xref: /linux/kernel/events/core.c (revision 33dea5aae0320345af26ae9aba0894a930e0d4ec)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	WARN_ON_ONCE(!irqs_disabled());
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	WARN_ON_ONCE(!irqs_disabled());
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 #ifdef CONFIG_CGROUP_PERF
586 
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590 	struct perf_event_context *ctx = event->ctx;
591 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592 
593 	/* @event doesn't care about cgroup */
594 	if (!event->cgrp)
595 		return true;
596 
597 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
598 	if (!cpuctx->cgrp)
599 		return false;
600 
601 	/*
602 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
603 	 * also enabled for all its descendant cgroups.  If @cpuctx's
604 	 * cgroup is a descendant of @event's (the test covers identity
605 	 * case), it's a match.
606 	 */
607 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 				    event->cgrp->css.cgroup);
609 }
610 
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613 	css_put(&event->cgrp->css);
614 	event->cgrp = NULL;
615 }
616 
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619 	return event->cgrp != NULL;
620 }
621 
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624 	struct perf_cgroup_info *t;
625 
626 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 	return t->time;
628 }
629 
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632 	struct perf_cgroup_info *info;
633 	u64 now;
634 
635 	now = perf_clock();
636 
637 	info = this_cpu_ptr(cgrp->info);
638 
639 	info->time += now - info->timestamp;
640 	info->timestamp = now;
641 }
642 
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 	if (cgrp_out)
647 		__update_cgrp_time(cgrp_out);
648 }
649 
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652 	struct perf_cgroup *cgrp;
653 
654 	/*
655 	 * ensure we access cgroup data only when needed and
656 	 * when we know the cgroup is pinned (css_get)
657 	 */
658 	if (!is_cgroup_event(event))
659 		return;
660 
661 	cgrp = perf_cgroup_from_task(current, event->ctx);
662 	/*
663 	 * Do not update time when cgroup is not active
664 	 */
665        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666 		__update_cgrp_time(event->cgrp);
667 }
668 
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 			  struct perf_event_context *ctx)
672 {
673 	struct perf_cgroup *cgrp;
674 	struct perf_cgroup_info *info;
675 
676 	/*
677 	 * ctx->lock held by caller
678 	 * ensure we do not access cgroup data
679 	 * unless we have the cgroup pinned (css_get)
680 	 */
681 	if (!task || !ctx->nr_cgroups)
682 		return;
683 
684 	cgrp = perf_cgroup_from_task(task, ctx);
685 	info = this_cpu_ptr(cgrp->info);
686 	info->timestamp = ctx->timestamp;
687 }
688 
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690 
691 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
693 
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702 	struct perf_cpu_context *cpuctx;
703 	struct list_head *list;
704 	unsigned long flags;
705 
706 	/*
707 	 * Disable interrupts and preemption to avoid this CPU's
708 	 * cgrp_cpuctx_entry to change under us.
709 	 */
710 	local_irq_save(flags);
711 
712 	list = this_cpu_ptr(&cgrp_cpuctx_list);
713 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715 
716 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 		perf_pmu_disable(cpuctx->ctx.pmu);
718 
719 		if (mode & PERF_CGROUP_SWOUT) {
720 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 			/*
722 			 * must not be done before ctxswout due
723 			 * to event_filter_match() in event_sched_out()
724 			 */
725 			cpuctx->cgrp = NULL;
726 		}
727 
728 		if (mode & PERF_CGROUP_SWIN) {
729 			WARN_ON_ONCE(cpuctx->cgrp);
730 			/*
731 			 * set cgrp before ctxsw in to allow
732 			 * event_filter_match() to not have to pass
733 			 * task around
734 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 			 * because cgorup events are only per-cpu
736 			 */
737 			cpuctx->cgrp = perf_cgroup_from_task(task,
738 							     &cpuctx->ctx);
739 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740 		}
741 		perf_pmu_enable(cpuctx->ctx.pmu);
742 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743 	}
744 
745 	local_irq_restore(flags);
746 }
747 
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 					 struct task_struct *next)
750 {
751 	struct perf_cgroup *cgrp1;
752 	struct perf_cgroup *cgrp2 = NULL;
753 
754 	rcu_read_lock();
755 	/*
756 	 * we come here when we know perf_cgroup_events > 0
757 	 * we do not need to pass the ctx here because we know
758 	 * we are holding the rcu lock
759 	 */
760 	cgrp1 = perf_cgroup_from_task(task, NULL);
761 	cgrp2 = perf_cgroup_from_task(next, NULL);
762 
763 	/*
764 	 * only schedule out current cgroup events if we know
765 	 * that we are switching to a different cgroup. Otherwise,
766 	 * do no touch the cgroup events.
767 	 */
768 	if (cgrp1 != cgrp2)
769 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 
771 	rcu_read_unlock();
772 }
773 
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 					struct task_struct *task)
776 {
777 	struct perf_cgroup *cgrp1;
778 	struct perf_cgroup *cgrp2 = NULL;
779 
780 	rcu_read_lock();
781 	/*
782 	 * we come here when we know perf_cgroup_events > 0
783 	 * we do not need to pass the ctx here because we know
784 	 * we are holding the rcu lock
785 	 */
786 	cgrp1 = perf_cgroup_from_task(task, NULL);
787 	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 
789 	/*
790 	 * only need to schedule in cgroup events if we are changing
791 	 * cgroup during ctxsw. Cgroup events were not scheduled
792 	 * out of ctxsw out if that was not the case.
793 	 */
794 	if (cgrp1 != cgrp2)
795 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 
797 	rcu_read_unlock();
798 }
799 
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 				      struct perf_event_attr *attr,
802 				      struct perf_event *group_leader)
803 {
804 	struct perf_cgroup *cgrp;
805 	struct cgroup_subsys_state *css;
806 	struct fd f = fdget(fd);
807 	int ret = 0;
808 
809 	if (!f.file)
810 		return -EBADF;
811 
812 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 					 &perf_event_cgrp_subsys);
814 	if (IS_ERR(css)) {
815 		ret = PTR_ERR(css);
816 		goto out;
817 	}
818 
819 	cgrp = container_of(css, struct perf_cgroup, css);
820 	event->cgrp = cgrp;
821 
822 	/*
823 	 * all events in a group must monitor
824 	 * the same cgroup because a task belongs
825 	 * to only one perf cgroup at a time
826 	 */
827 	if (group_leader && group_leader->cgrp != cgrp) {
828 		perf_detach_cgroup(event);
829 		ret = -EINVAL;
830 	}
831 out:
832 	fdput(f);
833 	return ret;
834 }
835 
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839 	struct perf_cgroup_info *t;
840 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 	event->shadow_ctx_time = now - t->timestamp;
842 }
843 
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847 	/*
848 	 * when the current task's perf cgroup does not match
849 	 * the event's, we need to remember to call the
850 	 * perf_mark_enable() function the first time a task with
851 	 * a matching perf cgroup is scheduled in.
852 	 */
853 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 		event->cgrp_defer_enabled = 1;
855 }
856 
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 			 struct perf_event_context *ctx)
860 {
861 	struct perf_event *sub;
862 	u64 tstamp = perf_event_time(event);
863 
864 	if (!event->cgrp_defer_enabled)
865 		return;
866 
867 	event->cgrp_defer_enabled = 0;
868 
869 	event->tstamp_enabled = tstamp - event->total_time_enabled;
870 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 			sub->cgrp_defer_enabled = 0;
874 		}
875 	}
876 }
877 
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 			 struct perf_event_context *ctx, bool add)
885 {
886 	struct perf_cpu_context *cpuctx;
887 	struct list_head *cpuctx_entry;
888 
889 	if (!is_cgroup_event(event))
890 		return;
891 
892 	if (add && ctx->nr_cgroups++)
893 		return;
894 	else if (!add && --ctx->nr_cgroups)
895 		return;
896 	/*
897 	 * Because cgroup events are always per-cpu events,
898 	 * this will always be called from the right CPU.
899 	 */
900 	cpuctx = __get_cpu_context(ctx);
901 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 	if (add) {
904 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
905 
906 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
907 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
908 			cpuctx->cgrp = cgrp;
909 	} else {
910 		list_del(cpuctx_entry);
911 		cpuctx->cgrp = NULL;
912 	}
913 }
914 
915 #else /* !CONFIG_CGROUP_PERF */
916 
917 static inline bool
918 perf_cgroup_match(struct perf_event *event)
919 {
920 	return true;
921 }
922 
923 static inline void perf_detach_cgroup(struct perf_event *event)
924 {}
925 
926 static inline int is_cgroup_event(struct perf_event *event)
927 {
928 	return 0;
929 }
930 
931 static inline void update_cgrp_time_from_event(struct perf_event *event)
932 {
933 }
934 
935 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
936 {
937 }
938 
939 static inline void perf_cgroup_sched_out(struct task_struct *task,
940 					 struct task_struct *next)
941 {
942 }
943 
944 static inline void perf_cgroup_sched_in(struct task_struct *prev,
945 					struct task_struct *task)
946 {
947 }
948 
949 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
950 				      struct perf_event_attr *attr,
951 				      struct perf_event *group_leader)
952 {
953 	return -EINVAL;
954 }
955 
956 static inline void
957 perf_cgroup_set_timestamp(struct task_struct *task,
958 			  struct perf_event_context *ctx)
959 {
960 }
961 
962 void
963 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
964 {
965 }
966 
967 static inline void
968 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
969 {
970 }
971 
972 static inline u64 perf_cgroup_event_time(struct perf_event *event)
973 {
974 	return 0;
975 }
976 
977 static inline void
978 perf_cgroup_defer_enabled(struct perf_event *event)
979 {
980 }
981 
982 static inline void
983 perf_cgroup_mark_enabled(struct perf_event *event,
984 			 struct perf_event_context *ctx)
985 {
986 }
987 
988 static inline void
989 list_update_cgroup_event(struct perf_event *event,
990 			 struct perf_event_context *ctx, bool add)
991 {
992 }
993 
994 #endif
995 
996 /*
997  * set default to be dependent on timer tick just
998  * like original code
999  */
1000 #define PERF_CPU_HRTIMER (1000 / HZ)
1001 /*
1002  * function must be called with interrupts disabled
1003  */
1004 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1005 {
1006 	struct perf_cpu_context *cpuctx;
1007 	int rotations = 0;
1008 
1009 	WARN_ON(!irqs_disabled());
1010 
1011 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1012 	rotations = perf_rotate_context(cpuctx);
1013 
1014 	raw_spin_lock(&cpuctx->hrtimer_lock);
1015 	if (rotations)
1016 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1017 	else
1018 		cpuctx->hrtimer_active = 0;
1019 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1020 
1021 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1022 }
1023 
1024 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1025 {
1026 	struct hrtimer *timer = &cpuctx->hrtimer;
1027 	struct pmu *pmu = cpuctx->ctx.pmu;
1028 	u64 interval;
1029 
1030 	/* no multiplexing needed for SW PMU */
1031 	if (pmu->task_ctx_nr == perf_sw_context)
1032 		return;
1033 
1034 	/*
1035 	 * check default is sane, if not set then force to
1036 	 * default interval (1/tick)
1037 	 */
1038 	interval = pmu->hrtimer_interval_ms;
1039 	if (interval < 1)
1040 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1041 
1042 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1043 
1044 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1045 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1046 	timer->function = perf_mux_hrtimer_handler;
1047 }
1048 
1049 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1050 {
1051 	struct hrtimer *timer = &cpuctx->hrtimer;
1052 	struct pmu *pmu = cpuctx->ctx.pmu;
1053 	unsigned long flags;
1054 
1055 	/* not for SW PMU */
1056 	if (pmu->task_ctx_nr == perf_sw_context)
1057 		return 0;
1058 
1059 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1060 	if (!cpuctx->hrtimer_active) {
1061 		cpuctx->hrtimer_active = 1;
1062 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1063 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1064 	}
1065 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1066 
1067 	return 0;
1068 }
1069 
1070 void perf_pmu_disable(struct pmu *pmu)
1071 {
1072 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1073 	if (!(*count)++)
1074 		pmu->pmu_disable(pmu);
1075 }
1076 
1077 void perf_pmu_enable(struct pmu *pmu)
1078 {
1079 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1080 	if (!--(*count))
1081 		pmu->pmu_enable(pmu);
1082 }
1083 
1084 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1085 
1086 /*
1087  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1088  * perf_event_task_tick() are fully serialized because they're strictly cpu
1089  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1090  * disabled, while perf_event_task_tick is called from IRQ context.
1091  */
1092 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1093 {
1094 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1095 
1096 	WARN_ON(!irqs_disabled());
1097 
1098 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1099 
1100 	list_add(&ctx->active_ctx_list, head);
1101 }
1102 
1103 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1104 {
1105 	WARN_ON(!irqs_disabled());
1106 
1107 	WARN_ON(list_empty(&ctx->active_ctx_list));
1108 
1109 	list_del_init(&ctx->active_ctx_list);
1110 }
1111 
1112 static void get_ctx(struct perf_event_context *ctx)
1113 {
1114 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1115 }
1116 
1117 static void free_ctx(struct rcu_head *head)
1118 {
1119 	struct perf_event_context *ctx;
1120 
1121 	ctx = container_of(head, struct perf_event_context, rcu_head);
1122 	kfree(ctx->task_ctx_data);
1123 	kfree(ctx);
1124 }
1125 
1126 static void put_ctx(struct perf_event_context *ctx)
1127 {
1128 	if (atomic_dec_and_test(&ctx->refcount)) {
1129 		if (ctx->parent_ctx)
1130 			put_ctx(ctx->parent_ctx);
1131 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1132 			put_task_struct(ctx->task);
1133 		call_rcu(&ctx->rcu_head, free_ctx);
1134 	}
1135 }
1136 
1137 /*
1138  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1139  * perf_pmu_migrate_context() we need some magic.
1140  *
1141  * Those places that change perf_event::ctx will hold both
1142  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1143  *
1144  * Lock ordering is by mutex address. There are two other sites where
1145  * perf_event_context::mutex nests and those are:
1146  *
1147  *  - perf_event_exit_task_context()	[ child , 0 ]
1148  *      perf_event_exit_event()
1149  *        put_event()			[ parent, 1 ]
1150  *
1151  *  - perf_event_init_context()		[ parent, 0 ]
1152  *      inherit_task_group()
1153  *        inherit_group()
1154  *          inherit_event()
1155  *            perf_event_alloc()
1156  *              perf_init_event()
1157  *                perf_try_init_event()	[ child , 1 ]
1158  *
1159  * While it appears there is an obvious deadlock here -- the parent and child
1160  * nesting levels are inverted between the two. This is in fact safe because
1161  * life-time rules separate them. That is an exiting task cannot fork, and a
1162  * spawning task cannot (yet) exit.
1163  *
1164  * But remember that that these are parent<->child context relations, and
1165  * migration does not affect children, therefore these two orderings should not
1166  * interact.
1167  *
1168  * The change in perf_event::ctx does not affect children (as claimed above)
1169  * because the sys_perf_event_open() case will install a new event and break
1170  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1171  * concerned with cpuctx and that doesn't have children.
1172  *
1173  * The places that change perf_event::ctx will issue:
1174  *
1175  *   perf_remove_from_context();
1176  *   synchronize_rcu();
1177  *   perf_install_in_context();
1178  *
1179  * to affect the change. The remove_from_context() + synchronize_rcu() should
1180  * quiesce the event, after which we can install it in the new location. This
1181  * means that only external vectors (perf_fops, prctl) can perturb the event
1182  * while in transit. Therefore all such accessors should also acquire
1183  * perf_event_context::mutex to serialize against this.
1184  *
1185  * However; because event->ctx can change while we're waiting to acquire
1186  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1187  * function.
1188  *
1189  * Lock order:
1190  *    cred_guard_mutex
1191  *	task_struct::perf_event_mutex
1192  *	  perf_event_context::mutex
1193  *	    perf_event::child_mutex;
1194  *	      perf_event_context::lock
1195  *	    perf_event::mmap_mutex
1196  *	    mmap_sem
1197  */
1198 static struct perf_event_context *
1199 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1200 {
1201 	struct perf_event_context *ctx;
1202 
1203 again:
1204 	rcu_read_lock();
1205 	ctx = ACCESS_ONCE(event->ctx);
1206 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1207 		rcu_read_unlock();
1208 		goto again;
1209 	}
1210 	rcu_read_unlock();
1211 
1212 	mutex_lock_nested(&ctx->mutex, nesting);
1213 	if (event->ctx != ctx) {
1214 		mutex_unlock(&ctx->mutex);
1215 		put_ctx(ctx);
1216 		goto again;
1217 	}
1218 
1219 	return ctx;
1220 }
1221 
1222 static inline struct perf_event_context *
1223 perf_event_ctx_lock(struct perf_event *event)
1224 {
1225 	return perf_event_ctx_lock_nested(event, 0);
1226 }
1227 
1228 static void perf_event_ctx_unlock(struct perf_event *event,
1229 				  struct perf_event_context *ctx)
1230 {
1231 	mutex_unlock(&ctx->mutex);
1232 	put_ctx(ctx);
1233 }
1234 
1235 /*
1236  * This must be done under the ctx->lock, such as to serialize against
1237  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1238  * calling scheduler related locks and ctx->lock nests inside those.
1239  */
1240 static __must_check struct perf_event_context *
1241 unclone_ctx(struct perf_event_context *ctx)
1242 {
1243 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1244 
1245 	lockdep_assert_held(&ctx->lock);
1246 
1247 	if (parent_ctx)
1248 		ctx->parent_ctx = NULL;
1249 	ctx->generation++;
1250 
1251 	return parent_ctx;
1252 }
1253 
1254 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1255 				enum pid_type type)
1256 {
1257 	u32 nr;
1258 	/*
1259 	 * only top level events have the pid namespace they were created in
1260 	 */
1261 	if (event->parent)
1262 		event = event->parent;
1263 
1264 	nr = __task_pid_nr_ns(p, type, event->ns);
1265 	/* avoid -1 if it is idle thread or runs in another ns */
1266 	if (!nr && !pid_alive(p))
1267 		nr = -1;
1268 	return nr;
1269 }
1270 
1271 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1272 {
1273 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1274 }
1275 
1276 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1277 {
1278 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1279 }
1280 
1281 /*
1282  * If we inherit events we want to return the parent event id
1283  * to userspace.
1284  */
1285 static u64 primary_event_id(struct perf_event *event)
1286 {
1287 	u64 id = event->id;
1288 
1289 	if (event->parent)
1290 		id = event->parent->id;
1291 
1292 	return id;
1293 }
1294 
1295 /*
1296  * Get the perf_event_context for a task and lock it.
1297  *
1298  * This has to cope with with the fact that until it is locked,
1299  * the context could get moved to another task.
1300  */
1301 static struct perf_event_context *
1302 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1303 {
1304 	struct perf_event_context *ctx;
1305 
1306 retry:
1307 	/*
1308 	 * One of the few rules of preemptible RCU is that one cannot do
1309 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1310 	 * part of the read side critical section was irqs-enabled -- see
1311 	 * rcu_read_unlock_special().
1312 	 *
1313 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1314 	 * side critical section has interrupts disabled.
1315 	 */
1316 	local_irq_save(*flags);
1317 	rcu_read_lock();
1318 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1319 	if (ctx) {
1320 		/*
1321 		 * If this context is a clone of another, it might
1322 		 * get swapped for another underneath us by
1323 		 * perf_event_task_sched_out, though the
1324 		 * rcu_read_lock() protects us from any context
1325 		 * getting freed.  Lock the context and check if it
1326 		 * got swapped before we could get the lock, and retry
1327 		 * if so.  If we locked the right context, then it
1328 		 * can't get swapped on us any more.
1329 		 */
1330 		raw_spin_lock(&ctx->lock);
1331 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1332 			raw_spin_unlock(&ctx->lock);
1333 			rcu_read_unlock();
1334 			local_irq_restore(*flags);
1335 			goto retry;
1336 		}
1337 
1338 		if (ctx->task == TASK_TOMBSTONE ||
1339 		    !atomic_inc_not_zero(&ctx->refcount)) {
1340 			raw_spin_unlock(&ctx->lock);
1341 			ctx = NULL;
1342 		} else {
1343 			WARN_ON_ONCE(ctx->task != task);
1344 		}
1345 	}
1346 	rcu_read_unlock();
1347 	if (!ctx)
1348 		local_irq_restore(*flags);
1349 	return ctx;
1350 }
1351 
1352 /*
1353  * Get the context for a task and increment its pin_count so it
1354  * can't get swapped to another task.  This also increments its
1355  * reference count so that the context can't get freed.
1356  */
1357 static struct perf_event_context *
1358 perf_pin_task_context(struct task_struct *task, int ctxn)
1359 {
1360 	struct perf_event_context *ctx;
1361 	unsigned long flags;
1362 
1363 	ctx = perf_lock_task_context(task, ctxn, &flags);
1364 	if (ctx) {
1365 		++ctx->pin_count;
1366 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1367 	}
1368 	return ctx;
1369 }
1370 
1371 static void perf_unpin_context(struct perf_event_context *ctx)
1372 {
1373 	unsigned long flags;
1374 
1375 	raw_spin_lock_irqsave(&ctx->lock, flags);
1376 	--ctx->pin_count;
1377 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1378 }
1379 
1380 /*
1381  * Update the record of the current time in a context.
1382  */
1383 static void update_context_time(struct perf_event_context *ctx)
1384 {
1385 	u64 now = perf_clock();
1386 
1387 	ctx->time += now - ctx->timestamp;
1388 	ctx->timestamp = now;
1389 }
1390 
1391 static u64 perf_event_time(struct perf_event *event)
1392 {
1393 	struct perf_event_context *ctx = event->ctx;
1394 
1395 	if (is_cgroup_event(event))
1396 		return perf_cgroup_event_time(event);
1397 
1398 	return ctx ? ctx->time : 0;
1399 }
1400 
1401 /*
1402  * Update the total_time_enabled and total_time_running fields for a event.
1403  */
1404 static void update_event_times(struct perf_event *event)
1405 {
1406 	struct perf_event_context *ctx = event->ctx;
1407 	u64 run_end;
1408 
1409 	lockdep_assert_held(&ctx->lock);
1410 
1411 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1412 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1413 		return;
1414 
1415 	/*
1416 	 * in cgroup mode, time_enabled represents
1417 	 * the time the event was enabled AND active
1418 	 * tasks were in the monitored cgroup. This is
1419 	 * independent of the activity of the context as
1420 	 * there may be a mix of cgroup and non-cgroup events.
1421 	 *
1422 	 * That is why we treat cgroup events differently
1423 	 * here.
1424 	 */
1425 	if (is_cgroup_event(event))
1426 		run_end = perf_cgroup_event_time(event);
1427 	else if (ctx->is_active)
1428 		run_end = ctx->time;
1429 	else
1430 		run_end = event->tstamp_stopped;
1431 
1432 	event->total_time_enabled = run_end - event->tstamp_enabled;
1433 
1434 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1435 		run_end = event->tstamp_stopped;
1436 	else
1437 		run_end = perf_event_time(event);
1438 
1439 	event->total_time_running = run_end - event->tstamp_running;
1440 
1441 }
1442 
1443 /*
1444  * Update total_time_enabled and total_time_running for all events in a group.
1445  */
1446 static void update_group_times(struct perf_event *leader)
1447 {
1448 	struct perf_event *event;
1449 
1450 	update_event_times(leader);
1451 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1452 		update_event_times(event);
1453 }
1454 
1455 static enum event_type_t get_event_type(struct perf_event *event)
1456 {
1457 	struct perf_event_context *ctx = event->ctx;
1458 	enum event_type_t event_type;
1459 
1460 	lockdep_assert_held(&ctx->lock);
1461 
1462 	/*
1463 	 * It's 'group type', really, because if our group leader is
1464 	 * pinned, so are we.
1465 	 */
1466 	if (event->group_leader != event)
1467 		event = event->group_leader;
1468 
1469 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1470 	if (!ctx->task)
1471 		event_type |= EVENT_CPU;
1472 
1473 	return event_type;
1474 }
1475 
1476 static struct list_head *
1477 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479 	if (event->attr.pinned)
1480 		return &ctx->pinned_groups;
1481 	else
1482 		return &ctx->flexible_groups;
1483 }
1484 
1485 /*
1486  * Add a event from the lists for its context.
1487  * Must be called with ctx->mutex and ctx->lock held.
1488  */
1489 static void
1490 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1491 {
1492 	lockdep_assert_held(&ctx->lock);
1493 
1494 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1495 	event->attach_state |= PERF_ATTACH_CONTEXT;
1496 
1497 	/*
1498 	 * If we're a stand alone event or group leader, we go to the context
1499 	 * list, group events are kept attached to the group so that
1500 	 * perf_group_detach can, at all times, locate all siblings.
1501 	 */
1502 	if (event->group_leader == event) {
1503 		struct list_head *list;
1504 
1505 		event->group_caps = event->event_caps;
1506 
1507 		list = ctx_group_list(event, ctx);
1508 		list_add_tail(&event->group_entry, list);
1509 	}
1510 
1511 	list_update_cgroup_event(event, ctx, true);
1512 
1513 	list_add_rcu(&event->event_entry, &ctx->event_list);
1514 	ctx->nr_events++;
1515 	if (event->attr.inherit_stat)
1516 		ctx->nr_stat++;
1517 
1518 	ctx->generation++;
1519 }
1520 
1521 /*
1522  * Initialize event state based on the perf_event_attr::disabled.
1523  */
1524 static inline void perf_event__state_init(struct perf_event *event)
1525 {
1526 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1527 					      PERF_EVENT_STATE_INACTIVE;
1528 }
1529 
1530 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1531 {
1532 	int entry = sizeof(u64); /* value */
1533 	int size = 0;
1534 	int nr = 1;
1535 
1536 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1537 		size += sizeof(u64);
1538 
1539 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1540 		size += sizeof(u64);
1541 
1542 	if (event->attr.read_format & PERF_FORMAT_ID)
1543 		entry += sizeof(u64);
1544 
1545 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1546 		nr += nr_siblings;
1547 		size += sizeof(u64);
1548 	}
1549 
1550 	size += entry * nr;
1551 	event->read_size = size;
1552 }
1553 
1554 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1555 {
1556 	struct perf_sample_data *data;
1557 	u16 size = 0;
1558 
1559 	if (sample_type & PERF_SAMPLE_IP)
1560 		size += sizeof(data->ip);
1561 
1562 	if (sample_type & PERF_SAMPLE_ADDR)
1563 		size += sizeof(data->addr);
1564 
1565 	if (sample_type & PERF_SAMPLE_PERIOD)
1566 		size += sizeof(data->period);
1567 
1568 	if (sample_type & PERF_SAMPLE_WEIGHT)
1569 		size += sizeof(data->weight);
1570 
1571 	if (sample_type & PERF_SAMPLE_READ)
1572 		size += event->read_size;
1573 
1574 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1575 		size += sizeof(data->data_src.val);
1576 
1577 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1578 		size += sizeof(data->txn);
1579 
1580 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1581 		size += sizeof(data->phys_addr);
1582 
1583 	event->header_size = size;
1584 }
1585 
1586 /*
1587  * Called at perf_event creation and when events are attached/detached from a
1588  * group.
1589  */
1590 static void perf_event__header_size(struct perf_event *event)
1591 {
1592 	__perf_event_read_size(event,
1593 			       event->group_leader->nr_siblings);
1594 	__perf_event_header_size(event, event->attr.sample_type);
1595 }
1596 
1597 static void perf_event__id_header_size(struct perf_event *event)
1598 {
1599 	struct perf_sample_data *data;
1600 	u64 sample_type = event->attr.sample_type;
1601 	u16 size = 0;
1602 
1603 	if (sample_type & PERF_SAMPLE_TID)
1604 		size += sizeof(data->tid_entry);
1605 
1606 	if (sample_type & PERF_SAMPLE_TIME)
1607 		size += sizeof(data->time);
1608 
1609 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1610 		size += sizeof(data->id);
1611 
1612 	if (sample_type & PERF_SAMPLE_ID)
1613 		size += sizeof(data->id);
1614 
1615 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1616 		size += sizeof(data->stream_id);
1617 
1618 	if (sample_type & PERF_SAMPLE_CPU)
1619 		size += sizeof(data->cpu_entry);
1620 
1621 	event->id_header_size = size;
1622 }
1623 
1624 static bool perf_event_validate_size(struct perf_event *event)
1625 {
1626 	/*
1627 	 * The values computed here will be over-written when we actually
1628 	 * attach the event.
1629 	 */
1630 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1631 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1632 	perf_event__id_header_size(event);
1633 
1634 	/*
1635 	 * Sum the lot; should not exceed the 64k limit we have on records.
1636 	 * Conservative limit to allow for callchains and other variable fields.
1637 	 */
1638 	if (event->read_size + event->header_size +
1639 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1640 		return false;
1641 
1642 	return true;
1643 }
1644 
1645 static void perf_group_attach(struct perf_event *event)
1646 {
1647 	struct perf_event *group_leader = event->group_leader, *pos;
1648 
1649 	lockdep_assert_held(&event->ctx->lock);
1650 
1651 	/*
1652 	 * We can have double attach due to group movement in perf_event_open.
1653 	 */
1654 	if (event->attach_state & PERF_ATTACH_GROUP)
1655 		return;
1656 
1657 	event->attach_state |= PERF_ATTACH_GROUP;
1658 
1659 	if (group_leader == event)
1660 		return;
1661 
1662 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1663 
1664 	group_leader->group_caps &= event->event_caps;
1665 
1666 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1667 	group_leader->nr_siblings++;
1668 
1669 	perf_event__header_size(group_leader);
1670 
1671 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1672 		perf_event__header_size(pos);
1673 }
1674 
1675 /*
1676  * Remove a event from the lists for its context.
1677  * Must be called with ctx->mutex and ctx->lock held.
1678  */
1679 static void
1680 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1681 {
1682 	WARN_ON_ONCE(event->ctx != ctx);
1683 	lockdep_assert_held(&ctx->lock);
1684 
1685 	/*
1686 	 * We can have double detach due to exit/hot-unplug + close.
1687 	 */
1688 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1689 		return;
1690 
1691 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1692 
1693 	list_update_cgroup_event(event, ctx, false);
1694 
1695 	ctx->nr_events--;
1696 	if (event->attr.inherit_stat)
1697 		ctx->nr_stat--;
1698 
1699 	list_del_rcu(&event->event_entry);
1700 
1701 	if (event->group_leader == event)
1702 		list_del_init(&event->group_entry);
1703 
1704 	update_group_times(event);
1705 
1706 	/*
1707 	 * If event was in error state, then keep it
1708 	 * that way, otherwise bogus counts will be
1709 	 * returned on read(). The only way to get out
1710 	 * of error state is by explicit re-enabling
1711 	 * of the event
1712 	 */
1713 	if (event->state > PERF_EVENT_STATE_OFF)
1714 		event->state = PERF_EVENT_STATE_OFF;
1715 
1716 	ctx->generation++;
1717 }
1718 
1719 static void perf_group_detach(struct perf_event *event)
1720 {
1721 	struct perf_event *sibling, *tmp;
1722 	struct list_head *list = NULL;
1723 
1724 	lockdep_assert_held(&event->ctx->lock);
1725 
1726 	/*
1727 	 * We can have double detach due to exit/hot-unplug + close.
1728 	 */
1729 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1730 		return;
1731 
1732 	event->attach_state &= ~PERF_ATTACH_GROUP;
1733 
1734 	/*
1735 	 * If this is a sibling, remove it from its group.
1736 	 */
1737 	if (event->group_leader != event) {
1738 		list_del_init(&event->group_entry);
1739 		event->group_leader->nr_siblings--;
1740 		goto out;
1741 	}
1742 
1743 	if (!list_empty(&event->group_entry))
1744 		list = &event->group_entry;
1745 
1746 	/*
1747 	 * If this was a group event with sibling events then
1748 	 * upgrade the siblings to singleton events by adding them
1749 	 * to whatever list we are on.
1750 	 */
1751 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1752 		if (list)
1753 			list_move_tail(&sibling->group_entry, list);
1754 		sibling->group_leader = sibling;
1755 
1756 		/* Inherit group flags from the previous leader */
1757 		sibling->group_caps = event->group_caps;
1758 
1759 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1760 	}
1761 
1762 out:
1763 	perf_event__header_size(event->group_leader);
1764 
1765 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1766 		perf_event__header_size(tmp);
1767 }
1768 
1769 static bool is_orphaned_event(struct perf_event *event)
1770 {
1771 	return event->state == PERF_EVENT_STATE_DEAD;
1772 }
1773 
1774 static inline int __pmu_filter_match(struct perf_event *event)
1775 {
1776 	struct pmu *pmu = event->pmu;
1777 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1778 }
1779 
1780 /*
1781  * Check whether we should attempt to schedule an event group based on
1782  * PMU-specific filtering. An event group can consist of HW and SW events,
1783  * potentially with a SW leader, so we must check all the filters, to
1784  * determine whether a group is schedulable:
1785  */
1786 static inline int pmu_filter_match(struct perf_event *event)
1787 {
1788 	struct perf_event *child;
1789 
1790 	if (!__pmu_filter_match(event))
1791 		return 0;
1792 
1793 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1794 		if (!__pmu_filter_match(child))
1795 			return 0;
1796 	}
1797 
1798 	return 1;
1799 }
1800 
1801 static inline int
1802 event_filter_match(struct perf_event *event)
1803 {
1804 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1805 	       perf_cgroup_match(event) && pmu_filter_match(event);
1806 }
1807 
1808 static void
1809 event_sched_out(struct perf_event *event,
1810 		  struct perf_cpu_context *cpuctx,
1811 		  struct perf_event_context *ctx)
1812 {
1813 	u64 tstamp = perf_event_time(event);
1814 	u64 delta;
1815 
1816 	WARN_ON_ONCE(event->ctx != ctx);
1817 	lockdep_assert_held(&ctx->lock);
1818 
1819 	/*
1820 	 * An event which could not be activated because of
1821 	 * filter mismatch still needs to have its timings
1822 	 * maintained, otherwise bogus information is return
1823 	 * via read() for time_enabled, time_running:
1824 	 */
1825 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1826 	    !event_filter_match(event)) {
1827 		delta = tstamp - event->tstamp_stopped;
1828 		event->tstamp_running += delta;
1829 		event->tstamp_stopped = tstamp;
1830 	}
1831 
1832 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1833 		return;
1834 
1835 	perf_pmu_disable(event->pmu);
1836 
1837 	event->tstamp_stopped = tstamp;
1838 	event->pmu->del(event, 0);
1839 	event->oncpu = -1;
1840 	event->state = PERF_EVENT_STATE_INACTIVE;
1841 	if (event->pending_disable) {
1842 		event->pending_disable = 0;
1843 		event->state = PERF_EVENT_STATE_OFF;
1844 	}
1845 
1846 	if (!is_software_event(event))
1847 		cpuctx->active_oncpu--;
1848 	if (!--ctx->nr_active)
1849 		perf_event_ctx_deactivate(ctx);
1850 	if (event->attr.freq && event->attr.sample_freq)
1851 		ctx->nr_freq--;
1852 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1853 		cpuctx->exclusive = 0;
1854 
1855 	perf_pmu_enable(event->pmu);
1856 }
1857 
1858 static void
1859 group_sched_out(struct perf_event *group_event,
1860 		struct perf_cpu_context *cpuctx,
1861 		struct perf_event_context *ctx)
1862 {
1863 	struct perf_event *event;
1864 	int state = group_event->state;
1865 
1866 	perf_pmu_disable(ctx->pmu);
1867 
1868 	event_sched_out(group_event, cpuctx, ctx);
1869 
1870 	/*
1871 	 * Schedule out siblings (if any):
1872 	 */
1873 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1874 		event_sched_out(event, cpuctx, ctx);
1875 
1876 	perf_pmu_enable(ctx->pmu);
1877 
1878 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1879 		cpuctx->exclusive = 0;
1880 }
1881 
1882 #define DETACH_GROUP	0x01UL
1883 
1884 /*
1885  * Cross CPU call to remove a performance event
1886  *
1887  * We disable the event on the hardware level first. After that we
1888  * remove it from the context list.
1889  */
1890 static void
1891 __perf_remove_from_context(struct perf_event *event,
1892 			   struct perf_cpu_context *cpuctx,
1893 			   struct perf_event_context *ctx,
1894 			   void *info)
1895 {
1896 	unsigned long flags = (unsigned long)info;
1897 
1898 	event_sched_out(event, cpuctx, ctx);
1899 	if (flags & DETACH_GROUP)
1900 		perf_group_detach(event);
1901 	list_del_event(event, ctx);
1902 
1903 	if (!ctx->nr_events && ctx->is_active) {
1904 		ctx->is_active = 0;
1905 		if (ctx->task) {
1906 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1907 			cpuctx->task_ctx = NULL;
1908 		}
1909 	}
1910 }
1911 
1912 /*
1913  * Remove the event from a task's (or a CPU's) list of events.
1914  *
1915  * If event->ctx is a cloned context, callers must make sure that
1916  * every task struct that event->ctx->task could possibly point to
1917  * remains valid.  This is OK when called from perf_release since
1918  * that only calls us on the top-level context, which can't be a clone.
1919  * When called from perf_event_exit_task, it's OK because the
1920  * context has been detached from its task.
1921  */
1922 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1923 {
1924 	struct perf_event_context *ctx = event->ctx;
1925 
1926 	lockdep_assert_held(&ctx->mutex);
1927 
1928 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1929 
1930 	/*
1931 	 * The above event_function_call() can NO-OP when it hits
1932 	 * TASK_TOMBSTONE. In that case we must already have been detached
1933 	 * from the context (by perf_event_exit_event()) but the grouping
1934 	 * might still be in-tact.
1935 	 */
1936 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1937 	if ((flags & DETACH_GROUP) &&
1938 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1939 		/*
1940 		 * Since in that case we cannot possibly be scheduled, simply
1941 		 * detach now.
1942 		 */
1943 		raw_spin_lock_irq(&ctx->lock);
1944 		perf_group_detach(event);
1945 		raw_spin_unlock_irq(&ctx->lock);
1946 	}
1947 }
1948 
1949 /*
1950  * Cross CPU call to disable a performance event
1951  */
1952 static void __perf_event_disable(struct perf_event *event,
1953 				 struct perf_cpu_context *cpuctx,
1954 				 struct perf_event_context *ctx,
1955 				 void *info)
1956 {
1957 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1958 		return;
1959 
1960 	update_context_time(ctx);
1961 	update_cgrp_time_from_event(event);
1962 	update_group_times(event);
1963 	if (event == event->group_leader)
1964 		group_sched_out(event, cpuctx, ctx);
1965 	else
1966 		event_sched_out(event, cpuctx, ctx);
1967 	event->state = PERF_EVENT_STATE_OFF;
1968 }
1969 
1970 /*
1971  * Disable a event.
1972  *
1973  * If event->ctx is a cloned context, callers must make sure that
1974  * every task struct that event->ctx->task could possibly point to
1975  * remains valid.  This condition is satisifed when called through
1976  * perf_event_for_each_child or perf_event_for_each because they
1977  * hold the top-level event's child_mutex, so any descendant that
1978  * goes to exit will block in perf_event_exit_event().
1979  *
1980  * When called from perf_pending_event it's OK because event->ctx
1981  * is the current context on this CPU and preemption is disabled,
1982  * hence we can't get into perf_event_task_sched_out for this context.
1983  */
1984 static void _perf_event_disable(struct perf_event *event)
1985 {
1986 	struct perf_event_context *ctx = event->ctx;
1987 
1988 	raw_spin_lock_irq(&ctx->lock);
1989 	if (event->state <= PERF_EVENT_STATE_OFF) {
1990 		raw_spin_unlock_irq(&ctx->lock);
1991 		return;
1992 	}
1993 	raw_spin_unlock_irq(&ctx->lock);
1994 
1995 	event_function_call(event, __perf_event_disable, NULL);
1996 }
1997 
1998 void perf_event_disable_local(struct perf_event *event)
1999 {
2000 	event_function_local(event, __perf_event_disable, NULL);
2001 }
2002 
2003 /*
2004  * Strictly speaking kernel users cannot create groups and therefore this
2005  * interface does not need the perf_event_ctx_lock() magic.
