->overflow_handler_context = context; 6185 6186 if (attr->disabled) 6187 event->state = PERF_EVENT_STATE_OFF; 6188 6189 pmu = NULL; 6190 6191 hwc = &event->hw; 6192 hwc->sample_period = attr->sample_period; 6193 if (attr->freq && attr->sample_freq) 6194 hwc->sample_period = 1; 6195 hwc->last_period = hwc->sample_period; 6196 6197 local64_set(&hwc->period_left, hwc->sample_period); 6198 6199 /* 6200 * we currently do not support PERF_FORMAT_GROUP on inherited events 6201 */ 6202 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6203 goto done; 6204 6205 pmu = perf_init_event(event); 6206 6207 done: 6208 err = 0; 6209 if (!pmu) 6210 err = -EINVAL; 6211 else if (IS_ERR(pmu)) 6212 err = PTR_ERR(pmu); 6213 6214 if (err) { 6215 if (event->ns) 6216 put_pid_ns(event->ns); 6217 kfree(event); 6218 return ERR_PTR(err); 6219 } 6220 6221 if (!event->parent) { 6222 if (event->attach_state & PERF_ATTACH_TASK) 6223 static_key_slow_inc(&perf_sched_events.key); 6224 if (event->attr.mmap || event->attr.mmap_data) 6225 atomic_inc(&nr_mmap_events); 6226 if (event->attr.comm) 6227 atomic_inc(&nr_comm_events); 6228 if (event->attr.task) 6229 atomic_inc(&nr_task_events); 6230 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6231 err = get_callchain_buffers(); 6232 if (err) { 6233 free_event(event); 6234 return ERR_PTR(err); 6235 } 6236 } 6237 if (has_branch_stack(event)) { 6238 static_key_slow_inc(&perf_sched_events.key); 6239 if (!(event->attach_state & PERF_ATTACH_TASK)) 6240 atomic_inc(&per_cpu(perf_branch_stack_events, 6241 event->cpu)); 6242 } 6243 } 6244 6245 return event; 6246 } 6247 6248 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6249 struct perf_event_attr *attr) 6250 { 6251 u32 size; 6252 int ret; 6253 6254 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6255 return -EFAULT; 6256 6257 /* 6258 * zero the full structure, so that a short copy will be nice. 6259 */ 6260 memset(attr, 0, sizeof(*attr)); 6261 6262 ret = get_user(size, &uattr->size); 6263 if (ret) 6264 return ret; 6265 6266 if (size > PAGE_SIZE) /* silly large */ 6267 goto err_size; 6268 6269 if (!size) /* abi compat */ 6270 size = PERF_ATTR_SIZE_VER0; 6271 6272 if (size < PERF_ATTR_SIZE_VER0) 6273 goto err_size; 6274 6275 /* 6276 * If we're handed a bigger struct than we know of, 6277 * ensure all the unknown bits are 0 - i.e. new 6278 * user-space does not rely on any kernel feature 6279 * extensions we dont know about yet. 6280 */ 6281 if (size > sizeof(*attr)) { 6282 unsigned char __user *addr; 6283 unsigned char __user *end; 6284 unsigned char val; 6285 6286 addr = (void __user *)uattr + sizeof(*attr); 6287 end = (void __user *)uattr + size; 6288 6289 for (; addr < end; addr++) { 6290 ret = get_user(val, addr); 6291 if (ret) 6292 return ret; 6293 if (val) 6294 goto err_size; 6295 } 6296 size = sizeof(*attr); 6297 } 6298 6299 ret = copy_from_user(attr, uattr, size); 6300 if (ret) 6301 return -EFAULT; 6302 6303 if (attr->__reserved_1) 6304 return -EINVAL; 6305 6306 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6307 return -EINVAL; 6308 6309 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6310 return -EINVAL; 6311 6312 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6313 u64 mask = attr->branch_sample_type; 6314 6315 /* only using defined bits */ 6316 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6317 return -EINVAL; 6318 6319 /* at least one branch bit must be set */ 6320 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6321 return -EINVAL; 6322 6323 /* kernel level capture: check permissions */ 6324 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6325 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6326 return -EACCES; 6327 6328 /* propagate priv level, when not set for branch */ 6329 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6330 6331 /* exclude_kernel checked on syscall entry */ 6332 if (!attr->exclude_kernel) 6333 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6334 6335 if (!attr->exclude_user) 6336 mask |= PERF_SAMPLE_BRANCH_USER; 6337 6338 if (!attr->exclude_hv) 6339 mask |= PERF_SAMPLE_BRANCH_HV; 6340 /* 6341 * adjust user setting (for HW filter setup) 6342 */ 6343 attr->branch_sample_type = mask; 6344 } 6345 } 6346 6347 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6348 ret = perf_reg_validate(attr->sample_regs_user); 6349 if (ret) 6350 return ret; 6351 } 6352 6353 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6354 if (!arch_perf_have_user_stack_dump()) 6355 return -ENOSYS; 6356 6357 /* 6358 * We have __u32 type for the size, but so far 6359 * we can only use __u16 as maximum due to the 6360 * __u16 sample size limit. 