1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 enum event_type_t { 159 EVENT_FLEXIBLE = 0x01, 160 EVENT_PINNED = 0x02, 161 EVENT_TIME = 0x04, 162 EVENT_FROZEN = 0x08, 163 /* see ctx_resched() for details */ 164 EVENT_CPU = 0x10, 165 EVENT_CGROUP = 0x20, 166 167 /* compound helpers */ 168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 170 }; 171 172 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 173 { 174 raw_spin_lock(&ctx->lock); 175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 176 } 177 178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 179 struct perf_event_context *ctx) 180 { 181 __perf_ctx_lock(&cpuctx->ctx); 182 if (ctx) 183 __perf_ctx_lock(ctx); 184 } 185 186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 187 { 188 /* 189 * If ctx_sched_in() didn't again set any ALL flags, clean up 190 * after ctx_sched_out() by clearing is_active. 191 */ 192 if (ctx->is_active & EVENT_FROZEN) { 193 if (!(ctx->is_active & EVENT_ALL)) 194 ctx->is_active = 0; 195 else 196 ctx->is_active &= ~EVENT_FROZEN; 197 } 198 raw_spin_unlock(&ctx->lock); 199 } 200 201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 202 struct perf_event_context *ctx) 203 { 204 if (ctx) 205 __perf_ctx_unlock(ctx); 206 __perf_ctx_unlock(&cpuctx->ctx); 207 } 208 209 #define TASK_TOMBSTONE ((void *)-1L) 210 211 static bool is_kernel_event(struct perf_event *event) 212 { 213 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 214 } 215 216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 217 218 struct perf_event_context *perf_cpu_task_ctx(void) 219 { 220 lockdep_assert_irqs_disabled(); 221 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 222 } 223 224 /* 225 * On task ctx scheduling... 226 * 227 * When !ctx->nr_events a task context will not be scheduled. This means 228 * we can disable the scheduler hooks (for performance) without leaving 229 * pending task ctx state. 230 * 231 * This however results in two special cases: 232 * 233 * - removing the last event from a task ctx; this is relatively straight 234 * forward and is done in __perf_remove_from_context. 235 * 236 * - adding the first event to a task ctx; this is tricky because we cannot 237 * rely on ctx->is_active and therefore cannot use event_function_call(). 238 * See perf_install_in_context(). 239 * 240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 241 */ 242 243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 244 struct perf_event_context *, void *); 245 246 struct event_function_struct { 247 struct perf_event *event; 248 event_f func; 249 void *data; 250 }; 251 252 static int event_function(void *info) 253 { 254 struct event_function_struct *efs = info; 255 struct perf_event *event = efs->event; 256 struct perf_event_context *ctx = event->ctx; 257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 258 struct perf_event_context *task_ctx = cpuctx->task_ctx; 259 int ret = 0; 260 261 lockdep_assert_irqs_disabled(); 262 263 perf_ctx_lock(cpuctx, task_ctx); 264 /* 265 * Since we do the IPI call without holding ctx->lock things can have 266 * changed, double check we hit the task we set out to hit. 267 */ 268 if (ctx->task) { 269 if (ctx->task != current) { 270 ret = -ESRCH; 271 goto unlock; 272 } 273 274 /* 275 * We only use event_function_call() on established contexts, 276 * and event_function() is only ever called when active (or 277 * rather, we'll have bailed in task_function_call() or the 278 * above ctx->task != current test), therefore we must have 279 * ctx->is_active here. 280 */ 281 WARN_ON_ONCE(!ctx->is_active); 282 /* 283 * And since we have ctx->is_active, cpuctx->task_ctx must 284 * match. 285 */ 286 WARN_ON_ONCE(task_ctx != ctx); 287 } else { 288 WARN_ON_ONCE(&cpuctx->ctx != ctx); 289 } 290 291 efs->func(event, cpuctx, ctx, efs->data); 292 unlock: 293 perf_ctx_unlock(cpuctx, task_ctx); 294 295 return ret; 296 } 297 298 static void event_function_call(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 302 struct perf_cpu_context *cpuctx; 303 struct event_function_struct efs = { 304 .event = event, 305 .func = func, 306 .data = data, 307 }; 308 309 if (!event->parent) { 310 /* 311 * If this is a !child event, we must hold ctx::mutex to 312 * stabilize the event->ctx relation. See 313 * perf_event_ctx_lock(). 314 */ 315 lockdep_assert_held(&ctx->mutex); 316 } 317 318 if (!task) { 319 cpu_function_call(event->cpu, event_function, &efs); 320 return; 321 } 322 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 again: 327 if (!task_function_call(task, event_function, &efs)) 328 return; 329 330 local_irq_disable(); 331 cpuctx = this_cpu_ptr(&perf_cpu_context); 332 perf_ctx_lock(cpuctx, ctx); 333 /* 334 * Reload the task pointer, it might have been changed by 335 * a concurrent perf_event_context_sched_out(). 336 */ 337 task = ctx->task; 338 if (task == TASK_TOMBSTONE) 339 goto unlock; 340 if (ctx->is_active) { 341 perf_ctx_unlock(cpuctx, ctx); 342 local_irq_enable(); 343 goto again; 344 } 345 func(event, NULL, ctx, data); 346 unlock: 347 perf_ctx_unlock(cpuctx, ctx); 348 local_irq_enable(); 349 } 350 351 /* 352 * Similar to event_function_call() + event_function(), but hard assumes IRQs 353 * are already disabled and we're on the right CPU. 354 */ 355 static void event_function_local(struct perf_event *event, event_f func, void *data) 356 { 357 struct perf_event_context *ctx = event->ctx; 358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 359 struct task_struct *task = READ_ONCE(ctx->task); 360 struct perf_event_context *task_ctx = NULL; 361 362 lockdep_assert_irqs_disabled(); 363 364 if (task) { 365 if (task == TASK_TOMBSTONE) 366 return; 367 368 task_ctx = ctx; 369 } 370 371 perf_ctx_lock(cpuctx, task_ctx); 372 373 task = ctx->task; 374 if (task == TASK_TOMBSTONE) 375 goto unlock; 376 377 if (task) { 378 /* 379 * We must be either inactive or active and the right task, 380 * otherwise we're screwed, since we cannot IPI to somewhere 381 * else. 382 */ 383 if (ctx->is_active) { 384 if (WARN_ON_ONCE(task != current)) 385 goto unlock; 386 387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 388 goto unlock; 389 } 390 } else { 391 WARN_ON_ONCE(&cpuctx->ctx != ctx); 392 } 393 394 func(event, cpuctx, ctx, data); 395 unlock: 396 perf_ctx_unlock(cpuctx, task_ctx); 397 } 398 399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 400 PERF_FLAG_FD_OUTPUT |\ 401 PERF_FLAG_PID_CGROUP |\ 402 PERF_FLAG_FD_CLOEXEC) 403 404 /* 405 * branch priv levels that need permission checks 406 */ 407 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 408 (PERF_SAMPLE_BRANCH_KERNEL |\ 409 PERF_SAMPLE_BRANCH_HV) 410 411 /* 412 * perf_sched_events : >0 events exist 413 */ 414 415 static void perf_sched_delayed(struct work_struct *work); 416 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 418 static DEFINE_MUTEX(perf_sched_mutex); 419 static atomic_t perf_sched_count; 420 421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 422 423 static atomic_t nr_mmap_events __read_mostly; 424 static atomic_t nr_comm_events __read_mostly; 425 static atomic_t nr_namespaces_events __read_mostly; 426 static atomic_t nr_task_events __read_mostly; 427 static atomic_t nr_freq_events __read_mostly; 428 static atomic_t nr_switch_events __read_mostly; 429 static atomic_t nr_ksymbol_events __read_mostly; 430 static atomic_t nr_bpf_events __read_mostly; 431 static atomic_t nr_cgroup_events __read_mostly; 432 static atomic_t nr_text_poke_events __read_mostly; 433 static atomic_t nr_build_id_events __read_mostly; 434 435 static LIST_HEAD(pmus); 436 static DEFINE_MUTEX(pmus_lock); 437 static struct srcu_struct pmus_srcu; 438 static cpumask_var_t perf_online_mask; 439 static cpumask_var_t perf_online_core_mask; 440 static cpumask_var_t perf_online_die_mask; 441 static cpumask_var_t perf_online_cluster_mask; 442 static cpumask_var_t perf_online_pkg_mask; 443 static cpumask_var_t perf_online_sys_mask; 444 static struct kmem_cache *perf_event_cache; 445 446 /* 447 * perf event paranoia level: 448 * -1 - not paranoid at all 449 * 0 - disallow raw tracepoint access for unpriv 450 * 1 - disallow cpu events for unpriv 451 * 2 - disallow kernel profiling for unpriv 452 */ 453 int sysctl_perf_event_paranoid __read_mostly = 2; 454 455 /* Minimum for 512 kiB + 1 user control page */ 456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 457 458 /* 459 * max perf event sample rate 460 */ 461 #define DEFAULT_MAX_SAMPLE_RATE 100000 462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 464 465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 466 467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 469 470 static int perf_sample_allowed_ns __read_mostly = 471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 472 473 static void update_perf_cpu_limits(void) 474 { 475 u64 tmp = perf_sample_period_ns; 476 477 tmp *= sysctl_perf_cpu_time_max_percent; 478 tmp = div_u64(tmp, 100); 479 if (!tmp) 480 tmp = 1; 481 482 WRITE_ONCE(perf_sample_allowed_ns, tmp); 483 } 484 485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 486 487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 488 void *buffer, size_t *lenp, loff_t *ppos) 489 { 490 int ret; 491 int perf_cpu = sysctl_perf_cpu_time_max_percent; 492 /* 493 * If throttling is disabled don't allow the write: 494 */ 495 if (write && (perf_cpu == 100 || perf_cpu == 0)) 496 return -EINVAL; 497 498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 499 if (ret || !write) 500 return ret; 501 502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 504 update_perf_cpu_limits(); 505 506 return 0; 507 } 508 509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 510 511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 512 void *buffer, size_t *lenp, loff_t *ppos) 513 { 514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 516 if (ret || !write) 517 return ret; 518 519 if (sysctl_perf_cpu_time_max_percent == 100 || 520 sysctl_perf_cpu_time_max_percent == 0) { 521 printk(KERN_WARNING 522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 523 WRITE_ONCE(perf_sample_allowed_ns, 0); 524 } else { 525 update_perf_cpu_limits(); 526 } 527 528 return 0; 529 } 530 531 /* 532 * perf samples are done in some very critical code paths (NMIs). 533 * If they take too much CPU time, the system can lock up and not 534 * get any real work done. This will drop the sample rate when 535 * we detect that events are taking too long. 536 */ 537 #define NR_ACCUMULATED_SAMPLES 128 538 static DEFINE_PER_CPU(u64, running_sample_length); 539 540 static u64 __report_avg; 541 static u64 __report_allowed; 542 543 static void perf_duration_warn(struct irq_work *w) 544 { 545 printk_ratelimited(KERN_INFO 546 "perf: interrupt took too long (%lld > %lld), lowering " 547 "kernel.perf_event_max_sample_rate to %d\n", 548 __report_avg, __report_allowed, 549 sysctl_perf_event_sample_rate); 550 } 551 552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 553 554 void perf_sample_event_took(u64 sample_len_ns) 555 { 556 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 557 u64 running_len; 558 u64 avg_len; 559 u32 max; 560 561 if (max_len == 0) 562 return; 563 564 /* Decay the counter by 1 average sample. */ 565 running_len = __this_cpu_read(running_sample_length); 566 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 567 running_len += sample_len_ns; 568 __this_cpu_write(running_sample_length, running_len); 569 570 /* 571 * Note: this will be biased artificially low until we have 572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 573 * from having to maintain a count. 574 */ 575 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 576 if (avg_len <= max_len) 577 return; 578 579 __report_avg = avg_len; 580 __report_allowed = max_len; 581 582 /* 583 * Compute a throttle threshold 25% below the current duration. 584 */ 585 avg_len += avg_len / 4; 586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 587 if (avg_len < max) 588 max /= (u32)avg_len; 589 else 590 max = 1; 591 592 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 593 WRITE_ONCE(max_samples_per_tick, max); 594 595 sysctl_perf_event_sample_rate = max * HZ; 596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 597 598 if (!irq_work_queue(&perf_duration_work)) { 599 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 600 "kernel.perf_event_max_sample_rate to %d\n", 601 __report_avg, __report_allowed, 602 sysctl_perf_event_sample_rate); 603 } 604 } 605 606 static atomic64_t perf_event_id; 607 608 static void update_context_time(struct perf_event_context *ctx); 609 static u64 perf_event_time(struct perf_event *event); 610 611 void __weak perf_event_print_debug(void) { } 612 613 static inline u64 perf_clock(void) 614 { 615 return local_clock(); 616 } 617 618 static inline u64 perf_event_clock(struct perf_event *event) 619 { 620 return event->clock(); 621 } 622 623 /* 624 * State based event timekeeping... 625 * 626 * The basic idea is to use event->state to determine which (if any) time 627 * fields to increment with the current delta. This means we only need to 628 * update timestamps when we change state or when they are explicitly requested 629 * (read). 630 * 631 * Event groups make things a little more complicated, but not terribly so. The 632 * rules for a group are that if the group leader is OFF the entire group is 633 * OFF, irrespective of what the group member states are. This results in 634 * __perf_effective_state(). 635 * 636 * A further ramification is that when a group leader flips between OFF and 637 * !OFF, we need to update all group member times. 638 * 639 * 640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 641 * need to make sure the relevant context time is updated before we try and 642 * update our timestamps. 643 */ 644 645 static __always_inline enum perf_event_state 646 __perf_effective_state(struct perf_event *event) 647 { 648 struct perf_event *leader = event->group_leader; 649 650 if (leader->state <= PERF_EVENT_STATE_OFF) 651 return leader->state; 652 653 return event->state; 654 } 655 656 static __always_inline void 657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 658 { 659 enum perf_event_state state = __perf_effective_state(event); 660 u64 delta = now - event->tstamp; 661 662 *enabled = event->total_time_enabled; 663 if (state >= PERF_EVENT_STATE_INACTIVE) 664 *enabled += delta; 665 666 *running = event->total_time_running; 667 if (state >= PERF_EVENT_STATE_ACTIVE) 668 *running += delta; 669 } 670 671 static void perf_event_update_time(struct perf_event *event) 672 { 673 u64 now = perf_event_time(event); 674 675 __perf_update_times(event, now, &event->total_time_enabled, 676 &event->total_time_running); 677 event->tstamp = now; 678 } 679 680 static void perf_event_update_sibling_time(struct perf_event *leader) 681 { 682 struct perf_event *sibling; 683 684 for_each_sibling_event(sibling, leader) 685 perf_event_update_time(sibling); 686 } 687 688 static void 689 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 690 { 691 if (event->state == state) 692 return; 693 694 perf_event_update_time(event); 695 /* 696 * If a group leader gets enabled/disabled all its siblings 697 * are affected too. 698 */ 699 if ((event->state < 0) ^ (state < 0)) 700 perf_event_update_sibling_time(event); 701 702 WRITE_ONCE(event->state, state); 703 } 704 705 /* 706 * UP store-release, load-acquire 707 */ 708 709 #define __store_release(ptr, val) \ 710 do { \ 711 barrier(); \ 712 WRITE_ONCE(*(ptr), (val)); \ 713 } while (0) 714 715 #define __load_acquire(ptr) \ 716 ({ \ 717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 718 barrier(); \ 719 ___p; \ 720 }) 721 722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 724 if (_cgroup && !_epc->nr_cgroups) \ 725 continue; \ 726 else if (_pmu && _epc->pmu != _pmu) \ 727 continue; \ 728 else 729 730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 731 { 732 struct perf_event_pmu_context *pmu_ctx; 733 734 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 735 perf_pmu_disable(pmu_ctx->pmu); 736 } 737 738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 739 { 740 struct perf_event_pmu_context *pmu_ctx; 741 742 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 743 perf_pmu_enable(pmu_ctx->pmu); 744 } 745 746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 748 749 #ifdef CONFIG_CGROUP_PERF 750 751 static inline bool 752 perf_cgroup_match(struct perf_event *event) 753 { 754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 755 756 /* @event doesn't care about cgroup */ 757 if (!event->cgrp) 758 return true; 759 760 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 761 if (!cpuctx->cgrp) 762 return false; 763 764 /* 765 * Cgroup scoping is recursive. An event enabled for a cgroup is 766 * also enabled for all its descendant cgroups. If @cpuctx's 767 * cgroup is a descendant of @event's (the test covers identity 768 * case), it's a match. 769 */ 770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 771 event->cgrp->css.cgroup); 772 } 773 774 static inline void perf_detach_cgroup(struct perf_event *event) 775 { 776 css_put(&event->cgrp->css); 777 event->cgrp = NULL; 778 } 779 780 static inline int is_cgroup_event(struct perf_event *event) 781 { 782 return event->cgrp != NULL; 783 } 784 785 static inline u64 perf_cgroup_event_time(struct perf_event *event) 786 { 787 struct perf_cgroup_info *t; 788 789 t = per_cpu_ptr(event->cgrp->info, event->cpu); 790 return t->time; 791 } 792 793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 794 { 795 struct perf_cgroup_info *t; 796 797 t = per_cpu_ptr(event->cgrp->info, event->cpu); 798 if (!__load_acquire(&t->active)) 799 return t->time; 800 now += READ_ONCE(t->timeoffset); 801 return now; 802 } 803 804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 805 { 806 if (adv) 807 info->time += now - info->timestamp; 808 info->timestamp = now; 809 /* 810 * see update_context_time() 811 */ 812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 813 } 814 815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 816 { 817 struct perf_cgroup *cgrp = cpuctx->cgrp; 818 struct cgroup_subsys_state *css; 819 struct perf_cgroup_info *info; 820 821 if (cgrp) { 822 u64 now = perf_clock(); 823 824 for (css = &cgrp->css; css; css = css->parent) { 825 cgrp = container_of(css, struct perf_cgroup, css); 826 info = this_cpu_ptr(cgrp->info); 827 828 __update_cgrp_time(info, now, true); 829 if (final) 830 __store_release(&info->active, 0); 831 } 832 } 833 } 834 835 static inline void update_cgrp_time_from_event(struct perf_event *event) 836 { 837 struct perf_cgroup_info *info; 838 839 /* 840 * ensure we access cgroup data only when needed and 841 * when we know the cgroup is pinned (css_get) 842 */ 843 if (!is_cgroup_event(event)) 844 return; 845 846 info = this_cpu_ptr(event->cgrp->info); 847 /* 848 * Do not update time when cgroup is not active 849 */ 850 if (info->active) 851 __update_cgrp_time(info, perf_clock(), true); 852 } 853 854 static inline void 855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 856 { 857 struct perf_event_context *ctx = &cpuctx->ctx; 858 struct perf_cgroup *cgrp = cpuctx->cgrp; 859 struct perf_cgroup_info *info; 860 struct cgroup_subsys_state *css; 861 862 /* 863 * ctx->lock held by caller 864 * ensure we do not access cgroup data 865 * unless we have the cgroup pinned (css_get) 866 */ 867 if (!cgrp) 868 return; 869 870 WARN_ON_ONCE(!ctx->nr_cgroups); 871 872 for (css = &cgrp->css; css; css = css->parent) { 873 cgrp = container_of(css, struct perf_cgroup, css); 874 info = this_cpu_ptr(cgrp->info); 875 __update_cgrp_time(info, ctx->timestamp, false); 876 __store_release(&info->active, 1); 877 } 878 } 879 880 /* 881 * reschedule events based on the cgroup constraint of task. 882 */ 883 static void perf_cgroup_switch(struct task_struct *task) 884 { 885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 886 struct perf_cgroup *cgrp; 887 888 /* 889 * cpuctx->cgrp is set when the first cgroup event enabled, 890 * and is cleared when the last cgroup event disabled. 891 */ 892 if (READ_ONCE(cpuctx->cgrp) == NULL) 893 return; 894 895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 896 897 cgrp = perf_cgroup_from_task(task, NULL); 898 if (READ_ONCE(cpuctx->cgrp) == cgrp) 899 return; 900 901 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 902 perf_ctx_disable(&cpuctx->ctx, true); 903 904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 905 /* 906 * must not be done before ctxswout due 907 * to update_cgrp_time_from_cpuctx() in 908 * ctx_sched_out() 909 */ 910 cpuctx->cgrp = cgrp; 911 /* 912 * set cgrp before ctxsw in to allow 913 * perf_cgroup_set_timestamp() in ctx_sched_in() 914 * to not have to pass task around 915 */ 916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 917 918 perf_ctx_enable(&cpuctx->ctx, true); 919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 920 } 921 922 static int perf_cgroup_ensure_storage(struct perf_event *event, 923 struct cgroup_subsys_state *css) 924 { 925 struct perf_cpu_context *cpuctx; 926 struct perf_event **storage; 927 int cpu, heap_size, ret = 0; 928 929 /* 930 * Allow storage to have sufficient space for an iterator for each 931 * possibly nested cgroup plus an iterator for events with no cgroup. 932 */ 933 for (heap_size = 1; css; css = css->parent) 934 heap_size++; 935 936 for_each_possible_cpu(cpu) { 937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 938 if (heap_size <= cpuctx->heap_size) 939 continue; 940 941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 942 GFP_KERNEL, cpu_to_node(cpu)); 943 if (!storage) { 944 ret = -ENOMEM; 945 break; 946 } 947 948 raw_spin_lock_irq(&cpuctx->ctx.lock); 949 if (cpuctx->heap_size < heap_size) { 950 swap(cpuctx->heap, storage); 951 if (storage == cpuctx->heap_default) 952 storage = NULL; 953 cpuctx->heap_size = heap_size; 954 } 955 raw_spin_unlock_irq(&cpuctx->ctx.lock); 956 957 kfree(storage); 958 } 959 960 return ret; 961 } 962 963 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 964 struct perf_event_attr *attr, 965 struct perf_event *group_leader) 966 { 967 struct perf_cgroup *cgrp; 968 struct cgroup_subsys_state *css; 969 CLASS(fd, f)(fd); 970 int ret = 0; 971 972 if (fd_empty(f)) 973 return -EBADF; 974 975 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 976 &perf_event_cgrp_subsys); 977 if (IS_ERR(css)) 978 return PTR_ERR(css); 979 980 ret = perf_cgroup_ensure_storage(event, css); 981 if (ret) 982 return ret; 983 984 cgrp = container_of(css, struct perf_cgroup, css); 985 event->cgrp = cgrp; 986 987 /* 988 * all events in a group must monitor 989 * the same cgroup because a task belongs 990 * to only one perf cgroup at a time 991 */ 992 if (group_leader && group_leader->cgrp != cgrp) { 993 perf_detach_cgroup(event); 994 ret = -EINVAL; 995 } 996 return ret; 997 } 998 999 static inline void 1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1001 { 1002 struct perf_cpu_context *cpuctx; 1003 1004 if (!is_cgroup_event(event)) 1005 return; 1006 1007 event->pmu_ctx->nr_cgroups++; 1008 1009 /* 1010 * Because cgroup events are always per-cpu events, 1011 * @ctx == &cpuctx->ctx. 1012 */ 1013 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1014 1015 if (ctx->nr_cgroups++) 1016 return; 1017 1018 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1019 } 1020 1021 static inline void 1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1023 { 1024 struct perf_cpu_context *cpuctx; 1025 1026 if (!is_cgroup_event(event)) 1027 return; 1028 1029 event->pmu_ctx->nr_cgroups--; 1030 1031 /* 1032 * Because cgroup events are always per-cpu events, 1033 * @ctx == &cpuctx->ctx. 1034 */ 1035 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1036 1037 if (--ctx->nr_cgroups) 1038 return; 1039 1040 cpuctx->cgrp = NULL; 1041 } 1042 1043 #else /* !CONFIG_CGROUP_PERF */ 1044 1045 static inline bool 1046 perf_cgroup_match(struct perf_event *event) 1047 { 1048 return true; 1049 } 1050 1051 static inline void perf_detach_cgroup(struct perf_event *event) 1052 {} 1053 1054 static inline int is_cgroup_event(struct perf_event *event) 1055 { 1056 return 0; 1057 } 1058 1059 static inline void update_cgrp_time_from_event(struct perf_event *event) 1060 { 1061 } 1062 1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1064 bool final) 1065 { 1066 } 1067 1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1069 struct perf_event_attr *attr, 1070 struct perf_event *group_leader) 1071 { 1072 return -EINVAL; 1073 } 1074 1075 static inline void 1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1077 { 1078 } 1079 1080 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1081 { 1082 return 0; 1083 } 1084 1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1086 { 1087 return 0; 1088 } 1089 1090 static inline void 1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1092 { 1093 } 1094 1095 static inline void 1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1097 { 1098 } 1099 1100 static void perf_cgroup_switch(struct task_struct *task) 1101 { 1102 } 1103 #endif 1104 1105 /* 1106 * set default to be dependent on timer tick just 1107 * like original code 1108 */ 1109 #define PERF_CPU_HRTIMER (1000 / HZ) 1110 /* 1111 * function must be called with interrupts disabled 1112 */ 1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1114 { 1115 struct perf_cpu_pmu_context *cpc; 1116 bool rotations; 1117 1118 lockdep_assert_irqs_disabled(); 1119 1120 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1121 rotations = perf_rotate_context(cpc); 1122 1123 raw_spin_lock(&cpc->hrtimer_lock); 1124 if (rotations) 1125 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1126 else 1127 cpc->hrtimer_active = 0; 1128 raw_spin_unlock(&cpc->hrtimer_lock); 1129 1130 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1131 } 1132 1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1134 { 1135 struct hrtimer *timer = &cpc->hrtimer; 1136 struct pmu *pmu = cpc->epc.pmu; 1137 u64 interval; 1138 1139 /* 1140 * check default is sane, if not set then force to 1141 * default interval (1/tick) 1142 */ 1143 interval = pmu->hrtimer_interval_ms; 1144 if (interval < 1) 1145 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1146 1147 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1148 1149 raw_spin_lock_init(&cpc->hrtimer_lock); 1150 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1151 timer->function = perf_mux_hrtimer_handler; 1152 } 1153 1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1155 { 1156 struct hrtimer *timer = &cpc->hrtimer; 1157 unsigned long flags; 1158 1159 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1160 if (!cpc->hrtimer_active) { 1161 cpc->hrtimer_active = 1; 1162 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1163 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1164 } 1165 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1166 1167 return 0; 1168 } 1169 1170 static int perf_mux_hrtimer_restart_ipi(void *arg) 1171 { 1172 return perf_mux_hrtimer_restart(arg); 1173 } 1174 1175 void perf_pmu_disable(struct pmu *pmu) 1176 { 1177 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1178 if (!(*count)++) 1179 pmu->pmu_disable(pmu); 1180 } 1181 1182 void perf_pmu_enable(struct pmu *pmu) 1183 { 1184 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1185 if (!--(*count)) 1186 pmu->pmu_enable(pmu); 1187 } 1188 1189 static void perf_assert_pmu_disabled(struct pmu *pmu) 1190 { 1191 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1192 } 1193 1194 static void get_ctx(struct perf_event_context *ctx) 1195 { 1196 refcount_inc(&ctx->refcount); 1197 } 1198 1199 static void *alloc_task_ctx_data(struct pmu *pmu) 1200 { 1201 if (pmu->task_ctx_cache) 1202 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1203 1204 return NULL; 1205 } 1206 1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1208 { 1209 if (pmu->task_ctx_cache && task_ctx_data) 1210 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1211 } 1212 1213 static void free_ctx(struct rcu_head *head) 1214 { 1215 struct perf_event_context *ctx; 1216 1217 ctx = container_of(head, struct perf_event_context, rcu_head); 1218 kfree(ctx); 1219 } 1220 1221 static void put_ctx(struct perf_event_context *ctx) 1222 { 1223 if (refcount_dec_and_test(&ctx->refcount)) { 1224 if (ctx->parent_ctx) 1225 put_ctx(ctx->parent_ctx); 1226 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1227 put_task_struct(ctx->task); 1228 call_rcu(&ctx->rcu_head, free_ctx); 1229 } 1230 } 1231 1232 /* 1233 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1234 * perf_pmu_migrate_context() we need some magic. 1235 * 1236 * Those places that change perf_event::ctx will hold both 1237 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1238 * 1239 * Lock ordering is by mutex address. There are two other sites where 1240 * perf_event_context::mutex nests and those are: 1241 * 1242 * - perf_event_exit_task_context() [ child , 0 ] 1243 * perf_event_exit_event() 1244 * put_event() [ parent, 1 ] 1245 * 1246 * - perf_event_init_context() [ parent, 0 ] 1247 * inherit_task_group() 1248 * inherit_group() 1249 * inherit_event() 1250 * perf_event_alloc() 1251 * perf_init_event() 1252 * perf_try_init_event() [ child , 1 ] 1253 * 1254 * While it appears there is an obvious deadlock here -- the parent and child 1255 * nesting levels are inverted between the two. This is in fact safe because 1256 * life-time rules separate them. That is an exiting task cannot fork, and a 1257 * spawning task cannot (yet) exit. 1258 * 1259 * But remember that these are parent<->child context relations, and 1260 * migration does not affect children, therefore these two orderings should not 1261 * interact. 1262 * 1263 * The change in perf_event::ctx does not affect children (as claimed above) 1264 * because the sys_perf_event_open() case will install a new event and break 1265 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1266 * concerned with cpuctx and that doesn't have children. 1267 * 1268 * The places that change perf_event::ctx will issue: 1269 * 1270 * perf_remove_from_context(); 1271 * synchronize_rcu(); 1272 * perf_install_in_context(); 1273 * 1274 * to affect the change. The remove_from_context() + synchronize_rcu() should 1275 * quiesce the event, after which we can install it in the new location. This 1276 * means that only external vectors (perf_fops, prctl) can perturb the event 1277 * while in transit. Therefore all such accessors should also acquire 1278 * perf_event_context::mutex to serialize against this. 1279 * 1280 * However; because event->ctx can change while we're waiting to acquire 1281 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1282 * function. 1283 * 1284 * Lock order: 1285 * exec_update_lock 1286 * task_struct::perf_event_mutex 1287 * perf_event_context::mutex 1288 * perf_event::child_mutex; 1289 * perf_event_context::lock 1290 * mmap_lock 1291 * perf_event::mmap_mutex 1292 * perf_buffer::aux_mutex 1293 * perf_addr_filters_head::lock 1294 * 1295 * cpu_hotplug_lock 1296 * pmus_lock 1297 * cpuctx->mutex / perf_event_context::mutex 1298 */ 1299 static struct perf_event_context * 1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1301 { 1302 struct perf_event_context *ctx; 1303 1304 again: 1305 rcu_read_lock(); 1306 ctx = READ_ONCE(event->ctx); 1307 if (!refcount_inc_not_zero(&ctx->refcount)) { 1308 rcu_read_unlock(); 1309 goto again; 1310 } 1311 rcu_read_unlock(); 1312 1313 mutex_lock_nested(&ctx->mutex, nesting); 1314 if (event->ctx != ctx) { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 goto again; 1318 } 1319 1320 return ctx; 1321 } 1322 1323 static inline struct perf_event_context * 1324 perf_event_ctx_lock(struct perf_event *event) 1325 { 1326 return perf_event_ctx_lock_nested(event, 0); 1327 } 1328 1329 static void perf_event_ctx_unlock(struct perf_event *event, 1330 struct perf_event_context *ctx) 1331 { 1332 mutex_unlock(&ctx->mutex); 1333 put_ctx(ctx); 1334 } 1335 1336 /* 1337 * This must be done under the ctx->lock, such as to serialize against 1338 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1339 * calling scheduler related locks and ctx->lock nests inside those. 1340 */ 1341 static __must_check struct perf_event_context * 1342 unclone_ctx(struct perf_event_context *ctx) 1343 { 1344 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1345 1346 lockdep_assert_held(&ctx->lock); 1347 1348 if (parent_ctx) 1349 ctx->parent_ctx = NULL; 1350 ctx->generation++; 1351 1352 return parent_ctx; 1353 } 1354 1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1356 enum pid_type type) 1357 { 1358 u32 nr; 1359 /* 1360 * only top level events have the pid namespace they were created in 1361 */ 1362 if (event->parent) 1363 event = event->parent; 1364 1365 nr = __task_pid_nr_ns(p, type, event->ns); 1366 /* avoid -1 if it is idle thread or runs in another ns */ 1367 if (!nr && !pid_alive(p)) 1368 nr = -1; 1369 return nr; 1370 } 1371 1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1373 { 1374 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1375 } 1376 1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1378 { 1379 return perf_event_pid_type(event, p, PIDTYPE_PID); 1380 } 1381 1382 /* 1383 * If we inherit events we want to return the parent event id 1384 * to userspace. 1385 */ 1386 static u64 primary_event_id(struct perf_event *event) 1387 { 1388 u64 id = event->id; 1389 1390 if (event->parent) 1391 id = event->parent->id; 1392 1393 return id; 1394 } 1395 1396 /* 1397 * Get the perf_event_context for a task and lock it. 1398 * 1399 * This has to cope with the fact that until it is locked, 1400 * the context could get moved to another task. 1401 */ 1402 static struct perf_event_context * 1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1404 { 1405 struct perf_event_context *ctx; 1406 1407 retry: 1408 /* 1409 * One of the few rules of preemptible RCU is that one cannot do 1410 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1411 * part of the read side critical section was irqs-enabled -- see 1412 * rcu_read_unlock_special(). 1413 * 1414 * Since ctx->lock nests under rq->lock we must ensure the entire read 1415 * side critical section has interrupts disabled. 1416 */ 1417 local_irq_save(*flags); 1418 rcu_read_lock(); 1419 ctx = rcu_dereference(task->perf_event_ctxp); 1420 if (ctx) { 1421 /* 1422 * If this context is a clone of another, it might 1423 * get swapped for another underneath us by 1424 * perf_event_task_sched_out, though the 1425 * rcu_read_lock() protects us from any context 1426 * getting freed. Lock the context and check if it 1427 * got swapped before we could get the lock, and retry 1428 * if so. If we locked the right context, then it 1429 * can't get swapped on us any more. 1430 */ 1431 raw_spin_lock(&ctx->lock); 1432 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1433 raw_spin_unlock(&ctx->lock); 1434 rcu_read_unlock(); 1435 local_irq_restore(*flags); 1436 goto retry; 1437 } 1438 1439 if (ctx->task == TASK_TOMBSTONE || 1440 !refcount_inc_not_zero(&ctx->refcount)) { 1441 raw_spin_unlock(&ctx->lock); 1442 ctx = NULL; 1443 } else { 1444 WARN_ON_ONCE(ctx->task != task); 1445 } 1446 } 1447 rcu_read_unlock(); 1448 if (!ctx) 1449 local_irq_restore(*flags); 1450 return ctx; 1451 } 1452 1453 /* 1454 * Get the context for a task and increment its pin_count so it 1455 * can't get swapped to another task. This also increments its 1456 * reference count so that the context can't get freed. 1457 */ 1458 static struct perf_event_context * 1459 perf_pin_task_context(struct task_struct *task) 1460 { 1461 struct perf_event_context *ctx; 1462 unsigned long flags; 1463 1464 ctx = perf_lock_task_context(task, &flags); 1465 if (ctx) { 1466 ++ctx->pin_count; 1467 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1468 } 1469 return ctx; 1470 } 1471 1472 static void perf_unpin_context(struct perf_event_context *ctx) 1473 { 1474 unsigned long flags; 1475 1476 raw_spin_lock_irqsave(&ctx->lock, flags); 1477 --ctx->pin_count; 1478 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1479 } 1480 1481 /* 1482 * Update the record of the current time in a context. 1483 */ 1484 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1485 { 1486 u64 now = perf_clock(); 1487 1488 lockdep_assert_held(&ctx->lock); 1489 1490 if (adv) 1491 ctx->time += now - ctx->timestamp; 1492 ctx->timestamp = now; 1493 1494 /* 1495 * The above: time' = time + (now - timestamp), can be re-arranged 1496 * into: time` = now + (time - timestamp), which gives a single value 1497 * offset to compute future time without locks on. 1498 * 1499 * See perf_event_time_now(), which can be used from NMI context where 1500 * it's (obviously) not possible to acquire ctx->lock in order to read 1501 * both the above values in a consistent manner. 1502 */ 1503 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1504 } 1505 1506 static void update_context_time(struct perf_event_context *ctx) 1507 { 1508 __update_context_time(ctx, true); 1509 } 1510 1511 static u64 perf_event_time(struct perf_event *event) 1512 { 1513 struct perf_event_context *ctx = event->ctx; 1514 1515 if (unlikely(!ctx)) 1516 return 0; 1517 1518 if (is_cgroup_event(event)) 1519 return perf_cgroup_event_time(event); 1520 1521 return ctx->time; 1522 } 1523 1524 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1525 { 1526 struct perf_event_context *ctx = event->ctx; 1527 1528 if (unlikely(!ctx)) 1529 return 0; 1530 1531 if (is_cgroup_event(event)) 1532 return perf_cgroup_event_time_now(event, now); 1533 1534 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1535 return ctx->time; 1536 1537 now += READ_ONCE(ctx->timeoffset); 1538 return now; 1539 } 1540 1541 static enum event_type_t get_event_type(struct perf_event *event) 1542 { 1543 struct perf_event_context *ctx = event->ctx; 1544 enum event_type_t event_type; 1545 1546 lockdep_assert_held(&ctx->lock); 1547 1548 /* 1549 * It's 'group type', really, because if our group leader is 1550 * pinned, so are we. 1551 */ 1552 if (event->group_leader != event) 1553 event = event->group_leader; 1554 1555 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1556 if (!ctx->task) 1557 event_type |= EVENT_CPU; 1558 1559 return event_type; 1560 } 1561 1562 /* 1563 * Helper function to initialize event group nodes. 1564 */ 1565 static void init_event_group(struct perf_event *event) 1566 { 1567 RB_CLEAR_NODE(&event->group_node); 1568 event->group_index = 0; 1569 } 1570 1571 /* 1572 * Extract pinned or flexible groups from the context 1573 * based on event attrs bits. 1574 */ 1575 static struct perf_event_groups * 1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1577 { 1578 if (event->attr.pinned) 1579 return &ctx->pinned_groups; 1580 else 1581 return &ctx->flexible_groups; 1582 } 1583 1584 /* 1585 * Helper function to initializes perf_event_group trees. 1586 */ 1587 static void perf_event_groups_init(struct perf_event_groups *groups) 1588 { 1589 groups->tree = RB_ROOT; 1590 groups->index = 0; 1591 } 1592 1593 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1594 { 1595 struct cgroup *cgroup = NULL; 1596 1597 #ifdef CONFIG_CGROUP_PERF 1598 if (event->cgrp) 1599 cgroup = event->cgrp->css.cgroup; 1600 #endif 1601 1602 return cgroup; 1603 } 1604 1605 /* 1606 * Compare function for event groups; 1607 * 1608 * Implements complex key that first sorts by CPU and then by virtual index 1609 * which provides ordering when rotating groups for the same CPU. 1610 */ 1611 static __always_inline int 1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1613 const struct cgroup *left_cgroup, const u64 left_group_index, 1614 const struct perf_event *right) 1615 { 1616 if (left_cpu < right->cpu) 1617 return -1; 1618 if (left_cpu > right->cpu) 1619 return 1; 1620 1621 if (left_pmu) { 1622 if (left_pmu < right->pmu_ctx->pmu) 1623 return -1; 1624 if (left_pmu > right->pmu_ctx->pmu) 1625 return 1; 1626 } 1627 1628 #ifdef CONFIG_CGROUP_PERF 1629 { 1630 const struct cgroup *right_cgroup = event_cgroup(right); 1631 1632 if (left_cgroup != right_cgroup) { 1633 if (!left_cgroup) { 1634 /* 1635 * Left has no cgroup but right does, no 1636 * cgroups come first. 1637 */ 1638 return -1; 1639 } 1640 if (!right_cgroup) { 1641 /* 1642 * Right has no cgroup but left does, no 1643 * cgroups come first. 1644 */ 1645 return 1; 1646 } 1647 /* Two dissimilar cgroups, order by id. */ 1648 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1649 return -1; 1650 1651 return 1; 1652 } 1653 } 1654 #endif 1655 1656 if (left_group_index < right->group_index) 1657 return -1; 1658 if (left_group_index > right->group_index) 1659 return 1; 1660 1661 return 0; 1662 } 1663 1664 #define __node_2_pe(node) \ 1665 rb_entry((node), struct perf_event, group_node) 1666 1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1668 { 1669 struct perf_event *e = __node_2_pe(a); 1670 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1671 e->group_index, __node_2_pe(b)) < 0; 1672 } 1673 1674 struct __group_key { 1675 int cpu; 1676 struct pmu *pmu; 1677 struct cgroup *cgroup; 1678 }; 1679 1680 static inline int __group_cmp(const void *key, const struct rb_node *node) 1681 { 1682 const struct __group_key *a = key; 1683 const struct perf_event *b = __node_2_pe(node); 1684 1685 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1686 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1687 } 1688 1689 static inline int 1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1691 { 1692 const struct __group_key *a = key; 1693 const struct perf_event *b = __node_2_pe(node); 1694 1695 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1696 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1697 b->group_index, b); 1698 } 1699 1700 /* 1701 * Insert @event into @groups' tree; using 1702 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1703 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1704 */ 1705 static void 1706 perf_event_groups_insert(struct perf_event_groups *groups, 1707 struct perf_event *event) 1708 { 1709 event->group_index = ++groups->index; 1710 1711 rb_add(&event->group_node, &groups->tree, __group_less); 1712 } 1713 1714 /* 1715 * Helper function to insert event into the pinned or flexible groups. 1716 */ 1717 static void 1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1719 { 1720 struct perf_event_groups *groups; 1721 1722 groups = get_event_groups(event, ctx); 1723 perf_event_groups_insert(groups, event); 1724 } 1725 1726 /* 1727 * Delete a group from a tree. 1728 */ 1729 static void 1730 perf_event_groups_delete(struct perf_event_groups *groups, 1731 struct perf_event *event) 1732 { 1733 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1734 RB_EMPTY_ROOT(&groups->tree)); 1735 1736 rb_erase(&event->group_node, &groups->tree); 1737 init_event_group(event); 1738 } 1739 1740 /* 1741 * Helper function to delete event from its groups. 1742 */ 1743 static void 1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1745 { 1746 struct perf_event_groups *groups; 1747 1748 groups = get_event_groups(event, ctx); 1749 perf_event_groups_delete(groups, event); 1750 } 1751 1752 /* 1753 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1754 */ 1755 static struct perf_event * 1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1757 struct pmu *pmu, struct cgroup *cgrp) 1758 { 1759 struct __group_key key = { 1760 .cpu = cpu, 1761 .pmu = pmu, 1762 .cgroup = cgrp, 1763 }; 1764 struct rb_node *node; 1765 1766 node = rb_find_first(&key, &groups->tree, __group_cmp); 1767 if (node) 1768 return __node_2_pe(node); 1769 1770 return NULL; 1771 } 1772 1773 static struct perf_event * 1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1775 { 1776 struct __group_key key = { 1777 .cpu = event->cpu, 1778 .pmu = pmu, 1779 .cgroup = event_cgroup(event), 1780 }; 1781 struct rb_node *next; 1782 1783 next = rb_next_match(&key, &event->group_node, __group_cmp); 1784 if (next) 1785 return __node_2_pe(next); 1786 1787 return NULL; 1788 } 1789 1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1791 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1792 event; event = perf_event_groups_next(event, pmu)) 1793 1794 /* 1795 * Iterate through the whole groups tree. 1796 */ 1797 #define perf_event_groups_for_each(event, groups) \ 1798 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1799 typeof(*event), group_node); event; \ 1800 event = rb_entry_safe(rb_next(&event->group_node), \ 1801 typeof(*event), group_node)) 1802 1803 /* 1804 * Does the event attribute request inherit with PERF_SAMPLE_READ 1805 */ 1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1807 { 1808 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1809 } 1810 1811 /* 1812 * Add an event from the lists for its context. 1813 * Must be called with ctx->mutex and ctx->lock held. 1814 */ 1815 static void 1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1817 { 1818 lockdep_assert_held(&ctx->lock); 1819 1820 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1821 event->attach_state |= PERF_ATTACH_CONTEXT; 1822 1823 event->tstamp = perf_event_time(event); 1824 1825 /* 1826 * If we're a stand alone event or group leader, we go to the context 1827 * list, group events are kept attached to the group so that 1828 * perf_group_detach can, at all times, locate all siblings. 1829 */ 1830 if (event->group_leader == event) { 1831 event->group_caps = event->event_caps; 1832 add_event_to_groups(event, ctx); 1833 } 1834 1835 list_add_rcu(&event->event_entry, &ctx->event_list); 1836 ctx->nr_events++; 1837 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1838 ctx->nr_user++; 1839 if (event->attr.inherit_stat) 1840 ctx->nr_stat++; 1841 if (has_inherit_and_sample_read(&event->attr)) 1842 local_inc(&ctx->nr_no_switch_fast); 1843 1844 if (event->state > PERF_EVENT_STATE_OFF) 1845 perf_cgroup_event_enable(event, ctx); 1846 1847 ctx->generation++; 1848 event->pmu_ctx->nr_events++; 1849 } 1850 1851 /* 1852 * Initialize event state based on the perf_event_attr::disabled. 1853 */ 1854 static inline void perf_event__state_init(struct perf_event *event) 1855 { 1856 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1857 PERF_EVENT_STATE_INACTIVE; 1858 } 1859 1860 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1861 { 1862 int entry = sizeof(u64); /* value */ 1863 int size = 0; 1864 int nr = 1; 1865 1866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1867 size += sizeof(u64); 1868 1869 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1870 size += sizeof(u64); 1871 1872 if (read_format & PERF_FORMAT_ID) 1873 entry += sizeof(u64); 1874 1875 if (read_format & PERF_FORMAT_LOST) 1876 entry += sizeof(u64); 1877 1878 if (read_format & PERF_FORMAT_GROUP) { 1879 nr += nr_siblings; 1880 size += sizeof(u64); 1881 } 1882 1883 /* 1884 * Since perf_event_validate_size() limits this to 16k and inhibits 1885 * adding more siblings, this will never overflow. 1886 */ 1887 return size + nr * entry; 1888 } 1889 1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1891 { 1892 struct perf_sample_data *data; 1893 u16 size = 0; 1894 1895 if (sample_type & PERF_SAMPLE_IP) 1896 size += sizeof(data->ip); 1897 1898 if (sample_type & PERF_SAMPLE_ADDR) 1899 size += sizeof(data->addr); 1900 1901 if (sample_type & PERF_SAMPLE_PERIOD) 1902 size += sizeof(data->period); 1903 1904 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1905 size += sizeof(data->weight.full); 1906 1907 if (sample_type & PERF_SAMPLE_READ) 1908 size += event->read_size; 1909 1910 if (sample_type & PERF_SAMPLE_DATA_SRC) 1911 size += sizeof(data->data_src.val); 1912 1913 if (sample_type & PERF_SAMPLE_TRANSACTION) 1914 size += sizeof(data->txn); 1915 1916 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1917 size += sizeof(data->phys_addr); 1918 1919 if (sample_type & PERF_SAMPLE_CGROUP) 1920 size += sizeof(data->cgroup); 1921 1922 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1923 size += sizeof(data->data_page_size); 1924 1925 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1926 size += sizeof(data->code_page_size); 1927 1928 event->header_size = size; 1929 } 1930 1931 /* 1932 * Called at perf_event creation and when events are attached/detached from a 1933 * group. 1934 */ 1935 static void perf_event__header_size(struct perf_event *event) 1936 { 1937 event->read_size = 1938 __perf_event_read_size(event->attr.read_format, 1939 event->group_leader->nr_siblings); 1940 __perf_event_header_size(event, event->attr.sample_type); 1941 } 1942 1943 static void perf_event__id_header_size(struct perf_event *event) 1944 { 1945 struct perf_sample_data *data; 1946 u64 sample_type = event->attr.sample_type; 1947 u16 size = 0; 1948 1949 if (sample_type & PERF_SAMPLE_TID) 1950 size += sizeof(data->tid_entry); 1951 1952 if (sample_type & PERF_SAMPLE_TIME) 1953 size += sizeof(data->time); 1954 1955 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1956 size += sizeof(data->id); 1957 1958 if (sample_type & PERF_SAMPLE_ID) 1959 size += sizeof(data->id); 1960 1961 if (sample_type & PERF_SAMPLE_STREAM_ID) 1962 size += sizeof(data->stream_id); 1963 1964 if (sample_type & PERF_SAMPLE_CPU) 1965 size += sizeof(data->cpu_entry); 1966 1967 event->id_header_size = size; 1968 } 1969 1970 /* 1971 * Check that adding an event to the group does not result in anybody 1972 * overflowing the 64k event limit imposed by the output buffer. 