1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 typedef int (*remote_function_f)(void *); 53 54 struct remote_function_call { 55 struct task_struct *p; 56 remote_function_f func; 57 void *info; 58 int ret; 59 }; 60 61 static void remote_function(void *data) 62 { 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 /* -EAGAIN */ 68 if (task_cpu(p) != smp_processor_id()) 69 return; 70 71 /* 72 * Now that we're on right CPU with IRQs disabled, we can test 73 * if we hit the right task without races. 74 */ 75 76 tfc->ret = -ESRCH; /* No such (running) process */ 77 if (p != current) 78 return; 79 } 80 81 tfc->ret = tfc->func(tfc->info); 82 } 83 84 /** 85 * task_function_call - call a function on the cpu on which a task runs 86 * @p: the task to evaluate 87 * @func: the function to be called 88 * @info: the function call argument 89 * 90 * Calls the function @func when the task is currently running. This might 91 * be on the current CPU, which just calls the function directly 92 * 93 * returns: @func return value, or 94 * -ESRCH - when the process isn't running 95 * -EAGAIN - when the process moved away 96 */ 97 static int 98 task_function_call(struct task_struct *p, remote_function_f func, void *info) 99 { 100 struct remote_function_call data = { 101 .p = p, 102 .func = func, 103 .info = info, 104 .ret = -EAGAIN, 105 }; 106 int ret; 107 108 do { 109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 110 if (!ret) 111 ret = data.ret; 112 } while (ret == -EAGAIN); 113 114 return ret; 115 } 116 117 /** 118 * cpu_function_call - call a function on the cpu 119 * @func: the function to be called 120 * @info: the function call argument 121 * 122 * Calls the function @func on the remote cpu. 123 * 124 * returns: @func return value or -ENXIO when the cpu is offline 125 */ 126 static int cpu_function_call(int cpu, remote_function_f func, void *info) 127 { 128 struct remote_function_call data = { 129 .p = NULL, 130 .func = func, 131 .info = info, 132 .ret = -ENXIO, /* No such CPU */ 133 }; 134 135 smp_call_function_single(cpu, remote_function, &data, 1); 136 137 return data.ret; 138 } 139 140 static inline struct perf_cpu_context * 141 __get_cpu_context(struct perf_event_context *ctx) 142 { 143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 144 } 145 146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 147 struct perf_event_context *ctx) 148 { 149 raw_spin_lock(&cpuctx->ctx.lock); 150 if (ctx) 151 raw_spin_lock(&ctx->lock); 152 } 153 154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 155 struct perf_event_context *ctx) 156 { 157 if (ctx) 158 raw_spin_unlock(&ctx->lock); 159 raw_spin_unlock(&cpuctx->ctx.lock); 160 } 161 162 #define TASK_TOMBSTONE ((void *)-1L) 163 164 static bool is_kernel_event(struct perf_event *event) 165 { 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 167 } 168 169 /* 170 * On task ctx scheduling... 171 * 172 * When !ctx->nr_events a task context will not be scheduled. This means 173 * we can disable the scheduler hooks (for performance) without leaving 174 * pending task ctx state. 175 * 176 * This however results in two special cases: 177 * 178 * - removing the last event from a task ctx; this is relatively straight 179 * forward and is done in __perf_remove_from_context. 180 * 181 * - adding the first event to a task ctx; this is tricky because we cannot 182 * rely on ctx->is_active and therefore cannot use event_function_call(). 183 * See perf_install_in_context(). 184 * 185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 186 */ 187 188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 189 struct perf_event_context *, void *); 190 191 struct event_function_struct { 192 struct perf_event *event; 193 event_f func; 194 void *data; 195 }; 196 197 static int event_function(void *info) 198 { 199 struct event_function_struct *efs = info; 200 struct perf_event *event = efs->event; 201 struct perf_event_context *ctx = event->ctx; 202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 203 struct perf_event_context *task_ctx = cpuctx->task_ctx; 204 int ret = 0; 205 206 WARN_ON_ONCE(!irqs_disabled()); 207 208 perf_ctx_lock(cpuctx, task_ctx); 209 /* 210 * Since we do the IPI call without holding ctx->lock things can have 211 * changed, double check we hit the task we set out to hit. 212 */ 213 if (ctx->task) { 214 if (ctx->task != current) { 215 ret = -ESRCH; 216 goto unlock; 217 } 218 219 /* 220 * We only use event_function_call() on established contexts, 221 * and event_function() is only ever called when active (or 222 * rather, we'll have bailed in task_function_call() or the 223 * above ctx->task != current test), therefore we must have 224 * ctx->is_active here. 225 */ 226 WARN_ON_ONCE(!ctx->is_active); 227 /* 228 * And since we have ctx->is_active, cpuctx->task_ctx must 229 * match. 230 */ 231 WARN_ON_ONCE(task_ctx != ctx); 232 } else { 233 WARN_ON_ONCE(&cpuctx->ctx != ctx); 234 } 235 236 efs->func(event, cpuctx, ctx, efs->data); 237 unlock: 238 perf_ctx_unlock(cpuctx, task_ctx); 239 240 return ret; 241 } 242 243 static void event_function_local(struct perf_event *event, event_f func, void *data) 244 { 245 struct event_function_struct efs = { 246 .event = event, 247 .func = func, 248 .data = data, 249 }; 250 251 int ret = event_function(&efs); 252 WARN_ON_ONCE(ret); 253 } 254 255 static void event_function_call(struct perf_event *event, event_f func, void *data) 256 { 257 struct perf_event_context *ctx = event->ctx; 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 259 struct event_function_struct efs = { 260 .event = event, 261 .func = func, 262 .data = data, 263 }; 264 265 if (!event->parent) { 266 /* 267 * If this is a !child event, we must hold ctx::mutex to 268 * stabilize the the event->ctx relation. See 269 * perf_event_ctx_lock(). 270 */ 271 lockdep_assert_held(&ctx->mutex); 272 } 273 274 if (!task) { 275 cpu_function_call(event->cpu, event_function, &efs); 276 return; 277 } 278 279 if (task == TASK_TOMBSTONE) 280 return; 281 282 again: 283 if (!task_function_call(task, event_function, &efs)) 284 return; 285 286 raw_spin_lock_irq(&ctx->lock); 287 /* 288 * Reload the task pointer, it might have been changed by 289 * a concurrent perf_event_context_sched_out(). 290 */ 291 task = ctx->task; 292 if (task == TASK_TOMBSTONE) { 293 raw_spin_unlock_irq(&ctx->lock); 294 return; 295 } 296 if (ctx->is_active) { 297 raw_spin_unlock_irq(&ctx->lock); 298 goto again; 299 } 300 func(event, NULL, ctx, data); 301 raw_spin_unlock_irq(&ctx->lock); 302 } 303 304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 305 PERF_FLAG_FD_OUTPUT |\ 306 PERF_FLAG_PID_CGROUP |\ 307 PERF_FLAG_FD_CLOEXEC) 308 309 /* 310 * branch priv levels that need permission checks 311 */ 312 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 313 (PERF_SAMPLE_BRANCH_KERNEL |\ 314 PERF_SAMPLE_BRANCH_HV) 315 316 enum event_type_t { 317 EVENT_FLEXIBLE = 0x1, 318 EVENT_PINNED = 0x2, 319 EVENT_TIME = 0x4, 320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 321 }; 322 323 /* 324 * perf_sched_events : >0 events exist 325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 326 */ 327 328 static void perf_sched_delayed(struct work_struct *work); 329 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 331 static DEFINE_MUTEX(perf_sched_mutex); 332 static atomic_t perf_sched_count; 333 334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 335 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 336 337 static atomic_t nr_mmap_events __read_mostly; 338 static atomic_t nr_comm_events __read_mostly; 339 static atomic_t nr_task_events __read_mostly; 340 static atomic_t nr_freq_events __read_mostly; 341 static atomic_t nr_switch_events __read_mostly; 342 343 static LIST_HEAD(pmus); 344 static DEFINE_MUTEX(pmus_lock); 345 static struct srcu_struct pmus_srcu; 346 347 /* 348 * perf event paranoia level: 349 * -1 - not paranoid at all 350 * 0 - disallow raw tracepoint access for unpriv 351 * 1 - disallow cpu events for unpriv 352 * 2 - disallow kernel profiling for unpriv 353 */ 354 int sysctl_perf_event_paranoid __read_mostly = 1; 355 356 /* Minimum for 512 kiB + 1 user control page */ 357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 358 359 /* 360 * max perf event sample rate 361 */ 362 #define DEFAULT_MAX_SAMPLE_RATE 100000 363 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 364 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 365 366 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 367 368 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 369 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 370 371 static int perf_sample_allowed_ns __read_mostly = 372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 373 374 static void update_perf_cpu_limits(void) 375 { 376 u64 tmp = perf_sample_period_ns; 377 378 tmp *= sysctl_perf_cpu_time_max_percent; 379 tmp = div_u64(tmp, 100); 380 if (!tmp) 381 tmp = 1; 382 383 WRITE_ONCE(perf_sample_allowed_ns, tmp); 384 } 385 386 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 387 388 int perf_proc_update_handler(struct ctl_table *table, int write, 389 void __user *buffer, size_t *lenp, 390 loff_t *ppos) 391 { 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 393 394 if (ret || !write) 395 return ret; 396 397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 399 update_perf_cpu_limits(); 400 401 return 0; 402 } 403 404 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 405 406 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 407 void __user *buffer, size_t *lenp, 408 loff_t *ppos) 409 { 410 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 411 412 if (ret || !write) 413 return ret; 414 415 if (sysctl_perf_cpu_time_max_percent == 100 || 416 sysctl_perf_cpu_time_max_percent == 0) { 417 printk(KERN_WARNING 418 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 419 WRITE_ONCE(perf_sample_allowed_ns, 0); 420 } else { 421 update_perf_cpu_limits(); 422 } 423 424 return 0; 425 } 426 427 /* 428 * perf samples are done in some very critical code paths (NMIs). 429 * If they take too much CPU time, the system can lock up and not 430 * get any real work done. This will drop the sample rate when 431 * we detect that events are taking too long. 432 */ 433 #define NR_ACCUMULATED_SAMPLES 128 434 static DEFINE_PER_CPU(u64, running_sample_length); 435 436 static u64 __report_avg; 437 static u64 __report_allowed; 438 439 static void perf_duration_warn(struct irq_work *w) 440 { 441 printk_ratelimited(KERN_WARNING 442 "perf: interrupt took too long (%lld > %lld), lowering " 443 "kernel.perf_event_max_sample_rate to %d\n", 444 __report_avg, __report_allowed, 445 sysctl_perf_event_sample_rate); 446 } 447 448 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 449 450 void perf_sample_event_took(u64 sample_len_ns) 451 { 452 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 453 u64 running_len; 454 u64 avg_len; 455 u32 max; 456 457 if (max_len == 0) 458 return; 459 460 /* Decay the counter by 1 average sample. */ 461 running_len = __this_cpu_read(running_sample_length); 462 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 463 running_len += sample_len_ns; 464 __this_cpu_write(running_sample_length, running_len); 465 466 /* 467 * Note: this will be biased artifically low until we have 468 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 469 * from having to maintain a count. 470 */ 471 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 472 if (avg_len <= max_len) 473 return; 474 475 __report_avg = avg_len; 476 __report_allowed = max_len; 477 478 /* 479 * Compute a throttle threshold 25% below the current duration. 480 */ 481 avg_len += avg_len / 4; 482 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 483 if (avg_len < max) 484 max /= (u32)avg_len; 485 else 486 max = 1; 487 488 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 489 WRITE_ONCE(max_samples_per_tick, max); 490 491 sysctl_perf_event_sample_rate = max * HZ; 492 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 493 494 if (!irq_work_queue(&perf_duration_work)) { 495 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 496 "kernel.perf_event_max_sample_rate to %d\n", 497 __report_avg, __report_allowed, 498 sysctl_perf_event_sample_rate); 499 } 500 } 501 502 static atomic64_t perf_event_id; 503 504 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 505 enum event_type_t event_type); 506 507 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 508 enum event_type_t event_type, 509 struct task_struct *task); 510 511 static void update_context_time(struct perf_event_context *ctx); 512 static u64 perf_event_time(struct perf_event *event); 513 514 void __weak perf_event_print_debug(void) { } 515 516 extern __weak const char *perf_pmu_name(void) 517 { 518 return "pmu"; 519 } 520 521 static inline u64 perf_clock(void) 522 { 523 return local_clock(); 524 } 525 526 static inline u64 perf_event_clock(struct perf_event *event) 527 { 528 return event->clock(); 529 } 530 531 #ifdef CONFIG_CGROUP_PERF 532 533 static inline bool 534 perf_cgroup_match(struct perf_event *event) 535 { 536 struct perf_event_context *ctx = event->ctx; 537 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 538 539 /* @event doesn't care about cgroup */ 540 if (!event->cgrp) 541 return true; 542 543 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 544 if (!cpuctx->cgrp) 545 return false; 546 547 /* 548 * Cgroup scoping is recursive. An event enabled for a cgroup is 549 * also enabled for all its descendant cgroups. If @cpuctx's 550 * cgroup is a descendant of @event's (the test covers identity 551 * case), it's a match. 552 */ 553 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 554 event->cgrp->css.cgroup); 555 } 556 557 static inline void perf_detach_cgroup(struct perf_event *event) 558 { 559 css_put(&event->cgrp->css); 560 event->cgrp = NULL; 561 } 562 563 static inline int is_cgroup_event(struct perf_event *event) 564 { 565 return event->cgrp != NULL; 566 } 567 568 static inline u64 perf_cgroup_event_time(struct perf_event *event) 569 { 570 struct perf_cgroup_info *t; 571 572 t = per_cpu_ptr(event->cgrp->info, event->cpu); 573 return t->time; 574 } 575 576 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 577 { 578 struct perf_cgroup_info *info; 579 u64 now; 580 581 now = perf_clock(); 582 583 info = this_cpu_ptr(cgrp->info); 584 585 info->time += now - info->timestamp; 586 info->timestamp = now; 587 } 588 589 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 590 { 591 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 592 if (cgrp_out) 593 __update_cgrp_time(cgrp_out); 594 } 595 596 static inline void update_cgrp_time_from_event(struct perf_event *event) 597 { 598 struct perf_cgroup *cgrp; 599 600 /* 601 * ensure we access cgroup data only when needed and 602 * when we know the cgroup is pinned (css_get) 603 */ 604 if (!is_cgroup_event(event)) 605 return; 606 607 cgrp = perf_cgroup_from_task(current, event->ctx); 608 /* 609 * Do not update time when cgroup is not active 610 */ 611 if (cgrp == event->cgrp) 612 __update_cgrp_time(event->cgrp); 613 } 614 615 static inline void 616 perf_cgroup_set_timestamp(struct task_struct *task, 617 struct perf_event_context *ctx) 618 { 619 struct perf_cgroup *cgrp; 620 struct perf_cgroup_info *info; 621 622 /* 623 * ctx->lock held by caller 624 * ensure we do not access cgroup data 625 * unless we have the cgroup pinned (css_get) 626 */ 627 if (!task || !ctx->nr_cgroups) 628 return; 629 630 cgrp = perf_cgroup_from_task(task, ctx); 631 info = this_cpu_ptr(cgrp->info); 632 info->timestamp = ctx->timestamp; 633 } 634 635 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 636 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 637 638 /* 639 * reschedule events based on the cgroup constraint of task. 640 * 641 * mode SWOUT : schedule out everything 642 * mode SWIN : schedule in based on cgroup for next 643 */ 644 static void perf_cgroup_switch(struct task_struct *task, int mode) 645 { 646 struct perf_cpu_context *cpuctx; 647 struct pmu *pmu; 648 unsigned long flags; 649 650 /* 651 * disable interrupts to avoid geting nr_cgroup 652 * changes via __perf_event_disable(). Also 653 * avoids preemption. 654 */ 655 local_irq_save(flags); 656 657 /* 658 * we reschedule only in the presence of cgroup 659 * constrained events. 660 */ 661 662 list_for_each_entry_rcu(pmu, &pmus, entry) { 663 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 664 if (cpuctx->unique_pmu != pmu) 665 continue; /* ensure we process each cpuctx once */ 666 667 /* 668 * perf_cgroup_events says at least one 669 * context on this CPU has cgroup events. 670 * 671 * ctx->nr_cgroups reports the number of cgroup 672 * events for a context. 673 */ 674 if (cpuctx->ctx.nr_cgroups > 0) { 675 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 676 perf_pmu_disable(cpuctx->ctx.pmu); 677 678 if (mode & PERF_CGROUP_SWOUT) { 679 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 680 /* 681 * must not be done before ctxswout due 682 * to event_filter_match() in event_sched_out() 683 */ 684 cpuctx->cgrp = NULL; 685 } 686 687 if (mode & PERF_CGROUP_SWIN) { 688 WARN_ON_ONCE(cpuctx->cgrp); 689 /* 690 * set cgrp before ctxsw in to allow 691 * event_filter_match() to not have to pass 692 * task around 693 * we pass the cpuctx->ctx to perf_cgroup_from_task() 694 * because cgorup events are only per-cpu 695 */ 696 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 697 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 698 } 699 perf_pmu_enable(cpuctx->ctx.pmu); 700 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 701 } 702 } 703 704 local_irq_restore(flags); 705 } 706 707 static inline void perf_cgroup_sched_out(struct task_struct *task, 708 struct task_struct *next) 709 { 710 struct perf_cgroup *cgrp1; 711 struct perf_cgroup *cgrp2 = NULL; 712 713 rcu_read_lock(); 714 /* 715 * we come here when we know perf_cgroup_events > 0 716 * we do not need to pass the ctx here because we know 717 * we are holding the rcu lock 718 */ 719 cgrp1 = perf_cgroup_from_task(task, NULL); 720 cgrp2 = perf_cgroup_from_task(next, NULL); 721 722 /* 723 * only schedule out current cgroup events if we know 724 * that we are switching to a different cgroup. Otherwise, 725 * do no touch the cgroup events. 726 */ 727 if (cgrp1 != cgrp2) 728 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 729 730 rcu_read_unlock(); 731 } 732 733 static inline void perf_cgroup_sched_in(struct task_struct *prev, 734 struct task_struct *task) 735 { 736 struct perf_cgroup *cgrp1; 737 struct perf_cgroup *cgrp2 = NULL; 738 739 rcu_read_lock(); 740 /* 741 * we come here when we know perf_cgroup_events > 0 742 * we do not need to pass the ctx here because we know 743 * we are holding the rcu lock 744 */ 745 cgrp1 = perf_cgroup_from_task(task, NULL); 746 cgrp2 = perf_cgroup_from_task(prev, NULL); 747 748 /* 749 * only need to schedule in cgroup events if we are changing 750 * cgroup during ctxsw. Cgroup events were not scheduled 751 * out of ctxsw out if that was not the case. 752 */ 753 if (cgrp1 != cgrp2) 754 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 755 756 rcu_read_unlock(); 757 } 758 759 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 760 struct perf_event_attr *attr, 761 struct perf_event *group_leader) 762 { 763 struct perf_cgroup *cgrp; 764 struct cgroup_subsys_state *css; 765 struct fd f = fdget(fd); 766 int ret = 0; 767 768 if (!f.file) 769 return -EBADF; 770 771 css = css_tryget_online_from_dir(f.file->f_path.dentry, 772 &perf_event_cgrp_subsys); 773 if (IS_ERR(css)) { 774 ret = PTR_ERR(css); 775 goto out; 776 } 777 778 cgrp = container_of(css, struct perf_cgroup, css); 779 event->cgrp = cgrp; 780 781 /* 782 * all events in a group must monitor 783 * the same cgroup because a task belongs 784 * to only one perf cgroup at a time 785 */ 786 if (group_leader && group_leader->cgrp != cgrp) { 787 perf_detach_cgroup(event); 788 ret = -EINVAL; 789 } 790 out: 791 fdput(f); 792 return ret; 793 } 794 795 static inline void 796 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 797 { 798 struct perf_cgroup_info *t; 799 t = per_cpu_ptr(event->cgrp->info, event->cpu); 800 event->shadow_ctx_time = now - t->timestamp; 801 } 802 803 static inline void 804 perf_cgroup_defer_enabled(struct perf_event *event) 805 { 806 /* 807 * when the current task's perf cgroup does not match 808 * the event's, we need to remember to call the 809 * perf_mark_enable() function the first time a task with 810 * a matching perf cgroup is scheduled in. 811 */ 812 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 813 event->cgrp_defer_enabled = 1; 814 } 815 816 static inline void 817 perf_cgroup_mark_enabled(struct perf_event *event, 818 struct perf_event_context *ctx) 819 { 820 struct perf_event *sub; 821 u64 tstamp = perf_event_time(event); 822 823 if (!event->cgrp_defer_enabled) 824 return; 825 826 event->cgrp_defer_enabled = 0; 827 828 event->tstamp_enabled = tstamp - event->total_time_enabled; 829 list_for_each_entry(sub, &event->sibling_list, group_entry) { 830 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 831 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 832 sub->cgrp_defer_enabled = 0; 833 } 834 } 835 } 836 #else /* !CONFIG_CGROUP_PERF */ 837 838 static inline bool 839 perf_cgroup_match(struct perf_event *event) 840 { 841 return true; 842 } 843 844 static inline void perf_detach_cgroup(struct perf_event *event) 845 {} 846 847 static inline int is_cgroup_event(struct perf_event *event) 848 { 849 return 0; 850 } 851 852 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 853 { 854 return 0; 855 } 856 857 static inline void update_cgrp_time_from_event(struct perf_event *event) 858 { 859 } 860 861 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 862 { 863 } 864 865 static inline void perf_cgroup_sched_out(struct task_struct *task, 866 struct task_struct *next) 867 { 868 } 869 870 static inline void perf_cgroup_sched_in(struct task_struct *prev, 871 struct task_struct *task) 872 { 873 } 874 875 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 876 struct perf_event_attr *attr, 877 struct perf_event *group_leader) 878 { 879 return -EINVAL; 880 } 881 882 static inline void 883 perf_cgroup_set_timestamp(struct task_struct *task, 884 struct perf_event_context *ctx) 885 { 886 } 887 888 void 889 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 890 { 891 } 892 893 static inline void 894 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 895 { 896 } 897 898 static inline u64 perf_cgroup_event_time(struct perf_event *event) 899 { 900 return 0; 901 } 902 903 static inline void 904 perf_cgroup_defer_enabled(struct perf_event *event) 905 { 906 } 907 908 static inline void 909 perf_cgroup_mark_enabled(struct perf_event *event, 910 struct perf_event_context *ctx) 911 { 912 } 913 #endif 914 915 /* 916 * set default to be dependent on timer tick just 917 * like original code 918 */ 919 #define PERF_CPU_HRTIMER (1000 / HZ) 920 /* 921 * function must be called with interrupts disbled 922 */ 923 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 924 { 925 struct perf_cpu_context *cpuctx; 926 int rotations = 0; 927 928 WARN_ON(!irqs_disabled()); 929 930 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 931 rotations = perf_rotate_context(cpuctx); 932 933 raw_spin_lock(&cpuctx->hrtimer_lock); 934 if (rotations) 935 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 936 else 937 cpuctx->hrtimer_active = 0; 938 raw_spin_unlock(&cpuctx->hrtimer_lock); 939 940 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 941 } 942 943 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 944 { 945 struct hrtimer *timer = &cpuctx->hrtimer; 946 struct pmu *pmu = cpuctx->ctx.pmu; 947 u64 interval; 948 949 /* no multiplexing needed for SW PMU */ 950 if (pmu->task_ctx_nr == perf_sw_context) 951 return; 952 953 /* 954 * check default is sane, if not set then force to 955 * default interval (1/tick) 956 */ 957 interval = pmu->hrtimer_interval_ms; 958 if (interval < 1) 959 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 960 961 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 962 963 raw_spin_lock_init(&cpuctx->hrtimer_lock); 964 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 965 timer->function = perf_mux_hrtimer_handler; 966 } 967 968 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 969 { 970 struct hrtimer *timer = &cpuctx->hrtimer; 971 struct pmu *pmu = cpuctx->ctx.pmu; 972 unsigned long flags; 973 974 /* not for SW PMU */ 975 if (pmu->task_ctx_nr == perf_sw_context) 976 return 0; 977 978 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 979 if (!cpuctx->hrtimer_active) { 980 cpuctx->hrtimer_active = 1; 981 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 982 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 983 } 984 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 985 986 return 0; 987 } 988 989 void perf_pmu_disable(struct pmu *pmu) 990 { 991 int *count = this_cpu_ptr(pmu->pmu_disable_count); 992 if (!(*count)++) 993 pmu->pmu_disable(pmu); 994 } 995 996 void perf_pmu_enable(struct pmu *pmu) 997 { 998 int *count = this_cpu_ptr(pmu->pmu_disable_count); 999 if (!--(*count)) 1000 pmu->pmu_enable(pmu); 1001 } 1002 1003 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1004 1005 /* 1006 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1007 * perf_event_task_tick() are fully serialized because they're strictly cpu 1008 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1009 * disabled, while perf_event_task_tick is called from IRQ context. 1010 */ 1011 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1012 { 1013 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1014 1015 WARN_ON(!irqs_disabled()); 1016 1017 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1018 1019 list_add(&ctx->active_ctx_list, head); 1020 } 1021 1022 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1023 { 1024 WARN_ON(!irqs_disabled()); 1025 1026 WARN_ON(list_empty(&ctx->active_ctx_list)); 1027 1028 list_del_init(&ctx->active_ctx_list); 1029 } 1030 1031 static void get_ctx(struct perf_event_context *ctx) 1032 { 1033 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1034 } 1035 1036 static void free_ctx(struct rcu_head *head) 1037 { 1038 struct perf_event_context *ctx; 1039 1040 ctx = container_of(head, struct perf_event_context, rcu_head); 1041 kfree(ctx->task_ctx_data); 1042 kfree(ctx); 1043 } 1044 1045 static void put_ctx(struct perf_event_context *ctx) 1046 { 1047 if (atomic_dec_and_test(&ctx->refcount)) { 1048 if (ctx->parent_ctx) 1049 put_ctx(ctx->parent_ctx); 1050 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1051 put_task_struct(ctx->task); 1052 call_rcu(&ctx->rcu_head, free_ctx); 1053 } 1054 } 1055 1056 /* 1057 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1058 * perf_pmu_migrate_context() we need some magic. 1059 * 1060 * Those places that change perf_event::ctx will hold both 1061 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1062 * 1063 * Lock ordering is by mutex address. There are two other sites where 1064 * perf_event_context::mutex nests and those are: 1065 * 1066 * - perf_event_exit_task_context() [ child , 0 ] 1067 * perf_event_exit_event() 1068 * put_event() [ parent, 1 ] 1069 * 1070 * - perf_event_init_context() [ parent, 0 ] 1071 * inherit_task_group() 1072 * inherit_group() 1073 * inherit_event() 1074 * perf_event_alloc() 1075 * perf_init_event() 1076 * perf_try_init_event() [ child , 1 ] 1077 * 1078 * While it appears there is an obvious deadlock here -- the parent and child 1079 * nesting levels are inverted between the two. This is in fact safe because 1080 * life-time rules separate them. That is an exiting task cannot fork, and a 1081 * spawning task cannot (yet) exit. 1082 * 1083 * But remember that that these are parent<->child context relations, and 1084 * migration does not affect children, therefore these two orderings should not 1085 * interact. 1086 * 1087 * The change in perf_event::ctx does not affect children (as claimed above) 1088 * because the sys_perf_event_open() case will install a new event and break 1089 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1090 * concerned with cpuctx and that doesn't have children. 1091 * 1092 * The places that change perf_event::ctx will issue: 1093 * 1094 * perf_remove_from_context(); 1095 * synchronize_rcu(); 1096 * perf_install_in_context(); 1097 * 1098 * to affect the change. The remove_from_context() + synchronize_rcu() should 1099 * quiesce the event, after which we can install it in the new location. This 1100 * means that only external vectors (perf_fops, prctl) can perturb the event 1101 * while in transit. Therefore all such accessors should also acquire 1102 * perf_event_context::mutex to serialize against this. 1103 * 1104 * However; because event->ctx can change while we're waiting to acquire 1105 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1106 * function. 1107 * 1108 * Lock order: 1109 * cred_guard_mutex 1110 * task_struct::perf_event_mutex 1111 * perf_event_context::mutex 1112 * perf_event::child_mutex; 1113 * perf_event_context::lock 1114 * perf_event::mmap_mutex 1115 * mmap_sem 1116 */ 1117 static struct perf_event_context * 1118 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1119 { 1120 struct perf_event_context *ctx; 1121 1122 again: 1123 rcu_read_lock(); 1124 ctx = ACCESS_ONCE(event->ctx); 1125 if (!atomic_inc_not_zero(&ctx->refcount)) { 1126 rcu_read_unlock(); 1127 goto again; 1128 } 1129 rcu_read_unlock(); 1130 1131 mutex_lock_nested(&ctx->mutex, nesting); 1132 if (event->ctx != ctx) { 1133 mutex_unlock(&ctx->mutex); 1134 put_ctx(ctx); 1135 goto again; 1136 } 1137 1138 return ctx; 1139 } 1140 1141 static inline struct perf_event_context * 1142 perf_event_ctx_lock(struct perf_event *event) 1143 { 1144 return perf_event_ctx_lock_nested(event, 0); 1145 } 1146 1147 static void perf_event_ctx_unlock(struct perf_event *event, 1148 struct perf_event_context *ctx) 1149 { 1150 mutex_unlock(&ctx->mutex); 1151 put_ctx(ctx); 1152 } 1153 1154 /* 1155 * This must be done under the ctx->lock, such as to serialize against 1156 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1157 * calling scheduler related locks and ctx->lock nests inside those. 1158 */ 1159 static __must_check struct perf_event_context * 1160 unclone_ctx(struct perf_event_context *ctx) 1161 { 1162 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1163 1164 lockdep_assert_held(&ctx->lock); 1165 1166 if (parent_ctx) 1167 ctx->parent_ctx = NULL; 1168 ctx->generation++; 1169 1170 return parent_ctx; 1171 } 1172 1173 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1174 { 1175 /* 1176 * only top level events have the pid namespace they were created in 1177 */ 1178 if (event->parent) 1179 event = event->parent; 1180 1181 return task_tgid_nr_ns(p, event->ns); 1182 } 1183 1184 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1185 { 1186 /* 1187 * only top level events have the pid namespace they were created in 1188 */ 1189 if (event->parent) 1190 event = event->parent; 1191 1192 return task_pid_nr_ns(p, event->ns); 1193 } 1194 1195 /* 1196 * If we inherit events we want to return the parent event id 1197 * to userspace. 1198 */ 1199 static u64 primary_event_id(struct perf_event *event) 1200 { 1201 u64 id = event->id; 1202 1203 if (event->parent) 1204 id = event->parent->id; 1205 1206 return id; 1207 } 1208 1209 /* 1210 * Get the perf_event_context for a task and lock it. 1211 * 1212 * This has to cope with with the fact that until it is locked, 1213 * the context could get moved to another task. 1214 */ 1215 static struct perf_event_context * 1216 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1217 { 1218 struct perf_event_context *ctx; 1219 1220 retry: 1221 /* 1222 * One of the few rules of preemptible RCU is that one cannot do 1223 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1224 * part of the read side critical section was irqs-enabled -- see 1225 * rcu_read_unlock_special(). 1226 * 1227 * Since ctx->lock nests under rq->lock we must ensure the entire read 1228 * side critical section has interrupts disabled. 