xref: /linux/kernel/events/core.c (revision 37f0e658eeeac720f3d558cf5aaf9edf0705ff23)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 typedef int (*remote_function_f)(void *);
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	remote_function_f	func;
57 	void			*info;
58 	int			ret;
59 };
60 
61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		/* -EAGAIN */
68 		if (task_cpu(p) != smp_processor_id())
69 			return;
70 
71 		/*
72 		 * Now that we're on right CPU with IRQs disabled, we can test
73 		 * if we hit the right task without races.
74 		 */
75 
76 		tfc->ret = -ESRCH; /* No such (running) process */
77 		if (p != current)
78 			return;
79 	}
80 
81 	tfc->ret = tfc->func(tfc->info);
82 }
83 
84 /**
85  * task_function_call - call a function on the cpu on which a task runs
86  * @p:		the task to evaluate
87  * @func:	the function to be called
88  * @info:	the function call argument
89  *
90  * Calls the function @func when the task is currently running. This might
91  * be on the current CPU, which just calls the function directly
92  *
93  * returns: @func return value, or
94  *	    -ESRCH  - when the process isn't running
95  *	    -EAGAIN - when the process moved away
96  */
97 static int
98 task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 {
100 	struct remote_function_call data = {
101 		.p	= p,
102 		.func	= func,
103 		.info	= info,
104 		.ret	= -EAGAIN,
105 	};
106 	int ret;
107 
108 	do {
109 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 		if (!ret)
111 			ret = data.ret;
112 	} while (ret == -EAGAIN);
113 
114 	return ret;
115 }
116 
117 /**
118  * cpu_function_call - call a function on the cpu
119  * @func:	the function to be called
120  * @info:	the function call argument
121  *
122  * Calls the function @func on the remote cpu.
123  *
124  * returns: @func return value or -ENXIO when the cpu is offline
125  */
126 static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 {
128 	struct remote_function_call data = {
129 		.p	= NULL,
130 		.func	= func,
131 		.info	= info,
132 		.ret	= -ENXIO, /* No such CPU */
133 	};
134 
135 	smp_call_function_single(cpu, remote_function, &data, 1);
136 
137 	return data.ret;
138 }
139 
140 static inline struct perf_cpu_context *
141 __get_cpu_context(struct perf_event_context *ctx)
142 {
143 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144 }
145 
146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 			  struct perf_event_context *ctx)
148 {
149 	raw_spin_lock(&cpuctx->ctx.lock);
150 	if (ctx)
151 		raw_spin_lock(&ctx->lock);
152 }
153 
154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 			    struct perf_event_context *ctx)
156 {
157 	if (ctx)
158 		raw_spin_unlock(&ctx->lock);
159 	raw_spin_unlock(&cpuctx->ctx.lock);
160 }
161 
162 #define TASK_TOMBSTONE ((void *)-1L)
163 
164 static bool is_kernel_event(struct perf_event *event)
165 {
166 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 }
168 
169 /*
170  * On task ctx scheduling...
171  *
172  * When !ctx->nr_events a task context will not be scheduled. This means
173  * we can disable the scheduler hooks (for performance) without leaving
174  * pending task ctx state.
175  *
176  * This however results in two special cases:
177  *
178  *  - removing the last event from a task ctx; this is relatively straight
179  *    forward and is done in __perf_remove_from_context.
180  *
181  *  - adding the first event to a task ctx; this is tricky because we cannot
182  *    rely on ctx->is_active and therefore cannot use event_function_call().
183  *    See perf_install_in_context().
184  *
185  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186  */
187 
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 			struct perf_event_context *, void *);
190 
191 struct event_function_struct {
192 	struct perf_event *event;
193 	event_f func;
194 	void *data;
195 };
196 
197 static int event_function(void *info)
198 {
199 	struct event_function_struct *efs = info;
200 	struct perf_event *event = efs->event;
201 	struct perf_event_context *ctx = event->ctx;
202 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 	int ret = 0;
205 
206 	WARN_ON_ONCE(!irqs_disabled());
207 
208 	perf_ctx_lock(cpuctx, task_ctx);
209 	/*
210 	 * Since we do the IPI call without holding ctx->lock things can have
211 	 * changed, double check we hit the task we set out to hit.
212 	 */
213 	if (ctx->task) {
214 		if (ctx->task != current) {
215 			ret = -ESRCH;
216 			goto unlock;
217 		}
218 
219 		/*
220 		 * We only use event_function_call() on established contexts,
221 		 * and event_function() is only ever called when active (or
222 		 * rather, we'll have bailed in task_function_call() or the
223 		 * above ctx->task != current test), therefore we must have
224 		 * ctx->is_active here.
225 		 */
226 		WARN_ON_ONCE(!ctx->is_active);
227 		/*
228 		 * And since we have ctx->is_active, cpuctx->task_ctx must
229 		 * match.
230 		 */
231 		WARN_ON_ONCE(task_ctx != ctx);
232 	} else {
233 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 	}
235 
236 	efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 	perf_ctx_unlock(cpuctx, task_ctx);
239 
240 	return ret;
241 }
242 
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 	struct event_function_struct efs = {
246 		.event = event,
247 		.func = func,
248 		.data = data,
249 	};
250 
251 	int ret = event_function(&efs);
252 	WARN_ON_ONCE(ret);
253 }
254 
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 	struct perf_event_context *ctx = event->ctx;
258 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 	struct event_function_struct efs = {
260 		.event = event,
261 		.func = func,
262 		.data = data,
263 	};
264 
265 	if (!event->parent) {
266 		/*
267 		 * If this is a !child event, we must hold ctx::mutex to
268 		 * stabilize the the event->ctx relation. See
269 		 * perf_event_ctx_lock().
270 		 */
271 		lockdep_assert_held(&ctx->mutex);
272 	}
273 
274 	if (!task) {
275 		cpu_function_call(event->cpu, event_function, &efs);
276 		return;
277 	}
278 
279 	if (task == TASK_TOMBSTONE)
280 		return;
281 
282 again:
283 	if (!task_function_call(task, event_function, &efs))
284 		return;
285 
286 	raw_spin_lock_irq(&ctx->lock);
287 	/*
288 	 * Reload the task pointer, it might have been changed by
289 	 * a concurrent perf_event_context_sched_out().
290 	 */
291 	task = ctx->task;
292 	if (task == TASK_TOMBSTONE) {
293 		raw_spin_unlock_irq(&ctx->lock);
294 		return;
295 	}
296 	if (ctx->is_active) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		goto again;
299 	}
300 	func(event, NULL, ctx, data);
301 	raw_spin_unlock_irq(&ctx->lock);
302 }
303 
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 		       PERF_FLAG_FD_OUTPUT  |\
306 		       PERF_FLAG_PID_CGROUP |\
307 		       PERF_FLAG_FD_CLOEXEC)
308 
309 /*
310  * branch priv levels that need permission checks
311  */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 	(PERF_SAMPLE_BRANCH_KERNEL |\
314 	 PERF_SAMPLE_BRANCH_HV)
315 
316 enum event_type_t {
317 	EVENT_FLEXIBLE = 0x1,
318 	EVENT_PINNED = 0x2,
319 	EVENT_TIME = 0x4,
320 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321 };
322 
323 /*
324  * perf_sched_events : >0 events exist
325  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326  */
327 
328 static void perf_sched_delayed(struct work_struct *work);
329 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331 static DEFINE_MUTEX(perf_sched_mutex);
332 static atomic_t perf_sched_count;
333 
334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
336 
337 static atomic_t nr_mmap_events __read_mostly;
338 static atomic_t nr_comm_events __read_mostly;
339 static atomic_t nr_task_events __read_mostly;
340 static atomic_t nr_freq_events __read_mostly;
341 static atomic_t nr_switch_events __read_mostly;
342 
343 static LIST_HEAD(pmus);
344 static DEFINE_MUTEX(pmus_lock);
345 static struct srcu_struct pmus_srcu;
346 
347 /*
348  * perf event paranoia level:
349  *  -1 - not paranoid at all
350  *   0 - disallow raw tracepoint access for unpriv
351  *   1 - disallow cpu events for unpriv
352  *   2 - disallow kernel profiling for unpriv
353  */
354 int sysctl_perf_event_paranoid __read_mostly = 1;
355 
356 /* Minimum for 512 kiB + 1 user control page */
357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 
359 /*
360  * max perf event sample rate
361  */
362 #define DEFAULT_MAX_SAMPLE_RATE		100000
363 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
365 
366 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
367 
368 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
370 
371 static int perf_sample_allowed_ns __read_mostly =
372 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373 
374 static void update_perf_cpu_limits(void)
375 {
376 	u64 tmp = perf_sample_period_ns;
377 
378 	tmp *= sysctl_perf_cpu_time_max_percent;
379 	tmp = div_u64(tmp, 100);
380 	if (!tmp)
381 		tmp = 1;
382 
383 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
384 }
385 
386 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387 
388 int perf_proc_update_handler(struct ctl_table *table, int write,
389 		void __user *buffer, size_t *lenp,
390 		loff_t *ppos)
391 {
392 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
393 
394 	if (ret || !write)
395 		return ret;
396 
397 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 	update_perf_cpu_limits();
400 
401 	return 0;
402 }
403 
404 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405 
406 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 				void __user *buffer, size_t *lenp,
408 				loff_t *ppos)
409 {
410 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411 
412 	if (ret || !write)
413 		return ret;
414 
415 	if (sysctl_perf_cpu_time_max_percent == 100 ||
416 	    sysctl_perf_cpu_time_max_percent == 0) {
417 		printk(KERN_WARNING
418 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
419 		WRITE_ONCE(perf_sample_allowed_ns, 0);
420 	} else {
421 		update_perf_cpu_limits();
422 	}
423 
424 	return 0;
425 }
426 
427 /*
428  * perf samples are done in some very critical code paths (NMIs).
429  * If they take too much CPU time, the system can lock up and not
430  * get any real work done.  This will drop the sample rate when
431  * we detect that events are taking too long.
432  */
433 #define NR_ACCUMULATED_SAMPLES 128
434 static DEFINE_PER_CPU(u64, running_sample_length);
435 
436 static u64 __report_avg;
437 static u64 __report_allowed;
438 
439 static void perf_duration_warn(struct irq_work *w)
440 {
441 	printk_ratelimited(KERN_WARNING
442 		"perf: interrupt took too long (%lld > %lld), lowering "
443 		"kernel.perf_event_max_sample_rate to %d\n",
444 		__report_avg, __report_allowed,
445 		sysctl_perf_event_sample_rate);
446 }
447 
448 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
449 
450 void perf_sample_event_took(u64 sample_len_ns)
451 {
452 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
453 	u64 running_len;
454 	u64 avg_len;
455 	u32 max;
456 
457 	if (max_len == 0)
458 		return;
459 
460 	/* Decay the counter by 1 average sample. */
461 	running_len = __this_cpu_read(running_sample_length);
462 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
463 	running_len += sample_len_ns;
464 	__this_cpu_write(running_sample_length, running_len);
465 
466 	/*
467 	 * Note: this will be biased artifically low until we have
468 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
469 	 * from having to maintain a count.
470 	 */
471 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
472 	if (avg_len <= max_len)
473 		return;
474 
475 	__report_avg = avg_len;
476 	__report_allowed = max_len;
477 
478 	/*
479 	 * Compute a throttle threshold 25% below the current duration.
480 	 */
481 	avg_len += avg_len / 4;
482 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
483 	if (avg_len < max)
484 		max /= (u32)avg_len;
485 	else
486 		max = 1;
487 
488 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
489 	WRITE_ONCE(max_samples_per_tick, max);
490 
491 	sysctl_perf_event_sample_rate = max * HZ;
492 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
493 
494 	if (!irq_work_queue(&perf_duration_work)) {
495 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
496 			     "kernel.perf_event_max_sample_rate to %d\n",
497 			     __report_avg, __report_allowed,
498 			     sysctl_perf_event_sample_rate);
499 	}
500 }
501 
502 static atomic64_t perf_event_id;
503 
504 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
505 			      enum event_type_t event_type);
506 
507 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
508 			     enum event_type_t event_type,
509 			     struct task_struct *task);
510 
511 static void update_context_time(struct perf_event_context *ctx);
512 static u64 perf_event_time(struct perf_event *event);
513 
514 void __weak perf_event_print_debug(void)	{ }
515 
516 extern __weak const char *perf_pmu_name(void)
517 {
518 	return "pmu";
519 }
520 
521 static inline u64 perf_clock(void)
522 {
523 	return local_clock();
524 }
525 
526 static inline u64 perf_event_clock(struct perf_event *event)
527 {
528 	return event->clock();
529 }
530 
531 #ifdef CONFIG_CGROUP_PERF
532 
533 static inline bool
534 perf_cgroup_match(struct perf_event *event)
535 {
536 	struct perf_event_context *ctx = event->ctx;
537 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
538 
539 	/* @event doesn't care about cgroup */
540 	if (!event->cgrp)
541 		return true;
542 
543 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
544 	if (!cpuctx->cgrp)
545 		return false;
546 
547 	/*
548 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
549 	 * also enabled for all its descendant cgroups.  If @cpuctx's
550 	 * cgroup is a descendant of @event's (the test covers identity
551 	 * case), it's a match.
552 	 */
553 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
554 				    event->cgrp->css.cgroup);
555 }
556 
557 static inline void perf_detach_cgroup(struct perf_event *event)
558 {
559 	css_put(&event->cgrp->css);
560 	event->cgrp = NULL;
561 }
562 
563 static inline int is_cgroup_event(struct perf_event *event)
564 {
565 	return event->cgrp != NULL;
566 }
567 
568 static inline u64 perf_cgroup_event_time(struct perf_event *event)
569 {
570 	struct perf_cgroup_info *t;
571 
572 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
573 	return t->time;
574 }
575 
576 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
577 {
578 	struct perf_cgroup_info *info;
579 	u64 now;
580 
581 	now = perf_clock();
582 
583 	info = this_cpu_ptr(cgrp->info);
584 
585 	info->time += now - info->timestamp;
586 	info->timestamp = now;
587 }
588 
589 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
590 {
591 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
592 	if (cgrp_out)
593 		__update_cgrp_time(cgrp_out);
594 }
595 
596 static inline void update_cgrp_time_from_event(struct perf_event *event)
597 {
598 	struct perf_cgroup *cgrp;
599 
600 	/*
601 	 * ensure we access cgroup data only when needed and
602 	 * when we know the cgroup is pinned (css_get)
603 	 */
604 	if (!is_cgroup_event(event))
605 		return;
606 
607 	cgrp = perf_cgroup_from_task(current, event->ctx);
608 	/*
609 	 * Do not update time when cgroup is not active
610 	 */
611 	if (cgrp == event->cgrp)
612 		__update_cgrp_time(event->cgrp);
613 }
614 
615 static inline void
616 perf_cgroup_set_timestamp(struct task_struct *task,
617 			  struct perf_event_context *ctx)
618 {
619 	struct perf_cgroup *cgrp;
620 	struct perf_cgroup_info *info;
621 
622 	/*
623 	 * ctx->lock held by caller
624 	 * ensure we do not access cgroup data
625 	 * unless we have the cgroup pinned (css_get)
626 	 */
627 	if (!task || !ctx->nr_cgroups)
628 		return;
629 
630 	cgrp = perf_cgroup_from_task(task, ctx);
631 	info = this_cpu_ptr(cgrp->info);
632 	info->timestamp = ctx->timestamp;
633 }
634 
635 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
636 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
637 
638 /*
639  * reschedule events based on the cgroup constraint of task.
640  *
641  * mode SWOUT : schedule out everything
642  * mode SWIN : schedule in based on cgroup for next
643  */
644 static void perf_cgroup_switch(struct task_struct *task, int mode)
645 {
646 	struct perf_cpu_context *cpuctx;
647 	struct pmu *pmu;
648 	unsigned long flags;
649 
650 	/*
651 	 * disable interrupts to avoid geting nr_cgroup
652 	 * changes via __perf_event_disable(). Also
653 	 * avoids preemption.
654 	 */
655 	local_irq_save(flags);
656 
657 	/*
658 	 * we reschedule only in the presence of cgroup
659 	 * constrained events.
660 	 */
661 
662 	list_for_each_entry_rcu(pmu, &pmus, entry) {
663 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
664 		if (cpuctx->unique_pmu != pmu)
665 			continue; /* ensure we process each cpuctx once */
666 
667 		/*
668 		 * perf_cgroup_events says at least one
669 		 * context on this CPU has cgroup events.
670 		 *
671 		 * ctx->nr_cgroups reports the number of cgroup
672 		 * events for a context.
673 		 */
674 		if (cpuctx->ctx.nr_cgroups > 0) {
675 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
676 			perf_pmu_disable(cpuctx->ctx.pmu);
677 
678 			if (mode & PERF_CGROUP_SWOUT) {
679 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
680 				/*
681 				 * must not be done before ctxswout due
682 				 * to event_filter_match() in event_sched_out()
683 				 */
684 				cpuctx->cgrp = NULL;
685 			}
686 
687 			if (mode & PERF_CGROUP_SWIN) {
688 				WARN_ON_ONCE(cpuctx->cgrp);
689 				/*
690 				 * set cgrp before ctxsw in to allow
691 				 * event_filter_match() to not have to pass
692 				 * task around
693 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
694 				 * because cgorup events are only per-cpu
695 				 */
696 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
697 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
698 			}
699 			perf_pmu_enable(cpuctx->ctx.pmu);
700 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
701 		}
702 	}
703 
704 	local_irq_restore(flags);
705 }
706 
707 static inline void perf_cgroup_sched_out(struct task_struct *task,
708 					 struct task_struct *next)
709 {
710 	struct perf_cgroup *cgrp1;
711 	struct perf_cgroup *cgrp2 = NULL;
712 
713 	rcu_read_lock();
714 	/*
715 	 * we come here when we know perf_cgroup_events > 0
716 	 * we do not need to pass the ctx here because we know
717 	 * we are holding the rcu lock
718 	 */
719 	cgrp1 = perf_cgroup_from_task(task, NULL);
720 	cgrp2 = perf_cgroup_from_task(next, NULL);
721 
722 	/*
723 	 * only schedule out current cgroup events if we know
724 	 * that we are switching to a different cgroup. Otherwise,
725 	 * do no touch the cgroup events.
726 	 */
727 	if (cgrp1 != cgrp2)
728 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
729 
730 	rcu_read_unlock();
731 }
732 
733 static inline void perf_cgroup_sched_in(struct task_struct *prev,
734 					struct task_struct *task)
735 {
736 	struct perf_cgroup *cgrp1;
737 	struct perf_cgroup *cgrp2 = NULL;
738 
739 	rcu_read_lock();
740 	/*
741 	 * we come here when we know perf_cgroup_events > 0
742 	 * we do not need to pass the ctx here because we know
743 	 * we are holding the rcu lock
744 	 */
745 	cgrp1 = perf_cgroup_from_task(task, NULL);
746 	cgrp2 = perf_cgroup_from_task(prev, NULL);
747 
748 	/*
749 	 * only need to schedule in cgroup events if we are changing
750 	 * cgroup during ctxsw. Cgroup events were not scheduled
751 	 * out of ctxsw out if that was not the case.
752 	 */
753 	if (cgrp1 != cgrp2)
754 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
755 
756 	rcu_read_unlock();
757 }
758 
759 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
760 				      struct perf_event_attr *attr,
761 				      struct perf_event *group_leader)
762 {
763 	struct perf_cgroup *cgrp;
764 	struct cgroup_subsys_state *css;
765 	struct fd f = fdget(fd);
766 	int ret = 0;
767 
768 	if (!f.file)
769 		return -EBADF;
770 
771 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
772 					 &perf_event_cgrp_subsys);
773 	if (IS_ERR(css)) {
774 		ret = PTR_ERR(css);
775 		goto out;
776 	}
777 
778 	cgrp = container_of(css, struct perf_cgroup, css);
779 	event->cgrp = cgrp;
780 
781 	/*
782 	 * all events in a group must monitor
783 	 * the same cgroup because a task belongs
784 	 * to only one perf cgroup at a time
785 	 */
786 	if (group_leader && group_leader->cgrp != cgrp) {
787 		perf_detach_cgroup(event);
788 		ret = -EINVAL;
789 	}
790 out:
791 	fdput(f);
792 	return ret;
793 }
794 
795 static inline void
796 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
797 {
798 	struct perf_cgroup_info *t;
799 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
800 	event->shadow_ctx_time = now - t->timestamp;
801 }
802 
803 static inline void
804 perf_cgroup_defer_enabled(struct perf_event *event)
805 {
806 	/*
807 	 * when the current task's perf cgroup does not match
808 	 * the event's, we need to remember to call the
809 	 * perf_mark_enable() function the first time a task with
810 	 * a matching perf cgroup is scheduled in.
811 	 */
812 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
813 		event->cgrp_defer_enabled = 1;
814 }
815 
816 static inline void
817 perf_cgroup_mark_enabled(struct perf_event *event,
818 			 struct perf_event_context *ctx)
819 {
820 	struct perf_event *sub;
821 	u64 tstamp = perf_event_time(event);
822 
823 	if (!event->cgrp_defer_enabled)
824 		return;
825 
826 	event->cgrp_defer_enabled = 0;
827 
828 	event->tstamp_enabled = tstamp - event->total_time_enabled;
829 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
830 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
831 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
832 			sub->cgrp_defer_enabled = 0;
833 		}
834 	}
835 }
836 #else /* !CONFIG_CGROUP_PERF */
837 
838 static inline bool
839 perf_cgroup_match(struct perf_event *event)
840 {
841 	return true;
842 }
843 
844 static inline void perf_detach_cgroup(struct perf_event *event)
845 {}
846 
847 static inline int is_cgroup_event(struct perf_event *event)
848 {
849 	return 0;
850 }
851 
852 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
853 {
854 	return 0;
855 }
856 
857 static inline void update_cgrp_time_from_event(struct perf_event *event)
858 {
859 }
860 
861 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
862 {
863 }
864 
865 static inline void perf_cgroup_sched_out(struct task_struct *task,
866 					 struct task_struct *next)
867 {
868 }
869 
870 static inline void perf_cgroup_sched_in(struct task_struct *prev,
871 					struct task_struct *task)
872 {
873 }
874 
875 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
876 				      struct perf_event_attr *attr,
877 				      struct perf_event *group_leader)
878 {
879 	return -EINVAL;
880 }
881 
882 static inline void
883 perf_cgroup_set_timestamp(struct task_struct *task,
884 			  struct perf_event_context *ctx)
885 {
886 }
887 
888 void
889 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
890 {
891 }
892 
893 static inline void
894 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
895 {
896 }
897 
898 static inline u64 perf_cgroup_event_time(struct perf_event *event)
899 {
900 	return 0;
901 }
902 
903 static inline void
904 perf_cgroup_defer_enabled(struct perf_event *event)
905 {
906 }
907 
908 static inline void
909 perf_cgroup_mark_enabled(struct perf_event *event,
910 			 struct perf_event_context *ctx)
911 {
912 }
913 #endif
914 
915 /*
916  * set default to be dependent on timer tick just
917  * like original code
918  */
919 #define PERF_CPU_HRTIMER (1000 / HZ)
920 /*
921  * function must be called with interrupts disbled
922  */
923 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
924 {
925 	struct perf_cpu_context *cpuctx;
926 	int rotations = 0;
927 
928 	WARN_ON(!irqs_disabled());
929 
930 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
931 	rotations = perf_rotate_context(cpuctx);
932 
933 	raw_spin_lock(&cpuctx->hrtimer_lock);
934 	if (rotations)
935 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
936 	else
937 		cpuctx->hrtimer_active = 0;
938 	raw_spin_unlock(&cpuctx->hrtimer_lock);
939 
940 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
941 }
942 
943 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
944 {
945 	struct hrtimer *timer = &cpuctx->hrtimer;
946 	struct pmu *pmu = cpuctx->ctx.pmu;
947 	u64 interval;
948 
949 	/* no multiplexing needed for SW PMU */
950 	if (pmu->task_ctx_nr == perf_sw_context)
951 		return;
952 
953 	/*
954 	 * check default is sane, if not set then force to
955 	 * default interval (1/tick)
956 	 */
957 	interval = pmu->hrtimer_interval_ms;
958 	if (interval < 1)
959 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
960 
961 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
962 
963 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
964 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
965 	timer->function = perf_mux_hrtimer_handler;
966 }
967 
968 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
969 {
970 	struct hrtimer *timer = &cpuctx->hrtimer;
971 	struct pmu *pmu = cpuctx->ctx.pmu;
972 	unsigned long flags;
973 
974 	/* not for SW PMU */
975 	if (pmu->task_ctx_nr == perf_sw_context)
976 		return 0;
977 
978 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
979 	if (!cpuctx->hrtimer_active) {
980 		cpuctx->hrtimer_active = 1;
981 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
982 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
983 	}
984 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
985 
986 	return 0;
987 }
988 
989 void perf_pmu_disable(struct pmu *pmu)
990 {
991 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
992 	if (!(*count)++)
993 		pmu->pmu_disable(pmu);
994 }
995 
996 void perf_pmu_enable(struct pmu *pmu)
997 {
998 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
999 	if (!--(*count))
1000 		pmu->pmu_enable(pmu);
1001 }
1002 
1003 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1004 
1005 /*
1006  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1007  * perf_event_task_tick() are fully serialized because they're strictly cpu
1008  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1009  * disabled, while perf_event_task_tick is called from IRQ context.
1010  */
1011 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1012 {
1013 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1014 
1015 	WARN_ON(!irqs_disabled());
1016 
1017 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1018 
1019 	list_add(&ctx->active_ctx_list, head);
1020 }
1021 
1022 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1023 {
1024 	WARN_ON(!irqs_disabled());
1025 
1026 	WARN_ON(list_empty(&ctx->active_ctx_list));
1027 
1028 	list_del_init(&ctx->active_ctx_list);
1029 }
1030 
1031 static void get_ctx(struct perf_event_context *ctx)
1032 {
1033 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1034 }
1035 
1036 static void free_ctx(struct rcu_head *head)
1037 {
1038 	struct perf_event_context *ctx;
1039 
1040 	ctx = container_of(head, struct perf_event_context, rcu_head);
1041 	kfree(ctx->task_ctx_data);
1042 	kfree(ctx);
1043 }
1044 
1045 static void put_ctx(struct perf_event_context *ctx)
1046 {
1047 	if (atomic_dec_and_test(&ctx->refcount)) {
1048 		if (ctx->parent_ctx)
1049 			put_ctx(ctx->parent_ctx);
1050 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1051 			put_task_struct(ctx->task);
1052 		call_rcu(&ctx->rcu_head, free_ctx);
1053 	}
1054 }
1055 
1056 /*
1057  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1058  * perf_pmu_migrate_context() we need some magic.
1059  *
1060  * Those places that change perf_event::ctx will hold both
1061  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1062  *
1063  * Lock ordering is by mutex address. There are two other sites where
1064  * perf_event_context::mutex nests and those are:
1065  *
1066  *  - perf_event_exit_task_context()	[ child , 0 ]
1067  *      perf_event_exit_event()
1068  *        put_event()			[ parent, 1 ]
1069  *
1070  *  - perf_event_init_context()		[ parent, 0 ]
1071  *      inherit_task_group()
1072  *        inherit_group()
1073  *          inherit_event()
1074  *            perf_event_alloc()
1075  *              perf_init_event()
1076  *                perf_try_init_event()	[ child , 1 ]
1077  *
1078  * While it appears there is an obvious deadlock here -- the parent and child
1079  * nesting levels are inverted between the two. This is in fact safe because
1080  * life-time rules separate them. That is an exiting task cannot fork, and a
1081  * spawning task cannot (yet) exit.
1082  *
1083  * But remember that that these are parent<->child context relations, and
1084  * migration does not affect children, therefore these two orderings should not
1085  * interact.
1086  *
1087  * The change in perf_event::ctx does not affect children (as claimed above)
1088  * because the sys_perf_event_open() case will install a new event and break
1089  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1090  * concerned with cpuctx and that doesn't have children.
1091  *
1092  * The places that change perf_event::ctx will issue:
1093  *
1094  *   perf_remove_from_context();
1095  *   synchronize_rcu();
1096  *   perf_install_in_context();
1097  *
1098  * to affect the change. The remove_from_context() + synchronize_rcu() should
1099  * quiesce the event, after which we can install it in the new location. This
1100  * means that only external vectors (perf_fops, prctl) can perturb the event
1101  * while in transit. Therefore all such accessors should also acquire
1102  * perf_event_context::mutex to serialize against this.
1103  *
1104  * However; because event->ctx can change while we're waiting to acquire
1105  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1106  * function.
1107  *
1108  * Lock order:
1109  *    cred_guard_mutex
1110  *	task_struct::perf_event_mutex
1111  *	  perf_event_context::mutex
1112  *	    perf_event::child_mutex;
1113  *	      perf_event_context::lock
1114  *	    perf_event::mmap_mutex
1115  *	    mmap_sem
1116  */
1117 static struct perf_event_context *
1118 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1119 {
1120 	struct perf_event_context *ctx;
1121 
1122 again:
1123 	rcu_read_lock();
1124 	ctx = ACCESS_ONCE(event->ctx);
1125 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1126 		rcu_read_unlock();
1127 		goto again;
1128 	}
1129 	rcu_read_unlock();
1130 
1131 	mutex_lock_nested(&ctx->mutex, nesting);
1132 	if (event->ctx != ctx) {
1133 		mutex_unlock(&ctx->mutex);
1134 		put_ctx(ctx);
1135 		goto again;
1136 	}
1137 
1138 	return ctx;
1139 }
1140 
1141 static inline struct perf_event_context *
1142 perf_event_ctx_lock(struct perf_event *event)
1143 {
1144 	return perf_event_ctx_lock_nested(event, 0);
1145 }
1146 
1147 static void perf_event_ctx_unlock(struct perf_event *event,
1148 				  struct perf_event_context *ctx)
1149 {
1150 	mutex_unlock(&ctx->mutex);
1151 	put_ctx(ctx);
1152 }
1153 
1154 /*
1155  * This must be done under the ctx->lock, such as to serialize against
1156  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1157  * calling scheduler related locks and ctx->lock nests inside those.
1158  */
1159 static __must_check struct perf_event_context *
1160 unclone_ctx(struct perf_event_context *ctx)
1161 {
1162 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1163 
1164 	lockdep_assert_held(&ctx->lock);
1165 
1166 	if (parent_ctx)
1167 		ctx->parent_ctx = NULL;
1168 	ctx->generation++;
1169 
1170 	return parent_ctx;
1171 }
1172 
1173 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1174 {
1175 	/*
1176 	 * only top level events have the pid namespace they were created in
1177 	 */
1178 	if (event->parent)
1179 		event = event->parent;
1180 
1181 	return task_tgid_nr_ns(p, event->ns);
1182 }
1183 
1184 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1185 {
1186 	/*
1187 	 * only top level events have the pid namespace they were created in
1188 	 */
1189 	if (event->parent)
1190 		event = event->parent;
1191 
1192 	return task_pid_nr_ns(p, event->ns);
1193 }
1194 
1195 /*
1196  * If we inherit events we want to return the parent event id
1197  * to userspace.
1198  */
1199 static u64 primary_event_id(struct perf_event *event)
1200 {
1201 	u64 id = event->id;
1202 
1203 	if (event->parent)
1204 		id = event->parent->id;
1205 
1206 	return id;
1207 }
1208 
1209 /*
1210  * Get the perf_event_context for a task and lock it.
1211  *
1212  * This has to cope with with the fact that until it is locked,
1213  * the context could get moved to another task.
1214  */
1215 static struct perf_event_context *
1216 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1217 {
1218 	struct perf_event_context *ctx;
1219 
1220 retry:
1221 	/*
1222 	 * One of the few rules of preemptible RCU is that one cannot do
1223 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1224 	 * part of the read side critical section was irqs-enabled -- see
1225 	 * rcu_read_unlock_special().
1226 	 *
1227 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1228 	 * side critical section has interrupts disabled.
1229 	 */
1230 	local_irq_save(*flags);
1231 	rcu_read_lock();
1232 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1233 	if (ctx) {
1234 		/*
1235 		 * If this context is a clone of another, it might
1236 		 * get swapped for another underneath us by
1237 		 * perf_event_task_sched_out, though the
1238 		 * rcu_read_lock() protects us from any context
1239 		 * getting freed.  Lock the context and check if it
1240 		 * got swapped before we could get the lock, and retry
1241 		 * if so.  If we locked the right context, then it
1242 		 * can't get swapped on us any more.
1243 		 */
1244 		raw_spin_lock(&ctx->lock);
1245 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1246 			raw_spin_unlock(&ctx->lock);
1247 			rcu_read_unlock();
1248 			local_irq_restore(*flags);
1249 			goto retry;
1250 		}
1251 
1252 		if (ctx->task == TASK_TOMBSTONE ||
1253 		    !atomic_inc_not_zero(&ctx->refcount)) {
1254 			raw_spin_unlock(&ctx->lock);
1255 			ctx = NULL;
1256 		} else {
1257 			WARN_ON_ONCE(ctx->task != task);
1258 		}
1259 	}
1260 	rcu_read_unlock();
1261 	if (!ctx)
1262 		local_irq_restore(*flags);
1263 	return ctx;
1264 }
1265 
1266 /*
1267  * Get the context for a task and increment its pin_count so it
1268  * can't get swapped to another task.  This also increments its
1269  * reference count so that the context can't get freed.
1270  */
1271 static struct perf_event_context *
1272 perf_pin_task_context(struct task_struct *task, int ctxn)
1273 {
1274 	struct perf_event_context *ctx;
1275 	unsigned long flags;
1276 
1277 	ctx = perf_lock_task_context(task, ctxn, &flags);
1278 	if (ctx) {
1279 		++ctx->pin_count;
1280 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1281 	}
1282 	return ctx;
1283 }
1284 
1285 static void perf_unpin_context(struct perf_event_context *ctx)
1286 {
1287 	unsigned long flags;
1288 
1289 	raw_spin_lock_irqsave(&ctx->lock, flags);
1290 	--ctx->pin_count;
1291 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1292 }
1293 
1294 /*
1295  * Update the record of the current time in a context.
1296  */
1297 static void update_context_time(struct perf_event_context *ctx)
1298 {
1299 	u64 now = perf_clock();
1300 
1301 	ctx->time += now - ctx->timestamp;
1302 	ctx->timestamp = now;
1303 }
1304 
1305 static u64 perf_event_time(struct perf_event *event)
1306 {
1307 	struct perf_event_context *ctx = event->ctx;
1308 
1309 	if (is_cgroup_event(event))
1310 		return perf_cgroup_event_time(event);
1311 
1312 	return ctx ? ctx->time : 0;
1313 }
1314 
1315 /*
1316  * Update the total_time_enabled and total_time_running fields for a event.
1317  */
1318 static void update_event_times(struct perf_event *event)
1319 {
1320 	struct perf_event_context *ctx = event->ctx;
1321 	u64 run_end;
1322 
1323 	lockdep_assert_held(&ctx->lock);
1324 
1325 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1326 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1327 		return;
1328 
1329 	/*
1330 	 * in cgroup mode, time_enabled represents
1331 	 * the time the event was enabled AND active
1332 	 * tasks were in the monitored cgroup. This is
1333 	 * independent of the activity of the context as
1334 	 * there may be a mix of cgroup and non-cgroup events.
1335 	 *
1336 	 * That is why we treat cgroup events differently
1337 	 * here.
1338 	 */
1339 	if (is_cgroup_event(event))
1340 		run_end = perf_cgroup_event_time(event);
1341 	else if (ctx->is_active)
1342 		run_end = ctx->time;
1343 	else
1344 		run_end = event->tstamp_stopped;
1345 
1346 	event->total_time_enabled = run_end - event->tstamp_enabled;
1347 
1348 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1349 		run_end = event->tstamp_stopped;
1350 	else
1351 		run_end = perf_event_time(event);
1352 
1353 	event->total_time_running = run_end - event->tstamp_running;
1354 
1355 }
1356 
1357 /*
1358  * Update total_time_enabled and total_time_running for all events in a group.