1973 * 1974 * Specifically, check that the read_size for the event does not exceed 16k, 1975 * read_size being the one term that grows with groups size. Since read_size 1976 * depends on per-event read_format, also (re)check the existing events. 1977 * 1978 * This leaves 48k for the constant size fields and things like callchains, 1979 * branch stacks and register sets. 1980 */ 1981 static bool perf_event_validate_size(struct perf_event *event) 1982 { 1983 struct perf_event *sibling, *group_leader = event->group_leader; 1984 1985 if (__perf_event_read_size(event->attr.read_format, 1986 group_leader->nr_siblings + 1) > 16*1024) 1987 return false; 1988 1989 if (__perf_event_read_size(group_leader->attr.read_format, 1990 group_leader->nr_siblings + 1) > 16*1024) 1991 return false; 1992 1993 /* 1994 * When creating a new group leader, group_leader->ctx is initialized 1995 * after the size has been validated, but we cannot safely use 1996 * for_each_sibling_event() until group_leader->ctx is set. A new group 1997 * leader cannot have any siblings yet, so we can safely skip checking 1998 * the non-existent siblings. 1999 */ 2000 if (event == group_leader) 2001 return true; 2002 2003 for_each_sibling_event(sibling, group_leader) { 2004 if (__perf_event_read_size(sibling->attr.read_format, 2005 group_leader->nr_siblings + 1) > 16*1024) 2006 return false; 2007 } 2008 2009 return true; 2010 } 2011 2012 static void perf_group_attach(struct perf_event *event) 2013 { 2014 struct perf_event *group_leader = event->group_leader, *pos; 2015 2016 lockdep_assert_held(&event->ctx->lock); 2017 2018 /* 2019 * We can have double attach due to group movement (move_group) in 2020 * perf_event_open(). 2021 */ 2022 if (event->attach_state & PERF_ATTACH_GROUP) 2023 return; 2024 2025 event->attach_state |= PERF_ATTACH_GROUP; 2026 2027 if (group_leader == event) 2028 return; 2029 2030 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2031 2032 group_leader->group_caps &= event->event_caps; 2033 2034 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2035 group_leader->nr_siblings++; 2036 group_leader->group_generation++; 2037 2038 perf_event__header_size(group_leader); 2039 2040 for_each_sibling_event(pos, group_leader) 2041 perf_event__header_size(pos); 2042 } 2043 2044 /* 2045 * Remove an event from the lists for its context. 2046 * Must be called with ctx->mutex and ctx->lock held. 2047 */ 2048 static void 2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2050 { 2051 WARN_ON_ONCE(event->ctx != ctx); 2052 lockdep_assert_held(&ctx->lock); 2053 2054 /* 2055 * We can have double detach due to exit/hot-unplug + close. 2056 */ 2057 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2058 return; 2059 2060 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2061 2062 ctx->nr_events--; 2063 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2064 ctx->nr_user--; 2065 if (event->attr.inherit_stat) 2066 ctx->nr_stat--; 2067 if (has_inherit_and_sample_read(&event->attr)) 2068 local_dec(&ctx->nr_no_switch_fast); 2069 2070 list_del_rcu(&event->event_entry); 2071 2072 if (event->group_leader == event) 2073 del_event_from_groups(event, ctx); 2074 2075 /* 2076 * If event was in error state, then keep it 2077 * that way, otherwise bogus counts will be 2078 * returned on read(). The only way to get out 2079 * of error state is by explicit re-enabling 2080 * of the event 2081 */ 2082 if (event->state > PERF_EVENT_STATE_OFF) { 2083 perf_cgroup_event_disable(event, ctx); 2084 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2085 } 2086 2087 ctx->generation++; 2088 event->pmu_ctx->nr_events--; 2089 } 2090 2091 static int 2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2093 { 2094 if (!has_aux(aux_event)) 2095 return 0; 2096 2097 if (!event->pmu->aux_output_match) 2098 return 0; 2099 2100 return event->pmu->aux_output_match(aux_event); 2101 } 2102 2103 static void put_event(struct perf_event *event); 2104 static void event_sched_out(struct perf_event *event, 2105 struct perf_event_context *ctx); 2106 2107 static void perf_put_aux_event(struct perf_event *event) 2108 { 2109 struct perf_event_context *ctx = event->ctx; 2110 struct perf_event *iter; 2111 2112 /* 2113 * If event uses aux_event tear down the link 2114 */ 2115 if (event->aux_event) { 2116 iter = event->aux_event; 2117 event->aux_event = NULL; 2118 put_event(iter); 2119 return; 2120 } 2121 2122 /* 2123 * If the event is an aux_event, tear down all links to 2124 * it from other events. 2125 */ 2126 for_each_sibling_event(iter, event->group_leader) { 2127 if (iter->aux_event != event) 2128 continue; 2129 2130 iter->aux_event = NULL; 2131 put_event(event); 2132 2133 /* 2134 * If it's ACTIVE, schedule it out and put it into ERROR 2135 * state so that we don't try to schedule it again. Note 2136 * that perf_event_enable() will clear the ERROR status. 2137 */ 2138 event_sched_out(iter, ctx); 2139 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2140 } 2141 } 2142 2143 static bool perf_need_aux_event(struct perf_event *event) 2144 { 2145 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2146 } 2147 2148 static int perf_get_aux_event(struct perf_event *event, 2149 struct perf_event *group_leader) 2150 { 2151 /* 2152 * Our group leader must be an aux event if we want to be 2153 * an aux_output. This way, the aux event will precede its 2154 * aux_output events in the group, and therefore will always 2155 * schedule first. 2156 */ 2157 if (!group_leader) 2158 return 0; 2159 2160 /* 2161 * aux_output and aux_sample_size are mutually exclusive. 2162 */ 2163 if (event->attr.aux_output && event->attr.aux_sample_size) 2164 return 0; 2165 2166 if (event->attr.aux_output && 2167 !perf_aux_output_match(event, group_leader)) 2168 return 0; 2169 2170 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2171 return 0; 2172 2173 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2174 return 0; 2175 2176 /* 2177 * Link aux_outputs to their aux event; this is undone in 2178 * perf_group_detach() by perf_put_aux_event(). When the 2179 * group in torn down, the aux_output events loose their 2180 * link to the aux_event and can't schedule any more. 2181 */ 2182 event->aux_event = group_leader; 2183 2184 return 1; 2185 } 2186 2187 static inline struct list_head *get_event_list(struct perf_event *event) 2188 { 2189 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2190 &event->pmu_ctx->flexible_active; 2191 } 2192 2193 /* 2194 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2195 * cannot exist on their own, schedule them out and move them into the ERROR 2196 * state. Also see _perf_event_enable(), it will not be able to recover 2197 * this ERROR state. 2198 */ 2199 static inline void perf_remove_sibling_event(struct perf_event *event) 2200 { 2201 event_sched_out(event, event->ctx); 2202 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2203 } 2204 2205 static void perf_group_detach(struct perf_event *event) 2206 { 2207 struct perf_event *leader = event->group_leader; 2208 struct perf_event *sibling, *tmp; 2209 struct perf_event_context *ctx = event->ctx; 2210 2211 lockdep_assert_held(&ctx->lock); 2212 2213 /* 2214 * We can have double detach due to exit/hot-unplug + close. 2215 */ 2216 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2217 return; 2218 2219 event->attach_state &= ~PERF_ATTACH_GROUP; 2220 2221 perf_put_aux_event(event); 2222 2223 /* 2224 * If this is a sibling, remove it from its group. 2225 */ 2226 if (leader != event) { 2227 list_del_init(&event->sibling_list); 2228 event->group_leader->nr_siblings--; 2229 event->group_leader->group_generation++; 2230 goto out; 2231 } 2232 2233 /* 2234 * If this was a group event with sibling events then 2235 * upgrade the siblings to singleton events by adding them 2236 * to whatever list we are on. 2237 */ 2238 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2239 2240 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2241 perf_remove_sibling_event(sibling); 2242 2243 sibling->group_leader = sibling; 2244 list_del_init(&sibling->sibling_list); 2245 2246 /* Inherit group flags from the previous leader */ 2247 sibling->group_caps = event->group_caps; 2248 2249 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2250 add_event_to_groups(sibling, event->ctx); 2251 2252 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2253 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2254 } 2255 2256 WARN_ON_ONCE(sibling->ctx != event->ctx); 2257 } 2258 2259 out: 2260 for_each_sibling_event(tmp, leader) 2261 perf_event__header_size(tmp); 2262 2263 perf_event__header_size(leader); 2264 } 2265 2266 static void sync_child_event(struct perf_event *child_event); 2267 2268 static void perf_child_detach(struct perf_event *event) 2269 { 2270 struct perf_event *parent_event = event->parent; 2271 2272 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2273 return; 2274 2275 event->attach_state &= ~PERF_ATTACH_CHILD; 2276 2277 if (WARN_ON_ONCE(!parent_event)) 2278 return; 2279 2280 lockdep_assert_held(&parent_event->child_mutex); 2281 2282 sync_child_event(event); 2283 list_del_init(&event->child_list); 2284 } 2285 2286 static bool is_orphaned_event(struct perf_event *event) 2287 { 2288 return event->state == PERF_EVENT_STATE_DEAD; 2289 } 2290 2291 static inline int 2292 event_filter_match(struct perf_event *event) 2293 { 2294 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2295 perf_cgroup_match(event); 2296 } 2297 2298 static void 2299 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2300 { 2301 struct perf_event_pmu_context *epc = event->pmu_ctx; 2302 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2303 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2304 2305 // XXX cpc serialization, probably per-cpu IRQ disabled 2306 2307 WARN_ON_ONCE(event->ctx != ctx); 2308 lockdep_assert_held(&ctx->lock); 2309 2310 if (event->state != PERF_EVENT_STATE_ACTIVE) 2311 return; 2312 2313 /* 2314 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2315 * we can schedule events _OUT_ individually through things like 2316 * __perf_remove_from_context(). 2317 */ 2318 list_del_init(&event->active_list); 2319 2320 perf_pmu_disable(event->pmu); 2321 2322 event->pmu->del(event, 0); 2323 event->oncpu = -1; 2324 2325 if (event->pending_disable) { 2326 event->pending_disable = 0; 2327 perf_cgroup_event_disable(event, ctx); 2328 state = PERF_EVENT_STATE_OFF; 2329 } 2330 2331 perf_event_set_state(event, state); 2332 2333 if (!is_software_event(event)) 2334 cpc->active_oncpu--; 2335 if (event->attr.freq && event->attr.sample_freq) { 2336 ctx->nr_freq--; 2337 epc->nr_freq--; 2338 } 2339 if (event->attr.exclusive || !cpc->active_oncpu) 2340 cpc->exclusive = 0; 2341 2342 perf_pmu_enable(event->pmu); 2343 } 2344 2345 static void 2346 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2347 { 2348 struct perf_event *event; 2349 2350 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2351 return; 2352 2353 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2354 2355 event_sched_out(group_event, ctx); 2356 2357 /* 2358 * Schedule out siblings (if any): 2359 */ 2360 for_each_sibling_event(event, group_event) 2361 event_sched_out(event, ctx); 2362 } 2363 2364 static inline void 2365 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2366 { 2367 if (ctx->is_active & EVENT_TIME) { 2368 if (ctx->is_active & EVENT_FROZEN) 2369 return; 2370 update_context_time(ctx); 2371 update_cgrp_time_from_cpuctx(cpuctx, final); 2372 } 2373 } 2374 2375 static inline void 2376 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2377 { 2378 __ctx_time_update(cpuctx, ctx, false); 2379 } 2380 2381 /* 2382 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2383 */ 2384 static inline void 2385 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2386 { 2387 ctx_time_update(cpuctx, ctx); 2388 if (ctx->is_active & EVENT_TIME) 2389 ctx->is_active |= EVENT_FROZEN; 2390 } 2391 2392 static inline void 2393 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2394 { 2395 if (ctx->is_active & EVENT_TIME) { 2396 if (ctx->is_active & EVENT_FROZEN) 2397 return; 2398 update_context_time(ctx); 2399 update_cgrp_time_from_event(event); 2400 } 2401 } 2402 2403 #define DETACH_GROUP 0x01UL 2404 #define DETACH_CHILD 0x02UL 2405 #define DETACH_DEAD 0x04UL 2406 2407 /* 2408 * Cross CPU call to remove a performance event 2409 * 2410 * We disable the event on the hardware level first. After that we 2411 * remove it from the context list. 2412 */ 2413 static void 2414 __perf_remove_from_context(struct perf_event *event, 2415 struct perf_cpu_context *cpuctx, 2416 struct perf_event_context *ctx, 2417 void *info) 2418 { 2419 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2420 unsigned long flags = (unsigned long)info; 2421 2422 ctx_time_update(cpuctx, ctx); 2423 2424 /* 2425 * Ensure event_sched_out() switches to OFF, at the very least 2426 * this avoids raising perf_pending_task() at this time. 2427 */ 2428 if (flags & DETACH_DEAD) 2429 event->pending_disable = 1; 2430 event_sched_out(event, ctx); 2431 if (flags & DETACH_GROUP) 2432 perf_group_detach(event); 2433 if (flags & DETACH_CHILD) 2434 perf_child_detach(event); 2435 list_del_event(event, ctx); 2436 if (flags & DETACH_DEAD) 2437 event->state = PERF_EVENT_STATE_DEAD; 2438 2439 if (!pmu_ctx->nr_events) { 2440 pmu_ctx->rotate_necessary = 0; 2441 2442 if (ctx->task && ctx->is_active) { 2443 struct perf_cpu_pmu_context *cpc; 2444 2445 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2446 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2447 cpc->task_epc = NULL; 2448 } 2449 } 2450 2451 if (!ctx->nr_events && ctx->is_active) { 2452 if (ctx == &cpuctx->ctx) 2453 update_cgrp_time_from_cpuctx(cpuctx, true); 2454 2455 ctx->is_active = 0; 2456 if (ctx->task) { 2457 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2458 cpuctx->task_ctx = NULL; 2459 } 2460 } 2461 } 2462 2463 /* 2464 * Remove the event from a task's (or a CPU's) list of events. 2465 * 2466 * If event->ctx is a cloned context, callers must make sure that 2467 * every task struct that event->ctx->task could possibly point to 2468 * remains valid. This is OK when called from perf_release since 2469 * that only calls us on the top-level context, which can't be a clone. 2470 * When called from perf_event_exit_task, it's OK because the 2471 * context has been detached from its task. 2472 */ 2473 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2474 { 2475 struct perf_event_context *ctx = event->ctx; 2476 2477 lockdep_assert_held(&ctx->mutex); 2478 2479 /* 2480 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2481 * to work in the face of TASK_TOMBSTONE, unlike every other 2482 * event_function_call() user. 2483 */ 2484 raw_spin_lock_irq(&ctx->lock); 2485 if (!ctx->is_active) { 2486 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2487 ctx, (void *)flags); 2488 raw_spin_unlock_irq(&ctx->lock); 2489 return; 2490 } 2491 raw_spin_unlock_irq(&ctx->lock); 2492 2493 event_function_call(event, __perf_remove_from_context, (void *)flags); 2494 } 2495 2496 /* 2497 * Cross CPU call to disable a performance event 2498 */ 2499 static void __perf_event_disable(struct perf_event *event, 2500 struct perf_cpu_context *cpuctx, 2501 struct perf_event_context *ctx, 2502 void *info) 2503 { 2504 if (event->state < PERF_EVENT_STATE_INACTIVE) 2505 return; 2506 2507 perf_pmu_disable(event->pmu_ctx->pmu); 2508 ctx_time_update_event(ctx, event); 2509 2510 if (event == event->group_leader) 2511 group_sched_out(event, ctx); 2512 else 2513 event_sched_out(event, ctx); 2514 2515 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2516 perf_cgroup_event_disable(event, ctx); 2517 2518 perf_pmu_enable(event->pmu_ctx->pmu); 2519 } 2520 2521 /* 2522 * Disable an event. 2523 * 2524 * If event->ctx is a cloned context, callers must make sure that 2525 * every task struct that event->ctx->task could possibly point to 2526 * remains valid. This condition is satisfied when called through 2527 * perf_event_for_each_child or perf_event_for_each because they 2528 * hold the top-level event's child_mutex, so any descendant that 2529 * goes to exit will block in perf_event_exit_event(). 2530 * 2531 * When called from perf_pending_disable it's OK because event->ctx 2532 * is the current context on this CPU and preemption is disabled, 2533 * hence we can't get into perf_event_task_sched_out for this context. 2534 */ 2535 static void _perf_event_disable(struct perf_event *event) 2536 { 2537 struct perf_event_context *ctx = event->ctx; 2538 2539 raw_spin_lock_irq(&ctx->lock); 2540 if (event->state <= PERF_EVENT_STATE_OFF) { 2541 raw_spin_unlock_irq(&ctx->lock); 2542 return; 2543 } 2544 raw_spin_unlock_irq(&ctx->lock); 2545 2546 event_function_call(event, __perf_event_disable, NULL); 2547 } 2548 2549 void perf_event_disable_local(struct perf_event *event) 2550 { 2551 event_function_local(event, __perf_event_disable, NULL); 2552 } 2553 2554 /* 2555 * Strictly speaking kernel users cannot create groups and therefore this 2556 * interface does not need the perf_event_ctx_lock() magic. 2557 */ 2558 void perf_event_disable(struct perf_event *event) 2559 { 2560 struct perf_event_context *ctx; 2561 2562 ctx = perf_event_ctx_lock(event); 2563 _perf_event_disable(event); 2564 perf_event_ctx_unlock(event, ctx); 2565 } 2566 EXPORT_SYMBOL_GPL(perf_event_disable); 2567 2568 void perf_event_disable_inatomic(struct perf_event *event) 2569 { 2570 event->pending_disable = 1; 2571 irq_work_queue(&event->pending_disable_irq); 2572 } 2573 2574 #define MAX_INTERRUPTS (~0ULL) 2575 2576 static void perf_log_throttle(struct perf_event *event, int enable); 2577 static void perf_log_itrace_start(struct perf_event *event); 2578 2579 static int 2580 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2581 { 2582 struct perf_event_pmu_context *epc = event->pmu_ctx; 2583 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2584 int ret = 0; 2585 2586 WARN_ON_ONCE(event->ctx != ctx); 2587 2588 lockdep_assert_held(&ctx->lock); 2589 2590 if (event->state <= PERF_EVENT_STATE_OFF) 2591 return 0; 2592 2593 WRITE_ONCE(event->oncpu, smp_processor_id()); 2594 /* 2595 * Order event::oncpu write to happen before the ACTIVE state is 2596 * visible. This allows perf_event_{stop,read}() to observe the correct 2597 * ->oncpu if it sees ACTIVE. 2598 */ 2599 smp_wmb(); 2600 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2601 2602 /* 2603 * Unthrottle events, since we scheduled we might have missed several 2604 * ticks already, also for a heavily scheduling task there is little 2605 * guarantee it'll get a tick in a timely manner. 2606 */ 2607 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2608 perf_log_throttle(event, 1); 2609 event->hw.interrupts = 0; 2610 } 2611 2612 perf_pmu_disable(event->pmu); 2613 2614 perf_log_itrace_start(event); 2615 2616 if (event->pmu->add(event, PERF_EF_START)) { 2617 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2618 event->oncpu = -1; 2619 ret = -EAGAIN; 2620 goto out; 2621 } 2622 2623 if (!is_software_event(event)) 2624 cpc->active_oncpu++; 2625 if (event->attr.freq && event->attr.sample_freq) { 2626 ctx->nr_freq++; 2627 epc->nr_freq++; 2628 } 2629 if (event->attr.exclusive) 2630 cpc->exclusive = 1; 2631 2632 out: 2633 perf_pmu_enable(event->pmu); 2634 2635 return ret; 2636 } 2637 2638 static int 2639 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2640 { 2641 struct perf_event *event, *partial_group = NULL; 2642 struct pmu *pmu = group_event->pmu_ctx->pmu; 2643 2644 if (group_event->state == PERF_EVENT_STATE_OFF) 2645 return 0; 2646 2647 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2648 2649 if (event_sched_in(group_event, ctx)) 2650 goto error; 2651 2652 /* 2653 * Schedule in siblings as one group (if any): 2654 */ 2655 for_each_sibling_event(event, group_event) { 2656 if (event_sched_in(event, ctx)) { 2657 partial_group = event; 2658 goto group_error; 2659 } 2660 } 2661 2662 if (!pmu->commit_txn(pmu)) 2663 return 0; 2664 2665 group_error: 2666 /* 2667 * Groups can be scheduled in as one unit only, so undo any 2668 * partial group before returning: 2669 * The events up to the failed event are scheduled out normally. 2670 */ 2671 for_each_sibling_event(event, group_event) { 2672 if (event == partial_group) 2673 break; 2674 2675 event_sched_out(event, ctx); 2676 } 2677 event_sched_out(group_event, ctx); 2678 2679 error: 2680 pmu->cancel_txn(pmu); 2681 return -EAGAIN; 2682 } 2683 2684 /* 2685 * Work out whether we can put this event group on the CPU now. 2686 */ 2687 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2688 { 2689 struct perf_event_pmu_context *epc = event->pmu_ctx; 2690 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2691 2692 /* 2693 * Groups consisting entirely of software events can always go on. 2694 */ 2695 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2696 return 1; 2697 /* 2698 * If an exclusive group is already on, no other hardware 2699 * events can go on. 2700 */ 2701 if (cpc->exclusive) 2702 return 0; 2703 /* 2704 * If this group is exclusive and there are already 2705 * events on the CPU, it can't go on. 2706 */ 2707 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2708 return 0; 2709 /* 2710 * Otherwise, try to add it if all previous groups were able 2711 * to go on. 2712 */ 2713 return can_add_hw; 2714 } 2715 2716 static void add_event_to_ctx(struct perf_event *event, 2717 struct perf_event_context *ctx) 2718 { 2719 list_add_event(event, ctx); 2720 perf_group_attach(event); 2721 } 2722 2723 static void task_ctx_sched_out(struct perf_event_context *ctx, 2724 struct pmu *pmu, 2725 enum event_type_t event_type) 2726 { 2727 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2728 2729 if (!cpuctx->task_ctx) 2730 return; 2731 2732 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2733 return; 2734 2735 ctx_sched_out(ctx, pmu, event_type); 2736 } 2737 2738 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2739 struct perf_event_context *ctx, 2740 struct pmu *pmu) 2741 { 2742 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2743 if (ctx) 2744 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2745 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2746 if (ctx) 2747 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2748 } 2749 2750 /* 2751 * We want to maintain the following priority of scheduling: 2752 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2753 * - task pinned (EVENT_PINNED) 2754 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2755 * - task flexible (EVENT_FLEXIBLE). 2756 * 2757 * In order to avoid unscheduling and scheduling back in everything every 2758 * time an event is added, only do it for the groups of equal priority and 2759 * below. 2760 * 2761 * This can be called after a batch operation on task events, in which case 2762 * event_type is a bit mask of the types of events involved. For CPU events, 2763 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2764 */ 2765 static void ctx_resched(struct perf_cpu_context *cpuctx, 2766 struct perf_event_context *task_ctx, 2767 struct pmu *pmu, enum event_type_t event_type) 2768 { 2769 bool cpu_event = !!(event_type & EVENT_CPU); 2770 struct perf_event_pmu_context *epc; 2771 2772 /* 2773 * If pinned groups are involved, flexible groups also need to be 2774 * scheduled out. 2775 */ 2776 if (event_type & EVENT_PINNED) 2777 event_type |= EVENT_FLEXIBLE; 2778 2779 event_type &= EVENT_ALL; 2780 2781 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2782 perf_pmu_disable(epc->pmu); 2783 2784 if (task_ctx) { 2785 for_each_epc(epc, task_ctx, pmu, false) 2786 perf_pmu_disable(epc->pmu); 2787 2788 task_ctx_sched_out(task_ctx, pmu, event_type); 2789 } 2790 2791 /* 2792 * Decide which cpu ctx groups to schedule out based on the types 2793 * of events that caused rescheduling: 2794 * - EVENT_CPU: schedule out corresponding groups; 2795 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2796 * - otherwise, do nothing more. 2797 */ 2798 if (cpu_event) 2799 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2800 else if (event_type & EVENT_PINNED) 2801 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2802 2803 perf_event_sched_in(cpuctx, task_ctx, pmu); 2804 2805 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2806 perf_pmu_enable(epc->pmu); 2807 2808 if (task_ctx) { 2809 for_each_epc(epc, task_ctx, pmu, false) 2810 perf_pmu_enable(epc->pmu); 2811 } 2812 } 2813 2814 void perf_pmu_resched(struct pmu *pmu) 2815 { 2816 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2817 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2818 2819 perf_ctx_lock(cpuctx, task_ctx); 2820 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2821 perf_ctx_unlock(cpuctx, task_ctx); 2822 } 2823 2824 /* 2825 * Cross CPU call to install and enable a performance event 2826 * 2827 * Very similar to remote_function() + event_function() but cannot assume that 2828 * things like ctx->is_active and cpuctx->task_ctx are set. 2829 */ 2830 static int __perf_install_in_context(void *info) 2831 { 2832 struct perf_event *event = info; 2833 struct perf_event_context *ctx = event->ctx; 2834 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2835 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2836 bool reprogram = true; 2837 int ret = 0; 2838 2839 raw_spin_lock(&cpuctx->ctx.lock); 2840 if (ctx->task) { 2841 raw_spin_lock(&ctx->lock); 2842 task_ctx = ctx; 2843 2844 reprogram = (ctx->task == current); 2845 2846 /* 2847 * If the task is running, it must be running on this CPU, 2848 * otherwise we cannot reprogram things. 2849 * 2850 * If its not running, we don't care, ctx->lock will 2851 * serialize against it becoming runnable. 2852 */ 2853 if (task_curr(ctx->task) && !reprogram) { 2854 ret = -ESRCH; 2855 goto unlock; 2856 } 2857 2858 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2859 } else if (task_ctx) { 2860 raw_spin_lock(&task_ctx->lock); 2861 } 2862 2863 #ifdef CONFIG_CGROUP_PERF 2864 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2865 /* 2866 * If the current cgroup doesn't match the event's 2867 * cgroup, we should not try to schedule it. 2868 */ 2869 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2870 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2871 event->cgrp->css.cgroup); 2872 } 2873 #endif 2874 2875 if (reprogram) { 2876 ctx_time_freeze(cpuctx, ctx); 2877 add_event_to_ctx(event, ctx); 2878 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 2879 get_event_type(event)); 2880 } else { 2881 add_event_to_ctx(event, ctx); 2882 } 2883 2884 unlock: 2885 perf_ctx_unlock(cpuctx, task_ctx); 2886 2887 return ret; 2888 } 2889 2890 static bool exclusive_event_installable(struct perf_event *event, 2891 struct perf_event_context *ctx); 2892 2893 /* 2894 * Attach a performance event to a context. 2895 * 2896 * Very similar to event_function_call, see comment there. 2897 */ 2898 static void 2899 perf_install_in_context(struct perf_event_context *ctx, 2900 struct perf_event *event, 2901 int cpu) 2902 { 2903 struct task_struct *task = READ_ONCE(ctx->task); 2904 2905 lockdep_assert_held(&ctx->mutex); 2906 2907 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2908 2909 if (event->cpu != -1) 2910 WARN_ON_ONCE(event->cpu != cpu); 2911 2912 /* 2913 * Ensures that if we can observe event->ctx, both the event and ctx 2914 * will be 'complete'. See perf_iterate_sb_cpu(). 2915 */ 2916 smp_store_release(&event->ctx, ctx); 2917 2918 /* 2919 * perf_event_attr::disabled events will not run and can be initialized 2920 * without IPI. Except when this is the first event for the context, in 2921 * that case we need the magic of the IPI to set ctx->is_active. 2922 * 2923 * The IOC_ENABLE that is sure to follow the creation of a disabled 2924 * event will issue the IPI and reprogram the hardware. 2925 */ 2926 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2927 ctx->nr_events && !is_cgroup_event(event)) { 2928 raw_spin_lock_irq(&ctx->lock); 2929 if (ctx->task == TASK_TOMBSTONE) { 2930 raw_spin_unlock_irq(&ctx->lock); 2931 return; 2932 } 2933 add_event_to_ctx(event, ctx); 2934 raw_spin_unlock_irq(&ctx->lock); 2935 return; 2936 } 2937 2938 if (!task) { 2939 cpu_function_call(cpu, __perf_install_in_context, event); 2940 return; 2941 } 2942 2943 /* 2944 * Should not happen, we validate the ctx is still alive before calling. 2945 */ 2946 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2947 return; 2948 2949 /* 2950 * Installing events is tricky because we cannot rely on ctx->is_active 2951 * to be set in case this is the nr_events 0 -> 1 transition. 2952 * 2953 * Instead we use task_curr(), which tells us if the task is running. 2954 * However, since we use task_curr() outside of rq::lock, we can race 2955 * against the actual state. This means the result can be wrong. 2956 * 2957 * If we get a false positive, we retry, this is harmless. 2958 * 2959 * If we get a false negative, things are complicated. If we are after 2960 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2961 * value must be correct. If we're before, it doesn't matter since 2962 * perf_event_context_sched_in() will program the counter. 2963 * 2964 * However, this hinges on the remote context switch having observed 2965 * our task->perf_event_ctxp[] store, such that it will in fact take 2966 * ctx::lock in perf_event_context_sched_in(). 2967 * 2968 * We do this by task_function_call(), if the IPI fails to hit the task 2969 * we know any future context switch of task must see the 2970 * perf_event_ctpx[] store. 2971 */ 2972 2973 /* 2974 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2975 * task_cpu() load, such that if the IPI then does not find the task 2976 * running, a future context switch of that task must observe the 2977 * store. 2978 */ 2979 smp_mb(); 2980 again: 2981 if (!task_function_call(task, __perf_install_in_context, event)) 2982 return; 2983 2984 raw_spin_lock_irq(&ctx->lock); 2985 task = ctx->task; 2986 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2987 /* 2988 * Cannot happen because we already checked above (which also 2989 * cannot happen), and we hold ctx->mutex, which serializes us 2990 * against perf_event_exit_task_context(). 2991 */ 2992 raw_spin_unlock_irq(&ctx->lock); 2993 return; 2994 } 2995 /* 2996 * If the task is not running, ctx->lock will avoid it becoming so, 2997 * thus we can safely install the event. 2998 */ 2999 if (task_curr(task)) { 3000 raw_spin_unlock_irq(&ctx->lock); 3001 goto again; 3002 } 3003 add_event_to_ctx(event, ctx); 3004 raw_spin_unlock_irq(&ctx->lock); 3005 } 3006 3007 /* 3008 * Cross CPU call to enable a performance event 3009 */ 3010 static void __perf_event_enable(struct perf_event *event, 3011 struct perf_cpu_context *cpuctx, 3012 struct perf_event_context *ctx, 3013 void *info) 3014 { 3015 struct perf_event *leader = event->group_leader; 3016 struct perf_event_context *task_ctx; 3017 3018 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3019 event->state <= PERF_EVENT_STATE_ERROR) 3020 return; 3021 3022 ctx_time_freeze(cpuctx, ctx); 3023 3024 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3025 perf_cgroup_event_enable(event, ctx); 3026 3027 if (!ctx->is_active) 3028 return; 3029 3030 if (!event_filter_match(event)) 3031 return; 3032 3033 /* 3034 * If the event is in a group and isn't the group leader, 3035 * then don't put it on unless the group is on. 3036 */ 3037 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3038 return; 3039 3040 task_ctx = cpuctx->task_ctx; 3041 if (ctx->task) 3042 WARN_ON_ONCE(task_ctx != ctx); 3043 3044 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3045 } 3046 3047 /* 3048 * Enable an event. 3049 * 3050 * If event->ctx is a cloned context, callers must make sure that 3051 * every task struct that event->ctx->task could possibly point to 3052 * remains valid. This condition is satisfied when called through 3053 * perf_event_for_each_child or perf_event_for_each as described 3054 * for perf_event_disable. 3055 */ 3056 static void _perf_event_enable(struct perf_event *event) 3057 { 3058 struct perf_event_context *ctx = event->ctx; 3059 3060 raw_spin_lock_irq(&ctx->lock); 3061 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3062 event->state < PERF_EVENT_STATE_ERROR) { 3063 out: 3064 raw_spin_unlock_irq(&ctx->lock); 3065 return; 3066 } 3067 3068 /* 3069 * If the event is in error state, clear that first. 3070 * 3071 * That way, if we see the event in error state below, we know that it 3072 * has gone back into error state, as distinct from the task having 3073 * been scheduled away before the cross-call arrived. 3074 */ 3075 if (event->state == PERF_EVENT_STATE_ERROR) { 3076 /* 3077 * Detached SIBLING events cannot leave ERROR state. 3078 */ 3079 if (event->event_caps & PERF_EV_CAP_SIBLING && 3080 event->group_leader == event) 3081 goto out; 3082 3083 event->state = PERF_EVENT_STATE_OFF; 3084 } 3085 raw_spin_unlock_irq(&ctx->lock); 3086 3087 event_function_call(event, __perf_event_enable, NULL); 3088 } 3089 3090 /* 3091 * See perf_event_disable(); 3092 */ 3093 void perf_event_enable(struct perf_event *event) 3094 { 3095 struct perf_event_context *ctx; 3096 3097 ctx = perf_event_ctx_lock(event); 3098 _perf_event_enable(event); 3099 perf_event_ctx_unlock(event, ctx); 3100 } 3101 EXPORT_SYMBOL_GPL(perf_event_enable); 3102 3103 struct stop_event_data { 3104 struct perf_event *event; 3105 unsigned int restart; 3106 }; 3107 3108 static int __perf_event_stop(void *info) 3109 { 3110 struct stop_event_data *sd = info; 3111 struct perf_event *event = sd->event; 3112 3113 /* if it's already INACTIVE, do nothing */ 3114 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3115 return 0; 3116 3117 /* matches smp_wmb() in event_sched_in() */ 3118 smp_rmb(); 3119 3120 /* 3121 * There is a window with interrupts enabled before we get here, 3122 * so we need to check again lest we try to stop another CPU's event. 3123 */ 3124 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3125 return -EAGAIN; 3126 3127 event->pmu->stop(event, PERF_EF_UPDATE); 3128 3129 /* 3130 * May race with the actual stop (through perf_pmu_output_stop()), 3131 * but it is only used for events with AUX ring buffer, and such 3132 * events will refuse to restart because of rb::aux_mmap_count==0, 3133 * see comments in perf_aux_output_begin(). 3134 * 3135 * Since this is happening on an event-local CPU, no trace is lost 3136 * while restarting. 3137 */ 3138 if (sd->restart) 3139 event->pmu->start(event, 0); 3140 3141 return 0; 3142 } 3143 3144 static int perf_event_stop(struct perf_event *event, int restart) 3145 { 3146 struct stop_event_data sd = { 3147 .event = event, 3148 .restart = restart, 3149 }; 3150 int ret = 0; 3151 3152 do { 3153 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3154 return 0; 3155 3156 /* matches smp_wmb() in event_sched_in() */ 3157 smp_rmb(); 3158 3159 /* 3160 * We only want to restart ACTIVE events, so if the event goes 3161 * inactive here (event->oncpu==-1), there's nothing more to do; 3162 * fall through with ret==-ENXIO. 3163 */ 3164 ret = cpu_function_call(READ_ONCE(event->oncpu), 3165 __perf_event_stop, &sd); 3166 } while (ret == -EAGAIN); 3167 3168 return ret; 3169 } 3170 3171 /* 3172 * In order to contain the amount of racy and tricky in the address filter 3173 * configuration management, it is a two part process: 3174 * 3175 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3176 * we update the addresses of corresponding vmas in 3177 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3178 * (p2) when an event is scheduled in (pmu::add), it calls 3179 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3180 * if the generation has changed since the previous call. 3181 * 3182 * If (p1) happens while the event is active, we restart it to force (p2). 3183 * 3184 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3185 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3186 * ioctl; 3187 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3188 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3189 * for reading; 3190 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3191 * of exec. 3192 */ 3193 void perf_event_addr_filters_sync(struct perf_event *event) 3194 { 3195 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3196 3197 if (!has_addr_filter(event)) 3198 return; 3199 3200 raw_spin_lock(&ifh->lock); 3201 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3202 event->pmu->addr_filters_sync(event); 3203 event->hw.addr_filters_gen = event->addr_filters_gen; 3204 } 3205 raw_spin_unlock(&ifh->lock); 3206 } 3207 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3208 3209 static int _perf_event_refresh(struct perf_event *event, int refresh) 3210 { 3211 /* 3212 * not supported on inherited events 3213 */ 3214 if (event->attr.inherit || !is_sampling_event(event)) 3215 return -EINVAL; 3216 3217 atomic_add(refresh, &event->event_limit); 3218 _perf_event_enable(event); 3219 3220 return 0; 3221 } 3222 3223 /* 3224 * See perf_event_disable() 3225 */ 3226 int perf_event_refresh(struct perf_event *event, int refresh) 3227 { 3228 struct perf_event_context *ctx; 3229 int ret; 3230 3231 ctx = perf_event_ctx_lock(event); 3232 ret = _perf_event_refresh(event, refresh); 3233 perf_event_ctx_unlock(event, ctx); 3234 3235 return ret; 3236 } 3237 EXPORT_SYMBOL_GPL(perf_event_refresh); 3238 3239 static int perf_event_modify_breakpoint(struct perf_event *bp, 3240 struct perf_event_attr *attr) 3241 { 3242 int err; 3243 3244 _perf_event_disable(bp); 3245 3246 err = modify_user_hw_breakpoint_check(bp, attr, true); 3247 3248 if (!bp->attr.disabled) 3249 _perf_event_enable(bp); 3250 3251 return err; 3252 } 3253 3254 /* 3255 * Copy event-type-independent attributes that may be modified. 3256 */ 3257 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3258 const struct perf_event_attr *from) 3259 { 3260 to->sig_data = from->sig_data; 3261 } 3262 3263 static int perf_event_modify_attr(struct perf_event *event, 3264 struct perf_event_attr *attr) 3265 { 3266 int (*func)(struct perf_event *, struct perf_event_attr *); 3267 struct perf_event *child; 3268 int err; 3269 3270 if (event->attr.type != attr->type) 3271 return -EINVAL; 3272 3273 switch (event->attr.type) { 3274 case PERF_TYPE_BREAKPOINT: 3275 func = perf_event_modify_breakpoint; 3276 break; 3277 default: 3278 /* Place holder for future additions. */ 3279 return -EOPNOTSUPP; 3280 } 3281 3282 WARN_ON_ONCE(event->ctx->parent_ctx); 3283 3284 mutex_lock(&event->child_mutex); 3285 /* 3286 * Event-type-independent attributes must be copied before event-type 3287 * modification, which will validate that final attributes match the 3288 * source attributes after all relevant attributes have been copied. 3289 */ 3290 perf_event_modify_copy_attr(&event->attr, attr); 3291 err = func(event, attr); 3292 if (err) 3293 goto out; 3294 list_for_each_entry(child, &event->child_list, child_list) { 3295 perf_event_modify_copy_attr(&child->attr, attr); 3296 err = func(child, attr); 3297 if (err) 3298 goto out; 3299 } 3300 out: 3301 mutex_unlock(&event->child_mutex); 3302 return err; 3303 } 3304 3305 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3306 enum event_type_t event_type) 3307 { 3308 struct perf_event_context *ctx = pmu_ctx->ctx; 3309 struct perf_event *event, *tmp; 3310 struct pmu *pmu = pmu_ctx->pmu; 3311 3312 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3313 struct perf_cpu_pmu_context *cpc; 3314 3315 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3316 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3317 cpc->task_epc = NULL; 3318 } 3319 3320 if (!(event_type & EVENT_ALL)) 3321 return; 3322 3323 perf_pmu_disable(pmu); 3324 if (event_type & EVENT_PINNED) { 3325 list_for_each_entry_safe(event, tmp, 3326 &pmu_ctx->pinned_active, 3327 active_list) 3328 group_sched_out(event, ctx); 3329 } 3330 3331 if (event_type & EVENT_FLEXIBLE) { 3332 list_for_each_entry_safe(event, tmp, 3333 &pmu_ctx->flexible_active, 3334 active_list) 3335 group_sched_out(event, ctx); 3336 /* 3337 * Since we cleared EVENT_FLEXIBLE, also clear 3338 * rotate_necessary, is will be reset by 3339 * ctx_flexible_sched_in() when needed. 3340 */ 3341 pmu_ctx->rotate_necessary = 0; 3342 } 3343 perf_pmu_enable(pmu); 3344 } 3345 3346 /* 3347 * Be very careful with the @pmu argument since this will change ctx state. 3348 * The @pmu argument works for ctx_resched(), because that is symmetric in 3349 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3350 * 3351 * However, if you were to be asymmetrical, you could end up with messed up 3352 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3353 * be active. 3354 */ 3355 static void 3356 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3357 { 3358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3359 struct perf_event_pmu_context *pmu_ctx; 3360 int is_active = ctx->is_active; 3361 bool cgroup = event_type & EVENT_CGROUP; 3362 3363 event_type &= ~EVENT_CGROUP; 3364 3365 lockdep_assert_held(&ctx->lock); 3366 3367 if (likely(!ctx->nr_events)) { 3368 /* 3369 * See __perf_remove_from_context(). 3370 */ 3371 WARN_ON_ONCE(ctx->is_active); 3372 if (ctx->task) 3373 WARN_ON_ONCE(cpuctx->task_ctx); 3374 return; 3375 } 3376 3377 /* 3378 * Always update time if it was set; not only when it changes. 3379 * Otherwise we can 'forget' to update time for any but the last 3380 * context we sched out. For example: 3381 * 3382 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3383 * ctx_sched_out(.event_type = EVENT_PINNED) 3384 * 3385 * would only update time for the pinned events. 3386 */ 3387 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3388 3389 /* 3390 * CPU-release for the below ->is_active store, 3391 * see __load_acquire() in perf_event_time_now() 3392 */ 3393 barrier(); 3394 ctx->is_active &= ~event_type; 3395 3396 if (!(ctx->is_active & EVENT_ALL)) { 3397 /* 3398 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3399 * does not observe a hole. perf_ctx_unlock() will clean up. 3400 */ 3401 if (ctx->is_active & EVENT_FROZEN) 3402 ctx->is_active &= EVENT_TIME_FROZEN; 3403 else 3404 ctx->is_active = 0; 3405 } 3406 3407 if (ctx->task) { 3408 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3409 if (!(ctx->is_active & EVENT_ALL)) 3410 cpuctx->task_ctx = NULL; 3411 } 3412 3413 is_active ^= ctx->is_active; /* changed bits */ 3414 3415 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3416 __pmu_ctx_sched_out(pmu_ctx, is_active); 3417 } 3418 3419 /* 3420 * Test whether two contexts are equivalent, i.e. whether they have both been 3421 * cloned from the same version of the same context. 3422 * 3423 * Equivalence is measured using a generation number in the context that is 3424 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3425 * and list_del_event(). 3426 */ 3427 static int context_equiv(struct perf_event_context *ctx1, 3428 struct perf_event_context *ctx2) 3429 { 3430 lockdep_assert_held(&ctx1->lock); 3431 lockdep_assert_held(&ctx2->lock); 3432 3433 /* Pinning disables the swap optimization */ 3434 if (ctx1->pin_count || ctx2->pin_count) 3435 return 0; 3436 3437 /* If ctx1 is the parent of ctx2 */ 3438 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3439 return 1; 3440 3441 /* If ctx2 is the parent of ctx1 */ 3442 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3443 return 1; 3444 3445 /* 3446 * If ctx1 and ctx2 have the same parent; we flatten the parent 3447 * hierarchy, see perf_event_init_context(). 3448 */ 3449 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3450 ctx1->parent_gen == ctx2->parent_gen) 3451 return 1; 3452 3453 /* Unmatched */ 3454 return 0; 3455 } 3456 3457 static void __perf_event_sync_stat(struct perf_event *event, 3458 struct perf_event *next_event) 3459 { 3460 u64 value; 3461 3462 if (!event->attr.inherit_stat) 3463 return; 3464 3465 /* 3466 * Update the event value, we cannot use perf_event_read() 3467 * because we're in the middle of a context switch and have IRQs 3468 * disabled, which upsets smp_call_function_single(), however 3469 * we know the event must be on the current CPU, therefore we 3470 * don't need to use it. 3471 */ 3472 if (event->state == PERF_EVENT_STATE_ACTIVE) 3473 event->pmu->read(event); 3474 3475 perf_event_update_time(event); 3476 3477 /* 3478 * In order to keep per-task stats reliable we need to flip the event 3479 * values when we flip the contexts. 3480 */ 3481 value = local64_read(&next_event->count); 3482 value = local64_xchg(&event->count, value); 3483 local64_set(&next_event->count, value); 3484 3485 swap(event->total_time_enabled, next_event->total_time_enabled); 3486 swap(event->total_time_running, next_event->total_time_running); 3487 3488 /* 3489 * Since we swizzled the values, update the user visible data too. 3490 */ 3491 perf_event_update_userpage(event); 3492 perf_event_update_userpage(next_event); 3493 } 3494 3495 static void perf_event_sync_stat(struct perf_event_context *ctx, 3496 struct perf_event_context *next_ctx) 3497 { 3498 struct perf_event *event, *next_event; 3499 3500 if (!ctx->nr_stat) 3501 return; 3502 3503 update_context_time(ctx); 3504 3505 event = list_first_entry(&ctx->event_list, 3506 struct perf_event, event_entry); 3507 3508 next_event = list_first_entry(&next_ctx->event_list, 3509 struct perf_event, event_entry); 3510 3511 while (&event->event_entry != &ctx->event_list && 3512 &next_event->event_entry != &next_ctx->event_list) { 3513 3514 __perf_event_sync_stat(event, next_event); 3515 3516 event = list_next_entry(event, event_entry); 3517 next_event = list_next_entry(next_event, event_entry); 3518 } 3519 } 3520 3521 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3522 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3523 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3524 !list_entry_is_head(pos1, head1, member) && \ 3525 !list_entry_is_head(pos2, head2, member); \ 3526 pos1 = list_next_entry(pos1, member), \ 3527 pos2 = list_next_entry(pos2, member)) 3528 3529 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3530 struct perf_event_context *next_ctx) 3531 { 3532 struct perf_event_pmu_context *prev_epc, *next_epc; 3533 3534 if (!prev_ctx->nr_task_data) 3535 return; 3536 3537 double_list_for_each_entry(prev_epc, next_epc, 3538 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3539 pmu_ctx_entry) { 3540 3541 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3542 continue; 3543 3544 /* 3545 * PMU specific parts of task perf context can require 3546 * additional synchronization. As an example of such 3547 * synchronization see implementation details of Intel 3548 * LBR call stack data profiling; 3549 */ 3550 if (prev_epc->pmu->swap_task_ctx) 3551 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3552 else 3553 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3554 } 3555 } 3556 3557 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3558 { 3559 struct perf_event_pmu_context *pmu_ctx; 3560 struct perf_cpu_pmu_context *cpc; 3561 3562 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3563 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3564 3565 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3566 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3567 } 3568 } 3569 3570 static void 3571 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3572 { 3573 struct perf_event_context *ctx = task->perf_event_ctxp; 3574 struct perf_event_context *next_ctx; 3575 struct perf_event_context *parent, *next_parent; 3576 int do_switch = 1; 3577 3578 if (likely(!ctx)) 3579 return; 3580 3581 rcu_read_lock(); 3582 next_ctx = rcu_dereference(next->perf_event_ctxp); 3583 if (!next_ctx) 3584 goto unlock; 3585 3586 parent = rcu_dereference(ctx->parent_ctx); 3587 next_parent = rcu_dereference(next_ctx->parent_ctx); 3588 3589 /* If neither context have a parent context; they cannot be clones. */ 3590 if (!parent && !next_parent) 3591 goto unlock; 3592 3593 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3594 /* 3595 * Looks like the two contexts are clones, so we might be 3596 * able to optimize the context switch. We lock both 3597 * contexts and check that they are clones under the 3598 * lock (including re-checking that neither has been 3599 * uncloned in the meantime). It doesn't matter which 3600 * order we take the locks because no other cpu could 3601 * be trying to lock both of these tasks. 