1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 WARN_ON_ONCE(!irqs_disabled()); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 WARN_ON_ONCE(!irqs_disabled()); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 #ifdef CONFIG_CGROUP_PERF 586 587 static inline bool 588 perf_cgroup_match(struct perf_event *event) 589 { 590 struct perf_event_context *ctx = event->ctx; 591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 592 593 /* @event doesn't care about cgroup */ 594 if (!event->cgrp) 595 return true; 596 597 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 598 if (!cpuctx->cgrp) 599 return false; 600 601 /* 602 * Cgroup scoping is recursive. An event enabled for a cgroup is 603 * also enabled for all its descendant cgroups. If @cpuctx's 604 * cgroup is a descendant of @event's (the test covers identity 605 * case), it's a match. 606 */ 607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 608 event->cgrp->css.cgroup); 609 } 610 611 static inline void perf_detach_cgroup(struct perf_event *event) 612 { 613 css_put(&event->cgrp->css); 614 event->cgrp = NULL; 615 } 616 617 static inline int is_cgroup_event(struct perf_event *event) 618 { 619 return event->cgrp != NULL; 620 } 621 622 static inline u64 perf_cgroup_event_time(struct perf_event *event) 623 { 624 struct perf_cgroup_info *t; 625 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 return t->time; 628 } 629 630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 631 { 632 struct perf_cgroup_info *info; 633 u64 now; 634 635 now = perf_clock(); 636 637 info = this_cpu_ptr(cgrp->info); 638 639 info->time += now - info->timestamp; 640 info->timestamp = now; 641 } 642 643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 644 { 645 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 646 if (cgrp_out) 647 __update_cgrp_time(cgrp_out); 648 } 649 650 static inline void update_cgrp_time_from_event(struct perf_event *event) 651 { 652 struct perf_cgroup *cgrp; 653 654 /* 655 * ensure we access cgroup data only when needed and 656 * when we know the cgroup is pinned (css_get) 657 */ 658 if (!is_cgroup_event(event)) 659 return; 660 661 cgrp = perf_cgroup_from_task(current, event->ctx); 662 /* 663 * Do not update time when cgroup is not active 664 */ 665 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 666 __update_cgrp_time(event->cgrp); 667 } 668 669 static inline void 670 perf_cgroup_set_timestamp(struct task_struct *task, 671 struct perf_event_context *ctx) 672 { 673 struct perf_cgroup *cgrp; 674 struct perf_cgroup_info *info; 675 676 /* 677 * ctx->lock held by caller 678 * ensure we do not access cgroup data 679 * unless we have the cgroup pinned (css_get) 680 */ 681 if (!task || !ctx->nr_cgroups) 682 return; 683 684 cgrp = perf_cgroup_from_task(task, ctx); 685 info = this_cpu_ptr(cgrp->info); 686 info->timestamp = ctx->timestamp; 687 } 688 689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 690 691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 693 694 /* 695 * reschedule events based on the cgroup constraint of task. 696 * 697 * mode SWOUT : schedule out everything 698 * mode SWIN : schedule in based on cgroup for next 699 */ 700 static void perf_cgroup_switch(struct task_struct *task, int mode) 701 { 702 struct perf_cpu_context *cpuctx; 703 struct list_head *list; 704 unsigned long flags; 705 706 /* 707 * Disable interrupts and preemption to avoid this CPU's 708 * cgrp_cpuctx_entry to change under us. 709 */ 710 local_irq_save(flags); 711 712 list = this_cpu_ptr(&cgrp_cpuctx_list); 713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 715 716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 717 perf_pmu_disable(cpuctx->ctx.pmu); 718 719 if (mode & PERF_CGROUP_SWOUT) { 720 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 721 /* 722 * must not be done before ctxswout due 723 * to event_filter_match() in event_sched_out() 724 */ 725 cpuctx->cgrp = NULL; 726 } 727 728 if (mode & PERF_CGROUP_SWIN) { 729 WARN_ON_ONCE(cpuctx->cgrp); 730 /* 731 * set cgrp before ctxsw in to allow 732 * event_filter_match() to not have to pass 733 * task around 734 * we pass the cpuctx->ctx to perf_cgroup_from_task() 735 * because cgorup events are only per-cpu 736 */ 737 cpuctx->cgrp = perf_cgroup_from_task(task, 738 &cpuctx->ctx); 739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 740 } 741 perf_pmu_enable(cpuctx->ctx.pmu); 742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 743 } 744 745 local_irq_restore(flags); 746 } 747 748 static inline void perf_cgroup_sched_out(struct task_struct *task, 749 struct task_struct *next) 750 { 751 struct perf_cgroup *cgrp1; 752 struct perf_cgroup *cgrp2 = NULL; 753 754 rcu_read_lock(); 755 /* 756 * we come here when we know perf_cgroup_events > 0 757 * we do not need to pass the ctx here because we know 758 * we are holding the rcu lock 759 */ 760 cgrp1 = perf_cgroup_from_task(task, NULL); 761 cgrp2 = perf_cgroup_from_task(next, NULL); 762 763 /* 764 * only schedule out current cgroup events if we know 765 * that we are switching to a different cgroup. Otherwise, 766 * do no touch the cgroup events. 767 */ 768 if (cgrp1 != cgrp2) 769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 770 771 rcu_read_unlock(); 772 } 773 774 static inline void perf_cgroup_sched_in(struct task_struct *prev, 775 struct task_struct *task) 776 { 777 struct perf_cgroup *cgrp1; 778 struct perf_cgroup *cgrp2 = NULL; 779 780 rcu_read_lock(); 781 /* 782 * we come here when we know perf_cgroup_events > 0 783 * we do not need to pass the ctx here because we know 784 * we are holding the rcu lock 785 */ 786 cgrp1 = perf_cgroup_from_task(task, NULL); 787 cgrp2 = perf_cgroup_from_task(prev, NULL); 788 789 /* 790 * only need to schedule in cgroup events if we are changing 791 * cgroup during ctxsw. Cgroup events were not scheduled 792 * out of ctxsw out if that was not the case. 793 */ 794 if (cgrp1 != cgrp2) 795 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 796 797 rcu_read_unlock(); 798 } 799 800 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 801 struct perf_event_attr *attr, 802 struct perf_event *group_leader) 803 { 804 struct perf_cgroup *cgrp; 805 struct cgroup_subsys_state *css; 806 struct fd f = fdget(fd); 807 int ret = 0; 808 809 if (!f.file) 810 return -EBADF; 811 812 css = css_tryget_online_from_dir(f.file->f_path.dentry, 813 &perf_event_cgrp_subsys); 814 if (IS_ERR(css)) { 815 ret = PTR_ERR(css); 816 goto out; 817 } 818 819 cgrp = container_of(css, struct perf_cgroup, css); 820 event->cgrp = cgrp; 