1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 55 #include "internal.h" 56 57 #include <asm/irq_regs.h> 58 59 typedef int (*remote_function_f)(void *); 60 61 struct remote_function_call { 62 struct task_struct *p; 63 remote_function_f func; 64 void *info; 65 int ret; 66 }; 67 68 static void remote_function(void *data) 69 { 70 struct remote_function_call *tfc = data; 71 struct task_struct *p = tfc->p; 72 73 if (p) { 74 /* -EAGAIN */ 75 if (task_cpu(p) != smp_processor_id()) 76 return; 77 78 /* 79 * Now that we're on right CPU with IRQs disabled, we can test 80 * if we hit the right task without races. 81 */ 82 83 tfc->ret = -ESRCH; /* No such (running) process */ 84 if (p != current) 85 return; 86 } 87 88 tfc->ret = tfc->func(tfc->info); 89 } 90 91 /** 92 * task_function_call - call a function on the cpu on which a task runs 93 * @p: the task to evaluate 94 * @func: the function to be called 95 * @info: the function call argument 96 * 97 * Calls the function @func when the task is currently running. This might 98 * be on the current CPU, which just calls the function directly 99 * 100 * returns: @func return value, or 101 * -ESRCH - when the process isn't running 102 * -EAGAIN - when the process moved away 103 */ 104 static int 105 task_function_call(struct task_struct *p, remote_function_f func, void *info) 106 { 107 struct remote_function_call data = { 108 .p = p, 109 .func = func, 110 .info = info, 111 .ret = -EAGAIN, 112 }; 113 int ret; 114 115 do { 116 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 117 if (!ret) 118 ret = data.ret; 119 } while (ret == -EAGAIN); 120 121 return ret; 122 } 123 124 /** 125 * cpu_function_call - call a function on the cpu 126 * @func: the function to be called 127 * @info: the function call argument 128 * 129 * Calls the function @func on the remote cpu. 130 * 131 * returns: @func return value or -ENXIO when the cpu is offline 132 */ 133 static int cpu_function_call(int cpu, remote_function_f func, void *info) 134 { 135 struct remote_function_call data = { 136 .p = NULL, 137 .func = func, 138 .info = info, 139 .ret = -ENXIO, /* No such CPU */ 140 }; 141 142 smp_call_function_single(cpu, remote_function, &data, 1); 143 144 return data.ret; 145 } 146 147 static inline struct perf_cpu_context * 148 __get_cpu_context(struct perf_event_context *ctx) 149 { 150 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 151 } 152 153 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 154 struct perf_event_context *ctx) 155 { 156 raw_spin_lock(&cpuctx->ctx.lock); 157 if (ctx) 158 raw_spin_lock(&ctx->lock); 159 } 160 161 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 162 struct perf_event_context *ctx) 163 { 164 if (ctx) 165 raw_spin_unlock(&ctx->lock); 166 raw_spin_unlock(&cpuctx->ctx.lock); 167 } 168 169 #define TASK_TOMBSTONE ((void *)-1L) 170 171 static bool is_kernel_event(struct perf_event *event) 172 { 173 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 174 } 175 176 /* 177 * On task ctx scheduling... 178 * 179 * When !ctx->nr_events a task context will not be scheduled. This means 180 * we can disable the scheduler hooks (for performance) without leaving 181 * pending task ctx state. 182 * 183 * This however results in two special cases: 184 * 185 * - removing the last event from a task ctx; this is relatively straight 186 * forward and is done in __perf_remove_from_context. 187 * 188 * - adding the first event to a task ctx; this is tricky because we cannot 189 * rely on ctx->is_active and therefore cannot use event_function_call(). 190 * See perf_install_in_context(). 191 * 192 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 193 */ 194 195 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 196 struct perf_event_context *, void *); 197 198 struct event_function_struct { 199 struct perf_event *event; 200 event_f func; 201 void *data; 202 }; 203 204 static int event_function(void *info) 205 { 206 struct event_function_struct *efs = info; 207 struct perf_event *event = efs->event; 208 struct perf_event_context *ctx = event->ctx; 209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 210 struct perf_event_context *task_ctx = cpuctx->task_ctx; 211 int ret = 0; 212 213 lockdep_assert_irqs_disabled(); 214 215 perf_ctx_lock(cpuctx, task_ctx); 216 /* 217 * Since we do the IPI call without holding ctx->lock things can have 218 * changed, double check we hit the task we set out to hit. 219 */ 220 if (ctx->task) { 221 if (ctx->task != current) { 222 ret = -ESRCH; 223 goto unlock; 224 } 225 226 /* 227 * We only use event_function_call() on established contexts, 228 * and event_function() is only ever called when active (or 229 * rather, we'll have bailed in task_function_call() or the 230 * above ctx->task != current test), therefore we must have 231 * ctx->is_active here. 232 */ 233 WARN_ON_ONCE(!ctx->is_active); 234 /* 235 * And since we have ctx->is_active, cpuctx->task_ctx must 236 * match. 237 */ 238 WARN_ON_ONCE(task_ctx != ctx); 239 } else { 240 WARN_ON_ONCE(&cpuctx->ctx != ctx); 241 } 242 243 efs->func(event, cpuctx, ctx, efs->data); 244 unlock: 245 perf_ctx_unlock(cpuctx, task_ctx); 246 247 return ret; 248 } 249 250 static void event_function_call(struct perf_event *event, event_f func, void *data) 251 { 252 struct perf_event_context *ctx = event->ctx; 253 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 254 struct event_function_struct efs = { 255 .event = event, 256 .func = func, 257 .data = data, 258 }; 259 260 if (!event->parent) { 261 /* 262 * If this is a !child event, we must hold ctx::mutex to 263 * stabilize the the event->ctx relation. See 264 * perf_event_ctx_lock(). 265 */ 266 lockdep_assert_held(&ctx->mutex); 267 } 268 269 if (!task) { 270 cpu_function_call(event->cpu, event_function, &efs); 271 return; 272 } 273 274 if (task == TASK_TOMBSTONE) 275 return; 276 277 again: 278 if (!task_function_call(task, event_function, &efs)) 279 return; 280 281 raw_spin_lock_irq(&ctx->lock); 282 /* 283 * Reload the task pointer, it might have been changed by 284 * a concurrent perf_event_context_sched_out(). 285 */ 286 task = ctx->task; 287 if (task == TASK_TOMBSTONE) { 288 raw_spin_unlock_irq(&ctx->lock); 289 return; 290 } 291 if (ctx->is_active) { 292 raw_spin_unlock_irq(&ctx->lock); 293 goto again; 294 } 295 func(event, NULL, ctx, data); 296 raw_spin_unlock_irq(&ctx->lock); 297 } 298 299 /* 300 * Similar to event_function_call() + event_function(), but hard assumes IRQs 301 * are already disabled and we're on the right CPU. 302 */ 303 static void event_function_local(struct perf_event *event, event_f func, void *data) 304 { 305 struct perf_event_context *ctx = event->ctx; 306 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 307 struct task_struct *task = READ_ONCE(ctx->task); 308 struct perf_event_context *task_ctx = NULL; 309 310 lockdep_assert_irqs_disabled(); 311 312 if (task) { 313 if (task == TASK_TOMBSTONE) 314 return; 315 316 task_ctx = ctx; 317 } 318 319 perf_ctx_lock(cpuctx, task_ctx); 320 321 task = ctx->task; 322 if (task == TASK_TOMBSTONE) 323 goto unlock; 324 325 if (task) { 326 /* 327 * We must be either inactive or active and the right task, 328 * otherwise we're screwed, since we cannot IPI to somewhere 329 * else. 330 */ 331 if (ctx->is_active) { 332 if (WARN_ON_ONCE(task != current)) 333 goto unlock; 334 335 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 336 goto unlock; 337 } 338 } else { 339 WARN_ON_ONCE(&cpuctx->ctx != ctx); 340 } 341 342 func(event, cpuctx, ctx, data); 343 unlock: 344 perf_ctx_unlock(cpuctx, task_ctx); 345 } 346 347 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 348 PERF_FLAG_FD_OUTPUT |\ 349 PERF_FLAG_PID_CGROUP |\ 350 PERF_FLAG_FD_CLOEXEC) 351 352 /* 353 * branch priv levels that need permission checks 354 */ 355 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 356 (PERF_SAMPLE_BRANCH_KERNEL |\ 357 PERF_SAMPLE_BRANCH_HV) 358 359 enum event_type_t { 360 EVENT_FLEXIBLE = 0x1, 361 EVENT_PINNED = 0x2, 362 EVENT_TIME = 0x4, 363 /* see ctx_resched() for details */ 364 EVENT_CPU = 0x8, 365 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 366 }; 367 368 /* 369 * perf_sched_events : >0 events exist 370 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 371 */ 372 373 static void perf_sched_delayed(struct work_struct *work); 374 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 375 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 376 static DEFINE_MUTEX(perf_sched_mutex); 377 static atomic_t perf_sched_count; 378 379 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 380 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 381 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 382 383 static atomic_t nr_mmap_events __read_mostly; 384 static atomic_t nr_comm_events __read_mostly; 385 static atomic_t nr_namespaces_events __read_mostly; 386 static atomic_t nr_task_events __read_mostly; 387 static atomic_t nr_freq_events __read_mostly; 388 static atomic_t nr_switch_events __read_mostly; 389 static atomic_t nr_ksymbol_events __read_mostly; 390 static atomic_t nr_bpf_events __read_mostly; 391 static atomic_t nr_cgroup_events __read_mostly; 392 393 static LIST_HEAD(pmus); 394 static DEFINE_MUTEX(pmus_lock); 395 static struct srcu_struct pmus_srcu; 396 static cpumask_var_t perf_online_mask; 397 398 /* 399 * perf event paranoia level: 400 * -1 - not paranoid at all 401 * 0 - disallow raw tracepoint access for unpriv 402 * 1 - disallow cpu events for unpriv 403 * 2 - disallow kernel profiling for unpriv 404 */ 405 int sysctl_perf_event_paranoid __read_mostly = 2; 406 407 /* Minimum for 512 kiB + 1 user control page */ 408 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 409 410 /* 411 * max perf event sample rate 412 */ 413 #define DEFAULT_MAX_SAMPLE_RATE 100000 414 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 415 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 416 417 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 418 419 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 420 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 421 422 static int perf_sample_allowed_ns __read_mostly = 423 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 424 425 static void update_perf_cpu_limits(void) 426 { 427 u64 tmp = perf_sample_period_ns; 428 429 tmp *= sysctl_perf_cpu_time_max_percent; 430 tmp = div_u64(tmp, 100); 431 if (!tmp) 432 tmp = 1; 433 434 WRITE_ONCE(perf_sample_allowed_ns, tmp); 435 } 436 437 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 438 439 int perf_proc_update_handler(struct ctl_table *table, int write, 440 void __user *buffer, size_t *lenp, 441 loff_t *ppos) 442 { 443 int ret; 444 int perf_cpu = sysctl_perf_cpu_time_max_percent; 445 /* 446 * If throttling is disabled don't allow the write: 447 */ 448 if (write && (perf_cpu == 100 || perf_cpu == 0)) 449 return -EINVAL; 450 451 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 452 if (ret || !write) 453 return ret; 454 455 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 456 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 457 update_perf_cpu_limits(); 458 459 return 0; 460 } 461 462 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 463 464 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 465 void __user *buffer, size_t *lenp, 466 loff_t *ppos) 467 { 468 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 469 470 if (ret || !write) 471 return ret; 472 473 if (sysctl_perf_cpu_time_max_percent == 100 || 474 sysctl_perf_cpu_time_max_percent == 0) { 475 printk(KERN_WARNING 476 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 477 WRITE_ONCE(perf_sample_allowed_ns, 0); 478 } else { 479 update_perf_cpu_limits(); 480 } 481 482 return 0; 483 } 484 485 /* 486 * perf samples are done in some very critical code paths (NMIs). 487 * If they take too much CPU time, the system can lock up and not 488 * get any real work done. This will drop the sample rate when 489 * we detect that events are taking too long. 490 */ 491 #define NR_ACCUMULATED_SAMPLES 128 492 static DEFINE_PER_CPU(u64, running_sample_length); 493 494 static u64 __report_avg; 495 static u64 __report_allowed; 496 497 static void perf_duration_warn(struct irq_work *w) 498 { 499 printk_ratelimited(KERN_INFO 500 "perf: interrupt took too long (%lld > %lld), lowering " 501 "kernel.perf_event_max_sample_rate to %d\n", 502 __report_avg, __report_allowed, 503 sysctl_perf_event_sample_rate); 504 } 505 506 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 507 508 void perf_sample_event_took(u64 sample_len_ns) 509 { 510 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 511 u64 running_len; 512 u64 avg_len; 513 u32 max; 514 515 if (max_len == 0) 516 return; 517 518 /* Decay the counter by 1 average sample. */ 519 running_len = __this_cpu_read(running_sample_length); 520 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 521 running_len += sample_len_ns; 522 __this_cpu_write(running_sample_length, running_len); 523 524 /* 525 * Note: this will be biased artifically low until we have 526 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 527 * from having to maintain a count. 528 */ 529 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 530 if (avg_len <= max_len) 531 return; 532 533 __report_avg = avg_len; 534 __report_allowed = max_len; 535 536 /* 537 * Compute a throttle threshold 25% below the current duration. 538 */ 539 avg_len += avg_len / 4; 540 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 541 if (avg_len < max) 542 max /= (u32)avg_len; 543 else 544 max = 1; 545 546 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 547 WRITE_ONCE(max_samples_per_tick, max); 548 549 sysctl_perf_event_sample_rate = max * HZ; 550 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 551 552 if (!irq_work_queue(&perf_duration_work)) { 553 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 554 "kernel.perf_event_max_sample_rate to %d\n", 555 __report_avg, __report_allowed, 556 sysctl_perf_event_sample_rate); 557 } 558 } 559 560 static atomic64_t perf_event_id; 561 562 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type); 564 565 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 566 enum event_type_t event_type, 567 struct task_struct *task); 568 569 static void update_context_time(struct perf_event_context *ctx); 570 static u64 perf_event_time(struct perf_event *event); 571 572 void __weak perf_event_print_debug(void) { } 573 574 extern __weak const char *perf_pmu_name(void) 575 { 576 return "pmu"; 577 } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 #ifdef CONFIG_CGROUP_PERF 672 673 static inline bool 674 perf_cgroup_match(struct perf_event *event) 675 { 676 struct perf_event_context *ctx = event->ctx; 677 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 678 679 /* @event doesn't care about cgroup */ 680 if (!event->cgrp) 681 return true; 682 683 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 684 if (!cpuctx->cgrp) 685 return false; 686 687 /* 688 * Cgroup scoping is recursive. An event enabled for a cgroup is 689 * also enabled for all its descendant cgroups. If @cpuctx's 690 * cgroup is a descendant of @event's (the test covers identity 691 * case), it's a match. 692 */ 693 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 694 event->cgrp->css.cgroup); 695 } 696 697 static inline void perf_detach_cgroup(struct perf_event *event) 698 { 699 css_put(&event->cgrp->css); 700 event->cgrp = NULL; 701 } 702 703 static inline int is_cgroup_event(struct perf_event *event) 704 { 705 return event->cgrp != NULL; 706 } 707 708 static inline u64 perf_cgroup_event_time(struct perf_event *event) 709 { 710 struct perf_cgroup_info *t; 711 712 t = per_cpu_ptr(event->cgrp->info, event->cpu); 713 return t->time; 714 } 715 716 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 717 { 718 struct perf_cgroup_info *info; 719 u64 now; 720 721 now = perf_clock(); 722 723 info = this_cpu_ptr(cgrp->info); 724 725 info->time += now - info->timestamp; 726 info->timestamp = now; 727 } 728 729 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 730 { 731 struct perf_cgroup *cgrp = cpuctx->cgrp; 732 struct cgroup_subsys_state *css; 733 734 if (cgrp) { 735 for (css = &cgrp->css; css; css = css->parent) { 736 cgrp = container_of(css, struct perf_cgroup, css); 737 __update_cgrp_time(cgrp); 738 } 739 } 740 } 741 742 static inline void update_cgrp_time_from_event(struct perf_event *event) 743 { 744 struct perf_cgroup *cgrp; 745 746 /* 747 * ensure we access cgroup data only when needed and 748 * when we know the cgroup is pinned (css_get) 749 */ 750 if (!is_cgroup_event(event)) 751 return; 752 753 cgrp = perf_cgroup_from_task(current, event->ctx); 754 /* 755 * Do not update time when cgroup is not active 756 */ 757 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 758 __update_cgrp_time(event->cgrp); 759 } 760 761 static inline void 762 perf_cgroup_set_timestamp(struct task_struct *task, 763 struct perf_event_context *ctx) 764 { 765 struct perf_cgroup *cgrp; 766 struct perf_cgroup_info *info; 767 struct cgroup_subsys_state *css; 768 769 /* 770 * ctx->lock held by caller 771 * ensure we do not access cgroup data 772 * unless we have the cgroup pinned (css_get) 773 */ 774 if (!task || !ctx->nr_cgroups) 775 return; 776 777 cgrp = perf_cgroup_from_task(task, ctx); 778 779 for (css = &cgrp->css; css; css = css->parent) { 780 cgrp = container_of(css, struct perf_cgroup, css); 781 info = this_cpu_ptr(cgrp->info); 782 info->timestamp = ctx->timestamp; 783 } 784 } 785 786 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 787 788 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 789 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 790 791 /* 792 * reschedule events based on the cgroup constraint of task. 793 * 794 * mode SWOUT : schedule out everything 795 * mode SWIN : schedule in based on cgroup for next 796 */ 797 static void perf_cgroup_switch(struct task_struct *task, int mode) 798 { 799 struct perf_cpu_context *cpuctx; 800 struct list_head *list; 801 unsigned long flags; 802 803 /* 804 * Disable interrupts and preemption to avoid this CPU's 805 * cgrp_cpuctx_entry to change under us. 806 */ 807 local_irq_save(flags); 808 809 list = this_cpu_ptr(&cgrp_cpuctx_list); 810 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 811 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 812 813 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 814 perf_pmu_disable(cpuctx->ctx.pmu); 815 816 if (mode & PERF_CGROUP_SWOUT) { 817 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 818 /* 819 * must not be done before ctxswout due 820 * to event_filter_match() in event_sched_out() 821 */ 822 cpuctx->cgrp = NULL; 823 } 824 825 if (mode & PERF_CGROUP_SWIN) { 826 WARN_ON_ONCE(cpuctx->cgrp); 827 /* 828 * set cgrp before ctxsw in to allow 829 * event_filter_match() to not have to pass 830 * task around 831 * we pass the cpuctx->ctx to perf_cgroup_from_task() 832 * because cgorup events are only per-cpu 833 */ 834 cpuctx->cgrp = perf_cgroup_from_task(task, 835 &cpuctx->ctx); 836 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 837 } 838 perf_pmu_enable(cpuctx->ctx.pmu); 839 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 840 } 841 842 local_irq_restore(flags); 843 } 844 845 static inline void perf_cgroup_sched_out(struct task_struct *task, 846 struct task_struct *next) 847 { 848 struct perf_cgroup *cgrp1; 849 struct perf_cgroup *cgrp2 = NULL; 850 851 rcu_read_lock(); 852 /* 853 * we come here when we know perf_cgroup_events > 0 854 * we do not need to pass the ctx here because we know 855 * we are holding the rcu lock 856 */ 857 cgrp1 = perf_cgroup_from_task(task, NULL); 858 cgrp2 = perf_cgroup_from_task(next, NULL); 859 860 /* 861 * only schedule out current cgroup events if we know 862 * that we are switching to a different cgroup. Otherwise, 863 * do no touch the cgroup events. 864 */ 865 if (cgrp1 != cgrp2) 866 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 867 868 rcu_read_unlock(); 869 } 870 871 static inline void perf_cgroup_sched_in(struct task_struct *prev, 872 struct task_struct *task) 873 { 874 struct perf_cgroup *cgrp1; 875 struct perf_cgroup *cgrp2 = NULL; 876 877 rcu_read_lock(); 878 /* 879 * we come here when we know perf_cgroup_events > 0 880 * we do not need to pass the ctx here because we know 881 * we are holding the rcu lock 882 */ 883 cgrp1 = perf_cgroup_from_task(task, NULL); 884 cgrp2 = perf_cgroup_from_task(prev, NULL); 885 886 /* 887 * only need to schedule in cgroup events if we are changing 888 * cgroup during ctxsw. Cgroup events were not scheduled 889 * out of ctxsw out if that was not the case. 890 */ 891 if (cgrp1 != cgrp2) 892 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 893 894 rcu_read_unlock(); 895 } 896 897 static int perf_cgroup_ensure_storage(struct perf_event *event, 898 struct cgroup_subsys_state *css) 899 { 900 struct perf_cpu_context *cpuctx; 901 struct perf_event **storage; 902 int cpu, heap_size, ret = 0; 903 904 /* 905 * Allow storage to have sufficent space for an iterator for each 906 * possibly nested cgroup plus an iterator for events with no cgroup. 907 */ 908 for (heap_size = 1; css; css = css->parent) 909 heap_size++; 910 911 for_each_possible_cpu(cpu) { 912 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 913 if (heap_size <= cpuctx->heap_size) 914 continue; 915 916 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 917 GFP_KERNEL, cpu_to_node(cpu)); 918 if (!storage) { 919 ret = -ENOMEM; 920 break; 921 } 922 923 raw_spin_lock_irq(&cpuctx->ctx.lock); 924 if (cpuctx->heap_size < heap_size) { 925 swap(cpuctx->heap, storage); 926 if (storage == cpuctx->heap_default) 927 storage = NULL; 928 cpuctx->heap_size = heap_size; 929 } 930 raw_spin_unlock_irq(&cpuctx->ctx.lock); 931 932 kfree(storage); 933 } 934 935 return ret; 936 } 937 938 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 939 struct perf_event_attr *attr, 940 struct perf_event *group_leader) 941 { 942 struct perf_cgroup *cgrp; 943 struct cgroup_subsys_state *css; 944 struct fd f = fdget(fd); 945 int ret = 0; 946 947 if (!f.file) 948 return -EBADF; 949 950 css = css_tryget_online_from_dir(f.file->f_path.dentry, 951 &perf_event_cgrp_subsys); 952 if (IS_ERR(css)) { 953 ret = PTR_ERR(css); 954 goto out; 955 } 956 957 ret = perf_cgroup_ensure_storage(event, css); 958 if (ret) 959 goto out; 960 961 cgrp = container_of(css, struct perf_cgroup, css); 962 event->cgrp = cgrp; 963 964 /* 965 * all events in a group must monitor 966 * the same cgroup because a task belongs 967 * to only one perf cgroup at a time 968 */ 969 if (group_leader && group_leader->cgrp != cgrp) { 970 perf_detach_cgroup(event); 971 ret = -EINVAL; 972 } 973 out: 974 fdput(f); 975 return ret; 976 } 977 978 static inline void 979 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 980 { 981 struct perf_cgroup_info *t; 982 t = per_cpu_ptr(event->cgrp->info, event->cpu); 983 event->shadow_ctx_time = now - t->timestamp; 984 } 985 986 static inline void 987 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 988 { 989 struct perf_cpu_context *cpuctx; 990 991 if (!is_cgroup_event(event)) 992 return; 993 994 /* 995 * Because cgroup events are always per-cpu events, 996 * @ctx == &cpuctx->ctx. 997 */ 998 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 999 1000 /* 1001 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1002 * matching the event's cgroup, we must do this for every new event, 1003 * because if the first would mismatch, the second would not try again 1004 * and we would leave cpuctx->cgrp unset. 1005 */ 1006 if (ctx->is_active && !cpuctx->cgrp) { 1007 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1008 1009 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1010 cpuctx->cgrp = cgrp; 1011 } 1012 1013 if (ctx->nr_cgroups++) 1014 return; 1015 1016 list_add(&cpuctx->cgrp_cpuctx_entry, 1017 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1018 } 1019 1020 static inline void 1021 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1022 { 1023 struct perf_cpu_context *cpuctx; 1024 1025 if (!is_cgroup_event(event)) 1026 return; 1027 1028 /* 1029 * Because cgroup events are always per-cpu events, 1030 * @ctx == &cpuctx->ctx. 1031 */ 1032 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1033 1034 if (--ctx->nr_cgroups) 1035 return; 1036 1037 if (ctx->is_active && cpuctx->cgrp) 1038 cpuctx->cgrp = NULL; 1039 1040 list_del(&cpuctx->cgrp_cpuctx_entry); 1041 } 1042 1043 #else /* !CONFIG_CGROUP_PERF */ 1044 1045 static inline bool 1046 perf_cgroup_match(struct perf_event *event) 1047 { 1048 return true; 1049 } 1050 1051 static inline void perf_detach_cgroup(struct perf_event *event) 1052 {} 1053 1054 static inline int is_cgroup_event(struct perf_event *event) 1055 { 1056 return 0; 1057 } 1058 1059 static inline void update_cgrp_time_from_event(struct perf_event *event) 1060 { 1061 } 1062 1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1064 { 1065 } 1066 1067 static inline void perf_cgroup_sched_out(struct task_struct *task, 1068 struct task_struct *next) 1069 { 1070 } 1071 1072 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1073 struct task_struct *task) 1074 { 1075 } 1076 1077 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1078 struct perf_event_attr *attr, 1079 struct perf_event *group_leader) 1080 { 1081 return -EINVAL; 1082 } 1083 1084 static inline void 1085 perf_cgroup_set_timestamp(struct task_struct *task, 1086 struct perf_event_context *ctx) 1087 { 1088 } 1089 1090 static inline void 1091 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1092 { 1093 } 1094 1095 static inline void 1096 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1097 { 1098 } 1099 1100 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1101 { 1102 return 0; 1103 } 1104 1105 static inline void 1106 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1107 { 1108 } 1109 1110 static inline void 1111 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1112 { 1113 } 1114 #endif 1115 1116 /* 1117 * set default to be dependent on timer tick just 1118 * like original code 1119 */ 1120 #define PERF_CPU_HRTIMER (1000 / HZ) 1121 /* 1122 * function must be called with interrupts disabled 1123 */ 1124 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1125 { 1126 struct perf_cpu_context *cpuctx; 1127 bool rotations; 1128 1129 lockdep_assert_irqs_disabled(); 1130 1131 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1132 rotations = perf_rotate_context(cpuctx); 1133 1134 raw_spin_lock(&cpuctx->hrtimer_lock); 1135 if (rotations) 1136 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1137 else 1138 cpuctx->hrtimer_active = 0; 1139 raw_spin_unlock(&cpuctx->hrtimer_lock); 1140 1141 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1142 } 1143 1144 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1145 { 1146 struct hrtimer *timer = &cpuctx->hrtimer; 1147 struct pmu *pmu = cpuctx->ctx.pmu; 1148 u64 interval; 1149 1150 /* no multiplexing needed for SW PMU */ 1151 if (pmu->task_ctx_nr == perf_sw_context) 1152 return; 1153 1154 /* 1155 * check default is sane, if not set then force to 1156 * default interval (1/tick) 1157 */ 1158 interval = pmu->hrtimer_interval_ms; 1159 if (interval < 1) 1160 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1161 1162 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1163 1164 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1165 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1166 timer->function = perf_mux_hrtimer_handler; 1167 } 1168 1169 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1170 { 1171 struct hrtimer *timer = &cpuctx->hrtimer; 1172 struct pmu *pmu = cpuctx->ctx.pmu; 1173 unsigned long flags; 1174 1175 /* not for SW PMU */ 1176 if (pmu->task_ctx_nr == perf_sw_context) 1177 return 0; 1178 1179 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1180 if (!cpuctx->hrtimer_active) { 1181 cpuctx->hrtimer_active = 1; 1182 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1183 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1184 } 1185 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1186 1187 return 0; 1188 } 1189 1190 void perf_pmu_disable(struct pmu *pmu) 1191 { 1192 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1193 if (!(*count)++) 1194 pmu->pmu_disable(pmu); 1195 } 1196 1197 void perf_pmu_enable(struct pmu *pmu) 1198 { 1199 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1200 if (!--(*count)) 1201 pmu->pmu_enable(pmu); 1202 } 1203 1204 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1205 1206 /* 1207 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1208 * perf_event_task_tick() are fully serialized because they're strictly cpu 1209 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1210 * disabled, while perf_event_task_tick is called from IRQ context. 1211 */ 1212 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1213 { 1214 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1215 1216 lockdep_assert_irqs_disabled(); 1217 1218 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1219 1220 list_add(&ctx->active_ctx_list, head); 1221 } 1222 1223 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1224 { 1225 lockdep_assert_irqs_disabled(); 1226 1227 WARN_ON(list_empty(&ctx->active_ctx_list)); 1228 1229 list_del_init(&ctx->active_ctx_list); 1230 } 1231 1232 static void get_ctx(struct perf_event_context *ctx) 1233 { 1234 refcount_inc(&ctx->refcount); 1235 } 1236 1237 static void free_ctx(struct rcu_head *head) 1238 { 1239 struct perf_event_context *ctx; 1240 1241 ctx = container_of(head, struct perf_event_context, rcu_head); 1242 kfree(ctx->task_ctx_data); 1243 kfree(ctx); 1244 } 1245 1246 static void put_ctx(struct perf_event_context *ctx) 1247 { 1248 if (refcount_dec_and_test(&ctx->refcount)) { 1249 if (ctx->parent_ctx) 1250 put_ctx(ctx->parent_ctx); 1251 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1252 put_task_struct(ctx->task); 1253 call_rcu(&ctx->rcu_head, free_ctx); 1254 } 1255 } 1256 1257 /* 1258 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1259 * perf_pmu_migrate_context() we need some magic. 1260 * 1261 * Those places that change perf_event::ctx will hold both 1262 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1263 * 1264 * Lock ordering is by mutex address. There are two other sites where 1265 * perf_event_context::mutex nests and those are: 1266 * 1267 * - perf_event_exit_task_context() [ child , 0 ] 1268 * perf_event_exit_event() 1269 * put_event() [ parent, 1 ] 1270 * 1271 * - perf_event_init_context() [ parent, 0 ] 1272 * inherit_task_group() 1273 * inherit_group() 1274 * inherit_event() 1275 * perf_event_alloc() 1276 * perf_init_event() 1277 * perf_try_init_event() [ child , 1 ] 1278 * 1279 * While it appears there is an obvious deadlock here -- the parent and child 1280 * nesting levels are inverted between the two. This is in fact safe because 1281 * life-time rules separate them. That is an exiting task cannot fork, and a 1282 * spawning task cannot (yet) exit. 1283 * 1284 * But remember that that these are parent<->child context relations, and 1285 * migration does not affect children, therefore these two orderings should not 1286 * interact. 1287 * 1288 * The change in perf_event::ctx does not affect children (as claimed above) 1289 * because the sys_perf_event_open() case will install a new event and break 1290 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1291 * concerned with cpuctx and that doesn't have children. 1292 * 1293 * The places that change perf_event::ctx will issue: 1294 * 1295 * perf_remove_from_context(); 1296 * synchronize_rcu(); 1297 * perf_install_in_context(); 1298 * 1299 * to affect the change. The remove_from_context() + synchronize_rcu() should 1300 * quiesce the event, after which we can install it in the new location. This 1301 * means that only external vectors (perf_fops, prctl) can perturb the event 1302 * while in transit. Therefore all such accessors should also acquire 1303 * perf_event_context::mutex to serialize against this. 1304 * 1305 * However; because event->ctx can change while we're waiting to acquire 1306 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1307 * function. 1308 * 1309 * Lock order: 1310 * exec_update_mutex 1311 * task_struct::perf_event_mutex 1312 * perf_event_context::mutex 1313 * perf_event::child_mutex; 1314 * perf_event_context::lock 1315 * perf_event::mmap_mutex 1316 * mmap_sem 1317 * perf_addr_filters_head::lock 1318 * 1319 * cpu_hotplug_lock 1320 * pmus_lock 1321 * cpuctx->mutex / perf_event_context::mutex 1322 */ 1323 static struct perf_event_context * 1324 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1325 { 1326 struct perf_event_context *ctx; 1327 1328 again: 1329 rcu_read_lock(); 1330 ctx = READ_ONCE(event->ctx); 1331 if (!refcount_inc_not_zero(&ctx->refcount)) { 1332 rcu_read_unlock(); 1333 goto again; 1334 } 1335 rcu_read_unlock(); 1336 1337 mutex_lock_nested(&ctx->mutex, nesting); 1338 if (event->ctx != ctx) { 1339 mutex_unlock(&ctx->mutex); 1340 put_ctx(ctx); 1341 goto again; 1342 } 1343 1344 return ctx; 1345 } 1346 1347 static inline struct perf_event_context * 1348 perf_event_ctx_lock(struct perf_event *event) 1349 { 1350 return perf_event_ctx_lock_nested(event, 0); 1351 } 1352 1353 static void perf_event_ctx_unlock(struct perf_event *event, 1354 struct perf_event_context *ctx) 1355 { 1356 mutex_unlock(&ctx->mutex); 1357 put_ctx(ctx); 1358 } 1359 1360 /* 1361 * This must be done under the ctx->lock, such as to serialize against 1362 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1363 * calling scheduler related locks and ctx->lock nests inside those. 1364 */ 1365 static __must_check struct perf_event_context * 1366 unclone_ctx(struct perf_event_context *ctx) 1367 { 1368 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1369 1370 lockdep_assert_held(&ctx->lock); 1371 1372 if (parent_ctx) 1373 ctx->parent_ctx = NULL; 1374 ctx->generation++; 1375 1376 return parent_ctx; 1377 } 1378 1379 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1380 enum pid_type type) 1381 { 1382 u32 nr; 1383 /* 1384 * only top level events have the pid namespace they were created in 1385 */ 1386 if (event->parent) 1387 event = event->parent; 1388 1389 nr = __task_pid_nr_ns(p, type, event->ns); 1390 /* avoid -1 if it is idle thread or runs in another ns */ 1391 if (!nr && !pid_alive(p)) 1392 nr = -1; 1393 return nr; 1394 } 1395 1396 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1397 { 1398 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1399 } 1400 1401 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1402 { 1403 return perf_event_pid_type(event, p, PIDTYPE_PID); 1404 } 1405 1406 /* 1407 * If we inherit events we want to return the parent event id 1408 * to userspace. 1409 */ 1410 static u64 primary_event_id(struct perf_event *event) 1411 { 1412 u64 id = event->id; 1413 1414 if (event->parent) 1415 id = event->parent->id; 1416 1417 return id; 1418 } 1419 1420 /* 1421 * Get the perf_event_context for a task and lock it. 1422 * 1423 * This has to cope with with the fact that until it is locked, 1424 * the context could get moved to another task. 1425 */ 1426 static struct perf_event_context * 1427 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1428 { 1429 struct perf_event_context *ctx; 1430 1431 retry: 1432 /* 1433 * One of the few rules of preemptible RCU is that one cannot do 1434 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1435 * part of the read side critical section was irqs-enabled -- see 1436 * rcu_read_unlock_special(). 1437 * 1438 * Since ctx->lock nests under rq->lock we must ensure the entire read 1439 * side critical section has interrupts disabled. 1440 */ 1441 local_irq_save(*flags); 1442 rcu_read_lock(); 1443 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1444 if (ctx) { 1445 /* 1446 * If this context is a clone of another, it might 1447 * get swapped for another underneath us by 1448 * perf_event_task_sched_out, though the 1449 * rcu_read_lock() protects us from any context 1450 * getting freed. Lock the context and check if it 1451 * got swapped before we could get the lock, and retry 1452 * if so. If we locked the right context, then it 1453 * can't get swapped on us any more. 1454 */ 1455 raw_spin_lock(&ctx->lock); 1456 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1457 raw_spin_unlock(&ctx->lock); 1458 rcu_read_unlock(); 1459 local_irq_restore(*flags); 1460 goto retry; 1461 } 1462 1463 if (ctx->task == TASK_TOMBSTONE || 1464 !refcount_inc_not_zero(&ctx->refcount)) { 1465 raw_spin_unlock(&ctx->lock); 1466 ctx = NULL; 1467 } else { 1468 WARN_ON_ONCE(ctx->task != task); 1469 } 1470 } 1471 rcu_read_unlock(); 1472 if (!ctx) 1473 local_irq_restore(*flags); 1474 return ctx; 1475 } 1476 1477 /* 1478 * Get the context for a task and increment its pin_count so it 1479 * can't get swapped to another task. This also increments its 1480 * reference count so that the context can't get freed. 1481 */ 1482 static struct perf_event_context * 1483 perf_pin_task_context(struct task_struct *task, int ctxn) 1484 { 1485 struct perf_event_context *ctx; 1486 unsigned long flags; 1487 1488 ctx = perf_lock_task_context(task, ctxn, &flags); 1489 if (ctx) { 1490 ++ctx->pin_count; 1491 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1492 } 1493 return ctx; 1494 } 1495 1496 static void perf_unpin_context(struct perf_event_context *ctx) 1497 { 1498 unsigned long flags; 1499 1500 raw_spin_lock_irqsave(&ctx->lock, flags); 1501 --ctx->pin_count; 1502 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1503 } 1504 1505 /* 1506 * Update the record of the current time in a context. 1507 */ 1508 static void update_context_time(struct perf_event_context *ctx) 1509 { 1510 u64 now = perf_clock(); 1511 1512 ctx->time += now - ctx->timestamp; 1513 ctx->timestamp = now; 1514 } 1515 1516 static u64 perf_event_time(struct perf_event *event) 1517 { 1518 struct perf_event_context *ctx = event->ctx; 1519 1520 if (is_cgroup_event(event)) 1521 return perf_cgroup_event_time(event); 1522 1523 return ctx ? ctx->time : 0; 1524 } 1525 1526 static enum event_type_t get_event_type(struct perf_event *event) 1527 { 1528 struct perf_event_context *ctx = event->ctx; 1529 enum event_type_t event_type; 1530 1531 lockdep_assert_held(&ctx->lock); 1532 1533 /* 1534 * It's 'group type', really, because if our group leader is 1535 * pinned, so are we. 1536 */ 1537 if (event->group_leader != event) 1538 event = event->group_leader; 1539 1540 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1541 if (!ctx->task) 1542 event_type |= EVENT_CPU; 1543 1544 return event_type; 1545 } 1546 1547 /* 1548 * Helper function to initialize event group nodes. 1549 */ 1550 static void init_event_group(struct perf_event *event) 1551 { 1552 RB_CLEAR_NODE(&event->group_node); 1553 event->group_index = 0; 1554 } 1555 1556 /* 1557 * Extract pinned or flexible groups from the context 1558 * based on event attrs bits. 1559 */ 1560 static struct perf_event_groups * 1561 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1562 { 1563 if (event->attr.pinned) 1564 return &ctx->pinned_groups; 1565 else 1566 return &ctx->flexible_groups; 1567 } 1568 1569 /* 1570 * Helper function to initializes perf_event_group trees. 1571 */ 1572 static void perf_event_groups_init(struct perf_event_groups *groups) 1573 { 1574 groups->tree = RB_ROOT; 1575 groups->index = 0; 1576 } 1577 1578 /* 1579 * Compare function for event groups; 1580 * 1581 * Implements complex key that first sorts by CPU and then by virtual index 1582 * which provides ordering when rotating groups for the same CPU. 1583 */ 1584 static bool 1585 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1586 { 1587 if (left->cpu < right->cpu) 1588 return true; 1589 if (left->cpu > right->cpu) 1590 return false; 1591 1592 #ifdef CONFIG_CGROUP_PERF 1593 if (left->cgrp != right->cgrp) { 1594 if (!left->cgrp || !left->cgrp->css.cgroup) { 1595 /* 1596 * Left has no cgroup but right does, no cgroups come 1597 * first. 1598 */ 1599 return true; 1600 } 1601 if (!right->cgrp || !right->cgrp->css.cgroup) { 1602 /* 1603 * Right has no cgroup but left does, no cgroups come 1604 * first. 1605 */ 1606 return false; 1607 } 1608 /* Two dissimilar cgroups, order by id. */ 1609 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id) 1610 return true; 1611 1612 return false; 1613 } 1614 #endif 1615 1616 if (left->group_index < right->group_index) 1617 return true; 1618 if (left->group_index > right->group_index) 1619 return false; 1620 1621 return false; 1622 } 1623 1624 /* 1625 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1626 * key (see perf_event_groups_less). This places it last inside the CPU 1627 * subtree. 1628 */ 1629 static void 1630 perf_event_groups_insert(struct perf_event_groups *groups, 1631 struct perf_event *event) 1632 { 1633 struct perf_event *node_event; 1634 struct rb_node *parent; 1635 struct rb_node **node; 1636 1637 event->group_index = ++groups->index; 1638 1639 node = &groups->tree.rb_node; 1640 parent = *node; 1641 1642 while (*node) { 1643 parent = *node; 1644 node_event = container_of(*node, struct perf_event, group_node); 1645 1646 if (perf_event_groups_less(event, node_event)) 1647 node = &parent->rb_left; 1648 else 1649 node = &parent->rb_right; 1650 } 1651 1652 rb_link_node(&event->group_node, parent, node); 1653 rb_insert_color(&event->group_node, &groups->tree); 1654 } 1655 1656 /* 1657 * Helper function to insert event into the pinned or flexible groups. 1658 */ 1659 static void 1660 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1661 { 1662 struct perf_event_groups *groups; 1663 1664 groups = get_event_groups(event, ctx); 1665 perf_event_groups_insert(groups, event); 1666 } 1667 1668 /* 1669 * Delete a group from a tree. 1670 */ 1671 static void 1672 perf_event_groups_delete(struct perf_event_groups *groups, 1673 struct perf_event *event) 1674 { 1675 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1676 RB_EMPTY_ROOT(&groups->tree)); 1677 1678 rb_erase(&event->group_node, &groups->tree); 1679 init_event_group(event); 1680 } 1681 1682 /* 1683 * Helper function to delete event from its groups. 1684 */ 1685 static void 1686 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1687 { 1688 struct perf_event_groups *groups; 1689 1690 groups = get_event_groups(event, ctx); 1691 perf_event_groups_delete(groups, event); 1692 } 1693 1694 /* 1695 * Get the leftmost event in the cpu/cgroup subtree. 1696 */ 1697 static struct perf_event * 1698 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1699 struct cgroup *cgrp) 1700 { 1701 struct perf_event *node_event = NULL, *match = NULL; 1702 struct rb_node *node = groups->tree.rb_node; 1703 #ifdef CONFIG_CGROUP_PERF 1704 u64 node_cgrp_id, cgrp_id = 0; 1705 1706 if (cgrp) 1707 cgrp_id = cgrp->kn->id; 1708 #endif 1709 1710 while (node) { 1711 node_event = container_of(node, struct perf_event, group_node); 1712 1713 if (cpu < node_event->cpu) { 1714 node = node->rb_left; 1715 continue; 1716 } 1717 if (cpu > node_event->cpu) { 1718 node = node->rb_right; 1719 continue; 1720 } 1721 #ifdef CONFIG_CGROUP_PERF 1722 node_cgrp_id = 0; 1723 if (node_event->cgrp && node_event->cgrp->css.cgroup) 1724 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id; 1725 1726 if (cgrp_id < node_cgrp_id) { 1727 node = node->rb_left; 1728 continue; 1729 } 1730 if (cgrp_id > node_cgrp_id) { 1731 node = node->rb_right; 1732 continue; 1733 } 1734 #endif 1735 match = node_event; 1736 node = node->rb_left; 1737 } 1738 1739 return match; 1740 } 1741 1742 /* 1743 * Like rb_entry_next_safe() for the @cpu subtree. 