2006  */
2007 void perf_event_disable(struct perf_event *event)
2008 {
2009 	struct perf_event_context *ctx;
2010 
2011 	ctx = perf_event_ctx_lock(event);
2012 	_perf_event_disable(event);
2013 	perf_event_ctx_unlock(event, ctx);
2014 }
2015 EXPORT_SYMBOL_GPL(perf_event_disable);
2016 
2017 void perf_event_disable_inatomic(struct perf_event *event)
2018 {
2019 	event->pending_disable = 1;
2020 	irq_work_queue(&event->pending);
2021 }
2022 
2023 static void perf_set_shadow_time(struct perf_event *event,
2024 				 struct perf_event_context *ctx,
2025 				 u64 tstamp)
2026 {
2027 	/*
2028 	 * use the correct time source for the time snapshot
2029 	 *
2030 	 * We could get by without this by leveraging the
2031 	 * fact that to get to this function, the caller
2032 	 * has most likely already called update_context_time()
2033 	 * and update_cgrp_time_xx() and thus both timestamp
2034 	 * are identical (or very close). Given that tstamp is,
2035 	 * already adjusted for cgroup, we could say that:
2036 	 *    tstamp - ctx->timestamp
2037 	 * is equivalent to
2038 	 *    tstamp - cgrp->timestamp.
2039 	 *
2040 	 * Then, in perf_output_read(), the calculation would
2041 	 * work with no changes because:
2042 	 * - event is guaranteed scheduled in
2043 	 * - no scheduled out in between
2044 	 * - thus the timestamp would be the same
2045 	 *
2046 	 * But this is a bit hairy.
2047 	 *
2048 	 * So instead, we have an explicit cgroup call to remain
2049 	 * within the time time source all along. We believe it
2050 	 * is cleaner and simpler to understand.
2051 	 */
2052 	if (is_cgroup_event(event))
2053 		perf_cgroup_set_shadow_time(event, tstamp);
2054 	else
2055 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2056 }
2057 
2058 #define MAX_INTERRUPTS (~0ULL)
2059 
2060 static void perf_log_throttle(struct perf_event *event, int enable);
2061 static void perf_log_itrace_start(struct perf_event *event);
2062 
2063 static int
2064 event_sched_in(struct perf_event *event,
2065 		 struct perf_cpu_context *cpuctx,
2066 		 struct perf_event_context *ctx)
2067 {
2068 	u64 tstamp = perf_event_time(event);
2069 	int ret = 0;
2070 
2071 	lockdep_assert_held(&ctx->lock);
2072 
2073 	if (event->state <= PERF_EVENT_STATE_OFF)
2074 		return 0;
2075 
2076 	WRITE_ONCE(event->oncpu, smp_processor_id());
2077 	/*
2078 	 * Order event::oncpu write to happen before the ACTIVE state
2079 	 * is visible.
2080 	 */
2081 	smp_wmb();
2082 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2083 
2084 	/*
2085 	 * Unthrottle events, since we scheduled we might have missed several
2086 	 * ticks already, also for a heavily scheduling task there is little
2087 	 * guarantee it'll get a tick in a timely manner.
2088 	 */
2089 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2090 		perf_log_throttle(event, 1);
2091 		event->hw.interrupts = 0;
2092 	}
2093 
2094 	/*
2095 	 * The new state must be visible before we turn it on in the hardware:
2096 	 */
2097 	smp_wmb();
2098 
2099 	perf_pmu_disable(event->pmu);
2100 
2101 	perf_set_shadow_time(event, ctx, tstamp);
2102 
2103 	perf_log_itrace_start(event);
2104 
2105 	if (event->pmu->add(event, PERF_EF_START)) {
2106 		event->state = PERF_EVENT_STATE_INACTIVE;
2107 		event->oncpu = -1;
2108 		ret = -EAGAIN;
2109 		goto out;
2110 	}
2111 
2112 	event->tstamp_running += tstamp - event->tstamp_stopped;
2113 
2114 	if (!is_software_event(event))
2115 		cpuctx->active_oncpu++;
2116 	if (!ctx->nr_active++)
2117 		perf_event_ctx_activate(ctx);
2118 	if (event->attr.freq && event->attr.sample_freq)
2119 		ctx->nr_freq++;
2120 
2121 	if (event->attr.exclusive)
2122 		cpuctx->exclusive = 1;
2123 
2124 out:
2125 	perf_pmu_enable(event->pmu);
2126 
2127 	return ret;
2128 }
2129 
2130 static int
2131 group_sched_in(struct perf_event *group_event,
2132 	       struct perf_cpu_context *cpuctx,
2133 	       struct perf_event_context *ctx)
2134 {
2135 	struct perf_event *event, *partial_group = NULL;
2136 	struct pmu *pmu = ctx->pmu;
2137 	u64 now = ctx->time;
2138 	bool simulate = false;
2139 
2140 	if (group_event->state == PERF_EVENT_STATE_OFF)
2141 		return 0;
2142 
2143 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2144 
2145 	if (event_sched_in(group_event, cpuctx, ctx)) {
2146 		pmu->cancel_txn(pmu);
2147 		perf_mux_hrtimer_restart(cpuctx);
2148 		return -EAGAIN;
2149 	}
2150 
2151 	/*
2152 	 * Schedule in siblings as one group (if any):
2153 	 */
2154 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2155 		if (event_sched_in(event, cpuctx, ctx)) {
2156 			partial_group = event;
2157 			goto group_error;
2158 		}
2159 	}
2160 
2161 	if (!pmu->commit_txn(pmu))
2162 		return 0;
2163 
2164 group_error:
2165 	/*
2166 	 * Groups can be scheduled in as one unit only, so undo any
2167 	 * partial group before returning:
2168 	 * The events up to the failed event are scheduled out normally,
2169 	 * tstamp_stopped will be updated.
2170 	 *
2171 	 * The failed events and the remaining siblings need to have
2172 	 * their timings updated as if they had gone thru event_sched_in()
2173 	 * and event_sched_out(). This is required to get consistent timings
2174 	 * across the group. This also takes care of the case where the group
2175 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2176 	 * the time the event was actually stopped, such that time delta
2177 	 * calculation in update_event_times() is correct.
2178 	 */
2179 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2180 		if (event == partial_group)
2181 			simulate = true;
2182 
2183 		if (simulate) {
2184 			event->tstamp_running += now - event->tstamp_stopped;
2185 			event->tstamp_stopped = now;
2186 		} else {
2187 			event_sched_out(event, cpuctx, ctx);
2188 		}
2189 	}
2190 	event_sched_out(group_event, cpuctx, ctx);
2191 
2192 	pmu->cancel_txn(pmu);
2193 
2194 	perf_mux_hrtimer_restart(cpuctx);
2195 
2196 	return -EAGAIN;
2197 }
2198 
2199 /*
2200  * Work out whether we can put this event group on the CPU now.
2201  */
2202 static int group_can_go_on(struct perf_event *event,
2203 			   struct perf_cpu_context *cpuctx,
2204 			   int can_add_hw)
2205 {
2206 	/*
2207 	 * Groups consisting entirely of software events can always go on.
2208 	 */
2209 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2210 		return 1;
2211 	/*
2212 	 * If an exclusive group is already on, no other hardware
2213 	 * events can go on.
2214 	 */
2215 	if (cpuctx->exclusive)
2216 		return 0;
2217 	/*
2218 	 * If this group is exclusive and there are already
2219 	 * events on the CPU, it can't go on.
2220 	 */
2221 	if (event->attr.exclusive && cpuctx->active_oncpu)
2222 		return 0;
2223 	/*
2224 	 * Otherwise, try to add it if all previous groups were able
2225 	 * to go on.
2226 	 */
2227 	return can_add_hw;
2228 }
2229 
2230 /*
2231  * Complement to update_event_times(). This computes the tstamp_* values to
2232  * continue 'enabled' state from @now, and effectively discards the time
2233  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2234  * just switched (context) time base).
2235  *
2236  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2237  * cannot have been scheduled in yet. And going into INACTIVE state means
2238  * '@event->tstamp_stopped = @now'.
2239  *
2240  * Thus given the rules of update_event_times():
2241  *
2242  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2243  *   total_time_running = tstamp_stopped - tstamp_running
2244  *
2245  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2246  * tstamp_* values.
2247  */
2248 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2249 {
2250 	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2251 
2252 	event->tstamp_stopped = now;
2253 	event->tstamp_enabled = now - event->total_time_enabled;
2254 	event->tstamp_running = now - event->total_time_running;
2255 }
2256 
2257 static void add_event_to_ctx(struct perf_event *event,
2258 			       struct perf_event_context *ctx)
2259 {
2260 	u64 tstamp = perf_event_time(event);
2261 
2262 	list_add_event(event, ctx);
2263 	perf_group_attach(event);
2264 	/*
2265 	 * We can be called with event->state == STATE_OFF when we create with
2266 	 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2267 	 */
2268 	if (event->state == PERF_EVENT_STATE_INACTIVE)
2269 		__perf_event_enable_time(event, tstamp);
2270 }
2271 
2272 static void ctx_sched_out(struct perf_event_context *ctx,
2273 			  struct perf_cpu_context *cpuctx,
2274 			  enum event_type_t event_type);
2275 static void
2276 ctx_sched_in(struct perf_event_context *ctx,
2277 	     struct perf_cpu_context *cpuctx,
2278 	     enum event_type_t event_type,
2279 	     struct task_struct *task);
2280 
2281 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2282 			       struct perf_event_context *ctx,
2283 			       enum event_type_t event_type)
2284 {
2285 	if (!cpuctx->task_ctx)
2286 		return;
2287 
2288 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2289 		return;
2290 
2291 	ctx_sched_out(ctx, cpuctx, event_type);
2292 }
2293 
2294 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2295 				struct perf_event_context *ctx,
2296 				struct task_struct *task)
2297 {
2298 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2299 	if (ctx)
2300 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2301 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2302 	if (ctx)
2303 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2304 }
2305 
2306 /*
2307  * We want to maintain the following priority of scheduling:
2308  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2309  *  - task pinned (EVENT_PINNED)
2310  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2311  *  - task flexible (EVENT_FLEXIBLE).
2312  *
2313  * In order to avoid unscheduling and scheduling back in everything every
2314  * time an event is added, only do it for the groups of equal priority and
2315  * below.
2316  *
2317  * This can be called after a batch operation on task events, in which case
2318  * event_type is a bit mask of the types of events involved. For CPU events,
2319  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2320  */
2321 static void ctx_resched(struct perf_cpu_context *cpuctx,
2322 			struct perf_event_context *task_ctx,
2323 			enum event_type_t event_type)
2324 {
2325 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2326 	bool cpu_event = !!(event_type & EVENT_CPU);
2327 
2328 	/*
2329 	 * If pinned groups are involved, flexible groups also need to be
2330 	 * scheduled out.
2331 	 */
2332 	if (event_type & EVENT_PINNED)
2333 		event_type |= EVENT_FLEXIBLE;
2334 
2335 	perf_pmu_disable(cpuctx->ctx.pmu);
2336 	if (task_ctx)
2337 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2338 
2339 	/*
2340 	 * Decide which cpu ctx groups to schedule out based on the types
2341 	 * of events that caused rescheduling:
2342 	 *  - EVENT_CPU: schedule out corresponding groups;
2343 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2344 	 *  - otherwise, do nothing more.
2345 	 */
2346 	if (cpu_event)
2347 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2348 	else if (ctx_event_type & EVENT_PINNED)
2349 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2350 
2351 	perf_event_sched_in(cpuctx, task_ctx, current);
2352 	perf_pmu_enable(cpuctx->ctx.pmu);
2353 }
2354 
2355 /*
2356  * Cross CPU call to install and enable a performance event
2357  *
2358  * Very similar to remote_function() + event_function() but cannot assume that
2359  * things like ctx->is_active and cpuctx->task_ctx are set.
2360  */
2361 static int  __perf_install_in_context(void *info)
2362 {
2363 	struct perf_event *event = info;
2364 	struct perf_event_context *ctx = event->ctx;
2365 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2366 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2367 	bool reprogram = true;
2368 	int ret = 0;
2369 
2370 	raw_spin_lock(&cpuctx->ctx.lock);
2371 	if (ctx->task) {
2372 		raw_spin_lock(&ctx->lock);
2373 		task_ctx = ctx;
2374 
2375 		reprogram = (ctx->task == current);
2376 
2377 		/*
2378 		 * If the task is running, it must be running on this CPU,
2379 		 * otherwise we cannot reprogram things.
2380 		 *
2381 		 * If its not running, we don't care, ctx->lock will
2382 		 * serialize against it becoming runnable.
2383 		 */
2384 		if (task_curr(ctx->task) && !reprogram) {
2385 			ret = -ESRCH;
2386 			goto unlock;
2387 		}
2388 
2389 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2390 	} else if (task_ctx) {
2391 		raw_spin_lock(&task_ctx->lock);
2392 	}
2393 
2394 	if (reprogram) {
2395 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2396 		add_event_to_ctx(event, ctx);
2397 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2398 	} else {
2399 		add_event_to_ctx(event, ctx);
2400 	}
2401 
2402 unlock:
2403 	perf_ctx_unlock(cpuctx, task_ctx);
2404 
2405 	return ret;
2406 }
2407 
2408 /*
2409  * Attach a performance event to a context.
2410  *
2411  * Very similar to event_function_call, see comment there.
2412  */
2413 static void
2414 perf_install_in_context(struct perf_event_context *ctx,
2415 			struct perf_event *event,
2416 			int cpu)
2417 {
2418 	struct task_struct *task = READ_ONCE(ctx->task);
2419 
2420 	lockdep_assert_held(&ctx->mutex);
2421 
2422 	if (event->cpu != -1)
2423 		event->cpu = cpu;
2424 
2425 	/*
2426 	 * Ensures that if we can observe event->ctx, both the event and ctx
2427 	 * will be 'complete'. See perf_iterate_sb_cpu().
2428 	 */
2429 	smp_store_release(&event->ctx, ctx);
2430 
2431 	if (!task) {
2432 		cpu_function_call(cpu, __perf_install_in_context, event);
2433 		return;
2434 	}
2435 
2436 	/*
2437 	 * Should not happen, we validate the ctx is still alive before calling.
2438 	 */
2439 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2440 		return;
2441 
2442 	/*
2443 	 * Installing events is tricky because we cannot rely on ctx->is_active
2444 	 * to be set in case this is the nr_events 0 -> 1 transition.
2445 	 *
2446 	 * Instead we use task_curr(), which tells us if the task is running.
2447 	 * However, since we use task_curr() outside of rq::lock, we can race
2448 	 * against the actual state. This means the result can be wrong.
2449 	 *
2450 	 * If we get a false positive, we retry, this is harmless.
2451 	 *
2452 	 * If we get a false negative, things are complicated. If we are after
2453 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2454 	 * value must be correct. If we're before, it doesn't matter since
2455 	 * perf_event_context_sched_in() will program the counter.
2456 	 *
2457 	 * However, this hinges on the remote context switch having observed
2458 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2459 	 * ctx::lock in perf_event_context_sched_in().
2460 	 *
2461 	 * We do this by task_function_call(), if the IPI fails to hit the task
2462 	 * we know any future context switch of task must see the
2463 	 * perf_event_ctpx[] store.
2464 	 */
2465 
2466 	/*
2467 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2468 	 * task_cpu() load, such that if the IPI then does not find the task
2469 	 * running, a future context switch of that task must observe the
2470 	 * store.
2471 	 */
2472 	smp_mb();
2473 again:
2474 	if (!task_function_call(task, __perf_install_in_context, event))
2475 		return;
2476 
2477 	raw_spin_lock_irq(&ctx->lock);
2478 	task = ctx->task;
2479 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2480 		/*
2481 		 * Cannot happen because we already checked above (which also
2482 		 * cannot happen), and we hold ctx->mutex, which serializes us
2483 		 * against perf_event_exit_task_context().
2484 		 */
2485 		raw_spin_unlock_irq(&ctx->lock);
2486 		return;
2487 	}
2488 	/*
2489 	 * If the task is not running, ctx->lock will avoid it becoming so,
2490 	 * thus we can safely install the event.
2491 	 */
2492 	if (task_curr(task)) {
2493 		raw_spin_unlock_irq(&ctx->lock);
2494 		goto again;
2495 	}
2496 	add_event_to_ctx(event, ctx);
2497 	raw_spin_unlock_irq(&ctx->lock);
2498 }
2499 
2500 /*
2501  * Put a event into inactive state and update time fields.
2502  * Enabling the leader of a group effectively enables all
2503  * the group members that aren't explicitly disabled, so we
2504  * have to update their ->tstamp_enabled also.
2505  * Note: this works for group members as well as group leaders
2506  * since the non-leader members' sibling_lists will be empty.
2507  */
2508 static void __perf_event_mark_enabled(struct perf_event *event)
2509 {
2510 	struct perf_event *sub;
2511 	u64 tstamp = perf_event_time(event);
2512 
2513 	event->state = PERF_EVENT_STATE_INACTIVE;
2514 	__perf_event_enable_time(event, tstamp);
2515 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2516 		/* XXX should not be > INACTIVE if event isn't */
2517 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2518 			__perf_event_enable_time(sub, tstamp);
2519 	}
2520 }
2521 
2522 /*
2523  * Cross CPU call to enable a performance event
2524  */
2525 static void __perf_event_enable(struct perf_event *event,
2526 				struct perf_cpu_context *cpuctx,
2527 				struct perf_event_context *ctx,
2528 				void *info)
2529 {
2530 	struct perf_event *leader = event->group_leader;
2531 	struct perf_event_context *task_ctx;
2532 
2533 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 	    event->state <= PERF_EVENT_STATE_ERROR)
2535 		return;
2536 
2537 	if (ctx->is_active)
2538 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2539 
2540 	__perf_event_mark_enabled(event);
2541 
2542 	if (!ctx->is_active)
2543 		return;
2544 
2545 	if (!event_filter_match(event)) {
2546 		if (is_cgroup_event(event))
2547 			perf_cgroup_defer_enabled(event);
2548 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2549 		return;
2550 	}
2551 
2552 	/*
2553 	 * If the event is in a group and isn't the group leader,
2554 	 * then don't put it on unless the group is on.
2555 	 */
2556 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2557 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2558 		return;
2559 	}
2560 
2561 	task_ctx = cpuctx->task_ctx;
2562 	if (ctx->task)
2563 		WARN_ON_ONCE(task_ctx != ctx);
2564 
2565 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2566 }
2567 
2568 /*
2569  * Enable a event.
2570  *
2571  * If event->ctx is a cloned context, callers must make sure that
2572  * every task struct that event->ctx->task could possibly point to
2573  * remains valid.  This condition is satisfied when called through
2574  * perf_event_for_each_child or perf_event_for_each as described
2575  * for perf_event_disable.
2576  */
2577 static void _perf_event_enable(struct perf_event *event)
2578 {
2579 	struct perf_event_context *ctx = event->ctx;
2580 
2581 	raw_spin_lock_irq(&ctx->lock);
2582 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2583 	    event->state <  PERF_EVENT_STATE_ERROR) {
2584 		raw_spin_unlock_irq(&ctx->lock);
2585 		return;
2586 	}
2587 
2588 	/*
2589 	 * If the event is in error state, clear that first.
2590 	 *
2591 	 * That way, if we see the event in error state below, we know that it
2592 	 * has gone back into error state, as distinct from the task having
2593 	 * been scheduled away before the cross-call arrived.
2594 	 */
2595 	if (event->state == PERF_EVENT_STATE_ERROR)
2596 		event->state = PERF_EVENT_STATE_OFF;
2597 	raw_spin_unlock_irq(&ctx->lock);
2598 
2599 	event_function_call(event, __perf_event_enable, NULL);
2600 }
2601 
2602 /*
2603  * See perf_event_disable();
2604  */
2605 void perf_event_enable(struct perf_event *event)
2606 {
2607 	struct perf_event_context *ctx;
2608 
2609 	ctx = perf_event_ctx_lock(event);
2610 	_perf_event_enable(event);
2611 	perf_event_ctx_unlock(event, ctx);
2612 }
2613 EXPORT_SYMBOL_GPL(perf_event_enable);
2614 
2615 struct stop_event_data {
2616 	struct perf_event	*event;
2617 	unsigned int		restart;
2618 };
2619 
2620 static int __perf_event_stop(void *info)
2621 {
2622 	struct stop_event_data *sd = info;
2623 	struct perf_event *event = sd->event;
2624 
2625 	/* if it's already INACTIVE, do nothing */
2626 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2627 		return 0;
2628 
2629 	/* matches smp_wmb() in event_sched_in() */
2630 	smp_rmb();
2631 
2632 	/*
2633 	 * There is a window with interrupts enabled before we get here,
2634 	 * so we need to check again lest we try to stop another CPU's event.
2635 	 */
2636 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2637 		return -EAGAIN;
2638 
2639 	event->pmu->stop(event, PERF_EF_UPDATE);
2640 
2641 	/*
2642 	 * May race with the actual stop (through perf_pmu_output_stop()),
2643 	 * but it is only used for events with AUX ring buffer, and such
2644 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2645 	 * see comments in perf_aux_output_begin().
2646 	 *
2647 	 * Since this is happening on a event-local CPU, no trace is lost
2648 	 * while restarting.
2649 	 */
2650 	if (sd->restart)
2651 		event->pmu->start(event, 0);
2652 
2653 	return 0;
2654 }
2655 
2656 static int perf_event_stop(struct perf_event *event, int restart)
2657 {
2658 	struct stop_event_data sd = {
2659 		.event		= event,
2660 		.restart	= restart,
2661 	};
2662 	int ret = 0;
2663 
2664 	do {
2665 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2666 			return 0;
2667 
2668 		/* matches smp_wmb() in event_sched_in() */
2669 		smp_rmb();
2670 
2671 		/*
2672 		 * We only want to restart ACTIVE events, so if the event goes
2673 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2674 		 * fall through with ret==-ENXIO.
2675 		 */
2676 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2677 					__perf_event_stop, &sd);
2678 	} while (ret == -EAGAIN);
2679 
2680 	return ret;
2681 }
2682 
2683 /*
2684  * In order to contain the amount of racy and tricky in the address filter
2685  * configuration management, it is a two part process:
2686  *
2687  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2688  *      we update the addresses of corresponding vmas in
2689  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2690  * (p2) when an event is scheduled in (pmu::add), it calls
2691  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2692  *      if the generation has changed since the previous call.
2693  *
2694  * If (p1) happens while the event is active, we restart it to force (p2).
2695  *
2696  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2697  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2698  *     ioctl;
2699  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2700  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2701  *     for reading;
2702  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2703  *     of exec.
2704  */
2705 void perf_event_addr_filters_sync(struct perf_event *event)
2706 {
2707 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2708 
2709 	if (!has_addr_filter(event))
2710 		return;
2711 
2712 	raw_spin_lock(&ifh->lock);
2713 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2714 		event->pmu->addr_filters_sync(event);
2715 		event->hw.addr_filters_gen = event->addr_filters_gen;
2716 	}
2717 	raw_spin_unlock(&ifh->lock);
2718 }
2719 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2720 
2721 static int _perf_event_refresh(struct perf_event *event, int refresh)
2722 {
2723 	/*
2724 	 * not supported on inherited events
2725 	 */
2726 	if (event->attr.inherit || !is_sampling_event(event))
2727 		return -EINVAL;
2728 
2729 	atomic_add(refresh, &event->event_limit);
2730 	_perf_event_enable(event);
2731 
2732 	return 0;
2733 }
2734 
2735 /*
2736  * See perf_event_disable()
2737  */
2738 int perf_event_refresh(struct perf_event *event, int refresh)
2739 {
2740 	struct perf_event_context *ctx;
2741 	int ret;
2742 
2743 	ctx = perf_event_ctx_lock(event);
2744 	ret = _perf_event_refresh(event, refresh);
2745 	perf_event_ctx_unlock(event, ctx);
2746 
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL_GPL(perf_event_refresh);
2750 
2751 static void ctx_sched_out(struct perf_event_context *ctx,
2752 			  struct perf_cpu_context *cpuctx,
2753 			  enum event_type_t event_type)
2754 {
2755 	int is_active = ctx->is_active;
2756 	struct perf_event *event;
2757 
2758 	lockdep_assert_held(&ctx->lock);
2759 
2760 	if (likely(!ctx->nr_events)) {
2761 		/*
2762 		 * See __perf_remove_from_context().
2763 		 */
2764 		WARN_ON_ONCE(ctx->is_active);
2765 		if (ctx->task)
2766 			WARN_ON_ONCE(cpuctx->task_ctx);
2767 		return;
2768 	}
2769 
2770 	ctx->is_active &= ~event_type;
2771 	if (!(ctx->is_active & EVENT_ALL))
2772 		ctx->is_active = 0;
2773 
2774 	if (ctx->task) {
2775 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2776 		if (!ctx->is_active)
2777 			cpuctx->task_ctx = NULL;
2778 	}
2779 
2780 	/*
2781 	 * Always update time if it was set; not only when it changes.
2782 	 * Otherwise we can 'forget' to update time for any but the last
2783 	 * context we sched out. For example:
2784 	 *
2785 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2786 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2787 	 *
2788 	 * would only update time for the pinned events.
2789 	 */
2790 	if (is_active & EVENT_TIME) {
2791 		/* update (and stop) ctx time */
2792 		update_context_time(ctx);
2793 		update_cgrp_time_from_cpuctx(cpuctx);
2794 	}
2795 
2796 	is_active ^= ctx->is_active; /* changed bits */
2797 
2798 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2799 		return;
2800 
2801 	perf_pmu_disable(ctx->pmu);
2802 	if (is_active & EVENT_PINNED) {
2803 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2804 			group_sched_out(event, cpuctx, ctx);
2805 	}
2806 
2807 	if (is_active & EVENT_FLEXIBLE) {
2808 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2809 			group_sched_out(event, cpuctx, ctx);
2810 	}
2811 	perf_pmu_enable(ctx->pmu);
2812 }
2813 
2814 /*
2815  * Test whether two contexts are equivalent, i.e. whether they have both been
2816  * cloned from the same version of the same context.
2817  *
2818  * Equivalence is measured using a generation number in the context that is
2819  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2820  * and list_del_event().
2821  */
2822 static int context_equiv(struct perf_event_context *ctx1,
2823 			 struct perf_event_context *ctx2)
2824 {
2825 	lockdep_assert_held(&ctx1->lock);
2826 	lockdep_assert_held(&ctx2->lock);
2827 
2828 	/* Pinning disables the swap optimization */
2829 	if (ctx1->pin_count || ctx2->pin_count)
2830 		return 0;
2831 
2832 	/* If ctx1 is the parent of ctx2 */
2833 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2834 		return 1;
2835 
2836 	/* If ctx2 is the parent of ctx1 */
2837 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2838 		return 1;
2839 
2840 	/*
2841 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2842 	 * hierarchy, see perf_event_init_context().
2843 	 */
2844 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2845 			ctx1->parent_gen == ctx2->parent_gen)
2846 		return 1;
2847 
2848 	/* Unmatched */
2849 	return 0;
2850 }
2851 
2852 static void __perf_event_sync_stat(struct perf_event *event,
2853 				     struct perf_event *next_event)
2854 {
2855 	u64 value;
2856 
2857 	if (!event->attr.inherit_stat)
2858 		return;
2859 
2860 	/*
2861 	 * Update the event value, we cannot use perf_event_read()
2862 	 * because we're in the middle of a context switch and have IRQs
2863 	 * disabled, which upsets smp_call_function_single(), however
2864 	 * we know the event must be on the current CPU, therefore we
2865 	 * don't need to use it.
2866 	 */
2867 	switch (event->state) {
2868 	case PERF_EVENT_STATE_ACTIVE:
2869 		event->pmu->read(event);
2870 		/* fall-through */
2871 
2872 	case PERF_EVENT_STATE_INACTIVE:
2873 		update_event_times(event);
2874 		break;
2875 
2876 	default:
2877 		break;
2878 	}
2879 
2880 	/*
2881 	 * In order to keep per-task stats reliable we need to flip the event
2882 	 * values when we flip the contexts.
2883 	 */
2884 	value = local64_read(&next_event->count);
2885 	value = local64_xchg(&event->count, value);
2886 	local64_set(&next_event->count, value);
2887 
2888 	swap(event->total_time_enabled, next_event->total_time_enabled);
2889 	swap(event->total_time_running, next_event->total_time_running);
2890 
2891 	/*
2892 	 * Since we swizzled the values, update the user visible data too.
2893 	 */
2894 	perf_event_update_userpage(event);
2895 	perf_event_update_userpage(next_event);
2896 }
2897 
2898 static void perf_event_sync_stat(struct perf_event_context *ctx,
2899 				   struct perf_event_context *next_ctx)
2900 {
2901 	struct perf_event *event, *next_event;
2902 
2903 	if (!ctx->nr_stat)
2904 		return;
2905 
2906 	update_context_time(ctx);
2907 
2908 	event = list_first_entry(&ctx->event_list,
2909 				   struct perf_event, event_entry);
2910 
2911 	next_event = list_first_entry(&next_ctx->event_list,
2912 					struct perf_event, event_entry);
2913 
2914 	while (&event->event_entry != &ctx->event_list &&
2915 	       &next_event->event_entry != &next_ctx->event_list) {
2916 
2917 		__perf_event_sync_stat(event, next_event);
2918 
2919 		event = list_next_entry(event, event_entry);
2920 		next_event = list_next_entry(next_event, event_entry);
2921 	}
2922 }
2923 
2924 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2925 					 struct task_struct *next)
2926 {
2927 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2928 	struct perf_event_context *next_ctx;
2929 	struct perf_event_context *parent, *next_parent;
2930 	struct perf_cpu_context *cpuctx;
2931 	int do_switch = 1;
2932 
2933 	if (likely(!ctx))
2934 		return;
2935 
2936 	cpuctx = __get_cpu_context(ctx);
2937 	if (!cpuctx->task_ctx)
2938 		return;
2939 
2940 	rcu_read_lock();
2941 	next_ctx = next->perf_event_ctxp[ctxn];
2942 	if (!next_ctx)
2943 		goto unlock;
2944 
2945 	parent = rcu_dereference(ctx->parent_ctx);
2946 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2947 
2948 	/* If neither context have a parent context; they cannot be clones. */
2949 	if (!parent && !next_parent)
2950 		goto unlock;
2951 
2952 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2953 		/*
2954 		 * Looks like the two contexts are clones, so we might be
2955 		 * able to optimize the context switch.  We lock both
2956 		 * contexts and check that they are clones under the
2957 		 * lock (including re-checking that neither has been
2958 		 * uncloned in the meantime).  It doesn't matter which
2959 		 * order we take the locks because no other cpu could
2960 		 * be trying to lock both of these tasks.
2961 		 */
2962 		raw_spin_lock(&ctx->lock);
2963 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2964 		if (context_equiv(ctx, next_ctx)) {
2965 			WRITE_ONCE(ctx->task, next);
2966 			WRITE_ONCE(next_ctx->task, task);
2967 
2968 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2969 
2970 			/*
2971 			 * RCU_INIT_POINTER here is safe because we've not
2972 			 * modified the ctx and the above modification of
2973 			 * ctx->task and ctx->task_ctx_data are immaterial
2974 			 * since those values are always verified under
2975 			 * ctx->lock which we're now holding.
2976 			 */
2977 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2978 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2979 
2980 			do_switch = 0;
2981 
2982 			perf_event_sync_stat(ctx, next_ctx);
2983 		}
2984 		raw_spin_unlock(&next_ctx->lock);
2985 		raw_spin_unlock(&ctx->lock);
2986 	}
2987 unlock:
2988 	rcu_read_unlock();
2989 
2990 	if (do_switch) {
2991 		raw_spin_lock(&ctx->lock);
2992 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2993 		raw_spin_unlock(&ctx->lock);
2994 	}
2995 }
2996 
2997 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2998 
2999 void perf_sched_cb_dec(struct pmu *pmu)
3000 {
3001 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3002 
3003 	this_cpu_dec(perf_sched_cb_usages);
3004 
3005 	if (!--cpuctx->sched_cb_usage)
3006 		list_del(&cpuctx->sched_cb_entry);
3007 }
3008 
3009 
3010 void perf_sched_cb_inc(struct pmu *pmu)
3011 {
3012 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3013 
3014 	if (!cpuctx->sched_cb_usage++)
3015 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3016 
3017 	this_cpu_inc(perf_sched_cb_usages);
3018 }
3019 
3020 /*
3021  * This function provides the context switch callback to the lower code
3022  * layer. It is invoked ONLY when the context switch callback is enabled.
3023  *
3024  * This callback is relevant even to per-cpu events; for example multi event
3025  * PEBS requires this to provide PID/TID information. This requires we flush
3026  * all queued PEBS records before we context switch to a new task.
3027  */
3028 static void perf_pmu_sched_task(struct task_struct *prev,
3029 				struct task_struct *next,
3030 				bool sched_in)
3031 {
3032 	struct perf_cpu_context *cpuctx;
3033 	struct pmu *pmu;
3034 
3035 	if (prev == next)
3036 		return;
3037 
3038 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3039 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3040 
3041 		if (WARN_ON_ONCE(!pmu->sched_task))
3042 			continue;
3043 
3044 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3045 		perf_pmu_disable(pmu);
3046 
3047 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3048 
3049 		perf_pmu_enable(pmu);
3050 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3051 	}
3052 }
3053 
3054 static void perf_event_switch(struct task_struct *task,
3055 			      struct task_struct *next_prev, bool sched_in);
3056 
3057 #define for_each_task_context_nr(ctxn)					\
3058 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3059 
3060 /*
3061  * Called from scheduler to remove the events of the current task,
3062  * with interrupts disabled.
3063  *
3064  * We stop each event and update the event value in event->count.
3065  *
3066  * This does not protect us against NMI, but disable()
3067  * sets the disabled bit in the control field of event _before_
3068  * accessing the event control register. If a NMI hits, then it will
3069  * not restart the event.
3070  */
3071 void __perf_event_task_sched_out(struct task_struct *task,
3072 				 struct task_struct *next)
3073 {
3074 	int ctxn;
3075 
3076 	if (__this_cpu_read(perf_sched_cb_usages))
3077 		perf_pmu_sched_task(task, next, false);
3078 
3079 	if (atomic_read(&nr_switch_events))
3080 		perf_event_switch(task, next, false);
3081 
3082 	for_each_task_context_nr(ctxn)
3083 		perf_event_context_sched_out(task, ctxn, next);
3084 
3085 	/*
3086 	 * if cgroup events exist on this CPU, then we need
3087 	 * to check if we have to switch out PMU state.
3088 	 * cgroup event are system-wide mode only
3089 	 */
3090 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3091 		perf_cgroup_sched_out(task, next);
3092 }
3093 
3094 /*
3095  * Called with IRQs disabled
3096  */
3097 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3098 			      enum event_type_t event_type)
3099 {
3100 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3101 }
3102 
3103 static void
3104 ctx_pinned_sched_in(struct perf_event_context *ctx,
3105 		    struct perf_cpu_context *cpuctx)
3106 {
3107 	struct perf_event *event;
3108 
3109 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3110 		if (event->state <= PERF_EVENT_STATE_OFF)
3111 			continue;
3112 		if (!event_filter_match(event))
3113 			continue;
3114 
3115 		/* may need to reset tstamp_enabled */
3116 		if (is_cgroup_event(event))
3117 			perf_cgroup_mark_enabled(event, ctx);
3118 
3119 		if (group_can_go_on(event, cpuctx, 1))
3120 			group_sched_in(event, cpuctx, ctx);
3121 
3122 		/*
3123 		 * If this pinned group hasn't been scheduled,
3124 		 * put it in error state.
3125 		 */
3126 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3127 			update_group_times(event);
3128 			event->state = PERF_EVENT_STATE_ERROR;
3129 		}
3130 	}
3131 }
3132 
3133 static void
3134 ctx_flexible_sched_in(struct perf_event_context *ctx,
3135 		      struct perf_cpu_context *cpuctx)
3136 {
3137 	struct perf_event *event;
3138 	int can_add_hw = 1;
3139 
3140 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3141 		/* Ignore events in OFF or ERROR state */
3142 		if (event->state <= PERF_EVENT_STATE_OFF)
3143 			continue;
3144 		/*
3145 		 * Listen to the 'cpu' scheduling filter constraint
3146 		 * of events:
3147 		 */
3148 		if (!event_filter_match(event))
3149 			continue;
3150 
3151 		/* may need to reset tstamp_enabled */
3152 		if (is_cgroup_event(event))
3153 			perf_cgroup_mark_enabled(event, ctx);
3154 
3155 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3156 			if (group_sched_in(event, cpuctx, ctx))
3157 				can_add_hw = 0;
3158 		}
3159 	}
3160 }
3161 
3162 static void
3163 ctx_sched_in(struct perf_event_context *ctx,
3164 	     struct perf_cpu_context *cpuctx,
3165 	     enum event_type_t event_type,
3166 	     struct task_struct *task)
3167 {
3168 	int is_active = ctx->is_active;
3169 	u64 now;
3170 
3171 	lockdep_assert_held(&ctx->lock);
3172 
3173 	if (likely(!ctx->nr_events))
3174 		return;
3175 
3176 	ctx->is_active |= (event_type | EVENT_TIME);
3177 	if (ctx->task) {
3178 		if (!is_active)
3179 			cpuctx->task_ctx = ctx;
3180 		else
3181 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3182 	}
3183 
3184 	is_active ^= ctx->is_active; /* changed bits */
3185 
3186 	if (is_active & EVENT_TIME) {
3187 		/* start ctx time */
3188 		now = perf_clock();
3189 		ctx->timestamp = now;
3190 		perf_cgroup_set_timestamp(task, ctx);
3191 	}
3192 
3193 	/*
3194 	 * First go through the list and put on any pinned groups
3195 	 * in order to give them the best chance of going on.
3196 	 */
3197 	if (is_active & EVENT_PINNED)
3198 		ctx_pinned_sched_in(ctx, cpuctx);
3199 
3200 	/* Then walk through the lower prio flexible groups */
3201 	if (is_active & EVENT_FLEXIBLE)
3202 		ctx_flexible_sched_in(ctx, cpuctx);
3203 }
3204 
3205 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3206 			     enum event_type_t event_type,
3207 			     struct task_struct *task)
3208 {
3209 	struct perf_event_context *ctx = &cpuctx->ctx;
3210 
3211 	ctx_sched_in(ctx, cpuctx, event_type, task);
3212 }
3213 
3214 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3215 					struct task_struct *task)
3216 {
3217 	struct perf_cpu_context *cpuctx;
3218 
3219 	cpuctx = __get_cpu_context(ctx);
3220 	if (cpuctx->task_ctx == ctx)
3221 		return;
3222 
3223 	perf_ctx_lock(cpuctx, ctx);
3224 	/*
3225 	 * We must check ctx->nr_events while holding ctx->lock, such
3226 	 * that we serialize against perf_install_in_context().
3227 	 */
3228 	if (!ctx->nr_events)
3229 		goto unlock;
3230 
3231 	perf_pmu_disable(ctx->pmu);
3232 	/*
3233 	 * We want to keep the following priority order:
3234 	 * cpu pinned (that don't need to move), task pinned,
3235 	 * cpu flexible, task flexible.
3236 	 *
3237 	 * However, if task's ctx is not carrying any pinned
3238 	 * events, no need to flip the cpuctx's events around.
3239 	 */
3240 	if (!list_empty(&ctx->pinned_groups))
3241 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3242 	perf_event_sched_in(cpuctx, ctx, task);
3243 	perf_pmu_enable(ctx->pmu);
3244 
3245 unlock:
3246 	perf_ctx_unlock(cpuctx, ctx);
3247 }
3248 
3249 /*
3250  * Called from scheduler to add the events of the current task
3251  * with interrupts disabled.
3252  *
3253  * We restore the event value and then enable it.
3254  *
3255  * This does not protect us against NMI, but enable()
3256  * sets the enabled bit in the control field of event _before_
3257  * accessing the event control register. If a NMI hits, then it will
3258  * keep the event running.
3259  */
3260 void __perf_event_task_sched_in(struct task_struct *prev,
3261 				struct task_struct *task)
3262 {
3263 	struct perf_event_context *ctx;
3264 	int ctxn;
3265 
3266 	/*
3267 	 * If cgroup events exist on this CPU, then we need to check if we have
3268 	 * to switch in PMU state; cgroup event are system-wide mode only.
