xref: /linux/kernel/events/core.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 /*
678  * UP store-release, load-acquire
679  */
680 
681 #define __store_release(ptr, val)					\
682 do {									\
683 	barrier();							\
684 	WRITE_ONCE(*(ptr), (val));					\
685 } while (0)
686 
687 #define __load_acquire(ptr)						\
688 ({									\
689 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
690 	barrier();							\
691 	___p;								\
692 })
693 
694 #ifdef CONFIG_CGROUP_PERF
695 
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699 	struct perf_event_context *ctx = event->ctx;
700 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701 
702 	/* @event doesn't care about cgroup */
703 	if (!event->cgrp)
704 		return true;
705 
706 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
707 	if (!cpuctx->cgrp)
708 		return false;
709 
710 	/*
711 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
712 	 * also enabled for all its descendant cgroups.  If @cpuctx's
713 	 * cgroup is a descendant of @event's (the test covers identity
714 	 * case), it's a match.
715 	 */
716 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717 				    event->cgrp->css.cgroup);
718 }
719 
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722 	css_put(&event->cgrp->css);
723 	event->cgrp = NULL;
724 }
725 
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728 	return event->cgrp != NULL;
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	struct perf_cgroup_info *t;
734 
735 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
736 	return t->time;
737 }
738 
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741 	struct perf_cgroup_info *t;
742 
743 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
744 	if (!__load_acquire(&t->active))
745 		return t->time;
746 	now += READ_ONCE(t->timeoffset);
747 	return now;
748 }
749 
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752 	if (adv)
753 		info->time += now - info->timestamp;
754 	info->timestamp = now;
755 	/*
756 	 * see update_context_time()
757 	 */
758 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760 
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763 	struct perf_cgroup *cgrp = cpuctx->cgrp;
764 	struct cgroup_subsys_state *css;
765 	struct perf_cgroup_info *info;
766 
767 	if (cgrp) {
768 		u64 now = perf_clock();
769 
770 		for (css = &cgrp->css; css; css = css->parent) {
771 			cgrp = container_of(css, struct perf_cgroup, css);
772 			info = this_cpu_ptr(cgrp->info);
773 
774 			__update_cgrp_time(info, now, true);
775 			if (final)
776 				__store_release(&info->active, 0);
777 		}
778 	}
779 }
780 
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783 	struct perf_cgroup_info *info;
784 	struct perf_cgroup *cgrp;
785 
786 	/*
787 	 * ensure we access cgroup data only when needed and
788 	 * when we know the cgroup is pinned (css_get)
789 	 */
790 	if (!is_cgroup_event(event))
791 		return;
792 
793 	cgrp = perf_cgroup_from_task(current, event->ctx);
794 	/*
795 	 * Do not update time when cgroup is not active
796 	 */
797 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
798 		info = this_cpu_ptr(event->cgrp->info);
799 		__update_cgrp_time(info, perf_clock(), true);
800 	}
801 }
802 
803 static inline void
804 perf_cgroup_set_timestamp(struct task_struct *task,
805 			  struct perf_event_context *ctx)
806 {
807 	struct perf_cgroup *cgrp;
808 	struct perf_cgroup_info *info;
809 	struct cgroup_subsys_state *css;
810 
811 	/*
812 	 * ctx->lock held by caller
813 	 * ensure we do not access cgroup data
814 	 * unless we have the cgroup pinned (css_get)
815 	 */
816 	if (!task || !ctx->nr_cgroups)
817 		return;
818 
819 	cgrp = perf_cgroup_from_task(task, ctx);
820 
821 	for (css = &cgrp->css; css; css = css->parent) {
822 		cgrp = container_of(css, struct perf_cgroup, css);
823 		info = this_cpu_ptr(cgrp->info);
824 		__update_cgrp_time(info, ctx->timestamp, false);
825 		__store_release(&info->active, 1);
826 	}
827 }
828 
829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
830 
831 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
832 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
833 
834 /*
835  * reschedule events based on the cgroup constraint of task.
836  *
837  * mode SWOUT : schedule out everything
838  * mode SWIN : schedule in based on cgroup for next
839  */
840 static void perf_cgroup_switch(struct task_struct *task, int mode)
841 {
842 	struct perf_cpu_context *cpuctx, *tmp;
843 	struct list_head *list;
844 	unsigned long flags;
845 
846 	/*
847 	 * Disable interrupts and preemption to avoid this CPU's
848 	 * cgrp_cpuctx_entry to change under us.
849 	 */
850 	local_irq_save(flags);
851 
852 	list = this_cpu_ptr(&cgrp_cpuctx_list);
853 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
854 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
855 
856 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
857 		perf_pmu_disable(cpuctx->ctx.pmu);
858 
859 		if (mode & PERF_CGROUP_SWOUT) {
860 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
861 			/*
862 			 * must not be done before ctxswout due
863 			 * to event_filter_match() in event_sched_out()
864 			 */
865 			cpuctx->cgrp = NULL;
866 		}
867 
868 		if (mode & PERF_CGROUP_SWIN) {
869 			WARN_ON_ONCE(cpuctx->cgrp);
870 			/*
871 			 * set cgrp before ctxsw in to allow
872 			 * event_filter_match() to not have to pass
873 			 * task around
874 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
875 			 * because cgorup events are only per-cpu
876 			 */
877 			cpuctx->cgrp = perf_cgroup_from_task(task,
878 							     &cpuctx->ctx);
879 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
880 		}
881 		perf_pmu_enable(cpuctx->ctx.pmu);
882 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
883 	}
884 
885 	local_irq_restore(flags);
886 }
887 
888 static inline void perf_cgroup_sched_out(struct task_struct *task,
889 					 struct task_struct *next)
890 {
891 	struct perf_cgroup *cgrp1;
892 	struct perf_cgroup *cgrp2 = NULL;
893 
894 	rcu_read_lock();
895 	/*
896 	 * we come here when we know perf_cgroup_events > 0
897 	 * we do not need to pass the ctx here because we know
898 	 * we are holding the rcu lock
899 	 */
900 	cgrp1 = perf_cgroup_from_task(task, NULL);
901 	cgrp2 = perf_cgroup_from_task(next, NULL);
902 
903 	/*
904 	 * only schedule out current cgroup events if we know
905 	 * that we are switching to a different cgroup. Otherwise,
906 	 * do no touch the cgroup events.
907 	 */
908 	if (cgrp1 != cgrp2)
909 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
910 
911 	rcu_read_unlock();
912 }
913 
914 static inline void perf_cgroup_sched_in(struct task_struct *prev,
915 					struct task_struct *task)
916 {
917 	struct perf_cgroup *cgrp1;
918 	struct perf_cgroup *cgrp2 = NULL;
919 
920 	rcu_read_lock();
921 	/*
922 	 * we come here when we know perf_cgroup_events > 0
923 	 * we do not need to pass the ctx here because we know
924 	 * we are holding the rcu lock
925 	 */
926 	cgrp1 = perf_cgroup_from_task(task, NULL);
927 	cgrp2 = perf_cgroup_from_task(prev, NULL);
928 
929 	/*
930 	 * only need to schedule in cgroup events if we are changing
931 	 * cgroup during ctxsw. Cgroup events were not scheduled
932 	 * out of ctxsw out if that was not the case.
933 	 */
934 	if (cgrp1 != cgrp2)
935 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
936 
937 	rcu_read_unlock();
938 }
939 
940 static int perf_cgroup_ensure_storage(struct perf_event *event,
941 				struct cgroup_subsys_state *css)
942 {
943 	struct perf_cpu_context *cpuctx;
944 	struct perf_event **storage;
945 	int cpu, heap_size, ret = 0;
946 
947 	/*
948 	 * Allow storage to have sufficent space for an iterator for each
949 	 * possibly nested cgroup plus an iterator for events with no cgroup.
950 	 */
951 	for (heap_size = 1; css; css = css->parent)
952 		heap_size++;
953 
954 	for_each_possible_cpu(cpu) {
955 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
956 		if (heap_size <= cpuctx->heap_size)
957 			continue;
958 
959 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
960 				       GFP_KERNEL, cpu_to_node(cpu));
961 		if (!storage) {
962 			ret = -ENOMEM;
963 			break;
964 		}
965 
966 		raw_spin_lock_irq(&cpuctx->ctx.lock);
967 		if (cpuctx->heap_size < heap_size) {
968 			swap(cpuctx->heap, storage);
969 			if (storage == cpuctx->heap_default)
970 				storage = NULL;
971 			cpuctx->heap_size = heap_size;
972 		}
973 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
974 
975 		kfree(storage);
976 	}
977 
978 	return ret;
979 }
980 
981 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
982 				      struct perf_event_attr *attr,
983 				      struct perf_event *group_leader)
984 {
985 	struct perf_cgroup *cgrp;
986 	struct cgroup_subsys_state *css;
987 	struct fd f = fdget(fd);
988 	int ret = 0;
989 
990 	if (!f.file)
991 		return -EBADF;
992 
993 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
994 					 &perf_event_cgrp_subsys);
995 	if (IS_ERR(css)) {
996 		ret = PTR_ERR(css);
997 		goto out;
998 	}
999 
1000 	ret = perf_cgroup_ensure_storage(event, css);
1001 	if (ret)
1002 		goto out;
1003 
1004 	cgrp = container_of(css, struct perf_cgroup, css);
1005 	event->cgrp = cgrp;
1006 
1007 	/*
1008 	 * all events in a group must monitor
1009 	 * the same cgroup because a task belongs
1010 	 * to only one perf cgroup at a time
1011 	 */
1012 	if (group_leader && group_leader->cgrp != cgrp) {
1013 		perf_detach_cgroup(event);
1014 		ret = -EINVAL;
1015 	}
1016 out:
1017 	fdput(f);
1018 	return ret;
1019 }
1020 
1021 static inline void
1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	/*
1030 	 * Because cgroup events are always per-cpu events,
1031 	 * @ctx == &cpuctx->ctx.
1032 	 */
1033 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1034 
1035 	/*
1036 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1037 	 * matching the event's cgroup, we must do this for every new event,
1038 	 * because if the first would mismatch, the second would not try again
1039 	 * and we would leave cpuctx->cgrp unset.
1040 	 */
1041 	if (ctx->is_active && !cpuctx->cgrp) {
1042 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1043 
1044 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1045 			cpuctx->cgrp = cgrp;
1046 	}
1047 
1048 	if (ctx->nr_cgroups++)
1049 		return;
1050 
1051 	list_add(&cpuctx->cgrp_cpuctx_entry,
1052 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1053 }
1054 
1055 static inline void
1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1057 {
1058 	struct perf_cpu_context *cpuctx;
1059 
1060 	if (!is_cgroup_event(event))
1061 		return;
1062 
1063 	/*
1064 	 * Because cgroup events are always per-cpu events,
1065 	 * @ctx == &cpuctx->ctx.
1066 	 */
1067 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1068 
1069 	if (--ctx->nr_cgroups)
1070 		return;
1071 
1072 	if (ctx->is_active && cpuctx->cgrp)
1073 		cpuctx->cgrp = NULL;
1074 
1075 	list_del(&cpuctx->cgrp_cpuctx_entry);
1076 }
1077 
1078 #else /* !CONFIG_CGROUP_PERF */
1079 
1080 static inline bool
1081 perf_cgroup_match(struct perf_event *event)
1082 {
1083 	return true;
1084 }
1085 
1086 static inline void perf_detach_cgroup(struct perf_event *event)
1087 {}
1088 
1089 static inline int is_cgroup_event(struct perf_event *event)
1090 {
1091 	return 0;
1092 }
1093 
1094 static inline void update_cgrp_time_from_event(struct perf_event *event)
1095 {
1096 }
1097 
1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1099 						bool final)
1100 {
1101 }
1102 
1103 static inline void perf_cgroup_sched_out(struct task_struct *task,
1104 					 struct task_struct *next)
1105 {
1106 }
1107 
1108 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1109 					struct task_struct *task)
1110 {
1111 }
1112 
1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114 				      struct perf_event_attr *attr,
1115 				      struct perf_event *group_leader)
1116 {
1117 	return -EINVAL;
1118 }
1119 
1120 static inline void
1121 perf_cgroup_set_timestamp(struct task_struct *task,
1122 			  struct perf_event_context *ctx)
1123 {
1124 }
1125 
1126 static inline void
1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1128 {
1129 }
1130 
1131 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1132 {
1133 	return 0;
1134 }
1135 
1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1137 {
1138 	return 0;
1139 }
1140 
1141 static inline void
1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
1146 static inline void
1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1148 {
1149 }
1150 #endif
1151 
1152 /*
1153  * set default to be dependent on timer tick just
1154  * like original code
1155  */
1156 #define PERF_CPU_HRTIMER (1000 / HZ)
1157 /*
1158  * function must be called with interrupts disabled
1159  */
1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1161 {
1162 	struct perf_cpu_context *cpuctx;
1163 	bool rotations;
1164 
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1168 	rotations = perf_rotate_context(cpuctx);
1169 
1170 	raw_spin_lock(&cpuctx->hrtimer_lock);
1171 	if (rotations)
1172 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1173 	else
1174 		cpuctx->hrtimer_active = 0;
1175 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1176 
1177 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1178 }
1179 
1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1181 {
1182 	struct hrtimer *timer = &cpuctx->hrtimer;
1183 	struct pmu *pmu = cpuctx->ctx.pmu;
1184 	u64 interval;
1185 
1186 	/* no multiplexing needed for SW PMU */
1187 	if (pmu->task_ctx_nr == perf_sw_context)
1188 		return;
1189 
1190 	/*
1191 	 * check default is sane, if not set then force to
1192 	 * default interval (1/tick)
1193 	 */
1194 	interval = pmu->hrtimer_interval_ms;
1195 	if (interval < 1)
1196 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1197 
1198 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1199 
1200 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1201 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1202 	timer->function = perf_mux_hrtimer_handler;
1203 }
1204 
1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1206 {
1207 	struct hrtimer *timer = &cpuctx->hrtimer;
1208 	struct pmu *pmu = cpuctx->ctx.pmu;
1209 	unsigned long flags;
1210 
1211 	/* not for SW PMU */
1212 	if (pmu->task_ctx_nr == perf_sw_context)
1213 		return 0;
1214 
1215 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1216 	if (!cpuctx->hrtimer_active) {
1217 		cpuctx->hrtimer_active = 1;
1218 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1219 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1220 	}
1221 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1222 
1223 	return 0;
1224 }
1225 
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1229 	if (!(*count)++)
1230 		pmu->pmu_disable(pmu);
1231 }
1232 
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1236 	if (!--(*count))
1237 		pmu->pmu_enable(pmu);
1238 }
1239 
1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1241 
1242 /*
1243  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1244  * perf_event_task_tick() are fully serialized because they're strictly cpu
1245  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1246  * disabled, while perf_event_task_tick is called from IRQ context.
1247  */
1248 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1249 {
1250 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1251 
1252 	lockdep_assert_irqs_disabled();
1253 
1254 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1255 
1256 	list_add(&ctx->active_ctx_list, head);
1257 }
1258 
1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1260 {
1261 	lockdep_assert_irqs_disabled();
1262 
1263 	WARN_ON(list_empty(&ctx->active_ctx_list));
1264 
1265 	list_del_init(&ctx->active_ctx_list);
1266 }
1267 
1268 static void get_ctx(struct perf_event_context *ctx)
1269 {
1270 	refcount_inc(&ctx->refcount);
1271 }
1272 
1273 static void *alloc_task_ctx_data(struct pmu *pmu)
1274 {
1275 	if (pmu->task_ctx_cache)
1276 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1277 
1278 	return NULL;
1279 }
1280 
1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1282 {
1283 	if (pmu->task_ctx_cache && task_ctx_data)
1284 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1285 }
1286 
1287 static void free_ctx(struct rcu_head *head)
1288 {
1289 	struct perf_event_context *ctx;
1290 
1291 	ctx = container_of(head, struct perf_event_context, rcu_head);
1292 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1293 	kfree(ctx);
1294 }
1295 
1296 static void put_ctx(struct perf_event_context *ctx)
1297 {
1298 	if (refcount_dec_and_test(&ctx->refcount)) {
1299 		if (ctx->parent_ctx)
1300 			put_ctx(ctx->parent_ctx);
1301 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1302 			put_task_struct(ctx->task);
1303 		call_rcu(&ctx->rcu_head, free_ctx);
1304 	}
1305 }
1306 
1307 /*
1308  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1309  * perf_pmu_migrate_context() we need some magic.
1310  *
1311  * Those places that change perf_event::ctx will hold both
1312  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1313  *
1314  * Lock ordering is by mutex address. There are two other sites where
1315  * perf_event_context::mutex nests and those are:
1316  *
1317  *  - perf_event_exit_task_context()	[ child , 0 ]
1318  *      perf_event_exit_event()
1319  *        put_event()			[ parent, 1 ]
1320  *
1321  *  - perf_event_init_context()		[ parent, 0 ]
1322  *      inherit_task_group()
1323  *        inherit_group()
1324  *          inherit_event()
1325  *            perf_event_alloc()
1326  *              perf_init_event()
1327  *                perf_try_init_event()	[ child , 1 ]
1328  *
1329  * While it appears there is an obvious deadlock here -- the parent and child
1330  * nesting levels are inverted between the two. This is in fact safe because
1331  * life-time rules separate them. That is an exiting task cannot fork, and a
1332  * spawning task cannot (yet) exit.
1333  *
1334  * But remember that these are parent<->child context relations, and
1335  * migration does not affect children, therefore these two orderings should not
1336  * interact.
1337  *
1338  * The change in perf_event::ctx does not affect children (as claimed above)
1339  * because the sys_perf_event_open() case will install a new event and break
1340  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1341  * concerned with cpuctx and that doesn't have children.
1342  *
1343  * The places that change perf_event::ctx will issue:
1344  *
1345  *   perf_remove_from_context();
1346  *   synchronize_rcu();
1347  *   perf_install_in_context();
1348  *
1349  * to affect the change. The remove_from_context() + synchronize_rcu() should
1350  * quiesce the event, after which we can install it in the new location. This
1351  * means that only external vectors (perf_fops, prctl) can perturb the event
1352  * while in transit. Therefore all such accessors should also acquire
1353  * perf_event_context::mutex to serialize against this.
1354  *
1355  * However; because event->ctx can change while we're waiting to acquire
1356  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1357  * function.
1358  *
1359  * Lock order:
1360  *    exec_update_lock
1361  *	task_struct::perf_event_mutex
1362  *	  perf_event_context::mutex
1363  *	    perf_event::child_mutex;
1364  *	      perf_event_context::lock
1365  *	    perf_event::mmap_mutex
1366  *	    mmap_lock
1367  *	      perf_addr_filters_head::lock
1368  *
1369  *    cpu_hotplug_lock
1370  *      pmus_lock
1371  *	  cpuctx->mutex / perf_event_context::mutex
1372  */
1373 static struct perf_event_context *
1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1375 {
1376 	struct perf_event_context *ctx;
1377 
1378 again:
1379 	rcu_read_lock();
1380 	ctx = READ_ONCE(event->ctx);
1381 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1382 		rcu_read_unlock();
1383 		goto again;
1384 	}
1385 	rcu_read_unlock();
1386 
1387 	mutex_lock_nested(&ctx->mutex, nesting);
1388 	if (event->ctx != ctx) {
1389 		mutex_unlock(&ctx->mutex);
1390 		put_ctx(ctx);
1391 		goto again;
1392 	}
1393 
1394 	return ctx;
1395 }
1396 
1397 static inline struct perf_event_context *
1398 perf_event_ctx_lock(struct perf_event *event)
1399 {
1400 	return perf_event_ctx_lock_nested(event, 0);
1401 }
1402 
1403 static void perf_event_ctx_unlock(struct perf_event *event,
1404 				  struct perf_event_context *ctx)
1405 {
1406 	mutex_unlock(&ctx->mutex);
1407 	put_ctx(ctx);
1408 }
1409 
1410 /*
1411  * This must be done under the ctx->lock, such as to serialize against
1412  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1413  * calling scheduler related locks and ctx->lock nests inside those.
1414  */
1415 static __must_check struct perf_event_context *
1416 unclone_ctx(struct perf_event_context *ctx)
1417 {
1418 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1419 
1420 	lockdep_assert_held(&ctx->lock);
1421 
1422 	if (parent_ctx)
1423 		ctx->parent_ctx = NULL;
1424 	ctx->generation++;
1425 
1426 	return parent_ctx;
1427 }
1428 
1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1430 				enum pid_type type)
1431 {
1432 	u32 nr;
1433 	/*
1434 	 * only top level events have the pid namespace they were created in
1435 	 */
1436 	if (event->parent)
1437 		event = event->parent;
1438 
1439 	nr = __task_pid_nr_ns(p, type, event->ns);
1440 	/* avoid -1 if it is idle thread or runs in another ns */
1441 	if (!nr && !pid_alive(p))
1442 		nr = -1;
1443 	return nr;
1444 }
1445 
1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1447 {
1448 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1449 }
1450 
1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1452 {
1453 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1454 }
1455 
1456 /*
1457  * If we inherit events we want to return the parent event id
1458  * to userspace.
1459  */
1460 static u64 primary_event_id(struct perf_event *event)
1461 {
1462 	u64 id = event->id;
1463 
1464 	if (event->parent)
1465 		id = event->parent->id;
1466 
1467 	return id;
1468 }
1469 
1470 /*
1471  * Get the perf_event_context for a task and lock it.
1472  *
1473  * This has to cope with the fact that until it is locked,
1474  * the context could get moved to another task.
1475  */
1476 static struct perf_event_context *
1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1478 {
1479 	struct perf_event_context *ctx;
1480 
1481 retry:
1482 	/*
1483 	 * One of the few rules of preemptible RCU is that one cannot do
1484 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1485 	 * part of the read side critical section was irqs-enabled -- see
1486 	 * rcu_read_unlock_special().
1487 	 *
1488 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1489 	 * side critical section has interrupts disabled.
1490 	 */
1491 	local_irq_save(*flags);
1492 	rcu_read_lock();
1493 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1494 	if (ctx) {
1495 		/*
1496 		 * If this context is a clone of another, it might
1497 		 * get swapped for another underneath us by
1498 		 * perf_event_task_sched_out, though the
1499 		 * rcu_read_lock() protects us from any context
1500 		 * getting freed.  Lock the context and check if it
1501 		 * got swapped before we could get the lock, and retry
1502 		 * if so.  If we locked the right context, then it
1503 		 * can't get swapped on us any more.
1504 		 */
1505 		raw_spin_lock(&ctx->lock);
1506 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1507 			raw_spin_unlock(&ctx->lock);
1508 			rcu_read_unlock();
1509 			local_irq_restore(*flags);
1510 			goto retry;
1511 		}
1512 
1513 		if (ctx->task == TASK_TOMBSTONE ||
1514 		    !refcount_inc_not_zero(&ctx->refcount)) {
1515 			raw_spin_unlock(&ctx->lock);
1516 			ctx = NULL;
1517 		} else {
1518 			WARN_ON_ONCE(ctx->task != task);
1519 		}
1520 	}
1521 	rcu_read_unlock();
1522 	if (!ctx)
1523 		local_irq_restore(*flags);
1524 	return ctx;
1525 }
1526 
1527 /*
1528  * Get the context for a task and increment its pin_count so it
1529  * can't get swapped to another task.  This also increments its
1530  * reference count so that the context can't get freed.
1531  */
1532 static struct perf_event_context *
1533 perf_pin_task_context(struct task_struct *task, int ctxn)
1534 {
1535 	struct perf_event_context *ctx;
1536 	unsigned long flags;
1537 
1538 	ctx = perf_lock_task_context(task, ctxn, &flags);
1539 	if (ctx) {
1540 		++ctx->pin_count;
1541 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1542 	}
1543 	return ctx;
1544 }
1545 
1546 static void perf_unpin_context(struct perf_event_context *ctx)
1547 {
1548 	unsigned long flags;
1549 
1550 	raw_spin_lock_irqsave(&ctx->lock, flags);
1551 	--ctx->pin_count;
1552 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1553 }
1554 
1555 /*
1556  * Update the record of the current time in a context.
1557  */
1558 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1559 {
1560 	u64 now = perf_clock();
1561 
1562 	if (adv)
1563 		ctx->time += now - ctx->timestamp;
1564 	ctx->timestamp = now;
1565 
1566 	/*
1567 	 * The above: time' = time + (now - timestamp), can be re-arranged
1568 	 * into: time` = now + (time - timestamp), which gives a single value
1569 	 * offset to compute future time without locks on.
1570 	 *
1571 	 * See perf_event_time_now(), which can be used from NMI context where
1572 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1573 	 * both the above values in a consistent manner.
1574 	 */
1575 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1576 }
1577 
1578 static void update_context_time(struct perf_event_context *ctx)
1579 {
1580 	__update_context_time(ctx, true);
1581 }
1582 
1583 static u64 perf_event_time(struct perf_event *event)
1584 {
1585 	struct perf_event_context *ctx = event->ctx;
1586 
1587 	if (unlikely(!ctx))
1588 		return 0;
1589 
1590 	if (is_cgroup_event(event))
1591 		return perf_cgroup_event_time(event);
1592 
1593 	return ctx->time;
1594 }
1595 
1596 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1597 {
1598 	struct perf_event_context *ctx = event->ctx;
1599 
1600 	if (unlikely(!ctx))
1601 		return 0;
1602 
1603 	if (is_cgroup_event(event))
1604 		return perf_cgroup_event_time_now(event, now);
1605 
1606 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1607 		return ctx->time;
1608 
1609 	now += READ_ONCE(ctx->timeoffset);
1610 	return now;
1611 }
1612 
1613 static enum event_type_t get_event_type(struct perf_event *event)
1614 {
1615 	struct perf_event_context *ctx = event->ctx;
1616 	enum event_type_t event_type;
1617 
1618 	lockdep_assert_held(&ctx->lock);
1619 
1620 	/*
1621 	 * It's 'group type', really, because if our group leader is
1622 	 * pinned, so are we.
1623 	 */
1624 	if (event->group_leader != event)
1625 		event = event->group_leader;
1626 
1627 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1628 	if (!ctx->task)
1629 		event_type |= EVENT_CPU;
1630 
1631 	return event_type;
1632 }
1633 
1634 /*
1635  * Helper function to initialize event group nodes.
1636  */
1637 static void init_event_group(struct perf_event *event)
1638 {
1639 	RB_CLEAR_NODE(&event->group_node);
1640 	event->group_index = 0;
1641 }
1642 
1643 /*
1644  * Extract pinned or flexible groups from the context
1645  * based on event attrs bits.
1646  */
1647 static struct perf_event_groups *
1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650 	if (event->attr.pinned)
1651 		return &ctx->pinned_groups;
1652 	else
1653 		return &ctx->flexible_groups;
1654 }
1655 
1656 /*
1657  * Helper function to initializes perf_event_group trees.
1658  */
1659 static void perf_event_groups_init(struct perf_event_groups *groups)
1660 {
1661 	groups->tree = RB_ROOT;
1662 	groups->index = 0;
1663 }
1664 
1665 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1666 {
1667 	struct cgroup *cgroup = NULL;
1668 
1669 #ifdef CONFIG_CGROUP_PERF
1670 	if (event->cgrp)
1671 		cgroup = event->cgrp->css.cgroup;
1672 #endif
1673 
1674 	return cgroup;
1675 }
1676 
1677 /*
1678  * Compare function for event groups;
1679  *
1680  * Implements complex key that first sorts by CPU and then by virtual index
1681  * which provides ordering when rotating groups for the same CPU.
1682  */
1683 static __always_inline int
1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1685 		      const u64 left_group_index, const struct perf_event *right)
1686 {
1687 	if (left_cpu < right->cpu)
1688 		return -1;
1689 	if (left_cpu > right->cpu)
1690 		return 1;
1691 
1692 #ifdef CONFIG_CGROUP_PERF
1693 	{
1694 		const struct cgroup *right_cgroup = event_cgroup(right);
1695 
1696 		if (left_cgroup != right_cgroup) {
1697 			if (!left_cgroup) {
1698 				/*
1699 				 * Left has no cgroup but right does, no
1700 				 * cgroups come first.
1701 				 */
1702 				return -1;
1703 			}
1704 			if (!right_cgroup) {
1705 				/*
1706 				 * Right has no cgroup but left does, no
1707 				 * cgroups come first.
1708 				 */
1709 				return 1;
1710 			}
1711 			/* Two dissimilar cgroups, order by id. */
1712 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1713 				return -1;
1714 
1715 			return 1;
1716 		}
1717 	}
1718 #endif
1719 
1720 	if (left_group_index < right->group_index)
1721 		return -1;
1722 	if (left_group_index > right->group_index)
1723 		return 1;
1724 
1725 	return 0;
1726 }
1727 
1728 #define __node_2_pe(node) \
1729 	rb_entry((node), struct perf_event, group_node)
1730 
1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1732 {
1733 	struct perf_event *e = __node_2_pe(a);
1734 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1735 				     __node_2_pe(b)) < 0;
1736 }
1737 
1738 struct __group_key {
1739 	int cpu;
1740 	struct cgroup *cgroup;
1741 };
1742 
1743 static inline int __group_cmp(const void *key, const struct rb_node *node)
1744 {
1745 	const struct __group_key *a = key;
1746 	const struct perf_event *b = __node_2_pe(node);
1747 
1748 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1749 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1750 }
1751 
1752 /*
1753  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1754  * key (see perf_event_groups_less). This places it last inside the CPU
1755  * subtree.
1756  */
1757 static void
1758 perf_event_groups_insert(struct perf_event_groups *groups,
1759 			 struct perf_event *event)
1760 {
1761 	event->group_index = ++groups->index;
1762 
1763 	rb_add(&event->group_node, &groups->tree, __group_less);
1764 }
1765 
1766 /*
1767  * Helper function to insert event into the pinned or flexible groups.
1768  */
1769 static void
1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1771 {
1772 	struct perf_event_groups *groups;
1773 
1774 	groups = get_event_groups(event, ctx);
1775 	perf_event_groups_insert(groups, event);
1776 }
1777 
1778 /*
1779  * Delete a group from a tree.
1780  */
1781 static void
1782 perf_event_groups_delete(struct perf_event_groups *groups,
1783 			 struct perf_event *event)
1784 {
1785 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1786 		     RB_EMPTY_ROOT(&groups->tree));
1787 
1788 	rb_erase(&event->group_node, &groups->tree);
1789 	init_event_group(event);
1790 }
1791 
1792 /*
1793  * Helper function to delete event from its groups.
1794  */
1795 static void
1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1797 {
1798 	struct perf_event_groups *groups;
1799 
1800 	groups = get_event_groups(event, ctx);
1801 	perf_event_groups_delete(groups, event);
1802 }
1803 
1804 /*
1805  * Get the leftmost event in the cpu/cgroup subtree.
1806  */
1807 static struct perf_event *
1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1809 			struct cgroup *cgrp)
1810 {
1811 	struct __group_key key = {
1812 		.cpu = cpu,
1813 		.cgroup = cgrp,
1814 	};
1815 	struct rb_node *node;
1816 
1817 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1818 	if (node)
1819 		return __node_2_pe(node);
1820 
1821 	return NULL;
1822 }
1823 
1824 /*
1825  * Like rb_entry_next_safe() for the @cpu subtree.
1826  */
1827 static struct perf_event *
1828 perf_event_groups_next(struct perf_event *event)
1829 {
1830 	struct __group_key key = {
1831 		.cpu = event->cpu,
1832 		.cgroup = event_cgroup(event),
1833 	};
1834 	struct rb_node *next;
1835 
1836 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1837 	if (next)
1838 		return __node_2_pe(next);
1839 
1840 	return NULL;
1841 }
1842 
1843 /*
1844  * Iterate through the whole groups tree.
1845  */
1846 #define perf_event_groups_for_each(event, groups)			\
1847 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1848 				typeof(*event), group_node); event;	\
1849 		event = rb_entry_safe(rb_next(&event->group_node),	\
1850 				typeof(*event), group_node))
1851 
1852 /*
1853  * Add an event from the lists for its context.
1854  * Must be called with ctx->mutex and ctx->lock held.
1855  */
1856 static void
1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1858 {
1859 	lockdep_assert_held(&ctx->lock);
1860 
1861 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1862 	event->attach_state |= PERF_ATTACH_CONTEXT;
1863 
1864 	event->tstamp = perf_event_time(event);
1865 
1866 	/*
1867 	 * If we're a stand alone event or group leader, we go to the context
1868 	 * list, group events are kept attached to the group so that
1869 	 * perf_group_detach can, at all times, locate all siblings.
1870 	 */
1871 	if (event->group_leader == event) {
1872 		event->group_caps = event->event_caps;
1873 		add_event_to_groups(event, ctx);
1874 	}
1875 
1876 	list_add_rcu(&event->event_entry, &ctx->event_list);
1877 	ctx->nr_events++;
1878 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1879 		ctx->nr_user++;
1880 	if (event->attr.inherit_stat)
1881 		ctx->nr_stat++;
1882 
1883 	if (event->state > PERF_EVENT_STATE_OFF)
1884 		perf_cgroup_event_enable(event, ctx);
1885 
1886 	ctx->generation++;
1887 }
1888 
1889 /*
1890  * Initialize event state based on the perf_event_attr::disabled.
1891  */
1892 static inline void perf_event__state_init(struct perf_event *event)
1893 {
1894 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1895 					      PERF_EVENT_STATE_INACTIVE;
1896 }
1897 
1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1899 {
1900 	int entry = sizeof(u64); /* value */
1901 	int size = 0;
1902 	int nr = 1;
1903 
1904 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1905 		size += sizeof(u64);
1906 
1907 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1908 		size += sizeof(u64);
1909 
1910 	if (event->attr.read_format & PERF_FORMAT_ID)
1911 		entry += sizeof(u64);
1912 
1913 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1914 		nr += nr_siblings;
1915 		size += sizeof(u64);
1916 	}
1917 
1918 	size += entry * nr;
1919 	event->read_size = size;
1920 }
1921 
1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1923 {
1924 	struct perf_sample_data *data;
1925 	u16 size = 0;
1926 
1927 	if (sample_type & PERF_SAMPLE_IP)
1928 		size += sizeof(data->ip);
1929 
1930 	if (sample_type & PERF_SAMPLE_ADDR)
1931 		size += sizeof(data->addr);
1932 
1933 	if (sample_type & PERF_SAMPLE_PERIOD)
1934 		size += sizeof(data->period);
1935 
1936 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1937 		size += sizeof(data->weight.full);
1938 
1939 	if (sample_type & PERF_SAMPLE_READ)
1940 		size += event->read_size;
1941 
1942 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1943 		size += sizeof(data->data_src.val);
1944 
1945 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1946 		size += sizeof(data->txn);
1947 
1948 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1949 		size += sizeof(data->phys_addr);
1950 
1951 	if (sample_type & PERF_SAMPLE_CGROUP)
1952 		size += sizeof(data->cgroup);
1953 
1954 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1955 		size += sizeof(data->data_page_size);
1956 
1957 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1958 		size += sizeof(data->code_page_size);
1959 
1960 	event->header_size = size;
1961 }
1962 
1963 /*
1964  * Called at perf_event creation and when events are attached/detached from a
1965  * group.
1966  */
1967 static void perf_event__header_size(struct perf_event *event)
1968 {
1969 	__perf_event_read_size(event,
1970 			       event->group_leader->nr_siblings);
1971 	__perf_event_header_size(event, event->attr.sample_type);
1972 }
1973 
1974 static void perf_event__id_header_size(struct perf_event *event)
1975 {
1976 	struct perf_sample_data *data;
1977 	u64 sample_type = event->attr.sample_type;
1978 	u16 size = 0;
1979 
1980 	if (sample_type & PERF_SAMPLE_TID)
1981 		size += sizeof(data->tid_entry);
1982 
1983 	if (sample_type & PERF_SAMPLE_TIME)
1984 		size += sizeof(data->time);
1985 
1986 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1987 		size += sizeof(data->id);
1988 
1989 	if (sample_type & PERF_SAMPLE_ID)
1990 		size += sizeof(data->id);
1991 
1992 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1993 		size += sizeof(data->stream_id);
1994 
1995 	if (sample_type & PERF_SAMPLE_CPU)
1996 		size += sizeof(data->cpu_entry);
1997 
1998 	event->id_header_size = size;
1999 }
2000 
2001 static bool perf_event_validate_size(struct perf_event *event)
2002 {
2003 	/*
2004 	 * The values computed here will be over-written when we actually
2005 	 * attach the event.
2006 	 */
2007 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
2008 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
2009 	perf_event__id_header_size(event);
2010 
2011 	/*
2012 	 * Sum the lot; should not exceed the 64k limit we have on records.
2013 	 * Conservative limit to allow for callchains and other variable fields.
2014 	 */
2015 	if (event->read_size + event->header_size +
2016 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
2017 		return false;
2018 
2019 	return true;
2020 }
2021 
2022 static void perf_group_attach(struct perf_event *event)
2023 {
2024 	struct perf_event *group_leader = event->group_leader, *pos;
2025 
2026 	lockdep_assert_held(&event->ctx->lock);
2027 
2028 	/*
2029 	 * We can have double attach due to group movement in perf_event_open.
2030 	 */
2031 	if (event->attach_state & PERF_ATTACH_GROUP)
2032 		return;
2033 
2034 	event->attach_state |= PERF_ATTACH_GROUP;
2035 
2036 	if (group_leader == event)
2037 		return;
2038 
2039 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2040 
2041 	group_leader->group_caps &= event->event_caps;
2042 
2043 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2044 	group_leader->nr_siblings++;
2045 
2046 	perf_event__header_size(group_leader);
2047 
2048 	for_each_sibling_event(pos, group_leader)
2049 		perf_event__header_size(pos);
2050 }
2051 
2052 /*
2053  * Remove an event from the lists for its context.
2054  * Must be called with ctx->mutex and ctx->lock held.
2055  */
2056 static void
2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2058 {
2059 	WARN_ON_ONCE(event->ctx != ctx);
2060 	lockdep_assert_held(&ctx->lock);
2061 
2062 	/*
2063 	 * We can have double detach due to exit/hot-unplug + close.
2064 	 */
2065 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2066 		return;
2067 
2068 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2069 
2070 	ctx->nr_events--;
2071 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2072 		ctx->nr_user--;
2073 	if (event->attr.inherit_stat)
2074 		ctx->nr_stat--;
2075 
2076 	list_del_rcu(&event->event_entry);
2077 
2078 	if (event->group_leader == event)
2079 		del_event_from_groups(event, ctx);
2080 
2081 	/*
2082 	 * If event was in error state, then keep it
2083 	 * that way, otherwise bogus counts will be
2084 	 * returned on read(). The only way to get out
2085 	 * of error state is by explicit re-enabling
2086 	 * of the event
2087 	 */
2088 	if (event->state > PERF_EVENT_STATE_OFF) {
2089 		perf_cgroup_event_disable(event, ctx);
2090 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2091 	}
2092 
2093 	ctx->generation++;
2094 }
2095 
2096 static int
2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2098 {
2099 	if (!has_aux(aux_event))
2100 		return 0;
2101 
2102 	if (!event->pmu->aux_output_match)
2103 		return 0;
2104 
2105 	return event->pmu->aux_output_match(aux_event);
2106 }
2107 
2108 static void put_event(struct perf_event *event);
2109 static void event_sched_out(struct perf_event *event,
2110 			    struct perf_cpu_context *cpuctx,
2111 			    struct perf_event_context *ctx);
2112 
2113 static void perf_put_aux_event(struct perf_event *event)
2114 {
2115 	struct perf_event_context *ctx = event->ctx;
2116 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2117 	struct perf_event *iter;
2118 
2119 	/*
2120 	 * If event uses aux_event tear down the link
2121 	 */
2122 	if (event->aux_event) {
2123 		iter = event->aux_event;
2124 		event->aux_event = NULL;
2125 		put_event(iter);
2126 		return;
2127 	}
2128 
2129 	/*
2130 	 * If the event is an aux_event, tear down all links to
2131 	 * it from other events.
2132 	 */
2133 	for_each_sibling_event(iter, event->group_leader) {
2134 		if (iter->aux_event != event)
2135 			continue;
2136 
2137 		iter->aux_event = NULL;
2138 		put_event(event);
2139 
2140 		/*
2141 		 * If it's ACTIVE, schedule it out and put it into ERROR
2142 		 * state so that we don't try to schedule it again. Note
2143 		 * that perf_event_enable() will clear the ERROR status.
2144 		 */
2145 		event_sched_out(iter, cpuctx, ctx);
2146 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2147 	}
2148 }
2149 
2150 static bool perf_need_aux_event(struct perf_event *event)
2151 {
2152 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2153 }
2154 
2155 static int perf_get_aux_event(struct perf_event *event,
2156 			      struct perf_event *group_leader)
2157 {
2158 	/*
2159 	 * Our group leader must be an aux event if we want to be
2160 	 * an aux_output. This way, the aux event will precede its
2161 	 * aux_output events in the group, and therefore will always
2162 	 * schedule first.
2163 	 */
2164 	if (!group_leader)
2165 		return 0;
2166 
2167 	/*
2168 	 * aux_output and aux_sample_size are mutually exclusive.
2169 	 */
2170 	if (event->attr.aux_output && event->attr.aux_sample_size)
2171 		return 0;
2172 
2173 	if (event->attr.aux_output &&
2174 	    !perf_aux_output_match(event, group_leader))
2175 		return 0;
2176 
2177 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2178 		return 0;
2179 
2180 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2181 		return 0;
2182 
2183 	/*
2184 	 * Link aux_outputs to their aux event; this is undone in
2185 	 * perf_group_detach() by perf_put_aux_event(). When the
2186 	 * group in torn down, the aux_output events loose their
2187 	 * link to the aux_event and can't schedule any more.
2188 	 */
2189 	event->aux_event = group_leader;
2190 
2191 	return 1;
2192 }
2193 
2194 static inline struct list_head *get_event_list(struct perf_event *event)
2195 {
2196 	struct perf_event_context *ctx = event->ctx;
2197 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2198 }
2199 
2200 /*
2201  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2202  * cannot exist on their own, schedule them out and move them into the ERROR
2203  * state. Also see _perf_event_enable(), it will not be able to recover
2204  * this ERROR state.
2205  */
2206 static inline void perf_remove_sibling_event(struct perf_event *event)
2207 {
2208 	struct perf_event_context *ctx = event->ctx;
2209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 
2211 	event_sched_out(event, cpuctx, ctx);
2212 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2213 }
2214 
2215 static void perf_group_detach(struct perf_event *event)
2216 {
2217 	struct perf_event *leader = event->group_leader;
2218 	struct perf_event *sibling, *tmp;
2219 	struct perf_event_context *ctx = event->ctx;
2220 
2221 	lockdep_assert_held(&ctx->lock);
2222 
2223 	/*
2224 	 * We can have double detach due to exit/hot-unplug + close.
2225 	 */
2226 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2227 		return;
2228 
2229 	event->attach_state &= ~PERF_ATTACH_GROUP;
2230 
2231 	perf_put_aux_event(event);
2232 
2233 	/*
2234 	 * If this is a sibling, remove it from its group.
2235 	 */
2236 	if (leader != event) {
2237 		list_del_init(&event->sibling_list);
2238 		event->group_leader->nr_siblings--;
2239 		goto out;
2240 	}
2241 
2242 	/*
2243 	 * If this was a group event with sibling events then
2244 	 * upgrade the siblings to singleton events by adding them
2245 	 * to whatever list we are on.
2246 	 */
2247 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2248 
2249 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2250 			perf_remove_sibling_event(sibling);
2251 
2252 		sibling->group_leader = sibling;
2253 		list_del_init(&sibling->sibling_list);
2254 
2255 		/* Inherit group flags from the previous leader */
2256 		sibling->group_caps = event->group_caps;
2257 
2258 		if (!RB_EMPTY_NODE(&event->group_node)) {
2259 			add_event_to_groups(sibling, event->ctx);
2260 
2261 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2262 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2263 		}
2264 
2265 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2266 	}
2267 
2268 out:
2269 	for_each_sibling_event(tmp, leader)
2270 		perf_event__header_size(tmp);
2271 
2272 	perf_event__header_size(leader);
2273 }
2274 
2275 static void sync_child_event(struct perf_event *child_event);
2276 
2277 static void perf_child_detach(struct perf_event *event)
2278 {
2279 	struct perf_event *parent_event = event->parent;
2280 
2281 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2282 		return;
2283 
2284 	event->attach_state &= ~PERF_ATTACH_CHILD;
2285 
2286 	if (WARN_ON_ONCE(!parent_event))
2287 		return;
2288 
2289 	lockdep_assert_held(&parent_event->child_mutex);
2290 
2291 	sync_child_event(event);
2292 	list_del_init(&event->child_list);
2293 }
2294 
2295 static bool is_orphaned_event(struct perf_event *event)
2296 {
2297 	return event->state == PERF_EVENT_STATE_DEAD;
2298 }
2299 
2300 static inline int __pmu_filter_match(struct perf_event *event)
2301 {
2302 	struct pmu *pmu = event->pmu;
2303 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2304 }
2305 
2306 /*
2307  * Check whether we should attempt to schedule an event group based on
2308  * PMU-specific filtering. An event group can consist of HW and SW events,
2309  * potentially with a SW leader, so we must check all the filters, to
2310  * determine whether a group is schedulable:
2311  */
2312 static inline int pmu_filter_match(struct perf_event *event)
2313 {
2314 	struct perf_event *sibling;
2315 
2316 	if (!__pmu_filter_match(event))
2317 		return 0;
2318 
2319 	for_each_sibling_event(sibling, event) {
2320 		if (!__pmu_filter_match(sibling))
2321 			return 0;
2322 	}
2323 
2324 	return 1;
2325 }
2326 
2327 static inline int
2328 event_filter_match(struct perf_event *event)
2329 {
2330 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2331 	       perf_cgroup_match(event) && pmu_filter_match(event);
2332 }
2333 
2334 static void
2335 event_sched_out(struct perf_event *event,
2336 		  struct perf_cpu_context *cpuctx,
2337 		  struct perf_event_context *ctx)
2338 {
2339 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2340 
2341 	WARN_ON_ONCE(event->ctx != ctx);
2342 	lockdep_assert_held(&ctx->lock);
2343 
2344 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2345 		return;
2346 
2347 	/*
2348 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2349 	 * we can schedule events _OUT_ individually through things like
2350 	 * __perf_remove_from_context().
2351 	 */
2352 	list_del_init(&event->active_list);
2353 
2354 	perf_pmu_disable(event->pmu);
2355 
2356 	event->pmu->del(event, 0);
2357 	event->oncpu = -1;
2358 
2359 	if (READ_ONCE(event->pending_disable) >= 0) {
2360 		WRITE_ONCE(event->pending_disable, -1);
2361 		perf_cgroup_event_disable(event, ctx);
2362 		state = PERF_EVENT_STATE_OFF;
2363 	}
2364 	perf_event_set_state(event, state);
2365 
2366 	if (!is_software_event(event))
2367 		cpuctx->active_oncpu--;
2368 	if (!--ctx->nr_active)
2369 		perf_event_ctx_deactivate(ctx);
2370 	if (event->attr.freq && event->attr.sample_freq)
2371 		ctx->nr_freq--;
2372 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2373 		cpuctx->exclusive = 0;
2374 
2375 	perf_pmu_enable(event->pmu);
2376 }
2377 
2378 static void
2379 group_sched_out(struct perf_event *group_event,
2380 		struct perf_cpu_context *cpuctx,
2381 		struct perf_event_context *ctx)
2382 {
2383 	struct perf_event *event;
2384 
2385 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2386 		return;
2387 
2388 	perf_pmu_disable(ctx->pmu);
2389 
2390 	event_sched_out(group_event, cpuctx, ctx);
2391 
2392 	/*
2393 	 * Schedule out siblings (if any):
2394 	 */
2395 	for_each_sibling_event(event, group_event)
2396 		event_sched_out(event, cpuctx, ctx);
2397 
2398 	perf_pmu_enable(ctx->pmu);
2399 }
2400 
2401 #define DETACH_GROUP	0x01UL
2402 #define DETACH_CHILD	0x02UL
2403 
2404 /*
2405  * Cross CPU call to remove a performance event
2406  *
2407  * We disable the event on the hardware level first. After that we
2408  * remove it from the context list.