1744 */ 1745 static struct perf_event * 1746 perf_event_groups_next(struct perf_event *event) 1747 { 1748 struct perf_event *next; 1749 #ifdef CONFIG_CGROUP_PERF 1750 u64 curr_cgrp_id = 0; 1751 u64 next_cgrp_id = 0; 1752 #endif 1753 1754 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1755 if (next == NULL || next->cpu != event->cpu) 1756 return NULL; 1757 1758 #ifdef CONFIG_CGROUP_PERF 1759 if (event->cgrp && event->cgrp->css.cgroup) 1760 curr_cgrp_id = event->cgrp->css.cgroup->kn->id; 1761 1762 if (next->cgrp && next->cgrp->css.cgroup) 1763 next_cgrp_id = next->cgrp->css.cgroup->kn->id; 1764 1765 if (curr_cgrp_id != next_cgrp_id) 1766 return NULL; 1767 #endif 1768 return next; 1769 } 1770 1771 /* 1772 * Iterate through the whole groups tree. 1773 */ 1774 #define perf_event_groups_for_each(event, groups) \ 1775 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1776 typeof(*event), group_node); event; \ 1777 event = rb_entry_safe(rb_next(&event->group_node), \ 1778 typeof(*event), group_node)) 1779 1780 /* 1781 * Add an event from the lists for its context. 1782 * Must be called with ctx->mutex and ctx->lock held. 1783 */ 1784 static void 1785 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1786 { 1787 lockdep_assert_held(&ctx->lock); 1788 1789 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1790 event->attach_state |= PERF_ATTACH_CONTEXT; 1791 1792 event->tstamp = perf_event_time(event); 1793 1794 /* 1795 * If we're a stand alone event or group leader, we go to the context 1796 * list, group events are kept attached to the group so that 1797 * perf_group_detach can, at all times, locate all siblings. 1798 */ 1799 if (event->group_leader == event) { 1800 event->group_caps = event->event_caps; 1801 add_event_to_groups(event, ctx); 1802 } 1803 1804 list_add_rcu(&event->event_entry, &ctx->event_list); 1805 ctx->nr_events++; 1806 if (event->attr.inherit_stat) 1807 ctx->nr_stat++; 1808 1809 if (event->state > PERF_EVENT_STATE_OFF) 1810 perf_cgroup_event_enable(event, ctx); 1811 1812 ctx->generation++; 1813 } 1814 1815 /* 1816 * Initialize event state based on the perf_event_attr::disabled. 1817 */ 1818 static inline void perf_event__state_init(struct perf_event *event) 1819 { 1820 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1821 PERF_EVENT_STATE_INACTIVE; 1822 } 1823 1824 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1825 { 1826 int entry = sizeof(u64); /* value */ 1827 int size = 0; 1828 int nr = 1; 1829 1830 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1831 size += sizeof(u64); 1832 1833 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1834 size += sizeof(u64); 1835 1836 if (event->attr.read_format & PERF_FORMAT_ID) 1837 entry += sizeof(u64); 1838 1839 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1840 nr += nr_siblings; 1841 size += sizeof(u64); 1842 } 1843 1844 size += entry * nr; 1845 event->read_size = size; 1846 } 1847 1848 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1849 { 1850 struct perf_sample_data *data; 1851 u16 size = 0; 1852 1853 if (sample_type & PERF_SAMPLE_IP) 1854 size += sizeof(data->ip); 1855 1856 if (sample_type & PERF_SAMPLE_ADDR) 1857 size += sizeof(data->addr); 1858 1859 if (sample_type & PERF_SAMPLE_PERIOD) 1860 size += sizeof(data->period); 1861 1862 if (sample_type & PERF_SAMPLE_WEIGHT) 1863 size += sizeof(data->weight); 1864 1865 if (sample_type & PERF_SAMPLE_READ) 1866 size += event->read_size; 1867 1868 if (sample_type & PERF_SAMPLE_DATA_SRC) 1869 size += sizeof(data->data_src.val); 1870 1871 if (sample_type & PERF_SAMPLE_TRANSACTION) 1872 size += sizeof(data->txn); 1873 1874 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1875 size += sizeof(data->phys_addr); 1876 1877 if (sample_type & PERF_SAMPLE_CGROUP) 1878 size += sizeof(data->cgroup); 1879 1880 event->header_size = size; 1881 } 1882 1883 /* 1884 * Called at perf_event creation and when events are attached/detached from a 1885 * group. 1886 */ 1887 static void perf_event__header_size(struct perf_event *event) 1888 { 1889 __perf_event_read_size(event, 1890 event->group_leader->nr_siblings); 1891 __perf_event_header_size(event, event->attr.sample_type); 1892 } 1893 1894 static void perf_event__id_header_size(struct perf_event *event) 1895 { 1896 struct perf_sample_data *data; 1897 u64 sample_type = event->attr.sample_type; 1898 u16 size = 0; 1899 1900 if (sample_type & PERF_SAMPLE_TID) 1901 size += sizeof(data->tid_entry); 1902 1903 if (sample_type & PERF_SAMPLE_TIME) 1904 size += sizeof(data->time); 1905 1906 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1907 size += sizeof(data->id); 1908 1909 if (sample_type & PERF_SAMPLE_ID) 1910 size += sizeof(data->id); 1911 1912 if (sample_type & PERF_SAMPLE_STREAM_ID) 1913 size += sizeof(data->stream_id); 1914 1915 if (sample_type & PERF_SAMPLE_CPU) 1916 size += sizeof(data->cpu_entry); 1917 1918 event->id_header_size = size; 1919 } 1920 1921 static bool perf_event_validate_size(struct perf_event *event) 1922 { 1923 /* 1924 * The values computed here will be over-written when we actually 1925 * attach the event. 1926 */ 1927 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1928 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1929 perf_event__id_header_size(event); 1930 1931 /* 1932 * Sum the lot; should not exceed the 64k limit we have on records. 1933 * Conservative limit to allow for callchains and other variable fields. 1934 */ 1935 if (event->read_size + event->header_size + 1936 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1937 return false; 1938 1939 return true; 1940 } 1941 1942 static void perf_group_attach(struct perf_event *event) 1943 { 1944 struct perf_event *group_leader = event->group_leader, *pos; 1945 1946 lockdep_assert_held(&event->ctx->lock); 1947 1948 /* 1949 * We can have double attach due to group movement in perf_event_open. 1950 */ 1951 if (event->attach_state & PERF_ATTACH_GROUP) 1952 return; 1953 1954 event->attach_state |= PERF_ATTACH_GROUP; 1955 1956 if (group_leader == event) 1957 return; 1958 1959 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1960 1961 group_leader->group_caps &= event->event_caps; 1962 1963 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1964 group_leader->nr_siblings++; 1965 1966 perf_event__header_size(group_leader); 1967 1968 for_each_sibling_event(pos, group_leader) 1969 perf_event__header_size(pos); 1970 } 1971 1972 /* 1973 * Remove an event from the lists for its context. 1974 * Must be called with ctx->mutex and ctx->lock held. 1975 */ 1976 static void 1977 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1978 { 1979 WARN_ON_ONCE(event->ctx != ctx); 1980 lockdep_assert_held(&ctx->lock); 1981 1982 /* 1983 * We can have double detach due to exit/hot-unplug + close. 1984 */ 1985 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1986 return; 1987 1988 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1989 1990 ctx->nr_events--; 1991 if (event->attr.inherit_stat) 1992 ctx->nr_stat--; 1993 1994 list_del_rcu(&event->event_entry); 1995 1996 if (event->group_leader == event) 1997 del_event_from_groups(event, ctx); 1998 1999 /* 2000 * If event was in error state, then keep it 2001 * that way, otherwise bogus counts will be 2002 * returned on read(). The only way to get out 2003 * of error state is by explicit re-enabling 2004 * of the event 2005 */ 2006 if (event->state > PERF_EVENT_STATE_OFF) { 2007 perf_cgroup_event_disable(event, ctx); 2008 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2009 } 2010 2011 ctx->generation++; 2012 } 2013 2014 static int 2015 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2016 { 2017 if (!has_aux(aux_event)) 2018 return 0; 2019 2020 if (!event->pmu->aux_output_match) 2021 return 0; 2022 2023 return event->pmu->aux_output_match(aux_event); 2024 } 2025 2026 static void put_event(struct perf_event *event); 2027 static void event_sched_out(struct perf_event *event, 2028 struct perf_cpu_context *cpuctx, 2029 struct perf_event_context *ctx); 2030 2031 static void perf_put_aux_event(struct perf_event *event) 2032 { 2033 struct perf_event_context *ctx = event->ctx; 2034 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2035 struct perf_event *iter; 2036 2037 /* 2038 * If event uses aux_event tear down the link 2039 */ 2040 if (event->aux_event) { 2041 iter = event->aux_event; 2042 event->aux_event = NULL; 2043 put_event(iter); 2044 return; 2045 } 2046 2047 /* 2048 * If the event is an aux_event, tear down all links to 2049 * it from other events. 2050 */ 2051 for_each_sibling_event(iter, event->group_leader) { 2052 if (iter->aux_event != event) 2053 continue; 2054 2055 iter->aux_event = NULL; 2056 put_event(event); 2057 2058 /* 2059 * If it's ACTIVE, schedule it out and put it into ERROR 2060 * state so that we don't try to schedule it again. Note 2061 * that perf_event_enable() will clear the ERROR status. 2062 */ 2063 event_sched_out(iter, cpuctx, ctx); 2064 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2065 } 2066 } 2067 2068 static bool perf_need_aux_event(struct perf_event *event) 2069 { 2070 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2071 } 2072 2073 static int perf_get_aux_event(struct perf_event *event, 2074 struct perf_event *group_leader) 2075 { 2076 /* 2077 * Our group leader must be an aux event if we want to be 2078 * an aux_output. This way, the aux event will precede its 2079 * aux_output events in the group, and therefore will always 2080 * schedule first. 2081 */ 2082 if (!group_leader) 2083 return 0; 2084 2085 /* 2086 * aux_output and aux_sample_size are mutually exclusive. 2087 */ 2088 if (event->attr.aux_output && event->attr.aux_sample_size) 2089 return 0; 2090 2091 if (event->attr.aux_output && 2092 !perf_aux_output_match(event, group_leader)) 2093 return 0; 2094 2095 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2096 return 0; 2097 2098 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2099 return 0; 2100 2101 /* 2102 * Link aux_outputs to their aux event; this is undone in 2103 * perf_group_detach() by perf_put_aux_event(). When the 2104 * group in torn down, the aux_output events loose their 2105 * link to the aux_event and can't schedule any more. 2106 */ 2107 event->aux_event = group_leader; 2108 2109 return 1; 2110 } 2111 2112 static inline struct list_head *get_event_list(struct perf_event *event) 2113 { 2114 struct perf_event_context *ctx = event->ctx; 2115 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2116 } 2117 2118 static void perf_group_detach(struct perf_event *event) 2119 { 2120 struct perf_event *sibling, *tmp; 2121 struct perf_event_context *ctx = event->ctx; 2122 2123 lockdep_assert_held(&ctx->lock); 2124 2125 /* 2126 * We can have double detach due to exit/hot-unplug + close. 2127 */ 2128 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2129 return; 2130 2131 event->attach_state &= ~PERF_ATTACH_GROUP; 2132 2133 perf_put_aux_event(event); 2134 2135 /* 2136 * If this is a sibling, remove it from its group. 2137 */ 2138 if (event->group_leader != event) { 2139 list_del_init(&event->sibling_list); 2140 event->group_leader->nr_siblings--; 2141 goto out; 2142 } 2143 2144 /* 2145 * If this was a group event with sibling events then 2146 * upgrade the siblings to singleton events by adding them 2147 * to whatever list we are on. 2148 */ 2149 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2150 2151 sibling->group_leader = sibling; 2152 list_del_init(&sibling->sibling_list); 2153 2154 /* Inherit group flags from the previous leader */ 2155 sibling->group_caps = event->group_caps; 2156 2157 if (!RB_EMPTY_NODE(&event->group_node)) { 2158 add_event_to_groups(sibling, event->ctx); 2159 2160 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2161 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2162 } 2163 2164 WARN_ON_ONCE(sibling->ctx != event->ctx); 2165 } 2166 2167 out: 2168 perf_event__header_size(event->group_leader); 2169 2170 for_each_sibling_event(tmp, event->group_leader) 2171 perf_event__header_size(tmp); 2172 } 2173 2174 static bool is_orphaned_event(struct perf_event *event) 2175 { 2176 return event->state == PERF_EVENT_STATE_DEAD; 2177 } 2178 2179 static inline int __pmu_filter_match(struct perf_event *event) 2180 { 2181 struct pmu *pmu = event->pmu; 2182 return pmu->filter_match ? pmu->filter_match(event) : 1; 2183 } 2184 2185 /* 2186 * Check whether we should attempt to schedule an event group based on 2187 * PMU-specific filtering. An event group can consist of HW and SW events, 2188 * potentially with a SW leader, so we must check all the filters, to 2189 * determine whether a group is schedulable: 2190 */ 2191 static inline int pmu_filter_match(struct perf_event *event) 2192 { 2193 struct perf_event *sibling; 2194 2195 if (!__pmu_filter_match(event)) 2196 return 0; 2197 2198 for_each_sibling_event(sibling, event) { 2199 if (!__pmu_filter_match(sibling)) 2200 return 0; 2201 } 2202 2203 return 1; 2204 } 2205 2206 static inline int 2207 event_filter_match(struct perf_event *event) 2208 { 2209 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2210 perf_cgroup_match(event) && pmu_filter_match(event); 2211 } 2212 2213 static void 2214 event_sched_out(struct perf_event *event, 2215 struct perf_cpu_context *cpuctx, 2216 struct perf_event_context *ctx) 2217 { 2218 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2219 2220 WARN_ON_ONCE(event->ctx != ctx); 2221 lockdep_assert_held(&ctx->lock); 2222 2223 if (event->state != PERF_EVENT_STATE_ACTIVE) 2224 return; 2225 2226 /* 2227 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2228 * we can schedule events _OUT_ individually through things like 2229 * __perf_remove_from_context(). 2230 */ 2231 list_del_init(&event->active_list); 2232 2233 perf_pmu_disable(event->pmu); 2234 2235 event->pmu->del(event, 0); 2236 event->oncpu = -1; 2237 2238 if (READ_ONCE(event->pending_disable) >= 0) { 2239 WRITE_ONCE(event->pending_disable, -1); 2240 perf_cgroup_event_disable(event, ctx); 2241 state = PERF_EVENT_STATE_OFF; 2242 } 2243 perf_event_set_state(event, state); 2244 2245 if (!is_software_event(event)) 2246 cpuctx->active_oncpu--; 2247 if (!--ctx->nr_active) 2248 perf_event_ctx_deactivate(ctx); 2249 if (event->attr.freq && event->attr.sample_freq) 2250 ctx->nr_freq--; 2251 if (event->attr.exclusive || !cpuctx->active_oncpu) 2252 cpuctx->exclusive = 0; 2253 2254 perf_pmu_enable(event->pmu); 2255 } 2256 2257 static void 2258 group_sched_out(struct perf_event *group_event, 2259 struct perf_cpu_context *cpuctx, 2260 struct perf_event_context *ctx) 2261 { 2262 struct perf_event *event; 2263 2264 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2265 return; 2266 2267 perf_pmu_disable(ctx->pmu); 2268 2269 event_sched_out(group_event, cpuctx, ctx); 2270 2271 /* 2272 * Schedule out siblings (if any): 2273 */ 2274 for_each_sibling_event(event, group_event) 2275 event_sched_out(event, cpuctx, ctx); 2276 2277 perf_pmu_enable(ctx->pmu); 2278 2279 if (group_event->attr.exclusive) 2280 cpuctx->exclusive = 0; 2281 } 2282 2283 #define DETACH_GROUP 0x01UL 2284 2285 /* 2286 * Cross CPU call to remove a performance event 2287 * 2288 * We disable the event on the hardware level first. After that we 2289 * remove it from the context list. 2290 */ 2291 static void 2292 __perf_remove_from_context(struct perf_event *event, 2293 struct perf_cpu_context *cpuctx, 2294 struct perf_event_context *ctx, 2295 void *info) 2296 { 2297 unsigned long flags = (unsigned long)info; 2298 2299 if (ctx->is_active & EVENT_TIME) { 2300 update_context_time(ctx); 2301 update_cgrp_time_from_cpuctx(cpuctx); 2302 } 2303 2304 event_sched_out(event, cpuctx, ctx); 2305 if (flags & DETACH_GROUP) 2306 perf_group_detach(event); 2307 list_del_event(event, ctx); 2308 2309 if (!ctx->nr_events && ctx->is_active) { 2310 ctx->is_active = 0; 2311 ctx->rotate_necessary = 0; 2312 if (ctx->task) { 2313 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2314 cpuctx->task_ctx = NULL; 2315 } 2316 } 2317 } 2318 2319 /* 2320 * Remove the event from a task's (or a CPU's) list of events. 2321 * 2322 * If event->ctx is a cloned context, callers must make sure that 2323 * every task struct that event->ctx->task could possibly point to 2324 * remains valid. This is OK when called from perf_release since 2325 * that only calls us on the top-level context, which can't be a clone. 2326 * When called from perf_event_exit_task, it's OK because the 2327 * context has been detached from its task. 2328 */ 2329 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2330 { 2331 struct perf_event_context *ctx = event->ctx; 2332 2333 lockdep_assert_held(&ctx->mutex); 2334 2335 event_function_call(event, __perf_remove_from_context, (void *)flags); 2336 2337 /* 2338 * The above event_function_call() can NO-OP when it hits 2339 * TASK_TOMBSTONE. In that case we must already have been detached 2340 * from the context (by perf_event_exit_event()) but the grouping 2341 * might still be in-tact. 2342 */ 2343 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2344 if ((flags & DETACH_GROUP) && 2345 (event->attach_state & PERF_ATTACH_GROUP)) { 2346 /* 2347 * Since in that case we cannot possibly be scheduled, simply 2348 * detach now. 2349 */ 2350 raw_spin_lock_irq(&ctx->lock); 2351 perf_group_detach(event); 2352 raw_spin_unlock_irq(&ctx->lock); 2353 } 2354 } 2355 2356 /* 2357 * Cross CPU call to disable a performance event 2358 */ 2359 static void __perf_event_disable(struct perf_event *event, 2360 struct perf_cpu_context *cpuctx, 2361 struct perf_event_context *ctx, 2362 void *info) 2363 { 2364 if (event->state < PERF_EVENT_STATE_INACTIVE) 2365 return; 2366 2367 if (ctx->is_active & EVENT_TIME) { 2368 update_context_time(ctx); 2369 update_cgrp_time_from_event(event); 2370 } 2371 2372 if (event == event->group_leader) 2373 group_sched_out(event, cpuctx, ctx); 2374 else 2375 event_sched_out(event, cpuctx, ctx); 2376 2377 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2378 perf_cgroup_event_disable(event, ctx); 2379 } 2380 2381 /* 2382 * Disable an event. 2383 * 2384 * If event->ctx is a cloned context, callers must make sure that 2385 * every task struct that event->ctx->task could possibly point to 2386 * remains valid. This condition is satisfied when called through 2387 * perf_event_for_each_child or perf_event_for_each because they 2388 * hold the top-level event's child_mutex, so any descendant that 2389 * goes to exit will block in perf_event_exit_event(). 2390 * 2391 * When called from perf_pending_event it's OK because event->ctx 2392 * is the current context on this CPU and preemption is disabled, 2393 * hence we can't get into perf_event_task_sched_out for this context. 2394 */ 2395 static void _perf_event_disable(struct perf_event *event) 2396 { 2397 struct perf_event_context *ctx = event->ctx; 2398 2399 raw_spin_lock_irq(&ctx->lock); 2400 if (event->state <= PERF_EVENT_STATE_OFF) { 2401 raw_spin_unlock_irq(&ctx->lock); 2402 return; 2403 } 2404 raw_spin_unlock_irq(&ctx->lock); 2405 2406 event_function_call(event, __perf_event_disable, NULL); 2407 } 2408 2409 void perf_event_disable_local(struct perf_event *event) 2410 { 2411 event_function_local(event, __perf_event_disable, NULL); 2412 } 2413 2414 /* 2415 * Strictly speaking kernel users cannot create groups and therefore this 2416 * interface does not need the perf_event_ctx_lock() magic. 2417 */ 2418 void perf_event_disable(struct perf_event *event) 2419 { 2420 struct perf_event_context *ctx; 2421 2422 ctx = perf_event_ctx_lock(event); 2423 _perf_event_disable(event); 2424 perf_event_ctx_unlock(event, ctx); 2425 } 2426 EXPORT_SYMBOL_GPL(perf_event_disable); 2427 2428 void perf_event_disable_inatomic(struct perf_event *event) 2429 { 2430 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2431 /* can fail, see perf_pending_event_disable() */ 2432 irq_work_queue(&event->pending); 2433 } 2434 2435 static void perf_set_shadow_time(struct perf_event *event, 2436 struct perf_event_context *ctx) 2437 { 2438 /* 2439 * use the correct time source for the time snapshot 2440 * 2441 * We could get by without this by leveraging the 2442 * fact that to get to this function, the caller 2443 * has most likely already called update_context_time() 2444 * and update_cgrp_time_xx() and thus both timestamp 2445 * are identical (or very close). Given that tstamp is, 2446 * already adjusted for cgroup, we could say that: 2447 * tstamp - ctx->timestamp 2448 * is equivalent to 2449 * tstamp - cgrp->timestamp. 2450 * 2451 * Then, in perf_output_read(), the calculation would 2452 * work with no changes because: 2453 * - event is guaranteed scheduled in 2454 * - no scheduled out in between 2455 * - thus the timestamp would be the same 2456 * 2457 * But this is a bit hairy. 2458 * 2459 * So instead, we have an explicit cgroup call to remain 2460 * within the time time source all along. We believe it 2461 * is cleaner and simpler to understand. 2462 */ 2463 if (is_cgroup_event(event)) 2464 perf_cgroup_set_shadow_time(event, event->tstamp); 2465 else 2466 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2467 } 2468 2469 #define MAX_INTERRUPTS (~0ULL) 2470 2471 static void perf_log_throttle(struct perf_event *event, int enable); 2472 static void perf_log_itrace_start(struct perf_event *event); 2473 2474 static int 2475 event_sched_in(struct perf_event *event, 2476 struct perf_cpu_context *cpuctx, 2477 struct perf_event_context *ctx) 2478 { 2479 int ret = 0; 2480 2481 WARN_ON_ONCE(event->ctx != ctx); 2482 2483 lockdep_assert_held(&ctx->lock); 2484 2485 if (event->state <= PERF_EVENT_STATE_OFF) 2486 return 0; 2487 2488 WRITE_ONCE(event->oncpu, smp_processor_id()); 2489 /* 2490 * Order event::oncpu write to happen before the ACTIVE state is 2491 * visible. This allows perf_event_{stop,read}() to observe the correct 2492 * ->oncpu if it sees ACTIVE. 2493 */ 2494 smp_wmb(); 2495 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2496 2497 /* 2498 * Unthrottle events, since we scheduled we might have missed several 2499 * ticks already, also for a heavily scheduling task there is little 2500 * guarantee it'll get a tick in a timely manner. 2501 */ 2502 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2503 perf_log_throttle(event, 1); 2504 event->hw.interrupts = 0; 2505 } 2506 2507 perf_pmu_disable(event->pmu); 2508 2509 perf_set_shadow_time(event, ctx); 2510 2511 perf_log_itrace_start(event); 2512 2513 if (event->pmu->add(event, PERF_EF_START)) { 2514 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2515 event->oncpu = -1; 2516 ret = -EAGAIN; 2517 goto out; 2518 } 2519 2520 if (!is_software_event(event)) 2521 cpuctx->active_oncpu++; 2522 if (!ctx->nr_active++) 2523 perf_event_ctx_activate(ctx); 2524 if (event->attr.freq && event->attr.sample_freq) 2525 ctx->nr_freq++; 2526 2527 if (event->attr.exclusive) 2528 cpuctx->exclusive = 1; 2529 2530 out: 2531 perf_pmu_enable(event->pmu); 2532 2533 return ret; 2534 } 2535 2536 static int 2537 group_sched_in(struct perf_event *group_event, 2538 struct perf_cpu_context *cpuctx, 2539 struct perf_event_context *ctx) 2540 { 2541 struct perf_event *event, *partial_group = NULL; 2542 struct pmu *pmu = ctx->pmu; 2543 2544 if (group_event->state == PERF_EVENT_STATE_OFF) 2545 return 0; 2546 2547 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2548 2549 if (event_sched_in(group_event, cpuctx, ctx)) { 2550 pmu->cancel_txn(pmu); 2551 perf_mux_hrtimer_restart(cpuctx); 2552 return -EAGAIN; 2553 } 2554 2555 /* 2556 * Schedule in siblings as one group (if any): 2557 */ 2558 for_each_sibling_event(event, group_event) { 2559 if (event_sched_in(event, cpuctx, ctx)) { 2560 partial_group = event; 2561 goto group_error; 2562 } 2563 } 2564 2565 if (!pmu->commit_txn(pmu)) 2566 return 0; 2567 2568 group_error: 2569 /* 2570 * Groups can be scheduled in as one unit only, so undo any 2571 * partial group before returning: 2572 * The events up to the failed event are scheduled out normally. 2573 */ 2574 for_each_sibling_event(event, group_event) { 2575 if (event == partial_group) 2576 break; 2577 2578 event_sched_out(event, cpuctx, ctx); 2579 } 2580 event_sched_out(group_event, cpuctx, ctx); 2581 2582 pmu->cancel_txn(pmu); 2583 2584 perf_mux_hrtimer_restart(cpuctx); 2585 2586 return -EAGAIN; 2587 } 2588 2589 /* 2590 * Work out whether we can put this event group on the CPU now. 2591 */ 2592 static int group_can_go_on(struct perf_event *event, 2593 struct perf_cpu_context *cpuctx, 2594 int can_add_hw) 2595 { 2596 /* 2597 * Groups consisting entirely of software events can always go on. 2598 */ 2599 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2600 return 1; 2601 /* 2602 * If an exclusive group is already on, no other hardware 2603 * events can go on. 2604 */ 2605 if (cpuctx->exclusive) 2606 return 0; 2607 /* 2608 * If this group is exclusive and there are already 2609 * events on the CPU, it can't go on. 2610 */ 2611 if (event->attr.exclusive && cpuctx->active_oncpu) 2612 return 0; 2613 /* 2614 * Otherwise, try to add it if all previous groups were able 2615 * to go on. 2616 */ 2617 return can_add_hw; 2618 } 2619 2620 static void add_event_to_ctx(struct perf_event *event, 2621 struct perf_event_context *ctx) 2622 { 2623 list_add_event(event, ctx); 2624 perf_group_attach(event); 2625 } 2626 2627 static void ctx_sched_out(struct perf_event_context *ctx, 2628 struct perf_cpu_context *cpuctx, 2629 enum event_type_t event_type); 2630 static void 2631 ctx_sched_in(struct perf_event_context *ctx, 2632 struct perf_cpu_context *cpuctx, 2633 enum event_type_t event_type, 2634 struct task_struct *task); 2635 2636 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2637 struct perf_event_context *ctx, 2638 enum event_type_t event_type) 2639 { 2640 if (!cpuctx->task_ctx) 2641 return; 2642 2643 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2644 return; 2645 2646 ctx_sched_out(ctx, cpuctx, event_type); 2647 } 2648 2649 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2650 struct perf_event_context *ctx, 2651 struct task_struct *task) 2652 { 2653 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2654 if (ctx) 2655 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2656 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2657 if (ctx) 2658 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2659 } 2660 2661 /* 2662 * We want to maintain the following priority of scheduling: 2663 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2664 * - task pinned (EVENT_PINNED) 2665 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2666 * - task flexible (EVENT_FLEXIBLE). 2667 * 2668 * In order to avoid unscheduling and scheduling back in everything every 2669 * time an event is added, only do it for the groups of equal priority and 2670 * below. 2671 * 2672 * This can be called after a batch operation on task events, in which case 2673 * event_type is a bit mask of the types of events involved. For CPU events, 2674 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2675 */ 2676 static void ctx_resched(struct perf_cpu_context *cpuctx, 2677 struct perf_event_context *task_ctx, 2678 enum event_type_t event_type) 2679 { 2680 enum event_type_t ctx_event_type; 2681 bool cpu_event = !!(event_type & EVENT_CPU); 2682 2683 /* 2684 * If pinned groups are involved, flexible groups also need to be 2685 * scheduled out. 2686 */ 2687 if (event_type & EVENT_PINNED) 2688 event_type |= EVENT_FLEXIBLE; 2689 2690 ctx_event_type = event_type & EVENT_ALL; 2691 2692 perf_pmu_disable(cpuctx->ctx.pmu); 2693 if (task_ctx) 2694 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2695 2696 /* 2697 * Decide which cpu ctx groups to schedule out based on the types 2698 * of events that caused rescheduling: 2699 * - EVENT_CPU: schedule out corresponding groups; 2700 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2701 * - otherwise, do nothing more. 2702 */ 2703 if (cpu_event) 2704 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2705 else if (ctx_event_type & EVENT_PINNED) 2706 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2707 2708 perf_event_sched_in(cpuctx, task_ctx, current); 2709 perf_pmu_enable(cpuctx->ctx.pmu); 2710 } 2711 2712 void perf_pmu_resched(struct pmu *pmu) 2713 { 2714 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2715 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2716 2717 perf_ctx_lock(cpuctx, task_ctx); 2718 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2719 perf_ctx_unlock(cpuctx, task_ctx); 2720 } 2721 2722 /* 2723 * Cross CPU call to install and enable a performance event 2724 * 2725 * Very similar to remote_function() + event_function() but cannot assume that 2726 * things like ctx->is_active and cpuctx->task_ctx are set. 2727 */ 2728 static int __perf_install_in_context(void *info) 2729 { 2730 struct perf_event *event = info; 2731 struct perf_event_context *ctx = event->ctx; 2732 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2733 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2734 bool reprogram = true; 2735 int ret = 0; 2736 2737 raw_spin_lock(&cpuctx->ctx.lock); 2738 if (ctx->task) { 2739 raw_spin_lock(&ctx->lock); 2740 task_ctx = ctx; 2741 2742 reprogram = (ctx->task == current); 2743 2744 /* 2745 * If the task is running, it must be running on this CPU, 2746 * otherwise we cannot reprogram things. 2747 * 2748 * If its not running, we don't care, ctx->lock will 2749 * serialize against it becoming runnable. 2750 */ 2751 if (task_curr(ctx->task) && !reprogram) { 2752 ret = -ESRCH; 2753 goto unlock; 2754 } 2755 2756 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2757 } else if (task_ctx) { 2758 raw_spin_lock(&task_ctx->lock); 2759 } 2760 2761 #ifdef CONFIG_CGROUP_PERF 2762 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2763 /* 2764 * If the current cgroup doesn't match the event's 2765 * cgroup, we should not try to schedule it. 2766 */ 2767 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2768 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2769 event->cgrp->css.cgroup); 2770 } 2771 #endif 2772 2773 if (reprogram) { 2774 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2775 add_event_to_ctx(event, ctx); 2776 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2777 } else { 2778 add_event_to_ctx(event, ctx); 2779 } 2780 2781 unlock: 2782 perf_ctx_unlock(cpuctx, task_ctx); 2783 2784 return ret; 2785 } 2786 2787 static bool exclusive_event_installable(struct perf_event *event, 2788 struct perf_event_context *ctx); 2789 2790 /* 2791 * Attach a performance event to a context. 2792 * 2793 * Very similar to event_function_call, see comment there. 2794 */ 2795 static void 2796 perf_install_in_context(struct perf_event_context *ctx, 2797 struct perf_event *event, 2798 int cpu) 2799 { 2800 struct task_struct *task = READ_ONCE(ctx->task); 2801 2802 lockdep_assert_held(&ctx->mutex); 2803 2804 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2805 2806 if (event->cpu != -1) 2807 event->cpu = cpu; 2808 2809 /* 2810 * Ensures that if we can observe event->ctx, both the event and ctx 2811 * will be 'complete'. See perf_iterate_sb_cpu(). 2812 */ 2813 smp_store_release(&event->ctx, ctx); 2814 2815 /* 2816 * perf_event_attr::disabled events will not run and can be initialized 2817 * without IPI. Except when this is the first event for the context, in 2818 * that case we need the magic of the IPI to set ctx->is_active. 2819 * 2820 * The IOC_ENABLE that is sure to follow the creation of a disabled 2821 * event will issue the IPI and reprogram the hardware. 2822 */ 2823 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2824 raw_spin_lock_irq(&ctx->lock); 2825 if (ctx->task == TASK_TOMBSTONE) { 2826 raw_spin_unlock_irq(&ctx->lock); 2827 return; 2828 } 2829 add_event_to_ctx(event, ctx); 2830 raw_spin_unlock_irq(&ctx->lock); 2831 return; 2832 } 2833 2834 if (!task) { 2835 cpu_function_call(cpu, __perf_install_in_context, event); 2836 return; 2837 } 2838 2839 /* 2840 * Should not happen, we validate the ctx is still alive before calling. 2841 */ 2842 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2843 return; 2844 2845 /* 2846 * Installing events is tricky because we cannot rely on ctx->is_active 2847 * to be set in case this is the nr_events 0 -> 1 transition. 2848 * 2849 * Instead we use task_curr(), which tells us if the task is running. 2850 * However, since we use task_curr() outside of rq::lock, we can race 2851 * against the actual state. This means the result can be wrong. 2852 * 2853 * If we get a false positive, we retry, this is harmless. 2854 * 2855 * If we get a false negative, things are complicated. If we are after 2856 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2857 * value must be correct. If we're before, it doesn't matter since 2858 * perf_event_context_sched_in() will program the counter. 2859 * 2860 * However, this hinges on the remote context switch having observed 2861 * our task->perf_event_ctxp[] store, such that it will in fact take 2862 * ctx::lock in perf_event_context_sched_in(). 2863 * 2864 * We do this by task_function_call(), if the IPI fails to hit the task 2865 * we know any future context switch of task must see the 2866 * perf_event_ctpx[] store. 2867 */ 2868 2869 /* 2870 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2871 * task_cpu() load, such that if the IPI then does not find the task 2872 * running, a future context switch of that task must observe the 2873 * store. 2874 */ 2875 smp_mb(); 2876 again: 2877 if (!task_function_call(task, __perf_install_in_context, event)) 2878 return; 2879 2880 raw_spin_lock_irq(&ctx->lock); 2881 task = ctx->task; 2882 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2883 /* 2884 * Cannot happen because we already checked above (which also 2885 * cannot happen), and we hold ctx->mutex, which serializes us 2886 * against perf_event_exit_task_context(). 2887 */ 2888 raw_spin_unlock_irq(&ctx->lock); 2889 return; 2890 } 2891 /* 2892 * If the task is not running, ctx->lock will avoid it becoming so, 2893 * thus we can safely install the event. 2894 */ 2895 if (task_curr(task)) { 2896 raw_spin_unlock_irq(&ctx->lock); 2897 goto again; 2898 } 2899 add_event_to_ctx(event, ctx); 2900 raw_spin_unlock_irq(&ctx->lock); 2901 } 2902 2903 /* 2904 * Cross CPU call to enable a performance event 2905 */ 2906 static void __perf_event_enable(struct perf_event *event, 2907 struct perf_cpu_context *cpuctx, 2908 struct perf_event_context *ctx, 2909 void *info) 2910 { 2911 struct perf_event *leader = event->group_leader; 2912 struct perf_event_context *task_ctx; 2913 2914 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2915 event->state <= PERF_EVENT_STATE_ERROR) 2916 return; 2917 2918 if (ctx->is_active) 2919 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2920 2921 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2922 perf_cgroup_event_enable(event, ctx); 2923 2924 if (!ctx->is_active) 2925 return; 2926 2927 if (!event_filter_match(event)) { 2928 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2929 return; 2930 } 2931 2932 /* 2933 * If the event is in a group and isn't the group leader, 2934 * then don't put it on unless the group is on. 2935 */ 2936 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2937 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2938 return; 2939 } 2940 2941 task_ctx = cpuctx->task_ctx; 2942 if (ctx->task) 2943 WARN_ON_ONCE(task_ctx != ctx); 2944 2945 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2946 } 2947 2948 /* 2949 * Enable an event. 2950 * 2951 * If event->ctx is a cloned context, callers must make sure that 2952 * every task struct that event->ctx->task could possibly point to 2953 * remains valid. This condition is satisfied when called through 2954 * perf_event_for_each_child or perf_event_for_each as described 2955 * for perf_event_disable. 2956 */ 2957 static void _perf_event_enable(struct perf_event *event) 2958 { 2959 struct perf_event_context *ctx = event->ctx; 2960 2961 raw_spin_lock_irq(&ctx->lock); 2962 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2963 event->state < PERF_EVENT_STATE_ERROR) { 2964 raw_spin_unlock_irq(&ctx->lock); 2965 return; 2966 } 2967 2968 /* 2969 * If the event is in error state, clear that first. 2970 * 2971 * That way, if we see the event in error state below, we know that it 2972 * has gone back into error state, as distinct from the task having 2973 * been scheduled away before the cross-call arrived. 2974 */ 2975 if (event->state == PERF_EVENT_STATE_ERROR) 2976 event->state = PERF_EVENT_STATE_OFF; 2977 raw_spin_unlock_irq(&ctx->lock); 2978 2979 event_function_call(event, __perf_event_enable, NULL); 2980 } 2981 2982 /* 2983 * See perf_event_disable(); 2984 */ 2985 void perf_event_enable(struct perf_event *event) 2986 { 2987 struct perf_event_context *ctx; 2988 2989 ctx = perf_event_ctx_lock(event); 2990 _perf_event_enable(event); 2991 perf_event_ctx_unlock(event, ctx); 2992 } 2993 EXPORT_SYMBOL_GPL(perf_event_enable); 2994 2995 struct stop_event_data { 2996 struct perf_event *event; 2997 unsigned int restart; 2998 }; 2999 3000 static int __perf_event_stop(void *info) 3001 { 3002 struct stop_event_data *sd = info; 3003 struct perf_event *event = sd->event; 3004 3005 /* if it's already INACTIVE, do nothing */ 3006 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3007 return 0; 3008 3009 /* matches smp_wmb() in event_sched_in() */ 3010 smp_rmb(); 3011 3012 /* 3013 * There is a window with interrupts enabled before we get here, 3014 * so we need to check again lest we try to stop another CPU's event. 3015 */ 3016 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3017 return -EAGAIN; 3018 3019 event->pmu->stop(event, PERF_EF_UPDATE); 3020 3021 /* 3022 * May race with the actual stop (through perf_pmu_output_stop()), 3023 * but it is only used for events with AUX ring buffer, and such 3024 * events will refuse to restart because of rb::aux_mmap_count==0, 3025 * see comments in perf_aux_output_begin(). 3026 * 3027 * Since this is happening on an event-local CPU, no trace is lost 3028 * while restarting. 3029 */ 3030 if (sd->restart) 3031 event->pmu->start(event, 0); 3032 3033 return 0; 3034 } 3035 3036 static int perf_event_stop(struct perf_event *event, int restart) 3037 { 3038 struct stop_event_data sd = { 3039 .event = event, 3040 .restart = restart, 3041 }; 3042 int ret = 0; 3043 3044 do { 3045 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3046 return 0; 3047 3048 /* matches smp_wmb() in event_sched_in() */ 3049 smp_rmb(); 3050 3051 /* 3052 * We only want to restart ACTIVE events, so if the event goes 3053 * inactive here (event->oncpu==-1), there's nothing more to do; 3054 * fall through with ret==-ENXIO. 3055 */ 3056 ret = cpu_function_call(READ_ONCE(event->oncpu), 3057 __perf_event_stop, &sd); 3058 } while (ret == -EAGAIN); 3059 3060 return ret; 3061 } 3062 3063 /* 3064 * In order to contain the amount of racy and tricky in the address filter 3065 * configuration management, it is a two part process: 3066 * 3067 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3068 * we update the addresses of corresponding vmas in 3069 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3070 * (p2) when an event is scheduled in (pmu::add), it calls 3071 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3072 * if the generation has changed since the previous call. 3073 * 3074 * If (p1) happens while the event is active, we restart it to force (p2). 3075 * 3076 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3077 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3078 * ioctl; 3079 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3080 * registered mapping, called for every new mmap(), with mm::mmap_sem down 3081 * for reading; 3082 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3083 * of exec. 3084 */ 3085 void perf_event_addr_filters_sync(struct perf_event *event) 3086 { 3087 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3088 3089 if (!has_addr_filter(event)) 3090 return; 3091 3092 raw_spin_lock(&ifh->lock); 3093 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3094 event->pmu->addr_filters_sync(event); 3095 event->hw.addr_filters_gen = event->addr_filters_gen; 3096 } 3097 raw_spin_unlock(&ifh->lock); 3098 } 3099 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3100 3101 static int _perf_event_refresh(struct perf_event *event, int refresh) 3102 { 3103 /* 3104 * not supported on inherited events 3105 */ 3106 if (event->attr.inherit || !is_sampling_event(event)) 3107 return -EINVAL; 3108 3109 atomic_add(refresh, &event->event_limit); 3110 _perf_event_enable(event); 3111 3112 return 0; 3113 } 3114 3115 /* 3116 * See perf_event_disable() 3117 */ 3118 int perf_event_refresh(struct perf_event *event, int refresh) 3119 { 3120 struct perf_event_context *ctx; 3121 int ret; 3122 3123 ctx = perf_event_ctx_lock(event); 3124 ret = _perf_event_refresh(event, refresh); 3125 perf_event_ctx_unlock(event, ctx); 3126 3127 return ret; 3128 } 3129 EXPORT_SYMBOL_GPL(perf_event_refresh); 3130 3131 static int perf_event_modify_breakpoint(struct perf_event *bp, 3132 struct perf_event_attr *attr) 3133 { 3134 int err; 3135 3136 _perf_event_disable(bp); 3137 3138 err = modify_user_hw_breakpoint_check(bp, attr, true); 3139 3140 if (!bp->attr.disabled) 3141 _perf_event_enable(bp); 3142 3143 return err; 3144 } 3145 3146 static int perf_event_modify_attr(struct perf_event *event, 3147 struct perf_event_attr *attr) 3148 { 3149 if (event->attr.type != attr->type) 3150 return -EINVAL; 3151 3152 switch (event->attr.type) { 3153 case PERF_TYPE_BREAKPOINT: 3154 return perf_event_modify_breakpoint(event, attr); 3155 default: 3156 /* Place holder for future additions. */ 3157 return -EOPNOTSUPP; 3158 } 3159 } 3160 3161 static void ctx_sched_out(struct perf_event_context *ctx, 3162 struct perf_cpu_context *cpuctx, 3163 enum event_type_t event_type) 3164 { 3165 struct perf_event *event, *tmp; 3166 int is_active = ctx->is_active; 3167 3168 lockdep_assert_held(&ctx->lock); 3169 3170 if (likely(!ctx->nr_events)) { 3171 /* 3172 * See __perf_remove_from_context(). 3173 */ 3174 WARN_ON_ONCE(ctx->is_active); 3175 if (ctx->task) 3176 WARN_ON_ONCE(cpuctx->task_ctx); 3177 return; 3178 } 3179 3180 ctx->is_active &= ~event_type; 3181 if (!(ctx->is_active & EVENT_ALL)) 3182 ctx->is_active = 0; 3183 3184 if (ctx->task) { 3185 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3186 if (!ctx->is_active) 3187 cpuctx->task_ctx = NULL; 3188 } 3189 3190 /* 3191 * Always update time if it was set; not only when it changes. 3192 * Otherwise we can 'forget' to update time for any but the last 3193 * context we sched out. For example: 3194 * 3195 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3196 * ctx_sched_out(.event_type = EVENT_PINNED) 3197 * 3198 * would only update time for the pinned events. 3199 */ 3200 if (is_active & EVENT_TIME) { 3201 /* update (and stop) ctx time */ 3202 update_context_time(ctx); 3203 update_cgrp_time_from_cpuctx(cpuctx); 3204 } 3205 3206 is_active ^= ctx->is_active; /* changed bits */ 3207 3208 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3209 return; 3210 3211 perf_pmu_disable(ctx->pmu); 3212 if (is_active & EVENT_PINNED) { 3213 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3214 group_sched_out(event, cpuctx, ctx); 3215 } 3216 3217 if (is_active & EVENT_FLEXIBLE) { 3218 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3219 group_sched_out(event, cpuctx, ctx); 3220 3221 /* 3222 * Since we cleared EVENT_FLEXIBLE, also clear 3223 * rotate_necessary, is will be reset by 3224 * ctx_flexible_sched_in() when needed. 3225 */ 3226 ctx->rotate_necessary = 0; 3227 } 3228 perf_pmu_enable(ctx->pmu); 3229 } 3230 3231 /* 3232 * Test whether two contexts are equivalent, i.e. whether they have both been 3233 * cloned from the same version of the same context. 3234 * 3235 * Equivalence is measured using a generation number in the context that is 3236 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3237 * and list_del_event(). 3238 */ 3239 static int context_equiv(struct perf_event_context *ctx1, 3240 struct perf_event_context *ctx2) 3241 { 3242 lockdep_assert_held(&ctx1->lock); 3243 lockdep_assert_held(&ctx2->lock); 3244 3245 /* Pinning disables the swap optimization */ 3246 if (ctx1->pin_count || ctx2->pin_count) 3247 return 0; 3248 3249 /* If ctx1 is the parent of ctx2 */ 3250 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3251 return 1; 3252 3253 /* If ctx2 is the parent of ctx1 */ 3254 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3255 return 1; 3256 3257 /* 3258 * If ctx1 and ctx2 have the same parent; we flatten the parent 3259 * hierarchy, see perf_event_init_context(). 