6361 */ 6362 if (attr->sample_stack_user >= USHRT_MAX) 6363 ret = -EINVAL; 6364 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6365 ret = -EINVAL; 6366 } 6367 6368 out: 6369 return ret; 6370 6371 err_size: 6372 put_user(sizeof(*attr), &uattr->size); 6373 ret = -E2BIG; 6374 goto out; 6375 } 6376 6377 static int 6378 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6379 { 6380 struct ring_buffer *rb = NULL, *old_rb = NULL; 6381 int ret = -EINVAL; 6382 6383 if (!output_event) 6384 goto set; 6385 6386 /* don't allow circular references */ 6387 if (event == output_event) 6388 goto out; 6389 6390 /* 6391 * Don't allow cross-cpu buffers 6392 */ 6393 if (output_event->cpu != event->cpu) 6394 goto out; 6395 6396 /* 6397 * If its not a per-cpu rb, it must be the same task. 6398 */ 6399 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6400 goto out; 6401 6402 set: 6403 mutex_lock(&event->mmap_mutex); 6404 /* Can't redirect output if we've got an active mmap() */ 6405 if (atomic_read(&event->mmap_count)) 6406 goto unlock; 6407 6408 if (output_event) { 6409 /* get the rb we want to redirect to */ 6410 rb = ring_buffer_get(output_event); 6411 if (!rb) 6412 goto unlock; 6413 } 6414 6415 old_rb = event->rb; 6416 rcu_assign_pointer(event->rb, rb); 6417 if (old_rb) 6418 ring_buffer_detach(event, old_rb); 6419 ret = 0; 6420 unlock: 6421 mutex_unlock(&event->mmap_mutex); 6422 6423 if (old_rb) 6424 ring_buffer_put(old_rb); 6425 out: 6426 return ret; 6427 } 6428 6429 /** 6430 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6431 * 6432 * @attr_uptr: event_id type attributes for monitoring/sampling 6433 * @pid: target pid 6434 * @cpu: target cpu 6435 * @group_fd: group leader event fd 6436 */ 6437 SYSCALL_DEFINE5(perf_event_open, 6438 struct perf_event_attr __user *, attr_uptr, 6439 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6440 { 6441 struct perf_event *group_leader = NULL, *output_event = NULL; 6442 struct perf_event *event, *sibling; 6443 struct perf_event_attr attr; 6444 struct perf_event_context *ctx; 6445 struct file *event_file = NULL; 6446 struct file *group_file = NULL; 6447 struct task_struct *task = NULL; 6448 struct pmu *pmu; 6449 int event_fd; 6450 int move_group = 0; 6451 int fput_needed = 0; 6452 int err; 6453 6454 /* for future expandability... */ 6455 if (flags & ~PERF_FLAG_ALL) 6456 return -EINVAL; 6457 6458 err = perf_copy_attr(attr_uptr, &attr); 6459 if (err) 6460 return err; 6461 6462 if (!attr.exclude_kernel) { 6463 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6464 return -EACCES; 6465 } 6466 6467 if (attr.freq) { 6468 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6469 return -EINVAL; 6470 } 6471 6472 /* 6473 * In cgroup mode, the pid argument is used to pass the fd 6474 * opened to the cgroup directory in cgroupfs. The cpu argument 6475 * designates the cpu on which to monitor threads from that 6476 * cgroup. 6477 */ 6478 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6479 return -EINVAL; 6480 6481 event_fd = get_unused_fd_flags(O_RDWR); 6482 if (event_fd < 0) 6483 return event_fd; 6484 6485 if (group_fd != -1) { 6486 group_file = perf_fget_light(group_fd, &fput_needed); 6487 if (IS_ERR(group_file)) { 6488 err = PTR_ERR(group_file); 6489 goto err_fd; 6490 } 6491 group_leader = group_file->private_data; 6492 if (flags & PERF_FLAG_FD_OUTPUT) 6493 output_event = group_leader; 6494 if (flags & PERF_FLAG_FD_NO_GROUP) 6495 group_leader = NULL; 6496 } 6497 6498 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6499 task = find_lively_task_by_vpid(pid); 6500 if (IS_ERR(task)) { 6501 err = PTR_ERR(task); 6502 goto err_group_fd; 6503 } 6504 } 6505 6506 get_online_cpus(); 6507 6508 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6509 NULL, NULL); 6510 if (IS_ERR(event)) { 6511 err = PTR_ERR(event); 6512 goto err_task; 6513 } 6514 6515 if (flags & PERF_FLAG_PID_CGROUP) { 6516 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6517 if (err) 6518 goto err_alloc; 6519 /* 6520 * one more event: 6521 * - that has cgroup constraint on event->cpu 6522 * - that may need work on context switch 6523 */ 6524 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6525 static_key_slow_inc(&perf_sched_events.key); 6526 } 6527 6528 /* 6529 * Special case software events and allow them to be part of 6530 * any hardware group. 