3269 	 *
3270 	 * Since cgroup events are CPU events, we must schedule these in before
3271 	 * we schedule in the task events.
3272 	 */
3273 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3274 		perf_cgroup_sched_in(prev, task);
3275 
3276 	for_each_task_context_nr(ctxn) {
3277 		ctx = task->perf_event_ctxp[ctxn];
3278 		if (likely(!ctx))
3279 			continue;
3280 
3281 		perf_event_context_sched_in(ctx, task);
3282 	}
3283 
3284 	if (atomic_read(&nr_switch_events))
3285 		perf_event_switch(task, prev, true);
3286 
3287 	if (__this_cpu_read(perf_sched_cb_usages))
3288 		perf_pmu_sched_task(prev, task, true);
3289 }
3290 
3291 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3292 {
3293 	u64 frequency = event->attr.sample_freq;
3294 	u64 sec = NSEC_PER_SEC;
3295 	u64 divisor, dividend;
3296 
3297 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3298 
3299 	count_fls = fls64(count);
3300 	nsec_fls = fls64(nsec);
3301 	frequency_fls = fls64(frequency);
3302 	sec_fls = 30;
3303 
3304 	/*
3305 	 * We got @count in @nsec, with a target of sample_freq HZ
3306 	 * the target period becomes:
3307 	 *
3308 	 *             @count * 10^9
3309 	 * period = -------------------
3310 	 *          @nsec * sample_freq
3311 	 *
3312 	 */
3313 
3314 	/*
3315 	 * Reduce accuracy by one bit such that @a and @b converge
3316 	 * to a similar magnitude.
3317 	 */
3318 #define REDUCE_FLS(a, b)		\
3319 do {					\
3320 	if (a##_fls > b##_fls) {	\
3321 		a >>= 1;		\
3322 		a##_fls--;		\
3323 	} else {			\
3324 		b >>= 1;		\
3325 		b##_fls--;		\
3326 	}				\
3327 } while (0)
3328 
3329 	/*
3330 	 * Reduce accuracy until either term fits in a u64, then proceed with
3331 	 * the other, so that finally we can do a u64/u64 division.
3332 	 */
3333 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3334 		REDUCE_FLS(nsec, frequency);
3335 		REDUCE_FLS(sec, count);
3336 	}
3337 
3338 	if (count_fls + sec_fls > 64) {
3339 		divisor = nsec * frequency;
3340 
3341 		while (count_fls + sec_fls > 64) {
3342 			REDUCE_FLS(count, sec);
3343 			divisor >>= 1;
3344 		}
3345 
3346 		dividend = count * sec;
3347 	} else {
3348 		dividend = count * sec;
3349 
3350 		while (nsec_fls + frequency_fls > 64) {
3351 			REDUCE_FLS(nsec, frequency);
3352 			dividend >>= 1;
3353 		}
3354 
3355 		divisor = nsec * frequency;
3356 	}
3357 
3358 	if (!divisor)
3359 		return dividend;
3360 
3361 	return div64_u64(dividend, divisor);
3362 }
3363 
3364 static DEFINE_PER_CPU(int, perf_throttled_count);
3365 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3366 
3367 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3368 {
3369 	struct hw_perf_event *hwc = &event->hw;
3370 	s64 period, sample_period;
3371 	s64 delta;
3372 
3373 	period = perf_calculate_period(event, nsec, count);
3374 
3375 	delta = (s64)(period - hwc->sample_period);
3376 	delta = (delta + 7) / 8; /* low pass filter */
3377 
3378 	sample_period = hwc->sample_period + delta;
3379 
3380 	if (!sample_period)
3381 		sample_period = 1;
3382 
3383 	hwc->sample_period = sample_period;
3384 
3385 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3386 		if (disable)
3387 			event->pmu->stop(event, PERF_EF_UPDATE);
3388 
3389 		local64_set(&hwc->period_left, 0);
3390 
3391 		if (disable)
3392 			event->pmu->start(event, PERF_EF_RELOAD);
3393 	}
3394 }
3395 
3396 /*
3397  * combine freq adjustment with unthrottling to avoid two passes over the
3398  * events. At the same time, make sure, having freq events does not change
3399  * the rate of unthrottling as that would introduce bias.
3400  */
3401 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3402 					   int needs_unthr)
3403 {
3404 	struct perf_event *event;
3405 	struct hw_perf_event *hwc;
3406 	u64 now, period = TICK_NSEC;
3407 	s64 delta;
3408 
3409 	/*
3410 	 * only need to iterate over all events iff:
3411 	 * - context have events in frequency mode (needs freq adjust)
3412 	 * - there are events to unthrottle on this cpu
3413 	 */
3414 	if (!(ctx->nr_freq || needs_unthr))
3415 		return;
3416 
3417 	raw_spin_lock(&ctx->lock);
3418 	perf_pmu_disable(ctx->pmu);
3419 
3420 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3421 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3422 			continue;
3423 
3424 		if (!event_filter_match(event))
3425 			continue;
3426 
3427 		perf_pmu_disable(event->pmu);
3428 
3429 		hwc = &event->hw;
3430 
3431 		if (hwc->interrupts == MAX_INTERRUPTS) {
3432 			hwc->interrupts = 0;
3433 			perf_log_throttle(event, 1);
3434 			event->pmu->start(event, 0);
3435 		}
3436 
3437 		if (!event->attr.freq || !event->attr.sample_freq)
3438 			goto next;
3439 
3440 		/*
3441 		 * stop the event and update event->count
3442 		 */
3443 		event->pmu->stop(event, PERF_EF_UPDATE);
3444 
3445 		now = local64_read(&event->count);
3446 		delta = now - hwc->freq_count_stamp;
3447 		hwc->freq_count_stamp = now;
3448 
3449 		/*
3450 		 * restart the event
3451 		 * reload only if value has changed
3452 		 * we have stopped the event so tell that
3453 		 * to perf_adjust_period() to avoid stopping it
3454 		 * twice.
3455 		 */
3456 		if (delta > 0)
3457 			perf_adjust_period(event, period, delta, false);
3458 
3459 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3460 	next:
3461 		perf_pmu_enable(event->pmu);
3462 	}
3463 
3464 	perf_pmu_enable(ctx->pmu);
3465 	raw_spin_unlock(&ctx->lock);
3466 }
3467 
3468 /*
3469  * Round-robin a context's events:
3470  */
3471 static void rotate_ctx(struct perf_event_context *ctx)
3472 {
3473 	/*
3474 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3475 	 * disabled by the inheritance code.
3476 	 */
3477 	if (!ctx->rotate_disable)
3478 		list_rotate_left(&ctx->flexible_groups);
3479 }
3480 
3481 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3482 {
3483 	struct perf_event_context *ctx = NULL;
3484 	int rotate = 0;
3485 
3486 	if (cpuctx->ctx.nr_events) {
3487 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3488 			rotate = 1;
3489 	}
3490 
3491 	ctx = cpuctx->task_ctx;
3492 	if (ctx && ctx->nr_events) {
3493 		if (ctx->nr_events != ctx->nr_active)
3494 			rotate = 1;
3495 	}
3496 
3497 	if (!rotate)
3498 		goto done;
3499 
3500 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3501 	perf_pmu_disable(cpuctx->ctx.pmu);
3502 
3503 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3504 	if (ctx)
3505 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3506 
3507 	rotate_ctx(&cpuctx->ctx);
3508 	if (ctx)
3509 		rotate_ctx(ctx);
3510 
3511 	perf_event_sched_in(cpuctx, ctx, current);
3512 
3513 	perf_pmu_enable(cpuctx->ctx.pmu);
3514 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3515 done:
3516 
3517 	return rotate;
3518 }
3519 
3520 void perf_event_task_tick(void)
3521 {
3522 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3523 	struct perf_event_context *ctx, *tmp;
3524 	int throttled;
3525 
3526 	WARN_ON(!irqs_disabled());
3527 
3528 	__this_cpu_inc(perf_throttled_seq);
3529 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3530 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3531 
3532 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3533 		perf_adjust_freq_unthr_context(ctx, throttled);
3534 }
3535 
3536 static int event_enable_on_exec(struct perf_event *event,
3537 				struct perf_event_context *ctx)
3538 {
3539 	if (!event->attr.enable_on_exec)
3540 		return 0;
3541 
3542 	event->attr.enable_on_exec = 0;
3543 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3544 		return 0;
3545 
3546 	__perf_event_mark_enabled(event);
3547 
3548 	return 1;
3549 }
3550 
3551 /*
3552  * Enable all of a task's events that have been marked enable-on-exec.
3553  * This expects task == current.
3554  */
3555 static void perf_event_enable_on_exec(int ctxn)
3556 {
3557 	struct perf_event_context *ctx, *clone_ctx = NULL;
3558 	enum event_type_t event_type = 0;
3559 	struct perf_cpu_context *cpuctx;
3560 	struct perf_event *event;
3561 	unsigned long flags;
3562 	int enabled = 0;
3563 
3564 	local_irq_save(flags);
3565 	ctx = current->perf_event_ctxp[ctxn];
3566 	if (!ctx || !ctx->nr_events)
3567 		goto out;
3568 
3569 	cpuctx = __get_cpu_context(ctx);
3570 	perf_ctx_lock(cpuctx, ctx);
3571 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3572 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3573 		enabled |= event_enable_on_exec(event, ctx);
3574 		event_type |= get_event_type(event);
3575 	}
3576 
3577 	/*
3578 	 * Unclone and reschedule this context if we enabled any event.
3579 	 */
3580 	if (enabled) {
3581 		clone_ctx = unclone_ctx(ctx);
3582 		ctx_resched(cpuctx, ctx, event_type);
3583 	} else {
3584 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3585 	}
3586 	perf_ctx_unlock(cpuctx, ctx);
3587 
3588 out:
3589 	local_irq_restore(flags);
3590 
3591 	if (clone_ctx)
3592 		put_ctx(clone_ctx);
3593 }
3594 
3595 struct perf_read_data {
3596 	struct perf_event *event;
3597 	bool group;
3598 	int ret;
3599 };
3600 
3601 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3602 {
3603 	u16 local_pkg, event_pkg;
3604 
3605 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3606 		int local_cpu = smp_processor_id();
3607 
3608 		event_pkg = topology_physical_package_id(event_cpu);
3609 		local_pkg = topology_physical_package_id(local_cpu);
3610 
3611 		if (event_pkg == local_pkg)
3612 			return local_cpu;
3613 	}
3614 
3615 	return event_cpu;
3616 }
3617 
3618 /*
3619  * Cross CPU call to read the hardware event
3620  */
3621 static void __perf_event_read(void *info)
3622 {
3623 	struct perf_read_data *data = info;
3624 	struct perf_event *sub, *event = data->event;
3625 	struct perf_event_context *ctx = event->ctx;
3626 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3627 	struct pmu *pmu = event->pmu;
3628 
3629 	/*
3630 	 * If this is a task context, we need to check whether it is
3631 	 * the current task context of this cpu.  If not it has been
3632 	 * scheduled out before the smp call arrived.  In that case
3633 	 * event->count would have been updated to a recent sample
3634 	 * when the event was scheduled out.
3635 	 */
3636 	if (ctx->task && cpuctx->task_ctx != ctx)
3637 		return;
3638 
3639 	raw_spin_lock(&ctx->lock);
3640 	if (ctx->is_active) {
3641 		update_context_time(ctx);
3642 		update_cgrp_time_from_event(event);
3643 	}
3644 
3645 	update_event_times(event);
3646 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3647 		goto unlock;
3648 
3649 	if (!data->group) {
3650 		pmu->read(event);
3651 		data->ret = 0;
3652 		goto unlock;
3653 	}
3654 
3655 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3656 
3657 	pmu->read(event);
3658 
3659 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3660 		update_event_times(sub);
3661 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3662 			/*
3663 			 * Use sibling's PMU rather than @event's since
3664 			 * sibling could be on different (eg: software) PMU.
3665 			 */
3666 			sub->pmu->read(sub);
3667 		}
3668 	}
3669 
3670 	data->ret = pmu->commit_txn(pmu);
3671 
3672 unlock:
3673 	raw_spin_unlock(&ctx->lock);
3674 }
3675 
3676 static inline u64 perf_event_count(struct perf_event *event)
3677 {
3678 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3679 }
3680 
3681 /*
3682  * NMI-safe method to read a local event, that is an event that
3683  * is:
3684  *   - either for the current task, or for this CPU
3685  *   - does not have inherit set, for inherited task events
3686  *     will not be local and we cannot read them atomically
3687  *   - must not have a pmu::count method
3688  */
3689 int perf_event_read_local(struct perf_event *event, u64 *value)
3690 {
3691 	unsigned long flags;
3692 	int ret = 0;
3693 
3694 	/*
3695 	 * Disabling interrupts avoids all counter scheduling (context
3696 	 * switches, timer based rotation and IPIs).
3697 	 */
3698 	local_irq_save(flags);
3699 
3700 	/*
3701 	 * It must not be an event with inherit set, we cannot read
3702 	 * all child counters from atomic context.
3703 	 */
3704 	if (event->attr.inherit) {
3705 		ret = -EOPNOTSUPP;
3706 		goto out;
3707 	}
3708 
3709 	/* If this is a per-task event, it must be for current */
3710 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3711 	    event->hw.target != current) {
3712 		ret = -EINVAL;
3713 		goto out;
3714 	}
3715 
3716 	/* If this is a per-CPU event, it must be for this CPU */
3717 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3718 	    event->cpu != smp_processor_id()) {
3719 		ret = -EINVAL;
3720 		goto out;
3721 	}
3722 
3723 	/*
3724 	 * If the event is currently on this CPU, its either a per-task event,
3725 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3726 	 * oncpu == -1).
3727 	 */
3728 	if (event->oncpu == smp_processor_id())
3729 		event->pmu->read(event);
3730 
3731 	*value = local64_read(&event->count);
3732 out:
3733 	local_irq_restore(flags);
3734 
3735 	return ret;
3736 }
3737 
3738 static int perf_event_read(struct perf_event *event, bool group)
3739 {
3740 	int event_cpu, ret = 0;
3741 
3742 	/*
3743 	 * If event is enabled and currently active on a CPU, update the
3744 	 * value in the event structure:
3745 	 */
3746 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3747 		struct perf_read_data data = {
3748 			.event = event,
3749 			.group = group,
3750 			.ret = 0,
3751 		};
3752 
3753 		event_cpu = READ_ONCE(event->oncpu);
3754 		if ((unsigned)event_cpu >= nr_cpu_ids)
3755 			return 0;
3756 
3757 		preempt_disable();
3758 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3759 
3760 		/*
3761 		 * Purposely ignore the smp_call_function_single() return
3762 		 * value.
3763 		 *
3764 		 * If event_cpu isn't a valid CPU it means the event got
3765 		 * scheduled out and that will have updated the event count.
3766 		 *
3767 		 * Therefore, either way, we'll have an up-to-date event count
3768 		 * after this.
3769 		 */
3770 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3771 		preempt_enable();
3772 		ret = data.ret;
3773 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3774 		struct perf_event_context *ctx = event->ctx;
3775 		unsigned long flags;
3776 
3777 		raw_spin_lock_irqsave(&ctx->lock, flags);
3778 		/*
3779 		 * may read while context is not active
3780 		 * (e.g., thread is blocked), in that case
3781 		 * we cannot update context time
3782 		 */
3783 		if (ctx->is_active) {
3784 			update_context_time(ctx);
3785 			update_cgrp_time_from_event(event);
3786 		}
3787 		if (group)
3788 			update_group_times(event);
3789 		else
3790 			update_event_times(event);
3791 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3792 	}
3793 
3794 	return ret;
3795 }
3796 
3797 /*
3798  * Initialize the perf_event context in a task_struct:
3799  */
3800 static void __perf_event_init_context(struct perf_event_context *ctx)
3801 {
3802 	raw_spin_lock_init(&ctx->lock);
3803 	mutex_init(&ctx->mutex);
3804 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3805 	INIT_LIST_HEAD(&ctx->pinned_groups);
3806 	INIT_LIST_HEAD(&ctx->flexible_groups);
3807 	INIT_LIST_HEAD(&ctx->event_list);
3808 	atomic_set(&ctx->refcount, 1);
3809 }
3810 
3811 static struct perf_event_context *
3812 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3813 {
3814 	struct perf_event_context *ctx;
3815 
3816 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3817 	if (!ctx)
3818 		return NULL;
3819 
3820 	__perf_event_init_context(ctx);
3821 	if (task) {
3822 		ctx->task = task;
3823 		get_task_struct(task);
3824 	}
3825 	ctx->pmu = pmu;
3826 
3827 	return ctx;
3828 }
3829 
3830 static struct task_struct *
3831 find_lively_task_by_vpid(pid_t vpid)
3832 {
3833 	struct task_struct *task;
3834 
3835 	rcu_read_lock();
3836 	if (!vpid)
3837 		task = current;
3838 	else
3839 		task = find_task_by_vpid(vpid);
3840 	if (task)
3841 		get_task_struct(task);
3842 	rcu_read_unlock();
3843 
3844 	if (!task)
3845 		return ERR_PTR(-ESRCH);
3846 
3847 	return task;
3848 }
3849 
3850 /*
3851  * Returns a matching context with refcount and pincount.
3852  */
3853 static struct perf_event_context *
3854 find_get_context(struct pmu *pmu, struct task_struct *task,
3855 		struct perf_event *event)
3856 {
3857 	struct perf_event_context *ctx, *clone_ctx = NULL;
3858 	struct perf_cpu_context *cpuctx;
3859 	void *task_ctx_data = NULL;
3860 	unsigned long flags;
3861 	int ctxn, err;
3862 	int cpu = event->cpu;
3863 
3864 	if (!task) {
3865 		/* Must be root to operate on a CPU event: */
3866 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3867 			return ERR_PTR(-EACCES);
3868 
3869 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3870 		ctx = &cpuctx->ctx;
3871 		get_ctx(ctx);
3872 		++ctx->pin_count;
3873 
3874 		return ctx;
3875 	}
3876 
3877 	err = -EINVAL;
3878 	ctxn = pmu->task_ctx_nr;
3879 	if (ctxn < 0)
3880 		goto errout;
3881 
3882 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3883 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3884 		if (!task_ctx_data) {
3885 			err = -ENOMEM;
3886 			goto errout;
3887 		}
3888 	}
3889 
3890 retry:
3891 	ctx = perf_lock_task_context(task, ctxn, &flags);
3892 	if (ctx) {
3893 		clone_ctx = unclone_ctx(ctx);
3894 		++ctx->pin_count;
3895 
3896 		if (task_ctx_data && !ctx->task_ctx_data) {
3897 			ctx->task_ctx_data = task_ctx_data;
3898 			task_ctx_data = NULL;
3899 		}
3900 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3901 
3902 		if (clone_ctx)
3903 			put_ctx(clone_ctx);
3904 	} else {
3905 		ctx = alloc_perf_context(pmu, task);
3906 		err = -ENOMEM;
3907 		if (!ctx)
3908 			goto errout;
3909 
3910 		if (task_ctx_data) {
3911 			ctx->task_ctx_data = task_ctx_data;
3912 			task_ctx_data = NULL;
3913 		}
3914 
3915 		err = 0;
3916 		mutex_lock(&task->perf_event_mutex);
3917 		/*
3918 		 * If it has already passed perf_event_exit_task().
3919 		 * we must see PF_EXITING, it takes this mutex too.
3920 		 */
3921 		if (task->flags & PF_EXITING)
3922 			err = -ESRCH;
3923 		else if (task->perf_event_ctxp[ctxn])
3924 			err = -EAGAIN;
3925 		else {
3926 			get_ctx(ctx);
3927 			++ctx->pin_count;
3928 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3929 		}
3930 		mutex_unlock(&task->perf_event_mutex);
3931 
3932 		if (unlikely(err)) {
3933 			put_ctx(ctx);
3934 
3935 			if (err == -EAGAIN)
3936 				goto retry;
3937 			goto errout;
3938 		}
3939 	}
3940 
3941 	kfree(task_ctx_data);
3942 	return ctx;
3943 
3944 errout:
3945 	kfree(task_ctx_data);
3946 	return ERR_PTR(err);
3947 }
3948 
3949 static void perf_event_free_filter(struct perf_event *event);
3950 static void perf_event_free_bpf_prog(struct perf_event *event);
3951 
3952 static void free_event_rcu(struct rcu_head *head)
3953 {
3954 	struct perf_event *event;
3955 
3956 	event = container_of(head, struct perf_event, rcu_head);
3957 	if (event->ns)
3958 		put_pid_ns(event->ns);
3959 	perf_event_free_filter(event);
3960 	kfree(event);
3961 }
3962 
3963 static void ring_buffer_attach(struct perf_event *event,
3964 			       struct ring_buffer *rb);
3965 
3966 static void detach_sb_event(struct perf_event *event)
3967 {
3968 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3969 
3970 	raw_spin_lock(&pel->lock);
3971 	list_del_rcu(&event->sb_list);
3972 	raw_spin_unlock(&pel->lock);
3973 }
3974 
3975 static bool is_sb_event(struct perf_event *event)
3976 {
3977 	struct perf_event_attr *attr = &event->attr;
3978 
3979 	if (event->parent)
3980 		return false;
3981 
3982 	if (event->attach_state & PERF_ATTACH_TASK)
3983 		return false;
3984 
3985 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3986 	    attr->comm || attr->comm_exec ||
3987 	    attr->task ||
3988 	    attr->context_switch)
3989 		return true;
3990 	return false;
3991 }
3992 
3993 static void unaccount_pmu_sb_event(struct perf_event *event)
3994 {
3995 	if (is_sb_event(event))
3996 		detach_sb_event(event);
3997 }
3998 
3999 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4000 {
4001 	if (event->parent)
4002 		return;
4003 
4004 	if (is_cgroup_event(event))
4005 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4006 }
4007 
4008 #ifdef CONFIG_NO_HZ_FULL
4009 static DEFINE_SPINLOCK(nr_freq_lock);
4010 #endif
4011 
4012 static void unaccount_freq_event_nohz(void)
4013 {
4014 #ifdef CONFIG_NO_HZ_FULL
4015 	spin_lock(&nr_freq_lock);
4016 	if (atomic_dec_and_test(&nr_freq_events))
4017 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4018 	spin_unlock(&nr_freq_lock);
4019 #endif
4020 }
4021 
4022 static void unaccount_freq_event(void)
4023 {
4024 	if (tick_nohz_full_enabled())
4025 		unaccount_freq_event_nohz();
4026 	else
4027 		atomic_dec(&nr_freq_events);
4028 }
4029 
4030 static void unaccount_event(struct perf_event *event)
4031 {
4032 	bool dec = false;
4033 
4034 	if (event->parent)
4035 		return;
4036 
4037 	if (event->attach_state & PERF_ATTACH_TASK)
4038 		dec = true;
4039 	if (event->attr.mmap || event->attr.mmap_data)
4040 		atomic_dec(&nr_mmap_events);
4041 	if (event->attr.comm)
4042 		atomic_dec(&nr_comm_events);
4043 	if (event->attr.namespaces)
4044 		atomic_dec(&nr_namespaces_events);
4045 	if (event->attr.task)
4046 		atomic_dec(&nr_task_events);
4047 	if (event->attr.freq)
4048 		unaccount_freq_event();
4049 	if (event->attr.context_switch) {
4050 		dec = true;
4051 		atomic_dec(&nr_switch_events);
4052 	}
4053 	if (is_cgroup_event(event))
4054 		dec = true;
4055 	if (has_branch_stack(event))
4056 		dec = true;
4057 
4058 	if (dec) {
4059 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4060 			schedule_delayed_work(&perf_sched_work, HZ);
4061 	}
4062 
4063 	unaccount_event_cpu(event, event->cpu);
4064 
4065 	unaccount_pmu_sb_event(event);
4066 }
4067 
4068 static void perf_sched_delayed(struct work_struct *work)
4069 {
4070 	mutex_lock(&perf_sched_mutex);
4071 	if (atomic_dec_and_test(&perf_sched_count))
4072 		static_branch_disable(&perf_sched_events);
4073 	mutex_unlock(&perf_sched_mutex);
4074 }
4075 
4076 /*
4077  * The following implement mutual exclusion of events on "exclusive" pmus
4078  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4079  * at a time, so we disallow creating events that might conflict, namely:
4080  *
4081  *  1) cpu-wide events in the presence of per-task events,
4082  *  2) per-task events in the presence of cpu-wide events,
4083  *  3) two matching events on the same context.
4084  *
4085  * The former two cases are handled in the allocation path (perf_event_alloc(),
4086  * _free_event()), the latter -- before the first perf_install_in_context().
4087  */
4088 static int exclusive_event_init(struct perf_event *event)
4089 {
4090 	struct pmu *pmu = event->pmu;
4091 
4092 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4093 		return 0;
4094 
4095 	/*
4096 	 * Prevent co-existence of per-task and cpu-wide events on the
4097 	 * same exclusive pmu.
4098 	 *
4099 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4100 	 * events on this "exclusive" pmu, positive means there are
4101 	 * per-task events.
4102 	 *
4103 	 * Since this is called in perf_event_alloc() path, event::ctx
4104 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4105 	 * to mean "per-task event", because unlike other attach states it
4106 	 * never gets cleared.
4107 	 */
4108 	if (event->attach_state & PERF_ATTACH_TASK) {
4109 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4110 			return -EBUSY;
4111 	} else {
4112 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4113 			return -EBUSY;
4114 	}
4115 
4116 	return 0;
4117 }
4118 
4119 static void exclusive_event_destroy(struct perf_event *event)
4120 {
4121 	struct pmu *pmu = event->pmu;
4122 
4123 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4124 		return;
4125 
4126 	/* see comment in exclusive_event_init() */
4127 	if (event->attach_state & PERF_ATTACH_TASK)
4128 		atomic_dec(&pmu->exclusive_cnt);
4129 	else
4130 		atomic_inc(&pmu->exclusive_cnt);
4131 }
4132 
4133 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4134 {
4135 	if ((e1->pmu == e2->pmu) &&
4136 	    (e1->cpu == e2->cpu ||
4137 	     e1->cpu == -1 ||
4138 	     e2->cpu == -1))
4139 		return true;
4140 	return false;
4141 }
4142 
4143 /* Called under the same ctx::mutex as perf_install_in_context() */
4144 static bool exclusive_event_installable(struct perf_event *event,
4145 					struct perf_event_context *ctx)
4146 {
4147 	struct perf_event *iter_event;
4148 	struct pmu *pmu = event->pmu;
4149 
4150 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4151 		return true;
4152 
4153 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4154 		if (exclusive_event_match(iter_event, event))
4155 			return false;
4156 	}
4157 
4158 	return true;
4159 }
4160 
4161 static void perf_addr_filters_splice(struct perf_event *event,
4162 				       struct list_head *head);
4163 
4164 static void _free_event(struct perf_event *event)
4165 {
4166 	irq_work_sync(&event->pending);
4167 
4168 	unaccount_event(event);
4169 
4170 	if (event->rb) {
4171 		/*
4172 		 * Can happen when we close an event with re-directed output.
4173 		 *
4174 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4175 		 * over us; possibly making our ring_buffer_put() the last.
4176 		 */
4177 		mutex_lock(&event->mmap_mutex);
4178 		ring_buffer_attach(event, NULL);
4179 		mutex_unlock(&event->mmap_mutex);
4180 	}
4181 
4182 	if (is_cgroup_event(event))
4183 		perf_detach_cgroup(event);
4184 
4185 	if (!event->parent) {
4186 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4187 			put_callchain_buffers();
4188 	}
4189 
4190 	perf_event_free_bpf_prog(event);
4191 	perf_addr_filters_splice(event, NULL);
4192 	kfree(event->addr_filters_offs);
4193 
4194 	if (event->destroy)
4195 		event->destroy(event);
4196 
4197 	if (event->ctx)
4198 		put_ctx(event->ctx);
4199 
4200 	exclusive_event_destroy(event);
4201 	module_put(event->pmu->module);
4202 
4203 	call_rcu(&event->rcu_head, free_event_rcu);
4204 }
4205 
4206 /*
4207  * Used to free events which have a known refcount of 1, such as in error paths
4208  * where the event isn't exposed yet and inherited events.
4209  */
4210 static void free_event(struct perf_event *event)
4211 {
4212 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4213 				"unexpected event refcount: %ld; ptr=%p\n",
4214 				atomic_long_read(&event->refcount), event)) {
4215 		/* leak to avoid use-after-free */
4216 		return;
4217 	}
4218 
4219 	_free_event(event);
4220 }
4221 
4222 /*
4223  * Remove user event from the owner task.
4224  */
4225 static void perf_remove_from_owner(struct perf_event *event)
4226 {
4227 	struct task_struct *owner;
4228 
4229 	rcu_read_lock();
4230 	/*
4231 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4232 	 * observe !owner it means the list deletion is complete and we can
4233 	 * indeed free this event, otherwise we need to serialize on
4234 	 * owner->perf_event_mutex.
4235 	 */
4236 	owner = lockless_dereference(event->owner);
4237 	if (owner) {
4238 		/*
4239 		 * Since delayed_put_task_struct() also drops the last
4240 		 * task reference we can safely take a new reference
4241 		 * while holding the rcu_read_lock().
4242 		 */
4243 		get_task_struct(owner);
4244 	}
4245 	rcu_read_unlock();
4246 
4247 	if (owner) {
4248 		/*
4249 		 * If we're here through perf_event_exit_task() we're already
4250 		 * holding ctx->mutex which would be an inversion wrt. the
4251 		 * normal lock order.
4252 		 *
4253 		 * However we can safely take this lock because its the child
4254 		 * ctx->mutex.
4255 		 */
4256 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4257 
4258 		/*
4259 		 * We have to re-check the event->owner field, if it is cleared
4260 		 * we raced with perf_event_exit_task(), acquiring the mutex
4261 		 * ensured they're done, and we can proceed with freeing the
4262 		 * event.
4263 		 */
4264 		if (event->owner) {
4265 			list_del_init(&event->owner_entry);
4266 			smp_store_release(&event->owner, NULL);
4267 		}
4268 		mutex_unlock(&owner->perf_event_mutex);
4269 		put_task_struct(owner);
4270 	}
4271 }
4272 
4273 static void put_event(struct perf_event *event)
4274 {
4275 	if (!atomic_long_dec_and_test(&event->refcount))
4276 		return;
4277 
4278 	_free_event(event);
4279 }
4280 
4281 /*
4282  * Kill an event dead; while event:refcount will preserve the event
4283  * object, it will not preserve its functionality. Once the last 'user'
4284  * gives up the object, we'll destroy the thing.
4285  */
4286 int perf_event_release_kernel(struct perf_event *event)
4287 {
4288 	struct perf_event_context *ctx = event->ctx;
4289 	struct perf_event *child, *tmp;
4290 
4291 	/*
4292 	 * If we got here through err_file: fput(event_file); we will not have
4293 	 * attached to a context yet.
4294 	 */
4295 	if (!ctx) {
4296 		WARN_ON_ONCE(event->attach_state &
4297 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4298 		goto no_ctx;
4299 	}
4300 
4301 	if (!is_kernel_event(event))
4302 		perf_remove_from_owner(event);
4303 
4304 	ctx = perf_event_ctx_lock(event);
4305 	WARN_ON_ONCE(ctx->parent_ctx);
4306 	perf_remove_from_context(event, DETACH_GROUP);
4307 
4308 	raw_spin_lock_irq(&ctx->lock);
4309 	/*
4310 	 * Mark this event as STATE_DEAD, there is no external reference to it
4311 	 * anymore.
4312 	 *
4313 	 * Anybody acquiring event->child_mutex after the below loop _must_
4314 	 * also see this, most importantly inherit_event() which will avoid
4315 	 * placing more children on the list.
4316 	 *
4317 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4318 	 * child events.
4319 	 */
4320 	event->state = PERF_EVENT_STATE_DEAD;
4321 	raw_spin_unlock_irq(&ctx->lock);
4322 
4323 	perf_event_ctx_unlock(event, ctx);
4324 
4325 again:
4326 	mutex_lock(&event->child_mutex);
4327 	list_for_each_entry(child, &event->child_list, child_list) {
4328 
4329 		/*
4330 		 * Cannot change, child events are not migrated, see the
4331 		 * comment with perf_event_ctx_lock_nested().
4332 		 */
4333 		ctx = lockless_dereference(child->ctx);
4334 		/*
4335 		 * Since child_mutex nests inside ctx::mutex, we must jump
4336 		 * through hoops. We start by grabbing a reference on the ctx.
4337 		 *
4338 		 * Since the event cannot get freed while we hold the
4339 		 * child_mutex, the context must also exist and have a !0
4340 		 * reference count.
4341 		 */
4342 		get_ctx(ctx);
4343 
4344 		/*
4345 		 * Now that we have a ctx ref, we can drop child_mutex, and
4346 		 * acquire ctx::mutex without fear of it going away. Then we
4347 		 * can re-acquire child_mutex.
4348 		 */
4349 		mutex_unlock(&event->child_mutex);
4350 		mutex_lock(&ctx->mutex);
4351 		mutex_lock(&event->child_mutex);
4352 
4353 		/*
4354 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4355 		 * state, if child is still the first entry, it didn't get freed
4356 		 * and we can continue doing so.
4357 		 */
4358 		tmp = list_first_entry_or_null(&event->child_list,
4359 					       struct perf_event, child_list);
4360 		if (tmp == child) {
4361 			perf_remove_from_context(child, DETACH_GROUP);
4362 			list_del(&child->child_list);
4363 			free_event(child);
4364 			/*
4365 			 * This matches the refcount bump in inherit_event();
4366 			 * this can't be the last reference.
4367 			 */
4368 			put_event(event);
4369 		}
4370 
4371 		mutex_unlock(&event->child_mutex);
4372 		mutex_unlock(&ctx->mutex);
4373 		put_ctx(ctx);
4374 		goto again;
4375 	}
4376 	mutex_unlock(&event->child_mutex);
4377 
4378 no_ctx:
4379 	put_event(event); /* Must be the 'last' reference */
4380 	return 0;
4381 }
4382 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4383 
4384 /*
4385  * Called when the last reference to the file is gone.
4386  */
4387 static int perf_release(struct inode *inode, struct file *file)
4388 {
4389 	perf_event_release_kernel(file->private_data);
4390 	return 0;
4391 }
4392 
4393 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4394 {
4395 	struct perf_event *child;
4396 	u64 total = 0;
4397 
4398 	*enabled = 0;
4399 	*running = 0;
4400 
4401 	mutex_lock(&event->child_mutex);
4402 
4403 	(void)perf_event_read(event, false);
4404 	total += perf_event_count(event);
4405 
4406 	*enabled += event->total_time_enabled +
4407 			atomic64_read(&event->child_total_time_enabled);
4408 	*running += event->total_time_running +
4409 			atomic64_read(&event->child_total_time_running);
4410 
4411 	list_for_each_entry(child, &event->child_list, child_list) {
4412 		(void)perf_event_read(child, false);
4413 		total += perf_event_count(child);
4414 		*enabled += child->total_time_enabled;
4415 		*running += child->total_time_running;
4416 	}
4417 	mutex_unlock(&event->child_mutex);
4418 
4419 	return total;
4420 }
4421 EXPORT_SYMBOL_GPL(perf_event_read_value);
4422 
4423 static int __perf_read_group_add(struct perf_event *leader,
4424 					u64 read_format, u64 *values)
4425 {
4426 	struct perf_event_context *ctx = leader->ctx;
4427 	struct perf_event *sub;
4428 	unsigned long flags;
4429 	int n = 1; /* skip @nr */
4430 	int ret;
4431 
4432 	ret = perf_event_read(leader, true);
4433 	if (ret)
4434 		return ret;
4435 
4436 	/*
4437 	 * Since we co-schedule groups, {enabled,running} times of siblings
4438 	 * will be identical to those of the leader, so we only publish one
4439 	 * set.
4440 	 */
4441 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4442 		values[n++] += leader->total_time_enabled +
4443 			atomic64_read(&leader->child_total_time_enabled);
4444 	}
4445 
4446 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4447 		values[n++] += leader->total_time_running +
4448 			atomic64_read(&leader->child_total_time_running);
4449 	}
4450 
4451 	/*
4452 	 * Write {count,id} tuples for every sibling.
4453 	 */
4454 	values[n++] += perf_event_count(leader);
4455 	if (read_format & PERF_FORMAT_ID)
4456 		values[n++] = primary_event_id(leader);
4457 
4458 	raw_spin_lock_irqsave(&ctx->lock, flags);
4459 
4460 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4461 		values[n++] += perf_event_count(sub);
4462 		if (read_format & PERF_FORMAT_ID)
4463 			values[n++] = primary_event_id(sub);
4464 	}
4465 
4466 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4467 	return 0;
4468 }
4469 
4470 static int perf_read_group(struct perf_event *event,
4471 				   u64 read_format, char __user *buf)
4472 {
4473 	struct perf_event *leader = event->group_leader, *child;
4474 	struct perf_event_context *ctx = leader->ctx;
4475 	int ret;
4476 	u64 *values;
4477 
4478 	lockdep_assert_held(&ctx->mutex);
4479 
4480 	values = kzalloc(event->read_size, GFP_KERNEL);
4481 	if (!values)
4482 		return -ENOMEM;
4483 
4484 	values[0] = 1 + leader->nr_siblings;
4485 
4486 	/*
4487 	 * By locking the child_mutex of the leader we effectively
4488 	 * lock the child list of all siblings.. XXX explain how.
4489 	 */
4490 	mutex_lock(&leader->child_mutex);
4491 
4492 	ret = __perf_read_group_add(leader, read_format, values);
4493 	if (ret)
4494 		goto unlock;
4495 
4496 	list_for_each_entry(child, &leader->child_list, child_list) {
4497 		ret = __perf_read_group_add(child, read_format, values);
4498 		if (ret)
4499 			goto unlock;
4500 	}
4501 
4502 	mutex_unlock(&leader->child_mutex);
4503 
4504 	ret = event->read_size;
4505 	if (copy_to_user(buf, values, event->read_size))
4506 		ret = -EFAULT;
4507 	goto out;
4508 
4509 unlock:
4510 	mutex_unlock(&leader->child_mutex);
4511 out:
4512 	kfree(values);
4513 	return ret;
4514 }
4515 
4516 static int perf_read_one(struct perf_event *event,
4517 				 u64 read_format, char __user *buf)
4518 {
4519 	u64 enabled, running;
4520 	u64 values[4];
4521 	int n = 0;
4522 
4523 	values[n++] = perf_event_read_value(event, &enabled, &running);
4524 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4525 		values[n++] = enabled;
4526 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4527 		values[n++] = running;
4528 	if (read_format & PERF_FORMAT_ID)
4529 		values[n++] = primary_event_id(event);
4530 
4531 	if (copy_to_user(buf, values, n * sizeof(u64)))
4532 		return -EFAULT;
4533 
4534 	return n * sizeof(u64);
4535 }
4536 
4537 static bool is_event_hup(struct perf_event *event)
4538 {
4539 	bool no_children;
4540 
4541 	if (event->state > PERF_EVENT_STATE_EXIT)
4542 		return false;
4543 
4544 	mutex_lock(&event->child_mutex);
4545 	no_children = list_empty(&event->child_list);
4546 	mutex_unlock(&event->child_mutex);
4547 	return no_children;
4548 }
4549 
4550 /*
4551  * Read the performance event - simple non blocking version for now
4552  */
4553 static ssize_t
4554 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4555 {
4556 	u64 read_format = event->attr.read_format;
4557 	int ret;
4558 
4559 	/*
4560 	 * Return end-of-file for a read on a event that is in
4561 	 * error state (i.e. because it was pinned but it couldn't be
4562 	 * scheduled on to the CPU at some point).