3260 */ 3261 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3262 ctx1->parent_gen == ctx2->parent_gen) 3263 return 1; 3264 3265 /* Unmatched */ 3266 return 0; 3267 } 3268 3269 static void __perf_event_sync_stat(struct perf_event *event, 3270 struct perf_event *next_event) 3271 { 3272 u64 value; 3273 3274 if (!event->attr.inherit_stat) 3275 return; 3276 3277 /* 3278 * Update the event value, we cannot use perf_event_read() 3279 * because we're in the middle of a context switch and have IRQs 3280 * disabled, which upsets smp_call_function_single(), however 3281 * we know the event must be on the current CPU, therefore we 3282 * don't need to use it. 3283 */ 3284 if (event->state == PERF_EVENT_STATE_ACTIVE) 3285 event->pmu->read(event); 3286 3287 perf_event_update_time(event); 3288 3289 /* 3290 * In order to keep per-task stats reliable we need to flip the event 3291 * values when we flip the contexts. 3292 */ 3293 value = local64_read(&next_event->count); 3294 value = local64_xchg(&event->count, value); 3295 local64_set(&next_event->count, value); 3296 3297 swap(event->total_time_enabled, next_event->total_time_enabled); 3298 swap(event->total_time_running, next_event->total_time_running); 3299 3300 /* 3301 * Since we swizzled the values, update the user visible data too. 3302 */ 3303 perf_event_update_userpage(event); 3304 perf_event_update_userpage(next_event); 3305 } 3306 3307 static void perf_event_sync_stat(struct perf_event_context *ctx, 3308 struct perf_event_context *next_ctx) 3309 { 3310 struct perf_event *event, *next_event; 3311 3312 if (!ctx->nr_stat) 3313 return; 3314 3315 update_context_time(ctx); 3316 3317 event = list_first_entry(&ctx->event_list, 3318 struct perf_event, event_entry); 3319 3320 next_event = list_first_entry(&next_ctx->event_list, 3321 struct perf_event, event_entry); 3322 3323 while (&event->event_entry != &ctx->event_list && 3324 &next_event->event_entry != &next_ctx->event_list) { 3325 3326 __perf_event_sync_stat(event, next_event); 3327 3328 event = list_next_entry(event, event_entry); 3329 next_event = list_next_entry(next_event, event_entry); 3330 } 3331 } 3332 3333 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3334 struct task_struct *next) 3335 { 3336 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3337 struct perf_event_context *next_ctx; 3338 struct perf_event_context *parent, *next_parent; 3339 struct perf_cpu_context *cpuctx; 3340 int do_switch = 1; 3341 3342 if (likely(!ctx)) 3343 return; 3344 3345 cpuctx = __get_cpu_context(ctx); 3346 if (!cpuctx->task_ctx) 3347 return; 3348 3349 rcu_read_lock(); 3350 next_ctx = next->perf_event_ctxp[ctxn]; 3351 if (!next_ctx) 3352 goto unlock; 3353 3354 parent = rcu_dereference(ctx->parent_ctx); 3355 next_parent = rcu_dereference(next_ctx->parent_ctx); 3356 3357 /* If neither context have a parent context; they cannot be clones. */ 3358 if (!parent && !next_parent) 3359 goto unlock; 3360 3361 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3362 /* 3363 * Looks like the two contexts are clones, so we might be 3364 * able to optimize the context switch. We lock both 3365 * contexts and check that they are clones under the 3366 * lock (including re-checking that neither has been 3367 * uncloned in the meantime). It doesn't matter which 3368 * order we take the locks because no other cpu could 3369 * be trying to lock both of these tasks. 3370 */ 3371 raw_spin_lock(&ctx->lock); 3372 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3373 if (context_equiv(ctx, next_ctx)) { 3374 struct pmu *pmu = ctx->pmu; 3375 3376 WRITE_ONCE(ctx->task, next); 3377 WRITE_ONCE(next_ctx->task, task); 3378 3379 /* 3380 * PMU specific parts of task perf context can require 3381 * additional synchronization. As an example of such 3382 * synchronization see implementation details of Intel 3383 * LBR call stack data profiling; 3384 */ 3385 if (pmu->swap_task_ctx) 3386 pmu->swap_task_ctx(ctx, next_ctx); 3387 else 3388 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3389 3390 /* 3391 * RCU_INIT_POINTER here is safe because we've not 3392 * modified the ctx and the above modification of 3393 * ctx->task and ctx->task_ctx_data are immaterial 3394 * since those values are always verified under 3395 * ctx->lock which we're now holding. 3396 */ 3397 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3398 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3399 3400 do_switch = 0; 3401 3402 perf_event_sync_stat(ctx, next_ctx); 3403 } 3404 raw_spin_unlock(&next_ctx->lock); 3405 raw_spin_unlock(&ctx->lock); 3406 } 3407 unlock: 3408 rcu_read_unlock(); 3409 3410 if (do_switch) { 3411 raw_spin_lock(&ctx->lock); 3412 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3413 raw_spin_unlock(&ctx->lock); 3414 } 3415 } 3416 3417 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3418 3419 void perf_sched_cb_dec(struct pmu *pmu) 3420 { 3421 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3422 3423 this_cpu_dec(perf_sched_cb_usages); 3424 3425 if (!--cpuctx->sched_cb_usage) 3426 list_del(&cpuctx->sched_cb_entry); 3427 } 3428 3429 3430 void perf_sched_cb_inc(struct pmu *pmu) 3431 { 3432 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3433 3434 if (!cpuctx->sched_cb_usage++) 3435 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3436 3437 this_cpu_inc(perf_sched_cb_usages); 3438 } 3439 3440 /* 3441 * This function provides the context switch callback to the lower code 3442 * layer. It is invoked ONLY when the context switch callback is enabled. 3443 * 3444 * This callback is relevant even to per-cpu events; for example multi event 3445 * PEBS requires this to provide PID/TID information. This requires we flush 3446 * all queued PEBS records before we context switch to a new task. 3447 */ 3448 static void perf_pmu_sched_task(struct task_struct *prev, 3449 struct task_struct *next, 3450 bool sched_in) 3451 { 3452 struct perf_cpu_context *cpuctx; 3453 struct pmu *pmu; 3454 3455 if (prev == next) 3456 return; 3457 3458 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3459 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3460 3461 if (WARN_ON_ONCE(!pmu->sched_task)) 3462 continue; 3463 3464 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3465 perf_pmu_disable(pmu); 3466 3467 pmu->sched_task(cpuctx->task_ctx, sched_in); 3468 3469 perf_pmu_enable(pmu); 3470 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3471 } 3472 } 3473 3474 static void perf_event_switch(struct task_struct *task, 3475 struct task_struct *next_prev, bool sched_in); 3476 3477 #define for_each_task_context_nr(ctxn) \ 3478 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3479 3480 /* 3481 * Called from scheduler to remove the events of the current task, 3482 * with interrupts disabled. 3483 * 3484 * We stop each event and update the event value in event->count. 3485 * 3486 * This does not protect us against NMI, but disable() 3487 * sets the disabled bit in the control field of event _before_ 3488 * accessing the event control register. If a NMI hits, then it will 3489 * not restart the event. 3490 */ 3491 void __perf_event_task_sched_out(struct task_struct *task, 3492 struct task_struct *next) 3493 { 3494 int ctxn; 3495 3496 if (__this_cpu_read(perf_sched_cb_usages)) 3497 perf_pmu_sched_task(task, next, false); 3498 3499 if (atomic_read(&nr_switch_events)) 3500 perf_event_switch(task, next, false); 3501 3502 for_each_task_context_nr(ctxn) 3503 perf_event_context_sched_out(task, ctxn, next); 3504 3505 /* 3506 * if cgroup events exist on this CPU, then we need 3507 * to check if we have to switch out PMU state. 3508 * cgroup event are system-wide mode only 3509 */ 3510 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3511 perf_cgroup_sched_out(task, next); 3512 } 3513 3514 /* 3515 * Called with IRQs disabled 3516 */ 3517 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3518 enum event_type_t event_type) 3519 { 3520 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3521 } 3522 3523 static bool perf_less_group_idx(const void *l, const void *r) 3524 { 3525 const struct perf_event *le = *(const struct perf_event **)l; 3526 const struct perf_event *re = *(const struct perf_event **)r; 3527 3528 return le->group_index < re->group_index; 3529 } 3530 3531 static void swap_ptr(void *l, void *r) 3532 { 3533 void **lp = l, **rp = r; 3534 3535 swap(*lp, *rp); 3536 } 3537 3538 static const struct min_heap_callbacks perf_min_heap = { 3539 .elem_size = sizeof(struct perf_event *), 3540 .less = perf_less_group_idx, 3541 .swp = swap_ptr, 3542 }; 3543 3544 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3545 { 3546 struct perf_event **itrs = heap->data; 3547 3548 if (event) { 3549 itrs[heap->nr] = event; 3550 heap->nr++; 3551 } 3552 } 3553 3554 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3555 struct perf_event_groups *groups, int cpu, 3556 int (*func)(struct perf_event *, void *), 3557 void *data) 3558 { 3559 #ifdef CONFIG_CGROUP_PERF 3560 struct cgroup_subsys_state *css = NULL; 3561 #endif 3562 /* Space for per CPU and/or any CPU event iterators. */ 3563 struct perf_event *itrs[2]; 3564 struct min_heap event_heap; 3565 struct perf_event **evt; 3566 int ret; 3567 3568 if (cpuctx) { 3569 event_heap = (struct min_heap){ 3570 .data = cpuctx->heap, 3571 .nr = 0, 3572 .size = cpuctx->heap_size, 3573 }; 3574 3575 lockdep_assert_held(&cpuctx->ctx.lock); 3576 3577 #ifdef CONFIG_CGROUP_PERF 3578 if (cpuctx->cgrp) 3579 css = &cpuctx->cgrp->css; 3580 #endif 3581 } else { 3582 event_heap = (struct min_heap){ 3583 .data = itrs, 3584 .nr = 0, 3585 .size = ARRAY_SIZE(itrs), 3586 }; 3587 /* Events not within a CPU context may be on any CPU. */ 3588 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3589 } 3590 evt = event_heap.data; 3591 3592 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3593 3594 #ifdef CONFIG_CGROUP_PERF 3595 for (; css; css = css->parent) 3596 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3597 #endif 3598 3599 min_heapify_all(&event_heap, &perf_min_heap); 3600 3601 while (event_heap.nr) { 3602 ret = func(*evt, data); 3603 if (ret) 3604 return ret; 3605 3606 *evt = perf_event_groups_next(*evt); 3607 if (*evt) 3608 min_heapify(&event_heap, 0, &perf_min_heap); 3609 else 3610 min_heap_pop(&event_heap, &perf_min_heap); 3611 } 3612 3613 return 0; 3614 } 3615 3616 static int merge_sched_in(struct perf_event *event, void *data) 3617 { 3618 struct perf_event_context *ctx = event->ctx; 3619 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3620 int *can_add_hw = data; 3621 3622 if (event->state <= PERF_EVENT_STATE_OFF) 3623 return 0; 3624 3625 if (!event_filter_match(event)) 3626 return 0; 3627 3628 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3629 if (!group_sched_in(event, cpuctx, ctx)) 3630 list_add_tail(&event->active_list, get_event_list(event)); 3631 } 3632 3633 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3634 if (event->attr.pinned) { 3635 perf_cgroup_event_disable(event, ctx); 3636 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3637 } 3638 3639 *can_add_hw = 0; 3640 ctx->rotate_necessary = 1; 3641 } 3642 3643 return 0; 3644 } 3645 3646 static void 3647 ctx_pinned_sched_in(struct perf_event_context *ctx, 3648 struct perf_cpu_context *cpuctx) 3649 { 3650 int can_add_hw = 1; 3651 3652 if (ctx != &cpuctx->ctx) 3653 cpuctx = NULL; 3654 3655 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3656 smp_processor_id(), 3657 merge_sched_in, &can_add_hw); 3658 } 3659 3660 static void 3661 ctx_flexible_sched_in(struct perf_event_context *ctx, 3662 struct perf_cpu_context *cpuctx) 3663 { 3664 int can_add_hw = 1; 3665 3666 if (ctx != &cpuctx->ctx) 3667 cpuctx = NULL; 3668 3669 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3670 smp_processor_id(), 3671 merge_sched_in, &can_add_hw); 3672 } 3673 3674 static void 3675 ctx_sched_in(struct perf_event_context *ctx, 3676 struct perf_cpu_context *cpuctx, 3677 enum event_type_t event_type, 3678 struct task_struct *task) 3679 { 3680 int is_active = ctx->is_active; 3681 u64 now; 3682 3683 lockdep_assert_held(&ctx->lock); 3684 3685 if (likely(!ctx->nr_events)) 3686 return; 3687 3688 ctx->is_active |= (event_type | EVENT_TIME); 3689 if (ctx->task) { 3690 if (!is_active) 3691 cpuctx->task_ctx = ctx; 3692 else 3693 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3694 } 3695 3696 is_active ^= ctx->is_active; /* changed bits */ 3697 3698 if (is_active & EVENT_TIME) { 3699 /* start ctx time */ 3700 now = perf_clock(); 3701 ctx->timestamp = now; 3702 perf_cgroup_set_timestamp(task, ctx); 3703 } 3704 3705 /* 3706 * First go through the list and put on any pinned groups 3707 * in order to give them the best chance of going on. 3708 */ 3709 if (is_active & EVENT_PINNED) 3710 ctx_pinned_sched_in(ctx, cpuctx); 3711 3712 /* Then walk through the lower prio flexible groups */ 3713 if (is_active & EVENT_FLEXIBLE) 3714 ctx_flexible_sched_in(ctx, cpuctx); 3715 } 3716 3717 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3718 enum event_type_t event_type, 3719 struct task_struct *task) 3720 { 3721 struct perf_event_context *ctx = &cpuctx->ctx; 3722 3723 ctx_sched_in(ctx, cpuctx, event_type, task); 3724 } 3725 3726 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3727 struct task_struct *task) 3728 { 3729 struct perf_cpu_context *cpuctx; 3730 3731 cpuctx = __get_cpu_context(ctx); 3732 if (cpuctx->task_ctx == ctx) 3733 return; 3734 3735 perf_ctx_lock(cpuctx, ctx); 3736 /* 3737 * We must check ctx->nr_events while holding ctx->lock, such 3738 * that we serialize against perf_install_in_context(). 3739 */ 3740 if (!ctx->nr_events) 3741 goto unlock; 3742 3743 perf_pmu_disable(ctx->pmu); 3744 /* 3745 * We want to keep the following priority order: 3746 * cpu pinned (that don't need to move), task pinned, 3747 * cpu flexible, task flexible. 3748 * 3749 * However, if task's ctx is not carrying any pinned 3750 * events, no need to flip the cpuctx's events around. 3751 */ 3752 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3753 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3754 perf_event_sched_in(cpuctx, ctx, task); 3755 perf_pmu_enable(ctx->pmu); 3756 3757 unlock: 3758 perf_ctx_unlock(cpuctx, ctx); 3759 } 3760 3761 /* 3762 * Called from scheduler to add the events of the current task 3763 * with interrupts disabled. 3764 * 3765 * We restore the event value and then enable it. 3766 * 3767 * This does not protect us against NMI, but enable() 3768 * sets the enabled bit in the control field of event _before_ 3769 * accessing the event control register. If a NMI hits, then it will 3770 * keep the event running. 3771 */ 3772 void __perf_event_task_sched_in(struct task_struct *prev, 3773 struct task_struct *task) 3774 { 3775 struct perf_event_context *ctx; 3776 int ctxn; 3777 3778 /* 3779 * If cgroup events exist on this CPU, then we need to check if we have 3780 * to switch in PMU state; cgroup event are system-wide mode only. 3781 * 3782 * Since cgroup events are CPU events, we must schedule these in before 3783 * we schedule in the task events. 3784 */ 3785 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3786 perf_cgroup_sched_in(prev, task); 3787 3788 for_each_task_context_nr(ctxn) { 3789 ctx = task->perf_event_ctxp[ctxn]; 3790 if (likely(!ctx)) 3791 continue; 3792 3793 perf_event_context_sched_in(ctx, task); 3794 } 3795 3796 if (atomic_read(&nr_switch_events)) 3797 perf_event_switch(task, prev, true); 3798 3799 if (__this_cpu_read(perf_sched_cb_usages)) 3800 perf_pmu_sched_task(prev, task, true); 3801 } 3802 3803 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3804 { 3805 u64 frequency = event->attr.sample_freq; 3806 u64 sec = NSEC_PER_SEC; 3807 u64 divisor, dividend; 3808 3809 int count_fls, nsec_fls, frequency_fls, sec_fls; 3810 3811 count_fls = fls64(count); 3812 nsec_fls = fls64(nsec); 3813 frequency_fls = fls64(frequency); 3814 sec_fls = 30; 3815 3816 /* 3817 * We got @count in @nsec, with a target of sample_freq HZ 3818 * the target period becomes: 3819 * 3820 * @count * 10^9 3821 * period = ------------------- 3822 * @nsec * sample_freq 3823 * 3824 */ 3825 3826 /* 3827 * Reduce accuracy by one bit such that @a and @b converge 3828 * to a similar magnitude. 3829 */ 3830 #define REDUCE_FLS(a, b) \ 3831 do { \ 3832 if (a##_fls > b##_fls) { \ 3833 a >>= 1; \ 3834 a##_fls--; \ 3835 } else { \ 3836 b >>= 1; \ 3837 b##_fls--; \ 3838 } \ 3839 } while (0) 3840 3841 /* 3842 * Reduce accuracy until either term fits in a u64, then proceed with 3843 * the other, so that finally we can do a u64/u64 division. 3844 */ 3845 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3846 REDUCE_FLS(nsec, frequency); 3847 REDUCE_FLS(sec, count); 3848 } 3849 3850 if (count_fls + sec_fls > 64) { 3851 divisor = nsec * frequency; 3852 3853 while (count_fls + sec_fls > 64) { 3854 REDUCE_FLS(count, sec); 3855 divisor >>= 1; 3856 } 3857 3858 dividend = count * sec; 3859 } else { 3860 dividend = count * sec; 3861 3862 while (nsec_fls + frequency_fls > 64) { 3863 REDUCE_FLS(nsec, frequency); 3864 dividend >>= 1; 3865 } 3866 3867 divisor = nsec * frequency; 3868 } 3869 3870 if (!divisor) 3871 return dividend; 3872 3873 return div64_u64(dividend, divisor); 3874 } 3875 3876 static DEFINE_PER_CPU(int, perf_throttled_count); 3877 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3878 3879 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3880 { 3881 struct hw_perf_event *hwc = &event->hw; 3882 s64 period, sample_period; 3883 s64 delta; 3884 3885 period = perf_calculate_period(event, nsec, count); 3886 3887 delta = (s64)(period - hwc->sample_period); 3888 delta = (delta + 7) / 8; /* low pass filter */ 3889 3890 sample_period = hwc->sample_period + delta; 3891 3892 if (!sample_period) 3893 sample_period = 1; 3894 3895 hwc->sample_period = sample_period; 3896 3897 if (local64_read(&hwc->period_left) > 8*sample_period) { 3898 if (disable) 3899 event->pmu->stop(event, PERF_EF_UPDATE); 3900 3901 local64_set(&hwc->period_left, 0); 3902 3903 if (disable) 3904 event->pmu->start(event, PERF_EF_RELOAD); 3905 } 3906 } 3907 3908 /* 3909 * combine freq adjustment with unthrottling to avoid two passes over the 3910 * events. At the same time, make sure, having freq events does not change 3911 * the rate of unthrottling as that would introduce bias. 3912 */ 3913 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3914 int needs_unthr) 3915 { 3916 struct perf_event *event; 3917 struct hw_perf_event *hwc; 3918 u64 now, period = TICK_NSEC; 3919 s64 delta; 3920 3921 /* 3922 * only need to iterate over all events iff: 3923 * - context have events in frequency mode (needs freq adjust) 3924 * - there are events to unthrottle on this cpu 3925 */ 3926 if (!(ctx->nr_freq || needs_unthr)) 3927 return; 3928 3929 raw_spin_lock(&ctx->lock); 3930 perf_pmu_disable(ctx->pmu); 3931 3932 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3933 if (event->state != PERF_EVENT_STATE_ACTIVE) 3934 continue; 3935 3936 if (!event_filter_match(event)) 3937 continue; 3938 3939 perf_pmu_disable(event->pmu); 3940 3941 hwc = &event->hw; 3942 3943 if (hwc->interrupts == MAX_INTERRUPTS) { 3944 hwc->interrupts = 0; 3945 perf_log_throttle(event, 1); 3946 event->pmu->start(event, 0); 3947 } 3948 3949 if (!event->attr.freq || !event->attr.sample_freq) 3950 goto next; 3951 3952 /* 3953 * stop the event and update event->count 3954 */ 3955 event->pmu->stop(event, PERF_EF_UPDATE); 3956 3957 now = local64_read(&event->count); 3958 delta = now - hwc->freq_count_stamp; 3959 hwc->freq_count_stamp = now; 3960 3961 /* 3962 * restart the event 3963 * reload only if value has changed 3964 * we have stopped the event so tell that 3965 * to perf_adjust_period() to avoid stopping it 3966 * twice. 3967 */ 3968 if (delta > 0) 3969 perf_adjust_period(event, period, delta, false); 3970 3971 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3972 next: 3973 perf_pmu_enable(event->pmu); 3974 } 3975 3976 perf_pmu_enable(ctx->pmu); 3977 raw_spin_unlock(&ctx->lock); 3978 } 3979 3980 /* 3981 * Move @event to the tail of the @ctx's elegible events. 3982 */ 3983 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3984 { 3985 /* 3986 * Rotate the first entry last of non-pinned groups. Rotation might be 3987 * disabled by the inheritance code. 3988 */ 3989 if (ctx->rotate_disable) 3990 return; 3991 3992 perf_event_groups_delete(&ctx->flexible_groups, event); 3993 perf_event_groups_insert(&ctx->flexible_groups, event); 3994 } 3995 3996 /* pick an event from the flexible_groups to rotate */ 3997 static inline struct perf_event * 3998 ctx_event_to_rotate(struct perf_event_context *ctx) 3999 { 4000 struct perf_event *event; 4001 4002 /* pick the first active flexible event */ 4003 event = list_first_entry_or_null(&ctx->flexible_active, 4004 struct perf_event, active_list); 4005 4006 /* if no active flexible event, pick the first event */ 4007 if (!event) { 4008 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4009 typeof(*event), group_node); 4010 } 4011 4012 /* 4013 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4014 * finds there are unschedulable events, it will set it again. 4015 */ 4016 ctx->rotate_necessary = 0; 4017 4018 return event; 4019 } 4020 4021 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4022 { 4023 struct perf_event *cpu_event = NULL, *task_event = NULL; 4024 struct perf_event_context *task_ctx = NULL; 4025 int cpu_rotate, task_rotate; 4026 4027 /* 4028 * Since we run this from IRQ context, nobody can install new 4029 * events, thus the event count values are stable. 4030 */ 4031 4032 cpu_rotate = cpuctx->ctx.rotate_necessary; 4033 task_ctx = cpuctx->task_ctx; 4034 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4035 4036 if (!(cpu_rotate || task_rotate)) 4037 return false; 4038 4039 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4040 perf_pmu_disable(cpuctx->ctx.pmu); 4041 4042 if (task_rotate) 4043 task_event = ctx_event_to_rotate(task_ctx); 4044 if (cpu_rotate) 4045 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4046 4047 /* 4048 * As per the order given at ctx_resched() first 'pop' task flexible 4049 * and then, if needed CPU flexible. 4050 */ 4051 if (task_event || (task_ctx && cpu_event)) 4052 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4053 if (cpu_event) 4054 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4055 4056 if (task_event) 4057 rotate_ctx(task_ctx, task_event); 4058 if (cpu_event) 4059 rotate_ctx(&cpuctx->ctx, cpu_event); 4060 4061 perf_event_sched_in(cpuctx, task_ctx, current); 4062 4063 perf_pmu_enable(cpuctx->ctx.pmu); 4064 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4065 4066 return true; 4067 } 4068 4069 void perf_event_task_tick(void) 4070 { 4071 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4072 struct perf_event_context *ctx, *tmp; 4073 int throttled; 4074 4075 lockdep_assert_irqs_disabled(); 4076 4077 __this_cpu_inc(perf_throttled_seq); 4078 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4079 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4080 4081 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4082 perf_adjust_freq_unthr_context(ctx, throttled); 4083 } 4084 4085 static int event_enable_on_exec(struct perf_event *event, 4086 struct perf_event_context *ctx) 4087 { 4088 if (!event->attr.enable_on_exec) 4089 return 0; 4090 4091 event->attr.enable_on_exec = 0; 4092 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4093 return 0; 4094 4095 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4096 4097 return 1; 4098 } 4099 4100 /* 4101 * Enable all of a task's events that have been marked enable-on-exec. 4102 * This expects task == current. 4103 */ 4104 static void perf_event_enable_on_exec(int ctxn) 4105 { 4106 struct perf_event_context *ctx, *clone_ctx = NULL; 4107 enum event_type_t event_type = 0; 4108 struct perf_cpu_context *cpuctx; 4109 struct perf_event *event; 4110 unsigned long flags; 4111 int enabled = 0; 4112 4113 local_irq_save(flags); 4114 ctx = current->perf_event_ctxp[ctxn]; 4115 if (!ctx || !ctx->nr_events) 4116 goto out; 4117 4118 cpuctx = __get_cpu_context(ctx); 4119 perf_ctx_lock(cpuctx, ctx); 4120 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4121 list_for_each_entry(event, &ctx->event_list, event_entry) { 4122 enabled |= event_enable_on_exec(event, ctx); 4123 event_type |= get_event_type(event); 4124 } 4125 4126 /* 4127 * Unclone and reschedule this context if we enabled any event. 4128 */ 4129 if (enabled) { 4130 clone_ctx = unclone_ctx(ctx); 4131 ctx_resched(cpuctx, ctx, event_type); 4132 } else { 4133 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4134 } 4135 perf_ctx_unlock(cpuctx, ctx); 4136 4137 out: 4138 local_irq_restore(flags); 4139 4140 if (clone_ctx) 4141 put_ctx(clone_ctx); 4142 } 4143 4144 struct perf_read_data { 4145 struct perf_event *event; 4146 bool group; 4147 int ret; 4148 }; 4149 4150 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4151 { 4152 u16 local_pkg, event_pkg; 4153 4154 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4155 int local_cpu = smp_processor_id(); 4156 4157 event_pkg = topology_physical_package_id(event_cpu); 4158 local_pkg = topology_physical_package_id(local_cpu); 4159 4160 if (event_pkg == local_pkg) 4161 return local_cpu; 4162 } 4163 4164 return event_cpu; 4165 } 4166 4167 /* 4168 * Cross CPU call to read the hardware event 4169 */ 4170 static void __perf_event_read(void *info) 4171 { 4172 struct perf_read_data *data = info; 4173 struct perf_event *sub, *event = data->event; 4174 struct perf_event_context *ctx = event->ctx; 4175 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4176 struct pmu *pmu = event->pmu; 4177 4178 /* 4179 * If this is a task context, we need to check whether it is 4180 * the current task context of this cpu. If not it has been 4181 * scheduled out before the smp call arrived. In that case 4182 * event->count would have been updated to a recent sample 4183 * when the event was scheduled out. 4184 */ 4185 if (ctx->task && cpuctx->task_ctx != ctx) 4186 return; 4187 4188 raw_spin_lock(&ctx->lock); 4189 if (ctx->is_active & EVENT_TIME) { 4190 update_context_time(ctx); 4191 update_cgrp_time_from_event(event); 4192 } 4193 4194 perf_event_update_time(event); 4195 if (data->group) 4196 perf_event_update_sibling_time(event); 4197 4198 if (event->state != PERF_EVENT_STATE_ACTIVE) 4199 goto unlock; 4200 4201 if (!data->group) { 4202 pmu->read(event); 4203 data->ret = 0; 4204 goto unlock; 4205 } 4206 4207 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4208 4209 pmu->read(event); 4210 4211 for_each_sibling_event(sub, event) { 4212 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4213 /* 4214 * Use sibling's PMU rather than @event's since 4215 * sibling could be on different (eg: software) PMU. 4216 */ 4217 sub->pmu->read(sub); 4218 } 4219 } 4220 4221 data->ret = pmu->commit_txn(pmu); 4222 4223 unlock: 4224 raw_spin_unlock(&ctx->lock); 4225 } 4226 4227 static inline u64 perf_event_count(struct perf_event *event) 4228 { 4229 return local64_read(&event->count) + atomic64_read(&event->child_count); 4230 } 4231 4232 /* 4233 * NMI-safe method to read a local event, that is an event that 4234 * is: 4235 * - either for the current task, or for this CPU 4236 * - does not have inherit set, for inherited task events 4237 * will not be local and we cannot read them atomically 4238 * - must not have a pmu::count method 4239 */ 4240 int perf_event_read_local(struct perf_event *event, u64 *value, 4241 u64 *enabled, u64 *running) 4242 { 4243 unsigned long flags; 4244 int ret = 0; 4245 4246 /* 4247 * Disabling interrupts avoids all counter scheduling (context 4248 * switches, timer based rotation and IPIs). 4249 */ 4250 local_irq_save(flags); 4251 4252 /* 4253 * It must not be an event with inherit set, we cannot read 4254 * all child counters from atomic context. 4255 */ 4256 if (event->attr.inherit) { 4257 ret = -EOPNOTSUPP; 4258 goto out; 4259 } 4260 4261 /* If this is a per-task event, it must be for current */ 4262 if ((event->attach_state & PERF_ATTACH_TASK) && 4263 event->hw.target != current) { 4264 ret = -EINVAL; 4265 goto out; 4266 } 4267 4268 /* If this is a per-CPU event, it must be for this CPU */ 4269 if (!(event->attach_state & PERF_ATTACH_TASK) && 4270 event->cpu != smp_processor_id()) { 4271 ret = -EINVAL; 4272 goto out; 4273 } 4274 4275 /* If this is a pinned event it must be running on this CPU */ 4276 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4277 ret = -EBUSY; 4278 goto out; 4279 } 4280 4281 /* 4282 * If the event is currently on this CPU, its either a per-task event, 4283 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4284 * oncpu == -1). 4285 */ 4286 if (event->oncpu == smp_processor_id()) 4287 event->pmu->read(event); 4288 4289 *value = local64_read(&event->count); 4290 if (enabled || running) { 4291 u64 now = event->shadow_ctx_time + perf_clock(); 4292 u64 __enabled, __running; 4293 4294 __perf_update_times(event, now, &__enabled, &__running); 4295 if (enabled) 4296 *enabled = __enabled; 4297 if (running) 4298 *running = __running; 4299 } 4300 out: 4301 local_irq_restore(flags); 4302 4303 return ret; 4304 } 4305 4306 static int perf_event_read(struct perf_event *event, bool group) 4307 { 4308 enum perf_event_state state = READ_ONCE(event->state); 4309 int event_cpu, ret = 0; 4310 4311 /* 4312 * If event is enabled and currently active on a CPU, update the 4313 * value in the event structure: 4314 */ 4315 again: 4316 if (state == PERF_EVENT_STATE_ACTIVE) { 4317 struct perf_read_data data; 4318 4319 /* 4320 * Orders the ->state and ->oncpu loads such that if we see 4321 * ACTIVE we must also see the right ->oncpu. 4322 * 4323 * Matches the smp_wmb() from event_sched_in(). 4324 */ 4325 smp_rmb(); 4326 4327 event_cpu = READ_ONCE(event->oncpu); 4328 if ((unsigned)event_cpu >= nr_cpu_ids) 4329 return 0; 4330 4331 data = (struct perf_read_data){ 4332 .event = event, 4333 .group = group, 4334 .ret = 0, 4335 }; 4336 4337 preempt_disable(); 4338 event_cpu = __perf_event_read_cpu(event, event_cpu); 4339 4340 /* 4341 * Purposely ignore the smp_call_function_single() return 4342 * value. 4343 * 4344 * If event_cpu isn't a valid CPU it means the event got 4345 * scheduled out and that will have updated the event count. 4346 * 4347 * Therefore, either way, we'll have an up-to-date event count 4348 * after this. 4349 */ 4350 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4351 preempt_enable(); 4352 ret = data.ret; 4353 4354 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4355 struct perf_event_context *ctx = event->ctx; 4356 unsigned long flags; 4357 4358 raw_spin_lock_irqsave(&ctx->lock, flags); 4359 state = event->state; 4360 if (state != PERF_EVENT_STATE_INACTIVE) { 4361 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4362 goto again; 4363 } 4364 4365 /* 4366 * May read while context is not active (e.g., thread is 4367 * blocked), in that case we cannot update context time 4368 */ 4369 if (ctx->is_active & EVENT_TIME) { 4370 update_context_time(ctx); 4371 update_cgrp_time_from_event(event); 4372 } 4373 4374 perf_event_update_time(event); 4375 if (group) 4376 perf_event_update_sibling_time(event); 4377 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4378 } 4379 4380 return ret; 4381 } 4382 4383 /* 4384 * Initialize the perf_event context in a task_struct: 4385 */ 4386 static void __perf_event_init_context(struct perf_event_context *ctx) 4387 { 4388 raw_spin_lock_init(&ctx->lock); 4389 mutex_init(&ctx->mutex); 4390 INIT_LIST_HEAD(&ctx->active_ctx_list); 4391 perf_event_groups_init(&ctx->pinned_groups); 4392 perf_event_groups_init(&ctx->flexible_groups); 4393 INIT_LIST_HEAD(&ctx->event_list); 4394 INIT_LIST_HEAD(&ctx->pinned_active); 4395 INIT_LIST_HEAD(&ctx->flexible_active); 4396 refcount_set(&ctx->refcount, 1); 4397 } 4398 4399 static struct perf_event_context * 4400 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4401 { 4402 struct perf_event_context *ctx; 4403 4404 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4405 if (!ctx) 4406 return NULL; 4407 4408 __perf_event_init_context(ctx); 4409 if (task) 4410 ctx->task = get_task_struct(task); 4411 ctx->pmu = pmu; 4412 4413 return ctx; 4414 } 4415 4416 static struct task_struct * 4417 find_lively_task_by_vpid(pid_t vpid) 4418 { 4419 struct task_struct *task; 4420 4421 rcu_read_lock(); 4422 if (!vpid) 4423 task = current; 4424 else 4425 task = find_task_by_vpid(vpid); 4426 if (task) 4427 get_task_struct(task); 4428 rcu_read_unlock(); 4429 4430 if (!task) 4431 return ERR_PTR(-ESRCH); 4432 4433 return task; 4434 } 4435 4436 /* 4437 * Returns a matching context with refcount and pincount. 4438 */ 4439 static struct perf_event_context * 4440 find_get_context(struct pmu *pmu, struct task_struct *task, 4441 struct perf_event *event) 4442 { 4443 struct perf_event_context *ctx, *clone_ctx = NULL; 4444 struct perf_cpu_context *cpuctx; 4445 void *task_ctx_data = NULL; 4446 unsigned long flags; 4447 int ctxn, err; 4448 int cpu = event->cpu; 4449 4450 if (!task) { 4451 /* Must be root to operate on a CPU event: */ 4452 err = perf_allow_cpu(&event->attr); 4453 if (err) 4454 return ERR_PTR(err); 4455 4456 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4457 ctx = &cpuctx->ctx; 4458 get_ctx(ctx); 4459 ++ctx->pin_count; 4460 4461 return ctx; 4462 } 4463 4464 err = -EINVAL; 4465 ctxn = pmu->task_ctx_nr; 4466 if (ctxn < 0) 4467 goto errout; 4468 4469 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4470 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4471 if (!task_ctx_data) { 4472 err = -ENOMEM; 4473 goto errout; 4474 } 4475 } 4476 4477 retry: 4478 ctx = perf_lock_task_context(task, ctxn, &flags); 4479 if (ctx) { 4480 clone_ctx = unclone_ctx(ctx); 4481 ++ctx->pin_count; 4482 4483 if (task_ctx_data && !ctx->task_ctx_data) { 4484 ctx->task_ctx_data = task_ctx_data; 4485 task_ctx_data = NULL; 4486 } 4487 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4488 4489 if (clone_ctx) 4490 put_ctx(clone_ctx); 4491 } else { 4492 ctx = alloc_perf_context(pmu, task); 4493 err = -ENOMEM; 4494 if (!ctx) 4495 goto errout; 4496 4497 if (task_ctx_data) { 4498 ctx->task_ctx_data = task_ctx_data; 4499 task_ctx_data = NULL; 4500 } 4501 4502 err = 0; 4503 mutex_lock(&task->perf_event_mutex); 4504 /* 4505 * If it has already passed perf_event_exit_task(). 4506 * we must see PF_EXITING, it takes this mutex too. 4507 */ 4508 if (task->flags & PF_EXITING) 4509 err = -ESRCH; 4510 else if (task->perf_event_ctxp[ctxn]) 4511 err = -EAGAIN; 4512 else { 4513 get_ctx(ctx); 4514 ++ctx->pin_count; 4515 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4516 } 4517 mutex_unlock(&task->perf_event_mutex); 4518 4519 if (unlikely(err)) { 4520 put_ctx(ctx); 4521 4522 if (err == -EAGAIN) 4523 goto retry; 4524 goto errout; 4525 } 4526 } 4527 4528 kfree(task_ctx_data); 4529 return ctx; 4530 4531 errout: 4532 kfree(task_ctx_data); 4533 return ERR_PTR(err); 4534 } 4535 4536 static void perf_event_free_filter(struct perf_event *event); 4537 static void perf_event_free_bpf_prog(struct perf_event *event); 4538 4539 static void free_event_rcu(struct rcu_head *head) 4540 { 4541 struct perf_event *event; 4542 4543 event = container_of(head, struct perf_event, rcu_head); 4544 if (event->ns) 4545 put_pid_ns(event->ns); 4546 perf_event_free_filter(event); 4547 kfree(event); 4548 } 4549 4550 static void ring_buffer_attach(struct perf_event *event, 4551 struct perf_buffer *rb); 4552 4553 static void detach_sb_event(struct perf_event *event) 4554 { 4555 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4556 4557 raw_spin_lock(&pel->lock); 4558 list_del_rcu(&event->sb_list); 4559 raw_spin_unlock(&pel->lock); 4560 } 4561 4562 static bool is_sb_event(struct perf_event *event) 4563 { 4564 struct perf_event_attr *attr = &event->attr; 4565 4566 if (event->parent) 4567 return false; 4568 4569 if (event->attach_state & PERF_ATTACH_TASK) 4570 return false; 4571 4572 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4573 attr->comm || attr->comm_exec || 4574 attr->task || attr->ksymbol || 4575 attr->context_switch || 4576 attr->bpf_event) 4577 return true; 4578 return false; 4579 } 4580 4581 static void unaccount_pmu_sb_event(struct perf_event *event) 4582 { 4583 if (is_sb_event(event)) 4584 detach_sb_event(event); 4585 } 4586 4587 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4588 { 4589 if (event->parent) 4590 return; 4591 4592 if (is_cgroup_event(event)) 4593 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4594 } 4595 4596 #ifdef CONFIG_NO_HZ_FULL 4597 static DEFINE_SPINLOCK(nr_freq_lock); 4598 #endif 4599 4600 static void unaccount_freq_event_nohz(void) 4601 { 4602 #ifdef CONFIG_NO_HZ_FULL 4603 spin_lock(&nr_freq_lock); 4604 if (atomic_dec_and_test(&nr_freq_events)) 4605 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4606 spin_unlock(&nr_freq_lock); 4607 #endif 4608 } 4609 4610 static void unaccount_freq_event(void) 4611 { 4612 if (tick_nohz_full_enabled()) 4613 unaccount_freq_event_nohz(); 4614 else 4615 atomic_dec(&nr_freq_events); 4616 } 4617 4618 static void unaccount_event(struct perf_event *event) 4619 { 4620 bool dec = false; 4621 4622 if (event->parent) 4623 return; 4624 4625 if (event->attach_state & PERF_ATTACH_TASK) 4626 dec = true; 4627 if (event->attr.mmap || event->attr.mmap_data) 4628 atomic_dec(&nr_mmap_events); 4629 if (event->attr.comm) 4630 atomic_dec(&nr_comm_events); 4631 if (event->attr.namespaces) 4632 atomic_dec(&nr_namespaces_events); 4633 if (event->attr.cgroup) 4634 atomic_dec(&nr_cgroup_events); 4635 if (event->attr.task) 4636 atomic_dec(&nr_task_events); 4637 if (event->attr.freq) 4638 unaccount_freq_event(); 4639 if (event->attr.context_switch) { 4640 dec = true; 4641 atomic_dec(&nr_switch_events); 4642 } 4643 if (is_cgroup_event(event)) 4644 dec = true; 4645 if (has_branch_stack(event)) 4646 dec = true; 4647 if (event->attr.ksymbol) 4648 atomic_dec(&nr_ksymbol_events); 4649 if (event->attr.bpf_event) 4650 atomic_dec(&nr_bpf_events); 4651 4652 if (dec) { 4653 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4654 schedule_delayed_work(&perf_sched_work, HZ); 4655 } 4656 4657 unaccount_event_cpu(event, event->cpu); 4658 4659 unaccount_pmu_sb_event(event); 4660 } 4661 4662 static void perf_sched_delayed(struct work_struct *work) 4663 { 4664 mutex_lock(&perf_sched_mutex); 4665 if (atomic_dec_and_test(&perf_sched_count)) 4666 static_branch_disable(&perf_sched_events); 4667 mutex_unlock(&perf_sched_mutex); 4668 } 4669 4670 /* 4671 * The following implement mutual exclusion of events on "exclusive" pmus 4672 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4673 * at a time, so we disallow creating events that might conflict, namely: 4674 * 4675 * 1) cpu-wide events in the presence of per-task events, 4676 * 2) per-task events in the presence of cpu-wide events, 4677 * 3) two matching events on the same context. 4678 * 4679 * The former two cases are handled in the allocation path (perf_event_alloc(), 4680 * _free_event()), the latter -- before the first perf_install_in_context(). 4681 */ 4682 static int exclusive_event_init(struct perf_event *event) 4683 { 4684 struct pmu *pmu = event->pmu; 4685 4686 if (!is_exclusive_pmu(pmu)) 4687 return 0; 4688 4689 /* 4690 * Prevent co-existence of per-task and cpu-wide events on the 4691 * same exclusive pmu. 4692 * 4693 * Negative pmu::exclusive_cnt means there are cpu-wide 4694 * events on this "exclusive" pmu, positive means there are 4695 * per-task events. 4696 * 4697 * Since this is called in perf_event_alloc() path, event::ctx 4698 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4699 * to mean "per-task event", because unlike other attach states it 4700 * never gets cleared. 4701 */ 4702 if (event->attach_state & PERF_ATTACH_TASK) { 4703 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4704 return -EBUSY; 4705 } else { 4706 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4707 return -EBUSY; 4708 } 4709 4710 return 0; 4711 } 4712 4713 static void exclusive_event_destroy(struct perf_event *event) 4714 { 4715 struct pmu *pmu = event->pmu; 4716 4717 if (!is_exclusive_pmu(pmu)) 4718 return; 4719 4720 /* see comment in exclusive_event_init() */ 4721 if (event->attach_state & PERF_ATTACH_TASK) 4722 atomic_dec(&pmu->exclusive_cnt); 4723 else 4724 atomic_inc(&pmu->exclusive_cnt); 4725 } 4726 4727 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4728 { 4729 if ((e1->pmu == e2->pmu) && 4730 (e1->cpu == e2->cpu || 4731 e1->cpu == -1 || 4732 e2->cpu == -1)) 4733 return true; 4734 return false; 4735 } 4736 4737 static bool exclusive_event_installable(struct perf_event *event, 4738 struct perf_event_context *ctx) 4739 { 4740 struct perf_event *iter_event; 4741 struct pmu *pmu = event->pmu; 4742 4743 lockdep_assert_held(&ctx->mutex); 4744 4745 if (!is_exclusive_pmu(pmu)) 4746 return true; 4747 4748 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4749 if (exclusive_event_match(iter_event, event)) 4750 return false; 4751 } 4752 4753 return true; 4754 } 4755 4756 static void perf_addr_filters_splice(struct perf_event *event, 4757 struct list_head *head); 4758 4759 static void _free_event(struct perf_event *event) 4760 { 4761 irq_work_sync(&event->pending); 4762 4763 unaccount_event(event); 4764 4765 security_perf_event_free(event); 4766 4767 if (event->rb) { 4768 /* 4769 * Can happen when we close an event with re-directed output. 4770 * 4771 * Since we have a 0 refcount, perf_mmap_close() will skip 4772 * over us; possibly making our ring_buffer_put() the last. 4773 */ 4774 mutex_lock(&event->mmap_mutex); 4775 ring_buffer_attach(event, NULL); 4776 mutex_unlock(&event->mmap_mutex); 4777 } 4778 4779 if (is_cgroup_event(event)) 4780 perf_detach_cgroup(event); 4781 4782 if (!event->parent) { 4783 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4784 put_callchain_buffers(); 4785 } 4786 4787 perf_event_free_bpf_prog(event); 4788 perf_addr_filters_splice(event, NULL); 4789 kfree(event->addr_filter_ranges); 4790 4791 if (event->destroy) 4792 event->destroy(event); 4793 4794 /* 4795 * Must be after ->destroy(), due to uprobe_perf_close() using 4796 * hw.target. 4797 */ 4798 if (event->hw.target) 4799 put_task_struct(event->hw.target); 4800 4801 /* 4802 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4803 * all task references must be cleaned up. 4804 */ 4805 if (event->ctx) 4806 put_ctx(event->ctx); 4807 4808 exclusive_event_destroy(event); 4809 module_put(event->pmu->module); 4810 4811 call_rcu(&event->rcu_head, free_event_rcu); 4812 } 4813 4814 /* 4815 * Used to free events which have a known refcount of 1, such as in error paths 4816 * where the event isn't exposed yet and inherited events. 4817 */ 4818 static void free_event(struct perf_event *event) 4819 { 4820 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4821 "unexpected event refcount: %ld; ptr=%p\n", 4822 atomic_long_read(&event->refcount), event)) { 4823 /* leak to avoid use-after-free */ 4824 return; 4825 } 4826 4827 _free_event(event); 4828 } 4829 4830 /* 4831 * Remove user event from the owner task. 4832 */ 4833 static void perf_remove_from_owner(struct perf_event *event) 4834 { 4835 struct task_struct *owner; 4836 4837 rcu_read_lock(); 4838 /* 4839 * Matches the smp_store_release() in perf_event_exit_task(). If we 4840 * observe !owner it means the list deletion is complete and we can 4841 * indeed free this event, otherwise we need to serialize on 4842 * owner->perf_event_mutex. 4843 */ 4844 owner = READ_ONCE(event->owner); 4845 if (owner) { 4846 /* 4847 * Since delayed_put_task_struct() also drops the last 4848 * task reference we can safely take a new reference 4849 * while holding the rcu_read_lock(). 