2409  */
2410 static void
2411 __perf_remove_from_context(struct perf_event *event,
2412 			   struct perf_cpu_context *cpuctx,
2413 			   struct perf_event_context *ctx,
2414 			   void *info)
2415 {
2416 	unsigned long flags = (unsigned long)info;
2417 
2418 	if (ctx->is_active & EVENT_TIME) {
2419 		update_context_time(ctx);
2420 		update_cgrp_time_from_cpuctx(cpuctx, false);
2421 	}
2422 
2423 	event_sched_out(event, cpuctx, ctx);
2424 	if (flags & DETACH_GROUP)
2425 		perf_group_detach(event);
2426 	if (flags & DETACH_CHILD)
2427 		perf_child_detach(event);
2428 	list_del_event(event, ctx);
2429 
2430 	if (!ctx->nr_events && ctx->is_active) {
2431 		if (ctx == &cpuctx->ctx)
2432 			update_cgrp_time_from_cpuctx(cpuctx, true);
2433 
2434 		ctx->is_active = 0;
2435 		ctx->rotate_necessary = 0;
2436 		if (ctx->task) {
2437 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2438 			cpuctx->task_ctx = NULL;
2439 		}
2440 	}
2441 }
2442 
2443 /*
2444  * Remove the event from a task's (or a CPU's) list of events.
2445  *
2446  * If event->ctx is a cloned context, callers must make sure that
2447  * every task struct that event->ctx->task could possibly point to
2448  * remains valid.  This is OK when called from perf_release since
2449  * that only calls us on the top-level context, which can't be a clone.
2450  * When called from perf_event_exit_task, it's OK because the
2451  * context has been detached from its task.
2452  */
2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2454 {
2455 	struct perf_event_context *ctx = event->ctx;
2456 
2457 	lockdep_assert_held(&ctx->mutex);
2458 
2459 	/*
2460 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2461 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2462 	 * event_function_call() user.
2463 	 */
2464 	raw_spin_lock_irq(&ctx->lock);
2465 	/*
2466 	 * Cgroup events are per-cpu events, and must IPI because of
2467 	 * cgrp_cpuctx_list.
2468 	 */
2469 	if (!ctx->is_active && !is_cgroup_event(event)) {
2470 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2471 					   ctx, (void *)flags);
2472 		raw_spin_unlock_irq(&ctx->lock);
2473 		return;
2474 	}
2475 	raw_spin_unlock_irq(&ctx->lock);
2476 
2477 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2478 }
2479 
2480 /*
2481  * Cross CPU call to disable a performance event
2482  */
2483 static void __perf_event_disable(struct perf_event *event,
2484 				 struct perf_cpu_context *cpuctx,
2485 				 struct perf_event_context *ctx,
2486 				 void *info)
2487 {
2488 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2489 		return;
2490 
2491 	if (ctx->is_active & EVENT_TIME) {
2492 		update_context_time(ctx);
2493 		update_cgrp_time_from_event(event);
2494 	}
2495 
2496 	if (event == event->group_leader)
2497 		group_sched_out(event, cpuctx, ctx);
2498 	else
2499 		event_sched_out(event, cpuctx, ctx);
2500 
2501 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2502 	perf_cgroup_event_disable(event, ctx);
2503 }
2504 
2505 /*
2506  * Disable an event.
2507  *
2508  * If event->ctx is a cloned context, callers must make sure that
2509  * every task struct that event->ctx->task could possibly point to
2510  * remains valid.  This condition is satisfied when called through
2511  * perf_event_for_each_child or perf_event_for_each because they
2512  * hold the top-level event's child_mutex, so any descendant that
2513  * goes to exit will block in perf_event_exit_event().
2514  *
2515  * When called from perf_pending_event it's OK because event->ctx
2516  * is the current context on this CPU and preemption is disabled,
2517  * hence we can't get into perf_event_task_sched_out for this context.
2518  */
2519 static void _perf_event_disable(struct perf_event *event)
2520 {
2521 	struct perf_event_context *ctx = event->ctx;
2522 
2523 	raw_spin_lock_irq(&ctx->lock);
2524 	if (event->state <= PERF_EVENT_STATE_OFF) {
2525 		raw_spin_unlock_irq(&ctx->lock);
2526 		return;
2527 	}
2528 	raw_spin_unlock_irq(&ctx->lock);
2529 
2530 	event_function_call(event, __perf_event_disable, NULL);
2531 }
2532 
2533 void perf_event_disable_local(struct perf_event *event)
2534 {
2535 	event_function_local(event, __perf_event_disable, NULL);
2536 }
2537 
2538 /*
2539  * Strictly speaking kernel users cannot create groups and therefore this
2540  * interface does not need the perf_event_ctx_lock() magic.
2541  */
2542 void perf_event_disable(struct perf_event *event)
2543 {
2544 	struct perf_event_context *ctx;
2545 
2546 	ctx = perf_event_ctx_lock(event);
2547 	_perf_event_disable(event);
2548 	perf_event_ctx_unlock(event, ctx);
2549 }
2550 EXPORT_SYMBOL_GPL(perf_event_disable);
2551 
2552 void perf_event_disable_inatomic(struct perf_event *event)
2553 {
2554 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2555 	/* can fail, see perf_pending_event_disable() */
2556 	irq_work_queue(&event->pending);
2557 }
2558 
2559 #define MAX_INTERRUPTS (~0ULL)
2560 
2561 static void perf_log_throttle(struct perf_event *event, int enable);
2562 static void perf_log_itrace_start(struct perf_event *event);
2563 
2564 static int
2565 event_sched_in(struct perf_event *event,
2566 		 struct perf_cpu_context *cpuctx,
2567 		 struct perf_event_context *ctx)
2568 {
2569 	int ret = 0;
2570 
2571 	WARN_ON_ONCE(event->ctx != ctx);
2572 
2573 	lockdep_assert_held(&ctx->lock);
2574 
2575 	if (event->state <= PERF_EVENT_STATE_OFF)
2576 		return 0;
2577 
2578 	WRITE_ONCE(event->oncpu, smp_processor_id());
2579 	/*
2580 	 * Order event::oncpu write to happen before the ACTIVE state is
2581 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2582 	 * ->oncpu if it sees ACTIVE.
2583 	 */
2584 	smp_wmb();
2585 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2586 
2587 	/*
2588 	 * Unthrottle events, since we scheduled we might have missed several
2589 	 * ticks already, also for a heavily scheduling task there is little
2590 	 * guarantee it'll get a tick in a timely manner.
2591 	 */
2592 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2593 		perf_log_throttle(event, 1);
2594 		event->hw.interrupts = 0;
2595 	}
2596 
2597 	perf_pmu_disable(event->pmu);
2598 
2599 	perf_log_itrace_start(event);
2600 
2601 	if (event->pmu->add(event, PERF_EF_START)) {
2602 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2603 		event->oncpu = -1;
2604 		ret = -EAGAIN;
2605 		goto out;
2606 	}
2607 
2608 	if (!is_software_event(event))
2609 		cpuctx->active_oncpu++;
2610 	if (!ctx->nr_active++)
2611 		perf_event_ctx_activate(ctx);
2612 	if (event->attr.freq && event->attr.sample_freq)
2613 		ctx->nr_freq++;
2614 
2615 	if (event->attr.exclusive)
2616 		cpuctx->exclusive = 1;
2617 
2618 out:
2619 	perf_pmu_enable(event->pmu);
2620 
2621 	return ret;
2622 }
2623 
2624 static int
2625 group_sched_in(struct perf_event *group_event,
2626 	       struct perf_cpu_context *cpuctx,
2627 	       struct perf_event_context *ctx)
2628 {
2629 	struct perf_event *event, *partial_group = NULL;
2630 	struct pmu *pmu = ctx->pmu;
2631 
2632 	if (group_event->state == PERF_EVENT_STATE_OFF)
2633 		return 0;
2634 
2635 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2636 
2637 	if (event_sched_in(group_event, cpuctx, ctx))
2638 		goto error;
2639 
2640 	/*
2641 	 * Schedule in siblings as one group (if any):
2642 	 */
2643 	for_each_sibling_event(event, group_event) {
2644 		if (event_sched_in(event, cpuctx, ctx)) {
2645 			partial_group = event;
2646 			goto group_error;
2647 		}
2648 	}
2649 
2650 	if (!pmu->commit_txn(pmu))
2651 		return 0;
2652 
2653 group_error:
2654 	/*
2655 	 * Groups can be scheduled in as one unit only, so undo any
2656 	 * partial group before returning:
2657 	 * The events up to the failed event are scheduled out normally.
2658 	 */
2659 	for_each_sibling_event(event, group_event) {
2660 		if (event == partial_group)
2661 			break;
2662 
2663 		event_sched_out(event, cpuctx, ctx);
2664 	}
2665 	event_sched_out(group_event, cpuctx, ctx);
2666 
2667 error:
2668 	pmu->cancel_txn(pmu);
2669 	return -EAGAIN;
2670 }
2671 
2672 /*
2673  * Work out whether we can put this event group on the CPU now.
2674  */
2675 static int group_can_go_on(struct perf_event *event,
2676 			   struct perf_cpu_context *cpuctx,
2677 			   int can_add_hw)
2678 {
2679 	/*
2680 	 * Groups consisting entirely of software events can always go on.
2681 	 */
2682 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2683 		return 1;
2684 	/*
2685 	 * If an exclusive group is already on, no other hardware
2686 	 * events can go on.
2687 	 */
2688 	if (cpuctx->exclusive)
2689 		return 0;
2690 	/*
2691 	 * If this group is exclusive and there are already
2692 	 * events on the CPU, it can't go on.
2693 	 */
2694 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2695 		return 0;
2696 	/*
2697 	 * Otherwise, try to add it if all previous groups were able
2698 	 * to go on.
2699 	 */
2700 	return can_add_hw;
2701 }
2702 
2703 static void add_event_to_ctx(struct perf_event *event,
2704 			       struct perf_event_context *ctx)
2705 {
2706 	list_add_event(event, ctx);
2707 	perf_group_attach(event);
2708 }
2709 
2710 static void ctx_sched_out(struct perf_event_context *ctx,
2711 			  struct perf_cpu_context *cpuctx,
2712 			  enum event_type_t event_type);
2713 static void
2714 ctx_sched_in(struct perf_event_context *ctx,
2715 	     struct perf_cpu_context *cpuctx,
2716 	     enum event_type_t event_type,
2717 	     struct task_struct *task);
2718 
2719 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2720 			       struct perf_event_context *ctx,
2721 			       enum event_type_t event_type)
2722 {
2723 	if (!cpuctx->task_ctx)
2724 		return;
2725 
2726 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2727 		return;
2728 
2729 	ctx_sched_out(ctx, cpuctx, event_type);
2730 }
2731 
2732 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2733 				struct perf_event_context *ctx,
2734 				struct task_struct *task)
2735 {
2736 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2737 	if (ctx)
2738 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2739 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2740 	if (ctx)
2741 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2742 }
2743 
2744 /*
2745  * We want to maintain the following priority of scheduling:
2746  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2747  *  - task pinned (EVENT_PINNED)
2748  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2749  *  - task flexible (EVENT_FLEXIBLE).
2750  *
2751  * In order to avoid unscheduling and scheduling back in everything every
2752  * time an event is added, only do it for the groups of equal priority and
2753  * below.
2754  *
2755  * This can be called after a batch operation on task events, in which case
2756  * event_type is a bit mask of the types of events involved. For CPU events,
2757  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2758  */
2759 static void ctx_resched(struct perf_cpu_context *cpuctx,
2760 			struct perf_event_context *task_ctx,
2761 			enum event_type_t event_type)
2762 {
2763 	enum event_type_t ctx_event_type;
2764 	bool cpu_event = !!(event_type & EVENT_CPU);
2765 
2766 	/*
2767 	 * If pinned groups are involved, flexible groups also need to be
2768 	 * scheduled out.
2769 	 */
2770 	if (event_type & EVENT_PINNED)
2771 		event_type |= EVENT_FLEXIBLE;
2772 
2773 	ctx_event_type = event_type & EVENT_ALL;
2774 
2775 	perf_pmu_disable(cpuctx->ctx.pmu);
2776 	if (task_ctx)
2777 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2778 
2779 	/*
2780 	 * Decide which cpu ctx groups to schedule out based on the types
2781 	 * of events that caused rescheduling:
2782 	 *  - EVENT_CPU: schedule out corresponding groups;
2783 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2784 	 *  - otherwise, do nothing more.
2785 	 */
2786 	if (cpu_event)
2787 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2788 	else if (ctx_event_type & EVENT_PINNED)
2789 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2790 
2791 	perf_event_sched_in(cpuctx, task_ctx, current);
2792 	perf_pmu_enable(cpuctx->ctx.pmu);
2793 }
2794 
2795 void perf_pmu_resched(struct pmu *pmu)
2796 {
2797 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2798 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2799 
2800 	perf_ctx_lock(cpuctx, task_ctx);
2801 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2802 	perf_ctx_unlock(cpuctx, task_ctx);
2803 }
2804 
2805 /*
2806  * Cross CPU call to install and enable a performance event
2807  *
2808  * Very similar to remote_function() + event_function() but cannot assume that
2809  * things like ctx->is_active and cpuctx->task_ctx are set.
2810  */
2811 static int  __perf_install_in_context(void *info)
2812 {
2813 	struct perf_event *event = info;
2814 	struct perf_event_context *ctx = event->ctx;
2815 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2816 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2817 	bool reprogram = true;
2818 	int ret = 0;
2819 
2820 	raw_spin_lock(&cpuctx->ctx.lock);
2821 	if (ctx->task) {
2822 		raw_spin_lock(&ctx->lock);
2823 		task_ctx = ctx;
2824 
2825 		reprogram = (ctx->task == current);
2826 
2827 		/*
2828 		 * If the task is running, it must be running on this CPU,
2829 		 * otherwise we cannot reprogram things.
2830 		 *
2831 		 * If its not running, we don't care, ctx->lock will
2832 		 * serialize against it becoming runnable.
2833 		 */
2834 		if (task_curr(ctx->task) && !reprogram) {
2835 			ret = -ESRCH;
2836 			goto unlock;
2837 		}
2838 
2839 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2840 	} else if (task_ctx) {
2841 		raw_spin_lock(&task_ctx->lock);
2842 	}
2843 
2844 #ifdef CONFIG_CGROUP_PERF
2845 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2846 		/*
2847 		 * If the current cgroup doesn't match the event's
2848 		 * cgroup, we should not try to schedule it.
2849 		 */
2850 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2851 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2852 					event->cgrp->css.cgroup);
2853 	}
2854 #endif
2855 
2856 	if (reprogram) {
2857 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2858 		add_event_to_ctx(event, ctx);
2859 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2860 	} else {
2861 		add_event_to_ctx(event, ctx);
2862 	}
2863 
2864 unlock:
2865 	perf_ctx_unlock(cpuctx, task_ctx);
2866 
2867 	return ret;
2868 }
2869 
2870 static bool exclusive_event_installable(struct perf_event *event,
2871 					struct perf_event_context *ctx);
2872 
2873 /*
2874  * Attach a performance event to a context.
2875  *
2876  * Very similar to event_function_call, see comment there.
2877  */
2878 static void
2879 perf_install_in_context(struct perf_event_context *ctx,
2880 			struct perf_event *event,
2881 			int cpu)
2882 {
2883 	struct task_struct *task = READ_ONCE(ctx->task);
2884 
2885 	lockdep_assert_held(&ctx->mutex);
2886 
2887 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2888 
2889 	if (event->cpu != -1)
2890 		event->cpu = cpu;
2891 
2892 	/*
2893 	 * Ensures that if we can observe event->ctx, both the event and ctx
2894 	 * will be 'complete'. See perf_iterate_sb_cpu().
2895 	 */
2896 	smp_store_release(&event->ctx, ctx);
2897 
2898 	/*
2899 	 * perf_event_attr::disabled events will not run and can be initialized
2900 	 * without IPI. Except when this is the first event for the context, in
2901 	 * that case we need the magic of the IPI to set ctx->is_active.
2902 	 * Similarly, cgroup events for the context also needs the IPI to
2903 	 * manipulate the cgrp_cpuctx_list.
2904 	 *
2905 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2906 	 * event will issue the IPI and reprogram the hardware.
2907 	 */
2908 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2909 	    ctx->nr_events && !is_cgroup_event(event)) {
2910 		raw_spin_lock_irq(&ctx->lock);
2911 		if (ctx->task == TASK_TOMBSTONE) {
2912 			raw_spin_unlock_irq(&ctx->lock);
2913 			return;
2914 		}
2915 		add_event_to_ctx(event, ctx);
2916 		raw_spin_unlock_irq(&ctx->lock);
2917 		return;
2918 	}
2919 
2920 	if (!task) {
2921 		cpu_function_call(cpu, __perf_install_in_context, event);
2922 		return;
2923 	}
2924 
2925 	/*
2926 	 * Should not happen, we validate the ctx is still alive before calling.
2927 	 */
2928 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2929 		return;
2930 
2931 	/*
2932 	 * Installing events is tricky because we cannot rely on ctx->is_active
2933 	 * to be set in case this is the nr_events 0 -> 1 transition.
2934 	 *
2935 	 * Instead we use task_curr(), which tells us if the task is running.
2936 	 * However, since we use task_curr() outside of rq::lock, we can race
2937 	 * against the actual state. This means the result can be wrong.
2938 	 *
2939 	 * If we get a false positive, we retry, this is harmless.
2940 	 *
2941 	 * If we get a false negative, things are complicated. If we are after
2942 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2943 	 * value must be correct. If we're before, it doesn't matter since
2944 	 * perf_event_context_sched_in() will program the counter.
2945 	 *
2946 	 * However, this hinges on the remote context switch having observed
2947 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2948 	 * ctx::lock in perf_event_context_sched_in().
2949 	 *
2950 	 * We do this by task_function_call(), if the IPI fails to hit the task
2951 	 * we know any future context switch of task must see the
2952 	 * perf_event_ctpx[] store.
2953 	 */
2954 
2955 	/*
2956 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2957 	 * task_cpu() load, such that if the IPI then does not find the task
2958 	 * running, a future context switch of that task must observe the
2959 	 * store.
2960 	 */
2961 	smp_mb();
2962 again:
2963 	if (!task_function_call(task, __perf_install_in_context, event))
2964 		return;
2965 
2966 	raw_spin_lock_irq(&ctx->lock);
2967 	task = ctx->task;
2968 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2969 		/*
2970 		 * Cannot happen because we already checked above (which also
2971 		 * cannot happen), and we hold ctx->mutex, which serializes us
2972 		 * against perf_event_exit_task_context().
2973 		 */
2974 		raw_spin_unlock_irq(&ctx->lock);
2975 		return;
2976 	}
2977 	/*
2978 	 * If the task is not running, ctx->lock will avoid it becoming so,
2979 	 * thus we can safely install the event.
2980 	 */
2981 	if (task_curr(task)) {
2982 		raw_spin_unlock_irq(&ctx->lock);
2983 		goto again;
2984 	}
2985 	add_event_to_ctx(event, ctx);
2986 	raw_spin_unlock_irq(&ctx->lock);
2987 }
2988 
2989 /*
2990  * Cross CPU call to enable a performance event
2991  */
2992 static void __perf_event_enable(struct perf_event *event,
2993 				struct perf_cpu_context *cpuctx,
2994 				struct perf_event_context *ctx,
2995 				void *info)
2996 {
2997 	struct perf_event *leader = event->group_leader;
2998 	struct perf_event_context *task_ctx;
2999 
3000 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3001 	    event->state <= PERF_EVENT_STATE_ERROR)
3002 		return;
3003 
3004 	if (ctx->is_active)
3005 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3006 
3007 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3008 	perf_cgroup_event_enable(event, ctx);
3009 
3010 	if (!ctx->is_active)
3011 		return;
3012 
3013 	if (!event_filter_match(event)) {
3014 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3015 		return;
3016 	}
3017 
3018 	/*
3019 	 * If the event is in a group and isn't the group leader,
3020 	 * then don't put it on unless the group is on.
3021 	 */
3022 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3023 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3024 		return;
3025 	}
3026 
3027 	task_ctx = cpuctx->task_ctx;
3028 	if (ctx->task)
3029 		WARN_ON_ONCE(task_ctx != ctx);
3030 
3031 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
3032 }
3033 
3034 /*
3035  * Enable an event.
3036  *
3037  * If event->ctx is a cloned context, callers must make sure that
3038  * every task struct that event->ctx->task could possibly point to
3039  * remains valid.  This condition is satisfied when called through
3040  * perf_event_for_each_child or perf_event_for_each as described
3041  * for perf_event_disable.
3042  */
3043 static void _perf_event_enable(struct perf_event *event)
3044 {
3045 	struct perf_event_context *ctx = event->ctx;
3046 
3047 	raw_spin_lock_irq(&ctx->lock);
3048 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3049 	    event->state <  PERF_EVENT_STATE_ERROR) {
3050 out:
3051 		raw_spin_unlock_irq(&ctx->lock);
3052 		return;
3053 	}
3054 
3055 	/*
3056 	 * If the event is in error state, clear that first.
3057 	 *
3058 	 * That way, if we see the event in error state below, we know that it
3059 	 * has gone back into error state, as distinct from the task having
3060 	 * been scheduled away before the cross-call arrived.
3061 	 */
3062 	if (event->state == PERF_EVENT_STATE_ERROR) {
3063 		/*
3064 		 * Detached SIBLING events cannot leave ERROR state.
3065 		 */
3066 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3067 		    event->group_leader == event)
3068 			goto out;
3069 
3070 		event->state = PERF_EVENT_STATE_OFF;
3071 	}
3072 	raw_spin_unlock_irq(&ctx->lock);
3073 
3074 	event_function_call(event, __perf_event_enable, NULL);
3075 }
3076 
3077 /*
3078  * See perf_event_disable();
3079  */
3080 void perf_event_enable(struct perf_event *event)
3081 {
3082 	struct perf_event_context *ctx;
3083 
3084 	ctx = perf_event_ctx_lock(event);
3085 	_perf_event_enable(event);
3086 	perf_event_ctx_unlock(event, ctx);
3087 }
3088 EXPORT_SYMBOL_GPL(perf_event_enable);
3089 
3090 struct stop_event_data {
3091 	struct perf_event	*event;
3092 	unsigned int		restart;
3093 };
3094 
3095 static int __perf_event_stop(void *info)
3096 {
3097 	struct stop_event_data *sd = info;
3098 	struct perf_event *event = sd->event;
3099 
3100 	/* if it's already INACTIVE, do nothing */
3101 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3102 		return 0;
3103 
3104 	/* matches smp_wmb() in event_sched_in() */
3105 	smp_rmb();
3106 
3107 	/*
3108 	 * There is a window with interrupts enabled before we get here,
3109 	 * so we need to check again lest we try to stop another CPU's event.
3110 	 */
3111 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3112 		return -EAGAIN;
3113 
3114 	event->pmu->stop(event, PERF_EF_UPDATE);
3115 
3116 	/*
3117 	 * May race with the actual stop (through perf_pmu_output_stop()),
3118 	 * but it is only used for events with AUX ring buffer, and such
3119 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3120 	 * see comments in perf_aux_output_begin().
3121 	 *
3122 	 * Since this is happening on an event-local CPU, no trace is lost
3123 	 * while restarting.
3124 	 */
3125 	if (sd->restart)
3126 		event->pmu->start(event, 0);
3127 
3128 	return 0;
3129 }
3130 
3131 static int perf_event_stop(struct perf_event *event, int restart)
3132 {
3133 	struct stop_event_data sd = {
3134 		.event		= event,
3135 		.restart	= restart,
3136 	};
3137 	int ret = 0;
3138 
3139 	do {
3140 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3141 			return 0;
3142 
3143 		/* matches smp_wmb() in event_sched_in() */
3144 		smp_rmb();
3145 
3146 		/*
3147 		 * We only want to restart ACTIVE events, so if the event goes
3148 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3149 		 * fall through with ret==-ENXIO.
3150 		 */
3151 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3152 					__perf_event_stop, &sd);
3153 	} while (ret == -EAGAIN);
3154 
3155 	return ret;
3156 }
3157 
3158 /*
3159  * In order to contain the amount of racy and tricky in the address filter
3160  * configuration management, it is a two part process:
3161  *
3162  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3163  *      we update the addresses of corresponding vmas in
3164  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3165  * (p2) when an event is scheduled in (pmu::add), it calls
3166  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3167  *      if the generation has changed since the previous call.
3168  *
3169  * If (p1) happens while the event is active, we restart it to force (p2).
3170  *
3171  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3172  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3173  *     ioctl;
3174  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3175  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3176  *     for reading;
3177  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3178  *     of exec.
3179  */
3180 void perf_event_addr_filters_sync(struct perf_event *event)
3181 {
3182 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3183 
3184 	if (!has_addr_filter(event))
3185 		return;
3186 
3187 	raw_spin_lock(&ifh->lock);
3188 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3189 		event->pmu->addr_filters_sync(event);
3190 		event->hw.addr_filters_gen = event->addr_filters_gen;
3191 	}
3192 	raw_spin_unlock(&ifh->lock);
3193 }
3194 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3195 
3196 static int _perf_event_refresh(struct perf_event *event, int refresh)
3197 {
3198 	/*
3199 	 * not supported on inherited events
3200 	 */
3201 	if (event->attr.inherit || !is_sampling_event(event))
3202 		return -EINVAL;
3203 
3204 	atomic_add(refresh, &event->event_limit);
3205 	_perf_event_enable(event);
3206 
3207 	return 0;
3208 }
3209 
3210 /*
3211  * See perf_event_disable()
3212  */
3213 int perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 	struct perf_event_context *ctx;
3216 	int ret;
3217 
3218 	ctx = perf_event_ctx_lock(event);
3219 	ret = _perf_event_refresh(event, refresh);
3220 	perf_event_ctx_unlock(event, ctx);
3221 
3222 	return ret;
3223 }
3224 EXPORT_SYMBOL_GPL(perf_event_refresh);
3225 
3226 static int perf_event_modify_breakpoint(struct perf_event *bp,
3227 					 struct perf_event_attr *attr)
3228 {
3229 	int err;
3230 
3231 	_perf_event_disable(bp);
3232 
3233 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3234 
3235 	if (!bp->attr.disabled)
3236 		_perf_event_enable(bp);
3237 
3238 	return err;
3239 }
3240 
3241 /*
3242  * Copy event-type-independent attributes that may be modified.
3243  */
3244 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3245 					const struct perf_event_attr *from)
3246 {
3247 	to->sig_data = from->sig_data;
3248 }
3249 
3250 static int perf_event_modify_attr(struct perf_event *event,
3251 				  struct perf_event_attr *attr)
3252 {
3253 	int (*func)(struct perf_event *, struct perf_event_attr *);
3254 	struct perf_event *child;
3255 	int err;
3256 
3257 	if (event->attr.type != attr->type)
3258 		return -EINVAL;
3259 
3260 	switch (event->attr.type) {
3261 	case PERF_TYPE_BREAKPOINT:
3262 		func = perf_event_modify_breakpoint;
3263 		break;
3264 	default:
3265 		/* Place holder for future additions. */
3266 		return -EOPNOTSUPP;
3267 	}
3268 
3269 	WARN_ON_ONCE(event->ctx->parent_ctx);
3270 
3271 	mutex_lock(&event->child_mutex);
3272 	/*
3273 	 * Event-type-independent attributes must be copied before event-type
3274 	 * modification, which will validate that final attributes match the
3275 	 * source attributes after all relevant attributes have been copied.
3276 	 */
3277 	perf_event_modify_copy_attr(&event->attr, attr);
3278 	err = func(event, attr);
3279 	if (err)
3280 		goto out;
3281 	list_for_each_entry(child, &event->child_list, child_list) {
3282 		perf_event_modify_copy_attr(&child->attr, attr);
3283 		err = func(child, attr);
3284 		if (err)
3285 			goto out;
3286 	}
3287 out:
3288 	mutex_unlock(&event->child_mutex);
3289 	return err;
3290 }
3291 
3292 static void ctx_sched_out(struct perf_event_context *ctx,
3293 			  struct perf_cpu_context *cpuctx,
3294 			  enum event_type_t event_type)
3295 {
3296 	struct perf_event *event, *tmp;
3297 	int is_active = ctx->is_active;
3298 
3299 	lockdep_assert_held(&ctx->lock);
3300 
3301 	if (likely(!ctx->nr_events)) {
3302 		/*
3303 		 * See __perf_remove_from_context().
3304 		 */
3305 		WARN_ON_ONCE(ctx->is_active);
3306 		if (ctx->task)
3307 			WARN_ON_ONCE(cpuctx->task_ctx);
3308 		return;
3309 	}
3310 
3311 	/*
3312 	 * Always update time if it was set; not only when it changes.
3313 	 * Otherwise we can 'forget' to update time for any but the last
3314 	 * context we sched out. For example:
3315 	 *
3316 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3317 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3318 	 *
3319 	 * would only update time for the pinned events.
3320 	 */
3321 	if (is_active & EVENT_TIME) {
3322 		/* update (and stop) ctx time */
3323 		update_context_time(ctx);
3324 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3325 		/*
3326 		 * CPU-release for the below ->is_active store,
3327 		 * see __load_acquire() in perf_event_time_now()
3328 		 */
3329 		barrier();
3330 	}
3331 
3332 	ctx->is_active &= ~event_type;
3333 	if (!(ctx->is_active & EVENT_ALL))
3334 		ctx->is_active = 0;
3335 
3336 	if (ctx->task) {
3337 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3338 		if (!ctx->is_active)
3339 			cpuctx->task_ctx = NULL;
3340 	}
3341 
3342 	is_active ^= ctx->is_active; /* changed bits */
3343 
3344 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3345 		return;
3346 
3347 	perf_pmu_disable(ctx->pmu);
3348 	if (is_active & EVENT_PINNED) {
3349 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3350 			group_sched_out(event, cpuctx, ctx);
3351 	}
3352 
3353 	if (is_active & EVENT_FLEXIBLE) {
3354 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3355 			group_sched_out(event, cpuctx, ctx);
3356 
3357 		/*
3358 		 * Since we cleared EVENT_FLEXIBLE, also clear
3359 		 * rotate_necessary, is will be reset by
3360 		 * ctx_flexible_sched_in() when needed.
3361 		 */
3362 		ctx->rotate_necessary = 0;
3363 	}
3364 	perf_pmu_enable(ctx->pmu);
3365 }
3366 
3367 /*
3368  * Test whether two contexts are equivalent, i.e. whether they have both been
3369  * cloned from the same version of the same context.
3370  *
3371  * Equivalence is measured using a generation number in the context that is
3372  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3373  * and list_del_event().
3374  */
3375 static int context_equiv(struct perf_event_context *ctx1,
3376 			 struct perf_event_context *ctx2)
3377 {
3378 	lockdep_assert_held(&ctx1->lock);
3379 	lockdep_assert_held(&ctx2->lock);
3380 
3381 	/* Pinning disables the swap optimization */
3382 	if (ctx1->pin_count || ctx2->pin_count)
3383 		return 0;
3384 
3385 	/* If ctx1 is the parent of ctx2 */
3386 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3387 		return 1;
3388 
3389 	/* If ctx2 is the parent of ctx1 */
3390 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3391 		return 1;
3392 
3393 	/*
3394 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3395 	 * hierarchy, see perf_event_init_context().
3396 	 */
3397 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3398 			ctx1->parent_gen == ctx2->parent_gen)
3399 		return 1;
3400 
3401 	/* Unmatched */
3402 	return 0;
3403 }
3404 
3405 static void __perf_event_sync_stat(struct perf_event *event,
3406 				     struct perf_event *next_event)
3407 {
3408 	u64 value;
3409 
3410 	if (!event->attr.inherit_stat)
3411 		return;
3412 
3413 	/*
3414 	 * Update the event value, we cannot use perf_event_read()
3415 	 * because we're in the middle of a context switch and have IRQs
3416 	 * disabled, which upsets smp_call_function_single(), however
3417 	 * we know the event must be on the current CPU, therefore we
3418 	 * don't need to use it.
3419 	 */
3420 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3421 		event->pmu->read(event);
3422 
3423 	perf_event_update_time(event);
3424 
3425 	/*
3426 	 * In order to keep per-task stats reliable we need to flip the event
3427 	 * values when we flip the contexts.
3428 	 */
3429 	value = local64_read(&next_event->count);
3430 	value = local64_xchg(&event->count, value);
3431 	local64_set(&next_event->count, value);
3432 
3433 	swap(event->total_time_enabled, next_event->total_time_enabled);
3434 	swap(event->total_time_running, next_event->total_time_running);
3435 
3436 	/*
3437 	 * Since we swizzled the values, update the user visible data too.
3438 	 */
3439 	perf_event_update_userpage(event);
3440 	perf_event_update_userpage(next_event);
3441 }
3442 
3443 static void perf_event_sync_stat(struct perf_event_context *ctx,
3444 				   struct perf_event_context *next_ctx)
3445 {
3446 	struct perf_event *event, *next_event;
3447 
3448 	if (!ctx->nr_stat)
3449 		return;
3450 
3451 	update_context_time(ctx);
3452 
3453 	event = list_first_entry(&ctx->event_list,
3454 				   struct perf_event, event_entry);
3455 
3456 	next_event = list_first_entry(&next_ctx->event_list,
3457 					struct perf_event, event_entry);
3458 
3459 	while (&event->event_entry != &ctx->event_list &&
3460 	       &next_event->event_entry != &next_ctx->event_list) {
3461 
3462 		__perf_event_sync_stat(event, next_event);
3463 
3464 		event = list_next_entry(event, event_entry);
3465 		next_event = list_next_entry(next_event, event_entry);
3466 	}
3467 }
3468 
3469 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3470 					 struct task_struct *next)
3471 {
3472 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3473 	struct perf_event_context *next_ctx;
3474 	struct perf_event_context *parent, *next_parent;
3475 	struct perf_cpu_context *cpuctx;
3476 	int do_switch = 1;
3477 	struct pmu *pmu;
3478 
3479 	if (likely(!ctx))
3480 		return;
3481 
3482 	pmu = ctx->pmu;
3483 	cpuctx = __get_cpu_context(ctx);
3484 	if (!cpuctx->task_ctx)
3485 		return;
3486 
3487 	rcu_read_lock();
3488 	next_ctx = next->perf_event_ctxp[ctxn];
3489 	if (!next_ctx)
3490 		goto unlock;
3491 
3492 	parent = rcu_dereference(ctx->parent_ctx);
3493 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3494 
3495 	/* If neither context have a parent context; they cannot be clones. */
3496 	if (!parent && !next_parent)
3497 		goto unlock;
3498 
3499 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3500 		/*
3501 		 * Looks like the two contexts are clones, so we might be
3502 		 * able to optimize the context switch.  We lock both
3503 		 * contexts and check that they are clones under the
3504 		 * lock (including re-checking that neither has been
3505 		 * uncloned in the meantime).  It doesn't matter which
3506 		 * order we take the locks because no other cpu could
3507 		 * be trying to lock both of these tasks.
3508 		 */
3509 		raw_spin_lock(&ctx->lock);
3510 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3511 		if (context_equiv(ctx, next_ctx)) {
3512 
3513 			WRITE_ONCE(ctx->task, next);
3514 			WRITE_ONCE(next_ctx->task, task);
3515 
3516 			perf_pmu_disable(pmu);
3517 
3518 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3519 				pmu->sched_task(ctx, false);
3520 
3521 			/*
3522 			 * PMU specific parts of task perf context can require
3523 			 * additional synchronization. As an example of such
3524 			 * synchronization see implementation details of Intel
3525 			 * LBR call stack data profiling;
3526 			 */
3527 			if (pmu->swap_task_ctx)
3528 				pmu->swap_task_ctx(ctx, next_ctx);
3529 			else
3530 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3531 
3532 			perf_pmu_enable(pmu);
3533 
3534 			/*
3535 			 * RCU_INIT_POINTER here is safe because we've not
3536 			 * modified the ctx and the above modification of
3537 			 * ctx->task and ctx->task_ctx_data are immaterial
3538 			 * since those values are always verified under
3539 			 * ctx->lock which we're now holding.
3540 			 */
3541 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3542 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3543 
3544 			do_switch = 0;
3545 
3546 			perf_event_sync_stat(ctx, next_ctx);
3547 		}
3548 		raw_spin_unlock(&next_ctx->lock);
3549 		raw_spin_unlock(&ctx->lock);
3550 	}
3551 unlock:
3552 	rcu_read_unlock();
3553 
3554 	if (do_switch) {
3555 		raw_spin_lock(&ctx->lock);
3556 		perf_pmu_disable(pmu);
3557 
3558 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3559 			pmu->sched_task(ctx, false);
3560 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3561 
3562 		perf_pmu_enable(pmu);
3563 		raw_spin_unlock(&ctx->lock);
3564 	}
3565 }
3566 
3567 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3568 
3569 void perf_sched_cb_dec(struct pmu *pmu)
3570 {
3571 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3572 
3573 	this_cpu_dec(perf_sched_cb_usages);
3574 
3575 	if (!--cpuctx->sched_cb_usage)
3576 		list_del(&cpuctx->sched_cb_entry);
3577 }
3578 
3579 
3580 void perf_sched_cb_inc(struct pmu *pmu)
3581 {
3582 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3583 
3584 	if (!cpuctx->sched_cb_usage++)
3585 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3586 
3587 	this_cpu_inc(perf_sched_cb_usages);
3588 }
3589 
3590 /*
3591  * This function provides the context switch callback to the lower code
3592  * layer. It is invoked ONLY when the context switch callback is enabled.
3593  *
3594  * This callback is relevant even to per-cpu events; for example multi event
3595  * PEBS requires this to provide PID/TID information. This requires we flush
3596  * all queued PEBS records before we context switch to a new task.
3597  */
3598 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3599 {
3600 	struct pmu *pmu;
3601 
3602 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3603 
3604 	if (WARN_ON_ONCE(!pmu->sched_task))
3605 		return;
3606 
3607 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3608 	perf_pmu_disable(pmu);
3609 
3610 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3611 
3612 	perf_pmu_enable(pmu);
3613 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3614 }
3615 
3616 static void perf_pmu_sched_task(struct task_struct *prev,
3617 				struct task_struct *next,
3618 				bool sched_in)
3619 {
3620 	struct perf_cpu_context *cpuctx;
3621 
3622 	if (prev == next)
3623 		return;
3624 
3625 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3626 		/* will be handled in perf_event_context_sched_in/out */
3627 		if (cpuctx->task_ctx)
3628 			continue;
3629 
3630 		__perf_pmu_sched_task(cpuctx, sched_in);
3631 	}
3632 }
3633 
3634 static void perf_event_switch(struct task_struct *task,
3635 			      struct task_struct *next_prev, bool sched_in);
3636 
3637 #define for_each_task_context_nr(ctxn)					\
3638 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3639 
3640 /*
3641  * Called from scheduler to remove the events of the current task,
3642  * with interrupts disabled.
3643  *
3644  * We stop each event and update the event value in event->count.
3645  *
3646  * This does not protect us against NMI, but disable()
3647  * sets the disabled bit in the control field of event _before_
3648  * accessing the event control register. If a NMI hits, then it will
3649  * not restart the event.
3650  */
3651 void __perf_event_task_sched_out(struct task_struct *task,
3652 				 struct task_struct *next)
3653 {
3654 	int ctxn;
3655 
3656 	if (__this_cpu_read(perf_sched_cb_usages))
3657 		perf_pmu_sched_task(task, next, false);
3658 
3659 	if (atomic_read(&nr_switch_events))
3660 		perf_event_switch(task, next, false);
3661 
3662 	for_each_task_context_nr(ctxn)
3663 		perf_event_context_sched_out(task, ctxn, next);
3664 
3665 	/*
3666 	 * if cgroup events exist on this CPU, then we need
3667 	 * to check if we have to switch out PMU state.
3668 	 * cgroup event are system-wide mode only
3669 	 */
3670 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3671 		perf_cgroup_sched_out(task, next);
3672 }
3673 
3674 /*
3675  * Called with IRQs disabled
3676  */
3677 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3678 			      enum event_type_t event_type)
3679 {
3680 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3681 }
3682 
3683 static bool perf_less_group_idx(const void *l, const void *r)
3684 {
3685 	const struct perf_event *le = *(const struct perf_event **)l;
3686 	const struct perf_event *re = *(const struct perf_event **)r;
3687 
3688 	return le->group_index < re->group_index;
3689 }
3690 
3691 static void swap_ptr(void *l, void *r)
3692 {
3693 	void **lp = l, **rp = r;
3694 
3695 	swap(*lp, *rp);
3696 }
3697 
3698 static const struct min_heap_callbacks perf_min_heap = {
3699 	.elem_size = sizeof(struct perf_event *),
3700 	.less = perf_less_group_idx,
3701 	.swp = swap_ptr,
3702 };
3703 
3704 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3705 {
3706 	struct perf_event **itrs = heap->data;
3707 
3708 	if (event) {
3709 		itrs[heap->nr] = event;
3710 		heap->nr++;
3711 	}
3712 }
3713 
3714 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3715 				struct perf_event_groups *groups, int cpu,
3716 				int (*func)(struct perf_event *, void *),
3717 				void *data)
3718 {
3719 #ifdef CONFIG_CGROUP_PERF
3720 	struct cgroup_subsys_state *css = NULL;
3721 #endif
3722 	/* Space for per CPU and/or any CPU event iterators. */
3723 	struct perf_event *itrs[2];
3724 	struct min_heap event_heap;
3725 	struct perf_event **evt;
3726 	int ret;
3727 
3728 	if (cpuctx) {
3729 		event_heap = (struct min_heap){
3730 			.data = cpuctx->heap,
3731 			.nr = 0,
3732 			.size = cpuctx->heap_size,
3733 		};
3734 
3735 		lockdep_assert_held(&cpuctx->ctx.lock);
3736 
3737 #ifdef CONFIG_CGROUP_PERF
3738 		if (cpuctx->cgrp)
3739 			css = &cpuctx->cgrp->css;
3740 #endif
3741 	} else {
3742 		event_heap = (struct min_heap){
3743 			.data = itrs,
3744 			.nr = 0,
3745 			.size = ARRAY_SIZE(itrs),
3746 		};
3747 		/* Events not within a CPU context may be on any CPU. */
3748 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3749 	}
3750 	evt = event_heap.data;
3751 
3752 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3753 
3754 #ifdef CONFIG_CGROUP_PERF
3755 	for (; css; css = css->parent)
3756 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3757 #endif
3758 
3759 	min_heapify_all(&event_heap, &perf_min_heap);
3760 
3761 	while (event_heap.nr) {
3762 		ret = func(*evt, data);
3763 		if (ret)
3764 			return ret;
3765 
3766 		*evt = perf_event_groups_next(*evt);
3767 		if (*evt)
3768 			min_heapify(&event_heap, 0, &perf_min_heap);
3769 		else
3770 			min_heap_pop(&event_heap, &perf_min_heap);
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 /*
3777  * Because the userpage is strictly per-event (there is no concept of context,
3778  * so there cannot be a context indirection), every userpage must be updated
3779  * when context time starts :-(
3780  *
3781  * IOW, we must not miss EVENT_TIME edges.
3782  */
3783 static inline bool event_update_userpage(struct perf_event *event)
3784 {
3785 	if (likely(!atomic_read(&event->mmap_count)))
3786 		return false;
3787 
3788 	perf_event_update_time(event);
3789 	perf_event_update_userpage(event);
3790 
3791 	return true;
3792 }
3793 
3794 static inline void group_update_userpage(struct perf_event *group_event)
3795 {
3796 	struct perf_event *event;
3797 
3798 	if (!event_update_userpage(group_event))
3799 		return;
3800 
3801 	for_each_sibling_event(event, group_event)
3802 		event_update_userpage(event);
3803 }
3804 
3805 static int merge_sched_in(struct perf_event *event, void *data)
3806 {
3807 	struct perf_event_context *ctx = event->ctx;
3808 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3809 	int *can_add_hw = data;
3810 
3811 	if (event->state <= PERF_EVENT_STATE_OFF)
3812 		return 0;
3813 
3814 	if (!event_filter_match(event))
3815 		return 0;
3816 
3817 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3818 		if (!group_sched_in(event, cpuctx, ctx))
3819 			list_add_tail(&event->active_list, get_event_list(event));
3820 	}
3821 
3822 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823 		*can_add_hw = 0;
3824 		if (event->attr.pinned) {
3825 			perf_cgroup_event_disable(event, ctx);
3826 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3827 		} else {
3828 			ctx->rotate_necessary = 1;
3829 			perf_mux_hrtimer_restart(cpuctx);
3830 			group_update_userpage(event);
3831 		}
3832 	}
3833 
3834 	return 0;
3835 }
3836 
3837 static void
3838 ctx_pinned_sched_in(struct perf_event_context *ctx,
3839 		    struct perf_cpu_context *cpuctx)
3840 {
3841 	int can_add_hw = 1;
3842 
3843 	if (ctx != &cpuctx->ctx)
3844 		cpuctx = NULL;
3845 
3846 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3847 			   smp_processor_id(),
3848 			   merge_sched_in, &can_add_hw);
3849 }
3850 
3851 static void
3852 ctx_flexible_sched_in(struct perf_event_context *ctx,
3853 		      struct perf_cpu_context *cpuctx)
3854 {
3855 	int can_add_hw = 1;
3856 
3857 	if (ctx != &cpuctx->ctx)
3858 		cpuctx = NULL;
3859 
3860 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3861 			   smp_processor_id(),
3862 			   merge_sched_in, &can_add_hw);
3863 }
3864 
3865 static void
3866 ctx_sched_in(struct perf_event_context *ctx,
3867 	     struct perf_cpu_context *cpuctx,
3868 	     enum event_type_t event_type,
3869 	     struct task_struct *task)
3870 {
3871 	int is_active = ctx->is_active;
3872 
3873 	lockdep_assert_held(&ctx->lock);
3874 
3875 	if (likely(!ctx->nr_events))
3876 		return;
3877 
3878 	if (is_active ^ EVENT_TIME) {
3879 		/* start ctx time */
3880 		__update_context_time(ctx, false);
3881 		perf_cgroup_set_timestamp(task, ctx);
3882 		/*
3883 		 * CPU-release for the below ->is_active store,
3884 		 * see __load_acquire() in perf_event_time_now()
3885 		 */
3886 		barrier();
3887 	}
3888 
3889 	ctx->is_active |= (event_type | EVENT_TIME);
3890 	if (ctx->task) {
3891 		if (!is_active)
3892 			cpuctx->task_ctx = ctx;
3893 		else
3894 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3895 	}
3896 
3897 	is_active ^= ctx->is_active; /* changed bits */
3898 
3899 	/*
3900 	 * First go through the list and put on any pinned groups
3901 	 * in order to give them the best chance of going on.
3902 	 */
3903 	if (is_active & EVENT_PINNED)
3904 		ctx_pinned_sched_in(ctx, cpuctx);
3905 
3906 	/* Then walk through the lower prio flexible groups */
3907 	if (is_active & EVENT_FLEXIBLE)
3908 		ctx_flexible_sched_in(ctx, cpuctx);
3909 }
3910 
3911 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3912 			     enum event_type_t event_type,
3913 			     struct task_struct *task)
3914 {
3915 	struct perf_event_context *ctx = &cpuctx->ctx;
3916 
3917 	ctx_sched_in(ctx, cpuctx, event_type, task);
3918 }
3919 
3920 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3921 					struct task_struct *task)
3922 {
3923 	struct perf_cpu_context *cpuctx;
3924 	struct pmu *pmu;
3925 
3926 	cpuctx = __get_cpu_context(ctx);
3927 
3928 	/*
3929 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3930 	 * different PMU, force (re)set the context,
3931 	 */
3932 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3933 
3934 	if (cpuctx->task_ctx == ctx) {
3935 		if (cpuctx->sched_cb_usage)
3936 			__perf_pmu_sched_task(cpuctx, true);
3937 		return;
3938 	}
3939 
3940 	perf_ctx_lock(cpuctx, ctx);
3941 	/*
3942 	 * We must check ctx->nr_events while holding ctx->lock, such
3943 	 * that we serialize against perf_install_in_context().
3944 	 */
3945 	if (!ctx->nr_events)
3946 		goto unlock;
3947 
3948 	perf_pmu_disable(pmu);
3949 	/*
3950 	 * We want to keep the following priority order:
3951 	 * cpu pinned (that don't need to move), task pinned,
3952 	 * cpu flexible, task flexible.