4563 	 */
4564 	if (event->state == PERF_EVENT_STATE_ERROR)
4565 		return 0;
4566 
4567 	if (count < event->read_size)
4568 		return -ENOSPC;
4569 
4570 	WARN_ON_ONCE(event->ctx->parent_ctx);
4571 	if (read_format & PERF_FORMAT_GROUP)
4572 		ret = perf_read_group(event, read_format, buf);
4573 	else
4574 		ret = perf_read_one(event, read_format, buf);
4575 
4576 	return ret;
4577 }
4578 
4579 static ssize_t
4580 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4581 {
4582 	struct perf_event *event = file->private_data;
4583 	struct perf_event_context *ctx;
4584 	int ret;
4585 
4586 	ctx = perf_event_ctx_lock(event);
4587 	ret = __perf_read(event, buf, count);
4588 	perf_event_ctx_unlock(event, ctx);
4589 
4590 	return ret;
4591 }
4592 
4593 static unsigned int perf_poll(struct file *file, poll_table *wait)
4594 {
4595 	struct perf_event *event = file->private_data;
4596 	struct ring_buffer *rb;
4597 	unsigned int events = POLLHUP;
4598 
4599 	poll_wait(file, &event->waitq, wait);
4600 
4601 	if (is_event_hup(event))
4602 		return events;
4603 
4604 	/*
4605 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4606 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4607 	 */
4608 	mutex_lock(&event->mmap_mutex);
4609 	rb = event->rb;
4610 	if (rb)
4611 		events = atomic_xchg(&rb->poll, 0);
4612 	mutex_unlock(&event->mmap_mutex);
4613 	return events;
4614 }
4615 
4616 static void _perf_event_reset(struct perf_event *event)
4617 {
4618 	(void)perf_event_read(event, false);
4619 	local64_set(&event->count, 0);
4620 	perf_event_update_userpage(event);
4621 }
4622 
4623 /*
4624  * Holding the top-level event's child_mutex means that any
4625  * descendant process that has inherited this event will block
4626  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4627  * task existence requirements of perf_event_enable/disable.
4628  */
4629 static void perf_event_for_each_child(struct perf_event *event,
4630 					void (*func)(struct perf_event *))
4631 {
4632 	struct perf_event *child;
4633 
4634 	WARN_ON_ONCE(event->ctx->parent_ctx);
4635 
4636 	mutex_lock(&event->child_mutex);
4637 	func(event);
4638 	list_for_each_entry(child, &event->child_list, child_list)
4639 		func(child);
4640 	mutex_unlock(&event->child_mutex);
4641 }
4642 
4643 static void perf_event_for_each(struct perf_event *event,
4644 				  void (*func)(struct perf_event *))
4645 {
4646 	struct perf_event_context *ctx = event->ctx;
4647 	struct perf_event *sibling;
4648 
4649 	lockdep_assert_held(&ctx->mutex);
4650 
4651 	event = event->group_leader;
4652 
4653 	perf_event_for_each_child(event, func);
4654 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4655 		perf_event_for_each_child(sibling, func);
4656 }
4657 
4658 static void __perf_event_period(struct perf_event *event,
4659 				struct perf_cpu_context *cpuctx,
4660 				struct perf_event_context *ctx,
4661 				void *info)
4662 {
4663 	u64 value = *((u64 *)info);
4664 	bool active;
4665 
4666 	if (event->attr.freq) {
4667 		event->attr.sample_freq = value;
4668 	} else {
4669 		event->attr.sample_period = value;
4670 		event->hw.sample_period = value;
4671 	}
4672 
4673 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4674 	if (active) {
4675 		perf_pmu_disable(ctx->pmu);
4676 		/*
4677 		 * We could be throttled; unthrottle now to avoid the tick
4678 		 * trying to unthrottle while we already re-started the event.
4679 		 */
4680 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4681 			event->hw.interrupts = 0;
4682 			perf_log_throttle(event, 1);
4683 		}
4684 		event->pmu->stop(event, PERF_EF_UPDATE);
4685 	}
4686 
4687 	local64_set(&event->hw.period_left, 0);
4688 
4689 	if (active) {
4690 		event->pmu->start(event, PERF_EF_RELOAD);
4691 		perf_pmu_enable(ctx->pmu);
4692 	}
4693 }
4694 
4695 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4696 {
4697 	u64 value;
4698 
4699 	if (!is_sampling_event(event))
4700 		return -EINVAL;
4701 
4702 	if (copy_from_user(&value, arg, sizeof(value)))
4703 		return -EFAULT;
4704 
4705 	if (!value)
4706 		return -EINVAL;
4707 
4708 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4709 		return -EINVAL;
4710 
4711 	event_function_call(event, __perf_event_period, &value);
4712 
4713 	return 0;
4714 }
4715 
4716 static const struct file_operations perf_fops;
4717 
4718 static inline int perf_fget_light(int fd, struct fd *p)
4719 {
4720 	struct fd f = fdget(fd);
4721 	if (!f.file)
4722 		return -EBADF;
4723 
4724 	if (f.file->f_op != &perf_fops) {
4725 		fdput(f);
4726 		return -EBADF;
4727 	}
4728 	*p = f;
4729 	return 0;
4730 }
4731 
4732 static int perf_event_set_output(struct perf_event *event,
4733 				 struct perf_event *output_event);
4734 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4735 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4736 
4737 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4738 {
4739 	void (*func)(struct perf_event *);
4740 	u32 flags = arg;
4741 
4742 	switch (cmd) {
4743 	case PERF_EVENT_IOC_ENABLE:
4744 		func = _perf_event_enable;
4745 		break;
4746 	case PERF_EVENT_IOC_DISABLE:
4747 		func = _perf_event_disable;
4748 		break;
4749 	case PERF_EVENT_IOC_RESET:
4750 		func = _perf_event_reset;
4751 		break;
4752 
4753 	case PERF_EVENT_IOC_REFRESH:
4754 		return _perf_event_refresh(event, arg);
4755 
4756 	case PERF_EVENT_IOC_PERIOD:
4757 		return perf_event_period(event, (u64 __user *)arg);
4758 
4759 	case PERF_EVENT_IOC_ID:
4760 	{
4761 		u64 id = primary_event_id(event);
4762 
4763 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4764 			return -EFAULT;
4765 		return 0;
4766 	}
4767 
4768 	case PERF_EVENT_IOC_SET_OUTPUT:
4769 	{
4770 		int ret;
4771 		if (arg != -1) {
4772 			struct perf_event *output_event;
4773 			struct fd output;
4774 			ret = perf_fget_light(arg, &output);
4775 			if (ret)
4776 				return ret;
4777 			output_event = output.file->private_data;
4778 			ret = perf_event_set_output(event, output_event);
4779 			fdput(output);
4780 		} else {
4781 			ret = perf_event_set_output(event, NULL);
4782 		}
4783 		return ret;
4784 	}
4785 
4786 	case PERF_EVENT_IOC_SET_FILTER:
4787 		return perf_event_set_filter(event, (void __user *)arg);
4788 
4789 	case PERF_EVENT_IOC_SET_BPF:
4790 		return perf_event_set_bpf_prog(event, arg);
4791 
4792 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4793 		struct ring_buffer *rb;
4794 
4795 		rcu_read_lock();
4796 		rb = rcu_dereference(event->rb);
4797 		if (!rb || !rb->nr_pages) {
4798 			rcu_read_unlock();
4799 			return -EINVAL;
4800 		}
4801 		rb_toggle_paused(rb, !!arg);
4802 		rcu_read_unlock();
4803 		return 0;
4804 	}
4805 	default:
4806 		return -ENOTTY;
4807 	}
4808 
4809 	if (flags & PERF_IOC_FLAG_GROUP)
4810 		perf_event_for_each(event, func);
4811 	else
4812 		perf_event_for_each_child(event, func);
4813 
4814 	return 0;
4815 }
4816 
4817 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4818 {
4819 	struct perf_event *event = file->private_data;
4820 	struct perf_event_context *ctx;
4821 	long ret;
4822 
4823 	ctx = perf_event_ctx_lock(event);
4824 	ret = _perf_ioctl(event, cmd, arg);
4825 	perf_event_ctx_unlock(event, ctx);
4826 
4827 	return ret;
4828 }
4829 
4830 #ifdef CONFIG_COMPAT
4831 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4832 				unsigned long arg)
4833 {
4834 	switch (_IOC_NR(cmd)) {
4835 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4836 	case _IOC_NR(PERF_EVENT_IOC_ID):
4837 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4838 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4839 			cmd &= ~IOCSIZE_MASK;
4840 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4841 		}
4842 		break;
4843 	}
4844 	return perf_ioctl(file, cmd, arg);
4845 }
4846 #else
4847 # define perf_compat_ioctl NULL
4848 #endif
4849 
4850 int perf_event_task_enable(void)
4851 {
4852 	struct perf_event_context *ctx;
4853 	struct perf_event *event;
4854 
4855 	mutex_lock(&current->perf_event_mutex);
4856 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4857 		ctx = perf_event_ctx_lock(event);
4858 		perf_event_for_each_child(event, _perf_event_enable);
4859 		perf_event_ctx_unlock(event, ctx);
4860 	}
4861 	mutex_unlock(&current->perf_event_mutex);
4862 
4863 	return 0;
4864 }
4865 
4866 int perf_event_task_disable(void)
4867 {
4868 	struct perf_event_context *ctx;
4869 	struct perf_event *event;
4870 
4871 	mutex_lock(&current->perf_event_mutex);
4872 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4873 		ctx = perf_event_ctx_lock(event);
4874 		perf_event_for_each_child(event, _perf_event_disable);
4875 		perf_event_ctx_unlock(event, ctx);
4876 	}
4877 	mutex_unlock(&current->perf_event_mutex);
4878 
4879 	return 0;
4880 }
4881 
4882 static int perf_event_index(struct perf_event *event)
4883 {
4884 	if (event->hw.state & PERF_HES_STOPPED)
4885 		return 0;
4886 
4887 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4888 		return 0;
4889 
4890 	return event->pmu->event_idx(event);
4891 }
4892 
4893 static void calc_timer_values(struct perf_event *event,
4894 				u64 *now,
4895 				u64 *enabled,
4896 				u64 *running)
4897 {
4898 	u64 ctx_time;
4899 
4900 	*now = perf_clock();
4901 	ctx_time = event->shadow_ctx_time + *now;
4902 	*enabled = ctx_time - event->tstamp_enabled;
4903 	*running = ctx_time - event->tstamp_running;
4904 }
4905 
4906 static void perf_event_init_userpage(struct perf_event *event)
4907 {
4908 	struct perf_event_mmap_page *userpg;
4909 	struct ring_buffer *rb;
4910 
4911 	rcu_read_lock();
4912 	rb = rcu_dereference(event->rb);
4913 	if (!rb)
4914 		goto unlock;
4915 
4916 	userpg = rb->user_page;
4917 
4918 	/* Allow new userspace to detect that bit 0 is deprecated */
4919 	userpg->cap_bit0_is_deprecated = 1;
4920 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4921 	userpg->data_offset = PAGE_SIZE;
4922 	userpg->data_size = perf_data_size(rb);
4923 
4924 unlock:
4925 	rcu_read_unlock();
4926 }
4927 
4928 void __weak arch_perf_update_userpage(
4929 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4930 {
4931 }
4932 
4933 /*
4934  * Callers need to ensure there can be no nesting of this function, otherwise
4935  * the seqlock logic goes bad. We can not serialize this because the arch
4936  * code calls this from NMI context.
4937  */
4938 void perf_event_update_userpage(struct perf_event *event)
4939 {
4940 	struct perf_event_mmap_page *userpg;
4941 	struct ring_buffer *rb;
4942 	u64 enabled, running, now;
4943 
4944 	rcu_read_lock();
4945 	rb = rcu_dereference(event->rb);
4946 	if (!rb)
4947 		goto unlock;
4948 
4949 	/*
4950 	 * compute total_time_enabled, total_time_running
4951 	 * based on snapshot values taken when the event
4952 	 * was last scheduled in.
4953 	 *
4954 	 * we cannot simply called update_context_time()
4955 	 * because of locking issue as we can be called in
4956 	 * NMI context
4957 	 */
4958 	calc_timer_values(event, &now, &enabled, &running);
4959 
4960 	userpg = rb->user_page;
4961 	/*
4962 	 * Disable preemption so as to not let the corresponding user-space
4963 	 * spin too long if we get preempted.
4964 	 */
4965 	preempt_disable();
4966 	++userpg->lock;
4967 	barrier();
4968 	userpg->index = perf_event_index(event);
4969 	userpg->offset = perf_event_count(event);
4970 	if (userpg->index)
4971 		userpg->offset -= local64_read(&event->hw.prev_count);
4972 
4973 	userpg->time_enabled = enabled +
4974 			atomic64_read(&event->child_total_time_enabled);
4975 
4976 	userpg->time_running = running +
4977 			atomic64_read(&event->child_total_time_running);
4978 
4979 	arch_perf_update_userpage(event, userpg, now);
4980 
4981 	barrier();
4982 	++userpg->lock;
4983 	preempt_enable();
4984 unlock:
4985 	rcu_read_unlock();
4986 }
4987 
4988 static int perf_mmap_fault(struct vm_fault *vmf)
4989 {
4990 	struct perf_event *event = vmf->vma->vm_file->private_data;
4991 	struct ring_buffer *rb;
4992 	int ret = VM_FAULT_SIGBUS;
4993 
4994 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4995 		if (vmf->pgoff == 0)
4996 			ret = 0;
4997 		return ret;
4998 	}
4999 
5000 	rcu_read_lock();
5001 	rb = rcu_dereference(event->rb);
5002 	if (!rb)
5003 		goto unlock;
5004 
5005 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5006 		goto unlock;
5007 
5008 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5009 	if (!vmf->page)
5010 		goto unlock;
5011 
5012 	get_page(vmf->page);
5013 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5014 	vmf->page->index   = vmf->pgoff;
5015 
5016 	ret = 0;
5017 unlock:
5018 	rcu_read_unlock();
5019 
5020 	return ret;
5021 }
5022 
5023 static void ring_buffer_attach(struct perf_event *event,
5024 			       struct ring_buffer *rb)
5025 {
5026 	struct ring_buffer *old_rb = NULL;
5027 	unsigned long flags;
5028 
5029 	if (event->rb) {
5030 		/*
5031 		 * Should be impossible, we set this when removing
5032 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5033 		 */
5034 		WARN_ON_ONCE(event->rcu_pending);
5035 
5036 		old_rb = event->rb;
5037 		spin_lock_irqsave(&old_rb->event_lock, flags);
5038 		list_del_rcu(&event->rb_entry);
5039 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5040 
5041 		event->rcu_batches = get_state_synchronize_rcu();
5042 		event->rcu_pending = 1;
5043 	}
5044 
5045 	if (rb) {
5046 		if (event->rcu_pending) {
5047 			cond_synchronize_rcu(event->rcu_batches);
5048 			event->rcu_pending = 0;
5049 		}
5050 
5051 		spin_lock_irqsave(&rb->event_lock, flags);
5052 		list_add_rcu(&event->rb_entry, &rb->event_list);
5053 		spin_unlock_irqrestore(&rb->event_lock, flags);
5054 	}
5055 
5056 	/*
5057 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5058 	 * before swizzling the event::rb pointer; if it's getting
5059 	 * unmapped, its aux_mmap_count will be 0 and it won't
5060 	 * restart. See the comment in __perf_pmu_output_stop().
5061 	 *
5062 	 * Data will inevitably be lost when set_output is done in
5063 	 * mid-air, but then again, whoever does it like this is
5064 	 * not in for the data anyway.
5065 	 */
5066 	if (has_aux(event))
5067 		perf_event_stop(event, 0);
5068 
5069 	rcu_assign_pointer(event->rb, rb);
5070 
5071 	if (old_rb) {
5072 		ring_buffer_put(old_rb);
5073 		/*
5074 		 * Since we detached before setting the new rb, so that we
5075 		 * could attach the new rb, we could have missed a wakeup.
5076 		 * Provide it now.
5077 		 */
5078 		wake_up_all(&event->waitq);
5079 	}
5080 }
5081 
5082 static void ring_buffer_wakeup(struct perf_event *event)
5083 {
5084 	struct ring_buffer *rb;
5085 
5086 	rcu_read_lock();
5087 	rb = rcu_dereference(event->rb);
5088 	if (rb) {
5089 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5090 			wake_up_all(&event->waitq);
5091 	}
5092 	rcu_read_unlock();
5093 }
5094 
5095 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5096 {
5097 	struct ring_buffer *rb;
5098 
5099 	rcu_read_lock();
5100 	rb = rcu_dereference(event->rb);
5101 	if (rb) {
5102 		if (!atomic_inc_not_zero(&rb->refcount))
5103 			rb = NULL;
5104 	}
5105 	rcu_read_unlock();
5106 
5107 	return rb;
5108 }
5109 
5110 void ring_buffer_put(struct ring_buffer *rb)
5111 {
5112 	if (!atomic_dec_and_test(&rb->refcount))
5113 		return;
5114 
5115 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5116 
5117 	call_rcu(&rb->rcu_head, rb_free_rcu);
5118 }
5119 
5120 static void perf_mmap_open(struct vm_area_struct *vma)
5121 {
5122 	struct perf_event *event = vma->vm_file->private_data;
5123 
5124 	atomic_inc(&event->mmap_count);
5125 	atomic_inc(&event->rb->mmap_count);
5126 
5127 	if (vma->vm_pgoff)
5128 		atomic_inc(&event->rb->aux_mmap_count);
5129 
5130 	if (event->pmu->event_mapped)
5131 		event->pmu->event_mapped(event, vma->vm_mm);
5132 }
5133 
5134 static void perf_pmu_output_stop(struct perf_event *event);
5135 
5136 /*
5137  * A buffer can be mmap()ed multiple times; either directly through the same
5138  * event, or through other events by use of perf_event_set_output().
5139  *
5140  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5141  * the buffer here, where we still have a VM context. This means we need
5142  * to detach all events redirecting to us.
5143  */
5144 static void perf_mmap_close(struct vm_area_struct *vma)
5145 {
5146 	struct perf_event *event = vma->vm_file->private_data;
5147 
5148 	struct ring_buffer *rb = ring_buffer_get(event);
5149 	struct user_struct *mmap_user = rb->mmap_user;
5150 	int mmap_locked = rb->mmap_locked;
5151 	unsigned long size = perf_data_size(rb);
5152 
5153 	if (event->pmu->event_unmapped)
5154 		event->pmu->event_unmapped(event, vma->vm_mm);
5155 
5156 	/*
5157 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5158 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5159 	 * serialize with perf_mmap here.
5160 	 */
5161 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5162 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5163 		/*
5164 		 * Stop all AUX events that are writing to this buffer,
5165 		 * so that we can free its AUX pages and corresponding PMU
5166 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5167 		 * they won't start any more (see perf_aux_output_begin()).
5168 		 */
5169 		perf_pmu_output_stop(event);
5170 
5171 		/* now it's safe to free the pages */
5172 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5173 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5174 
5175 		/* this has to be the last one */
5176 		rb_free_aux(rb);
5177 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5178 
5179 		mutex_unlock(&event->mmap_mutex);
5180 	}
5181 
5182 	atomic_dec(&rb->mmap_count);
5183 
5184 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5185 		goto out_put;
5186 
5187 	ring_buffer_attach(event, NULL);
5188 	mutex_unlock(&event->mmap_mutex);
5189 
5190 	/* If there's still other mmap()s of this buffer, we're done. */
5191 	if (atomic_read(&rb->mmap_count))
5192 		goto out_put;
5193 
5194 	/*
5195 	 * No other mmap()s, detach from all other events that might redirect
5196 	 * into the now unreachable buffer. Somewhat complicated by the
5197 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5198 	 */
5199 again:
5200 	rcu_read_lock();
5201 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5202 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5203 			/*
5204 			 * This event is en-route to free_event() which will
5205 			 * detach it and remove it from the list.
5206 			 */
5207 			continue;
5208 		}
5209 		rcu_read_unlock();
5210 
5211 		mutex_lock(&event->mmap_mutex);
5212 		/*
5213 		 * Check we didn't race with perf_event_set_output() which can
5214 		 * swizzle the rb from under us while we were waiting to
5215 		 * acquire mmap_mutex.
5216 		 *
5217 		 * If we find a different rb; ignore this event, a next
5218 		 * iteration will no longer find it on the list. We have to
5219 		 * still restart the iteration to make sure we're not now
5220 		 * iterating the wrong list.
5221 		 */
5222 		if (event->rb == rb)
5223 			ring_buffer_attach(event, NULL);
5224 
5225 		mutex_unlock(&event->mmap_mutex);
5226 		put_event(event);
5227 
5228 		/*
5229 		 * Restart the iteration; either we're on the wrong list or
5230 		 * destroyed its integrity by doing a deletion.
5231 		 */
5232 		goto again;
5233 	}
5234 	rcu_read_unlock();
5235 
5236 	/*
5237 	 * It could be there's still a few 0-ref events on the list; they'll
5238 	 * get cleaned up by free_event() -- they'll also still have their
5239 	 * ref on the rb and will free it whenever they are done with it.
5240 	 *
5241 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5242 	 * undo the VM accounting.
5243 	 */
5244 
5245 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5246 	vma->vm_mm->pinned_vm -= mmap_locked;
5247 	free_uid(mmap_user);
5248 
5249 out_put:
5250 	ring_buffer_put(rb); /* could be last */
5251 }
5252 
5253 static const struct vm_operations_struct perf_mmap_vmops = {
5254 	.open		= perf_mmap_open,
5255 	.close		= perf_mmap_close, /* non mergable */
5256 	.fault		= perf_mmap_fault,
5257 	.page_mkwrite	= perf_mmap_fault,
5258 };
5259 
5260 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5261 {
5262 	struct perf_event *event = file->private_data;
5263 	unsigned long user_locked, user_lock_limit;
5264 	struct user_struct *user = current_user();
5265 	unsigned long locked, lock_limit;
5266 	struct ring_buffer *rb = NULL;
5267 	unsigned long vma_size;
5268 	unsigned long nr_pages;
5269 	long user_extra = 0, extra = 0;
5270 	int ret = 0, flags = 0;
5271 
5272 	/*
5273 	 * Don't allow mmap() of inherited per-task counters. This would
5274 	 * create a performance issue due to all children writing to the
5275 	 * same rb.
5276 	 */
5277 	if (event->cpu == -1 && event->attr.inherit)
5278 		return -EINVAL;
5279 
5280 	if (!(vma->vm_flags & VM_SHARED))
5281 		return -EINVAL;
5282 
5283 	vma_size = vma->vm_end - vma->vm_start;
5284 
5285 	if (vma->vm_pgoff == 0) {
5286 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5287 	} else {
5288 		/*
5289 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5290 		 * mapped, all subsequent mappings should have the same size
5291 		 * and offset. Must be above the normal perf buffer.
5292 		 */
5293 		u64 aux_offset, aux_size;
5294 
5295 		if (!event->rb)
5296 			return -EINVAL;
5297 
5298 		nr_pages = vma_size / PAGE_SIZE;
5299 
5300 		mutex_lock(&event->mmap_mutex);
5301 		ret = -EINVAL;
5302 
5303 		rb = event->rb;
5304 		if (!rb)
5305 			goto aux_unlock;
5306 
5307 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5308 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5309 
5310 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5311 			goto aux_unlock;
5312 
5313 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5314 			goto aux_unlock;
5315 
5316 		/* already mapped with a different offset */
5317 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5318 			goto aux_unlock;
5319 
5320 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5321 			goto aux_unlock;
5322 
5323 		/* already mapped with a different size */
5324 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5325 			goto aux_unlock;
5326 
5327 		if (!is_power_of_2(nr_pages))
5328 			goto aux_unlock;
5329 
5330 		if (!atomic_inc_not_zero(&rb->mmap_count))
5331 			goto aux_unlock;
5332 
5333 		if (rb_has_aux(rb)) {
5334 			atomic_inc(&rb->aux_mmap_count);
5335 			ret = 0;
5336 			goto unlock;
5337 		}
5338 
5339 		atomic_set(&rb->aux_mmap_count, 1);
5340 		user_extra = nr_pages;
5341 
5342 		goto accounting;
5343 	}
5344 
5345 	/*
5346 	 * If we have rb pages ensure they're a power-of-two number, so we
5347 	 * can do bitmasks instead of modulo.
5348 	 */
5349 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5350 		return -EINVAL;
5351 
5352 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5353 		return -EINVAL;
5354 
5355 	WARN_ON_ONCE(event->ctx->parent_ctx);
5356 again:
5357 	mutex_lock(&event->mmap_mutex);
5358 	if (event->rb) {
5359 		if (event->rb->nr_pages != nr_pages) {
5360 			ret = -EINVAL;
5361 			goto unlock;
5362 		}
5363 
5364 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5365 			/*
5366 			 * Raced against perf_mmap_close() through
5367 			 * perf_event_set_output(). Try again, hope for better
5368 			 * luck.
5369 			 */
5370 			mutex_unlock(&event->mmap_mutex);
5371 			goto again;
5372 		}
5373 
5374 		goto unlock;
5375 	}
5376 
5377 	user_extra = nr_pages + 1;
5378 
5379 accounting:
5380 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5381 
5382 	/*
5383 	 * Increase the limit linearly with more CPUs:
5384 	 */
5385 	user_lock_limit *= num_online_cpus();
5386 
5387 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5388 
5389 	if (user_locked > user_lock_limit)
5390 		extra = user_locked - user_lock_limit;
5391 
5392 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5393 	lock_limit >>= PAGE_SHIFT;
5394 	locked = vma->vm_mm->pinned_vm + extra;
5395 
5396 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5397 		!capable(CAP_IPC_LOCK)) {
5398 		ret = -EPERM;
5399 		goto unlock;
5400 	}
5401 
5402 	WARN_ON(!rb && event->rb);
5403 
5404 	if (vma->vm_flags & VM_WRITE)
5405 		flags |= RING_BUFFER_WRITABLE;
5406 
5407 	if (!rb) {
5408 		rb = rb_alloc(nr_pages,
5409 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5410 			      event->cpu, flags);
5411 
5412 		if (!rb) {
5413 			ret = -ENOMEM;
5414 			goto unlock;
5415 		}
5416 
5417 		atomic_set(&rb->mmap_count, 1);
5418 		rb->mmap_user = get_current_user();
5419 		rb->mmap_locked = extra;
5420 
5421 		ring_buffer_attach(event, rb);
5422 
5423 		perf_event_init_userpage(event);
5424 		perf_event_update_userpage(event);
5425 	} else {
5426 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5427 				   event->attr.aux_watermark, flags);
5428 		if (!ret)
5429 			rb->aux_mmap_locked = extra;
5430 	}
5431 
5432 unlock:
5433 	if (!ret) {
5434 		atomic_long_add(user_extra, &user->locked_vm);
5435 		vma->vm_mm->pinned_vm += extra;
5436 
5437 		atomic_inc(&event->mmap_count);
5438 	} else if (rb) {
5439 		atomic_dec(&rb->mmap_count);
5440 	}
5441 aux_unlock:
5442 	mutex_unlock(&event->mmap_mutex);
5443 
5444 	/*
5445 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5446 	 * vma.
5447 	 */
5448 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5449 	vma->vm_ops = &perf_mmap_vmops;
5450 
5451 	if (event->pmu->event_mapped)
5452 		event->pmu->event_mapped(event, vma->vm_mm);
5453 
5454 	return ret;
5455 }
5456 
5457 static int perf_fasync(int fd, struct file *filp, int on)
5458 {
5459 	struct inode *inode = file_inode(filp);
5460 	struct perf_event *event = filp->private_data;
5461 	int retval;
5462 
5463 	inode_lock(inode);
5464 	retval = fasync_helper(fd, filp, on, &event->fasync);
5465 	inode_unlock(inode);
5466 
5467 	if (retval < 0)
5468 		return retval;
5469 
5470 	return 0;
5471 }
5472 
5473 static const struct file_operations perf_fops = {
5474 	.llseek			= no_llseek,
5475 	.release		= perf_release,
5476 	.read			= perf_read,
5477 	.poll			= perf_poll,
5478 	.unlocked_ioctl		= perf_ioctl,
5479 	.compat_ioctl		= perf_compat_ioctl,
5480 	.mmap			= perf_mmap,
5481 	.fasync			= perf_fasync,
5482 };
5483 
5484 /*
5485  * Perf event wakeup
5486  *
5487  * If there's data, ensure we set the poll() state and publish everything
5488  * to user-space before waking everybody up.
5489  */
5490 
5491 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5492 {
5493 	/* only the parent has fasync state */
5494 	if (event->parent)
5495 		event = event->parent;
5496 	return &event->fasync;
5497 }
5498 
5499 void perf_event_wakeup(struct perf_event *event)
5500 {
5501 	ring_buffer_wakeup(event);
5502 
5503 	if (event->pending_kill) {
5504 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5505 		event->pending_kill = 0;
5506 	}
5507 }
5508 
5509 static void perf_pending_event(struct irq_work *entry)
5510 {
5511 	struct perf_event *event = container_of(entry,
5512 			struct perf_event, pending);
5513 	int rctx;
5514 
5515 	rctx = perf_swevent_get_recursion_context();
5516 	/*
5517 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5518 	 * and we won't recurse 'further'.
5519 	 */
5520 
5521 	if (event->pending_disable) {
5522 		event->pending_disable = 0;
5523 		perf_event_disable_local(event);
5524 	}
5525 
5526 	if (event->pending_wakeup) {
5527 		event->pending_wakeup = 0;
5528 		perf_event_wakeup(event);
5529 	}
5530 
5531 	if (rctx >= 0)
5532 		perf_swevent_put_recursion_context(rctx);
5533 }
5534 
5535 /*
5536  * We assume there is only KVM supporting the callbacks.
5537  * Later on, we might change it to a list if there is
5538  * another virtualization implementation supporting the callbacks.
5539  */
5540 struct perf_guest_info_callbacks *perf_guest_cbs;
5541 
5542 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5543 {
5544 	perf_guest_cbs = cbs;
5545 	return 0;
5546 }
5547 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5548 
5549 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5550 {
5551 	perf_guest_cbs = NULL;
5552 	return 0;
5553 }
5554 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5555 
5556 static void
5557 perf_output_sample_regs(struct perf_output_handle *handle,
5558 			struct pt_regs *regs, u64 mask)
5559 {
5560 	int bit;
5561 	DECLARE_BITMAP(_mask, 64);
5562 
5563 	bitmap_from_u64(_mask, mask);
5564 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5565 		u64 val;
5566 
5567 		val = perf_reg_value(regs, bit);
5568 		perf_output_put(handle, val);
5569 	}
5570 }
5571 
5572 static void perf_sample_regs_user(struct perf_regs *regs_user,
5573 				  struct pt_regs *regs,
5574 				  struct pt_regs *regs_user_copy)
5575 {
5576 	if (user_mode(regs)) {
5577 		regs_user->abi = perf_reg_abi(current);
5578 		regs_user->regs = regs;
5579 	} else if (current->mm) {
5580 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5581 	} else {
5582 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5583 		regs_user->regs = NULL;
5584 	}
5585 }
5586 
5587 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5588 				  struct pt_regs *regs)
5589 {
5590 	regs_intr->regs = regs;
5591 	regs_intr->abi  = perf_reg_abi(current);
5592 }
5593 
5594 
5595 /*
5596  * Get remaining task size from user stack pointer.
5597  *
5598  * It'd be better to take stack vma map and limit this more
5599  * precisly, but there's no way to get it safely under interrupt,
5600  * so using TASK_SIZE as limit.
5601  */
5602 static u64 perf_ustack_task_size(struct pt_regs *regs)
5603 {
5604 	unsigned long addr = perf_user_stack_pointer(regs);
5605 
5606 	if (!addr || addr >= TASK_SIZE)
5607 		return 0;
5608 
5609 	return TASK_SIZE - addr;
5610 }
5611 
5612 static u16
5613 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5614 			struct pt_regs *regs)
5615 {
5616 	u64 task_size;
5617 
5618 	/* No regs, no stack pointer, no dump. */
5619 	if (!regs)
5620 		return 0;
5621 
5622 	/*
5623 	 * Check if we fit in with the requested stack size into the:
5624 	 * - TASK_SIZE
5625 	 *   If we don't, we limit the size to the TASK_SIZE.
5626 	 *
5627 	 * - remaining sample size
5628 	 *   If we don't, we customize the stack size to
5629 	 *   fit in to the remaining sample size.
5630 	 */
5631 
5632 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5633 	stack_size = min(stack_size, (u16) task_size);
5634 
5635 	/* Current header size plus static size and dynamic size. */
5636 	header_size += 2 * sizeof(u64);
5637 
5638 	/* Do we fit in with the current stack dump size? */
5639 	if ((u16) (header_size + stack_size) < header_size) {
5640 		/*
5641 		 * If we overflow the maximum size for the sample,
5642 		 * we customize the stack dump size to fit in.
5643 		 */
5644 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5645 		stack_size = round_up(stack_size, sizeof(u64));
5646 	}
5647 
5648 	return stack_size;
5649 }
5650 
5651 static void
5652 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5653 			  struct pt_regs *regs)
5654 {
5655 	/* Case of a kernel thread, nothing to dump */
5656 	if (!regs) {
5657 		u64 size = 0;
5658 		perf_output_put(handle, size);
5659 	} else {
5660 		unsigned long sp;
5661 		unsigned int rem;
5662 		u64 dyn_size;
5663 
5664 		/*
5665 		 * We dump:
5666 		 * static size
5667 		 *   - the size requested by user or the best one we can fit
5668 		 *     in to the sample max size
5669 		 * data
5670 		 *   - user stack dump data
5671 		 * dynamic size
5672 		 *   - the actual dumped size
5673 		 */
5674 
5675 		/* Static size. */
5676 		perf_output_put(handle, dump_size);
5677 
5678 		/* Data. */
5679 		sp = perf_user_stack_pointer(regs);
5680 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5681 		dyn_size = dump_size - rem;
5682 
5683 		perf_output_skip(handle, rem);
5684 
5685 		/* Dynamic size. */
5686 		perf_output_put(handle, dyn_size);
5687 	}
5688 }
5689 
5690 static void __perf_event_header__init_id(struct perf_event_header *header,
5691 					 struct perf_sample_data *data,
5692 					 struct perf_event *event)
5693 {
5694 	u64 sample_type = event->attr.sample_type;
5695 
5696 	data->type = sample_type;
5697 	header->size += event->id_header_size;
5698 
5699 	if (sample_type & PERF_SAMPLE_TID) {
5700 		/* namespace issues */
5701 		data->tid_entry.pid = perf_event_pid(event, current);
5702 		data->tid_entry.tid = perf_event_tid(event, current);
5703 	}
5704 
5705 	if (sample_type & PERF_SAMPLE_TIME)
5706 		data->time = perf_event_clock(event);
5707 
5708 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5709 		data->id = primary_event_id(event);
5710 
5711 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5712 		data->stream_id = event->id;
5713 
5714 	if (sample_type & PERF_SAMPLE_CPU) {
5715 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5716 		data->cpu_entry.reserved = 0;
5717 	}
5718 }
5719 
5720 void perf_event_header__init_id(struct perf_event_header *header,
5721 				struct perf_sample_data *data,
5722 				struct perf_event *event)
5723 {
5724 	if (event->attr.sample_id_all)
5725 		__perf_event_header__init_id(header, data, event);
5726 }
5727 
5728 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5729 					   struct perf_sample_data *data)
5730 {
5731 	u64 sample_type = data->type;
5732 
5733 	if (sample_type & PERF_SAMPLE_TID)
5734 		perf_output_put(handle, data->tid_entry);
5735 
5736 	if (sample_type & PERF_SAMPLE_TIME)
5737 		perf_output_put(handle, data->time);
5738 
5739 	if (sample_type & PERF_SAMPLE_ID)
5740 		perf_output_put(handle, data->id);
5741 
5742 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5743 		perf_output_put(handle, data->stream_id);
5744 
5745 	if (sample_type & PERF_SAMPLE_CPU)
5746 		perf_output_put(handle, data->cpu_entry);
5747 
5748 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5749 		perf_output_put(handle, data->id);
5750 }
5751 
5752 void perf_event__output_id_sample(struct perf_event *event,
5753 				  struct perf_output_handle *handle,
5754 				  struct perf_sample_data *sample)
5755 {
5756 	if (event->attr.sample_id_all)
5757 		__perf_event__output_id_sample(handle, sample);
5758 }
5759 
5760 static void perf_output_read_one(struct perf_output_handle *handle,
5761 				 struct perf_event *event,
5762 				 u64 enabled, u64 running)
5763 {
5764 	u64 read_format = event->attr.read_format;
5765 	u64 values[4];
5766 	int n = 0;
5767 
5768 	values[n++] = perf_event_count(event);
5769 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5770 		values[n++] = enabled +
5771 			atomic64_read(&event->child_total_time_enabled);
5772 	}
5773 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5774 		values[n++] = running +
5775 			atomic64_read(&event->child_total_time_running);
5776 	}
5777 	if (read_format & PERF_FORMAT_ID)
5778 		values[n++] = primary_event_id(event);
5779 
5780 	__output_copy(handle, values, n * sizeof(u64));
5781 }
5782 
5783 static void perf_output_read_group(struct perf_output_handle *handle,
5784 			    struct perf_event *event,
5785 			    u64 enabled, u64 running)
5786 {
5787 	struct perf_event *leader = event->group_leader, *sub;
5788 	u64 read_format = event->attr.read_format;
5789 	u64 values[5];
5790 	int n = 0;
5791 
5792 	values[n++] = 1 + leader->nr_siblings;
5793 
5794 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5795 		values[n++] = enabled;
5796 
5797 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5798 		values[n++] = running;
5799 
5800 	if (leader != event)
5801 		leader->pmu->read(leader);
5802 
5803 	values[n++] = perf_event_count(leader);
5804 	if (read_format & PERF_FORMAT_ID)
5805 		values[n++] = primary_event_id(leader);
5806 
5807 	__output_copy(handle, values, n * sizeof(u64));
5808 
5809 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5810 		n = 0;
5811 
5812 		if ((sub != event) &&
5813 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5814 			sub->pmu->read(sub);
5815 
5816 		values[n++] = perf_event_count(sub);
5817 		if (read_format & PERF_FORMAT_ID)
5818 			values[n++] = primary_event_id(sub);
5819 
5820 		__output_copy(handle, values, n * sizeof(u64));
5821 	}
5822 }
5823 
5824 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5825 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5826 
5827 /*
5828  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5829  *
5830  * The problem is that its both hard and excessively expensive to iterate the
5831  * child list, not to mention that its impossible to IPI the children running
5832  * on another CPU, from interrupt/NMI context.
5833  */
5834 static void perf_output_read(struct perf_output_handle *handle,
5835 			     struct perf_event *event)
5836 {
5837 	u64 enabled = 0, running = 0, now;
5838 	u64 read_format = event->attr.read_format;
5839 
5840 	/*
5841 	 * compute total_time_enabled, total_time_running
5842 	 * based on snapshot values taken when the event
5843 	 * was last scheduled in.