821 822 /* 823 * all events in a group must monitor 824 * the same cgroup because a task belongs 825 * to only one perf cgroup at a time 826 */ 827 if (group_leader && group_leader->cgrp != cgrp) { 828 perf_detach_cgroup(event); 829 ret = -EINVAL; 830 } 831 out: 832 fdput(f); 833 return ret; 834 } 835 836 static inline void 837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 838 { 839 struct perf_cgroup_info *t; 840 t = per_cpu_ptr(event->cgrp->info, event->cpu); 841 event->shadow_ctx_time = now - t->timestamp; 842 } 843 844 static inline void 845 perf_cgroup_defer_enabled(struct perf_event *event) 846 { 847 /* 848 * when the current task's perf cgroup does not match 849 * the event's, we need to remember to call the 850 * perf_mark_enable() function the first time a task with 851 * a matching perf cgroup is scheduled in. 852 */ 853 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 854 event->cgrp_defer_enabled = 1; 855 } 856 857 static inline void 858 perf_cgroup_mark_enabled(struct perf_event *event, 859 struct perf_event_context *ctx) 860 { 861 struct perf_event *sub; 862 u64 tstamp = perf_event_time(event); 863 864 if (!event->cgrp_defer_enabled) 865 return; 866 867 event->cgrp_defer_enabled = 0; 868 869 event->tstamp_enabled = tstamp - event->total_time_enabled; 870 list_for_each_entry(sub, &event->sibling_list, group_entry) { 871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 872 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 873 sub->cgrp_defer_enabled = 0; 874 } 875 } 876 } 877 878 /* 879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 880 * cleared when last cgroup event is removed. 881 */ 882 static inline void 883 list_update_cgroup_event(struct perf_event *event, 884 struct perf_event_context *ctx, bool add) 885 { 886 struct perf_cpu_context *cpuctx; 887 struct list_head *cpuctx_entry; 888 889 if (!is_cgroup_event(event)) 890 return; 891 892 if (add && ctx->nr_cgroups++) 893 return; 894 else if (!add && --ctx->nr_cgroups) 895 return; 896 /* 897 * Because cgroup events are always per-cpu events, 898 * this will always be called from the right CPU. 899 */ 900 cpuctx = __get_cpu_context(ctx); 901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 903 if (add) { 904 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 905 906 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 907 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 908 cpuctx->cgrp = cgrp; 909 } else { 910 list_del(cpuctx_entry); 911 cpuctx->cgrp = NULL; 912 } 913 } 914 915 #else /* !CONFIG_CGROUP_PERF */ 916 917 static inline bool 918 perf_cgroup_match(struct perf_event *event) 919 { 920 return true; 921 } 922 923 static inline void perf_detach_cgroup(struct perf_event *event) 924 {} 925 926 static inline int is_cgroup_event(struct perf_event *event) 927 { 928 return 0; 929 } 930 931 static inline void update_cgrp_time_from_event(struct perf_event *event) 932 { 933 } 934 935 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 936 { 937 } 938 939 static inline void perf_cgroup_sched_out(struct task_struct *task, 940 struct task_struct *next) 941 { 942 } 943 944 static inline void perf_cgroup_sched_in(struct task_struct *prev, 945 struct task_struct *task) 946 { 947 } 948 949 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 950 struct perf_event_attr *attr, 951 struct perf_event *group_leader) 952 { 953 return -EINVAL; 954 } 955 956 static inline void 957 perf_cgroup_set_timestamp(struct task_struct *task, 958 struct perf_event_context *ctx) 959 { 960 } 961 962 void 963 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 964 { 965 } 966 967 static inline void 968 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 969 { 970 } 971 972 static inline u64 perf_cgroup_event_time(struct perf_event *event) 973 { 974 return 0; 975 } 976 977 static inline void 978 perf_cgroup_defer_enabled(struct perf_event *event) 979 { 980 } 981 982 static inline void 983 perf_cgroup_mark_enabled(struct perf_event *event, 984 struct perf_event_context *ctx) 985 { 986 } 987 988 static inline void 989 list_update_cgroup_event(struct perf_event *event, 990 struct perf_event_context *ctx, bool add) 991 { 992 } 993 994 #endif 995 996 /* 997 * set default to be dependent on timer tick just 998 * like original code 999 */ 1000 #define PERF_CPU_HRTIMER (1000 / HZ) 1001 /* 1002 * function must be called with interrupts disabled 1003 */ 1004 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1005 { 1006 struct perf_cpu_context *cpuctx; 1007 int rotations = 0; 1008 1009 WARN_ON(!irqs_disabled()); 1010 1011 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1012 rotations = perf_rotate_context(cpuctx); 1013 1014 raw_spin_lock(&cpuctx->hrtimer_lock); 1015 if (rotations) 1016 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1017 else 1018 cpuctx->hrtimer_active = 0; 1019 raw_spin_unlock(&cpuctx->hrtimer_lock); 1020 1021 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1022 } 1023 1024 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1025 { 1026 struct hrtimer *timer = &cpuctx->hrtimer; 1027 struct pmu *pmu = cpuctx->ctx.pmu; 1028 u64 interval; 1029 1030 /* no multiplexing needed for SW PMU */ 1031 if (pmu->task_ctx_nr == perf_sw_context) 1032 return; 1033 1034 /* 1035 * check default is sane, if not set then force to 1036 * default interval (1/tick) 1037 */ 1038 interval = pmu->hrtimer_interval_ms; 1039 if (interval < 1) 1040 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1041 1042 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1043 1044 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1045 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1046 timer->function = perf_mux_hrtimer_handler; 1047 } 1048 1049 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1050 { 1051 struct hrtimer *timer = &cpuctx->hrtimer; 1052 struct pmu *pmu = cpuctx->ctx.pmu; 1053 unsigned long flags; 1054 1055 /* not for SW PMU */ 1056 if (pmu->task_ctx_nr == perf_sw_context) 1057 return 0; 1058 1059 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1060 if (!cpuctx->hrtimer_active) { 1061 cpuctx->hrtimer_active = 1; 1062 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1063 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1064 } 1065 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1066 1067 return 0; 1068 } 1069 1070 void perf_pmu_disable(struct pmu *pmu) 1071 { 1072 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1073 if (!(*count)++) 1074 pmu->pmu_disable(pmu); 1075 } 1076 1077 void perf_pmu_enable(struct pmu *pmu) 1078 { 1079 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1080 if (!