3602 */ 3603 raw_spin_lock(&ctx->lock); 3604 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3605 if (context_equiv(ctx, next_ctx)) { 3606 3607 perf_ctx_disable(ctx, false); 3608 3609 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3610 if (local_read(&ctx->nr_no_switch_fast) || 3611 local_read(&next_ctx->nr_no_switch_fast)) { 3612 /* 3613 * Must not swap out ctx when there's pending 3614 * events that rely on the ctx->task relation. 3615 * 3616 * Likewise, when a context contains inherit + 3617 * SAMPLE_READ events they should be switched 3618 * out using the slow path so that they are 3619 * treated as if they were distinct contexts. 3620 */ 3621 raw_spin_unlock(&next_ctx->lock); 3622 rcu_read_unlock(); 3623 goto inside_switch; 3624 } 3625 3626 WRITE_ONCE(ctx->task, next); 3627 WRITE_ONCE(next_ctx->task, task); 3628 3629 perf_ctx_sched_task_cb(ctx, false); 3630 perf_event_swap_task_ctx_data(ctx, next_ctx); 3631 3632 perf_ctx_enable(ctx, false); 3633 3634 /* 3635 * RCU_INIT_POINTER here is safe because we've not 3636 * modified the ctx and the above modification of 3637 * ctx->task and ctx->task_ctx_data are immaterial 3638 * since those values are always verified under 3639 * ctx->lock which we're now holding. 3640 */ 3641 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3642 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3643 3644 do_switch = 0; 3645 3646 perf_event_sync_stat(ctx, next_ctx); 3647 } 3648 raw_spin_unlock(&next_ctx->lock); 3649 raw_spin_unlock(&ctx->lock); 3650 } 3651 unlock: 3652 rcu_read_unlock(); 3653 3654 if (do_switch) { 3655 raw_spin_lock(&ctx->lock); 3656 perf_ctx_disable(ctx, false); 3657 3658 inside_switch: 3659 perf_ctx_sched_task_cb(ctx, false); 3660 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3661 3662 perf_ctx_enable(ctx, false); 3663 raw_spin_unlock(&ctx->lock); 3664 } 3665 } 3666 3667 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3668 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3669 3670 void perf_sched_cb_dec(struct pmu *pmu) 3671 { 3672 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3673 3674 this_cpu_dec(perf_sched_cb_usages); 3675 barrier(); 3676 3677 if (!--cpc->sched_cb_usage) 3678 list_del(&cpc->sched_cb_entry); 3679 } 3680 3681 3682 void perf_sched_cb_inc(struct pmu *pmu) 3683 { 3684 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3685 3686 if (!cpc->sched_cb_usage++) 3687 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3688 3689 barrier(); 3690 this_cpu_inc(perf_sched_cb_usages); 3691 } 3692 3693 /* 3694 * This function provides the context switch callback to the lower code 3695 * layer. It is invoked ONLY when the context switch callback is enabled. 3696 * 3697 * This callback is relevant even to per-cpu events; for example multi event 3698 * PEBS requires this to provide PID/TID information. This requires we flush 3699 * all queued PEBS records before we context switch to a new task. 3700 */ 3701 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3702 { 3703 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3704 struct pmu *pmu; 3705 3706 pmu = cpc->epc.pmu; 3707 3708 /* software PMUs will not have sched_task */ 3709 if (WARN_ON_ONCE(!pmu->sched_task)) 3710 return; 3711 3712 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3713 perf_pmu_disable(pmu); 3714 3715 pmu->sched_task(cpc->task_epc, sched_in); 3716 3717 perf_pmu_enable(pmu); 3718 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3719 } 3720 3721 static void perf_pmu_sched_task(struct task_struct *prev, 3722 struct task_struct *next, 3723 bool sched_in) 3724 { 3725 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3726 struct perf_cpu_pmu_context *cpc; 3727 3728 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3729 if (prev == next || cpuctx->task_ctx) 3730 return; 3731 3732 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3733 __perf_pmu_sched_task(cpc, sched_in); 3734 } 3735 3736 static void perf_event_switch(struct task_struct *task, 3737 struct task_struct *next_prev, bool sched_in); 3738 3739 /* 3740 * Called from scheduler to remove the events of the current task, 3741 * with interrupts disabled. 3742 * 3743 * We stop each event and update the event value in event->count. 3744 * 3745 * This does not protect us against NMI, but disable() 3746 * sets the disabled bit in the control field of event _before_ 3747 * accessing the event control register. If a NMI hits, then it will 3748 * not restart the event. 3749 */ 3750 void __perf_event_task_sched_out(struct task_struct *task, 3751 struct task_struct *next) 3752 { 3753 if (__this_cpu_read(perf_sched_cb_usages)) 3754 perf_pmu_sched_task(task, next, false); 3755 3756 if (atomic_read(&nr_switch_events)) 3757 perf_event_switch(task, next, false); 3758 3759 perf_event_context_sched_out(task, next); 3760 3761 /* 3762 * if cgroup events exist on this CPU, then we need 3763 * to check if we have to switch out PMU state. 3764 * cgroup event are system-wide mode only 3765 */ 3766 perf_cgroup_switch(next); 3767 } 3768 3769 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3770 { 3771 const struct perf_event *le = *(const struct perf_event **)l; 3772 const struct perf_event *re = *(const struct perf_event **)r; 3773 3774 return le->group_index < re->group_index; 3775 } 3776 3777 static void swap_ptr(void *l, void *r, void __always_unused *args) 3778 { 3779 void **lp = l, **rp = r; 3780 3781 swap(*lp, *rp); 3782 } 3783 3784 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3785 3786 static const struct min_heap_callbacks perf_min_heap = { 3787 .less = perf_less_group_idx, 3788 .swp = swap_ptr, 3789 }; 3790 3791 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3792 { 3793 struct perf_event **itrs = heap->data; 3794 3795 if (event) { 3796 itrs[heap->nr] = event; 3797 heap->nr++; 3798 } 3799 } 3800 3801 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3802 { 3803 struct perf_cpu_pmu_context *cpc; 3804 3805 if (!pmu_ctx->ctx->task) 3806 return; 3807 3808 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3809 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3810 cpc->task_epc = pmu_ctx; 3811 } 3812 3813 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3814 struct perf_event_groups *groups, int cpu, 3815 struct pmu *pmu, 3816 int (*func)(struct perf_event *, void *), 3817 void *data) 3818 { 3819 #ifdef CONFIG_CGROUP_PERF 3820 struct cgroup_subsys_state *css = NULL; 3821 #endif 3822 struct perf_cpu_context *cpuctx = NULL; 3823 /* Space for per CPU and/or any CPU event iterators. */ 3824 struct perf_event *itrs[2]; 3825 struct perf_event_min_heap event_heap; 3826 struct perf_event **evt; 3827 int ret; 3828 3829 if (pmu->filter && pmu->filter(pmu, cpu)) 3830 return 0; 3831 3832 if (!ctx->task) { 3833 cpuctx = this_cpu_ptr(&perf_cpu_context); 3834 event_heap = (struct perf_event_min_heap){ 3835 .data = cpuctx->heap, 3836 .nr = 0, 3837 .size = cpuctx->heap_size, 3838 }; 3839 3840 lockdep_assert_held(&cpuctx->ctx.lock); 3841 3842 #ifdef CONFIG_CGROUP_PERF 3843 if (cpuctx->cgrp) 3844 css = &cpuctx->cgrp->css; 3845 #endif 3846 } else { 3847 event_heap = (struct perf_event_min_heap){ 3848 .data = itrs, 3849 .nr = 0, 3850 .size = ARRAY_SIZE(itrs), 3851 }; 3852 /* Events not within a CPU context may be on any CPU. */ 3853 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3854 } 3855 evt = event_heap.data; 3856 3857 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3858 3859 #ifdef CONFIG_CGROUP_PERF 3860 for (; css; css = css->parent) 3861 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3862 #endif 3863 3864 if (event_heap.nr) { 3865 __link_epc((*evt)->pmu_ctx); 3866 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3867 } 3868 3869 min_heapify_all(&event_heap, &perf_min_heap, NULL); 3870 3871 while (event_heap.nr) { 3872 ret = func(*evt, data); 3873 if (ret) 3874 return ret; 3875 3876 *evt = perf_event_groups_next(*evt, pmu); 3877 if (*evt) 3878 min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL); 3879 else 3880 min_heap_pop(&event_heap, &perf_min_heap, NULL); 3881 } 3882 3883 return 0; 3884 } 3885 3886 /* 3887 * Because the userpage is strictly per-event (there is no concept of context, 3888 * so there cannot be a context indirection), every userpage must be updated 3889 * when context time starts :-( 3890 * 3891 * IOW, we must not miss EVENT_TIME edges. 3892 */ 3893 static inline bool event_update_userpage(struct perf_event *event) 3894 { 3895 if (likely(!atomic_read(&event->mmap_count))) 3896 return false; 3897 3898 perf_event_update_time(event); 3899 perf_event_update_userpage(event); 3900 3901 return true; 3902 } 3903 3904 static inline void group_update_userpage(struct perf_event *group_event) 3905 { 3906 struct perf_event *event; 3907 3908 if (!event_update_userpage(group_event)) 3909 return; 3910 3911 for_each_sibling_event(event, group_event) 3912 event_update_userpage(event); 3913 } 3914 3915 static int merge_sched_in(struct perf_event *event, void *data) 3916 { 3917 struct perf_event_context *ctx = event->ctx; 3918 int *can_add_hw = data; 3919 3920 if (event->state <= PERF_EVENT_STATE_OFF) 3921 return 0; 3922 3923 if (!event_filter_match(event)) 3924 return 0; 3925 3926 if (group_can_go_on(event, *can_add_hw)) { 3927 if (!group_sched_in(event, ctx)) 3928 list_add_tail(&event->active_list, get_event_list(event)); 3929 } 3930 3931 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3932 *can_add_hw = 0; 3933 if (event->attr.pinned) { 3934 perf_cgroup_event_disable(event, ctx); 3935 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3936 } else { 3937 struct perf_cpu_pmu_context *cpc; 3938 3939 event->pmu_ctx->rotate_necessary = 1; 3940 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3941 perf_mux_hrtimer_restart(cpc); 3942 group_update_userpage(event); 3943 } 3944 } 3945 3946 return 0; 3947 } 3948 3949 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3950 struct perf_event_groups *groups, 3951 struct pmu *pmu) 3952 { 3953 int can_add_hw = 1; 3954 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3955 merge_sched_in, &can_add_hw); 3956 } 3957 3958 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 3959 enum event_type_t event_type) 3960 { 3961 struct perf_event_context *ctx = pmu_ctx->ctx; 3962 3963 if (event_type & EVENT_PINNED) 3964 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 3965 if (event_type & EVENT_FLEXIBLE) 3966 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 3967 } 3968 3969 static void 3970 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3971 { 3972 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3973 struct perf_event_pmu_context *pmu_ctx; 3974 int is_active = ctx->is_active; 3975 bool cgroup = event_type & EVENT_CGROUP; 3976 3977 event_type &= ~EVENT_CGROUP; 3978 3979 lockdep_assert_held(&ctx->lock); 3980 3981 if (likely(!ctx->nr_events)) 3982 return; 3983 3984 if (!(is_active & EVENT_TIME)) { 3985 /* start ctx time */ 3986 __update_context_time(ctx, false); 3987 perf_cgroup_set_timestamp(cpuctx); 3988 /* 3989 * CPU-release for the below ->is_active store, 3990 * see __load_acquire() in perf_event_time_now() 3991 */ 3992 barrier(); 3993 } 3994 3995 ctx->is_active |= (event_type | EVENT_TIME); 3996 if (ctx->task) { 3997 if (!(is_active & EVENT_ALL)) 3998 cpuctx->task_ctx = ctx; 3999 else 4000 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4001 } 4002 4003 is_active ^= ctx->is_active; /* changed bits */ 4004 4005 /* 4006 * First go through the list and put on any pinned groups 4007 * in order to give them the best chance of going on. 4008 */ 4009 if (is_active & EVENT_PINNED) { 4010 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4011 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4012 } 4013 4014 /* Then walk through the lower prio flexible groups */ 4015 if (is_active & EVENT_FLEXIBLE) { 4016 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4017 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4018 } 4019 } 4020 4021 static void perf_event_context_sched_in(struct task_struct *task) 4022 { 4023 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4024 struct perf_event_context *ctx; 4025 4026 rcu_read_lock(); 4027 ctx = rcu_dereference(task->perf_event_ctxp); 4028 if (!ctx) 4029 goto rcu_unlock; 4030 4031 if (cpuctx->task_ctx == ctx) { 4032 perf_ctx_lock(cpuctx, ctx); 4033 perf_ctx_disable(ctx, false); 4034 4035 perf_ctx_sched_task_cb(ctx, true); 4036 4037 perf_ctx_enable(ctx, false); 4038 perf_ctx_unlock(cpuctx, ctx); 4039 goto rcu_unlock; 4040 } 4041 4042 perf_ctx_lock(cpuctx, ctx); 4043 /* 4044 * We must check ctx->nr_events while holding ctx->lock, such 4045 * that we serialize against perf_install_in_context(). 4046 */ 4047 if (!ctx->nr_events) 4048 goto unlock; 4049 4050 perf_ctx_disable(ctx, false); 4051 /* 4052 * We want to keep the following priority order: 4053 * cpu pinned (that don't need to move), task pinned, 4054 * cpu flexible, task flexible. 4055 * 4056 * However, if task's ctx is not carrying any pinned 4057 * events, no need to flip the cpuctx's events around. 4058 */ 4059 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4060 perf_ctx_disable(&cpuctx->ctx, false); 4061 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4062 } 4063 4064 perf_event_sched_in(cpuctx, ctx, NULL); 4065 4066 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 4067 4068 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4069 perf_ctx_enable(&cpuctx->ctx, false); 4070 4071 perf_ctx_enable(ctx, false); 4072 4073 unlock: 4074 perf_ctx_unlock(cpuctx, ctx); 4075 rcu_unlock: 4076 rcu_read_unlock(); 4077 } 4078 4079 /* 4080 * Called from scheduler to add the events of the current task 4081 * with interrupts disabled. 4082 * 4083 * We restore the event value and then enable it. 4084 * 4085 * This does not protect us against NMI, but enable() 4086 * sets the enabled bit in the control field of event _before_ 4087 * accessing the event control register. If a NMI hits, then it will 4088 * keep the event running. 4089 */ 4090 void __perf_event_task_sched_in(struct task_struct *prev, 4091 struct task_struct *task) 4092 { 4093 perf_event_context_sched_in(task); 4094 4095 if (atomic_read(&nr_switch_events)) 4096 perf_event_switch(task, prev, true); 4097 4098 if (__this_cpu_read(perf_sched_cb_usages)) 4099 perf_pmu_sched_task(prev, task, true); 4100 } 4101 4102 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4103 { 4104 u64 frequency = event->attr.sample_freq; 4105 u64 sec = NSEC_PER_SEC; 4106 u64 divisor, dividend; 4107 4108 int count_fls, nsec_fls, frequency_fls, sec_fls; 4109 4110 count_fls = fls64(count); 4111 nsec_fls = fls64(nsec); 4112 frequency_fls = fls64(frequency); 4113 sec_fls = 30; 4114 4115 /* 4116 * We got @count in @nsec, with a target of sample_freq HZ 4117 * the target period becomes: 4118 * 4119 * @count * 10^9 4120 * period = ------------------- 4121 * @nsec * sample_freq 4122 * 4123 */ 4124 4125 /* 4126 * Reduce accuracy by one bit such that @a and @b converge 4127 * to a similar magnitude. 4128 */ 4129 #define REDUCE_FLS(a, b) \ 4130 do { \ 4131 if (a##_fls > b##_fls) { \ 4132 a >>= 1; \ 4133 a##_fls--; \ 4134 } else { \ 4135 b >>= 1; \ 4136 b##_fls--; \ 4137 } \ 4138 } while (0) 4139 4140 /* 4141 * Reduce accuracy until either term fits in a u64, then proceed with 4142 * the other, so that finally we can do a u64/u64 division. 4143 */ 4144 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4145 REDUCE_FLS(nsec, frequency); 4146 REDUCE_FLS(sec, count); 4147 } 4148 4149 if (count_fls + sec_fls > 64) { 4150 divisor = nsec * frequency; 4151 4152 while (count_fls + sec_fls > 64) { 4153 REDUCE_FLS(count, sec); 4154 divisor >>= 1; 4155 } 4156 4157 dividend = count * sec; 4158 } else { 4159 dividend = count * sec; 4160 4161 while (nsec_fls + frequency_fls > 64) { 4162 REDUCE_FLS(nsec, frequency); 4163 dividend >>= 1; 4164 } 4165 4166 divisor = nsec * frequency; 4167 } 4168 4169 if (!divisor) 4170 return dividend; 4171 4172 return div64_u64(dividend, divisor); 4173 } 4174 4175 static DEFINE_PER_CPU(int, perf_throttled_count); 4176 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4177 4178 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4179 { 4180 struct hw_perf_event *hwc = &event->hw; 4181 s64 period, sample_period; 4182 s64 delta; 4183 4184 period = perf_calculate_period(event, nsec, count); 4185 4186 delta = (s64)(period - hwc->sample_period); 4187 if (delta >= 0) 4188 delta += 7; 4189 else 4190 delta -= 7; 4191 delta /= 8; /* low pass filter */ 4192 4193 sample_period = hwc->sample_period + delta; 4194 4195 if (!sample_period) 4196 sample_period = 1; 4197 4198 hwc->sample_period = sample_period; 4199 4200 if (local64_read(&hwc->period_left) > 8*sample_period) { 4201 if (disable) 4202 event->pmu->stop(event, PERF_EF_UPDATE); 4203 4204 local64_set(&hwc->period_left, 0); 4205 4206 if (disable) 4207 event->pmu->start(event, PERF_EF_RELOAD); 4208 } 4209 } 4210 4211 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4212 { 4213 struct perf_event *event; 4214 struct hw_perf_event *hwc; 4215 u64 now, period = TICK_NSEC; 4216 s64 delta; 4217 4218 list_for_each_entry(event, event_list, active_list) { 4219 if (event->state != PERF_EVENT_STATE_ACTIVE) 4220 continue; 4221 4222 // XXX use visit thingy to avoid the -1,cpu match 4223 if (!event_filter_match(event)) 4224 continue; 4225 4226 hwc = &event->hw; 4227 4228 if (hwc->interrupts == MAX_INTERRUPTS) { 4229 hwc->interrupts = 0; 4230 perf_log_throttle(event, 1); 4231 if (!event->attr.freq || !event->attr.sample_freq) 4232 event->pmu->start(event, 0); 4233 } 4234 4235 if (!event->attr.freq || !event->attr.sample_freq) 4236 continue; 4237 4238 /* 4239 * stop the event and update event->count 4240 */ 4241 event->pmu->stop(event, PERF_EF_UPDATE); 4242 4243 now = local64_read(&event->count); 4244 delta = now - hwc->freq_count_stamp; 4245 hwc->freq_count_stamp = now; 4246 4247 /* 4248 * restart the event 4249 * reload only if value has changed 4250 * we have stopped the event so tell that 4251 * to perf_adjust_period() to avoid stopping it 4252 * twice. 4253 */ 4254 if (delta > 0) 4255 perf_adjust_period(event, period, delta, false); 4256 4257 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4258 } 4259 } 4260 4261 /* 4262 * combine freq adjustment with unthrottling to avoid two passes over the 4263 * events. At the same time, make sure, having freq events does not change 4264 * the rate of unthrottling as that would introduce bias. 4265 */ 4266 static void 4267 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4268 { 4269 struct perf_event_pmu_context *pmu_ctx; 4270 4271 /* 4272 * only need to iterate over all events iff: 4273 * - context have events in frequency mode (needs freq adjust) 4274 * - there are events to unthrottle on this cpu 4275 */ 4276 if (!(ctx->nr_freq || unthrottle)) 4277 return; 4278 4279 raw_spin_lock(&ctx->lock); 4280 4281 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4282 if (!(pmu_ctx->nr_freq || unthrottle)) 4283 continue; 4284 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4285 continue; 4286 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4287 continue; 4288 4289 perf_pmu_disable(pmu_ctx->pmu); 4290 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4291 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4292 perf_pmu_enable(pmu_ctx->pmu); 4293 } 4294 4295 raw_spin_unlock(&ctx->lock); 4296 } 4297 4298 /* 4299 * Move @event to the tail of the @ctx's elegible events. 4300 */ 4301 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4302 { 4303 /* 4304 * Rotate the first entry last of non-pinned groups. Rotation might be 4305 * disabled by the inheritance code. 4306 */ 4307 if (ctx->rotate_disable) 4308 return; 4309 4310 perf_event_groups_delete(&ctx->flexible_groups, event); 4311 perf_event_groups_insert(&ctx->flexible_groups, event); 4312 } 4313 4314 /* pick an event from the flexible_groups to rotate */ 4315 static inline struct perf_event * 4316 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4317 { 4318 struct perf_event *event; 4319 struct rb_node *node; 4320 struct rb_root *tree; 4321 struct __group_key key = { 4322 .pmu = pmu_ctx->pmu, 4323 }; 4324 4325 /* pick the first active flexible event */ 4326 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4327 struct perf_event, active_list); 4328 if (event) 4329 goto out; 4330 4331 /* if no active flexible event, pick the first event */ 4332 tree = &pmu_ctx->ctx->flexible_groups.tree; 4333 4334 if (!pmu_ctx->ctx->task) { 4335 key.cpu = smp_processor_id(); 4336 4337 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4338 if (node) 4339 event = __node_2_pe(node); 4340 goto out; 4341 } 4342 4343 key.cpu = -1; 4344 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4345 if (node) { 4346 event = __node_2_pe(node); 4347 goto out; 4348 } 4349 4350 key.cpu = smp_processor_id(); 4351 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4352 if (node) 4353 event = __node_2_pe(node); 4354 4355 out: 4356 /* 4357 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4358 * finds there are unschedulable events, it will set it again. 4359 */ 4360 pmu_ctx->rotate_necessary = 0; 4361 4362 return event; 4363 } 4364 4365 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4366 { 4367 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4368 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4369 struct perf_event *cpu_event = NULL, *task_event = NULL; 4370 int cpu_rotate, task_rotate; 4371 struct pmu *pmu; 4372 4373 /* 4374 * Since we run this from IRQ context, nobody can install new 4375 * events, thus the event count values are stable. 4376 */ 4377 4378 cpu_epc = &cpc->epc; 4379 pmu = cpu_epc->pmu; 4380 task_epc = cpc->task_epc; 4381 4382 cpu_rotate = cpu_epc->rotate_necessary; 4383 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4384 4385 if (!(cpu_rotate || task_rotate)) 4386 return false; 4387 4388 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4389 perf_pmu_disable(pmu); 4390 4391 if (task_rotate) 4392 task_event = ctx_event_to_rotate(task_epc); 4393 if (cpu_rotate) 4394 cpu_event = ctx_event_to_rotate(cpu_epc); 4395 4396 /* 4397 * As per the order given at ctx_resched() first 'pop' task flexible 4398 * and then, if needed CPU flexible. 4399 */ 4400 if (task_event || (task_epc && cpu_event)) { 4401 update_context_time(task_epc->ctx); 4402 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4403 } 4404 4405 if (cpu_event) { 4406 update_context_time(&cpuctx->ctx); 4407 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4408 rotate_ctx(&cpuctx->ctx, cpu_event); 4409 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4410 } 4411 4412 if (task_event) 4413 rotate_ctx(task_epc->ctx, task_event); 4414 4415 if (task_event || (task_epc && cpu_event)) 4416 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4417 4418 perf_pmu_enable(pmu); 4419 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4420 4421 return true; 4422 } 4423 4424 void perf_event_task_tick(void) 4425 { 4426 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4427 struct perf_event_context *ctx; 4428 int throttled; 4429 4430 lockdep_assert_irqs_disabled(); 4431 4432 __this_cpu_inc(perf_throttled_seq); 4433 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4434 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4435 4436 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4437 4438 rcu_read_lock(); 4439 ctx = rcu_dereference(current->perf_event_ctxp); 4440 if (ctx) 4441 perf_adjust_freq_unthr_context(ctx, !!throttled); 4442 rcu_read_unlock(); 4443 } 4444 4445 static int event_enable_on_exec(struct perf_event *event, 4446 struct perf_event_context *ctx) 4447 { 4448 if (!event->attr.enable_on_exec) 4449 return 0; 4450 4451 event->attr.enable_on_exec = 0; 4452 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4453 return 0; 4454 4455 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4456 4457 return 1; 4458 } 4459 4460 /* 4461 * Enable all of a task's events that have been marked enable-on-exec. 4462 * This expects task == current. 4463 */ 4464 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4465 { 4466 struct perf_event_context *clone_ctx = NULL; 4467 enum event_type_t event_type = 0; 4468 struct perf_cpu_context *cpuctx; 4469 struct perf_event *event; 4470 unsigned long flags; 4471 int enabled = 0; 4472 4473 local_irq_save(flags); 4474 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4475 goto out; 4476 4477 if (!ctx->nr_events) 4478 goto out; 4479 4480 cpuctx = this_cpu_ptr(&perf_cpu_context); 4481 perf_ctx_lock(cpuctx, ctx); 4482 ctx_time_freeze(cpuctx, ctx); 4483 4484 list_for_each_entry(event, &ctx->event_list, event_entry) { 4485 enabled |= event_enable_on_exec(event, ctx); 4486 event_type |= get_event_type(event); 4487 } 4488 4489 /* 4490 * Unclone and reschedule this context if we enabled any event. 4491 */ 4492 if (enabled) { 4493 clone_ctx = unclone_ctx(ctx); 4494 ctx_resched(cpuctx, ctx, NULL, event_type); 4495 } 4496 perf_ctx_unlock(cpuctx, ctx); 4497 4498 out: 4499 local_irq_restore(flags); 4500 4501 if (clone_ctx) 4502 put_ctx(clone_ctx); 4503 } 4504 4505 static void perf_remove_from_owner(struct perf_event *event); 4506 static void perf_event_exit_event(struct perf_event *event, 4507 struct perf_event_context *ctx); 4508 4509 /* 4510 * Removes all events from the current task that have been marked 4511 * remove-on-exec, and feeds their values back to parent events. 4512 */ 4513 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4514 { 4515 struct perf_event_context *clone_ctx = NULL; 4516 struct perf_event *event, *next; 4517 unsigned long flags; 4518 bool modified = false; 4519 4520 mutex_lock(&ctx->mutex); 4521 4522 if (WARN_ON_ONCE(ctx->task != current)) 4523 goto unlock; 4524 4525 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4526 if (!event->attr.remove_on_exec) 4527 continue; 4528 4529 if (!is_kernel_event(event)) 4530 perf_remove_from_owner(event); 4531 4532 modified = true; 4533 4534 perf_event_exit_event(event, ctx); 4535 } 4536 4537 raw_spin_lock_irqsave(&ctx->lock, flags); 4538 if (modified) 4539 clone_ctx = unclone_ctx(ctx); 4540 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4541 4542 unlock: 4543 mutex_unlock(&ctx->mutex); 4544 4545 if (clone_ctx) 4546 put_ctx(clone_ctx); 4547 } 4548 4549 struct perf_read_data { 4550 struct perf_event *event; 4551 bool group; 4552 int ret; 4553 }; 4554 4555 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4556 4557 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4558 { 4559 int local_cpu = smp_processor_id(); 4560 u16 local_pkg, event_pkg; 4561 4562 if ((unsigned)event_cpu >= nr_cpu_ids) 4563 return event_cpu; 4564 4565 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4566 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4567 4568 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4569 return local_cpu; 4570 } 4571 4572 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4573 event_pkg = topology_physical_package_id(event_cpu); 4574 local_pkg = topology_physical_package_id(local_cpu); 4575 4576 if (event_pkg == local_pkg) 4577 return local_cpu; 4578 } 4579 4580 return event_cpu; 4581 } 4582 4583 /* 4584 * Cross CPU call to read the hardware event 4585 */ 4586 static void __perf_event_read(void *info) 4587 { 4588 struct perf_read_data *data = info; 4589 struct perf_event *sub, *event = data->event; 4590 struct perf_event_context *ctx = event->ctx; 4591 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4592 struct pmu *pmu = event->pmu; 4593 4594 /* 4595 * If this is a task context, we need to check whether it is 4596 * the current task context of this cpu. If not it has been 4597 * scheduled out before the smp call arrived. In that case 4598 * event->count would have been updated to a recent sample 4599 * when the event was scheduled out. 4600 */ 4601 if (ctx->task && cpuctx->task_ctx != ctx) 4602 return; 4603 4604 raw_spin_lock(&ctx->lock); 4605 ctx_time_update_event(ctx, event); 4606 4607 perf_event_update_time(event); 4608 if (data->group) 4609 perf_event_update_sibling_time(event); 4610 4611 if (event->state != PERF_EVENT_STATE_ACTIVE) 4612 goto unlock; 4613 4614 if (!data->group) { 4615 pmu->read(event); 4616 data->ret = 0; 4617 goto unlock; 4618 } 4619 4620 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4621 4622 pmu->read(event); 4623 4624 for_each_sibling_event(sub, event) { 4625 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4626 /* 4627 * Use sibling's PMU rather than @event's since 4628 * sibling could be on different (eg: software) PMU. 4629 */ 4630 sub->pmu->read(sub); 4631 } 4632 } 4633 4634 data->ret = pmu->commit_txn(pmu); 4635 4636 unlock: 4637 raw_spin_unlock(&ctx->lock); 4638 } 4639 4640 static inline u64 perf_event_count(struct perf_event *event, bool self) 4641 { 4642 if (self) 4643 return local64_read(&event->count); 4644 4645 return local64_read(&event->count) + atomic64_read(&event->child_count); 4646 } 4647 4648 static void calc_timer_values(struct perf_event *event, 4649 u64 *now, 4650 u64 *enabled, 4651 u64 *running) 4652 { 4653 u64 ctx_time; 4654 4655 *now = perf_clock(); 4656 ctx_time = perf_event_time_now(event, *now); 4657 __perf_update_times(event, ctx_time, enabled, running); 4658 } 4659 4660 /* 4661 * NMI-safe method to read a local event, that is an event that 4662 * is: 4663 * - either for the current task, or for this CPU 4664 * - does not have inherit set, for inherited task events 4665 * will not be local and we cannot read them atomically 4666 * - must not have a pmu::count method 4667 */ 4668 int perf_event_read_local(struct perf_event *event, u64 *value, 4669 u64 *enabled, u64 *running) 4670 { 4671 unsigned long flags; 4672 int event_oncpu; 4673 int event_cpu; 4674 int ret = 0; 4675 4676 /* 4677 * Disabling interrupts avoids all counter scheduling (context 4678 * switches, timer based rotation and IPIs). 4679 */ 4680 local_irq_save(flags); 4681 4682 /* 4683 * It must not be an event with inherit set, we cannot read 4684 * all child counters from atomic context. 4685 */ 4686 if (event->attr.inherit) { 4687 ret = -EOPNOTSUPP; 4688 goto out; 4689 } 4690 4691 /* If this is a per-task event, it must be for current */ 4692 if ((event->attach_state & PERF_ATTACH_TASK) && 4693 event->hw.target != current) { 4694 ret = -EINVAL; 4695 goto out; 4696 } 4697 4698 /* 4699 * Get the event CPU numbers, and adjust them to local if the event is 4700 * a per-package event that can be read locally 4701 */ 4702 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4703 event_cpu = __perf_event_read_cpu(event, event->cpu); 4704 4705 /* If this is a per-CPU event, it must be for this CPU */ 4706 if (!(event->attach_state & PERF_ATTACH_TASK) && 4707 event_cpu != smp_processor_id()) { 4708 ret = -EINVAL; 4709 goto out; 4710 } 4711 4712 /* If this is a pinned event it must be running on this CPU */ 4713 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4714 ret = -EBUSY; 4715 goto out; 4716 } 4717 4718 /* 4719 * If the event is currently on this CPU, its either a per-task event, 4720 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4721 * oncpu == -1). 4722 */ 4723 if (event_oncpu == smp_processor_id()) 4724 event->pmu->read(event); 4725 4726 *value = local64_read(&event->count); 4727 if (enabled || running) { 4728 u64 __enabled, __running, __now; 4729 4730 calc_timer_values(event, &__now, &__enabled, &__running); 4731 if (enabled) 4732 *enabled = __enabled; 4733 if (running) 4734 *running = __running; 4735 } 4736 out: 4737 local_irq_restore(flags); 4738 4739 return ret; 4740 } 4741 4742 static int perf_event_read(struct perf_event *event, bool group) 4743 { 4744 enum perf_event_state state = READ_ONCE(event->state); 4745 int event_cpu, ret = 0; 4746 4747 /* 4748 * If event is enabled and currently active on a CPU, update the 4749 * value in the event structure: 4750 */ 4751 again: 4752 if (state == PERF_EVENT_STATE_ACTIVE) { 4753 struct perf_read_data data; 4754 4755 /* 4756 * Orders the ->state and ->oncpu loads such that if we see 4757 * ACTIVE we must also see the right ->oncpu. 4758 * 4759 * Matches the smp_wmb() from event_sched_in(). 4760 */ 4761 smp_rmb(); 4762 4763 event_cpu = READ_ONCE(event->oncpu); 4764 if ((unsigned)event_cpu >= nr_cpu_ids) 4765 return 0; 4766 4767 data = (struct perf_read_data){ 4768 .event = event, 4769 .group = group, 4770 .ret = 0, 4771 }; 4772 4773 preempt_disable(); 4774 event_cpu = __perf_event_read_cpu(event, event_cpu); 4775 4776 /* 4777 * Purposely ignore the smp_call_function_single() return 4778 * value. 4779 * 4780 * If event_cpu isn't a valid CPU it means the event got 4781 * scheduled out and that will have updated the event count. 4782 * 4783 * Therefore, either way, we'll have an up-to-date event count 4784 * after this. 4785 */ 4786 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4787 preempt_enable(); 4788 ret = data.ret; 4789 4790 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4791 struct perf_event_context *ctx = event->ctx; 4792 unsigned long flags; 4793 4794 raw_spin_lock_irqsave(&ctx->lock, flags); 4795 state = event->state; 4796 if (state != PERF_EVENT_STATE_INACTIVE) { 4797 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4798 goto again; 4799 } 4800 4801 /* 4802 * May read while context is not active (e.g., thread is 4803 * blocked), in that case we cannot update context time 4804 */ 4805 ctx_time_update_event(ctx, event); 4806 4807 perf_event_update_time(event); 4808 if (group) 4809 perf_event_update_sibling_time(event); 4810 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4811 } 4812 4813 return ret; 4814 } 4815 4816 /* 4817 * Initialize the perf_event context in a task_struct: 4818 */ 4819 static void __perf_event_init_context(struct perf_event_context *ctx) 4820 { 4821 raw_spin_lock_init(&ctx->lock); 4822 mutex_init(&ctx->mutex); 4823 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4824 perf_event_groups_init(&ctx->pinned_groups); 4825 perf_event_groups_init(&ctx->flexible_groups); 4826 INIT_LIST_HEAD(&ctx->event_list); 4827 refcount_set(&ctx->refcount, 1); 4828 } 4829 4830 static void 4831 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4832 { 4833 epc->pmu = pmu; 4834 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4835 INIT_LIST_HEAD(&epc->pinned_active); 4836 INIT_LIST_HEAD(&epc->flexible_active); 4837 atomic_set(&epc->refcount, 1); 4838 } 4839 4840 static struct perf_event_context * 4841 alloc_perf_context(struct task_struct *task) 4842 { 4843 struct perf_event_context *ctx; 4844 4845 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4846 if (!ctx) 4847 return NULL; 4848 4849 __perf_event_init_context(ctx); 4850 if (task) 4851 ctx->task = get_task_struct(task); 4852 4853 return ctx; 4854 } 4855 4856 static struct task_struct * 4857 find_lively_task_by_vpid(pid_t vpid) 4858 { 4859 struct task_struct *task; 4860 4861 rcu_read_lock(); 4862 if (!vpid) 4863 task = current; 4864 else 4865 task = find_task_by_vpid(vpid); 4866 if (task) 4867 get_task_struct(task); 4868 rcu_read_unlock(); 4869 4870 if (!task) 4871 return ERR_PTR(-ESRCH); 4872 4873 return task; 4874 } 4875 4876 /* 4877 * Returns a matching context with refcount and pincount. 4878 */ 4879 static struct perf_event_context * 4880 find_get_context(struct task_struct *task, struct perf_event *event) 4881 { 4882 struct perf_event_context *ctx, *clone_ctx = NULL; 4883 struct perf_cpu_context *cpuctx; 4884 unsigned long flags; 4885 int err; 4886 4887 if (!task) { 4888 /* Must be root to operate on a CPU event: */ 4889 err = perf_allow_cpu(&event->attr); 4890 if (err) 4891 return ERR_PTR(err); 4892 4893 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4894 ctx = &cpuctx->ctx; 4895 get_ctx(ctx); 4896 raw_spin_lock_irqsave(&ctx->lock, flags); 4897 ++ctx->pin_count; 4898 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4899 4900 return ctx; 4901 } 4902 4903 err = -EINVAL; 4904 retry: 4905 ctx = perf_lock_task_context(task, &flags); 4906 if (ctx) { 4907 clone_ctx = unclone_ctx(ctx); 4908 ++ctx->pin_count; 4909 4910 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4911 4912 if (clone_ctx) 4913 put_ctx(clone_ctx); 4914 } else { 4915 ctx = alloc_perf_context(task); 4916 err = -ENOMEM; 4917 if (!ctx) 4918 goto errout; 4919 4920 err = 0; 4921 mutex_lock(&task->perf_event_mutex); 4922 /* 4923 * If it has already passed perf_event_exit_task(). 4924 * we must see PF_EXITING, it takes this mutex too. 4925 */ 4926 if (task->flags & PF_EXITING) 4927 err = -ESRCH; 4928 else if (task->perf_event_ctxp) 4929 err = -EAGAIN; 4930 else { 4931 get_ctx(ctx); 4932 ++ctx->pin_count; 4933 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4934 } 4935 mutex_unlock(&task->perf_event_mutex); 4936 4937 if (unlikely(err)) { 4938 put_ctx(ctx); 4939 4940 if (err == -EAGAIN) 4941 goto retry; 4942 goto errout; 4943 } 4944 } 4945 4946 return ctx; 4947 4948 errout: 4949 return ERR_PTR(err); 4950 } 4951 4952 static struct perf_event_pmu_context * 4953 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4954 struct perf_event *event) 4955 { 4956 struct perf_event_pmu_context *new = NULL, *epc; 4957 void *task_ctx_data = NULL; 4958 4959 if (!ctx->task) { 4960 /* 4961 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4962 * relies on the fact that find_get_pmu_context() cannot fail 4963 * for CPU contexts. 4964 */ 4965 struct perf_cpu_pmu_context *cpc; 4966 4967 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4968 epc = &cpc->epc; 4969 raw_spin_lock_irq(&ctx->lock); 4970 if (!epc->ctx) { 4971 atomic_set(&epc->refcount, 1); 4972 epc->embedded = 1; 4973 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4974 epc->ctx = ctx; 4975 } else { 4976 WARN_ON_ONCE(epc->ctx != ctx); 4977 atomic_inc(&epc->refcount); 4978 } 4979 raw_spin_unlock_irq(&ctx->lock); 4980 return epc; 4981 } 4982 4983 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4984 if (!new) 4985 return ERR_PTR(-ENOMEM); 4986 4987 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4988 task_ctx_data = alloc_task_ctx_data(pmu); 4989 if (!task_ctx_data) { 4990 kfree(new); 4991 return ERR_PTR(-ENOMEM); 4992 } 4993 } 4994 4995 __perf_init_event_pmu_context(new, pmu); 4996 4997 /* 4998 * XXX 4999 * 5000 * lockdep_assert_held(&ctx->mutex); 5001 * 5002 * can't because perf_event_init_task() doesn't actually hold the 5003 * child_ctx->mutex. 5004 */ 5005 5006 raw_spin_lock_irq(&ctx->lock); 5007 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5008 if (epc->pmu == pmu) { 5009 WARN_ON_ONCE(epc->ctx != ctx); 5010 atomic_inc(&epc->refcount); 5011 goto found_epc; 5012 } 5013 } 5014 5015 epc = new; 5016 new = NULL; 5017 5018 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5019 epc->ctx = ctx; 5020 5021 found_epc: 5022 if (task_ctx_data && !epc->task_ctx_data) { 5023 epc->task_ctx_data = task_ctx_data; 5024 task_ctx_data = NULL; 5025 ctx->nr_task_data++; 5026 } 5027 raw_spin_unlock_irq(&ctx->lock); 5028 5029 free_task_ctx_data(pmu, task_ctx_data); 5030 kfree(new); 5031 5032 return epc; 5033 } 5034 5035 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5036 { 5037 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5038 } 5039 5040 static void free_epc_rcu(struct rcu_head *head) 5041 { 5042 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5043 5044 kfree(epc->task_ctx_data); 5045 kfree(epc); 5046 } 5047 5048 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5049 { 5050 struct perf_event_context *ctx = epc->ctx; 5051 unsigned long flags; 5052 5053 /* 5054 * XXX 5055 * 5056 * lockdep_assert_held(&ctx->mutex); 5057 * 5058 * can't because of the call-site in _free_event()/put_event() 5059 * which isn't always called under ctx->mutex. 5060 */ 5061 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5062 return; 5063 5064 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5065 5066 list_del_init(&epc->pmu_ctx_entry); 5067 epc->ctx = NULL; 5068 5069 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5070 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5071 5072 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5073 5074 if (epc->embedded) 5075 return; 5076 5077 call_rcu(&epc->rcu_head, free_epc_rcu); 5078 } 5079 5080 static void perf_event_free_filter(struct perf_event *event); 5081 5082 static void free_event_rcu(struct rcu_head *head) 5083 { 5084 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5085 5086 if (event->ns) 5087 put_pid_ns(event->ns); 5088 perf_event_free_filter(event); 5089 kmem_cache_free(perf_event_cache, event); 5090 } 5091 5092 static void ring_buffer_attach(struct perf_event *event, 5093 struct perf_buffer *rb); 5094 5095 static void detach_sb_event(struct perf_event *event) 5096 { 5097 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5098 5099 raw_spin_lock(&pel->lock); 5100 list_del_rcu(&event->sb_list); 5101 raw_spin_unlock(&pel->lock); 5102 } 5103 5104 static bool is_sb_event(struct perf_event *event) 5105 { 5106 struct perf_event_attr *attr = &event->attr; 5107 5108 if (event->parent) 5109 return false; 5110 5111 if (event->attach_state & PERF_ATTACH_TASK) 5112 return false; 5113 5114 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5115 attr->comm || attr->comm_exec || 5116 attr->task || attr->ksymbol || 5117 attr->context_switch || attr->text_poke || 5118 attr->bpf_event) 5119 return true; 5120 return false; 5121 } 5122 5123 static void unaccount_pmu_sb_event(struct perf_event *event) 5124 { 5125 if (is_sb_event(event)) 5126 detach_sb_event(event); 5127 } 5128 5129 #ifdef CONFIG_NO_HZ_FULL 5130 static DEFINE_SPINLOCK(nr_freq_lock); 5131 #endif 5132 5133 static void unaccount_freq_event_nohz(void) 5134 { 5135 #ifdef CONFIG_NO_HZ_FULL 5136 spin_lock(&nr_freq_lock); 5137 if (atomic_dec_and_test(&nr_freq_events)) 5138 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5139 spin_unlock(&nr_freq_lock); 5140 #endif 5141 } 5142 5143 static void unaccount_freq_event(void) 5144 { 5145 if (tick_nohz_full_enabled()) 5146 unaccount_freq_event_nohz(); 5147 else 5148 atomic_dec(&nr_freq_events); 5149 } 5150 5151 static void unaccount_event(struct perf_event *event) 5152 { 5153 bool dec = false; 5154 5155 if (event->parent) 5156 return; 5157 5158 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5159 dec = true; 5160 if (event->attr.mmap || event->attr.mmap_data) 5161 atomic_dec(&nr_mmap_events); 5162 if (event->attr.build_id) 5163 atomic_dec(&nr_build_id_events); 5164 if (event->attr.comm) 5165 atomic_dec(&nr_comm_events); 5166 if (event->attr.namespaces) 5167 atomic_dec(&nr_namespaces_events); 5168 if (event->attr.cgroup) 5169 atomic_dec(&nr_cgroup_events); 5170 if (event->attr.task) 5171 atomic_dec(&nr_task_events); 5172 if (event->attr.freq) 5173 unaccount_freq_event(); 5174 if (event->attr.context_switch) { 5175 dec = true; 5176 atomic_dec(&nr_switch_events); 5177 } 5178 if (is_cgroup_event(event)) 5179 dec = true; 5180 if (has_branch_stack(event)) 5181 dec = true; 5182 if (event->attr.ksymbol) 5183 atomic_dec(&nr_ksymbol_events); 5184 if (event->attr.bpf_event) 5185 atomic_dec(&nr_bpf_events); 5186 if (event->attr.text_poke) 5187 atomic_dec(&nr_text_poke_events); 5188 5189 if (dec) { 5190 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5191 schedule_delayed_work(&perf_sched_work, HZ); 5192 } 5193 5194 unaccount_pmu_sb_event(event); 5195 } 5196 5197 static void perf_sched_delayed(struct work_struct *work) 5198 { 5199 mutex_lock(&perf_sched_mutex); 5200 if (atomic_dec_and_test(&perf_sched_count)) 5201 static_branch_disable(&perf_sched_events); 5202 mutex_unlock(&perf_sched_mutex); 5203 } 5204 5205 /* 5206 * The following implement mutual exclusion of events on "exclusive" pmus 5207 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5208 * at a time, so we disallow creating events that might conflict, namely: 5209 * 5210 * 1) cpu-wide events in the presence of per-task events, 5211 * 2) per-task events in the presence of cpu-wide events, 5212 * 3) two matching events on the same perf_event_context. 5213 * 5214 * The former two cases are handled in the allocation path (perf_event_alloc(), 5215 * _free_event()), the latter -- before the first perf_install_in_context(). 5216 */ 5217 static int exclusive_event_init(struct perf_event *event) 5218 { 5219 struct pmu *pmu = event->pmu; 5220 5221 if (!is_exclusive_pmu(pmu)) 5222 return 0; 5223 5224 /* 5225 * Prevent co-existence of per-task and cpu-wide events on the 5226 * same exclusive pmu. 5227 * 5228 * Negative pmu::exclusive_cnt means there are cpu-wide 5229 * events on this "exclusive" pmu, positive means there are 5230 * per-task events. 5231 * 5232 * Since this is called in perf_event_alloc() path, event::ctx 5233 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5234 * to mean "per-task event", because unlike other attach states it 5235 * never gets cleared. 5236 */ 5237 if (event->attach_state & PERF_ATTACH_TASK) { 5238 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5239 return -EBUSY; 5240 } else { 5241 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5242 return -EBUSY; 5243 } 5244 5245 return 0; 5246 } 5247 5248 static void exclusive_event_destroy(struct perf_event *event) 5249 { 5250 struct pmu *pmu = event->pmu; 5251 5252 if (!is_exclusive_pmu(pmu)) 5253 return; 5254 5255 /* see comment in exclusive_event_init() */ 5256 if (event->attach_state & PERF_ATTACH_TASK) 5257 atomic_dec(&pmu->exclusive_cnt); 5258 else 5259 atomic_inc(&pmu->exclusive_cnt); 5260 } 5261 5262 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5263 { 5264 if ((e1->pmu == e2->pmu) && 5265 (e1->cpu == e2->cpu || 5266 e1->cpu == -1 || 5267 e2->cpu == -1)) 5268 return true; 5269 return false; 5270 } 5271 5272 static bool exclusive_event_installable(struct perf_event *event, 5273 struct perf_event_context *ctx) 5274 { 5275 struct perf_event *iter_event; 5276 struct pmu *pmu = event->pmu; 5277 5278 lockdep_assert_held(&ctx->mutex); 5279 5280 if (!is_exclusive_pmu(pmu)) 5281 return true; 5282 5283 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5284 if (exclusive_event_match(iter_event, event)) 5285 return false; 5286 } 5287 5288 return true; 5289 } 5290 5291 static void perf_addr_filters_splice(struct perf_event *event, 5292 struct list_head *head); 5293 5294 static void perf_pending_task_sync(struct perf_event *event) 5295 { 5296 struct callback_head *head = &event->pending_task; 5297 5298 if (!event->pending_work) 5299 return; 5300 /* 5301 * If the task is queued to the current task's queue, we 5302 * obviously can't wait for it to complete. Simply cancel it. 5303 */ 5304 if (task_work_cancel(current, head)) { 5305 event->pending_work = 0; 5306 local_dec(&event->ctx->nr_no_switch_fast); 5307 return; 5308 } 5309 5310 /* 5311 * All accesses related to the event are within the same RCU section in 5312 * perf_pending_task(). The RCU grace period before the event is freed 5313 * will make sure all those accesses are complete by then. 5314 */ 5315 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5316 } 5317 5318 static void _free_event(struct perf_event *event) 5319 { 5320 irq_work_sync(&event->pending_irq); 5321 irq_work_sync(&event->pending_disable_irq); 5322 perf_pending_task_sync(event); 5323 5324 unaccount_event(event); 5325 5326 security_perf_event_free(event); 5327 5328 if (event->rb) { 5329 /* 5330 * Can happen when we close an event with re-directed output. 5331 * 5332 * Since we have a 0 refcount, perf_mmap_close() will skip 5333 * over us; possibly making our ring_buffer_put() the last. 5334 */ 5335 mutex_lock(&event->mmap_mutex); 5336 ring_buffer_attach(event, NULL); 5337 mutex_unlock(&event->mmap_mutex); 5338 } 5339 5340 if (is_cgroup_event(event)) 5341 perf_detach_cgroup(event); 5342 5343 if (!event->parent) { 5344 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5345 put_callchain_buffers(); 5346 } 5347 5348 perf_event_free_bpf_prog(event); 5349 perf_addr_filters_splice(event, NULL); 5350 kfree(event->addr_filter_ranges); 5351 5352 if (event->destroy) 5353 event->destroy(event); 5354 5355 /* 5356 * Must be after ->destroy(), due to uprobe_perf_close() using 5357 * hw.target. 5358 */ 5359 if (event->hw.target) 5360 put_task_struct(event->hw.target); 5361 5362 if (event->pmu_ctx) 5363 put_pmu_ctx(event->pmu_ctx); 5364 5365 /* 5366 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5367 * all task references must be cleaned up. 5368 */ 5369 if (event->ctx) 5370 put_ctx(event->ctx); 5371 5372 exclusive_event_destroy(event); 5373 module_put(event->pmu->module); 5374 5375 call_rcu(&event->rcu_head, free_event_rcu); 5376 } 5377 5378 /* 5379 * Used to free events which have a known refcount of 1, such as in error paths 5380 * where the event isn't exposed yet and inherited events. 