6531 */ 6532 pmu = event->pmu; 6533 6534 if (group_leader && 6535 (is_software_event(event) != is_software_event(group_leader))) { 6536 if (is_software_event(event)) { 6537 /* 6538 * If event and group_leader are not both a software 6539 * event, and event is, then group leader is not. 6540 * 6541 * Allow the addition of software events to !software 6542 * groups, this is safe because software events never 6543 * fail to schedule. 6544 */ 6545 pmu = group_leader->pmu; 6546 } else if (is_software_event(group_leader) && 6547 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6548 /* 6549 * In case the group is a pure software group, and we 6550 * try to add a hardware event, move the whole group to 6551 * the hardware context. 6552 */ 6553 move_group = 1; 6554 } 6555 } 6556 6557 /* 6558 * Get the target context (task or percpu): 6559 */ 6560 ctx = find_get_context(pmu, task, event->cpu); 6561 if (IS_ERR(ctx)) { 6562 err = PTR_ERR(ctx); 6563 goto err_alloc; 6564 } 6565 6566 if (task) { 6567 put_task_struct(task); 6568 task = NULL; 6569 } 6570 6571 /* 6572 * Look up the group leader (we will attach this event to it): 6573 */ 6574 if (group_leader) { 6575 err = -EINVAL; 6576 6577 /* 6578 * Do not allow a recursive hierarchy (this new sibling 6579 * becoming part of another group-sibling): 6580 */ 6581 if (group_leader->group_leader != group_leader) 6582 goto err_context; 6583 /* 6584 * Do not allow to attach to a group in a different 6585 * task or CPU context: 6586 */ 6587 if (move_group) { 6588 if (group_leader->ctx->type != ctx->type) 6589 goto err_context; 6590 } else { 6591 if (group_leader->ctx != ctx) 6592 goto err_context; 6593 } 6594 6595 /* 6596 * Only a group leader can be exclusive or pinned 6597 */ 6598 if (attr.exclusive || attr.pinned) 6599 goto err_context; 6600 } 6601 6602 if (output_event) { 6603 err = perf_event_set_output(event, output_event); 6604 if (err) 6605 goto err_context; 6606 } 6607 6608 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6609 if (IS_ERR(event_file)) { 6610 err = PTR_ERR(event_file); 6611 goto err_context; 6612 } 6613 6614 if (move_group) { 6615 struct perf_event_context *gctx = group_leader->ctx; 6616 6617 mutex_lock(&gctx->mutex); 6618 perf_remove_from_context(group_leader); 6619 list_for_each_entry(sibling, &group_leader->sibling_list, 6620 group_entry) { 6621 perf_remove_from_context(sibling); 6622 put_ctx(gctx); 6623 } 6624 mutex_unlock(&gctx->mutex); 6625 put_ctx(gctx); 6626 } 6627 6628 WARN_ON_ONCE(ctx->parent_ctx); 6629 mutex_lock(&ctx->mutex); 6630 6631 if (move_group) { 6632 synchronize_rcu(); 6633 perf_install_in_context(ctx, group_leader, event->cpu); 6634 get_ctx(ctx); 6635 list_for_each_entry(sibling, &group_leader->sibling_list, 6636 group_entry) { 6637 perf_install_in_context(ctx, sibling, event->cpu); 6638 get_ctx(ctx); 6639 } 6640 } 6641 6642 perf_install_in_context(ctx, event, event->cpu); 6643 ++ctx->generation; 6644 perf_unpin_context(ctx); 6645 mutex_unlock(&ctx->mutex); 6646 6647 put_online_cpus(); 6648 6649 event->owner = current; 6650 6651 mutex_lock(¤t->perf_event_mutex); 6652 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6653 mutex_unlock(¤t->perf_event_mutex); 6654 6655 /* 6656 * Precalculate sample_data sizes 6657 */ 6658 perf_event__header_size(event); 6659 perf_event__id_header_size(event); 6660 6661 /* 6662 * Drop the reference on the group_event after placing the 6663 * new event on the sibling_list. This ensures destruction 6664 * of the group leader will find the pointer to itself in 6665 * perf_group_detach(). 6666 */ 6667 fput_light(group_file, fput_needed); 6668 fd_install(event_fd, event_file); 6669 return event_fd; 6670 6671 err_context: 6672 perf_unpin_context(ctx); 6673 put_ctx(ctx); 6674 err_alloc: 6675 free_event(event); 6676 err_task: 6677 put_online_cpus(); 6678 if (task) 6679 put_task_struct(task); 6680 err_group_fd: 6681 fput_light(group_file, fput_needed); 6682 err_fd: 6683 put_unused_fd(event_fd); 6684 return err; 6685 } 6686 6687 /** 6688 * perf_event_create_kernel_counter 6689 * 6690 * @attr: attributes of the counter to create 6691 * @cpu: cpu in which the counter is bound 6692 * @task: task to profile (NULL for percpu) 6693 */ 6694 struct perf_event * 6695 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6696 struct task_struct *task, 6697 perf_overflow_handler_t overflow_handler, 6698 void *context) 6699 { 6700 struct perf_event_context *ctx; 6701 struct perf_event *event; 6702 int err; 6703 6704 /* 6705 * Get