1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artificially low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespective of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A further ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficient space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 perf_event_set_state(event, state); 2287 2288 if (!is_software_event(event)) 2289 cpc->active_oncpu--; 2290 if (event->attr.freq && event->attr.sample_freq) { 2291 ctx->nr_freq--; 2292 epc->nr_freq--; 2293 } 2294 if (event->attr.exclusive || !cpc->active_oncpu) 2295 cpc->exclusive = 0; 2296 2297 perf_pmu_enable(event->pmu); 2298 } 2299 2300 static void 2301 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2302 { 2303 struct perf_event *event; 2304 2305 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2306 return; 2307 2308 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2309 2310 event_sched_out(group_event, ctx); 2311 2312 /* 2313 * Schedule out siblings (if any): 2314 */ 2315 for_each_sibling_event(event, group_event) 2316 event_sched_out(event, ctx); 2317 } 2318 2319 #define DETACH_GROUP 0x01UL 2320 #define DETACH_CHILD 0x02UL 2321 #define DETACH_DEAD 0x04UL 2322 2323 /* 2324 * Cross CPU call to remove a performance event 2325 * 2326 * We disable the event on the hardware level first. After that we 2327 * remove it from the context list. 2328 */ 2329 static void 2330 __perf_remove_from_context(struct perf_event *event, 2331 struct perf_cpu_context *cpuctx, 2332 struct perf_event_context *ctx, 2333 void *info) 2334 { 2335 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2336 unsigned long flags = (unsigned long)info; 2337 2338 if (ctx->is_active & EVENT_TIME) { 2339 update_context_time(ctx); 2340 update_cgrp_time_from_cpuctx(cpuctx, false); 2341 } 2342 2343 /* 2344 * Ensure event_sched_out() switches to OFF, at the very least 2345 * this avoids raising perf_pending_task() at this time. 2346 */ 2347 if (flags & DETACH_DEAD) 2348 event->pending_disable = 1; 2349 event_sched_out(event, ctx); 2350 if (flags & DETACH_GROUP) 2351 perf_group_detach(event); 2352 if (flags & DETACH_CHILD) 2353 perf_child_detach(event); 2354 list_del_event(event, ctx); 2355 if (flags & DETACH_DEAD) 2356 event->state = PERF_EVENT_STATE_DEAD; 2357 2358 if (!pmu_ctx->nr_events) { 2359 pmu_ctx->rotate_necessary = 0; 2360 2361 if (ctx->task && ctx->is_active) { 2362 struct perf_cpu_pmu_context *cpc; 2363 2364 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2365 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2366 cpc->task_epc = NULL; 2367 } 2368 } 2369 2370 if (!ctx->nr_events && ctx->is_active) { 2371 if (ctx == &cpuctx->ctx) 2372 update_cgrp_time_from_cpuctx(cpuctx, true); 2373 2374 ctx->is_active = 0; 2375 if (ctx->task) { 2376 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2377 cpuctx->task_ctx = NULL; 2378 } 2379 } 2380 } 2381 2382 /* 2383 * Remove the event from a task's (or a CPU's) list of events. 2384 * 2385 * If event->ctx is a cloned context, callers must make sure that 2386 * every task struct that event->ctx->task could possibly point to 2387 * remains valid. This is OK when called from perf_release since 2388 * that only calls us on the top-level context, which can't be a clone. 2389 * When called from perf_event_exit_task, it's OK because the 2390 * context has been detached from its task. 2391 */ 2392 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2393 { 2394 struct perf_event_context *ctx = event->ctx; 2395 2396 lockdep_assert_held(&ctx->mutex); 2397 2398 /* 2399 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2400 * to work in the face of TASK_TOMBSTONE, unlike every other 2401 * event_function_call() user. 2402 */ 2403 raw_spin_lock_irq(&ctx->lock); 2404 if (!ctx->is_active) { 2405 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2406 ctx, (void *)flags); 2407 raw_spin_unlock_irq(&ctx->lock); 2408 return; 2409 } 2410 raw_spin_unlock_irq(&ctx->lock); 2411 2412 event_function_call(event, __perf_remove_from_context, (void *)flags); 2413 } 2414 2415 /* 2416 * Cross CPU call to disable a performance event 2417 */ 2418 static void __perf_event_disable(struct perf_event *event, 2419 struct perf_cpu_context *cpuctx, 2420 struct perf_event_context *ctx, 2421 void *info) 2422 { 2423 if (event->state < PERF_EVENT_STATE_INACTIVE) 2424 return; 2425 2426 if (ctx->is_active & EVENT_TIME) { 2427 update_context_time(ctx); 2428 update_cgrp_time_from_event(event); 2429 } 2430 2431 perf_pmu_disable(event->pmu_ctx->pmu); 2432 2433 if (event == event->group_leader) 2434 group_sched_out(event, ctx); 2435 else 2436 event_sched_out(event, ctx); 2437 2438 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2439 perf_cgroup_event_disable(event, ctx); 2440 2441 perf_pmu_enable(event->pmu_ctx->pmu); 2442 } 2443 2444 /* 2445 * Disable an event. 2446 * 2447 * If event->ctx is a cloned context, callers must make sure that 2448 * every task struct that event->ctx->task could possibly point to 2449 * remains valid. This condition is satisfied when called through 2450 * perf_event_for_each_child or perf_event_for_each because they 2451 * hold the top-level event's child_mutex, so any descendant that 2452 * goes to exit will block in perf_event_exit_event(). 2453 * 2454 * When called from perf_pending_disable it's OK because event->ctx 2455 * is the current context on this CPU and preemption is disabled, 2456 * hence we can't get into perf_event_task_sched_out for this context. 2457 */ 2458 static void _perf_event_disable(struct perf_event *event) 2459 { 2460 struct perf_event_context *ctx = event->ctx; 2461 2462 raw_spin_lock_irq(&ctx->lock); 2463 if (event->state <= PERF_EVENT_STATE_OFF) { 2464 raw_spin_unlock_irq(&ctx->lock); 2465 return; 2466 } 2467 raw_spin_unlock_irq(&ctx->lock); 2468 2469 event_function_call(event, __perf_event_disable, NULL); 2470 } 2471 2472 void perf_event_disable_local(struct perf_event *event) 2473 { 2474 event_function_local(event, __perf_event_disable, NULL); 2475 } 2476 2477 /* 2478 * Strictly speaking kernel users cannot create groups and therefore this 2479 * interface does not need the perf_event_ctx_lock() magic. 2480 */ 2481 void perf_event_disable(struct perf_event *event) 2482 { 2483 struct perf_event_context *ctx; 2484 2485 ctx = perf_event_ctx_lock(event); 2486 _perf_event_disable(event); 2487 perf_event_ctx_unlock(event, ctx); 2488 } 2489 EXPORT_SYMBOL_GPL(perf_event_disable); 2490 2491 void perf_event_disable_inatomic(struct perf_event *event) 2492 { 2493 event->pending_disable = 1; 2494 irq_work_queue(&event->pending_disable_irq); 2495 } 2496 2497 #define MAX_INTERRUPTS (~0ULL) 2498 2499 static void perf_log_throttle(struct perf_event *event, int enable); 2500 static void perf_log_itrace_start(struct perf_event *event); 2501 2502 static int 2503 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2504 { 2505 struct perf_event_pmu_context *epc = event->pmu_ctx; 2506 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2507 int ret = 0; 2508 2509 WARN_ON_ONCE(event->ctx != ctx); 2510 2511 lockdep_assert_held(&ctx->lock); 2512 2513 if (event->state <= PERF_EVENT_STATE_OFF) 2514 return 0; 2515 2516 WRITE_ONCE(event->oncpu, smp_processor_id()); 2517 /* 2518 * Order event::oncpu write to happen before the ACTIVE state is 2519 * visible. This allows perf_event_{stop,read}() to observe the correct 2520 * ->oncpu if it sees ACTIVE. 2521 */ 2522 smp_wmb(); 2523 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2524 2525 /* 2526 * Unthrottle events, since we scheduled we might have missed several 2527 * ticks already, also for a heavily scheduling task there is little 2528 * guarantee it'll get a tick in a timely manner. 2529 */ 2530 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2531 perf_log_throttle(event, 1); 2532 event->hw.interrupts = 0; 2533 } 2534 2535 perf_pmu_disable(event->pmu); 2536 2537 perf_log_itrace_start(event); 2538 2539 if (event->pmu->add(event, PERF_EF_START)) { 2540 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2541 event->oncpu = -1; 2542 ret = -EAGAIN; 2543 goto out; 2544 } 2545 2546 if (!is_software_event(event)) 2547 cpc->active_oncpu++; 2548 if (event->attr.freq && event->attr.sample_freq) { 2549 ctx->nr_freq++; 2550 epc->nr_freq++; 2551 } 2552 if (event->attr.exclusive) 2553 cpc->exclusive = 1; 2554 2555 out: 2556 perf_pmu_enable(event->pmu); 2557 2558 return ret; 2559 } 2560 2561 static int 2562 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2563 { 2564 struct perf_event *event, *partial_group = NULL; 2565 struct pmu *pmu = group_event->pmu_ctx->pmu; 2566 2567 if (group_event->state == PERF_EVENT_STATE_OFF) 2568 return 0; 2569 2570 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2571 2572 if (event_sched_in(group_event, ctx)) 2573 goto error; 2574 2575 /* 2576 * Schedule in siblings as one group (if any): 2577 */ 2578 for_each_sibling_event(event, group_event) { 2579 if (event_sched_in(event, ctx)) { 2580 partial_group = event; 2581 goto group_error; 2582 } 2583 } 2584 2585 if (!pmu->commit_txn(pmu)) 2586 return 0; 2587 2588 group_error: 2589 /* 2590 * Groups can be scheduled in as one unit only, so undo any 2591 * partial group before returning: 2592 * The events up to the failed event are scheduled out normally. 2593 */ 2594 for_each_sibling_event(event, group_event) { 2595 if (event == partial_group) 2596 break; 2597 2598 event_sched_out(event, ctx); 2599 } 2600 event_sched_out(group_event, ctx); 2601 2602 error: 2603 pmu->cancel_txn(pmu); 2604 return -EAGAIN; 2605 } 2606 2607 /* 2608 * Work out whether we can put this event group on the CPU now. 2609 */ 2610 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2611 { 2612 struct perf_event_pmu_context *epc = event->pmu_ctx; 2613 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2614 2615 /* 2616 * Groups consisting entirely of software events can always go on. 2617 */ 2618 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2619 return 1; 2620 /* 2621 * If an exclusive group is already on, no other hardware 2622 * events can go on. 2623 */ 2624 if (cpc->exclusive) 2625 return 0; 2626 /* 2627 * If this group is exclusive and there are already 2628 * events on the CPU, it can't go on. 2629 */ 2630 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2631 return 0; 2632 /* 2633 * Otherwise, try to add it if all previous groups were able 2634 * to go on. 2635 */ 2636 return can_add_hw; 2637 } 2638 2639 static void add_event_to_ctx(struct perf_event *event, 2640 struct perf_event_context *ctx) 2641 { 2642 list_add_event(event, ctx); 2643 perf_group_attach(event); 2644 } 2645 2646 static void task_ctx_sched_out(struct perf_event_context *ctx, 2647 enum event_type_t event_type) 2648 { 2649 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2650 2651 if (!cpuctx->task_ctx) 2652 return; 2653 2654 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2655 return; 2656 2657 ctx_sched_out(ctx, event_type); 2658 } 2659 2660 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2661 struct perf_event_context *ctx) 2662 { 2663 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2664 if (ctx) 2665 ctx_sched_in(ctx, EVENT_PINNED); 2666 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2667 if (ctx) 2668 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2669 } 2670 2671 /* 2672 * We want to maintain the following priority of scheduling: 2673 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2674 * - task pinned (EVENT_PINNED) 2675 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2676 * - task flexible (EVENT_FLEXIBLE). 2677 * 2678 * In order to avoid unscheduling and scheduling back in everything every 2679 * time an event is added, only do it for the groups of equal priority and 2680 * below. 2681 * 2682 * This can be called after a batch operation on task events, in which case 2683 * event_type is a bit mask of the types of events involved. For CPU events, 2684 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2685 */ 2686 /* 2687 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2688 * event to the context or enabling existing event in the context. We can 2689 * probably optimize it by rescheduling only affected pmu_ctx. 2690 */ 2691 static void ctx_resched(struct perf_cpu_context *cpuctx, 2692 struct perf_event_context *task_ctx, 2693 enum event_type_t event_type) 2694 { 2695 bool cpu_event = !!(event_type & EVENT_CPU); 2696 2697 /* 2698 * If pinned groups are involved, flexible groups also need to be 2699 * scheduled out. 2700 */ 2701 if (event_type & EVENT_PINNED) 2702 event_type |= EVENT_FLEXIBLE; 2703 2704 event_type &= EVENT_ALL; 2705 2706 perf_ctx_disable(&cpuctx->ctx, false); 2707 if (task_ctx) { 2708 perf_ctx_disable(task_ctx, false); 2709 task_ctx_sched_out(task_ctx, event_type); 2710 } 2711 2712 /* 2713 * Decide which cpu ctx groups to schedule out based on the types 2714 * of events that caused rescheduling: 2715 * - EVENT_CPU: schedule out corresponding groups; 2716 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2717 * - otherwise, do nothing more. 2718 */ 2719 if (cpu_event) 2720 ctx_sched_out(&cpuctx->ctx, event_type); 2721 else if (event_type & EVENT_PINNED) 2722 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2723 2724 perf_event_sched_in(cpuctx, task_ctx); 2725 2726 perf_ctx_enable(&cpuctx->ctx, false); 2727 if (task_ctx) 2728 perf_ctx_enable(task_ctx, false); 2729 } 2730 2731 void perf_pmu_resched(struct pmu *pmu) 2732 { 2733 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2734 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2735 2736 perf_ctx_lock(cpuctx, task_ctx); 2737 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2738 perf_ctx_unlock(cpuctx, task_ctx); 2739 } 2740 2741 /* 2742 * Cross CPU call to install and enable a performance event 2743 * 2744 * Very similar to remote_function() + event_function() but cannot assume that 2745 * things like ctx->is_active and cpuctx->task_ctx are set. 2746 */ 2747 static int __perf_install_in_context(void *info) 2748 { 2749 struct perf_event *event = info; 2750 struct perf_event_context *ctx = event->ctx; 2751 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2752 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2753 bool reprogram = true; 2754 int ret = 0; 2755 2756 raw_spin_lock(&cpuctx->ctx.lock); 2757 if (ctx->task) { 2758 raw_spin_lock(&ctx->lock); 2759 task_ctx = ctx; 2760 2761 reprogram = (ctx->task == current); 2762 2763 /* 2764 * If the task is running, it must be running on this CPU, 2765 * otherwise we cannot reprogram things. 2766 * 2767 * If its not running, we don't care, ctx->lock will 2768 * serialize against it becoming runnable. 2769 */ 2770 if (task_curr(ctx->task) && !reprogram) { 2771 ret = -ESRCH; 2772 goto unlock; 2773 } 2774 2775 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2776 } else if (task_ctx) { 2777 raw_spin_lock(&task_ctx->lock); 2778 } 2779 2780 #ifdef CONFIG_CGROUP_PERF 2781 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2782 /* 2783 * If the current cgroup doesn't match the event's 2784 * cgroup, we should not try to schedule it. 2785 */ 2786 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2787 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2788 event->cgrp->css.cgroup); 2789 } 2790 #endif 2791 2792 if (reprogram) { 2793 ctx_sched_out(ctx, EVENT_TIME); 2794 add_event_to_ctx(event, ctx); 2795 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2796 } else { 2797 add_event_to_ctx(event, ctx); 2798 } 2799 2800 unlock: 2801 perf_ctx_unlock(cpuctx, task_ctx); 2802 2803 return ret; 2804 } 2805 2806 static bool exclusive_event_installable(struct perf_event *event, 2807 struct perf_event_context *ctx); 2808 2809 /* 2810 * Attach a performance event to a context. 2811 * 2812 * Very similar to event_function_call, see comment there. 2813 */ 2814 static void 2815 perf_install_in_context(struct perf_event_context *ctx, 2816 struct perf_event *event, 2817 int cpu) 2818 { 2819 struct task_struct *task = READ_ONCE(ctx->task); 2820 2821 lockdep_assert_held(&ctx->mutex); 2822 2823 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2824 2825 if (event->cpu != -1) 2826 WARN_ON_ONCE(event->cpu != cpu); 2827 2828 /* 2829 * Ensures that if we can observe event->ctx, both the event and ctx 2830 * will be 'complete'. See perf_iterate_sb_cpu(). 2831 */ 2832 smp_store_release(&event->ctx, ctx); 2833 2834 /* 2835 * perf_event_attr::disabled events will not run and can be initialized 2836 * without IPI. Except when this is the first event for the context, in 2837 * that case we need the magic of the IPI to set ctx->is_active. 2838 * 2839 * The IOC_ENABLE that is sure to follow the creation of a disabled 2840 * event will issue the IPI and reprogram the hardware. 2841 */ 2842 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2843 ctx->nr_events && !is_cgroup_event(event)) { 2844 raw_spin_lock_irq(&ctx->lock); 2845 if (ctx->task == TASK_TOMBSTONE) { 2846 raw_spin_unlock_irq(&ctx->lock); 2847 return; 2848 } 2849 add_event_to_ctx(event, ctx); 2850 raw_spin_unlock_irq(&ctx->lock); 2851 return; 2852 } 2853 2854 if (!task) { 2855 cpu_function_call(cpu, __perf_install_in_context, event); 2856 return; 2857 } 2858 2859 /* 2860 * Should not happen, we validate the ctx is still alive before calling. 2861 */ 2862 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2863 return; 2864 2865 /* 2866 * Installing events is tricky because we cannot rely on ctx->is_active 2867 * to be set in case this is the nr_events 0 -> 1 transition. 2868 * 2869 * Instead we use task_curr(), which tells us if the task is running. 2870 * However, since we use task_curr() outside of rq::lock, we can race 2871 * against the actual state. This means the result can be wrong. 2872 * 2873 * If we get a false positive, we retry, this is harmless. 2874 * 2875 * If we get a false negative, things are complicated. If we are after 2876 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2877 * value must be correct. If we're before, it doesn't matter since 2878 * perf_event_context_sched_in() will program the counter. 2879 * 2880 * However, this hinges on the remote context switch having observed 2881 * our task->perf_event_ctxp[] store, such that it will in fact take 2882 * ctx::lock in perf_event_context_sched_in(). 2883 * 2884 * We do this by task_function_call(), if the IPI fails to hit the task 2885 * we know any future context switch of task must see the 2886 * perf_event_ctpx[] store. 2887 */ 2888 2889 /* 2890 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2891 * task_cpu() load, such that if the IPI then does not find the task 2892 * running, a future context switch of that task must observe the 2893 * store. 2894 */ 2895 smp_mb(); 2896 again: 2897 if (!task_function_call(task, __perf_install_in_context, event)) 2898 return; 2899 2900 raw_spin_lock_irq(&ctx->lock); 2901 task = ctx->task; 2902 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2903 /* 2904 * Cannot happen because we already checked above (which also 2905 * cannot happen), and we hold ctx->mutex, which serializes us 2906 * against perf_event_exit_task_context(). 2907 */ 2908 raw_spin_unlock_irq(&ctx->lock); 2909 return; 2910 } 2911 /* 2912 * If the task is not running, ctx->lock will avoid it becoming so, 2913 * thus we can safely install the event. 2914 */ 2915 if (task_curr(task)) { 2916 raw_spin_unlock_irq(&ctx->lock); 2917 goto again; 2918 } 2919 add_event_to_ctx(event, ctx); 2920 raw_spin_unlock_irq(&ctx->lock); 2921 } 2922 2923 /* 2924 * Cross CPU call to enable a performance event 2925 */ 2926 static void __perf_event_enable(struct perf_event *event, 2927 struct perf_cpu_context *cpuctx, 2928 struct perf_event_context *ctx, 2929 void *info) 2930 { 2931 struct perf_event *leader = event->group_leader; 2932 struct perf_event_context *task_ctx; 2933 2934 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2935 event->state <= PERF_EVENT_STATE_ERROR) 2936 return; 2937 2938 if (ctx->is_active) 2939 ctx_sched_out(ctx, EVENT_TIME); 2940 2941 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2942 perf_cgroup_event_enable(event, ctx); 2943 2944 if (!ctx->is_active) 2945 return; 2946 2947 if (!event_filter_match(event)) { 2948 ctx_sched_in(ctx, EVENT_TIME); 2949 return; 2950 } 2951 2952 /* 2953 * If the event is in a group and isn't the group leader, 2954 * then don't put it on unless the group is on. 2955 */ 2956 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2957 ctx_sched_in(ctx, EVENT_TIME); 2958 return; 2959 } 2960 2961 task_ctx = cpuctx->task_ctx; 2962 if (ctx->task) 2963 WARN_ON_ONCE(task_ctx != ctx); 2964 2965 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2966 } 2967 2968 /* 2969 * Enable an event. 2970 * 2971 * If event->ctx is a cloned context, callers must make sure that 2972 * every task struct that event->ctx->task could possibly point to 2973 * remains valid. This condition is satisfied when called through 2974 * perf_event_for_each_child or perf_event_for_each as described 2975 * for perf_event_disable. 2976 */ 2977 static void _perf_event_enable(struct perf_event *event) 2978 { 2979 struct perf_event_context *ctx = event->ctx; 2980 2981 raw_spin_lock_irq(&ctx->lock); 2982 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2983 event->state < PERF_EVENT_STATE_ERROR) { 2984 out: 2985 raw_spin_unlock_irq(&ctx->lock); 2986 return; 2987 } 2988 2989 /* 2990 * If the event is in error state, clear that first. 2991 * 2992 * That way, if we see the event in error state below, we know that it 2993 * has gone back into error state, as distinct from the task having 2994 * been scheduled away before the cross-call arrived. 2995 */ 2996 if (event->state == PERF_EVENT_STATE_ERROR) { 2997 /* 2998 * Detached SIBLING events cannot leave ERROR state. 2999 */ 3000 if (event->event_caps & PERF_EV_CAP_SIBLING && 3001 event->group_leader == event) 3002 goto out; 3003 3004 event->state = PERF_EVENT_STATE_OFF; 3005 } 3006 raw_spin_unlock_irq(&ctx->lock); 3007 3008 event_function_call(event, __perf_event_enable, NULL); 3009 } 3010 3011 /* 3012 * See perf_event_disable(); 3013 */ 3014 void perf_event_enable(struct perf_event *event) 3015 { 3016 struct perf_event_context *ctx; 3017 3018 ctx = perf_event_ctx_lock(event); 3019 _perf_event_enable(event); 3020 perf_event_ctx_unlock(event, ctx); 3021 } 3022 EXPORT_SYMBOL_GPL(perf_event_enable); 3023 3024 struct stop_event_data { 3025 struct perf_event *event; 3026 unsigned int restart; 3027 }; 3028 3029 static int __perf_event_stop(void *info) 3030 { 3031 struct stop_event_data *sd = info; 3032 struct perf_event *event = sd->event; 3033 3034 /* if it's already INACTIVE, do nothing */ 3035 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3036 return 0; 3037 3038 /* matches smp_wmb() in event_sched_in() */ 3039 smp_rmb(); 3040 3041 /* 3042 * There is a window with interrupts enabled before we get here, 3043 * so we need to check again lest we try to stop another CPU's event. 3044 */ 3045 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3046 return -EAGAIN; 3047 3048 event->pmu->stop(event, PERF_EF_UPDATE); 3049 3050 /* 3051 * May race with the actual stop (through perf_pmu_output_stop()), 3052 * but it is only used for events with AUX ring buffer, and such 3053 * events will refuse to restart because of rb::aux_mmap_count==0, 3054 * see comments in perf_aux_output_begin(). 3055 * 3056 * Since this is happening on an event-local CPU, no trace is lost 3057 * while restarting. 3058 */ 3059 if (sd->restart) 3060 event->pmu->start(event, 0); 3061 3062 return 0; 3063 } 3064 3065 static int perf_event_stop(struct perf_event *event, int restart) 3066 { 3067 struct stop_event_data sd = { 3068 .event = event, 3069 .restart = restart, 3070 }; 3071 int ret = 0; 3072 3073 do { 3074 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3075 return 0; 3076 3077 /* matches smp_wmb() in event_sched_in() */ 3078 smp_rmb(); 3079 3080 /* 3081 * We only want to restart ACTIVE events, so if the event goes 3082 * inactive here (event->oncpu==-1), there's nothing more to do; 3083 * fall through with ret==-ENXIO. 3084 */ 3085 ret = cpu_function_call(READ_ONCE(event->oncpu), 3086 __perf_event_stop, &sd); 3087 } while (ret == -EAGAIN); 3088 3089 return ret; 3090 } 3091 3092 /* 3093 * In order to contain the amount of racy and tricky in the address filter 3094 * configuration management, it is a two part process: 3095 * 3096 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3097 * we update the addresses of corresponding vmas in 3098 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3099 * (p2) when an event is scheduled in (pmu::add), it calls 3100 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3101 * if the generation has changed since the previous call. 3102 * 3103 * If (p1) happens while the event is active, we restart it to force (p2). 3104 * 3105 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3106 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3107 * ioctl; 3108 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3109 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3110 * for reading; 3111 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3112 * of exec. 3113 */ 3114 void perf_event_addr_filters_sync(struct perf_event *event) 3115 { 3116 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3117 3118 if (!has_addr_filter(event)) 3119 return; 3120 3121 raw_spin_lock(&ifh->lock); 3122 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3123 event->pmu->addr_filters_sync(event); 3124 event->hw.addr_filters_gen = event->addr_filters_gen; 3125 } 3126 raw_spin_unlock(&ifh->lock); 3127 } 3128 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3129 3130 static int _perf_event_refresh(struct perf_event *event, int refresh) 3131 { 3132 /* 3133 * not supported on inherited events 3134 */ 3135 if (event->attr.inherit || !is_sampling_event(event)) 3136 return -EINVAL; 3137 3138 atomic_add(refresh, &event->event_limit); 3139 _perf_event_enable(event); 3140 3141 return 0; 3142 } 3143 3144 /* 3145 * See perf_event_disable() 3146 */ 3147 int perf_event_refresh(struct perf_event *event, int refresh) 3148 { 3149 struct perf_event_context *ctx; 3150 int ret; 3151 3152 ctx = perf_event_ctx_lock(event); 3153 ret = _perf_event_refresh(event, refresh); 3154 perf_event_ctx_unlock(event, ctx); 3155 3156 return ret; 3157 } 3158 EXPORT_SYMBOL_GPL(perf_event_refresh); 3159 3160 static int perf_event_modify_breakpoint(struct perf_event *bp, 3161 struct perf_event_attr *attr) 3162 { 3163 int err; 3164 3165 _perf_event_disable(bp); 3166 3167 err = modify_user_hw_breakpoint_check(bp, attr, true); 3168 3169 if (!bp->attr.disabled) 3170 _perf_event_enable(bp); 3171 3172 return err; 3173 } 3174 3175 /* 3176 * Copy event-type-independent attributes that may be modified. 3177 */ 3178 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3179 const struct perf_event_attr *from) 3180 { 3181 to->sig_data = from->sig_data; 3182 } 3183 3184 static int perf_event_modify_attr(struct perf_event *event, 3185 struct perf_event_attr *attr) 3186 { 3187 int (*func)(struct perf_event *, struct perf_event_attr *); 3188 struct perf_event *child; 3189 int err; 3190 3191 if (event->attr.type != attr->type) 3192 return -EINVAL; 3193 3194 switch (event->attr.type) { 3195 case PERF_TYPE_BREAKPOINT: 3196 func = perf_event_modify_breakpoint; 3197 break; 3198 default: 3199 /* Place holder for future additions. */ 3200 return -EOPNOTSUPP; 3201 } 3202 3203 WARN_ON_ONCE(event->ctx->parent_ctx); 3204 3205 mutex_lock(&event->child_mutex); 3206 /* 3207 * Event-type-independent attributes must be copied before event-type 3208 * modification, which will validate that final attributes match the 3209 * source attributes after all relevant attributes have been copied. 3210 */ 3211 perf_event_modify_copy_attr(&event->attr, attr); 3212 err = func(event, attr); 3213 if (err) 3214 goto out; 3215 list_for_each_entry(child, &event->child_list, child_list) { 3216 perf_event_modify_copy_attr(&child->attr, attr); 3217 err = func(child, attr); 3218 if (err) 3219 goto out; 3220 } 3221 out: 3222 mutex_unlock(&event->child_mutex); 3223 return err; 3224 } 3225 3226 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3227 enum event_type_t event_type) 3228 { 3229 struct perf_event_context *ctx = pmu_ctx->ctx; 3230 struct perf_event *event, *tmp; 3231 struct pmu *pmu = pmu_ctx->pmu; 3232 3233 if (ctx->task && !ctx->is_active) { 3234 struct perf_cpu_pmu_context *cpc; 3235 3236 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3237 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3238 cpc->task_epc = NULL; 3239 } 3240 3241 if (!event_type) 3242 return; 3243 3244 perf_pmu_disable(pmu); 3245 if (event_type & EVENT_PINNED) { 3246 list_for_each_entry_safe(event, tmp, 3247 &pmu_ctx->pinned_active, 3248 active_list) 3249 group_sched_out(event, ctx); 3250 } 3251 3252 if (event_type & EVENT_FLEXIBLE) { 3253 list_for_each_entry_safe(event, tmp, 3254 &pmu_ctx->flexible_active, 3255 active_list) 3256 group_sched_out(event, ctx); 3257 /* 3258 * Since we cleared EVENT_FLEXIBLE, also clear 3259 * rotate_necessary, is will be reset by 3260 * ctx_flexible_sched_in() when needed. 3261 */ 3262 pmu_ctx->rotate_necessary = 0; 3263 } 3264 perf_pmu_enable(pmu); 3265 } 3266 3267 static void 3268 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3269 { 3270 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3271 struct perf_event_pmu_context *pmu_ctx; 3272 int is_active = ctx->is_active; 3273 bool cgroup = event_type & EVENT_CGROUP; 3274 3275 event_type &= ~EVENT_CGROUP; 3276 3277 lockdep_assert_held(&ctx->lock); 3278 3279 if (likely(!ctx->nr_events)) { 3280 /* 3281 * See __perf_remove_from_context(). 3282 */ 3283 WARN_ON_ONCE(ctx->is_active); 3284 if (ctx->task) 3285 WARN_ON_ONCE(cpuctx->task_ctx); 3286 return; 3287 } 3288 3289 /* 3290 * Always update time if it was set; not only when it changes. 3291 * Otherwise we can 'forget' to update time for any but the last 3292 * context we sched out. For example: 3293 * 3294 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3295 * ctx_sched_out(.event_type = EVENT_PINNED) 3296 * 3297 * would only update time for the pinned events. 3298 */ 3299 if (is_active & EVENT_TIME) { 3300 /* update (and stop) ctx time */ 3301 update_context_time(ctx); 3302 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3303 /* 3304 * CPU-release for the below ->is_active store, 3305 * see __load_acquire() in perf_event_time_now() 3306 */ 3307 barrier(); 3308 } 3309 3310 ctx->is_active &= ~event_type; 3311 if (!(ctx->is_active & EVENT_ALL)) 3312 ctx->is_active = 0; 3313 3314 if (ctx->task) { 3315 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3316 if (!ctx->is_active) 3317 cpuctx->task_ctx = NULL; 3318 } 3319 3320 is_active ^= ctx->is_active; /* changed bits */ 3321 3322 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3323 if (cgroup && !pmu_ctx->nr_cgroups) 3324 continue; 3325 __pmu_ctx_sched_out(pmu_ctx, is_active); 3326 } 3327 } 3328 3329 /* 3330 * Test whether two contexts are equivalent, i.e. whether they have both been 3331 * cloned from the same version of the same context. 3332 * 3333 * Equivalence is measured using a generation number in the context that is 3334 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3335 * and list_del_event(). 3336 */ 3337 static int context_equiv(struct perf_event_context *ctx1, 3338 struct perf_event_context *ctx2) 3339 { 3340 lockdep_assert_held(&ctx1->lock); 3341 lockdep_assert_held(&ctx2->lock); 3342 3343 /* Pinning disables the swap optimization */ 3344 if (ctx1->pin_count || ctx2->pin_count) 3345 return 0; 3346 3347 /* If ctx1 is the parent of ctx2 */ 3348 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3349 return 1; 3350 3351 /* If ctx2 is the parent of ctx1 */ 3352 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3353 return 1; 3354 3355 /* 3356 * If ctx1 and ctx2 have the same parent; we flatten the parent 3357 * hierarchy, see perf_event_init_context(). 3358 */ 3359 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3360 ctx1->parent_gen == ctx2->parent_gen) 3361 return 1; 3362 3363 /* Unmatched */ 3364 return 0; 3365 } 3366 3367 static void __perf_event_sync_stat(struct perf_event *event, 3368 struct perf_event *next_event) 3369 { 3370 u64 value; 3371 3372 if (!event->attr.inherit_stat) 3373 return; 3374 3375 /* 3376 * Update the event value, we cannot use perf_event_read() 3377 * because we're in the middle of a context switch and have IRQs 3378 * disabled, which upsets smp_call_function_single(), however 3379 * we know the event must be on the current CPU, therefore we 3380 * don't need to use it. 3381 */ 3382 if (event->state == PERF_EVENT_STATE_ACTIVE) 3383 event->pmu->read(event); 3384 3385 perf_event_update_time(event); 3386 3387 /* 3388 * In order to keep per-task stats reliable we need to flip the event 3389 * values when we flip the contexts. 3390 */ 3391 value = local64_read(&next_event->count); 3392 value = local64_xchg(&event->count, value); 3393 local64_set(&next_event->count, value); 3394 3395 swap(event->total_time_enabled, next_event->total_time_enabled); 3396 swap(event->total_time_running, next_event->total_time_running); 3397 3398 /* 3399 * Since we swizzled the values, update the user visible data too. 3400 */ 3401 perf_event_update_userpage(event); 3402 perf_event_update_userpage(next_event); 3403 } 3404 3405 static void perf_event_sync_stat(struct perf_event_context *ctx, 3406 struct perf_event_context *next_ctx) 3407 { 3408 struct perf_event *event, *next_event; 3409 3410 if (!ctx->nr_stat) 3411 return; 3412 3413 update_context_time(ctx); 3414 3415 event = list_first_entry(&ctx->event_list, 3416 struct perf_event, event_entry); 3417 3418 next_event = list_first_entry(&next_ctx->event_list, 3419 struct perf_event, event_entry); 3420 3421 while (&event->event_entry != &ctx->event_list && 3422 &next_event->event_entry != &next_ctx->event_list) { 3423 3424 __perf_event_sync_stat(event, next_event); 3425 3426 event = list_next_entry(event, event_entry); 3427 next_event = list_next_entry(next_event, event_entry); 3428 } 3429 } 3430 3431 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3432 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3433 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3434 !list_entry_is_head(pos1, head1, member) && \ 3435 !list_entry_is_head(pos2, head2, member); \ 3436 pos1 = list_next_entry(pos1, member), \ 3437 pos2 = list_next_entry(pos2, member)) 3438 3439 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3440 struct perf_event_context *next_ctx) 3441 { 3442 struct perf_event_pmu_context *prev_epc, *next_epc; 3443 3444 if (!prev_ctx->nr_task_data) 3445 return; 3446 3447 double_list_for_each_entry(prev_epc, next_epc, 3448 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3449 pmu_ctx_entry) { 3450 3451 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3452 continue; 3453 3454 /* 3455 * PMU specific parts of task perf context can require 3456 * additional synchronization. As an example of such 3457 * synchronization see implementation details of Intel 3458 * LBR call stack data profiling; 3459 */ 3460 if (prev_epc->pmu->swap_task_ctx) 3461 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3462 else 3463 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3464 } 3465 } 3466 3467 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3468 { 3469 struct perf_event_pmu_context *pmu_ctx; 3470 struct perf_cpu_pmu_context *cpc; 3471 3472 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3473 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3474 3475 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3476 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3477 } 3478 } 3479 3480 static void 3481 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3482 { 3483 struct perf_event_context *ctx = task->perf_event_ctxp; 3484 struct perf_event_context *next_ctx; 3485 struct perf_event_context *parent, *next_parent; 3486 int do_switch = 1; 3487 3488 if (likely(!ctx)) 3489 return; 3490 3491 rcu_read_lock(); 3492 next_ctx = rcu_dereference(next->perf_event_ctxp); 3493 if (!next_ctx) 3494 goto unlock; 3495 3496 parent = rcu_dereference(ctx->parent_ctx); 3497 next_parent = rcu_dereference(next_ctx->parent_ctx); 3498 3499 /* If neither context have a parent context; they cannot be clones. */ 3500 if (!parent && !next_parent) 3501 goto unlock; 3502 3503 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3504 /* 3505 * Looks like the two contexts are clones, so we might be 3506 * able to optimize the context switch. We lock both 3507 * contexts and check that they are clones under the 3508 * lock (including re-checking that neither has been 3509 * uncloned in the meantime). It doesn't matter which 3510 * order we take the locks because no other cpu could 3511 * be trying to lock both of these tasks. 3512 */ 3513 raw_spin_lock(&ctx->lock); 3514 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3515 if (context_equiv(ctx, next_ctx)) { 3516 3517 perf_ctx_disable(ctx, false); 3518 3519 /* PMIs are disabled; ctx->nr_pending is stable. */ 3520 if (local_read(&ctx->nr_pending) || 3521 local_read(&next_ctx->nr_pending)) { 3522 /* 3523 * Must not swap out ctx when there's pending 3524 * events that rely on the ctx->task relation. 3525 */ 3526 raw_spin_unlock(&next_ctx->lock); 3527 rcu_read_unlock(); 3528 goto inside_switch; 3529 } 3530 3531 WRITE_ONCE(ctx->task, next); 3532 WRITE_ONCE(next_ctx->task, task); 3533 3534 perf_ctx_sched_task_cb(ctx, false); 3535 perf_event_swap_task_ctx_data(ctx, next_ctx); 3536 3537 perf_ctx_enable(ctx, false); 3538 3539 /* 3540 * RCU_INIT_POINTER here is safe because we've not 3541 * modified the ctx and the above modification of 3542 * ctx->task and ctx->task_ctx_data are immaterial 3543 * since those values are always verified under 3544 * ctx->lock which we're now holding. 3545 */ 3546 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3547 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3548 3549 do_switch = 0; 3550 3551 perf_event_sync_stat(ctx, next_ctx); 3552 } 3553 raw_spin_unlock(&next_ctx->lock); 3554 raw_spin_unlock(&ctx->lock); 3555 } 3556 unlock: 3557 rcu_read_unlock(); 3558 3559 if (do_switch) { 3560 raw_spin_lock(&ctx->lock); 3561 perf_ctx_disable(ctx, false); 3562 3563 inside_switch: 3564 perf_ctx_sched_task_cb(ctx, false); 3565 task_ctx_sched_out(ctx, EVENT_ALL); 3566 3567 perf_ctx_enable(ctx, false); 3568 raw_spin_unlock(&ctx->lock); 3569 } 3570 } 3571 3572 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3573 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3574 3575 void perf_sched_cb_dec(struct pmu *pmu) 3576 { 3577 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3578 3579 this_cpu_dec(perf_sched_cb_usages); 3580 barrier(); 3581 3582 if (!--cpc->sched_cb_usage) 3583 list_del(&cpc->sched_cb_entry); 3584 } 3585 3586 3587 void perf_sched_cb_inc(struct pmu *pmu) 3588 { 3589 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3590 3591 if (!cpc->sched_cb_usage++) 3592 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3593 3594 barrier(); 3595 this_cpu_inc(perf_sched_cb_usages); 3596 } 3597 3598 /* 3599 * This function provides the context switch callback to the lower code 3600 * layer. It is invoked ONLY when the context switch callback is enabled. 3601 * 3602 * This callback is relevant even to per-cpu events; for example multi event 3603 * PEBS requires this to provide PID/TID information. This requires we flush 3604 * all queued PEBS records before we context switch to a new task. 3605 */ 3606 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3607 { 3608 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3609 struct pmu *pmu; 3610 3611 pmu = cpc->epc.pmu; 3612 3613 /* software PMUs will not have sched_task */ 3614 if (WARN_ON_ONCE(!pmu->sched_task)) 3615 return; 3616 3617 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3618 perf_pmu_disable(pmu); 3619 3620 pmu->sched_task(cpc->task_epc, sched_in); 3621 3622 perf_pmu_enable(pmu); 3623 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3624 } 3625 3626 static void perf_pmu_sched_task(struct task_struct *prev, 3627 struct task_struct *next, 3628 bool sched_in) 3629 { 3630 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3631 struct perf_cpu_pmu_context *cpc; 3632 3633 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3634 if (prev == next || cpuctx->task_ctx) 3635 return; 3636 3637 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3638 __perf_pmu_sched_task(cpc, sched_in); 3639 } 3640 3641 static void perf_event_switch(struct task_struct *task, 3642 struct task_struct *next_prev, bool sched_in); 3643 3644 /* 3645 * Called from scheduler to remove the events of the current task, 3646 * with interrupts disabled. 