3953 	 *
3954 	 * However, if task's ctx is not carrying any pinned
3955 	 * events, no need to flip the cpuctx's events around.
3956 	 */
3957 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3958 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3959 	perf_event_sched_in(cpuctx, ctx, task);
3960 
3961 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3962 		pmu->sched_task(cpuctx->task_ctx, true);
3963 
3964 	perf_pmu_enable(pmu);
3965 
3966 unlock:
3967 	perf_ctx_unlock(cpuctx, ctx);
3968 }
3969 
3970 /*
3971  * Called from scheduler to add the events of the current task
3972  * with interrupts disabled.
3973  *
3974  * We restore the event value and then enable it.
3975  *
3976  * This does not protect us against NMI, but enable()
3977  * sets the enabled bit in the control field of event _before_
3978  * accessing the event control register. If a NMI hits, then it will
3979  * keep the event running.
3980  */
3981 void __perf_event_task_sched_in(struct task_struct *prev,
3982 				struct task_struct *task)
3983 {
3984 	struct perf_event_context *ctx;
3985 	int ctxn;
3986 
3987 	/*
3988 	 * If cgroup events exist on this CPU, then we need to check if we have
3989 	 * to switch in PMU state; cgroup event are system-wide mode only.
3990 	 *
3991 	 * Since cgroup events are CPU events, we must schedule these in before
3992 	 * we schedule in the task events.
3993 	 */
3994 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3995 		perf_cgroup_sched_in(prev, task);
3996 
3997 	for_each_task_context_nr(ctxn) {
3998 		ctx = task->perf_event_ctxp[ctxn];
3999 		if (likely(!ctx))
4000 			continue;
4001 
4002 		perf_event_context_sched_in(ctx, task);
4003 	}
4004 
4005 	if (atomic_read(&nr_switch_events))
4006 		perf_event_switch(task, prev, true);
4007 
4008 	if (__this_cpu_read(perf_sched_cb_usages))
4009 		perf_pmu_sched_task(prev, task, true);
4010 }
4011 
4012 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4013 {
4014 	u64 frequency = event->attr.sample_freq;
4015 	u64 sec = NSEC_PER_SEC;
4016 	u64 divisor, dividend;
4017 
4018 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4019 
4020 	count_fls = fls64(count);
4021 	nsec_fls = fls64(nsec);
4022 	frequency_fls = fls64(frequency);
4023 	sec_fls = 30;
4024 
4025 	/*
4026 	 * We got @count in @nsec, with a target of sample_freq HZ
4027 	 * the target period becomes:
4028 	 *
4029 	 *             @count * 10^9
4030 	 * period = -------------------
4031 	 *          @nsec * sample_freq
4032 	 *
4033 	 */
4034 
4035 	/*
4036 	 * Reduce accuracy by one bit such that @a and @b converge
4037 	 * to a similar magnitude.
4038 	 */
4039 #define REDUCE_FLS(a, b)		\
4040 do {					\
4041 	if (a##_fls > b##_fls) {	\
4042 		a >>= 1;		\
4043 		a##_fls--;		\
4044 	} else {			\
4045 		b >>= 1;		\
4046 		b##_fls--;		\
4047 	}				\
4048 } while (0)
4049 
4050 	/*
4051 	 * Reduce accuracy until either term fits in a u64, then proceed with
4052 	 * the other, so that finally we can do a u64/u64 division.
4053 	 */
4054 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4055 		REDUCE_FLS(nsec, frequency);
4056 		REDUCE_FLS(sec, count);
4057 	}
4058 
4059 	if (count_fls + sec_fls > 64) {
4060 		divisor = nsec * frequency;
4061 
4062 		while (count_fls + sec_fls > 64) {
4063 			REDUCE_FLS(count, sec);
4064 			divisor >>= 1;
4065 		}
4066 
4067 		dividend = count * sec;
4068 	} else {
4069 		dividend = count * sec;
4070 
4071 		while (nsec_fls + frequency_fls > 64) {
4072 			REDUCE_FLS(nsec, frequency);
4073 			dividend >>= 1;
4074 		}
4075 
4076 		divisor = nsec * frequency;
4077 	}
4078 
4079 	if (!divisor)
4080 		return dividend;
4081 
4082 	return div64_u64(dividend, divisor);
4083 }
4084 
4085 static DEFINE_PER_CPU(int, perf_throttled_count);
4086 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4087 
4088 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4089 {
4090 	struct hw_perf_event *hwc = &event->hw;
4091 	s64 period, sample_period;
4092 	s64 delta;
4093 
4094 	period = perf_calculate_period(event, nsec, count);
4095 
4096 	delta = (s64)(period - hwc->sample_period);
4097 	delta = (delta + 7) / 8; /* low pass filter */
4098 
4099 	sample_period = hwc->sample_period + delta;
4100 
4101 	if (!sample_period)
4102 		sample_period = 1;
4103 
4104 	hwc->sample_period = sample_period;
4105 
4106 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4107 		if (disable)
4108 			event->pmu->stop(event, PERF_EF_UPDATE);
4109 
4110 		local64_set(&hwc->period_left, 0);
4111 
4112 		if (disable)
4113 			event->pmu->start(event, PERF_EF_RELOAD);
4114 	}
4115 }
4116 
4117 /*
4118  * combine freq adjustment with unthrottling to avoid two passes over the
4119  * events. At the same time, make sure, having freq events does not change
4120  * the rate of unthrottling as that would introduce bias.
4121  */
4122 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4123 					   int needs_unthr)
4124 {
4125 	struct perf_event *event;
4126 	struct hw_perf_event *hwc;
4127 	u64 now, period = TICK_NSEC;
4128 	s64 delta;
4129 
4130 	/*
4131 	 * only need to iterate over all events iff:
4132 	 * - context have events in frequency mode (needs freq adjust)
4133 	 * - there are events to unthrottle on this cpu
4134 	 */
4135 	if (!(ctx->nr_freq || needs_unthr))
4136 		return;
4137 
4138 	raw_spin_lock(&ctx->lock);
4139 	perf_pmu_disable(ctx->pmu);
4140 
4141 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4142 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4143 			continue;
4144 
4145 		if (!event_filter_match(event))
4146 			continue;
4147 
4148 		perf_pmu_disable(event->pmu);
4149 
4150 		hwc = &event->hw;
4151 
4152 		if (hwc->interrupts == MAX_INTERRUPTS) {
4153 			hwc->interrupts = 0;
4154 			perf_log_throttle(event, 1);
4155 			event->pmu->start(event, 0);
4156 		}
4157 
4158 		if (!event->attr.freq || !event->attr.sample_freq)
4159 			goto next;
4160 
4161 		/*
4162 		 * stop the event and update event->count
4163 		 */
4164 		event->pmu->stop(event, PERF_EF_UPDATE);
4165 
4166 		now = local64_read(&event->count);
4167 		delta = now - hwc->freq_count_stamp;
4168 		hwc->freq_count_stamp = now;
4169 
4170 		/*
4171 		 * restart the event
4172 		 * reload only if value has changed
4173 		 * we have stopped the event so tell that
4174 		 * to perf_adjust_period() to avoid stopping it
4175 		 * twice.
4176 		 */
4177 		if (delta > 0)
4178 			perf_adjust_period(event, period, delta, false);
4179 
4180 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4181 	next:
4182 		perf_pmu_enable(event->pmu);
4183 	}
4184 
4185 	perf_pmu_enable(ctx->pmu);
4186 	raw_spin_unlock(&ctx->lock);
4187 }
4188 
4189 /*
4190  * Move @event to the tail of the @ctx's elegible events.
4191  */
4192 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4193 {
4194 	/*
4195 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4196 	 * disabled by the inheritance code.
4197 	 */
4198 	if (ctx->rotate_disable)
4199 		return;
4200 
4201 	perf_event_groups_delete(&ctx->flexible_groups, event);
4202 	perf_event_groups_insert(&ctx->flexible_groups, event);
4203 }
4204 
4205 /* pick an event from the flexible_groups to rotate */
4206 static inline struct perf_event *
4207 ctx_event_to_rotate(struct perf_event_context *ctx)
4208 {
4209 	struct perf_event *event;
4210 
4211 	/* pick the first active flexible event */
4212 	event = list_first_entry_or_null(&ctx->flexible_active,
4213 					 struct perf_event, active_list);
4214 
4215 	/* if no active flexible event, pick the first event */
4216 	if (!event) {
4217 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4218 				      typeof(*event), group_node);
4219 	}
4220 
4221 	/*
4222 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4223 	 * finds there are unschedulable events, it will set it again.
4224 	 */
4225 	ctx->rotate_necessary = 0;
4226 
4227 	return event;
4228 }
4229 
4230 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4231 {
4232 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4233 	struct perf_event_context *task_ctx = NULL;
4234 	int cpu_rotate, task_rotate;
4235 
4236 	/*
4237 	 * Since we run this from IRQ context, nobody can install new
4238 	 * events, thus the event count values are stable.
4239 	 */
4240 
4241 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4242 	task_ctx = cpuctx->task_ctx;
4243 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4244 
4245 	if (!(cpu_rotate || task_rotate))
4246 		return false;
4247 
4248 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4249 	perf_pmu_disable(cpuctx->ctx.pmu);
4250 
4251 	if (task_rotate)
4252 		task_event = ctx_event_to_rotate(task_ctx);
4253 	if (cpu_rotate)
4254 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4255 
4256 	/*
4257 	 * As per the order given at ctx_resched() first 'pop' task flexible
4258 	 * and then, if needed CPU flexible.
4259 	 */
4260 	if (task_event || (task_ctx && cpu_event))
4261 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4262 	if (cpu_event)
4263 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4264 
4265 	if (task_event)
4266 		rotate_ctx(task_ctx, task_event);
4267 	if (cpu_event)
4268 		rotate_ctx(&cpuctx->ctx, cpu_event);
4269 
4270 	perf_event_sched_in(cpuctx, task_ctx, current);
4271 
4272 	perf_pmu_enable(cpuctx->ctx.pmu);
4273 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4274 
4275 	return true;
4276 }
4277 
4278 void perf_event_task_tick(void)
4279 {
4280 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4281 	struct perf_event_context *ctx, *tmp;
4282 	int throttled;
4283 
4284 	lockdep_assert_irqs_disabled();
4285 
4286 	__this_cpu_inc(perf_throttled_seq);
4287 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4288 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4289 
4290 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4291 		perf_adjust_freq_unthr_context(ctx, throttled);
4292 }
4293 
4294 static int event_enable_on_exec(struct perf_event *event,
4295 				struct perf_event_context *ctx)
4296 {
4297 	if (!event->attr.enable_on_exec)
4298 		return 0;
4299 
4300 	event->attr.enable_on_exec = 0;
4301 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4302 		return 0;
4303 
4304 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4305 
4306 	return 1;
4307 }
4308 
4309 /*
4310  * Enable all of a task's events that have been marked enable-on-exec.
4311  * This expects task == current.
4312  */
4313 static void perf_event_enable_on_exec(int ctxn)
4314 {
4315 	struct perf_event_context *ctx, *clone_ctx = NULL;
4316 	enum event_type_t event_type = 0;
4317 	struct perf_cpu_context *cpuctx;
4318 	struct perf_event *event;
4319 	unsigned long flags;
4320 	int enabled = 0;
4321 
4322 	local_irq_save(flags);
4323 	ctx = current->perf_event_ctxp[ctxn];
4324 	if (!ctx || !ctx->nr_events)
4325 		goto out;
4326 
4327 	cpuctx = __get_cpu_context(ctx);
4328 	perf_ctx_lock(cpuctx, ctx);
4329 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4330 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4331 		enabled |= event_enable_on_exec(event, ctx);
4332 		event_type |= get_event_type(event);
4333 	}
4334 
4335 	/*
4336 	 * Unclone and reschedule this context if we enabled any event.
4337 	 */
4338 	if (enabled) {
4339 		clone_ctx = unclone_ctx(ctx);
4340 		ctx_resched(cpuctx, ctx, event_type);
4341 	} else {
4342 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4343 	}
4344 	perf_ctx_unlock(cpuctx, ctx);
4345 
4346 out:
4347 	local_irq_restore(flags);
4348 
4349 	if (clone_ctx)
4350 		put_ctx(clone_ctx);
4351 }
4352 
4353 static void perf_remove_from_owner(struct perf_event *event);
4354 static void perf_event_exit_event(struct perf_event *event,
4355 				  struct perf_event_context *ctx);
4356 
4357 /*
4358  * Removes all events from the current task that have been marked
4359  * remove-on-exec, and feeds their values back to parent events.
4360  */
4361 static void perf_event_remove_on_exec(int ctxn)
4362 {
4363 	struct perf_event_context *ctx, *clone_ctx = NULL;
4364 	struct perf_event *event, *next;
4365 	LIST_HEAD(free_list);
4366 	unsigned long flags;
4367 	bool modified = false;
4368 
4369 	ctx = perf_pin_task_context(current, ctxn);
4370 	if (!ctx)
4371 		return;
4372 
4373 	mutex_lock(&ctx->mutex);
4374 
4375 	if (WARN_ON_ONCE(ctx->task != current))
4376 		goto unlock;
4377 
4378 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4379 		if (!event->attr.remove_on_exec)
4380 			continue;
4381 
4382 		if (!is_kernel_event(event))
4383 			perf_remove_from_owner(event);
4384 
4385 		modified = true;
4386 
4387 		perf_event_exit_event(event, ctx);
4388 	}
4389 
4390 	raw_spin_lock_irqsave(&ctx->lock, flags);
4391 	if (modified)
4392 		clone_ctx = unclone_ctx(ctx);
4393 	--ctx->pin_count;
4394 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4395 
4396 unlock:
4397 	mutex_unlock(&ctx->mutex);
4398 
4399 	put_ctx(ctx);
4400 	if (clone_ctx)
4401 		put_ctx(clone_ctx);
4402 }
4403 
4404 struct perf_read_data {
4405 	struct perf_event *event;
4406 	bool group;
4407 	int ret;
4408 };
4409 
4410 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4411 {
4412 	u16 local_pkg, event_pkg;
4413 
4414 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4415 		int local_cpu = smp_processor_id();
4416 
4417 		event_pkg = topology_physical_package_id(event_cpu);
4418 		local_pkg = topology_physical_package_id(local_cpu);
4419 
4420 		if (event_pkg == local_pkg)
4421 			return local_cpu;
4422 	}
4423 
4424 	return event_cpu;
4425 }
4426 
4427 /*
4428  * Cross CPU call to read the hardware event
4429  */
4430 static void __perf_event_read(void *info)
4431 {
4432 	struct perf_read_data *data = info;
4433 	struct perf_event *sub, *event = data->event;
4434 	struct perf_event_context *ctx = event->ctx;
4435 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4436 	struct pmu *pmu = event->pmu;
4437 
4438 	/*
4439 	 * If this is a task context, we need to check whether it is
4440 	 * the current task context of this cpu.  If not it has been
4441 	 * scheduled out before the smp call arrived.  In that case
4442 	 * event->count would have been updated to a recent sample
4443 	 * when the event was scheduled out.
4444 	 */
4445 	if (ctx->task && cpuctx->task_ctx != ctx)
4446 		return;
4447 
4448 	raw_spin_lock(&ctx->lock);
4449 	if (ctx->is_active & EVENT_TIME) {
4450 		update_context_time(ctx);
4451 		update_cgrp_time_from_event(event);
4452 	}
4453 
4454 	perf_event_update_time(event);
4455 	if (data->group)
4456 		perf_event_update_sibling_time(event);
4457 
4458 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4459 		goto unlock;
4460 
4461 	if (!data->group) {
4462 		pmu->read(event);
4463 		data->ret = 0;
4464 		goto unlock;
4465 	}
4466 
4467 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4468 
4469 	pmu->read(event);
4470 
4471 	for_each_sibling_event(sub, event) {
4472 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4473 			/*
4474 			 * Use sibling's PMU rather than @event's since
4475 			 * sibling could be on different (eg: software) PMU.
4476 			 */
4477 			sub->pmu->read(sub);
4478 		}
4479 	}
4480 
4481 	data->ret = pmu->commit_txn(pmu);
4482 
4483 unlock:
4484 	raw_spin_unlock(&ctx->lock);
4485 }
4486 
4487 static inline u64 perf_event_count(struct perf_event *event)
4488 {
4489 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4490 }
4491 
4492 static void calc_timer_values(struct perf_event *event,
4493 				u64 *now,
4494 				u64 *enabled,
4495 				u64 *running)
4496 {
4497 	u64 ctx_time;
4498 
4499 	*now = perf_clock();
4500 	ctx_time = perf_event_time_now(event, *now);
4501 	__perf_update_times(event, ctx_time, enabled, running);
4502 }
4503 
4504 /*
4505  * NMI-safe method to read a local event, that is an event that
4506  * is:
4507  *   - either for the current task, or for this CPU
4508  *   - does not have inherit set, for inherited task events
4509  *     will not be local and we cannot read them atomically
4510  *   - must not have a pmu::count method
4511  */
4512 int perf_event_read_local(struct perf_event *event, u64 *value,
4513 			  u64 *enabled, u64 *running)
4514 {
4515 	unsigned long flags;
4516 	int ret = 0;
4517 
4518 	/*
4519 	 * Disabling interrupts avoids all counter scheduling (context
4520 	 * switches, timer based rotation and IPIs).
4521 	 */
4522 	local_irq_save(flags);
4523 
4524 	/*
4525 	 * It must not be an event with inherit set, we cannot read
4526 	 * all child counters from atomic context.
4527 	 */
4528 	if (event->attr.inherit) {
4529 		ret = -EOPNOTSUPP;
4530 		goto out;
4531 	}
4532 
4533 	/* If this is a per-task event, it must be for current */
4534 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4535 	    event->hw.target != current) {
4536 		ret = -EINVAL;
4537 		goto out;
4538 	}
4539 
4540 	/* If this is a per-CPU event, it must be for this CPU */
4541 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4542 	    event->cpu != smp_processor_id()) {
4543 		ret = -EINVAL;
4544 		goto out;
4545 	}
4546 
4547 	/* If this is a pinned event it must be running on this CPU */
4548 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4549 		ret = -EBUSY;
4550 		goto out;
4551 	}
4552 
4553 	/*
4554 	 * If the event is currently on this CPU, its either a per-task event,
4555 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4556 	 * oncpu == -1).
4557 	 */
4558 	if (event->oncpu == smp_processor_id())
4559 		event->pmu->read(event);
4560 
4561 	*value = local64_read(&event->count);
4562 	if (enabled || running) {
4563 		u64 __enabled, __running, __now;;
4564 
4565 		calc_timer_values(event, &__now, &__enabled, &__running);
4566 		if (enabled)
4567 			*enabled = __enabled;
4568 		if (running)
4569 			*running = __running;
4570 	}
4571 out:
4572 	local_irq_restore(flags);
4573 
4574 	return ret;
4575 }
4576 
4577 static int perf_event_read(struct perf_event *event, bool group)
4578 {
4579 	enum perf_event_state state = READ_ONCE(event->state);
4580 	int event_cpu, ret = 0;
4581 
4582 	/*
4583 	 * If event is enabled and currently active on a CPU, update the
4584 	 * value in the event structure:
4585 	 */
4586 again:
4587 	if (state == PERF_EVENT_STATE_ACTIVE) {
4588 		struct perf_read_data data;
4589 
4590 		/*
4591 		 * Orders the ->state and ->oncpu loads such that if we see
4592 		 * ACTIVE we must also see the right ->oncpu.
4593 		 *
4594 		 * Matches the smp_wmb() from event_sched_in().
4595 		 */
4596 		smp_rmb();
4597 
4598 		event_cpu = READ_ONCE(event->oncpu);
4599 		if ((unsigned)event_cpu >= nr_cpu_ids)
4600 			return 0;
4601 
4602 		data = (struct perf_read_data){
4603 			.event = event,
4604 			.group = group,
4605 			.ret = 0,
4606 		};
4607 
4608 		preempt_disable();
4609 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4610 
4611 		/*
4612 		 * Purposely ignore the smp_call_function_single() return
4613 		 * value.
4614 		 *
4615 		 * If event_cpu isn't a valid CPU it means the event got
4616 		 * scheduled out and that will have updated the event count.
4617 		 *
4618 		 * Therefore, either way, we'll have an up-to-date event count
4619 		 * after this.
4620 		 */
4621 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4622 		preempt_enable();
4623 		ret = data.ret;
4624 
4625 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4626 		struct perf_event_context *ctx = event->ctx;
4627 		unsigned long flags;
4628 
4629 		raw_spin_lock_irqsave(&ctx->lock, flags);
4630 		state = event->state;
4631 		if (state != PERF_EVENT_STATE_INACTIVE) {
4632 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4633 			goto again;
4634 		}
4635 
4636 		/*
4637 		 * May read while context is not active (e.g., thread is
4638 		 * blocked), in that case we cannot update context time
4639 		 */
4640 		if (ctx->is_active & EVENT_TIME) {
4641 			update_context_time(ctx);
4642 			update_cgrp_time_from_event(event);
4643 		}
4644 
4645 		perf_event_update_time(event);
4646 		if (group)
4647 			perf_event_update_sibling_time(event);
4648 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4649 	}
4650 
4651 	return ret;
4652 }
4653 
4654 /*
4655  * Initialize the perf_event context in a task_struct:
4656  */
4657 static void __perf_event_init_context(struct perf_event_context *ctx)
4658 {
4659 	raw_spin_lock_init(&ctx->lock);
4660 	mutex_init(&ctx->mutex);
4661 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4662 	perf_event_groups_init(&ctx->pinned_groups);
4663 	perf_event_groups_init(&ctx->flexible_groups);
4664 	INIT_LIST_HEAD(&ctx->event_list);
4665 	INIT_LIST_HEAD(&ctx->pinned_active);
4666 	INIT_LIST_HEAD(&ctx->flexible_active);
4667 	refcount_set(&ctx->refcount, 1);
4668 }
4669 
4670 static struct perf_event_context *
4671 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4672 {
4673 	struct perf_event_context *ctx;
4674 
4675 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4676 	if (!ctx)
4677 		return NULL;
4678 
4679 	__perf_event_init_context(ctx);
4680 	if (task)
4681 		ctx->task = get_task_struct(task);
4682 	ctx->pmu = pmu;
4683 
4684 	return ctx;
4685 }
4686 
4687 static struct task_struct *
4688 find_lively_task_by_vpid(pid_t vpid)
4689 {
4690 	struct task_struct *task;
4691 
4692 	rcu_read_lock();
4693 	if (!vpid)
4694 		task = current;
4695 	else
4696 		task = find_task_by_vpid(vpid);
4697 	if (task)
4698 		get_task_struct(task);
4699 	rcu_read_unlock();
4700 
4701 	if (!task)
4702 		return ERR_PTR(-ESRCH);
4703 
4704 	return task;
4705 }
4706 
4707 /*
4708  * Returns a matching context with refcount and pincount.
4709  */
4710 static struct perf_event_context *
4711 find_get_context(struct pmu *pmu, struct task_struct *task,
4712 		struct perf_event *event)
4713 {
4714 	struct perf_event_context *ctx, *clone_ctx = NULL;
4715 	struct perf_cpu_context *cpuctx;
4716 	void *task_ctx_data = NULL;
4717 	unsigned long flags;
4718 	int ctxn, err;
4719 	int cpu = event->cpu;
4720 
4721 	if (!task) {
4722 		/* Must be root to operate on a CPU event: */
4723 		err = perf_allow_cpu(&event->attr);
4724 		if (err)
4725 			return ERR_PTR(err);
4726 
4727 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4728 		ctx = &cpuctx->ctx;
4729 		get_ctx(ctx);
4730 		raw_spin_lock_irqsave(&ctx->lock, flags);
4731 		++ctx->pin_count;
4732 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4733 
4734 		return ctx;
4735 	}
4736 
4737 	err = -EINVAL;
4738 	ctxn = pmu->task_ctx_nr;
4739 	if (ctxn < 0)
4740 		goto errout;
4741 
4742 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4743 		task_ctx_data = alloc_task_ctx_data(pmu);
4744 		if (!task_ctx_data) {
4745 			err = -ENOMEM;
4746 			goto errout;
4747 		}
4748 	}
4749 
4750 retry:
4751 	ctx = perf_lock_task_context(task, ctxn, &flags);
4752 	if (ctx) {
4753 		clone_ctx = unclone_ctx(ctx);
4754 		++ctx->pin_count;
4755 
4756 		if (task_ctx_data && !ctx->task_ctx_data) {
4757 			ctx->task_ctx_data = task_ctx_data;
4758 			task_ctx_data = NULL;
4759 		}
4760 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4761 
4762 		if (clone_ctx)
4763 			put_ctx(clone_ctx);
4764 	} else {
4765 		ctx = alloc_perf_context(pmu, task);
4766 		err = -ENOMEM;
4767 		if (!ctx)
4768 			goto errout;
4769 
4770 		if (task_ctx_data) {
4771 			ctx->task_ctx_data = task_ctx_data;
4772 			task_ctx_data = NULL;
4773 		}
4774 
4775 		err = 0;
4776 		mutex_lock(&task->perf_event_mutex);
4777 		/*
4778 		 * If it has already passed perf_event_exit_task().
4779 		 * we must see PF_EXITING, it takes this mutex too.
4780 		 */
4781 		if (task->flags & PF_EXITING)
4782 			err = -ESRCH;
4783 		else if (task->perf_event_ctxp[ctxn])
4784 			err = -EAGAIN;
4785 		else {
4786 			get_ctx(ctx);
4787 			++ctx->pin_count;
4788 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4789 		}
4790 		mutex_unlock(&task->perf_event_mutex);
4791 
4792 		if (unlikely(err)) {
4793 			put_ctx(ctx);
4794 
4795 			if (err == -EAGAIN)
4796 				goto retry;
4797 			goto errout;
4798 		}
4799 	}
4800 
4801 	free_task_ctx_data(pmu, task_ctx_data);
4802 	return ctx;
4803 
4804 errout:
4805 	free_task_ctx_data(pmu, task_ctx_data);
4806 	return ERR_PTR(err);
4807 }
4808 
4809 static void perf_event_free_filter(struct perf_event *event);
4810 
4811 static void free_event_rcu(struct rcu_head *head)
4812 {
4813 	struct perf_event *event;
4814 
4815 	event = container_of(head, struct perf_event, rcu_head);
4816 	if (event->ns)
4817 		put_pid_ns(event->ns);
4818 	perf_event_free_filter(event);
4819 	kmem_cache_free(perf_event_cache, event);
4820 }
4821 
4822 static void ring_buffer_attach(struct perf_event *event,
4823 			       struct perf_buffer *rb);
4824 
4825 static void detach_sb_event(struct perf_event *event)
4826 {
4827 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4828 
4829 	raw_spin_lock(&pel->lock);
4830 	list_del_rcu(&event->sb_list);
4831 	raw_spin_unlock(&pel->lock);
4832 }
4833 
4834 static bool is_sb_event(struct perf_event *event)
4835 {
4836 	struct perf_event_attr *attr = &event->attr;
4837 
4838 	if (event->parent)
4839 		return false;
4840 
4841 	if (event->attach_state & PERF_ATTACH_TASK)
4842 		return false;
4843 
4844 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4845 	    attr->comm || attr->comm_exec ||
4846 	    attr->task || attr->ksymbol ||
4847 	    attr->context_switch || attr->text_poke ||
4848 	    attr->bpf_event)
4849 		return true;
4850 	return false;
4851 }
4852 
4853 static void unaccount_pmu_sb_event(struct perf_event *event)
4854 {
4855 	if (is_sb_event(event))
4856 		detach_sb_event(event);
4857 }
4858 
4859 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4860 {
4861 	if (event->parent)
4862 		return;
4863 
4864 	if (is_cgroup_event(event))
4865 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4866 }
4867 
4868 #ifdef CONFIG_NO_HZ_FULL
4869 static DEFINE_SPINLOCK(nr_freq_lock);
4870 #endif
4871 
4872 static void unaccount_freq_event_nohz(void)
4873 {
4874 #ifdef CONFIG_NO_HZ_FULL
4875 	spin_lock(&nr_freq_lock);
4876 	if (atomic_dec_and_test(&nr_freq_events))
4877 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4878 	spin_unlock(&nr_freq_lock);
4879 #endif
4880 }
4881 
4882 static void unaccount_freq_event(void)
4883 {
4884 	if (tick_nohz_full_enabled())
4885 		unaccount_freq_event_nohz();
4886 	else
4887 		atomic_dec(&nr_freq_events);
4888 }
4889 
4890 static void unaccount_event(struct perf_event *event)
4891 {
4892 	bool dec = false;
4893 
4894 	if (event->parent)
4895 		return;
4896 
4897 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4898 		dec = true;
4899 	if (event->attr.mmap || event->attr.mmap_data)
4900 		atomic_dec(&nr_mmap_events);
4901 	if (event->attr.build_id)
4902 		atomic_dec(&nr_build_id_events);
4903 	if (event->attr.comm)
4904 		atomic_dec(&nr_comm_events);
4905 	if (event->attr.namespaces)
4906 		atomic_dec(&nr_namespaces_events);
4907 	if (event->attr.cgroup)
4908 		atomic_dec(&nr_cgroup_events);
4909 	if (event->attr.task)
4910 		atomic_dec(&nr_task_events);
4911 	if (event->attr.freq)
4912 		unaccount_freq_event();
4913 	if (event->attr.context_switch) {
4914 		dec = true;
4915 		atomic_dec(&nr_switch_events);
4916 	}
4917 	if (is_cgroup_event(event))
4918 		dec = true;
4919 	if (has_branch_stack(event))
4920 		dec = true;
4921 	if (event->attr.ksymbol)
4922 		atomic_dec(&nr_ksymbol_events);
4923 	if (event->attr.bpf_event)
4924 		atomic_dec(&nr_bpf_events);
4925 	if (event->attr.text_poke)
4926 		atomic_dec(&nr_text_poke_events);
4927 
4928 	if (dec) {
4929 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4930 			schedule_delayed_work(&perf_sched_work, HZ);
4931 	}
4932 
4933 	unaccount_event_cpu(event, event->cpu);
4934 
4935 	unaccount_pmu_sb_event(event);
4936 }
4937 
4938 static void perf_sched_delayed(struct work_struct *work)
4939 {
4940 	mutex_lock(&perf_sched_mutex);
4941 	if (atomic_dec_and_test(&perf_sched_count))
4942 		static_branch_disable(&perf_sched_events);
4943 	mutex_unlock(&perf_sched_mutex);
4944 }
4945 
4946 /*
4947  * The following implement mutual exclusion of events on "exclusive" pmus
4948  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4949  * at a time, so we disallow creating events that might conflict, namely:
4950  *
4951  *  1) cpu-wide events in the presence of per-task events,
4952  *  2) per-task events in the presence of cpu-wide events,
4953  *  3) two matching events on the same context.
4954  *
4955  * The former two cases are handled in the allocation path (perf_event_alloc(),
4956  * _free_event()), the latter -- before the first perf_install_in_context().
4957  */
4958 static int exclusive_event_init(struct perf_event *event)
4959 {
4960 	struct pmu *pmu = event->pmu;
4961 
4962 	if (!is_exclusive_pmu(pmu))
4963 		return 0;
4964 
4965 	/*
4966 	 * Prevent co-existence of per-task and cpu-wide events on the
4967 	 * same exclusive pmu.
4968 	 *
4969 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4970 	 * events on this "exclusive" pmu, positive means there are
4971 	 * per-task events.
4972 	 *
4973 	 * Since this is called in perf_event_alloc() path, event::ctx
4974 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4975 	 * to mean "per-task event", because unlike other attach states it
4976 	 * never gets cleared.
4977 	 */
4978 	if (event->attach_state & PERF_ATTACH_TASK) {
4979 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4980 			return -EBUSY;
4981 	} else {
4982 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4983 			return -EBUSY;
4984 	}
4985 
4986 	return 0;
4987 }
4988 
4989 static void exclusive_event_destroy(struct perf_event *event)
4990 {
4991 	struct pmu *pmu = event->pmu;
4992 
4993 	if (!is_exclusive_pmu(pmu))
4994 		return;
4995 
4996 	/* see comment in exclusive_event_init() */
4997 	if (event->attach_state & PERF_ATTACH_TASK)
4998 		atomic_dec(&pmu->exclusive_cnt);
4999 	else
5000 		atomic_inc(&pmu->exclusive_cnt);
5001 }
5002 
5003 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5004 {
5005 	if ((e1->pmu == e2->pmu) &&
5006 	    (e1->cpu == e2->cpu ||
5007 	     e1->cpu == -1 ||
5008 	     e2->cpu == -1))
5009 		return true;
5010 	return false;
5011 }
5012 
5013 static bool exclusive_event_installable(struct perf_event *event,
5014 					struct perf_event_context *ctx)
5015 {
5016 	struct perf_event *iter_event;
5017 	struct pmu *pmu = event->pmu;
5018 
5019 	lockdep_assert_held(&ctx->mutex);
5020 
5021 	if (!is_exclusive_pmu(pmu))
5022 		return true;
5023 
5024 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5025 		if (exclusive_event_match(iter_event, event))
5026 			return false;
5027 	}
5028 
5029 	return true;
5030 }
5031 
5032 static void perf_addr_filters_splice(struct perf_event *event,
5033 				       struct list_head *head);
5034 
5035 static void _free_event(struct perf_event *event)
5036 {
5037 	irq_work_sync(&event->pending);
5038 
5039 	unaccount_event(event);
5040 
5041 	security_perf_event_free(event);
5042 
5043 	if (event->rb) {
5044 		/*
5045 		 * Can happen when we close an event with re-directed output.
5046 		 *
5047 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5048 		 * over us; possibly making our ring_buffer_put() the last.
5049 		 */
5050 		mutex_lock(&event->mmap_mutex);
5051 		ring_buffer_attach(event, NULL);
5052 		mutex_unlock(&event->mmap_mutex);
5053 	}
5054 
5055 	if (is_cgroup_event(event))
5056 		perf_detach_cgroup(event);
5057 
5058 	if (!event->parent) {
5059 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5060 			put_callchain_buffers();
5061 	}
5062 
5063 	perf_event_free_bpf_prog(event);
5064 	perf_addr_filters_splice(event, NULL);
5065 	kfree(event->addr_filter_ranges);
5066 
5067 	if (event->destroy)
5068 		event->destroy(event);
5069 
5070 	/*
5071 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5072 	 * hw.target.
5073 	 */
5074 	if (event->hw.target)
5075 		put_task_struct(event->hw.target);
5076 
5077 	/*
5078 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5079 	 * all task references must be cleaned up.
5080 	 */
5081 	if (event->ctx)
5082 		put_ctx(event->ctx);
5083 
5084 	exclusive_event_destroy(event);
5085 	module_put(event->pmu->module);
5086 
5087 	call_rcu(&event->rcu_head, free_event_rcu);
5088 }
5089 
5090 /*
5091  * Used to free events which have a known refcount of 1, such as in error paths
5092  * where the event isn't exposed yet and inherited events.
5093  */
5094 static void free_event(struct perf_event *event)
5095 {
5096 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5097 				"unexpected event refcount: %ld; ptr=%p\n",
5098 				atomic_long_read(&event->refcount), event)) {
5099 		/* leak to avoid use-after-free */
5100 		return;
5101 	}
5102 
5103 	_free_event(event);
5104 }
5105 
5106 /*
5107  * Remove user event from the owner task.
5108  */
5109 static void perf_remove_from_owner(struct perf_event *event)
5110 {
5111 	struct task_struct *owner;
5112 
5113 	rcu_read_lock();
5114 	/*
5115 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5116 	 * observe !owner it means the list deletion is complete and we can
5117 	 * indeed free this event, otherwise we need to serialize on
5118 	 * owner->perf_event_mutex.
5119 	 */
5120 	owner = READ_ONCE(event->owner);
5121 	if (owner) {
5122 		/*
5123 		 * Since delayed_put_task_struct() also drops the last
5124 		 * task reference we can safely take a new reference
5125 		 * while holding the rcu_read_lock().
5126 		 */
5127 		get_task_struct(owner);
5128 	}
5129 	rcu_read_unlock();
5130 
5131 	if (owner) {
5132 		/*
5133 		 * If we're here through perf_event_exit_task() we're already
5134 		 * holding ctx->mutex which would be an inversion wrt. the
5135 		 * normal lock order.
5136 		 *
5137 		 * However we can safely take this lock because its the child
5138 		 * ctx->mutex.
5139 		 */
5140 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5141 
5142 		/*
5143 		 * We have to re-check the event->owner field, if it is cleared
5144 		 * we raced with perf_event_exit_task(), acquiring the mutex
5145 		 * ensured they're done, and we can proceed with freeing the
5146 		 * event.
5147 		 */
5148 		if (event->owner) {
5149 			list_del_init(&event->owner_entry);
5150 			smp_store_release(&event->owner, NULL);
5151 		}
5152 		mutex_unlock(&owner->perf_event_mutex);
5153 		put_task_struct(owner);
5154 	}
5155 }
5156 
5157 static void put_event(struct perf_event *event)
5158 {
5159 	if (!atomic_long_dec_and_test(&event->refcount))
5160 		return;
5161 
5162 	_free_event(event);
5163 }
5164 
5165 /*
5166  * Kill an event dead; while event:refcount will preserve the event
5167  * object, it will not preserve its functionality. Once the last 'user'
5168  * gives up the object, we'll destroy the thing.
5169  */
5170 int perf_event_release_kernel(struct perf_event *event)
5171 {
5172 	struct perf_event_context *ctx = event->ctx;
5173 	struct perf_event *child, *tmp;
5174 	LIST_HEAD(free_list);
5175 
5176 	/*
5177 	 * If we got here through err_file: fput(event_file); we will not have
5178 	 * attached to a context yet.
5179 	 */
5180 	if (!ctx) {
5181 		WARN_ON_ONCE(event->attach_state &
5182 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5183 		goto no_ctx;
5184 	}
5185 
5186 	if (!is_kernel_event(event))
5187 		perf_remove_from_owner(event);
5188 
5189 	ctx = perf_event_ctx_lock(event);
5190 	WARN_ON_ONCE(ctx->parent_ctx);
5191 	perf_remove_from_context(event, DETACH_GROUP);
5192 
5193 	raw_spin_lock_irq(&ctx->lock);
5194 	/*
5195 	 * Mark this event as STATE_DEAD, there is no external reference to it
5196 	 * anymore.
5197 	 *
5198 	 * Anybody acquiring event->child_mutex after the below loop _must_
5199 	 * also see this, most importantly inherit_event() which will avoid
5200 	 * placing more children on the list.
5201 	 *
5202 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5203 	 * child events.
5204 	 */
5205 	event->state = PERF_EVENT_STATE_DEAD;
5206 	raw_spin_unlock_irq(&ctx->lock);
5207 
5208 	perf_event_ctx_unlock(event, ctx);
5209 
5210 again:
5211 	mutex_lock(&event->child_mutex);
5212 	list_for_each_entry(child, &event->child_list, child_list) {
5213 
5214 		/*
5215 		 * Cannot change, child events are not migrated, see the
5216 		 * comment with perf_event_ctx_lock_nested().
5217 		 */
5218 		ctx = READ_ONCE(child->ctx);
5219 		/*
5220 		 * Since child_mutex nests inside ctx::mutex, we must jump
5221 		 * through hoops. We start by grabbing a reference on the ctx.
5222 		 *
5223 		 * Since the event cannot get freed while we hold the
5224 		 * child_mutex, the context must also exist and have a !0
5225 		 * reference count.
5226 		 */
5227 		get_ctx(ctx);
5228 
5229 		/*
5230 		 * Now that we have a ctx ref, we can drop child_mutex, and
5231 		 * acquire ctx::mutex without fear of it going away. Then we
5232 		 * can re-acquire child_mutex.
5233 		 */
5234 		mutex_unlock(&event->child_mutex);
5235 		mutex_lock(&ctx->mutex);
5236 		mutex_lock(&event->child_mutex);
5237 
5238 		/*
5239 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5240 		 * state, if child is still the first entry, it didn't get freed
5241 		 * and we can continue doing so.
5242 		 */
5243 		tmp = list_first_entry_or_null(&event->child_list,
5244 					       struct perf_event, child_list);
5245 		if (tmp == child) {
5246 			perf_remove_from_context(child, DETACH_GROUP);
5247 			list_move(&child->child_list, &free_list);
5248 			/*
5249 			 * This matches the refcount bump in inherit_event();
5250 			 * this can't be the last reference.
5251 			 */
5252 			put_event(event);
5253 		}
5254 
5255 		mutex_unlock(&event->child_mutex);
5256 		mutex_unlock(&ctx->mutex);
5257 		put_ctx(ctx);
5258 		goto again;
5259 	}
5260 	mutex_unlock(&event->child_mutex);
5261 
5262 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5263 		void *var = &child->ctx->refcount;
5264 
5265 		list_del(&child->child_list);
5266 		free_event(child);
5267 
5268 		/*
5269 		 * Wake any perf_event_free_task() waiting for this event to be
5270 		 * freed.
5271 		 */
5272 		smp_mb(); /* pairs with wait_var_event() */
5273 		wake_up_var(var);
5274 	}
5275 
5276 no_ctx:
5277 	put_event(event); /* Must be the 'last' reference */
5278 	return 0;
5279 }
5280 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5281 
5282 /*
5283  * Called when the last reference to the file is gone.
5284  */
5285 static int perf_release(struct inode *inode, struct file *file)
5286 {
5287 	perf_event_release_kernel(file->private_data);
5288 	return 0;
5289 }
5290 
5291 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5292 {
5293 	struct perf_event *child;
5294 	u64 total = 0;
5295 
5296 	*enabled = 0;
5297 	*running = 0;
5298 
5299 	mutex_lock(&event->child_mutex);
5300 
5301 	(void)perf_event_read(event, false);
5302 	total += perf_event_count(event);
5303 
5304 	*enabled += event->total_time_enabled +
5305 			atomic64_read(&event->child_total_time_enabled);
5306 	*running += event->total_time_running +
5307 			atomic64_read(&event->child_total_time_running);
5308 
5309 	list_for_each_entry(child, &event->child_list, child_list) {
5310 		(void)perf_event_read(child, false);
5311 		total += perf_event_count(child);
5312 		*enabled += child->total_time_enabled;
5313 		*running += child->total_time_running;
5314 	}
5315 	mutex_unlock(&event->child_mutex);
5316 
5317 	return total;
5318 }
5319 
5320 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5321 {
5322 	struct perf_event_context *ctx;
5323 	u64 count;
5324 
5325 	ctx = perf_event_ctx_lock(event);
5326 	count = __perf_event_read_value(event, enabled, running);
5327 	perf_event_ctx_unlock(event, ctx);
5328 
5329 	return count;
5330 }
5331 EXPORT_SYMBOL_GPL(perf_event_read_value);
5332 
5333 static int __perf_read_group_add(struct perf_event *leader,
5334 					u64 read_format, u64 *values)
5335 {
5336 	struct perf_event_context *ctx = leader->ctx;
5337 	struct perf_event *sub;
5338 	unsigned long flags;
5339 	int n = 1; /* skip @nr */
5340 	int ret;
5341 
5342 	ret = perf_event_read(leader, true);
5343 	if (ret)
5344 		return ret;
5345 
5346 	raw_spin_lock_irqsave(&ctx->lock, flags);
5347 
5348 	/*
5349 	 * Since we co-schedule groups, {enabled,running} times of siblings
5350 	 * will be identical to those of the leader, so we only publish one
5351 	 * set.
5352 	 */
5353 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5354 		values[n++] += leader->total_time_enabled +
5355 			atomic64_read(&leader->child_total_time_enabled);
5356 	}
5357 
5358 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5359 		values[n++] += leader->total_time_running +
5360 			atomic64_read(&leader->child_total_time_running);
5361 	}
5362 
5363 	/*
5364 	 * Write {count,id} tuples for every sibling.
5365 	 */
5366 	values[n++] += perf_event_count(leader);
5367 	if (read_format & PERF_FORMAT_ID)
5368 		values[n++] = primary_event_id(leader);
5369 
5370 	for_each_sibling_event(sub, leader) {
5371 		values[n++] += perf_event_count(sub);
5372 		if (read_format & PERF_FORMAT_ID)
5373 			values[n++] = primary_event_id(sub);
5374 	}
5375 
5376 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5377 	return 0;
5378 }
5379 
5380 static int perf_read_group(struct perf_event *event,
5381 				   u64 read_format, char __user *buf)
5382 {
5383 	struct perf_event *leader = event->group_leader, *child;
5384 	struct perf_event_context *ctx = leader->ctx;
5385 	int ret;
5386 	u64 *values;
5387 
5388 	lockdep_assert_held(&ctx->mutex);
5389 
5390 	values = kzalloc(event->read_size, GFP_KERNEL);
5391 	if (!values)
5392 		return -ENOMEM;
5393 
5394 	values[0] = 1 + leader->nr_siblings;
5395 
5396 	/*
5397 	 * By locking the child_mutex of the leader we effectively
5398 	 * lock the child list of all siblings.. XXX explain how.
5399 	 */
5400 	mutex_lock(&leader->child_mutex);
5401 
5402 	ret = __perf_read_group_add(leader, read_format, values);
5403 	if (ret)
5404 		goto unlock;
5405 
5406 	list_for_each_entry(child, &leader->child_list, child_list) {
5407 		ret = __perf_read_group_add(child, read_format, values);
5408 		if (ret)
5409 			goto unlock;
5410 	}
5411 
5412 	mutex_unlock(&leader->child_mutex);
5413 
5414 	ret = event->read_size;
5415 	if (copy_to_user(buf, values, event->read_size))
5416 		ret = -EFAULT;
5417 	goto out;
5418 
5419 unlock:
5420 	mutex_unlock(&leader->child_mutex);
5421 out:
5422 	kfree(values);
5423 	return ret;
5424 }
5425 
5426 static int perf_read_one(struct perf_event *event,
5427 				 u64 read_format, char __user *buf)
5428 {
5429 	u64 enabled, running;
5430 	u64 values[4];
5431 	int n = 0;
5432 
5433 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5434 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5435 		values[n++] = enabled;
5436 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5437 		values[n++] = running;
5438 	if (read_format & PERF_FORMAT_ID)
5439 		values[n++] = primary_event_id(event);
5440 
5441 	if (copy_to_user(buf, values, n * sizeof(u64)))
5442 		return -EFAULT;
5443 
5444 	return n * sizeof(u64);
5445 }
5446 
5447 static bool is_event_hup(struct perf_event *event)
5448 {
5449 	bool no_children;
5450 
5451 	if (event->state > PERF_EVENT_STATE_EXIT)
5452 		return false;
5453 
5454 	mutex_lock(&event->child_mutex);
5455 	no_children = list_empty(&event->child_list);
5456 	mutex_unlock(&event->child_mutex);
5457 	return no_children;
5458 }
5459 
5460 /*
5461  * Read the performance event - simple non blocking version for now
5462  */
5463 static ssize_t
5464 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5465 {
5466 	u64 read_format = event->attr.read_format;
5467 	int ret;
5468 
5469 	/*
5470 	 * Return end-of-file for a read on an event that is in
5471 	 * error state (i.e. because it was pinned but it couldn't be
5472 	 * scheduled on to the CPU at some point).