1229 */ 1230 local_irq_save(*flags); 1231 rcu_read_lock(); 1232 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1233 if (ctx) { 1234 /* 1235 * If this context is a clone of another, it might 1236 * get swapped for another underneath us by 1237 * perf_event_task_sched_out, though the 1238 * rcu_read_lock() protects us from any context 1239 * getting freed. Lock the context and check if it 1240 * got swapped before we could get the lock, and retry 1241 * if so. If we locked the right context, then it 1242 * can't get swapped on us any more. 1243 */ 1244 raw_spin_lock(&ctx->lock); 1245 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1246 raw_spin_unlock(&ctx->lock); 1247 rcu_read_unlock(); 1248 local_irq_restore(*flags); 1249 goto retry; 1250 } 1251 1252 if (ctx->task == TASK_TOMBSTONE || 1253 !atomic_inc_not_zero(&ctx->refcount)) { 1254 raw_spin_unlock(&ctx->lock); 1255 ctx = NULL; 1256 } else { 1257 WARN_ON_ONCE(ctx->task != task); 1258 } 1259 } 1260 rcu_read_unlock(); 1261 if (!ctx) 1262 local_irq_restore(*flags); 1263 return ctx; 1264 } 1265 1266 /* 1267 * Get the context for a task and increment its pin_count so it 1268 * can't get swapped to another task. This also increments its 1269 * reference count so that the context can't get freed. 1270 */ 1271 static struct perf_event_context * 1272 perf_pin_task_context(struct task_struct *task, int ctxn) 1273 { 1274 struct perf_event_context *ctx; 1275 unsigned long flags; 1276 1277 ctx = perf_lock_task_context(task, ctxn, &flags); 1278 if (ctx) { 1279 ++ctx->pin_count; 1280 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1281 } 1282 return ctx; 1283 } 1284 1285 static void perf_unpin_context(struct perf_event_context *ctx) 1286 { 1287 unsigned long flags; 1288 1289 raw_spin_lock_irqsave(&ctx->lock, flags); 1290 --ctx->pin_count; 1291 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1292 } 1293 1294 /* 1295 * Update the record of the current time in a context. 1296 */ 1297 static void update_context_time(struct perf_event_context *ctx) 1298 { 1299 u64 now = perf_clock(); 1300 1301 ctx->time += now - ctx->timestamp; 1302 ctx->timestamp = now; 1303 } 1304 1305 static u64 perf_event_time(struct perf_event *event) 1306 { 1307 struct perf_event_context *ctx = event->ctx; 1308 1309 if (is_cgroup_event(event)) 1310 return perf_cgroup_event_time(event); 1311 1312 return ctx ? ctx->time : 0; 1313 } 1314 1315 /* 1316 * Update the total_time_enabled and total_time_running fields for a event. 1317 */ 1318 static void update_event_times(struct perf_event *event) 1319 { 1320 struct perf_event_context *ctx = event->ctx; 1321 u64 run_end; 1322 1323 lockdep_assert_held(&ctx->lock); 1324 1325 if (event->state < PERF_EVENT_STATE_INACTIVE || 1326 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1327 return; 1328 1329 /* 1330 * in cgroup mode, time_enabled represents 1331 * the time the event was enabled AND active 1332 * tasks were in the monitored cgroup. This is 1333 * independent of the activity of the context as 1334 * there may be a mix of cgroup and non-cgroup events. 1335 * 1336 * That is why we treat cgroup events differently 1337 * here. 1338 */ 1339 if (is_cgroup_event(event)) 1340 run_end = perf_cgroup_event_time(event); 1341 else if (ctx->is_active) 1342 run_end = ctx->time; 1343 else 1344 run_end = event->tstamp_stopped; 1345 1346 event->total_time_enabled = run_end - event->tstamp_enabled; 1347 1348 if (event->state == PERF_EVENT_STATE_INACTIVE) 1349 run_end = event->tstamp_stopped; 1350 else 1351 run_end = perf_event_time(event); 1352 1353 event->total_time_running = run_end - event->tstamp_running; 1354 1355 } 1356 1357 /* 1358 * Update total_time_enabled and total_time_running for all events in a group. 1359 */ 1360 static void update_group_times(struct perf_event *leader) 1361 { 1362 struct perf_event *event; 1363 1364 update_event_times(leader); 1365 list_for_each_entry(event, &leader->sibling_list, group_entry) 1366 update_event_times(event); 1367 } 1368 1369 static struct list_head * 1370 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1371 { 1372 if (event->attr.pinned) 1373 return &ctx->pinned_groups; 1374 else 1375 return &ctx->flexible_groups; 1376 } 1377 1378 /* 1379 * Add a event from the lists for its context. 1380 * Must be called with ctx->mutex and ctx->lock held. 1381 */ 1382 static void 1383 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1384 { 1385 lockdep_assert_held(&ctx->lock); 1386 1387 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1388 event->attach_state |= PERF_ATTACH_CONTEXT; 1389 1390 /* 1391 * If we're a stand alone event or group leader, we go to the context 1392 * list, group events are kept attached to the group so that 1393 * perf_group_detach can, at all times, locate all siblings. 1394 */ 1395 if (event->group_leader == event) { 1396 struct list_head *list; 1397 1398 if (is_software_event(event)) 1399 event->group_flags |= PERF_GROUP_SOFTWARE; 1400 1401 list = ctx_group_list(event, ctx); 1402 list_add_tail(&event->group_entry, list); 1403 } 1404 1405 if (is_cgroup_event(event)) 1406 ctx->nr_cgroups++; 1407 1408 list_add_rcu(&event->event_entry, &ctx->event_list); 1409 ctx->nr_events++; 1410 if (event->attr.inherit_stat) 1411 ctx->nr_stat++; 1412 1413 ctx->generation++; 1414 } 1415 1416 /* 1417 * Initialize event state based on the perf_event_attr::disabled. 1418 */ 1419 static inline void perf_event__state_init(struct perf_event *event) 1420 { 1421 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1422 PERF_EVENT_STATE_INACTIVE; 1423 } 1424 1425 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1426 { 1427 int entry = sizeof(u64); /* value */ 1428 int size = 0; 1429 int nr = 1; 1430 1431 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1432 size += sizeof(u64); 1433 1434 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1435 size += sizeof(u64); 1436 1437 if (event->attr.read_format & PERF_FORMAT_ID) 1438 entry += sizeof(u64); 1439 1440 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1441 nr += nr_siblings; 1442 size += sizeof(u64); 1443 } 1444 1445 size += entry * nr; 1446 event->read_size = size; 1447 } 1448 1449 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1450 { 1451 struct perf_sample_data *data; 1452 u16 size = 0; 1453 1454 if (sample_type & PERF_SAMPLE_IP) 1455 size += sizeof(data->ip); 1456 1457 if (sample_type & PERF_SAMPLE_ADDR) 1458 size += sizeof(data->addr); 1459 1460 if (sample_type & PERF_SAMPLE_PERIOD) 1461 size += sizeof(data->period); 1462 1463 if (sample_type & PERF_SAMPLE_WEIGHT) 1464 size += sizeof(data->weight); 1465 1466 if (sample_type & PERF_SAMPLE_READ) 1467 size += event->read_size; 1468 1469 if (sample_type & PERF_SAMPLE_DATA_SRC) 1470 size += sizeof(data->data_src.val); 1471 1472 if (sample_type & PERF_SAMPLE_TRANSACTION) 1473 size += sizeof(data->txn); 1474 1475 event->header_size = size; 1476 } 1477 1478 /* 1479 * Called at perf_event creation and when events are attached/detached from a 1480 * group. 1481 */ 1482 static void perf_event__header_size(struct perf_event *event) 1483 { 1484 __perf_event_read_size(event, 1485 event->group_leader->nr_siblings); 1486 __perf_event_header_size(event, event->attr.sample_type); 1487 } 1488 1489 static void perf_event__id_header_size(struct perf_event *event) 1490 { 1491 struct perf_sample_data *data; 1492 u64 sample_type = event->attr.sample_type; 1493 u16 size = 0; 1494 1495 if (sample_type & PERF_SAMPLE_TID) 1496 size += sizeof(data->tid_entry); 1497 1498 if (sample_type & PERF_SAMPLE_TIME) 1499 size += sizeof(data->time); 1500 1501 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1502 size += sizeof(data->id); 1503 1504 if (sample_type & PERF_SAMPLE_ID) 1505 size += sizeof(data->id); 1506 1507 if (sample_type & PERF_SAMPLE_STREAM_ID) 1508 size += sizeof(data->stream_id); 1509 1510 if (sample_type & PERF_SAMPLE_CPU) 1511 size += sizeof(data->cpu_entry); 1512 1513 event->id_header_size = size; 1514 } 1515 1516 static bool perf_event_validate_size(struct perf_event *event) 1517 { 1518 /* 1519 * The values computed here will be over-written when we actually 1520 * attach the event. 1521 */ 1522 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1523 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1524 perf_event__id_header_size(event); 1525 1526 /* 1527 * Sum the lot; should not exceed the 64k limit we have on records. 1528 * Conservative limit to allow for callchains and other variable fields. 1529 */ 1530 if (event->read_size + event->header_size + 1531 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1532 return false; 1533 1534 return true; 1535 } 1536 1537 static void perf_group_attach(struct perf_event *event) 1538 { 1539 struct perf_event *group_leader = event->group_leader, *pos; 1540 1541 /* 1542 * We can have double attach due to group movement in perf_event_open. 1543 */ 1544 if (event->attach_state & PERF_ATTACH_GROUP) 1545 return; 1546 1547 event->attach_state |= PERF_ATTACH_GROUP; 1548 1549 if (group_leader == event) 1550 return; 1551 1552 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1553 1554 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1555 !is_software_event(event)) 1556 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1557 1558 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1559 group_leader->nr_siblings++; 1560 1561 perf_event__header_size(group_leader); 1562 1563 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1564 perf_event__header_size(pos); 1565 } 1566 1567 /* 1568 * Remove a event from the lists for its context. 1569 * Must be called with ctx->mutex and ctx->lock held. 1570 */ 1571 static void 1572 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1573 { 1574 struct perf_cpu_context *cpuctx; 1575 1576 WARN_ON_ONCE(event->ctx != ctx); 1577 lockdep_assert_held(&ctx->lock); 1578 1579 /* 1580 * We can have double detach due to exit/hot-unplug + close. 1581 */ 1582 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1583 return; 1584 1585 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1586 1587 if (is_cgroup_event(event)) { 1588 ctx->nr_cgroups--; 1589 /* 1590 * Because cgroup events are always per-cpu events, this will 1591 * always be called from the right CPU. 1592 */ 1593 cpuctx = __get_cpu_context(ctx); 1594 /* 1595 * If there are no more cgroup events then clear cgrp to avoid 1596 * stale pointer in update_cgrp_time_from_cpuctx(). 1597 */ 1598 if (!ctx->nr_cgroups) 1599 cpuctx->cgrp = NULL; 1600 } 1601 1602 ctx->nr_events--; 1603 if (event->attr.inherit_stat) 1604 ctx->nr_stat--; 1605 1606 list_del_rcu(&event->event_entry); 1607 1608 if (event->group_leader == event) 1609 list_del_init(&event->group_entry); 1610 1611 update_group_times(event); 1612 1613 /* 1614 * If event was in error state, then keep it 1615 * that way, otherwise bogus counts will be 1616 * returned on read(). The only way to get out 1617 * of error state is by explicit re-enabling 1618 * of the event 1619 */ 1620 if (event->state > PERF_EVENT_STATE_OFF) 1621 event->state = PERF_EVENT_STATE_OFF; 1622 1623 ctx->generation++; 1624 } 1625 1626 static void perf_group_detach(struct perf_event *event) 1627 { 1628 struct perf_event *sibling, *tmp; 1629 struct list_head *list = NULL; 1630 1631 /* 1632 * We can have double detach due to exit/hot-unplug + close. 1633 */ 1634 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1635 return; 1636 1637 event->attach_state &= ~PERF_ATTACH_GROUP; 1638 1639 /* 1640 * If this is a sibling, remove it from its group. 1641 */ 1642 if (event->group_leader != event) { 1643 list_del_init(&event->group_entry); 1644 event->group_leader->nr_siblings--; 1645 goto out; 1646 } 1647 1648 if (!list_empty(&event->group_entry)) 1649 list = &event->group_entry; 1650 1651 /* 1652 * If this was a group event with sibling events then 1653 * upgrade the siblings to singleton events by adding them 1654 * to whatever list we are on. 1655 */ 1656 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1657 if (list) 1658 list_move_tail(&sibling->group_entry, list); 1659 sibling->group_leader = sibling; 1660 1661 /* Inherit group flags from the previous leader */ 1662 sibling->group_flags = event->group_flags; 1663 1664 WARN_ON_ONCE(sibling->ctx != event->ctx); 1665 } 1666 1667 out: 1668 perf_event__header_size(event->group_leader); 1669 1670 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1671 perf_event__header_size(tmp); 1672 } 1673 1674 static bool is_orphaned_event(struct perf_event *event) 1675 { 1676 return event->state == PERF_EVENT_STATE_DEAD; 1677 } 1678 1679 static inline int pmu_filter_match(struct perf_event *event) 1680 { 1681 struct pmu *pmu = event->pmu; 1682 return pmu->filter_match ? pmu->filter_match(event) : 1; 1683 } 1684 1685 static inline int 1686 event_filter_match(struct perf_event *event) 1687 { 1688 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1689 && perf_cgroup_match(event) && pmu_filter_match(event); 1690 } 1691 1692 static void 1693 event_sched_out(struct perf_event *event, 1694 struct perf_cpu_context *cpuctx, 1695 struct perf_event_context *ctx) 1696 { 1697 u64 tstamp = perf_event_time(event); 1698 u64 delta; 1699 1700 WARN_ON_ONCE(event->ctx != ctx); 1701 lockdep_assert_held(&ctx->lock); 1702 1703 /* 1704 * An event which could not be activated because of 1705 * filter mismatch still needs to have its timings 1706 * maintained, otherwise bogus information is return 1707 * via read() for time_enabled, time_running: 1708 */ 1709 if (event->state == PERF_EVENT_STATE_INACTIVE 1710 && !event_filter_match(event)) { 1711 delta = tstamp - event->tstamp_stopped; 1712 event->tstamp_running += delta; 1713 event->tstamp_stopped = tstamp; 1714 } 1715 1716 if (event->state != PERF_EVENT_STATE_ACTIVE) 1717 return; 1718 1719 perf_pmu_disable(event->pmu); 1720 1721 event->tstamp_stopped = tstamp; 1722 event->pmu->del(event, 0); 1723 event->oncpu = -1; 1724 event->state = PERF_EVENT_STATE_INACTIVE; 1725 if (event->pending_disable) { 1726 event->pending_disable = 0; 1727 event->state = PERF_EVENT_STATE_OFF; 1728 } 1729 1730 if (!is_software_event(event)) 1731 cpuctx->active_oncpu--; 1732 if (!--ctx->nr_active) 1733 perf_event_ctx_deactivate(ctx); 1734 if (event->attr.freq && event->attr.sample_freq) 1735 ctx->nr_freq--; 1736 if (event->attr.exclusive || !cpuctx->active_oncpu) 1737 cpuctx->exclusive = 0; 1738 1739 perf_pmu_enable(event->pmu); 1740 } 1741 1742 static void 1743 group_sched_out(struct perf_event *group_event, 1744 struct perf_cpu_context *cpuctx, 1745 struct perf_event_context *ctx) 1746 { 1747 struct perf_event *event; 1748 int state = group_event->state; 1749 1750 event_sched_out(group_event, cpuctx, ctx); 1751 1752 /* 1753 * Schedule out siblings (if any): 1754 */ 1755 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1756 event_sched_out(event, cpuctx, ctx); 1757 1758 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1759 cpuctx->exclusive = 0; 1760 } 1761 1762 #define DETACH_GROUP 0x01UL 1763 1764 /* 1765 * Cross CPU call to remove a performance event 1766 * 1767 * We disable the event on the hardware level first. After that we 1768 * remove it from the context list. 1769 */ 1770 static void 1771 __perf_remove_from_context(struct perf_event *event, 1772 struct perf_cpu_context *cpuctx, 1773 struct perf_event_context *ctx, 1774 void *info) 1775 { 1776 unsigned long flags = (unsigned long)info; 1777 1778 event_sched_out(event, cpuctx, ctx); 1779 if (flags & DETACH_GROUP) 1780 perf_group_detach(event); 1781 list_del_event(event, ctx); 1782 1783 if (!ctx->nr_events && ctx->is_active) { 1784 ctx->is_active = 0; 1785 if (ctx->task) { 1786 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1787 cpuctx->task_ctx = NULL; 1788 } 1789 } 1790 } 1791 1792 /* 1793 * Remove the event from a task's (or a CPU's) list of events. 1794 * 1795 * If event->ctx is a cloned context, callers must make sure that 1796 * every task struct that event->ctx->task could possibly point to 1797 * remains valid. This is OK when called from perf_release since 1798 * that only calls us on the top-level context, which can't be a clone. 1799 * When called from perf_event_exit_task, it's OK because the 1800 * context has been detached from its task. 1801 */ 1802 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1803 { 1804 lockdep_assert_held(&event->ctx->mutex); 1805 1806 event_function_call(event, __perf_remove_from_context, (void *)flags); 1807 } 1808 1809 /* 1810 * Cross CPU call to disable a performance event 1811 */ 1812 static void __perf_event_disable(struct perf_event *event, 1813 struct perf_cpu_context *cpuctx, 1814 struct perf_event_context *ctx, 1815 void *info) 1816 { 1817 if (event->state < PERF_EVENT_STATE_INACTIVE) 1818 return; 1819 1820 update_context_time(ctx); 1821 update_cgrp_time_from_event(event); 1822 update_group_times(event); 1823 if (event == event->group_leader) 1824 group_sched_out(event, cpuctx, ctx); 1825 else 1826 event_sched_out(event, cpuctx, ctx); 1827 event->state = PERF_EVENT_STATE_OFF; 1828 } 1829 1830 /* 1831 * Disable a event. 1832 * 1833 * If event->ctx is a cloned context, callers must make sure that 1834 * every task struct that event->ctx->task could possibly point to 1835 * remains valid. This condition is satisifed when called through 1836 * perf_event_for_each_child or perf_event_for_each because they 1837 * hold the top-level event's child_mutex, so any descendant that 1838 * goes to exit will block in perf_event_exit_event(). 1839 * 1840 * When called from perf_pending_event it's OK because event->ctx 1841 * is the current context on this CPU and preemption is disabled, 1842 * hence we can't get into perf_event_task_sched_out for this context. 1843 */ 1844 static void _perf_event_disable(struct perf_event *event) 1845 { 1846 struct perf_event_context *ctx = event->ctx; 1847 1848 raw_spin_lock_irq(&ctx->lock); 1849 if (event->state <= PERF_EVENT_STATE_OFF) { 1850 raw_spin_unlock_irq(&ctx->lock); 1851 return; 1852 } 1853 raw_spin_unlock_irq(&ctx->lock); 1854 1855 event_function_call(event, __perf_event_disable, NULL); 1856 } 1857 1858 void perf_event_disable_local(struct perf_event *event) 1859 { 1860 event_function_local(event, __perf_event_disable, NULL); 1861 } 1862 1863 /* 1864 * Strictly speaking kernel users cannot create groups and therefore this 1865 * interface does not need the perf_event_ctx_lock() magic. 1866 */ 1867 void perf_event_disable(struct perf_event *event) 1868 { 1869 struct perf_event_context *ctx; 1870 1871 ctx = perf_event_ctx_lock(event); 1872 _perf_event_disable(event); 1873 perf_event_ctx_unlock(event, ctx); 1874 } 1875 EXPORT_SYMBOL_GPL(perf_event_disable); 1876 1877 static void perf_set_shadow_time(struct perf_event *event, 1878 struct perf_event_context *ctx, 1879 u64 tstamp) 1880 { 1881 /* 1882 * use the correct time source for the time snapshot 1883 * 1884 * We could get by without this by leveraging the 1885 * fact that to get to this function, the caller 1886 * has most likely already called update_context_time() 1887 * and update_cgrp_time_xx() and thus both timestamp 1888 * are identical (or very close). Given that tstamp is, 1889 * already adjusted for cgroup, we could say that: 1890 * tstamp - ctx->timestamp 1891 * is equivalent to 1892 * tstamp - cgrp->timestamp. 1893 * 1894 * Then, in perf_output_read(), the calculation would 1895 * work with no changes because: 1896 * - event is guaranteed scheduled in 1897 * - no scheduled out in between 1898 * - thus the timestamp would be the same 1899 * 1900 * But this is a bit hairy. 1901 * 1902 * So instead, we have an explicit cgroup call to remain 1903 * within the time time source all along. We believe it 1904 * is cleaner and simpler to understand. 1905 */ 1906 if (is_cgroup_event(event)) 1907 perf_cgroup_set_shadow_time(event, tstamp); 1908 else 1909 event->shadow_ctx_time = tstamp - ctx->timestamp; 1910 } 1911 1912 #define MAX_INTERRUPTS (~0ULL) 1913 1914 static void perf_log_throttle(struct perf_event *event, int enable); 1915 static void perf_log_itrace_start(struct perf_event *event); 1916 1917 static int 1918 event_sched_in(struct perf_event *event, 1919 struct perf_cpu_context *cpuctx, 1920 struct perf_event_context *ctx) 1921 { 1922 u64 tstamp = perf_event_time(event); 1923 int ret = 0; 1924 1925 lockdep_assert_held(&ctx->lock); 1926 1927 if (event->state <= PERF_EVENT_STATE_OFF) 1928 return 0; 1929 1930 event->state = PERF_EVENT_STATE_ACTIVE; 1931 event->oncpu = smp_processor_id(); 1932 1933 /* 1934 * Unthrottle events, since we scheduled we might have missed several 1935 * ticks already, also for a heavily scheduling task there is little 1936 * guarantee it'll get a tick in a timely manner. 1937 */ 1938 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1939 perf_log_throttle(event, 1); 1940 event->hw.interrupts = 0; 1941 } 1942 1943 /* 1944 * The new state must be visible before we turn it on in the hardware: 1945 */ 1946 smp_wmb(); 1947 1948 perf_pmu_disable(event->pmu); 1949 1950 perf_set_shadow_time(event, ctx, tstamp); 1951 1952 perf_log_itrace_start(event); 1953 1954 if (event->pmu->add(event, PERF_EF_START)) { 1955 event->state = PERF_EVENT_STATE_INACTIVE; 1956 event->oncpu = -1; 1957 ret = -EAGAIN; 1958 goto out; 1959 } 1960 1961 event->tstamp_running += tstamp - event->tstamp_stopped; 1962 1963 if (!is_software_event(event)) 1964 cpuctx->active_oncpu++; 1965 if (!ctx->nr_active++) 1966 perf_event_ctx_activate(ctx); 1967 if (event->attr.freq && event->attr.sample_freq) 1968 ctx->nr_freq++; 1969 1970 if (event->attr.exclusive) 1971 cpuctx->exclusive = 1; 1972 1973 out: 1974 perf_pmu_enable(event->pmu); 1975 1976 return ret; 1977 } 1978 1979 static int 1980 group_sched_in(struct perf_event *group_event, 1981 struct perf_cpu_context *cpuctx, 1982 struct perf_event_context *ctx) 1983 { 1984 struct perf_event *event, *partial_group = NULL; 1985 struct pmu *pmu = ctx->pmu; 1986 u64 now = ctx->time; 1987 bool simulate = false; 1988 1989 if (group_event->state == PERF_EVENT_STATE_OFF) 1990 return 0; 1991 1992 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 1993 1994 if (event_sched_in(group_event, cpuctx, ctx)) { 1995 pmu->cancel_txn(pmu); 1996 perf_mux_hrtimer_restart(cpuctx); 1997 return -EAGAIN; 1998 } 1999 2000 /* 2001 * Schedule in siblings as one group (if any): 2002 */ 2003 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2004 if (event_sched_in(event, cpuctx, ctx)) { 2005 partial_group = event; 2006 goto group_error; 2007 } 2008 } 2009 2010 if (!pmu->commit_txn(pmu)) 2011 return 0; 2012 2013 group_error: 2014 /* 2015 * Groups can be scheduled in as one unit only, so undo any 2016 * partial group before returning: 2017 * The events up to the failed event are scheduled out normally, 2018 * tstamp_stopped will be updated. 2019 * 2020 * The failed events and the remaining siblings need to have 2021 * their timings updated as if they had gone thru event_sched_in() 2022 * and event_sched_out(). This is required to get consistent timings 2023 * across the group. This also takes care of the case where the group 2024 * could never be scheduled by ensuring tstamp_stopped is set to mark 2025 * the time the event was actually stopped, such that time delta 2026 * calculation in update_event_times() is correct. 2027 */ 2028 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2029 if (event == partial_group) 2030 simulate = true; 2031 2032 if (simulate) { 2033 event->tstamp_running += now - event->tstamp_stopped; 2034 event->tstamp_stopped = now; 2035 } else { 2036 event_sched_out(event, cpuctx, ctx); 2037 } 2038 } 2039 event_sched_out(group_event, cpuctx, ctx); 2040 2041 pmu->cancel_txn(pmu); 2042 2043 perf_mux_hrtimer_restart(cpuctx); 2044 2045 return -EAGAIN; 2046 } 2047 2048 /* 2049 * Work out whether we can put this event group on the CPU now. 2050 */ 2051 static int group_can_go_on(struct perf_event *event, 2052 struct perf_cpu_context *cpuctx, 2053 int can_add_hw) 2054 { 2055 /* 2056 * Groups consisting entirely of software events can always go on. 2057 */ 2058 if (event->group_flags & PERF_GROUP_SOFTWARE) 2059 return 1; 2060 /* 2061 * If an exclusive group is already on, no other hardware 2062 * events can go on. 2063 */ 2064 if (cpuctx->exclusive) 2065 return 0; 2066 /* 2067 * If this group is exclusive and there are already 2068 * events on the CPU, it can't go on. 2069 */ 2070 if (event->attr.exclusive && cpuctx->active_oncpu) 2071 return 0; 2072 /* 2073 * Otherwise, try to add it if all previous groups were able 2074 * to go on. 2075 */ 2076 return can_add_hw; 2077 } 2078 2079 static void add_event_to_ctx(struct perf_event *event, 2080 struct perf_event_context *ctx) 2081 { 2082 u64 tstamp = perf_event_time(event); 2083 2084 list_add_event(event, ctx); 2085 perf_group_attach(event); 2086 event->tstamp_enabled = tstamp; 2087 event->tstamp_running = tstamp; 2088 event->tstamp_stopped = tstamp; 2089 } 2090 2091 static void ctx_sched_out(struct perf_event_context *ctx, 2092 struct perf_cpu_context *cpuctx, 2093 enum event_type_t event_type); 2094 static void 2095 ctx_sched_in(struct perf_event_context *ctx, 2096 struct perf_cpu_context *cpuctx, 2097 enum event_type_t event_type, 2098 struct task_struct *task); 2099 2100 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2101 struct perf_event_context *ctx) 2102 { 2103 if (!cpuctx->task_ctx) 2104 return; 2105 2106 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2107 return; 2108 2109 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2110 } 2111 2112 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2113 struct perf_event_context *ctx, 2114 struct task_struct *task) 2115 { 2116 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2117 if (ctx) 2118 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2119 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2120 if (ctx) 2121 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2122 } 2123 2124 static void ctx_resched(struct perf_cpu_context *cpuctx, 2125 struct perf_event_context *task_ctx) 2126 { 2127 perf_pmu_disable(cpuctx->ctx.pmu); 2128 if (task_ctx) 2129 task_ctx_sched_out(cpuctx, task_ctx); 2130 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2131 perf_event_sched_in(cpuctx, task_ctx, current); 2132 perf_pmu_enable(cpuctx->ctx.pmu); 2133 } 2134 2135 /* 2136 * Cross CPU call to install and enable a performance event 2137 * 2138 * Very similar to remote_function() + event_function() but cannot assume that 2139 * things like ctx->is_active and cpuctx->task_ctx are set. 2140 */ 2141 static int __perf_install_in_context(void *info) 2142 { 2143 struct perf_event *event = info; 2144 struct perf_event_context *ctx = event->ctx; 2145 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2146 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2147 bool activate = true; 2148 int ret = 0; 2149 2150 raw_spin_lock(&cpuctx->ctx.lock); 2151 if (ctx->task) { 2152 raw_spin_lock(&ctx->lock); 2153 task_ctx = ctx; 2154 2155 /* If we're on the wrong CPU, try again */ 2156 if (task_cpu(ctx->task) != smp_processor_id()) { 2157 ret = -ESRCH; 2158 goto unlock; 2159 } 2160 2161 /* 2162 * If we're on the right CPU, see if the task we target is 2163 * current, if not we don't have to activate the ctx, a future 2164 * context switch will do that for us. 2165 */ 2166 if (ctx->task != current) 2167 activate = false; 2168 else 2169 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2170 2171 } else if (task_ctx) { 2172 raw_spin_lock(&task_ctx->lock); 2173 } 2174 2175 if (activate) { 2176 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2177 add_event_to_ctx(event, ctx); 2178 ctx_resched(cpuctx, task_ctx); 2179 } else { 2180 add_event_to_ctx(event, ctx); 2181 } 2182 2183 unlock: 2184 perf_ctx_unlock(cpuctx, task_ctx); 2185 2186 return ret; 2187 } 2188 2189 /* 2190 * Attach a performance event to a context. 2191 * 2192 * Very similar to event_function_call, see comment there. 2193 */ 2194 static void 2195 perf_install_in_context(struct perf_event_context *ctx, 2196 struct perf_event *event, 2197 int cpu) 2198 { 2199 struct task_struct *task = READ_ONCE(ctx->task); 2200 2201 lockdep_assert_held(&ctx->mutex); 2202 2203 event->ctx = ctx; 2204 if (event->cpu != -1) 2205 event->cpu = cpu; 2206 2207 if (!task) { 2208 cpu_function_call(cpu, __perf_install_in_context, event); 2209 return; 2210 } 2211 2212 /* 2213 * Should not happen, we validate the ctx is still alive before calling. 2214 */ 2215 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2216 return; 2217 2218 /* 2219 * Installing events is tricky because we cannot rely on ctx->is_active 2220 * to be set in case this is the nr_events 0 -> 1 transition. 2221 */ 2222 again: 2223 /* 2224 * Cannot use task_function_call() because we need to run on the task's 2225 * CPU regardless of whether its current or not. 2226 */ 2227 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2228 return; 2229 2230 raw_spin_lock_irq(&ctx->lock); 2231 task = ctx->task; 2232 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2233 /* 2234 * Cannot happen because we already checked above (which also 2235 * cannot happen), and we hold ctx->mutex, which serializes us 2236 * against perf_event_exit_task_context(). 2237 */ 2238 raw_spin_unlock_irq(&ctx->lock); 2239 return; 2240 } 2241 raw_spin_unlock_irq(&ctx->lock); 2242 /* 2243 * Since !ctx->is_active doesn't mean anything, we must IPI 2244 * unconditionally. 2245 */ 2246 goto again; 2247 } 2248 2249 /* 2250 * Put a event into inactive state and update time fields. 2251 * Enabling the leader of a group effectively enables all 2252 * the group members that aren't explicitly disabled, so we 2253 * have to update their ->tstamp_enabled also. 2254 * Note: this works for group members as well as group leaders 2255 * since the non-leader members' sibling_lists will be empty. 2256 */ 2257 static void __perf_event_mark_enabled(struct perf_event *event) 2258 { 2259 struct perf_event *sub; 2260 u64 tstamp = perf_event_time(event); 2261 2262 event->state = PERF_EVENT_STATE_INACTIVE; 2263 event->tstamp_enabled = tstamp - event->total_time_enabled; 2264 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2265 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2266 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2267 } 2268 } 2269 2270 /* 2271 * Cross CPU call to enable a performance event 2272 */ 2273 static void __perf_event_enable(struct perf_event *event, 2274 struct perf_cpu_context *cpuctx, 2275 struct perf_event_context *ctx, 2276 void *info) 2277 { 2278 struct perf_event *leader = event->group_leader; 2279 struct perf_event_context *task_ctx; 2280 2281 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2282 event->state <= PERF_EVENT_STATE_ERROR) 2283 return; 2284 2285 if (ctx->is_active) 2286 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2287 2288 __perf_event_mark_enabled(event); 2289 2290 if (!ctx->is_active) 2291 return; 2292 2293 if (!event_filter_match(event)) { 2294 if (is_cgroup_event(event)) 2295 perf_cgroup_defer_enabled(event); 2296 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2297 return; 2298 } 2299 2300 /* 2301 * If the event is in a group and isn't the group leader, 2302 * then don't put it on unless the group is on. 2303 */ 2304 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2305 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2306 return; 2307 } 2308 2309 task_ctx = cpuctx->task_ctx; 2310 if (ctx->task) 2311 WARN_ON_ONCE(task_ctx != ctx); 2312 2313 ctx_resched(cpuctx, task_ctx); 2314 } 2315 2316 /* 2317 * Enable a event. 2318 * 2319 * If event->ctx is a cloned context, callers must make sure that 2320 * every task struct that event->ctx->task could possibly point to 2321 * remains valid. This condition is satisfied when called through 2322 * perf_event_for_each_child or perf_event_for_each as described 2323 * for perf_event_disable. 2324 */ 2325 static void _perf_event_enable(struct perf_event *event) 2326 { 2327 struct perf_event_context *ctx = event->ctx; 2328 2329 raw_spin_lock_irq(&ctx->lock); 2330 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2331 event->state < PERF_EVENT_STATE_ERROR) { 2332 raw_spin_unlock_irq(&ctx->lock); 2333 return; 2334 } 2335 2336 /* 2337 * If the event is in error state, clear that first. 2338 * 2339 * That way, if we see the event in error state below, we know that it 2340 * has gone back into error state, as distinct from the task having 2341 * been scheduled away before the cross-call arrived. 