5381 */ 5382 static void free_event(struct perf_event *event) 5383 { 5384 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5385 "unexpected event refcount: %ld; ptr=%p\n", 5386 atomic_long_read(&event->refcount), event)) { 5387 /* leak to avoid use-after-free */ 5388 return; 5389 } 5390 5391 _free_event(event); 5392 } 5393 5394 /* 5395 * Remove user event from the owner task. 5396 */ 5397 static void perf_remove_from_owner(struct perf_event *event) 5398 { 5399 struct task_struct *owner; 5400 5401 rcu_read_lock(); 5402 /* 5403 * Matches the smp_store_release() in perf_event_exit_task(). If we 5404 * observe !owner it means the list deletion is complete and we can 5405 * indeed free this event, otherwise we need to serialize on 5406 * owner->perf_event_mutex. 5407 */ 5408 owner = READ_ONCE(event->owner); 5409 if (owner) { 5410 /* 5411 * Since delayed_put_task_struct() also drops the last 5412 * task reference we can safely take a new reference 5413 * while holding the rcu_read_lock(). 5414 */ 5415 get_task_struct(owner); 5416 } 5417 rcu_read_unlock(); 5418 5419 if (owner) { 5420 /* 5421 * If we're here through perf_event_exit_task() we're already 5422 * holding ctx->mutex which would be an inversion wrt. the 5423 * normal lock order. 5424 * 5425 * However we can safely take this lock because its the child 5426 * ctx->mutex. 5427 */ 5428 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5429 5430 /* 5431 * We have to re-check the event->owner field, if it is cleared 5432 * we raced with perf_event_exit_task(), acquiring the mutex 5433 * ensured they're done, and we can proceed with freeing the 5434 * event. 5435 */ 5436 if (event->owner) { 5437 list_del_init(&event->owner_entry); 5438 smp_store_release(&event->owner, NULL); 5439 } 5440 mutex_unlock(&owner->perf_event_mutex); 5441 put_task_struct(owner); 5442 } 5443 } 5444 5445 static void put_event(struct perf_event *event) 5446 { 5447 if (!atomic_long_dec_and_test(&event->refcount)) 5448 return; 5449 5450 _free_event(event); 5451 } 5452 5453 /* 5454 * Kill an event dead; while event:refcount will preserve the event 5455 * object, it will not preserve its functionality. Once the last 'user' 5456 * gives up the object, we'll destroy the thing. 5457 */ 5458 int perf_event_release_kernel(struct perf_event *event) 5459 { 5460 struct perf_event_context *ctx = event->ctx; 5461 struct perf_event *child, *tmp; 5462 LIST_HEAD(free_list); 5463 5464 /* 5465 * If we got here through err_alloc: free_event(event); we will not 5466 * have attached to a context yet. 5467 */ 5468 if (!ctx) { 5469 WARN_ON_ONCE(event->attach_state & 5470 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5471 goto no_ctx; 5472 } 5473 5474 if (!is_kernel_event(event)) 5475 perf_remove_from_owner(event); 5476 5477 ctx = perf_event_ctx_lock(event); 5478 WARN_ON_ONCE(ctx->parent_ctx); 5479 5480 /* 5481 * Mark this event as STATE_DEAD, there is no external reference to it 5482 * anymore. 5483 * 5484 * Anybody acquiring event->child_mutex after the below loop _must_ 5485 * also see this, most importantly inherit_event() which will avoid 5486 * placing more children on the list. 5487 * 5488 * Thus this guarantees that we will in fact observe and kill _ALL_ 5489 * child events. 5490 */ 5491 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5492 5493 perf_event_ctx_unlock(event, ctx); 5494 5495 again: 5496 mutex_lock(&event->child_mutex); 5497 list_for_each_entry(child, &event->child_list, child_list) { 5498 void *var = NULL; 5499 5500 /* 5501 * Cannot change, child events are not migrated, see the 5502 * comment with perf_event_ctx_lock_nested(). 5503 */ 5504 ctx = READ_ONCE(child->ctx); 5505 /* 5506 * Since child_mutex nests inside ctx::mutex, we must jump 5507 * through hoops. We start by grabbing a reference on the ctx. 5508 * 5509 * Since the event cannot get freed while we hold the 5510 * child_mutex, the context must also exist and have a !0 5511 * reference count. 5512 */ 5513 get_ctx(ctx); 5514 5515 /* 5516 * Now that we have a ctx ref, we can drop child_mutex, and 5517 * acquire ctx::mutex without fear of it going away. Then we 5518 * can re-acquire child_mutex. 5519 */ 5520 mutex_unlock(&event->child_mutex); 5521 mutex_lock(&ctx->mutex); 5522 mutex_lock(&event->child_mutex); 5523 5524 /* 5525 * Now that we hold ctx::mutex and child_mutex, revalidate our 5526 * state, if child is still the first entry, it didn't get freed 5527 * and we can continue doing so. 5528 */ 5529 tmp = list_first_entry_or_null(&event->child_list, 5530 struct perf_event, child_list); 5531 if (tmp == child) { 5532 perf_remove_from_context(child, DETACH_GROUP); 5533 list_move(&child->child_list, &free_list); 5534 /* 5535 * This matches the refcount bump in inherit_event(); 5536 * this can't be the last reference. 5537 */ 5538 put_event(event); 5539 } else { 5540 var = &ctx->refcount; 5541 } 5542 5543 mutex_unlock(&event->child_mutex); 5544 mutex_unlock(&ctx->mutex); 5545 put_ctx(ctx); 5546 5547 if (var) { 5548 /* 5549 * If perf_event_free_task() has deleted all events from the 5550 * ctx while the child_mutex got released above, make sure to 5551 * notify about the preceding put_ctx(). 5552 */ 5553 smp_mb(); /* pairs with wait_var_event() */ 5554 wake_up_var(var); 5555 } 5556 goto again; 5557 } 5558 mutex_unlock(&event->child_mutex); 5559 5560 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5561 void *var = &child->ctx->refcount; 5562 5563 list_del(&child->child_list); 5564 free_event(child); 5565 5566 /* 5567 * Wake any perf_event_free_task() waiting for this event to be 5568 * freed. 5569 */ 5570 smp_mb(); /* pairs with wait_var_event() */ 5571 wake_up_var(var); 5572 } 5573 5574 no_ctx: 5575 put_event(event); /* Must be the 'last' reference */ 5576 return 0; 5577 } 5578 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5579 5580 /* 5581 * Called when the last reference to the file is gone. 5582 */ 5583 static int perf_release(struct inode *inode, struct file *file) 5584 { 5585 perf_event_release_kernel(file->private_data); 5586 return 0; 5587 } 5588 5589 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5590 { 5591 struct perf_event *child; 5592 u64 total = 0; 5593 5594 *enabled = 0; 5595 *running = 0; 5596 5597 mutex_lock(&event->child_mutex); 5598 5599 (void)perf_event_read(event, false); 5600 total += perf_event_count(event, false); 5601 5602 *enabled += event->total_time_enabled + 5603 atomic64_read(&event->child_total_time_enabled); 5604 *running += event->total_time_running + 5605 atomic64_read(&event->child_total_time_running); 5606 5607 list_for_each_entry(child, &event->child_list, child_list) { 5608 (void)perf_event_read(child, false); 5609 total += perf_event_count(child, false); 5610 *enabled += child->total_time_enabled; 5611 *running += child->total_time_running; 5612 } 5613 mutex_unlock(&event->child_mutex); 5614 5615 return total; 5616 } 5617 5618 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5619 { 5620 struct perf_event_context *ctx; 5621 u64 count; 5622 5623 ctx = perf_event_ctx_lock(event); 5624 count = __perf_event_read_value(event, enabled, running); 5625 perf_event_ctx_unlock(event, ctx); 5626 5627 return count; 5628 } 5629 EXPORT_SYMBOL_GPL(perf_event_read_value); 5630 5631 static int __perf_read_group_add(struct perf_event *leader, 5632 u64 read_format, u64 *values) 5633 { 5634 struct perf_event_context *ctx = leader->ctx; 5635 struct perf_event *sub, *parent; 5636 unsigned long flags; 5637 int n = 1; /* skip @nr */ 5638 int ret; 5639 5640 ret = perf_event_read(leader, true); 5641 if (ret) 5642 return ret; 5643 5644 raw_spin_lock_irqsave(&ctx->lock, flags); 5645 /* 5646 * Verify the grouping between the parent and child (inherited) 5647 * events is still in tact. 5648 * 5649 * Specifically: 5650 * - leader->ctx->lock pins leader->sibling_list 5651 * - parent->child_mutex pins parent->child_list 5652 * - parent->ctx->mutex pins parent->sibling_list 5653 * 5654 * Because parent->ctx != leader->ctx (and child_list nests inside 5655 * ctx->mutex), group destruction is not atomic between children, also 5656 * see perf_event_release_kernel(). Additionally, parent can grow the 5657 * group. 5658 * 5659 * Therefore it is possible to have parent and child groups in a 5660 * different configuration and summing over such a beast makes no sense 5661 * what so ever. 5662 * 5663 * Reject this. 5664 */ 5665 parent = leader->parent; 5666 if (parent && 5667 (parent->group_generation != leader->group_generation || 5668 parent->nr_siblings != leader->nr_siblings)) { 5669 ret = -ECHILD; 5670 goto unlock; 5671 } 5672 5673 /* 5674 * Since we co-schedule groups, {enabled,running} times of siblings 5675 * will be identical to those of the leader, so we only publish one 5676 * set. 5677 */ 5678 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5679 values[n++] += leader->total_time_enabled + 5680 atomic64_read(&leader->child_total_time_enabled); 5681 } 5682 5683 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5684 values[n++] += leader->total_time_running + 5685 atomic64_read(&leader->child_total_time_running); 5686 } 5687 5688 /* 5689 * Write {count,id} tuples for every sibling. 5690 */ 5691 values[n++] += perf_event_count(leader, false); 5692 if (read_format & PERF_FORMAT_ID) 5693 values[n++] = primary_event_id(leader); 5694 if (read_format & PERF_FORMAT_LOST) 5695 values[n++] = atomic64_read(&leader->lost_samples); 5696 5697 for_each_sibling_event(sub, leader) { 5698 values[n++] += perf_event_count(sub, false); 5699 if (read_format & PERF_FORMAT_ID) 5700 values[n++] = primary_event_id(sub); 5701 if (read_format & PERF_FORMAT_LOST) 5702 values[n++] = atomic64_read(&sub->lost_samples); 5703 } 5704 5705 unlock: 5706 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5707 return ret; 5708 } 5709 5710 static int perf_read_group(struct perf_event *event, 5711 u64 read_format, char __user *buf) 5712 { 5713 struct perf_event *leader = event->group_leader, *child; 5714 struct perf_event_context *ctx = leader->ctx; 5715 int ret; 5716 u64 *values; 5717 5718 lockdep_assert_held(&ctx->mutex); 5719 5720 values = kzalloc(event->read_size, GFP_KERNEL); 5721 if (!values) 5722 return -ENOMEM; 5723 5724 values[0] = 1 + leader->nr_siblings; 5725 5726 mutex_lock(&leader->child_mutex); 5727 5728 ret = __perf_read_group_add(leader, read_format, values); 5729 if (ret) 5730 goto unlock; 5731 5732 list_for_each_entry(child, &leader->child_list, child_list) { 5733 ret = __perf_read_group_add(child, read_format, values); 5734 if (ret) 5735 goto unlock; 5736 } 5737 5738 mutex_unlock(&leader->child_mutex); 5739 5740 ret = event->read_size; 5741 if (copy_to_user(buf, values, event->read_size)) 5742 ret = -EFAULT; 5743 goto out; 5744 5745 unlock: 5746 mutex_unlock(&leader->child_mutex); 5747 out: 5748 kfree(values); 5749 return ret; 5750 } 5751 5752 static int perf_read_one(struct perf_event *event, 5753 u64 read_format, char __user *buf) 5754 { 5755 u64 enabled, running; 5756 u64 values[5]; 5757 int n = 0; 5758 5759 values[n++] = __perf_event_read_value(event, &enabled, &running); 5760 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5761 values[n++] = enabled; 5762 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5763 values[n++] = running; 5764 if (read_format & PERF_FORMAT_ID) 5765 values[n++] = primary_event_id(event); 5766 if (read_format & PERF_FORMAT_LOST) 5767 values[n++] = atomic64_read(&event->lost_samples); 5768 5769 if (copy_to_user(buf, values, n * sizeof(u64))) 5770 return -EFAULT; 5771 5772 return n * sizeof(u64); 5773 } 5774 5775 static bool is_event_hup(struct perf_event *event) 5776 { 5777 bool no_children; 5778 5779 if (event->state > PERF_EVENT_STATE_EXIT) 5780 return false; 5781 5782 mutex_lock(&event->child_mutex); 5783 no_children = list_empty(&event->child_list); 5784 mutex_unlock(&event->child_mutex); 5785 return no_children; 5786 } 5787 5788 /* 5789 * Read the performance event - simple non blocking version for now 5790 */ 5791 static ssize_t 5792 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5793 { 5794 u64 read_format = event->attr.read_format; 5795 int ret; 5796 5797 /* 5798 * Return end-of-file for a read on an event that is in 5799 * error state (i.e. because it was pinned but it couldn't be 5800 * scheduled on to the CPU at some point). 5801 */ 5802 if (event->state == PERF_EVENT_STATE_ERROR) 5803 return 0; 5804 5805 if (count < event->read_size) 5806 return -ENOSPC; 5807 5808 WARN_ON_ONCE(event->ctx->parent_ctx); 5809 if (read_format & PERF_FORMAT_GROUP) 5810 ret = perf_read_group(event, read_format, buf); 5811 else 5812 ret = perf_read_one(event, read_format, buf); 5813 5814 return ret; 5815 } 5816 5817 static ssize_t 5818 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5819 { 5820 struct perf_event *event = file->private_data; 5821 struct perf_event_context *ctx; 5822 int ret; 5823 5824 ret = security_perf_event_read(event); 5825 if (ret) 5826 return ret; 5827 5828 ctx = perf_event_ctx_lock(event); 5829 ret = __perf_read(event, buf, count); 5830 perf_event_ctx_unlock(event, ctx); 5831 5832 return ret; 5833 } 5834 5835 static __poll_t perf_poll(struct file *file, poll_table *wait) 5836 { 5837 struct perf_event *event = file->private_data; 5838 struct perf_buffer *rb; 5839 __poll_t events = EPOLLHUP; 5840 5841 poll_wait(file, &event->waitq, wait); 5842 5843 if (is_event_hup(event)) 5844 return events; 5845 5846 /* 5847 * Pin the event->rb by taking event->mmap_mutex; otherwise 5848 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5849 */ 5850 mutex_lock(&event->mmap_mutex); 5851 rb = event->rb; 5852 if (rb) 5853 events = atomic_xchg(&rb->poll, 0); 5854 mutex_unlock(&event->mmap_mutex); 5855 return events; 5856 } 5857 5858 static void _perf_event_reset(struct perf_event *event) 5859 { 5860 (void)perf_event_read(event, false); 5861 local64_set(&event->count, 0); 5862 perf_event_update_userpage(event); 5863 } 5864 5865 /* Assume it's not an event with inherit set. */ 5866 u64 perf_event_pause(struct perf_event *event, bool reset) 5867 { 5868 struct perf_event_context *ctx; 5869 u64 count; 5870 5871 ctx = perf_event_ctx_lock(event); 5872 WARN_ON_ONCE(event->attr.inherit); 5873 _perf_event_disable(event); 5874 count = local64_read(&event->count); 5875 if (reset) 5876 local64_set(&event->count, 0); 5877 perf_event_ctx_unlock(event, ctx); 5878 5879 return count; 5880 } 5881 EXPORT_SYMBOL_GPL(perf_event_pause); 5882 5883 /* 5884 * Holding the top-level event's child_mutex means that any 5885 * descendant process that has inherited this event will block 5886 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5887 * task existence requirements of perf_event_enable/disable. 5888 */ 5889 static void perf_event_for_each_child(struct perf_event *event, 5890 void (*func)(struct perf_event *)) 5891 { 5892 struct perf_event *child; 5893 5894 WARN_ON_ONCE(event->ctx->parent_ctx); 5895 5896 mutex_lock(&event->child_mutex); 5897 func(event); 5898 list_for_each_entry(child, &event->child_list, child_list) 5899 func(child); 5900 mutex_unlock(&event->child_mutex); 5901 } 5902 5903 static void perf_event_for_each(struct perf_event *event, 5904 void (*func)(struct perf_event *)) 5905 { 5906 struct perf_event_context *ctx = event->ctx; 5907 struct perf_event *sibling; 5908 5909 lockdep_assert_held(&ctx->mutex); 5910 5911 event = event->group_leader; 5912 5913 perf_event_for_each_child(event, func); 5914 for_each_sibling_event(sibling, event) 5915 perf_event_for_each_child(sibling, func); 5916 } 5917 5918 static void __perf_event_period(struct perf_event *event, 5919 struct perf_cpu_context *cpuctx, 5920 struct perf_event_context *ctx, 5921 void *info) 5922 { 5923 u64 value = *((u64 *)info); 5924 bool active; 5925 5926 if (event->attr.freq) { 5927 event->attr.sample_freq = value; 5928 } else { 5929 event->attr.sample_period = value; 5930 event->hw.sample_period = value; 5931 } 5932 5933 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5934 if (active) { 5935 perf_pmu_disable(event->pmu); 5936 /* 5937 * We could be throttled; unthrottle now to avoid the tick 5938 * trying to unthrottle while we already re-started the event. 5939 */ 5940 if (event->hw.interrupts == MAX_INTERRUPTS) { 5941 event->hw.interrupts = 0; 5942 perf_log_throttle(event, 1); 5943 } 5944 event->pmu->stop(event, PERF_EF_UPDATE); 5945 } 5946 5947 local64_set(&event->hw.period_left, 0); 5948 5949 if (active) { 5950 event->pmu->start(event, PERF_EF_RELOAD); 5951 perf_pmu_enable(event->pmu); 5952 } 5953 } 5954 5955 static int perf_event_check_period(struct perf_event *event, u64 value) 5956 { 5957 return event->pmu->check_period(event, value); 5958 } 5959 5960 static int _perf_event_period(struct perf_event *event, u64 value) 5961 { 5962 if (!is_sampling_event(event)) 5963 return -EINVAL; 5964 5965 if (!value) 5966 return -EINVAL; 5967 5968 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5969 return -EINVAL; 5970 5971 if (perf_event_check_period(event, value)) 5972 return -EINVAL; 5973 5974 if (!event->attr.freq && (value & (1ULL << 63))) 5975 return -EINVAL; 5976 5977 event_function_call(event, __perf_event_period, &value); 5978 5979 return 0; 5980 } 5981 5982 int perf_event_period(struct perf_event *event, u64 value) 5983 { 5984 struct perf_event_context *ctx; 5985 int ret; 5986 5987 ctx = perf_event_ctx_lock(event); 5988 ret = _perf_event_period(event, value); 5989 perf_event_ctx_unlock(event, ctx); 5990 5991 return ret; 5992 } 5993 EXPORT_SYMBOL_GPL(perf_event_period); 5994 5995 static const struct file_operations perf_fops; 5996 5997 static inline bool is_perf_file(struct fd f) 5998 { 5999 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 6000 } 6001 6002 static int perf_event_set_output(struct perf_event *event, 6003 struct perf_event *output_event); 6004 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6005 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6006 struct perf_event_attr *attr); 6007 6008 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6009 { 6010 void (*func)(struct perf_event *); 6011 u32 flags = arg; 6012 6013 switch (cmd) { 6014 case PERF_EVENT_IOC_ENABLE: 6015 func = _perf_event_enable; 6016 break; 6017 case PERF_EVENT_IOC_DISABLE: 6018 func = _perf_event_disable; 6019 break; 6020 case PERF_EVENT_IOC_RESET: 6021 func = _perf_event_reset; 6022 break; 6023 6024 case PERF_EVENT_IOC_REFRESH: 6025 return _perf_event_refresh(event, arg); 6026 6027 case PERF_EVENT_IOC_PERIOD: 6028 { 6029 u64 value; 6030 6031 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6032 return -EFAULT; 6033 6034 return _perf_event_period(event, value); 6035 } 6036 case PERF_EVENT_IOC_ID: 6037 { 6038 u64 id = primary_event_id(event); 6039 6040 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6041 return -EFAULT; 6042 return 0; 6043 } 6044 6045 case PERF_EVENT_IOC_SET_OUTPUT: 6046 { 6047 CLASS(fd, output)(arg); // arg == -1 => empty 6048 struct perf_event *output_event = NULL; 6049 if (arg != -1) { 6050 if (!is_perf_file(output)) 6051 return -EBADF; 6052 output_event = fd_file(output)->private_data; 6053 } 6054 return perf_event_set_output(event, output_event); 6055 } 6056 6057 case PERF_EVENT_IOC_SET_FILTER: 6058 return perf_event_set_filter(event, (void __user *)arg); 6059 6060 case PERF_EVENT_IOC_SET_BPF: 6061 { 6062 struct bpf_prog *prog; 6063 int err; 6064 6065 prog = bpf_prog_get(arg); 6066 if (IS_ERR(prog)) 6067 return PTR_ERR(prog); 6068 6069 err = perf_event_set_bpf_prog(event, prog, 0); 6070 if (err) { 6071 bpf_prog_put(prog); 6072 return err; 6073 } 6074 6075 return 0; 6076 } 6077 6078 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6079 struct perf_buffer *rb; 6080 6081 rcu_read_lock(); 6082 rb = rcu_dereference(event->rb); 6083 if (!rb || !rb->nr_pages) { 6084 rcu_read_unlock(); 6085 return -EINVAL; 6086 } 6087 rb_toggle_paused(rb, !!arg); 6088 rcu_read_unlock(); 6089 return 0; 6090 } 6091 6092 case PERF_EVENT_IOC_QUERY_BPF: 6093 return perf_event_query_prog_array(event, (void __user *)arg); 6094 6095 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6096 struct perf_event_attr new_attr; 6097 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6098 &new_attr); 6099 6100 if (err) 6101 return err; 6102 6103 return perf_event_modify_attr(event, &new_attr); 6104 } 6105 default: 6106 return -ENOTTY; 6107 } 6108 6109 if (flags & PERF_IOC_FLAG_GROUP) 6110 perf_event_for_each(event, func); 6111 else 6112 perf_event_for_each_child(event, func); 6113 6114 return 0; 6115 } 6116 6117 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6118 { 6119 struct perf_event *event = file->private_data; 6120 struct perf_event_context *ctx; 6121 long ret; 6122 6123 /* Treat ioctl like writes as it is likely a mutating operation. */ 6124 ret = security_perf_event_write(event); 6125 if (ret) 6126 return ret; 6127 6128 ctx = perf_event_ctx_lock(event); 6129 ret = _perf_ioctl(event, cmd, arg); 6130 perf_event_ctx_unlock(event, ctx); 6131 6132 return ret; 6133 } 6134 6135 #ifdef CONFIG_COMPAT 6136 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6137 unsigned long arg) 6138 { 6139 switch (_IOC_NR(cmd)) { 6140 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6141 case _IOC_NR(PERF_EVENT_IOC_ID): 6142 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6143 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6144 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6145 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6146 cmd &= ~IOCSIZE_MASK; 6147 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6148 } 6149 break; 6150 } 6151 return perf_ioctl(file, cmd, arg); 6152 } 6153 #else 6154 # define perf_compat_ioctl NULL 6155 #endif 6156 6157 int perf_event_task_enable(void) 6158 { 6159 struct perf_event_context *ctx; 6160 struct perf_event *event; 6161 6162 mutex_lock(¤t->perf_event_mutex); 6163 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6164 ctx = perf_event_ctx_lock(event); 6165 perf_event_for_each_child(event, _perf_event_enable); 6166 perf_event_ctx_unlock(event, ctx); 6167 } 6168 mutex_unlock(¤t->perf_event_mutex); 6169 6170 return 0; 6171 } 6172 6173 int perf_event_task_disable(void) 6174 { 6175 struct perf_event_context *ctx; 6176 struct perf_event *event; 6177 6178 mutex_lock(¤t->perf_event_mutex); 6179 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6180 ctx = perf_event_ctx_lock(event); 6181 perf_event_for_each_child(event, _perf_event_disable); 6182 perf_event_ctx_unlock(event, ctx); 6183 } 6184 mutex_unlock(¤t->perf_event_mutex); 6185 6186 return 0; 6187 } 6188 6189 static int perf_event_index(struct perf_event *event) 6190 { 6191 if (event->hw.state & PERF_HES_STOPPED) 6192 return 0; 6193 6194 if (event->state != PERF_EVENT_STATE_ACTIVE) 6195 return 0; 6196 6197 return event->pmu->event_idx(event); 6198 } 6199 6200 static void perf_event_init_userpage(struct perf_event *event) 6201 { 6202 struct perf_event_mmap_page *userpg; 6203 struct perf_buffer *rb; 6204 6205 rcu_read_lock(); 6206 rb = rcu_dereference(event->rb); 6207 if (!rb) 6208 goto unlock; 6209 6210 userpg = rb->user_page; 6211 6212 /* Allow new userspace to detect that bit 0 is deprecated */ 6213 userpg->cap_bit0_is_deprecated = 1; 6214 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6215 userpg->data_offset = PAGE_SIZE; 6216 userpg->data_size = perf_data_size(rb); 6217 6218 unlock: 6219 rcu_read_unlock(); 6220 } 6221 6222 void __weak arch_perf_update_userpage( 6223 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6224 { 6225 } 6226 6227 /* 6228 * Callers need to ensure there can be no nesting of this function, otherwise 6229 * the seqlock logic goes bad. We can not serialize this because the arch 6230 * code calls this from NMI context. 6231 */ 6232 void perf_event_update_userpage(struct perf_event *event) 6233 { 6234 struct perf_event_mmap_page *userpg; 6235 struct perf_buffer *rb; 6236 u64 enabled, running, now; 6237 6238 rcu_read_lock(); 6239 rb = rcu_dereference(event->rb); 6240 if (!rb) 6241 goto unlock; 6242 6243 /* 6244 * compute total_time_enabled, total_time_running 6245 * based on snapshot values taken when the event 6246 * was last scheduled in. 6247 * 6248 * we cannot simply called update_context_time() 6249 * because of locking issue as we can be called in 6250 * NMI context 6251 */ 6252 calc_timer_values(event, &now, &enabled, &running); 6253 6254 userpg = rb->user_page; 6255 /* 6256 * Disable preemption to guarantee consistent time stamps are stored to 6257 * the user page. 6258 */ 6259 preempt_disable(); 6260 ++userpg->lock; 6261 barrier(); 6262 userpg->index = perf_event_index(event); 6263 userpg->offset = perf_event_count(event, false); 6264 if (userpg->index) 6265 userpg->offset -= local64_read(&event->hw.prev_count); 6266 6267 userpg->time_enabled = enabled + 6268 atomic64_read(&event->child_total_time_enabled); 6269 6270 userpg->time_running = running + 6271 atomic64_read(&event->child_total_time_running); 6272 6273 arch_perf_update_userpage(event, userpg, now); 6274 6275 barrier(); 6276 ++userpg->lock; 6277 preempt_enable(); 6278 unlock: 6279 rcu_read_unlock(); 6280 } 6281 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6282 6283 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6284 { 6285 struct perf_event *event = vmf->vma->vm_file->private_data; 6286 struct perf_buffer *rb; 6287 vm_fault_t ret = VM_FAULT_SIGBUS; 6288 6289 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6290 if (vmf->pgoff == 0) 6291 ret = 0; 6292 return ret; 6293 } 6294 6295 rcu_read_lock(); 6296 rb = rcu_dereference(event->rb); 6297 if (!rb) 6298 goto unlock; 6299 6300 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6301 goto unlock; 6302 6303 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6304 if (!vmf->page) 6305 goto unlock; 6306 6307 get_page(vmf->page); 6308 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6309 vmf->page->index = vmf->pgoff; 6310 6311 ret = 0; 6312 unlock: 6313 rcu_read_unlock(); 6314 6315 return ret; 6316 } 6317 6318 static void ring_buffer_attach(struct perf_event *event, 6319 struct perf_buffer *rb) 6320 { 6321 struct perf_buffer *old_rb = NULL; 6322 unsigned long flags; 6323 6324 WARN_ON_ONCE(event->parent); 6325 6326 if (event->rb) { 6327 /* 6328 * Should be impossible, we set this when removing 6329 * event->rb_entry and wait/clear when adding event->rb_entry. 6330 */ 6331 WARN_ON_ONCE(event->rcu_pending); 6332 6333 old_rb = event->rb; 6334 spin_lock_irqsave(&old_rb->event_lock, flags); 6335 list_del_rcu(&event->rb_entry); 6336 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6337 6338 event->rcu_batches = get_state_synchronize_rcu(); 6339 event->rcu_pending = 1; 6340 } 6341 6342 if (rb) { 6343 if (event->rcu_pending) { 6344 cond_synchronize_rcu(event->rcu_batches); 6345 event->rcu_pending = 0; 6346 } 6347 6348 spin_lock_irqsave(&rb->event_lock, flags); 6349 list_add_rcu(&event->rb_entry, &rb->event_list); 6350 spin_unlock_irqrestore(&rb->event_lock, flags); 6351 } 6352 6353 /* 6354 * Avoid racing with perf_mmap_close(AUX): stop the event 6355 * before swizzling the event::rb pointer; if it's getting 6356 * unmapped, its aux_mmap_count will be 0 and it won't 6357 * restart. See the comment in __perf_pmu_output_stop(). 6358 * 6359 * Data will inevitably be lost when set_output is done in 6360 * mid-air, but then again, whoever does it like this is 6361 * not in for the data anyway. 6362 */ 6363 if (has_aux(event)) 6364 perf_event_stop(event, 0); 6365 6366 rcu_assign_pointer(event->rb, rb); 6367 6368 if (old_rb) { 6369 ring_buffer_put(old_rb); 6370 /* 6371 * Since we detached before setting the new rb, so that we 6372 * could attach the new rb, we could have missed a wakeup. 6373 * Provide it now. 6374 */ 6375 wake_up_all(&event->waitq); 6376 } 6377 } 6378 6379 static void ring_buffer_wakeup(struct perf_event *event) 6380 { 6381 struct perf_buffer *rb; 6382 6383 if (event->parent) 6384 event = event->parent; 6385 6386 rcu_read_lock(); 6387 rb = rcu_dereference(event->rb); 6388 if (rb) { 6389 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6390 wake_up_all(&event->waitq); 6391 } 6392 rcu_read_unlock(); 6393 } 6394 6395 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6396 { 6397 struct perf_buffer *rb; 6398 6399 if (event->parent) 6400 event = event->parent; 6401 6402 rcu_read_lock(); 6403 rb = rcu_dereference(event->rb); 6404 if (rb) { 6405 if (!refcount_inc_not_zero(&rb->refcount)) 6406 rb = NULL; 6407 } 6408 rcu_read_unlock(); 6409 6410 return rb; 6411 } 6412 6413 void ring_buffer_put(struct perf_buffer *rb) 6414 { 6415 if (!refcount_dec_and_test(&rb->refcount)) 6416 return; 6417 6418 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6419 6420 call_rcu(&rb->rcu_head, rb_free_rcu); 6421 } 6422 6423 static void perf_mmap_open(struct vm_area_struct *vma) 6424 { 6425 struct perf_event *event = vma->vm_file->private_data; 6426 6427 atomic_inc(&event->mmap_count); 6428 atomic_inc(&event->rb->mmap_count); 6429 6430 if (vma->vm_pgoff) 6431 atomic_inc(&event->rb->aux_mmap_count); 6432 6433 if (event->pmu->event_mapped) 6434 event->pmu->event_mapped(event, vma->vm_mm); 6435 } 6436 6437 static void perf_pmu_output_stop(struct perf_event *event); 6438 6439 /* 6440 * A buffer can be mmap()ed multiple times; either directly through the same 6441 * event, or through other events by use of perf_event_set_output(). 6442 * 6443 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6444 * the buffer here, where we still have a VM context. This means we need 6445 * to detach all events redirecting to us. 6446 */ 6447 static void perf_mmap_close(struct vm_area_struct *vma) 6448 { 6449 struct perf_event *event = vma->vm_file->private_data; 6450 struct perf_buffer *rb = ring_buffer_get(event); 6451 struct user_struct *mmap_user = rb->mmap_user; 6452 int mmap_locked = rb->mmap_locked; 6453 unsigned long size = perf_data_size(rb); 6454 bool detach_rest = false; 6455 6456 if (event->pmu->event_unmapped) 6457 event->pmu->event_unmapped(event, vma->vm_mm); 6458 6459 /* 6460 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6461 * to avoid complications. 6462 */ 6463 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6464 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6465 /* 6466 * Stop all AUX events that are writing to this buffer, 6467 * so that we can free its AUX pages and corresponding PMU 6468 * data. Note that after rb::aux_mmap_count dropped to zero, 6469 * they won't start any more (see perf_aux_output_begin()). 6470 */ 6471 perf_pmu_output_stop(event); 6472 6473 /* now it's safe to free the pages */ 6474 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6475 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6476 6477 /* this has to be the last one */ 6478 rb_free_aux(rb); 6479 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6480 6481 mutex_unlock(&rb->aux_mutex); 6482 } 6483 6484 if (atomic_dec_and_test(&rb->mmap_count)) 6485 detach_rest = true; 6486 6487 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6488 goto out_put; 6489 6490 ring_buffer_attach(event, NULL); 6491 mutex_unlock(&event->mmap_mutex); 6492 6493 /* If there's still other mmap()s of this buffer, we're done. */ 6494 if (!detach_rest) 6495 goto out_put; 6496 6497 /* 6498 * No other mmap()s, detach from all other events that might redirect 6499 * into the now unreachable buffer. Somewhat complicated by the 6500 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6501 */ 6502 again: 6503 rcu_read_lock(); 6504 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6505 if (!atomic_long_inc_not_zero(&event->refcount)) { 6506 /* 6507 * This event is en-route to free_event() which will 6508 * detach it and remove it from the list. 6509 */ 6510 continue; 6511 } 6512 rcu_read_unlock(); 6513 6514 mutex_lock(&event->mmap_mutex); 6515 /* 6516 * Check we didn't race with perf_event_set_output() which can 6517 * swizzle the rb from under us while we were waiting to 6518 * acquire mmap_mutex. 6519 * 6520 * If we find a different rb; ignore this event, a next 6521 * iteration will no longer find it on the list. We have to 6522 * still restart the iteration to make sure we're not now 6523 * iterating the wrong list. 6524 */ 6525 if (event->rb == rb) 6526 ring_buffer_attach(event, NULL); 6527 6528 mutex_unlock(&event->mmap_mutex); 6529 put_event(event); 6530 6531 /* 6532 * Restart the iteration; either we're on the wrong list or 6533 * destroyed its integrity by doing a deletion. 6534 */ 6535 goto again; 6536 } 6537 rcu_read_unlock(); 6538 6539 /* 6540 * It could be there's still a few 0-ref events on the list; they'll 6541 * get cleaned up by free_event() -- they'll also still have their 6542 * ref on the rb and will free it whenever they are done with it. 6543 * 6544 * Aside from that, this buffer is 'fully' detached and unmapped, 6545 * undo the VM accounting. 6546 */ 6547 6548 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6549 &mmap_user->locked_vm); 6550 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6551 free_uid(mmap_user); 6552 6553 out_put: 6554 ring_buffer_put(rb); /* could be last */ 6555 } 6556 6557 static const struct vm_operations_struct perf_mmap_vmops = { 6558 .open = perf_mmap_open, 6559 .close = perf_mmap_close, /* non mergeable */ 6560 .fault = perf_mmap_fault, 6561 .page_mkwrite = perf_mmap_fault, 6562 }; 6563 6564 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6565 { 6566 struct perf_event *event = file->private_data; 6567 unsigned long user_locked, user_lock_limit; 6568 struct user_struct *user = current_user(); 6569 struct mutex *aux_mutex = NULL; 6570 struct perf_buffer *rb = NULL; 6571 unsigned long locked, lock_limit; 6572 unsigned long vma_size; 6573 unsigned long nr_pages; 6574 long user_extra = 0, extra = 0; 6575 int ret = 0, flags = 0; 6576 6577 /* 6578 * Don't allow mmap() of inherited per-task counters. This would 6579 * create a performance issue due to all children writing to the 6580 * same rb. 6581 */ 6582 if (event->cpu == -1 && event->attr.inherit) 6583 return -EINVAL; 6584 6585 if (!(vma->vm_flags & VM_SHARED)) 6586 return -EINVAL; 6587 6588 ret = security_perf_event_read(event); 6589 if (ret) 6590 return ret; 6591 6592 vma_size = vma->vm_end - vma->vm_start; 6593 6594 if (vma->vm_pgoff == 0) { 6595 nr_pages = (vma_size / PAGE_SIZE) - 1; 6596 } else { 6597 /* 6598 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6599 * mapped, all subsequent mappings should have the same size 6600 * and offset. Must be above the normal perf buffer. 6601 */ 6602 u64 aux_offset, aux_size; 6603 6604 if (!event->rb) 6605 return -EINVAL; 6606 6607 nr_pages = vma_size / PAGE_SIZE; 6608 if (nr_pages > INT_MAX) 6609 return -ENOMEM; 6610 6611 mutex_lock(&event->mmap_mutex); 6612 ret = -EINVAL; 6613 6614 rb = event->rb; 6615 if (!rb) 6616 goto aux_unlock; 6617 6618 aux_mutex = &rb->aux_mutex; 6619 mutex_lock(aux_mutex); 6620 6621 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6622 aux_size = READ_ONCE(rb->user_page->aux_size); 6623 6624 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6625 goto aux_unlock; 6626 6627 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6628 goto aux_unlock; 6629 6630 /* already mapped with a different offset */ 6631 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6632 goto aux_unlock; 6633 6634 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6635 goto aux_unlock; 6636 6637 /* already mapped with a different size */ 6638 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6639 goto aux_unlock; 6640 6641 if (!is_power_of_2(nr_pages)) 6642 goto aux_unlock; 6643 6644 if (!atomic_inc_not_zero(&rb->mmap_count)) 6645 goto aux_unlock; 6646 6647 if (rb_has_aux(rb)) { 6648 atomic_inc(&rb->aux_mmap_count); 6649 ret = 0; 6650 goto unlock; 6651 } 6652 6653 atomic_set(&rb->aux_mmap_count, 1); 6654 user_extra = nr_pages; 6655 6656 goto accounting; 6657 } 6658 6659 /* 6660 * If we have rb pages ensure they're a power-of-two number, so we 6661 * can do bitmasks instead of modulo. 6662 */ 6663 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6664 return -EINVAL; 6665 6666 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6667 return -EINVAL; 6668 6669 WARN_ON_ONCE(event->ctx->parent_ctx); 6670 again: 6671 mutex_lock(&event->mmap_mutex); 6672 if (event->rb) { 6673 if (data_page_nr(event->rb) != nr_pages) { 6674 ret = -EINVAL; 6675 goto unlock; 6676 } 6677 6678 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6679 /* 6680 * Raced against perf_mmap_close(); remove the 6681 * event and try again. 6682 */ 6683 ring_buffer_attach(event, NULL); 6684 mutex_unlock(&event->mmap_mutex); 6685 goto again; 6686 } 6687 6688 goto unlock; 6689 } 6690 6691 user_extra = nr_pages + 1; 6692 6693 accounting: 6694 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6695 6696 /* 6697 * Increase the limit linearly with more CPUs: 6698 */ 6699 user_lock_limit *= num_online_cpus(); 6700 6701 user_locked = atomic_long_read(&user->locked_vm); 6702 6703 /* 6704 * sysctl_perf_event_mlock may have changed, so that 6705 * user->locked_vm > user_lock_limit 6706 */ 6707 if (user_locked > user_lock_limit) 6708 user_locked = user_lock_limit; 6709 user_locked += user_extra; 6710 6711 if (user_locked > user_lock_limit) { 6712 /* 6713 * charge locked_vm until it hits user_lock_limit; 6714 * charge the rest from pinned_vm 6715 */ 6716 extra = user_locked - user_lock_limit; 6717 user_extra -= extra; 6718 } 6719 6720 lock_limit = rlimit(RLIMIT_MEMLOCK); 6721 lock_limit >>= PAGE_SHIFT; 6722 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6723 6724 if ((locked > lock_limit) && perf_is_paranoid() && 6725 !capable(CAP_IPC_LOCK)) { 6726 ret = -EPERM; 6727 goto unlock; 6728 } 6729 6730 WARN_ON(!rb && event->rb); 6731 6732 if (vma->vm_flags & VM_WRITE) 6733 flags |= RING_BUFFER_WRITABLE; 6734 6735 if (!rb) { 6736 rb = rb_alloc(nr_pages, 6737 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6738 event->cpu, flags); 6739 6740 if (!rb) { 6741 ret = -ENOMEM; 6742 goto unlock; 6743 } 6744 6745 atomic_set(&rb->mmap_count, 1); 6746 rb->mmap_user = get_current_user(); 6747 rb->mmap_locked = extra; 6748 6749 ring_buffer_attach(event, rb); 6750 6751 perf_event_update_time(event); 6752 perf_event_init_userpage(event); 6753 perf_event_update_userpage(event); 6754 } else { 6755 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6756 event->attr.aux_watermark, flags); 6757 if (!ret) 6758 rb->aux_mmap_locked = extra; 6759 } 6760 6761 unlock: 6762 if (!ret) { 6763 atomic_long_add(user_extra, &user->locked_vm); 6764 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6765 6766 atomic_inc(&event->mmap_count); 6767 } else if (rb) { 6768 atomic_dec(&rb->mmap_count); 6769 } 6770 aux_unlock: 6771 if (aux_mutex) 6772 mutex_unlock(aux_mutex); 6773 mutex_unlock(&event->mmap_mutex); 6774 6775 /* 6776 * Since pinned accounting is per vm we cannot allow fork() to copy our 6777 * vma. 6778 */ 6779 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6780 vma->vm_ops = &perf_mmap_vmops; 6781 6782 if (event->pmu->event_mapped) 6783 event->pmu->event_mapped(event, vma->vm_mm); 6784 6785 return ret; 6786 } 6787 6788 static int perf_fasync(int fd, struct file *filp, int on) 6789 { 6790 struct inode *inode = file_inode(filp); 6791 struct perf_event *event = filp->private_data; 6792 int retval; 6793 6794 inode_lock(inode); 6795 retval = fasync_helper(fd, filp, on, &event->fasync); 6796 inode_unlock(inode); 6797 6798 if (retval < 0) 6799 return retval; 6800 6801 return 0; 6802 } 6803 6804 static const struct file_operations perf_fops = { 6805 .release = perf_release, 6806 .read = perf_read, 6807 .poll = perf_poll, 6808 .unlocked_ioctl = perf_ioctl, 6809 .compat_ioctl = perf_compat_ioctl, 6810 .mmap = perf_mmap, 6811 .fasync = perf_fasync, 6812 }; 6813 6814 /* 6815 * Perf event wakeup 6816 * 6817 * If there's data, ensure we set the poll() state and publish everything 6818 * to user-space before waking everybody up. 6819 */ 6820 6821 void perf_event_wakeup(struct perf_event *event) 6822 { 6823 ring_buffer_wakeup(event); 6824 6825 if (event->pending_kill) { 6826 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6827 event->pending_kill = 0; 6828 } 6829 } 6830 6831 static void perf_sigtrap(struct perf_event *event) 6832 { 6833 /* 6834 * We'd expect this to only occur if the irq_work is delayed and either 6835 * ctx->task or current has changed in the meantime. This can be the 6836 * case on architectures that do not implement arch_irq_work_raise(). 6837 */ 6838 if (WARN_ON_ONCE(event->ctx->task != current)) 6839 return; 6840 6841 /* 6842 * Both perf_pending_task() and perf_pending_irq() can race with the 6843 * task exiting. 6844 */ 6845 if (current->flags & PF_EXITING) 6846 return; 6847 6848 send_sig_perf((void __user *)event->pending_addr, 6849 event->orig_type, event->attr.sig_data); 6850 } 6851 6852 /* 6853 * Deliver the pending work in-event-context or follow the context. 6854 */ 6855 static void __perf_pending_disable(struct perf_event *event) 6856 { 6857 int cpu = READ_ONCE(event->oncpu); 6858 6859 /* 6860 * If the event isn't running; we done. event_sched_out() will have 6861 * taken care of things. 6862 */ 6863 if (cpu < 0) 6864 return; 6865 6866 /* 6867 * Yay, we hit home and are in the context of the event. 6868 */ 6869 if (cpu == smp_processor_id()) { 6870 if (event->pending_disable) { 6871 event->pending_disable = 0; 6872 perf_event_disable_local(event); 6873 } 6874 return; 6875 } 6876 6877 /* 6878 * CPU-A CPU-B 6879 * 6880 * perf_event_disable_inatomic() 6881 * @pending_disable = CPU-A; 6882 * irq_work_queue(); 6883 * 6884 * sched-out 6885 * @pending_disable = -1; 6886 * 6887 * sched-in 6888 * perf_event_disable_inatomic() 6889 * @pending_disable = CPU-B; 6890 * irq_work_queue(); // FAILS 6891 * 6892 * irq_work_run() 6893 * perf_pending_disable() 6894 * 6895 * But the event runs on CPU-B and wants disabling there. 6896 */ 6897 irq_work_queue_on(&event->pending_disable_irq, cpu); 6898 } 6899 6900 static void perf_pending_disable(struct irq_work *entry) 6901 { 6902 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 6903 int rctx; 6904 6905 /* 6906 * If we 'fail' here, that's OK, it means recursion is already disabled 6907 * and we won't recurse 'further'. 6908 */ 6909 rctx = perf_swevent_get_recursion_context(); 6910 __perf_pending_disable(event); 6911 if (rctx >= 0) 6912 perf_swevent_put_recursion_context(rctx); 6913 } 6914 6915 static void perf_pending_irq(struct irq_work *entry) 6916 { 6917 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6918 int rctx; 6919 6920 /* 6921 * If we 'fail' here, that's OK, it means recursion is already disabled 6922 * and we won't recurse 'further'. 6923 */ 6924 rctx = perf_swevent_get_recursion_context(); 6925 6926 /* 6927 * The wakeup isn't bound to the context of the event -- it can happen 6928 * irrespective of where the event is. 6929 */ 6930 if (event->pending_wakeup) { 6931 event->pending_wakeup = 0; 6932 perf_event_wakeup(event); 6933 } 6934 6935 if (rctx >= 0) 6936 perf_swevent_put_recursion_context(rctx); 6937 } 6938 6939 static void perf_pending_task(struct callback_head *head) 6940 { 6941 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6942 int rctx; 6943 6944 /* 6945 * All accesses to the event must belong to the same implicit RCU read-side 6946 * critical section as the ->pending_work reset. See comment in 6947 * perf_pending_task_sync(). 6948 */ 6949 rcu_read_lock(); 6950 /* 6951 * If we 'fail' here, that's OK, it means recursion is already disabled 6952 * and we won't recurse 'further'. 6953 */ 6954 rctx = perf_swevent_get_recursion_context(); 6955 6956 if (event->pending_work) { 6957 event->pending_work = 0; 6958 perf_sigtrap(event); 6959 local_dec(&event->ctx->nr_no_switch_fast); 6960 rcuwait_wake_up(&event->pending_work_wait); 6961 } 6962 rcu_read_unlock(); 6963 6964 if (rctx >= 0) 6965 perf_swevent_put_recursion_context(rctx); 6966 } 6967 6968 #ifdef CONFIG_GUEST_PERF_EVENTS 6969 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6970 6971 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6972 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6973 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6974 6975 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6976 { 6977 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6978 return; 6979 6980 rcu_assign_pointer(perf_guest_cbs, cbs); 6981 static_call_update(__perf_guest_state, cbs->state); 6982 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6983 6984 /* Implementing ->handle_intel_pt_intr is optional. */ 6985 if (cbs->handle_intel_pt_intr) 6986 static_call_update(__perf_guest_handle_intel_pt_intr, 6987 cbs->handle_intel_pt_intr); 6988 } 6989 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6990 6991 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6992 { 6993 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6994 return; 6995 6996 rcu_assign_pointer(perf_guest_cbs, NULL); 6997 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6998 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6999 static_call_update(__perf_guest_handle_intel_pt_intr, 7000 (void *)&__static_call_return0); 7001 synchronize_rcu(); 7002 } 7003 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7004 #endif 7005 7006 static void 7007 perf_output_sample_regs(struct perf_output_handle *handle, 7008 struct pt_regs *regs, u64 mask) 7009 { 7010 int bit; 7011 DECLARE_BITMAP(_mask, 64); 7012 7013 bitmap_from_u64(_mask, mask); 7014 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7015 u64 val; 7016 7017 val = perf_reg_value(regs, bit); 7018 perf_output_put(handle, val); 7019 } 7020 } 7021 7022 static void perf_sample_regs_user(struct perf_regs *regs_user, 7023 struct pt_regs *regs) 7024 { 7025 if (user_mode(regs)) { 7026 regs_user->abi = perf_reg_abi(current); 7027 regs_user->regs = regs; 7028 } else if (!(current->flags & PF_KTHREAD)) { 7029 perf_get_regs_user(regs_user, regs); 7030 } else { 7031 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7032 regs_user->regs = NULL; 7033 } 7034 } 7035 7036 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7037 struct pt_regs *regs) 7038 { 7039 regs_intr->regs = regs; 7040 regs_intr->abi = perf_reg_abi(current); 7041 } 7042 7043 7044 /* 7045 * Get remaining task size from user stack pointer. 7046 * 7047 * It'd be better to take stack vma map and limit this more 7048 * precisely, but there's no way to get it safely under interrupt, 7049 * so using TASK_SIZE as limit. 7050 */ 7051 static u64 perf_ustack_task_size(struct pt_regs *regs) 7052 { 7053 unsigned long addr = perf_user_stack_pointer(regs); 7054 7055 if (!addr || addr >= TASK_SIZE) 7056 return 0; 7057 7058 return TASK_SIZE - addr; 7059 } 7060 7061 static u16 7062 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7063 struct pt_regs *regs) 7064 { 7065 u64 task_size; 7066 7067 /* No regs, no stack pointer, no dump. */ 7068 if (!regs) 7069 return 0; 7070 7071 /* 7072 * Check if we fit in with the requested stack size into the: 7073 * - TASK_SIZE 7074 * If we don't, we limit the size to the TASK_SIZE. 7075 * 7076 * - remaining sample size 7077 * If we don't, we customize the stack size to 7078 * fit in to the remaining sample size. 7079 */ 7080 7081 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7082 stack_size = min(stack_size, (u16) task_size); 7083 7084 /* Current header size plus static size and dynamic size. */ 7085 header_size += 2 * sizeof(u64); 7086 7087 /* Do we fit in with the current stack dump size? */ 7088 if ((u16) (header_size + stack_size) < header_size) { 7089 /* 7090 * If we overflow the maximum size for the sample, 7091 * we customize the stack dump size to fit in. 7092 */ 7093 stack_size = USHRT_MAX - header_size - sizeof(u64); 7094 stack_size = round_up(stack_size, sizeof(u64)); 7095 } 7096 7097 return stack_size; 7098 } 7099 7100 static void 7101 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7102 struct pt_regs *regs) 7103 { 7104 /* Case of a kernel thread, nothing to dump */ 7105 if (!regs) { 7106 u64 size = 0; 7107 perf_output_put(handle, size); 7108 } else { 7109 unsigned long sp; 7110 unsigned int rem; 7111 u64 dyn_size; 7112 7113 /* 7114 * We dump: 7115 * static size 7116 * - the size requested by user or the best one we can fit 7117 * in to the sample max size 7118 * data 7119 * - user stack dump data 7120 * dynamic size 7121 * - the actual dumped size 7122 */ 7123 7124 /* Static size. */ 7125 perf_output_put(handle, dump_size); 7126 7127 /* Data. */ 7128 sp = perf_user_stack_pointer(regs); 7129 rem = __output_copy_user(handle, (void *) sp, dump_size); 7130 dyn_size = dump_size - rem; 7131 7132 perf_output_skip(handle, rem); 7133 7134 /* Dynamic size. */ 7135 perf_output_put(handle, dyn_size); 7136 } 7137 } 7138 7139 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7140 struct perf_sample_data *data, 7141 size_t size) 7142 { 7143 struct perf_event *sampler = event->aux_event; 7144 struct perf_buffer *rb; 7145 7146 data->aux_size = 0; 7147 7148 if (!sampler) 7149 goto out; 7150 7151 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7152 goto out; 7153 7154 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7155 goto out; 7156 7157 rb = ring_buffer_get(sampler); 7158 if (!rb) 7159 goto out; 7160 7161 /* 7162 * If this is an NMI hit inside sampling code, don't take 7163 * the sample. See also perf_aux_sample_output(). 