5473 	 */
5474 	if (event->state == PERF_EVENT_STATE_ERROR)
5475 		return 0;
5476 
5477 	if (count < event->read_size)
5478 		return -ENOSPC;
5479 
5480 	WARN_ON_ONCE(event->ctx->parent_ctx);
5481 	if (read_format & PERF_FORMAT_GROUP)
5482 		ret = perf_read_group(event, read_format, buf);
5483 	else
5484 		ret = perf_read_one(event, read_format, buf);
5485 
5486 	return ret;
5487 }
5488 
5489 static ssize_t
5490 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5491 {
5492 	struct perf_event *event = file->private_data;
5493 	struct perf_event_context *ctx;
5494 	int ret;
5495 
5496 	ret = security_perf_event_read(event);
5497 	if (ret)
5498 		return ret;
5499 
5500 	ctx = perf_event_ctx_lock(event);
5501 	ret = __perf_read(event, buf, count);
5502 	perf_event_ctx_unlock(event, ctx);
5503 
5504 	return ret;
5505 }
5506 
5507 static __poll_t perf_poll(struct file *file, poll_table *wait)
5508 {
5509 	struct perf_event *event = file->private_data;
5510 	struct perf_buffer *rb;
5511 	__poll_t events = EPOLLHUP;
5512 
5513 	poll_wait(file, &event->waitq, wait);
5514 
5515 	if (is_event_hup(event))
5516 		return events;
5517 
5518 	/*
5519 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5520 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5521 	 */
5522 	mutex_lock(&event->mmap_mutex);
5523 	rb = event->rb;
5524 	if (rb)
5525 		events = atomic_xchg(&rb->poll, 0);
5526 	mutex_unlock(&event->mmap_mutex);
5527 	return events;
5528 }
5529 
5530 static void _perf_event_reset(struct perf_event *event)
5531 {
5532 	(void)perf_event_read(event, false);
5533 	local64_set(&event->count, 0);
5534 	perf_event_update_userpage(event);
5535 }
5536 
5537 /* Assume it's not an event with inherit set. */
5538 u64 perf_event_pause(struct perf_event *event, bool reset)
5539 {
5540 	struct perf_event_context *ctx;
5541 	u64 count;
5542 
5543 	ctx = perf_event_ctx_lock(event);
5544 	WARN_ON_ONCE(event->attr.inherit);
5545 	_perf_event_disable(event);
5546 	count = local64_read(&event->count);
5547 	if (reset)
5548 		local64_set(&event->count, 0);
5549 	perf_event_ctx_unlock(event, ctx);
5550 
5551 	return count;
5552 }
5553 EXPORT_SYMBOL_GPL(perf_event_pause);
5554 
5555 /*
5556  * Holding the top-level event's child_mutex means that any
5557  * descendant process that has inherited this event will block
5558  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5559  * task existence requirements of perf_event_enable/disable.
5560  */
5561 static void perf_event_for_each_child(struct perf_event *event,
5562 					void (*func)(struct perf_event *))
5563 {
5564 	struct perf_event *child;
5565 
5566 	WARN_ON_ONCE(event->ctx->parent_ctx);
5567 
5568 	mutex_lock(&event->child_mutex);
5569 	func(event);
5570 	list_for_each_entry(child, &event->child_list, child_list)
5571 		func(child);
5572 	mutex_unlock(&event->child_mutex);
5573 }
5574 
5575 static void perf_event_for_each(struct perf_event *event,
5576 				  void (*func)(struct perf_event *))
5577 {
5578 	struct perf_event_context *ctx = event->ctx;
5579 	struct perf_event *sibling;
5580 
5581 	lockdep_assert_held(&ctx->mutex);
5582 
5583 	event = event->group_leader;
5584 
5585 	perf_event_for_each_child(event, func);
5586 	for_each_sibling_event(sibling, event)
5587 		perf_event_for_each_child(sibling, func);
5588 }
5589 
5590 static void __perf_event_period(struct perf_event *event,
5591 				struct perf_cpu_context *cpuctx,
5592 				struct perf_event_context *ctx,
5593 				void *info)
5594 {
5595 	u64 value = *((u64 *)info);
5596 	bool active;
5597 
5598 	if (event->attr.freq) {
5599 		event->attr.sample_freq = value;
5600 	} else {
5601 		event->attr.sample_period = value;
5602 		event->hw.sample_period = value;
5603 	}
5604 
5605 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5606 	if (active) {
5607 		perf_pmu_disable(ctx->pmu);
5608 		/*
5609 		 * We could be throttled; unthrottle now to avoid the tick
5610 		 * trying to unthrottle while we already re-started the event.
5611 		 */
5612 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5613 			event->hw.interrupts = 0;
5614 			perf_log_throttle(event, 1);
5615 		}
5616 		event->pmu->stop(event, PERF_EF_UPDATE);
5617 	}
5618 
5619 	local64_set(&event->hw.period_left, 0);
5620 
5621 	if (active) {
5622 		event->pmu->start(event, PERF_EF_RELOAD);
5623 		perf_pmu_enable(ctx->pmu);
5624 	}
5625 }
5626 
5627 static int perf_event_check_period(struct perf_event *event, u64 value)
5628 {
5629 	return event->pmu->check_period(event, value);
5630 }
5631 
5632 static int _perf_event_period(struct perf_event *event, u64 value)
5633 {
5634 	if (!is_sampling_event(event))
5635 		return -EINVAL;
5636 
5637 	if (!value)
5638 		return -EINVAL;
5639 
5640 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5641 		return -EINVAL;
5642 
5643 	if (perf_event_check_period(event, value))
5644 		return -EINVAL;
5645 
5646 	if (!event->attr.freq && (value & (1ULL << 63)))
5647 		return -EINVAL;
5648 
5649 	event_function_call(event, __perf_event_period, &value);
5650 
5651 	return 0;
5652 }
5653 
5654 int perf_event_period(struct perf_event *event, u64 value)
5655 {
5656 	struct perf_event_context *ctx;
5657 	int ret;
5658 
5659 	ctx = perf_event_ctx_lock(event);
5660 	ret = _perf_event_period(event, value);
5661 	perf_event_ctx_unlock(event, ctx);
5662 
5663 	return ret;
5664 }
5665 EXPORT_SYMBOL_GPL(perf_event_period);
5666 
5667 static const struct file_operations perf_fops;
5668 
5669 static inline int perf_fget_light(int fd, struct fd *p)
5670 {
5671 	struct fd f = fdget(fd);
5672 	if (!f.file)
5673 		return -EBADF;
5674 
5675 	if (f.file->f_op != &perf_fops) {
5676 		fdput(f);
5677 		return -EBADF;
5678 	}
5679 	*p = f;
5680 	return 0;
5681 }
5682 
5683 static int perf_event_set_output(struct perf_event *event,
5684 				 struct perf_event *output_event);
5685 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5686 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5687 			  struct perf_event_attr *attr);
5688 
5689 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5690 {
5691 	void (*func)(struct perf_event *);
5692 	u32 flags = arg;
5693 
5694 	switch (cmd) {
5695 	case PERF_EVENT_IOC_ENABLE:
5696 		func = _perf_event_enable;
5697 		break;
5698 	case PERF_EVENT_IOC_DISABLE:
5699 		func = _perf_event_disable;
5700 		break;
5701 	case PERF_EVENT_IOC_RESET:
5702 		func = _perf_event_reset;
5703 		break;
5704 
5705 	case PERF_EVENT_IOC_REFRESH:
5706 		return _perf_event_refresh(event, arg);
5707 
5708 	case PERF_EVENT_IOC_PERIOD:
5709 	{
5710 		u64 value;
5711 
5712 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5713 			return -EFAULT;
5714 
5715 		return _perf_event_period(event, value);
5716 	}
5717 	case PERF_EVENT_IOC_ID:
5718 	{
5719 		u64 id = primary_event_id(event);
5720 
5721 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5722 			return -EFAULT;
5723 		return 0;
5724 	}
5725 
5726 	case PERF_EVENT_IOC_SET_OUTPUT:
5727 	{
5728 		int ret;
5729 		if (arg != -1) {
5730 			struct perf_event *output_event;
5731 			struct fd output;
5732 			ret = perf_fget_light(arg, &output);
5733 			if (ret)
5734 				return ret;
5735 			output_event = output.file->private_data;
5736 			ret = perf_event_set_output(event, output_event);
5737 			fdput(output);
5738 		} else {
5739 			ret = perf_event_set_output(event, NULL);
5740 		}
5741 		return ret;
5742 	}
5743 
5744 	case PERF_EVENT_IOC_SET_FILTER:
5745 		return perf_event_set_filter(event, (void __user *)arg);
5746 
5747 	case PERF_EVENT_IOC_SET_BPF:
5748 	{
5749 		struct bpf_prog *prog;
5750 		int err;
5751 
5752 		prog = bpf_prog_get(arg);
5753 		if (IS_ERR(prog))
5754 			return PTR_ERR(prog);
5755 
5756 		err = perf_event_set_bpf_prog(event, prog, 0);
5757 		if (err) {
5758 			bpf_prog_put(prog);
5759 			return err;
5760 		}
5761 
5762 		return 0;
5763 	}
5764 
5765 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5766 		struct perf_buffer *rb;
5767 
5768 		rcu_read_lock();
5769 		rb = rcu_dereference(event->rb);
5770 		if (!rb || !rb->nr_pages) {
5771 			rcu_read_unlock();
5772 			return -EINVAL;
5773 		}
5774 		rb_toggle_paused(rb, !!arg);
5775 		rcu_read_unlock();
5776 		return 0;
5777 	}
5778 
5779 	case PERF_EVENT_IOC_QUERY_BPF:
5780 		return perf_event_query_prog_array(event, (void __user *)arg);
5781 
5782 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5783 		struct perf_event_attr new_attr;
5784 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5785 					 &new_attr);
5786 
5787 		if (err)
5788 			return err;
5789 
5790 		return perf_event_modify_attr(event,  &new_attr);
5791 	}
5792 	default:
5793 		return -ENOTTY;
5794 	}
5795 
5796 	if (flags & PERF_IOC_FLAG_GROUP)
5797 		perf_event_for_each(event, func);
5798 	else
5799 		perf_event_for_each_child(event, func);
5800 
5801 	return 0;
5802 }
5803 
5804 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5805 {
5806 	struct perf_event *event = file->private_data;
5807 	struct perf_event_context *ctx;
5808 	long ret;
5809 
5810 	/* Treat ioctl like writes as it is likely a mutating operation. */
5811 	ret = security_perf_event_write(event);
5812 	if (ret)
5813 		return ret;
5814 
5815 	ctx = perf_event_ctx_lock(event);
5816 	ret = _perf_ioctl(event, cmd, arg);
5817 	perf_event_ctx_unlock(event, ctx);
5818 
5819 	return ret;
5820 }
5821 
5822 #ifdef CONFIG_COMPAT
5823 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5824 				unsigned long arg)
5825 {
5826 	switch (_IOC_NR(cmd)) {
5827 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5828 	case _IOC_NR(PERF_EVENT_IOC_ID):
5829 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5830 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5831 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5832 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5833 			cmd &= ~IOCSIZE_MASK;
5834 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5835 		}
5836 		break;
5837 	}
5838 	return perf_ioctl(file, cmd, arg);
5839 }
5840 #else
5841 # define perf_compat_ioctl NULL
5842 #endif
5843 
5844 int perf_event_task_enable(void)
5845 {
5846 	struct perf_event_context *ctx;
5847 	struct perf_event *event;
5848 
5849 	mutex_lock(&current->perf_event_mutex);
5850 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5851 		ctx = perf_event_ctx_lock(event);
5852 		perf_event_for_each_child(event, _perf_event_enable);
5853 		perf_event_ctx_unlock(event, ctx);
5854 	}
5855 	mutex_unlock(&current->perf_event_mutex);
5856 
5857 	return 0;
5858 }
5859 
5860 int perf_event_task_disable(void)
5861 {
5862 	struct perf_event_context *ctx;
5863 	struct perf_event *event;
5864 
5865 	mutex_lock(&current->perf_event_mutex);
5866 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5867 		ctx = perf_event_ctx_lock(event);
5868 		perf_event_for_each_child(event, _perf_event_disable);
5869 		perf_event_ctx_unlock(event, ctx);
5870 	}
5871 	mutex_unlock(&current->perf_event_mutex);
5872 
5873 	return 0;
5874 }
5875 
5876 static int perf_event_index(struct perf_event *event)
5877 {
5878 	if (event->hw.state & PERF_HES_STOPPED)
5879 		return 0;
5880 
5881 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5882 		return 0;
5883 
5884 	return event->pmu->event_idx(event);
5885 }
5886 
5887 static void perf_event_init_userpage(struct perf_event *event)
5888 {
5889 	struct perf_event_mmap_page *userpg;
5890 	struct perf_buffer *rb;
5891 
5892 	rcu_read_lock();
5893 	rb = rcu_dereference(event->rb);
5894 	if (!rb)
5895 		goto unlock;
5896 
5897 	userpg = rb->user_page;
5898 
5899 	/* Allow new userspace to detect that bit 0 is deprecated */
5900 	userpg->cap_bit0_is_deprecated = 1;
5901 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5902 	userpg->data_offset = PAGE_SIZE;
5903 	userpg->data_size = perf_data_size(rb);
5904 
5905 unlock:
5906 	rcu_read_unlock();
5907 }
5908 
5909 void __weak arch_perf_update_userpage(
5910 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5911 {
5912 }
5913 
5914 /*
5915  * Callers need to ensure there can be no nesting of this function, otherwise
5916  * the seqlock logic goes bad. We can not serialize this because the arch
5917  * code calls this from NMI context.
5918  */
5919 void perf_event_update_userpage(struct perf_event *event)
5920 {
5921 	struct perf_event_mmap_page *userpg;
5922 	struct perf_buffer *rb;
5923 	u64 enabled, running, now;
5924 
5925 	rcu_read_lock();
5926 	rb = rcu_dereference(event->rb);
5927 	if (!rb)
5928 		goto unlock;
5929 
5930 	/*
5931 	 * compute total_time_enabled, total_time_running
5932 	 * based on snapshot values taken when the event
5933 	 * was last scheduled in.
5934 	 *
5935 	 * we cannot simply called update_context_time()
5936 	 * because of locking issue as we can be called in
5937 	 * NMI context
5938 	 */
5939 	calc_timer_values(event, &now, &enabled, &running);
5940 
5941 	userpg = rb->user_page;
5942 	/*
5943 	 * Disable preemption to guarantee consistent time stamps are stored to
5944 	 * the user page.
5945 	 */
5946 	preempt_disable();
5947 	++userpg->lock;
5948 	barrier();
5949 	userpg->index = perf_event_index(event);
5950 	userpg->offset = perf_event_count(event);
5951 	if (userpg->index)
5952 		userpg->offset -= local64_read(&event->hw.prev_count);
5953 
5954 	userpg->time_enabled = enabled +
5955 			atomic64_read(&event->child_total_time_enabled);
5956 
5957 	userpg->time_running = running +
5958 			atomic64_read(&event->child_total_time_running);
5959 
5960 	arch_perf_update_userpage(event, userpg, now);
5961 
5962 	barrier();
5963 	++userpg->lock;
5964 	preempt_enable();
5965 unlock:
5966 	rcu_read_unlock();
5967 }
5968 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5969 
5970 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5971 {
5972 	struct perf_event *event = vmf->vma->vm_file->private_data;
5973 	struct perf_buffer *rb;
5974 	vm_fault_t ret = VM_FAULT_SIGBUS;
5975 
5976 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5977 		if (vmf->pgoff == 0)
5978 			ret = 0;
5979 		return ret;
5980 	}
5981 
5982 	rcu_read_lock();
5983 	rb = rcu_dereference(event->rb);
5984 	if (!rb)
5985 		goto unlock;
5986 
5987 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5988 		goto unlock;
5989 
5990 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5991 	if (!vmf->page)
5992 		goto unlock;
5993 
5994 	get_page(vmf->page);
5995 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5996 	vmf->page->index   = vmf->pgoff;
5997 
5998 	ret = 0;
5999 unlock:
6000 	rcu_read_unlock();
6001 
6002 	return ret;
6003 }
6004 
6005 static void ring_buffer_attach(struct perf_event *event,
6006 			       struct perf_buffer *rb)
6007 {
6008 	struct perf_buffer *old_rb = NULL;
6009 	unsigned long flags;
6010 
6011 	WARN_ON_ONCE(event->parent);
6012 
6013 	if (event->rb) {
6014 		/*
6015 		 * Should be impossible, we set this when removing
6016 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6017 		 */
6018 		WARN_ON_ONCE(event->rcu_pending);
6019 
6020 		old_rb = event->rb;
6021 		spin_lock_irqsave(&old_rb->event_lock, flags);
6022 		list_del_rcu(&event->rb_entry);
6023 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6024 
6025 		event->rcu_batches = get_state_synchronize_rcu();
6026 		event->rcu_pending = 1;
6027 	}
6028 
6029 	if (rb) {
6030 		if (event->rcu_pending) {
6031 			cond_synchronize_rcu(event->rcu_batches);
6032 			event->rcu_pending = 0;
6033 		}
6034 
6035 		spin_lock_irqsave(&rb->event_lock, flags);
6036 		list_add_rcu(&event->rb_entry, &rb->event_list);
6037 		spin_unlock_irqrestore(&rb->event_lock, flags);
6038 	}
6039 
6040 	/*
6041 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6042 	 * before swizzling the event::rb pointer; if it's getting
6043 	 * unmapped, its aux_mmap_count will be 0 and it won't
6044 	 * restart. See the comment in __perf_pmu_output_stop().
6045 	 *
6046 	 * Data will inevitably be lost when set_output is done in
6047 	 * mid-air, but then again, whoever does it like this is
6048 	 * not in for the data anyway.
6049 	 */
6050 	if (has_aux(event))
6051 		perf_event_stop(event, 0);
6052 
6053 	rcu_assign_pointer(event->rb, rb);
6054 
6055 	if (old_rb) {
6056 		ring_buffer_put(old_rb);
6057 		/*
6058 		 * Since we detached before setting the new rb, so that we
6059 		 * could attach the new rb, we could have missed a wakeup.
6060 		 * Provide it now.
6061 		 */
6062 		wake_up_all(&event->waitq);
6063 	}
6064 }
6065 
6066 static void ring_buffer_wakeup(struct perf_event *event)
6067 {
6068 	struct perf_buffer *rb;
6069 
6070 	if (event->parent)
6071 		event = event->parent;
6072 
6073 	rcu_read_lock();
6074 	rb = rcu_dereference(event->rb);
6075 	if (rb) {
6076 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6077 			wake_up_all(&event->waitq);
6078 	}
6079 	rcu_read_unlock();
6080 }
6081 
6082 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6083 {
6084 	struct perf_buffer *rb;
6085 
6086 	if (event->parent)
6087 		event = event->parent;
6088 
6089 	rcu_read_lock();
6090 	rb = rcu_dereference(event->rb);
6091 	if (rb) {
6092 		if (!refcount_inc_not_zero(&rb->refcount))
6093 			rb = NULL;
6094 	}
6095 	rcu_read_unlock();
6096 
6097 	return rb;
6098 }
6099 
6100 void ring_buffer_put(struct perf_buffer *rb)
6101 {
6102 	if (!refcount_dec_and_test(&rb->refcount))
6103 		return;
6104 
6105 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6106 
6107 	call_rcu(&rb->rcu_head, rb_free_rcu);
6108 }
6109 
6110 static void perf_mmap_open(struct vm_area_struct *vma)
6111 {
6112 	struct perf_event *event = vma->vm_file->private_data;
6113 
6114 	atomic_inc(&event->mmap_count);
6115 	atomic_inc(&event->rb->mmap_count);
6116 
6117 	if (vma->vm_pgoff)
6118 		atomic_inc(&event->rb->aux_mmap_count);
6119 
6120 	if (event->pmu->event_mapped)
6121 		event->pmu->event_mapped(event, vma->vm_mm);
6122 }
6123 
6124 static void perf_pmu_output_stop(struct perf_event *event);
6125 
6126 /*
6127  * A buffer can be mmap()ed multiple times; either directly through the same
6128  * event, or through other events by use of perf_event_set_output().
6129  *
6130  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6131  * the buffer here, where we still have a VM context. This means we need
6132  * to detach all events redirecting to us.
6133  */
6134 static void perf_mmap_close(struct vm_area_struct *vma)
6135 {
6136 	struct perf_event *event = vma->vm_file->private_data;
6137 	struct perf_buffer *rb = ring_buffer_get(event);
6138 	struct user_struct *mmap_user = rb->mmap_user;
6139 	int mmap_locked = rb->mmap_locked;
6140 	unsigned long size = perf_data_size(rb);
6141 	bool detach_rest = false;
6142 
6143 	if (event->pmu->event_unmapped)
6144 		event->pmu->event_unmapped(event, vma->vm_mm);
6145 
6146 	/*
6147 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6148 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6149 	 * serialize with perf_mmap here.
6150 	 */
6151 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6152 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6153 		/*
6154 		 * Stop all AUX events that are writing to this buffer,
6155 		 * so that we can free its AUX pages and corresponding PMU
6156 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6157 		 * they won't start any more (see perf_aux_output_begin()).
6158 		 */
6159 		perf_pmu_output_stop(event);
6160 
6161 		/* now it's safe to free the pages */
6162 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6163 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6164 
6165 		/* this has to be the last one */
6166 		rb_free_aux(rb);
6167 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6168 
6169 		mutex_unlock(&event->mmap_mutex);
6170 	}
6171 
6172 	if (atomic_dec_and_test(&rb->mmap_count))
6173 		detach_rest = true;
6174 
6175 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6176 		goto out_put;
6177 
6178 	ring_buffer_attach(event, NULL);
6179 	mutex_unlock(&event->mmap_mutex);
6180 
6181 	/* If there's still other mmap()s of this buffer, we're done. */
6182 	if (!detach_rest)
6183 		goto out_put;
6184 
6185 	/*
6186 	 * No other mmap()s, detach from all other events that might redirect
6187 	 * into the now unreachable buffer. Somewhat complicated by the
6188 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6189 	 */
6190 again:
6191 	rcu_read_lock();
6192 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6193 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6194 			/*
6195 			 * This event is en-route to free_event() which will
6196 			 * detach it and remove it from the list.
6197 			 */
6198 			continue;
6199 		}
6200 		rcu_read_unlock();
6201 
6202 		mutex_lock(&event->mmap_mutex);
6203 		/*
6204 		 * Check we didn't race with perf_event_set_output() which can
6205 		 * swizzle the rb from under us while we were waiting to
6206 		 * acquire mmap_mutex.
6207 		 *
6208 		 * If we find a different rb; ignore this event, a next
6209 		 * iteration will no longer find it on the list. We have to
6210 		 * still restart the iteration to make sure we're not now
6211 		 * iterating the wrong list.
6212 		 */
6213 		if (event->rb == rb)
6214 			ring_buffer_attach(event, NULL);
6215 
6216 		mutex_unlock(&event->mmap_mutex);
6217 		put_event(event);
6218 
6219 		/*
6220 		 * Restart the iteration; either we're on the wrong list or
6221 		 * destroyed its integrity by doing a deletion.
6222 		 */
6223 		goto again;
6224 	}
6225 	rcu_read_unlock();
6226 
6227 	/*
6228 	 * It could be there's still a few 0-ref events on the list; they'll
6229 	 * get cleaned up by free_event() -- they'll also still have their
6230 	 * ref on the rb and will free it whenever they are done with it.
6231 	 *
6232 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6233 	 * undo the VM accounting.
6234 	 */
6235 
6236 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6237 			&mmap_user->locked_vm);
6238 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6239 	free_uid(mmap_user);
6240 
6241 out_put:
6242 	ring_buffer_put(rb); /* could be last */
6243 }
6244 
6245 static const struct vm_operations_struct perf_mmap_vmops = {
6246 	.open		= perf_mmap_open,
6247 	.close		= perf_mmap_close, /* non mergeable */
6248 	.fault		= perf_mmap_fault,
6249 	.page_mkwrite	= perf_mmap_fault,
6250 };
6251 
6252 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6253 {
6254 	struct perf_event *event = file->private_data;
6255 	unsigned long user_locked, user_lock_limit;
6256 	struct user_struct *user = current_user();
6257 	struct perf_buffer *rb = NULL;
6258 	unsigned long locked, lock_limit;
6259 	unsigned long vma_size;
6260 	unsigned long nr_pages;
6261 	long user_extra = 0, extra = 0;
6262 	int ret = 0, flags = 0;
6263 
6264 	/*
6265 	 * Don't allow mmap() of inherited per-task counters. This would
6266 	 * create a performance issue due to all children writing to the
6267 	 * same rb.
6268 	 */
6269 	if (event->cpu == -1 && event->attr.inherit)
6270 		return -EINVAL;
6271 
6272 	if (!(vma->vm_flags & VM_SHARED))
6273 		return -EINVAL;
6274 
6275 	ret = security_perf_event_read(event);
6276 	if (ret)
6277 		return ret;
6278 
6279 	vma_size = vma->vm_end - vma->vm_start;
6280 
6281 	if (vma->vm_pgoff == 0) {
6282 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6283 	} else {
6284 		/*
6285 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6286 		 * mapped, all subsequent mappings should have the same size
6287 		 * and offset. Must be above the normal perf buffer.
6288 		 */
6289 		u64 aux_offset, aux_size;
6290 
6291 		if (!event->rb)
6292 			return -EINVAL;
6293 
6294 		nr_pages = vma_size / PAGE_SIZE;
6295 
6296 		mutex_lock(&event->mmap_mutex);
6297 		ret = -EINVAL;
6298 
6299 		rb = event->rb;
6300 		if (!rb)
6301 			goto aux_unlock;
6302 
6303 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6304 		aux_size = READ_ONCE(rb->user_page->aux_size);
6305 
6306 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6307 			goto aux_unlock;
6308 
6309 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6310 			goto aux_unlock;
6311 
6312 		/* already mapped with a different offset */
6313 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6314 			goto aux_unlock;
6315 
6316 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6317 			goto aux_unlock;
6318 
6319 		/* already mapped with a different size */
6320 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6321 			goto aux_unlock;
6322 
6323 		if (!is_power_of_2(nr_pages))
6324 			goto aux_unlock;
6325 
6326 		if (!atomic_inc_not_zero(&rb->mmap_count))
6327 			goto aux_unlock;
6328 
6329 		if (rb_has_aux(rb)) {
6330 			atomic_inc(&rb->aux_mmap_count);
6331 			ret = 0;
6332 			goto unlock;
6333 		}
6334 
6335 		atomic_set(&rb->aux_mmap_count, 1);
6336 		user_extra = nr_pages;
6337 
6338 		goto accounting;
6339 	}
6340 
6341 	/*
6342 	 * If we have rb pages ensure they're a power-of-two number, so we
6343 	 * can do bitmasks instead of modulo.
6344 	 */
6345 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6346 		return -EINVAL;
6347 
6348 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6349 		return -EINVAL;
6350 
6351 	WARN_ON_ONCE(event->ctx->parent_ctx);
6352 again:
6353 	mutex_lock(&event->mmap_mutex);
6354 	if (event->rb) {
6355 		if (event->rb->nr_pages != nr_pages) {
6356 			ret = -EINVAL;
6357 			goto unlock;
6358 		}
6359 
6360 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6361 			/*
6362 			 * Raced against perf_mmap_close() through
6363 			 * perf_event_set_output(). Try again, hope for better
6364 			 * luck.
6365 			 */
6366 			mutex_unlock(&event->mmap_mutex);
6367 			goto again;
6368 		}
6369 
6370 		goto unlock;
6371 	}
6372 
6373 	user_extra = nr_pages + 1;
6374 
6375 accounting:
6376 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6377 
6378 	/*
6379 	 * Increase the limit linearly with more CPUs:
6380 	 */
6381 	user_lock_limit *= num_online_cpus();
6382 
6383 	user_locked = atomic_long_read(&user->locked_vm);
6384 
6385 	/*
6386 	 * sysctl_perf_event_mlock may have changed, so that
6387 	 *     user->locked_vm > user_lock_limit
6388 	 */
6389 	if (user_locked > user_lock_limit)
6390 		user_locked = user_lock_limit;
6391 	user_locked += user_extra;
6392 
6393 	if (user_locked > user_lock_limit) {
6394 		/*
6395 		 * charge locked_vm until it hits user_lock_limit;
6396 		 * charge the rest from pinned_vm
6397 		 */
6398 		extra = user_locked - user_lock_limit;
6399 		user_extra -= extra;
6400 	}
6401 
6402 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6403 	lock_limit >>= PAGE_SHIFT;
6404 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6405 
6406 	if ((locked > lock_limit) && perf_is_paranoid() &&
6407 		!capable(CAP_IPC_LOCK)) {
6408 		ret = -EPERM;
6409 		goto unlock;
6410 	}
6411 
6412 	WARN_ON(!rb && event->rb);
6413 
6414 	if (vma->vm_flags & VM_WRITE)
6415 		flags |= RING_BUFFER_WRITABLE;
6416 
6417 	if (!rb) {
6418 		rb = rb_alloc(nr_pages,
6419 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6420 			      event->cpu, flags);
6421 
6422 		if (!rb) {
6423 			ret = -ENOMEM;
6424 			goto unlock;
6425 		}
6426 
6427 		atomic_set(&rb->mmap_count, 1);
6428 		rb->mmap_user = get_current_user();
6429 		rb->mmap_locked = extra;
6430 
6431 		ring_buffer_attach(event, rb);
6432 
6433 		perf_event_update_time(event);
6434 		perf_event_init_userpage(event);
6435 		perf_event_update_userpage(event);
6436 	} else {
6437 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6438 				   event->attr.aux_watermark, flags);
6439 		if (!ret)
6440 			rb->aux_mmap_locked = extra;
6441 	}
6442 
6443 unlock:
6444 	if (!ret) {
6445 		atomic_long_add(user_extra, &user->locked_vm);
6446 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6447 
6448 		atomic_inc(&event->mmap_count);
6449 	} else if (rb) {
6450 		atomic_dec(&rb->mmap_count);
6451 	}
6452 aux_unlock:
6453 	mutex_unlock(&event->mmap_mutex);
6454 
6455 	/*
6456 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6457 	 * vma.
6458 	 */
6459 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6460 	vma->vm_ops = &perf_mmap_vmops;
6461 
6462 	if (event->pmu->event_mapped)
6463 		event->pmu->event_mapped(event, vma->vm_mm);
6464 
6465 	return ret;
6466 }
6467 
6468 static int perf_fasync(int fd, struct file *filp, int on)
6469 {
6470 	struct inode *inode = file_inode(filp);
6471 	struct perf_event *event = filp->private_data;
6472 	int retval;
6473 
6474 	inode_lock(inode);
6475 	retval = fasync_helper(fd, filp, on, &event->fasync);
6476 	inode_unlock(inode);
6477 
6478 	if (retval < 0)
6479 		return retval;
6480 
6481 	return 0;
6482 }
6483 
6484 static const struct file_operations perf_fops = {
6485 	.llseek			= no_llseek,
6486 	.release		= perf_release,
6487 	.read			= perf_read,
6488 	.poll			= perf_poll,
6489 	.unlocked_ioctl		= perf_ioctl,
6490 	.compat_ioctl		= perf_compat_ioctl,
6491 	.mmap			= perf_mmap,
6492 	.fasync			= perf_fasync,
6493 };
6494 
6495 /*
6496  * Perf event wakeup
6497  *
6498  * If there's data, ensure we set the poll() state and publish everything
6499  * to user-space before waking everybody up.
6500  */
6501 
6502 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6503 {
6504 	/* only the parent has fasync state */
6505 	if (event->parent)
6506 		event = event->parent;
6507 	return &event->fasync;
6508 }
6509 
6510 void perf_event_wakeup(struct perf_event *event)
6511 {
6512 	ring_buffer_wakeup(event);
6513 
6514 	if (event->pending_kill) {
6515 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6516 		event->pending_kill = 0;
6517 	}
6518 }
6519 
6520 static void perf_sigtrap(struct perf_event *event)
6521 {
6522 	/*
6523 	 * We'd expect this to only occur if the irq_work is delayed and either
6524 	 * ctx->task or current has changed in the meantime. This can be the
6525 	 * case on architectures that do not implement arch_irq_work_raise().
6526 	 */
6527 	if (WARN_ON_ONCE(event->ctx->task != current))
6528 		return;
6529 
6530 	/*
6531 	 * perf_pending_event() can race with the task exiting.
6532 	 */
6533 	if (current->flags & PF_EXITING)
6534 		return;
6535 
6536 	force_sig_perf((void __user *)event->pending_addr,
6537 		       event->attr.type, event->attr.sig_data);
6538 }
6539 
6540 static void perf_pending_event_disable(struct perf_event *event)
6541 {
6542 	int cpu = READ_ONCE(event->pending_disable);
6543 
6544 	if (cpu < 0)
6545 		return;
6546 
6547 	if (cpu == smp_processor_id()) {
6548 		WRITE_ONCE(event->pending_disable, -1);
6549 
6550 		if (event->attr.sigtrap) {
6551 			perf_sigtrap(event);
6552 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6553 			return;
6554 		}
6555 
6556 		perf_event_disable_local(event);
6557 		return;
6558 	}
6559 
6560 	/*
6561 	 *  CPU-A			CPU-B
6562 	 *
6563 	 *  perf_event_disable_inatomic()
6564 	 *    @pending_disable = CPU-A;
6565 	 *    irq_work_queue();
6566 	 *
6567 	 *  sched-out
6568 	 *    @pending_disable = -1;
6569 	 *
6570 	 *				sched-in
6571 	 *				perf_event_disable_inatomic()
6572 	 *				  @pending_disable = CPU-B;
6573 	 *				  irq_work_queue(); // FAILS
6574 	 *
6575 	 *  irq_work_run()
6576 	 *    perf_pending_event()
6577 	 *
6578 	 * But the event runs on CPU-B and wants disabling there.
6579 	 */
6580 	irq_work_queue_on(&event->pending, cpu);
6581 }
6582 
6583 static void perf_pending_event(struct irq_work *entry)
6584 {
6585 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6586 	int rctx;
6587 
6588 	rctx = perf_swevent_get_recursion_context();
6589 	/*
6590 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6591 	 * and we won't recurse 'further'.
6592 	 */
6593 
6594 	perf_pending_event_disable(event);
6595 
6596 	if (event->pending_wakeup) {
6597 		event->pending_wakeup = 0;
6598 		perf_event_wakeup(event);
6599 	}
6600 
6601 	if (rctx >= 0)
6602 		perf_swevent_put_recursion_context(rctx);
6603 }
6604 
6605 #ifdef CONFIG_GUEST_PERF_EVENTS
6606 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6607 
6608 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6609 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6610 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6611 
6612 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6613 {
6614 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6615 		return;
6616 
6617 	rcu_assign_pointer(perf_guest_cbs, cbs);
6618 	static_call_update(__perf_guest_state, cbs->state);
6619 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6620 
6621 	/* Implementing ->handle_intel_pt_intr is optional. */
6622 	if (cbs->handle_intel_pt_intr)
6623 		static_call_update(__perf_guest_handle_intel_pt_intr,
6624 				   cbs->handle_intel_pt_intr);
6625 }
6626 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6627 
6628 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6629 {
6630 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6631 		return;
6632 
6633 	rcu_assign_pointer(perf_guest_cbs, NULL);
6634 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6635 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6636 	static_call_update(__perf_guest_handle_intel_pt_intr,
6637 			   (void *)&__static_call_return0);
6638 	synchronize_rcu();
6639 }
6640 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6641 #endif
6642 
6643 static void
6644 perf_output_sample_regs(struct perf_output_handle *handle,
6645 			struct pt_regs *regs, u64 mask)
6646 {
6647 	int bit;
6648 	DECLARE_BITMAP(_mask, 64);
6649 
6650 	bitmap_from_u64(_mask, mask);
6651 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6652 		u64 val;
6653 
6654 		val = perf_reg_value(regs, bit);
6655 		perf_output_put(handle, val);
6656 	}
6657 }
6658 
6659 static void perf_sample_regs_user(struct perf_regs *regs_user,
6660 				  struct pt_regs *regs)
6661 {
6662 	if (user_mode(regs)) {
6663 		regs_user->abi = perf_reg_abi(current);
6664 		regs_user->regs = regs;
6665 	} else if (!(current->flags & PF_KTHREAD)) {
6666 		perf_get_regs_user(regs_user, regs);
6667 	} else {
6668 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6669 		regs_user->regs = NULL;
6670 	}
6671 }
6672 
6673 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6674 				  struct pt_regs *regs)
6675 {
6676 	regs_intr->regs = regs;
6677 	regs_intr->abi  = perf_reg_abi(current);
6678 }
6679 
6680 
6681 /*
6682  * Get remaining task size from user stack pointer.
6683  *
6684  * It'd be better to take stack vma map and limit this more
6685  * precisely, but there's no way to get it safely under interrupt,
6686  * so using TASK_SIZE as limit.
6687  */
6688 static u64 perf_ustack_task_size(struct pt_regs *regs)
6689 {
6690 	unsigned long addr = perf_user_stack_pointer(regs);
6691 
6692 	if (!addr || addr >= TASK_SIZE)
6693 		return 0;
6694 
6695 	return TASK_SIZE - addr;
6696 }
6697 
6698 static u16
6699 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6700 			struct pt_regs *regs)
6701 {
6702 	u64 task_size;
6703 
6704 	/* No regs, no stack pointer, no dump. */
6705 	if (!regs)
6706 		return 0;
6707 
6708 	/*
6709 	 * Check if we fit in with the requested stack size into the:
6710 	 * - TASK_SIZE
6711 	 *   If we don't, we limit the size to the TASK_SIZE.
6712 	 *
6713 	 * - remaining sample size
6714 	 *   If we don't, we customize the stack size to
6715 	 *   fit in to the remaining sample size.
6716 	 */
6717 
6718 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6719 	stack_size = min(stack_size, (u16) task_size);
6720 
6721 	/* Current header size plus static size and dynamic size. */
6722 	header_size += 2 * sizeof(u64);
6723 
6724 	/* Do we fit in with the current stack dump size? */
6725 	if ((u16) (header_size + stack_size) < header_size) {
6726 		/*
6727 		 * If we overflow the maximum size for the sample,
6728 		 * we customize the stack dump size to fit in.
6729 		 */
6730 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6731 		stack_size = round_up(stack_size, sizeof(u64));
6732 	}
6733 
6734 	return stack_size;
6735 }
6736 
6737 static void
6738 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6739 			  struct pt_regs *regs)
6740 {
6741 	/* Case of a kernel thread, nothing to dump */
6742 	if (!regs) {
6743 		u64 size = 0;
6744 		perf_output_put(handle, size);
6745 	} else {
6746 		unsigned long sp;
6747 		unsigned int rem;
6748 		u64 dyn_size;
6749 
6750 		/*
6751 		 * We dump:
6752 		 * static size
6753 		 *   - the size requested by user or the best one we can fit
6754 		 *     in to the sample max size
6755 		 * data
6756 		 *   - user stack dump data
6757 		 * dynamic size
6758 		 *   - the actual dumped size
6759 		 */
6760 
6761 		/* Static size. */
6762 		perf_output_put(handle, dump_size);
6763 
6764 		/* Data. */
6765 		sp = perf_user_stack_pointer(regs);
6766 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6767 		dyn_size = dump_size - rem;
6768 
6769 		perf_output_skip(handle, rem);
6770 
6771 		/* Dynamic size. */
6772 		perf_output_put(handle, dyn_size);
6773 	}
6774 }
6775 
6776 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6777 					  struct perf_sample_data *data,
6778 					  size_t size)
6779 {
6780 	struct perf_event *sampler = event->aux_event;
6781 	struct perf_buffer *rb;
6782 
6783 	data->aux_size = 0;
6784 
6785 	if (!sampler)
6786 		goto out;
6787 
6788 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6789 		goto out;
6790 
6791 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6792 		goto out;
6793 
6794 	rb = ring_buffer_get(sampler);
6795 	if (!rb)
6796 		goto out;
6797 
6798 	/*
6799 	 * If this is an NMI hit inside sampling code, don't take
6800 	 * the sample. See also perf_aux_sample_output().
6801 	 */
6802 	if (READ_ONCE(rb->aux_in_sampling)) {
6803 		data->aux_size = 0;
6804 	} else {
6805 		size = min_t(size_t, size, perf_aux_size(rb));
6806 		data->aux_size = ALIGN(size, sizeof(u64));
6807 	}
6808 	ring_buffer_put(rb);
6809 
6810 out:
6811 	return data->aux_size;
6812 }
6813 
6814 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6815                                  struct perf_event *event,
6816                                  struct perf_output_handle *handle,
6817                                  unsigned long size)
6818 {
6819 	unsigned long flags;
6820 	long ret;
6821 
6822 	/*
6823 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6824 	 * paths. If we start calling them in NMI context, they may race with
6825 	 * the IRQ ones, that is, for example, re-starting an event that's just
6826 	 * been stopped, which is why we're using a separate callback that
6827 	 * doesn't change the event state.
6828 	 *
6829 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6830 	 */
6831 	local_irq_save(flags);
6832 	/*
6833 	 * Guard against NMI hits inside the critical section;
6834 	 * see also perf_prepare_sample_aux().
6835 	 */
6836 	WRITE_ONCE(rb->aux_in_sampling, 1);
6837 	barrier();
6838 
6839 	ret = event->pmu->snapshot_aux(event, handle, size);
6840 
6841 	barrier();
6842 	WRITE_ONCE(rb->aux_in_sampling, 0);
6843 	local_irq_restore(flags);
6844 
6845 	return ret;
6846 }
6847 
6848 static void perf_aux_sample_output(struct perf_event *event,
6849 				   struct perf_output_handle *handle,
6850 				   struct perf_sample_data *data)
6851 {
6852 	struct perf_event *sampler = event->aux_event;
6853 	struct perf_buffer *rb;
6854 	unsigned long pad;
6855 	long size;
6856 
6857 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6858 		return;
6859 
6860 	rb = ring_buffer_get(sampler);
6861 	if (!rb)
6862 		return;
6863 
6864 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6865 
6866 	/*
6867 	 * An error here means that perf_output_copy() failed (returned a
6868 	 * non-zero surplus that it didn't copy), which in its current
6869 	 * enlightened implementation is not possible. If that changes, we'd
6870 	 * like to know.
6871 	 */
6872 	if (WARN_ON_ONCE(size < 0))
6873 		goto out_put;
6874 
6875 	/*
6876 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6877 	 * perf_prepare_sample_aux(), so should not be more than that.
6878 	 */
6879 	pad = data->aux_size - size;
6880 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6881 		pad = 8;
6882 
6883 	if (pad) {
6884 		u64 zero = 0;
6885 		perf_output_copy(handle, &zero, pad);
6886 	}
6887 
6888 out_put:
6889 	ring_buffer_put(rb);
6890 }
6891 
6892 static void __perf_event_header__init_id(struct perf_event_header *header,
6893 					 struct perf_sample_data *data,
6894 					 struct perf_event *event)
6895 {
6896 	u64 sample_type = event->attr.sample_type;
6897 
6898 	data->type = sample_type;
6899 	header->size += event->id_header_size;
6900 
6901 	if (sample_type & PERF_SAMPLE_TID) {
6902 		/* namespace issues */
6903 		data->tid_entry.pid = perf_event_pid(event, current);
6904 		data->tid_entry.tid = perf_event_tid(event, current);
6905 	}
6906 
6907 	if (sample_type & PERF_SAMPLE_TIME)
6908 		data->time = perf_event_clock(event);
6909 
6910 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6911 		data->id = primary_event_id(event);
6912 
6913 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6914 		data->stream_id = event->id;
6915 
6916 	if (sample_type & PERF_SAMPLE_CPU) {
6917 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6918 		data->cpu_entry.reserved = 0;
6919 	}
6920 }
6921 
6922 void perf_event_header__init_id(struct perf_event_header *header,
6923 				struct perf_sample_data *data,
6924 				struct perf_event *event)
6925 {
6926 	if (event->attr.sample_id_all)
6927 		__perf_event_header__init_id(header, data, event);
6928 }
6929 
6930 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6931 					   struct perf_sample_data *data)
6932 {
6933 	u64 sample_type = data->type;
6934 
6935 	if (sample_type & PERF_SAMPLE_TID)
6936 		perf_output_put(handle, data->tid_entry);
6937 
6938 	if (sample_type & PERF_SAMPLE_TIME)
6939 		perf_output_put(handle, data->time);
6940 
6941 	if (sample_type & PERF_SAMPLE_ID)
6942 		perf_output_put(handle, data->id);
6943 
6944 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6945 		perf_output_put(handle, data->stream_id);
6946 
6947 	if (sample_type & PERF_SAMPLE_CPU)
6948 		perf_output_put(handle, data->cpu_entry);
6949 
6950 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6951 		perf_output_put(handle, data->id);
6952 }
6953 
6954 void perf_event__output_id_sample(struct perf_event *event,
6955 				  struct perf_output_handle *handle,
6956 				  struct perf_sample_data *sample)
6957 {
6958 	if (event->attr.sample_id_all)
6959 		__perf_event__output_id_sample(handle, sample);
6960 }
6961 
6962 static void perf_output_read_one(struct perf_output_handle *handle,
6963 				 struct perf_event *event,
6964 				 u64 enabled, u64 running)
6965 {
6966 	u64 read_format = event->attr.read_format;
6967 	u64 values[4];
6968 	int n = 0;
6969 
6970 	values[n++] = perf_event_count(event);
6971 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6972 		values[n++] = enabled +
6973 			atomic64_read(&event->child_total_time_enabled);
6974 	}
6975 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6976 		values[n++] = running +
6977 			atomic64_read(&event->child_total_time_running);
6978 	}
6979 	if (read_format & PERF_FORMAT_ID)
6980 		values[n++] = primary_event_id(event);
6981 
6982 	__output_copy(handle, values, n * sizeof(u64));
6983 }
6984 
6985 static void perf_output_read_group(struct perf_output_handle *handle,
6986 			    struct perf_event *event,
6987 			    u64 enabled, u64 running)
6988 {
6989 	struct perf_event *leader = event->group_leader, *sub;
6990 	u64 read_format = event->attr.read_format;
6991 	u64 values[5];
6992 	int n = 0;
6993 
6994 	values[n++] = 1 + leader->nr_siblings;
6995 
6996 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6997 		values[n++] = enabled;
6998 
6999 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7000 		values[n++] = running;
7001 
7002 	if ((leader != event) &&
7003 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7004 		leader->pmu->read(leader);
7005 
7006 	values[n++] = perf_event_count(leader);
7007 	if (read_format & PERF_FORMAT_ID)
7008 		values[n++] = primary_event_id(leader);
7009 
7010 	__output_copy(handle, values, n * sizeof(u64));
7011 
7012 	for_each_sibling_event(sub, leader) {
7013 		n = 0;
7014 
7015 		if ((sub != event) &&
7016 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7017 			sub->pmu->read(sub);
7018 
7019 		values[n++] = perf_event_count(sub);
7020 		if (read_format & PERF_FORMAT_ID)
7021 			values[n++] = primary_event_id(sub);
7022 
7023 		__output_copy(handle, values, n * sizeof(u64));
7024 	}
7025 }
7026 
7027 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7028 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7029 
7030 /*
7031  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7032  *
7033  * The problem is that its both hard and excessively expensive to iterate the
7034  * child list, not to mention that its impossible to IPI the children running
7035  * on another CPU, from interrupt/NMI context.
7036  */
7037 static void perf_output_read(struct perf_output_handle *handle,
7038 			     struct perf_event *event)
7039 {
7040 	u64 enabled = 0, running = 0, now;
7041 	u64 read_format = event->attr.read_format;
7042 
7043 	/*
7044 	 * compute total_time_enabled, total_time_running
7045 	 * based on snapshot values taken when the event
7046 	 * was last scheduled in.