2342 */ 2343 if (event->state == PERF_EVENT_STATE_ERROR) 2344 event->state = PERF_EVENT_STATE_OFF; 2345 raw_spin_unlock_irq(&ctx->lock); 2346 2347 event_function_call(event, __perf_event_enable, NULL); 2348 } 2349 2350 /* 2351 * See perf_event_disable(); 2352 */ 2353 void perf_event_enable(struct perf_event *event) 2354 { 2355 struct perf_event_context *ctx; 2356 2357 ctx = perf_event_ctx_lock(event); 2358 _perf_event_enable(event); 2359 perf_event_ctx_unlock(event, ctx); 2360 } 2361 EXPORT_SYMBOL_GPL(perf_event_enable); 2362 2363 static int _perf_event_refresh(struct perf_event *event, int refresh) 2364 { 2365 /* 2366 * not supported on inherited events 2367 */ 2368 if (event->attr.inherit || !is_sampling_event(event)) 2369 return -EINVAL; 2370 2371 atomic_add(refresh, &event->event_limit); 2372 _perf_event_enable(event); 2373 2374 return 0; 2375 } 2376 2377 /* 2378 * See perf_event_disable() 2379 */ 2380 int perf_event_refresh(struct perf_event *event, int refresh) 2381 { 2382 struct perf_event_context *ctx; 2383 int ret; 2384 2385 ctx = perf_event_ctx_lock(event); 2386 ret = _perf_event_refresh(event, refresh); 2387 perf_event_ctx_unlock(event, ctx); 2388 2389 return ret; 2390 } 2391 EXPORT_SYMBOL_GPL(perf_event_refresh); 2392 2393 static void ctx_sched_out(struct perf_event_context *ctx, 2394 struct perf_cpu_context *cpuctx, 2395 enum event_type_t event_type) 2396 { 2397 int is_active = ctx->is_active; 2398 struct perf_event *event; 2399 2400 lockdep_assert_held(&ctx->lock); 2401 2402 if (likely(!ctx->nr_events)) { 2403 /* 2404 * See __perf_remove_from_context(). 2405 */ 2406 WARN_ON_ONCE(ctx->is_active); 2407 if (ctx->task) 2408 WARN_ON_ONCE(cpuctx->task_ctx); 2409 return; 2410 } 2411 2412 ctx->is_active &= ~event_type; 2413 if (!(ctx->is_active & EVENT_ALL)) 2414 ctx->is_active = 0; 2415 2416 if (ctx->task) { 2417 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2418 if (!ctx->is_active) 2419 cpuctx->task_ctx = NULL; 2420 } 2421 2422 /* 2423 * Always update time if it was set; not only when it changes. 2424 * Otherwise we can 'forget' to update time for any but the last 2425 * context we sched out. For example: 2426 * 2427 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2428 * ctx_sched_out(.event_type = EVENT_PINNED) 2429 * 2430 * would only update time for the pinned events. 2431 */ 2432 if (is_active & EVENT_TIME) { 2433 /* update (and stop) ctx time */ 2434 update_context_time(ctx); 2435 update_cgrp_time_from_cpuctx(cpuctx); 2436 } 2437 2438 is_active ^= ctx->is_active; /* changed bits */ 2439 2440 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2441 return; 2442 2443 perf_pmu_disable(ctx->pmu); 2444 if (is_active & EVENT_PINNED) { 2445 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2446 group_sched_out(event, cpuctx, ctx); 2447 } 2448 2449 if (is_active & EVENT_FLEXIBLE) { 2450 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2451 group_sched_out(event, cpuctx, ctx); 2452 } 2453 perf_pmu_enable(ctx->pmu); 2454 } 2455 2456 /* 2457 * Test whether two contexts are equivalent, i.e. whether they have both been 2458 * cloned from the same version of the same context. 2459 * 2460 * Equivalence is measured using a generation number in the context that is 2461 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2462 * and list_del_event(). 2463 */ 2464 static int context_equiv(struct perf_event_context *ctx1, 2465 struct perf_event_context *ctx2) 2466 { 2467 lockdep_assert_held(&ctx1->lock); 2468 lockdep_assert_held(&ctx2->lock); 2469 2470 /* Pinning disables the swap optimization */ 2471 if (ctx1->pin_count || ctx2->pin_count) 2472 return 0; 2473 2474 /* If ctx1 is the parent of ctx2 */ 2475 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2476 return 1; 2477 2478 /* If ctx2 is the parent of ctx1 */ 2479 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2480 return 1; 2481 2482 /* 2483 * If ctx1 and ctx2 have the same parent; we flatten the parent 2484 * hierarchy, see perf_event_init_context(). 2485 */ 2486 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2487 ctx1->parent_gen == ctx2->parent_gen) 2488 return 1; 2489 2490 /* Unmatched */ 2491 return 0; 2492 } 2493 2494 static void __perf_event_sync_stat(struct perf_event *event, 2495 struct perf_event *next_event) 2496 { 2497 u64 value; 2498 2499 if (!event->attr.inherit_stat) 2500 return; 2501 2502 /* 2503 * Update the event value, we cannot use perf_event_read() 2504 * because we're in the middle of a context switch and have IRQs 2505 * disabled, which upsets smp_call_function_single(), however 2506 * we know the event must be on the current CPU, therefore we 2507 * don't need to use it. 2508 */ 2509 switch (event->state) { 2510 case PERF_EVENT_STATE_ACTIVE: 2511 event->pmu->read(event); 2512 /* fall-through */ 2513 2514 case PERF_EVENT_STATE_INACTIVE: 2515 update_event_times(event); 2516 break; 2517 2518 default: 2519 break; 2520 } 2521 2522 /* 2523 * In order to keep per-task stats reliable we need to flip the event 2524 * values when we flip the contexts. 2525 */ 2526 value = local64_read(&next_event->count); 2527 value = local64_xchg(&event->count, value); 2528 local64_set(&next_event->count, value); 2529 2530 swap(event->total_time_enabled, next_event->total_time_enabled); 2531 swap(event->total_time_running, next_event->total_time_running); 2532 2533 /* 2534 * Since we swizzled the values, update the user visible data too. 2535 */ 2536 perf_event_update_userpage(event); 2537 perf_event_update_userpage(next_event); 2538 } 2539 2540 static void perf_event_sync_stat(struct perf_event_context *ctx, 2541 struct perf_event_context *next_ctx) 2542 { 2543 struct perf_event *event, *next_event; 2544 2545 if (!ctx->nr_stat) 2546 return; 2547 2548 update_context_time(ctx); 2549 2550 event = list_first_entry(&ctx->event_list, 2551 struct perf_event, event_entry); 2552 2553 next_event = list_first_entry(&next_ctx->event_list, 2554 struct perf_event, event_entry); 2555 2556 while (&event->event_entry != &ctx->event_list && 2557 &next_event->event_entry != &next_ctx->event_list) { 2558 2559 __perf_event_sync_stat(event, next_event); 2560 2561 event = list_next_entry(event, event_entry); 2562 next_event = list_next_entry(next_event, event_entry); 2563 } 2564 } 2565 2566 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2567 struct task_struct *next) 2568 { 2569 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2570 struct perf_event_context *next_ctx; 2571 struct perf_event_context *parent, *next_parent; 2572 struct perf_cpu_context *cpuctx; 2573 int do_switch = 1; 2574 2575 if (likely(!ctx)) 2576 return; 2577 2578 cpuctx = __get_cpu_context(ctx); 2579 if (!cpuctx->task_ctx) 2580 return; 2581 2582 rcu_read_lock(); 2583 next_ctx = next->perf_event_ctxp[ctxn]; 2584 if (!next_ctx) 2585 goto unlock; 2586 2587 parent = rcu_dereference(ctx->parent_ctx); 2588 next_parent = rcu_dereference(next_ctx->parent_ctx); 2589 2590 /* If neither context have a parent context; they cannot be clones. */ 2591 if (!parent && !next_parent) 2592 goto unlock; 2593 2594 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2595 /* 2596 * Looks like the two contexts are clones, so we might be 2597 * able to optimize the context switch. We lock both 2598 * contexts and check that they are clones under the 2599 * lock (including re-checking that neither has been 2600 * uncloned in the meantime). It doesn't matter which 2601 * order we take the locks because no other cpu could 2602 * be trying to lock both of these tasks. 2603 */ 2604 raw_spin_lock(&ctx->lock); 2605 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2606 if (context_equiv(ctx, next_ctx)) { 2607 WRITE_ONCE(ctx->task, next); 2608 WRITE_ONCE(next_ctx->task, task); 2609 2610 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2611 2612 /* 2613 * RCU_INIT_POINTER here is safe because we've not 2614 * modified the ctx and the above modification of 2615 * ctx->task and ctx->task_ctx_data are immaterial 2616 * since those values are always verified under 2617 * ctx->lock which we're now holding. 2618 */ 2619 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2620 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2621 2622 do_switch = 0; 2623 2624 perf_event_sync_stat(ctx, next_ctx); 2625 } 2626 raw_spin_unlock(&next_ctx->lock); 2627 raw_spin_unlock(&ctx->lock); 2628 } 2629 unlock: 2630 rcu_read_unlock(); 2631 2632 if (do_switch) { 2633 raw_spin_lock(&ctx->lock); 2634 task_ctx_sched_out(cpuctx, ctx); 2635 raw_spin_unlock(&ctx->lock); 2636 } 2637 } 2638 2639 void perf_sched_cb_dec(struct pmu *pmu) 2640 { 2641 this_cpu_dec(perf_sched_cb_usages); 2642 } 2643 2644 void perf_sched_cb_inc(struct pmu *pmu) 2645 { 2646 this_cpu_inc(perf_sched_cb_usages); 2647 } 2648 2649 /* 2650 * This function provides the context switch callback to the lower code 2651 * layer. It is invoked ONLY when the context switch callback is enabled. 2652 */ 2653 static void perf_pmu_sched_task(struct task_struct *prev, 2654 struct task_struct *next, 2655 bool sched_in) 2656 { 2657 struct perf_cpu_context *cpuctx; 2658 struct pmu *pmu; 2659 unsigned long flags; 2660 2661 if (prev == next) 2662 return; 2663 2664 local_irq_save(flags); 2665 2666 rcu_read_lock(); 2667 2668 list_for_each_entry_rcu(pmu, &pmus, entry) { 2669 if (pmu->sched_task) { 2670 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2671 2672 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2673 2674 perf_pmu_disable(pmu); 2675 2676 pmu->sched_task(cpuctx->task_ctx, sched_in); 2677 2678 perf_pmu_enable(pmu); 2679 2680 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2681 } 2682 } 2683 2684 rcu_read_unlock(); 2685 2686 local_irq_restore(flags); 2687 } 2688 2689 static void perf_event_switch(struct task_struct *task, 2690 struct task_struct *next_prev, bool sched_in); 2691 2692 #define for_each_task_context_nr(ctxn) \ 2693 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2694 2695 /* 2696 * Called from scheduler to remove the events of the current task, 2697 * with interrupts disabled. 2698 * 2699 * We stop each event and update the event value in event->count. 2700 * 2701 * This does not protect us against NMI, but disable() 2702 * sets the disabled bit in the control field of event _before_ 2703 * accessing the event control register. If a NMI hits, then it will 2704 * not restart the event. 2705 */ 2706 void __perf_event_task_sched_out(struct task_struct *task, 2707 struct task_struct *next) 2708 { 2709 int ctxn; 2710 2711 if (__this_cpu_read(perf_sched_cb_usages)) 2712 perf_pmu_sched_task(task, next, false); 2713 2714 if (atomic_read(&nr_switch_events)) 2715 perf_event_switch(task, next, false); 2716 2717 for_each_task_context_nr(ctxn) 2718 perf_event_context_sched_out(task, ctxn, next); 2719 2720 /* 2721 * if cgroup events exist on this CPU, then we need 2722 * to check if we have to switch out PMU state. 2723 * cgroup event are system-wide mode only 2724 */ 2725 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2726 perf_cgroup_sched_out(task, next); 2727 } 2728 2729 /* 2730 * Called with IRQs disabled 2731 */ 2732 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2733 enum event_type_t event_type) 2734 { 2735 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2736 } 2737 2738 static void 2739 ctx_pinned_sched_in(struct perf_event_context *ctx, 2740 struct perf_cpu_context *cpuctx) 2741 { 2742 struct perf_event *event; 2743 2744 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2745 if (event->state <= PERF_EVENT_STATE_OFF) 2746 continue; 2747 if (!event_filter_match(event)) 2748 continue; 2749 2750 /* may need to reset tstamp_enabled */ 2751 if (is_cgroup_event(event)) 2752 perf_cgroup_mark_enabled(event, ctx); 2753 2754 if (group_can_go_on(event, cpuctx, 1)) 2755 group_sched_in(event, cpuctx, ctx); 2756 2757 /* 2758 * If this pinned group hasn't been scheduled, 2759 * put it in error state. 2760 */ 2761 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2762 update_group_times(event); 2763 event->state = PERF_EVENT_STATE_ERROR; 2764 } 2765 } 2766 } 2767 2768 static void 2769 ctx_flexible_sched_in(struct perf_event_context *ctx, 2770 struct perf_cpu_context *cpuctx) 2771 { 2772 struct perf_event *event; 2773 int can_add_hw = 1; 2774 2775 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2776 /* Ignore events in OFF or ERROR state */ 2777 if (event->state <= PERF_EVENT_STATE_OFF) 2778 continue; 2779 /* 2780 * Listen to the 'cpu' scheduling filter constraint 2781 * of events: 2782 */ 2783 if (!event_filter_match(event)) 2784 continue; 2785 2786 /* may need to reset tstamp_enabled */ 2787 if (is_cgroup_event(event)) 2788 perf_cgroup_mark_enabled(event, ctx); 2789 2790 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2791 if (group_sched_in(event, cpuctx, ctx)) 2792 can_add_hw = 0; 2793 } 2794 } 2795 } 2796 2797 static void 2798 ctx_sched_in(struct perf_event_context *ctx, 2799 struct perf_cpu_context *cpuctx, 2800 enum event_type_t event_type, 2801 struct task_struct *task) 2802 { 2803 int is_active = ctx->is_active; 2804 u64 now; 2805 2806 lockdep_assert_held(&ctx->lock); 2807 2808 if (likely(!ctx->nr_events)) 2809 return; 2810 2811 ctx->is_active |= (event_type | EVENT_TIME); 2812 if (ctx->task) { 2813 if (!is_active) 2814 cpuctx->task_ctx = ctx; 2815 else 2816 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2817 } 2818 2819 is_active ^= ctx->is_active; /* changed bits */ 2820 2821 if (is_active & EVENT_TIME) { 2822 /* start ctx time */ 2823 now = perf_clock(); 2824 ctx->timestamp = now; 2825 perf_cgroup_set_timestamp(task, ctx); 2826 } 2827 2828 /* 2829 * First go through the list and put on any pinned groups 2830 * in order to give them the best chance of going on. 2831 */ 2832 if (is_active & EVENT_PINNED) 2833 ctx_pinned_sched_in(ctx, cpuctx); 2834 2835 /* Then walk through the lower prio flexible groups */ 2836 if (is_active & EVENT_FLEXIBLE) 2837 ctx_flexible_sched_in(ctx, cpuctx); 2838 } 2839 2840 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2841 enum event_type_t event_type, 2842 struct task_struct *task) 2843 { 2844 struct perf_event_context *ctx = &cpuctx->ctx; 2845 2846 ctx_sched_in(ctx, cpuctx, event_type, task); 2847 } 2848 2849 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2850 struct task_struct *task) 2851 { 2852 struct perf_cpu_context *cpuctx; 2853 2854 cpuctx = __get_cpu_context(ctx); 2855 if (cpuctx->task_ctx == ctx) 2856 return; 2857 2858 perf_ctx_lock(cpuctx, ctx); 2859 perf_pmu_disable(ctx->pmu); 2860 /* 2861 * We want to keep the following priority order: 2862 * cpu pinned (that don't need to move), task pinned, 2863 * cpu flexible, task flexible. 2864 */ 2865 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2866 perf_event_sched_in(cpuctx, ctx, task); 2867 perf_pmu_enable(ctx->pmu); 2868 perf_ctx_unlock(cpuctx, ctx); 2869 } 2870 2871 /* 2872 * Called from scheduler to add the events of the current task 2873 * with interrupts disabled. 2874 * 2875 * We restore the event value and then enable it. 2876 * 2877 * This does not protect us against NMI, but enable() 2878 * sets the enabled bit in the control field of event _before_ 2879 * accessing the event control register. If a NMI hits, then it will 2880 * keep the event running. 2881 */ 2882 void __perf_event_task_sched_in(struct task_struct *prev, 2883 struct task_struct *task) 2884 { 2885 struct perf_event_context *ctx; 2886 int ctxn; 2887 2888 /* 2889 * If cgroup events exist on this CPU, then we need to check if we have 2890 * to switch in PMU state; cgroup event are system-wide mode only. 2891 * 2892 * Since cgroup events are CPU events, we must schedule these in before 2893 * we schedule in the task events. 2894 */ 2895 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2896 perf_cgroup_sched_in(prev, task); 2897 2898 for_each_task_context_nr(ctxn) { 2899 ctx = task->perf_event_ctxp[ctxn]; 2900 if (likely(!ctx)) 2901 continue; 2902 2903 perf_event_context_sched_in(ctx, task); 2904 } 2905 2906 if (atomic_read(&nr_switch_events)) 2907 perf_event_switch(task, prev, true); 2908 2909 if (__this_cpu_read(perf_sched_cb_usages)) 2910 perf_pmu_sched_task(prev, task, true); 2911 } 2912 2913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2914 { 2915 u64 frequency = event->attr.sample_freq; 2916 u64 sec = NSEC_PER_SEC; 2917 u64 divisor, dividend; 2918 2919 int count_fls, nsec_fls, frequency_fls, sec_fls; 2920 2921 count_fls = fls64(count); 2922 nsec_fls = fls64(nsec); 2923 frequency_fls = fls64(frequency); 2924 sec_fls = 30; 2925 2926 /* 2927 * We got @count in @nsec, with a target of sample_freq HZ 2928 * the target period becomes: 2929 * 2930 * @count * 10^9 2931 * period = ------------------- 2932 * @nsec * sample_freq 2933 * 2934 */ 2935 2936 /* 2937 * Reduce accuracy by one bit such that @a and @b converge 2938 * to a similar magnitude. 2939 */ 2940 #define REDUCE_FLS(a, b) \ 2941 do { \ 2942 if (a##_fls > b##_fls) { \ 2943 a >>= 1; \ 2944 a##_fls--; \ 2945 } else { \ 2946 b >>= 1; \ 2947 b##_fls--; \ 2948 } \ 2949 } while (0) 2950 2951 /* 2952 * Reduce accuracy until either term fits in a u64, then proceed with 2953 * the other, so that finally we can do a u64/u64 division. 2954 */ 2955 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2956 REDUCE_FLS(nsec, frequency); 2957 REDUCE_FLS(sec, count); 2958 } 2959 2960 if (count_fls + sec_fls > 64) { 2961 divisor = nsec * frequency; 2962 2963 while (count_fls + sec_fls > 64) { 2964 REDUCE_FLS(count, sec); 2965 divisor >>= 1; 2966 } 2967 2968 dividend = count * sec; 2969 } else { 2970 dividend = count * sec; 2971 2972 while (nsec_fls + frequency_fls > 64) { 2973 REDUCE_FLS(nsec, frequency); 2974 dividend >>= 1; 2975 } 2976 2977 divisor = nsec * frequency; 2978 } 2979 2980 if (!divisor) 2981 return dividend; 2982 2983 return div64_u64(dividend, divisor); 2984 } 2985 2986 static DEFINE_PER_CPU(int, perf_throttled_count); 2987 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2988 2989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2990 { 2991 struct hw_perf_event *hwc = &event->hw; 2992 s64 period, sample_period; 2993 s64 delta; 2994 2995 period = perf_calculate_period(event, nsec, count); 2996 2997 delta = (s64)(period - hwc->sample_period); 2998 delta = (delta + 7) / 8; /* low pass filter */ 2999 3000 sample_period = hwc->sample_period + delta; 3001 3002 if (!sample_period) 3003 sample_period = 1; 3004 3005 hwc->sample_period = sample_period; 3006 3007 if (local64_read(&hwc->period_left) > 8*sample_period) { 3008 if (disable) 3009 event->pmu->stop(event, PERF_EF_UPDATE); 3010 3011 local64_set(&hwc->period_left, 0); 3012 3013 if (disable) 3014 event->pmu->start(event, PERF_EF_RELOAD); 3015 } 3016 } 3017 3018 /* 3019 * combine freq adjustment with unthrottling to avoid two passes over the 3020 * events. At the same time, make sure, having freq events does not change 3021 * the rate of unthrottling as that would introduce bias. 3022 */ 3023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3024 int needs_unthr) 3025 { 3026 struct perf_event *event; 3027 struct hw_perf_event *hwc; 3028 u64 now, period = TICK_NSEC; 3029 s64 delta; 3030 3031 /* 3032 * only need to iterate over all events iff: 3033 * - context have events in frequency mode (needs freq adjust) 3034 * - there are events to unthrottle on this cpu 3035 */ 3036 if (!(ctx->nr_freq || needs_unthr)) 3037 return; 3038 3039 raw_spin_lock(&ctx->lock); 3040 perf_pmu_disable(ctx->pmu); 3041 3042 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3043 if (event->state != PERF_EVENT_STATE_ACTIVE) 3044 continue; 3045 3046 if (!event_filter_match(event)) 3047 continue; 3048 3049 perf_pmu_disable(event->pmu); 3050 3051 hwc = &event->hw; 3052 3053 if (hwc->interrupts == MAX_INTERRUPTS) { 3054 hwc->interrupts = 0; 3055 perf_log_throttle(event, 1); 3056 event->pmu->start(event, 0); 3057 } 3058 3059 if (!event->attr.freq || !event->attr.sample_freq) 3060 goto next; 3061 3062 /* 3063 * stop the event and update event->count 3064 */ 3065 event->pmu->stop(event, PERF_EF_UPDATE); 3066 3067 now = local64_read(&event->count); 3068 delta = now - hwc->freq_count_stamp; 3069 hwc->freq_count_stamp = now; 3070 3071 /* 3072 * restart the event 3073 * reload only if value has changed 3074 * we have stopped the event so tell that 3075 * to perf_adjust_period() to avoid stopping it 3076 * twice. 3077 */ 3078 if (delta > 0) 3079 perf_adjust_period(event, period, delta, false); 3080 3081 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3082 next: 3083 perf_pmu_enable(event->pmu); 3084 } 3085 3086 perf_pmu_enable(ctx->pmu); 3087 raw_spin_unlock(&ctx->lock); 3088 } 3089 3090 /* 3091 * Round-robin a context's events: 3092 */ 3093 static void rotate_ctx(struct perf_event_context *ctx) 3094 { 3095 /* 3096 * Rotate the first entry last of non-pinned groups. Rotation might be 3097 * disabled by the inheritance code. 3098 */ 3099 if (!ctx->rotate_disable) 3100 list_rotate_left(&ctx->flexible_groups); 3101 } 3102 3103 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3104 { 3105 struct perf_event_context *ctx = NULL; 3106 int rotate = 0; 3107 3108 if (cpuctx->ctx.nr_events) { 3109 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3110 rotate = 1; 3111 } 3112 3113 ctx = cpuctx->task_ctx; 3114 if (ctx && ctx->nr_events) { 3115 if (ctx->nr_events != ctx->nr_active) 3116 rotate = 1; 3117 } 3118 3119 if (!rotate) 3120 goto done; 3121 3122 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3123 perf_pmu_disable(cpuctx->ctx.pmu); 3124 3125 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3126 if (ctx) 3127 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3128 3129 rotate_ctx(&cpuctx->ctx); 3130 if (ctx) 3131 rotate_ctx(ctx); 3132 3133 perf_event_sched_in(cpuctx, ctx, current); 3134 3135 perf_pmu_enable(cpuctx->ctx.pmu); 3136 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3137 done: 3138 3139 return rotate; 3140 } 3141 3142 void perf_event_task_tick(void) 3143 { 3144 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3145 struct perf_event_context *ctx, *tmp; 3146 int throttled; 3147 3148 WARN_ON(!irqs_disabled()); 3149 3150 __this_cpu_inc(perf_throttled_seq); 3151 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3152 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3153 3154 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3155 perf_adjust_freq_unthr_context(ctx, throttled); 3156 } 3157 3158 static int event_enable_on_exec(struct perf_event *event, 3159 struct perf_event_context *ctx) 3160 { 3161 if (!event->attr.enable_on_exec) 3162 return 0; 3163 3164 event->attr.enable_on_exec = 0; 3165 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3166 return 0; 3167 3168 __perf_event_mark_enabled(event); 3169 3170 return 1; 3171 } 3172 3173 /* 3174 * Enable all of a task's events that have been marked enable-on-exec. 3175 * This expects task == current. 3176 */ 3177 static void perf_event_enable_on_exec(int ctxn) 3178 { 3179 struct perf_event_context *ctx, *clone_ctx = NULL; 3180 struct perf_cpu_context *cpuctx; 3181 struct perf_event *event; 3182 unsigned long flags; 3183 int enabled = 0; 3184 3185 local_irq_save(flags); 3186 ctx = current->perf_event_ctxp[ctxn]; 3187 if (!ctx || !ctx->nr_events) 3188 goto out; 3189 3190 cpuctx = __get_cpu_context(ctx); 3191 perf_ctx_lock(cpuctx, ctx); 3192 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3193 list_for_each_entry(event, &ctx->event_list, event_entry) 3194 enabled |= event_enable_on_exec(event, ctx); 3195 3196 /* 3197 * Unclone and reschedule this context if we enabled any event. 3198 */ 3199 if (enabled) { 3200 clone_ctx = unclone_ctx(ctx); 3201 ctx_resched(cpuctx, ctx); 3202 } 3203 perf_ctx_unlock(cpuctx, ctx); 3204 3205 out: 3206 local_irq_restore(flags); 3207 3208 if (clone_ctx) 3209 put_ctx(clone_ctx); 3210 } 3211 3212 void perf_event_exec(void) 3213 { 3214 int ctxn; 3215 3216 rcu_read_lock(); 3217 for_each_task_context_nr(ctxn) 3218 perf_event_enable_on_exec(ctxn); 3219 rcu_read_unlock(); 3220 } 3221 3222 struct perf_read_data { 3223 struct perf_event *event; 3224 bool group; 3225 int ret; 3226 }; 3227 3228 /* 3229 * Cross CPU call to read the hardware event 3230 */ 3231 static void __perf_event_read(void *info) 3232 { 3233 struct perf_read_data *data = info; 3234 struct perf_event *sub, *event = data->event; 3235 struct perf_event_context *ctx = event->ctx; 3236 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3237 struct pmu *pmu = event->pmu; 3238 3239 /* 3240 * If this is a task context, we need to check whether it is 3241 * the current task context of this cpu. If not it has been 3242 * scheduled out before the smp call arrived. In that case 3243 * event->count would have been updated to a recent sample 3244 * when the event was scheduled out. 3245 */ 3246 if (ctx->task && cpuctx->task_ctx != ctx) 3247 return; 3248 3249 raw_spin_lock(&ctx->lock); 3250 if (ctx->is_active) { 3251 update_context_time(ctx); 3252 update_cgrp_time_from_event(event); 3253 } 3254 3255 update_event_times(event); 3256 if (event->state != PERF_EVENT_STATE_ACTIVE) 3257 goto unlock; 3258 3259 if (!data->group) { 3260 pmu->read(event); 3261 data->ret = 0; 3262 goto unlock; 3263 } 3264 3265 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3266 3267 pmu->read(event); 3268 3269 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3270 update_event_times(sub); 3271 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3272 /* 3273 * Use sibling's PMU rather than @event's since 3274 * sibling could be on different (eg: software) PMU. 3275 */ 3276 sub->pmu->read(sub); 3277 } 3278 } 3279 3280 data->ret = pmu->commit_txn(pmu); 3281 3282 unlock: 3283 raw_spin_unlock(&ctx->lock); 3284 } 3285 3286 static inline u64 perf_event_count(struct perf_event *event) 3287 { 3288 if (event->pmu->count) 3289 return event->pmu->count(event); 3290 3291 return __perf_event_count(event); 3292 } 3293 3294 /* 3295 * NMI-safe method to read a local event, that is an event that 3296 * is: 3297 * - either for the current task, or for this CPU 3298 * - does not have inherit set, for inherited task events 3299 * will not be local and we cannot read them atomically 3300 * - must not have a pmu::count method 3301 */ 3302 u64 perf_event_read_local(struct perf_event *event) 3303 { 3304 unsigned long flags; 3305 u64 val; 3306 3307 /* 3308 * Disabling interrupts avoids all counter scheduling (context 3309 * switches, timer based rotation and IPIs). 3310 */ 3311 local_irq_save(flags); 3312 3313 /* If this is a per-task event, it must be for current */ 3314 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3315 event->hw.target != current); 3316 3317 /* If this is a per-CPU event, it must be for this CPU */ 3318 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3319 event->cpu != smp_processor_id()); 3320 3321 /* 3322 * It must not be an event with inherit set, we cannot read 3323 * all child counters from atomic context. 3324 */ 3325 WARN_ON_ONCE(event->attr.inherit); 3326 3327 /* 3328 * It must not have a pmu::count method, those are not 3329 * NMI safe. 3330 */ 3331 WARN_ON_ONCE(event->pmu->count); 3332 3333 /* 3334 * If the event is currently on this CPU, its either a per-task event, 3335 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3336 * oncpu == -1). 3337 */ 3338 if (event->oncpu == smp_processor_id()) 3339 event->pmu->read(event); 3340 3341 val = local64_read(&event->count); 3342 local_irq_restore(flags); 3343 3344 return val; 3345 } 3346 3347 static int perf_event_read(struct perf_event *event, bool group) 3348 { 3349 int ret = 0; 3350 3351 /* 3352 * If event is enabled and currently active on a CPU, update the 3353 * value in the event structure: 3354 */ 3355 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3356 struct perf_read_data data = { 3357 .event = event, 3358 .group = group, 3359 .ret = 0, 3360 }; 3361 smp_call_function_single(event->oncpu, 3362 __perf_event_read, &data, 1); 3363 ret = data.ret; 3364 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3365 struct perf_event_context *ctx = event->ctx; 3366 unsigned long flags; 3367 3368 raw_spin_lock_irqsave(&ctx->lock, flags); 3369 /* 3370 * may read while context is not active 3371 * (e.g., thread is blocked), in that case 3372 * we cannot update context time 3373 */ 3374 if (ctx->is_active) { 3375 update_context_time(ctx); 3376 update_cgrp_time_from_event(event); 3377 } 3378 if (group) 3379 update_group_times(event); 3380 else 3381 update_event_times(event); 3382 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3383 } 3384 3385 return ret; 3386 } 3387 3388 /* 3389 * Initialize the perf_event context in a task_struct: 3390 */ 3391 static void __perf_event_init_context(struct perf_event_context *ctx) 3392 { 3393 raw_spin_lock_init(&ctx->lock); 3394 mutex_init(&ctx->mutex); 3395 INIT_LIST_HEAD(&ctx->active_ctx_list); 3396 INIT_LIST_HEAD(&ctx->pinned_groups); 3397 INIT_LIST_HEAD(&ctx->flexible_groups); 3398 INIT_LIST_HEAD(&ctx->event_list); 3399 atomic_set(&ctx->refcount, 1); 3400 } 3401 3402 static struct perf_event_context * 3403 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3404 { 3405 struct perf_event_context *ctx; 3406 3407 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3408 if (!ctx) 3409 return NULL; 3410 3411 __perf_event_init_context(ctx); 3412 if (task) { 3413 ctx->task = task; 3414 get_task_struct(task); 3415 } 3416 ctx->pmu = pmu; 3417 3418 return ctx; 3419 } 3420 3421 static struct task_struct * 3422 find_lively_task_by_vpid(pid_t vpid) 3423 { 3424 struct task_struct *task; 3425 3426 rcu_read_lock(); 3427 if (!vpid) 3428 task = current; 3429 else 3430 task = find_task_by_vpid(vpid); 3431 if (task) 3432 get_task_struct(task); 3433 rcu_read_unlock(); 3434 3435 if (!task) 3436 return ERR_PTR(-ESRCH); 3437 3438 return task; 3439 } 3440 3441 /* 3442 * Returns a matching context with refcount and pincount. 3443 */ 3444 static struct perf_event_context * 3445 find_get_context(struct pmu *pmu, struct task_struct *task, 3446 struct perf_event *event) 3447 { 3448 struct perf_event_context *ctx, *clone_ctx = NULL; 3449 struct perf_cpu_context *cpuctx; 3450 void *task_ctx_data = NULL; 3451 unsigned long flags; 3452 int ctxn, err; 3453 int cpu = event->cpu; 3454 3455 if (!task) { 3456 /* Must be root to operate on a CPU event: */ 3457 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3458 return ERR_PTR(-EACCES); 3459 3460 /* 3461 * We could be clever and allow to attach a event to an 3462 * offline CPU and activate it when the CPU comes up, but 3463 * that's for later. 3464 */ 3465 if (!cpu_online(cpu)) 3466 return ERR_PTR(-ENODEV); 3467 3468 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3469 ctx = &cpuctx->ctx; 3470 get_ctx(ctx); 3471 ++ctx->pin_count; 3472 3473 return ctx; 3474 } 3475 3476 err = -EINVAL; 3477 ctxn = pmu->task_ctx_nr; 3478 if (ctxn < 0) 3479 goto errout; 3480 3481 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3482 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3483 if (!task_ctx_data) { 3484 err = -ENOMEM; 3485 goto errout; 3486 } 3487 } 3488 3489 retry: 3490 ctx = perf_lock_task_context(task, ctxn, &flags); 3491 if (ctx) { 3492 clone_ctx = unclone_ctx(ctx); 3493 ++ctx->pin_count; 3494 3495 if (task_ctx_data && !ctx->task_ctx_data) { 3496 ctx->task_ctx_data = task_ctx_data; 3497 task_ctx_data = NULL; 3498 } 3499 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3500 3501 if (clone_ctx) 3502 put_ctx(clone_ctx); 3503 } else { 3504 ctx = alloc_perf_context(pmu, task); 3505 err = -ENOMEM; 3506 if (!ctx) 3507 goto errout; 3508 3509 if (task_ctx_data) { 3510 ctx->task_ctx_data = task_ctx_data; 3511 task_ctx_data = NULL; 3512 } 3513 3514 err = 0; 3515 mutex_lock(&task->perf_event_mutex); 3516 /* 3517 * If it has already passed perf_event_exit_task(). 