3647 * 3648 * We stop each event and update the event value in event->count. 3649 * 3650 * This does not protect us against NMI, but disable() 3651 * sets the disabled bit in the control field of event _before_ 3652 * accessing the event control register. If a NMI hits, then it will 3653 * not restart the event. 3654 */ 3655 void __perf_event_task_sched_out(struct task_struct *task, 3656 struct task_struct *next) 3657 { 3658 if (__this_cpu_read(perf_sched_cb_usages)) 3659 perf_pmu_sched_task(task, next, false); 3660 3661 if (atomic_read(&nr_switch_events)) 3662 perf_event_switch(task, next, false); 3663 3664 perf_event_context_sched_out(task, next); 3665 3666 /* 3667 * if cgroup events exist on this CPU, then we need 3668 * to check if we have to switch out PMU state. 3669 * cgroup event are system-wide mode only 3670 */ 3671 perf_cgroup_switch(next); 3672 } 3673 3674 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3675 { 3676 const struct perf_event *le = *(const struct perf_event **)l; 3677 const struct perf_event *re = *(const struct perf_event **)r; 3678 3679 return le->group_index < re->group_index; 3680 } 3681 3682 static void swap_ptr(void *l, void *r, void __always_unused *args) 3683 { 3684 void **lp = l, **rp = r; 3685 3686 swap(*lp, *rp); 3687 } 3688 3689 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3690 3691 static const struct min_heap_callbacks perf_min_heap = { 3692 .less = perf_less_group_idx, 3693 .swp = swap_ptr, 3694 }; 3695 3696 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3697 { 3698 struct perf_event **itrs = heap->data; 3699 3700 if (event) { 3701 itrs[heap->nr] = event; 3702 heap->nr++; 3703 } 3704 } 3705 3706 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3707 { 3708 struct perf_cpu_pmu_context *cpc; 3709 3710 if (!pmu_ctx->ctx->task) 3711 return; 3712 3713 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3714 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3715 cpc->task_epc = pmu_ctx; 3716 } 3717 3718 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3719 struct perf_event_groups *groups, int cpu, 3720 struct pmu *pmu, 3721 int (*func)(struct perf_event *, void *), 3722 void *data) 3723 { 3724 #ifdef CONFIG_CGROUP_PERF 3725 struct cgroup_subsys_state *css = NULL; 3726 #endif 3727 struct perf_cpu_context *cpuctx = NULL; 3728 /* Space for per CPU and/or any CPU event iterators. */ 3729 struct perf_event *itrs[2]; 3730 struct perf_event_min_heap event_heap; 3731 struct perf_event **evt; 3732 int ret; 3733 3734 if (pmu->filter && pmu->filter(pmu, cpu)) 3735 return 0; 3736 3737 if (!ctx->task) { 3738 cpuctx = this_cpu_ptr(&perf_cpu_context); 3739 event_heap = (struct perf_event_min_heap){ 3740 .data = cpuctx->heap, 3741 .nr = 0, 3742 .size = cpuctx->heap_size, 3743 }; 3744 3745 lockdep_assert_held(&cpuctx->ctx.lock); 3746 3747 #ifdef CONFIG_CGROUP_PERF 3748 if (cpuctx->cgrp) 3749 css = &cpuctx->cgrp->css; 3750 #endif 3751 } else { 3752 event_heap = (struct perf_event_min_heap){ 3753 .data = itrs, 3754 .nr = 0, 3755 .size = ARRAY_SIZE(itrs), 3756 }; 3757 /* Events not within a CPU context may be on any CPU. */ 3758 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3759 } 3760 evt = event_heap.data; 3761 3762 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3763 3764 #ifdef CONFIG_CGROUP_PERF 3765 for (; css; css = css->parent) 3766 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3767 #endif 3768 3769 if (event_heap.nr) { 3770 __link_epc((*evt)->pmu_ctx); 3771 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3772 } 3773 3774 min_heapify_all(&event_heap, &perf_min_heap, NULL); 3775 3776 while (event_heap.nr) { 3777 ret = func(*evt, data); 3778 if (ret) 3779 return ret; 3780 3781 *evt = perf_event_groups_next(*evt, pmu); 3782 if (*evt) 3783 min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL); 3784 else 3785 min_heap_pop(&event_heap, &perf_min_heap, NULL); 3786 } 3787 3788 return 0; 3789 } 3790 3791 /* 3792 * Because the userpage is strictly per-event (there is no concept of context, 3793 * so there cannot be a context indirection), every userpage must be updated 3794 * when context time starts :-( 3795 * 3796 * IOW, we must not miss EVENT_TIME edges. 3797 */ 3798 static inline bool event_update_userpage(struct perf_event *event) 3799 { 3800 if (likely(!atomic_read(&event->mmap_count))) 3801 return false; 3802 3803 perf_event_update_time(event); 3804 perf_event_update_userpage(event); 3805 3806 return true; 3807 } 3808 3809 static inline void group_update_userpage(struct perf_event *group_event) 3810 { 3811 struct perf_event *event; 3812 3813 if (!event_update_userpage(group_event)) 3814 return; 3815 3816 for_each_sibling_event(event, group_event) 3817 event_update_userpage(event); 3818 } 3819 3820 static int merge_sched_in(struct perf_event *event, void *data) 3821 { 3822 struct perf_event_context *ctx = event->ctx; 3823 int *can_add_hw = data; 3824 3825 if (event->state <= PERF_EVENT_STATE_OFF) 3826 return 0; 3827 3828 if (!event_filter_match(event)) 3829 return 0; 3830 3831 if (group_can_go_on(event, *can_add_hw)) { 3832 if (!group_sched_in(event, ctx)) 3833 list_add_tail(&event->active_list, get_event_list(event)); 3834 } 3835 3836 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3837 *can_add_hw = 0; 3838 if (event->attr.pinned) { 3839 perf_cgroup_event_disable(event, ctx); 3840 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3841 } else { 3842 struct perf_cpu_pmu_context *cpc; 3843 3844 event->pmu_ctx->rotate_necessary = 1; 3845 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3846 perf_mux_hrtimer_restart(cpc); 3847 group_update_userpage(event); 3848 } 3849 } 3850 3851 return 0; 3852 } 3853 3854 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3855 struct perf_event_groups *groups, 3856 struct pmu *pmu) 3857 { 3858 int can_add_hw = 1; 3859 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3860 merge_sched_in, &can_add_hw); 3861 } 3862 3863 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3864 struct perf_event_groups *groups, 3865 bool cgroup) 3866 { 3867 struct perf_event_pmu_context *pmu_ctx; 3868 3869 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3870 if (cgroup && !pmu_ctx->nr_cgroups) 3871 continue; 3872 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3873 } 3874 } 3875 3876 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3877 struct pmu *pmu) 3878 { 3879 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3880 } 3881 3882 static void 3883 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3884 { 3885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3886 int is_active = ctx->is_active; 3887 bool cgroup = event_type & EVENT_CGROUP; 3888 3889 event_type &= ~EVENT_CGROUP; 3890 3891 lockdep_assert_held(&ctx->lock); 3892 3893 if (likely(!ctx->nr_events)) 3894 return; 3895 3896 if (!(is_active & EVENT_TIME)) { 3897 /* start ctx time */ 3898 __update_context_time(ctx, false); 3899 perf_cgroup_set_timestamp(cpuctx); 3900 /* 3901 * CPU-release for the below ->is_active store, 3902 * see __load_acquire() in perf_event_time_now() 3903 */ 3904 barrier(); 3905 } 3906 3907 ctx->is_active |= (event_type | EVENT_TIME); 3908 if (ctx->task) { 3909 if (!is_active) 3910 cpuctx->task_ctx = ctx; 3911 else 3912 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3913 } 3914 3915 is_active ^= ctx->is_active; /* changed bits */ 3916 3917 /* 3918 * First go through the list and put on any pinned groups 3919 * in order to give them the best chance of going on. 3920 */ 3921 if (is_active & EVENT_PINNED) 3922 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3923 3924 /* Then walk through the lower prio flexible groups */ 3925 if (is_active & EVENT_FLEXIBLE) 3926 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3927 } 3928 3929 static void perf_event_context_sched_in(struct task_struct *task) 3930 { 3931 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3932 struct perf_event_context *ctx; 3933 3934 rcu_read_lock(); 3935 ctx = rcu_dereference(task->perf_event_ctxp); 3936 if (!ctx) 3937 goto rcu_unlock; 3938 3939 if (cpuctx->task_ctx == ctx) { 3940 perf_ctx_lock(cpuctx, ctx); 3941 perf_ctx_disable(ctx, false); 3942 3943 perf_ctx_sched_task_cb(ctx, true); 3944 3945 perf_ctx_enable(ctx, false); 3946 perf_ctx_unlock(cpuctx, ctx); 3947 goto rcu_unlock; 3948 } 3949 3950 perf_ctx_lock(cpuctx, ctx); 3951 /* 3952 * We must check ctx->nr_events while holding ctx->lock, such 3953 * that we serialize against perf_install_in_context(). 3954 */ 3955 if (!ctx->nr_events) 3956 goto unlock; 3957 3958 perf_ctx_disable(ctx, false); 3959 /* 3960 * We want to keep the following priority order: 3961 * cpu pinned (that don't need to move), task pinned, 3962 * cpu flexible, task flexible. 3963 * 3964 * However, if task's ctx is not carrying any pinned 3965 * events, no need to flip the cpuctx's events around. 3966 */ 3967 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3968 perf_ctx_disable(&cpuctx->ctx, false); 3969 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3970 } 3971 3972 perf_event_sched_in(cpuctx, ctx); 3973 3974 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3975 3976 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3977 perf_ctx_enable(&cpuctx->ctx, false); 3978 3979 perf_ctx_enable(ctx, false); 3980 3981 unlock: 3982 perf_ctx_unlock(cpuctx, ctx); 3983 rcu_unlock: 3984 rcu_read_unlock(); 3985 } 3986 3987 /* 3988 * Called from scheduler to add the events of the current task 3989 * with interrupts disabled. 3990 * 3991 * We restore the event value and then enable it. 3992 * 3993 * This does not protect us against NMI, but enable() 3994 * sets the enabled bit in the control field of event _before_ 3995 * accessing the event control register. If a NMI hits, then it will 3996 * keep the event running. 3997 */ 3998 void __perf_event_task_sched_in(struct task_struct *prev, 3999 struct task_struct *task) 4000 { 4001 perf_event_context_sched_in(task); 4002 4003 if (atomic_read(&nr_switch_events)) 4004 perf_event_switch(task, prev, true); 4005 4006 if (__this_cpu_read(perf_sched_cb_usages)) 4007 perf_pmu_sched_task(prev, task, true); 4008 } 4009 4010 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4011 { 4012 u64 frequency = event->attr.sample_freq; 4013 u64 sec = NSEC_PER_SEC; 4014 u64 divisor, dividend; 4015 4016 int count_fls, nsec_fls, frequency_fls, sec_fls; 4017 4018 count_fls = fls64(count); 4019 nsec_fls = fls64(nsec); 4020 frequency_fls = fls64(frequency); 4021 sec_fls = 30; 4022 4023 /* 4024 * We got @count in @nsec, with a target of sample_freq HZ 4025 * the target period becomes: 4026 * 4027 * @count * 10^9 4028 * period = ------------------- 4029 * @nsec * sample_freq 4030 * 4031 */ 4032 4033 /* 4034 * Reduce accuracy by one bit such that @a and @b converge 4035 * to a similar magnitude. 4036 */ 4037 #define REDUCE_FLS(a, b) \ 4038 do { \ 4039 if (a##_fls > b##_fls) { \ 4040 a >>= 1; \ 4041 a##_fls--; \ 4042 } else { \ 4043 b >>= 1; \ 4044 b##_fls--; \ 4045 } \ 4046 } while (0) 4047 4048 /* 4049 * Reduce accuracy until either term fits in a u64, then proceed with 4050 * the other, so that finally we can do a u64/u64 division. 4051 */ 4052 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4053 REDUCE_FLS(nsec, frequency); 4054 REDUCE_FLS(sec, count); 4055 } 4056 4057 if (count_fls + sec_fls > 64) { 4058 divisor = nsec * frequency; 4059 4060 while (count_fls + sec_fls > 64) { 4061 REDUCE_FLS(count, sec); 4062 divisor >>= 1; 4063 } 4064 4065 dividend = count * sec; 4066 } else { 4067 dividend = count * sec; 4068 4069 while (nsec_fls + frequency_fls > 64) { 4070 REDUCE_FLS(nsec, frequency); 4071 dividend >>= 1; 4072 } 4073 4074 divisor = nsec * frequency; 4075 } 4076 4077 if (!divisor) 4078 return dividend; 4079 4080 return div64_u64(dividend, divisor); 4081 } 4082 4083 static DEFINE_PER_CPU(int, perf_throttled_count); 4084 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4085 4086 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4087 { 4088 struct hw_perf_event *hwc = &event->hw; 4089 s64 period, sample_period; 4090 s64 delta; 4091 4092 period = perf_calculate_period(event, nsec, count); 4093 4094 delta = (s64)(period - hwc->sample_period); 4095 delta = (delta + 7) / 8; /* low pass filter */ 4096 4097 sample_period = hwc->sample_period + delta; 4098 4099 if (!sample_period) 4100 sample_period = 1; 4101 4102 hwc->sample_period = sample_period; 4103 4104 if (local64_read(&hwc->period_left) > 8*sample_period) { 4105 if (disable) 4106 event->pmu->stop(event, PERF_EF_UPDATE); 4107 4108 local64_set(&hwc->period_left, 0); 4109 4110 if (disable) 4111 event->pmu->start(event, PERF_EF_RELOAD); 4112 } 4113 } 4114 4115 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4116 { 4117 struct perf_event *event; 4118 struct hw_perf_event *hwc; 4119 u64 now, period = TICK_NSEC; 4120 s64 delta; 4121 4122 list_for_each_entry(event, event_list, active_list) { 4123 if (event->state != PERF_EVENT_STATE_ACTIVE) 4124 continue; 4125 4126 // XXX use visit thingy to avoid the -1,cpu match 4127 if (!event_filter_match(event)) 4128 continue; 4129 4130 hwc = &event->hw; 4131 4132 if (hwc->interrupts == MAX_INTERRUPTS) { 4133 hwc->interrupts = 0; 4134 perf_log_throttle(event, 1); 4135 if (!event->attr.freq || !event->attr.sample_freq) 4136 event->pmu->start(event, 0); 4137 } 4138 4139 if (!event->attr.freq || !event->attr.sample_freq) 4140 continue; 4141 4142 /* 4143 * stop the event and update event->count 4144 */ 4145 event->pmu->stop(event, PERF_EF_UPDATE); 4146 4147 now = local64_read(&event->count); 4148 delta = now - hwc->freq_count_stamp; 4149 hwc->freq_count_stamp = now; 4150 4151 /* 4152 * restart the event 4153 * reload only if value has changed 4154 * we have stopped the event so tell that 4155 * to perf_adjust_period() to avoid stopping it 4156 * twice. 4157 */ 4158 if (delta > 0) 4159 perf_adjust_period(event, period, delta, false); 4160 4161 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4162 } 4163 } 4164 4165 /* 4166 * combine freq adjustment with unthrottling to avoid two passes over the 4167 * events. At the same time, make sure, having freq events does not change 4168 * the rate of unthrottling as that would introduce bias. 4169 */ 4170 static void 4171 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4172 { 4173 struct perf_event_pmu_context *pmu_ctx; 4174 4175 /* 4176 * only need to iterate over all events iff: 4177 * - context have events in frequency mode (needs freq adjust) 4178 * - there are events to unthrottle on this cpu 4179 */ 4180 if (!(ctx->nr_freq || unthrottle)) 4181 return; 4182 4183 raw_spin_lock(&ctx->lock); 4184 4185 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4186 if (!(pmu_ctx->nr_freq || unthrottle)) 4187 continue; 4188 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4189 continue; 4190 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4191 continue; 4192 4193 perf_pmu_disable(pmu_ctx->pmu); 4194 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4195 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4196 perf_pmu_enable(pmu_ctx->pmu); 4197 } 4198 4199 raw_spin_unlock(&ctx->lock); 4200 } 4201 4202 /* 4203 * Move @event to the tail of the @ctx's elegible events. 4204 */ 4205 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4206 { 4207 /* 4208 * Rotate the first entry last of non-pinned groups. Rotation might be 4209 * disabled by the inheritance code. 4210 */ 4211 if (ctx->rotate_disable) 4212 return; 4213 4214 perf_event_groups_delete(&ctx->flexible_groups, event); 4215 perf_event_groups_insert(&ctx->flexible_groups, event); 4216 } 4217 4218 /* pick an event from the flexible_groups to rotate */ 4219 static inline struct perf_event * 4220 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4221 { 4222 struct perf_event *event; 4223 struct rb_node *node; 4224 struct rb_root *tree; 4225 struct __group_key key = { 4226 .pmu = pmu_ctx->pmu, 4227 }; 4228 4229 /* pick the first active flexible event */ 4230 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4231 struct perf_event, active_list); 4232 if (event) 4233 goto out; 4234 4235 /* if no active flexible event, pick the first event */ 4236 tree = &pmu_ctx->ctx->flexible_groups.tree; 4237 4238 if (!pmu_ctx->ctx->task) { 4239 key.cpu = smp_processor_id(); 4240 4241 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4242 if (node) 4243 event = __node_2_pe(node); 4244 goto out; 4245 } 4246 4247 key.cpu = -1; 4248 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4249 if (node) { 4250 event = __node_2_pe(node); 4251 goto out; 4252 } 4253 4254 key.cpu = smp_processor_id(); 4255 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4256 if (node) 4257 event = __node_2_pe(node); 4258 4259 out: 4260 /* 4261 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4262 * finds there are unschedulable events, it will set it again. 4263 */ 4264 pmu_ctx->rotate_necessary = 0; 4265 4266 return event; 4267 } 4268 4269 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4270 { 4271 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4272 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4273 struct perf_event *cpu_event = NULL, *task_event = NULL; 4274 int cpu_rotate, task_rotate; 4275 struct pmu *pmu; 4276 4277 /* 4278 * Since we run this from IRQ context, nobody can install new 4279 * events, thus the event count values are stable. 4280 */ 4281 4282 cpu_epc = &cpc->epc; 4283 pmu = cpu_epc->pmu; 4284 task_epc = cpc->task_epc; 4285 4286 cpu_rotate = cpu_epc->rotate_necessary; 4287 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4288 4289 if (!(cpu_rotate || task_rotate)) 4290 return false; 4291 4292 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4293 perf_pmu_disable(pmu); 4294 4295 if (task_rotate) 4296 task_event = ctx_event_to_rotate(task_epc); 4297 if (cpu_rotate) 4298 cpu_event = ctx_event_to_rotate(cpu_epc); 4299 4300 /* 4301 * As per the order given at ctx_resched() first 'pop' task flexible 4302 * and then, if needed CPU flexible. 4303 */ 4304 if (task_event || (task_epc && cpu_event)) { 4305 update_context_time(task_epc->ctx); 4306 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4307 } 4308 4309 if (cpu_event) { 4310 update_context_time(&cpuctx->ctx); 4311 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4312 rotate_ctx(&cpuctx->ctx, cpu_event); 4313 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4314 } 4315 4316 if (task_event) 4317 rotate_ctx(task_epc->ctx, task_event); 4318 4319 if (task_event || (task_epc && cpu_event)) 4320 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4321 4322 perf_pmu_enable(pmu); 4323 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4324 4325 return true; 4326 } 4327 4328 void perf_event_task_tick(void) 4329 { 4330 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4331 struct perf_event_context *ctx; 4332 int throttled; 4333 4334 lockdep_assert_irqs_disabled(); 4335 4336 __this_cpu_inc(perf_throttled_seq); 4337 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4338 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4339 4340 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4341 4342 rcu_read_lock(); 4343 ctx = rcu_dereference(current->perf_event_ctxp); 4344 if (ctx) 4345 perf_adjust_freq_unthr_context(ctx, !!throttled); 4346 rcu_read_unlock(); 4347 } 4348 4349 static int event_enable_on_exec(struct perf_event *event, 4350 struct perf_event_context *ctx) 4351 { 4352 if (!event->attr.enable_on_exec) 4353 return 0; 4354 4355 event->attr.enable_on_exec = 0; 4356 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4357 return 0; 4358 4359 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4360 4361 return 1; 4362 } 4363 4364 /* 4365 * Enable all of a task's events that have been marked enable-on-exec. 4366 * This expects task == current. 4367 */ 4368 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4369 { 4370 struct perf_event_context *clone_ctx = NULL; 4371 enum event_type_t event_type = 0; 4372 struct perf_cpu_context *cpuctx; 4373 struct perf_event *event; 4374 unsigned long flags; 4375 int enabled = 0; 4376 4377 local_irq_save(flags); 4378 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4379 goto out; 4380 4381 if (!ctx->nr_events) 4382 goto out; 4383 4384 cpuctx = this_cpu_ptr(&perf_cpu_context); 4385 perf_ctx_lock(cpuctx, ctx); 4386 ctx_sched_out(ctx, EVENT_TIME); 4387 4388 list_for_each_entry(event, &ctx->event_list, event_entry) { 4389 enabled |= event_enable_on_exec(event, ctx); 4390 event_type |= get_event_type(event); 4391 } 4392 4393 /* 4394 * Unclone and reschedule this context if we enabled any event. 4395 */ 4396 if (enabled) { 4397 clone_ctx = unclone_ctx(ctx); 4398 ctx_resched(cpuctx, ctx, event_type); 4399 } else { 4400 ctx_sched_in(ctx, EVENT_TIME); 4401 } 4402 perf_ctx_unlock(cpuctx, ctx); 4403 4404 out: 4405 local_irq_restore(flags); 4406 4407 if (clone_ctx) 4408 put_ctx(clone_ctx); 4409 } 4410 4411 static void perf_remove_from_owner(struct perf_event *event); 4412 static void perf_event_exit_event(struct perf_event *event, 4413 struct perf_event_context *ctx); 4414 4415 /* 4416 * Removes all events from the current task that have been marked 4417 * remove-on-exec, and feeds their values back to parent events. 4418 */ 4419 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4420 { 4421 struct perf_event_context *clone_ctx = NULL; 4422 struct perf_event *event, *next; 4423 unsigned long flags; 4424 bool modified = false; 4425 4426 mutex_lock(&ctx->mutex); 4427 4428 if (WARN_ON_ONCE(ctx->task != current)) 4429 goto unlock; 4430 4431 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4432 if (!event->attr.remove_on_exec) 4433 continue; 4434 4435 if (!is_kernel_event(event)) 4436 perf_remove_from_owner(event); 4437 4438 modified = true; 4439 4440 perf_event_exit_event(event, ctx); 4441 } 4442 4443 raw_spin_lock_irqsave(&ctx->lock, flags); 4444 if (modified) 4445 clone_ctx = unclone_ctx(ctx); 4446 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4447 4448 unlock: 4449 mutex_unlock(&ctx->mutex); 4450 4451 if (clone_ctx) 4452 put_ctx(clone_ctx); 4453 } 4454 4455 struct perf_read_data { 4456 struct perf_event *event; 4457 bool group; 4458 int ret; 4459 }; 4460 4461 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4462 { 4463 u16 local_pkg, event_pkg; 4464 4465 if ((unsigned)event_cpu >= nr_cpu_ids) 4466 return event_cpu; 4467 4468 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4469 int local_cpu = smp_processor_id(); 4470 4471 event_pkg = topology_physical_package_id(event_cpu); 4472 local_pkg = topology_physical_package_id(local_cpu); 4473 4474 if (event_pkg == local_pkg) 4475 return local_cpu; 4476 } 4477 4478 return event_cpu; 4479 } 4480 4481 /* 4482 * Cross CPU call to read the hardware event 4483 */ 4484 static void __perf_event_read(void *info) 4485 { 4486 struct perf_read_data *data = info; 4487 struct perf_event *sub, *event = data->event; 4488 struct perf_event_context *ctx = event->ctx; 4489 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4490 struct pmu *pmu = event->pmu; 4491 4492 /* 4493 * If this is a task context, we need to check whether it is 4494 * the current task context of this cpu. If not it has been 4495 * scheduled out before the smp call arrived. In that case 4496 * event->count would have been updated to a recent sample 4497 * when the event was scheduled out. 4498 */ 4499 if (ctx->task && cpuctx->task_ctx != ctx) 4500 return; 4501 4502 raw_spin_lock(&ctx->lock); 4503 if (ctx->is_active & EVENT_TIME) { 4504 update_context_time(ctx); 4505 update_cgrp_time_from_event(event); 4506 } 4507 4508 perf_event_update_time(event); 4509 if (data->group) 4510 perf_event_update_sibling_time(event); 4511 4512 if (event->state != PERF_EVENT_STATE_ACTIVE) 4513 goto unlock; 4514 4515 if (!data->group) { 4516 pmu->read(event); 4517 data->ret = 0; 4518 goto unlock; 4519 } 4520 4521 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4522 4523 pmu->read(event); 4524 4525 for_each_sibling_event(sub, event) { 4526 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4527 /* 4528 * Use sibling's PMU rather than @event's since 4529 * sibling could be on different (eg: software) PMU. 4530 */ 4531 sub->pmu->read(sub); 4532 } 4533 } 4534 4535 data->ret = pmu->commit_txn(pmu); 4536 4537 unlock: 4538 raw_spin_unlock(&ctx->lock); 4539 } 4540 4541 static inline u64 perf_event_count(struct perf_event *event) 4542 { 4543 return local64_read(&event->count) + atomic64_read(&event->child_count); 4544 } 4545 4546 static void calc_timer_values(struct perf_event *event, 4547 u64 *now, 4548 u64 *enabled, 4549 u64 *running) 4550 { 4551 u64 ctx_time; 4552 4553 *now = perf_clock(); 4554 ctx_time = perf_event_time_now(event, *now); 4555 __perf_update_times(event, ctx_time, enabled, running); 4556 } 4557 4558 /* 4559 * NMI-safe method to read a local event, that is an event that 4560 * is: 4561 * - either for the current task, or for this CPU 4562 * - does not have inherit set, for inherited task events 4563 * will not be local and we cannot read them atomically 4564 * - must not have a pmu::count method 4565 */ 4566 int perf_event_read_local(struct perf_event *event, u64 *value, 4567 u64 *enabled, u64 *running) 4568 { 4569 unsigned long flags; 4570 int event_oncpu; 4571 int event_cpu; 4572 int ret = 0; 4573 4574 /* 4575 * Disabling interrupts avoids all counter scheduling (context 4576 * switches, timer based rotation and IPIs). 4577 */ 4578 local_irq_save(flags); 4579 4580 /* 4581 * It must not be an event with inherit set, we cannot read 4582 * all child counters from atomic context. 4583 */ 4584 if (event->attr.inherit) { 4585 ret = -EOPNOTSUPP; 4586 goto out; 4587 } 4588 4589 /* If this is a per-task event, it must be for current */ 4590 if ((event->attach_state & PERF_ATTACH_TASK) && 4591 event->hw.target != current) { 4592 ret = -EINVAL; 4593 goto out; 4594 } 4595 4596 /* 4597 * Get the event CPU numbers, and adjust them to local if the event is 4598 * a per-package event that can be read locally 4599 */ 4600 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4601 event_cpu = __perf_event_read_cpu(event, event->cpu); 4602 4603 /* If this is a per-CPU event, it must be for this CPU */ 4604 if (!(event->attach_state & PERF_ATTACH_TASK) && 4605 event_cpu != smp_processor_id()) { 4606 ret = -EINVAL; 4607 goto out; 4608 } 4609 4610 /* If this is a pinned event it must be running on this CPU */ 4611 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4612 ret = -EBUSY; 4613 goto out; 4614 } 4615 4616 /* 4617 * If the event is currently on this CPU, its either a per-task event, 4618 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4619 * oncpu == -1). 4620 */ 4621 if (event_oncpu == smp_processor_id()) 4622 event->pmu->read(event); 4623 4624 *value = local64_read(&event->count); 4625 if (enabled || running) { 4626 u64 __enabled, __running, __now; 4627 4628 calc_timer_values(event, &__now, &__enabled, &__running); 4629 if (enabled) 4630 *enabled = __enabled; 4631 if (running) 4632 *running = __running; 4633 } 4634 out: 4635 local_irq_restore(flags); 4636 4637 return ret; 4638 } 4639 4640 static int perf_event_read(struct perf_event *event, bool group) 4641 { 4642 enum perf_event_state state = READ_ONCE(event->state); 4643 int event_cpu, ret = 0; 4644 4645 /* 4646 * If event is enabled and currently active on a CPU, update the 4647 * value in the event structure: 4648 */ 4649 again: 4650 if (state == PERF_EVENT_STATE_ACTIVE) { 4651 struct perf_read_data data; 4652 4653 /* 4654 * Orders the ->state and ->oncpu loads such that if we see 4655 * ACTIVE we must also see the right ->oncpu. 4656 * 4657 * Matches the smp_wmb() from event_sched_in(). 4658 */ 4659 smp_rmb(); 4660 4661 event_cpu = READ_ONCE(event->oncpu); 4662 if ((unsigned)event_cpu >= nr_cpu_ids) 4663 return 0; 4664 4665 data = (struct perf_read_data){ 4666 .event = event, 4667 .group = group, 4668 .ret = 0, 4669 }; 4670 4671 preempt_disable(); 4672 event_cpu = __perf_event_read_cpu(event, event_cpu); 4673 4674 /* 4675 * Purposely ignore the smp_call_function_single() return 4676 * value. 4677 * 4678 * If event_cpu isn't a valid CPU it means the event got 4679 * scheduled out and that will have updated the event count. 4680 * 4681 * Therefore, either way, we'll have an up-to-date event count 4682 * after this. 4683 */ 4684 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4685 preempt_enable(); 4686 ret = data.ret; 4687 4688 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4689 struct perf_event_context *ctx = event->ctx; 4690 unsigned long flags; 4691 4692 raw_spin_lock_irqsave(&ctx->lock, flags); 4693 state = event->state; 4694 if (state != PERF_EVENT_STATE_INACTIVE) { 4695 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4696 goto again; 4697 } 4698 4699 /* 4700 * May read while context is not active (e.g., thread is 4701 * blocked), in that case we cannot update context time 4702 */ 4703 if (ctx->is_active & EVENT_TIME) { 4704 update_context_time(ctx); 4705 update_cgrp_time_from_event(event); 4706 } 4707 4708 perf_event_update_time(event); 4709 if (group) 4710 perf_event_update_sibling_time(event); 4711 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4712 } 4713 4714 return ret; 4715 } 4716 4717 /* 4718 * Initialize the perf_event context in a task_struct: 4719 */ 4720 static void __perf_event_init_context(struct perf_event_context *ctx) 4721 { 4722 raw_spin_lock_init(&ctx->lock); 4723 mutex_init(&ctx->mutex); 4724 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4725 perf_event_groups_init(&ctx->pinned_groups); 4726 perf_event_groups_init(&ctx->flexible_groups); 4727 INIT_LIST_HEAD(&ctx->event_list); 4728 refcount_set(&ctx->refcount, 1); 4729 } 4730 4731 static void 4732 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4733 { 4734 epc->pmu = pmu; 4735 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4736 INIT_LIST_HEAD(&epc->pinned_active); 4737 INIT_LIST_HEAD(&epc->flexible_active); 4738 atomic_set(&epc->refcount, 1); 4739 } 4740 4741 static struct perf_event_context * 4742 alloc_perf_context(struct task_struct *task) 4743 { 4744 struct perf_event_context *ctx; 4745 4746 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4747 if (!ctx) 4748 return NULL; 4749 4750 __perf_event_init_context(ctx); 4751 if (task) 4752 ctx->task = get_task_struct(task); 4753 4754 return ctx; 4755 } 4756 4757 static struct task_struct * 4758 find_lively_task_by_vpid(pid_t vpid) 4759 { 4760 struct task_struct *task; 4761 4762 rcu_read_lock(); 4763 if (!vpid) 4764 task = current; 4765 else 4766 task = find_task_by_vpid(vpid); 4767 if (task) 4768 get_task_struct(task); 4769 rcu_read_unlock(); 4770 4771 if (!task) 4772 return ERR_PTR(-ESRCH); 4773 4774 return task; 4775 } 4776 4777 /* 4778 * Returns a matching context with refcount and pincount. 4779 */ 4780 static struct perf_event_context * 4781 find_get_context(struct task_struct *task, struct perf_event *event) 4782 { 4783 struct perf_event_context *ctx, *clone_ctx = NULL; 4784 struct perf_cpu_context *cpuctx; 4785 unsigned long flags; 4786 int err; 4787 4788 if (!task) { 4789 /* Must be root to operate on a CPU event: */ 4790 err = perf_allow_cpu(&event->attr); 4791 if (err) 4792 return ERR_PTR(err); 4793 4794 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4795 ctx = &cpuctx->ctx; 4796 get_ctx(ctx); 4797 raw_spin_lock_irqsave(&ctx->lock, flags); 4798 ++ctx->pin_count; 4799 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4800 4801 return ctx; 4802 } 4803 4804 err = -EINVAL; 4805 retry: 4806 ctx = perf_lock_task_context(task, &flags); 4807 if (ctx) { 4808 clone_ctx = unclone_ctx(ctx); 4809 ++ctx->pin_count; 4810 4811 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4812 4813 if (clone_ctx) 4814 put_ctx(clone_ctx); 4815 } else { 4816 ctx = alloc_perf_context(task); 4817 err = -ENOMEM; 4818 if (!ctx) 4819 goto errout; 4820 4821 err = 0; 4822 mutex_lock(&task->perf_event_mutex); 4823 /* 4824 * If it has already passed perf_event_exit_task(). 4825 * we must see PF_EXITING, it takes this mutex too. 4826 */ 4827 if (task->flags & PF_EXITING) 4828 err = -ESRCH; 4829 else if (task->perf_event_ctxp) 4830 err = -EAGAIN; 4831 else { 4832 get_ctx(ctx); 4833 ++ctx->pin_count; 4834 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4835 } 4836 mutex_unlock(&task->perf_event_mutex); 4837 4838 if (unlikely(err)) { 4839 put_ctx(ctx); 4840 4841 if (err == -EAGAIN) 4842 goto retry; 4843 goto errout; 4844 } 4845 } 4846 4847 return ctx; 4848 4849 errout: 4850 return ERR_PTR(err); 4851 } 4852 4853 static struct perf_event_pmu_context * 4854 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4855 struct perf_event *event) 4856 { 4857 struct perf_event_pmu_context *new = NULL, *epc; 4858 void *task_ctx_data = NULL; 4859 4860 if (!ctx->task) { 4861 /* 4862 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4863 * relies on the fact that find_get_pmu_context() cannot fail 4864 * for CPU contexts. 4865 */ 4866 struct perf_cpu_pmu_context *cpc; 4867 4868 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4869 epc = &cpc->epc; 4870 raw_spin_lock_irq(&ctx->lock); 4871 if (!epc->ctx) { 4872 atomic_set(&epc->refcount, 1); 4873 epc->embedded = 1; 4874 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4875 epc->ctx = ctx; 4876 } else { 4877 WARN_ON_ONCE(epc->ctx != ctx); 4878 atomic_inc(&epc->refcount); 4879 } 4880 raw_spin_unlock_irq(&ctx->lock); 4881 return epc; 4882 } 4883 4884 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4885 if (!new) 4886 return ERR_PTR(-ENOMEM); 4887 4888 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4889 task_ctx_data = alloc_task_ctx_data(pmu); 4890 if (!task_ctx_data) { 4891 kfree(new); 4892 return ERR_PTR(-ENOMEM); 4893 } 4894 } 4895 4896 __perf_init_event_pmu_context(new, pmu); 4897 4898 /* 4899 * XXX 4900 * 4901 * lockdep_assert_held(&ctx->mutex); 4902 * 4903 * can't because perf_event_init_task() doesn't actually hold the 4904 * child_ctx->mutex. 4905 */ 4906 4907 raw_spin_lock_irq(&ctx->lock); 4908 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4909 if (epc->pmu == pmu) { 4910 WARN_ON_ONCE(epc->ctx != ctx); 4911 atomic_inc(&epc->refcount); 4912 goto found_epc; 4913 } 4914 } 4915 4916 epc = new; 4917 new = NULL; 4918 4919 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4920 epc->ctx = ctx; 4921 4922 found_epc: 4923 if (task_ctx_data && !epc->task_ctx_data) { 4924 epc->task_ctx_data = task_ctx_data; 4925 task_ctx_data = NULL; 4926 ctx->nr_task_data++; 4927 } 4928 raw_spin_unlock_irq(&ctx->lock); 4929 4930 free_task_ctx_data(pmu, task_ctx_data); 4931 kfree(new); 4932 4933 return epc; 4934 } 4935 4936 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4937 { 4938 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4939 } 4940 4941 static void free_epc_rcu(struct rcu_head *head) 4942 { 4943 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4944 4945 kfree(epc->task_ctx_data); 4946 kfree(epc); 4947 } 4948 4949 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4950 { 4951 struct perf_event_context *ctx = epc->ctx; 4952 unsigned long flags; 4953 4954 /* 4955 * XXX 4956 * 4957 * lockdep_assert_held(&ctx->mutex); 4958 * 4959 * can't because of the call-site in _free_event()/put_event() 4960 * which isn't always called under ctx->mutex. 4961 */ 4962 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4963 return; 4964 4965 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4966 4967 list_del_init(&epc->pmu_ctx_entry); 4968 epc->ctx = NULL; 4969 4970 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4971 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4972 4973 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4974 4975 if (epc->embedded) 4976 return; 4977 4978 call_rcu(&epc->rcu_head, free_epc_rcu); 4979 } 4980 4981 static void perf_event_free_filter(struct perf_event *event); 4982 4983 static void free_event_rcu(struct rcu_head *head) 4984 { 4985 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4986 4987 if (event->ns) 4988 put_pid_ns(event->ns); 4989 perf_event_free_filter(event); 4990 kmem_cache_free(perf_event_cache, event); 4991 } 4992 4993 static void ring_buffer_attach(struct perf_event *event, 4994 struct perf_buffer *rb); 4995 4996 static void detach_sb_event(struct perf_event *event) 4997 { 4998 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4999 5000 raw_spin_lock(&pel->lock); 5001 list_del_rcu(&event->sb_list); 5002 raw_spin_unlock(&pel->lock); 5003 } 5004 5005 static bool is_sb_event(struct perf_event *event) 5006 { 5007 struct perf_event_attr *attr = &event->attr; 5008 5009 if (event->parent) 5010 return false; 5011 5012 if (event->attach_state & PERF_ATTACH_TASK) 5013 return false; 5014 5015 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5016 attr->comm || attr->comm_exec || 5017 attr->task || attr->ksymbol || 5018 attr->context_switch || attr->text_poke || 5019 attr->bpf_event) 5020 return true; 5021 return false; 5022 } 5023 5024 static void unaccount_pmu_sb_event(struct perf_event *event) 5025 { 5026 if (is_sb_event(event)) 5027 detach_sb_event(event); 5028 } 5029 5030 #ifdef CONFIG_NO_HZ_FULL 5031 static DEFINE_SPINLOCK(nr_freq_lock); 5032 #endif 5033 5034 static void unaccount_freq_event_nohz(void) 5035 { 5036 #ifdef CONFIG_NO_HZ_FULL 5037 spin_lock(&nr_freq_lock); 5038 if (atomic_dec_and_test(&nr_freq_events)) 5039 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5040 spin_unlock(&nr_freq_lock); 5041 #endif 5042 } 5043 5044 static void unaccount_freq_event(void) 5045 { 5046 if (tick_nohz_full_enabled()) 5047 unaccount_freq_event_nohz(); 5048 else 5049 atomic_dec(&nr_freq_events); 5050 } 5051 5052 static void unaccount_event(struct perf_event *event) 5053 { 5054 bool dec = false; 5055 5056 if (event->parent) 5057 return; 5058 5059 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5060 dec = true; 5061 if (event->attr.mmap || event->attr.mmap_data) 5062 atomic_dec(&nr_mmap_events); 5063 if (event->attr.build_id) 5064 atomic_dec(&nr_build_id_events); 5065 if (event->attr.comm) 5066 atomic_dec(&nr_comm_events); 5067 if (event->attr.namespaces) 5068 atomic_dec(&nr_namespaces_events); 5069 if (event->attr.cgroup) 5070 atomic_dec(&nr_cgroup_events); 5071 if (event->attr.task) 5072 atomic_dec(&nr_task_events); 5073 if (event->attr.freq) 5074 unaccount_freq_event(); 5075 if (event->attr.context_switch) { 5076 dec = true; 5077 atomic_dec(&nr_switch_events); 5078 } 5079 if (is_cgroup_event(event)) 5080 dec = true; 5081 if (has_branch_stack(event)) 5082 dec = true; 5083 if (event->attr.ksymbol) 5084 atomic_dec(&nr_ksymbol_events); 5085 if (event->attr.bpf_event) 5086 atomic_dec(&nr_bpf_events); 5087 if (event->attr.text_poke) 5088 atomic_dec(&nr_text_poke_events); 5089 5090 if (dec) { 5091 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5092 schedule_delayed_work(&perf_sched_work, HZ); 5093 } 5094 5095 unaccount_pmu_sb_event(event); 5096 } 5097 5098 static void perf_sched_delayed(struct work_struct *work) 5099 { 5100 mutex_lock(&perf_sched_mutex); 5101 if (atomic_dec_and_test(&perf_sched_count)) 5102 static_branch_disable(&perf_sched_events); 5103 mutex_unlock(&perf_sched_mutex); 5104 } 5105 5106 /* 5107 * The following implement mutual exclusion of events on "exclusive" pmus 5108 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5109 * at a time, so we disallow creating events that might conflict, namely: 5110 * 5111 * 1) cpu-wide events in the presence of per-task events, 5112 * 2) per-task events in the presence of cpu-wide events, 5113 * 3) two matching events on the same perf_event_context. 5114 * 5115 * The former two cases are handled in the allocation path (perf_event_alloc(), 5116 * _free_event()), the latter -- before the first perf_install_in_context(). 5117 */ 5118 static int exclusive_event_init(struct perf_event *event) 5119 { 5120 struct pmu *pmu = event->pmu; 5121 5122 if (!is_exclusive_pmu(pmu)) 5123 return 0; 5124 5125 /* 5126 * Prevent co-existence of per-task and cpu-wide events on the 5127 * same exclusive pmu. 5128 * 5129 * Negative pmu::exclusive_cnt means there are cpu-wide 5130 * events on this "exclusive" pmu, positive means there are 5131 * per-task events. 5132 * 5133 * Since this is called in perf_event_alloc() path, event::ctx 5134 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5135 * to mean "per-task event", because unlike other attach states it 5136 * never gets cleared. 