1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 if (event->pending_sigtrap) { 2287 bool dec = true; 2288 2289 event->pending_sigtrap = 0; 2290 if (state != PERF_EVENT_STATE_OFF && 2291 !event->pending_work) { 2292 event->pending_work = 1; 2293 dec = false; 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2295 task_work_add(current, &event->pending_task, TWA_RESUME); 2296 } 2297 if (dec) 2298 local_dec(&event->ctx->nr_pending); 2299 } 2300 2301 perf_event_set_state(event, state); 2302 2303 if (!is_software_event(event)) 2304 cpc->active_oncpu--; 2305 if (event->attr.freq && event->attr.sample_freq) { 2306 ctx->nr_freq--; 2307 epc->nr_freq--; 2308 } 2309 if (event->attr.exclusive || !cpc->active_oncpu) 2310 cpc->exclusive = 0; 2311 2312 perf_pmu_enable(event->pmu); 2313 } 2314 2315 static void 2316 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2317 { 2318 struct perf_event *event; 2319 2320 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2321 return; 2322 2323 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2324 2325 event_sched_out(group_event, ctx); 2326 2327 /* 2328 * Schedule out siblings (if any): 2329 */ 2330 for_each_sibling_event(event, group_event) 2331 event_sched_out(event, ctx); 2332 } 2333 2334 #define DETACH_GROUP 0x01UL 2335 #define DETACH_CHILD 0x02UL 2336 #define DETACH_DEAD 0x04UL 2337 2338 /* 2339 * Cross CPU call to remove a performance event 2340 * 2341 * We disable the event on the hardware level first. After that we 2342 * remove it from the context list. 2343 */ 2344 static void 2345 __perf_remove_from_context(struct perf_event *event, 2346 struct perf_cpu_context *cpuctx, 2347 struct perf_event_context *ctx, 2348 void *info) 2349 { 2350 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2351 unsigned long flags = (unsigned long)info; 2352 2353 if (ctx->is_active & EVENT_TIME) { 2354 update_context_time(ctx); 2355 update_cgrp_time_from_cpuctx(cpuctx, false); 2356 } 2357 2358 /* 2359 * Ensure event_sched_out() switches to OFF, at the very least 2360 * this avoids raising perf_pending_task() at this time. 2361 */ 2362 if (flags & DETACH_DEAD) 2363 event->pending_disable = 1; 2364 event_sched_out(event, ctx); 2365 if (flags & DETACH_GROUP) 2366 perf_group_detach(event); 2367 if (flags & DETACH_CHILD) 2368 perf_child_detach(event); 2369 list_del_event(event, ctx); 2370 if (flags & DETACH_DEAD) 2371 event->state = PERF_EVENT_STATE_DEAD; 2372 2373 if (!pmu_ctx->nr_events) { 2374 pmu_ctx->rotate_necessary = 0; 2375 2376 if (ctx->task && ctx->is_active) { 2377 struct perf_cpu_pmu_context *cpc; 2378 2379 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2380 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2381 cpc->task_epc = NULL; 2382 } 2383 } 2384 2385 if (!ctx->nr_events && ctx->is_active) { 2386 if (ctx == &cpuctx->ctx) 2387 update_cgrp_time_from_cpuctx(cpuctx, true); 2388 2389 ctx->is_active = 0; 2390 if (ctx->task) { 2391 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2392 cpuctx->task_ctx = NULL; 2393 } 2394 } 2395 } 2396 2397 /* 2398 * Remove the event from a task's (or a CPU's) list of events. 2399 * 2400 * If event->ctx is a cloned context, callers must make sure that 2401 * every task struct that event->ctx->task could possibly point to 2402 * remains valid. This is OK when called from perf_release since 2403 * that only calls us on the top-level context, which can't be a clone. 2404 * When called from perf_event_exit_task, it's OK because the 2405 * context has been detached from its task. 2406 */ 2407 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2408 { 2409 struct perf_event_context *ctx = event->ctx; 2410 2411 lockdep_assert_held(&ctx->mutex); 2412 2413 /* 2414 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2415 * to work in the face of TASK_TOMBSTONE, unlike every other 2416 * event_function_call() user. 2417 */ 2418 raw_spin_lock_irq(&ctx->lock); 2419 if (!ctx->is_active) { 2420 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2421 ctx, (void *)flags); 2422 raw_spin_unlock_irq(&ctx->lock); 2423 return; 2424 } 2425 raw_spin_unlock_irq(&ctx->lock); 2426 2427 event_function_call(event, __perf_remove_from_context, (void *)flags); 2428 } 2429 2430 /* 2431 * Cross CPU call to disable a performance event 2432 */ 2433 static void __perf_event_disable(struct perf_event *event, 2434 struct perf_cpu_context *cpuctx, 2435 struct perf_event_context *ctx, 2436 void *info) 2437 { 2438 if (event->state < PERF_EVENT_STATE_INACTIVE) 2439 return; 2440 2441 if (ctx->is_active & EVENT_TIME) { 2442 update_context_time(ctx); 2443 update_cgrp_time_from_event(event); 2444 } 2445 2446 perf_pmu_disable(event->pmu_ctx->pmu); 2447 2448 if (event == event->group_leader) 2449 group_sched_out(event, ctx); 2450 else 2451 event_sched_out(event, ctx); 2452 2453 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2454 perf_cgroup_event_disable(event, ctx); 2455 2456 perf_pmu_enable(event->pmu_ctx->pmu); 2457 } 2458 2459 /* 2460 * Disable an event. 2461 * 2462 * If event->ctx is a cloned context, callers must make sure that 2463 * every task struct that event->ctx->task could possibly point to 2464 * remains valid. This condition is satisfied when called through 2465 * perf_event_for_each_child or perf_event_for_each because they 2466 * hold the top-level event's child_mutex, so any descendant that 2467 * goes to exit will block in perf_event_exit_event(). 2468 * 2469 * When called from perf_pending_irq it's OK because event->ctx 2470 * is the current context on this CPU and preemption is disabled, 2471 * hence we can't get into perf_event_task_sched_out for this context. 2472 */ 2473 static void _perf_event_disable(struct perf_event *event) 2474 { 2475 struct perf_event_context *ctx = event->ctx; 2476 2477 raw_spin_lock_irq(&ctx->lock); 2478 if (event->state <= PERF_EVENT_STATE_OFF) { 2479 raw_spin_unlock_irq(&ctx->lock); 2480 return; 2481 } 2482 raw_spin_unlock_irq(&ctx->lock); 2483 2484 event_function_call(event, __perf_event_disable, NULL); 2485 } 2486 2487 void perf_event_disable_local(struct perf_event *event) 2488 { 2489 event_function_local(event, __perf_event_disable, NULL); 2490 } 2491 2492 /* 2493 * Strictly speaking kernel users cannot create groups and therefore this 2494 * interface does not need the perf_event_ctx_lock() magic. 2495 */ 2496 void perf_event_disable(struct perf_event *event) 2497 { 2498 struct perf_event_context *ctx; 2499 2500 ctx = perf_event_ctx_lock(event); 2501 _perf_event_disable(event); 2502 perf_event_ctx_unlock(event, ctx); 2503 } 2504 EXPORT_SYMBOL_GPL(perf_event_disable); 2505 2506 void perf_event_disable_inatomic(struct perf_event *event) 2507 { 2508 event->pending_disable = 1; 2509 irq_work_queue(&event->pending_irq); 2510 } 2511 2512 #define MAX_INTERRUPTS (~0ULL) 2513 2514 static void perf_log_throttle(struct perf_event *event, int enable); 2515 static void perf_log_itrace_start(struct perf_event *event); 2516 2517 static int 2518 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2519 { 2520 struct perf_event_pmu_context *epc = event->pmu_ctx; 2521 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2522 int ret = 0; 2523 2524 WARN_ON_ONCE(event->ctx != ctx); 2525 2526 lockdep_assert_held(&ctx->lock); 2527 2528 if (event->state <= PERF_EVENT_STATE_OFF) 2529 return 0; 2530 2531 WRITE_ONCE(event->oncpu, smp_processor_id()); 2532 /* 2533 * Order event::oncpu write to happen before the ACTIVE state is 2534 * visible. This allows perf_event_{stop,read}() to observe the correct 2535 * ->oncpu if it sees ACTIVE. 2536 */ 2537 smp_wmb(); 2538 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2539 2540 /* 2541 * Unthrottle events, since we scheduled we might have missed several 2542 * ticks already, also for a heavily scheduling task there is little 2543 * guarantee it'll get a tick in a timely manner. 2544 */ 2545 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2546 perf_log_throttle(event, 1); 2547 event->hw.interrupts = 0; 2548 } 2549 2550 perf_pmu_disable(event->pmu); 2551 2552 perf_log_itrace_start(event); 2553 2554 if (event->pmu->add(event, PERF_EF_START)) { 2555 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2556 event->oncpu = -1; 2557 ret = -EAGAIN; 2558 goto out; 2559 } 2560 2561 if (!is_software_event(event)) 2562 cpc->active_oncpu++; 2563 if (event->attr.freq && event->attr.sample_freq) { 2564 ctx->nr_freq++; 2565 epc->nr_freq++; 2566 } 2567 if (event->attr.exclusive) 2568 cpc->exclusive = 1; 2569 2570 out: 2571 perf_pmu_enable(event->pmu); 2572 2573 return ret; 2574 } 2575 2576 static int 2577 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2578 { 2579 struct perf_event *event, *partial_group = NULL; 2580 struct pmu *pmu = group_event->pmu_ctx->pmu; 2581 2582 if (group_event->state == PERF_EVENT_STATE_OFF) 2583 return 0; 2584 2585 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2586 2587 if (event_sched_in(group_event, ctx)) 2588 goto error; 2589 2590 /* 2591 * Schedule in siblings as one group (if any): 2592 */ 2593 for_each_sibling_event(event, group_event) { 2594 if (event_sched_in(event, ctx)) { 2595 partial_group = event; 2596 goto group_error; 2597 } 2598 } 2599 2600 if (!pmu->commit_txn(pmu)) 2601 return 0; 2602 2603 group_error: 2604 /* 2605 * Groups can be scheduled in as one unit only, so undo any 2606 * partial group before returning: 2607 * The events up to the failed event are scheduled out normally. 2608 */ 2609 for_each_sibling_event(event, group_event) { 2610 if (event == partial_group) 2611 break; 2612 2613 event_sched_out(event, ctx); 2614 } 2615 event_sched_out(group_event, ctx); 2616 2617 error: 2618 pmu->cancel_txn(pmu); 2619 return -EAGAIN; 2620 } 2621 2622 /* 2623 * Work out whether we can put this event group on the CPU now. 2624 */ 2625 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2626 { 2627 struct perf_event_pmu_context *epc = event->pmu_ctx; 2628 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2629 2630 /* 2631 * Groups consisting entirely of software events can always go on. 2632 */ 2633 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2634 return 1; 2635 /* 2636 * If an exclusive group is already on, no other hardware 2637 * events can go on. 2638 */ 2639 if (cpc->exclusive) 2640 return 0; 2641 /* 2642 * If this group is exclusive and there are already 2643 * events on the CPU, it can't go on. 2644 */ 2645 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2646 return 0; 2647 /* 2648 * Otherwise, try to add it if all previous groups were able 2649 * to go on. 2650 */ 2651 return can_add_hw; 2652 } 2653 2654 static void add_event_to_ctx(struct perf_event *event, 2655 struct perf_event_context *ctx) 2656 { 2657 list_add_event(event, ctx); 2658 perf_group_attach(event); 2659 } 2660 2661 static void task_ctx_sched_out(struct perf_event_context *ctx, 2662 enum event_type_t event_type) 2663 { 2664 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2665 2666 if (!cpuctx->task_ctx) 2667 return; 2668 2669 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2670 return; 2671 2672 ctx_sched_out(ctx, event_type); 2673 } 2674 2675 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2676 struct perf_event_context *ctx) 2677 { 2678 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2679 if (ctx) 2680 ctx_sched_in(ctx, EVENT_PINNED); 2681 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2682 if (ctx) 2683 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2684 } 2685 2686 /* 2687 * We want to maintain the following priority of scheduling: 2688 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2689 * - task pinned (EVENT_PINNED) 2690 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2691 * - task flexible (EVENT_FLEXIBLE). 2692 * 2693 * In order to avoid unscheduling and scheduling back in everything every 2694 * time an event is added, only do it for the groups of equal priority and 2695 * below. 2696 * 2697 * This can be called after a batch operation on task events, in which case 2698 * event_type is a bit mask of the types of events involved. For CPU events, 2699 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2700 */ 2701 /* 2702 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2703 * event to the context or enabling existing event in the context. We can 2704 * probably optimize it by rescheduling only affected pmu_ctx. 2705 */ 2706 static void ctx_resched(struct perf_cpu_context *cpuctx, 2707 struct perf_event_context *task_ctx, 2708 enum event_type_t event_type) 2709 { 2710 bool cpu_event = !!(event_type & EVENT_CPU); 2711 2712 /* 2713 * If pinned groups are involved, flexible groups also need to be 2714 * scheduled out. 2715 */ 2716 if (event_type & EVENT_PINNED) 2717 event_type |= EVENT_FLEXIBLE; 2718 2719 event_type &= EVENT_ALL; 2720 2721 perf_ctx_disable(&cpuctx->ctx, false); 2722 if (task_ctx) { 2723 perf_ctx_disable(task_ctx, false); 2724 task_ctx_sched_out(task_ctx, event_type); 2725 } 2726 2727 /* 2728 * Decide which cpu ctx groups to schedule out based on the types 2729 * of events that caused rescheduling: 2730 * - EVENT_CPU: schedule out corresponding groups; 2731 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2732 * - otherwise, do nothing more. 2733 */ 2734 if (cpu_event) 2735 ctx_sched_out(&cpuctx->ctx, event_type); 2736 else if (event_type & EVENT_PINNED) 2737 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2738 2739 perf_event_sched_in(cpuctx, task_ctx); 2740 2741 perf_ctx_enable(&cpuctx->ctx, false); 2742 if (task_ctx) 2743 perf_ctx_enable(task_ctx, false); 2744 } 2745 2746 void perf_pmu_resched(struct pmu *pmu) 2747 { 2748 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2749 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2750 2751 perf_ctx_lock(cpuctx, task_ctx); 2752 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2753 perf_ctx_unlock(cpuctx, task_ctx); 2754 } 2755 2756 /* 2757 * Cross CPU call to install and enable a performance event 2758 * 2759 * Very similar to remote_function() + event_function() but cannot assume that 2760 * things like ctx->is_active and cpuctx->task_ctx are set. 2761 */ 2762 static int __perf_install_in_context(void *info) 2763 { 2764 struct perf_event *event = info; 2765 struct perf_event_context *ctx = event->ctx; 2766 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2767 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2768 bool reprogram = true; 2769 int ret = 0; 2770 2771 raw_spin_lock(&cpuctx->ctx.lock); 2772 if (ctx->task) { 2773 raw_spin_lock(&ctx->lock); 2774 task_ctx = ctx; 2775 2776 reprogram = (ctx->task == current); 2777 2778 /* 2779 * If the task is running, it must be running on this CPU, 2780 * otherwise we cannot reprogram things. 2781 * 2782 * If its not running, we don't care, ctx->lock will 2783 * serialize against it becoming runnable. 2784 */ 2785 if (task_curr(ctx->task) && !reprogram) { 2786 ret = -ESRCH; 2787 goto unlock; 2788 } 2789 2790 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2791 } else if (task_ctx) { 2792 raw_spin_lock(&task_ctx->lock); 2793 } 2794 2795 #ifdef CONFIG_CGROUP_PERF 2796 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2797 /* 2798 * If the current cgroup doesn't match the event's 2799 * cgroup, we should not try to schedule it. 2800 */ 2801 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2802 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2803 event->cgrp->css.cgroup); 2804 } 2805 #endif 2806 2807 if (reprogram) { 2808 ctx_sched_out(ctx, EVENT_TIME); 2809 add_event_to_ctx(event, ctx); 2810 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2811 } else { 2812 add_event_to_ctx(event, ctx); 2813 } 2814 2815 unlock: 2816 perf_ctx_unlock(cpuctx, task_ctx); 2817 2818 return ret; 2819 } 2820 2821 static bool exclusive_event_installable(struct perf_event *event, 2822 struct perf_event_context *ctx); 2823 2824 /* 2825 * Attach a performance event to a context. 2826 * 2827 * Very similar to event_function_call, see comment there. 2828 */ 2829 static void 2830 perf_install_in_context(struct perf_event_context *ctx, 2831 struct perf_event *event, 2832 int cpu) 2833 { 2834 struct task_struct *task = READ_ONCE(ctx->task); 2835 2836 lockdep_assert_held(&ctx->mutex); 2837 2838 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2839 2840 if (event->cpu != -1) 2841 WARN_ON_ONCE(event->cpu != cpu); 2842 2843 /* 2844 * Ensures that if we can observe event->ctx, both the event and ctx 2845 * will be 'complete'. See perf_iterate_sb_cpu(). 2846 */ 2847 smp_store_release(&event->ctx, ctx); 2848 2849 /* 2850 * perf_event_attr::disabled events will not run and can be initialized 2851 * without IPI. Except when this is the first event for the context, in 2852 * that case we need the magic of the IPI to set ctx->is_active. 2853 * 2854 * The IOC_ENABLE that is sure to follow the creation of a disabled 2855 * event will issue the IPI and reprogram the hardware. 2856 */ 2857 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2858 ctx->nr_events && !is_cgroup_event(event)) { 2859 raw_spin_lock_irq(&ctx->lock); 2860 if (ctx->task == TASK_TOMBSTONE) { 2861 raw_spin_unlock_irq(&ctx->lock); 2862 return; 2863 } 2864 add_event_to_ctx(event, ctx); 2865 raw_spin_unlock_irq(&ctx->lock); 2866 return; 2867 } 2868 2869 if (!task) { 2870 cpu_function_call(cpu, __perf_install_in_context, event); 2871 return; 2872 } 2873 2874 /* 2875 * Should not happen, we validate the ctx is still alive before calling. 2876 */ 2877 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2878 return; 2879 2880 /* 2881 * Installing events is tricky because we cannot rely on ctx->is_active 2882 * to be set in case this is the nr_events 0 -> 1 transition. 2883 * 2884 * Instead we use task_curr(), which tells us if the task is running. 2885 * However, since we use task_curr() outside of rq::lock, we can race 2886 * against the actual state. This means the result can be wrong. 2887 * 2888 * If we get a false positive, we retry, this is harmless. 2889 * 2890 * If we get a false negative, things are complicated. If we are after 2891 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2892 * value must be correct. If we're before, it doesn't matter since 2893 * perf_event_context_sched_in() will program the counter. 2894 * 2895 * However, this hinges on the remote context switch having observed 2896 * our task->perf_event_ctxp[] store, such that it will in fact take 2897 * ctx::lock in perf_event_context_sched_in(). 2898 * 2899 * We do this by task_function_call(), if the IPI fails to hit the task 2900 * we know any future context switch of task must see the 2901 * perf_event_ctpx[] store. 2902 */ 2903 2904 /* 2905 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2906 * task_cpu() load, such that if the IPI then does not find the task 2907 * running, a future context switch of that task must observe the 2908 * store. 2909 */ 2910 smp_mb(); 2911 again: 2912 if (!task_function_call(task, __perf_install_in_context, event)) 2913 return; 2914 2915 raw_spin_lock_irq(&ctx->lock); 2916 task = ctx->task; 2917 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2918 /* 2919 * Cannot happen because we already checked above (which also 2920 * cannot happen), and we hold ctx->mutex, which serializes us 2921 * against perf_event_exit_task_context(). 2922 */ 2923 raw_spin_unlock_irq(&ctx->lock); 2924 return; 2925 } 2926 /* 2927 * If the task is not running, ctx->lock will avoid it becoming so, 2928 * thus we can safely install the event. 2929 */ 2930 if (task_curr(task)) { 2931 raw_spin_unlock_irq(&ctx->lock); 2932 goto again; 2933 } 2934 add_event_to_ctx(event, ctx); 2935 raw_spin_unlock_irq(&ctx->lock); 2936 } 2937 2938 /* 2939 * Cross CPU call to enable a performance event 2940 */ 2941 static void __perf_event_enable(struct perf_event *event, 2942 struct perf_cpu_context *cpuctx, 2943 struct perf_event_context *ctx, 2944 void *info) 2945 { 2946 struct perf_event *leader = event->group_leader; 2947 struct perf_event_context *task_ctx; 2948 2949 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2950 event->state <= PERF_EVENT_STATE_ERROR) 2951 return; 2952 2953 if (ctx->is_active) 2954 ctx_sched_out(ctx, EVENT_TIME); 2955 2956 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2957 perf_cgroup_event_enable(event, ctx); 2958 2959 if (!ctx->is_active) 2960 return; 2961 2962 if (!event_filter_match(event)) { 2963 ctx_sched_in(ctx, EVENT_TIME); 2964 return; 2965 } 2966 2967 /* 2968 * If the event is in a group and isn't the group leader, 2969 * then don't put it on unless the group is on. 2970 */ 2971 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2972 ctx_sched_in(ctx, EVENT_TIME); 2973 return; 2974 } 2975 2976 task_ctx = cpuctx->task_ctx; 2977 if (ctx->task) 2978 WARN_ON_ONCE(task_ctx != ctx); 2979 2980 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2981 } 2982 2983 /* 2984 * Enable an event. 2985 * 2986 * If event->ctx is a cloned context, callers must make sure that 2987 * every task struct that event->ctx->task could possibly point to 2988 * remains valid. This condition is satisfied when called through 2989 * perf_event_for_each_child or perf_event_for_each as described 2990 * for perf_event_disable. 2991 */ 2992 static void _perf_event_enable(struct perf_event *event) 2993 { 2994 struct perf_event_context *ctx = event->ctx; 2995 2996 raw_spin_lock_irq(&ctx->lock); 2997 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2998 event->state < PERF_EVENT_STATE_ERROR) { 2999 out: 3000 raw_spin_unlock_irq(&ctx->lock); 3001 return; 3002 } 3003 3004 /* 3005 * If the event is in error state, clear that first. 3006 * 3007 * That way, if we see the event in error state below, we know that it 3008 * has gone back into error state, as distinct from the task having 3009 * been scheduled away before the cross-call arrived. 3010 */ 3011 if (event->state == PERF_EVENT_STATE_ERROR) { 3012 /* 3013 * Detached SIBLING events cannot leave ERROR state. 3014 */ 3015 if (event->event_caps & PERF_EV_CAP_SIBLING && 3016 event->group_leader == event) 3017 goto out; 3018 3019 event->state = PERF_EVENT_STATE_OFF; 3020 } 3021 raw_spin_unlock_irq(&ctx->lock); 3022 3023 event_function_call(event, __perf_event_enable, NULL); 3024 } 3025 3026 /* 3027 * See perf_event_disable(); 3028 */ 3029 void perf_event_enable(struct perf_event *event) 3030 { 3031 struct perf_event_context *ctx; 3032 3033 ctx = perf_event_ctx_lock(event); 3034 _perf_event_enable(event); 3035 perf_event_ctx_unlock(event, ctx); 3036 } 3037 EXPORT_SYMBOL_GPL(perf_event_enable); 3038 3039 struct stop_event_data { 3040 struct perf_event *event; 3041 unsigned int restart; 3042 }; 3043 3044 static int __perf_event_stop(void *info) 3045 { 3046 struct stop_event_data *sd = info; 3047 struct perf_event *event = sd->event; 3048 3049 /* if it's already INACTIVE, do nothing */ 3050 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3051 return 0; 3052 3053 /* matches smp_wmb() in event_sched_in() */ 3054 smp_rmb(); 3055 3056 /* 3057 * There is a window with interrupts enabled before we get here, 3058 * so we need to check again lest we try to stop another CPU's event. 3059 */ 3060 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3061 return -EAGAIN; 3062 3063 event->pmu->stop(event, PERF_EF_UPDATE); 3064 3065 /* 3066 * May race with the actual stop (through perf_pmu_output_stop()), 3067 * but it is only used for events with AUX ring buffer, and such 3068 * events will refuse to restart because of rb::aux_mmap_count==0, 3069 * see comments in perf_aux_output_begin(). 3070 * 3071 * Since this is happening on an event-local CPU, no trace is lost 3072 * while restarting. 3073 */ 3074 if (sd->restart) 3075 event->pmu->start(event, 0); 3076 3077 return 0; 3078 } 3079 3080 static int perf_event_stop(struct perf_event *event, int restart) 3081 { 3082 struct stop_event_data sd = { 3083 .event = event, 3084 .restart = restart, 3085 }; 3086 int ret = 0; 3087 3088 do { 3089 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3090 return 0; 3091 3092 /* matches smp_wmb() in event_sched_in() */ 3093 smp_rmb(); 3094 3095 /* 3096 * We only want to restart ACTIVE events, so if the event goes 3097 * inactive here (event->oncpu==-1), there's nothing more to do; 3098 * fall through with ret==-ENXIO. 3099 */ 3100 ret = cpu_function_call(READ_ONCE(event->oncpu), 3101 __perf_event_stop, &sd); 3102 } while (ret == -EAGAIN); 3103 3104 return ret; 3105 } 3106 3107 /* 3108 * In order to contain the amount of racy and tricky in the address filter 3109 * configuration management, it is a two part process: 3110 * 3111 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3112 * we update the addresses of corresponding vmas in 3113 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3114 * (p2) when an event is scheduled in (pmu::add), it calls 3115 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3116 * if the generation has changed since the previous call. 3117 * 3118 * If (p1) happens while the event is active, we restart it to force (p2). 3119 * 3120 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3121 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3122 * ioctl; 3123 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3124 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3125 * for reading; 3126 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3127 * of exec. 3128 */ 3129 void perf_event_addr_filters_sync(struct perf_event *event) 3130 { 3131 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3132 3133 if (!has_addr_filter(event)) 3134 return; 3135 3136 raw_spin_lock(&ifh->lock); 3137 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3138 event->pmu->addr_filters_sync(event); 3139 event->hw.addr_filters_gen = event->addr_filters_gen; 3140 } 3141 raw_spin_unlock(&ifh->lock); 3142 } 3143 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3144 3145 static int _perf_event_refresh(struct perf_event *event, int refresh) 3146 { 3147 /* 3148 * not supported on inherited events 3149 */ 3150 if (event->attr.inherit || !is_sampling_event(event)) 3151 return -EINVAL; 3152 3153 atomic_add(refresh, &event->event_limit); 3154 _perf_event_enable(event); 3155 3156 return 0; 3157 } 3158 3159 /* 3160 * See perf_event_disable() 3161 */ 3162 int perf_event_refresh(struct perf_event *event, int refresh) 3163 { 3164 struct perf_event_context *ctx; 3165 int ret; 3166 3167 ctx = perf_event_ctx_lock(event); 3168 ret = _perf_event_refresh(event, refresh); 3169 perf_event_ctx_unlock(event, ctx); 3170 3171 return ret; 3172 } 3173 EXPORT_SYMBOL_GPL(perf_event_refresh); 3174 3175 static int perf_event_modify_breakpoint(struct perf_event *bp, 3176 struct perf_event_attr *attr) 3177 { 3178 int err; 3179 3180 _perf_event_disable(bp); 3181 3182 err = modify_user_hw_breakpoint_check(bp, attr, true); 3183 3184 if (!bp->attr.disabled) 3185 _perf_event_enable(bp); 3186 3187 return err; 3188 } 3189 3190 /* 3191 * Copy event-type-independent attributes that may be modified. 3192 */ 3193 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3194 const struct perf_event_attr *from) 3195 { 3196 to->sig_data = from->sig_data; 3197 } 3198 3199 static int perf_event_modify_attr(struct perf_event *event, 3200 struct perf_event_attr *attr) 3201 { 3202 int (*func)(struct perf_event *, struct perf_event_attr *); 3203 struct perf_event *child; 3204 int err; 3205 3206 if (event->attr.type != attr->type) 3207 return -EINVAL; 3208 3209 switch (event->attr.type) { 3210 case PERF_TYPE_BREAKPOINT: 3211 func = perf_event_modify_breakpoint; 3212 break; 3213 default: 3214 /* Place holder for future additions. */ 3215 return -EOPNOTSUPP; 3216 } 3217 3218 WARN_ON_ONCE(event->ctx->parent_ctx); 3219 3220 mutex_lock(&event->child_mutex); 3221 /* 3222 * Event-type-independent attributes must be copied before event-type 3223 * modification, which will validate that final attributes match the 3224 * source attributes after all relevant attributes have been copied. 3225 */ 3226 perf_event_modify_copy_attr(&event->attr, attr); 3227 err = func(event, attr); 3228 if (err) 3229 goto out; 3230 list_for_each_entry(child, &event->child_list, child_list) { 3231 perf_event_modify_copy_attr(&child->attr, attr); 3232 err = func(child, attr); 3233 if (err) 3234 goto out; 3235 } 3236 out: 3237 mutex_unlock(&event->child_mutex); 3238 return err; 3239 } 3240 3241 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3242 enum event_type_t event_type) 3243 { 3244 struct perf_event_context *ctx = pmu_ctx->ctx; 3245 struct perf_event *event, *tmp; 3246 struct pmu *pmu = pmu_ctx->pmu; 3247 3248 if (ctx->task && !ctx->is_active) { 3249 struct perf_cpu_pmu_context *cpc; 3250 3251 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3252 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3253 cpc->task_epc = NULL; 3254 } 3255 3256 if (!event_type) 3257 return; 3258 3259 perf_pmu_disable(pmu); 3260 if (event_type & EVENT_PINNED) { 3261 list_for_each_entry_safe(event, tmp, 3262 &pmu_ctx->pinned_active, 3263 active_list) 3264 group_sched_out(event, ctx); 3265 } 3266 3267 if (event_type & EVENT_FLEXIBLE) { 3268 list_for_each_entry_safe(event, tmp, 3269 &pmu_ctx->flexible_active, 3270 active_list) 3271 group_sched_out(event, ctx); 3272 /* 3273 * Since we cleared EVENT_FLEXIBLE, also clear 3274 * rotate_necessary, is will be reset by 3275 * ctx_flexible_sched_in() when needed. 3276 */ 3277 pmu_ctx->rotate_necessary = 0; 3278 } 3279 perf_pmu_enable(pmu); 3280 } 3281 3282 static void 3283 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3284 { 3285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3286 struct perf_event_pmu_context *pmu_ctx; 3287 int is_active = ctx->is_active; 3288 bool cgroup = event_type & EVENT_CGROUP; 3289 3290 event_type &= ~EVENT_CGROUP; 3291 3292 lockdep_assert_held(&ctx->lock); 3293 3294 if (likely(!ctx->nr_events)) { 3295 /* 3296 * See __perf_remove_from_context(). 3297 */ 3298 WARN_ON_ONCE(ctx->is_active); 3299 if (ctx->task) 3300 WARN_ON_ONCE(cpuctx->task_ctx); 3301 return; 3302 } 3303 3304 /* 3305 * Always update time if it was set; not only when it changes. 3306 * Otherwise we can 'forget' to update time for any but the last 3307 * context we sched out. For example: 3308 * 3309 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3310 * ctx_sched_out(.event_type = EVENT_PINNED) 3311 * 3312 * would only update time for the pinned events. 3313 */ 3314 if (is_active & EVENT_TIME) { 3315 /* update (and stop) ctx time */ 3316 update_context_time(ctx); 3317 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3318 /* 3319 * CPU-release for the below ->is_active store, 3320 * see __load_acquire() in perf_event_time_now() 3321 */ 3322 barrier(); 3323 } 3324 3325 ctx->is_active &= ~event_type; 3326 if (!(ctx->is_active & EVENT_ALL)) 3327 ctx->is_active = 0; 3328 3329 if (ctx->task) { 3330 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3331 if (!ctx->is_active) 3332 cpuctx->task_ctx = NULL; 3333 } 3334 3335 is_active ^= ctx->is_active; /* changed bits */ 3336 3337 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3338 if (cgroup && !pmu_ctx->nr_cgroups) 3339 continue; 3340 __pmu_ctx_sched_out(pmu_ctx, is_active); 3341 } 3342 } 3343 3344 /* 3345 * Test whether two contexts are equivalent, i.e. whether they have both been 3346 * cloned from the same version of the same context. 3347 * 3348 * Equivalence is measured using a generation number in the context that is 3349 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3350 * and list_del_event(). 3351 */ 3352 static int context_equiv(struct perf_event_context *ctx1, 3353 struct perf_event_context *ctx2) 3354 { 3355 lockdep_assert_held(&ctx1->lock); 3356 lockdep_assert_held(&ctx2->lock); 3357 3358 /* Pinning disables the swap optimization */ 3359 if (ctx1->pin_count || ctx2->pin_count) 3360 return 0; 3361 3362 /* If ctx1 is the parent of ctx2 */ 3363 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3364 return 1; 3365 3366 /* If ctx2 is the parent of ctx1 */ 3367 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3368 return 1; 3369 3370 /* 3371 * If ctx1 and ctx2 have the same parent; we flatten the parent 3372 * hierarchy, see perf_event_init_context(). 3373 */ 3374 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3375 ctx1->parent_gen == ctx2->parent_gen) 3376 return 1; 3377 3378 /* Unmatched */ 3379 return 0; 3380 } 3381 3382 static void __perf_event_sync_stat(struct perf_event *event, 3383 struct perf_event *next_event) 3384 { 3385 u64 value; 3386 3387 if (!event->attr.inherit_stat) 3388 return; 3389 3390 /* 3391 * Update the event value, we cannot use perf_event_read() 3392 * because we're in the middle of a context switch and have IRQs 3393 * disabled, which upsets smp_call_function_single(), however 3394 * we know the event must be on the current CPU, therefore we 3395 * don't need to use it. 3396 */ 3397 if (event->state == PERF_EVENT_STATE_ACTIVE) 3398 event->pmu->read(event); 3399 3400 perf_event_update_time(event); 3401 3402 /* 3403 * In order to keep per-task stats reliable we need to flip the event 3404 * values when we flip the contexts. 3405 */ 3406 value = local64_read(&next_event->count); 3407 value = local64_xchg(&event->count, value); 3408 local64_set(&next_event->count, value); 3409 3410 swap(event->total_time_enabled, next_event->total_time_enabled); 3411 swap(event->total_time_running, next_event->total_time_running); 3412 3413 /* 3414 * Since we swizzled the values, update the user visible data too. 3415 */ 3416 perf_event_update_userpage(event); 3417 perf_event_update_userpage(next_event); 3418 } 3419 3420 static void perf_event_sync_stat(struct perf_event_context *ctx, 3421 struct perf_event_context *next_ctx) 3422 { 3423 struct perf_event *event, *next_event; 3424 3425 if (!ctx->nr_stat) 3426 return; 3427 3428 update_context_time(ctx); 3429 3430 event = list_first_entry(&ctx->event_list, 3431 struct perf_event, event_entry); 3432 3433 next_event = list_first_entry(&next_ctx->event_list, 3434 struct perf_event, event_entry); 3435 3436 while (&event->event_entry != &ctx->event_list && 3437 &next_event->event_entry != &next_ctx->event_list) { 3438 3439 __perf_event_sync_stat(event, next_event); 3440 3441 event = list_next_entry(event, event_entry); 3442 next_event = list_next_entry(next_event, event_entry); 3443 } 3444 } 3445 3446 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3447 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3448 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3449 !list_entry_is_head(pos1, head1, member) && \ 3450 !list_entry_is_head(pos2, head2, member); \ 3451 pos1 = list_next_entry(pos1, member), \ 3452 pos2 = list_next_entry(pos2, member)) 3453 3454 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3455 struct perf_event_context *next_ctx) 3456 { 3457 struct perf_event_pmu_context *prev_epc, *next_epc; 3458 3459 if (!prev_ctx->nr_task_data) 3460 return; 3461 3462 double_list_for_each_entry(prev_epc, next_epc, 3463 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3464 pmu_ctx_entry) { 3465 3466 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3467 continue; 3468 3469 /* 3470 * PMU specific parts of task perf context can require 3471 * additional synchronization. As an example of such 3472 * synchronization see implementation details of Intel 3473 * LBR call stack data profiling; 3474 */ 3475 if (prev_epc->pmu->swap_task_ctx) 3476 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3477 else 3478 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3479 } 3480 } 3481 3482 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3483 { 3484 struct perf_event_pmu_context *pmu_ctx; 3485 struct perf_cpu_pmu_context *cpc; 3486 3487 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3488 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3489 3490 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3491 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3492 } 3493 } 3494 3495 static void 3496 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3497 { 3498 struct perf_event_context *ctx = task->perf_event_ctxp; 3499 struct perf_event_context *next_ctx; 3500 struct perf_event_context *parent, *next_parent; 3501 int do_switch = 1; 3502 3503 if (likely(!ctx)) 3504 return; 3505 3506 rcu_read_lock(); 3507 next_ctx = rcu_dereference(next->perf_event_ctxp); 3508 if (!next_ctx) 3509 goto unlock; 3510 3511 parent = rcu_dereference(ctx->parent_ctx); 3512 next_parent = rcu_dereference(next_ctx->parent_ctx); 3513 3514 /* If neither context have a parent context; they cannot be clones. */ 3515 if (!parent && !next_parent) 3516 goto unlock; 3517 3518 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3519 /* 3520 * Looks like the two contexts are clones, so we might be 3521 * able to optimize the context switch. We lock both 3522 * contexts and check that they are clones under the 3523 * lock (including re-checking that neither has been 3524 * uncloned in the meantime). It doesn't matter which 3525 * order we take the locks because no other cpu could 3526 * be trying to lock both of these tasks. 3527 */ 3528 raw_spin_lock(&ctx->lock); 3529 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3530 if (context_equiv(ctx, next_ctx)) { 3531 3532 perf_ctx_disable(ctx, false); 3533 3534 /* PMIs are disabled; ctx->nr_pending is stable. */ 3535 if (local_read(&ctx->nr_pending) || 3536 local_read(&next_ctx->nr_pending)) { 3537 /* 3538 * Must not swap out ctx when there's pending 3539 * events that rely on the ctx->task relation. 3540 */ 3541 raw_spin_unlock(&next_ctx->lock); 3542 rcu_read_unlock(); 3543 goto inside_switch; 3544 } 3545 3546 WRITE_ONCE(ctx->task, next); 3547 WRITE_ONCE(next_ctx->task, task); 3548 3549 perf_ctx_sched_task_cb(ctx, false); 3550 perf_event_swap_task_ctx_data(ctx, next_ctx); 3551 3552 perf_ctx_enable(ctx, false); 3553 3554 /* 3555 * RCU_INIT_POINTER here is safe because we've not 3556 * modified the ctx and the above modification of 3557 * ctx->task and ctx->task_ctx_data are immaterial 3558 * since those values are always verified under 3559 * ctx->lock which we're now holding. 3560 */ 3561 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3562 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3563 3564 do_switch = 0; 3565 3566 perf_event_sync_stat(ctx, next_ctx); 3567 } 3568 raw_spin_unlock(&next_ctx->lock); 3569 raw_spin_unlock(&ctx->lock); 3570 } 3571 unlock: 3572 rcu_read_unlock(); 3573 3574 if (do_switch) { 3575 raw_spin_lock(&ctx->lock); 3576 perf_ctx_disable(ctx, false); 3577 3578 inside_switch: 3579 perf_ctx_sched_task_cb(ctx, false); 3580 task_ctx_sched_out(ctx, EVENT_ALL); 3581 3582 perf_ctx_enable(ctx, false); 3583 raw_spin_unlock(&ctx->lock); 3584 } 3585 } 3586 3587 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3588 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3589 3590 void perf_sched_cb_dec(struct pmu *pmu) 3591 { 3592 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3593 3594 this_cpu_dec(perf_sched_cb_usages); 3595 barrier(); 3596 3597 if (!--cpc->sched_cb_usage) 3598 list_del(&cpc->sched_cb_entry); 3599 } 3600 3601 3602 void perf_sched_cb_inc(struct pmu *pmu) 3603 { 3604 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3605 3606 if (!cpc->sched_cb_usage++) 3607 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3608 3609 barrier(); 3610 this_cpu_inc(perf_sched_cb_usages); 3611 } 3612 3613 /* 3614 * This function provides the context switch callback to the lower code 3615 * layer. It is invoked ONLY when the context switch callback is enabled. 3616 * 3617 * This callback is relevant even to per-cpu events; for example multi event 3618 * PEBS requires this to provide PID/TID information. This requires we flush 3619 * all queued PEBS records before we context switch to a new task. 3620 */ 3621 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3622 { 3623 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3624 struct pmu *pmu; 3625 3626 pmu = cpc->epc.pmu; 3627 3628 /* software PMUs will not have sched_task */ 3629 if (WARN_ON_ONCE(!pmu->sched_task)) 3630 return; 3631 3632 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3633 perf_pmu_disable(pmu); 3634 3635 pmu->sched_task(cpc->task_epc, sched_in); 3636 3637 perf_pmu_enable(pmu); 3638 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3639 } 3640 3641 static void perf_pmu_sched_task(struct task_struct *prev, 3642 struct task_struct *next, 3643 bool sched_in) 3644 { 3645 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3646 struct perf_cpu_pmu_context *cpc; 3647 3648 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3649 if (prev == next || cpuctx->task_ctx) 3650 return; 3651 3652 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3653 __perf_pmu_sched_task(cpc, sched_in); 3654 } 3655 3656 static void perf_event_switch(struct task_struct *task, 3657 struct task_struct *next_prev, bool sched_in); 3658 3659 /* 3660 * Called from scheduler to remove the events of the current task, 3661 * with interrupts disabled. 