--(*count)) 1081 pmu->pmu_enable(pmu); 1082 } 1083 1084 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1085 1086 /* 1087 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1088 * perf_event_task_tick() are fully serialized because they're strictly cpu 1089 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1090 * disabled, while perf_event_task_tick is called from IRQ context. 1091 */ 1092 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1093 { 1094 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1095 1096 WARN_ON(!irqs_disabled()); 1097 1098 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1099 1100 list_add(&ctx->active_ctx_list, head); 1101 } 1102 1103 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1104 { 1105 WARN_ON(!irqs_disabled()); 1106 1107 WARN_ON(list_empty(&ctx->active_ctx_list)); 1108 1109 list_del_init(&ctx->active_ctx_list); 1110 } 1111 1112 static void get_ctx(struct perf_event_context *ctx) 1113 { 1114 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1115 } 1116 1117 static void free_ctx(struct rcu_head *head) 1118 { 1119 struct perf_event_context *ctx; 1120 1121 ctx = container_of(head, struct perf_event_context, rcu_head); 1122 kfree(ctx->task_ctx_data); 1123 kfree(ctx); 1124 } 1125 1126 static void put_ctx(struct perf_event_context *ctx) 1127 { 1128 if (atomic_dec_and_test(&ctx->refcount)) { 1129 if (ctx->parent_ctx) 1130 put_ctx(ctx->parent_ctx); 1131 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1132 put_task_struct(ctx->task); 1133 call_rcu(&ctx->rcu_head, free_ctx); 1134 } 1135 } 1136 1137 /* 1138 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1139 * perf_pmu_migrate_context() we need some magic. 1140 * 1141 * Those places that change perf_event::ctx will hold both 1142 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1143 * 1144 * Lock ordering is by mutex address. There are two other sites where 1145 * perf_event_context::mutex nests and those are: 1146 * 1147 * - perf_event_exit_task_context() [ child , 0 ] 1148 * perf_event_exit_event() 1149 * put_event() [ parent, 1 ] 1150 * 1151 * - perf_event_init_context() [ parent, 0 ] 1152 * inherit_task_group() 1153 * inherit_group() 1154 * inherit_event() 1155 * perf_event_alloc() 1156 * perf_init_event() 1157 * perf_try_init_event() [ child , 1 ] 1158 * 1159 * While it appears there is an obvious deadlock here -- the parent and child 1160 * nesting levels are inverted between the two. This is in fact safe because 1161 * life-time rules separate them. That is an exiting task cannot fork, and a 1162 * spawning task cannot (yet) exit. 1163 * 1164 * But remember that that these are parent<->child context relations, and 1165 * migration does not affect children, therefore these two orderings should not 1166 * interact. 1167 * 1168 * The change in perf_event::ctx does not affect children (as claimed above) 1169 * because the sys_perf_event_open() case will install a new event and break 1170 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1171 * concerned with cpuctx and that doesn't have children. 1172 * 1173 * The places that change perf_event::ctx will issue: 1174 * 1175 * perf_remove_from_context(); 1176 * synchronize_rcu(); 1177 * perf_install_in_context(); 1178 * 1179 * to affect the change. The remove_from_context() + synchronize_rcu() should 1180 * quiesce the event, after which we can install it in the new location. This 1181 * means that only external vectors (perf_fops, prctl) can perturb the event 1182 * while in transit. Therefore all such accessors should also acquire 1183 * perf_event_context::mutex to serialize against this. 1184 * 1185 * However; because event->ctx can change while we're waiting to acquire 1186 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1187 * function. 1188 * 1189 * Lock order: 1190 * cred_guard_mutex 1191 * task_struct::perf_event_mutex 1192 * perf_event_context::mutex 1193 * perf_event::child_mutex; 1194 * perf_event_context::lock 1195 * perf_event::mmap_mutex 1196 * mmap_sem 1197 */ 1198 static struct perf_event_context * 1199 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1200 { 1201 struct perf_event_context *ctx; 1202 1203 again: 1204 rcu_read_lock(); 1205 ctx = ACCESS_ONCE(event->ctx); 1206 if (!atomic_inc_not_zero(&ctx->refcount)) { 1207 rcu_read_unlock(); 1208 goto again; 1209 } 1210 rcu_read_unlock(); 1211 1212 mutex_lock_nested(&ctx->mutex, nesting); 1213 if (event->ctx != ctx) { 1214 mutex_unlock(&ctx->mutex); 1215 put_ctx(ctx); 1216 goto again; 1217 } 1218 1219 return ctx; 1220 } 1221 1222 static inline struct perf_event_context * 1223 perf_event_ctx_lock(struct perf_event *event) 1224 { 1225 return perf_event_ctx_lock_nested(event, 0); 1226 } 1227 1228 static void perf_event_ctx_unlock(struct perf_event *event, 1229 struct perf_event_context *ctx) 1230 { 1231 mutex_unlock(&ctx->mutex); 1232 put_ctx(ctx); 1233 } 1234 1235 /* 1236 * This must be done under the ctx->lock, such as to serialize against 1237 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1238 * calling scheduler related locks and ctx->lock nests inside those. 1239 */ 1240 static __must_check struct perf_event_context * 1241 unclone_ctx(struct perf_event_context *ctx) 1242 { 1243 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1244 1245 lockdep_assert_held(&ctx->lock); 1246 1247 if (parent_ctx) 1248 ctx->parent_ctx = NULL; 1249 ctx->generation++; 1250 1251 return parent_ctx; 1252 } 1253 1254 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1255 enum pid_type type) 1256 { 1257 u32 nr; 1258 /* 1259 * only top level events have the pid namespace they were created in 1260 */ 1261 if (event->parent) 1262 event = event->parent; 1263 1264 nr = __task_pid_nr_ns(p, type, event->ns); 1265 /* avoid -1 if it is idle thread or runs in another ns */ 1266 if (!nr && !pid_alive(p)) 1267 nr = -1; 1268 return nr; 1269 } 1270 1271 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1272 { 1273 return perf_event_pid_type(event, p, __PIDTYPE_TGID); 1274 } 1275 1276 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1277 { 1278 return perf_event_pid_type(event, p, PIDTYPE_PID); 1279 } 1280 1281 /* 1282 * If we inherit events we want to return the parent event id 1283 * to userspace. 