5137 */ 5138 if (event->attach_state & PERF_ATTACH_TASK) { 5139 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5140 return -EBUSY; 5141 } else { 5142 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5143 return -EBUSY; 5144 } 5145 5146 return 0; 5147 } 5148 5149 static void exclusive_event_destroy(struct perf_event *event) 5150 { 5151 struct pmu *pmu = event->pmu; 5152 5153 if (!is_exclusive_pmu(pmu)) 5154 return; 5155 5156 /* see comment in exclusive_event_init() */ 5157 if (event->attach_state & PERF_ATTACH_TASK) 5158 atomic_dec(&pmu->exclusive_cnt); 5159 else 5160 atomic_inc(&pmu->exclusive_cnt); 5161 } 5162 5163 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5164 { 5165 if ((e1->pmu == e2->pmu) && 5166 (e1->cpu == e2->cpu || 5167 e1->cpu == -1 || 5168 e2->cpu == -1)) 5169 return true; 5170 return false; 5171 } 5172 5173 static bool exclusive_event_installable(struct perf_event *event, 5174 struct perf_event_context *ctx) 5175 { 5176 struct perf_event *iter_event; 5177 struct pmu *pmu = event->pmu; 5178 5179 lockdep_assert_held(&ctx->mutex); 5180 5181 if (!is_exclusive_pmu(pmu)) 5182 return true; 5183 5184 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5185 if (exclusive_event_match(iter_event, event)) 5186 return false; 5187 } 5188 5189 return true; 5190 } 5191 5192 static void perf_addr_filters_splice(struct perf_event *event, 5193 struct list_head *head); 5194 5195 static void perf_pending_task_sync(struct perf_event *event) 5196 { 5197 struct callback_head *head = &event->pending_task; 5198 5199 if (!event->pending_work) 5200 return; 5201 /* 5202 * If the task is queued to the current task's queue, we 5203 * obviously can't wait for it to complete. Simply cancel it. 5204 */ 5205 if (task_work_cancel(current, head)) { 5206 event->pending_work = 0; 5207 local_dec(&event->ctx->nr_pending); 5208 return; 5209 } 5210 5211 /* 5212 * All accesses related to the event are within the same RCU section in 5213 * perf_pending_task(). The RCU grace period before the event is freed 5214 * will make sure all those accesses are complete by then. 5215 */ 5216 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5217 } 5218 5219 static void _free_event(struct perf_event *event) 5220 { 5221 irq_work_sync(&event->pending_irq); 5222 irq_work_sync(&event->pending_disable_irq); 5223 perf_pending_task_sync(event); 5224 5225 unaccount_event(event); 5226 5227 security_perf_event_free(event); 5228 5229 if (event->rb) { 5230 /* 5231 * Can happen when we close an event with re-directed output. 5232 * 5233 * Since we have a 0 refcount, perf_mmap_close() will skip 5234 * over us; possibly making our ring_buffer_put() the last. 5235 */ 5236 mutex_lock(&event->mmap_mutex); 5237 ring_buffer_attach(event, NULL); 5238 mutex_unlock(&event->mmap_mutex); 5239 } 5240 5241 if (is_cgroup_event(event)) 5242 perf_detach_cgroup(event); 5243 5244 if (!event->parent) { 5245 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5246 put_callchain_buffers(); 5247 } 5248 5249 perf_event_free_bpf_prog(event); 5250 perf_addr_filters_splice(event, NULL); 5251 kfree(event->addr_filter_ranges); 5252 5253 if (event->destroy) 5254 event->destroy(event); 5255 5256 /* 5257 * Must be after ->destroy(), due to uprobe_perf_close() using 5258 * hw.target. 5259 */ 5260 if (event->hw.target) 5261 put_task_struct(event->hw.target); 5262 5263 if (event->pmu_ctx) 5264 put_pmu_ctx(event->pmu_ctx); 5265 5266 /* 5267 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5268 * all task references must be cleaned up. 5269 */ 5270 if (event->ctx) 5271 put_ctx(event->ctx); 5272 5273 exclusive_event_destroy(event); 5274 module_put(event->pmu->module); 5275 5276 call_rcu(&event->rcu_head, free_event_rcu); 5277 } 5278 5279 /* 5280 * Used to free events which have a known refcount of 1, such as in error paths 5281 * where the event isn't exposed yet and inherited events. 5282 */ 5283 static void free_event(struct perf_event *event) 5284 { 5285 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5286 "unexpected event refcount: %ld; ptr=%p\n", 5287 atomic_long_read(&event->refcount), event)) { 5288 /* leak to avoid use-after-free */ 5289 return; 5290 } 5291 5292 _free_event(event); 5293 } 5294 5295 /* 5296 * Remove user event from the owner task. 5297 */ 5298 static void perf_remove_from_owner(struct perf_event *event) 5299 { 5300 struct task_struct *owner; 5301 5302 rcu_read_lock(); 5303 /* 5304 * Matches the smp_store_release() in perf_event_exit_task(). If we 5305 * observe !owner it means the list deletion is complete and we can 5306 * indeed free this event, otherwise we need to serialize on 5307 * owner->perf_event_mutex. 5308 */ 5309 owner = READ_ONCE(event->owner); 5310 if (owner) { 5311 /* 5312 * Since delayed_put_task_struct() also drops the last 5313 * task reference we can safely take a new reference 5314 * while holding the rcu_read_lock(). 5315 */ 5316 get_task_struct(owner); 5317 } 5318 rcu_read_unlock(); 5319 5320 if (owner) { 5321 /* 5322 * If we're here through perf_event_exit_task() we're already 5323 * holding ctx->mutex which would be an inversion wrt. the 5324 * normal lock order. 5325 * 5326 * However we can safely take this lock because its the child 5327 * ctx->mutex. 5328 */ 5329 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5330 5331 /* 5332 * We have to re-check the event->owner field, if it is cleared 5333 * we raced with perf_event_exit_task(), acquiring the mutex 5334 * ensured they're done, and we can proceed with freeing the 5335 * event. 5336 */ 5337 if (event->owner) { 5338 list_del_init(&event->owner_entry); 5339 smp_store_release(&event->owner, NULL); 5340 } 5341 mutex_unlock(&owner->perf_event_mutex); 5342 put_task_struct(owner); 5343 } 5344 } 5345 5346 static void put_event(struct perf_event *event) 5347 { 5348 if (!atomic_long_dec_and_test(&event->refcount)) 5349 return; 5350 5351 _free_event(event); 5352 } 5353 5354 /* 5355 * Kill an event dead; while event:refcount will preserve the event 5356 * object, it will not preserve its functionality. Once the last 'user' 5357 * gives up the object, we'll destroy the thing. 5358 */ 5359 int perf_event_release_kernel(struct perf_event *event) 5360 { 5361 struct perf_event_context *ctx = event->ctx; 5362 struct perf_event *child, *tmp; 5363 LIST_HEAD(free_list); 5364 5365 /* 5366 * If we got here through err_alloc: free_event(event); we will not 5367 * have attached to a context yet. 5368 */ 5369 if (!ctx) { 5370 WARN_ON_ONCE(event->attach_state & 5371 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5372 goto no_ctx; 5373 } 5374 5375 if (!is_kernel_event(event)) 5376 perf_remove_from_owner(event); 5377 5378 ctx = perf_event_ctx_lock(event); 5379 WARN_ON_ONCE(ctx->parent_ctx); 5380 5381 /* 5382 * Mark this event as STATE_DEAD, there is no external reference to it 5383 * anymore. 5384 * 5385 * Anybody acquiring event->child_mutex after the below loop _must_ 5386 * also see this, most importantly inherit_event() which will avoid 5387 * placing more children on the list. 5388 * 5389 * Thus this guarantees that we will in fact observe and kill _ALL_ 5390 * child events. 5391 */ 5392 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5393 5394 perf_event_ctx_unlock(event, ctx); 5395 5396 again: 5397 mutex_lock(&event->child_mutex); 5398 list_for_each_entry(child, &event->child_list, child_list) { 5399 void *var = NULL; 5400 5401 /* 5402 * Cannot change, child events are not migrated, see the 5403 * comment with perf_event_ctx_lock_nested(). 5404 */ 5405 ctx = READ_ONCE(child->ctx); 5406 /* 5407 * Since child_mutex nests inside ctx::mutex, we must jump 5408 * through hoops. We start by grabbing a reference on the ctx. 5409 * 5410 * Since the event cannot get freed while we hold the 5411 * child_mutex, the context must also exist and have a !0 5412 * reference count. 5413 */ 5414 get_ctx(ctx); 5415 5416 /* 5417 * Now that we have a ctx ref, we can drop child_mutex, and 5418 * acquire ctx::mutex without fear of it going away. Then we 5419 * can re-acquire child_mutex. 5420 */ 5421 mutex_unlock(&event->child_mutex); 5422 mutex_lock(&ctx->mutex); 5423 mutex_lock(&event->child_mutex); 5424 5425 /* 5426 * Now that we hold ctx::mutex and child_mutex, revalidate our 5427 * state, if child is still the first entry, it didn't get freed 5428 * and we can continue doing so. 5429 */ 5430 tmp = list_first_entry_or_null(&event->child_list, 5431 struct perf_event, child_list); 5432 if (tmp == child) { 5433 perf_remove_from_context(child, DETACH_GROUP); 5434 list_move(&child->child_list, &free_list); 5435 /* 5436 * This matches the refcount bump in inherit_event(); 5437 * this can't be the last reference. 5438 */ 5439 put_event(event); 5440 } else { 5441 var = &ctx->refcount; 5442 } 5443 5444 mutex_unlock(&event->child_mutex); 5445 mutex_unlock(&ctx->mutex); 5446 put_ctx(ctx); 5447 5448 if (var) { 5449 /* 5450 * If perf_event_free_task() has deleted all events from the 5451 * ctx while the child_mutex got released above, make sure to 5452 * notify about the preceding put_ctx(). 5453 */ 5454 smp_mb(); /* pairs with wait_var_event() */ 5455 wake_up_var(var); 5456 } 5457 goto again; 5458 } 5459 mutex_unlock(&event->child_mutex); 5460 5461 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5462 void *var = &child->ctx->refcount; 5463 5464 list_del(&child->child_list); 5465 free_event(child); 5466 5467 /* 5468 * Wake any perf_event_free_task() waiting for this event to be 5469 * freed. 5470 */ 5471 smp_mb(); /* pairs with wait_var_event() */ 5472 wake_up_var(var); 5473 } 5474 5475 no_ctx: 5476 put_event(event); /* Must be the 'last' reference */ 5477 return 0; 5478 } 5479 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5480 5481 /* 5482 * Called when the last reference to the file is gone. 5483 */ 5484 static int perf_release(struct inode *inode, struct file *file) 5485 { 5486 perf_event_release_kernel(file->private_data); 5487 return 0; 5488 } 5489 5490 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5491 { 5492 struct perf_event *child; 5493 u64 total = 0; 5494 5495 *enabled = 0; 5496 *running = 0; 5497 5498 mutex_lock(&event->child_mutex); 5499 5500 (void)perf_event_read(event, false); 5501 total += perf_event_count(event); 5502 5503 *enabled += event->total_time_enabled + 5504 atomic64_read(&event->child_total_time_enabled); 5505 *running += event->total_time_running + 5506 atomic64_read(&event->child_total_time_running); 5507 5508 list_for_each_entry(child, &event->child_list, child_list) { 5509 (void)perf_event_read(child, false); 5510 total += perf_event_count(child); 5511 *enabled += child->total_time_enabled; 5512 *running += child->total_time_running; 5513 } 5514 mutex_unlock(&event->child_mutex); 5515 5516 return total; 5517 } 5518 5519 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5520 { 5521 struct perf_event_context *ctx; 5522 u64 count; 5523 5524 ctx = perf_event_ctx_lock(event); 5525 count = __perf_event_read_value(event, enabled, running); 5526 perf_event_ctx_unlock(event, ctx); 5527 5528 return count; 5529 } 5530 EXPORT_SYMBOL_GPL(perf_event_read_value); 5531 5532 static int __perf_read_group_add(struct perf_event *leader, 5533 u64 read_format, u64 *values) 5534 { 5535 struct perf_event_context *ctx = leader->ctx; 5536 struct perf_event *sub, *parent; 5537 unsigned long flags; 5538 int n = 1; /* skip @nr */ 5539 int ret; 5540 5541 ret = perf_event_read(leader, true); 5542 if (ret) 5543 return ret; 5544 5545 raw_spin_lock_irqsave(&ctx->lock, flags); 5546 /* 5547 * Verify the grouping between the parent and child (inherited) 5548 * events is still in tact. 5549 * 5550 * Specifically: 5551 * - leader->ctx->lock pins leader->sibling_list 5552 * - parent->child_mutex pins parent->child_list 5553 * - parent->ctx->mutex pins parent->sibling_list 5554 * 5555 * Because parent->ctx != leader->ctx (and child_list nests inside 5556 * ctx->mutex), group destruction is not atomic between children, also 5557 * see perf_event_release_kernel(). Additionally, parent can grow the 5558 * group. 5559 * 5560 * Therefore it is possible to have parent and child groups in a 5561 * different configuration and summing over such a beast makes no sense 5562 * what so ever. 5563 * 5564 * Reject this. 5565 */ 5566 parent = leader->parent; 5567 if (parent && 5568 (parent->group_generation != leader->group_generation || 5569 parent->nr_siblings != leader->nr_siblings)) { 5570 ret = -ECHILD; 5571 goto unlock; 5572 } 5573 5574 /* 5575 * Since we co-schedule groups, {enabled,running} times of siblings 5576 * will be identical to those of the leader, so we only publish one 5577 * set. 5578 */ 5579 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5580 values[n++] += leader->total_time_enabled + 5581 atomic64_read(&leader->child_total_time_enabled); 5582 } 5583 5584 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5585 values[n++] += leader->total_time_running + 5586 atomic64_read(&leader->child_total_time_running); 5587 } 5588 5589 /* 5590 * Write {count,id} tuples for every sibling. 5591 */ 5592 values[n++] += perf_event_count(leader); 5593 if (read_format & PERF_FORMAT_ID) 5594 values[n++] = primary_event_id(leader); 5595 if (read_format & PERF_FORMAT_LOST) 5596 values[n++] = atomic64_read(&leader->lost_samples); 5597 5598 for_each_sibling_event(sub, leader) { 5599 values[n++] += perf_event_count(sub); 5600 if (read_format & PERF_FORMAT_ID) 5601 values[n++] = primary_event_id(sub); 5602 if (read_format & PERF_FORMAT_LOST) 5603 values[n++] = atomic64_read(&sub->lost_samples); 5604 } 5605 5606 unlock: 5607 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5608 return ret; 5609 } 5610 5611 static int perf_read_group(struct perf_event *event, 5612 u64 read_format, char __user *buf) 5613 { 5614 struct perf_event *leader = event->group_leader, *child; 5615 struct perf_event_context *ctx = leader->ctx; 5616 int ret; 5617 u64 *values; 5618 5619 lockdep_assert_held(&ctx->mutex); 5620 5621 values = kzalloc(event->read_size, GFP_KERNEL); 5622 if (!values) 5623 return -ENOMEM; 5624 5625 values[0] = 1 + leader->nr_siblings; 5626 5627 mutex_lock(&leader->child_mutex); 5628 5629 ret = __perf_read_group_add(leader, read_format, values); 5630 if (ret) 5631 goto unlock; 5632 5633 list_for_each_entry(child, &leader->child_list, child_list) { 5634 ret = __perf_read_group_add(child, read_format, values); 5635 if (ret) 5636 goto unlock; 5637 } 5638 5639 mutex_unlock(&leader->child_mutex); 5640 5641 ret = event->read_size; 5642 if (copy_to_user(buf, values, event->read_size)) 5643 ret = -EFAULT; 5644 goto out; 5645 5646 unlock: 5647 mutex_unlock(&leader->child_mutex); 5648 out: 5649 kfree(values); 5650 return ret; 5651 } 5652 5653 static int perf_read_one(struct perf_event *event, 5654 u64 read_format, char __user *buf) 5655 { 5656 u64 enabled, running; 5657 u64 values[5]; 5658 int n = 0; 5659 5660 values[n++] = __perf_event_read_value(event, &enabled, &running); 5661 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5662 values[n++] = enabled; 5663 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5664 values[n++] = running; 5665 if (read_format & PERF_FORMAT_ID) 5666 values[n++] = primary_event_id(event); 5667 if (read_format & PERF_FORMAT_LOST) 5668 values[n++] = atomic64_read(&event->lost_samples); 5669 5670 if (copy_to_user(buf, values, n * sizeof(u64))) 5671 return -EFAULT; 5672 5673 return n * sizeof(u64); 5674 } 5675 5676 static bool is_event_hup(struct perf_event *event) 5677 { 5678 bool no_children; 5679 5680 if (event->state > PERF_EVENT_STATE_EXIT) 5681 return false; 5682 5683 mutex_lock(&event->child_mutex); 5684 no_children = list_empty(&event->child_list); 5685 mutex_unlock(&event->child_mutex); 5686 return no_children; 5687 } 5688 5689 /* 5690 * Read the performance event - simple non blocking version for now 5691 */ 5692 static ssize_t 5693 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5694 { 5695 u64 read_format = event->attr.read_format; 5696 int ret; 5697 5698 /* 5699 * Return end-of-file for a read on an event that is in 5700 * error state (i.e. because it was pinned but it couldn't be 5701 * scheduled on to the CPU at some point). 5702 */ 5703 if (event->state == PERF_EVENT_STATE_ERROR) 5704 return 0; 5705 5706 if (count < event->read_size) 5707 return -ENOSPC; 5708 5709 WARN_ON_ONCE(event->ctx->parent_ctx); 5710 if (read_format & PERF_FORMAT_GROUP) 5711 ret = perf_read_group(event, read_format, buf); 5712 else 5713 ret = perf_read_one(event, read_format, buf); 5714 5715 return ret; 5716 } 5717 5718 static ssize_t 5719 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5720 { 5721 struct perf_event *event = file->private_data; 5722 struct perf_event_context *ctx; 5723 int ret; 5724 5725 ret = security_perf_event_read(event); 5726 if (ret) 5727 return ret; 5728 5729 ctx = perf_event_ctx_lock(event); 5730 ret = __perf_read(event, buf, count); 5731 perf_event_ctx_unlock(event, ctx); 5732 5733 return ret; 5734 } 5735 5736 static __poll_t perf_poll(struct file *file, poll_table *wait) 5737 { 5738 struct perf_event *event = file->private_data; 5739 struct perf_buffer *rb; 5740 __poll_t events = EPOLLHUP; 5741 5742 poll_wait(file, &event->waitq, wait); 5743 5744 if (is_event_hup(event)) 5745 return events; 5746 5747 /* 5748 * Pin the event->rb by taking event->mmap_mutex; otherwise 5749 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5750 */ 5751 mutex_lock(&event->mmap_mutex); 5752 rb = event->rb; 5753 if (rb) 5754 events = atomic_xchg(&rb->poll, 0); 5755 mutex_unlock(&event->mmap_mutex); 5756 return events; 5757 } 5758 5759 static void _perf_event_reset(struct perf_event *event) 5760 { 5761 (void)perf_event_read(event, false); 5762 local64_set(&event->count, 0); 5763 perf_event_update_userpage(event); 5764 } 5765 5766 /* Assume it's not an event with inherit set. */ 5767 u64 perf_event_pause(struct perf_event *event, bool reset) 5768 { 5769 struct perf_event_context *ctx; 5770 u64 count; 5771 5772 ctx = perf_event_ctx_lock(event); 5773 WARN_ON_ONCE(event->attr.inherit); 5774 _perf_event_disable(event); 5775 count = local64_read(&event->count); 5776 if (reset) 5777 local64_set(&event->count, 0); 5778 perf_event_ctx_unlock(event, ctx); 5779 5780 return count; 5781 } 5782 EXPORT_SYMBOL_GPL(perf_event_pause); 5783 5784 /* 5785 * Holding the top-level event's child_mutex means that any 5786 * descendant process that has inherited this event will block 5787 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5788 * task existence requirements of perf_event_enable/disable. 5789 */ 5790 static void perf_event_for_each_child(struct perf_event *event, 5791 void (*func)(struct perf_event *)) 5792 { 5793 struct perf_event *child; 5794 5795 WARN_ON_ONCE(event->ctx->parent_ctx); 5796 5797 mutex_lock(&event->child_mutex); 5798 func(event); 5799 list_for_each_entry(child, &event->child_list, child_list) 5800 func(child); 5801 mutex_unlock(&event->child_mutex); 5802 } 5803 5804 static void perf_event_for_each(struct perf_event *event, 5805 void (*func)(struct perf_event *)) 5806 { 5807 struct perf_event_context *ctx = event->ctx; 5808 struct perf_event *sibling; 5809 5810 lockdep_assert_held(&ctx->mutex); 5811 5812 event = event->group_leader; 5813 5814 perf_event_for_each_child(event, func); 5815 for_each_sibling_event(sibling, event) 5816 perf_event_for_each_child(sibling, func); 5817 } 5818 5819 static void __perf_event_period(struct perf_event *event, 5820 struct perf_cpu_context *cpuctx, 5821 struct perf_event_context *ctx, 5822 void *info) 5823 { 5824 u64 value = *((u64 *)info); 5825 bool active; 5826 5827 if (event->attr.freq) { 5828 event->attr.sample_freq = value; 5829 } else { 5830 event->attr.sample_period = value; 5831 event->hw.sample_period = value; 5832 } 5833 5834 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5835 if (active) { 5836 perf_pmu_disable(event->pmu); 5837 /* 5838 * We could be throttled; unthrottle now to avoid the tick 5839 * trying to unthrottle while we already re-started the event. 5840 */ 5841 if (event->hw.interrupts == MAX_INTERRUPTS) { 5842 event->hw.interrupts = 0; 5843 perf_log_throttle(event, 1); 5844 } 5845 event->pmu->stop(event, PERF_EF_UPDATE); 5846 } 5847 5848 local64_set(&event->hw.period_left, 0); 5849 5850 if (active) { 5851 event->pmu->start(event, PERF_EF_RELOAD); 5852 perf_pmu_enable(event->pmu); 5853 } 5854 } 5855 5856 static int perf_event_check_period(struct perf_event *event, u64 value) 5857 { 5858 return event->pmu->check_period(event, value); 5859 } 5860 5861 static int _perf_event_period(struct perf_event *event, u64 value) 5862 { 5863 if (!is_sampling_event(event)) 5864 return -EINVAL; 5865 5866 if (!value) 5867 return -EINVAL; 5868 5869 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5870 return -EINVAL; 5871 5872 if (perf_event_check_period(event, value)) 5873 return -EINVAL; 5874 5875 if (!event->attr.freq && (value & (1ULL << 63))) 5876 return -EINVAL; 5877 5878 event_function_call(event, __perf_event_period, &value); 5879 5880 return 0; 5881 } 5882 5883 int perf_event_period(struct perf_event *event, u64 value) 5884 { 5885 struct perf_event_context *ctx; 5886 int ret; 5887 5888 ctx = perf_event_ctx_lock(event); 5889 ret = _perf_event_period(event, value); 5890 perf_event_ctx_unlock(event, ctx); 5891 5892 return ret; 5893 } 5894 EXPORT_SYMBOL_GPL(perf_event_period); 5895 5896 static const struct file_operations perf_fops; 5897 5898 static inline int perf_fget_light(int fd, struct fd *p) 5899 { 5900 struct fd f = fdget(fd); 5901 if (!f.file) 5902 return -EBADF; 5903 5904 if (f.file->f_op != &perf_fops) { 5905 fdput(f); 5906 return -EBADF; 5907 } 5908 *p = f; 5909 return 0; 5910 } 5911 5912 static int perf_event_set_output(struct perf_event *event, 5913 struct perf_event *output_event); 5914 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5915 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5916 struct perf_event_attr *attr); 5917 5918 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5919 { 5920 void (*func)(struct perf_event *); 5921 u32 flags = arg; 5922 5923 switch (cmd) { 5924 case PERF_EVENT_IOC_ENABLE: 5925 func = _perf_event_enable; 5926 break; 5927 case PERF_EVENT_IOC_DISABLE: 5928 func = _perf_event_disable; 5929 break; 5930 case PERF_EVENT_IOC_RESET: 5931 func = _perf_event_reset; 5932 break; 5933 5934 case PERF_EVENT_IOC_REFRESH: 5935 return _perf_event_refresh(event, arg); 5936 5937 case PERF_EVENT_IOC_PERIOD: 5938 { 5939 u64 value; 5940 5941 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5942 return -EFAULT; 5943 5944 return _perf_event_period(event, value); 5945 } 5946 case PERF_EVENT_IOC_ID: 5947 { 5948 u64 id = primary_event_id(event); 5949 5950 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5951 return -EFAULT; 5952 return 0; 5953 } 5954 5955 case PERF_EVENT_IOC_SET_OUTPUT: 5956 { 5957 int ret; 5958 if (arg != -1) { 5959 struct perf_event *output_event; 5960 struct fd output; 5961 ret = perf_fget_light(arg, &output); 5962 if (ret) 5963 return ret; 5964 output_event = output.file->private_data; 5965 ret = perf_event_set_output(event, output_event); 5966 fdput(output); 5967 } else { 5968 ret = perf_event_set_output(event, NULL); 5969 } 5970 return ret; 5971 } 5972 5973 case PERF_EVENT_IOC_SET_FILTER: 5974 return perf_event_set_filter(event, (void __user *)arg); 5975 5976 case PERF_EVENT_IOC_SET_BPF: 5977 { 5978 struct bpf_prog *prog; 5979 int err; 5980 5981 prog = bpf_prog_get(arg); 5982 if (IS_ERR(prog)) 5983 return PTR_ERR(prog); 5984 5985 err = perf_event_set_bpf_prog(event, prog, 0); 5986 if (err) { 5987 bpf_prog_put(prog); 5988 return err; 5989 } 5990 5991 return 0; 5992 } 5993 5994 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5995 struct perf_buffer *rb; 5996 5997 rcu_read_lock(); 5998 rb = rcu_dereference(event->rb); 5999 if (!rb || !rb->nr_pages) { 6000 rcu_read_unlock(); 6001 return -EINVAL; 6002 } 6003 rb_toggle_paused(rb, !!arg); 6004 rcu_read_unlock(); 6005 return 0; 6006 } 6007 6008 case PERF_EVENT_IOC_QUERY_BPF: 6009 return perf_event_query_prog_array(event, (void __user *)arg); 6010 6011 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6012 struct perf_event_attr new_attr; 6013 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6014 &new_attr); 6015 6016 if (err) 6017 return err; 6018 6019 return perf_event_modify_attr(event, &new_attr); 6020 } 6021 default: 6022 return -ENOTTY; 6023 } 6024 6025 if (flags & PERF_IOC_FLAG_GROUP) 6026 perf_event_for_each(event, func); 6027 else 6028 perf_event_for_each_child(event, func); 6029 6030 return 0; 6031 } 6032 6033 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6034 { 6035 struct perf_event *event = file->private_data; 6036 struct perf_event_context *ctx; 6037 long ret; 6038 6039 /* Treat ioctl like writes as it is likely a mutating operation. */ 6040 ret = security_perf_event_write(event); 6041 if (ret) 6042 return ret; 6043 6044 ctx = perf_event_ctx_lock(event); 6045 ret = _perf_ioctl(event, cmd, arg); 6046 perf_event_ctx_unlock(event, ctx); 6047 6048 return ret; 6049 } 6050 6051 #ifdef CONFIG_COMPAT 6052 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6053 unsigned long arg) 6054 { 6055 switch (_IOC_NR(cmd)) { 6056 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6057 case _IOC_NR(PERF_EVENT_IOC_ID): 6058 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6059 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6060 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6061 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6062 cmd &= ~IOCSIZE_MASK; 6063 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6064 } 6065 break; 6066 } 6067 return perf_ioctl(file, cmd, arg); 6068 } 6069 #else 6070 # define perf_compat_ioctl NULL 6071 #endif 6072 6073 int perf_event_task_enable(void) 6074 { 6075 struct perf_event_context *ctx; 6076 struct perf_event *event; 6077 6078 mutex_lock(¤t->perf_event_mutex); 6079 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6080 ctx = perf_event_ctx_lock(event); 6081 perf_event_for_each_child(event, _perf_event_enable); 6082 perf_event_ctx_unlock(event, ctx); 6083 } 6084 mutex_unlock(¤t->perf_event_mutex); 6085 6086 return 0; 6087 } 6088 6089 int perf_event_task_disable(void) 6090 { 6091 struct perf_event_context *ctx; 6092 struct perf_event *event; 6093 6094 mutex_lock(¤t->perf_event_mutex); 6095 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6096 ctx = perf_event_ctx_lock(event); 6097 perf_event_for_each_child(event, _perf_event_disable); 6098 perf_event_ctx_unlock(event, ctx); 6099 } 6100 mutex_unlock(¤t->perf_event_mutex); 6101 6102 return 0; 6103 } 6104 6105 static int perf_event_index(struct perf_event *event) 6106 { 6107 if (event->hw.state & PERF_HES_STOPPED) 6108 return 0; 6109 6110 if (event->state != PERF_EVENT_STATE_ACTIVE) 6111 return 0; 6112 6113 return event->pmu->event_idx(event); 6114 } 6115 6116 static void perf_event_init_userpage(struct perf_event *event) 6117 { 6118 struct perf_event_mmap_page *userpg; 6119 struct perf_buffer *rb; 6120 6121 rcu_read_lock(); 6122 rb = rcu_dereference(event->rb); 6123 if (!rb) 6124 goto unlock; 6125 6126 userpg = rb->user_page; 6127 6128 /* Allow new userspace to detect that bit 0 is deprecated */ 6129 userpg->cap_bit0_is_deprecated = 1; 6130 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6131 userpg->data_offset = PAGE_SIZE; 6132 userpg->data_size = perf_data_size(rb); 6133 6134 unlock: 6135 rcu_read_unlock(); 6136 } 6137 6138 void __weak arch_perf_update_userpage( 6139 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6140 { 6141 } 6142 6143 /* 6144 * Callers need to ensure there can be no nesting of this function, otherwise 6145 * the seqlock logic goes bad. We can not serialize this because the arch 6146 * code calls this from NMI context. 6147 */ 6148 void perf_event_update_userpage(struct perf_event *event) 6149 { 6150 struct perf_event_mmap_page *userpg; 6151 struct perf_buffer *rb; 6152 u64 enabled, running, now; 6153 6154 rcu_read_lock(); 6155 rb = rcu_dereference(event->rb); 6156 if (!rb) 6157 goto unlock; 6158 6159 /* 6160 * compute total_time_enabled, total_time_running 6161 * based on snapshot values taken when the event 6162 * was last scheduled in. 6163 * 6164 * we cannot simply called update_context_time() 6165 * because of locking issue as we can be called in 6166 * NMI context 6167 */ 6168 calc_timer_values(event, &now, &enabled, &running); 6169 6170 userpg = rb->user_page; 6171 /* 6172 * Disable preemption to guarantee consistent time stamps are stored to 6173 * the user page. 6174 */ 6175 preempt_disable(); 6176 ++userpg->lock; 6177 barrier(); 6178 userpg->index = perf_event_index(event); 6179 userpg->offset = perf_event_count(event); 6180 if (userpg->index) 6181 userpg->offset -= local64_read(&event->hw.prev_count); 6182 6183 userpg->time_enabled = enabled + 6184 atomic64_read(&event->child_total_time_enabled); 6185 6186 userpg->time_running = running + 6187 atomic64_read(&event->child_total_time_running); 6188 6189 arch_perf_update_userpage(event, userpg, now); 6190 6191 barrier(); 6192 ++userpg->lock; 6193 preempt_enable(); 6194 unlock: 6195 rcu_read_unlock(); 6196 } 6197 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6198 6199 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6200 { 6201 struct perf_event *event = vmf->vma->vm_file->private_data; 6202 struct perf_buffer *rb; 6203 vm_fault_t ret = VM_FAULT_SIGBUS; 6204 6205 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6206 if (vmf->pgoff == 0) 6207 ret = 0; 6208 return ret; 6209 } 6210 6211 rcu_read_lock(); 6212 rb = rcu_dereference(event->rb); 6213 if (!rb) 6214 goto unlock; 6215 6216 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6217 goto unlock; 6218 6219 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6220 if (!vmf->page) 6221 goto unlock; 6222 6223 get_page(vmf->page); 6224 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6225 vmf->page->index = vmf->pgoff; 6226 6227 ret = 0; 6228 unlock: 6229 rcu_read_unlock(); 6230 6231 return ret; 6232 } 6233 6234 static void ring_buffer_attach(struct perf_event *event, 6235 struct perf_buffer *rb) 6236 { 6237 struct perf_buffer *old_rb = NULL; 6238 unsigned long flags; 6239 6240 WARN_ON_ONCE(event->parent); 6241 6242 if (event->rb) { 6243 /* 6244 * Should be impossible, we set this when removing 6245 * event->rb_entry and wait/clear when adding event->rb_entry. 6246 */ 6247 WARN_ON_ONCE(event->rcu_pending); 6248 6249 old_rb = event->rb; 6250 spin_lock_irqsave(&old_rb->event_lock, flags); 6251 list_del_rcu(&event->rb_entry); 6252 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6253 6254 event->rcu_batches = get_state_synchronize_rcu(); 6255 event->rcu_pending = 1; 6256 } 6257 6258 if (rb) { 6259 if (event->rcu_pending) { 6260 cond_synchronize_rcu(event->rcu_batches); 6261 event->rcu_pending = 0; 6262 } 6263 6264 spin_lock_irqsave(&rb->event_lock, flags); 6265 list_add_rcu(&event->rb_entry, &rb->event_list); 6266 spin_unlock_irqrestore(&rb->event_lock, flags); 6267 } 6268 6269 /* 6270 * Avoid racing with perf_mmap_close(AUX): stop the event 6271 * before swizzling the event::rb pointer; if it's getting 6272 * unmapped, its aux_mmap_count will be 0 and it won't 6273 * restart. See the comment in __perf_pmu_output_stop(). 6274 * 6275 * Data will inevitably be lost when set_output is done in 6276 * mid-air, but then again, whoever does it like this is 6277 * not in for the data anyway. 6278 */ 6279 if (has_aux(event)) 6280 perf_event_stop(event, 0); 6281 6282 rcu_assign_pointer(event->rb, rb); 6283 6284 if (old_rb) { 6285 ring_buffer_put(old_rb); 6286 /* 6287 * Since we detached before setting the new rb, so that we 6288 * could attach the new rb, we could have missed a wakeup. 6289 * Provide it now. 6290 */ 6291 wake_up_all(&event->waitq); 6292 } 6293 } 6294 6295 static void ring_buffer_wakeup(struct perf_event *event) 6296 { 6297 struct perf_buffer *rb; 6298 6299 if (event->parent) 6300 event = event->parent; 6301 6302 rcu_read_lock(); 6303 rb = rcu_dereference(event->rb); 6304 if (rb) { 6305 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6306 wake_up_all(&event->waitq); 6307 } 6308 rcu_read_unlock(); 6309 } 6310 6311 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6312 { 6313 struct perf_buffer *rb; 6314 6315 if (event->parent) 6316 event = event->parent; 6317 6318 rcu_read_lock(); 6319 rb = rcu_dereference(event->rb); 6320 if (rb) { 6321 if (!refcount_inc_not_zero(&rb->refcount)) 6322 rb = NULL; 6323 } 6324 rcu_read_unlock(); 6325 6326 return rb; 6327 } 6328 6329 void ring_buffer_put(struct perf_buffer *rb) 6330 { 6331 if (!refcount_dec_and_test(&rb->refcount)) 6332 return; 6333 6334 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6335 6336 call_rcu(&rb->rcu_head, rb_free_rcu); 6337 } 6338 6339 static void perf_mmap_open(struct vm_area_struct *vma) 6340 { 6341 struct perf_event *event = vma->vm_file->private_data; 6342 6343 atomic_inc(&event->mmap_count); 6344 atomic_inc(&event->rb->mmap_count); 6345 6346 if (vma->vm_pgoff) 6347 atomic_inc(&event->rb->aux_mmap_count); 6348 6349 if (event->pmu->event_mapped) 6350 event->pmu->event_mapped(event, vma->vm_mm); 6351 } 6352 6353 static void perf_pmu_output_stop(struct perf_event *event); 6354 6355 /* 6356 * A buffer can be mmap()ed multiple times; either directly through the same 6357 * event, or through other events by use of perf_event_set_output(). 6358 * 6359 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6360 * the buffer here, where we still have a VM context. This means we need 6361 * to detach all events redirecting to us. 6362 */ 6363 static void perf_mmap_close(struct vm_area_struct *vma) 6364 { 6365 struct perf_event *event = vma->vm_file->private_data; 6366 struct perf_buffer *rb = ring_buffer_get(event); 6367 struct user_struct *mmap_user = rb->mmap_user; 6368 int mmap_locked = rb->mmap_locked; 6369 unsigned long size = perf_data_size(rb); 6370 bool detach_rest = false; 6371 6372 if (event->pmu->event_unmapped) 6373 event->pmu->event_unmapped(event, vma->vm_mm); 6374 6375 /* 6376 * rb->aux_mmap_count will always drop before rb->mmap_count and 6377 * event->mmap_count, so it is ok to use event->mmap_mutex to 6378 * serialize with perf_mmap here. 6379 */ 6380 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6381 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6382 /* 6383 * Stop all AUX events that are writing to this buffer, 6384 * so that we can free its AUX pages and corresponding PMU 6385 * data. Note that after rb::aux_mmap_count dropped to zero, 6386 * they won't start any more (see perf_aux_output_begin()). 6387 */ 6388 perf_pmu_output_stop(event); 6389 6390 /* now it's safe to free the pages */ 6391 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6392 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6393 6394 /* this has to be the last one */ 6395 rb_free_aux(rb); 6396 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6397 6398 mutex_unlock(&event->mmap_mutex); 6399 } 6400 6401 if (atomic_dec_and_test(&rb->mmap_count)) 6402 detach_rest = true; 6403 6404 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6405 goto out_put; 6406 6407 ring_buffer_attach(event, NULL); 6408 mutex_unlock(&event->mmap_mutex); 6409 6410 /* If there's still other mmap()s of this buffer, we're done. */ 6411 if (!detach_rest) 6412 goto out_put; 6413 6414 /* 6415 * No other mmap()s, detach from all other events that might redirect 6416 * into the now unreachable buffer. Somewhat complicated by the 6417 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6418 */ 6419 again: 6420 rcu_read_lock(); 6421 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6422 if (!atomic_long_inc_not_zero(&event->refcount)) { 6423 /* 6424 * This event is en-route to free_event() which will 6425 * detach it and remove it from the list. 6426 */ 6427 continue; 6428 } 6429 rcu_read_unlock(); 6430 6431 mutex_lock(&event->mmap_mutex); 6432 /* 6433 * Check we didn't race with perf_event_set_output() which can 6434 * swizzle the rb from under us while we were waiting to 6435 * acquire mmap_mutex. 6436 * 6437 * If we find a different rb; ignore this event, a next 6438 * iteration will no longer find it on the list. We have to 6439 * still restart the iteration to make sure we're not now 6440 * iterating the wrong list. 6441 */ 6442 if (event->rb == rb) 6443 ring_buffer_attach(event, NULL); 6444 6445 mutex_unlock(&event->mmap_mutex); 6446 put_event(event); 6447 6448 /* 6449 * Restart the iteration; either we're on the wrong list or 6450 * destroyed its integrity by doing a deletion. 6451 */ 6452 goto again; 6453 } 6454 rcu_read_unlock(); 6455 6456 /* 6457 * It could be there's still a few 0-ref events on the list; they'll 6458 * get cleaned up by free_event() -- they'll also still have their 6459 * ref on the rb and will free it whenever they are done with it. 6460 * 6461 * Aside from that, this buffer is 'fully' detached and unmapped, 6462 * undo the VM accounting. 6463 */ 6464 6465 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6466 &mmap_user->locked_vm); 6467 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6468 free_uid(mmap_user); 6469 6470 out_put: 6471 ring_buffer_put(rb); /* could be last */ 6472 } 6473 6474 static const struct vm_operations_struct perf_mmap_vmops = { 6475 .open = perf_mmap_open, 6476 .close = perf_mmap_close, /* non mergeable */ 6477 .fault = perf_mmap_fault, 6478 .page_mkwrite = perf_mmap_fault, 6479 }; 6480 6481 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6482 { 6483 struct perf_event *event = file->private_data; 6484 unsigned long user_locked, user_lock_limit; 6485 struct user_struct *user = current_user(); 6486 struct perf_buffer *rb = NULL; 6487 unsigned long locked, lock_limit; 6488 unsigned long vma_size; 6489 unsigned long nr_pages; 6490 long user_extra = 0, extra = 0; 6491 int ret = 0, flags = 0; 6492 6493 /* 6494 * Don't allow mmap() of inherited per-task counters. This would 6495 * create a performance issue due to all children writing to the 6496 * same rb. 6497 */ 6498 if (event->cpu == -1 && event->attr.inherit) 6499 return -EINVAL; 6500 6501 if (!(vma->vm_flags & VM_SHARED)) 6502 return -EINVAL; 6503 6504 ret = security_perf_event_read(event); 6505 if (ret) 6506 return ret; 6507 6508 vma_size = vma->vm_end - vma->vm_start; 6509 6510 if (vma->vm_pgoff == 0) { 6511 nr_pages = (vma_size / PAGE_SIZE) - 1; 6512 } else { 6513 /* 6514 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6515 * mapped, all subsequent mappings should have the same size 6516 * and offset. Must be above the normal perf buffer. 6517 */ 6518 u64 aux_offset, aux_size; 6519 6520 if (!event->rb) 6521 return -EINVAL; 6522 6523 nr_pages = vma_size / PAGE_SIZE; 6524 if (nr_pages > INT_MAX) 6525 return -ENOMEM; 6526 6527 mutex_lock(&event->mmap_mutex); 6528 ret = -EINVAL; 6529 6530 rb = event->rb; 6531 if (!rb) 6532 goto aux_unlock; 6533 6534 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6535 aux_size = READ_ONCE(rb->user_page->aux_size); 6536 6537 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6538 goto aux_unlock; 6539 6540 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6541 goto aux_unlock; 6542 6543 /* already mapped with a different offset */ 6544 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6545 goto aux_unlock; 6546 6547 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6548 goto aux_unlock; 6549 6550 /* already mapped with a different size */ 6551 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6552 goto aux_unlock; 6553 6554 if (!is_power_of_2(nr_pages)) 6555 goto aux_unlock; 6556 6557 if (!atomic_inc_not_zero(&rb->mmap_count)) 6558 goto aux_unlock; 6559 6560 if (rb_has_aux(rb)) { 6561 atomic_inc(&rb->aux_mmap_count); 6562 ret = 0; 6563 goto unlock; 6564 } 6565 6566 atomic_set(&rb->aux_mmap_count, 1); 6567 user_extra = nr_pages; 6568 6569 goto accounting; 6570 } 6571 6572 /* 6573 * If we have rb pages ensure they're a power-of-two number, so we 6574 * can do bitmasks instead of modulo. 6575 */ 6576 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6577 return -EINVAL; 6578 6579 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6580 return -EINVAL; 6581 6582 WARN_ON_ONCE(event->ctx->parent_ctx); 6583 again: 6584 mutex_lock(&event->mmap_mutex); 6585 if (event->rb) { 6586 if (data_page_nr(event->rb) != nr_pages) { 6587 ret = -EINVAL; 6588 goto unlock; 6589 } 6590 6591 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6592 /* 6593 * Raced against perf_mmap_close(); remove the 6594 * event and try again. 