1359  */
1360 static void update_group_times(struct perf_event *leader)
1361 {
1362 	struct perf_event *event;
1363 
1364 	update_event_times(leader);
1365 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1366 		update_event_times(event);
1367 }
1368 
1369 static struct list_head *
1370 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1371 {
1372 	if (event->attr.pinned)
1373 		return &ctx->pinned_groups;
1374 	else
1375 		return &ctx->flexible_groups;
1376 }
1377 
1378 /*
1379  * Add a event from the lists for its context.
1380  * Must be called with ctx->mutex and ctx->lock held.
1381  */
1382 static void
1383 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1384 {
1385 	lockdep_assert_held(&ctx->lock);
1386 
1387 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1388 	event->attach_state |= PERF_ATTACH_CONTEXT;
1389 
1390 	/*
1391 	 * If we're a stand alone event or group leader, we go to the context
1392 	 * list, group events are kept attached to the group so that
1393 	 * perf_group_detach can, at all times, locate all siblings.
1394 	 */
1395 	if (event->group_leader == event) {
1396 		struct list_head *list;
1397 
1398 		if (is_software_event(event))
1399 			event->group_flags |= PERF_GROUP_SOFTWARE;
1400 
1401 		list = ctx_group_list(event, ctx);
1402 		list_add_tail(&event->group_entry, list);
1403 	}
1404 
1405 	if (is_cgroup_event(event))
1406 		ctx->nr_cgroups++;
1407 
1408 	list_add_rcu(&event->event_entry, &ctx->event_list);
1409 	ctx->nr_events++;
1410 	if (event->attr.inherit_stat)
1411 		ctx->nr_stat++;
1412 
1413 	ctx->generation++;
1414 }
1415 
1416 /*
1417  * Initialize event state based on the perf_event_attr::disabled.
1418  */
1419 static inline void perf_event__state_init(struct perf_event *event)
1420 {
1421 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1422 					      PERF_EVENT_STATE_INACTIVE;
1423 }
1424 
1425 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1426 {
1427 	int entry = sizeof(u64); /* value */
1428 	int size = 0;
1429 	int nr = 1;
1430 
1431 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1432 		size += sizeof(u64);
1433 
1434 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1435 		size += sizeof(u64);
1436 
1437 	if (event->attr.read_format & PERF_FORMAT_ID)
1438 		entry += sizeof(u64);
1439 
1440 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1441 		nr += nr_siblings;
1442 		size += sizeof(u64);
1443 	}
1444 
1445 	size += entry * nr;
1446 	event->read_size = size;
1447 }
1448 
1449 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1450 {
1451 	struct perf_sample_data *data;
1452 	u16 size = 0;
1453 
1454 	if (sample_type & PERF_SAMPLE_IP)
1455 		size += sizeof(data->ip);
1456 
1457 	if (sample_type & PERF_SAMPLE_ADDR)
1458 		size += sizeof(data->addr);
1459 
1460 	if (sample_type & PERF_SAMPLE_PERIOD)
1461 		size += sizeof(data->period);
1462 
1463 	if (sample_type & PERF_SAMPLE_WEIGHT)
1464 		size += sizeof(data->weight);
1465 
1466 	if (sample_type & PERF_SAMPLE_READ)
1467 		size += event->read_size;
1468 
1469 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1470 		size += sizeof(data->data_src.val);
1471 
1472 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1473 		size += sizeof(data->txn);
1474 
1475 	event->header_size = size;
1476 }
1477 
1478 /*
1479  * Called at perf_event creation and when events are attached/detached from a
1480  * group.
1481  */
1482 static void perf_event__header_size(struct perf_event *event)
1483 {
1484 	__perf_event_read_size(event,
1485 			       event->group_leader->nr_siblings);
1486 	__perf_event_header_size(event, event->attr.sample_type);
1487 }
1488 
1489 static void perf_event__id_header_size(struct perf_event *event)
1490 {
1491 	struct perf_sample_data *data;
1492 	u64 sample_type = event->attr.sample_type;
1493 	u16 size = 0;
1494 
1495 	if (sample_type & PERF_SAMPLE_TID)
1496 		size += sizeof(data->tid_entry);
1497 
1498 	if (sample_type & PERF_SAMPLE_TIME)
1499 		size += sizeof(data->time);
1500 
1501 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1502 		size += sizeof(data->id);
1503 
1504 	if (sample_type & PERF_SAMPLE_ID)
1505 		size += sizeof(data->id);
1506 
1507 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1508 		size += sizeof(data->stream_id);
1509 
1510 	if (sample_type & PERF_SAMPLE_CPU)
1511 		size += sizeof(data->cpu_entry);
1512 
1513 	event->id_header_size = size;
1514 }
1515 
1516 static bool perf_event_validate_size(struct perf_event *event)
1517 {
1518 	/*
1519 	 * The values computed here will be over-written when we actually
1520 	 * attach the event.
1521 	 */
1522 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1523 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1524 	perf_event__id_header_size(event);
1525 
1526 	/*
1527 	 * Sum the lot; should not exceed the 64k limit we have on records.
1528 	 * Conservative limit to allow for callchains and other variable fields.
1529 	 */
1530 	if (event->read_size + event->header_size +
1531 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1532 		return false;
1533 
1534 	return true;
1535 }
1536 
1537 static void perf_group_attach(struct perf_event *event)
1538 {
1539 	struct perf_event *group_leader = event->group_leader, *pos;
1540 
1541 	/*
1542 	 * We can have double attach due to group movement in perf_event_open.
1543 	 */
1544 	if (event->attach_state & PERF_ATTACH_GROUP)
1545 		return;
1546 
1547 	event->attach_state |= PERF_ATTACH_GROUP;
1548 
1549 	if (group_leader == event)
1550 		return;
1551 
1552 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1553 
1554 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1555 			!is_software_event(event))
1556 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1557 
1558 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1559 	group_leader->nr_siblings++;
1560 
1561 	perf_event__header_size(group_leader);
1562 
1563 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1564 		perf_event__header_size(pos);
1565 }
1566 
1567 /*
1568  * Remove a event from the lists for its context.
1569  * Must be called with ctx->mutex and ctx->lock held.
1570  */
1571 static void
1572 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1573 {
1574 	struct perf_cpu_context *cpuctx;
1575 
1576 	WARN_ON_ONCE(event->ctx != ctx);
1577 	lockdep_assert_held(&ctx->lock);
1578 
1579 	/*
1580 	 * We can have double detach due to exit/hot-unplug + close.
1581 	 */
1582 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1583 		return;
1584 
1585 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1586 
1587 	if (is_cgroup_event(event)) {
1588 		ctx->nr_cgroups--;
1589 		/*
1590 		 * Because cgroup events are always per-cpu events, this will
1591 		 * always be called from the right CPU.
1592 		 */
1593 		cpuctx = __get_cpu_context(ctx);
1594 		/*
1595 		 * If there are no more cgroup events then clear cgrp to avoid
1596 		 * stale pointer in update_cgrp_time_from_cpuctx().
1597 		 */
1598 		if (!ctx->nr_cgroups)
1599 			cpuctx->cgrp = NULL;
1600 	}
1601 
1602 	ctx->nr_events--;
1603 	if (event->attr.inherit_stat)
1604 		ctx->nr_stat--;
1605 
1606 	list_del_rcu(&event->event_entry);
1607 
1608 	if (event->group_leader == event)
1609 		list_del_init(&event->group_entry);
1610 
1611 	update_group_times(event);
1612 
1613 	/*
1614 	 * If event was in error state, then keep it
1615 	 * that way, otherwise bogus counts will be
1616 	 * returned on read(). The only way to get out
1617 	 * of error state is by explicit re-enabling
1618 	 * of the event
1619 	 */
1620 	if (event->state > PERF_EVENT_STATE_OFF)
1621 		event->state = PERF_EVENT_STATE_OFF;
1622 
1623 	ctx->generation++;
1624 }
1625 
1626 static void perf_group_detach(struct perf_event *event)
1627 {
1628 	struct perf_event *sibling, *tmp;
1629 	struct list_head *list = NULL;
1630 
1631 	/*
1632 	 * We can have double detach due to exit/hot-unplug + close.
1633 	 */
1634 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1635 		return;
1636 
1637 	event->attach_state &= ~PERF_ATTACH_GROUP;
1638 
1639 	/*
1640 	 * If this is a sibling, remove it from its group.
1641 	 */
1642 	if (event->group_leader != event) {
1643 		list_del_init(&event->group_entry);
1644 		event->group_leader->nr_siblings--;
1645 		goto out;
1646 	}
1647 
1648 	if (!list_empty(&event->group_entry))
1649 		list = &event->group_entry;
1650 
1651 	/*
1652 	 * If this was a group event with sibling events then
1653 	 * upgrade the siblings to singleton events by adding them
1654 	 * to whatever list we are on.
1655 	 */
1656 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1657 		if (list)
1658 			list_move_tail(&sibling->group_entry, list);
1659 		sibling->group_leader = sibling;
1660 
1661 		/* Inherit group flags from the previous leader */
1662 		sibling->group_flags = event->group_flags;
1663 
1664 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1665 	}
1666 
1667 out:
1668 	perf_event__header_size(event->group_leader);
1669 
1670 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1671 		perf_event__header_size(tmp);
1672 }
1673 
1674 static bool is_orphaned_event(struct perf_event *event)
1675 {
1676 	return event->state == PERF_EVENT_STATE_DEAD;
1677 }
1678 
1679 static inline int pmu_filter_match(struct perf_event *event)
1680 {
1681 	struct pmu *pmu = event->pmu;
1682 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1683 }
1684 
1685 static inline int
1686 event_filter_match(struct perf_event *event)
1687 {
1688 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1689 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1690 }
1691 
1692 static void
1693 event_sched_out(struct perf_event *event,
1694 		  struct perf_cpu_context *cpuctx,
1695 		  struct perf_event_context *ctx)
1696 {
1697 	u64 tstamp = perf_event_time(event);
1698 	u64 delta;
1699 
1700 	WARN_ON_ONCE(event->ctx != ctx);
1701 	lockdep_assert_held(&ctx->lock);
1702 
1703 	/*
1704 	 * An event which could not be activated because of
1705 	 * filter mismatch still needs to have its timings
1706 	 * maintained, otherwise bogus information is return
1707 	 * via read() for time_enabled, time_running:
1708 	 */
1709 	if (event->state == PERF_EVENT_STATE_INACTIVE
1710 	    && !event_filter_match(event)) {
1711 		delta = tstamp - event->tstamp_stopped;
1712 		event->tstamp_running += delta;
1713 		event->tstamp_stopped = tstamp;
1714 	}
1715 
1716 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1717 		return;
1718 
1719 	perf_pmu_disable(event->pmu);
1720 
1721 	event->tstamp_stopped = tstamp;
1722 	event->pmu->del(event, 0);
1723 	event->oncpu = -1;
1724 	event->state = PERF_EVENT_STATE_INACTIVE;
1725 	if (event->pending_disable) {
1726 		event->pending_disable = 0;
1727 		event->state = PERF_EVENT_STATE_OFF;
1728 	}
1729 
1730 	if (!is_software_event(event))
1731 		cpuctx->active_oncpu--;
1732 	if (!--ctx->nr_active)
1733 		perf_event_ctx_deactivate(ctx);
1734 	if (event->attr.freq && event->attr.sample_freq)
1735 		ctx->nr_freq--;
1736 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1737 		cpuctx->exclusive = 0;
1738 
1739 	perf_pmu_enable(event->pmu);
1740 }
1741 
1742 static void
1743 group_sched_out(struct perf_event *group_event,
1744 		struct perf_cpu_context *cpuctx,
1745 		struct perf_event_context *ctx)
1746 {
1747 	struct perf_event *event;
1748 	int state = group_event->state;
1749 
1750 	event_sched_out(group_event, cpuctx, ctx);
1751 
1752 	/*
1753 	 * Schedule out siblings (if any):
1754 	 */
1755 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1756 		event_sched_out(event, cpuctx, ctx);
1757 
1758 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1759 		cpuctx->exclusive = 0;
1760 }
1761 
1762 #define DETACH_GROUP	0x01UL
1763 
1764 /*
1765  * Cross CPU call to remove a performance event
1766  *
1767  * We disable the event on the hardware level first. After that we
1768  * remove it from the context list.
1769  */
1770 static void
1771 __perf_remove_from_context(struct perf_event *event,
1772 			   struct perf_cpu_context *cpuctx,
1773 			   struct perf_event_context *ctx,
1774 			   void *info)
1775 {
1776 	unsigned long flags = (unsigned long)info;
1777 
1778 	event_sched_out(event, cpuctx, ctx);
1779 	if (flags & DETACH_GROUP)
1780 		perf_group_detach(event);
1781 	list_del_event(event, ctx);
1782 
1783 	if (!ctx->nr_events && ctx->is_active) {
1784 		ctx->is_active = 0;
1785 		if (ctx->task) {
1786 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1787 			cpuctx->task_ctx = NULL;
1788 		}
1789 	}
1790 }
1791 
1792 /*
1793  * Remove the event from a task's (or a CPU's) list of events.
1794  *
1795  * If event->ctx is a cloned context, callers must make sure that
1796  * every task struct that event->ctx->task could possibly point to
1797  * remains valid.  This is OK when called from perf_release since
1798  * that only calls us on the top-level context, which can't be a clone.
1799  * When called from perf_event_exit_task, it's OK because the
1800  * context has been detached from its task.
1801  */
1802 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1803 {
1804 	lockdep_assert_held(&event->ctx->mutex);
1805 
1806 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1807 }
1808 
1809 /*
1810  * Cross CPU call to disable a performance event
1811  */
1812 static void __perf_event_disable(struct perf_event *event,
1813 				 struct perf_cpu_context *cpuctx,
1814 				 struct perf_event_context *ctx,
1815 				 void *info)
1816 {
1817 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1818 		return;
1819 
1820 	update_context_time(ctx);
1821 	update_cgrp_time_from_event(event);
1822 	update_group_times(event);
1823 	if (event == event->group_leader)
1824 		group_sched_out(event, cpuctx, ctx);
1825 	else
1826 		event_sched_out(event, cpuctx, ctx);
1827 	event->state = PERF_EVENT_STATE_OFF;
1828 }
1829 
1830 /*
1831  * Disable a event.
1832  *
1833  * If event->ctx is a cloned context, callers must make sure that
1834  * every task struct that event->ctx->task could possibly point to
1835  * remains valid.  This condition is satisifed when called through
1836  * perf_event_for_each_child or perf_event_for_each because they
1837  * hold the top-level event's child_mutex, so any descendant that
1838  * goes to exit will block in perf_event_exit_event().
1839  *
1840  * When called from perf_pending_event it's OK because event->ctx
1841  * is the current context on this CPU and preemption is disabled,
1842  * hence we can't get into perf_event_task_sched_out for this context.
1843  */
1844 static void _perf_event_disable(struct perf_event *event)
1845 {
1846 	struct perf_event_context *ctx = event->ctx;
1847 
1848 	raw_spin_lock_irq(&ctx->lock);
1849 	if (event->state <= PERF_EVENT_STATE_OFF) {
1850 		raw_spin_unlock_irq(&ctx->lock);
1851 		return;
1852 	}
1853 	raw_spin_unlock_irq(&ctx->lock);
1854 
1855 	event_function_call(event, __perf_event_disable, NULL);
1856 }
1857 
1858 void perf_event_disable_local(struct perf_event *event)
1859 {
1860 	event_function_local(event, __perf_event_disable, NULL);
1861 }
1862 
1863 /*
1864  * Strictly speaking kernel users cannot create groups and therefore this
1865  * interface does not need the perf_event_ctx_lock() magic.
1866  */
1867 void perf_event_disable(struct perf_event *event)
1868 {
1869 	struct perf_event_context *ctx;
1870 
1871 	ctx = perf_event_ctx_lock(event);
1872 	_perf_event_disable(event);
1873 	perf_event_ctx_unlock(event, ctx);
1874 }
1875 EXPORT_SYMBOL_GPL(perf_event_disable);
1876 
1877 static void perf_set_shadow_time(struct perf_event *event,
1878 				 struct perf_event_context *ctx,
1879 				 u64 tstamp)
1880 {
1881 	/*
1882 	 * use the correct time source for the time snapshot
1883 	 *
1884 	 * We could get by without this by leveraging the
1885 	 * fact that to get to this function, the caller
1886 	 * has most likely already called update_context_time()
1887 	 * and update_cgrp_time_xx() and thus both timestamp
1888 	 * are identical (or very close). Given that tstamp is,
1889 	 * already adjusted for cgroup, we could say that:
1890 	 *    tstamp - ctx->timestamp
1891 	 * is equivalent to
1892 	 *    tstamp - cgrp->timestamp.
1893 	 *
1894 	 * Then, in perf_output_read(), the calculation would
1895 	 * work with no changes because:
1896 	 * - event is guaranteed scheduled in
1897 	 * - no scheduled out in between
1898 	 * - thus the timestamp would be the same
1899 	 *
1900 	 * But this is a bit hairy.
1901 	 *
1902 	 * So instead, we have an explicit cgroup call to remain
1903 	 * within the time time source all along. We believe it
1904 	 * is cleaner and simpler to understand.
1905 	 */
1906 	if (is_cgroup_event(event))
1907 		perf_cgroup_set_shadow_time(event, tstamp);
1908 	else
1909 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1910 }
1911 
1912 #define MAX_INTERRUPTS (~0ULL)
1913 
1914 static void perf_log_throttle(struct perf_event *event, int enable);
1915 static void perf_log_itrace_start(struct perf_event *event);
1916 
1917 static int
1918 event_sched_in(struct perf_event *event,
1919 		 struct perf_cpu_context *cpuctx,
1920 		 struct perf_event_context *ctx)
1921 {
1922 	u64 tstamp = perf_event_time(event);
1923 	int ret = 0;
1924 
1925 	lockdep_assert_held(&ctx->lock);
1926 
1927 	if (event->state <= PERF_EVENT_STATE_OFF)
1928 		return 0;
1929 
1930 	event->state = PERF_EVENT_STATE_ACTIVE;
1931 	event->oncpu = smp_processor_id();
1932 
1933 	/*
1934 	 * Unthrottle events, since we scheduled we might have missed several
1935 	 * ticks already, also for a heavily scheduling task there is little
1936 	 * guarantee it'll get a tick in a timely manner.
1937 	 */
1938 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1939 		perf_log_throttle(event, 1);
1940 		event->hw.interrupts = 0;
1941 	}
1942 
1943 	/*
1944 	 * The new state must be visible before we turn it on in the hardware:
1945 	 */
1946 	smp_wmb();
1947 
1948 	perf_pmu_disable(event->pmu);
1949 
1950 	perf_set_shadow_time(event, ctx, tstamp);
1951 
1952 	perf_log_itrace_start(event);
1953 
1954 	if (event->pmu->add(event, PERF_EF_START)) {
1955 		event->state = PERF_EVENT_STATE_INACTIVE;
1956 		event->oncpu = -1;
1957 		ret = -EAGAIN;
1958 		goto out;
1959 	}
1960 
1961 	event->tstamp_running += tstamp - event->tstamp_stopped;
1962 
1963 	if (!is_software_event(event))
1964 		cpuctx->active_oncpu++;
1965 	if (!ctx->nr_active++)
1966 		perf_event_ctx_activate(ctx);
1967 	if (event->attr.freq && event->attr.sample_freq)
1968 		ctx->nr_freq++;
1969 
1970 	if (event->attr.exclusive)
1971 		cpuctx->exclusive = 1;
1972 
1973 out:
1974 	perf_pmu_enable(event->pmu);
1975 
1976 	return ret;
1977 }
1978 
1979 static int
1980 group_sched_in(struct perf_event *group_event,
1981 	       struct perf_cpu_context *cpuctx,
1982 	       struct perf_event_context *ctx)
1983 {
1984 	struct perf_event *event, *partial_group = NULL;
1985 	struct pmu *pmu = ctx->pmu;
1986 	u64 now = ctx->time;
1987 	bool simulate = false;
1988 
1989 	if (group_event->state == PERF_EVENT_STATE_OFF)
1990 		return 0;
1991 
1992 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1993 
1994 	if (event_sched_in(group_event, cpuctx, ctx)) {
1995 		pmu->cancel_txn(pmu);
1996 		perf_mux_hrtimer_restart(cpuctx);
1997 		return -EAGAIN;
1998 	}
1999 
2000 	/*
2001 	 * Schedule in siblings as one group (if any):
2002 	 */
2003 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2004 		if (event_sched_in(event, cpuctx, ctx)) {
2005 			partial_group = event;
2006 			goto group_error;
2007 		}
2008 	}
2009 
2010 	if (!pmu->commit_txn(pmu))
2011 		return 0;
2012 
2013 group_error:
2014 	/*
2015 	 * Groups can be scheduled in as one unit only, so undo any
2016 	 * partial group before returning:
2017 	 * The events up to the failed event are scheduled out normally,
2018 	 * tstamp_stopped will be updated.
2019 	 *
2020 	 * The failed events and the remaining siblings need to have
2021 	 * their timings updated as if they had gone thru event_sched_in()
2022 	 * and event_sched_out(). This is required to get consistent timings
2023 	 * across the group. This also takes care of the case where the group
2024 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2025 	 * the time the event was actually stopped, such that time delta
2026 	 * calculation in update_event_times() is correct.
2027 	 */
2028 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2029 		if (event == partial_group)
2030 			simulate = true;
2031 
2032 		if (simulate) {
2033 			event->tstamp_running += now - event->tstamp_stopped;
2034 			event->tstamp_stopped = now;
2035 		} else {
2036 			event_sched_out(event, cpuctx, ctx);
2037 		}
2038 	}
2039 	event_sched_out(group_event, cpuctx, ctx);
2040 
2041 	pmu->cancel_txn(pmu);
2042 
2043 	perf_mux_hrtimer_restart(cpuctx);
2044 
2045 	return -EAGAIN;
2046 }
2047 
2048 /*
2049  * Work out whether we can put this event group on the CPU now.
2050  */
2051 static int group_can_go_on(struct perf_event *event,
2052 			   struct perf_cpu_context *cpuctx,
2053 			   int can_add_hw)
2054 {
2055 	/*
2056 	 * Groups consisting entirely of software events can always go on.
2057 	 */
2058 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2059 		return 1;
2060 	/*
2061 	 * If an exclusive group is already on, no other hardware
2062 	 * events can go on.
2063 	 */
2064 	if (cpuctx->exclusive)
2065 		return 0;
2066 	/*
2067 	 * If this group is exclusive and there are already
2068 	 * events on the CPU, it can't go on.
2069 	 */
2070 	if (event->attr.exclusive && cpuctx->active_oncpu)
2071 		return 0;
2072 	/*
2073 	 * Otherwise, try to add it if all previous groups were able
2074 	 * to go on.
2075 	 */
2076 	return can_add_hw;
2077 }
2078 
2079 static void add_event_to_ctx(struct perf_event *event,
2080 			       struct perf_event_context *ctx)
2081 {
2082 	u64 tstamp = perf_event_time(event);
2083 
2084 	list_add_event(event, ctx);
2085 	perf_group_attach(event);
2086 	event->tstamp_enabled = tstamp;
2087 	event->tstamp_running = tstamp;
2088 	event->tstamp_stopped = tstamp;
2089 }
2090 
2091 static void ctx_sched_out(struct perf_event_context *ctx,
2092 			  struct perf_cpu_context *cpuctx,
2093 			  enum event_type_t event_type);
2094 static void
2095 ctx_sched_in(struct perf_event_context *ctx,
2096 	     struct perf_cpu_context *cpuctx,
2097 	     enum event_type_t event_type,
2098 	     struct task_struct *task);
2099 
2100 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2101 			       struct perf_event_context *ctx)
2102 {
2103 	if (!cpuctx->task_ctx)
2104 		return;
2105 
2106 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2107 		return;
2108 
2109 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2110 }
2111 
2112 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2113 				struct perf_event_context *ctx,
2114 				struct task_struct *task)
2115 {
2116 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2117 	if (ctx)
2118 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2119 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2120 	if (ctx)
2121 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2122 }
2123 
2124 static void ctx_resched(struct perf_cpu_context *cpuctx,
2125 			struct perf_event_context *task_ctx)
2126 {
2127 	perf_pmu_disable(cpuctx->ctx.pmu);
2128 	if (task_ctx)
2129 		task_ctx_sched_out(cpuctx, task_ctx);
2130 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2131 	perf_event_sched_in(cpuctx, task_ctx, current);
2132 	perf_pmu_enable(cpuctx->ctx.pmu);
2133 }
2134 
2135 /*
2136  * Cross CPU call to install and enable a performance event
2137  *
2138  * Very similar to remote_function() + event_function() but cannot assume that
2139  * things like ctx->is_active and cpuctx->task_ctx are set.
2140  */
2141 static int  __perf_install_in_context(void *info)
2142 {
2143 	struct perf_event *event = info;
2144 	struct perf_event_context *ctx = event->ctx;
2145 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2146 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2147 	bool activate = true;
2148 	int ret = 0;
2149 
2150 	raw_spin_lock(&cpuctx->ctx.lock);
2151 	if (ctx->task) {
2152 		raw_spin_lock(&ctx->lock);
2153 		task_ctx = ctx;
2154 
2155 		/* If we're on the wrong CPU, try again */
2156 		if (task_cpu(ctx->task) != smp_processor_id()) {
2157 			ret = -ESRCH;
2158 			goto unlock;
2159 		}
2160 
2161 		/*
2162 		 * If we're on the right CPU, see if the task we target is
2163 		 * current, if not we don't have to activate the ctx, a future
2164 		 * context switch will do that for us.
2165 		 */
2166 		if (ctx->task != current)
2167 			activate = false;
2168 		else
2169 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2170 
2171 	} else if (task_ctx) {
2172 		raw_spin_lock(&task_ctx->lock);
2173 	}
2174 
2175 	if (activate) {
2176 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2177 		add_event_to_ctx(event, ctx);
2178 		ctx_resched(cpuctx, task_ctx);
2179 	} else {
2180 		add_event_to_ctx(event, ctx);
2181 	}
2182 
2183 unlock:
2184 	perf_ctx_unlock(cpuctx, task_ctx);
2185 
2186 	return ret;
2187 }
2188 
2189 /*
2190  * Attach a performance event to a context.
2191  *
2192  * Very similar to event_function_call, see comment there.
2193  */
2194 static void
2195 perf_install_in_context(struct perf_event_context *ctx,
2196 			struct perf_event *event,
2197 			int cpu)
2198 {
2199 	struct task_struct *task = READ_ONCE(ctx->task);
2200 
2201 	lockdep_assert_held(&ctx->mutex);
2202 
2203 	event->ctx = ctx;
2204 	if (event->cpu != -1)
2205 		event->cpu = cpu;
2206 
2207 	if (!task) {
2208 		cpu_function_call(cpu, __perf_install_in_context, event);
2209 		return;
2210 	}
2211 
2212 	/*
2213 	 * Should not happen, we validate the ctx is still alive before calling.
2214 	 */
2215 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2216 		return;
2217 
2218 	/*
2219 	 * Installing events is tricky because we cannot rely on ctx->is_active
2220 	 * to be set in case this is the nr_events 0 -> 1 transition.
2221 	 */
2222 again:
2223 	/*
2224 	 * Cannot use task_function_call() because we need to run on the task's
2225 	 * CPU regardless of whether its current or not.
2226 	 */
2227 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2228 		return;
2229 
2230 	raw_spin_lock_irq(&ctx->lock);
2231 	task = ctx->task;
2232 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2233 		/*
2234 		 * Cannot happen because we already checked above (which also
2235 		 * cannot happen), and we hold ctx->mutex, which serializes us
2236 		 * against perf_event_exit_task_context().
2237 		 */
2238 		raw_spin_unlock_irq(&ctx->lock);
2239 		return;
2240 	}
2241 	raw_spin_unlock_irq(&ctx->lock);
2242 	/*
2243 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2244 	 * unconditionally.
2245 	 */
2246 	goto again;
2247 }
2248 
2249 /*
2250  * Put a event into inactive state and update time fields.
2251  * Enabling the leader of a group effectively enables all
2252  * the group members that aren't explicitly disabled, so we
2253  * have to update their ->tstamp_enabled also.
2254  * Note: this works for group members as well as group leaders
2255  * since the non-leader members' sibling_lists will be empty.
2256  */
2257 static void __perf_event_mark_enabled(struct perf_event *event)
2258 {
2259 	struct perf_event *sub;
2260 	u64 tstamp = perf_event_time(event);
2261 
2262 	event->state = PERF_EVENT_STATE_INACTIVE;
2263 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2264 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2265 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2266 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2267 	}
2268 }
2269 
2270 /*
2271  * Cross CPU call to enable a performance event
2272  */
2273 static void __perf_event_enable(struct perf_event *event,
2274 				struct perf_cpu_context *cpuctx,
2275 				struct perf_event_context *ctx,
2276 				void *info)
2277 {
2278 	struct perf_event *leader = event->group_leader;
2279 	struct perf_event_context *task_ctx;
2280 
2281 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2282 	    event->state <= PERF_EVENT_STATE_ERROR)
2283 		return;
2284 
2285 	if (ctx->is_active)
2286 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2287 
2288 	__perf_event_mark_enabled(event);
2289 
2290 	if (!ctx->is_active)
2291 		return;
2292 
2293 	if (!event_filter_match(event)) {
2294 		if (is_cgroup_event(event))
2295 			perf_cgroup_defer_enabled(event);
2296 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2297 		return;
2298 	}
2299 
2300 	/*
2301 	 * If the event is in a group and isn't the group leader,
2302 	 * then don't put it on unless the group is on.
2303 	 */
2304 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2305 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2306 		return;
2307 	}
2308 
2309 	task_ctx = cpuctx->task_ctx;
2310 	if (ctx->task)
2311 		WARN_ON_ONCE(task_ctx != ctx);
2312 
2313 	ctx_resched(cpuctx, task_ctx);
2314 }
2315 
2316 /*
2317  * Enable a event.
2318  *
2319  * If event->ctx is a cloned context, callers must make sure that
2320  * every task struct that event->ctx->task could possibly point to
2321  * remains valid.  This condition is satisfied when called through
2322  * perf_event_for_each_child or perf_event_for_each as described
2323  * for perf_event_disable.
2324  */
2325 static void _perf_event_enable(struct perf_event *event)
2326 {
2327 	struct perf_event_context *ctx = event->ctx;
2328 
2329 	raw_spin_lock_irq(&ctx->lock);
2330 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2331 	    event->state <  PERF_EVENT_STATE_ERROR) {
2332 		raw_spin_unlock_irq(&ctx->lock);
2333 		return;
2334 	}
2335 
2336 	/*
2337 	 * If the event is in error state, clear that first.
2338 	 *
2339 	 * That way, if we see the event in error state below, we know that it
2340 	 * has gone back into error state, as distinct from the task having
2341 	 * been scheduled away before the cross-call arrived.
2342 	 */
2343 	if (event->state == PERF_EVENT_STATE_ERROR)
2344 		event->state = PERF_EVENT_STATE_OFF;
2345 	raw_spin_unlock_irq(&ctx->lock);
2346 
2347 	event_function_call(event, __perf_event_enable, NULL);
2348 }
2349 
2350 /*
2351  * See perf_event_disable();
2352  */
2353 void perf_event_enable(struct perf_event *event)
2354 {
2355 	struct perf_event_context *ctx;
2356 
2357 	ctx = perf_event_ctx_lock(event);
2358 	_perf_event_enable(event);
2359 	perf_event_ctx_unlock(event, ctx);
2360 }
2361 EXPORT_SYMBOL_GPL(perf_event_enable);
2362 
2363 static int _perf_event_refresh(struct perf_event *event, int refresh)
2364 {
2365 	/*
2366 	 * not supported on inherited events
2367 	 */
2368 	if (event->attr.inherit || !is_sampling_event(event))
2369 		return -EINVAL;
2370 
2371 	atomic_add(refresh, &event->event_limit);
2372 	_perf_event_enable(event);
2373 
2374 	return 0;
2375 }
2376 
2377 /*
2378  * See perf_event_disable()
2379  */
2380 int perf_event_refresh(struct perf_event *event, int refresh)
2381 {
2382 	struct perf_event_context *ctx;
2383 	int ret;
2384 
2385 	ctx = perf_event_ctx_lock(event);
2386 	ret = _perf_event_refresh(event, refresh);
2387 	perf_event_ctx_unlock(event, ctx);
2388 
2389 	return ret;
2390 }
2391 EXPORT_SYMBOL_GPL(perf_event_refresh);
2392 
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 			  struct perf_cpu_context *cpuctx,
2395 			  enum event_type_t event_type)
2396 {
2397 	int is_active = ctx->is_active;
2398 	struct perf_event *event;
2399 
2400 	lockdep_assert_held(&ctx->lock);
2401 
2402 	if (likely(!ctx->nr_events)) {
2403 		/*
2404 		 * See __perf_remove_from_context().
2405 		 */
2406 		WARN_ON_ONCE(ctx->is_active);
2407 		if (ctx->task)
2408 			WARN_ON_ONCE(cpuctx->task_ctx);
2409 		return;
2410 	}
2411 
2412 	ctx->is_active &= ~event_type;
2413 	if (!(ctx->is_active & EVENT_ALL))
2414 		ctx->is_active = 0;
2415 
2416 	if (ctx->task) {
2417 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2418 		if (!ctx->is_active)
2419 			cpuctx->task_ctx = NULL;
2420 	}
2421 
2422 	/*
2423 	 * Always update time if it was set; not only when it changes.
2424 	 * Otherwise we can 'forget' to update time for any but the last
2425 	 * context we sched out. For example:
2426 	 *
2427 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2428 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2429 	 *
2430 	 * would only update time for the pinned events.
2431 	 */
2432 	if (is_active & EVENT_TIME) {
2433 		/* update (and stop) ctx time */
2434 		update_context_time(ctx);
2435 		update_cgrp_time_from_cpuctx(cpuctx);
2436 	}
2437 
2438 	is_active ^= ctx->is_active; /* changed bits */
2439 
2440 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2441 		return;
2442 
2443 	perf_pmu_disable(ctx->pmu);
2444 	if (is_active & EVENT_PINNED) {
2445 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2446 			group_sched_out(event, cpuctx, ctx);
2447 	}
2448 
2449 	if (is_active & EVENT_FLEXIBLE) {
2450 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2451 			group_sched_out(event, cpuctx, ctx);
2452 	}
2453 	perf_pmu_enable(ctx->pmu);
2454 }
2455 
2456 /*
2457  * Test whether two contexts are equivalent, i.e. whether they have both been
2458  * cloned from the same version of the same context.
2459  *
2460  * Equivalence is measured using a generation number in the context that is
2461  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2462  * and list_del_event().
2463  */
2464 static int context_equiv(struct perf_event_context *ctx1,
2465 			 struct perf_event_context *ctx2)
2466 {
2467 	lockdep_assert_held(&ctx1->lock);
2468 	lockdep_assert_held(&ctx2->lock);
2469 
2470 	/* Pinning disables the swap optimization */
2471 	if (ctx1->pin_count || ctx2->pin_count)
2472 		return 0;
2473 
2474 	/* If ctx1 is the parent of ctx2 */
2475 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2476 		return 1;
2477 
2478 	/* If ctx2 is the parent of ctx1 */
2479 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2480 		return 1;
2481 
2482 	/*
2483 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2484 	 * hierarchy, see perf_event_init_context().
2485 	 */
2486 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2487 			ctx1->parent_gen == ctx2->parent_gen)
2488 		return 1;
2489 
2490 	/* Unmatched */
2491 	return 0;
2492 }
2493 
2494 static void __perf_event_sync_stat(struct perf_event *event,
2495 				     struct perf_event *next_event)
2496 {
2497 	u64 value;
2498 
2499 	if (!event->attr.inherit_stat)
2500 		return;
2501 
2502 	/*
2503 	 * Update the event value, we cannot use perf_event_read()
2504 	 * because we're in the middle of a context switch and have IRQs
2505 	 * disabled, which upsets smp_call_function_single(), however
2506 	 * we know the event must be on the current CPU, therefore we
2507 	 * don't need to use it.