the target context (task or percpu): 6706 */ 6707 6708 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6709 overflow_handler, context); 6710 if (IS_ERR(event)) { 6711 err = PTR_ERR(event); 6712 goto err; 6713 } 6714 6715 ctx = find_get_context(event->pmu, task, cpu); 6716 if (IS_ERR(ctx)) { 6717 err = PTR_ERR(ctx); 6718 goto err_free; 6719 } 6720 6721 WARN_ON_ONCE(ctx->parent_ctx); 6722 mutex_lock(&ctx->mutex); 6723 perf_install_in_context(ctx, event, cpu); 6724 ++ctx->generation; 6725 perf_unpin_context(ctx); 6726 mutex_unlock(&ctx->mutex); 6727 6728 return event; 6729 6730 err_free: 6731 free_event(event); 6732 err: 6733 return ERR_PTR(err); 6734 } 6735 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6736 6737 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 6738 { 6739 struct perf_event_context *src_ctx; 6740 struct perf_event_context *dst_ctx; 6741 struct perf_event *event, *tmp; 6742 LIST_HEAD(events); 6743 6744 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 6745 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 6746 6747 mutex_lock(&src_ctx->mutex); 6748 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 6749 event_entry) { 6750 perf_remove_from_context(event); 6751 put_ctx(src_ctx); 6752 list_add(&event->event_entry, &events); 6753 } 6754 mutex_unlock(&src_ctx->mutex); 6755 6756 synchronize_rcu(); 6757 6758 mutex_lock(&dst_ctx->mutex); 6759 list_for_each_entry_safe(event, tmp, &events, event_entry) { 6760 list_del(&event->event_entry); 6761 if (event->state >= PERF_EVENT_STATE_OFF) 6762 event->state = PERF_EVENT_STATE_INACTIVE; 6763 perf_install_in_context(dst_ctx, event, dst_cpu); 6764 get_ctx(dst_ctx); 6765 } 6766 mutex_unlock(&dst_ctx->mutex); 6767 } 6768 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 6769 6770 static void sync_child_event(struct perf_event *child_event, 6771 struct task_struct *child) 6772 { 6773 struct perf_event *parent_event = child_event->parent; 6774 u64 child_val; 6775 6776 if (child_event->attr.inherit_stat) 6777 perf_event_read_event(child_event, child); 6778 6779 child_val = perf_event_count(child_event); 6780 6781 /* 6782 * Add back the child's count to the parent's count: 6783 */ 6784 atomic64_add(child_val, &parent_event->child_count); 6785 atomic64_add(child_event->total_time_enabled, 6786 &parent_event->child_total_time_enabled); 6787 atomic64_add(child_event->total_time_running, 6788 &parent_event->child_total_time_running); 6789 6790 /* 6791 * Remove this event from the parent's list 6792 */ 6793 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6794 mutex_lock(&parent_event->child_mutex); 6795 list_del_init(&child_event->child_list); 6796 mutex_unlock(&parent_event->child_mutex); 6797 6798 /* 6799 * Release the parent event, if this was the last 6800 * reference to it. 6801 */ 6802 put_event(parent_event); 6803 } 6804 6805 static void 6806 __perf_event_exit_task(struct perf_event *child_event, 6807 struct perf_event_context *child_ctx, 6808 struct task_struct *child) 6809 { 6810 if (child_event->parent) { 6811 raw_spin_lock_irq(&child_ctx->lock); 6812 perf_group_detach(child_event); 6813 raw_spin_unlock_irq(&child_ctx->lock); 6814 } 6815 6816 perf_remove_from_context(child_event); 6817 6818 /* 6819 * It can happen that the parent exits first, and has events 6820 * that are still around due to the child reference. These 6821 * events need to be zapped. 6822 */ 6823 if (child_event->parent) { 6824 sync_child_event(child_event, child); 6825 free_event(child_event); 6826 } 6827 } 6828 6829 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6830 { 6831 struct perf_event *child_event, *tmp; 6832 struct perf_event_context *child_ctx; 6833 unsigned long flags; 6834 6835 if (likely(!child->perf_event_ctxp[ctxn])) { 6836 perf_event_task(child, NULL, 0); 6837 return; 6838 } 6839 6840 local_irq_save(flags); 6841 /* 6842 * We can't reschedule here because interrupts are disabled, 6843 * and either child is current or it is a task that can't be 6844 * scheduled, so we are now safe from rescheduling changing 6845 * our context. 6846 */ 6847 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6848 6849 /* 6850 * Take the context lock here so that if find_get_context is 6851 * reading child->perf_event_ctxp, we wait until it has 6852 * incremented the context's refcount before we do put_ctx below. 