6595 */ 6596 ring_buffer_attach(event, NULL); 6597 mutex_unlock(&event->mmap_mutex); 6598 goto again; 6599 } 6600 6601 goto unlock; 6602 } 6603 6604 user_extra = nr_pages + 1; 6605 6606 accounting: 6607 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6608 6609 /* 6610 * Increase the limit linearly with more CPUs: 6611 */ 6612 user_lock_limit *= num_online_cpus(); 6613 6614 user_locked = atomic_long_read(&user->locked_vm); 6615 6616 /* 6617 * sysctl_perf_event_mlock may have changed, so that 6618 * user->locked_vm > user_lock_limit 6619 */ 6620 if (user_locked > user_lock_limit) 6621 user_locked = user_lock_limit; 6622 user_locked += user_extra; 6623 6624 if (user_locked > user_lock_limit) { 6625 /* 6626 * charge locked_vm until it hits user_lock_limit; 6627 * charge the rest from pinned_vm 6628 */ 6629 extra = user_locked - user_lock_limit; 6630 user_extra -= extra; 6631 } 6632 6633 lock_limit = rlimit(RLIMIT_MEMLOCK); 6634 lock_limit >>= PAGE_SHIFT; 6635 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6636 6637 if ((locked > lock_limit) && perf_is_paranoid() && 6638 !capable(CAP_IPC_LOCK)) { 6639 ret = -EPERM; 6640 goto unlock; 6641 } 6642 6643 WARN_ON(!rb && event->rb); 6644 6645 if (vma->vm_flags & VM_WRITE) 6646 flags |= RING_BUFFER_WRITABLE; 6647 6648 if (!rb) { 6649 rb = rb_alloc(nr_pages, 6650 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6651 event->cpu, flags); 6652 6653 if (!rb) { 6654 ret = -ENOMEM; 6655 goto unlock; 6656 } 6657 6658 atomic_set(&rb->mmap_count, 1); 6659 rb->mmap_user = get_current_user(); 6660 rb->mmap_locked = extra; 6661 6662 ring_buffer_attach(event, rb); 6663 6664 perf_event_update_time(event); 6665 perf_event_init_userpage(event); 6666 perf_event_update_userpage(event); 6667 } else { 6668 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6669 event->attr.aux_watermark, flags); 6670 if (!ret) 6671 rb->aux_mmap_locked = extra; 6672 } 6673 6674 unlock: 6675 if (!ret) { 6676 atomic_long_add(user_extra, &user->locked_vm); 6677 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6678 6679 atomic_inc(&event->mmap_count); 6680 } else if (rb) { 6681 atomic_dec(&rb->mmap_count); 6682 } 6683 aux_unlock: 6684 mutex_unlock(&event->mmap_mutex); 6685 6686 /* 6687 * Since pinned accounting is per vm we cannot allow fork() to copy our 6688 * vma. 6689 */ 6690 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6691 vma->vm_ops = &perf_mmap_vmops; 6692 6693 if (event->pmu->event_mapped) 6694 event->pmu->event_mapped(event, vma->vm_mm); 6695 6696 return ret; 6697 } 6698 6699 static int perf_fasync(int fd, struct file *filp, int on) 6700 { 6701 struct inode *inode = file_inode(filp); 6702 struct perf_event *event = filp->private_data; 6703 int retval; 6704 6705 inode_lock(inode); 6706 retval = fasync_helper(fd, filp, on, &event->fasync); 6707 inode_unlock(inode); 6708 6709 if (retval < 0) 6710 return retval; 6711 6712 return 0; 6713 } 6714 6715 static const struct file_operations perf_fops = { 6716 .llseek = no_llseek, 6717 .release = perf_release, 6718 .read = perf_read, 6719 .poll = perf_poll, 6720 .unlocked_ioctl = perf_ioctl, 6721 .compat_ioctl = perf_compat_ioctl, 6722 .mmap = perf_mmap, 6723 .fasync = perf_fasync, 6724 }; 6725 6726 /* 6727 * Perf event wakeup 6728 * 6729 * If there's data, ensure we set the poll() state and publish everything 6730 * to user-space before waking everybody up. 6731 */ 6732 6733 void perf_event_wakeup(struct perf_event *event) 6734 { 6735 ring_buffer_wakeup(event); 6736 6737 if (event->pending_kill) { 6738 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6739 event->pending_kill = 0; 6740 } 6741 } 6742 6743 static void perf_sigtrap(struct perf_event *event) 6744 { 6745 /* 6746 * We'd expect this to only occur if the irq_work is delayed and either 6747 * ctx->task or current has changed in the meantime. This can be the 6748 * case on architectures that do not implement arch_irq_work_raise(). 6749 */ 6750 if (WARN_ON_ONCE(event->ctx->task != current)) 6751 return; 6752 6753 /* 6754 * Both perf_pending_task() and perf_pending_irq() can race with the 6755 * task exiting. 6756 */ 6757 if (current->flags & PF_EXITING) 6758 return; 6759 6760 send_sig_perf((void __user *)event->pending_addr, 6761 event->orig_type, event->attr.sig_data); 6762 } 6763 6764 /* 6765 * Deliver the pending work in-event-context or follow the context. 6766 */ 6767 static void __perf_pending_disable(struct perf_event *event) 6768 { 6769 int cpu = READ_ONCE(event->oncpu); 6770 6771 /* 6772 * If the event isn't running; we done. event_sched_out() will have 6773 * taken care of things. 6774 */ 6775 if (cpu < 0) 6776 return; 6777 6778 /* 6779 * Yay, we hit home and are in the context of the event. 6780 */ 6781 if (cpu == smp_processor_id()) { 6782 if (event->pending_disable) { 6783 event->pending_disable = 0; 6784 perf_event_disable_local(event); 6785 } 6786 return; 6787 } 6788 6789 /* 6790 * CPU-A CPU-B 6791 * 6792 * perf_event_disable_inatomic() 6793 * @pending_disable = CPU-A; 6794 * irq_work_queue(); 6795 * 6796 * sched-out 6797 * @pending_disable = -1; 6798 * 6799 * sched-in 6800 * perf_event_disable_inatomic() 6801 * @pending_disable = CPU-B; 6802 * irq_work_queue(); // FAILS 6803 * 6804 * irq_work_run() 6805 * perf_pending_disable() 6806 * 6807 * But the event runs on CPU-B and wants disabling there. 6808 */ 6809 irq_work_queue_on(&event->pending_disable_irq, cpu); 6810 } 6811 6812 static void perf_pending_disable(struct irq_work *entry) 6813 { 6814 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 6815 int rctx; 6816 6817 /* 6818 * If we 'fail' here, that's OK, it means recursion is already disabled 6819 * and we won't recurse 'further'. 6820 */ 6821 rctx = perf_swevent_get_recursion_context(); 6822 __perf_pending_disable(event); 6823 if (rctx >= 0) 6824 perf_swevent_put_recursion_context(rctx); 6825 } 6826 6827 static void perf_pending_irq(struct irq_work *entry) 6828 { 6829 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6830 int rctx; 6831 6832 /* 6833 * If we 'fail' here, that's OK, it means recursion is already disabled 6834 * and we won't recurse 'further'. 6835 */ 6836 rctx = perf_swevent_get_recursion_context(); 6837 6838 /* 6839 * The wakeup isn't bound to the context of the event -- it can happen 6840 * irrespective of where the event is. 6841 */ 6842 if (event->pending_wakeup) { 6843 event->pending_wakeup = 0; 6844 perf_event_wakeup(event); 6845 } 6846 6847 if (rctx >= 0) 6848 perf_swevent_put_recursion_context(rctx); 6849 } 6850 6851 static void perf_pending_task(struct callback_head *head) 6852 { 6853 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6854 int rctx; 6855 6856 /* 6857 * All accesses to the event must belong to the same implicit RCU read-side 6858 * critical section as the ->pending_work reset. See comment in 6859 * perf_pending_task_sync(). 6860 */ 6861 rcu_read_lock(); 6862 /* 6863 * If we 'fail' here, that's OK, it means recursion is already disabled 6864 * and we won't recurse 'further'. 6865 */ 6866 rctx = perf_swevent_get_recursion_context(); 6867 6868 if (event->pending_work) { 6869 event->pending_work = 0; 6870 perf_sigtrap(event); 6871 local_dec(&event->ctx->nr_pending); 6872 rcuwait_wake_up(&event->pending_work_wait); 6873 } 6874 rcu_read_unlock(); 6875 6876 if (rctx >= 0) 6877 perf_swevent_put_recursion_context(rctx); 6878 } 6879 6880 #ifdef CONFIG_GUEST_PERF_EVENTS 6881 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6882 6883 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6884 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6885 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6886 6887 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6888 { 6889 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6890 return; 6891 6892 rcu_assign_pointer(perf_guest_cbs, cbs); 6893 static_call_update(__perf_guest_state, cbs->state); 6894 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6895 6896 /* Implementing ->handle_intel_pt_intr is optional. */ 6897 if (cbs->handle_intel_pt_intr) 6898 static_call_update(__perf_guest_handle_intel_pt_intr, 6899 cbs->handle_intel_pt_intr); 6900 } 6901 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6902 6903 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6904 { 6905 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6906 return; 6907 6908 rcu_assign_pointer(perf_guest_cbs, NULL); 6909 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6910 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6911 static_call_update(__perf_guest_handle_intel_pt_intr, 6912 (void *)&__static_call_return0); 6913 synchronize_rcu(); 6914 } 6915 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6916 #endif 6917 6918 static void 6919 perf_output_sample_regs(struct perf_output_handle *handle, 6920 struct pt_regs *regs, u64 mask) 6921 { 6922 int bit; 6923 DECLARE_BITMAP(_mask, 64); 6924 6925 bitmap_from_u64(_mask, mask); 6926 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6927 u64 val; 6928 6929 val = perf_reg_value(regs, bit); 6930 perf_output_put(handle, val); 6931 } 6932 } 6933 6934 static void perf_sample_regs_user(struct perf_regs *regs_user, 6935 struct pt_regs *regs) 6936 { 6937 if (user_mode(regs)) { 6938 regs_user->abi = perf_reg_abi(current); 6939 regs_user->regs = regs; 6940 } else if (!(current->flags & PF_KTHREAD)) { 6941 perf_get_regs_user(regs_user, regs); 6942 } else { 6943 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6944 regs_user->regs = NULL; 6945 } 6946 } 6947 6948 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6949 struct pt_regs *regs) 6950 { 6951 regs_intr->regs = regs; 6952 regs_intr->abi = perf_reg_abi(current); 6953 } 6954 6955 6956 /* 6957 * Get remaining task size from user stack pointer. 6958 * 6959 * It'd be better to take stack vma map and limit this more 6960 * precisely, but there's no way to get it safely under interrupt, 6961 * so using TASK_SIZE as limit. 6962 */ 6963 static u64 perf_ustack_task_size(struct pt_regs *regs) 6964 { 6965 unsigned long addr = perf_user_stack_pointer(regs); 6966 6967 if (!addr || addr >= TASK_SIZE) 6968 return 0; 6969 6970 return TASK_SIZE - addr; 6971 } 6972 6973 static u16 6974 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6975 struct pt_regs *regs) 6976 { 6977 u64 task_size; 6978 6979 /* No regs, no stack pointer, no dump. */ 6980 if (!regs) 6981 return 0; 6982 6983 /* 6984 * Check if we fit in with the requested stack size into the: 6985 * - TASK_SIZE 6986 * If we don't, we limit the size to the TASK_SIZE. 6987 * 6988 * - remaining sample size 6989 * If we don't, we customize the stack size to 6990 * fit in to the remaining sample size. 6991 */ 6992 6993 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6994 stack_size = min(stack_size, (u16) task_size); 6995 6996 /* Current header size plus static size and dynamic size. */ 6997 header_size += 2 * sizeof(u64); 6998 6999 /* Do we fit in with the current stack dump size? */ 7000 if ((u16) (header_size + stack_size) < header_size) { 7001 /* 7002 * If we overflow the maximum size for the sample, 7003 * we customize the stack dump size to fit in. 7004 */ 7005 stack_size = USHRT_MAX - header_size - sizeof(u64); 7006 stack_size = round_up(stack_size, sizeof(u64)); 7007 } 7008 7009 return stack_size; 7010 } 7011 7012 static void 7013 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7014 struct pt_regs *regs) 7015 { 7016 /* Case of a kernel thread, nothing to dump */ 7017 if (!regs) { 7018 u64 size = 0; 7019 perf_output_put(handle, size); 7020 } else { 7021 unsigned long sp; 7022 unsigned int rem; 7023 u64 dyn_size; 7024 7025 /* 7026 * We dump: 7027 * static size 7028 * - the size requested by user or the best one we can fit 7029 * in to the sample max size 7030 * data 7031 * - user stack dump data 7032 * dynamic size 7033 * - the actual dumped size 7034 */ 7035 7036 /* Static size. */ 7037 perf_output_put(handle, dump_size); 7038 7039 /* Data. */ 7040 sp = perf_user_stack_pointer(regs); 7041 rem = __output_copy_user(handle, (void *) sp, dump_size); 7042 dyn_size = dump_size - rem; 7043 7044 perf_output_skip(handle, rem); 7045 7046 /* Dynamic size. */ 7047 perf_output_put(handle, dyn_size); 7048 } 7049 } 7050 7051 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7052 struct perf_sample_data *data, 7053 size_t size) 7054 { 7055 struct perf_event *sampler = event->aux_event; 7056 struct perf_buffer *rb; 7057 7058 data->aux_size = 0; 7059 7060 if (!sampler) 7061 goto out; 7062 7063 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7064 goto out; 7065 7066 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7067 goto out; 7068 7069 rb = ring_buffer_get(sampler); 7070 if (!rb) 7071 goto out; 7072 7073 /* 7074 * If this is an NMI hit inside sampling code, don't take 7075 * the sample. See also perf_aux_sample_output(). 7076 */ 7077 if (READ_ONCE(rb->aux_in_sampling)) { 7078 data->aux_size = 0; 7079 } else { 7080 size = min_t(size_t, size, perf_aux_size(rb)); 7081 data->aux_size = ALIGN(size, sizeof(u64)); 7082 } 7083 ring_buffer_put(rb); 7084 7085 out: 7086 return data->aux_size; 7087 } 7088 7089 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7090 struct perf_event *event, 7091 struct perf_output_handle *handle, 7092 unsigned long size) 7093 { 7094 unsigned long flags; 7095 long ret; 7096 7097 /* 7098 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7099 * paths. If we start calling them in NMI context, they may race with 7100 * the IRQ ones, that is, for example, re-starting an event that's just 7101 * been stopped, which is why we're using a separate callback that 7102 * doesn't change the event state. 7103 * 7104 * IRQs need to be disabled to prevent IPIs from racing with us. 7105 */ 7106 local_irq_save(flags); 7107 /* 7108 * Guard against NMI hits inside the critical section; 7109 * see also perf_prepare_sample_aux(). 7110 */ 7111 WRITE_ONCE(rb->aux_in_sampling, 1); 7112 barrier(); 7113 7114 ret = event->pmu->snapshot_aux(event, handle, size); 7115 7116 barrier(); 7117 WRITE_ONCE(rb->aux_in_sampling, 0); 7118 local_irq_restore(flags); 7119 7120 return ret; 7121 } 7122 7123 static void perf_aux_sample_output(struct perf_event *event, 7124 struct perf_output_handle *handle, 7125 struct perf_sample_data *data) 7126 { 7127 struct perf_event *sampler = event->aux_event; 7128 struct perf_buffer *rb; 7129 unsigned long pad; 7130 long size; 7131 7132 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7133 return; 7134 7135 rb = ring_buffer_get(sampler); 7136 if (!rb) 7137 return; 7138 7139 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7140 7141 /* 7142 * An error here means that perf_output_copy() failed (returned a 7143 * non-zero surplus that it didn't copy), which in its current 7144 * enlightened implementation is not possible. If that changes, we'd 7145 * like to know. 7146 */ 7147 if (WARN_ON_ONCE(size < 0)) 7148 goto out_put; 7149 7150 /* 7151 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7152 * perf_prepare_sample_aux(), so should not be more than that. 7153 */ 7154 pad = data->aux_size - size; 7155 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7156 pad = 8; 7157 7158 if (pad) { 7159 u64 zero = 0; 7160 perf_output_copy(handle, &zero, pad); 7161 } 7162 7163 out_put: 7164 ring_buffer_put(rb); 7165 } 7166 7167 /* 7168 * A set of common sample data types saved even for non-sample records 7169 * when event->attr.sample_id_all is set. 7170 */ 7171 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7172 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7173 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7174 7175 static void __perf_event_header__init_id(struct perf_sample_data *data, 7176 struct perf_event *event, 7177 u64 sample_type) 7178 { 7179 data->type = event->attr.sample_type; 7180 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7181 7182 if (sample_type & PERF_SAMPLE_TID) { 7183 /* namespace issues */ 7184 data->tid_entry.pid = perf_event_pid(event, current); 7185 data->tid_entry.tid = perf_event_tid(event, current); 7186 } 7187 7188 if (sample_type & PERF_SAMPLE_TIME) 7189 data->time = perf_event_clock(event); 7190 7191 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7192 data->id = primary_event_id(event); 7193 7194 if (sample_type & PERF_SAMPLE_STREAM_ID) 7195 data->stream_id = event->id; 7196 7197 if (sample_type & PERF_SAMPLE_CPU) { 7198 data->cpu_entry.cpu = raw_smp_processor_id(); 7199 data->cpu_entry.reserved = 0; 7200 } 7201 } 7202 7203 void perf_event_header__init_id(struct perf_event_header *header, 7204 struct perf_sample_data *data, 7205 struct perf_event *event) 7206 { 7207 if (event->attr.sample_id_all) { 7208 header->size += event->id_header_size; 7209 __perf_event_header__init_id(data, event, event->attr.sample_type); 7210 } 7211 } 7212 7213 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7214 struct perf_sample_data *data) 7215 { 7216 u64 sample_type = data->type; 7217 7218 if (sample_type & PERF_SAMPLE_TID) 7219 perf_output_put(handle, data->tid_entry); 7220 7221 if (sample_type & PERF_SAMPLE_TIME) 7222 perf_output_put(handle, data->time); 7223 7224 if (sample_type & PERF_SAMPLE_ID) 7225 perf_output_put(handle, data->id); 7226 7227 if (sample_type & PERF_SAMPLE_STREAM_ID) 7228 perf_output_put(handle, data->stream_id); 7229 7230 if (sample_type & PERF_SAMPLE_CPU) 7231 perf_output_put(handle, data->cpu_entry); 7232 7233 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7234 perf_output_put(handle, data->id); 7235 } 7236 7237 void perf_event__output_id_sample(struct perf_event *event, 7238 struct perf_output_handle *handle, 7239 struct perf_sample_data *sample) 7240 { 7241 if (event->attr.sample_id_all) 7242 __perf_event__output_id_sample(handle, sample); 7243 } 7244 7245 static void perf_output_read_one(struct perf_output_handle *handle, 7246 struct perf_event *event, 7247 u64 enabled, u64 running) 7248 { 7249 u64 read_format = event->attr.read_format; 7250 u64 values[5]; 7251 int n = 0; 7252 7253 values[n++] = perf_event_count(event); 7254 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7255 values[n++] = enabled + 7256 atomic64_read(&event->child_total_time_enabled); 7257 } 7258 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7259 values[n++] = running + 7260 atomic64_read(&event->child_total_time_running); 7261 } 7262 if (read_format & PERF_FORMAT_ID) 7263 values[n++] = primary_event_id(event); 7264 if (read_format & PERF_FORMAT_LOST) 7265 values[n++] = atomic64_read(&event->lost_samples); 7266 7267 __output_copy(handle, values, n * sizeof(u64)); 7268 } 7269 7270 static void perf_output_read_group(struct perf_output_handle *handle, 7271 struct perf_event *event, 7272 u64 enabled, u64 running) 7273 { 7274 struct perf_event *leader = event->group_leader, *sub; 7275 u64 read_format = event->attr.read_format; 7276 unsigned long flags; 7277 u64 values[6]; 7278 int n = 0; 7279 7280 /* 7281 * Disabling interrupts avoids all counter scheduling 7282 * (context switches, timer based rotation and IPIs). 7283 */ 7284 local_irq_save(flags); 7285 7286 values[n++] = 1 + leader->nr_siblings; 7287 7288 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7289 values[n++] = enabled; 7290 7291 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7292 values[n++] = running; 7293 7294 if ((leader != event) && 7295 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7296 leader->pmu->read(leader); 7297 7298 values[n++] = perf_event_count(leader); 7299 if (read_format & PERF_FORMAT_ID) 7300 values[n++] = primary_event_id(leader); 7301 if (read_format & PERF_FORMAT_LOST) 7302 values[n++] = atomic64_read(&leader->lost_samples); 7303 7304 __output_copy(handle, values, n * sizeof(u64)); 7305 7306 for_each_sibling_event(sub, leader) { 7307 n = 0; 7308 7309 if ((sub != event) && 7310 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7311 sub->pmu->read(sub); 7312 7313 values[n++] = perf_event_count(sub); 7314 if (read_format & PERF_FORMAT_ID) 7315 values[n++] = primary_event_id(sub); 7316 if (read_format & PERF_FORMAT_LOST) 7317 values[n++] = atomic64_read(&sub->lost_samples); 7318 7319 __output_copy(handle, values, n * sizeof(u64)); 7320 } 7321 7322 local_irq_restore(flags); 7323 } 7324 7325 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7326 PERF_FORMAT_TOTAL_TIME_RUNNING) 7327 7328 /* 7329 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7330 * 7331 * The problem is that its both hard and excessively expensive to iterate the 7332 * child list, not to mention that its impossible to IPI the children running 7333 * on another CPU, from interrupt/NMI context. 7334 */ 7335 static void perf_output_read(struct perf_output_handle *handle, 7336 struct perf_event *event) 7337 { 7338 u64 enabled = 0, running = 0, now; 7339 u64 read_format = event->attr.read_format; 7340 7341 /* 7342 * compute total_time_enabled, total_time_running 7343 * based on snapshot values taken when the event 7344 * was last scheduled in. 7345 * 7346 * we cannot simply called update_context_time() 7347 * because of locking issue as we are called in 7348 * NMI context 7349 */ 7350 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7351 calc_timer_values(event, &now, &enabled, &running); 7352 7353 if (event->attr.read_format & PERF_FORMAT_GROUP) 7354 perf_output_read_group(handle, event, enabled, running); 7355 else 7356 perf_output_read_one(handle, event, enabled, running); 7357 } 7358 7359 void perf_output_sample(struct perf_output_handle *handle, 7360 struct perf_event_header *header, 7361 struct perf_sample_data *data, 7362 struct perf_event *event) 7363 { 7364 u64 sample_type = data->type; 7365 7366 perf_output_put(handle, *header); 7367 7368 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7369 perf_output_put(handle, data->id); 7370 7371 if (sample_type & PERF_SAMPLE_IP) 7372 perf_output_put(handle, data->ip); 7373 7374 if (sample_type & PERF_SAMPLE_TID) 7375 perf_output_put(handle, data->tid_entry); 7376 7377 if (sample_type & PERF_SAMPLE_TIME) 7378 perf_output_put(handle, data->time); 7379 7380 if (sample_type & PERF_SAMPLE_ADDR) 7381 perf_output_put(handle, data->addr); 7382 7383 if (sample_type & PERF_SAMPLE_ID) 7384 perf_output_put(handle, data->id); 7385 7386 if (sample_type & PERF_SAMPLE_STREAM_ID) 7387 perf_output_put(handle, data->stream_id); 7388 7389 if (sample_type & PERF_SAMPLE_CPU) 7390 perf_output_put(handle, data->cpu_entry); 7391 7392 if (sample_type & PERF_SAMPLE_PERIOD) 7393 perf_output_put(handle, data->period); 7394 7395 if (sample_type & PERF_SAMPLE_READ) 7396 perf_output_read(handle, event); 7397 7398 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7399 int size = 1; 7400 7401 size += data->callchain->nr; 7402 size *= sizeof(u64); 7403 __output_copy(handle, data->callchain, size); 7404 } 7405 7406 if (sample_type & PERF_SAMPLE_RAW) { 7407 struct perf_raw_record *raw = data->raw; 7408 7409 if (raw) { 7410 struct perf_raw_frag *frag = &raw->frag; 7411 7412 perf_output_put(handle, raw->size); 7413 do { 7414 if (frag->copy) { 7415 __output_custom(handle, frag->copy, 7416 frag->data, frag->size); 7417 } else { 7418 __output_copy(handle, frag->data, 7419 frag->size); 7420 } 7421 if (perf_raw_frag_last(frag)) 7422 break; 7423 frag = frag->next; 7424 } while (1); 7425 if (frag->pad) 7426 __output_skip(handle, NULL, frag->pad); 7427 } else { 7428 struct { 7429 u32 size; 7430 u32 data; 7431 } raw = { 7432 .size = sizeof(u32), 7433 .data = 0, 7434 }; 7435 perf_output_put(handle, raw); 7436 } 7437 } 7438 7439 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7440 if (data->br_stack) { 7441 size_t size; 7442 7443 size = data->br_stack->nr 7444 * sizeof(struct perf_branch_entry); 7445 7446 perf_output_put(handle, data->br_stack->nr); 7447 if (branch_sample_hw_index(event)) 7448 perf_output_put(handle, data->br_stack->hw_idx); 7449 perf_output_copy(handle, data->br_stack->entries, size); 7450 /* 7451 * Add the extension space which is appended 7452 * right after the struct perf_branch_stack. 7453 */ 7454 if (data->br_stack_cntr) { 7455 size = data->br_stack->nr * sizeof(u64); 7456 perf_output_copy(handle, data->br_stack_cntr, size); 7457 } 7458 } else { 7459 /* 7460 * we always store at least the value of nr 7461 */ 7462 u64 nr = 0; 7463 perf_output_put(handle, nr); 7464 } 7465 } 7466 7467 if (sample_type & PERF_SAMPLE_REGS_USER) { 7468 u64 abi = data->regs_user.abi; 7469 7470 /* 7471 * If there are no regs to dump, notice it through 7472 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7473 */ 7474 perf_output_put(handle, abi); 7475 7476 if (abi) { 7477 u64 mask = event->attr.sample_regs_user; 7478 perf_output_sample_regs(handle, 7479 data->regs_user.regs, 7480 mask); 7481 } 7482 } 7483 7484 if (sample_type & PERF_SAMPLE_STACK_USER) { 7485 perf_output_sample_ustack(handle, 7486 data->stack_user_size, 7487 data->regs_user.regs); 7488 } 7489 7490 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7491 perf_output_put(handle, data->weight.full); 7492 7493 if (sample_type & PERF_SAMPLE_DATA_SRC) 7494 perf_output_put(handle, data->data_src.val); 7495 7496 if (sample_type & PERF_SAMPLE_TRANSACTION) 7497 perf_output_put(handle, data->txn); 7498 7499 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7500 u64 abi = data->regs_intr.abi; 7501 /* 7502 * If there are no regs to dump, notice it through 7503 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7504 */ 7505 perf_output_put(handle, abi); 7506 7507 if (abi) { 7508 u64 mask = event->attr.sample_regs_intr; 7509 7510 perf_output_sample_regs(handle, 7511 data->regs_intr.regs, 7512 mask); 7513 } 7514 } 7515 7516 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7517 perf_output_put(handle, data->phys_addr); 7518 7519 if (sample_type & PERF_SAMPLE_CGROUP) 7520 perf_output_put(handle, data->cgroup); 7521 7522 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7523 perf_output_put(handle, data->data_page_size); 7524 7525 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7526 perf_output_put(handle, data->code_page_size); 7527 7528 if (sample_type & PERF_SAMPLE_AUX) { 7529 perf_output_put(handle, data->aux_size); 7530 7531 if (data->aux_size) 7532 perf_aux_sample_output(event, handle, data); 7533 } 7534 7535 if (!event->attr.watermark) { 7536 int wakeup_events = event->attr.wakeup_events; 7537 7538 if (wakeup_events) { 7539 struct perf_buffer *rb = handle->rb; 7540 int events = local_inc_return(&rb->events); 7541 7542 if (events >= wakeup_events) { 7543 local_sub(wakeup_events, &rb->events); 7544 local_inc(&rb->wakeup); 7545 } 7546 } 7547 } 7548 } 7549 7550 static u64 perf_virt_to_phys(u64 virt) 7551 { 7552 u64 phys_addr = 0; 7553 7554 if (!virt) 7555 return 0; 7556 7557 if (virt >= TASK_SIZE) { 7558 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7559 if (virt_addr_valid((void *)(uintptr_t)virt) && 7560 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7561 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7562 } else { 7563 /* 7564 * Walking the pages tables for user address. 7565 * Interrupts are disabled, so it prevents any tear down 7566 * of the page tables. 7567 * Try IRQ-safe get_user_page_fast_only first. 7568 * If failed, leave phys_addr as 0. 7569 */ 7570 if (current->mm != NULL) { 7571 struct page *p; 7572 7573 pagefault_disable(); 7574 if (get_user_page_fast_only(virt, 0, &p)) { 7575 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7576 put_page(p); 7577 } 7578 pagefault_enable(); 7579 } 7580 } 7581 7582 return phys_addr; 7583 } 7584 7585 /* 7586 * Return the pagetable size of a given virtual address. 7587 */ 7588 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7589 { 7590 u64 size = 0; 7591 7592 #ifdef CONFIG_HAVE_GUP_FAST 7593 pgd_t *pgdp, pgd; 7594 p4d_t *p4dp, p4d; 7595 pud_t *pudp, pud; 7596 pmd_t *pmdp, pmd; 7597 pte_t *ptep, pte; 7598 7599 pgdp = pgd_offset(mm, addr); 7600 pgd = READ_ONCE(*pgdp); 7601 if (pgd_none(pgd)) 7602 return 0; 7603 7604 if (pgd_leaf(pgd)) 7605 return pgd_leaf_size(pgd); 7606 7607 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7608 p4d = READ_ONCE(*p4dp); 7609 if (!p4d_present(p4d)) 7610 return 0; 7611 7612 if (p4d_leaf(p4d)) 7613 return p4d_leaf_size(p4d); 7614 7615 pudp = pud_offset_lockless(p4dp, p4d, addr); 7616 pud = READ_ONCE(*pudp); 7617 if (!pud_present(pud)) 7618 return 0; 7619 7620 if (pud_leaf(pud)) 7621 return pud_leaf_size(pud); 7622 7623 pmdp = pmd_offset_lockless(pudp, pud, addr); 7624 again: 7625 pmd = pmdp_get_lockless(pmdp); 7626 if (!pmd_present(pmd)) 7627 return 0; 7628 7629 if (pmd_leaf(pmd)) 7630 return pmd_leaf_size(pmd); 7631 7632 ptep = pte_offset_map(&pmd, addr); 7633 if (!ptep) 7634 goto again; 7635 7636 pte = ptep_get_lockless(ptep); 7637 if (pte_present(pte)) 7638 size = __pte_leaf_size(pmd, pte); 7639 pte_unmap(ptep); 7640 #endif /* CONFIG_HAVE_GUP_FAST */ 7641 7642 return size; 7643 } 7644 7645 static u64 perf_get_page_size(unsigned long addr) 7646 { 7647 struct mm_struct *mm; 7648 unsigned long flags; 7649 u64 size; 7650 7651 if (!addr) 7652 return 0; 7653 7654 /* 7655 * Software page-table walkers must disable IRQs, 7656 * which prevents any tear down of the page tables. 7657 */ 7658 local_irq_save(flags); 7659 7660 mm = current->mm; 7661 if (!mm) { 7662 /* 7663 * For kernel threads and the like, use init_mm so that 7664 * we can find kernel memory. 7665 */ 7666 mm = &init_mm; 7667 } 7668 7669 size = perf_get_pgtable_size(mm, addr); 7670 7671 local_irq_restore(flags); 7672 7673 return size; 7674 } 7675 7676 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7677 7678 struct perf_callchain_entry * 7679 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7680 { 7681 bool kernel = !event->attr.exclude_callchain_kernel; 7682 bool user = !event->attr.exclude_callchain_user; 7683 /* Disallow cross-task user callchains. */ 7684 bool crosstask = event->ctx->task && event->ctx->task != current; 7685 const u32 max_stack = event->attr.sample_max_stack; 7686 struct perf_callchain_entry *callchain; 7687 7688 if (!kernel && !user) 7689 return &__empty_callchain; 7690 7691 callchain = get_perf_callchain(regs, 0, kernel, user, 7692 max_stack, crosstask, true); 7693 return callchain ?: &__empty_callchain; 7694 } 7695 7696 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7697 { 7698 return d * !!(flags & s); 7699 } 7700 7701 void perf_prepare_sample(struct perf_sample_data *data, 7702 struct perf_event *event, 7703 struct pt_regs *regs) 7704 { 7705 u64 sample_type = event->attr.sample_type; 7706 u64 filtered_sample_type; 7707 7708 /* 7709 * Add the sample flags that are dependent to others. And clear the 7710 * sample flags that have already been done by the PMU driver. 7711 */ 7712 filtered_sample_type = sample_type; 7713 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7714 PERF_SAMPLE_IP); 7715 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7716 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7717 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7718 PERF_SAMPLE_REGS_USER); 7719 filtered_sample_type &= ~data->sample_flags; 7720 7721 if (filtered_sample_type == 0) { 7722 /* Make sure it has the correct data->type for output */ 7723 data->type = event->attr.sample_type; 7724 return; 7725 } 7726 7727 __perf_event_header__init_id(data, event, filtered_sample_type); 7728 7729 if (filtered_sample_type & PERF_SAMPLE_IP) { 7730 data->ip = perf_instruction_pointer(regs); 7731 data->sample_flags |= PERF_SAMPLE_IP; 7732 } 7733 7734 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7735 perf_sample_save_callchain(data, event, regs); 7736 7737 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7738 data->raw = NULL; 7739 data->dyn_size += sizeof(u64); 7740 data->sample_flags |= PERF_SAMPLE_RAW; 7741 } 7742 7743 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7744 data->br_stack = NULL; 7745 data->dyn_size += sizeof(u64); 7746 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7747 } 7748 7749 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7750 perf_sample_regs_user(&data->regs_user, regs); 7751 7752 /* 7753 * It cannot use the filtered_sample_type here as REGS_USER can be set 7754 * by STACK_USER (using __cond_set() above) and we don't want to update 7755 * the dyn_size if it's not requested by users. 7756 */ 7757 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7758 /* regs dump ABI info */ 7759 int size = sizeof(u64); 7760 7761 if (data->regs_user.regs) { 7762 u64 mask = event->attr.sample_regs_user; 7763 size += hweight64(mask) * sizeof(u64); 7764 } 7765 7766 data->dyn_size += size; 7767 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7768 } 7769 7770 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7771 /* 7772 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7773 * processed as the last one or have additional check added 7774 * in case new sample type is added, because we could eat 7775 * up the rest of the sample size. 7776 */ 7777 u16 stack_size = event->attr.sample_stack_user; 7778 u16 header_size = perf_sample_data_size(data, event); 7779 u16 size = sizeof(u64); 7780 7781 stack_size = perf_sample_ustack_size(stack_size, header_size, 7782 data->regs_user.regs); 7783 7784 /* 7785 * If there is something to dump, add space for the dump 7786 * itself and for the field that tells the dynamic size, 7787 * which is how many have been actually dumped. 7788 */ 7789 if (stack_size) 7790 size += sizeof(u64) + stack_size; 7791 7792 data->stack_user_size = stack_size; 7793 data->dyn_size += size; 7794 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7795 } 7796 7797 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7798 data->weight.full = 0; 7799 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7800 } 7801 7802 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7803 data->data_src.val = PERF_MEM_NA; 7804 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7805 } 7806 7807 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7808 data->txn = 0; 7809 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7810 } 7811 7812 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7813 data->addr = 0; 7814 data->sample_flags |= PERF_SAMPLE_ADDR; 7815 } 7816 7817 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7818 /* regs dump ABI info */ 7819 int size = sizeof(u64); 7820 7821 perf_sample_regs_intr(&data->regs_intr, regs); 7822 7823 if (data->regs_intr.regs) { 7824 u64 mask = event->attr.sample_regs_intr; 7825 7826 size += hweight64(mask) * sizeof(u64); 7827 } 7828 7829 data->dyn_size += size; 7830 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7831 } 7832 7833 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7834 data->phys_addr = perf_virt_to_phys(data->addr); 7835 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7836 } 7837 7838 #ifdef CONFIG_CGROUP_PERF 7839 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7840 struct cgroup *cgrp; 7841 7842 /* protected by RCU */ 7843 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7844 data->cgroup = cgroup_id(cgrp); 7845 data->sample_flags |= PERF_SAMPLE_CGROUP; 7846 } 7847 #endif 7848 7849 /* 7850 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7851 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7852 * but the value will not dump to the userspace. 7853 */ 7854 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7855 data->data_page_size = perf_get_page_size(data->addr); 7856 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7857 } 7858 7859 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7860 data->code_page_size = perf_get_page_size(data->ip); 7861 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7862 } 7863 7864 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7865 u64 size; 7866 u16 header_size = perf_sample_data_size(data, event); 7867 7868 header_size += sizeof(u64); /* size */ 7869 7870 /* 7871 * Given the 16bit nature of header::size, an AUX sample can 7872 * easily overflow it, what with all the preceding sample bits. 7873 * Make sure this doesn't happen by using up to U16_MAX bytes 7874 * per sample in total (rounded down to 8 byte boundary). 7875 */ 7876 size = min_t(size_t, U16_MAX - header_size, 7877 event->attr.aux_sample_size); 7878 size = rounddown(size, 8); 7879 size = perf_prepare_sample_aux(event, data, size); 7880 7881 WARN_ON_ONCE(size + header_size > U16_MAX); 7882 data->dyn_size += size + sizeof(u64); /* size above */ 7883 data->sample_flags |= PERF_SAMPLE_AUX; 7884 } 7885 } 7886 7887 void perf_prepare_header(struct perf_event_header *header, 7888 struct perf_sample_data *data, 7889 struct perf_event *event, 7890 struct pt_regs *regs) 7891 { 7892 header->type = PERF_RECORD_SAMPLE; 7893 header->size = perf_sample_data_size(data, event); 7894 header->misc = perf_misc_flags(regs); 7895 7896 /* 7897 * If you're adding more sample types here, you likely need to do 7898 * something about the overflowing header::size, like repurpose the 7899 * lowest 3 bits of size, which should be always zero at the moment. 7900 * This raises a more important question, do we really need 512k sized 7901 * samples and why, so good argumentation is in order for whatever you 7902 * do here next. 7903 */ 7904 WARN_ON_ONCE(header->size & 7); 7905 } 7906 7907 static __always_inline int 7908 __perf_event_output(struct perf_event *event, 7909 struct perf_sample_data *data, 7910 struct pt_regs *regs, 7911 int (*output_begin)(struct perf_output_handle *, 7912 struct perf_sample_data *, 7913 struct perf_event *, 7914 unsigned int)) 7915 { 7916 struct perf_output_handle handle; 7917 struct perf_event_header header; 7918 int err; 7919 7920 /* protect the callchain buffers */ 7921 rcu_read_lock(); 7922 7923 perf_prepare_sample(data, event, regs); 7924 perf_prepare_header(&header, data, event, regs); 7925 7926 err = output_begin(&handle, data, event, header.size); 7927 if (err) 7928 goto exit; 7929 7930 perf_output_sample(&handle, &header, data, event); 7931 7932 perf_output_end(&handle); 7933 7934 exit: 7935 rcu_read_unlock(); 7936 return err; 7937 } 7938 7939 void 7940 perf_event_output_forward(struct perf_event *event, 7941 struct perf_sample_data *data, 7942 struct pt_regs *regs) 7943 { 7944 __perf_event_output(event, data, regs, perf_output_begin_forward); 7945 } 7946 7947 void 7948 perf_event_output_backward(struct perf_event *event, 7949 struct perf_sample_data *data, 7950 struct pt_regs *regs) 7951 { 7952 __perf_event_output(event, data, regs, perf_output_begin_backward); 7953 } 7954 7955 int 7956 perf_event_output(struct perf_event *event, 7957 struct perf_sample_data *data, 7958 struct pt_regs *regs) 7959 { 7960 return __perf_event_output(event, data, regs, perf_output_begin); 7961 } 7962 7963 /* 7964 * read event_id 7965 */ 7966 7967 struct perf_read_event { 7968 struct perf_event_header header; 7969 7970 u32 pid; 7971 u32 tid; 7972 }; 7973 7974 static void 7975 perf_event_read_event(struct perf_event *event, 7976 struct task_struct *task) 7977 { 7978 struct perf_output_handle handle; 7979 struct perf_sample_data sample; 7980 struct perf_read_event read_event = { 7981 .header = { 7982 .type = PERF_RECORD_READ, 7983 .misc = 0, 7984 .size = sizeof(read_event) + event->read_size, 7985 }, 7986 .pid = perf_event_pid(event, task), 7987 .tid = perf_event_tid(event, task), 7988 }; 7989 int ret; 7990 7991 perf_event_header__init_id(&read_event.header, &sample, event); 7992 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7993 if (ret) 7994 return; 7995 7996 perf_output_put(&handle, read_event); 7997 perf_output_read(&handle, event); 7998 perf_event__output_id_sample(event, &handle, &sample); 7999 8000 perf_output_end(&handle); 8001 } 8002 8003 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8004 8005 static void 8006 perf_iterate_ctx(struct perf_event_context *ctx, 8007 perf_iterate_f output, 8008 void *data, bool all) 8009 { 8010 struct perf_event *event; 8011 8012 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8013 if (!all) { 8014 if (event->state < PERF_EVENT_STATE_INACTIVE) 8015 continue; 8016 if (!event_filter_match(event)) 8017 continue; 8018 } 8019 8020 output(event, data); 8021 } 8022 } 8023 8024 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8025 { 8026 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8027 struct perf_event *event; 8028 8029 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8030 /* 8031 * Skip events that are not fully formed yet; ensure that 8032 * if we observe event->ctx, both event and ctx will be 8033 * complete enough. See perf_install_in_context(). 