3662 * 3663 * We stop each event and update the event value in event->count. 3664 * 3665 * This does not protect us against NMI, but disable() 3666 * sets the disabled bit in the control field of event _before_ 3667 * accessing the event control register. If a NMI hits, then it will 3668 * not restart the event. 3669 */ 3670 void __perf_event_task_sched_out(struct task_struct *task, 3671 struct task_struct *next) 3672 { 3673 if (__this_cpu_read(perf_sched_cb_usages)) 3674 perf_pmu_sched_task(task, next, false); 3675 3676 if (atomic_read(&nr_switch_events)) 3677 perf_event_switch(task, next, false); 3678 3679 perf_event_context_sched_out(task, next); 3680 3681 /* 3682 * if cgroup events exist on this CPU, then we need 3683 * to check if we have to switch out PMU state. 3684 * cgroup event are system-wide mode only 3685 */ 3686 perf_cgroup_switch(next); 3687 } 3688 3689 static bool perf_less_group_idx(const void *l, const void *r) 3690 { 3691 const struct perf_event *le = *(const struct perf_event **)l; 3692 const struct perf_event *re = *(const struct perf_event **)r; 3693 3694 return le->group_index < re->group_index; 3695 } 3696 3697 static void swap_ptr(void *l, void *r) 3698 { 3699 void **lp = l, **rp = r; 3700 3701 swap(*lp, *rp); 3702 } 3703 3704 static const struct min_heap_callbacks perf_min_heap = { 3705 .elem_size = sizeof(struct perf_event *), 3706 .less = perf_less_group_idx, 3707 .swp = swap_ptr, 3708 }; 3709 3710 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3711 { 3712 struct perf_event **itrs = heap->data; 3713 3714 if (event) { 3715 itrs[heap->nr] = event; 3716 heap->nr++; 3717 } 3718 } 3719 3720 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3721 { 3722 struct perf_cpu_pmu_context *cpc; 3723 3724 if (!pmu_ctx->ctx->task) 3725 return; 3726 3727 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3728 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3729 cpc->task_epc = pmu_ctx; 3730 } 3731 3732 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3733 struct perf_event_groups *groups, int cpu, 3734 struct pmu *pmu, 3735 int (*func)(struct perf_event *, void *), 3736 void *data) 3737 { 3738 #ifdef CONFIG_CGROUP_PERF 3739 struct cgroup_subsys_state *css = NULL; 3740 #endif 3741 struct perf_cpu_context *cpuctx = NULL; 3742 /* Space for per CPU and/or any CPU event iterators. */ 3743 struct perf_event *itrs[2]; 3744 struct min_heap event_heap; 3745 struct perf_event **evt; 3746 int ret; 3747 3748 if (pmu->filter && pmu->filter(pmu, cpu)) 3749 return 0; 3750 3751 if (!ctx->task) { 3752 cpuctx = this_cpu_ptr(&perf_cpu_context); 3753 event_heap = (struct min_heap){ 3754 .data = cpuctx->heap, 3755 .nr = 0, 3756 .size = cpuctx->heap_size, 3757 }; 3758 3759 lockdep_assert_held(&cpuctx->ctx.lock); 3760 3761 #ifdef CONFIG_CGROUP_PERF 3762 if (cpuctx->cgrp) 3763 css = &cpuctx->cgrp->css; 3764 #endif 3765 } else { 3766 event_heap = (struct min_heap){ 3767 .data = itrs, 3768 .nr = 0, 3769 .size = ARRAY_SIZE(itrs), 3770 }; 3771 /* Events not within a CPU context may be on any CPU. */ 3772 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3773 } 3774 evt = event_heap.data; 3775 3776 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3777 3778 #ifdef CONFIG_CGROUP_PERF 3779 for (; css; css = css->parent) 3780 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3781 #endif 3782 3783 if (event_heap.nr) { 3784 __link_epc((*evt)->pmu_ctx); 3785 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3786 } 3787 3788 min_heapify_all(&event_heap, &perf_min_heap); 3789 3790 while (event_heap.nr) { 3791 ret = func(*evt, data); 3792 if (ret) 3793 return ret; 3794 3795 *evt = perf_event_groups_next(*evt, pmu); 3796 if (*evt) 3797 min_heapify(&event_heap, 0, &perf_min_heap); 3798 else 3799 min_heap_pop(&event_heap, &perf_min_heap); 3800 } 3801 3802 return 0; 3803 } 3804 3805 /* 3806 * Because the userpage is strictly per-event (there is no concept of context, 3807 * so there cannot be a context indirection), every userpage must be updated 3808 * when context time starts :-( 3809 * 3810 * IOW, we must not miss EVENT_TIME edges. 3811 */ 3812 static inline bool event_update_userpage(struct perf_event *event) 3813 { 3814 if (likely(!atomic_read(&event->mmap_count))) 3815 return false; 3816 3817 perf_event_update_time(event); 3818 perf_event_update_userpage(event); 3819 3820 return true; 3821 } 3822 3823 static inline void group_update_userpage(struct perf_event *group_event) 3824 { 3825 struct perf_event *event; 3826 3827 if (!event_update_userpage(group_event)) 3828 return; 3829 3830 for_each_sibling_event(event, group_event) 3831 event_update_userpage(event); 3832 } 3833 3834 static int merge_sched_in(struct perf_event *event, void *data) 3835 { 3836 struct perf_event_context *ctx = event->ctx; 3837 int *can_add_hw = data; 3838 3839 if (event->state <= PERF_EVENT_STATE_OFF) 3840 return 0; 3841 3842 if (!event_filter_match(event)) 3843 return 0; 3844 3845 if (group_can_go_on(event, *can_add_hw)) { 3846 if (!group_sched_in(event, ctx)) 3847 list_add_tail(&event->active_list, get_event_list(event)); 3848 } 3849 3850 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3851 *can_add_hw = 0; 3852 if (event->attr.pinned) { 3853 perf_cgroup_event_disable(event, ctx); 3854 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3855 } else { 3856 struct perf_cpu_pmu_context *cpc; 3857 3858 event->pmu_ctx->rotate_necessary = 1; 3859 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3860 perf_mux_hrtimer_restart(cpc); 3861 group_update_userpage(event); 3862 } 3863 } 3864 3865 return 0; 3866 } 3867 3868 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3869 struct perf_event_groups *groups, 3870 struct pmu *pmu) 3871 { 3872 int can_add_hw = 1; 3873 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3874 merge_sched_in, &can_add_hw); 3875 } 3876 3877 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3878 struct perf_event_groups *groups, 3879 bool cgroup) 3880 { 3881 struct perf_event_pmu_context *pmu_ctx; 3882 3883 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3884 if (cgroup && !pmu_ctx->nr_cgroups) 3885 continue; 3886 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3887 } 3888 } 3889 3890 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3891 struct pmu *pmu) 3892 { 3893 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3894 } 3895 3896 static void 3897 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3898 { 3899 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3900 int is_active = ctx->is_active; 3901 bool cgroup = event_type & EVENT_CGROUP; 3902 3903 event_type &= ~EVENT_CGROUP; 3904 3905 lockdep_assert_held(&ctx->lock); 3906 3907 if (likely(!ctx->nr_events)) 3908 return; 3909 3910 if (!(is_active & EVENT_TIME)) { 3911 /* start ctx time */ 3912 __update_context_time(ctx, false); 3913 perf_cgroup_set_timestamp(cpuctx); 3914 /* 3915 * CPU-release for the below ->is_active store, 3916 * see __load_acquire() in perf_event_time_now() 3917 */ 3918 barrier(); 3919 } 3920 3921 ctx->is_active |= (event_type | EVENT_TIME); 3922 if (ctx->task) { 3923 if (!is_active) 3924 cpuctx->task_ctx = ctx; 3925 else 3926 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3927 } 3928 3929 is_active ^= ctx->is_active; /* changed bits */ 3930 3931 /* 3932 * First go through the list and put on any pinned groups 3933 * in order to give them the best chance of going on. 3934 */ 3935 if (is_active & EVENT_PINNED) 3936 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3937 3938 /* Then walk through the lower prio flexible groups */ 3939 if (is_active & EVENT_FLEXIBLE) 3940 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3941 } 3942 3943 static void perf_event_context_sched_in(struct task_struct *task) 3944 { 3945 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3946 struct perf_event_context *ctx; 3947 3948 rcu_read_lock(); 3949 ctx = rcu_dereference(task->perf_event_ctxp); 3950 if (!ctx) 3951 goto rcu_unlock; 3952 3953 if (cpuctx->task_ctx == ctx) { 3954 perf_ctx_lock(cpuctx, ctx); 3955 perf_ctx_disable(ctx, false); 3956 3957 perf_ctx_sched_task_cb(ctx, true); 3958 3959 perf_ctx_enable(ctx, false); 3960 perf_ctx_unlock(cpuctx, ctx); 3961 goto rcu_unlock; 3962 } 3963 3964 perf_ctx_lock(cpuctx, ctx); 3965 /* 3966 * We must check ctx->nr_events while holding ctx->lock, such 3967 * that we serialize against perf_install_in_context(). 3968 */ 3969 if (!ctx->nr_events) 3970 goto unlock; 3971 3972 perf_ctx_disable(ctx, false); 3973 /* 3974 * We want to keep the following priority order: 3975 * cpu pinned (that don't need to move), task pinned, 3976 * cpu flexible, task flexible. 3977 * 3978 * However, if task's ctx is not carrying any pinned 3979 * events, no need to flip the cpuctx's events around. 3980 */ 3981 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3982 perf_ctx_disable(&cpuctx->ctx, false); 3983 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3984 } 3985 3986 perf_event_sched_in(cpuctx, ctx); 3987 3988 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3989 3990 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3991 perf_ctx_enable(&cpuctx->ctx, false); 3992 3993 perf_ctx_enable(ctx, false); 3994 3995 unlock: 3996 perf_ctx_unlock(cpuctx, ctx); 3997 rcu_unlock: 3998 rcu_read_unlock(); 3999 } 4000 4001 /* 4002 * Called from scheduler to add the events of the current task 4003 * with interrupts disabled. 4004 * 4005 * We restore the event value and then enable it. 4006 * 4007 * This does not protect us against NMI, but enable() 4008 * sets the enabled bit in the control field of event _before_ 4009 * accessing the event control register. If a NMI hits, then it will 4010 * keep the event running. 4011 */ 4012 void __perf_event_task_sched_in(struct task_struct *prev, 4013 struct task_struct *task) 4014 { 4015 perf_event_context_sched_in(task); 4016 4017 if (atomic_read(&nr_switch_events)) 4018 perf_event_switch(task, prev, true); 4019 4020 if (__this_cpu_read(perf_sched_cb_usages)) 4021 perf_pmu_sched_task(prev, task, true); 4022 } 4023 4024 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4025 { 4026 u64 frequency = event->attr.sample_freq; 4027 u64 sec = NSEC_PER_SEC; 4028 u64 divisor, dividend; 4029 4030 int count_fls, nsec_fls, frequency_fls, sec_fls; 4031 4032 count_fls = fls64(count); 4033 nsec_fls = fls64(nsec); 4034 frequency_fls = fls64(frequency); 4035 sec_fls = 30; 4036 4037 /* 4038 * We got @count in @nsec, with a target of sample_freq HZ 4039 * the target period becomes: 4040 * 4041 * @count * 10^9 4042 * period = ------------------- 4043 * @nsec * sample_freq 4044 * 4045 */ 4046 4047 /* 4048 * Reduce accuracy by one bit such that @a and @b converge 4049 * to a similar magnitude. 4050 */ 4051 #define REDUCE_FLS(a, b) \ 4052 do { \ 4053 if (a##_fls > b##_fls) { \ 4054 a >>= 1; \ 4055 a##_fls--; \ 4056 } else { \ 4057 b >>= 1; \ 4058 b##_fls--; \ 4059 } \ 4060 } while (0) 4061 4062 /* 4063 * Reduce accuracy until either term fits in a u64, then proceed with 4064 * the other, so that finally we can do a u64/u64 division. 4065 */ 4066 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4067 REDUCE_FLS(nsec, frequency); 4068 REDUCE_FLS(sec, count); 4069 } 4070 4071 if (count_fls + sec_fls > 64) { 4072 divisor = nsec * frequency; 4073 4074 while (count_fls + sec_fls > 64) { 4075 REDUCE_FLS(count, sec); 4076 divisor >>= 1; 4077 } 4078 4079 dividend = count * sec; 4080 } else { 4081 dividend = count * sec; 4082 4083 while (nsec_fls + frequency_fls > 64) { 4084 REDUCE_FLS(nsec, frequency); 4085 dividend >>= 1; 4086 } 4087 4088 divisor = nsec * frequency; 4089 } 4090 4091 if (!divisor) 4092 return dividend; 4093 4094 return div64_u64(dividend, divisor); 4095 } 4096 4097 static DEFINE_PER_CPU(int, perf_throttled_count); 4098 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4099 4100 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4101 { 4102 struct hw_perf_event *hwc = &event->hw; 4103 s64 period, sample_period; 4104 s64 delta; 4105 4106 period = perf_calculate_period(event, nsec, count); 4107 4108 delta = (s64)(period - hwc->sample_period); 4109 delta = (delta + 7) / 8; /* low pass filter */ 4110 4111 sample_period = hwc->sample_period + delta; 4112 4113 if (!sample_period) 4114 sample_period = 1; 4115 4116 hwc->sample_period = sample_period; 4117 4118 if (local64_read(&hwc->period_left) > 8*sample_period) { 4119 if (disable) 4120 event->pmu->stop(event, PERF_EF_UPDATE); 4121 4122 local64_set(&hwc->period_left, 0); 4123 4124 if (disable) 4125 event->pmu->start(event, PERF_EF_RELOAD); 4126 } 4127 } 4128 4129 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4130 { 4131 struct perf_event *event; 4132 struct hw_perf_event *hwc; 4133 u64 now, period = TICK_NSEC; 4134 s64 delta; 4135 4136 list_for_each_entry(event, event_list, active_list) { 4137 if (event->state != PERF_EVENT_STATE_ACTIVE) 4138 continue; 4139 4140 // XXX use visit thingy to avoid the -1,cpu match 4141 if (!event_filter_match(event)) 4142 continue; 4143 4144 hwc = &event->hw; 4145 4146 if (hwc->interrupts == MAX_INTERRUPTS) { 4147 hwc->interrupts = 0; 4148 perf_log_throttle(event, 1); 4149 if (!event->attr.freq || !event->attr.sample_freq) 4150 event->pmu->start(event, 0); 4151 } 4152 4153 if (!event->attr.freq || !event->attr.sample_freq) 4154 continue; 4155 4156 /* 4157 * stop the event and update event->count 4158 */ 4159 event->pmu->stop(event, PERF_EF_UPDATE); 4160 4161 now = local64_read(&event->count); 4162 delta = now - hwc->freq_count_stamp; 4163 hwc->freq_count_stamp = now; 4164 4165 /* 4166 * restart the event 4167 * reload only if value has changed 4168 * we have stopped the event so tell that 4169 * to perf_adjust_period() to avoid stopping it 4170 * twice. 4171 */ 4172 if (delta > 0) 4173 perf_adjust_period(event, period, delta, false); 4174 4175 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4176 } 4177 } 4178 4179 /* 4180 * combine freq adjustment with unthrottling to avoid two passes over the 4181 * events. At the same time, make sure, having freq events does not change 4182 * the rate of unthrottling as that would introduce bias. 4183 */ 4184 static void 4185 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4186 { 4187 struct perf_event_pmu_context *pmu_ctx; 4188 4189 /* 4190 * only need to iterate over all events iff: 4191 * - context have events in frequency mode (needs freq adjust) 4192 * - there are events to unthrottle on this cpu 4193 */ 4194 if (!(ctx->nr_freq || unthrottle)) 4195 return; 4196 4197 raw_spin_lock(&ctx->lock); 4198 4199 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4200 if (!(pmu_ctx->nr_freq || unthrottle)) 4201 continue; 4202 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4203 continue; 4204 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4205 continue; 4206 4207 perf_pmu_disable(pmu_ctx->pmu); 4208 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4209 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4210 perf_pmu_enable(pmu_ctx->pmu); 4211 } 4212 4213 raw_spin_unlock(&ctx->lock); 4214 } 4215 4216 /* 4217 * Move @event to the tail of the @ctx's elegible events. 4218 */ 4219 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4220 { 4221 /* 4222 * Rotate the first entry last of non-pinned groups. Rotation might be 4223 * disabled by the inheritance code. 4224 */ 4225 if (ctx->rotate_disable) 4226 return; 4227 4228 perf_event_groups_delete(&ctx->flexible_groups, event); 4229 perf_event_groups_insert(&ctx->flexible_groups, event); 4230 } 4231 4232 /* pick an event from the flexible_groups to rotate */ 4233 static inline struct perf_event * 4234 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4235 { 4236 struct perf_event *event; 4237 struct rb_node *node; 4238 struct rb_root *tree; 4239 struct __group_key key = { 4240 .pmu = pmu_ctx->pmu, 4241 }; 4242 4243 /* pick the first active flexible event */ 4244 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4245 struct perf_event, active_list); 4246 if (event) 4247 goto out; 4248 4249 /* if no active flexible event, pick the first event */ 4250 tree = &pmu_ctx->ctx->flexible_groups.tree; 4251 4252 if (!pmu_ctx->ctx->task) { 4253 key.cpu = smp_processor_id(); 4254 4255 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4256 if (node) 4257 event = __node_2_pe(node); 4258 goto out; 4259 } 4260 4261 key.cpu = -1; 4262 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4263 if (node) { 4264 event = __node_2_pe(node); 4265 goto out; 4266 } 4267 4268 key.cpu = smp_processor_id(); 4269 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4270 if (node) 4271 event = __node_2_pe(node); 4272 4273 out: 4274 /* 4275 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4276 * finds there are unschedulable events, it will set it again. 4277 */ 4278 pmu_ctx->rotate_necessary = 0; 4279 4280 return event; 4281 } 4282 4283 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4284 { 4285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4286 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4287 struct perf_event *cpu_event = NULL, *task_event = NULL; 4288 int cpu_rotate, task_rotate; 4289 struct pmu *pmu; 4290 4291 /* 4292 * Since we run this from IRQ context, nobody can install new 4293 * events, thus the event count values are stable. 4294 */ 4295 4296 cpu_epc = &cpc->epc; 4297 pmu = cpu_epc->pmu; 4298 task_epc = cpc->task_epc; 4299 4300 cpu_rotate = cpu_epc->rotate_necessary; 4301 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4302 4303 if (!(cpu_rotate || task_rotate)) 4304 return false; 4305 4306 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4307 perf_pmu_disable(pmu); 4308 4309 if (task_rotate) 4310 task_event = ctx_event_to_rotate(task_epc); 4311 if (cpu_rotate) 4312 cpu_event = ctx_event_to_rotate(cpu_epc); 4313 4314 /* 4315 * As per the order given at ctx_resched() first 'pop' task flexible 4316 * and then, if needed CPU flexible. 4317 */ 4318 if (task_event || (task_epc && cpu_event)) { 4319 update_context_time(task_epc->ctx); 4320 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4321 } 4322 4323 if (cpu_event) { 4324 update_context_time(&cpuctx->ctx); 4325 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4326 rotate_ctx(&cpuctx->ctx, cpu_event); 4327 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4328 } 4329 4330 if (task_event) 4331 rotate_ctx(task_epc->ctx, task_event); 4332 4333 if (task_event || (task_epc && cpu_event)) 4334 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4335 4336 perf_pmu_enable(pmu); 4337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4338 4339 return true; 4340 } 4341 4342 void perf_event_task_tick(void) 4343 { 4344 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4345 struct perf_event_context *ctx; 4346 int throttled; 4347 4348 lockdep_assert_irqs_disabled(); 4349 4350 __this_cpu_inc(perf_throttled_seq); 4351 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4352 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4353 4354 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4355 4356 rcu_read_lock(); 4357 ctx = rcu_dereference(current->perf_event_ctxp); 4358 if (ctx) 4359 perf_adjust_freq_unthr_context(ctx, !!throttled); 4360 rcu_read_unlock(); 4361 } 4362 4363 static int event_enable_on_exec(struct perf_event *event, 4364 struct perf_event_context *ctx) 4365 { 4366 if (!event->attr.enable_on_exec) 4367 return 0; 4368 4369 event->attr.enable_on_exec = 0; 4370 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4371 return 0; 4372 4373 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4374 4375 return 1; 4376 } 4377 4378 /* 4379 * Enable all of a task's events that have been marked enable-on-exec. 4380 * This expects task == current. 4381 */ 4382 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4383 { 4384 struct perf_event_context *clone_ctx = NULL; 4385 enum event_type_t event_type = 0; 4386 struct perf_cpu_context *cpuctx; 4387 struct perf_event *event; 4388 unsigned long flags; 4389 int enabled = 0; 4390 4391 local_irq_save(flags); 4392 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4393 goto out; 4394 4395 if (!ctx->nr_events) 4396 goto out; 4397 4398 cpuctx = this_cpu_ptr(&perf_cpu_context); 4399 perf_ctx_lock(cpuctx, ctx); 4400 ctx_sched_out(ctx, EVENT_TIME); 4401 4402 list_for_each_entry(event, &ctx->event_list, event_entry) { 4403 enabled |= event_enable_on_exec(event, ctx); 4404 event_type |= get_event_type(event); 4405 } 4406 4407 /* 4408 * Unclone and reschedule this context if we enabled any event. 4409 */ 4410 if (enabled) { 4411 clone_ctx = unclone_ctx(ctx); 4412 ctx_resched(cpuctx, ctx, event_type); 4413 } else { 4414 ctx_sched_in(ctx, EVENT_TIME); 4415 } 4416 perf_ctx_unlock(cpuctx, ctx); 4417 4418 out: 4419 local_irq_restore(flags); 4420 4421 if (clone_ctx) 4422 put_ctx(clone_ctx); 4423 } 4424 4425 static void perf_remove_from_owner(struct perf_event *event); 4426 static void perf_event_exit_event(struct perf_event *event, 4427 struct perf_event_context *ctx); 4428 4429 /* 4430 * Removes all events from the current task that have been marked 4431 * remove-on-exec, and feeds their values back to parent events. 4432 */ 4433 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4434 { 4435 struct perf_event_context *clone_ctx = NULL; 4436 struct perf_event *event, *next; 4437 unsigned long flags; 4438 bool modified = false; 4439 4440 mutex_lock(&ctx->mutex); 4441 4442 if (WARN_ON_ONCE(ctx->task != current)) 4443 goto unlock; 4444 4445 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4446 if (!event->attr.remove_on_exec) 4447 continue; 4448 4449 if (!is_kernel_event(event)) 4450 perf_remove_from_owner(event); 4451 4452 modified = true; 4453 4454 perf_event_exit_event(event, ctx); 4455 } 4456 4457 raw_spin_lock_irqsave(&ctx->lock, flags); 4458 if (modified) 4459 clone_ctx = unclone_ctx(ctx); 4460 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4461 4462 unlock: 4463 mutex_unlock(&ctx->mutex); 4464 4465 if (clone_ctx) 4466 put_ctx(clone_ctx); 4467 } 4468 4469 struct perf_read_data { 4470 struct perf_event *event; 4471 bool group; 4472 int ret; 4473 }; 4474 4475 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4476 { 4477 u16 local_pkg, event_pkg; 4478 4479 if ((unsigned)event_cpu >= nr_cpu_ids) 4480 return event_cpu; 4481 4482 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4483 int local_cpu = smp_processor_id(); 4484 4485 event_pkg = topology_physical_package_id(event_cpu); 4486 local_pkg = topology_physical_package_id(local_cpu); 4487 4488 if (event_pkg == local_pkg) 4489 return local_cpu; 4490 } 4491 4492 return event_cpu; 4493 } 4494 4495 /* 4496 * Cross CPU call to read the hardware event 4497 */ 4498 static void __perf_event_read(void *info) 4499 { 4500 struct perf_read_data *data = info; 4501 struct perf_event *sub, *event = data->event; 4502 struct perf_event_context *ctx = event->ctx; 4503 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4504 struct pmu *pmu = event->pmu; 4505 4506 /* 4507 * If this is a task context, we need to check whether it is 4508 * the current task context of this cpu. If not it has been 4509 * scheduled out before the smp call arrived. In that case 4510 * event->count would have been updated to a recent sample 4511 * when the event was scheduled out. 4512 */ 4513 if (ctx->task && cpuctx->task_ctx != ctx) 4514 return; 4515 4516 raw_spin_lock(&ctx->lock); 4517 if (ctx->is_active & EVENT_TIME) { 4518 update_context_time(ctx); 4519 update_cgrp_time_from_event(event); 4520 } 4521 4522 perf_event_update_time(event); 4523 if (data->group) 4524 perf_event_update_sibling_time(event); 4525 4526 if (event->state != PERF_EVENT_STATE_ACTIVE) 4527 goto unlock; 4528 4529 if (!data->group) { 4530 pmu->read(event); 4531 data->ret = 0; 4532 goto unlock; 4533 } 4534 4535 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4536 4537 pmu->read(event); 4538 4539 for_each_sibling_event(sub, event) { 4540 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4541 /* 4542 * Use sibling's PMU rather than @event's since 4543 * sibling could be on different (eg: software) PMU. 4544 */ 4545 sub->pmu->read(sub); 4546 } 4547 } 4548 4549 data->ret = pmu->commit_txn(pmu); 4550 4551 unlock: 4552 raw_spin_unlock(&ctx->lock); 4553 } 4554 4555 static inline u64 perf_event_count(struct perf_event *event) 4556 { 4557 return local64_read(&event->count) + atomic64_read(&event->child_count); 4558 } 4559 4560 static void calc_timer_values(struct perf_event *event, 4561 u64 *now, 4562 u64 *enabled, 4563 u64 *running) 4564 { 4565 u64 ctx_time; 4566 4567 *now = perf_clock(); 4568 ctx_time = perf_event_time_now(event, *now); 4569 __perf_update_times(event, ctx_time, enabled, running); 4570 } 4571 4572 /* 4573 * NMI-safe method to read a local event, that is an event that 4574 * is: 4575 * - either for the current task, or for this CPU 4576 * - does not have inherit set, for inherited task events 4577 * will not be local and we cannot read them atomically 4578 * - must not have a pmu::count method 4579 */ 4580 int perf_event_read_local(struct perf_event *event, u64 *value, 4581 u64 *enabled, u64 *running) 4582 { 4583 unsigned long flags; 4584 int event_oncpu; 4585 int event_cpu; 4586 int ret = 0; 4587 4588 /* 4589 * Disabling interrupts avoids all counter scheduling (context 4590 * switches, timer based rotation and IPIs). 4591 */ 4592 local_irq_save(flags); 4593 4594 /* 4595 * It must not be an event with inherit set, we cannot read 4596 * all child counters from atomic context. 4597 */ 4598 if (event->attr.inherit) { 4599 ret = -EOPNOTSUPP; 4600 goto out; 4601 } 4602 4603 /* If this is a per-task event, it must be for current */ 4604 if ((event->attach_state & PERF_ATTACH_TASK) && 4605 event->hw.target != current) { 4606 ret = -EINVAL; 4607 goto out; 4608 } 4609 4610 /* 4611 * Get the event CPU numbers, and adjust them to local if the event is 4612 * a per-package event that can be read locally 4613 */ 4614 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4615 event_cpu = __perf_event_read_cpu(event, event->cpu); 4616 4617 /* If this is a per-CPU event, it must be for this CPU */ 4618 if (!(event->attach_state & PERF_ATTACH_TASK) && 4619 event_cpu != smp_processor_id()) { 4620 ret = -EINVAL; 4621 goto out; 4622 } 4623 4624 /* If this is a pinned event it must be running on this CPU */ 4625 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4626 ret = -EBUSY; 4627 goto out; 4628 } 4629 4630 /* 4631 * If the event is currently on this CPU, its either a per-task event, 4632 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4633 * oncpu == -1). 4634 */ 4635 if (event_oncpu == smp_processor_id()) 4636 event->pmu->read(event); 4637 4638 *value = local64_read(&event->count); 4639 if (enabled || running) { 4640 u64 __enabled, __running, __now; 4641 4642 calc_timer_values(event, &__now, &__enabled, &__running); 4643 if (enabled) 4644 *enabled = __enabled; 4645 if (running) 4646 *running = __running; 4647 } 4648 out: 4649 local_irq_restore(flags); 4650 4651 return ret; 4652 } 4653 4654 static int perf_event_read(struct perf_event *event, bool group) 4655 { 4656 enum perf_event_state state = READ_ONCE(event->state); 4657 int event_cpu, ret = 0; 4658 4659 /* 4660 * If event is enabled and currently active on a CPU, update the 4661 * value in the event structure: 4662 */ 4663 again: 4664 if (state == PERF_EVENT_STATE_ACTIVE) { 4665 struct perf_read_data data; 4666 4667 /* 4668 * Orders the ->state and ->oncpu loads such that if we see 4669 * ACTIVE we must also see the right ->oncpu. 4670 * 4671 * Matches the smp_wmb() from event_sched_in(). 4672 */ 4673 smp_rmb(); 4674 4675 event_cpu = READ_ONCE(event->oncpu); 4676 if ((unsigned)event_cpu >= nr_cpu_ids) 4677 return 0; 4678 4679 data = (struct perf_read_data){ 4680 .event = event, 4681 .group = group, 4682 .ret = 0, 4683 }; 4684 4685 preempt_disable(); 4686 event_cpu = __perf_event_read_cpu(event, event_cpu); 4687 4688 /* 4689 * Purposely ignore the smp_call_function_single() return 4690 * value. 4691 * 4692 * If event_cpu isn't a valid CPU it means the event got 4693 * scheduled out and that will have updated the event count. 4694 * 4695 * Therefore, either way, we'll have an up-to-date event count 4696 * after this. 4697 */ 4698 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4699 preempt_enable(); 4700 ret = data.ret; 4701 4702 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4703 struct perf_event_context *ctx = event->ctx; 4704 unsigned long flags; 4705 4706 raw_spin_lock_irqsave(&ctx->lock, flags); 4707 state = event->state; 4708 if (state != PERF_EVENT_STATE_INACTIVE) { 4709 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4710 goto again; 4711 } 4712 4713 /* 4714 * May read while context is not active (e.g., thread is 4715 * blocked), in that case we cannot update context time 4716 */ 4717 if (ctx->is_active & EVENT_TIME) { 4718 update_context_time(ctx); 4719 update_cgrp_time_from_event(event); 4720 } 4721 4722 perf_event_update_time(event); 4723 if (group) 4724 perf_event_update_sibling_time(event); 4725 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4726 } 4727 4728 return ret; 4729 } 4730 4731 /* 4732 * Initialize the perf_event context in a task_struct: 4733 */ 4734 static void __perf_event_init_context(struct perf_event_context *ctx) 4735 { 4736 raw_spin_lock_init(&ctx->lock); 4737 mutex_init(&ctx->mutex); 4738 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4739 perf_event_groups_init(&ctx->pinned_groups); 4740 perf_event_groups_init(&ctx->flexible_groups); 4741 INIT_LIST_HEAD(&ctx->event_list); 4742 refcount_set(&ctx->refcount, 1); 4743 } 4744 4745 static void 4746 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4747 { 4748 epc->pmu = pmu; 4749 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4750 INIT_LIST_HEAD(&epc->pinned_active); 4751 INIT_LIST_HEAD(&epc->flexible_active); 4752 atomic_set(&epc->refcount, 1); 4753 } 4754 4755 static struct perf_event_context * 4756 alloc_perf_context(struct task_struct *task) 4757 { 4758 struct perf_event_context *ctx; 4759 4760 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4761 if (!ctx) 4762 return NULL; 4763 4764 __perf_event_init_context(ctx); 4765 if (task) 4766 ctx->task = get_task_struct(task); 4767 4768 return ctx; 4769 } 4770 4771 static struct task_struct * 4772 find_lively_task_by_vpid(pid_t vpid) 4773 { 4774 struct task_struct *task; 4775 4776 rcu_read_lock(); 4777 if (!vpid) 4778 task = current; 4779 else 4780 task = find_task_by_vpid(vpid); 4781 if (task) 4782 get_task_struct(task); 4783 rcu_read_unlock(); 4784 4785 if (!task) 4786 return ERR_PTR(-ESRCH); 4787 4788 return task; 4789 } 4790 4791 /* 4792 * Returns a matching context with refcount and pincount. 4793 */ 4794 static struct perf_event_context * 4795 find_get_context(struct task_struct *task, struct perf_event *event) 4796 { 4797 struct perf_event_context *ctx, *clone_ctx = NULL; 4798 struct perf_cpu_context *cpuctx; 4799 unsigned long flags; 4800 int err; 4801 4802 if (!task) { 4803 /* Must be root to operate on a CPU event: */ 4804 err = perf_allow_cpu(&event->attr); 4805 if (err) 4806 return ERR_PTR(err); 4807 4808 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4809 ctx = &cpuctx->ctx; 4810 get_ctx(ctx); 4811 raw_spin_lock_irqsave(&ctx->lock, flags); 4812 ++ctx->pin_count; 4813 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4814 4815 return ctx; 4816 } 4817 4818 err = -EINVAL; 4819 retry: 4820 ctx = perf_lock_task_context(task, &flags); 4821 if (ctx) { 4822 clone_ctx = unclone_ctx(ctx); 4823 ++ctx->pin_count; 4824 4825 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4826 4827 if (clone_ctx) 4828 put_ctx(clone_ctx); 4829 } else { 4830 ctx = alloc_perf_context(task); 4831 err = -ENOMEM; 4832 if (!ctx) 4833 goto errout; 4834 4835 err = 0; 4836 mutex_lock(&task->perf_event_mutex); 4837 /* 4838 * If it has already passed perf_event_exit_task(). 4839 * we must see PF_EXITING, it takes this mutex too. 4840 */ 4841 if (task->flags & PF_EXITING) 4842 err = -ESRCH; 4843 else if (task->perf_event_ctxp) 4844 err = -EAGAIN; 4845 else { 4846 get_ctx(ctx); 4847 ++ctx->pin_count; 4848 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4849 } 4850 mutex_unlock(&task->perf_event_mutex); 4851 4852 if (unlikely(err)) { 4853 put_ctx(ctx); 4854 4855 if (err == -EAGAIN) 4856 goto retry; 4857 goto errout; 4858 } 4859 } 4860 4861 return ctx; 4862 4863 errout: 4864 return ERR_PTR(err); 4865 } 4866 4867 static struct perf_event_pmu_context * 4868 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4869 struct perf_event *event) 4870 { 4871 struct perf_event_pmu_context *new = NULL, *epc; 4872 void *task_ctx_data = NULL; 4873 4874 if (!ctx->task) { 4875 /* 4876 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4877 * relies on the fact that find_get_pmu_context() cannot fail 4878 * for CPU contexts. 4879 */ 4880 struct perf_cpu_pmu_context *cpc; 4881 4882 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4883 epc = &cpc->epc; 4884 raw_spin_lock_irq(&ctx->lock); 4885 if (!epc->ctx) { 4886 atomic_set(&epc->refcount, 1); 4887 epc->embedded = 1; 4888 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4889 epc->ctx = ctx; 4890 } else { 4891 WARN_ON_ONCE(epc->ctx != ctx); 4892 atomic_inc(&epc->refcount); 4893 } 4894 raw_spin_unlock_irq(&ctx->lock); 4895 return epc; 4896 } 4897 4898 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4899 if (!new) 4900 return ERR_PTR(-ENOMEM); 4901 4902 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4903 task_ctx_data = alloc_task_ctx_data(pmu); 4904 if (!task_ctx_data) { 4905 kfree(new); 4906 return ERR_PTR(-ENOMEM); 4907 } 4908 } 4909 4910 __perf_init_event_pmu_context(new, pmu); 4911 4912 /* 4913 * XXX 4914 * 4915 * lockdep_assert_held(&ctx->mutex); 4916 * 4917 * can't because perf_event_init_task() doesn't actually hold the 4918 * child_ctx->mutex. 4919 */ 4920 4921 raw_spin_lock_irq(&ctx->lock); 4922 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4923 if (epc->pmu == pmu) { 4924 WARN_ON_ONCE(epc->ctx != ctx); 4925 atomic_inc(&epc->refcount); 4926 goto found_epc; 4927 } 4928 } 4929 4930 epc = new; 4931 new = NULL; 4932 4933 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4934 epc->ctx = ctx; 4935 4936 found_epc: 4937 if (task_ctx_data && !epc->task_ctx_data) { 4938 epc->task_ctx_data = task_ctx_data; 4939 task_ctx_data = NULL; 4940 ctx->nr_task_data++; 4941 } 4942 raw_spin_unlock_irq(&ctx->lock); 4943 4944 free_task_ctx_data(pmu, task_ctx_data); 4945 kfree(new); 4946 4947 return epc; 4948 } 4949 4950 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4951 { 4952 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4953 } 4954 4955 static void free_epc_rcu(struct rcu_head *head) 4956 { 4957 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4958 4959 kfree(epc->task_ctx_data); 4960 kfree(epc); 4961 } 4962 4963 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4964 { 4965 struct perf_event_context *ctx = epc->ctx; 4966 unsigned long flags; 4967 4968 /* 4969 * XXX 4970 * 4971 * lockdep_assert_held(&ctx->mutex); 4972 * 4973 * can't because of the call-site in _free_event()/put_event() 4974 * which isn't always called under ctx->mutex. 4975 */ 4976 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4977 return; 4978 4979 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4980 4981 list_del_init(&epc->pmu_ctx_entry); 4982 epc->ctx = NULL; 4983 4984 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4985 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4986 4987 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4988 4989 if (epc->embedded) 4990 return; 4991 4992 call_rcu(&epc->rcu_head, free_epc_rcu); 4993 } 4994 4995 static void perf_event_free_filter(struct perf_event *event); 4996 4997 static void free_event_rcu(struct rcu_head *head) 4998 { 4999 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5000 5001 if (event->ns) 5002 put_pid_ns(event->ns); 5003 perf_event_free_filter(event); 5004 kmem_cache_free(perf_event_cache, event); 5005 } 5006 5007 static void ring_buffer_attach(struct perf_event *event, 5008 struct perf_buffer *rb); 5009 5010 static void detach_sb_event(struct perf_event *event) 5011 { 5012 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5013 5014 raw_spin_lock(&pel->lock); 5015 list_del_rcu(&event->sb_list); 5016 raw_spin_unlock(&pel->lock); 5017 } 5018 5019 static bool is_sb_event(struct perf_event *event) 5020 { 5021 struct perf_event_attr *attr = &event->attr; 5022 5023 if (event->parent) 5024 return false; 5025 5026 if (event->attach_state & PERF_ATTACH_TASK) 5027 return false; 5028 5029 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5030 attr->comm || attr->comm_exec || 5031 attr->task || attr->ksymbol || 5032 attr->context_switch || attr->text_poke || 5033 attr->bpf_event) 5034 return true; 5035 return false; 5036 } 5037 5038 static void unaccount_pmu_sb_event(struct perf_event *event) 5039 { 5040 if (is_sb_event(event)) 5041 detach_sb_event(event); 5042 } 5043 5044 #ifdef CONFIG_NO_HZ_FULL 5045 static DEFINE_SPINLOCK(nr_freq_lock); 5046 #endif 5047 5048 static void unaccount_freq_event_nohz(void) 5049 { 5050 #ifdef CONFIG_NO_HZ_FULL 5051 spin_lock(&nr_freq_lock); 5052 if (atomic_dec_and_test(&nr_freq_events)) 5053 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5054 spin_unlock(&nr_freq_lock); 5055 #endif 5056 } 5057 5058 static void unaccount_freq_event(void) 5059 { 5060 if (tick_nohz_full_enabled()) 5061 unaccount_freq_event_nohz(); 5062 else 5063 atomic_dec(&nr_freq_events); 5064 } 5065 5066 static void unaccount_event(struct perf_event *event) 5067 { 5068 bool dec = false; 5069 5070 if (event->parent) 5071 return; 5072 5073 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5074 dec = true; 5075 if (event->attr.mmap || event->attr.mmap_data) 5076 atomic_dec(&nr_mmap_events); 5077 if (event->attr.build_id) 5078 atomic_dec(&nr_build_id_events); 5079 if (event->attr.comm) 5080 atomic_dec(&nr_comm_events); 5081 if (event->attr.namespaces) 5082 atomic_dec(&nr_namespaces_events); 5083 if (event->attr.cgroup) 5084 atomic_dec(&nr_cgroup_events); 5085 if (event->attr.task) 5086 atomic_dec(&nr_task_events); 5087 if (event->attr.freq) 5088 unaccount_freq_event(); 5089 if (event->attr.context_switch) { 5090 dec = true; 5091 atomic_dec(&nr_switch_events); 5092 } 5093 if (is_cgroup_event(event)) 5094 dec = true; 5095 if (has_branch_stack(event)) 5096 dec = true; 5097 if (event->attr.ksymbol) 5098 atomic_dec(&nr_ksymbol_events); 5099 if (event->attr.bpf_event) 5100 atomic_dec(&nr_bpf_events); 5101 if (event->attr.text_poke) 5102 atomic_dec(&nr_text_poke_events); 5103 5104 if (dec) { 5105 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5106 schedule_delayed_work(&perf_sched_work, HZ); 5107 } 5108 5109 unaccount_pmu_sb_event(event); 5110 } 5111 5112 static void perf_sched_delayed(struct work_struct *work) 5113 { 5114 mutex_lock(&perf_sched_mutex); 5115 if (atomic_dec_and_test(&perf_sched_count)) 5116 static_branch_disable(&perf_sched_events); 5117 mutex_unlock(&perf_sched_mutex); 5118 } 5119 5120 /* 5121 * The following implement mutual exclusion of events on "exclusive" pmus 5122 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5123 * at a time, so we disallow creating events that might conflict, namely: 5124 * 5125 * 1) cpu-wide events in the presence of per-task events, 5126 * 2) per-task events in the presence of cpu-wide events, 5127 * 3) two matching events on the same perf_event_context. 5128 * 5129 * The former two cases are handled in the allocation path (perf_event_alloc(), 5130 * _free_event()), the latter -- before the first perf_install_in_context(). 