6853 */ 6854 raw_spin_lock(&child_ctx->lock); 6855 task_ctx_sched_out(child_ctx); 6856 child->perf_event_ctxp[ctxn] = NULL; 6857 /* 6858 * If this context is a clone; unclone it so it can't get 6859 * swapped to another process while we're removing all 6860 * the events from it. 6861 */ 6862 unclone_ctx(child_ctx); 6863 update_context_time(child_ctx); 6864 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6865 6866 /* 6867 * Report the task dead after unscheduling the events so that we 6868 * won't get any samples after PERF_RECORD_EXIT. We can however still 6869 * get a few PERF_RECORD_READ events. 6870 */ 6871 perf_event_task(child, child_ctx, 0); 6872 6873 /* 6874 * We can recurse on the same lock type through: 6875 * 6876 * __perf_event_exit_task() 6877 * sync_child_event() 6878 * put_event() 6879 * mutex_lock(&ctx->mutex) 6880 * 6881 * But since its the parent context it won't be the same instance. 6882 */ 6883 mutex_lock(&child_ctx->mutex); 6884 6885 again: 6886 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6887 group_entry) 6888 __perf_event_exit_task(child_event, child_ctx, child); 6889 6890 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6891 group_entry) 6892 __perf_event_exit_task(child_event, child_ctx, child); 6893 6894 /* 6895 * If the last event was a group event, it will have appended all 6896 * its siblings to the list, but we obtained 'tmp' before that which 6897 * will still point to the list head terminating the iteration. 6898 */ 6899 if (!list_empty(&child_ctx->pinned_groups) || 6900 !list_empty(&child_ctx->flexible_groups)) 6901 goto again; 6902 6903 mutex_unlock(&child_ctx->mutex); 6904 6905 put_ctx(child_ctx); 6906 } 6907 6908 /* 6909 * When a child task exits, feed back event values to parent events. 6910 */ 6911 void perf_event_exit_task(struct task_struct *child) 6912 { 6913 struct perf_event *event, *tmp; 6914 int ctxn; 6915 6916 mutex_lock(&child->perf_event_mutex); 6917 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6918 owner_entry) { 6919 list_del_init(&event->owner_entry); 6920 6921 /* 6922 * Ensure the list deletion is visible before we clear 6923 * the owner, closes a race against perf_release() where 6924 * we need to serialize on the owner->perf_event_mutex. 6925 */ 6926 smp_wmb(); 6927 event->owner = NULL; 6928 } 6929 mutex_unlock(&child->perf_event_mutex); 6930 6931 for_each_task_context_nr(ctxn) 6932 perf_event_exit_task_context(child, ctxn); 6933 } 6934 6935 static void perf_free_event(struct perf_event *event, 6936 struct perf_event_context *ctx) 6937 { 6938 struct perf_event *parent = event->parent; 6939 6940 if (WARN_ON_ONCE(!parent)) 6941 return; 6942 6943 mutex_lock(&parent->child_mutex); 6944 list_del_init(&event->child_list); 6945 mutex_unlock(&parent->child_mutex); 6946 6947 put_event(parent); 6948 6949 perf_group_detach(event); 6950 list_del_event(event, ctx); 6951 free_event(event); 6952 } 6953 6954 /* 6955 * free an unexposed, unused context as created by inheritance by 6956 * perf_event_init_task below, used by fork() in case of fail. 6957 */ 6958 void perf_event_free_task(struct task_struct *task) 6959 { 6960 struct perf_event_context *ctx; 6961 struct perf_event *event, *tmp; 6962 int ctxn; 6963 6964 for_each_task_context_nr(ctxn) { 6965 ctx = task->perf_event_ctxp[ctxn]; 6966 if (!ctx) 6967 continue; 6968 6969 mutex_lock(&ctx->mutex); 6970 again: 6971 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6972 group_entry) 6973 perf_free_event(event, ctx); 6974 6975 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6976 group_entry) 6977 perf_free_event(event, ctx); 6978 6979 if (!list_empty(&ctx->pinned_groups) || 6980 !list_empty(&ctx->flexible_groups)) 6981 goto again; 6982 6983 mutex_unlock(&ctx->mutex); 6984 6985 put_ctx(ctx); 6986 } 6987 } 6988 6989 void perf_event_delayed_put(struct task_struct *task) 6990 { 6991 int ctxn; 6992 6993 for_each_task_context_nr(ctxn) 6994 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6995 } 6996 6997 /* 6998 * inherit a event from parent task to child task: 6999 */ 7000 static struct perf_event * 7001 inherit_event(struct perf_event *parent_event, 7002 struct task_struct *parent, 7003 struct perf_event_context *parent_ctx, 7004 struct task_struct *child, 7005 struct perf_event *group_leader, 7006 struct perf_event_context *child_ctx) 7007 { 7008 struct perf_event *child_event; 7009 unsigned long flags; 7010 7011 /* 7012 * Instead of creating recursive hierarchies of events, 7013 * we link inherited events back to the original parent, 7014 * which has a filp for sure, which we use as the reference 7015 * count: 7016 */ 7017 if (parent_event->parent) 7018 parent_event = parent_event->parent; 7019 7020 child_event = perf_event_alloc(&parent_event->attr, 7021 parent_event->cpu, 7022 child, 7023 group_leader, parent_event, 7024 NULL, NULL); 7025 if (IS_ERR(child_event)) 7026 return child_event; 7027 7028 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7029 free_event(child_event); 7030 return NULL; 7031 } 7032 7033 get_ctx(child_ctx); 7034 7035 /* 7036 * Make the child state follow the state of the parent event, 7037 * not its attr.disabled bit. We hold the parent's mutex, 7038 * so we won't race with perf_event_{en, dis}able_family. 