5844 	 *
5845 	 * we cannot simply called update_context_time()
5846 	 * because of locking issue as we are called in
5847 	 * NMI context
5848 	 */
5849 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5850 		calc_timer_values(event, &now, &enabled, &running);
5851 
5852 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5853 		perf_output_read_group(handle, event, enabled, running);
5854 	else
5855 		perf_output_read_one(handle, event, enabled, running);
5856 }
5857 
5858 void perf_output_sample(struct perf_output_handle *handle,
5859 			struct perf_event_header *header,
5860 			struct perf_sample_data *data,
5861 			struct perf_event *event)
5862 {
5863 	u64 sample_type = data->type;
5864 
5865 	perf_output_put(handle, *header);
5866 
5867 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5868 		perf_output_put(handle, data->id);
5869 
5870 	if (sample_type & PERF_SAMPLE_IP)
5871 		perf_output_put(handle, data->ip);
5872 
5873 	if (sample_type & PERF_SAMPLE_TID)
5874 		perf_output_put(handle, data->tid_entry);
5875 
5876 	if (sample_type & PERF_SAMPLE_TIME)
5877 		perf_output_put(handle, data->time);
5878 
5879 	if (sample_type & PERF_SAMPLE_ADDR)
5880 		perf_output_put(handle, data->addr);
5881 
5882 	if (sample_type & PERF_SAMPLE_ID)
5883 		perf_output_put(handle, data->id);
5884 
5885 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5886 		perf_output_put(handle, data->stream_id);
5887 
5888 	if (sample_type & PERF_SAMPLE_CPU)
5889 		perf_output_put(handle, data->cpu_entry);
5890 
5891 	if (sample_type & PERF_SAMPLE_PERIOD)
5892 		perf_output_put(handle, data->period);
5893 
5894 	if (sample_type & PERF_SAMPLE_READ)
5895 		perf_output_read(handle, event);
5896 
5897 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5898 		if (data->callchain) {
5899 			int size = 1;
5900 
5901 			if (data->callchain)
5902 				size += data->callchain->nr;
5903 
5904 			size *= sizeof(u64);
5905 
5906 			__output_copy(handle, data->callchain, size);
5907 		} else {
5908 			u64 nr = 0;
5909 			perf_output_put(handle, nr);
5910 		}
5911 	}
5912 
5913 	if (sample_type & PERF_SAMPLE_RAW) {
5914 		struct perf_raw_record *raw = data->raw;
5915 
5916 		if (raw) {
5917 			struct perf_raw_frag *frag = &raw->frag;
5918 
5919 			perf_output_put(handle, raw->size);
5920 			do {
5921 				if (frag->copy) {
5922 					__output_custom(handle, frag->copy,
5923 							frag->data, frag->size);
5924 				} else {
5925 					__output_copy(handle, frag->data,
5926 						      frag->size);
5927 				}
5928 				if (perf_raw_frag_last(frag))
5929 					break;
5930 				frag = frag->next;
5931 			} while (1);
5932 			if (frag->pad)
5933 				__output_skip(handle, NULL, frag->pad);
5934 		} else {
5935 			struct {
5936 				u32	size;
5937 				u32	data;
5938 			} raw = {
5939 				.size = sizeof(u32),
5940 				.data = 0,
5941 			};
5942 			perf_output_put(handle, raw);
5943 		}
5944 	}
5945 
5946 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5947 		if (data->br_stack) {
5948 			size_t size;
5949 
5950 			size = data->br_stack->nr
5951 			     * sizeof(struct perf_branch_entry);
5952 
5953 			perf_output_put(handle, data->br_stack->nr);
5954 			perf_output_copy(handle, data->br_stack->entries, size);
5955 		} else {
5956 			/*
5957 			 * we always store at least the value of nr
5958 			 */
5959 			u64 nr = 0;
5960 			perf_output_put(handle, nr);
5961 		}
5962 	}
5963 
5964 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5965 		u64 abi = data->regs_user.abi;
5966 
5967 		/*
5968 		 * If there are no regs to dump, notice it through
5969 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5970 		 */
5971 		perf_output_put(handle, abi);
5972 
5973 		if (abi) {
5974 			u64 mask = event->attr.sample_regs_user;
5975 			perf_output_sample_regs(handle,
5976 						data->regs_user.regs,
5977 						mask);
5978 		}
5979 	}
5980 
5981 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5982 		perf_output_sample_ustack(handle,
5983 					  data->stack_user_size,
5984 					  data->regs_user.regs);
5985 	}
5986 
5987 	if (sample_type & PERF_SAMPLE_WEIGHT)
5988 		perf_output_put(handle, data->weight);
5989 
5990 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5991 		perf_output_put(handle, data->data_src.val);
5992 
5993 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5994 		perf_output_put(handle, data->txn);
5995 
5996 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5997 		u64 abi = data->regs_intr.abi;
5998 		/*
5999 		 * If there are no regs to dump, notice it through
6000 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6001 		 */
6002 		perf_output_put(handle, abi);
6003 
6004 		if (abi) {
6005 			u64 mask = event->attr.sample_regs_intr;
6006 
6007 			perf_output_sample_regs(handle,
6008 						data->regs_intr.regs,
6009 						mask);
6010 		}
6011 	}
6012 
6013 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6014 		perf_output_put(handle, data->phys_addr);
6015 
6016 	if (!event->attr.watermark) {
6017 		int wakeup_events = event->attr.wakeup_events;
6018 
6019 		if (wakeup_events) {
6020 			struct ring_buffer *rb = handle->rb;
6021 			int events = local_inc_return(&rb->events);
6022 
6023 			if (events >= wakeup_events) {
6024 				local_sub(wakeup_events, &rb->events);
6025 				local_inc(&rb->wakeup);
6026 			}
6027 		}
6028 	}
6029 }
6030 
6031 static u64 perf_virt_to_phys(u64 virt)
6032 {
6033 	u64 phys_addr = 0;
6034 	struct page *p = NULL;
6035 
6036 	if (!virt)
6037 		return 0;
6038 
6039 	if (virt >= TASK_SIZE) {
6040 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6041 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6042 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6043 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6044 	} else {
6045 		/*
6046 		 * Walking the pages tables for user address.
6047 		 * Interrupts are disabled, so it prevents any tear down
6048 		 * of the page tables.
6049 		 * Try IRQ-safe __get_user_pages_fast first.
6050 		 * If failed, leave phys_addr as 0.
6051 		 */
6052 		if ((current->mm != NULL) &&
6053 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6054 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6055 
6056 		if (p)
6057 			put_page(p);
6058 	}
6059 
6060 	return phys_addr;
6061 }
6062 
6063 void perf_prepare_sample(struct perf_event_header *header,
6064 			 struct perf_sample_data *data,
6065 			 struct perf_event *event,
6066 			 struct pt_regs *regs)
6067 {
6068 	u64 sample_type = event->attr.sample_type;
6069 
6070 	header->type = PERF_RECORD_SAMPLE;
6071 	header->size = sizeof(*header) + event->header_size;
6072 
6073 	header->misc = 0;
6074 	header->misc |= perf_misc_flags(regs);
6075 
6076 	__perf_event_header__init_id(header, data, event);
6077 
6078 	if (sample_type & PERF_SAMPLE_IP)
6079 		data->ip = perf_instruction_pointer(regs);
6080 
6081 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6082 		int size = 1;
6083 
6084 		data->callchain = perf_callchain(event, regs);
6085 
6086 		if (data->callchain)
6087 			size += data->callchain->nr;
6088 
6089 		header->size += size * sizeof(u64);
6090 	}
6091 
6092 	if (sample_type & PERF_SAMPLE_RAW) {
6093 		struct perf_raw_record *raw = data->raw;
6094 		int size;
6095 
6096 		if (raw) {
6097 			struct perf_raw_frag *frag = &raw->frag;
6098 			u32 sum = 0;
6099 
6100 			do {
6101 				sum += frag->size;
6102 				if (perf_raw_frag_last(frag))
6103 					break;
6104 				frag = frag->next;
6105 			} while (1);
6106 
6107 			size = round_up(sum + sizeof(u32), sizeof(u64));
6108 			raw->size = size - sizeof(u32);
6109 			frag->pad = raw->size - sum;
6110 		} else {
6111 			size = sizeof(u64);
6112 		}
6113 
6114 		header->size += size;
6115 	}
6116 
6117 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6118 		int size = sizeof(u64); /* nr */
6119 		if (data->br_stack) {
6120 			size += data->br_stack->nr
6121 			      * sizeof(struct perf_branch_entry);
6122 		}
6123 		header->size += size;
6124 	}
6125 
6126 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6127 		perf_sample_regs_user(&data->regs_user, regs,
6128 				      &data->regs_user_copy);
6129 
6130 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6131 		/* regs dump ABI info */
6132 		int size = sizeof(u64);
6133 
6134 		if (data->regs_user.regs) {
6135 			u64 mask = event->attr.sample_regs_user;
6136 			size += hweight64(mask) * sizeof(u64);
6137 		}
6138 
6139 		header->size += size;
6140 	}
6141 
6142 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6143 		/*
6144 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6145 		 * processed as the last one or have additional check added
6146 		 * in case new sample type is added, because we could eat
6147 		 * up the rest of the sample size.
6148 		 */
6149 		u16 stack_size = event->attr.sample_stack_user;
6150 		u16 size = sizeof(u64);
6151 
6152 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6153 						     data->regs_user.regs);
6154 
6155 		/*
6156 		 * If there is something to dump, add space for the dump
6157 		 * itself and for the field that tells the dynamic size,
6158 		 * which is how many have been actually dumped.
6159 		 */
6160 		if (stack_size)
6161 			size += sizeof(u64) + stack_size;
6162 
6163 		data->stack_user_size = stack_size;
6164 		header->size += size;
6165 	}
6166 
6167 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6168 		/* regs dump ABI info */
6169 		int size = sizeof(u64);
6170 
6171 		perf_sample_regs_intr(&data->regs_intr, regs);
6172 
6173 		if (data->regs_intr.regs) {
6174 			u64 mask = event->attr.sample_regs_intr;
6175 
6176 			size += hweight64(mask) * sizeof(u64);
6177 		}
6178 
6179 		header->size += size;
6180 	}
6181 
6182 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6183 		data->phys_addr = perf_virt_to_phys(data->addr);
6184 }
6185 
6186 static void __always_inline
6187 __perf_event_output(struct perf_event *event,
6188 		    struct perf_sample_data *data,
6189 		    struct pt_regs *regs,
6190 		    int (*output_begin)(struct perf_output_handle *,
6191 					struct perf_event *,
6192 					unsigned int))
6193 {
6194 	struct perf_output_handle handle;
6195 	struct perf_event_header header;
6196 
6197 	/* protect the callchain buffers */
6198 	rcu_read_lock();
6199 
6200 	perf_prepare_sample(&header, data, event, regs);
6201 
6202 	if (output_begin(&handle, event, header.size))
6203 		goto exit;
6204 
6205 	perf_output_sample(&handle, &header, data, event);
6206 
6207 	perf_output_end(&handle);
6208 
6209 exit:
6210 	rcu_read_unlock();
6211 }
6212 
6213 void
6214 perf_event_output_forward(struct perf_event *event,
6215 			 struct perf_sample_data *data,
6216 			 struct pt_regs *regs)
6217 {
6218 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6219 }
6220 
6221 void
6222 perf_event_output_backward(struct perf_event *event,
6223 			   struct perf_sample_data *data,
6224 			   struct pt_regs *regs)
6225 {
6226 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6227 }
6228 
6229 void
6230 perf_event_output(struct perf_event *event,
6231 		  struct perf_sample_data *data,
6232 		  struct pt_regs *regs)
6233 {
6234 	__perf_event_output(event, data, regs, perf_output_begin);
6235 }
6236 
6237 /*
6238  * read event_id
6239  */
6240 
6241 struct perf_read_event {
6242 	struct perf_event_header	header;
6243 
6244 	u32				pid;
6245 	u32				tid;
6246 };
6247 
6248 static void
6249 perf_event_read_event(struct perf_event *event,
6250 			struct task_struct *task)
6251 {
6252 	struct perf_output_handle handle;
6253 	struct perf_sample_data sample;
6254 	struct perf_read_event read_event = {
6255 		.header = {
6256 			.type = PERF_RECORD_READ,
6257 			.misc = 0,
6258 			.size = sizeof(read_event) + event->read_size,
6259 		},
6260 		.pid = perf_event_pid(event, task),
6261 		.tid = perf_event_tid(event, task),
6262 	};
6263 	int ret;
6264 
6265 	perf_event_header__init_id(&read_event.header, &sample, event);
6266 	ret = perf_output_begin(&handle, event, read_event.header.size);
6267 	if (ret)
6268 		return;
6269 
6270 	perf_output_put(&handle, read_event);
6271 	perf_output_read(&handle, event);
6272 	perf_event__output_id_sample(event, &handle, &sample);
6273 
6274 	perf_output_end(&handle);
6275 }
6276 
6277 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6278 
6279 static void
6280 perf_iterate_ctx(struct perf_event_context *ctx,
6281 		   perf_iterate_f output,
6282 		   void *data, bool all)
6283 {
6284 	struct perf_event *event;
6285 
6286 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6287 		if (!all) {
6288 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6289 				continue;
6290 			if (!event_filter_match(event))
6291 				continue;
6292 		}
6293 
6294 		output(event, data);
6295 	}
6296 }
6297 
6298 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6299 {
6300 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6301 	struct perf_event *event;
6302 
6303 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6304 		/*
6305 		 * Skip events that are not fully formed yet; ensure that
6306 		 * if we observe event->ctx, both event and ctx will be
6307 		 * complete enough. See perf_install_in_context().
6308 		 */
6309 		if (!smp_load_acquire(&event->ctx))
6310 			continue;
6311 
6312 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6313 			continue;
6314 		if (!event_filter_match(event))
6315 			continue;
6316 		output(event, data);
6317 	}
6318 }
6319 
6320 /*
6321  * Iterate all events that need to receive side-band events.
6322  *
6323  * For new callers; ensure that account_pmu_sb_event() includes
6324  * your event, otherwise it might not get delivered.
6325  */
6326 static void
6327 perf_iterate_sb(perf_iterate_f output, void *data,
6328 	       struct perf_event_context *task_ctx)
6329 {
6330 	struct perf_event_context *ctx;
6331 	int ctxn;
6332 
6333 	rcu_read_lock();
6334 	preempt_disable();
6335 
6336 	/*
6337 	 * If we have task_ctx != NULL we only notify the task context itself.
6338 	 * The task_ctx is set only for EXIT events before releasing task
6339 	 * context.
6340 	 */
6341 	if (task_ctx) {
6342 		perf_iterate_ctx(task_ctx, output, data, false);
6343 		goto done;
6344 	}
6345 
6346 	perf_iterate_sb_cpu(output, data);
6347 
6348 	for_each_task_context_nr(ctxn) {
6349 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6350 		if (ctx)
6351 			perf_iterate_ctx(ctx, output, data, false);
6352 	}
6353 done:
6354 	preempt_enable();
6355 	rcu_read_unlock();
6356 }
6357 
6358 /*
6359  * Clear all file-based filters at exec, they'll have to be
6360  * re-instated when/if these objects are mmapped again.
6361  */
6362 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6363 {
6364 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6365 	struct perf_addr_filter *filter;
6366 	unsigned int restart = 0, count = 0;
6367 	unsigned long flags;
6368 
6369 	if (!has_addr_filter(event))
6370 		return;
6371 
6372 	raw_spin_lock_irqsave(&ifh->lock, flags);
6373 	list_for_each_entry(filter, &ifh->list, entry) {
6374 		if (filter->inode) {
6375 			event->addr_filters_offs[count] = 0;
6376 			restart++;
6377 		}
6378 
6379 		count++;
6380 	}
6381 
6382 	if (restart)
6383 		event->addr_filters_gen++;
6384 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6385 
6386 	if (restart)
6387 		perf_event_stop(event, 1);
6388 }
6389 
6390 void perf_event_exec(void)
6391 {
6392 	struct perf_event_context *ctx;
6393 	int ctxn;
6394 
6395 	rcu_read_lock();
6396 	for_each_task_context_nr(ctxn) {
6397 		ctx = current->perf_event_ctxp[ctxn];
6398 		if (!ctx)
6399 			continue;
6400 
6401 		perf_event_enable_on_exec(ctxn);
6402 
6403 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6404 				   true);
6405 	}
6406 	rcu_read_unlock();
6407 }
6408 
6409 struct remote_output {
6410 	struct ring_buffer	*rb;
6411 	int			err;
6412 };
6413 
6414 static void __perf_event_output_stop(struct perf_event *event, void *data)
6415 {
6416 	struct perf_event *parent = event->parent;
6417 	struct remote_output *ro = data;
6418 	struct ring_buffer *rb = ro->rb;
6419 	struct stop_event_data sd = {
6420 		.event	= event,
6421 	};
6422 
6423 	if (!has_aux(event))
6424 		return;
6425 
6426 	if (!parent)
6427 		parent = event;
6428 
6429 	/*
6430 	 * In case of inheritance, it will be the parent that links to the
6431 	 * ring-buffer, but it will be the child that's actually using it.
6432 	 *
6433 	 * We are using event::rb to determine if the event should be stopped,
6434 	 * however this may race with ring_buffer_attach() (through set_output),
6435 	 * which will make us skip the event that actually needs to be stopped.
6436 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6437 	 * its rb pointer.
6438 	 */
6439 	if (rcu_dereference(parent->rb) == rb)
6440 		ro->err = __perf_event_stop(&sd);
6441 }
6442 
6443 static int __perf_pmu_output_stop(void *info)
6444 {
6445 	struct perf_event *event = info;
6446 	struct pmu *pmu = event->pmu;
6447 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6448 	struct remote_output ro = {
6449 		.rb	= event->rb,
6450 	};
6451 
6452 	rcu_read_lock();
6453 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6454 	if (cpuctx->task_ctx)
6455 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6456 				   &ro, false);
6457 	rcu_read_unlock();
6458 
6459 	return ro.err;
6460 }
6461 
6462 static void perf_pmu_output_stop(struct perf_event *event)
6463 {
6464 	struct perf_event *iter;
6465 	int err, cpu;
6466 
6467 restart:
6468 	rcu_read_lock();
6469 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6470 		/*
6471 		 * For per-CPU events, we need to make sure that neither they
6472 		 * nor their children are running; for cpu==-1 events it's
6473 		 * sufficient to stop the event itself if it's active, since
6474 		 * it can't have children.
6475 		 */
6476 		cpu = iter->cpu;
6477 		if (cpu == -1)
6478 			cpu = READ_ONCE(iter->oncpu);
6479 
6480 		if (cpu == -1)
6481 			continue;
6482 
6483 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6484 		if (err == -EAGAIN) {
6485 			rcu_read_unlock();
6486 			goto restart;
6487 		}
6488 	}
6489 	rcu_read_unlock();
6490 }
6491 
6492 /*
6493  * task tracking -- fork/exit
6494  *
6495  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6496  */
6497 
6498 struct perf_task_event {
6499 	struct task_struct		*task;
6500 	struct perf_event_context	*task_ctx;
6501 
6502 	struct {
6503 		struct perf_event_header	header;
6504 
6505 		u32				pid;
6506 		u32				ppid;
6507 		u32				tid;
6508 		u32				ptid;
6509 		u64				time;
6510 	} event_id;
6511 };
6512 
6513 static int perf_event_task_match(struct perf_event *event)
6514 {
6515 	return event->attr.comm  || event->attr.mmap ||
6516 	       event->attr.mmap2 || event->attr.mmap_data ||
6517 	       event->attr.task;
6518 }
6519 
6520 static void perf_event_task_output(struct perf_event *event,
6521 				   void *data)
6522 {
6523 	struct perf_task_event *task_event = data;
6524 	struct perf_output_handle handle;
6525 	struct perf_sample_data	sample;
6526 	struct task_struct *task = task_event->task;
6527 	int ret, size = task_event->event_id.header.size;
6528 
6529 	if (!perf_event_task_match(event))
6530 		return;
6531 
6532 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6533 
6534 	ret = perf_output_begin(&handle, event,
6535 				task_event->event_id.header.size);
6536 	if (ret)
6537 		goto out;
6538 
6539 	task_event->event_id.pid = perf_event_pid(event, task);
6540 	task_event->event_id.ppid = perf_event_pid(event, current);
6541 
6542 	task_event->event_id.tid = perf_event_tid(event, task);
6543 	task_event->event_id.ptid = perf_event_tid(event, current);
6544 
6545 	task_event->event_id.time = perf_event_clock(event);
6546 
6547 	perf_output_put(&handle, task_event->event_id);
6548 
6549 	perf_event__output_id_sample(event, &handle, &sample);
6550 
6551 	perf_output_end(&handle);
6552 out:
6553 	task_event->event_id.header.size = size;
6554 }
6555 
6556 static void perf_event_task(struct task_struct *task,
6557 			      struct perf_event_context *task_ctx,
6558 			      int new)
6559 {
6560 	struct perf_task_event task_event;
6561 
6562 	if (!atomic_read(&nr_comm_events) &&
6563 	    !atomic_read(&nr_mmap_events) &&
6564 	    !atomic_read(&nr_task_events))
6565 		return;
6566 
6567 	task_event = (struct perf_task_event){
6568 		.task	  = task,
6569 		.task_ctx = task_ctx,
6570 		.event_id    = {
6571 			.header = {
6572 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6573 				.misc = 0,
6574 				.size = sizeof(task_event.event_id),
6575 			},
6576 			/* .pid  */
6577 			/* .ppid */
6578 			/* .tid  */
6579 			/* .ptid */
6580 			/* .time */
6581 		},
6582 	};
6583 
6584 	perf_iterate_sb(perf_event_task_output,
6585 		       &task_event,
6586 		       task_ctx);
6587 }
6588 
6589 void perf_event_fork(struct task_struct *task)
6590 {
6591 	perf_event_task(task, NULL, 1);
6592 	perf_event_namespaces(task);
6593 }
6594 
6595 /*
6596  * comm tracking
6597  */
6598 
6599 struct perf_comm_event {
6600 	struct task_struct	*task;
6601 	char			*comm;
6602 	int			comm_size;
6603 
6604 	struct {
6605 		struct perf_event_header	header;
6606 
6607 		u32				pid;
6608 		u32				tid;
6609 	} event_id;
6610 };
6611 
6612 static int perf_event_comm_match(struct perf_event *event)
6613 {
6614 	return event->attr.comm;
6615 }
6616 
6617 static void perf_event_comm_output(struct perf_event *event,
6618 				   void *data)
6619 {
6620 	struct perf_comm_event *comm_event = data;
6621 	struct perf_output_handle handle;
6622 	struct perf_sample_data sample;
6623 	int size = comm_event->event_id.header.size;
6624 	int ret;
6625 
6626 	if (!perf_event_comm_match(event))
6627 		return;
6628 
6629 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6630 	ret = perf_output_begin(&handle, event,
6631 				comm_event->event_id.header.size);
6632 
6633 	if (ret)
6634 		goto out;
6635 
6636 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6637 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6638 
6639 	perf_output_put(&handle, comm_event->event_id);
6640 	__output_copy(&handle, comm_event->comm,
6641 				   comm_event->comm_size);
6642 
6643 	perf_event__output_id_sample(event, &handle, &sample);
6644 
6645 	perf_output_end(&handle);
6646 out:
6647 	comm_event->event_id.header.size = size;
6648 }
6649 
6650 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6651 {
6652 	char comm[TASK_COMM_LEN];
6653 	unsigned int size;
6654 
6655 	memset(comm, 0, sizeof(comm));
6656 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6657 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6658 
6659 	comm_event->comm = comm;
6660 	comm_event->comm_size = size;
6661 
6662 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6663 
6664 	perf_iterate_sb(perf_event_comm_output,
6665 		       comm_event,
6666 		       NULL);
6667 }
6668 
6669 void perf_event_comm(struct task_struct *task, bool exec)
6670 {
6671 	struct perf_comm_event comm_event;
6672 
6673 	if (!atomic_read(&nr_comm_events))
6674 		return;
6675 
6676 	comm_event = (struct perf_comm_event){
6677 		.task	= task,
6678 		/* .comm      */
6679 		/* .comm_size */
6680 		.event_id  = {
6681 			.header = {
6682 				.type = PERF_RECORD_COMM,
6683 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6684 				/* .size */
6685 			},
6686 			/* .pid */
6687 			/* .tid */
6688 		},
6689 	};
6690 
6691 	perf_event_comm_event(&comm_event);
6692 }
6693 
6694 /*
6695  * namespaces tracking
6696  */
6697 
6698 struct perf_namespaces_event {
6699 	struct task_struct		*task;
6700 
6701 	struct {
6702 		struct perf_event_header	header;
6703 
6704 		u32				pid;
6705 		u32				tid;
6706 		u64				nr_namespaces;
6707 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6708 	} event_id;
6709 };
6710 
6711 static int perf_event_namespaces_match(struct perf_event *event)
6712 {
6713 	return event->attr.namespaces;
6714 }
6715 
6716 static void perf_event_namespaces_output(struct perf_event *event,
6717 					 void *data)
6718 {
6719 	struct perf_namespaces_event *namespaces_event = data;
6720 	struct perf_output_handle handle;
6721 	struct perf_sample_data sample;
6722 	int ret;
6723 
6724 	if (!perf_event_namespaces_match(event))
6725 		return;
6726 
6727 	perf_event_header__init_id(&namespaces_event->event_id.header,
6728 				   &sample, event);
6729 	ret = perf_output_begin(&handle, event,
6730 				namespaces_event->event_id.header.size);
6731 	if (ret)
6732 		return;
6733 
6734 	namespaces_event->event_id.pid = perf_event_pid(event,
6735 							namespaces_event->task);
6736 	namespaces_event->event_id.tid = perf_event_tid(event,
6737 							namespaces_event->task);
6738 
6739 	perf_output_put(&handle, namespaces_event->event_id);
6740 
6741 	perf_event__output_id_sample(event, &handle, &sample);
6742 
6743 	perf_output_end(&handle);
6744 }
6745 
6746 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6747 				   struct task_struct *task,
6748 				   const struct proc_ns_operations *ns_ops)
6749 {
6750 	struct path ns_path;
6751 	struct inode *ns_inode;
6752 	void *error;
6753 
6754 	error = ns_get_path(&ns_path, task, ns_ops);
6755 	if (!error) {
6756 		ns_inode = ns_path.dentry->d_inode;
6757 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6758 		ns_link_info->ino = ns_inode->i_ino;
6759 	}
6760 }
6761 
6762 void perf_event_namespaces(struct task_struct *task)
6763 {
6764 	struct perf_namespaces_event namespaces_event;
6765 	struct perf_ns_link_info *ns_link_info;
6766 
6767 	if (!atomic_read(&nr_namespaces_events))
6768 		return;
6769 
6770 	namespaces_event = (struct perf_namespaces_event){
6771 		.task	= task,
6772 		.event_id  = {
6773 			.header = {
6774 				.type = PERF_RECORD_NAMESPACES,
6775 				.misc = 0,
6776 				.size = sizeof(namespaces_event.event_id),
6777 			},
6778 			/* .pid */
6779 			/* .tid */
6780 			.nr_namespaces = NR_NAMESPACES,
6781 			/* .link_info[NR_NAMESPACES] */
6782 		},
6783 	};
6784 
6785 	ns_link_info = namespaces_event.event_id.link_info;
6786 
6787 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6788 			       task, &mntns_operations);
6789 
6790 #ifdef CONFIG_USER_NS
6791 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6792 			       task, &userns_operations);
6793 #endif
6794 #ifdef CONFIG_NET_NS
6795 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6796 			       task, &netns_operations);
6797 #endif
6798 #ifdef CONFIG_UTS_NS
6799 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6800 			       task, &utsns_operations);
6801 #endif
6802 #ifdef CONFIG_IPC_NS
6803 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6804 			       task, &ipcns_operations);
6805 #endif
6806 #ifdef CONFIG_PID_NS
6807 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6808 			       task, &pidns_operations);
6809 #endif
6810 #ifdef CONFIG_CGROUPS
6811 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6812 			       task, &cgroupns_operations);
6813 #endif
6814 
6815 	perf_iterate_sb(perf_event_namespaces_output,
6816 			&namespaces_event,
6817 			NULL);
6818 }
6819 
6820 /*
6821  * mmap tracking
6822  */
6823 
6824 struct perf_mmap_event {
6825 	struct vm_area_struct	*vma;
6826 
6827 	const char		*file_name;
6828 	int			file_size;
6829 	int			maj, min;
6830 	u64			ino;
6831 	u64			ino_generation;
6832 	u32			prot, flags;
6833 
6834 	struct {
6835 		struct perf_event_header	header;
6836 
6837 		u32				pid;
6838 		u32				tid;
6839 		u64				start;
6840 		u64				len;
6841 		u64				pgoff;
6842 	} event_id;
6843 };
6844 
6845 static int perf_event_mmap_match(struct perf_event *event,
6846 				 void *data)
6847 {
6848 	struct perf_mmap_event *mmap_event = data;
6849 	struct vm_area_struct *vma = mmap_event->vma;
6850 	int executable = vma->vm_flags & VM_EXEC;
6851 
6852 	return (!executable && event->attr.mmap_data) ||
6853 	       (executable && (event->attr.mmap || event->attr.mmap2));
6854 }
6855 
6856 static void perf_event_mmap_output(struct perf_event *event,
6857 				   void *data)
6858 {
6859 	struct perf_mmap_event *mmap_event = data;
6860 	struct perf_output_handle handle;
6861 	struct perf_sample_data sample;
6862 	int size = mmap_event->event_id.header.size;
6863 	int ret;
6864 
6865 	if (!perf_event_mmap_match(event, data))
6866 		return;
6867 
6868 	if (event->attr.mmap2) {
6869 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6870 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6871 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6872 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6873 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6874 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6875 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6876 	}
6877 
6878 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6879 	ret = perf_output_begin(&handle, event,
6880 				mmap_event->event_id.header.size);
6881 	if (ret)
6882 		goto out;
6883 
6884 	mmap_event->event_id.pid = perf_event_pid(event, current);
6885 	mmap_event->event_id.tid = perf_event_tid(event, current);
6886 
6887 	perf_output_put(&handle, mmap_event->event_id);
6888 
6889 	if (event->attr.mmap2) {
6890 		perf_output_put(&handle, mmap_event->maj);
6891 		perf_output_put(&handle, mmap_event->min);
6892 		perf_output_put(&handle, mmap_event->ino);
6893 		perf_output_put(&handle, mmap_event->ino_generation);
6894 		perf_output_put(&handle, mmap_event->prot);
6895 		perf_output_put(&handle, mmap_event->flags);
6896 	}
6897 
6898 	__output_copy(&handle, mmap_event->file_name,
6899 				   mmap_event->file_size);
6900 
6901 	perf_event__output_id_sample(event, &handle, &sample);
6902 
6903 	perf_output_end(&handle);
6904 out:
6905 	mmap_event->event_id.header.size = size;
6906 }
6907 
6908 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6909 {
6910 	struct vm_area_struct *vma = mmap_event->vma;
6911 	struct file *file = vma->vm_file;
6912 	int maj = 0, min = 0;
6913 	u64 ino = 0, gen = 0;
6914 	u32 prot = 0, flags = 0;
6915 	unsigned int size;
6916 	char tmp[16];
6917 	char *buf = NULL;
6918 	char *name;
6919 
6920 	if (vma->vm_flags & VM_READ)
6921 		prot |= PROT_READ;
6922 	if (vma->vm_flags & VM_WRITE)
6923 		prot |= PROT_WRITE;
6924 	if (vma->vm_flags & VM_EXEC)
6925 		prot |= PROT_EXEC;
6926 
6927 	if (vma->vm_flags & VM_MAYSHARE)
6928 		flags = MAP_SHARED;
6929 	else
6930 		flags = MAP_PRIVATE;
6931 
6932 	if (vma->vm_flags & VM_DENYWRITE)
6933 		flags |= MAP_DENYWRITE;
6934 	if (vma->vm_flags & VM_MAYEXEC)
6935 		flags |= MAP_EXECUTABLE;
6936 	if (vma->vm_flags & VM_LOCKED)
6937 		flags |= MAP_LOCKED;
6938 	if (vma->vm_flags & VM_HUGETLB)
6939 		flags |= MAP_HUGETLB;
6940 
6941 	if (file) {
6942 		struct inode *inode;
6943 		dev_t dev;
6944 
6945 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6946 		if (!buf) {
6947 			name = "//enomem";
6948 			goto cpy_name;
6949 		}
6950 		/*
6951 		 * d_path() works from the end of the rb backwards, so we
6952 		 * need to add enough zero bytes after the string to handle
6953 		 * the 64bit alignment we do later.
6954 		 */
6955 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6956 		if (IS_ERR(name)) {
6957 			name = "//toolong";
6958 			goto cpy_name;
6959 		}
6960 		inode = file_inode(vma->vm_file);
6961 		dev = inode->i_sb->s_dev;
6962 		ino = inode->i_ino;
6963 		gen = inode->i_generation;
6964 		maj = MAJOR(dev);
6965 		min = MINOR(dev);
6966 
6967 		goto got_name;
6968 	} else {
6969 		if (vma->vm_ops && vma->vm_ops->name) {
6970 			name = (char *) vma->vm_ops->name(vma);
6971 			if (name)
6972 				goto cpy_name;
6973 		}
6974 
6975 		name = (char *)arch_vma_name(vma);
6976 		if (name)
6977 			goto cpy_name;
6978 
6979 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6980 				vma->vm_end >= vma->vm_mm->brk) {
6981 			name = "[heap]";
6982 			goto cpy_name;
6983 		}
6984 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6985 				vma->vm_end >= vma->vm_mm->start_stack) {
6986 			name = "[stack]";
6987 			goto cpy_name;
6988 		}
6989 
6990 		name = "//anon";
6991 		goto cpy_name;
6992 	}
6993 
6994 cpy_name:
6995 	strlcpy(tmp, name, sizeof(tmp));
6996 	name = tmp;
6997 got_name:
6998 	/*
6999 	 * Since our buffer works in 8 byte units we need to align our string
7000 	 * size to a multiple of 8. However, we must guarantee the tail end is
7001 	 * zero'd out to avoid leaking random bits to userspace.
7002 	 */
7003 	size = strlen(name)+1;
7004 	while (!IS_ALIGNED(size, sizeof(u64)))
7005 		name[size++] = '\0';
7006 
7007 	mmap_event->file_name = name;
7008 	mmap_event->file_size = size;
7009 	mmap_event->maj = maj;
7010 	mmap_event->min = min;
7011 	mmap_event->ino = ino;
7012 	mmap_event->ino_generation = gen;
7013 	mmap_event->prot = prot;
7014 	mmap_event->flags = flags;
7015 
7016 	if (!(vma->vm_flags & VM_EXEC))
7017 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7018 
7019 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7020 
7021 	perf_iterate_sb(perf_event_mmap_output,
7022 		       mmap_event,
7023 		       NULL);
7024 
7025 	kfree(buf);
7026 }
7027 
7028 /*
7029  * Check whether inode and address range match filter criteria.
7030  */
7031 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7032 				     struct file *file, unsigned long offset,
7033 				     unsigned long size)
7034 {
7035 	if (filter->inode != file_inode(file))
7036 		return false;
7037 
7038 	if (filter->offset > offset + size)
7039 		return false;
7040 
7041 	if (filter->offset + filter->size < offset)
7042 		return false;
7043 
7044 	return true;
7045 }
7046 
7047 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7048 {
7049 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7050 	struct vm_area_struct *vma = data;
7051 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7052 	struct file *file = vma->vm_file;
7053 	struct perf_addr_filter *filter;
7054 	unsigned int restart = 0, count = 0;
7055 
7056 	if (!has_addr_filter(event))
7057 		return;
7058 
7059 	if (!file)
7060 		return;
7061 
7062 	raw_spin_lock_irqsave(&ifh->lock, flags);
7063 	list_for_each_entry(filter, &ifh->list, entry) {
7064 		if (perf_addr_filter_match(filter, file, off,
7065 					     vma->vm_end - vma->vm_start)) {
7066 			event->addr_filters_offs[count] = vma->vm_start;
7067 			restart++;
7068 		}
7069 
7070 		count++;
7071 	}
7072 
7073 	if (restart)
7074 		event->addr_filters_gen++;
7075 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7076 
7077 	if (restart)
7078 		perf_event_stop(event, 1);
7079 }
7080 
7081 /*
7082  * Adjust all task's events' filters to the new vma
7083  */
7084 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7085 {
7086 	struct perf_event_context *ctx;
7087 	int ctxn;
7088 
7089 	/*
7090 	 * Data tracing isn't supported yet and as such there is no need
7091 	 * to keep track of anything that isn't related to executable code:
7092 	 */
7093 	if (!(vma->vm_flags & VM_EXEC))
7094 		return;
7095 
7096 	rcu_read_lock();
7097 	for_each_task_context_nr(ctxn) {
7098 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7099 		if (!ctx)
7100 			continue;
7101 
7102 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7103 	}
7104 	rcu_read_unlock();
7105 }
7106 
7107 void perf_event_mmap(struct vm_area_struct *vma)
7108 {
7109 	struct perf_mmap_event mmap_event;
7110 
7111 	if (!atomic_read(&nr_mmap_events))
7112 		return;
7113 
7114 	mmap_event = (struct perf_mmap_event){
7115 		.vma	= vma,
7116 		/* .file_name */
7117 		/* .file_size */
7118 		.event_id  = {
7119 			.header = {
7120 				.type = PERF_RECORD_MMAP,
7121 				.misc = PERF_RECORD_MISC_USER,
7122 				/* .size */
7123 			},
7124 			/* .pid */
7125 			/* .tid */
7126 			.start  = vma->vm_start,
7127 			.len    = vma->vm_end - vma->vm_start,
7128 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7129 		},
7130 		/* .maj (attr_mmap2 only) */
7131 		/* .min (attr_mmap2 only) */
7132 		/* .ino (attr_mmap2 only) */
7133 		/* .ino_generation (attr_mmap2 only) */
7134 		/* .prot (attr_mmap2 only) */
7135 		/* .flags (attr_mmap2 only) */
7136 	};
7137 
7138 	perf_addr_filters_adjust(vma);
7139 	perf_event_mmap_event(&mmap_event);
7140 }
7141 
7142 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7143 			  unsigned long size, u64 flags)
7144 {
7145 	struct perf_output_handle handle;
7146 	struct perf_sample_data sample;
7147 	struct perf_aux_event {
7148 		struct perf_event_header	header;
7149 		u64				offset;
7150 		u64				size;
7151 		u64				flags;
7152 	} rec = {
7153 		.header = {
7154 			.type = PERF_RECORD_AUX,
7155 			.misc = 0,
7156 			.size = sizeof(rec),
7157 		},
7158 		.offset		= head,
7159 		.size		= size,
7160 		.flags		= flags,
7161 	};
7162 	int ret;
7163 
7164 	perf_event_header__init_id(&rec.header, &sample, event);
7165 	ret = perf_output_begin(&handle, event, rec.header.size);
7166 
7167 	if (ret)
7168 		return;
7169 
7170 	perf_output_put(&handle, rec);
7171 	perf_event__output_id_sample(event, &handle, &sample);
7172 
7173 	perf_output_end(&handle);
7174 }
7175 
7176 /*
7177  * Lost/dropped samples logging
7178  */
7179 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7180 {
7181 	struct perf_output_handle handle;
7182 	struct perf_sample_data sample;
7183 	int ret;
7184 
7185 	struct {
7186 		struct perf_event_header	header;
7187 		u64				lost;
7188 	} lost_samples_event = {
7189 		.header = {
7190 			.type = PERF_RECORD_LOST_SAMPLES,
7191 			.misc = 0,
7192 			.size = sizeof(lost_samples_event),
7193 		},
7194 		.lost		= lost,
7195 	};
7196 
7197 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7198 
7199 	ret = perf_output_begin(&handle, event,
7200 				lost_samples_event.header.size);
7201 	if (ret)
7202 		return;
7203 
7204 	perf_output_put(&handle, lost_samples_event);
7205 	perf_event__output_id_sample(event, &handle, &sample);
7206 	perf_output_end(&handle);
7207 }
7208 
7209 /*
7210  * context_switch tracking
7211  */
7212 
7213 struct perf_switch_event {
7214 	struct task_struct	*task;
7215 	struct task_struct	*next_prev;
7216 
7217 	struct {
7218 		struct perf_event_header	header;
7219 		u32				next_prev_pid;
7220 		u32				next_prev_tid;
7221 	} event_id;
7222 };
7223 
7224 static int perf_event_switch_match(struct perf_event *event)
7225 {
7226 	return event->attr.context_switch;
7227 }
7228 
7229 static void perf_event_switch_output(struct perf_event *event, void *data)
7230 {
7231 	struct perf_switch_event *se = data;
7232 	struct perf_output_handle handle;
7233 	struct perf_sample_data sample;
7234 	int ret;
7235 
7236 	if (!perf_event_switch_match(event))
7237 		return;
7238 
7239 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7240 	if (event->ctx->task) {
7241 		se->event_id.header.type = PERF_RECORD_SWITCH;
7242 		se->event_id.header.size = sizeof(se->event_id.header);
7243 	} else {
7244 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7245 		se->event_id.header.size = sizeof(se->event_id);
7246 		se->event_id.next_prev_pid =
7247 					perf_event_pid(event, se->next_prev);
7248 		se->event_id.next_prev_tid =
7249 					perf_event_tid(event, se->next_prev);
7250 	}
7251 
7252 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7253 
7254 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7255 	if (ret)
7256 		return;
7257 
7258 	if (event->ctx->task)
7259 		perf_output_put(&handle, se->event_id.header);
7260 	else
7261 		perf_output_put(&handle, se->event_id);
7262 
7263 	perf_event__output_id_sample(event, &handle, &sample);
7264 
7265 	perf_output_end(&handle);
7266 }
7267 
7268 static void perf_event_switch(struct task_struct *task,
7269 			      struct task_struct *next_prev, bool sched_in)
7270 {
7271 	struct perf_switch_event switch_event;
7272 
7273 	/* N.B. caller checks nr_switch_events != 0 */
7274 
7275 	switch_event = (struct perf_switch_event){
7276 		.task		= task,
7277 		.next_prev	= next_prev,
7278 		.event_id	= {
7279 			.header = {
7280 				/* .type */
7281 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7282 				/* .size */
7283 			},
7284 			/* .next_prev_pid */
7285 			/* .next_prev_tid */
7286 		},
7287 	};
7288 
7289 	perf_iterate_sb(perf_event_switch_output,
7290 		       &switch_event,
7291 		       NULL);
7292 }
7293 
7294 /*
7295  * IRQ throttle logging
7296  */
7297 
7298 static void perf_log_throttle(struct perf_event *event, int enable)
7299 {
7300 	struct perf_output_handle handle;
7301 	struct perf_sample_data sample;
7302 	int ret;
7303 
7304 	struct {
7305 		struct perf_event_header	header;
7306 		u64				time;
7307 		u64				id;
7308 		u64				stream_id;
7309 	} throttle_event = {
7310 		.header = {
7311 			.type = PERF_RECORD_THROTTLE,
7312 			.misc = 0,
7313 			.size = sizeof(throttle_event),
7314 		},
7315 		.time		= perf_event_clock(event),
7316 		.id		= primary_event_id(event),
7317 		.stream_id	= event->id,
7318 	};
7319 
7320 	if (enable)
7321 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7322 
7323 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7324 
7325 	ret = perf_output_begin(&handle, event,
7326 				throttle_event.header.size);
7327 	if (ret)
7328 		return;
7329 
7330 	perf_output_put(&handle, throttle_event);
7331 	perf_event__output_id_sample(event, &handle, &sample);
7332 	perf_output_end(&handle);
7333 }
7334 
7335 void perf_event_itrace_started(struct perf_event *event)
7336 {
7337 	event->attach_state |= PERF_ATTACH_ITRACE;
7338 }
7339 
7340 static void perf_log_itrace_start(struct perf_event *event)
7341 {
7342 	struct perf_output_handle handle;
7343 	struct perf_sample_data sample;
7344 	struct perf_aux_event {
7345 		struct perf_event_header        header;
7346 		u32				pid;
7347 		u32				tid;
7348 	} rec;
7349 	int ret;
7350 
7351 	if (event->parent)
7352 		event = event->parent;
7353 
7354 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7355 	    event->attach_state & PERF_ATTACH_ITRACE)
7356 		return;
7357 
7358 	rec.header.type	= PERF_RECORD_ITRACE_START;
7359 	rec.header.misc	= 0;
7360 	rec.header.size	= sizeof(rec);
7361 	rec.pid	= perf_event_pid(event, current);
7362 	rec.tid	= perf_event_tid(event, current);
7363 
7364 	perf_event_header__init_id(&rec.header, &sample, event);
7365 	ret = perf_output_begin(&handle, event, rec.header.size);
7366 
7367 	if (ret)
7368 		return;
7369 
7370 	perf_output_put(&handle, rec);
7371 	perf_event__output_id_sample(event, &handle, &sample);
7372 
7373 	perf_output_end(&handle);
7374 }
7375 
7376 static int
7377 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7378 {
7379 	struct hw_perf_event *hwc = &event->hw;
7380 	int ret = 0;
7381 	u64 seq;
7382 
7383 	seq = __this_cpu_read(perf_throttled_seq);
7384 	if (seq != hwc->interrupts_seq) {
7385 		hwc->interrupts_seq = seq;
7386 		hwc->interrupts = 1;
7387 	} else {
7388 		hwc->interrupts++;
7389 		if (unlikely(throttle
7390 			     && hwc->interrupts >= max_samples_per_tick)) {
7391 			__this_cpu_inc(perf_throttled_count);
7392 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7393 			hwc->interrupts = MAX_INTERRUPTS;
7394 			perf_log_throttle(event, 0);
7395 			ret = 1;
7396 		}
7397 	}
7398 
7399 	if (event->attr.freq) {
7400 		u64 now = perf_clock();
7401 		s64 delta = now - hwc->freq_time_stamp;
7402 
7403 		hwc->freq_time_stamp = now;
7404 
7405 		if (delta > 0 && delta < 2*TICK_NSEC)
7406 			perf_adjust_period(event, delta, hwc->last_period, true);
7407 	}
7408 
7409 	return ret;
7410 }
7411 
7412 int perf_event_account_interrupt(struct perf_event *event)
7413 {
7414 	return __perf_event_account_interrupt(event, 1);
7415 }
7416 
7417 /*
7418  * Generic event overflow handling, sampling.