5131 */ 5132 static int exclusive_event_init(struct perf_event *event) 5133 { 5134 struct pmu *pmu = event->pmu; 5135 5136 if (!is_exclusive_pmu(pmu)) 5137 return 0; 5138 5139 /* 5140 * Prevent co-existence of per-task and cpu-wide events on the 5141 * same exclusive pmu. 5142 * 5143 * Negative pmu::exclusive_cnt means there are cpu-wide 5144 * events on this "exclusive" pmu, positive means there are 5145 * per-task events. 5146 * 5147 * Since this is called in perf_event_alloc() path, event::ctx 5148 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5149 * to mean "per-task event", because unlike other attach states it 5150 * never gets cleared. 5151 */ 5152 if (event->attach_state & PERF_ATTACH_TASK) { 5153 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5154 return -EBUSY; 5155 } else { 5156 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5157 return -EBUSY; 5158 } 5159 5160 return 0; 5161 } 5162 5163 static void exclusive_event_destroy(struct perf_event *event) 5164 { 5165 struct pmu *pmu = event->pmu; 5166 5167 if (!is_exclusive_pmu(pmu)) 5168 return; 5169 5170 /* see comment in exclusive_event_init() */ 5171 if (event->attach_state & PERF_ATTACH_TASK) 5172 atomic_dec(&pmu->exclusive_cnt); 5173 else 5174 atomic_inc(&pmu->exclusive_cnt); 5175 } 5176 5177 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5178 { 5179 if ((e1->pmu == e2->pmu) && 5180 (e1->cpu == e2->cpu || 5181 e1->cpu == -1 || 5182 e2->cpu == -1)) 5183 return true; 5184 return false; 5185 } 5186 5187 static bool exclusive_event_installable(struct perf_event *event, 5188 struct perf_event_context *ctx) 5189 { 5190 struct perf_event *iter_event; 5191 struct pmu *pmu = event->pmu; 5192 5193 lockdep_assert_held(&ctx->mutex); 5194 5195 if (!is_exclusive_pmu(pmu)) 5196 return true; 5197 5198 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5199 if (exclusive_event_match(iter_event, event)) 5200 return false; 5201 } 5202 5203 return true; 5204 } 5205 5206 static void perf_addr_filters_splice(struct perf_event *event, 5207 struct list_head *head); 5208 5209 static void _free_event(struct perf_event *event) 5210 { 5211 irq_work_sync(&event->pending_irq); 5212 5213 unaccount_event(event); 5214 5215 security_perf_event_free(event); 5216 5217 if (event->rb) { 5218 /* 5219 * Can happen when we close an event with re-directed output. 5220 * 5221 * Since we have a 0 refcount, perf_mmap_close() will skip 5222 * over us; possibly making our ring_buffer_put() the last. 5223 */ 5224 mutex_lock(&event->mmap_mutex); 5225 ring_buffer_attach(event, NULL); 5226 mutex_unlock(&event->mmap_mutex); 5227 } 5228 5229 if (is_cgroup_event(event)) 5230 perf_detach_cgroup(event); 5231 5232 if (!event->parent) { 5233 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5234 put_callchain_buffers(); 5235 } 5236 5237 perf_event_free_bpf_prog(event); 5238 perf_addr_filters_splice(event, NULL); 5239 kfree(event->addr_filter_ranges); 5240 5241 if (event->destroy) 5242 event->destroy(event); 5243 5244 /* 5245 * Must be after ->destroy(), due to uprobe_perf_close() using 5246 * hw.target. 5247 */ 5248 if (event->hw.target) 5249 put_task_struct(event->hw.target); 5250 5251 if (event->pmu_ctx) 5252 put_pmu_ctx(event->pmu_ctx); 5253 5254 /* 5255 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5256 * all task references must be cleaned up. 5257 */ 5258 if (event->ctx) 5259 put_ctx(event->ctx); 5260 5261 exclusive_event_destroy(event); 5262 module_put(event->pmu->module); 5263 5264 call_rcu(&event->rcu_head, free_event_rcu); 5265 } 5266 5267 /* 5268 * Used to free events which have a known refcount of 1, such as in error paths 5269 * where the event isn't exposed yet and inherited events. 5270 */ 5271 static void free_event(struct perf_event *event) 5272 { 5273 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5274 "unexpected event refcount: %ld; ptr=%p\n", 5275 atomic_long_read(&event->refcount), event)) { 5276 /* leak to avoid use-after-free */ 5277 return; 5278 } 5279 5280 _free_event(event); 5281 } 5282 5283 /* 5284 * Remove user event from the owner task. 5285 */ 5286 static void perf_remove_from_owner(struct perf_event *event) 5287 { 5288 struct task_struct *owner; 5289 5290 rcu_read_lock(); 5291 /* 5292 * Matches the smp_store_release() in perf_event_exit_task(). If we 5293 * observe !owner it means the list deletion is complete and we can 5294 * indeed free this event, otherwise we need to serialize on 5295 * owner->perf_event_mutex. 5296 */ 5297 owner = READ_ONCE(event->owner); 5298 if (owner) { 5299 /* 5300 * Since delayed_put_task_struct() also drops the last 5301 * task reference we can safely take a new reference 5302 * while holding the rcu_read_lock(). 5303 */ 5304 get_task_struct(owner); 5305 } 5306 rcu_read_unlock(); 5307 5308 if (owner) { 5309 /* 5310 * If we're here through perf_event_exit_task() we're already 5311 * holding ctx->mutex which would be an inversion wrt. the 5312 * normal lock order. 5313 * 5314 * However we can safely take this lock because its the child 5315 * ctx->mutex. 5316 */ 5317 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5318 5319 /* 5320 * We have to re-check the event->owner field, if it is cleared 5321 * we raced with perf_event_exit_task(), acquiring the mutex 5322 * ensured they're done, and we can proceed with freeing the 5323 * event. 5324 */ 5325 if (event->owner) { 5326 list_del_init(&event->owner_entry); 5327 smp_store_release(&event->owner, NULL); 5328 } 5329 mutex_unlock(&owner->perf_event_mutex); 5330 put_task_struct(owner); 5331 } 5332 } 5333 5334 static void put_event(struct perf_event *event) 5335 { 5336 if (!atomic_long_dec_and_test(&event->refcount)) 5337 return; 5338 5339 _free_event(event); 5340 } 5341 5342 /* 5343 * Kill an event dead; while event:refcount will preserve the event 5344 * object, it will not preserve its functionality. Once the last 'user' 5345 * gives up the object, we'll destroy the thing. 5346 */ 5347 int perf_event_release_kernel(struct perf_event *event) 5348 { 5349 struct perf_event_context *ctx = event->ctx; 5350 struct perf_event *child, *tmp; 5351 LIST_HEAD(free_list); 5352 5353 /* 5354 * If we got here through err_alloc: free_event(event); we will not 5355 * have attached to a context yet. 5356 */ 5357 if (!ctx) { 5358 WARN_ON_ONCE(event->attach_state & 5359 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5360 goto no_ctx; 5361 } 5362 5363 if (!is_kernel_event(event)) 5364 perf_remove_from_owner(event); 5365 5366 ctx = perf_event_ctx_lock(event); 5367 WARN_ON_ONCE(ctx->parent_ctx); 5368 5369 /* 5370 * Mark this event as STATE_DEAD, there is no external reference to it 5371 * anymore. 5372 * 5373 * Anybody acquiring event->child_mutex after the below loop _must_ 5374 * also see this, most importantly inherit_event() which will avoid 5375 * placing more children on the list. 5376 * 5377 * Thus this guarantees that we will in fact observe and kill _ALL_ 5378 * child events. 5379 */ 5380 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5381 5382 perf_event_ctx_unlock(event, ctx); 5383 5384 again: 5385 mutex_lock(&event->child_mutex); 5386 list_for_each_entry(child, &event->child_list, child_list) { 5387 5388 /* 5389 * Cannot change, child events are not migrated, see the 5390 * comment with perf_event_ctx_lock_nested(). 5391 */ 5392 ctx = READ_ONCE(child->ctx); 5393 /* 5394 * Since child_mutex nests inside ctx::mutex, we must jump 5395 * through hoops. We start by grabbing a reference on the ctx. 5396 * 5397 * Since the event cannot get freed while we hold the 5398 * child_mutex, the context must also exist and have a !0 5399 * reference count. 5400 */ 5401 get_ctx(ctx); 5402 5403 /* 5404 * Now that we have a ctx ref, we can drop child_mutex, and 5405 * acquire ctx::mutex without fear of it going away. Then we 5406 * can re-acquire child_mutex. 5407 */ 5408 mutex_unlock(&event->child_mutex); 5409 mutex_lock(&ctx->mutex); 5410 mutex_lock(&event->child_mutex); 5411 5412 /* 5413 * Now that we hold ctx::mutex and child_mutex, revalidate our 5414 * state, if child is still the first entry, it didn't get freed 5415 * and we can continue doing so. 5416 */ 5417 tmp = list_first_entry_or_null(&event->child_list, 5418 struct perf_event, child_list); 5419 if (tmp == child) { 5420 perf_remove_from_context(child, DETACH_GROUP); 5421 list_move(&child->child_list, &free_list); 5422 /* 5423 * This matches the refcount bump in inherit_event(); 5424 * this can't be the last reference. 5425 */ 5426 put_event(event); 5427 } 5428 5429 mutex_unlock(&event->child_mutex); 5430 mutex_unlock(&ctx->mutex); 5431 put_ctx(ctx); 5432 goto again; 5433 } 5434 mutex_unlock(&event->child_mutex); 5435 5436 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5437 void *var = &child->ctx->refcount; 5438 5439 list_del(&child->child_list); 5440 free_event(child); 5441 5442 /* 5443 * Wake any perf_event_free_task() waiting for this event to be 5444 * freed. 5445 */ 5446 smp_mb(); /* pairs with wait_var_event() */ 5447 wake_up_var(var); 5448 } 5449 5450 no_ctx: 5451 put_event(event); /* Must be the 'last' reference */ 5452 return 0; 5453 } 5454 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5455 5456 /* 5457 * Called when the last reference to the file is gone. 5458 */ 5459 static int perf_release(struct inode *inode, struct file *file) 5460 { 5461 perf_event_release_kernel(file->private_data); 5462 return 0; 5463 } 5464 5465 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5466 { 5467 struct perf_event *child; 5468 u64 total = 0; 5469 5470 *enabled = 0; 5471 *running = 0; 5472 5473 mutex_lock(&event->child_mutex); 5474 5475 (void)perf_event_read(event, false); 5476 total += perf_event_count(event); 5477 5478 *enabled += event->total_time_enabled + 5479 atomic64_read(&event->child_total_time_enabled); 5480 *running += event->total_time_running + 5481 atomic64_read(&event->child_total_time_running); 5482 5483 list_for_each_entry(child, &event->child_list, child_list) { 5484 (void)perf_event_read(child, false); 5485 total += perf_event_count(child); 5486 *enabled += child->total_time_enabled; 5487 *running += child->total_time_running; 5488 } 5489 mutex_unlock(&event->child_mutex); 5490 5491 return total; 5492 } 5493 5494 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5495 { 5496 struct perf_event_context *ctx; 5497 u64 count; 5498 5499 ctx = perf_event_ctx_lock(event); 5500 count = __perf_event_read_value(event, enabled, running); 5501 perf_event_ctx_unlock(event, ctx); 5502 5503 return count; 5504 } 5505 EXPORT_SYMBOL_GPL(perf_event_read_value); 5506 5507 static int __perf_read_group_add(struct perf_event *leader, 5508 u64 read_format, u64 *values) 5509 { 5510 struct perf_event_context *ctx = leader->ctx; 5511 struct perf_event *sub, *parent; 5512 unsigned long flags; 5513 int n = 1; /* skip @nr */ 5514 int ret; 5515 5516 ret = perf_event_read(leader, true); 5517 if (ret) 5518 return ret; 5519 5520 raw_spin_lock_irqsave(&ctx->lock, flags); 5521 /* 5522 * Verify the grouping between the parent and child (inherited) 5523 * events is still in tact. 5524 * 5525 * Specifically: 5526 * - leader->ctx->lock pins leader->sibling_list 5527 * - parent->child_mutex pins parent->child_list 5528 * - parent->ctx->mutex pins parent->sibling_list 5529 * 5530 * Because parent->ctx != leader->ctx (and child_list nests inside 5531 * ctx->mutex), group destruction is not atomic between children, also 5532 * see perf_event_release_kernel(). Additionally, parent can grow the 5533 * group. 5534 * 5535 * Therefore it is possible to have parent and child groups in a 5536 * different configuration and summing over such a beast makes no sense 5537 * what so ever. 5538 * 5539 * Reject this. 5540 */ 5541 parent = leader->parent; 5542 if (parent && 5543 (parent->group_generation != leader->group_generation || 5544 parent->nr_siblings != leader->nr_siblings)) { 5545 ret = -ECHILD; 5546 goto unlock; 5547 } 5548 5549 /* 5550 * Since we co-schedule groups, {enabled,running} times of siblings 5551 * will be identical to those of the leader, so we only publish one 5552 * set. 5553 */ 5554 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5555 values[n++] += leader->total_time_enabled + 5556 atomic64_read(&leader->child_total_time_enabled); 5557 } 5558 5559 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5560 values[n++] += leader->total_time_running + 5561 atomic64_read(&leader->child_total_time_running); 5562 } 5563 5564 /* 5565 * Write {count,id} tuples for every sibling. 5566 */ 5567 values[n++] += perf_event_count(leader); 5568 if (read_format & PERF_FORMAT_ID) 5569 values[n++] = primary_event_id(leader); 5570 if (read_format & PERF_FORMAT_LOST) 5571 values[n++] = atomic64_read(&leader->lost_samples); 5572 5573 for_each_sibling_event(sub, leader) { 5574 values[n++] += perf_event_count(sub); 5575 if (read_format & PERF_FORMAT_ID) 5576 values[n++] = primary_event_id(sub); 5577 if (read_format & PERF_FORMAT_LOST) 5578 values[n++] = atomic64_read(&sub->lost_samples); 5579 } 5580 5581 unlock: 5582 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5583 return ret; 5584 } 5585 5586 static int perf_read_group(struct perf_event *event, 5587 u64 read_format, char __user *buf) 5588 { 5589 struct perf_event *leader = event->group_leader, *child; 5590 struct perf_event_context *ctx = leader->ctx; 5591 int ret; 5592 u64 *values; 5593 5594 lockdep_assert_held(&ctx->mutex); 5595 5596 values = kzalloc(event->read_size, GFP_KERNEL); 5597 if (!values) 5598 return -ENOMEM; 5599 5600 values[0] = 1 + leader->nr_siblings; 5601 5602 mutex_lock(&leader->child_mutex); 5603 5604 ret = __perf_read_group_add(leader, read_format, values); 5605 if (ret) 5606 goto unlock; 5607 5608 list_for_each_entry(child, &leader->child_list, child_list) { 5609 ret = __perf_read_group_add(child, read_format, values); 5610 if (ret) 5611 goto unlock; 5612 } 5613 5614 mutex_unlock(&leader->child_mutex); 5615 5616 ret = event->read_size; 5617 if (copy_to_user(buf, values, event->read_size)) 5618 ret = -EFAULT; 5619 goto out; 5620 5621 unlock: 5622 mutex_unlock(&leader->child_mutex); 5623 out: 5624 kfree(values); 5625 return ret; 5626 } 5627 5628 static int perf_read_one(struct perf_event *event, 5629 u64 read_format, char __user *buf) 5630 { 5631 u64 enabled, running; 5632 u64 values[5]; 5633 int n = 0; 5634 5635 values[n++] = __perf_event_read_value(event, &enabled, &running); 5636 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5637 values[n++] = enabled; 5638 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5639 values[n++] = running; 5640 if (read_format & PERF_FORMAT_ID) 5641 values[n++] = primary_event_id(event); 5642 if (read_format & PERF_FORMAT_LOST) 5643 values[n++] = atomic64_read(&event->lost_samples); 5644 5645 if (copy_to_user(buf, values, n * sizeof(u64))) 5646 return -EFAULT; 5647 5648 return n * sizeof(u64); 5649 } 5650 5651 static bool is_event_hup(struct perf_event *event) 5652 { 5653 bool no_children; 5654 5655 if (event->state > PERF_EVENT_STATE_EXIT) 5656 return false; 5657 5658 mutex_lock(&event->child_mutex); 5659 no_children = list_empty(&event->child_list); 5660 mutex_unlock(&event->child_mutex); 5661 return no_children; 5662 } 5663 5664 /* 5665 * Read the performance event - simple non blocking version for now 5666 */ 5667 static ssize_t 5668 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5669 { 5670 u64 read_format = event->attr.read_format; 5671 int ret; 5672 5673 /* 5674 * Return end-of-file for a read on an event that is in 5675 * error state (i.e. because it was pinned but it couldn't be 5676 * scheduled on to the CPU at some point). 5677 */ 5678 if (event->state == PERF_EVENT_STATE_ERROR) 5679 return 0; 5680 5681 if (count < event->read_size) 5682 return -ENOSPC; 5683 5684 WARN_ON_ONCE(event->ctx->parent_ctx); 5685 if (read_format & PERF_FORMAT_GROUP) 5686 ret = perf_read_group(event, read_format, buf); 5687 else 5688 ret = perf_read_one(event, read_format, buf); 5689 5690 return ret; 5691 } 5692 5693 static ssize_t 5694 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5695 { 5696 struct perf_event *event = file->private_data; 5697 struct perf_event_context *ctx; 5698 int ret; 5699 5700 ret = security_perf_event_read(event); 5701 if (ret) 5702 return ret; 5703 5704 ctx = perf_event_ctx_lock(event); 5705 ret = __perf_read(event, buf, count); 5706 perf_event_ctx_unlock(event, ctx); 5707 5708 return ret; 5709 } 5710 5711 static __poll_t perf_poll(struct file *file, poll_table *wait) 5712 { 5713 struct perf_event *event = file->private_data; 5714 struct perf_buffer *rb; 5715 __poll_t events = EPOLLHUP; 5716 5717 poll_wait(file, &event->waitq, wait); 5718 5719 if (is_event_hup(event)) 5720 return events; 5721 5722 /* 5723 * Pin the event->rb by taking event->mmap_mutex; otherwise 5724 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5725 */ 5726 mutex_lock(&event->mmap_mutex); 5727 rb = event->rb; 5728 if (rb) 5729 events = atomic_xchg(&rb->poll, 0); 5730 mutex_unlock(&event->mmap_mutex); 5731 return events; 5732 } 5733 5734 static void _perf_event_reset(struct perf_event *event) 5735 { 5736 (void)perf_event_read(event, false); 5737 local64_set(&event->count, 0); 5738 perf_event_update_userpage(event); 5739 } 5740 5741 /* Assume it's not an event with inherit set. */ 5742 u64 perf_event_pause(struct perf_event *event, bool reset) 5743 { 5744 struct perf_event_context *ctx; 5745 u64 count; 5746 5747 ctx = perf_event_ctx_lock(event); 5748 WARN_ON_ONCE(event->attr.inherit); 5749 _perf_event_disable(event); 5750 count = local64_read(&event->count); 5751 if (reset) 5752 local64_set(&event->count, 0); 5753 perf_event_ctx_unlock(event, ctx); 5754 5755 return count; 5756 } 5757 EXPORT_SYMBOL_GPL(perf_event_pause); 5758 5759 /* 5760 * Holding the top-level event's child_mutex means that any 5761 * descendant process that has inherited this event will block 5762 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5763 * task existence requirements of perf_event_enable/disable. 5764 */ 5765 static void perf_event_for_each_child(struct perf_event *event, 5766 void (*func)(struct perf_event *)) 5767 { 5768 struct perf_event *child; 5769 5770 WARN_ON_ONCE(event->ctx->parent_ctx); 5771 5772 mutex_lock(&event->child_mutex); 5773 func(event); 5774 list_for_each_entry(child, &event->child_list, child_list) 5775 func(child); 5776 mutex_unlock(&event->child_mutex); 5777 } 5778 5779 static void perf_event_for_each(struct perf_event *event, 5780 void (*func)(struct perf_event *)) 5781 { 5782 struct perf_event_context *ctx = event->ctx; 5783 struct perf_event *sibling; 5784 5785 lockdep_assert_held(&ctx->mutex); 5786 5787 event = event->group_leader; 5788 5789 perf_event_for_each_child(event, func); 5790 for_each_sibling_event(sibling, event) 5791 perf_event_for_each_child(sibling, func); 5792 } 5793 5794 static void __perf_event_period(struct perf_event *event, 5795 struct perf_cpu_context *cpuctx, 5796 struct perf_event_context *ctx, 5797 void *info) 5798 { 5799 u64 value = *((u64 *)info); 5800 bool active; 5801 5802 if (event->attr.freq) { 5803 event->attr.sample_freq = value; 5804 } else { 5805 event->attr.sample_period = value; 5806 event->hw.sample_period = value; 5807 } 5808 5809 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5810 if (active) { 5811 perf_pmu_disable(event->pmu); 5812 /* 5813 * We could be throttled; unthrottle now to avoid the tick 5814 * trying to unthrottle while we already re-started the event. 5815 */ 5816 if (event->hw.interrupts == MAX_INTERRUPTS) { 5817 event->hw.interrupts = 0; 5818 perf_log_throttle(event, 1); 5819 } 5820 event->pmu->stop(event, PERF_EF_UPDATE); 5821 } 5822 5823 local64_set(&event->hw.period_left, 0); 5824 5825 if (active) { 5826 event->pmu->start(event, PERF_EF_RELOAD); 5827 perf_pmu_enable(event->pmu); 5828 } 5829 } 5830 5831 static int perf_event_check_period(struct perf_event *event, u64 value) 5832 { 5833 return event->pmu->check_period(event, value); 5834 } 5835 5836 static int _perf_event_period(struct perf_event *event, u64 value) 5837 { 5838 if (!is_sampling_event(event)) 5839 return -EINVAL; 5840 5841 if (!value) 5842 return -EINVAL; 5843 5844 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5845 return -EINVAL; 5846 5847 if (perf_event_check_period(event, value)) 5848 return -EINVAL; 5849 5850 if (!event->attr.freq && (value & (1ULL << 63))) 5851 return -EINVAL; 5852 5853 event_function_call(event, __perf_event_period, &value); 5854 5855 return 0; 5856 } 5857 5858 int perf_event_period(struct perf_event *event, u64 value) 5859 { 5860 struct perf_event_context *ctx; 5861 int ret; 5862 5863 ctx = perf_event_ctx_lock(event); 5864 ret = _perf_event_period(event, value); 5865 perf_event_ctx_unlock(event, ctx); 5866 5867 return ret; 5868 } 5869 EXPORT_SYMBOL_GPL(perf_event_period); 5870 5871 static const struct file_operations perf_fops; 5872 5873 static inline int perf_fget_light(int fd, struct fd *p) 5874 { 5875 struct fd f = fdget(fd); 5876 if (!f.file) 5877 return -EBADF; 5878 5879 if (f.file->f_op != &perf_fops) { 5880 fdput(f); 5881 return -EBADF; 5882 } 5883 *p = f; 5884 return 0; 5885 } 5886 5887 static int perf_event_set_output(struct perf_event *event, 5888 struct perf_event *output_event); 5889 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5890 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5891 struct perf_event_attr *attr); 5892 5893 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5894 { 5895 void (*func)(struct perf_event *); 5896 u32 flags = arg; 5897 5898 switch (cmd) { 5899 case PERF_EVENT_IOC_ENABLE: 5900 func = _perf_event_enable; 5901 break; 5902 case PERF_EVENT_IOC_DISABLE: 5903 func = _perf_event_disable; 5904 break; 5905 case PERF_EVENT_IOC_RESET: 5906 func = _perf_event_reset; 5907 break; 5908 5909 case PERF_EVENT_IOC_REFRESH: 5910 return _perf_event_refresh(event, arg); 5911 5912 case PERF_EVENT_IOC_PERIOD: 5913 { 5914 u64 value; 5915 5916 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5917 return -EFAULT; 5918 5919 return _perf_event_period(event, value); 5920 } 5921 case PERF_EVENT_IOC_ID: 5922 { 5923 u64 id = primary_event_id(event); 5924 5925 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5926 return -EFAULT; 5927 return 0; 5928 } 5929 5930 case PERF_EVENT_IOC_SET_OUTPUT: 5931 { 5932 int ret; 5933 if (arg != -1) { 5934 struct perf_event *output_event; 5935 struct fd output; 5936 ret = perf_fget_light(arg, &output); 5937 if (ret) 5938 return ret; 5939 output_event = output.file->private_data; 5940 ret = perf_event_set_output(event, output_event); 5941 fdput(output); 5942 } else { 5943 ret = perf_event_set_output(event, NULL); 5944 } 5945 return ret; 5946 } 5947 5948 case PERF_EVENT_IOC_SET_FILTER: 5949 return perf_event_set_filter(event, (void __user *)arg); 5950 5951 case PERF_EVENT_IOC_SET_BPF: 5952 { 5953 struct bpf_prog *prog; 5954 int err; 5955 5956 prog = bpf_prog_get(arg); 5957 if (IS_ERR(prog)) 5958 return PTR_ERR(prog); 5959 5960 err = perf_event_set_bpf_prog(event, prog, 0); 5961 if (err) { 5962 bpf_prog_put(prog); 5963 return err; 5964 } 5965 5966 return 0; 5967 } 5968 5969 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5970 struct perf_buffer *rb; 5971 5972 rcu_read_lock(); 5973 rb = rcu_dereference(event->rb); 5974 if (!rb || !rb->nr_pages) { 5975 rcu_read_unlock(); 5976 return -EINVAL; 5977 } 5978 rb_toggle_paused(rb, !!arg); 5979 rcu_read_unlock(); 5980 return 0; 5981 } 5982 5983 case PERF_EVENT_IOC_QUERY_BPF: 5984 return perf_event_query_prog_array(event, (void __user *)arg); 5985 5986 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5987 struct perf_event_attr new_attr; 5988 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5989 &new_attr); 5990 5991 if (err) 5992 return err; 5993 5994 return perf_event_modify_attr(event, &new_attr); 5995 } 5996 default: 5997 return -ENOTTY; 5998 } 5999 6000 if (flags & PERF_IOC_FLAG_GROUP) 6001 perf_event_for_each(event, func); 6002 else 6003 perf_event_for_each_child(event, func); 6004 6005 return 0; 6006 } 6007 6008 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6009 { 6010 struct perf_event *event = file->private_data; 6011 struct perf_event_context *ctx; 6012 long ret; 6013 6014 /* Treat ioctl like writes as it is likely a mutating operation. */ 6015 ret = security_perf_event_write(event); 6016 if (ret) 6017 return ret; 6018 6019 ctx = perf_event_ctx_lock(event); 6020 ret = _perf_ioctl(event, cmd, arg); 6021 perf_event_ctx_unlock(event, ctx); 6022 6023 return ret; 6024 } 6025 6026 #ifdef CONFIG_COMPAT 6027 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6028 unsigned long arg) 6029 { 6030 switch (_IOC_NR(cmd)) { 6031 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6032 case _IOC_NR(PERF_EVENT_IOC_ID): 6033 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6034 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6035 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6036 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6037 cmd &= ~IOCSIZE_MASK; 6038 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6039 } 6040 break; 6041 } 6042 return perf_ioctl(file, cmd, arg); 6043 } 6044 #else 6045 # define perf_compat_ioctl NULL 6046 #endif 6047 6048 int perf_event_task_enable(void) 6049 { 6050 struct perf_event_context *ctx; 6051 struct perf_event *event; 6052 6053 mutex_lock(¤t->perf_event_mutex); 6054 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6055 ctx = perf_event_ctx_lock(event); 6056 perf_event_for_each_child(event, _perf_event_enable); 6057 perf_event_ctx_unlock(event, ctx); 6058 } 6059 mutex_unlock(¤t->perf_event_mutex); 6060 6061 return 0; 6062 } 6063 6064 int perf_event_task_disable(void) 6065 { 6066 struct perf_event_context *ctx; 6067 struct perf_event *event; 6068 6069 mutex_lock(¤t->perf_event_mutex); 6070 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6071 ctx = perf_event_ctx_lock(event); 6072 perf_event_for_each_child(event, _perf_event_disable); 6073 perf_event_ctx_unlock(event, ctx); 6074 } 6075 mutex_unlock(¤t->perf_event_mutex); 6076 6077 return 0; 6078 } 6079 6080 static int perf_event_index(struct perf_event *event) 6081 { 6082 if (event->hw.state & PERF_HES_STOPPED) 6083 return 0; 6084 6085 if (event->state != PERF_EVENT_STATE_ACTIVE) 6086 return 0; 6087 6088 return event->pmu->event_idx(event); 6089 } 6090 6091 static void perf_event_init_userpage(struct perf_event *event) 6092 { 6093 struct perf_event_mmap_page *userpg; 6094 struct perf_buffer *rb; 6095 6096 rcu_read_lock(); 6097 rb = rcu_dereference(event->rb); 6098 if (!rb) 6099 goto unlock; 6100 6101 userpg = rb->user_page; 6102 6103 /* Allow new userspace to detect that bit 0 is deprecated */ 6104 userpg->cap_bit0_is_deprecated = 1; 6105 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6106 userpg->data_offset = PAGE_SIZE; 6107 userpg->data_size = perf_data_size(rb); 6108 6109 unlock: 6110 rcu_read_unlock(); 6111 } 6112 6113 void __weak arch_perf_update_userpage( 6114 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6115 { 6116 } 6117 6118 /* 6119 * Callers need to ensure there can be no nesting of this function, otherwise 6120 * the seqlock logic goes bad. We can not serialize this because the arch 6121 * code calls this from NMI context. 6122 */ 6123 void perf_event_update_userpage(struct perf_event *event) 6124 { 6125 struct perf_event_mmap_page *userpg; 6126 struct perf_buffer *rb; 6127 u64 enabled, running, now; 6128 6129 rcu_read_lock(); 6130 rb = rcu_dereference(event->rb); 6131 if (!rb) 6132 goto unlock; 6133 6134 /* 6135 * compute total_time_enabled, total_time_running 6136 * based on snapshot values taken when the event 6137 * was last scheduled in. 6138 * 6139 * we cannot simply called update_context_time() 6140 * because of locking issue as we can be called in 6141 * NMI context 6142 */ 6143 calc_timer_values(event, &now, &enabled, &running); 6144 6145 userpg = rb->user_page; 6146 /* 6147 * Disable preemption to guarantee consistent time stamps are stored to 6148 * the user page. 6149 */ 6150 preempt_disable(); 6151 ++userpg->lock; 6152 barrier(); 6153 userpg->index = perf_event_index(event); 6154 userpg->offset = perf_event_count(event); 6155 if (userpg->index) 6156 userpg->offset -= local64_read(&event->hw.prev_count); 6157 6158 userpg->time_enabled = enabled + 6159 atomic64_read(&event->child_total_time_enabled); 6160 6161 userpg->time_running = running + 6162 atomic64_read(&event->child_total_time_running); 6163 6164 arch_perf_update_userpage(event, userpg, now); 6165 6166 barrier(); 6167 ++userpg->lock; 6168 preempt_enable(); 6169 unlock: 6170 rcu_read_unlock(); 6171 } 6172 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6173 6174 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6175 { 6176 struct perf_event *event = vmf->vma->vm_file->private_data; 6177 struct perf_buffer *rb; 6178 vm_fault_t ret = VM_FAULT_SIGBUS; 6179 6180 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6181 if (vmf->pgoff == 0) 6182 ret = 0; 6183 return ret; 6184 } 6185 6186 rcu_read_lock(); 6187 rb = rcu_dereference(event->rb); 6188 if (!rb) 6189 goto unlock; 6190 6191 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6192 goto unlock; 6193 6194 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6195 if (!vmf->page) 6196 goto unlock; 6197 6198 get_page(vmf->page); 6199 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6200 vmf->page->index = vmf->pgoff; 6201 6202 ret = 0; 6203 unlock: 6204 rcu_read_unlock(); 6205 6206 return ret; 6207 } 6208 6209 static void ring_buffer_attach(struct perf_event *event, 6210 struct perf_buffer *rb) 6211 { 6212 struct perf_buffer *old_rb = NULL; 6213 unsigned long flags; 6214 6215 WARN_ON_ONCE(event->parent); 6216 6217 if (event->rb) { 6218 /* 6219 * Should be impossible, we set this when removing 6220 * event->rb_entry and wait/clear when adding event->rb_entry. 6221 */ 6222 WARN_ON_ONCE(event->rcu_pending); 6223 6224 old_rb = event->rb; 6225 spin_lock_irqsave(&old_rb->event_lock, flags); 6226 list_del_rcu(&event->rb_entry); 6227 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6228 6229 event->rcu_batches = get_state_synchronize_rcu(); 6230 event->rcu_pending = 1; 6231 } 6232 6233 if (rb) { 6234 if (event->rcu_pending) { 6235 cond_synchronize_rcu(event->rcu_batches); 6236 event->rcu_pending = 0; 6237 } 6238 6239 spin_lock_irqsave(&rb->event_lock, flags); 6240 list_add_rcu(&event->rb_entry, &rb->event_list); 6241 spin_unlock_irqrestore(&rb->event_lock, flags); 6242 } 6243 6244 /* 6245 * Avoid racing with perf_mmap_close(AUX): stop the event 6246 * before swizzling the event::rb pointer; if it's getting 6247 * unmapped, its aux_mmap_count will be 0 and it won't 6248 * restart. See the comment in __perf_pmu_output_stop(). 6249 * 6250 * Data will inevitably be lost when set_output is done in 6251 * mid-air, but then again, whoever does it like this is 6252 * not in for the data anyway. 6253 */ 6254 if (has_aux(event)) 6255 perf_event_stop(event, 0); 6256 6257 rcu_assign_pointer(event->rb, rb); 6258 6259 if (old_rb) { 6260 ring_buffer_put(old_rb); 6261 /* 6262 * Since we detached before setting the new rb, so that we 6263 * could attach the new rb, we could have missed a wakeup. 6264 * Provide it now. 6265 */ 6266 wake_up_all(&event->waitq); 6267 } 6268 } 6269 6270 static void ring_buffer_wakeup(struct perf_event *event) 6271 { 6272 struct perf_buffer *rb; 6273 6274 if (event->parent) 6275 event = event->parent; 6276 6277 rcu_read_lock(); 6278 rb = rcu_dereference(event->rb); 6279 if (rb) { 6280 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6281 wake_up_all(&event->waitq); 6282 } 6283 rcu_read_unlock(); 6284 } 6285 6286 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6287 { 6288 struct perf_buffer *rb; 6289 6290 if (event->parent) 6291 event = event->parent; 6292 6293 rcu_read_lock(); 6294 rb = rcu_dereference(event->rb); 6295 if (rb) { 6296 if (!refcount_inc_not_zero(&rb->refcount)) 6297 rb = NULL; 6298 } 6299 rcu_read_unlock(); 6300 6301 return rb; 6302 } 6303 6304 void ring_buffer_put(struct perf_buffer *rb) 6305 { 6306 if (!refcount_dec_and_test(&rb->refcount)) 6307 return; 6308 6309 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6310 6311 call_rcu(&rb->rcu_head, rb_free_rcu); 6312 } 6313 6314 static void perf_mmap_open(struct vm_area_struct *vma) 6315 { 6316 struct perf_event *event = vma->vm_file->private_data; 6317 6318 atomic_inc(&event->mmap_count); 6319 atomic_inc(&event->rb->mmap_count); 6320 6321 if (vma->vm_pgoff) 6322 atomic_inc(&event->rb->aux_mmap_count); 6323 6324 if (event->pmu->event_mapped) 6325 event->pmu->event_mapped(event, vma->vm_mm); 6326 } 6327 6328 static void perf_pmu_output_stop(struct perf_event *event); 6329 6330 /* 6331 * A buffer can be mmap()ed multiple times; either directly through the same 6332 * event, or through other events by use of perf_event_set_output(). 6333 * 6334 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6335 * the buffer here, where we still have a VM context. This means we need 6336 * to detach all events redirecting to us. 6337 */ 6338 static void perf_mmap_close(struct vm_area_struct *vma) 6339 { 6340 struct perf_event *event = vma->vm_file->private_data; 6341 struct perf_buffer *rb = ring_buffer_get(event); 6342 struct user_struct *mmap_user = rb->mmap_user; 6343 int mmap_locked = rb->mmap_locked; 6344 unsigned long size = perf_data_size(rb); 6345 bool detach_rest = false; 6346 6347 if (event->pmu->event_unmapped) 6348 event->pmu->event_unmapped(event, vma->vm_mm); 6349 6350 /* 6351 * rb->aux_mmap_count will always drop before rb->mmap_count and 6352 * event->mmap_count, so it is ok to use event->mmap_mutex to 6353 * serialize with perf_mmap here. 6354 */ 6355 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6356 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6357 /* 6358 * Stop all AUX events that are writing to this buffer, 6359 * so that we can free its AUX pages and corresponding PMU 6360 * data. Note that after rb::aux_mmap_count dropped to zero, 6361 * they won't start any more (see perf_aux_output_begin()). 6362 */ 6363 perf_pmu_output_stop(event); 6364 6365 /* now it's safe to free the pages */ 6366 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6367 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6368 6369 /* this has to be the last one */ 6370 rb_free_aux(rb); 6371 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6372 6373 mutex_unlock(&event->mmap_mutex); 6374 } 6375 6376 if (atomic_dec_and_test(&rb->mmap_count)) 6377 detach_rest = true; 6378 6379 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6380 goto out_put; 6381 6382 ring_buffer_attach(event, NULL); 6383 mutex_unlock(&event->mmap_mutex); 6384 6385 /* If there's still other mmap()s of this buffer, we're done. */ 6386 if (!detach_rest) 6387 goto out_put; 6388 6389 /* 6390 * No other mmap()s, detach from all other events that might redirect 6391 * into the now unreachable buffer. Somewhat complicated by the 6392 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6393 */ 6394 again: 6395 rcu_read_lock(); 6396 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6397 if (!atomic_long_inc_not_zero(&event->refcount)) { 6398 /* 6399 * This event is en-route to free_event() which will 6400 * detach it and remove it from the list. 6401 */ 6402 continue; 6403 } 6404 rcu_read_unlock(); 6405 6406 mutex_lock(&event->mmap_mutex); 6407 /* 6408 * Check we didn't race with perf_event_set_output() which can 6409 * swizzle the rb from under us while we were waiting to 6410 * acquire mmap_mutex. 6411 * 6412 * If we find a different rb; ignore this event, a next 6413 * iteration will no longer find it on the list. We have to 6414 * still restart the iteration to make sure we're not now 6415 * iterating the wrong list. 6416 */ 6417 if (event->rb == rb) 6418 ring_buffer_attach(event, NULL); 6419 6420 mutex_unlock(&event->mmap_mutex); 6421 put_event(event); 6422 6423 /* 6424 * Restart the iteration; either we're on the wrong list or 6425 * destroyed its integrity by doing a deletion. 6426 */ 6427 goto again; 6428 } 6429 rcu_read_unlock(); 6430 6431 /* 6432 * It could be there's still a few 0-ref events on the list; they'll 6433 * get cleaned up by free_event() -- they'll also still have their 6434 * ref on the rb and will free it whenever they are done with it. 6435 * 6436 * Aside from that, this buffer is 'fully' detached and unmapped, 6437 * undo the VM accounting. 6438 */ 6439 6440 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6441 &mmap_user->locked_vm); 6442 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6443 free_uid(mmap_user); 6444 6445 out_put: 6446 ring_buffer_put(rb); /* could be last */ 6447 } 6448 6449 static const struct vm_operations_struct perf_mmap_vmops = { 6450 .open = perf_mmap_open, 6451 .close = perf_mmap_close, /* non mergeable */ 6452 .fault = perf_mmap_fault, 6453 .page_mkwrite = perf_mmap_fault, 6454 }; 6455 6456 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6457 { 6458 struct perf_event *event = file->private_data; 6459 unsigned long user_locked, user_lock_limit; 6460 struct user_struct *user = current_user(); 6461 struct perf_buffer *rb = NULL; 6462 unsigned long locked, lock_limit; 6463 unsigned long vma_size; 6464 unsigned long nr_pages; 6465 long user_extra = 0, extra = 0; 6466 int ret = 0, flags = 0; 6467 6468 /* 6469 * Don't allow mmap() of inherited per-task counters. This would 6470 * create a performance issue due to all children writing to the 6471 * same rb. 6472 */ 6473 if (event->cpu == -1 && event->attr.inherit) 6474 return -EINVAL; 6475 6476 if (!(vma->vm_flags & VM_SHARED)) 6477 return -EINVAL; 6478 6479 ret = security_perf_event_read(event); 6480 if (ret) 6481 return ret; 6482 6483 vma_size = vma->vm_end - vma->vm_start; 6484 6485 if (vma->vm_pgoff == 0) { 6486 nr_pages = (vma_size / PAGE_SIZE) - 1; 6487 } else { 6488 /* 6489 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6490 * mapped, all subsequent mappings should have the same size 6491 * and offset. Must be above the normal perf buffer. 6492 */ 6493 u64 aux_offset, aux_size; 6494 6495 if (!event->rb) 6496 return -EINVAL; 6497 6498 nr_pages = vma_size / PAGE_SIZE; 6499 6500 mutex_lock(&event->mmap_mutex); 6501 ret = -EINVAL; 6502 6503 rb = event->rb; 6504 if (!rb) 6505 goto aux_unlock; 6506 6507 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6508 aux_size = READ_ONCE(rb->user_page->aux_size); 6509 6510 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6511 goto aux_unlock; 6512 6513 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6514 goto aux_unlock; 6515 6516 /* already mapped with a different offset */ 6517 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6518 goto aux_unlock; 6519 6520 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6521 goto aux_unlock; 6522 6523 /* already mapped with a different size */ 6524 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6525 goto aux_unlock; 6526 6527 if (!is_power_of_2(nr_pages)) 6528 goto aux_unlock; 6529 6530 if (!atomic_inc_not_zero(&rb->mmap_count)) 6531 goto aux_unlock; 6532 6533 if (rb_has_aux(rb)) { 6534 atomic_inc(&rb->aux_mmap_count); 6535 ret = 0; 6536 goto unlock; 6537 } 6538 6539 atomic_set(&rb->aux_mmap_count, 1); 6540 user_extra = nr_pages; 6541 6542 goto accounting; 6543 } 6544 6545 /* 6546 * If we have rb pages ensure they're a power-of-two number, so we 6547 * can do bitmasks instead of modulo. 6548 */ 6549 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6550 return -EINVAL; 6551 6552 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6553 return -EINVAL; 6554 6555 WARN_ON_ONCE(event->ctx->parent_ctx); 6556 again: 6557 mutex_lock(&event->mmap_mutex); 6558 if (event->rb) { 6559 if (data_page_nr(event->rb) != nr_pages) { 6560 ret = -EINVAL; 6561 goto unlock; 6562 } 6563 6564 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6565 /* 6566 * Raced against perf_mmap_close(); remove the 6567 * event and try again. 