7047 	 *
7048 	 * we cannot simply called update_context_time()
7049 	 * because of locking issue as we are called in
7050 	 * NMI context
7051 	 */
7052 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7053 		calc_timer_values(event, &now, &enabled, &running);
7054 
7055 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7056 		perf_output_read_group(handle, event, enabled, running);
7057 	else
7058 		perf_output_read_one(handle, event, enabled, running);
7059 }
7060 
7061 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7062 {
7063 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7064 }
7065 
7066 void perf_output_sample(struct perf_output_handle *handle,
7067 			struct perf_event_header *header,
7068 			struct perf_sample_data *data,
7069 			struct perf_event *event)
7070 {
7071 	u64 sample_type = data->type;
7072 
7073 	perf_output_put(handle, *header);
7074 
7075 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7076 		perf_output_put(handle, data->id);
7077 
7078 	if (sample_type & PERF_SAMPLE_IP)
7079 		perf_output_put(handle, data->ip);
7080 
7081 	if (sample_type & PERF_SAMPLE_TID)
7082 		perf_output_put(handle, data->tid_entry);
7083 
7084 	if (sample_type & PERF_SAMPLE_TIME)
7085 		perf_output_put(handle, data->time);
7086 
7087 	if (sample_type & PERF_SAMPLE_ADDR)
7088 		perf_output_put(handle, data->addr);
7089 
7090 	if (sample_type & PERF_SAMPLE_ID)
7091 		perf_output_put(handle, data->id);
7092 
7093 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7094 		perf_output_put(handle, data->stream_id);
7095 
7096 	if (sample_type & PERF_SAMPLE_CPU)
7097 		perf_output_put(handle, data->cpu_entry);
7098 
7099 	if (sample_type & PERF_SAMPLE_PERIOD)
7100 		perf_output_put(handle, data->period);
7101 
7102 	if (sample_type & PERF_SAMPLE_READ)
7103 		perf_output_read(handle, event);
7104 
7105 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7106 		int size = 1;
7107 
7108 		size += data->callchain->nr;
7109 		size *= sizeof(u64);
7110 		__output_copy(handle, data->callchain, size);
7111 	}
7112 
7113 	if (sample_type & PERF_SAMPLE_RAW) {
7114 		struct perf_raw_record *raw = data->raw;
7115 
7116 		if (raw) {
7117 			struct perf_raw_frag *frag = &raw->frag;
7118 
7119 			perf_output_put(handle, raw->size);
7120 			do {
7121 				if (frag->copy) {
7122 					__output_custom(handle, frag->copy,
7123 							frag->data, frag->size);
7124 				} else {
7125 					__output_copy(handle, frag->data,
7126 						      frag->size);
7127 				}
7128 				if (perf_raw_frag_last(frag))
7129 					break;
7130 				frag = frag->next;
7131 			} while (1);
7132 			if (frag->pad)
7133 				__output_skip(handle, NULL, frag->pad);
7134 		} else {
7135 			struct {
7136 				u32	size;
7137 				u32	data;
7138 			} raw = {
7139 				.size = sizeof(u32),
7140 				.data = 0,
7141 			};
7142 			perf_output_put(handle, raw);
7143 		}
7144 	}
7145 
7146 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7147 		if (data->br_stack) {
7148 			size_t size;
7149 
7150 			size = data->br_stack->nr
7151 			     * sizeof(struct perf_branch_entry);
7152 
7153 			perf_output_put(handle, data->br_stack->nr);
7154 			if (perf_sample_save_hw_index(event))
7155 				perf_output_put(handle, data->br_stack->hw_idx);
7156 			perf_output_copy(handle, data->br_stack->entries, size);
7157 		} else {
7158 			/*
7159 			 * we always store at least the value of nr
7160 			 */
7161 			u64 nr = 0;
7162 			perf_output_put(handle, nr);
7163 		}
7164 	}
7165 
7166 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7167 		u64 abi = data->regs_user.abi;
7168 
7169 		/*
7170 		 * If there are no regs to dump, notice it through
7171 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7172 		 */
7173 		perf_output_put(handle, abi);
7174 
7175 		if (abi) {
7176 			u64 mask = event->attr.sample_regs_user;
7177 			perf_output_sample_regs(handle,
7178 						data->regs_user.regs,
7179 						mask);
7180 		}
7181 	}
7182 
7183 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7184 		perf_output_sample_ustack(handle,
7185 					  data->stack_user_size,
7186 					  data->regs_user.regs);
7187 	}
7188 
7189 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7190 		perf_output_put(handle, data->weight.full);
7191 
7192 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7193 		perf_output_put(handle, data->data_src.val);
7194 
7195 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7196 		perf_output_put(handle, data->txn);
7197 
7198 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7199 		u64 abi = data->regs_intr.abi;
7200 		/*
7201 		 * If there are no regs to dump, notice it through
7202 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7203 		 */
7204 		perf_output_put(handle, abi);
7205 
7206 		if (abi) {
7207 			u64 mask = event->attr.sample_regs_intr;
7208 
7209 			perf_output_sample_regs(handle,
7210 						data->regs_intr.regs,
7211 						mask);
7212 		}
7213 	}
7214 
7215 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7216 		perf_output_put(handle, data->phys_addr);
7217 
7218 	if (sample_type & PERF_SAMPLE_CGROUP)
7219 		perf_output_put(handle, data->cgroup);
7220 
7221 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7222 		perf_output_put(handle, data->data_page_size);
7223 
7224 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7225 		perf_output_put(handle, data->code_page_size);
7226 
7227 	if (sample_type & PERF_SAMPLE_AUX) {
7228 		perf_output_put(handle, data->aux_size);
7229 
7230 		if (data->aux_size)
7231 			perf_aux_sample_output(event, handle, data);
7232 	}
7233 
7234 	if (!event->attr.watermark) {
7235 		int wakeup_events = event->attr.wakeup_events;
7236 
7237 		if (wakeup_events) {
7238 			struct perf_buffer *rb = handle->rb;
7239 			int events = local_inc_return(&rb->events);
7240 
7241 			if (events >= wakeup_events) {
7242 				local_sub(wakeup_events, &rb->events);
7243 				local_inc(&rb->wakeup);
7244 			}
7245 		}
7246 	}
7247 }
7248 
7249 static u64 perf_virt_to_phys(u64 virt)
7250 {
7251 	u64 phys_addr = 0;
7252 
7253 	if (!virt)
7254 		return 0;
7255 
7256 	if (virt >= TASK_SIZE) {
7257 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7258 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7259 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7260 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7261 	} else {
7262 		/*
7263 		 * Walking the pages tables for user address.
7264 		 * Interrupts are disabled, so it prevents any tear down
7265 		 * of the page tables.
7266 		 * Try IRQ-safe get_user_page_fast_only first.
7267 		 * If failed, leave phys_addr as 0.
7268 		 */
7269 		if (current->mm != NULL) {
7270 			struct page *p;
7271 
7272 			pagefault_disable();
7273 			if (get_user_page_fast_only(virt, 0, &p)) {
7274 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7275 				put_page(p);
7276 			}
7277 			pagefault_enable();
7278 		}
7279 	}
7280 
7281 	return phys_addr;
7282 }
7283 
7284 /*
7285  * Return the pagetable size of a given virtual address.
7286  */
7287 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7288 {
7289 	u64 size = 0;
7290 
7291 #ifdef CONFIG_HAVE_FAST_GUP
7292 	pgd_t *pgdp, pgd;
7293 	p4d_t *p4dp, p4d;
7294 	pud_t *pudp, pud;
7295 	pmd_t *pmdp, pmd;
7296 	pte_t *ptep, pte;
7297 
7298 	pgdp = pgd_offset(mm, addr);
7299 	pgd = READ_ONCE(*pgdp);
7300 	if (pgd_none(pgd))
7301 		return 0;
7302 
7303 	if (pgd_leaf(pgd))
7304 		return pgd_leaf_size(pgd);
7305 
7306 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7307 	p4d = READ_ONCE(*p4dp);
7308 	if (!p4d_present(p4d))
7309 		return 0;
7310 
7311 	if (p4d_leaf(p4d))
7312 		return p4d_leaf_size(p4d);
7313 
7314 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7315 	pud = READ_ONCE(*pudp);
7316 	if (!pud_present(pud))
7317 		return 0;
7318 
7319 	if (pud_leaf(pud))
7320 		return pud_leaf_size(pud);
7321 
7322 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7323 	pmd = READ_ONCE(*pmdp);
7324 	if (!pmd_present(pmd))
7325 		return 0;
7326 
7327 	if (pmd_leaf(pmd))
7328 		return pmd_leaf_size(pmd);
7329 
7330 	ptep = pte_offset_map(&pmd, addr);
7331 	pte = ptep_get_lockless(ptep);
7332 	if (pte_present(pte))
7333 		size = pte_leaf_size(pte);
7334 	pte_unmap(ptep);
7335 #endif /* CONFIG_HAVE_FAST_GUP */
7336 
7337 	return size;
7338 }
7339 
7340 static u64 perf_get_page_size(unsigned long addr)
7341 {
7342 	struct mm_struct *mm;
7343 	unsigned long flags;
7344 	u64 size;
7345 
7346 	if (!addr)
7347 		return 0;
7348 
7349 	/*
7350 	 * Software page-table walkers must disable IRQs,
7351 	 * which prevents any tear down of the page tables.
7352 	 */
7353 	local_irq_save(flags);
7354 
7355 	mm = current->mm;
7356 	if (!mm) {
7357 		/*
7358 		 * For kernel threads and the like, use init_mm so that
7359 		 * we can find kernel memory.
7360 		 */
7361 		mm = &init_mm;
7362 	}
7363 
7364 	size = perf_get_pgtable_size(mm, addr);
7365 
7366 	local_irq_restore(flags);
7367 
7368 	return size;
7369 }
7370 
7371 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7372 
7373 struct perf_callchain_entry *
7374 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7375 {
7376 	bool kernel = !event->attr.exclude_callchain_kernel;
7377 	bool user   = !event->attr.exclude_callchain_user;
7378 	/* Disallow cross-task user callchains. */
7379 	bool crosstask = event->ctx->task && event->ctx->task != current;
7380 	const u32 max_stack = event->attr.sample_max_stack;
7381 	struct perf_callchain_entry *callchain;
7382 
7383 	if (!kernel && !user)
7384 		return &__empty_callchain;
7385 
7386 	callchain = get_perf_callchain(regs, 0, kernel, user,
7387 				       max_stack, crosstask, true);
7388 	return callchain ?: &__empty_callchain;
7389 }
7390 
7391 void perf_prepare_sample(struct perf_event_header *header,
7392 			 struct perf_sample_data *data,
7393 			 struct perf_event *event,
7394 			 struct pt_regs *regs)
7395 {
7396 	u64 sample_type = event->attr.sample_type;
7397 
7398 	header->type = PERF_RECORD_SAMPLE;
7399 	header->size = sizeof(*header) + event->header_size;
7400 
7401 	header->misc = 0;
7402 	header->misc |= perf_misc_flags(regs);
7403 
7404 	__perf_event_header__init_id(header, data, event);
7405 
7406 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7407 		data->ip = perf_instruction_pointer(regs);
7408 
7409 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7410 		int size = 1;
7411 
7412 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7413 			data->callchain = perf_callchain(event, regs);
7414 
7415 		size += data->callchain->nr;
7416 
7417 		header->size += size * sizeof(u64);
7418 	}
7419 
7420 	if (sample_type & PERF_SAMPLE_RAW) {
7421 		struct perf_raw_record *raw = data->raw;
7422 		int size;
7423 
7424 		if (raw) {
7425 			struct perf_raw_frag *frag = &raw->frag;
7426 			u32 sum = 0;
7427 
7428 			do {
7429 				sum += frag->size;
7430 				if (perf_raw_frag_last(frag))
7431 					break;
7432 				frag = frag->next;
7433 			} while (1);
7434 
7435 			size = round_up(sum + sizeof(u32), sizeof(u64));
7436 			raw->size = size - sizeof(u32);
7437 			frag->pad = raw->size - sum;
7438 		} else {
7439 			size = sizeof(u64);
7440 		}
7441 
7442 		header->size += size;
7443 	}
7444 
7445 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7446 		int size = sizeof(u64); /* nr */
7447 		if (data->br_stack) {
7448 			if (perf_sample_save_hw_index(event))
7449 				size += sizeof(u64);
7450 
7451 			size += data->br_stack->nr
7452 			      * sizeof(struct perf_branch_entry);
7453 		}
7454 		header->size += size;
7455 	}
7456 
7457 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7458 		perf_sample_regs_user(&data->regs_user, regs);
7459 
7460 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7461 		/* regs dump ABI info */
7462 		int size = sizeof(u64);
7463 
7464 		if (data->regs_user.regs) {
7465 			u64 mask = event->attr.sample_regs_user;
7466 			size += hweight64(mask) * sizeof(u64);
7467 		}
7468 
7469 		header->size += size;
7470 	}
7471 
7472 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7473 		/*
7474 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7475 		 * processed as the last one or have additional check added
7476 		 * in case new sample type is added, because we could eat
7477 		 * up the rest of the sample size.
7478 		 */
7479 		u16 stack_size = event->attr.sample_stack_user;
7480 		u16 size = sizeof(u64);
7481 
7482 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7483 						     data->regs_user.regs);
7484 
7485 		/*
7486 		 * If there is something to dump, add space for the dump
7487 		 * itself and for the field that tells the dynamic size,
7488 		 * which is how many have been actually dumped.
7489 		 */
7490 		if (stack_size)
7491 			size += sizeof(u64) + stack_size;
7492 
7493 		data->stack_user_size = stack_size;
7494 		header->size += size;
7495 	}
7496 
7497 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7498 		/* regs dump ABI info */
7499 		int size = sizeof(u64);
7500 
7501 		perf_sample_regs_intr(&data->regs_intr, regs);
7502 
7503 		if (data->regs_intr.regs) {
7504 			u64 mask = event->attr.sample_regs_intr;
7505 
7506 			size += hweight64(mask) * sizeof(u64);
7507 		}
7508 
7509 		header->size += size;
7510 	}
7511 
7512 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7513 		data->phys_addr = perf_virt_to_phys(data->addr);
7514 
7515 #ifdef CONFIG_CGROUP_PERF
7516 	if (sample_type & PERF_SAMPLE_CGROUP) {
7517 		struct cgroup *cgrp;
7518 
7519 		/* protected by RCU */
7520 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7521 		data->cgroup = cgroup_id(cgrp);
7522 	}
7523 #endif
7524 
7525 	/*
7526 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7527 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7528 	 * but the value will not dump to the userspace.
7529 	 */
7530 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7531 		data->data_page_size = perf_get_page_size(data->addr);
7532 
7533 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7534 		data->code_page_size = perf_get_page_size(data->ip);
7535 
7536 	if (sample_type & PERF_SAMPLE_AUX) {
7537 		u64 size;
7538 
7539 		header->size += sizeof(u64); /* size */
7540 
7541 		/*
7542 		 * Given the 16bit nature of header::size, an AUX sample can
7543 		 * easily overflow it, what with all the preceding sample bits.
7544 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7545 		 * per sample in total (rounded down to 8 byte boundary).
7546 		 */
7547 		size = min_t(size_t, U16_MAX - header->size,
7548 			     event->attr.aux_sample_size);
7549 		size = rounddown(size, 8);
7550 		size = perf_prepare_sample_aux(event, data, size);
7551 
7552 		WARN_ON_ONCE(size + header->size > U16_MAX);
7553 		header->size += size;
7554 	}
7555 	/*
7556 	 * If you're adding more sample types here, you likely need to do
7557 	 * something about the overflowing header::size, like repurpose the
7558 	 * lowest 3 bits of size, which should be always zero at the moment.
7559 	 * This raises a more important question, do we really need 512k sized
7560 	 * samples and why, so good argumentation is in order for whatever you
7561 	 * do here next.
7562 	 */
7563 	WARN_ON_ONCE(header->size & 7);
7564 }
7565 
7566 static __always_inline int
7567 __perf_event_output(struct perf_event *event,
7568 		    struct perf_sample_data *data,
7569 		    struct pt_regs *regs,
7570 		    int (*output_begin)(struct perf_output_handle *,
7571 					struct perf_sample_data *,
7572 					struct perf_event *,
7573 					unsigned int))
7574 {
7575 	struct perf_output_handle handle;
7576 	struct perf_event_header header;
7577 	int err;
7578 
7579 	/* protect the callchain buffers */
7580 	rcu_read_lock();
7581 
7582 	perf_prepare_sample(&header, data, event, regs);
7583 
7584 	err = output_begin(&handle, data, event, header.size);
7585 	if (err)
7586 		goto exit;
7587 
7588 	perf_output_sample(&handle, &header, data, event);
7589 
7590 	perf_output_end(&handle);
7591 
7592 exit:
7593 	rcu_read_unlock();
7594 	return err;
7595 }
7596 
7597 void
7598 perf_event_output_forward(struct perf_event *event,
7599 			 struct perf_sample_data *data,
7600 			 struct pt_regs *regs)
7601 {
7602 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7603 }
7604 
7605 void
7606 perf_event_output_backward(struct perf_event *event,
7607 			   struct perf_sample_data *data,
7608 			   struct pt_regs *regs)
7609 {
7610 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7611 }
7612 
7613 int
7614 perf_event_output(struct perf_event *event,
7615 		  struct perf_sample_data *data,
7616 		  struct pt_regs *regs)
7617 {
7618 	return __perf_event_output(event, data, regs, perf_output_begin);
7619 }
7620 
7621 /*
7622  * read event_id
7623  */
7624 
7625 struct perf_read_event {
7626 	struct perf_event_header	header;
7627 
7628 	u32				pid;
7629 	u32				tid;
7630 };
7631 
7632 static void
7633 perf_event_read_event(struct perf_event *event,
7634 			struct task_struct *task)
7635 {
7636 	struct perf_output_handle handle;
7637 	struct perf_sample_data sample;
7638 	struct perf_read_event read_event = {
7639 		.header = {
7640 			.type = PERF_RECORD_READ,
7641 			.misc = 0,
7642 			.size = sizeof(read_event) + event->read_size,
7643 		},
7644 		.pid = perf_event_pid(event, task),
7645 		.tid = perf_event_tid(event, task),
7646 	};
7647 	int ret;
7648 
7649 	perf_event_header__init_id(&read_event.header, &sample, event);
7650 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7651 	if (ret)
7652 		return;
7653 
7654 	perf_output_put(&handle, read_event);
7655 	perf_output_read(&handle, event);
7656 	perf_event__output_id_sample(event, &handle, &sample);
7657 
7658 	perf_output_end(&handle);
7659 }
7660 
7661 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7662 
7663 static void
7664 perf_iterate_ctx(struct perf_event_context *ctx,
7665 		   perf_iterate_f output,
7666 		   void *data, bool all)
7667 {
7668 	struct perf_event *event;
7669 
7670 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7671 		if (!all) {
7672 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7673 				continue;
7674 			if (!event_filter_match(event))
7675 				continue;
7676 		}
7677 
7678 		output(event, data);
7679 	}
7680 }
7681 
7682 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7683 {
7684 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7685 	struct perf_event *event;
7686 
7687 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7688 		/*
7689 		 * Skip events that are not fully formed yet; ensure that
7690 		 * if we observe event->ctx, both event and ctx will be
7691 		 * complete enough. See perf_install_in_context().
7692 		 */
7693 		if (!smp_load_acquire(&event->ctx))
7694 			continue;
7695 
7696 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7697 			continue;
7698 		if (!event_filter_match(event))
7699 			continue;
7700 		output(event, data);
7701 	}
7702 }
7703 
7704 /*
7705  * Iterate all events that need to receive side-band events.
7706  *
7707  * For new callers; ensure that account_pmu_sb_event() includes
7708  * your event, otherwise it might not get delivered.
7709  */
7710 static void
7711 perf_iterate_sb(perf_iterate_f output, void *data,
7712 	       struct perf_event_context *task_ctx)
7713 {
7714 	struct perf_event_context *ctx;
7715 	int ctxn;
7716 
7717 	rcu_read_lock();
7718 	preempt_disable();
7719 
7720 	/*
7721 	 * If we have task_ctx != NULL we only notify the task context itself.
7722 	 * The task_ctx is set only for EXIT events before releasing task
7723 	 * context.
7724 	 */
7725 	if (task_ctx) {
7726 		perf_iterate_ctx(task_ctx, output, data, false);
7727 		goto done;
7728 	}
7729 
7730 	perf_iterate_sb_cpu(output, data);
7731 
7732 	for_each_task_context_nr(ctxn) {
7733 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7734 		if (ctx)
7735 			perf_iterate_ctx(ctx, output, data, false);
7736 	}
7737 done:
7738 	preempt_enable();
7739 	rcu_read_unlock();
7740 }
7741 
7742 /*
7743  * Clear all file-based filters at exec, they'll have to be
7744  * re-instated when/if these objects are mmapped again.
7745  */
7746 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7747 {
7748 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7749 	struct perf_addr_filter *filter;
7750 	unsigned int restart = 0, count = 0;
7751 	unsigned long flags;
7752 
7753 	if (!has_addr_filter(event))
7754 		return;
7755 
7756 	raw_spin_lock_irqsave(&ifh->lock, flags);
7757 	list_for_each_entry(filter, &ifh->list, entry) {
7758 		if (filter->path.dentry) {
7759 			event->addr_filter_ranges[count].start = 0;
7760 			event->addr_filter_ranges[count].size = 0;
7761 			restart++;
7762 		}
7763 
7764 		count++;
7765 	}
7766 
7767 	if (restart)
7768 		event->addr_filters_gen++;
7769 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7770 
7771 	if (restart)
7772 		perf_event_stop(event, 1);
7773 }
7774 
7775 void perf_event_exec(void)
7776 {
7777 	struct perf_event_context *ctx;
7778 	int ctxn;
7779 
7780 	for_each_task_context_nr(ctxn) {
7781 		perf_event_enable_on_exec(ctxn);
7782 		perf_event_remove_on_exec(ctxn);
7783 
7784 		rcu_read_lock();
7785 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7786 		if (ctx) {
7787 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7788 					 NULL, true);
7789 		}
7790 		rcu_read_unlock();
7791 	}
7792 }
7793 
7794 struct remote_output {
7795 	struct perf_buffer	*rb;
7796 	int			err;
7797 };
7798 
7799 static void __perf_event_output_stop(struct perf_event *event, void *data)
7800 {
7801 	struct perf_event *parent = event->parent;
7802 	struct remote_output *ro = data;
7803 	struct perf_buffer *rb = ro->rb;
7804 	struct stop_event_data sd = {
7805 		.event	= event,
7806 	};
7807 
7808 	if (!has_aux(event))
7809 		return;
7810 
7811 	if (!parent)
7812 		parent = event;
7813 
7814 	/*
7815 	 * In case of inheritance, it will be the parent that links to the
7816 	 * ring-buffer, but it will be the child that's actually using it.
7817 	 *
7818 	 * We are using event::rb to determine if the event should be stopped,
7819 	 * however this may race with ring_buffer_attach() (through set_output),
7820 	 * which will make us skip the event that actually needs to be stopped.
7821 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7822 	 * its rb pointer.
7823 	 */
7824 	if (rcu_dereference(parent->rb) == rb)
7825 		ro->err = __perf_event_stop(&sd);
7826 }
7827 
7828 static int __perf_pmu_output_stop(void *info)
7829 {
7830 	struct perf_event *event = info;
7831 	struct pmu *pmu = event->ctx->pmu;
7832 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7833 	struct remote_output ro = {
7834 		.rb	= event->rb,
7835 	};
7836 
7837 	rcu_read_lock();
7838 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7839 	if (cpuctx->task_ctx)
7840 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7841 				   &ro, false);
7842 	rcu_read_unlock();
7843 
7844 	return ro.err;
7845 }
7846 
7847 static void perf_pmu_output_stop(struct perf_event *event)
7848 {
7849 	struct perf_event *iter;
7850 	int err, cpu;
7851 
7852 restart:
7853 	rcu_read_lock();
7854 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7855 		/*
7856 		 * For per-CPU events, we need to make sure that neither they
7857 		 * nor their children are running; for cpu==-1 events it's
7858 		 * sufficient to stop the event itself if it's active, since
7859 		 * it can't have children.
7860 		 */
7861 		cpu = iter->cpu;
7862 		if (cpu == -1)
7863 			cpu = READ_ONCE(iter->oncpu);
7864 
7865 		if (cpu == -1)
7866 			continue;
7867 
7868 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7869 		if (err == -EAGAIN) {
7870 			rcu_read_unlock();
7871 			goto restart;
7872 		}
7873 	}
7874 	rcu_read_unlock();
7875 }
7876 
7877 /*
7878  * task tracking -- fork/exit
7879  *
7880  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7881  */
7882 
7883 struct perf_task_event {
7884 	struct task_struct		*task;
7885 	struct perf_event_context	*task_ctx;
7886 
7887 	struct {
7888 		struct perf_event_header	header;
7889 
7890 		u32				pid;
7891 		u32				ppid;
7892 		u32				tid;
7893 		u32				ptid;
7894 		u64				time;
7895 	} event_id;
7896 };
7897 
7898 static int perf_event_task_match(struct perf_event *event)
7899 {
7900 	return event->attr.comm  || event->attr.mmap ||
7901 	       event->attr.mmap2 || event->attr.mmap_data ||
7902 	       event->attr.task;
7903 }
7904 
7905 static void perf_event_task_output(struct perf_event *event,
7906 				   void *data)
7907 {
7908 	struct perf_task_event *task_event = data;
7909 	struct perf_output_handle handle;
7910 	struct perf_sample_data	sample;
7911 	struct task_struct *task = task_event->task;
7912 	int ret, size = task_event->event_id.header.size;
7913 
7914 	if (!perf_event_task_match(event))
7915 		return;
7916 
7917 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7918 
7919 	ret = perf_output_begin(&handle, &sample, event,
7920 				task_event->event_id.header.size);
7921 	if (ret)
7922 		goto out;
7923 
7924 	task_event->event_id.pid = perf_event_pid(event, task);
7925 	task_event->event_id.tid = perf_event_tid(event, task);
7926 
7927 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7928 		task_event->event_id.ppid = perf_event_pid(event,
7929 							task->real_parent);
7930 		task_event->event_id.ptid = perf_event_pid(event,
7931 							task->real_parent);
7932 	} else {  /* PERF_RECORD_FORK */
7933 		task_event->event_id.ppid = perf_event_pid(event, current);
7934 		task_event->event_id.ptid = perf_event_tid(event, current);
7935 	}
7936 
7937 	task_event->event_id.time = perf_event_clock(event);
7938 
7939 	perf_output_put(&handle, task_event->event_id);
7940 
7941 	perf_event__output_id_sample(event, &handle, &sample);
7942 
7943 	perf_output_end(&handle);
7944 out:
7945 	task_event->event_id.header.size = size;
7946 }
7947 
7948 static void perf_event_task(struct task_struct *task,
7949 			      struct perf_event_context *task_ctx,
7950 			      int new)
7951 {
7952 	struct perf_task_event task_event;
7953 
7954 	if (!atomic_read(&nr_comm_events) &&
7955 	    !atomic_read(&nr_mmap_events) &&
7956 	    !atomic_read(&nr_task_events))
7957 		return;
7958 
7959 	task_event = (struct perf_task_event){
7960 		.task	  = task,
7961 		.task_ctx = task_ctx,
7962 		.event_id    = {
7963 			.header = {
7964 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7965 				.misc = 0,
7966 				.size = sizeof(task_event.event_id),
7967 			},
7968 			/* .pid  */
7969 			/* .ppid */
7970 			/* .tid  */
7971 			/* .ptid */
7972 			/* .time */
7973 		},
7974 	};
7975 
7976 	perf_iterate_sb(perf_event_task_output,
7977 		       &task_event,
7978 		       task_ctx);
7979 }
7980 
7981 void perf_event_fork(struct task_struct *task)
7982 {
7983 	perf_event_task(task, NULL, 1);
7984 	perf_event_namespaces(task);
7985 }
7986 
7987 /*
7988  * comm tracking
7989  */
7990 
7991 struct perf_comm_event {
7992 	struct task_struct	*task;
7993 	char			*comm;
7994 	int			comm_size;
7995 
7996 	struct {
7997 		struct perf_event_header	header;
7998 
7999 		u32				pid;
8000 		u32				tid;
8001 	} event_id;
8002 };
8003 
8004 static int perf_event_comm_match(struct perf_event *event)
8005 {
8006 	return event->attr.comm;
8007 }
8008 
8009 static void perf_event_comm_output(struct perf_event *event,
8010 				   void *data)
8011 {
8012 	struct perf_comm_event *comm_event = data;
8013 	struct perf_output_handle handle;
8014 	struct perf_sample_data sample;
8015 	int size = comm_event->event_id.header.size;
8016 	int ret;
8017 
8018 	if (!perf_event_comm_match(event))
8019 		return;
8020 
8021 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8022 	ret = perf_output_begin(&handle, &sample, event,
8023 				comm_event->event_id.header.size);
8024 
8025 	if (ret)
8026 		goto out;
8027 
8028 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8029 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8030 
8031 	perf_output_put(&handle, comm_event->event_id);
8032 	__output_copy(&handle, comm_event->comm,
8033 				   comm_event->comm_size);
8034 
8035 	perf_event__output_id_sample(event, &handle, &sample);
8036 
8037 	perf_output_end(&handle);
8038 out:
8039 	comm_event->event_id.header.size = size;
8040 }
8041 
8042 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8043 {
8044 	char comm[TASK_COMM_LEN];
8045 	unsigned int size;
8046 
8047 	memset(comm, 0, sizeof(comm));
8048 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
8049 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8050 
8051 	comm_event->comm = comm;
8052 	comm_event->comm_size = size;
8053 
8054 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8055 
8056 	perf_iterate_sb(perf_event_comm_output,
8057 		       comm_event,
8058 		       NULL);
8059 }
8060 
8061 void perf_event_comm(struct task_struct *task, bool exec)
8062 {
8063 	struct perf_comm_event comm_event;
8064 
8065 	if (!atomic_read(&nr_comm_events))
8066 		return;
8067 
8068 	comm_event = (struct perf_comm_event){
8069 		.task	= task,
8070 		/* .comm      */
8071 		/* .comm_size */
8072 		.event_id  = {
8073 			.header = {
8074 				.type = PERF_RECORD_COMM,
8075 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8076 				/* .size */
8077 			},
8078 			/* .pid */
8079 			/* .tid */
8080 		},
8081 	};
8082 
8083 	perf_event_comm_event(&comm_event);
8084 }
8085 
8086 /*
8087  * namespaces tracking
8088  */
8089 
8090 struct perf_namespaces_event {
8091 	struct task_struct		*task;
8092 
8093 	struct {
8094 		struct perf_event_header	header;
8095 
8096 		u32				pid;
8097 		u32				tid;
8098 		u64				nr_namespaces;
8099 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8100 	} event_id;
8101 };
8102 
8103 static int perf_event_namespaces_match(struct perf_event *event)
8104 {
8105 	return event->attr.namespaces;
8106 }
8107 
8108 static void perf_event_namespaces_output(struct perf_event *event,
8109 					 void *data)
8110 {
8111 	struct perf_namespaces_event *namespaces_event = data;
8112 	struct perf_output_handle handle;
8113 	struct perf_sample_data sample;
8114 	u16 header_size = namespaces_event->event_id.header.size;
8115 	int ret;
8116 
8117 	if (!perf_event_namespaces_match(event))
8118 		return;
8119 
8120 	perf_event_header__init_id(&namespaces_event->event_id.header,
8121 				   &sample, event);
8122 	ret = perf_output_begin(&handle, &sample, event,
8123 				namespaces_event->event_id.header.size);
8124 	if (ret)
8125 		goto out;
8126 
8127 	namespaces_event->event_id.pid = perf_event_pid(event,
8128 							namespaces_event->task);
8129 	namespaces_event->event_id.tid = perf_event_tid(event,
8130 							namespaces_event->task);
8131 
8132 	perf_output_put(&handle, namespaces_event->event_id);
8133 
8134 	perf_event__output_id_sample(event, &handle, &sample);
8135 
8136 	perf_output_end(&handle);
8137 out:
8138 	namespaces_event->event_id.header.size = header_size;
8139 }
8140 
8141 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8142 				   struct task_struct *task,
8143 				   const struct proc_ns_operations *ns_ops)
8144 {
8145 	struct path ns_path;
8146 	struct inode *ns_inode;
8147 	int error;
8148 
8149 	error = ns_get_path(&ns_path, task, ns_ops);
8150 	if (!error) {
8151 		ns_inode = ns_path.dentry->d_inode;
8152 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8153 		ns_link_info->ino = ns_inode->i_ino;
8154 		path_put(&ns_path);
8155 	}
8156 }
8157 
8158 void perf_event_namespaces(struct task_struct *task)
8159 {
8160 	struct perf_namespaces_event namespaces_event;
8161 	struct perf_ns_link_info *ns_link_info;
8162 
8163 	if (!atomic_read(&nr_namespaces_events))
8164 		return;
8165 
8166 	namespaces_event = (struct perf_namespaces_event){
8167 		.task	= task,
8168 		.event_id  = {
8169 			.header = {
8170 				.type = PERF_RECORD_NAMESPACES,
8171 				.misc = 0,
8172 				.size = sizeof(namespaces_event.event_id),
8173 			},
8174 			/* .pid */
8175 			/* .tid */
8176 			.nr_namespaces = NR_NAMESPACES,
8177 			/* .link_info[NR_NAMESPACES] */
8178 		},
8179 	};
8180 
8181 	ns_link_info = namespaces_event.event_id.link_info;
8182 
8183 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8184 			       task, &mntns_operations);
8185 
8186 #ifdef CONFIG_USER_NS
8187 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8188 			       task, &userns_operations);
8189 #endif
8190 #ifdef CONFIG_NET_NS
8191 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8192 			       task, &netns_operations);
8193 #endif
8194 #ifdef CONFIG_UTS_NS
8195 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8196 			       task, &utsns_operations);
8197 #endif
8198 #ifdef CONFIG_IPC_NS
8199 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8200 			       task, &ipcns_operations);
8201 #endif
8202 #ifdef CONFIG_PID_NS
8203 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8204 			       task, &pidns_operations);
8205 #endif
8206 #ifdef CONFIG_CGROUPS
8207 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8208 			       task, &cgroupns_operations);
8209 #endif
8210 
8211 	perf_iterate_sb(perf_event_namespaces_output,
8212 			&namespaces_event,
8213 			NULL);
8214 }
8215 
8216 /*
8217  * cgroup tracking
8218  */
8219 #ifdef CONFIG_CGROUP_PERF
8220 
8221 struct perf_cgroup_event {
8222 	char				*path;
8223 	int				path_size;
8224 	struct {
8225 		struct perf_event_header	header;
8226 		u64				id;
8227 		char				path[];
8228 	} event_id;
8229 };
8230 
8231 static int perf_event_cgroup_match(struct perf_event *event)
8232 {
8233 	return event->attr.cgroup;
8234 }
8235 
8236 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8237 {
8238 	struct perf_cgroup_event *cgroup_event = data;
8239 	struct perf_output_handle handle;
8240 	struct perf_sample_data sample;
8241 	u16 header_size = cgroup_event->event_id.header.size;
8242 	int ret;
8243 
8244 	if (!perf_event_cgroup_match(event))
8245 		return;
8246 
8247 	perf_event_header__init_id(&cgroup_event->event_id.header,
8248 				   &sample, event);
8249 	ret = perf_output_begin(&handle, &sample, event,
8250 				cgroup_event->event_id.header.size);
8251 	if (ret)
8252 		goto out;
8253 
8254 	perf_output_put(&handle, cgroup_event->event_id);
8255 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8256 
8257 	perf_event__output_id_sample(event, &handle, &sample);
8258 
8259 	perf_output_end(&handle);
8260 out:
8261 	cgroup_event->event_id.header.size = header_size;
8262 }
8263 
8264 static void perf_event_cgroup(struct cgroup *cgrp)
8265 {
8266 	struct perf_cgroup_event cgroup_event;
8267 	char path_enomem[16] = "//enomem";
8268 	char *pathname;
8269 	size_t size;
8270 
8271 	if (!atomic_read(&nr_cgroup_events))
8272 		return;
8273 
8274 	cgroup_event = (struct perf_cgroup_event){
8275 		.event_id  = {
8276 			.header = {
8277 				.type = PERF_RECORD_CGROUP,
8278 				.misc = 0,
8279 				.size = sizeof(cgroup_event.event_id),
8280 			},
8281 			.id = cgroup_id(cgrp),
8282 		},
8283 	};
8284 
8285 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8286 	if (pathname == NULL) {
8287 		cgroup_event.path = path_enomem;
8288 	} else {
8289 		/* just to be sure to have enough space for alignment */
8290 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8291 		cgroup_event.path = pathname;
8292 	}
8293 
8294 	/*
8295 	 * Since our buffer works in 8 byte units we need to align our string
8296 	 * size to a multiple of 8. However, we must guarantee the tail end is
8297 	 * zero'd out to avoid leaking random bits to userspace.
8298 	 */
8299 	size = strlen(cgroup_event.path) + 1;
8300 	while (!IS_ALIGNED(size, sizeof(u64)))
8301 		cgroup_event.path[size++] = '\0';
8302 
8303 	cgroup_event.event_id.header.size += size;
8304 	cgroup_event.path_size = size;
8305 
8306 	perf_iterate_sb(perf_event_cgroup_output,
8307 			&cgroup_event,
8308 			NULL);
8309 
8310 	kfree(pathname);
8311 }
8312 
8313 #endif
8314 
8315 /*
8316  * mmap tracking
8317  */
8318 
8319 struct perf_mmap_event {
8320 	struct vm_area_struct	*vma;
8321 
8322 	const char		*file_name;
8323 	int			file_size;
8324 	int			maj, min;
8325 	u64			ino;
8326 	u64			ino_generation;
8327 	u32			prot, flags;
8328 	u8			build_id[BUILD_ID_SIZE_MAX];
8329 	u32			build_id_size;
8330 
8331 	struct {
8332 		struct perf_event_header	header;
8333 
8334 		u32				pid;
8335 		u32				tid;
8336 		u64				start;
8337 		u64				len;
8338 		u64				pgoff;
8339 	} event_id;
8340 };
8341 
8342 static int perf_event_mmap_match(struct perf_event *event,
8343 				 void *data)
8344 {
8345 	struct perf_mmap_event *mmap_event = data;
8346 	struct vm_area_struct *vma = mmap_event->vma;
8347 	int executable = vma->vm_flags & VM_EXEC;
8348 
8349 	return (!executable && event->attr.mmap_data) ||
8350 	       (executable && (event->attr.mmap || event->attr.mmap2));
8351 }
8352 
8353 static void perf_event_mmap_output(struct perf_event *event,
8354 				   void *data)
8355 {
8356 	struct perf_mmap_event *mmap_event = data;
8357 	struct perf_output_handle handle;
8358 	struct perf_sample_data sample;
8359 	int size = mmap_event->event_id.header.size;
8360 	u32 type = mmap_event->event_id.header.type;
8361 	bool use_build_id;
8362 	int ret;
8363 
8364 	if (!perf_event_mmap_match(event, data))
8365 		return;
8366 
8367 	if (event->attr.mmap2) {
8368 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8369 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8370 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8371 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8372 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8373 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8374 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8375 	}
8376 
8377 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8378 	ret = perf_output_begin(&handle, &sample, event,
8379 				mmap_event->event_id.header.size);
8380 	if (ret)
8381 		goto out;
8382 
8383 	mmap_event->event_id.pid = perf_event_pid(event, current);
8384 	mmap_event->event_id.tid = perf_event_tid(event, current);
8385 
8386 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8387 
8388 	if (event->attr.mmap2 && use_build_id)
8389 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8390 
8391 	perf_output_put(&handle, mmap_event->event_id);
8392 
8393 	if (event->attr.mmap2) {
8394 		if (use_build_id) {
8395 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8396 
8397 			__output_copy(&handle, size, 4);
8398 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8399 		} else {
8400 			perf_output_put(&handle, mmap_event->maj);
8401 			perf_output_put(&handle, mmap_event->min);
8402 			perf_output_put(&handle, mmap_event->ino);
8403 			perf_output_put(&handle, mmap_event->ino_generation);
8404 		}
8405 		perf_output_put(&handle, mmap_event->prot);
8406 		perf_output_put(&handle, mmap_event->flags);
8407 	}
8408 
8409 	__output_copy(&handle, mmap_event->file_name,
8410 				   mmap_event->file_size);
8411 
8412 	perf_event__output_id_sample(event, &handle, &sample);
8413 
8414 	perf_output_end(&handle);
8415 out:
8416 	mmap_event->event_id.header.size = size;
8417 	mmap_event->event_id.header.type = type;
8418 }
8419 
8420 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8421 {
8422 	struct vm_area_struct *vma = mmap_event->vma;
8423 	struct file *file = vma->vm_file;
8424 	int maj = 0, min = 0;
8425 	u64 ino = 0, gen = 0;
8426 	u32 prot = 0, flags = 0;
8427 	unsigned int size;
8428 	char tmp[16];
8429 	char *buf = NULL;
8430 	char *name;
8431 
8432 	if (vma->vm_flags & VM_READ)
8433 		prot |= PROT_READ;
8434 	if (vma->vm_flags & VM_WRITE)
8435 		prot |= PROT_WRITE;
8436 	if (vma->vm_flags & VM_EXEC)
8437 		prot |= PROT_EXEC;
8438 
8439 	if (vma->vm_flags & VM_MAYSHARE)
8440 		flags = MAP_SHARED;
8441 	else
8442 		flags = MAP_PRIVATE;
8443 
8444 	if (vma->vm_flags & VM_LOCKED)
8445 		flags |= MAP_LOCKED;
8446 	if (is_vm_hugetlb_page(vma))
8447 		flags |= MAP_HUGETLB;
8448 
8449 	if (file) {
8450 		struct inode *inode;
8451 		dev_t dev;
8452 
8453 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8454 		if (!buf) {
8455 			name = "//enomem";
8456 			goto cpy_name;
8457 		}
8458 		/*
8459 		 * d_path() works from the end of the rb backwards, so we
8460 		 * need to add enough zero bytes after the string to handle
8461 		 * the 64bit alignment we do later.
8462 		 */
8463 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8464 		if (IS_ERR(name)) {
8465 			name = "//toolong";
8466 			goto cpy_name;
8467 		}
8468 		inode = file_inode(vma->vm_file);
8469 		dev = inode->i_sb->s_dev;
8470 		ino = inode->i_ino;
8471 		gen = inode->i_generation;
8472 		maj = MAJOR(dev);
8473 		min = MINOR(dev);
8474 
8475 		goto got_name;
8476 	} else {
8477 		if (vma->vm_ops && vma->vm_ops->name) {
8478 			name = (char *) vma->vm_ops->name(vma);
8479 			if (name)
8480 				goto cpy_name;
8481 		}
8482 
8483 		name = (char *)arch_vma_name(vma);
8484 		if (name)
8485 			goto cpy_name;
8486 
8487 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8488 				vma->vm_end >= vma->vm_mm->brk) {
8489 			name = "[heap]";
8490 			goto cpy_name;
8491 		}
8492 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8493 				vma->vm_end >= vma->vm_mm->start_stack) {
8494 			name = "[stack]";
8495 			goto cpy_name;
8496 		}
8497 
8498 		name = "//anon";
8499 		goto cpy_name;
8500 	}
8501 
8502 cpy_name:
8503 	strlcpy(tmp, name, sizeof(tmp));
8504 	name = tmp;
8505 got_name:
8506 	/*
8507 	 * Since our buffer works in 8 byte units we need to align our string
8508 	 * size to a multiple of 8. However, we must guarantee the tail end is
8509 	 * zero'd out to avoid leaking random bits to userspace.
8510 	 */
8511 	size = strlen(name)+1;
8512 	while (!IS_ALIGNED(size, sizeof(u64)))
8513 		name[size++] = '\0';
8514 
8515 	mmap_event->file_name = name;
8516 	mmap_event->file_size = size;
8517 	mmap_event->maj = maj;
8518 	mmap_event->min = min;
8519 	mmap_event->ino = ino;
8520 	mmap_event->ino_generation = gen;
8521 	mmap_event->prot = prot;
8522 	mmap_event->flags = flags;
8523 
8524 	if (!(vma->vm_flags & VM_EXEC))
8525 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8526 
8527 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8528 
8529 	if (atomic_read(&nr_build_id_events))
8530 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8531 
8532 	perf_iterate_sb(perf_event_mmap_output,
8533 		       mmap_event,
8534 		       NULL);
8535 
8536 	kfree(buf);
8537 }
8538 
8539 /*
8540  * Check whether inode and address range match filter criteria.