7039 */ 7040 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7041 child_event->state = PERF_EVENT_STATE_INACTIVE; 7042 else 7043 child_event->state = PERF_EVENT_STATE_OFF; 7044 7045 if (parent_event->attr.freq) { 7046 u64 sample_period = parent_event->hw.sample_period; 7047 struct hw_perf_event *hwc = &child_event->hw; 7048 7049 hwc->sample_period = sample_period; 7050 hwc->last_period = sample_period; 7051 7052 local64_set(&hwc->period_left, sample_period); 7053 } 7054 7055 child_event->ctx = child_ctx; 7056 child_event->overflow_handler = parent_event->overflow_handler; 7057 child_event->overflow_handler_context 7058 = parent_event->overflow_handler_context; 7059 7060 /* 7061 * Precalculate sample_data sizes 7062 */ 7063 perf_event__header_size(child_event); 7064 perf_event__id_header_size(child_event); 7065 7066 /* 7067 * Link it up in the child's context: 7068 */ 7069 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7070 add_event_to_ctx(child_event, child_ctx); 7071 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7072 7073 /* 7074 * Link this into the parent event's child list 7075 */ 7076 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7077 mutex_lock(&parent_event->child_mutex); 7078 list_add_tail(&child_event->child_list, &parent_event->child_list); 7079 mutex_unlock(&parent_event->child_mutex); 7080 7081 return child_event; 7082 } 7083 7084 static int inherit_group(struct perf_event *parent_event, 7085 struct task_struct *parent, 7086 struct perf_event_context *parent_ctx, 7087 struct task_struct *child, 7088 struct perf_event_context *child_ctx) 7089 { 7090 struct perf_event *leader; 7091 struct perf_event *sub; 7092 struct perf_event *child_ctr; 7093 7094 leader = inherit_event(parent_event, parent, parent_ctx, 7095 child, NULL, child_ctx); 7096 if (IS_ERR(leader)) 7097 return PTR_ERR(leader); 7098 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7099 child_ctr = inherit_event(sub, parent, parent_ctx, 7100 child, leader, child_ctx); 7101 if (IS_ERR(child_ctr)) 7102 return PTR_ERR(child_ctr); 7103 } 7104 return 0; 7105 } 7106 7107 static int 7108 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7109 struct perf_event_context *parent_ctx, 7110 struct task_struct *child, int ctxn, 7111 int *inherited_all) 7112 { 7113 int ret; 7114 struct perf_event_context *child_ctx; 7115 7116 if (!event->attr.inherit) { 7117 *inherited_all = 0; 7118 return 0; 7119 } 7120 7121 child_ctx = child->perf_event_ctxp[ctxn]; 7122 if (!child_ctx) { 7123 /* 7124 * This is executed from the parent task context, so 7125 * inherit events that have been marked for cloning. 7126 * First allocate and initialize a context for the 7127 * child. 7128 */ 7129 7130 child_ctx = alloc_perf_context(event->pmu, child); 7131 if (!child_ctx) 7132 return -ENOMEM; 7133 7134 child->perf_event_ctxp[ctxn] = child_ctx; 7135 } 7136 7137 ret = inherit_group(event, parent, parent_ctx, 7138 child, child_ctx); 7139 7140 if (ret) 7141 *inherited_all = 0; 7142 7143 return ret; 7144 } 7145 7146 /* 7147 * Initialize the perf_event context in task_struct 7148 */ 7149 int perf_event_init_context(struct task_struct *child, int ctxn) 7150 { 7151 struct perf_event_context *child_ctx, *parent_ctx; 7152 struct perf_event_context *cloned_ctx; 7153 struct perf_event *event; 7154 struct task_struct *parent = current; 7155 int inherited_all = 1; 7156 unsigned long flags; 7157 int ret = 0; 7158 7159 if (likely(!parent->perf_event_ctxp[ctxn])) 7160 return 0; 7161 7162 /* 7163 * If the parent's context is a clone, pin it so it won't get 7164 * swapped under us. 7165 */ 7166 parent_ctx = perf_pin_task_context(parent, ctxn); 7167 7168 /* 7169 * No need to check if parent_ctx != NULL here; since we saw 7170 * it non-NULL earlier, the only reason for it to become NULL 7171 * is if we exit, and since we're currently in the middle of 7172 * a fork we can't