2508 	 */
2509 	switch (event->state) {
2510 	case PERF_EVENT_STATE_ACTIVE:
2511 		event->pmu->read(event);
2512 		/* fall-through */
2513 
2514 	case PERF_EVENT_STATE_INACTIVE:
2515 		update_event_times(event);
2516 		break;
2517 
2518 	default:
2519 		break;
2520 	}
2521 
2522 	/*
2523 	 * In order to keep per-task stats reliable we need to flip the event
2524 	 * values when we flip the contexts.
2525 	 */
2526 	value = local64_read(&next_event->count);
2527 	value = local64_xchg(&event->count, value);
2528 	local64_set(&next_event->count, value);
2529 
2530 	swap(event->total_time_enabled, next_event->total_time_enabled);
2531 	swap(event->total_time_running, next_event->total_time_running);
2532 
2533 	/*
2534 	 * Since we swizzled the values, update the user visible data too.
2535 	 */
2536 	perf_event_update_userpage(event);
2537 	perf_event_update_userpage(next_event);
2538 }
2539 
2540 static void perf_event_sync_stat(struct perf_event_context *ctx,
2541 				   struct perf_event_context *next_ctx)
2542 {
2543 	struct perf_event *event, *next_event;
2544 
2545 	if (!ctx->nr_stat)
2546 		return;
2547 
2548 	update_context_time(ctx);
2549 
2550 	event = list_first_entry(&ctx->event_list,
2551 				   struct perf_event, event_entry);
2552 
2553 	next_event = list_first_entry(&next_ctx->event_list,
2554 					struct perf_event, event_entry);
2555 
2556 	while (&event->event_entry != &ctx->event_list &&
2557 	       &next_event->event_entry != &next_ctx->event_list) {
2558 
2559 		__perf_event_sync_stat(event, next_event);
2560 
2561 		event = list_next_entry(event, event_entry);
2562 		next_event = list_next_entry(next_event, event_entry);
2563 	}
2564 }
2565 
2566 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2567 					 struct task_struct *next)
2568 {
2569 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2570 	struct perf_event_context *next_ctx;
2571 	struct perf_event_context *parent, *next_parent;
2572 	struct perf_cpu_context *cpuctx;
2573 	int do_switch = 1;
2574 
2575 	if (likely(!ctx))
2576 		return;
2577 
2578 	cpuctx = __get_cpu_context(ctx);
2579 	if (!cpuctx->task_ctx)
2580 		return;
2581 
2582 	rcu_read_lock();
2583 	next_ctx = next->perf_event_ctxp[ctxn];
2584 	if (!next_ctx)
2585 		goto unlock;
2586 
2587 	parent = rcu_dereference(ctx->parent_ctx);
2588 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2589 
2590 	/* If neither context have a parent context; they cannot be clones. */
2591 	if (!parent && !next_parent)
2592 		goto unlock;
2593 
2594 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2595 		/*
2596 		 * Looks like the two contexts are clones, so we might be
2597 		 * able to optimize the context switch.  We lock both
2598 		 * contexts and check that they are clones under the
2599 		 * lock (including re-checking that neither has been
2600 		 * uncloned in the meantime).  It doesn't matter which
2601 		 * order we take the locks because no other cpu could
2602 		 * be trying to lock both of these tasks.
2603 		 */
2604 		raw_spin_lock(&ctx->lock);
2605 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2606 		if (context_equiv(ctx, next_ctx)) {
2607 			WRITE_ONCE(ctx->task, next);
2608 			WRITE_ONCE(next_ctx->task, task);
2609 
2610 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2611 
2612 			/*
2613 			 * RCU_INIT_POINTER here is safe because we've not
2614 			 * modified the ctx and the above modification of
2615 			 * ctx->task and ctx->task_ctx_data are immaterial
2616 			 * since those values are always verified under
2617 			 * ctx->lock which we're now holding.
2618 			 */
2619 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2620 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2621 
2622 			do_switch = 0;
2623 
2624 			perf_event_sync_stat(ctx, next_ctx);
2625 		}
2626 		raw_spin_unlock(&next_ctx->lock);
2627 		raw_spin_unlock(&ctx->lock);
2628 	}
2629 unlock:
2630 	rcu_read_unlock();
2631 
2632 	if (do_switch) {
2633 		raw_spin_lock(&ctx->lock);
2634 		task_ctx_sched_out(cpuctx, ctx);
2635 		raw_spin_unlock(&ctx->lock);
2636 	}
2637 }
2638 
2639 void perf_sched_cb_dec(struct pmu *pmu)
2640 {
2641 	this_cpu_dec(perf_sched_cb_usages);
2642 }
2643 
2644 void perf_sched_cb_inc(struct pmu *pmu)
2645 {
2646 	this_cpu_inc(perf_sched_cb_usages);
2647 }
2648 
2649 /*
2650  * This function provides the context switch callback to the lower code
2651  * layer. It is invoked ONLY when the context switch callback is enabled.
2652  */
2653 static void perf_pmu_sched_task(struct task_struct *prev,
2654 				struct task_struct *next,
2655 				bool sched_in)
2656 {
2657 	struct perf_cpu_context *cpuctx;
2658 	struct pmu *pmu;
2659 	unsigned long flags;
2660 
2661 	if (prev == next)
2662 		return;
2663 
2664 	local_irq_save(flags);
2665 
2666 	rcu_read_lock();
2667 
2668 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2669 		if (pmu->sched_task) {
2670 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2671 
2672 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2673 
2674 			perf_pmu_disable(pmu);
2675 
2676 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2677 
2678 			perf_pmu_enable(pmu);
2679 
2680 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2681 		}
2682 	}
2683 
2684 	rcu_read_unlock();
2685 
2686 	local_irq_restore(flags);
2687 }
2688 
2689 static void perf_event_switch(struct task_struct *task,
2690 			      struct task_struct *next_prev, bool sched_in);
2691 
2692 #define for_each_task_context_nr(ctxn)					\
2693 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2694 
2695 /*
2696  * Called from scheduler to remove the events of the current task,
2697  * with interrupts disabled.
2698  *
2699  * We stop each event and update the event value in event->count.
2700  *
2701  * This does not protect us against NMI, but disable()
2702  * sets the disabled bit in the control field of event _before_
2703  * accessing the event control register. If a NMI hits, then it will
2704  * not restart the event.
2705  */
2706 void __perf_event_task_sched_out(struct task_struct *task,
2707 				 struct task_struct *next)
2708 {
2709 	int ctxn;
2710 
2711 	if (__this_cpu_read(perf_sched_cb_usages))
2712 		perf_pmu_sched_task(task, next, false);
2713 
2714 	if (atomic_read(&nr_switch_events))
2715 		perf_event_switch(task, next, false);
2716 
2717 	for_each_task_context_nr(ctxn)
2718 		perf_event_context_sched_out(task, ctxn, next);
2719 
2720 	/*
2721 	 * if cgroup events exist on this CPU, then we need
2722 	 * to check if we have to switch out PMU state.
2723 	 * cgroup event are system-wide mode only
2724 	 */
2725 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2726 		perf_cgroup_sched_out(task, next);
2727 }
2728 
2729 /*
2730  * Called with IRQs disabled
2731  */
2732 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2733 			      enum event_type_t event_type)
2734 {
2735 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2736 }
2737 
2738 static void
2739 ctx_pinned_sched_in(struct perf_event_context *ctx,
2740 		    struct perf_cpu_context *cpuctx)
2741 {
2742 	struct perf_event *event;
2743 
2744 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2745 		if (event->state <= PERF_EVENT_STATE_OFF)
2746 			continue;
2747 		if (!event_filter_match(event))
2748 			continue;
2749 
2750 		/* may need to reset tstamp_enabled */
2751 		if (is_cgroup_event(event))
2752 			perf_cgroup_mark_enabled(event, ctx);
2753 
2754 		if (group_can_go_on(event, cpuctx, 1))
2755 			group_sched_in(event, cpuctx, ctx);
2756 
2757 		/*
2758 		 * If this pinned group hasn't been scheduled,
2759 		 * put it in error state.
2760 		 */
2761 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2762 			update_group_times(event);
2763 			event->state = PERF_EVENT_STATE_ERROR;
2764 		}
2765 	}
2766 }
2767 
2768 static void
2769 ctx_flexible_sched_in(struct perf_event_context *ctx,
2770 		      struct perf_cpu_context *cpuctx)
2771 {
2772 	struct perf_event *event;
2773 	int can_add_hw = 1;
2774 
2775 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2776 		/* Ignore events in OFF or ERROR state */
2777 		if (event->state <= PERF_EVENT_STATE_OFF)
2778 			continue;
2779 		/*
2780 		 * Listen to the 'cpu' scheduling filter constraint
2781 		 * of events:
2782 		 */
2783 		if (!event_filter_match(event))
2784 			continue;
2785 
2786 		/* may need to reset tstamp_enabled */
2787 		if (is_cgroup_event(event))
2788 			perf_cgroup_mark_enabled(event, ctx);
2789 
2790 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2791 			if (group_sched_in(event, cpuctx, ctx))
2792 				can_add_hw = 0;
2793 		}
2794 	}
2795 }
2796 
2797 static void
2798 ctx_sched_in(struct perf_event_context *ctx,
2799 	     struct perf_cpu_context *cpuctx,
2800 	     enum event_type_t event_type,
2801 	     struct task_struct *task)
2802 {
2803 	int is_active = ctx->is_active;
2804 	u64 now;
2805 
2806 	lockdep_assert_held(&ctx->lock);
2807 
2808 	if (likely(!ctx->nr_events))
2809 		return;
2810 
2811 	ctx->is_active |= (event_type | EVENT_TIME);
2812 	if (ctx->task) {
2813 		if (!is_active)
2814 			cpuctx->task_ctx = ctx;
2815 		else
2816 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2817 	}
2818 
2819 	is_active ^= ctx->is_active; /* changed bits */
2820 
2821 	if (is_active & EVENT_TIME) {
2822 		/* start ctx time */
2823 		now = perf_clock();
2824 		ctx->timestamp = now;
2825 		perf_cgroup_set_timestamp(task, ctx);
2826 	}
2827 
2828 	/*
2829 	 * First go through the list and put on any pinned groups
2830 	 * in order to give them the best chance of going on.
2831 	 */
2832 	if (is_active & EVENT_PINNED)
2833 		ctx_pinned_sched_in(ctx, cpuctx);
2834 
2835 	/* Then walk through the lower prio flexible groups */
2836 	if (is_active & EVENT_FLEXIBLE)
2837 		ctx_flexible_sched_in(ctx, cpuctx);
2838 }
2839 
2840 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2841 			     enum event_type_t event_type,
2842 			     struct task_struct *task)
2843 {
2844 	struct perf_event_context *ctx = &cpuctx->ctx;
2845 
2846 	ctx_sched_in(ctx, cpuctx, event_type, task);
2847 }
2848 
2849 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2850 					struct task_struct *task)
2851 {
2852 	struct perf_cpu_context *cpuctx;
2853 
2854 	cpuctx = __get_cpu_context(ctx);
2855 	if (cpuctx->task_ctx == ctx)
2856 		return;
2857 
2858 	perf_ctx_lock(cpuctx, ctx);
2859 	perf_pmu_disable(ctx->pmu);
2860 	/*
2861 	 * We want to keep the following priority order:
2862 	 * cpu pinned (that don't need to move), task pinned,
2863 	 * cpu flexible, task flexible.
2864 	 */
2865 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2866 	perf_event_sched_in(cpuctx, ctx, task);
2867 	perf_pmu_enable(ctx->pmu);
2868 	perf_ctx_unlock(cpuctx, ctx);
2869 }
2870 
2871 /*
2872  * Called from scheduler to add the events of the current task
2873  * with interrupts disabled.
2874  *
2875  * We restore the event value and then enable it.
2876  *
2877  * This does not protect us against NMI, but enable()
2878  * sets the enabled bit in the control field of event _before_
2879  * accessing the event control register. If a NMI hits, then it will
2880  * keep the event running.
2881  */
2882 void __perf_event_task_sched_in(struct task_struct *prev,
2883 				struct task_struct *task)
2884 {
2885 	struct perf_event_context *ctx;
2886 	int ctxn;
2887 
2888 	/*
2889 	 * If cgroup events exist on this CPU, then we need to check if we have
2890 	 * to switch in PMU state; cgroup event are system-wide mode only.
2891 	 *
2892 	 * Since cgroup events are CPU events, we must schedule these in before
2893 	 * we schedule in the task events.
2894 	 */
2895 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2896 		perf_cgroup_sched_in(prev, task);
2897 
2898 	for_each_task_context_nr(ctxn) {
2899 		ctx = task->perf_event_ctxp[ctxn];
2900 		if (likely(!ctx))
2901 			continue;
2902 
2903 		perf_event_context_sched_in(ctx, task);
2904 	}
2905 
2906 	if (atomic_read(&nr_switch_events))
2907 		perf_event_switch(task, prev, true);
2908 
2909 	if (__this_cpu_read(perf_sched_cb_usages))
2910 		perf_pmu_sched_task(prev, task, true);
2911 }
2912 
2913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2914 {
2915 	u64 frequency = event->attr.sample_freq;
2916 	u64 sec = NSEC_PER_SEC;
2917 	u64 divisor, dividend;
2918 
2919 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2920 
2921 	count_fls = fls64(count);
2922 	nsec_fls = fls64(nsec);
2923 	frequency_fls = fls64(frequency);
2924 	sec_fls = 30;
2925 
2926 	/*
2927 	 * We got @count in @nsec, with a target of sample_freq HZ
2928 	 * the target period becomes:
2929 	 *
2930 	 *             @count * 10^9
2931 	 * period = -------------------
2932 	 *          @nsec * sample_freq
2933 	 *
2934 	 */
2935 
2936 	/*
2937 	 * Reduce accuracy by one bit such that @a and @b converge
2938 	 * to a similar magnitude.
2939 	 */
2940 #define REDUCE_FLS(a, b)		\
2941 do {					\
2942 	if (a##_fls > b##_fls) {	\
2943 		a >>= 1;		\
2944 		a##_fls--;		\
2945 	} else {			\
2946 		b >>= 1;		\
2947 		b##_fls--;		\
2948 	}				\
2949 } while (0)
2950 
2951 	/*
2952 	 * Reduce accuracy until either term fits in a u64, then proceed with
2953 	 * the other, so that finally we can do a u64/u64 division.
2954 	 */
2955 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2956 		REDUCE_FLS(nsec, frequency);
2957 		REDUCE_FLS(sec, count);
2958 	}
2959 
2960 	if (count_fls + sec_fls > 64) {
2961 		divisor = nsec * frequency;
2962 
2963 		while (count_fls + sec_fls > 64) {
2964 			REDUCE_FLS(count, sec);
2965 			divisor >>= 1;
2966 		}
2967 
2968 		dividend = count * sec;
2969 	} else {
2970 		dividend = count * sec;
2971 
2972 		while (nsec_fls + frequency_fls > 64) {
2973 			REDUCE_FLS(nsec, frequency);
2974 			dividend >>= 1;
2975 		}
2976 
2977 		divisor = nsec * frequency;
2978 	}
2979 
2980 	if (!divisor)
2981 		return dividend;
2982 
2983 	return div64_u64(dividend, divisor);
2984 }
2985 
2986 static DEFINE_PER_CPU(int, perf_throttled_count);
2987 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2988 
2989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2990 {
2991 	struct hw_perf_event *hwc = &event->hw;
2992 	s64 period, sample_period;
2993 	s64 delta;
2994 
2995 	period = perf_calculate_period(event, nsec, count);
2996 
2997 	delta = (s64)(period - hwc->sample_period);
2998 	delta = (delta + 7) / 8; /* low pass filter */
2999 
3000 	sample_period = hwc->sample_period + delta;
3001 
3002 	if (!sample_period)
3003 		sample_period = 1;
3004 
3005 	hwc->sample_period = sample_period;
3006 
3007 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3008 		if (disable)
3009 			event->pmu->stop(event, PERF_EF_UPDATE);
3010 
3011 		local64_set(&hwc->period_left, 0);
3012 
3013 		if (disable)
3014 			event->pmu->start(event, PERF_EF_RELOAD);
3015 	}
3016 }
3017 
3018 /*
3019  * combine freq adjustment with unthrottling to avoid two passes over the
3020  * events. At the same time, make sure, having freq events does not change
3021  * the rate of unthrottling as that would introduce bias.
3022  */
3023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3024 					   int needs_unthr)
3025 {
3026 	struct perf_event *event;
3027 	struct hw_perf_event *hwc;
3028 	u64 now, period = TICK_NSEC;
3029 	s64 delta;
3030 
3031 	/*
3032 	 * only need to iterate over all events iff:
3033 	 * - context have events in frequency mode (needs freq adjust)
3034 	 * - there are events to unthrottle on this cpu
3035 	 */
3036 	if (!(ctx->nr_freq || needs_unthr))
3037 		return;
3038 
3039 	raw_spin_lock(&ctx->lock);
3040 	perf_pmu_disable(ctx->pmu);
3041 
3042 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3043 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3044 			continue;
3045 
3046 		if (!event_filter_match(event))
3047 			continue;
3048 
3049 		perf_pmu_disable(event->pmu);
3050 
3051 		hwc = &event->hw;
3052 
3053 		if (hwc->interrupts == MAX_INTERRUPTS) {
3054 			hwc->interrupts = 0;
3055 			perf_log_throttle(event, 1);
3056 			event->pmu->start(event, 0);
3057 		}
3058 
3059 		if (!event->attr.freq || !event->attr.sample_freq)
3060 			goto next;
3061 
3062 		/*
3063 		 * stop the event and update event->count
3064 		 */
3065 		event->pmu->stop(event, PERF_EF_UPDATE);
3066 
3067 		now = local64_read(&event->count);
3068 		delta = now - hwc->freq_count_stamp;
3069 		hwc->freq_count_stamp = now;
3070 
3071 		/*
3072 		 * restart the event
3073 		 * reload only if value has changed
3074 		 * we have stopped the event so tell that
3075 		 * to perf_adjust_period() to avoid stopping it
3076 		 * twice.
3077 		 */
3078 		if (delta > 0)
3079 			perf_adjust_period(event, period, delta, false);
3080 
3081 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3082 	next:
3083 		perf_pmu_enable(event->pmu);
3084 	}
3085 
3086 	perf_pmu_enable(ctx->pmu);
3087 	raw_spin_unlock(&ctx->lock);
3088 }
3089 
3090 /*
3091  * Round-robin a context's events:
3092  */
3093 static void rotate_ctx(struct perf_event_context *ctx)
3094 {
3095 	/*
3096 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3097 	 * disabled by the inheritance code.
3098 	 */
3099 	if (!ctx->rotate_disable)
3100 		list_rotate_left(&ctx->flexible_groups);
3101 }
3102 
3103 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3104 {
3105 	struct perf_event_context *ctx = NULL;
3106 	int rotate = 0;
3107 
3108 	if (cpuctx->ctx.nr_events) {
3109 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3110 			rotate = 1;
3111 	}
3112 
3113 	ctx = cpuctx->task_ctx;
3114 	if (ctx && ctx->nr_events) {
3115 		if (ctx->nr_events != ctx->nr_active)
3116 			rotate = 1;
3117 	}
3118 
3119 	if (!rotate)
3120 		goto done;
3121 
3122 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3123 	perf_pmu_disable(cpuctx->ctx.pmu);
3124 
3125 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3126 	if (ctx)
3127 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3128 
3129 	rotate_ctx(&cpuctx->ctx);
3130 	if (ctx)
3131 		rotate_ctx(ctx);
3132 
3133 	perf_event_sched_in(cpuctx, ctx, current);
3134 
3135 	perf_pmu_enable(cpuctx->ctx.pmu);
3136 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3137 done:
3138 
3139 	return rotate;
3140 }
3141 
3142 void perf_event_task_tick(void)
3143 {
3144 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3145 	struct perf_event_context *ctx, *tmp;
3146 	int throttled;
3147 
3148 	WARN_ON(!irqs_disabled());
3149 
3150 	__this_cpu_inc(perf_throttled_seq);
3151 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3152 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3153 
3154 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3155 		perf_adjust_freq_unthr_context(ctx, throttled);
3156 }
3157 
3158 static int event_enable_on_exec(struct perf_event *event,
3159 				struct perf_event_context *ctx)
3160 {
3161 	if (!event->attr.enable_on_exec)
3162 		return 0;
3163 
3164 	event->attr.enable_on_exec = 0;
3165 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3166 		return 0;
3167 
3168 	__perf_event_mark_enabled(event);
3169 
3170 	return 1;
3171 }
3172 
3173 /*
3174  * Enable all of a task's events that have been marked enable-on-exec.
3175  * This expects task == current.
3176  */
3177 static void perf_event_enable_on_exec(int ctxn)
3178 {
3179 	struct perf_event_context *ctx, *clone_ctx = NULL;
3180 	struct perf_cpu_context *cpuctx;
3181 	struct perf_event *event;
3182 	unsigned long flags;
3183 	int enabled = 0;
3184 
3185 	local_irq_save(flags);
3186 	ctx = current->perf_event_ctxp[ctxn];
3187 	if (!ctx || !ctx->nr_events)
3188 		goto out;
3189 
3190 	cpuctx = __get_cpu_context(ctx);
3191 	perf_ctx_lock(cpuctx, ctx);
3192 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3193 	list_for_each_entry(event, &ctx->event_list, event_entry)
3194 		enabled |= event_enable_on_exec(event, ctx);
3195 
3196 	/*
3197 	 * Unclone and reschedule this context if we enabled any event.
3198 	 */
3199 	if (enabled) {
3200 		clone_ctx = unclone_ctx(ctx);
3201 		ctx_resched(cpuctx, ctx);
3202 	}
3203 	perf_ctx_unlock(cpuctx, ctx);
3204 
3205 out:
3206 	local_irq_restore(flags);
3207 
3208 	if (clone_ctx)
3209 		put_ctx(clone_ctx);
3210 }
3211 
3212 void perf_event_exec(void)
3213 {
3214 	int ctxn;
3215 
3216 	rcu_read_lock();
3217 	for_each_task_context_nr(ctxn)
3218 		perf_event_enable_on_exec(ctxn);
3219 	rcu_read_unlock();
3220 }
3221 
3222 struct perf_read_data {
3223 	struct perf_event *event;
3224 	bool group;
3225 	int ret;
3226 };
3227 
3228 /*
3229  * Cross CPU call to read the hardware event
3230  */
3231 static void __perf_event_read(void *info)
3232 {
3233 	struct perf_read_data *data = info;
3234 	struct perf_event *sub, *event = data->event;
3235 	struct perf_event_context *ctx = event->ctx;
3236 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237 	struct pmu *pmu = event->pmu;
3238 
3239 	/*
3240 	 * If this is a task context, we need to check whether it is
3241 	 * the current task context of this cpu.  If not it has been
3242 	 * scheduled out before the smp call arrived.  In that case
3243 	 * event->count would have been updated to a recent sample
3244 	 * when the event was scheduled out.
3245 	 */
3246 	if (ctx->task && cpuctx->task_ctx != ctx)
3247 		return;
3248 
3249 	raw_spin_lock(&ctx->lock);
3250 	if (ctx->is_active) {
3251 		update_context_time(ctx);
3252 		update_cgrp_time_from_event(event);
3253 	}
3254 
3255 	update_event_times(event);
3256 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3257 		goto unlock;
3258 
3259 	if (!data->group) {
3260 		pmu->read(event);
3261 		data->ret = 0;
3262 		goto unlock;
3263 	}
3264 
3265 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3266 
3267 	pmu->read(event);
3268 
3269 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3270 		update_event_times(sub);
3271 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3272 			/*
3273 			 * Use sibling's PMU rather than @event's since
3274 			 * sibling could be on different (eg: software) PMU.
3275 			 */
3276 			sub->pmu->read(sub);
3277 		}
3278 	}
3279 
3280 	data->ret = pmu->commit_txn(pmu);
3281 
3282 unlock:
3283 	raw_spin_unlock(&ctx->lock);
3284 }
3285 
3286 static inline u64 perf_event_count(struct perf_event *event)
3287 {
3288 	if (event->pmu->count)
3289 		return event->pmu->count(event);
3290 
3291 	return __perf_event_count(event);
3292 }
3293 
3294 /*
3295  * NMI-safe method to read a local event, that is an event that
3296  * is:
3297  *   - either for the current task, or for this CPU
3298  *   - does not have inherit set, for inherited task events
3299  *     will not be local and we cannot read them atomically
3300  *   - must not have a pmu::count method
3301  */
3302 u64 perf_event_read_local(struct perf_event *event)
3303 {
3304 	unsigned long flags;
3305 	u64 val;
3306 
3307 	/*
3308 	 * Disabling interrupts avoids all counter scheduling (context
3309 	 * switches, timer based rotation and IPIs).
3310 	 */
3311 	local_irq_save(flags);
3312 
3313 	/* If this is a per-task event, it must be for current */
3314 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3315 		     event->hw.target != current);
3316 
3317 	/* If this is a per-CPU event, it must be for this CPU */
3318 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3319 		     event->cpu != smp_processor_id());
3320 
3321 	/*
3322 	 * It must not be an event with inherit set, we cannot read
3323 	 * all child counters from atomic context.
3324 	 */
3325 	WARN_ON_ONCE(event->attr.inherit);
3326 
3327 	/*
3328 	 * It must not have a pmu::count method, those are not
3329 	 * NMI safe.
3330 	 */
3331 	WARN_ON_ONCE(event->pmu->count);
3332 
3333 	/*
3334 	 * If the event is currently on this CPU, its either a per-task event,
3335 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3336 	 * oncpu == -1).
3337 	 */
3338 	if (event->oncpu == smp_processor_id())
3339 		event->pmu->read(event);
3340 
3341 	val = local64_read(&event->count);
3342 	local_irq_restore(flags);
3343 
3344 	return val;
3345 }
3346 
3347 static int perf_event_read(struct perf_event *event, bool group)
3348 {
3349 	int ret = 0;
3350 
3351 	/*
3352 	 * If event is enabled and currently active on a CPU, update the
3353 	 * value in the event structure:
3354 	 */
3355 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356 		struct perf_read_data data = {
3357 			.event = event,
3358 			.group = group,
3359 			.ret = 0,
3360 		};
3361 		smp_call_function_single(event->oncpu,
3362 					 __perf_event_read, &data, 1);
3363 		ret = data.ret;
3364 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3365 		struct perf_event_context *ctx = event->ctx;
3366 		unsigned long flags;
3367 
3368 		raw_spin_lock_irqsave(&ctx->lock, flags);
3369 		/*
3370 		 * may read while context is not active
3371 		 * (e.g., thread is blocked), in that case
3372 		 * we cannot update context time
3373 		 */
3374 		if (ctx->is_active) {
3375 			update_context_time(ctx);
3376 			update_cgrp_time_from_event(event);
3377 		}
3378 		if (group)
3379 			update_group_times(event);
3380 		else
3381 			update_event_times(event);
3382 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3383 	}
3384 
3385 	return ret;
3386 }
3387 
3388 /*
3389  * Initialize the perf_event context in a task_struct:
3390  */
3391 static void __perf_event_init_context(struct perf_event_context *ctx)
3392 {
3393 	raw_spin_lock_init(&ctx->lock);
3394 	mutex_init(&ctx->mutex);
3395 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3396 	INIT_LIST_HEAD(&ctx->pinned_groups);
3397 	INIT_LIST_HEAD(&ctx->flexible_groups);
3398 	INIT_LIST_HEAD(&ctx->event_list);
3399 	atomic_set(&ctx->refcount, 1);
3400 }
3401 
3402 static struct perf_event_context *
3403 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3404 {
3405 	struct perf_event_context *ctx;
3406 
3407 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3408 	if (!ctx)
3409 		return NULL;
3410 
3411 	__perf_event_init_context(ctx);
3412 	if (task) {
3413 		ctx->task = task;
3414 		get_task_struct(task);
3415 	}
3416 	ctx->pmu = pmu;
3417 
3418 	return ctx;
3419 }
3420 
3421 static struct task_struct *
3422 find_lively_task_by_vpid(pid_t vpid)
3423 {
3424 	struct task_struct *task;
3425 
3426 	rcu_read_lock();
3427 	if (!vpid)
3428 		task = current;
3429 	else
3430 		task = find_task_by_vpid(vpid);
3431 	if (task)
3432 		get_task_struct(task);
3433 	rcu_read_unlock();
3434 
3435 	if (!task)
3436 		return ERR_PTR(-ESRCH);
3437 
3438 	return task;
3439 }
3440 
3441 /*
3442  * Returns a matching context with refcount and pincount.
3443  */
3444 static struct perf_event_context *
3445 find_get_context(struct pmu *pmu, struct task_struct *task,
3446 		struct perf_event *event)
3447 {
3448 	struct perf_event_context *ctx, *clone_ctx = NULL;
3449 	struct perf_cpu_context *cpuctx;
3450 	void *task_ctx_data = NULL;
3451 	unsigned long flags;
3452 	int ctxn, err;
3453 	int cpu = event->cpu;
3454 
3455 	if (!task) {
3456 		/* Must be root to operate on a CPU event: */
3457 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3458 			return ERR_PTR(-EACCES);
3459 
3460 		/*
3461 		 * We could be clever and allow to attach a event to an
3462 		 * offline CPU and activate it when the CPU comes up, but
3463 		 * that's for later.
3464 		 */
3465 		if (!cpu_online(cpu))
3466 			return ERR_PTR(-ENODEV);
3467 
3468 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3469 		ctx = &cpuctx->ctx;
3470 		get_ctx(ctx);
3471 		++ctx->pin_count;
3472 
3473 		return ctx;
3474 	}
3475 
3476 	err = -EINVAL;
3477 	ctxn = pmu->task_ctx_nr;
3478 	if (ctxn < 0)
3479 		goto errout;
3480 
3481 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3482 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3483 		if (!task_ctx_data) {
3484 			err = -ENOMEM;
3485 			goto errout;
3486 		}
3487 	}
3488 
3489 retry:
3490 	ctx = perf_lock_task_context(task, ctxn, &flags);
3491 	if (ctx) {
3492 		clone_ctx = unclone_ctx(ctx);
3493 		++ctx->pin_count;
3494 
3495 		if (task_ctx_data && !ctx->task_ctx_data) {
3496 			ctx->task_ctx_data = task_ctx_data;
3497 			task_ctx_data = NULL;
3498 		}
3499 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3500 
3501 		if (clone_ctx)
3502 			put_ctx(clone_ctx);
3503 	} else {
3504 		ctx = alloc_perf_context(pmu, task);
3505 		err = -ENOMEM;
3506 		if (!ctx)
3507 			goto errout;
3508 
3509 		if (task_ctx_data) {
3510 			ctx->task_ctx_data = task_ctx_data;
3511 			task_ctx_data = NULL;
3512 		}
3513 
3514 		err = 0;
3515 		mutex_lock(&task->perf_event_mutex);
3516 		/*
3517 		 * If it has already passed perf_event_exit_task().
3518 		 * we must see PF_EXITING, it takes this mutex too.
3519 		 */
3520 		if (task->flags & PF_EXITING)
3521 			err = -ESRCH;
3522 		else if (task->perf_event_ctxp[ctxn])
3523 			err = -EAGAIN;
3524 		else {
3525 			get_ctx(ctx);
3526 			++ctx->pin_count;
3527 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3528 		}
3529 		mutex_unlock(&task->perf_event_mutex);
3530 
3531 		if (unlikely(err)) {
3532 			put_ctx(ctx);
3533 
3534 			if (err == -EAGAIN)
3535 				goto retry;
3536 			goto errout;
3537 		}
3538 	}
3539 
3540 	kfree(task_ctx_data);
3541 	return ctx;
3542 
3543 errout:
3544 	kfree(task_ctx_data);
3545 	return ERR_PTR(err);
3546 }
3547 
3548 static void perf_event_free_filter(struct perf_event *event);
3549 static void perf_event_free_bpf_prog(struct perf_event *event);
3550 
3551 static void free_event_rcu(struct rcu_head *head)
3552 {
3553 	struct perf_event *event;
3554 
3555 	event = container_of(head, struct perf_event, rcu_head);
3556 	if (event->ns)
3557 		put_pid_ns(event->ns);
3558 	perf_event_free_filter(event);
3559 	kfree(event);
3560 }
3561 
3562 static void ring_buffer_attach(struct perf_event *event,
3563 			       struct ring_buffer *rb);
3564 
3565 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3566 {
3567 	if (event->parent)
3568 		return;
3569 
3570 	if (is_cgroup_event(event))
3571 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3572 }
3573 
3574 #ifdef CONFIG_NO_HZ_FULL
3575 static DEFINE_SPINLOCK(nr_freq_lock);
3576 #endif
3577 
3578 static void unaccount_freq_event_nohz(void)
3579 {
3580 #ifdef CONFIG_NO_HZ_FULL
3581 	spin_lock(&nr_freq_lock);
3582 	if (atomic_dec_and_test(&nr_freq_events))
3583 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3584 	spin_unlock(&nr_freq_lock);
3585 #endif
3586 }
3587 
3588 static void unaccount_freq_event(void)
3589 {
3590 	if (tick_nohz_full_enabled())
3591 		unaccount_freq_event_nohz();
3592 	else
3593 		atomic_dec(&nr_freq_events);
3594 }
3595 
3596 static void unaccount_event(struct perf_event *event)
3597 {
3598 	bool dec = false;
3599 
3600 	if (event->parent)
3601 		return;
3602 
3603 	if (event->attach_state & PERF_ATTACH_TASK)
3604 		dec = true;
3605 	if (event->attr.mmap || event->attr.mmap_data)
3606 		atomic_dec(&nr_mmap_events);
3607 	if (event->attr.comm)
3608 		atomic_dec(&nr_comm_events);
3609 	if (event->attr.task)
3610 		atomic_dec(&nr_task_events);
3611 	if (event->attr.freq)
3612 		unaccount_freq_event();
3613 	if (event->attr.context_switch) {
3614 		dec = true;
3615 		atomic_dec(&nr_switch_events);
3616 	}
3617 	if (is_cgroup_event(event))
3618 		dec = true;
3619 	if (has_branch_stack(event))
3620 		dec = true;
3621 
3622 	if (dec) {
3623 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3624 			schedule_delayed_work(&perf_sched_work, HZ);
3625 	}
3626 
3627 	unaccount_event_cpu(event, event->cpu);
3628 }
3629 
3630 static void perf_sched_delayed(struct work_struct *work)
3631 {
3632 	mutex_lock(&perf_sched_mutex);
3633 	if (atomic_dec_and_test(&perf_sched_count))
3634 		static_branch_disable(&perf_sched_events);
3635 	mutex_unlock(&perf_sched_mutex);
3636 }
3637 
3638 /*
3639  * The following implement mutual exclusion of events on "exclusive" pmus
3640  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3641  * at a time, so we disallow creating events that might conflict, namely:
3642  *
3643  *  1) cpu-wide events in the presence of per-task events,
3644  *  2) per-task events in the presence of cpu-wide events,
3645  *  3) two matching events on the same context.
3646  *
3647  * The former two cases are handled in the allocation path (perf_event_alloc(),
3648  * _free_event()), the latter -- before the first perf_install_in_context().
3649  */
3650 static int exclusive_event_init(struct perf_event *event)
3651 {
3652 	struct pmu *pmu = event->pmu;
3653 
3654 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3655 		return 0;
3656 
3657 	/*
3658 	 * Prevent co-existence of per-task and cpu-wide events on the
3659 	 * same exclusive pmu.
3660 	 *
3661 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3662 	 * events on this "exclusive" pmu, positive means there are
3663 	 * per-task events.
3664 	 *
3665 	 * Since this is called in perf_event_alloc() path, event::ctx
3666 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3667 	 * to mean "per-task event", because unlike other attach states it
3668 	 * never gets cleared.