6568 */ 6569 ring_buffer_attach(event, NULL); 6570 mutex_unlock(&event->mmap_mutex); 6571 goto again; 6572 } 6573 6574 goto unlock; 6575 } 6576 6577 user_extra = nr_pages + 1; 6578 6579 accounting: 6580 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6581 6582 /* 6583 * Increase the limit linearly with more CPUs: 6584 */ 6585 user_lock_limit *= num_online_cpus(); 6586 6587 user_locked = atomic_long_read(&user->locked_vm); 6588 6589 /* 6590 * sysctl_perf_event_mlock may have changed, so that 6591 * user->locked_vm > user_lock_limit 6592 */ 6593 if (user_locked > user_lock_limit) 6594 user_locked = user_lock_limit; 6595 user_locked += user_extra; 6596 6597 if (user_locked > user_lock_limit) { 6598 /* 6599 * charge locked_vm until it hits user_lock_limit; 6600 * charge the rest from pinned_vm 6601 */ 6602 extra = user_locked - user_lock_limit; 6603 user_extra -= extra; 6604 } 6605 6606 lock_limit = rlimit(RLIMIT_MEMLOCK); 6607 lock_limit >>= PAGE_SHIFT; 6608 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6609 6610 if ((locked > lock_limit) && perf_is_paranoid() && 6611 !capable(CAP_IPC_LOCK)) { 6612 ret = -EPERM; 6613 goto unlock; 6614 } 6615 6616 WARN_ON(!rb && event->rb); 6617 6618 if (vma->vm_flags & VM_WRITE) 6619 flags |= RING_BUFFER_WRITABLE; 6620 6621 if (!rb) { 6622 rb = rb_alloc(nr_pages, 6623 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6624 event->cpu, flags); 6625 6626 if (!rb) { 6627 ret = -ENOMEM; 6628 goto unlock; 6629 } 6630 6631 atomic_set(&rb->mmap_count, 1); 6632 rb->mmap_user = get_current_user(); 6633 rb->mmap_locked = extra; 6634 6635 ring_buffer_attach(event, rb); 6636 6637 perf_event_update_time(event); 6638 perf_event_init_userpage(event); 6639 perf_event_update_userpage(event); 6640 } else { 6641 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6642 event->attr.aux_watermark, flags); 6643 if (!ret) 6644 rb->aux_mmap_locked = extra; 6645 } 6646 6647 unlock: 6648 if (!ret) { 6649 atomic_long_add(user_extra, &user->locked_vm); 6650 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6651 6652 atomic_inc(&event->mmap_count); 6653 } else if (rb) { 6654 atomic_dec(&rb->mmap_count); 6655 } 6656 aux_unlock: 6657 mutex_unlock(&event->mmap_mutex); 6658 6659 /* 6660 * Since pinned accounting is per vm we cannot allow fork() to copy our 6661 * vma. 6662 */ 6663 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6664 vma->vm_ops = &perf_mmap_vmops; 6665 6666 if (event->pmu->event_mapped) 6667 event->pmu->event_mapped(event, vma->vm_mm); 6668 6669 return ret; 6670 } 6671 6672 static int perf_fasync(int fd, struct file *filp, int on) 6673 { 6674 struct inode *inode = file_inode(filp); 6675 struct perf_event *event = filp->private_data; 6676 int retval; 6677 6678 inode_lock(inode); 6679 retval = fasync_helper(fd, filp, on, &event->fasync); 6680 inode_unlock(inode); 6681 6682 if (retval < 0) 6683 return retval; 6684 6685 return 0; 6686 } 6687 6688 static const struct file_operations perf_fops = { 6689 .llseek = no_llseek, 6690 .release = perf_release, 6691 .read = perf_read, 6692 .poll = perf_poll, 6693 .unlocked_ioctl = perf_ioctl, 6694 .compat_ioctl = perf_compat_ioctl, 6695 .mmap = perf_mmap, 6696 .fasync = perf_fasync, 6697 }; 6698 6699 /* 6700 * Perf event wakeup 6701 * 6702 * If there's data, ensure we set the poll() state and publish everything 6703 * to user-space before waking everybody up. 6704 */ 6705 6706 void perf_event_wakeup(struct perf_event *event) 6707 { 6708 ring_buffer_wakeup(event); 6709 6710 if (event->pending_kill) { 6711 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6712 event->pending_kill = 0; 6713 } 6714 } 6715 6716 static void perf_sigtrap(struct perf_event *event) 6717 { 6718 /* 6719 * We'd expect this to only occur if the irq_work is delayed and either 6720 * ctx->task or current has changed in the meantime. This can be the 6721 * case on architectures that do not implement arch_irq_work_raise(). 6722 */ 6723 if (WARN_ON_ONCE(event->ctx->task != current)) 6724 return; 6725 6726 /* 6727 * Both perf_pending_task() and perf_pending_irq() can race with the 6728 * task exiting. 6729 */ 6730 if (current->flags & PF_EXITING) 6731 return; 6732 6733 send_sig_perf((void __user *)event->pending_addr, 6734 event->orig_type, event->attr.sig_data); 6735 } 6736 6737 /* 6738 * Deliver the pending work in-event-context or follow the context. 6739 */ 6740 static void __perf_pending_irq(struct perf_event *event) 6741 { 6742 int cpu = READ_ONCE(event->oncpu); 6743 6744 /* 6745 * If the event isn't running; we done. event_sched_out() will have 6746 * taken care of things. 6747 */ 6748 if (cpu < 0) 6749 return; 6750 6751 /* 6752 * Yay, we hit home and are in the context of the event. 6753 */ 6754 if (cpu == smp_processor_id()) { 6755 if (event->pending_sigtrap) { 6756 event->pending_sigtrap = 0; 6757 perf_sigtrap(event); 6758 local_dec(&event->ctx->nr_pending); 6759 } 6760 if (event->pending_disable) { 6761 event->pending_disable = 0; 6762 perf_event_disable_local(event); 6763 } 6764 return; 6765 } 6766 6767 /* 6768 * CPU-A CPU-B 6769 * 6770 * perf_event_disable_inatomic() 6771 * @pending_disable = CPU-A; 6772 * irq_work_queue(); 6773 * 6774 * sched-out 6775 * @pending_disable = -1; 6776 * 6777 * sched-in 6778 * perf_event_disable_inatomic() 6779 * @pending_disable = CPU-B; 6780 * irq_work_queue(); // FAILS 6781 * 6782 * irq_work_run() 6783 * perf_pending_irq() 6784 * 6785 * But the event runs on CPU-B and wants disabling there. 6786 */ 6787 irq_work_queue_on(&event->pending_irq, cpu); 6788 } 6789 6790 static void perf_pending_irq(struct irq_work *entry) 6791 { 6792 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6793 int rctx; 6794 6795 /* 6796 * If we 'fail' here, that's OK, it means recursion is already disabled 6797 * and we won't recurse 'further'. 6798 */ 6799 rctx = perf_swevent_get_recursion_context(); 6800 6801 /* 6802 * The wakeup isn't bound to the context of the event -- it can happen 6803 * irrespective of where the event is. 6804 */ 6805 if (event->pending_wakeup) { 6806 event->pending_wakeup = 0; 6807 perf_event_wakeup(event); 6808 } 6809 6810 __perf_pending_irq(event); 6811 6812 if (rctx >= 0) 6813 perf_swevent_put_recursion_context(rctx); 6814 } 6815 6816 static void perf_pending_task(struct callback_head *head) 6817 { 6818 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6819 int rctx; 6820 6821 /* 6822 * If we 'fail' here, that's OK, it means recursion is already disabled 6823 * and we won't recurse 'further'. 6824 */ 6825 preempt_disable_notrace(); 6826 rctx = perf_swevent_get_recursion_context(); 6827 6828 if (event->pending_work) { 6829 event->pending_work = 0; 6830 perf_sigtrap(event); 6831 local_dec(&event->ctx->nr_pending); 6832 } 6833 6834 if (rctx >= 0) 6835 perf_swevent_put_recursion_context(rctx); 6836 preempt_enable_notrace(); 6837 6838 put_event(event); 6839 } 6840 6841 #ifdef CONFIG_GUEST_PERF_EVENTS 6842 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6843 6844 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6845 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6846 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6847 6848 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6849 { 6850 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6851 return; 6852 6853 rcu_assign_pointer(perf_guest_cbs, cbs); 6854 static_call_update(__perf_guest_state, cbs->state); 6855 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6856 6857 /* Implementing ->handle_intel_pt_intr is optional. */ 6858 if (cbs->handle_intel_pt_intr) 6859 static_call_update(__perf_guest_handle_intel_pt_intr, 6860 cbs->handle_intel_pt_intr); 6861 } 6862 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6863 6864 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6865 { 6866 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6867 return; 6868 6869 rcu_assign_pointer(perf_guest_cbs, NULL); 6870 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6871 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6872 static_call_update(__perf_guest_handle_intel_pt_intr, 6873 (void *)&__static_call_return0); 6874 synchronize_rcu(); 6875 } 6876 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6877 #endif 6878 6879 static void 6880 perf_output_sample_regs(struct perf_output_handle *handle, 6881 struct pt_regs *regs, u64 mask) 6882 { 6883 int bit; 6884 DECLARE_BITMAP(_mask, 64); 6885 6886 bitmap_from_u64(_mask, mask); 6887 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6888 u64 val; 6889 6890 val = perf_reg_value(regs, bit); 6891 perf_output_put(handle, val); 6892 } 6893 } 6894 6895 static void perf_sample_regs_user(struct perf_regs *regs_user, 6896 struct pt_regs *regs) 6897 { 6898 if (user_mode(regs)) { 6899 regs_user->abi = perf_reg_abi(current); 6900 regs_user->regs = regs; 6901 } else if (!(current->flags & PF_KTHREAD)) { 6902 perf_get_regs_user(regs_user, regs); 6903 } else { 6904 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6905 regs_user->regs = NULL; 6906 } 6907 } 6908 6909 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6910 struct pt_regs *regs) 6911 { 6912 regs_intr->regs = regs; 6913 regs_intr->abi = perf_reg_abi(current); 6914 } 6915 6916 6917 /* 6918 * Get remaining task size from user stack pointer. 6919 * 6920 * It'd be better to take stack vma map and limit this more 6921 * precisely, but there's no way to get it safely under interrupt, 6922 * so using TASK_SIZE as limit. 6923 */ 6924 static u64 perf_ustack_task_size(struct pt_regs *regs) 6925 { 6926 unsigned long addr = perf_user_stack_pointer(regs); 6927 6928 if (!addr || addr >= TASK_SIZE) 6929 return 0; 6930 6931 return TASK_SIZE - addr; 6932 } 6933 6934 static u16 6935 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6936 struct pt_regs *regs) 6937 { 6938 u64 task_size; 6939 6940 /* No regs, no stack pointer, no dump. */ 6941 if (!regs) 6942 return 0; 6943 6944 /* 6945 * Check if we fit in with the requested stack size into the: 6946 * - TASK_SIZE 6947 * If we don't, we limit the size to the TASK_SIZE. 6948 * 6949 * - remaining sample size 6950 * If we don't, we customize the stack size to 6951 * fit in to the remaining sample size. 6952 */ 6953 6954 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6955 stack_size = min(stack_size, (u16) task_size); 6956 6957 /* Current header size plus static size and dynamic size. */ 6958 header_size += 2 * sizeof(u64); 6959 6960 /* Do we fit in with the current stack dump size? */ 6961 if ((u16) (header_size + stack_size) < header_size) { 6962 /* 6963 * If we overflow the maximum size for the sample, 6964 * we customize the stack dump size to fit in. 6965 */ 6966 stack_size = USHRT_MAX - header_size - sizeof(u64); 6967 stack_size = round_up(stack_size, sizeof(u64)); 6968 } 6969 6970 return stack_size; 6971 } 6972 6973 static void 6974 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6975 struct pt_regs *regs) 6976 { 6977 /* Case of a kernel thread, nothing to dump */ 6978 if (!regs) { 6979 u64 size = 0; 6980 perf_output_put(handle, size); 6981 } else { 6982 unsigned long sp; 6983 unsigned int rem; 6984 u64 dyn_size; 6985 6986 /* 6987 * We dump: 6988 * static size 6989 * - the size requested by user or the best one we can fit 6990 * in to the sample max size 6991 * data 6992 * - user stack dump data 6993 * dynamic size 6994 * - the actual dumped size 6995 */ 6996 6997 /* Static size. */ 6998 perf_output_put(handle, dump_size); 6999 7000 /* Data. */ 7001 sp = perf_user_stack_pointer(regs); 7002 rem = __output_copy_user(handle, (void *) sp, dump_size); 7003 dyn_size = dump_size - rem; 7004 7005 perf_output_skip(handle, rem); 7006 7007 /* Dynamic size. */ 7008 perf_output_put(handle, dyn_size); 7009 } 7010 } 7011 7012 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7013 struct perf_sample_data *data, 7014 size_t size) 7015 { 7016 struct perf_event *sampler = event->aux_event; 7017 struct perf_buffer *rb; 7018 7019 data->aux_size = 0; 7020 7021 if (!sampler) 7022 goto out; 7023 7024 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7025 goto out; 7026 7027 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7028 goto out; 7029 7030 rb = ring_buffer_get(sampler); 7031 if (!rb) 7032 goto out; 7033 7034 /* 7035 * If this is an NMI hit inside sampling code, don't take 7036 * the sample. See also perf_aux_sample_output(). 7037 */ 7038 if (READ_ONCE(rb->aux_in_sampling)) { 7039 data->aux_size = 0; 7040 } else { 7041 size = min_t(size_t, size, perf_aux_size(rb)); 7042 data->aux_size = ALIGN(size, sizeof(u64)); 7043 } 7044 ring_buffer_put(rb); 7045 7046 out: 7047 return data->aux_size; 7048 } 7049 7050 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7051 struct perf_event *event, 7052 struct perf_output_handle *handle, 7053 unsigned long size) 7054 { 7055 unsigned long flags; 7056 long ret; 7057 7058 /* 7059 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7060 * paths. If we start calling them in NMI context, they may race with 7061 * the IRQ ones, that is, for example, re-starting an event that's just 7062 * been stopped, which is why we're using a separate callback that 7063 * doesn't change the event state. 7064 * 7065 * IRQs need to be disabled to prevent IPIs from racing with us. 7066 */ 7067 local_irq_save(flags); 7068 /* 7069 * Guard against NMI hits inside the critical section; 7070 * see also perf_prepare_sample_aux(). 7071 */ 7072 WRITE_ONCE(rb->aux_in_sampling, 1); 7073 barrier(); 7074 7075 ret = event->pmu->snapshot_aux(event, handle, size); 7076 7077 barrier(); 7078 WRITE_ONCE(rb->aux_in_sampling, 0); 7079 local_irq_restore(flags); 7080 7081 return ret; 7082 } 7083 7084 static void perf_aux_sample_output(struct perf_event *event, 7085 struct perf_output_handle *handle, 7086 struct perf_sample_data *data) 7087 { 7088 struct perf_event *sampler = event->aux_event; 7089 struct perf_buffer *rb; 7090 unsigned long pad; 7091 long size; 7092 7093 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7094 return; 7095 7096 rb = ring_buffer_get(sampler); 7097 if (!rb) 7098 return; 7099 7100 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7101 7102 /* 7103 * An error here means that perf_output_copy() failed (returned a 7104 * non-zero surplus that it didn't copy), which in its current 7105 * enlightened implementation is not possible. If that changes, we'd 7106 * like to know. 7107 */ 7108 if (WARN_ON_ONCE(size < 0)) 7109 goto out_put; 7110 7111 /* 7112 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7113 * perf_prepare_sample_aux(), so should not be more than that. 7114 */ 7115 pad = data->aux_size - size; 7116 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7117 pad = 8; 7118 7119 if (pad) { 7120 u64 zero = 0; 7121 perf_output_copy(handle, &zero, pad); 7122 } 7123 7124 out_put: 7125 ring_buffer_put(rb); 7126 } 7127 7128 /* 7129 * A set of common sample data types saved even for non-sample records 7130 * when event->attr.sample_id_all is set. 7131 */ 7132 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7133 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7134 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7135 7136 static void __perf_event_header__init_id(struct perf_sample_data *data, 7137 struct perf_event *event, 7138 u64 sample_type) 7139 { 7140 data->type = event->attr.sample_type; 7141 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7142 7143 if (sample_type & PERF_SAMPLE_TID) { 7144 /* namespace issues */ 7145 data->tid_entry.pid = perf_event_pid(event, current); 7146 data->tid_entry.tid = perf_event_tid(event, current); 7147 } 7148 7149 if (sample_type & PERF_SAMPLE_TIME) 7150 data->time = perf_event_clock(event); 7151 7152 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7153 data->id = primary_event_id(event); 7154 7155 if (sample_type & PERF_SAMPLE_STREAM_ID) 7156 data->stream_id = event->id; 7157 7158 if (sample_type & PERF_SAMPLE_CPU) { 7159 data->cpu_entry.cpu = raw_smp_processor_id(); 7160 data->cpu_entry.reserved = 0; 7161 } 7162 } 7163 7164 void perf_event_header__init_id(struct perf_event_header *header, 7165 struct perf_sample_data *data, 7166 struct perf_event *event) 7167 { 7168 if (event->attr.sample_id_all) { 7169 header->size += event->id_header_size; 7170 __perf_event_header__init_id(data, event, event->attr.sample_type); 7171 } 7172 } 7173 7174 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7175 struct perf_sample_data *data) 7176 { 7177 u64 sample_type = data->type; 7178 7179 if (sample_type & PERF_SAMPLE_TID) 7180 perf_output_put(handle, data->tid_entry); 7181 7182 if (sample_type & PERF_SAMPLE_TIME) 7183 perf_output_put(handle, data->time); 7184 7185 if (sample_type & PERF_SAMPLE_ID) 7186 perf_output_put(handle, data->id); 7187 7188 if (sample_type & PERF_SAMPLE_STREAM_ID) 7189 perf_output_put(handle, data->stream_id); 7190 7191 if (sample_type & PERF_SAMPLE_CPU) 7192 perf_output_put(handle, data->cpu_entry); 7193 7194 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7195 perf_output_put(handle, data->id); 7196 } 7197 7198 void perf_event__output_id_sample(struct perf_event *event, 7199 struct perf_output_handle *handle, 7200 struct perf_sample_data *sample) 7201 { 7202 if (event->attr.sample_id_all) 7203 __perf_event__output_id_sample(handle, sample); 7204 } 7205 7206 static void perf_output_read_one(struct perf_output_handle *handle, 7207 struct perf_event *event, 7208 u64 enabled, u64 running) 7209 { 7210 u64 read_format = event->attr.read_format; 7211 u64 values[5]; 7212 int n = 0; 7213 7214 values[n++] = perf_event_count(event); 7215 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7216 values[n++] = enabled + 7217 atomic64_read(&event->child_total_time_enabled); 7218 } 7219 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7220 values[n++] = running + 7221 atomic64_read(&event->child_total_time_running); 7222 } 7223 if (read_format & PERF_FORMAT_ID) 7224 values[n++] = primary_event_id(event); 7225 if (read_format & PERF_FORMAT_LOST) 7226 values[n++] = atomic64_read(&event->lost_samples); 7227 7228 __output_copy(handle, values, n * sizeof(u64)); 7229 } 7230 7231 static void perf_output_read_group(struct perf_output_handle *handle, 7232 struct perf_event *event, 7233 u64 enabled, u64 running) 7234 { 7235 struct perf_event *leader = event->group_leader, *sub; 7236 u64 read_format = event->attr.read_format; 7237 unsigned long flags; 7238 u64 values[6]; 7239 int n = 0; 7240 7241 /* 7242 * Disabling interrupts avoids all counter scheduling 7243 * (context switches, timer based rotation and IPIs). 7244 */ 7245 local_irq_save(flags); 7246 7247 values[n++] = 1 + leader->nr_siblings; 7248 7249 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7250 values[n++] = enabled; 7251 7252 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7253 values[n++] = running; 7254 7255 if ((leader != event) && 7256 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7257 leader->pmu->read(leader); 7258 7259 values[n++] = perf_event_count(leader); 7260 if (read_format & PERF_FORMAT_ID) 7261 values[n++] = primary_event_id(leader); 7262 if (read_format & PERF_FORMAT_LOST) 7263 values[n++] = atomic64_read(&leader->lost_samples); 7264 7265 __output_copy(handle, values, n * sizeof(u64)); 7266 7267 for_each_sibling_event(sub, leader) { 7268 n = 0; 7269 7270 if ((sub != event) && 7271 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7272 sub->pmu->read(sub); 7273 7274 values[n++] = perf_event_count(sub); 7275 if (read_format & PERF_FORMAT_ID) 7276 values[n++] = primary_event_id(sub); 7277 if (read_format & PERF_FORMAT_LOST) 7278 values[n++] = atomic64_read(&sub->lost_samples); 7279 7280 __output_copy(handle, values, n * sizeof(u64)); 7281 } 7282 7283 local_irq_restore(flags); 7284 } 7285 7286 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7287 PERF_FORMAT_TOTAL_TIME_RUNNING) 7288 7289 /* 7290 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7291 * 7292 * The problem is that its both hard and excessively expensive to iterate the 7293 * child list, not to mention that its impossible to IPI the children running 7294 * on another CPU, from interrupt/NMI context. 7295 */ 7296 static void perf_output_read(struct perf_output_handle *handle, 7297 struct perf_event *event) 7298 { 7299 u64 enabled = 0, running = 0, now; 7300 u64 read_format = event->attr.read_format; 7301 7302 /* 7303 * compute total_time_enabled, total_time_running 7304 * based on snapshot values taken when the event 7305 * was last scheduled in. 7306 * 7307 * we cannot simply called update_context_time() 7308 * because of locking issue as we are called in 7309 * NMI context 7310 */ 7311 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7312 calc_timer_values(event, &now, &enabled, &running); 7313 7314 if (event->attr.read_format & PERF_FORMAT_GROUP) 7315 perf_output_read_group(handle, event, enabled, running); 7316 else 7317 perf_output_read_one(handle, event, enabled, running); 7318 } 7319 7320 void perf_output_sample(struct perf_output_handle *handle, 7321 struct perf_event_header *header, 7322 struct perf_sample_data *data, 7323 struct perf_event *event) 7324 { 7325 u64 sample_type = data->type; 7326 7327 perf_output_put(handle, *header); 7328 7329 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7330 perf_output_put(handle, data->id); 7331 7332 if (sample_type & PERF_SAMPLE_IP) 7333 perf_output_put(handle, data->ip); 7334 7335 if (sample_type & PERF_SAMPLE_TID) 7336 perf_output_put(handle, data->tid_entry); 7337 7338 if (sample_type & PERF_SAMPLE_TIME) 7339 perf_output_put(handle, data->time); 7340 7341 if (sample_type & PERF_SAMPLE_ADDR) 7342 perf_output_put(handle, data->addr); 7343 7344 if (sample_type & PERF_SAMPLE_ID) 7345 perf_output_put(handle, data->id); 7346 7347 if (sample_type & PERF_SAMPLE_STREAM_ID) 7348 perf_output_put(handle, data->stream_id); 7349 7350 if (sample_type & PERF_SAMPLE_CPU) 7351 perf_output_put(handle, data->cpu_entry); 7352 7353 if (sample_type & PERF_SAMPLE_PERIOD) 7354 perf_output_put(handle, data->period); 7355 7356 if (sample_type & PERF_SAMPLE_READ) 7357 perf_output_read(handle, event); 7358 7359 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7360 int size = 1; 7361 7362 size += data->callchain->nr; 7363 size *= sizeof(u64); 7364 __output_copy(handle, data->callchain, size); 7365 } 7366 7367 if (sample_type & PERF_SAMPLE_RAW) { 7368 struct perf_raw_record *raw = data->raw; 7369 7370 if (raw) { 7371 struct perf_raw_frag *frag = &raw->frag; 7372 7373 perf_output_put(handle, raw->size); 7374 do { 7375 if (frag->copy) { 7376 __output_custom(handle, frag->copy, 7377 frag->data, frag->size); 7378 } else { 7379 __output_copy(handle, frag->data, 7380 frag->size); 7381 } 7382 if (perf_raw_frag_last(frag)) 7383 break; 7384 frag = frag->next; 7385 } while (1); 7386 if (frag->pad) 7387 __output_skip(handle, NULL, frag->pad); 7388 } else { 7389 struct { 7390 u32 size; 7391 u32 data; 7392 } raw = { 7393 .size = sizeof(u32), 7394 .data = 0, 7395 }; 7396 perf_output_put(handle, raw); 7397 } 7398 } 7399 7400 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7401 if (data->br_stack) { 7402 size_t size; 7403 7404 size = data->br_stack->nr 7405 * sizeof(struct perf_branch_entry); 7406 7407 perf_output_put(handle, data->br_stack->nr); 7408 if (branch_sample_hw_index(event)) 7409 perf_output_put(handle, data->br_stack->hw_idx); 7410 perf_output_copy(handle, data->br_stack->entries, size); 7411 /* 7412 * Add the extension space which is appended 7413 * right after the struct perf_branch_stack. 7414 */ 7415 if (data->br_stack_cntr) { 7416 size = data->br_stack->nr * sizeof(u64); 7417 perf_output_copy(handle, data->br_stack_cntr, size); 7418 } 7419 } else { 7420 /* 7421 * we always store at least the value of nr 7422 */ 7423 u64 nr = 0; 7424 perf_output_put(handle, nr); 7425 } 7426 } 7427 7428 if (sample_type & PERF_SAMPLE_REGS_USER) { 7429 u64 abi = data->regs_user.abi; 7430 7431 /* 7432 * If there are no regs to dump, notice it through 7433 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7434 */ 7435 perf_output_put(handle, abi); 7436 7437 if (abi) { 7438 u64 mask = event->attr.sample_regs_user; 7439 perf_output_sample_regs(handle, 7440 data->regs_user.regs, 7441 mask); 7442 } 7443 } 7444 7445 if (sample_type & PERF_SAMPLE_STACK_USER) { 7446 perf_output_sample_ustack(handle, 7447 data->stack_user_size, 7448 data->regs_user.regs); 7449 } 7450 7451 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7452 perf_output_put(handle, data->weight.full); 7453 7454 if (sample_type & PERF_SAMPLE_DATA_SRC) 7455 perf_output_put(handle, data->data_src.val); 7456 7457 if (sample_type & PERF_SAMPLE_TRANSACTION) 7458 perf_output_put(handle, data->txn); 7459 7460 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7461 u64 abi = data->regs_intr.abi; 7462 /* 7463 * If there are no regs to dump, notice it through 7464 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7465 */ 7466 perf_output_put(handle, abi); 7467 7468 if (abi) { 7469 u64 mask = event->attr.sample_regs_intr; 7470 7471 perf_output_sample_regs(handle, 7472 data->regs_intr.regs, 7473 mask); 7474 } 7475 } 7476 7477 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7478 perf_output_put(handle, data->phys_addr); 7479 7480 if (sample_type & PERF_SAMPLE_CGROUP) 7481 perf_output_put(handle, data->cgroup); 7482 7483 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7484 perf_output_put(handle, data->data_page_size); 7485 7486 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7487 perf_output_put(handle, data->code_page_size); 7488 7489 if (sample_type & PERF_SAMPLE_AUX) { 7490 perf_output_put(handle, data->aux_size); 7491 7492 if (data->aux_size) 7493 perf_aux_sample_output(event, handle, data); 7494 } 7495 7496 if (!event->attr.watermark) { 7497 int wakeup_events = event->attr.wakeup_events; 7498 7499 if (wakeup_events) { 7500 struct perf_buffer *rb = handle->rb; 7501 int events = local_inc_return(&rb->events); 7502 7503 if (events >= wakeup_events) { 7504 local_sub(wakeup_events, &rb->events); 7505 local_inc(&rb->wakeup); 7506 } 7507 } 7508 } 7509 } 7510 7511 static u64 perf_virt_to_phys(u64 virt) 7512 { 7513 u64 phys_addr = 0; 7514 7515 if (!virt) 7516 return 0; 7517 7518 if (virt >= TASK_SIZE) { 7519 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7520 if (virt_addr_valid((void *)(uintptr_t)virt) && 7521 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7522 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7523 } else { 7524 /* 7525 * Walking the pages tables for user address. 7526 * Interrupts are disabled, so it prevents any tear down 7527 * of the page tables. 7528 * Try IRQ-safe get_user_page_fast_only first. 7529 * If failed, leave phys_addr as 0. 7530 */ 7531 if (current->mm != NULL) { 7532 struct page *p; 7533 7534 pagefault_disable(); 7535 if (get_user_page_fast_only(virt, 0, &p)) { 7536 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7537 put_page(p); 7538 } 7539 pagefault_enable(); 7540 } 7541 } 7542 7543 return phys_addr; 7544 } 7545 7546 /* 7547 * Return the pagetable size of a given virtual address. 7548 */ 7549 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7550 { 7551 u64 size = 0; 7552 7553 #ifdef CONFIG_HAVE_GUP_FAST 7554 pgd_t *pgdp, pgd; 7555 p4d_t *p4dp, p4d; 7556 pud_t *pudp, pud; 7557 pmd_t *pmdp, pmd; 7558 pte_t *ptep, pte; 7559 7560 pgdp = pgd_offset(mm, addr); 7561 pgd = READ_ONCE(*pgdp); 7562 if (pgd_none(pgd)) 7563 return 0; 7564 7565 if (pgd_leaf(pgd)) 7566 return pgd_leaf_size(pgd); 7567 7568 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7569 p4d = READ_ONCE(*p4dp); 7570 if (!p4d_present(p4d)) 7571 return 0; 7572 7573 if (p4d_leaf(p4d)) 7574 return p4d_leaf_size(p4d); 7575 7576 pudp = pud_offset_lockless(p4dp, p4d, addr); 7577 pud = READ_ONCE(*pudp); 7578 if (!pud_present(pud)) 7579 return 0; 7580 7581 if (pud_leaf(pud)) 7582 return pud_leaf_size(pud); 7583 7584 pmdp = pmd_offset_lockless(pudp, pud, addr); 7585 again: 7586 pmd = pmdp_get_lockless(pmdp); 7587 if (!pmd_present(pmd)) 7588 return 0; 7589 7590 if (pmd_leaf(pmd)) 7591 return pmd_leaf_size(pmd); 7592 7593 ptep = pte_offset_map(&pmd, addr); 7594 if (!ptep) 7595 goto again; 7596 7597 pte = ptep_get_lockless(ptep); 7598 if (pte_present(pte)) 7599 size = pte_leaf_size(pte); 7600 pte_unmap(ptep); 7601 #endif /* CONFIG_HAVE_GUP_FAST */ 7602 7603 return size; 7604 } 7605 7606 static u64 perf_get_page_size(unsigned long addr) 7607 { 7608 struct mm_struct *mm; 7609 unsigned long flags; 7610 u64 size; 7611 7612 if (!addr) 7613 return 0; 7614 7615 /* 7616 * Software page-table walkers must disable IRQs, 7617 * which prevents any tear down of the page tables. 7618 */ 7619 local_irq_save(flags); 7620 7621 mm = current->mm; 7622 if (!mm) { 7623 /* 7624 * For kernel threads and the like, use init_mm so that 7625 * we can find kernel memory. 7626 */ 7627 mm = &init_mm; 7628 } 7629 7630 size = perf_get_pgtable_size(mm, addr); 7631 7632 local_irq_restore(flags); 7633 7634 return size; 7635 } 7636 7637 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7638 7639 struct perf_callchain_entry * 7640 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7641 { 7642 bool kernel = !event->attr.exclude_callchain_kernel; 7643 bool user = !event->attr.exclude_callchain_user; 7644 /* Disallow cross-task user callchains. */ 7645 bool crosstask = event->ctx->task && event->ctx->task != current; 7646 const u32 max_stack = event->attr.sample_max_stack; 7647 struct perf_callchain_entry *callchain; 7648 7649 if (!kernel && !user) 7650 return &__empty_callchain; 7651 7652 callchain = get_perf_callchain(regs, 0, kernel, user, 7653 max_stack, crosstask, true); 7654 return callchain ?: &__empty_callchain; 7655 } 7656 7657 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7658 { 7659 return d * !!(flags & s); 7660 } 7661 7662 void perf_prepare_sample(struct perf_sample_data *data, 7663 struct perf_event *event, 7664 struct pt_regs *regs) 7665 { 7666 u64 sample_type = event->attr.sample_type; 7667 u64 filtered_sample_type; 7668 7669 /* 7670 * Add the sample flags that are dependent to others. And clear the 7671 * sample flags that have already been done by the PMU driver. 7672 */ 7673 filtered_sample_type = sample_type; 7674 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7675 PERF_SAMPLE_IP); 7676 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7677 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7678 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7679 PERF_SAMPLE_REGS_USER); 7680 filtered_sample_type &= ~data->sample_flags; 7681 7682 if (filtered_sample_type == 0) { 7683 /* Make sure it has the correct data->type for output */ 7684 data->type = event->attr.sample_type; 7685 return; 7686 } 7687 7688 __perf_event_header__init_id(data, event, filtered_sample_type); 7689 7690 if (filtered_sample_type & PERF_SAMPLE_IP) { 7691 data->ip = perf_instruction_pointer(regs); 7692 data->sample_flags |= PERF_SAMPLE_IP; 7693 } 7694 7695 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7696 perf_sample_save_callchain(data, event, regs); 7697 7698 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7699 data->raw = NULL; 7700 data->dyn_size += sizeof(u64); 7701 data->sample_flags |= PERF_SAMPLE_RAW; 7702 } 7703 7704 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7705 data->br_stack = NULL; 7706 data->dyn_size += sizeof(u64); 7707 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7708 } 7709 7710 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7711 perf_sample_regs_user(&data->regs_user, regs); 7712 7713 /* 7714 * It cannot use the filtered_sample_type here as REGS_USER can be set 7715 * by STACK_USER (using __cond_set() above) and we don't want to update 7716 * the dyn_size if it's not requested by users. 7717 */ 7718 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7719 /* regs dump ABI info */ 7720 int size = sizeof(u64); 7721 7722 if (data->regs_user.regs) { 7723 u64 mask = event->attr.sample_regs_user; 7724 size += hweight64(mask) * sizeof(u64); 7725 } 7726 7727 data->dyn_size += size; 7728 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7729 } 7730 7731 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7732 /* 7733 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7734 * processed as the last one or have additional check added 7735 * in case new sample type is added, because we could eat 7736 * up the rest of the sample size. 7737 */ 7738 u16 stack_size = event->attr.sample_stack_user; 7739 u16 header_size = perf_sample_data_size(data, event); 7740 u16 size = sizeof(u64); 7741 7742 stack_size = perf_sample_ustack_size(stack_size, header_size, 7743 data->regs_user.regs); 7744 7745 /* 7746 * If there is something to dump, add space for the dump 7747 * itself and for the field that tells the dynamic size, 7748 * which is how many have been actually dumped. 7749 */ 7750 if (stack_size) 7751 size += sizeof(u64) + stack_size; 7752 7753 data->stack_user_size = stack_size; 7754 data->dyn_size += size; 7755 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7756 } 7757 7758 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7759 data->weight.full = 0; 7760 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7761 } 7762 7763 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7764 data->data_src.val = PERF_MEM_NA; 7765 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7766 } 7767 7768 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7769 data->txn = 0; 7770 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7771 } 7772 7773 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7774 data->addr = 0; 7775 data->sample_flags |= PERF_SAMPLE_ADDR; 7776 } 7777 7778 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7779 /* regs dump ABI info */ 7780 int size = sizeof(u64); 7781 7782 perf_sample_regs_intr(&data->regs_intr, regs); 7783 7784 if (data->regs_intr.regs) { 7785 u64 mask = event->attr.sample_regs_intr; 7786 7787 size += hweight64(mask) * sizeof(u64); 7788 } 7789 7790 data->dyn_size += size; 7791 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7792 } 7793 7794 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7795 data->phys_addr = perf_virt_to_phys(data->addr); 7796 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7797 } 7798 7799 #ifdef CONFIG_CGROUP_PERF 7800 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7801 struct cgroup *cgrp; 7802 7803 /* protected by RCU */ 7804 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7805 data->cgroup = cgroup_id(cgrp); 7806 data->sample_flags |= PERF_SAMPLE_CGROUP; 7807 } 7808 #endif 7809 7810 /* 7811 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7812 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7813 * but the value will not dump to the userspace. 7814 */ 7815 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7816 data->data_page_size = perf_get_page_size(data->addr); 7817 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7818 } 7819 7820 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7821 data->code_page_size = perf_get_page_size(data->ip); 7822 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7823 } 7824 7825 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7826 u64 size; 7827 u16 header_size = perf_sample_data_size(data, event); 7828 7829 header_size += sizeof(u64); /* size */ 7830 7831 /* 7832 * Given the 16bit nature of header::size, an AUX sample can 7833 * easily overflow it, what with all the preceding sample bits. 7834 * Make sure this doesn't happen by using up to U16_MAX bytes 7835 * per sample in total (rounded down to 8 byte boundary). 7836 */ 7837 size = min_t(size_t, U16_MAX - header_size, 7838 event->attr.aux_sample_size); 7839 size = rounddown(size, 8); 7840 size = perf_prepare_sample_aux(event, data, size); 7841 7842 WARN_ON_ONCE(size + header_size > U16_MAX); 7843 data->dyn_size += size + sizeof(u64); /* size above */ 7844 data->sample_flags |= PERF_SAMPLE_AUX; 7845 } 7846 } 7847 7848 void perf_prepare_header(struct perf_event_header *header, 7849 struct perf_sample_data *data, 7850 struct perf_event *event, 7851 struct pt_regs *regs) 7852 { 7853 header->type = PERF_RECORD_SAMPLE; 7854 header->size = perf_sample_data_size(data, event); 7855 header->misc = perf_misc_flags(regs); 7856 7857 /* 7858 * If you're adding more sample types here, you likely need to do 7859 * something about the overflowing header::size, like repurpose the 7860 * lowest 3 bits of size, which should be always zero at the moment. 7861 * This raises a more important question, do we really need 512k sized 7862 * samples and why, so good argumentation is in order for whatever you 7863 * do here next. 7864 */ 7865 WARN_ON_ONCE(header->size & 7); 7866 } 7867 7868 static __always_inline int 7869 __perf_event_output(struct perf_event *event, 7870 struct perf_sample_data *data, 7871 struct pt_regs *regs, 7872 int (*output_begin)(struct perf_output_handle *, 7873 struct perf_sample_data *, 7874 struct perf_event *, 7875 unsigned int)) 7876 { 7877 struct perf_output_handle handle; 7878 struct perf_event_header header; 7879 int err; 7880 7881 /* protect the callchain buffers */ 7882 rcu_read_lock(); 7883 7884 perf_prepare_sample(data, event, regs); 7885 perf_prepare_header(&header, data, event, regs); 7886 7887 err = output_begin(&handle, data, event, header.size); 7888 if (err) 7889 goto exit; 7890 7891 perf_output_sample(&handle, &header, data, event); 7892 7893 perf_output_end(&handle); 7894 7895 exit: 7896 rcu_read_unlock(); 7897 return err; 7898 } 7899 7900 void 7901 perf_event_output_forward(struct perf_event *event, 7902 struct perf_sample_data *data, 7903 struct pt_regs *regs) 7904 { 7905 __perf_event_output(event, data, regs, perf_output_begin_forward); 7906 } 7907 7908 void 7909 perf_event_output_backward(struct perf_event *event, 7910 struct perf_sample_data *data, 7911 struct pt_regs *regs) 7912 { 7913 __perf_event_output(event, data, regs, perf_output_begin_backward); 7914 } 7915 7916 int 7917 perf_event_output(struct perf_event *event, 7918 struct perf_sample_data *data, 7919 struct pt_regs *regs) 7920 { 7921 return __perf_event_output(event, data, regs, perf_output_begin); 7922 } 7923 7924 /* 7925 * read event_id 7926 */ 7927 7928 struct perf_read_event { 7929 struct perf_event_header header; 7930 7931 u32 pid; 7932 u32 tid; 7933 }; 7934 7935 static void 7936 perf_event_read_event(struct perf_event *event, 7937 struct task_struct *task) 7938 { 7939 struct perf_output_handle handle; 7940 struct perf_sample_data sample; 7941 struct perf_read_event read_event = { 7942 .header = { 7943 .type = PERF_RECORD_READ, 7944 .misc = 0, 7945 .size = sizeof(read_event) + event->read_size, 7946 }, 7947 .pid = perf_event_pid(event, task), 7948 .tid = perf_event_tid(event, task), 7949 }; 7950 int ret; 7951 7952 perf_event_header__init_id(&read_event.header, &sample, event); 7953 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7954 if (ret) 7955 return; 7956 7957 perf_output_put(&handle, read_event); 7958 perf_output_read(&handle, event); 7959 perf_event__output_id_sample(event, &handle, &sample); 7960 7961 perf_output_end(&handle); 7962 } 7963 7964 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7965 7966 static void 7967 perf_iterate_ctx(struct perf_event_context *ctx, 7968 perf_iterate_f output, 7969 void *data, bool all) 7970 { 7971 struct perf_event *event; 7972 7973 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7974 if (!all) { 7975 if (event->state < PERF_EVENT_STATE_INACTIVE) 7976 continue; 7977 if (!event_filter_match(event)) 7978 continue; 7979 } 7980 7981 output(event, data); 7982 } 7983 } 7984 7985 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7986 { 7987 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7988 struct perf_event *event; 7989 7990 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7991 /* 7992 * Skip events that are not fully formed yet; ensure that 7993 * if we observe event->ctx, both event and ctx will be 7994 * complete enough. See perf_install_in_context(). 7995 */ 7996 if (!smp_load_acquire(&event->ctx)) 7997 continue; 7998 7999 if (event->state < PERF_EVENT_STATE_INACTIVE) 8000 continue; 8001 if (!event_filter_match(event)) 8002 continue; 8003 output(event, data); 8004 } 8005 } 8006 8007 /* 8008 * Iterate all events that need to receive side-band events. 8009 * 8010 * For new callers; ensure that account_pmu_sb_event() includes 8011 * your event, otherwise it might not get delivered. 8012 */ 8013 static void 8014 perf_iterate_sb(perf_iterate_f output, void *data, 8015 struct perf_event_context *task_ctx) 8016 { 8017 struct perf_event_context *ctx; 8018 8019 rcu_read_lock(); 8020 preempt_disable(); 8021 8022 /* 8023 * If we have task_ctx != NULL we only notify the task context itself. 8024 * The task_ctx is set only for EXIT events before releasing task 8025 * context. 