1284 */ 1285 static u64 primary_event_id(struct perf_event *event) 1286 { 1287 u64 id = event->id; 1288 1289 if (event->parent) 1290 id = event->parent->id; 1291 1292 return id; 1293 } 1294 1295 /* 1296 * Get the perf_event_context for a task and lock it. 1297 * 1298 * This has to cope with with the fact that until it is locked, 1299 * the context could get moved to another task. 1300 */ 1301 static struct perf_event_context * 1302 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1303 { 1304 struct perf_event_context *ctx; 1305 1306 retry: 1307 /* 1308 * One of the few rules of preemptible RCU is that one cannot do 1309 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1310 * part of the read side critical section was irqs-enabled -- see 1311 * rcu_read_unlock_special(). 1312 * 1313 * Since ctx->lock nests under rq->lock we must ensure the entire read 1314 * side critical section has interrupts disabled. 1315 */ 1316 local_irq_save(*flags); 1317 rcu_read_lock(); 1318 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1319 if (ctx) { 1320 /* 1321 * If this context is a clone of another, it might 1322 * get swapped for another underneath us by 1323 * perf_event_task_sched_out, though the 1324 * rcu_read_lock() protects us from any context 1325 * getting freed. Lock the context and check if it 1326 * got swapped before we could get the lock, and retry 1327 * if so. If we locked the right context, then it 1328 * can't get swapped on us any more. 1329 */ 1330 raw_spin_lock(&ctx->lock); 1331 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1332 raw_spin_unlock(&ctx->lock); 1333 rcu_read_unlock(); 1334 local_irq_restore(*flags); 1335 goto retry; 1336 } 1337 1338 if (ctx->task == TASK_TOMBSTONE || 1339 !atomic_inc_not_zero(&ctx->refcount)) { 1340 raw_spin_unlock(&ctx->lock); 1341 ctx = NULL; 1342 } else { 1343 WARN_ON_ONCE(ctx->task != task); 1344 } 1345 } 1346 rcu_read_unlock(); 1347 if (!ctx) 1348 local_irq_restore(*flags); 1349 return ctx; 1350 } 1351 1352 /* 1353 * Get the context for a task and increment its pin_count so it 1354 * can't get swapped to another task. This also increments its 1355 * reference count so that the context can't get freed. 1356 */ 1357 static struct perf_event_context * 1358 perf_pin_task_context(struct task_struct *task, int ctxn) 1359 { 1360 struct perf_event_context *ctx; 1361 unsigned long flags; 1362 1363 ctx = perf_lock_task_context(task, ctxn, &flags); 1364 if (ctx) { 1365 ++ctx->pin_count; 1366 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1367 } 1368 return ctx; 1369 } 1370 1371 static void perf_unpin_context(struct perf_event_context *ctx) 1372 { 1373 unsigned long flags; 1374 1375 raw_spin_lock_irqsave(&ctx->lock, flags); 1376 --ctx->pin_count; 1377 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1378 } 1379 1380 /* 1381 * Update the record of the current time in a context. 1382 */ 1383 static void update_context_time(struct perf_event_context *ctx) 1384 { 1385 u64 now = perf_clock(); 1386 1387 ctx->time += now - ctx->timestamp; 1388 ctx->timestamp = now; 1389 } 1390 1391 static u64 perf_event_time(struct perf_event *event) 1392 { 1393 struct perf_event_context *ctx = event->ctx; 1394 1395 if (is_cgroup_event(event)) 1396 return perf_cgroup_event_time(event); 1397 1398 return ctx ? ctx->time : 0; 1399 } 1400 1401 /* 1402 * Update the total_time_enabled and total_time_running fields for a event. 1403 */ 1404 static void update_event_times(struct perf_event *event) 1405 { 1406 struct perf_event_context *ctx = event->ctx; 1407 u64 run_end; 1408 1409 lockdep_assert_held(&ctx->lock); 1410 1411 if (event->state < PERF_EVENT_STATE_INACTIVE || 1412 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1413 return; 1414 1415 /* 1416 * in cgroup mode, time_enabled represents 1417 * the time the event was enabled AND active 1418 * tasks were in the monitored cgroup. This is 1419 * independent of the activity of the context as 1420 * there may be a mix of cgroup and non-cgroup events. 1421 * 1422 * That is why we treat cgroup events differently 1423 * here. 1424 */ 1425 if (is_cgroup_event(event)) 1426 run_end = perf_cgroup_event_time(event); 1427 else if (ctx->is_active) 1428 run_end = ctx->time; 1429 else 1430 run_end = event->tstamp_stopped; 1431 1432 event->total_time_enabled = run_end - event->tstamp_enabled; 1433 1434 if (event->state == PERF_EVENT_STATE_INACTIVE) 1435 run_end = event->tstamp_stopped; 1436 else 1437 run_end = perf_event_time(event); 1438 1439 event->total_time_running = run_end - event->tstamp_running; 1440 1441 } 1442 1443 /* 1444 * Update total_time_enabled and total_time_running for all events in a group. 1445 */ 1446 static void update_group_times(struct perf_event *leader) 1447 { 1448 struct perf_event *event; 1449 1450 update_event_times(leader); 1451 list_for_each_entry(event, &leader->sibling_list, group_entry) 1452 update_event_times(event); 1453 } 1454 1455 static enum event_type_t get_event_type(struct perf_event *event) 1456 { 1457 struct perf_event_context *ctx = event->ctx; 1458 enum event_type_t event_type; 1459 1460 lockdep_assert_held(&ctx->lock); 1461 1462 /* 1463 * It's 'group type', really, because if our group leader is 1464 * pinned, so are we. 1465 */ 1466 if (event->group_leader != event) 1467 event = event->group_leader; 1468 1469 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1470 if (!ctx->task) 1471 event_type |= EVENT_CPU; 1472 1473 return event_type; 1474 } 1475 1476 static struct list_head * 1477 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1478 { 1479 if (event->attr.pinned) 1480 return &ctx->pinned_groups; 1481 else 1482 return &ctx->flexible_groups; 1483 } 1484 1485 /* 1486 * Add a event from the lists for its context. 1487 * Must be called with ctx->mutex and ctx->lock held. 1488 */ 1489 static void 1490 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1491 { 1492 lockdep_assert_held(&ctx->lock); 1493 1494 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1495 event->attach_state |= PERF_ATTACH_CONTEXT; 1496 1497 /* 1498 * If we're a stand alone event or group leader, we go to the context 1499 * list, group events are kept attached to the group so that 1500 * perf_group_detach can, at all times, locate all siblings. 1501 */ 1502 if (event->group_leader == event) { 1503 struct list_head *list; 1504 1505 event->group_caps = event->event_caps; 1506 1507 list = ctx_group_list(event, ctx); 1508 list_add_tail(&event->group_entry, list); 1509 } 1510 1511 list_update_cgroup_event(event, ctx, true); 1512 1513 list_add_rcu(&event->event_entry, &ctx->event_list); 1514 ctx->nr_events++; 1515 if (event->attr.inherit_stat) 1516 ctx->nr_stat++; 1517 1518 ctx->generation++; 1519 } 1520 1521 /* 1522 * Initialize event state based on the perf_event_attr::disabled. 