8034 */ 8035 if (!smp_load_acquire(&event->ctx)) 8036 continue; 8037 8038 if (event->state < PERF_EVENT_STATE_INACTIVE) 8039 continue; 8040 if (!event_filter_match(event)) 8041 continue; 8042 output(event, data); 8043 } 8044 } 8045 8046 /* 8047 * Iterate all events that need to receive side-band events. 8048 * 8049 * For new callers; ensure that account_pmu_sb_event() includes 8050 * your event, otherwise it might not get delivered. 8051 */ 8052 static void 8053 perf_iterate_sb(perf_iterate_f output, void *data, 8054 struct perf_event_context *task_ctx) 8055 { 8056 struct perf_event_context *ctx; 8057 8058 rcu_read_lock(); 8059 preempt_disable(); 8060 8061 /* 8062 * If we have task_ctx != NULL we only notify the task context itself. 8063 * The task_ctx is set only for EXIT events before releasing task 8064 * context. 8065 */ 8066 if (task_ctx) { 8067 perf_iterate_ctx(task_ctx, output, data, false); 8068 goto done; 8069 } 8070 8071 perf_iterate_sb_cpu(output, data); 8072 8073 ctx = rcu_dereference(current->perf_event_ctxp); 8074 if (ctx) 8075 perf_iterate_ctx(ctx, output, data, false); 8076 done: 8077 preempt_enable(); 8078 rcu_read_unlock(); 8079 } 8080 8081 /* 8082 * Clear all file-based filters at exec, they'll have to be 8083 * re-instated when/if these objects are mmapped again. 8084 */ 8085 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8086 { 8087 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8088 struct perf_addr_filter *filter; 8089 unsigned int restart = 0, count = 0; 8090 unsigned long flags; 8091 8092 if (!has_addr_filter(event)) 8093 return; 8094 8095 raw_spin_lock_irqsave(&ifh->lock, flags); 8096 list_for_each_entry(filter, &ifh->list, entry) { 8097 if (filter->path.dentry) { 8098 event->addr_filter_ranges[count].start = 0; 8099 event->addr_filter_ranges[count].size = 0; 8100 restart++; 8101 } 8102 8103 count++; 8104 } 8105 8106 if (restart) 8107 event->addr_filters_gen++; 8108 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8109 8110 if (restart) 8111 perf_event_stop(event, 1); 8112 } 8113 8114 void perf_event_exec(void) 8115 { 8116 struct perf_event_context *ctx; 8117 8118 ctx = perf_pin_task_context(current); 8119 if (!ctx) 8120 return; 8121 8122 perf_event_enable_on_exec(ctx); 8123 perf_event_remove_on_exec(ctx); 8124 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8125 8126 perf_unpin_context(ctx); 8127 put_ctx(ctx); 8128 } 8129 8130 struct remote_output { 8131 struct perf_buffer *rb; 8132 int err; 8133 }; 8134 8135 static void __perf_event_output_stop(struct perf_event *event, void *data) 8136 { 8137 struct perf_event *parent = event->parent; 8138 struct remote_output *ro = data; 8139 struct perf_buffer *rb = ro->rb; 8140 struct stop_event_data sd = { 8141 .event = event, 8142 }; 8143 8144 if (!has_aux(event)) 8145 return; 8146 8147 if (!parent) 8148 parent = event; 8149 8150 /* 8151 * In case of inheritance, it will be the parent that links to the 8152 * ring-buffer, but it will be the child that's actually using it. 8153 * 8154 * We are using event::rb to determine if the event should be stopped, 8155 * however this may race with ring_buffer_attach() (through set_output), 8156 * which will make us skip the event that actually needs to be stopped. 8157 * So ring_buffer_attach() has to stop an aux event before re-assigning 8158 * its rb pointer. 8159 */ 8160 if (rcu_dereference(parent->rb) == rb) 8161 ro->err = __perf_event_stop(&sd); 8162 } 8163 8164 static int __perf_pmu_output_stop(void *info) 8165 { 8166 struct perf_event *event = info; 8167 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8168 struct remote_output ro = { 8169 .rb = event->rb, 8170 }; 8171 8172 rcu_read_lock(); 8173 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8174 if (cpuctx->task_ctx) 8175 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8176 &ro, false); 8177 rcu_read_unlock(); 8178 8179 return ro.err; 8180 } 8181 8182 static void perf_pmu_output_stop(struct perf_event *event) 8183 { 8184 struct perf_event *iter; 8185 int err, cpu; 8186 8187 restart: 8188 rcu_read_lock(); 8189 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8190 /* 8191 * For per-CPU events, we need to make sure that neither they 8192 * nor their children are running; for cpu==-1 events it's 8193 * sufficient to stop the event itself if it's active, since 8194 * it can't have children. 8195 */ 8196 cpu = iter->cpu; 8197 if (cpu == -1) 8198 cpu = READ_ONCE(iter->oncpu); 8199 8200 if (cpu == -1) 8201 continue; 8202 8203 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8204 if (err == -EAGAIN) { 8205 rcu_read_unlock(); 8206 goto restart; 8207 } 8208 } 8209 rcu_read_unlock(); 8210 } 8211 8212 /* 8213 * task tracking -- fork/exit 8214 * 8215 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8216 */ 8217 8218 struct perf_task_event { 8219 struct task_struct *task; 8220 struct perf_event_context *task_ctx; 8221 8222 struct { 8223 struct perf_event_header header; 8224 8225 u32 pid; 8226 u32 ppid; 8227 u32 tid; 8228 u32 ptid; 8229 u64 time; 8230 } event_id; 8231 }; 8232 8233 static int perf_event_task_match(struct perf_event *event) 8234 { 8235 return event->attr.comm || event->attr.mmap || 8236 event->attr.mmap2 || event->attr.mmap_data || 8237 event->attr.task; 8238 } 8239 8240 static void perf_event_task_output(struct perf_event *event, 8241 void *data) 8242 { 8243 struct perf_task_event *task_event = data; 8244 struct perf_output_handle handle; 8245 struct perf_sample_data sample; 8246 struct task_struct *task = task_event->task; 8247 int ret, size = task_event->event_id.header.size; 8248 8249 if (!perf_event_task_match(event)) 8250 return; 8251 8252 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8253 8254 ret = perf_output_begin(&handle, &sample, event, 8255 task_event->event_id.header.size); 8256 if (ret) 8257 goto out; 8258 8259 task_event->event_id.pid = perf_event_pid(event, task); 8260 task_event->event_id.tid = perf_event_tid(event, task); 8261 8262 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8263 task_event->event_id.ppid = perf_event_pid(event, 8264 task->real_parent); 8265 task_event->event_id.ptid = perf_event_pid(event, 8266 task->real_parent); 8267 } else { /* PERF_RECORD_FORK */ 8268 task_event->event_id.ppid = perf_event_pid(event, current); 8269 task_event->event_id.ptid = perf_event_tid(event, current); 8270 } 8271 8272 task_event->event_id.time = perf_event_clock(event); 8273 8274 perf_output_put(&handle, task_event->event_id); 8275 8276 perf_event__output_id_sample(event, &handle, &sample); 8277 8278 perf_output_end(&handle); 8279 out: 8280 task_event->event_id.header.size = size; 8281 } 8282 8283 static void perf_event_task(struct task_struct *task, 8284 struct perf_event_context *task_ctx, 8285 int new) 8286 { 8287 struct perf_task_event task_event; 8288 8289 if (!atomic_read(&nr_comm_events) && 8290 !atomic_read(&nr_mmap_events) && 8291 !atomic_read(&nr_task_events)) 8292 return; 8293 8294 task_event = (struct perf_task_event){ 8295 .task = task, 8296 .task_ctx = task_ctx, 8297 .event_id = { 8298 .header = { 8299 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8300 .misc = 0, 8301 .size = sizeof(task_event.event_id), 8302 }, 8303 /* .pid */ 8304 /* .ppid */ 8305 /* .tid */ 8306 /* .ptid */ 8307 /* .time */ 8308 }, 8309 }; 8310 8311 perf_iterate_sb(perf_event_task_output, 8312 &task_event, 8313 task_ctx); 8314 } 8315 8316 void perf_event_fork(struct task_struct *task) 8317 { 8318 perf_event_task(task, NULL, 1); 8319 perf_event_namespaces(task); 8320 } 8321 8322 /* 8323 * comm tracking 8324 */ 8325 8326 struct perf_comm_event { 8327 struct task_struct *task; 8328 char *comm; 8329 int comm_size; 8330 8331 struct { 8332 struct perf_event_header header; 8333 8334 u32 pid; 8335 u32 tid; 8336 } event_id; 8337 }; 8338 8339 static int perf_event_comm_match(struct perf_event *event) 8340 { 8341 return event->attr.comm; 8342 } 8343 8344 static void perf_event_comm_output(struct perf_event *event, 8345 void *data) 8346 { 8347 struct perf_comm_event *comm_event = data; 8348 struct perf_output_handle handle; 8349 struct perf_sample_data sample; 8350 int size = comm_event->event_id.header.size; 8351 int ret; 8352 8353 if (!perf_event_comm_match(event)) 8354 return; 8355 8356 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8357 ret = perf_output_begin(&handle, &sample, event, 8358 comm_event->event_id.header.size); 8359 8360 if (ret) 8361 goto out; 8362 8363 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8364 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8365 8366 perf_output_put(&handle, comm_event->event_id); 8367 __output_copy(&handle, comm_event->comm, 8368 comm_event->comm_size); 8369 8370 perf_event__output_id_sample(event, &handle, &sample); 8371 8372 perf_output_end(&handle); 8373 out: 8374 comm_event->event_id.header.size = size; 8375 } 8376 8377 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8378 { 8379 char comm[TASK_COMM_LEN]; 8380 unsigned int size; 8381 8382 memset(comm, 0, sizeof(comm)); 8383 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8384 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8385 8386 comm_event->comm = comm; 8387 comm_event->comm_size = size; 8388 8389 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8390 8391 perf_iterate_sb(perf_event_comm_output, 8392 comm_event, 8393 NULL); 8394 } 8395 8396 void perf_event_comm(struct task_struct *task, bool exec) 8397 { 8398 struct perf_comm_event comm_event; 8399 8400 if (!atomic_read(&nr_comm_events)) 8401 return; 8402 8403 comm_event = (struct perf_comm_event){ 8404 .task = task, 8405 /* .comm */ 8406 /* .comm_size */ 8407 .event_id = { 8408 .header = { 8409 .type = PERF_RECORD_COMM, 8410 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8411 /* .size */ 8412 }, 8413 /* .pid */ 8414 /* .tid */ 8415 }, 8416 }; 8417 8418 perf_event_comm_event(&comm_event); 8419 } 8420 8421 /* 8422 * namespaces tracking 8423 */ 8424 8425 struct perf_namespaces_event { 8426 struct task_struct *task; 8427 8428 struct { 8429 struct perf_event_header header; 8430 8431 u32 pid; 8432 u32 tid; 8433 u64 nr_namespaces; 8434 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8435 } event_id; 8436 }; 8437 8438 static int perf_event_namespaces_match(struct perf_event *event) 8439 { 8440 return event->attr.namespaces; 8441 } 8442 8443 static void perf_event_namespaces_output(struct perf_event *event, 8444 void *data) 8445 { 8446 struct perf_namespaces_event *namespaces_event = data; 8447 struct perf_output_handle handle; 8448 struct perf_sample_data sample; 8449 u16 header_size = namespaces_event->event_id.header.size; 8450 int ret; 8451 8452 if (!perf_event_namespaces_match(event)) 8453 return; 8454 8455 perf_event_header__init_id(&namespaces_event->event_id.header, 8456 &sample, event); 8457 ret = perf_output_begin(&handle, &sample, event, 8458 namespaces_event->event_id.header.size); 8459 if (ret) 8460 goto out; 8461 8462 namespaces_event->event_id.pid = perf_event_pid(event, 8463 namespaces_event->task); 8464 namespaces_event->event_id.tid = perf_event_tid(event, 8465 namespaces_event->task); 8466 8467 perf_output_put(&handle, namespaces_event->event_id); 8468 8469 perf_event__output_id_sample(event, &handle, &sample); 8470 8471 perf_output_end(&handle); 8472 out: 8473 namespaces_event->event_id.header.size = header_size; 8474 } 8475 8476 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8477 struct task_struct *task, 8478 const struct proc_ns_operations *ns_ops) 8479 { 8480 struct path ns_path; 8481 struct inode *ns_inode; 8482 int error; 8483 8484 error = ns_get_path(&ns_path, task, ns_ops); 8485 if (!error) { 8486 ns_inode = ns_path.dentry->d_inode; 8487 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8488 ns_link_info->ino = ns_inode->i_ino; 8489 path_put(&ns_path); 8490 } 8491 } 8492 8493 void perf_event_namespaces(struct task_struct *task) 8494 { 8495 struct perf_namespaces_event namespaces_event; 8496 struct perf_ns_link_info *ns_link_info; 8497 8498 if (!atomic_read(&nr_namespaces_events)) 8499 return; 8500 8501 namespaces_event = (struct perf_namespaces_event){ 8502 .task = task, 8503 .event_id = { 8504 .header = { 8505 .type = PERF_RECORD_NAMESPACES, 8506 .misc = 0, 8507 .size = sizeof(namespaces_event.event_id), 8508 }, 8509 /* .pid */ 8510 /* .tid */ 8511 .nr_namespaces = NR_NAMESPACES, 8512 /* .link_info[NR_NAMESPACES] */ 8513 }, 8514 }; 8515 8516 ns_link_info = namespaces_event.event_id.link_info; 8517 8518 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8519 task, &mntns_operations); 8520 8521 #ifdef CONFIG_USER_NS 8522 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8523 task, &userns_operations); 8524 #endif 8525 #ifdef CONFIG_NET_NS 8526 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8527 task, &netns_operations); 8528 #endif 8529 #ifdef CONFIG_UTS_NS 8530 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8531 task, &utsns_operations); 8532 #endif 8533 #ifdef CONFIG_IPC_NS 8534 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8535 task, &ipcns_operations); 8536 #endif 8537 #ifdef CONFIG_PID_NS 8538 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8539 task, &pidns_operations); 8540 #endif 8541 #ifdef CONFIG_CGROUPS 8542 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8543 task, &cgroupns_operations); 8544 #endif 8545 8546 perf_iterate_sb(perf_event_namespaces_output, 8547 &namespaces_event, 8548 NULL); 8549 } 8550 8551 /* 8552 * cgroup tracking 8553 */ 8554 #ifdef CONFIG_CGROUP_PERF 8555 8556 struct perf_cgroup_event { 8557 char *path; 8558 int path_size; 8559 struct { 8560 struct perf_event_header header; 8561 u64 id; 8562 char path[]; 8563 } event_id; 8564 }; 8565 8566 static int perf_event_cgroup_match(struct perf_event *event) 8567 { 8568 return event->attr.cgroup; 8569 } 8570 8571 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8572 { 8573 struct perf_cgroup_event *cgroup_event = data; 8574 struct perf_output_handle handle; 8575 struct perf_sample_data sample; 8576 u16 header_size = cgroup_event->event_id.header.size; 8577 int ret; 8578 8579 if (!perf_event_cgroup_match(event)) 8580 return; 8581 8582 perf_event_header__init_id(&cgroup_event->event_id.header, 8583 &sample, event); 8584 ret = perf_output_begin(&handle, &sample, event, 8585 cgroup_event->event_id.header.size); 8586 if (ret) 8587 goto out; 8588 8589 perf_output_put(&handle, cgroup_event->event_id); 8590 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8591 8592 perf_event__output_id_sample(event, &handle, &sample); 8593 8594 perf_output_end(&handle); 8595 out: 8596 cgroup_event->event_id.header.size = header_size; 8597 } 8598 8599 static void perf_event_cgroup(struct cgroup *cgrp) 8600 { 8601 struct perf_cgroup_event cgroup_event; 8602 char path_enomem[16] = "//enomem"; 8603 char *pathname; 8604 size_t size; 8605 8606 if (!atomic_read(&nr_cgroup_events)) 8607 return; 8608 8609 cgroup_event = (struct perf_cgroup_event){ 8610 .event_id = { 8611 .header = { 8612 .type = PERF_RECORD_CGROUP, 8613 .misc = 0, 8614 .size = sizeof(cgroup_event.event_id), 8615 }, 8616 .id = cgroup_id(cgrp), 8617 }, 8618 }; 8619 8620 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8621 if (pathname == NULL) { 8622 cgroup_event.path = path_enomem; 8623 } else { 8624 /* just to be sure to have enough space for alignment */ 8625 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8626 cgroup_event.path = pathname; 8627 } 8628 8629 /* 8630 * Since our buffer works in 8 byte units we need to align our string 8631 * size to a multiple of 8. However, we must guarantee the tail end is 8632 * zero'd out to avoid leaking random bits to userspace. 8633 */ 8634 size = strlen(cgroup_event.path) + 1; 8635 while (!IS_ALIGNED(size, sizeof(u64))) 8636 cgroup_event.path[size++] = '\0'; 8637 8638 cgroup_event.event_id.header.size += size; 8639 cgroup_event.path_size = size; 8640 8641 perf_iterate_sb(perf_event_cgroup_output, 8642 &cgroup_event, 8643 NULL); 8644 8645 kfree(pathname); 8646 } 8647 8648 #endif 8649 8650 /* 8651 * mmap tracking 8652 */ 8653 8654 struct perf_mmap_event { 8655 struct vm_area_struct *vma; 8656 8657 const char *file_name; 8658 int file_size; 8659 int maj, min; 8660 u64 ino; 8661 u64 ino_generation; 8662 u32 prot, flags; 8663 u8 build_id[BUILD_ID_SIZE_MAX]; 8664 u32 build_id_size; 8665 8666 struct { 8667 struct perf_event_header header; 8668 8669 u32 pid; 8670 u32 tid; 8671 u64 start; 8672 u64 len; 8673 u64 pgoff; 8674 } event_id; 8675 }; 8676 8677 static int perf_event_mmap_match(struct perf_event *event, 8678 void *data) 8679 { 8680 struct perf_mmap_event *mmap_event = data; 8681 struct vm_area_struct *vma = mmap_event->vma; 8682 int executable = vma->vm_flags & VM_EXEC; 8683 8684 return (!executable && event->attr.mmap_data) || 8685 (executable && (event->attr.mmap || event->attr.mmap2)); 8686 } 8687 8688 static void perf_event_mmap_output(struct perf_event *event, 8689 void *data) 8690 { 8691 struct perf_mmap_event *mmap_event = data; 8692 struct perf_output_handle handle; 8693 struct perf_sample_data sample; 8694 int size = mmap_event->event_id.header.size; 8695 u32 type = mmap_event->event_id.header.type; 8696 bool use_build_id; 8697 int ret; 8698 8699 if (!perf_event_mmap_match(event, data)) 8700 return; 8701 8702 if (event->attr.mmap2) { 8703 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8704 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8705 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8706 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8707 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8708 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8709 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8710 } 8711 8712 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8713 ret = perf_output_begin(&handle, &sample, event, 8714 mmap_event->event_id.header.size); 8715 if (ret) 8716 goto out; 8717 8718 mmap_event->event_id.pid = perf_event_pid(event, current); 8719 mmap_event->event_id.tid = perf_event_tid(event, current); 8720 8721 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8722 8723 if (event->attr.mmap2 && use_build_id) 8724 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8725 8726 perf_output_put(&handle, mmap_event->event_id); 8727 8728 if (event->attr.mmap2) { 8729 if (use_build_id) { 8730 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8731 8732 __output_copy(&handle, size, 4); 8733 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8734 } else { 8735 perf_output_put(&handle, mmap_event->maj); 8736 perf_output_put(&handle, mmap_event->min); 8737 perf_output_put(&handle, mmap_event->ino); 8738 perf_output_put(&handle, mmap_event->ino_generation); 8739 } 8740 perf_output_put(&handle, mmap_event->prot); 8741 perf_output_put(&handle, mmap_event->flags); 8742 } 8743 8744 __output_copy(&handle, mmap_event->file_name, 8745 mmap_event->file_size); 8746 8747 perf_event__output_id_sample(event, &handle, &sample); 8748 8749 perf_output_end(&handle); 8750 out: 8751 mmap_event->event_id.header.size = size; 8752 mmap_event->event_id.header.type = type; 8753 } 8754 8755 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8756 { 8757 struct vm_area_struct *vma = mmap_event->vma; 8758 struct file *file = vma->vm_file; 8759 int maj = 0, min = 0; 8760 u64 ino = 0, gen = 0; 8761 u32 prot = 0, flags = 0; 8762 unsigned int size; 8763 char tmp[16]; 8764 char *buf = NULL; 8765 char *name = NULL; 8766 8767 if (vma->vm_flags & VM_READ) 8768 prot |= PROT_READ; 8769 if (vma->vm_flags & VM_WRITE) 8770 prot |= PROT_WRITE; 8771 if (vma->vm_flags & VM_EXEC) 8772 prot |= PROT_EXEC; 8773 8774 if (vma->vm_flags & VM_MAYSHARE) 8775 flags = MAP_SHARED; 8776 else 8777 flags = MAP_PRIVATE; 8778 8779 if (vma->vm_flags & VM_LOCKED) 8780 flags |= MAP_LOCKED; 8781 if (is_vm_hugetlb_page(vma)) 8782 flags |= MAP_HUGETLB; 8783 8784 if (file) { 8785 struct inode *inode; 8786 dev_t dev; 8787 8788 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8789 if (!buf) { 8790 name = "//enomem"; 8791 goto cpy_name; 8792 } 8793 /* 8794 * d_path() works from the end of the rb backwards, so we 8795 * need to add enough zero bytes after the string to handle 8796 * the 64bit alignment we do later. 8797 */ 8798 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8799 if (IS_ERR(name)) { 8800 name = "//toolong"; 8801 goto cpy_name; 8802 } 8803 inode = file_inode(vma->vm_file); 8804 dev = inode->i_sb->s_dev; 8805 ino = inode->i_ino; 8806 gen = inode->i_generation; 8807 maj = MAJOR(dev); 8808 min = MINOR(dev); 8809 8810 goto got_name; 8811 } else { 8812 if (vma->vm_ops && vma->vm_ops->name) 8813 name = (char *) vma->vm_ops->name(vma); 8814 if (!name) 8815 name = (char *)arch_vma_name(vma); 8816 if (!name) { 8817 if (vma_is_initial_heap(vma)) 8818 name = "[heap]"; 8819 else if (vma_is_initial_stack(vma)) 8820 name = "[stack]"; 8821 else 8822 name = "//anon"; 8823 } 8824 } 8825 8826 cpy_name: 8827 strscpy(tmp, name, sizeof(tmp)); 8828 name = tmp; 8829 got_name: 8830 /* 8831 * Since our buffer works in 8 byte units we need to align our string 8832 * size to a multiple of 8. However, we must guarantee the tail end is 8833 * zero'd out to avoid leaking random bits to userspace. 8834 */ 8835 size = strlen(name)+1; 8836 while (!IS_ALIGNED(size, sizeof(u64))) 8837 name[size++] = '\0'; 8838 8839 mmap_event->file_name = name; 8840 mmap_event->file_size = size; 8841 mmap_event->maj = maj; 8842 mmap_event->min = min; 8843 mmap_event->ino = ino; 8844 mmap_event->ino_generation = gen; 8845 mmap_event->prot = prot; 8846 mmap_event->flags = flags; 8847 8848 if (!(vma->vm_flags & VM_EXEC)) 8849 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8850 8851 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8852 8853 if (atomic_read(&nr_build_id_events)) 8854 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8855 8856 perf_iterate_sb(perf_event_mmap_output, 8857 mmap_event, 8858 NULL); 8859 8860 kfree(buf); 8861 } 8862 8863 /* 8864 * Check whether inode and address range match filter criteria. 8865 */ 8866 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8867 struct file *file, unsigned long offset, 8868 unsigned long size) 8869 { 8870 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8871 if (!filter->path.dentry) 8872 return false; 8873 8874 if (d_inode(filter->path.dentry) != file_inode(file)) 8875 return false; 8876 8877 if (filter->offset > offset + size) 8878 return false; 8879 8880 if (filter->offset + filter->size < offset) 8881 return false; 8882 8883 return true; 8884 } 8885 8886 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8887 struct vm_area_struct *vma, 8888 struct perf_addr_filter_range *fr) 8889 { 8890 unsigned long vma_size = vma->vm_end - vma->vm_start; 8891 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8892 struct file *file = vma->vm_file; 8893 8894 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8895 return false; 8896 8897 if (filter->offset < off) { 8898 fr->start = vma->vm_start; 8899 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8900 } else { 8901 fr->start = vma->vm_start + filter->offset - off; 8902 fr->size = min(vma->vm_end - fr->start, filter->size); 8903 } 8904 8905 return true; 8906 } 8907 8908 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8909 { 8910 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8911 struct vm_area_struct *vma = data; 8912 struct perf_addr_filter *filter; 8913 unsigned int restart = 0, count = 0; 8914 unsigned long flags; 8915 8916 if (!has_addr_filter(event)) 8917 return; 8918 8919 if (!vma->vm_file) 8920 return; 8921 8922 raw_spin_lock_irqsave(&ifh->lock, flags); 8923 list_for_each_entry(filter, &ifh->list, entry) { 8924 if (perf_addr_filter_vma_adjust(filter, vma, 8925 &event->addr_filter_ranges[count])) 8926 restart++; 8927 8928 count++; 8929 } 8930 8931 if (restart) 8932 event->addr_filters_gen++; 8933 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8934 8935 if (restart) 8936 perf_event_stop(event, 1); 8937 } 8938 8939 /* 8940 * Adjust all task's events' filters to the new vma 8941 */ 8942 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8943 { 8944 struct perf_event_context *ctx; 8945 8946 /* 8947 * Data tracing isn't supported yet and as such there is no need 8948 * to keep track of anything that isn't related to executable code: 8949 */ 8950 if (!(vma->vm_flags & VM_EXEC)) 8951 return; 8952 8953 rcu_read_lock(); 8954 ctx = rcu_dereference(current->perf_event_ctxp); 8955 if (ctx) 8956 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8957 rcu_read_unlock(); 8958 } 8959 8960 void perf_event_mmap(struct vm_area_struct *vma) 8961 { 8962 struct perf_mmap_event mmap_event; 8963 8964 if (!atomic_read(&nr_mmap_events)) 8965 return; 8966 8967 mmap_event = (struct perf_mmap_event){ 8968 .vma = vma, 8969 /* .file_name */ 8970 /* .file_size */ 8971 .event_id = { 8972 .header = { 8973 .type = PERF_RECORD_MMAP, 8974 .misc = PERF_RECORD_MISC_USER, 8975 /* .size */ 8976 }, 8977 /* .pid */ 8978 /* .tid */ 8979 .start = vma->vm_start, 8980 .len = vma->vm_end - vma->vm_start, 8981 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8982 }, 8983 /* .maj (attr_mmap2 only) */ 8984 /* .min (attr_mmap2 only) */ 8985 /* .ino (attr_mmap2 only) */ 8986 /* .ino_generation (attr_mmap2 only) */ 8987 /* .prot (attr_mmap2 only) */ 8988 /* .flags (attr_mmap2 only) */ 8989 }; 8990 8991 perf_addr_filters_adjust(vma); 8992 perf_event_mmap_event(&mmap_event); 8993 } 8994 8995 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8996 unsigned long size, u64 flags) 8997 { 8998 struct perf_output_handle handle; 8999 struct perf_sample_data sample; 9000 struct perf_aux_event { 9001 struct perf_event_header header; 9002 u64 offset; 9003 u64 size; 9004 u64 flags; 9005 } rec = { 9006 .header = { 9007 .type = PERF_RECORD_AUX, 9008 .misc = 0, 9009 .size = sizeof(rec), 9010 }, 9011 .offset = head, 9012 .size = size, 9013 .flags = flags, 9014 }; 9015 int ret; 9016 9017 perf_event_header__init_id(&rec.header, &sample, event); 9018 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9019 9020 if (ret) 9021 return; 9022 9023 perf_output_put(&handle, rec); 9024 perf_event__output_id_sample(event, &handle, &sample); 9025 9026 perf_output_end(&handle); 9027 } 9028 9029 /* 9030 * Lost/dropped samples logging 9031 */ 9032 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9033 { 9034 struct perf_output_handle handle; 9035 struct perf_sample_data sample; 9036 int ret; 9037 9038 struct { 9039 struct perf_event_header header; 9040 u64 lost; 9041 } lost_samples_event = { 9042 .header = { 9043 .type = PERF_RECORD_LOST_SAMPLES, 9044 .misc = 0, 9045 .size = sizeof(lost_samples_event), 9046 }, 9047 .lost = lost, 9048 }; 9049 9050 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9051 9052 ret = perf_output_begin(&handle, &sample, event, 9053 lost_samples_event.header.size); 9054 if (ret) 9055 return; 9056 9057 perf_output_put(&handle, lost_samples_event); 9058 perf_event__output_id_sample(event, &handle, &sample); 9059 perf_output_end(&handle); 9060 } 9061 9062 /* 9063 * context_switch tracking 9064 */ 9065 9066 struct perf_switch_event { 9067 struct task_struct *task; 9068 struct task_struct *next_prev; 9069 9070 struct { 9071 struct perf_event_header header; 9072 u32 next_prev_pid; 9073 u32 next_prev_tid; 9074 } event_id; 9075 }; 9076 9077 static int perf_event_switch_match(struct perf_event *event) 9078 { 9079 return event->attr.context_switch; 9080 } 9081 9082 static void perf_event_switch_output(struct perf_event *event, void *data) 9083 { 9084 struct perf_switch_event *se = data; 9085 struct perf_output_handle handle; 9086 struct perf_sample_data sample; 9087 int ret; 9088 9089 if (!perf_event_switch_match(event)) 9090 return; 9091 9092 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9093 if (event->ctx->task) { 9094 se->event_id.header.type = PERF_RECORD_SWITCH; 9095 se->event_id.header.size = sizeof(se->event_id.header); 9096 } else { 9097 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9098 se->event_id.header.size = sizeof(se->event_id); 9099 se->event_id.next_prev_pid = 9100 perf_event_pid(event, se->next_prev); 9101 se->event_id.next_prev_tid = 9102 perf_event_tid(event, se->next_prev); 9103 } 9104 9105 perf_event_header__init_id(&se->event_id.header, &sample, event); 9106 9107 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9108 if (ret) 9109 return; 9110 9111 if (event->ctx->task) 9112 perf_output_put(&handle, se->event_id.header); 9113 else 9114 perf_output_put(&handle, se->event_id); 9115 9116 perf_event__output_id_sample(event, &handle, &sample); 9117 9118 perf_output_end(&handle); 9119 } 9120 9121 static void perf_event_switch(struct task_struct *task, 9122 struct task_struct *next_prev, bool sched_in) 9123 { 9124 struct perf_switch_event switch_event; 9125 9126 /* N.B. caller checks nr_switch_events != 0 */ 9127 9128 switch_event = (struct perf_switch_event){ 9129 .task = task, 9130 .next_prev = next_prev, 9131 .event_id = { 9132 .header = { 9133 /* .type */ 9134 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9135 /* .size */ 9136 }, 9137 /* .next_prev_pid */ 9138 /* .next_prev_tid */ 9139 }, 9140 }; 9141 9142 if (!sched_in && task->on_rq) { 9143 switch_event.event_id.header.misc |= 9144 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9145 } 9146 9147 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9148 } 9149 9150 /* 9151 * IRQ throttle logging 9152 */ 9153 9154 static void perf_log_throttle(struct perf_event *event, int enable) 9155 { 9156 struct perf_output_handle handle; 9157 struct perf_sample_data sample; 9158 int ret; 9159 9160 struct { 9161 struct perf_event_header header; 9162 u64 time; 9163 u64 id; 9164 u64 stream_id; 9165 } throttle_event = { 9166 .header = { 9167 .type = PERF_RECORD_THROTTLE, 9168 .misc = 0, 9169 .size = sizeof(throttle_event), 9170 }, 9171 .time = perf_event_clock(event), 9172 .id = primary_event_id(event), 9173 .stream_id = event->id, 9174 }; 9175 9176 if (enable) 9177 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9178 9179 perf_event_header__init_id(&throttle_event.header, &sample, event); 9180 9181 ret = perf_output_begin(&handle, &sample, event, 9182 throttle_event.header.size); 9183 if (ret) 9184 return; 9185 9186 perf_output_put(&handle, throttle_event); 9187 perf_event__output_id_sample(event, &handle, &sample); 9188 perf_output_end(&handle); 9189 } 9190 9191 /* 9192 * ksymbol register/unregister tracking 9193 */ 9194 9195 struct perf_ksymbol_event { 9196 const char *name; 9197 int name_len; 9198 struct { 9199 struct perf_event_header header; 9200 u64 addr; 9201 u32 len; 9202 u16 ksym_type; 9203 u16 flags; 9204 } event_id; 9205 }; 9206 9207 static int perf_event_ksymbol_match(struct perf_event *event) 9208 { 9209 return event->attr.ksymbol; 9210 } 9211 9212 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9213 { 9214 struct perf_ksymbol_event *ksymbol_event = data; 9215 struct perf_output_handle handle; 9216 struct perf_sample_data sample; 9217 int ret; 9218 9219 if (!perf_event_ksymbol_match(event)) 9220 return; 9221 9222 perf_event_header__init_id(&ksymbol_event->event_id.header, 9223 &sample, event); 9224 ret = perf_output_begin(&handle, &sample, event, 9225 ksymbol_event->event_id.header.size); 9226 if (ret) 9227 return; 9228 9229 perf_output_put(&handle, ksymbol_event->event_id); 9230 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9231 perf_event__output_id_sample(event, &handle, &sample); 9232 9233 perf_output_end(&handle); 9234 } 9235 9236 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9237 const char *sym) 9238 { 9239 struct perf_ksymbol_event ksymbol_event; 9240 char name[KSYM_NAME_LEN]; 9241 u16 flags = 0; 9242 int name_len; 9243 9244 if (!atomic_read(&nr_ksymbol_events)) 9245 return; 9246 9247 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9248 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9249 goto err; 9250 9251 strscpy(name, sym, KSYM_NAME_LEN); 9252 name_len = strlen(name) + 1; 9253 while (!IS_ALIGNED(name_len, sizeof(u64))) 9254 name[name_len++] = '\0'; 9255 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9256 9257 if (unregister) 9258 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9259 9260 ksymbol_event = (struct perf_ksymbol_event){ 9261 .name = name, 9262 .name_len = name_len, 9263 .event_id = { 9264 .header = { 9265 .type = PERF_RECORD_KSYMBOL, 9266 .size = sizeof(ksymbol_event.event_id) + 9267 name_len, 9268 }, 9269 .addr = addr, 9270 .len = len, 9271 .ksym_type = ksym_type, 9272 .flags = flags, 9273 }, 9274 }; 9275 9276 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9277 return; 9278 err: 9279 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9280 } 9281 9282 /* 9283 * bpf program load/unload tracking 9284 */ 9285 9286 struct perf_bpf_event { 9287 struct bpf_prog *prog; 9288 struct { 9289 struct perf_event_header header; 9290 u16 type; 9291 u16 flags; 9292 u32 id; 9293 u8 tag[BPF_TAG_SIZE]; 9294 } event_id; 9295 }; 9296 9297 static int perf_event_bpf_match(struct perf_event *event) 9298 { 9299 return event->attr.bpf_event; 9300 } 9301 9302 static void perf_event_bpf_output(struct perf_event *event, void *data) 9303 { 9304 struct perf_bpf_event *bpf_event = data; 9305 struct perf_output_handle handle; 9306 struct perf_sample_data sample; 9307 int ret; 9308 9309 if (!perf_event_bpf_match(event)) 9310 return; 9311 9312 perf_event_header__init_id(&bpf_event->event_id.header, 9313 &sample, event); 9314 ret = perf_output_begin(&handle, &sample, event, 9315 bpf_event->event_id.header.size); 9316 if (ret) 9317 return; 9318 9319 perf_output_put(&handle, bpf_event->event_id); 9320 perf_event__output_id_sample(event, &handle, &sample); 9321 9322 perf_output_end(&handle); 9323 } 9324 9325 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9326 enum perf_bpf_event_type type) 9327 { 9328 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9329 int i; 9330 9331 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9332 (u64)(unsigned long)prog->bpf_func, 9333 prog->jited_len, unregister, 9334 prog->aux->ksym.name); 9335 9336 for (i = 1; i < prog->aux->func_cnt; i++) { 9337 struct bpf_prog *subprog = prog->aux->func[i]; 9338 9339 perf_event_ksymbol( 9340 PERF_RECORD_KSYMBOL_TYPE_BPF, 9341 (u64)(unsigned long)subprog->bpf_func, 9342 subprog->jited_len, unregister, 9343 subprog->aux->ksym.name); 9344 } 9345 } 9346 9347 void perf_event_bpf_event(struct bpf_prog *prog, 9348 enum perf_bpf_event_type type, 9349 u16 flags) 9350 { 9351 struct perf_bpf_event bpf_event; 9352 9353 switch (type) { 9354 case PERF_BPF_EVENT_PROG_LOAD: 9355 case PERF_BPF_EVENT_PROG_UNLOAD: 9356 if (atomic_read(&nr_ksymbol_events)) 9357 perf_event_bpf_emit_ksymbols(prog, type); 9358 break; 9359 default: 9360 return; 9361 } 9362 9363 if (!atomic_read(&nr_bpf_events)) 9364 return; 9365 9366 bpf_event = (struct perf_bpf_event){ 9367 .prog = prog, 9368 .event_id = { 9369 .header = { 9370 .type = PERF_RECORD_BPF_EVENT, 9371 .size = sizeof(bpf_event.event_id), 9372 }, 9373 .type = type, 9374 .flags = flags, 9375 .id = prog->aux->id, 9376 }, 9377 }; 9378 9379 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9380 9381 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9382 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9383 } 9384 9385 struct perf_text_poke_event { 9386 const void *old_bytes; 9387 const void *new_bytes; 9388 size_t pad; 9389 u16 old_len; 9390 u16 new_len; 9391 9392 struct { 9393 struct perf_event_header header; 9394 9395 u64 addr; 9396 } event_id; 9397 }; 9398 9399 static int perf_event_text_poke_match(struct perf_event *event) 9400 { 9401 return event->attr.text_poke; 9402 } 9403 9404 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9405 { 9406 struct perf_text_poke_event *text_poke_event = data; 9407 struct perf_output_handle handle; 9408 struct perf_sample_data sample; 9409 u64 padding = 0; 9410 int ret; 9411 9412 if (!perf_event_text_poke_match(event)) 9413 return; 9414 9415 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9416 9417 ret = perf_output_begin(&handle, &sample, event, 9418 text_poke_event->event_id.header.size); 9419 if (ret) 9420 return; 9421 9422 perf_output_put(&handle, text_poke_event->event_id); 9423 perf_output_put(&handle, text_poke_event->old_len); 9424 perf_output_put(&handle, text_poke_event->new_len); 9425 9426 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9427 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9428 9429 if (text_poke_event->pad) 9430 __output_copy(&handle, &padding, text_poke_event->pad); 9431 9432 perf_event__output_id_sample(event, &handle, &sample); 9433 9434 perf_output_end(&handle); 9435 } 9436 9437 void perf_event_text_poke(const void *addr, const void *old_bytes, 9438 size_t old_len, const void *new_bytes, size_t new_len) 9439 { 9440 struct perf_text_poke_event text_poke_event; 9441 size_t tot, pad; 9442 9443 if (!atomic_read(&nr_text_poke_events)) 9444 return; 9445 9446 tot = sizeof(text_poke_event.old_len) + old_len; 9447 tot += sizeof(text_poke_event.new_len) + new_len; 9448 pad = ALIGN(tot, sizeof(u64)) - tot; 9449 9450 text_poke_event = (struct perf_text_poke_event){ 9451 .old_bytes = old_bytes, 9452 .new_bytes = new_bytes, 9453 .pad = pad, 9454 .old_len = old_len, 9455 .new_len = new_len, 9456 .event_id = { 9457 .header = { 9458 .type = PERF_RECORD_TEXT_POKE, 9459 .misc = PERF_RECORD_MISC_KERNEL, 9460 .size = sizeof(text_poke_event.event_id) + tot + pad, 9461 }, 9462 .addr = (unsigned long)addr, 9463 }, 9464 }; 9465 9466 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9467 } 9468 9469 void perf_event_itrace_started(struct perf_event *event) 9470 { 9471 event->attach_state |= PERF_ATTACH_ITRACE; 9472 } 9473 9474 static void perf_log_itrace_start(struct perf_event *event) 9475 { 9476 struct perf_output_handle handle; 9477 struct perf_sample_data sample; 9478 struct perf_aux_event { 9479 struct perf_event_header header; 9480 u32 pid; 9481 u32 tid; 9482 } rec; 9483 int ret; 9484 9485 if (event->parent) 9486 event = event->parent; 9487 9488 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9489 event->attach_state & PERF_ATTACH_ITRACE) 9490 return; 9491 9492 rec.header.type = PERF_RECORD_ITRACE_START; 9493 rec.header.misc = 0; 9494 rec.header.size = sizeof(rec); 9495 rec.pid = perf_event_pid(event, current); 9496 rec.tid = perf_event_tid(event, current); 9497 9498 perf_event_header__init_id(&rec.header, &sample, event); 9499 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9500 9501 if (ret) 9502 return; 9503 9504 perf_output_put(&handle, rec); 9505 perf_event__output_id_sample(event, &handle, &sample); 9506 9507 perf_output_end(&handle); 9508 } 9509 9510 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9511 { 9512 struct perf_output_handle handle; 9513 struct perf_sample_data sample; 9514 struct perf_aux_event { 9515 struct perf_event_header header; 9516 u64 hw_id; 9517 } rec; 9518 int ret; 9519 9520 if (event->parent) 9521 event = event->parent; 9522 9523 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9524 rec.header.misc = 0; 9525 rec.header.size = sizeof(rec); 9526 rec.hw_id = hw_id; 9527 9528 perf_event_header__init_id(&rec.header, &sample, event); 9529 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9530 9531 if (ret) 9532 return; 9533 9534 perf_output_put(&handle, rec); 9535 perf_event__output_id_sample(event, &handle, &sample); 9536 9537 perf_output_end(&handle); 9538 } 9539 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9540 9541 static int 9542 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9543 { 9544 struct hw_perf_event *hwc = &event->hw; 9545 int ret = 0; 9546 u64 seq; 9547 9548 seq = __this_cpu_read(perf_throttled_seq); 9549 if (seq != hwc->interrupts_seq) { 9550 hwc->interrupts_seq = seq; 9551 hwc->interrupts = 1; 9552 } else { 9553 hwc->interrupts++; 9554 if (unlikely(throttle && 9555 hwc->interrupts > max_samples_per_tick)) { 9556 __this_cpu_inc(perf_throttled_count); 9557 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9558 hwc->interrupts = MAX_INTERRUPTS; 9559 perf_log_throttle(event, 0); 9560 ret = 1; 9561 } 9562 } 9563 9564 if (event->attr.freq) { 9565 u64 now = perf_clock(); 9566 s64 delta = now - hwc->freq_time_stamp; 9567 9568 hwc->freq_time_stamp = now; 9569 9570 if (delta > 0 && delta < 2*TICK_NSEC) 9571 perf_adjust_period(event, delta, hwc->last_period, true); 9572 } 9573 9574 return ret; 9575 } 9576 9577 int perf_event_account_interrupt(struct perf_event *event) 9578 { 9579 return __perf_event_account_interrupt(event, 1); 9580 } 9581 9582 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9583 { 9584 /* 9585 * Due to interrupt latency (AKA "skid"), we may enter the 9586 * kernel before taking an overflow, even if the PMU is only 9587 * counting user events. 