3518 * we must see PF_EXITING, it takes this mutex too. 3519 */ 3520 if (task->flags & PF_EXITING) 3521 err = -ESRCH; 3522 else if (task->perf_event_ctxp[ctxn]) 3523 err = -EAGAIN; 3524 else { 3525 get_ctx(ctx); 3526 ++ctx->pin_count; 3527 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3528 } 3529 mutex_unlock(&task->perf_event_mutex); 3530 3531 if (unlikely(err)) { 3532 put_ctx(ctx); 3533 3534 if (err == -EAGAIN) 3535 goto retry; 3536 goto errout; 3537 } 3538 } 3539 3540 kfree(task_ctx_data); 3541 return ctx; 3542 3543 errout: 3544 kfree(task_ctx_data); 3545 return ERR_PTR(err); 3546 } 3547 3548 static void perf_event_free_filter(struct perf_event *event); 3549 static void perf_event_free_bpf_prog(struct perf_event *event); 3550 3551 static void free_event_rcu(struct rcu_head *head) 3552 { 3553 struct perf_event *event; 3554 3555 event = container_of(head, struct perf_event, rcu_head); 3556 if (event->ns) 3557 put_pid_ns(event->ns); 3558 perf_event_free_filter(event); 3559 kfree(event); 3560 } 3561 3562 static void ring_buffer_attach(struct perf_event *event, 3563 struct ring_buffer *rb); 3564 3565 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3566 { 3567 if (event->parent) 3568 return; 3569 3570 if (is_cgroup_event(event)) 3571 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3572 } 3573 3574 #ifdef CONFIG_NO_HZ_FULL 3575 static DEFINE_SPINLOCK(nr_freq_lock); 3576 #endif 3577 3578 static void unaccount_freq_event_nohz(void) 3579 { 3580 #ifdef CONFIG_NO_HZ_FULL 3581 spin_lock(&nr_freq_lock); 3582 if (atomic_dec_and_test(&nr_freq_events)) 3583 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3584 spin_unlock(&nr_freq_lock); 3585 #endif 3586 } 3587 3588 static void unaccount_freq_event(void) 3589 { 3590 if (tick_nohz_full_enabled()) 3591 unaccount_freq_event_nohz(); 3592 else 3593 atomic_dec(&nr_freq_events); 3594 } 3595 3596 static void unaccount_event(struct perf_event *event) 3597 { 3598 bool dec = false; 3599 3600 if (event->parent) 3601 return; 3602 3603 if (event->attach_state & PERF_ATTACH_TASK) 3604 dec = true; 3605 if (event->attr.mmap || event->attr.mmap_data) 3606 atomic_dec(&nr_mmap_events); 3607 if (event->attr.comm) 3608 atomic_dec(&nr_comm_events); 3609 if (event->attr.task) 3610 atomic_dec(&nr_task_events); 3611 if (event->attr.freq) 3612 unaccount_freq_event(); 3613 if (event->attr.context_switch) { 3614 dec = true; 3615 atomic_dec(&nr_switch_events); 3616 } 3617 if (is_cgroup_event(event)) 3618 dec = true; 3619 if (has_branch_stack(event)) 3620 dec = true; 3621 3622 if (dec) { 3623 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3624 schedule_delayed_work(&perf_sched_work, HZ); 3625 } 3626 3627 unaccount_event_cpu(event, event->cpu); 3628 } 3629 3630 static void perf_sched_delayed(struct work_struct *work) 3631 { 3632 mutex_lock(&perf_sched_mutex); 3633 if (atomic_dec_and_test(&perf_sched_count)) 3634 static_branch_disable(&perf_sched_events); 3635 mutex_unlock(&perf_sched_mutex); 3636 } 3637 3638 /* 3639 * The following implement mutual exclusion of events on "exclusive" pmus 3640 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3641 * at a time, so we disallow creating events that might conflict, namely: 3642 * 3643 * 1) cpu-wide events in the presence of per-task events, 3644 * 2) per-task events in the presence of cpu-wide events, 3645 * 3) two matching events on the same context. 3646 * 3647 * The former two cases are handled in the allocation path (perf_event_alloc(), 3648 * _free_event()), the latter -- before the first perf_install_in_context(). 3649 */ 3650 static int exclusive_event_init(struct perf_event *event) 3651 { 3652 struct pmu *pmu = event->pmu; 3653 3654 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3655 return 0; 3656 3657 /* 3658 * Prevent co-existence of per-task and cpu-wide events on the 3659 * same exclusive pmu. 3660 * 3661 * Negative pmu::exclusive_cnt means there are cpu-wide 3662 * events on this "exclusive" pmu, positive means there are 3663 * per-task events. 3664 * 3665 * Since this is called in perf_event_alloc() path, event::ctx 3666 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3667 * to mean "per-task event", because unlike other attach states it 3668 * never gets cleared. 3669 */ 3670 if (event->attach_state & PERF_ATTACH_TASK) { 3671 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3672 return -EBUSY; 3673 } else { 3674 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3675 return -EBUSY; 3676 } 3677 3678 return 0; 3679 } 3680 3681 static void exclusive_event_destroy(struct perf_event *event) 3682 { 3683 struct pmu *pmu = event->pmu; 3684 3685 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3686 return; 3687 3688 /* see comment in exclusive_event_init() */ 3689 if (event->attach_state & PERF_ATTACH_TASK) 3690 atomic_dec(&pmu->exclusive_cnt); 3691 else 3692 atomic_inc(&pmu->exclusive_cnt); 3693 } 3694 3695 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3696 { 3697 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3698 (e1->cpu == e2->cpu || 3699 e1->cpu == -1 || 3700 e2->cpu == -1)) 3701 return true; 3702 return false; 3703 } 3704 3705 /* Called under the same ctx::mutex as perf_install_in_context() */ 3706 static bool exclusive_event_installable(struct perf_event *event, 3707 struct perf_event_context *ctx) 3708 { 3709 struct perf_event *iter_event; 3710 struct pmu *pmu = event->pmu; 3711 3712 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3713 return true; 3714 3715 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3716 if (exclusive_event_match(iter_event, event)) 3717 return false; 3718 } 3719 3720 return true; 3721 } 3722 3723 static void _free_event(struct perf_event *event) 3724 { 3725 irq_work_sync(&event->pending); 3726 3727 unaccount_event(event); 3728 3729 if (event->rb) { 3730 /* 3731 * Can happen when we close an event with re-directed output. 3732 * 3733 * Since we have a 0 refcount, perf_mmap_close() will skip 3734 * over us; possibly making our ring_buffer_put() the last. 3735 */ 3736 mutex_lock(&event->mmap_mutex); 3737 ring_buffer_attach(event, NULL); 3738 mutex_unlock(&event->mmap_mutex); 3739 } 3740 3741 if (is_cgroup_event(event)) 3742 perf_detach_cgroup(event); 3743 3744 if (!event->parent) { 3745 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3746 put_callchain_buffers(); 3747 } 3748 3749 perf_event_free_bpf_prog(event); 3750 3751 if (event->destroy) 3752 event->destroy(event); 3753 3754 if (event->ctx) 3755 put_ctx(event->ctx); 3756 3757 if (event->pmu) { 3758 exclusive_event_destroy(event); 3759 module_put(event->pmu->module); 3760 } 3761 3762 call_rcu(&event->rcu_head, free_event_rcu); 3763 } 3764 3765 /* 3766 * Used to free events which have a known refcount of 1, such as in error paths 3767 * where the event isn't exposed yet and inherited events. 3768 */ 3769 static void free_event(struct perf_event *event) 3770 { 3771 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3772 "unexpected event refcount: %ld; ptr=%p\n", 3773 atomic_long_read(&event->refcount), event)) { 3774 /* leak to avoid use-after-free */ 3775 return; 3776 } 3777 3778 _free_event(event); 3779 } 3780 3781 /* 3782 * Remove user event from the owner task. 3783 */ 3784 static void perf_remove_from_owner(struct perf_event *event) 3785 { 3786 struct task_struct *owner; 3787 3788 rcu_read_lock(); 3789 /* 3790 * Matches the smp_store_release() in perf_event_exit_task(). If we 3791 * observe !owner it means the list deletion is complete and we can 3792 * indeed free this event, otherwise we need to serialize on 3793 * owner->perf_event_mutex. 3794 */ 3795 owner = lockless_dereference(event->owner); 3796 if (owner) { 3797 /* 3798 * Since delayed_put_task_struct() also drops the last 3799 * task reference we can safely take a new reference 3800 * while holding the rcu_read_lock(). 3801 */ 3802 get_task_struct(owner); 3803 } 3804 rcu_read_unlock(); 3805 3806 if (owner) { 3807 /* 3808 * If we're here through perf_event_exit_task() we're already 3809 * holding ctx->mutex which would be an inversion wrt. the 3810 * normal lock order. 3811 * 3812 * However we can safely take this lock because its the child 3813 * ctx->mutex. 3814 */ 3815 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3816 3817 /* 3818 * We have to re-check the event->owner field, if it is cleared 3819 * we raced with perf_event_exit_task(), acquiring the mutex 3820 * ensured they're done, and we can proceed with freeing the 3821 * event. 3822 */ 3823 if (event->owner) { 3824 list_del_init(&event->owner_entry); 3825 smp_store_release(&event->owner, NULL); 3826 } 3827 mutex_unlock(&owner->perf_event_mutex); 3828 put_task_struct(owner); 3829 } 3830 } 3831 3832 static void put_event(struct perf_event *event) 3833 { 3834 if (!atomic_long_dec_and_test(&event->refcount)) 3835 return; 3836 3837 _free_event(event); 3838 } 3839 3840 /* 3841 * Kill an event dead; while event:refcount will preserve the event 3842 * object, it will not preserve its functionality. Once the last 'user' 3843 * gives up the object, we'll destroy the thing. 3844 */ 3845 int perf_event_release_kernel(struct perf_event *event) 3846 { 3847 struct perf_event_context *ctx = event->ctx; 3848 struct perf_event *child, *tmp; 3849 3850 /* 3851 * If we got here through err_file: fput(event_file); we will not have 3852 * attached to a context yet. 3853 */ 3854 if (!ctx) { 3855 WARN_ON_ONCE(event->attach_state & 3856 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 3857 goto no_ctx; 3858 } 3859 3860 if (!is_kernel_event(event)) 3861 perf_remove_from_owner(event); 3862 3863 ctx = perf_event_ctx_lock(event); 3864 WARN_ON_ONCE(ctx->parent_ctx); 3865 perf_remove_from_context(event, DETACH_GROUP); 3866 3867 raw_spin_lock_irq(&ctx->lock); 3868 /* 3869 * Mark this even as STATE_DEAD, there is no external reference to it 3870 * anymore. 3871 * 3872 * Anybody acquiring event->child_mutex after the below loop _must_ 3873 * also see this, most importantly inherit_event() which will avoid 3874 * placing more children on the list. 3875 * 3876 * Thus this guarantees that we will in fact observe and kill _ALL_ 3877 * child events. 3878 */ 3879 event->state = PERF_EVENT_STATE_DEAD; 3880 raw_spin_unlock_irq(&ctx->lock); 3881 3882 perf_event_ctx_unlock(event, ctx); 3883 3884 again: 3885 mutex_lock(&event->child_mutex); 3886 list_for_each_entry(child, &event->child_list, child_list) { 3887 3888 /* 3889 * Cannot change, child events are not migrated, see the 3890 * comment with perf_event_ctx_lock_nested(). 3891 */ 3892 ctx = lockless_dereference(child->ctx); 3893 /* 3894 * Since child_mutex nests inside ctx::mutex, we must jump 3895 * through hoops. We start by grabbing a reference on the ctx. 3896 * 3897 * Since the event cannot get freed while we hold the 3898 * child_mutex, the context must also exist and have a !0 3899 * reference count. 3900 */ 3901 get_ctx(ctx); 3902 3903 /* 3904 * Now that we have a ctx ref, we can drop child_mutex, and 3905 * acquire ctx::mutex without fear of it going away. Then we 3906 * can re-acquire child_mutex. 3907 */ 3908 mutex_unlock(&event->child_mutex); 3909 mutex_lock(&ctx->mutex); 3910 mutex_lock(&event->child_mutex); 3911 3912 /* 3913 * Now that we hold ctx::mutex and child_mutex, revalidate our 3914 * state, if child is still the first entry, it didn't get freed 3915 * and we can continue doing so. 3916 */ 3917 tmp = list_first_entry_or_null(&event->child_list, 3918 struct perf_event, child_list); 3919 if (tmp == child) { 3920 perf_remove_from_context(child, DETACH_GROUP); 3921 list_del(&child->child_list); 3922 free_event(child); 3923 /* 3924 * This matches the refcount bump in inherit_event(); 3925 * this can't be the last reference. 3926 */ 3927 put_event(event); 3928 } 3929 3930 mutex_unlock(&event->child_mutex); 3931 mutex_unlock(&ctx->mutex); 3932 put_ctx(ctx); 3933 goto again; 3934 } 3935 mutex_unlock(&event->child_mutex); 3936 3937 no_ctx: 3938 put_event(event); /* Must be the 'last' reference */ 3939 return 0; 3940 } 3941 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3942 3943 /* 3944 * Called when the last reference to the file is gone. 3945 */ 3946 static int perf_release(struct inode *inode, struct file *file) 3947 { 3948 perf_event_release_kernel(file->private_data); 3949 return 0; 3950 } 3951 3952 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3953 { 3954 struct perf_event *child; 3955 u64 total = 0; 3956 3957 *enabled = 0; 3958 *running = 0; 3959 3960 mutex_lock(&event->child_mutex); 3961 3962 (void)perf_event_read(event, false); 3963 total += perf_event_count(event); 3964 3965 *enabled += event->total_time_enabled + 3966 atomic64_read(&event->child_total_time_enabled); 3967 *running += event->total_time_running + 3968 atomic64_read(&event->child_total_time_running); 3969 3970 list_for_each_entry(child, &event->child_list, child_list) { 3971 (void)perf_event_read(child, false); 3972 total += perf_event_count(child); 3973 *enabled += child->total_time_enabled; 3974 *running += child->total_time_running; 3975 } 3976 mutex_unlock(&event->child_mutex); 3977 3978 return total; 3979 } 3980 EXPORT_SYMBOL_GPL(perf_event_read_value); 3981 3982 static int __perf_read_group_add(struct perf_event *leader, 3983 u64 read_format, u64 *values) 3984 { 3985 struct perf_event *sub; 3986 int n = 1; /* skip @nr */ 3987 int ret; 3988 3989 ret = perf_event_read(leader, true); 3990 if (ret) 3991 return ret; 3992 3993 /* 3994 * Since we co-schedule groups, {enabled,running} times of siblings 3995 * will be identical to those of the leader, so we only publish one 3996 * set. 3997 */ 3998 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3999 values[n++] += leader->total_time_enabled + 4000 atomic64_read(&leader->child_total_time_enabled); 4001 } 4002 4003 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4004 values[n++] += leader->total_time_running + 4005 atomic64_read(&leader->child_total_time_running); 4006 } 4007 4008 /* 4009 * Write {count,id} tuples for every sibling. 4010 */ 4011 values[n++] += perf_event_count(leader); 4012 if (read_format & PERF_FORMAT_ID) 4013 values[n++] = primary_event_id(leader); 4014 4015 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4016 values[n++] += perf_event_count(sub); 4017 if (read_format & PERF_FORMAT_ID) 4018 values[n++] = primary_event_id(sub); 4019 } 4020 4021 return 0; 4022 } 4023 4024 static int perf_read_group(struct perf_event *event, 4025 u64 read_format, char __user *buf) 4026 { 4027 struct perf_event *leader = event->group_leader, *child; 4028 struct perf_event_context *ctx = leader->ctx; 4029 int ret; 4030 u64 *values; 4031 4032 lockdep_assert_held(&ctx->mutex); 4033 4034 values = kzalloc(event->read_size, GFP_KERNEL); 4035 if (!values) 4036 return -ENOMEM; 4037 4038 values[0] = 1 + leader->nr_siblings; 4039 4040 /* 4041 * By locking the child_mutex of the leader we effectively 4042 * lock the child list of all siblings.. XXX explain how. 4043 */ 4044 mutex_lock(&leader->child_mutex); 4045 4046 ret = __perf_read_group_add(leader, read_format, values); 4047 if (ret) 4048 goto unlock; 4049 4050 list_for_each_entry(child, &leader->child_list, child_list) { 4051 ret = __perf_read_group_add(child, read_format, values); 4052 if (ret) 4053 goto unlock; 4054 } 4055 4056 mutex_unlock(&leader->child_mutex); 4057 4058 ret = event->read_size; 4059 if (copy_to_user(buf, values, event->read_size)) 4060 ret = -EFAULT; 4061 goto out; 4062 4063 unlock: 4064 mutex_unlock(&leader->child_mutex); 4065 out: 4066 kfree(values); 4067 return ret; 4068 } 4069 4070 static int perf_read_one(struct perf_event *event, 4071 u64 read_format, char __user *buf) 4072 { 4073 u64 enabled, running; 4074 u64 values[4]; 4075 int n = 0; 4076 4077 values[n++] = perf_event_read_value(event, &enabled, &running); 4078 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4079 values[n++] = enabled; 4080 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4081 values[n++] = running; 4082 if (read_format & PERF_FORMAT_ID) 4083 values[n++] = primary_event_id(event); 4084 4085 if (copy_to_user(buf, values, n * sizeof(u64))) 4086 return -EFAULT; 4087 4088 return n * sizeof(u64); 4089 } 4090 4091 static bool is_event_hup(struct perf_event *event) 4092 { 4093 bool no_children; 4094 4095 if (event->state > PERF_EVENT_STATE_EXIT) 4096 return false; 4097 4098 mutex_lock(&event->child_mutex); 4099 no_children = list_empty(&event->child_list); 4100 mutex_unlock(&event->child_mutex); 4101 return no_children; 4102 } 4103 4104 /* 4105 * Read the performance event - simple non blocking version for now 4106 */ 4107 static ssize_t 4108 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4109 { 4110 u64 read_format = event->attr.read_format; 4111 int ret; 4112 4113 /* 4114 * Return end-of-file for a read on a event that is in 4115 * error state (i.e. because it was pinned but it couldn't be 4116 * scheduled on to the CPU at some point). 4117 */ 4118 if (event->state == PERF_EVENT_STATE_ERROR) 4119 return 0; 4120 4121 if (count < event->read_size) 4122 return -ENOSPC; 4123 4124 WARN_ON_ONCE(event->ctx->parent_ctx); 4125 if (read_format & PERF_FORMAT_GROUP) 4126 ret = perf_read_group(event, read_format, buf); 4127 else 4128 ret = perf_read_one(event, read_format, buf); 4129 4130 return ret; 4131 } 4132 4133 static ssize_t 4134 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4135 { 4136 struct perf_event *event = file->private_data; 4137 struct perf_event_context *ctx; 4138 int ret; 4139 4140 ctx = perf_event_ctx_lock(event); 4141 ret = __perf_read(event, buf, count); 4142 perf_event_ctx_unlock(event, ctx); 4143 4144 return ret; 4145 } 4146 4147 static unsigned int perf_poll(struct file *file, poll_table *wait) 4148 { 4149 struct perf_event *event = file->private_data; 4150 struct ring_buffer *rb; 4151 unsigned int events = POLLHUP; 4152 4153 poll_wait(file, &event->waitq, wait); 4154 4155 if (is_event_hup(event)) 4156 return events; 4157 4158 /* 4159 * Pin the event->rb by taking event->mmap_mutex; otherwise 4160 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4161 */ 4162 mutex_lock(&event->mmap_mutex); 4163 rb = event->rb; 4164 if (rb) 4165 events = atomic_xchg(&rb->poll, 0); 4166 mutex_unlock(&event->mmap_mutex); 4167 return events; 4168 } 4169 4170 static void _perf_event_reset(struct perf_event *event) 4171 { 4172 (void)perf_event_read(event, false); 4173 local64_set(&event->count, 0); 4174 perf_event_update_userpage(event); 4175 } 4176 4177 /* 4178 * Holding the top-level event's child_mutex means that any 4179 * descendant process that has inherited this event will block 4180 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4181 * task existence requirements of perf_event_enable/disable. 4182 */ 4183 static void perf_event_for_each_child(struct perf_event *event, 4184 void (*func)(struct perf_event *)) 4185 { 4186 struct perf_event *child; 4187 4188 WARN_ON_ONCE(event->ctx->parent_ctx); 4189 4190 mutex_lock(&event->child_mutex); 4191 func(event); 4192 list_for_each_entry(child, &event->child_list, child_list) 4193 func(child); 4194 mutex_unlock(&event->child_mutex); 4195 } 4196 4197 static void perf_event_for_each(struct perf_event *event, 4198 void (*func)(struct perf_event *)) 4199 { 4200 struct perf_event_context *ctx = event->ctx; 4201 struct perf_event *sibling; 4202 4203 lockdep_assert_held(&ctx->mutex); 4204 4205 event = event->group_leader; 4206 4207 perf_event_for_each_child(event, func); 4208 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4209 perf_event_for_each_child(sibling, func); 4210 } 4211 4212 static void __perf_event_period(struct perf_event *event, 4213 struct perf_cpu_context *cpuctx, 4214 struct perf_event_context *ctx, 4215 void *info) 4216 { 4217 u64 value = *((u64 *)info); 4218 bool active; 4219 4220 if (event->attr.freq) { 4221 event->attr.sample_freq = value; 4222 } else { 4223 event->attr.sample_period = value; 4224 event->hw.sample_period = value; 4225 } 4226 4227 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4228 if (active) { 4229 perf_pmu_disable(ctx->pmu); 4230 /* 4231 * We could be throttled; unthrottle now to avoid the tick 4232 * trying to unthrottle while we already re-started the event. 4233 */ 4234 if (event->hw.interrupts == MAX_INTERRUPTS) { 4235 event->hw.interrupts = 0; 4236 perf_log_throttle(event, 1); 4237 } 4238 event->pmu->stop(event, PERF_EF_UPDATE); 4239 } 4240 4241 local64_set(&event->hw.period_left, 0); 4242 4243 if (active) { 4244 event->pmu->start(event, PERF_EF_RELOAD); 4245 perf_pmu_enable(ctx->pmu); 4246 } 4247 } 4248 4249 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4250 { 4251 u64 value; 4252 4253 if (!is_sampling_event(event)) 4254 return -EINVAL; 4255 4256 if (copy_from_user(&value, arg, sizeof(value))) 4257 return -EFAULT; 4258 4259 if (!value) 4260 return -EINVAL; 4261 4262 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4263 return -EINVAL; 4264 4265 event_function_call(event, __perf_event_period, &value); 4266 4267 return 0; 4268 } 4269 4270 static const struct file_operations perf_fops; 4271 4272 static inline int perf_fget_light(int fd, struct fd *p) 4273 { 4274 struct fd f = fdget(fd); 4275 if (!f.file) 4276 return -EBADF; 4277 4278 if (f.file->f_op != &perf_fops) { 4279 fdput(f); 4280 return -EBADF; 4281 } 4282 *p = f; 4283 return 0; 4284 } 4285 4286 static int perf_event_set_output(struct perf_event *event, 4287 struct perf_event *output_event); 4288 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4289 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4290 4291 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4292 { 4293 void (*func)(struct perf_event *); 4294 u32 flags = arg; 4295 4296 switch (cmd) { 4297 case PERF_EVENT_IOC_ENABLE: 4298 func = _perf_event_enable; 4299 break; 4300 case PERF_EVENT_IOC_DISABLE: 4301 func = _perf_event_disable; 4302 break; 4303 case PERF_EVENT_IOC_RESET: 4304 func = _perf_event_reset; 4305 break; 4306 4307 case PERF_EVENT_IOC_REFRESH: 4308 return _perf_event_refresh(event, arg); 4309 4310 case PERF_EVENT_IOC_PERIOD: 4311 return perf_event_period(event, (u64 __user *)arg); 4312 4313 case PERF_EVENT_IOC_ID: 4314 { 4315 u64 id = primary_event_id(event); 4316 4317 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4318 return -EFAULT; 4319 return 0; 4320 } 4321 4322 case PERF_EVENT_IOC_SET_OUTPUT: 4323 { 4324 int ret; 4325 if (arg != -1) { 4326 struct perf_event *output_event; 4327 struct fd output; 4328 ret = perf_fget_light(arg, &output); 4329 if (ret) 4330 return ret; 4331 output_event = output.file->private_data; 4332 ret = perf_event_set_output(event, output_event); 4333 fdput(output); 4334 } else { 4335 ret = perf_event_set_output(event, NULL); 4336 } 4337 return ret; 4338 } 4339 4340 case PERF_EVENT_IOC_SET_FILTER: 4341 return perf_event_set_filter(event, (void __user *)arg); 4342 4343 case PERF_EVENT_IOC_SET_BPF: 4344 return perf_event_set_bpf_prog(event, arg); 4345 4346 default: 4347 return -ENOTTY; 4348 } 4349 4350 if (flags & PERF_IOC_FLAG_GROUP) 4351 perf_event_for_each(event, func); 4352 else 4353 perf_event_for_each_child(event, func); 4354 4355 return 0; 4356 } 4357 4358 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4359 { 4360 struct perf_event *event = file->private_data; 4361 struct perf_event_context *ctx; 4362 long ret; 4363 4364 ctx = perf_event_ctx_lock(event); 4365 ret = _perf_ioctl(event, cmd, arg); 4366 perf_event_ctx_unlock(event, ctx); 4367 4368 return ret; 4369 } 4370 4371 #ifdef CONFIG_COMPAT 4372 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4373 unsigned long arg) 4374 { 4375 switch (_IOC_NR(cmd)) { 4376 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4377 case _IOC_NR(PERF_EVENT_IOC_ID): 4378 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4379 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4380 cmd &= ~IOCSIZE_MASK; 4381 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4382 } 4383 break; 4384 } 4385 return perf_ioctl(file, cmd, arg); 4386 } 4387 #else 4388 # define perf_compat_ioctl NULL 4389 #endif 4390 4391 int perf_event_task_enable(void) 4392 { 4393 struct perf_event_context *ctx; 4394 struct perf_event *event; 4395 4396 mutex_lock(¤t->perf_event_mutex); 4397 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4398 ctx = perf_event_ctx_lock(event); 4399 perf_event_for_each_child(event, _perf_event_enable); 4400 perf_event_ctx_unlock(event, ctx); 4401 } 4402 mutex_unlock(¤t->perf_event_mutex); 4403 4404 return 0; 4405 } 4406 4407 int perf_event_task_disable(void) 4408 { 4409 struct perf_event_context *ctx; 4410 struct perf_event *event; 4411 4412 mutex_lock(¤t->perf_event_mutex); 4413 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4414 ctx = perf_event_ctx_lock(event); 4415 perf_event_for_each_child(event, _perf_event_disable); 4416 perf_event_ctx_unlock(event, ctx); 4417 } 4418 mutex_unlock(¤t->perf_event_mutex); 4419 4420 return 0; 4421 } 4422 4423 static int perf_event_index(struct perf_event *event) 4424 { 4425 if (event->hw.state & PERF_HES_STOPPED) 4426 return 0; 4427 4428 if (event->state != PERF_EVENT_STATE_ACTIVE) 4429 return 0; 4430 4431 return event->pmu->event_idx(event); 4432 } 4433 4434 static void calc_timer_values(struct perf_event *event, 4435 u64 *now, 4436 u64 *enabled, 4437 u64 *running) 4438 { 4439 u64 ctx_time; 4440 4441 *now = perf_clock(); 4442 ctx_time = event->shadow_ctx_time + *now; 4443 *enabled = ctx_time - event->tstamp_enabled; 4444 *running = ctx_time - event->tstamp_running; 4445 } 4446 4447 static void perf_event_init_userpage(struct perf_event *event) 4448 { 4449 struct perf_event_mmap_page *userpg; 4450 struct ring_buffer *rb; 4451 4452 rcu_read_lock(); 4453 rb = rcu_dereference(event->rb); 4454 if (!rb) 4455 goto unlock; 4456 4457 userpg = rb->user_page; 4458 4459 /* Allow new userspace to detect that bit 0 is deprecated */ 4460 userpg->cap_bit0_is_deprecated = 1; 4461 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4462 userpg->data_offset = PAGE_SIZE; 4463 userpg->data_size = perf_data_size(rb); 4464 4465 unlock: 4466 rcu_read_unlock(); 4467 } 4468 4469 void __weak arch_perf_update_userpage( 4470 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4471 { 4472 } 4473 4474 /* 4475 * Callers need to ensure there can be no nesting of this function, otherwise 4476 * the seqlock logic goes bad. We can not serialize this because the arch 4477 * code calls this from NMI context. 4478 */ 4479 void perf_event_update_userpage(struct perf_event *event) 4480 { 4481 struct perf_event_mmap_page *userpg; 4482 struct ring_buffer *rb; 4483 u64 enabled, running, now; 4484 4485 rcu_read_lock(); 4486 rb = rcu_dereference(event->rb); 4487 if (!rb) 4488 goto unlock; 4489 4490 /* 4491 * compute total_time_enabled, total_time_running 4492 * based on snapshot values taken when the event 4493 * was last scheduled in. 4494 * 4495 * we cannot simply called update_context_time() 4496 * because of locking issue as we can be called in 4497 * NMI context 4498 */ 4499 calc_timer_values(event, &now, &enabled, &running); 4500 4501 userpg = rb->user_page; 4502 /* 4503 * Disable preemption so as to not let the corresponding user-space 4504 * spin too long if we get preempted. 4505 */ 4506 preempt_disable(); 4507 ++userpg->lock; 4508 barrier(); 4509 userpg->index = perf_event_index(event); 4510 userpg->offset = perf_event_count(event); 4511 if (userpg->index) 4512 userpg->offset -= local64_read(&event->hw.prev_count); 4513 4514 userpg->time_enabled = enabled + 4515 atomic64_read(&event->child_total_time_enabled); 4516 4517 userpg->time_running = running + 4518 atomic64_read(&event->child_total_time_running); 4519 4520 arch_perf_update_userpage(event, userpg, now); 4521 4522 barrier(); 4523 ++userpg->lock; 4524 preempt_enable(); 4525 unlock: 4526 rcu_read_unlock(); 4527 } 4528 4529 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4530 { 4531 struct perf_event *event = vma->vm_file->private_data; 4532 struct ring_buffer *rb; 4533 int ret = VM_FAULT_SIGBUS; 4534 4535 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4536 if (vmf->pgoff == 0) 4537 ret = 0; 4538 return ret; 4539 } 4540 4541 rcu_read_lock(); 4542 rb = rcu_dereference(event->rb); 4543 if (!rb) 4544 goto unlock; 4545 4546 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4547 goto unlock; 4548 4549 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4550 if (!vmf->page) 4551 goto unlock; 4552 4553 get_page(vmf->page); 4554 vmf->page->mapping = vma->vm_file->f_mapping; 4555 vmf->page->index = vmf->pgoff; 4556 4557 ret = 0; 4558 unlock: 4559 rcu_read_unlock(); 4560 4561 return ret; 4562 } 4563 4564 static void ring_buffer_attach(struct perf_event *event, 4565 struct ring_buffer *rb) 4566 { 4567 struct ring_buffer *old_rb = NULL; 4568 unsigned long flags; 4569 4570 if (event->rb) { 4571 /* 4572 * Should be impossible, we set this when removing 4573 * event->rb_entry and wait/clear when adding event->rb_entry. 4574 */ 4575 WARN_ON_ONCE(event->rcu_pending); 4576 4577 old_rb = event->rb; 4578 spin_lock_irqsave(&old_rb->event_lock, flags); 4579 list_del_rcu(&event->rb_entry); 4580 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4581 4582 event->rcu_batches = get_state_synchronize_rcu(); 4583 event->rcu_pending = 1; 4584 } 4585 4586 if (rb) { 4587 if (event->rcu_pending) { 4588 cond_synchronize_rcu(event->rcu_batches); 4589 event->rcu_pending = 0; 4590 } 4591 4592 spin_lock_irqsave(&rb->event_lock, flags); 4593 list_add_rcu(&event->rb_entry, &rb->event_list); 4594 spin_unlock_irqrestore(&rb->event_lock, flags); 4595 } 4596 4597 rcu_assign_pointer(event->rb, rb); 4598 4599 if (old_rb) { 4600 ring_buffer_put(old_rb); 4601 /* 4602 * Since we detached before setting the new rb, so that we 4603 * could attach the new rb, we could have missed a wakeup. 4604 * Provide it now. 4605 */ 4606 wake_up_all(&event->waitq); 4607 } 4608 } 4609 4610 static void ring_buffer_wakeup(struct perf_event *event) 4611 { 4612 struct ring_buffer *rb; 4613 4614 rcu_read_lock(); 4615 rb = rcu_dereference(event->rb); 4616 if (rb) { 4617 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4618 wake_up_all(&event->waitq); 4619 } 4620 rcu_read_unlock(); 4621 } 4622 4623 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4624 { 4625 struct ring_buffer *rb; 4626 4627 rcu_read_lock(); 4628 rb = rcu_dereference(event->rb); 4629 if (rb) { 4630 if (!atomic_inc_not_zero(&rb->refcount)) 4631 rb = NULL; 4632 } 4633 rcu_read_unlock(); 4634 4635 return rb; 4636 } 4637 4638 void ring_buffer_put(struct ring_buffer *rb) 4639 { 4640 if (!atomic_dec_and_test(&rb->refcount)) 4641 return; 4642 4643 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4644 4645 call_rcu(&rb->rcu_head, rb_free_rcu); 4646 } 4647 4648 static void perf_mmap_open(struct vm_area_struct *vma) 4649 { 4650 struct perf_event *event = vma->vm_file->private_data; 4651 4652 atomic_inc(&event->mmap_count); 4653 atomic_inc(&event->rb->mmap_count); 4654 4655 if (vma->vm_pgoff) 4656 atomic_inc(&event->rb->aux_mmap_count); 4657 4658 if (event->pmu->event_mapped) 4659 event->pmu->event_mapped(event); 4660 } 4661 4662 /* 4663 * A buffer can be mmap()ed multiple times; either directly through the same 4664 * event, or through other events by use of perf_event_set_output(). 4665 * 4666 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4667 * the buffer here, where we still have a VM context. This means we need 4668 * to detach all events redirecting to us. 4669 */ 4670 static void perf_mmap_close(struct vm_area_struct *vma) 4671 { 4672 struct perf_event *event = vma->vm_file->private_data; 4673 4674 struct ring_buffer *rb = ring_buffer_get(event); 4675 struct user_struct *mmap_user = rb->mmap_user; 4676 int mmap_locked = rb->mmap_locked; 4677 unsigned long size = perf_data_size(rb); 4678 4679 if (event->pmu->event_unmapped) 4680 event->pmu->event_unmapped(event); 4681 4682 /* 4683 * rb->aux_mmap_count will always drop before rb->mmap_count and 4684 * event->mmap_count, so it is ok to use event->mmap_mutex to 4685 * serialize with perf_mmap here. 4686 */ 4687 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4688 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4689 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4690 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4691 4692 rb_free_aux(rb); 4693 mutex_unlock(&event->mmap_mutex); 4694 } 4695 4696 atomic_dec(&rb->mmap_count); 4697 4698 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4699 goto out_put; 4700 4701 ring_buffer_attach(event, NULL); 4702 mutex_unlock(&event->mmap_mutex); 4703 4704 /* If there's still other mmap()s of this buffer, we're done. */ 4705 if (atomic_read(&rb->mmap_count)) 4706 goto out_put; 4707 4708 /* 4709 * No other mmap()s, detach from all other events that might redirect 4710 * into the now unreachable buffer. Somewhat complicated by the 4711 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4712 */ 4713 again: 4714 rcu_read_lock(); 4715 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4716 if (!atomic_long_inc_not_zero(&event->refcount)) { 4717 /* 4718 * This event is en-route to free_event() which will 4719 * detach it and remove it from the list. 4720 */ 4721 continue; 4722 } 4723 rcu_read_unlock(); 4724 4725 mutex_lock(&event->mmap_mutex); 4726 /* 4727 * Check we didn't race with perf_event_set_output() which can 4728 * swizzle the rb from under us while we were waiting to 4729 * acquire mmap_mutex. 