7164 */ 7165 if (READ_ONCE(rb->aux_in_sampling)) { 7166 data->aux_size = 0; 7167 } else { 7168 size = min_t(size_t, size, perf_aux_size(rb)); 7169 data->aux_size = ALIGN(size, sizeof(u64)); 7170 } 7171 ring_buffer_put(rb); 7172 7173 out: 7174 return data->aux_size; 7175 } 7176 7177 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7178 struct perf_event *event, 7179 struct perf_output_handle *handle, 7180 unsigned long size) 7181 { 7182 unsigned long flags; 7183 long ret; 7184 7185 /* 7186 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7187 * paths. If we start calling them in NMI context, they may race with 7188 * the IRQ ones, that is, for example, re-starting an event that's just 7189 * been stopped, which is why we're using a separate callback that 7190 * doesn't change the event state. 7191 * 7192 * IRQs need to be disabled to prevent IPIs from racing with us. 7193 */ 7194 local_irq_save(flags); 7195 /* 7196 * Guard against NMI hits inside the critical section; 7197 * see also perf_prepare_sample_aux(). 7198 */ 7199 WRITE_ONCE(rb->aux_in_sampling, 1); 7200 barrier(); 7201 7202 ret = event->pmu->snapshot_aux(event, handle, size); 7203 7204 barrier(); 7205 WRITE_ONCE(rb->aux_in_sampling, 0); 7206 local_irq_restore(flags); 7207 7208 return ret; 7209 } 7210 7211 static void perf_aux_sample_output(struct perf_event *event, 7212 struct perf_output_handle *handle, 7213 struct perf_sample_data *data) 7214 { 7215 struct perf_event *sampler = event->aux_event; 7216 struct perf_buffer *rb; 7217 unsigned long pad; 7218 long size; 7219 7220 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7221 return; 7222 7223 rb = ring_buffer_get(sampler); 7224 if (!rb) 7225 return; 7226 7227 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7228 7229 /* 7230 * An error here means that perf_output_copy() failed (returned a 7231 * non-zero surplus that it didn't copy), which in its current 7232 * enlightened implementation is not possible. If that changes, we'd 7233 * like to know. 7234 */ 7235 if (WARN_ON_ONCE(size < 0)) 7236 goto out_put; 7237 7238 /* 7239 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7240 * perf_prepare_sample_aux(), so should not be more than that. 7241 */ 7242 pad = data->aux_size - size; 7243 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7244 pad = 8; 7245 7246 if (pad) { 7247 u64 zero = 0; 7248 perf_output_copy(handle, &zero, pad); 7249 } 7250 7251 out_put: 7252 ring_buffer_put(rb); 7253 } 7254 7255 /* 7256 * A set of common sample data types saved even for non-sample records 7257 * when event->attr.sample_id_all is set. 7258 */ 7259 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7260 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7261 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7262 7263 static void __perf_event_header__init_id(struct perf_sample_data *data, 7264 struct perf_event *event, 7265 u64 sample_type) 7266 { 7267 data->type = event->attr.sample_type; 7268 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7269 7270 if (sample_type & PERF_SAMPLE_TID) { 7271 /* namespace issues */ 7272 data->tid_entry.pid = perf_event_pid(event, current); 7273 data->tid_entry.tid = perf_event_tid(event, current); 7274 } 7275 7276 if (sample_type & PERF_SAMPLE_TIME) 7277 data->time = perf_event_clock(event); 7278 7279 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7280 data->id = primary_event_id(event); 7281 7282 if (sample_type & PERF_SAMPLE_STREAM_ID) 7283 data->stream_id = event->id; 7284 7285 if (sample_type & PERF_SAMPLE_CPU) { 7286 data->cpu_entry.cpu = raw_smp_processor_id(); 7287 data->cpu_entry.reserved = 0; 7288 } 7289 } 7290 7291 void perf_event_header__init_id(struct perf_event_header *header, 7292 struct perf_sample_data *data, 7293 struct perf_event *event) 7294 { 7295 if (event->attr.sample_id_all) { 7296 header->size += event->id_header_size; 7297 __perf_event_header__init_id(data, event, event->attr.sample_type); 7298 } 7299 } 7300 7301 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7302 struct perf_sample_data *data) 7303 { 7304 u64 sample_type = data->type; 7305 7306 if (sample_type & PERF_SAMPLE_TID) 7307 perf_output_put(handle, data->tid_entry); 7308 7309 if (sample_type & PERF_SAMPLE_TIME) 7310 perf_output_put(handle, data->time); 7311 7312 if (sample_type & PERF_SAMPLE_ID) 7313 perf_output_put(handle, data->id); 7314 7315 if (sample_type & PERF_SAMPLE_STREAM_ID) 7316 perf_output_put(handle, data->stream_id); 7317 7318 if (sample_type & PERF_SAMPLE_CPU) 7319 perf_output_put(handle, data->cpu_entry); 7320 7321 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7322 perf_output_put(handle, data->id); 7323 } 7324 7325 void perf_event__output_id_sample(struct perf_event *event, 7326 struct perf_output_handle *handle, 7327 struct perf_sample_data *sample) 7328 { 7329 if (event->attr.sample_id_all) 7330 __perf_event__output_id_sample(handle, sample); 7331 } 7332 7333 static void perf_output_read_one(struct perf_output_handle *handle, 7334 struct perf_event *event, 7335 u64 enabled, u64 running) 7336 { 7337 u64 read_format = event->attr.read_format; 7338 u64 values[5]; 7339 int n = 0; 7340 7341 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7342 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7343 values[n++] = enabled + 7344 atomic64_read(&event->child_total_time_enabled); 7345 } 7346 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7347 values[n++] = running + 7348 atomic64_read(&event->child_total_time_running); 7349 } 7350 if (read_format & PERF_FORMAT_ID) 7351 values[n++] = primary_event_id(event); 7352 if (read_format & PERF_FORMAT_LOST) 7353 values[n++] = atomic64_read(&event->lost_samples); 7354 7355 __output_copy(handle, values, n * sizeof(u64)); 7356 } 7357 7358 static void perf_output_read_group(struct perf_output_handle *handle, 7359 struct perf_event *event, 7360 u64 enabled, u64 running) 7361 { 7362 struct perf_event *leader = event->group_leader, *sub; 7363 u64 read_format = event->attr.read_format; 7364 unsigned long flags; 7365 u64 values[6]; 7366 int n = 0; 7367 bool self = has_inherit_and_sample_read(&event->attr); 7368 7369 /* 7370 * Disabling interrupts avoids all counter scheduling 7371 * (context switches, timer based rotation and IPIs). 7372 */ 7373 local_irq_save(flags); 7374 7375 values[n++] = 1 + leader->nr_siblings; 7376 7377 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7378 values[n++] = enabled; 7379 7380 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7381 values[n++] = running; 7382 7383 if ((leader != event) && 7384 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7385 leader->pmu->read(leader); 7386 7387 values[n++] = perf_event_count(leader, self); 7388 if (read_format & PERF_FORMAT_ID) 7389 values[n++] = primary_event_id(leader); 7390 if (read_format & PERF_FORMAT_LOST) 7391 values[n++] = atomic64_read(&leader->lost_samples); 7392 7393 __output_copy(handle, values, n * sizeof(u64)); 7394 7395 for_each_sibling_event(sub, leader) { 7396 n = 0; 7397 7398 if ((sub != event) && 7399 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7400 sub->pmu->read(sub); 7401 7402 values[n++] = perf_event_count(sub, self); 7403 if (read_format & PERF_FORMAT_ID) 7404 values[n++] = primary_event_id(sub); 7405 if (read_format & PERF_FORMAT_LOST) 7406 values[n++] = atomic64_read(&sub->lost_samples); 7407 7408 __output_copy(handle, values, n * sizeof(u64)); 7409 } 7410 7411 local_irq_restore(flags); 7412 } 7413 7414 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7415 PERF_FORMAT_TOTAL_TIME_RUNNING) 7416 7417 /* 7418 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7419 * 7420 * The problem is that its both hard and excessively expensive to iterate the 7421 * child list, not to mention that its impossible to IPI the children running 7422 * on another CPU, from interrupt/NMI context. 7423 * 7424 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7425 * counts rather than attempting to accumulate some value across all children on 7426 * all cores. 7427 */ 7428 static void perf_output_read(struct perf_output_handle *handle, 7429 struct perf_event *event) 7430 { 7431 u64 enabled = 0, running = 0, now; 7432 u64 read_format = event->attr.read_format; 7433 7434 /* 7435 * compute total_time_enabled, total_time_running 7436 * based on snapshot values taken when the event 7437 * was last scheduled in. 7438 * 7439 * we cannot simply called update_context_time() 7440 * because of locking issue as we are called in 7441 * NMI context 7442 */ 7443 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7444 calc_timer_values(event, &now, &enabled, &running); 7445 7446 if (event->attr.read_format & PERF_FORMAT_GROUP) 7447 perf_output_read_group(handle, event, enabled, running); 7448 else 7449 perf_output_read_one(handle, event, enabled, running); 7450 } 7451 7452 void perf_output_sample(struct perf_output_handle *handle, 7453 struct perf_event_header *header, 7454 struct perf_sample_data *data, 7455 struct perf_event *event) 7456 { 7457 u64 sample_type = data->type; 7458 7459 perf_output_put(handle, *header); 7460 7461 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7462 perf_output_put(handle, data->id); 7463 7464 if (sample_type & PERF_SAMPLE_IP) 7465 perf_output_put(handle, data->ip); 7466 7467 if (sample_type & PERF_SAMPLE_TID) 7468 perf_output_put(handle, data->tid_entry); 7469 7470 if (sample_type & PERF_SAMPLE_TIME) 7471 perf_output_put(handle, data->time); 7472 7473 if (sample_type & PERF_SAMPLE_ADDR) 7474 perf_output_put(handle, data->addr); 7475 7476 if (sample_type & PERF_SAMPLE_ID) 7477 perf_output_put(handle, data->id); 7478 7479 if (sample_type & PERF_SAMPLE_STREAM_ID) 7480 perf_output_put(handle, data->stream_id); 7481 7482 if (sample_type & PERF_SAMPLE_CPU) 7483 perf_output_put(handle, data->cpu_entry); 7484 7485 if (sample_type & PERF_SAMPLE_PERIOD) 7486 perf_output_put(handle, data->period); 7487 7488 if (sample_type & PERF_SAMPLE_READ) 7489 perf_output_read(handle, event); 7490 7491 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7492 int size = 1; 7493 7494 size += data->callchain->nr; 7495 size *= sizeof(u64); 7496 __output_copy(handle, data->callchain, size); 7497 } 7498 7499 if (sample_type & PERF_SAMPLE_RAW) { 7500 struct perf_raw_record *raw = data->raw; 7501 7502 if (raw) { 7503 struct perf_raw_frag *frag = &raw->frag; 7504 7505 perf_output_put(handle, raw->size); 7506 do { 7507 if (frag->copy) { 7508 __output_custom(handle, frag->copy, 7509 frag->data, frag->size); 7510 } else { 7511 __output_copy(handle, frag->data, 7512 frag->size); 7513 } 7514 if (perf_raw_frag_last(frag)) 7515 break; 7516 frag = frag->next; 7517 } while (1); 7518 if (frag->pad) 7519 __output_skip(handle, NULL, frag->pad); 7520 } else { 7521 struct { 7522 u32 size; 7523 u32 data; 7524 } raw = { 7525 .size = sizeof(u32), 7526 .data = 0, 7527 }; 7528 perf_output_put(handle, raw); 7529 } 7530 } 7531 7532 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7533 if (data->br_stack) { 7534 size_t size; 7535 7536 size = data->br_stack->nr 7537 * sizeof(struct perf_branch_entry); 7538 7539 perf_output_put(handle, data->br_stack->nr); 7540 if (branch_sample_hw_index(event)) 7541 perf_output_put(handle, data->br_stack->hw_idx); 7542 perf_output_copy(handle, data->br_stack->entries, size); 7543 /* 7544 * Add the extension space which is appended 7545 * right after the struct perf_branch_stack. 7546 */ 7547 if (data->br_stack_cntr) { 7548 size = data->br_stack->nr * sizeof(u64); 7549 perf_output_copy(handle, data->br_stack_cntr, size); 7550 } 7551 } else { 7552 /* 7553 * we always store at least the value of nr 7554 */ 7555 u64 nr = 0; 7556 perf_output_put(handle, nr); 7557 } 7558 } 7559 7560 if (sample_type & PERF_SAMPLE_REGS_USER) { 7561 u64 abi = data->regs_user.abi; 7562 7563 /* 7564 * If there are no regs to dump, notice it through 7565 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7566 */ 7567 perf_output_put(handle, abi); 7568 7569 if (abi) { 7570 u64 mask = event->attr.sample_regs_user; 7571 perf_output_sample_regs(handle, 7572 data->regs_user.regs, 7573 mask); 7574 } 7575 } 7576 7577 if (sample_type & PERF_SAMPLE_STACK_USER) { 7578 perf_output_sample_ustack(handle, 7579 data->stack_user_size, 7580 data->regs_user.regs); 7581 } 7582 7583 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7584 perf_output_put(handle, data->weight.full); 7585 7586 if (sample_type & PERF_SAMPLE_DATA_SRC) 7587 perf_output_put(handle, data->data_src.val); 7588 7589 if (sample_type & PERF_SAMPLE_TRANSACTION) 7590 perf_output_put(handle, data->txn); 7591 7592 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7593 u64 abi = data->regs_intr.abi; 7594 /* 7595 * If there are no regs to dump, notice it through 7596 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7597 */ 7598 perf_output_put(handle, abi); 7599 7600 if (abi) { 7601 u64 mask = event->attr.sample_regs_intr; 7602 7603 perf_output_sample_regs(handle, 7604 data->regs_intr.regs, 7605 mask); 7606 } 7607 } 7608 7609 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7610 perf_output_put(handle, data->phys_addr); 7611 7612 if (sample_type & PERF_SAMPLE_CGROUP) 7613 perf_output_put(handle, data->cgroup); 7614 7615 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7616 perf_output_put(handle, data->data_page_size); 7617 7618 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7619 perf_output_put(handle, data->code_page_size); 7620 7621 if (sample_type & PERF_SAMPLE_AUX) { 7622 perf_output_put(handle, data->aux_size); 7623 7624 if (data->aux_size) 7625 perf_aux_sample_output(event, handle, data); 7626 } 7627 7628 if (!event->attr.watermark) { 7629 int wakeup_events = event->attr.wakeup_events; 7630 7631 if (wakeup_events) { 7632 struct perf_buffer *rb = handle->rb; 7633 int events = local_inc_return(&rb->events); 7634 7635 if (events >= wakeup_events) { 7636 local_sub(wakeup_events, &rb->events); 7637 local_inc(&rb->wakeup); 7638 } 7639 } 7640 } 7641 } 7642 7643 static u64 perf_virt_to_phys(u64 virt) 7644 { 7645 u64 phys_addr = 0; 7646 7647 if (!virt) 7648 return 0; 7649 7650 if (virt >= TASK_SIZE) { 7651 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7652 if (virt_addr_valid((void *)(uintptr_t)virt) && 7653 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7654 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7655 } else { 7656 /* 7657 * Walking the pages tables for user address. 7658 * Interrupts are disabled, so it prevents any tear down 7659 * of the page tables. 7660 * Try IRQ-safe get_user_page_fast_only first. 7661 * If failed, leave phys_addr as 0. 7662 */ 7663 if (current->mm != NULL) { 7664 struct page *p; 7665 7666 pagefault_disable(); 7667 if (get_user_page_fast_only(virt, 0, &p)) { 7668 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7669 put_page(p); 7670 } 7671 pagefault_enable(); 7672 } 7673 } 7674 7675 return phys_addr; 7676 } 7677 7678 /* 7679 * Return the pagetable size of a given virtual address. 7680 */ 7681 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7682 { 7683 u64 size = 0; 7684 7685 #ifdef CONFIG_HAVE_GUP_FAST 7686 pgd_t *pgdp, pgd; 7687 p4d_t *p4dp, p4d; 7688 pud_t *pudp, pud; 7689 pmd_t *pmdp, pmd; 7690 pte_t *ptep, pte; 7691 7692 pgdp = pgd_offset(mm, addr); 7693 pgd = READ_ONCE(*pgdp); 7694 if (pgd_none(pgd)) 7695 return 0; 7696 7697 if (pgd_leaf(pgd)) 7698 return pgd_leaf_size(pgd); 7699 7700 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7701 p4d = READ_ONCE(*p4dp); 7702 if (!p4d_present(p4d)) 7703 return 0; 7704 7705 if (p4d_leaf(p4d)) 7706 return p4d_leaf_size(p4d); 7707 7708 pudp = pud_offset_lockless(p4dp, p4d, addr); 7709 pud = READ_ONCE(*pudp); 7710 if (!pud_present(pud)) 7711 return 0; 7712 7713 if (pud_leaf(pud)) 7714 return pud_leaf_size(pud); 7715 7716 pmdp = pmd_offset_lockless(pudp, pud, addr); 7717 again: 7718 pmd = pmdp_get_lockless(pmdp); 7719 if (!pmd_present(pmd)) 7720 return 0; 7721 7722 if (pmd_leaf(pmd)) 7723 return pmd_leaf_size(pmd); 7724 7725 ptep = pte_offset_map(&pmd, addr); 7726 if (!ptep) 7727 goto again; 7728 7729 pte = ptep_get_lockless(ptep); 7730 if (pte_present(pte)) 7731 size = __pte_leaf_size(pmd, pte); 7732 pte_unmap(ptep); 7733 #endif /* CONFIG_HAVE_GUP_FAST */ 7734 7735 return size; 7736 } 7737 7738 static u64 perf_get_page_size(unsigned long addr) 7739 { 7740 struct mm_struct *mm; 7741 unsigned long flags; 7742 u64 size; 7743 7744 if (!addr) 7745 return 0; 7746 7747 /* 7748 * Software page-table walkers must disable IRQs, 7749 * which prevents any tear down of the page tables. 7750 */ 7751 local_irq_save(flags); 7752 7753 mm = current->mm; 7754 if (!mm) { 7755 /* 7756 * For kernel threads and the like, use init_mm so that 7757 * we can find kernel memory. 7758 */ 7759 mm = &init_mm; 7760 } 7761 7762 size = perf_get_pgtable_size(mm, addr); 7763 7764 local_irq_restore(flags); 7765 7766 return size; 7767 } 7768 7769 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7770 7771 struct perf_callchain_entry * 7772 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7773 { 7774 bool kernel = !event->attr.exclude_callchain_kernel; 7775 bool user = !event->attr.exclude_callchain_user; 7776 /* Disallow cross-task user callchains. */ 7777 bool crosstask = event->ctx->task && event->ctx->task != current; 7778 const u32 max_stack = event->attr.sample_max_stack; 7779 struct perf_callchain_entry *callchain; 7780 7781 if (!kernel && !user) 7782 return &__empty_callchain; 7783 7784 callchain = get_perf_callchain(regs, 0, kernel, user, 7785 max_stack, crosstask, true); 7786 return callchain ?: &__empty_callchain; 7787 } 7788 7789 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7790 { 7791 return d * !!(flags & s); 7792 } 7793 7794 void perf_prepare_sample(struct perf_sample_data *data, 7795 struct perf_event *event, 7796 struct pt_regs *regs) 7797 { 7798 u64 sample_type = event->attr.sample_type; 7799 u64 filtered_sample_type; 7800 7801 /* 7802 * Add the sample flags that are dependent to others. And clear the 7803 * sample flags that have already been done by the PMU driver. 7804 */ 7805 filtered_sample_type = sample_type; 7806 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7807 PERF_SAMPLE_IP); 7808 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7809 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7810 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7811 PERF_SAMPLE_REGS_USER); 7812 filtered_sample_type &= ~data->sample_flags; 7813 7814 if (filtered_sample_type == 0) { 7815 /* Make sure it has the correct data->type for output */ 7816 data->type = event->attr.sample_type; 7817 return; 7818 } 7819 7820 __perf_event_header__init_id(data, event, filtered_sample_type); 7821 7822 if (filtered_sample_type & PERF_SAMPLE_IP) { 7823 data->ip = perf_instruction_pointer(regs); 7824 data->sample_flags |= PERF_SAMPLE_IP; 7825 } 7826 7827 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7828 perf_sample_save_callchain(data, event, regs); 7829 7830 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7831 data->raw = NULL; 7832 data->dyn_size += sizeof(u64); 7833 data->sample_flags |= PERF_SAMPLE_RAW; 7834 } 7835 7836 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7837 data->br_stack = NULL; 7838 data->dyn_size += sizeof(u64); 7839 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7840 } 7841 7842 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7843 perf_sample_regs_user(&data->regs_user, regs); 7844 7845 /* 7846 * It cannot use the filtered_sample_type here as REGS_USER can be set 7847 * by STACK_USER (using __cond_set() above) and we don't want to update 7848 * the dyn_size if it's not requested by users. 7849 */ 7850 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7851 /* regs dump ABI info */ 7852 int size = sizeof(u64); 7853 7854 if (data->regs_user.regs) { 7855 u64 mask = event->attr.sample_regs_user; 7856 size += hweight64(mask) * sizeof(u64); 7857 } 7858 7859 data->dyn_size += size; 7860 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7861 } 7862 7863 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7864 /* 7865 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7866 * processed as the last one or have additional check added 7867 * in case new sample type is added, because we could eat 7868 * up the rest of the sample size. 7869 */ 7870 u16 stack_size = event->attr.sample_stack_user; 7871 u16 header_size = perf_sample_data_size(data, event); 7872 u16 size = sizeof(u64); 7873 7874 stack_size = perf_sample_ustack_size(stack_size, header_size, 7875 data->regs_user.regs); 7876 7877 /* 7878 * If there is something to dump, add space for the dump 7879 * itself and for the field that tells the dynamic size, 7880 * which is how many have been actually dumped. 7881 */ 7882 if (stack_size) 7883 size += sizeof(u64) + stack_size; 7884 7885 data->stack_user_size = stack_size; 7886 data->dyn_size += size; 7887 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7888 } 7889 7890 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7891 data->weight.full = 0; 7892 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7893 } 7894 7895 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7896 data->data_src.val = PERF_MEM_NA; 7897 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7898 } 7899 7900 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7901 data->txn = 0; 7902 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7903 } 7904 7905 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7906 data->addr = 0; 7907 data->sample_flags |= PERF_SAMPLE_ADDR; 7908 } 7909 7910 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7911 /* regs dump ABI info */ 7912 int size = sizeof(u64); 7913 7914 perf_sample_regs_intr(&data->regs_intr, regs); 7915 7916 if (data->regs_intr.regs) { 7917 u64 mask = event->attr.sample_regs_intr; 7918 7919 size += hweight64(mask) * sizeof(u64); 7920 } 7921 7922 data->dyn_size += size; 7923 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7924 } 7925 7926 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7927 data->phys_addr = perf_virt_to_phys(data->addr); 7928 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7929 } 7930 7931 #ifdef CONFIG_CGROUP_PERF 7932 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7933 struct cgroup *cgrp; 7934 7935 /* protected by RCU */ 7936 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7937 data->cgroup = cgroup_id(cgrp); 7938 data->sample_flags |= PERF_SAMPLE_CGROUP; 7939 } 7940 #endif 7941 7942 /* 7943 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7944 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7945 * but the value will not dump to the userspace. 7946 */ 7947 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7948 data->data_page_size = perf_get_page_size(data->addr); 7949 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7950 } 7951 7952 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7953 data->code_page_size = perf_get_page_size(data->ip); 7954 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7955 } 7956 7957 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7958 u64 size; 7959 u16 header_size = perf_sample_data_size(data, event); 7960 7961 header_size += sizeof(u64); /* size */ 7962 7963 /* 7964 * Given the 16bit nature of header::size, an AUX sample can 7965 * easily overflow it, what with all the preceding sample bits. 7966 * Make sure this doesn't happen by using up to U16_MAX bytes 7967 * per sample in total (rounded down to 8 byte boundary). 7968 */ 7969 size = min_t(size_t, U16_MAX - header_size, 7970 event->attr.aux_sample_size); 7971 size = rounddown(size, 8); 7972 size = perf_prepare_sample_aux(event, data, size); 7973 7974 WARN_ON_ONCE(size + header_size > U16_MAX); 7975 data->dyn_size += size + sizeof(u64); /* size above */ 7976 data->sample_flags |= PERF_SAMPLE_AUX; 7977 } 7978 } 7979 7980 void perf_prepare_header(struct perf_event_header *header, 7981 struct perf_sample_data *data, 7982 struct perf_event *event, 7983 struct pt_regs *regs) 7984 { 7985 header->type = PERF_RECORD_SAMPLE; 7986 header->size = perf_sample_data_size(data, event); 7987 header->misc = perf_misc_flags(regs); 7988 7989 /* 7990 * If you're adding more sample types here, you likely need to do 7991 * something about the overflowing header::size, like repurpose the 7992 * lowest 3 bits of size, which should be always zero at the moment. 7993 * This raises a more important question, do we really need 512k sized 7994 * samples and why, so good argumentation is in order for whatever you 7995 * do here next. 7996 */ 7997 WARN_ON_ONCE(header->size & 7); 7998 } 7999 8000 static __always_inline int 8001 __perf_event_output(struct perf_event *event, 8002 struct perf_sample_data *data, 8003 struct pt_regs *regs, 8004 int (*output_begin)(struct perf_output_handle *, 8005 struct perf_sample_data *, 8006 struct perf_event *, 8007 unsigned int)) 8008 { 8009 struct perf_output_handle handle; 8010 struct perf_event_header header; 8011 int err; 8012 8013 /* protect the callchain buffers */ 8014 rcu_read_lock(); 8015 8016 perf_prepare_sample(data, event, regs); 8017 perf_prepare_header(&header, data, event, regs); 8018 8019 err = output_begin(&handle, data, event, header.size); 8020 if (err) 8021 goto exit; 8022 8023 perf_output_sample(&handle, &header, data, event); 8024 8025 perf_output_end(&handle); 8026 8027 exit: 8028 rcu_read_unlock(); 8029 return err; 8030 } 8031 8032 void 8033 perf_event_output_forward(struct perf_event *event, 8034 struct perf_sample_data *data, 8035 struct pt_regs *regs) 8036 { 8037 __perf_event_output(event, data, regs, perf_output_begin_forward); 8038 } 8039 8040 void 8041 perf_event_output_backward(struct perf_event *event, 8042 struct perf_sample_data *data, 8043 struct pt_regs *regs) 8044 { 8045 __perf_event_output(event, data, regs, perf_output_begin_backward); 8046 } 8047 8048 int 8049 perf_event_output(struct perf_event *event, 8050 struct perf_sample_data *data, 8051 struct pt_regs *regs) 8052 { 8053 return __perf_event_output(event, data, regs, perf_output_begin); 8054 } 8055 8056 /* 8057 * read event_id 8058 */ 8059 8060 struct perf_read_event { 8061 struct perf_event_header header; 8062 8063 u32 pid; 8064 u32 tid; 8065 }; 8066 8067 static void 8068 perf_event_read_event(struct perf_event *event, 8069 struct task_struct *task) 8070 { 8071 struct perf_output_handle handle; 8072 struct perf_sample_data sample; 8073 struct perf_read_event read_event = { 8074 .header = { 8075 .type = PERF_RECORD_READ, 8076 .misc = 0, 8077 .size = sizeof(read_event) + event->read_size, 8078 }, 8079 .pid = perf_event_pid(event, task), 8080 .tid = perf_event_tid(event, task), 8081 }; 8082 int ret; 8083 8084 perf_event_header__init_id(&read_event.header, &sample, event); 8085 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8086 if (ret) 8087 return; 8088 8089 perf_output_put(&handle, read_event); 8090 perf_output_read(&handle, event); 8091 perf_event__output_id_sample(event, &handle, &sample); 8092 8093 perf_output_end(&handle); 8094 } 8095 8096 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8097 8098 static void 8099 perf_iterate_ctx(struct perf_event_context *ctx, 8100 perf_iterate_f output, 8101 void *data, bool all) 8102 { 8103 struct perf_event *event; 8104 8105 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8106 if (!all) { 8107 if (event->state < PERF_EVENT_STATE_INACTIVE) 8108 continue; 8109 if (!event_filter_match(event)) 8110 continue; 8111 } 8112 8113 output(event, data); 8114 } 8115 } 8116 8117 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8118 { 8119 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8120 struct perf_event *event; 8121 8122 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8123 /* 8124 * Skip events that are not fully formed yet; ensure that 8125 * if we observe event->ctx, both event and ctx will be 8126 * complete enough. See perf_install_in_context(). 8127 */ 8128 if (!smp_load_acquire(&event->ctx)) 8129 continue; 8130 8131 if (event->state < PERF_EVENT_STATE_INACTIVE) 8132 continue; 8133 if (!event_filter_match(event)) 8134 continue; 8135 output(event, data); 8136 } 8137 } 8138 8139 /* 8140 * Iterate all events that need to receive side-band events. 8141 * 8142 * For new callers; ensure that account_pmu_sb_event() includes 8143 * your event, otherwise it might not get delivered. 8144 */ 8145 static void 8146 perf_iterate_sb(perf_iterate_f output, void *data, 8147 struct perf_event_context *task_ctx) 8148 { 8149 struct perf_event_context *ctx; 8150 8151 rcu_read_lock(); 8152 preempt_disable(); 8153 8154 /* 8155 * If we have task_ctx != NULL we only notify the task context itself. 8156 * The task_ctx is set only for EXIT events before releasing task 8157 * context. 8158 */ 8159 if (task_ctx) { 8160 perf_iterate_ctx(task_ctx, output, data, false); 8161 goto done; 8162 } 8163 8164 perf_iterate_sb_cpu(output, data); 8165 8166 ctx = rcu_dereference(current->perf_event_ctxp); 8167 if (ctx) 8168 perf_iterate_ctx(ctx, output, data, false); 8169 done: 8170 preempt_enable(); 8171 rcu_read_unlock(); 8172 } 8173 8174 /* 8175 * Clear all file-based filters at exec, they'll have to be 8176 * re-instated when/if these objects are mmapped again. 8177 */ 8178 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8179 { 8180 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8181 struct perf_addr_filter *filter; 8182 unsigned int restart = 0, count = 0; 8183 unsigned long flags; 8184 8185 if (!has_addr_filter(event)) 8186 return; 8187 8188 raw_spin_lock_irqsave(&ifh->lock, flags); 8189 list_for_each_entry(filter, &ifh->list, entry) { 8190 if (filter->path.dentry) { 8191 event->addr_filter_ranges[count].start = 0; 8192 event->addr_filter_ranges[count].size = 0; 8193 restart++; 8194 } 8195 8196 count++; 8197 } 8198 8199 if (restart) 8200 event->addr_filters_gen++; 8201 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8202 8203 if (restart) 8204 perf_event_stop(event, 1); 8205 } 8206 8207 void perf_event_exec(void) 8208 { 8209 struct perf_event_context *ctx; 8210 8211 ctx = perf_pin_task_context(current); 8212 if (!ctx) 8213 return; 8214 8215 perf_event_enable_on_exec(ctx); 8216 perf_event_remove_on_exec(ctx); 8217 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8218 8219 perf_unpin_context(ctx); 8220 put_ctx(ctx); 8221 } 8222 8223 struct remote_output { 8224 struct perf_buffer *rb; 8225 int err; 8226 }; 8227 8228 static void __perf_event_output_stop(struct perf_event *event, void *data) 8229 { 8230 struct perf_event *parent = event->parent; 8231 struct remote_output *ro = data; 8232 struct perf_buffer *rb = ro->rb; 8233 struct stop_event_data sd = { 8234 .event = event, 8235 }; 8236 8237 if (!has_aux(event)) 8238 return; 8239 8240 if (!parent) 8241 parent = event; 8242 8243 /* 8244 * In case of inheritance, it will be the parent that links to the 8245 * ring-buffer, but it will be the child that's actually using it. 8246 * 8247 * We are using event::rb to determine if the event should be stopped, 8248 * however this may race with ring_buffer_attach() (through set_output), 8249 * which will make us skip the event that actually needs to be stopped. 8250 * So ring_buffer_attach() has to stop an aux event before re-assigning 8251 * its rb pointer. 8252 */ 8253 if (rcu_dereference(parent->rb) == rb) 8254 ro->err = __perf_event_stop(&sd); 8255 } 8256 8257 static int __perf_pmu_output_stop(void *info) 8258 { 8259 struct perf_event *event = info; 8260 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8261 struct remote_output ro = { 8262 .rb = event->rb, 8263 }; 8264 8265 rcu_read_lock(); 8266 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8267 if (cpuctx->task_ctx) 8268 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8269 &ro, false); 8270 rcu_read_unlock(); 8271 8272 return ro.err; 8273 } 8274 8275 static void perf_pmu_output_stop(struct perf_event *event) 8276 { 8277 struct perf_event *iter; 8278 int err, cpu; 8279 8280 restart: 8281 rcu_read_lock(); 8282 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8283 /* 8284 * For per-CPU events, we need to make sure that neither they 8285 * nor their children are running; for cpu==-1 events it's 8286 * sufficient to stop the event itself if it's active, since 8287 * it can't have children. 8288 */ 8289 cpu = iter->cpu; 8290 if (cpu == -1) 8291 cpu = READ_ONCE(iter->oncpu); 8292 8293 if (cpu == -1) 8294 continue; 8295 8296 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8297 if (err == -EAGAIN) { 8298 rcu_read_unlock(); 8299 goto restart; 8300 } 8301 } 8302 rcu_read_unlock(); 8303 } 8304 8305 /* 8306 * task tracking -- fork/exit 8307 * 8308 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8309 */ 8310 8311 struct perf_task_event { 8312 struct task_struct *task; 8313 struct perf_event_context *task_ctx; 8314 8315 struct { 8316 struct perf_event_header header; 8317 8318 u32 pid; 8319 u32 ppid; 8320 u32 tid; 8321 u32 ptid; 8322 u64 time; 8323 } event_id; 8324 }; 8325 8326 static int perf_event_task_match(struct perf_event *event) 8327 { 8328 return event->attr.comm || event->attr.mmap || 8329 event->attr.mmap2 || event->attr.mmap_data || 8330 event->attr.task; 8331 } 8332 8333 static void perf_event_task_output(struct perf_event *event, 8334 void *data) 8335 { 8336 struct perf_task_event *task_event = data; 8337 struct perf_output_handle handle; 8338 struct perf_sample_data sample; 8339 struct task_struct *task = task_event->task; 8340 int ret, size = task_event->event_id.header.size; 8341 8342 if (!perf_event_task_match(event)) 8343 return; 8344 8345 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8346 8347 ret = perf_output_begin(&handle, &sample, event, 8348 task_event->event_id.header.size); 8349 if (ret) 8350 goto out; 8351 8352 task_event->event_id.pid = perf_event_pid(event, task); 8353 task_event->event_id.tid = perf_event_tid(event, task); 8354 8355 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8356 task_event->event_id.ppid = perf_event_pid(event, 8357 task->real_parent); 8358 task_event->event_id.ptid = perf_event_pid(event, 8359 task->real_parent); 8360 } else { /* PERF_RECORD_FORK */ 8361 task_event->event_id.ppid = perf_event_pid(event, current); 8362 task_event->event_id.ptid = perf_event_tid(event, current); 8363 } 8364 8365 task_event->event_id.time = perf_event_clock(event); 8366 8367 perf_output_put(&handle, task_event->event_id); 8368 8369 perf_event__output_id_sample(event, &handle, &sample); 8370 8371 perf_output_end(&handle); 8372 out: 8373 task_event->event_id.header.size = size; 8374 } 8375 8376 static void perf_event_task(struct task_struct *task, 8377 struct perf_event_context *task_ctx, 8378 int new) 8379 { 8380 struct perf_task_event task_event; 8381 8382 if (!atomic_read(&nr_comm_events) && 8383 !atomic_read(&nr_mmap_events) && 8384 !atomic_read(&nr_task_events)) 8385 return; 8386 8387 task_event = (struct perf_task_event){ 8388 .task = task, 8389 .task_ctx = task_ctx, 8390 .event_id = { 8391 .header = { 8392 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8393 .misc = 0, 8394 .size = sizeof(task_event.event_id), 8395 }, 8396 /* .pid */ 8397 /* .ppid */ 8398 /* .tid */ 8399 /* .ptid */ 8400 /* .time */ 8401 }, 8402 }; 8403 8404 perf_iterate_sb(perf_event_task_output, 8405 &task_event, 8406 task_ctx); 8407 } 8408 8409 void perf_event_fork(struct task_struct *task) 8410 { 8411 perf_event_task(task, NULL, 1); 8412 perf_event_namespaces(task); 8413 } 8414 8415 /* 8416 * comm tracking 8417 */ 8418 8419 struct perf_comm_event { 8420 struct task_struct *task; 8421 char *comm; 8422 int comm_size; 8423 8424 struct { 8425 struct perf_event_header header; 8426 8427 u32 pid; 8428 u32 tid; 8429 } event_id; 8430 }; 8431 8432 static int perf_event_comm_match(struct perf_event *event) 8433 { 8434 return event->attr.comm; 8435 } 8436 8437 static void perf_event_comm_output(struct perf_event *event, 8438 void *data) 8439 { 8440 struct perf_comm_event *comm_event = data; 8441 struct perf_output_handle handle; 8442 struct perf_sample_data sample; 8443 int size = comm_event->event_id.header.size; 8444 int ret; 8445 8446 if (!perf_event_comm_match(event)) 8447 return; 8448 8449 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8450 ret = perf_output_begin(&handle, &sample, event, 8451 comm_event->event_id.header.size); 8452 8453 if (ret) 8454 goto out; 8455 8456 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8457 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8458 8459 perf_output_put(&handle, comm_event->event_id); 8460 __output_copy(&handle, comm_event->comm, 8461 comm_event->comm_size); 8462 8463 perf_event__output_id_sample(event, &handle, &sample); 8464 8465 perf_output_end(&handle); 8466 out: 8467 comm_event->event_id.header.size = size; 8468 } 8469 8470 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8471 { 8472 char comm[TASK_COMM_LEN]; 8473 unsigned int size; 8474 8475 memset(comm, 0, sizeof(comm)); 8476 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8477 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8478 8479 comm_event->comm = comm; 8480 comm_event->comm_size = size; 8481 8482 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8483 8484 perf_iterate_sb(perf_event_comm_output, 8485 comm_event, 8486 NULL); 8487 } 8488 8489 void perf_event_comm(struct task_struct *task, bool exec) 8490 { 8491 struct perf_comm_event comm_event; 8492 8493 if (!atomic_read(&nr_comm_events)) 8494 return; 8495 8496 comm_event = (struct perf_comm_event){ 8497 .task = task, 8498 /* .comm */ 8499 /* .comm_size */ 8500 .event_id = { 8501 .header = { 8502 .type = PERF_RECORD_COMM, 8503 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8504 /* .size */ 8505 }, 8506 /* .pid */ 8507 /* .tid */ 8508 }, 8509 }; 8510 8511 perf_event_comm_event(&comm_event); 8512 } 8513 8514 /* 8515 * namespaces tracking 8516 */ 8517 8518 struct perf_namespaces_event { 8519 struct task_struct *task; 8520 8521 struct { 8522 struct perf_event_header header; 8523 8524 u32 pid; 8525 u32 tid; 8526 u64 nr_namespaces; 8527 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8528 } event_id; 8529 }; 8530 8531 static int perf_event_namespaces_match(struct perf_event *event) 8532 { 8533 return event->attr.namespaces; 8534 } 8535 8536 static void perf_event_namespaces_output(struct perf_event *event, 8537 void *data) 8538 { 8539 struct perf_namespaces_event *namespaces_event = data; 8540 struct perf_output_handle handle; 8541 struct perf_sample_data sample; 8542 u16 header_size = namespaces_event->event_id.header.size; 8543 int ret; 8544 8545 if (!perf_event_namespaces_match(event)) 8546 return; 8547 8548 perf_event_header__init_id(&namespaces_event->event_id.header, 8549 &sample, event); 8550 ret = perf_output_begin(&handle, &sample, event, 8551 namespaces_event->event_id.header.size); 8552 if (ret) 8553 goto out; 8554 8555 namespaces_event->event_id.pid = perf_event_pid(event, 8556 namespaces_event->task); 8557 namespaces_event->event_id.tid = perf_event_tid(event, 8558 namespaces_event->task); 8559 8560 perf_output_put(&handle, namespaces_event->event_id); 8561 8562 perf_event__output_id_sample(event, &handle, &sample); 8563 8564 perf_output_end(&handle); 8565 out: 8566 namespaces_event->event_id.header.size = header_size; 8567 } 8568 8569 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8570 struct task_struct *task, 8571 const struct proc_ns_operations *ns_ops) 8572 { 8573 struct path ns_path; 8574 struct inode *ns_inode; 8575 int error; 8576 8577 error = ns_get_path(&ns_path, task, ns_ops); 8578 if (!error) { 8579 ns_inode = ns_path.dentry->d_inode; 8580 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8581 ns_link_info->ino = ns_inode->i_ino; 8582 path_put(&ns_path); 8583 } 8584 } 8585 8586 void perf_event_namespaces(struct task_struct *task) 8587 { 8588 struct perf_namespaces_event namespaces_event; 8589 struct perf_ns_link_info *ns_link_info; 8590 8591 if (!atomic_read(&nr_namespaces_events)) 8592 return; 8593 8594 namespaces_event = (struct perf_namespaces_event){ 8595 .task = task, 8596 .event_id = { 8597 .header = { 8598 .type = PERF_RECORD_NAMESPACES, 8599 .misc = 0, 8600 .size = sizeof(namespaces_event.event_id), 8601 }, 8602 /* .pid */ 8603 /* .tid */ 8604 .nr_namespaces = NR_NAMESPACES, 8605 /* .link_info[NR_NAMESPACES] */ 8606 }, 8607 }; 8608 8609 ns_link_info = namespaces_event.event_id.link_info; 8610 8611 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8612 task, &mntns_operations); 8613 8614 #ifdef CONFIG_USER_NS 8615 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8616 task, &userns_operations); 8617 #endif 8618 #ifdef CONFIG_NET_NS 8619 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8620 task, &netns_operations); 8621 #endif 8622 #ifdef CONFIG_UTS_NS 8623 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8624 task, &utsns_operations); 8625 #endif 8626 #ifdef CONFIG_IPC_NS 8627 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8628 task, &ipcns_operations); 8629 #endif 8630 #ifdef CONFIG_PID_NS 8631 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8632 task, &pidns_operations); 8633 #endif 8634 #ifdef CONFIG_CGROUPS 8635 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8636 task, &cgroupns_operations); 8637 #endif 8638 8639 perf_iterate_sb(perf_event_namespaces_output, 8640 &namespaces_event, 8641 NULL); 8642 } 8643 8644 /* 8645 * cgroup tracking 8646 */ 8647 #ifdef CONFIG_CGROUP_PERF 8648 8649 struct perf_cgroup_event { 8650 char *path; 8651 int path_size; 8652 struct { 8653 struct perf_event_header header; 8654 u64 id; 8655 char path[]; 8656 } event_id; 8657 }; 8658 8659 static int perf_event_cgroup_match(struct perf_event *event) 8660 { 8661 return event->attr.cgroup; 8662 } 8663 8664 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8665 { 8666 struct perf_cgroup_event *cgroup_event = data; 8667 struct perf_output_handle handle; 8668 struct perf_sample_data sample; 8669 u16 header_size = cgroup_event->event_id.header.size; 8670 int ret; 8671 8672 if (!perf_event_cgroup_match(event)) 8673 return; 8674 8675 perf_event_header__init_id(&cgroup_event->event_id.header, 8676 &sample, event); 8677 ret = perf_output_begin(&handle, &sample, event, 8678 cgroup_event->event_id.header.size); 8679 if (ret) 8680 goto out; 8681 8682 perf_output_put(&handle, cgroup_event->event_id); 8683 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8684 8685 perf_event__output_id_sample(event, &handle, &sample); 8686 8687 perf_output_end(&handle); 8688 out: 8689 cgroup_event->event_id.header.size = header_size; 8690 } 8691 8692 static void perf_event_cgroup(struct cgroup *cgrp) 8693 { 8694 struct perf_cgroup_event cgroup_event; 8695 char path_enomem[16] = "//enomem"; 8696 char *pathname; 8697 size_t size; 8698 8699 if (!atomic_read(&nr_cgroup_events)) 8700 return; 8701 8702 cgroup_event = (struct perf_cgroup_event){ 8703 .event_id = { 8704 .header = { 8705 .type = PERF_RECORD_CGROUP, 8706 .misc = 0, 8707 .size = sizeof(cgroup_event.event_id), 8708 }, 8709 .id = cgroup_id(cgrp), 8710 }, 8711 }; 8712 8713 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8714 if (pathname == NULL) { 8715 cgroup_event.path = path_enomem; 8716 } else { 8717 /* just to be sure to have enough space for alignment */ 8718 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8719 cgroup_event.path = pathname; 8720 } 8721 8722 /* 8723 * Since our buffer works in 8 byte units we need to align our string 8724 * size to a multiple of 8. However, we must guarantee the tail end is 8725 * zero'd out to avoid leaking random bits to userspace. 8726 */ 8727 size = strlen(cgroup_event.path) + 1; 8728 while (!IS_ALIGNED(size, sizeof(u64))) 8729 cgroup_event.path[size++] = '\0'; 8730 8731 cgroup_event.event_id.header.size += size; 8732 cgroup_event.path_size = size; 8733 8734 perf_iterate_sb(perf_event_cgroup_output, 8735 &cgroup_event, 8736 NULL); 8737 8738 kfree(pathname); 8739 } 8740 8741 #endif 8742 8743 /* 8744 * mmap tracking 8745 */ 8746 8747 struct perf_mmap_event { 8748 struct vm_area_struct *vma; 8749 8750 const char *file_name; 8751 int file_size; 8752 int maj, min; 8753 u64 ino; 8754 u64 ino_generation; 8755 u32 prot, flags; 8756 u8 build_id[BUILD_ID_SIZE_MAX]; 8757 u32 build_id_size; 8758 8759 struct { 8760 struct perf_event_header header; 8761 8762 u32 pid; 8763 u32 tid; 8764 u64 start; 8765 u64 len; 8766 u64 pgoff; 8767 } event_id; 8768 }; 8769 8770 static int perf_event_mmap_match(struct perf_event *event, 8771 void *data) 8772 { 8773 struct perf_mmap_event *mmap_event = data; 8774 struct vm_area_struct *vma = mmap_event->vma; 8775 int executable = vma->vm_flags & VM_EXEC; 8776 8777 return (!executable && event->attr.mmap_data) || 8778 (executable && (event->attr.mmap || event->attr.mmap2)); 8779 } 8780 8781 static void perf_event_mmap_output(struct perf_event *event, 8782 void *data) 8783 { 8784 struct perf_mmap_event *mmap_event = data; 8785 struct perf_output_handle handle; 8786 struct perf_sample_data sample; 8787 int size = mmap_event->event_id.header.size; 8788 u32 type = mmap_event->event_id.header.type; 8789 bool use_build_id; 8790 int ret; 8791 8792 if (!perf_event_mmap_match(event, data)) 8793 return; 8794 8795 if (event->attr.mmap2) { 8796 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8797 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8798 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8799 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8800 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8801 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8802 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8803 } 8804 8805 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8806 ret = perf_output_begin(&handle, &sample, event, 8807 mmap_event->event_id.header.size); 8808 if (ret) 8809 goto out; 8810 8811 mmap_event->event_id.pid = perf_event_pid(event, current); 8812 mmap_event->event_id.tid = perf_event_tid(event, current); 8813 8814 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8815 8816 if (event->attr.mmap2 && use_build_id) 8817 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8818 8819 perf_output_put(&handle, mmap_event->event_id); 8820 8821 if (event->attr.mmap2) { 8822 if (use_build_id) { 8823 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8824 8825 __output_copy(&handle, size, 4); 8826 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8827 } else { 8828 perf_output_put(&handle, mmap_event->maj); 8829 perf_output_put(&handle, mmap_event->min); 8830 perf_output_put(&handle, mmap_event->ino); 8831 perf_output_put(&handle, mmap_event->ino_generation); 8832 } 8833 perf_output_put(&handle, mmap_event->prot); 8834 perf_output_put(&handle, mmap_event->flags); 8835 } 8836 8837 __output_copy(&handle, mmap_event->file_name, 8838 mmap_event->file_size); 8839 8840 perf_event__output_id_sample(event, &handle, &sample); 8841 8842 perf_output_end(&handle); 8843 out: 8844 mmap_event->event_id.header.size = size; 8845 mmap_event->event_id.header.type = type; 8846 } 8847 8848 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8849 { 8850 struct vm_area_struct *vma = mmap_event->vma; 8851 struct file *file = vma->vm_file; 8852 int maj = 0, min = 0; 8853 u64 ino = 0, gen = 0; 8854 u32 prot = 0, flags = 0; 8855 unsigned int size; 8856 char tmp[16]; 8857 char *buf = NULL; 8858 char *name = NULL; 8859 8860 if (vma->vm_flags & VM_READ) 8861 prot |= PROT_READ; 8862 if (vma->vm_flags & VM_WRITE) 8863 prot |= PROT_WRITE; 8864 if (vma->vm_flags & VM_EXEC) 8865 prot |= PROT_EXEC; 8866 8867 if (vma->vm_flags & VM_MAYSHARE) 8868 flags = MAP_SHARED; 8869 else 8870 flags = MAP_PRIVATE; 8871 8872 if (vma->vm_flags & VM_LOCKED) 8873 flags |= MAP_LOCKED; 8874 if (is_vm_hugetlb_page(vma)) 8875 flags |= MAP_HUGETLB; 8876 8877 if (file) { 8878 struct inode *inode; 8879 dev_t dev; 8880 8881 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8882 if (!buf) { 8883 name = "//enomem"; 8884 goto cpy_name; 8885 } 8886 /* 8887 * d_path() works from the end of the rb backwards, so we 8888 * need to add enough zero bytes after the string to handle 8889 * the 64bit alignment we do later. 8890 */ 8891 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8892 if (IS_ERR(name)) { 8893 name = "//toolong"; 8894 goto cpy_name; 8895 } 8896 inode = file_inode(vma->vm_file); 8897 dev = inode->i_sb->s_dev; 8898 ino = inode->i_ino; 8899 gen = inode->i_generation; 8900 maj = MAJOR(dev); 8901 min = MINOR(dev); 8902 8903 goto got_name; 8904 } else { 8905 if (vma->vm_ops && vma->vm_ops->name) 8906 name = (char *) vma->vm_ops->name(vma); 8907 if (!name) 8908 name = (char *)arch_vma_name(vma); 8909 if (!name) { 8910 if (vma_is_initial_heap(vma)) 8911 name = "[heap]"; 8912 else if (vma_is_initial_stack(vma)) 8913 name = "[stack]"; 8914 else 8915 name = "//anon"; 8916 } 8917 } 8918 8919 cpy_name: 8920 strscpy(tmp, name, sizeof(tmp)); 8921 name = tmp; 8922 got_name: 8923 /* 8924 * Since our buffer works in 8 byte units we need to align our string 8925 * size to a multiple of 8. However, we must guarantee the tail end is 8926 * zero'd out to avoid leaking random bits to userspace. 