4850 */ 4851 get_task_struct(owner); 4852 } 4853 rcu_read_unlock(); 4854 4855 if (owner) { 4856 /* 4857 * If we're here through perf_event_exit_task() we're already 4858 * holding ctx->mutex which would be an inversion wrt. the 4859 * normal lock order. 4860 * 4861 * However we can safely take this lock because its the child 4862 * ctx->mutex. 4863 */ 4864 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4865 4866 /* 4867 * We have to re-check the event->owner field, if it is cleared 4868 * we raced with perf_event_exit_task(), acquiring the mutex 4869 * ensured they're done, and we can proceed with freeing the 4870 * event. 4871 */ 4872 if (event->owner) { 4873 list_del_init(&event->owner_entry); 4874 smp_store_release(&event->owner, NULL); 4875 } 4876 mutex_unlock(&owner->perf_event_mutex); 4877 put_task_struct(owner); 4878 } 4879 } 4880 4881 static void put_event(struct perf_event *event) 4882 { 4883 if (!atomic_long_dec_and_test(&event->refcount)) 4884 return; 4885 4886 _free_event(event); 4887 } 4888 4889 /* 4890 * Kill an event dead; while event:refcount will preserve the event 4891 * object, it will not preserve its functionality. Once the last 'user' 4892 * gives up the object, we'll destroy the thing. 4893 */ 4894 int perf_event_release_kernel(struct perf_event *event) 4895 { 4896 struct perf_event_context *ctx = event->ctx; 4897 struct perf_event *child, *tmp; 4898 LIST_HEAD(free_list); 4899 4900 /* 4901 * If we got here through err_file: fput(event_file); we will not have 4902 * attached to a context yet. 4903 */ 4904 if (!ctx) { 4905 WARN_ON_ONCE(event->attach_state & 4906 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4907 goto no_ctx; 4908 } 4909 4910 if (!is_kernel_event(event)) 4911 perf_remove_from_owner(event); 4912 4913 ctx = perf_event_ctx_lock(event); 4914 WARN_ON_ONCE(ctx->parent_ctx); 4915 perf_remove_from_context(event, DETACH_GROUP); 4916 4917 raw_spin_lock_irq(&ctx->lock); 4918 /* 4919 * Mark this event as STATE_DEAD, there is no external reference to it 4920 * anymore. 4921 * 4922 * Anybody acquiring event->child_mutex after the below loop _must_ 4923 * also see this, most importantly inherit_event() which will avoid 4924 * placing more children on the list. 4925 * 4926 * Thus this guarantees that we will in fact observe and kill _ALL_ 4927 * child events. 4928 */ 4929 event->state = PERF_EVENT_STATE_DEAD; 4930 raw_spin_unlock_irq(&ctx->lock); 4931 4932 perf_event_ctx_unlock(event, ctx); 4933 4934 again: 4935 mutex_lock(&event->child_mutex); 4936 list_for_each_entry(child, &event->child_list, child_list) { 4937 4938 /* 4939 * Cannot change, child events are not migrated, see the 4940 * comment with perf_event_ctx_lock_nested(). 4941 */ 4942 ctx = READ_ONCE(child->ctx); 4943 /* 4944 * Since child_mutex nests inside ctx::mutex, we must jump 4945 * through hoops. We start by grabbing a reference on the ctx. 4946 * 4947 * Since the event cannot get freed while we hold the 4948 * child_mutex, the context must also exist and have a !0 4949 * reference count. 4950 */ 4951 get_ctx(ctx); 4952 4953 /* 4954 * Now that we have a ctx ref, we can drop child_mutex, and 4955 * acquire ctx::mutex without fear of it going away. Then we 4956 * can re-acquire child_mutex. 4957 */ 4958 mutex_unlock(&event->child_mutex); 4959 mutex_lock(&ctx->mutex); 4960 mutex_lock(&event->child_mutex); 4961 4962 /* 4963 * Now that we hold ctx::mutex and child_mutex, revalidate our 4964 * state, if child is still the first entry, it didn't get freed 4965 * and we can continue doing so. 4966 */ 4967 tmp = list_first_entry_or_null(&event->child_list, 4968 struct perf_event, child_list); 4969 if (tmp == child) { 4970 perf_remove_from_context(child, DETACH_GROUP); 4971 list_move(&child->child_list, &free_list); 4972 /* 4973 * This matches the refcount bump in inherit_event(); 4974 * this can't be the last reference. 4975 */ 4976 put_event(event); 4977 } 4978 4979 mutex_unlock(&event->child_mutex); 4980 mutex_unlock(&ctx->mutex); 4981 put_ctx(ctx); 4982 goto again; 4983 } 4984 mutex_unlock(&event->child_mutex); 4985 4986 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4987 void *var = &child->ctx->refcount; 4988 4989 list_del(&child->child_list); 4990 free_event(child); 4991 4992 /* 4993 * Wake any perf_event_free_task() waiting for this event to be 4994 * freed. 4995 */ 4996 smp_mb(); /* pairs with wait_var_event() */ 4997 wake_up_var(var); 4998 } 4999 5000 no_ctx: 5001 put_event(event); /* Must be the 'last' reference */ 5002 return 0; 5003 } 5004 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5005 5006 /* 5007 * Called when the last reference to the file is gone. 5008 */ 5009 static int perf_release(struct inode *inode, struct file *file) 5010 { 5011 perf_event_release_kernel(file->private_data); 5012 return 0; 5013 } 5014 5015 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5016 { 5017 struct perf_event *child; 5018 u64 total = 0; 5019 5020 *enabled = 0; 5021 *running = 0; 5022 5023 mutex_lock(&event->child_mutex); 5024 5025 (void)perf_event_read(event, false); 5026 total += perf_event_count(event); 5027 5028 *enabled += event->total_time_enabled + 5029 atomic64_read(&event->child_total_time_enabled); 5030 *running += event->total_time_running + 5031 atomic64_read(&event->child_total_time_running); 5032 5033 list_for_each_entry(child, &event->child_list, child_list) { 5034 (void)perf_event_read(child, false); 5035 total += perf_event_count(child); 5036 *enabled += child->total_time_enabled; 5037 *running += child->total_time_running; 5038 } 5039 mutex_unlock(&event->child_mutex); 5040 5041 return total; 5042 } 5043 5044 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5045 { 5046 struct perf_event_context *ctx; 5047 u64 count; 5048 5049 ctx = perf_event_ctx_lock(event); 5050 count = __perf_event_read_value(event, enabled, running); 5051 perf_event_ctx_unlock(event, ctx); 5052 5053 return count; 5054 } 5055 EXPORT_SYMBOL_GPL(perf_event_read_value); 5056 5057 static int __perf_read_group_add(struct perf_event *leader, 5058 u64 read_format, u64 *values) 5059 { 5060 struct perf_event_context *ctx = leader->ctx; 5061 struct perf_event *sub; 5062 unsigned long flags; 5063 int n = 1; /* skip @nr */ 5064 int ret; 5065 5066 ret = perf_event_read(leader, true); 5067 if (ret) 5068 return ret; 5069 5070 raw_spin_lock_irqsave(&ctx->lock, flags); 5071 5072 /* 5073 * Since we co-schedule groups, {enabled,running} times of siblings 5074 * will be identical to those of the leader, so we only publish one 5075 * set. 5076 */ 5077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5078 values[n++] += leader->total_time_enabled + 5079 atomic64_read(&leader->child_total_time_enabled); 5080 } 5081 5082 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5083 values[n++] += leader->total_time_running + 5084 atomic64_read(&leader->child_total_time_running); 5085 } 5086 5087 /* 5088 * Write {count,id} tuples for every sibling. 5089 */ 5090 values[n++] += perf_event_count(leader); 5091 if (read_format & PERF_FORMAT_ID) 5092 values[n++] = primary_event_id(leader); 5093 5094 for_each_sibling_event(sub, leader) { 5095 values[n++] += perf_event_count(sub); 5096 if (read_format & PERF_FORMAT_ID) 5097 values[n++] = primary_event_id(sub); 5098 } 5099 5100 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5101 return 0; 5102 } 5103 5104 static int perf_read_group(struct perf_event *event, 5105 u64 read_format, char __user *buf) 5106 { 5107 struct perf_event *leader = event->group_leader, *child; 5108 struct perf_event_context *ctx = leader->ctx; 5109 int ret; 5110 u64 *values; 5111 5112 lockdep_assert_held(&ctx->mutex); 5113 5114 values = kzalloc(event->read_size, GFP_KERNEL); 5115 if (!values) 5116 return -ENOMEM; 5117 5118 values[0] = 1 + leader->nr_siblings; 5119 5120 /* 5121 * By locking the child_mutex of the leader we effectively 5122 * lock the child list of all siblings.. XXX explain how. 5123 */ 5124 mutex_lock(&leader->child_mutex); 5125 5126 ret = __perf_read_group_add(leader, read_format, values); 5127 if (ret) 5128 goto unlock; 5129 5130 list_for_each_entry(child, &leader->child_list, child_list) { 5131 ret = __perf_read_group_add(child, read_format, values); 5132 if (ret) 5133 goto unlock; 5134 } 5135 5136 mutex_unlock(&leader->child_mutex); 5137 5138 ret = event->read_size; 5139 if (copy_to_user(buf, values, event->read_size)) 5140 ret = -EFAULT; 5141 goto out; 5142 5143 unlock: 5144 mutex_unlock(&leader->child_mutex); 5145 out: 5146 kfree(values); 5147 return ret; 5148 } 5149 5150 static int perf_read_one(struct perf_event *event, 5151 u64 read_format, char __user *buf) 5152 { 5153 u64 enabled, running; 5154 u64 values[4]; 5155 int n = 0; 5156 5157 values[n++] = __perf_event_read_value(event, &enabled, &running); 5158 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5159 values[n++] = enabled; 5160 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5161 values[n++] = running; 5162 if (read_format & PERF_FORMAT_ID) 5163 values[n++] = primary_event_id(event); 5164 5165 if (copy_to_user(buf, values, n * sizeof(u64))) 5166 return -EFAULT; 5167 5168 return n * sizeof(u64); 5169 } 5170 5171 static bool is_event_hup(struct perf_event *event) 5172 { 5173 bool no_children; 5174 5175 if (event->state > PERF_EVENT_STATE_EXIT) 5176 return false; 5177 5178 mutex_lock(&event->child_mutex); 5179 no_children = list_empty(&event->child_list); 5180 mutex_unlock(&event->child_mutex); 5181 return no_children; 5182 } 5183 5184 /* 5185 * Read the performance event - simple non blocking version for now 5186 */ 5187 static ssize_t 5188 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5189 { 5190 u64 read_format = event->attr.read_format; 5191 int ret; 5192 5193 /* 5194 * Return end-of-file for a read on an event that is in 5195 * error state (i.e. because it was pinned but it couldn't be 5196 * scheduled on to the CPU at some point). 5197 */ 5198 if (event->state == PERF_EVENT_STATE_ERROR) 5199 return 0; 5200 5201 if (count < event->read_size) 5202 return -ENOSPC; 5203 5204 WARN_ON_ONCE(event->ctx->parent_ctx); 5205 if (read_format & PERF_FORMAT_GROUP) 5206 ret = perf_read_group(event, read_format, buf); 5207 else 5208 ret = perf_read_one(event, read_format, buf); 5209 5210 return ret; 5211 } 5212 5213 static ssize_t 5214 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5215 { 5216 struct perf_event *event = file->private_data; 5217 struct perf_event_context *ctx; 5218 int ret; 5219 5220 ret = security_perf_event_read(event); 5221 if (ret) 5222 return ret; 5223 5224 ctx = perf_event_ctx_lock(event); 5225 ret = __perf_read(event, buf, count); 5226 perf_event_ctx_unlock(event, ctx); 5227 5228 return ret; 5229 } 5230 5231 static __poll_t perf_poll(struct file *file, poll_table *wait) 5232 { 5233 struct perf_event *event = file->private_data; 5234 struct perf_buffer *rb; 5235 __poll_t events = EPOLLHUP; 5236 5237 poll_wait(file, &event->waitq, wait); 5238 5239 if (is_event_hup(event)) 5240 return events; 5241 5242 /* 5243 * Pin the event->rb by taking event->mmap_mutex; otherwise 5244 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5245 */ 5246 mutex_lock(&event->mmap_mutex); 5247 rb = event->rb; 5248 if (rb) 5249 events = atomic_xchg(&rb->poll, 0); 5250 mutex_unlock(&event->mmap_mutex); 5251 return events; 5252 } 5253 5254 static void _perf_event_reset(struct perf_event *event) 5255 { 5256 (void)perf_event_read(event, false); 5257 local64_set(&event->count, 0); 5258 perf_event_update_userpage(event); 5259 } 5260 5261 /* Assume it's not an event with inherit set. */ 5262 u64 perf_event_pause(struct perf_event *event, bool reset) 5263 { 5264 struct perf_event_context *ctx; 5265 u64 count; 5266 5267 ctx = perf_event_ctx_lock(event); 5268 WARN_ON_ONCE(event->attr.inherit); 5269 _perf_event_disable(event); 5270 count = local64_read(&event->count); 5271 if (reset) 5272 local64_set(&event->count, 0); 5273 perf_event_ctx_unlock(event, ctx); 5274 5275 return count; 5276 } 5277 EXPORT_SYMBOL_GPL(perf_event_pause); 5278 5279 /* 5280 * Holding the top-level event's child_mutex means that any 5281 * descendant process that has inherited this event will block 5282 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5283 * task existence requirements of perf_event_enable/disable. 5284 */ 5285 static void perf_event_for_each_child(struct perf_event *event, 5286 void (*func)(struct perf_event *)) 5287 { 5288 struct perf_event *child; 5289 5290 WARN_ON_ONCE(event->ctx->parent_ctx); 5291 5292 mutex_lock(&event->child_mutex); 5293 func(event); 5294 list_for_each_entry(child, &event->child_list, child_list) 5295 func(child); 5296 mutex_unlock(&event->child_mutex); 5297 } 5298 5299 static void perf_event_for_each(struct perf_event *event, 5300 void (*func)(struct perf_event *)) 5301 { 5302 struct perf_event_context *ctx = event->ctx; 5303 struct perf_event *sibling; 5304 5305 lockdep_assert_held(&ctx->mutex); 5306 5307 event = event->group_leader; 5308 5309 perf_event_for_each_child(event, func); 5310 for_each_sibling_event(sibling, event) 5311 perf_event_for_each_child(sibling, func); 5312 } 5313 5314 static void __perf_event_period(struct perf_event *event, 5315 struct perf_cpu_context *cpuctx, 5316 struct perf_event_context *ctx, 5317 void *info) 5318 { 5319 u64 value = *((u64 *)info); 5320 bool active; 5321 5322 if (event->attr.freq) { 5323 event->attr.sample_freq = value; 5324 } else { 5325 event->attr.sample_period = value; 5326 event->hw.sample_period = value; 5327 } 5328 5329 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5330 if (active) { 5331 perf_pmu_disable(ctx->pmu); 5332 /* 5333 * We could be throttled; unthrottle now to avoid the tick 5334 * trying to unthrottle while we already re-started the event. 5335 */ 5336 if (event->hw.interrupts == MAX_INTERRUPTS) { 5337 event->hw.interrupts = 0; 5338 perf_log_throttle(event, 1); 5339 } 5340 event->pmu->stop(event, PERF_EF_UPDATE); 5341 } 5342 5343 local64_set(&event->hw.period_left, 0); 5344 5345 if (active) { 5346 event->pmu->start(event, PERF_EF_RELOAD); 5347 perf_pmu_enable(ctx->pmu); 5348 } 5349 } 5350 5351 static int perf_event_check_period(struct perf_event *event, u64 value) 5352 { 5353 return event->pmu->check_period(event, value); 5354 } 5355 5356 static int _perf_event_period(struct perf_event *event, u64 value) 5357 { 5358 if (!is_sampling_event(event)) 5359 return -EINVAL; 5360 5361 if (!value) 5362 return -EINVAL; 5363 5364 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5365 return -EINVAL; 5366 5367 if (perf_event_check_period(event, value)) 5368 return -EINVAL; 5369 5370 if (!event->attr.freq && (value & (1ULL << 63))) 5371 return -EINVAL; 5372 5373 event_function_call(event, __perf_event_period, &value); 5374 5375 return 0; 5376 } 5377 5378 int perf_event_period(struct perf_event *event, u64 value) 5379 { 5380 struct perf_event_context *ctx; 5381 int ret; 5382 5383 ctx = perf_event_ctx_lock(event); 5384 ret = _perf_event_period(event, value); 5385 perf_event_ctx_unlock(event, ctx); 5386 5387 return ret; 5388 } 5389 EXPORT_SYMBOL_GPL(perf_event_period); 5390 5391 static const struct file_operations perf_fops; 5392 5393 static inline int perf_fget_light(int fd, struct fd *p) 5394 { 5395 struct fd f = fdget(fd); 5396 if (!f.file) 5397 return -EBADF; 5398 5399 if (f.file->f_op != &perf_fops) { 5400 fdput(f); 5401 return -EBADF; 5402 } 5403 *p = f; 5404 return 0; 5405 } 5406 5407 static int perf_event_set_output(struct perf_event *event, 5408 struct perf_event *output_event); 5409 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5410 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5411 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5412 struct perf_event_attr *attr); 5413 5414 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5415 { 5416 void (*func)(struct perf_event *); 5417 u32 flags = arg; 5418 5419 switch (cmd) { 5420 case PERF_EVENT_IOC_ENABLE: 5421 func = _perf_event_enable; 5422 break; 5423 case PERF_EVENT_IOC_DISABLE: 5424 func = _perf_event_disable; 5425 break; 5426 case PERF_EVENT_IOC_RESET: 5427 func = _perf_event_reset; 5428 break; 5429 5430 case PERF_EVENT_IOC_REFRESH: 5431 return _perf_event_refresh(event, arg); 5432 5433 case PERF_EVENT_IOC_PERIOD: 5434 { 5435 u64 value; 5436 5437 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5438 return -EFAULT; 5439 5440 return _perf_event_period(event, value); 5441 } 5442 case PERF_EVENT_IOC_ID: 5443 { 5444 u64 id = primary_event_id(event); 5445 5446 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5447 return -EFAULT; 5448 return 0; 5449 } 5450 5451 case PERF_EVENT_IOC_SET_OUTPUT: 5452 { 5453 int ret; 5454 if (arg != -1) { 5455 struct perf_event *output_event; 5456 struct fd output; 5457 ret = perf_fget_light(arg, &output); 5458 if (ret) 5459 return ret; 5460 output_event = output.file->private_data; 5461 ret = perf_event_set_output(event, output_event); 5462 fdput(output); 5463 } else { 5464 ret = perf_event_set_output(event, NULL); 5465 } 5466 return ret; 5467 } 5468 5469 case PERF_EVENT_IOC_SET_FILTER: 5470 return perf_event_set_filter(event, (void __user *)arg); 5471 5472 case PERF_EVENT_IOC_SET_BPF: 5473 return perf_event_set_bpf_prog(event, arg); 5474 5475 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5476 struct perf_buffer *rb; 5477 5478 rcu_read_lock(); 5479 rb = rcu_dereference(event->rb); 5480 if (!rb || !rb->nr_pages) { 5481 rcu_read_unlock(); 5482 return -EINVAL; 5483 } 5484 rb_toggle_paused(rb, !!arg); 5485 rcu_read_unlock(); 5486 return 0; 5487 } 5488 5489 case PERF_EVENT_IOC_QUERY_BPF: 5490 return perf_event_query_prog_array(event, (void __user *)arg); 5491 5492 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5493 struct perf_event_attr new_attr; 5494 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5495 &new_attr); 5496 5497 if (err) 5498 return err; 5499 5500 return perf_event_modify_attr(event, &new_attr); 5501 } 5502 default: 5503 return -ENOTTY; 5504 } 5505 5506 if (flags & PERF_IOC_FLAG_GROUP) 5507 perf_event_for_each(event, func); 5508 else 5509 perf_event_for_each_child(event, func); 5510 5511 return 0; 5512 } 5513 5514 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5515 { 5516 struct perf_event *event = file->private_data; 5517 struct perf_event_context *ctx; 5518 long ret; 5519 5520 /* Treat ioctl like writes as it is likely a mutating operation. */ 5521 ret = security_perf_event_write(event); 5522 if (ret) 5523 return ret; 5524 5525 ctx = perf_event_ctx_lock(event); 5526 ret = _perf_ioctl(event, cmd, arg); 5527 perf_event_ctx_unlock(event, ctx); 5528 5529 return ret; 5530 } 5531 5532 #ifdef CONFIG_COMPAT 5533 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5534 unsigned long arg) 5535 { 5536 switch (_IOC_NR(cmd)) { 5537 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5538 case _IOC_NR(PERF_EVENT_IOC_ID): 5539 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5540 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5541 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5542 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5543 cmd &= ~IOCSIZE_MASK; 5544 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5545 } 5546 break; 5547 } 5548 return perf_ioctl(file, cmd, arg); 5549 } 5550 #else 5551 # define perf_compat_ioctl NULL 5552 #endif 5553 5554 int perf_event_task_enable(void) 5555 { 5556 struct perf_event_context *ctx; 5557 struct perf_event *event; 5558 5559 mutex_lock(¤t->perf_event_mutex); 5560 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5561 ctx = perf_event_ctx_lock(event); 5562 perf_event_for_each_child(event, _perf_event_enable); 5563 perf_event_ctx_unlock(event, ctx); 5564 } 5565 mutex_unlock(¤t->perf_event_mutex); 5566 5567 return 0; 5568 } 5569 5570 int perf_event_task_disable(void) 5571 { 5572 struct perf_event_context *ctx; 5573 struct perf_event *event; 5574 5575 mutex_lock(¤t->perf_event_mutex); 5576 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5577 ctx = perf_event_ctx_lock(event); 5578 perf_event_for_each_child(event, _perf_event_disable); 5579 perf_event_ctx_unlock(event, ctx); 5580 } 5581 mutex_unlock(¤t->perf_event_mutex); 5582 5583 return 0; 5584 } 5585 5586 static int perf_event_index(struct perf_event *event) 5587 { 5588 if (event->hw.state & PERF_HES_STOPPED) 5589 return 0; 5590 5591 if (event->state != PERF_EVENT_STATE_ACTIVE) 5592 return 0; 5593 5594 return event->pmu->event_idx(event); 5595 } 5596 5597 static void calc_timer_values(struct perf_event *event, 5598 u64 *now, 5599 u64 *enabled, 5600 u64 *running) 5601 { 5602 u64 ctx_time; 5603 5604 *now = perf_clock(); 5605 ctx_time = event->shadow_ctx_time + *now; 5606 __perf_update_times(event, ctx_time, enabled, running); 5607 } 5608 5609 static void perf_event_init_userpage(struct perf_event *event) 5610 { 5611 struct perf_event_mmap_page *userpg; 5612 struct perf_buffer *rb; 5613 5614 rcu_read_lock(); 5615 rb = rcu_dereference(event->rb); 5616 if (!rb) 5617 goto unlock; 5618 5619 userpg = rb->user_page; 5620 5621 /* Allow new userspace to detect that bit 0 is deprecated */ 5622 userpg->cap_bit0_is_deprecated = 1; 5623 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5624 userpg->data_offset = PAGE_SIZE; 5625 userpg->data_size = perf_data_size(rb); 5626 5627 unlock: 5628 rcu_read_unlock(); 5629 } 5630 5631 void __weak arch_perf_update_userpage( 5632 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5633 { 5634 } 5635 5636 /* 5637 * Callers need to ensure there can be no nesting of this function, otherwise 5638 * the seqlock logic goes bad. We can not serialize this because the arch 5639 * code calls this from NMI context. 5640 */ 5641 void perf_event_update_userpage(struct perf_event *event) 5642 { 5643 struct perf_event_mmap_page *userpg; 5644 struct perf_buffer *rb; 5645 u64 enabled, running, now; 5646 5647 rcu_read_lock(); 5648 rb = rcu_dereference(event->rb); 5649 if (!rb) 5650 goto unlock; 5651 5652 /* 5653 * compute total_time_enabled, total_time_running 5654 * based on snapshot values taken when the event 5655 * was last scheduled in. 5656 * 5657 * we cannot simply called update_context_time() 5658 * because of locking issue as we can be called in 5659 * NMI context 5660 */ 5661 calc_timer_values(event, &now, &enabled, &running); 5662 5663 userpg = rb->user_page; 5664 /* 5665 * Disable preemption to guarantee consistent time stamps are stored to 5666 * the user page. 5667 */ 5668 preempt_disable(); 5669 ++userpg->lock; 5670 barrier(); 5671 userpg->index = perf_event_index(event); 5672 userpg->offset = perf_event_count(event); 5673 if (userpg->index) 5674 userpg->offset -= local64_read(&event->hw.prev_count); 5675 5676 userpg->time_enabled = enabled + 5677 atomic64_read(&event->child_total_time_enabled); 5678 5679 userpg->time_running = running + 5680 atomic64_read(&event->child_total_time_running); 5681 5682 arch_perf_update_userpage(event, userpg, now); 5683 5684 barrier(); 5685 ++userpg->lock; 5686 preempt_enable(); 5687 unlock: 5688 rcu_read_unlock(); 5689 } 5690 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5691 5692 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5693 { 5694 struct perf_event *event = vmf->vma->vm_file->private_data; 5695 struct perf_buffer *rb; 5696 vm_fault_t ret = VM_FAULT_SIGBUS; 5697 5698 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5699 if (vmf->pgoff == 0) 5700 ret = 0; 5701 return ret; 5702 } 5703 5704 rcu_read_lock(); 5705 rb = rcu_dereference(event->rb); 5706 if (!rb) 5707 goto unlock; 5708 5709 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5710 goto unlock; 5711 5712 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5713 if (!vmf->page) 5714 goto unlock; 5715 5716 get_page(vmf->page); 5717 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5718 vmf->page->index = vmf->pgoff; 5719 5720 ret = 0; 5721 unlock: 5722 rcu_read_unlock(); 5723 5724 return ret; 5725 } 5726 5727 static void ring_buffer_attach(struct perf_event *event, 5728 struct perf_buffer *rb) 5729 { 5730 struct perf_buffer *old_rb = NULL; 5731 unsigned long flags; 5732 5733 if (event->rb) { 5734 /* 5735 * Should be impossible, we set this when removing 5736 * event->rb_entry and wait/clear when adding event->rb_entry. 5737 */ 5738 WARN_ON_ONCE(event->rcu_pending); 5739 5740 old_rb = event->rb; 5741 spin_lock_irqsave(&old_rb->event_lock, flags); 5742 list_del_rcu(&event->rb_entry); 5743 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5744 5745 event->rcu_batches = get_state_synchronize_rcu(); 5746 event->rcu_pending = 1; 5747 } 5748 5749 if (rb) { 5750 if (event->rcu_pending) { 5751 cond_synchronize_rcu(event->rcu_batches); 5752 event->rcu_pending = 0; 5753 } 5754 5755 spin_lock_irqsave(&rb->event_lock, flags); 5756 list_add_rcu(&event->rb_entry, &rb->event_list); 5757 spin_unlock_irqrestore(&rb->event_lock, flags); 5758 } 5759 5760 /* 5761 * Avoid racing with perf_mmap_close(AUX): stop the event 5762 * before swizzling the event::rb pointer; if it's getting 5763 * unmapped, its aux_mmap_count will be 0 and it won't 5764 * restart. See the comment in __perf_pmu_output_stop(). 5765 * 5766 * Data will inevitably be lost when set_output is done in 5767 * mid-air, but then again, whoever does it like this is 5768 * not in for the data anyway. 5769 */ 5770 if (has_aux(event)) 5771 perf_event_stop(event, 0); 5772 5773 rcu_assign_pointer(event->rb, rb); 5774 5775 if (old_rb) { 5776 ring_buffer_put(old_rb); 5777 /* 5778 * Since we detached before setting the new rb, so that we 5779 * could attach the new rb, we could have missed a wakeup. 5780 * Provide it now. 5781 */ 5782 wake_up_all(&event->waitq); 5783 } 5784 } 5785 5786 static void ring_buffer_wakeup(struct perf_event *event) 5787 { 5788 struct perf_buffer *rb; 5789 5790 rcu_read_lock(); 5791 rb = rcu_dereference(event->rb); 5792 if (rb) { 5793 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5794 wake_up_all(&event->waitq); 5795 } 5796 rcu_read_unlock(); 5797 } 5798 5799 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5800 { 5801 struct perf_buffer *rb; 5802 5803 rcu_read_lock(); 5804 rb = rcu_dereference(event->rb); 5805 if (rb) { 5806 if (!refcount_inc_not_zero(&rb->refcount)) 5807 rb = NULL; 5808 } 5809 rcu_read_unlock(); 5810 5811 return rb; 5812 } 5813 5814 void ring_buffer_put(struct perf_buffer *rb) 5815 { 5816 if (!refcount_dec_and_test(&rb->refcount)) 5817 return; 5818 5819 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5820 5821 call_rcu(&rb->rcu_head, rb_free_rcu); 5822 } 5823 5824 static void perf_mmap_open(struct vm_area_struct *vma) 5825 { 5826 struct perf_event *event = vma->vm_file->private_data; 5827 5828 atomic_inc(&event->mmap_count); 5829 atomic_inc(&event->rb->mmap_count); 5830 5831 if (vma->vm_pgoff) 5832 atomic_inc(&event->rb->aux_mmap_count); 5833 5834 if (event->pmu->event_mapped) 5835 event->pmu->event_mapped(event, vma->vm_mm); 5836 } 5837 5838 static void perf_pmu_output_stop(struct perf_event *event); 5839 5840 /* 5841 * A buffer can be mmap()ed multiple times; either directly through the same 5842 * event, or through other events by use of perf_event_set_output(). 5843 * 5844 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5845 * the buffer here, where we still have a VM context. This means we need 5846 * to detach all events redirecting to us. 5847 */ 5848 static void perf_mmap_close(struct vm_area_struct *vma) 5849 { 5850 struct perf_event *event = vma->vm_file->private_data; 5851 5852 struct perf_buffer *rb = ring_buffer_get(event); 5853 struct user_struct *mmap_user = rb->mmap_user; 5854 int mmap_locked = rb->mmap_locked; 5855 unsigned long size = perf_data_size(rb); 5856 5857 if (event->pmu->event_unmapped) 5858 event->pmu->event_unmapped(event, vma->vm_mm); 5859 5860 /* 5861 * rb->aux_mmap_count will always drop before rb->mmap_count and 5862 * event->mmap_count, so it is ok to use event->mmap_mutex to 5863 * serialize with perf_mmap here. 5864 */ 5865 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5866 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5867 /* 5868 * Stop all AUX events that are writing to this buffer, 5869 * so that we can free its AUX pages and corresponding PMU 5870 * data. Note that after rb::aux_mmap_count dropped to zero, 5871 * they won't start any more (see perf_aux_output_begin()). 5872 */ 5873 perf_pmu_output_stop(event); 5874 5875 /* now it's safe to free the pages */ 5876 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5877 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5878 5879 /* this has to be the last one */ 5880 rb_free_aux(rb); 5881 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5882 5883 mutex_unlock(&event->mmap_mutex); 5884 } 5885 5886 atomic_dec(&rb->mmap_count); 5887 5888 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5889 goto out_put; 5890 5891 ring_buffer_attach(event, NULL); 5892 mutex_unlock(&event->mmap_mutex); 5893 5894 /* If there's still other mmap()s of this buffer, we're done. */ 5895 if (atomic_read(&rb->mmap_count)) 5896 goto out_put; 5897 5898 /* 5899 * No other mmap()s, detach from all other events that might redirect 5900 * into the now unreachable buffer. Somewhat complicated by the 5901 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5902 */ 5903 again: 5904 rcu_read_lock(); 5905 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5906 if (!atomic_long_inc_not_zero(&event->refcount)) { 5907 /* 5908 * This event is en-route to free_event() which will 5909 * detach it and remove it from the list. 5910 */ 5911 continue; 5912 } 5913 rcu_read_unlock(); 5914 5915 mutex_lock(&event->mmap_mutex); 5916 /* 5917 * Check we didn't race with perf_event_set_output() which can 5918 * swizzle the rb from under us while we were waiting to 5919 * acquire mmap_mutex. 5920 * 5921 * If we find a different rb; ignore this event, a next 5922 * iteration will no longer find it on the list. We have to 5923 * still restart the iteration to make sure we're not now 5924 * iterating the wrong list. 5925 */ 5926 if (event->rb == rb) 5927 ring_buffer_attach(event, NULL); 5928 5929 mutex_unlock(&event->mmap_mutex); 5930 put_event(event); 5931 5932 /* 5933 * Restart the iteration; either we're on the wrong list or 5934 * destroyed its integrity by doing a deletion. 5935 */ 5936 goto again; 5937 } 5938 rcu_read_unlock(); 5939 5940 /* 5941 * It could be there's still a few 0-ref events on the list; they'll 5942 * get cleaned up by free_event() -- they'll also still have their 5943 * ref on the rb and will free it whenever they are done with it. 5944 * 5945 * Aside from that, this buffer is 'fully' detached and unmapped, 5946 * undo the VM accounting. 5947 */ 5948 5949 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5950 &mmap_user->locked_vm); 5951 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5952 free_uid(mmap_user); 5953 5954 out_put: 5955 ring_buffer_put(rb); /* could be last */ 5956 } 5957 5958 static const struct vm_operations_struct perf_mmap_vmops = { 5959 .open = perf_mmap_open, 5960 .close = perf_mmap_close, /* non mergeable */ 5961 .fault = perf_mmap_fault, 5962 .page_mkwrite = perf_mmap_fault, 5963 }; 5964 5965 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5966 { 5967 struct perf_event *event = file->private_data; 5968 unsigned long user_locked, user_lock_limit; 5969 struct user_struct *user = current_user(); 5970 struct perf_buffer *rb = NULL; 5971 unsigned long locked, lock_limit; 5972 unsigned long vma_size; 5973 unsigned long nr_pages; 5974 long user_extra = 0, extra = 0; 5975 int ret = 0, flags = 0; 5976 5977 /* 5978 * Don't allow mmap() of inherited per-task counters. This would 5979 * create a performance issue due to all children writing to the 5980 * same rb. 5981 */ 5982 if (event->cpu == -1 && event->attr.inherit) 5983 return -EINVAL; 5984 5985 if (!(vma->vm_flags & VM_SHARED)) 5986 return -EINVAL; 5987 5988 ret = security_perf_event_read(event); 5989 if (ret) 5990 return ret; 5991 5992 vma_size = vma->vm_end - vma->vm_start; 5993 5994 if (vma->vm_pgoff == 0) { 5995 nr_pages = (vma_size / PAGE_SIZE) - 1; 5996 } else { 5997 /* 5998 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5999 * mapped, all subsequent mappings should have the same size 6000 * and offset. Must be above the normal perf buffer. 6001 */ 6002 u64 aux_offset, aux_size; 6003 6004 if (!event->rb) 6005 return -EINVAL; 6006 6007 nr_pages = vma_size / PAGE_SIZE; 6008 6009 mutex_lock(&event->mmap_mutex); 6010 ret = -EINVAL; 6011 6012 rb = event->rb; 6013 if (!rb) 6014 goto aux_unlock; 6015 6016 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6017 aux_size = READ_ONCE(rb->user_page->aux_size); 6018 6019 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6020 goto aux_unlock; 6021 6022 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6023 goto aux_unlock; 6024 6025 /* already mapped with a different offset */ 6026 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6027 goto aux_unlock; 6028 6029 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6030 goto aux_unlock; 6031 6032 /* already mapped with a different size */ 6033 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6034 goto aux_unlock; 6035 6036 if (!is_power_of_2(nr_pages)) 6037 goto aux_unlock; 6038 6039 if (!atomic_inc_not_zero(&rb->mmap_count)) 6040 goto aux_unlock; 6041 6042 if (rb_has_aux(rb)) { 6043 atomic_inc(&rb->aux_mmap_count); 6044 ret = 0; 6045 goto unlock; 6046 } 6047 6048 atomic_set(&rb->aux_mmap_count, 1); 6049 user_extra = nr_pages; 6050 6051 goto accounting; 6052 } 6053 6054 /* 6055 * If we have rb pages ensure they're a power-of-two number, so we 6056 * can do bitmasks instead of modulo. 6057 */ 6058 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6059 return -EINVAL; 6060 6061 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6062 return -EINVAL; 6063 6064 WARN_ON_ONCE(event->ctx->parent_ctx); 6065 again: 6066 mutex_lock(&event->mmap_mutex); 6067 if (event->rb) { 6068 if (event->rb->nr_pages != nr_pages) { 6069 ret = -EINVAL; 6070 goto unlock; 6071 } 6072 6073 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6074 /* 6075 * Raced against perf_mmap_close() through 6076 * perf_event_set_output(). Try again, hope for better 6077 * luck. 6078 */ 6079 mutex_unlock(&event->mmap_mutex); 6080 goto again; 6081 } 6082 6083 goto unlock; 6084 } 6085 6086 user_extra = nr_pages + 1; 6087 6088 accounting: 6089 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6090 6091 /* 6092 * Increase the limit linearly with more CPUs: 6093 */ 6094 user_lock_limit *= num_online_cpus(); 6095 6096 user_locked = atomic_long_read(&user->locked_vm); 6097 6098 /* 6099 * sysctl_perf_event_mlock may have changed, so that 6100 * user->locked_vm > user_lock_limit 6101 */ 6102 if (user_locked > user_lock_limit) 6103 user_locked = user_lock_limit; 6104 user_locked += user_extra; 6105 6106 if (user_locked > user_lock_limit) { 6107 /* 6108 * charge locked_vm until it hits user_lock_limit; 6109 * charge the rest from pinned_vm 6110 */ 6111 extra = user_locked - user_lock_limit; 6112 user_extra -= extra; 6113 } 6114 6115 lock_limit = rlimit(RLIMIT_MEMLOCK); 6116 lock_limit >>= PAGE_SHIFT; 6117 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6118 6119 if ((locked > lock_limit) && perf_is_paranoid() && 6120 !capable(CAP_IPC_LOCK)) { 6121 ret = -EPERM; 6122 goto unlock; 6123 } 6124 6125 WARN_ON(!rb && event->rb); 6126 6127 if (vma->vm_flags & VM_WRITE) 6128 flags |= RING_BUFFER_WRITABLE; 6129 6130 if (!rb) { 6131 rb = rb_alloc(nr_pages, 6132 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6133 event->cpu, flags); 6134 6135 if (!rb) { 6136 ret = -ENOMEM; 6137 goto unlock; 6138 } 6139 6140 atomic_set(&rb->mmap_count, 1); 6141 rb->mmap_user = get_current_user(); 6142 rb->mmap_locked = extra; 6143 6144 ring_buffer_attach(event, rb); 6145 6146 perf_event_init_userpage(event); 6147 perf_event_update_userpage(event); 6148 } else { 6149 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6150 event->attr.aux_watermark, flags); 6151 if (!ret) 6152 rb->aux_mmap_locked = extra; 6153 } 6154 6155 unlock: 6156 if (!ret) { 6157 atomic_long_add(user_extra, &user->locked_vm); 6158 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6159 6160 atomic_inc(&event->mmap_count); 6161 } else if (rb) { 6162 atomic_dec(&rb->mmap_count); 6163 } 6164 aux_unlock: 6165 mutex_unlock(&event->mmap_mutex); 6166 6167 /* 6168 * Since pinned accounting is per vm we cannot allow fork() to copy our 6169 * vma. 6170 */ 6171 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6172 vma->vm_ops = &perf_mmap_vmops; 6173 6174 if (event->pmu->event_mapped) 6175 event->pmu->event_mapped(event, vma->vm_mm); 6176 6177 return ret; 6178 } 6179 6180 static int perf_fasync(int fd, struct file *filp, int on) 6181 { 6182 struct inode *inode = file_inode(filp); 6183 struct perf_event *event = filp->private_data; 6184 int retval; 6185 6186 inode_lock(inode); 6187 retval = fasync_helper(fd, filp, on, &event->fasync); 6188 inode_unlock(inode); 6189 6190 if (retval < 0) 6191 return retval; 6192 6193 return 0; 6194 } 6195 6196 static const struct file_operations perf_fops = { 6197 .llseek = no_llseek, 6198 .release = perf_release, 6199 .read = perf_read, 6200 .poll = perf_poll, 6201 .unlocked_ioctl = perf_ioctl, 6202 .compat_ioctl = perf_compat_ioctl, 6203 .mmap = perf_mmap, 6204 .fasync = perf_fasync, 6205 }; 6206 6207 /* 6208 * Perf event wakeup 6209 * 6210 * If there's data, ensure we set the poll() state and publish everything 6211 * to user-space before waking everybody up. 6212 */ 6213 6214 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6215 { 6216 /* only the parent has fasync state */ 6217 if (event->parent) 6218 event = event->parent; 6219 return &event->fasync; 6220 } 6221 6222 void perf_event_wakeup(struct perf_event *event) 6223 { 6224 ring_buffer_wakeup(event); 6225 6226 if (event->pending_kill) { 6227 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6228 event->pending_kill = 0; 6229 } 6230 } 6231 6232 static void perf_pending_event_disable(struct perf_event *event) 6233 { 6234 int cpu = READ_ONCE(event->pending_disable); 6235 6236 if (cpu < 0) 6237 return; 6238 6239 if (cpu == smp_processor_id()) { 6240 WRITE_ONCE(event->pending_disable, -1); 6241 perf_event_disable_local(event); 6242 return; 6243 } 6244 6245 /* 6246 * CPU-A CPU-B 6247 * 6248 * perf_event_disable_inatomic() 6249 * @pending_disable = CPU-A; 6250 * irq_work_queue(); 6251 * 6252 * sched-out 6253 * @pending_disable = -1; 6254 * 6255 * sched-in 6256 * perf_event_disable_inatomic() 6257 * @pending_disable = CPU-B; 6258 * irq_work_queue(); // FAILS 6259 * 6260 * irq_work_run() 6261 * perf_pending_event() 6262 * 6263 * But the event runs on CPU-B and wants disabling there. 6264 */ 6265 irq_work_queue_on(&event->pending, cpu); 6266 } 6267 6268 static void perf_pending_event(struct irq_work *entry) 6269 { 6270 struct perf_event *event = container_of(entry, struct perf_event, pending); 6271 int rctx; 6272 6273 rctx = perf_swevent_get_recursion_context(); 6274 /* 6275 * If we 'fail' here, that's OK, it means recursion is already disabled 6276 * and we won't recurse 'further'. 6277 */ 6278 6279 perf_pending_event_disable(event); 6280 6281 if (event->pending_wakeup) { 6282 event->pending_wakeup = 0; 6283 perf_event_wakeup(event); 6284 } 6285 6286 if (rctx >= 0) 6287 perf_swevent_put_recursion_context(rctx); 6288 } 6289 6290 /* 6291 * We assume there is only KVM supporting the callbacks. 6292 * Later on, we might change it to a list if there is 6293 * another virtualization implementation supporting the callbacks. 6294 */ 6295 struct perf_guest_info_callbacks *perf_guest_cbs; 6296 6297 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6298 { 6299 perf_guest_cbs = cbs; 6300 return 0; 6301 } 6302 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6303 6304 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6305 { 6306 perf_guest_cbs = NULL; 6307 return 0; 6308 } 6309 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6310 6311 static void 6312 perf_output_sample_regs(struct perf_output_handle *handle, 6313 struct pt_regs *regs, u64 mask) 6314 { 6315 int bit; 6316 DECLARE_BITMAP(_mask, 64); 6317 6318 bitmap_from_u64(_mask, mask); 6319 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6320 u64 val; 6321 6322 val = perf_reg_value(regs, bit); 6323 perf_output_put(handle, val); 6324 } 6325 } 6326 6327 static void perf_sample_regs_user(struct perf_regs *regs_user, 6328 struct pt_regs *regs, 6329 struct pt_regs *regs_user_copy) 6330 { 6331 if (user_mode(regs)) { 6332 regs_user->abi = perf_reg_abi(current); 6333 regs_user->regs = regs; 6334 } else if (!(current->flags & PF_KTHREAD)) { 6335 perf_get_regs_user(regs_user, regs, regs_user_copy); 6336 } else { 6337 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6338 regs_user->regs = NULL; 6339 } 6340 } 6341 6342 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6343 struct pt_regs *regs) 6344 { 6345 regs_intr->regs = regs; 6346 regs_intr->abi = perf_reg_abi(current); 6347 } 6348 6349 6350 /* 6351 * Get remaining task size from user stack pointer. 6352 * 6353 * It'd be better to take stack vma map and limit this more 6354 * precisely, but there's no way to get it safely under interrupt, 6355 * so using TASK_SIZE as limit. 6356 */ 6357 static u64 perf_ustack_task_size(struct pt_regs *regs) 6358 { 6359 unsigned long addr = perf_user_stack_pointer(regs); 6360 6361 if (!addr || addr >= TASK_SIZE) 6362 return 0; 6363 6364 return TASK_SIZE - addr; 6365 } 6366 6367 static u16 6368 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6369 struct pt_regs *regs) 6370 { 6371 u64 task_size; 6372 6373 /* No regs, no stack pointer, no dump. */ 6374 if (!regs) 6375 return 0; 6376 6377 /* 6378 * Check if we fit in with the requested stack size into the: 6379 * - TASK_SIZE 6380 * If we don't, we limit the size to the TASK_SIZE. 6381 * 6382 * - remaining sample size 6383 * If we don't, we customize the stack size to 6384 * fit in to the remaining sample size. 6385 */ 6386 6387 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6388 stack_size = min(stack_size, (u16) task_size); 6389 6390 /* Current header size plus static size and dynamic size. */ 6391 header_size += 2 * sizeof(u64); 6392 6393 /* Do we fit in with the current stack dump size? */ 6394 if ((u16) (header_size + stack_size) < header_size) { 6395 /* 6396 * If we overflow the maximum size for the sample, 6397 * we customize the stack dump size to fit in. 6398 */ 6399 stack_size = USHRT_MAX - header_size - sizeof(u64); 6400 stack_size = round_up(stack_size, sizeof(u64)); 6401 } 6402 6403 return stack_size; 6404 } 6405 6406 static void 6407 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6408 struct pt_regs *regs) 6409 { 6410 /* Case of a kernel thread, nothing to dump */ 6411 if (!regs) { 6412 u64 size = 0; 6413 perf_output_put(handle, size); 6414 } else { 6415 unsigned long sp; 6416 unsigned int rem; 6417 u64 dyn_size; 6418 mm_segment_t fs; 6419 6420 /* 6421 * We dump: 6422 * static size 6423 * - the size requested by user or the best one we can fit 6424 * in to the sample max size 6425 * data 6426 * - user stack dump data 6427 * dynamic size 6428 * - the actual dumped size 6429 */ 6430 6431 /* Static size. */ 6432 perf_output_put(handle, dump_size); 6433 6434 /* Data. */ 6435 sp = perf_user_stack_pointer(regs); 6436 fs = get_fs(); 6437 set_fs(USER_DS); 6438 rem = __output_copy_user(handle, (void *) sp, dump_size); 6439 set_fs(fs); 6440 dyn_size = dump_size - rem; 6441 6442 perf_output_skip(handle, rem); 6443 6444 /* Dynamic size. */ 6445 perf_output_put(handle, dyn_size); 6446 } 6447 } 6448 6449 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6450 struct perf_sample_data *data, 6451 size_t size) 6452 { 6453 struct perf_event *sampler = event->aux_event; 6454 struct perf_buffer *rb; 6455 6456 data->aux_size = 0; 6457 6458 if (!sampler) 6459 goto out; 6460 6461 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6462 goto out; 6463 6464 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6465 goto out; 6466 6467 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6468 if (!rb) 6469 goto out; 6470 6471 /* 6472 * If this is an NMI hit inside sampling code, don't take 6473 * the sample. See also perf_aux_sample_output(). 