9588 */ 9589 if (event->attr.exclude_kernel && !user_mode(regs)) 9590 return false; 9591 9592 return true; 9593 } 9594 9595 #ifdef CONFIG_BPF_SYSCALL 9596 static int bpf_overflow_handler(struct perf_event *event, 9597 struct perf_sample_data *data, 9598 struct pt_regs *regs) 9599 { 9600 struct bpf_perf_event_data_kern ctx = { 9601 .data = data, 9602 .event = event, 9603 }; 9604 struct bpf_prog *prog; 9605 int ret = 0; 9606 9607 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9608 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9609 goto out; 9610 rcu_read_lock(); 9611 prog = READ_ONCE(event->prog); 9612 if (prog) { 9613 perf_prepare_sample(data, event, regs); 9614 ret = bpf_prog_run(prog, &ctx); 9615 } 9616 rcu_read_unlock(); 9617 out: 9618 __this_cpu_dec(bpf_prog_active); 9619 9620 return ret; 9621 } 9622 9623 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9624 struct bpf_prog *prog, 9625 u64 bpf_cookie) 9626 { 9627 if (event->overflow_handler_context) 9628 /* hw breakpoint or kernel counter */ 9629 return -EINVAL; 9630 9631 if (event->prog) 9632 return -EEXIST; 9633 9634 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9635 return -EINVAL; 9636 9637 if (event->attr.precise_ip && 9638 prog->call_get_stack && 9639 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9640 event->attr.exclude_callchain_kernel || 9641 event->attr.exclude_callchain_user)) { 9642 /* 9643 * On perf_event with precise_ip, calling bpf_get_stack() 9644 * may trigger unwinder warnings and occasional crashes. 9645 * bpf_get_[stack|stackid] works around this issue by using 9646 * callchain attached to perf_sample_data. If the 9647 * perf_event does not full (kernel and user) callchain 9648 * attached to perf_sample_data, do not allow attaching BPF 9649 * program that calls bpf_get_[stack|stackid]. 9650 */ 9651 return -EPROTO; 9652 } 9653 9654 event->prog = prog; 9655 event->bpf_cookie = bpf_cookie; 9656 return 0; 9657 } 9658 9659 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9660 { 9661 struct bpf_prog *prog = event->prog; 9662 9663 if (!prog) 9664 return; 9665 9666 event->prog = NULL; 9667 bpf_prog_put(prog); 9668 } 9669 #else 9670 static inline int bpf_overflow_handler(struct perf_event *event, 9671 struct perf_sample_data *data, 9672 struct pt_regs *regs) 9673 { 9674 return 1; 9675 } 9676 9677 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9678 struct bpf_prog *prog, 9679 u64 bpf_cookie) 9680 { 9681 return -EOPNOTSUPP; 9682 } 9683 9684 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9685 { 9686 } 9687 #endif 9688 9689 /* 9690 * Generic event overflow handling, sampling. 9691 */ 9692 9693 static int __perf_event_overflow(struct perf_event *event, 9694 int throttle, struct perf_sample_data *data, 9695 struct pt_regs *regs) 9696 { 9697 int events = atomic_read(&event->event_limit); 9698 int ret = 0; 9699 9700 /* 9701 * Non-sampling counters might still use the PMI to fold short 9702 * hardware counters, ignore those. 9703 */ 9704 if (unlikely(!is_sampling_event(event))) 9705 return 0; 9706 9707 ret = __perf_event_account_interrupt(event, throttle); 9708 9709 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 9710 !bpf_overflow_handler(event, data, regs)) 9711 return ret; 9712 9713 /* 9714 * XXX event_limit might not quite work as expected on inherited 9715 * events 9716 */ 9717 9718 event->pending_kill = POLL_IN; 9719 if (events && atomic_dec_and_test(&event->event_limit)) { 9720 ret = 1; 9721 event->pending_kill = POLL_HUP; 9722 perf_event_disable_inatomic(event); 9723 } 9724 9725 if (event->attr.sigtrap) { 9726 /* 9727 * The desired behaviour of sigtrap vs invalid samples is a bit 9728 * tricky; on the one hand, one should not loose the SIGTRAP if 9729 * it is the first event, on the other hand, we should also not 9730 * trigger the WARN or override the data address. 9731 */ 9732 bool valid_sample = sample_is_allowed(event, regs); 9733 unsigned int pending_id = 1; 9734 enum task_work_notify_mode notify_mode; 9735 9736 if (regs) 9737 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9738 9739 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 9740 9741 if (!event->pending_work && 9742 !task_work_add(current, &event->pending_task, notify_mode)) { 9743 event->pending_work = pending_id; 9744 local_inc(&event->ctx->nr_pending); 9745 9746 event->pending_addr = 0; 9747 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9748 event->pending_addr = data->addr; 9749 9750 } else if (event->attr.exclude_kernel && valid_sample) { 9751 /* 9752 * Should not be able to return to user space without 9753 * consuming pending_work; with exceptions: 9754 * 9755 * 1. Where !exclude_kernel, events can overflow again 9756 * in the kernel without returning to user space. 9757 * 9758 * 2. Events that can overflow again before the IRQ- 9759 * work without user space progress (e.g. hrtimer). 9760 * To approximate progress (with false negatives), 9761 * check 32-bit hash of the current IP. 9762 */ 9763 WARN_ON_ONCE(event->pending_work != pending_id); 9764 } 9765 } 9766 9767 READ_ONCE(event->overflow_handler)(event, data, regs); 9768 9769 if (*perf_event_fasync(event) && event->pending_kill) { 9770 event->pending_wakeup = 1; 9771 irq_work_queue(&event->pending_irq); 9772 } 9773 9774 return ret; 9775 } 9776 9777 int perf_event_overflow(struct perf_event *event, 9778 struct perf_sample_data *data, 9779 struct pt_regs *regs) 9780 { 9781 return __perf_event_overflow(event, 1, data, regs); 9782 } 9783 9784 /* 9785 * Generic software event infrastructure 9786 */ 9787 9788 struct swevent_htable { 9789 struct swevent_hlist *swevent_hlist; 9790 struct mutex hlist_mutex; 9791 int hlist_refcount; 9792 }; 9793 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9794 9795 /* 9796 * We directly increment event->count and keep a second value in 9797 * event->hw.period_left to count intervals. This period event 9798 * is kept in the range [-sample_period, 0] so that we can use the 9799 * sign as trigger. 9800 */ 9801 9802 u64 perf_swevent_set_period(struct perf_event *event) 9803 { 9804 struct hw_perf_event *hwc = &event->hw; 9805 u64 period = hwc->last_period; 9806 u64 nr, offset; 9807 s64 old, val; 9808 9809 hwc->last_period = hwc->sample_period; 9810 9811 old = local64_read(&hwc->period_left); 9812 do { 9813 val = old; 9814 if (val < 0) 9815 return 0; 9816 9817 nr = div64_u64(period + val, period); 9818 offset = nr * period; 9819 val -= offset; 9820 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9821 9822 return nr; 9823 } 9824 9825 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9826 struct perf_sample_data *data, 9827 struct pt_regs *regs) 9828 { 9829 struct hw_perf_event *hwc = &event->hw; 9830 int throttle = 0; 9831 9832 if (!overflow) 9833 overflow = perf_swevent_set_period(event); 9834 9835 if (hwc->interrupts == MAX_INTERRUPTS) 9836 return; 9837 9838 for (; overflow; overflow--) { 9839 if (__perf_event_overflow(event, throttle, 9840 data, regs)) { 9841 /* 9842 * We inhibit the overflow from happening when 9843 * hwc->interrupts == MAX_INTERRUPTS. 9844 */ 9845 break; 9846 } 9847 throttle = 1; 9848 } 9849 } 9850 9851 static void perf_swevent_event(struct perf_event *event, u64 nr, 9852 struct perf_sample_data *data, 9853 struct pt_regs *regs) 9854 { 9855 struct hw_perf_event *hwc = &event->hw; 9856 9857 local64_add(nr, &event->count); 9858 9859 if (!regs) 9860 return; 9861 9862 if (!is_sampling_event(event)) 9863 return; 9864 9865 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9866 data->period = nr; 9867 return perf_swevent_overflow(event, 1, data, regs); 9868 } else 9869 data->period = event->hw.last_period; 9870 9871 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9872 return perf_swevent_overflow(event, 1, data, regs); 9873 9874 if (local64_add_negative(nr, &hwc->period_left)) 9875 return; 9876 9877 perf_swevent_overflow(event, 0, data, regs); 9878 } 9879 9880 static int perf_exclude_event(struct perf_event *event, 9881 struct pt_regs *regs) 9882 { 9883 if (event->hw.state & PERF_HES_STOPPED) 9884 return 1; 9885 9886 if (regs) { 9887 if (event->attr.exclude_user && user_mode(regs)) 9888 return 1; 9889 9890 if (event->attr.exclude_kernel && !user_mode(regs)) 9891 return 1; 9892 } 9893 9894 return 0; 9895 } 9896 9897 static int perf_swevent_match(struct perf_event *event, 9898 enum perf_type_id type, 9899 u32 event_id, 9900 struct perf_sample_data *data, 9901 struct pt_regs *regs) 9902 { 9903 if (event->attr.type != type) 9904 return 0; 9905 9906 if (event->attr.config != event_id) 9907 return 0; 9908 9909 if (perf_exclude_event(event, regs)) 9910 return 0; 9911 9912 return 1; 9913 } 9914 9915 static inline u64 swevent_hash(u64 type, u32 event_id) 9916 { 9917 u64 val = event_id | (type << 32); 9918 9919 return hash_64(val, SWEVENT_HLIST_BITS); 9920 } 9921 9922 static inline struct hlist_head * 9923 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9924 { 9925 u64 hash = swevent_hash(type, event_id); 9926 9927 return &hlist->heads[hash]; 9928 } 9929 9930 /* For the read side: events when they trigger */ 9931 static inline struct hlist_head * 9932 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9933 { 9934 struct swevent_hlist *hlist; 9935 9936 hlist = rcu_dereference(swhash->swevent_hlist); 9937 if (!hlist) 9938 return NULL; 9939 9940 return __find_swevent_head(hlist, type, event_id); 9941 } 9942 9943 /* For the event head insertion and removal in the hlist */ 9944 static inline struct hlist_head * 9945 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9946 { 9947 struct swevent_hlist *hlist; 9948 u32 event_id = event->attr.config; 9949 u64 type = event->attr.type; 9950 9951 /* 9952 * Event scheduling is always serialized against hlist allocation 9953 * and release. Which makes the protected version suitable here. 9954 * The context lock guarantees that. 9955 */ 9956 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9957 lockdep_is_held(&event->ctx->lock)); 9958 if (!hlist) 9959 return NULL; 9960 9961 return __find_swevent_head(hlist, type, event_id); 9962 } 9963 9964 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9965 u64 nr, 9966 struct perf_sample_data *data, 9967 struct pt_regs *regs) 9968 { 9969 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9970 struct perf_event *event; 9971 struct hlist_head *head; 9972 9973 rcu_read_lock(); 9974 head = find_swevent_head_rcu(swhash, type, event_id); 9975 if (!head) 9976 goto end; 9977 9978 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9979 if (perf_swevent_match(event, type, event_id, data, regs)) 9980 perf_swevent_event(event, nr, data, regs); 9981 } 9982 end: 9983 rcu_read_unlock(); 9984 } 9985 9986 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9987 9988 int perf_swevent_get_recursion_context(void) 9989 { 9990 return get_recursion_context(current->perf_recursion); 9991 } 9992 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9993 9994 void perf_swevent_put_recursion_context(int rctx) 9995 { 9996 put_recursion_context(current->perf_recursion, rctx); 9997 } 9998 9999 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10000 { 10001 struct perf_sample_data data; 10002 10003 if (WARN_ON_ONCE(!regs)) 10004 return; 10005 10006 perf_sample_data_init(&data, addr, 0); 10007 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10008 } 10009 10010 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10011 { 10012 int rctx; 10013 10014 preempt_disable_notrace(); 10015 rctx = perf_swevent_get_recursion_context(); 10016 if (unlikely(rctx < 0)) 10017 goto fail; 10018 10019 ___perf_sw_event(event_id, nr, regs, addr); 10020 10021 perf_swevent_put_recursion_context(rctx); 10022 fail: 10023 preempt_enable_notrace(); 10024 } 10025 10026 static void perf_swevent_read(struct perf_event *event) 10027 { 10028 } 10029 10030 static int perf_swevent_add(struct perf_event *event, int flags) 10031 { 10032 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10033 struct hw_perf_event *hwc = &event->hw; 10034 struct hlist_head *head; 10035 10036 if (is_sampling_event(event)) { 10037 hwc->last_period = hwc->sample_period; 10038 perf_swevent_set_period(event); 10039 } 10040 10041 hwc->state = !(flags & PERF_EF_START); 10042 10043 head = find_swevent_head(swhash, event); 10044 if (WARN_ON_ONCE(!head)) 10045 return -EINVAL; 10046 10047 hlist_add_head_rcu(&event->hlist_entry, head); 10048 perf_event_update_userpage(event); 10049 10050 return 0; 10051 } 10052 10053 static void perf_swevent_del(struct perf_event *event, int flags) 10054 { 10055 hlist_del_rcu(&event->hlist_entry); 10056 } 10057 10058 static void perf_swevent_start(struct perf_event *event, int flags) 10059 { 10060 event->hw.state = 0; 10061 } 10062 10063 static void perf_swevent_stop(struct perf_event *event, int flags) 10064 { 10065 event->hw.state = PERF_HES_STOPPED; 10066 } 10067 10068 /* Deref the hlist from the update side */ 10069 static inline struct swevent_hlist * 10070 swevent_hlist_deref(struct swevent_htable *swhash) 10071 { 10072 return rcu_dereference_protected(swhash->swevent_hlist, 10073 lockdep_is_held(&swhash->hlist_mutex)); 10074 } 10075 10076 static void swevent_hlist_release(struct swevent_htable *swhash) 10077 { 10078 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10079 10080 if (!hlist) 10081 return; 10082 10083 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10084 kfree_rcu(hlist, rcu_head); 10085 } 10086 10087 static void swevent_hlist_put_cpu(int cpu) 10088 { 10089 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10090 10091 mutex_lock(&swhash->hlist_mutex); 10092 10093 if (!--swhash->hlist_refcount) 10094 swevent_hlist_release(swhash); 10095 10096 mutex_unlock(&swhash->hlist_mutex); 10097 } 10098 10099 static void swevent_hlist_put(void) 10100 { 10101 int cpu; 10102 10103 for_each_possible_cpu(cpu) 10104 swevent_hlist_put_cpu(cpu); 10105 } 10106 10107 static int swevent_hlist_get_cpu(int cpu) 10108 { 10109 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10110 int err = 0; 10111 10112 mutex_lock(&swhash->hlist_mutex); 10113 if (!swevent_hlist_deref(swhash) && 10114 cpumask_test_cpu(cpu, perf_online_mask)) { 10115 struct swevent_hlist *hlist; 10116 10117 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10118 if (!hlist) { 10119 err = -ENOMEM; 10120 goto exit; 10121 } 10122 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10123 } 10124 swhash->hlist_refcount++; 10125 exit: 10126 mutex_unlock(&swhash->hlist_mutex); 10127 10128 return err; 10129 } 10130 10131 static int swevent_hlist_get(void) 10132 { 10133 int err, cpu, failed_cpu; 10134 10135 mutex_lock(&pmus_lock); 10136 for_each_possible_cpu(cpu) { 10137 err = swevent_hlist_get_cpu(cpu); 10138 if (err) { 10139 failed_cpu = cpu; 10140 goto fail; 10141 } 10142 } 10143 mutex_unlock(&pmus_lock); 10144 return 0; 10145 fail: 10146 for_each_possible_cpu(cpu) { 10147 if (cpu == failed_cpu) 10148 break; 10149 swevent_hlist_put_cpu(cpu); 10150 } 10151 mutex_unlock(&pmus_lock); 10152 return err; 10153 } 10154 10155 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10156 10157 static void sw_perf_event_destroy(struct perf_event *event) 10158 { 10159 u64 event_id = event->attr.config; 10160 10161 WARN_ON(event->parent); 10162 10163 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10164 swevent_hlist_put(); 10165 } 10166 10167 static struct pmu perf_cpu_clock; /* fwd declaration */ 10168 static struct pmu perf_task_clock; 10169 10170 static int perf_swevent_init(struct perf_event *event) 10171 { 10172 u64 event_id = event->attr.config; 10173 10174 if (event->attr.type != PERF_TYPE_SOFTWARE) 10175 return -ENOENT; 10176 10177 /* 10178 * no branch sampling for software events 10179 */ 10180 if (has_branch_stack(event)) 10181 return -EOPNOTSUPP; 10182 10183 switch (event_id) { 10184 case PERF_COUNT_SW_CPU_CLOCK: 10185 event->attr.type = perf_cpu_clock.type; 10186 return -ENOENT; 10187 case PERF_COUNT_SW_TASK_CLOCK: 10188 event->attr.type = perf_task_clock.type; 10189 return -ENOENT; 10190 10191 default: 10192 break; 10193 } 10194 10195 if (event_id >= PERF_COUNT_SW_MAX) 10196 return -ENOENT; 10197 10198 if (!event->parent) { 10199 int err; 10200 10201 err = swevent_hlist_get(); 10202 if (err) 10203 return err; 10204 10205 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10206 event->destroy = sw_perf_event_destroy; 10207 } 10208 10209 return 0; 10210 } 10211 10212 static struct pmu perf_swevent = { 10213 .task_ctx_nr = perf_sw_context, 10214 10215 .capabilities = PERF_PMU_CAP_NO_NMI, 10216 10217 .event_init = perf_swevent_init, 10218 .add = perf_swevent_add, 10219 .del = perf_swevent_del, 10220 .start = perf_swevent_start, 10221 .stop = perf_swevent_stop, 10222 .read = perf_swevent_read, 10223 }; 10224 10225 #ifdef CONFIG_EVENT_TRACING 10226 10227 static void tp_perf_event_destroy(struct perf_event *event) 10228 { 10229 perf_trace_destroy(event); 10230 } 10231 10232 static int perf_tp_event_init(struct perf_event *event) 10233 { 10234 int err; 10235 10236 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10237 return -ENOENT; 10238 10239 /* 10240 * no branch sampling for tracepoint events 10241 */ 10242 if (has_branch_stack(event)) 10243 return -EOPNOTSUPP; 10244 10245 err = perf_trace_init(event); 10246 if (err) 10247 return err; 10248 10249 event->destroy = tp_perf_event_destroy; 10250 10251 return 0; 10252 } 10253 10254 static struct pmu perf_tracepoint = { 10255 .task_ctx_nr = perf_sw_context, 10256 10257 .event_init = perf_tp_event_init, 10258 .add = perf_trace_add, 10259 .del = perf_trace_del, 10260 .start = perf_swevent_start, 10261 .stop = perf_swevent_stop, 10262 .read = perf_swevent_read, 10263 }; 10264 10265 static int perf_tp_filter_match(struct perf_event *event, 10266 struct perf_sample_data *data) 10267 { 10268 void *record = data->raw->frag.data; 10269 10270 /* only top level events have filters set */ 10271 if (event->parent) 10272 event = event->parent; 10273 10274 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10275 return 1; 10276 return 0; 10277 } 10278 10279 static int perf_tp_event_match(struct perf_event *event, 10280 struct perf_sample_data *data, 10281 struct pt_regs *regs) 10282 { 10283 if (event->hw.state & PERF_HES_STOPPED) 10284 return 0; 10285 /* 10286 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10287 */ 10288 if (event->attr.exclude_kernel && !user_mode(regs)) 10289 return 0; 10290 10291 if (!perf_tp_filter_match(event, data)) 10292 return 0; 10293 10294 return 1; 10295 } 10296 10297 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10298 struct trace_event_call *call, u64 count, 10299 struct pt_regs *regs, struct hlist_head *head, 10300 struct task_struct *task) 10301 { 10302 if (bpf_prog_array_valid(call)) { 10303 *(struct pt_regs **)raw_data = regs; 10304 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10305 perf_swevent_put_recursion_context(rctx); 10306 return; 10307 } 10308 } 10309 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10310 rctx, task); 10311 } 10312 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10313 10314 static void __perf_tp_event_target_task(u64 count, void *record, 10315 struct pt_regs *regs, 10316 struct perf_sample_data *data, 10317 struct perf_event *event) 10318 { 10319 struct trace_entry *entry = record; 10320 10321 if (event->attr.config != entry->type) 10322 return; 10323 /* Cannot deliver synchronous signal to other task. */ 10324 if (event->attr.sigtrap) 10325 return; 10326 if (perf_tp_event_match(event, data, regs)) 10327 perf_swevent_event(event, count, data, regs); 10328 } 10329 10330 static void perf_tp_event_target_task(u64 count, void *record, 10331 struct pt_regs *regs, 10332 struct perf_sample_data *data, 10333 struct perf_event_context *ctx) 10334 { 10335 unsigned int cpu = smp_processor_id(); 10336 struct pmu *pmu = &perf_tracepoint; 10337 struct perf_event *event, *sibling; 10338 10339 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10340 __perf_tp_event_target_task(count, record, regs, data, event); 10341 for_each_sibling_event(sibling, event) 10342 __perf_tp_event_target_task(count, record, regs, data, sibling); 10343 } 10344 10345 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10346 __perf_tp_event_target_task(count, record, regs, data, event); 10347 for_each_sibling_event(sibling, event) 10348 __perf_tp_event_target_task(count, record, regs, data, sibling); 10349 } 10350 } 10351 10352 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10353 struct pt_regs *regs, struct hlist_head *head, int rctx, 10354 struct task_struct *task) 10355 { 10356 struct perf_sample_data data; 10357 struct perf_event *event; 10358 10359 struct perf_raw_record raw = { 10360 .frag = { 10361 .size = entry_size, 10362 .data = record, 10363 }, 10364 }; 10365 10366 perf_sample_data_init(&data, 0, 0); 10367 perf_sample_save_raw_data(&data, &raw); 10368 10369 perf_trace_buf_update(record, event_type); 10370 10371 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10372 if (perf_tp_event_match(event, &data, regs)) { 10373 perf_swevent_event(event, count, &data, regs); 10374 10375 /* 10376 * Here use the same on-stack perf_sample_data, 10377 * some members in data are event-specific and 10378 * need to be re-computed for different sweveents. 10379 * Re-initialize data->sample_flags safely to avoid 10380 * the problem that next event skips preparing data 10381 * because data->sample_flags is set. 10382 */ 10383 perf_sample_data_init(&data, 0, 0); 10384 perf_sample_save_raw_data(&data, &raw); 10385 } 10386 } 10387 10388 /* 10389 * If we got specified a target task, also iterate its context and 10390 * deliver this event there too. 10391 */ 10392 if (task && task != current) { 10393 struct perf_event_context *ctx; 10394 10395 rcu_read_lock(); 10396 ctx = rcu_dereference(task->perf_event_ctxp); 10397 if (!ctx) 10398 goto unlock; 10399 10400 raw_spin_lock(&ctx->lock); 10401 perf_tp_event_target_task(count, record, regs, &data, ctx); 10402 raw_spin_unlock(&ctx->lock); 10403 unlock: 10404 rcu_read_unlock(); 10405 } 10406 10407 perf_swevent_put_recursion_context(rctx); 10408 } 10409 EXPORT_SYMBOL_GPL(perf_tp_event); 10410 10411 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10412 /* 10413 * Flags in config, used by dynamic PMU kprobe and uprobe 10414 * The flags should match following PMU_FORMAT_ATTR(). 10415 * 10416 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10417 * if not set, create kprobe/uprobe 10418 * 10419 * The following values specify a reference counter (or semaphore in the 10420 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10421 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10422 * 10423 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10424 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10425 */ 10426 enum perf_probe_config { 10427 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10428 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10429 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10430 }; 10431 10432 PMU_FORMAT_ATTR(retprobe, "config:0"); 10433 #endif 10434 10435 #ifdef CONFIG_KPROBE_EVENTS 10436 static struct attribute *kprobe_attrs[] = { 10437 &format_attr_retprobe.attr, 10438 NULL, 10439 }; 10440 10441 static struct attribute_group kprobe_format_group = { 10442 .name = "format", 10443 .attrs = kprobe_attrs, 10444 }; 10445 10446 static const struct attribute_group *kprobe_attr_groups[] = { 10447 &kprobe_format_group, 10448 NULL, 10449 }; 10450 10451 static int perf_kprobe_event_init(struct perf_event *event); 10452 static struct pmu perf_kprobe = { 10453 .task_ctx_nr = perf_sw_context, 10454 .event_init = perf_kprobe_event_init, 10455 .add = perf_trace_add, 10456 .del = perf_trace_del, 10457 .start = perf_swevent_start, 10458 .stop = perf_swevent_stop, 10459 .read = perf_swevent_read, 10460 .attr_groups = kprobe_attr_groups, 10461 }; 10462 10463 static int perf_kprobe_event_init(struct perf_event *event) 10464 { 10465 int err; 10466 bool is_retprobe; 10467 10468 if (event->attr.type != perf_kprobe.type) 10469 return -ENOENT; 10470 10471 if (!perfmon_capable()) 10472 return -EACCES; 10473 10474 /* 10475 * no branch sampling for probe events 10476 */ 10477 if (has_branch_stack(event)) 10478 return -EOPNOTSUPP; 10479 10480 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10481 err = perf_kprobe_init(event, is_retprobe); 10482 if (err) 10483 return err; 10484 10485 event->destroy = perf_kprobe_destroy; 10486 10487 return 0; 10488 } 10489 #endif /* CONFIG_KPROBE_EVENTS */ 10490 10491 #ifdef CONFIG_UPROBE_EVENTS 10492 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10493 10494 static struct attribute *uprobe_attrs[] = { 10495 &format_attr_retprobe.attr, 10496 &format_attr_ref_ctr_offset.attr, 10497 NULL, 10498 }; 10499 10500 static struct attribute_group uprobe_format_group = { 10501 .name = "format", 10502 .attrs = uprobe_attrs, 10503 }; 10504 10505 static const struct attribute_group *uprobe_attr_groups[] = { 10506 &uprobe_format_group, 10507 NULL, 10508 }; 10509 10510 static int perf_uprobe_event_init(struct perf_event *event); 10511 static struct pmu perf_uprobe = { 10512 .task_ctx_nr = perf_sw_context, 10513 .event_init = perf_uprobe_event_init, 10514 .add = perf_trace_add, 10515 .del = perf_trace_del, 10516 .start = perf_swevent_start, 10517 .stop = perf_swevent_stop, 10518 .read = perf_swevent_read, 10519 .attr_groups = uprobe_attr_groups, 10520 }; 10521 10522 static int perf_uprobe_event_init(struct perf_event *event) 10523 { 10524 int err; 10525 unsigned long ref_ctr_offset; 10526 bool is_retprobe; 10527 10528 if (event->attr.type != perf_uprobe.type) 10529 return -ENOENT; 10530 10531 if (!perfmon_capable()) 10532 return -EACCES; 10533 10534 /* 10535 * no branch sampling for probe events 10536 */ 10537 if (has_branch_stack(event)) 10538 return -EOPNOTSUPP; 10539 10540 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10541 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10542 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10543 if (err) 10544 return err; 10545 10546 event->destroy = perf_uprobe_destroy; 10547 10548 return 0; 10549 } 10550 #endif /* CONFIG_UPROBE_EVENTS */ 10551 10552 static inline void perf_tp_register(void) 10553 { 10554 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10555 #ifdef CONFIG_KPROBE_EVENTS 10556 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10557 #endif 10558 #ifdef CONFIG_UPROBE_EVENTS 10559 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10560 #endif 10561 } 10562 10563 static void perf_event_free_filter(struct perf_event *event) 10564 { 10565 ftrace_profile_free_filter(event); 10566 } 10567 10568 /* 10569 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10570 * with perf_event_open() 10571 */ 10572 static inline bool perf_event_is_tracing(struct perf_event *event) 10573 { 10574 if (event->pmu == &perf_tracepoint) 10575 return true; 10576 #ifdef CONFIG_KPROBE_EVENTS 10577 if (event->pmu == &perf_kprobe) 10578 return true; 10579 #endif 10580 #ifdef CONFIG_UPROBE_EVENTS 10581 if (event->pmu == &perf_uprobe) 10582 return true; 10583 #endif 10584 return false; 10585 } 10586 10587 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10588 u64 bpf_cookie) 10589 { 10590 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10591 10592 if (!perf_event_is_tracing(event)) 10593 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10594 10595 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10596 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10597 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10598 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10599 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10600 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10601 return -EINVAL; 10602 10603 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10604 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10605 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10606 return -EINVAL; 10607 10608 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10609 /* only uprobe programs are allowed to be sleepable */ 10610 return -EINVAL; 10611 10612 /* Kprobe override only works for kprobes, not uprobes. */ 10613 if (prog->kprobe_override && !is_kprobe) 10614 return -EINVAL; 10615 10616 if (is_tracepoint || is_syscall_tp) { 10617 int off = trace_event_get_offsets(event->tp_event); 10618 10619 if (prog->aux->max_ctx_offset > off) 10620 return -EACCES; 10621 } 10622 10623 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10624 } 10625 10626 void perf_event_free_bpf_prog(struct perf_event *event) 10627 { 10628 if (!perf_event_is_tracing(event)) { 10629 perf_event_free_bpf_handler(event); 10630 return; 10631 } 10632 perf_event_detach_bpf_prog(event); 10633 } 10634 10635 #else 10636 10637 static inline void perf_tp_register(void) 10638 { 10639 } 10640 10641 static void perf_event_free_filter(struct perf_event *event) 10642 { 10643 } 10644 10645 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10646 u64 bpf_cookie) 10647 { 10648 return -ENOENT; 10649 } 10650 10651 void perf_event_free_bpf_prog(struct perf_event *event) 10652 { 10653 } 10654 #endif /* CONFIG_EVENT_TRACING */ 10655 10656 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10657 void perf_bp_event(struct perf_event *bp, void *data) 10658 { 10659 struct perf_sample_data sample; 10660 struct pt_regs *regs = data; 10661 10662 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10663 10664 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10665 perf_swevent_event(bp, 1, &sample, regs); 10666 } 10667 #endif 10668 10669 /* 10670 * Allocate a new address filter 10671 */ 10672 static struct perf_addr_filter * 10673 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10674 { 10675 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10676 struct perf_addr_filter *filter; 10677 10678 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10679 if (!filter) 10680 return NULL; 10681 10682 INIT_LIST_HEAD(&filter->entry); 10683 list_add_tail(&filter->entry, filters); 10684 10685 return filter; 10686 } 10687 10688 static void free_filters_list(struct list_head *filters) 10689 { 10690 struct perf_addr_filter *filter, *iter; 10691 10692 list_for_each_entry_safe(filter, iter, filters, entry) { 10693 path_put(&filter->path); 10694 list_del(&filter->entry); 10695 kfree(filter); 10696 } 10697 } 10698 10699 /* 10700 * Free existing address filters and optionally install new ones 10701 */ 10702 static void perf_addr_filters_splice(struct perf_event *event, 10703 struct list_head *head) 10704 { 10705 unsigned long flags; 10706 LIST_HEAD(list); 10707 10708 if (!has_addr_filter(event)) 10709 return; 10710 10711 /* don't bother with children, they don't have their own filters */ 10712 if (event->parent) 10713 return; 10714 10715 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10716 10717 list_splice_init(&event->addr_filters.list, &list); 10718 if (head) 10719 list_splice(head, &event->addr_filters.list); 10720 10721 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10722 10723 free_filters_list(&list); 10724 } 10725 10726 /* 10727 * Scan through mm's vmas and see if one of them matches the 10728 * @filter; if so, adjust filter's address range. 10729 * Called with mm::mmap_lock down for reading. 10730 */ 10731 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10732 struct mm_struct *mm, 10733 struct perf_addr_filter_range *fr) 10734 { 10735 struct vm_area_struct *vma; 10736 VMA_ITERATOR(vmi, mm, 0); 10737 10738 for_each_vma(vmi, vma) { 10739 if (!vma->vm_file) 10740 continue; 10741 10742 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10743 return; 10744 } 10745 } 10746 10747 /* 10748 * Update event's address range filters based on the 10749 * task's existing mappings, if any. 10750 */ 10751 static void perf_event_addr_filters_apply(struct perf_event *event) 10752 { 10753 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10754 struct task_struct *task = READ_ONCE(event->ctx->task); 10755 struct perf_addr_filter *filter; 10756 struct mm_struct *mm = NULL; 10757 unsigned int count = 0; 10758 unsigned long flags; 10759 10760 /* 10761 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10762 * will stop on the parent's child_mutex that our caller is also holding 10763 */ 10764 if (task == TASK_TOMBSTONE) 10765 return; 10766 10767 if (ifh->nr_file_filters) { 10768 mm = get_task_mm(task); 10769 if (!mm) 10770 goto restart; 10771 10772 mmap_read_lock(mm); 10773 } 10774 10775 raw_spin_lock_irqsave(&ifh->lock, flags); 10776 list_for_each_entry(filter, &ifh->list, entry) { 10777 if (filter->path.dentry) { 10778 /* 10779 * Adjust base offset if the filter is associated to a 10780 * binary that needs to be mapped: 10781 */ 10782 event->addr_filter_ranges[count].start = 0; 10783 event->addr_filter_ranges[count].size = 0; 10784 10785 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10786 } else { 10787 event->addr_filter_ranges[count].start = filter->offset; 10788 event->addr_filter_ranges[count].size = filter->size; 10789 } 10790 10791 count++; 10792 } 10793 10794 event->addr_filters_gen++; 10795 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10796 10797 if (ifh->nr_file_filters) { 10798 mmap_read_unlock(mm); 10799 10800 mmput(mm); 10801 } 10802 10803 restart: 10804 perf_event_stop(event, 1); 10805 } 10806 10807 /* 10808 * Address range filtering: limiting the data to certain 10809 * instruction address ranges. Filters are ioctl()ed to us from 10810 * userspace as ascii strings. 10811 * 10812 * Filter string format: 10813 * 10814 * ACTION RANGE_SPEC 10815 * where ACTION is one of the 10816 * * "filter": limit the trace to this region 10817 * * "start": start tracing from this address 10818 * * "stop": stop tracing at this address/region; 10819 * RANGE_SPEC is 10820 * * for kernel addresses: <start address>[/<size>] 10821 * * for object files: <start address>[/<size>]@</path/to/object/file> 10822 * 10823 * if <size> is not specified or is zero, the range is treated as a single 10824 * address; not valid for ACTION=="filter". 10825 */ 10826 enum { 10827 IF_ACT_NONE = -1, 10828 IF_ACT_FILTER, 10829 IF_ACT_START, 10830 IF_ACT_STOP, 10831 IF_SRC_FILE, 10832 IF_SRC_KERNEL, 10833 IF_SRC_FILEADDR, 10834 IF_SRC_KERNELADDR, 10835 }; 10836 10837 enum { 10838 IF_STATE_ACTION = 0, 10839 IF_STATE_SOURCE, 10840 IF_STATE_END, 10841 }; 10842 10843 static const match_table_t if_tokens = { 10844 { IF_ACT_FILTER, "filter" }, 10845 { IF_ACT_START, "start" }, 10846 { IF_ACT_STOP, "stop" }, 10847 { IF_SRC_FILE, "%u/%u@%s" }, 10848 { IF_SRC_KERNEL, "%u/%u" }, 10849 { IF_SRC_FILEADDR, "%u@%s" }, 10850 { IF_SRC_KERNELADDR, "%u" }, 10851 { IF_ACT_NONE, NULL }, 10852 }; 10853 10854 /* 10855 * Address filter string parser 10856 */ 10857 static int 10858 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10859 struct list_head *filters) 10860 { 10861 struct perf_addr_filter *filter = NULL; 10862 char *start, *orig, *filename = NULL; 10863 substring_t args[MAX_OPT_ARGS]; 10864 int state = IF_STATE_ACTION, token; 10865 unsigned int kernel = 0; 10866 int ret = -EINVAL; 10867 10868 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10869 if (!fstr) 10870 return -ENOMEM; 10871 10872 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10873 static const enum perf_addr_filter_action_t actions[] = { 10874 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10875 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10876 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10877 }; 10878 ret = -EINVAL; 10879 10880 if (!*start) 10881 continue; 10882 10883 /* filter definition begins */ 10884 if (state == IF_STATE_ACTION) { 10885 filter = perf_addr_filter_new(event, filters); 10886 if (!filter) 10887 goto fail; 10888 } 10889 10890 token = match_token(start, if_tokens, args); 10891 switch (token) { 10892 case IF_ACT_FILTER: 10893 case IF_ACT_START: 10894 case IF_ACT_STOP: 10895 if (state != IF_STATE_ACTION) 10896 goto fail; 10897 10898 filter->action = actions[token]; 10899 state = IF_STATE_SOURCE; 10900 break; 10901 10902 case IF_SRC_KERNELADDR: 10903 case IF_SRC_KERNEL: 10904 kernel = 1; 10905 fallthrough; 10906 10907 case IF_SRC_FILEADDR: 10908 case IF_SRC_FILE: 10909 if (state != IF_STATE_SOURCE) 10910 goto fail; 10911 10912 *args[0].to = 0; 10913 ret = kstrtoul(args[0].from, 0, &filter->offset); 10914 if (ret) 10915 goto fail; 10916 10917 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10918 *args[1].to = 0; 10919 ret = kstrtoul(args[1].from, 0, &filter->size); 10920 if (ret) 10921 goto fail; 10922 } 10923 10924 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10925 int fpos = token == IF_SRC_FILE ? 2 : 1; 10926 10927 kfree(filename); 10928 filename = match_strdup(&args[fpos]); 10929 if (!filename) { 10930 ret = -ENOMEM; 10931 goto fail; 10932 } 10933 } 10934 10935 state = IF_STATE_END; 10936 break; 10937 10938 default: 10939 goto fail; 10940 } 10941 10942 /* 10943 * Filter definition is fully parsed, validate and install it. 10944 * Make sure that it doesn't contradict itself or the event's 10945 * attribute. 10946 */ 10947 if (state == IF_STATE_END) { 10948 ret = -EINVAL; 10949 10950 /* 10951 * ACTION "filter" must have a non-zero length region 10952 * specified. 10953 */ 10954 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10955 !filter->size) 10956 goto fail; 10957 10958 if (!kernel) { 10959 if (!filename) 10960 goto fail; 10961 10962 /* 10963 * For now, we only support file-based filters 10964 * in per-task events; doing so for CPU-wide 10965 * events requires additional context switching 10966 * trickery, since same object code will be 10967 * mapped at different virtual addresses in 10968 * different processes. 10969 */ 10970 ret = -EOPNOTSUPP; 10971 if (!event->ctx->task) 10972 goto fail; 10973 10974 /* look up the path and grab its inode */ 10975 ret = kern_path(filename, LOOKUP_FOLLOW, 10976 &filter->path); 10977 if (ret) 10978 goto fail; 10979 10980 ret = -EINVAL; 10981 if (!filter->path.dentry || 10982 !S_ISREG(d_inode(filter->path.dentry) 10983 ->i_mode)) 10984 goto fail; 10985 10986 event->addr_filters.nr_file_filters++; 10987 } 10988 10989 /* ready to consume more filters */ 10990 kfree(filename); 10991 filename = NULL; 10992 state = IF_STATE_ACTION; 10993 filter = NULL; 10994 kernel = 0; 10995 } 10996 } 10997 10998 if (state != IF_STATE_ACTION) 10999 goto fail; 11000 11001 kfree(filename); 11002 kfree(orig); 11003 11004 return 0; 11005 11006 fail: 11007 kfree(filename); 11008 free_filters_list(filters); 11009 kfree(orig); 11010 11011 return ret; 11012 } 11013 11014 static int 11015 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11016 { 11017 LIST_HEAD(filters); 11018 int ret; 11019 11020 /* 11021 * Since this is called in perf_ioctl() path, we're already holding 11022 * ctx::mutex. 11023 */ 11024 lockdep_assert_held(&event->ctx->mutex); 11025 11026 if (WARN_ON_ONCE(event->parent)) 11027 return -EINVAL; 11028 11029 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11030 if (ret) 11031 goto fail_clear_files; 11032 11033 ret = event->pmu->addr_filters_validate(&filters); 11034 if (ret) 11035 goto fail_free_filters; 11036 11037 /* remove existing filters, if any */ 11038 perf_addr_filters_splice(event, &filters); 11039 11040 /* install new filters */ 11041 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11042 11043 return ret; 11044 11045 fail_free_filters: 11046 free_filters_list(&filters); 11047 11048 fail_clear_files: 11049 event->addr_filters.nr_file_filters = 0; 11050 11051 return ret; 11052 } 11053 11054 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11055 { 11056 int ret = -EINVAL; 11057 char *filter_str; 11058 11059 filter_str = strndup_user(arg, PAGE_SIZE); 11060 if (IS_ERR(filter_str)) 11061 return PTR_ERR(filter_str); 11062 11063 #ifdef CONFIG_EVENT_TRACING 11064 if (perf_event_is_tracing(event)) { 11065 struct perf_event_context *ctx = event->ctx; 11066 11067 /* 11068 * Beware, here be dragons!! 11069 * 11070 * the tracepoint muck will deadlock against ctx->mutex, but 11071 * the tracepoint stuff does not actually need it. So 11072 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11073 * already have a reference on ctx. 11074 * 11075 * This can result in event getting moved to a different ctx, 11076 * but that does not affect the tracepoint state. 