be exiting at the same time. 7173 */ 7174 7175 /* 7176 * Lock the parent list. No need to lock the child - not PID 7177 * hashed yet and not running, so nobody can access it. 7178 */ 7179 mutex_lock(&parent_ctx->mutex); 7180 7181 /* 7182 * We dont have to disable NMIs - we are only looking at 7183 * the list, not manipulating it: 7184 */ 7185 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7186 ret = inherit_task_group(event, parent, parent_ctx, 7187 child, ctxn, &inherited_all); 7188 if (ret) 7189 break; 7190 } 7191 7192 /* 7193 * We can't hold ctx->lock when iterating the ->flexible_group list due 7194 * to allocations, but we need to prevent rotation because 7195 * rotate_ctx() will change the list from interrupt context. 7196 */ 7197 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7198 parent_ctx->rotate_disable = 1; 7199 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7200 7201 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7202 ret = inherit_task_group(event, parent, parent_ctx, 7203 child, ctxn, &inherited_all); 7204 if (ret) 7205 break; 7206 } 7207 7208 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7209 parent_ctx->rotate_disable = 0; 7210 7211 child_ctx = child->perf_event_ctxp[ctxn]; 7212 7213 if (child_ctx && inherited_all) { 7214 /* 7215 * Mark the child context as a clone of the parent 7216 * context, or of whatever the parent is a clone of. 7217 * 7218 * Note that if the parent is a clone, the holding of 7219 * parent_ctx->lock avoids it from being uncloned. 7220 */ 7221 cloned_ctx = parent_ctx->parent_ctx; 7222 if (cloned_ctx) { 7223 child_ctx->parent_ctx = cloned_ctx; 7224 child_ctx->parent_gen = parent_ctx->parent_gen; 7225 } else { 7226 child_ctx->parent_ctx = parent_ctx; 7227 child_ctx->parent_gen = parent_ctx->generation; 7228 } 7229 get_ctx(child_ctx->parent_ctx); 7230 } 7231 7232 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7233 mutex_unlock(&parent_ctx->mutex); 7234 7235 perf_unpin_context(parent_ctx); 7236 put_ctx(parent_ctx); 7237 7238 return ret; 7239 } 7240 7241 /* 7242 * Initialize the perf_event context in task_struct 7243 */ 7244 int perf_event_init_task(struct task_struct *child) 7245 { 7246 int ctxn, ret; 7247 7248 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7249 mutex_init(&child->perf_event_mutex); 7250 INIT_LIST_HEAD(&child->perf_event_list); 7251 7252 for_each_task_context_nr(ctxn) { 7253 ret = perf_event_init_context(child, ctxn); 7254 if (ret) 7255 return ret; 7256 } 7257 7258 return 0; 7259 } 7260 7261 static void __init perf_event_init_all_cpus(void) 7262 { 7263 struct swevent_htable *swhash; 7264 int cpu; 7265 7266 for_each_possible_cpu(cpu) { 7267 swhash = &per_cpu(swevent_htable, cpu); 7268 mutex_init(&swhash->hlist_mutex); 7269 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7270 } 7271 } 7272 7273 static void __cpuinit perf_event_init_cpu(int cpu) 7274 { 7275 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7276 7277 mutex_lock(&swhash->hlist_mutex); 7278 if (swhash->hlist_refcount > 0) { 7279 struct swevent_hlist *hlist; 7280 7281 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7282 WARN_ON(!hlist); 7283 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7284 } 7285 mutex_unlock(&swhash->hlist_mutex); 7286 } 7287 7288 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7289 static void perf_pmu_rotate_stop(struct pmu *pmu) 7290 { 7291 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7292 7293 WARN_ON(!irqs_disabled()); 7294 7295 list_del_init(&cpuctx->rotation_list); 7296 } 7297 7298 static void __perf_event_exit_context(void *__info) 7299 { 7300 struct perf_event_context *ctx = __info; 7301 struct perf_event *event, *tmp; 7302 7303 perf_pmu_rotate_stop(ctx->pmu); 7304 7305 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7306 __perf_remove_from_context(event); 7307 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7308 __perf_remove_from_context(event); 7309 } 7310 7311 static void perf_event_exit_cpu_context(int cpu) 7312 { 7313 struct perf_event_context *ctx; 7314 struct pmu *pmu; 7315 int idx; 7316 7317 idx = srcu_read_lock(&pmus_srcu); 7318 list_for_each_entry_rcu(pmu, &pmus, entry) { 7319 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7320 7321 mutex_lock(&ctx->mutex); 7322 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7323 mutex_unlock(&ctx->mutex); 7324 } 7325 srcu_read_unlock(&pmus_srcu, idx); 7326 } 7327 7328 static void perf_event_exit_cpu(int cpu) 7329 { 7330 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7331 7332 mutex_lock(&swhash->hlist_mutex); 7333 swevent_hlist_release(swhash); 7334 mutex_unlock(&swhash->hlist_mutex); 7335 7336 perf_event_exit_cpu_context(cpu); 7337 } 7338 #else 7339 static inline void perf_event_exit_cpu(int cpu) { } 7340 #endif 7341 7342 static int 7343 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7344 { 7345 int cpu; 7346 7347 for_each_online_cpu(cpu) 7348 perf_event_exit_cpu(cpu); 7349 7350 return NOTIFY_OK; 7351 } 7352 7353 /* 7354 * Run the perf reboot notifier at the very last possible moment so that 7355 * the generic watchdog code runs as long as possible. 