6474 */ 6475 if (READ_ONCE(rb->aux_in_sampling)) { 6476 data->aux_size = 0; 6477 } else { 6478 size = min_t(size_t, size, perf_aux_size(rb)); 6479 data->aux_size = ALIGN(size, sizeof(u64)); 6480 } 6481 ring_buffer_put(rb); 6482 6483 out: 6484 return data->aux_size; 6485 } 6486 6487 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6488 struct perf_event *event, 6489 struct perf_output_handle *handle, 6490 unsigned long size) 6491 { 6492 unsigned long flags; 6493 long ret; 6494 6495 /* 6496 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6497 * paths. If we start calling them in NMI context, they may race with 6498 * the IRQ ones, that is, for example, re-starting an event that's just 6499 * been stopped, which is why we're using a separate callback that 6500 * doesn't change the event state. 6501 * 6502 * IRQs need to be disabled to prevent IPIs from racing with us. 6503 */ 6504 local_irq_save(flags); 6505 /* 6506 * Guard against NMI hits inside the critical section; 6507 * see also perf_prepare_sample_aux(). 6508 */ 6509 WRITE_ONCE(rb->aux_in_sampling, 1); 6510 barrier(); 6511 6512 ret = event->pmu->snapshot_aux(event, handle, size); 6513 6514 barrier(); 6515 WRITE_ONCE(rb->aux_in_sampling, 0); 6516 local_irq_restore(flags); 6517 6518 return ret; 6519 } 6520 6521 static void perf_aux_sample_output(struct perf_event *event, 6522 struct perf_output_handle *handle, 6523 struct perf_sample_data *data) 6524 { 6525 struct perf_event *sampler = event->aux_event; 6526 struct perf_buffer *rb; 6527 unsigned long pad; 6528 long size; 6529 6530 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6531 return; 6532 6533 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6534 if (!rb) 6535 return; 6536 6537 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6538 6539 /* 6540 * An error here means that perf_output_copy() failed (returned a 6541 * non-zero surplus that it didn't copy), which in its current 6542 * enlightened implementation is not possible. If that changes, we'd 6543 * like to know. 6544 */ 6545 if (WARN_ON_ONCE(size < 0)) 6546 goto out_put; 6547 6548 /* 6549 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6550 * perf_prepare_sample_aux(), so should not be more than that. 6551 */ 6552 pad = data->aux_size - size; 6553 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6554 pad = 8; 6555 6556 if (pad) { 6557 u64 zero = 0; 6558 perf_output_copy(handle, &zero, pad); 6559 } 6560 6561 out_put: 6562 ring_buffer_put(rb); 6563 } 6564 6565 static void __perf_event_header__init_id(struct perf_event_header *header, 6566 struct perf_sample_data *data, 6567 struct perf_event *event) 6568 { 6569 u64 sample_type = event->attr.sample_type; 6570 6571 data->type = sample_type; 6572 header->size += event->id_header_size; 6573 6574 if (sample_type & PERF_SAMPLE_TID) { 6575 /* namespace issues */ 6576 data->tid_entry.pid = perf_event_pid(event, current); 6577 data->tid_entry.tid = perf_event_tid(event, current); 6578 } 6579 6580 if (sample_type & PERF_SAMPLE_TIME) 6581 data->time = perf_event_clock(event); 6582 6583 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6584 data->id = primary_event_id(event); 6585 6586 if (sample_type & PERF_SAMPLE_STREAM_ID) 6587 data->stream_id = event->id; 6588 6589 if (sample_type & PERF_SAMPLE_CPU) { 6590 data->cpu_entry.cpu = raw_smp_processor_id(); 6591 data->cpu_entry.reserved = 0; 6592 } 6593 } 6594 6595 void perf_event_header__init_id(struct perf_event_header *header, 6596 struct perf_sample_data *data, 6597 struct perf_event *event) 6598 { 6599 if (event->attr.sample_id_all) 6600 __perf_event_header__init_id(header, data, event); 6601 } 6602 6603 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6604 struct perf_sample_data *data) 6605 { 6606 u64 sample_type = data->type; 6607 6608 if (sample_type & PERF_SAMPLE_TID) 6609 perf_output_put(handle, data->tid_entry); 6610 6611 if (sample_type & PERF_SAMPLE_TIME) 6612 perf_output_put(handle, data->time); 6613 6614 if (sample_type & PERF_SAMPLE_ID) 6615 perf_output_put(handle, data->id); 6616 6617 if (sample_type & PERF_SAMPLE_STREAM_ID) 6618 perf_output_put(handle, data->stream_id); 6619 6620 if (sample_type & PERF_SAMPLE_CPU) 6621 perf_output_put(handle, data->cpu_entry); 6622 6623 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6624 perf_output_put(handle, data->id); 6625 } 6626 6627 void perf_event__output_id_sample(struct perf_event *event, 6628 struct perf_output_handle *handle, 6629 struct perf_sample_data *sample) 6630 { 6631 if (event->attr.sample_id_all) 6632 __perf_event__output_id_sample(handle, sample); 6633 } 6634 6635 static void perf_output_read_one(struct perf_output_handle *handle, 6636 struct perf_event *event, 6637 u64 enabled, u64 running) 6638 { 6639 u64 read_format = event->attr.read_format; 6640 u64 values[4]; 6641 int n = 0; 6642 6643 values[n++] = perf_event_count(event); 6644 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6645 values[n++] = enabled + 6646 atomic64_read(&event->child_total_time_enabled); 6647 } 6648 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6649 values[n++] = running + 6650 atomic64_read(&event->child_total_time_running); 6651 } 6652 if (read_format & PERF_FORMAT_ID) 6653 values[n++] = primary_event_id(event); 6654 6655 __output_copy(handle, values, n * sizeof(u64)); 6656 } 6657 6658 static void perf_output_read_group(struct perf_output_handle *handle, 6659 struct perf_event *event, 6660 u64 enabled, u64 running) 6661 { 6662 struct perf_event *leader = event->group_leader, *sub; 6663 u64 read_format = event->attr.read_format; 6664 u64 values[5]; 6665 int n = 0; 6666 6667 values[n++] = 1 + leader->nr_siblings; 6668 6669 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6670 values[n++] = enabled; 6671 6672 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6673 values[n++] = running; 6674 6675 if ((leader != event) && 6676 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6677 leader->pmu->read(leader); 6678 6679 values[n++] = perf_event_count(leader); 6680 if (read_format & PERF_FORMAT_ID) 6681 values[n++] = primary_event_id(leader); 6682 6683 __output_copy(handle, values, n * sizeof(u64)); 6684 6685 for_each_sibling_event(sub, leader) { 6686 n = 0; 6687 6688 if ((sub != event) && 6689 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6690 sub->pmu->read(sub); 6691 6692 values[n++] = perf_event_count(sub); 6693 if (read_format & PERF_FORMAT_ID) 6694 values[n++] = primary_event_id(sub); 6695 6696 __output_copy(handle, values, n * sizeof(u64)); 6697 } 6698 } 6699 6700 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6701 PERF_FORMAT_TOTAL_TIME_RUNNING) 6702 6703 /* 6704 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6705 * 6706 * The problem is that its both hard and excessively expensive to iterate the 6707 * child list, not to mention that its impossible to IPI the children running 6708 * on another CPU, from interrupt/NMI context. 6709 */ 6710 static void perf_output_read(struct perf_output_handle *handle, 6711 struct perf_event *event) 6712 { 6713 u64 enabled = 0, running = 0, now; 6714 u64 read_format = event->attr.read_format; 6715 6716 /* 6717 * compute total_time_enabled, total_time_running 6718 * based on snapshot values taken when the event 6719 * was last scheduled in. 6720 * 6721 * we cannot simply called update_context_time() 6722 * because of locking issue as we are called in 6723 * NMI context 6724 */ 6725 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6726 calc_timer_values(event, &now, &enabled, &running); 6727 6728 if (event->attr.read_format & PERF_FORMAT_GROUP) 6729 perf_output_read_group(handle, event, enabled, running); 6730 else 6731 perf_output_read_one(handle, event, enabled, running); 6732 } 6733 6734 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6735 { 6736 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6737 } 6738 6739 void perf_output_sample(struct perf_output_handle *handle, 6740 struct perf_event_header *header, 6741 struct perf_sample_data *data, 6742 struct perf_event *event) 6743 { 6744 u64 sample_type = data->type; 6745 6746 perf_output_put(handle, *header); 6747 6748 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6749 perf_output_put(handle, data->id); 6750 6751 if (sample_type & PERF_SAMPLE_IP) 6752 perf_output_put(handle, data->ip); 6753 6754 if (sample_type & PERF_SAMPLE_TID) 6755 perf_output_put(handle, data->tid_entry); 6756 6757 if (sample_type & PERF_SAMPLE_TIME) 6758 perf_output_put(handle, data->time); 6759 6760 if (sample_type & PERF_SAMPLE_ADDR) 6761 perf_output_put(handle, data->addr); 6762 6763 if (sample_type & PERF_SAMPLE_ID) 6764 perf_output_put(handle, data->id); 6765 6766 if (sample_type & PERF_SAMPLE_STREAM_ID) 6767 perf_output_put(handle, data->stream_id); 6768 6769 if (sample_type & PERF_SAMPLE_CPU) 6770 perf_output_put(handle, data->cpu_entry); 6771 6772 if (sample_type & PERF_SAMPLE_PERIOD) 6773 perf_output_put(handle, data->period); 6774 6775 if (sample_type & PERF_SAMPLE_READ) 6776 perf_output_read(handle, event); 6777 6778 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6779 int size = 1; 6780 6781 size += data->callchain->nr; 6782 size *= sizeof(u64); 6783 __output_copy(handle, data->callchain, size); 6784 } 6785 6786 if (sample_type & PERF_SAMPLE_RAW) { 6787 struct perf_raw_record *raw = data->raw; 6788 6789 if (raw) { 6790 struct perf_raw_frag *frag = &raw->frag; 6791 6792 perf_output_put(handle, raw->size); 6793 do { 6794 if (frag->copy) { 6795 __output_custom(handle, frag->copy, 6796 frag->data, frag->size); 6797 } else { 6798 __output_copy(handle, frag->data, 6799 frag->size); 6800 } 6801 if (perf_raw_frag_last(frag)) 6802 break; 6803 frag = frag->next; 6804 } while (1); 6805 if (frag->pad) 6806 __output_skip(handle, NULL, frag->pad); 6807 } else { 6808 struct { 6809 u32 size; 6810 u32 data; 6811 } raw = { 6812 .size = sizeof(u32), 6813 .data = 0, 6814 }; 6815 perf_output_put(handle, raw); 6816 } 6817 } 6818 6819 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6820 if (data->br_stack) { 6821 size_t size; 6822 6823 size = data->br_stack->nr 6824 * sizeof(struct perf_branch_entry); 6825 6826 perf_output_put(handle, data->br_stack->nr); 6827 if (perf_sample_save_hw_index(event)) 6828 perf_output_put(handle, data->br_stack->hw_idx); 6829 perf_output_copy(handle, data->br_stack->entries, size); 6830 } else { 6831 /* 6832 * we always store at least the value of nr 6833 */ 6834 u64 nr = 0; 6835 perf_output_put(handle, nr); 6836 } 6837 } 6838 6839 if (sample_type & PERF_SAMPLE_REGS_USER) { 6840 u64 abi = data->regs_user.abi; 6841 6842 /* 6843 * If there are no regs to dump, notice it through 6844 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6845 */ 6846 perf_output_put(handle, abi); 6847 6848 if (abi) { 6849 u64 mask = event->attr.sample_regs_user; 6850 perf_output_sample_regs(handle, 6851 data->regs_user.regs, 6852 mask); 6853 } 6854 } 6855 6856 if (sample_type & PERF_SAMPLE_STACK_USER) { 6857 perf_output_sample_ustack(handle, 6858 data->stack_user_size, 6859 data->regs_user.regs); 6860 } 6861 6862 if (sample_type & PERF_SAMPLE_WEIGHT) 6863 perf_output_put(handle, data->weight); 6864 6865 if (sample_type & PERF_SAMPLE_DATA_SRC) 6866 perf_output_put(handle, data->data_src.val); 6867 6868 if (sample_type & PERF_SAMPLE_TRANSACTION) 6869 perf_output_put(handle, data->txn); 6870 6871 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6872 u64 abi = data->regs_intr.abi; 6873 /* 6874 * If there are no regs to dump, notice it through 6875 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6876 */ 6877 perf_output_put(handle, abi); 6878 6879 if (abi) { 6880 u64 mask = event->attr.sample_regs_intr; 6881 6882 perf_output_sample_regs(handle, 6883 data->regs_intr.regs, 6884 mask); 6885 } 6886 } 6887 6888 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6889 perf_output_put(handle, data->phys_addr); 6890 6891 if (sample_type & PERF_SAMPLE_CGROUP) 6892 perf_output_put(handle, data->cgroup); 6893 6894 if (sample_type & PERF_SAMPLE_AUX) { 6895 perf_output_put(handle, data->aux_size); 6896 6897 if (data->aux_size) 6898 perf_aux_sample_output(event, handle, data); 6899 } 6900 6901 if (!event->attr.watermark) { 6902 int wakeup_events = event->attr.wakeup_events; 6903 6904 if (wakeup_events) { 6905 struct perf_buffer *rb = handle->rb; 6906 int events = local_inc_return(&rb->events); 6907 6908 if (events >= wakeup_events) { 6909 local_sub(wakeup_events, &rb->events); 6910 local_inc(&rb->wakeup); 6911 } 6912 } 6913 } 6914 } 6915 6916 static u64 perf_virt_to_phys(u64 virt) 6917 { 6918 u64 phys_addr = 0; 6919 struct page *p = NULL; 6920 6921 if (!virt) 6922 return 0; 6923 6924 if (virt >= TASK_SIZE) { 6925 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6926 if (virt_addr_valid((void *)(uintptr_t)virt) && 6927 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6928 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6929 } else { 6930 /* 6931 * Walking the pages tables for user address. 6932 * Interrupts are disabled, so it prevents any tear down 6933 * of the page tables. 6934 * Try IRQ-safe __get_user_pages_fast first. 6935 * If failed, leave phys_addr as 0. 6936 */ 6937 if (current->mm != NULL) { 6938 pagefault_disable(); 6939 if (__get_user_pages_fast(virt, 1, 0, &p) == 1) 6940 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6941 pagefault_enable(); 6942 } 6943 6944 if (p) 6945 put_page(p); 6946 } 6947 6948 return phys_addr; 6949 } 6950 6951 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6952 6953 struct perf_callchain_entry * 6954 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6955 { 6956 bool kernel = !event->attr.exclude_callchain_kernel; 6957 bool user = !event->attr.exclude_callchain_user; 6958 /* Disallow cross-task user callchains. */ 6959 bool crosstask = event->ctx->task && event->ctx->task != current; 6960 const u32 max_stack = event->attr.sample_max_stack; 6961 struct perf_callchain_entry *callchain; 6962 6963 if (!kernel && !user) 6964 return &__empty_callchain; 6965 6966 callchain = get_perf_callchain(regs, 0, kernel, user, 6967 max_stack, crosstask, true); 6968 return callchain ?: &__empty_callchain; 6969 } 6970 6971 void perf_prepare_sample(struct perf_event_header *header, 6972 struct perf_sample_data *data, 6973 struct perf_event *event, 6974 struct pt_regs *regs) 6975 { 6976 u64 sample_type = event->attr.sample_type; 6977 6978 header->type = PERF_RECORD_SAMPLE; 6979 header->size = sizeof(*header) + event->header_size; 6980 6981 header->misc = 0; 6982 header->misc |= perf_misc_flags(regs); 6983 6984 __perf_event_header__init_id(header, data, event); 6985 6986 if (sample_type & PERF_SAMPLE_IP) 6987 data->ip = perf_instruction_pointer(regs); 6988 6989 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6990 int size = 1; 6991 6992 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6993 data->callchain = perf_callchain(event, regs); 6994 6995 size += data->callchain->nr; 6996 6997 header->size += size * sizeof(u64); 6998 } 6999 7000 if (sample_type & PERF_SAMPLE_RAW) { 7001 struct perf_raw_record *raw = data->raw; 7002 int size; 7003 7004 if (raw) { 7005 struct perf_raw_frag *frag = &raw->frag; 7006 u32 sum = 0; 7007 7008 do { 7009 sum += frag->size; 7010 if (perf_raw_frag_last(frag)) 7011 break; 7012 frag = frag->next; 7013 } while (1); 7014 7015 size = round_up(sum + sizeof(u32), sizeof(u64)); 7016 raw->size = size - sizeof(u32); 7017 frag->pad = raw->size - sum; 7018 } else { 7019 size = sizeof(u64); 7020 } 7021 7022 header->size += size; 7023 } 7024 7025 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7026 int size = sizeof(u64); /* nr */ 7027 if (data->br_stack) { 7028 if (perf_sample_save_hw_index(event)) 7029 size += sizeof(u64); 7030 7031 size += data->br_stack->nr 7032 * sizeof(struct perf_branch_entry); 7033 } 7034 header->size += size; 7035 } 7036 7037 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7038 perf_sample_regs_user(&data->regs_user, regs, 7039 &data->regs_user_copy); 7040 7041 if (sample_type & PERF_SAMPLE_REGS_USER) { 7042 /* regs dump ABI info */ 7043 int size = sizeof(u64); 7044 7045 if (data->regs_user.regs) { 7046 u64 mask = event->attr.sample_regs_user; 7047 size += hweight64(mask) * sizeof(u64); 7048 } 7049 7050 header->size += size; 7051 } 7052 7053 if (sample_type & PERF_SAMPLE_STACK_USER) { 7054 /* 7055 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7056 * processed as the last one or have additional check added 7057 * in case new sample type is added, because we could eat 7058 * up the rest of the sample size. 7059 */ 7060 u16 stack_size = event->attr.sample_stack_user; 7061 u16 size = sizeof(u64); 7062 7063 stack_size = perf_sample_ustack_size(stack_size, header->size, 7064 data->regs_user.regs); 7065 7066 /* 7067 * If there is something to dump, add space for the dump 7068 * itself and for the field that tells the dynamic size, 7069 * which is how many have been actually dumped. 7070 */ 7071 if (stack_size) 7072 size += sizeof(u64) + stack_size; 7073 7074 data->stack_user_size = stack_size; 7075 header->size += size; 7076 } 7077 7078 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7079 /* regs dump ABI info */ 7080 int size = sizeof(u64); 7081 7082 perf_sample_regs_intr(&data->regs_intr, regs); 7083 7084 if (data->regs_intr.regs) { 7085 u64 mask = event->attr.sample_regs_intr; 7086 7087 size += hweight64(mask) * sizeof(u64); 7088 } 7089 7090 header->size += size; 7091 } 7092 7093 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7094 data->phys_addr = perf_virt_to_phys(data->addr); 7095 7096 #ifdef CONFIG_CGROUP_PERF 7097 if (sample_type & PERF_SAMPLE_CGROUP) { 7098 struct cgroup *cgrp; 7099 7100 /* protected by RCU */ 7101 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7102 data->cgroup = cgroup_id(cgrp); 7103 } 7104 #endif 7105 7106 if (sample_type & PERF_SAMPLE_AUX) { 7107 u64 size; 7108 7109 header->size += sizeof(u64); /* size */ 7110 7111 /* 7112 * Given the 16bit nature of header::size, an AUX sample can 7113 * easily overflow it, what with all the preceding sample bits. 7114 * Make sure this doesn't happen by using up to U16_MAX bytes 7115 * per sample in total (rounded down to 8 byte boundary). 7116 */ 7117 size = min_t(size_t, U16_MAX - header->size, 7118 event->attr.aux_sample_size); 7119 size = rounddown(size, 8); 7120 size = perf_prepare_sample_aux(event, data, size); 7121 7122 WARN_ON_ONCE(size + header->size > U16_MAX); 7123 header->size += size; 7124 } 7125 /* 7126 * If you're adding more sample types here, you likely need to do 7127 * something about the overflowing header::size, like repurpose the 7128 * lowest 3 bits of size, which should be always zero at the moment. 7129 * This raises a more important question, do we really need 512k sized 7130 * samples and why, so good argumentation is in order for whatever you 7131 * do here next. 7132 */ 7133 WARN_ON_ONCE(header->size & 7); 7134 } 7135 7136 static __always_inline int 7137 __perf_event_output(struct perf_event *event, 7138 struct perf_sample_data *data, 7139 struct pt_regs *regs, 7140 int (*output_begin)(struct perf_output_handle *, 7141 struct perf_event *, 7142 unsigned int)) 7143 { 7144 struct perf_output_handle handle; 7145 struct perf_event_header header; 7146 int err; 7147 7148 /* protect the callchain buffers */ 7149 rcu_read_lock(); 7150 7151 perf_prepare_sample(&header, data, event, regs); 7152 7153 err = output_begin(&handle, event, header.size); 7154 if (err) 7155 goto exit; 7156 7157 perf_output_sample(&handle, &header, data, event); 7158 7159 perf_output_end(&handle); 7160 7161 exit: 7162 rcu_read_unlock(); 7163 return err; 7164 } 7165 7166 void 7167 perf_event_output_forward(struct perf_event *event, 7168 struct perf_sample_data *data, 7169 struct pt_regs *regs) 7170 { 7171 __perf_event_output(event, data, regs, perf_output_begin_forward); 7172 } 7173 7174 void 7175 perf_event_output_backward(struct perf_event *event, 7176 struct perf_sample_data *data, 7177 struct pt_regs *regs) 7178 { 7179 __perf_event_output(event, data, regs, perf_output_begin_backward); 7180 } 7181 7182 int 7183 perf_event_output(struct perf_event *event, 7184 struct perf_sample_data *data, 7185 struct pt_regs *regs) 7186 { 7187 return __perf_event_output(event, data, regs, perf_output_begin); 7188 } 7189 7190 /* 7191 * read event_id 7192 */ 7193 7194 struct perf_read_event { 7195 struct perf_event_header header; 7196 7197 u32 pid; 7198 u32 tid; 7199 }; 7200 7201 static void 7202 perf_event_read_event(struct perf_event *event, 7203 struct task_struct *task) 7204 { 7205 struct perf_output_handle handle; 7206 struct perf_sample_data sample; 7207 struct perf_read_event read_event = { 7208 .header = { 7209 .type = PERF_RECORD_READ, 7210 .misc = 0, 7211 .size = sizeof(read_event) + event->read_size, 7212 }, 7213 .pid = perf_event_pid(event, task), 7214 .tid = perf_event_tid(event, task), 7215 }; 7216 int ret; 7217 7218 perf_event_header__init_id(&read_event.header, &sample, event); 7219 ret = perf_output_begin(&handle, event, read_event.header.size); 7220 if (ret) 7221 return; 7222 7223 perf_output_put(&handle, read_event); 7224 perf_output_read(&handle, event); 7225 perf_event__output_id_sample(event, &handle, &sample); 7226 7227 perf_output_end(&handle); 7228 } 7229 7230 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7231 7232 static void 7233 perf_iterate_ctx(struct perf_event_context *ctx, 7234 perf_iterate_f output, 7235 void *data, bool all) 7236 { 7237 struct perf_event *event; 7238 7239 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7240 if (!all) { 7241 if (event->state < PERF_EVENT_STATE_INACTIVE) 7242 continue; 7243 if (!event_filter_match(event)) 7244 continue; 7245 } 7246 7247 output(event, data); 7248 } 7249 } 7250 7251 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7252 { 7253 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7254 struct perf_event *event; 7255 7256 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7257 /* 7258 * Skip events that are not fully formed yet; ensure that 7259 * if we observe event->ctx, both event and ctx will be 7260 * complete enough. See perf_install_in_context(). 7261 */ 7262 if (!smp_load_acquire(&event->ctx)) 7263 continue; 7264 7265 if (event->state < PERF_EVENT_STATE_INACTIVE) 7266 continue; 7267 if (!event_filter_match(event)) 7268 continue; 7269 output(event, data); 7270 } 7271 } 7272 7273 /* 7274 * Iterate all events that need to receive side-band events. 7275 * 7276 * For new callers; ensure that account_pmu_sb_event() includes 7277 * your event, otherwise it might not get delivered. 7278 */ 7279 static void 7280 perf_iterate_sb(perf_iterate_f output, void *data, 7281 struct perf_event_context *task_ctx) 7282 { 7283 struct perf_event_context *ctx; 7284 int ctxn; 7285 7286 rcu_read_lock(); 7287 preempt_disable(); 7288 7289 /* 7290 * If we have task_ctx != NULL we only notify the task context itself. 7291 * The task_ctx is set only for EXIT events before releasing task 7292 * context. 7293 */ 7294 if (task_ctx) { 7295 perf_iterate_ctx(task_ctx, output, data, false); 7296 goto done; 7297 } 7298 7299 perf_iterate_sb_cpu(output, data); 7300 7301 for_each_task_context_nr(ctxn) { 7302 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7303 if (ctx) 7304 perf_iterate_ctx(ctx, output, data, false); 7305 } 7306 done: 7307 preempt_enable(); 7308 rcu_read_unlock(); 7309 } 7310 7311 /* 7312 * Clear all file-based filters at exec, they'll have to be 7313 * re-instated when/if these objects are mmapped again. 7314 */ 7315 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7316 { 7317 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7318 struct perf_addr_filter *filter; 7319 unsigned int restart = 0, count = 0; 7320 unsigned long flags; 7321 7322 if (!has_addr_filter(event)) 7323 return; 7324 7325 raw_spin_lock_irqsave(&ifh->lock, flags); 7326 list_for_each_entry(filter, &ifh->list, entry) { 7327 if (filter->path.dentry) { 7328 event->addr_filter_ranges[count].start = 0; 7329 event->addr_filter_ranges[count].size = 0; 7330 restart++; 7331 } 7332 7333 count++; 7334 } 7335 7336 if (restart) 7337 event->addr_filters_gen++; 7338 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7339 7340 if (restart) 7341 perf_event_stop(event, 1); 7342 } 7343 7344 void perf_event_exec(void) 7345 { 7346 struct perf_event_context *ctx; 7347 int ctxn; 7348 7349 rcu_read_lock(); 7350 for_each_task_context_nr(ctxn) { 7351 ctx = current->perf_event_ctxp[ctxn]; 7352 if (!ctx) 7353 continue; 7354 7355 perf_event_enable_on_exec(ctxn); 7356 7357 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7358 true); 7359 } 7360 rcu_read_unlock(); 7361 } 7362 7363 struct remote_output { 7364 struct perf_buffer *rb; 7365 int err; 7366 }; 7367 7368 static void __perf_event_output_stop(struct perf_event *event, void *data) 7369 { 7370 struct perf_event *parent = event->parent; 7371 struct remote_output *ro = data; 7372 struct perf_buffer *rb = ro->rb; 7373 struct stop_event_data sd = { 7374 .event = event, 7375 }; 7376 7377 if (!has_aux(event)) 7378 return; 7379 7380 if (!parent) 7381 parent = event; 7382 7383 /* 7384 * In case of inheritance, it will be the parent that links to the 7385 * ring-buffer, but it will be the child that's actually using it. 7386 * 7387 * We are using event::rb to determine if the event should be stopped, 7388 * however this may race with ring_buffer_attach() (through set_output), 7389 * which will make us skip the event that actually needs to be stopped. 7390 * So ring_buffer_attach() has to stop an aux event before re-assigning 7391 * its rb pointer. 7392 */ 7393 if (rcu_dereference(parent->rb) == rb) 7394 ro->err = __perf_event_stop(&sd); 7395 } 7396 7397 static int __perf_pmu_output_stop(void *info) 7398 { 7399 struct perf_event *event = info; 7400 struct pmu *pmu = event->ctx->pmu; 7401 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7402 struct remote_output ro = { 7403 .rb = event->rb, 7404 }; 7405 7406 rcu_read_lock(); 7407 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7408 if (cpuctx->task_ctx) 7409 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7410 &ro, false); 7411 rcu_read_unlock(); 7412 7413 return ro.err; 7414 } 7415 7416 static void perf_pmu_output_stop(struct perf_event *event) 7417 { 7418 struct perf_event *iter; 7419 int err, cpu; 7420 7421 restart: 7422 rcu_read_lock(); 7423 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7424 /* 7425 * For per-CPU events, we need to make sure that neither they 7426 * nor their children are running; for cpu==-1 events it's 7427 * sufficient to stop the event itself if it's active, since 7428 * it can't have children. 7429 */ 7430 cpu = iter->cpu; 7431 if (cpu == -1) 7432 cpu = READ_ONCE(iter->oncpu); 7433 7434 if (cpu == -1) 7435 continue; 7436 7437 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7438 if (err == -EAGAIN) { 7439 rcu_read_unlock(); 7440 goto restart; 7441 } 7442 } 7443 rcu_read_unlock(); 7444 } 7445 7446 /* 7447 * task tracking -- fork/exit 7448 * 7449 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7450 */ 7451 7452 struct perf_task_event { 7453 struct task_struct *task; 7454 struct perf_event_context *task_ctx; 7455 7456 struct { 7457 struct perf_event_header header; 7458 7459 u32 pid; 7460 u32 ppid; 7461 u32 tid; 7462 u32 ptid; 7463 u64 time; 7464 } event_id; 7465 }; 7466 7467 static int perf_event_task_match(struct perf_event *event) 7468 { 7469 return event->attr.comm || event->attr.mmap || 7470 event->attr.mmap2 || event->attr.mmap_data || 7471 event->attr.task; 7472 } 7473 7474 static void perf_event_task_output(struct perf_event *event, 7475 void *data) 7476 { 7477 struct perf_task_event *task_event = data; 7478 struct perf_output_handle handle; 7479 struct perf_sample_data sample; 7480 struct task_struct *task = task_event->task; 7481 int ret, size = task_event->event_id.header.size; 7482 7483 if (!perf_event_task_match(event)) 7484 return; 7485 7486 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7487 7488 ret = perf_output_begin(&handle, event, 7489 task_event->event_id.header.size); 7490 if (ret) 7491 goto out; 7492 7493 task_event->event_id.pid = perf_event_pid(event, task); 7494 task_event->event_id.tid = perf_event_tid(event, task); 7495 7496 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7497 task_event->event_id.ppid = perf_event_pid(event, 7498 task->real_parent); 7499 task_event->event_id.ptid = perf_event_pid(event, 7500 task->real_parent); 7501 } else { /* PERF_RECORD_FORK */ 7502 task_event->event_id.ppid = perf_event_pid(event, current); 7503 task_event->event_id.ptid = perf_event_tid(event, current); 7504 } 7505 7506 task_event->event_id.time = perf_event_clock(event); 7507 7508 perf_output_put(&handle, task_event->event_id); 7509 7510 perf_event__output_id_sample(event, &handle, &sample); 7511 7512 perf_output_end(&handle); 7513 out: 7514 task_event->event_id.header.size = size; 7515 } 7516 7517 static void perf_event_task(struct task_struct *task, 7518 struct perf_event_context *task_ctx, 7519 int new) 7520 { 7521 struct perf_task_event task_event; 7522 7523 if (!atomic_read(&nr_comm_events) && 7524 !atomic_read(&nr_mmap_events) && 7525 !atomic_read(&nr_task_events)) 7526 return; 7527 7528 task_event = (struct perf_task_event){ 7529 .task = task, 7530 .task_ctx = task_ctx, 7531 .event_id = { 7532 .header = { 7533 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7534 .misc = 0, 7535 .size = sizeof(task_event.event_id), 7536 }, 7537 /* .pid */ 7538 /* .ppid */ 7539 /* .tid */ 7540 /* .ptid */ 7541 /* .time */ 7542 }, 7543 }; 7544 7545 perf_iterate_sb(perf_event_task_output, 7546 &task_event, 7547 task_ctx); 7548 } 7549 7550 void perf_event_fork(struct task_struct *task) 7551 { 7552 perf_event_task(task, NULL, 1); 7553 perf_event_namespaces(task); 7554 } 7555 7556 /* 7557 * comm tracking 7558 */ 7559 7560 struct perf_comm_event { 7561 struct task_struct *task; 7562 char *comm; 7563 int comm_size; 7564 7565 struct { 7566 struct perf_event_header header; 7567 7568 u32 pid; 7569 u32 tid; 7570 } event_id; 7571 }; 7572 7573 static int perf_event_comm_match(struct perf_event *event) 7574 { 7575 return event->attr.comm; 7576 } 7577 7578 static void perf_event_comm_output(struct perf_event *event, 7579 void *data) 7580 { 7581 struct perf_comm_event *comm_event = data; 7582 struct perf_output_handle handle; 7583 struct perf_sample_data sample; 7584 int size = comm_event->event_id.header.size; 7585 int ret; 7586 7587 if (!perf_event_comm_match(event)) 7588 return; 7589 7590 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7591 ret = perf_output_begin(&handle, event, 7592 comm_event->event_id.header.size); 7593 7594 if (ret) 7595 goto out; 7596 7597 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7598 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7599 7600 perf_output_put(&handle, comm_event->event_id); 7601 __output_copy(&handle, comm_event->comm, 7602 comm_event->comm_size); 7603 7604 perf_event__output_id_sample(event, &handle, &sample); 7605 7606 perf_output_end(&handle); 7607 out: 7608 comm_event->event_id.header.size = size; 7609 } 7610 7611 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7612 { 7613 char comm[TASK_COMM_LEN]; 7614 unsigned int size; 7615 7616 memset(comm, 0, sizeof(comm)); 7617 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7618 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7619 7620 comm_event->comm = comm; 7621 comm_event->comm_size = size; 7622 7623 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7624 7625 perf_iterate_sb(perf_event_comm_output, 7626 comm_event, 7627 NULL); 7628 } 7629 7630 void perf_event_comm(struct task_struct *task, bool exec) 7631 { 7632 struct perf_comm_event comm_event; 7633 7634 if (!atomic_read(&nr_comm_events)) 7635 return; 7636 7637 comm_event = (struct perf_comm_event){ 7638 .task = task, 7639 /* .comm */ 7640 /* .comm_size */ 7641 .event_id = { 7642 .header = { 7643 .type = PERF_RECORD_COMM, 7644 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7645 /* .size */ 7646 }, 7647 /* .pid */ 7648 /* .tid */ 7649 }, 7650 }; 7651 7652 perf_event_comm_event(&comm_event); 7653 } 7654 7655 /* 7656 * namespaces tracking 7657 */ 7658 7659 struct perf_namespaces_event { 7660 struct task_struct *task; 7661 7662 struct { 7663 struct perf_event_header header; 7664 7665 u32 pid; 7666 u32 tid; 7667 u64 nr_namespaces; 7668 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7669 } event_id; 7670 }; 7671 7672 static int perf_event_namespaces_match(struct perf_event *event) 7673 { 7674 return event->attr.namespaces; 7675 } 7676 7677 static void perf_event_namespaces_output(struct perf_event *event, 7678 void *data) 7679 { 7680 struct perf_namespaces_event *namespaces_event = data; 7681 struct perf_output_handle handle; 7682 struct perf_sample_data sample; 7683 u16 header_size = namespaces_event->event_id.header.size; 7684 int ret; 7685 7686 if (!perf_event_namespaces_match(event)) 7687 return; 7688 7689 perf_event_header__init_id(&namespaces_event->event_id.header, 7690 &sample, event); 7691 ret = perf_output_begin(&handle, event, 7692 namespaces_event->event_id.header.size); 7693 if (ret) 7694 goto out; 7695 7696 namespaces_event->event_id.pid = perf_event_pid(event, 7697 namespaces_event->task); 7698 namespaces_event->event_id.tid = perf_event_tid(event, 7699 namespaces_event->task); 7700 7701 perf_output_put(&handle, namespaces_event->event_id); 7702 7703 perf_event__output_id_sample(event, &handle, &sample); 7704 7705 perf_output_end(&handle); 7706 out: 7707 namespaces_event->event_id.header.size = header_size; 7708 } 7709 7710 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7711 struct task_struct *task, 7712 const struct proc_ns_operations *ns_ops) 7713 { 7714 struct path ns_path; 7715 struct inode *ns_inode; 7716 int error; 7717 7718 error = ns_get_path(&ns_path, task, ns_ops); 7719 if (!error) { 7720 ns_inode = ns_path.dentry->d_inode; 7721 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7722 ns_link_info->ino = ns_inode->i_ino; 7723 path_put(&ns_path); 7724 } 7725 } 7726 7727 void perf_event_namespaces(struct task_struct *task) 7728 { 7729 struct perf_namespaces_event namespaces_event; 7730 struct perf_ns_link_info *ns_link_info; 7731 7732 if (!atomic_read(&nr_namespaces_events)) 7733 return; 7734 7735 namespaces_event = (struct perf_namespaces_event){ 7736 .task = task, 7737 .event_id = { 7738 .header = { 7739 .type = PERF_RECORD_NAMESPACES, 7740 .misc = 0, 7741 .size = sizeof(namespaces_event.event_id), 7742 }, 7743 /* .pid */ 7744 /* .tid */ 7745 .nr_namespaces = NR_NAMESPACES, 7746 /* .link_info[NR_NAMESPACES] */ 7747 }, 7748 }; 7749 7750 ns_link_info = namespaces_event.event_id.link_info; 7751 7752 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7753 task, &mntns_operations); 7754 7755 #ifdef CONFIG_USER_NS 7756 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7757 task, &userns_operations); 7758 #endif 7759 #ifdef CONFIG_NET_NS 7760 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7761 task, &netns_operations); 7762 #endif 7763 #ifdef CONFIG_UTS_NS 7764 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7765 task, &utsns_operations); 7766 #endif 7767 #ifdef CONFIG_IPC_NS 7768 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7769 task, &ipcns_operations); 7770 #endif 7771 #ifdef CONFIG_PID_NS 7772 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7773 task, &pidns_operations); 7774 #endif 7775 #ifdef CONFIG_CGROUPS 7776 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7777 task, &cgroupns_operations); 7778 #endif 7779 7780 perf_iterate_sb(perf_event_namespaces_output, 7781 &namespaces_event, 7782 NULL); 7783 } 7784 7785 /* 7786 * cgroup tracking 7787 */ 7788 #ifdef CONFIG_CGROUP_PERF 7789 7790 struct perf_cgroup_event { 7791 char *path; 7792 int path_size; 7793 struct { 7794 struct perf_event_header header; 7795 u64 id; 7796 char path[]; 7797 } event_id; 7798 }; 7799 7800 static int perf_event_cgroup_match(struct perf_event *event) 7801 { 7802 return event->attr.cgroup; 7803 } 7804 7805 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7806 { 7807 struct perf_cgroup_event *cgroup_event = data; 7808 struct perf_output_handle handle; 7809 struct perf_sample_data sample; 7810 u16 header_size = cgroup_event->event_id.header.size; 7811 int ret; 7812 7813 if (!perf_event_cgroup_match(event)) 7814 return; 7815 7816 perf_event_header__init_id(&cgroup_event->event_id.header, 7817 &sample, event); 7818 ret = perf_output_begin(&handle, event, 7819 cgroup_event->event_id.header.size); 7820 if (ret) 7821 goto out; 7822 7823 perf_output_put(&handle, cgroup_event->event_id); 7824 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7825 7826 perf_event__output_id_sample(event, &handle, &sample); 7827 7828 perf_output_end(&handle); 7829 out: 7830 cgroup_event->event_id.header.size = header_size; 7831 } 7832 7833 static void perf_event_cgroup(struct cgroup *cgrp) 7834 { 7835 struct perf_cgroup_event cgroup_event; 7836 char path_enomem[16] = "//enomem"; 7837 char *pathname; 7838 size_t size; 7839 7840 if (!atomic_read(&nr_cgroup_events)) 7841 return; 7842 7843 cgroup_event = (struct perf_cgroup_event){ 7844 .event_id = { 7845 .header = { 7846 .type = PERF_RECORD_CGROUP, 7847 .misc = 0, 7848 .size = sizeof(cgroup_event.event_id), 7849 }, 7850 .id = cgroup_id(cgrp), 7851 }, 7852 }; 7853 7854 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 7855 if (pathname == NULL) { 7856 cgroup_event.path = path_enomem; 7857 } else { 7858 /* just to be sure to have enough space for alignment */ 7859 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 7860 cgroup_event.path = pathname; 7861 } 7862 7863 /* 7864 * Since our buffer works in 8 byte units we need to align our string 7865 * size to a multiple of 8. However, we must guarantee the tail end is 7866 * zero'd out to avoid leaking random bits to userspace. 7867 */ 7868 size = strlen(cgroup_event.path) + 1; 7869 while (!IS_ALIGNED(size, sizeof(u64))) 7870 cgroup_event.path[size++] = '\0'; 7871 7872 cgroup_event.event_id.header.size += size; 7873 cgroup_event.path_size = size; 7874 7875 perf_iterate_sb(perf_event_cgroup_output, 7876 &cgroup_event, 7877 NULL); 7878 7879 kfree(pathname); 7880 } 7881 7882 #endif 7883 7884 /* 7885 * mmap tracking 7886 */ 7887 7888 struct perf_mmap_event { 7889 struct vm_area_struct *vma; 7890 7891 const char *file_name; 7892 int file_size; 7893 int maj, min; 7894 u64 ino; 7895 u64 ino_generation; 7896 u32 prot, flags; 7897 7898 struct { 7899 struct perf_event_header header; 7900 7901 u32 pid; 7902 u32 tid; 7903 u64 start; 7904 u64 len; 7905 u64 pgoff; 7906 } event_id; 7907 }; 7908 7909 static int perf_event_mmap_match(struct perf_event *event, 7910 void *data) 7911 { 7912 struct perf_mmap_event *mmap_event = data; 7913 struct vm_area_struct *vma = mmap_event->vma; 7914 int executable = vma->vm_flags & VM_EXEC; 7915 7916 return (!executable && event->attr.mmap_data) || 7917 (executable && (event->attr.mmap || event->attr.mmap2)); 7918 } 7919 7920 static void perf_event_mmap_output(struct perf_event *event, 7921 void *data) 7922 { 7923 struct perf_mmap_event *mmap_event = data; 7924 struct perf_output_handle handle; 7925 struct perf_sample_data sample; 7926 int size = mmap_event->event_id.header.size; 7927 u32 type = mmap_event->event_id.header.type; 7928 int ret; 7929 7930 if (!perf_event_mmap_match(event, data)) 7931 return; 7932 7933 if (event->attr.mmap2) { 7934 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7935 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7936 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7937 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7938 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7939 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7940 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7941 } 7942 7943 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7944 ret = perf_output_begin(&handle, event, 7945 mmap_event->event_id.header.size); 7946 if (ret) 7947 goto out; 7948 7949 mmap_event->event_id.pid = perf_event_pid(event, current); 7950 mmap_event->event_id.tid = perf_event_tid(event, current); 7951 7952 perf_output_put(&handle, mmap_event->event_id); 7953 7954 if (event->attr.mmap2) { 7955 perf_output_put(&handle, mmap_event->maj); 7956 perf_output_put(&handle, mmap_event->min); 7957 perf_output_put(&handle, mmap_event->ino); 7958 perf_output_put(&handle, mmap_event->ino_generation); 7959 perf_output_put(&handle, mmap_event->prot); 7960 perf_output_put(&handle, mmap_event->flags); 7961 } 7962 7963 __output_copy(&handle, mmap_event->file_name, 7964 mmap_event->file_size); 7965 7966 perf_event__output_id_sample(event, &handle, &sample); 7967 7968 perf_output_end(&handle); 7969 out: 7970 mmap_event->event_id.header.size = size; 7971 mmap_event->event_id.header.type = type; 7972 } 7973 7974 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7975 { 7976 struct vm_area_struct *vma = mmap_event->vma; 7977 struct file *file = vma->vm_file; 7978 int maj = 0, min = 0; 7979 u64 ino = 0, gen = 0; 7980 u32 prot = 0, flags = 0; 7981 unsigned int size; 7982 char tmp[16]; 7983 char *buf = NULL; 7984 char *name; 7985 7986 if (vma->vm_flags & VM_READ) 7987 prot |= PROT_READ; 7988 if (vma->vm_flags & VM_WRITE) 7989 prot |= PROT_WRITE; 7990 if (vma->vm_flags & VM_EXEC) 7991 prot |= PROT_EXEC; 7992 7993 if (vma->vm_flags & VM_MAYSHARE) 7994 flags = MAP_SHARED; 7995 else 7996 flags = MAP_PRIVATE; 7997 7998 if (vma->vm_flags & VM_DENYWRITE) 7999 flags |= MAP_DENYWRITE; 8000 if (vma->vm_flags & VM_MAYEXEC) 8001 flags |= MAP_EXECUTABLE; 8002 if (vma->vm_flags & VM_LOCKED) 8003 flags |= MAP_LOCKED; 8004 if (is_vm_hugetlb_page(vma)) 8005 flags |= MAP_HUGETLB; 8006 8007 if (file) { 8008 struct inode *inode; 8009 dev_t dev; 8010 8011 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8012 if (!buf) { 8013 name = "//enomem"; 8014 goto cpy_name; 8015 } 8016 /* 8017 * d_path() works from the end of the rb backwards, so we 8018 * need to add enough zero bytes after the string to handle 8019 * the 64bit alignment we do later. 8020 */ 8021 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8022 if (IS_ERR(name)) { 8023 name = "//toolong"; 8024 goto cpy_name; 8025 } 8026 inode = file_inode(vma->vm_file); 8027 dev = inode->i_sb->s_dev; 8028 ino = inode->i_ino; 8029 gen = inode->i_generation; 8030 maj = MAJOR(dev); 8031 min = MINOR(dev); 8032 8033 goto got_name; 8034 } else { 8035 if (vma->vm_ops && vma->vm_ops->name) { 8036 name = (char *) vma->vm_ops->name(vma); 8037 if (name) 8038 goto cpy_name; 8039 } 8040 8041 name = (char *)arch_vma_name(vma); 8042 if (name) 8043 goto cpy_name; 8044 8045 if (vma->vm_start <= vma->vm_mm->start_brk && 8046 vma->vm_end >= vma->vm_mm->brk) { 8047 name = "[heap]"; 8048 goto cpy_name; 8049 } 8050 if (vma->vm_start <= vma->vm_mm->start_stack && 8051 vma->vm_end >= vma->vm_mm->start_stack) { 8052 name = "[stack]"; 8053 goto cpy_name; 8054 } 8055 8056 name = "//anon"; 8057 goto cpy_name; 8058 } 8059 8060 cpy_name: 8061 strlcpy(tmp, name, sizeof(tmp)); 8062 name = tmp; 8063 got_name: 8064 /* 8065 * Since our buffer works in 8 byte units we need to align our string 8066 * size to a multiple of 8. However, we must guarantee the tail end is 8067 * zero'd out to avoid leaking random bits to userspace. 8068 */ 8069 size = strlen(name)+1; 8070 while (!IS_ALIGNED(size, sizeof(u64))) 8071 name[size++] = '\0'; 8072 8073 mmap_event->file_name = name; 8074 mmap_event->file_size = size; 8075 mmap_event->maj = maj; 8076 mmap_event->min = min; 8077 mmap_event->ino = ino; 8078 mmap_event->ino_generation = gen; 8079 mmap_event->prot = prot; 8080 mmap_event->flags = flags; 8081 8082 if (!