8026 */ 8027 if (task_ctx) { 8028 perf_iterate_ctx(task_ctx, output, data, false); 8029 goto done; 8030 } 8031 8032 perf_iterate_sb_cpu(output, data); 8033 8034 ctx = rcu_dereference(current->perf_event_ctxp); 8035 if (ctx) 8036 perf_iterate_ctx(ctx, output, data, false); 8037 done: 8038 preempt_enable(); 8039 rcu_read_unlock(); 8040 } 8041 8042 /* 8043 * Clear all file-based filters at exec, they'll have to be 8044 * re-instated when/if these objects are mmapped again. 8045 */ 8046 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8047 { 8048 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8049 struct perf_addr_filter *filter; 8050 unsigned int restart = 0, count = 0; 8051 unsigned long flags; 8052 8053 if (!has_addr_filter(event)) 8054 return; 8055 8056 raw_spin_lock_irqsave(&ifh->lock, flags); 8057 list_for_each_entry(filter, &ifh->list, entry) { 8058 if (filter->path.dentry) { 8059 event->addr_filter_ranges[count].start = 0; 8060 event->addr_filter_ranges[count].size = 0; 8061 restart++; 8062 } 8063 8064 count++; 8065 } 8066 8067 if (restart) 8068 event->addr_filters_gen++; 8069 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8070 8071 if (restart) 8072 perf_event_stop(event, 1); 8073 } 8074 8075 void perf_event_exec(void) 8076 { 8077 struct perf_event_context *ctx; 8078 8079 ctx = perf_pin_task_context(current); 8080 if (!ctx) 8081 return; 8082 8083 perf_event_enable_on_exec(ctx); 8084 perf_event_remove_on_exec(ctx); 8085 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8086 8087 perf_unpin_context(ctx); 8088 put_ctx(ctx); 8089 } 8090 8091 struct remote_output { 8092 struct perf_buffer *rb; 8093 int err; 8094 }; 8095 8096 static void __perf_event_output_stop(struct perf_event *event, void *data) 8097 { 8098 struct perf_event *parent = event->parent; 8099 struct remote_output *ro = data; 8100 struct perf_buffer *rb = ro->rb; 8101 struct stop_event_data sd = { 8102 .event = event, 8103 }; 8104 8105 if (!has_aux(event)) 8106 return; 8107 8108 if (!parent) 8109 parent = event; 8110 8111 /* 8112 * In case of inheritance, it will be the parent that links to the 8113 * ring-buffer, but it will be the child that's actually using it. 8114 * 8115 * We are using event::rb to determine if the event should be stopped, 8116 * however this may race with ring_buffer_attach() (through set_output), 8117 * which will make us skip the event that actually needs to be stopped. 8118 * So ring_buffer_attach() has to stop an aux event before re-assigning 8119 * its rb pointer. 8120 */ 8121 if (rcu_dereference(parent->rb) == rb) 8122 ro->err = __perf_event_stop(&sd); 8123 } 8124 8125 static int __perf_pmu_output_stop(void *info) 8126 { 8127 struct perf_event *event = info; 8128 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8129 struct remote_output ro = { 8130 .rb = event->rb, 8131 }; 8132 8133 rcu_read_lock(); 8134 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8135 if (cpuctx->task_ctx) 8136 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8137 &ro, false); 8138 rcu_read_unlock(); 8139 8140 return ro.err; 8141 } 8142 8143 static void perf_pmu_output_stop(struct perf_event *event) 8144 { 8145 struct perf_event *iter; 8146 int err, cpu; 8147 8148 restart: 8149 rcu_read_lock(); 8150 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8151 /* 8152 * For per-CPU events, we need to make sure that neither they 8153 * nor their children are running; for cpu==-1 events it's 8154 * sufficient to stop the event itself if it's active, since 8155 * it can't have children. 8156 */ 8157 cpu = iter->cpu; 8158 if (cpu == -1) 8159 cpu = READ_ONCE(iter->oncpu); 8160 8161 if (cpu == -1) 8162 continue; 8163 8164 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8165 if (err == -EAGAIN) { 8166 rcu_read_unlock(); 8167 goto restart; 8168 } 8169 } 8170 rcu_read_unlock(); 8171 } 8172 8173 /* 8174 * task tracking -- fork/exit 8175 * 8176 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8177 */ 8178 8179 struct perf_task_event { 8180 struct task_struct *task; 8181 struct perf_event_context *task_ctx; 8182 8183 struct { 8184 struct perf_event_header header; 8185 8186 u32 pid; 8187 u32 ppid; 8188 u32 tid; 8189 u32 ptid; 8190 u64 time; 8191 } event_id; 8192 }; 8193 8194 static int perf_event_task_match(struct perf_event *event) 8195 { 8196 return event->attr.comm || event->attr.mmap || 8197 event->attr.mmap2 || event->attr.mmap_data || 8198 event->attr.task; 8199 } 8200 8201 static void perf_event_task_output(struct perf_event *event, 8202 void *data) 8203 { 8204 struct perf_task_event *task_event = data; 8205 struct perf_output_handle handle; 8206 struct perf_sample_data sample; 8207 struct task_struct *task = task_event->task; 8208 int ret, size = task_event->event_id.header.size; 8209 8210 if (!perf_event_task_match(event)) 8211 return; 8212 8213 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8214 8215 ret = perf_output_begin(&handle, &sample, event, 8216 task_event->event_id.header.size); 8217 if (ret) 8218 goto out; 8219 8220 task_event->event_id.pid = perf_event_pid(event, task); 8221 task_event->event_id.tid = perf_event_tid(event, task); 8222 8223 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8224 task_event->event_id.ppid = perf_event_pid(event, 8225 task->real_parent); 8226 task_event->event_id.ptid = perf_event_pid(event, 8227 task->real_parent); 8228 } else { /* PERF_RECORD_FORK */ 8229 task_event->event_id.ppid = perf_event_pid(event, current); 8230 task_event->event_id.ptid = perf_event_tid(event, current); 8231 } 8232 8233 task_event->event_id.time = perf_event_clock(event); 8234 8235 perf_output_put(&handle, task_event->event_id); 8236 8237 perf_event__output_id_sample(event, &handle, &sample); 8238 8239 perf_output_end(&handle); 8240 out: 8241 task_event->event_id.header.size = size; 8242 } 8243 8244 static void perf_event_task(struct task_struct *task, 8245 struct perf_event_context *task_ctx, 8246 int new) 8247 { 8248 struct perf_task_event task_event; 8249 8250 if (!atomic_read(&nr_comm_events) && 8251 !atomic_read(&nr_mmap_events) && 8252 !atomic_read(&nr_task_events)) 8253 return; 8254 8255 task_event = (struct perf_task_event){ 8256 .task = task, 8257 .task_ctx = task_ctx, 8258 .event_id = { 8259 .header = { 8260 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8261 .misc = 0, 8262 .size = sizeof(task_event.event_id), 8263 }, 8264 /* .pid */ 8265 /* .ppid */ 8266 /* .tid */ 8267 /* .ptid */ 8268 /* .time */ 8269 }, 8270 }; 8271 8272 perf_iterate_sb(perf_event_task_output, 8273 &task_event, 8274 task_ctx); 8275 } 8276 8277 void perf_event_fork(struct task_struct *task) 8278 { 8279 perf_event_task(task, NULL, 1); 8280 perf_event_namespaces(task); 8281 } 8282 8283 /* 8284 * comm tracking 8285 */ 8286 8287 struct perf_comm_event { 8288 struct task_struct *task; 8289 char *comm; 8290 int comm_size; 8291 8292 struct { 8293 struct perf_event_header header; 8294 8295 u32 pid; 8296 u32 tid; 8297 } event_id; 8298 }; 8299 8300 static int perf_event_comm_match(struct perf_event *event) 8301 { 8302 return event->attr.comm; 8303 } 8304 8305 static void perf_event_comm_output(struct perf_event *event, 8306 void *data) 8307 { 8308 struct perf_comm_event *comm_event = data; 8309 struct perf_output_handle handle; 8310 struct perf_sample_data sample; 8311 int size = comm_event->event_id.header.size; 8312 int ret; 8313 8314 if (!perf_event_comm_match(event)) 8315 return; 8316 8317 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8318 ret = perf_output_begin(&handle, &sample, event, 8319 comm_event->event_id.header.size); 8320 8321 if (ret) 8322 goto out; 8323 8324 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8325 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8326 8327 perf_output_put(&handle, comm_event->event_id); 8328 __output_copy(&handle, comm_event->comm, 8329 comm_event->comm_size); 8330 8331 perf_event__output_id_sample(event, &handle, &sample); 8332 8333 perf_output_end(&handle); 8334 out: 8335 comm_event->event_id.header.size = size; 8336 } 8337 8338 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8339 { 8340 char comm[TASK_COMM_LEN]; 8341 unsigned int size; 8342 8343 memset(comm, 0, sizeof(comm)); 8344 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8345 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8346 8347 comm_event->comm = comm; 8348 comm_event->comm_size = size; 8349 8350 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8351 8352 perf_iterate_sb(perf_event_comm_output, 8353 comm_event, 8354 NULL); 8355 } 8356 8357 void perf_event_comm(struct task_struct *task, bool exec) 8358 { 8359 struct perf_comm_event comm_event; 8360 8361 if (!atomic_read(&nr_comm_events)) 8362 return; 8363 8364 comm_event = (struct perf_comm_event){ 8365 .task = task, 8366 /* .comm */ 8367 /* .comm_size */ 8368 .event_id = { 8369 .header = { 8370 .type = PERF_RECORD_COMM, 8371 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8372 /* .size */ 8373 }, 8374 /* .pid */ 8375 /* .tid */ 8376 }, 8377 }; 8378 8379 perf_event_comm_event(&comm_event); 8380 } 8381 8382 /* 8383 * namespaces tracking 8384 */ 8385 8386 struct perf_namespaces_event { 8387 struct task_struct *task; 8388 8389 struct { 8390 struct perf_event_header header; 8391 8392 u32 pid; 8393 u32 tid; 8394 u64 nr_namespaces; 8395 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8396 } event_id; 8397 }; 8398 8399 static int perf_event_namespaces_match(struct perf_event *event) 8400 { 8401 return event->attr.namespaces; 8402 } 8403 8404 static void perf_event_namespaces_output(struct perf_event *event, 8405 void *data) 8406 { 8407 struct perf_namespaces_event *namespaces_event = data; 8408 struct perf_output_handle handle; 8409 struct perf_sample_data sample; 8410 u16 header_size = namespaces_event->event_id.header.size; 8411 int ret; 8412 8413 if (!perf_event_namespaces_match(event)) 8414 return; 8415 8416 perf_event_header__init_id(&namespaces_event->event_id.header, 8417 &sample, event); 8418 ret = perf_output_begin(&handle, &sample, event, 8419 namespaces_event->event_id.header.size); 8420 if (ret) 8421 goto out; 8422 8423 namespaces_event->event_id.pid = perf_event_pid(event, 8424 namespaces_event->task); 8425 namespaces_event->event_id.tid = perf_event_tid(event, 8426 namespaces_event->task); 8427 8428 perf_output_put(&handle, namespaces_event->event_id); 8429 8430 perf_event__output_id_sample(event, &handle, &sample); 8431 8432 perf_output_end(&handle); 8433 out: 8434 namespaces_event->event_id.header.size = header_size; 8435 } 8436 8437 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8438 struct task_struct *task, 8439 const struct proc_ns_operations *ns_ops) 8440 { 8441 struct path ns_path; 8442 struct inode *ns_inode; 8443 int error; 8444 8445 error = ns_get_path(&ns_path, task, ns_ops); 8446 if (!error) { 8447 ns_inode = ns_path.dentry->d_inode; 8448 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8449 ns_link_info->ino = ns_inode->i_ino; 8450 path_put(&ns_path); 8451 } 8452 } 8453 8454 void perf_event_namespaces(struct task_struct *task) 8455 { 8456 struct perf_namespaces_event namespaces_event; 8457 struct perf_ns_link_info *ns_link_info; 8458 8459 if (!atomic_read(&nr_namespaces_events)) 8460 return; 8461 8462 namespaces_event = (struct perf_namespaces_event){ 8463 .task = task, 8464 .event_id = { 8465 .header = { 8466 .type = PERF_RECORD_NAMESPACES, 8467 .misc = 0, 8468 .size = sizeof(namespaces_event.event_id), 8469 }, 8470 /* .pid */ 8471 /* .tid */ 8472 .nr_namespaces = NR_NAMESPACES, 8473 /* .link_info[NR_NAMESPACES] */ 8474 }, 8475 }; 8476 8477 ns_link_info = namespaces_event.event_id.link_info; 8478 8479 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8480 task, &mntns_operations); 8481 8482 #ifdef CONFIG_USER_NS 8483 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8484 task, &userns_operations); 8485 #endif 8486 #ifdef CONFIG_NET_NS 8487 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8488 task, &netns_operations); 8489 #endif 8490 #ifdef CONFIG_UTS_NS 8491 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8492 task, &utsns_operations); 8493 #endif 8494 #ifdef CONFIG_IPC_NS 8495 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8496 task, &ipcns_operations); 8497 #endif 8498 #ifdef CONFIG_PID_NS 8499 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8500 task, &pidns_operations); 8501 #endif 8502 #ifdef CONFIG_CGROUPS 8503 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8504 task, &cgroupns_operations); 8505 #endif 8506 8507 perf_iterate_sb(perf_event_namespaces_output, 8508 &namespaces_event, 8509 NULL); 8510 } 8511 8512 /* 8513 * cgroup tracking 8514 */ 8515 #ifdef CONFIG_CGROUP_PERF 8516 8517 struct perf_cgroup_event { 8518 char *path; 8519 int path_size; 8520 struct { 8521 struct perf_event_header header; 8522 u64 id; 8523 char path[]; 8524 } event_id; 8525 }; 8526 8527 static int perf_event_cgroup_match(struct perf_event *event) 8528 { 8529 return event->attr.cgroup; 8530 } 8531 8532 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8533 { 8534 struct perf_cgroup_event *cgroup_event = data; 8535 struct perf_output_handle handle; 8536 struct perf_sample_data sample; 8537 u16 header_size = cgroup_event->event_id.header.size; 8538 int ret; 8539 8540 if (!perf_event_cgroup_match(event)) 8541 return; 8542 8543 perf_event_header__init_id(&cgroup_event->event_id.header, 8544 &sample, event); 8545 ret = perf_output_begin(&handle, &sample, event, 8546 cgroup_event->event_id.header.size); 8547 if (ret) 8548 goto out; 8549 8550 perf_output_put(&handle, cgroup_event->event_id); 8551 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8552 8553 perf_event__output_id_sample(event, &handle, &sample); 8554 8555 perf_output_end(&handle); 8556 out: 8557 cgroup_event->event_id.header.size = header_size; 8558 } 8559 8560 static void perf_event_cgroup(struct cgroup *cgrp) 8561 { 8562 struct perf_cgroup_event cgroup_event; 8563 char path_enomem[16] = "//enomem"; 8564 char *pathname; 8565 size_t size; 8566 8567 if (!atomic_read(&nr_cgroup_events)) 8568 return; 8569 8570 cgroup_event = (struct perf_cgroup_event){ 8571 .event_id = { 8572 .header = { 8573 .type = PERF_RECORD_CGROUP, 8574 .misc = 0, 8575 .size = sizeof(cgroup_event.event_id), 8576 }, 8577 .id = cgroup_id(cgrp), 8578 }, 8579 }; 8580 8581 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8582 if (pathname == NULL) { 8583 cgroup_event.path = path_enomem; 8584 } else { 8585 /* just to be sure to have enough space for alignment */ 8586 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8587 cgroup_event.path = pathname; 8588 } 8589 8590 /* 8591 * Since our buffer works in 8 byte units we need to align our string 8592 * size to a multiple of 8. However, we must guarantee the tail end is 8593 * zero'd out to avoid leaking random bits to userspace. 8594 */ 8595 size = strlen(cgroup_event.path) + 1; 8596 while (!IS_ALIGNED(size, sizeof(u64))) 8597 cgroup_event.path[size++] = '\0'; 8598 8599 cgroup_event.event_id.header.size += size; 8600 cgroup_event.path_size = size; 8601 8602 perf_iterate_sb(perf_event_cgroup_output, 8603 &cgroup_event, 8604 NULL); 8605 8606 kfree(pathname); 8607 } 8608 8609 #endif 8610 8611 /* 8612 * mmap tracking 8613 */ 8614 8615 struct perf_mmap_event { 8616 struct vm_area_struct *vma; 8617 8618 const char *file_name; 8619 int file_size; 8620 int maj, min; 8621 u64 ino; 8622 u64 ino_generation; 8623 u32 prot, flags; 8624 u8 build_id[BUILD_ID_SIZE_MAX]; 8625 u32 build_id_size; 8626 8627 struct { 8628 struct perf_event_header header; 8629 8630 u32 pid; 8631 u32 tid; 8632 u64 start; 8633 u64 len; 8634 u64 pgoff; 8635 } event_id; 8636 }; 8637 8638 static int perf_event_mmap_match(struct perf_event *event, 8639 void *data) 8640 { 8641 struct perf_mmap_event *mmap_event = data; 8642 struct vm_area_struct *vma = mmap_event->vma; 8643 int executable = vma->vm_flags & VM_EXEC; 8644 8645 return (!executable && event->attr.mmap_data) || 8646 (executable && (event->attr.mmap || event->attr.mmap2)); 8647 } 8648 8649 static void perf_event_mmap_output(struct perf_event *event, 8650 void *data) 8651 { 8652 struct perf_mmap_event *mmap_event = data; 8653 struct perf_output_handle handle; 8654 struct perf_sample_data sample; 8655 int size = mmap_event->event_id.header.size; 8656 u32 type = mmap_event->event_id.header.type; 8657 bool use_build_id; 8658 int ret; 8659 8660 if (!perf_event_mmap_match(event, data)) 8661 return; 8662 8663 if (event->attr.mmap2) { 8664 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8665 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8666 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8667 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8668 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8669 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8670 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8671 } 8672 8673 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8674 ret = perf_output_begin(&handle, &sample, event, 8675 mmap_event->event_id.header.size); 8676 if (ret) 8677 goto out; 8678 8679 mmap_event->event_id.pid = perf_event_pid(event, current); 8680 mmap_event->event_id.tid = perf_event_tid(event, current); 8681 8682 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8683 8684 if (event->attr.mmap2 && use_build_id) 8685 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8686 8687 perf_output_put(&handle, mmap_event->event_id); 8688 8689 if (event->attr.mmap2) { 8690 if (use_build_id) { 8691 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8692 8693 __output_copy(&handle, size, 4); 8694 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8695 } else { 8696 perf_output_put(&handle, mmap_event->maj); 8697 perf_output_put(&handle, mmap_event->min); 8698 perf_output_put(&handle, mmap_event->ino); 8699 perf_output_put(&handle, mmap_event->ino_generation); 8700 } 8701 perf_output_put(&handle, mmap_event->prot); 8702 perf_output_put(&handle, mmap_event->flags); 8703 } 8704 8705 __output_copy(&handle, mmap_event->file_name, 8706 mmap_event->file_size); 8707 8708 perf_event__output_id_sample(event, &handle, &sample); 8709 8710 perf_output_end(&handle); 8711 out: 8712 mmap_event->event_id.header.size = size; 8713 mmap_event->event_id.header.type = type; 8714 } 8715 8716 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8717 { 8718 struct vm_area_struct *vma = mmap_event->vma; 8719 struct file *file = vma->vm_file; 8720 int maj = 0, min = 0; 8721 u64 ino = 0, gen = 0; 8722 u32 prot = 0, flags = 0; 8723 unsigned int size; 8724 char tmp[16]; 8725 char *buf = NULL; 8726 char *name = NULL; 8727 8728 if (vma->vm_flags & VM_READ) 8729 prot |= PROT_READ; 8730 if (vma->vm_flags & VM_WRITE) 8731 prot |= PROT_WRITE; 8732 if (vma->vm_flags & VM_EXEC) 8733 prot |= PROT_EXEC; 8734 8735 if (vma->vm_flags & VM_MAYSHARE) 8736 flags = MAP_SHARED; 8737 else 8738 flags = MAP_PRIVATE; 8739 8740 if (vma->vm_flags & VM_LOCKED) 8741 flags |= MAP_LOCKED; 8742 if (is_vm_hugetlb_page(vma)) 8743 flags |= MAP_HUGETLB; 8744 8745 if (file) { 8746 struct inode *inode; 8747 dev_t dev; 8748 8749 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8750 if (!buf) { 8751 name = "//enomem"; 8752 goto cpy_name; 8753 } 8754 /* 8755 * d_path() works from the end of the rb backwards, so we 8756 * need to add enough zero bytes after the string to handle 8757 * the 64bit alignment we do later. 8758 */ 8759 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8760 if (IS_ERR(name)) { 8761 name = "//toolong"; 8762 goto cpy_name; 8763 } 8764 inode = file_inode(vma->vm_file); 8765 dev = inode->i_sb->s_dev; 8766 ino = inode->i_ino; 8767 gen = inode->i_generation; 8768 maj = MAJOR(dev); 8769 min = MINOR(dev); 8770 8771 goto got_name; 8772 } else { 8773 if (vma->vm_ops && vma->vm_ops->name) 8774 name = (char *) vma->vm_ops->name(vma); 8775 if (!name) 8776 name = (char *)arch_vma_name(vma); 8777 if (!name) { 8778 if (vma_is_initial_heap(vma)) 8779 name = "[heap]"; 8780 else if (vma_is_initial_stack(vma)) 8781 name = "[stack]"; 8782 else 8783 name = "//anon"; 8784 } 8785 } 8786 8787 cpy_name: 8788 strscpy(tmp, name, sizeof(tmp)); 8789 name = tmp; 8790 got_name: 8791 /* 8792 * Since our buffer works in 8 byte units we need to align our string 8793 * size to a multiple of 8. However, we must guarantee the tail end is 8794 * zero'd out to avoid leaking random bits to userspace. 8795 */ 8796 size = strlen(name)+1; 8797 while (!IS_ALIGNED(size, sizeof(u64))) 8798 name[size++] = '\0'; 8799 8800 mmap_event->file_name = name; 8801 mmap_event->file_size = size; 8802 mmap_event->maj = maj; 8803 mmap_event->min = min; 8804 mmap_event->ino = ino; 8805 mmap_event->ino_generation = gen; 8806 mmap_event->prot = prot; 8807 mmap_event->flags = flags; 8808 8809 if (!(vma->vm_flags & VM_EXEC)) 8810 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8811 8812 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8813 8814 if (atomic_read(&nr_build_id_events)) 8815 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8816 8817 perf_iterate_sb(perf_event_mmap_output, 8818 mmap_event, 8819 NULL); 8820 8821 kfree(buf); 8822 } 8823 8824 /* 8825 * Check whether inode and address range match filter criteria. 8826 */ 8827 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8828 struct file *file, unsigned long offset, 8829 unsigned long size) 8830 { 8831 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8832 if (!filter->path.dentry) 8833 return false; 8834 8835 if (d_inode(filter->path.dentry) != file_inode(file)) 8836 return false; 8837 8838 if (filter->offset > offset + size) 8839 return false; 8840 8841 if (filter->offset + filter->size < offset) 8842 return false; 8843 8844 return true; 8845 } 8846 8847 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8848 struct vm_area_struct *vma, 8849 struct perf_addr_filter_range *fr) 8850 { 8851 unsigned long vma_size = vma->vm_end - vma->vm_start; 8852 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8853 struct file *file = vma->vm_file; 8854 8855 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8856 return false; 8857 8858 if (filter->offset < off) { 8859 fr->start = vma->vm_start; 8860 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8861 } else { 8862 fr->start = vma->vm_start + filter->offset - off; 8863 fr->size = min(vma->vm_end - fr->start, filter->size); 8864 } 8865 8866 return true; 8867 } 8868 8869 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8870 { 8871 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8872 struct vm_area_struct *vma = data; 8873 struct perf_addr_filter *filter; 8874 unsigned int restart = 0, count = 0; 8875 unsigned long flags; 8876 8877 if (!has_addr_filter(event)) 8878 return; 8879 8880 if (!vma->vm_file) 8881 return; 8882 8883 raw_spin_lock_irqsave(&ifh->lock, flags); 8884 list_for_each_entry(filter, &ifh->list, entry) { 8885 if (perf_addr_filter_vma_adjust(filter, vma, 8886 &event->addr_filter_ranges[count])) 8887 restart++; 8888 8889 count++; 8890 } 8891 8892 if (restart) 8893 event->addr_filters_gen++; 8894 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8895 8896 if (restart) 8897 perf_event_stop(event, 1); 8898 } 8899 8900 /* 8901 * Adjust all task's events' filters to the new vma 8902 */ 8903 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8904 { 8905 struct perf_event_context *ctx; 8906 8907 /* 8908 * Data tracing isn't supported yet and as such there is no need 8909 * to keep track of anything that isn't related to executable code: 8910 */ 8911 if (!(vma->vm_flags & VM_EXEC)) 8912 return; 8913 8914 rcu_read_lock(); 8915 ctx = rcu_dereference(current->perf_event_ctxp); 8916 if (ctx) 8917 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8918 rcu_read_unlock(); 8919 } 8920 8921 void perf_event_mmap(struct vm_area_struct *vma) 8922 { 8923 struct perf_mmap_event mmap_event; 8924 8925 if (!atomic_read(&nr_mmap_events)) 8926 return; 8927 8928 mmap_event = (struct perf_mmap_event){ 8929 .vma = vma, 8930 /* .file_name */ 8931 /* .file_size */ 8932 .event_id = { 8933 .header = { 8934 .type = PERF_RECORD_MMAP, 8935 .misc = PERF_RECORD_MISC_USER, 8936 /* .size */ 8937 }, 8938 /* .pid */ 8939 /* .tid */ 8940 .start = vma->vm_start, 8941 .len = vma->vm_end - vma->vm_start, 8942 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8943 }, 8944 /* .maj (attr_mmap2 only) */ 8945 /* .min (attr_mmap2 only) */ 8946 /* .ino (attr_mmap2 only) */ 8947 /* .ino_generation (attr_mmap2 only) */ 8948 /* .prot (attr_mmap2 only) */ 8949 /* .flags (attr_mmap2 only) */ 8950 }; 8951 8952 perf_addr_filters_adjust(vma); 8953 perf_event_mmap_event(&mmap_event); 8954 } 8955 8956 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8957 unsigned long size, u64 flags) 8958 { 8959 struct perf_output_handle handle; 8960 struct perf_sample_data sample; 8961 struct perf_aux_event { 8962 struct perf_event_header header; 8963 u64 offset; 8964 u64 size; 8965 u64 flags; 8966 } rec = { 8967 .header = { 8968 .type = PERF_RECORD_AUX, 8969 .misc = 0, 8970 .size = sizeof(rec), 8971 }, 8972 .offset = head, 8973 .size = size, 8974 .flags = flags, 8975 }; 8976 int ret; 8977 8978 perf_event_header__init_id(&rec.header, &sample, event); 8979 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8980 8981 if (ret) 8982 return; 8983 8984 perf_output_put(&handle, rec); 8985 perf_event__output_id_sample(event, &handle, &sample); 8986 8987 perf_output_end(&handle); 8988 } 8989 8990 /* 8991 * Lost/dropped samples logging 8992 */ 8993 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8994 { 8995 struct perf_output_handle handle; 8996 struct perf_sample_data sample; 8997 int ret; 8998 8999 struct { 9000 struct perf_event_header header; 9001 u64 lost; 9002 } lost_samples_event = { 9003 .header = { 9004 .type = PERF_RECORD_LOST_SAMPLES, 9005 .misc = 0, 9006 .size = sizeof(lost_samples_event), 9007 }, 9008 .lost = lost, 9009 }; 9010 9011 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9012 9013 ret = perf_output_begin(&handle, &sample, event, 9014 lost_samples_event.header.size); 9015 if (ret) 9016 return; 9017 9018 perf_output_put(&handle, lost_samples_event); 9019 perf_event__output_id_sample(event, &handle, &sample); 9020 perf_output_end(&handle); 9021 } 9022 9023 /* 9024 * context_switch tracking 9025 */ 9026 9027 struct perf_switch_event { 9028 struct task_struct *task; 9029 struct task_struct *next_prev; 9030 9031 struct { 9032 struct perf_event_header header; 9033 u32 next_prev_pid; 9034 u32 next_prev_tid; 9035 } event_id; 9036 }; 9037 9038 static int perf_event_switch_match(struct perf_event *event) 9039 { 9040 return event->attr.context_switch; 9041 } 9042 9043 static void perf_event_switch_output(struct perf_event *event, void *data) 9044 { 9045 struct perf_switch_event *se = data; 9046 struct perf_output_handle handle; 9047 struct perf_sample_data sample; 9048 int ret; 9049 9050 if (!perf_event_switch_match(event)) 9051 return; 9052 9053 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9054 if (event->ctx->task) { 9055 se->event_id.header.type = PERF_RECORD_SWITCH; 9056 se->event_id.header.size = sizeof(se->event_id.header); 9057 } else { 9058 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9059 se->event_id.header.size = sizeof(se->event_id); 9060 se->event_id.next_prev_pid = 9061 perf_event_pid(event, se->next_prev); 9062 se->event_id.next_prev_tid = 9063 perf_event_tid(event, se->next_prev); 9064 } 9065 9066 perf_event_header__init_id(&se->event_id.header, &sample, event); 9067 9068 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9069 if (ret) 9070 return; 9071 9072 if (event->ctx->task) 9073 perf_output_put(&handle, se->event_id.header); 9074 else 9075 perf_output_put(&handle, se->event_id); 9076 9077 perf_event__output_id_sample(event, &handle, &sample); 9078 9079 perf_output_end(&handle); 9080 } 9081 9082 static void perf_event_switch(struct task_struct *task, 9083 struct task_struct *next_prev, bool sched_in) 9084 { 9085 struct perf_switch_event switch_event; 9086 9087 /* N.B. caller checks nr_switch_events != 0 */ 9088 9089 switch_event = (struct perf_switch_event){ 9090 .task = task, 9091 .next_prev = next_prev, 9092 .event_id = { 9093 .header = { 9094 /* .type */ 9095 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9096 /* .size */ 9097 }, 9098 /* .next_prev_pid */ 9099 /* .next_prev_tid */ 9100 }, 9101 }; 9102 9103 if (!sched_in && task->on_rq) { 9104 switch_event.event_id.header.misc |= 9105 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9106 } 9107 9108 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9109 } 9110 9111 /* 9112 * IRQ throttle logging 9113 */ 9114 9115 static void perf_log_throttle(struct perf_event *event, int enable) 9116 { 9117 struct perf_output_handle handle; 9118 struct perf_sample_data sample; 9119 int ret; 9120 9121 struct { 9122 struct perf_event_header header; 9123 u64 time; 9124 u64 id; 9125 u64 stream_id; 9126 } throttle_event = { 9127 .header = { 9128 .type = PERF_RECORD_THROTTLE, 9129 .misc = 0, 9130 .size = sizeof(throttle_event), 9131 }, 9132 .time = perf_event_clock(event), 9133 .id = primary_event_id(event), 9134 .stream_id = event->id, 9135 }; 9136 9137 if (enable) 9138 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9139 9140 perf_event_header__init_id(&throttle_event.header, &sample, event); 9141 9142 ret = perf_output_begin(&handle, &sample, event, 9143 throttle_event.header.size); 9144 if (ret) 9145 return; 9146 9147 perf_output_put(&handle, throttle_event); 9148 perf_event__output_id_sample(event, &handle, &sample); 9149 perf_output_end(&handle); 9150 } 9151 9152 /* 9153 * ksymbol register/unregister tracking 9154 */ 9155 9156 struct perf_ksymbol_event { 9157 const char *name; 9158 int name_len; 9159 struct { 9160 struct perf_event_header header; 9161 u64 addr; 9162 u32 len; 9163 u16 ksym_type; 9164 u16 flags; 9165 } event_id; 9166 }; 9167 9168 static int perf_event_ksymbol_match(struct perf_event *event) 9169 { 9170 return event->attr.ksymbol; 9171 } 9172 9173 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9174 { 9175 struct perf_ksymbol_event *ksymbol_event = data; 9176 struct perf_output_handle handle; 9177 struct perf_sample_data sample; 9178 int ret; 9179 9180 if (!perf_event_ksymbol_match(event)) 9181 return; 9182 9183 perf_event_header__init_id(&ksymbol_event->event_id.header, 9184 &sample, event); 9185 ret = perf_output_begin(&handle, &sample, event, 9186 ksymbol_event->event_id.header.size); 9187 if (ret) 9188 return; 9189 9190 perf_output_put(&handle, ksymbol_event->event_id); 9191 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9192 perf_event__output_id_sample(event, &handle, &sample); 9193 9194 perf_output_end(&handle); 9195 } 9196 9197 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9198 const char *sym) 9199 { 9200 struct perf_ksymbol_event ksymbol_event; 9201 char name[KSYM_NAME_LEN]; 9202 u16 flags = 0; 9203 int name_len; 9204 9205 if (!atomic_read(&nr_ksymbol_events)) 9206 return; 9207 9208 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9209 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9210 goto err; 9211 9212 strscpy(name, sym, KSYM_NAME_LEN); 9213 name_len = strlen(name) + 1; 9214 while (!IS_ALIGNED(name_len, sizeof(u64))) 9215 name[name_len++] = '\0'; 9216 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9217 9218 if (unregister) 9219 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9220 9221 ksymbol_event = (struct perf_ksymbol_event){ 9222 .name = name, 9223 .name_len = name_len, 9224 .event_id = { 9225 .header = { 9226 .type = PERF_RECORD_KSYMBOL, 9227 .size = sizeof(ksymbol_event.event_id) + 9228 name_len, 9229 }, 9230 .addr = addr, 9231 .len = len, 9232 .ksym_type = ksym_type, 9233 .flags = flags, 9234 }, 9235 }; 9236 9237 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9238 return; 9239 err: 9240 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9241 } 9242 9243 /* 9244 * bpf program load/unload tracking 9245 */ 9246 9247 struct perf_bpf_event { 9248 struct bpf_prog *prog; 9249 struct { 9250 struct perf_event_header header; 9251 u16 type; 9252 u16 flags; 9253 u32 id; 9254 u8 tag[BPF_TAG_SIZE]; 9255 } event_id; 9256 }; 9257 9258 static int perf_event_bpf_match(struct perf_event *event) 9259 { 9260 return event->attr.bpf_event; 9261 } 9262 9263 static void perf_event_bpf_output(struct perf_event *event, void *data) 9264 { 9265 struct perf_bpf_event *bpf_event = data; 9266 struct perf_output_handle handle; 9267 struct perf_sample_data sample; 9268 int ret; 9269 9270 if (!perf_event_bpf_match(event)) 9271 return; 9272 9273 perf_event_header__init_id(&bpf_event->event_id.header, 9274 &sample, event); 9275 ret = perf_output_begin(&handle, &sample, event, 9276 bpf_event->event_id.header.size); 9277 if (ret) 9278 return; 9279 9280 perf_output_put(&handle, bpf_event->event_id); 9281 perf_event__output_id_sample(event, &handle, &sample); 9282 9283 perf_output_end(&handle); 9284 } 9285 9286 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9287 enum perf_bpf_event_type type) 9288 { 9289 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9290 int i; 9291 9292 if (prog->aux->func_cnt == 0) { 9293 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9294 (u64)(unsigned long)prog->bpf_func, 9295 prog->jited_len, unregister, 9296 prog->aux->ksym.name); 9297 } else { 9298 for (i = 0; i < prog->aux->func_cnt; i++) { 9299 struct bpf_prog *subprog = prog->aux->func[i]; 9300 9301 perf_event_ksymbol( 9302 PERF_RECORD_KSYMBOL_TYPE_BPF, 9303 (u64)(unsigned long)subprog->bpf_func, 9304 subprog->jited_len, unregister, 9305 subprog->aux->ksym.name); 9306 } 9307 } 9308 } 9309 9310 void perf_event_bpf_event(struct bpf_prog *prog, 9311 enum perf_bpf_event_type type, 9312 u16 flags) 9313 { 9314 struct perf_bpf_event bpf_event; 9315 9316 switch (type) { 9317 case PERF_BPF_EVENT_PROG_LOAD: 9318 case PERF_BPF_EVENT_PROG_UNLOAD: 9319 if (atomic_read(&nr_ksymbol_events)) 9320 perf_event_bpf_emit_ksymbols(prog, type); 9321 break; 9322 default: 9323 return; 9324 } 9325 9326 if (!atomic_read(&nr_bpf_events)) 9327 return; 9328 9329 bpf_event = (struct perf_bpf_event){ 9330 .prog = prog, 9331 .event_id = { 9332 .header = { 9333 .type = PERF_RECORD_BPF_EVENT, 9334 .size = sizeof(bpf_event.event_id), 9335 }, 9336 .type = type, 9337 .flags = flags, 9338 .id = prog->aux->id, 9339 }, 9340 }; 9341 9342 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9343 9344 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9345 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9346 } 9347 9348 struct perf_text_poke_event { 9349 const void *old_bytes; 9350 const void *new_bytes; 9351 size_t pad; 9352 u16 old_len; 9353 u16 new_len; 9354 9355 struct { 9356 struct perf_event_header header; 9357 9358 u64 addr; 9359 } event_id; 9360 }; 9361 9362 static int perf_event_text_poke_match(struct perf_event *event) 9363 { 9364 return event->attr.text_poke; 9365 } 9366 9367 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9368 { 9369 struct perf_text_poke_event *text_poke_event = data; 9370 struct perf_output_handle handle; 9371 struct perf_sample_data sample; 9372 u64 padding = 0; 9373 int ret; 9374 9375 if (!perf_event_text_poke_match(event)) 9376 return; 9377 9378 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9379 9380 ret = perf_output_begin(&handle, &sample, event, 9381 text_poke_event->event_id.header.size); 9382 if (ret) 9383 return; 9384 9385 perf_output_put(&handle, text_poke_event->event_id); 9386 perf_output_put(&handle, text_poke_event->old_len); 9387 perf_output_put(&handle, text_poke_event->new_len); 9388 9389 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9390 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9391 9392 if (text_poke_event->pad) 9393 __output_copy(&handle, &padding, text_poke_event->pad); 9394 9395 perf_event__output_id_sample(event, &handle, &sample); 9396 9397 perf_output_end(&handle); 9398 } 9399 9400 void perf_event_text_poke(const void *addr, const void *old_bytes, 9401 size_t old_len, const void *new_bytes, size_t new_len) 9402 { 9403 struct perf_text_poke_event text_poke_event; 9404 size_t tot, pad; 9405 9406 if (!atomic_read(&nr_text_poke_events)) 9407 return; 9408 9409 tot = sizeof(text_poke_event.old_len) + old_len; 9410 tot += sizeof(text_poke_event.new_len) + new_len; 9411 pad = ALIGN(tot, sizeof(u64)) - tot; 9412 9413 text_poke_event = (struct perf_text_poke_event){ 9414 .old_bytes = old_bytes, 9415 .new_bytes = new_bytes, 9416 .pad = pad, 9417 .old_len = old_len, 9418 .new_len = new_len, 9419 .event_id = { 9420 .header = { 9421 .type = PERF_RECORD_TEXT_POKE, 9422 .misc = PERF_RECORD_MISC_KERNEL, 9423 .size = sizeof(text_poke_event.event_id) + tot + pad, 9424 }, 9425 .addr = (unsigned long)addr, 9426 }, 9427 }; 9428 9429 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9430 } 9431 9432 void perf_event_itrace_started(struct perf_event *event) 9433 { 9434 event->attach_state |= PERF_ATTACH_ITRACE; 9435 } 9436 9437 static void perf_log_itrace_start(struct perf_event *event) 9438 { 9439 struct perf_output_handle handle; 9440 struct perf_sample_data sample; 9441 struct perf_aux_event { 9442 struct perf_event_header header; 9443 u32 pid; 9444 u32 tid; 9445 } rec; 9446 int ret; 9447 9448 if (event->parent) 9449 event = event->parent; 9450 9451 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9452 event->attach_state & PERF_ATTACH_ITRACE) 9453 return; 9454 9455 rec.header.type = PERF_RECORD_ITRACE_START; 9456 rec.header.misc = 0; 9457 rec.header.size = sizeof(rec); 9458 rec.pid = perf_event_pid(event, current); 9459 rec.tid = perf_event_tid(event, current); 9460 9461 perf_event_header__init_id(&rec.header, &sample, event); 9462 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9463 9464 if (ret) 9465 return; 9466 9467 perf_output_put(&handle, rec); 9468 perf_event__output_id_sample(event, &handle, &sample); 9469 9470 perf_output_end(&handle); 9471 } 9472 9473 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9474 { 9475 struct perf_output_handle handle; 9476 struct perf_sample_data sample; 9477 struct perf_aux_event { 9478 struct perf_event_header header; 9479 u64 hw_id; 9480 } rec; 9481 int ret; 9482 9483 if (event->parent) 9484 event = event->parent; 9485 9486 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9487 rec.header.misc = 0; 9488 rec.header.size = sizeof(rec); 9489 rec.hw_id = hw_id; 9490 9491 perf_event_header__init_id(&rec.header, &sample, event); 9492 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9493 9494 if (ret) 9495 return; 9496 9497 perf_output_put(&handle, rec); 9498 perf_event__output_id_sample(event, &handle, &sample); 9499 9500 perf_output_end(&handle); 9501 } 9502 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9503 9504 static int 9505 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9506 { 9507 struct hw_perf_event *hwc = &event->hw; 9508 int ret = 0; 9509 u64 seq; 9510 9511 seq = __this_cpu_read(perf_throttled_seq); 9512 if (seq != hwc->interrupts_seq) { 9513 hwc->interrupts_seq = seq; 9514 hwc->interrupts = 1; 9515 } else { 9516 hwc->interrupts++; 9517 if (unlikely(throttle && 9518 hwc->interrupts > max_samples_per_tick)) { 9519 __this_cpu_inc(perf_throttled_count); 9520 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9521 hwc->interrupts = MAX_INTERRUPTS; 9522 perf_log_throttle(event, 0); 9523 ret = 1; 9524 } 9525 } 9526 9527 if (event->attr.freq) { 9528 u64 now = perf_clock(); 9529 s64 delta = now - hwc->freq_time_stamp; 9530 9531 hwc->freq_time_stamp = now; 9532 9533 if (delta > 0 && delta < 2*TICK_NSEC) 9534 perf_adjust_period(event, delta, hwc->last_period, true); 9535 } 9536 9537 return ret; 9538 } 9539 9540 int perf_event_account_interrupt(struct perf_event *event) 9541 { 9542 return __perf_event_account_interrupt(event, 1); 9543 } 9544 9545 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9546 { 9547 /* 9548 * Due to interrupt latency (AKA "skid"), we may enter the 9549 * kernel before taking an overflow, even if the PMU is only 9550 * counting user events. 