4730 * 4731 * If we find a different rb; ignore this event, a next 4732 * iteration will no longer find it on the list. We have to 4733 * still restart the iteration to make sure we're not now 4734 * iterating the wrong list. 4735 */ 4736 if (event->rb == rb) 4737 ring_buffer_attach(event, NULL); 4738 4739 mutex_unlock(&event->mmap_mutex); 4740 put_event(event); 4741 4742 /* 4743 * Restart the iteration; either we're on the wrong list or 4744 * destroyed its integrity by doing a deletion. 4745 */ 4746 goto again; 4747 } 4748 rcu_read_unlock(); 4749 4750 /* 4751 * It could be there's still a few 0-ref events on the list; they'll 4752 * get cleaned up by free_event() -- they'll also still have their 4753 * ref on the rb and will free it whenever they are done with it. 4754 * 4755 * Aside from that, this buffer is 'fully' detached and unmapped, 4756 * undo the VM accounting. 4757 */ 4758 4759 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4760 vma->vm_mm->pinned_vm -= mmap_locked; 4761 free_uid(mmap_user); 4762 4763 out_put: 4764 ring_buffer_put(rb); /* could be last */ 4765 } 4766 4767 static const struct vm_operations_struct perf_mmap_vmops = { 4768 .open = perf_mmap_open, 4769 .close = perf_mmap_close, /* non mergable */ 4770 .fault = perf_mmap_fault, 4771 .page_mkwrite = perf_mmap_fault, 4772 }; 4773 4774 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4775 { 4776 struct perf_event *event = file->private_data; 4777 unsigned long user_locked, user_lock_limit; 4778 struct user_struct *user = current_user(); 4779 unsigned long locked, lock_limit; 4780 struct ring_buffer *rb = NULL; 4781 unsigned long vma_size; 4782 unsigned long nr_pages; 4783 long user_extra = 0, extra = 0; 4784 int ret = 0, flags = 0; 4785 4786 /* 4787 * Don't allow mmap() of inherited per-task counters. This would 4788 * create a performance issue due to all children writing to the 4789 * same rb. 4790 */ 4791 if (event->cpu == -1 && event->attr.inherit) 4792 return -EINVAL; 4793 4794 if (!(vma->vm_flags & VM_SHARED)) 4795 return -EINVAL; 4796 4797 vma_size = vma->vm_end - vma->vm_start; 4798 4799 if (vma->vm_pgoff == 0) { 4800 nr_pages = (vma_size / PAGE_SIZE) - 1; 4801 } else { 4802 /* 4803 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4804 * mapped, all subsequent mappings should have the same size 4805 * and offset. Must be above the normal perf buffer. 4806 */ 4807 u64 aux_offset, aux_size; 4808 4809 if (!event->rb) 4810 return -EINVAL; 4811 4812 nr_pages = vma_size / PAGE_SIZE; 4813 4814 mutex_lock(&event->mmap_mutex); 4815 ret = -EINVAL; 4816 4817 rb = event->rb; 4818 if (!rb) 4819 goto aux_unlock; 4820 4821 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4822 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4823 4824 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4825 goto aux_unlock; 4826 4827 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4828 goto aux_unlock; 4829 4830 /* already mapped with a different offset */ 4831 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4832 goto aux_unlock; 4833 4834 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4835 goto aux_unlock; 4836 4837 /* already mapped with a different size */ 4838 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4839 goto aux_unlock; 4840 4841 if (!is_power_of_2(nr_pages)) 4842 goto aux_unlock; 4843 4844 if (!atomic_inc_not_zero(&rb->mmap_count)) 4845 goto aux_unlock; 4846 4847 if (rb_has_aux(rb)) { 4848 atomic_inc(&rb->aux_mmap_count); 4849 ret = 0; 4850 goto unlock; 4851 } 4852 4853 atomic_set(&rb->aux_mmap_count, 1); 4854 user_extra = nr_pages; 4855 4856 goto accounting; 4857 } 4858 4859 /* 4860 * If we have rb pages ensure they're a power-of-two number, so we 4861 * can do bitmasks instead of modulo. 4862 */ 4863 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4864 return -EINVAL; 4865 4866 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4867 return -EINVAL; 4868 4869 WARN_ON_ONCE(event->ctx->parent_ctx); 4870 again: 4871 mutex_lock(&event->mmap_mutex); 4872 if (event->rb) { 4873 if (event->rb->nr_pages != nr_pages) { 4874 ret = -EINVAL; 4875 goto unlock; 4876 } 4877 4878 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4879 /* 4880 * Raced against perf_mmap_close() through 4881 * perf_event_set_output(). Try again, hope for better 4882 * luck. 4883 */ 4884 mutex_unlock(&event->mmap_mutex); 4885 goto again; 4886 } 4887 4888 goto unlock; 4889 } 4890 4891 user_extra = nr_pages + 1; 4892 4893 accounting: 4894 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4895 4896 /* 4897 * Increase the limit linearly with more CPUs: 4898 */ 4899 user_lock_limit *= num_online_cpus(); 4900 4901 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4902 4903 if (user_locked > user_lock_limit) 4904 extra = user_locked - user_lock_limit; 4905 4906 lock_limit = rlimit(RLIMIT_MEMLOCK); 4907 lock_limit >>= PAGE_SHIFT; 4908 locked = vma->vm_mm->pinned_vm + extra; 4909 4910 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4911 !capable(CAP_IPC_LOCK)) { 4912 ret = -EPERM; 4913 goto unlock; 4914 } 4915 4916 WARN_ON(!rb && event->rb); 4917 4918 if (vma->vm_flags & VM_WRITE) 4919 flags |= RING_BUFFER_WRITABLE; 4920 4921 if (!rb) { 4922 rb = rb_alloc(nr_pages, 4923 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4924 event->cpu, flags); 4925 4926 if (!rb) { 4927 ret = -ENOMEM; 4928 goto unlock; 4929 } 4930 4931 atomic_set(&rb->mmap_count, 1); 4932 rb->mmap_user = get_current_user(); 4933 rb->mmap_locked = extra; 4934 4935 ring_buffer_attach(event, rb); 4936 4937 perf_event_init_userpage(event); 4938 perf_event_update_userpage(event); 4939 } else { 4940 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4941 event->attr.aux_watermark, flags); 4942 if (!ret) 4943 rb->aux_mmap_locked = extra; 4944 } 4945 4946 unlock: 4947 if (!ret) { 4948 atomic_long_add(user_extra, &user->locked_vm); 4949 vma->vm_mm->pinned_vm += extra; 4950 4951 atomic_inc(&event->mmap_count); 4952 } else if (rb) { 4953 atomic_dec(&rb->mmap_count); 4954 } 4955 aux_unlock: 4956 mutex_unlock(&event->mmap_mutex); 4957 4958 /* 4959 * Since pinned accounting is per vm we cannot allow fork() to copy our 4960 * vma. 4961 */ 4962 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4963 vma->vm_ops = &perf_mmap_vmops; 4964 4965 if (event->pmu->event_mapped) 4966 event->pmu->event_mapped(event); 4967 4968 return ret; 4969 } 4970 4971 static int perf_fasync(int fd, struct file *filp, int on) 4972 { 4973 struct inode *inode = file_inode(filp); 4974 struct perf_event *event = filp->private_data; 4975 int retval; 4976 4977 inode_lock(inode); 4978 retval = fasync_helper(fd, filp, on, &event->fasync); 4979 inode_unlock(inode); 4980 4981 if (retval < 0) 4982 return retval; 4983 4984 return 0; 4985 } 4986 4987 static const struct file_operations perf_fops = { 4988 .llseek = no_llseek, 4989 .release = perf_release, 4990 .read = perf_read, 4991 .poll = perf_poll, 4992 .unlocked_ioctl = perf_ioctl, 4993 .compat_ioctl = perf_compat_ioctl, 4994 .mmap = perf_mmap, 4995 .fasync = perf_fasync, 4996 }; 4997 4998 /* 4999 * Perf event wakeup 5000 * 5001 * If there's data, ensure we set the poll() state and publish everything 5002 * to user-space before waking everybody up. 5003 */ 5004 5005 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5006 { 5007 /* only the parent has fasync state */ 5008 if (event->parent) 5009 event = event->parent; 5010 return &event->fasync; 5011 } 5012 5013 void perf_event_wakeup(struct perf_event *event) 5014 { 5015 ring_buffer_wakeup(event); 5016 5017 if (event->pending_kill) { 5018 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5019 event->pending_kill = 0; 5020 } 5021 } 5022 5023 static void perf_pending_event(struct irq_work *entry) 5024 { 5025 struct perf_event *event = container_of(entry, 5026 struct perf_event, pending); 5027 int rctx; 5028 5029 rctx = perf_swevent_get_recursion_context(); 5030 /* 5031 * If we 'fail' here, that's OK, it means recursion is already disabled 5032 * and we won't recurse 'further'. 5033 */ 5034 5035 if (event->pending_disable) { 5036 event->pending_disable = 0; 5037 perf_event_disable_local(event); 5038 } 5039 5040 if (event->pending_wakeup) { 5041 event->pending_wakeup = 0; 5042 perf_event_wakeup(event); 5043 } 5044 5045 if (rctx >= 0) 5046 perf_swevent_put_recursion_context(rctx); 5047 } 5048 5049 /* 5050 * We assume there is only KVM supporting the callbacks. 5051 * Later on, we might change it to a list if there is 5052 * another virtualization implementation supporting the callbacks. 5053 */ 5054 struct perf_guest_info_callbacks *perf_guest_cbs; 5055 5056 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5057 { 5058 perf_guest_cbs = cbs; 5059 return 0; 5060 } 5061 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5062 5063 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5064 { 5065 perf_guest_cbs = NULL; 5066 return 0; 5067 } 5068 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5069 5070 static void 5071 perf_output_sample_regs(struct perf_output_handle *handle, 5072 struct pt_regs *regs, u64 mask) 5073 { 5074 int bit; 5075 5076 for_each_set_bit(bit, (const unsigned long *) &mask, 5077 sizeof(mask) * BITS_PER_BYTE) { 5078 u64 val; 5079 5080 val = perf_reg_value(regs, bit); 5081 perf_output_put(handle, val); 5082 } 5083 } 5084 5085 static void perf_sample_regs_user(struct perf_regs *regs_user, 5086 struct pt_regs *regs, 5087 struct pt_regs *regs_user_copy) 5088 { 5089 if (user_mode(regs)) { 5090 regs_user->abi = perf_reg_abi(current); 5091 regs_user->regs = regs; 5092 } else if (current->mm) { 5093 perf_get_regs_user(regs_user, regs, regs_user_copy); 5094 } else { 5095 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5096 regs_user->regs = NULL; 5097 } 5098 } 5099 5100 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5101 struct pt_regs *regs) 5102 { 5103 regs_intr->regs = regs; 5104 regs_intr->abi = perf_reg_abi(current); 5105 } 5106 5107 5108 /* 5109 * Get remaining task size from user stack pointer. 5110 * 5111 * It'd be better to take stack vma map and limit this more 5112 * precisly, but there's no way to get it safely under interrupt, 5113 * so using TASK_SIZE as limit. 5114 */ 5115 static u64 perf_ustack_task_size(struct pt_regs *regs) 5116 { 5117 unsigned long addr = perf_user_stack_pointer(regs); 5118 5119 if (!addr || addr >= TASK_SIZE) 5120 return 0; 5121 5122 return TASK_SIZE - addr; 5123 } 5124 5125 static u16 5126 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5127 struct pt_regs *regs) 5128 { 5129 u64 task_size; 5130 5131 /* No regs, no stack pointer, no dump. */ 5132 if (!regs) 5133 return 0; 5134 5135 /* 5136 * Check if we fit in with the requested stack size into the: 5137 * - TASK_SIZE 5138 * If we don't, we limit the size to the TASK_SIZE. 5139 * 5140 * - remaining sample size 5141 * If we don't, we customize the stack size to 5142 * fit in to the remaining sample size. 5143 */ 5144 5145 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5146 stack_size = min(stack_size, (u16) task_size); 5147 5148 /* Current header size plus static size and dynamic size. */ 5149 header_size += 2 * sizeof(u64); 5150 5151 /* Do we fit in with the current stack dump size? */ 5152 if ((u16) (header_size + stack_size) < header_size) { 5153 /* 5154 * If we overflow the maximum size for the sample, 5155 * we customize the stack dump size to fit in. 5156 */ 5157 stack_size = USHRT_MAX - header_size - sizeof(u64); 5158 stack_size = round_up(stack_size, sizeof(u64)); 5159 } 5160 5161 return stack_size; 5162 } 5163 5164 static void 5165 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5166 struct pt_regs *regs) 5167 { 5168 /* Case of a kernel thread, nothing to dump */ 5169 if (!regs) { 5170 u64 size = 0; 5171 perf_output_put(handle, size); 5172 } else { 5173 unsigned long sp; 5174 unsigned int rem; 5175 u64 dyn_size; 5176 5177 /* 5178 * We dump: 5179 * static size 5180 * - the size requested by user or the best one we can fit 5181 * in to the sample max size 5182 * data 5183 * - user stack dump data 5184 * dynamic size 5185 * - the actual dumped size 5186 */ 5187 5188 /* Static size. */ 5189 perf_output_put(handle, dump_size); 5190 5191 /* Data. */ 5192 sp = perf_user_stack_pointer(regs); 5193 rem = __output_copy_user(handle, (void *) sp, dump_size); 5194 dyn_size = dump_size - rem; 5195 5196 perf_output_skip(handle, rem); 5197 5198 /* Dynamic size. */ 5199 perf_output_put(handle, dyn_size); 5200 } 5201 } 5202 5203 static void __perf_event_header__init_id(struct perf_event_header *header, 5204 struct perf_sample_data *data, 5205 struct perf_event *event) 5206 { 5207 u64 sample_type = event->attr.sample_type; 5208 5209 data->type = sample_type; 5210 header->size += event->id_header_size; 5211 5212 if (sample_type & PERF_SAMPLE_TID) { 5213 /* namespace issues */ 5214 data->tid_entry.pid = perf_event_pid(event, current); 5215 data->tid_entry.tid = perf_event_tid(event, current); 5216 } 5217 5218 if (sample_type & PERF_SAMPLE_TIME) 5219 data->time = perf_event_clock(event); 5220 5221 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5222 data->id = primary_event_id(event); 5223 5224 if (sample_type & PERF_SAMPLE_STREAM_ID) 5225 data->stream_id = event->id; 5226 5227 if (sample_type & PERF_SAMPLE_CPU) { 5228 data->cpu_entry.cpu = raw_smp_processor_id(); 5229 data->cpu_entry.reserved = 0; 5230 } 5231 } 5232 5233 void perf_event_header__init_id(struct perf_event_header *header, 5234 struct perf_sample_data *data, 5235 struct perf_event *event) 5236 { 5237 if (event->attr.sample_id_all) 5238 __perf_event_header__init_id(header, data, event); 5239 } 5240 5241 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5242 struct perf_sample_data *data) 5243 { 5244 u64 sample_type = data->type; 5245 5246 if (sample_type & PERF_SAMPLE_TID) 5247 perf_output_put(handle, data->tid_entry); 5248 5249 if (sample_type & PERF_SAMPLE_TIME) 5250 perf_output_put(handle, data->time); 5251 5252 if (sample_type & PERF_SAMPLE_ID) 5253 perf_output_put(handle, data->id); 5254 5255 if (sample_type & PERF_SAMPLE_STREAM_ID) 5256 perf_output_put(handle, data->stream_id); 5257 5258 if (sample_type & PERF_SAMPLE_CPU) 5259 perf_output_put(handle, data->cpu_entry); 5260 5261 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5262 perf_output_put(handle, data->id); 5263 } 5264 5265 void perf_event__output_id_sample(struct perf_event *event, 5266 struct perf_output_handle *handle, 5267 struct perf_sample_data *sample) 5268 { 5269 if (event->attr.sample_id_all) 5270 __perf_event__output_id_sample(handle, sample); 5271 } 5272 5273 static void perf_output_read_one(struct perf_output_handle *handle, 5274 struct perf_event *event, 5275 u64 enabled, u64 running) 5276 { 5277 u64 read_format = event->attr.read_format; 5278 u64 values[4]; 5279 int n = 0; 5280 5281 values[n++] = perf_event_count(event); 5282 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5283 values[n++] = enabled + 5284 atomic64_read(&event->child_total_time_enabled); 5285 } 5286 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5287 values[n++] = running + 5288 atomic64_read(&event->child_total_time_running); 5289 } 5290 if (read_format & PERF_FORMAT_ID) 5291 values[n++] = primary_event_id(event); 5292 5293 __output_copy(handle, values, n * sizeof(u64)); 5294 } 5295 5296 /* 5297 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5298 */ 5299 static void perf_output_read_group(struct perf_output_handle *handle, 5300 struct perf_event *event, 5301 u64 enabled, u64 running) 5302 { 5303 struct perf_event *leader = event->group_leader, *sub; 5304 u64 read_format = event->attr.read_format; 5305 u64 values[5]; 5306 int n = 0; 5307 5308 values[n++] = 1 + leader->nr_siblings; 5309 5310 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5311 values[n++] = enabled; 5312 5313 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5314 values[n++] = running; 5315 5316 if (leader != event) 5317 leader->pmu->read(leader); 5318 5319 values[n++] = perf_event_count(leader); 5320 if (read_format & PERF_FORMAT_ID) 5321 values[n++] = primary_event_id(leader); 5322 5323 __output_copy(handle, values, n * sizeof(u64)); 5324 5325 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5326 n = 0; 5327 5328 if ((sub != event) && 5329 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5330 sub->pmu->read(sub); 5331 5332 values[n++] = perf_event_count(sub); 5333 if (read_format & PERF_FORMAT_ID) 5334 values[n++] = primary_event_id(sub); 5335 5336 __output_copy(handle, values, n * sizeof(u64)); 5337 } 5338 } 5339 5340 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5341 PERF_FORMAT_TOTAL_TIME_RUNNING) 5342 5343 static void perf_output_read(struct perf_output_handle *handle, 5344 struct perf_event *event) 5345 { 5346 u64 enabled = 0, running = 0, now; 5347 u64 read_format = event->attr.read_format; 5348 5349 /* 5350 * compute total_time_enabled, total_time_running 5351 * based on snapshot values taken when the event 5352 * was last scheduled in. 5353 * 5354 * we cannot simply called update_context_time() 5355 * because of locking issue as we are called in 5356 * NMI context 5357 */ 5358 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5359 calc_timer_values(event, &now, &enabled, &running); 5360 5361 if (event->attr.read_format & PERF_FORMAT_GROUP) 5362 perf_output_read_group(handle, event, enabled, running); 5363 else 5364 perf_output_read_one(handle, event, enabled, running); 5365 } 5366 5367 void perf_output_sample(struct perf_output_handle *handle, 5368 struct perf_event_header *header, 5369 struct perf_sample_data *data, 5370 struct perf_event *event) 5371 { 5372 u64 sample_type = data->type; 5373 5374 perf_output_put(handle, *header); 5375 5376 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5377 perf_output_put(handle, data->id); 5378 5379 if (sample_type & PERF_SAMPLE_IP) 5380 perf_output_put(handle, data->ip); 5381 5382 if (sample_type & PERF_SAMPLE_TID) 5383 perf_output_put(handle, data->tid_entry); 5384 5385 if (sample_type & PERF_SAMPLE_TIME) 5386 perf_output_put(handle, data->time); 5387 5388 if (sample_type & PERF_SAMPLE_ADDR) 5389 perf_output_put(handle, data->addr); 5390 5391 if (sample_type & PERF_SAMPLE_ID) 5392 perf_output_put(handle, data->id); 5393 5394 if (sample_type & PERF_SAMPLE_STREAM_ID) 5395 perf_output_put(handle, data->stream_id); 5396 5397 if (sample_type & PERF_SAMPLE_CPU) 5398 perf_output_put(handle, data->cpu_entry); 5399 5400 if (sample_type & PERF_SAMPLE_PERIOD) 5401 perf_output_put(handle, data->period); 5402 5403 if (sample_type & PERF_SAMPLE_READ) 5404 perf_output_read(handle, event); 5405 5406 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5407 if (data->callchain) { 5408 int size = 1; 5409 5410 if (data->callchain) 5411 size += data->callchain->nr; 5412 5413 size *= sizeof(u64); 5414 5415 __output_copy(handle, data->callchain, size); 5416 } else { 5417 u64 nr = 0; 5418 perf_output_put(handle, nr); 5419 } 5420 } 5421 5422 if (sample_type & PERF_SAMPLE_RAW) { 5423 if (data->raw) { 5424 u32 raw_size = data->raw->size; 5425 u32 real_size = round_up(raw_size + sizeof(u32), 5426 sizeof(u64)) - sizeof(u32); 5427 u64 zero = 0; 5428 5429 perf_output_put(handle, real_size); 5430 __output_copy(handle, data->raw->data, raw_size); 5431 if (real_size - raw_size) 5432 __output_copy(handle, &zero, real_size - raw_size); 5433 } else { 5434 struct { 5435 u32 size; 5436 u32 data; 5437 } raw = { 5438 .size = sizeof(u32), 5439 .data = 0, 5440 }; 5441 perf_output_put(handle, raw); 5442 } 5443 } 5444 5445 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5446 if (data->br_stack) { 5447 size_t size; 5448 5449 size = data->br_stack->nr 5450 * sizeof(struct perf_branch_entry); 5451 5452 perf_output_put(handle, data->br_stack->nr); 5453 perf_output_copy(handle, data->br_stack->entries, size); 5454 } else { 5455 /* 5456 * we always store at least the value of nr 5457 */ 5458 u64 nr = 0; 5459 perf_output_put(handle, nr); 5460 } 5461 } 5462 5463 if (sample_type & PERF_SAMPLE_REGS_USER) { 5464 u64 abi = data->regs_user.abi; 5465 5466 /* 5467 * If there are no regs to dump, notice it through 5468 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5469 */ 5470 perf_output_put(handle, abi); 5471 5472 if (abi) { 5473 u64 mask = event->attr.sample_regs_user; 5474 perf_output_sample_regs(handle, 5475 data->regs_user.regs, 5476 mask); 5477 } 5478 } 5479 5480 if (sample_type & PERF_SAMPLE_STACK_USER) { 5481 perf_output_sample_ustack(handle, 5482 data->stack_user_size, 5483 data->regs_user.regs); 5484 } 5485 5486 if (sample_type & PERF_SAMPLE_WEIGHT) 5487 perf_output_put(handle, data->weight); 5488 5489 if (sample_type & PERF_SAMPLE_DATA_SRC) 5490 perf_output_put(handle, data->data_src.val); 5491 5492 if (sample_type & PERF_SAMPLE_TRANSACTION) 5493 perf_output_put(handle, data->txn); 5494 5495 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5496 u64 abi = data->regs_intr.abi; 5497 /* 5498 * If there are no regs to dump, notice it through 5499 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5500 */ 5501 perf_output_put(handle, abi); 5502 5503 if (abi) { 5504 u64 mask = event->attr.sample_regs_intr; 5505 5506 perf_output_sample_regs(handle, 5507 data->regs_intr.regs, 5508 mask); 5509 } 5510 } 5511 5512 if (!event->attr.watermark) { 5513 int wakeup_events = event->attr.wakeup_events; 5514 5515 if (wakeup_events) { 5516 struct ring_buffer *rb = handle->rb; 5517 int events = local_inc_return(&rb->events); 5518 5519 if (events >= wakeup_events) { 5520 local_sub(wakeup_events, &rb->events); 5521 local_inc(&rb->wakeup); 5522 } 5523 } 5524 } 5525 } 5526 5527 void perf_prepare_sample(struct perf_event_header *header, 5528 struct perf_sample_data *data, 5529 struct perf_event *event, 5530 struct pt_regs *regs) 5531 { 5532 u64 sample_type = event->attr.sample_type; 5533 5534 header->type = PERF_RECORD_SAMPLE; 5535 header->size = sizeof(*header) + event->header_size; 5536 5537 header->misc = 0; 5538 header->misc |= perf_misc_flags(regs); 5539 5540 __perf_event_header__init_id(header, data, event); 5541 5542 if (sample_type & PERF_SAMPLE_IP) 5543 data->ip = perf_instruction_pointer(regs); 5544 5545 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5546 int size = 1; 5547 5548 data->callchain = perf_callchain(event, regs); 5549 5550 if (data->callchain) 5551 size += data->callchain->nr; 5552 5553 header->size += size * sizeof(u64); 5554 } 5555 5556 if (sample_type & PERF_SAMPLE_RAW) { 5557 int size = sizeof(u32); 5558 5559 if (data->raw) 5560 size += data->raw->size; 5561 else 5562 size += sizeof(u32); 5563 5564 header->size += round_up(size, sizeof(u64)); 5565 } 5566 5567 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5568 int size = sizeof(u64); /* nr */ 5569 if (data->br_stack) { 5570 size += data->br_stack->nr 5571 * sizeof(struct perf_branch_entry); 5572 } 5573 header->size += size; 5574 } 5575 5576 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5577 perf_sample_regs_user(&data->regs_user, regs, 5578 &data->regs_user_copy); 5579 5580 if (sample_type & PERF_SAMPLE_REGS_USER) { 5581 /* regs dump ABI info */ 5582 int size = sizeof(u64); 5583 5584 if (data->regs_user.regs) { 5585 u64 mask = event->attr.sample_regs_user; 5586 size += hweight64(mask) * sizeof(u64); 5587 } 5588 5589 header->size += size; 5590 } 5591 5592 if (sample_type & PERF_SAMPLE_STACK_USER) { 5593 /* 5594 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5595 * processed as the last one or have additional check added 5596 * in case new sample type is added, because we could eat 5597 * up the rest of the sample size. 5598 */ 5599 u16 stack_size = event->attr.sample_stack_user; 5600 u16 size = sizeof(u64); 5601 5602 stack_size = perf_sample_ustack_size(stack_size, header->size, 5603 data->regs_user.regs); 5604 5605 /* 5606 * If there is something to dump, add space for the dump 5607 * itself and for the field that tells the dynamic size, 5608 * which is how many have been actually dumped. 5609 */ 5610 if (stack_size) 5611 size += sizeof(u64) + stack_size; 5612 5613 data->stack_user_size = stack_size; 5614 header->size += size; 5615 } 5616 5617 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5618 /* regs dump ABI info */ 5619 int size = sizeof(u64); 5620 5621 perf_sample_regs_intr(&data->regs_intr, regs); 5622 5623 if (data->regs_intr.regs) { 5624 u64 mask = event->attr.sample_regs_intr; 5625 5626 size += hweight64(mask) * sizeof(u64); 5627 } 5628 5629 header->size += size; 5630 } 5631 } 5632 5633 void perf_event_output(struct perf_event *event, 5634 struct perf_sample_data *data, 5635 struct pt_regs *regs) 5636 { 5637 struct perf_output_handle handle; 5638 struct perf_event_header header; 5639 5640 /* protect the callchain buffers */ 5641 rcu_read_lock(); 5642 5643 perf_prepare_sample(&header, data, event, regs); 5644 5645 if (perf_output_begin(&handle, event, header.size)) 5646 goto exit; 5647 5648 perf_output_sample(&handle, &header, data, event); 5649 5650 perf_output_end(&handle); 5651 5652 exit: 5653 rcu_read_unlock(); 5654 } 5655 5656 /* 5657 * read event_id 5658 */ 5659 5660 struct perf_read_event { 5661 struct perf_event_header header; 5662 5663 u32 pid; 5664 u32 tid; 5665 }; 5666 5667 static void 5668 perf_event_read_event(struct perf_event *event, 5669 struct task_struct *task) 5670 { 5671 struct perf_output_handle handle; 5672 struct perf_sample_data sample; 5673 struct perf_read_event read_event = { 5674 .header = { 5675 .type = PERF_RECORD_READ, 5676 .misc = 0, 5677 .size = sizeof(read_event) + event->read_size, 5678 }, 5679 .pid = perf_event_pid(event, task), 5680 .tid = perf_event_tid(event, task), 5681 }; 5682 int ret; 5683 5684 perf_event_header__init_id(&read_event.header, &sample, event); 5685 ret = perf_output_begin(&handle, event, read_event.header.size); 5686 if (ret) 5687 return; 5688 5689 perf_output_put(&handle, read_event); 5690 perf_output_read(&handle, event); 5691 perf_event__output_id_sample(event, &handle, &sample); 5692 5693 perf_output_end(&handle); 5694 } 5695 5696 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5697 5698 static void 5699 perf_event_aux_ctx(struct perf_event_context *ctx, 5700 perf_event_aux_output_cb output, 5701 void *data) 5702 { 5703 struct perf_event *event; 5704 5705 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5706 if (event->state < PERF_EVENT_STATE_INACTIVE) 5707 continue; 5708 if (!event_filter_match(event)) 5709 continue; 5710 output(event, data); 5711 } 5712 } 5713 5714 static void 5715 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data, 5716 struct perf_event_context *task_ctx) 5717 { 5718 rcu_read_lock(); 5719 preempt_disable(); 5720 perf_event_aux_ctx(task_ctx, output, data); 5721 preempt_enable(); 5722 rcu_read_unlock(); 5723 } 5724 5725 static void 5726 perf_event_aux(perf_event_aux_output_cb output, void *data, 5727 struct perf_event_context *task_ctx) 5728 { 5729 struct perf_cpu_context *cpuctx; 5730 struct perf_event_context *ctx; 5731 struct pmu *pmu; 5732 int ctxn; 5733 5734 /* 5735 * If we have task_ctx != NULL we only notify 5736 * the task context itself. The task_ctx is set 5737 * only for EXIT events before releasing task 5738 * context. 5739 */ 5740 if (task_ctx) { 5741 perf_event_aux_task_ctx(output, data, task_ctx); 5742 return; 5743 } 5744 5745 rcu_read_lock(); 5746 list_for_each_entry_rcu(pmu, &pmus, entry) { 5747 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5748 if (cpuctx->unique_pmu != pmu) 5749 goto next; 5750 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5751 ctxn = pmu->task_ctx_nr; 5752 if (ctxn < 0) 5753 goto next; 5754 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5755 if (ctx) 5756 perf_event_aux_ctx(ctx, output, data); 5757 next: 5758 put_cpu_ptr(pmu->pmu_cpu_context); 5759 } 5760 rcu_read_unlock(); 5761 } 5762 5763 /* 5764 * task tracking -- fork/exit 5765 * 5766 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5767 */ 5768 5769 struct perf_task_event { 5770 struct task_struct *task; 5771 struct perf_event_context *task_ctx; 5772 5773 struct { 5774 struct perf_event_header header; 5775 5776 u32 pid; 5777 u32 ppid; 5778 u32 tid; 5779 u32 ptid; 5780 u64 time; 5781 } event_id; 5782 }; 5783 5784 static int perf_event_task_match(struct perf_event *event) 5785 { 5786 return event->attr.comm || event->attr.mmap || 5787 event->attr.mmap2 || event->attr.mmap_data || 5788 event->attr.task; 5789 } 5790 5791 static void perf_event_task_output(struct perf_event *event, 5792 void *data) 5793 { 5794 struct perf_task_event *task_event = data; 5795 struct perf_output_handle handle; 5796 struct perf_sample_data sample; 5797 struct task_struct *task = task_event->task; 5798 int ret, size = task_event->event_id.header.size; 5799 5800 if (!perf_event_task_match(event)) 5801 return; 5802 5803 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5804 5805 ret = perf_output_begin(&handle, event, 5806 task_event->event_id.header.size); 5807 if (ret) 5808 goto out; 5809 5810 task_event->event_id.pid = perf_event_pid(event, task); 5811 task_event->event_id.ppid = perf_event_pid(event, current); 5812 5813 task_event->event_id.tid = perf_event_tid(event, task); 5814 task_event->event_id.ptid = perf_event_tid(event, current); 5815 5816 task_event->event_id.time = perf_event_clock(event); 5817 5818 perf_output_put(&handle, task_event->event_id); 5819 5820 perf_event__output_id_sample(event, &handle, &sample); 5821 5822 perf_output_end(&handle); 5823 out: 5824 task_event->event_id.header.size = size; 5825 } 5826 5827 static void perf_event_task(struct task_struct *task, 5828 struct perf_event_context *task_ctx, 5829 int new) 5830 { 5831 struct perf_task_event task_event; 5832 5833 if (!atomic_read(&nr_comm_events) && 5834 !atomic_read(&nr_mmap_events) && 5835 !atomic_read(&nr_task_events)) 5836 return; 5837 5838 task_event = (struct perf_task_event){ 5839 .task = task, 5840 .task_ctx = task_ctx, 5841 .event_id = { 5842 .header = { 5843 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5844 .misc = 0, 5845 .size = sizeof(task_event.event_id), 5846 }, 5847 /* .pid */ 5848 /* .ppid */ 5849 /* .tid */ 5850 /* .ptid */ 5851 /* .time */ 5852 }, 5853 }; 5854 5855 perf_event_aux(perf_event_task_output, 5856 &task_event, 5857 task_ctx); 5858 } 5859 5860 void perf_event_fork(struct task_struct *task) 5861 { 5862 perf_event_task(task, NULL, 1); 5863 } 5864 5865 /* 5866 * comm tracking 5867 */ 5868 5869 struct perf_comm_event { 5870 struct task_struct *task; 5871 char *comm; 5872 int comm_size; 5873 5874 struct { 5875 struct perf_event_header header; 5876 5877 u32 pid; 5878 u32 tid; 5879 } event_id; 5880 }; 5881 5882 static int perf_event_comm_match(struct perf_event *event) 5883 { 5884 return event->attr.comm; 5885 } 5886 5887 static void perf_event_comm_output(struct perf_event *event, 5888 void *data) 5889 { 5890 struct perf_comm_event *comm_event = data; 5891 struct perf_output_handle handle; 5892 struct perf_sample_data sample; 5893 int size = comm_event->event_id.header.size; 5894 int ret; 5895 5896 if (!perf_event_comm_match(event)) 5897 return; 5898 5899 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5900 ret = perf_output_begin(&handle, event, 5901 comm_event->event_id.header.size); 5902 5903 if (ret) 5904 goto out; 5905 5906 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5907 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5908 5909 perf_output_put(&handle, comm_event->event_id); 5910 __output_copy(&handle, comm_event->comm, 5911 comm_event->comm_size); 5912 5913 perf_event__output_id_sample(event, &handle, &sample); 5914 5915 perf_output_end(&handle); 5916 out: 5917 comm_event->event_id.header.size = size; 5918 } 5919 5920 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5921 { 5922 char comm[TASK_COMM_LEN]; 5923 unsigned int size; 5924 5925 memset(comm, 0, sizeof(comm)); 5926 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5927 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5928 5929 comm_event->comm = comm; 5930 comm_event->comm_size = size; 5931 5932 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5933 5934 perf_event_aux(perf_event_comm_output, 5935 comm_event, 5936 NULL); 5937 } 5938 5939 void perf_event_comm(struct task_struct *task, bool exec) 5940 { 5941 struct perf_comm_event comm_event; 5942 5943 if (!atomic_read(&nr_comm_events)) 5944 return; 5945 5946 comm_event = (struct perf_comm_event){ 5947 .task = task, 5948 /* .comm */ 5949 /* .comm_size */ 5950 .event_id = { 5951 .header = { 5952 .type = PERF_RECORD_COMM, 5953 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5954 /* .size */ 5955 }, 5956 /* .pid */ 5957 /* .tid */ 5958 }, 5959 }; 5960 5961 perf_event_comm_event(&comm_event); 5962 } 5963 5964 /* 5965 * mmap tracking 5966 */ 5967 5968 struct perf_mmap_event { 5969 struct vm_area_struct *vma; 5970 5971 const char *file_name; 5972 int file_size; 5973 int maj, min; 5974 u64 ino; 5975 u64 ino_generation; 5976 u32 prot, flags; 5977 5978 struct { 5979 struct perf_event_header header; 5980 5981 u32 pid; 5982 u32 tid; 5983 u64 start; 5984 u64 len; 5985 u64 pgoff; 5986 } event_id; 5987 }; 5988 5989 static int perf_event_mmap_match(struct perf_event *event, 5990 void *data) 5991 { 5992 struct perf_mmap_event *mmap_event = data; 5993 struct vm_area_struct *vma = mmap_event->vma; 5994 int executable = vma->vm_flags & VM_EXEC; 5995 5996 return (!executable && event->attr.mmap_data) || 5997 (executable && (event->attr.mmap || event->attr.mmap2)); 5998 } 5999 6000 static void perf_event_mmap_output(struct perf_event *event, 6001 void *data) 6002 { 6003 struct perf_mmap_event *mmap_event = data; 6004 struct perf_output_handle handle; 6005 struct perf_sample_data sample; 6006 int size = mmap_event->event_id.header.size; 6007 int ret; 6008 6009 if (!perf_event_mmap_match(event, data)) 6010 return; 6011 6012 if (event->attr.mmap2) { 6013 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6014 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6015 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6016 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6017 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6018 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6019 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6020 } 6021 6022 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6023 ret = perf_output_begin(&handle, event, 6024 mmap_event->event_id.header.size); 6025 if (ret) 6026 goto out; 6027 6028 mmap_event->event_id.pid = perf_event_pid(event, current); 6029 mmap_event->event_id.tid = perf_event_tid(event, current); 6030 6031 perf_output_put(&handle, mmap_event->event_id); 6032 6033 if (event->attr.mmap2) { 6034 perf_output_put(&handle, mmap_event->maj); 6035 perf_output_put(&handle, mmap_event->min); 6036 perf_output_put(&handle, mmap_event->ino); 6037 perf_output_put(&handle, mmap_event->ino_generation); 6038 perf_output_put(&handle, mmap_event->prot); 6039 perf_output_put(&handle, mmap_event->flags); 6040 } 6041 6042 __output_copy(&handle, mmap_event->file_name, 6043 mmap_event->file_size); 6044 6045 perf_event__output_id_sample(event, &handle, &sample); 6046 6047 perf_output_end(&handle); 6048 out: 6049 mmap_event->event_id.header.size = size; 6050 } 6051 6052 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6053 { 6054 struct vm_area_struct *vma = mmap_event->vma; 6055 struct file *file = vma->vm_file; 6056 int maj = 0, min = 0; 6057 u64 ino = 0, gen = 0; 6058 u32 prot = 0, flags = 0; 6059 unsigned int size; 6060 char tmp[16]; 6061 char *buf = NULL; 6062 char *name; 6063 6064 if (file) { 6065 struct inode *inode; 6066 dev_t dev; 6067 6068 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6069 if (!buf) { 6070 name = "//enomem"; 6071 goto cpy_name; 6072 } 6073 /* 6074 * d_path() works from the end of the rb backwards, so we 6075 * need to add enough zero bytes after the string to handle 6076 * the 64bit alignment we do later. 