11077 */ 11078 mutex_unlock(&ctx->mutex); 11079 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11080 mutex_lock(&ctx->mutex); 11081 } else 11082 #endif 11083 if (has_addr_filter(event)) 11084 ret = perf_event_set_addr_filter(event, filter_str); 11085 11086 kfree(filter_str); 11087 return ret; 11088 } 11089 11090 /* 11091 * hrtimer based swevent callback 11092 */ 11093 11094 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11095 { 11096 enum hrtimer_restart ret = HRTIMER_RESTART; 11097 struct perf_sample_data data; 11098 struct pt_regs *regs; 11099 struct perf_event *event; 11100 u64 period; 11101 11102 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11103 11104 if (event->state != PERF_EVENT_STATE_ACTIVE) 11105 return HRTIMER_NORESTART; 11106 11107 event->pmu->read(event); 11108 11109 perf_sample_data_init(&data, 0, event->hw.last_period); 11110 regs = get_irq_regs(); 11111 11112 if (regs && !perf_exclude_event(event, regs)) { 11113 if (!(event->attr.exclude_idle && is_idle_task(current))) 11114 if (__perf_event_overflow(event, 1, &data, regs)) 11115 ret = HRTIMER_NORESTART; 11116 } 11117 11118 period = max_t(u64, 10000, event->hw.sample_period); 11119 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11120 11121 return ret; 11122 } 11123 11124 static void perf_swevent_start_hrtimer(struct perf_event *event) 11125 { 11126 struct hw_perf_event *hwc = &event->hw; 11127 s64 period; 11128 11129 if (!is_sampling_event(event)) 11130 return; 11131 11132 period = local64_read(&hwc->period_left); 11133 if (period) { 11134 if (period < 0) 11135 period = 10000; 11136 11137 local64_set(&hwc->period_left, 0); 11138 } else { 11139 period = max_t(u64, 10000, hwc->sample_period); 11140 } 11141 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11142 HRTIMER_MODE_REL_PINNED_HARD); 11143 } 11144 11145 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11146 { 11147 struct hw_perf_event *hwc = &event->hw; 11148 11149 if (is_sampling_event(event)) { 11150 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11151 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11152 11153 hrtimer_cancel(&hwc->hrtimer); 11154 } 11155 } 11156 11157 static void perf_swevent_init_hrtimer(struct perf_event *event) 11158 { 11159 struct hw_perf_event *hwc = &event->hw; 11160 11161 if (!is_sampling_event(event)) 11162 return; 11163 11164 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11165 hwc->hrtimer.function = perf_swevent_hrtimer; 11166 11167 /* 11168 * Since hrtimers have a fixed rate, we can do a static freq->period 11169 * mapping and avoid the whole period adjust feedback stuff. 11170 */ 11171 if (event->attr.freq) { 11172 long freq = event->attr.sample_freq; 11173 11174 event->attr.sample_period = NSEC_PER_SEC / freq; 11175 hwc->sample_period = event->attr.sample_period; 11176 local64_set(&hwc->period_left, hwc->sample_period); 11177 hwc->last_period = hwc->sample_period; 11178 event->attr.freq = 0; 11179 } 11180 } 11181 11182 /* 11183 * Software event: cpu wall time clock 11184 */ 11185 11186 static void cpu_clock_event_update(struct perf_event *event) 11187 { 11188 s64 prev; 11189 u64 now; 11190 11191 now = local_clock(); 11192 prev = local64_xchg(&event->hw.prev_count, now); 11193 local64_add(now - prev, &event->count); 11194 } 11195 11196 static void cpu_clock_event_start(struct perf_event *event, int flags) 11197 { 11198 local64_set(&event->hw.prev_count, local_clock()); 11199 perf_swevent_start_hrtimer(event); 11200 } 11201 11202 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11203 { 11204 perf_swevent_cancel_hrtimer(event); 11205 cpu_clock_event_update(event); 11206 } 11207 11208 static int cpu_clock_event_add(struct perf_event *event, int flags) 11209 { 11210 if (flags & PERF_EF_START) 11211 cpu_clock_event_start(event, flags); 11212 perf_event_update_userpage(event); 11213 11214 return 0; 11215 } 11216 11217 static void cpu_clock_event_del(struct perf_event *event, int flags) 11218 { 11219 cpu_clock_event_stop(event, flags); 11220 } 11221 11222 static void cpu_clock_event_read(struct perf_event *event) 11223 { 11224 cpu_clock_event_update(event); 11225 } 11226 11227 static int cpu_clock_event_init(struct perf_event *event) 11228 { 11229 if (event->attr.type != perf_cpu_clock.type) 11230 return -ENOENT; 11231 11232 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11233 return -ENOENT; 11234 11235 /* 11236 * no branch sampling for software events 11237 */ 11238 if (has_branch_stack(event)) 11239 return -EOPNOTSUPP; 11240 11241 perf_swevent_init_hrtimer(event); 11242 11243 return 0; 11244 } 11245 11246 static struct pmu perf_cpu_clock = { 11247 .task_ctx_nr = perf_sw_context, 11248 11249 .capabilities = PERF_PMU_CAP_NO_NMI, 11250 .dev = PMU_NULL_DEV, 11251 11252 .event_init = cpu_clock_event_init, 11253 .add = cpu_clock_event_add, 11254 .del = cpu_clock_event_del, 11255 .start = cpu_clock_event_start, 11256 .stop = cpu_clock_event_stop, 11257 .read = cpu_clock_event_read, 11258 }; 11259 11260 /* 11261 * Software event: task time clock 11262 */ 11263 11264 static void task_clock_event_update(struct perf_event *event, u64 now) 11265 { 11266 u64 prev; 11267 s64 delta; 11268 11269 prev = local64_xchg(&event->hw.prev_count, now); 11270 delta = now - prev; 11271 local64_add(delta, &event->count); 11272 } 11273 11274 static void task_clock_event_start(struct perf_event *event, int flags) 11275 { 11276 local64_set(&event->hw.prev_count, event->ctx->time); 11277 perf_swevent_start_hrtimer(event); 11278 } 11279 11280 static void task_clock_event_stop(struct perf_event *event, int flags) 11281 { 11282 perf_swevent_cancel_hrtimer(event); 11283 task_clock_event_update(event, event->ctx->time); 11284 } 11285 11286 static int task_clock_event_add(struct perf_event *event, int flags) 11287 { 11288 if (flags & PERF_EF_START) 11289 task_clock_event_start(event, flags); 11290 perf_event_update_userpage(event); 11291 11292 return 0; 11293 } 11294 11295 static void task_clock_event_del(struct perf_event *event, int flags) 11296 { 11297 task_clock_event_stop(event, PERF_EF_UPDATE); 11298 } 11299 11300 static void task_clock_event_read(struct perf_event *event) 11301 { 11302 u64 now = perf_clock(); 11303 u64 delta = now - event->ctx->timestamp; 11304 u64 time = event->ctx->time + delta; 11305 11306 task_clock_event_update(event, time); 11307 } 11308 11309 static int task_clock_event_init(struct perf_event *event) 11310 { 11311 if (event->attr.type != perf_task_clock.type) 11312 return -ENOENT; 11313 11314 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11315 return -ENOENT; 11316 11317 /* 11318 * no branch sampling for software events 11319 */ 11320 if (has_branch_stack(event)) 11321 return -EOPNOTSUPP; 11322 11323 perf_swevent_init_hrtimer(event); 11324 11325 return 0; 11326 } 11327 11328 static struct pmu perf_task_clock = { 11329 .task_ctx_nr = perf_sw_context, 11330 11331 .capabilities = PERF_PMU_CAP_NO_NMI, 11332 .dev = PMU_NULL_DEV, 11333 11334 .event_init = task_clock_event_init, 11335 .add = task_clock_event_add, 11336 .del = task_clock_event_del, 11337 .start = task_clock_event_start, 11338 .stop = task_clock_event_stop, 11339 .read = task_clock_event_read, 11340 }; 11341 11342 static void perf_pmu_nop_void(struct pmu *pmu) 11343 { 11344 } 11345 11346 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11347 { 11348 } 11349 11350 static int perf_pmu_nop_int(struct pmu *pmu) 11351 { 11352 return 0; 11353 } 11354 11355 static int perf_event_nop_int(struct perf_event *event, u64 value) 11356 { 11357 return 0; 11358 } 11359 11360 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11361 11362 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11363 { 11364 __this_cpu_write(nop_txn_flags, flags); 11365 11366 if (flags & ~PERF_PMU_TXN_ADD) 11367 return; 11368 11369 perf_pmu_disable(pmu); 11370 } 11371 11372 static int perf_pmu_commit_txn(struct pmu *pmu) 11373 { 11374 unsigned int flags = __this_cpu_read(nop_txn_flags); 11375 11376 __this_cpu_write(nop_txn_flags, 0); 11377 11378 if (flags & ~PERF_PMU_TXN_ADD) 11379 return 0; 11380 11381 perf_pmu_enable(pmu); 11382 return 0; 11383 } 11384 11385 static void perf_pmu_cancel_txn(struct pmu *pmu) 11386 { 11387 unsigned int flags = __this_cpu_read(nop_txn_flags); 11388 11389 __this_cpu_write(nop_txn_flags, 0); 11390 11391 if (flags & ~PERF_PMU_TXN_ADD) 11392 return; 11393 11394 perf_pmu_enable(pmu); 11395 } 11396 11397 static int perf_event_idx_default(struct perf_event *event) 11398 { 11399 return 0; 11400 } 11401 11402 static void free_pmu_context(struct pmu *pmu) 11403 { 11404 free_percpu(pmu->cpu_pmu_context); 11405 } 11406 11407 /* 11408 * Let userspace know that this PMU supports address range filtering: 11409 */ 11410 static ssize_t nr_addr_filters_show(struct device *dev, 11411 struct device_attribute *attr, 11412 char *page) 11413 { 11414 struct pmu *pmu = dev_get_drvdata(dev); 11415 11416 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11417 } 11418 DEVICE_ATTR_RO(nr_addr_filters); 11419 11420 static struct idr pmu_idr; 11421 11422 static ssize_t 11423 type_show(struct device *dev, struct device_attribute *attr, char *page) 11424 { 11425 struct pmu *pmu = dev_get_drvdata(dev); 11426 11427 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11428 } 11429 static DEVICE_ATTR_RO(type); 11430 11431 static ssize_t 11432 perf_event_mux_interval_ms_show(struct device *dev, 11433 struct device_attribute *attr, 11434 char *page) 11435 { 11436 struct pmu *pmu = dev_get_drvdata(dev); 11437 11438 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11439 } 11440 11441 static DEFINE_MUTEX(mux_interval_mutex); 11442 11443 static ssize_t 11444 perf_event_mux_interval_ms_store(struct device *dev, 11445 struct device_attribute *attr, 11446 const char *buf, size_t count) 11447 { 11448 struct pmu *pmu = dev_get_drvdata(dev); 11449 int timer, cpu, ret; 11450 11451 ret = kstrtoint(buf, 0, &timer); 11452 if (ret) 11453 return ret; 11454 11455 if (timer < 1) 11456 return -EINVAL; 11457 11458 /* same value, noting to do */ 11459 if (timer == pmu->hrtimer_interval_ms) 11460 return count; 11461 11462 mutex_lock(&mux_interval_mutex); 11463 pmu->hrtimer_interval_ms = timer; 11464 11465 /* update all cpuctx for this PMU */ 11466 cpus_read_lock(); 11467 for_each_online_cpu(cpu) { 11468 struct perf_cpu_pmu_context *cpc; 11469 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11470 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11471 11472 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11473 } 11474 cpus_read_unlock(); 11475 mutex_unlock(&mux_interval_mutex); 11476 11477 return count; 11478 } 11479 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11480 11481 static struct attribute *pmu_dev_attrs[] = { 11482 &dev_attr_type.attr, 11483 &dev_attr_perf_event_mux_interval_ms.attr, 11484 &dev_attr_nr_addr_filters.attr, 11485 NULL, 11486 }; 11487 11488 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11489 { 11490 struct device *dev = kobj_to_dev(kobj); 11491 struct pmu *pmu = dev_get_drvdata(dev); 11492 11493 if (n == 2 && !pmu->nr_addr_filters) 11494 return 0; 11495 11496 return a->mode; 11497 } 11498 11499 static struct attribute_group pmu_dev_attr_group = { 11500 .is_visible = pmu_dev_is_visible, 11501 .attrs = pmu_dev_attrs, 11502 }; 11503 11504 static const struct attribute_group *pmu_dev_groups[] = { 11505 &pmu_dev_attr_group, 11506 NULL, 11507 }; 11508 11509 static int pmu_bus_running; 11510 static struct bus_type pmu_bus = { 11511 .name = "event_source", 11512 .dev_groups = pmu_dev_groups, 11513 }; 11514 11515 static void pmu_dev_release(struct device *dev) 11516 { 11517 kfree(dev); 11518 } 11519 11520 static int pmu_dev_alloc(struct pmu *pmu) 11521 { 11522 int ret = -ENOMEM; 11523 11524 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11525 if (!pmu->dev) 11526 goto out; 11527 11528 pmu->dev->groups = pmu->attr_groups; 11529 device_initialize(pmu->dev); 11530 11531 dev_set_drvdata(pmu->dev, pmu); 11532 pmu->dev->bus = &pmu_bus; 11533 pmu->dev->parent = pmu->parent; 11534 pmu->dev->release = pmu_dev_release; 11535 11536 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11537 if (ret) 11538 goto free_dev; 11539 11540 ret = device_add(pmu->dev); 11541 if (ret) 11542 goto free_dev; 11543 11544 if (pmu->attr_update) { 11545 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11546 if (ret) 11547 goto del_dev; 11548 } 11549 11550 out: 11551 return ret; 11552 11553 del_dev: 11554 device_del(pmu->dev); 11555 11556 free_dev: 11557 put_device(pmu->dev); 11558 goto out; 11559 } 11560 11561 static struct lock_class_key cpuctx_mutex; 11562 static struct lock_class_key cpuctx_lock; 11563 11564 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11565 { 11566 int cpu, ret, max = PERF_TYPE_MAX; 11567 11568 mutex_lock(&pmus_lock); 11569 ret = -ENOMEM; 11570 pmu->pmu_disable_count = alloc_percpu(int); 11571 if (!pmu->pmu_disable_count) 11572 goto unlock; 11573 11574 pmu->type = -1; 11575 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11576 ret = -EINVAL; 11577 goto free_pdc; 11578 } 11579 11580 pmu->name = name; 11581 11582 if (type >= 0) 11583 max = type; 11584 11585 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11586 if (ret < 0) 11587 goto free_pdc; 11588 11589 WARN_ON(type >= 0 && ret != type); 11590 11591 type = ret; 11592 pmu->type = type; 11593 11594 if (pmu_bus_running && !pmu->dev) { 11595 ret = pmu_dev_alloc(pmu); 11596 if (ret) 11597 goto free_idr; 11598 } 11599 11600 ret = -ENOMEM; 11601 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11602 if (!pmu->cpu_pmu_context) 11603 goto free_dev; 11604 11605 for_each_possible_cpu(cpu) { 11606 struct perf_cpu_pmu_context *cpc; 11607 11608 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11609 __perf_init_event_pmu_context(&cpc->epc, pmu); 11610 __perf_mux_hrtimer_init(cpc, cpu); 11611 } 11612 11613 if (!pmu->start_txn) { 11614 if (pmu->pmu_enable) { 11615 /* 11616 * If we have pmu_enable/pmu_disable calls, install 11617 * transaction stubs that use that to try and batch 11618 * hardware accesses. 11619 */ 11620 pmu->start_txn = perf_pmu_start_txn; 11621 pmu->commit_txn = perf_pmu_commit_txn; 11622 pmu->cancel_txn = perf_pmu_cancel_txn; 11623 } else { 11624 pmu->start_txn = perf_pmu_nop_txn; 11625 pmu->commit_txn = perf_pmu_nop_int; 11626 pmu->cancel_txn = perf_pmu_nop_void; 11627 } 11628 } 11629 11630 if (!pmu->pmu_enable) { 11631 pmu->pmu_enable = perf_pmu_nop_void; 11632 pmu->pmu_disable = perf_pmu_nop_void; 11633 } 11634 11635 if (!pmu->check_period) 11636 pmu->check_period = perf_event_nop_int; 11637 11638 if (!pmu->event_idx) 11639 pmu->event_idx = perf_event_idx_default; 11640 11641 list_add_rcu(&pmu->entry, &pmus); 11642 atomic_set(&pmu->exclusive_cnt, 0); 11643 ret = 0; 11644 unlock: 11645 mutex_unlock(&pmus_lock); 11646 11647 return ret; 11648 11649 free_dev: 11650 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11651 device_del(pmu->dev); 11652 put_device(pmu->dev); 11653 } 11654 11655 free_idr: 11656 idr_remove(&pmu_idr, pmu->type); 11657 11658 free_pdc: 11659 free_percpu(pmu->pmu_disable_count); 11660 goto unlock; 11661 } 11662 EXPORT_SYMBOL_GPL(perf_pmu_register); 11663 11664 void perf_pmu_unregister(struct pmu *pmu) 11665 { 11666 mutex_lock(&pmus_lock); 11667 list_del_rcu(&pmu->entry); 11668 11669 /* 11670 * We dereference the pmu list under both SRCU and regular RCU, so 11671 * synchronize against both of those. 11672 */ 11673 synchronize_srcu(&pmus_srcu); 11674 synchronize_rcu(); 11675 11676 free_percpu(pmu->pmu_disable_count); 11677 idr_remove(&pmu_idr, pmu->type); 11678 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11679 if (pmu->nr_addr_filters) 11680 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11681 device_del(pmu->dev); 11682 put_device(pmu->dev); 11683 } 11684 free_pmu_context(pmu); 11685 mutex_unlock(&pmus_lock); 11686 } 11687 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11688 11689 static inline bool has_extended_regs(struct perf_event *event) 11690 { 11691 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11692 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11693 } 11694 11695 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11696 { 11697 struct perf_event_context *ctx = NULL; 11698 int ret; 11699 11700 if (!try_module_get(pmu->module)) 11701 return -ENODEV; 11702 11703 /* 11704 * A number of pmu->event_init() methods iterate the sibling_list to, 11705 * for example, validate if the group fits on the PMU. Therefore, 11706 * if this is a sibling event, acquire the ctx->mutex to protect 11707 * the sibling_list. 11708 */ 11709 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11710 /* 11711 * This ctx->mutex can nest when we're called through 11712 * inheritance. See the perf_event_ctx_lock_nested() comment. 11713 */ 11714 ctx = perf_event_ctx_lock_nested(event->group_leader, 11715 SINGLE_DEPTH_NESTING); 11716 BUG_ON(!ctx); 11717 } 11718 11719 event->pmu = pmu; 11720 ret = pmu->event_init(event); 11721 11722 if (ctx) 11723 perf_event_ctx_unlock(event->group_leader, ctx); 11724 11725 if (!ret) { 11726 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11727 has_extended_regs(event)) 11728 ret = -EOPNOTSUPP; 11729 11730 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11731 event_has_any_exclude_flag(event)) 11732 ret = -EINVAL; 11733 11734 if (ret && event->destroy) 11735 event->destroy(event); 11736 } 11737 11738 if (ret) 11739 module_put(pmu->module); 11740 11741 return ret; 11742 } 11743 11744 static struct pmu *perf_init_event(struct perf_event *event) 11745 { 11746 bool extended_type = false; 11747 int idx, type, ret; 11748 struct pmu *pmu; 11749 11750 idx = srcu_read_lock(&pmus_srcu); 11751 11752 /* 11753 * Save original type before calling pmu->event_init() since certain 11754 * pmus overwrites event->attr.type to forward event to another pmu. 11755 */ 11756 event->orig_type = event->attr.type; 11757 11758 /* Try parent's PMU first: */ 11759 if (event->parent && event->parent->pmu) { 11760 pmu = event->parent->pmu; 11761 ret = perf_try_init_event(pmu, event); 11762 if (!ret) 11763 goto unlock; 11764 } 11765 11766 /* 11767 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11768 * are often aliases for PERF_TYPE_RAW. 11769 */ 11770 type = event->attr.type; 11771 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11772 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11773 if (!type) { 11774 type = PERF_TYPE_RAW; 11775 } else { 11776 extended_type = true; 11777 event->attr.config &= PERF_HW_EVENT_MASK; 11778 } 11779 } 11780 11781 again: 11782 rcu_read_lock(); 11783 pmu = idr_find(&pmu_idr, type); 11784 rcu_read_unlock(); 11785 if (pmu) { 11786 if (event->attr.type != type && type != PERF_TYPE_RAW && 11787 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11788 goto fail; 11789 11790 ret = perf_try_init_event(pmu, event); 11791 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11792 type = event->attr.type; 11793 goto again; 11794 } 11795 11796 if (ret) 11797 pmu = ERR_PTR(ret); 11798 11799 goto unlock; 11800 } 11801 11802 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11803 ret = perf_try_init_event(pmu, event); 11804 if (!ret) 11805 goto unlock; 11806 11807 if (ret != -ENOENT) { 11808 pmu = ERR_PTR(ret); 11809 goto unlock; 11810 } 11811 } 11812 fail: 11813 pmu = ERR_PTR(-ENOENT); 11814 unlock: 11815 srcu_read_unlock(&pmus_srcu, idx); 11816 11817 return pmu; 11818 } 11819 11820 static void attach_sb_event(struct perf_event *event) 11821 { 11822 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11823 11824 raw_spin_lock(&pel->lock); 11825 list_add_rcu(&event->sb_list, &pel->list); 11826 raw_spin_unlock(&pel->lock); 11827 } 11828 11829 /* 11830 * We keep a list of all !task (and therefore per-cpu) events 11831 * that need to receive side-band records. 11832 * 11833 * This avoids having to scan all the various PMU per-cpu contexts 11834 * looking for them. 11835 */ 11836 static void account_pmu_sb_event(struct perf_event *event) 11837 { 11838 if (is_sb_event(event)) 11839 attach_sb_event(event); 11840 } 11841 11842 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11843 static void account_freq_event_nohz(void) 11844 { 11845 #ifdef CONFIG_NO_HZ_FULL 11846 /* Lock so we don't race with concurrent unaccount */ 11847 spin_lock(&nr_freq_lock); 11848 if (atomic_inc_return(&nr_freq_events) == 1) 11849 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11850 spin_unlock(&nr_freq_lock); 11851 #endif 11852 } 11853 11854 static void account_freq_event(void) 11855 { 11856 if (tick_nohz_full_enabled()) 11857 account_freq_event_nohz(); 11858 else 11859 atomic_inc(&nr_freq_events); 11860 } 11861 11862 11863 static void account_event(struct perf_event *event) 11864 { 11865 bool inc = false; 11866 11867 if (event->parent) 11868 return; 11869 11870 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11871 inc = true; 11872 if (event->attr.mmap || event->attr.mmap_data) 11873 atomic_inc(&nr_mmap_events); 11874 if (event->attr.build_id) 11875 atomic_inc(&nr_build_id_events); 11876 if (event->attr.comm) 11877 atomic_inc(&nr_comm_events); 11878 if (event->attr.namespaces) 11879 atomic_inc(&nr_namespaces_events); 11880 if (event->attr.cgroup) 11881 atomic_inc(&nr_cgroup_events); 11882 if (event->attr.task) 11883 atomic_inc(&nr_task_events); 11884 if (event->attr.freq) 11885 account_freq_event(); 11886 if (event->attr.context_switch) { 11887 atomic_inc(&nr_switch_events); 11888 inc = true; 11889 } 11890 if (has_branch_stack(event)) 11891 inc = true; 11892 if (is_cgroup_event(event)) 11893 inc = true; 11894 if (event->attr.ksymbol) 11895 atomic_inc(&nr_ksymbol_events); 11896 if (event->attr.bpf_event) 11897 atomic_inc(&nr_bpf_events); 11898 if (event->attr.text_poke) 11899 atomic_inc(&nr_text_poke_events); 11900 11901 if (inc) { 11902 /* 11903 * We need the mutex here because static_branch_enable() 11904 * must complete *before* the perf_sched_count increment 11905 * becomes visible. 11906 */ 11907 if (atomic_inc_not_zero(&perf_sched_count)) 11908 goto enabled; 11909 11910 mutex_lock(&perf_sched_mutex); 11911 if (!atomic_read(&perf_sched_count)) { 11912 static_branch_enable(&perf_sched_events); 11913 /* 11914 * Guarantee that all CPUs observe they key change and 11915 * call the perf scheduling hooks before proceeding to 11916 * install events that need them. 11917 */ 11918 synchronize_rcu(); 11919 } 11920 /* 11921 * Now that we have waited for the sync_sched(), allow further 11922 * increments to by-pass the mutex. 11923 */ 11924 atomic_inc(&perf_sched_count); 11925 mutex_unlock(&perf_sched_mutex); 11926 } 11927 enabled: 11928 11929 account_pmu_sb_event(event); 11930 } 11931 11932 /* 11933 * Allocate and initialize an event structure 11934 */ 11935 static struct perf_event * 11936 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11937 struct task_struct *task, 11938 struct perf_event *group_leader, 11939 struct perf_event *parent_event, 11940 perf_overflow_handler_t overflow_handler, 11941 void *context, int cgroup_fd) 11942 { 11943 struct pmu *pmu; 11944 struct perf_event *event; 11945 struct hw_perf_event *hwc; 11946 long err = -EINVAL; 11947 int node; 11948 11949 if ((unsigned)cpu >= nr_cpu_ids) { 11950 if (!task || cpu != -1) 11951 return ERR_PTR(-EINVAL); 11952 } 11953 if (attr->sigtrap && !task) { 11954 /* Requires a task: avoid signalling random tasks. */ 11955 return ERR_PTR(-EINVAL); 11956 } 11957 11958 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11959 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11960 node); 11961 if (!event) 11962 return ERR_PTR(-ENOMEM); 11963 11964 /* 11965 * Single events are their own group leaders, with an 11966 * empty sibling list: 11967 */ 11968 if (!group_leader) 11969 group_leader = event; 11970 11971 mutex_init(&event->child_mutex); 11972 INIT_LIST_HEAD(&event->child_list); 11973 11974 INIT_LIST_HEAD(&event->event_entry); 11975 INIT_LIST_HEAD(&event->sibling_list); 11976 INIT_LIST_HEAD(&event->active_list); 11977 init_event_group(event); 11978 INIT_LIST_HEAD(&event->rb_entry); 11979 INIT_LIST_HEAD(&event->active_entry); 11980 INIT_LIST_HEAD(&event->addr_filters.list); 11981 INIT_HLIST_NODE(&event->hlist_entry); 11982 11983 11984 init_waitqueue_head(&event->waitq); 11985 init_irq_work(&event->pending_irq, perf_pending_irq); 11986 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 11987 init_task_work(&event->pending_task, perf_pending_task); 11988 rcuwait_init(&event->pending_work_wait); 11989 11990 mutex_init(&event->mmap_mutex); 11991 raw_spin_lock_init(&event->addr_filters.lock); 11992 11993 atomic_long_set(&event->refcount, 1); 11994 event->cpu = cpu; 11995 event->attr = *attr; 11996 event->group_leader = group_leader; 11997 event->pmu = NULL; 11998 event->oncpu = -1; 11999 12000 event->parent = parent_event; 12001 12002 event->ns = get_pid_ns(task_active_pid_ns(current)); 12003 event->id = atomic64_inc_return(&perf_event_id); 12004 12005 event->state = PERF_EVENT_STATE_INACTIVE; 12006 12007 if (parent_event) 12008 event->event_caps = parent_event->event_caps; 12009 12010 if (task) { 12011 event->attach_state = PERF_ATTACH_TASK; 12012 /* 12013 * XXX pmu::event_init needs to know what task to account to 12014 * and we cannot use the ctx information because we need the 12015 * pmu before we get a ctx. 12016 */ 12017 event->hw.target = get_task_struct(task); 12018 } 12019 12020 event->clock = &local_clock; 12021 if (parent_event) 12022 event->clock = parent_event->clock; 12023 12024 if (!overflow_handler && parent_event) { 12025 overflow_handler = parent_event->overflow_handler; 12026 context = parent_event->overflow_handler_context; 12027 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12028 if (parent_event->prog) { 12029 struct bpf_prog *prog = parent_event->prog; 12030 12031 bpf_prog_inc(prog); 12032 event->prog = prog; 12033 } 12034 #endif 12035 } 12036 12037 if (overflow_handler) { 12038 event->overflow_handler = overflow_handler; 12039 event->overflow_handler_context = context; 12040 } else if (is_write_backward(event)){ 12041 event->overflow_handler = perf_event_output_backward; 12042 event->overflow_handler_context = NULL; 12043 } else { 12044 event->overflow_handler = perf_event_output_forward; 12045 event->overflow_handler_context = NULL; 12046 } 12047 12048 perf_event__state_init(event); 12049 12050 pmu = NULL; 12051 12052 hwc = &event->hw; 12053 hwc->sample_period = attr->sample_period; 12054 if (attr->freq && attr->sample_freq) 12055 hwc->sample_period = 1; 12056 hwc->last_period = hwc->sample_period; 12057 12058 local64_set(&hwc->period_left, hwc->sample_period); 12059 12060 /* 12061 * We currently do not support PERF_SAMPLE_READ on inherited events. 12062 * See perf_output_read(). 12063 */ 12064 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12065 goto err_ns; 12066 12067 if (!has_branch_stack(event)) 12068 event->attr.branch_sample_type = 0; 12069 12070 pmu = perf_init_event(event); 12071 if (IS_ERR(pmu)) { 12072 err = PTR_ERR(pmu); 12073 goto err_ns; 12074 } 12075 12076 /* 12077 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12078 * events (they don't make sense as the cgroup will be different 12079 * on other CPUs in the uncore mask). 12080 */ 12081 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12082 err = -EINVAL; 12083 goto err_pmu; 12084 } 12085 12086 if (event->attr.aux_output && 12087 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12088 err = -EOPNOTSUPP; 12089 goto err_pmu; 12090 } 12091 12092 if (cgroup_fd != -1) { 12093 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12094 if (err) 12095 goto err_pmu; 12096 } 12097 12098 err = exclusive_event_init(event); 12099 if (err) 12100 goto err_pmu; 12101 12102 if (has_addr_filter(event)) { 12103 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12104 sizeof(struct perf_addr_filter_range), 12105 GFP_KERNEL); 12106 if (!event->addr_filter_ranges) { 12107 err = -ENOMEM; 12108 goto err_per_task; 12109 } 12110 12111 /* 12112 * Clone the parent's vma offsets: they are valid until exec() 12113 * even if the mm is not shared with the parent. 12114 */ 12115 if (event->parent) { 12116 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12117 12118 raw_spin_lock_irq(&ifh->lock); 12119 memcpy(event->addr_filter_ranges, 12120 event->parent->addr_filter_ranges, 12121 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12122 raw_spin_unlock_irq(&ifh->lock); 12123 } 12124 12125 /* force hw sync on the address filters */ 12126 event->addr_filters_gen = 1; 12127 } 12128 12129 if (!event->parent) { 12130 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12131 err = get_callchain_buffers(attr->sample_max_stack); 12132 if (err) 12133 goto err_addr_filters; 12134 } 12135 } 12136 12137 err = security_perf_event_alloc(event); 12138 if (err) 12139 goto err_callchain_buffer; 12140 12141 /* symmetric to unaccount_event() in _free_event() */ 12142 account_event(event); 12143 12144 return event; 12145 12146 err_callchain_buffer: 12147 if (!event->parent) { 12148 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12149 put_callchain_buffers(); 12150 } 12151 err_addr_filters: 12152 kfree(event->addr_filter_ranges); 12153 12154 err_per_task: 12155 exclusive_event_destroy(event); 12156 12157 err_pmu: 12158 if (is_cgroup_event(event)) 12159 perf_detach_cgroup(event); 12160 if (event->destroy) 12161 event->destroy(event); 12162 module_put(pmu->module); 12163 err_ns: 12164 if (event->hw.target) 12165 put_task_struct(event->hw.target); 12166 call_rcu(&event->rcu_head, free_event_rcu); 12167 12168 return ERR_PTR(err); 12169 } 12170 12171 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12172 struct perf_event_attr *attr) 12173 { 12174 u32 size; 12175 int ret; 12176 12177 /* Zero the full structure, so that a short copy will be nice. */ 12178 memset(attr, 0, sizeof(*attr)); 12179 12180 ret = get_user(size, &uattr->size); 12181 if (ret) 12182 return ret; 12183 12184 /* ABI compatibility quirk: */ 12185 if (!size) 12186 size = PERF_ATTR_SIZE_VER0; 12187 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12188 goto err_size; 12189 12190 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12191 if (ret) { 12192 if (ret == -E2BIG) 12193 goto err_size; 12194 return ret; 12195 } 12196 12197 attr->size = size; 12198 12199 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12200 return -EINVAL; 12201 12202 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12203 return -EINVAL; 12204 12205 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12206 return -EINVAL; 12207 12208 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12209 u64 mask = attr->branch_sample_type; 12210 12211 /* only using defined bits */ 12212 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12213 return -EINVAL; 12214 12215 /* at least one branch bit must be set */ 12216 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12217 return -EINVAL; 12218 12219 /* propagate priv level, when not set for branch */ 12220 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12221 12222 /* exclude_kernel checked on syscall entry */ 12223 if (!attr->exclude_kernel) 12224 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12225 12226 if (!attr->exclude_user) 12227 mask |= PERF_SAMPLE_BRANCH_USER; 12228 12229 if (!attr->exclude_hv) 12230 mask |= PERF_SAMPLE_BRANCH_HV; 12231 /* 12232 * adjust user setting (for HW filter setup) 12233 */ 12234 attr->branch_sample_type = mask; 12235 } 12236 /* privileged levels capture (kernel, hv): check permissions */ 12237 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12238 ret = perf_allow_kernel(attr); 12239 if (ret) 12240 return ret; 12241 } 12242 } 12243 12244 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12245 ret = perf_reg_validate(attr->sample_regs_user); 12246 if (ret) 12247 return ret; 12248 } 12249 12250 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12251 if (!arch_perf_have_user_stack_dump()) 12252 return -ENOSYS; 12253 12254 /* 12255 * We have __u32 type for the size, but so far 12256 * we can only use __u16 as maximum due to the 12257 * __u16 sample size limit. 12258 */ 12259 if (attr->sample_stack_user >= USHRT_MAX) 12260 return -EINVAL; 12261 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12262 return -EINVAL; 12263 } 12264 12265 if (!attr->sample_max_stack) 12266 attr->sample_max_stack = sysctl_perf_event_max_stack; 12267 12268 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12269 ret = perf_reg_validate(attr->sample_regs_intr); 12270 12271 #ifndef CONFIG_CGROUP_PERF 12272 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12273 return -EINVAL; 12274 #endif 12275 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12276 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12277 return -EINVAL; 12278 12279 if (!attr->inherit && attr->inherit_thread) 12280 return -EINVAL; 12281 12282 if (attr->remove_on_exec && attr->enable_on_exec) 12283 return -EINVAL; 12284 12285 if (attr->sigtrap && !attr->remove_on_exec) 12286 return -EINVAL; 12287 12288 out: 12289 return ret; 12290 12291 err_size: 12292 put_user(sizeof(*attr), &uattr->size); 12293 ret = -E2BIG; 12294 goto out; 12295 } 12296 12297 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12298 { 12299 if (b < a) 12300 swap(a, b); 12301 12302 mutex_lock(a); 12303 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12304 } 12305 12306 static int 12307 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12308 { 12309 struct perf_buffer *rb = NULL; 12310 int ret = -EINVAL; 12311 12312 if (!output_event) { 12313 mutex_lock(&event->mmap_mutex); 12314 goto set; 12315 } 12316 12317 /* don't allow circular references */ 12318 if (event == output_event) 12319 goto out; 12320 12321 /* 12322 * Don't allow cross-cpu buffers 12323 */ 12324 if (output_event->cpu != event->cpu) 12325 goto out; 12326 12327 /* 12328 * If its not a per-cpu rb, it must be the same task. 12329 */ 12330 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12331 goto out; 12332 12333 /* 12334 * Mixing clocks in the same buffer is trouble you don't need. 12335 */ 12336 if (output_event->clock != event->clock) 12337 goto out; 12338 12339 /* 12340 * Either writing ring buffer from beginning or from end. 12341 * Mixing is not allowed. 12342 */ 12343 if (is_write_backward(output_event) != is_write_backward(event)) 12344 goto out; 12345 12346 /* 12347 * If both events generate aux data, they must be on the same PMU 12348 */ 12349 if (has_aux(event) && has_aux(output_event) && 12350 event->pmu != output_event->pmu) 12351 goto out; 12352 12353 /* 12354 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12355 * output_event is already on rb->event_list, and the list iteration 12356 * restarts after every removal, it is guaranteed this new event is 12357 * observed *OR* if output_event is already removed, it's guaranteed we 12358 * observe !rb->mmap_count. 12359 */ 12360 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12361 set: 12362 /* Can't redirect output if we've got an active mmap() */ 12363 if (atomic_read(&event->mmap_count)) 12364 goto unlock; 12365 12366 if (output_event) { 12367 /* get the rb we want to redirect to */ 12368 rb = ring_buffer_get(output_event); 12369 if (!rb) 12370 goto unlock; 12371 12372 /* did we race against perf_mmap_close() */ 12373 if (!atomic_read(&rb->mmap_count)) { 12374 ring_buffer_put(rb); 12375 goto unlock; 12376 } 12377 } 12378 12379 ring_buffer_attach(event, rb); 12380 12381 ret = 0; 12382 unlock: 12383 mutex_unlock(&event->mmap_mutex); 12384 if (output_event) 12385 mutex_unlock(&output_event->mmap_mutex); 12386 12387 out: 12388 return ret; 12389 } 12390 12391 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12392 { 12393 bool nmi_safe = false; 12394 12395 switch (clk_id) { 12396 case CLOCK_MONOTONIC: 12397 event->clock = &ktime_get_mono_fast_ns; 12398 nmi_safe = true; 12399 break; 12400 12401 case CLOCK_MONOTONIC_RAW: 12402 event->clock = &ktime_get_raw_fast_ns; 12403 nmi_safe = true; 12404 break; 12405 12406 case CLOCK_REALTIME: 12407 event->clock = &ktime_get_real_ns; 12408 break; 12409 12410 case CLOCK_BOOTTIME: 12411 event->clock = &ktime_get_boottime_ns; 12412 break; 12413 12414 case CLOCK_TAI: 12415 event->clock = &ktime_get_clocktai_ns; 12416 break; 12417 12418 default: 12419 return -EINVAL; 12420 } 12421 12422 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12423 return -EINVAL; 12424 12425 return 0; 12426 } 12427 12428 static bool 12429 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12430 { 12431 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12432 bool is_capable = perfmon_capable(); 12433 12434 if (attr->sigtrap) { 12435 /* 12436 * perf_event_attr::sigtrap sends signals to the other task. 12437 * Require the current task to also have CAP_KILL. 12438 */ 12439 rcu_read_lock(); 12440 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12441 rcu_read_unlock(); 12442 12443 /* 12444 * If the required capabilities aren't available, checks for 12445 * ptrace permissions: upgrade to ATTACH, since sending signals 12446 * can effectively change the target task. 12447 */ 12448 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12449 } 12450 12451 /* 12452 * Preserve ptrace permission check for backwards compatibility. The 12453 * ptrace check also includes checks that the current task and other 12454 * task have matching uids, and is therefore not done here explicitly. 12455 */ 12456 return is_capable || ptrace_may_access(task, ptrace_mode); 12457 } 12458 12459 /** 12460 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12461 * 12462 * @attr_uptr: event_id type attributes for monitoring/sampling 12463 * @pid: target pid 12464 * @cpu: target cpu 12465 * @group_fd: group leader event fd 12466 * @flags: perf event open flags 12467 */ 12468 SYSCALL_DEFINE5(perf_event_open, 12469 struct perf_event_attr __user *, attr_uptr, 12470 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12471 { 12472 struct perf_event *group_leader = NULL, *output_event = NULL; 12473 struct perf_event_pmu_context *pmu_ctx; 12474 struct perf_event *event, *sibling; 12475 struct perf_event_attr attr; 12476 struct perf_event_context *ctx; 12477 struct file *event_file = NULL; 12478 struct fd group = {NULL, 0}; 12479 struct task_struct *task = NULL; 12480 struct pmu *pmu; 12481 int event_fd; 12482 int move_group = 0; 12483 int err; 12484 int f_flags = O_RDWR; 12485 int cgroup_fd = -1; 12486 12487 /* for future expandability... */ 12488 if (flags & ~PERF_FLAG_ALL) 12489 return -EINVAL; 12490 12491 err = perf_copy_attr(attr_uptr, &attr); 12492 if (err) 12493 return err; 12494 12495 /* Do we allow access to perf_event_open(2) ? */ 12496 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12497 if (err) 12498 return err; 12499 12500 if (!attr.exclude_kernel) { 12501 err = perf_allow_kernel(&attr); 12502 if (err) 12503 return err; 12504 } 12505 12506 if (attr.namespaces) { 12507 if (!perfmon_capable()) 12508 return -EACCES; 12509 } 12510 12511 if (attr.freq) { 12512 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12513 return -EINVAL; 12514 } else { 12515 if (attr.sample_period & (1ULL << 63)) 12516 return -EINVAL; 12517 } 12518 12519 /* Only privileged users can get physical addresses */ 12520 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12521 err = perf_allow_kernel(&attr); 12522 if (err) 12523 return err; 12524 } 12525 12526 /* REGS_INTR can leak data, lockdown must prevent this */ 12527 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12528 err = security_locked_down(LOCKDOWN_PERF); 12529 if (err) 12530 return err; 12531 } 12532 12533 /* 12534 * In cgroup mode, the pid argument is used to pass the fd 12535 * opened to the cgroup directory in cgroupfs. The cpu argument 12536 * designates the cpu on which to monitor threads from that 12537 * cgroup. 12538 */ 12539 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12540 return -EINVAL; 12541 12542 if (flags & PERF_FLAG_FD_CLOEXEC) 12543 f_flags |= O_CLOEXEC; 12544 12545 event_fd = get_unused_fd_flags(f_flags); 12546 if (event_fd < 0) 12547 return event_fd; 12548 12549 if (group_fd != -1) { 12550 err = perf_fget_light(group_fd, &group); 12551 if (err) 12552 goto err_fd; 12553 group_leader = group.file->private_data; 12554 if (flags & PERF_FLAG_FD_OUTPUT) 12555 output_event = group_leader; 12556 if (flags & PERF_FLAG_FD_NO_GROUP) 12557 group_leader = NULL; 12558 } 12559 12560 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12561 task = find_lively_task_by_vpid(pid); 12562 if (IS_ERR(task)) { 12563 err = PTR_ERR(task); 12564 goto err_group_fd; 12565 } 12566 } 12567 12568 if (task && group_leader && 12569 group_leader->attr.inherit != attr.inherit) { 12570 err = -EINVAL; 12571 goto err_task; 12572 } 12573 12574 if (flags & PERF_FLAG_PID_CGROUP) 12575 cgroup_fd = pid; 12576 12577 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12578 NULL, NULL, cgroup_fd); 12579 if (IS_ERR(event)) { 12580 err = PTR_ERR(event); 12581 goto err_task; 12582 } 12583 12584 if (is_sampling_event(event)) { 12585 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12586 err = -EOPNOTSUPP; 12587 goto err_alloc; 12588 } 12589 } 12590 12591 /* 12592 * Special case software events and allow them to be part of 12593 * any hardware group. 