1523 */ 1524 static inline void perf_event__state_init(struct perf_event *event) 1525 { 1526 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1527 PERF_EVENT_STATE_INACTIVE; 1528 } 1529 1530 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1531 { 1532 int entry = sizeof(u64); /* value */ 1533 int size = 0; 1534 int nr = 1; 1535 1536 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1537 size += sizeof(u64); 1538 1539 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1540 size += sizeof(u64); 1541 1542 if (event->attr.read_format & PERF_FORMAT_ID) 1543 entry += sizeof(u64); 1544 1545 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1546 nr += nr_siblings; 1547 size += sizeof(u64); 1548 } 1549 1550 size += entry * nr; 1551 event->read_size = size; 1552 } 1553 1554 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1555 { 1556 struct perf_sample_data *data; 1557 u16 size = 0; 1558 1559 if (sample_type & PERF_SAMPLE_IP) 1560 size += sizeof(data->ip); 1561 1562 if (sample_type & PERF_SAMPLE_ADDR) 1563 size += sizeof(data->addr); 1564 1565 if (sample_type & PERF_SAMPLE_PERIOD) 1566 size += sizeof(data->period); 1567 1568 if (sample_type & PERF_SAMPLE_WEIGHT) 1569 size += sizeof(data->weight); 1570 1571 if (sample_type & PERF_SAMPLE_READ) 1572 size += event->read_size; 1573 1574 if (sample_type & PERF_SAMPLE_DATA_SRC) 1575 size += sizeof(data->data_src.val); 1576 1577 if (sample_type & PERF_SAMPLE_TRANSACTION) 1578 size += sizeof(data->txn); 1579 1580 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1581 size += sizeof(data->phys_addr); 1582 1583 event->header_size = size; 1584 } 1585 1586 /* 1587 * Called at perf_event creation and when events are attached/detached from a 1588 * group. 1589 */ 1590 static void perf_event__header_size(struct perf_event *event) 1591 { 1592 __perf_event_read_size(event, 1593 event->group_leader->nr_siblings); 1594 __perf_event_header_size(event, event->attr.sample_type); 1595 } 1596 1597 static void perf_event__id_header_size(struct perf_event *event) 1598 { 1599 struct perf_sample_data *data; 1600 u64 sample_type = event->attr.sample_type; 1601 u16 size = 0; 1602 1603 if (sample_type & PERF_SAMPLE_TID) 1604 size += sizeof(data->tid_entry); 1605 1606 if (sample_type & PERF_SAMPLE_TIME) 1607 size += sizeof(data->time); 1608 1609 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1610 size += sizeof(data->id); 1611 1612 if (sample_type & PERF_SAMPLE_ID) 1613 size += sizeof(data->id); 1614 1615 if (sample_type & PERF_SAMPLE_STREAM_ID) 1616 size += sizeof(data->stream_id); 1617 1618 if (sample_type & PERF_SAMPLE_CPU) 1619 size += sizeof(data->cpu_entry); 1620 1621 event->id_header_size = size; 1622 } 1623 1624 static bool perf_event_validate_size(struct perf_event *event) 1625 { 1626 /* 1627 * The values computed here will be over-written when we actually 1628 * attach the event. 1629 */ 1630 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1631 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1632 perf_event__id_header_size(event); 1633 1634 /* 1635 * Sum the lot; should not exceed the 64k limit we have on records. 1636 * Conservative limit to allow for callchains and other variable fields. 1637 */ 1638 if (event->read_size + event->header_size + 1639 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1640 return false; 1641 1642 return true; 1643 } 1644 1645 static void perf_group_attach(struct perf_event *event) 1646 { 1647 struct perf_event *group_leader = event->group_leader, *pos; 1648 1649 lockdep_assert_held(&event->ctx->lock); 1650 1651 /* 1652 * We can have double attach due to group movement in perf_event_open. 1653 */ 1654 if (event->attach_state & PERF_ATTACH_GROUP) 1655 return; 1656 1657 event->attach_state |= PERF_ATTACH_GROUP; 1658 1659 if (group_leader == event) 1660 return; 1661 1662 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1663 1664 group_leader->group_caps &= event->event_caps; 1665 1666 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1667 group_leader->nr_siblings++; 1668 1669 perf_event__header_size(group_leader); 1670 1671 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1672 perf_event__header_size(pos); 1673 } 1674 1675 /* 1676 * Remove a event from the lists for its context. 1677 * Must be called with ctx->mutex and ctx->lock held. 1678 */ 1679 static void 1680 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1681 { 1682 WARN_ON_ONCE(event->ctx != ctx); 1683 lockdep_assert_held(&ctx->lock); 1684 1685 /* 1686 * We can have double detach due to exit/hot-unplug + close. 1687 */ 1688 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1689 return; 1690 1691 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1692 1693 list_update_cgroup_event(event, ctx, false); 1694 1695 ctx->nr_events--; 1696 if (event->attr.inherit_stat) 1697 ctx->nr_stat--; 1698 1699 list_del_rcu(&event->event_entry); 1700 1701 if (event->group_leader == event) 1702 list_del_init(&event->group_entry); 1703 1704 update_group_times(event); 1705 1706 /* 1707 * If event was in error state, then keep it 1708 * that way, otherwise bogus counts will be 1709 * returned on read(). The only way to get out 1710 * of error state is by explicit re-enabling 1711 * of the event 1712 */ 1713 if (event->state > PERF_EVENT_STATE_OFF) 1714 event->state = PERF_EVENT_STATE_OFF; 1715 1716 ctx->generation++; 1717 } 1718 1719 static void perf_group_detach(struct perf_event *event) 1720 { 1721 struct perf_event *sibling, *tmp; 1722 struct list_head *list = NULL; 1723 1724 lockdep_assert_held(&event->ctx->lock); 1725 1726 /* 1727 * We can have double detach due to exit/hot-unplug + close. 1728 */ 1729 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1730 return; 1731 1732 event->attach_state &= ~PERF_ATTACH_GROUP; 1733 1734 /* 1735 * If this is a sibling, remove it from its group. 