3669 	 */
3670 	if (event->attach_state & PERF_ATTACH_TASK) {
3671 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3672 			return -EBUSY;
3673 	} else {
3674 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3675 			return -EBUSY;
3676 	}
3677 
3678 	return 0;
3679 }
3680 
3681 static void exclusive_event_destroy(struct perf_event *event)
3682 {
3683 	struct pmu *pmu = event->pmu;
3684 
3685 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3686 		return;
3687 
3688 	/* see comment in exclusive_event_init() */
3689 	if (event->attach_state & PERF_ATTACH_TASK)
3690 		atomic_dec(&pmu->exclusive_cnt);
3691 	else
3692 		atomic_inc(&pmu->exclusive_cnt);
3693 }
3694 
3695 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3696 {
3697 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3698 	    (e1->cpu == e2->cpu ||
3699 	     e1->cpu == -1 ||
3700 	     e2->cpu == -1))
3701 		return true;
3702 	return false;
3703 }
3704 
3705 /* Called under the same ctx::mutex as perf_install_in_context() */
3706 static bool exclusive_event_installable(struct perf_event *event,
3707 					struct perf_event_context *ctx)
3708 {
3709 	struct perf_event *iter_event;
3710 	struct pmu *pmu = event->pmu;
3711 
3712 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3713 		return true;
3714 
3715 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3716 		if (exclusive_event_match(iter_event, event))
3717 			return false;
3718 	}
3719 
3720 	return true;
3721 }
3722 
3723 static void _free_event(struct perf_event *event)
3724 {
3725 	irq_work_sync(&event->pending);
3726 
3727 	unaccount_event(event);
3728 
3729 	if (event->rb) {
3730 		/*
3731 		 * Can happen when we close an event with re-directed output.
3732 		 *
3733 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3734 		 * over us; possibly making our ring_buffer_put() the last.
3735 		 */
3736 		mutex_lock(&event->mmap_mutex);
3737 		ring_buffer_attach(event, NULL);
3738 		mutex_unlock(&event->mmap_mutex);
3739 	}
3740 
3741 	if (is_cgroup_event(event))
3742 		perf_detach_cgroup(event);
3743 
3744 	if (!event->parent) {
3745 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3746 			put_callchain_buffers();
3747 	}
3748 
3749 	perf_event_free_bpf_prog(event);
3750 
3751 	if (event->destroy)
3752 		event->destroy(event);
3753 
3754 	if (event->ctx)
3755 		put_ctx(event->ctx);
3756 
3757 	if (event->pmu) {
3758 		exclusive_event_destroy(event);
3759 		module_put(event->pmu->module);
3760 	}
3761 
3762 	call_rcu(&event->rcu_head, free_event_rcu);
3763 }
3764 
3765 /*
3766  * Used to free events which have a known refcount of 1, such as in error paths
3767  * where the event isn't exposed yet and inherited events.
3768  */
3769 static void free_event(struct perf_event *event)
3770 {
3771 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3772 				"unexpected event refcount: %ld; ptr=%p\n",
3773 				atomic_long_read(&event->refcount), event)) {
3774 		/* leak to avoid use-after-free */
3775 		return;
3776 	}
3777 
3778 	_free_event(event);
3779 }
3780 
3781 /*
3782  * Remove user event from the owner task.
3783  */
3784 static void perf_remove_from_owner(struct perf_event *event)
3785 {
3786 	struct task_struct *owner;
3787 
3788 	rcu_read_lock();
3789 	/*
3790 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3791 	 * observe !owner it means the list deletion is complete and we can
3792 	 * indeed free this event, otherwise we need to serialize on
3793 	 * owner->perf_event_mutex.
3794 	 */
3795 	owner = lockless_dereference(event->owner);
3796 	if (owner) {
3797 		/*
3798 		 * Since delayed_put_task_struct() also drops the last
3799 		 * task reference we can safely take a new reference
3800 		 * while holding the rcu_read_lock().
3801 		 */
3802 		get_task_struct(owner);
3803 	}
3804 	rcu_read_unlock();
3805 
3806 	if (owner) {
3807 		/*
3808 		 * If we're here through perf_event_exit_task() we're already
3809 		 * holding ctx->mutex which would be an inversion wrt. the
3810 		 * normal lock order.
3811 		 *
3812 		 * However we can safely take this lock because its the child
3813 		 * ctx->mutex.
3814 		 */
3815 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3816 
3817 		/*
3818 		 * We have to re-check the event->owner field, if it is cleared
3819 		 * we raced with perf_event_exit_task(), acquiring the mutex
3820 		 * ensured they're done, and we can proceed with freeing the
3821 		 * event.
3822 		 */
3823 		if (event->owner) {
3824 			list_del_init(&event->owner_entry);
3825 			smp_store_release(&event->owner, NULL);
3826 		}
3827 		mutex_unlock(&owner->perf_event_mutex);
3828 		put_task_struct(owner);
3829 	}
3830 }
3831 
3832 static void put_event(struct perf_event *event)
3833 {
3834 	if (!atomic_long_dec_and_test(&event->refcount))
3835 		return;
3836 
3837 	_free_event(event);
3838 }
3839 
3840 /*
3841  * Kill an event dead; while event:refcount will preserve the event
3842  * object, it will not preserve its functionality. Once the last 'user'
3843  * gives up the object, we'll destroy the thing.
3844  */
3845 int perf_event_release_kernel(struct perf_event *event)
3846 {
3847 	struct perf_event_context *ctx = event->ctx;
3848 	struct perf_event *child, *tmp;
3849 
3850 	/*
3851 	 * If we got here through err_file: fput(event_file); we will not have
3852 	 * attached to a context yet.
3853 	 */
3854 	if (!ctx) {
3855 		WARN_ON_ONCE(event->attach_state &
3856 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3857 		goto no_ctx;
3858 	}
3859 
3860 	if (!is_kernel_event(event))
3861 		perf_remove_from_owner(event);
3862 
3863 	ctx = perf_event_ctx_lock(event);
3864 	WARN_ON_ONCE(ctx->parent_ctx);
3865 	perf_remove_from_context(event, DETACH_GROUP);
3866 
3867 	raw_spin_lock_irq(&ctx->lock);
3868 	/*
3869 	 * Mark this even as STATE_DEAD, there is no external reference to it
3870 	 * anymore.
3871 	 *
3872 	 * Anybody acquiring event->child_mutex after the below loop _must_
3873 	 * also see this, most importantly inherit_event() which will avoid
3874 	 * placing more children on the list.
3875 	 *
3876 	 * Thus this guarantees that we will in fact observe and kill _ALL_
3877 	 * child events.
3878 	 */
3879 	event->state = PERF_EVENT_STATE_DEAD;
3880 	raw_spin_unlock_irq(&ctx->lock);
3881 
3882 	perf_event_ctx_unlock(event, ctx);
3883 
3884 again:
3885 	mutex_lock(&event->child_mutex);
3886 	list_for_each_entry(child, &event->child_list, child_list) {
3887 
3888 		/*
3889 		 * Cannot change, child events are not migrated, see the
3890 		 * comment with perf_event_ctx_lock_nested().
3891 		 */
3892 		ctx = lockless_dereference(child->ctx);
3893 		/*
3894 		 * Since child_mutex nests inside ctx::mutex, we must jump
3895 		 * through hoops. We start by grabbing a reference on the ctx.
3896 		 *
3897 		 * Since the event cannot get freed while we hold the
3898 		 * child_mutex, the context must also exist and have a !0
3899 		 * reference count.
3900 		 */
3901 		get_ctx(ctx);
3902 
3903 		/*
3904 		 * Now that we have a ctx ref, we can drop child_mutex, and
3905 		 * acquire ctx::mutex without fear of it going away. Then we
3906 		 * can re-acquire child_mutex.
3907 		 */
3908 		mutex_unlock(&event->child_mutex);
3909 		mutex_lock(&ctx->mutex);
3910 		mutex_lock(&event->child_mutex);
3911 
3912 		/*
3913 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
3914 		 * state, if child is still the first entry, it didn't get freed
3915 		 * and we can continue doing so.
3916 		 */
3917 		tmp = list_first_entry_or_null(&event->child_list,
3918 					       struct perf_event, child_list);
3919 		if (tmp == child) {
3920 			perf_remove_from_context(child, DETACH_GROUP);
3921 			list_del(&child->child_list);
3922 			free_event(child);
3923 			/*
3924 			 * This matches the refcount bump in inherit_event();
3925 			 * this can't be the last reference.
3926 			 */
3927 			put_event(event);
3928 		}
3929 
3930 		mutex_unlock(&event->child_mutex);
3931 		mutex_unlock(&ctx->mutex);
3932 		put_ctx(ctx);
3933 		goto again;
3934 	}
3935 	mutex_unlock(&event->child_mutex);
3936 
3937 no_ctx:
3938 	put_event(event); /* Must be the 'last' reference */
3939 	return 0;
3940 }
3941 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3942 
3943 /*
3944  * Called when the last reference to the file is gone.
3945  */
3946 static int perf_release(struct inode *inode, struct file *file)
3947 {
3948 	perf_event_release_kernel(file->private_data);
3949 	return 0;
3950 }
3951 
3952 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3953 {
3954 	struct perf_event *child;
3955 	u64 total = 0;
3956 
3957 	*enabled = 0;
3958 	*running = 0;
3959 
3960 	mutex_lock(&event->child_mutex);
3961 
3962 	(void)perf_event_read(event, false);
3963 	total += perf_event_count(event);
3964 
3965 	*enabled += event->total_time_enabled +
3966 			atomic64_read(&event->child_total_time_enabled);
3967 	*running += event->total_time_running +
3968 			atomic64_read(&event->child_total_time_running);
3969 
3970 	list_for_each_entry(child, &event->child_list, child_list) {
3971 		(void)perf_event_read(child, false);
3972 		total += perf_event_count(child);
3973 		*enabled += child->total_time_enabled;
3974 		*running += child->total_time_running;
3975 	}
3976 	mutex_unlock(&event->child_mutex);
3977 
3978 	return total;
3979 }
3980 EXPORT_SYMBOL_GPL(perf_event_read_value);
3981 
3982 static int __perf_read_group_add(struct perf_event *leader,
3983 					u64 read_format, u64 *values)
3984 {
3985 	struct perf_event *sub;
3986 	int n = 1; /* skip @nr */
3987 	int ret;
3988 
3989 	ret = perf_event_read(leader, true);
3990 	if (ret)
3991 		return ret;
3992 
3993 	/*
3994 	 * Since we co-schedule groups, {enabled,running} times of siblings
3995 	 * will be identical to those of the leader, so we only publish one
3996 	 * set.
3997 	 */
3998 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3999 		values[n++] += leader->total_time_enabled +
4000 			atomic64_read(&leader->child_total_time_enabled);
4001 	}
4002 
4003 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4004 		values[n++] += leader->total_time_running +
4005 			atomic64_read(&leader->child_total_time_running);
4006 	}
4007 
4008 	/*
4009 	 * Write {count,id} tuples for every sibling.
4010 	 */
4011 	values[n++] += perf_event_count(leader);
4012 	if (read_format & PERF_FORMAT_ID)
4013 		values[n++] = primary_event_id(leader);
4014 
4015 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4016 		values[n++] += perf_event_count(sub);
4017 		if (read_format & PERF_FORMAT_ID)
4018 			values[n++] = primary_event_id(sub);
4019 	}
4020 
4021 	return 0;
4022 }
4023 
4024 static int perf_read_group(struct perf_event *event,
4025 				   u64 read_format, char __user *buf)
4026 {
4027 	struct perf_event *leader = event->group_leader, *child;
4028 	struct perf_event_context *ctx = leader->ctx;
4029 	int ret;
4030 	u64 *values;
4031 
4032 	lockdep_assert_held(&ctx->mutex);
4033 
4034 	values = kzalloc(event->read_size, GFP_KERNEL);
4035 	if (!values)
4036 		return -ENOMEM;
4037 
4038 	values[0] = 1 + leader->nr_siblings;
4039 
4040 	/*
4041 	 * By locking the child_mutex of the leader we effectively
4042 	 * lock the child list of all siblings.. XXX explain how.
4043 	 */
4044 	mutex_lock(&leader->child_mutex);
4045 
4046 	ret = __perf_read_group_add(leader, read_format, values);
4047 	if (ret)
4048 		goto unlock;
4049 
4050 	list_for_each_entry(child, &leader->child_list, child_list) {
4051 		ret = __perf_read_group_add(child, read_format, values);
4052 		if (ret)
4053 			goto unlock;
4054 	}
4055 
4056 	mutex_unlock(&leader->child_mutex);
4057 
4058 	ret = event->read_size;
4059 	if (copy_to_user(buf, values, event->read_size))
4060 		ret = -EFAULT;
4061 	goto out;
4062 
4063 unlock:
4064 	mutex_unlock(&leader->child_mutex);
4065 out:
4066 	kfree(values);
4067 	return ret;
4068 }
4069 
4070 static int perf_read_one(struct perf_event *event,
4071 				 u64 read_format, char __user *buf)
4072 {
4073 	u64 enabled, running;
4074 	u64 values[4];
4075 	int n = 0;
4076 
4077 	values[n++] = perf_event_read_value(event, &enabled, &running);
4078 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4079 		values[n++] = enabled;
4080 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4081 		values[n++] = running;
4082 	if (read_format & PERF_FORMAT_ID)
4083 		values[n++] = primary_event_id(event);
4084 
4085 	if (copy_to_user(buf, values, n * sizeof(u64)))
4086 		return -EFAULT;
4087 
4088 	return n * sizeof(u64);
4089 }
4090 
4091 static bool is_event_hup(struct perf_event *event)
4092 {
4093 	bool no_children;
4094 
4095 	if (event->state > PERF_EVENT_STATE_EXIT)
4096 		return false;
4097 
4098 	mutex_lock(&event->child_mutex);
4099 	no_children = list_empty(&event->child_list);
4100 	mutex_unlock(&event->child_mutex);
4101 	return no_children;
4102 }
4103 
4104 /*
4105  * Read the performance event - simple non blocking version for now
4106  */
4107 static ssize_t
4108 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4109 {
4110 	u64 read_format = event->attr.read_format;
4111 	int ret;
4112 
4113 	/*
4114 	 * Return end-of-file for a read on a event that is in
4115 	 * error state (i.e. because it was pinned but it couldn't be
4116 	 * scheduled on to the CPU at some point).
4117 	 */
4118 	if (event->state == PERF_EVENT_STATE_ERROR)
4119 		return 0;
4120 
4121 	if (count < event->read_size)
4122 		return -ENOSPC;
4123 
4124 	WARN_ON_ONCE(event->ctx->parent_ctx);
4125 	if (read_format & PERF_FORMAT_GROUP)
4126 		ret = perf_read_group(event, read_format, buf);
4127 	else
4128 		ret = perf_read_one(event, read_format, buf);
4129 
4130 	return ret;
4131 }
4132 
4133 static ssize_t
4134 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4135 {
4136 	struct perf_event *event = file->private_data;
4137 	struct perf_event_context *ctx;
4138 	int ret;
4139 
4140 	ctx = perf_event_ctx_lock(event);
4141 	ret = __perf_read(event, buf, count);
4142 	perf_event_ctx_unlock(event, ctx);
4143 
4144 	return ret;
4145 }
4146 
4147 static unsigned int perf_poll(struct file *file, poll_table *wait)
4148 {
4149 	struct perf_event *event = file->private_data;
4150 	struct ring_buffer *rb;
4151 	unsigned int events = POLLHUP;
4152 
4153 	poll_wait(file, &event->waitq, wait);
4154 
4155 	if (is_event_hup(event))
4156 		return events;
4157 
4158 	/*
4159 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4160 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4161 	 */
4162 	mutex_lock(&event->mmap_mutex);
4163 	rb = event->rb;
4164 	if (rb)
4165 		events = atomic_xchg(&rb->poll, 0);
4166 	mutex_unlock(&event->mmap_mutex);
4167 	return events;
4168 }
4169 
4170 static void _perf_event_reset(struct perf_event *event)
4171 {
4172 	(void)perf_event_read(event, false);
4173 	local64_set(&event->count, 0);
4174 	perf_event_update_userpage(event);
4175 }
4176 
4177 /*
4178  * Holding the top-level event's child_mutex means that any
4179  * descendant process that has inherited this event will block
4180  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4181  * task existence requirements of perf_event_enable/disable.
4182  */
4183 static void perf_event_for_each_child(struct perf_event *event,
4184 					void (*func)(struct perf_event *))
4185 {
4186 	struct perf_event *child;
4187 
4188 	WARN_ON_ONCE(event->ctx->parent_ctx);
4189 
4190 	mutex_lock(&event->child_mutex);
4191 	func(event);
4192 	list_for_each_entry(child, &event->child_list, child_list)
4193 		func(child);
4194 	mutex_unlock(&event->child_mutex);
4195 }
4196 
4197 static void perf_event_for_each(struct perf_event *event,
4198 				  void (*func)(struct perf_event *))
4199 {
4200 	struct perf_event_context *ctx = event->ctx;
4201 	struct perf_event *sibling;
4202 
4203 	lockdep_assert_held(&ctx->mutex);
4204 
4205 	event = event->group_leader;
4206 
4207 	perf_event_for_each_child(event, func);
4208 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4209 		perf_event_for_each_child(sibling, func);
4210 }
4211 
4212 static void __perf_event_period(struct perf_event *event,
4213 				struct perf_cpu_context *cpuctx,
4214 				struct perf_event_context *ctx,
4215 				void *info)
4216 {
4217 	u64 value = *((u64 *)info);
4218 	bool active;
4219 
4220 	if (event->attr.freq) {
4221 		event->attr.sample_freq = value;
4222 	} else {
4223 		event->attr.sample_period = value;
4224 		event->hw.sample_period = value;
4225 	}
4226 
4227 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4228 	if (active) {
4229 		perf_pmu_disable(ctx->pmu);
4230 		/*
4231 		 * We could be throttled; unthrottle now to avoid the tick
4232 		 * trying to unthrottle while we already re-started the event.
4233 		 */
4234 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4235 			event->hw.interrupts = 0;
4236 			perf_log_throttle(event, 1);
4237 		}
4238 		event->pmu->stop(event, PERF_EF_UPDATE);
4239 	}
4240 
4241 	local64_set(&event->hw.period_left, 0);
4242 
4243 	if (active) {
4244 		event->pmu->start(event, PERF_EF_RELOAD);
4245 		perf_pmu_enable(ctx->pmu);
4246 	}
4247 }
4248 
4249 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4250 {
4251 	u64 value;
4252 
4253 	if (!is_sampling_event(event))
4254 		return -EINVAL;
4255 
4256 	if (copy_from_user(&value, arg, sizeof(value)))
4257 		return -EFAULT;
4258 
4259 	if (!value)
4260 		return -EINVAL;
4261 
4262 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4263 		return -EINVAL;
4264 
4265 	event_function_call(event, __perf_event_period, &value);
4266 
4267 	return 0;
4268 }
4269 
4270 static const struct file_operations perf_fops;
4271 
4272 static inline int perf_fget_light(int fd, struct fd *p)
4273 {
4274 	struct fd f = fdget(fd);
4275 	if (!f.file)
4276 		return -EBADF;
4277 
4278 	if (f.file->f_op != &perf_fops) {
4279 		fdput(f);
4280 		return -EBADF;
4281 	}
4282 	*p = f;
4283 	return 0;
4284 }
4285 
4286 static int perf_event_set_output(struct perf_event *event,
4287 				 struct perf_event *output_event);
4288 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4289 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4290 
4291 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4292 {
4293 	void (*func)(struct perf_event *);
4294 	u32 flags = arg;
4295 
4296 	switch (cmd) {
4297 	case PERF_EVENT_IOC_ENABLE:
4298 		func = _perf_event_enable;
4299 		break;
4300 	case PERF_EVENT_IOC_DISABLE:
4301 		func = _perf_event_disable;
4302 		break;
4303 	case PERF_EVENT_IOC_RESET:
4304 		func = _perf_event_reset;
4305 		break;
4306 
4307 	case PERF_EVENT_IOC_REFRESH:
4308 		return _perf_event_refresh(event, arg);
4309 
4310 	case PERF_EVENT_IOC_PERIOD:
4311 		return perf_event_period(event, (u64 __user *)arg);
4312 
4313 	case PERF_EVENT_IOC_ID:
4314 	{
4315 		u64 id = primary_event_id(event);
4316 
4317 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4318 			return -EFAULT;
4319 		return 0;
4320 	}
4321 
4322 	case PERF_EVENT_IOC_SET_OUTPUT:
4323 	{
4324 		int ret;
4325 		if (arg != -1) {
4326 			struct perf_event *output_event;
4327 			struct fd output;
4328 			ret = perf_fget_light(arg, &output);
4329 			if (ret)
4330 				return ret;
4331 			output_event = output.file->private_data;
4332 			ret = perf_event_set_output(event, output_event);
4333 			fdput(output);
4334 		} else {
4335 			ret = perf_event_set_output(event, NULL);
4336 		}
4337 		return ret;
4338 	}
4339 
4340 	case PERF_EVENT_IOC_SET_FILTER:
4341 		return perf_event_set_filter(event, (void __user *)arg);
4342 
4343 	case PERF_EVENT_IOC_SET_BPF:
4344 		return perf_event_set_bpf_prog(event, arg);
4345 
4346 	default:
4347 		return -ENOTTY;
4348 	}
4349 
4350 	if (flags & PERF_IOC_FLAG_GROUP)
4351 		perf_event_for_each(event, func);
4352 	else
4353 		perf_event_for_each_child(event, func);
4354 
4355 	return 0;
4356 }
4357 
4358 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4359 {
4360 	struct perf_event *event = file->private_data;
4361 	struct perf_event_context *ctx;
4362 	long ret;
4363 
4364 	ctx = perf_event_ctx_lock(event);
4365 	ret = _perf_ioctl(event, cmd, arg);
4366 	perf_event_ctx_unlock(event, ctx);
4367 
4368 	return ret;
4369 }
4370 
4371 #ifdef CONFIG_COMPAT
4372 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4373 				unsigned long arg)
4374 {
4375 	switch (_IOC_NR(cmd)) {
4376 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4377 	case _IOC_NR(PERF_EVENT_IOC_ID):
4378 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4379 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4380 			cmd &= ~IOCSIZE_MASK;
4381 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4382 		}
4383 		break;
4384 	}
4385 	return perf_ioctl(file, cmd, arg);
4386 }
4387 #else
4388 # define perf_compat_ioctl NULL
4389 #endif
4390 
4391 int perf_event_task_enable(void)
4392 {
4393 	struct perf_event_context *ctx;
4394 	struct perf_event *event;
4395 
4396 	mutex_lock(&current->perf_event_mutex);
4397 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4398 		ctx = perf_event_ctx_lock(event);
4399 		perf_event_for_each_child(event, _perf_event_enable);
4400 		perf_event_ctx_unlock(event, ctx);
4401 	}
4402 	mutex_unlock(&current->perf_event_mutex);
4403 
4404 	return 0;
4405 }
4406 
4407 int perf_event_task_disable(void)
4408 {
4409 	struct perf_event_context *ctx;
4410 	struct perf_event *event;
4411 
4412 	mutex_lock(&current->perf_event_mutex);
4413 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4414 		ctx = perf_event_ctx_lock(event);
4415 		perf_event_for_each_child(event, _perf_event_disable);
4416 		perf_event_ctx_unlock(event, ctx);
4417 	}
4418 	mutex_unlock(&current->perf_event_mutex);
4419 
4420 	return 0;
4421 }
4422 
4423 static int perf_event_index(struct perf_event *event)
4424 {
4425 	if (event->hw.state & PERF_HES_STOPPED)
4426 		return 0;
4427 
4428 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4429 		return 0;
4430 
4431 	return event->pmu->event_idx(event);
4432 }
4433 
4434 static void calc_timer_values(struct perf_event *event,
4435 				u64 *now,
4436 				u64 *enabled,
4437 				u64 *running)
4438 {
4439 	u64 ctx_time;
4440 
4441 	*now = perf_clock();
4442 	ctx_time = event->shadow_ctx_time + *now;
4443 	*enabled = ctx_time - event->tstamp_enabled;
4444 	*running = ctx_time - event->tstamp_running;
4445 }
4446 
4447 static void perf_event_init_userpage(struct perf_event *event)
4448 {
4449 	struct perf_event_mmap_page *userpg;
4450 	struct ring_buffer *rb;
4451 
4452 	rcu_read_lock();
4453 	rb = rcu_dereference(event->rb);
4454 	if (!rb)
4455 		goto unlock;
4456 
4457 	userpg = rb->user_page;
4458 
4459 	/* Allow new userspace to detect that bit 0 is deprecated */
4460 	userpg->cap_bit0_is_deprecated = 1;
4461 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4462 	userpg->data_offset = PAGE_SIZE;
4463 	userpg->data_size = perf_data_size(rb);
4464 
4465 unlock:
4466 	rcu_read_unlock();
4467 }
4468 
4469 void __weak arch_perf_update_userpage(
4470 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4471 {
4472 }
4473 
4474 /*
4475  * Callers need to ensure there can be no nesting of this function, otherwise
4476  * the seqlock logic goes bad. We can not serialize this because the arch
4477  * code calls this from NMI context.
4478  */
4479 void perf_event_update_userpage(struct perf_event *event)
4480 {
4481 	struct perf_event_mmap_page *userpg;
4482 	struct ring_buffer *rb;
4483 	u64 enabled, running, now;
4484 
4485 	rcu_read_lock();
4486 	rb = rcu_dereference(event->rb);
4487 	if (!rb)
4488 		goto unlock;
4489 
4490 	/*
4491 	 * compute total_time_enabled, total_time_running
4492 	 * based on snapshot values taken when the event
4493 	 * was last scheduled in.
4494 	 *
4495 	 * we cannot simply called update_context_time()
4496 	 * because of locking issue as we can be called in
4497 	 * NMI context
4498 	 */
4499 	calc_timer_values(event, &now, &enabled, &running);
4500 
4501 	userpg = rb->user_page;
4502 	/*
4503 	 * Disable preemption so as to not let the corresponding user-space
4504 	 * spin too long if we get preempted.
4505 	 */
4506 	preempt_disable();
4507 	++userpg->lock;
4508 	barrier();
4509 	userpg->index = perf_event_index(event);
4510 	userpg->offset = perf_event_count(event);
4511 	if (userpg->index)
4512 		userpg->offset -= local64_read(&event->hw.prev_count);
4513 
4514 	userpg->time_enabled = enabled +
4515 			atomic64_read(&event->child_total_time_enabled);
4516 
4517 	userpg->time_running = running +
4518 			atomic64_read(&event->child_total_time_running);
4519 
4520 	arch_perf_update_userpage(event, userpg, now);
4521 
4522 	barrier();
4523 	++userpg->lock;
4524 	preempt_enable();
4525 unlock:
4526 	rcu_read_unlock();
4527 }
4528 
4529 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4530 {
4531 	struct perf_event *event = vma->vm_file->private_data;
4532 	struct ring_buffer *rb;
4533 	int ret = VM_FAULT_SIGBUS;
4534 
4535 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4536 		if (vmf->pgoff == 0)
4537 			ret = 0;
4538 		return ret;
4539 	}
4540 
4541 	rcu_read_lock();
4542 	rb = rcu_dereference(event->rb);
4543 	if (!rb)
4544 		goto unlock;
4545 
4546 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4547 		goto unlock;
4548 
4549 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4550 	if (!vmf->page)
4551 		goto unlock;
4552 
4553 	get_page(vmf->page);
4554 	vmf->page->mapping = vma->vm_file->f_mapping;
4555 	vmf->page->index   = vmf->pgoff;
4556 
4557 	ret = 0;
4558 unlock:
4559 	rcu_read_unlock();
4560 
4561 	return ret;
4562 }
4563 
4564 static void ring_buffer_attach(struct perf_event *event,
4565 			       struct ring_buffer *rb)
4566 {
4567 	struct ring_buffer *old_rb = NULL;
4568 	unsigned long flags;
4569 
4570 	if (event->rb) {
4571 		/*
4572 		 * Should be impossible, we set this when removing
4573 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4574 		 */
4575 		WARN_ON_ONCE(event->rcu_pending);
4576 
4577 		old_rb = event->rb;
4578 		spin_lock_irqsave(&old_rb->event_lock, flags);
4579 		list_del_rcu(&event->rb_entry);
4580 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4581 
4582 		event->rcu_batches = get_state_synchronize_rcu();
4583 		event->rcu_pending = 1;
4584 	}
4585 
4586 	if (rb) {
4587 		if (event->rcu_pending) {
4588 			cond_synchronize_rcu(event->rcu_batches);
4589 			event->rcu_pending = 0;
4590 		}
4591 
4592 		spin_lock_irqsave(&rb->event_lock, flags);
4593 		list_add_rcu(&event->rb_entry, &rb->event_list);
4594 		spin_unlock_irqrestore(&rb->event_lock, flags);
4595 	}
4596 
4597 	rcu_assign_pointer(event->rb, rb);
4598 
4599 	if (old_rb) {
4600 		ring_buffer_put(old_rb);
4601 		/*
4602 		 * Since we detached before setting the new rb, so that we
4603 		 * could attach the new rb, we could have missed a wakeup.
4604 		 * Provide it now.
4605 		 */
4606 		wake_up_all(&event->waitq);
4607 	}
4608 }
4609 
4610 static void ring_buffer_wakeup(struct perf_event *event)
4611 {
4612 	struct ring_buffer *rb;
4613 
4614 	rcu_read_lock();
4615 	rb = rcu_dereference(event->rb);
4616 	if (rb) {
4617 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4618 			wake_up_all(&event->waitq);
4619 	}
4620 	rcu_read_unlock();
4621 }
4622 
4623 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4624 {
4625 	struct ring_buffer *rb;
4626 
4627 	rcu_read_lock();
4628 	rb = rcu_dereference(event->rb);
4629 	if (rb) {
4630 		if (!atomic_inc_not_zero(&rb->refcount))
4631 			rb = NULL;
4632 	}
4633 	rcu_read_unlock();
4634 
4635 	return rb;
4636 }
4637 
4638 void ring_buffer_put(struct ring_buffer *rb)
4639 {
4640 	if (!atomic_dec_and_test(&rb->refcount))
4641 		return;
4642 
4643 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4644 
4645 	call_rcu(&rb->rcu_head, rb_free_rcu);
4646 }
4647 
4648 static void perf_mmap_open(struct vm_area_struct *vma)
4649 {
4650 	struct perf_event *event = vma->vm_file->private_data;
4651 
4652 	atomic_inc(&event->mmap_count);
4653 	atomic_inc(&event->rb->mmap_count);
4654 
4655 	if (vma->vm_pgoff)
4656 		atomic_inc(&event->rb->aux_mmap_count);
4657 
4658 	if (event->pmu->event_mapped)
4659 		event->pmu->event_mapped(event);
4660 }
4661 
4662 /*
4663  * A buffer can be mmap()ed multiple times; either directly through the same
4664  * event, or through other events by use of perf_event_set_output().
4665  *
4666  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4667  * the buffer here, where we still have a VM context. This means we need
4668  * to detach all events redirecting to us.
4669  */
4670 static void perf_mmap_close(struct vm_area_struct *vma)
4671 {
4672 	struct perf_event *event = vma->vm_file->private_data;
4673 
4674 	struct ring_buffer *rb = ring_buffer_get(event);
4675 	struct user_struct *mmap_user = rb->mmap_user;
4676 	int mmap_locked = rb->mmap_locked;
4677 	unsigned long size = perf_data_size(rb);
4678 
4679 	if (event->pmu->event_unmapped)
4680 		event->pmu->event_unmapped(event);
4681 
4682 	/*
4683 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4684 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4685 	 * serialize with perf_mmap here.
4686 	 */
4687 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4688 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4689 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4690 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4691 
4692 		rb_free_aux(rb);
4693 		mutex_unlock(&event->mmap_mutex);
4694 	}
4695 
4696 	atomic_dec(&rb->mmap_count);
4697 
4698 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4699 		goto out_put;
4700 
4701 	ring_buffer_attach(event, NULL);
4702 	mutex_unlock(&event->mmap_mutex);
4703 
4704 	/* If there's still other mmap()s of this buffer, we're done. */
4705 	if (atomic_read(&rb->mmap_count))
4706 		goto out_put;
4707 
4708 	/*
4709 	 * No other mmap()s, detach from all other events that might redirect
4710 	 * into the now unreachable buffer. Somewhat complicated by the
4711 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4712 	 */
4713 again:
4714 	rcu_read_lock();
4715 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4716 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4717 			/*
4718 			 * This event is en-route to free_event() which will
4719 			 * detach it and remove it from the list.
4720 			 */
4721 			continue;
4722 		}
4723 		rcu_read_unlock();
4724 
4725 		mutex_lock(&event->mmap_mutex);
4726 		/*
4727 		 * Check we didn't race with perf_event_set_output() which can
4728 		 * swizzle the rb from under us while we were waiting to
4729 		 * acquire mmap_mutex.
4730 		 *
4731 		 * If we find a different rb; ignore this event, a next
4732 		 * iteration will no longer find it on the list. We have to
4733 		 * still restart the iteration to make sure we're not now
4734 		 * iterating the wrong list.
4735 		 */
4736 		if (event->rb == rb)
4737 			ring_buffer_attach(event, NULL);
4738 
4739 		mutex_unlock(&event->mmap_mutex);
4740 		put_event(event);
4741 
4742 		/*
4743 		 * Restart the iteration; either we're on the wrong list or
4744 		 * destroyed its integrity by doing a deletion.
4745 		 */
4746 		goto again;
4747 	}
4748 	rcu_read_unlock();
4749 
4750 	/*
4751 	 * It could be there's still a few 0-ref events on the list; they'll
4752 	 * get cleaned up by free_event() -- they'll also still have their
4753 	 * ref on the rb and will free it whenever they are done with it.
4754 	 *
4755 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4756 	 * undo the VM accounting.
4757 	 */
4758 
4759 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4760 	vma->vm_mm->pinned_vm -= mmap_locked;
4761 	free_uid(mmap_user);
4762 
4763 out_put:
4764 	ring_buffer_put(rb); /* could be last */
4765 }
4766 
4767 static const struct vm_operations_struct perf_mmap_vmops = {
4768 	.open		= perf_mmap_open,
4769 	.close		= perf_mmap_close, /* non mergable */
4770 	.fault		= perf_mmap_fault,
4771 	.page_mkwrite	= perf_mmap_fault,
4772 };
4773 
4774 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4775 {
4776 	struct perf_event *event = file->private_data;
4777 	unsigned long user_locked, user_lock_limit;
4778 	struct user_struct *user = current_user();
4779 	unsigned long locked, lock_limit;
4780 	struct ring_buffer *rb = NULL;
4781 	unsigned long vma_size;
4782 	unsigned long nr_pages;
4783 	long user_extra = 0, extra = 0;
4784 	int ret = 0, flags = 0;
4785 
4786 	/*
4787 	 * Don't allow mmap() of inherited per-task counters. This would
4788 	 * create a performance issue due to all children writing to the
4789 	 * same rb.
4790 	 */
4791 	if (event->cpu == -1 && event->attr.inherit)
4792 		return -EINVAL;
4793 
4794 	if (!(vma->vm_flags & VM_SHARED))
4795 		return -EINVAL;
4796 
4797 	vma_size = vma->vm_end - vma->vm_start;
4798 
4799 	if (vma->vm_pgoff == 0) {
4800 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4801 	} else {
4802 		/*
4803 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4804 		 * mapped, all subsequent mappings should have the same size
4805 		 * and offset. Must be above the normal perf buffer.