8927 */ 8928 size = strlen(name)+1; 8929 while (!IS_ALIGNED(size, sizeof(u64))) 8930 name[size++] = '\0'; 8931 8932 mmap_event->file_name = name; 8933 mmap_event->file_size = size; 8934 mmap_event->maj = maj; 8935 mmap_event->min = min; 8936 mmap_event->ino = ino; 8937 mmap_event->ino_generation = gen; 8938 mmap_event->prot = prot; 8939 mmap_event->flags = flags; 8940 8941 if (!(vma->vm_flags & VM_EXEC)) 8942 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8943 8944 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8945 8946 if (atomic_read(&nr_build_id_events)) 8947 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 8948 8949 perf_iterate_sb(perf_event_mmap_output, 8950 mmap_event, 8951 NULL); 8952 8953 kfree(buf); 8954 } 8955 8956 /* 8957 * Check whether inode and address range match filter criteria. 8958 */ 8959 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8960 struct file *file, unsigned long offset, 8961 unsigned long size) 8962 { 8963 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8964 if (!filter->path.dentry) 8965 return false; 8966 8967 if (d_inode(filter->path.dentry) != file_inode(file)) 8968 return false; 8969 8970 if (filter->offset > offset + size) 8971 return false; 8972 8973 if (filter->offset + filter->size < offset) 8974 return false; 8975 8976 return true; 8977 } 8978 8979 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8980 struct vm_area_struct *vma, 8981 struct perf_addr_filter_range *fr) 8982 { 8983 unsigned long vma_size = vma->vm_end - vma->vm_start; 8984 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8985 struct file *file = vma->vm_file; 8986 8987 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8988 return false; 8989 8990 if (filter->offset < off) { 8991 fr->start = vma->vm_start; 8992 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8993 } else { 8994 fr->start = vma->vm_start + filter->offset - off; 8995 fr->size = min(vma->vm_end - fr->start, filter->size); 8996 } 8997 8998 return true; 8999 } 9000 9001 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9002 { 9003 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9004 struct vm_area_struct *vma = data; 9005 struct perf_addr_filter *filter; 9006 unsigned int restart = 0, count = 0; 9007 unsigned long flags; 9008 9009 if (!has_addr_filter(event)) 9010 return; 9011 9012 if (!vma->vm_file) 9013 return; 9014 9015 raw_spin_lock_irqsave(&ifh->lock, flags); 9016 list_for_each_entry(filter, &ifh->list, entry) { 9017 if (perf_addr_filter_vma_adjust(filter, vma, 9018 &event->addr_filter_ranges[count])) 9019 restart++; 9020 9021 count++; 9022 } 9023 9024 if (restart) 9025 event->addr_filters_gen++; 9026 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9027 9028 if (restart) 9029 perf_event_stop(event, 1); 9030 } 9031 9032 /* 9033 * Adjust all task's events' filters to the new vma 9034 */ 9035 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9036 { 9037 struct perf_event_context *ctx; 9038 9039 /* 9040 * Data tracing isn't supported yet and as such there is no need 9041 * to keep track of anything that isn't related to executable code: 9042 */ 9043 if (!(vma->vm_flags & VM_EXEC)) 9044 return; 9045 9046 rcu_read_lock(); 9047 ctx = rcu_dereference(current->perf_event_ctxp); 9048 if (ctx) 9049 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9050 rcu_read_unlock(); 9051 } 9052 9053 void perf_event_mmap(struct vm_area_struct *vma) 9054 { 9055 struct perf_mmap_event mmap_event; 9056 9057 if (!atomic_read(&nr_mmap_events)) 9058 return; 9059 9060 mmap_event = (struct perf_mmap_event){ 9061 .vma = vma, 9062 /* .file_name */ 9063 /* .file_size */ 9064 .event_id = { 9065 .header = { 9066 .type = PERF_RECORD_MMAP, 9067 .misc = PERF_RECORD_MISC_USER, 9068 /* .size */ 9069 }, 9070 /* .pid */ 9071 /* .tid */ 9072 .start = vma->vm_start, 9073 .len = vma->vm_end - vma->vm_start, 9074 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9075 }, 9076 /* .maj (attr_mmap2 only) */ 9077 /* .min (attr_mmap2 only) */ 9078 /* .ino (attr_mmap2 only) */ 9079 /* .ino_generation (attr_mmap2 only) */ 9080 /* .prot (attr_mmap2 only) */ 9081 /* .flags (attr_mmap2 only) */ 9082 }; 9083 9084 perf_addr_filters_adjust(vma); 9085 perf_event_mmap_event(&mmap_event); 9086 } 9087 9088 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9089 unsigned long size, u64 flags) 9090 { 9091 struct perf_output_handle handle; 9092 struct perf_sample_data sample; 9093 struct perf_aux_event { 9094 struct perf_event_header header; 9095 u64 offset; 9096 u64 size; 9097 u64 flags; 9098 } rec = { 9099 .header = { 9100 .type = PERF_RECORD_AUX, 9101 .misc = 0, 9102 .size = sizeof(rec), 9103 }, 9104 .offset = head, 9105 .size = size, 9106 .flags = flags, 9107 }; 9108 int ret; 9109 9110 perf_event_header__init_id(&rec.header, &sample, event); 9111 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9112 9113 if (ret) 9114 return; 9115 9116 perf_output_put(&handle, rec); 9117 perf_event__output_id_sample(event, &handle, &sample); 9118 9119 perf_output_end(&handle); 9120 } 9121 9122 /* 9123 * Lost/dropped samples logging 9124 */ 9125 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9126 { 9127 struct perf_output_handle handle; 9128 struct perf_sample_data sample; 9129 int ret; 9130 9131 struct { 9132 struct perf_event_header header; 9133 u64 lost; 9134 } lost_samples_event = { 9135 .header = { 9136 .type = PERF_RECORD_LOST_SAMPLES, 9137 .misc = 0, 9138 .size = sizeof(lost_samples_event), 9139 }, 9140 .lost = lost, 9141 }; 9142 9143 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9144 9145 ret = perf_output_begin(&handle, &sample, event, 9146 lost_samples_event.header.size); 9147 if (ret) 9148 return; 9149 9150 perf_output_put(&handle, lost_samples_event); 9151 perf_event__output_id_sample(event, &handle, &sample); 9152 perf_output_end(&handle); 9153 } 9154 9155 /* 9156 * context_switch tracking 9157 */ 9158 9159 struct perf_switch_event { 9160 struct task_struct *task; 9161 struct task_struct *next_prev; 9162 9163 struct { 9164 struct perf_event_header header; 9165 u32 next_prev_pid; 9166 u32 next_prev_tid; 9167 } event_id; 9168 }; 9169 9170 static int perf_event_switch_match(struct perf_event *event) 9171 { 9172 return event->attr.context_switch; 9173 } 9174 9175 static void perf_event_switch_output(struct perf_event *event, void *data) 9176 { 9177 struct perf_switch_event *se = data; 9178 struct perf_output_handle handle; 9179 struct perf_sample_data sample; 9180 int ret; 9181 9182 if (!perf_event_switch_match(event)) 9183 return; 9184 9185 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9186 if (event->ctx->task) { 9187 se->event_id.header.type = PERF_RECORD_SWITCH; 9188 se->event_id.header.size = sizeof(se->event_id.header); 9189 } else { 9190 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9191 se->event_id.header.size = sizeof(se->event_id); 9192 se->event_id.next_prev_pid = 9193 perf_event_pid(event, se->next_prev); 9194 se->event_id.next_prev_tid = 9195 perf_event_tid(event, se->next_prev); 9196 } 9197 9198 perf_event_header__init_id(&se->event_id.header, &sample, event); 9199 9200 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9201 if (ret) 9202 return; 9203 9204 if (event->ctx->task) 9205 perf_output_put(&handle, se->event_id.header); 9206 else 9207 perf_output_put(&handle, se->event_id); 9208 9209 perf_event__output_id_sample(event, &handle, &sample); 9210 9211 perf_output_end(&handle); 9212 } 9213 9214 static void perf_event_switch(struct task_struct *task, 9215 struct task_struct *next_prev, bool sched_in) 9216 { 9217 struct perf_switch_event switch_event; 9218 9219 /* N.B. caller checks nr_switch_events != 0 */ 9220 9221 switch_event = (struct perf_switch_event){ 9222 .task = task, 9223 .next_prev = next_prev, 9224 .event_id = { 9225 .header = { 9226 /* .type */ 9227 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9228 /* .size */ 9229 }, 9230 /* .next_prev_pid */ 9231 /* .next_prev_tid */ 9232 }, 9233 }; 9234 9235 if (!sched_in && task_is_runnable(task)) { 9236 switch_event.event_id.header.misc |= 9237 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9238 } 9239 9240 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9241 } 9242 9243 /* 9244 * IRQ throttle logging 9245 */ 9246 9247 static void perf_log_throttle(struct perf_event *event, int enable) 9248 { 9249 struct perf_output_handle handle; 9250 struct perf_sample_data sample; 9251 int ret; 9252 9253 struct { 9254 struct perf_event_header header; 9255 u64 time; 9256 u64 id; 9257 u64 stream_id; 9258 } throttle_event = { 9259 .header = { 9260 .type = PERF_RECORD_THROTTLE, 9261 .misc = 0, 9262 .size = sizeof(throttle_event), 9263 }, 9264 .time = perf_event_clock(event), 9265 .id = primary_event_id(event), 9266 .stream_id = event->id, 9267 }; 9268 9269 if (enable) 9270 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9271 9272 perf_event_header__init_id(&throttle_event.header, &sample, event); 9273 9274 ret = perf_output_begin(&handle, &sample, event, 9275 throttle_event.header.size); 9276 if (ret) 9277 return; 9278 9279 perf_output_put(&handle, throttle_event); 9280 perf_event__output_id_sample(event, &handle, &sample); 9281 perf_output_end(&handle); 9282 } 9283 9284 /* 9285 * ksymbol register/unregister tracking 9286 */ 9287 9288 struct perf_ksymbol_event { 9289 const char *name; 9290 int name_len; 9291 struct { 9292 struct perf_event_header header; 9293 u64 addr; 9294 u32 len; 9295 u16 ksym_type; 9296 u16 flags; 9297 } event_id; 9298 }; 9299 9300 static int perf_event_ksymbol_match(struct perf_event *event) 9301 { 9302 return event->attr.ksymbol; 9303 } 9304 9305 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9306 { 9307 struct perf_ksymbol_event *ksymbol_event = data; 9308 struct perf_output_handle handle; 9309 struct perf_sample_data sample; 9310 int ret; 9311 9312 if (!perf_event_ksymbol_match(event)) 9313 return; 9314 9315 perf_event_header__init_id(&ksymbol_event->event_id.header, 9316 &sample, event); 9317 ret = perf_output_begin(&handle, &sample, event, 9318 ksymbol_event->event_id.header.size); 9319 if (ret) 9320 return; 9321 9322 perf_output_put(&handle, ksymbol_event->event_id); 9323 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9324 perf_event__output_id_sample(event, &handle, &sample); 9325 9326 perf_output_end(&handle); 9327 } 9328 9329 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9330 const char *sym) 9331 { 9332 struct perf_ksymbol_event ksymbol_event; 9333 char name[KSYM_NAME_LEN]; 9334 u16 flags = 0; 9335 int name_len; 9336 9337 if (!atomic_read(&nr_ksymbol_events)) 9338 return; 9339 9340 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9341 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9342 goto err; 9343 9344 strscpy(name, sym, KSYM_NAME_LEN); 9345 name_len = strlen(name) + 1; 9346 while (!IS_ALIGNED(name_len, sizeof(u64))) 9347 name[name_len++] = '\0'; 9348 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9349 9350 if (unregister) 9351 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9352 9353 ksymbol_event = (struct perf_ksymbol_event){ 9354 .name = name, 9355 .name_len = name_len, 9356 .event_id = { 9357 .header = { 9358 .type = PERF_RECORD_KSYMBOL, 9359 .size = sizeof(ksymbol_event.event_id) + 9360 name_len, 9361 }, 9362 .addr = addr, 9363 .len = len, 9364 .ksym_type = ksym_type, 9365 .flags = flags, 9366 }, 9367 }; 9368 9369 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9370 return; 9371 err: 9372 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9373 } 9374 9375 /* 9376 * bpf program load/unload tracking 9377 */ 9378 9379 struct perf_bpf_event { 9380 struct bpf_prog *prog; 9381 struct { 9382 struct perf_event_header header; 9383 u16 type; 9384 u16 flags; 9385 u32 id; 9386 u8 tag[BPF_TAG_SIZE]; 9387 } event_id; 9388 }; 9389 9390 static int perf_event_bpf_match(struct perf_event *event) 9391 { 9392 return event->attr.bpf_event; 9393 } 9394 9395 static void perf_event_bpf_output(struct perf_event *event, void *data) 9396 { 9397 struct perf_bpf_event *bpf_event = data; 9398 struct perf_output_handle handle; 9399 struct perf_sample_data sample; 9400 int ret; 9401 9402 if (!perf_event_bpf_match(event)) 9403 return; 9404 9405 perf_event_header__init_id(&bpf_event->event_id.header, 9406 &sample, event); 9407 ret = perf_output_begin(&handle, &sample, event, 9408 bpf_event->event_id.header.size); 9409 if (ret) 9410 return; 9411 9412 perf_output_put(&handle, bpf_event->event_id); 9413 perf_event__output_id_sample(event, &handle, &sample); 9414 9415 perf_output_end(&handle); 9416 } 9417 9418 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9419 enum perf_bpf_event_type type) 9420 { 9421 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9422 int i; 9423 9424 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9425 (u64)(unsigned long)prog->bpf_func, 9426 prog->jited_len, unregister, 9427 prog->aux->ksym.name); 9428 9429 for (i = 1; i < prog->aux->func_cnt; i++) { 9430 struct bpf_prog *subprog = prog->aux->func[i]; 9431 9432 perf_event_ksymbol( 9433 PERF_RECORD_KSYMBOL_TYPE_BPF, 9434 (u64)(unsigned long)subprog->bpf_func, 9435 subprog->jited_len, unregister, 9436 subprog->aux->ksym.name); 9437 } 9438 } 9439 9440 void perf_event_bpf_event(struct bpf_prog *prog, 9441 enum perf_bpf_event_type type, 9442 u16 flags) 9443 { 9444 struct perf_bpf_event bpf_event; 9445 9446 switch (type) { 9447 case PERF_BPF_EVENT_PROG_LOAD: 9448 case PERF_BPF_EVENT_PROG_UNLOAD: 9449 if (atomic_read(&nr_ksymbol_events)) 9450 perf_event_bpf_emit_ksymbols(prog, type); 9451 break; 9452 default: 9453 return; 9454 } 9455 9456 if (!atomic_read(&nr_bpf_events)) 9457 return; 9458 9459 bpf_event = (struct perf_bpf_event){ 9460 .prog = prog, 9461 .event_id = { 9462 .header = { 9463 .type = PERF_RECORD_BPF_EVENT, 9464 .size = sizeof(bpf_event.event_id), 9465 }, 9466 .type = type, 9467 .flags = flags, 9468 .id = prog->aux->id, 9469 }, 9470 }; 9471 9472 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9473 9474 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9475 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9476 } 9477 9478 struct perf_text_poke_event { 9479 const void *old_bytes; 9480 const void *new_bytes; 9481 size_t pad; 9482 u16 old_len; 9483 u16 new_len; 9484 9485 struct { 9486 struct perf_event_header header; 9487 9488 u64 addr; 9489 } event_id; 9490 }; 9491 9492 static int perf_event_text_poke_match(struct perf_event *event) 9493 { 9494 return event->attr.text_poke; 9495 } 9496 9497 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9498 { 9499 struct perf_text_poke_event *text_poke_event = data; 9500 struct perf_output_handle handle; 9501 struct perf_sample_data sample; 9502 u64 padding = 0; 9503 int ret; 9504 9505 if (!perf_event_text_poke_match(event)) 9506 return; 9507 9508 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9509 9510 ret = perf_output_begin(&handle, &sample, event, 9511 text_poke_event->event_id.header.size); 9512 if (ret) 9513 return; 9514 9515 perf_output_put(&handle, text_poke_event->event_id); 9516 perf_output_put(&handle, text_poke_event->old_len); 9517 perf_output_put(&handle, text_poke_event->new_len); 9518 9519 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9520 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9521 9522 if (text_poke_event->pad) 9523 __output_copy(&handle, &padding, text_poke_event->pad); 9524 9525 perf_event__output_id_sample(event, &handle, &sample); 9526 9527 perf_output_end(&handle); 9528 } 9529 9530 void perf_event_text_poke(const void *addr, const void *old_bytes, 9531 size_t old_len, const void *new_bytes, size_t new_len) 9532 { 9533 struct perf_text_poke_event text_poke_event; 9534 size_t tot, pad; 9535 9536 if (!atomic_read(&nr_text_poke_events)) 9537 return; 9538 9539 tot = sizeof(text_poke_event.old_len) + old_len; 9540 tot += sizeof(text_poke_event.new_len) + new_len; 9541 pad = ALIGN(tot, sizeof(u64)) - tot; 9542 9543 text_poke_event = (struct perf_text_poke_event){ 9544 .old_bytes = old_bytes, 9545 .new_bytes = new_bytes, 9546 .pad = pad, 9547 .old_len = old_len, 9548 .new_len = new_len, 9549 .event_id = { 9550 .header = { 9551 .type = PERF_RECORD_TEXT_POKE, 9552 .misc = PERF_RECORD_MISC_KERNEL, 9553 .size = sizeof(text_poke_event.event_id) + tot + pad, 9554 }, 9555 .addr = (unsigned long)addr, 9556 }, 9557 }; 9558 9559 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9560 } 9561 9562 void perf_event_itrace_started(struct perf_event *event) 9563 { 9564 event->attach_state |= PERF_ATTACH_ITRACE; 9565 } 9566 9567 static void perf_log_itrace_start(struct perf_event *event) 9568 { 9569 struct perf_output_handle handle; 9570 struct perf_sample_data sample; 9571 struct perf_aux_event { 9572 struct perf_event_header header; 9573 u32 pid; 9574 u32 tid; 9575 } rec; 9576 int ret; 9577 9578 if (event->parent) 9579 event = event->parent; 9580 9581 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9582 event->attach_state & PERF_ATTACH_ITRACE) 9583 return; 9584 9585 rec.header.type = PERF_RECORD_ITRACE_START; 9586 rec.header.misc = 0; 9587 rec.header.size = sizeof(rec); 9588 rec.pid = perf_event_pid(event, current); 9589 rec.tid = perf_event_tid(event, current); 9590 9591 perf_event_header__init_id(&rec.header, &sample, event); 9592 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9593 9594 if (ret) 9595 return; 9596 9597 perf_output_put(&handle, rec); 9598 perf_event__output_id_sample(event, &handle, &sample); 9599 9600 perf_output_end(&handle); 9601 } 9602 9603 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9604 { 9605 struct perf_output_handle handle; 9606 struct perf_sample_data sample; 9607 struct perf_aux_event { 9608 struct perf_event_header header; 9609 u64 hw_id; 9610 } rec; 9611 int ret; 9612 9613 if (event->parent) 9614 event = event->parent; 9615 9616 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9617 rec.header.misc = 0; 9618 rec.header.size = sizeof(rec); 9619 rec.hw_id = hw_id; 9620 9621 perf_event_header__init_id(&rec.header, &sample, event); 9622 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9623 9624 if (ret) 9625 return; 9626 9627 perf_output_put(&handle, rec); 9628 perf_event__output_id_sample(event, &handle, &sample); 9629 9630 perf_output_end(&handle); 9631 } 9632 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9633 9634 static int 9635 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9636 { 9637 struct hw_perf_event *hwc = &event->hw; 9638 int ret = 0; 9639 u64 seq; 9640 9641 seq = __this_cpu_read(perf_throttled_seq); 9642 if (seq != hwc->interrupts_seq) { 9643 hwc->interrupts_seq = seq; 9644 hwc->interrupts = 1; 9645 } else { 9646 hwc->interrupts++; 9647 if (unlikely(throttle && 9648 hwc->interrupts > max_samples_per_tick)) { 9649 __this_cpu_inc(perf_throttled_count); 9650 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9651 hwc->interrupts = MAX_INTERRUPTS; 9652 perf_log_throttle(event, 0); 9653 ret = 1; 9654 } 9655 } 9656 9657 if (event->attr.freq) { 9658 u64 now = perf_clock(); 9659 s64 delta = now - hwc->freq_time_stamp; 9660 9661 hwc->freq_time_stamp = now; 9662 9663 if (delta > 0 && delta < 2*TICK_NSEC) 9664 perf_adjust_period(event, delta, hwc->last_period, true); 9665 } 9666 9667 return ret; 9668 } 9669 9670 int perf_event_account_interrupt(struct perf_event *event) 9671 { 9672 return __perf_event_account_interrupt(event, 1); 9673 } 9674 9675 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9676 { 9677 /* 9678 * Due to interrupt latency (AKA "skid"), we may enter the 9679 * kernel before taking an overflow, even if the PMU is only 9680 * counting user events. 9681 */ 9682 if (event->attr.exclude_kernel && !user_mode(regs)) 9683 return false; 9684 9685 return true; 9686 } 9687 9688 #ifdef CONFIG_BPF_SYSCALL 9689 static int bpf_overflow_handler(struct perf_event *event, 9690 struct perf_sample_data *data, 9691 struct pt_regs *regs) 9692 { 9693 struct bpf_perf_event_data_kern ctx = { 9694 .data = data, 9695 .event = event, 9696 }; 9697 struct bpf_prog *prog; 9698 int ret = 0; 9699 9700 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9701 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9702 goto out; 9703 rcu_read_lock(); 9704 prog = READ_ONCE(event->prog); 9705 if (prog) { 9706 perf_prepare_sample(data, event, regs); 9707 ret = bpf_prog_run(prog, &ctx); 9708 } 9709 rcu_read_unlock(); 9710 out: 9711 __this_cpu_dec(bpf_prog_active); 9712 9713 return ret; 9714 } 9715 9716 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9717 struct bpf_prog *prog, 9718 u64 bpf_cookie) 9719 { 9720 if (event->overflow_handler_context) 9721 /* hw breakpoint or kernel counter */ 9722 return -EINVAL; 9723 9724 if (event->prog) 9725 return -EEXIST; 9726 9727 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9728 return -EINVAL; 9729 9730 if (event->attr.precise_ip && 9731 prog->call_get_stack && 9732 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9733 event->attr.exclude_callchain_kernel || 9734 event->attr.exclude_callchain_user)) { 9735 /* 9736 * On perf_event with precise_ip, calling bpf_get_stack() 9737 * may trigger unwinder warnings and occasional crashes. 9738 * bpf_get_[stack|stackid] works around this issue by using 9739 * callchain attached to perf_sample_data. If the 9740 * perf_event does not full (kernel and user) callchain 9741 * attached to perf_sample_data, do not allow attaching BPF 9742 * program that calls bpf_get_[stack|stackid]. 9743 */ 9744 return -EPROTO; 9745 } 9746 9747 event->prog = prog; 9748 event->bpf_cookie = bpf_cookie; 9749 return 0; 9750 } 9751 9752 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9753 { 9754 struct bpf_prog *prog = event->prog; 9755 9756 if (!prog) 9757 return; 9758 9759 event->prog = NULL; 9760 bpf_prog_put(prog); 9761 } 9762 #else 9763 static inline int bpf_overflow_handler(struct perf_event *event, 9764 struct perf_sample_data *data, 9765 struct pt_regs *regs) 9766 { 9767 return 1; 9768 } 9769 9770 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9771 struct bpf_prog *prog, 9772 u64 bpf_cookie) 9773 { 9774 return -EOPNOTSUPP; 9775 } 9776 9777 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9778 { 9779 } 9780 #endif 9781 9782 /* 9783 * Generic event overflow handling, sampling. 9784 */ 9785 9786 static int __perf_event_overflow(struct perf_event *event, 9787 int throttle, struct perf_sample_data *data, 9788 struct pt_regs *regs) 9789 { 9790 int events = atomic_read(&event->event_limit); 9791 int ret = 0; 9792 9793 /* 9794 * Non-sampling counters might still use the PMI to fold short 9795 * hardware counters, ignore those. 9796 */ 9797 if (unlikely(!is_sampling_event(event))) 9798 return 0; 9799 9800 ret = __perf_event_account_interrupt(event, throttle); 9801 9802 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 9803 !bpf_overflow_handler(event, data, regs)) 9804 return ret; 9805 9806 /* 9807 * XXX event_limit might not quite work as expected on inherited 9808 * events 9809 */ 9810 9811 event->pending_kill = POLL_IN; 9812 if (events && atomic_dec_and_test(&event->event_limit)) { 9813 ret = 1; 9814 event->pending_kill = POLL_HUP; 9815 perf_event_disable_inatomic(event); 9816 } 9817 9818 if (event->attr.sigtrap) { 9819 /* 9820 * The desired behaviour of sigtrap vs invalid samples is a bit 9821 * tricky; on the one hand, one should not loose the SIGTRAP if 9822 * it is the first event, on the other hand, we should also not 9823 * trigger the WARN or override the data address. 9824 */ 9825 bool valid_sample = sample_is_allowed(event, regs); 9826 unsigned int pending_id = 1; 9827 enum task_work_notify_mode notify_mode; 9828 9829 if (regs) 9830 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9831 9832 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 9833 9834 if (!event->pending_work && 9835 !task_work_add(current, &event->pending_task, notify_mode)) { 9836 event->pending_work = pending_id; 9837 local_inc(&event->ctx->nr_no_switch_fast); 9838 9839 event->pending_addr = 0; 9840 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9841 event->pending_addr = data->addr; 9842 9843 } else if (event->attr.exclude_kernel && valid_sample) { 9844 /* 9845 * Should not be able to return to user space without 9846 * consuming pending_work; with exceptions: 9847 * 9848 * 1. Where !exclude_kernel, events can overflow again 9849 * in the kernel without returning to user space. 9850 * 9851 * 2. Events that can overflow again before the IRQ- 9852 * work without user space progress (e.g. hrtimer). 9853 * To approximate progress (with false negatives), 9854 * check 32-bit hash of the current IP. 9855 */ 9856 WARN_ON_ONCE(event->pending_work != pending_id); 9857 } 9858 } 9859 9860 READ_ONCE(event->overflow_handler)(event, data, regs); 9861 9862 if (*perf_event_fasync(event) && event->pending_kill) { 9863 event->pending_wakeup = 1; 9864 irq_work_queue(&event->pending_irq); 9865 } 9866 9867 return ret; 9868 } 9869 9870 int perf_event_overflow(struct perf_event *event, 9871 struct perf_sample_data *data, 9872 struct pt_regs *regs) 9873 { 9874 return __perf_event_overflow(event, 1, data, regs); 9875 } 9876 9877 /* 9878 * Generic software event infrastructure 9879 */ 9880 9881 struct swevent_htable { 9882 struct swevent_hlist *swevent_hlist; 9883 struct mutex hlist_mutex; 9884 int hlist_refcount; 9885 }; 9886 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9887 9888 /* 9889 * We directly increment event->count and keep a second value in 9890 * event->hw.period_left to count intervals. This period event 9891 * is kept in the range [-sample_period, 0] so that we can use the 9892 * sign as trigger. 9893 */ 9894 9895 u64 perf_swevent_set_period(struct perf_event *event) 9896 { 9897 struct hw_perf_event *hwc = &event->hw; 9898 u64 period = hwc->last_period; 9899 u64 nr, offset; 9900 s64 old, val; 9901 9902 hwc->last_period = hwc->sample_period; 9903 9904 old = local64_read(&hwc->period_left); 9905 do { 9906 val = old; 9907 if (val < 0) 9908 return 0; 9909 9910 nr = div64_u64(period + val, period); 9911 offset = nr * period; 9912 val -= offset; 9913 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9914 9915 return nr; 9916 } 9917 9918 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9919 struct perf_sample_data *data, 9920 struct pt_regs *regs) 9921 { 9922 struct hw_perf_event *hwc = &event->hw; 9923 int throttle = 0; 9924 9925 if (!overflow) 9926 overflow = perf_swevent_set_period(event); 9927 9928 if (hwc->interrupts == MAX_INTERRUPTS) 9929 return; 9930 9931 for (; overflow; overflow--) { 9932 if (__perf_event_overflow(event, throttle, 9933 data, regs)) { 9934 /* 9935 * We inhibit the overflow from happening when 9936 * hwc->interrupts == MAX_INTERRUPTS. 9937 */ 9938 break; 9939 } 9940 throttle = 1; 9941 } 9942 } 9943 9944 static void perf_swevent_event(struct perf_event *event, u64 nr, 9945 struct perf_sample_data *data, 9946 struct pt_regs *regs) 9947 { 9948 struct hw_perf_event *hwc = &event->hw; 9949 9950 local64_add(nr, &event->count); 9951 9952 if (!regs) 9953 return; 9954 9955 if (!is_sampling_event(event)) 9956 return; 9957 9958 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9959 data->period = nr; 9960 return perf_swevent_overflow(event, 1, data, regs); 9961 } else 9962 data->period = event->hw.last_period; 9963 9964 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9965 return perf_swevent_overflow(event, 1, data, regs); 9966 9967 if (local64_add_negative(nr, &hwc->period_left)) 9968 return; 9969 9970 perf_swevent_overflow(event, 0, data, regs); 9971 } 9972 9973 static int perf_exclude_event(struct perf_event *event, 9974 struct pt_regs *regs) 9975 { 9976 if (event->hw.state & PERF_HES_STOPPED) 9977 return 1; 9978 9979 if (regs) { 9980 if (event->attr.exclude_user && user_mode(regs)) 9981 return 1; 9982 9983 if (event->attr.exclude_kernel && !user_mode(regs)) 9984 return 1; 9985 } 9986 9987 return 0; 9988 } 9989 9990 static int perf_swevent_match(struct perf_event *event, 9991 enum perf_type_id type, 9992 u32 event_id, 9993 struct perf_sample_data *data, 9994 struct pt_regs *regs) 9995 { 9996 if (event->attr.type != type) 9997 return 0; 9998 9999 if (event->attr.config != event_id) 10000 return 0; 10001 10002 if (perf_exclude_event(event, regs)) 10003 return 0; 10004 10005 return 1; 10006 } 10007 10008 static inline u64 swevent_hash(u64 type, u32 event_id) 10009 { 10010 u64 val = event_id | (type << 32); 10011 10012 return hash_64(val, SWEVENT_HLIST_BITS); 10013 } 10014 10015 static inline struct hlist_head * 10016 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10017 { 10018 u64 hash = swevent_hash(type, event_id); 10019 10020 return &hlist->heads[hash]; 10021 } 10022 10023 /* For the read side: events when they trigger */ 10024 static inline struct hlist_head * 10025 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10026 { 10027 struct swevent_hlist *hlist; 10028 10029 hlist = rcu_dereference(swhash->swevent_hlist); 10030 if (!hlist) 10031 return NULL; 10032 10033 return __find_swevent_head(hlist, type, event_id); 10034 } 10035 10036 /* For the event head insertion and removal in the hlist */ 10037 static inline struct hlist_head * 10038 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10039 { 10040 struct swevent_hlist *hlist; 10041 u32 event_id = event->attr.config; 10042 u64 type = event->attr.type; 10043 10044 /* 10045 * Event scheduling is always serialized against hlist allocation 10046 * and release. Which makes the protected version suitable here. 10047 * The context lock guarantees that. 10048 */ 10049 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10050 lockdep_is_held(&event->ctx->lock)); 10051 if (!hlist) 10052 return NULL; 10053 10054 return __find_swevent_head(hlist, type, event_id); 10055 } 10056 10057 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10058 u64 nr, 10059 struct perf_sample_data *data, 10060 struct pt_regs *regs) 10061 { 10062 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10063 struct perf_event *event; 10064 struct hlist_head *head; 10065 10066 rcu_read_lock(); 10067 head = find_swevent_head_rcu(swhash, type, event_id); 10068 if (!head) 10069 goto end; 10070 10071 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10072 if (perf_swevent_match(event, type, event_id, data, regs)) 10073 perf_swevent_event(event, nr, data, regs); 10074 } 10075 end: 10076 rcu_read_unlock(); 10077 } 10078 10079 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10080 10081 int perf_swevent_get_recursion_context(void) 10082 { 10083 return get_recursion_context(current->perf_recursion); 10084 } 10085 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10086 10087 void perf_swevent_put_recursion_context(int rctx) 10088 { 10089 put_recursion_context(current->perf_recursion, rctx); 10090 } 10091 10092 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10093 { 10094 struct perf_sample_data data; 10095 10096 if (WARN_ON_ONCE(!regs)) 10097 return; 10098 10099 perf_sample_data_init(&data, addr, 0); 10100 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10101 } 10102 10103 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10104 { 10105 int rctx; 10106 10107 preempt_disable_notrace(); 10108 rctx = perf_swevent_get_recursion_context(); 10109 if (unlikely(rctx < 0)) 10110 goto fail; 10111 10112 ___perf_sw_event(event_id, nr, regs, addr); 10113 10114 perf_swevent_put_recursion_context(rctx); 10115 fail: 10116 preempt_enable_notrace(); 10117 } 10118 10119 static void perf_swevent_read(struct perf_event *event) 10120 { 10121 } 10122 10123 static int perf_swevent_add(struct perf_event *event, int flags) 10124 { 10125 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10126 struct hw_perf_event *hwc = &event->hw; 10127 struct hlist_head *head; 10128 10129 if (is_sampling_event(event)) { 10130 hwc->last_period = hwc->sample_period; 10131 perf_swevent_set_period(event); 10132 } 10133 10134 hwc->state = !(flags & PERF_EF_START); 10135 10136 head = find_swevent_head(swhash, event); 10137 if (WARN_ON_ONCE(!head)) 10138 return -EINVAL; 10139 10140 hlist_add_head_rcu(&event->hlist_entry, head); 10141 perf_event_update_userpage(event); 10142 10143 return 0; 10144 } 10145 10146 static void perf_swevent_del(struct perf_event *event, int flags) 10147 { 10148 hlist_del_rcu(&event->hlist_entry); 10149 } 10150 10151 static void perf_swevent_start(struct perf_event *event, int flags) 10152 { 10153 event->hw.state = 0; 10154 } 10155 10156 static void perf_swevent_stop(struct perf_event *event, int flags) 10157 { 10158 event->hw.state = PERF_HES_STOPPED; 10159 } 10160 10161 /* Deref the hlist from the update side */ 10162 static inline struct swevent_hlist * 10163 swevent_hlist_deref(struct swevent_htable *swhash) 10164 { 10165 return rcu_dereference_protected(swhash->swevent_hlist, 10166 lockdep_is_held(&swhash->hlist_mutex)); 10167 } 10168 10169 static void swevent_hlist_release(struct swevent_htable *swhash) 10170 { 10171 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10172 10173 if (!hlist) 10174 return; 10175 10176 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10177 kfree_rcu(hlist, rcu_head); 10178 } 10179 10180 static void swevent_hlist_put_cpu(int cpu) 10181 { 10182 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10183 10184 mutex_lock(&swhash->hlist_mutex); 10185 10186 if (!--swhash->hlist_refcount) 10187 swevent_hlist_release(swhash); 10188 10189 mutex_unlock(&swhash->hlist_mutex); 10190 } 10191 10192 static void swevent_hlist_put(void) 10193 { 10194 int cpu; 10195 10196 for_each_possible_cpu(cpu) 10197 swevent_hlist_put_cpu(cpu); 10198 } 10199 10200 static int swevent_hlist_get_cpu(int cpu) 10201 { 10202 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10203 int err = 0; 10204 10205 mutex_lock(&swhash->hlist_mutex); 10206 if (!swevent_hlist_deref(swhash) && 10207 cpumask_test_cpu(cpu, perf_online_mask)) { 10208 struct swevent_hlist *hlist; 10209 10210 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10211 if (!hlist) { 10212 err = -ENOMEM; 10213 goto exit; 10214 } 10215 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10216 } 10217 swhash->hlist_refcount++; 10218 exit: 10219 mutex_unlock(&swhash->hlist_mutex); 10220 10221 return err; 10222 } 10223 10224 static int swevent_hlist_get(void) 10225 { 10226 int err, cpu, failed_cpu; 10227 10228 mutex_lock(&pmus_lock); 10229 for_each_possible_cpu(cpu) { 10230 err = swevent_hlist_get_cpu(cpu); 10231 if (err) { 10232 failed_cpu = cpu; 10233 goto fail; 10234 } 10235 } 10236 mutex_unlock(&pmus_lock); 10237 return 0; 10238 fail: 10239 for_each_possible_cpu(cpu) { 10240 if (cpu == failed_cpu) 10241 break; 10242 swevent_hlist_put_cpu(cpu); 10243 } 10244 mutex_unlock(&pmus_lock); 10245 return err; 10246 } 10247 10248 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10249 10250 static void sw_perf_event_destroy(struct perf_event *event) 10251 { 10252 u64 event_id = event->attr.config; 10253 10254 WARN_ON(event->parent); 10255 10256 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10257 swevent_hlist_put(); 10258 } 10259 10260 static struct pmu perf_cpu_clock; /* fwd declaration */ 10261 static struct pmu perf_task_clock; 10262 10263 static int perf_swevent_init(struct perf_event *event) 10264 { 10265 u64 event_id = event->attr.config; 10266 10267 if (event->attr.type != PERF_TYPE_SOFTWARE) 10268 return -ENOENT; 10269 10270 /* 10271 * no branch sampling for software events 10272 */ 10273 if (has_branch_stack(event)) 10274 return -EOPNOTSUPP; 10275 10276 switch (event_id) { 10277 case PERF_COUNT_SW_CPU_CLOCK: 10278 event->attr.type = perf_cpu_clock.type; 10279 return -ENOENT; 10280 case PERF_COUNT_SW_TASK_CLOCK: 10281 event->attr.type = perf_task_clock.type; 10282 return -ENOENT; 10283 10284 default: 10285 break; 10286 } 10287 10288 if (event_id >= PERF_COUNT_SW_MAX) 10289 return -ENOENT; 10290 10291 if (!event->parent) { 10292 int err; 10293 10294 err = swevent_hlist_get(); 10295 if (err) 10296 return err; 10297 10298 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10299 event->destroy = sw_perf_event_destroy; 10300 } 10301 10302 return 0; 10303 } 10304 10305 static struct pmu perf_swevent = { 10306 .task_ctx_nr = perf_sw_context, 10307 10308 .capabilities = PERF_PMU_CAP_NO_NMI, 10309 10310 .event_init = perf_swevent_init, 10311 .add = perf_swevent_add, 10312 .del = perf_swevent_del, 10313 .start = perf_swevent_start, 10314 .stop = perf_swevent_stop, 10315 .read = perf_swevent_read, 10316 }; 10317 10318 #ifdef CONFIG_EVENT_TRACING 10319 10320 static void tp_perf_event_destroy(struct perf_event *event) 10321 { 10322 perf_trace_destroy(event); 10323 } 10324 10325 static int perf_tp_event_init(struct perf_event *event) 10326 { 10327 int err; 10328 10329 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10330 return -ENOENT; 10331 10332 /* 10333 * no branch sampling for tracepoint events 10334 */ 10335 if (has_branch_stack(event)) 10336 return -EOPNOTSUPP; 10337 10338 err = perf_trace_init(event); 10339 if (err) 10340 return err; 10341 10342 event->destroy = tp_perf_event_destroy; 10343 10344 return 0; 10345 } 10346 10347 static struct pmu perf_tracepoint = { 10348 .task_ctx_nr = perf_sw_context, 10349 10350 .event_init = perf_tp_event_init, 10351 .add = perf_trace_add, 10352 .del = perf_trace_del, 10353 .start = perf_swevent_start, 10354 .stop = perf_swevent_stop, 10355 .read = perf_swevent_read, 10356 }; 10357 10358 static int perf_tp_filter_match(struct perf_event *event, 10359 struct perf_sample_data *data) 10360 { 10361 void *record = data->raw->frag.data; 10362 10363 /* only top level events have filters set */ 10364 if (event->parent) 10365 event = event->parent; 10366 10367 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10368 return 1; 10369 return 0; 10370 } 10371 10372 static int perf_tp_event_match(struct perf_event *event, 10373 struct perf_sample_data *data, 10374 struct pt_regs *regs) 10375 { 10376 if (event->hw.state & PERF_HES_STOPPED) 10377 return 0; 10378 /* 10379 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10380 */ 10381 if (event->attr.exclude_kernel && !user_mode(regs)) 10382 return 0; 10383 10384 if (!perf_tp_filter_match(event, data)) 10385 return 0; 10386 10387 return 1; 10388 } 10389 10390 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10391 struct trace_event_call *call, u64 count, 10392 struct pt_regs *regs, struct hlist_head *head, 10393 struct task_struct *task) 10394 { 10395 if (bpf_prog_array_valid(call)) { 10396 *(struct pt_regs **)raw_data = regs; 10397 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10398 perf_swevent_put_recursion_context(rctx); 10399 return; 10400 } 10401 } 10402 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10403 rctx, task); 10404 } 10405 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10406 10407 static void __perf_tp_event_target_task(u64 count, void *record, 10408 struct pt_regs *regs, 10409 struct perf_sample_data *data, 10410 struct perf_event *event) 10411 { 10412 struct trace_entry *entry = record; 10413 10414 if (event->attr.config != entry->type) 10415 return; 10416 /* Cannot deliver synchronous signal to other task. */ 10417 if (event->attr.sigtrap) 10418 return; 10419 if (perf_tp_event_match(event, data, regs)) 10420 perf_swevent_event(event, count, data, regs); 10421 } 10422 10423 static void perf_tp_event_target_task(u64 count, void *record, 10424 struct pt_regs *regs, 10425 struct perf_sample_data *data, 10426 struct perf_event_context *ctx) 10427 { 10428 unsigned int cpu = smp_processor_id(); 10429 struct pmu *pmu = &perf_tracepoint; 10430 struct perf_event *event, *sibling; 10431 10432 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10433 __perf_tp_event_target_task(count, record, regs, data, event); 10434 for_each_sibling_event(sibling, event) 10435 __perf_tp_event_target_task(count, record, regs, data, sibling); 10436 } 10437 10438 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10439 __perf_tp_event_target_task(count, record, regs, data, event); 10440 for_each_sibling_event(sibling, event) 10441 __perf_tp_event_target_task(count, record, regs, data, sibling); 10442 } 10443 } 10444 10445 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10446 struct pt_regs *regs, struct hlist_head *head, int rctx, 10447 struct task_struct *task) 10448 { 10449 struct perf_sample_data data; 10450 struct perf_event *event; 10451 10452 struct perf_raw_record raw = { 10453 .frag = { 10454 .size = entry_size, 10455 .data = record, 10456 }, 10457 }; 10458 10459 perf_sample_data_init(&data, 0, 0); 10460 perf_sample_save_raw_data(&data, &raw); 10461 10462 perf_trace_buf_update(record, event_type); 10463 10464 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10465 if (perf_tp_event_match(event, &data, regs)) { 10466 perf_swevent_event(event, count, &data, regs); 10467 10468 /* 10469 * Here use the same on-stack perf_sample_data, 10470 * some members in data are event-specific and 10471 * need to be re-computed for different sweveents. 10472 * Re-initialize data->sample_flags safely to avoid 10473 * the problem that next event skips preparing data 10474 * because data->sample_flags is set. 10475 */ 10476 perf_sample_data_init(&data, 0, 0); 10477 perf_sample_save_raw_data(&data, &raw); 10478 } 10479 } 10480 10481 /* 10482 * If we got specified a target task, also iterate its context and 10483 * deliver this event there too. 10484 */ 10485 if (task && task != current) { 10486 struct perf_event_context *ctx; 10487 10488 rcu_read_lock(); 10489 ctx = rcu_dereference(task->perf_event_ctxp); 10490 if (!ctx) 10491 goto unlock; 10492 10493 raw_spin_lock(&ctx->lock); 10494 perf_tp_event_target_task(count, record, regs, &data, ctx); 10495 raw_spin_unlock(&ctx->lock); 10496 unlock: 10497 rcu_read_unlock(); 10498 } 10499 10500 perf_swevent_put_recursion_context(rctx); 10501 } 10502 EXPORT_SYMBOL_GPL(perf_tp_event); 10503 10504 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10505 /* 10506 * Flags in config, used by dynamic PMU kprobe and uprobe 10507 * The flags should match following PMU_FORMAT_ATTR(). 10508 * 10509 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10510 * if not set, create kprobe/uprobe 10511 * 10512 * The following values specify a reference counter (or semaphore in the 10513 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10514 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10515 * 10516 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10517 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10518 */ 10519 enum perf_probe_config { 10520 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10521 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10522 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10523 }; 10524 10525 PMU_FORMAT_ATTR(retprobe, "config:0"); 10526 #endif 10527 10528 #ifdef CONFIG_KPROBE_EVENTS 10529 static struct attribute *kprobe_attrs[] = { 10530 &format_attr_retprobe.attr, 10531 NULL, 10532 }; 10533 10534 static struct attribute_group kprobe_format_group = { 10535 .name = "format", 10536 .attrs = kprobe_attrs, 10537 }; 10538 10539 static const struct attribute_group *kprobe_attr_groups[] = { 10540 &kprobe_format_group, 10541 NULL, 10542 }; 10543 10544 static int perf_kprobe_event_init(struct perf_event *event); 10545 static struct pmu perf_kprobe = { 10546 .task_ctx_nr = perf_sw_context, 10547 .event_init = perf_kprobe_event_init, 10548 .add = perf_trace_add, 10549 .del = perf_trace_del, 10550 .start = perf_swevent_start, 10551 .stop = perf_swevent_stop, 10552 .read = perf_swevent_read, 10553 .attr_groups = kprobe_attr_groups, 10554 }; 10555 10556 static int perf_kprobe_event_init(struct perf_event *event) 10557 { 10558 int err; 10559 bool is_retprobe; 10560 10561 if (event->attr.type != perf_kprobe.type) 10562 return -ENOENT; 10563 10564 if (!perfmon_capable()) 10565 return -EACCES; 10566 10567 /* 10568 * no branch sampling for probe events 10569 */ 10570 if (has_branch_stack(event)) 10571 return -EOPNOTSUPP; 10572 10573 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10574 err = perf_kprobe_init(event, is_retprobe); 10575 if (err) 10576 return err; 10577 10578 event->destroy = perf_kprobe_destroy; 10579 10580 return 0; 10581 } 10582 #endif /* CONFIG_KPROBE_EVENTS */ 10583 10584 #ifdef CONFIG_UPROBE_EVENTS 10585 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10586 10587 static struct attribute *uprobe_attrs[] = { 10588 &format_attr_retprobe.attr, 10589 &format_attr_ref_ctr_offset.attr, 10590 NULL, 10591 }; 10592 10593 static struct attribute_group uprobe_format_group = { 10594 .name = "format", 10595 .attrs = uprobe_attrs, 10596 }; 10597 10598 static const struct attribute_group *uprobe_attr_groups[] = { 10599 &uprobe_format_group, 10600 NULL, 10601 }; 10602 10603 static int perf_uprobe_event_init(struct perf_event *event); 10604 static struct pmu perf_uprobe = { 10605 .task_ctx_nr = perf_sw_context, 10606 .event_init = perf_uprobe_event_init, 10607 .add = perf_trace_add, 10608 .del = perf_trace_del, 10609 .start = perf_swevent_start, 10610 .stop = perf_swevent_stop, 10611 .read = perf_swevent_read, 10612 .attr_groups = uprobe_attr_groups, 10613 }; 10614 10615 static int perf_uprobe_event_init(struct perf_event *event) 10616 { 10617 int err; 10618 unsigned long ref_ctr_offset; 10619 bool is_retprobe; 10620 10621 if (event->attr.type != perf_uprobe.type) 10622 return -ENOENT; 10623 10624 if (!perfmon_capable()) 10625 return -EACCES; 10626 10627 /* 10628 * no branch sampling for probe events 10629 */ 10630 if (has_branch_stack(event)) 10631 return -EOPNOTSUPP; 10632 10633 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10634 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10635 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10636 if (err) 10637 return err; 10638 10639 event->destroy = perf_uprobe_destroy; 10640 10641 return 0; 10642 } 10643 #endif /* CONFIG_UPROBE_EVENTS */ 10644 10645 static inline void perf_tp_register(void) 10646 { 10647 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10648 #ifdef CONFIG_KPROBE_EVENTS 10649 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10650 #endif 10651 #ifdef CONFIG_UPROBE_EVENTS 10652 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10653 #endif 10654 } 10655 10656 static void perf_event_free_filter(struct perf_event *event) 10657 { 10658 ftrace_profile_free_filter(event); 10659 } 10660 10661 /* 10662 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10663 * with perf_event_open() 10664 */ 10665 static inline bool perf_event_is_tracing(struct perf_event *event) 10666 { 10667 if (event->pmu == &perf_tracepoint) 10668 return true; 10669 #ifdef CONFIG_KPROBE_EVENTS 10670 if (event->pmu == &perf_kprobe) 10671 return true; 10672 #endif 10673 #ifdef CONFIG_UPROBE_EVENTS 10674 if (event->pmu == &perf_uprobe) 10675 return true; 10676 #endif 10677 return false; 10678 } 10679 10680 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10681 u64 bpf_cookie) 10682 { 10683 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10684 10685 if (!perf_event_is_tracing(event)) 10686 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10687 10688 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10689 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10690 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10691 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10692 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10693 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10694 return -EINVAL; 10695 10696 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10697 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10698 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10699 return -EINVAL; 10700 10701 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10702 /* only uprobe programs are allowed to be sleepable */ 10703 return -EINVAL; 10704 10705 /* Kprobe override only works for kprobes, not uprobes. */ 10706 if (prog->kprobe_override && !is_kprobe) 10707 return -EINVAL; 10708 10709 if (is_tracepoint || is_syscall_tp) { 10710 int off = trace_event_get_offsets(event->tp_event); 10711 10712 if (prog->aux->max_ctx_offset > off) 10713 return -EACCES; 10714 } 10715 10716 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10717 } 10718 10719 void perf_event_free_bpf_prog(struct perf_event *event) 10720 { 10721 if (!perf_event_is_tracing(event)) { 10722 perf_event_free_bpf_handler(event); 10723 return; 10724 } 10725 perf_event_detach_bpf_prog(event); 10726 } 10727 10728 #else 10729 10730 static inline void perf_tp_register(void) 10731 { 10732 } 10733 10734 static void perf_event_free_filter(struct perf_event *event) 10735 { 10736 } 10737 10738 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10739 u64 bpf_cookie) 10740 { 10741 return -ENOENT; 10742 } 10743 10744 void perf_event_free_bpf_prog(struct perf_event *event) 10745 { 10746 } 10747 #endif /* CONFIG_EVENT_TRACING */ 10748 10749 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10750 void perf_bp_event(struct perf_event *bp, void *data) 10751 { 10752 struct perf_sample_data sample; 10753 struct pt_regs *regs = data; 10754 10755 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10756 10757 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10758 perf_swevent_event(bp, 1, &sample, regs); 10759 } 10760 #endif 10761 10762 /* 10763 * Allocate a new address filter 10764 */ 10765 static struct perf_addr_filter * 10766 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10767 { 10768 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10769 struct perf_addr_filter *filter; 10770 10771 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10772 if (!filter) 10773 return NULL; 10774 10775 INIT_LIST_HEAD(&filter->entry); 10776 list_add_tail(&filter->entry, filters); 10777 10778 return filter; 10779 } 10780 10781 static void free_filters_list(struct list_head *filters) 10782 { 10783 struct perf_addr_filter *filter, *iter; 10784 10785 list_for_each_entry_safe(filter, iter, filters, entry) { 10786 path_put(&filter->path); 10787 list_del(&filter->entry); 10788 kfree(filter); 10789 } 10790 } 10791 10792 /* 10793 * Free existing address filters and optionally install new ones 10794 */ 10795 static void perf_addr_filters_splice(struct perf_event *event, 10796 struct list_head *head) 10797 { 10798 unsigned long flags; 10799 LIST_HEAD(list); 10800 10801 if (!has_addr_filter(event)) 10802 return; 10803 10804 /* don't bother with children, they don't have their own filters */ 10805 if (event->parent) 10806 return; 10807 10808 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10809 10810 list_splice_init(&event->addr_filters.list, &list); 10811 if (head) 10812 list_splice(head, &event->addr_filters.list); 10813 10814 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10815 10816 free_filters_list(&list); 10817 } 10818 10819 /* 10820 * Scan through mm's vmas and see if one of them matches the 10821 * @filter; if so, adjust filter's address range. 