(vma->vm_flags & VM_EXEC)) 8083 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8084 8085 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8086 8087 perf_iterate_sb(perf_event_mmap_output, 8088 mmap_event, 8089 NULL); 8090 8091 kfree(buf); 8092 } 8093 8094 /* 8095 * Check whether inode and address range match filter criteria. 8096 */ 8097 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8098 struct file *file, unsigned long offset, 8099 unsigned long size) 8100 { 8101 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8102 if (!filter->path.dentry) 8103 return false; 8104 8105 if (d_inode(filter->path.dentry) != file_inode(file)) 8106 return false; 8107 8108 if (filter->offset > offset + size) 8109 return false; 8110 8111 if (filter->offset + filter->size < offset) 8112 return false; 8113 8114 return true; 8115 } 8116 8117 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8118 struct vm_area_struct *vma, 8119 struct perf_addr_filter_range *fr) 8120 { 8121 unsigned long vma_size = vma->vm_end - vma->vm_start; 8122 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8123 struct file *file = vma->vm_file; 8124 8125 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8126 return false; 8127 8128 if (filter->offset < off) { 8129 fr->start = vma->vm_start; 8130 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8131 } else { 8132 fr->start = vma->vm_start + filter->offset - off; 8133 fr->size = min(vma->vm_end - fr->start, filter->size); 8134 } 8135 8136 return true; 8137 } 8138 8139 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8140 { 8141 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8142 struct vm_area_struct *vma = data; 8143 struct perf_addr_filter *filter; 8144 unsigned int restart = 0, count = 0; 8145 unsigned long flags; 8146 8147 if (!has_addr_filter(event)) 8148 return; 8149 8150 if (!vma->vm_file) 8151 return; 8152 8153 raw_spin_lock_irqsave(&ifh->lock, flags); 8154 list_for_each_entry(filter, &ifh->list, entry) { 8155 if (perf_addr_filter_vma_adjust(filter, vma, 8156 &event->addr_filter_ranges[count])) 8157 restart++; 8158 8159 count++; 8160 } 8161 8162 if (restart) 8163 event->addr_filters_gen++; 8164 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8165 8166 if (restart) 8167 perf_event_stop(event, 1); 8168 } 8169 8170 /* 8171 * Adjust all task's events' filters to the new vma 8172 */ 8173 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8174 { 8175 struct perf_event_context *ctx; 8176 int ctxn; 8177 8178 /* 8179 * Data tracing isn't supported yet and as such there is no need 8180 * to keep track of anything that isn't related to executable code: 8181 */ 8182 if (!(vma->vm_flags & VM_EXEC)) 8183 return; 8184 8185 rcu_read_lock(); 8186 for_each_task_context_nr(ctxn) { 8187 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8188 if (!ctx) 8189 continue; 8190 8191 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8192 } 8193 rcu_read_unlock(); 8194 } 8195 8196 void perf_event_mmap(struct vm_area_struct *vma) 8197 { 8198 struct perf_mmap_event mmap_event; 8199 8200 if (!atomic_read(&nr_mmap_events)) 8201 return; 8202 8203 mmap_event = (struct perf_mmap_event){ 8204 .vma = vma, 8205 /* .file_name */ 8206 /* .file_size */ 8207 .event_id = { 8208 .header = { 8209 .type = PERF_RECORD_MMAP, 8210 .misc = PERF_RECORD_MISC_USER, 8211 /* .size */ 8212 }, 8213 /* .pid */ 8214 /* .tid */ 8215 .start = vma->vm_start, 8216 .len = vma->vm_end - vma->vm_start, 8217 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8218 }, 8219 /* .maj (attr_mmap2 only) */ 8220 /* .min (attr_mmap2 only) */ 8221 /* .ino (attr_mmap2 only) */ 8222 /* .ino_generation (attr_mmap2 only) */ 8223 /* .prot (attr_mmap2 only) */ 8224 /* .flags (attr_mmap2 only) */ 8225 }; 8226 8227 perf_addr_filters_adjust(vma); 8228 perf_event_mmap_event(&mmap_event); 8229 } 8230 8231 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8232 unsigned long size, u64 flags) 8233 { 8234 struct perf_output_handle handle; 8235 struct perf_sample_data sample; 8236 struct perf_aux_event { 8237 struct perf_event_header header; 8238 u64 offset; 8239 u64 size; 8240 u64 flags; 8241 } rec = { 8242 .header = { 8243 .type = PERF_RECORD_AUX, 8244 .misc = 0, 8245 .size = sizeof(rec), 8246 }, 8247 .offset = head, 8248 .size = size, 8249 .flags = flags, 8250 }; 8251 int ret; 8252 8253 perf_event_header__init_id(&rec.header, &sample, event); 8254 ret = perf_output_begin(&handle, event, rec.header.size); 8255 8256 if (ret) 8257 return; 8258 8259 perf_output_put(&handle, rec); 8260 perf_event__output_id_sample(event, &handle, &sample); 8261 8262 perf_output_end(&handle); 8263 } 8264 8265 /* 8266 * Lost/dropped samples logging 8267 */ 8268 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8269 { 8270 struct perf_output_handle handle; 8271 struct perf_sample_data sample; 8272 int ret; 8273 8274 struct { 8275 struct perf_event_header header; 8276 u64 lost; 8277 } lost_samples_event = { 8278 .header = { 8279 .type = PERF_RECORD_LOST_SAMPLES, 8280 .misc = 0, 8281 .size = sizeof(lost_samples_event), 8282 }, 8283 .lost = lost, 8284 }; 8285 8286 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8287 8288 ret = perf_output_begin(&handle, event, 8289 lost_samples_event.header.size); 8290 if (ret) 8291 return; 8292 8293 perf_output_put(&handle, lost_samples_event); 8294 perf_event__output_id_sample(event, &handle, &sample); 8295 perf_output_end(&handle); 8296 } 8297 8298 /* 8299 * context_switch tracking 8300 */ 8301 8302 struct perf_switch_event { 8303 struct task_struct *task; 8304 struct task_struct *next_prev; 8305 8306 struct { 8307 struct perf_event_header header; 8308 u32 next_prev_pid; 8309 u32 next_prev_tid; 8310 } event_id; 8311 }; 8312 8313 static int perf_event_switch_match(struct perf_event *event) 8314 { 8315 return event->attr.context_switch; 8316 } 8317 8318 static void perf_event_switch_output(struct perf_event *event, void *data) 8319 { 8320 struct perf_switch_event *se = data; 8321 struct perf_output_handle handle; 8322 struct perf_sample_data sample; 8323 int ret; 8324 8325 if (!perf_event_switch_match(event)) 8326 return; 8327 8328 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8329 if (event->ctx->task) { 8330 se->event_id.header.type = PERF_RECORD_SWITCH; 8331 se->event_id.header.size = sizeof(se->event_id.header); 8332 } else { 8333 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8334 se->event_id.header.size = sizeof(se->event_id); 8335 se->event_id.next_prev_pid = 8336 perf_event_pid(event, se->next_prev); 8337 se->event_id.next_prev_tid = 8338 perf_event_tid(event, se->next_prev); 8339 } 8340 8341 perf_event_header__init_id(&se->event_id.header, &sample, event); 8342 8343 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8344 if (ret) 8345 return; 8346 8347 if (event->ctx->task) 8348 perf_output_put(&handle, se->event_id.header); 8349 else 8350 perf_output_put(&handle, se->event_id); 8351 8352 perf_event__output_id_sample(event, &handle, &sample); 8353 8354 perf_output_end(&handle); 8355 } 8356 8357 static void perf_event_switch(struct task_struct *task, 8358 struct task_struct *next_prev, bool sched_in) 8359 { 8360 struct perf_switch_event switch_event; 8361 8362 /* N.B. caller checks nr_switch_events != 0 */ 8363 8364 switch_event = (struct perf_switch_event){ 8365 .task = task, 8366 .next_prev = next_prev, 8367 .event_id = { 8368 .header = { 8369 /* .type */ 8370 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8371 /* .size */ 8372 }, 8373 /* .next_prev_pid */ 8374 /* .next_prev_tid */ 8375 }, 8376 }; 8377 8378 if (!sched_in && task->state == TASK_RUNNING) 8379 switch_event.event_id.header.misc |= 8380 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8381 8382 perf_iterate_sb(perf_event_switch_output, 8383 &switch_event, 8384 NULL); 8385 } 8386 8387 /* 8388 * IRQ throttle logging 8389 */ 8390 8391 static void perf_log_throttle(struct perf_event *event, int enable) 8392 { 8393 struct perf_output_handle handle; 8394 struct perf_sample_data sample; 8395 int ret; 8396 8397 struct { 8398 struct perf_event_header header; 8399 u64 time; 8400 u64 id; 8401 u64 stream_id; 8402 } throttle_event = { 8403 .header = { 8404 .type = PERF_RECORD_THROTTLE, 8405 .misc = 0, 8406 .size = sizeof(throttle_event), 8407 }, 8408 .time = perf_event_clock(event), 8409 .id = primary_event_id(event), 8410 .stream_id = event->id, 8411 }; 8412 8413 if (enable) 8414 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8415 8416 perf_event_header__init_id(&throttle_event.header, &sample, event); 8417 8418 ret = perf_output_begin(&handle, event, 8419 throttle_event.header.size); 8420 if (ret) 8421 return; 8422 8423 perf_output_put(&handle, throttle_event); 8424 perf_event__output_id_sample(event, &handle, &sample); 8425 perf_output_end(&handle); 8426 } 8427 8428 /* 8429 * ksymbol register/unregister tracking 8430 */ 8431 8432 struct perf_ksymbol_event { 8433 const char *name; 8434 int name_len; 8435 struct { 8436 struct perf_event_header header; 8437 u64 addr; 8438 u32 len; 8439 u16 ksym_type; 8440 u16 flags; 8441 } event_id; 8442 }; 8443 8444 static int perf_event_ksymbol_match(struct perf_event *event) 8445 { 8446 return event->attr.ksymbol; 8447 } 8448 8449 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8450 { 8451 struct perf_ksymbol_event *ksymbol_event = data; 8452 struct perf_output_handle handle; 8453 struct perf_sample_data sample; 8454 int ret; 8455 8456 if (!perf_event_ksymbol_match(event)) 8457 return; 8458 8459 perf_event_header__init_id(&ksymbol_event->event_id.header, 8460 &sample, event); 8461 ret = perf_output_begin(&handle, event, 8462 ksymbol_event->event_id.header.size); 8463 if (ret) 8464 return; 8465 8466 perf_output_put(&handle, ksymbol_event->event_id); 8467 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8468 perf_event__output_id_sample(event, &handle, &sample); 8469 8470 perf_output_end(&handle); 8471 } 8472 8473 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8474 const char *sym) 8475 { 8476 struct perf_ksymbol_event ksymbol_event; 8477 char name[KSYM_NAME_LEN]; 8478 u16 flags = 0; 8479 int name_len; 8480 8481 if (!atomic_read(&nr_ksymbol_events)) 8482 return; 8483 8484 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8485 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8486 goto err; 8487 8488 strlcpy(name, sym, KSYM_NAME_LEN); 8489 name_len = strlen(name) + 1; 8490 while (!IS_ALIGNED(name_len, sizeof(u64))) 8491 name[name_len++] = '\0'; 8492 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8493 8494 if (unregister) 8495 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8496 8497 ksymbol_event = (struct perf_ksymbol_event){ 8498 .name = name, 8499 .name_len = name_len, 8500 .event_id = { 8501 .header = { 8502 .type = PERF_RECORD_KSYMBOL, 8503 .size = sizeof(ksymbol_event.event_id) + 8504 name_len, 8505 }, 8506 .addr = addr, 8507 .len = len, 8508 .ksym_type = ksym_type, 8509 .flags = flags, 8510 }, 8511 }; 8512 8513 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8514 return; 8515 err: 8516 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8517 } 8518 8519 /* 8520 * bpf program load/unload tracking 8521 */ 8522 8523 struct perf_bpf_event { 8524 struct bpf_prog *prog; 8525 struct { 8526 struct perf_event_header header; 8527 u16 type; 8528 u16 flags; 8529 u32 id; 8530 u8 tag[BPF_TAG_SIZE]; 8531 } event_id; 8532 }; 8533 8534 static int perf_event_bpf_match(struct perf_event *event) 8535 { 8536 return event->attr.bpf_event; 8537 } 8538 8539 static void perf_event_bpf_output(struct perf_event *event, void *data) 8540 { 8541 struct perf_bpf_event *bpf_event = data; 8542 struct perf_output_handle handle; 8543 struct perf_sample_data sample; 8544 int ret; 8545 8546 if (!perf_event_bpf_match(event)) 8547 return; 8548 8549 perf_event_header__init_id(&bpf_event->event_id.header, 8550 &sample, event); 8551 ret = perf_output_begin(&handle, event, 8552 bpf_event->event_id.header.size); 8553 if (ret) 8554 return; 8555 8556 perf_output_put(&handle, bpf_event->event_id); 8557 perf_event__output_id_sample(event, &handle, &sample); 8558 8559 perf_output_end(&handle); 8560 } 8561 8562 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8563 enum perf_bpf_event_type type) 8564 { 8565 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8566 int i; 8567 8568 if (prog->aux->func_cnt == 0) { 8569 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8570 (u64)(unsigned long)prog->bpf_func, 8571 prog->jited_len, unregister, 8572 prog->aux->ksym.name); 8573 } else { 8574 for (i = 0; i < prog->aux->func_cnt; i++) { 8575 struct bpf_prog *subprog = prog->aux->func[i]; 8576 8577 perf_event_ksymbol( 8578 PERF_RECORD_KSYMBOL_TYPE_BPF, 8579 (u64)(unsigned long)subprog->bpf_func, 8580 subprog->jited_len, unregister, 8581 prog->aux->ksym.name); 8582 } 8583 } 8584 } 8585 8586 void perf_event_bpf_event(struct bpf_prog *prog, 8587 enum perf_bpf_event_type type, 8588 u16 flags) 8589 { 8590 struct perf_bpf_event bpf_event; 8591 8592 if (type <= PERF_BPF_EVENT_UNKNOWN || 8593 type >= PERF_BPF_EVENT_MAX) 8594 return; 8595 8596 switch (type) { 8597 case PERF_BPF_EVENT_PROG_LOAD: 8598 case PERF_BPF_EVENT_PROG_UNLOAD: 8599 if (atomic_read(&nr_ksymbol_events)) 8600 perf_event_bpf_emit_ksymbols(prog, type); 8601 break; 8602 default: 8603 break; 8604 } 8605 8606 if (!atomic_read(&nr_bpf_events)) 8607 return; 8608 8609 bpf_event = (struct perf_bpf_event){ 8610 .prog = prog, 8611 .event_id = { 8612 .header = { 8613 .type = PERF_RECORD_BPF_EVENT, 8614 .size = sizeof(bpf_event.event_id), 8615 }, 8616 .type = type, 8617 .flags = flags, 8618 .id = prog->aux->id, 8619 }, 8620 }; 8621 8622 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8623 8624 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8625 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8626 } 8627 8628 void perf_event_itrace_started(struct perf_event *event) 8629 { 8630 event->attach_state |= PERF_ATTACH_ITRACE; 8631 } 8632 8633 static void perf_log_itrace_start(struct perf_event *event) 8634 { 8635 struct perf_output_handle handle; 8636 struct perf_sample_data sample; 8637 struct perf_aux_event { 8638 struct perf_event_header header; 8639 u32 pid; 8640 u32 tid; 8641 } rec; 8642 int ret; 8643 8644 if (event->parent) 8645 event = event->parent; 8646 8647 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8648 event->attach_state & PERF_ATTACH_ITRACE) 8649 return; 8650 8651 rec.header.type = PERF_RECORD_ITRACE_START; 8652 rec.header.misc = 0; 8653 rec.header.size = sizeof(rec); 8654 rec.pid = perf_event_pid(event, current); 8655 rec.tid = perf_event_tid(event, current); 8656 8657 perf_event_header__init_id(&rec.header, &sample, event); 8658 ret = perf_output_begin(&handle, event, rec.header.size); 8659 8660 if (ret) 8661 return; 8662 8663 perf_output_put(&handle, rec); 8664 perf_event__output_id_sample(event, &handle, &sample); 8665 8666 perf_output_end(&handle); 8667 } 8668 8669 static int 8670 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8671 { 8672 struct hw_perf_event *hwc = &event->hw; 8673 int ret = 0; 8674 u64 seq; 8675 8676 seq = __this_cpu_read(perf_throttled_seq); 8677 if (seq != hwc->interrupts_seq) { 8678 hwc->interrupts_seq = seq; 8679 hwc->interrupts = 1; 8680 } else { 8681 hwc->interrupts++; 8682 if (unlikely(throttle 8683 && hwc->interrupts >= max_samples_per_tick)) { 8684 __this_cpu_inc(perf_throttled_count); 8685 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8686 hwc->interrupts = MAX_INTERRUPTS; 8687 perf_log_throttle(event, 0); 8688 ret = 1; 8689 } 8690 } 8691 8692 if (event->attr.freq) { 8693 u64 now = perf_clock(); 8694 s64 delta = now - hwc->freq_time_stamp; 8695 8696 hwc->freq_time_stamp = now; 8697 8698 if (delta > 0 && delta < 2*TICK_NSEC) 8699 perf_adjust_period(event, delta, hwc->last_period, true); 8700 } 8701 8702 return ret; 8703 } 8704 8705 int perf_event_account_interrupt(struct perf_event *event) 8706 { 8707 return __perf_event_account_interrupt(event, 1); 8708 } 8709 8710 /* 8711 * Generic event overflow handling, sampling. 8712 */ 8713 8714 static int __perf_event_overflow(struct perf_event *event, 8715 int throttle, struct perf_sample_data *data, 8716 struct pt_regs *regs) 8717 { 8718 int events = atomic_read(&event->event_limit); 8719 int ret = 0; 8720 8721 /* 8722 * Non-sampling counters might still use the PMI to fold short 8723 * hardware counters, ignore those. 8724 */ 8725 if (unlikely(!is_sampling_event(event))) 8726 return 0; 8727 8728 ret = __perf_event_account_interrupt(event, throttle); 8729 8730 /* 8731 * XXX event_limit might not quite work as expected on inherited 8732 * events 8733 */ 8734 8735 event->pending_kill = POLL_IN; 8736 if (events && atomic_dec_and_test(&event->event_limit)) { 8737 ret = 1; 8738 event->pending_kill = POLL_HUP; 8739 8740 perf_event_disable_inatomic(event); 8741 } 8742 8743 READ_ONCE(event->overflow_handler)(event, data, regs); 8744 8745 if (*perf_event_fasync(event) && event->pending_kill) { 8746 event->pending_wakeup = 1; 8747 irq_work_queue(&event->pending); 8748 } 8749 8750 return ret; 8751 } 8752 8753 int perf_event_overflow(struct perf_event *event, 8754 struct perf_sample_data *data, 8755 struct pt_regs *regs) 8756 { 8757 return __perf_event_overflow(event, 1, data, regs); 8758 } 8759 8760 /* 8761 * Generic software event infrastructure 8762 */ 8763 8764 struct swevent_htable { 8765 struct swevent_hlist *swevent_hlist; 8766 struct mutex hlist_mutex; 8767 int hlist_refcount; 8768 8769 /* Recursion avoidance in each contexts */ 8770 int recursion[PERF_NR_CONTEXTS]; 8771 }; 8772 8773 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8774 8775 /* 8776 * We directly increment event->count and keep a second value in 8777 * event->hw.period_left to count intervals. This period event 8778 * is kept in the range [-sample_period, 0] so that we can use the 8779 * sign as trigger. 8780 */ 8781 8782 u64 perf_swevent_set_period(struct perf_event *event) 8783 { 8784 struct hw_perf_event *hwc = &event->hw; 8785 u64 period = hwc->last_period; 8786 u64 nr, offset; 8787 s64 old, val; 8788 8789 hwc->last_period = hwc->sample_period; 8790 8791 again: 8792 old = val = local64_read(&hwc->period_left); 8793 if (val < 0) 8794 return 0; 8795 8796 nr = div64_u64(period + val, period); 8797 offset = nr * period; 8798 val -= offset; 8799 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8800 goto again; 8801 8802 return nr; 8803 } 8804 8805 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8806 struct perf_sample_data *data, 8807 struct pt_regs *regs) 8808 { 8809 struct hw_perf_event *hwc = &event->hw; 8810 int throttle = 0; 8811 8812 if (!overflow) 8813 overflow = perf_swevent_set_period(event); 8814 8815 if (hwc->interrupts == MAX_INTERRUPTS) 8816 return; 8817 8818 for (; overflow; overflow--) { 8819 if (__perf_event_overflow(event, throttle, 8820 data, regs)) { 8821 /* 8822 * We inhibit the overflow from happening when 8823 * hwc->interrupts == MAX_INTERRUPTS. 8824 */ 8825 break; 8826 } 8827 throttle = 1; 8828 } 8829 } 8830 8831 static void perf_swevent_event(struct perf_event *event, u64 nr, 8832 struct perf_sample_data *data, 8833 struct pt_regs *regs) 8834 { 8835 struct hw_perf_event *hwc = &event->hw; 8836 8837 local64_add(nr, &event->count); 8838 8839 if (!regs) 8840 return; 8841 8842 if (!is_sampling_event(event)) 8843 return; 8844 8845 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8846 data->period = nr; 8847 return perf_swevent_overflow(event, 1, data, regs); 8848 } else 8849 data->period = event->hw.last_period; 8850 8851 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8852 return perf_swevent_overflow(event, 1, data, regs); 8853 8854 if (local64_add_negative(nr, &hwc->period_left)) 8855 return; 8856 8857 perf_swevent_overflow(event, 0, data, regs); 8858 } 8859 8860 static int perf_exclude_event(struct perf_event *event, 8861 struct pt_regs *regs) 8862 { 8863 if (event->hw.state & PERF_HES_STOPPED) 8864 return 1; 8865 8866 if (regs) { 8867 if (event->attr.exclude_user && user_mode(regs)) 8868 return 1; 8869 8870 if (event->attr.exclude_kernel && !user_mode(regs)) 8871 return 1; 8872 } 8873 8874 return 0; 8875 } 8876 8877 static int perf_swevent_match(struct perf_event *event, 8878 enum perf_type_id type, 8879 u32 event_id, 8880 struct perf_sample_data *data, 8881 struct pt_regs *regs) 8882 { 8883 if (event->attr.type != type) 8884 return 0; 8885 8886 if (event->attr.config != event_id) 8887 return 0; 8888 8889 if (perf_exclude_event(event, regs)) 8890 return 0; 8891 8892 return 1; 8893 } 8894 8895 static inline u64 swevent_hash(u64 type, u32 event_id) 8896 { 8897 u64 val = event_id | (type << 32); 8898 8899 return hash_64(val, SWEVENT_HLIST_BITS); 8900 } 8901 8902 static inline struct hlist_head * 8903 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8904 { 8905 u64 hash = swevent_hash(type, event_id); 8906 8907 return &hlist->heads[hash]; 8908 } 8909 8910 /* For the read side: events when they trigger */ 8911 static inline struct hlist_head * 8912 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8913 { 8914 struct swevent_hlist *hlist; 8915 8916 hlist = rcu_dereference(swhash->swevent_hlist); 8917 if (!hlist) 8918 return NULL; 8919 8920 return __find_swevent_head(hlist, type, event_id); 8921 } 8922 8923 /* For the event head insertion and removal in the hlist */ 8924 static inline struct hlist_head * 8925 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8926 { 8927 struct swevent_hlist *hlist; 8928 u32 event_id = event->attr.config; 8929 u64 type = event->attr.type; 8930 8931 /* 8932 * Event scheduling is always serialized against hlist allocation 8933 * and release. Which makes the protected version suitable here. 8934 * The context lock guarantees that. 8935 */ 8936 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8937 lockdep_is_held(&event->ctx->lock)); 8938 if (!hlist) 8939 return NULL; 8940 8941 return __find_swevent_head(hlist, type, event_id); 8942 } 8943 8944 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8945 u64 nr, 8946 struct perf_sample_data *data, 8947 struct pt_regs *regs) 8948 { 8949 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8950 struct perf_event *event; 8951 struct hlist_head *head; 8952 8953 rcu_read_lock(); 8954 head = find_swevent_head_rcu(swhash, type, event_id); 8955 if (!head) 8956 goto end; 8957 8958 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8959 if (perf_swevent_match(event, type, event_id, data, regs)) 8960 perf_swevent_event(event, nr, data, regs); 8961 } 8962 end: 8963 rcu_read_unlock(); 8964 } 8965 8966 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8967 8968 int perf_swevent_get_recursion_context(void) 8969 { 8970 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8971 8972 return get_recursion_context(swhash->recursion); 8973 } 8974 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8975 8976 void perf_swevent_put_recursion_context(int rctx) 8977 { 8978 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8979 8980 put_recursion_context(swhash->recursion, rctx); 8981 } 8982 8983 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8984 { 8985 struct perf_sample_data data; 8986 8987 if (WARN_ON_ONCE(!regs)) 8988 return; 8989 8990 perf_sample_data_init(&data, addr, 0); 8991 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8992 } 8993 8994 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8995 { 8996 int rctx; 8997 8998 preempt_disable_notrace(); 8999 rctx = perf_swevent_get_recursion_context(); 9000 if (unlikely(rctx < 0)) 9001 goto fail; 9002 9003 ___perf_sw_event(event_id, nr, regs, addr); 9004 9005 perf_swevent_put_recursion_context(rctx); 9006 fail: 9007 preempt_enable_notrace(); 9008 } 9009 9010 static void perf_swevent_read(struct perf_event *event) 9011 { 9012 } 9013 9014 static int perf_swevent_add(struct perf_event *event, int flags) 9015 { 9016 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9017 struct hw_perf_event *hwc = &event->hw; 9018 struct hlist_head *head; 9019 9020 if (is_sampling_event(event)) { 9021 hwc->last_period = hwc->sample_period; 9022 perf_swevent_set_period(event); 9023 } 9024 9025 hwc->state = !(flags & PERF_EF_START); 9026 9027 head = find_swevent_head(swhash, event); 9028 if (WARN_ON_ONCE(!head)) 9029 return -EINVAL; 9030 9031 hlist_add_head_rcu(&event->hlist_entry, head); 9032 perf_event_update_userpage(event); 9033 9034 return 0; 9035 } 9036 9037 static void perf_swevent_del(struct perf_event *event, int flags) 9038 { 9039 hlist_del_rcu(&event->hlist_entry); 9040 } 9041 9042 static void perf_swevent_start(struct perf_event *event, int flags) 9043 { 9044 event->hw.state = 0; 9045 } 9046 9047 static void perf_swevent_stop(struct perf_event *event, int flags) 9048 { 9049 event->hw.state = PERF_HES_STOPPED; 9050 } 9051 9052 /* Deref the hlist from the update side */ 9053 static inline struct swevent_hlist * 9054 swevent_hlist_deref(struct swevent_htable *swhash) 9055 { 9056 return rcu_dereference_protected(swhash->swevent_hlist, 9057 lockdep_is_held(&swhash->hlist_mutex)); 9058 } 9059 9060 static void swevent_hlist_release(struct swevent_htable *swhash) 9061 { 9062 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9063 9064 if (!hlist) 9065 return; 9066 9067 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9068 kfree_rcu(hlist, rcu_head); 9069 } 9070 9071 static void swevent_hlist_put_cpu(int cpu) 9072 { 9073 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9074 9075 mutex_lock(&swhash->hlist_mutex); 9076 9077 if (!--swhash->hlist_refcount) 9078 swevent_hlist_release(swhash); 9079 9080 mutex_unlock(&swhash->hlist_mutex); 9081 } 9082 9083 static void swevent_hlist_put(void) 9084 { 9085 int cpu; 9086 9087 for_each_possible_cpu(cpu) 9088 swevent_hlist_put_cpu(cpu); 9089 } 9090 9091 static int swevent_hlist_get_cpu(int cpu) 9092 { 9093 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9094 int err = 0; 9095 9096 mutex_lock(&swhash->hlist_mutex); 9097 if (!swevent_hlist_deref(swhash) && 9098 cpumask_test_cpu(cpu, perf_online_mask)) { 9099 struct swevent_hlist *hlist; 9100 9101 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9102 if (!hlist) { 9103 err = -ENOMEM; 9104 goto exit; 9105 } 9106 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9107 } 9108 swhash->hlist_refcount++; 9109 exit: 9110 mutex_unlock(&swhash->hlist_mutex); 9111 9112 return err; 9113 } 9114 9115 static int swevent_hlist_get(void) 9116 { 9117 int err, cpu, failed_cpu; 9118 9119 mutex_lock(&pmus_lock); 9120 for_each_possible_cpu(cpu) { 9121 err = swevent_hlist_get_cpu(cpu); 9122 if (err) { 9123 failed_cpu = cpu; 9124 goto fail; 9125 } 9126 } 9127 mutex_unlock(&pmus_lock); 9128 return 0; 9129 fail: 9130 for_each_possible_cpu(cpu) { 9131 if (cpu == failed_cpu) 9132 break; 9133 swevent_hlist_put_cpu(cpu); 9134 } 9135 mutex_unlock(&pmus_lock); 9136 return err; 9137 } 9138 9139 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9140 9141 static void sw_perf_event_destroy(struct perf_event *event) 9142 { 9143 u64 event_id = event->attr.config; 9144 9145 WARN_ON(event->parent); 9146 9147 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9148 swevent_hlist_put(); 9149 } 9150 9151 static int perf_swevent_init(struct perf_event *event) 9152 { 9153 u64 event_id = event->attr.config; 9154 9155 if (event->attr.type != PERF_TYPE_SOFTWARE) 9156 return -ENOENT; 9157 9158 /* 9159 * no branch sampling for software events 9160 */ 9161 if (has_branch_stack(event)) 9162 return -EOPNOTSUPP; 9163 9164 switch (event_id) { 9165 case PERF_COUNT_SW_CPU_CLOCK: 9166 case PERF_COUNT_SW_TASK_CLOCK: 9167 return -ENOENT; 9168 9169 default: 9170 break; 9171 } 9172 9173 if (event_id >= PERF_COUNT_SW_MAX) 9174 return -ENOENT; 9175 9176 if (!event->parent) { 9177 int err; 9178 9179 err = swevent_hlist_get(); 9180 if (err) 9181 return err; 9182 9183 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9184 event->destroy = sw_perf_event_destroy; 9185 } 9186 9187 return 0; 9188 } 9189 9190 static struct pmu perf_swevent = { 9191 .task_ctx_nr = perf_sw_context, 9192 9193 .capabilities = PERF_PMU_CAP_NO_NMI, 9194 9195 .event_init = perf_swevent_init, 9196 .add = perf_swevent_add, 9197 .del = perf_swevent_del, 9198 .start = perf_swevent_start, 9199 .stop = perf_swevent_stop, 9200 .read = perf_swevent_read, 9201 }; 9202 9203 #ifdef CONFIG_EVENT_TRACING 9204 9205 static int perf_tp_filter_match(struct perf_event *event, 9206 struct perf_sample_data *data) 9207 { 9208 void *record = data->raw->frag.data; 9209 9210 /* only top level events have filters set */ 9211 if (event->parent) 9212 event = event->parent; 9213 9214 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9215 return 1; 9216 return 0; 9217 } 9218 9219 static int perf_tp_event_match(struct perf_event *event, 9220 struct perf_sample_data *data, 9221 struct pt_regs *regs) 9222 { 9223 if (event->hw.state & PERF_HES_STOPPED) 9224 return 0; 9225 /* 9226 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9227 */ 9228 if (event->attr.exclude_kernel && !user_mode(regs)) 9229 return 0; 9230 9231 if (!perf_tp_filter_match(event, data)) 9232 return 0; 9233 9234 return 1; 9235 } 9236 9237 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9238 struct trace_event_call *call, u64 count, 9239 struct pt_regs *regs, struct hlist_head *head, 9240 struct task_struct *task) 9241 { 9242 if (bpf_prog_array_valid(call)) { 9243 *(struct pt_regs **)raw_data = regs; 9244 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9245 perf_swevent_put_recursion_context(rctx); 9246 return; 9247 } 9248 } 9249 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9250 rctx, task); 9251 } 9252 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9253 9254 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9255 struct pt_regs *regs, struct hlist_head *head, int rctx, 9256 struct task_struct *task) 9257 { 9258 struct perf_sample_data data; 9259 struct perf_event *event; 9260 9261 struct perf_raw_record raw = { 9262 .frag = { 9263 .size = entry_size, 9264 .data = record, 9265 }, 9266 }; 9267 9268 perf_sample_data_init(&data, 0, 0); 9269 data.raw = &raw; 9270 9271 perf_trace_buf_update(record, event_type); 9272 9273 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9274 if (perf_tp_event_match(event, &data, regs)) 9275 perf_swevent_event(event, count, &data, regs); 9276 } 9277 9278 /* 9279 * If we got specified a target task, also iterate its context and 9280 * deliver this event there too. 9281 */ 9282 if (task && task != current) { 9283 struct perf_event_context *ctx; 9284 struct trace_entry *entry = record; 9285 9286 rcu_read_lock(); 9287 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9288 if (!ctx) 9289 goto unlock; 9290 9291 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9292 if (event->cpu != smp_processor_id()) 9293 continue; 9294 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9295 continue; 9296 if (event->attr.config != entry->type) 9297 continue; 9298 if (perf_tp_event_match(event, &data, regs)) 9299 perf_swevent_event(event, count, &data, regs); 9300 } 9301 unlock: 9302 rcu_read_unlock(); 9303 } 9304 9305 perf_swevent_put_recursion_context(rctx); 9306 } 9307 EXPORT_SYMBOL_GPL(perf_tp_event); 9308 9309 static void tp_perf_event_destroy(struct perf_event *event) 9310 { 9311 perf_trace_destroy(event); 9312 } 9313 9314 static int perf_tp_event_init(struct perf_event *event) 9315 { 9316 int err; 9317 9318 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9319 return -ENOENT; 9320 9321 /* 9322 * no branch sampling for tracepoint events 9323 */ 9324 if (has_branch_stack(event)) 9325 return -EOPNOTSUPP; 9326 9327 err = perf_trace_init(event); 9328 if (err) 9329 return err; 9330 9331 event->destroy = tp_perf_event_destroy; 9332 9333 return 0; 9334 } 9335 9336 static struct pmu perf_tracepoint = { 9337 .task_ctx_nr = perf_sw_context, 9338 9339 .event_init = perf_tp_event_init, 9340 .add = perf_trace_add, 9341 .del = perf_trace_del, 9342 .start = perf_swevent_start, 9343 .stop = perf_swevent_stop, 9344 .read = perf_swevent_read, 9345 }; 9346 9347 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9348 /* 9349 * Flags in config, used by dynamic PMU kprobe and uprobe 9350 * The flags should match following PMU_FORMAT_ATTR(). 9351 * 9352 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9353 * if not set, create kprobe/uprobe 9354 * 9355 * The following values specify a reference counter (or semaphore in the 9356 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9357 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9358 * 9359 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9360 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9361 */ 9362 enum perf_probe_config { 9363 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9364 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9365 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9366 }; 9367 9368 PMU_FORMAT_ATTR(retprobe, "config:0"); 9369 #endif 9370 9371 #ifdef CONFIG_KPROBE_EVENTS 9372 static struct attribute *kprobe_attrs[] = { 9373 &format_attr_retprobe.attr, 9374 NULL, 9375 }; 9376 9377 static struct attribute_group kprobe_format_group = { 9378 .name = "format", 9379 .attrs = kprobe_attrs, 9380 }; 9381 9382 static const struct attribute_group *kprobe_attr_groups[] = { 9383 &kprobe_format_group, 9384 NULL, 9385 }; 9386 9387 static int perf_kprobe_event_init(struct perf_event *event); 9388 static struct pmu perf_kprobe = { 9389 .task_ctx_nr = perf_sw_context, 9390 .event_init = perf_kprobe_event_init, 9391 .add = perf_trace_add, 9392 .del = perf_trace_del, 9393 .start = perf_swevent_start, 9394 .stop = perf_swevent_stop, 9395 .read = perf_swevent_read, 9396 .attr_groups = kprobe_attr_groups, 9397 }; 9398 9399 static int perf_kprobe_event_init(struct perf_event *event) 9400 { 9401 int err; 9402 bool is_retprobe; 9403 9404 if (event->attr.type != perf_kprobe.type) 9405 return -ENOENT; 9406 9407 if (!capable(CAP_SYS_ADMIN)) 9408 return -EACCES; 9409 9410 /* 9411 * no branch sampling for probe events 9412 */ 9413 if (has_branch_stack(event)) 9414 return -EOPNOTSUPP; 9415 9416 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9417 err = perf_kprobe_init(event, is_retprobe); 9418 if (err) 9419 return err; 9420 9421 event->destroy = perf_kprobe_destroy; 9422 9423 return 0; 9424 } 9425 #endif /* CONFIG_KPROBE_EVENTS */ 9426 9427 #ifdef CONFIG_UPROBE_EVENTS 9428 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9429 9430 static struct attribute *uprobe_attrs[] = { 9431 &format_attr_retprobe.attr, 9432 &format_attr_ref_ctr_offset.attr, 9433 NULL, 9434 }; 9435 9436 static struct attribute_group uprobe_format_group = { 9437 .name = "format", 9438 .attrs = uprobe_attrs, 9439 }; 9440 9441 static const struct attribute_group *uprobe_attr_groups[] = { 9442 &uprobe_format_group, 9443 NULL, 9444 }; 9445 9446 static int perf_uprobe_event_init(struct perf_event *event); 9447 static struct pmu perf_uprobe = { 9448 .task_ctx_nr = perf_sw_context, 9449 .event_init = perf_uprobe_event_init, 9450 .add = perf_trace_add, 9451 .del = perf_trace_del, 9452 .start = perf_swevent_start, 9453 .stop = perf_swevent_stop, 9454 .read = perf_swevent_read, 9455 .attr_groups = uprobe_attr_groups, 9456 }; 9457 9458 static int perf_uprobe_event_init(struct perf_event *event) 9459 { 9460 int err; 9461 unsigned long ref_ctr_offset; 9462 bool is_retprobe; 9463 9464 if (event->attr.type != perf_uprobe.type) 9465 return -ENOENT; 9466 9467 if (!capable(CAP_SYS_ADMIN)) 9468 return -EACCES; 9469 9470 /* 9471 * no branch sampling for probe events 9472 */ 9473 if (has_branch_stack(event)) 9474 return -EOPNOTSUPP; 9475 9476 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9477 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9478 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9479 if (err) 9480 return err; 9481 9482 event->destroy = perf_uprobe_destroy; 9483 9484 return 0; 9485 } 9486 #endif /* CONFIG_UPROBE_EVENTS */ 9487 9488 static inline void perf_tp_register(void) 9489 { 9490 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9491 #ifdef CONFIG_KPROBE_EVENTS 9492 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9493 #endif 9494 #ifdef CONFIG_UPROBE_EVENTS 9495 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9496 #endif 9497 } 9498 9499 static void perf_event_free_filter(struct perf_event *event) 9500 { 9501 ftrace_profile_free_filter(event); 9502 } 9503 9504 #ifdef CONFIG_BPF_SYSCALL 9505 static void bpf_overflow_handler(struct perf_event *event, 9506 struct perf_sample_data *data, 9507 struct pt_regs *regs) 9508 { 9509 struct bpf_perf_event_data_kern ctx = { 9510 .data = data, 9511 .event = event, 9512 }; 9513 int ret = 0; 9514 9515 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9516 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9517 goto out; 9518 rcu_read_lock(); 9519 ret = BPF_PROG_RUN(event->prog, &ctx); 9520 rcu_read_unlock(); 9521 out: 9522 __this_cpu_dec(bpf_prog_active); 9523 if (!ret) 9524 return; 9525 9526 event->orig_overflow_handler(event, data, regs); 9527 } 9528 9529 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9530 { 9531 struct bpf_prog *prog; 9532 9533 if (event->overflow_handler_context) 9534 /* hw breakpoint or kernel counter */ 9535 return -EINVAL; 9536 9537 if (event->prog) 9538 return -EEXIST; 9539 9540 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9541 if (IS_ERR(prog)) 9542 return PTR_ERR(prog); 9543 9544 event->prog = prog; 9545 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9546 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9547 return 0; 9548 } 9549 9550 static void perf_event_free_bpf_handler(struct perf_event *event) 9551 { 9552 struct bpf_prog *prog = event->prog; 9553 9554 if (!prog) 9555 return; 9556 9557 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9558 event->prog = NULL; 9559 bpf_prog_put(prog); 9560 } 9561 #else 9562 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9563 { 9564 return -EOPNOTSUPP; 9565 } 9566 static void perf_event_free_bpf_handler(struct perf_event *event) 9567 { 9568 } 9569 #endif 9570 9571 /* 9572 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9573 * with perf_event_open() 9574 */ 9575 static inline bool perf_event_is_tracing(struct perf_event *event) 9576 { 9577 if (event->pmu == &perf_tracepoint) 9578 return true; 9579 #ifdef CONFIG_KPROBE_EVENTS 9580 if (event->pmu == &perf_kprobe) 9581 return true; 9582 #endif 9583 #ifdef CONFIG_UPROBE_EVENTS 9584 if (event->pmu == &perf_uprobe) 9585 return true; 9586 #endif 9587 return false; 9588 } 9589 9590 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9591 { 9592 bool is_kprobe, is_tracepoint, is_syscall_tp; 9593 struct bpf_prog *prog; 9594 int ret; 9595 9596 if (!perf_event_is_tracing(event)) 9597 return perf_event_set_bpf_handler(event, prog_fd); 9598 9599 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9600 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9601 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9602 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9603 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9604 return -EINVAL; 9605 9606 prog = bpf_prog_get(prog_fd); 9607 if (IS_ERR(prog)) 9608 return PTR_ERR(prog); 9609 9610 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9611 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9612 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9613 /* valid fd, but invalid bpf program type */ 9614 bpf_prog_put(prog); 9615 return -EINVAL; 9616 } 9617 9618 /* Kprobe override only works for kprobes, not uprobes. */ 9619 if (prog->kprobe_override && 9620 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9621 bpf_prog_put(prog); 9622 return -EINVAL; 9623 } 9624 9625 if (is_tracepoint || is_syscall_tp) { 9626 int off = trace_event_get_offsets(event->tp_event); 9627 9628 if (prog->aux->max_ctx_offset > off) { 9629 bpf_prog_put(prog); 9630 return -EACCES; 9631 } 9632 } 9633 9634 ret = perf_event_attach_bpf_prog(event, prog); 9635 if (ret) 9636 bpf_prog_put(prog); 9637 return ret; 9638 } 9639 9640 static void perf_event_free_bpf_prog(struct perf_event *event) 9641 { 9642 if (!perf_event_is_tracing(event)) { 9643 perf_event_free_bpf_handler(event); 9644 return; 9645 } 9646 perf_event_detach_bpf_prog(event); 9647 } 9648 9649 #else 9650 9651 static inline void perf_tp_register(void) 9652 { 9653 } 9654 9655 static void perf_event_free_filter(struct perf_event *event) 9656 { 9657 } 9658 9659 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9660 { 9661 return -ENOENT; 9662 } 9663 9664 static void perf_event_free_bpf_prog(struct perf_event *event) 9665 { 9666 } 9667 #endif /* CONFIG_EVENT_TRACING */ 9668 9669 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9670 void perf_bp_event(struct perf_event *bp, void *data) 9671 { 9672 struct perf_sample_data sample; 9673 struct pt_regs *regs = data; 9674 9675 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9676 9677 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9678 perf_swevent_event(bp, 1, &sample, regs); 9679 } 9680 #endif 9681 9682 /* 9683 * Allocate a new address filter 9684 */ 9685 static struct perf_addr_filter * 9686 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9687 { 9688 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9689 struct perf_addr_filter *filter; 9690 9691 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9692 if (!filter) 9693 return NULL; 9694 9695 INIT_LIST_HEAD(&filter->entry); 9696 list_add_tail(&filter->entry, filters); 9697 9698 return filter; 9699 } 9700 9701 static void free_filters_list(struct list_head *filters) 9702 { 9703 struct perf_addr_filter *filter, *iter; 9704 9705 list_for_each_entry_safe(filter, iter, filters, entry) { 9706 path_put(&filter->path); 9707 list_del(&filter->entry); 9708 kfree(filter); 9709 } 9710 } 9711 9712 /* 9713 * Free existing address filters and optionally install new ones 9714 */ 9715 static void perf_addr_filters_splice(struct perf_event *event, 9716 struct list_head *head) 9717 { 9718 unsigned long flags; 9719 LIST_HEAD(list); 9720 9721 if (!has_addr_filter(event)) 9722 return; 9723 9724 /* don't bother with children, they don't have their own filters */ 9725 if (event->parent) 9726 return; 9727 9728 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9729 9730 list_splice_init(&event->addr_filters.list, &list); 9731 if (head) 9732 list_splice(head, &event->addr_filters.list); 9733 9734 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9735 9736 free_filters_list(&list); 9737 } 9738 9739 /* 9740 * Scan through mm's vmas and see if one of them matches the 9741 * @filter; if so, adjust filter's address range. 9742 * Called with mm::mmap_sem down for reading. 9743 */ 9744 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9745 struct mm_struct *mm, 9746 struct perf_addr_filter_range *fr) 9747 { 9748 struct vm_area_struct *vma; 9749 9750 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9751 if (!vma->vm_file) 9752 continue; 9753 9754 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9755 return; 9756 } 9757 } 9758 9759 /* 9760 * Update event's address range filters based on the 9761 * task's existing mappings, if any. 9762 */ 9763 static void perf_event_addr_filters_apply(struct perf_event *event) 9764 { 9765 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9766 struct task_struct *task = READ_ONCE(event->ctx->task); 9767 struct perf_addr_filter *filter; 9768 struct mm_struct *mm = NULL; 9769 unsigned int count = 0; 9770 unsigned long flags; 9771 9772 /* 9773 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9774 * will stop on the parent's child_mutex that our caller is also holding 9775 */ 9776 if (task == TASK_TOMBSTONE) 9777 return; 9778 9779 if (ifh->nr_file_filters) { 9780 mm = get_task_mm(event->ctx->task); 9781 if (!mm) 9782 goto restart; 9783 9784 down_read(&mm->mmap_sem); 9785 } 9786 9787 raw_spin_lock_irqsave(&ifh->lock, flags); 9788 list_for_each_entry(filter, &ifh->list, entry) { 9789 if (filter->path.dentry) { 9790 /* 9791 * Adjust base offset if the filter is associated to a 9792 * binary that needs to be mapped: 9793 */ 9794 event->addr_filter_ranges[count].start = 0; 9795 event->addr_filter_ranges[count].size = 0; 9796 9797 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9798 } else { 9799 event->addr_filter_ranges[count].start = filter->offset; 9800 event->addr_filter_ranges[count].size = filter->size; 9801 } 9802 9803 count++; 9804 } 9805 9806 event->addr_filters_gen++; 9807 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9808 9809 if (ifh->nr_file_filters) { 9810 up_read(&mm->mmap_sem); 9811 9812 mmput(mm); 9813 } 9814 9815 restart: 9816 perf_event_stop(event, 1); 9817 } 9818 9819 /* 9820 * Address range filtering: limiting the data to certain 9821 * instruction address ranges. Filters are ioctl()ed to us from 9822 * userspace as ascii strings. 