9551 */ 9552 if (event->attr.exclude_kernel && !user_mode(regs)) 9553 return false; 9554 9555 return true; 9556 } 9557 9558 #ifdef CONFIG_BPF_SYSCALL 9559 static int bpf_overflow_handler(struct perf_event *event, 9560 struct perf_sample_data *data, 9561 struct pt_regs *regs) 9562 { 9563 struct bpf_perf_event_data_kern ctx = { 9564 .data = data, 9565 .event = event, 9566 }; 9567 struct bpf_prog *prog; 9568 int ret = 0; 9569 9570 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9571 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9572 goto out; 9573 rcu_read_lock(); 9574 prog = READ_ONCE(event->prog); 9575 if (prog) { 9576 perf_prepare_sample(data, event, regs); 9577 ret = bpf_prog_run(prog, &ctx); 9578 } 9579 rcu_read_unlock(); 9580 out: 9581 __this_cpu_dec(bpf_prog_active); 9582 9583 return ret; 9584 } 9585 9586 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9587 struct bpf_prog *prog, 9588 u64 bpf_cookie) 9589 { 9590 if (event->overflow_handler_context) 9591 /* hw breakpoint or kernel counter */ 9592 return -EINVAL; 9593 9594 if (event->prog) 9595 return -EEXIST; 9596 9597 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9598 return -EINVAL; 9599 9600 if (event->attr.precise_ip && 9601 prog->call_get_stack && 9602 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9603 event->attr.exclude_callchain_kernel || 9604 event->attr.exclude_callchain_user)) { 9605 /* 9606 * On perf_event with precise_ip, calling bpf_get_stack() 9607 * may trigger unwinder warnings and occasional crashes. 9608 * bpf_get_[stack|stackid] works around this issue by using 9609 * callchain attached to perf_sample_data. If the 9610 * perf_event does not full (kernel and user) callchain 9611 * attached to perf_sample_data, do not allow attaching BPF 9612 * program that calls bpf_get_[stack|stackid]. 9613 */ 9614 return -EPROTO; 9615 } 9616 9617 event->prog = prog; 9618 event->bpf_cookie = bpf_cookie; 9619 return 0; 9620 } 9621 9622 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9623 { 9624 struct bpf_prog *prog = event->prog; 9625 9626 if (!prog) 9627 return; 9628 9629 event->prog = NULL; 9630 bpf_prog_put(prog); 9631 } 9632 #else 9633 static inline int bpf_overflow_handler(struct perf_event *event, 9634 struct perf_sample_data *data, 9635 struct pt_regs *regs) 9636 { 9637 return 1; 9638 } 9639 9640 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9641 struct bpf_prog *prog, 9642 u64 bpf_cookie) 9643 { 9644 return -EOPNOTSUPP; 9645 } 9646 9647 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9648 { 9649 } 9650 #endif 9651 9652 /* 9653 * Generic event overflow handling, sampling. 9654 */ 9655 9656 static int __perf_event_overflow(struct perf_event *event, 9657 int throttle, struct perf_sample_data *data, 9658 struct pt_regs *regs) 9659 { 9660 int events = atomic_read(&event->event_limit); 9661 int ret = 0; 9662 9663 /* 9664 * Non-sampling counters might still use the PMI to fold short 9665 * hardware counters, ignore those. 9666 */ 9667 if (unlikely(!is_sampling_event(event))) 9668 return 0; 9669 9670 ret = __perf_event_account_interrupt(event, throttle); 9671 9672 if (event->prog && !bpf_overflow_handler(event, data, regs)) 9673 return ret; 9674 9675 /* 9676 * XXX event_limit might not quite work as expected on inherited 9677 * events 9678 */ 9679 9680 event->pending_kill = POLL_IN; 9681 if (events && atomic_dec_and_test(&event->event_limit)) { 9682 ret = 1; 9683 event->pending_kill = POLL_HUP; 9684 perf_event_disable_inatomic(event); 9685 } 9686 9687 if (event->attr.sigtrap) { 9688 /* 9689 * The desired behaviour of sigtrap vs invalid samples is a bit 9690 * tricky; on the one hand, one should not loose the SIGTRAP if 9691 * it is the first event, on the other hand, we should also not 9692 * trigger the WARN or override the data address. 9693 */ 9694 bool valid_sample = sample_is_allowed(event, regs); 9695 unsigned int pending_id = 1; 9696 9697 if (regs) 9698 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9699 if (!event->pending_sigtrap) { 9700 event->pending_sigtrap = pending_id; 9701 local_inc(&event->ctx->nr_pending); 9702 } else if (event->attr.exclude_kernel && valid_sample) { 9703 /* 9704 * Should not be able to return to user space without 9705 * consuming pending_sigtrap; with exceptions: 9706 * 9707 * 1. Where !exclude_kernel, events can overflow again 9708 * in the kernel without returning to user space. 9709 * 9710 * 2. Events that can overflow again before the IRQ- 9711 * work without user space progress (e.g. hrtimer). 9712 * To approximate progress (with false negatives), 9713 * check 32-bit hash of the current IP. 9714 */ 9715 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9716 } 9717 9718 event->pending_addr = 0; 9719 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9720 event->pending_addr = data->addr; 9721 irq_work_queue(&event->pending_irq); 9722 } 9723 9724 READ_ONCE(event->overflow_handler)(event, data, regs); 9725 9726 if (*perf_event_fasync(event) && event->pending_kill) { 9727 event->pending_wakeup = 1; 9728 irq_work_queue(&event->pending_irq); 9729 } 9730 9731 return ret; 9732 } 9733 9734 int perf_event_overflow(struct perf_event *event, 9735 struct perf_sample_data *data, 9736 struct pt_regs *regs) 9737 { 9738 return __perf_event_overflow(event, 1, data, regs); 9739 } 9740 9741 /* 9742 * Generic software event infrastructure 9743 */ 9744 9745 struct swevent_htable { 9746 struct swevent_hlist *swevent_hlist; 9747 struct mutex hlist_mutex; 9748 int hlist_refcount; 9749 9750 /* Recursion avoidance in each contexts */ 9751 int recursion[PERF_NR_CONTEXTS]; 9752 }; 9753 9754 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9755 9756 /* 9757 * We directly increment event->count and keep a second value in 9758 * event->hw.period_left to count intervals. This period event 9759 * is kept in the range [-sample_period, 0] so that we can use the 9760 * sign as trigger. 9761 */ 9762 9763 u64 perf_swevent_set_period(struct perf_event *event) 9764 { 9765 struct hw_perf_event *hwc = &event->hw; 9766 u64 period = hwc->last_period; 9767 u64 nr, offset; 9768 s64 old, val; 9769 9770 hwc->last_period = hwc->sample_period; 9771 9772 old = local64_read(&hwc->period_left); 9773 do { 9774 val = old; 9775 if (val < 0) 9776 return 0; 9777 9778 nr = div64_u64(period + val, period); 9779 offset = nr * period; 9780 val -= offset; 9781 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9782 9783 return nr; 9784 } 9785 9786 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9787 struct perf_sample_data *data, 9788 struct pt_regs *regs) 9789 { 9790 struct hw_perf_event *hwc = &event->hw; 9791 int throttle = 0; 9792 9793 if (!overflow) 9794 overflow = perf_swevent_set_period(event); 9795 9796 if (hwc->interrupts == MAX_INTERRUPTS) 9797 return; 9798 9799 for (; overflow; overflow--) { 9800 if (__perf_event_overflow(event, throttle, 9801 data, regs)) { 9802 /* 9803 * We inhibit the overflow from happening when 9804 * hwc->interrupts == MAX_INTERRUPTS. 9805 */ 9806 break; 9807 } 9808 throttle = 1; 9809 } 9810 } 9811 9812 static void perf_swevent_event(struct perf_event *event, u64 nr, 9813 struct perf_sample_data *data, 9814 struct pt_regs *regs) 9815 { 9816 struct hw_perf_event *hwc = &event->hw; 9817 9818 local64_add(nr, &event->count); 9819 9820 if (!regs) 9821 return; 9822 9823 if (!is_sampling_event(event)) 9824 return; 9825 9826 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9827 data->period = nr; 9828 return perf_swevent_overflow(event, 1, data, regs); 9829 } else 9830 data->period = event->hw.last_period; 9831 9832 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9833 return perf_swevent_overflow(event, 1, data, regs); 9834 9835 if (local64_add_negative(nr, &hwc->period_left)) 9836 return; 9837 9838 perf_swevent_overflow(event, 0, data, regs); 9839 } 9840 9841 static int perf_exclude_event(struct perf_event *event, 9842 struct pt_regs *regs) 9843 { 9844 if (event->hw.state & PERF_HES_STOPPED) 9845 return 1; 9846 9847 if (regs) { 9848 if (event->attr.exclude_user && user_mode(regs)) 9849 return 1; 9850 9851 if (event->attr.exclude_kernel && !user_mode(regs)) 9852 return 1; 9853 } 9854 9855 return 0; 9856 } 9857 9858 static int perf_swevent_match(struct perf_event *event, 9859 enum perf_type_id type, 9860 u32 event_id, 9861 struct perf_sample_data *data, 9862 struct pt_regs *regs) 9863 { 9864 if (event->attr.type != type) 9865 return 0; 9866 9867 if (event->attr.config != event_id) 9868 return 0; 9869 9870 if (perf_exclude_event(event, regs)) 9871 return 0; 9872 9873 return 1; 9874 } 9875 9876 static inline u64 swevent_hash(u64 type, u32 event_id) 9877 { 9878 u64 val = event_id | (type << 32); 9879 9880 return hash_64(val, SWEVENT_HLIST_BITS); 9881 } 9882 9883 static inline struct hlist_head * 9884 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9885 { 9886 u64 hash = swevent_hash(type, event_id); 9887 9888 return &hlist->heads[hash]; 9889 } 9890 9891 /* For the read side: events when they trigger */ 9892 static inline struct hlist_head * 9893 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9894 { 9895 struct swevent_hlist *hlist; 9896 9897 hlist = rcu_dereference(swhash->swevent_hlist); 9898 if (!hlist) 9899 return NULL; 9900 9901 return __find_swevent_head(hlist, type, event_id); 9902 } 9903 9904 /* For the event head insertion and removal in the hlist */ 9905 static inline struct hlist_head * 9906 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9907 { 9908 struct swevent_hlist *hlist; 9909 u32 event_id = event->attr.config; 9910 u64 type = event->attr.type; 9911 9912 /* 9913 * Event scheduling is always serialized against hlist allocation 9914 * and release. Which makes the protected version suitable here. 9915 * The context lock guarantees that. 9916 */ 9917 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9918 lockdep_is_held(&event->ctx->lock)); 9919 if (!hlist) 9920 return NULL; 9921 9922 return __find_swevent_head(hlist, type, event_id); 9923 } 9924 9925 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9926 u64 nr, 9927 struct perf_sample_data *data, 9928 struct pt_regs *regs) 9929 { 9930 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9931 struct perf_event *event; 9932 struct hlist_head *head; 9933 9934 rcu_read_lock(); 9935 head = find_swevent_head_rcu(swhash, type, event_id); 9936 if (!head) 9937 goto end; 9938 9939 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9940 if (perf_swevent_match(event, type, event_id, data, regs)) 9941 perf_swevent_event(event, nr, data, regs); 9942 } 9943 end: 9944 rcu_read_unlock(); 9945 } 9946 9947 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9948 9949 int perf_swevent_get_recursion_context(void) 9950 { 9951 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9952 9953 return get_recursion_context(swhash->recursion); 9954 } 9955 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9956 9957 void perf_swevent_put_recursion_context(int rctx) 9958 { 9959 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9960 9961 put_recursion_context(swhash->recursion, rctx); 9962 } 9963 9964 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9965 { 9966 struct perf_sample_data data; 9967 9968 if (WARN_ON_ONCE(!regs)) 9969 return; 9970 9971 perf_sample_data_init(&data, addr, 0); 9972 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9973 } 9974 9975 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9976 { 9977 int rctx; 9978 9979 preempt_disable_notrace(); 9980 rctx = perf_swevent_get_recursion_context(); 9981 if (unlikely(rctx < 0)) 9982 goto fail; 9983 9984 ___perf_sw_event(event_id, nr, regs, addr); 9985 9986 perf_swevent_put_recursion_context(rctx); 9987 fail: 9988 preempt_enable_notrace(); 9989 } 9990 9991 static void perf_swevent_read(struct perf_event *event) 9992 { 9993 } 9994 9995 static int perf_swevent_add(struct perf_event *event, int flags) 9996 { 9997 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9998 struct hw_perf_event *hwc = &event->hw; 9999 struct hlist_head *head; 10000 10001 if (is_sampling_event(event)) { 10002 hwc->last_period = hwc->sample_period; 10003 perf_swevent_set_period(event); 10004 } 10005 10006 hwc->state = !(flags & PERF_EF_START); 10007 10008 head = find_swevent_head(swhash, event); 10009 if (WARN_ON_ONCE(!head)) 10010 return -EINVAL; 10011 10012 hlist_add_head_rcu(&event->hlist_entry, head); 10013 perf_event_update_userpage(event); 10014 10015 return 0; 10016 } 10017 10018 static void perf_swevent_del(struct perf_event *event, int flags) 10019 { 10020 hlist_del_rcu(&event->hlist_entry); 10021 } 10022 10023 static void perf_swevent_start(struct perf_event *event, int flags) 10024 { 10025 event->hw.state = 0; 10026 } 10027 10028 static void perf_swevent_stop(struct perf_event *event, int flags) 10029 { 10030 event->hw.state = PERF_HES_STOPPED; 10031 } 10032 10033 /* Deref the hlist from the update side */ 10034 static inline struct swevent_hlist * 10035 swevent_hlist_deref(struct swevent_htable *swhash) 10036 { 10037 return rcu_dereference_protected(swhash->swevent_hlist, 10038 lockdep_is_held(&swhash->hlist_mutex)); 10039 } 10040 10041 static void swevent_hlist_release(struct swevent_htable *swhash) 10042 { 10043 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10044 10045 if (!hlist) 10046 return; 10047 10048 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10049 kfree_rcu(hlist, rcu_head); 10050 } 10051 10052 static void swevent_hlist_put_cpu(int cpu) 10053 { 10054 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10055 10056 mutex_lock(&swhash->hlist_mutex); 10057 10058 if (!--swhash->hlist_refcount) 10059 swevent_hlist_release(swhash); 10060 10061 mutex_unlock(&swhash->hlist_mutex); 10062 } 10063 10064 static void swevent_hlist_put(void) 10065 { 10066 int cpu; 10067 10068 for_each_possible_cpu(cpu) 10069 swevent_hlist_put_cpu(cpu); 10070 } 10071 10072 static int swevent_hlist_get_cpu(int cpu) 10073 { 10074 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10075 int err = 0; 10076 10077 mutex_lock(&swhash->hlist_mutex); 10078 if (!swevent_hlist_deref(swhash) && 10079 cpumask_test_cpu(cpu, perf_online_mask)) { 10080 struct swevent_hlist *hlist; 10081 10082 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10083 if (!hlist) { 10084 err = -ENOMEM; 10085 goto exit; 10086 } 10087 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10088 } 10089 swhash->hlist_refcount++; 10090 exit: 10091 mutex_unlock(&swhash->hlist_mutex); 10092 10093 return err; 10094 } 10095 10096 static int swevent_hlist_get(void) 10097 { 10098 int err, cpu, failed_cpu; 10099 10100 mutex_lock(&pmus_lock); 10101 for_each_possible_cpu(cpu) { 10102 err = swevent_hlist_get_cpu(cpu); 10103 if (err) { 10104 failed_cpu = cpu; 10105 goto fail; 10106 } 10107 } 10108 mutex_unlock(&pmus_lock); 10109 return 0; 10110 fail: 10111 for_each_possible_cpu(cpu) { 10112 if (cpu == failed_cpu) 10113 break; 10114 swevent_hlist_put_cpu(cpu); 10115 } 10116 mutex_unlock(&pmus_lock); 10117 return err; 10118 } 10119 10120 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10121 10122 static void sw_perf_event_destroy(struct perf_event *event) 10123 { 10124 u64 event_id = event->attr.config; 10125 10126 WARN_ON(event->parent); 10127 10128 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10129 swevent_hlist_put(); 10130 } 10131 10132 static struct pmu perf_cpu_clock; /* fwd declaration */ 10133 static struct pmu perf_task_clock; 10134 10135 static int perf_swevent_init(struct perf_event *event) 10136 { 10137 u64 event_id = event->attr.config; 10138 10139 if (event->attr.type != PERF_TYPE_SOFTWARE) 10140 return -ENOENT; 10141 10142 /* 10143 * no branch sampling for software events 10144 */ 10145 if (has_branch_stack(event)) 10146 return -EOPNOTSUPP; 10147 10148 switch (event_id) { 10149 case PERF_COUNT_SW_CPU_CLOCK: 10150 event->attr.type = perf_cpu_clock.type; 10151 return -ENOENT; 10152 case PERF_COUNT_SW_TASK_CLOCK: 10153 event->attr.type = perf_task_clock.type; 10154 return -ENOENT; 10155 10156 default: 10157 break; 10158 } 10159 10160 if (event_id >= PERF_COUNT_SW_MAX) 10161 return -ENOENT; 10162 10163 if (!event->parent) { 10164 int err; 10165 10166 err = swevent_hlist_get(); 10167 if (err) 10168 return err; 10169 10170 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10171 event->destroy = sw_perf_event_destroy; 10172 } 10173 10174 return 0; 10175 } 10176 10177 static struct pmu perf_swevent = { 10178 .task_ctx_nr = perf_sw_context, 10179 10180 .capabilities = PERF_PMU_CAP_NO_NMI, 10181 10182 .event_init = perf_swevent_init, 10183 .add = perf_swevent_add, 10184 .del = perf_swevent_del, 10185 .start = perf_swevent_start, 10186 .stop = perf_swevent_stop, 10187 .read = perf_swevent_read, 10188 }; 10189 10190 #ifdef CONFIG_EVENT_TRACING 10191 10192 static void tp_perf_event_destroy(struct perf_event *event) 10193 { 10194 perf_trace_destroy(event); 10195 } 10196 10197 static int perf_tp_event_init(struct perf_event *event) 10198 { 10199 int err; 10200 10201 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10202 return -ENOENT; 10203 10204 /* 10205 * no branch sampling for tracepoint events 10206 */ 10207 if (has_branch_stack(event)) 10208 return -EOPNOTSUPP; 10209 10210 err = perf_trace_init(event); 10211 if (err) 10212 return err; 10213 10214 event->destroy = tp_perf_event_destroy; 10215 10216 return 0; 10217 } 10218 10219 static struct pmu perf_tracepoint = { 10220 .task_ctx_nr = perf_sw_context, 10221 10222 .event_init = perf_tp_event_init, 10223 .add = perf_trace_add, 10224 .del = perf_trace_del, 10225 .start = perf_swevent_start, 10226 .stop = perf_swevent_stop, 10227 .read = perf_swevent_read, 10228 }; 10229 10230 static int perf_tp_filter_match(struct perf_event *event, 10231 struct perf_sample_data *data) 10232 { 10233 void *record = data->raw->frag.data; 10234 10235 /* only top level events have filters set */ 10236 if (event->parent) 10237 event = event->parent; 10238 10239 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10240 return 1; 10241 return 0; 10242 } 10243 10244 static int perf_tp_event_match(struct perf_event *event, 10245 struct perf_sample_data *data, 10246 struct pt_regs *regs) 10247 { 10248 if (event->hw.state & PERF_HES_STOPPED) 10249 return 0; 10250 /* 10251 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10252 */ 10253 if (event->attr.exclude_kernel && !user_mode(regs)) 10254 return 0; 10255 10256 if (!perf_tp_filter_match(event, data)) 10257 return 0; 10258 10259 return 1; 10260 } 10261 10262 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10263 struct trace_event_call *call, u64 count, 10264 struct pt_regs *regs, struct hlist_head *head, 10265 struct task_struct *task) 10266 { 10267 if (bpf_prog_array_valid(call)) { 10268 *(struct pt_regs **)raw_data = regs; 10269 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10270 perf_swevent_put_recursion_context(rctx); 10271 return; 10272 } 10273 } 10274 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10275 rctx, task); 10276 } 10277 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10278 10279 static void __perf_tp_event_target_task(u64 count, void *record, 10280 struct pt_regs *regs, 10281 struct perf_sample_data *data, 10282 struct perf_event *event) 10283 { 10284 struct trace_entry *entry = record; 10285 10286 if (event->attr.config != entry->type) 10287 return; 10288 /* Cannot deliver synchronous signal to other task. */ 10289 if (event->attr.sigtrap) 10290 return; 10291 if (perf_tp_event_match(event, data, regs)) 10292 perf_swevent_event(event, count, data, regs); 10293 } 10294 10295 static void perf_tp_event_target_task(u64 count, void *record, 10296 struct pt_regs *regs, 10297 struct perf_sample_data *data, 10298 struct perf_event_context *ctx) 10299 { 10300 unsigned int cpu = smp_processor_id(); 10301 struct pmu *pmu = &perf_tracepoint; 10302 struct perf_event *event, *sibling; 10303 10304 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10305 __perf_tp_event_target_task(count, record, regs, data, event); 10306 for_each_sibling_event(sibling, event) 10307 __perf_tp_event_target_task(count, record, regs, data, sibling); 10308 } 10309 10310 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10311 __perf_tp_event_target_task(count, record, regs, data, event); 10312 for_each_sibling_event(sibling, event) 10313 __perf_tp_event_target_task(count, record, regs, data, sibling); 10314 } 10315 } 10316 10317 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10318 struct pt_regs *regs, struct hlist_head *head, int rctx, 10319 struct task_struct *task) 10320 { 10321 struct perf_sample_data data; 10322 struct perf_event *event; 10323 10324 struct perf_raw_record raw = { 10325 .frag = { 10326 .size = entry_size, 10327 .data = record, 10328 }, 10329 }; 10330 10331 perf_sample_data_init(&data, 0, 0); 10332 perf_sample_save_raw_data(&data, &raw); 10333 10334 perf_trace_buf_update(record, event_type); 10335 10336 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10337 if (perf_tp_event_match(event, &data, regs)) { 10338 perf_swevent_event(event, count, &data, regs); 10339 10340 /* 10341 * Here use the same on-stack perf_sample_data, 10342 * some members in data are event-specific and 10343 * need to be re-computed for different sweveents. 10344 * Re-initialize data->sample_flags safely to avoid 10345 * the problem that next event skips preparing data 10346 * because data->sample_flags is set. 10347 */ 10348 perf_sample_data_init(&data, 0, 0); 10349 perf_sample_save_raw_data(&data, &raw); 10350 } 10351 } 10352 10353 /* 10354 * If we got specified a target task, also iterate its context and 10355 * deliver this event there too. 10356 */ 10357 if (task && task != current) { 10358 struct perf_event_context *ctx; 10359 10360 rcu_read_lock(); 10361 ctx = rcu_dereference(task->perf_event_ctxp); 10362 if (!ctx) 10363 goto unlock; 10364 10365 raw_spin_lock(&ctx->lock); 10366 perf_tp_event_target_task(count, record, regs, &data, ctx); 10367 raw_spin_unlock(&ctx->lock); 10368 unlock: 10369 rcu_read_unlock(); 10370 } 10371 10372 perf_swevent_put_recursion_context(rctx); 10373 } 10374 EXPORT_SYMBOL_GPL(perf_tp_event); 10375 10376 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10377 /* 10378 * Flags in config, used by dynamic PMU kprobe and uprobe 10379 * The flags should match following PMU_FORMAT_ATTR(). 10380 * 10381 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10382 * if not set, create kprobe/uprobe 10383 * 10384 * The following values specify a reference counter (or semaphore in the 10385 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10386 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10387 * 10388 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10389 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10390 */ 10391 enum perf_probe_config { 10392 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10393 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10394 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10395 }; 10396 10397 PMU_FORMAT_ATTR(retprobe, "config:0"); 10398 #endif 10399 10400 #ifdef CONFIG_KPROBE_EVENTS 10401 static struct attribute *kprobe_attrs[] = { 10402 &format_attr_retprobe.attr, 10403 NULL, 10404 }; 10405 10406 static struct attribute_group kprobe_format_group = { 10407 .name = "format", 10408 .attrs = kprobe_attrs, 10409 }; 10410 10411 static const struct attribute_group *kprobe_attr_groups[] = { 10412 &kprobe_format_group, 10413 NULL, 10414 }; 10415 10416 static int perf_kprobe_event_init(struct perf_event *event); 10417 static struct pmu perf_kprobe = { 10418 .task_ctx_nr = perf_sw_context, 10419 .event_init = perf_kprobe_event_init, 10420 .add = perf_trace_add, 10421 .del = perf_trace_del, 10422 .start = perf_swevent_start, 10423 .stop = perf_swevent_stop, 10424 .read = perf_swevent_read, 10425 .attr_groups = kprobe_attr_groups, 10426 }; 10427 10428 static int perf_kprobe_event_init(struct perf_event *event) 10429 { 10430 int err; 10431 bool is_retprobe; 10432 10433 if (event->attr.type != perf_kprobe.type) 10434 return -ENOENT; 10435 10436 if (!perfmon_capable()) 10437 return -EACCES; 10438 10439 /* 10440 * no branch sampling for probe events 10441 */ 10442 if (has_branch_stack(event)) 10443 return -EOPNOTSUPP; 10444 10445 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10446 err = perf_kprobe_init(event, is_retprobe); 10447 if (err) 10448 return err; 10449 10450 event->destroy = perf_kprobe_destroy; 10451 10452 return 0; 10453 } 10454 #endif /* CONFIG_KPROBE_EVENTS */ 10455 10456 #ifdef CONFIG_UPROBE_EVENTS 10457 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10458 10459 static struct attribute *uprobe_attrs[] = { 10460 &format_attr_retprobe.attr, 10461 &format_attr_ref_ctr_offset.attr, 10462 NULL, 10463 }; 10464 10465 static struct attribute_group uprobe_format_group = { 10466 .name = "format", 10467 .attrs = uprobe_attrs, 10468 }; 10469 10470 static const struct attribute_group *uprobe_attr_groups[] = { 10471 &uprobe_format_group, 10472 NULL, 10473 }; 10474 10475 static int perf_uprobe_event_init(struct perf_event *event); 10476 static struct pmu perf_uprobe = { 10477 .task_ctx_nr = perf_sw_context, 10478 .event_init = perf_uprobe_event_init, 10479 .add = perf_trace_add, 10480 .del = perf_trace_del, 10481 .start = perf_swevent_start, 10482 .stop = perf_swevent_stop, 10483 .read = perf_swevent_read, 10484 .attr_groups = uprobe_attr_groups, 10485 }; 10486 10487 static int perf_uprobe_event_init(struct perf_event *event) 10488 { 10489 int err; 10490 unsigned long ref_ctr_offset; 10491 bool is_retprobe; 10492 10493 if (event->attr.type != perf_uprobe.type) 10494 return -ENOENT; 10495 10496 if (!perfmon_capable()) 10497 return -EACCES; 10498 10499 /* 10500 * no branch sampling for probe events 10501 */ 10502 if (has_branch_stack(event)) 10503 return -EOPNOTSUPP; 10504 10505 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10506 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10507 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10508 if (err) 10509 return err; 10510 10511 event->destroy = perf_uprobe_destroy; 10512 10513 return 0; 10514 } 10515 #endif /* CONFIG_UPROBE_EVENTS */ 10516 10517 static inline void perf_tp_register(void) 10518 { 10519 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10520 #ifdef CONFIG_KPROBE_EVENTS 10521 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10522 #endif 10523 #ifdef CONFIG_UPROBE_EVENTS 10524 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10525 #endif 10526 } 10527 10528 static void perf_event_free_filter(struct perf_event *event) 10529 { 10530 ftrace_profile_free_filter(event); 10531 } 10532 10533 /* 10534 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10535 * with perf_event_open() 10536 */ 10537 static inline bool perf_event_is_tracing(struct perf_event *event) 10538 { 10539 if (event->pmu == &perf_tracepoint) 10540 return true; 10541 #ifdef CONFIG_KPROBE_EVENTS 10542 if (event->pmu == &perf_kprobe) 10543 return true; 10544 #endif 10545 #ifdef CONFIG_UPROBE_EVENTS 10546 if (event->pmu == &perf_uprobe) 10547 return true; 10548 #endif 10549 return false; 10550 } 10551 10552 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10553 u64 bpf_cookie) 10554 { 10555 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10556 10557 if (!perf_event_is_tracing(event)) 10558 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10559 10560 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10561 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10562 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10563 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10564 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10565 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10566 return -EINVAL; 10567 10568 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10569 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10570 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10571 return -EINVAL; 10572 10573 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10574 /* only uprobe programs are allowed to be sleepable */ 10575 return -EINVAL; 10576 10577 /* Kprobe override only works for kprobes, not uprobes. */ 10578 if (prog->kprobe_override && !is_kprobe) 10579 return -EINVAL; 10580 10581 if (is_tracepoint || is_syscall_tp) { 10582 int off = trace_event_get_offsets(event->tp_event); 10583 10584 if (prog->aux->max_ctx_offset > off) 10585 return -EACCES; 10586 } 10587 10588 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10589 } 10590 10591 void perf_event_free_bpf_prog(struct perf_event *event) 10592 { 10593 if (!perf_event_is_tracing(event)) { 10594 perf_event_free_bpf_handler(event); 10595 return; 10596 } 10597 perf_event_detach_bpf_prog(event); 10598 } 10599 10600 #else 10601 10602 static inline void perf_tp_register(void) 10603 { 10604 } 10605 10606 static void perf_event_free_filter(struct perf_event *event) 10607 { 10608 } 10609 10610 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10611 u64 bpf_cookie) 10612 { 10613 return -ENOENT; 10614 } 10615 10616 void perf_event_free_bpf_prog(struct perf_event *event) 10617 { 10618 } 10619 #endif /* CONFIG_EVENT_TRACING */ 10620 10621 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10622 void perf_bp_event(struct perf_event *bp, void *data) 10623 { 10624 struct perf_sample_data sample; 10625 struct pt_regs *regs = data; 10626 10627 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10628 10629 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10630 perf_swevent_event(bp, 1, &sample, regs); 10631 } 10632 #endif 10633 10634 /* 10635 * Allocate a new address filter 10636 */ 10637 static struct perf_addr_filter * 10638 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10639 { 10640 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10641 struct perf_addr_filter *filter; 10642 10643 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10644 if (!filter) 10645 return NULL; 10646 10647 INIT_LIST_HEAD(&filter->entry); 10648 list_add_tail(&filter->entry, filters); 10649 10650 return filter; 10651 } 10652 10653 static void free_filters_list(struct list_head *filters) 10654 { 10655 struct perf_addr_filter *filter, *iter; 10656 10657 list_for_each_entry_safe(filter, iter, filters, entry) { 10658 path_put(&filter->path); 10659 list_del(&filter->entry); 10660 kfree(filter); 10661 } 10662 } 10663 10664 /* 10665 * Free existing address filters and optionally install new ones 10666 */ 10667 static void perf_addr_filters_splice(struct perf_event *event, 10668 struct list_head *head) 10669 { 10670 unsigned long flags; 10671 LIST_HEAD(list); 10672 10673 if (!has_addr_filter(event)) 10674 return; 10675 10676 /* don't bother with children, they don't have their own filters */ 10677 if (event->parent) 10678 return; 10679 10680 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10681 10682 list_splice_init(&event->addr_filters.list, &list); 10683 if (head) 10684 list_splice(head, &event->addr_filters.list); 10685 10686 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10687 10688 free_filters_list(&list); 10689 } 10690 10691 /* 10692 * Scan through mm's vmas and see if one of them matches the 10693 * @filter; if so, adjust filter's address range. 10694 * Called with mm::mmap_lock down for reading. 10695 */ 10696 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10697 struct mm_struct *mm, 10698 struct perf_addr_filter_range *fr) 10699 { 10700 struct vm_area_struct *vma; 10701 VMA_ITERATOR(vmi, mm, 0); 10702 10703 for_each_vma(vmi, vma) { 10704 if (!vma->vm_file) 10705 continue; 10706 10707 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10708 return; 10709 } 10710 } 10711 10712 /* 10713 * Update event's address range filters based on the 10714 * task's existing mappings, if any. 10715 */ 10716 static void perf_event_addr_filters_apply(struct perf_event *event) 10717 { 10718 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10719 struct task_struct *task = READ_ONCE(event->ctx->task); 10720 struct perf_addr_filter *filter; 10721 struct mm_struct *mm = NULL; 10722 unsigned int count = 0; 10723 unsigned long flags; 10724 10725 /* 10726 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10727 * will stop on the parent's child_mutex that our caller is also holding 10728 */ 10729 if (task == TASK_TOMBSTONE) 10730 return; 10731 10732 if (ifh->nr_file_filters) { 10733 mm = get_task_mm(task); 10734 if (!mm) 10735 goto restart; 10736 10737 mmap_read_lock(mm); 10738 } 10739 10740 raw_spin_lock_irqsave(&ifh->lock, flags); 10741 list_for_each_entry(filter, &ifh->list, entry) { 10742 if (filter->path.dentry) { 10743 /* 10744 * Adjust base offset if the filter is associated to a 10745 * binary that needs to be mapped: 10746 */ 10747 event->addr_filter_ranges[count].start = 0; 10748 event->addr_filter_ranges[count].size = 0; 10749 10750 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10751 } else { 10752 event->addr_filter_ranges[count].start = filter->offset; 10753 event->addr_filter_ranges[count].size = filter->size; 10754 } 10755 10756 count++; 10757 } 10758 10759 event->addr_filters_gen++; 10760 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10761 10762 if (ifh->nr_file_filters) { 10763 mmap_read_unlock(mm); 10764 10765 mmput(mm); 10766 } 10767 10768 restart: 10769 perf_event_stop(event, 1); 10770 } 10771 10772 /* 10773 * Address range filtering: limiting the data to certain 10774 * instruction address ranges. Filters are ioctl()ed to us from 10775 * userspace as ascii strings. 10776 * 10777 * Filter string format: 10778 * 10779 * ACTION RANGE_SPEC 10780 * where ACTION is one of the 10781 * * "filter": limit the trace to this region 10782 * * "start": start tracing from this address 10783 * * "stop": stop tracing at this address/region; 10784 * RANGE_SPEC is 10785 * * for kernel addresses: <start address>[/<size>] 10786 * * for object files: <start address>[/<size>]@</path/to/object/file> 10787 * 10788 * if <size> is not specified or is zero, the range is treated as a single 10789 * address; not valid for ACTION=="filter". 10790 */ 10791 enum { 10792 IF_ACT_NONE = -1, 10793 IF_ACT_FILTER, 10794 IF_ACT_START, 10795 IF_ACT_STOP, 10796 IF_SRC_FILE, 10797 IF_SRC_KERNEL, 10798 IF_SRC_FILEADDR, 10799 IF_SRC_KERNELADDR, 10800 }; 10801 10802 enum { 10803 IF_STATE_ACTION = 0, 10804 IF_STATE_SOURCE, 10805 IF_STATE_END, 10806 }; 10807 10808 static const match_table_t if_tokens = { 10809 { IF_ACT_FILTER, "filter" }, 10810 { IF_ACT_START, "start" }, 10811 { IF_ACT_STOP, "stop" }, 10812 { IF_SRC_FILE, "%u/%u@%s" }, 10813 { IF_SRC_KERNEL, "%u/%u" }, 10814 { IF_SRC_FILEADDR, "%u@%s" }, 10815 { IF_SRC_KERNELADDR, "%u" }, 10816 { IF_ACT_NONE, NULL }, 10817 }; 10818 10819 /* 10820 * Address filter string parser 10821 */ 10822 static int 10823 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10824 struct list_head *filters) 10825 { 10826 struct perf_addr_filter *filter = NULL; 10827 char *start, *orig, *filename = NULL; 10828 substring_t args[MAX_OPT_ARGS]; 10829 int state = IF_STATE_ACTION, token; 10830 unsigned int kernel = 0; 10831 int ret = -EINVAL; 10832 10833 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10834 if (!fstr) 10835 return -ENOMEM; 10836 10837 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10838 static const enum perf_addr_filter_action_t actions[] = { 10839 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10840 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10841 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10842 }; 10843 ret = -EINVAL; 10844 10845 if (!*start) 10846 continue; 10847 10848 /* filter definition begins */ 10849 if (state == IF_STATE_ACTION) { 10850 filter = perf_addr_filter_new(event, filters); 10851 if (!filter) 10852 goto fail; 10853 } 10854 10855 token = match_token(start, if_tokens, args); 10856 switch (token) { 10857 case IF_ACT_FILTER: 10858 case IF_ACT_START: 10859 case IF_ACT_STOP: 10860 if (state != IF_STATE_ACTION) 10861 goto fail; 10862 10863 filter->action = actions[token]; 10864 state = IF_STATE_SOURCE; 10865 break; 10866 10867 case IF_SRC_KERNELADDR: 10868 case IF_SRC_KERNEL: 10869 kernel = 1; 10870 fallthrough; 10871 10872 case IF_SRC_FILEADDR: 10873 case IF_SRC_FILE: 10874 if (state != IF_STATE_SOURCE) 10875 goto fail; 10876 10877 *args[0].to = 0; 10878 ret = kstrtoul(args[0].from, 0, &filter->offset); 10879 if (ret) 10880 goto fail; 10881 10882 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10883 *args[1].to = 0; 10884 ret = kstrtoul(args[1].from, 0, &filter->size); 10885 if (ret) 10886 goto fail; 10887 } 10888 10889 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10890 int fpos = token == IF_SRC_FILE ? 2 : 1; 10891 10892 kfree(filename); 10893 filename = match_strdup(&args[fpos]); 10894 if (!filename) { 10895 ret = -ENOMEM; 10896 goto fail; 10897 } 10898 } 10899 10900 state = IF_STATE_END; 10901 break; 10902 10903 default: 10904 goto fail; 10905 } 10906 10907 /* 10908 * Filter definition is fully parsed, validate and install it. 10909 * Make sure that it doesn't contradict itself or the event's 10910 * attribute. 10911 */ 10912 if (state == IF_STATE_END) { 10913 ret = -EINVAL; 10914 10915 /* 10916 * ACTION "filter" must have a non-zero length region 10917 * specified. 10918 */ 10919 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10920 !filter->size) 10921 goto fail; 10922 10923 if (!kernel) { 10924 if (!filename) 10925 goto fail; 10926 10927 /* 10928 * For now, we only support file-based filters 10929 * in per-task events; doing so for CPU-wide 10930 * events requires additional context switching 10931 * trickery, since same object code will be 10932 * mapped at different virtual addresses in 10933 * different processes. 10934 */ 10935 ret = -EOPNOTSUPP; 10936 if (!event->ctx->task) 10937 goto fail; 10938 10939 /* look up the path and grab its inode */ 10940 ret = kern_path(filename, LOOKUP_FOLLOW, 10941 &filter->path); 10942 if (ret) 10943 goto fail; 10944 10945 ret = -EINVAL; 10946 if (!filter->path.dentry || 10947 !S_ISREG(d_inode(filter->path.dentry) 10948 ->i_mode)) 10949 goto fail; 10950 10951 event->addr_filters.nr_file_filters++; 10952 } 10953 10954 /* ready to consume more filters */ 10955 kfree(filename); 10956 filename = NULL; 10957 state = IF_STATE_ACTION; 10958 filter = NULL; 10959 kernel = 0; 10960 } 10961 } 10962 10963 if (state != IF_STATE_ACTION) 10964 goto fail; 10965 10966 kfree(filename); 10967 kfree(orig); 10968 10969 return 0; 10970 10971 fail: 10972 kfree(filename); 10973 free_filters_list(filters); 10974 kfree(orig); 10975 10976 return ret; 10977 } 10978 10979 static int 10980 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10981 { 10982 LIST_HEAD(filters); 10983 int ret; 10984 10985 /* 10986 * Since this is called in perf_ioctl() path, we're already holding 10987 * ctx::mutex. 10988 */ 10989 lockdep_assert_held(&event->ctx->mutex); 10990 10991 if (WARN_ON_ONCE(event->parent)) 10992 return -EINVAL; 10993 10994 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10995 if (ret) 10996 goto fail_clear_files; 10997 10998 ret = event->pmu->addr_filters_validate(&filters); 10999 if (ret) 11000 goto fail_free_filters; 11001 11002 /* remove existing filters, if any */ 11003 perf_addr_filters_splice(event, &filters); 11004 11005 /* install new filters */ 11006 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11007 11008 return ret; 11009 11010 fail_free_filters: 11011 free_filters_list(&filters); 11012 11013 fail_clear_files: 11014 event->addr_filters.nr_file_filters = 0; 11015 11016 return ret; 11017 } 11018 11019 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11020 { 11021 int ret = -EINVAL; 11022 char *filter_str; 11023 11024 filter_str = strndup_user(arg, PAGE_SIZE); 11025 if (IS_ERR(filter_str)) 11026 return PTR_ERR(filter_str); 11027 11028 #ifdef CONFIG_EVENT_TRACING 11029 if (perf_event_is_tracing(event)) { 11030 struct perf_event_context *ctx = event->ctx; 11031 11032 /* 11033 * Beware, here be dragons!! 11034 * 11035 * the tracepoint muck will deadlock against ctx->mutex, but 11036 * the tracepoint stuff does not actually need it. So 11037 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11038 * already have a reference on ctx. 11039 * 11040 * This can result in event getting moved to a different ctx, 11041 * but that does not affect the tracepoint state. 11042 */ 11043 mutex_unlock(&ctx->mutex); 11044 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11045 mutex_lock(&ctx->mutex); 11046 } else 11047 #endif 11048 if (has_addr_filter(event)) 11049 ret = perf_event_set_addr_filter(event, filter_str); 11050 11051 kfree(filter_str); 11052 return ret; 11053 } 11054 11055 /* 11056 * hrtimer based swevent callback 11057 */ 11058 11059 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11060 { 11061 enum hrtimer_restart ret = HRTIMER_RESTART; 11062 struct perf_sample_data data; 11063 struct pt_regs *regs; 11064 struct perf_event *event; 11065 u64 period; 11066 11067 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11068 11069 if (event->state != PERF_EVENT_STATE_ACTIVE) 11070 return HRTIMER_NORESTART; 11071 11072 event->pmu->read(event); 11073 11074 perf_sample_data_init(&data, 0, event->hw.last_period); 11075 regs = get_irq_regs(); 11076 11077 if (regs && !perf_exclude_event(event, regs)) { 11078 if (!