8541  */
8542 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8543 				     struct file *file, unsigned long offset,
8544 				     unsigned long size)
8545 {
8546 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8547 	if (!filter->path.dentry)
8548 		return false;
8549 
8550 	if (d_inode(filter->path.dentry) != file_inode(file))
8551 		return false;
8552 
8553 	if (filter->offset > offset + size)
8554 		return false;
8555 
8556 	if (filter->offset + filter->size < offset)
8557 		return false;
8558 
8559 	return true;
8560 }
8561 
8562 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8563 					struct vm_area_struct *vma,
8564 					struct perf_addr_filter_range *fr)
8565 {
8566 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8567 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8568 	struct file *file = vma->vm_file;
8569 
8570 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8571 		return false;
8572 
8573 	if (filter->offset < off) {
8574 		fr->start = vma->vm_start;
8575 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8576 	} else {
8577 		fr->start = vma->vm_start + filter->offset - off;
8578 		fr->size = min(vma->vm_end - fr->start, filter->size);
8579 	}
8580 
8581 	return true;
8582 }
8583 
8584 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8585 {
8586 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8587 	struct vm_area_struct *vma = data;
8588 	struct perf_addr_filter *filter;
8589 	unsigned int restart = 0, count = 0;
8590 	unsigned long flags;
8591 
8592 	if (!has_addr_filter(event))
8593 		return;
8594 
8595 	if (!vma->vm_file)
8596 		return;
8597 
8598 	raw_spin_lock_irqsave(&ifh->lock, flags);
8599 	list_for_each_entry(filter, &ifh->list, entry) {
8600 		if (perf_addr_filter_vma_adjust(filter, vma,
8601 						&event->addr_filter_ranges[count]))
8602 			restart++;
8603 
8604 		count++;
8605 	}
8606 
8607 	if (restart)
8608 		event->addr_filters_gen++;
8609 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8610 
8611 	if (restart)
8612 		perf_event_stop(event, 1);
8613 }
8614 
8615 /*
8616  * Adjust all task's events' filters to the new vma
8617  */
8618 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8619 {
8620 	struct perf_event_context *ctx;
8621 	int ctxn;
8622 
8623 	/*
8624 	 * Data tracing isn't supported yet and as such there is no need
8625 	 * to keep track of anything that isn't related to executable code:
8626 	 */
8627 	if (!(vma->vm_flags & VM_EXEC))
8628 		return;
8629 
8630 	rcu_read_lock();
8631 	for_each_task_context_nr(ctxn) {
8632 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8633 		if (!ctx)
8634 			continue;
8635 
8636 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8637 	}
8638 	rcu_read_unlock();
8639 }
8640 
8641 void perf_event_mmap(struct vm_area_struct *vma)
8642 {
8643 	struct perf_mmap_event mmap_event;
8644 
8645 	if (!atomic_read(&nr_mmap_events))
8646 		return;
8647 
8648 	mmap_event = (struct perf_mmap_event){
8649 		.vma	= vma,
8650 		/* .file_name */
8651 		/* .file_size */
8652 		.event_id  = {
8653 			.header = {
8654 				.type = PERF_RECORD_MMAP,
8655 				.misc = PERF_RECORD_MISC_USER,
8656 				/* .size */
8657 			},
8658 			/* .pid */
8659 			/* .tid */
8660 			.start  = vma->vm_start,
8661 			.len    = vma->vm_end - vma->vm_start,
8662 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8663 		},
8664 		/* .maj (attr_mmap2 only) */
8665 		/* .min (attr_mmap2 only) */
8666 		/* .ino (attr_mmap2 only) */
8667 		/* .ino_generation (attr_mmap2 only) */
8668 		/* .prot (attr_mmap2 only) */
8669 		/* .flags (attr_mmap2 only) */
8670 	};
8671 
8672 	perf_addr_filters_adjust(vma);
8673 	perf_event_mmap_event(&mmap_event);
8674 }
8675 
8676 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8677 			  unsigned long size, u64 flags)
8678 {
8679 	struct perf_output_handle handle;
8680 	struct perf_sample_data sample;
8681 	struct perf_aux_event {
8682 		struct perf_event_header	header;
8683 		u64				offset;
8684 		u64				size;
8685 		u64				flags;
8686 	} rec = {
8687 		.header = {
8688 			.type = PERF_RECORD_AUX,
8689 			.misc = 0,
8690 			.size = sizeof(rec),
8691 		},
8692 		.offset		= head,
8693 		.size		= size,
8694 		.flags		= flags,
8695 	};
8696 	int ret;
8697 
8698 	perf_event_header__init_id(&rec.header, &sample, event);
8699 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8700 
8701 	if (ret)
8702 		return;
8703 
8704 	perf_output_put(&handle, rec);
8705 	perf_event__output_id_sample(event, &handle, &sample);
8706 
8707 	perf_output_end(&handle);
8708 }
8709 
8710 /*
8711  * Lost/dropped samples logging
8712  */
8713 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8714 {
8715 	struct perf_output_handle handle;
8716 	struct perf_sample_data sample;
8717 	int ret;
8718 
8719 	struct {
8720 		struct perf_event_header	header;
8721 		u64				lost;
8722 	} lost_samples_event = {
8723 		.header = {
8724 			.type = PERF_RECORD_LOST_SAMPLES,
8725 			.misc = 0,
8726 			.size = sizeof(lost_samples_event),
8727 		},
8728 		.lost		= lost,
8729 	};
8730 
8731 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8732 
8733 	ret = perf_output_begin(&handle, &sample, event,
8734 				lost_samples_event.header.size);
8735 	if (ret)
8736 		return;
8737 
8738 	perf_output_put(&handle, lost_samples_event);
8739 	perf_event__output_id_sample(event, &handle, &sample);
8740 	perf_output_end(&handle);
8741 }
8742 
8743 /*
8744  * context_switch tracking
8745  */
8746 
8747 struct perf_switch_event {
8748 	struct task_struct	*task;
8749 	struct task_struct	*next_prev;
8750 
8751 	struct {
8752 		struct perf_event_header	header;
8753 		u32				next_prev_pid;
8754 		u32				next_prev_tid;
8755 	} event_id;
8756 };
8757 
8758 static int perf_event_switch_match(struct perf_event *event)
8759 {
8760 	return event->attr.context_switch;
8761 }
8762 
8763 static void perf_event_switch_output(struct perf_event *event, void *data)
8764 {
8765 	struct perf_switch_event *se = data;
8766 	struct perf_output_handle handle;
8767 	struct perf_sample_data sample;
8768 	int ret;
8769 
8770 	if (!perf_event_switch_match(event))
8771 		return;
8772 
8773 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8774 	if (event->ctx->task) {
8775 		se->event_id.header.type = PERF_RECORD_SWITCH;
8776 		se->event_id.header.size = sizeof(se->event_id.header);
8777 	} else {
8778 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8779 		se->event_id.header.size = sizeof(se->event_id);
8780 		se->event_id.next_prev_pid =
8781 					perf_event_pid(event, se->next_prev);
8782 		se->event_id.next_prev_tid =
8783 					perf_event_tid(event, se->next_prev);
8784 	}
8785 
8786 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8787 
8788 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8789 	if (ret)
8790 		return;
8791 
8792 	if (event->ctx->task)
8793 		perf_output_put(&handle, se->event_id.header);
8794 	else
8795 		perf_output_put(&handle, se->event_id);
8796 
8797 	perf_event__output_id_sample(event, &handle, &sample);
8798 
8799 	perf_output_end(&handle);
8800 }
8801 
8802 static void perf_event_switch(struct task_struct *task,
8803 			      struct task_struct *next_prev, bool sched_in)
8804 {
8805 	struct perf_switch_event switch_event;
8806 
8807 	/* N.B. caller checks nr_switch_events != 0 */
8808 
8809 	switch_event = (struct perf_switch_event){
8810 		.task		= task,
8811 		.next_prev	= next_prev,
8812 		.event_id	= {
8813 			.header = {
8814 				/* .type */
8815 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8816 				/* .size */
8817 			},
8818 			/* .next_prev_pid */
8819 			/* .next_prev_tid */
8820 		},
8821 	};
8822 
8823 	if (!sched_in && task->on_rq) {
8824 		switch_event.event_id.header.misc |=
8825 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8826 	}
8827 
8828 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8829 }
8830 
8831 /*
8832  * IRQ throttle logging
8833  */
8834 
8835 static void perf_log_throttle(struct perf_event *event, int enable)
8836 {
8837 	struct perf_output_handle handle;
8838 	struct perf_sample_data sample;
8839 	int ret;
8840 
8841 	struct {
8842 		struct perf_event_header	header;
8843 		u64				time;
8844 		u64				id;
8845 		u64				stream_id;
8846 	} throttle_event = {
8847 		.header = {
8848 			.type = PERF_RECORD_THROTTLE,
8849 			.misc = 0,
8850 			.size = sizeof(throttle_event),
8851 		},
8852 		.time		= perf_event_clock(event),
8853 		.id		= primary_event_id(event),
8854 		.stream_id	= event->id,
8855 	};
8856 
8857 	if (enable)
8858 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8859 
8860 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8861 
8862 	ret = perf_output_begin(&handle, &sample, event,
8863 				throttle_event.header.size);
8864 	if (ret)
8865 		return;
8866 
8867 	perf_output_put(&handle, throttle_event);
8868 	perf_event__output_id_sample(event, &handle, &sample);
8869 	perf_output_end(&handle);
8870 }
8871 
8872 /*
8873  * ksymbol register/unregister tracking
8874  */
8875 
8876 struct perf_ksymbol_event {
8877 	const char	*name;
8878 	int		name_len;
8879 	struct {
8880 		struct perf_event_header        header;
8881 		u64				addr;
8882 		u32				len;
8883 		u16				ksym_type;
8884 		u16				flags;
8885 	} event_id;
8886 };
8887 
8888 static int perf_event_ksymbol_match(struct perf_event *event)
8889 {
8890 	return event->attr.ksymbol;
8891 }
8892 
8893 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8894 {
8895 	struct perf_ksymbol_event *ksymbol_event = data;
8896 	struct perf_output_handle handle;
8897 	struct perf_sample_data sample;
8898 	int ret;
8899 
8900 	if (!perf_event_ksymbol_match(event))
8901 		return;
8902 
8903 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8904 				   &sample, event);
8905 	ret = perf_output_begin(&handle, &sample, event,
8906 				ksymbol_event->event_id.header.size);
8907 	if (ret)
8908 		return;
8909 
8910 	perf_output_put(&handle, ksymbol_event->event_id);
8911 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8912 	perf_event__output_id_sample(event, &handle, &sample);
8913 
8914 	perf_output_end(&handle);
8915 }
8916 
8917 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8918 			const char *sym)
8919 {
8920 	struct perf_ksymbol_event ksymbol_event;
8921 	char name[KSYM_NAME_LEN];
8922 	u16 flags = 0;
8923 	int name_len;
8924 
8925 	if (!atomic_read(&nr_ksymbol_events))
8926 		return;
8927 
8928 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8929 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8930 		goto err;
8931 
8932 	strlcpy(name, sym, KSYM_NAME_LEN);
8933 	name_len = strlen(name) + 1;
8934 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8935 		name[name_len++] = '\0';
8936 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8937 
8938 	if (unregister)
8939 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8940 
8941 	ksymbol_event = (struct perf_ksymbol_event){
8942 		.name = name,
8943 		.name_len = name_len,
8944 		.event_id = {
8945 			.header = {
8946 				.type = PERF_RECORD_KSYMBOL,
8947 				.size = sizeof(ksymbol_event.event_id) +
8948 					name_len,
8949 			},
8950 			.addr = addr,
8951 			.len = len,
8952 			.ksym_type = ksym_type,
8953 			.flags = flags,
8954 		},
8955 	};
8956 
8957 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8958 	return;
8959 err:
8960 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8961 }
8962 
8963 /*
8964  * bpf program load/unload tracking
8965  */
8966 
8967 struct perf_bpf_event {
8968 	struct bpf_prog	*prog;
8969 	struct {
8970 		struct perf_event_header        header;
8971 		u16				type;
8972 		u16				flags;
8973 		u32				id;
8974 		u8				tag[BPF_TAG_SIZE];
8975 	} event_id;
8976 };
8977 
8978 static int perf_event_bpf_match(struct perf_event *event)
8979 {
8980 	return event->attr.bpf_event;
8981 }
8982 
8983 static void perf_event_bpf_output(struct perf_event *event, void *data)
8984 {
8985 	struct perf_bpf_event *bpf_event = data;
8986 	struct perf_output_handle handle;
8987 	struct perf_sample_data sample;
8988 	int ret;
8989 
8990 	if (!perf_event_bpf_match(event))
8991 		return;
8992 
8993 	perf_event_header__init_id(&bpf_event->event_id.header,
8994 				   &sample, event);
8995 	ret = perf_output_begin(&handle, data, event,
8996 				bpf_event->event_id.header.size);
8997 	if (ret)
8998 		return;
8999 
9000 	perf_output_put(&handle, bpf_event->event_id);
9001 	perf_event__output_id_sample(event, &handle, &sample);
9002 
9003 	perf_output_end(&handle);
9004 }
9005 
9006 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9007 					 enum perf_bpf_event_type type)
9008 {
9009 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9010 	int i;
9011 
9012 	if (prog->aux->func_cnt == 0) {
9013 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9014 				   (u64)(unsigned long)prog->bpf_func,
9015 				   prog->jited_len, unregister,
9016 				   prog->aux->ksym.name);
9017 	} else {
9018 		for (i = 0; i < prog->aux->func_cnt; i++) {
9019 			struct bpf_prog *subprog = prog->aux->func[i];
9020 
9021 			perf_event_ksymbol(
9022 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9023 				(u64)(unsigned long)subprog->bpf_func,
9024 				subprog->jited_len, unregister,
9025 				prog->aux->ksym.name);
9026 		}
9027 	}
9028 }
9029 
9030 void perf_event_bpf_event(struct bpf_prog *prog,
9031 			  enum perf_bpf_event_type type,
9032 			  u16 flags)
9033 {
9034 	struct perf_bpf_event bpf_event;
9035 
9036 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9037 	    type >= PERF_BPF_EVENT_MAX)
9038 		return;
9039 
9040 	switch (type) {
9041 	case PERF_BPF_EVENT_PROG_LOAD:
9042 	case PERF_BPF_EVENT_PROG_UNLOAD:
9043 		if (atomic_read(&nr_ksymbol_events))
9044 			perf_event_bpf_emit_ksymbols(prog, type);
9045 		break;
9046 	default:
9047 		break;
9048 	}
9049 
9050 	if (!atomic_read(&nr_bpf_events))
9051 		return;
9052 
9053 	bpf_event = (struct perf_bpf_event){
9054 		.prog = prog,
9055 		.event_id = {
9056 			.header = {
9057 				.type = PERF_RECORD_BPF_EVENT,
9058 				.size = sizeof(bpf_event.event_id),
9059 			},
9060 			.type = type,
9061 			.flags = flags,
9062 			.id = prog->aux->id,
9063 		},
9064 	};
9065 
9066 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9067 
9068 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9069 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9070 }
9071 
9072 struct perf_text_poke_event {
9073 	const void		*old_bytes;
9074 	const void		*new_bytes;
9075 	size_t			pad;
9076 	u16			old_len;
9077 	u16			new_len;
9078 
9079 	struct {
9080 		struct perf_event_header	header;
9081 
9082 		u64				addr;
9083 	} event_id;
9084 };
9085 
9086 static int perf_event_text_poke_match(struct perf_event *event)
9087 {
9088 	return event->attr.text_poke;
9089 }
9090 
9091 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9092 {
9093 	struct perf_text_poke_event *text_poke_event = data;
9094 	struct perf_output_handle handle;
9095 	struct perf_sample_data sample;
9096 	u64 padding = 0;
9097 	int ret;
9098 
9099 	if (!perf_event_text_poke_match(event))
9100 		return;
9101 
9102 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9103 
9104 	ret = perf_output_begin(&handle, &sample, event,
9105 				text_poke_event->event_id.header.size);
9106 	if (ret)
9107 		return;
9108 
9109 	perf_output_put(&handle, text_poke_event->event_id);
9110 	perf_output_put(&handle, text_poke_event->old_len);
9111 	perf_output_put(&handle, text_poke_event->new_len);
9112 
9113 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9114 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9115 
9116 	if (text_poke_event->pad)
9117 		__output_copy(&handle, &padding, text_poke_event->pad);
9118 
9119 	perf_event__output_id_sample(event, &handle, &sample);
9120 
9121 	perf_output_end(&handle);
9122 }
9123 
9124 void perf_event_text_poke(const void *addr, const void *old_bytes,
9125 			  size_t old_len, const void *new_bytes, size_t new_len)
9126 {
9127 	struct perf_text_poke_event text_poke_event;
9128 	size_t tot, pad;
9129 
9130 	if (!atomic_read(&nr_text_poke_events))
9131 		return;
9132 
9133 	tot  = sizeof(text_poke_event.old_len) + old_len;
9134 	tot += sizeof(text_poke_event.new_len) + new_len;
9135 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9136 
9137 	text_poke_event = (struct perf_text_poke_event){
9138 		.old_bytes    = old_bytes,
9139 		.new_bytes    = new_bytes,
9140 		.pad          = pad,
9141 		.old_len      = old_len,
9142 		.new_len      = new_len,
9143 		.event_id  = {
9144 			.header = {
9145 				.type = PERF_RECORD_TEXT_POKE,
9146 				.misc = PERF_RECORD_MISC_KERNEL,
9147 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9148 			},
9149 			.addr = (unsigned long)addr,
9150 		},
9151 	};
9152 
9153 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9154 }
9155 
9156 void perf_event_itrace_started(struct perf_event *event)
9157 {
9158 	event->attach_state |= PERF_ATTACH_ITRACE;
9159 }
9160 
9161 static void perf_log_itrace_start(struct perf_event *event)
9162 {
9163 	struct perf_output_handle handle;
9164 	struct perf_sample_data sample;
9165 	struct perf_aux_event {
9166 		struct perf_event_header        header;
9167 		u32				pid;
9168 		u32				tid;
9169 	} rec;
9170 	int ret;
9171 
9172 	if (event->parent)
9173 		event = event->parent;
9174 
9175 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9176 	    event->attach_state & PERF_ATTACH_ITRACE)
9177 		return;
9178 
9179 	rec.header.type	= PERF_RECORD_ITRACE_START;
9180 	rec.header.misc	= 0;
9181 	rec.header.size	= sizeof(rec);
9182 	rec.pid	= perf_event_pid(event, current);
9183 	rec.tid	= perf_event_tid(event, current);
9184 
9185 	perf_event_header__init_id(&rec.header, &sample, event);
9186 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9187 
9188 	if (ret)
9189 		return;
9190 
9191 	perf_output_put(&handle, rec);
9192 	perf_event__output_id_sample(event, &handle, &sample);
9193 
9194 	perf_output_end(&handle);
9195 }
9196 
9197 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9198 {
9199 	struct perf_output_handle handle;
9200 	struct perf_sample_data sample;
9201 	struct perf_aux_event {
9202 		struct perf_event_header        header;
9203 		u64				hw_id;
9204 	} rec;
9205 	int ret;
9206 
9207 	if (event->parent)
9208 		event = event->parent;
9209 
9210 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9211 	rec.header.misc	= 0;
9212 	rec.header.size	= sizeof(rec);
9213 	rec.hw_id	= hw_id;
9214 
9215 	perf_event_header__init_id(&rec.header, &sample, event);
9216 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9217 
9218 	if (ret)
9219 		return;
9220 
9221 	perf_output_put(&handle, rec);
9222 	perf_event__output_id_sample(event, &handle, &sample);
9223 
9224 	perf_output_end(&handle);
9225 }
9226 
9227 static int
9228 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9229 {
9230 	struct hw_perf_event *hwc = &event->hw;
9231 	int ret = 0;
9232 	u64 seq;
9233 
9234 	seq = __this_cpu_read(perf_throttled_seq);
9235 	if (seq != hwc->interrupts_seq) {
9236 		hwc->interrupts_seq = seq;
9237 		hwc->interrupts = 1;
9238 	} else {
9239 		hwc->interrupts++;
9240 		if (unlikely(throttle
9241 			     && hwc->interrupts >= max_samples_per_tick)) {
9242 			__this_cpu_inc(perf_throttled_count);
9243 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9244 			hwc->interrupts = MAX_INTERRUPTS;
9245 			perf_log_throttle(event, 0);
9246 			ret = 1;
9247 		}
9248 	}
9249 
9250 	if (event->attr.freq) {
9251 		u64 now = perf_clock();
9252 		s64 delta = now - hwc->freq_time_stamp;
9253 
9254 		hwc->freq_time_stamp = now;
9255 
9256 		if (delta > 0 && delta < 2*TICK_NSEC)
9257 			perf_adjust_period(event, delta, hwc->last_period, true);
9258 	}
9259 
9260 	return ret;
9261 }
9262 
9263 int perf_event_account_interrupt(struct perf_event *event)
9264 {
9265 	return __perf_event_account_interrupt(event, 1);
9266 }
9267 
9268 /*
9269  * Generic event overflow handling, sampling.
9270  */
9271 
9272 static int __perf_event_overflow(struct perf_event *event,
9273 				   int throttle, struct perf_sample_data *data,
9274 				   struct pt_regs *regs)
9275 {
9276 	int events = atomic_read(&event->event_limit);
9277 	int ret = 0;
9278 
9279 	/*
9280 	 * Non-sampling counters might still use the PMI to fold short
9281 	 * hardware counters, ignore those.
9282 	 */
9283 	if (unlikely(!is_sampling_event(event)))
9284 		return 0;
9285 
9286 	ret = __perf_event_account_interrupt(event, throttle);
9287 
9288 	/*
9289 	 * XXX event_limit might not quite work as expected on inherited
9290 	 * events
9291 	 */
9292 
9293 	event->pending_kill = POLL_IN;
9294 	if (events && atomic_dec_and_test(&event->event_limit)) {
9295 		ret = 1;
9296 		event->pending_kill = POLL_HUP;
9297 		event->pending_addr = data->addr;
9298 
9299 		perf_event_disable_inatomic(event);
9300 	}
9301 
9302 	READ_ONCE(event->overflow_handler)(event, data, regs);
9303 
9304 	if (*perf_event_fasync(event) && event->pending_kill) {
9305 		event->pending_wakeup = 1;
9306 		irq_work_queue(&event->pending);
9307 	}
9308 
9309 	return ret;
9310 }
9311 
9312 int perf_event_overflow(struct perf_event *event,
9313 			  struct perf_sample_data *data,
9314 			  struct pt_regs *regs)
9315 {
9316 	return __perf_event_overflow(event, 1, data, regs);
9317 }
9318 
9319 /*
9320  * Generic software event infrastructure
9321  */
9322 
9323 struct swevent_htable {
9324 	struct swevent_hlist		*swevent_hlist;
9325 	struct mutex			hlist_mutex;
9326 	int				hlist_refcount;
9327 
9328 	/* Recursion avoidance in each contexts */
9329 	int				recursion[PERF_NR_CONTEXTS];
9330 };
9331 
9332 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9333 
9334 /*
9335  * We directly increment event->count and keep a second value in
9336  * event->hw.period_left to count intervals. This period event
9337  * is kept in the range [-sample_period, 0] so that we can use the
9338  * sign as trigger.
9339  */
9340 
9341 u64 perf_swevent_set_period(struct perf_event *event)
9342 {
9343 	struct hw_perf_event *hwc = &event->hw;
9344 	u64 period = hwc->last_period;
9345 	u64 nr, offset;
9346 	s64 old, val;
9347 
9348 	hwc->last_period = hwc->sample_period;
9349 
9350 again:
9351 	old = val = local64_read(&hwc->period_left);
9352 	if (val < 0)
9353 		return 0;
9354 
9355 	nr = div64_u64(period + val, period);
9356 	offset = nr * period;
9357 	val -= offset;
9358 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9359 		goto again;
9360 
9361 	return nr;
9362 }
9363 
9364 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9365 				    struct perf_sample_data *data,
9366 				    struct pt_regs *regs)
9367 {
9368 	struct hw_perf_event *hwc = &event->hw;
9369 	int throttle = 0;
9370 
9371 	if (!overflow)
9372 		overflow = perf_swevent_set_period(event);
9373 
9374 	if (hwc->interrupts == MAX_INTERRUPTS)
9375 		return;
9376 
9377 	for (; overflow; overflow--) {
9378 		if (__perf_event_overflow(event, throttle,
9379 					    data, regs)) {
9380 			/*
9381 			 * We inhibit the overflow from happening when
9382 			 * hwc->interrupts == MAX_INTERRUPTS.
9383 			 */
9384 			break;
9385 		}
9386 		throttle = 1;
9387 	}
9388 }
9389 
9390 static void perf_swevent_event(struct perf_event *event, u64 nr,
9391 			       struct perf_sample_data *data,
9392 			       struct pt_regs *regs)
9393 {
9394 	struct hw_perf_event *hwc = &event->hw;
9395 
9396 	local64_add(nr, &event->count);
9397 
9398 	if (!regs)
9399 		return;
9400 
9401 	if (!is_sampling_event(event))
9402 		return;
9403 
9404 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9405 		data->period = nr;
9406 		return perf_swevent_overflow(event, 1, data, regs);
9407 	} else
9408 		data->period = event->hw.last_period;
9409 
9410 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9411 		return perf_swevent_overflow(event, 1, data, regs);
9412 
9413 	if (local64_add_negative(nr, &hwc->period_left))
9414 		return;
9415 
9416 	perf_swevent_overflow(event, 0, data, regs);
9417 }
9418 
9419 static int perf_exclude_event(struct perf_event *event,
9420 			      struct pt_regs *regs)
9421 {
9422 	if (event->hw.state & PERF_HES_STOPPED)
9423 		return 1;
9424 
9425 	if (regs) {
9426 		if (event->attr.exclude_user && user_mode(regs))
9427 			return 1;
9428 
9429 		if (event->attr.exclude_kernel && !user_mode(regs))
9430 			return 1;
9431 	}
9432 
9433 	return 0;
9434 }
9435 
9436 static int perf_swevent_match(struct perf_event *event,
9437 				enum perf_type_id type,
9438 				u32 event_id,
9439 				struct perf_sample_data *data,
9440 				struct pt_regs *regs)
9441 {
9442 	if (event->attr.type != type)
9443 		return 0;
9444 
9445 	if (event->attr.config != event_id)
9446 		return 0;
9447 
9448 	if (perf_exclude_event(event, regs))
9449 		return 0;
9450 
9451 	return 1;
9452 }
9453 
9454 static inline u64 swevent_hash(u64 type, u32 event_id)
9455 {
9456 	u64 val = event_id | (type << 32);
9457 
9458 	return hash_64(val, SWEVENT_HLIST_BITS);
9459 }
9460 
9461 static inline struct hlist_head *
9462 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9463 {
9464 	u64 hash = swevent_hash(type, event_id);
9465 
9466 	return &hlist->heads[hash];
9467 }
9468 
9469 /* For the read side: events when they trigger */
9470 static inline struct hlist_head *
9471 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9472 {
9473 	struct swevent_hlist *hlist;
9474 
9475 	hlist = rcu_dereference(swhash->swevent_hlist);
9476 	if (!hlist)
9477 		return NULL;
9478 
9479 	return __find_swevent_head(hlist, type, event_id);
9480 }
9481 
9482 /* For the event head insertion and removal in the hlist */
9483 static inline struct hlist_head *
9484 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9485 {
9486 	struct swevent_hlist *hlist;
9487 	u32 event_id = event->attr.config;
9488 	u64 type = event->attr.type;
9489 
9490 	/*
9491 	 * Event scheduling is always serialized against hlist allocation
9492 	 * and release. Which makes the protected version suitable here.
9493 	 * The context lock guarantees that.
9494 	 */
9495 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9496 					  lockdep_is_held(&event->ctx->lock));
9497 	if (!hlist)
9498 		return NULL;
9499 
9500 	return __find_swevent_head(hlist, type, event_id);
9501 }
9502 
9503 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9504 				    u64 nr,
9505 				    struct perf_sample_data *data,
9506 				    struct pt_regs *regs)
9507 {
9508 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9509 	struct perf_event *event;
9510 	struct hlist_head *head;
9511 
9512 	rcu_read_lock();
9513 	head = find_swevent_head_rcu(swhash, type, event_id);
9514 	if (!head)
9515 		goto end;
9516 
9517 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9518 		if (perf_swevent_match(event, type, event_id, data, regs))
9519 			perf_swevent_event(event, nr, data, regs);
9520 	}
9521 end:
9522 	rcu_read_unlock();
9523 }
9524 
9525 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9526 
9527 int perf_swevent_get_recursion_context(void)
9528 {
9529 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9530 
9531 	return get_recursion_context(swhash->recursion);
9532 }
9533 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9534 
9535 void perf_swevent_put_recursion_context(int rctx)
9536 {
9537 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9538 
9539 	put_recursion_context(swhash->recursion, rctx);
9540 }
9541 
9542 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9543 {
9544 	struct perf_sample_data data;
9545 
9546 	if (WARN_ON_ONCE(!regs))
9547 		return;
9548 
9549 	perf_sample_data_init(&data, addr, 0);
9550 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9551 }
9552 
9553 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9554 {
9555 	int rctx;
9556 
9557 	preempt_disable_notrace();
9558 	rctx = perf_swevent_get_recursion_context();
9559 	if (unlikely(rctx < 0))
9560 		goto fail;
9561 
9562 	___perf_sw_event(event_id, nr, regs, addr);
9563 
9564 	perf_swevent_put_recursion_context(rctx);
9565 fail:
9566 	preempt_enable_notrace();
9567 }
9568 
9569 static void perf_swevent_read(struct perf_event *event)
9570 {
9571 }
9572 
9573 static int perf_swevent_add(struct perf_event *event, int flags)
9574 {
9575 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9576 	struct hw_perf_event *hwc = &event->hw;
9577 	struct hlist_head *head;
9578 
9579 	if (is_sampling_event(event)) {
9580 		hwc->last_period = hwc->sample_period;
9581 		perf_swevent_set_period(event);
9582 	}
9583 
9584 	hwc->state = !(flags & PERF_EF_START);
9585 
9586 	head = find_swevent_head(swhash, event);
9587 	if (WARN_ON_ONCE(!head))
9588 		return -EINVAL;
9589 
9590 	hlist_add_head_rcu(&event->hlist_entry, head);
9591 	perf_event_update_userpage(event);
9592 
9593 	return 0;
9594 }
9595 
9596 static void perf_swevent_del(struct perf_event *event, int flags)
9597 {
9598 	hlist_del_rcu(&event->hlist_entry);
9599 }
9600 
9601 static void perf_swevent_start(struct perf_event *event, int flags)
9602 {
9603 	event->hw.state = 0;
9604 }
9605 
9606 static void perf_swevent_stop(struct perf_event *event, int flags)
9607 {
9608 	event->hw.state = PERF_HES_STOPPED;
9609 }
9610 
9611 /* Deref the hlist from the update side */
9612 static inline struct swevent_hlist *
9613 swevent_hlist_deref(struct swevent_htable *swhash)
9614 {
9615 	return rcu_dereference_protected(swhash->swevent_hlist,
9616 					 lockdep_is_held(&swhash->hlist_mutex));
9617 }
9618 
9619 static void swevent_hlist_release(struct swevent_htable *swhash)
9620 {
9621 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9622 
9623 	if (!hlist)
9624 		return;
9625 
9626 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9627 	kfree_rcu(hlist, rcu_head);
9628 }
9629 
9630 static void swevent_hlist_put_cpu(int cpu)
9631 {
9632 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9633 
9634 	mutex_lock(&swhash->hlist_mutex);
9635 
9636 	if (!--swhash->hlist_refcount)
9637 		swevent_hlist_release(swhash);
9638 
9639 	mutex_unlock(&swhash->hlist_mutex);
9640 }
9641 
9642 static void swevent_hlist_put(void)
9643 {
9644 	int cpu;
9645 
9646 	for_each_possible_cpu(cpu)
9647 		swevent_hlist_put_cpu(cpu);
9648 }
9649 
9650 static int swevent_hlist_get_cpu(int cpu)
9651 {
9652 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9653 	int err = 0;
9654 
9655 	mutex_lock(&swhash->hlist_mutex);
9656 	if (!swevent_hlist_deref(swhash) &&
9657 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9658 		struct swevent_hlist *hlist;
9659 
9660 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9661 		if (!hlist) {
9662 			err = -ENOMEM;
9663 			goto exit;
9664 		}
9665 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9666 	}
9667 	swhash->hlist_refcount++;
9668 exit:
9669 	mutex_unlock(&swhash->hlist_mutex);
9670 
9671 	return err;
9672 }
9673 
9674 static int swevent_hlist_get(void)
9675 {
9676 	int err, cpu, failed_cpu;
9677 
9678 	mutex_lock(&pmus_lock);
9679 	for_each_possible_cpu(cpu) {
9680 		err = swevent_hlist_get_cpu(cpu);
9681 		if (err) {
9682 			failed_cpu = cpu;
9683 			goto fail;
9684 		}
9685 	}
9686 	mutex_unlock(&pmus_lock);
9687 	return 0;
9688 fail:
9689 	for_each_possible_cpu(cpu) {
9690 		if (cpu == failed_cpu)
9691 			break;
9692 		swevent_hlist_put_cpu(cpu);
9693 	}
9694 	mutex_unlock(&pmus_lock);
9695 	return err;
9696 }
9697 
9698 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9699 
9700 static void sw_perf_event_destroy(struct perf_event *event)
9701 {
9702 	u64 event_id = event->attr.config;
9703 
9704 	WARN_ON(event->parent);
9705 
9706 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9707 	swevent_hlist_put();
9708 }
9709 
9710 static int perf_swevent_init(struct perf_event *event)
9711 {
9712 	u64 event_id = event->attr.config;
9713 
9714 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9715 		return -ENOENT;
9716 
9717 	/*
9718 	 * no branch sampling for software events
9719 	 */
9720 	if (has_branch_stack(event))
9721 		return -EOPNOTSUPP;
9722 
9723 	switch (event_id) {
9724 	case PERF_COUNT_SW_CPU_CLOCK:
9725 	case PERF_COUNT_SW_TASK_CLOCK:
9726 		return -ENOENT;
9727 
9728 	default:
9729 		break;
9730 	}
9731 
9732 	if (event_id >= PERF_COUNT_SW_MAX)
9733 		return -ENOENT;
9734 
9735 	if (!event->parent) {
9736 		int err;
9737 
9738 		err = swevent_hlist_get();
9739 		if (err)
9740 			return err;
9741 
9742 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9743 		event->destroy = sw_perf_event_destroy;
9744 	}
9745 
9746 	return 0;
9747 }
9748 
9749 static struct pmu perf_swevent = {
9750 	.task_ctx_nr	= perf_sw_context,
9751 
9752 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9753 
9754 	.event_init	= perf_swevent_init,
9755 	.add		= perf_swevent_add,
9756 	.del		= perf_swevent_del,
9757 	.start		= perf_swevent_start,
9758 	.stop		= perf_swevent_stop,
9759 	.read		= perf_swevent_read,
9760 };
9761 
9762 #ifdef CONFIG_EVENT_TRACING
9763 
9764 static int perf_tp_filter_match(struct perf_event *event,
9765 				struct perf_sample_data *data)
9766 {
9767 	void *record = data->raw->frag.data;
9768 
9769 	/* only top level events have filters set */
9770 	if (event->parent)
9771 		event = event->parent;
9772 
9773 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9774 		return 1;
9775 	return 0;
9776 }
9777 
9778 static int perf_tp_event_match(struct perf_event *event,
9779 				struct perf_sample_data *data,
9780 				struct pt_regs *regs)
9781 {
9782 	if (event->hw.state & PERF_HES_STOPPED)
9783 		return 0;
9784 	/*
9785 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9786 	 */
9787 	if (event->attr.exclude_kernel && !user_mode(regs))
9788 		return 0;
9789 
9790 	if (!perf_tp_filter_match(event, data))
9791 		return 0;
9792 
9793 	return 1;
9794 }
9795 
9796 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9797 			       struct trace_event_call *call, u64 count,
9798 			       struct pt_regs *regs, struct hlist_head *head,
9799 			       struct task_struct *task)
9800 {
9801 	if (bpf_prog_array_valid(call)) {
9802 		*(struct pt_regs **)raw_data = regs;
9803 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9804 			perf_swevent_put_recursion_context(rctx);
9805 			return;
9806 		}
9807 	}
9808 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9809 		      rctx, task);
9810 }
9811 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9812 
9813 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9814 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9815 		   struct task_struct *task)
9816 {
9817 	struct perf_sample_data data;
9818 	struct perf_event *event;
9819 
9820 	struct perf_raw_record raw = {
9821 		.frag = {
9822 			.size = entry_size,
9823 			.data = record,
9824 		},
9825 	};
9826 
9827 	perf_sample_data_init(&data, 0, 0);
9828 	data.raw = &raw;
9829 
9830 	perf_trace_buf_update(record, event_type);
9831 
9832 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9833 		if (perf_tp_event_match(event, &data, regs))
9834 			perf_swevent_event(event, count, &data, regs);
9835 	}
9836 
9837 	/*
9838 	 * If we got specified a target task, also iterate its context and
9839 	 * deliver this event there too.
9840 	 */
9841 	if (task && task != current) {
9842 		struct perf_event_context *ctx;
9843 		struct trace_entry *entry = record;
9844 
9845 		rcu_read_lock();
9846 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9847 		if (!ctx)
9848 			goto unlock;
9849 
9850 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9851 			if (event->cpu != smp_processor_id())
9852 				continue;
9853 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9854 				continue;
9855 			if (event->attr.config != entry->type)
9856 				continue;
9857 			/* Cannot deliver synchronous signal to other task. */
9858 			if (event->attr.sigtrap)
9859 				continue;
9860 			if (perf_tp_event_match(event, &data, regs))
9861 				perf_swevent_event(event, count, &data, regs);
9862 		}
9863 unlock:
9864 		rcu_read_unlock();
9865 	}
9866 
9867 	perf_swevent_put_recursion_context(rctx);
9868 }
9869 EXPORT_SYMBOL_GPL(perf_tp_event);
9870 
9871 static void tp_perf_event_destroy(struct perf_event *event)
9872 {
9873 	perf_trace_destroy(event);
9874 }
9875 
9876 static int perf_tp_event_init(struct perf_event *event)
9877 {
9878 	int err;
9879 
9880 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9881 		return -ENOENT;
9882 
9883 	/*
9884 	 * no branch sampling for tracepoint events
9885 	 */
9886 	if (has_branch_stack(event))
9887 		return -EOPNOTSUPP;
9888 
9889 	err = perf_trace_init(event);
9890 	if (err)
9891 		return err;
9892 
9893 	event->destroy = tp_perf_event_destroy;
9894 
9895 	return 0;
9896 }
9897 
9898 static struct pmu perf_tracepoint = {
9899 	.task_ctx_nr	= perf_sw_context,
9900 
9901 	.event_init	= perf_tp_event_init,
9902 	.add		= perf_trace_add,
9903 	.del		= perf_trace_del,
9904 	.start		= perf_swevent_start,
9905 	.stop		= perf_swevent_stop,
9906 	.read		= perf_swevent_read,
9907 };
9908 
9909 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9910 /*
9911  * Flags in config, used by dynamic PMU kprobe and uprobe
9912  * The flags should match following PMU_FORMAT_ATTR().
9913  *
9914  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9915  *                               if not set, create kprobe/uprobe
9916  *
9917  * The following values specify a reference counter (or semaphore in the
9918  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9919  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9920  *
9921  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9922  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9923  */
9924 enum perf_probe_config {
9925 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9926 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9927 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9928 };
9929 
9930 PMU_FORMAT_ATTR(retprobe, "config:0");
9931 #endif
9932 
9933 #ifdef CONFIG_KPROBE_EVENTS
9934 static struct attribute *kprobe_attrs[] = {
9935 	&format_attr_retprobe.attr,
9936 	NULL,
9937 };
9938 
9939 static struct attribute_group kprobe_format_group = {
9940 	.name = "format",
9941 	.attrs = kprobe_attrs,
9942 };
9943 
9944 static const struct attribute_group *kprobe_attr_groups[] = {
9945 	&kprobe_format_group,
9946 	NULL,
9947 };
9948 
9949 static int perf_kprobe_event_init(struct perf_event *event);
9950 static struct pmu perf_kprobe = {
9951 	.task_ctx_nr	= perf_sw_context,
9952 	.event_init	= perf_kprobe_event_init,
9953 	.add		= perf_trace_add,
9954 	.del		= perf_trace_del,
9955 	.start		= perf_swevent_start,
9956 	.stop		= perf_swevent_stop,
9957 	.read		= perf_swevent_read,
9958 	.attr_groups	= kprobe_attr_groups,
9959 };
9960 
9961 static int perf_kprobe_event_init(struct perf_event *event)
9962 {
9963 	int err;
9964 	bool is_retprobe;
9965 
9966 	if (event->attr.type != perf_kprobe.type)
9967 		return -ENOENT;
9968 
9969 	if (!perfmon_capable())
9970 		return -EACCES;
9971 
9972 	/*
9973 	 * no branch sampling for probe events
9974 	 */
9975 	if (has_branch_stack(event))
9976 		return -EOPNOTSUPP;
9977 
9978 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9979 	err = perf_kprobe_init(event, is_retprobe);
9980 	if (err)
9981 		return err;
9982 
9983 	event->destroy = perf_kprobe_destroy;
9984 
9985 	return 0;
9986 }
9987 #endif /* CONFIG_KPROBE_EVENTS */
9988 
9989 #ifdef CONFIG_UPROBE_EVENTS
9990 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9991 
9992 static struct attribute *uprobe_attrs[] = {
9993 	&format_attr_retprobe.attr,
9994 	&format_attr_ref_ctr_offset.attr,
9995 	NULL,
9996 };
9997 
9998 static struct attribute_group uprobe_format_group = {
9999 	.name = "format",
10000 	.attrs = uprobe_attrs,
10001 };
10002 
10003 static const struct attribute_group *uprobe_attr_groups[] = {
10004 	&uprobe_format_group,
10005 	NULL,
10006 };
10007 
10008 static int perf_uprobe_event_init(struct perf_event *event);
10009 static struct pmu perf_uprobe = {
10010 	.task_ctx_nr	= perf_sw_context,
10011 	.event_init	= perf_uprobe_event_init,
10012 	.add		= perf_trace_add,
10013 	.del		= perf_trace_del,
10014 	.start		= perf_swevent_start,
10015 	.stop		= perf_swevent_stop,
10016 	.read		= perf_swevent_read,
10017 	.attr_groups	= uprobe_attr_groups,
10018 };
10019 
10020 static int perf_uprobe_event_init(struct perf_event *event)
10021 {
10022 	int err;
10023 	unsigned long ref_ctr_offset;
10024 	bool is_retprobe;
10025 
10026 	if (event->attr.type != perf_uprobe.type)
10027 		return -ENOENT;
10028 
10029 	if (!perfmon_capable())
10030 		return -EACCES;
10031 
10032 	/*
10033 	 * no branch sampling for probe events
10034 	 */
10035 	if (has_branch_stack(event))
10036 		return -EOPNOTSUPP;
10037 
10038 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10039 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10040 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10041 	if (err)
10042 		return err;
10043 
10044 	event->destroy = perf_uprobe_destroy;
10045 
10046 	return 0;
10047 }
10048 #endif /* CONFIG_UPROBE_EVENTS */
10049 
10050 static inline void perf_tp_register(void)
10051 {
10052 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10053 #ifdef CONFIG_KPROBE_EVENTS
10054 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10055 #endif
10056 #ifdef CONFIG_UPROBE_EVENTS
10057 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10058 #endif
10059 }
10060 
10061 static void perf_event_free_filter(struct perf_event *event)
10062 {
10063 	ftrace_profile_free_filter(event);
10064 }
10065 
10066 #ifdef CONFIG_BPF_SYSCALL
10067 static void bpf_overflow_handler(struct perf_event *event,
10068 				 struct perf_sample_data *data,
10069 				 struct pt_regs *regs)
10070 {
10071 	struct bpf_perf_event_data_kern ctx = {
10072 		.data = data,
10073 		.event = event,
10074 	};
10075 	struct bpf_prog *prog;
10076 	int ret = 0;
10077 
10078 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10079 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10080 		goto out;
10081 	rcu_read_lock();
10082 	prog = READ_ONCE(event->prog);
10083 	if (prog)
10084 		ret = bpf_prog_run(prog, &ctx);
10085 	rcu_read_unlock();
10086 out:
10087 	__this_cpu_dec(bpf_prog_active);
10088 	if (!ret)
10089 		return;
10090 
10091 	event->orig_overflow_handler(event, data, regs);
10092 }
10093 
10094 static int perf_event_set_bpf_handler(struct perf_event *event,
10095 				      struct bpf_prog *prog,
10096 				      u64 bpf_cookie)
10097 {
10098 	if (event->overflow_handler_context)
10099 		/* hw breakpoint or kernel counter */
10100 		return -EINVAL;
10101 
10102 	if (event->prog)
10103 		return -EEXIST;
10104 
10105 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10106 		return -EINVAL;
10107 
10108 	if (event->attr.precise_ip &&
10109 	    prog->call_get_stack &&
10110 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10111 	     event->attr.exclude_callchain_kernel ||
10112 	     event->attr.exclude_callchain_user)) {
10113 		/*
10114 		 * On perf_event with precise_ip, calling bpf_get_stack()
10115 		 * may trigger unwinder warnings and occasional crashes.
10116 		 * bpf_get_[stack|stackid] works around this issue by using
10117 		 * callchain attached to perf_sample_data. If the
10118 		 * perf_event does not full (kernel and user) callchain
10119 		 * attached to perf_sample_data, do not allow attaching BPF
10120 		 * program that calls bpf_get_[stack|stackid].
10121 		 */
10122 		return -EPROTO;
10123 	}
10124 
10125 	event->prog = prog;
10126 	event->bpf_cookie = bpf_cookie;
10127 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10128 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10129 	return 0;
10130 }
10131 
10132 static void perf_event_free_bpf_handler(struct perf_event *event)
10133 {
10134 	struct bpf_prog *prog = event->prog;
10135 
10136 	if (!prog)
10137 		return;
10138 
10139 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10140 	event->prog = NULL;
10141 	bpf_prog_put(prog);
10142 }
10143 #else
10144 static int perf_event_set_bpf_handler(struct perf_event *event,
10145 				      struct bpf_prog *prog,
10146 				      u64 bpf_cookie)
10147 {
10148 	return -EOPNOTSUPP;
10149 }
10150 static void perf_event_free_bpf_handler(struct perf_event *event)
10151 {
10152 }
10153 #endif
10154 
10155 /*
10156  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10157  * with perf_event_open()
10158  */
10159 static inline bool perf_event_is_tracing(struct perf_event *event)
10160 {
10161 	if (event->pmu == &perf_tracepoint)
10162 		return true;
10163 #ifdef CONFIG_KPROBE_EVENTS
10164 	if (event->pmu == &perf_kprobe)
10165 		return true;
10166 #endif
10167 #ifdef CONFIG_UPROBE_EVENTS
10168 	if (event->pmu == &perf_uprobe)
10169 		return true;
10170 #endif
10171 	return false;
10172 }
10173 
10174 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10175 			    u64 bpf_cookie)
10176 {
10177 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10178 
10179 	if (!perf_event_is_tracing(event))
10180 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10181 
10182 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10183 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10184 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10185 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10186 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10187 		return -EINVAL;
10188 
10189 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10190 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10191 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10192 		return -EINVAL;
10193 
10194 	/* Kprobe override only works for kprobes, not uprobes. */
10195 	if (prog->kprobe_override &&
10196 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10197 		return -EINVAL;
10198 
10199 	if (is_tracepoint || is_syscall_tp) {
10200 		int off = trace_event_get_offsets(event->tp_event);
10201 
10202 		if (prog->aux->max_ctx_offset > off)
10203 			return -EACCES;
10204 	}
10205 
10206 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10207 }
10208 
10209 void perf_event_free_bpf_prog(struct perf_event *event)
10210 {
10211 	if (!perf_event_is_tracing(event)) {
10212 		perf_event_free_bpf_handler(event);
10213 		return;
10214 	}
10215 	perf_event_detach_bpf_prog(event);
10216 }
10217 
10218 #else
10219 
10220 static inline void perf_tp_register(void)
10221 {
10222 }
10223 
10224 static void perf_event_free_filter(struct perf_event *event)
10225 {
10226 }
10227 
10228 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10229 			    u64 bpf_cookie)
10230 {
10231 	return -ENOENT;
10232 }
10233 
10234 void perf_event_free_bpf_prog(struct perf_event *event)
10235 {
10236 }
10237 #endif /* CONFIG_EVENT_TRACING */
10238 
10239 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10240 void perf_bp_event(struct perf_event *bp, void *data)
10241 {
10242 	struct perf_sample_data sample;
10243 	struct pt_regs *regs = data;
10244 
10245 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10246 
10247 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10248 		perf_swevent_event(bp, 1, &sample, regs);
10249 }
10250 #endif
10251 
10252 /*
10253  * Allocate a new address filter
10254  */
10255 static struct perf_addr_filter *
10256 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10257 {
10258 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10259 	struct perf_addr_filter *filter;
10260 
10261 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10262 	if (!filter)
10263 		return NULL;
10264 
10265 	INIT_LIST_HEAD(&filter->entry);
10266 	list_add_tail(&filter->entry, filters);
10267 
10268 	return filter;
10269 }
10270 
10271 static void free_filters_list(struct list_head *filters)
10272 {
10273 	struct perf_addr_filter *filter, *iter;
10274 
10275 	list_for_each_entry_safe(filter, iter, filters, entry) {
10276 		path_put(&filter->path);
10277 		list_del(&filter->entry);
10278 		kfree(filter);
10279 	}
10280 }
10281 
10282 /*
10283  * Free existing address filters and optionally install new ones
10284  */
10285 static void perf_addr_filters_splice(struct perf_event *event,
10286 				     struct list_head *head)
10287 {
10288 	unsigned long flags;
10289 	LIST_HEAD(list);
10290 
10291 	if (!has_addr_filter(event))
10292 		return;
10293 
10294 	/* don't bother with children, they don't have their own filters */
10295 	if (event->parent)
10296 		return;
10297 
10298 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10299 
10300 	list_splice_init(&event->addr_filters.list, &list);
10301 	if (head)
10302 		list_splice(head, &event->addr_filters.list);
10303 
10304 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10305 
10306 	free_filters_list(&list);
10307 }
10308 
10309 /*
10310  * Scan through mm's vmas and see if one of them matches the
10311  * @filter; if so, adjust filter's address range.
10312  * Called with mm::mmap_lock down for reading.
10313  */
10314 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10315 				   struct mm_struct *mm,
10316 				   struct perf_addr_filter_range *fr)
10317 {
10318 	struct vm_area_struct *vma;
10319 
10320 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10321 		if (!vma->vm_file)
10322 			continue;
10323 
10324 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10325 			return;
10326 	}
10327 }
10328 
10329 /*
10330  * Update event's address range filters based on the
10331  * task's existing mappings, if any.
10332  */
10333 static void perf_event_addr_filters_apply(struct perf_event *event)
10334 {
10335 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10336 	struct task_struct *task = READ_ONCE(event->ctx->task);
10337 	struct perf_addr_filter *filter;
10338 	struct mm_struct *mm = NULL;
10339 	unsigned int count = 0;
10340 	unsigned long flags;
10341 
10342 	/*
10343 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10344 	 * will stop on the parent's child_mutex that our caller is also holding
10345 	 */
10346 	if (task == TASK_TOMBSTONE)
10347 		return;
10348 
10349 	if (ifh->nr_file_filters) {
10350 		mm = get_task_mm(task);
10351 		if (!mm)
10352 			goto restart;
10353 
10354 		mmap_read_lock(mm);
10355 	}
10356 
10357 	raw_spin_lock_irqsave(&ifh->lock, flags);
10358 	list_for_each_entry(filter, &ifh->list, entry) {
10359 		if (filter->path.dentry) {
10360 			/*
10361 			 * Adjust base offset if the filter is associated to a
10362 			 * binary that needs to be mapped:
10363 			 */
10364 			event->addr_filter_ranges[count].start = 0;
10365 			event->addr_filter_ranges[count].size = 0;
10366 
10367 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10368 		} else {
10369 			event->addr_filter_ranges[count].start = filter->offset;
10370 			event->addr_filter_ranges[count].size  = filter->size;
10371 		}
10372 
10373 		count++;
10374 	}
10375 
10376 	event->addr_filters_gen++;
10377 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10378 
10379 	if (ifh->nr_file_filters) {
10380 		mmap_read_unlock(mm);
10381 
10382 		mmput(mm);
10383 	}
10384 
10385 restart:
10386 	perf_event_stop(event, 1);
10387 }
10388 
10389 /*
10390  * Address range filtering: limiting the data to certain
10391  * instruction address ranges. Filters are ioctl()ed to us from
10392  * userspace as ascii strings.
10393  *
10394  * Filter string format:
10395  *
10396  * ACTION RANGE_SPEC
10397  * where ACTION is one of the
10398  *  * "filter": limit the trace to this region
10399  *  * "start": start tracing from this address
10400  *  * "stop": stop tracing at this address/region;
10401  * RANGE_SPEC is
10402  *  * for kernel addresses: <start address>[/<size>]
10403  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10404  *
10405  * if <size> is not specified or is zero, the range is treated as a single
10406  * address; not valid for ACTION=="filter".