7419  */
7420 
7421 static int __perf_event_overflow(struct perf_event *event,
7422 				   int throttle, struct perf_sample_data *data,
7423 				   struct pt_regs *regs)
7424 {
7425 	int events = atomic_read(&event->event_limit);
7426 	int ret = 0;
7427 
7428 	/*
7429 	 * Non-sampling counters might still use the PMI to fold short
7430 	 * hardware counters, ignore those.
7431 	 */
7432 	if (unlikely(!is_sampling_event(event)))
7433 		return 0;
7434 
7435 	ret = __perf_event_account_interrupt(event, throttle);
7436 
7437 	/*
7438 	 * XXX event_limit might not quite work as expected on inherited
7439 	 * events
7440 	 */
7441 
7442 	event->pending_kill = POLL_IN;
7443 	if (events && atomic_dec_and_test(&event->event_limit)) {
7444 		ret = 1;
7445 		event->pending_kill = POLL_HUP;
7446 
7447 		perf_event_disable_inatomic(event);
7448 	}
7449 
7450 	READ_ONCE(event->overflow_handler)(event, data, regs);
7451 
7452 	if (*perf_event_fasync(event) && event->pending_kill) {
7453 		event->pending_wakeup = 1;
7454 		irq_work_queue(&event->pending);
7455 	}
7456 
7457 	return ret;
7458 }
7459 
7460 int perf_event_overflow(struct perf_event *event,
7461 			  struct perf_sample_data *data,
7462 			  struct pt_regs *regs)
7463 {
7464 	return __perf_event_overflow(event, 1, data, regs);
7465 }
7466 
7467 /*
7468  * Generic software event infrastructure
7469  */
7470 
7471 struct swevent_htable {
7472 	struct swevent_hlist		*swevent_hlist;
7473 	struct mutex			hlist_mutex;
7474 	int				hlist_refcount;
7475 
7476 	/* Recursion avoidance in each contexts */
7477 	int				recursion[PERF_NR_CONTEXTS];
7478 };
7479 
7480 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7481 
7482 /*
7483  * We directly increment event->count and keep a second value in
7484  * event->hw.period_left to count intervals. This period event
7485  * is kept in the range [-sample_period, 0] so that we can use the
7486  * sign as trigger.
7487  */
7488 
7489 u64 perf_swevent_set_period(struct perf_event *event)
7490 {
7491 	struct hw_perf_event *hwc = &event->hw;
7492 	u64 period = hwc->last_period;
7493 	u64 nr, offset;
7494 	s64 old, val;
7495 
7496 	hwc->last_period = hwc->sample_period;
7497 
7498 again:
7499 	old = val = local64_read(&hwc->period_left);
7500 	if (val < 0)
7501 		return 0;
7502 
7503 	nr = div64_u64(period + val, period);
7504 	offset = nr * period;
7505 	val -= offset;
7506 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7507 		goto again;
7508 
7509 	return nr;
7510 }
7511 
7512 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7513 				    struct perf_sample_data *data,
7514 				    struct pt_regs *regs)
7515 {
7516 	struct hw_perf_event *hwc = &event->hw;
7517 	int throttle = 0;
7518 
7519 	if (!overflow)
7520 		overflow = perf_swevent_set_period(event);
7521 
7522 	if (hwc->interrupts == MAX_INTERRUPTS)
7523 		return;
7524 
7525 	for (; overflow; overflow--) {
7526 		if (__perf_event_overflow(event, throttle,
7527 					    data, regs)) {
7528 			/*
7529 			 * We inhibit the overflow from happening when
7530 			 * hwc->interrupts == MAX_INTERRUPTS.
7531 			 */
7532 			break;
7533 		}
7534 		throttle = 1;
7535 	}
7536 }
7537 
7538 static void perf_swevent_event(struct perf_event *event, u64 nr,
7539 			       struct perf_sample_data *data,
7540 			       struct pt_regs *regs)
7541 {
7542 	struct hw_perf_event *hwc = &event->hw;
7543 
7544 	local64_add(nr, &event->count);
7545 
7546 	if (!regs)
7547 		return;
7548 
7549 	if (!is_sampling_event(event))
7550 		return;
7551 
7552 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7553 		data->period = nr;
7554 		return perf_swevent_overflow(event, 1, data, regs);
7555 	} else
7556 		data->period = event->hw.last_period;
7557 
7558 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7559 		return perf_swevent_overflow(event, 1, data, regs);
7560 
7561 	if (local64_add_negative(nr, &hwc->period_left))
7562 		return;
7563 
7564 	perf_swevent_overflow(event, 0, data, regs);
7565 }
7566 
7567 static int perf_exclude_event(struct perf_event *event,
7568 			      struct pt_regs *regs)
7569 {
7570 	if (event->hw.state & PERF_HES_STOPPED)
7571 		return 1;
7572 
7573 	if (regs) {
7574 		if (event->attr.exclude_user && user_mode(regs))
7575 			return 1;
7576 
7577 		if (event->attr.exclude_kernel && !user_mode(regs))
7578 			return 1;
7579 	}
7580 
7581 	return 0;
7582 }
7583 
7584 static int perf_swevent_match(struct perf_event *event,
7585 				enum perf_type_id type,
7586 				u32 event_id,
7587 				struct perf_sample_data *data,
7588 				struct pt_regs *regs)
7589 {
7590 	if (event->attr.type != type)
7591 		return 0;
7592 
7593 	if (event->attr.config != event_id)
7594 		return 0;
7595 
7596 	if (perf_exclude_event(event, regs))
7597 		return 0;
7598 
7599 	return 1;
7600 }
7601 
7602 static inline u64 swevent_hash(u64 type, u32 event_id)
7603 {
7604 	u64 val = event_id | (type << 32);
7605 
7606 	return hash_64(val, SWEVENT_HLIST_BITS);
7607 }
7608 
7609 static inline struct hlist_head *
7610 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7611 {
7612 	u64 hash = swevent_hash(type, event_id);
7613 
7614 	return &hlist->heads[hash];
7615 }
7616 
7617 /* For the read side: events when they trigger */
7618 static inline struct hlist_head *
7619 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7620 {
7621 	struct swevent_hlist *hlist;
7622 
7623 	hlist = rcu_dereference(swhash->swevent_hlist);
7624 	if (!hlist)
7625 		return NULL;
7626 
7627 	return __find_swevent_head(hlist, type, event_id);
7628 }
7629 
7630 /* For the event head insertion and removal in the hlist */
7631 static inline struct hlist_head *
7632 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7633 {
7634 	struct swevent_hlist *hlist;
7635 	u32 event_id = event->attr.config;
7636 	u64 type = event->attr.type;
7637 
7638 	/*
7639 	 * Event scheduling is always serialized against hlist allocation
7640 	 * and release. Which makes the protected version suitable here.
7641 	 * The context lock guarantees that.
7642 	 */
7643 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7644 					  lockdep_is_held(&event->ctx->lock));
7645 	if (!hlist)
7646 		return NULL;
7647 
7648 	return __find_swevent_head(hlist, type, event_id);
7649 }
7650 
7651 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7652 				    u64 nr,
7653 				    struct perf_sample_data *data,
7654 				    struct pt_regs *regs)
7655 {
7656 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657 	struct perf_event *event;
7658 	struct hlist_head *head;
7659 
7660 	rcu_read_lock();
7661 	head = find_swevent_head_rcu(swhash, type, event_id);
7662 	if (!head)
7663 		goto end;
7664 
7665 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7666 		if (perf_swevent_match(event, type, event_id, data, regs))
7667 			perf_swevent_event(event, nr, data, regs);
7668 	}
7669 end:
7670 	rcu_read_unlock();
7671 }
7672 
7673 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7674 
7675 int perf_swevent_get_recursion_context(void)
7676 {
7677 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7678 
7679 	return get_recursion_context(swhash->recursion);
7680 }
7681 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7682 
7683 void perf_swevent_put_recursion_context(int rctx)
7684 {
7685 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7686 
7687 	put_recursion_context(swhash->recursion, rctx);
7688 }
7689 
7690 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7691 {
7692 	struct perf_sample_data data;
7693 
7694 	if (WARN_ON_ONCE(!regs))
7695 		return;
7696 
7697 	perf_sample_data_init(&data, addr, 0);
7698 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7699 }
7700 
7701 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7702 {
7703 	int rctx;
7704 
7705 	preempt_disable_notrace();
7706 	rctx = perf_swevent_get_recursion_context();
7707 	if (unlikely(rctx < 0))
7708 		goto fail;
7709 
7710 	___perf_sw_event(event_id, nr, regs, addr);
7711 
7712 	perf_swevent_put_recursion_context(rctx);
7713 fail:
7714 	preempt_enable_notrace();
7715 }
7716 
7717 static void perf_swevent_read(struct perf_event *event)
7718 {
7719 }
7720 
7721 static int perf_swevent_add(struct perf_event *event, int flags)
7722 {
7723 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7724 	struct hw_perf_event *hwc = &event->hw;
7725 	struct hlist_head *head;
7726 
7727 	if (is_sampling_event(event)) {
7728 		hwc->last_period = hwc->sample_period;
7729 		perf_swevent_set_period(event);
7730 	}
7731 
7732 	hwc->state = !(flags & PERF_EF_START);
7733 
7734 	head = find_swevent_head(swhash, event);
7735 	if (WARN_ON_ONCE(!head))
7736 		return -EINVAL;
7737 
7738 	hlist_add_head_rcu(&event->hlist_entry, head);
7739 	perf_event_update_userpage(event);
7740 
7741 	return 0;
7742 }
7743 
7744 static void perf_swevent_del(struct perf_event *event, int flags)
7745 {
7746 	hlist_del_rcu(&event->hlist_entry);
7747 }
7748 
7749 static void perf_swevent_start(struct perf_event *event, int flags)
7750 {
7751 	event->hw.state = 0;
7752 }
7753 
7754 static void perf_swevent_stop(struct perf_event *event, int flags)
7755 {
7756 	event->hw.state = PERF_HES_STOPPED;
7757 }
7758 
7759 /* Deref the hlist from the update side */
7760 static inline struct swevent_hlist *
7761 swevent_hlist_deref(struct swevent_htable *swhash)
7762 {
7763 	return rcu_dereference_protected(swhash->swevent_hlist,
7764 					 lockdep_is_held(&swhash->hlist_mutex));
7765 }
7766 
7767 static void swevent_hlist_release(struct swevent_htable *swhash)
7768 {
7769 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7770 
7771 	if (!hlist)
7772 		return;
7773 
7774 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7775 	kfree_rcu(hlist, rcu_head);
7776 }
7777 
7778 static void swevent_hlist_put_cpu(int cpu)
7779 {
7780 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7781 
7782 	mutex_lock(&swhash->hlist_mutex);
7783 
7784 	if (!--swhash->hlist_refcount)
7785 		swevent_hlist_release(swhash);
7786 
7787 	mutex_unlock(&swhash->hlist_mutex);
7788 }
7789 
7790 static void swevent_hlist_put(void)
7791 {
7792 	int cpu;
7793 
7794 	for_each_possible_cpu(cpu)
7795 		swevent_hlist_put_cpu(cpu);
7796 }
7797 
7798 static int swevent_hlist_get_cpu(int cpu)
7799 {
7800 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7801 	int err = 0;
7802 
7803 	mutex_lock(&swhash->hlist_mutex);
7804 	if (!swevent_hlist_deref(swhash) &&
7805 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7806 		struct swevent_hlist *hlist;
7807 
7808 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7809 		if (!hlist) {
7810 			err = -ENOMEM;
7811 			goto exit;
7812 		}
7813 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7814 	}
7815 	swhash->hlist_refcount++;
7816 exit:
7817 	mutex_unlock(&swhash->hlist_mutex);
7818 
7819 	return err;
7820 }
7821 
7822 static int swevent_hlist_get(void)
7823 {
7824 	int err, cpu, failed_cpu;
7825 
7826 	mutex_lock(&pmus_lock);
7827 	for_each_possible_cpu(cpu) {
7828 		err = swevent_hlist_get_cpu(cpu);
7829 		if (err) {
7830 			failed_cpu = cpu;
7831 			goto fail;
7832 		}
7833 	}
7834 	mutex_unlock(&pmus_lock);
7835 	return 0;
7836 fail:
7837 	for_each_possible_cpu(cpu) {
7838 		if (cpu == failed_cpu)
7839 			break;
7840 		swevent_hlist_put_cpu(cpu);
7841 	}
7842 	mutex_unlock(&pmus_lock);
7843 	return err;
7844 }
7845 
7846 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7847 
7848 static void sw_perf_event_destroy(struct perf_event *event)
7849 {
7850 	u64 event_id = event->attr.config;
7851 
7852 	WARN_ON(event->parent);
7853 
7854 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7855 	swevent_hlist_put();
7856 }
7857 
7858 static int perf_swevent_init(struct perf_event *event)
7859 {
7860 	u64 event_id = event->attr.config;
7861 
7862 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7863 		return -ENOENT;
7864 
7865 	/*
7866 	 * no branch sampling for software events
7867 	 */
7868 	if (has_branch_stack(event))
7869 		return -EOPNOTSUPP;
7870 
7871 	switch (event_id) {
7872 	case PERF_COUNT_SW_CPU_CLOCK:
7873 	case PERF_COUNT_SW_TASK_CLOCK:
7874 		return -ENOENT;
7875 
7876 	default:
7877 		break;
7878 	}
7879 
7880 	if (event_id >= PERF_COUNT_SW_MAX)
7881 		return -ENOENT;
7882 
7883 	if (!event->parent) {
7884 		int err;
7885 
7886 		err = swevent_hlist_get();
7887 		if (err)
7888 			return err;
7889 
7890 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7891 		event->destroy = sw_perf_event_destroy;
7892 	}
7893 
7894 	return 0;
7895 }
7896 
7897 static struct pmu perf_swevent = {
7898 	.task_ctx_nr	= perf_sw_context,
7899 
7900 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7901 
7902 	.event_init	= perf_swevent_init,
7903 	.add		= perf_swevent_add,
7904 	.del		= perf_swevent_del,
7905 	.start		= perf_swevent_start,
7906 	.stop		= perf_swevent_stop,
7907 	.read		= perf_swevent_read,
7908 };
7909 
7910 #ifdef CONFIG_EVENT_TRACING
7911 
7912 static int perf_tp_filter_match(struct perf_event *event,
7913 				struct perf_sample_data *data)
7914 {
7915 	void *record = data->raw->frag.data;
7916 
7917 	/* only top level events have filters set */
7918 	if (event->parent)
7919 		event = event->parent;
7920 
7921 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7922 		return 1;
7923 	return 0;
7924 }
7925 
7926 static int perf_tp_event_match(struct perf_event *event,
7927 				struct perf_sample_data *data,
7928 				struct pt_regs *regs)
7929 {
7930 	if (event->hw.state & PERF_HES_STOPPED)
7931 		return 0;
7932 	/*
7933 	 * All tracepoints are from kernel-space.
7934 	 */
7935 	if (event->attr.exclude_kernel)
7936 		return 0;
7937 
7938 	if (!perf_tp_filter_match(event, data))
7939 		return 0;
7940 
7941 	return 1;
7942 }
7943 
7944 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7945 			       struct trace_event_call *call, u64 count,
7946 			       struct pt_regs *regs, struct hlist_head *head,
7947 			       struct task_struct *task)
7948 {
7949 	struct bpf_prog *prog = call->prog;
7950 
7951 	if (prog) {
7952 		*(struct pt_regs **)raw_data = regs;
7953 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7954 			perf_swevent_put_recursion_context(rctx);
7955 			return;
7956 		}
7957 	}
7958 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7959 		      rctx, task, NULL);
7960 }
7961 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7962 
7963 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7964 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7965 		   struct task_struct *task, struct perf_event *event)
7966 {
7967 	struct perf_sample_data data;
7968 
7969 	struct perf_raw_record raw = {
7970 		.frag = {
7971 			.size = entry_size,
7972 			.data = record,
7973 		},
7974 	};
7975 
7976 	perf_sample_data_init(&data, 0, 0);
7977 	data.raw = &raw;
7978 
7979 	perf_trace_buf_update(record, event_type);
7980 
7981 	/* Use the given event instead of the hlist */
7982 	if (event) {
7983 		if (perf_tp_event_match(event, &data, regs))
7984 			perf_swevent_event(event, count, &data, regs);
7985 	} else {
7986 		hlist_for_each_entry_rcu(event, head, hlist_entry) {
7987 			if (perf_tp_event_match(event, &data, regs))
7988 				perf_swevent_event(event, count, &data, regs);
7989 		}
7990 	}
7991 
7992 	/*
7993 	 * If we got specified a target task, also iterate its context and
7994 	 * deliver this event there too.
7995 	 */
7996 	if (task && task != current) {
7997 		struct perf_event_context *ctx;
7998 		struct trace_entry *entry = record;
7999 
8000 		rcu_read_lock();
8001 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8002 		if (!ctx)
8003 			goto unlock;
8004 
8005 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8006 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8007 				continue;
8008 			if (event->attr.config != entry->type)
8009 				continue;
8010 			if (perf_tp_event_match(event, &data, regs))
8011 				perf_swevent_event(event, count, &data, regs);
8012 		}
8013 unlock:
8014 		rcu_read_unlock();
8015 	}
8016 
8017 	perf_swevent_put_recursion_context(rctx);
8018 }
8019 EXPORT_SYMBOL_GPL(perf_tp_event);
8020 
8021 static void tp_perf_event_destroy(struct perf_event *event)
8022 {
8023 	perf_trace_destroy(event);
8024 }
8025 
8026 static int perf_tp_event_init(struct perf_event *event)
8027 {
8028 	int err;
8029 
8030 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8031 		return -ENOENT;
8032 
8033 	/*
8034 	 * no branch sampling for tracepoint events
8035 	 */
8036 	if (has_branch_stack(event))
8037 		return -EOPNOTSUPP;
8038 
8039 	err = perf_trace_init(event);
8040 	if (err)
8041 		return err;
8042 
8043 	event->destroy = tp_perf_event_destroy;
8044 
8045 	return 0;
8046 }
8047 
8048 static struct pmu perf_tracepoint = {
8049 	.task_ctx_nr	= perf_sw_context,
8050 
8051 	.event_init	= perf_tp_event_init,
8052 	.add		= perf_trace_add,
8053 	.del		= perf_trace_del,
8054 	.start		= perf_swevent_start,
8055 	.stop		= perf_swevent_stop,
8056 	.read		= perf_swevent_read,
8057 };
8058 
8059 static inline void perf_tp_register(void)
8060 {
8061 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8062 }
8063 
8064 static void perf_event_free_filter(struct perf_event *event)
8065 {
8066 	ftrace_profile_free_filter(event);
8067 }
8068 
8069 #ifdef CONFIG_BPF_SYSCALL
8070 static void bpf_overflow_handler(struct perf_event *event,
8071 				 struct perf_sample_data *data,
8072 				 struct pt_regs *regs)
8073 {
8074 	struct bpf_perf_event_data_kern ctx = {
8075 		.data = data,
8076 		.regs = regs,
8077 	};
8078 	int ret = 0;
8079 
8080 	preempt_disable();
8081 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8082 		goto out;
8083 	rcu_read_lock();
8084 	ret = BPF_PROG_RUN(event->prog, &ctx);
8085 	rcu_read_unlock();
8086 out:
8087 	__this_cpu_dec(bpf_prog_active);
8088 	preempt_enable();
8089 	if (!ret)
8090 		return;
8091 
8092 	event->orig_overflow_handler(event, data, regs);
8093 }
8094 
8095 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8096 {
8097 	struct bpf_prog *prog;
8098 
8099 	if (event->overflow_handler_context)
8100 		/* hw breakpoint or kernel counter */
8101 		return -EINVAL;
8102 
8103 	if (event->prog)
8104 		return -EEXIST;
8105 
8106 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8107 	if (IS_ERR(prog))
8108 		return PTR_ERR(prog);
8109 
8110 	event->prog = prog;
8111 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8112 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8113 	return 0;
8114 }
8115 
8116 static void perf_event_free_bpf_handler(struct perf_event *event)
8117 {
8118 	struct bpf_prog *prog = event->prog;
8119 
8120 	if (!prog)
8121 		return;
8122 
8123 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8124 	event->prog = NULL;
8125 	bpf_prog_put(prog);
8126 }
8127 #else
8128 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8129 {
8130 	return -EOPNOTSUPP;
8131 }
8132 static void perf_event_free_bpf_handler(struct perf_event *event)
8133 {
8134 }
8135 #endif
8136 
8137 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8138 {
8139 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8140 	struct bpf_prog *prog;
8141 
8142 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8143 		return perf_event_set_bpf_handler(event, prog_fd);
8144 
8145 	if (event->tp_event->prog)
8146 		return -EEXIST;
8147 
8148 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8149 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8150 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8151 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8152 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8153 		return -EINVAL;
8154 
8155 	prog = bpf_prog_get(prog_fd);
8156 	if (IS_ERR(prog))
8157 		return PTR_ERR(prog);
8158 
8159 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8160 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8161 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8162 		/* valid fd, but invalid bpf program type */
8163 		bpf_prog_put(prog);
8164 		return -EINVAL;
8165 	}
8166 
8167 	if (is_tracepoint || is_syscall_tp) {
8168 		int off = trace_event_get_offsets(event->tp_event);
8169 
8170 		if (prog->aux->max_ctx_offset > off) {
8171 			bpf_prog_put(prog);
8172 			return -EACCES;
8173 		}
8174 	}
8175 	event->tp_event->prog = prog;
8176 	event->tp_event->bpf_prog_owner = event;
8177 
8178 	return 0;
8179 }
8180 
8181 static void perf_event_free_bpf_prog(struct perf_event *event)
8182 {
8183 	struct bpf_prog *prog;
8184 
8185 	perf_event_free_bpf_handler(event);
8186 
8187 	if (!event->tp_event)
8188 		return;
8189 
8190 	prog = event->tp_event->prog;
8191 	if (prog && event->tp_event->bpf_prog_owner == event) {
8192 		event->tp_event->prog = NULL;
8193 		bpf_prog_put(prog);
8194 	}
8195 }
8196 
8197 #else
8198 
8199 static inline void perf_tp_register(void)
8200 {
8201 }
8202 
8203 static void perf_event_free_filter(struct perf_event *event)
8204 {
8205 }
8206 
8207 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8208 {
8209 	return -ENOENT;
8210 }
8211 
8212 static void perf_event_free_bpf_prog(struct perf_event *event)
8213 {
8214 }
8215 #endif /* CONFIG_EVENT_TRACING */
8216 
8217 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8218 void perf_bp_event(struct perf_event *bp, void *data)
8219 {
8220 	struct perf_sample_data sample;
8221 	struct pt_regs *regs = data;
8222 
8223 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8224 
8225 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8226 		perf_swevent_event(bp, 1, &sample, regs);
8227 }
8228 #endif
8229 
8230 /*
8231  * Allocate a new address filter
8232  */
8233 static struct perf_addr_filter *
8234 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8235 {
8236 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8237 	struct perf_addr_filter *filter;
8238 
8239 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8240 	if (!filter)
8241 		return NULL;
8242 
8243 	INIT_LIST_HEAD(&filter->entry);
8244 	list_add_tail(&filter->entry, filters);
8245 
8246 	return filter;
8247 }
8248 
8249 static void free_filters_list(struct list_head *filters)
8250 {
8251 	struct perf_addr_filter *filter, *iter;
8252 
8253 	list_for_each_entry_safe(filter, iter, filters, entry) {
8254 		if (filter->inode)
8255 			iput(filter->inode);
8256 		list_del(&filter->entry);
8257 		kfree(filter);
8258 	}
8259 }
8260 
8261 /*
8262  * Free existing address filters and optionally install new ones
8263  */
8264 static void perf_addr_filters_splice(struct perf_event *event,
8265 				     struct list_head *head)
8266 {
8267 	unsigned long flags;
8268 	LIST_HEAD(list);
8269 
8270 	if (!has_addr_filter(event))
8271 		return;
8272 
8273 	/* don't bother with children, they don't have their own filters */
8274 	if (event->parent)
8275 		return;
8276 
8277 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8278 
8279 	list_splice_init(&event->addr_filters.list, &list);
8280 	if (head)
8281 		list_splice(head, &event->addr_filters.list);
8282 
8283 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8284 
8285 	free_filters_list(&list);
8286 }
8287 
8288 /*
8289  * Scan through mm's vmas and see if one of them matches the
8290  * @filter; if so, adjust filter's address range.
8291  * Called with mm::mmap_sem down for reading.
8292  */
8293 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8294 					    struct mm_struct *mm)
8295 {
8296 	struct vm_area_struct *vma;
8297 
8298 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8299 		struct file *file = vma->vm_file;
8300 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8301 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8302 
8303 		if (!file)
8304 			continue;
8305 
8306 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8307 			continue;
8308 
8309 		return vma->vm_start;
8310 	}
8311 
8312 	return 0;
8313 }
8314 
8315 /*
8316  * Update event's address range filters based on the
8317  * task's existing mappings, if any.
8318  */
8319 static void perf_event_addr_filters_apply(struct perf_event *event)
8320 {
8321 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8322 	struct task_struct *task = READ_ONCE(event->ctx->task);
8323 	struct perf_addr_filter *filter;
8324 	struct mm_struct *mm = NULL;
8325 	unsigned int count = 0;
8326 	unsigned long flags;
8327 
8328 	/*
8329 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8330 	 * will stop on the parent's child_mutex that our caller is also holding
8331 	 */
8332 	if (task == TASK_TOMBSTONE)
8333 		return;
8334 
8335 	if (!ifh->nr_file_filters)
8336 		return;
8337 
8338 	mm = get_task_mm(event->ctx->task);
8339 	if (!mm)
8340 		goto restart;
8341 
8342 	down_read(&mm->mmap_sem);
8343 
8344 	raw_spin_lock_irqsave(&ifh->lock, flags);
8345 	list_for_each_entry(filter, &ifh->list, entry) {
8346 		event->addr_filters_offs[count] = 0;
8347 
8348 		/*
8349 		 * Adjust base offset if the filter is associated to a binary
8350 		 * that needs to be mapped:
8351 		 */
8352 		if (filter->inode)
8353 			event->addr_filters_offs[count] =
8354 				perf_addr_filter_apply(filter, mm);
8355 
8356 		count++;
8357 	}
8358 
8359 	event->addr_filters_gen++;
8360 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8361 
8362 	up_read(&mm->mmap_sem);
8363 
8364 	mmput(mm);
8365 
8366 restart:
8367 	perf_event_stop(event, 1);
8368 }
8369 
8370 /*
8371  * Address range filtering: limiting the data to certain
8372  * instruction address ranges. Filters are ioctl()ed to us from
8373  * userspace as ascii strings.
8374  *
8375  * Filter string format:
8376  *
8377  * ACTION RANGE_SPEC
8378  * where ACTION is one of the
8379  *  * "filter": limit the trace to this region
8380  *  * "start": start tracing from this address
8381  *  * "stop": stop tracing at this address/region;
8382  * RANGE_SPEC is
8383  *  * for kernel addresses: <start address>[/<size>]
8384  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8385  *
8386  * if <size> is not specified, the range is treated as a single address.
8387  */
8388 enum {
8389 	IF_ACT_NONE = -1,
8390 	IF_ACT_FILTER,
8391 	IF_ACT_START,
8392 	IF_ACT_STOP,
8393 	IF_SRC_FILE,
8394 	IF_SRC_KERNEL,
8395 	IF_SRC_FILEADDR,
8396 	IF_SRC_KERNELADDR,
8397 };
8398 
8399 enum {
8400 	IF_STATE_ACTION = 0,
8401 	IF_STATE_SOURCE,
8402 	IF_STATE_END,
8403 };
8404 
8405 static const match_table_t if_tokens = {
8406 	{ IF_ACT_FILTER,	"filter" },
8407 	{ IF_ACT_START,		"start" },
8408 	{ IF_ACT_STOP,		"stop" },
8409 	{ IF_SRC_FILE,		"%u/%u@%s" },
8410 	{ IF_SRC_KERNEL,	"%u/%u" },
8411 	{ IF_SRC_FILEADDR,	"%u@%s" },
8412 	{ IF_SRC_KERNELADDR,	"%u" },
8413 	{ IF_ACT_NONE,		NULL },
8414 };
8415 
8416 /*
8417  * Address filter string parser
8418  */
8419 static int
8420 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8421 			     struct list_head *filters)
8422 {
8423 	struct perf_addr_filter *filter = NULL;
8424 	char *start, *orig, *filename = NULL;
8425 	struct path path;
8426 	substring_t args[MAX_OPT_ARGS];
8427 	int state = IF_STATE_ACTION, token;
8428 	unsigned int kernel = 0;
8429 	int ret = -EINVAL;
8430 
8431 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8432 	if (!fstr)
8433 		return -ENOMEM;
8434 
8435 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8436 		ret = -EINVAL;
8437 
8438 		if (!*start)
8439 			continue;
8440 
8441 		/* filter definition begins */
8442 		if (state == IF_STATE_ACTION) {
8443 			filter = perf_addr_filter_new(event, filters);
8444 			if (!filter)
8445 				goto fail;
8446 		}
8447 
8448 		token = match_token(start, if_tokens, args);
8449 		switch (token) {
8450 		case IF_ACT_FILTER:
8451 		case IF_ACT_START:
8452 			filter->filter = 1;
8453 
8454 		case IF_ACT_STOP:
8455 			if (state != IF_STATE_ACTION)
8456 				goto fail;
8457 
8458 			state = IF_STATE_SOURCE;
8459 			break;
8460 
8461 		case IF_SRC_KERNELADDR:
8462 		case IF_SRC_KERNEL:
8463 			kernel = 1;
8464 
8465 		case IF_SRC_FILEADDR:
8466 		case IF_SRC_FILE:
8467 			if (state != IF_STATE_SOURCE)
8468 				goto fail;
8469 
8470 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8471 				filter->range = 1;
8472 
8473 			*args[0].to = 0;
8474 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8475 			if (ret)
8476 				goto fail;
8477 
8478 			if (filter->range) {
8479 				*args[1].to = 0;
8480 				ret = kstrtoul(args[1].from, 0, &filter->size);
8481 				if (ret)
8482 					goto fail;
8483 			}
8484 
8485 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8486 				int fpos = filter->range ? 2 : 1;
8487 
8488 				filename = match_strdup(&args[fpos]);
8489 				if (!filename) {
8490 					ret = -ENOMEM;
8491 					goto fail;
8492 				}
8493 			}
8494 
8495 			state = IF_STATE_END;
8496 			break;
8497 
8498 		default:
8499 			goto fail;
8500 		}
8501 
8502 		/*
8503 		 * Filter definition is fully parsed, validate and install it.
8504 		 * Make sure that it doesn't contradict itself or the event's
8505 		 * attribute.
8506 		 */
8507 		if (state == IF_STATE_END) {
8508 			ret = -EINVAL;
8509 			if (kernel && event->attr.exclude_kernel)
8510 				goto fail;
8511 
8512 			if (!kernel) {
8513 				if (!filename)
8514 					goto fail;
8515 
8516 				/*
8517 				 * For now, we only support file-based filters
8518 				 * in per-task events; doing so for CPU-wide
8519 				 * events requires additional context switching
8520 				 * trickery, since same object code will be
8521 				 * mapped at different virtual addresses in
8522 				 * different processes.
8523 				 */
8524 				ret = -EOPNOTSUPP;
8525 				if (!event->ctx->task)
8526 					goto fail_free_name;
8527 
8528 				/* look up the path and grab its inode */
8529 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8530 				if (ret)
8531 					goto fail_free_name;
8532 
8533 				filter->inode = igrab(d_inode(path.dentry));
8534 				path_put(&path);
8535 				kfree(filename);
8536 				filename = NULL;
8537 
8538 				ret = -EINVAL;
8539 				if (!filter->inode ||
8540 				    !S_ISREG(filter->inode->i_mode))
8541 					/* free_filters_list() will iput() */
8542 					goto fail;
8543 
8544 				event->addr_filters.nr_file_filters++;
8545 			}
8546 
8547 			/* ready to consume more filters */
8548 			state = IF_STATE_ACTION;
8549 			filter = NULL;
8550 		}
8551 	}
8552 
8553 	if (state != IF_STATE_ACTION)
8554 		goto fail;
8555 
8556 	kfree(orig);
8557 
8558 	return 0;
8559 
8560 fail_free_name:
8561 	kfree(filename);
8562 fail:
8563 	free_filters_list(filters);
8564 	kfree(orig);
8565 
8566 	return ret;
8567 }
8568 
8569 static int
8570 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8571 {
8572 	LIST_HEAD(filters);
8573 	int ret;
8574 
8575 	/*
8576 	 * Since this is called in perf_ioctl() path, we're already holding
8577 	 * ctx::mutex.
8578 	 */
8579 	lockdep_assert_held(&event->ctx->mutex);
8580 
8581 	if (WARN_ON_ONCE(event->parent))
8582 		return -EINVAL;
8583 
8584 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8585 	if (ret)
8586 		goto fail_clear_files;
8587 
8588 	ret = event->pmu->addr_filters_validate(&filters);
8589 	if (ret)
8590 		goto fail_free_filters;
8591 
8592 	/* remove existing filters, if any */
8593 	perf_addr_filters_splice(event, &filters);
8594 
8595 	/* install new filters */
8596 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8597 
8598 	return ret;
8599 
8600 fail_free_filters:
8601 	free_filters_list(&filters);
8602 
8603 fail_clear_files:
8604 	event->addr_filters.nr_file_filters = 0;
8605 
8606 	return ret;
8607 }
8608 
8609 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8610 {
8611 	char *filter_str;
8612 	int ret = -EINVAL;
8613 
8614 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8615 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8616 	    !has_addr_filter(event))
8617 		return -EINVAL;
8618 
8619 	filter_str = strndup_user(arg, PAGE_SIZE);
8620 	if (IS_ERR(filter_str))
8621 		return PTR_ERR(filter_str);
8622 
8623 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8624 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8625 		ret = ftrace_profile_set_filter(event, event->attr.config,
8626 						filter_str);
8627 	else if (has_addr_filter(event))
8628 		ret = perf_event_set_addr_filter(event, filter_str);
8629 
8630 	kfree(filter_str);
8631 	return ret;
8632 }
8633 
8634 /*
8635  * hrtimer based swevent callback
8636  */
8637 
8638 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8639 {
8640 	enum hrtimer_restart ret = HRTIMER_RESTART;
8641 	struct perf_sample_data data;
8642 	struct pt_regs *regs;
8643 	struct perf_event *event;
8644 	u64 period;
8645 
8646 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8647 
8648 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8649 		return HRTIMER_NORESTART;
8650 
8651 	event->pmu->read(event);
8652 
8653 	perf_sample_data_init(&data, 0, event->hw.last_period);
8654 	regs = get_irq_regs();
8655 
8656 	if (regs && !perf_exclude_event(event, regs)) {
8657 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8658 			if (__perf_event_overflow(event, 1, &data, regs))
8659 				ret = HRTIMER_NORESTART;
8660 	}
8661 
8662 	period = max_t(u64, 10000, event->hw.sample_period);
8663 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8664 
8665 	return ret;
8666 }
8667 
8668 static void perf_swevent_start_hrtimer(struct perf_event *event)
8669 {
8670 	struct hw_perf_event *hwc = &event->hw;
8671 	s64 period;
8672 
8673 	if (!is_sampling_event(event))
8674 		return;
8675 
8676 	period = local64_read(&hwc->period_left);
8677 	if (period) {
8678 		if (period < 0)
8679 			period = 10000;
8680 
8681 		local64_set(&hwc->period_left, 0);
8682 	} else {
8683 		period = max_t(u64, 10000, hwc->sample_period);
8684 	}
8685 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8686 		      HRTIMER_MODE_REL_PINNED);
8687 }
8688 
8689 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8690 {
8691 	struct hw_perf_event *hwc = &event->hw;
8692 
8693 	if (is_sampling_event(event)) {
8694 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8695 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8696 
8697 		hrtimer_cancel(&hwc->hrtimer);
8698 	}
8699 }
8700 
8701 static void perf_swevent_init_hrtimer(struct perf_event *event)
8702 {
8703 	struct hw_perf_event *hwc = &event->hw;
8704 
8705 	if (!is_sampling_event(event))
8706 		return;
8707 
8708 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8709 	hwc->hrtimer.function = perf_swevent_hrtimer;
8710 
8711 	/*
8712 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8713 	 * mapping and avoid the whole period adjust feedback stuff.