9823 * 9824 * Filter string format: 9825 * 9826 * ACTION RANGE_SPEC 9827 * where ACTION is one of the 9828 * * "filter": limit the trace to this region 9829 * * "start": start tracing from this address 9830 * * "stop": stop tracing at this address/region; 9831 * RANGE_SPEC is 9832 * * for kernel addresses: <start address>[/<size>] 9833 * * for object files: <start address>[/<size>]@</path/to/object/file> 9834 * 9835 * if <size> is not specified or is zero, the range is treated as a single 9836 * address; not valid for ACTION=="filter". 9837 */ 9838 enum { 9839 IF_ACT_NONE = -1, 9840 IF_ACT_FILTER, 9841 IF_ACT_START, 9842 IF_ACT_STOP, 9843 IF_SRC_FILE, 9844 IF_SRC_KERNEL, 9845 IF_SRC_FILEADDR, 9846 IF_SRC_KERNELADDR, 9847 }; 9848 9849 enum { 9850 IF_STATE_ACTION = 0, 9851 IF_STATE_SOURCE, 9852 IF_STATE_END, 9853 }; 9854 9855 static const match_table_t if_tokens = { 9856 { IF_ACT_FILTER, "filter" }, 9857 { IF_ACT_START, "start" }, 9858 { IF_ACT_STOP, "stop" }, 9859 { IF_SRC_FILE, "%u/%u@%s" }, 9860 { IF_SRC_KERNEL, "%u/%u" }, 9861 { IF_SRC_FILEADDR, "%u@%s" }, 9862 { IF_SRC_KERNELADDR, "%u" }, 9863 { IF_ACT_NONE, NULL }, 9864 }; 9865 9866 /* 9867 * Address filter string parser 9868 */ 9869 static int 9870 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9871 struct list_head *filters) 9872 { 9873 struct perf_addr_filter *filter = NULL; 9874 char *start, *orig, *filename = NULL; 9875 substring_t args[MAX_OPT_ARGS]; 9876 int state = IF_STATE_ACTION, token; 9877 unsigned int kernel = 0; 9878 int ret = -EINVAL; 9879 9880 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9881 if (!fstr) 9882 return -ENOMEM; 9883 9884 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9885 static const enum perf_addr_filter_action_t actions[] = { 9886 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9887 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9888 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9889 }; 9890 ret = -EINVAL; 9891 9892 if (!*start) 9893 continue; 9894 9895 /* filter definition begins */ 9896 if (state == IF_STATE_ACTION) { 9897 filter = perf_addr_filter_new(event, filters); 9898 if (!filter) 9899 goto fail; 9900 } 9901 9902 token = match_token(start, if_tokens, args); 9903 switch (token) { 9904 case IF_ACT_FILTER: 9905 case IF_ACT_START: 9906 case IF_ACT_STOP: 9907 if (state != IF_STATE_ACTION) 9908 goto fail; 9909 9910 filter->action = actions[token]; 9911 state = IF_STATE_SOURCE; 9912 break; 9913 9914 case IF_SRC_KERNELADDR: 9915 case IF_SRC_KERNEL: 9916 kernel = 1; 9917 /* fall through */ 9918 9919 case IF_SRC_FILEADDR: 9920 case IF_SRC_FILE: 9921 if (state != IF_STATE_SOURCE) 9922 goto fail; 9923 9924 *args[0].to = 0; 9925 ret = kstrtoul(args[0].from, 0, &filter->offset); 9926 if (ret) 9927 goto fail; 9928 9929 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9930 *args[1].to = 0; 9931 ret = kstrtoul(args[1].from, 0, &filter->size); 9932 if (ret) 9933 goto fail; 9934 } 9935 9936 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9937 int fpos = token == IF_SRC_FILE ? 2 : 1; 9938 9939 filename = match_strdup(&args[fpos]); 9940 if (!filename) { 9941 ret = -ENOMEM; 9942 goto fail; 9943 } 9944 } 9945 9946 state = IF_STATE_END; 9947 break; 9948 9949 default: 9950 goto fail; 9951 } 9952 9953 /* 9954 * Filter definition is fully parsed, validate and install it. 9955 * Make sure that it doesn't contradict itself or the event's 9956 * attribute. 9957 */ 9958 if (state == IF_STATE_END) { 9959 ret = -EINVAL; 9960 if (kernel && event->attr.exclude_kernel) 9961 goto fail; 9962 9963 /* 9964 * ACTION "filter" must have a non-zero length region 9965 * specified. 9966 */ 9967 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9968 !filter->size) 9969 goto fail; 9970 9971 if (!kernel) { 9972 if (!filename) 9973 goto fail; 9974 9975 /* 9976 * For now, we only support file-based filters 9977 * in per-task events; doing so for CPU-wide 9978 * events requires additional context switching 9979 * trickery, since same object code will be 9980 * mapped at different virtual addresses in 9981 * different processes. 9982 */ 9983 ret = -EOPNOTSUPP; 9984 if (!event->ctx->task) 9985 goto fail_free_name; 9986 9987 /* look up the path and grab its inode */ 9988 ret = kern_path(filename, LOOKUP_FOLLOW, 9989 &filter->path); 9990 if (ret) 9991 goto fail_free_name; 9992 9993 kfree(filename); 9994 filename = NULL; 9995 9996 ret = -EINVAL; 9997 if (!filter->path.dentry || 9998 !S_ISREG(d_inode(filter->path.dentry) 9999 ->i_mode)) 10000 goto fail; 10001 10002 event->addr_filters.nr_file_filters++; 10003 } 10004 10005 /* ready to consume more filters */ 10006 state = IF_STATE_ACTION; 10007 filter = NULL; 10008 } 10009 } 10010 10011 if (state != IF_STATE_ACTION) 10012 goto fail; 10013 10014 kfree(orig); 10015 10016 return 0; 10017 10018 fail_free_name: 10019 kfree(filename); 10020 fail: 10021 free_filters_list(filters); 10022 kfree(orig); 10023 10024 return ret; 10025 } 10026 10027 static int 10028 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10029 { 10030 LIST_HEAD(filters); 10031 int ret; 10032 10033 /* 10034 * Since this is called in perf_ioctl() path, we're already holding 10035 * ctx::mutex. 10036 */ 10037 lockdep_assert_held(&event->ctx->mutex); 10038 10039 if (WARN_ON_ONCE(event->parent)) 10040 return -EINVAL; 10041 10042 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10043 if (ret) 10044 goto fail_clear_files; 10045 10046 ret = event->pmu->addr_filters_validate(&filters); 10047 if (ret) 10048 goto fail_free_filters; 10049 10050 /* remove existing filters, if any */ 10051 perf_addr_filters_splice(event, &filters); 10052 10053 /* install new filters */ 10054 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10055 10056 return ret; 10057 10058 fail_free_filters: 10059 free_filters_list(&filters); 10060 10061 fail_clear_files: 10062 event->addr_filters.nr_file_filters = 0; 10063 10064 return ret; 10065 } 10066 10067 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10068 { 10069 int ret = -EINVAL; 10070 char *filter_str; 10071 10072 filter_str = strndup_user(arg, PAGE_SIZE); 10073 if (IS_ERR(filter_str)) 10074 return PTR_ERR(filter_str); 10075 10076 #ifdef CONFIG_EVENT_TRACING 10077 if (perf_event_is_tracing(event)) { 10078 struct perf_event_context *ctx = event->ctx; 10079 10080 /* 10081 * Beware, here be dragons!! 10082 * 10083 * the tracepoint muck will deadlock against ctx->mutex, but 10084 * the tracepoint stuff does not actually need it. So 10085 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10086 * already have a reference on ctx. 10087 * 10088 * This can result in event getting moved to a different ctx, 10089 * but that does not affect the tracepoint state. 10090 */ 10091 mutex_unlock(&ctx->mutex); 10092 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10093 mutex_lock(&ctx->mutex); 10094 } else 10095 #endif 10096 if (has_addr_filter(event)) 10097 ret = perf_event_set_addr_filter(event, filter_str); 10098 10099 kfree(filter_str); 10100 return ret; 10101 } 10102 10103 /* 10104 * hrtimer based swevent callback 10105 */ 10106 10107 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10108 { 10109 enum hrtimer_restart ret = HRTIMER_RESTART; 10110 struct perf_sample_data data; 10111 struct pt_regs *regs; 10112 struct perf_event *event; 10113 u64 period; 10114 10115 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10116 10117 if (event->state != PERF_EVENT_STATE_ACTIVE) 10118 return HRTIMER_NORESTART; 10119 10120 event->pmu->read(event); 10121 10122 perf_sample_data_init(&data, 0, event->hw.last_period); 10123 regs = get_irq_regs(); 10124 10125 if (regs && !perf_exclude_event(event, regs)) { 10126 if (!(event->attr.exclude_idle && is_idle_task(current))) 10127 if (__perf_event_overflow(event, 1, &data, regs)) 10128 ret = HRTIMER_NORESTART; 10129 } 10130 10131 period = max_t(u64, 10000, event->hw.sample_period); 10132 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10133 10134 return ret; 10135 } 10136 10137 static void perf_swevent_start_hrtimer(struct perf_event *event) 10138 { 10139 struct hw_perf_event *hwc = &event->hw; 10140 s64 period; 10141 10142 if (!is_sampling_event(event)) 10143 return; 10144 10145 period = local64_read(&hwc->period_left); 10146 if (period) { 10147 if (period < 0) 10148 period = 10000; 10149 10150 local64_set(&hwc->period_left, 0); 10151 } else { 10152 period = max_t(u64, 10000, hwc->sample_period); 10153 } 10154 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10155 HRTIMER_MODE_REL_PINNED_HARD); 10156 } 10157 10158 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10159 { 10160 struct hw_perf_event *hwc = &event->hw; 10161 10162 if (is_sampling_event(event)) { 10163 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10164 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10165 10166 hrtimer_cancel(&hwc->hrtimer); 10167 } 10168 } 10169 10170 static void perf_swevent_init_hrtimer(struct perf_event *event) 10171 { 10172 struct hw_perf_event *hwc = &event->hw; 10173 10174 if (!is_sampling_event(event)) 10175 return; 10176 10177 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10178 hwc->hrtimer.function = perf_swevent_hrtimer; 10179 10180 /* 10181 * Since hrtimers have a fixed rate, we can do a static freq->period 10182 * mapping and avoid the whole period adjust feedback stuff. 10183 */ 10184 if (event->attr.freq) { 10185 long freq = event->attr.sample_freq; 10186 10187 event->attr.sample_period = NSEC_PER_SEC / freq; 10188 hwc->sample_period = event->attr.sample_period; 10189 local64_set(&hwc->period_left, hwc->sample_period); 10190 hwc->last_period = hwc->sample_period; 10191 event->attr.freq = 0; 10192 } 10193 } 10194 10195 /* 10196 * Software event: cpu wall time clock 10197 */ 10198 10199 static void cpu_clock_event_update(struct perf_event *event) 10200 { 10201 s64 prev; 10202 u64 now; 10203 10204 now = local_clock(); 10205 prev = local64_xchg(&event->hw.prev_count, now); 10206 local64_add(now - prev, &event->count); 10207 } 10208 10209 static void cpu_clock_event_start(struct perf_event *event, int flags) 10210 { 10211 local64_set(&event->hw.prev_count, local_clock()); 10212 perf_swevent_start_hrtimer(event); 10213 } 10214 10215 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10216 { 10217 perf_swevent_cancel_hrtimer(event); 10218 cpu_clock_event_update(event); 10219 } 10220 10221 static int cpu_clock_event_add(struct perf_event *event, int flags) 10222 { 10223 if (flags & PERF_EF_START) 10224 cpu_clock_event_start(event, flags); 10225 perf_event_update_userpage(event); 10226 10227 return 0; 10228 } 10229 10230 static void cpu_clock_event_del(struct perf_event *event, int flags) 10231 { 10232 cpu_clock_event_stop(event, flags); 10233 } 10234 10235 static void cpu_clock_event_read(struct perf_event *event) 10236 { 10237 cpu_clock_event_update(event); 10238 } 10239 10240 static int cpu_clock_event_init(struct perf_event *event) 10241 { 10242 if (event->attr.type != PERF_TYPE_SOFTWARE) 10243 return -ENOENT; 10244 10245 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10246 return -ENOENT; 10247 10248 /* 10249 * no branch sampling for software events 10250 */ 10251 if (has_branch_stack(event)) 10252 return -EOPNOTSUPP; 10253 10254 perf_swevent_init_hrtimer(event); 10255 10256 return 0; 10257 } 10258 10259 static struct pmu perf_cpu_clock = { 10260 .task_ctx_nr = perf_sw_context, 10261 10262 .capabilities = PERF_PMU_CAP_NO_NMI, 10263 10264 .event_init = cpu_clock_event_init, 10265 .add = cpu_clock_event_add, 10266 .del = cpu_clock_event_del, 10267 .start = cpu_clock_event_start, 10268 .stop = cpu_clock_event_stop, 10269 .read = cpu_clock_event_read, 10270 }; 10271 10272 /* 10273 * Software event: task time clock 10274 */ 10275 10276 static void task_clock_event_update(struct perf_event *event, u64 now) 10277 { 10278 u64 prev; 10279 s64 delta; 10280 10281 prev = local64_xchg(&event->hw.prev_count, now); 10282 delta = now - prev; 10283 local64_add(delta, &event->count); 10284 } 10285 10286 static void task_clock_event_start(struct perf_event *event, int flags) 10287 { 10288 local64_set(&event->hw.prev_count, event->ctx->time); 10289 perf_swevent_start_hrtimer(event); 10290 } 10291 10292 static void task_clock_event_stop(struct perf_event *event, int flags) 10293 { 10294 perf_swevent_cancel_hrtimer(event); 10295 task_clock_event_update(event, event->ctx->time); 10296 } 10297 10298 static int task_clock_event_add(struct perf_event *event, int flags) 10299 { 10300 if (flags & PERF_EF_START) 10301 task_clock_event_start(event, flags); 10302 perf_event_update_userpage(event); 10303 10304 return 0; 10305 } 10306 10307 static void task_clock_event_del(struct perf_event *event, int flags) 10308 { 10309 task_clock_event_stop(event, PERF_EF_UPDATE); 10310 } 10311 10312 static void task_clock_event_read(struct perf_event *event) 10313 { 10314 u64 now = perf_clock(); 10315 u64 delta = now - event->ctx->timestamp; 10316 u64 time = event->ctx->time + delta; 10317 10318 task_clock_event_update(event, time); 10319 } 10320 10321 static int task_clock_event_init(struct perf_event *event) 10322 { 10323 if (event->attr.type != PERF_TYPE_SOFTWARE) 10324 return -ENOENT; 10325 10326 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10327 return -ENOENT; 10328 10329 /* 10330 * no branch sampling for software events 10331 */ 10332 if (has_branch_stack(event)) 10333 return -EOPNOTSUPP; 10334 10335 perf_swevent_init_hrtimer(event); 10336 10337 return 0; 10338 } 10339 10340 static struct pmu perf_task_clock = { 10341 .task_ctx_nr = perf_sw_context, 10342 10343 .capabilities = PERF_PMU_CAP_NO_NMI, 10344 10345 .event_init = task_clock_event_init, 10346 .add = task_clock_event_add, 10347 .del = task_clock_event_del, 10348 .start = task_clock_event_start, 10349 .stop = task_clock_event_stop, 10350 .read = task_clock_event_read, 10351 }; 10352 10353 static void perf_pmu_nop_void(struct pmu *pmu) 10354 { 10355 } 10356 10357 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10358 { 10359 } 10360 10361 static int perf_pmu_nop_int(struct pmu *pmu) 10362 { 10363 return 0; 10364 } 10365 10366 static int perf_event_nop_int(struct perf_event *event, u64 value) 10367 { 10368 return 0; 10369 } 10370 10371 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10372 10373 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10374 { 10375 __this_cpu_write(nop_txn_flags, flags); 10376 10377 if (flags & ~PERF_PMU_TXN_ADD) 10378 return; 10379 10380 perf_pmu_disable(pmu); 10381 } 10382 10383 static int perf_pmu_commit_txn(struct pmu *pmu) 10384 { 10385 unsigned int flags = __this_cpu_read(nop_txn_flags); 10386 10387 __this_cpu_write(nop_txn_flags, 0); 10388 10389 if (flags & ~PERF_PMU_TXN_ADD) 10390 return 0; 10391 10392 perf_pmu_enable(pmu); 10393 return 0; 10394 } 10395 10396 static void perf_pmu_cancel_txn(struct pmu *pmu) 10397 { 10398 unsigned int flags = __this_cpu_read(nop_txn_flags); 10399 10400 __this_cpu_write(nop_txn_flags, 0); 10401 10402 if (flags & ~PERF_PMU_TXN_ADD) 10403 return; 10404 10405 perf_pmu_enable(pmu); 10406 } 10407 10408 static int perf_event_idx_default(struct perf_event *event) 10409 { 10410 return 0; 10411 } 10412 10413 /* 10414 * Ensures all contexts with the same task_ctx_nr have the same 10415 * pmu_cpu_context too. 10416 */ 10417 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10418 { 10419 struct pmu *pmu; 10420 10421 if (ctxn < 0) 10422 return NULL; 10423 10424 list_for_each_entry(pmu, &pmus, entry) { 10425 if (pmu->task_ctx_nr == ctxn) 10426 return pmu->pmu_cpu_context; 10427 } 10428 10429 return NULL; 10430 } 10431 10432 static void free_pmu_context(struct pmu *pmu) 10433 { 10434 /* 10435 * Static contexts such as perf_sw_context have a global lifetime 10436 * and may be shared between different PMUs. Avoid freeing them 10437 * when a single PMU is going away. 10438 */ 10439 if (pmu->task_ctx_nr > perf_invalid_context) 10440 return; 10441 10442 free_percpu(pmu->pmu_cpu_context); 10443 } 10444 10445 /* 10446 * Let userspace know that this PMU supports address range filtering: 10447 */ 10448 static ssize_t nr_addr_filters_show(struct device *dev, 10449 struct device_attribute *attr, 10450 char *page) 10451 { 10452 struct pmu *pmu = dev_get_drvdata(dev); 10453 10454 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10455 } 10456 DEVICE_ATTR_RO(nr_addr_filters); 10457 10458 static struct idr pmu_idr; 10459 10460 static ssize_t 10461 type_show(struct device *dev, struct device_attribute *attr, char *page) 10462 { 10463 struct pmu *pmu = dev_get_drvdata(dev); 10464 10465 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10466 } 10467 static DEVICE_ATTR_RO(type); 10468 10469 static ssize_t 10470 perf_event_mux_interval_ms_show(struct device *dev, 10471 struct device_attribute *attr, 10472 char *page) 10473 { 10474 struct pmu *pmu = dev_get_drvdata(dev); 10475 10476 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10477 } 10478 10479 static DEFINE_MUTEX(mux_interval_mutex); 10480 10481 static ssize_t 10482 perf_event_mux_interval_ms_store(struct device *dev, 10483 struct device_attribute *attr, 10484 const char *buf, size_t count) 10485 { 10486 struct pmu *pmu = dev_get_drvdata(dev); 10487 int timer, cpu, ret; 10488 10489 ret = kstrtoint(buf, 0, &timer); 10490 if (ret) 10491 return ret; 10492 10493 if (timer < 1) 10494 return -EINVAL; 10495 10496 /* same value, noting to do */ 10497 if (timer == pmu->hrtimer_interval_ms) 10498 return count; 10499 10500 mutex_lock(&mux_interval_mutex); 10501 pmu->hrtimer_interval_ms = timer; 10502 10503 /* update all cpuctx for this PMU */ 10504 cpus_read_lock(); 10505 for_each_online_cpu(cpu) { 10506 struct perf_cpu_context *cpuctx; 10507 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10508 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10509 10510 cpu_function_call(cpu, 10511 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10512 } 10513 cpus_read_unlock(); 10514 mutex_unlock(&mux_interval_mutex); 10515 10516 return count; 10517 } 10518 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10519 10520 static struct attribute *pmu_dev_attrs[] = { 10521 &dev_attr_type.attr, 10522 &dev_attr_perf_event_mux_interval_ms.attr, 10523 NULL, 10524 }; 10525 ATTRIBUTE_GROUPS(pmu_dev); 10526 10527 static int pmu_bus_running; 10528 static struct bus_type pmu_bus = { 10529 .name = "event_source", 10530 .dev_groups = pmu_dev_groups, 10531 }; 10532 10533 static void pmu_dev_release(struct device *dev) 10534 { 10535 kfree(dev); 10536 } 10537 10538 static int pmu_dev_alloc(struct pmu *pmu) 10539 { 10540 int ret = -ENOMEM; 10541 10542 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10543 if (!pmu->dev) 10544 goto out; 10545 10546 pmu->dev->groups = pmu->attr_groups; 10547 device_initialize(pmu->dev); 10548 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10549 if (ret) 10550 goto free_dev; 10551 10552 dev_set_drvdata(pmu->dev, pmu); 10553 pmu->dev->bus = &pmu_bus; 10554 pmu->dev->release = pmu_dev_release; 10555 ret = device_add(pmu->dev); 10556 if (ret) 10557 goto free_dev; 10558 10559 /* For PMUs with address filters, throw in an extra attribute: */ 10560 if (pmu->nr_addr_filters) 10561 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10562 10563 if (ret) 10564 goto del_dev; 10565 10566 if (pmu->attr_update) 10567 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10568 10569 if (ret) 10570 goto del_dev; 10571 10572 out: 10573 return ret; 10574 10575 del_dev: 10576 device_del(pmu->dev); 10577 10578 free_dev: 10579 put_device(pmu->dev); 10580 goto out; 10581 } 10582 10583 static struct lock_class_key cpuctx_mutex; 10584 static struct lock_class_key cpuctx_lock; 10585 10586 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10587 { 10588 int cpu, ret, max = PERF_TYPE_MAX; 10589 10590 mutex_lock(&pmus_lock); 10591 ret = -ENOMEM; 10592 pmu->pmu_disable_count = alloc_percpu(int); 10593 if (!pmu->pmu_disable_count) 10594 goto unlock; 10595 10596 pmu->type = -1; 10597 if (!name) 10598 goto skip_type; 10599 pmu->name = name; 10600 10601 if (type != PERF_TYPE_SOFTWARE) { 10602 if (type >= 0) 10603 max = type; 10604 10605 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10606 if (ret < 0) 10607 goto free_pdc; 10608 10609 WARN_ON(type >= 0 && ret != type); 10610 10611 type = ret; 10612 } 10613 pmu->type = type; 10614 10615 if (pmu_bus_running) { 10616 ret = pmu_dev_alloc(pmu); 10617 if (ret) 10618 goto free_idr; 10619 } 10620 10621 skip_type: 10622 if (pmu->task_ctx_nr == perf_hw_context) { 10623 static int hw_context_taken = 0; 10624 10625 /* 10626 * Other than systems with heterogeneous CPUs, it never makes 10627 * sense for two PMUs to share perf_hw_context. PMUs which are 10628 * uncore must use perf_invalid_context. 10629 */ 10630 if (WARN_ON_ONCE(hw_context_taken && 10631 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10632 pmu->task_ctx_nr = perf_invalid_context; 10633 10634 hw_context_taken = 1; 10635 } 10636 10637 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10638 if (pmu->pmu_cpu_context) 10639 goto got_cpu_context; 10640 10641 ret = -ENOMEM; 10642 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10643 if (!pmu->pmu_cpu_context) 10644 goto free_dev; 10645 10646 for_each_possible_cpu(cpu) { 10647 struct perf_cpu_context *cpuctx; 10648 10649 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10650 __perf_event_init_context(&cpuctx->ctx); 10651 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10652 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10653 cpuctx->ctx.pmu = pmu; 10654 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10655 10656 __perf_mux_hrtimer_init(cpuctx, cpu); 10657 10658 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10659 cpuctx->heap = cpuctx->heap_default; 10660 } 10661 10662 got_cpu_context: 10663 if (!pmu->start_txn) { 10664 if (pmu->pmu_enable) { 10665 /* 10666 * If we have pmu_enable/pmu_disable calls, install 10667 * transaction stubs that use that to try and batch 10668 * hardware accesses. 10669 */ 10670 pmu->start_txn = perf_pmu_start_txn; 10671 pmu->commit_txn = perf_pmu_commit_txn; 10672 pmu->cancel_txn = perf_pmu_cancel_txn; 10673 } else { 10674 pmu->start_txn = perf_pmu_nop_txn; 10675 pmu->commit_txn = perf_pmu_nop_int; 10676 pmu->cancel_txn = perf_pmu_nop_void; 10677 } 10678 } 10679 10680 if (!pmu->pmu_enable) { 10681 pmu->pmu_enable = perf_pmu_nop_void; 10682 pmu->pmu_disable = perf_pmu_nop_void; 10683 } 10684 10685 if (!pmu->check_period) 10686 pmu->check_period = perf_event_nop_int; 10687 10688 if (!pmu->event_idx) 10689 pmu->event_idx = perf_event_idx_default; 10690 10691 /* 10692 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10693 * since these cannot be in the IDR. This way the linear search 10694 * is fast, provided a valid software event is provided. 10695 */ 10696 if (type == PERF_TYPE_SOFTWARE || !name) 10697 list_add_rcu(&pmu->entry, &pmus); 10698 else 10699 list_add_tail_rcu(&pmu->entry, &pmus); 10700 10701 atomic_set(&pmu->exclusive_cnt, 0); 10702 ret = 0; 10703 unlock: 10704 mutex_unlock(&pmus_lock); 10705 10706 return ret; 10707 10708 free_dev: 10709 device_del(pmu->dev); 10710 put_device(pmu->dev); 10711 10712 free_idr: 10713 if (pmu->type != PERF_TYPE_SOFTWARE) 10714 idr_remove(&pmu_idr, pmu->type); 10715 10716 free_pdc: 10717 free_percpu(pmu->pmu_disable_count); 10718 goto unlock; 10719 } 10720 EXPORT_SYMBOL_GPL(perf_pmu_register); 10721 10722 void perf_pmu_unregister(struct pmu *pmu) 10723 { 10724 mutex_lock(&pmus_lock); 10725 list_del_rcu(&pmu->entry); 10726 10727 /* 10728 * We dereference the pmu list under both SRCU and regular RCU, so 10729 * synchronize against both of those. 10730 */ 10731 synchronize_srcu(&pmus_srcu); 10732 synchronize_rcu(); 10733 10734 free_percpu(pmu->pmu_disable_count); 10735 if (pmu->type != PERF_TYPE_SOFTWARE) 10736 idr_remove(&pmu_idr, pmu->type); 10737 if (pmu_bus_running) { 10738 if (pmu->nr_addr_filters) 10739 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10740 device_del(pmu->dev); 10741 put_device(pmu->dev); 10742 } 10743 free_pmu_context(pmu); 10744 mutex_unlock(&pmus_lock); 10745 } 10746 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10747 10748 static inline bool has_extended_regs(struct perf_event *event) 10749 { 10750 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10751 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10752 } 10753 10754 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10755 { 10756 struct perf_event_context *ctx = NULL; 10757 int ret; 10758 10759 if (!try_module_get(pmu->module)) 10760 return -ENODEV; 10761 10762 /* 10763 * A number of pmu->event_init() methods iterate the sibling_list to, 10764 * for example, validate if the group fits on the PMU. Therefore, 10765 * if this is a sibling event, acquire the ctx->mutex to protect 10766 * the sibling_list. 10767 */ 10768 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10769 /* 10770 * This ctx->mutex can nest when we're called through 10771 * inheritance. See the perf_event_ctx_lock_nested() comment. 10772 */ 10773 ctx = perf_event_ctx_lock_nested(event->group_leader, 10774 SINGLE_DEPTH_NESTING); 10775 BUG_ON(!ctx); 10776 } 10777 10778 event->pmu = pmu; 10779 ret = pmu->event_init(event); 10780 10781 if (ctx) 10782 perf_event_ctx_unlock(event->group_leader, ctx); 10783 10784 if (!ret) { 10785 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10786 has_extended_regs(event)) 10787 ret = -EOPNOTSUPP; 10788 10789 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10790 event_has_any_exclude_flag(event)) 10791 ret = -EINVAL; 10792 10793 if (ret && event->destroy) 10794 event->destroy(event); 10795 } 10796 10797 if (ret) 10798 module_put(pmu->module); 10799 10800 return ret; 10801 } 10802 10803 static struct pmu *perf_init_event(struct perf_event *event) 10804 { 10805 int idx, type, ret; 10806 struct pmu *pmu; 10807 10808 idx = srcu_read_lock(&pmus_srcu); 10809 10810 /* Try parent's PMU first: */ 10811 if (event->parent && event->parent->pmu) { 10812 pmu = event->parent->pmu; 10813 ret = perf_try_init_event(pmu, event); 10814 if (!ret) 10815 goto unlock; 10816 } 10817 10818 /* 10819 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10820 * are often aliases for PERF_TYPE_RAW. 10821 */ 10822 type = event->attr.type; 10823 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10824 type = PERF_TYPE_RAW; 10825 10826 again: 10827 rcu_read_lock(); 10828 pmu = idr_find(&pmu_idr, type); 10829 rcu_read_unlock(); 10830 if (pmu) { 10831 ret = perf_try_init_event(pmu, event); 10832 if (ret == -ENOENT && event->attr.type != type) { 10833 type = event->attr.type; 10834 goto again; 10835 } 10836 10837 if (ret) 10838 pmu = ERR_PTR(ret); 10839 10840 goto unlock; 10841 } 10842 10843 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10844 ret = perf_try_init_event(pmu, event); 10845 if (!ret) 10846 goto unlock; 10847 10848 if (ret != -ENOENT) { 10849 pmu = ERR_PTR(ret); 10850 goto unlock; 10851 } 10852 } 10853 pmu = ERR_PTR(-ENOENT); 10854 unlock: 10855 srcu_read_unlock(&pmus_srcu, idx); 10856 10857 return pmu; 10858 } 10859 10860 static void attach_sb_event(struct perf_event *event) 10861 { 10862 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10863 10864 raw_spin_lock(&pel->lock); 10865 list_add_rcu(&event->sb_list, &pel->list); 10866 raw_spin_unlock(&pel->lock); 10867 } 10868 10869 /* 10870 * We keep a list of all !task (and therefore per-cpu) events 10871 * that need to receive side-band records. 10872 * 10873 * This avoids having to scan all the various PMU per-cpu contexts 10874 * looking for them. 10875 */ 10876 static void account_pmu_sb_event(struct perf_event *event) 10877 { 10878 if (is_sb_event(event)) 10879 attach_sb_event(event); 10880 } 10881 10882 static void account_event_cpu(struct perf_event *event, int cpu) 10883 { 10884 if (event->parent) 10885 return; 10886 10887 if (is_cgroup_event(event)) 10888 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10889 } 10890 10891 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10892 static void account_freq_event_nohz(void) 10893 { 10894 #ifdef CONFIG_NO_HZ_FULL 10895 /* Lock so we don't race with concurrent unaccount */ 10896 spin_lock(&nr_freq_lock); 10897 if (atomic_inc_return(&nr_freq_events) == 1) 10898 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10899 spin_unlock(&nr_freq_lock); 10900 #endif 10901 } 10902 10903 static void account_freq_event(void) 10904 { 10905 if (tick_nohz_full_enabled()) 10906 account_freq_event_nohz(); 10907 else 10908 atomic_inc(&nr_freq_events); 10909 } 10910 10911 10912 static void account_event(struct perf_event *event) 10913 { 10914 bool inc = false; 10915 10916 if (event->parent) 10917 return; 10918 10919 if (event->attach_state & PERF_ATTACH_TASK) 10920 inc = true; 10921 if (event->attr.mmap || event->attr.mmap_data) 10922 atomic_inc(&nr_mmap_events); 10923 if (event->attr.comm) 10924 atomic_inc(&nr_comm_events); 10925 if (event->attr.namespaces) 10926 atomic_inc(&nr_namespaces_events); 10927 if (event->attr.cgroup) 10928 atomic_inc(&nr_cgroup_events); 10929 if (event->attr.task) 10930 atomic_inc(&nr_task_events); 10931 if (event->attr.freq) 10932 account_freq_event(); 10933 if (event->attr.context_switch) { 10934 atomic_inc(&nr_switch_events); 10935 inc = true; 10936 } 10937 if (has_branch_stack(event)) 10938 inc = true; 10939 if (is_cgroup_event(event)) 10940 inc = true; 10941 if (event->attr.ksymbol) 10942 atomic_inc(&nr_ksymbol_events); 10943 if (event->attr.bpf_event) 10944 atomic_inc(&nr_bpf_events); 10945 10946 if (inc) { 10947 /* 10948 * We need the mutex here because static_branch_enable() 10949 * must complete *before* the perf_sched_count increment 10950 * becomes visible. 10951 */ 10952 if (atomic_inc_not_zero(&perf_sched_count)) 10953 goto enabled; 10954 10955 mutex_lock(&perf_sched_mutex); 10956 if (!atomic_read(&perf_sched_count)) { 10957 static_branch_enable(&perf_sched_events); 10958 /* 10959 * Guarantee that all CPUs observe they key change and 10960 * call the perf scheduling hooks before proceeding to 10961 * install events that need them. 10962 */ 10963 synchronize_rcu(); 10964 } 10965 /* 10966 * Now that we have waited for the sync_sched(), allow further 10967 * increments to by-pass the mutex. 10968 */ 10969 atomic_inc(&perf_sched_count); 10970 mutex_unlock(&perf_sched_mutex); 10971 } 10972 enabled: 10973 10974 account_event_cpu(event, event->cpu); 10975 10976 account_pmu_sb_event(event); 10977 } 10978 10979 /* 10980 * Allocate and initialize an event structure 10981 */ 10982 static struct perf_event * 10983 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10984 struct task_struct *task, 10985 struct perf_event *group_leader, 10986 struct perf_event *parent_event, 10987 perf_overflow_handler_t overflow_handler, 10988 void *context, int cgroup_fd) 10989 { 10990 struct pmu *pmu; 10991 struct perf_event *event; 10992 struct hw_perf_event *hwc; 10993 long err = -EINVAL; 10994 10995 if ((unsigned)cpu >= nr_cpu_ids) { 10996 if (!task || cpu != -1) 10997 return ERR_PTR(-EINVAL); 10998 } 10999 11000 event = kzalloc(sizeof(*event), GFP_KERNEL); 11001 if (!event) 11002 return ERR_PTR(-ENOMEM); 11003 11004 /* 11005 * Single events are their own group leaders, with an 11006 * empty sibling list: 11007 */ 11008 if (!group_leader) 11009 group_leader = event; 11010 11011 mutex_init(&event->child_mutex); 11012 INIT_LIST_HEAD(&event->child_list); 11013 11014 INIT_LIST_HEAD(&event->event_entry); 11015 INIT_LIST_HEAD(&event->sibling_list); 11016 INIT_LIST_HEAD(&event->active_list); 11017 init_event_group(event); 11018 INIT_LIST_HEAD(&event->rb_entry); 11019 INIT_LIST_HEAD(&event->active_entry); 11020 INIT_LIST_HEAD(&event->addr_filters.list); 11021 INIT_HLIST_NODE(&event->hlist_entry); 11022 11023 11024 init_waitqueue_head(&event->waitq); 11025 event->pending_disable = -1; 11026 init_irq_work(&event->pending, perf_pending_event); 11027 11028 mutex_init(&event->mmap_mutex); 11029 raw_spin_lock_init(&event->addr_filters.lock); 11030 11031 atomic_long_set(&event->refcount, 1); 11032 event->cpu = cpu; 11033 event->attr = *attr; 11034 event->group_leader = group_leader; 11035 event->pmu = NULL; 11036 event->oncpu = -1; 11037 11038 event->parent = parent_event; 11039 11040 event->ns = get_pid_ns(task_active_pid_ns(current)); 11041 event->id = atomic64_inc_return(&perf_event_id); 11042 11043 event->state = PERF_EVENT_STATE_INACTIVE; 11044 11045 if (task) { 11046 event->attach_state = PERF_ATTACH_TASK; 11047 /* 11048 * XXX pmu::event_init needs to know what task to account to 11049 * and we cannot use the ctx information because we need the 11050 * pmu before we get a ctx. 11051 */ 11052 event->hw.target = get_task_struct(task); 11053 } 11054 11055 event->clock = &local_clock; 11056 if (parent_event) 11057 event->clock = parent_event->clock; 11058 11059 if (!overflow_handler && parent_event) { 11060 overflow_handler = parent_event->overflow_handler; 11061 context = parent_event->overflow_handler_context; 11062 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11063 if (overflow_handler == bpf_overflow_handler) { 11064 struct bpf_prog *prog = parent_event->prog; 11065 11066 bpf_prog_inc(prog); 11067 event->prog = prog; 11068 event->orig_overflow_handler = 11069 parent_event->orig_overflow_handler; 11070 } 11071 #endif 11072 } 11073 11074 if (overflow_handler) { 11075 event->overflow_handler = overflow_handler; 11076 event->overflow_handler_context = context; 11077 } else if (is_write_backward(event)){ 11078 event->overflow_handler = perf_event_output_backward; 11079 event->overflow_handler_context = NULL; 11080 } else { 11081 event->overflow_handler = perf_event_output_forward; 11082 event->overflow_handler_context = NULL; 11083 } 11084 11085 perf_event__state_init(event); 11086 11087 pmu = NULL; 11088 11089 hwc = &event->hw; 11090 hwc->sample_period = attr->sample_period; 11091 if (attr->freq && attr->sample_freq) 11092 hwc->sample_period = 1; 11093 hwc->last_period = hwc->sample_period; 11094 11095 local64_set(&hwc->period_left, hwc->sample_period); 11096 11097 /* 11098 * We currently do not support PERF_SAMPLE_READ on inherited events. 11099 * See perf_output_read(). 11100 */ 11101 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11102 goto err_ns; 11103 11104 if (!has_branch_stack(event)) 11105 event->attr.branch_sample_type = 0; 11106 11107 pmu = perf_init_event(event); 11108 if (IS_ERR(pmu)) { 11109 err = PTR_ERR(pmu); 11110 goto err_ns; 11111 } 11112 11113 /* 11114 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11115 * be different on other CPUs in the uncore mask. 11116 */ 11117 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11118 err = -EINVAL; 11119 goto err_pmu; 11120 } 11121 11122 if (event->attr.aux_output && 11123 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11124 err = -EOPNOTSUPP; 11125 goto err_pmu; 11126 } 11127 11128 if (cgroup_fd != -1) { 11129 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11130 if (err) 11131 goto err_pmu; 11132 } 11133 11134 err = exclusive_event_init(event); 11135 if (err) 11136 goto err_pmu; 11137 11138 if (has_addr_filter(event)) { 11139 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11140 sizeof(struct perf_addr_filter_range), 11141 GFP_KERNEL); 11142 if (!event->addr_filter_ranges) { 11143 err = -ENOMEM; 11144 goto err_per_task; 11145 } 11146 11147 /* 11148 * Clone the parent's vma offsets: they are valid until exec() 11149 * even if the mm is not shared with the parent. 11150 */ 11151 if (event->parent) { 11152 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11153 11154 raw_spin_lock_irq(&ifh->lock); 11155 memcpy(event->addr_filter_ranges, 11156 event->parent->addr_filter_ranges, 11157 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11158 raw_spin_unlock_irq(&ifh->lock); 11159 } 11160 11161 /* force hw sync on the address filters */ 11162 event->addr_filters_gen = 1; 11163 } 11164 11165 if (!event->parent) { 11166 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11167 err = get_callchain_buffers(attr->sample_max_stack); 11168 if (err) 11169 goto err_addr_filters; 11170 } 11171 } 11172 11173 err = security_perf_event_alloc(event); 11174 if (err) 11175 goto err_callchain_buffer; 11176 11177 /* symmetric to unaccount_event() in _free_event() */ 11178 account_event(event); 11179 11180 return event; 11181 11182 err_callchain_buffer: 11183 if (!event->parent) { 11184 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11185 put_callchain_buffers(); 11186 } 11187 err_addr_filters: 11188 kfree(event->addr_filter_ranges); 11189 11190 err_per_task: 11191 exclusive_event_destroy(event); 11192 11193 err_pmu: 11194 if (is_cgroup_event(event)) 11195 perf_detach_cgroup(event); 11196 if (event->destroy) 11197 event->destroy(event); 11198 module_put(pmu->module); 11199 err_ns: 11200 if (event->ns) 11201 put_pid_ns(event->ns); 11202 if (event->hw.target) 11203 put_task_struct(event->hw.target); 11204 kfree(event); 11205 11206 return ERR_PTR(err); 11207 } 11208 11209 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11210 struct perf_event_attr *attr) 11211 { 11212 u32 size; 11213 int ret; 11214 11215 /* Zero the full structure, so that a short copy will be nice. */ 11216 memset(attr, 0, sizeof(*attr)); 11217 11218 ret = get_user(size, &uattr->size); 11219 if (ret) 11220 return ret; 11221 11222 /* ABI compatibility quirk: */ 11223 if (!size) 11224 size = PERF_ATTR_SIZE_VER0; 11225 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11226 goto err_size; 11227 11228 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11229 if (ret) { 11230 if (ret == -E2BIG) 11231 goto err_size; 11232 return ret; 11233 } 11234 11235 attr->size = size; 11236 11237 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11238 return -EINVAL; 11239 11240 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11241 return -EINVAL; 11242 11243 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11244 return -EINVAL; 11245 11246 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11247 u64 mask = attr->branch_sample_type; 11248 11249 /* only using defined bits */ 11250 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11251 return -EINVAL; 11252 11253 /* at least one branch bit must be set */ 11254 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11255 return -EINVAL; 11256 11257 /* propagate priv level, when not set for branch */ 11258 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11259 11260 /* exclude_kernel checked on syscall entry */ 11261 if (!attr->exclude_kernel) 11262 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11263 11264 if (!attr->exclude_user) 11265 mask |= PERF_SAMPLE_BRANCH_USER; 11266 11267 if (!attr->exclude_hv) 11268 mask |= PERF_SAMPLE_BRANCH_HV; 11269 /* 11270 * adjust user setting (for HW filter setup) 11271 */ 11272 attr->branch_sample_type = mask; 11273 } 11274 /* privileged levels capture (kernel, hv): check permissions */ 11275 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11276 ret = perf_allow_kernel(attr); 11277 if (ret) 11278 return ret; 11279 } 11280 } 11281 11282 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11283 ret = perf_reg_validate(attr->sample_regs_user); 11284 if (ret) 11285 return ret; 11286 } 11287 11288 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11289 if (!arch_perf_have_user_stack_dump()) 11290 return -ENOSYS; 11291 11292 /* 11293 * We have __u32 type for the size, but so far 11294 * we can only use __u16 as maximum due to the 11295 * __u16 sample size limit. 11296 */ 11297 if (attr->sample_stack_user >= USHRT_MAX) 11298 return -EINVAL; 11299 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11300 return -EINVAL; 11301 } 11302 11303 if (!attr->sample_max_stack) 11304 attr->sample_max_stack = sysctl_perf_event_max_stack; 11305 11306 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11307 ret = perf_reg_validate(attr->sample_regs_intr); 11308 11309 #ifndef CONFIG_CGROUP_PERF 11310 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11311 return -EINVAL; 11312 #endif 11313 11314 out: 11315 return ret; 11316 11317 err_size: 11318 put_user(sizeof(*attr), &uattr->size); 11319 ret = -E2BIG; 11320 goto out; 11321 } 11322 11323 static int 11324 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11325 { 11326 struct perf_buffer *rb = NULL; 11327 int ret = -EINVAL; 11328 11329 if (!output_event) 11330 goto set; 11331 11332 /* don't allow circular references */ 11333 if (event == output_event) 11334 goto out; 11335 11336 /* 11337 * Don't allow cross-cpu buffers 11338 */ 11339 if (output_event->cpu != event->cpu) 11340 goto out; 11341 11342 /* 11343 * If its not a per-cpu rb, it must be the same task. 11344 */ 11345 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11346 goto out; 11347 11348 /* 11349 * Mixing clocks in the same buffer is trouble you don't need. 11350 */ 11351 if (output_event->clock != event->clock) 11352 goto out; 11353 11354 /* 11355 * Either writing ring buffer from beginning or from end. 11356 * Mixing is not allowed. 11357 */ 11358 if (is_write_backward(output_event) != is_write_backward(event)) 11359 goto out; 11360 11361 /* 11362 * If both events generate aux data, they must be on the same PMU 11363 */ 11364 if (has_aux(event) && has_aux(output_event) && 11365 event->pmu != output_event->pmu) 11366 goto out; 11367 11368 set: 11369 mutex_lock(&event->mmap_mutex); 11370 /* Can't redirect output if we've got an active mmap() */ 11371 if (atomic_read(&event->mmap_count)) 11372 goto unlock; 11373 11374 if (output_event) { 11375 /* get the rb we want to redirect to */ 11376 rb = ring_buffer_get(output_event); 11377 if (!rb) 11378 goto unlock; 11379 } 11380 11381 ring_buffer_attach(event, rb); 11382 11383 ret = 0; 11384 unlock: 11385 mutex_unlock(&event->mmap_mutex); 11386 11387 out: 11388 return ret; 11389 } 11390 11391 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11392 { 11393 if (b < a) 11394 swap(a, b); 11395 11396 mutex_lock(a); 11397 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11398 } 11399 11400 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11401 { 11402 bool nmi_safe = false; 11403 11404 switch (clk_id) { 11405 case CLOCK_MONOTONIC: 11406 event->clock = &ktime_get_mono_fast_ns; 11407 nmi_safe = true; 11408 break; 11409 11410 case CLOCK_MONOTONIC_RAW: 11411 event->clock = &ktime_get_raw_fast_ns; 11412 nmi_safe = true; 11413 break; 11414 11415 case CLOCK_REALTIME: 11416 event->clock = &ktime_get_real_ns; 11417 break; 11418 11419 case CLOCK_BOOTTIME: 11420 event->clock = &ktime_get_boottime_ns; 11421 break; 11422 11423 case CLOCK_TAI: 11424 event->clock = &ktime_get_clocktai_ns; 11425 break; 11426 11427 default: 11428 return -EINVAL; 11429 } 11430 11431 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11432 return -EINVAL; 11433 11434 return 0; 11435 } 11436 11437 /* 11438 * Variation on perf_event_ctx_lock_nested(), except we take two context 11439 * mutexes. 