4806 		 */
4807 		u64 aux_offset, aux_size;
4808 
4809 		if (!event->rb)
4810 			return -EINVAL;
4811 
4812 		nr_pages = vma_size / PAGE_SIZE;
4813 
4814 		mutex_lock(&event->mmap_mutex);
4815 		ret = -EINVAL;
4816 
4817 		rb = event->rb;
4818 		if (!rb)
4819 			goto aux_unlock;
4820 
4821 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4822 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4823 
4824 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4825 			goto aux_unlock;
4826 
4827 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4828 			goto aux_unlock;
4829 
4830 		/* already mapped with a different offset */
4831 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4832 			goto aux_unlock;
4833 
4834 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4835 			goto aux_unlock;
4836 
4837 		/* already mapped with a different size */
4838 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4839 			goto aux_unlock;
4840 
4841 		if (!is_power_of_2(nr_pages))
4842 			goto aux_unlock;
4843 
4844 		if (!atomic_inc_not_zero(&rb->mmap_count))
4845 			goto aux_unlock;
4846 
4847 		if (rb_has_aux(rb)) {
4848 			atomic_inc(&rb->aux_mmap_count);
4849 			ret = 0;
4850 			goto unlock;
4851 		}
4852 
4853 		atomic_set(&rb->aux_mmap_count, 1);
4854 		user_extra = nr_pages;
4855 
4856 		goto accounting;
4857 	}
4858 
4859 	/*
4860 	 * If we have rb pages ensure they're a power-of-two number, so we
4861 	 * can do bitmasks instead of modulo.
4862 	 */
4863 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4864 		return -EINVAL;
4865 
4866 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4867 		return -EINVAL;
4868 
4869 	WARN_ON_ONCE(event->ctx->parent_ctx);
4870 again:
4871 	mutex_lock(&event->mmap_mutex);
4872 	if (event->rb) {
4873 		if (event->rb->nr_pages != nr_pages) {
4874 			ret = -EINVAL;
4875 			goto unlock;
4876 		}
4877 
4878 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4879 			/*
4880 			 * Raced against perf_mmap_close() through
4881 			 * perf_event_set_output(). Try again, hope for better
4882 			 * luck.
4883 			 */
4884 			mutex_unlock(&event->mmap_mutex);
4885 			goto again;
4886 		}
4887 
4888 		goto unlock;
4889 	}
4890 
4891 	user_extra = nr_pages + 1;
4892 
4893 accounting:
4894 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4895 
4896 	/*
4897 	 * Increase the limit linearly with more CPUs:
4898 	 */
4899 	user_lock_limit *= num_online_cpus();
4900 
4901 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4902 
4903 	if (user_locked > user_lock_limit)
4904 		extra = user_locked - user_lock_limit;
4905 
4906 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4907 	lock_limit >>= PAGE_SHIFT;
4908 	locked = vma->vm_mm->pinned_vm + extra;
4909 
4910 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4911 		!capable(CAP_IPC_LOCK)) {
4912 		ret = -EPERM;
4913 		goto unlock;
4914 	}
4915 
4916 	WARN_ON(!rb && event->rb);
4917 
4918 	if (vma->vm_flags & VM_WRITE)
4919 		flags |= RING_BUFFER_WRITABLE;
4920 
4921 	if (!rb) {
4922 		rb = rb_alloc(nr_pages,
4923 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4924 			      event->cpu, flags);
4925 
4926 		if (!rb) {
4927 			ret = -ENOMEM;
4928 			goto unlock;
4929 		}
4930 
4931 		atomic_set(&rb->mmap_count, 1);
4932 		rb->mmap_user = get_current_user();
4933 		rb->mmap_locked = extra;
4934 
4935 		ring_buffer_attach(event, rb);
4936 
4937 		perf_event_init_userpage(event);
4938 		perf_event_update_userpage(event);
4939 	} else {
4940 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4941 				   event->attr.aux_watermark, flags);
4942 		if (!ret)
4943 			rb->aux_mmap_locked = extra;
4944 	}
4945 
4946 unlock:
4947 	if (!ret) {
4948 		atomic_long_add(user_extra, &user->locked_vm);
4949 		vma->vm_mm->pinned_vm += extra;
4950 
4951 		atomic_inc(&event->mmap_count);
4952 	} else if (rb) {
4953 		atomic_dec(&rb->mmap_count);
4954 	}
4955 aux_unlock:
4956 	mutex_unlock(&event->mmap_mutex);
4957 
4958 	/*
4959 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4960 	 * vma.
4961 	 */
4962 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4963 	vma->vm_ops = &perf_mmap_vmops;
4964 
4965 	if (event->pmu->event_mapped)
4966 		event->pmu->event_mapped(event);
4967 
4968 	return ret;
4969 }
4970 
4971 static int perf_fasync(int fd, struct file *filp, int on)
4972 {
4973 	struct inode *inode = file_inode(filp);
4974 	struct perf_event *event = filp->private_data;
4975 	int retval;
4976 
4977 	inode_lock(inode);
4978 	retval = fasync_helper(fd, filp, on, &event->fasync);
4979 	inode_unlock(inode);
4980 
4981 	if (retval < 0)
4982 		return retval;
4983 
4984 	return 0;
4985 }
4986 
4987 static const struct file_operations perf_fops = {
4988 	.llseek			= no_llseek,
4989 	.release		= perf_release,
4990 	.read			= perf_read,
4991 	.poll			= perf_poll,
4992 	.unlocked_ioctl		= perf_ioctl,
4993 	.compat_ioctl		= perf_compat_ioctl,
4994 	.mmap			= perf_mmap,
4995 	.fasync			= perf_fasync,
4996 };
4997 
4998 /*
4999  * Perf event wakeup
5000  *
5001  * If there's data, ensure we set the poll() state and publish everything
5002  * to user-space before waking everybody up.
5003  */
5004 
5005 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5006 {
5007 	/* only the parent has fasync state */
5008 	if (event->parent)
5009 		event = event->parent;
5010 	return &event->fasync;
5011 }
5012 
5013 void perf_event_wakeup(struct perf_event *event)
5014 {
5015 	ring_buffer_wakeup(event);
5016 
5017 	if (event->pending_kill) {
5018 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5019 		event->pending_kill = 0;
5020 	}
5021 }
5022 
5023 static void perf_pending_event(struct irq_work *entry)
5024 {
5025 	struct perf_event *event = container_of(entry,
5026 			struct perf_event, pending);
5027 	int rctx;
5028 
5029 	rctx = perf_swevent_get_recursion_context();
5030 	/*
5031 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5032 	 * and we won't recurse 'further'.
5033 	 */
5034 
5035 	if (event->pending_disable) {
5036 		event->pending_disable = 0;
5037 		perf_event_disable_local(event);
5038 	}
5039 
5040 	if (event->pending_wakeup) {
5041 		event->pending_wakeup = 0;
5042 		perf_event_wakeup(event);
5043 	}
5044 
5045 	if (rctx >= 0)
5046 		perf_swevent_put_recursion_context(rctx);
5047 }
5048 
5049 /*
5050  * We assume there is only KVM supporting the callbacks.
5051  * Later on, we might change it to a list if there is
5052  * another virtualization implementation supporting the callbacks.
5053  */
5054 struct perf_guest_info_callbacks *perf_guest_cbs;
5055 
5056 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5057 {
5058 	perf_guest_cbs = cbs;
5059 	return 0;
5060 }
5061 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5062 
5063 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5064 {
5065 	perf_guest_cbs = NULL;
5066 	return 0;
5067 }
5068 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5069 
5070 static void
5071 perf_output_sample_regs(struct perf_output_handle *handle,
5072 			struct pt_regs *regs, u64 mask)
5073 {
5074 	int bit;
5075 
5076 	for_each_set_bit(bit, (const unsigned long *) &mask,
5077 			 sizeof(mask) * BITS_PER_BYTE) {
5078 		u64 val;
5079 
5080 		val = perf_reg_value(regs, bit);
5081 		perf_output_put(handle, val);
5082 	}
5083 }
5084 
5085 static void perf_sample_regs_user(struct perf_regs *regs_user,
5086 				  struct pt_regs *regs,
5087 				  struct pt_regs *regs_user_copy)
5088 {
5089 	if (user_mode(regs)) {
5090 		regs_user->abi = perf_reg_abi(current);
5091 		regs_user->regs = regs;
5092 	} else if (current->mm) {
5093 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5094 	} else {
5095 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5096 		regs_user->regs = NULL;
5097 	}
5098 }
5099 
5100 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5101 				  struct pt_regs *regs)
5102 {
5103 	regs_intr->regs = regs;
5104 	regs_intr->abi  = perf_reg_abi(current);
5105 }
5106 
5107 
5108 /*
5109  * Get remaining task size from user stack pointer.
5110  *
5111  * It'd be better to take stack vma map and limit this more
5112  * precisly, but there's no way to get it safely under interrupt,
5113  * so using TASK_SIZE as limit.
5114  */
5115 static u64 perf_ustack_task_size(struct pt_regs *regs)
5116 {
5117 	unsigned long addr = perf_user_stack_pointer(regs);
5118 
5119 	if (!addr || addr >= TASK_SIZE)
5120 		return 0;
5121 
5122 	return TASK_SIZE - addr;
5123 }
5124 
5125 static u16
5126 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5127 			struct pt_regs *regs)
5128 {
5129 	u64 task_size;
5130 
5131 	/* No regs, no stack pointer, no dump. */
5132 	if (!regs)
5133 		return 0;
5134 
5135 	/*
5136 	 * Check if we fit in with the requested stack size into the:
5137 	 * - TASK_SIZE
5138 	 *   If we don't, we limit the size to the TASK_SIZE.
5139 	 *
5140 	 * - remaining sample size
5141 	 *   If we don't, we customize the stack size to
5142 	 *   fit in to the remaining sample size.
5143 	 */
5144 
5145 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5146 	stack_size = min(stack_size, (u16) task_size);
5147 
5148 	/* Current header size plus static size and dynamic size. */
5149 	header_size += 2 * sizeof(u64);
5150 
5151 	/* Do we fit in with the current stack dump size? */
5152 	if ((u16) (header_size + stack_size) < header_size) {
5153 		/*
5154 		 * If we overflow the maximum size for the sample,
5155 		 * we customize the stack dump size to fit in.
5156 		 */
5157 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5158 		stack_size = round_up(stack_size, sizeof(u64));
5159 	}
5160 
5161 	return stack_size;
5162 }
5163 
5164 static void
5165 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5166 			  struct pt_regs *regs)
5167 {
5168 	/* Case of a kernel thread, nothing to dump */
5169 	if (!regs) {
5170 		u64 size = 0;
5171 		perf_output_put(handle, size);
5172 	} else {
5173 		unsigned long sp;
5174 		unsigned int rem;
5175 		u64 dyn_size;
5176 
5177 		/*
5178 		 * We dump:
5179 		 * static size
5180 		 *   - the size requested by user or the best one we can fit
5181 		 *     in to the sample max size
5182 		 * data
5183 		 *   - user stack dump data
5184 		 * dynamic size
5185 		 *   - the actual dumped size
5186 		 */
5187 
5188 		/* Static size. */
5189 		perf_output_put(handle, dump_size);
5190 
5191 		/* Data. */
5192 		sp = perf_user_stack_pointer(regs);
5193 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5194 		dyn_size = dump_size - rem;
5195 
5196 		perf_output_skip(handle, rem);
5197 
5198 		/* Dynamic size. */
5199 		perf_output_put(handle, dyn_size);
5200 	}
5201 }
5202 
5203 static void __perf_event_header__init_id(struct perf_event_header *header,
5204 					 struct perf_sample_data *data,
5205 					 struct perf_event *event)
5206 {
5207 	u64 sample_type = event->attr.sample_type;
5208 
5209 	data->type = sample_type;
5210 	header->size += event->id_header_size;
5211 
5212 	if (sample_type & PERF_SAMPLE_TID) {
5213 		/* namespace issues */
5214 		data->tid_entry.pid = perf_event_pid(event, current);
5215 		data->tid_entry.tid = perf_event_tid(event, current);
5216 	}
5217 
5218 	if (sample_type & PERF_SAMPLE_TIME)
5219 		data->time = perf_event_clock(event);
5220 
5221 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5222 		data->id = primary_event_id(event);
5223 
5224 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5225 		data->stream_id = event->id;
5226 
5227 	if (sample_type & PERF_SAMPLE_CPU) {
5228 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5229 		data->cpu_entry.reserved = 0;
5230 	}
5231 }
5232 
5233 void perf_event_header__init_id(struct perf_event_header *header,
5234 				struct perf_sample_data *data,
5235 				struct perf_event *event)
5236 {
5237 	if (event->attr.sample_id_all)
5238 		__perf_event_header__init_id(header, data, event);
5239 }
5240 
5241 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5242 					   struct perf_sample_data *data)
5243 {
5244 	u64 sample_type = data->type;
5245 
5246 	if (sample_type & PERF_SAMPLE_TID)
5247 		perf_output_put(handle, data->tid_entry);
5248 
5249 	if (sample_type & PERF_SAMPLE_TIME)
5250 		perf_output_put(handle, data->time);
5251 
5252 	if (sample_type & PERF_SAMPLE_ID)
5253 		perf_output_put(handle, data->id);
5254 
5255 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5256 		perf_output_put(handle, data->stream_id);
5257 
5258 	if (sample_type & PERF_SAMPLE_CPU)
5259 		perf_output_put(handle, data->cpu_entry);
5260 
5261 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5262 		perf_output_put(handle, data->id);
5263 }
5264 
5265 void perf_event__output_id_sample(struct perf_event *event,
5266 				  struct perf_output_handle *handle,
5267 				  struct perf_sample_data *sample)
5268 {
5269 	if (event->attr.sample_id_all)
5270 		__perf_event__output_id_sample(handle, sample);
5271 }
5272 
5273 static void perf_output_read_one(struct perf_output_handle *handle,
5274 				 struct perf_event *event,
5275 				 u64 enabled, u64 running)
5276 {
5277 	u64 read_format = event->attr.read_format;
5278 	u64 values[4];
5279 	int n = 0;
5280 
5281 	values[n++] = perf_event_count(event);
5282 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5283 		values[n++] = enabled +
5284 			atomic64_read(&event->child_total_time_enabled);
5285 	}
5286 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5287 		values[n++] = running +
5288 			atomic64_read(&event->child_total_time_running);
5289 	}
5290 	if (read_format & PERF_FORMAT_ID)
5291 		values[n++] = primary_event_id(event);
5292 
5293 	__output_copy(handle, values, n * sizeof(u64));
5294 }
5295 
5296 /*
5297  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5298  */
5299 static void perf_output_read_group(struct perf_output_handle *handle,
5300 			    struct perf_event *event,
5301 			    u64 enabled, u64 running)
5302 {
5303 	struct perf_event *leader = event->group_leader, *sub;
5304 	u64 read_format = event->attr.read_format;
5305 	u64 values[5];
5306 	int n = 0;
5307 
5308 	values[n++] = 1 + leader->nr_siblings;
5309 
5310 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5311 		values[n++] = enabled;
5312 
5313 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5314 		values[n++] = running;
5315 
5316 	if (leader != event)
5317 		leader->pmu->read(leader);
5318 
5319 	values[n++] = perf_event_count(leader);
5320 	if (read_format & PERF_FORMAT_ID)
5321 		values[n++] = primary_event_id(leader);
5322 
5323 	__output_copy(handle, values, n * sizeof(u64));
5324 
5325 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5326 		n = 0;
5327 
5328 		if ((sub != event) &&
5329 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5330 			sub->pmu->read(sub);
5331 
5332 		values[n++] = perf_event_count(sub);
5333 		if (read_format & PERF_FORMAT_ID)
5334 			values[n++] = primary_event_id(sub);
5335 
5336 		__output_copy(handle, values, n * sizeof(u64));
5337 	}
5338 }
5339 
5340 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5341 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5342 
5343 static void perf_output_read(struct perf_output_handle *handle,
5344 			     struct perf_event *event)
5345 {
5346 	u64 enabled = 0, running = 0, now;
5347 	u64 read_format = event->attr.read_format;
5348 
5349 	/*
5350 	 * compute total_time_enabled, total_time_running
5351 	 * based on snapshot values taken when the event
5352 	 * was last scheduled in.
5353 	 *
5354 	 * we cannot simply called update_context_time()
5355 	 * because of locking issue as we are called in
5356 	 * NMI context
5357 	 */
5358 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5359 		calc_timer_values(event, &now, &enabled, &running);
5360 
5361 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5362 		perf_output_read_group(handle, event, enabled, running);
5363 	else
5364 		perf_output_read_one(handle, event, enabled, running);
5365 }
5366 
5367 void perf_output_sample(struct perf_output_handle *handle,
5368 			struct perf_event_header *header,
5369 			struct perf_sample_data *data,
5370 			struct perf_event *event)
5371 {
5372 	u64 sample_type = data->type;
5373 
5374 	perf_output_put(handle, *header);
5375 
5376 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5377 		perf_output_put(handle, data->id);
5378 
5379 	if (sample_type & PERF_SAMPLE_IP)
5380 		perf_output_put(handle, data->ip);
5381 
5382 	if (sample_type & PERF_SAMPLE_TID)
5383 		perf_output_put(handle, data->tid_entry);
5384 
5385 	if (sample_type & PERF_SAMPLE_TIME)
5386 		perf_output_put(handle, data->time);
5387 
5388 	if (sample_type & PERF_SAMPLE_ADDR)
5389 		perf_output_put(handle, data->addr);
5390 
5391 	if (sample_type & PERF_SAMPLE_ID)
5392 		perf_output_put(handle, data->id);
5393 
5394 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5395 		perf_output_put(handle, data->stream_id);
5396 
5397 	if (sample_type & PERF_SAMPLE_CPU)
5398 		perf_output_put(handle, data->cpu_entry);
5399 
5400 	if (sample_type & PERF_SAMPLE_PERIOD)
5401 		perf_output_put(handle, data->period);
5402 
5403 	if (sample_type & PERF_SAMPLE_READ)
5404 		perf_output_read(handle, event);
5405 
5406 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5407 		if (data->callchain) {
5408 			int size = 1;
5409 
5410 			if (data->callchain)
5411 				size += data->callchain->nr;
5412 
5413 			size *= sizeof(u64);
5414 
5415 			__output_copy(handle, data->callchain, size);
5416 		} else {
5417 			u64 nr = 0;
5418 			perf_output_put(handle, nr);
5419 		}
5420 	}
5421 
5422 	if (sample_type & PERF_SAMPLE_RAW) {
5423 		if (data->raw) {
5424 			u32 raw_size = data->raw->size;
5425 			u32 real_size = round_up(raw_size + sizeof(u32),
5426 						 sizeof(u64)) - sizeof(u32);
5427 			u64 zero = 0;
5428 
5429 			perf_output_put(handle, real_size);
5430 			__output_copy(handle, data->raw->data, raw_size);
5431 			if (real_size - raw_size)
5432 				__output_copy(handle, &zero, real_size - raw_size);
5433 		} else {
5434 			struct {
5435 				u32	size;
5436 				u32	data;
5437 			} raw = {
5438 				.size = sizeof(u32),
5439 				.data = 0,
5440 			};
5441 			perf_output_put(handle, raw);
5442 		}
5443 	}
5444 
5445 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5446 		if (data->br_stack) {
5447 			size_t size;
5448 
5449 			size = data->br_stack->nr
5450 			     * sizeof(struct perf_branch_entry);
5451 
5452 			perf_output_put(handle, data->br_stack->nr);
5453 			perf_output_copy(handle, data->br_stack->entries, size);
5454 		} else {
5455 			/*
5456 			 * we always store at least the value of nr
5457 			 */
5458 			u64 nr = 0;
5459 			perf_output_put(handle, nr);
5460 		}
5461 	}
5462 
5463 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5464 		u64 abi = data->regs_user.abi;
5465 
5466 		/*
5467 		 * If there are no regs to dump, notice it through
5468 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5469 		 */
5470 		perf_output_put(handle, abi);
5471 
5472 		if (abi) {
5473 			u64 mask = event->attr.sample_regs_user;
5474 			perf_output_sample_regs(handle,
5475 						data->regs_user.regs,
5476 						mask);
5477 		}
5478 	}
5479 
5480 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5481 		perf_output_sample_ustack(handle,
5482 					  data->stack_user_size,
5483 					  data->regs_user.regs);
5484 	}
5485 
5486 	if (sample_type & PERF_SAMPLE_WEIGHT)
5487 		perf_output_put(handle, data->weight);
5488 
5489 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5490 		perf_output_put(handle, data->data_src.val);
5491 
5492 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5493 		perf_output_put(handle, data->txn);
5494 
5495 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5496 		u64 abi = data->regs_intr.abi;
5497 		/*
5498 		 * If there are no regs to dump, notice it through
5499 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5500 		 */
5501 		perf_output_put(handle, abi);
5502 
5503 		if (abi) {
5504 			u64 mask = event->attr.sample_regs_intr;
5505 
5506 			perf_output_sample_regs(handle,
5507 						data->regs_intr.regs,
5508 						mask);
5509 		}
5510 	}
5511 
5512 	if (!event->attr.watermark) {
5513 		int wakeup_events = event->attr.wakeup_events;
5514 
5515 		if (wakeup_events) {
5516 			struct ring_buffer *rb = handle->rb;
5517 			int events = local_inc_return(&rb->events);
5518 
5519 			if (events >= wakeup_events) {
5520 				local_sub(wakeup_events, &rb->events);
5521 				local_inc(&rb->wakeup);
5522 			}
5523 		}
5524 	}
5525 }
5526 
5527 void perf_prepare_sample(struct perf_event_header *header,
5528 			 struct perf_sample_data *data,
5529 			 struct perf_event *event,
5530 			 struct pt_regs *regs)
5531 {
5532 	u64 sample_type = event->attr.sample_type;
5533 
5534 	header->type = PERF_RECORD_SAMPLE;
5535 	header->size = sizeof(*header) + event->header_size;
5536 
5537 	header->misc = 0;
5538 	header->misc |= perf_misc_flags(regs);
5539 
5540 	__perf_event_header__init_id(header, data, event);
5541 
5542 	if (sample_type & PERF_SAMPLE_IP)
5543 		data->ip = perf_instruction_pointer(regs);
5544 
5545 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5546 		int size = 1;
5547 
5548 		data->callchain = perf_callchain(event, regs);
5549 
5550 		if (data->callchain)
5551 			size += data->callchain->nr;
5552 
5553 		header->size += size * sizeof(u64);
5554 	}
5555 
5556 	if (sample_type & PERF_SAMPLE_RAW) {
5557 		int size = sizeof(u32);
5558 
5559 		if (data->raw)
5560 			size += data->raw->size;
5561 		else
5562 			size += sizeof(u32);
5563 
5564 		header->size += round_up(size, sizeof(u64));
5565 	}
5566 
5567 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5568 		int size = sizeof(u64); /* nr */
5569 		if (data->br_stack) {
5570 			size += data->br_stack->nr
5571 			      * sizeof(struct perf_branch_entry);
5572 		}
5573 		header->size += size;
5574 	}
5575 
5576 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5577 		perf_sample_regs_user(&data->regs_user, regs,
5578 				      &data->regs_user_copy);
5579 
5580 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5581 		/* regs dump ABI info */
5582 		int size = sizeof(u64);
5583 
5584 		if (data->regs_user.regs) {
5585 			u64 mask = event->attr.sample_regs_user;
5586 			size += hweight64(mask) * sizeof(u64);
5587 		}
5588 
5589 		header->size += size;
5590 	}
5591 
5592 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5593 		/*
5594 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5595 		 * processed as the last one or have additional check added
5596 		 * in case new sample type is added, because we could eat
5597 		 * up the rest of the sample size.
5598 		 */
5599 		u16 stack_size = event->attr.sample_stack_user;
5600 		u16 size = sizeof(u64);
5601 
5602 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5603 						     data->regs_user.regs);
5604 
5605 		/*
5606 		 * If there is something to dump, add space for the dump
5607 		 * itself and for the field that tells the dynamic size,
5608 		 * which is how many have been actually dumped.
5609 		 */
5610 		if (stack_size)
5611 			size += sizeof(u64) + stack_size;
5612 
5613 		data->stack_user_size = stack_size;
5614 		header->size += size;
5615 	}
5616 
5617 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5618 		/* regs dump ABI info */
5619 		int size = sizeof(u64);
5620 
5621 		perf_sample_regs_intr(&data->regs_intr, regs);
5622 
5623 		if (data->regs_intr.regs) {
5624 			u64 mask = event->attr.sample_regs_intr;
5625 
5626 			size += hweight64(mask) * sizeof(u64);
5627 		}
5628 
5629 		header->size += size;
5630 	}
5631 }
5632 
5633 void perf_event_output(struct perf_event *event,
5634 			struct perf_sample_data *data,
5635 			struct pt_regs *regs)
5636 {
5637 	struct perf_output_handle handle;
5638 	struct perf_event_header header;
5639 
5640 	/* protect the callchain buffers */
5641 	rcu_read_lock();
5642 
5643 	perf_prepare_sample(&header, data, event, regs);
5644 
5645 	if (perf_output_begin(&handle, event, header.size))
5646 		goto exit;
5647 
5648 	perf_output_sample(&handle, &header, data, event);
5649 
5650 	perf_output_end(&handle);
5651 
5652 exit:
5653 	rcu_read_unlock();
5654 }
5655 
5656 /*
5657  * read event_id
5658  */
5659 
5660 struct perf_read_event {
5661 	struct perf_event_header	header;
5662 
5663 	u32				pid;
5664 	u32				tid;
5665 };
5666 
5667 static void
5668 perf_event_read_event(struct perf_event *event,
5669 			struct task_struct *task)
5670 {
5671 	struct perf_output_handle handle;
5672 	struct perf_sample_data sample;
5673 	struct perf_read_event read_event = {
5674 		.header = {
5675 			.type = PERF_RECORD_READ,
5676 			.misc = 0,
5677 			.size = sizeof(read_event) + event->read_size,
5678 		},
5679 		.pid = perf_event_pid(event, task),
5680 		.tid = perf_event_tid(event, task),
5681 	};
5682 	int ret;
5683 
5684 	perf_event_header__init_id(&read_event.header, &sample, event);
5685 	ret = perf_output_begin(&handle, event, read_event.header.size);
5686 	if (ret)
5687 		return;
5688 
5689 	perf_output_put(&handle, read_event);
5690 	perf_output_read(&handle, event);
5691 	perf_event__output_id_sample(event, &handle, &sample);
5692 
5693 	perf_output_end(&handle);
5694 }
5695 
5696 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5697 
5698 static void
5699 perf_event_aux_ctx(struct perf_event_context *ctx,
5700 		   perf_event_aux_output_cb output,
5701 		   void *data)
5702 {
5703 	struct perf_event *event;
5704 
5705 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5706 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5707 			continue;
5708 		if (!event_filter_match(event))
5709 			continue;
5710 		output(event, data);
5711 	}
5712 }
5713 
5714 static void
5715 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5716 			struct perf_event_context *task_ctx)
5717 {
5718 	rcu_read_lock();
5719 	preempt_disable();
5720 	perf_event_aux_ctx(task_ctx, output, data);
5721 	preempt_enable();
5722 	rcu_read_unlock();
5723 }
5724 
5725 static void
5726 perf_event_aux(perf_event_aux_output_cb output, void *data,
5727 	       struct perf_event_context *task_ctx)
5728 {
5729 	struct perf_cpu_context *cpuctx;
5730 	struct perf_event_context *ctx;
5731 	struct pmu *pmu;
5732 	int ctxn;
5733 
5734 	/*
5735 	 * If we have task_ctx != NULL we only notify
5736 	 * the task context itself. The task_ctx is set
5737 	 * only for EXIT events before releasing task
5738 	 * context.
5739 	 */
5740 	if (task_ctx) {
5741 		perf_event_aux_task_ctx(output, data, task_ctx);
5742 		return;
5743 	}
5744 
5745 	rcu_read_lock();
5746 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5747 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5748 		if (cpuctx->unique_pmu != pmu)
5749 			goto next;
5750 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5751 		ctxn = pmu->task_ctx_nr;
5752 		if (ctxn < 0)
5753 			goto next;
5754 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5755 		if (ctx)
5756 			perf_event_aux_ctx(ctx, output, data);
5757 next:
5758 		put_cpu_ptr(pmu->pmu_cpu_context);
5759 	}
5760 	rcu_read_unlock();
5761 }
5762 
5763 /*
5764  * task tracking -- fork/exit
5765  *
5766  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5767  */
5768 
5769 struct perf_task_event {
5770 	struct task_struct		*task;
5771 	struct perf_event_context	*task_ctx;
5772 
5773 	struct {
5774 		struct perf_event_header	header;
5775 
5776 		u32				pid;
5777 		u32				ppid;
5778 		u32				tid;
5779 		u32				ptid;
5780 		u64				time;
5781 	} event_id;
5782 };
5783 
5784 static int perf_event_task_match(struct perf_event *event)
5785 {
5786 	return event->attr.comm  || event->attr.mmap ||
5787 	       event->attr.mmap2 || event->attr.mmap_data ||
5788 	       event->attr.task;
5789 }
5790 
5791 static void perf_event_task_output(struct perf_event *event,
5792 				   void *data)
5793 {
5794 	struct perf_task_event *task_event = data;
5795 	struct perf_output_handle handle;
5796 	struct perf_sample_data	sample;
5797 	struct task_struct *task = task_event->task;
5798 	int ret, size = task_event->event_id.header.size;
5799 
5800 	if (!perf_event_task_match(event))
5801 		return;
5802 
5803 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5804 
5805 	ret = perf_output_begin(&handle, event,
5806 				task_event->event_id.header.size);
5807 	if (ret)
5808 		goto out;
5809 
5810 	task_event->event_id.pid = perf_event_pid(event, task);
5811 	task_event->event_id.ppid = perf_event_pid(event, current);
5812 
5813 	task_event->event_id.tid = perf_event_tid(event, task);
5814 	task_event->event_id.ptid = perf_event_tid(event, current);
5815 
5816 	task_event->event_id.time = perf_event_clock(event);
5817 
5818 	perf_output_put(&handle, task_event->event_id);
5819 
5820 	perf_event__output_id_sample(event, &handle, &sample);
5821 
5822 	perf_output_end(&handle);
5823 out:
5824 	task_event->event_id.header.size = size;
5825 }
5826 
5827 static void perf_event_task(struct task_struct *task,
5828 			      struct perf_event_context *task_ctx,
5829 			      int new)
5830 {
5831 	struct perf_task_event task_event;
5832 
5833 	if (!atomic_read(&nr_comm_events) &&
5834 	    !atomic_read(&nr_mmap_events) &&
5835 	    !atomic_read(&nr_task_events))
5836 		return;
5837 
5838 	task_event = (struct perf_task_event){
5839 		.task	  = task,
5840 		.task_ctx = task_ctx,
5841 		.event_id    = {
5842 			.header = {
5843 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5844 				.misc = 0,
5845 				.size = sizeof(task_event.event_id),
5846 			},
5847 			/* .pid  */
5848 			/* .ppid */
5849 			/* .tid  */
5850 			/* .ptid */
5851 			/* .time */
5852 		},
5853 	};
5854 
5855 	perf_event_aux(perf_event_task_output,
5856 		       &task_event,
5857 		       task_ctx);
5858 }
5859 
5860 void perf_event_fork(struct task_struct *task)
5861 {
5862 	perf_event_task(task, NULL, 1);
5863 }
5864 
5865 /*
5866  * comm tracking
5867  */
5868 
5869 struct perf_comm_event {
5870 	struct task_struct	*task;
5871 	char			*comm;
5872 	int			comm_size;
5873 
5874 	struct {
5875 		struct perf_event_header	header;
5876 
5877 		u32				pid;
5878 		u32				tid;
5879 	} event_id;
5880 };
5881 
5882 static int perf_event_comm_match(struct perf_event *event)
5883 {
5884 	return event->attr.comm;
5885 }
5886 
5887 static void perf_event_comm_output(struct perf_event *event,
5888 				   void *data)
5889 {
5890 	struct perf_comm_event *comm_event = data;
5891 	struct perf_output_handle handle;
5892 	struct perf_sample_data sample;
5893 	int size = comm_event->event_id.header.size;
5894 	int ret;
5895 
5896 	if (!perf_event_comm_match(event))
5897 		return;
5898 
5899 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5900 	ret = perf_output_begin(&handle, event,
5901 				comm_event->event_id.header.size);
5902 
5903 	if (ret)
5904 		goto out;
5905 
5906 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5907 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5908 
5909 	perf_output_put(&handle, comm_event->event_id);
5910 	__output_copy(&handle, comm_event->comm,
5911 				   comm_event->comm_size);
5912 
5913 	perf_event__output_id_sample(event, &handle, &sample);
5914 
5915 	perf_output_end(&handle);
5916 out:
5917 	comm_event->event_id.header.size = size;
5918 }
5919 
5920 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5921 {
5922 	char comm[TASK_COMM_LEN];
5923 	unsigned int size;
5924 
5925 	memset(comm, 0, sizeof(comm));
5926 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5927 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5928 
5929 	comm_event->comm = comm;
5930 	comm_event->comm_size = size;
5931 
5932 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5933 
5934 	perf_event_aux(perf_event_comm_output,
5935 		       comm_event,
5936 		       NULL);
5937 }
5938 
5939 void perf_event_comm(struct task_struct *task, bool exec)
5940 {
5941 	struct perf_comm_event comm_event;
5942 
5943 	if (!atomic_read(&nr_comm_events))
5944 		return;
5945 
5946 	comm_event = (struct perf_comm_event){
5947 		.task	= task,
5948 		/* .comm      */
5949 		/* .comm_size */
5950 		.event_id  = {
5951 			.header = {
5952 				.type = PERF_RECORD_COMM,
5953 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5954 				/* .size */
5955 			},
5956 			/* .pid */
5957 			/* .tid */
5958 		},
5959 	};
5960 
5961 	perf_event_comm_event(&comm_event);
5962 }
5963 
5964 /*
5965  * mmap tracking
5966  */
5967 
5968 struct perf_mmap_event {
5969 	struct vm_area_struct	*vma;
5970 
5971 	const char		*file_name;
5972 	int			file_size;
5973 	int			maj, min;
5974 	u64			ino;
5975 	u64			ino_generation;
5976 	u32			prot, flags;
5977 
5978 	struct {
5979 		struct perf_event_header	header;
5980 
5981 		u32				pid;
5982 		u32				tid;
5983 		u64				start;
5984 		u64				len;
5985 		u64				pgoff;
5986 	} event_id;
5987 };
5988 
5989 static int perf_event_mmap_match(struct perf_event *event,
5990 				 void *data)
5991 {
5992 	struct perf_mmap_event *mmap_event = data;
5993 	struct vm_area_struct *vma = mmap_event->vma;
5994 	int executable = vma->vm_flags & VM_EXEC;
5995 
5996 	return (!executable && event->attr.mmap_data) ||
5997 	       (executable && (event->attr.mmap || event->attr.mmap2));
5998 }
5999 
6000 static void perf_event_mmap_output(struct perf_event *event,
6001 				   void *data)
6002 {
6003 	struct perf_mmap_event *mmap_event = data;
6004 	struct perf_output_handle handle;
6005 	struct perf_sample_data sample;
6006 	int size = mmap_event->event_id.header.size;
6007 	int ret;
6008 
6009 	if (!perf_event_mmap_match(event, data))
6010 		return;
6011 
6012 	if (event->attr.mmap2) {
6013 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6014 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6015 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6016 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6017 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6018 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6019 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6020 	}
6021 
6022 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6023 	ret = perf_output_begin(&handle, event,
6024 				mmap_event->event_id.header.size);
6025 	if (ret)
6026 		goto out;
6027 
6028 	mmap_event->event_id.pid = perf_event_pid(event, current);
6029 	mmap_event->event_id.tid = perf_event_tid(event, current);
6030 
6031 	perf_output_put(&handle, mmap_event->event_id);
6032 
6033 	if (event->attr.mmap2) {
6034 		perf_output_put(&handle, mmap_event->maj);
6035 		perf_output_put(&handle, mmap_event->min);
6036 		perf_output_put(&handle, mmap_event->ino);
6037 		perf_output_put(&handle, mmap_event->ino_generation);
6038 		perf_output_put(&handle, mmap_event->prot);
6039 		perf_output_put(&handle, mmap_event->flags);
6040 	}
6041 
6042 	__output_copy(&handle, mmap_event->file_name,
6043 				   mmap_event->file_size);
6044 
6045 	perf_event__output_id_sample(event, &handle, &sample);
6046 
6047 	perf_output_end(&handle);
6048 out:
6049 	mmap_event->event_id.header.size = size;
6050 }
6051 
6052 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6053 {
6054 	struct vm_area_struct *vma = mmap_event->vma;
6055 	struct file *file = vma->vm_file;
6056 	int maj = 0, min = 0;
6057 	u64 ino = 0, gen = 0;
6058 	u32 prot = 0, flags = 0;
6059 	unsigned int size;
6060 	char tmp[16];
6061 	char *buf = NULL;
6062 	char *name;
6063 
6064 	if (file) {
6065 		struct inode *inode;
6066 		dev_t dev;
6067 
6068 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6069 		if (!buf) {
6070 			name = "//enomem";
6071 			goto cpy_name;
6072 		}
6073 		/*
6074 		 * d_path() works from the end of the rb backwards, so we
6075 		 * need to add enough zero bytes after the string to handle
6076 		 * the 64bit alignment we do later.