(event->attr.exclude_idle && is_idle_task(current))) 11079 if (__perf_event_overflow(event, 1, &data, regs)) 11080 ret = HRTIMER_NORESTART; 11081 } 11082 11083 period = max_t(u64, 10000, event->hw.sample_period); 11084 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11085 11086 return ret; 11087 } 11088 11089 static void perf_swevent_start_hrtimer(struct perf_event *event) 11090 { 11091 struct hw_perf_event *hwc = &event->hw; 11092 s64 period; 11093 11094 if (!is_sampling_event(event)) 11095 return; 11096 11097 period = local64_read(&hwc->period_left); 11098 if (period) { 11099 if (period < 0) 11100 period = 10000; 11101 11102 local64_set(&hwc->period_left, 0); 11103 } else { 11104 period = max_t(u64, 10000, hwc->sample_period); 11105 } 11106 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11107 HRTIMER_MODE_REL_PINNED_HARD); 11108 } 11109 11110 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11111 { 11112 struct hw_perf_event *hwc = &event->hw; 11113 11114 if (is_sampling_event(event)) { 11115 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11116 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11117 11118 hrtimer_cancel(&hwc->hrtimer); 11119 } 11120 } 11121 11122 static void perf_swevent_init_hrtimer(struct perf_event *event) 11123 { 11124 struct hw_perf_event *hwc = &event->hw; 11125 11126 if (!is_sampling_event(event)) 11127 return; 11128 11129 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11130 hwc->hrtimer.function = perf_swevent_hrtimer; 11131 11132 /* 11133 * Since hrtimers have a fixed rate, we can do a static freq->period 11134 * mapping and avoid the whole period adjust feedback stuff. 11135 */ 11136 if (event->attr.freq) { 11137 long freq = event->attr.sample_freq; 11138 11139 event->attr.sample_period = NSEC_PER_SEC / freq; 11140 hwc->sample_period = event->attr.sample_period; 11141 local64_set(&hwc->period_left, hwc->sample_period); 11142 hwc->last_period = hwc->sample_period; 11143 event->attr.freq = 0; 11144 } 11145 } 11146 11147 /* 11148 * Software event: cpu wall time clock 11149 */ 11150 11151 static void cpu_clock_event_update(struct perf_event *event) 11152 { 11153 s64 prev; 11154 u64 now; 11155 11156 now = local_clock(); 11157 prev = local64_xchg(&event->hw.prev_count, now); 11158 local64_add(now - prev, &event->count); 11159 } 11160 11161 static void cpu_clock_event_start(struct perf_event *event, int flags) 11162 { 11163 local64_set(&event->hw.prev_count, local_clock()); 11164 perf_swevent_start_hrtimer(event); 11165 } 11166 11167 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11168 { 11169 perf_swevent_cancel_hrtimer(event); 11170 cpu_clock_event_update(event); 11171 } 11172 11173 static int cpu_clock_event_add(struct perf_event *event, int flags) 11174 { 11175 if (flags & PERF_EF_START) 11176 cpu_clock_event_start(event, flags); 11177 perf_event_update_userpage(event); 11178 11179 return 0; 11180 } 11181 11182 static void cpu_clock_event_del(struct perf_event *event, int flags) 11183 { 11184 cpu_clock_event_stop(event, flags); 11185 } 11186 11187 static void cpu_clock_event_read(struct perf_event *event) 11188 { 11189 cpu_clock_event_update(event); 11190 } 11191 11192 static int cpu_clock_event_init(struct perf_event *event) 11193 { 11194 if (event->attr.type != perf_cpu_clock.type) 11195 return -ENOENT; 11196 11197 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11198 return -ENOENT; 11199 11200 /* 11201 * no branch sampling for software events 11202 */ 11203 if (has_branch_stack(event)) 11204 return -EOPNOTSUPP; 11205 11206 perf_swevent_init_hrtimer(event); 11207 11208 return 0; 11209 } 11210 11211 static struct pmu perf_cpu_clock = { 11212 .task_ctx_nr = perf_sw_context, 11213 11214 .capabilities = PERF_PMU_CAP_NO_NMI, 11215 .dev = PMU_NULL_DEV, 11216 11217 .event_init = cpu_clock_event_init, 11218 .add = cpu_clock_event_add, 11219 .del = cpu_clock_event_del, 11220 .start = cpu_clock_event_start, 11221 .stop = cpu_clock_event_stop, 11222 .read = cpu_clock_event_read, 11223 }; 11224 11225 /* 11226 * Software event: task time clock 11227 */ 11228 11229 static void task_clock_event_update(struct perf_event *event, u64 now) 11230 { 11231 u64 prev; 11232 s64 delta; 11233 11234 prev = local64_xchg(&event->hw.prev_count, now); 11235 delta = now - prev; 11236 local64_add(delta, &event->count); 11237 } 11238 11239 static void task_clock_event_start(struct perf_event *event, int flags) 11240 { 11241 local64_set(&event->hw.prev_count, event->ctx->time); 11242 perf_swevent_start_hrtimer(event); 11243 } 11244 11245 static void task_clock_event_stop(struct perf_event *event, int flags) 11246 { 11247 perf_swevent_cancel_hrtimer(event); 11248 task_clock_event_update(event, event->ctx->time); 11249 } 11250 11251 static int task_clock_event_add(struct perf_event *event, int flags) 11252 { 11253 if (flags & PERF_EF_START) 11254 task_clock_event_start(event, flags); 11255 perf_event_update_userpage(event); 11256 11257 return 0; 11258 } 11259 11260 static void task_clock_event_del(struct perf_event *event, int flags) 11261 { 11262 task_clock_event_stop(event, PERF_EF_UPDATE); 11263 } 11264 11265 static void task_clock_event_read(struct perf_event *event) 11266 { 11267 u64 now = perf_clock(); 11268 u64 delta = now - event->ctx->timestamp; 11269 u64 time = event->ctx->time + delta; 11270 11271 task_clock_event_update(event, time); 11272 } 11273 11274 static int task_clock_event_init(struct perf_event *event) 11275 { 11276 if (event->attr.type != perf_task_clock.type) 11277 return -ENOENT; 11278 11279 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11280 return -ENOENT; 11281 11282 /* 11283 * no branch sampling for software events 11284 */ 11285 if (has_branch_stack(event)) 11286 return -EOPNOTSUPP; 11287 11288 perf_swevent_init_hrtimer(event); 11289 11290 return 0; 11291 } 11292 11293 static struct pmu perf_task_clock = { 11294 .task_ctx_nr = perf_sw_context, 11295 11296 .capabilities = PERF_PMU_CAP_NO_NMI, 11297 .dev = PMU_NULL_DEV, 11298 11299 .event_init = task_clock_event_init, 11300 .add = task_clock_event_add, 11301 .del = task_clock_event_del, 11302 .start = task_clock_event_start, 11303 .stop = task_clock_event_stop, 11304 .read = task_clock_event_read, 11305 }; 11306 11307 static void perf_pmu_nop_void(struct pmu *pmu) 11308 { 11309 } 11310 11311 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11312 { 11313 } 11314 11315 static int perf_pmu_nop_int(struct pmu *pmu) 11316 { 11317 return 0; 11318 } 11319 11320 static int perf_event_nop_int(struct perf_event *event, u64 value) 11321 { 11322 return 0; 11323 } 11324 11325 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11326 11327 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11328 { 11329 __this_cpu_write(nop_txn_flags, flags); 11330 11331 if (flags & ~PERF_PMU_TXN_ADD) 11332 return; 11333 11334 perf_pmu_disable(pmu); 11335 } 11336 11337 static int perf_pmu_commit_txn(struct pmu *pmu) 11338 { 11339 unsigned int flags = __this_cpu_read(nop_txn_flags); 11340 11341 __this_cpu_write(nop_txn_flags, 0); 11342 11343 if (flags & ~PERF_PMU_TXN_ADD) 11344 return 0; 11345 11346 perf_pmu_enable(pmu); 11347 return 0; 11348 } 11349 11350 static void perf_pmu_cancel_txn(struct pmu *pmu) 11351 { 11352 unsigned int flags = __this_cpu_read(nop_txn_flags); 11353 11354 __this_cpu_write(nop_txn_flags, 0); 11355 11356 if (flags & ~PERF_PMU_TXN_ADD) 11357 return; 11358 11359 perf_pmu_enable(pmu); 11360 } 11361 11362 static int perf_event_idx_default(struct perf_event *event) 11363 { 11364 return 0; 11365 } 11366 11367 static void free_pmu_context(struct pmu *pmu) 11368 { 11369 free_percpu(pmu->cpu_pmu_context); 11370 } 11371 11372 /* 11373 * Let userspace know that this PMU supports address range filtering: 11374 */ 11375 static ssize_t nr_addr_filters_show(struct device *dev, 11376 struct device_attribute *attr, 11377 char *page) 11378 { 11379 struct pmu *pmu = dev_get_drvdata(dev); 11380 11381 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11382 } 11383 DEVICE_ATTR_RO(nr_addr_filters); 11384 11385 static struct idr pmu_idr; 11386 11387 static ssize_t 11388 type_show(struct device *dev, struct device_attribute *attr, char *page) 11389 { 11390 struct pmu *pmu = dev_get_drvdata(dev); 11391 11392 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11393 } 11394 static DEVICE_ATTR_RO(type); 11395 11396 static ssize_t 11397 perf_event_mux_interval_ms_show(struct device *dev, 11398 struct device_attribute *attr, 11399 char *page) 11400 { 11401 struct pmu *pmu = dev_get_drvdata(dev); 11402 11403 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11404 } 11405 11406 static DEFINE_MUTEX(mux_interval_mutex); 11407 11408 static ssize_t 11409 perf_event_mux_interval_ms_store(struct device *dev, 11410 struct device_attribute *attr, 11411 const char *buf, size_t count) 11412 { 11413 struct pmu *pmu = dev_get_drvdata(dev); 11414 int timer, cpu, ret; 11415 11416 ret = kstrtoint(buf, 0, &timer); 11417 if (ret) 11418 return ret; 11419 11420 if (timer < 1) 11421 return -EINVAL; 11422 11423 /* same value, noting to do */ 11424 if (timer == pmu->hrtimer_interval_ms) 11425 return count; 11426 11427 mutex_lock(&mux_interval_mutex); 11428 pmu->hrtimer_interval_ms = timer; 11429 11430 /* update all cpuctx for this PMU */ 11431 cpus_read_lock(); 11432 for_each_online_cpu(cpu) { 11433 struct perf_cpu_pmu_context *cpc; 11434 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11435 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11436 11437 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11438 } 11439 cpus_read_unlock(); 11440 mutex_unlock(&mux_interval_mutex); 11441 11442 return count; 11443 } 11444 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11445 11446 static struct attribute *pmu_dev_attrs[] = { 11447 &dev_attr_type.attr, 11448 &dev_attr_perf_event_mux_interval_ms.attr, 11449 &dev_attr_nr_addr_filters.attr, 11450 NULL, 11451 }; 11452 11453 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11454 { 11455 struct device *dev = kobj_to_dev(kobj); 11456 struct pmu *pmu = dev_get_drvdata(dev); 11457 11458 if (n == 2 && !pmu->nr_addr_filters) 11459 return 0; 11460 11461 return a->mode; 11462 } 11463 11464 static struct attribute_group pmu_dev_attr_group = { 11465 .is_visible = pmu_dev_is_visible, 11466 .attrs = pmu_dev_attrs, 11467 }; 11468 11469 static const struct attribute_group *pmu_dev_groups[] = { 11470 &pmu_dev_attr_group, 11471 NULL, 11472 }; 11473 11474 static int pmu_bus_running; 11475 static struct bus_type pmu_bus = { 11476 .name = "event_source", 11477 .dev_groups = pmu_dev_groups, 11478 }; 11479 11480 static void pmu_dev_release(struct device *dev) 11481 { 11482 kfree(dev); 11483 } 11484 11485 static int pmu_dev_alloc(struct pmu *pmu) 11486 { 11487 int ret = -ENOMEM; 11488 11489 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11490 if (!pmu->dev) 11491 goto out; 11492 11493 pmu->dev->groups = pmu->attr_groups; 11494 device_initialize(pmu->dev); 11495 11496 dev_set_drvdata(pmu->dev, pmu); 11497 pmu->dev->bus = &pmu_bus; 11498 pmu->dev->parent = pmu->parent; 11499 pmu->dev->release = pmu_dev_release; 11500 11501 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11502 if (ret) 11503 goto free_dev; 11504 11505 ret = device_add(pmu->dev); 11506 if (ret) 11507 goto free_dev; 11508 11509 if (pmu->attr_update) { 11510 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11511 if (ret) 11512 goto del_dev; 11513 } 11514 11515 out: 11516 return ret; 11517 11518 del_dev: 11519 device_del(pmu->dev); 11520 11521 free_dev: 11522 put_device(pmu->dev); 11523 goto out; 11524 } 11525 11526 static struct lock_class_key cpuctx_mutex; 11527 static struct lock_class_key cpuctx_lock; 11528 11529 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11530 { 11531 int cpu, ret, max = PERF_TYPE_MAX; 11532 11533 mutex_lock(&pmus_lock); 11534 ret = -ENOMEM; 11535 pmu->pmu_disable_count = alloc_percpu(int); 11536 if (!pmu->pmu_disable_count) 11537 goto unlock; 11538 11539 pmu->type = -1; 11540 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11541 ret = -EINVAL; 11542 goto free_pdc; 11543 } 11544 11545 pmu->name = name; 11546 11547 if (type >= 0) 11548 max = type; 11549 11550 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11551 if (ret < 0) 11552 goto free_pdc; 11553 11554 WARN_ON(type >= 0 && ret != type); 11555 11556 type = ret; 11557 pmu->type = type; 11558 11559 if (pmu_bus_running && !pmu->dev) { 11560 ret = pmu_dev_alloc(pmu); 11561 if (ret) 11562 goto free_idr; 11563 } 11564 11565 ret = -ENOMEM; 11566 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11567 if (!pmu->cpu_pmu_context) 11568 goto free_dev; 11569 11570 for_each_possible_cpu(cpu) { 11571 struct perf_cpu_pmu_context *cpc; 11572 11573 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11574 __perf_init_event_pmu_context(&cpc->epc, pmu); 11575 __perf_mux_hrtimer_init(cpc, cpu); 11576 } 11577 11578 if (!pmu->start_txn) { 11579 if (pmu->pmu_enable) { 11580 /* 11581 * If we have pmu_enable/pmu_disable calls, install 11582 * transaction stubs that use that to try and batch 11583 * hardware accesses. 11584 */ 11585 pmu->start_txn = perf_pmu_start_txn; 11586 pmu->commit_txn = perf_pmu_commit_txn; 11587 pmu->cancel_txn = perf_pmu_cancel_txn; 11588 } else { 11589 pmu->start_txn = perf_pmu_nop_txn; 11590 pmu->commit_txn = perf_pmu_nop_int; 11591 pmu->cancel_txn = perf_pmu_nop_void; 11592 } 11593 } 11594 11595 if (!pmu->pmu_enable) { 11596 pmu->pmu_enable = perf_pmu_nop_void; 11597 pmu->pmu_disable = perf_pmu_nop_void; 11598 } 11599 11600 if (!pmu->check_period) 11601 pmu->check_period = perf_event_nop_int; 11602 11603 if (!pmu->event_idx) 11604 pmu->event_idx = perf_event_idx_default; 11605 11606 list_add_rcu(&pmu->entry, &pmus); 11607 atomic_set(&pmu->exclusive_cnt, 0); 11608 ret = 0; 11609 unlock: 11610 mutex_unlock(&pmus_lock); 11611 11612 return ret; 11613 11614 free_dev: 11615 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11616 device_del(pmu->dev); 11617 put_device(pmu->dev); 11618 } 11619 11620 free_idr: 11621 idr_remove(&pmu_idr, pmu->type); 11622 11623 free_pdc: 11624 free_percpu(pmu->pmu_disable_count); 11625 goto unlock; 11626 } 11627 EXPORT_SYMBOL_GPL(perf_pmu_register); 11628 11629 void perf_pmu_unregister(struct pmu *pmu) 11630 { 11631 mutex_lock(&pmus_lock); 11632 list_del_rcu(&pmu->entry); 11633 11634 /* 11635 * We dereference the pmu list under both SRCU and regular RCU, so 11636 * synchronize against both of those. 11637 */ 11638 synchronize_srcu(&pmus_srcu); 11639 synchronize_rcu(); 11640 11641 free_percpu(pmu->pmu_disable_count); 11642 idr_remove(&pmu_idr, pmu->type); 11643 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11644 if (pmu->nr_addr_filters) 11645 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11646 device_del(pmu->dev); 11647 put_device(pmu->dev); 11648 } 11649 free_pmu_context(pmu); 11650 mutex_unlock(&pmus_lock); 11651 } 11652 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11653 11654 static inline bool has_extended_regs(struct perf_event *event) 11655 { 11656 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11657 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11658 } 11659 11660 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11661 { 11662 struct perf_event_context *ctx = NULL; 11663 int ret; 11664 11665 if (!try_module_get(pmu->module)) 11666 return -ENODEV; 11667 11668 /* 11669 * A number of pmu->event_init() methods iterate the sibling_list to, 11670 * for example, validate if the group fits on the PMU. Therefore, 11671 * if this is a sibling event, acquire the ctx->mutex to protect 11672 * the sibling_list. 11673 */ 11674 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11675 /* 11676 * This ctx->mutex can nest when we're called through 11677 * inheritance. See the perf_event_ctx_lock_nested() comment. 11678 */ 11679 ctx = perf_event_ctx_lock_nested(event->group_leader, 11680 SINGLE_DEPTH_NESTING); 11681 BUG_ON(!ctx); 11682 } 11683 11684 event->pmu = pmu; 11685 ret = pmu->event_init(event); 11686 11687 if (ctx) 11688 perf_event_ctx_unlock(event->group_leader, ctx); 11689 11690 if (!ret) { 11691 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11692 has_extended_regs(event)) 11693 ret = -EOPNOTSUPP; 11694 11695 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11696 event_has_any_exclude_flag(event)) 11697 ret = -EINVAL; 11698 11699 if (ret && event->destroy) 11700 event->destroy(event); 11701 } 11702 11703 if (ret) 11704 module_put(pmu->module); 11705 11706 return ret; 11707 } 11708 11709 static struct pmu *perf_init_event(struct perf_event *event) 11710 { 11711 bool extended_type = false; 11712 int idx, type, ret; 11713 struct pmu *pmu; 11714 11715 idx = srcu_read_lock(&pmus_srcu); 11716 11717 /* 11718 * Save original type before calling pmu->event_init() since certain 11719 * pmus overwrites event->attr.type to forward event to another pmu. 11720 */ 11721 event->orig_type = event->attr.type; 11722 11723 /* Try parent's PMU first: */ 11724 if (event->parent && event->parent->pmu) { 11725 pmu = event->parent->pmu; 11726 ret = perf_try_init_event(pmu, event); 11727 if (!ret) 11728 goto unlock; 11729 } 11730 11731 /* 11732 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11733 * are often aliases for PERF_TYPE_RAW. 11734 */ 11735 type = event->attr.type; 11736 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11737 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11738 if (!type) { 11739 type = PERF_TYPE_RAW; 11740 } else { 11741 extended_type = true; 11742 event->attr.config &= PERF_HW_EVENT_MASK; 11743 } 11744 } 11745 11746 again: 11747 rcu_read_lock(); 11748 pmu = idr_find(&pmu_idr, type); 11749 rcu_read_unlock(); 11750 if (pmu) { 11751 if (event->attr.type != type && type != PERF_TYPE_RAW && 11752 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11753 goto fail; 11754 11755 ret = perf_try_init_event(pmu, event); 11756 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11757 type = event->attr.type; 11758 goto again; 11759 } 11760 11761 if (ret) 11762 pmu = ERR_PTR(ret); 11763 11764 goto unlock; 11765 } 11766 11767 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11768 ret = perf_try_init_event(pmu, event); 11769 if (!ret) 11770 goto unlock; 11771 11772 if (ret != -ENOENT) { 11773 pmu = ERR_PTR(ret); 11774 goto unlock; 11775 } 11776 } 11777 fail: 11778 pmu = ERR_PTR(-ENOENT); 11779 unlock: 11780 srcu_read_unlock(&pmus_srcu, idx); 11781 11782 return pmu; 11783 } 11784 11785 static void attach_sb_event(struct perf_event *event) 11786 { 11787 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11788 11789 raw_spin_lock(&pel->lock); 11790 list_add_rcu(&event->sb_list, &pel->list); 11791 raw_spin_unlock(&pel->lock); 11792 } 11793 11794 /* 11795 * We keep a list of all !task (and therefore per-cpu) events 11796 * that need to receive side-band records. 11797 * 11798 * This avoids having to scan all the various PMU per-cpu contexts 11799 * looking for them. 11800 */ 11801 static void account_pmu_sb_event(struct perf_event *event) 11802 { 11803 if (is_sb_event(event)) 11804 attach_sb_event(event); 11805 } 11806 11807 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11808 static void account_freq_event_nohz(void) 11809 { 11810 #ifdef CONFIG_NO_HZ_FULL 11811 /* Lock so we don't race with concurrent unaccount */ 11812 spin_lock(&nr_freq_lock); 11813 if (atomic_inc_return(&nr_freq_events) == 1) 11814 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11815 spin_unlock(&nr_freq_lock); 11816 #endif 11817 } 11818 11819 static void account_freq_event(void) 11820 { 11821 if (tick_nohz_full_enabled()) 11822 account_freq_event_nohz(); 11823 else 11824 atomic_inc(&nr_freq_events); 11825 } 11826 11827 11828 static void account_event(struct perf_event *event) 11829 { 11830 bool inc = false; 11831 11832 if (event->parent) 11833 return; 11834 11835 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11836 inc = true; 11837 if (event->attr.mmap || event->attr.mmap_data) 11838 atomic_inc(&nr_mmap_events); 11839 if (event->attr.build_id) 11840 atomic_inc(&nr_build_id_events); 11841 if (event->attr.comm) 11842 atomic_inc(&nr_comm_events); 11843 if (event->attr.namespaces) 11844 atomic_inc(&nr_namespaces_events); 11845 if (event->attr.cgroup) 11846 atomic_inc(&nr_cgroup_events); 11847 if (event->attr.task) 11848 atomic_inc(&nr_task_events); 11849 if (event->attr.freq) 11850 account_freq_event(); 11851 if (event->attr.context_switch) { 11852 atomic_inc(&nr_switch_events); 11853 inc = true; 11854 } 11855 if (has_branch_stack(event)) 11856 inc = true; 11857 if (is_cgroup_event(event)) 11858 inc = true; 11859 if (event->attr.ksymbol) 11860 atomic_inc(&nr_ksymbol_events); 11861 if (event->attr.bpf_event) 11862 atomic_inc(&nr_bpf_events); 11863 if (event->attr.text_poke) 11864 atomic_inc(&nr_text_poke_events); 11865 11866 if (inc) { 11867 /* 11868 * We need the mutex here because static_branch_enable() 11869 * must complete *before* the perf_sched_count increment 11870 * becomes visible. 11871 */ 11872 if (atomic_inc_not_zero(&perf_sched_count)) 11873 goto enabled; 11874 11875 mutex_lock(&perf_sched_mutex); 11876 if (!atomic_read(&perf_sched_count)) { 11877 static_branch_enable(&perf_sched_events); 11878 /* 11879 * Guarantee that all CPUs observe they key change and 11880 * call the perf scheduling hooks before proceeding to 11881 * install events that need them. 11882 */ 11883 synchronize_rcu(); 11884 } 11885 /* 11886 * Now that we have waited for the sync_sched(), allow further 11887 * increments to by-pass the mutex. 11888 */ 11889 atomic_inc(&perf_sched_count); 11890 mutex_unlock(&perf_sched_mutex); 11891 } 11892 enabled: 11893 11894 account_pmu_sb_event(event); 11895 } 11896 11897 /* 11898 * Allocate and initialize an event structure 11899 */ 11900 static struct perf_event * 11901 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11902 struct task_struct *task, 11903 struct perf_event *group_leader, 11904 struct perf_event *parent_event, 11905 perf_overflow_handler_t overflow_handler, 11906 void *context, int cgroup_fd) 11907 { 11908 struct pmu *pmu; 11909 struct perf_event *event; 11910 struct hw_perf_event *hwc; 11911 long err = -EINVAL; 11912 int node; 11913 11914 if ((unsigned)cpu >= nr_cpu_ids) { 11915 if (!task || cpu != -1) 11916 return ERR_PTR(-EINVAL); 11917 } 11918 if (attr->sigtrap && !task) { 11919 /* Requires a task: avoid signalling random tasks. */ 11920 return ERR_PTR(-EINVAL); 11921 } 11922 11923 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11924 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11925 node); 11926 if (!event) 11927 return ERR_PTR(-ENOMEM); 11928 11929 /* 11930 * Single events are their own group leaders, with an 11931 * empty sibling list: 11932 */ 11933 if (!group_leader) 11934 group_leader = event; 11935 11936 mutex_init(&event->child_mutex); 11937 INIT_LIST_HEAD(&event->child_list); 11938 11939 INIT_LIST_HEAD(&event->event_entry); 11940 INIT_LIST_HEAD(&event->sibling_list); 11941 INIT_LIST_HEAD(&event->active_list); 11942 init_event_group(event); 11943 INIT_LIST_HEAD(&event->rb_entry); 11944 INIT_LIST_HEAD(&event->active_entry); 11945 INIT_LIST_HEAD(&event->addr_filters.list); 11946 INIT_HLIST_NODE(&event->hlist_entry); 11947 11948 11949 init_waitqueue_head(&event->waitq); 11950 init_irq_work(&event->pending_irq, perf_pending_irq); 11951 init_task_work(&event->pending_task, perf_pending_task); 11952 11953 mutex_init(&event->mmap_mutex); 11954 raw_spin_lock_init(&event->addr_filters.lock); 11955 11956 atomic_long_set(&event->refcount, 1); 11957 event->cpu = cpu; 11958 event->attr = *attr; 11959 event->group_leader = group_leader; 11960 event->pmu = NULL; 11961 event->oncpu = -1; 11962 11963 event->parent = parent_event; 11964 11965 event->ns = get_pid_ns(task_active_pid_ns(current)); 11966 event->id = atomic64_inc_return(&perf_event_id); 11967 11968 event->state = PERF_EVENT_STATE_INACTIVE; 11969 11970 if (parent_event) 11971 event->event_caps = parent_event->event_caps; 11972 11973 if (task) { 11974 event->attach_state = PERF_ATTACH_TASK; 11975 /* 11976 * XXX pmu::event_init needs to know what task to account to 11977 * and we cannot use the ctx information because we need the 11978 * pmu before we get a ctx. 11979 */ 11980 event->hw.target = get_task_struct(task); 11981 } 11982 11983 event->clock = &local_clock; 11984 if (parent_event) 11985 event->clock = parent_event->clock; 11986 11987 if (!overflow_handler && parent_event) { 11988 overflow_handler = parent_event->overflow_handler; 11989 context = parent_event->overflow_handler_context; 11990 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11991 if (parent_event->prog) { 11992 struct bpf_prog *prog = parent_event->prog; 11993 11994 bpf_prog_inc(prog); 11995 event->prog = prog; 11996 } 11997 #endif 11998 } 11999 12000 if (overflow_handler) { 12001 event->overflow_handler = overflow_handler; 12002 event->overflow_handler_context = context; 12003 } else if (is_write_backward(event)){ 12004 event->overflow_handler = perf_event_output_backward; 12005 event->overflow_handler_context = NULL; 12006 } else { 12007 event->overflow_handler = perf_event_output_forward; 12008 event->overflow_handler_context = NULL; 12009 } 12010 12011 perf_event__state_init(event); 12012 12013 pmu = NULL; 12014 12015 hwc = &event->hw; 12016 hwc->sample_period = attr->sample_period; 12017 if (attr->freq && attr->sample_freq) 12018 hwc->sample_period = 1; 12019 hwc->last_period = hwc->sample_period; 12020 12021 local64_set(&hwc->period_left, hwc->sample_period); 12022 12023 /* 12024 * We currently do not support PERF_SAMPLE_READ on inherited events. 12025 * See perf_output_read(). 12026 */ 12027 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12028 goto err_ns; 12029 12030 if (!has_branch_stack(event)) 12031 event->attr.branch_sample_type = 0; 12032 12033 pmu = perf_init_event(event); 12034 if (IS_ERR(pmu)) { 12035 err = PTR_ERR(pmu); 12036 goto err_ns; 12037 } 12038 12039 /* 12040 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12041 * events (they don't make sense as the cgroup will be different 12042 * on other CPUs in the uncore mask). 12043 */ 12044 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12045 err = -EINVAL; 12046 goto err_pmu; 12047 } 12048 12049 if (event->attr.aux_output && 12050 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12051 err = -EOPNOTSUPP; 12052 goto err_pmu; 12053 } 12054 12055 if (cgroup_fd != -1) { 12056 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12057 if (err) 12058 goto err_pmu; 12059 } 12060 12061 err = exclusive_event_init(event); 12062 if (err) 12063 goto err_pmu; 12064 12065 if (has_addr_filter(event)) { 12066 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12067 sizeof(struct perf_addr_filter_range), 12068 GFP_KERNEL); 12069 if (!event->addr_filter_ranges) { 12070 err = -ENOMEM; 12071 goto err_per_task; 12072 } 12073 12074 /* 12075 * Clone the parent's vma offsets: they are valid until exec() 12076 * even if the mm is not shared with the parent. 12077 */ 12078 if (event->parent) { 12079 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12080 12081 raw_spin_lock_irq(&ifh->lock); 12082 memcpy(event->addr_filter_ranges, 12083 event->parent->addr_filter_ranges, 12084 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12085 raw_spin_unlock_irq(&ifh->lock); 12086 } 12087 12088 /* force hw sync on the address filters */ 12089 event->addr_filters_gen = 1; 12090 } 12091 12092 if (!event->parent) { 12093 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12094 err = get_callchain_buffers(attr->sample_max_stack); 12095 if (err) 12096 goto err_addr_filters; 12097 } 12098 } 12099 12100 err = security_perf_event_alloc(event); 12101 if (err) 12102 goto err_callchain_buffer; 12103 12104 /* symmetric to unaccount_event() in _free_event() */ 12105 account_event(event); 12106 12107 return event; 12108 12109 err_callchain_buffer: 12110 if (!event->parent) { 12111 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12112 put_callchain_buffers(); 12113 } 12114 err_addr_filters: 12115 kfree(event->addr_filter_ranges); 12116 12117 err_per_task: 12118 exclusive_event_destroy(event); 12119 12120 err_pmu: 12121 if (is_cgroup_event(event)) 12122 perf_detach_cgroup(event); 12123 if (event->destroy) 12124 event->destroy(event); 12125 module_put(pmu->module); 12126 err_ns: 12127 if (event->hw.target) 12128 put_task_struct(event->hw.target); 12129 call_rcu(&event->rcu_head, free_event_rcu); 12130 12131 return ERR_PTR(err); 12132 } 12133 12134 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12135 struct perf_event_attr *attr) 12136 { 12137 u32 size; 12138 int ret; 12139 12140 /* Zero the full structure, so that a short copy will be nice. */ 12141 memset(attr, 0, sizeof(*attr)); 12142 12143 ret = get_user(size, &uattr->size); 12144 if (ret) 12145 return ret; 12146 12147 /* ABI compatibility quirk: */ 12148 if (!size) 12149 size = PERF_ATTR_SIZE_VER0; 12150 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12151 goto err_size; 12152 12153 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12154 if (ret) { 12155 if (ret == -E2BIG) 12156 goto err_size; 12157 return ret; 12158 } 12159 12160 attr->size = size; 12161 12162 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12163 return -EINVAL; 12164 12165 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12166 return -EINVAL; 12167 12168 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12169 return -EINVAL; 12170 12171 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12172 u64 mask = attr->branch_sample_type; 12173 12174 /* only using defined bits */ 12175 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12176 return -EINVAL; 12177 12178 /* at least one branch bit must be set */ 12179 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12180 return -EINVAL; 12181 12182 /* propagate priv level, when not set for branch */ 12183 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12184 12185 /* exclude_kernel checked on syscall entry */ 12186 if (!attr->exclude_kernel) 12187 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12188 12189 if (!attr->exclude_user) 12190 mask |= PERF_SAMPLE_BRANCH_USER; 12191 12192 if (!attr->exclude_hv) 12193 mask |= PERF_SAMPLE_BRANCH_HV; 12194 /* 12195 * adjust user setting (for HW filter setup) 12196 */ 12197 attr->branch_sample_type = mask; 12198 } 12199 /* privileged levels capture (kernel, hv): check permissions */ 12200 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12201 ret = perf_allow_kernel(attr); 12202 if (ret) 12203 return ret; 12204 } 12205 } 12206 12207 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12208 ret = perf_reg_validate(attr->sample_regs_user); 12209 if (ret) 12210 return ret; 12211 } 12212 12213 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12214 if (!arch_perf_have_user_stack_dump()) 12215 return -ENOSYS; 12216 12217 /* 12218 * We have __u32 type for the size, but so far 12219 * we can only use __u16 as maximum due to the 12220 * __u16 sample size limit. 12221 */ 12222 if (attr->sample_stack_user >= USHRT_MAX) 12223 return -EINVAL; 12224 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12225 return -EINVAL; 12226 } 12227 12228 if (!attr->sample_max_stack) 12229 attr->sample_max_stack = sysctl_perf_event_max_stack; 12230 12231 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12232 ret = perf_reg_validate(attr->sample_regs_intr); 12233 12234 #ifndef CONFIG_CGROUP_PERF 12235 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12236 return -EINVAL; 12237 #endif 12238 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12239 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12240 return -EINVAL; 12241 12242 if (!attr->inherit && attr->inherit_thread) 12243 return -EINVAL; 12244 12245 if (attr->remove_on_exec && attr->enable_on_exec) 12246 return -EINVAL; 12247 12248 if (attr->sigtrap && !attr->remove_on_exec) 12249 return -EINVAL; 12250 12251 out: 12252 return ret; 12253 12254 err_size: 12255 put_user(sizeof(*attr), &uattr->size); 12256 ret = -E2BIG; 12257 goto out; 12258 } 12259 12260 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12261 { 12262 if (b < a) 12263 swap(a, b); 12264 12265 mutex_lock(a); 12266 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12267 } 12268 12269 static int 12270 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12271 { 12272 struct perf_buffer *rb = NULL; 12273 int ret = -EINVAL; 12274 12275 if (!output_event) { 12276 mutex_lock(&event->mmap_mutex); 12277 goto set; 12278 } 12279 12280 /* don't allow circular references */ 12281 if (event == output_event) 12282 goto out; 12283 12284 /* 12285 * Don't allow cross-cpu buffers 12286 */ 12287 if (output_event->cpu != event->cpu) 12288 goto out; 12289 12290 /* 12291 * If its not a per-cpu rb, it must be the same task. 12292 */ 12293 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12294 goto out; 12295 12296 /* 12297 * Mixing clocks in the same buffer is trouble you don't need. 12298 */ 12299 if (output_event->clock != event->clock) 12300 goto out; 12301 12302 /* 12303 * Either writing ring buffer from beginning or from end. 12304 * Mixing is not allowed. 12305 */ 12306 if (is_write_backward(output_event) != is_write_backward(event)) 12307 goto out; 12308 12309 /* 12310 * If both events generate aux data, they must be on the same PMU 12311 */ 12312 if (has_aux(event) && has_aux(output_event) && 12313 event->pmu != output_event->pmu) 12314 goto out; 12315 12316 /* 12317 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12318 * output_event is already on rb->event_list, and the list iteration 12319 * restarts after every removal, it is guaranteed this new event is 12320 * observed *OR* if output_event is already removed, it's guaranteed we 12321 * observe !rb->mmap_count. 12322 */ 12323 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12324 set: 12325 /* Can't redirect output if we've got an active mmap() */ 12326 if (atomic_read(&event->mmap_count)) 12327 goto unlock; 12328 12329 if (output_event) { 12330 /* get the rb we want to redirect to */ 12331 rb = ring_buffer_get(output_event); 12332 if (!rb) 12333 goto unlock; 12334 12335 /* did we race against perf_mmap_close() */ 12336 if (!atomic_read(&rb->mmap_count)) { 12337 ring_buffer_put(rb); 12338 goto unlock; 12339 } 12340 } 12341 12342 ring_buffer_attach(event, rb); 12343 12344 ret = 0; 12345 unlock: 12346 mutex_unlock(&event->mmap_mutex); 12347 if (output_event) 12348 mutex_unlock(&output_event->mmap_mutex); 12349 12350 out: 12351 return ret; 12352 } 12353 12354 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12355 { 12356 bool nmi_safe = false; 12357 12358 switch (clk_id) { 12359 case CLOCK_MONOTONIC: 12360 event->clock = &ktime_get_mono_fast_ns; 12361 nmi_safe = true; 12362 break; 12363 12364 case CLOCK_MONOTONIC_RAW: 12365 event->clock = &ktime_get_raw_fast_ns; 12366 nmi_safe = true; 12367 break; 12368 12369 case CLOCK_REALTIME: 12370 event->clock = &ktime_get_real_ns; 12371 break; 12372 12373 case CLOCK_BOOTTIME: 12374 event->clock = &ktime_get_boottime_ns; 12375 break; 12376 12377 case CLOCK_TAI: 12378 event->clock = &ktime_get_clocktai_ns; 12379 break; 12380 12381 default: 12382 return -EINVAL; 12383 } 12384 12385 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12386 return -EINVAL; 12387 12388 return 0; 12389 } 12390 12391 static bool 12392 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12393 { 12394 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12395 bool is_capable = perfmon_capable(); 12396 12397 if (attr->sigtrap) { 12398 /* 12399 * perf_event_attr::sigtrap sends signals to the other task. 12400 * Require the current task to also have CAP_KILL. 12401 */ 12402 rcu_read_lock(); 12403 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12404 rcu_read_unlock(); 12405 12406 /* 12407 * If the required capabilities aren't available, checks for 12408 * ptrace permissions: upgrade to ATTACH, since sending signals 12409 * can effectively change the target task. 12410 */ 12411 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12412 } 12413 12414 /* 12415 * Preserve ptrace permission check for backwards compatibility. The 12416 * ptrace check also includes checks that the current task and other 12417 * task have matching uids, and is therefore not done here explicitly. 12418 */ 12419 return is_capable || ptrace_may_access(task, ptrace_mode); 12420 } 12421 12422 /** 12423 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12424 * 12425 * @attr_uptr: event_id type attributes for monitoring/sampling 12426 * @pid: target pid 12427 * @cpu: target cpu 12428 * @group_fd: group leader event fd 12429 * @flags: perf event open flags 12430 */ 12431 SYSCALL_DEFINE5(perf_event_open, 12432 struct perf_event_attr __user *, attr_uptr, 12433 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12434 { 12435 struct perf_event *group_leader = NULL, *output_event = NULL; 12436 struct perf_event_pmu_context *pmu_ctx; 12437 struct perf_event *event, *sibling; 12438 struct perf_event_attr attr; 12439 struct perf_event_context *ctx; 12440 struct file *event_file = NULL; 12441 struct fd group = {NULL, 0}; 12442 struct task_struct *task = NULL; 12443 struct pmu *pmu; 12444 int event_fd; 12445 int move_group = 0; 12446 int err; 12447 int f_flags = O_RDWR; 12448 int cgroup_fd = -1; 12449 12450 /* for future expandability... */ 12451 if (flags & ~PERF_FLAG_ALL) 12452 return -EINVAL; 12453 12454 err = perf_copy_attr(attr_uptr, &attr); 12455 if (err) 12456 return err; 12457 12458 /* Do we allow access to perf_event_open(2) ? */ 12459 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12460 if (err) 12461 return err; 12462 12463 if (!attr.exclude_kernel) { 12464 err = perf_allow_kernel(&attr); 12465 if (err) 12466 return err; 12467 } 12468 12469 if (attr.namespaces) { 12470 if (!perfmon_capable()) 12471 return -EACCES; 12472 } 12473 12474 if (attr.freq) { 12475 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12476 return -EINVAL; 12477 } else { 12478 if (attr.sample_period & (1ULL << 63)) 12479 return -EINVAL; 12480 } 12481 12482 /* Only privileged users can get physical addresses */ 12483 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12484 err = perf_allow_kernel(&attr); 12485 if (err) 12486 return err; 12487 } 12488 12489 /* REGS_INTR can leak data, lockdown must prevent this */ 12490 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12491 err = security_locked_down(LOCKDOWN_PERF); 12492 if (err) 12493 return err; 12494 } 12495 12496 /* 12497 * In cgroup mode, the pid argument is used to pass the fd 12498 * opened to the cgroup directory in cgroupfs. The cpu argument 12499 * designates the cpu on which to monitor threads from that 12500 * cgroup. 12501 */ 12502 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12503 return -EINVAL; 12504 12505 if (flags & PERF_FLAG_FD_CLOEXEC) 12506 f_flags |= O_CLOEXEC; 12507 12508 event_fd = get_unused_fd_flags(f_flags); 12509 if (event_fd < 0) 12510 return event_fd; 12511 12512 if (group_fd != -1) { 12513 err = perf_fget_light(group_fd, &group); 12514 if (err) 12515 goto err_fd; 12516 group_leader = group.file->private_data; 12517 if (flags & PERF_FLAG_FD_OUTPUT) 12518 output_event = group_leader; 12519 if (flags & PERF_FLAG_FD_NO_GROUP) 12520 group_leader = NULL; 12521 } 12522 12523 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12524 task = find_lively_task_by_vpid(pid); 12525 if (IS_ERR(task)) { 12526 err = PTR_ERR(task); 12527 goto err_group_fd; 12528 } 12529 } 12530 12531 if (task && group_leader && 12532 group_leader->attr.inherit != attr.inherit) { 12533 err = -EINVAL; 12534 goto err_task; 12535 } 12536 12537 if (flags & PERF_FLAG_PID_CGROUP) 12538 cgroup_fd = pid; 12539 12540 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12541 NULL, NULL, cgroup_fd); 12542 if (IS_ERR(event)) { 12543 err = PTR_ERR(event); 12544 goto err_task; 12545 } 12546 12547 if (is_sampling_event(event)) { 12548 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12549 err = -EOPNOTSUPP; 12550 goto err_alloc; 12551 } 12552 } 12553 12554 /* 12555 * Special case software events and allow them to be part of 12556 * any hardware group. 