10407  */
10408 enum {
10409 	IF_ACT_NONE = -1,
10410 	IF_ACT_FILTER,
10411 	IF_ACT_START,
10412 	IF_ACT_STOP,
10413 	IF_SRC_FILE,
10414 	IF_SRC_KERNEL,
10415 	IF_SRC_FILEADDR,
10416 	IF_SRC_KERNELADDR,
10417 };
10418 
10419 enum {
10420 	IF_STATE_ACTION = 0,
10421 	IF_STATE_SOURCE,
10422 	IF_STATE_END,
10423 };
10424 
10425 static const match_table_t if_tokens = {
10426 	{ IF_ACT_FILTER,	"filter" },
10427 	{ IF_ACT_START,		"start" },
10428 	{ IF_ACT_STOP,		"stop" },
10429 	{ IF_SRC_FILE,		"%u/%u@%s" },
10430 	{ IF_SRC_KERNEL,	"%u/%u" },
10431 	{ IF_SRC_FILEADDR,	"%u@%s" },
10432 	{ IF_SRC_KERNELADDR,	"%u" },
10433 	{ IF_ACT_NONE,		NULL },
10434 };
10435 
10436 /*
10437  * Address filter string parser
10438  */
10439 static int
10440 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10441 			     struct list_head *filters)
10442 {
10443 	struct perf_addr_filter *filter = NULL;
10444 	char *start, *orig, *filename = NULL;
10445 	substring_t args[MAX_OPT_ARGS];
10446 	int state = IF_STATE_ACTION, token;
10447 	unsigned int kernel = 0;
10448 	int ret = -EINVAL;
10449 
10450 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10451 	if (!fstr)
10452 		return -ENOMEM;
10453 
10454 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10455 		static const enum perf_addr_filter_action_t actions[] = {
10456 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10457 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10458 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10459 		};
10460 		ret = -EINVAL;
10461 
10462 		if (!*start)
10463 			continue;
10464 
10465 		/* filter definition begins */
10466 		if (state == IF_STATE_ACTION) {
10467 			filter = perf_addr_filter_new(event, filters);
10468 			if (!filter)
10469 				goto fail;
10470 		}
10471 
10472 		token = match_token(start, if_tokens, args);
10473 		switch (token) {
10474 		case IF_ACT_FILTER:
10475 		case IF_ACT_START:
10476 		case IF_ACT_STOP:
10477 			if (state != IF_STATE_ACTION)
10478 				goto fail;
10479 
10480 			filter->action = actions[token];
10481 			state = IF_STATE_SOURCE;
10482 			break;
10483 
10484 		case IF_SRC_KERNELADDR:
10485 		case IF_SRC_KERNEL:
10486 			kernel = 1;
10487 			fallthrough;
10488 
10489 		case IF_SRC_FILEADDR:
10490 		case IF_SRC_FILE:
10491 			if (state != IF_STATE_SOURCE)
10492 				goto fail;
10493 
10494 			*args[0].to = 0;
10495 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10496 			if (ret)
10497 				goto fail;
10498 
10499 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10500 				*args[1].to = 0;
10501 				ret = kstrtoul(args[1].from, 0, &filter->size);
10502 				if (ret)
10503 					goto fail;
10504 			}
10505 
10506 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10507 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10508 
10509 				kfree(filename);
10510 				filename = match_strdup(&args[fpos]);
10511 				if (!filename) {
10512 					ret = -ENOMEM;
10513 					goto fail;
10514 				}
10515 			}
10516 
10517 			state = IF_STATE_END;
10518 			break;
10519 
10520 		default:
10521 			goto fail;
10522 		}
10523 
10524 		/*
10525 		 * Filter definition is fully parsed, validate and install it.
10526 		 * Make sure that it doesn't contradict itself or the event's
10527 		 * attribute.
10528 		 */
10529 		if (state == IF_STATE_END) {
10530 			ret = -EINVAL;
10531 
10532 			/*
10533 			 * ACTION "filter" must have a non-zero length region
10534 			 * specified.
10535 			 */
10536 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10537 			    !filter->size)
10538 				goto fail;
10539 
10540 			if (!kernel) {
10541 				if (!filename)
10542 					goto fail;
10543 
10544 				/*
10545 				 * For now, we only support file-based filters
10546 				 * in per-task events; doing so for CPU-wide
10547 				 * events requires additional context switching
10548 				 * trickery, since same object code will be
10549 				 * mapped at different virtual addresses in
10550 				 * different processes.
10551 				 */
10552 				ret = -EOPNOTSUPP;
10553 				if (!event->ctx->task)
10554 					goto fail;
10555 
10556 				/* look up the path and grab its inode */
10557 				ret = kern_path(filename, LOOKUP_FOLLOW,
10558 						&filter->path);
10559 				if (ret)
10560 					goto fail;
10561 
10562 				ret = -EINVAL;
10563 				if (!filter->path.dentry ||
10564 				    !S_ISREG(d_inode(filter->path.dentry)
10565 					     ->i_mode))
10566 					goto fail;
10567 
10568 				event->addr_filters.nr_file_filters++;
10569 			}
10570 
10571 			/* ready to consume more filters */
10572 			kfree(filename);
10573 			filename = NULL;
10574 			state = IF_STATE_ACTION;
10575 			filter = NULL;
10576 			kernel = 0;
10577 		}
10578 	}
10579 
10580 	if (state != IF_STATE_ACTION)
10581 		goto fail;
10582 
10583 	kfree(filename);
10584 	kfree(orig);
10585 
10586 	return 0;
10587 
10588 fail:
10589 	kfree(filename);
10590 	free_filters_list(filters);
10591 	kfree(orig);
10592 
10593 	return ret;
10594 }
10595 
10596 static int
10597 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10598 {
10599 	LIST_HEAD(filters);
10600 	int ret;
10601 
10602 	/*
10603 	 * Since this is called in perf_ioctl() path, we're already holding
10604 	 * ctx::mutex.
10605 	 */
10606 	lockdep_assert_held(&event->ctx->mutex);
10607 
10608 	if (WARN_ON_ONCE(event->parent))
10609 		return -EINVAL;
10610 
10611 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10612 	if (ret)
10613 		goto fail_clear_files;
10614 
10615 	ret = event->pmu->addr_filters_validate(&filters);
10616 	if (ret)
10617 		goto fail_free_filters;
10618 
10619 	/* remove existing filters, if any */
10620 	perf_addr_filters_splice(event, &filters);
10621 
10622 	/* install new filters */
10623 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10624 
10625 	return ret;
10626 
10627 fail_free_filters:
10628 	free_filters_list(&filters);
10629 
10630 fail_clear_files:
10631 	event->addr_filters.nr_file_filters = 0;
10632 
10633 	return ret;
10634 }
10635 
10636 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10637 {
10638 	int ret = -EINVAL;
10639 	char *filter_str;
10640 
10641 	filter_str = strndup_user(arg, PAGE_SIZE);
10642 	if (IS_ERR(filter_str))
10643 		return PTR_ERR(filter_str);
10644 
10645 #ifdef CONFIG_EVENT_TRACING
10646 	if (perf_event_is_tracing(event)) {
10647 		struct perf_event_context *ctx = event->ctx;
10648 
10649 		/*
10650 		 * Beware, here be dragons!!
10651 		 *
10652 		 * the tracepoint muck will deadlock against ctx->mutex, but
10653 		 * the tracepoint stuff does not actually need it. So
10654 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10655 		 * already have a reference on ctx.
10656 		 *
10657 		 * This can result in event getting moved to a different ctx,
10658 		 * but that does not affect the tracepoint state.
10659 		 */
10660 		mutex_unlock(&ctx->mutex);
10661 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10662 		mutex_lock(&ctx->mutex);
10663 	} else
10664 #endif
10665 	if (has_addr_filter(event))
10666 		ret = perf_event_set_addr_filter(event, filter_str);
10667 
10668 	kfree(filter_str);
10669 	return ret;
10670 }
10671 
10672 /*
10673  * hrtimer based swevent callback
10674  */
10675 
10676 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10677 {
10678 	enum hrtimer_restart ret = HRTIMER_RESTART;
10679 	struct perf_sample_data data;
10680 	struct pt_regs *regs;
10681 	struct perf_event *event;
10682 	u64 period;
10683 
10684 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10685 
10686 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10687 		return HRTIMER_NORESTART;
10688 
10689 	event->pmu->read(event);
10690 
10691 	perf_sample_data_init(&data, 0, event->hw.last_period);
10692 	regs = get_irq_regs();
10693 
10694 	if (regs && !perf_exclude_event(event, regs)) {
10695 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10696 			if (__perf_event_overflow(event, 1, &data, regs))
10697 				ret = HRTIMER_NORESTART;
10698 	}
10699 
10700 	period = max_t(u64, 10000, event->hw.sample_period);
10701 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10702 
10703 	return ret;
10704 }
10705 
10706 static void perf_swevent_start_hrtimer(struct perf_event *event)
10707 {
10708 	struct hw_perf_event *hwc = &event->hw;
10709 	s64 period;
10710 
10711 	if (!is_sampling_event(event))
10712 		return;
10713 
10714 	period = local64_read(&hwc->period_left);
10715 	if (period) {
10716 		if (period < 0)
10717 			period = 10000;
10718 
10719 		local64_set(&hwc->period_left, 0);
10720 	} else {
10721 		period = max_t(u64, 10000, hwc->sample_period);
10722 	}
10723 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10724 		      HRTIMER_MODE_REL_PINNED_HARD);
10725 }
10726 
10727 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10728 {
10729 	struct hw_perf_event *hwc = &event->hw;
10730 
10731 	if (is_sampling_event(event)) {
10732 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10733 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10734 
10735 		hrtimer_cancel(&hwc->hrtimer);
10736 	}
10737 }
10738 
10739 static void perf_swevent_init_hrtimer(struct perf_event *event)
10740 {
10741 	struct hw_perf_event *hwc = &event->hw;
10742 
10743 	if (!is_sampling_event(event))
10744 		return;
10745 
10746 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10747 	hwc->hrtimer.function = perf_swevent_hrtimer;
10748 
10749 	/*
10750 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10751 	 * mapping and avoid the whole period adjust feedback stuff.
10752 	 */
10753 	if (event->attr.freq) {
10754 		long freq = event->attr.sample_freq;
10755 
10756 		event->attr.sample_period = NSEC_PER_SEC / freq;
10757 		hwc->sample_period = event->attr.sample_period;
10758 		local64_set(&hwc->period_left, hwc->sample_period);
10759 		hwc->last_period = hwc->sample_period;
10760 		event->attr.freq = 0;
10761 	}
10762 }
10763 
10764 /*
10765  * Software event: cpu wall time clock
10766  */
10767 
10768 static void cpu_clock_event_update(struct perf_event *event)
10769 {
10770 	s64 prev;
10771 	u64 now;
10772 
10773 	now = local_clock();
10774 	prev = local64_xchg(&event->hw.prev_count, now);
10775 	local64_add(now - prev, &event->count);
10776 }
10777 
10778 static void cpu_clock_event_start(struct perf_event *event, int flags)
10779 {
10780 	local64_set(&event->hw.prev_count, local_clock());
10781 	perf_swevent_start_hrtimer(event);
10782 }
10783 
10784 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10785 {
10786 	perf_swevent_cancel_hrtimer(event);
10787 	cpu_clock_event_update(event);
10788 }
10789 
10790 static int cpu_clock_event_add(struct perf_event *event, int flags)
10791 {
10792 	if (flags & PERF_EF_START)
10793 		cpu_clock_event_start(event, flags);
10794 	perf_event_update_userpage(event);
10795 
10796 	return 0;
10797 }
10798 
10799 static void cpu_clock_event_del(struct perf_event *event, int flags)
10800 {
10801 	cpu_clock_event_stop(event, flags);
10802 }
10803 
10804 static void cpu_clock_event_read(struct perf_event *event)
10805 {
10806 	cpu_clock_event_update(event);
10807 }
10808 
10809 static int cpu_clock_event_init(struct perf_event *event)
10810 {
10811 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10812 		return -ENOENT;
10813 
10814 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10815 		return -ENOENT;
10816 
10817 	/*
10818 	 * no branch sampling for software events
10819 	 */
10820 	if (has_branch_stack(event))
10821 		return -EOPNOTSUPP;
10822 
10823 	perf_swevent_init_hrtimer(event);
10824 
10825 	return 0;
10826 }
10827 
10828 static struct pmu perf_cpu_clock = {
10829 	.task_ctx_nr	= perf_sw_context,
10830 
10831 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10832 
10833 	.event_init	= cpu_clock_event_init,
10834 	.add		= cpu_clock_event_add,
10835 	.del		= cpu_clock_event_del,
10836 	.start		= cpu_clock_event_start,
10837 	.stop		= cpu_clock_event_stop,
10838 	.read		= cpu_clock_event_read,
10839 };
10840 
10841 /*
10842  * Software event: task time clock
10843  */
10844 
10845 static void task_clock_event_update(struct perf_event *event, u64 now)
10846 {
10847 	u64 prev;
10848 	s64 delta;
10849 
10850 	prev = local64_xchg(&event->hw.prev_count, now);
10851 	delta = now - prev;
10852 	local64_add(delta, &event->count);
10853 }
10854 
10855 static void task_clock_event_start(struct perf_event *event, int flags)
10856 {
10857 	local64_set(&event->hw.prev_count, event->ctx->time);
10858 	perf_swevent_start_hrtimer(event);
10859 }
10860 
10861 static void task_clock_event_stop(struct perf_event *event, int flags)
10862 {
10863 	perf_swevent_cancel_hrtimer(event);
10864 	task_clock_event_update(event, event->ctx->time);
10865 }
10866 
10867 static int task_clock_event_add(struct perf_event *event, int flags)
10868 {
10869 	if (flags & PERF_EF_START)
10870 		task_clock_event_start(event, flags);
10871 	perf_event_update_userpage(event);
10872 
10873 	return 0;
10874 }
10875 
10876 static void task_clock_event_del(struct perf_event *event, int flags)
10877 {
10878 	task_clock_event_stop(event, PERF_EF_UPDATE);
10879 }
10880 
10881 static void task_clock_event_read(struct perf_event *event)
10882 {
10883 	u64 now = perf_clock();
10884 	u64 delta = now - event->ctx->timestamp;
10885 	u64 time = event->ctx->time + delta;
10886 
10887 	task_clock_event_update(event, time);
10888 }
10889 
10890 static int task_clock_event_init(struct perf_event *event)
10891 {
10892 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10893 		return -ENOENT;
10894 
10895 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10896 		return -ENOENT;
10897 
10898 	/*
10899 	 * no branch sampling for software events
10900 	 */
10901 	if (has_branch_stack(event))
10902 		return -EOPNOTSUPP;
10903 
10904 	perf_swevent_init_hrtimer(event);
10905 
10906 	return 0;
10907 }
10908 
10909 static struct pmu perf_task_clock = {
10910 	.task_ctx_nr	= perf_sw_context,
10911 
10912 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10913 
10914 	.event_init	= task_clock_event_init,
10915 	.add		= task_clock_event_add,
10916 	.del		= task_clock_event_del,
10917 	.start		= task_clock_event_start,
10918 	.stop		= task_clock_event_stop,
10919 	.read		= task_clock_event_read,
10920 };
10921 
10922 static void perf_pmu_nop_void(struct pmu *pmu)
10923 {
10924 }
10925 
10926 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10927 {
10928 }
10929 
10930 static int perf_pmu_nop_int(struct pmu *pmu)
10931 {
10932 	return 0;
10933 }
10934 
10935 static int perf_event_nop_int(struct perf_event *event, u64 value)
10936 {
10937 	return 0;
10938 }
10939 
10940 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10941 
10942 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10943 {
10944 	__this_cpu_write(nop_txn_flags, flags);
10945 
10946 	if (flags & ~PERF_PMU_TXN_ADD)
10947 		return;
10948 
10949 	perf_pmu_disable(pmu);
10950 }
10951 
10952 static int perf_pmu_commit_txn(struct pmu *pmu)
10953 {
10954 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10955 
10956 	__this_cpu_write(nop_txn_flags, 0);
10957 
10958 	if (flags & ~PERF_PMU_TXN_ADD)
10959 		return 0;
10960 
10961 	perf_pmu_enable(pmu);
10962 	return 0;
10963 }
10964 
10965 static void perf_pmu_cancel_txn(struct pmu *pmu)
10966 {
10967 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10968 
10969 	__this_cpu_write(nop_txn_flags, 0);
10970 
10971 	if (flags & ~PERF_PMU_TXN_ADD)
10972 		return;
10973 
10974 	perf_pmu_enable(pmu);
10975 }
10976 
10977 static int perf_event_idx_default(struct perf_event *event)
10978 {
10979 	return 0;
10980 }
10981 
10982 /*
10983  * Ensures all contexts with the same task_ctx_nr have the same
10984  * pmu_cpu_context too.
10985  */
10986 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10987 {
10988 	struct pmu *pmu;
10989 
10990 	if (ctxn < 0)
10991 		return NULL;
10992 
10993 	list_for_each_entry(pmu, &pmus, entry) {
10994 		if (pmu->task_ctx_nr == ctxn)
10995 			return pmu->pmu_cpu_context;
10996 	}
10997 
10998 	return NULL;
10999 }
11000 
11001 static void free_pmu_context(struct pmu *pmu)
11002 {
11003 	/*
11004 	 * Static contexts such as perf_sw_context have a global lifetime
11005 	 * and may be shared between different PMUs. Avoid freeing them
11006 	 * when a single PMU is going away.
11007 	 */
11008 	if (pmu->task_ctx_nr > perf_invalid_context)
11009 		return;
11010 
11011 	free_percpu(pmu->pmu_cpu_context);
11012 }
11013 
11014 /*
11015  * Let userspace know that this PMU supports address range filtering:
11016  */
11017 static ssize_t nr_addr_filters_show(struct device *dev,
11018 				    struct device_attribute *attr,
11019 				    char *page)
11020 {
11021 	struct pmu *pmu = dev_get_drvdata(dev);
11022 
11023 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11024 }
11025 DEVICE_ATTR_RO(nr_addr_filters);
11026 
11027 static struct idr pmu_idr;
11028 
11029 static ssize_t
11030 type_show(struct device *dev, struct device_attribute *attr, char *page)
11031 {
11032 	struct pmu *pmu = dev_get_drvdata(dev);
11033 
11034 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11035 }
11036 static DEVICE_ATTR_RO(type);
11037 
11038 static ssize_t
11039 perf_event_mux_interval_ms_show(struct device *dev,
11040 				struct device_attribute *attr,
11041 				char *page)
11042 {
11043 	struct pmu *pmu = dev_get_drvdata(dev);
11044 
11045 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11046 }
11047 
11048 static DEFINE_MUTEX(mux_interval_mutex);
11049 
11050 static ssize_t
11051 perf_event_mux_interval_ms_store(struct device *dev,
11052 				 struct device_attribute *attr,
11053 				 const char *buf, size_t count)
11054 {
11055 	struct pmu *pmu = dev_get_drvdata(dev);
11056 	int timer, cpu, ret;
11057 
11058 	ret = kstrtoint(buf, 0, &timer);
11059 	if (ret)
11060 		return ret;
11061 
11062 	if (timer < 1)
11063 		return -EINVAL;
11064 
11065 	/* same value, noting to do */
11066 	if (timer == pmu->hrtimer_interval_ms)
11067 		return count;
11068 
11069 	mutex_lock(&mux_interval_mutex);
11070 	pmu->hrtimer_interval_ms = timer;
11071 
11072 	/* update all cpuctx for this PMU */
11073 	cpus_read_lock();
11074 	for_each_online_cpu(cpu) {
11075 		struct perf_cpu_context *cpuctx;
11076 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11077 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11078 
11079 		cpu_function_call(cpu,
11080 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11081 	}
11082 	cpus_read_unlock();
11083 	mutex_unlock(&mux_interval_mutex);
11084 
11085 	return count;
11086 }
11087 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11088 
11089 static struct attribute *pmu_dev_attrs[] = {
11090 	&dev_attr_type.attr,
11091 	&dev_attr_perf_event_mux_interval_ms.attr,
11092 	NULL,
11093 };
11094 ATTRIBUTE_GROUPS(pmu_dev);
11095 
11096 static int pmu_bus_running;
11097 static struct bus_type pmu_bus = {
11098 	.name		= "event_source",
11099 	.dev_groups	= pmu_dev_groups,
11100 };
11101 
11102 static void pmu_dev_release(struct device *dev)
11103 {
11104 	kfree(dev);
11105 }
11106 
11107 static int pmu_dev_alloc(struct pmu *pmu)
11108 {
11109 	int ret = -ENOMEM;
11110 
11111 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11112 	if (!pmu->dev)
11113 		goto out;
11114 
11115 	pmu->dev->groups = pmu->attr_groups;
11116 	device_initialize(pmu->dev);
11117 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11118 	if (ret)
11119 		goto free_dev;
11120 
11121 	dev_set_drvdata(pmu->dev, pmu);
11122 	pmu->dev->bus = &pmu_bus;
11123 	pmu->dev->release = pmu_dev_release;
11124 	ret = device_add(pmu->dev);
11125 	if (ret)
11126 		goto free_dev;
11127 
11128 	/* For PMUs with address filters, throw in an extra attribute: */
11129 	if (pmu->nr_addr_filters)
11130 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11131 
11132 	if (ret)
11133 		goto del_dev;
11134 
11135 	if (pmu->attr_update)
11136 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11137 
11138 	if (ret)
11139 		goto del_dev;
11140 
11141 out:
11142 	return ret;
11143 
11144 del_dev:
11145 	device_del(pmu->dev);
11146 
11147 free_dev:
11148 	put_device(pmu->dev);
11149 	goto out;
11150 }
11151 
11152 static struct lock_class_key cpuctx_mutex;
11153 static struct lock_class_key cpuctx_lock;
11154 
11155 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11156 {
11157 	int cpu, ret, max = PERF_TYPE_MAX;
11158 
11159 	mutex_lock(&pmus_lock);
11160 	ret = -ENOMEM;
11161 	pmu->pmu_disable_count = alloc_percpu(int);
11162 	if (!pmu->pmu_disable_count)
11163 		goto unlock;
11164 
11165 	pmu->type = -1;
11166 	if (!name)
11167 		goto skip_type;
11168 	pmu->name = name;
11169 
11170 	if (type != PERF_TYPE_SOFTWARE) {
11171 		if (type >= 0)
11172 			max = type;
11173 
11174 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11175 		if (ret < 0)
11176 			goto free_pdc;
11177 
11178 		WARN_ON(type >= 0 && ret != type);
11179 
11180 		type = ret;
11181 	}
11182 	pmu->type = type;
11183 
11184 	if (pmu_bus_running) {
11185 		ret = pmu_dev_alloc(pmu);
11186 		if (ret)
11187 			goto free_idr;
11188 	}
11189 
11190 skip_type:
11191 	if (pmu->task_ctx_nr == perf_hw_context) {
11192 		static int hw_context_taken = 0;
11193 
11194 		/*
11195 		 * Other than systems with heterogeneous CPUs, it never makes
11196 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11197 		 * uncore must use perf_invalid_context.
11198 		 */
11199 		if (WARN_ON_ONCE(hw_context_taken &&
11200 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11201 			pmu->task_ctx_nr = perf_invalid_context;
11202 
11203 		hw_context_taken = 1;
11204 	}
11205 
11206 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11207 	if (pmu->pmu_cpu_context)
11208 		goto got_cpu_context;
11209 
11210 	ret = -ENOMEM;
11211 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11212 	if (!pmu->pmu_cpu_context)
11213 		goto free_dev;
11214 
11215 	for_each_possible_cpu(cpu) {
11216 		struct perf_cpu_context *cpuctx;
11217 
11218 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11219 		__perf_event_init_context(&cpuctx->ctx);
11220 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11221 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11222 		cpuctx->ctx.pmu = pmu;
11223 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11224 
11225 		__perf_mux_hrtimer_init(cpuctx, cpu);
11226 
11227 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11228 		cpuctx->heap = cpuctx->heap_default;
11229 	}
11230 
11231 got_cpu_context:
11232 	if (!pmu->start_txn) {
11233 		if (pmu->pmu_enable) {
11234 			/*
11235 			 * If we have pmu_enable/pmu_disable calls, install
11236 			 * transaction stubs that use that to try and batch
11237 			 * hardware accesses.
11238 			 */
11239 			pmu->start_txn  = perf_pmu_start_txn;
11240 			pmu->commit_txn = perf_pmu_commit_txn;
11241 			pmu->cancel_txn = perf_pmu_cancel_txn;
11242 		} else {
11243 			pmu->start_txn  = perf_pmu_nop_txn;
11244 			pmu->commit_txn = perf_pmu_nop_int;
11245 			pmu->cancel_txn = perf_pmu_nop_void;
11246 		}
11247 	}
11248 
11249 	if (!pmu->pmu_enable) {
11250 		pmu->pmu_enable  = perf_pmu_nop_void;
11251 		pmu->pmu_disable = perf_pmu_nop_void;
11252 	}
11253 
11254 	if (!pmu->check_period)
11255 		pmu->check_period = perf_event_nop_int;
11256 
11257 	if (!pmu->event_idx)
11258 		pmu->event_idx = perf_event_idx_default;
11259 
11260 	/*
11261 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11262 	 * since these cannot be in the IDR. This way the linear search
11263 	 * is fast, provided a valid software event is provided.
11264 	 */
11265 	if (type == PERF_TYPE_SOFTWARE || !name)
11266 		list_add_rcu(&pmu->entry, &pmus);
11267 	else
11268 		list_add_tail_rcu(&pmu->entry, &pmus);
11269 
11270 	atomic_set(&pmu->exclusive_cnt, 0);
11271 	ret = 0;
11272 unlock:
11273 	mutex_unlock(&pmus_lock);
11274 
11275 	return ret;
11276 
11277 free_dev:
11278 	device_del(pmu->dev);
11279 	put_device(pmu->dev);
11280 
11281 free_idr:
11282 	if (pmu->type != PERF_TYPE_SOFTWARE)
11283 		idr_remove(&pmu_idr, pmu->type);
11284 
11285 free_pdc:
11286 	free_percpu(pmu->pmu_disable_count);
11287 	goto unlock;
11288 }
11289 EXPORT_SYMBOL_GPL(perf_pmu_register);
11290 
11291 void perf_pmu_unregister(struct pmu *pmu)
11292 {
11293 	mutex_lock(&pmus_lock);
11294 	list_del_rcu(&pmu->entry);
11295 
11296 	/*
11297 	 * We dereference the pmu list under both SRCU and regular RCU, so
11298 	 * synchronize against both of those.
11299 	 */
11300 	synchronize_srcu(&pmus_srcu);
11301 	synchronize_rcu();
11302 
11303 	free_percpu(pmu->pmu_disable_count);
11304 	if (pmu->type != PERF_TYPE_SOFTWARE)
11305 		idr_remove(&pmu_idr, pmu->type);
11306 	if (pmu_bus_running) {
11307 		if (pmu->nr_addr_filters)
11308 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11309 		device_del(pmu->dev);
11310 		put_device(pmu->dev);
11311 	}
11312 	free_pmu_context(pmu);
11313 	mutex_unlock(&pmus_lock);
11314 }
11315 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11316 
11317 static inline bool has_extended_regs(struct perf_event *event)
11318 {
11319 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11320 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11321 }
11322 
11323 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11324 {
11325 	struct perf_event_context *ctx = NULL;
11326 	int ret;
11327 
11328 	if (!try_module_get(pmu->module))
11329 		return -ENODEV;
11330 
11331 	/*
11332 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11333 	 * for example, validate if the group fits on the PMU. Therefore,
11334 	 * if this is a sibling event, acquire the ctx->mutex to protect
11335 	 * the sibling_list.
11336 	 */
11337 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11338 		/*
11339 		 * This ctx->mutex can nest when we're called through
11340 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11341 		 */
11342 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11343 						 SINGLE_DEPTH_NESTING);
11344 		BUG_ON(!ctx);
11345 	}
11346 
11347 	event->pmu = pmu;
11348 	ret = pmu->event_init(event);
11349 
11350 	if (ctx)
11351 		perf_event_ctx_unlock(event->group_leader, ctx);
11352 
11353 	if (!ret) {
11354 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11355 		    has_extended_regs(event))
11356 			ret = -EOPNOTSUPP;
11357 
11358 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11359 		    event_has_any_exclude_flag(event))
11360 			ret = -EINVAL;
11361 
11362 		if (ret && event->destroy)
11363 			event->destroy(event);
11364 	}
11365 
11366 	if (ret)
11367 		module_put(pmu->module);
11368 
11369 	return ret;
11370 }
11371 
11372 static struct pmu *perf_init_event(struct perf_event *event)
11373 {
11374 	bool extended_type = false;
11375 	int idx, type, ret;
11376 	struct pmu *pmu;
11377 
11378 	idx = srcu_read_lock(&pmus_srcu);
11379 
11380 	/* Try parent's PMU first: */
11381 	if (event->parent && event->parent->pmu) {
11382 		pmu = event->parent->pmu;
11383 		ret = perf_try_init_event(pmu, event);
11384 		if (!ret)
11385 			goto unlock;
11386 	}
11387 
11388 	/*
11389 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11390 	 * are often aliases for PERF_TYPE_RAW.
11391 	 */
11392 	type = event->attr.type;
11393 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11394 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11395 		if (!type) {
11396 			type = PERF_TYPE_RAW;
11397 		} else {
11398 			extended_type = true;
11399 			event->attr.config &= PERF_HW_EVENT_MASK;
11400 		}
11401 	}
11402 
11403 again:
11404 	rcu_read_lock();
11405 	pmu = idr_find(&pmu_idr, type);
11406 	rcu_read_unlock();
11407 	if (pmu) {
11408 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11409 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11410 			goto fail;
11411 
11412 		ret = perf_try_init_event(pmu, event);
11413 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11414 			type = event->attr.type;
11415 			goto again;
11416 		}
11417 
11418 		if (ret)
11419 			pmu = ERR_PTR(ret);
11420 
11421 		goto unlock;
11422 	}
11423 
11424 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11425 		ret = perf_try_init_event(pmu, event);
11426 		if (!ret)
11427 			goto unlock;
11428 
11429 		if (ret != -ENOENT) {
11430 			pmu = ERR_PTR(ret);
11431 			goto unlock;
11432 		}
11433 	}
11434 fail:
11435 	pmu = ERR_PTR(-ENOENT);
11436 unlock:
11437 	srcu_read_unlock(&pmus_srcu, idx);
11438 
11439 	return pmu;
11440 }
11441 
11442 static void attach_sb_event(struct perf_event *event)
11443 {
11444 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11445 
11446 	raw_spin_lock(&pel->lock);
11447 	list_add_rcu(&event->sb_list, &pel->list);
11448 	raw_spin_unlock(&pel->lock);
11449 }
11450 
11451 /*
11452  * We keep a list of all !task (and therefore per-cpu) events
11453  * that need to receive side-band records.
11454  *
11455  * This avoids having to scan all the various PMU per-cpu contexts
11456  * looking for them.
11457  */
11458 static void account_pmu_sb_event(struct perf_event *event)
11459 {
11460 	if (is_sb_event(event))
11461 		attach_sb_event(event);
11462 }
11463 
11464 static void account_event_cpu(struct perf_event *event, int cpu)
11465 {
11466 	if (event->parent)
11467 		return;
11468 
11469 	if (is_cgroup_event(event))
11470 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11471 }
11472 
11473 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11474 static void account_freq_event_nohz(void)
11475 {
11476 #ifdef CONFIG_NO_HZ_FULL
11477 	/* Lock so we don't race with concurrent unaccount */
11478 	spin_lock(&nr_freq_lock);
11479 	if (atomic_inc_return(&nr_freq_events) == 1)
11480 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11481 	spin_unlock(&nr_freq_lock);
11482 #endif
11483 }
11484 
11485 static void account_freq_event(void)
11486 {
11487 	if (tick_nohz_full_enabled())
11488 		account_freq_event_nohz();
11489 	else
11490 		atomic_inc(&nr_freq_events);
11491 }
11492 
11493 
11494 static void account_event(struct perf_event *event)
11495 {
11496 	bool inc = false;
11497 
11498 	if (event->parent)
11499 		return;
11500 
11501 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11502 		inc = true;
11503 	if (event->attr.mmap || event->attr.mmap_data)
11504 		atomic_inc(&nr_mmap_events);
11505 	if (event->attr.build_id)
11506 		atomic_inc(&nr_build_id_events);
11507 	if (event->attr.comm)
11508 		atomic_inc(&nr_comm_events);
11509 	if (event->attr.namespaces)
11510 		atomic_inc(&nr_namespaces_events);
11511 	if (event->attr.cgroup)
11512 		atomic_inc(&nr_cgroup_events);
11513 	if (event->attr.task)
11514 		atomic_inc(&nr_task_events);
11515 	if (event->attr.freq)
11516 		account_freq_event();
11517 	if (event->attr.context_switch) {
11518 		atomic_inc(&nr_switch_events);
11519 		inc = true;
11520 	}
11521 	if (has_branch_stack(event))
11522 		inc = true;
11523 	if (is_cgroup_event(event))
11524 		inc = true;
11525 	if (event->attr.ksymbol)
11526 		atomic_inc(&nr_ksymbol_events);
11527 	if (event->attr.bpf_event)
11528 		atomic_inc(&nr_bpf_events);
11529 	if (event->attr.text_poke)
11530 		atomic_inc(&nr_text_poke_events);
11531 
11532 	if (inc) {
11533 		/*
11534 		 * We need the mutex here because static_branch_enable()
11535 		 * must complete *before* the perf_sched_count increment
11536 		 * becomes visible.
11537 		 */
11538 		if (atomic_inc_not_zero(&perf_sched_count))
11539 			goto enabled;
11540 
11541 		mutex_lock(&perf_sched_mutex);
11542 		if (!atomic_read(&perf_sched_count)) {
11543 			static_branch_enable(&perf_sched_events);
11544 			/*
11545 			 * Guarantee that all CPUs observe they key change and
11546 			 * call the perf scheduling hooks before proceeding to
11547 			 * install events that need them.
11548 			 */
11549 			synchronize_rcu();
11550 		}
11551 		/*
11552 		 * Now that we have waited for the sync_sched(), allow further
11553 		 * increments to by-pass the mutex.
11554 		 */
11555 		atomic_inc(&perf_sched_count);
11556 		mutex_unlock(&perf_sched_mutex);
11557 	}
11558 enabled:
11559 
11560 	account_event_cpu(event, event->cpu);
11561 
11562 	account_pmu_sb_event(event);
11563 }
11564 
11565 /*
11566  * Allocate and initialize an event structure
11567  */
11568 static struct perf_event *
11569 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11570 		 struct task_struct *task,
11571 		 struct perf_event *group_leader,
11572 		 struct perf_event *parent_event,
11573 		 perf_overflow_handler_t overflow_handler,
11574 		 void *context, int cgroup_fd)
11575 {
11576 	struct pmu *pmu;
11577 	struct perf_event *event;
11578 	struct hw_perf_event *hwc;
11579 	long err = -EINVAL;
11580 	int node;
11581 
11582 	if ((unsigned)cpu >= nr_cpu_ids) {
11583 		if (!task || cpu != -1)
11584 			return ERR_PTR(-EINVAL);
11585 	}
11586 	if (attr->sigtrap && !task) {
11587 		/* Requires a task: avoid signalling random tasks. */
11588 		return ERR_PTR(-EINVAL);
11589 	}
11590 
11591 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11592 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11593 				      node);
11594 	if (!event)
11595 		return ERR_PTR(-ENOMEM);
11596 
11597 	/*
11598 	 * Single events are their own group leaders, with an
11599 	 * empty sibling list:
11600 	 */
11601 	if (!group_leader)
11602 		group_leader = event;
11603 
11604 	mutex_init(&event->child_mutex);
11605 	INIT_LIST_HEAD(&event->child_list);
11606 
11607 	INIT_LIST_HEAD(&event->event_entry);
11608 	INIT_LIST_HEAD(&event->sibling_list);
11609 	INIT_LIST_HEAD(&event->active_list);
11610 	init_event_group(event);
11611 	INIT_LIST_HEAD(&event->rb_entry);
11612 	INIT_LIST_HEAD(&event->active_entry);
11613 	INIT_LIST_HEAD(&event->addr_filters.list);
11614 	INIT_HLIST_NODE(&event->hlist_entry);
11615 
11616 
11617 	init_waitqueue_head(&event->waitq);
11618 	event->pending_disable = -1;
11619 	init_irq_work(&event->pending, perf_pending_event);
11620 
11621 	mutex_init(&event->mmap_mutex);
11622 	raw_spin_lock_init(&event->addr_filters.lock);
11623 
11624 	atomic_long_set(&event->refcount, 1);
11625 	event->cpu		= cpu;
11626 	event->attr		= *attr;
11627 	event->group_leader	= group_leader;
11628 	event->pmu		= NULL;
11629 	event->oncpu		= -1;
11630 
11631 	event->parent		= parent_event;
11632 
11633 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11634 	event->id		= atomic64_inc_return(&perf_event_id);
11635 
11636 	event->state		= PERF_EVENT_STATE_INACTIVE;
11637 
11638 	if (event->attr.sigtrap)
11639 		atomic_set(&event->event_limit, 1);
11640 
11641 	if (task) {
11642 		event->attach_state = PERF_ATTACH_TASK;
11643 		/*
11644 		 * XXX pmu::event_init needs to know what task to account to
11645 		 * and we cannot use the ctx information because we need the
11646 		 * pmu before we get a ctx.
11647 		 */
11648 		event->hw.target = get_task_struct(task);
11649 	}
11650 
11651 	event->clock = &local_clock;
11652 	if (parent_event)
11653 		event->clock = parent_event->clock;
11654 
11655 	if (!overflow_handler && parent_event) {
11656 		overflow_handler = parent_event->overflow_handler;
11657 		context = parent_event->overflow_handler_context;
11658 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11659 		if (overflow_handler == bpf_overflow_handler) {
11660 			struct bpf_prog *prog = parent_event->prog;
11661 
11662 			bpf_prog_inc(prog);
11663 			event->prog = prog;
11664 			event->orig_overflow_handler =
11665 				parent_event->orig_overflow_handler;
11666 		}
11667 #endif
11668 	}
11669 
11670 	if (overflow_handler) {
11671 		event->overflow_handler	= overflow_handler;
11672 		event->overflow_handler_context = context;
11673 	} else if (is_write_backward(event)){
11674 		event->overflow_handler = perf_event_output_backward;
11675 		event->overflow_handler_context = NULL;
11676 	} else {
11677 		event->overflow_handler = perf_event_output_forward;
11678 		event->overflow_handler_context = NULL;
11679 	}
11680 
11681 	perf_event__state_init(event);
11682 
11683 	pmu = NULL;
11684 
11685 	hwc = &event->hw;
11686 	hwc->sample_period = attr->sample_period;
11687 	if (attr->freq && attr->sample_freq)
11688 		hwc->sample_period = 1;
11689 	hwc->last_period = hwc->sample_period;
11690 
11691 	local64_set(&hwc->period_left, hwc->sample_period);
11692 
11693 	/*
11694 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11695 	 * See perf_output_read().
11696 	 */
11697 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11698 		goto err_ns;
11699 
11700 	if (!has_branch_stack(event))
11701 		event->attr.branch_sample_type = 0;
11702 
11703 	pmu = perf_init_event(event);
11704 	if (IS_ERR(pmu)) {
11705 		err = PTR_ERR(pmu);
11706 		goto err_ns;
11707 	}
11708 
11709 	/*
11710 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11711 	 * be different on other CPUs in the uncore mask.
11712 	 */
11713 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11714 		err = -EINVAL;
11715 		goto err_pmu;
11716 	}
11717 
11718 	if (event->attr.aux_output &&
11719 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11720 		err = -EOPNOTSUPP;
11721 		goto err_pmu;
11722 	}
11723 
11724 	if (cgroup_fd != -1) {
11725 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11726 		if (err)
11727 			goto err_pmu;
11728 	}
11729 
11730 	err = exclusive_event_init(event);
11731 	if (err)
11732 		goto err_pmu;
11733 
11734 	if (has_addr_filter(event)) {
11735 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11736 						    sizeof(struct perf_addr_filter_range),
11737 						    GFP_KERNEL);
11738 		if (!event->addr_filter_ranges) {
11739 			err = -ENOMEM;
11740 			goto err_per_task;
11741 		}
11742 
11743 		/*
11744 		 * Clone the parent's vma offsets: they are valid until exec()
11745 		 * even if the mm is not shared with the parent.
11746 		 */
11747 		if (event->parent) {
11748 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11749 
11750 			raw_spin_lock_irq(&ifh->lock);
11751 			memcpy(event->addr_filter_ranges,
11752 			       event->parent->addr_filter_ranges,
11753 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11754 			raw_spin_unlock_irq(&ifh->lock);
11755 		}
11756 
11757 		/* force hw sync on the address filters */
11758 		event->addr_filters_gen = 1;
11759 	}
11760 
11761 	if (!event->parent) {
11762 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11763 			err = get_callchain_buffers(attr->sample_max_stack);
11764 			if (err)
11765 				goto err_addr_filters;
11766 		}
11767 	}
11768 
11769 	err = security_perf_event_alloc(event);
11770 	if (err)
11771 		goto err_callchain_buffer;
11772 
11773 	/* symmetric to unaccount_event() in _free_event() */
11774 	account_event(event);
11775 
11776 	return event;
11777 
11778 err_callchain_buffer:
11779 	if (!event->parent) {
11780 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11781 			put_callchain_buffers();
11782 	}
11783 err_addr_filters:
11784 	kfree(event->addr_filter_ranges);
11785 
11786 err_per_task:
11787 	exclusive_event_destroy(event);
11788 
11789 err_pmu:
11790 	if (is_cgroup_event(event))
11791 		perf_detach_cgroup(event);
11792 	if (event->destroy)
11793 		event->destroy(event);
11794 	module_put(pmu->module);
11795 err_ns:
11796 	if (event->ns)
11797 		put_pid_ns(event->ns);
11798 	if (event->hw.target)
11799 		put_task_struct(event->hw.target);
11800 	kmem_cache_free(perf_event_cache, event);
11801 
11802 	return ERR_PTR(err);
11803 }
11804 
11805 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11806 			  struct perf_event_attr *attr)
11807 {
11808 	u32 size;
11809 	int ret;
11810 
11811 	/* Zero the full structure, so that a short copy will be nice. */
11812 	memset(attr, 0, sizeof(*attr));
11813 
11814 	ret = get_user(size, &uattr->size);
11815 	if (ret)
11816 		return ret;
11817 
11818 	/* ABI compatibility quirk: */
11819 	if (!size)
11820 		size = PERF_ATTR_SIZE_VER0;
11821 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11822 		goto err_size;
11823 
11824 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11825 	if (ret) {
11826 		if (ret == -E2BIG)
11827 			goto err_size;
11828 		return ret;
11829 	}
11830 
11831 	attr->size = size;
11832 
11833 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11834 		return -EINVAL;
11835 
11836 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11837 		return -EINVAL;
11838 
11839 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11840 		return -EINVAL;
11841 
11842 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11843 		u64 mask = attr->branch_sample_type;
11844 
11845 		/* only using defined bits */
11846 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11847 			return -EINVAL;
11848 
11849 		/* at least one branch bit must be set */
11850 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11851 			return -EINVAL;
11852 
11853 		/* propagate priv level, when not set for branch */
11854 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11855 
11856 			/* exclude_kernel checked on syscall entry */
11857 			if (!attr->exclude_kernel)
11858 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11859 
11860 			if (!attr->exclude_user)
11861 				mask |= PERF_SAMPLE_BRANCH_USER;
11862 
11863 			if (!attr->exclude_hv)
11864 				mask |= PERF_SAMPLE_BRANCH_HV;
11865 			/*
11866 			 * adjust user setting (for HW filter setup)
11867 			 */
11868 			attr->branch_sample_type = mask;
11869 		}
11870 		/* privileged levels capture (kernel, hv): check permissions */
11871 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11872 			ret = perf_allow_kernel(attr);
11873 			if (ret)
11874 				return ret;
11875 		}
11876 	}
11877 
11878 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11879 		ret = perf_reg_validate(attr->sample_regs_user);
11880 		if (ret)
11881 			return ret;
11882 	}
11883 
11884 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11885 		if (!arch_perf_have_user_stack_dump())
11886 			return -ENOSYS;
11887 
11888 		/*
11889 		 * We have __u32 type for the size, but so far
11890 		 * we can only use __u16 as maximum due to the
11891 		 * __u16 sample size limit.
11892 		 */
11893 		if (attr->sample_stack_user >= USHRT_MAX)
11894 			return -EINVAL;
11895 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11896 			return -EINVAL;
11897 	}
11898 
11899 	if (!attr->sample_max_stack)
11900 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11901 
11902 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11903 		ret = perf_reg_validate(attr->sample_regs_intr);
11904 
11905 #ifndef CONFIG_CGROUP_PERF
11906 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11907 		return -EINVAL;
11908 #endif
11909 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11910 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11911 		return -EINVAL;
11912 
11913 	if (!attr->inherit && attr->inherit_thread)
11914 		return -EINVAL;
11915 
11916 	if (attr->remove_on_exec && attr->enable_on_exec)
11917 		return -EINVAL;
11918 
11919 	if (attr->sigtrap && !attr->remove_on_exec)
11920 		return -EINVAL;
11921 
11922 out:
11923 	return ret;
11924 
11925 err_size:
11926 	put_user(sizeof(*attr), &uattr->size);
11927 	ret = -E2BIG;
11928 	goto out;
11929 }
11930 
11931 static int
11932 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11933 {
11934 	struct perf_buffer *rb = NULL;
11935 	int ret = -EINVAL;
11936 
11937 	if (!output_event)
11938 		goto set;
11939 
11940 	/* don't allow circular references */
11941 	if (event == output_event)
11942 		goto out;
11943 
11944 	/*
11945 	 * Don't allow cross-cpu buffers
11946 	 */
11947 	if (output_event->cpu != event->cpu)
11948 		goto out;
11949 
11950 	/*
11951 	 * If its not a per-cpu rb, it must be the same task.
11952 	 */
11953 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11954 		goto out;
11955 
11956 	/*
11957 	 * Mixing clocks in the same buffer is trouble you don't need.
11958 	 */
11959 	if (output_event->clock != event->clock)
11960 		goto out;
11961 
11962 	/*
11963 	 * Either writing ring buffer from beginning or from end.
11964 	 * Mixing is not allowed.
11965 	 */
11966 	if (is_write_backward(output_event) != is_write_backward(event))
11967 		goto out;
11968 
11969 	/*
11970 	 * If both events generate aux data, they must be on the same PMU
11971 	 */
11972 	if (has_aux(event) && has_aux(output_event) &&
11973 	    event->pmu != output_event->pmu)
11974 		goto out;
11975 
11976 set:
11977 	mutex_lock(&event->mmap_mutex);
11978 	/* Can't redirect output if we've got an active mmap() */
11979 	if (atomic_read(&event->mmap_count))
11980 		goto unlock;
11981 
11982 	if (output_event) {
11983 		/* get the rb we want to redirect to */
11984 		rb = ring_buffer_get(output_event);
11985 		if (!rb)
11986 			goto unlock;
11987 	}
11988 
11989 	ring_buffer_attach(event, rb);
11990 
11991 	ret = 0;
11992 unlock:
11993 	mutex_unlock(&event->mmap_mutex);
11994 
11995 out:
11996 	return ret;
11997 }
11998 
11999 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12000 {
12001 	if (b < a)
12002 		swap(a, b);
12003 
12004 	mutex_lock(a);
12005 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12006 }
12007 
12008 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12009 {
12010 	bool nmi_safe = false;
12011 
12012 	switch (clk_id) {
12013 	case CLOCK_MONOTONIC:
12014 		event->clock = &ktime_get_mono_fast_ns;
12015 		nmi_safe = true;
12016 		break;
12017 
12018 	case CLOCK_MONOTONIC_RAW:
12019 		event->clock = &ktime_get_raw_fast_ns;
12020 		nmi_safe = true;
12021 		break;
12022 
12023 	case CLOCK_REALTIME:
12024 		event->clock = &ktime_get_real_ns;
12025 		break;
12026 
12027 	case CLOCK_BOOTTIME:
12028 		event->clock = &ktime_get_boottime_ns;
12029 		break;
12030 
12031 	case CLOCK_TAI:
12032 		event->clock = &ktime_get_clocktai_ns;
12033 		break;
12034 
12035 	default:
12036 		return -EINVAL;
12037 	}
12038 
12039 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12040 		return -EINVAL;
12041 
12042 	return 0;
12043 }
12044 
12045 /*
12046  * Variation on perf_event_ctx_lock_nested(), except we take two context
12047  * mutexes.