6077 */ 6078 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6079 if (IS_ERR(name)) { 6080 name = "//toolong"; 6081 goto cpy_name; 6082 } 6083 inode = file_inode(vma->vm_file); 6084 dev = inode->i_sb->s_dev; 6085 ino = inode->i_ino; 6086 gen = inode->i_generation; 6087 maj = MAJOR(dev); 6088 min = MINOR(dev); 6089 6090 if (vma->vm_flags & VM_READ) 6091 prot |= PROT_READ; 6092 if (vma->vm_flags & VM_WRITE) 6093 prot |= PROT_WRITE; 6094 if (vma->vm_flags & VM_EXEC) 6095 prot |= PROT_EXEC; 6096 6097 if (vma->vm_flags & VM_MAYSHARE) 6098 flags = MAP_SHARED; 6099 else 6100 flags = MAP_PRIVATE; 6101 6102 if (vma->vm_flags & VM_DENYWRITE) 6103 flags |= MAP_DENYWRITE; 6104 if (vma->vm_flags & VM_MAYEXEC) 6105 flags |= MAP_EXECUTABLE; 6106 if (vma->vm_flags & VM_LOCKED) 6107 flags |= MAP_LOCKED; 6108 if (vma->vm_flags & VM_HUGETLB) 6109 flags |= MAP_HUGETLB; 6110 6111 goto got_name; 6112 } else { 6113 if (vma->vm_ops && vma->vm_ops->name) { 6114 name = (char *) vma->vm_ops->name(vma); 6115 if (name) 6116 goto cpy_name; 6117 } 6118 6119 name = (char *)arch_vma_name(vma); 6120 if (name) 6121 goto cpy_name; 6122 6123 if (vma->vm_start <= vma->vm_mm->start_brk && 6124 vma->vm_end >= vma->vm_mm->brk) { 6125 name = "[heap]"; 6126 goto cpy_name; 6127 } 6128 if (vma->vm_start <= vma->vm_mm->start_stack && 6129 vma->vm_end >= vma->vm_mm->start_stack) { 6130 name = "[stack]"; 6131 goto cpy_name; 6132 } 6133 6134 name = "//anon"; 6135 goto cpy_name; 6136 } 6137 6138 cpy_name: 6139 strlcpy(tmp, name, sizeof(tmp)); 6140 name = tmp; 6141 got_name: 6142 /* 6143 * Since our buffer works in 8 byte units we need to align our string 6144 * size to a multiple of 8. However, we must guarantee the tail end is 6145 * zero'd out to avoid leaking random bits to userspace. 6146 */ 6147 size = strlen(name)+1; 6148 while (!IS_ALIGNED(size, sizeof(u64))) 6149 name[size++] = '\0'; 6150 6151 mmap_event->file_name = name; 6152 mmap_event->file_size = size; 6153 mmap_event->maj = maj; 6154 mmap_event->min = min; 6155 mmap_event->ino = ino; 6156 mmap_event->ino_generation = gen; 6157 mmap_event->prot = prot; 6158 mmap_event->flags = flags; 6159 6160 if (!(vma->vm_flags & VM_EXEC)) 6161 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6162 6163 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6164 6165 perf_event_aux(perf_event_mmap_output, 6166 mmap_event, 6167 NULL); 6168 6169 kfree(buf); 6170 } 6171 6172 void perf_event_mmap(struct vm_area_struct *vma) 6173 { 6174 struct perf_mmap_event mmap_event; 6175 6176 if (!atomic_read(&nr_mmap_events)) 6177 return; 6178 6179 mmap_event = (struct perf_mmap_event){ 6180 .vma = vma, 6181 /* .file_name */ 6182 /* .file_size */ 6183 .event_id = { 6184 .header = { 6185 .type = PERF_RECORD_MMAP, 6186 .misc = PERF_RECORD_MISC_USER, 6187 /* .size */ 6188 }, 6189 /* .pid */ 6190 /* .tid */ 6191 .start = vma->vm_start, 6192 .len = vma->vm_end - vma->vm_start, 6193 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6194 }, 6195 /* .maj (attr_mmap2 only) */ 6196 /* .min (attr_mmap2 only) */ 6197 /* .ino (attr_mmap2 only) */ 6198 /* .ino_generation (attr_mmap2 only) */ 6199 /* .prot (attr_mmap2 only) */ 6200 /* .flags (attr_mmap2 only) */ 6201 }; 6202 6203 perf_event_mmap_event(&mmap_event); 6204 } 6205 6206 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6207 unsigned long size, u64 flags) 6208 { 6209 struct perf_output_handle handle; 6210 struct perf_sample_data sample; 6211 struct perf_aux_event { 6212 struct perf_event_header header; 6213 u64 offset; 6214 u64 size; 6215 u64 flags; 6216 } rec = { 6217 .header = { 6218 .type = PERF_RECORD_AUX, 6219 .misc = 0, 6220 .size = sizeof(rec), 6221 }, 6222 .offset = head, 6223 .size = size, 6224 .flags = flags, 6225 }; 6226 int ret; 6227 6228 perf_event_header__init_id(&rec.header, &sample, event); 6229 ret = perf_output_begin(&handle, event, rec.header.size); 6230 6231 if (ret) 6232 return; 6233 6234 perf_output_put(&handle, rec); 6235 perf_event__output_id_sample(event, &handle, &sample); 6236 6237 perf_output_end(&handle); 6238 } 6239 6240 /* 6241 * Lost/dropped samples logging 6242 */ 6243 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6244 { 6245 struct perf_output_handle handle; 6246 struct perf_sample_data sample; 6247 int ret; 6248 6249 struct { 6250 struct perf_event_header header; 6251 u64 lost; 6252 } lost_samples_event = { 6253 .header = { 6254 .type = PERF_RECORD_LOST_SAMPLES, 6255 .misc = 0, 6256 .size = sizeof(lost_samples_event), 6257 }, 6258 .lost = lost, 6259 }; 6260 6261 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6262 6263 ret = perf_output_begin(&handle, event, 6264 lost_samples_event.header.size); 6265 if (ret) 6266 return; 6267 6268 perf_output_put(&handle, lost_samples_event); 6269 perf_event__output_id_sample(event, &handle, &sample); 6270 perf_output_end(&handle); 6271 } 6272 6273 /* 6274 * context_switch tracking 6275 */ 6276 6277 struct perf_switch_event { 6278 struct task_struct *task; 6279 struct task_struct *next_prev; 6280 6281 struct { 6282 struct perf_event_header header; 6283 u32 next_prev_pid; 6284 u32 next_prev_tid; 6285 } event_id; 6286 }; 6287 6288 static int perf_event_switch_match(struct perf_event *event) 6289 { 6290 return event->attr.context_switch; 6291 } 6292 6293 static void perf_event_switch_output(struct perf_event *event, void *data) 6294 { 6295 struct perf_switch_event *se = data; 6296 struct perf_output_handle handle; 6297 struct perf_sample_data sample; 6298 int ret; 6299 6300 if (!perf_event_switch_match(event)) 6301 return; 6302 6303 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6304 if (event->ctx->task) { 6305 se->event_id.header.type = PERF_RECORD_SWITCH; 6306 se->event_id.header.size = sizeof(se->event_id.header); 6307 } else { 6308 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6309 se->event_id.header.size = sizeof(se->event_id); 6310 se->event_id.next_prev_pid = 6311 perf_event_pid(event, se->next_prev); 6312 se->event_id.next_prev_tid = 6313 perf_event_tid(event, se->next_prev); 6314 } 6315 6316 perf_event_header__init_id(&se->event_id.header, &sample, event); 6317 6318 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6319 if (ret) 6320 return; 6321 6322 if (event->ctx->task) 6323 perf_output_put(&handle, se->event_id.header); 6324 else 6325 perf_output_put(&handle, se->event_id); 6326 6327 perf_event__output_id_sample(event, &handle, &sample); 6328 6329 perf_output_end(&handle); 6330 } 6331 6332 static void perf_event_switch(struct task_struct *task, 6333 struct task_struct *next_prev, bool sched_in) 6334 { 6335 struct perf_switch_event switch_event; 6336 6337 /* N.B. caller checks nr_switch_events != 0 */ 6338 6339 switch_event = (struct perf_switch_event){ 6340 .task = task, 6341 .next_prev = next_prev, 6342 .event_id = { 6343 .header = { 6344 /* .type */ 6345 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6346 /* .size */ 6347 }, 6348 /* .next_prev_pid */ 6349 /* .next_prev_tid */ 6350 }, 6351 }; 6352 6353 perf_event_aux(perf_event_switch_output, 6354 &switch_event, 6355 NULL); 6356 } 6357 6358 /* 6359 * IRQ throttle logging 6360 */ 6361 6362 static void perf_log_throttle(struct perf_event *event, int enable) 6363 { 6364 struct perf_output_handle handle; 6365 struct perf_sample_data sample; 6366 int ret; 6367 6368 struct { 6369 struct perf_event_header header; 6370 u64 time; 6371 u64 id; 6372 u64 stream_id; 6373 } throttle_event = { 6374 .header = { 6375 .type = PERF_RECORD_THROTTLE, 6376 .misc = 0, 6377 .size = sizeof(throttle_event), 6378 }, 6379 .time = perf_event_clock(event), 6380 .id = primary_event_id(event), 6381 .stream_id = event->id, 6382 }; 6383 6384 if (enable) 6385 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6386 6387 perf_event_header__init_id(&throttle_event.header, &sample, event); 6388 6389 ret = perf_output_begin(&handle, event, 6390 throttle_event.header.size); 6391 if (ret) 6392 return; 6393 6394 perf_output_put(&handle, throttle_event); 6395 perf_event__output_id_sample(event, &handle, &sample); 6396 perf_output_end(&handle); 6397 } 6398 6399 static void perf_log_itrace_start(struct perf_event *event) 6400 { 6401 struct perf_output_handle handle; 6402 struct perf_sample_data sample; 6403 struct perf_aux_event { 6404 struct perf_event_header header; 6405 u32 pid; 6406 u32 tid; 6407 } rec; 6408 int ret; 6409 6410 if (event->parent) 6411 event = event->parent; 6412 6413 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6414 event->hw.itrace_started) 6415 return; 6416 6417 rec.header.type = PERF_RECORD_ITRACE_START; 6418 rec.header.misc = 0; 6419 rec.header.size = sizeof(rec); 6420 rec.pid = perf_event_pid(event, current); 6421 rec.tid = perf_event_tid(event, current); 6422 6423 perf_event_header__init_id(&rec.header, &sample, event); 6424 ret = perf_output_begin(&handle, event, rec.header.size); 6425 6426 if (ret) 6427 return; 6428 6429 perf_output_put(&handle, rec); 6430 perf_event__output_id_sample(event, &handle, &sample); 6431 6432 perf_output_end(&handle); 6433 } 6434 6435 /* 6436 * Generic event overflow handling, sampling. 6437 */ 6438 6439 static int __perf_event_overflow(struct perf_event *event, 6440 int throttle, struct perf_sample_data *data, 6441 struct pt_regs *regs) 6442 { 6443 int events = atomic_read(&event->event_limit); 6444 struct hw_perf_event *hwc = &event->hw; 6445 u64 seq; 6446 int ret = 0; 6447 6448 /* 6449 * Non-sampling counters might still use the PMI to fold short 6450 * hardware counters, ignore those. 6451 */ 6452 if (unlikely(!is_sampling_event(event))) 6453 return 0; 6454 6455 seq = __this_cpu_read(perf_throttled_seq); 6456 if (seq != hwc->interrupts_seq) { 6457 hwc->interrupts_seq = seq; 6458 hwc->interrupts = 1; 6459 } else { 6460 hwc->interrupts++; 6461 if (unlikely(throttle 6462 && hwc->interrupts >= max_samples_per_tick)) { 6463 __this_cpu_inc(perf_throttled_count); 6464 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6465 hwc->interrupts = MAX_INTERRUPTS; 6466 perf_log_throttle(event, 0); 6467 ret = 1; 6468 } 6469 } 6470 6471 if (event->attr.freq) { 6472 u64 now = perf_clock(); 6473 s64 delta = now - hwc->freq_time_stamp; 6474 6475 hwc->freq_time_stamp = now; 6476 6477 if (delta > 0 && delta < 2*TICK_NSEC) 6478 perf_adjust_period(event, delta, hwc->last_period, true); 6479 } 6480 6481 /* 6482 * XXX event_limit might not quite work as expected on inherited 6483 * events 6484 */ 6485 6486 event->pending_kill = POLL_IN; 6487 if (events && atomic_dec_and_test(&event->event_limit)) { 6488 ret = 1; 6489 event->pending_kill = POLL_HUP; 6490 event->pending_disable = 1; 6491 irq_work_queue(&event->pending); 6492 } 6493 6494 if (event->overflow_handler) 6495 event->overflow_handler(event, data, regs); 6496 else 6497 perf_event_output(event, data, regs); 6498 6499 if (*perf_event_fasync(event) && event->pending_kill) { 6500 event->pending_wakeup = 1; 6501 irq_work_queue(&event->pending); 6502 } 6503 6504 return ret; 6505 } 6506 6507 int perf_event_overflow(struct perf_event *event, 6508 struct perf_sample_data *data, 6509 struct pt_regs *regs) 6510 { 6511 return __perf_event_overflow(event, 1, data, regs); 6512 } 6513 6514 /* 6515 * Generic software event infrastructure 6516 */ 6517 6518 struct swevent_htable { 6519 struct swevent_hlist *swevent_hlist; 6520 struct mutex hlist_mutex; 6521 int hlist_refcount; 6522 6523 /* Recursion avoidance in each contexts */ 6524 int recursion[PERF_NR_CONTEXTS]; 6525 }; 6526 6527 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6528 6529 /* 6530 * We directly increment event->count and keep a second value in 6531 * event->hw.period_left to count intervals. This period event 6532 * is kept in the range [-sample_period, 0] so that we can use the 6533 * sign as trigger. 6534 */ 6535 6536 u64 perf_swevent_set_period(struct perf_event *event) 6537 { 6538 struct hw_perf_event *hwc = &event->hw; 6539 u64 period = hwc->last_period; 6540 u64 nr, offset; 6541 s64 old, val; 6542 6543 hwc->last_period = hwc->sample_period; 6544 6545 again: 6546 old = val = local64_read(&hwc->period_left); 6547 if (val < 0) 6548 return 0; 6549 6550 nr = div64_u64(period + val, period); 6551 offset = nr * period; 6552 val -= offset; 6553 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6554 goto again; 6555 6556 return nr; 6557 } 6558 6559 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6560 struct perf_sample_data *data, 6561 struct pt_regs *regs) 6562 { 6563 struct hw_perf_event *hwc = &event->hw; 6564 int throttle = 0; 6565 6566 if (!overflow) 6567 overflow = perf_swevent_set_period(event); 6568 6569 if (hwc->interrupts == MAX_INTERRUPTS) 6570 return; 6571 6572 for (; overflow; overflow--) { 6573 if (__perf_event_overflow(event, throttle, 6574 data, regs)) { 6575 /* 6576 * We inhibit the overflow from happening when 6577 * hwc->interrupts == MAX_INTERRUPTS. 6578 */ 6579 break; 6580 } 6581 throttle = 1; 6582 } 6583 } 6584 6585 static void perf_swevent_event(struct perf_event *event, u64 nr, 6586 struct perf_sample_data *data, 6587 struct pt_regs *regs) 6588 { 6589 struct hw_perf_event *hwc = &event->hw; 6590 6591 local64_add(nr, &event->count); 6592 6593 if (!regs) 6594 return; 6595 6596 if (!is_sampling_event(event)) 6597 return; 6598 6599 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6600 data->period = nr; 6601 return perf_swevent_overflow(event, 1, data, regs); 6602 } else 6603 data->period = event->hw.last_period; 6604 6605 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6606 return perf_swevent_overflow(event, 1, data, regs); 6607 6608 if (local64_add_negative(nr, &hwc->period_left)) 6609 return; 6610 6611 perf_swevent_overflow(event, 0, data, regs); 6612 } 6613 6614 static int perf_exclude_event(struct perf_event *event, 6615 struct pt_regs *regs) 6616 { 6617 if (event->hw.state & PERF_HES_STOPPED) 6618 return 1; 6619 6620 if (regs) { 6621 if (event->attr.exclude_user && user_mode(regs)) 6622 return 1; 6623 6624 if (event->attr.exclude_kernel && !user_mode(regs)) 6625 return 1; 6626 } 6627 6628 return 0; 6629 } 6630 6631 static int perf_swevent_match(struct perf_event *event, 6632 enum perf_type_id type, 6633 u32 event_id, 6634 struct perf_sample_data *data, 6635 struct pt_regs *regs) 6636 { 6637 if (event->attr.type != type) 6638 return 0; 6639 6640 if (event->attr.config != event_id) 6641 return 0; 6642 6643 if (perf_exclude_event(event, regs)) 6644 return 0; 6645 6646 return 1; 6647 } 6648 6649 static inline u64 swevent_hash(u64 type, u32 event_id) 6650 { 6651 u64 val = event_id | (type << 32); 6652 6653 return hash_64(val, SWEVENT_HLIST_BITS); 6654 } 6655 6656 static inline struct hlist_head * 6657 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6658 { 6659 u64 hash = swevent_hash(type, event_id); 6660 6661 return &hlist->heads[hash]; 6662 } 6663 6664 /* For the read side: events when they trigger */ 6665 static inline struct hlist_head * 6666 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6667 { 6668 struct swevent_hlist *hlist; 6669 6670 hlist = rcu_dereference(swhash->swevent_hlist); 6671 if (!hlist) 6672 return NULL; 6673 6674 return __find_swevent_head(hlist, type, event_id); 6675 } 6676 6677 /* For the event head insertion and removal in the hlist */ 6678 static inline struct hlist_head * 6679 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6680 { 6681 struct swevent_hlist *hlist; 6682 u32 event_id = event->attr.config; 6683 u64 type = event->attr.type; 6684 6685 /* 6686 * Event scheduling is always serialized against hlist allocation 6687 * and release. Which makes the protected version suitable here. 6688 * The context lock guarantees that. 6689 */ 6690 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6691 lockdep_is_held(&event->ctx->lock)); 6692 if (!hlist) 6693 return NULL; 6694 6695 return __find_swevent_head(hlist, type, event_id); 6696 } 6697 6698 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6699 u64 nr, 6700 struct perf_sample_data *data, 6701 struct pt_regs *regs) 6702 { 6703 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6704 struct perf_event *event; 6705 struct hlist_head *head; 6706 6707 rcu_read_lock(); 6708 head = find_swevent_head_rcu(swhash, type, event_id); 6709 if (!head) 6710 goto end; 6711 6712 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6713 if (perf_swevent_match(event, type, event_id, data, regs)) 6714 perf_swevent_event(event, nr, data, regs); 6715 } 6716 end: 6717 rcu_read_unlock(); 6718 } 6719 6720 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6721 6722 int perf_swevent_get_recursion_context(void) 6723 { 6724 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6725 6726 return get_recursion_context(swhash->recursion); 6727 } 6728 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6729 6730 inline void perf_swevent_put_recursion_context(int rctx) 6731 { 6732 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6733 6734 put_recursion_context(swhash->recursion, rctx); 6735 } 6736 6737 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6738 { 6739 struct perf_sample_data data; 6740 6741 if (WARN_ON_ONCE(!regs)) 6742 return; 6743 6744 perf_sample_data_init(&data, addr, 0); 6745 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6746 } 6747 6748 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6749 { 6750 int rctx; 6751 6752 preempt_disable_notrace(); 6753 rctx = perf_swevent_get_recursion_context(); 6754 if (unlikely(rctx < 0)) 6755 goto fail; 6756 6757 ___perf_sw_event(event_id, nr, regs, addr); 6758 6759 perf_swevent_put_recursion_context(rctx); 6760 fail: 6761 preempt_enable_notrace(); 6762 } 6763 6764 static void perf_swevent_read(struct perf_event *event) 6765 { 6766 } 6767 6768 static int perf_swevent_add(struct perf_event *event, int flags) 6769 { 6770 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6771 struct hw_perf_event *hwc = &event->hw; 6772 struct hlist_head *head; 6773 6774 if (is_sampling_event(event)) { 6775 hwc->last_period = hwc->sample_period; 6776 perf_swevent_set_period(event); 6777 } 6778 6779 hwc->state = !(flags & PERF_EF_START); 6780 6781 head = find_swevent_head(swhash, event); 6782 if (WARN_ON_ONCE(!head)) 6783 return -EINVAL; 6784 6785 hlist_add_head_rcu(&event->hlist_entry, head); 6786 perf_event_update_userpage(event); 6787 6788 return 0; 6789 } 6790 6791 static void perf_swevent_del(struct perf_event *event, int flags) 6792 { 6793 hlist_del_rcu(&event->hlist_entry); 6794 } 6795 6796 static void perf_swevent_start(struct perf_event *event, int flags) 6797 { 6798 event->hw.state = 0; 6799 } 6800 6801 static void perf_swevent_stop(struct perf_event *event, int flags) 6802 { 6803 event->hw.state = PERF_HES_STOPPED; 6804 } 6805 6806 /* Deref the hlist from the update side */ 6807 static inline struct swevent_hlist * 6808 swevent_hlist_deref(struct swevent_htable *swhash) 6809 { 6810 return rcu_dereference_protected(swhash->swevent_hlist, 6811 lockdep_is_held(&swhash->hlist_mutex)); 6812 } 6813 6814 static void swevent_hlist_release(struct swevent_htable *swhash) 6815 { 6816 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6817 6818 if (!hlist) 6819 return; 6820 6821 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6822 kfree_rcu(hlist, rcu_head); 6823 } 6824 6825 static void swevent_hlist_put_cpu(int cpu) 6826 { 6827 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6828 6829 mutex_lock(&swhash->hlist_mutex); 6830 6831 if (!--swhash->hlist_refcount) 6832 swevent_hlist_release(swhash); 6833 6834 mutex_unlock(&swhash->hlist_mutex); 6835 } 6836 6837 static void swevent_hlist_put(void) 6838 { 6839 int cpu; 6840 6841 for_each_possible_cpu(cpu) 6842 swevent_hlist_put_cpu(cpu); 6843 } 6844 6845 static int swevent_hlist_get_cpu(int cpu) 6846 { 6847 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6848 int err = 0; 6849 6850 mutex_lock(&swhash->hlist_mutex); 6851 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6852 struct swevent_hlist *hlist; 6853 6854 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6855 if (!hlist) { 6856 err = -ENOMEM; 6857 goto exit; 6858 } 6859 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6860 } 6861 swhash->hlist_refcount++; 6862 exit: 6863 mutex_unlock(&swhash->hlist_mutex); 6864 6865 return err; 6866 } 6867 6868 static int swevent_hlist_get(void) 6869 { 6870 int err, cpu, failed_cpu; 6871 6872 get_online_cpus(); 6873 for_each_possible_cpu(cpu) { 6874 err = swevent_hlist_get_cpu(cpu); 6875 if (err) { 6876 failed_cpu = cpu; 6877 goto fail; 6878 } 6879 } 6880 put_online_cpus(); 6881 6882 return 0; 6883 fail: 6884 for_each_possible_cpu(cpu) { 6885 if (cpu == failed_cpu) 6886 break; 6887 swevent_hlist_put_cpu(cpu); 6888 } 6889 6890 put_online_cpus(); 6891 return err; 6892 } 6893 6894 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6895 6896 static void sw_perf_event_destroy(struct perf_event *event) 6897 { 6898 u64 event_id = event->attr.config; 6899 6900 WARN_ON(event->parent); 6901 6902 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6903 swevent_hlist_put(); 6904 } 6905 6906 static int perf_swevent_init(struct perf_event *event) 6907 { 6908 u64 event_id = event->attr.config; 6909 6910 if (event->attr.type != PERF_TYPE_SOFTWARE) 6911 return -ENOENT; 6912 6913 /* 6914 * no branch sampling for software events 6915 */ 6916 if (has_branch_stack(event)) 6917 return -EOPNOTSUPP; 6918 6919 switch (event_id) { 6920 case PERF_COUNT_SW_CPU_CLOCK: 6921 case PERF_COUNT_SW_TASK_CLOCK: 6922 return -ENOENT; 6923 6924 default: 6925 break; 6926 } 6927 6928 if (event_id >= PERF_COUNT_SW_MAX) 6929 return -ENOENT; 6930 6931 if (!event->parent) { 6932 int err; 6933 6934 err = swevent_hlist_get(); 6935 if (err) 6936 return err; 6937 6938 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6939 event->destroy = sw_perf_event_destroy; 6940 } 6941 6942 return 0; 6943 } 6944 6945 static struct pmu perf_swevent = { 6946 .task_ctx_nr = perf_sw_context, 6947 6948 .capabilities = PERF_PMU_CAP_NO_NMI, 6949 6950 .event_init = perf_swevent_init, 6951 .add = perf_swevent_add, 6952 .del = perf_swevent_del, 6953 .start = perf_swevent_start, 6954 .stop = perf_swevent_stop, 6955 .read = perf_swevent_read, 6956 }; 6957 6958 #ifdef CONFIG_EVENT_TRACING 6959 6960 static int perf_tp_filter_match(struct perf_event *event, 6961 struct perf_sample_data *data) 6962 { 6963 void *record = data->raw->data; 6964 6965 /* only top level events have filters set */ 6966 if (event->parent) 6967 event = event->parent; 6968 6969 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6970 return 1; 6971 return 0; 6972 } 6973 6974 static int perf_tp_event_match(struct perf_event *event, 6975 struct perf_sample_data *data, 6976 struct pt_regs *regs) 6977 { 6978 if (event->hw.state & PERF_HES_STOPPED) 6979 return 0; 6980 /* 6981 * All tracepoints are from kernel-space. 6982 */ 6983 if (event->attr.exclude_kernel) 6984 return 0; 6985 6986 if (!perf_tp_filter_match(event, data)) 6987 return 0; 6988 6989 return 1; 6990 } 6991 6992 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6993 struct pt_regs *regs, struct hlist_head *head, int rctx, 6994 struct task_struct *task) 6995 { 6996 struct perf_sample_data data; 6997 struct perf_event *event; 6998 6999 struct perf_raw_record raw = { 7000 .size = entry_size, 7001 .data = record, 7002 }; 7003 7004 perf_sample_data_init(&data, addr, 0); 7005 data.raw = &raw; 7006 7007 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7008 if (perf_tp_event_match(event, &data, regs)) 7009 perf_swevent_event(event, count, &data, regs); 7010 } 7011 7012 /* 7013 * If we got specified a target task, also iterate its context and 7014 * deliver this event there too. 7015 */ 7016 if (task && task != current) { 7017 struct perf_event_context *ctx; 7018 struct trace_entry *entry = record; 7019 7020 rcu_read_lock(); 7021 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7022 if (!ctx) 7023 goto unlock; 7024 7025 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7026 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7027 continue; 7028 if (event->attr.config != entry->type) 7029 continue; 7030 if (perf_tp_event_match(event, &data, regs)) 7031 perf_swevent_event(event, count, &data, regs); 7032 } 7033 unlock: 7034 rcu_read_unlock(); 7035 } 7036 7037 perf_swevent_put_recursion_context(rctx); 7038 } 7039 EXPORT_SYMBOL_GPL(perf_tp_event); 7040 7041 static void tp_perf_event_destroy(struct perf_event *event) 7042 { 7043 perf_trace_destroy(event); 7044 } 7045 7046 static int perf_tp_event_init(struct perf_event *event) 7047 { 7048 int err; 7049 7050 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7051 return -ENOENT; 7052 7053 /* 7054 * no branch sampling for tracepoint events 7055 */ 7056 if (has_branch_stack(event)) 7057 return -EOPNOTSUPP; 7058 7059 err = perf_trace_init(event); 7060 if (err) 7061 return err; 7062 7063 event->destroy = tp_perf_event_destroy; 7064 7065 return 0; 7066 } 7067 7068 static struct pmu perf_tracepoint = { 7069 .task_ctx_nr = perf_sw_context, 7070 7071 .event_init = perf_tp_event_init, 7072 .add = perf_trace_add, 7073 .del = perf_trace_del, 7074 .start = perf_swevent_start, 7075 .stop = perf_swevent_stop, 7076 .read = perf_swevent_read, 7077 }; 7078 7079 static inline void perf_tp_register(void) 7080 { 7081 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7082 } 7083 7084 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7085 { 7086 char *filter_str; 7087 int ret; 7088 7089 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7090 return -EINVAL; 7091 7092 filter_str = strndup_user(arg, PAGE_SIZE); 7093 if (IS_ERR(filter_str)) 7094 return PTR_ERR(filter_str); 7095 7096 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 7097 7098 kfree(filter_str); 7099 return ret; 7100 } 7101 7102 static void perf_event_free_filter(struct perf_event *event) 7103 { 7104 ftrace_profile_free_filter(event); 7105 } 7106 7107 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7108 { 7109 struct bpf_prog *prog; 7110 7111 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7112 return -EINVAL; 7113 7114 if (event->tp_event->prog) 7115 return -EEXIST; 7116 7117 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 7118 /* bpf programs can only be attached to u/kprobes */ 7119 return -EINVAL; 7120 7121 prog = bpf_prog_get(prog_fd); 7122 if (IS_ERR(prog)) 7123 return PTR_ERR(prog); 7124 7125 if (prog->type != BPF_PROG_TYPE_KPROBE) { 7126 /* valid fd, but invalid bpf program type */ 7127 bpf_prog_put(prog); 7128 return -EINVAL; 7129 } 7130 7131 event->tp_event->prog = prog; 7132 7133 return 0; 7134 } 7135 7136 static void perf_event_free_bpf_prog(struct perf_event *event) 7137 { 7138 struct bpf_prog *prog; 7139 7140 if (!event->tp_event) 7141 return; 7142 7143 prog = event->tp_event->prog; 7144 if (prog) { 7145 event->tp_event->prog = NULL; 7146 bpf_prog_put(prog); 7147 } 7148 } 7149 7150 #else 7151 7152 static inline void perf_tp_register(void) 7153 { 7154 } 7155 7156 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7157 { 7158 return -ENOENT; 7159 } 7160 7161 static void perf_event_free_filter(struct perf_event *event) 7162 { 7163 } 7164 7165 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7166 { 7167 return -ENOENT; 7168 } 7169 7170 static void perf_event_free_bpf_prog(struct perf_event *event) 7171 { 7172 } 7173 #endif /* CONFIG_EVENT_TRACING */ 7174 7175 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7176 void perf_bp_event(struct perf_event *bp, void *data) 7177 { 7178 struct perf_sample_data sample; 7179 struct pt_regs *regs = data; 7180 7181 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7182 7183 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7184 perf_swevent_event(bp, 1, &sample, regs); 7185 } 7186 #endif 7187 7188 /* 7189 * hrtimer based swevent callback 7190 */ 7191 7192 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7193 { 7194 enum hrtimer_restart ret = HRTIMER_RESTART; 7195 struct perf_sample_data data; 7196 struct pt_regs *regs; 7197 struct perf_event *event; 7198 u64 period; 7199 7200 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7201 7202 if (event->state != PERF_EVENT_STATE_ACTIVE) 7203 return HRTIMER_NORESTART; 7204 7205 event->pmu->read(event); 7206 7207 perf_sample_data_init(&data, 0, event->hw.last_period); 7208 regs = get_irq_regs(); 7209 7210 if (regs && !perf_exclude_event(event, regs)) { 7211 if (!