12557 */ 12558 pmu = event->pmu; 12559 12560 if (attr.use_clockid) { 12561 err = perf_event_set_clock(event, attr.clockid); 12562 if (err) 12563 goto err_alloc; 12564 } 12565 12566 if (pmu->task_ctx_nr == perf_sw_context) 12567 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12568 12569 if (task) { 12570 err = down_read_interruptible(&task->signal->exec_update_lock); 12571 if (err) 12572 goto err_alloc; 12573 12574 /* 12575 * We must hold exec_update_lock across this and any potential 12576 * perf_install_in_context() call for this new event to 12577 * serialize against exec() altering our credentials (and the 12578 * perf_event_exit_task() that could imply). 12579 */ 12580 err = -EACCES; 12581 if (!perf_check_permission(&attr, task)) 12582 goto err_cred; 12583 } 12584 12585 /* 12586 * Get the target context (task or percpu): 12587 */ 12588 ctx = find_get_context(task, event); 12589 if (IS_ERR(ctx)) { 12590 err = PTR_ERR(ctx); 12591 goto err_cred; 12592 } 12593 12594 mutex_lock(&ctx->mutex); 12595 12596 if (ctx->task == TASK_TOMBSTONE) { 12597 err = -ESRCH; 12598 goto err_locked; 12599 } 12600 12601 if (!task) { 12602 /* 12603 * Check if the @cpu we're creating an event for is online. 12604 * 12605 * We use the perf_cpu_context::ctx::mutex to serialize against 12606 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12607 */ 12608 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12609 12610 if (!cpuctx->online) { 12611 err = -ENODEV; 12612 goto err_locked; 12613 } 12614 } 12615 12616 if (group_leader) { 12617 err = -EINVAL; 12618 12619 /* 12620 * Do not allow a recursive hierarchy (this new sibling 12621 * becoming part of another group-sibling): 12622 */ 12623 if (group_leader->group_leader != group_leader) 12624 goto err_locked; 12625 12626 /* All events in a group should have the same clock */ 12627 if (group_leader->clock != event->clock) 12628 goto err_locked; 12629 12630 /* 12631 * Make sure we're both events for the same CPU; 12632 * grouping events for different CPUs is broken; since 12633 * you can never concurrently schedule them anyhow. 12634 */ 12635 if (group_leader->cpu != event->cpu) 12636 goto err_locked; 12637 12638 /* 12639 * Make sure we're both on the same context; either task or cpu. 12640 */ 12641 if (group_leader->ctx != ctx) 12642 goto err_locked; 12643 12644 /* 12645 * Only a group leader can be exclusive or pinned 12646 */ 12647 if (attr.exclusive || attr.pinned) 12648 goto err_locked; 12649 12650 if (is_software_event(event) && 12651 !in_software_context(group_leader)) { 12652 /* 12653 * If the event is a sw event, but the group_leader 12654 * is on hw context. 12655 * 12656 * Allow the addition of software events to hw 12657 * groups, this is safe because software events 12658 * never fail to schedule. 12659 * 12660 * Note the comment that goes with struct 12661 * perf_event_pmu_context. 12662 */ 12663 pmu = group_leader->pmu_ctx->pmu; 12664 } else if (!is_software_event(event)) { 12665 if (is_software_event(group_leader) && 12666 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12667 /* 12668 * In case the group is a pure software group, and we 12669 * try to add a hardware event, move the whole group to 12670 * the hardware context. 12671 */ 12672 move_group = 1; 12673 } 12674 12675 /* Don't allow group of multiple hw events from different pmus */ 12676 if (!in_software_context(group_leader) && 12677 group_leader->pmu_ctx->pmu != pmu) 12678 goto err_locked; 12679 } 12680 } 12681 12682 /* 12683 * Now that we're certain of the pmu; find the pmu_ctx. 12684 */ 12685 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12686 if (IS_ERR(pmu_ctx)) { 12687 err = PTR_ERR(pmu_ctx); 12688 goto err_locked; 12689 } 12690 event->pmu_ctx = pmu_ctx; 12691 12692 if (output_event) { 12693 err = perf_event_set_output(event, output_event); 12694 if (err) 12695 goto err_context; 12696 } 12697 12698 if (!perf_event_validate_size(event)) { 12699 err = -E2BIG; 12700 goto err_context; 12701 } 12702 12703 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12704 err = -EINVAL; 12705 goto err_context; 12706 } 12707 12708 /* 12709 * Must be under the same ctx::mutex as perf_install_in_context(), 12710 * because we need to serialize with concurrent event creation. 12711 */ 12712 if (!exclusive_event_installable(event, ctx)) { 12713 err = -EBUSY; 12714 goto err_context; 12715 } 12716 12717 WARN_ON_ONCE(ctx->parent_ctx); 12718 12719 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12720 if (IS_ERR(event_file)) { 12721 err = PTR_ERR(event_file); 12722 event_file = NULL; 12723 goto err_context; 12724 } 12725 12726 /* 12727 * This is the point on no return; we cannot fail hereafter. This is 12728 * where we start modifying current state. 12729 */ 12730 12731 if (move_group) { 12732 perf_remove_from_context(group_leader, 0); 12733 put_pmu_ctx(group_leader->pmu_ctx); 12734 12735 for_each_sibling_event(sibling, group_leader) { 12736 perf_remove_from_context(sibling, 0); 12737 put_pmu_ctx(sibling->pmu_ctx); 12738 } 12739 12740 /* 12741 * Install the group siblings before the group leader. 12742 * 12743 * Because a group leader will try and install the entire group 12744 * (through the sibling list, which is still in-tact), we can 12745 * end up with siblings installed in the wrong context. 12746 * 12747 * By installing siblings first we NO-OP because they're not 12748 * reachable through the group lists. 12749 */ 12750 for_each_sibling_event(sibling, group_leader) { 12751 sibling->pmu_ctx = pmu_ctx; 12752 get_pmu_ctx(pmu_ctx); 12753 perf_event__state_init(sibling); 12754 perf_install_in_context(ctx, sibling, sibling->cpu); 12755 } 12756 12757 /* 12758 * Removing from the context ends up with disabled 12759 * event. What we want here is event in the initial 12760 * startup state, ready to be add into new context. 12761 */ 12762 group_leader->pmu_ctx = pmu_ctx; 12763 get_pmu_ctx(pmu_ctx); 12764 perf_event__state_init(group_leader); 12765 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12766 } 12767 12768 /* 12769 * Precalculate sample_data sizes; do while holding ctx::mutex such 12770 * that we're serialized against further additions and before 12771 * perf_install_in_context() which is the point the event is active and 12772 * can use these values. 12773 */ 12774 perf_event__header_size(event); 12775 perf_event__id_header_size(event); 12776 12777 event->owner = current; 12778 12779 perf_install_in_context(ctx, event, event->cpu); 12780 perf_unpin_context(ctx); 12781 12782 mutex_unlock(&ctx->mutex); 12783 12784 if (task) { 12785 up_read(&task->signal->exec_update_lock); 12786 put_task_struct(task); 12787 } 12788 12789 mutex_lock(¤t->perf_event_mutex); 12790 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12791 mutex_unlock(¤t->perf_event_mutex); 12792 12793 /* 12794 * Drop the reference on the group_event after placing the 12795 * new event on the sibling_list. This ensures destruction 12796 * of the group leader will find the pointer to itself in 12797 * perf_group_detach(). 12798 */ 12799 fdput(group); 12800 fd_install(event_fd, event_file); 12801 return event_fd; 12802 12803 err_context: 12804 put_pmu_ctx(event->pmu_ctx); 12805 event->pmu_ctx = NULL; /* _free_event() */ 12806 err_locked: 12807 mutex_unlock(&ctx->mutex); 12808 perf_unpin_context(ctx); 12809 put_ctx(ctx); 12810 err_cred: 12811 if (task) 12812 up_read(&task->signal->exec_update_lock); 12813 err_alloc: 12814 free_event(event); 12815 err_task: 12816 if (task) 12817 put_task_struct(task); 12818 err_group_fd: 12819 fdput(group); 12820 err_fd: 12821 put_unused_fd(event_fd); 12822 return err; 12823 } 12824 12825 /** 12826 * perf_event_create_kernel_counter 12827 * 12828 * @attr: attributes of the counter to create 12829 * @cpu: cpu in which the counter is bound 12830 * @task: task to profile (NULL for percpu) 12831 * @overflow_handler: callback to trigger when we hit the event 12832 * @context: context data could be used in overflow_handler callback 12833 */ 12834 struct perf_event * 12835 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12836 struct task_struct *task, 12837 perf_overflow_handler_t overflow_handler, 12838 void *context) 12839 { 12840 struct perf_event_pmu_context *pmu_ctx; 12841 struct perf_event_context *ctx; 12842 struct perf_event *event; 12843 struct pmu *pmu; 12844 int err; 12845 12846 /* 12847 * Grouping is not supported for kernel events, neither is 'AUX', 12848 * make sure the caller's intentions are adjusted. 12849 */ 12850 if (attr->aux_output) 12851 return ERR_PTR(-EINVAL); 12852 12853 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12854 overflow_handler, context, -1); 12855 if (IS_ERR(event)) { 12856 err = PTR_ERR(event); 12857 goto err; 12858 } 12859 12860 /* Mark owner so we could distinguish it from user events. */ 12861 event->owner = TASK_TOMBSTONE; 12862 pmu = event->pmu; 12863 12864 if (pmu->task_ctx_nr == perf_sw_context) 12865 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12866 12867 /* 12868 * Get the target context (task or percpu): 12869 */ 12870 ctx = find_get_context(task, event); 12871 if (IS_ERR(ctx)) { 12872 err = PTR_ERR(ctx); 12873 goto err_alloc; 12874 } 12875 12876 WARN_ON_ONCE(ctx->parent_ctx); 12877 mutex_lock(&ctx->mutex); 12878 if (ctx->task == TASK_TOMBSTONE) { 12879 err = -ESRCH; 12880 goto err_unlock; 12881 } 12882 12883 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12884 if (IS_ERR(pmu_ctx)) { 12885 err = PTR_ERR(pmu_ctx); 12886 goto err_unlock; 12887 } 12888 event->pmu_ctx = pmu_ctx; 12889 12890 if (!task) { 12891 /* 12892 * Check if the @cpu we're creating an event for is online. 12893 * 12894 * We use the perf_cpu_context::ctx::mutex to serialize against 12895 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12896 */ 12897 struct perf_cpu_context *cpuctx = 12898 container_of(ctx, struct perf_cpu_context, ctx); 12899 if (!cpuctx->online) { 12900 err = -ENODEV; 12901 goto err_pmu_ctx; 12902 } 12903 } 12904 12905 if (!exclusive_event_installable(event, ctx)) { 12906 err = -EBUSY; 12907 goto err_pmu_ctx; 12908 } 12909 12910 perf_install_in_context(ctx, event, event->cpu); 12911 perf_unpin_context(ctx); 12912 mutex_unlock(&ctx->mutex); 12913 12914 return event; 12915 12916 err_pmu_ctx: 12917 put_pmu_ctx(pmu_ctx); 12918 event->pmu_ctx = NULL; /* _free_event() */ 12919 err_unlock: 12920 mutex_unlock(&ctx->mutex); 12921 perf_unpin_context(ctx); 12922 put_ctx(ctx); 12923 err_alloc: 12924 free_event(event); 12925 err: 12926 return ERR_PTR(err); 12927 } 12928 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12929 12930 static void __perf_pmu_remove(struct perf_event_context *ctx, 12931 int cpu, struct pmu *pmu, 12932 struct perf_event_groups *groups, 12933 struct list_head *events) 12934 { 12935 struct perf_event *event, *sibling; 12936 12937 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12938 perf_remove_from_context(event, 0); 12939 put_pmu_ctx(event->pmu_ctx); 12940 list_add(&event->migrate_entry, events); 12941 12942 for_each_sibling_event(sibling, event) { 12943 perf_remove_from_context(sibling, 0); 12944 put_pmu_ctx(sibling->pmu_ctx); 12945 list_add(&sibling->migrate_entry, events); 12946 } 12947 } 12948 } 12949 12950 static void __perf_pmu_install_event(struct pmu *pmu, 12951 struct perf_event_context *ctx, 12952 int cpu, struct perf_event *event) 12953 { 12954 struct perf_event_pmu_context *epc; 12955 struct perf_event_context *old_ctx = event->ctx; 12956 12957 get_ctx(ctx); /* normally find_get_context() */ 12958 12959 event->cpu = cpu; 12960 epc = find_get_pmu_context(pmu, ctx, event); 12961 event->pmu_ctx = epc; 12962 12963 if (event->state >= PERF_EVENT_STATE_OFF) 12964 event->state = PERF_EVENT_STATE_INACTIVE; 12965 perf_install_in_context(ctx, event, cpu); 12966 12967 /* 12968 * Now that event->ctx is updated and visible, put the old ctx. 12969 */ 12970 put_ctx(old_ctx); 12971 } 12972 12973 static void __perf_pmu_install(struct perf_event_context *ctx, 12974 int cpu, struct pmu *pmu, struct list_head *events) 12975 { 12976 struct perf_event *event, *tmp; 12977 12978 /* 12979 * Re-instate events in 2 passes. 12980 * 12981 * Skip over group leaders and only install siblings on this first 12982 * pass, siblings will not get enabled without a leader, however a 12983 * leader will enable its siblings, even if those are still on the old 12984 * context. 12985 */ 12986 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12987 if (event->group_leader == event) 12988 continue; 12989 12990 list_del(&event->migrate_entry); 12991 __perf_pmu_install_event(pmu, ctx, cpu, event); 12992 } 12993 12994 /* 12995 * Once all the siblings are setup properly, install the group leaders 12996 * to make it go. 12997 */ 12998 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12999 list_del(&event->migrate_entry); 13000 __perf_pmu_install_event(pmu, ctx, cpu, event); 13001 } 13002 } 13003 13004 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13005 { 13006 struct perf_event_context *src_ctx, *dst_ctx; 13007 LIST_HEAD(events); 13008 13009 /* 13010 * Since per-cpu context is persistent, no need to grab an extra 13011 * reference. 13012 */ 13013 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13014 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13015 13016 /* 13017 * See perf_event_ctx_lock() for comments on the details 13018 * of swizzling perf_event::ctx. 13019 */ 13020 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13021 13022 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13023 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13024 13025 if (!list_empty(&events)) { 13026 /* 13027 * Wait for the events to quiesce before re-instating them. 13028 */ 13029 synchronize_rcu(); 13030 13031 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13032 } 13033 13034 mutex_unlock(&dst_ctx->mutex); 13035 mutex_unlock(&src_ctx->mutex); 13036 } 13037 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13038 13039 static void sync_child_event(struct perf_event *child_event) 13040 { 13041 struct perf_event *parent_event = child_event->parent; 13042 u64 child_val; 13043 13044 if (child_event->attr.inherit_stat) { 13045 struct task_struct *task = child_event->ctx->task; 13046 13047 if (task && task != TASK_TOMBSTONE) 13048 perf_event_read_event(child_event, task); 13049 } 13050 13051 child_val = perf_event_count(child_event); 13052 13053 /* 13054 * Add back the child's count to the parent's count: 13055 */ 13056 atomic64_add(child_val, &parent_event->child_count); 13057 atomic64_add(child_event->total_time_enabled, 13058 &parent_event->child_total_time_enabled); 13059 atomic64_add(child_event->total_time_running, 13060 &parent_event->child_total_time_running); 13061 } 13062 13063 static void 13064 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13065 { 13066 struct perf_event *parent_event = event->parent; 13067 unsigned long detach_flags = 0; 13068 13069 if (parent_event) { 13070 /* 13071 * Do not destroy the 'original' grouping; because of the 13072 * context switch optimization the original events could've 13073 * ended up in a random child task. 13074 * 13075 * If we were to destroy the original group, all group related 13076 * operations would cease to function properly after this 13077 * random child dies. 13078 * 13079 * Do destroy all inherited groups, we don't care about those 13080 * and being thorough is better. 13081 */ 13082 detach_flags = DETACH_GROUP | DETACH_CHILD; 13083 mutex_lock(&parent_event->child_mutex); 13084 } 13085 13086 perf_remove_from_context(event, detach_flags); 13087 13088 raw_spin_lock_irq(&ctx->lock); 13089 if (event->state > PERF_EVENT_STATE_EXIT) 13090 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13091 raw_spin_unlock_irq(&ctx->lock); 13092 13093 /* 13094 * Child events can be freed. 13095 */ 13096 if (parent_event) { 13097 mutex_unlock(&parent_event->child_mutex); 13098 /* 13099 * Kick perf_poll() for is_event_hup(); 13100 */ 13101 perf_event_wakeup(parent_event); 13102 free_event(event); 13103 put_event(parent_event); 13104 return; 13105 } 13106 13107 /* 13108 * Parent events are governed by their filedesc, retain them. 13109 */ 13110 perf_event_wakeup(event); 13111 } 13112 13113 static void perf_event_exit_task_context(struct task_struct *child) 13114 { 13115 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13116 struct perf_event *child_event, *next; 13117 13118 WARN_ON_ONCE(child != current); 13119 13120 child_ctx = perf_pin_task_context(child); 13121 if (!child_ctx) 13122 return; 13123 13124 /* 13125 * In order to reduce the amount of tricky in ctx tear-down, we hold 13126 * ctx::mutex over the entire thing. This serializes against almost 13127 * everything that wants to access the ctx. 13128 * 13129 * The exception is sys_perf_event_open() / 13130 * perf_event_create_kernel_count() which does find_get_context() 13131 * without ctx::mutex (it cannot because of the move_group double mutex 13132 * lock thing). See the comments in perf_install_in_context(). 13133 */ 13134 mutex_lock(&child_ctx->mutex); 13135 13136 /* 13137 * In a single ctx::lock section, de-schedule the events and detach the 13138 * context from the task such that we cannot ever get it scheduled back 13139 * in. 13140 */ 13141 raw_spin_lock_irq(&child_ctx->lock); 13142 task_ctx_sched_out(child_ctx, EVENT_ALL); 13143 13144 /* 13145 * Now that the context is inactive, destroy the task <-> ctx relation 13146 * and mark the context dead. 13147 */ 13148 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13149 put_ctx(child_ctx); /* cannot be last */ 13150 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13151 put_task_struct(current); /* cannot be last */ 13152 13153 clone_ctx = unclone_ctx(child_ctx); 13154 raw_spin_unlock_irq(&child_ctx->lock); 13155 13156 if (clone_ctx) 13157 put_ctx(clone_ctx); 13158 13159 /* 13160 * Report the task dead after unscheduling the events so that we 13161 * won't get any samples after PERF_RECORD_EXIT. We can however still 13162 * get a few PERF_RECORD_READ events. 13163 */ 13164 perf_event_task(child, child_ctx, 0); 13165 13166 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13167 perf_event_exit_event(child_event, child_ctx); 13168 13169 mutex_unlock(&child_ctx->mutex); 13170 13171 put_ctx(child_ctx); 13172 } 13173 13174 /* 13175 * When a child task exits, feed back event values to parent events. 13176 * 13177 * Can be called with exec_update_lock held when called from 13178 * setup_new_exec(). 13179 */ 13180 void perf_event_exit_task(struct task_struct *child) 13181 { 13182 struct perf_event *event, *tmp; 13183 13184 mutex_lock(&child->perf_event_mutex); 13185 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13186 owner_entry) { 13187 list_del_init(&event->owner_entry); 13188 13189 /* 13190 * Ensure the list deletion is visible before we clear 13191 * the owner, closes a race against perf_release() where 13192 * we need to serialize on the owner->perf_event_mutex. 13193 */ 13194 smp_store_release(&event->owner, NULL); 13195 } 13196 mutex_unlock(&child->perf_event_mutex); 13197 13198 perf_event_exit_task_context(child); 13199 13200 /* 13201 * The perf_event_exit_task_context calls perf_event_task 13202 * with child's task_ctx, which generates EXIT events for 13203 * child contexts and sets child->perf_event_ctxp[] to NULL. 13204 * At this point we need to send EXIT events to cpu contexts. 13205 */ 13206 perf_event_task(child, NULL, 0); 13207 } 13208 13209 static void perf_free_event(struct perf_event *event, 13210 struct perf_event_context *ctx) 13211 { 13212 struct perf_event *parent = event->parent; 13213 13214 if (WARN_ON_ONCE(!parent)) 13215 return; 13216 13217 mutex_lock(&parent->child_mutex); 13218 list_del_init(&event->child_list); 13219 mutex_unlock(&parent->child_mutex); 13220 13221 put_event(parent); 13222 13223 raw_spin_lock_irq(&ctx->lock); 13224 perf_group_detach(event); 13225 list_del_event(event, ctx); 13226 raw_spin_unlock_irq(&ctx->lock); 13227 free_event(event); 13228 } 13229 13230 /* 13231 * Free a context as created by inheritance by perf_event_init_task() below, 13232 * used by fork() in case of fail. 13233 * 13234 * Even though the task has never lived, the context and events have been 13235 * exposed through the child_list, so we must take care tearing it all down. 13236 */ 13237 void perf_event_free_task(struct task_struct *task) 13238 { 13239 struct perf_event_context *ctx; 13240 struct perf_event *event, *tmp; 13241 13242 ctx = rcu_access_pointer(task->perf_event_ctxp); 13243 if (!ctx) 13244 return; 13245 13246 mutex_lock(&ctx->mutex); 13247 raw_spin_lock_irq(&ctx->lock); 13248 /* 13249 * Destroy the task <-> ctx relation and mark the context dead. 13250 * 13251 * This is important because even though the task hasn't been 13252 * exposed yet the context has been (through child_list). 13253 */ 13254 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13255 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13256 put_task_struct(task); /* cannot be last */ 13257 raw_spin_unlock_irq(&ctx->lock); 13258 13259 13260 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13261 perf_free_event(event, ctx); 13262 13263 mutex_unlock(&ctx->mutex); 13264 13265 /* 13266 * perf_event_release_kernel() could've stolen some of our 13267 * child events and still have them on its free_list. In that 13268 * case we must wait for these events to have been freed (in 13269 * particular all their references to this task must've been 13270 * dropped). 13271 * 13272 * Without this copy_process() will unconditionally free this 13273 * task (irrespective of its reference count) and 13274 * _free_event()'s put_task_struct(event->hw.target) will be a 13275 * use-after-free. 13276 * 13277 * Wait for all events to drop their context reference. 13278 */ 13279 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13280 put_ctx(ctx); /* must be last */ 13281 } 13282 13283 void perf_event_delayed_put(struct task_struct *task) 13284 { 13285 WARN_ON_ONCE(task->perf_event_ctxp); 13286 } 13287 13288 struct file *perf_event_get(unsigned int fd) 13289 { 13290 struct file *file = fget(fd); 13291 if (!file) 13292 return ERR_PTR(-EBADF); 13293 13294 if (file->f_op != &perf_fops) { 13295 fput(file); 13296 return ERR_PTR(-EBADF); 13297 } 13298 13299 return file; 13300 } 13301 13302 const struct perf_event *perf_get_event(struct file *file) 13303 { 13304 if (file->f_op != &perf_fops) 13305 return ERR_PTR(-EINVAL); 13306 13307 return file->private_data; 13308 } 13309 13310 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13311 { 13312 if (!event) 13313 return ERR_PTR(-EINVAL); 13314 13315 return &event->attr; 13316 } 13317 13318 /* 13319 * Inherit an event from parent task to child task. 13320 * 13321 * Returns: 13322 * - valid pointer on success 13323 * - NULL for orphaned events 13324 * - IS_ERR() on error 13325 */ 13326 static struct perf_event * 13327 inherit_event(struct perf_event *parent_event, 13328 struct task_struct *parent, 13329 struct perf_event_context *parent_ctx, 13330 struct task_struct *child, 13331 struct perf_event *group_leader, 13332 struct perf_event_context *child_ctx) 13333 { 13334 enum perf_event_state parent_state = parent_event->state; 13335 struct perf_event_pmu_context *pmu_ctx; 13336 struct perf_event *child_event; 13337 unsigned long flags; 13338 13339 /* 13340 * Instead of creating recursive hierarchies of events, 13341 * we link inherited events back to the original parent, 13342 * which has a filp for sure, which we use as the reference 13343 * count: 13344 */ 13345 if (parent_event->parent) 13346 parent_event = parent_event->parent; 13347 13348 child_event = perf_event_alloc(&parent_event->attr, 13349 parent_event->cpu, 13350 child, 13351 group_leader, parent_event, 13352 NULL, NULL, -1); 13353 if (IS_ERR(child_event)) 13354 return child_event; 13355 13356 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13357 if (IS_ERR(pmu_ctx)) { 13358 free_event(child_event); 13359 return ERR_CAST(pmu_ctx); 13360 } 13361 child_event->pmu_ctx = pmu_ctx; 13362 13363 /* 13364 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13365 * must be under the same lock in order to serialize against 13366 * perf_event_release_kernel(), such that either we must observe 13367 * is_orphaned_event() or they will observe us on the child_list. 13368 */ 13369 mutex_lock(&parent_event->child_mutex); 13370 if (is_orphaned_event(parent_event) || 13371 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13372 mutex_unlock(&parent_event->child_mutex); 13373 /* task_ctx_data is freed with child_ctx */ 13374 free_event(child_event); 13375 return NULL; 13376 } 13377 13378 get_ctx(child_ctx); 13379 13380 /* 13381 * Make the child state follow the state of the parent event, 13382 * not its attr.disabled bit. We hold the parent's mutex, 13383 * so we won't race with perf_event_{en, dis}able_family. 13384 */ 13385 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13386 child_event->state = PERF_EVENT_STATE_INACTIVE; 13387 else 13388 child_event->state = PERF_EVENT_STATE_OFF; 13389 13390 if (parent_event->attr.freq) { 13391 u64 sample_period = parent_event->hw.sample_period; 13392 struct hw_perf_event *hwc = &child_event->hw; 13393 13394 hwc->sample_period = sample_period; 13395 hwc->last_period = sample_period; 13396 13397 local64_set(&hwc->period_left, sample_period); 13398 } 13399 13400 child_event->ctx = child_ctx; 13401 child_event->overflow_handler = parent_event->overflow_handler; 13402 child_event->overflow_handler_context 13403 = parent_event->overflow_handler_context; 13404 13405 /* 13406 * Precalculate sample_data sizes 13407 */ 13408 perf_event__header_size(child_event); 13409 perf_event__id_header_size(child_event); 13410 13411 /* 13412 * Link it up in the child's context: 13413 */ 13414 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13415 add_event_to_ctx(child_event, child_ctx); 13416 child_event->attach_state |= PERF_ATTACH_CHILD; 13417 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13418 13419 /* 13420 * Link this into the parent event's child list 13421 */ 13422 list_add_tail(&child_event->child_list, &parent_event->child_list); 13423 mutex_unlock(&parent_event->child_mutex); 13424 13425 return child_event; 13426 } 13427 13428 /* 13429 * Inherits an event group. 13430 * 13431 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13432 * This matches with perf_event_release_kernel() removing all child events. 13433 * 13434 * Returns: 13435 * - 0 on success 13436 * - <0 on error 13437 */ 13438 static int inherit_group(struct perf_event *parent_event, 13439 struct task_struct *parent, 13440 struct perf_event_context *parent_ctx, 13441 struct task_struct *child, 13442 struct perf_event_context *child_ctx) 13443 { 13444 struct perf_event *leader; 13445 struct perf_event *sub; 13446 struct perf_event *child_ctr; 13447 13448 leader = inherit_event(parent_event, parent, parent_ctx, 13449 child, NULL, child_ctx); 13450 if (IS_ERR(leader)) 13451 return PTR_ERR(leader); 13452 /* 13453 * @leader can be NULL here because of is_orphaned_event(). In this 13454 * case inherit_event() will create individual events, similar to what 13455 * perf_group_detach() would do anyway. 13456 */ 13457 for_each_sibling_event(sub, parent_event) { 13458 child_ctr = inherit_event(sub, parent, parent_ctx, 13459 child, leader, child_ctx); 13460 if (IS_ERR(child_ctr)) 13461 return PTR_ERR(child_ctr); 13462 13463 if (sub->aux_event == parent_event && child_ctr && 13464 !perf_get_aux_event(child_ctr, leader)) 13465 return -EINVAL; 13466 } 13467 if (leader) 13468 leader->group_generation = parent_event->group_generation; 13469 return 0; 13470 } 13471 13472 /* 13473 * Creates the child task context and tries to inherit the event-group. 13474 * 13475 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13476 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13477 * consistent with perf_event_release_kernel() removing all child events. 13478 * 13479 * Returns: 13480 * - 0 on success 13481 * - <0 on error 13482 */ 13483 static int 13484 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13485 struct perf_event_context *parent_ctx, 13486 struct task_struct *child, 13487 u64 clone_flags, int *inherited_all) 13488 { 13489 struct perf_event_context *child_ctx; 13490 int ret; 13491 13492 if (!event->attr.inherit || 13493 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13494 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13495 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13496 *inherited_all = 0; 13497 return 0; 13498 } 13499 13500 child_ctx = child->perf_event_ctxp; 13501 if (!child_ctx) { 13502 /* 13503 * This is executed from the parent task context, so 13504 * inherit events that have been marked for cloning. 13505 * First allocate and initialize a context for the 13506 * child. 13507 */ 13508 child_ctx = alloc_perf_context(child); 13509 if (!child_ctx) 13510 return -ENOMEM; 13511 13512 child->perf_event_ctxp = child_ctx; 13513 } 13514 13515 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13516 if (ret) 13517 *inherited_all = 0; 13518 13519 return ret; 13520 } 13521 13522 /* 13523 * Initialize the perf_event context in task_struct 13524 */ 13525 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13526 { 13527 struct perf_event_context *child_ctx, *parent_ctx; 13528 struct perf_event_context *cloned_ctx; 13529 struct perf_event *event; 13530 struct task_struct *parent = current; 13531 int inherited_all = 1; 13532 unsigned long flags; 13533 int ret = 0; 13534 13535 if (likely(!parent->perf_event_ctxp)) 13536 return 0; 13537 13538 /* 13539 * If the parent's context is a clone, pin it so it won't get 13540 * swapped under us. 13541 */ 13542 parent_ctx = perf_pin_task_context(parent); 13543 if (!parent_ctx) 13544 return 0; 13545 13546 /* 13547 * No need to check if parent_ctx != NULL here; since we saw 13548 * it non-NULL earlier, the only reason for it to become NULL 13549 * is if we exit, and since we're currently in the middle of 13550 * a fork we can't be exiting at the same time. 13551 */ 13552 13553 /* 13554 * Lock the parent list. No need to lock the child - not PID 13555 * hashed yet and not running, so nobody can access it. 13556 */ 13557 mutex_lock(&parent_ctx->mutex); 13558 13559 /* 13560 * We dont have to disable NMIs - we are only looking at 13561 * the list, not manipulating it: 13562 */ 13563 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13564 ret = inherit_task_group(event, parent, parent_ctx, 13565 child, clone_flags, &inherited_all); 13566 if (ret) 13567 goto out_unlock; 13568 } 13569 13570 /* 13571 * We can't hold ctx->lock when iterating the ->flexible_group list due 13572 * to allocations, but we need to prevent rotation because 13573 * rotate_ctx() will change the list from interrupt context. 13574 */ 13575 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13576 parent_ctx->rotate_disable = 1; 13577 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13578 13579 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13580 ret = inherit_task_group(event, parent, parent_ctx, 13581 child, clone_flags, &inherited_all); 13582 if (ret) 13583 goto out_unlock; 13584 } 13585 13586 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13587 parent_ctx->rotate_disable = 0; 13588 13589 child_ctx = child->perf_event_ctxp; 13590 13591 if (child_ctx && inherited_all) { 13592 /* 13593 * Mark the child context as a clone of the parent 13594 * context, or of whatever the parent is a clone of. 13595 * 13596 * Note that if the parent is a clone, the holding of 13597 * parent_ctx->lock avoids it from being uncloned. 13598 */ 13599 cloned_ctx = parent_ctx->parent_ctx; 13600 if (cloned_ctx) { 13601 child_ctx->parent_ctx = cloned_ctx; 13602 child_ctx->parent_gen = parent_ctx->parent_gen; 13603 } else { 13604 child_ctx->parent_ctx = parent_ctx; 13605 child_ctx->parent_gen = parent_ctx->generation; 13606 } 13607 get_ctx(child_ctx->parent_ctx); 13608 } 13609 13610 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13611 out_unlock: 13612 mutex_unlock(&parent_ctx->mutex); 13613 13614 perf_unpin_context(parent_ctx); 13615 put_ctx(parent_ctx); 13616 13617 return ret; 13618 } 13619 13620 /* 13621 * Initialize the perf_event context in task_struct 13622 */ 13623 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13624 { 13625 int ret; 13626 13627 child->perf_event_ctxp = NULL; 13628 mutex_init(&child->perf_event_mutex); 13629 INIT_LIST_HEAD(&child->perf_event_list); 13630 13631 ret = perf_event_init_context(child, clone_flags); 13632 if (ret) { 13633 perf_event_free_task(child); 13634 return ret; 13635 } 13636 13637 return 0; 13638 } 13639 13640 static void __init perf_event_init_all_cpus(void) 13641 { 13642 struct swevent_htable *swhash; 13643 struct perf_cpu_context *cpuctx; 13644 int cpu; 13645 13646 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13647 13648 for_each_possible_cpu(cpu) { 13649 swhash = &per_cpu(swevent_htable, cpu); 13650 mutex_init(&swhash->hlist_mutex); 13651 13652 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13653 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13654 13655 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13656 13657 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13658 __perf_event_init_context(&cpuctx->ctx); 13659 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13660 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13661 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13662 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13663 cpuctx->heap = cpuctx->heap_default; 13664 } 13665 } 13666 13667 static void perf_swevent_init_cpu(unsigned int cpu) 13668 { 13669 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13670 13671 mutex_lock(&swhash->hlist_mutex); 13672 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13673 struct swevent_hlist *hlist; 13674 13675 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13676 WARN_ON(!hlist); 13677 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13678 } 13679 mutex_unlock(&swhash->hlist_mutex); 13680 } 13681 13682 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13683 static void __perf_event_exit_context(void *__info) 13684 { 13685 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13686 struct perf_event_context *ctx = __info; 13687 struct perf_event *event; 13688 13689 raw_spin_lock(&ctx->lock); 13690 ctx_sched_out(ctx, EVENT_TIME); 13691 list_for_each_entry(event, &ctx->event_list, event_entry) 13692 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13693 raw_spin_unlock(&ctx->lock); 13694 } 13695 13696 static void perf_event_exit_cpu_context(int cpu) 13697 { 13698 struct perf_cpu_context *cpuctx; 13699 struct perf_event_context *ctx; 13700 13701 // XXX simplify cpuctx->online 13702 mutex_lock(&pmus_lock); 13703 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13704 ctx = &cpuctx->ctx; 13705 13706 mutex_lock(&ctx->mutex); 13707 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13708 cpuctx->online = 0; 13709 mutex_unlock(&ctx->mutex); 13710 cpumask_clear_cpu(cpu, perf_online_mask); 13711 mutex_unlock(&pmus_lock); 13712 } 13713 #else 13714 13715 static void perf_event_exit_cpu_context(int cpu) { } 13716 13717 #endif 13718 13719 int perf_event_init_cpu(unsigned int cpu) 13720 { 13721 struct perf_cpu_context *cpuctx; 13722 struct perf_event_context *ctx; 13723 13724 perf_swevent_init_cpu(cpu); 13725 13726 mutex_lock(&pmus_lock); 13727 cpumask_set_cpu(cpu, perf_online_mask); 13728 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13729 ctx = &cpuctx->ctx; 13730 13731 mutex_lock(&ctx->mutex); 13732 cpuctx->online = 1; 13733 mutex_unlock(&ctx->mutex); 13734 mutex_unlock(&pmus_lock); 13735 13736 return 0; 13737 } 13738 13739 int perf_event_exit_cpu(unsigned int cpu) 13740 { 13741 perf_event_exit_cpu_context(cpu); 13742 return 0; 13743 } 13744 13745 static int 13746 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13747 { 13748 int cpu; 13749 13750 for_each_online_cpu(cpu) 13751 perf_event_exit_cpu(cpu); 13752 13753 return NOTIFY_OK; 13754 } 13755 13756 /* 13757 * Run the perf reboot notifier at the very last possible moment so that 13758 * the generic watchdog code runs as long as possible. 13759 */ 13760 static struct notifier_block perf_reboot_notifier = { 13761 .notifier_call = perf_reboot, 13762 .priority = INT_MIN, 13763 }; 13764 13765 void __init perf_event_init(void) 13766 { 13767 int ret; 13768 13769 idr_init(&pmu_idr); 13770 13771 perf_event_init_all_cpus(); 13772 init_srcu_struct(&pmus_srcu); 13773 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13774 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13775 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13776 perf_tp_register(); 13777 perf_event_init_cpu(smp_processor_id()); 13778 register_reboot_notifier(&perf_reboot_notifier); 13779 13780 ret = init_hw_breakpoint(); 13781 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13782 13783 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13784 13785 /* 13786 * Build time assertion that we keep the data_head at the intended 13787 * location. IOW, validation we got the __reserved[] size right. 13788 */ 13789 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13790 != 1024); 13791 } 13792 13793 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13794 char *page) 13795 { 13796 struct perf_pmu_events_attr *pmu_attr = 13797 container_of(attr, struct perf_pmu_events_attr, attr); 13798 13799 if (pmu_attr->event_str) 13800 return sprintf(page, "%s\n", pmu_attr->event_str); 13801 13802 return 0; 13803 } 13804 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13805 13806 static int __init perf_event_sysfs_init(void) 13807 { 13808 struct pmu *pmu; 13809 int ret; 13810 13811 mutex_lock(&pmus_lock); 13812 13813 ret = bus_register(&pmu_bus); 13814 if (ret) 13815 goto unlock; 13816 13817 list_for_each_entry(pmu, &pmus, entry) { 13818 if (pmu->dev) 13819 continue; 13820 13821 ret = pmu_dev_alloc(pmu); 13822 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13823 } 13824 pmu_bus_running = 1; 13825 ret = 0; 13826 13827 unlock: 13828 mutex_unlock(&pmus_lock); 13829 13830 return ret; 13831 } 13832 device_initcall(perf_event_sysfs_init); 13833 13834 #ifdef CONFIG_CGROUP_PERF 13835 static struct cgroup_subsys_state * 13836 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13837 { 13838 struct perf_cgroup *jc; 13839 13840 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13841 if (!jc) 13842 return ERR_PTR(-ENOMEM); 13843 13844 jc->info = alloc_percpu(struct perf_cgroup_info); 13845 if (!jc->info) { 13846 kfree(jc); 13847 return ERR_PTR(-ENOMEM); 13848 } 13849 13850 return &jc->css; 13851 } 13852 13853 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13854 { 13855 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13856 13857 free_percpu(jc->info); 13858 kfree(jc); 13859 } 13860 13861 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13862 { 13863 perf_event_cgroup(css->cgroup); 13864 return 0; 13865 } 13866 13867 static int __perf_cgroup_move(void *info) 13868 { 13869 struct task_struct *task = info; 13870 13871 preempt_disable(); 13872 perf_cgroup_switch(task); 13873 preempt_enable(); 13874 13875 return 0; 13876 } 13877 13878 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13879 { 13880 struct task_struct *task; 13881 struct cgroup_subsys_state *css; 13882 13883 cgroup_taskset_for_each(task, css, tset) 13884 task_function_call(task, __perf_cgroup_move, task); 13885 } 13886 13887 struct cgroup_subsys perf_event_cgrp_subsys = { 13888 .css_alloc = perf_cgroup_css_alloc, 13889 .css_free = perf_cgroup_css_free, 13890 .css_online = perf_cgroup_css_online, 13891 .attach = perf_cgroup_attach, 13892 /* 13893 * Implicitly enable on dfl hierarchy so that perf events can 13894 * always be filtered by cgroup2 path as long as perf_event 13895 * controller is not mounted on a legacy hierarchy. 13896 */ 13897 .implicit_on_dfl = true, 13898 .threaded = true, 13899 }; 13900 #endif /* CONFIG_CGROUP_PERF */ 13901 13902 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13903