7356 */ 7357 static struct notifier_block perf_reboot_notifier = { 7358 .notifier_call = perf_reboot, 7359 .priority = INT_MIN, 7360 }; 7361 7362 static int __cpuinit 7363 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7364 { 7365 unsigned int cpu = (long)hcpu; 7366 7367 switch (action & ~CPU_TASKS_FROZEN) { 7368 7369 case CPU_UP_PREPARE: 7370 case CPU_DOWN_FAILED: 7371 perf_event_init_cpu(cpu); 7372 break; 7373 7374 case CPU_UP_CANCELED: 7375 case CPU_DOWN_PREPARE: 7376 perf_event_exit_cpu(cpu); 7377 break; 7378 7379 default: 7380 break; 7381 } 7382 7383 return NOTIFY_OK; 7384 } 7385 7386 void __init perf_event_init(void) 7387 { 7388 int ret; 7389 7390 idr_init(&pmu_idr); 7391 7392 perf_event_init_all_cpus(); 7393 init_srcu_struct(&pmus_srcu); 7394 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7395 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7396 perf_pmu_register(&perf_task_clock, NULL, -1); 7397 perf_tp_register(); 7398 perf_cpu_notifier(perf_cpu_notify); 7399 register_reboot_notifier(&perf_reboot_notifier); 7400 7401 ret = init_hw_breakpoint(); 7402 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7403 7404 /* do not patch jump label more than once per second */ 7405 jump_label_rate_limit(&perf_sched_events, HZ); 7406 7407 /* 7408 * Build time assertion that we keep the data_head at the intended 7409 * location. IOW, validation we got the __reserved[] size right. 7410 */ 7411 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7412 != 1024); 7413 } 7414 7415 static int __init perf_event_sysfs_init(void) 7416 { 7417 struct pmu *pmu; 7418 int ret; 7419 7420 mutex_lock(&pmus_lock); 7421 7422 ret = bus_register(&pmu_bus); 7423 if (ret) 7424 goto unlock; 7425 7426 list_for_each_entry(pmu, &pmus, entry) { 7427 if (!pmu->name || pmu->type < 0) 7428 continue; 7429 7430 ret = pmu_dev_alloc(pmu); 7431 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7432 } 7433 pmu_bus_running = 1; 7434 ret = 0; 7435 7436 unlock: 7437 mutex_unlock(&pmus_lock); 7438 7439 return ret; 7440 } 7441 device_initcall(perf_event_sysfs_init); 7442 7443 #ifdef CONFIG_CGROUP_PERF 7444 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont) 7445 { 7446 struct perf_cgroup *jc; 7447 7448 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7449 if (!jc) 7450 return ERR_PTR(-ENOMEM); 7451 7452 jc->info = alloc_percpu(struct perf_cgroup_info); 7453 if (!jc->info) { 7454 kfree(jc); 7455 return ERR_PTR(-ENOMEM); 7456 } 7457 7458 return &jc->css; 7459 } 7460 7461 static void perf_cgroup_destroy(struct cgroup *cont) 7462 { 7463 struct perf_cgroup *jc; 7464 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7465 struct perf_cgroup, css); 7466 free_percpu(jc->info); 7467 kfree(jc); 7468 } 7469 7470 static int __perf_cgroup_move(void *info) 7471 { 7472 struct task_struct *task = info; 7473 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7474 return 0; 7475 } 7476 7477 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7478 { 7479 struct task_struct *task; 7480 7481 cgroup_taskset_for_each(task, cgrp, tset) 7482 task_function_call(task, __perf_cgroup_move, task); 7483 } 7484 7485 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7486 struct task_struct *task) 7487 { 7488 /* 7489 * cgroup_exit() is called in the copy_process() failure path. 7490 * Ignore this case since the task hasn't ran yet, this avoids 7491 * trying to poke a half freed task state from generic code. 7492 */ 7493 if (!(task->flags & PF_EXITING)) 7494 return; 7495 7496 task_function_call(task, __perf_cgroup_move, task); 7497 } 7498 7499 struct cgroup_subsys perf_subsys = { 7500 .name = "perf_event", 7501 .subsys_id = perf_subsys_id, 7502 .create = perf_cgroup_create, 7503 .destroy = perf_cgroup_destroy, 7504 .exit = perf_cgroup_exit, 7505 .attach = perf_cgroup_attach, 7506 }; 7507 #endif /* CONFIG_CGROUP_PERF */ 7508