10822 * Called with mm::mmap_lock down for reading. 10823 */ 10824 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10825 struct mm_struct *mm, 10826 struct perf_addr_filter_range *fr) 10827 { 10828 struct vm_area_struct *vma; 10829 VMA_ITERATOR(vmi, mm, 0); 10830 10831 for_each_vma(vmi, vma) { 10832 if (!vma->vm_file) 10833 continue; 10834 10835 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10836 return; 10837 } 10838 } 10839 10840 /* 10841 * Update event's address range filters based on the 10842 * task's existing mappings, if any. 10843 */ 10844 static void perf_event_addr_filters_apply(struct perf_event *event) 10845 { 10846 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10847 struct task_struct *task = READ_ONCE(event->ctx->task); 10848 struct perf_addr_filter *filter; 10849 struct mm_struct *mm = NULL; 10850 unsigned int count = 0; 10851 unsigned long flags; 10852 10853 /* 10854 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10855 * will stop on the parent's child_mutex that our caller is also holding 10856 */ 10857 if (task == TASK_TOMBSTONE) 10858 return; 10859 10860 if (ifh->nr_file_filters) { 10861 mm = get_task_mm(task); 10862 if (!mm) 10863 goto restart; 10864 10865 mmap_read_lock(mm); 10866 } 10867 10868 raw_spin_lock_irqsave(&ifh->lock, flags); 10869 list_for_each_entry(filter, &ifh->list, entry) { 10870 if (filter->path.dentry) { 10871 /* 10872 * Adjust base offset if the filter is associated to a 10873 * binary that needs to be mapped: 10874 */ 10875 event->addr_filter_ranges[count].start = 0; 10876 event->addr_filter_ranges[count].size = 0; 10877 10878 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10879 } else { 10880 event->addr_filter_ranges[count].start = filter->offset; 10881 event->addr_filter_ranges[count].size = filter->size; 10882 } 10883 10884 count++; 10885 } 10886 10887 event->addr_filters_gen++; 10888 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10889 10890 if (ifh->nr_file_filters) { 10891 mmap_read_unlock(mm); 10892 10893 mmput(mm); 10894 } 10895 10896 restart: 10897 perf_event_stop(event, 1); 10898 } 10899 10900 /* 10901 * Address range filtering: limiting the data to certain 10902 * instruction address ranges. Filters are ioctl()ed to us from 10903 * userspace as ascii strings. 10904 * 10905 * Filter string format: 10906 * 10907 * ACTION RANGE_SPEC 10908 * where ACTION is one of the 10909 * * "filter": limit the trace to this region 10910 * * "start": start tracing from this address 10911 * * "stop": stop tracing at this address/region; 10912 * RANGE_SPEC is 10913 * * for kernel addresses: <start address>[/<size>] 10914 * * for object files: <start address>[/<size>]@</path/to/object/file> 10915 * 10916 * if <size> is not specified or is zero, the range is treated as a single 10917 * address; not valid for ACTION=="filter". 10918 */ 10919 enum { 10920 IF_ACT_NONE = -1, 10921 IF_ACT_FILTER, 10922 IF_ACT_START, 10923 IF_ACT_STOP, 10924 IF_SRC_FILE, 10925 IF_SRC_KERNEL, 10926 IF_SRC_FILEADDR, 10927 IF_SRC_KERNELADDR, 10928 }; 10929 10930 enum { 10931 IF_STATE_ACTION = 0, 10932 IF_STATE_SOURCE, 10933 IF_STATE_END, 10934 }; 10935 10936 static const match_table_t if_tokens = { 10937 { IF_ACT_FILTER, "filter" }, 10938 { IF_ACT_START, "start" }, 10939 { IF_ACT_STOP, "stop" }, 10940 { IF_SRC_FILE, "%u/%u@%s" }, 10941 { IF_SRC_KERNEL, "%u/%u" }, 10942 { IF_SRC_FILEADDR, "%u@%s" }, 10943 { IF_SRC_KERNELADDR, "%u" }, 10944 { IF_ACT_NONE, NULL }, 10945 }; 10946 10947 /* 10948 * Address filter string parser 10949 */ 10950 static int 10951 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10952 struct list_head *filters) 10953 { 10954 struct perf_addr_filter *filter = NULL; 10955 char *start, *orig, *filename = NULL; 10956 substring_t args[MAX_OPT_ARGS]; 10957 int state = IF_STATE_ACTION, token; 10958 unsigned int kernel = 0; 10959 int ret = -EINVAL; 10960 10961 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10962 if (!fstr) 10963 return -ENOMEM; 10964 10965 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10966 static const enum perf_addr_filter_action_t actions[] = { 10967 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10968 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10969 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10970 }; 10971 ret = -EINVAL; 10972 10973 if (!*start) 10974 continue; 10975 10976 /* filter definition begins */ 10977 if (state == IF_STATE_ACTION) { 10978 filter = perf_addr_filter_new(event, filters); 10979 if (!filter) 10980 goto fail; 10981 } 10982 10983 token = match_token(start, if_tokens, args); 10984 switch (token) { 10985 case IF_ACT_FILTER: 10986 case IF_ACT_START: 10987 case IF_ACT_STOP: 10988 if (state != IF_STATE_ACTION) 10989 goto fail; 10990 10991 filter->action = actions[token]; 10992 state = IF_STATE_SOURCE; 10993 break; 10994 10995 case IF_SRC_KERNELADDR: 10996 case IF_SRC_KERNEL: 10997 kernel = 1; 10998 fallthrough; 10999 11000 case IF_SRC_FILEADDR: 11001 case IF_SRC_FILE: 11002 if (state != IF_STATE_SOURCE) 11003 goto fail; 11004 11005 *args[0].to = 0; 11006 ret = kstrtoul(args[0].from, 0, &filter->offset); 11007 if (ret) 11008 goto fail; 11009 11010 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11011 *args[1].to = 0; 11012 ret = kstrtoul(args[1].from, 0, &filter->size); 11013 if (ret) 11014 goto fail; 11015 } 11016 11017 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11018 int fpos = token == IF_SRC_FILE ? 2 : 1; 11019 11020 kfree(filename); 11021 filename = match_strdup(&args[fpos]); 11022 if (!filename) { 11023 ret = -ENOMEM; 11024 goto fail; 11025 } 11026 } 11027 11028 state = IF_STATE_END; 11029 break; 11030 11031 default: 11032 goto fail; 11033 } 11034 11035 /* 11036 * Filter definition is fully parsed, validate and install it. 11037 * Make sure that it doesn't contradict itself or the event's 11038 * attribute. 11039 */ 11040 if (state == IF_STATE_END) { 11041 ret = -EINVAL; 11042 11043 /* 11044 * ACTION "filter" must have a non-zero length region 11045 * specified. 11046 */ 11047 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11048 !filter->size) 11049 goto fail; 11050 11051 if (!kernel) { 11052 if (!filename) 11053 goto fail; 11054 11055 /* 11056 * For now, we only support file-based filters 11057 * in per-task events; doing so for CPU-wide 11058 * events requires additional context switching 11059 * trickery, since same object code will be 11060 * mapped at different virtual addresses in 11061 * different processes. 11062 */ 11063 ret = -EOPNOTSUPP; 11064 if (!event->ctx->task) 11065 goto fail; 11066 11067 /* look up the path and grab its inode */ 11068 ret = kern_path(filename, LOOKUP_FOLLOW, 11069 &filter->path); 11070 if (ret) 11071 goto fail; 11072 11073 ret = -EINVAL; 11074 if (!filter->path.dentry || 11075 !S_ISREG(d_inode(filter->path.dentry) 11076 ->i_mode)) 11077 goto fail; 11078 11079 event->addr_filters.nr_file_filters++; 11080 } 11081 11082 /* ready to consume more filters */ 11083 kfree(filename); 11084 filename = NULL; 11085 state = IF_STATE_ACTION; 11086 filter = NULL; 11087 kernel = 0; 11088 } 11089 } 11090 11091 if (state != IF_STATE_ACTION) 11092 goto fail; 11093 11094 kfree(filename); 11095 kfree(orig); 11096 11097 return 0; 11098 11099 fail: 11100 kfree(filename); 11101 free_filters_list(filters); 11102 kfree(orig); 11103 11104 return ret; 11105 } 11106 11107 static int 11108 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11109 { 11110 LIST_HEAD(filters); 11111 int ret; 11112 11113 /* 11114 * Since this is called in perf_ioctl() path, we're already holding 11115 * ctx::mutex. 11116 */ 11117 lockdep_assert_held(&event->ctx->mutex); 11118 11119 if (WARN_ON_ONCE(event->parent)) 11120 return -EINVAL; 11121 11122 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11123 if (ret) 11124 goto fail_clear_files; 11125 11126 ret = event->pmu->addr_filters_validate(&filters); 11127 if (ret) 11128 goto fail_free_filters; 11129 11130 /* remove existing filters, if any */ 11131 perf_addr_filters_splice(event, &filters); 11132 11133 /* install new filters */ 11134 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11135 11136 return ret; 11137 11138 fail_free_filters: 11139 free_filters_list(&filters); 11140 11141 fail_clear_files: 11142 event->addr_filters.nr_file_filters = 0; 11143 11144 return ret; 11145 } 11146 11147 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11148 { 11149 int ret = -EINVAL; 11150 char *filter_str; 11151 11152 filter_str = strndup_user(arg, PAGE_SIZE); 11153 if (IS_ERR(filter_str)) 11154 return PTR_ERR(filter_str); 11155 11156 #ifdef CONFIG_EVENT_TRACING 11157 if (perf_event_is_tracing(event)) { 11158 struct perf_event_context *ctx = event->ctx; 11159 11160 /* 11161 * Beware, here be dragons!! 11162 * 11163 * the tracepoint muck will deadlock against ctx->mutex, but 11164 * the tracepoint stuff does not actually need it. So 11165 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11166 * already have a reference on ctx. 11167 * 11168 * This can result in event getting moved to a different ctx, 11169 * but that does not affect the tracepoint state. 11170 */ 11171 mutex_unlock(&ctx->mutex); 11172 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11173 mutex_lock(&ctx->mutex); 11174 } else 11175 #endif 11176 if (has_addr_filter(event)) 11177 ret = perf_event_set_addr_filter(event, filter_str); 11178 11179 kfree(filter_str); 11180 return ret; 11181 } 11182 11183 /* 11184 * hrtimer based swevent callback 11185 */ 11186 11187 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11188 { 11189 enum hrtimer_restart ret = HRTIMER_RESTART; 11190 struct perf_sample_data data; 11191 struct pt_regs *regs; 11192 struct perf_event *event; 11193 u64 period; 11194 11195 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11196 11197 if (event->state != PERF_EVENT_STATE_ACTIVE) 11198 return HRTIMER_NORESTART; 11199 11200 event->pmu->read(event); 11201 11202 perf_sample_data_init(&data, 0, event->hw.last_period); 11203 regs = get_irq_regs(); 11204 11205 if (regs && !perf_exclude_event(event, regs)) { 11206 if (!(event->attr.exclude_idle && is_idle_task(current))) 11207 if (__perf_event_overflow(event, 1, &data, regs)) 11208 ret = HRTIMER_NORESTART; 11209 } 11210 11211 period = max_t(u64, 10000, event->hw.sample_period); 11212 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11213 11214 return ret; 11215 } 11216 11217 static void perf_swevent_start_hrtimer(struct perf_event *event) 11218 { 11219 struct hw_perf_event *hwc = &event->hw; 11220 s64 period; 11221 11222 if (!is_sampling_event(event)) 11223 return; 11224 11225 period = local64_read(&hwc->period_left); 11226 if (period) { 11227 if (period < 0) 11228 period = 10000; 11229 11230 local64_set(&hwc->period_left, 0); 11231 } else { 11232 period = max_t(u64, 10000, hwc->sample_period); 11233 } 11234 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11235 HRTIMER_MODE_REL_PINNED_HARD); 11236 } 11237 11238 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11239 { 11240 struct hw_perf_event *hwc = &event->hw; 11241 11242 if (is_sampling_event(event)) { 11243 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11244 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11245 11246 hrtimer_cancel(&hwc->hrtimer); 11247 } 11248 } 11249 11250 static void perf_swevent_init_hrtimer(struct perf_event *event) 11251 { 11252 struct hw_perf_event *hwc = &event->hw; 11253 11254 if (!is_sampling_event(event)) 11255 return; 11256 11257 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11258 hwc->hrtimer.function = perf_swevent_hrtimer; 11259 11260 /* 11261 * Since hrtimers have a fixed rate, we can do a static freq->period 11262 * mapping and avoid the whole period adjust feedback stuff. 11263 */ 11264 if (event->attr.freq) { 11265 long freq = event->attr.sample_freq; 11266 11267 event->attr.sample_period = NSEC_PER_SEC / freq; 11268 hwc->sample_period = event->attr.sample_period; 11269 local64_set(&hwc->period_left, hwc->sample_period); 11270 hwc->last_period = hwc->sample_period; 11271 event->attr.freq = 0; 11272 } 11273 } 11274 11275 /* 11276 * Software event: cpu wall time clock 11277 */ 11278 11279 static void cpu_clock_event_update(struct perf_event *event) 11280 { 11281 s64 prev; 11282 u64 now; 11283 11284 now = local_clock(); 11285 prev = local64_xchg(&event->hw.prev_count, now); 11286 local64_add(now - prev, &event->count); 11287 } 11288 11289 static void cpu_clock_event_start(struct perf_event *event, int flags) 11290 { 11291 local64_set(&event->hw.prev_count, local_clock()); 11292 perf_swevent_start_hrtimer(event); 11293 } 11294 11295 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11296 { 11297 perf_swevent_cancel_hrtimer(event); 11298 cpu_clock_event_update(event); 11299 } 11300 11301 static int cpu_clock_event_add(struct perf_event *event, int flags) 11302 { 11303 if (flags & PERF_EF_START) 11304 cpu_clock_event_start(event, flags); 11305 perf_event_update_userpage(event); 11306 11307 return 0; 11308 } 11309 11310 static void cpu_clock_event_del(struct perf_event *event, int flags) 11311 { 11312 cpu_clock_event_stop(event, flags); 11313 } 11314 11315 static void cpu_clock_event_read(struct perf_event *event) 11316 { 11317 cpu_clock_event_update(event); 11318 } 11319 11320 static int cpu_clock_event_init(struct perf_event *event) 11321 { 11322 if (event->attr.type != perf_cpu_clock.type) 11323 return -ENOENT; 11324 11325 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11326 return -ENOENT; 11327 11328 /* 11329 * no branch sampling for software events 11330 */ 11331 if (has_branch_stack(event)) 11332 return -EOPNOTSUPP; 11333 11334 perf_swevent_init_hrtimer(event); 11335 11336 return 0; 11337 } 11338 11339 static struct pmu perf_cpu_clock = { 11340 .task_ctx_nr = perf_sw_context, 11341 11342 .capabilities = PERF_PMU_CAP_NO_NMI, 11343 .dev = PMU_NULL_DEV, 11344 11345 .event_init = cpu_clock_event_init, 11346 .add = cpu_clock_event_add, 11347 .del = cpu_clock_event_del, 11348 .start = cpu_clock_event_start, 11349 .stop = cpu_clock_event_stop, 11350 .read = cpu_clock_event_read, 11351 }; 11352 11353 /* 11354 * Software event: task time clock 11355 */ 11356 11357 static void task_clock_event_update(struct perf_event *event, u64 now) 11358 { 11359 u64 prev; 11360 s64 delta; 11361 11362 prev = local64_xchg(&event->hw.prev_count, now); 11363 delta = now - prev; 11364 local64_add(delta, &event->count); 11365 } 11366 11367 static void task_clock_event_start(struct perf_event *event, int flags) 11368 { 11369 local64_set(&event->hw.prev_count, event->ctx->time); 11370 perf_swevent_start_hrtimer(event); 11371 } 11372 11373 static void task_clock_event_stop(struct perf_event *event, int flags) 11374 { 11375 perf_swevent_cancel_hrtimer(event); 11376 task_clock_event_update(event, event->ctx->time); 11377 } 11378 11379 static int task_clock_event_add(struct perf_event *event, int flags) 11380 { 11381 if (flags & PERF_EF_START) 11382 task_clock_event_start(event, flags); 11383 perf_event_update_userpage(event); 11384 11385 return 0; 11386 } 11387 11388 static void task_clock_event_del(struct perf_event *event, int flags) 11389 { 11390 task_clock_event_stop(event, PERF_EF_UPDATE); 11391 } 11392 11393 static void task_clock_event_read(struct perf_event *event) 11394 { 11395 u64 now = perf_clock(); 11396 u64 delta = now - event->ctx->timestamp; 11397 u64 time = event->ctx->time + delta; 11398 11399 task_clock_event_update(event, time); 11400 } 11401 11402 static int task_clock_event_init(struct perf_event *event) 11403 { 11404 if (event->attr.type != perf_task_clock.type) 11405 return -ENOENT; 11406 11407 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11408 return -ENOENT; 11409 11410 /* 11411 * no branch sampling for software events 11412 */ 11413 if (has_branch_stack(event)) 11414 return -EOPNOTSUPP; 11415 11416 perf_swevent_init_hrtimer(event); 11417 11418 return 0; 11419 } 11420 11421 static struct pmu perf_task_clock = { 11422 .task_ctx_nr = perf_sw_context, 11423 11424 .capabilities = PERF_PMU_CAP_NO_NMI, 11425 .dev = PMU_NULL_DEV, 11426 11427 .event_init = task_clock_event_init, 11428 .add = task_clock_event_add, 11429 .del = task_clock_event_del, 11430 .start = task_clock_event_start, 11431 .stop = task_clock_event_stop, 11432 .read = task_clock_event_read, 11433 }; 11434 11435 static void perf_pmu_nop_void(struct pmu *pmu) 11436 { 11437 } 11438 11439 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11440 { 11441 } 11442 11443 static int perf_pmu_nop_int(struct pmu *pmu) 11444 { 11445 return 0; 11446 } 11447 11448 static int perf_event_nop_int(struct perf_event *event, u64 value) 11449 { 11450 return 0; 11451 } 11452 11453 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11454 11455 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11456 { 11457 __this_cpu_write(nop_txn_flags, flags); 11458 11459 if (flags & ~PERF_PMU_TXN_ADD) 11460 return; 11461 11462 perf_pmu_disable(pmu); 11463 } 11464 11465 static int perf_pmu_commit_txn(struct pmu *pmu) 11466 { 11467 unsigned int flags = __this_cpu_read(nop_txn_flags); 11468 11469 __this_cpu_write(nop_txn_flags, 0); 11470 11471 if (flags & ~PERF_PMU_TXN_ADD) 11472 return 0; 11473 11474 perf_pmu_enable(pmu); 11475 return 0; 11476 } 11477 11478 static void perf_pmu_cancel_txn(struct pmu *pmu) 11479 { 11480 unsigned int flags = __this_cpu_read(nop_txn_flags); 11481 11482 __this_cpu_write(nop_txn_flags, 0); 11483 11484 if (flags & ~PERF_PMU_TXN_ADD) 11485 return; 11486 11487 perf_pmu_enable(pmu); 11488 } 11489 11490 static int perf_event_idx_default(struct perf_event *event) 11491 { 11492 return 0; 11493 } 11494 11495 static void free_pmu_context(struct pmu *pmu) 11496 { 11497 free_percpu(pmu->cpu_pmu_context); 11498 } 11499 11500 /* 11501 * Let userspace know that this PMU supports address range filtering: 11502 */ 11503 static ssize_t nr_addr_filters_show(struct device *dev, 11504 struct device_attribute *attr, 11505 char *page) 11506 { 11507 struct pmu *pmu = dev_get_drvdata(dev); 11508 11509 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11510 } 11511 DEVICE_ATTR_RO(nr_addr_filters); 11512 11513 static struct idr pmu_idr; 11514 11515 static ssize_t 11516 type_show(struct device *dev, struct device_attribute *attr, char *page) 11517 { 11518 struct pmu *pmu = dev_get_drvdata(dev); 11519 11520 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11521 } 11522 static DEVICE_ATTR_RO(type); 11523 11524 static ssize_t 11525 perf_event_mux_interval_ms_show(struct device *dev, 11526 struct device_attribute *attr, 11527 char *page) 11528 { 11529 struct pmu *pmu = dev_get_drvdata(dev); 11530 11531 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11532 } 11533 11534 static DEFINE_MUTEX(mux_interval_mutex); 11535 11536 static ssize_t 11537 perf_event_mux_interval_ms_store(struct device *dev, 11538 struct device_attribute *attr, 11539 const char *buf, size_t count) 11540 { 11541 struct pmu *pmu = dev_get_drvdata(dev); 11542 int timer, cpu, ret; 11543 11544 ret = kstrtoint(buf, 0, &timer); 11545 if (ret) 11546 return ret; 11547 11548 if (timer < 1) 11549 return -EINVAL; 11550 11551 /* same value, noting to do */ 11552 if (timer == pmu->hrtimer_interval_ms) 11553 return count; 11554 11555 mutex_lock(&mux_interval_mutex); 11556 pmu->hrtimer_interval_ms = timer; 11557 11558 /* update all cpuctx for this PMU */ 11559 cpus_read_lock(); 11560 for_each_online_cpu(cpu) { 11561 struct perf_cpu_pmu_context *cpc; 11562 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11563 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11564 11565 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11566 } 11567 cpus_read_unlock(); 11568 mutex_unlock(&mux_interval_mutex); 11569 11570 return count; 11571 } 11572 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11573 11574 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 11575 { 11576 switch (scope) { 11577 case PERF_PMU_SCOPE_CORE: 11578 return topology_sibling_cpumask(cpu); 11579 case PERF_PMU_SCOPE_DIE: 11580 return topology_die_cpumask(cpu); 11581 case PERF_PMU_SCOPE_CLUSTER: 11582 return topology_cluster_cpumask(cpu); 11583 case PERF_PMU_SCOPE_PKG: 11584 return topology_core_cpumask(cpu); 11585 case PERF_PMU_SCOPE_SYS_WIDE: 11586 return cpu_online_mask; 11587 } 11588 11589 return NULL; 11590 } 11591 11592 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 11593 { 11594 switch (scope) { 11595 case PERF_PMU_SCOPE_CORE: 11596 return perf_online_core_mask; 11597 case PERF_PMU_SCOPE_DIE: 11598 return perf_online_die_mask; 11599 case PERF_PMU_SCOPE_CLUSTER: 11600 return perf_online_cluster_mask; 11601 case PERF_PMU_SCOPE_PKG: 11602 return perf_online_pkg_mask; 11603 case PERF_PMU_SCOPE_SYS_WIDE: 11604 return perf_online_sys_mask; 11605 } 11606 11607 return NULL; 11608 } 11609 11610 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 11611 char *buf) 11612 { 11613 struct pmu *pmu = dev_get_drvdata(dev); 11614 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 11615 11616 if (mask) 11617 return cpumap_print_to_pagebuf(true, buf, mask); 11618 return 0; 11619 } 11620 11621 static DEVICE_ATTR_RO(cpumask); 11622 11623 static struct attribute *pmu_dev_attrs[] = { 11624 &dev_attr_type.attr, 11625 &dev_attr_perf_event_mux_interval_ms.attr, 11626 &dev_attr_nr_addr_filters.attr, 11627 &dev_attr_cpumask.attr, 11628 NULL, 11629 }; 11630 11631 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11632 { 11633 struct device *dev = kobj_to_dev(kobj); 11634 struct pmu *pmu = dev_get_drvdata(dev); 11635 11636 if (n == 2 && !pmu->nr_addr_filters) 11637 return 0; 11638 11639 /* cpumask */ 11640 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 11641 return 0; 11642 11643 return a->mode; 11644 } 11645 11646 static struct attribute_group pmu_dev_attr_group = { 11647 .is_visible = pmu_dev_is_visible, 11648 .attrs = pmu_dev_attrs, 11649 }; 11650 11651 static const struct attribute_group *pmu_dev_groups[] = { 11652 &pmu_dev_attr_group, 11653 NULL, 11654 }; 11655 11656 static int pmu_bus_running; 11657 static struct bus_type pmu_bus = { 11658 .name = "event_source", 11659 .dev_groups = pmu_dev_groups, 11660 }; 11661 11662 static void pmu_dev_release(struct device *dev) 11663 { 11664 kfree(dev); 11665 } 11666 11667 static int pmu_dev_alloc(struct pmu *pmu) 11668 { 11669 int ret = -ENOMEM; 11670 11671 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11672 if (!pmu->dev) 11673 goto out; 11674 11675 pmu->dev->groups = pmu->attr_groups; 11676 device_initialize(pmu->dev); 11677 11678 dev_set_drvdata(pmu->dev, pmu); 11679 pmu->dev->bus = &pmu_bus; 11680 pmu->dev->parent = pmu->parent; 11681 pmu->dev->release = pmu_dev_release; 11682 11683 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11684 if (ret) 11685 goto free_dev; 11686 11687 ret = device_add(pmu->dev); 11688 if (ret) 11689 goto free_dev; 11690 11691 if (pmu->attr_update) { 11692 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11693 if (ret) 11694 goto del_dev; 11695 } 11696 11697 out: 11698 return ret; 11699 11700 del_dev: 11701 device_del(pmu->dev); 11702 11703 free_dev: 11704 put_device(pmu->dev); 11705 goto out; 11706 } 11707 11708 static struct lock_class_key cpuctx_mutex; 11709 static struct lock_class_key cpuctx_lock; 11710 11711 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11712 { 11713 int cpu, ret, max = PERF_TYPE_MAX; 11714 11715 mutex_lock(&pmus_lock); 11716 ret = -ENOMEM; 11717 pmu->pmu_disable_count = alloc_percpu(int); 11718 if (!pmu->pmu_disable_count) 11719 goto unlock; 11720 11721 pmu->type = -1; 11722 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11723 ret = -EINVAL; 11724 goto free_pdc; 11725 } 11726 11727 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) { 11728 ret = -EINVAL; 11729 goto free_pdc; 11730 } 11731 11732 pmu->name = name; 11733 11734 if (type >= 0) 11735 max = type; 11736 11737 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11738 if (ret < 0) 11739 goto free_pdc; 11740 11741 WARN_ON(type >= 0 && ret != type); 11742 11743 type = ret; 11744 pmu->type = type; 11745 11746 if (pmu_bus_running && !pmu->dev) { 11747 ret = pmu_dev_alloc(pmu); 11748 if (ret) 11749 goto free_idr; 11750 } 11751 11752 ret = -ENOMEM; 11753 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11754 if (!pmu->cpu_pmu_context) 11755 goto free_dev; 11756 11757 for_each_possible_cpu(cpu) { 11758 struct perf_cpu_pmu_context *cpc; 11759 11760 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11761 __perf_init_event_pmu_context(&cpc->epc, pmu); 11762 __perf_mux_hrtimer_init(cpc, cpu); 11763 } 11764 11765 if (!pmu->start_txn) { 11766 if (pmu->pmu_enable) { 11767 /* 11768 * If we have pmu_enable/pmu_disable calls, install 11769 * transaction stubs that use that to try and batch 11770 * hardware accesses. 11771 */ 11772 pmu->start_txn = perf_pmu_start_txn; 11773 pmu->commit_txn = perf_pmu_commit_txn; 11774 pmu->cancel_txn = perf_pmu_cancel_txn; 11775 } else { 11776 pmu->start_txn = perf_pmu_nop_txn; 11777 pmu->commit_txn = perf_pmu_nop_int; 11778 pmu->cancel_txn = perf_pmu_nop_void; 11779 } 11780 } 11781 11782 if (!pmu->pmu_enable) { 11783 pmu->pmu_enable = perf_pmu_nop_void; 11784 pmu->pmu_disable = perf_pmu_nop_void; 11785 } 11786 11787 if (!pmu->check_period) 11788 pmu->check_period = perf_event_nop_int; 11789 11790 if (!pmu->event_idx) 11791 pmu->event_idx = perf_event_idx_default; 11792 11793 list_add_rcu(&pmu->entry, &pmus); 11794 atomic_set(&pmu->exclusive_cnt, 0); 11795 ret = 0; 11796 unlock: 11797 mutex_unlock(&pmus_lock); 11798 11799 return ret; 11800 11801 free_dev: 11802 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11803 device_del(pmu->dev); 11804 put_device(pmu->dev); 11805 } 11806 11807 free_idr: 11808 idr_remove(&pmu_idr, pmu->type); 11809 11810 free_pdc: 11811 free_percpu(pmu->pmu_disable_count); 11812 goto unlock; 11813 } 11814 EXPORT_SYMBOL_GPL(perf_pmu_register); 11815 11816 void perf_pmu_unregister(struct pmu *pmu) 11817 { 11818 mutex_lock(&pmus_lock); 11819 list_del_rcu(&pmu->entry); 11820 11821 /* 11822 * We dereference the pmu list under both SRCU and regular RCU, so 11823 * synchronize against both of those. 11824 */ 11825 synchronize_srcu(&pmus_srcu); 11826 synchronize_rcu(); 11827 11828 free_percpu(pmu->pmu_disable_count); 11829 idr_remove(&pmu_idr, pmu->type); 11830 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11831 if (pmu->nr_addr_filters) 11832 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11833 device_del(pmu->dev); 11834 put_device(pmu->dev); 11835 } 11836 free_pmu_context(pmu); 11837 mutex_unlock(&pmus_lock); 11838 } 11839 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11840 11841 static inline bool has_extended_regs(struct perf_event *event) 11842 { 11843 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11844 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11845 } 11846 11847 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11848 { 11849 struct perf_event_context *ctx = NULL; 11850 int ret; 11851 11852 if (!try_module_get(pmu->module)) 11853 return -ENODEV; 11854 11855 /* 11856 * A number of pmu->event_init() methods iterate the sibling_list to, 11857 * for example, validate if the group fits on the PMU. Therefore, 11858 * if this is a sibling event, acquire the ctx->mutex to protect 11859 * the sibling_list. 11860 */ 11861 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11862 /* 11863 * This ctx->mutex can nest when we're called through 11864 * inheritance. See the perf_event_ctx_lock_nested() comment. 11865 */ 11866 ctx = perf_event_ctx_lock_nested(event->group_leader, 11867 SINGLE_DEPTH_NESTING); 11868 BUG_ON(!ctx); 11869 } 11870 11871 event->pmu = pmu; 11872 ret = pmu->event_init(event); 11873 11874 if (ctx) 11875 perf_event_ctx_unlock(event->group_leader, ctx); 11876 11877 if (!ret) { 11878 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11879 has_extended_regs(event)) 11880 ret = -EOPNOTSUPP; 11881 11882 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11883 event_has_any_exclude_flag(event)) 11884 ret = -EINVAL; 11885 11886 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 11887 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 11888 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope); 11889 int cpu; 11890 11891 if (pmu_cpumask && cpumask) { 11892 cpu = cpumask_any_and(pmu_cpumask, cpumask); 11893 if (cpu >= nr_cpu_ids) 11894 ret = -ENODEV; 11895 else 11896 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 11897 } else { 11898 ret = -ENODEV; 11899 } 11900 } 11901 11902 if (ret && event->destroy) 11903 event->destroy(event); 11904 } 11905 11906 if (ret) 11907 module_put(pmu->module); 11908 11909 return ret; 11910 } 11911 11912 static struct pmu *perf_init_event(struct perf_event *event) 11913 { 11914 bool extended_type = false; 11915 int idx, type, ret; 11916 struct pmu *pmu; 11917 11918 idx = srcu_read_lock(&pmus_srcu); 11919 11920 /* 11921 * Save original type before calling pmu->event_init() since certain 11922 * pmus overwrites event->attr.type to forward event to another pmu. 11923 */ 11924 event->orig_type = event->attr.type; 11925 11926 /* Try parent's PMU first: */ 11927 if (event->parent && event->parent->pmu) { 11928 pmu = event->parent->pmu; 11929 ret = perf_try_init_event(pmu, event); 11930 if (!ret) 11931 goto unlock; 11932 } 11933 11934 /* 11935 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11936 * are often aliases for PERF_TYPE_RAW. 11937 */ 11938 type = event->attr.type; 11939 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11940 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11941 if (!type) { 11942 type = PERF_TYPE_RAW; 11943 } else { 11944 extended_type = true; 11945 event->attr.config &= PERF_HW_EVENT_MASK; 11946 } 11947 } 11948 11949 again: 11950 rcu_read_lock(); 11951 pmu = idr_find(&pmu_idr, type); 11952 rcu_read_unlock(); 11953 if (pmu) { 11954 if (event->attr.type != type && type != PERF_TYPE_RAW && 11955 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11956 goto fail; 11957 11958 ret = perf_try_init_event(pmu, event); 11959 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11960 type = event->attr.type; 11961 goto again; 11962 } 11963 11964 if (ret) 11965 pmu = ERR_PTR(ret); 11966 11967 goto unlock; 11968 } 11969 11970 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11971 ret = perf_try_init_event(pmu, event); 11972 if (!ret) 11973 goto unlock; 11974 11975 if (ret != -ENOENT) { 11976 pmu = ERR_PTR(ret); 11977 goto unlock; 11978 } 11979 } 11980 fail: 11981 pmu = ERR_PTR(-ENOENT); 11982 unlock: 11983 srcu_read_unlock(&pmus_srcu, idx); 11984 11985 return pmu; 11986 } 11987 11988 static void attach_sb_event(struct perf_event *event) 11989 { 11990 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11991 11992 raw_spin_lock(&pel->lock); 11993 list_add_rcu(&event->sb_list, &pel->list); 11994 raw_spin_unlock(&pel->lock); 11995 } 11996 11997 /* 11998 * We keep a list of all !task (and therefore per-cpu) events 11999 * that need to receive side-band records. 12000 * 12001 * This avoids having to scan all the various PMU per-cpu contexts 12002 * looking for them. 12003 */ 12004 static void account_pmu_sb_event(struct perf_event *event) 12005 { 12006 if (is_sb_event(event)) 12007 attach_sb_event(event); 12008 } 12009 12010 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12011 static void account_freq_event_nohz(void) 12012 { 12013 #ifdef CONFIG_NO_HZ_FULL 12014 /* Lock so we don't race with concurrent unaccount */ 12015 spin_lock(&nr_freq_lock); 12016 if (atomic_inc_return(&nr_freq_events) == 1) 12017 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12018 spin_unlock(&nr_freq_lock); 12019 #endif 12020 } 12021 12022 static void account_freq_event(void) 12023 { 12024 if (tick_nohz_full_enabled()) 12025 account_freq_event_nohz(); 12026 else 12027 atomic_inc(&nr_freq_events); 12028 } 12029 12030 12031 static void account_event(struct perf_event *event) 12032 { 12033 bool inc = false; 12034 12035 if (event->parent) 12036 return; 12037 12038 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12039 inc = true; 12040 if (event->attr.mmap || event->attr.mmap_data) 12041 atomic_inc(&nr_mmap_events); 12042 if (event->attr.build_id) 12043 atomic_inc(&nr_build_id_events); 12044 if (event->attr.comm) 12045 atomic_inc(&nr_comm_events); 12046 if (event->attr.namespaces) 12047 atomic_inc(&nr_namespaces_events); 12048 if (event->attr.cgroup) 12049 atomic_inc(&nr_cgroup_events); 12050 if (event->attr.task) 12051 atomic_inc(&nr_task_events); 12052 if (event->attr.freq) 12053 account_freq_event(); 12054 if (event->attr.context_switch) { 12055 atomic_inc(&nr_switch_events); 12056 inc = true; 12057 } 12058 if (has_branch_stack(event)) 12059 inc = true; 12060 if (is_cgroup_event(event)) 12061 inc = true; 12062 if (event->attr.ksymbol) 12063 atomic_inc(&nr_ksymbol_events); 12064 if (event->attr.bpf_event) 12065 atomic_inc(&nr_bpf_events); 12066 if (event->attr.text_poke) 12067 atomic_inc(&nr_text_poke_events); 12068 12069 if (inc) { 12070 /* 12071 * We need the mutex here because static_branch_enable() 12072 * must complete *before* the perf_sched_count increment 12073 * becomes visible. 12074 */ 12075 if (atomic_inc_not_zero(&perf_sched_count)) 12076 goto enabled; 12077 12078 mutex_lock(&perf_sched_mutex); 12079 if (!atomic_read(&perf_sched_count)) { 12080 static_branch_enable(&perf_sched_events); 12081 /* 12082 * Guarantee that all CPUs observe they key change and 12083 * call the perf scheduling hooks before proceeding to 12084 * install events that need them. 12085 */ 12086 synchronize_rcu(); 12087 } 12088 /* 12089 * Now that we have waited for the sync_sched(), allow further 12090 * increments to by-pass the mutex. 12091 */ 12092 atomic_inc(&perf_sched_count); 12093 mutex_unlock(&perf_sched_mutex); 12094 } 12095 enabled: 12096 12097 account_pmu_sb_event(event); 12098 } 12099 12100 /* 12101 * Allocate and initialize an event structure 12102 */ 12103 static struct perf_event * 12104 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12105 struct task_struct *task, 12106 struct perf_event *group_leader, 12107 struct perf_event *parent_event, 12108 perf_overflow_handler_t overflow_handler, 12109 void *context, int cgroup_fd) 12110 { 12111 struct pmu *pmu; 12112 struct perf_event *event; 12113 struct hw_perf_event *hwc; 12114 long err = -EINVAL; 12115 int node; 12116 12117 if ((unsigned)cpu >= nr_cpu_ids) { 12118 if (!task || cpu != -1) 12119 return ERR_PTR(-EINVAL); 12120 } 12121 if (attr->sigtrap && !task) { 12122 /* Requires a task: avoid signalling random tasks. */ 12123 return ERR_PTR(-EINVAL); 12124 } 12125 12126 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12127 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 12128 node); 12129 if (!event) 12130 return ERR_PTR(-ENOMEM); 12131 12132 /* 12133 * Single events are their own group leaders, with an 12134 * empty sibling list: 12135 */ 12136 if (!group_leader) 12137 group_leader = event; 12138 12139 mutex_init(&event->child_mutex); 12140 INIT_LIST_HEAD(&event->child_list); 12141 12142 INIT_LIST_HEAD(&event->event_entry); 12143 INIT_LIST_HEAD(&event->sibling_list); 12144 INIT_LIST_HEAD(&event->active_list); 12145 init_event_group(event); 12146 INIT_LIST_HEAD(&event->rb_entry); 12147 INIT_LIST_HEAD(&event->active_entry); 12148 INIT_LIST_HEAD(&event->addr_filters.list); 12149 INIT_HLIST_NODE(&event->hlist_entry); 12150 12151 12152 init_waitqueue_head(&event->waitq); 12153 init_irq_work(&event->pending_irq, perf_pending_irq); 12154 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12155 init_task_work(&event->pending_task, perf_pending_task); 12156 rcuwait_init(&event->pending_work_wait); 12157 12158 mutex_init(&event->mmap_mutex); 12159 raw_spin_lock_init(&event->addr_filters.lock); 12160 12161 atomic_long_set(&event->refcount, 1); 12162 event->cpu = cpu; 12163 event->attr = *attr; 12164 event->group_leader = group_leader; 12165 event->pmu = NULL; 12166 event->oncpu = -1; 12167 12168 event->parent = parent_event; 12169 12170 event->ns = get_pid_ns(task_active_pid_ns(current)); 12171 event->id = atomic64_inc_return(&perf_event_id); 12172 12173 event->state = PERF_EVENT_STATE_INACTIVE; 12174 12175 if (parent_event) 12176 event->event_caps = parent_event->event_caps; 12177 12178 if (task) { 12179 event->attach_state = PERF_ATTACH_TASK; 12180 /* 12181 * XXX pmu::event_init needs to know what task to account to 12182 * and we cannot use the ctx information because we need the 12183 * pmu before we get a ctx. 12184 */ 12185 event->hw.target = get_task_struct(task); 12186 } 12187 12188 event->clock = &local_clock; 12189 if (parent_event) 12190 event->clock = parent_event->clock; 12191 12192 if (!overflow_handler && parent_event) { 12193 overflow_handler = parent_event->overflow_handler; 12194 context = parent_event->overflow_handler_context; 12195 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12196 if (parent_event->prog) { 12197 struct bpf_prog *prog = parent_event->prog; 12198 12199 bpf_prog_inc(prog); 12200 event->prog = prog; 12201 } 12202 #endif 12203 } 12204 12205 if (overflow_handler) { 12206 event->overflow_handler = overflow_handler; 12207 event->overflow_handler_context = context; 12208 } else if (is_write_backward(event)){ 12209 event->overflow_handler = perf_event_output_backward; 12210 event->overflow_handler_context = NULL; 12211 } else { 12212 event->overflow_handler = perf_event_output_forward; 12213 event->overflow_handler_context = NULL; 12214 } 12215 12216 perf_event__state_init(event); 12217 12218 pmu = NULL; 12219 12220 hwc = &event->hw; 12221 hwc->sample_period = attr->sample_period; 12222 if (attr->freq && attr->sample_freq) 12223 hwc->sample_period = 1; 12224 hwc->last_period = hwc->sample_period; 12225 12226 local64_set(&hwc->period_left, hwc->sample_period); 12227 12228 /* 12229 * We do not support PERF_SAMPLE_READ on inherited events unless 12230 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12231 * collect per-thread samples. 12232 * See perf_output_read(). 12233 */ 12234 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12235 goto err_ns; 12236 12237 if (!has_branch_stack(event)) 12238 event->attr.branch_sample_type = 0; 12239 12240 pmu = perf_init_event(event); 12241 if (IS_ERR(pmu)) { 12242 err = PTR_ERR(pmu); 12243 goto err_ns; 12244 } 12245 12246 /* 12247 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12248 * events (they don't make sense as the cgroup will be different 12249 * on other CPUs in the uncore mask). 12250 */ 12251 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12252 err = -EINVAL; 12253 goto err_pmu; 12254 } 12255 12256 if (event->attr.aux_output && 12257 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12258 err = -EOPNOTSUPP; 12259 goto err_pmu; 12260 } 12261 12262 if (cgroup_fd != -1) { 12263 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12264 if (err) 12265 goto err_pmu; 12266 } 12267 12268 err = exclusive_event_init(event); 12269 if (err) 12270 goto err_pmu; 12271 12272 if (has_addr_filter(event)) { 12273 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12274 sizeof(struct perf_addr_filter_range), 12275 GFP_KERNEL); 12276 if (!event->addr_filter_ranges) { 12277 err = -ENOMEM; 12278 goto err_per_task; 12279 } 12280 12281 /* 12282 * Clone the parent's vma offsets: they are valid until exec() 12283 * even if the mm is not shared with the parent. 12284 */ 12285 if (event->parent) { 12286 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12287 12288 raw_spin_lock_irq(&ifh->lock); 12289 memcpy(event->addr_filter_ranges, 12290 event->parent->addr_filter_ranges, 12291 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12292 raw_spin_unlock_irq(&ifh->lock); 12293 } 12294 12295 /* force hw sync on the address filters */ 12296 event->addr_filters_gen = 1; 12297 } 12298 12299 if (!event->parent) { 12300 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12301 err = get_callchain_buffers(attr->sample_max_stack); 12302 if (err) 12303 goto err_addr_filters; 12304 } 12305 } 12306 12307 err = security_perf_event_alloc(event); 12308 if (err) 12309 goto err_callchain_buffer; 12310 12311 /* symmetric to unaccount_event() in _free_event() */ 12312 account_event(event); 12313 12314 return event; 12315 12316 err_callchain_buffer: 12317 if (!event->parent) { 12318 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12319 put_callchain_buffers(); 12320 } 12321 err_addr_filters: 12322 kfree(event->addr_filter_ranges); 12323 12324 err_per_task: 12325 exclusive_event_destroy(event); 12326 12327 err_pmu: 12328 if (is_cgroup_event(event)) 12329 perf_detach_cgroup(event); 12330 if (event->destroy) 12331 event->destroy(event); 12332 module_put(pmu->module); 12333 err_ns: 12334 if (event->hw.target) 12335 put_task_struct(event->hw.target); 12336 call_rcu(&event->rcu_head, free_event_rcu); 12337 12338 return ERR_PTR(err); 12339 } 12340 12341 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12342 struct perf_event_attr *attr) 12343 { 12344 u32 size; 12345 int ret; 12346 12347 /* Zero the full structure, so that a short copy will be nice. */ 12348 memset(attr, 0, sizeof(*attr)); 12349 12350 ret = get_user(size, &uattr->size); 12351 if (ret) 12352 return ret; 12353 12354 /* ABI compatibility quirk: */ 12355 if (!size) 12356 size = PERF_ATTR_SIZE_VER0; 12357 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12358 goto err_size; 12359 12360 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12361 if (ret) { 12362 if (ret == -E2BIG) 12363 goto err_size; 12364 return ret; 12365 } 12366 12367 attr->size = size; 12368 12369 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12370 return -EINVAL; 12371 12372 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12373 return -EINVAL; 12374 12375 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12376 return -EINVAL; 12377 12378 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12379 u64 mask = attr->branch_sample_type; 12380 12381 /* only using defined bits */ 12382 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12383 return -EINVAL; 12384 12385 /* at least one branch bit must be set */ 12386 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12387 return -EINVAL; 12388 12389 /* propagate priv level, when not set for branch */ 12390 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12391 12392 /* exclude_kernel checked on syscall entry */ 12393 if (!attr->exclude_kernel) 12394 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12395 12396 if (!attr->exclude_user) 12397 mask |= PERF_SAMPLE_BRANCH_USER; 12398 12399 if (!attr->exclude_hv) 12400 mask |= PERF_SAMPLE_BRANCH_HV; 12401 /* 12402 * adjust user setting (for HW filter setup) 12403 */ 12404 attr->branch_sample_type = mask; 12405 } 12406 /* privileged levels capture (kernel, hv): check permissions */ 12407 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12408 ret = perf_allow_kernel(attr); 12409 if (ret) 12410 return ret; 12411 } 12412 } 12413 12414 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12415 ret = perf_reg_validate(attr->sample_regs_user); 12416 if (ret) 12417 return ret; 12418 } 12419 12420 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12421 if (!arch_perf_have_user_stack_dump()) 12422 return -ENOSYS; 12423 12424 /* 12425 * We have __u32 type for the size, but so far 12426 * we can only use __u16 as maximum due to the 12427 * __u16 sample size limit. 12428 */ 12429 if (attr->sample_stack_user >= USHRT_MAX) 12430 return -EINVAL; 12431 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12432 return -EINVAL; 12433 } 12434 12435 if (!attr->sample_max_stack) 12436 attr->sample_max_stack = sysctl_perf_event_max_stack; 12437 12438 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12439 ret = perf_reg_validate(attr->sample_regs_intr); 12440 12441 #ifndef CONFIG_CGROUP_PERF 12442 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12443 return -EINVAL; 12444 #endif 12445 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12446 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12447 return -EINVAL; 12448 12449 if (!attr->inherit && attr->inherit_thread) 12450 return -EINVAL; 12451 12452 if (attr->remove_on_exec && attr->enable_on_exec) 12453 return -EINVAL; 12454 12455 if (attr->sigtrap && !attr->remove_on_exec) 12456 return -EINVAL; 12457 12458 out: 12459 return ret; 12460 12461 err_size: 12462 put_user(sizeof(*attr), &uattr->size); 12463 ret = -E2BIG; 12464 goto out; 12465 } 12466 12467 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12468 { 12469 if (b < a) 12470 swap(a, b); 12471 12472 mutex_lock(a); 12473 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12474 } 12475 12476 static int 12477 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12478 { 12479 struct perf_buffer *rb = NULL; 12480 int ret = -EINVAL; 12481 12482 if (!output_event) { 12483 mutex_lock(&event->mmap_mutex); 12484 goto set; 12485 } 12486 12487 /* don't allow circular references */ 12488 if (event == output_event) 12489 goto out; 12490 12491 /* 12492 * Don't allow cross-cpu buffers 12493 */ 12494 if (output_event->cpu != event->cpu) 12495 goto out; 12496 12497 /* 12498 * If its not a per-cpu rb, it must be the same task. 12499 */ 12500 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12501 goto out; 12502 12503 /* 12504 * Mixing clocks in the same buffer is trouble you don't need. 12505 */ 12506 if (output_event->clock != event->clock) 12507 goto out; 12508 12509 /* 12510 * Either writing ring buffer from beginning or from end. 12511 * Mixing is not allowed. 12512 */ 12513 if (is_write_backward(output_event) != is_write_backward(event)) 12514 goto out; 12515 12516 /* 12517 * If both events generate aux data, they must be on the same PMU 12518 */ 12519 if (has_aux(event) && has_aux(output_event) && 12520 event->pmu != output_event->pmu) 12521 goto out; 12522 12523 /* 12524 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12525 * output_event is already on rb->event_list, and the list iteration 12526 * restarts after every removal, it is guaranteed this new event is 12527 * observed *OR* if output_event is already removed, it's guaranteed we 12528 * observe !rb->mmap_count. 