8714 	 */
8715 	if (event->attr.freq) {
8716 		long freq = event->attr.sample_freq;
8717 
8718 		event->attr.sample_period = NSEC_PER_SEC / freq;
8719 		hwc->sample_period = event->attr.sample_period;
8720 		local64_set(&hwc->period_left, hwc->sample_period);
8721 		hwc->last_period = hwc->sample_period;
8722 		event->attr.freq = 0;
8723 	}
8724 }
8725 
8726 /*
8727  * Software event: cpu wall time clock
8728  */
8729 
8730 static void cpu_clock_event_update(struct perf_event *event)
8731 {
8732 	s64 prev;
8733 	u64 now;
8734 
8735 	now = local_clock();
8736 	prev = local64_xchg(&event->hw.prev_count, now);
8737 	local64_add(now - prev, &event->count);
8738 }
8739 
8740 static void cpu_clock_event_start(struct perf_event *event, int flags)
8741 {
8742 	local64_set(&event->hw.prev_count, local_clock());
8743 	perf_swevent_start_hrtimer(event);
8744 }
8745 
8746 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8747 {
8748 	perf_swevent_cancel_hrtimer(event);
8749 	cpu_clock_event_update(event);
8750 }
8751 
8752 static int cpu_clock_event_add(struct perf_event *event, int flags)
8753 {
8754 	if (flags & PERF_EF_START)
8755 		cpu_clock_event_start(event, flags);
8756 	perf_event_update_userpage(event);
8757 
8758 	return 0;
8759 }
8760 
8761 static void cpu_clock_event_del(struct perf_event *event, int flags)
8762 {
8763 	cpu_clock_event_stop(event, flags);
8764 }
8765 
8766 static void cpu_clock_event_read(struct perf_event *event)
8767 {
8768 	cpu_clock_event_update(event);
8769 }
8770 
8771 static int cpu_clock_event_init(struct perf_event *event)
8772 {
8773 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8774 		return -ENOENT;
8775 
8776 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8777 		return -ENOENT;
8778 
8779 	/*
8780 	 * no branch sampling for software events
8781 	 */
8782 	if (has_branch_stack(event))
8783 		return -EOPNOTSUPP;
8784 
8785 	perf_swevent_init_hrtimer(event);
8786 
8787 	return 0;
8788 }
8789 
8790 static struct pmu perf_cpu_clock = {
8791 	.task_ctx_nr	= perf_sw_context,
8792 
8793 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8794 
8795 	.event_init	= cpu_clock_event_init,
8796 	.add		= cpu_clock_event_add,
8797 	.del		= cpu_clock_event_del,
8798 	.start		= cpu_clock_event_start,
8799 	.stop		= cpu_clock_event_stop,
8800 	.read		= cpu_clock_event_read,
8801 };
8802 
8803 /*
8804  * Software event: task time clock
8805  */
8806 
8807 static void task_clock_event_update(struct perf_event *event, u64 now)
8808 {
8809 	u64 prev;
8810 	s64 delta;
8811 
8812 	prev = local64_xchg(&event->hw.prev_count, now);
8813 	delta = now - prev;
8814 	local64_add(delta, &event->count);
8815 }
8816 
8817 static void task_clock_event_start(struct perf_event *event, int flags)
8818 {
8819 	local64_set(&event->hw.prev_count, event->ctx->time);
8820 	perf_swevent_start_hrtimer(event);
8821 }
8822 
8823 static void task_clock_event_stop(struct perf_event *event, int flags)
8824 {
8825 	perf_swevent_cancel_hrtimer(event);
8826 	task_clock_event_update(event, event->ctx->time);
8827 }
8828 
8829 static int task_clock_event_add(struct perf_event *event, int flags)
8830 {
8831 	if (flags & PERF_EF_START)
8832 		task_clock_event_start(event, flags);
8833 	perf_event_update_userpage(event);
8834 
8835 	return 0;
8836 }
8837 
8838 static void task_clock_event_del(struct perf_event *event, int flags)
8839 {
8840 	task_clock_event_stop(event, PERF_EF_UPDATE);
8841 }
8842 
8843 static void task_clock_event_read(struct perf_event *event)
8844 {
8845 	u64 now = perf_clock();
8846 	u64 delta = now - event->ctx->timestamp;
8847 	u64 time = event->ctx->time + delta;
8848 
8849 	task_clock_event_update(event, time);
8850 }
8851 
8852 static int task_clock_event_init(struct perf_event *event)
8853 {
8854 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8855 		return -ENOENT;
8856 
8857 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8858 		return -ENOENT;
8859 
8860 	/*
8861 	 * no branch sampling for software events
8862 	 */
8863 	if (has_branch_stack(event))
8864 		return -EOPNOTSUPP;
8865 
8866 	perf_swevent_init_hrtimer(event);
8867 
8868 	return 0;
8869 }
8870 
8871 static struct pmu perf_task_clock = {
8872 	.task_ctx_nr	= perf_sw_context,
8873 
8874 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8875 
8876 	.event_init	= task_clock_event_init,
8877 	.add		= task_clock_event_add,
8878 	.del		= task_clock_event_del,
8879 	.start		= task_clock_event_start,
8880 	.stop		= task_clock_event_stop,
8881 	.read		= task_clock_event_read,
8882 };
8883 
8884 static void perf_pmu_nop_void(struct pmu *pmu)
8885 {
8886 }
8887 
8888 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8889 {
8890 }
8891 
8892 static int perf_pmu_nop_int(struct pmu *pmu)
8893 {
8894 	return 0;
8895 }
8896 
8897 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8898 
8899 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8900 {
8901 	__this_cpu_write(nop_txn_flags, flags);
8902 
8903 	if (flags & ~PERF_PMU_TXN_ADD)
8904 		return;
8905 
8906 	perf_pmu_disable(pmu);
8907 }
8908 
8909 static int perf_pmu_commit_txn(struct pmu *pmu)
8910 {
8911 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8912 
8913 	__this_cpu_write(nop_txn_flags, 0);
8914 
8915 	if (flags & ~PERF_PMU_TXN_ADD)
8916 		return 0;
8917 
8918 	perf_pmu_enable(pmu);
8919 	return 0;
8920 }
8921 
8922 static void perf_pmu_cancel_txn(struct pmu *pmu)
8923 {
8924 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8925 
8926 	__this_cpu_write(nop_txn_flags, 0);
8927 
8928 	if (flags & ~PERF_PMU_TXN_ADD)
8929 		return;
8930 
8931 	perf_pmu_enable(pmu);
8932 }
8933 
8934 static int perf_event_idx_default(struct perf_event *event)
8935 {
8936 	return 0;
8937 }
8938 
8939 /*
8940  * Ensures all contexts with the same task_ctx_nr have the same
8941  * pmu_cpu_context too.
8942  */
8943 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8944 {
8945 	struct pmu *pmu;
8946 
8947 	if (ctxn < 0)
8948 		return NULL;
8949 
8950 	list_for_each_entry(pmu, &pmus, entry) {
8951 		if (pmu->task_ctx_nr == ctxn)
8952 			return pmu->pmu_cpu_context;
8953 	}
8954 
8955 	return NULL;
8956 }
8957 
8958 static void free_pmu_context(struct pmu *pmu)
8959 {
8960 	/*
8961 	 * Static contexts such as perf_sw_context have a global lifetime
8962 	 * and may be shared between different PMUs. Avoid freeing them
8963 	 * when a single PMU is going away.
8964 	 */
8965 	if (pmu->task_ctx_nr > perf_invalid_context)
8966 		return;
8967 
8968 	mutex_lock(&pmus_lock);
8969 	free_percpu(pmu->pmu_cpu_context);
8970 	mutex_unlock(&pmus_lock);
8971 }
8972 
8973 /*
8974  * Let userspace know that this PMU supports address range filtering:
8975  */
8976 static ssize_t nr_addr_filters_show(struct device *dev,
8977 				    struct device_attribute *attr,
8978 				    char *page)
8979 {
8980 	struct pmu *pmu = dev_get_drvdata(dev);
8981 
8982 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8983 }
8984 DEVICE_ATTR_RO(nr_addr_filters);
8985 
8986 static struct idr pmu_idr;
8987 
8988 static ssize_t
8989 type_show(struct device *dev, struct device_attribute *attr, char *page)
8990 {
8991 	struct pmu *pmu = dev_get_drvdata(dev);
8992 
8993 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8994 }
8995 static DEVICE_ATTR_RO(type);
8996 
8997 static ssize_t
8998 perf_event_mux_interval_ms_show(struct device *dev,
8999 				struct device_attribute *attr,
9000 				char *page)
9001 {
9002 	struct pmu *pmu = dev_get_drvdata(dev);
9003 
9004 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9005 }
9006 
9007 static DEFINE_MUTEX(mux_interval_mutex);
9008 
9009 static ssize_t
9010 perf_event_mux_interval_ms_store(struct device *dev,
9011 				 struct device_attribute *attr,
9012 				 const char *buf, size_t count)
9013 {
9014 	struct pmu *pmu = dev_get_drvdata(dev);
9015 	int timer, cpu, ret;
9016 
9017 	ret = kstrtoint(buf, 0, &timer);
9018 	if (ret)
9019 		return ret;
9020 
9021 	if (timer < 1)
9022 		return -EINVAL;
9023 
9024 	/* same value, noting to do */
9025 	if (timer == pmu->hrtimer_interval_ms)
9026 		return count;
9027 
9028 	mutex_lock(&mux_interval_mutex);
9029 	pmu->hrtimer_interval_ms = timer;
9030 
9031 	/* update all cpuctx for this PMU */
9032 	cpus_read_lock();
9033 	for_each_online_cpu(cpu) {
9034 		struct perf_cpu_context *cpuctx;
9035 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9036 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9037 
9038 		cpu_function_call(cpu,
9039 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9040 	}
9041 	cpus_read_unlock();
9042 	mutex_unlock(&mux_interval_mutex);
9043 
9044 	return count;
9045 }
9046 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9047 
9048 static struct attribute *pmu_dev_attrs[] = {
9049 	&dev_attr_type.attr,
9050 	&dev_attr_perf_event_mux_interval_ms.attr,
9051 	NULL,
9052 };
9053 ATTRIBUTE_GROUPS(pmu_dev);
9054 
9055 static int pmu_bus_running;
9056 static struct bus_type pmu_bus = {
9057 	.name		= "event_source",
9058 	.dev_groups	= pmu_dev_groups,
9059 };
9060 
9061 static void pmu_dev_release(struct device *dev)
9062 {
9063 	kfree(dev);
9064 }
9065 
9066 static int pmu_dev_alloc(struct pmu *pmu)
9067 {
9068 	int ret = -ENOMEM;
9069 
9070 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9071 	if (!pmu->dev)
9072 		goto out;
9073 
9074 	pmu->dev->groups = pmu->attr_groups;
9075 	device_initialize(pmu->dev);
9076 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9077 	if (ret)
9078 		goto free_dev;
9079 
9080 	dev_set_drvdata(pmu->dev, pmu);
9081 	pmu->dev->bus = &pmu_bus;
9082 	pmu->dev->release = pmu_dev_release;
9083 	ret = device_add(pmu->dev);
9084 	if (ret)
9085 		goto free_dev;
9086 
9087 	/* For PMUs with address filters, throw in an extra attribute: */
9088 	if (pmu->nr_addr_filters)
9089 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9090 
9091 	if (ret)
9092 		goto del_dev;
9093 
9094 out:
9095 	return ret;
9096 
9097 del_dev:
9098 	device_del(pmu->dev);
9099 
9100 free_dev:
9101 	put_device(pmu->dev);
9102 	goto out;
9103 }
9104 
9105 static struct lock_class_key cpuctx_mutex;
9106 static struct lock_class_key cpuctx_lock;
9107 
9108 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9109 {
9110 	int cpu, ret;
9111 
9112 	mutex_lock(&pmus_lock);
9113 	ret = -ENOMEM;
9114 	pmu->pmu_disable_count = alloc_percpu(int);
9115 	if (!pmu->pmu_disable_count)
9116 		goto unlock;
9117 
9118 	pmu->type = -1;
9119 	if (!name)
9120 		goto skip_type;
9121 	pmu->name = name;
9122 
9123 	if (type < 0) {
9124 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9125 		if (type < 0) {
9126 			ret = type;
9127 			goto free_pdc;
9128 		}
9129 	}
9130 	pmu->type = type;
9131 
9132 	if (pmu_bus_running) {
9133 		ret = pmu_dev_alloc(pmu);
9134 		if (ret)
9135 			goto free_idr;
9136 	}
9137 
9138 skip_type:
9139 	if (pmu->task_ctx_nr == perf_hw_context) {
9140 		static int hw_context_taken = 0;
9141 
9142 		/*
9143 		 * Other than systems with heterogeneous CPUs, it never makes
9144 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9145 		 * uncore must use perf_invalid_context.
9146 		 */
9147 		if (WARN_ON_ONCE(hw_context_taken &&
9148 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9149 			pmu->task_ctx_nr = perf_invalid_context;
9150 
9151 		hw_context_taken = 1;
9152 	}
9153 
9154 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9155 	if (pmu->pmu_cpu_context)
9156 		goto got_cpu_context;
9157 
9158 	ret = -ENOMEM;
9159 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9160 	if (!pmu->pmu_cpu_context)
9161 		goto free_dev;
9162 
9163 	for_each_possible_cpu(cpu) {
9164 		struct perf_cpu_context *cpuctx;
9165 
9166 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9167 		__perf_event_init_context(&cpuctx->ctx);
9168 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9169 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9170 		cpuctx->ctx.pmu = pmu;
9171 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9172 
9173 		__perf_mux_hrtimer_init(cpuctx, cpu);
9174 	}
9175 
9176 got_cpu_context:
9177 	if (!pmu->start_txn) {
9178 		if (pmu->pmu_enable) {
9179 			/*
9180 			 * If we have pmu_enable/pmu_disable calls, install
9181 			 * transaction stubs that use that to try and batch
9182 			 * hardware accesses.
9183 			 */
9184 			pmu->start_txn  = perf_pmu_start_txn;
9185 			pmu->commit_txn = perf_pmu_commit_txn;
9186 			pmu->cancel_txn = perf_pmu_cancel_txn;
9187 		} else {
9188 			pmu->start_txn  = perf_pmu_nop_txn;
9189 			pmu->commit_txn = perf_pmu_nop_int;
9190 			pmu->cancel_txn = perf_pmu_nop_void;
9191 		}
9192 	}
9193 
9194 	if (!pmu->pmu_enable) {
9195 		pmu->pmu_enable  = perf_pmu_nop_void;
9196 		pmu->pmu_disable = perf_pmu_nop_void;
9197 	}
9198 
9199 	if (!pmu->event_idx)
9200 		pmu->event_idx = perf_event_idx_default;
9201 
9202 	list_add_rcu(&pmu->entry, &pmus);
9203 	atomic_set(&pmu->exclusive_cnt, 0);
9204 	ret = 0;
9205 unlock:
9206 	mutex_unlock(&pmus_lock);
9207 
9208 	return ret;
9209 
9210 free_dev:
9211 	device_del(pmu->dev);
9212 	put_device(pmu->dev);
9213 
9214 free_idr:
9215 	if (pmu->type >= PERF_TYPE_MAX)
9216 		idr_remove(&pmu_idr, pmu->type);
9217 
9218 free_pdc:
9219 	free_percpu(pmu->pmu_disable_count);
9220 	goto unlock;
9221 }
9222 EXPORT_SYMBOL_GPL(perf_pmu_register);
9223 
9224 void perf_pmu_unregister(struct pmu *pmu)
9225 {
9226 	int remove_device;
9227 
9228 	mutex_lock(&pmus_lock);
9229 	remove_device = pmu_bus_running;
9230 	list_del_rcu(&pmu->entry);
9231 	mutex_unlock(&pmus_lock);
9232 
9233 	/*
9234 	 * We dereference the pmu list under both SRCU and regular RCU, so
9235 	 * synchronize against both of those.
9236 	 */
9237 	synchronize_srcu(&pmus_srcu);
9238 	synchronize_rcu();
9239 
9240 	free_percpu(pmu->pmu_disable_count);
9241 	if (pmu->type >= PERF_TYPE_MAX)
9242 		idr_remove(&pmu_idr, pmu->type);
9243 	if (remove_device) {
9244 		if (pmu->nr_addr_filters)
9245 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9246 		device_del(pmu->dev);
9247 		put_device(pmu->dev);
9248 	}
9249 	free_pmu_context(pmu);
9250 }
9251 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9252 
9253 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9254 {
9255 	struct perf_event_context *ctx = NULL;
9256 	int ret;
9257 
9258 	if (!try_module_get(pmu->module))
9259 		return -ENODEV;
9260 
9261 	if (event->group_leader != event) {
9262 		/*
9263 		 * This ctx->mutex can nest when we're called through
9264 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9265 		 */
9266 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9267 						 SINGLE_DEPTH_NESTING);
9268 		BUG_ON(!ctx);
9269 	}
9270 
9271 	event->pmu = pmu;
9272 	ret = pmu->event_init(event);
9273 
9274 	if (ctx)
9275 		perf_event_ctx_unlock(event->group_leader, ctx);
9276 
9277 	if (ret)
9278 		module_put(pmu->module);
9279 
9280 	return ret;
9281 }
9282 
9283 static struct pmu *perf_init_event(struct perf_event *event)
9284 {
9285 	struct pmu *pmu;
9286 	int idx;
9287 	int ret;
9288 
9289 	idx = srcu_read_lock(&pmus_srcu);
9290 
9291 	/* Try parent's PMU first: */
9292 	if (event->parent && event->parent->pmu) {
9293 		pmu = event->parent->pmu;
9294 		ret = perf_try_init_event(pmu, event);
9295 		if (!ret)
9296 			goto unlock;
9297 	}
9298 
9299 	rcu_read_lock();
9300 	pmu = idr_find(&pmu_idr, event->attr.type);
9301 	rcu_read_unlock();
9302 	if (pmu) {
9303 		ret = perf_try_init_event(pmu, event);
9304 		if (ret)
9305 			pmu = ERR_PTR(ret);
9306 		goto unlock;
9307 	}
9308 
9309 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9310 		ret = perf_try_init_event(pmu, event);
9311 		if (!ret)
9312 			goto unlock;
9313 
9314 		if (ret != -ENOENT) {
9315 			pmu = ERR_PTR(ret);
9316 			goto unlock;
9317 		}
9318 	}
9319 	pmu = ERR_PTR(-ENOENT);
9320 unlock:
9321 	srcu_read_unlock(&pmus_srcu, idx);
9322 
9323 	return pmu;
9324 }
9325 
9326 static void attach_sb_event(struct perf_event *event)
9327 {
9328 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9329 
9330 	raw_spin_lock(&pel->lock);
9331 	list_add_rcu(&event->sb_list, &pel->list);
9332 	raw_spin_unlock(&pel->lock);
9333 }
9334 
9335 /*
9336  * We keep a list of all !task (and therefore per-cpu) events
9337  * that need to receive side-band records.
9338  *
9339  * This avoids having to scan all the various PMU per-cpu contexts
9340  * looking for them.
9341  */
9342 static void account_pmu_sb_event(struct perf_event *event)
9343 {
9344 	if (is_sb_event(event))
9345 		attach_sb_event(event);
9346 }
9347 
9348 static void account_event_cpu(struct perf_event *event, int cpu)
9349 {
9350 	if (event->parent)
9351 		return;
9352 
9353 	if (is_cgroup_event(event))
9354 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9355 }
9356 
9357 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9358 static void account_freq_event_nohz(void)
9359 {
9360 #ifdef CONFIG_NO_HZ_FULL
9361 	/* Lock so we don't race with concurrent unaccount */
9362 	spin_lock(&nr_freq_lock);
9363 	if (atomic_inc_return(&nr_freq_events) == 1)
9364 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9365 	spin_unlock(&nr_freq_lock);
9366 #endif
9367 }
9368 
9369 static void account_freq_event(void)
9370 {
9371 	if (tick_nohz_full_enabled())
9372 		account_freq_event_nohz();
9373 	else
9374 		atomic_inc(&nr_freq_events);
9375 }
9376 
9377 
9378 static void account_event(struct perf_event *event)
9379 {
9380 	bool inc = false;
9381 
9382 	if (event->parent)
9383 		return;
9384 
9385 	if (event->attach_state & PERF_ATTACH_TASK)
9386 		inc = true;
9387 	if (event->attr.mmap || event->attr.mmap_data)
9388 		atomic_inc(&nr_mmap_events);
9389 	if (event->attr.comm)
9390 		atomic_inc(&nr_comm_events);
9391 	if (event->attr.namespaces)
9392 		atomic_inc(&nr_namespaces_events);
9393 	if (event->attr.task)
9394 		atomic_inc(&nr_task_events);
9395 	if (event->attr.freq)
9396 		account_freq_event();
9397 	if (event->attr.context_switch) {
9398 		atomic_inc(&nr_switch_events);
9399 		inc = true;
9400 	}
9401 	if (has_branch_stack(event))
9402 		inc = true;
9403 	if (is_cgroup_event(event))
9404 		inc = true;
9405 
9406 	if (inc) {
9407 		if (atomic_inc_not_zero(&perf_sched_count))
9408 			goto enabled;
9409 
9410 		mutex_lock(&perf_sched_mutex);
9411 		if (!atomic_read(&perf_sched_count)) {
9412 			static_branch_enable(&perf_sched_events);
9413 			/*
9414 			 * Guarantee that all CPUs observe they key change and
9415 			 * call the perf scheduling hooks before proceeding to
9416 			 * install events that need them.
9417 			 */
9418 			synchronize_sched();
9419 		}
9420 		/*
9421 		 * Now that we have waited for the sync_sched(), allow further
9422 		 * increments to by-pass the mutex.
9423 		 */
9424 		atomic_inc(&perf_sched_count);
9425 		mutex_unlock(&perf_sched_mutex);
9426 	}
9427 enabled:
9428 
9429 	account_event_cpu(event, event->cpu);
9430 
9431 	account_pmu_sb_event(event);
9432 }
9433 
9434 /*
9435  * Allocate and initialize a event structure
9436  */
9437 static struct perf_event *
9438 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9439 		 struct task_struct *task,
9440 		 struct perf_event *group_leader,
9441 		 struct perf_event *parent_event,
9442 		 perf_overflow_handler_t overflow_handler,
9443 		 void *context, int cgroup_fd)
9444 {
9445 	struct pmu *pmu;
9446 	struct perf_event *event;
9447 	struct hw_perf_event *hwc;
9448 	long err = -EINVAL;
9449 
9450 	if ((unsigned)cpu >= nr_cpu_ids) {
9451 		if (!task || cpu != -1)
9452 			return ERR_PTR(-EINVAL);
9453 	}
9454 
9455 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9456 	if (!event)
9457 		return ERR_PTR(-ENOMEM);
9458 
9459 	/*
9460 	 * Single events are their own group leaders, with an
9461 	 * empty sibling list:
9462 	 */
9463 	if (!group_leader)
9464 		group_leader = event;
9465 
9466 	mutex_init(&event->child_mutex);
9467 	INIT_LIST_HEAD(&event->child_list);
9468 
9469 	INIT_LIST_HEAD(&event->group_entry);
9470 	INIT_LIST_HEAD(&event->event_entry);
9471 	INIT_LIST_HEAD(&event->sibling_list);
9472 	INIT_LIST_HEAD(&event->rb_entry);
9473 	INIT_LIST_HEAD(&event->active_entry);
9474 	INIT_LIST_HEAD(&event->addr_filters.list);
9475 	INIT_HLIST_NODE(&event->hlist_entry);
9476 
9477 
9478 	init_waitqueue_head(&event->waitq);
9479 	init_irq_work(&event->pending, perf_pending_event);
9480 
9481 	mutex_init(&event->mmap_mutex);
9482 	raw_spin_lock_init(&event->addr_filters.lock);
9483 
9484 	atomic_long_set(&event->refcount, 1);
9485 	event->cpu		= cpu;
9486 	event->attr		= *attr;
9487 	event->group_leader	= group_leader;
9488 	event->pmu		= NULL;
9489 	event->oncpu		= -1;
9490 
9491 	event->parent		= parent_event;
9492 
9493 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9494 	event->id		= atomic64_inc_return(&perf_event_id);
9495 
9496 	event->state		= PERF_EVENT_STATE_INACTIVE;
9497 
9498 	if (task) {
9499 		event->attach_state = PERF_ATTACH_TASK;
9500 		/*
9501 		 * XXX pmu::event_init needs to know what task to account to
9502 		 * and we cannot use the ctx information because we need the
9503 		 * pmu before we get a ctx.
9504 		 */
9505 		event->hw.target = task;
9506 	}
9507 
9508 	event->clock = &local_clock;
9509 	if (parent_event)
9510 		event->clock = parent_event->clock;
9511 
9512 	if (!overflow_handler && parent_event) {
9513 		overflow_handler = parent_event->overflow_handler;
9514 		context = parent_event->overflow_handler_context;
9515 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9516 		if (overflow_handler == bpf_overflow_handler) {
9517 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9518 
9519 			if (IS_ERR(prog)) {
9520 				err = PTR_ERR(prog);
9521 				goto err_ns;
9522 			}
9523 			event->prog = prog;
9524 			event->orig_overflow_handler =
9525 				parent_event->orig_overflow_handler;
9526 		}
9527 #endif
9528 	}
9529 
9530 	if (overflow_handler) {
9531 		event->overflow_handler	= overflow_handler;
9532 		event->overflow_handler_context = context;
9533 	} else if (is_write_backward(event)){
9534 		event->overflow_handler = perf_event_output_backward;
9535 		event->overflow_handler_context = NULL;
9536 	} else {
9537 		event->overflow_handler = perf_event_output_forward;
9538 		event->overflow_handler_context = NULL;
9539 	}
9540 
9541 	perf_event__state_init(event);
9542 
9543 	pmu = NULL;
9544 
9545 	hwc = &event->hw;
9546 	hwc->sample_period = attr->sample_period;
9547 	if (attr->freq && attr->sample_freq)
9548 		hwc->sample_period = 1;
9549 	hwc->last_period = hwc->sample_period;
9550 
9551 	local64_set(&hwc->period_left, hwc->sample_period);
9552 
9553 	/*
9554 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9555 	 * See perf_output_read().
9556 	 */
9557 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9558 		goto err_ns;
9559 
9560 	if (!has_branch_stack(event))
9561 		event->attr.branch_sample_type = 0;
9562 
9563 	if (cgroup_fd != -1) {
9564 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9565 		if (err)
9566 			goto err_ns;
9567 	}
9568 
9569 	pmu = perf_init_event(event);
9570 	if (IS_ERR(pmu)) {
9571 		err = PTR_ERR(pmu);
9572 		goto err_ns;
9573 	}
9574 
9575 	err = exclusive_event_init(event);
9576 	if (err)
9577 		goto err_pmu;
9578 
9579 	if (has_addr_filter(event)) {
9580 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9581 						   sizeof(unsigned long),
9582 						   GFP_KERNEL);
9583 		if (!event->addr_filters_offs) {
9584 			err = -ENOMEM;
9585 			goto err_per_task;
9586 		}
9587 
9588 		/* force hw sync on the address filters */
9589 		event->addr_filters_gen = 1;
9590 	}
9591 
9592 	if (!event->parent) {
9593 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9594 			err = get_callchain_buffers(attr->sample_max_stack);
9595 			if (err)
9596 				goto err_addr_filters;
9597 		}
9598 	}
9599 
9600 	/* symmetric to unaccount_event() in _free_event() */
9601 	account_event(event);
9602 
9603 	return event;
9604 
9605 err_addr_filters:
9606 	kfree(event->addr_filters_offs);
9607 
9608 err_per_task:
9609 	exclusive_event_destroy(event);
9610 
9611 err_pmu:
9612 	if (event->destroy)
9613 		event->destroy(event);
9614 	module_put(pmu->module);
9615 err_ns:
9616 	if (is_cgroup_event(event))
9617 		perf_detach_cgroup(event);
9618 	if (event->ns)
9619 		put_pid_ns(event->ns);
9620 	kfree(event);
9621 
9622 	return ERR_PTR(err);
9623 }
9624 
9625 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9626 			  struct perf_event_attr *attr)
9627 {
9628 	u32 size;
9629 	int ret;
9630 
9631 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9632 		return -EFAULT;
9633 
9634 	/*
9635 	 * zero the full structure, so that a short copy will be nice.
9636 	 */
9637 	memset(attr, 0, sizeof(*attr));
9638 
9639 	ret = get_user(size, &uattr->size);
9640 	if (ret)
9641 		return ret;
9642 
9643 	if (size > PAGE_SIZE)	/* silly large */
9644 		goto err_size;
9645 
9646 	if (!size)		/* abi compat */
9647 		size = PERF_ATTR_SIZE_VER0;
9648 
9649 	if (size < PERF_ATTR_SIZE_VER0)
9650 		goto err_size;
9651 
9652 	/*
9653 	 * If we're handed a bigger struct than we know of,
9654 	 * ensure all the unknown bits are 0 - i.e. new
9655 	 * user-space does not rely on any kernel feature
9656 	 * extensions we dont know about yet.
9657 	 */
9658 	if (size > sizeof(*attr)) {
9659 		unsigned char __user *addr;
9660 		unsigned char __user *end;
9661 		unsigned char val;
9662 
9663 		addr = (void __user *)uattr + sizeof(*attr);
9664 		end  = (void __user *)uattr + size;
9665 
9666 		for (; addr < end; addr++) {
9667 			ret = get_user(val, addr);
9668 			if (ret)
9669 				return ret;
9670 			if (val)
9671 				goto err_size;
9672 		}
9673 		size = sizeof(*attr);
9674 	}
9675 
9676 	ret = copy_from_user(attr, uattr, size);
9677 	if (ret)
9678 		return -EFAULT;
9679 
9680 	attr->size = size;
9681 
9682 	if (attr->__reserved_1)
9683 		return -EINVAL;
9684 
9685 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9686 		return -EINVAL;
9687 
9688 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9689 		return -EINVAL;
9690 
9691 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9692 		u64 mask = attr->branch_sample_type;
9693 
9694 		/* only using defined bits */
9695 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9696 			return -EINVAL;
9697 
9698 		/* at least one branch bit must be set */
9699 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9700 			return -EINVAL;
9701 
9702 		/* propagate priv level, when not set for branch */
9703 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9704 
9705 			/* exclude_kernel checked on syscall entry */
9706 			if (!attr->exclude_kernel)
9707 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9708 
9709 			if (!attr->exclude_user)
9710 				mask |= PERF_SAMPLE_BRANCH_USER;
9711 
9712 			if (!attr->exclude_hv)
9713 				mask |= PERF_SAMPLE_BRANCH_HV;
9714 			/*
9715 			 * adjust user setting (for HW filter setup)
9716 			 */
9717 			attr->branch_sample_type = mask;
9718 		}
9719 		/* privileged levels capture (kernel, hv): check permissions */
9720 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9721 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9722 			return -EACCES;
9723 	}
9724 
9725 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9726 		ret = perf_reg_validate(attr->sample_regs_user);
9727 		if (ret)
9728 			return ret;
9729 	}
9730 
9731 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9732 		if (!arch_perf_have_user_stack_dump())
9733 			return -ENOSYS;
9734 
9735 		/*
9736 		 * We have __u32 type for the size, but so far
9737 		 * we can only use __u16 as maximum due to the
9738 		 * __u16 sample size limit.
9739 		 */
9740 		if (attr->sample_stack_user >= USHRT_MAX)
9741 			ret = -EINVAL;
9742 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9743 			ret = -EINVAL;
9744 	}
9745 
9746 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9747 		ret = perf_reg_validate(attr->sample_regs_intr);
9748 out:
9749 	return ret;
9750 
9751 err_size:
9752 	put_user(sizeof(*attr), &uattr->size);
9753 	ret = -E2BIG;
9754 	goto out;
9755 }
9756 
9757 static int
9758 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9759 {
9760 	struct ring_buffer *rb = NULL;
9761 	int ret = -EINVAL;
9762 
9763 	if (!output_event)
9764 		goto set;
9765 
9766 	/* don't allow circular references */
9767 	if (event == output_event)
9768 		goto out;
9769 
9770 	/*
9771 	 * Don't allow cross-cpu buffers
9772 	 */
9773 	if (output_event->cpu != event->cpu)
9774 		goto out;
9775 
9776 	/*
9777 	 * If its not a per-cpu rb, it must be the same task.
9778 	 */
9779 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9780 		goto out;
9781 
9782 	/*
9783 	 * Mixing clocks in the same buffer is trouble you don't need.
9784 	 */
9785 	if (output_event->clock != event->clock)
9786 		goto out;
9787 
9788 	/*
9789 	 * Either writing ring buffer from beginning or from end.
9790 	 * Mixing is not allowed.
9791 	 */
9792 	if (is_write_backward(output_event) != is_write_backward(event))
9793 		goto out;
9794 
9795 	/*
9796 	 * If both events generate aux data, they must be on the same PMU
9797 	 */
9798 	if (has_aux(event) && has_aux(output_event) &&
9799 	    event->pmu != output_event->pmu)
9800 		goto out;
9801 
9802 set:
9803 	mutex_lock(&event->mmap_mutex);
9804 	/* Can't redirect output if we've got an active mmap() */
9805 	if (atomic_read(&event->mmap_count))
9806 		goto unlock;
9807 
9808 	if (output_event) {
9809 		/* get the rb we want to redirect to */
9810 		rb = ring_buffer_get(output_event);
9811 		if (!rb)
9812 			goto unlock;
9813 	}
9814 
9815 	ring_buffer_attach(event, rb);
9816 
9817 	ret = 0;
9818 unlock:
9819 	mutex_unlock(&event->mmap_mutex);
9820 
9821 out:
9822 	return ret;
9823 }
9824 
9825 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9826 {
9827 	if (b < a)
9828 		swap(a, b);
9829 
9830 	mutex_lock(a);
9831 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9832 }
9833 
9834 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9835 {
9836 	bool nmi_safe = false;
9837 
9838 	switch (clk_id) {
9839 	case CLOCK_MONOTONIC:
9840 		event->clock = &ktime_get_mono_fast_ns;
9841 		nmi_safe = true;
9842 		break;
9843 
9844 	case CLOCK_MONOTONIC_RAW:
9845 		event->clock = &ktime_get_raw_fast_ns;
9846 		nmi_safe = true;
9847 		break;
9848 
9849 	case CLOCK_REALTIME:
9850 		event->clock = &ktime_get_real_ns;
9851 		break;
9852 
9853 	case CLOCK_BOOTTIME:
9854 		event->clock = &ktime_get_boot_ns;
9855 		break;
9856 
9857 	case CLOCK_TAI:
9858 		event->clock = &ktime_get_tai_ns;
9859 		break;
9860 
9861 	default:
9862 		return -EINVAL;
9863 	}
9864 
9865 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9866 		return -EINVAL;
9867 
9868 	return 0;
9869 }
9870 
9871 /*
9872  * Variation on perf_event_ctx_lock_nested(), except we take two context
9873  * mutexes.
9874  */
9875 static struct perf_event_context *
9876 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9877 			     struct perf_event_context *ctx)
9878 {
9879 	struct perf_event_context *gctx;
9880 
9881 again:
9882 	rcu_read_lock();
9883 	gctx = READ_ONCE(group_leader->ctx);
9884 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9885 		rcu_read_unlock();
9886 		goto again;
9887 	}
9888 	rcu_read_unlock();
9889 
9890 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9891 
9892 	if (group_leader->ctx != gctx) {
9893 		mutex_unlock(&ctx->mutex);
9894 		mutex_unlock(&gctx->mutex);
9895 		put_ctx(gctx);
9896 		goto again;
9897 	}
9898 
9899 	return gctx;
9900 }
9901 
9902 /**
9903  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9904  *
9905  * @attr_uptr:	event_id type attributes for monitoring/sampling
9906  * @pid:		target pid
9907  * @cpu:		target cpu
9908  * @group_fd:		group leader event fd
9909  */
9910 SYSCALL_DEFINE5(perf_event_open,
9911 		struct perf_event_attr __user *, attr_uptr,
9912 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9913 {
9914 	struct perf_event *group_leader = NULL, *output_event = NULL;
9915 	struct perf_event *event, *sibling;
9916 	struct perf_event_attr attr;
9917 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9918 	struct file *event_file = NULL;
9919 	struct fd group = {NULL, 0};
9920 	struct task_struct *task = NULL;
9921 	struct pmu *pmu;
9922 	int event_fd;
9923 	int move_group = 0;
9924 	int err;
9925 	int f_flags = O_RDWR;
9926 	int cgroup_fd = -1;
9927 
9928 	/* for future expandability... */
9929 	if (flags & ~PERF_FLAG_ALL)
9930 		return -EINVAL;
9931 
9932 	err = perf_copy_attr(attr_uptr, &attr);
9933 	if (err)
9934 		return err;
9935 
9936 	if (!attr.exclude_kernel) {
9937 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9938 			return -EACCES;
9939 	}
9940 
9941 	if (attr.namespaces) {
9942 		if (!capable(CAP_SYS_ADMIN))
9943 			return -EACCES;
9944 	}
9945 
9946 	if (attr.freq) {
9947 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9948 			return -EINVAL;
9949 	} else {
9950 		if (attr.sample_period & (1ULL << 63))
9951 			return -EINVAL;
9952 	}
9953 
9954 	/* Only privileged users can get physical addresses */
9955 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9956 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9957 		return -EACCES;
9958 
9959 	if (!attr.sample_max_stack)
9960 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9961 
9962 	/*
9963 	 * In cgroup mode, the pid argument is used to pass the fd
9964 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9965 	 * designates the cpu on which to monitor threads from that
9966 	 * cgroup.
9967 	 */
9968 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9969 		return -EINVAL;
9970 
9971 	if (flags & PERF_FLAG_FD_CLOEXEC)
9972 		f_flags |= O_CLOEXEC;
9973 
9974 	event_fd = get_unused_fd_flags(f_flags);
9975 	if (event_fd < 0)
9976 		return event_fd;
9977 
9978 	if (group_fd != -1) {
9979 		err = perf_fget_light(group_fd, &group);
9980 		if (err)
9981 			goto err_fd;
9982 		group_leader = group.file->private_data;
9983 		if (flags & PERF_FLAG_FD_OUTPUT)
9984 			output_event = group_leader;
9985 		if (flags & PERF_FLAG_FD_NO_GROUP)
9986 			group_leader = NULL;
9987 	}
9988 
9989 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9990 		task = find_lively_task_by_vpid(pid);
9991 		if (IS_ERR(task)) {
9992 			err = PTR_ERR(task);
9993 			goto err_group_fd;
9994 		}
9995 	}
9996 
9997 	if (task && group_leader &&
9998 	    group_leader->attr.inherit != attr.inherit) {
9999 		err = -EINVAL;
10000 		goto err_task;
10001 	}
10002 
10003 	if (task) {
10004 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10005 		if (err)
10006 			goto err_task;
10007 
10008 		/*
10009 		 * Reuse ptrace permission checks for now.
10010 		 *
10011 		 * We must hold cred_guard_mutex across this and any potential
10012 		 * perf_install_in_context() call for this new event to
10013 		 * serialize against exec() altering our credentials (and the
10014 		 * perf_event_exit_task() that could imply).