1736 */ 1737 if (event->group_leader != event) { 1738 list_del_init(&event->group_entry); 1739 event->group_leader->nr_siblings--; 1740 goto out; 1741 } 1742 1743 if (!list_empty(&event->group_entry)) 1744 list = &event->group_entry; 1745 1746 /* 1747 * If this was a group event with sibling events then 1748 * upgrade the siblings to singleton events by adding them 1749 * to whatever list we are on. 1750 */ 1751 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1752 if (list) 1753 list_move_tail(&sibling->group_entry, list); 1754 sibling->group_leader = sibling; 1755 1756 /* Inherit group flags from the previous leader */ 1757 sibling->group_caps = event->group_caps; 1758 1759 WARN_ON_ONCE(sibling->ctx != event->ctx); 1760 } 1761 1762 out: 1763 perf_event__header_size(event->group_leader); 1764 1765 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1766 perf_event__header_size(tmp); 1767 } 1768 1769 static bool is_orphaned_event(struct perf_event *event) 1770 { 1771 return event->state == PERF_EVENT_STATE_DEAD; 1772 } 1773 1774 static inline int __pmu_filter_match(struct perf_event *event) 1775 { 1776 struct pmu *pmu = event->pmu; 1777 return pmu->filter_match ? pmu->filter_match(event) : 1; 1778 } 1779 1780 /* 1781 * Check whether we should attempt to schedule an event group based on 1782 * PMU-specific filtering. An event group can consist of HW and SW events, 1783 * potentially with a SW leader, so we must check all the filters, to 1784 * determine whether a group is schedulable: 1785 */ 1786 static inline int pmu_filter_match(struct perf_event *event) 1787 { 1788 struct perf_event *child; 1789 1790 if (!__pmu_filter_match(event)) 1791 return 0; 1792 1793 list_for_each_entry(child, &event->sibling_list, group_entry) { 1794 if (!__pmu_filter_match(child)) 1795 return 0; 1796 } 1797 1798 return 1; 1799 } 1800 1801 static inline int 1802 event_filter_match(struct perf_event *event) 1803 { 1804 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1805 perf_cgroup_match(event) && pmu_filter_match(event); 1806 } 1807 1808 static void 1809 event_sched_out(struct perf_event *event, 1810 struct perf_cpu_context *cpuctx, 1811 struct perf_event_context *ctx) 1812 { 1813 u64 tstamp = perf_event_time(event); 1814 u64 delta; 1815 1816 WARN_ON_ONCE(event->ctx != ctx); 1817 lockdep_assert_held(&ctx->lock); 1818 1819 /* 1820 * An event which could not be activated because of 1821 * filter mismatch still needs to have its timings 1822 * maintained, otherwise bogus information is return 1823 * via read() for time_enabled, time_running: 1824 */ 1825 if (event->state == PERF_EVENT_STATE_INACTIVE && 1826 !event_filter_match(event)) { 1827 delta = tstamp - event->tstamp_stopped; 1828 event->tstamp_running += delta; 1829 event->tstamp_stopped = tstamp; 1830 } 1831 1832 if (event->state != PERF_EVENT_STATE_ACTIVE) 1833 return; 1834 1835 perf_pmu_disable(event->pmu); 1836 1837 event->tstamp_stopped = tstamp; 1838 event->pmu->del(event, 0); 1839 event->oncpu = -1; 1840 event->state = PERF_EVENT_STATE_INACTIVE; 1841 if (event->pending_disable) { 1842 event->pending_disable = 0; 1843 event->state = PERF_EVENT_STATE_OFF; 1844 } 1845 1846 if (!is_software_event(event)) 1847 cpuctx->active_oncpu--; 1848 if (!--ctx->nr_active) 1849 perf_event_ctx_deactivate(ctx); 1850 if (event->attr.freq && event->attr.sample_freq) 1851 ctx->nr_freq--; 1852 if (event->attr.exclusive || !cpuctx->active_oncpu) 1853 cpuctx->exclusive = 0; 1854 1855 perf_pmu_enable(event->pmu); 1856 } 1857 1858 static void 1859 group_sched_out(struct perf_event *group_event, 1860 struct perf_cpu_context *cpuctx, 1861 struct perf_event_context *ctx) 1862 { 1863 struct perf_event *event; 1864 int state = group_event->state; 1865 1866 perf_pmu_disable(ctx->pmu); 1867 1868 event_sched_out(group_event, cpuctx, ctx); 1869 1870 /* 1871 * Schedule out siblings (if any): 1872 */ 1873 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1874 event_sched_out(event, cpuctx, ctx); 1875 1876 perf_pmu_enable(ctx->pmu); 1877 1878 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1879 cpuctx->exclusive = 0; 1880 } 1881 1882 #define DETACH_GROUP 0x01UL 1883 1884 /* 1885 * Cross CPU call to remove a performance event 1886 * 1887 * We disable the event on the hardware level first. After that we 1888 * remove it from the context list. 1889 */ 1890 static void 1891 __perf_remove_from_context(struct perf_event *event, 1892 struct perf_cpu_context *cpuctx, 1893 struct perf_event_context *ctx, 1894 void *info) 1895 { 1896 unsigned long flags = (unsigned long)info; 1897 1898 event_sched_out(event, cpuctx, ctx); 1899 if (flags & DETACH_GROUP) 1900 perf_group_detach(event); 1901 list_del_event(event, ctx); 1902 1903 if (!ctx->nr_events && ctx->is_active) { 1904 ctx->is_active = 0; 1905 if (ctx->task) { 1906 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1907 cpuctx->task_ctx = NULL; 1908 } 1909 } 1910 } 1911 1912 /* 1913 * Remove the event from a task's (or a CPU's) list of events. 1914 * 1915 * If event->ctx is a cloned context, callers must make sure that 1916 * every task struct that event->ctx->task could possibly point to 1917 * remains valid. This is OK when called from perf_release since 1918 * that only calls us on the top-level context, which can't be a clone. 1919 * When called from perf_event_exit_task, it's OK because the 1920 * context has been detached from its task. 1921 */ 1922 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1923 { 1924 struct perf_event_context *ctx = event->ctx; 1925 1926 lockdep_assert_held(&ctx->mutex); 1927 1928 event_function_call(event, __perf_remove_from_context, (void *)flags); 1929 1930 /* 1931 * The above event_function_call() can NO-OP when it hits 1932 * TASK_TOMBSTONE. In that case we must already have been detached 1933 * from the context (by perf_event_exit_event()) but the grouping 1934 * might still be in-tact. 1935 */ 1936 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1937 if ((flags & DETACH_GROUP) && 1938 (event->attach_state & PERF_ATTACH_GROUP)) { 1939 /* 1940 * Since in that case we cannot possibly be scheduled, simply 1941 * detach now. 1942 */ 1943 raw_spin_lock_irq(&ctx->lock); 1944 perf_group_detach(event); 1945 raw_spin_unlock_irq(&ctx->lock); 1946 } 1947 } 1948 1949 /* 1950 * Cross CPU call to disable a performance event 1951 */ 1952 static void __perf_event_disable(struct perf_event *event, 1953 struct perf_cpu_context *cpuctx, 1954 struct perf_event_context *ctx, 1955 void *info) 1956 { 1957 if (event->state < PERF_EVENT_STATE_INACTIVE) 1958 return; 1959 1960 update_context_time(ctx); 1961 update_cgrp_time_from_event(event); 1962 update_group_times(event); 1963 if (event == event->group_leader) 1964 group_sched_out(event, cpuctx, ctx); 1965 else 1966 event_sched_out(event, cpuctx, ctx); 1967 event->state = PERF_EVENT_STATE_OFF; 1968 } 1969 1970 /* 1971 * Disable a event. 1972 * 1973 * If event->ctx is a cloned context, callers must make sure that 1974 * every task struct that event->ctx->task could possibly point to 1975 * remains valid. This condition is satisifed when called through 1976 * perf_event_for_each_child or perf_event_for_each because they 1977 * hold the top-level event's child_mutex, so any descendant that 1978 * goes to exit will block in perf_event_exit_event(). 