11440 */ 11441 static struct perf_event_context * 11442 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11443 struct perf_event_context *ctx) 11444 { 11445 struct perf_event_context *gctx; 11446 11447 again: 11448 rcu_read_lock(); 11449 gctx = READ_ONCE(group_leader->ctx); 11450 if (!refcount_inc_not_zero(&gctx->refcount)) { 11451 rcu_read_unlock(); 11452 goto again; 11453 } 11454 rcu_read_unlock(); 11455 11456 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11457 11458 if (group_leader->ctx != gctx) { 11459 mutex_unlock(&ctx->mutex); 11460 mutex_unlock(&gctx->mutex); 11461 put_ctx(gctx); 11462 goto again; 11463 } 11464 11465 return gctx; 11466 } 11467 11468 /** 11469 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11470 * 11471 * @attr_uptr: event_id type attributes for monitoring/sampling 11472 * @pid: target pid 11473 * @cpu: target cpu 11474 * @group_fd: group leader event fd 11475 */ 11476 SYSCALL_DEFINE5(perf_event_open, 11477 struct perf_event_attr __user *, attr_uptr, 11478 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11479 { 11480 struct perf_event *group_leader = NULL, *output_event = NULL; 11481 struct perf_event *event, *sibling; 11482 struct perf_event_attr attr; 11483 struct perf_event_context *ctx, *uninitialized_var(gctx); 11484 struct file *event_file = NULL; 11485 struct fd group = {NULL, 0}; 11486 struct task_struct *task = NULL; 11487 struct pmu *pmu; 11488 int event_fd; 11489 int move_group = 0; 11490 int err; 11491 int f_flags = O_RDWR; 11492 int cgroup_fd = -1; 11493 11494 /* for future expandability... */ 11495 if (flags & ~PERF_FLAG_ALL) 11496 return -EINVAL; 11497 11498 /* Do we allow access to perf_event_open(2) ? */ 11499 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11500 if (err) 11501 return err; 11502 11503 err = perf_copy_attr(attr_uptr, &attr); 11504 if (err) 11505 return err; 11506 11507 if (!attr.exclude_kernel) { 11508 err = perf_allow_kernel(&attr); 11509 if (err) 11510 return err; 11511 } 11512 11513 if (attr.namespaces) { 11514 if (!capable(CAP_SYS_ADMIN)) 11515 return -EACCES; 11516 } 11517 11518 if (attr.freq) { 11519 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11520 return -EINVAL; 11521 } else { 11522 if (attr.sample_period & (1ULL << 63)) 11523 return -EINVAL; 11524 } 11525 11526 /* Only privileged users can get physical addresses */ 11527 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11528 err = perf_allow_kernel(&attr); 11529 if (err) 11530 return err; 11531 } 11532 11533 err = security_locked_down(LOCKDOWN_PERF); 11534 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11535 /* REGS_INTR can leak data, lockdown must prevent this */ 11536 return err; 11537 11538 err = 0; 11539 11540 /* 11541 * In cgroup mode, the pid argument is used to pass the fd 11542 * opened to the cgroup directory in cgroupfs. The cpu argument 11543 * designates the cpu on which to monitor threads from that 11544 * cgroup. 11545 */ 11546 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11547 return -EINVAL; 11548 11549 if (flags & PERF_FLAG_FD_CLOEXEC) 11550 f_flags |= O_CLOEXEC; 11551 11552 event_fd = get_unused_fd_flags(f_flags); 11553 if (event_fd < 0) 11554 return event_fd; 11555 11556 if (group_fd != -1) { 11557 err = perf_fget_light(group_fd, &group); 11558 if (err) 11559 goto err_fd; 11560 group_leader = group.file->private_data; 11561 if (flags & PERF_FLAG_FD_OUTPUT) 11562 output_event = group_leader; 11563 if (flags & PERF_FLAG_FD_NO_GROUP) 11564 group_leader = NULL; 11565 } 11566 11567 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11568 task = find_lively_task_by_vpid(pid); 11569 if (IS_ERR(task)) { 11570 err = PTR_ERR(task); 11571 goto err_group_fd; 11572 } 11573 } 11574 11575 if (task && group_leader && 11576 group_leader->attr.inherit != attr.inherit) { 11577 err = -EINVAL; 11578 goto err_task; 11579 } 11580 11581 if (task) { 11582 err = mutex_lock_interruptible(&task->signal->exec_update_mutex); 11583 if (err) 11584 goto err_task; 11585 11586 /* 11587 * Reuse ptrace permission checks for now. 11588 * 11589 * We must hold exec_update_mutex across this and any potential 11590 * perf_install_in_context() call for this new event to 11591 * serialize against exec() altering our credentials (and the 11592 * perf_event_exit_task() that could imply). 11593 */ 11594 err = -EACCES; 11595 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11596 goto err_cred; 11597 } 11598 11599 if (flags & PERF_FLAG_PID_CGROUP) 11600 cgroup_fd = pid; 11601 11602 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11603 NULL, NULL, cgroup_fd); 11604 if (IS_ERR(event)) { 11605 err = PTR_ERR(event); 11606 goto err_cred; 11607 } 11608 11609 if (is_sampling_event(event)) { 11610 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11611 err = -EOPNOTSUPP; 11612 goto err_alloc; 11613 } 11614 } 11615 11616 /* 11617 * Special case software events and allow them to be part of 11618 * any hardware group. 11619 */ 11620 pmu = event->pmu; 11621 11622 if (attr.use_clockid) { 11623 err = perf_event_set_clock(event, attr.clockid); 11624 if (err) 11625 goto err_alloc; 11626 } 11627 11628 if (pmu->task_ctx_nr == perf_sw_context) 11629 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11630 11631 if (group_leader) { 11632 if (is_software_event(event) && 11633 !in_software_context(group_leader)) { 11634 /* 11635 * If the event is a sw event, but the group_leader 11636 * is on hw context. 11637 * 11638 * Allow the addition of software events to hw 11639 * groups, this is safe because software events 11640 * never fail to schedule. 11641 */ 11642 pmu = group_leader->ctx->pmu; 11643 } else if (!is_software_event(event) && 11644 is_software_event(group_leader) && 11645 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11646 /* 11647 * In case the group is a pure software group, and we 11648 * try to add a hardware event, move the whole group to 11649 * the hardware context. 11650 */ 11651 move_group = 1; 11652 } 11653 } 11654 11655 /* 11656 * Get the target context (task or percpu): 11657 */ 11658 ctx = find_get_context(pmu, task, event); 11659 if (IS_ERR(ctx)) { 11660 err = PTR_ERR(ctx); 11661 goto err_alloc; 11662 } 11663 11664 /* 11665 * Look up the group leader (we will attach this event to it): 11666 */ 11667 if (group_leader) { 11668 err = -EINVAL; 11669 11670 /* 11671 * Do not allow a recursive hierarchy (this new sibling 11672 * becoming part of another group-sibling): 11673 */ 11674 if (group_leader->group_leader != group_leader) 11675 goto err_context; 11676 11677 /* All events in a group should have the same clock */ 11678 if (group_leader->clock != event->clock) 11679 goto err_context; 11680 11681 /* 11682 * Make sure we're both events for the same CPU; 11683 * grouping events for different CPUs is broken; since 11684 * you can never concurrently schedule them anyhow. 11685 */ 11686 if (group_leader->cpu != event->cpu) 11687 goto err_context; 11688 11689 /* 11690 * Make sure we're both on the same task, or both 11691 * per-CPU events. 11692 */ 11693 if (group_leader->ctx->task != ctx->task) 11694 goto err_context; 11695 11696 /* 11697 * Do not allow to attach to a group in a different task 11698 * or CPU context. If we're moving SW events, we'll fix 11699 * this up later, so allow that. 11700 */ 11701 if (!move_group && group_leader->ctx != ctx) 11702 goto err_context; 11703 11704 /* 11705 * Only a group leader can be exclusive or pinned 11706 */ 11707 if (attr.exclusive || attr.pinned) 11708 goto err_context; 11709 } 11710 11711 if (output_event) { 11712 err = perf_event_set_output(event, output_event); 11713 if (err) 11714 goto err_context; 11715 } 11716 11717 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11718 f_flags); 11719 if (IS_ERR(event_file)) { 11720 err = PTR_ERR(event_file); 11721 event_file = NULL; 11722 goto err_context; 11723 } 11724 11725 if (move_group) { 11726 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11727 11728 if (gctx->task == TASK_TOMBSTONE) { 11729 err = -ESRCH; 11730 goto err_locked; 11731 } 11732 11733 /* 11734 * Check if we raced against another sys_perf_event_open() call 11735 * moving the software group underneath us. 11736 */ 11737 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11738 /* 11739 * If someone moved the group out from under us, check 11740 * if this new event wound up on the same ctx, if so 11741 * its the regular !move_group case, otherwise fail. 11742 */ 11743 if (gctx != ctx) { 11744 err = -EINVAL; 11745 goto err_locked; 11746 } else { 11747 perf_event_ctx_unlock(group_leader, gctx); 11748 move_group = 0; 11749 } 11750 } 11751 11752 /* 11753 * Failure to create exclusive events returns -EBUSY. 11754 */ 11755 err = -EBUSY; 11756 if (!exclusive_event_installable(group_leader, ctx)) 11757 goto err_locked; 11758 11759 for_each_sibling_event(sibling, group_leader) { 11760 if (!exclusive_event_installable(sibling, ctx)) 11761 goto err_locked; 11762 } 11763 } else { 11764 mutex_lock(&ctx->mutex); 11765 } 11766 11767 if (ctx->task == TASK_TOMBSTONE) { 11768 err = -ESRCH; 11769 goto err_locked; 11770 } 11771 11772 if (!perf_event_validate_size(event)) { 11773 err = -E2BIG; 11774 goto err_locked; 11775 } 11776 11777 if (!task) { 11778 /* 11779 * Check if the @cpu we're creating an event for is online. 11780 * 11781 * We use the perf_cpu_context::ctx::mutex to serialize against 11782 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11783 */ 11784 struct perf_cpu_context *cpuctx = 11785 container_of(ctx, struct perf_cpu_context, ctx); 11786 11787 if (!cpuctx->online) { 11788 err = -ENODEV; 11789 goto err_locked; 11790 } 11791 } 11792 11793 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11794 err = -EINVAL; 11795 goto err_locked; 11796 } 11797 11798 /* 11799 * Must be under the same ctx::mutex as perf_install_in_context(), 11800 * because we need to serialize with concurrent event creation. 11801 */ 11802 if (!exclusive_event_installable(event, ctx)) { 11803 err = -EBUSY; 11804 goto err_locked; 11805 } 11806 11807 WARN_ON_ONCE(ctx->parent_ctx); 11808 11809 /* 11810 * This is the point on no return; we cannot fail hereafter. This is 11811 * where we start modifying current state. 11812 */ 11813 11814 if (move_group) { 11815 /* 11816 * See perf_event_ctx_lock() for comments on the details 11817 * of swizzling perf_event::ctx. 11818 */ 11819 perf_remove_from_context(group_leader, 0); 11820 put_ctx(gctx); 11821 11822 for_each_sibling_event(sibling, group_leader) { 11823 perf_remove_from_context(sibling, 0); 11824 put_ctx(gctx); 11825 } 11826 11827 /* 11828 * Wait for everybody to stop referencing the events through 11829 * the old lists, before installing it on new lists. 11830 */ 11831 synchronize_rcu(); 11832 11833 /* 11834 * Install the group siblings before the group leader. 11835 * 11836 * Because a group leader will try and install the entire group 11837 * (through the sibling list, which is still in-tact), we can 11838 * end up with siblings installed in the wrong context. 11839 * 11840 * By installing siblings first we NO-OP because they're not 11841 * reachable through the group lists. 11842 */ 11843 for_each_sibling_event(sibling, group_leader) { 11844 perf_event__state_init(sibling); 11845 perf_install_in_context(ctx, sibling, sibling->cpu); 11846 get_ctx(ctx); 11847 } 11848 11849 /* 11850 * Removing from the context ends up with disabled 11851 * event. What we want here is event in the initial 11852 * startup state, ready to be add into new context. 11853 */ 11854 perf_event__state_init(group_leader); 11855 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11856 get_ctx(ctx); 11857 } 11858 11859 /* 11860 * Precalculate sample_data sizes; do while holding ctx::mutex such 11861 * that we're serialized against further additions and before 11862 * perf_install_in_context() which is the point the event is active and 11863 * can use these values. 11864 */ 11865 perf_event__header_size(event); 11866 perf_event__id_header_size(event); 11867 11868 event->owner = current; 11869 11870 perf_install_in_context(ctx, event, event->cpu); 11871 perf_unpin_context(ctx); 11872 11873 if (move_group) 11874 perf_event_ctx_unlock(group_leader, gctx); 11875 mutex_unlock(&ctx->mutex); 11876 11877 if (task) { 11878 mutex_unlock(&task->signal->exec_update_mutex); 11879 put_task_struct(task); 11880 } 11881 11882 mutex_lock(¤t->perf_event_mutex); 11883 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11884 mutex_unlock(¤t->perf_event_mutex); 11885 11886 /* 11887 * Drop the reference on the group_event after placing the 11888 * new event on the sibling_list. This ensures destruction 11889 * of the group leader will find the pointer to itself in 11890 * perf_group_detach(). 11891 */ 11892 fdput(group); 11893 fd_install(event_fd, event_file); 11894 return event_fd; 11895 11896 err_locked: 11897 if (move_group) 11898 perf_event_ctx_unlock(group_leader, gctx); 11899 mutex_unlock(&ctx->mutex); 11900 /* err_file: */ 11901 fput(event_file); 11902 err_context: 11903 perf_unpin_context(ctx); 11904 put_ctx(ctx); 11905 err_alloc: 11906 /* 11907 * If event_file is set, the fput() above will have called ->release() 11908 * and that will take care of freeing the event. 11909 */ 11910 if (!event_file) 11911 free_event(event); 11912 err_cred: 11913 if (task) 11914 mutex_unlock(&task->signal->exec_update_mutex); 11915 err_task: 11916 if (task) 11917 put_task_struct(task); 11918 err_group_fd: 11919 fdput(group); 11920 err_fd: 11921 put_unused_fd(event_fd); 11922 return err; 11923 } 11924 11925 /** 11926 * perf_event_create_kernel_counter 11927 * 11928 * @attr: attributes of the counter to create 11929 * @cpu: cpu in which the counter is bound 11930 * @task: task to profile (NULL for percpu) 11931 */ 11932 struct perf_event * 11933 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11934 struct task_struct *task, 11935 perf_overflow_handler_t overflow_handler, 11936 void *context) 11937 { 11938 struct perf_event_context *ctx; 11939 struct perf_event *event; 11940 int err; 11941 11942 /* 11943 * Grouping is not supported for kernel events, neither is 'AUX', 11944 * make sure the caller's intentions are adjusted. 11945 */ 11946 if (attr->aux_output) 11947 return ERR_PTR(-EINVAL); 11948 11949 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11950 overflow_handler, context, -1); 11951 if (IS_ERR(event)) { 11952 err = PTR_ERR(event); 11953 goto err; 11954 } 11955 11956 /* Mark owner so we could distinguish it from user events. */ 11957 event->owner = TASK_TOMBSTONE; 11958 11959 /* 11960 * Get the target context (task or percpu): 11961 */ 11962 ctx = find_get_context(event->pmu, task, event); 11963 if (IS_ERR(ctx)) { 11964 err = PTR_ERR(ctx); 11965 goto err_free; 11966 } 11967 11968 WARN_ON_ONCE(ctx->parent_ctx); 11969 mutex_lock(&ctx->mutex); 11970 if (ctx->task == TASK_TOMBSTONE) { 11971 err = -ESRCH; 11972 goto err_unlock; 11973 } 11974 11975 if (!task) { 11976 /* 11977 * Check if the @cpu we're creating an event for is online. 11978 * 11979 * We use the perf_cpu_context::ctx::mutex to serialize against 11980 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11981 */ 11982 struct perf_cpu_context *cpuctx = 11983 container_of(ctx, struct perf_cpu_context, ctx); 11984 if (!cpuctx->online) { 11985 err = -ENODEV; 11986 goto err_unlock; 11987 } 11988 } 11989 11990 if (!exclusive_event_installable(event, ctx)) { 11991 err = -EBUSY; 11992 goto err_unlock; 11993 } 11994 11995 perf_install_in_context(ctx, event, event->cpu); 11996 perf_unpin_context(ctx); 11997 mutex_unlock(&ctx->mutex); 11998 11999 return event; 12000 12001 err_unlock: 12002 mutex_unlock(&ctx->mutex); 12003 perf_unpin_context(ctx); 12004 put_ctx(ctx); 12005 err_free: 12006 free_event(event); 12007 err: 12008 return ERR_PTR(err); 12009 } 12010 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12011 12012 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12013 { 12014 struct perf_event_context *src_ctx; 12015 struct perf_event_context *dst_ctx; 12016 struct perf_event *event, *tmp; 12017 LIST_HEAD(events); 12018 12019 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12020 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12021 12022 /* 12023 * See perf_event_ctx_lock() for comments on the details 12024 * of swizzling perf_event::ctx. 12025 */ 12026 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12027 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12028 event_entry) { 12029 perf_remove_from_context(event, 0); 12030 unaccount_event_cpu(event, src_cpu); 12031 put_ctx(src_ctx); 12032 list_add(&event->migrate_entry, &events); 12033 } 12034 12035 /* 12036 * Wait for the events to quiesce before re-instating them. 12037 */ 12038 synchronize_rcu(); 12039 12040 /* 12041 * Re-instate events in 2 passes. 12042 * 12043 * Skip over group leaders and only install siblings on this first 12044 * pass, siblings will not get enabled without a leader, however a 12045 * leader will enable its siblings, even if those are still on the old 12046 * context. 12047 */ 12048 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12049 if (event->group_leader == event) 12050 continue; 12051 12052 list_del(&event->migrate_entry); 12053 if (event->state >= PERF_EVENT_STATE_OFF) 12054 event->state = PERF_EVENT_STATE_INACTIVE; 12055 account_event_cpu(event, dst_cpu); 12056 perf_install_in_context(dst_ctx, event, dst_cpu); 12057 get_ctx(dst_ctx); 12058 } 12059 12060 /* 12061 * Once all the siblings are setup properly, install the group leaders 12062 * to make it go. 12063 */ 12064 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12065 list_del(&event->migrate_entry); 12066 if (event->state >= PERF_EVENT_STATE_OFF) 12067 event->state = PERF_EVENT_STATE_INACTIVE; 12068 account_event_cpu(event, dst_cpu); 12069 perf_install_in_context(dst_ctx, event, dst_cpu); 12070 get_ctx(dst_ctx); 12071 } 12072 mutex_unlock(&dst_ctx->mutex); 12073 mutex_unlock(&src_ctx->mutex); 12074 } 12075 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12076 12077 static void sync_child_event(struct perf_event *child_event, 12078 struct task_struct *child) 12079 { 12080 struct perf_event *parent_event = child_event->parent; 12081 u64 child_val; 12082 12083 if (child_event->attr.inherit_stat) 12084 perf_event_read_event(child_event, child); 12085 12086 child_val = perf_event_count(child_event); 12087 12088 /* 12089 * Add back the child's count to the parent's count: 12090 */ 12091 atomic64_add(child_val, &parent_event->child_count); 12092 atomic64_add(child_event->total_time_enabled, 12093 &parent_event->child_total_time_enabled); 12094 atomic64_add(child_event->total_time_running, 12095 &parent_event->child_total_time_running); 12096 } 12097 12098 static void 12099 perf_event_exit_event(struct perf_event *child_event, 12100 struct perf_event_context *child_ctx, 12101 struct task_struct *child) 12102 { 12103 struct perf_event *parent_event = child_event->parent; 12104 12105 /* 12106 * Do not destroy the 'original' grouping; because of the context 12107 * switch optimization the original events could've ended up in a 12108 * random child task. 12109 * 12110 * If we were to destroy the original group, all group related 12111 * operations would cease to function properly after this random 12112 * child dies. 12113 * 12114 * Do destroy all inherited groups, we don't care about those 12115 * and being thorough is better. 12116 */ 12117 raw_spin_lock_irq(&child_ctx->lock); 12118 WARN_ON_ONCE(child_ctx->is_active); 12119 12120 if (parent_event) 12121 perf_group_detach(child_event); 12122 list_del_event(child_event, child_ctx); 12123 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12124 raw_spin_unlock_irq(&child_ctx->lock); 12125 12126 /* 12127 * Parent events are governed by their filedesc, retain them. 12128 */ 12129 if (!parent_event) { 12130 perf_event_wakeup(child_event); 12131 return; 12132 } 12133 /* 12134 * Child events can be cleaned up. 12135 */ 12136 12137 sync_child_event(child_event, child); 12138 12139 /* 12140 * Remove this event from the parent's list 12141 */ 12142 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12143 mutex_lock(&parent_event->child_mutex); 12144 list_del_init(&child_event->child_list); 12145 mutex_unlock(&parent_event->child_mutex); 12146 12147 /* 12148 * Kick perf_poll() for is_event_hup(). 12149 */ 12150 perf_event_wakeup(parent_event); 12151 free_event(child_event); 12152 put_event(parent_event); 12153 } 12154 12155 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12156 { 12157 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12158 struct perf_event *child_event, *next; 12159 12160 WARN_ON_ONCE(child != current); 12161 12162 child_ctx = perf_pin_task_context(child, ctxn); 12163 if (!child_ctx) 12164 return; 12165 12166 /* 12167 * In order to reduce the amount of tricky in ctx tear-down, we hold 12168 * ctx::mutex over the entire thing. This serializes against almost 12169 * everything that wants to access the ctx. 12170 * 12171 * The exception is sys_perf_event_open() / 12172 * perf_event_create_kernel_count() which does find_get_context() 12173 * without ctx::mutex (it cannot because of the move_group double mutex 12174 * lock thing). See the comments in perf_install_in_context(). 12175 */ 12176 mutex_lock(&child_ctx->mutex); 12177 12178 /* 12179 * In a single ctx::lock section, de-schedule the events and detach the 12180 * context from the task such that we cannot ever get it scheduled back 12181 * in. 12182 */ 12183 raw_spin_lock_irq(&child_ctx->lock); 12184 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12185 12186 /* 12187 * Now that the context is inactive, destroy the task <-> ctx relation 12188 * and mark the context dead. 12189 */ 12190 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12191 put_ctx(child_ctx); /* cannot be last */ 12192 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12193 put_task_struct(current); /* cannot be last */ 12194 12195 clone_ctx = unclone_ctx(child_ctx); 12196 raw_spin_unlock_irq(&child_ctx->lock); 12197 12198 if (clone_ctx) 12199 put_ctx(clone_ctx); 12200 12201 /* 12202 * Report the task dead after unscheduling the events so that we 12203 * won't get any samples after PERF_RECORD_EXIT. We can however still 12204 * get a few PERF_RECORD_READ events. 12205 */ 12206 perf_event_task(child, child_ctx, 0); 12207 12208 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12209 perf_event_exit_event(child_event, child_ctx, child); 12210 12211 mutex_unlock(&child_ctx->mutex); 12212 12213 put_ctx(child_ctx); 12214 } 12215 12216 /* 12217 * When a child task exits, feed back event values to parent events. 12218 * 12219 * Can be called with exec_update_mutex held when called from 12220 * install_exec_creds(). 12221 */ 12222 void perf_event_exit_task(struct task_struct *child) 12223 { 12224 struct perf_event *event, *tmp; 12225 int ctxn; 12226 12227 mutex_lock(&child->perf_event_mutex); 12228 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12229 owner_entry) { 12230 list_del_init(&event->owner_entry); 12231 12232 /* 12233 * Ensure the list deletion is visible before we clear 12234 * the owner, closes a race against perf_release() where 12235 * we need to serialize on the owner->perf_event_mutex. 12236 */ 12237 smp_store_release(&event->owner, NULL); 12238 } 12239 mutex_unlock(&child->perf_event_mutex); 12240 12241 for_each_task_context_nr(ctxn) 12242 perf_event_exit_task_context(child, ctxn); 12243 12244 /* 12245 * The perf_event_exit_task_context calls perf_event_task 12246 * with child's task_ctx, which generates EXIT events for 12247 * child contexts and sets child->perf_event_ctxp[] to NULL. 12248 * At this point we need to send EXIT events to cpu contexts. 12249 */ 12250 perf_event_task(child, NULL, 0); 12251 } 12252 12253 static void perf_free_event(struct perf_event *event, 12254 struct perf_event_context *ctx) 12255 { 12256 struct perf_event *parent = event->parent; 12257 12258 if (WARN_ON_ONCE(!parent)) 12259 return; 12260 12261 mutex_lock(&parent->child_mutex); 12262 list_del_init(&event->child_list); 12263 mutex_unlock(&parent->child_mutex); 12264 12265 put_event(parent); 12266 12267 raw_spin_lock_irq(&ctx->lock); 12268 perf_group_detach(event); 12269 list_del_event(event, ctx); 12270 raw_spin_unlock_irq(&ctx->lock); 12271 free_event(event); 12272 } 12273 12274 /* 12275 * Free a context as created by inheritance by perf_event_init_task() below, 12276 * used by fork() in case of fail. 12277 * 12278 * Even though the task has never lived, the context and events have been 12279 * exposed through the child_list, so we must take care tearing it all down. 12280 */ 12281 void perf_event_free_task(struct task_struct *task) 12282 { 12283 struct perf_event_context *ctx; 12284 struct perf_event *event, *tmp; 12285 int ctxn; 12286 12287 for_each_task_context_nr(ctxn) { 12288 ctx = task->perf_event_ctxp[ctxn]; 12289 if (!ctx) 12290 continue; 12291 12292 mutex_lock(&ctx->mutex); 12293 raw_spin_lock_irq(&ctx->lock); 12294 /* 12295 * Destroy the task <-> ctx relation and mark the context dead. 12296 * 12297 * This is important because even though the task hasn't been 12298 * exposed yet the context has been (through child_list). 12299 */ 12300 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12301 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12302 put_task_struct(task); /* cannot be last */ 12303 raw_spin_unlock_irq(&ctx->lock); 12304 12305 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12306 perf_free_event(event, ctx); 12307 12308 mutex_unlock(&ctx->mutex); 12309 12310 /* 12311 * perf_event_release_kernel() could've stolen some of our 12312 * child events and still have them on its free_list. In that 12313 * case we must wait for these events to have been freed (in 12314 * particular all their references to this task must've been 12315 * dropped). 12316 * 12317 * Without this copy_process() will unconditionally free this 12318 * task (irrespective of its reference count) and 12319 * _free_event()'s put_task_struct(event->hw.target) will be a 12320 * use-after-free. 12321 * 12322 * Wait for all events to drop their context reference. 12323 */ 12324 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12325 put_ctx(ctx); /* must be last */ 12326 } 12327 } 12328 12329 void perf_event_delayed_put(struct task_struct *task) 12330 { 12331 int ctxn; 12332 12333 for_each_task_context_nr(ctxn) 12334 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12335 } 12336 12337 struct file *perf_event_get(unsigned int fd) 12338 { 12339 struct file *file = fget(fd); 12340 if (!file) 12341 return ERR_PTR(-EBADF); 12342 12343 if (file->f_op != &perf_fops) { 12344 fput(file); 12345 return ERR_PTR(-EBADF); 12346 } 12347 12348 return file; 12349 } 12350 12351 const struct perf_event *perf_get_event(struct file *file) 12352 { 12353 if (file->f_op != &perf_fops) 12354 return ERR_PTR(-EINVAL); 12355 12356 return file->private_data; 12357 } 12358 12359 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12360 { 12361 if (!event) 12362 return ERR_PTR(-EINVAL); 12363 12364 return &event->attr; 12365 } 12366 12367 /* 12368 * Inherit an event from parent task to child task. 12369 * 12370 * Returns: 12371 * - valid pointer on success 12372 * - NULL for orphaned events 12373 * - IS_ERR() on error 12374 */ 12375 static struct perf_event * 12376 inherit_event(struct perf_event *parent_event, 12377 struct task_struct *parent, 12378 struct perf_event_context *parent_ctx, 12379 struct task_struct *child, 12380 struct perf_event *group_leader, 12381 struct perf_event_context *child_ctx) 12382 { 12383 enum perf_event_state parent_state = parent_event->state; 12384 struct perf_event *child_event; 12385 unsigned long flags; 12386 12387 /* 12388 * Instead of creating recursive hierarchies of events, 12389 * we link inherited events back to the original parent, 12390 * which has a filp for sure, which we use as the reference 12391 * count: 12392 */ 12393 if (parent_event->parent) 12394 parent_event = parent_event->parent; 12395 12396 child_event = perf_event_alloc(&parent_event->attr, 12397 parent_event->cpu, 12398 child, 12399 group_leader, parent_event, 12400 NULL, NULL, -1); 12401 if (IS_ERR(child_event)) 12402 return child_event; 12403 12404 12405 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12406 !child_ctx->task_ctx_data) { 12407 struct pmu *pmu = child_event->pmu; 12408 12409 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 12410 GFP_KERNEL); 12411 if (!child_ctx->task_ctx_data) { 12412 free_event(child_event); 12413 return ERR_PTR(-ENOMEM); 12414 } 12415 } 12416 12417 /* 12418 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12419 * must be under the same lock in order to serialize against 12420 * perf_event_release_kernel(), such that either we must observe 12421 * is_orphaned_event() or they will observe us on the child_list. 12422 */ 12423 mutex_lock(&parent_event->child_mutex); 12424 if (is_orphaned_event(parent_event) || 12425 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12426 mutex_unlock(&parent_event->child_mutex); 12427 /* task_ctx_data is freed with child_ctx */ 12428 free_event(child_event); 12429 return NULL; 12430 } 12431 12432 get_ctx(child_ctx); 12433 12434 /* 12435 * Make the child state follow the state of the parent event, 12436 * not its attr.disabled bit. We hold the parent's mutex, 12437 * so we won't race with perf_event_{en, dis}able_family. 12438 */ 12439 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12440 child_event->state = PERF_EVENT_STATE_INACTIVE; 12441 else 12442 child_event->state = PERF_EVENT_STATE_OFF; 12443 12444 if (parent_event->attr.freq) { 12445 u64 sample_period = parent_event->hw.sample_period; 12446 struct hw_perf_event *hwc = &child_event->hw; 12447 12448 hwc->sample_period = sample_period; 12449 hwc->last_period = sample_period; 12450 12451 local64_set(&hwc->period_left, sample_period); 12452 } 12453 12454 child_event->ctx = child_ctx; 12455 child_event->overflow_handler = parent_event->overflow_handler; 12456 child_event->overflow_handler_context 12457 = parent_event->overflow_handler_context; 12458 12459 /* 12460 * Precalculate sample_data sizes 12461 */ 12462 perf_event__header_size(child_event); 12463 perf_event__id_header_size(child_event); 12464 12465 /* 12466 * Link it up in the child's context: 12467 */ 12468 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12469 add_event_to_ctx(child_event, child_ctx); 12470 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12471 12472 /* 12473 * Link this into the parent event's child list 12474 */ 12475 list_add_tail(&child_event->child_list, &parent_event->child_list); 12476 mutex_unlock(&parent_event->child_mutex); 12477 12478 return child_event; 12479 } 12480 12481 /* 12482 * Inherits an event group. 12483 * 12484 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12485 * This matches with perf_event_release_kernel() removing all child events. 12486 * 12487 * Returns: 12488 * - 0 on success 12489 * - <0 on error 12490 */ 12491 static int inherit_group(struct perf_event *parent_event, 12492 struct task_struct *parent, 12493 struct perf_event_context *parent_ctx, 12494 struct task_struct *child, 12495 struct perf_event_context *child_ctx) 12496 { 12497 struct perf_event *leader; 12498 struct perf_event *sub; 12499 struct perf_event *child_ctr; 12500 12501 leader = inherit_event(parent_event, parent, parent_ctx, 12502 child, NULL, child_ctx); 12503 if (IS_ERR(leader)) 12504 return PTR_ERR(leader); 12505 /* 12506 * @leader can be NULL here because of is_orphaned_event(). In this 12507 * case inherit_event() will create individual events, similar to what 12508 * perf_group_detach() would do anyway. 12509 */ 12510 for_each_sibling_event(sub, parent_event) { 12511 child_ctr = inherit_event(sub, parent, parent_ctx, 12512 child, leader, child_ctx); 12513 if (IS_ERR(child_ctr)) 12514 return PTR_ERR(child_ctr); 12515 12516 if (sub->aux_event == parent_event && child_ctr && 12517 !perf_get_aux_event(child_ctr, leader)) 12518 return -EINVAL; 12519 } 12520 return 0; 12521 } 12522 12523 /* 12524 * Creates the child task context and tries to inherit the event-group. 12525 * 12526 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12527 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12528 * consistent with perf_event_release_kernel() removing all child events. 12529 * 12530 * Returns: 12531 * - 0 on success 12532 * - <0 on error 12533 */ 12534 static int 12535 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12536 struct perf_event_context *parent_ctx, 12537 struct task_struct *child, int ctxn, 12538 int *inherited_all) 12539 { 12540 int ret; 12541 struct perf_event_context *child_ctx; 12542 12543 if (!event->attr.inherit) { 12544 *inherited_all = 0; 12545 return 0; 12546 } 12547 12548 child_ctx = child->perf_event_ctxp[ctxn]; 12549 if (!child_ctx) { 12550 /* 12551 * This is executed from the parent task context, so 12552 * inherit events that have been marked for cloning. 12553 * First allocate and initialize a context for the 12554 * child. 12555 */ 12556 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12557 if (!child_ctx) 12558 return -ENOMEM; 12559 12560 child->perf_event_ctxp[ctxn] = child_ctx; 12561 } 12562 12563 ret = inherit_group(event, parent, parent_ctx, 12564 child, child_ctx); 12565 12566 if (ret) 12567 *inherited_all = 0; 12568 12569 return ret; 12570 } 12571 12572 /* 12573 * Initialize the perf_event context in task_struct 12574 */ 12575 static int perf_event_init_context(struct task_struct *child, int ctxn) 12576 { 12577 struct perf_event_context *child_ctx, *parent_ctx; 12578 struct perf_event_context *cloned_ctx; 12579 struct perf_event *event; 12580 struct task_struct *parent = current; 12581 int inherited_all = 1; 12582 unsigned long flags; 12583 int ret = 0; 12584 12585 if (likely(!parent->perf_event_ctxp[ctxn])) 12586 return 0; 12587 12588 /* 12589 * If the parent's context is a clone, pin it so it won't get 12590 * swapped under us. 12591 */ 12592 parent_ctx = perf_pin_task_context(parent, ctxn); 12593 if (!parent_ctx) 12594 return 0; 12595 12596 /* 12597 * No need to check if parent_ctx != NULL here; since we saw 12598 * it non-NULL earlier, the only reason for it to become NULL 12599 * is if we exit, and since we're currently in the middle of 12600 * a fork we can't be exiting at the same time. 12601 */ 12602 12603 /* 12604 * Lock the parent list. No need to lock the child - not PID 12605 * hashed yet and not running, so nobody can access it. 12606 */ 12607 mutex_lock(&parent_ctx->mutex); 12608 12609 /* 12610 * We dont have to disable NMIs - we are only looking at 12611 * the list, not manipulating it: 12612 */ 12613 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12614 ret = inherit_task_group(event, parent, parent_ctx, 12615 child, ctxn, &inherited_all); 12616 if (ret) 12617 goto out_unlock; 12618 } 12619 12620 /* 12621 * We can't hold ctx->lock when iterating the ->flexible_group list due 12622 * to allocations, but we need to prevent rotation because 12623 * rotate_ctx() will change the list from interrupt context. 12624 */ 12625 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12626 parent_ctx->rotate_disable = 1; 12627 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12628 12629 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12630 ret = inherit_task_group(event, parent, parent_ctx, 12631 child, ctxn, &inherited_all); 12632 if (ret) 12633 goto out_unlock; 12634 } 12635 12636 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12637 parent_ctx->rotate_disable = 0; 12638 12639 child_ctx = child->perf_event_ctxp[ctxn]; 12640 12641 if (child_ctx && inherited_all) { 12642 /* 12643 * Mark the child context as a clone of the parent 12644 * context, or of whatever the parent is a clone of. 12645 * 12646 * Note that if the parent is a clone, the holding of 12647 * parent_ctx->lock avoids it from being uncloned. 12648 */ 12649 cloned_ctx = parent_ctx->parent_ctx; 12650 if (cloned_ctx) { 12651 child_ctx->parent_ctx = cloned_ctx; 12652 child_ctx->parent_gen = parent_ctx->parent_gen; 12653 } else { 12654 child_ctx->parent_ctx = parent_ctx; 12655 child_ctx->parent_gen = parent_ctx->generation; 12656 } 12657 get_ctx(child_ctx->parent_ctx); 12658 } 12659 12660 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12661 out_unlock: 12662 mutex_unlock(&parent_ctx->mutex); 12663 12664 perf_unpin_context(parent_ctx); 12665 put_ctx(parent_ctx); 12666 12667 return ret; 12668 } 12669 12670 /* 12671 * Initialize the perf_event context in task_struct 12672 */ 12673 int perf_event_init_task(struct task_struct *child) 12674 { 12675 int ctxn, ret; 12676 12677 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12678 mutex_init(&child->perf_event_mutex); 12679 INIT_LIST_HEAD(&child->perf_event_list); 12680 12681 for_each_task_context_nr(ctxn) { 12682 ret = perf_event_init_context(child, ctxn); 12683 if (ret) { 12684 perf_event_free_task(child); 12685 return ret; 12686 } 12687 } 12688 12689 return 0; 12690 } 12691 12692 static void __init perf_event_init_all_cpus(void) 12693 { 12694 struct swevent_htable *swhash; 12695 int cpu; 12696 12697 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12698 12699 for_each_possible_cpu(cpu) { 12700 swhash = &per_cpu(swevent_htable, cpu); 12701 mutex_init(&swhash->hlist_mutex); 12702 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12703 12704 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12705 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12706 12707 #ifdef CONFIG_CGROUP_PERF 12708 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12709 #endif 12710 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12711 } 12712 } 12713 12714 static void perf_swevent_init_cpu(unsigned int cpu) 12715 { 12716 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12717 12718 mutex_lock(&swhash->hlist_mutex); 12719 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12720 struct swevent_hlist *hlist; 12721 12722 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12723 WARN_ON(!hlist); 12724 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12725 } 12726 mutex_unlock(&swhash->hlist_mutex); 12727 } 12728 12729 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12730 static void __perf_event_exit_context(void *__info) 12731 { 12732 struct perf_event_context *ctx = __info; 12733 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12734 struct perf_event *event; 12735 12736 raw_spin_lock(&ctx->lock); 12737 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12738 list_for_each_entry(event, &ctx->event_list, event_entry) 12739 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12740 raw_spin_unlock(&ctx->lock); 12741 } 12742 12743 static void perf_event_exit_cpu_context(int cpu) 12744 { 12745 struct perf_cpu_context *cpuctx; 12746 struct perf_event_context *ctx; 12747 struct pmu *pmu; 12748 12749 mutex_lock(&pmus_lock); 12750 list_for_each_entry(pmu, &pmus, entry) { 12751 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12752 ctx = &cpuctx->ctx; 12753 12754 mutex_lock(&ctx->mutex); 12755 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12756 cpuctx->online = 0; 12757 mutex_unlock(&ctx->mutex); 12758 } 12759 cpumask_clear_cpu(cpu, perf_online_mask); 12760 mutex_unlock(&pmus_lock); 12761 } 12762 #else 12763 12764 static void perf_event_exit_cpu_context(int cpu) { } 12765 12766 #endif 12767 12768 int perf_event_init_cpu(unsigned int cpu) 12769 { 12770 struct perf_cpu_context *cpuctx; 12771 struct perf_event_context *ctx; 12772 struct pmu *pmu; 12773 12774 perf_swevent_init_cpu(cpu); 12775 12776 mutex_lock(&pmus_lock); 12777 cpumask_set_cpu(cpu, perf_online_mask); 12778 list_for_each_entry(pmu, &pmus, entry) { 12779 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12780 ctx = &cpuctx->ctx; 12781 12782 mutex_lock(&ctx->mutex); 12783 cpuctx->online = 1; 12784 mutex_unlock(&ctx->mutex); 12785 } 12786 mutex_unlock(&pmus_lock); 12787 12788 return 0; 12789 } 12790 12791 int perf_event_exit_cpu(unsigned int cpu) 12792 { 12793 perf_event_exit_cpu_context(cpu); 12794 return 0; 12795 } 12796 12797 static int 12798 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12799 { 12800 int cpu; 12801 12802 for_each_online_cpu(cpu) 12803 perf_event_exit_cpu(cpu); 12804 12805 return NOTIFY_OK; 12806 } 12807 12808 /* 12809 * Run the perf reboot notifier at the very last possible moment so that 12810 * the generic watchdog code runs as long as possible. 12811 */ 12812 static struct notifier_block perf_reboot_notifier = { 12813 .notifier_call = perf_reboot, 12814 .priority = INT_MIN, 12815 }; 12816 12817 void __init perf_event_init(void) 12818 { 12819 int ret; 12820 12821 idr_init(&pmu_idr); 12822 12823 perf_event_init_all_cpus(); 12824 init_srcu_struct(&pmus_srcu); 12825 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12826 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12827 perf_pmu_register(&perf_task_clock, NULL, -1); 12828 perf_tp_register(); 12829 perf_event_init_cpu(smp_processor_id()); 12830 register_reboot_notifier(&perf_reboot_notifier); 12831 12832 ret = init_hw_breakpoint(); 12833 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12834 12835 /* 12836 * Build time assertion that we keep the data_head at the intended 12837 * location. IOW, validation we got the __reserved[] size right. 12838 */ 12839 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12840 != 1024); 12841 } 12842 12843 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12844 char *page) 12845 { 12846 struct perf_pmu_events_attr *pmu_attr = 12847 container_of(attr, struct perf_pmu_events_attr, attr); 12848 12849 if (pmu_attr->event_str) 12850 return sprintf(page, "%s\n", pmu_attr->event_str); 12851 12852 return 0; 12853 } 12854 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12855 12856 static int __init perf_event_sysfs_init(void) 12857 { 12858 struct pmu *pmu; 12859 int ret; 12860 12861 mutex_lock(&pmus_lock); 12862 12863 ret = bus_register(&pmu_bus); 12864 if (ret) 12865 goto unlock; 12866 12867 list_for_each_entry(pmu, &pmus, entry) { 12868 if (!pmu->name || pmu->type < 0) 12869 continue; 12870 12871 ret = pmu_dev_alloc(pmu); 12872 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12873 } 12874 pmu_bus_running = 1; 12875 ret = 0; 12876 12877 unlock: 12878 mutex_unlock(&pmus_lock); 12879 12880 return ret; 12881 } 12882 device_initcall(perf_event_sysfs_init); 12883 12884 #ifdef CONFIG_CGROUP_PERF 12885 static struct cgroup_subsys_state * 12886 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12887 { 12888 struct perf_cgroup *jc; 12889 12890 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12891 if (!jc) 12892 return ERR_PTR(-ENOMEM); 12893 12894 jc->info = alloc_percpu(struct perf_cgroup_info); 12895 if (!jc->info) { 12896 kfree(jc); 12897 return ERR_PTR(-ENOMEM); 12898 } 12899 12900 return &jc->css; 12901 } 12902 12903 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12904 { 12905 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12906 12907 free_percpu(jc->info); 12908 kfree(jc); 12909 } 12910 12911 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 12912 { 12913 perf_event_cgroup(css->cgroup); 12914 return 0; 12915 } 12916 12917 static int __perf_cgroup_move(void *info) 12918 { 12919 struct task_struct *task = info; 12920 rcu_read_lock(); 12921 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12922 rcu_read_unlock(); 12923 return 0; 12924 } 12925 12926 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12927 { 12928 struct task_struct *task; 12929 struct cgroup_subsys_state *css; 12930 12931 cgroup_taskset_for_each(task, css, tset) 12932 task_function_call(task, __perf_cgroup_move, task); 12933 } 12934 12935 struct cgroup_subsys perf_event_cgrp_subsys = { 12936 .css_alloc = perf_cgroup_css_alloc, 12937 .css_free = perf_cgroup_css_free, 12938 .css_online = perf_cgroup_css_online, 12939 .attach = perf_cgroup_attach, 12940 /* 12941 * Implicitly enable on dfl hierarchy so that perf events can 12942 * always be filtered by cgroup2 path as long as perf_event 12943 * controller is not mounted on a legacy hierarchy. 12944 */ 12945 .implicit_on_dfl = true, 12946 .threaded = true, 12947 }; 12948 #endif /* CONFIG_CGROUP_PERF */ 12949