12048  */
12049 static struct perf_event_context *
12050 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12051 			     struct perf_event_context *ctx)
12052 {
12053 	struct perf_event_context *gctx;
12054 
12055 again:
12056 	rcu_read_lock();
12057 	gctx = READ_ONCE(group_leader->ctx);
12058 	if (!refcount_inc_not_zero(&gctx->refcount)) {
12059 		rcu_read_unlock();
12060 		goto again;
12061 	}
12062 	rcu_read_unlock();
12063 
12064 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
12065 
12066 	if (group_leader->ctx != gctx) {
12067 		mutex_unlock(&ctx->mutex);
12068 		mutex_unlock(&gctx->mutex);
12069 		put_ctx(gctx);
12070 		goto again;
12071 	}
12072 
12073 	return gctx;
12074 }
12075 
12076 static bool
12077 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12078 {
12079 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12080 	bool is_capable = perfmon_capable();
12081 
12082 	if (attr->sigtrap) {
12083 		/*
12084 		 * perf_event_attr::sigtrap sends signals to the other task.
12085 		 * Require the current task to also have CAP_KILL.
12086 		 */
12087 		rcu_read_lock();
12088 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12089 		rcu_read_unlock();
12090 
12091 		/*
12092 		 * If the required capabilities aren't available, checks for
12093 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12094 		 * can effectively change the target task.
12095 		 */
12096 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12097 	}
12098 
12099 	/*
12100 	 * Preserve ptrace permission check for backwards compatibility. The
12101 	 * ptrace check also includes checks that the current task and other
12102 	 * task have matching uids, and is therefore not done here explicitly.
12103 	 */
12104 	return is_capable || ptrace_may_access(task, ptrace_mode);
12105 }
12106 
12107 /**
12108  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12109  *
12110  * @attr_uptr:	event_id type attributes for monitoring/sampling
12111  * @pid:		target pid
12112  * @cpu:		target cpu
12113  * @group_fd:		group leader event fd
12114  * @flags:		perf event open flags
12115  */
12116 SYSCALL_DEFINE5(perf_event_open,
12117 		struct perf_event_attr __user *, attr_uptr,
12118 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12119 {
12120 	struct perf_event *group_leader = NULL, *output_event = NULL;
12121 	struct perf_event *event, *sibling;
12122 	struct perf_event_attr attr;
12123 	struct perf_event_context *ctx, *gctx;
12124 	struct file *event_file = NULL;
12125 	struct fd group = {NULL, 0};
12126 	struct task_struct *task = NULL;
12127 	struct pmu *pmu;
12128 	int event_fd;
12129 	int move_group = 0;
12130 	int err;
12131 	int f_flags = O_RDWR;
12132 	int cgroup_fd = -1;
12133 
12134 	/* for future expandability... */
12135 	if (flags & ~PERF_FLAG_ALL)
12136 		return -EINVAL;
12137 
12138 	/* Do we allow access to perf_event_open(2) ? */
12139 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12140 	if (err)
12141 		return err;
12142 
12143 	err = perf_copy_attr(attr_uptr, &attr);
12144 	if (err)
12145 		return err;
12146 
12147 	if (!attr.exclude_kernel) {
12148 		err = perf_allow_kernel(&attr);
12149 		if (err)
12150 			return err;
12151 	}
12152 
12153 	if (attr.namespaces) {
12154 		if (!perfmon_capable())
12155 			return -EACCES;
12156 	}
12157 
12158 	if (attr.freq) {
12159 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12160 			return -EINVAL;
12161 	} else {
12162 		if (attr.sample_period & (1ULL << 63))
12163 			return -EINVAL;
12164 	}
12165 
12166 	/* Only privileged users can get physical addresses */
12167 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12168 		err = perf_allow_kernel(&attr);
12169 		if (err)
12170 			return err;
12171 	}
12172 
12173 	/* REGS_INTR can leak data, lockdown must prevent this */
12174 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12175 		err = security_locked_down(LOCKDOWN_PERF);
12176 		if (err)
12177 			return err;
12178 	}
12179 
12180 	/*
12181 	 * In cgroup mode, the pid argument is used to pass the fd
12182 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12183 	 * designates the cpu on which to monitor threads from that
12184 	 * cgroup.
12185 	 */
12186 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12187 		return -EINVAL;
12188 
12189 	if (flags & PERF_FLAG_FD_CLOEXEC)
12190 		f_flags |= O_CLOEXEC;
12191 
12192 	event_fd = get_unused_fd_flags(f_flags);
12193 	if (event_fd < 0)
12194 		return event_fd;
12195 
12196 	if (group_fd != -1) {
12197 		err = perf_fget_light(group_fd, &group);
12198 		if (err)
12199 			goto err_fd;
12200 		group_leader = group.file->private_data;
12201 		if (flags & PERF_FLAG_FD_OUTPUT)
12202 			output_event = group_leader;
12203 		if (flags & PERF_FLAG_FD_NO_GROUP)
12204 			group_leader = NULL;
12205 	}
12206 
12207 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12208 		task = find_lively_task_by_vpid(pid);
12209 		if (IS_ERR(task)) {
12210 			err = PTR_ERR(task);
12211 			goto err_group_fd;
12212 		}
12213 	}
12214 
12215 	if (task && group_leader &&
12216 	    group_leader->attr.inherit != attr.inherit) {
12217 		err = -EINVAL;
12218 		goto err_task;
12219 	}
12220 
12221 	if (flags & PERF_FLAG_PID_CGROUP)
12222 		cgroup_fd = pid;
12223 
12224 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12225 				 NULL, NULL, cgroup_fd);
12226 	if (IS_ERR(event)) {
12227 		err = PTR_ERR(event);
12228 		goto err_task;
12229 	}
12230 
12231 	if (is_sampling_event(event)) {
12232 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12233 			err = -EOPNOTSUPP;
12234 			goto err_alloc;
12235 		}
12236 	}
12237 
12238 	/*
12239 	 * Special case software events and allow them to be part of
12240 	 * any hardware group.
12241 	 */
12242 	pmu = event->pmu;
12243 
12244 	if (attr.use_clockid) {
12245 		err = perf_event_set_clock(event, attr.clockid);
12246 		if (err)
12247 			goto err_alloc;
12248 	}
12249 
12250 	if (pmu->task_ctx_nr == perf_sw_context)
12251 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12252 
12253 	if (group_leader) {
12254 		if (is_software_event(event) &&
12255 		    !in_software_context(group_leader)) {
12256 			/*
12257 			 * If the event is a sw event, but the group_leader
12258 			 * is on hw context.
12259 			 *
12260 			 * Allow the addition of software events to hw
12261 			 * groups, this is safe because software events
12262 			 * never fail to schedule.
12263 			 */
12264 			pmu = group_leader->ctx->pmu;
12265 		} else if (!is_software_event(event) &&
12266 			   is_software_event(group_leader) &&
12267 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12268 			/*
12269 			 * In case the group is a pure software group, and we
12270 			 * try to add a hardware event, move the whole group to
12271 			 * the hardware context.
12272 			 */
12273 			move_group = 1;
12274 		}
12275 	}
12276 
12277 	/*
12278 	 * Get the target context (task or percpu):
12279 	 */
12280 	ctx = find_get_context(pmu, task, event);
12281 	if (IS_ERR(ctx)) {
12282 		err = PTR_ERR(ctx);
12283 		goto err_alloc;
12284 	}
12285 
12286 	/*
12287 	 * Look up the group leader (we will attach this event to it):
12288 	 */
12289 	if (group_leader) {
12290 		err = -EINVAL;
12291 
12292 		/*
12293 		 * Do not allow a recursive hierarchy (this new sibling
12294 		 * becoming part of another group-sibling):
12295 		 */
12296 		if (group_leader->group_leader != group_leader)
12297 			goto err_context;
12298 
12299 		/* All events in a group should have the same clock */
12300 		if (group_leader->clock != event->clock)
12301 			goto err_context;
12302 
12303 		/*
12304 		 * Make sure we're both events for the same CPU;
12305 		 * grouping events for different CPUs is broken; since
12306 		 * you can never concurrently schedule them anyhow.
12307 		 */
12308 		if (group_leader->cpu != event->cpu)
12309 			goto err_context;
12310 
12311 		/*
12312 		 * Make sure we're both on the same task, or both
12313 		 * per-CPU events.
12314 		 */
12315 		if (group_leader->ctx->task != ctx->task)
12316 			goto err_context;
12317 
12318 		/*
12319 		 * Do not allow to attach to a group in a different task
12320 		 * or CPU context. If we're moving SW events, we'll fix
12321 		 * this up later, so allow that.
12322 		 */
12323 		if (!move_group && group_leader->ctx != ctx)
12324 			goto err_context;
12325 
12326 		/*
12327 		 * Only a group leader can be exclusive or pinned
12328 		 */
12329 		if (attr.exclusive || attr.pinned)
12330 			goto err_context;
12331 	}
12332 
12333 	if (output_event) {
12334 		err = perf_event_set_output(event, output_event);
12335 		if (err)
12336 			goto err_context;
12337 	}
12338 
12339 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12340 					f_flags);
12341 	if (IS_ERR(event_file)) {
12342 		err = PTR_ERR(event_file);
12343 		event_file = NULL;
12344 		goto err_context;
12345 	}
12346 
12347 	if (task) {
12348 		err = down_read_interruptible(&task->signal->exec_update_lock);
12349 		if (err)
12350 			goto err_file;
12351 
12352 		/*
12353 		 * We must hold exec_update_lock across this and any potential
12354 		 * perf_install_in_context() call for this new event to
12355 		 * serialize against exec() altering our credentials (and the
12356 		 * perf_event_exit_task() that could imply).
12357 		 */
12358 		err = -EACCES;
12359 		if (!perf_check_permission(&attr, task))
12360 			goto err_cred;
12361 	}
12362 
12363 	if (move_group) {
12364 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12365 
12366 		if (gctx->task == TASK_TOMBSTONE) {
12367 			err = -ESRCH;
12368 			goto err_locked;
12369 		}
12370 
12371 		/*
12372 		 * Check if we raced against another sys_perf_event_open() call
12373 		 * moving the software group underneath us.
12374 		 */
12375 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12376 			/*
12377 			 * If someone moved the group out from under us, check
12378 			 * if this new event wound up on the same ctx, if so
12379 			 * its the regular !move_group case, otherwise fail.
12380 			 */
12381 			if (gctx != ctx) {
12382 				err = -EINVAL;
12383 				goto err_locked;
12384 			} else {
12385 				perf_event_ctx_unlock(group_leader, gctx);
12386 				move_group = 0;
12387 			}
12388 		}
12389 
12390 		/*
12391 		 * Failure to create exclusive events returns -EBUSY.
12392 		 */
12393 		err = -EBUSY;
12394 		if (!exclusive_event_installable(group_leader, ctx))
12395 			goto err_locked;
12396 
12397 		for_each_sibling_event(sibling, group_leader) {
12398 			if (!exclusive_event_installable(sibling, ctx))
12399 				goto err_locked;
12400 		}
12401 	} else {
12402 		mutex_lock(&ctx->mutex);
12403 	}
12404 
12405 	if (ctx->task == TASK_TOMBSTONE) {
12406 		err = -ESRCH;
12407 		goto err_locked;
12408 	}
12409 
12410 	if (!perf_event_validate_size(event)) {
12411 		err = -E2BIG;
12412 		goto err_locked;
12413 	}
12414 
12415 	if (!task) {
12416 		/*
12417 		 * Check if the @cpu we're creating an event for is online.
12418 		 *
12419 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12420 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12421 		 */
12422 		struct perf_cpu_context *cpuctx =
12423 			container_of(ctx, struct perf_cpu_context, ctx);
12424 
12425 		if (!cpuctx->online) {
12426 			err = -ENODEV;
12427 			goto err_locked;
12428 		}
12429 	}
12430 
12431 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12432 		err = -EINVAL;
12433 		goto err_locked;
12434 	}
12435 
12436 	/*
12437 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12438 	 * because we need to serialize with concurrent event creation.
12439 	 */
12440 	if (!exclusive_event_installable(event, ctx)) {
12441 		err = -EBUSY;
12442 		goto err_locked;
12443 	}
12444 
12445 	WARN_ON_ONCE(ctx->parent_ctx);
12446 
12447 	/*
12448 	 * This is the point on no return; we cannot fail hereafter. This is
12449 	 * where we start modifying current state.
12450 	 */
12451 
12452 	if (move_group) {
12453 		/*
12454 		 * See perf_event_ctx_lock() for comments on the details
12455 		 * of swizzling perf_event::ctx.
12456 		 */
12457 		perf_remove_from_context(group_leader, 0);
12458 		put_ctx(gctx);
12459 
12460 		for_each_sibling_event(sibling, group_leader) {
12461 			perf_remove_from_context(sibling, 0);
12462 			put_ctx(gctx);
12463 		}
12464 
12465 		/*
12466 		 * Wait for everybody to stop referencing the events through
12467 		 * the old lists, before installing it on new lists.
12468 		 */
12469 		synchronize_rcu();
12470 
12471 		/*
12472 		 * Install the group siblings before the group leader.
12473 		 *
12474 		 * Because a group leader will try and install the entire group
12475 		 * (through the sibling list, which is still in-tact), we can
12476 		 * end up with siblings installed in the wrong context.
12477 		 *
12478 		 * By installing siblings first we NO-OP because they're not
12479 		 * reachable through the group lists.
12480 		 */
12481 		for_each_sibling_event(sibling, group_leader) {
12482 			perf_event__state_init(sibling);
12483 			perf_install_in_context(ctx, sibling, sibling->cpu);
12484 			get_ctx(ctx);
12485 		}
12486 
12487 		/*
12488 		 * Removing from the context ends up with disabled
12489 		 * event. What we want here is event in the initial
12490 		 * startup state, ready to be add into new context.
12491 		 */
12492 		perf_event__state_init(group_leader);
12493 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12494 		get_ctx(ctx);
12495 	}
12496 
12497 	/*
12498 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12499 	 * that we're serialized against further additions and before
12500 	 * perf_install_in_context() which is the point the event is active and
12501 	 * can use these values.
12502 	 */
12503 	perf_event__header_size(event);
12504 	perf_event__id_header_size(event);
12505 
12506 	event->owner = current;
12507 
12508 	perf_install_in_context(ctx, event, event->cpu);
12509 	perf_unpin_context(ctx);
12510 
12511 	if (move_group)
12512 		perf_event_ctx_unlock(group_leader, gctx);
12513 	mutex_unlock(&ctx->mutex);
12514 
12515 	if (task) {
12516 		up_read(&task->signal->exec_update_lock);
12517 		put_task_struct(task);
12518 	}
12519 
12520 	mutex_lock(&current->perf_event_mutex);
12521 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12522 	mutex_unlock(&current->perf_event_mutex);
12523 
12524 	/*
12525 	 * Drop the reference on the group_event after placing the
12526 	 * new event on the sibling_list. This ensures destruction
12527 	 * of the group leader will find the pointer to itself in
12528 	 * perf_group_detach().
12529 	 */
12530 	fdput(group);
12531 	fd_install(event_fd, event_file);
12532 	return event_fd;
12533 
12534 err_locked:
12535 	if (move_group)
12536 		perf_event_ctx_unlock(group_leader, gctx);
12537 	mutex_unlock(&ctx->mutex);
12538 err_cred:
12539 	if (task)
12540 		up_read(&task->signal->exec_update_lock);
12541 err_file:
12542 	fput(event_file);
12543 err_context:
12544 	perf_unpin_context(ctx);
12545 	put_ctx(ctx);
12546 err_alloc:
12547 	/*
12548 	 * If event_file is set, the fput() above will have called ->release()
12549 	 * and that will take care of freeing the event.
12550 	 */
12551 	if (!event_file)
12552 		free_event(event);
12553 err_task:
12554 	if (task)
12555 		put_task_struct(task);
12556 err_group_fd:
12557 	fdput(group);
12558 err_fd:
12559 	put_unused_fd(event_fd);
12560 	return err;
12561 }
12562 
12563 /**
12564  * perf_event_create_kernel_counter
12565  *
12566  * @attr: attributes of the counter to create
12567  * @cpu: cpu in which the counter is bound
12568  * @task: task to profile (NULL for percpu)
12569  * @overflow_handler: callback to trigger when we hit the event
12570  * @context: context data could be used in overflow_handler callback
12571  */
12572 struct perf_event *
12573 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12574 				 struct task_struct *task,
12575 				 perf_overflow_handler_t overflow_handler,
12576 				 void *context)
12577 {
12578 	struct perf_event_context *ctx;
12579 	struct perf_event *event;
12580 	int err;
12581 
12582 	/*
12583 	 * Grouping is not supported for kernel events, neither is 'AUX',
12584 	 * make sure the caller's intentions are adjusted.
12585 	 */
12586 	if (attr->aux_output)
12587 		return ERR_PTR(-EINVAL);
12588 
12589 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12590 				 overflow_handler, context, -1);
12591 	if (IS_ERR(event)) {
12592 		err = PTR_ERR(event);
12593 		goto err;
12594 	}
12595 
12596 	/* Mark owner so we could distinguish it from user events. */
12597 	event->owner = TASK_TOMBSTONE;
12598 
12599 	/*
12600 	 * Get the target context (task or percpu):
12601 	 */
12602 	ctx = find_get_context(event->pmu, task, event);
12603 	if (IS_ERR(ctx)) {
12604 		err = PTR_ERR(ctx);
12605 		goto err_free;
12606 	}
12607 
12608 	WARN_ON_ONCE(ctx->parent_ctx);
12609 	mutex_lock(&ctx->mutex);
12610 	if (ctx->task == TASK_TOMBSTONE) {
12611 		err = -ESRCH;
12612 		goto err_unlock;
12613 	}
12614 
12615 	if (!task) {
12616 		/*
12617 		 * Check if the @cpu we're creating an event for is online.
12618 		 *
12619 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12620 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12621 		 */
12622 		struct perf_cpu_context *cpuctx =
12623 			container_of(ctx, struct perf_cpu_context, ctx);
12624 		if (!cpuctx->online) {
12625 			err = -ENODEV;
12626 			goto err_unlock;
12627 		}
12628 	}
12629 
12630 	if (!exclusive_event_installable(event, ctx)) {
12631 		err = -EBUSY;
12632 		goto err_unlock;
12633 	}
12634 
12635 	perf_install_in_context(ctx, event, event->cpu);
12636 	perf_unpin_context(ctx);
12637 	mutex_unlock(&ctx->mutex);
12638 
12639 	return event;
12640 
12641 err_unlock:
12642 	mutex_unlock(&ctx->mutex);
12643 	perf_unpin_context(ctx);
12644 	put_ctx(ctx);
12645 err_free:
12646 	free_event(event);
12647 err:
12648 	return ERR_PTR(err);
12649 }
12650 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12651 
12652 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12653 {
12654 	struct perf_event_context *src_ctx;
12655 	struct perf_event_context *dst_ctx;
12656 	struct perf_event *event, *tmp;
12657 	LIST_HEAD(events);
12658 
12659 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12660 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12661 
12662 	/*
12663 	 * See perf_event_ctx_lock() for comments on the details
12664 	 * of swizzling perf_event::ctx.
12665 	 */
12666 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12667 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12668 				 event_entry) {
12669 		perf_remove_from_context(event, 0);
12670 		unaccount_event_cpu(event, src_cpu);
12671 		put_ctx(src_ctx);
12672 		list_add(&event->migrate_entry, &events);
12673 	}
12674 
12675 	/*
12676 	 * Wait for the events to quiesce before re-instating them.
12677 	 */
12678 	synchronize_rcu();
12679 
12680 	/*
12681 	 * Re-instate events in 2 passes.
12682 	 *
12683 	 * Skip over group leaders and only install siblings on this first
12684 	 * pass, siblings will not get enabled without a leader, however a
12685 	 * leader will enable its siblings, even if those are still on the old
12686 	 * context.
12687 	 */
12688 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12689 		if (event->group_leader == event)
12690 			continue;
12691 
12692 		list_del(&event->migrate_entry);
12693 		if (event->state >= PERF_EVENT_STATE_OFF)
12694 			event->state = PERF_EVENT_STATE_INACTIVE;
12695 		account_event_cpu(event, dst_cpu);
12696 		perf_install_in_context(dst_ctx, event, dst_cpu);
12697 		get_ctx(dst_ctx);
12698 	}
12699 
12700 	/*
12701 	 * Once all the siblings are setup properly, install the group leaders
12702 	 * to make it go.
12703 	 */
12704 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12705 		list_del(&event->migrate_entry);
12706 		if (event->state >= PERF_EVENT_STATE_OFF)
12707 			event->state = PERF_EVENT_STATE_INACTIVE;
12708 		account_event_cpu(event, dst_cpu);
12709 		perf_install_in_context(dst_ctx, event, dst_cpu);
12710 		get_ctx(dst_ctx);
12711 	}
12712 	mutex_unlock(&dst_ctx->mutex);
12713 	mutex_unlock(&src_ctx->mutex);
12714 }
12715 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12716 
12717 static void sync_child_event(struct perf_event *child_event)
12718 {
12719 	struct perf_event *parent_event = child_event->parent;
12720 	u64 child_val;
12721 
12722 	if (child_event->attr.inherit_stat) {
12723 		struct task_struct *task = child_event->ctx->task;
12724 
12725 		if (task && task != TASK_TOMBSTONE)
12726 			perf_event_read_event(child_event, task);
12727 	}
12728 
12729 	child_val = perf_event_count(child_event);
12730 
12731 	/*
12732 	 * Add back the child's count to the parent's count:
12733 	 */
12734 	atomic64_add(child_val, &parent_event->child_count);
12735 	atomic64_add(child_event->total_time_enabled,
12736 		     &parent_event->child_total_time_enabled);
12737 	atomic64_add(child_event->total_time_running,
12738 		     &parent_event->child_total_time_running);
12739 }
12740 
12741 static void
12742 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12743 {
12744 	struct perf_event *parent_event = event->parent;
12745 	unsigned long detach_flags = 0;
12746 
12747 	if (parent_event) {
12748 		/*
12749 		 * Do not destroy the 'original' grouping; because of the
12750 		 * context switch optimization the original events could've
12751 		 * ended up in a random child task.
12752 		 *
12753 		 * If we were to destroy the original group, all group related
12754 		 * operations would cease to function properly after this
12755 		 * random child dies.
12756 		 *
12757 		 * Do destroy all inherited groups, we don't care about those
12758 		 * and being thorough is better.
12759 		 */
12760 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12761 		mutex_lock(&parent_event->child_mutex);
12762 	}
12763 
12764 	perf_remove_from_context(event, detach_flags);
12765 
12766 	raw_spin_lock_irq(&ctx->lock);
12767 	if (event->state > PERF_EVENT_STATE_EXIT)
12768 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12769 	raw_spin_unlock_irq(&ctx->lock);
12770 
12771 	/*
12772 	 * Child events can be freed.
12773 	 */
12774 	if (parent_event) {
12775 		mutex_unlock(&parent_event->child_mutex);
12776 		/*
12777 		 * Kick perf_poll() for is_event_hup();
12778 		 */
12779 		perf_event_wakeup(parent_event);
12780 		free_event(event);
12781 		put_event(parent_event);
12782 		return;
12783 	}
12784 
12785 	/*
12786 	 * Parent events are governed by their filedesc, retain them.
12787 	 */
12788 	perf_event_wakeup(event);
12789 }
12790 
12791 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12792 {
12793 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12794 	struct perf_event *child_event, *next;
12795 
12796 	WARN_ON_ONCE(child != current);
12797 
12798 	child_ctx = perf_pin_task_context(child, ctxn);
12799 	if (!child_ctx)
12800 		return;
12801 
12802 	/*
12803 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12804 	 * ctx::mutex over the entire thing. This serializes against almost
12805 	 * everything that wants to access the ctx.
12806 	 *
12807 	 * The exception is sys_perf_event_open() /
12808 	 * perf_event_create_kernel_count() which does find_get_context()
12809 	 * without ctx::mutex (it cannot because of the move_group double mutex
12810 	 * lock thing). See the comments in perf_install_in_context().
12811 	 */
12812 	mutex_lock(&child_ctx->mutex);
12813 
12814 	/*
12815 	 * In a single ctx::lock section, de-schedule the events and detach the
12816 	 * context from the task such that we cannot ever get it scheduled back
12817 	 * in.
12818 	 */
12819 	raw_spin_lock_irq(&child_ctx->lock);
12820 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12821 
12822 	/*
12823 	 * Now that the context is inactive, destroy the task <-> ctx relation
12824 	 * and mark the context dead.
12825 	 */
12826 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12827 	put_ctx(child_ctx); /* cannot be last */
12828 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12829 	put_task_struct(current); /* cannot be last */
12830 
12831 	clone_ctx = unclone_ctx(child_ctx);
12832 	raw_spin_unlock_irq(&child_ctx->lock);
12833 
12834 	if (clone_ctx)
12835 		put_ctx(clone_ctx);
12836 
12837 	/*
12838 	 * Report the task dead after unscheduling the events so that we
12839 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12840 	 * get a few PERF_RECORD_READ events.
12841 	 */
12842 	perf_event_task(child, child_ctx, 0);
12843 
12844 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12845 		perf_event_exit_event(child_event, child_ctx);
12846 
12847 	mutex_unlock(&child_ctx->mutex);
12848 
12849 	put_ctx(child_ctx);
12850 }
12851 
12852 /*
12853  * When a child task exits, feed back event values to parent events.
12854  *
12855  * Can be called with exec_update_lock held when called from
12856  * setup_new_exec().
12857  */
12858 void perf_event_exit_task(struct task_struct *child)
12859 {
12860 	struct perf_event *event, *tmp;
12861 	int ctxn;
12862 
12863 	mutex_lock(&child->perf_event_mutex);
12864 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12865 				 owner_entry) {
12866 		list_del_init(&event->owner_entry);
12867 
12868 		/*
12869 		 * Ensure the list deletion is visible before we clear
12870 		 * the owner, closes a race against perf_release() where
12871 		 * we need to serialize on the owner->perf_event_mutex.
12872 		 */
12873 		smp_store_release(&event->owner, NULL);
12874 	}
12875 	mutex_unlock(&child->perf_event_mutex);
12876 
12877 	for_each_task_context_nr(ctxn)
12878 		perf_event_exit_task_context(child, ctxn);
12879 
12880 	/*
12881 	 * The perf_event_exit_task_context calls perf_event_task
12882 	 * with child's task_ctx, which generates EXIT events for
12883 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12884 	 * At this point we need to send EXIT events to cpu contexts.
12885 	 */
12886 	perf_event_task(child, NULL, 0);
12887 }
12888 
12889 static void perf_free_event(struct perf_event *event,
12890 			    struct perf_event_context *ctx)
12891 {
12892 	struct perf_event *parent = event->parent;
12893 
12894 	if (WARN_ON_ONCE(!parent))
12895 		return;
12896 
12897 	mutex_lock(&parent->child_mutex);
12898 	list_del_init(&event->child_list);
12899 	mutex_unlock(&parent->child_mutex);
12900 
12901 	put_event(parent);
12902 
12903 	raw_spin_lock_irq(&ctx->lock);
12904 	perf_group_detach(event);
12905 	list_del_event(event, ctx);
12906 	raw_spin_unlock_irq(&ctx->lock);
12907 	free_event(event);
12908 }
12909 
12910 /*
12911  * Free a context as created by inheritance by perf_event_init_task() below,
12912  * used by fork() in case of fail.
12913  *
12914  * Even though the task has never lived, the context and events have been
12915  * exposed through the child_list, so we must take care tearing it all down.
12916  */
12917 void perf_event_free_task(struct task_struct *task)
12918 {
12919 	struct perf_event_context *ctx;
12920 	struct perf_event *event, *tmp;
12921 	int ctxn;
12922 
12923 	for_each_task_context_nr(ctxn) {
12924 		ctx = task->perf_event_ctxp[ctxn];
12925 		if (!ctx)
12926 			continue;
12927 
12928 		mutex_lock(&ctx->mutex);
12929 		raw_spin_lock_irq(&ctx->lock);
12930 		/*
12931 		 * Destroy the task <-> ctx relation and mark the context dead.
12932 		 *
12933 		 * This is important because even though the task hasn't been
12934 		 * exposed yet the context has been (through child_list).
12935 		 */
12936 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12937 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12938 		put_task_struct(task); /* cannot be last */
12939 		raw_spin_unlock_irq(&ctx->lock);
12940 
12941 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12942 			perf_free_event(event, ctx);
12943 
12944 		mutex_unlock(&ctx->mutex);
12945 
12946 		/*
12947 		 * perf_event_release_kernel() could've stolen some of our
12948 		 * child events and still have them on its free_list. In that
12949 		 * case we must wait for these events to have been freed (in
12950 		 * particular all their references to this task must've been
12951 		 * dropped).
12952 		 *
12953 		 * Without this copy_process() will unconditionally free this
12954 		 * task (irrespective of its reference count) and
12955 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12956 		 * use-after-free.
12957 		 *
12958 		 * Wait for all events to drop their context reference.
12959 		 */
12960 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12961 		put_ctx(ctx); /* must be last */
12962 	}
12963 }
12964 
12965 void perf_event_delayed_put(struct task_struct *task)
12966 {
12967 	int ctxn;
12968 
12969 	for_each_task_context_nr(ctxn)
12970 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12971 }
12972 
12973 struct file *perf_event_get(unsigned int fd)
12974 {
12975 	struct file *file = fget(fd);
12976 	if (!file)
12977 		return ERR_PTR(-EBADF);
12978 
12979 	if (file->f_op != &perf_fops) {
12980 		fput(file);
12981 		return ERR_PTR(-EBADF);
12982 	}
12983 
12984 	return file;
12985 }
12986 
12987 const struct perf_event *perf_get_event(struct file *file)
12988 {
12989 	if (file->f_op != &perf_fops)
12990 		return ERR_PTR(-EINVAL);
12991 
12992 	return file->private_data;
12993 }
12994 
12995 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12996 {
12997 	if (!event)
12998 		return ERR_PTR(-EINVAL);
12999 
13000 	return &event->attr;
13001 }
13002 
13003 /*
13004  * Inherit an event from parent task to child task.
13005  *
13006  * Returns:
13007  *  - valid pointer on success
13008  *  - NULL for orphaned events
13009  *  - IS_ERR() on error
13010  */
13011 static struct perf_event *
13012 inherit_event(struct perf_event *parent_event,
13013 	      struct task_struct *parent,
13014 	      struct perf_event_context *parent_ctx,
13015 	      struct task_struct *child,
13016 	      struct perf_event *group_leader,
13017 	      struct perf_event_context *child_ctx)
13018 {
13019 	enum perf_event_state parent_state = parent_event->state;
13020 	struct perf_event *child_event;
13021 	unsigned long flags;
13022 
13023 	/*
13024 	 * Instead of creating recursive hierarchies of events,
13025 	 * we link inherited events back to the original parent,
13026 	 * which has a filp for sure, which we use as the reference
13027 	 * count:
13028 	 */
13029 	if (parent_event->parent)
13030 		parent_event = parent_event->parent;
13031 
13032 	child_event = perf_event_alloc(&parent_event->attr,
13033 					   parent_event->cpu,
13034 					   child,
13035 					   group_leader, parent_event,
13036 					   NULL, NULL, -1);
13037 	if (IS_ERR(child_event))
13038 		return child_event;
13039 
13040 
13041 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13042 	    !child_ctx->task_ctx_data) {
13043 		struct pmu *pmu = child_event->pmu;
13044 
13045 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13046 		if (!child_ctx->task_ctx_data) {
13047 			free_event(child_event);
13048 			return ERR_PTR(-ENOMEM);
13049 		}
13050 	}
13051 
13052 	/*
13053 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13054 	 * must be under the same lock in order to serialize against
13055 	 * perf_event_release_kernel(), such that either we must observe
13056 	 * is_orphaned_event() or they will observe us on the child_list.
13057 	 */
13058 	mutex_lock(&parent_event->child_mutex);
13059 	if (is_orphaned_event(parent_event) ||
13060 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13061 		mutex_unlock(&parent_event->child_mutex);
13062 		/* task_ctx_data is freed with child_ctx */
13063 		free_event(child_event);
13064 		return NULL;
13065 	}
13066 
13067 	get_ctx(child_ctx);
13068 
13069 	/*
13070 	 * Make the child state follow the state of the parent event,
13071 	 * not its attr.disabled bit.  We hold the parent's mutex,
13072 	 * so we won't race with perf_event_{en, dis}able_family.
13073 	 */
13074 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13075 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13076 	else
13077 		child_event->state = PERF_EVENT_STATE_OFF;
13078 
13079 	if (parent_event->attr.freq) {
13080 		u64 sample_period = parent_event->hw.sample_period;
13081 		struct hw_perf_event *hwc = &child_event->hw;
13082 
13083 		hwc->sample_period = sample_period;
13084 		hwc->last_period   = sample_period;
13085 
13086 		local64_set(&hwc->period_left, sample_period);
13087 	}
13088 
13089 	child_event->ctx = child_ctx;
13090 	child_event->overflow_handler = parent_event->overflow_handler;
13091 	child_event->overflow_handler_context
13092 		= parent_event->overflow_handler_context;
13093 
13094 	/*
13095 	 * Precalculate sample_data sizes
13096 	 */
13097 	perf_event__header_size(child_event);
13098 	perf_event__id_header_size(child_event);
13099 
13100 	/*
13101 	 * Link it up in the child's context:
13102 	 */
13103 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13104 	add_event_to_ctx(child_event, child_ctx);
13105 	child_event->attach_state |= PERF_ATTACH_CHILD;
13106 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13107 
13108 	/*
13109 	 * Link this into the parent event's child list
13110 	 */
13111 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13112 	mutex_unlock(&parent_event->child_mutex);
13113 
13114 	return child_event;
13115 }
13116 
13117 /*
13118  * Inherits an event group.
13119  *
13120  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13121  * This matches with perf_event_release_kernel() removing all child events.
13122  *
13123  * Returns:
13124  *  - 0 on success
13125  *  - <0 on error
13126  */
13127 static int inherit_group(struct perf_event *parent_event,
13128 	      struct task_struct *parent,
13129 	      struct perf_event_context *parent_ctx,
13130 	      struct task_struct *child,
13131 	      struct perf_event_context *child_ctx)
13132 {
13133 	struct perf_event *leader;
13134 	struct perf_event *sub;
13135 	struct perf_event *child_ctr;
13136 
13137 	leader = inherit_event(parent_event, parent, parent_ctx,
13138 				 child, NULL, child_ctx);
13139 	if (IS_ERR(leader))
13140 		return PTR_ERR(leader);
13141 	/*
13142 	 * @leader can be NULL here because of is_orphaned_event(). In this
13143 	 * case inherit_event() will create individual events, similar to what
13144 	 * perf_group_detach() would do anyway.
13145 	 */
13146 	for_each_sibling_event(sub, parent_event) {
13147 		child_ctr = inherit_event(sub, parent, parent_ctx,
13148 					    child, leader, child_ctx);
13149 		if (IS_ERR(child_ctr))
13150 			return PTR_ERR(child_ctr);
13151 
13152 		if (sub->aux_event == parent_event && child_ctr &&
13153 		    !perf_get_aux_event(child_ctr, leader))
13154 			return -EINVAL;
13155 	}
13156 	return 0;
13157 }
13158 
13159 /*
13160  * Creates the child task context and tries to inherit the event-group.
13161  *
13162  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13163  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13164  * consistent with perf_event_release_kernel() removing all child events.
13165  *
13166  * Returns:
13167  *  - 0 on success
13168  *  - <0 on error
13169  */
13170 static int
13171 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13172 		   struct perf_event_context *parent_ctx,
13173 		   struct task_struct *child, int ctxn,
13174 		   u64 clone_flags, int *inherited_all)
13175 {
13176 	int ret;
13177 	struct perf_event_context *child_ctx;
13178 
13179 	if (!event->attr.inherit ||
13180 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13181 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13182 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13183 		*inherited_all = 0;
13184 		return 0;
13185 	}
13186 
13187 	child_ctx = child->perf_event_ctxp[ctxn];
13188 	if (!child_ctx) {
13189 		/*
13190 		 * This is executed from the parent task context, so
13191 		 * inherit events that have been marked for cloning.
13192 		 * First allocate and initialize a context for the
13193 		 * child.
13194 		 */
13195 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13196 		if (!child_ctx)
13197 			return -ENOMEM;
13198 
13199 		child->perf_event_ctxp[ctxn] = child_ctx;
13200 	}
13201 
13202 	ret = inherit_group(event, parent, parent_ctx,
13203 			    child, child_ctx);
13204 
13205 	if (ret)
13206 		*inherited_all = 0;
13207 
13208 	return ret;
13209 }
13210 
13211 /*
13212  * Initialize the perf_event context in task_struct
13213  */
13214 static int perf_event_init_context(struct task_struct *child, int ctxn,
13215 				   u64 clone_flags)
13216 {
13217 	struct perf_event_context *child_ctx, *parent_ctx;
13218 	struct perf_event_context *cloned_ctx;
13219 	struct perf_event *event;
13220 	struct task_struct *parent = current;
13221 	int inherited_all = 1;
13222 	unsigned long flags;
13223 	int ret = 0;
13224 
13225 	if (likely(!parent->perf_event_ctxp[ctxn]))
13226 		return 0;
13227 
13228 	/*
13229 	 * If the parent's context is a clone, pin it so it won't get
13230 	 * swapped under us.
13231 	 */
13232 	parent_ctx = perf_pin_task_context(parent, ctxn);
13233 	if (!parent_ctx)
13234 		return 0;
13235 
13236 	/*
13237 	 * No need to check if parent_ctx != NULL here; since we saw
13238 	 * it non-NULL earlier, the only reason for it to become NULL
13239 	 * is if we exit, and since we're currently in the middle of
13240 	 * a fork we can't be exiting at the same time.
13241 	 */
13242 
13243 	/*
13244 	 * Lock the parent list. No need to lock the child - not PID
13245 	 * hashed yet and not running, so nobody can access it.
13246 	 */
13247 	mutex_lock(&parent_ctx->mutex);
13248 
13249 	/*
13250 	 * We dont have to disable NMIs - we are only looking at
13251 	 * the list, not manipulating it:
13252 	 */
13253 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13254 		ret = inherit_task_group(event, parent, parent_ctx,
13255 					 child, ctxn, clone_flags,
13256 					 &inherited_all);
13257 		if (ret)
13258 			goto out_unlock;
13259 	}
13260 
13261 	/*
13262 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13263 	 * to allocations, but we need to prevent rotation because
13264 	 * rotate_ctx() will change the list from interrupt context.
13265 	 */
13266 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13267 	parent_ctx->rotate_disable = 1;
13268 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13269 
13270 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13271 		ret = inherit_task_group(event, parent, parent_ctx,
13272 					 child, ctxn, clone_flags,
13273 					 &inherited_all);
13274 		if (ret)
13275 			goto out_unlock;
13276 	}
13277 
13278 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13279 	parent_ctx->rotate_disable = 0;
13280 
13281 	child_ctx = child->perf_event_ctxp[ctxn];
13282 
13283 	if (child_ctx && inherited_all) {
13284 		/*
13285 		 * Mark the child context as a clone of the parent
13286 		 * context, or of whatever the parent is a clone of.
13287 		 *
13288 		 * Note that if the parent is a clone, the holding of
13289 		 * parent_ctx->lock avoids it from being uncloned.
13290 		 */
13291 		cloned_ctx = parent_ctx->parent_ctx;
13292 		if (cloned_ctx) {
13293 			child_ctx->parent_ctx = cloned_ctx;
13294 			child_ctx->parent_gen = parent_ctx->parent_gen;
13295 		} else {
13296 			child_ctx->parent_ctx = parent_ctx;
13297 			child_ctx->parent_gen = parent_ctx->generation;
13298 		}
13299 		get_ctx(child_ctx->parent_ctx);
13300 	}
13301 
13302 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13303 out_unlock:
13304 	mutex_unlock(&parent_ctx->mutex);
13305 
13306 	perf_unpin_context(parent_ctx);
13307 	put_ctx(parent_ctx);
13308 
13309 	return ret;
13310 }
13311 
13312 /*
13313  * Initialize the perf_event context in task_struct
13314  */
13315 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13316 {
13317 	int ctxn, ret;
13318 
13319 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13320 	mutex_init(&child->perf_event_mutex);
13321 	INIT_LIST_HEAD(&child->perf_event_list);
13322 
13323 	for_each_task_context_nr(ctxn) {
13324 		ret = perf_event_init_context(child, ctxn, clone_flags);
13325 		if (ret) {
13326 			perf_event_free_task(child);
13327 			return ret;
13328 		}
13329 	}
13330 
13331 	return 0;
13332 }
13333 
13334 static void __init perf_event_init_all_cpus(void)
13335 {
13336 	struct swevent_htable *swhash;
13337 	int cpu;
13338 
13339 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13340 
13341 	for_each_possible_cpu(cpu) {
13342 		swhash = &per_cpu(swevent_htable, cpu);
13343 		mutex_init(&swhash->hlist_mutex);
13344 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13345 
13346 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13347 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13348 
13349 #ifdef CONFIG_CGROUP_PERF
13350 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13351 #endif
13352 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13353 	}
13354 }
13355 
13356 static void perf_swevent_init_cpu(unsigned int cpu)
13357 {
13358 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13359 
13360 	mutex_lock(&swhash->hlist_mutex);
13361 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13362 		struct swevent_hlist *hlist;
13363 
13364 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13365 		WARN_ON(!hlist);
13366 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13367 	}
13368 	mutex_unlock(&swhash->hlist_mutex);
13369 }
13370 
13371 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13372 static void __perf_event_exit_context(void *__info)
13373 {
13374 	struct perf_event_context *ctx = __info;
13375 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13376 	struct perf_event *event;
13377 
13378 	raw_spin_lock(&ctx->lock);
13379 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13380 	list_for_each_entry(event, &ctx->event_list, event_entry)
13381 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13382 	raw_spin_unlock(&ctx->lock);
13383 }
13384 
13385 static void perf_event_exit_cpu_context(int cpu)
13386 {
13387 	struct perf_cpu_context *cpuctx;
13388 	struct perf_event_context *ctx;
13389 	struct pmu *pmu;
13390 
13391 	mutex_lock(&pmus_lock);
13392 	list_for_each_entry(pmu, &pmus, entry) {
13393 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13394 		ctx = &cpuctx->ctx;
13395 
13396 		mutex_lock(&ctx->mutex);
13397 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13398 		cpuctx->online = 0;
13399 		mutex_unlock(&ctx->mutex);
13400 	}
13401 	cpumask_clear_cpu(cpu, perf_online_mask);
13402 	mutex_unlock(&pmus_lock);
13403 }
13404 #else
13405 
13406 static void perf_event_exit_cpu_context(int cpu) { }
13407 
13408 #endif
13409 
13410 int perf_event_init_cpu(unsigned int cpu)
13411 {
13412 	struct perf_cpu_context *cpuctx;
13413 	struct perf_event_context *ctx;
13414 	struct pmu *pmu;
13415 
13416 	perf_swevent_init_cpu(cpu);
13417 
13418 	mutex_lock(&pmus_lock);
13419 	cpumask_set_cpu(cpu, perf_online_mask);
13420 	list_for_each_entry(pmu, &pmus, entry) {
13421 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13422 		ctx = &cpuctx->ctx;
13423 
13424 		mutex_lock(&ctx->mutex);
13425 		cpuctx->online = 1;
13426 		mutex_unlock(&ctx->mutex);
13427 	}
13428 	mutex_unlock(&pmus_lock);
13429 
13430 	return 0;
13431 }
13432 
13433 int perf_event_exit_cpu(unsigned int cpu)
13434 {
13435 	perf_event_exit_cpu_context(cpu);
13436 	return 0;
13437 }
13438 
13439 static int
13440 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13441 {
13442 	int cpu;
13443 
13444 	for_each_online_cpu(cpu)
13445 		perf_event_exit_cpu(cpu);
13446 
13447 	return NOTIFY_OK;
13448 }
13449 
13450 /*
13451  * Run the perf reboot notifier at the very last possible moment so that
13452  * the generic watchdog code runs as long as possible.
13453  */
13454 static struct notifier_block perf_reboot_notifier = {
13455 	.notifier_call = perf_reboot,
13456 	.priority = INT_MIN,
13457 };
13458 
13459 void __init perf_event_init(void)
13460 {
13461 	int ret;
13462 
13463 	idr_init(&pmu_idr);
13464 
13465 	perf_event_init_all_cpus();
13466 	init_srcu_struct(&pmus_srcu);
13467 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13468 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13469 	perf_pmu_register(&perf_task_clock, NULL, -1);
13470 	perf_tp_register();
13471 	perf_event_init_cpu(smp_processor_id());
13472 	register_reboot_notifier(&perf_reboot_notifier);
13473 
13474 	ret = init_hw_breakpoint();
13475 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13476 
13477 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13478 
13479 	/*
13480 	 * Build time assertion that we keep the data_head at the intended
13481 	 * location.  IOW, validation we got the __reserved[] size right.
13482 	 */
13483 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13484 		     != 1024);
13485 }
13486 
13487 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13488 			      char *page)
13489 {
13490 	struct perf_pmu_events_attr *pmu_attr =
13491 		container_of(attr, struct perf_pmu_events_attr, attr);
13492 
13493 	if (pmu_attr->event_str)
13494 		return sprintf(page, "%s\n", pmu_attr->event_str);
13495 
13496 	return 0;
13497 }
13498 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13499 
13500 static int __init perf_event_sysfs_init(void)
13501 {
13502 	struct pmu *pmu;
13503 	int ret;
13504 
13505 	mutex_lock(&pmus_lock);
13506 
13507 	ret = bus_register(&pmu_bus);
13508 	if (ret)
13509 		goto unlock;
13510 
13511 	list_for_each_entry(pmu, &pmus, entry) {
13512 		if (!pmu->name || pmu->type < 0)
13513 			continue;
13514 
13515 		ret = pmu_dev_alloc(pmu);
13516 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13517 	}
13518 	pmu_bus_running = 1;
13519 	ret = 0;
13520 
13521 unlock:
13522 	mutex_unlock(&pmus_lock);
13523 
13524 	return ret;
13525 }
13526 device_initcall(perf_event_sysfs_init);
13527 
13528 #ifdef CONFIG_CGROUP_PERF
13529 static struct cgroup_subsys_state *
13530 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13531 {
13532 	struct perf_cgroup *jc;
13533 
13534 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13535 	if (!jc)
13536 		return ERR_PTR(-ENOMEM);
13537 
13538 	jc->info = alloc_percpu(struct perf_cgroup_info);
13539 	if (!jc->info) {
13540 		kfree(jc);
13541 		return ERR_PTR(-ENOMEM);
13542 	}
13543 
13544 	return &jc->css;
13545 }
13546 
13547 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13548 {
13549 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13550 
13551 	free_percpu(jc->info);
13552 	kfree(jc);
13553 }
13554 
13555 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13556 {
13557 	perf_event_cgroup(css->cgroup);
13558 	return 0;
13559 }
13560 
13561 static int __perf_cgroup_move(void *info)
13562 {
13563 	struct task_struct *task = info;
13564 	rcu_read_lock();
13565 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13566 	rcu_read_unlock();
13567 	return 0;
13568 }
13569 
13570 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13571 {
13572 	struct task_struct *task;
13573 	struct cgroup_subsys_state *css;
13574 
13575 	cgroup_taskset_for_each(task, css, tset)
13576 		task_function_call(task, __perf_cgroup_move, task);
13577 }
13578 
13579 struct cgroup_subsys perf_event_cgrp_subsys = {
13580 	.css_alloc	= perf_cgroup_css_alloc,
13581 	.css_free	= perf_cgroup_css_free,
13582 	.css_online	= perf_cgroup_css_online,
13583 	.attach		= perf_cgroup_attach,
13584 	/*
13585 	 * Implicitly enable on dfl hierarchy so that perf events can
13586 	 * always be filtered by cgroup2 path as long as perf_event
13587 	 * controller is not mounted on a legacy hierarchy.
13588 	 */
13589 	.implicit_on_dfl = true,
13590 	.threaded	= true,
13591 };
13592 #endif /* CONFIG_CGROUP_PERF */
13593 
13594 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13595