1979 * 1980 * When called from perf_pending_event it's OK because event->ctx 1981 * is the current context on this CPU and preemption is disabled, 1982 * hence we can't get into perf_event_task_sched_out for this context. 1983 */ 1984 static void _perf_event_disable(struct perf_event *event) 1985 { 1986 struct perf_event_context *ctx = event->ctx; 1987 1988 raw_spin_lock_irq(&ctx->lock); 1989 if (event->state <= PERF_EVENT_STATE_OFF) { 1990 raw_spin_unlock_irq(&ctx->lock); 1991 return; 1992 } 1993 raw_spin_unlock_irq(&ctx->lock); 1994 1995 event_function_call(event, __perf_event_disable, NULL); 1996 } 1997 1998 void perf_event_disable_local(struct perf_event *event) 1999 { 2000 event_function_local(event, __perf_event_disable, NULL); 2001 } 2002 2003 /* 2004 * Strictly speaking kernel users cannot create groups and therefore this 2005 * interface does not need the perf_event_ctx_lock() magic. 2006 */ 2007 void perf_event_disable(struct perf_event *event) 2008 { 2009 struct perf_event_context *ctx; 2010 2011 ctx = perf_event_ctx_lock(event); 2012 _perf_event_disable(event); 2013 perf_event_ctx_unlock(event, ctx); 2014 } 2015 EXPORT_SYMBOL_GPL(perf_event_disable); 2016 2017 void perf_event_disable_inatomic(struct perf_event *event) 2018 { 2019 event->pending_disable = 1; 2020 irq_work_queue(&event->pending); 2021 } 2022 2023 static void perf_set_shadow_time(struct perf_event *event, 2024 struct perf_event_context *ctx, 2025 u64 tstamp) 2026 { 2027 /* 2028 * use the correct time source for the time snapshot 2029 * 2030 * We could get by without this by leveraging the 2031 * fact that to get to this function, the caller 2032 * has most likely already called update_context_time() 2033 * and update_cgrp_time_xx() and thus both timestamp 2034 * are identical (or very close). Given that tstamp is, 2035 * already adjusted for cgroup, we could say that: 2036 * tstamp - ctx->timestamp 2037 * is equivalent to 2038 * tstamp - cgrp->timestamp. 2039 * 2040 * Then, in perf_output_read(), the calculation would 2041 * work with no changes because: 2042 * - event is guaranteed scheduled in 2043 * - no scheduled out in between 2044 * - thus the timestamp would be the same 2045 * 2046 * But this is a bit hairy. 2047 * 2048 * So instead, we have an explicit cgroup call to remain 2049 * within the time time source all along. We believe it 2050 * is cleaner and simpler to understand. 2051 */ 2052 if (is_cgroup_event(event)) 2053 perf_cgroup_set_shadow_time(event, tstamp); 2054 else 2055 event->shadow_ctx_time = tstamp - ctx->timestamp; 2056 } 2057 2058 #define MAX_INTERRUPTS (~0ULL) 2059 2060 static void perf_log_throttle(struct perf_event *event, int enable); 2061 static void perf_log_itrace_start(struct perf_event *event); 2062 2063 static int 2064 event_sched_in(struct perf_event *event, 2065 struct perf_cpu_context *cpuctx, 2066 struct perf_event_context *ctx) 2067 { 2068 u64 tstamp = perf_event_time(event); 2069 int ret = 0; 2070 2071 lockdep_assert_held(&ctx->lock); 2072 2073 if (event->state <= PERF_EVENT_STATE_OFF) 2074 return 0; 2075 2076 WRITE_ONCE(event->oncpu, smp_processor_id()); 2077 /* 2078 * Order event::oncpu write to happen before the ACTIVE state 2079 * is visible. 2080 */ 2081 smp_wmb(); 2082 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2083 2084 /* 2085 * Unthrottle events, since we scheduled we might have missed several 2086 * ticks already, also for a heavily scheduling task there is little 2087 * guarantee it'll get a tick in a timely manner. 2088 */ 2089 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2090 perf_log_throttle(event, 1); 2091 event->hw.interrupts = 0; 2092 } 2093 2094 /* 2095 * The new state must be visible before we turn it on in the hardware: 2096 */ 2097 smp_wmb(); 2098 2099 perf_pmu_disable(event->pmu); 2100 2101 perf_set_shadow_time(event, ctx, tstamp); 2102 2103 perf_log_itrace_start(event); 2104 2105 if (event->pmu->add(event, PERF_EF_START)) { 2106 event->state = PERF_EVENT_STATE_INACTIVE; 2107 event->oncpu = -1; 2108 ret = -EAGAIN; 2109 goto out; 2110 } 2111 2112 event->tstamp_running += tstamp - event->tstamp_stopped; 2113 2114 if (!is_software_event(event)) 2115 cpuctx->active_oncpu++; 2116 if (!ctx->nr_active++) 2117 perf_event_ctx_activate(ctx); 2118 if (event->attr.freq && event->attr.sample_freq) 2119 ctx->nr_freq++; 2120 2121 if (event->attr.exclusive) 2122 cpuctx->exclusive = 1; 2123 2124 out: 2125 perf_pmu_enable(event->pmu); 2126 2127 return ret; 2128 } 2129 2130 static int 2131 group_sched_in(struct perf_event *group_event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx) 2134 { 2135 struct perf_event *event, *partial_group = NULL; 2136 struct pmu *pmu = ctx->pmu; 2137 u64 now = ctx->time; 2138 bool simulate = false; 2139 2140 if (group_event->state == PERF_EVENT_STATE_OFF) 2141 return 0; 2142 2143 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2144 2145 if (event_sched_in(group_event, cpuctx, ctx)) { 2146 pmu->cancel_txn(pmu); 2147 perf_mux_hrtimer_restart(cpuctx); 2148 return -EAGAIN; 2149 } 2150 2151 /* 2152 * Schedule in siblings as one group (if any): 2153 */ 2154 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2155 if (event_sched_in(event, cpuctx, ctx)) { 2156 partial_group = event; 2157 goto group_error; 2158 } 2159 } 2160 2161 if (!pmu->commit_txn(pmu)) 2162 return 0; 2163 2164 group_error: 2165 /* 2166 * Groups can be scheduled in as one unit only, so undo any 2167 * partial group before returning: 2168 * The events up to the failed event are scheduled out normally, 2169 * tstamp_stopped will be updated. 2170 * 2171 * The failed events and the remaining siblings need to have 2172 * their timings updated as if they had gone thru event_sched_in() 2173 * and event_sched_out(). This is required to get consistent timings 2174 * across the group. This also takes care of the case where the group 2175 * could never be scheduled by ensuring tstamp_stopped is set to mark 2176 * the time the event was actually stopped, such that time delta 2177 * calculation in update_event_times() is correct. 