(event->attr.exclude_idle && is_idle_task(current))) 7212 if (__perf_event_overflow(event, 1, &data, regs)) 7213 ret = HRTIMER_NORESTART; 7214 } 7215 7216 period = max_t(u64, 10000, event->hw.sample_period); 7217 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7218 7219 return ret; 7220 } 7221 7222 static void perf_swevent_start_hrtimer(struct perf_event *event) 7223 { 7224 struct hw_perf_event *hwc = &event->hw; 7225 s64 period; 7226 7227 if (!is_sampling_event(event)) 7228 return; 7229 7230 period = local64_read(&hwc->period_left); 7231 if (period) { 7232 if (period < 0) 7233 period = 10000; 7234 7235 local64_set(&hwc->period_left, 0); 7236 } else { 7237 period = max_t(u64, 10000, hwc->sample_period); 7238 } 7239 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 7240 HRTIMER_MODE_REL_PINNED); 7241 } 7242 7243 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 7244 { 7245 struct hw_perf_event *hwc = &event->hw; 7246 7247 if (is_sampling_event(event)) { 7248 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 7249 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 7250 7251 hrtimer_cancel(&hwc->hrtimer); 7252 } 7253 } 7254 7255 static void perf_swevent_init_hrtimer(struct perf_event *event) 7256 { 7257 struct hw_perf_event *hwc = &event->hw; 7258 7259 if (!is_sampling_event(event)) 7260 return; 7261 7262 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7263 hwc->hrtimer.function = perf_swevent_hrtimer; 7264 7265 /* 7266 * Since hrtimers have a fixed rate, we can do a static freq->period 7267 * mapping and avoid the whole period adjust feedback stuff. 7268 */ 7269 if (event->attr.freq) { 7270 long freq = event->attr.sample_freq; 7271 7272 event->attr.sample_period = NSEC_PER_SEC / freq; 7273 hwc->sample_period = event->attr.sample_period; 7274 local64_set(&hwc->period_left, hwc->sample_period); 7275 hwc->last_period = hwc->sample_period; 7276 event->attr.freq = 0; 7277 } 7278 } 7279 7280 /* 7281 * Software event: cpu wall time clock 7282 */ 7283 7284 static void cpu_clock_event_update(struct perf_event *event) 7285 { 7286 s64 prev; 7287 u64 now; 7288 7289 now = local_clock(); 7290 prev = local64_xchg(&event->hw.prev_count, now); 7291 local64_add(now - prev, &event->count); 7292 } 7293 7294 static void cpu_clock_event_start(struct perf_event *event, int flags) 7295 { 7296 local64_set(&event->hw.prev_count, local_clock()); 7297 perf_swevent_start_hrtimer(event); 7298 } 7299 7300 static void cpu_clock_event_stop(struct perf_event *event, int flags) 7301 { 7302 perf_swevent_cancel_hrtimer(event); 7303 cpu_clock_event_update(event); 7304 } 7305 7306 static int cpu_clock_event_add(struct perf_event *event, int flags) 7307 { 7308 if (flags & PERF_EF_START) 7309 cpu_clock_event_start(event, flags); 7310 perf_event_update_userpage(event); 7311 7312 return 0; 7313 } 7314 7315 static void cpu_clock_event_del(struct perf_event *event, int flags) 7316 { 7317 cpu_clock_event_stop(event, flags); 7318 } 7319 7320 static void cpu_clock_event_read(struct perf_event *event) 7321 { 7322 cpu_clock_event_update(event); 7323 } 7324 7325 static int cpu_clock_event_init(struct perf_event *event) 7326 { 7327 if (event->attr.type != PERF_TYPE_SOFTWARE) 7328 return -ENOENT; 7329 7330 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7331 return -ENOENT; 7332 7333 /* 7334 * no branch sampling for software events 7335 */ 7336 if (has_branch_stack(event)) 7337 return -EOPNOTSUPP; 7338 7339 perf_swevent_init_hrtimer(event); 7340 7341 return 0; 7342 } 7343 7344 static struct pmu perf_cpu_clock = { 7345 .task_ctx_nr = perf_sw_context, 7346 7347 .capabilities = PERF_PMU_CAP_NO_NMI, 7348 7349 .event_init = cpu_clock_event_init, 7350 .add = cpu_clock_event_add, 7351 .del = cpu_clock_event_del, 7352 .start = cpu_clock_event_start, 7353 .stop = cpu_clock_event_stop, 7354 .read = cpu_clock_event_read, 7355 }; 7356 7357 /* 7358 * Software event: task time clock 7359 */ 7360 7361 static void task_clock_event_update(struct perf_event *event, u64 now) 7362 { 7363 u64 prev; 7364 s64 delta; 7365 7366 prev = local64_xchg(&event->hw.prev_count, now); 7367 delta = now - prev; 7368 local64_add(delta, &event->count); 7369 } 7370 7371 static void task_clock_event_start(struct perf_event *event, int flags) 7372 { 7373 local64_set(&event->hw.prev_count, event->ctx->time); 7374 perf_swevent_start_hrtimer(event); 7375 } 7376 7377 static void task_clock_event_stop(struct perf_event *event, int flags) 7378 { 7379 perf_swevent_cancel_hrtimer(event); 7380 task_clock_event_update(event, event->ctx->time); 7381 } 7382 7383 static int task_clock_event_add(struct perf_event *event, int flags) 7384 { 7385 if (flags & PERF_EF_START) 7386 task_clock_event_start(event, flags); 7387 perf_event_update_userpage(event); 7388 7389 return 0; 7390 } 7391 7392 static void task_clock_event_del(struct perf_event *event, int flags) 7393 { 7394 task_clock_event_stop(event, PERF_EF_UPDATE); 7395 } 7396 7397 static void task_clock_event_read(struct perf_event *event) 7398 { 7399 u64 now = perf_clock(); 7400 u64 delta = now - event->ctx->timestamp; 7401 u64 time = event->ctx->time + delta; 7402 7403 task_clock_event_update(event, time); 7404 } 7405 7406 static int task_clock_event_init(struct perf_event *event) 7407 { 7408 if (event->attr.type != PERF_TYPE_SOFTWARE) 7409 return -ENOENT; 7410 7411 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7412 return -ENOENT; 7413 7414 /* 7415 * no branch sampling for software events 7416 */ 7417 if (has_branch_stack(event)) 7418 return -EOPNOTSUPP; 7419 7420 perf_swevent_init_hrtimer(event); 7421 7422 return 0; 7423 } 7424 7425 static struct pmu perf_task_clock = { 7426 .task_ctx_nr = perf_sw_context, 7427 7428 .capabilities = PERF_PMU_CAP_NO_NMI, 7429 7430 .event_init = task_clock_event_init, 7431 .add = task_clock_event_add, 7432 .del = task_clock_event_del, 7433 .start = task_clock_event_start, 7434 .stop = task_clock_event_stop, 7435 .read = task_clock_event_read, 7436 }; 7437 7438 static void perf_pmu_nop_void(struct pmu *pmu) 7439 { 7440 } 7441 7442 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 7443 { 7444 } 7445 7446 static int perf_pmu_nop_int(struct pmu *pmu) 7447 { 7448 return 0; 7449 } 7450 7451 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 7452 7453 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 7454 { 7455 __this_cpu_write(nop_txn_flags, flags); 7456 7457 if (flags & ~PERF_PMU_TXN_ADD) 7458 return; 7459 7460 perf_pmu_disable(pmu); 7461 } 7462 7463 static int perf_pmu_commit_txn(struct pmu *pmu) 7464 { 7465 unsigned int flags = __this_cpu_read(nop_txn_flags); 7466 7467 __this_cpu_write(nop_txn_flags, 0); 7468 7469 if (flags & ~PERF_PMU_TXN_ADD) 7470 return 0; 7471 7472 perf_pmu_enable(pmu); 7473 return 0; 7474 } 7475 7476 static void perf_pmu_cancel_txn(struct pmu *pmu) 7477 { 7478 unsigned int flags = __this_cpu_read(nop_txn_flags); 7479 7480 __this_cpu_write(nop_txn_flags, 0); 7481 7482 if (flags & ~PERF_PMU_TXN_ADD) 7483 return; 7484 7485 perf_pmu_enable(pmu); 7486 } 7487 7488 static int perf_event_idx_default(struct perf_event *event) 7489 { 7490 return 0; 7491 } 7492 7493 /* 7494 * Ensures all contexts with the same task_ctx_nr have the same 7495 * pmu_cpu_context too. 7496 */ 7497 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7498 { 7499 struct pmu *pmu; 7500 7501 if (ctxn < 0) 7502 return NULL; 7503 7504 list_for_each_entry(pmu, &pmus, entry) { 7505 if (pmu->task_ctx_nr == ctxn) 7506 return pmu->pmu_cpu_context; 7507 } 7508 7509 return NULL; 7510 } 7511 7512 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7513 { 7514 int cpu; 7515 7516 for_each_possible_cpu(cpu) { 7517 struct perf_cpu_context *cpuctx; 7518 7519 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7520 7521 if (cpuctx->unique_pmu == old_pmu) 7522 cpuctx->unique_pmu = pmu; 7523 } 7524 } 7525 7526 static void free_pmu_context(struct pmu *pmu) 7527 { 7528 struct pmu *i; 7529 7530 mutex_lock(&pmus_lock); 7531 /* 7532 * Like a real lame refcount. 7533 */ 7534 list_for_each_entry(i, &pmus, entry) { 7535 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7536 update_pmu_context(i, pmu); 7537 goto out; 7538 } 7539 } 7540 7541 free_percpu(pmu->pmu_cpu_context); 7542 out: 7543 mutex_unlock(&pmus_lock); 7544 } 7545 static struct idr pmu_idr; 7546 7547 static ssize_t 7548 type_show(struct device *dev, struct device_attribute *attr, char *page) 7549 { 7550 struct pmu *pmu = dev_get_drvdata(dev); 7551 7552 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7553 } 7554 static DEVICE_ATTR_RO(type); 7555 7556 static ssize_t 7557 perf_event_mux_interval_ms_show(struct device *dev, 7558 struct device_attribute *attr, 7559 char *page) 7560 { 7561 struct pmu *pmu = dev_get_drvdata(dev); 7562 7563 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7564 } 7565 7566 static DEFINE_MUTEX(mux_interval_mutex); 7567 7568 static ssize_t 7569 perf_event_mux_interval_ms_store(struct device *dev, 7570 struct device_attribute *attr, 7571 const char *buf, size_t count) 7572 { 7573 struct pmu *pmu = dev_get_drvdata(dev); 7574 int timer, cpu, ret; 7575 7576 ret = kstrtoint(buf, 0, &timer); 7577 if (ret) 7578 return ret; 7579 7580 if (timer < 1) 7581 return -EINVAL; 7582 7583 /* same value, noting to do */ 7584 if (timer == pmu->hrtimer_interval_ms) 7585 return count; 7586 7587 mutex_lock(&mux_interval_mutex); 7588 pmu->hrtimer_interval_ms = timer; 7589 7590 /* update all cpuctx for this PMU */ 7591 get_online_cpus(); 7592 for_each_online_cpu(cpu) { 7593 struct perf_cpu_context *cpuctx; 7594 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7595 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7596 7597 cpu_function_call(cpu, 7598 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7599 } 7600 put_online_cpus(); 7601 mutex_unlock(&mux_interval_mutex); 7602 7603 return count; 7604 } 7605 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7606 7607 static struct attribute *pmu_dev_attrs[] = { 7608 &dev_attr_type.attr, 7609 &dev_attr_perf_event_mux_interval_ms.attr, 7610 NULL, 7611 }; 7612 ATTRIBUTE_GROUPS(pmu_dev); 7613 7614 static int pmu_bus_running; 7615 static struct bus_type pmu_bus = { 7616 .name = "event_source", 7617 .dev_groups = pmu_dev_groups, 7618 }; 7619 7620 static void pmu_dev_release(struct device *dev) 7621 { 7622 kfree(dev); 7623 } 7624 7625 static int pmu_dev_alloc(struct pmu *pmu) 7626 { 7627 int ret = -ENOMEM; 7628 7629 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7630 if (!pmu->dev) 7631 goto out; 7632 7633 pmu->dev->groups = pmu->attr_groups; 7634 device_initialize(pmu->dev); 7635 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7636 if (ret) 7637 goto free_dev; 7638 7639 dev_set_drvdata(pmu->dev, pmu); 7640 pmu->dev->bus = &pmu_bus; 7641 pmu->dev->release = pmu_dev_release; 7642 ret = device_add(pmu->dev); 7643 if (ret) 7644 goto free_dev; 7645 7646 out: 7647 return ret; 7648 7649 free_dev: 7650 put_device(pmu->dev); 7651 goto out; 7652 } 7653 7654 static struct lock_class_key cpuctx_mutex; 7655 static struct lock_class_key cpuctx_lock; 7656 7657 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7658 { 7659 int cpu, ret; 7660 7661 mutex_lock(&pmus_lock); 7662 ret = -ENOMEM; 7663 pmu->pmu_disable_count = alloc_percpu(int); 7664 if (!pmu->pmu_disable_count) 7665 goto unlock; 7666 7667 pmu->type = -1; 7668 if (!name) 7669 goto skip_type; 7670 pmu->name = name; 7671 7672 if (type < 0) { 7673 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7674 if (type < 0) { 7675 ret = type; 7676 goto free_pdc; 7677 } 7678 } 7679 pmu->type = type; 7680 7681 if (pmu_bus_running) { 7682 ret = pmu_dev_alloc(pmu); 7683 if (ret) 7684 goto free_idr; 7685 } 7686 7687 skip_type: 7688 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7689 if (pmu->pmu_cpu_context) 7690 goto got_cpu_context; 7691 7692 ret = -ENOMEM; 7693 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7694 if (!pmu->pmu_cpu_context) 7695 goto free_dev; 7696 7697 for_each_possible_cpu(cpu) { 7698 struct perf_cpu_context *cpuctx; 7699 7700 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7701 __perf_event_init_context(&cpuctx->ctx); 7702 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7703 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7704 cpuctx->ctx.pmu = pmu; 7705 7706 __perf_mux_hrtimer_init(cpuctx, cpu); 7707 7708 cpuctx->unique_pmu = pmu; 7709 } 7710 7711 got_cpu_context: 7712 if (!pmu->start_txn) { 7713 if (pmu->pmu_enable) { 7714 /* 7715 * If we have pmu_enable/pmu_disable calls, install 7716 * transaction stubs that use that to try and batch 7717 * hardware accesses. 7718 */ 7719 pmu->start_txn = perf_pmu_start_txn; 7720 pmu->commit_txn = perf_pmu_commit_txn; 7721 pmu->cancel_txn = perf_pmu_cancel_txn; 7722 } else { 7723 pmu->start_txn = perf_pmu_nop_txn; 7724 pmu->commit_txn = perf_pmu_nop_int; 7725 pmu->cancel_txn = perf_pmu_nop_void; 7726 } 7727 } 7728 7729 if (!pmu->pmu_enable) { 7730 pmu->pmu_enable = perf_pmu_nop_void; 7731 pmu->pmu_disable = perf_pmu_nop_void; 7732 } 7733 7734 if (!pmu->event_idx) 7735 pmu->event_idx = perf_event_idx_default; 7736 7737 list_add_rcu(&pmu->entry, &pmus); 7738 atomic_set(&pmu->exclusive_cnt, 0); 7739 ret = 0; 7740 unlock: 7741 mutex_unlock(&pmus_lock); 7742 7743 return ret; 7744 7745 free_dev: 7746 device_del(pmu->dev); 7747 put_device(pmu->dev); 7748 7749 free_idr: 7750 if (pmu->type >= PERF_TYPE_MAX) 7751 idr_remove(&pmu_idr, pmu->type); 7752 7753 free_pdc: 7754 free_percpu(pmu->pmu_disable_count); 7755 goto unlock; 7756 } 7757 EXPORT_SYMBOL_GPL(perf_pmu_register); 7758 7759 void perf_pmu_unregister(struct pmu *pmu) 7760 { 7761 mutex_lock(&pmus_lock); 7762 list_del_rcu(&pmu->entry); 7763 mutex_unlock(&pmus_lock); 7764 7765 /* 7766 * We dereference the pmu list under both SRCU and regular RCU, so 7767 * synchronize against both of those. 7768 */ 7769 synchronize_srcu(&pmus_srcu); 7770 synchronize_rcu(); 7771 7772 free_percpu(pmu->pmu_disable_count); 7773 if (pmu->type >= PERF_TYPE_MAX) 7774 idr_remove(&pmu_idr, pmu->type); 7775 device_del(pmu->dev); 7776 put_device(pmu->dev); 7777 free_pmu_context(pmu); 7778 } 7779 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7780 7781 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7782 { 7783 struct perf_event_context *ctx = NULL; 7784 int ret; 7785 7786 if (!try_module_get(pmu->module)) 7787 return -ENODEV; 7788 7789 if (event->group_leader != event) { 7790 /* 7791 * This ctx->mutex can nest when we're called through 7792 * inheritance. See the perf_event_ctx_lock_nested() comment. 7793 */ 7794 ctx = perf_event_ctx_lock_nested(event->group_leader, 7795 SINGLE_DEPTH_NESTING); 7796 BUG_ON(!ctx); 7797 } 7798 7799 event->pmu = pmu; 7800 ret = pmu->event_init(event); 7801 7802 if (ctx) 7803 perf_event_ctx_unlock(event->group_leader, ctx); 7804 7805 if (ret) 7806 module_put(pmu->module); 7807 7808 return ret; 7809 } 7810 7811 static struct pmu *perf_init_event(struct perf_event *event) 7812 { 7813 struct pmu *pmu = NULL; 7814 int idx; 7815 int ret; 7816 7817 idx = srcu_read_lock(&pmus_srcu); 7818 7819 rcu_read_lock(); 7820 pmu = idr_find(&pmu_idr, event->attr.type); 7821 rcu_read_unlock(); 7822 if (pmu) { 7823 ret = perf_try_init_event(pmu, event); 7824 if (ret) 7825 pmu = ERR_PTR(ret); 7826 goto unlock; 7827 } 7828 7829 list_for_each_entry_rcu(pmu, &pmus, entry) { 7830 ret = perf_try_init_event(pmu, event); 7831 if (!ret) 7832 goto unlock; 7833 7834 if (ret != -ENOENT) { 7835 pmu = ERR_PTR(ret); 7836 goto unlock; 7837 } 7838 } 7839 pmu = ERR_PTR(-ENOENT); 7840 unlock: 7841 srcu_read_unlock(&pmus_srcu, idx); 7842 7843 return pmu; 7844 } 7845 7846 static void account_event_cpu(struct perf_event *event, int cpu) 7847 { 7848 if (event->parent) 7849 return; 7850 7851 if (is_cgroup_event(event)) 7852 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7853 } 7854 7855 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 7856 static void account_freq_event_nohz(void) 7857 { 7858 #ifdef CONFIG_NO_HZ_FULL 7859 /* Lock so we don't race with concurrent unaccount */ 7860 spin_lock(&nr_freq_lock); 7861 if (atomic_inc_return(&nr_freq_events) == 1) 7862 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 7863 spin_unlock(&nr_freq_lock); 7864 #endif 7865 } 7866 7867 static void account_freq_event(void) 7868 { 7869 if (tick_nohz_full_enabled()) 7870 account_freq_event_nohz(); 7871 else 7872 atomic_inc(&nr_freq_events); 7873 } 7874 7875 7876 static void account_event(struct perf_event *event) 7877 { 7878 bool inc = false; 7879 7880 if (event->parent) 7881 return; 7882 7883 if (event->attach_state & PERF_ATTACH_TASK) 7884 inc = true; 7885 if (event->attr.mmap || event->attr.mmap_data) 7886 atomic_inc(&nr_mmap_events); 7887 if (event->attr.comm) 7888 atomic_inc(&nr_comm_events); 7889 if (event->attr.task) 7890 atomic_inc(&nr_task_events); 7891 if (event->attr.freq) 7892 account_freq_event(); 7893 if (event->attr.context_switch) { 7894 atomic_inc(&nr_switch_events); 7895 inc = true; 7896 } 7897 if (has_branch_stack(event)) 7898 inc = true; 7899 if (is_cgroup_event(event)) 7900 inc = true; 7901 7902 if (inc) { 7903 if (atomic_inc_not_zero(&perf_sched_count)) 7904 goto enabled; 7905 7906 mutex_lock(&perf_sched_mutex); 7907 if (!atomic_read(&perf_sched_count)) { 7908 static_branch_enable(&perf_sched_events); 7909 /* 7910 * Guarantee that all CPUs observe they key change and 7911 * call the perf scheduling hooks before proceeding to 7912 * install events that need them. 7913 */ 7914 synchronize_sched(); 7915 } 7916 /* 7917 * Now that we have waited for the sync_sched(), allow further 7918 * increments to by-pass the mutex. 7919 */ 7920 atomic_inc(&perf_sched_count); 7921 mutex_unlock(&perf_sched_mutex); 7922 } 7923 enabled: 7924 7925 account_event_cpu(event, event->cpu); 7926 } 7927 7928 /* 7929 * Allocate and initialize a event structure 7930 */ 7931 static struct perf_event * 7932 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7933 struct task_struct *task, 7934 struct perf_event *group_leader, 7935 struct perf_event *parent_event, 7936 perf_overflow_handler_t overflow_handler, 7937 void *context, int cgroup_fd) 7938 { 7939 struct pmu *pmu; 7940 struct perf_event *event; 7941 struct hw_perf_event *hwc; 7942 long err = -EINVAL; 7943 7944 if ((unsigned)cpu >= nr_cpu_ids) { 7945 if (!task || cpu != -1) 7946 return ERR_PTR(-EINVAL); 7947 } 7948 7949 event = kzalloc(sizeof(*event), GFP_KERNEL); 7950 if (!event) 7951 return ERR_PTR(-ENOMEM); 7952 7953 /* 7954 * Single events are their own group leaders, with an 7955 * empty sibling list: 7956 */ 7957 if (!group_leader) 7958 group_leader = event; 7959 7960 mutex_init(&event->child_mutex); 7961 INIT_LIST_HEAD(&event->child_list); 7962 7963 INIT_LIST_HEAD(&event->group_entry); 7964 INIT_LIST_HEAD(&event->event_entry); 7965 INIT_LIST_HEAD(&event->sibling_list); 7966 INIT_LIST_HEAD(&event->rb_entry); 7967 INIT_LIST_HEAD(&event->active_entry); 7968 INIT_HLIST_NODE(&event->hlist_entry); 7969 7970 7971 init_waitqueue_head(&event->waitq); 7972 init_irq_work(&event->pending, perf_pending_event); 7973 7974 mutex_init(&event->mmap_mutex); 7975 7976 atomic_long_set(&event->refcount, 1); 7977 event->cpu = cpu; 7978 event->attr = *attr; 7979 event->group_leader = group_leader; 7980 event->pmu = NULL; 7981 event->oncpu = -1; 7982 7983 event->parent = parent_event; 7984 7985 event->ns = get_pid_ns(task_active_pid_ns(current)); 7986 event->id = atomic64_inc_return(&perf_event_id); 7987 7988 event->state = PERF_EVENT_STATE_INACTIVE; 7989 7990 if (task) { 7991 event->attach_state = PERF_ATTACH_TASK; 7992 /* 7993 * XXX pmu::event_init needs to know what task to account to 7994 * and we cannot use the ctx information because we need the 7995 * pmu before we get a ctx. 7996 */ 7997 event->hw.target = task; 7998 } 7999 8000 event->clock = &local_clock; 8001 if (parent_event) 8002 event->clock = parent_event->clock; 8003 8004 if (!overflow_handler && parent_event) { 8005 overflow_handler = parent_event->overflow_handler; 8006 context = parent_event->overflow_handler_context; 8007 } 8008 8009 event->overflow_handler = overflow_handler; 8010 event->overflow_handler_context = context; 8011 8012 perf_event__state_init(event); 8013 8014 pmu = NULL; 8015 8016 hwc = &event->hw; 8017 hwc->sample_period = attr->sample_period; 8018 if (attr->freq && attr->sample_freq) 8019 hwc->sample_period = 1; 8020 hwc->last_period = hwc->sample_period; 8021 8022 local64_set(&hwc->period_left, hwc->sample_period); 8023 8024 /* 8025 * we currently do not support PERF_FORMAT_GROUP on inherited events 8026 */ 8027 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8028 goto err_ns; 8029 8030 if (!has_branch_stack(event)) 8031 event->attr.branch_sample_type = 0; 8032 8033 if (cgroup_fd != -1) { 8034 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8035 if (err) 8036 goto err_ns; 8037 } 8038 8039 pmu = perf_init_event(event); 8040 if (!pmu) 8041 goto err_ns; 8042 else if (IS_ERR(pmu)) { 8043 err = PTR_ERR(pmu); 8044 goto err_ns; 8045 } 8046 8047 err = exclusive_event_init(event); 8048 if (err) 8049 goto err_pmu; 8050 8051 if (!event->parent) { 8052 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8053 err = get_callchain_buffers(); 8054 if (err) 8055 goto err_per_task; 8056 } 8057 } 8058 8059 /* symmetric to unaccount_event() in _free_event() */ 8060 account_event(event); 8061 8062 return event; 8063 8064 err_per_task: 8065 exclusive_event_destroy(event); 8066 8067 err_pmu: 8068 if (event->destroy) 8069 event->destroy(event); 8070 module_put(pmu->module); 8071 err_ns: 8072 if (is_cgroup_event(event)) 8073 perf_detach_cgroup(event); 8074 if (event->ns) 8075 put_pid_ns(event->ns); 8076 kfree(event); 8077 8078 return ERR_PTR(err); 8079 } 8080 8081 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8082 struct perf_event_attr *attr) 8083 { 8084 u32 size; 8085 int ret; 8086 8087 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8088 return -EFAULT; 8089 8090 /* 8091 * zero the full structure, so that a short copy will be nice. 8092 */ 8093 memset(attr, 0, sizeof(*attr)); 8094 8095 ret = get_user(size, &uattr->size); 8096 if (ret) 8097 return ret; 8098 8099 if (size > PAGE_SIZE) /* silly large */ 8100 goto err_size; 8101 8102 if (!size) /* abi compat */ 8103 size = PERF_ATTR_SIZE_VER0; 8104 8105 if (size < PERF_ATTR_SIZE_VER0) 8106 goto err_size; 8107 8108 /* 8109 * If we're handed a bigger struct than we know of, 8110 * ensure all the unknown bits are 0 - i.e. new 8111 * user-space does not rely on any kernel feature 8112 * extensions we dont know about yet. 8113 */ 8114 if (size > sizeof(*attr)) { 8115 unsigned char __user *addr; 8116 unsigned char __user *end; 8117 unsigned char val; 8118 8119 addr = (void __user *)uattr + sizeof(*attr); 8120 end = (void __user *)uattr + size; 8121 8122 for (; addr < end; addr++) { 8123 ret = get_user(val, addr); 8124 if (ret) 8125 return ret; 8126 if (val) 8127 goto err_size; 8128 } 8129 size = sizeof(*attr); 8130 } 8131 8132 ret = copy_from_user(attr, uattr, size); 8133 if (ret) 8134 return -EFAULT; 8135 8136 if (attr->__reserved_1) 8137 return -EINVAL; 8138 8139 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 8140 return -EINVAL; 8141 8142 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 8143 return -EINVAL; 8144 8145 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 8146 u64 mask = attr->branch_sample_type; 8147 8148 /* only using defined bits */ 8149 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 8150 return -EINVAL; 8151 8152 /* at least one branch bit must be set */ 8153 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 8154 return -EINVAL; 8155 8156 /* propagate priv level, when not set for branch */ 8157 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 8158 8159 /* exclude_kernel checked on syscall entry */ 8160 if (!attr->exclude_kernel) 8161 mask |= PERF_SAMPLE_BRANCH_KERNEL; 8162 8163 if (!attr->exclude_user) 8164 mask |= PERF_SAMPLE_BRANCH_USER; 8165 8166 if (!attr->exclude_hv) 8167 mask |= PERF_SAMPLE_BRANCH_HV; 8168 /* 8169 * adjust user setting (for HW filter setup) 8170 */ 8171 attr->branch_sample_type = mask; 8172 } 8173 /* privileged levels capture (kernel, hv): check permissions */ 8174 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 8175 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8176 return -EACCES; 8177 } 8178 8179 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 8180 ret = perf_reg_validate(attr->sample_regs_user); 8181 if (ret) 8182 return ret; 8183 } 8184 8185 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 8186 if (!arch_perf_have_user_stack_dump()) 8187 return -ENOSYS; 8188 8189 /* 8190 * We have __u32 type for the size, but so far 8191 * we can only use __u16 as maximum due to the 8192 * __u16 sample size limit. 8193 */ 8194 if (attr->sample_stack_user >= USHRT_MAX) 8195 ret = -EINVAL; 8196 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 8197 ret = -EINVAL; 8198 } 8199 8200 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 8201 ret = perf_reg_validate(attr->sample_regs_intr); 8202 out: 8203 return ret; 8204 8205 err_size: 8206 put_user(sizeof(*attr), &uattr->size); 8207 ret = -E2BIG; 8208 goto out; 8209 } 8210 8211 static int 8212 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 8213 { 8214 struct ring_buffer *rb = NULL; 8215 int ret = -EINVAL; 8216 8217 if (!output_event) 8218 goto set; 8219 8220 /* don't allow circular references */ 8221 if (event == output_event) 8222 goto out; 8223 8224 /* 8225 * Don't allow cross-cpu buffers 8226 */ 8227 if (output_event->cpu != event->cpu) 8228 goto out; 8229 8230 /* 8231 * If its not a per-cpu rb, it must be the same task. 8232 */ 8233 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 8234 goto out; 8235 8236 /* 8237 * Mixing clocks in the same buffer is trouble you don't need. 8238 */ 8239 if (output_event->clock != event->clock) 8240 goto out; 8241 8242 /* 8243 * If both events generate aux data, they must be on the same PMU 8244 */ 8245 if (has_aux(event) && has_aux(output_event) && 8246 event->pmu != output_event->pmu) 8247 goto out; 8248 8249 set: 8250 mutex_lock(&event->mmap_mutex); 8251 /* Can't redirect output if we've got an active mmap() */ 8252 if (atomic_read(&event->mmap_count)) 8253 goto unlock; 8254 8255 if (output_event) { 8256 /* get the rb we want to redirect to */ 8257 rb = ring_buffer_get(output_event); 8258 if (!rb) 8259 goto unlock; 8260 } 8261 8262 ring_buffer_attach(event, rb); 8263 8264 ret = 0; 8265 unlock: 8266 mutex_unlock(&event->mmap_mutex); 8267 8268 out: 8269 return ret; 8270 } 8271 8272 static void mutex_lock_double(struct mutex *a, struct mutex *b) 8273 { 8274 if (b < a) 8275 swap(a, b); 8276 8277 mutex_lock(a); 8278 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 8279 } 8280 8281 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 8282 { 8283 bool nmi_safe = false; 8284 8285 switch (clk_id) { 8286 case CLOCK_MONOTONIC: 8287 event->clock = &ktime_get_mono_fast_ns; 8288 nmi_safe = true; 8289 break; 8290 8291 case CLOCK_MONOTONIC_RAW: 8292 event->clock = &ktime_get_raw_fast_ns; 8293 nmi_safe = true; 8294 break; 8295 8296 case CLOCK_REALTIME: 8297 event->clock = &ktime_get_real_ns; 8298 break; 8299 8300 case CLOCK_BOOTTIME: 8301 event->clock = &ktime_get_boot_ns; 8302 break; 8303 8304 case CLOCK_TAI: 8305 event->clock = &ktime_get_tai_ns; 8306 break; 8307 8308 default: 8309 return -EINVAL; 8310 } 8311 8312 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 8313 return -EINVAL; 8314 8315 return 0; 8316 } 8317 8318 /** 8319 * sys_perf_event_open - open a performance event, associate it to a task/cpu 8320 * 8321 * @attr_uptr: event_id type attributes for monitoring/sampling 8322 * @pid: target pid 8323 * @cpu: target cpu 8324 * @group_fd: group leader event fd 8325 */ 8326 SYSCALL_DEFINE5(perf_event_open, 8327 struct perf_event_attr __user *, attr_uptr, 8328 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 8329 { 8330 struct perf_event *group_leader = NULL, *output_event = NULL; 8331 struct perf_event *event, *sibling; 8332 struct perf_event_attr attr; 8333 struct perf_event_context *ctx, *uninitialized_var(gctx); 8334 struct file *event_file = NULL; 8335 struct fd group = {NULL, 0}; 8336 struct task_struct *task = NULL; 8337 struct pmu *pmu; 8338 int event_fd; 8339 int move_group = 0; 8340 int err; 8341 int f_flags = O_RDWR; 8342 int cgroup_fd = -1; 8343 8344 /* for future expandability... */ 8345 if (flags & ~PERF_FLAG_ALL) 8346 return -EINVAL; 8347 8348 err = perf_copy_attr(attr_uptr, &attr); 8349 if (err) 8350 return err; 8351 8352 if (!attr.exclude_kernel) { 8353 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8354 return -EACCES; 8355 } 8356 8357 if (attr.freq) { 8358 if (attr.sample_freq > sysctl_perf_event_sample_rate) 8359 return -EINVAL; 8360 } else { 8361 if (attr.sample_period & (1ULL << 63)) 8362 return -EINVAL; 8363 } 8364 8365 /* 8366 * In cgroup mode, the pid argument is used to pass the fd 8367 * opened to the cgroup directory in cgroupfs. The cpu argument 8368 * designates the cpu on which to monitor threads from that 8369 * cgroup. 8370 */ 8371 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 8372 return -EINVAL; 8373 8374 if (flags & PERF_FLAG_FD_CLOEXEC) 8375 f_flags |= O_CLOEXEC; 8376 8377 event_fd = get_unused_fd_flags(f_flags); 8378 if (event_fd < 0) 8379 return event_fd; 8380 8381 if (group_fd != -1) { 8382 err = perf_fget_light(group_fd, &group); 8383 if (err) 8384 goto err_fd; 8385 group_leader = group.file->private_data; 8386 if (flags & PERF_FLAG_FD_OUTPUT) 8387 output_event = group_leader; 8388 if (flags & PERF_FLAG_FD_NO_GROUP) 8389 group_leader = NULL; 8390 } 8391 8392 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8393 task = find_lively_task_by_vpid(pid); 8394 if (IS_ERR(task)) { 8395 err = PTR_ERR(task); 8396 goto err_group_fd; 8397 } 8398 } 8399 8400 if (task && group_leader && 8401 group_leader->attr.inherit != attr.inherit) { 8402 err = -EINVAL; 8403 goto err_task; 8404 } 8405 8406 get_online_cpus(); 8407 8408 if (task) { 8409 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 8410 if (err) 8411 goto err_cpus; 8412 8413 /* 8414 * Reuse ptrace permission checks for now. 8415 * 8416 * We must hold cred_guard_mutex across this and any potential 8417 * perf_install_in_context() call for this new event to 8418 * serialize against exec() altering our credentials (and the 8419 * perf_event_exit_task() that could imply). 8420 */ 8421 err = -EACCES; 8422 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 8423 goto err_cred; 8424 } 8425 8426 if (flags & PERF_FLAG_PID_CGROUP) 8427 cgroup_fd = pid; 8428 8429 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8430 NULL, NULL, cgroup_fd); 8431 if (IS_ERR(event)) { 8432 err = PTR_ERR(event); 8433 goto err_cred; 8434 } 8435 8436 if (is_sampling_event(event)) { 8437 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8438 err = -ENOTSUPP; 8439 goto err_alloc; 8440 } 8441 } 8442 8443 /* 8444 * Special case software events and allow them to be part of 8445 * any hardware group. 8446 */ 8447 pmu = event->pmu; 8448 8449 if (attr.use_clockid) { 8450 err = perf_event_set_clock(event, attr.clockid); 8451 if (err) 8452 goto err_alloc; 8453 } 8454 8455 if (group_leader && 8456 (is_software_event(event) != is_software_event(group_leader))) { 8457 if (is_software_event(event)) { 8458 /* 8459 * If event and group_leader are not both a software 8460 * event, and event is, then group leader is not. 8461 * 8462 * Allow the addition of software events to !software 8463 * groups, this is safe because software events never 8464 * fail to schedule. 8465 */ 8466 pmu = group_leader->pmu; 8467 } else if (is_software_event(group_leader) && 8468 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8469 /* 8470 * In case the group is a pure software group, and we 8471 * try to add a hardware event, move the whole group to 8472 * the hardware context. 