10015 		 */
10016 		err = -EACCES;
10017 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10018 			goto err_cred;
10019 	}
10020 
10021 	if (flags & PERF_FLAG_PID_CGROUP)
10022 		cgroup_fd = pid;
10023 
10024 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10025 				 NULL, NULL, cgroup_fd);
10026 	if (IS_ERR(event)) {
10027 		err = PTR_ERR(event);
10028 		goto err_cred;
10029 	}
10030 
10031 	if (is_sampling_event(event)) {
10032 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10033 			err = -EOPNOTSUPP;
10034 			goto err_alloc;
10035 		}
10036 	}
10037 
10038 	/*
10039 	 * Special case software events and allow them to be part of
10040 	 * any hardware group.
10041 	 */
10042 	pmu = event->pmu;
10043 
10044 	if (attr.use_clockid) {
10045 		err = perf_event_set_clock(event, attr.clockid);
10046 		if (err)
10047 			goto err_alloc;
10048 	}
10049 
10050 	if (pmu->task_ctx_nr == perf_sw_context)
10051 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10052 
10053 	if (group_leader &&
10054 	    (is_software_event(event) != is_software_event(group_leader))) {
10055 		if (is_software_event(event)) {
10056 			/*
10057 			 * If event and group_leader are not both a software
10058 			 * event, and event is, then group leader is not.
10059 			 *
10060 			 * Allow the addition of software events to !software
10061 			 * groups, this is safe because software events never
10062 			 * fail to schedule.
10063 			 */
10064 			pmu = group_leader->pmu;
10065 		} else if (is_software_event(group_leader) &&
10066 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10067 			/*
10068 			 * In case the group is a pure software group, and we
10069 			 * try to add a hardware event, move the whole group to
10070 			 * the hardware context.
10071 			 */
10072 			move_group = 1;
10073 		}
10074 	}
10075 
10076 	/*
10077 	 * Get the target context (task or percpu):
10078 	 */
10079 	ctx = find_get_context(pmu, task, event);
10080 	if (IS_ERR(ctx)) {
10081 		err = PTR_ERR(ctx);
10082 		goto err_alloc;
10083 	}
10084 
10085 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10086 		err = -EBUSY;
10087 		goto err_context;
10088 	}
10089 
10090 	/*
10091 	 * Look up the group leader (we will attach this event to it):
10092 	 */
10093 	if (group_leader) {
10094 		err = -EINVAL;
10095 
10096 		/*
10097 		 * Do not allow a recursive hierarchy (this new sibling
10098 		 * becoming part of another group-sibling):
10099 		 */
10100 		if (group_leader->group_leader != group_leader)
10101 			goto err_context;
10102 
10103 		/* All events in a group should have the same clock */
10104 		if (group_leader->clock != event->clock)
10105 			goto err_context;
10106 
10107 		/*
10108 		 * Make sure we're both events for the same CPU;
10109 		 * grouping events for different CPUs is broken; since
10110 		 * you can never concurrently schedule them anyhow.
10111 		 */
10112 		if (group_leader->cpu != event->cpu)
10113 			goto err_context;
10114 
10115 		/*
10116 		 * Make sure we're both on the same task, or both
10117 		 * per-CPU events.
10118 		 */
10119 		if (group_leader->ctx->task != ctx->task)
10120 			goto err_context;
10121 
10122 		/*
10123 		 * Do not allow to attach to a group in a different task
10124 		 * or CPU context. If we're moving SW events, we'll fix
10125 		 * this up later, so allow that.
10126 		 */
10127 		if (!move_group && group_leader->ctx != ctx)
10128 			goto err_context;
10129 
10130 		/*
10131 		 * Only a group leader can be exclusive or pinned
10132 		 */
10133 		if (attr.exclusive || attr.pinned)
10134 			goto err_context;
10135 	}
10136 
10137 	if (output_event) {
10138 		err = perf_event_set_output(event, output_event);
10139 		if (err)
10140 			goto err_context;
10141 	}
10142 
10143 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10144 					f_flags);
10145 	if (IS_ERR(event_file)) {
10146 		err = PTR_ERR(event_file);
10147 		event_file = NULL;
10148 		goto err_context;
10149 	}
10150 
10151 	if (move_group) {
10152 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10153 
10154 		if (gctx->task == TASK_TOMBSTONE) {
10155 			err = -ESRCH;
10156 			goto err_locked;
10157 		}
10158 
10159 		/*
10160 		 * Check if we raced against another sys_perf_event_open() call
10161 		 * moving the software group underneath us.
10162 		 */
10163 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10164 			/*
10165 			 * If someone moved the group out from under us, check
10166 			 * if this new event wound up on the same ctx, if so
10167 			 * its the regular !move_group case, otherwise fail.
10168 			 */
10169 			if (gctx != ctx) {
10170 				err = -EINVAL;
10171 				goto err_locked;
10172 			} else {
10173 				perf_event_ctx_unlock(group_leader, gctx);
10174 				move_group = 0;
10175 			}
10176 		}
10177 	} else {
10178 		mutex_lock(&ctx->mutex);
10179 	}
10180 
10181 	if (ctx->task == TASK_TOMBSTONE) {
10182 		err = -ESRCH;
10183 		goto err_locked;
10184 	}
10185 
10186 	if (!perf_event_validate_size(event)) {
10187 		err = -E2BIG;
10188 		goto err_locked;
10189 	}
10190 
10191 	if (!task) {
10192 		/*
10193 		 * Check if the @cpu we're creating an event for is online.
10194 		 *
10195 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10196 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10197 		 */
10198 		struct perf_cpu_context *cpuctx =
10199 			container_of(ctx, struct perf_cpu_context, ctx);
10200 
10201 		if (!cpuctx->online) {
10202 			err = -ENODEV;
10203 			goto err_locked;
10204 		}
10205 	}
10206 
10207 
10208 	/*
10209 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10210 	 * because we need to serialize with concurrent event creation.
10211 	 */
10212 	if (!exclusive_event_installable(event, ctx)) {
10213 		/* exclusive and group stuff are assumed mutually exclusive */
10214 		WARN_ON_ONCE(move_group);
10215 
10216 		err = -EBUSY;
10217 		goto err_locked;
10218 	}
10219 
10220 	WARN_ON_ONCE(ctx->parent_ctx);
10221 
10222 	/*
10223 	 * This is the point on no return; we cannot fail hereafter. This is
10224 	 * where we start modifying current state.
10225 	 */
10226 
10227 	if (move_group) {
10228 		/*
10229 		 * See perf_event_ctx_lock() for comments on the details
10230 		 * of swizzling perf_event::ctx.
10231 		 */
10232 		perf_remove_from_context(group_leader, 0);
10233 		put_ctx(gctx);
10234 
10235 		list_for_each_entry(sibling, &group_leader->sibling_list,
10236 				    group_entry) {
10237 			perf_remove_from_context(sibling, 0);
10238 			put_ctx(gctx);
10239 		}
10240 
10241 		/*
10242 		 * Wait for everybody to stop referencing the events through
10243 		 * the old lists, before installing it on new lists.
10244 		 */
10245 		synchronize_rcu();
10246 
10247 		/*
10248 		 * Install the group siblings before the group leader.
10249 		 *
10250 		 * Because a group leader will try and install the entire group
10251 		 * (through the sibling list, which is still in-tact), we can
10252 		 * end up with siblings installed in the wrong context.
10253 		 *
10254 		 * By installing siblings first we NO-OP because they're not
10255 		 * reachable through the group lists.
10256 		 */
10257 		list_for_each_entry(sibling, &group_leader->sibling_list,
10258 				    group_entry) {
10259 			perf_event__state_init(sibling);
10260 			perf_install_in_context(ctx, sibling, sibling->cpu);
10261 			get_ctx(ctx);
10262 		}
10263 
10264 		/*
10265 		 * Removing from the context ends up with disabled
10266 		 * event. What we want here is event in the initial
10267 		 * startup state, ready to be add into new context.
10268 		 */
10269 		perf_event__state_init(group_leader);
10270 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10271 		get_ctx(ctx);
10272 	}
10273 
10274 	/*
10275 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10276 	 * that we're serialized against further additions and before
10277 	 * perf_install_in_context() which is the point the event is active and
10278 	 * can use these values.
10279 	 */
10280 	perf_event__header_size(event);
10281 	perf_event__id_header_size(event);
10282 
10283 	event->owner = current;
10284 
10285 	perf_install_in_context(ctx, event, event->cpu);
10286 	perf_unpin_context(ctx);
10287 
10288 	if (move_group)
10289 		perf_event_ctx_unlock(group_leader, gctx);
10290 	mutex_unlock(&ctx->mutex);
10291 
10292 	if (task) {
10293 		mutex_unlock(&task->signal->cred_guard_mutex);
10294 		put_task_struct(task);
10295 	}
10296 
10297 	mutex_lock(&current->perf_event_mutex);
10298 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10299 	mutex_unlock(&current->perf_event_mutex);
10300 
10301 	/*
10302 	 * Drop the reference on the group_event after placing the
10303 	 * new event on the sibling_list. This ensures destruction
10304 	 * of the group leader will find the pointer to itself in
10305 	 * perf_group_detach().
10306 	 */
10307 	fdput(group);
10308 	fd_install(event_fd, event_file);
10309 	return event_fd;
10310 
10311 err_locked:
10312 	if (move_group)
10313 		perf_event_ctx_unlock(group_leader, gctx);
10314 	mutex_unlock(&ctx->mutex);
10315 /* err_file: */
10316 	fput(event_file);
10317 err_context:
10318 	perf_unpin_context(ctx);
10319 	put_ctx(ctx);
10320 err_alloc:
10321 	/*
10322 	 * If event_file is set, the fput() above will have called ->release()
10323 	 * and that will take care of freeing the event.
10324 	 */
10325 	if (!event_file)
10326 		free_event(event);
10327 err_cred:
10328 	if (task)
10329 		mutex_unlock(&task->signal->cred_guard_mutex);
10330 err_task:
10331 	if (task)
10332 		put_task_struct(task);
10333 err_group_fd:
10334 	fdput(group);
10335 err_fd:
10336 	put_unused_fd(event_fd);
10337 	return err;
10338 }
10339 
10340 /**
10341  * perf_event_create_kernel_counter
10342  *
10343  * @attr: attributes of the counter to create
10344  * @cpu: cpu in which the counter is bound
10345  * @task: task to profile (NULL for percpu)
10346  */
10347 struct perf_event *
10348 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10349 				 struct task_struct *task,
10350 				 perf_overflow_handler_t overflow_handler,
10351 				 void *context)
10352 {
10353 	struct perf_event_context *ctx;
10354 	struct perf_event *event;
10355 	int err;
10356 
10357 	/*
10358 	 * Get the target context (task or percpu):
10359 	 */
10360 
10361 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10362 				 overflow_handler, context, -1);
10363 	if (IS_ERR(event)) {
10364 		err = PTR_ERR(event);
10365 		goto err;
10366 	}
10367 
10368 	/* Mark owner so we could distinguish it from user events. */
10369 	event->owner = TASK_TOMBSTONE;
10370 
10371 	ctx = find_get_context(event->pmu, task, event);
10372 	if (IS_ERR(ctx)) {
10373 		err = PTR_ERR(ctx);
10374 		goto err_free;
10375 	}
10376 
10377 	WARN_ON_ONCE(ctx->parent_ctx);
10378 	mutex_lock(&ctx->mutex);
10379 	if (ctx->task == TASK_TOMBSTONE) {
10380 		err = -ESRCH;
10381 		goto err_unlock;
10382 	}
10383 
10384 	if (!task) {
10385 		/*
10386 		 * Check if the @cpu we're creating an event for is online.
10387 		 *
10388 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10389 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10390 		 */
10391 		struct perf_cpu_context *cpuctx =
10392 			container_of(ctx, struct perf_cpu_context, ctx);
10393 		if (!cpuctx->online) {
10394 			err = -ENODEV;
10395 			goto err_unlock;
10396 		}
10397 	}
10398 
10399 	if (!exclusive_event_installable(event, ctx)) {
10400 		err = -EBUSY;
10401 		goto err_unlock;
10402 	}
10403 
10404 	perf_install_in_context(ctx, event, cpu);
10405 	perf_unpin_context(ctx);
10406 	mutex_unlock(&ctx->mutex);
10407 
10408 	return event;
10409 
10410 err_unlock:
10411 	mutex_unlock(&ctx->mutex);
10412 	perf_unpin_context(ctx);
10413 	put_ctx(ctx);
10414 err_free:
10415 	free_event(event);
10416 err:
10417 	return ERR_PTR(err);
10418 }
10419 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10420 
10421 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10422 {
10423 	struct perf_event_context *src_ctx;
10424 	struct perf_event_context *dst_ctx;
10425 	struct perf_event *event, *tmp;
10426 	LIST_HEAD(events);
10427 
10428 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10429 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10430 
10431 	/*
10432 	 * See perf_event_ctx_lock() for comments on the details
10433 	 * of swizzling perf_event::ctx.
10434 	 */
10435 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10436 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10437 				 event_entry) {
10438 		perf_remove_from_context(event, 0);
10439 		unaccount_event_cpu(event, src_cpu);
10440 		put_ctx(src_ctx);
10441 		list_add(&event->migrate_entry, &events);
10442 	}
10443 
10444 	/*
10445 	 * Wait for the events to quiesce before re-instating them.
10446 	 */
10447 	synchronize_rcu();
10448 
10449 	/*
10450 	 * Re-instate events in 2 passes.
10451 	 *
10452 	 * Skip over group leaders and only install siblings on this first
10453 	 * pass, siblings will not get enabled without a leader, however a
10454 	 * leader will enable its siblings, even if those are still on the old
10455 	 * context.
10456 	 */
10457 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10458 		if (event->group_leader == event)
10459 			continue;
10460 
10461 		list_del(&event->migrate_entry);
10462 		if (event->state >= PERF_EVENT_STATE_OFF)
10463 			event->state = PERF_EVENT_STATE_INACTIVE;
10464 		account_event_cpu(event, dst_cpu);
10465 		perf_install_in_context(dst_ctx, event, dst_cpu);
10466 		get_ctx(dst_ctx);
10467 	}
10468 
10469 	/*
10470 	 * Once all the siblings are setup properly, install the group leaders
10471 	 * to make it go.
10472 	 */
10473 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10474 		list_del(&event->migrate_entry);
10475 		if (event->state >= PERF_EVENT_STATE_OFF)
10476 			event->state = PERF_EVENT_STATE_INACTIVE;
10477 		account_event_cpu(event, dst_cpu);
10478 		perf_install_in_context(dst_ctx, event, dst_cpu);
10479 		get_ctx(dst_ctx);
10480 	}
10481 	mutex_unlock(&dst_ctx->mutex);
10482 	mutex_unlock(&src_ctx->mutex);
10483 }
10484 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10485 
10486 static void sync_child_event(struct perf_event *child_event,
10487 			       struct task_struct *child)
10488 {
10489 	struct perf_event *parent_event = child_event->parent;
10490 	u64 child_val;
10491 
10492 	if (child_event->attr.inherit_stat)
10493 		perf_event_read_event(child_event, child);
10494 
10495 	child_val = perf_event_count(child_event);
10496 
10497 	/*
10498 	 * Add back the child's count to the parent's count:
10499 	 */
10500 	atomic64_add(child_val, &parent_event->child_count);
10501 	atomic64_add(child_event->total_time_enabled,
10502 		     &parent_event->child_total_time_enabled);
10503 	atomic64_add(child_event->total_time_running,
10504 		     &parent_event->child_total_time_running);
10505 }
10506 
10507 static void
10508 perf_event_exit_event(struct perf_event *child_event,
10509 		      struct perf_event_context *child_ctx,
10510 		      struct task_struct *child)
10511 {
10512 	struct perf_event *parent_event = child_event->parent;
10513 
10514 	/*
10515 	 * Do not destroy the 'original' grouping; because of the context
10516 	 * switch optimization the original events could've ended up in a
10517 	 * random child task.
10518 	 *
10519 	 * If we were to destroy the original group, all group related
10520 	 * operations would cease to function properly after this random
10521 	 * child dies.
10522 	 *
10523 	 * Do destroy all inherited groups, we don't care about those
10524 	 * and being thorough is better.
10525 	 */
10526 	raw_spin_lock_irq(&child_ctx->lock);
10527 	WARN_ON_ONCE(child_ctx->is_active);
10528 
10529 	if (parent_event)
10530 		perf_group_detach(child_event);
10531 	list_del_event(child_event, child_ctx);
10532 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10533 	raw_spin_unlock_irq(&child_ctx->lock);
10534 
10535 	/*
10536 	 * Parent events are governed by their filedesc, retain them.
10537 	 */
10538 	if (!parent_event) {
10539 		perf_event_wakeup(child_event);
10540 		return;
10541 	}
10542 	/*
10543 	 * Child events can be cleaned up.
10544 	 */
10545 
10546 	sync_child_event(child_event, child);
10547 
10548 	/*
10549 	 * Remove this event from the parent's list
10550 	 */
10551 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10552 	mutex_lock(&parent_event->child_mutex);
10553 	list_del_init(&child_event->child_list);
10554 	mutex_unlock(&parent_event->child_mutex);
10555 
10556 	/*
10557 	 * Kick perf_poll() for is_event_hup().
10558 	 */
10559 	perf_event_wakeup(parent_event);
10560 	free_event(child_event);
10561 	put_event(parent_event);
10562 }
10563 
10564 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10565 {
10566 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10567 	struct perf_event *child_event, *next;
10568 
10569 	WARN_ON_ONCE(child != current);
10570 
10571 	child_ctx = perf_pin_task_context(child, ctxn);
10572 	if (!child_ctx)
10573 		return;
10574 
10575 	/*
10576 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10577 	 * ctx::mutex over the entire thing. This serializes against almost
10578 	 * everything that wants to access the ctx.
10579 	 *
10580 	 * The exception is sys_perf_event_open() /
10581 	 * perf_event_create_kernel_count() which does find_get_context()
10582 	 * without ctx::mutex (it cannot because of the move_group double mutex
10583 	 * lock thing). See the comments in perf_install_in_context().
10584 	 */
10585 	mutex_lock(&child_ctx->mutex);
10586 
10587 	/*
10588 	 * In a single ctx::lock section, de-schedule the events and detach the
10589 	 * context from the task such that we cannot ever get it scheduled back
10590 	 * in.
10591 	 */
10592 	raw_spin_lock_irq(&child_ctx->lock);
10593 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10594 
10595 	/*
10596 	 * Now that the context is inactive, destroy the task <-> ctx relation
10597 	 * and mark the context dead.
10598 	 */
10599 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10600 	put_ctx(child_ctx); /* cannot be last */
10601 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10602 	put_task_struct(current); /* cannot be last */
10603 
10604 	clone_ctx = unclone_ctx(child_ctx);
10605 	raw_spin_unlock_irq(&child_ctx->lock);
10606 
10607 	if (clone_ctx)
10608 		put_ctx(clone_ctx);
10609 
10610 	/*
10611 	 * Report the task dead after unscheduling the events so that we
10612 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10613 	 * get a few PERF_RECORD_READ events.
10614 	 */
10615 	perf_event_task(child, child_ctx, 0);
10616 
10617 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10618 		perf_event_exit_event(child_event, child_ctx, child);
10619 
10620 	mutex_unlock(&child_ctx->mutex);
10621 
10622 	put_ctx(child_ctx);
10623 }
10624 
10625 /*
10626  * When a child task exits, feed back event values to parent events.
10627  *
10628  * Can be called with cred_guard_mutex held when called from
10629  * install_exec_creds().
10630  */
10631 void perf_event_exit_task(struct task_struct *child)
10632 {
10633 	struct perf_event *event, *tmp;
10634 	int ctxn;
10635 
10636 	mutex_lock(&child->perf_event_mutex);
10637 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10638 				 owner_entry) {
10639 		list_del_init(&event->owner_entry);
10640 
10641 		/*
10642 		 * Ensure the list deletion is visible before we clear
10643 		 * the owner, closes a race against perf_release() where
10644 		 * we need to serialize on the owner->perf_event_mutex.
10645 		 */
10646 		smp_store_release(&event->owner, NULL);
10647 	}
10648 	mutex_unlock(&child->perf_event_mutex);
10649 
10650 	for_each_task_context_nr(ctxn)
10651 		perf_event_exit_task_context(child, ctxn);
10652 
10653 	/*
10654 	 * The perf_event_exit_task_context calls perf_event_task
10655 	 * with child's task_ctx, which generates EXIT events for
10656 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10657 	 * At this point we need to send EXIT events to cpu contexts.
10658 	 */
10659 	perf_event_task(child, NULL, 0);
10660 }
10661 
10662 static void perf_free_event(struct perf_event *event,
10663 			    struct perf_event_context *ctx)
10664 {
10665 	struct perf_event *parent = event->parent;
10666 
10667 	if (WARN_ON_ONCE(!parent))
10668 		return;
10669 
10670 	mutex_lock(&parent->child_mutex);
10671 	list_del_init(&event->child_list);
10672 	mutex_unlock(&parent->child_mutex);
10673 
10674 	put_event(parent);
10675 
10676 	raw_spin_lock_irq(&ctx->lock);
10677 	perf_group_detach(event);
10678 	list_del_event(event, ctx);
10679 	raw_spin_unlock_irq(&ctx->lock);
10680 	free_event(event);
10681 }
10682 
10683 /*
10684  * Free an unexposed, unused context as created by inheritance by
10685  * perf_event_init_task below, used by fork() in case of fail.
10686  *
10687  * Not all locks are strictly required, but take them anyway to be nice and
10688  * help out with the lockdep assertions.
10689  */
10690 void perf_event_free_task(struct task_struct *task)
10691 {
10692 	struct perf_event_context *ctx;
10693 	struct perf_event *event, *tmp;
10694 	int ctxn;
10695 
10696 	for_each_task_context_nr(ctxn) {
10697 		ctx = task->perf_event_ctxp[ctxn];
10698 		if (!ctx)
10699 			continue;
10700 
10701 		mutex_lock(&ctx->mutex);
10702 		raw_spin_lock_irq(&ctx->lock);
10703 		/*
10704 		 * Destroy the task <-> ctx relation and mark the context dead.
10705 		 *
10706 		 * This is important because even though the task hasn't been
10707 		 * exposed yet the context has been (through child_list).
10708 		 */
10709 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10710 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10711 		put_task_struct(task); /* cannot be last */
10712 		raw_spin_unlock_irq(&ctx->lock);
10713 
10714 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10715 			perf_free_event(event, ctx);
10716 
10717 		mutex_unlock(&ctx->mutex);
10718 		put_ctx(ctx);
10719 	}
10720 }
10721 
10722 void perf_event_delayed_put(struct task_struct *task)
10723 {
10724 	int ctxn;
10725 
10726 	for_each_task_context_nr(ctxn)
10727 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10728 }
10729 
10730 struct file *perf_event_get(unsigned int fd)
10731 {
10732 	struct file *file;
10733 
10734 	file = fget_raw(fd);
10735 	if (!file)
10736 		return ERR_PTR(-EBADF);
10737 
10738 	if (file->f_op != &perf_fops) {
10739 		fput(file);
10740 		return ERR_PTR(-EBADF);
10741 	}
10742 
10743 	return file;
10744 }
10745 
10746 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10747 {
10748 	if (!event)
10749 		return ERR_PTR(-EINVAL);
10750 
10751 	return &event->attr;
10752 }
10753 
10754 /*
10755  * Inherit a event from parent task to child task.
10756  *
10757  * Returns:
10758  *  - valid pointer on success
10759  *  - NULL for orphaned events
10760  *  - IS_ERR() on error
10761  */
10762 static struct perf_event *
10763 inherit_event(struct perf_event *parent_event,
10764 	      struct task_struct *parent,
10765 	      struct perf_event_context *parent_ctx,
10766 	      struct task_struct *child,
10767 	      struct perf_event *group_leader,
10768 	      struct perf_event_context *child_ctx)
10769 {
10770 	enum perf_event_active_state parent_state = parent_event->state;
10771 	struct perf_event *child_event;
10772 	unsigned long flags;
10773 
10774 	/*
10775 	 * Instead of creating recursive hierarchies of events,
10776 	 * we link inherited events back to the original parent,
10777 	 * which has a filp for sure, which we use as the reference
10778 	 * count:
10779 	 */
10780 	if (parent_event->parent)
10781 		parent_event = parent_event->parent;
10782 
10783 	child_event = perf_event_alloc(&parent_event->attr,
10784 					   parent_event->cpu,
10785 					   child,
10786 					   group_leader, parent_event,
10787 					   NULL, NULL, -1);
10788 	if (IS_ERR(child_event))
10789 		return child_event;
10790 
10791 	/*
10792 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10793 	 * must be under the same lock in order to serialize against
10794 	 * perf_event_release_kernel(), such that either we must observe
10795 	 * is_orphaned_event() or they will observe us on the child_list.
10796 	 */
10797 	mutex_lock(&parent_event->child_mutex);
10798 	if (is_orphaned_event(parent_event) ||
10799 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10800 		mutex_unlock(&parent_event->child_mutex);
10801 		free_event(child_event);
10802 		return NULL;
10803 	}
10804 
10805 	get_ctx(child_ctx);
10806 
10807 	/*
10808 	 * Make the child state follow the state of the parent event,
10809 	 * not its attr.disabled bit.  We hold the parent's mutex,
10810 	 * so we won't race with perf_event_{en, dis}able_family.
10811 	 */
10812 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10813 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10814 	else
10815 		child_event->state = PERF_EVENT_STATE_OFF;
10816 
10817 	if (parent_event->attr.freq) {
10818 		u64 sample_period = parent_event->hw.sample_period;
10819 		struct hw_perf_event *hwc = &child_event->hw;
10820 
10821 		hwc->sample_period = sample_period;
10822 		hwc->last_period   = sample_period;
10823 
10824 		local64_set(&hwc->period_left, sample_period);
10825 	}
10826 
10827 	child_event->ctx = child_ctx;
10828 	child_event->overflow_handler = parent_event->overflow_handler;
10829 	child_event->overflow_handler_context
10830 		= parent_event->overflow_handler_context;
10831 
10832 	/*
10833 	 * Precalculate sample_data sizes
10834 	 */
10835 	perf_event__header_size(child_event);
10836 	perf_event__id_header_size(child_event);
10837 
10838 	/*
10839 	 * Link it up in the child's context:
10840 	 */
10841 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10842 	add_event_to_ctx(child_event, child_ctx);
10843 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10844 
10845 	/*
10846 	 * Link this into the parent event's child list
10847 	 */
10848 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10849 	mutex_unlock(&parent_event->child_mutex);
10850 
10851 	return child_event;
10852 }
10853 
10854 /*
10855  * Inherits an event group.
10856  *
10857  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10858  * This matches with perf_event_release_kernel() removing all child events.
10859  *
10860  * Returns:
10861  *  - 0 on success
10862  *  - <0 on error
10863  */
10864 static int inherit_group(struct perf_event *parent_event,
10865 	      struct task_struct *parent,
10866 	      struct perf_event_context *parent_ctx,
10867 	      struct task_struct *child,
10868 	      struct perf_event_context *child_ctx)
10869 {
10870 	struct perf_event *leader;
10871 	struct perf_event *sub;
10872 	struct perf_event *child_ctr;
10873 
10874 	leader = inherit_event(parent_event, parent, parent_ctx,
10875 				 child, NULL, child_ctx);
10876 	if (IS_ERR(leader))
10877 		return PTR_ERR(leader);
10878 	/*
10879 	 * @leader can be NULL here because of is_orphaned_event(). In this
10880 	 * case inherit_event() will create individual events, similar to what
10881 	 * perf_group_detach() would do anyway.
10882 	 */
10883 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10884 		child_ctr = inherit_event(sub, parent, parent_ctx,
10885 					    child, leader, child_ctx);
10886 		if (IS_ERR(child_ctr))
10887 			return PTR_ERR(child_ctr);
10888 	}
10889 	return 0;
10890 }
10891 
10892 /*
10893  * Creates the child task context and tries to inherit the event-group.
10894  *
10895  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10896  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10897  * consistent with perf_event_release_kernel() removing all child events.
10898  *
10899  * Returns:
10900  *  - 0 on success
10901  *  - <0 on error
10902  */
10903 static int
10904 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10905 		   struct perf_event_context *parent_ctx,
10906 		   struct task_struct *child, int ctxn,
10907 		   int *inherited_all)
10908 {
10909 	int ret;
10910 	struct perf_event_context *child_ctx;
10911 
10912 	if (!event->attr.inherit) {
10913 		*inherited_all = 0;
10914 		return 0;
10915 	}
10916 
10917 	child_ctx = child->perf_event_ctxp[ctxn];
10918 	if (!child_ctx) {
10919 		/*
10920 		 * This is executed from the parent task context, so
10921 		 * inherit events that have been marked for cloning.
10922 		 * First allocate and initialize a context for the
10923 		 * child.
10924 		 */
10925 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10926 		if (!child_ctx)
10927 			return -ENOMEM;
10928 
10929 		child->perf_event_ctxp[ctxn] = child_ctx;
10930 	}
10931 
10932 	ret = inherit_group(event, parent, parent_ctx,
10933 			    child, child_ctx);
10934 
10935 	if (ret)
10936 		*inherited_all = 0;
10937 
10938 	return ret;
10939 }
10940 
10941 /*
10942  * Initialize the perf_event context in task_struct
10943  */
10944 static int perf_event_init_context(struct task_struct *child, int ctxn)
10945 {
10946 	struct perf_event_context *child_ctx, *parent_ctx;
10947 	struct perf_event_context *cloned_ctx;
10948 	struct perf_event *event;
10949 	struct task_struct *parent = current;
10950 	int inherited_all = 1;
10951 	unsigned long flags;
10952 	int ret = 0;
10953 
10954 	if (likely(!parent->perf_event_ctxp[ctxn]))
10955 		return 0;
10956 
10957 	/*
10958 	 * If the parent's context is a clone, pin it so it won't get
10959 	 * swapped under us.
10960 	 */
10961 	parent_ctx = perf_pin_task_context(parent, ctxn);
10962 	if (!parent_ctx)
10963 		return 0;
10964 
10965 	/*
10966 	 * No need to check if parent_ctx != NULL here; since we saw
10967 	 * it non-NULL earlier, the only reason for it to become NULL
10968 	 * is if we exit, and since we're currently in the middle of
10969 	 * a fork we can't be exiting at the same time.
10970 	 */
10971 
10972 	/*
10973 	 * Lock the parent list. No need to lock the child - not PID
10974 	 * hashed yet and not running, so nobody can access it.
10975 	 */
10976 	mutex_lock(&parent_ctx->mutex);
10977 
10978 	/*
10979 	 * We dont have to disable NMIs - we are only looking at
10980 	 * the list, not manipulating it:
10981 	 */
10982 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10983 		ret = inherit_task_group(event, parent, parent_ctx,
10984 					 child, ctxn, &inherited_all);
10985 		if (ret)
10986 			goto out_unlock;
10987 	}
10988 
10989 	/*
10990 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10991 	 * to allocations, but we need to prevent rotation because
10992 	 * rotate_ctx() will change the list from interrupt context.
10993 	 */
10994 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995 	parent_ctx->rotate_disable = 1;
10996 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10997 
10998 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10999 		ret = inherit_task_group(event, parent, parent_ctx,
11000 					 child, ctxn, &inherited_all);
11001 		if (ret)
11002 			goto out_unlock;
11003 	}
11004 
11005 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11006 	parent_ctx->rotate_disable = 0;
11007 
11008 	child_ctx = child->perf_event_ctxp[ctxn];
11009 
11010 	if (child_ctx && inherited_all) {
11011 		/*
11012 		 * Mark the child context as a clone of the parent
11013 		 * context, or of whatever the parent is a clone of.
11014 		 *
11015 		 * Note that if the parent is a clone, the holding of
11016 		 * parent_ctx->lock avoids it from being uncloned.
11017 		 */
11018 		cloned_ctx = parent_ctx->parent_ctx;
11019 		if (cloned_ctx) {
11020 			child_ctx->parent_ctx = cloned_ctx;
11021 			child_ctx->parent_gen = parent_ctx->parent_gen;
11022 		} else {
11023 			child_ctx->parent_ctx = parent_ctx;
11024 			child_ctx->parent_gen = parent_ctx->generation;
11025 		}
11026 		get_ctx(child_ctx->parent_ctx);
11027 	}
11028 
11029 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11030 out_unlock:
11031 	mutex_unlock(&parent_ctx->mutex);
11032 
11033 	perf_unpin_context(parent_ctx);
11034 	put_ctx(parent_ctx);
11035 
11036 	return ret;
11037 }
11038 
11039 /*
11040  * Initialize the perf_event context in task_struct
11041  */
11042 int perf_event_init_task(struct task_struct *child)
11043 {
11044 	int ctxn, ret;
11045 
11046 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11047 	mutex_init(&child->perf_event_mutex);
11048 	INIT_LIST_HEAD(&child->perf_event_list);
11049 
11050 	for_each_task_context_nr(ctxn) {
11051 		ret = perf_event_init_context(child, ctxn);
11052 		if (ret) {
11053 			perf_event_free_task(child);
11054 			return ret;
11055 		}
11056 	}
11057 
11058 	return 0;
11059 }
11060 
11061 static void __init perf_event_init_all_cpus(void)
11062 {
11063 	struct swevent_htable *swhash;
11064 	int cpu;
11065 
11066 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11067 
11068 	for_each_possible_cpu(cpu) {
11069 		swhash = &per_cpu(swevent_htable, cpu);
11070 		mutex_init(&swhash->hlist_mutex);
11071 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11072 
11073 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11074 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11075 
11076 #ifdef CONFIG_CGROUP_PERF
11077 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11078 #endif
11079 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11080 	}
11081 }
11082 
11083 void perf_swevent_init_cpu(unsigned int cpu)
11084 {
11085 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11086 
11087 	mutex_lock(&swhash->hlist_mutex);
11088 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11089 		struct swevent_hlist *hlist;
11090 
11091 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11092 		WARN_ON(!hlist);
11093 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11094 	}
11095 	mutex_unlock(&swhash->hlist_mutex);
11096 }
11097 
11098 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11099 static void __perf_event_exit_context(void *__info)
11100 {
11101 	struct perf_event_context *ctx = __info;
11102 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11103 	struct perf_event *event;
11104 
11105 	raw_spin_lock(&ctx->lock);
11106 	list_for_each_entry(event, &ctx->event_list, event_entry)
11107 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11108 	raw_spin_unlock(&ctx->lock);
11109 }
11110 
11111 static void perf_event_exit_cpu_context(int cpu)
11112 {
11113 	struct perf_cpu_context *cpuctx;
11114 	struct perf_event_context *ctx;
11115 	struct pmu *pmu;
11116 
11117 	mutex_lock(&pmus_lock);
11118 	list_for_each_entry(pmu, &pmus, entry) {
11119 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11120 		ctx = &cpuctx->ctx;
11121 
11122 		mutex_lock(&ctx->mutex);
11123 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11124 		cpuctx->online = 0;
11125 		mutex_unlock(&ctx->mutex);
11126 	}
11127 	cpumask_clear_cpu(cpu, perf_online_mask);
11128 	mutex_unlock(&pmus_lock);
11129 }
11130 #else
11131 
11132 static void perf_event_exit_cpu_context(int cpu) { }
11133 
11134 #endif
11135 
11136 int perf_event_init_cpu(unsigned int cpu)
11137 {
11138 	struct perf_cpu_context *cpuctx;
11139 	struct perf_event_context *ctx;
11140 	struct pmu *pmu;
11141 
11142 	perf_swevent_init_cpu(cpu);
11143 
11144 	mutex_lock(&pmus_lock);
11145 	cpumask_set_cpu(cpu, perf_online_mask);
11146 	list_for_each_entry(pmu, &pmus, entry) {
11147 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11148 		ctx = &cpuctx->ctx;
11149 
11150 		mutex_lock(&ctx->mutex);
11151 		cpuctx->online = 1;
11152 		mutex_unlock(&ctx->mutex);
11153 	}
11154 	mutex_unlock(&pmus_lock);
11155 
11156 	return 0;
11157 }
11158 
11159 int perf_event_exit_cpu(unsigned int cpu)
11160 {
11161 	perf_event_exit_cpu_context(cpu);
11162 	return 0;
11163 }
11164 
11165 static int
11166 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11167 {
11168 	int cpu;
11169 
11170 	for_each_online_cpu(cpu)
11171 		perf_event_exit_cpu(cpu);
11172 
11173 	return NOTIFY_OK;
11174 }
11175 
11176 /*
11177  * Run the perf reboot notifier at the very last possible moment so that
11178  * the generic watchdog code runs as long as possible.
11179  */
11180 static struct notifier_block perf_reboot_notifier = {
11181 	.notifier_call = perf_reboot,
11182 	.priority = INT_MIN,
11183 };
11184 
11185 void __init perf_event_init(void)
11186 {
11187 	int ret;
11188 
11189 	idr_init(&pmu_idr);
11190 
11191 	perf_event_init_all_cpus();
11192 	init_srcu_struct(&pmus_srcu);
11193 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11194 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11195 	perf_pmu_register(&perf_task_clock, NULL, -1);
11196 	perf_tp_register();
11197 	perf_event_init_cpu(smp_processor_id());
11198 	register_reboot_notifier(&perf_reboot_notifier);
11199 
11200 	ret = init_hw_breakpoint();
11201 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11202 
11203 	/*
11204 	 * Build time assertion that we keep the data_head at the intended
11205 	 * location.  IOW, validation we got the __reserved[] size right.
11206 	 */
11207 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11208 		     != 1024);
11209 }
11210 
11211 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11212 			      char *page)
11213 {
11214 	struct perf_pmu_events_attr *pmu_attr =
11215 		container_of(attr, struct perf_pmu_events_attr, attr);
11216 
11217 	if (pmu_attr->event_str)
11218 		return sprintf(page, "%s\n", pmu_attr->event_str);
11219 
11220 	return 0;
11221 }
11222 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11223 
11224 static int __init perf_event_sysfs_init(void)
11225 {
11226 	struct pmu *pmu;
11227 	int ret;
11228 
11229 	mutex_lock(&pmus_lock);
11230 
11231 	ret = bus_register(&pmu_bus);
11232 	if (ret)
11233 		goto unlock;
11234 
11235 	list_for_each_entry(pmu, &pmus, entry) {
11236 		if (!pmu->name || pmu->type < 0)
11237 			continue;
11238 
11239 		ret = pmu_dev_alloc(pmu);
11240 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11241 	}
11242 	pmu_bus_running = 1;
11243 	ret = 0;
11244 
11245 unlock:
11246 	mutex_unlock(&pmus_lock);
11247 
11248 	return ret;
11249 }
11250 device_initcall(perf_event_sysfs_init);
11251 
11252 #ifdef CONFIG_CGROUP_PERF
11253 static struct cgroup_subsys_state *
11254 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11255 {
11256 	struct perf_cgroup *jc;
11257 
11258 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11259 	if (!jc)
11260 		return ERR_PTR(-ENOMEM);
11261 
11262 	jc->info = alloc_percpu(struct perf_cgroup_info);
11263 	if (!jc->info) {
11264 		kfree(jc);
11265 		return ERR_PTR(-ENOMEM);
11266 	}
11267 
11268 	return &jc->css;
11269 }
11270 
11271 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11272 {
11273 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11274 
11275 	free_percpu(jc->info);
11276 	kfree(jc);
11277 }
11278 
11279 static int __perf_cgroup_move(void *info)
11280 {
11281 	struct task_struct *task = info;
11282 	rcu_read_lock();
11283 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11284 	rcu_read_unlock();
11285 	return 0;
11286 }
11287 
11288 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11289 {
11290 	struct task_struct *task;
11291 	struct cgroup_subsys_state *css;
11292 
11293 	cgroup_taskset_for_each(task, css, tset)
11294 		task_function_call(task, __perf_cgroup_move, task);
11295 }
11296 
11297 struct cgroup_subsys perf_event_cgrp_subsys = {
11298 	.css_alloc	= perf_cgroup_css_alloc,
11299 	.css_free	= perf_cgroup_css_free,
11300 	.attach		= perf_cgroup_attach,
11301 	/*
11302 	 * Implicitly enable on dfl hierarchy so that perf events can
11303 	 * always be filtered by cgroup2 path as long as perf_event
11304 	 * controller is not mounted on a legacy hierarchy.
11305 	 */
11306 	.implicit_on_dfl = true,
11307 	.threaded	= true,
11308 };
11309 #endif /* CONFIG_CGROUP_PERF */
11310