12594 */ 12595 pmu = event->pmu; 12596 12597 if (attr.use_clockid) { 12598 err = perf_event_set_clock(event, attr.clockid); 12599 if (err) 12600 goto err_alloc; 12601 } 12602 12603 if (pmu->task_ctx_nr == perf_sw_context) 12604 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12605 12606 if (task) { 12607 err = down_read_interruptible(&task->signal->exec_update_lock); 12608 if (err) 12609 goto err_alloc; 12610 12611 /* 12612 * We must hold exec_update_lock across this and any potential 12613 * perf_install_in_context() call for this new event to 12614 * serialize against exec() altering our credentials (and the 12615 * perf_event_exit_task() that could imply). 12616 */ 12617 err = -EACCES; 12618 if (!perf_check_permission(&attr, task)) 12619 goto err_cred; 12620 } 12621 12622 /* 12623 * Get the target context (task or percpu): 12624 */ 12625 ctx = find_get_context(task, event); 12626 if (IS_ERR(ctx)) { 12627 err = PTR_ERR(ctx); 12628 goto err_cred; 12629 } 12630 12631 mutex_lock(&ctx->mutex); 12632 12633 if (ctx->task == TASK_TOMBSTONE) { 12634 err = -ESRCH; 12635 goto err_locked; 12636 } 12637 12638 if (!task) { 12639 /* 12640 * Check if the @cpu we're creating an event for is online. 12641 * 12642 * We use the perf_cpu_context::ctx::mutex to serialize against 12643 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12644 */ 12645 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12646 12647 if (!cpuctx->online) { 12648 err = -ENODEV; 12649 goto err_locked; 12650 } 12651 } 12652 12653 if (group_leader) { 12654 err = -EINVAL; 12655 12656 /* 12657 * Do not allow a recursive hierarchy (this new sibling 12658 * becoming part of another group-sibling): 12659 */ 12660 if (group_leader->group_leader != group_leader) 12661 goto err_locked; 12662 12663 /* All events in a group should have the same clock */ 12664 if (group_leader->clock != event->clock) 12665 goto err_locked; 12666 12667 /* 12668 * Make sure we're both events for the same CPU; 12669 * grouping events for different CPUs is broken; since 12670 * you can never concurrently schedule them anyhow. 12671 */ 12672 if (group_leader->cpu != event->cpu) 12673 goto err_locked; 12674 12675 /* 12676 * Make sure we're both on the same context; either task or cpu. 12677 */ 12678 if (group_leader->ctx != ctx) 12679 goto err_locked; 12680 12681 /* 12682 * Only a group leader can be exclusive or pinned 12683 */ 12684 if (attr.exclusive || attr.pinned) 12685 goto err_locked; 12686 12687 if (is_software_event(event) && 12688 !in_software_context(group_leader)) { 12689 /* 12690 * If the event is a sw event, but the group_leader 12691 * is on hw context. 12692 * 12693 * Allow the addition of software events to hw 12694 * groups, this is safe because software events 12695 * never fail to schedule. 12696 * 12697 * Note the comment that goes with struct 12698 * perf_event_pmu_context. 12699 */ 12700 pmu = group_leader->pmu_ctx->pmu; 12701 } else if (!is_software_event(event)) { 12702 if (is_software_event(group_leader) && 12703 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12704 /* 12705 * In case the group is a pure software group, and we 12706 * try to add a hardware event, move the whole group to 12707 * the hardware context. 12708 */ 12709 move_group = 1; 12710 } 12711 12712 /* Don't allow group of multiple hw events from different pmus */ 12713 if (!in_software_context(group_leader) && 12714 group_leader->pmu_ctx->pmu != pmu) 12715 goto err_locked; 12716 } 12717 } 12718 12719 /* 12720 * Now that we're certain of the pmu; find the pmu_ctx. 12721 */ 12722 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12723 if (IS_ERR(pmu_ctx)) { 12724 err = PTR_ERR(pmu_ctx); 12725 goto err_locked; 12726 } 12727 event->pmu_ctx = pmu_ctx; 12728 12729 if (output_event) { 12730 err = perf_event_set_output(event, output_event); 12731 if (err) 12732 goto err_context; 12733 } 12734 12735 if (!perf_event_validate_size(event)) { 12736 err = -E2BIG; 12737 goto err_context; 12738 } 12739 12740 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12741 err = -EINVAL; 12742 goto err_context; 12743 } 12744 12745 /* 12746 * Must be under the same ctx::mutex as perf_install_in_context(), 12747 * because we need to serialize with concurrent event creation. 12748 */ 12749 if (!exclusive_event_installable(event, ctx)) { 12750 err = -EBUSY; 12751 goto err_context; 12752 } 12753 12754 WARN_ON_ONCE(ctx->parent_ctx); 12755 12756 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12757 if (IS_ERR(event_file)) { 12758 err = PTR_ERR(event_file); 12759 event_file = NULL; 12760 goto err_context; 12761 } 12762 12763 /* 12764 * This is the point on no return; we cannot fail hereafter. This is 12765 * where we start modifying current state. 12766 */ 12767 12768 if (move_group) { 12769 perf_remove_from_context(group_leader, 0); 12770 put_pmu_ctx(group_leader->pmu_ctx); 12771 12772 for_each_sibling_event(sibling, group_leader) { 12773 perf_remove_from_context(sibling, 0); 12774 put_pmu_ctx(sibling->pmu_ctx); 12775 } 12776 12777 /* 12778 * Install the group siblings before the group leader. 12779 * 12780 * Because a group leader will try and install the entire group 12781 * (through the sibling list, which is still in-tact), we can 12782 * end up with siblings installed in the wrong context. 12783 * 12784 * By installing siblings first we NO-OP because they're not 12785 * reachable through the group lists. 12786 */ 12787 for_each_sibling_event(sibling, group_leader) { 12788 sibling->pmu_ctx = pmu_ctx; 12789 get_pmu_ctx(pmu_ctx); 12790 perf_event__state_init(sibling); 12791 perf_install_in_context(ctx, sibling, sibling->cpu); 12792 } 12793 12794 /* 12795 * Removing from the context ends up with disabled 12796 * event. What we want here is event in the initial 12797 * startup state, ready to be add into new context. 12798 */ 12799 group_leader->pmu_ctx = pmu_ctx; 12800 get_pmu_ctx(pmu_ctx); 12801 perf_event__state_init(group_leader); 12802 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12803 } 12804 12805 /* 12806 * Precalculate sample_data sizes; do while holding ctx::mutex such 12807 * that we're serialized against further additions and before 12808 * perf_install_in_context() which is the point the event is active and 12809 * can use these values. 12810 */ 12811 perf_event__header_size(event); 12812 perf_event__id_header_size(event); 12813 12814 event->owner = current; 12815 12816 perf_install_in_context(ctx, event, event->cpu); 12817 perf_unpin_context(ctx); 12818 12819 mutex_unlock(&ctx->mutex); 12820 12821 if (task) { 12822 up_read(&task->signal->exec_update_lock); 12823 put_task_struct(task); 12824 } 12825 12826 mutex_lock(¤t->perf_event_mutex); 12827 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12828 mutex_unlock(¤t->perf_event_mutex); 12829 12830 /* 12831 * Drop the reference on the group_event after placing the 12832 * new event on the sibling_list. This ensures destruction 12833 * of the group leader will find the pointer to itself in 12834 * perf_group_detach(). 12835 */ 12836 fdput(group); 12837 fd_install(event_fd, event_file); 12838 return event_fd; 12839 12840 err_context: 12841 put_pmu_ctx(event->pmu_ctx); 12842 event->pmu_ctx = NULL; /* _free_event() */ 12843 err_locked: 12844 mutex_unlock(&ctx->mutex); 12845 perf_unpin_context(ctx); 12846 put_ctx(ctx); 12847 err_cred: 12848 if (task) 12849 up_read(&task->signal->exec_update_lock); 12850 err_alloc: 12851 free_event(event); 12852 err_task: 12853 if (task) 12854 put_task_struct(task); 12855 err_group_fd: 12856 fdput(group); 12857 err_fd: 12858 put_unused_fd(event_fd); 12859 return err; 12860 } 12861 12862 /** 12863 * perf_event_create_kernel_counter 12864 * 12865 * @attr: attributes of the counter to create 12866 * @cpu: cpu in which the counter is bound 12867 * @task: task to profile (NULL for percpu) 12868 * @overflow_handler: callback to trigger when we hit the event 12869 * @context: context data could be used in overflow_handler callback 12870 */ 12871 struct perf_event * 12872 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12873 struct task_struct *task, 12874 perf_overflow_handler_t overflow_handler, 12875 void *context) 12876 { 12877 struct perf_event_pmu_context *pmu_ctx; 12878 struct perf_event_context *ctx; 12879 struct perf_event *event; 12880 struct pmu *pmu; 12881 int err; 12882 12883 /* 12884 * Grouping is not supported for kernel events, neither is 'AUX', 12885 * make sure the caller's intentions are adjusted. 12886 */ 12887 if (attr->aux_output) 12888 return ERR_PTR(-EINVAL); 12889 12890 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12891 overflow_handler, context, -1); 12892 if (IS_ERR(event)) { 12893 err = PTR_ERR(event); 12894 goto err; 12895 } 12896 12897 /* Mark owner so we could distinguish it from user events. */ 12898 event->owner = TASK_TOMBSTONE; 12899 pmu = event->pmu; 12900 12901 if (pmu->task_ctx_nr == perf_sw_context) 12902 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12903 12904 /* 12905 * Get the target context (task or percpu): 12906 */ 12907 ctx = find_get_context(task, event); 12908 if (IS_ERR(ctx)) { 12909 err = PTR_ERR(ctx); 12910 goto err_alloc; 12911 } 12912 12913 WARN_ON_ONCE(ctx->parent_ctx); 12914 mutex_lock(&ctx->mutex); 12915 if (ctx->task == TASK_TOMBSTONE) { 12916 err = -ESRCH; 12917 goto err_unlock; 12918 } 12919 12920 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12921 if (IS_ERR(pmu_ctx)) { 12922 err = PTR_ERR(pmu_ctx); 12923 goto err_unlock; 12924 } 12925 event->pmu_ctx = pmu_ctx; 12926 12927 if (!task) { 12928 /* 12929 * Check if the @cpu we're creating an event for is online. 12930 * 12931 * We use the perf_cpu_context::ctx::mutex to serialize against 12932 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12933 */ 12934 struct perf_cpu_context *cpuctx = 12935 container_of(ctx, struct perf_cpu_context, ctx); 12936 if (!cpuctx->online) { 12937 err = -ENODEV; 12938 goto err_pmu_ctx; 12939 } 12940 } 12941 12942 if (!exclusive_event_installable(event, ctx)) { 12943 err = -EBUSY; 12944 goto err_pmu_ctx; 12945 } 12946 12947 perf_install_in_context(ctx, event, event->cpu); 12948 perf_unpin_context(ctx); 12949 mutex_unlock(&ctx->mutex); 12950 12951 return event; 12952 12953 err_pmu_ctx: 12954 put_pmu_ctx(pmu_ctx); 12955 event->pmu_ctx = NULL; /* _free_event() */ 12956 err_unlock: 12957 mutex_unlock(&ctx->mutex); 12958 perf_unpin_context(ctx); 12959 put_ctx(ctx); 12960 err_alloc: 12961 free_event(event); 12962 err: 12963 return ERR_PTR(err); 12964 } 12965 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12966 12967 static void __perf_pmu_remove(struct perf_event_context *ctx, 12968 int cpu, struct pmu *pmu, 12969 struct perf_event_groups *groups, 12970 struct list_head *events) 12971 { 12972 struct perf_event *event, *sibling; 12973 12974 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12975 perf_remove_from_context(event, 0); 12976 put_pmu_ctx(event->pmu_ctx); 12977 list_add(&event->migrate_entry, events); 12978 12979 for_each_sibling_event(sibling, event) { 12980 perf_remove_from_context(sibling, 0); 12981 put_pmu_ctx(sibling->pmu_ctx); 12982 list_add(&sibling->migrate_entry, events); 12983 } 12984 } 12985 } 12986 12987 static void __perf_pmu_install_event(struct pmu *pmu, 12988 struct perf_event_context *ctx, 12989 int cpu, struct perf_event *event) 12990 { 12991 struct perf_event_pmu_context *epc; 12992 struct perf_event_context *old_ctx = event->ctx; 12993 12994 get_ctx(ctx); /* normally find_get_context() */ 12995 12996 event->cpu = cpu; 12997 epc = find_get_pmu_context(pmu, ctx, event); 12998 event->pmu_ctx = epc; 12999 13000 if (event->state >= PERF_EVENT_STATE_OFF) 13001 event->state = PERF_EVENT_STATE_INACTIVE; 13002 perf_install_in_context(ctx, event, cpu); 13003 13004 /* 13005 * Now that event->ctx is updated and visible, put the old ctx. 13006 */ 13007 put_ctx(old_ctx); 13008 } 13009 13010 static void __perf_pmu_install(struct perf_event_context *ctx, 13011 int cpu, struct pmu *pmu, struct list_head *events) 13012 { 13013 struct perf_event *event, *tmp; 13014 13015 /* 13016 * Re-instate events in 2 passes. 13017 * 13018 * Skip over group leaders and only install siblings on this first 13019 * pass, siblings will not get enabled without a leader, however a 13020 * leader will enable its siblings, even if those are still on the old 13021 * context. 13022 */ 13023 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13024 if (event->group_leader == event) 13025 continue; 13026 13027 list_del(&event->migrate_entry); 13028 __perf_pmu_install_event(pmu, ctx, cpu, event); 13029 } 13030 13031 /* 13032 * Once all the siblings are setup properly, install the group leaders 13033 * to make it go. 13034 */ 13035 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13036 list_del(&event->migrate_entry); 13037 __perf_pmu_install_event(pmu, ctx, cpu, event); 13038 } 13039 } 13040 13041 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13042 { 13043 struct perf_event_context *src_ctx, *dst_ctx; 13044 LIST_HEAD(events); 13045 13046 /* 13047 * Since per-cpu context is persistent, no need to grab an extra 13048 * reference. 13049 */ 13050 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13051 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13052 13053 /* 13054 * See perf_event_ctx_lock() for comments on the details 13055 * of swizzling perf_event::ctx. 13056 */ 13057 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13058 13059 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13060 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13061 13062 if (!list_empty(&events)) { 13063 /* 13064 * Wait for the events to quiesce before re-instating them. 13065 */ 13066 synchronize_rcu(); 13067 13068 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13069 } 13070 13071 mutex_unlock(&dst_ctx->mutex); 13072 mutex_unlock(&src_ctx->mutex); 13073 } 13074 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13075 13076 static void sync_child_event(struct perf_event *child_event) 13077 { 13078 struct perf_event *parent_event = child_event->parent; 13079 u64 child_val; 13080 13081 if (child_event->attr.inherit_stat) { 13082 struct task_struct *task = child_event->ctx->task; 13083 13084 if (task && task != TASK_TOMBSTONE) 13085 perf_event_read_event(child_event, task); 13086 } 13087 13088 child_val = perf_event_count(child_event); 13089 13090 /* 13091 * Add back the child's count to the parent's count: 13092 */ 13093 atomic64_add(child_val, &parent_event->child_count); 13094 atomic64_add(child_event->total_time_enabled, 13095 &parent_event->child_total_time_enabled); 13096 atomic64_add(child_event->total_time_running, 13097 &parent_event->child_total_time_running); 13098 } 13099 13100 static void 13101 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13102 { 13103 struct perf_event *parent_event = event->parent; 13104 unsigned long detach_flags = 0; 13105 13106 if (parent_event) { 13107 /* 13108 * Do not destroy the 'original' grouping; because of the 13109 * context switch optimization the original events could've 13110 * ended up in a random child task. 13111 * 13112 * If we were to destroy the original group, all group related 13113 * operations would cease to function properly after this 13114 * random child dies. 13115 * 13116 * Do destroy all inherited groups, we don't care about those 13117 * and being thorough is better. 13118 */ 13119 detach_flags = DETACH_GROUP | DETACH_CHILD; 13120 mutex_lock(&parent_event->child_mutex); 13121 } 13122 13123 perf_remove_from_context(event, detach_flags); 13124 13125 raw_spin_lock_irq(&ctx->lock); 13126 if (event->state > PERF_EVENT_STATE_EXIT) 13127 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13128 raw_spin_unlock_irq(&ctx->lock); 13129 13130 /* 13131 * Child events can be freed. 13132 */ 13133 if (parent_event) { 13134 mutex_unlock(&parent_event->child_mutex); 13135 /* 13136 * Kick perf_poll() for is_event_hup(); 13137 */ 13138 perf_event_wakeup(parent_event); 13139 free_event(event); 13140 put_event(parent_event); 13141 return; 13142 } 13143 13144 /* 13145 * Parent events are governed by their filedesc, retain them. 13146 */ 13147 perf_event_wakeup(event); 13148 } 13149 13150 static void perf_event_exit_task_context(struct task_struct *child) 13151 { 13152 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13153 struct perf_event *child_event, *next; 13154 13155 WARN_ON_ONCE(child != current); 13156 13157 child_ctx = perf_pin_task_context(child); 13158 if (!child_ctx) 13159 return; 13160 13161 /* 13162 * In order to reduce the amount of tricky in ctx tear-down, we hold 13163 * ctx::mutex over the entire thing. This serializes against almost 13164 * everything that wants to access the ctx. 13165 * 13166 * The exception is sys_perf_event_open() / 13167 * perf_event_create_kernel_count() which does find_get_context() 13168 * without ctx::mutex (it cannot because of the move_group double mutex 13169 * lock thing). See the comments in perf_install_in_context(). 13170 */ 13171 mutex_lock(&child_ctx->mutex); 13172 13173 /* 13174 * In a single ctx::lock section, de-schedule the events and detach the 13175 * context from the task such that we cannot ever get it scheduled back 13176 * in. 13177 */ 13178 raw_spin_lock_irq(&child_ctx->lock); 13179 task_ctx_sched_out(child_ctx, EVENT_ALL); 13180 13181 /* 13182 * Now that the context is inactive, destroy the task <-> ctx relation 13183 * and mark the context dead. 13184 */ 13185 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13186 put_ctx(child_ctx); /* cannot be last */ 13187 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13188 put_task_struct(current); /* cannot be last */ 13189 13190 clone_ctx = unclone_ctx(child_ctx); 13191 raw_spin_unlock_irq(&child_ctx->lock); 13192 13193 if (clone_ctx) 13194 put_ctx(clone_ctx); 13195 13196 /* 13197 * Report the task dead after unscheduling the events so that we 13198 * won't get any samples after PERF_RECORD_EXIT. We can however still 13199 * get a few PERF_RECORD_READ events. 13200 */ 13201 perf_event_task(child, child_ctx, 0); 13202 13203 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13204 perf_event_exit_event(child_event, child_ctx); 13205 13206 mutex_unlock(&child_ctx->mutex); 13207 13208 put_ctx(child_ctx); 13209 } 13210 13211 /* 13212 * When a child task exits, feed back event values to parent events. 13213 * 13214 * Can be called with exec_update_lock held when called from 13215 * setup_new_exec(). 13216 */ 13217 void perf_event_exit_task(struct task_struct *child) 13218 { 13219 struct perf_event *event, *tmp; 13220 13221 mutex_lock(&child->perf_event_mutex); 13222 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13223 owner_entry) { 13224 list_del_init(&event->owner_entry); 13225 13226 /* 13227 * Ensure the list deletion is visible before we clear 13228 * the owner, closes a race against perf_release() where 13229 * we need to serialize on the owner->perf_event_mutex. 13230 */ 13231 smp_store_release(&event->owner, NULL); 13232 } 13233 mutex_unlock(&child->perf_event_mutex); 13234 13235 perf_event_exit_task_context(child); 13236 13237 /* 13238 * The perf_event_exit_task_context calls perf_event_task 13239 * with child's task_ctx, which generates EXIT events for 13240 * child contexts and sets child->perf_event_ctxp[] to NULL. 13241 * At this point we need to send EXIT events to cpu contexts. 13242 */ 13243 perf_event_task(child, NULL, 0); 13244 } 13245 13246 static void perf_free_event(struct perf_event *event, 13247 struct perf_event_context *ctx) 13248 { 13249 struct perf_event *parent = event->parent; 13250 13251 if (WARN_ON_ONCE(!parent)) 13252 return; 13253 13254 mutex_lock(&parent->child_mutex); 13255 list_del_init(&event->child_list); 13256 mutex_unlock(&parent->child_mutex); 13257 13258 put_event(parent); 13259 13260 raw_spin_lock_irq(&ctx->lock); 13261 perf_group_detach(event); 13262 list_del_event(event, ctx); 13263 raw_spin_unlock_irq(&ctx->lock); 13264 free_event(event); 13265 } 13266 13267 /* 13268 * Free a context as created by inheritance by perf_event_init_task() below, 13269 * used by fork() in case of fail. 13270 * 13271 * Even though the task has never lived, the context and events have been 13272 * exposed through the child_list, so we must take care tearing it all down. 13273 */ 13274 void perf_event_free_task(struct task_struct *task) 13275 { 13276 struct perf_event_context *ctx; 13277 struct perf_event *event, *tmp; 13278 13279 ctx = rcu_access_pointer(task->perf_event_ctxp); 13280 if (!ctx) 13281 return; 13282 13283 mutex_lock(&ctx->mutex); 13284 raw_spin_lock_irq(&ctx->lock); 13285 /* 13286 * Destroy the task <-> ctx relation and mark the context dead. 13287 * 13288 * This is important because even though the task hasn't been 13289 * exposed yet the context has been (through child_list). 13290 */ 13291 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13292 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13293 put_task_struct(task); /* cannot be last */ 13294 raw_spin_unlock_irq(&ctx->lock); 13295 13296 13297 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13298 perf_free_event(event, ctx); 13299 13300 mutex_unlock(&ctx->mutex); 13301 13302 /* 13303 * perf_event_release_kernel() could've stolen some of our 13304 * child events and still have them on its free_list. In that 13305 * case we must wait for these events to have been freed (in 13306 * particular all their references to this task must've been 13307 * dropped). 13308 * 13309 * Without this copy_process() will unconditionally free this 13310 * task (irrespective of its reference count) and 13311 * _free_event()'s put_task_struct(event->hw.target) will be a 13312 * use-after-free. 13313 * 13314 * Wait for all events to drop their context reference. 13315 */ 13316 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13317 put_ctx(ctx); /* must be last */ 13318 } 13319 13320 void perf_event_delayed_put(struct task_struct *task) 13321 { 13322 WARN_ON_ONCE(task->perf_event_ctxp); 13323 } 13324 13325 struct file *perf_event_get(unsigned int fd) 13326 { 13327 struct file *file = fget(fd); 13328 if (!file) 13329 return ERR_PTR(-EBADF); 13330 13331 if (file->f_op != &perf_fops) { 13332 fput(file); 13333 return ERR_PTR(-EBADF); 13334 } 13335 13336 return file; 13337 } 13338 13339 const struct perf_event *perf_get_event(struct file *file) 13340 { 13341 if (file->f_op != &perf_fops) 13342 return ERR_PTR(-EINVAL); 13343 13344 return file->private_data; 13345 } 13346 13347 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13348 { 13349 if (!event) 13350 return ERR_PTR(-EINVAL); 13351 13352 return &event->attr; 13353 } 13354 13355 /* 13356 * Inherit an event from parent task to child task. 13357 * 13358 * Returns: 13359 * - valid pointer on success 13360 * - NULL for orphaned events 13361 * - IS_ERR() on error 13362 */ 13363 static struct perf_event * 13364 inherit_event(struct perf_event *parent_event, 13365 struct task_struct *parent, 13366 struct perf_event_context *parent_ctx, 13367 struct task_struct *child, 13368 struct perf_event *group_leader, 13369 struct perf_event_context *child_ctx) 13370 { 13371 enum perf_event_state parent_state = parent_event->state; 13372 struct perf_event_pmu_context *pmu_ctx; 13373 struct perf_event *child_event; 13374 unsigned long flags; 13375 13376 /* 13377 * Instead of creating recursive hierarchies of events, 13378 * we link inherited events back to the original parent, 13379 * which has a filp for sure, which we use as the reference 13380 * count: 13381 */ 13382 if (parent_event->parent) 13383 parent_event = parent_event->parent; 13384 13385 child_event = perf_event_alloc(&parent_event->attr, 13386 parent_event->cpu, 13387 child, 13388 group_leader, parent_event, 13389 NULL, NULL, -1); 13390 if (IS_ERR(child_event)) 13391 return child_event; 13392 13393 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13394 if (IS_ERR(pmu_ctx)) { 13395 free_event(child_event); 13396 return ERR_CAST(pmu_ctx); 13397 } 13398 child_event->pmu_ctx = pmu_ctx; 13399 13400 /* 13401 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13402 * must be under the same lock in order to serialize against 13403 * perf_event_release_kernel(), such that either we must observe 13404 * is_orphaned_event() or they will observe us on the child_list. 13405 */ 13406 mutex_lock(&parent_event->child_mutex); 13407 if (is_orphaned_event(parent_event) || 13408 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13409 mutex_unlock(&parent_event->child_mutex); 13410 /* task_ctx_data is freed with child_ctx */ 13411 free_event(child_event); 13412 return NULL; 13413 } 13414 13415 get_ctx(child_ctx); 13416 13417 /* 13418 * Make the child state follow the state of the parent event, 13419 * not its attr.disabled bit. We hold the parent's mutex, 13420 * so we won't race with perf_event_{en, dis}able_family. 13421 */ 13422 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13423 child_event->state = PERF_EVENT_STATE_INACTIVE; 13424 else 13425 child_event->state = PERF_EVENT_STATE_OFF; 13426 13427 if (parent_event->attr.freq) { 13428 u64 sample_period = parent_event->hw.sample_period; 13429 struct hw_perf_event *hwc = &child_event->hw; 13430 13431 hwc->sample_period = sample_period; 13432 hwc->last_period = sample_period; 13433 13434 local64_set(&hwc->period_left, sample_period); 13435 } 13436 13437 child_event->ctx = child_ctx; 13438 child_event->overflow_handler = parent_event->overflow_handler; 13439 child_event->overflow_handler_context 13440 = parent_event->overflow_handler_context; 13441 13442 /* 13443 * Precalculate sample_data sizes 13444 */ 13445 perf_event__header_size(child_event); 13446 perf_event__id_header_size(child_event); 13447 13448 /* 13449 * Link it up in the child's context: 13450 */ 13451 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13452 add_event_to_ctx(child_event, child_ctx); 13453 child_event->attach_state |= PERF_ATTACH_CHILD; 13454 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13455 13456 /* 13457 * Link this into the parent event's child list 13458 */ 13459 list_add_tail(&child_event->child_list, &parent_event->child_list); 13460 mutex_unlock(&parent_event->child_mutex); 13461 13462 return child_event; 13463 } 13464 13465 /* 13466 * Inherits an event group. 13467 * 13468 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13469 * This matches with perf_event_release_kernel() removing all child events. 13470 * 13471 * Returns: 13472 * - 0 on success 13473 * - <0 on error 13474 */ 13475 static int inherit_group(struct perf_event *parent_event, 13476 struct task_struct *parent, 13477 struct perf_event_context *parent_ctx, 13478 struct task_struct *child, 13479 struct perf_event_context *child_ctx) 13480 { 13481 struct perf_event *leader; 13482 struct perf_event *sub; 13483 struct perf_event *child_ctr; 13484 13485 leader = inherit_event(parent_event, parent, parent_ctx, 13486 child, NULL, child_ctx); 13487 if (IS_ERR(leader)) 13488 return PTR_ERR(leader); 13489 /* 13490 * @leader can be NULL here because of is_orphaned_event(). In this 13491 * case inherit_event() will create individual events, similar to what 13492 * perf_group_detach() would do anyway. 13493 */ 13494 for_each_sibling_event(sub, parent_event) { 13495 child_ctr = inherit_event(sub, parent, parent_ctx, 13496 child, leader, child_ctx); 13497 if (IS_ERR(child_ctr)) 13498 return PTR_ERR(child_ctr); 13499 13500 if (sub->aux_event == parent_event && child_ctr && 13501 !perf_get_aux_event(child_ctr, leader)) 13502 return -EINVAL; 13503 } 13504 if (leader) 13505 leader->group_generation = parent_event->group_generation; 13506 return 0; 13507 } 13508 13509 /* 13510 * Creates the child task context and tries to inherit the event-group. 13511 * 13512 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13513 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13514 * consistent with perf_event_release_kernel() removing all child events. 13515 * 13516 * Returns: 13517 * - 0 on success 13518 * - <0 on error 13519 */ 13520 static int 13521 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13522 struct perf_event_context *parent_ctx, 13523 struct task_struct *child, 13524 u64 clone_flags, int *inherited_all) 13525 { 13526 struct perf_event_context *child_ctx; 13527 int ret; 13528 13529 if (!event->attr.inherit || 13530 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13531 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13532 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13533 *inherited_all = 0; 13534 return 0; 13535 } 13536 13537 child_ctx = child->perf_event_ctxp; 13538 if (!child_ctx) { 13539 /* 13540 * This is executed from the parent task context, so 13541 * inherit events that have been marked for cloning. 13542 * First allocate and initialize a context for the 13543 * child. 13544 */ 13545 child_ctx = alloc_perf_context(child); 13546 if (!child_ctx) 13547 return -ENOMEM; 13548 13549 child->perf_event_ctxp = child_ctx; 13550 } 13551 13552 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13553 if (ret) 13554 *inherited_all = 0; 13555 13556 return ret; 13557 } 13558 13559 /* 13560 * Initialize the perf_event context in task_struct 13561 */ 13562 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13563 { 13564 struct perf_event_context *child_ctx, *parent_ctx; 13565 struct perf_event_context *cloned_ctx; 13566 struct perf_event *event; 13567 struct task_struct *parent = current; 13568 int inherited_all = 1; 13569 unsigned long flags; 13570 int ret = 0; 13571 13572 if (likely(!parent->perf_event_ctxp)) 13573 return 0; 13574 13575 /* 13576 * If the parent's context is a clone, pin it so it won't get 13577 * swapped under us. 13578 */ 13579 parent_ctx = perf_pin_task_context(parent); 13580 if (!parent_ctx) 13581 return 0; 13582 13583 /* 13584 * No need to check if parent_ctx != NULL here; since we saw 13585 * it non-NULL earlier, the only reason for it to become NULL 13586 * is if we exit, and since we're currently in the middle of 13587 * a fork we can't be exiting at the same time. 13588 */ 13589 13590 /* 13591 * Lock the parent list. No need to lock the child - not PID 13592 * hashed yet and not running, so nobody can access it. 13593 */ 13594 mutex_lock(&parent_ctx->mutex); 13595 13596 /* 13597 * We dont have to disable NMIs - we are only looking at 13598 * the list, not manipulating it: 13599 */ 13600 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13601 ret = inherit_task_group(event, parent, parent_ctx, 13602 child, clone_flags, &inherited_all); 13603 if (ret) 13604 goto out_unlock; 13605 } 13606 13607 /* 13608 * We can't hold ctx->lock when iterating the ->flexible_group list due 13609 * to allocations, but we need to prevent rotation because 13610 * rotate_ctx() will change the list from interrupt context. 13611 */ 13612 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13613 parent_ctx->rotate_disable = 1; 13614 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13615 13616 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13617 ret = inherit_task_group(event, parent, parent_ctx, 13618 child, clone_flags, &inherited_all); 13619 if (ret) 13620 goto out_unlock; 13621 } 13622 13623 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13624 parent_ctx->rotate_disable = 0; 13625 13626 child_ctx = child->perf_event_ctxp; 13627 13628 if (child_ctx && inherited_all) { 13629 /* 13630 * Mark the child context as a clone of the parent 13631 * context, or of whatever the parent is a clone of. 13632 * 13633 * Note that if the parent is a clone, the holding of 13634 * parent_ctx->lock avoids it from being uncloned. 13635 */ 13636 cloned_ctx = parent_ctx->parent_ctx; 13637 if (cloned_ctx) { 13638 child_ctx->parent_ctx = cloned_ctx; 13639 child_ctx->parent_gen = parent_ctx->parent_gen; 13640 } else { 13641 child_ctx->parent_ctx = parent_ctx; 13642 child_ctx->parent_gen = parent_ctx->generation; 13643 } 13644 get_ctx(child_ctx->parent_ctx); 13645 } 13646 13647 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13648 out_unlock: 13649 mutex_unlock(&parent_ctx->mutex); 13650 13651 perf_unpin_context(parent_ctx); 13652 put_ctx(parent_ctx); 13653 13654 return ret; 13655 } 13656 13657 /* 13658 * Initialize the perf_event context in task_struct 13659 */ 13660 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13661 { 13662 int ret; 13663 13664 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 13665 child->perf_event_ctxp = NULL; 13666 mutex_init(&child->perf_event_mutex); 13667 INIT_LIST_HEAD(&child->perf_event_list); 13668 13669 ret = perf_event_init_context(child, clone_flags); 13670 if (ret) { 13671 perf_event_free_task(child); 13672 return ret; 13673 } 13674 13675 return 0; 13676 } 13677 13678 static void __init perf_event_init_all_cpus(void) 13679 { 13680 struct swevent_htable *swhash; 13681 struct perf_cpu_context *cpuctx; 13682 int cpu; 13683 13684 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13685 13686 for_each_possible_cpu(cpu) { 13687 swhash = &per_cpu(swevent_htable, cpu); 13688 mutex_init(&swhash->hlist_mutex); 13689 13690 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13691 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13692 13693 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13694 13695 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13696 __perf_event_init_context(&cpuctx->ctx); 13697 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13698 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13699 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13700 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13701 cpuctx->heap = cpuctx->heap_default; 13702 } 13703 } 13704 13705 static void perf_swevent_init_cpu(unsigned int cpu) 13706 { 13707 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13708 13709 mutex_lock(&swhash->hlist_mutex); 13710 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13711 struct swevent_hlist *hlist; 13712 13713 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13714 WARN_ON(!hlist); 13715 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13716 } 13717 mutex_unlock(&swhash->hlist_mutex); 13718 } 13719 13720 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13721 static void __perf_event_exit_context(void *__info) 13722 { 13723 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13724 struct perf_event_context *ctx = __info; 13725 struct perf_event *event; 13726 13727 raw_spin_lock(&ctx->lock); 13728 ctx_sched_out(ctx, EVENT_TIME); 13729 list_for_each_entry(event, &ctx->event_list, event_entry) 13730 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13731 raw_spin_unlock(&ctx->lock); 13732 } 13733 13734 static void perf_event_exit_cpu_context(int cpu) 13735 { 13736 struct perf_cpu_context *cpuctx; 13737 struct perf_event_context *ctx; 13738 13739 // XXX simplify cpuctx->online 13740 mutex_lock(&pmus_lock); 13741 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13742 ctx = &cpuctx->ctx; 13743 13744 mutex_lock(&ctx->mutex); 13745 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13746 cpuctx->online = 0; 13747 mutex_unlock(&ctx->mutex); 13748 cpumask_clear_cpu(cpu, perf_online_mask); 13749 mutex_unlock(&pmus_lock); 13750 } 13751 #else 13752 13753 static void perf_event_exit_cpu_context(int cpu) { } 13754 13755 #endif 13756 13757 int perf_event_init_cpu(unsigned int cpu) 13758 { 13759 struct perf_cpu_context *cpuctx; 13760 struct perf_event_context *ctx; 13761 13762 perf_swevent_init_cpu(cpu); 13763 13764 mutex_lock(&pmus_lock); 13765 cpumask_set_cpu(cpu, perf_online_mask); 13766 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13767 ctx = &cpuctx->ctx; 13768 13769 mutex_lock(&ctx->mutex); 13770 cpuctx->online = 1; 13771 mutex_unlock(&ctx->mutex); 13772 mutex_unlock(&pmus_lock); 13773 13774 return 0; 13775 } 13776 13777 int perf_event_exit_cpu(unsigned int cpu) 13778 { 13779 perf_event_exit_cpu_context(cpu); 13780 return 0; 13781 } 13782 13783 static int 13784 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13785 { 13786 int cpu; 13787 13788 for_each_online_cpu(cpu) 13789 perf_event_exit_cpu(cpu); 13790 13791 return NOTIFY_OK; 13792 } 13793 13794 /* 13795 * Run the perf reboot notifier at the very last possible moment so that 13796 * the generic watchdog code runs as long as possible. 13797 */ 13798 static struct notifier_block perf_reboot_notifier = { 13799 .notifier_call = perf_reboot, 13800 .priority = INT_MIN, 13801 }; 13802 13803 void __init perf_event_init(void) 13804 { 13805 int ret; 13806 13807 idr_init(&pmu_idr); 13808 13809 perf_event_init_all_cpus(); 13810 init_srcu_struct(&pmus_srcu); 13811 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13812 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13813 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13814 perf_tp_register(); 13815 perf_event_init_cpu(smp_processor_id()); 13816 register_reboot_notifier(&perf_reboot_notifier); 13817 13818 ret = init_hw_breakpoint(); 13819 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13820 13821 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13822 13823 /* 13824 * Build time assertion that we keep the data_head at the intended 13825 * location. IOW, validation we got the __reserved[] size right. 13826 */ 13827 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13828 != 1024); 13829 } 13830 13831 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13832 char *page) 13833 { 13834 struct perf_pmu_events_attr *pmu_attr = 13835 container_of(attr, struct perf_pmu_events_attr, attr); 13836 13837 if (pmu_attr->event_str) 13838 return sprintf(page, "%s\n", pmu_attr->event_str); 13839 13840 return 0; 13841 } 13842 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13843 13844 static int __init perf_event_sysfs_init(void) 13845 { 13846 struct pmu *pmu; 13847 int ret; 13848 13849 mutex_lock(&pmus_lock); 13850 13851 ret = bus_register(&pmu_bus); 13852 if (ret) 13853 goto unlock; 13854 13855 list_for_each_entry(pmu, &pmus, entry) { 13856 if (pmu->dev) 13857 continue; 13858 13859 ret = pmu_dev_alloc(pmu); 13860 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13861 } 13862 pmu_bus_running = 1; 13863 ret = 0; 13864 13865 unlock: 13866 mutex_unlock(&pmus_lock); 13867 13868 return ret; 13869 } 13870 device_initcall(perf_event_sysfs_init); 13871 13872 #ifdef CONFIG_CGROUP_PERF 13873 static struct cgroup_subsys_state * 13874 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13875 { 13876 struct perf_cgroup *jc; 13877 13878 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13879 if (!jc) 13880 return ERR_PTR(-ENOMEM); 13881 13882 jc->info = alloc_percpu(struct perf_cgroup_info); 13883 if (!jc->info) { 13884 kfree(jc); 13885 return ERR_PTR(-ENOMEM); 13886 } 13887 13888 return &jc->css; 13889 } 13890 13891 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13892 { 13893 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13894 13895 free_percpu(jc->info); 13896 kfree(jc); 13897 } 13898 13899 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13900 { 13901 perf_event_cgroup(css->cgroup); 13902 return 0; 13903 } 13904 13905 static int __perf_cgroup_move(void *info) 13906 { 13907 struct task_struct *task = info; 13908 13909 preempt_disable(); 13910 perf_cgroup_switch(task); 13911 preempt_enable(); 13912 13913 return 0; 13914 } 13915 13916 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13917 { 13918 struct task_struct *task; 13919 struct cgroup_subsys_state *css; 13920 13921 cgroup_taskset_for_each(task, css, tset) 13922 task_function_call(task, __perf_cgroup_move, task); 13923 } 13924 13925 struct cgroup_subsys perf_event_cgrp_subsys = { 13926 .css_alloc = perf_cgroup_css_alloc, 13927 .css_free = perf_cgroup_css_free, 13928 .css_online = perf_cgroup_css_online, 13929 .attach = perf_cgroup_attach, 13930 /* 13931 * Implicitly enable on dfl hierarchy so that perf events can 13932 * always be filtered by cgroup2 path as long as perf_event 13933 * controller is not mounted on a legacy hierarchy. 13934 */ 13935 .implicit_on_dfl = true, 13936 .threaded = true, 13937 }; 13938 #endif /* CONFIG_CGROUP_PERF */ 13939 13940 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13941