8473 */ 8474 move_group = 1; 8475 } 8476 } 8477 8478 /* 8479 * Get the target context (task or percpu): 8480 */ 8481 ctx = find_get_context(pmu, task, event); 8482 if (IS_ERR(ctx)) { 8483 err = PTR_ERR(ctx); 8484 goto err_alloc; 8485 } 8486 8487 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8488 err = -EBUSY; 8489 goto err_context; 8490 } 8491 8492 /* 8493 * Look up the group leader (we will attach this event to it): 8494 */ 8495 if (group_leader) { 8496 err = -EINVAL; 8497 8498 /* 8499 * Do not allow a recursive hierarchy (this new sibling 8500 * becoming part of another group-sibling): 8501 */ 8502 if (group_leader->group_leader != group_leader) 8503 goto err_context; 8504 8505 /* All events in a group should have the same clock */ 8506 if (group_leader->clock != event->clock) 8507 goto err_context; 8508 8509 /* 8510 * Do not allow to attach to a group in a different 8511 * task or CPU context: 8512 */ 8513 if (move_group) { 8514 /* 8515 * Make sure we're both on the same task, or both 8516 * per-cpu events. 8517 */ 8518 if (group_leader->ctx->task != ctx->task) 8519 goto err_context; 8520 8521 /* 8522 * Make sure we're both events for the same CPU; 8523 * grouping events for different CPUs is broken; since 8524 * you can never concurrently schedule them anyhow. 8525 */ 8526 if (group_leader->cpu != event->cpu) 8527 goto err_context; 8528 } else { 8529 if (group_leader->ctx != ctx) 8530 goto err_context; 8531 } 8532 8533 /* 8534 * Only a group leader can be exclusive or pinned 8535 */ 8536 if (attr.exclusive || attr.pinned) 8537 goto err_context; 8538 } 8539 8540 if (output_event) { 8541 err = perf_event_set_output(event, output_event); 8542 if (err) 8543 goto err_context; 8544 } 8545 8546 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8547 f_flags); 8548 if (IS_ERR(event_file)) { 8549 err = PTR_ERR(event_file); 8550 event_file = NULL; 8551 goto err_context; 8552 } 8553 8554 if (move_group) { 8555 gctx = group_leader->ctx; 8556 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8557 if (gctx->task == TASK_TOMBSTONE) { 8558 err = -ESRCH; 8559 goto err_locked; 8560 } 8561 } else { 8562 mutex_lock(&ctx->mutex); 8563 } 8564 8565 if (ctx->task == TASK_TOMBSTONE) { 8566 err = -ESRCH; 8567 goto err_locked; 8568 } 8569 8570 if (!perf_event_validate_size(event)) { 8571 err = -E2BIG; 8572 goto err_locked; 8573 } 8574 8575 /* 8576 * Must be under the same ctx::mutex as perf_install_in_context(), 8577 * because we need to serialize with concurrent event creation. 8578 */ 8579 if (!exclusive_event_installable(event, ctx)) { 8580 /* exclusive and group stuff are assumed mutually exclusive */ 8581 WARN_ON_ONCE(move_group); 8582 8583 err = -EBUSY; 8584 goto err_locked; 8585 } 8586 8587 WARN_ON_ONCE(ctx->parent_ctx); 8588 8589 /* 8590 * This is the point on no return; we cannot fail hereafter. This is 8591 * where we start modifying current state. 8592 */ 8593 8594 if (move_group) { 8595 /* 8596 * See perf_event_ctx_lock() for comments on the details 8597 * of swizzling perf_event::ctx. 8598 */ 8599 perf_remove_from_context(group_leader, 0); 8600 8601 list_for_each_entry(sibling, &group_leader->sibling_list, 8602 group_entry) { 8603 perf_remove_from_context(sibling, 0); 8604 put_ctx(gctx); 8605 } 8606 8607 /* 8608 * Wait for everybody to stop referencing the events through 8609 * the old lists, before installing it on new lists. 8610 */ 8611 synchronize_rcu(); 8612 8613 /* 8614 * Install the group siblings before the group leader. 8615 * 8616 * Because a group leader will try and install the entire group 8617 * (through the sibling list, which is still in-tact), we can 8618 * end up with siblings installed in the wrong context. 8619 * 8620 * By installing siblings first we NO-OP because they're not 8621 * reachable through the group lists. 8622 */ 8623 list_for_each_entry(sibling, &group_leader->sibling_list, 8624 group_entry) { 8625 perf_event__state_init(sibling); 8626 perf_install_in_context(ctx, sibling, sibling->cpu); 8627 get_ctx(ctx); 8628 } 8629 8630 /* 8631 * Removing from the context ends up with disabled 8632 * event. What we want here is event in the initial 8633 * startup state, ready to be add into new context. 8634 */ 8635 perf_event__state_init(group_leader); 8636 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8637 get_ctx(ctx); 8638 8639 /* 8640 * Now that all events are installed in @ctx, nothing 8641 * references @gctx anymore, so drop the last reference we have 8642 * on it. 8643 */ 8644 put_ctx(gctx); 8645 } 8646 8647 /* 8648 * Precalculate sample_data sizes; do while holding ctx::mutex such 8649 * that we're serialized against further additions and before 8650 * perf_install_in_context() which is the point the event is active and 8651 * can use these values. 8652 */ 8653 perf_event__header_size(event); 8654 perf_event__id_header_size(event); 8655 8656 event->owner = current; 8657 8658 perf_install_in_context(ctx, event, event->cpu); 8659 perf_unpin_context(ctx); 8660 8661 if (move_group) 8662 mutex_unlock(&gctx->mutex); 8663 mutex_unlock(&ctx->mutex); 8664 8665 if (task) { 8666 mutex_unlock(&task->signal->cred_guard_mutex); 8667 put_task_struct(task); 8668 } 8669 8670 put_online_cpus(); 8671 8672 mutex_lock(¤t->perf_event_mutex); 8673 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8674 mutex_unlock(¤t->perf_event_mutex); 8675 8676 /* 8677 * Drop the reference on the group_event after placing the 8678 * new event on the sibling_list. This ensures destruction 8679 * of the group leader will find the pointer to itself in 8680 * perf_group_detach(). 8681 */ 8682 fdput(group); 8683 fd_install(event_fd, event_file); 8684 return event_fd; 8685 8686 err_locked: 8687 if (move_group) 8688 mutex_unlock(&gctx->mutex); 8689 mutex_unlock(&ctx->mutex); 8690 /* err_file: */ 8691 fput(event_file); 8692 err_context: 8693 perf_unpin_context(ctx); 8694 put_ctx(ctx); 8695 err_alloc: 8696 /* 8697 * If event_file is set, the fput() above will have called ->release() 8698 * and that will take care of freeing the event. 8699 */ 8700 if (!event_file) 8701 free_event(event); 8702 err_cred: 8703 if (task) 8704 mutex_unlock(&task->signal->cred_guard_mutex); 8705 err_cpus: 8706 put_online_cpus(); 8707 err_task: 8708 if (task) 8709 put_task_struct(task); 8710 err_group_fd: 8711 fdput(group); 8712 err_fd: 8713 put_unused_fd(event_fd); 8714 return err; 8715 } 8716 8717 /** 8718 * perf_event_create_kernel_counter 8719 * 8720 * @attr: attributes of the counter to create 8721 * @cpu: cpu in which the counter is bound 8722 * @task: task to profile (NULL for percpu) 8723 */ 8724 struct perf_event * 8725 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8726 struct task_struct *task, 8727 perf_overflow_handler_t overflow_handler, 8728 void *context) 8729 { 8730 struct perf_event_context *ctx; 8731 struct perf_event *event; 8732 int err; 8733 8734 /* 8735 * Get the target context (task or percpu): 8736 */ 8737 8738 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8739 overflow_handler, context, -1); 8740 if (IS_ERR(event)) { 8741 err = PTR_ERR(event); 8742 goto err; 8743 } 8744 8745 /* Mark owner so we could distinguish it from user events. */ 8746 event->owner = TASK_TOMBSTONE; 8747 8748 ctx = find_get_context(event->pmu, task, event); 8749 if (IS_ERR(ctx)) { 8750 err = PTR_ERR(ctx); 8751 goto err_free; 8752 } 8753 8754 WARN_ON_ONCE(ctx->parent_ctx); 8755 mutex_lock(&ctx->mutex); 8756 if (ctx->task == TASK_TOMBSTONE) { 8757 err = -ESRCH; 8758 goto err_unlock; 8759 } 8760 8761 if (!exclusive_event_installable(event, ctx)) { 8762 err = -EBUSY; 8763 goto err_unlock; 8764 } 8765 8766 perf_install_in_context(ctx, event, cpu); 8767 perf_unpin_context(ctx); 8768 mutex_unlock(&ctx->mutex); 8769 8770 return event; 8771 8772 err_unlock: 8773 mutex_unlock(&ctx->mutex); 8774 perf_unpin_context(ctx); 8775 put_ctx(ctx); 8776 err_free: 8777 free_event(event); 8778 err: 8779 return ERR_PTR(err); 8780 } 8781 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8782 8783 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8784 { 8785 struct perf_event_context *src_ctx; 8786 struct perf_event_context *dst_ctx; 8787 struct perf_event *event, *tmp; 8788 LIST_HEAD(events); 8789 8790 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8791 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8792 8793 /* 8794 * See perf_event_ctx_lock() for comments on the details 8795 * of swizzling perf_event::ctx. 8796 */ 8797 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8798 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8799 event_entry) { 8800 perf_remove_from_context(event, 0); 8801 unaccount_event_cpu(event, src_cpu); 8802 put_ctx(src_ctx); 8803 list_add(&event->migrate_entry, &events); 8804 } 8805 8806 /* 8807 * Wait for the events to quiesce before re-instating them. 8808 */ 8809 synchronize_rcu(); 8810 8811 /* 8812 * Re-instate events in 2 passes. 8813 * 8814 * Skip over group leaders and only install siblings on this first 8815 * pass, siblings will not get enabled without a leader, however a 8816 * leader will enable its siblings, even if those are still on the old 8817 * context. 8818 */ 8819 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8820 if (event->group_leader == event) 8821 continue; 8822 8823 list_del(&event->migrate_entry); 8824 if (event->state >= PERF_EVENT_STATE_OFF) 8825 event->state = PERF_EVENT_STATE_INACTIVE; 8826 account_event_cpu(event, dst_cpu); 8827 perf_install_in_context(dst_ctx, event, dst_cpu); 8828 get_ctx(dst_ctx); 8829 } 8830 8831 /* 8832 * Once all the siblings are setup properly, install the group leaders 8833 * to make it go. 8834 */ 8835 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8836 list_del(&event->migrate_entry); 8837 if (event->state >= PERF_EVENT_STATE_OFF) 8838 event->state = PERF_EVENT_STATE_INACTIVE; 8839 account_event_cpu(event, dst_cpu); 8840 perf_install_in_context(dst_ctx, event, dst_cpu); 8841 get_ctx(dst_ctx); 8842 } 8843 mutex_unlock(&dst_ctx->mutex); 8844 mutex_unlock(&src_ctx->mutex); 8845 } 8846 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8847 8848 static void sync_child_event(struct perf_event *child_event, 8849 struct task_struct *child) 8850 { 8851 struct perf_event *parent_event = child_event->parent; 8852 u64 child_val; 8853 8854 if (child_event->attr.inherit_stat) 8855 perf_event_read_event(child_event, child); 8856 8857 child_val = perf_event_count(child_event); 8858 8859 /* 8860 * Add back the child's count to the parent's count: 8861 */ 8862 atomic64_add(child_val, &parent_event->child_count); 8863 atomic64_add(child_event->total_time_enabled, 8864 &parent_event->child_total_time_enabled); 8865 atomic64_add(child_event->total_time_running, 8866 &parent_event->child_total_time_running); 8867 } 8868 8869 static void 8870 perf_event_exit_event(struct perf_event *child_event, 8871 struct perf_event_context *child_ctx, 8872 struct task_struct *child) 8873 { 8874 struct perf_event *parent_event = child_event->parent; 8875 8876 /* 8877 * Do not destroy the 'original' grouping; because of the context 8878 * switch optimization the original events could've ended up in a 8879 * random child task. 8880 * 8881 * If we were to destroy the original group, all group related 8882 * operations would cease to function properly after this random 8883 * child dies. 8884 * 8885 * Do destroy all inherited groups, we don't care about those 8886 * and being thorough is better. 8887 */ 8888 raw_spin_lock_irq(&child_ctx->lock); 8889 WARN_ON_ONCE(child_ctx->is_active); 8890 8891 if (parent_event) 8892 perf_group_detach(child_event); 8893 list_del_event(child_event, child_ctx); 8894 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 8895 raw_spin_unlock_irq(&child_ctx->lock); 8896 8897 /* 8898 * Parent events are governed by their filedesc, retain them. 8899 */ 8900 if (!parent_event) { 8901 perf_event_wakeup(child_event); 8902 return; 8903 } 8904 /* 8905 * Child events can be cleaned up. 8906 */ 8907 8908 sync_child_event(child_event, child); 8909 8910 /* 8911 * Remove this event from the parent's list 8912 */ 8913 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8914 mutex_lock(&parent_event->child_mutex); 8915 list_del_init(&child_event->child_list); 8916 mutex_unlock(&parent_event->child_mutex); 8917 8918 /* 8919 * Kick perf_poll() for is_event_hup(). 8920 */ 8921 perf_event_wakeup(parent_event); 8922 free_event(child_event); 8923 put_event(parent_event); 8924 } 8925 8926 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8927 { 8928 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8929 struct perf_event *child_event, *next; 8930 8931 WARN_ON_ONCE(child != current); 8932 8933 child_ctx = perf_pin_task_context(child, ctxn); 8934 if (!child_ctx) 8935 return; 8936 8937 /* 8938 * In order to reduce the amount of tricky in ctx tear-down, we hold 8939 * ctx::mutex over the entire thing. This serializes against almost 8940 * everything that wants to access the ctx. 8941 * 8942 * The exception is sys_perf_event_open() / 8943 * perf_event_create_kernel_count() which does find_get_context() 8944 * without ctx::mutex (it cannot because of the move_group double mutex 8945 * lock thing). See the comments in perf_install_in_context(). 8946 */ 8947 mutex_lock(&child_ctx->mutex); 8948 8949 /* 8950 * In a single ctx::lock section, de-schedule the events and detach the 8951 * context from the task such that we cannot ever get it scheduled back 8952 * in. 8953 */ 8954 raw_spin_lock_irq(&child_ctx->lock); 8955 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 8956 8957 /* 8958 * Now that the context is inactive, destroy the task <-> ctx relation 8959 * and mark the context dead. 8960 */ 8961 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 8962 put_ctx(child_ctx); /* cannot be last */ 8963 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 8964 put_task_struct(current); /* cannot be last */ 8965 8966 clone_ctx = unclone_ctx(child_ctx); 8967 raw_spin_unlock_irq(&child_ctx->lock); 8968 8969 if (clone_ctx) 8970 put_ctx(clone_ctx); 8971 8972 /* 8973 * Report the task dead after unscheduling the events so that we 8974 * won't get any samples after PERF_RECORD_EXIT. We can however still 8975 * get a few PERF_RECORD_READ events. 8976 */ 8977 perf_event_task(child, child_ctx, 0); 8978 8979 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8980 perf_event_exit_event(child_event, child_ctx, child); 8981 8982 mutex_unlock(&child_ctx->mutex); 8983 8984 put_ctx(child_ctx); 8985 } 8986 8987 /* 8988 * When a child task exits, feed back event values to parent events. 8989 * 8990 * Can be called with cred_guard_mutex held when called from 8991 * install_exec_creds(). 8992 */ 8993 void perf_event_exit_task(struct task_struct *child) 8994 { 8995 struct perf_event *event, *tmp; 8996 int ctxn; 8997 8998 mutex_lock(&child->perf_event_mutex); 8999 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 9000 owner_entry) { 9001 list_del_init(&event->owner_entry); 9002 9003 /* 9004 * Ensure the list deletion is visible before we clear 9005 * the owner, closes a race against perf_release() where 9006 * we need to serialize on the owner->perf_event_mutex. 9007 */ 9008 smp_store_release(&event->owner, NULL); 9009 } 9010 mutex_unlock(&child->perf_event_mutex); 9011 9012 for_each_task_context_nr(ctxn) 9013 perf_event_exit_task_context(child, ctxn); 9014 9015 /* 9016 * The perf_event_exit_task_context calls perf_event_task 9017 * with child's task_ctx, which generates EXIT events for 9018 * child contexts and sets child->perf_event_ctxp[] to NULL. 9019 * At this point we need to send EXIT events to cpu contexts. 9020 */ 9021 perf_event_task(child, NULL, 0); 9022 } 9023 9024 static void perf_free_event(struct perf_event *event, 9025 struct perf_event_context *ctx) 9026 { 9027 struct perf_event *parent = event->parent; 9028 9029 if (WARN_ON_ONCE(!parent)) 9030 return; 9031 9032 mutex_lock(&parent->child_mutex); 9033 list_del_init(&event->child_list); 9034 mutex_unlock(&parent->child_mutex); 9035 9036 put_event(parent); 9037 9038 raw_spin_lock_irq(&ctx->lock); 9039 perf_group_detach(event); 9040 list_del_event(event, ctx); 9041 raw_spin_unlock_irq(&ctx->lock); 9042 free_event(event); 9043 } 9044 9045 /* 9046 * Free an unexposed, unused context as created by inheritance by 9047 * perf_event_init_task below, used by fork() in case of fail. 9048 * 9049 * Not all locks are strictly required, but take them anyway to be nice and 9050 * help out with the lockdep assertions. 9051 */ 9052 void perf_event_free_task(struct task_struct *task) 9053 { 9054 struct perf_event_context *ctx; 9055 struct perf_event *event, *tmp; 9056 int ctxn; 9057 9058 for_each_task_context_nr(ctxn) { 9059 ctx = task->perf_event_ctxp[ctxn]; 9060 if (!ctx) 9061 continue; 9062 9063 mutex_lock(&ctx->mutex); 9064 again: 9065 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 9066 group_entry) 9067 perf_free_event(event, ctx); 9068 9069 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 9070 group_entry) 9071 perf_free_event(event, ctx); 9072 9073 if (!list_empty(&ctx->pinned_groups) || 9074 !list_empty(&ctx->flexible_groups)) 9075 goto again; 9076 9077 mutex_unlock(&ctx->mutex); 9078 9079 put_ctx(ctx); 9080 } 9081 } 9082 9083 void perf_event_delayed_put(struct task_struct *task) 9084 { 9085 int ctxn; 9086 9087 for_each_task_context_nr(ctxn) 9088 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 9089 } 9090 9091 struct file *perf_event_get(unsigned int fd) 9092 { 9093 struct file *file; 9094 9095 file = fget_raw(fd); 9096 if (!file) 9097 return ERR_PTR(-EBADF); 9098 9099 if (file->f_op != &perf_fops) { 9100 fput(file); 9101 return ERR_PTR(-EBADF); 9102 } 9103 9104 return file; 9105 } 9106 9107 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 9108 { 9109 if (!event) 9110 return ERR_PTR(-EINVAL); 9111 9112 return &event->attr; 9113 } 9114 9115 /* 9116 * inherit a event from parent task to child task: 9117 */ 9118 static struct perf_event * 9119 inherit_event(struct perf_event *parent_event, 9120 struct task_struct *parent, 9121 struct perf_event_context *parent_ctx, 9122 struct task_struct *child, 9123 struct perf_event *group_leader, 9124 struct perf_event_context *child_ctx) 9125 { 9126 enum perf_event_active_state parent_state = parent_event->state; 9127 struct perf_event *child_event; 9128 unsigned long flags; 9129 9130 /* 9131 * Instead of creating recursive hierarchies of events, 9132 * we link inherited events back to the original parent, 9133 * which has a filp for sure, which we use as the reference 9134 * count: 9135 */ 9136 if (parent_event->parent) 9137 parent_event = parent_event->parent; 9138 9139 child_event = perf_event_alloc(&parent_event->attr, 9140 parent_event->cpu, 9141 child, 9142 group_leader, parent_event, 9143 NULL, NULL, -1); 9144 if (IS_ERR(child_event)) 9145 return child_event; 9146 9147 /* 9148 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 9149 * must be under the same lock in order to serialize against 9150 * perf_event_release_kernel(), such that either we must observe 9151 * is_orphaned_event() or they will observe us on the child_list. 9152 */ 9153 mutex_lock(&parent_event->child_mutex); 9154 if (is_orphaned_event(parent_event) || 9155 !atomic_long_inc_not_zero(&parent_event->refcount)) { 9156 mutex_unlock(&parent_event->child_mutex); 9157 free_event(child_event); 9158 return NULL; 9159 } 9160 9161 get_ctx(child_ctx); 9162 9163 /* 9164 * Make the child state follow the state of the parent event, 9165 * not its attr.disabled bit. We hold the parent's mutex, 9166 * so we won't race with perf_event_{en, dis}able_family. 9167 */ 9168 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 9169 child_event->state = PERF_EVENT_STATE_INACTIVE; 9170 else 9171 child_event->state = PERF_EVENT_STATE_OFF; 9172 9173 if (parent_event->attr.freq) { 9174 u64 sample_period = parent_event->hw.sample_period; 9175 struct hw_perf_event *hwc = &child_event->hw; 9176 9177 hwc->sample_period = sample_period; 9178 hwc->last_period = sample_period; 9179 9180 local64_set(&hwc->period_left, sample_period); 9181 } 9182 9183 child_event->ctx = child_ctx; 9184 child_event->overflow_handler = parent_event->overflow_handler; 9185 child_event->overflow_handler_context 9186 = parent_event->overflow_handler_context; 9187 9188 /* 9189 * Precalculate sample_data sizes 9190 */ 9191 perf_event__header_size(child_event); 9192 perf_event__id_header_size(child_event); 9193 9194 /* 9195 * Link it up in the child's context: 9196 */ 9197 raw_spin_lock_irqsave(&child_ctx->lock, flags); 9198 add_event_to_ctx(child_event, child_ctx); 9199 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 9200 9201 /* 9202 * Link this into the parent event's child list 9203 */ 9204 list_add_tail(&child_event->child_list, &parent_event->child_list); 9205 mutex_unlock(&parent_event->child_mutex); 9206 9207 return child_event; 9208 } 9209 9210 static int inherit_group(struct perf_event *parent_event, 9211 struct task_struct *parent, 9212 struct perf_event_context *parent_ctx, 9213 struct task_struct *child, 9214 struct perf_event_context *child_ctx) 9215 { 9216 struct perf_event *leader; 9217 struct perf_event *sub; 9218 struct perf_event *child_ctr; 9219 9220 leader = inherit_event(parent_event, parent, parent_ctx, 9221 child, NULL, child_ctx); 9222 if (IS_ERR(leader)) 9223 return PTR_ERR(leader); 9224 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 9225 child_ctr = inherit_event(sub, parent, parent_ctx, 9226 child, leader, child_ctx); 9227 if (IS_ERR(child_ctr)) 9228 return PTR_ERR(child_ctr); 9229 } 9230 return 0; 9231 } 9232 9233 static int 9234 inherit_task_group(struct perf_event *event, struct task_struct *parent, 9235 struct perf_event_context *parent_ctx, 9236 struct task_struct *child, int ctxn, 9237 int *inherited_all) 9238 { 9239 int ret; 9240 struct perf_event_context *child_ctx; 9241 9242 if (!event->attr.inherit) { 9243 *inherited_all = 0; 9244 return 0; 9245 } 9246 9247 child_ctx = child->perf_event_ctxp[ctxn]; 9248 if (!child_ctx) { 9249 /* 9250 * This is executed from the parent task context, so 9251 * inherit events that have been marked for cloning. 9252 * First allocate and initialize a context for the 9253 * child. 9254 */ 9255 9256 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 9257 if (!child_ctx) 9258 return -ENOMEM; 9259 9260 child->perf_event_ctxp[ctxn] = child_ctx; 9261 } 9262 9263 ret = inherit_group(event, parent, parent_ctx, 9264 child, child_ctx); 9265 9266 if (ret) 9267 *inherited_all = 0; 9268 9269 return ret; 9270 } 9271 9272 /* 9273 * Initialize the perf_event context in task_struct 9274 */ 9275 static int perf_event_init_context(struct task_struct *child, int ctxn) 9276 { 9277 struct perf_event_context *child_ctx, *parent_ctx; 9278 struct perf_event_context *cloned_ctx; 9279 struct perf_event *event; 9280 struct task_struct *parent = current; 9281 int inherited_all = 1; 9282 unsigned long flags; 9283 int ret = 0; 9284 9285 if (likely(!parent->perf_event_ctxp[ctxn])) 9286 return 0; 9287 9288 /* 9289 * If the parent's context is a clone, pin it so it won't get 9290 * swapped under us. 9291 */ 9292 parent_ctx = perf_pin_task_context(parent, ctxn); 9293 if (!parent_ctx) 9294 return 0; 9295 9296 /* 9297 * No need to check if parent_ctx != NULL here; since we saw 9298 * it non-NULL earlier, the only reason for it to become NULL 9299 * is if we exit, and since we're currently in the middle of 9300 * a fork we can't be exiting at the same time. 9301 */ 9302 9303 /* 9304 * Lock the parent list. No need to lock the child - not PID 9305 * hashed yet and not running, so nobody can access it. 9306 */ 9307 mutex_lock(&parent_ctx->mutex); 9308 9309 /* 9310 * We dont have to disable NMIs - we are only looking at 9311 * the list, not manipulating it: 9312 */ 9313 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 9314 ret = inherit_task_group(event, parent, parent_ctx, 9315 child, ctxn, &inherited_all); 9316 if (ret) 9317 break; 9318 } 9319 9320 /* 9321 * We can't hold ctx->lock when iterating the ->flexible_group list due 9322 * to allocations, but we need to prevent rotation because 9323 * rotate_ctx() will change the list from interrupt context. 9324 */ 9325 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9326 parent_ctx->rotate_disable = 1; 9327 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9328 9329 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 9330 ret = inherit_task_group(event, parent, parent_ctx, 9331 child, ctxn, &inherited_all); 9332 if (ret) 9333 break; 9334 } 9335 9336 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9337 parent_ctx->rotate_disable = 0; 9338 9339 child_ctx = child->perf_event_ctxp[ctxn]; 9340 9341 if (child_ctx && inherited_all) { 9342 /* 9343 * Mark the child context as a clone of the parent 9344 * context, or of whatever the parent is a clone of. 9345 * 9346 * Note that if the parent is a clone, the holding of 9347 * parent_ctx->lock avoids it from being uncloned. 9348 */ 9349 cloned_ctx = parent_ctx->parent_ctx; 9350 if (cloned_ctx) { 9351 child_ctx->parent_ctx = cloned_ctx; 9352 child_ctx->parent_gen = parent_ctx->parent_gen; 9353 } else { 9354 child_ctx->parent_ctx = parent_ctx; 9355 child_ctx->parent_gen = parent_ctx->generation; 9356 } 9357 get_ctx(child_ctx->parent_ctx); 9358 } 9359 9360 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9361 mutex_unlock(&parent_ctx->mutex); 9362 9363 perf_unpin_context(parent_ctx); 9364 put_ctx(parent_ctx); 9365 9366 return ret; 9367 } 9368 9369 /* 9370 * Initialize the perf_event context in task_struct 9371 */ 9372 int perf_event_init_task(struct task_struct *child) 9373 { 9374 int ctxn, ret; 9375 9376 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 9377 mutex_init(&child->perf_event_mutex); 9378 INIT_LIST_HEAD(&child->perf_event_list); 9379 9380 for_each_task_context_nr(ctxn) { 9381 ret = perf_event_init_context(child, ctxn); 9382 if (ret) { 9383 perf_event_free_task(child); 9384 return ret; 9385 } 9386 } 9387 9388 return 0; 9389 } 9390 9391 static void __init perf_event_init_all_cpus(void) 9392 { 9393 struct swevent_htable *swhash; 9394 int cpu; 9395 9396 for_each_possible_cpu(cpu) { 9397 swhash = &per_cpu(swevent_htable, cpu); 9398 mutex_init(&swhash->hlist_mutex); 9399 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 9400 } 9401 } 9402 9403 static void perf_event_init_cpu(int cpu) 9404 { 9405 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9406 9407 mutex_lock(&swhash->hlist_mutex); 9408 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 9409 struct swevent_hlist *hlist; 9410 9411 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 9412 WARN_ON(!hlist); 9413 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9414 } 9415 mutex_unlock(&swhash->hlist_mutex); 9416 } 9417 9418 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 9419 static void __perf_event_exit_context(void *__info) 9420 { 9421 struct perf_event_context *ctx = __info; 9422 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 9423 struct perf_event *event; 9424 9425 raw_spin_lock(&ctx->lock); 9426 list_for_each_entry(event, &ctx->event_list, event_entry) 9427 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 9428 raw_spin_unlock(&ctx->lock); 9429 } 9430 9431 static void perf_event_exit_cpu_context(int cpu) 9432 { 9433 struct perf_event_context *ctx; 9434 struct pmu *pmu; 9435 int idx; 9436 9437 idx = srcu_read_lock(&pmus_srcu); 9438 list_for_each_entry_rcu(pmu, &pmus, entry) { 9439 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 9440 9441 mutex_lock(&ctx->mutex); 9442 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 9443 mutex_unlock(&ctx->mutex); 9444 } 9445 srcu_read_unlock(&pmus_srcu, idx); 9446 } 9447 9448 static void perf_event_exit_cpu(int cpu) 9449 { 9450 perf_event_exit_cpu_context(cpu); 9451 } 9452 #else 9453 static inline void perf_event_exit_cpu(int cpu) { } 9454 #endif 9455 9456 static int 9457 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 9458 { 9459 int cpu; 9460 9461 for_each_online_cpu(cpu) 9462 perf_event_exit_cpu(cpu); 9463 9464 return NOTIFY_OK; 9465 } 9466 9467 /* 9468 * Run the perf reboot notifier at the very last possible moment so that 9469 * the generic watchdog code runs as long as possible. 9470 */ 9471 static struct notifier_block perf_reboot_notifier = { 9472 .notifier_call = perf_reboot, 9473 .priority = INT_MIN, 9474 }; 9475 9476 static int 9477 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9478 { 9479 unsigned int cpu = (long)hcpu; 9480 9481 switch (action & ~CPU_TASKS_FROZEN) { 9482 9483 case CPU_UP_PREPARE: 9484 /* 9485 * This must be done before the CPU comes alive, because the 9486 * moment we can run tasks we can encounter (software) events. 9487 * 9488 * Specifically, someone can have inherited events on kthreadd 9489 * or a pre-existing worker thread that gets re-bound. 9490 */ 9491 perf_event_init_cpu(cpu); 9492 break; 9493 9494 case CPU_DOWN_PREPARE: 9495 /* 9496 * This must be done before the CPU dies because after that an 9497 * active event might want to IPI the CPU and that'll not work 9498 * so great for dead CPUs. 9499 * 9500 * XXX smp_call_function_single() return -ENXIO without a warn 9501 * so we could possibly deal with this. 9502 * 9503 * This is safe against new events arriving because 9504 * sys_perf_event_open() serializes against hotplug using 9505 * get_online_cpus(). 9506 */ 9507 perf_event_exit_cpu(cpu); 9508 break; 9509 default: 9510 break; 9511 } 9512 9513 return NOTIFY_OK; 9514 } 9515 9516 void __init perf_event_init(void) 9517 { 9518 int ret; 9519 9520 idr_init(&pmu_idr); 9521 9522 perf_event_init_all_cpus(); 9523 init_srcu_struct(&pmus_srcu); 9524 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9525 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9526 perf_pmu_register(&perf_task_clock, NULL, -1); 9527 perf_tp_register(); 9528 perf_cpu_notifier(perf_cpu_notify); 9529 register_reboot_notifier(&perf_reboot_notifier); 9530 9531 ret = init_hw_breakpoint(); 9532 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9533 9534 /* 9535 * Build time assertion that we keep the data_head at the intended 9536 * location. IOW, validation we got the __reserved[] size right. 9537 */ 9538 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9539 != 1024); 9540 } 9541 9542 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9543 char *page) 9544 { 9545 struct perf_pmu_events_attr *pmu_attr = 9546 container_of(attr, struct perf_pmu_events_attr, attr); 9547 9548 if (pmu_attr->event_str) 9549 return sprintf(page, "%s\n", pmu_attr->event_str); 9550 9551 return 0; 9552 } 9553 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 9554 9555 static int __init perf_event_sysfs_init(void) 9556 { 9557 struct pmu *pmu; 9558 int ret; 9559 9560 mutex_lock(&pmus_lock); 9561 9562 ret = bus_register(&pmu_bus); 9563 if (ret) 9564 goto unlock; 9565 9566 list_for_each_entry(pmu, &pmus, entry) { 9567 if (!pmu->name || pmu->type < 0) 9568 continue; 9569 9570 ret = pmu_dev_alloc(pmu); 9571 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9572 } 9573 pmu_bus_running = 1; 9574 ret = 0; 9575 9576 unlock: 9577 mutex_unlock(&pmus_lock); 9578 9579 return ret; 9580 } 9581 device_initcall(perf_event_sysfs_init); 9582 9583 #ifdef CONFIG_CGROUP_PERF 9584 static struct cgroup_subsys_state * 9585 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9586 { 9587 struct perf_cgroup *jc; 9588 9589 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9590 if (!jc) 9591 return ERR_PTR(-ENOMEM); 9592 9593 jc->info = alloc_percpu(struct perf_cgroup_info); 9594 if (!jc->info) { 9595 kfree(jc); 9596 return ERR_PTR(-ENOMEM); 9597 } 9598 9599 return &jc->css; 9600 } 9601 9602 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9603 { 9604 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9605 9606 free_percpu(jc->info); 9607 kfree(jc); 9608 } 9609 9610 static int __perf_cgroup_move(void *info) 9611 { 9612 struct task_struct *task = info; 9613 rcu_read_lock(); 9614 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9615 rcu_read_unlock(); 9616 return 0; 9617 } 9618 9619 static void perf_cgroup_attach(struct cgroup_taskset *tset) 9620 { 9621 struct task_struct *task; 9622 struct cgroup_subsys_state *css; 9623 9624 cgroup_taskset_for_each(task, css, tset) 9625 task_function_call(task, __perf_cgroup_move, task); 9626 } 9627 9628 struct cgroup_subsys perf_event_cgrp_subsys = { 9629 .css_alloc = perf_cgroup_css_alloc, 9630 .css_free = perf_cgroup_css_free, 9631 .attach = perf_cgroup_attach, 9632 }; 9633 #endif /* CONFIG_CGROUP_PERF */ 9634