12529 */ 12530 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12531 set: 12532 /* Can't redirect output if we've got an active mmap() */ 12533 if (atomic_read(&event->mmap_count)) 12534 goto unlock; 12535 12536 if (output_event) { 12537 /* get the rb we want to redirect to */ 12538 rb = ring_buffer_get(output_event); 12539 if (!rb) 12540 goto unlock; 12541 12542 /* did we race against perf_mmap_close() */ 12543 if (!atomic_read(&rb->mmap_count)) { 12544 ring_buffer_put(rb); 12545 goto unlock; 12546 } 12547 } 12548 12549 ring_buffer_attach(event, rb); 12550 12551 ret = 0; 12552 unlock: 12553 mutex_unlock(&event->mmap_mutex); 12554 if (output_event) 12555 mutex_unlock(&output_event->mmap_mutex); 12556 12557 out: 12558 return ret; 12559 } 12560 12561 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12562 { 12563 bool nmi_safe = false; 12564 12565 switch (clk_id) { 12566 case CLOCK_MONOTONIC: 12567 event->clock = &ktime_get_mono_fast_ns; 12568 nmi_safe = true; 12569 break; 12570 12571 case CLOCK_MONOTONIC_RAW: 12572 event->clock = &ktime_get_raw_fast_ns; 12573 nmi_safe = true; 12574 break; 12575 12576 case CLOCK_REALTIME: 12577 event->clock = &ktime_get_real_ns; 12578 break; 12579 12580 case CLOCK_BOOTTIME: 12581 event->clock = &ktime_get_boottime_ns; 12582 break; 12583 12584 case CLOCK_TAI: 12585 event->clock = &ktime_get_clocktai_ns; 12586 break; 12587 12588 default: 12589 return -EINVAL; 12590 } 12591 12592 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12593 return -EINVAL; 12594 12595 return 0; 12596 } 12597 12598 static bool 12599 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12600 { 12601 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12602 bool is_capable = perfmon_capable(); 12603 12604 if (attr->sigtrap) { 12605 /* 12606 * perf_event_attr::sigtrap sends signals to the other task. 12607 * Require the current task to also have CAP_KILL. 12608 */ 12609 rcu_read_lock(); 12610 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12611 rcu_read_unlock(); 12612 12613 /* 12614 * If the required capabilities aren't available, checks for 12615 * ptrace permissions: upgrade to ATTACH, since sending signals 12616 * can effectively change the target task. 12617 */ 12618 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12619 } 12620 12621 /* 12622 * Preserve ptrace permission check for backwards compatibility. The 12623 * ptrace check also includes checks that the current task and other 12624 * task have matching uids, and is therefore not done here explicitly. 12625 */ 12626 return is_capable || ptrace_may_access(task, ptrace_mode); 12627 } 12628 12629 /** 12630 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12631 * 12632 * @attr_uptr: event_id type attributes for monitoring/sampling 12633 * @pid: target pid 12634 * @cpu: target cpu 12635 * @group_fd: group leader event fd 12636 * @flags: perf event open flags 12637 */ 12638 SYSCALL_DEFINE5(perf_event_open, 12639 struct perf_event_attr __user *, attr_uptr, 12640 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12641 { 12642 struct perf_event *group_leader = NULL, *output_event = NULL; 12643 struct perf_event_pmu_context *pmu_ctx; 12644 struct perf_event *event, *sibling; 12645 struct perf_event_attr attr; 12646 struct perf_event_context *ctx; 12647 struct file *event_file = NULL; 12648 struct task_struct *task = NULL; 12649 struct pmu *pmu; 12650 int event_fd; 12651 int move_group = 0; 12652 int err; 12653 int f_flags = O_RDWR; 12654 int cgroup_fd = -1; 12655 12656 /* for future expandability... */ 12657 if (flags & ~PERF_FLAG_ALL) 12658 return -EINVAL; 12659 12660 err = perf_copy_attr(attr_uptr, &attr); 12661 if (err) 12662 return err; 12663 12664 /* Do we allow access to perf_event_open(2) ? */ 12665 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12666 if (err) 12667 return err; 12668 12669 if (!attr.exclude_kernel) { 12670 err = perf_allow_kernel(&attr); 12671 if (err) 12672 return err; 12673 } 12674 12675 if (attr.namespaces) { 12676 if (!perfmon_capable()) 12677 return -EACCES; 12678 } 12679 12680 if (attr.freq) { 12681 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12682 return -EINVAL; 12683 } else { 12684 if (attr.sample_period & (1ULL << 63)) 12685 return -EINVAL; 12686 } 12687 12688 /* Only privileged users can get physical addresses */ 12689 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12690 err = perf_allow_kernel(&attr); 12691 if (err) 12692 return err; 12693 } 12694 12695 /* REGS_INTR can leak data, lockdown must prevent this */ 12696 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12697 err = security_locked_down(LOCKDOWN_PERF); 12698 if (err) 12699 return err; 12700 } 12701 12702 /* 12703 * In cgroup mode, the pid argument is used to pass the fd 12704 * opened to the cgroup directory in cgroupfs. The cpu argument 12705 * designates the cpu on which to monitor threads from that 12706 * cgroup. 12707 */ 12708 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12709 return -EINVAL; 12710 12711 if (flags & PERF_FLAG_FD_CLOEXEC) 12712 f_flags |= O_CLOEXEC; 12713 12714 event_fd = get_unused_fd_flags(f_flags); 12715 if (event_fd < 0) 12716 return event_fd; 12717 12718 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 12719 if (group_fd != -1) { 12720 if (!is_perf_file(group)) { 12721 err = -EBADF; 12722 goto err_fd; 12723 } 12724 group_leader = fd_file(group)->private_data; 12725 if (flags & PERF_FLAG_FD_OUTPUT) 12726 output_event = group_leader; 12727 if (flags & PERF_FLAG_FD_NO_GROUP) 12728 group_leader = NULL; 12729 } 12730 12731 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12732 task = find_lively_task_by_vpid(pid); 12733 if (IS_ERR(task)) { 12734 err = PTR_ERR(task); 12735 goto err_fd; 12736 } 12737 } 12738 12739 if (task && group_leader && 12740 group_leader->attr.inherit != attr.inherit) { 12741 err = -EINVAL; 12742 goto err_task; 12743 } 12744 12745 if (flags & PERF_FLAG_PID_CGROUP) 12746 cgroup_fd = pid; 12747 12748 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12749 NULL, NULL, cgroup_fd); 12750 if (IS_ERR(event)) { 12751 err = PTR_ERR(event); 12752 goto err_task; 12753 } 12754 12755 if (is_sampling_event(event)) { 12756 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12757 err = -EOPNOTSUPP; 12758 goto err_alloc; 12759 } 12760 } 12761 12762 /* 12763 * Special case software events and allow them to be part of 12764 * any hardware group. 12765 */ 12766 pmu = event->pmu; 12767 12768 if (attr.use_clockid) { 12769 err = perf_event_set_clock(event, attr.clockid); 12770 if (err) 12771 goto err_alloc; 12772 } 12773 12774 if (pmu->task_ctx_nr == perf_sw_context) 12775 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12776 12777 if (task) { 12778 err = down_read_interruptible(&task->signal->exec_update_lock); 12779 if (err) 12780 goto err_alloc; 12781 12782 /* 12783 * We must hold exec_update_lock across this and any potential 12784 * perf_install_in_context() call for this new event to 12785 * serialize against exec() altering our credentials (and the 12786 * perf_event_exit_task() that could imply). 12787 */ 12788 err = -EACCES; 12789 if (!perf_check_permission(&attr, task)) 12790 goto err_cred; 12791 } 12792 12793 /* 12794 * Get the target context (task or percpu): 12795 */ 12796 ctx = find_get_context(task, event); 12797 if (IS_ERR(ctx)) { 12798 err = PTR_ERR(ctx); 12799 goto err_cred; 12800 } 12801 12802 mutex_lock(&ctx->mutex); 12803 12804 if (ctx->task == TASK_TOMBSTONE) { 12805 err = -ESRCH; 12806 goto err_locked; 12807 } 12808 12809 if (!task) { 12810 /* 12811 * Check if the @cpu we're creating an event for is online. 12812 * 12813 * We use the perf_cpu_context::ctx::mutex to serialize against 12814 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12815 */ 12816 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12817 12818 if (!cpuctx->online) { 12819 err = -ENODEV; 12820 goto err_locked; 12821 } 12822 } 12823 12824 if (group_leader) { 12825 err = -EINVAL; 12826 12827 /* 12828 * Do not allow a recursive hierarchy (this new sibling 12829 * becoming part of another group-sibling): 12830 */ 12831 if (group_leader->group_leader != group_leader) 12832 goto err_locked; 12833 12834 /* All events in a group should have the same clock */ 12835 if (group_leader->clock != event->clock) 12836 goto err_locked; 12837 12838 /* 12839 * Make sure we're both events for the same CPU; 12840 * grouping events for different CPUs is broken; since 12841 * you can never concurrently schedule them anyhow. 12842 */ 12843 if (group_leader->cpu != event->cpu) 12844 goto err_locked; 12845 12846 /* 12847 * Make sure we're both on the same context; either task or cpu. 12848 */ 12849 if (group_leader->ctx != ctx) 12850 goto err_locked; 12851 12852 /* 12853 * Only a group leader can be exclusive or pinned 12854 */ 12855 if (attr.exclusive || attr.pinned) 12856 goto err_locked; 12857 12858 if (is_software_event(event) && 12859 !in_software_context(group_leader)) { 12860 /* 12861 * If the event is a sw event, but the group_leader 12862 * is on hw context. 12863 * 12864 * Allow the addition of software events to hw 12865 * groups, this is safe because software events 12866 * never fail to schedule. 12867 * 12868 * Note the comment that goes with struct 12869 * perf_event_pmu_context. 12870 */ 12871 pmu = group_leader->pmu_ctx->pmu; 12872 } else if (!is_software_event(event)) { 12873 if (is_software_event(group_leader) && 12874 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12875 /* 12876 * In case the group is a pure software group, and we 12877 * try to add a hardware event, move the whole group to 12878 * the hardware context. 12879 */ 12880 move_group = 1; 12881 } 12882 12883 /* Don't allow group of multiple hw events from different pmus */ 12884 if (!in_software_context(group_leader) && 12885 group_leader->pmu_ctx->pmu != pmu) 12886 goto err_locked; 12887 } 12888 } 12889 12890 /* 12891 * Now that we're certain of the pmu; find the pmu_ctx. 12892 */ 12893 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12894 if (IS_ERR(pmu_ctx)) { 12895 err = PTR_ERR(pmu_ctx); 12896 goto err_locked; 12897 } 12898 event->pmu_ctx = pmu_ctx; 12899 12900 if (output_event) { 12901 err = perf_event_set_output(event, output_event); 12902 if (err) 12903 goto err_context; 12904 } 12905 12906 if (!perf_event_validate_size(event)) { 12907 err = -E2BIG; 12908 goto err_context; 12909 } 12910 12911 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12912 err = -EINVAL; 12913 goto err_context; 12914 } 12915 12916 /* 12917 * Must be under the same ctx::mutex as perf_install_in_context(), 12918 * because we need to serialize with concurrent event creation. 12919 */ 12920 if (!exclusive_event_installable(event, ctx)) { 12921 err = -EBUSY; 12922 goto err_context; 12923 } 12924 12925 WARN_ON_ONCE(ctx->parent_ctx); 12926 12927 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12928 if (IS_ERR(event_file)) { 12929 err = PTR_ERR(event_file); 12930 event_file = NULL; 12931 goto err_context; 12932 } 12933 12934 /* 12935 * This is the point on no return; we cannot fail hereafter. This is 12936 * where we start modifying current state. 12937 */ 12938 12939 if (move_group) { 12940 perf_remove_from_context(group_leader, 0); 12941 put_pmu_ctx(group_leader->pmu_ctx); 12942 12943 for_each_sibling_event(sibling, group_leader) { 12944 perf_remove_from_context(sibling, 0); 12945 put_pmu_ctx(sibling->pmu_ctx); 12946 } 12947 12948 /* 12949 * Install the group siblings before the group leader. 12950 * 12951 * Because a group leader will try and install the entire group 12952 * (through the sibling list, which is still in-tact), we can 12953 * end up with siblings installed in the wrong context. 12954 * 12955 * By installing siblings first we NO-OP because they're not 12956 * reachable through the group lists. 12957 */ 12958 for_each_sibling_event(sibling, group_leader) { 12959 sibling->pmu_ctx = pmu_ctx; 12960 get_pmu_ctx(pmu_ctx); 12961 perf_event__state_init(sibling); 12962 perf_install_in_context(ctx, sibling, sibling->cpu); 12963 } 12964 12965 /* 12966 * Removing from the context ends up with disabled 12967 * event. What we want here is event in the initial 12968 * startup state, ready to be add into new context. 12969 */ 12970 group_leader->pmu_ctx = pmu_ctx; 12971 get_pmu_ctx(pmu_ctx); 12972 perf_event__state_init(group_leader); 12973 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12974 } 12975 12976 /* 12977 * Precalculate sample_data sizes; do while holding ctx::mutex such 12978 * that we're serialized against further additions and before 12979 * perf_install_in_context() which is the point the event is active and 12980 * can use these values. 12981 */ 12982 perf_event__header_size(event); 12983 perf_event__id_header_size(event); 12984 12985 event->owner = current; 12986 12987 perf_install_in_context(ctx, event, event->cpu); 12988 perf_unpin_context(ctx); 12989 12990 mutex_unlock(&ctx->mutex); 12991 12992 if (task) { 12993 up_read(&task->signal->exec_update_lock); 12994 put_task_struct(task); 12995 } 12996 12997 mutex_lock(¤t->perf_event_mutex); 12998 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12999 mutex_unlock(¤t->perf_event_mutex); 13000 13001 /* 13002 * File reference in group guarantees that group_leader has been 13003 * kept alive until we place the new event on the sibling_list. 13004 * This ensures destruction of the group leader will find 13005 * the pointer to itself in perf_group_detach(). 13006 */ 13007 fd_install(event_fd, event_file); 13008 return event_fd; 13009 13010 err_context: 13011 put_pmu_ctx(event->pmu_ctx); 13012 event->pmu_ctx = NULL; /* _free_event() */ 13013 err_locked: 13014 mutex_unlock(&ctx->mutex); 13015 perf_unpin_context(ctx); 13016 put_ctx(ctx); 13017 err_cred: 13018 if (task) 13019 up_read(&task->signal->exec_update_lock); 13020 err_alloc: 13021 free_event(event); 13022 err_task: 13023 if (task) 13024 put_task_struct(task); 13025 err_fd: 13026 put_unused_fd(event_fd); 13027 return err; 13028 } 13029 13030 /** 13031 * perf_event_create_kernel_counter 13032 * 13033 * @attr: attributes of the counter to create 13034 * @cpu: cpu in which the counter is bound 13035 * @task: task to profile (NULL for percpu) 13036 * @overflow_handler: callback to trigger when we hit the event 13037 * @context: context data could be used in overflow_handler callback 13038 */ 13039 struct perf_event * 13040 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13041 struct task_struct *task, 13042 perf_overflow_handler_t overflow_handler, 13043 void *context) 13044 { 13045 struct perf_event_pmu_context *pmu_ctx; 13046 struct perf_event_context *ctx; 13047 struct perf_event *event; 13048 struct pmu *pmu; 13049 int err; 13050 13051 /* 13052 * Grouping is not supported for kernel events, neither is 'AUX', 13053 * make sure the caller's intentions are adjusted. 13054 */ 13055 if (attr->aux_output) 13056 return ERR_PTR(-EINVAL); 13057 13058 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13059 overflow_handler, context, -1); 13060 if (IS_ERR(event)) { 13061 err = PTR_ERR(event); 13062 goto err; 13063 } 13064 13065 /* Mark owner so we could distinguish it from user events. */ 13066 event->owner = TASK_TOMBSTONE; 13067 pmu = event->pmu; 13068 13069 if (pmu->task_ctx_nr == perf_sw_context) 13070 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13071 13072 /* 13073 * Get the target context (task or percpu): 13074 */ 13075 ctx = find_get_context(task, event); 13076 if (IS_ERR(ctx)) { 13077 err = PTR_ERR(ctx); 13078 goto err_alloc; 13079 } 13080 13081 WARN_ON_ONCE(ctx->parent_ctx); 13082 mutex_lock(&ctx->mutex); 13083 if (ctx->task == TASK_TOMBSTONE) { 13084 err = -ESRCH; 13085 goto err_unlock; 13086 } 13087 13088 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13089 if (IS_ERR(pmu_ctx)) { 13090 err = PTR_ERR(pmu_ctx); 13091 goto err_unlock; 13092 } 13093 event->pmu_ctx = pmu_ctx; 13094 13095 if (!task) { 13096 /* 13097 * Check if the @cpu we're creating an event for is online. 13098 * 13099 * We use the perf_cpu_context::ctx::mutex to serialize against 13100 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13101 */ 13102 struct perf_cpu_context *cpuctx = 13103 container_of(ctx, struct perf_cpu_context, ctx); 13104 if (!cpuctx->online) { 13105 err = -ENODEV; 13106 goto err_pmu_ctx; 13107 } 13108 } 13109 13110 if (!exclusive_event_installable(event, ctx)) { 13111 err = -EBUSY; 13112 goto err_pmu_ctx; 13113 } 13114 13115 perf_install_in_context(ctx, event, event->cpu); 13116 perf_unpin_context(ctx); 13117 mutex_unlock(&ctx->mutex); 13118 13119 return event; 13120 13121 err_pmu_ctx: 13122 put_pmu_ctx(pmu_ctx); 13123 event->pmu_ctx = NULL; /* _free_event() */ 13124 err_unlock: 13125 mutex_unlock(&ctx->mutex); 13126 perf_unpin_context(ctx); 13127 put_ctx(ctx); 13128 err_alloc: 13129 free_event(event); 13130 err: 13131 return ERR_PTR(err); 13132 } 13133 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13134 13135 static void __perf_pmu_remove(struct perf_event_context *ctx, 13136 int cpu, struct pmu *pmu, 13137 struct perf_event_groups *groups, 13138 struct list_head *events) 13139 { 13140 struct perf_event *event, *sibling; 13141 13142 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13143 perf_remove_from_context(event, 0); 13144 put_pmu_ctx(event->pmu_ctx); 13145 list_add(&event->migrate_entry, events); 13146 13147 for_each_sibling_event(sibling, event) { 13148 perf_remove_from_context(sibling, 0); 13149 put_pmu_ctx(sibling->pmu_ctx); 13150 list_add(&sibling->migrate_entry, events); 13151 } 13152 } 13153 } 13154 13155 static void __perf_pmu_install_event(struct pmu *pmu, 13156 struct perf_event_context *ctx, 13157 int cpu, struct perf_event *event) 13158 { 13159 struct perf_event_pmu_context *epc; 13160 struct perf_event_context *old_ctx = event->ctx; 13161 13162 get_ctx(ctx); /* normally find_get_context() */ 13163 13164 event->cpu = cpu; 13165 epc = find_get_pmu_context(pmu, ctx, event); 13166 event->pmu_ctx = epc; 13167 13168 if (event->state >= PERF_EVENT_STATE_OFF) 13169 event->state = PERF_EVENT_STATE_INACTIVE; 13170 perf_install_in_context(ctx, event, cpu); 13171 13172 /* 13173 * Now that event->ctx is updated and visible, put the old ctx. 13174 */ 13175 put_ctx(old_ctx); 13176 } 13177 13178 static void __perf_pmu_install(struct perf_event_context *ctx, 13179 int cpu, struct pmu *pmu, struct list_head *events) 13180 { 13181 struct perf_event *event, *tmp; 13182 13183 /* 13184 * Re-instate events in 2 passes. 13185 * 13186 * Skip over group leaders and only install siblings on this first 13187 * pass, siblings will not get enabled without a leader, however a 13188 * leader will enable its siblings, even if those are still on the old 13189 * context. 13190 */ 13191 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13192 if (event->group_leader == event) 13193 continue; 13194 13195 list_del(&event->migrate_entry); 13196 __perf_pmu_install_event(pmu, ctx, cpu, event); 13197 } 13198 13199 /* 13200 * Once all the siblings are setup properly, install the group leaders 13201 * to make it go. 13202 */ 13203 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13204 list_del(&event->migrate_entry); 13205 __perf_pmu_install_event(pmu, ctx, cpu, event); 13206 } 13207 } 13208 13209 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13210 { 13211 struct perf_event_context *src_ctx, *dst_ctx; 13212 LIST_HEAD(events); 13213 13214 /* 13215 * Since per-cpu context is persistent, no need to grab an extra 13216 * reference. 13217 */ 13218 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13219 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13220 13221 /* 13222 * See perf_event_ctx_lock() for comments on the details 13223 * of swizzling perf_event::ctx. 13224 */ 13225 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13226 13227 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13228 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13229 13230 if (!list_empty(&events)) { 13231 /* 13232 * Wait for the events to quiesce before re-instating them. 13233 */ 13234 synchronize_rcu(); 13235 13236 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13237 } 13238 13239 mutex_unlock(&dst_ctx->mutex); 13240 mutex_unlock(&src_ctx->mutex); 13241 } 13242 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13243 13244 static void sync_child_event(struct perf_event *child_event) 13245 { 13246 struct perf_event *parent_event = child_event->parent; 13247 u64 child_val; 13248 13249 if (child_event->attr.inherit_stat) { 13250 struct task_struct *task = child_event->ctx->task; 13251 13252 if (task && task != TASK_TOMBSTONE) 13253 perf_event_read_event(child_event, task); 13254 } 13255 13256 child_val = perf_event_count(child_event, false); 13257 13258 /* 13259 * Add back the child's count to the parent's count: 13260 */ 13261 atomic64_add(child_val, &parent_event->child_count); 13262 atomic64_add(child_event->total_time_enabled, 13263 &parent_event->child_total_time_enabled); 13264 atomic64_add(child_event->total_time_running, 13265 &parent_event->child_total_time_running); 13266 } 13267 13268 static void 13269 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13270 { 13271 struct perf_event *parent_event = event->parent; 13272 unsigned long detach_flags = 0; 13273 13274 if (parent_event) { 13275 /* 13276 * Do not destroy the 'original' grouping; because of the 13277 * context switch optimization the original events could've 13278 * ended up in a random child task. 13279 * 13280 * If we were to destroy the original group, all group related 13281 * operations would cease to function properly after this 13282 * random child dies. 13283 * 13284 * Do destroy all inherited groups, we don't care about those 13285 * and being thorough is better. 13286 */ 13287 detach_flags = DETACH_GROUP | DETACH_CHILD; 13288 mutex_lock(&parent_event->child_mutex); 13289 } 13290 13291 perf_remove_from_context(event, detach_flags); 13292 13293 raw_spin_lock_irq(&ctx->lock); 13294 if (event->state > PERF_EVENT_STATE_EXIT) 13295 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13296 raw_spin_unlock_irq(&ctx->lock); 13297 13298 /* 13299 * Child events can be freed. 13300 */ 13301 if (parent_event) { 13302 mutex_unlock(&parent_event->child_mutex); 13303 /* 13304 * Kick perf_poll() for is_event_hup(); 13305 */ 13306 perf_event_wakeup(parent_event); 13307 free_event(event); 13308 put_event(parent_event); 13309 return; 13310 } 13311 13312 /* 13313 * Parent events are governed by their filedesc, retain them. 13314 */ 13315 perf_event_wakeup(event); 13316 } 13317 13318 static void perf_event_exit_task_context(struct task_struct *child) 13319 { 13320 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13321 struct perf_event *child_event, *next; 13322 13323 WARN_ON_ONCE(child != current); 13324 13325 child_ctx = perf_pin_task_context(child); 13326 if (!child_ctx) 13327 return; 13328 13329 /* 13330 * In order to reduce the amount of tricky in ctx tear-down, we hold 13331 * ctx::mutex over the entire thing. This serializes against almost 13332 * everything that wants to access the ctx. 13333 * 13334 * The exception is sys_perf_event_open() / 13335 * perf_event_create_kernel_count() which does find_get_context() 13336 * without ctx::mutex (it cannot because of the move_group double mutex 13337 * lock thing). See the comments in perf_install_in_context(). 13338 */ 13339 mutex_lock(&child_ctx->mutex); 13340 13341 /* 13342 * In a single ctx::lock section, de-schedule the events and detach the 13343 * context from the task such that we cannot ever get it scheduled back 13344 * in. 13345 */ 13346 raw_spin_lock_irq(&child_ctx->lock); 13347 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL); 13348 13349 /* 13350 * Now that the context is inactive, destroy the task <-> ctx relation 13351 * and mark the context dead. 13352 */ 13353 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13354 put_ctx(child_ctx); /* cannot be last */ 13355 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13356 put_task_struct(current); /* cannot be last */ 13357 13358 clone_ctx = unclone_ctx(child_ctx); 13359 raw_spin_unlock_irq(&child_ctx->lock); 13360 13361 if (clone_ctx) 13362 put_ctx(clone_ctx); 13363 13364 /* 13365 * Report the task dead after unscheduling the events so that we 13366 * won't get any samples after PERF_RECORD_EXIT. We can however still 13367 * get a few PERF_RECORD_READ events. 13368 */ 13369 perf_event_task(child, child_ctx, 0); 13370 13371 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13372 perf_event_exit_event(child_event, child_ctx); 13373 13374 mutex_unlock(&child_ctx->mutex); 13375 13376 put_ctx(child_ctx); 13377 } 13378 13379 /* 13380 * When a child task exits, feed back event values to parent events. 13381 * 13382 * Can be called with exec_update_lock held when called from 13383 * setup_new_exec(). 13384 */ 13385 void perf_event_exit_task(struct task_struct *child) 13386 { 13387 struct perf_event *event, *tmp; 13388 13389 mutex_lock(&child->perf_event_mutex); 13390 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13391 owner_entry) { 13392 list_del_init(&event->owner_entry); 13393 13394 /* 13395 * Ensure the list deletion is visible before we clear 13396 * the owner, closes a race against perf_release() where 13397 * we need to serialize on the owner->perf_event_mutex. 13398 */ 13399 smp_store_release(&event->owner, NULL); 13400 } 13401 mutex_unlock(&child->perf_event_mutex); 13402 13403 perf_event_exit_task_context(child); 13404 13405 /* 13406 * The perf_event_exit_task_context calls perf_event_task 13407 * with child's task_ctx, which generates EXIT events for 13408 * child contexts and sets child->perf_event_ctxp[] to NULL. 13409 * At this point we need to send EXIT events to cpu contexts. 13410 */ 13411 perf_event_task(child, NULL, 0); 13412 } 13413 13414 static void perf_free_event(struct perf_event *event, 13415 struct perf_event_context *ctx) 13416 { 13417 struct perf_event *parent = event->parent; 13418 13419 if (WARN_ON_ONCE(!parent)) 13420 return; 13421 13422 mutex_lock(&parent->child_mutex); 13423 list_del_init(&event->child_list); 13424 mutex_unlock(&parent->child_mutex); 13425 13426 put_event(parent); 13427 13428 raw_spin_lock_irq(&ctx->lock); 13429 perf_group_detach(event); 13430 list_del_event(event, ctx); 13431 raw_spin_unlock_irq(&ctx->lock); 13432 free_event(event); 13433 } 13434 13435 /* 13436 * Free a context as created by inheritance by perf_event_init_task() below, 13437 * used by fork() in case of fail. 13438 * 13439 * Even though the task has never lived, the context and events have been 13440 * exposed through the child_list, so we must take care tearing it all down. 13441 */ 13442 void perf_event_free_task(struct task_struct *task) 13443 { 13444 struct perf_event_context *ctx; 13445 struct perf_event *event, *tmp; 13446 13447 ctx = rcu_access_pointer(task->perf_event_ctxp); 13448 if (!ctx) 13449 return; 13450 13451 mutex_lock(&ctx->mutex); 13452 raw_spin_lock_irq(&ctx->lock); 13453 /* 13454 * Destroy the task <-> ctx relation and mark the context dead. 13455 * 13456 * This is important because even though the task hasn't been 13457 * exposed yet the context has been (through child_list). 13458 */ 13459 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13460 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13461 put_task_struct(task); /* cannot be last */ 13462 raw_spin_unlock_irq(&ctx->lock); 13463 13464 13465 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13466 perf_free_event(event, ctx); 13467 13468 mutex_unlock(&ctx->mutex); 13469 13470 /* 13471 * perf_event_release_kernel() could've stolen some of our 13472 * child events and still have them on its free_list. In that 13473 * case we must wait for these events to have been freed (in 13474 * particular all their references to this task must've been 13475 * dropped). 13476 * 13477 * Without this copy_process() will unconditionally free this 13478 * task (irrespective of its reference count) and 13479 * _free_event()'s put_task_struct(event->hw.target) will be a 13480 * use-after-free. 13481 * 13482 * Wait for all events to drop their context reference. 13483 */ 13484 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13485 put_ctx(ctx); /* must be last */ 13486 } 13487 13488 void perf_event_delayed_put(struct task_struct *task) 13489 { 13490 WARN_ON_ONCE(task->perf_event_ctxp); 13491 } 13492 13493 struct file *perf_event_get(unsigned int fd) 13494 { 13495 struct file *file = fget(fd); 13496 if (!file) 13497 return ERR_PTR(-EBADF); 13498 13499 if (file->f_op != &perf_fops) { 13500 fput(file); 13501 return ERR_PTR(-EBADF); 13502 } 13503 13504 return file; 13505 } 13506 13507 const struct perf_event *perf_get_event(struct file *file) 13508 { 13509 if (file->f_op != &perf_fops) 13510 return ERR_PTR(-EINVAL); 13511 13512 return file->private_data; 13513 } 13514 13515 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13516 { 13517 if (!event) 13518 return ERR_PTR(-EINVAL); 13519 13520 return &event->attr; 13521 } 13522 13523 int perf_allow_kernel(struct perf_event_attr *attr) 13524 { 13525 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13526 return -EACCES; 13527 13528 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 13529 } 13530 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13531 13532 /* 13533 * Inherit an event from parent task to child task. 13534 * 13535 * Returns: 13536 * - valid pointer on success 13537 * - NULL for orphaned events 13538 * - IS_ERR() on error 13539 */ 13540 static struct perf_event * 13541 inherit_event(struct perf_event *parent_event, 13542 struct task_struct *parent, 13543 struct perf_event_context *parent_ctx, 13544 struct task_struct *child, 13545 struct perf_event *group_leader, 13546 struct perf_event_context *child_ctx) 13547 { 13548 enum perf_event_state parent_state = parent_event->state; 13549 struct perf_event_pmu_context *pmu_ctx; 13550 struct perf_event *child_event; 13551 unsigned long flags; 13552 13553 /* 13554 * Instead of creating recursive hierarchies of events, 13555 * we link inherited events back to the original parent, 13556 * which has a filp for sure, which we use as the reference 13557 * count: 13558 */ 13559 if (parent_event->parent) 13560 parent_event = parent_event->parent; 13561 13562 child_event = perf_event_alloc(&parent_event->attr, 13563 parent_event->cpu, 13564 child, 13565 group_leader, parent_event, 13566 NULL, NULL, -1); 13567 if (IS_ERR(child_event)) 13568 return child_event; 13569 13570 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13571 if (IS_ERR(pmu_ctx)) { 13572 free_event(child_event); 13573 return ERR_CAST(pmu_ctx); 13574 } 13575 child_event->pmu_ctx = pmu_ctx; 13576 13577 /* 13578 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13579 * must be under the same lock in order to serialize against 13580 * perf_event_release_kernel(), such that either we must observe 13581 * is_orphaned_event() or they will observe us on the child_list. 13582 */ 13583 mutex_lock(&parent_event->child_mutex); 13584 if (is_orphaned_event(parent_event) || 13585 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13586 mutex_unlock(&parent_event->child_mutex); 13587 /* task_ctx_data is freed with child_ctx */ 13588 free_event(child_event); 13589 return NULL; 13590 } 13591 13592 get_ctx(child_ctx); 13593 13594 /* 13595 * Make the child state follow the state of the parent event, 13596 * not its attr.disabled bit. We hold the parent's mutex, 13597 * so we won't race with perf_event_{en, dis}able_family. 13598 */ 13599 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13600 child_event->state = PERF_EVENT_STATE_INACTIVE; 13601 else 13602 child_event->state = PERF_EVENT_STATE_OFF; 13603 13604 if (parent_event->attr.freq) { 13605 u64 sample_period = parent_event->hw.sample_period; 13606 struct hw_perf_event *hwc = &child_event->hw; 13607 13608 hwc->sample_period = sample_period; 13609 hwc->last_period = sample_period; 13610 13611 local64_set(&hwc->period_left, sample_period); 13612 } 13613 13614 child_event->ctx = child_ctx; 13615 child_event->overflow_handler = parent_event->overflow_handler; 13616 child_event->overflow_handler_context 13617 = parent_event->overflow_handler_context; 13618 13619 /* 13620 * Precalculate sample_data sizes 13621 */ 13622 perf_event__header_size(child_event); 13623 perf_event__id_header_size(child_event); 13624 13625 /* 13626 * Link it up in the child's context: 13627 */ 13628 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13629 add_event_to_ctx(child_event, child_ctx); 13630 child_event->attach_state |= PERF_ATTACH_CHILD; 13631 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13632 13633 /* 13634 * Link this into the parent event's child list 13635 */ 13636 list_add_tail(&child_event->child_list, &parent_event->child_list); 13637 mutex_unlock(&parent_event->child_mutex); 13638 13639 return child_event; 13640 } 13641 13642 /* 13643 * Inherits an event group. 13644 * 13645 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13646 * This matches with perf_event_release_kernel() removing all child events. 13647 * 13648 * Returns: 13649 * - 0 on success 13650 * - <0 on error 13651 */ 13652 static int inherit_group(struct perf_event *parent_event, 13653 struct task_struct *parent, 13654 struct perf_event_context *parent_ctx, 13655 struct task_struct *child, 13656 struct perf_event_context *child_ctx) 13657 { 13658 struct perf_event *leader; 13659 struct perf_event *sub; 13660 struct perf_event *child_ctr; 13661 13662 leader = inherit_event(parent_event, parent, parent_ctx, 13663 child, NULL, child_ctx); 13664 if (IS_ERR(leader)) 13665 return PTR_ERR(leader); 13666 /* 13667 * @leader can be NULL here because of is_orphaned_event(). In this 13668 * case inherit_event() will create individual events, similar to what 13669 * perf_group_detach() would do anyway. 13670 */ 13671 for_each_sibling_event(sub, parent_event) { 13672 child_ctr = inherit_event(sub, parent, parent_ctx, 13673 child, leader, child_ctx); 13674 if (IS_ERR(child_ctr)) 13675 return PTR_ERR(child_ctr); 13676 13677 if (sub->aux_event == parent_event && child_ctr && 13678 !perf_get_aux_event(child_ctr, leader)) 13679 return -EINVAL; 13680 } 13681 if (leader) 13682 leader->group_generation = parent_event->group_generation; 13683 return 0; 13684 } 13685 13686 /* 13687 * Creates the child task context and tries to inherit the event-group. 13688 * 13689 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13690 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13691 * consistent with perf_event_release_kernel() removing all child events. 13692 * 13693 * Returns: 13694 * - 0 on success 13695 * - <0 on error 13696 */ 13697 static int 13698 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13699 struct perf_event_context *parent_ctx, 13700 struct task_struct *child, 13701 u64 clone_flags, int *inherited_all) 13702 { 13703 struct perf_event_context *child_ctx; 13704 int ret; 13705 13706 if (!event->attr.inherit || 13707 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13708 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13709 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13710 *inherited_all = 0; 13711 return 0; 13712 } 13713 13714 child_ctx = child->perf_event_ctxp; 13715 if (!child_ctx) { 13716 /* 13717 * This is executed from the parent task context, so 13718 * inherit events that have been marked for cloning. 13719 * First allocate and initialize a context for the 13720 * child. 13721 */ 13722 child_ctx = alloc_perf_context(child); 13723 if (!child_ctx) 13724 return -ENOMEM; 13725 13726 child->perf_event_ctxp = child_ctx; 13727 } 13728 13729 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13730 if (ret) 13731 *inherited_all = 0; 13732 13733 return ret; 13734 } 13735 13736 /* 13737 * Initialize the perf_event context in task_struct 13738 */ 13739 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13740 { 13741 struct perf_event_context *child_ctx, *parent_ctx; 13742 struct perf_event_context *cloned_ctx; 13743 struct perf_event *event; 13744 struct task_struct *parent = current; 13745 int inherited_all = 1; 13746 unsigned long flags; 13747 int ret = 0; 13748 13749 if (likely(!parent->perf_event_ctxp)) 13750 return 0; 13751 13752 /* 13753 * If the parent's context is a clone, pin it so it won't get 13754 * swapped under us. 13755 */ 13756 parent_ctx = perf_pin_task_context(parent); 13757 if (!parent_ctx) 13758 return 0; 13759 13760 /* 13761 * No need to check if parent_ctx != NULL here; since we saw 13762 * it non-NULL earlier, the only reason for it to become NULL 13763 * is if we exit, and since we're currently in the middle of 13764 * a fork we can't be exiting at the same time. 13765 */ 13766 13767 /* 13768 * Lock the parent list. No need to lock the child - not PID 13769 * hashed yet and not running, so nobody can access it. 13770 */ 13771 mutex_lock(&parent_ctx->mutex); 13772 13773 /* 13774 * We dont have to disable NMIs - we are only looking at 13775 * the list, not manipulating it: 13776 */ 13777 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13778 ret = inherit_task_group(event, parent, parent_ctx, 13779 child, clone_flags, &inherited_all); 13780 if (ret) 13781 goto out_unlock; 13782 } 13783 13784 /* 13785 * We can't hold ctx->lock when iterating the ->flexible_group list due 13786 * to allocations, but we need to prevent rotation because 13787 * rotate_ctx() will change the list from interrupt context. 13788 */ 13789 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13790 parent_ctx->rotate_disable = 1; 13791 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13792 13793 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13794 ret = inherit_task_group(event, parent, parent_ctx, 13795 child, clone_flags, &inherited_all); 13796 if (ret) 13797 goto out_unlock; 13798 } 13799 13800 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13801 parent_ctx->rotate_disable = 0; 13802 13803 child_ctx = child->perf_event_ctxp; 13804 13805 if (child_ctx && inherited_all) { 13806 /* 13807 * Mark the child context as a clone of the parent 13808 * context, or of whatever the parent is a clone of. 13809 * 13810 * Note that if the parent is a clone, the holding of 13811 * parent_ctx->lock avoids it from being uncloned. 13812 */ 13813 cloned_ctx = parent_ctx->parent_ctx; 13814 if (cloned_ctx) { 13815 child_ctx->parent_ctx = cloned_ctx; 13816 child_ctx->parent_gen = parent_ctx->parent_gen; 13817 } else { 13818 child_ctx->parent_ctx = parent_ctx; 13819 child_ctx->parent_gen = parent_ctx->generation; 13820 } 13821 get_ctx(child_ctx->parent_ctx); 13822 } 13823 13824 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13825 out_unlock: 13826 mutex_unlock(&parent_ctx->mutex); 13827 13828 perf_unpin_context(parent_ctx); 13829 put_ctx(parent_ctx); 13830 13831 return ret; 13832 } 13833 13834 /* 13835 * Initialize the perf_event context in task_struct 13836 */ 13837 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13838 { 13839 int ret; 13840 13841 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 13842 child->perf_event_ctxp = NULL; 13843 mutex_init(&child->perf_event_mutex); 13844 INIT_LIST_HEAD(&child->perf_event_list); 13845 13846 ret = perf_event_init_context(child, clone_flags); 13847 if (ret) { 13848 perf_event_free_task(child); 13849 return ret; 13850 } 13851 13852 return 0; 13853 } 13854 13855 static void __init perf_event_init_all_cpus(void) 13856 { 13857 struct swevent_htable *swhash; 13858 struct perf_cpu_context *cpuctx; 13859 int cpu; 13860 13861 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13862 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 13863 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 13864 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 13865 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 13866 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 13867 13868 13869 for_each_possible_cpu(cpu) { 13870 swhash = &per_cpu(swevent_htable, cpu); 13871 mutex_init(&swhash->hlist_mutex); 13872 13873 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13874 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13875 13876 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13877 13878 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13879 __perf_event_init_context(&cpuctx->ctx); 13880 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13881 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13882 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13883 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13884 cpuctx->heap = cpuctx->heap_default; 13885 } 13886 } 13887 13888 static void perf_swevent_init_cpu(unsigned int cpu) 13889 { 13890 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13891 13892 mutex_lock(&swhash->hlist_mutex); 13893 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13894 struct swevent_hlist *hlist; 13895 13896 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13897 WARN_ON(!hlist); 13898 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13899 } 13900 mutex_unlock(&swhash->hlist_mutex); 13901 } 13902 13903 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13904 static void __perf_event_exit_context(void *__info) 13905 { 13906 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13907 struct perf_event_context *ctx = __info; 13908 struct perf_event *event; 13909 13910 raw_spin_lock(&ctx->lock); 13911 ctx_sched_out(ctx, NULL, EVENT_TIME); 13912 list_for_each_entry(event, &ctx->event_list, event_entry) 13913 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13914 raw_spin_unlock(&ctx->lock); 13915 } 13916 13917 static void perf_event_clear_cpumask(unsigned int cpu) 13918 { 13919 int target[PERF_PMU_MAX_SCOPE]; 13920 unsigned int scope; 13921 struct pmu *pmu; 13922 13923 cpumask_clear_cpu(cpu, perf_online_mask); 13924 13925 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 13926 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 13927 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 13928 13929 target[scope] = -1; 13930 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 13931 continue; 13932 13933 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 13934 continue; 13935 target[scope] = cpumask_any_but(cpumask, cpu); 13936 if (target[scope] < nr_cpu_ids) 13937 cpumask_set_cpu(target[scope], pmu_cpumask); 13938 } 13939 13940 /* migrate */ 13941 list_for_each_entry(pmu, &pmus, entry) { 13942 if (pmu->scope == PERF_PMU_SCOPE_NONE || 13943 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 13944 continue; 13945 13946 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 13947 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 13948 } 13949 } 13950 13951 static void perf_event_exit_cpu_context(int cpu) 13952 { 13953 struct perf_cpu_context *cpuctx; 13954 struct perf_event_context *ctx; 13955 13956 // XXX simplify cpuctx->online 13957 mutex_lock(&pmus_lock); 13958 /* 13959 * Clear the cpumasks, and migrate to other CPUs if possible. 13960 * Must be invoked before the __perf_event_exit_context. 13961 */ 13962 perf_event_clear_cpumask(cpu); 13963 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13964 ctx = &cpuctx->ctx; 13965 13966 mutex_lock(&ctx->mutex); 13967 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13968 cpuctx->online = 0; 13969 mutex_unlock(&ctx->mutex); 13970 mutex_unlock(&pmus_lock); 13971 } 13972 #else 13973 13974 static void perf_event_exit_cpu_context(int cpu) { } 13975 13976 #endif 13977 13978 static void perf_event_setup_cpumask(unsigned int cpu) 13979 { 13980 struct cpumask *pmu_cpumask; 13981 unsigned int scope; 13982 13983 /* 13984 * Early boot stage, the cpumask hasn't been set yet. 13985 * The perf_online_<domain>_masks includes the first CPU of each domain. 13986 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 13987 */ 13988 if (cpumask_empty(perf_online_mask)) { 13989 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 13990 pmu_cpumask = perf_scope_cpumask(scope); 13991 if (WARN_ON_ONCE(!pmu_cpumask)) 13992 continue; 13993 cpumask_set_cpu(cpu, pmu_cpumask); 13994 } 13995 goto end; 13996 } 13997 13998 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 13999 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14000 14001 pmu_cpumask = perf_scope_cpumask(scope); 14002 14003 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14004 continue; 14005 14006 if (!cpumask_empty(cpumask) && 14007 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14008 cpumask_set_cpu(cpu, pmu_cpumask); 14009 } 14010 end: 14011 cpumask_set_cpu(cpu, perf_online_mask); 14012 } 14013 14014 int perf_event_init_cpu(unsigned int cpu) 14015 { 14016 struct perf_cpu_context *cpuctx; 14017 struct perf_event_context *ctx; 14018 14019 perf_swevent_init_cpu(cpu); 14020 14021 mutex_lock(&pmus_lock); 14022 perf_event_setup_cpumask(cpu); 14023 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14024 ctx = &cpuctx->ctx; 14025 14026 mutex_lock(&ctx->mutex); 14027 cpuctx->online = 1; 14028 mutex_unlock(&ctx->mutex); 14029 mutex_unlock(&pmus_lock); 14030 14031 return 0; 14032 } 14033 14034 int perf_event_exit_cpu(unsigned int cpu) 14035 { 14036 perf_event_exit_cpu_context(cpu); 14037 return 0; 14038 } 14039 14040 static int 14041 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14042 { 14043 int cpu; 14044 14045 for_each_online_cpu(cpu) 14046 perf_event_exit_cpu(cpu); 14047 14048 return NOTIFY_OK; 14049 } 14050 14051 /* 14052 * Run the perf reboot notifier at the very last possible moment so that 14053 * the generic watchdog code runs as long as possible. 14054 */ 14055 static struct notifier_block perf_reboot_notifier = { 14056 .notifier_call = perf_reboot, 14057 .priority = INT_MIN, 14058 }; 14059 14060 void __init perf_event_init(void) 14061 { 14062 int ret; 14063 14064 idr_init(&pmu_idr); 14065 14066 perf_event_init_all_cpus(); 14067 init_srcu_struct(&pmus_srcu); 14068 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14069 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14070 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14071 perf_tp_register(); 14072 perf_event_init_cpu(smp_processor_id()); 14073 register_reboot_notifier(&perf_reboot_notifier); 14074 14075 ret = init_hw_breakpoint(); 14076 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14077 14078 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14079 14080 /* 14081 * Build time assertion that we keep the data_head at the intended 14082 * location. IOW, validation we got the __reserved[] size right. 14083 */ 14084 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14085 != 1024); 14086 } 14087 14088 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14089 char *page) 14090 { 14091 struct perf_pmu_events_attr *pmu_attr = 14092 container_of(attr, struct perf_pmu_events_attr, attr); 14093 14094 if (pmu_attr->event_str) 14095 return sprintf(page, "%s\n", pmu_attr->event_str); 14096 14097 return 0; 14098 } 14099 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14100 14101 static int __init perf_event_sysfs_init(void) 14102 { 14103 struct pmu *pmu; 14104 int ret; 14105 14106 mutex_lock(&pmus_lock); 14107 14108 ret = bus_register(&pmu_bus); 14109 if (ret) 14110 goto unlock; 14111 14112 list_for_each_entry(pmu, &pmus, entry) { 14113 if (pmu->dev) 14114 continue; 14115 14116 ret = pmu_dev_alloc(pmu); 14117 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14118 } 14119 pmu_bus_running = 1; 14120 ret = 0; 14121 14122 unlock: 14123 mutex_unlock(&pmus_lock); 14124 14125 return ret; 14126 } 14127 device_initcall(perf_event_sysfs_init); 14128 14129 #ifdef CONFIG_CGROUP_PERF 14130 static struct cgroup_subsys_state * 14131 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14132 { 14133 struct perf_cgroup *jc; 14134 14135 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14136 if (!jc) 14137 return ERR_PTR(-ENOMEM); 14138 14139 jc->info = alloc_percpu(struct perf_cgroup_info); 14140 if (!jc->info) { 14141 kfree(jc); 14142 return ERR_PTR(-ENOMEM); 14143 } 14144 14145 return &jc->css; 14146 } 14147 14148 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14149 { 14150 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14151 14152 free_percpu(jc->info); 14153 kfree(jc); 14154 } 14155 14156 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14157 { 14158 perf_event_cgroup(css->cgroup); 14159 return 0; 14160 } 14161 14162 static int __perf_cgroup_move(void *info) 14163 { 14164 struct task_struct *task = info; 14165 14166 preempt_disable(); 14167 perf_cgroup_switch(task); 14168 preempt_enable(); 14169 14170 return 0; 14171 } 14172 14173 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14174 { 14175 struct task_struct *task; 14176 struct cgroup_subsys_state *css; 14177 14178 cgroup_taskset_for_each(task, css, tset) 14179 task_function_call(task, __perf_cgroup_move, task); 14180 } 14181 14182 struct cgroup_subsys perf_event_cgrp_subsys = { 14183 .css_alloc = perf_cgroup_css_alloc, 14184 .css_free = perf_cgroup_css_free, 14185 .css_online = perf_cgroup_css_online, 14186 .attach = perf_cgroup_attach, 14187 /* 14188 * Implicitly enable on dfl hierarchy so that perf events can 14189 * always be filtered by cgroup2 path as long as perf_event 14190 * controller is not mounted on a legacy hierarchy. 14191 */ 14192 .implicit_on_dfl = true, 14193 .threaded = true, 14194 }; 14195 #endif /* CONFIG_CGROUP_PERF */ 14196 14197 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14198