6077 		 */
6078 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6079 		if (IS_ERR(name)) {
6080 			name = "//toolong";
6081 			goto cpy_name;
6082 		}
6083 		inode = file_inode(vma->vm_file);
6084 		dev = inode->i_sb->s_dev;
6085 		ino = inode->i_ino;
6086 		gen = inode->i_generation;
6087 		maj = MAJOR(dev);
6088 		min = MINOR(dev);
6089 
6090 		if (vma->vm_flags & VM_READ)
6091 			prot |= PROT_READ;
6092 		if (vma->vm_flags & VM_WRITE)
6093 			prot |= PROT_WRITE;
6094 		if (vma->vm_flags & VM_EXEC)
6095 			prot |= PROT_EXEC;
6096 
6097 		if (vma->vm_flags & VM_MAYSHARE)
6098 			flags = MAP_SHARED;
6099 		else
6100 			flags = MAP_PRIVATE;
6101 
6102 		if (vma->vm_flags & VM_DENYWRITE)
6103 			flags |= MAP_DENYWRITE;
6104 		if (vma->vm_flags & VM_MAYEXEC)
6105 			flags |= MAP_EXECUTABLE;
6106 		if (vma->vm_flags & VM_LOCKED)
6107 			flags |= MAP_LOCKED;
6108 		if (vma->vm_flags & VM_HUGETLB)
6109 			flags |= MAP_HUGETLB;
6110 
6111 		goto got_name;
6112 	} else {
6113 		if (vma->vm_ops && vma->vm_ops->name) {
6114 			name = (char *) vma->vm_ops->name(vma);
6115 			if (name)
6116 				goto cpy_name;
6117 		}
6118 
6119 		name = (char *)arch_vma_name(vma);
6120 		if (name)
6121 			goto cpy_name;
6122 
6123 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6124 				vma->vm_end >= vma->vm_mm->brk) {
6125 			name = "[heap]";
6126 			goto cpy_name;
6127 		}
6128 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6129 				vma->vm_end >= vma->vm_mm->start_stack) {
6130 			name = "[stack]";
6131 			goto cpy_name;
6132 		}
6133 
6134 		name = "//anon";
6135 		goto cpy_name;
6136 	}
6137 
6138 cpy_name:
6139 	strlcpy(tmp, name, sizeof(tmp));
6140 	name = tmp;
6141 got_name:
6142 	/*
6143 	 * Since our buffer works in 8 byte units we need to align our string
6144 	 * size to a multiple of 8. However, we must guarantee the tail end is
6145 	 * zero'd out to avoid leaking random bits to userspace.
6146 	 */
6147 	size = strlen(name)+1;
6148 	while (!IS_ALIGNED(size, sizeof(u64)))
6149 		name[size++] = '\0';
6150 
6151 	mmap_event->file_name = name;
6152 	mmap_event->file_size = size;
6153 	mmap_event->maj = maj;
6154 	mmap_event->min = min;
6155 	mmap_event->ino = ino;
6156 	mmap_event->ino_generation = gen;
6157 	mmap_event->prot = prot;
6158 	mmap_event->flags = flags;
6159 
6160 	if (!(vma->vm_flags & VM_EXEC))
6161 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6162 
6163 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6164 
6165 	perf_event_aux(perf_event_mmap_output,
6166 		       mmap_event,
6167 		       NULL);
6168 
6169 	kfree(buf);
6170 }
6171 
6172 void perf_event_mmap(struct vm_area_struct *vma)
6173 {
6174 	struct perf_mmap_event mmap_event;
6175 
6176 	if (!atomic_read(&nr_mmap_events))
6177 		return;
6178 
6179 	mmap_event = (struct perf_mmap_event){
6180 		.vma	= vma,
6181 		/* .file_name */
6182 		/* .file_size */
6183 		.event_id  = {
6184 			.header = {
6185 				.type = PERF_RECORD_MMAP,
6186 				.misc = PERF_RECORD_MISC_USER,
6187 				/* .size */
6188 			},
6189 			/* .pid */
6190 			/* .tid */
6191 			.start  = vma->vm_start,
6192 			.len    = vma->vm_end - vma->vm_start,
6193 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6194 		},
6195 		/* .maj (attr_mmap2 only) */
6196 		/* .min (attr_mmap2 only) */
6197 		/* .ino (attr_mmap2 only) */
6198 		/* .ino_generation (attr_mmap2 only) */
6199 		/* .prot (attr_mmap2 only) */
6200 		/* .flags (attr_mmap2 only) */
6201 	};
6202 
6203 	perf_event_mmap_event(&mmap_event);
6204 }
6205 
6206 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6207 			  unsigned long size, u64 flags)
6208 {
6209 	struct perf_output_handle handle;
6210 	struct perf_sample_data sample;
6211 	struct perf_aux_event {
6212 		struct perf_event_header	header;
6213 		u64				offset;
6214 		u64				size;
6215 		u64				flags;
6216 	} rec = {
6217 		.header = {
6218 			.type = PERF_RECORD_AUX,
6219 			.misc = 0,
6220 			.size = sizeof(rec),
6221 		},
6222 		.offset		= head,
6223 		.size		= size,
6224 		.flags		= flags,
6225 	};
6226 	int ret;
6227 
6228 	perf_event_header__init_id(&rec.header, &sample, event);
6229 	ret = perf_output_begin(&handle, event, rec.header.size);
6230 
6231 	if (ret)
6232 		return;
6233 
6234 	perf_output_put(&handle, rec);
6235 	perf_event__output_id_sample(event, &handle, &sample);
6236 
6237 	perf_output_end(&handle);
6238 }
6239 
6240 /*
6241  * Lost/dropped samples logging
6242  */
6243 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6244 {
6245 	struct perf_output_handle handle;
6246 	struct perf_sample_data sample;
6247 	int ret;
6248 
6249 	struct {
6250 		struct perf_event_header	header;
6251 		u64				lost;
6252 	} lost_samples_event = {
6253 		.header = {
6254 			.type = PERF_RECORD_LOST_SAMPLES,
6255 			.misc = 0,
6256 			.size = sizeof(lost_samples_event),
6257 		},
6258 		.lost		= lost,
6259 	};
6260 
6261 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6262 
6263 	ret = perf_output_begin(&handle, event,
6264 				lost_samples_event.header.size);
6265 	if (ret)
6266 		return;
6267 
6268 	perf_output_put(&handle, lost_samples_event);
6269 	perf_event__output_id_sample(event, &handle, &sample);
6270 	perf_output_end(&handle);
6271 }
6272 
6273 /*
6274  * context_switch tracking
6275  */
6276 
6277 struct perf_switch_event {
6278 	struct task_struct	*task;
6279 	struct task_struct	*next_prev;
6280 
6281 	struct {
6282 		struct perf_event_header	header;
6283 		u32				next_prev_pid;
6284 		u32				next_prev_tid;
6285 	} event_id;
6286 };
6287 
6288 static int perf_event_switch_match(struct perf_event *event)
6289 {
6290 	return event->attr.context_switch;
6291 }
6292 
6293 static void perf_event_switch_output(struct perf_event *event, void *data)
6294 {
6295 	struct perf_switch_event *se = data;
6296 	struct perf_output_handle handle;
6297 	struct perf_sample_data sample;
6298 	int ret;
6299 
6300 	if (!perf_event_switch_match(event))
6301 		return;
6302 
6303 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6304 	if (event->ctx->task) {
6305 		se->event_id.header.type = PERF_RECORD_SWITCH;
6306 		se->event_id.header.size = sizeof(se->event_id.header);
6307 	} else {
6308 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6309 		se->event_id.header.size = sizeof(se->event_id);
6310 		se->event_id.next_prev_pid =
6311 					perf_event_pid(event, se->next_prev);
6312 		se->event_id.next_prev_tid =
6313 					perf_event_tid(event, se->next_prev);
6314 	}
6315 
6316 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6317 
6318 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6319 	if (ret)
6320 		return;
6321 
6322 	if (event->ctx->task)
6323 		perf_output_put(&handle, se->event_id.header);
6324 	else
6325 		perf_output_put(&handle, se->event_id);
6326 
6327 	perf_event__output_id_sample(event, &handle, &sample);
6328 
6329 	perf_output_end(&handle);
6330 }
6331 
6332 static void perf_event_switch(struct task_struct *task,
6333 			      struct task_struct *next_prev, bool sched_in)
6334 {
6335 	struct perf_switch_event switch_event;
6336 
6337 	/* N.B. caller checks nr_switch_events != 0 */
6338 
6339 	switch_event = (struct perf_switch_event){
6340 		.task		= task,
6341 		.next_prev	= next_prev,
6342 		.event_id	= {
6343 			.header = {
6344 				/* .type */
6345 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6346 				/* .size */
6347 			},
6348 			/* .next_prev_pid */
6349 			/* .next_prev_tid */
6350 		},
6351 	};
6352 
6353 	perf_event_aux(perf_event_switch_output,
6354 		       &switch_event,
6355 		       NULL);
6356 }
6357 
6358 /*
6359  * IRQ throttle logging
6360  */
6361 
6362 static void perf_log_throttle(struct perf_event *event, int enable)
6363 {
6364 	struct perf_output_handle handle;
6365 	struct perf_sample_data sample;
6366 	int ret;
6367 
6368 	struct {
6369 		struct perf_event_header	header;
6370 		u64				time;
6371 		u64				id;
6372 		u64				stream_id;
6373 	} throttle_event = {
6374 		.header = {
6375 			.type = PERF_RECORD_THROTTLE,
6376 			.misc = 0,
6377 			.size = sizeof(throttle_event),
6378 		},
6379 		.time		= perf_event_clock(event),
6380 		.id		= primary_event_id(event),
6381 		.stream_id	= event->id,
6382 	};
6383 
6384 	if (enable)
6385 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6386 
6387 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6388 
6389 	ret = perf_output_begin(&handle, event,
6390 				throttle_event.header.size);
6391 	if (ret)
6392 		return;
6393 
6394 	perf_output_put(&handle, throttle_event);
6395 	perf_event__output_id_sample(event, &handle, &sample);
6396 	perf_output_end(&handle);
6397 }
6398 
6399 static void perf_log_itrace_start(struct perf_event *event)
6400 {
6401 	struct perf_output_handle handle;
6402 	struct perf_sample_data sample;
6403 	struct perf_aux_event {
6404 		struct perf_event_header        header;
6405 		u32				pid;
6406 		u32				tid;
6407 	} rec;
6408 	int ret;
6409 
6410 	if (event->parent)
6411 		event = event->parent;
6412 
6413 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6414 	    event->hw.itrace_started)
6415 		return;
6416 
6417 	rec.header.type	= PERF_RECORD_ITRACE_START;
6418 	rec.header.misc	= 0;
6419 	rec.header.size	= sizeof(rec);
6420 	rec.pid	= perf_event_pid(event, current);
6421 	rec.tid	= perf_event_tid(event, current);
6422 
6423 	perf_event_header__init_id(&rec.header, &sample, event);
6424 	ret = perf_output_begin(&handle, event, rec.header.size);
6425 
6426 	if (ret)
6427 		return;
6428 
6429 	perf_output_put(&handle, rec);
6430 	perf_event__output_id_sample(event, &handle, &sample);
6431 
6432 	perf_output_end(&handle);
6433 }
6434 
6435 /*
6436  * Generic event overflow handling, sampling.
6437  */
6438 
6439 static int __perf_event_overflow(struct perf_event *event,
6440 				   int throttle, struct perf_sample_data *data,
6441 				   struct pt_regs *regs)
6442 {
6443 	int events = atomic_read(&event->event_limit);
6444 	struct hw_perf_event *hwc = &event->hw;
6445 	u64 seq;
6446 	int ret = 0;
6447 
6448 	/*
6449 	 * Non-sampling counters might still use the PMI to fold short
6450 	 * hardware counters, ignore those.
6451 	 */
6452 	if (unlikely(!is_sampling_event(event)))
6453 		return 0;
6454 
6455 	seq = __this_cpu_read(perf_throttled_seq);
6456 	if (seq != hwc->interrupts_seq) {
6457 		hwc->interrupts_seq = seq;
6458 		hwc->interrupts = 1;
6459 	} else {
6460 		hwc->interrupts++;
6461 		if (unlikely(throttle
6462 			     && hwc->interrupts >= max_samples_per_tick)) {
6463 			__this_cpu_inc(perf_throttled_count);
6464 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6465 			hwc->interrupts = MAX_INTERRUPTS;
6466 			perf_log_throttle(event, 0);
6467 			ret = 1;
6468 		}
6469 	}
6470 
6471 	if (event->attr.freq) {
6472 		u64 now = perf_clock();
6473 		s64 delta = now - hwc->freq_time_stamp;
6474 
6475 		hwc->freq_time_stamp = now;
6476 
6477 		if (delta > 0 && delta < 2*TICK_NSEC)
6478 			perf_adjust_period(event, delta, hwc->last_period, true);
6479 	}
6480 
6481 	/*
6482 	 * XXX event_limit might not quite work as expected on inherited
6483 	 * events
6484 	 */
6485 
6486 	event->pending_kill = POLL_IN;
6487 	if (events && atomic_dec_and_test(&event->event_limit)) {
6488 		ret = 1;
6489 		event->pending_kill = POLL_HUP;
6490 		event->pending_disable = 1;
6491 		irq_work_queue(&event->pending);
6492 	}
6493 
6494 	if (event->overflow_handler)
6495 		event->overflow_handler(event, data, regs);
6496 	else
6497 		perf_event_output(event, data, regs);
6498 
6499 	if (*perf_event_fasync(event) && event->pending_kill) {
6500 		event->pending_wakeup = 1;
6501 		irq_work_queue(&event->pending);
6502 	}
6503 
6504 	return ret;
6505 }
6506 
6507 int perf_event_overflow(struct perf_event *event,
6508 			  struct perf_sample_data *data,
6509 			  struct pt_regs *regs)
6510 {
6511 	return __perf_event_overflow(event, 1, data, regs);
6512 }
6513 
6514 /*
6515  * Generic software event infrastructure
6516  */
6517 
6518 struct swevent_htable {
6519 	struct swevent_hlist		*swevent_hlist;
6520 	struct mutex			hlist_mutex;
6521 	int				hlist_refcount;
6522 
6523 	/* Recursion avoidance in each contexts */
6524 	int				recursion[PERF_NR_CONTEXTS];
6525 };
6526 
6527 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6528 
6529 /*
6530  * We directly increment event->count and keep a second value in
6531  * event->hw.period_left to count intervals. This period event
6532  * is kept in the range [-sample_period, 0] so that we can use the
6533  * sign as trigger.
6534  */
6535 
6536 u64 perf_swevent_set_period(struct perf_event *event)
6537 {
6538 	struct hw_perf_event *hwc = &event->hw;
6539 	u64 period = hwc->last_period;
6540 	u64 nr, offset;
6541 	s64 old, val;
6542 
6543 	hwc->last_period = hwc->sample_period;
6544 
6545 again:
6546 	old = val = local64_read(&hwc->period_left);
6547 	if (val < 0)
6548 		return 0;
6549 
6550 	nr = div64_u64(period + val, period);
6551 	offset = nr * period;
6552 	val -= offset;
6553 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6554 		goto again;
6555 
6556 	return nr;
6557 }
6558 
6559 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6560 				    struct perf_sample_data *data,
6561 				    struct pt_regs *regs)
6562 {
6563 	struct hw_perf_event *hwc = &event->hw;
6564 	int throttle = 0;
6565 
6566 	if (!overflow)
6567 		overflow = perf_swevent_set_period(event);
6568 
6569 	if (hwc->interrupts == MAX_INTERRUPTS)
6570 		return;
6571 
6572 	for (; overflow; overflow--) {
6573 		if (__perf_event_overflow(event, throttle,
6574 					    data, regs)) {
6575 			/*
6576 			 * We inhibit the overflow from happening when
6577 			 * hwc->interrupts == MAX_INTERRUPTS.
6578 			 */
6579 			break;
6580 		}
6581 		throttle = 1;
6582 	}
6583 }
6584 
6585 static void perf_swevent_event(struct perf_event *event, u64 nr,
6586 			       struct perf_sample_data *data,
6587 			       struct pt_regs *regs)
6588 {
6589 	struct hw_perf_event *hwc = &event->hw;
6590 
6591 	local64_add(nr, &event->count);
6592 
6593 	if (!regs)
6594 		return;
6595 
6596 	if (!is_sampling_event(event))
6597 		return;
6598 
6599 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6600 		data->period = nr;
6601 		return perf_swevent_overflow(event, 1, data, regs);
6602 	} else
6603 		data->period = event->hw.last_period;
6604 
6605 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6606 		return perf_swevent_overflow(event, 1, data, regs);
6607 
6608 	if (local64_add_negative(nr, &hwc->period_left))
6609 		return;
6610 
6611 	perf_swevent_overflow(event, 0, data, regs);
6612 }
6613 
6614 static int perf_exclude_event(struct perf_event *event,
6615 			      struct pt_regs *regs)
6616 {
6617 	if (event->hw.state & PERF_HES_STOPPED)
6618 		return 1;
6619 
6620 	if (regs) {
6621 		if (event->attr.exclude_user && user_mode(regs))
6622 			return 1;
6623 
6624 		if (event->attr.exclude_kernel && !user_mode(regs))
6625 			return 1;
6626 	}
6627 
6628 	return 0;
6629 }
6630 
6631 static int perf_swevent_match(struct perf_event *event,
6632 				enum perf_type_id type,
6633 				u32 event_id,
6634 				struct perf_sample_data *data,
6635 				struct pt_regs *regs)
6636 {
6637 	if (event->attr.type != type)
6638 		return 0;
6639 
6640 	if (event->attr.config != event_id)
6641 		return 0;
6642 
6643 	if (perf_exclude_event(event, regs))
6644 		return 0;
6645 
6646 	return 1;
6647 }
6648 
6649 static inline u64 swevent_hash(u64 type, u32 event_id)
6650 {
6651 	u64 val = event_id | (type << 32);
6652 
6653 	return hash_64(val, SWEVENT_HLIST_BITS);
6654 }
6655 
6656 static inline struct hlist_head *
6657 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6658 {
6659 	u64 hash = swevent_hash(type, event_id);
6660 
6661 	return &hlist->heads[hash];
6662 }
6663 
6664 /* For the read side: events when they trigger */
6665 static inline struct hlist_head *
6666 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6667 {
6668 	struct swevent_hlist *hlist;
6669 
6670 	hlist = rcu_dereference(swhash->swevent_hlist);
6671 	if (!hlist)
6672 		return NULL;
6673 
6674 	return __find_swevent_head(hlist, type, event_id);
6675 }
6676 
6677 /* For the event head insertion and removal in the hlist */
6678 static inline struct hlist_head *
6679 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6680 {
6681 	struct swevent_hlist *hlist;
6682 	u32 event_id = event->attr.config;
6683 	u64 type = event->attr.type;
6684 
6685 	/*
6686 	 * Event scheduling is always serialized against hlist allocation
6687 	 * and release. Which makes the protected version suitable here.
6688 	 * The context lock guarantees that.
6689 	 */
6690 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6691 					  lockdep_is_held(&event->ctx->lock));
6692 	if (!hlist)
6693 		return NULL;
6694 
6695 	return __find_swevent_head(hlist, type, event_id);
6696 }
6697 
6698 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6699 				    u64 nr,
6700 				    struct perf_sample_data *data,
6701 				    struct pt_regs *regs)
6702 {
6703 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6704 	struct perf_event *event;
6705 	struct hlist_head *head;
6706 
6707 	rcu_read_lock();
6708 	head = find_swevent_head_rcu(swhash, type, event_id);
6709 	if (!head)
6710 		goto end;
6711 
6712 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6713 		if (perf_swevent_match(event, type, event_id, data, regs))
6714 			perf_swevent_event(event, nr, data, regs);
6715 	}
6716 end:
6717 	rcu_read_unlock();
6718 }
6719 
6720 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6721 
6722 int perf_swevent_get_recursion_context(void)
6723 {
6724 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6725 
6726 	return get_recursion_context(swhash->recursion);
6727 }
6728 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6729 
6730 inline void perf_swevent_put_recursion_context(int rctx)
6731 {
6732 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6733 
6734 	put_recursion_context(swhash->recursion, rctx);
6735 }
6736 
6737 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6738 {
6739 	struct perf_sample_data data;
6740 
6741 	if (WARN_ON_ONCE(!regs))
6742 		return;
6743 
6744 	perf_sample_data_init(&data, addr, 0);
6745 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6746 }
6747 
6748 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6749 {
6750 	int rctx;
6751 
6752 	preempt_disable_notrace();
6753 	rctx = perf_swevent_get_recursion_context();
6754 	if (unlikely(rctx < 0))
6755 		goto fail;
6756 
6757 	___perf_sw_event(event_id, nr, regs, addr);
6758 
6759 	perf_swevent_put_recursion_context(rctx);
6760 fail:
6761 	preempt_enable_notrace();
6762 }
6763 
6764 static void perf_swevent_read(struct perf_event *event)
6765 {
6766 }
6767 
6768 static int perf_swevent_add(struct perf_event *event, int flags)
6769 {
6770 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6771 	struct hw_perf_event *hwc = &event->hw;
6772 	struct hlist_head *head;
6773 
6774 	if (is_sampling_event(event)) {
6775 		hwc->last_period = hwc->sample_period;
6776 		perf_swevent_set_period(event);
6777 	}
6778 
6779 	hwc->state = !(flags & PERF_EF_START);
6780 
6781 	head = find_swevent_head(swhash, event);
6782 	if (WARN_ON_ONCE(!head))
6783 		return -EINVAL;
6784 
6785 	hlist_add_head_rcu(&event->hlist_entry, head);
6786 	perf_event_update_userpage(event);
6787 
6788 	return 0;
6789 }
6790 
6791 static void perf_swevent_del(struct perf_event *event, int flags)
6792 {
6793 	hlist_del_rcu(&event->hlist_entry);
6794 }
6795 
6796 static void perf_swevent_start(struct perf_event *event, int flags)
6797 {
6798 	event->hw.state = 0;
6799 }
6800 
6801 static void perf_swevent_stop(struct perf_event *event, int flags)
6802 {
6803 	event->hw.state = PERF_HES_STOPPED;
6804 }
6805 
6806 /* Deref the hlist from the update side */
6807 static inline struct swevent_hlist *
6808 swevent_hlist_deref(struct swevent_htable *swhash)
6809 {
6810 	return rcu_dereference_protected(swhash->swevent_hlist,
6811 					 lockdep_is_held(&swhash->hlist_mutex));
6812 }
6813 
6814 static void swevent_hlist_release(struct swevent_htable *swhash)
6815 {
6816 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6817 
6818 	if (!hlist)
6819 		return;
6820 
6821 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6822 	kfree_rcu(hlist, rcu_head);
6823 }
6824 
6825 static void swevent_hlist_put_cpu(int cpu)
6826 {
6827 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6828 
6829 	mutex_lock(&swhash->hlist_mutex);
6830 
6831 	if (!--swhash->hlist_refcount)
6832 		swevent_hlist_release(swhash);
6833 
6834 	mutex_unlock(&swhash->hlist_mutex);
6835 }
6836 
6837 static void swevent_hlist_put(void)
6838 {
6839 	int cpu;
6840 
6841 	for_each_possible_cpu(cpu)
6842 		swevent_hlist_put_cpu(cpu);
6843 }
6844 
6845 static int swevent_hlist_get_cpu(int cpu)
6846 {
6847 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6848 	int err = 0;
6849 
6850 	mutex_lock(&swhash->hlist_mutex);
6851 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6852 		struct swevent_hlist *hlist;
6853 
6854 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6855 		if (!hlist) {
6856 			err = -ENOMEM;
6857 			goto exit;
6858 		}
6859 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6860 	}
6861 	swhash->hlist_refcount++;
6862 exit:
6863 	mutex_unlock(&swhash->hlist_mutex);
6864 
6865 	return err;
6866 }
6867 
6868 static int swevent_hlist_get(void)
6869 {
6870 	int err, cpu, failed_cpu;
6871 
6872 	get_online_cpus();
6873 	for_each_possible_cpu(cpu) {
6874 		err = swevent_hlist_get_cpu(cpu);
6875 		if (err) {
6876 			failed_cpu = cpu;
6877 			goto fail;
6878 		}
6879 	}
6880 	put_online_cpus();
6881 
6882 	return 0;
6883 fail:
6884 	for_each_possible_cpu(cpu) {
6885 		if (cpu == failed_cpu)
6886 			break;
6887 		swevent_hlist_put_cpu(cpu);
6888 	}
6889 
6890 	put_online_cpus();
6891 	return err;
6892 }
6893 
6894 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6895 
6896 static void sw_perf_event_destroy(struct perf_event *event)
6897 {
6898 	u64 event_id = event->attr.config;
6899 
6900 	WARN_ON(event->parent);
6901 
6902 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6903 	swevent_hlist_put();
6904 }
6905 
6906 static int perf_swevent_init(struct perf_event *event)
6907 {
6908 	u64 event_id = event->attr.config;
6909 
6910 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6911 		return -ENOENT;
6912 
6913 	/*
6914 	 * no branch sampling for software events
6915 	 */
6916 	if (has_branch_stack(event))
6917 		return -EOPNOTSUPP;
6918 
6919 	switch (event_id) {
6920 	case PERF_COUNT_SW_CPU_CLOCK:
6921 	case PERF_COUNT_SW_TASK_CLOCK:
6922 		return -ENOENT;
6923 
6924 	default:
6925 		break;
6926 	}
6927 
6928 	if (event_id >= PERF_COUNT_SW_MAX)
6929 		return -ENOENT;
6930 
6931 	if (!event->parent) {
6932 		int err;
6933 
6934 		err = swevent_hlist_get();
6935 		if (err)
6936 			return err;
6937 
6938 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6939 		event->destroy = sw_perf_event_destroy;
6940 	}
6941 
6942 	return 0;
6943 }
6944 
6945 static struct pmu perf_swevent = {
6946 	.task_ctx_nr	= perf_sw_context,
6947 
6948 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6949 
6950 	.event_init	= perf_swevent_init,
6951 	.add		= perf_swevent_add,
6952 	.del		= perf_swevent_del,
6953 	.start		= perf_swevent_start,
6954 	.stop		= perf_swevent_stop,
6955 	.read		= perf_swevent_read,
6956 };
6957 
6958 #ifdef CONFIG_EVENT_TRACING
6959 
6960 static int perf_tp_filter_match(struct perf_event *event,
6961 				struct perf_sample_data *data)
6962 {
6963 	void *record = data->raw->data;
6964 
6965 	/* only top level events have filters set */
6966 	if (event->parent)
6967 		event = event->parent;
6968 
6969 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6970 		return 1;
6971 	return 0;
6972 }
6973 
6974 static int perf_tp_event_match(struct perf_event *event,
6975 				struct perf_sample_data *data,
6976 				struct pt_regs *regs)
6977 {
6978 	if (event->hw.state & PERF_HES_STOPPED)
6979 		return 0;
6980 	/*
6981 	 * All tracepoints are from kernel-space.
6982 	 */
6983 	if (event->attr.exclude_kernel)
6984 		return 0;
6985 
6986 	if (!perf_tp_filter_match(event, data))
6987 		return 0;
6988 
6989 	return 1;
6990 }
6991 
6992 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6993 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6994 		   struct task_struct *task)
6995 {
6996 	struct perf_sample_data data;
6997 	struct perf_event *event;
6998 
6999 	struct perf_raw_record raw = {
7000 		.size = entry_size,
7001 		.data = record,
7002 	};
7003 
7004 	perf_sample_data_init(&data, addr, 0);
7005 	data.raw = &raw;
7006 
7007 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7008 		if (perf_tp_event_match(event, &data, regs))
7009 			perf_swevent_event(event, count, &data, regs);
7010 	}
7011 
7012 	/*
7013 	 * If we got specified a target task, also iterate its context and
7014 	 * deliver this event there too.
7015 	 */
7016 	if (task && task != current) {
7017 		struct perf_event_context *ctx;
7018 		struct trace_entry *entry = record;
7019 
7020 		rcu_read_lock();
7021 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7022 		if (!ctx)
7023 			goto unlock;
7024 
7025 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7026 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7027 				continue;
7028 			if (event->attr.config != entry->type)
7029 				continue;
7030 			if (perf_tp_event_match(event, &data, regs))
7031 				perf_swevent_event(event, count, &data, regs);
7032 		}
7033 unlock:
7034 		rcu_read_unlock();
7035 	}
7036 
7037 	perf_swevent_put_recursion_context(rctx);
7038 }
7039 EXPORT_SYMBOL_GPL(perf_tp_event);
7040 
7041 static void tp_perf_event_destroy(struct perf_event *event)
7042 {
7043 	perf_trace_destroy(event);
7044 }
7045 
7046 static int perf_tp_event_init(struct perf_event *event)
7047 {
7048 	int err;
7049 
7050 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7051 		return -ENOENT;
7052 
7053 	/*
7054 	 * no branch sampling for tracepoint events
7055 	 */
7056 	if (has_branch_stack(event))
7057 		return -EOPNOTSUPP;
7058 
7059 	err = perf_trace_init(event);
7060 	if (err)
7061 		return err;
7062 
7063 	event->destroy = tp_perf_event_destroy;
7064 
7065 	return 0;
7066 }
7067 
7068 static struct pmu perf_tracepoint = {
7069 	.task_ctx_nr	= perf_sw_context,
7070 
7071 	.event_init	= perf_tp_event_init,
7072 	.add		= perf_trace_add,
7073 	.del		= perf_trace_del,
7074 	.start		= perf_swevent_start,
7075 	.stop		= perf_swevent_stop,
7076 	.read		= perf_swevent_read,
7077 };
7078 
7079 static inline void perf_tp_register(void)
7080 {
7081 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7082 }
7083 
7084 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7085 {
7086 	char *filter_str;
7087 	int ret;
7088 
7089 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7090 		return -EINVAL;
7091 
7092 	filter_str = strndup_user(arg, PAGE_SIZE);
7093 	if (IS_ERR(filter_str))
7094 		return PTR_ERR(filter_str);
7095 
7096 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7097 
7098 	kfree(filter_str);
7099 	return ret;
7100 }
7101 
7102 static void perf_event_free_filter(struct perf_event *event)
7103 {
7104 	ftrace_profile_free_filter(event);
7105 }
7106 
7107 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7108 {
7109 	struct bpf_prog *prog;
7110 
7111 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7112 		return -EINVAL;
7113 
7114 	if (event->tp_event->prog)
7115 		return -EEXIST;
7116 
7117 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7118 		/* bpf programs can only be attached to u/kprobes */
7119 		return -EINVAL;
7120 
7121 	prog = bpf_prog_get(prog_fd);
7122 	if (IS_ERR(prog))
7123 		return PTR_ERR(prog);
7124 
7125 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7126 		/* valid fd, but invalid bpf program type */
7127 		bpf_prog_put(prog);
7128 		return -EINVAL;
7129 	}
7130 
7131 	event->tp_event->prog = prog;
7132 
7133 	return 0;
7134 }
7135 
7136 static void perf_event_free_bpf_prog(struct perf_event *event)
7137 {
7138 	struct bpf_prog *prog;
7139 
7140 	if (!event->tp_event)
7141 		return;
7142 
7143 	prog = event->tp_event->prog;
7144 	if (prog) {
7145 		event->tp_event->prog = NULL;
7146 		bpf_prog_put(prog);
7147 	}
7148 }
7149 
7150 #else
7151 
7152 static inline void perf_tp_register(void)
7153 {
7154 }
7155 
7156 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7157 {
7158 	return -ENOENT;
7159 }
7160 
7161 static void perf_event_free_filter(struct perf_event *event)
7162 {
7163 }
7164 
7165 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7166 {
7167 	return -ENOENT;
7168 }
7169 
7170 static void perf_event_free_bpf_prog(struct perf_event *event)
7171 {
7172 }
7173 #endif /* CONFIG_EVENT_TRACING */
7174 
7175 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7176 void perf_bp_event(struct perf_event *bp, void *data)
7177 {
7178 	struct perf_sample_data sample;
7179 	struct pt_regs *regs = data;
7180 
7181 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7182 
7183 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7184 		perf_swevent_event(bp, 1, &sample, regs);
7185 }
7186 #endif
7187 
7188 /*
7189  * hrtimer based swevent callback
7190  */
7191 
7192 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7193 {
7194 	enum hrtimer_restart ret = HRTIMER_RESTART;
7195 	struct perf_sample_data data;
7196 	struct pt_regs *regs;
7197 	struct perf_event *event;
7198 	u64 period;
7199 
7200 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7201 
7202 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7203 		return HRTIMER_NORESTART;
7204 
7205 	event->pmu->read(event);
7206 
7207 	perf_sample_data_init(&data, 0, event->hw.last_period);
7208 	regs = get_irq_regs();
7209 
7210 	if (regs && !perf_exclude_event(event, regs)) {
7211 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7212 			if (__perf_event_overflow(event, 1, &data, regs))
7213 				ret = HRTIMER_NORESTART;
7214 	}
7215 
7216 	period = max_t(u64, 10000, event->hw.sample_period);
7217 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7218 
7219 	return ret;
7220 }
7221 
7222 static void perf_swevent_start_hrtimer(struct perf_event *event)
7223 {
7224 	struct hw_perf_event *hwc = &event->hw;
7225 	s64 period;
7226 
7227 	if (!is_sampling_event(event))
7228 		return;
7229 
7230 	period = local64_read(&hwc->period_left);
7231 	if (period) {
7232 		if (period < 0)
7233 			period = 10000;
7234 
7235 		local64_set(&hwc->period_left, 0);
7236 	} else {
7237 		period = max_t(u64, 10000, hwc->sample_period);
7238 	}
7239 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7240 		      HRTIMER_MODE_REL_PINNED);
7241 }
7242 
7243 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7244 {
7245 	struct hw_perf_event *hwc = &event->hw;
7246 
7247 	if (is_sampling_event(event)) {
7248 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7249 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7250 
7251 		hrtimer_cancel(&hwc->hrtimer);
7252 	}
7253 }
7254 
7255 static void perf_swevent_init_hrtimer(struct perf_event *event)
7256 {
7257 	struct hw_perf_event *hwc = &event->hw;
7258 
7259 	if (!is_sampling_event(event))
7260 		return;
7261 
7262 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7263 	hwc->hrtimer.function = perf_swevent_hrtimer;
7264 
7265 	/*
7266 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7267 	 * mapping and avoid the whole period adjust feedback stuff.
7268 	 */
7269 	if (event->attr.freq) {
7270 		long freq = event->attr.sample_freq;
7271 
7272 		event->attr.sample_period = NSEC_PER_SEC / freq;
7273 		hwc->sample_period = event->attr.sample_period;
7274 		local64_set(&hwc->period_left, hwc->sample_period);
7275 		hwc->last_period = hwc->sample_period;
7276 		event->attr.freq = 0;
7277 	}
7278 }
7279 
7280 /*
7281  * Software event: cpu wall time clock
7282  */
7283 
7284 static void cpu_clock_event_update(struct perf_event *event)
7285 {
7286 	s64 prev;
7287 	u64 now;
7288 
7289 	now = local_clock();
7290 	prev = local64_xchg(&event->hw.prev_count, now);
7291 	local64_add(now - prev, &event->count);
7292 }
7293 
7294 static void cpu_clock_event_start(struct perf_event *event, int flags)
7295 {
7296 	local64_set(&event->hw.prev_count, local_clock());
7297 	perf_swevent_start_hrtimer(event);
7298 }
7299 
7300 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7301 {
7302 	perf_swevent_cancel_hrtimer(event);
7303 	cpu_clock_event_update(event);
7304 }
7305 
7306 static int cpu_clock_event_add(struct perf_event *event, int flags)
7307 {
7308 	if (flags & PERF_EF_START)
7309 		cpu_clock_event_start(event, flags);
7310 	perf_event_update_userpage(event);
7311 
7312 	return 0;
7313 }
7314 
7315 static void cpu_clock_event_del(struct perf_event *event, int flags)
7316 {
7317 	cpu_clock_event_stop(event, flags);
7318 }
7319 
7320 static void cpu_clock_event_read(struct perf_event *event)
7321 {
7322 	cpu_clock_event_update(event);
7323 }
7324 
7325 static int cpu_clock_event_init(struct perf_event *event)
7326 {
7327 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7328 		return -ENOENT;
7329 
7330 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7331 		return -ENOENT;
7332 
7333 	/*
7334 	 * no branch sampling for software events
7335 	 */
7336 	if (has_branch_stack(event))
7337 		return -EOPNOTSUPP;
7338 
7339 	perf_swevent_init_hrtimer(event);
7340 
7341 	return 0;
7342 }
7343 
7344 static struct pmu perf_cpu_clock = {
7345 	.task_ctx_nr	= perf_sw_context,
7346 
7347 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7348 
7349 	.event_init	= cpu_clock_event_init,
7350 	.add		= cpu_clock_event_add,
7351 	.del		= cpu_clock_event_del,
7352 	.start		= cpu_clock_event_start,
7353 	.stop		= cpu_clock_event_stop,
7354 	.read		= cpu_clock_event_read,
7355 };
7356 
7357 /*
7358  * Software event: task time clock
7359  */
7360 
7361 static void task_clock_event_update(struct perf_event *event, u64 now)
7362 {
7363 	u64 prev;
7364 	s64 delta;
7365 
7366 	prev = local64_xchg(&event->hw.prev_count, now);
7367 	delta = now - prev;
7368 	local64_add(delta, &event->count);
7369 }
7370 
7371 static void task_clock_event_start(struct perf_event *event, int flags)
7372 {
7373 	local64_set(&event->hw.prev_count, event->ctx->time);
7374 	perf_swevent_start_hrtimer(event);
7375 }
7376 
7377 static void task_clock_event_stop(struct perf_event *event, int flags)
7378 {
7379 	perf_swevent_cancel_hrtimer(event);
7380 	task_clock_event_update(event, event->ctx->time);
7381 }
7382 
7383 static int task_clock_event_add(struct perf_event *event, int flags)
7384 {
7385 	if (flags & PERF_EF_START)
7386 		task_clock_event_start(event, flags);
7387 	perf_event_update_userpage(event);
7388 
7389 	return 0;
7390 }
7391 
7392 static void task_clock_event_del(struct perf_event *event, int flags)
7393 {
7394 	task_clock_event_stop(event, PERF_EF_UPDATE);
7395 }
7396 
7397 static void task_clock_event_read(struct perf_event *event)
7398 {
7399 	u64 now = perf_clock();
7400 	u64 delta = now - event->ctx->timestamp;
7401 	u64 time = event->ctx->time + delta;
7402 
7403 	task_clock_event_update(event, time);
7404 }
7405 
7406 static int task_clock_event_init(struct perf_event *event)
7407 {
7408 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7409 		return -ENOENT;
7410 
7411 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7412 		return -ENOENT;
7413 
7414 	/*
7415 	 * no branch sampling for software events
7416 	 */
7417 	if (has_branch_stack(event))
7418 		return -EOPNOTSUPP;
7419 
7420 	perf_swevent_init_hrtimer(event);
7421 
7422 	return 0;
7423 }
7424 
7425 static struct pmu perf_task_clock = {
7426 	.task_ctx_nr	= perf_sw_context,
7427 
7428 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7429 
7430 	.event_init	= task_clock_event_init,
7431 	.add		= task_clock_event_add,
7432 	.del		= task_clock_event_del,
7433 	.start		= task_clock_event_start,
7434 	.stop		= task_clock_event_stop,
7435 	.read		= task_clock_event_read,
7436 };
7437 
7438 static void perf_pmu_nop_void(struct pmu *pmu)
7439 {
7440 }
7441 
7442 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7443 {
7444 }
7445 
7446 static int perf_pmu_nop_int(struct pmu *pmu)
7447 {
7448 	return 0;
7449 }
7450 
7451 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7452 
7453 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7454 {
7455 	__this_cpu_write(nop_txn_flags, flags);
7456 
7457 	if (flags & ~PERF_PMU_TXN_ADD)
7458 		return;
7459 
7460 	perf_pmu_disable(pmu);
7461 }
7462 
7463 static int perf_pmu_commit_txn(struct pmu *pmu)
7464 {
7465 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7466 
7467 	__this_cpu_write(nop_txn_flags, 0);
7468 
7469 	if (flags & ~PERF_PMU_TXN_ADD)
7470 		return 0;
7471 
7472 	perf_pmu_enable(pmu);
7473 	return 0;
7474 }
7475 
7476 static void perf_pmu_cancel_txn(struct pmu *pmu)
7477 {
7478 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7479 
7480 	__this_cpu_write(nop_txn_flags, 0);
7481 
7482 	if (flags & ~PERF_PMU_TXN_ADD)
7483 		return;
7484 
7485 	perf_pmu_enable(pmu);
7486 }
7487 
7488 static int perf_event_idx_default(struct perf_event *event)
7489 {
7490 	return 0;
7491 }
7492 
7493 /*
7494  * Ensures all contexts with the same task_ctx_nr have the same
7495  * pmu_cpu_context too.
7496  */
7497 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7498 {
7499 	struct pmu *pmu;
7500 
7501 	if (ctxn < 0)
7502 		return NULL;
7503 
7504 	list_for_each_entry(pmu, &pmus, entry) {
7505 		if (pmu->task_ctx_nr == ctxn)
7506 			return pmu->pmu_cpu_context;
7507 	}
7508 
7509 	return NULL;
7510 }
7511 
7512 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7513 {
7514 	int cpu;
7515 
7516 	for_each_possible_cpu(cpu) {
7517 		struct perf_cpu_context *cpuctx;
7518 
7519 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7520 
7521 		if (cpuctx->unique_pmu == old_pmu)
7522 			cpuctx->unique_pmu = pmu;
7523 	}
7524 }
7525 
7526 static void free_pmu_context(struct pmu *pmu)
7527 {
7528 	struct pmu *i;
7529 
7530 	mutex_lock(&pmus_lock);
7531 	/*
7532 	 * Like a real lame refcount.
7533 	 */
7534 	list_for_each_entry(i, &pmus, entry) {
7535 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7536 			update_pmu_context(i, pmu);
7537 			goto out;
7538 		}
7539 	}
7540 
7541 	free_percpu(pmu->pmu_cpu_context);
7542 out:
7543 	mutex_unlock(&pmus_lock);
7544 }
7545 static struct idr pmu_idr;
7546 
7547 static ssize_t
7548 type_show(struct device *dev, struct device_attribute *attr, char *page)
7549 {
7550 	struct pmu *pmu = dev_get_drvdata(dev);
7551 
7552 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7553 }
7554 static DEVICE_ATTR_RO(type);
7555 
7556 static ssize_t
7557 perf_event_mux_interval_ms_show(struct device *dev,
7558 				struct device_attribute *attr,
7559 				char *page)
7560 {
7561 	struct pmu *pmu = dev_get_drvdata(dev);
7562 
7563 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7564 }
7565 
7566 static DEFINE_MUTEX(mux_interval_mutex);
7567 
7568 static ssize_t
7569 perf_event_mux_interval_ms_store(struct device *dev,
7570 				 struct device_attribute *attr,
7571 				 const char *buf, size_t count)
7572 {
7573 	struct pmu *pmu = dev_get_drvdata(dev);
7574 	int timer, cpu, ret;
7575 
7576 	ret = kstrtoint(buf, 0, &timer);
7577 	if (ret)
7578 		return ret;
7579 
7580 	if (timer < 1)
7581 		return -EINVAL;
7582 
7583 	/* same value, noting to do */
7584 	if (timer == pmu->hrtimer_interval_ms)
7585 		return count;
7586 
7587 	mutex_lock(&mux_interval_mutex);
7588 	pmu->hrtimer_interval_ms = timer;
7589 
7590 	/* update all cpuctx for this PMU */
7591 	get_online_cpus();
7592 	for_each_online_cpu(cpu) {
7593 		struct perf_cpu_context *cpuctx;
7594 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7595 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7596 
7597 		cpu_function_call(cpu,
7598 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7599 	}
7600 	put_online_cpus();
7601 	mutex_unlock(&mux_interval_mutex);
7602 
7603 	return count;
7604 }
7605 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7606 
7607 static struct attribute *pmu_dev_attrs[] = {
7608 	&dev_attr_type.attr,
7609 	&dev_attr_perf_event_mux_interval_ms.attr,
7610 	NULL,
7611 };
7612 ATTRIBUTE_GROUPS(pmu_dev);
7613 
7614 static int pmu_bus_running;
7615 static struct bus_type pmu_bus = {
7616 	.name		= "event_source",
7617 	.dev_groups	= pmu_dev_groups,
7618 };
7619 
7620 static void pmu_dev_release(struct device *dev)
7621 {
7622 	kfree(dev);
7623 }
7624 
7625 static int pmu_dev_alloc(struct pmu *pmu)
7626 {
7627 	int ret = -ENOMEM;
7628 
7629 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7630 	if (!pmu->dev)
7631 		goto out;
7632 
7633 	pmu->dev->groups = pmu->attr_groups;
7634 	device_initialize(pmu->dev);
7635 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7636 	if (ret)
7637 		goto free_dev;
7638 
7639 	dev_set_drvdata(pmu->dev, pmu);
7640 	pmu->dev->bus = &pmu_bus;
7641 	pmu->dev->release = pmu_dev_release;
7642 	ret = device_add(pmu->dev);
7643 	if (ret)
7644 		goto free_dev;
7645 
7646 out:
7647 	return ret;
7648 
7649 free_dev:
7650 	put_device(pmu->dev);
7651 	goto out;
7652 }
7653 
7654 static struct lock_class_key cpuctx_mutex;
7655 static struct lock_class_key cpuctx_lock;
7656 
7657 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7658 {
7659 	int cpu, ret;
7660 
7661 	mutex_lock(&pmus_lock);
7662 	ret = -ENOMEM;
7663 	pmu->pmu_disable_count = alloc_percpu(int);
7664 	if (!pmu->pmu_disable_count)
7665 		goto unlock;
7666 
7667 	pmu->type = -1;
7668 	if (!name)
7669 		goto skip_type;
7670 	pmu->name = name;
7671 
7672 	if (type < 0) {
7673 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7674 		if (type < 0) {
7675 			ret = type;
7676 			goto free_pdc;
7677 		}
7678 	}
7679 	pmu->type = type;
7680 
7681 	if (pmu_bus_running) {
7682 		ret = pmu_dev_alloc(pmu);
7683 		if (ret)
7684 			goto free_idr;
7685 	}
7686 
7687 skip_type:
7688 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7689 	if (pmu->pmu_cpu_context)
7690 		goto got_cpu_context;
7691 
7692 	ret = -ENOMEM;
7693 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7694 	if (!pmu->pmu_cpu_context)
7695 		goto free_dev;
7696 
7697 	for_each_possible_cpu(cpu) {
7698 		struct perf_cpu_context *cpuctx;
7699 
7700 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7701 		__perf_event_init_context(&cpuctx->ctx);
7702 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7703 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7704 		cpuctx->ctx.pmu = pmu;
7705 
7706 		__perf_mux_hrtimer_init(cpuctx, cpu);
7707 
7708 		cpuctx->unique_pmu = pmu;
7709 	}
7710 
7711 got_cpu_context:
7712 	if (!pmu->start_txn) {
7713 		if (pmu->pmu_enable) {
7714 			/*
7715 			 * If we have pmu_enable/pmu_disable calls, install
7716 			 * transaction stubs that use that to try and batch
7717 			 * hardware accesses.
7718 			 */
7719 			pmu->start_txn  = perf_pmu_start_txn;
7720 			pmu->commit_txn = perf_pmu_commit_txn;
7721 			pmu->cancel_txn = perf_pmu_cancel_txn;
7722 		} else {
7723 			pmu->start_txn  = perf_pmu_nop_txn;
7724 			pmu->commit_txn = perf_pmu_nop_int;
7725 			pmu->cancel_txn = perf_pmu_nop_void;
7726 		}
7727 	}
7728 
7729 	if (!pmu->pmu_enable) {
7730 		pmu->pmu_enable  = perf_pmu_nop_void;
7731 		pmu->pmu_disable = perf_pmu_nop_void;
7732 	}
7733 
7734 	if (!pmu->event_idx)
7735 		pmu->event_idx = perf_event_idx_default;
7736 
7737 	list_add_rcu(&pmu->entry, &pmus);
7738 	atomic_set(&pmu->exclusive_cnt, 0);
7739 	ret = 0;
7740 unlock:
7741 	mutex_unlock(&pmus_lock);
7742 
7743 	return ret;
7744 
7745 free_dev:
7746 	device_del(pmu->dev);
7747 	put_device(pmu->dev);
7748 
7749 free_idr:
7750 	if (pmu->type >= PERF_TYPE_MAX)
7751 		idr_remove(&pmu_idr, pmu->type);
7752 
7753 free_pdc:
7754 	free_percpu(pmu->pmu_disable_count);
7755 	goto unlock;
7756 }
7757 EXPORT_SYMBOL_GPL(perf_pmu_register);
7758 
7759 void perf_pmu_unregister(struct pmu *pmu)
7760 {
7761 	mutex_lock(&pmus_lock);
7762 	list_del_rcu(&pmu->entry);
7763 	mutex_unlock(&pmus_lock);
7764 
7765 	/*
7766 	 * We dereference the pmu list under both SRCU and regular RCU, so
7767 	 * synchronize against both of those.
7768 	 */
7769 	synchronize_srcu(&pmus_srcu);
7770 	synchronize_rcu();
7771 
7772 	free_percpu(pmu->pmu_disable_count);
7773 	if (pmu->type >= PERF_TYPE_MAX)
7774 		idr_remove(&pmu_idr, pmu->type);
7775 	device_del(pmu->dev);
7776 	put_device(pmu->dev);
7777 	free_pmu_context(pmu);
7778 }
7779 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7780 
7781 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7782 {
7783 	struct perf_event_context *ctx = NULL;
7784 	int ret;
7785 
7786 	if (!try_module_get(pmu->module))
7787 		return -ENODEV;
7788 
7789 	if (event->group_leader != event) {
7790 		/*
7791 		 * This ctx->mutex can nest when we're called through
7792 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7793 		 */
7794 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7795 						 SINGLE_DEPTH_NESTING);
7796 		BUG_ON(!ctx);
7797 	}
7798 
7799 	event->pmu = pmu;
7800 	ret = pmu->event_init(event);
7801 
7802 	if (ctx)
7803 		perf_event_ctx_unlock(event->group_leader, ctx);
7804 
7805 	if (ret)
7806 		module_put(pmu->module);
7807 
7808 	return ret;
7809 }
7810 
7811 static struct pmu *perf_init_event(struct perf_event *event)
7812 {
7813 	struct pmu *pmu = NULL;
7814 	int idx;
7815 	int ret;
7816 
7817 	idx = srcu_read_lock(&pmus_srcu);
7818 
7819 	rcu_read_lock();
7820 	pmu = idr_find(&pmu_idr, event->attr.type);
7821 	rcu_read_unlock();
7822 	if (pmu) {
7823 		ret = perf_try_init_event(pmu, event);
7824 		if (ret)
7825 			pmu = ERR_PTR(ret);
7826 		goto unlock;
7827 	}
7828 
7829 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7830 		ret = perf_try_init_event(pmu, event);
7831 		if (!ret)
7832 			goto unlock;
7833 
7834 		if (ret != -ENOENT) {
7835 			pmu = ERR_PTR(ret);
7836 			goto unlock;
7837 		}
7838 	}
7839 	pmu = ERR_PTR(-ENOENT);
7840 unlock:
7841 	srcu_read_unlock(&pmus_srcu, idx);
7842 
7843 	return pmu;
7844 }
7845 
7846 static void account_event_cpu(struct perf_event *event, int cpu)
7847 {
7848 	if (event->parent)
7849 		return;
7850 
7851 	if (is_cgroup_event(event))
7852 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7853 }
7854 
7855 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
7856 static void account_freq_event_nohz(void)
7857 {
7858 #ifdef CONFIG_NO_HZ_FULL
7859 	/* Lock so we don't race with concurrent unaccount */
7860 	spin_lock(&nr_freq_lock);
7861 	if (atomic_inc_return(&nr_freq_events) == 1)
7862 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7863 	spin_unlock(&nr_freq_lock);
7864 #endif
7865 }
7866 
7867 static void account_freq_event(void)
7868 {
7869 	if (tick_nohz_full_enabled())
7870 		account_freq_event_nohz();
7871 	else
7872 		atomic_inc(&nr_freq_events);
7873 }
7874 
7875 
7876 static void account_event(struct perf_event *event)
7877 {
7878 	bool inc = false;
7879 
7880 	if (event->parent)
7881 		return;
7882 
7883 	if (event->attach_state & PERF_ATTACH_TASK)
7884 		inc = true;
7885 	if (event->attr.mmap || event->attr.mmap_data)
7886 		atomic_inc(&nr_mmap_events);
7887 	if (event->attr.comm)
7888 		atomic_inc(&nr_comm_events);
7889 	if (event->attr.task)
7890 		atomic_inc(&nr_task_events);
7891 	if (event->attr.freq)
7892 		account_freq_event();
7893 	if (event->attr.context_switch) {
7894 		atomic_inc(&nr_switch_events);
7895 		inc = true;
7896 	}
7897 	if (has_branch_stack(event))
7898 		inc = true;
7899 	if (is_cgroup_event(event))
7900 		inc = true;
7901 
7902 	if (inc) {
7903 		if (atomic_inc_not_zero(&perf_sched_count))
7904 			goto enabled;
7905 
7906 		mutex_lock(&perf_sched_mutex);
7907 		if (!atomic_read(&perf_sched_count)) {
7908 			static_branch_enable(&perf_sched_events);
7909 			/*
7910 			 * Guarantee that all CPUs observe they key change and
7911 			 * call the perf scheduling hooks before proceeding to
7912 			 * install events that need them.
7913 			 */
7914 			synchronize_sched();
7915 		}
7916 		/*
7917 		 * Now that we have waited for the sync_sched(), allow further
7918 		 * increments to by-pass the mutex.
7919 		 */
7920 		atomic_inc(&perf_sched_count);
7921 		mutex_unlock(&perf_sched_mutex);
7922 	}
7923 enabled:
7924 
7925 	account_event_cpu(event, event->cpu);
7926 }
7927 
7928 /*
7929  * Allocate and initialize a event structure
7930  */
7931 static struct perf_event *
7932 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7933 		 struct task_struct *task,
7934 		 struct perf_event *group_leader,
7935 		 struct perf_event *parent_event,
7936 		 perf_overflow_handler_t overflow_handler,
7937 		 void *context, int cgroup_fd)
7938 {
7939 	struct pmu *pmu;
7940 	struct perf_event *event;
7941 	struct hw_perf_event *hwc;
7942 	long err = -EINVAL;
7943 
7944 	if ((unsigned)cpu >= nr_cpu_ids) {
7945 		if (!task || cpu != -1)
7946 			return ERR_PTR(-EINVAL);
7947 	}
7948 
7949 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7950 	if (!event)
7951 		return ERR_PTR(-ENOMEM);
7952 
7953 	/*
7954 	 * Single events are their own group leaders, with an
7955 	 * empty sibling list:
7956 	 */
7957 	if (!group_leader)
7958 		group_leader = event;
7959 
7960 	mutex_init(&event->child_mutex);
7961 	INIT_LIST_HEAD(&event->child_list);
7962 
7963 	INIT_LIST_HEAD(&event->group_entry);
7964 	INIT_LIST_HEAD(&event->event_entry);
7965 	INIT_LIST_HEAD(&event->sibling_list);
7966 	INIT_LIST_HEAD(&event->rb_entry);
7967 	INIT_LIST_HEAD(&event->active_entry);
7968 	INIT_HLIST_NODE(&event->hlist_entry);
7969 
7970 
7971 	init_waitqueue_head(&event->waitq);
7972 	init_irq_work(&event->pending, perf_pending_event);
7973 
7974 	mutex_init(&event->mmap_mutex);
7975 
7976 	atomic_long_set(&event->refcount, 1);
7977 	event->cpu		= cpu;
7978 	event->attr		= *attr;
7979 	event->group_leader	= group_leader;
7980 	event->pmu		= NULL;
7981 	event->oncpu		= -1;
7982 
7983 	event->parent		= parent_event;
7984 
7985 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7986 	event->id		= atomic64_inc_return(&perf_event_id);
7987 
7988 	event->state		= PERF_EVENT_STATE_INACTIVE;
7989 
7990 	if (task) {
7991 		event->attach_state = PERF_ATTACH_TASK;
7992 		/*
7993 		 * XXX pmu::event_init needs to know what task to account to
7994 		 * and we cannot use the ctx information because we need the
7995 		 * pmu before we get a ctx.
7996 		 */
7997 		event->hw.target = task;
7998 	}
7999 
8000 	event->clock = &local_clock;
8001 	if (parent_event)
8002 		event->clock = parent_event->clock;
8003 
8004 	if (!overflow_handler && parent_event) {
8005 		overflow_handler = parent_event->overflow_handler;
8006 		context = parent_event->overflow_handler_context;
8007 	}
8008 
8009 	event->overflow_handler	= overflow_handler;
8010 	event->overflow_handler_context = context;
8011 
8012 	perf_event__state_init(event);
8013 
8014 	pmu = NULL;
8015 
8016 	hwc = &event->hw;
8017 	hwc->sample_period = attr->sample_period;
8018 	if (attr->freq && attr->sample_freq)
8019 		hwc->sample_period = 1;
8020 	hwc->last_period = hwc->sample_period;
8021 
8022 	local64_set(&hwc->period_left, hwc->sample_period);
8023 
8024 	/*
8025 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8026 	 */
8027 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8028 		goto err_ns;
8029 
8030 	if (!has_branch_stack(event))
8031 		event->attr.branch_sample_type = 0;
8032 
8033 	if (cgroup_fd != -1) {
8034 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8035 		if (err)
8036 			goto err_ns;
8037 	}
8038 
8039 	pmu = perf_init_event(event);
8040 	if (!pmu)
8041 		goto err_ns;
8042 	else if (IS_ERR(pmu)) {
8043 		err = PTR_ERR(pmu);
8044 		goto err_ns;
8045 	}
8046 
8047 	err = exclusive_event_init(event);
8048 	if (err)
8049 		goto err_pmu;
8050 
8051 	if (!event->parent) {
8052 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8053 			err = get_callchain_buffers();
8054 			if (err)
8055 				goto err_per_task;
8056 		}
8057 	}
8058 
8059 	/* symmetric to unaccount_event() in _free_event() */
8060 	account_event(event);
8061 
8062 	return event;
8063 
8064 err_per_task:
8065 	exclusive_event_destroy(event);
8066 
8067 err_pmu:
8068 	if (event->destroy)
8069 		event->destroy(event);
8070 	module_put(pmu->module);
8071 err_ns:
8072 	if (is_cgroup_event(event))
8073 		perf_detach_cgroup(event);
8074 	if (event->ns)
8075 		put_pid_ns(event->ns);
8076 	kfree(event);
8077 
8078 	return ERR_PTR(err);
8079 }
8080 
8081 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8082 			  struct perf_event_attr *attr)
8083 {
8084 	u32 size;
8085 	int ret;
8086 
8087 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8088 		return -EFAULT;
8089 
8090 	/*
8091 	 * zero the full structure, so that a short copy will be nice.
8092 	 */
8093 	memset(attr, 0, sizeof(*attr));
8094 
8095 	ret = get_user(size, &uattr->size);
8096 	if (ret)
8097 		return ret;
8098 
8099 	if (size > PAGE_SIZE)	/* silly large */
8100 		goto err_size;
8101 
8102 	if (!size)		/* abi compat */
8103 		size = PERF_ATTR_SIZE_VER0;
8104 
8105 	if (size < PERF_ATTR_SIZE_VER0)
8106 		goto err_size;
8107 
8108 	/*
8109 	 * If we're handed a bigger struct than we know of,
8110 	 * ensure all the unknown bits are 0 - i.e. new
8111 	 * user-space does not rely on any kernel feature
8112 	 * extensions we dont know about yet.
8113 	 */
8114 	if (size > sizeof(*attr)) {
8115 		unsigned char __user *addr;
8116 		unsigned char __user *end;
8117 		unsigned char val;
8118 
8119 		addr = (void __user *)uattr + sizeof(*attr);
8120 		end  = (void __user *)uattr + size;
8121 
8122 		for (; addr < end; addr++) {
8123 			ret = get_user(val, addr);
8124 			if (ret)
8125 				return ret;
8126 			if (val)
8127 				goto err_size;
8128 		}
8129 		size = sizeof(*attr);
8130 	}
8131 
8132 	ret = copy_from_user(attr, uattr, size);
8133 	if (ret)
8134 		return -EFAULT;
8135 
8136 	if (attr->__reserved_1)
8137 		return -EINVAL;
8138 
8139 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8140 		return -EINVAL;
8141 
8142 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8143 		return -EINVAL;
8144 
8145 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8146 		u64 mask = attr->branch_sample_type;
8147 
8148 		/* only using defined bits */
8149 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8150 			return -EINVAL;
8151 
8152 		/* at least one branch bit must be set */
8153 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8154 			return -EINVAL;
8155 
8156 		/* propagate priv level, when not set for branch */
8157 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8158 
8159 			/* exclude_kernel checked on syscall entry */
8160 			if (!attr->exclude_kernel)
8161 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8162 
8163 			if (!attr->exclude_user)
8164 				mask |= PERF_SAMPLE_BRANCH_USER;
8165 
8166 			if (!attr->exclude_hv)
8167 				mask |= PERF_SAMPLE_BRANCH_HV;
8168 			/*
8169 			 * adjust user setting (for HW filter setup)
8170 			 */
8171 			attr->branch_sample_type = mask;
8172 		}
8173 		/* privileged levels capture (kernel, hv): check permissions */
8174 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8175 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8176 			return -EACCES;
8177 	}
8178 
8179 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8180 		ret = perf_reg_validate(attr->sample_regs_user);
8181 		if (ret)
8182 			return ret;
8183 	}
8184 
8185 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8186 		if (!arch_perf_have_user_stack_dump())
8187 			return -ENOSYS;
8188 
8189 		/*
8190 		 * We have __u32 type for the size, but so far
8191 		 * we can only use __u16 as maximum due to the
8192 		 * __u16 sample size limit.
8193 		 */
8194 		if (attr->sample_stack_user >= USHRT_MAX)
8195 			ret = -EINVAL;
8196 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8197 			ret = -EINVAL;
8198 	}
8199 
8200 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8201 		ret = perf_reg_validate(attr->sample_regs_intr);
8202 out:
8203 	return ret;
8204 
8205 err_size:
8206 	put_user(sizeof(*attr), &uattr->size);
8207 	ret = -E2BIG;
8208 	goto out;
8209 }
8210 
8211 static int
8212 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8213 {
8214 	struct ring_buffer *rb = NULL;
8215 	int ret = -EINVAL;
8216 
8217 	if (!output_event)
8218 		goto set;
8219 
8220 	/* don't allow circular references */
8221 	if (event == output_event)
8222 		goto out;
8223 
8224 	/*
8225 	 * Don't allow cross-cpu buffers
8226 	 */
8227 	if (output_event->cpu != event->cpu)
8228 		goto out;
8229 
8230 	/*
8231 	 * If its not a per-cpu rb, it must be the same task.
8232 	 */
8233 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8234 		goto out;
8235 
8236 	/*
8237 	 * Mixing clocks in the same buffer is trouble you don't need.
8238 	 */
8239 	if (output_event->clock != event->clock)
8240 		goto out;
8241 
8242 	/*
8243 	 * If both events generate aux data, they must be on the same PMU
8244 	 */
8245 	if (has_aux(event) && has_aux(output_event) &&
8246 	    event->pmu != output_event->pmu)
8247 		goto out;
8248 
8249 set:
8250 	mutex_lock(&event->mmap_mutex);
8251 	/* Can't redirect output if we've got an active mmap() */
8252 	if (atomic_read(&event->mmap_count))
8253 		goto unlock;
8254 
8255 	if (output_event) {
8256 		/* get the rb we want to redirect to */
8257 		rb = ring_buffer_get(output_event);
8258 		if (!rb)
8259 			goto unlock;
8260 	}
8261 
8262 	ring_buffer_attach(event, rb);
8263 
8264 	ret = 0;
8265 unlock:
8266 	mutex_unlock(&event->mmap_mutex);
8267 
8268 out:
8269 	return ret;
8270 }
8271 
8272 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8273 {
8274 	if (b < a)
8275 		swap(a, b);
8276 
8277 	mutex_lock(a);
8278 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8279 }
8280 
8281 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8282 {
8283 	bool nmi_safe = false;
8284 
8285 	switch (clk_id) {
8286 	case CLOCK_MONOTONIC:
8287 		event->clock = &ktime_get_mono_fast_ns;
8288 		nmi_safe = true;
8289 		break;
8290 
8291 	case CLOCK_MONOTONIC_RAW:
8292 		event->clock = &ktime_get_raw_fast_ns;
8293 		nmi_safe = true;
8294 		break;
8295 
8296 	case CLOCK_REALTIME:
8297 		event->clock = &ktime_get_real_ns;
8298 		break;
8299 
8300 	case CLOCK_BOOTTIME:
8301 		event->clock = &ktime_get_boot_ns;
8302 		break;
8303 
8304 	case CLOCK_TAI:
8305 		event->clock = &ktime_get_tai_ns;
8306 		break;
8307 
8308 	default:
8309 		return -EINVAL;
8310 	}
8311 
8312 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8313 		return -EINVAL;
8314 
8315 	return 0;
8316 }
8317 
8318 /**
8319  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8320  *
8321  * @attr_uptr:	event_id type attributes for monitoring/sampling
8322  * @pid:		target pid
8323  * @cpu:		target cpu
8324  * @group_fd:		group leader event fd
8325  */
8326 SYSCALL_DEFINE5(perf_event_open,
8327 		struct perf_event_attr __user *, attr_uptr,
8328 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8329 {
8330 	struct perf_event *group_leader = NULL, *output_event = NULL;
8331 	struct perf_event *event, *sibling;
8332 	struct perf_event_attr attr;
8333 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8334 	struct file *event_file = NULL;
8335 	struct fd group = {NULL, 0};
8336 	struct task_struct *task = NULL;
8337 	struct pmu *pmu;
8338 	int event_fd;
8339 	int move_group = 0;
8340 	int err;
8341 	int f_flags = O_RDWR;
8342 	int cgroup_fd = -1;
8343 
8344 	/* for future expandability... */
8345 	if (flags & ~PERF_FLAG_ALL)
8346 		return -EINVAL;
8347 
8348 	err = perf_copy_attr(attr_uptr, &attr);
8349 	if (err)
8350 		return err;
8351 
8352 	if (!attr.exclude_kernel) {
8353 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8354 			return -EACCES;
8355 	}
8356 
8357 	if (attr.freq) {
8358 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8359 			return -EINVAL;
8360 	} else {
8361 		if (attr.sample_period & (1ULL << 63))
8362 			return -EINVAL;
8363 	}
8364 
8365 	/*
8366 	 * In cgroup mode, the pid argument is used to pass the fd
8367 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8368 	 * designates the cpu on which to monitor threads from that
8369 	 * cgroup.
8370 	 */
8371 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8372 		return -EINVAL;
8373 
8374 	if (flags & PERF_FLAG_FD_CLOEXEC)
8375 		f_flags |= O_CLOEXEC;
8376 
8377 	event_fd = get_unused_fd_flags(f_flags);
8378 	if (event_fd < 0)
8379 		return event_fd;
8380 
8381 	if (group_fd != -1) {
8382 		err = perf_fget_light(group_fd, &group);
8383 		if (err)
8384 			goto err_fd;
8385 		group_leader = group.file->private_data;
8386 		if (flags & PERF_FLAG_FD_OUTPUT)
8387 			output_event = group_leader;
8388 		if (flags & PERF_FLAG_FD_NO_GROUP)
8389 			group_leader = NULL;
8390 	}
8391 
8392 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8393 		task = find_lively_task_by_vpid(pid);
8394 		if (IS_ERR(task)) {
8395 			err = PTR_ERR(task);
8396 			goto err_group_fd;
8397 		}
8398 	}
8399 
8400 	if (task && group_leader &&
8401 	    group_leader->attr.inherit != attr.inherit) {
8402 		err = -EINVAL;
8403 		goto err_task;
8404 	}
8405 
8406 	get_online_cpus();
8407 
8408 	if (task) {
8409 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
8410 		if (err)
8411 			goto err_cpus;
8412 
8413 		/*
8414 		 * Reuse ptrace permission checks for now.
8415 		 *
8416 		 * We must hold cred_guard_mutex across this and any potential
8417 		 * perf_install_in_context() call for this new event to
8418 		 * serialize against exec() altering our credentials (and the
8419 		 * perf_event_exit_task() that could imply).
8420 		 */
8421 		err = -EACCES;
8422 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
8423 			goto err_cred;
8424 	}
8425 
8426 	if (flags & PERF_FLAG_PID_CGROUP)
8427 		cgroup_fd = pid;
8428 
8429 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8430 				 NULL, NULL, cgroup_fd);
8431 	if (IS_ERR(event)) {
8432 		err = PTR_ERR(event);
8433 		goto err_cred;
8434 	}
8435 
8436 	if (is_sampling_event(event)) {
8437 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8438 			err = -ENOTSUPP;
8439 			goto err_alloc;
8440 		}
8441 	}
8442 
8443 	/*
8444 	 * Special case software events and allow them to be part of
8445 	 * any hardware group.
8446 	 */
8447 	pmu = event->pmu;
8448 
8449 	if (attr.use_clockid) {
8450 		err = perf_event_set_clock(event, attr.clockid);
8451 		if (err)
8452 			goto err_alloc;
8453 	}
8454 
8455 	if (group_leader &&
8456 	    (is_software_event(event) != is_software_event(group_leader))) {
8457 		if (is_software_event(event)) {
8458 			/*
8459 			 * If event and group_leader are not both a software
8460 			 * event, and event is, then group leader is not.
8461 			 *
8462 			 * Allow the addition of software events to !software
8463 			 * groups, this is safe because software events never
8464 			 * fail to schedule.
8465 			 */
8466 			pmu = group_leader->pmu;
8467 		} else if (is_software_event(group_leader) &&
8468 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8469 			/*
8470 			 * In case the group is a pure software group, and we
8471 			 * try to add a hardware event, move the whole group to
8472 			 * the hardware context.
8473 			 */
8474 			move_group = 1;
8475 		}
8476 	}
8477 
8478 	/*
8479 	 * Get the target context (task or percpu):
8480 	 */
8481 	ctx = find_get_context(pmu, task, event);
8482 	if (IS_ERR(ctx)) {
8483 		err = PTR_ERR(ctx);
8484 		goto err_alloc;
8485 	}
8486 
8487 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8488 		err = -EBUSY;
8489 		goto err_context;
8490 	}
8491 
8492 	/*
8493 	 * Look up the group leader (we will attach this event to it):
8494 	 */
8495 	if (group_leader) {
8496 		err = -EINVAL;
8497 
8498 		/*
8499 		 * Do not allow a recursive hierarchy (this new sibling
8500 		 * becoming part of another group-sibling):
8501 		 */
8502 		if (group_leader->group_leader != group_leader)
8503 			goto err_context;
8504 
8505 		/* All events in a group should have the same clock */
8506 		if (group_leader->clock != event->clock)
8507 			goto err_context;
8508 
8509 		/*
8510 		 * Do not allow to attach to a group in a different
8511 		 * task or CPU context:
8512 		 */
8513 		if (move_group) {
8514 			/*
8515 			 * Make sure we're both on the same task, or both
8516 			 * per-cpu events.
8517 			 */
8518 			if (group_leader->ctx->task != ctx->task)
8519 				goto err_context;
8520 
8521 			/*
8522 			 * Make sure we're both events for the same CPU;
8523 			 * grouping events for different CPUs is broken; since
8524 			 * you can never concurrently schedule them anyhow.
8525 			 */
8526 			if (group_leader->cpu != event->cpu)
8527 				goto err_context;
8528 		} else {
8529 			if (group_leader->ctx != ctx)
8530 				goto err_context;
8531 		}
8532 
8533 		/*
8534 		 * Only a group leader can be exclusive or pinned
8535 		 */
8536 		if (attr.exclusive || attr.pinned)
8537 			goto err_context;
8538 	}
8539 
8540 	if (output_event) {
8541 		err = perf_event_set_output(event, output_event);
8542 		if (err)
8543 			goto err_context;
8544 	}
8545 
8546 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8547 					f_flags);
8548 	if (IS_ERR(event_file)) {
8549 		err = PTR_ERR(event_file);
8550 		event_file = NULL;
8551 		goto err_context;
8552 	}
8553 
8554 	if (move_group) {
8555 		gctx = group_leader->ctx;
8556 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8557 		if (gctx->task == TASK_TOMBSTONE) {
8558 			err = -ESRCH;
8559 			goto err_locked;
8560 		}
8561 	} else {
8562 		mutex_lock(&ctx->mutex);
8563 	}
8564 
8565 	if (ctx->task == TASK_TOMBSTONE) {
8566 		err = -ESRCH;
8567 		goto err_locked;
8568 	}
8569 
8570 	if (!perf_event_validate_size(event)) {
8571 		err = -E2BIG;
8572 		goto err_locked;
8573 	}
8574 
8575 	/*
8576 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8577 	 * because we need to serialize with concurrent event creation.
8578 	 */
8579 	if (!exclusive_event_installable(event, ctx)) {
8580 		/* exclusive and group stuff are assumed mutually exclusive */
8581 		WARN_ON_ONCE(move_group);
8582 
8583 		err = -EBUSY;
8584 		goto err_locked;
8585 	}
8586 
8587 	WARN_ON_ONCE(ctx->parent_ctx);
8588 
8589 	/*
8590 	 * This is the point on no return; we cannot fail hereafter. This is
8591 	 * where we start modifying current state.
8592 	 */
8593 
8594 	if (move_group) {
8595 		/*
8596 		 * See perf_event_ctx_lock() for comments on the details
8597 		 * of swizzling perf_event::ctx.
8598 		 */
8599 		perf_remove_from_context(group_leader, 0);
8600 
8601 		list_for_each_entry(sibling, &group_leader->sibling_list,
8602 				    group_entry) {
8603 			perf_remove_from_context(sibling, 0);
8604 			put_ctx(gctx);
8605 		}
8606 
8607 		/*
8608 		 * Wait for everybody to stop referencing the events through
8609 		 * the old lists, before installing it on new lists.
8610 		 */
8611 		synchronize_rcu();
8612 
8613 		/*
8614 		 * Install the group siblings before the group leader.
8615 		 *
8616 		 * Because a group leader will try and install the entire group
8617 		 * (through the sibling list, which is still in-tact), we can
8618 		 * end up with siblings installed in the wrong context.
8619 		 *
8620 		 * By installing siblings first we NO-OP because they're not
8621 		 * reachable through the group lists.
8622 		 */
8623 		list_for_each_entry(sibling, &group_leader->sibling_list,
8624 				    group_entry) {
8625 			perf_event__state_init(sibling);
8626 			perf_install_in_context(ctx, sibling, sibling->cpu);
8627 			get_ctx(ctx);
8628 		}
8629 
8630 		/*
8631 		 * Removing from the context ends up with disabled
8632 		 * event. What we want here is event in the initial
8633 		 * startup state, ready to be add into new context.
8634 		 */
8635 		perf_event__state_init(group_leader);
8636 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8637 		get_ctx(ctx);
8638 
8639 		/*
8640 		 * Now that all events are installed in @ctx, nothing
8641 		 * references @gctx anymore, so drop the last reference we have
8642 		 * on it.
8643 		 */
8644 		put_ctx(gctx);
8645 	}
8646 
8647 	/*
8648 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8649 	 * that we're serialized against further additions and before
8650 	 * perf_install_in_context() which is the point the event is active and
8651 	 * can use these values.
8652 	 */
8653 	perf_event__header_size(event);
8654 	perf_event__id_header_size(event);
8655 
8656 	event->owner = current;
8657 
8658 	perf_install_in_context(ctx, event, event->cpu);
8659 	perf_unpin_context(ctx);
8660 
8661 	if (move_group)
8662 		mutex_unlock(&gctx->mutex);
8663 	mutex_unlock(&ctx->mutex);
8664 
8665 	if (task) {
8666 		mutex_unlock(&task->signal->cred_guard_mutex);
8667 		put_task_struct(task);
8668 	}
8669 
8670 	put_online_cpus();
8671 
8672 	mutex_lock(&current->perf_event_mutex);
8673 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8674 	mutex_unlock(&current->perf_event_mutex);
8675 
8676 	/*
8677 	 * Drop the reference on the group_event after placing the
8678 	 * new event on the sibling_list. This ensures destruction
8679 	 * of the group leader will find the pointer to itself in
8680 	 * perf_group_detach().
8681 	 */
8682 	fdput(group);
8683 	fd_install(event_fd, event_file);
8684 	return event_fd;
8685 
8686 err_locked:
8687 	if (move_group)
8688 		mutex_unlock(&gctx->mutex);
8689 	mutex_unlock(&ctx->mutex);
8690 /* err_file: */
8691 	fput(event_file);
8692 err_context:
8693 	perf_unpin_context(ctx);
8694 	put_ctx(ctx);
8695 err_alloc:
8696 	/*
8697 	 * If event_file is set, the fput() above will have called ->release()
8698 	 * and that will take care of freeing the event.
8699 	 */
8700 	if (!event_file)
8701 		free_event(event);
8702 err_cred:
8703 	if (task)
8704 		mutex_unlock(&task->signal->cred_guard_mutex);
8705 err_cpus:
8706 	put_online_cpus();
8707 err_task:
8708 	if (task)
8709 		put_task_struct(task);
8710 err_group_fd:
8711 	fdput(group);
8712 err_fd:
8713 	put_unused_fd(event_fd);
8714 	return err;
8715 }
8716 
8717 /**
8718  * perf_event_create_kernel_counter
8719  *
8720  * @attr: attributes of the counter to create
8721  * @cpu: cpu in which the counter is bound
8722  * @task: task to profile (NULL for percpu)
8723  */
8724 struct perf_event *
8725 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8726 				 struct task_struct *task,
8727 				 perf_overflow_handler_t overflow_handler,
8728 				 void *context)
8729 {
8730 	struct perf_event_context *ctx;
8731 	struct perf_event *event;
8732 	int err;
8733 
8734 	/*
8735 	 * Get the target context (task or percpu):
8736 	 */
8737 
8738 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8739 				 overflow_handler, context, -1);
8740 	if (IS_ERR(event)) {
8741 		err = PTR_ERR(event);
8742 		goto err;
8743 	}
8744 
8745 	/* Mark owner so we could distinguish it from user events. */
8746 	event->owner = TASK_TOMBSTONE;
8747 
8748 	ctx = find_get_context(event->pmu, task, event);
8749 	if (IS_ERR(ctx)) {
8750 		err = PTR_ERR(ctx);
8751 		goto err_free;
8752 	}
8753 
8754 	WARN_ON_ONCE(ctx->parent_ctx);
8755 	mutex_lock(&ctx->mutex);
8756 	if (ctx->task == TASK_TOMBSTONE) {
8757 		err = -ESRCH;
8758 		goto err_unlock;
8759 	}
8760 
8761 	if (!exclusive_event_installable(event, ctx)) {
8762 		err = -EBUSY;
8763 		goto err_unlock;
8764 	}
8765 
8766 	perf_install_in_context(ctx, event, cpu);
8767 	perf_unpin_context(ctx);
8768 	mutex_unlock(&ctx->mutex);
8769 
8770 	return event;
8771 
8772 err_unlock:
8773 	mutex_unlock(&ctx->mutex);
8774 	perf_unpin_context(ctx);
8775 	put_ctx(ctx);
8776 err_free:
8777 	free_event(event);
8778 err:
8779 	return ERR_PTR(err);
8780 }
8781 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8782 
8783 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8784 {
8785 	struct perf_event_context *src_ctx;
8786 	struct perf_event_context *dst_ctx;
8787 	struct perf_event *event, *tmp;
8788 	LIST_HEAD(events);
8789 
8790 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8791 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8792 
8793 	/*
8794 	 * See perf_event_ctx_lock() for comments on the details
8795 	 * of swizzling perf_event::ctx.
8796 	 */
8797 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8798 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8799 				 event_entry) {
8800 		perf_remove_from_context(event, 0);
8801 		unaccount_event_cpu(event, src_cpu);
8802 		put_ctx(src_ctx);
8803 		list_add(&event->migrate_entry, &events);
8804 	}
8805 
8806 	/*
8807 	 * Wait for the events to quiesce before re-instating them.
8808 	 */
8809 	synchronize_rcu();
8810 
8811 	/*
8812 	 * Re-instate events in 2 passes.
8813 	 *
8814 	 * Skip over group leaders and only install siblings on this first
8815 	 * pass, siblings will not get enabled without a leader, however a
8816 	 * leader will enable its siblings, even if those are still on the old
8817 	 * context.
8818 	 */
8819 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8820 		if (event->group_leader == event)
8821 			continue;
8822 
8823 		list_del(&event->migrate_entry);
8824 		if (event->state >= PERF_EVENT_STATE_OFF)
8825 			event->state = PERF_EVENT_STATE_INACTIVE;
8826 		account_event_cpu(event, dst_cpu);
8827 		perf_install_in_context(dst_ctx, event, dst_cpu);
8828 		get_ctx(dst_ctx);
8829 	}
8830 
8831 	/*
8832 	 * Once all the siblings are setup properly, install the group leaders
8833 	 * to make it go.
8834 	 */
8835 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8836 		list_del(&event->migrate_entry);
8837 		if (event->state >= PERF_EVENT_STATE_OFF)
8838 			event->state = PERF_EVENT_STATE_INACTIVE;
8839 		account_event_cpu(event, dst_cpu);
8840 		perf_install_in_context(dst_ctx, event, dst_cpu);
8841 		get_ctx(dst_ctx);
8842 	}
8843 	mutex_unlock(&dst_ctx->mutex);
8844 	mutex_unlock(&src_ctx->mutex);
8845 }
8846 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8847 
8848 static void sync_child_event(struct perf_event *child_event,
8849 			       struct task_struct *child)
8850 {
8851 	struct perf_event *parent_event = child_event->parent;
8852 	u64 child_val;
8853 
8854 	if (child_event->attr.inherit_stat)
8855 		perf_event_read_event(child_event, child);
8856 
8857 	child_val = perf_event_count(child_event);
8858 
8859 	/*
8860 	 * Add back the child's count to the parent's count:
8861 	 */
8862 	atomic64_add(child_val, &parent_event->child_count);
8863 	atomic64_add(child_event->total_time_enabled,
8864 		     &parent_event->child_total_time_enabled);
8865 	atomic64_add(child_event->total_time_running,
8866 		     &parent_event->child_total_time_running);
8867 }
8868 
8869 static void
8870 perf_event_exit_event(struct perf_event *child_event,
8871 		      struct perf_event_context *child_ctx,
8872 		      struct task_struct *child)
8873 {
8874 	struct perf_event *parent_event = child_event->parent;
8875 
8876 	/*
8877 	 * Do not destroy the 'original' grouping; because of the context
8878 	 * switch optimization the original events could've ended up in a
8879 	 * random child task.
8880 	 *
8881 	 * If we were to destroy the original group, all group related
8882 	 * operations would cease to function properly after this random
8883 	 * child dies.
8884 	 *
8885 	 * Do destroy all inherited groups, we don't care about those
8886 	 * and being thorough is better.
8887 	 */
8888 	raw_spin_lock_irq(&child_ctx->lock);
8889 	WARN_ON_ONCE(child_ctx->is_active);
8890 
8891 	if (parent_event)
8892 		perf_group_detach(child_event);
8893 	list_del_event(child_event, child_ctx);
8894 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8895 	raw_spin_unlock_irq(&child_ctx->lock);
8896 
8897 	/*
8898 	 * Parent events are governed by their filedesc, retain them.
8899 	 */
8900 	if (!parent_event) {
8901 		perf_event_wakeup(child_event);
8902 		return;
8903 	}
8904 	/*
8905 	 * Child events can be cleaned up.
8906 	 */
8907 
8908 	sync_child_event(child_event, child);
8909 
8910 	/*
8911 	 * Remove this event from the parent's list
8912 	 */
8913 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8914 	mutex_lock(&parent_event->child_mutex);
8915 	list_del_init(&child_event->child_list);
8916 	mutex_unlock(&parent_event->child_mutex);
8917 
8918 	/*
8919 	 * Kick perf_poll() for is_event_hup().
8920 	 */
8921 	perf_event_wakeup(parent_event);
8922 	free_event(child_event);
8923 	put_event(parent_event);
8924 }
8925 
8926 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8927 {
8928 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8929 	struct perf_event *child_event, *next;
8930 
8931 	WARN_ON_ONCE(child != current);
8932 
8933 	child_ctx = perf_pin_task_context(child, ctxn);
8934 	if (!child_ctx)
8935 		return;
8936 
8937 	/*
8938 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
8939 	 * ctx::mutex over the entire thing. This serializes against almost
8940 	 * everything that wants to access the ctx.
8941 	 *
8942 	 * The exception is sys_perf_event_open() /
8943 	 * perf_event_create_kernel_count() which does find_get_context()
8944 	 * without ctx::mutex (it cannot because of the move_group double mutex
8945 	 * lock thing). See the comments in perf_install_in_context().
8946 	 */
8947 	mutex_lock(&child_ctx->mutex);
8948 
8949 	/*
8950 	 * In a single ctx::lock section, de-schedule the events and detach the
8951 	 * context from the task such that we cannot ever get it scheduled back
8952 	 * in.
8953 	 */
8954 	raw_spin_lock_irq(&child_ctx->lock);
8955 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8956 
8957 	/*
8958 	 * Now that the context is inactive, destroy the task <-> ctx relation
8959 	 * and mark the context dead.
8960 	 */
8961 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8962 	put_ctx(child_ctx); /* cannot be last */
8963 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8964 	put_task_struct(current); /* cannot be last */
8965 
8966 	clone_ctx = unclone_ctx(child_ctx);
8967 	raw_spin_unlock_irq(&child_ctx->lock);
8968 
8969 	if (clone_ctx)
8970 		put_ctx(clone_ctx);
8971 
8972 	/*
8973 	 * Report the task dead after unscheduling the events so that we
8974 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8975 	 * get a few PERF_RECORD_READ events.
8976 	 */
8977 	perf_event_task(child, child_ctx, 0);
8978 
8979 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8980 		perf_event_exit_event(child_event, child_ctx, child);
8981 
8982 	mutex_unlock(&child_ctx->mutex);
8983 
8984 	put_ctx(child_ctx);
8985 }
8986 
8987 /*
8988  * When a child task exits, feed back event values to parent events.
8989  *
8990  * Can be called with cred_guard_mutex held when called from
8991  * install_exec_creds().
8992  */
8993 void perf_event_exit_task(struct task_struct *child)
8994 {
8995 	struct perf_event *event, *tmp;
8996 	int ctxn;
8997 
8998 	mutex_lock(&child->perf_event_mutex);
8999 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9000 				 owner_entry) {
9001 		list_del_init(&event->owner_entry);
9002 
9003 		/*
9004 		 * Ensure the list deletion is visible before we clear
9005 		 * the owner, closes a race against perf_release() where
9006 		 * we need to serialize on the owner->perf_event_mutex.
9007 		 */
9008 		smp_store_release(&event->owner, NULL);
9009 	}
9010 	mutex_unlock(&child->perf_event_mutex);
9011 
9012 	for_each_task_context_nr(ctxn)
9013 		perf_event_exit_task_context(child, ctxn);
9014 
9015 	/*
9016 	 * The perf_event_exit_task_context calls perf_event_task
9017 	 * with child's task_ctx, which generates EXIT events for
9018 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
9019 	 * At this point we need to send EXIT events to cpu contexts.
9020 	 */
9021 	perf_event_task(child, NULL, 0);
9022 }
9023 
9024 static void perf_free_event(struct perf_event *event,
9025 			    struct perf_event_context *ctx)
9026 {
9027 	struct perf_event *parent = event->parent;
9028 
9029 	if (WARN_ON_ONCE(!parent))
9030 		return;
9031 
9032 	mutex_lock(&parent->child_mutex);
9033 	list_del_init(&event->child_list);
9034 	mutex_unlock(&parent->child_mutex);
9035 
9036 	put_event(parent);
9037 
9038 	raw_spin_lock_irq(&ctx->lock);
9039 	perf_group_detach(event);
9040 	list_del_event(event, ctx);
9041 	raw_spin_unlock_irq(&ctx->lock);
9042 	free_event(event);
9043 }
9044 
9045 /*
9046  * Free an unexposed, unused context as created by inheritance by
9047  * perf_event_init_task below, used by fork() in case of fail.
9048  *
9049  * Not all locks are strictly required, but take them anyway to be nice and
9050  * help out with the lockdep assertions.
9051  */
9052 void perf_event_free_task(struct task_struct *task)
9053 {
9054 	struct perf_event_context *ctx;
9055 	struct perf_event *event, *tmp;
9056 	int ctxn;
9057 
9058 	for_each_task_context_nr(ctxn) {
9059 		ctx = task->perf_event_ctxp[ctxn];
9060 		if (!ctx)
9061 			continue;
9062 
9063 		mutex_lock(&ctx->mutex);
9064 again:
9065 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9066 				group_entry)
9067 			perf_free_event(event, ctx);
9068 
9069 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9070 				group_entry)
9071 			perf_free_event(event, ctx);
9072 
9073 		if (!list_empty(&ctx->pinned_groups) ||
9074 				!list_empty(&ctx->flexible_groups))
9075 			goto again;
9076 
9077 		mutex_unlock(&ctx->mutex);
9078 
9079 		put_ctx(ctx);
9080 	}
9081 }
9082 
9083 void perf_event_delayed_put(struct task_struct *task)
9084 {
9085 	int ctxn;
9086 
9087 	for_each_task_context_nr(ctxn)
9088 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9089 }
9090 
9091 struct file *perf_event_get(unsigned int fd)
9092 {
9093 	struct file *file;
9094 
9095 	file = fget_raw(fd);
9096 	if (!file)
9097 		return ERR_PTR(-EBADF);
9098 
9099 	if (file->f_op != &perf_fops) {
9100 		fput(file);
9101 		return ERR_PTR(-EBADF);
9102 	}
9103 
9104 	return file;
9105 }
9106 
9107 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9108 {
9109 	if (!event)
9110 		return ERR_PTR(-EINVAL);
9111 
9112 	return &event->attr;
9113 }
9114 
9115 /*
9116  * inherit a event from parent task to child task:
9117  */
9118 static struct perf_event *
9119 inherit_event(struct perf_event *parent_event,
9120 	      struct task_struct *parent,
9121 	      struct perf_event_context *parent_ctx,
9122 	      struct task_struct *child,
9123 	      struct perf_event *group_leader,
9124 	      struct perf_event_context *child_ctx)
9125 {
9126 	enum perf_event_active_state parent_state = parent_event->state;
9127 	struct perf_event *child_event;
9128 	unsigned long flags;
9129 
9130 	/*
9131 	 * Instead of creating recursive hierarchies of events,
9132 	 * we link inherited events back to the original parent,
9133 	 * which has a filp for sure, which we use as the reference
9134 	 * count:
9135 	 */
9136 	if (parent_event->parent)
9137 		parent_event = parent_event->parent;
9138 
9139 	child_event = perf_event_alloc(&parent_event->attr,
9140 					   parent_event->cpu,
9141 					   child,
9142 					   group_leader, parent_event,
9143 					   NULL, NULL, -1);
9144 	if (IS_ERR(child_event))
9145 		return child_event;
9146 
9147 	/*
9148 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9149 	 * must be under the same lock in order to serialize against
9150 	 * perf_event_release_kernel(), such that either we must observe
9151 	 * is_orphaned_event() or they will observe us on the child_list.
9152 	 */
9153 	mutex_lock(&parent_event->child_mutex);
9154 	if (is_orphaned_event(parent_event) ||
9155 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9156 		mutex_unlock(&parent_event->child_mutex);
9157 		free_event(child_event);
9158 		return NULL;
9159 	}
9160 
9161 	get_ctx(child_ctx);
9162 
9163 	/*
9164 	 * Make the child state follow the state of the parent event,
9165 	 * not its attr.disabled bit.  We hold the parent's mutex,
9166 	 * so we won't race with perf_event_{en, dis}able_family.
9167 	 */
9168 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9169 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9170 	else
9171 		child_event->state = PERF_EVENT_STATE_OFF;
9172 
9173 	if (parent_event->attr.freq) {
9174 		u64 sample_period = parent_event->hw.sample_period;
9175 		struct hw_perf_event *hwc = &child_event->hw;
9176 
9177 		hwc->sample_period = sample_period;
9178 		hwc->last_period   = sample_period;
9179 
9180 		local64_set(&hwc->period_left, sample_period);
9181 	}
9182 
9183 	child_event->ctx = child_ctx;
9184 	child_event->overflow_handler = parent_event->overflow_handler;
9185 	child_event->overflow_handler_context
9186 		= parent_event->overflow_handler_context;
9187 
9188 	/*
9189 	 * Precalculate sample_data sizes
9190 	 */
9191 	perf_event__header_size(child_event);
9192 	perf_event__id_header_size(child_event);
9193 
9194 	/*
9195 	 * Link it up in the child's context:
9196 	 */
9197 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9198 	add_event_to_ctx(child_event, child_ctx);
9199 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9200 
9201 	/*
9202 	 * Link this into the parent event's child list
9203 	 */
9204 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9205 	mutex_unlock(&parent_event->child_mutex);
9206 
9207 	return child_event;
9208 }
9209 
9210 static int inherit_group(struct perf_event *parent_event,
9211 	      struct task_struct *parent,
9212 	      struct perf_event_context *parent_ctx,
9213 	      struct task_struct *child,
9214 	      struct perf_event_context *child_ctx)
9215 {
9216 	struct perf_event *leader;
9217 	struct perf_event *sub;
9218 	struct perf_event *child_ctr;
9219 
9220 	leader = inherit_event(parent_event, parent, parent_ctx,
9221 				 child, NULL, child_ctx);
9222 	if (IS_ERR(leader))
9223 		return PTR_ERR(leader);
9224 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9225 		child_ctr = inherit_event(sub, parent, parent_ctx,
9226 					    child, leader, child_ctx);
9227 		if (IS_ERR(child_ctr))
9228 			return PTR_ERR(child_ctr);
9229 	}
9230 	return 0;
9231 }
9232 
9233 static int
9234 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9235 		   struct perf_event_context *parent_ctx,
9236 		   struct task_struct *child, int ctxn,
9237 		   int *inherited_all)
9238 {
9239 	int ret;
9240 	struct perf_event_context *child_ctx;
9241 
9242 	if (!event->attr.inherit) {
9243 		*inherited_all = 0;
9244 		return 0;
9245 	}
9246 
9247 	child_ctx = child->perf_event_ctxp[ctxn];
9248 	if (!child_ctx) {
9249 		/*
9250 		 * This is executed from the parent task context, so
9251 		 * inherit events that have been marked for cloning.
9252 		 * First allocate and initialize a context for the
9253 		 * child.
9254 		 */
9255 
9256 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9257 		if (!child_ctx)
9258 			return -ENOMEM;
9259 
9260 		child->perf_event_ctxp[ctxn] = child_ctx;
9261 	}
9262 
9263 	ret = inherit_group(event, parent, parent_ctx,
9264 			    child, child_ctx);
9265 
9266 	if (ret)
9267 		*inherited_all = 0;
9268 
9269 	return ret;
9270 }
9271 
9272 /*
9273  * Initialize the perf_event context in task_struct
9274  */
9275 static int perf_event_init_context(struct task_struct *child, int ctxn)
9276 {
9277 	struct perf_event_context *child_ctx, *parent_ctx;
9278 	struct perf_event_context *cloned_ctx;
9279 	struct perf_event *event;
9280 	struct task_struct *parent = current;
9281 	int inherited_all = 1;
9282 	unsigned long flags;
9283 	int ret = 0;
9284 
9285 	if (likely(!parent->perf_event_ctxp[ctxn]))
9286 		return 0;
9287 
9288 	/*
9289 	 * If the parent's context is a clone, pin it so it won't get
9290 	 * swapped under us.
9291 	 */
9292 	parent_ctx = perf_pin_task_context(parent, ctxn);
9293 	if (!parent_ctx)
9294 		return 0;
9295 
9296 	/*
9297 	 * No need to check if parent_ctx != NULL here; since we saw
9298 	 * it non-NULL earlier, the only reason for it to become NULL
9299 	 * is if we exit, and since we're currently in the middle of
9300 	 * a fork we can't be exiting at the same time.
9301 	 */
9302 
9303 	/*
9304 	 * Lock the parent list. No need to lock the child - not PID
9305 	 * hashed yet and not running, so nobody can access it.
9306 	 */
9307 	mutex_lock(&parent_ctx->mutex);
9308 
9309 	/*
9310 	 * We dont have to disable NMIs - we are only looking at
9311 	 * the list, not manipulating it:
9312 	 */
9313 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9314 		ret = inherit_task_group(event, parent, parent_ctx,
9315 					 child, ctxn, &inherited_all);
9316 		if (ret)
9317 			break;
9318 	}
9319 
9320 	/*
9321 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9322 	 * to allocations, but we need to prevent rotation because
9323 	 * rotate_ctx() will change the list from interrupt context.
9324 	 */
9325 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9326 	parent_ctx->rotate_disable = 1;
9327 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9328 
9329 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9330 		ret = inherit_task_group(event, parent, parent_ctx,
9331 					 child, ctxn, &inherited_all);
9332 		if (ret)
9333 			break;
9334 	}
9335 
9336 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9337 	parent_ctx->rotate_disable = 0;
9338 
9339 	child_ctx = child->perf_event_ctxp[ctxn];
9340 
9341 	if (child_ctx && inherited_all) {
9342 		/*
9343 		 * Mark the child context as a clone of the parent
9344 		 * context, or of whatever the parent is a clone of.
9345 		 *
9346 		 * Note that if the parent is a clone, the holding of
9347 		 * parent_ctx->lock avoids it from being uncloned.
9348 		 */
9349 		cloned_ctx = parent_ctx->parent_ctx;
9350 		if (cloned_ctx) {
9351 			child_ctx->parent_ctx = cloned_ctx;
9352 			child_ctx->parent_gen = parent_ctx->parent_gen;
9353 		} else {
9354 			child_ctx->parent_ctx = parent_ctx;
9355 			child_ctx->parent_gen = parent_ctx->generation;
9356 		}
9357 		get_ctx(child_ctx->parent_ctx);
9358 	}
9359 
9360 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9361 	mutex_unlock(&parent_ctx->mutex);
9362 
9363 	perf_unpin_context(parent_ctx);
9364 	put_ctx(parent_ctx);
9365 
9366 	return ret;
9367 }
9368 
9369 /*
9370  * Initialize the perf_event context in task_struct
9371  */
9372 int perf_event_init_task(struct task_struct *child)
9373 {
9374 	int ctxn, ret;
9375 
9376 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9377 	mutex_init(&child->perf_event_mutex);
9378 	INIT_LIST_HEAD(&child->perf_event_list);
9379 
9380 	for_each_task_context_nr(ctxn) {
9381 		ret = perf_event_init_context(child, ctxn);
9382 		if (ret) {
9383 			perf_event_free_task(child);
9384 			return ret;
9385 		}
9386 	}
9387 
9388 	return 0;
9389 }
9390 
9391 static void __init perf_event_init_all_cpus(void)
9392 {
9393 	struct swevent_htable *swhash;
9394 	int cpu;
9395 
9396 	for_each_possible_cpu(cpu) {
9397 		swhash = &per_cpu(swevent_htable, cpu);
9398 		mutex_init(&swhash->hlist_mutex);
9399 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9400 	}
9401 }
9402 
9403 static void perf_event_init_cpu(int cpu)
9404 {
9405 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9406 
9407 	mutex_lock(&swhash->hlist_mutex);
9408 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9409 		struct swevent_hlist *hlist;
9410 
9411 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9412 		WARN_ON(!hlist);
9413 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9414 	}
9415 	mutex_unlock(&swhash->hlist_mutex);
9416 }
9417 
9418 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9419 static void __perf_event_exit_context(void *__info)
9420 {
9421 	struct perf_event_context *ctx = __info;
9422 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9423 	struct perf_event *event;
9424 
9425 	raw_spin_lock(&ctx->lock);
9426 	list_for_each_entry(event, &ctx->event_list, event_entry)
9427 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9428 	raw_spin_unlock(&ctx->lock);
9429 }
9430 
9431 static void perf_event_exit_cpu_context(int cpu)
9432 {
9433 	struct perf_event_context *ctx;
9434 	struct pmu *pmu;
9435 	int idx;
9436 
9437 	idx = srcu_read_lock(&pmus_srcu);
9438 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9439 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9440 
9441 		mutex_lock(&ctx->mutex);
9442 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9443 		mutex_unlock(&ctx->mutex);
9444 	}
9445 	srcu_read_unlock(&pmus_srcu, idx);
9446 }
9447 
9448 static void perf_event_exit_cpu(int cpu)
9449 {
9450 	perf_event_exit_cpu_context(cpu);
9451 }
9452 #else
9453 static inline void perf_event_exit_cpu(int cpu) { }
9454 #endif
9455 
9456 static int
9457 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9458 {
9459 	int cpu;
9460 
9461 	for_each_online_cpu(cpu)
9462 		perf_event_exit_cpu(cpu);
9463 
9464 	return NOTIFY_OK;
9465 }
9466 
9467 /*
9468  * Run the perf reboot notifier at the very last possible moment so that
9469  * the generic watchdog code runs as long as possible.
9470  */
9471 static struct notifier_block perf_reboot_notifier = {
9472 	.notifier_call = perf_reboot,
9473 	.priority = INT_MIN,
9474 };
9475 
9476 static int
9477 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9478 {
9479 	unsigned int cpu = (long)hcpu;
9480 
9481 	switch (action & ~CPU_TASKS_FROZEN) {
9482 
9483 	case CPU_UP_PREPARE:
9484 		/*
9485 		 * This must be done before the CPU comes alive, because the
9486 		 * moment we can run tasks we can encounter (software) events.
9487 		 *
9488 		 * Specifically, someone can have inherited events on kthreadd
9489 		 * or a pre-existing worker thread that gets re-bound.
9490 		 */
9491 		perf_event_init_cpu(cpu);
9492 		break;
9493 
9494 	case CPU_DOWN_PREPARE:
9495 		/*
9496 		 * This must be done before the CPU dies because after that an
9497 		 * active event might want to IPI the CPU and that'll not work
9498 		 * so great for dead CPUs.
9499 		 *
9500 		 * XXX smp_call_function_single() return -ENXIO without a warn
9501 		 * so we could possibly deal with this.
9502 		 *
9503 		 * This is safe against new events arriving because
9504 		 * sys_perf_event_open() serializes against hotplug using
9505 		 * get_online_cpus().
9506 		 */
9507 		perf_event_exit_cpu(cpu);
9508 		break;
9509 	default:
9510 		break;
9511 	}
9512 
9513 	return NOTIFY_OK;
9514 }
9515 
9516 void __init perf_event_init(void)
9517 {
9518 	int ret;
9519 
9520 	idr_init(&pmu_idr);
9521 
9522 	perf_event_init_all_cpus();
9523 	init_srcu_struct(&pmus_srcu);
9524 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9525 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9526 	perf_pmu_register(&perf_task_clock, NULL, -1);
9527 	perf_tp_register();
9528 	perf_cpu_notifier(perf_cpu_notify);
9529 	register_reboot_notifier(&perf_reboot_notifier);
9530 
9531 	ret = init_hw_breakpoint();
9532 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9533 
9534 	/*
9535 	 * Build time assertion that we keep the data_head at the intended
9536 	 * location.  IOW, validation we got the __reserved[] size right.
9537 	 */
9538 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9539 		     != 1024);
9540 }
9541 
9542 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9543 			      char *page)
9544 {
9545 	struct perf_pmu_events_attr *pmu_attr =
9546 		container_of(attr, struct perf_pmu_events_attr, attr);
9547 
9548 	if (pmu_attr->event_str)
9549 		return sprintf(page, "%s\n", pmu_attr->event_str);
9550 
9551 	return 0;
9552 }
9553 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9554 
9555 static int __init perf_event_sysfs_init(void)
9556 {
9557 	struct pmu *pmu;
9558 	int ret;
9559 
9560 	mutex_lock(&pmus_lock);
9561 
9562 	ret = bus_register(&pmu_bus);
9563 	if (ret)
9564 		goto unlock;
9565 
9566 	list_for_each_entry(pmu, &pmus, entry) {
9567 		if (!pmu->name || pmu->type < 0)
9568 			continue;
9569 
9570 		ret = pmu_dev_alloc(pmu);
9571 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9572 	}
9573 	pmu_bus_running = 1;
9574 	ret = 0;
9575 
9576 unlock:
9577 	mutex_unlock(&pmus_lock);
9578 
9579 	return ret;
9580 }
9581 device_initcall(perf_event_sysfs_init);
9582 
9583 #ifdef CONFIG_CGROUP_PERF
9584 static struct cgroup_subsys_state *
9585 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9586 {
9587 	struct perf_cgroup *jc;
9588 
9589 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9590 	if (!jc)
9591 		return ERR_PTR(-ENOMEM);
9592 
9593 	jc->info = alloc_percpu(struct perf_cgroup_info);
9594 	if (!jc->info) {
9595 		kfree(jc);
9596 		return ERR_PTR(-ENOMEM);
9597 	}
9598 
9599 	return &jc->css;
9600 }
9601 
9602 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9603 {
9604 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9605 
9606 	free_percpu(jc->info);
9607 	kfree(jc);
9608 }
9609 
9610 static int __perf_cgroup_move(void *info)
9611 {
9612 	struct task_struct *task = info;
9613 	rcu_read_lock();
9614 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9615 	rcu_read_unlock();
9616 	return 0;
9617 }
9618 
9619 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9620 {
9621 	struct task_struct *task;
9622 	struct cgroup_subsys_state *css;
9623 
9624 	cgroup_taskset_for_each(task, css, tset)
9625 		task_function_call(task, __perf_cgroup_move, task);
9626 }
9627 
9628 struct cgroup_subsys perf_event_cgrp_subsys = {
9629 	.css_alloc	= perf_cgroup_css_alloc,
9630 	.css_free	= perf_cgroup_css_free,
9631 	.attach		= perf_cgroup_attach,
9632 };
9633 #endif /* CONFIG_CGROUP_PERF */
9634