2178 */ 2179 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2180 if (event == partial_group) 2181 simulate = true; 2182 2183 if (simulate) { 2184 event->tstamp_running += now - event->tstamp_stopped; 2185 event->tstamp_stopped = now; 2186 } else { 2187 event_sched_out(event, cpuctx, ctx); 2188 } 2189 } 2190 event_sched_out(group_event, cpuctx, ctx); 2191 2192 pmu->cancel_txn(pmu); 2193 2194 perf_mux_hrtimer_restart(cpuctx); 2195 2196 return -EAGAIN; 2197 } 2198 2199 /* 2200 * Work out whether we can put this event group on the CPU now. 2201 */ 2202 static int group_can_go_on(struct perf_event *event, 2203 struct perf_cpu_context *cpuctx, 2204 int can_add_hw) 2205 { 2206 /* 2207 * Groups consisting entirely of software events can always go on. 2208 */ 2209 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2210 return 1; 2211 /* 2212 * If an exclusive group is already on, no other hardware 2213 * events can go on. 2214 */ 2215 if (cpuctx->exclusive) 2216 return 0; 2217 /* 2218 * If this group is exclusive and there are already 2219 * events on the CPU, it can't go on. 2220 */ 2221 if (event->attr.exclusive && cpuctx->active_oncpu) 2222 return 0; 2223 /* 2224 * Otherwise, try to add it if all previous groups were able 2225 * to go on. 2226 */ 2227 return can_add_hw; 2228 } 2229 2230 /* 2231 * Complement to update_event_times(). This computes the tstamp_* values to 2232 * continue 'enabled' state from @now, and effectively discards the time 2233 * between the prior tstamp_stopped and now (as we were in the OFF state, or 2234 * just switched (context) time base). 2235 * 2236 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and 2237 * cannot have been scheduled in yet. And going into INACTIVE state means 2238 * '@event->tstamp_stopped = @now'. 2239 * 2240 * Thus given the rules of update_event_times(): 2241 * 2242 * total_time_enabled = tstamp_stopped - tstamp_enabled 2243 * total_time_running = tstamp_stopped - tstamp_running 2244 * 2245 * We can insert 'tstamp_stopped == now' and reverse them to compute new 2246 * tstamp_* values. 2247 */ 2248 static void __perf_event_enable_time(struct perf_event *event, u64 now) 2249 { 2250 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE); 2251 2252 event->tstamp_stopped = now; 2253 event->tstamp_enabled = now - event->total_time_enabled; 2254 event->tstamp_running = now - event->total_time_running; 2255 } 2256 2257 static void add_event_to_ctx(struct perf_event *event, 2258 struct perf_event_context *ctx) 2259 { 2260 u64 tstamp = perf_event_time(event); 2261 2262 list_add_event(event, ctx); 2263 perf_group_attach(event); 2264 /* 2265 * We can be called with event->state == STATE_OFF when we create with 2266 * .disabled = 1. In that case the IOC_ENABLE will call this function. 2267 */ 2268 if (event->state == PERF_EVENT_STATE_INACTIVE) 2269 __perf_event_enable_time(event, tstamp); 2270 } 2271 2272 static void ctx_sched_out(struct perf_event_context *ctx, 2273 struct perf_cpu_context *cpuctx, 2274 enum event_type_t event_type); 2275 static void 2276 ctx_sched_in(struct perf_event_context *ctx, 2277 struct perf_cpu_context *cpuctx, 2278 enum event_type_t event_type, 2279 struct task_struct *task); 2280 2281 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2282 struct perf_event_context *ctx, 2283 enum event_type_t event_type) 2284 { 2285 if (!cpuctx->task_ctx) 2286 return; 2287 2288 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2289 return; 2290 2291 ctx_sched_out(ctx, cpuctx, event_type); 2292 } 2293 2294 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2295 struct perf_event_context *ctx, 2296 struct task_struct *task) 2297 { 2298 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2299 if (ctx) 2300 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2301 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2302 if (ctx) 2303 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2304 } 2305 2306 /* 2307 * We want to maintain the following priority of scheduling: 2308 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2309 * - task pinned (EVENT_PINNED) 2310 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2311 * - task flexible (EVENT_FLEXIBLE). 2312 * 2313 * In order to avoid unscheduling and scheduling back in everything every 2314 * time an event is added, only do it for the groups of equal priority and 2315 * below. 2316 * 2317 * This can be called after a batch operation on task events, in which case 2318 * event_type is a bit mask of the types of events involved. For CPU events, 2319 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2320 */ 2321 static void ctx_resched(struct perf_cpu_context *cpuctx, 2322 struct perf_event_context *task_ctx, 2323 enum event_type_t event_type) 2324 { 2325 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2326 bool cpu_event = !!(event_type & EVENT_CPU); 2327 2328 /* 2329 * If pinned groups are involved, flexible groups also need to be 2330 * scheduled out. 2331 */ 2332 if (event_type & EVENT_PINNED) 2333 event_type |= EVENT_FLEXIBLE; 2334 2335 perf_pmu_disable(cpuctx->ctx.pmu); 2336 if (task_ctx) 2337 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2338 2339 /* 2340 * Decide which cpu ctx groups to schedule out based on the types 2341 * of events that caused rescheduling: 2342 * - EVENT_CPU: schedule out corresponding groups; 2343 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2344 * - otherwise, do nothing more. 2345 */ 2346 if (cpu_event) 2347 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2348 else if (ctx_event_type & EVENT_PINNED) 2349 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2350 2351 perf_event_sched_in(cpuctx, task_ctx, current); 2352 perf_pmu_enable(cpuctx->ctx.pmu); 2353 } 2354 2355 /* 2356 * Cross CPU call to install and enable a performance event 2357 * 2358 * Very similar to remote_function() + event_function() but cannot assume that 2359 * things like ctx->is_active and cpuctx->task_ctx are set. 2360 */ 2361 static int __perf_install_in_context(void *info) 2362 { 2363 struct perf_event *event = info; 2364 struct perf_event_context *ctx = event->ctx; 2365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2366 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2367 bool reprogram = true; 2368 int ret = 0; 2369 2370 raw_spin_lock(&cpuctx->ctx.lock); 2371 if (ctx->task) { 2372 raw_spin_lock(&ctx->lock); 2373 task_ctx = ctx; 2374 2375 reprogram = (ctx->task == current); 2376 2377 /* 2378 * If the task is running, it must be running on this CPU, 2379 * otherwise we cannot reprogram things. 2380 * 2381 * If its not running, we don't care, ctx->lock will 2382 * serialize against it becoming runnable. 2383 */ 2384 if (task_curr(ctx->task) && !reprogram) { 2385 ret = -ESRCH; 2386 goto unlock; 2387 } 2388 2389 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2390 } else if (task_ctx) { 2391 raw_spin_lock(&task_ctx->lock); 2392 } 2393 2394 if (reprogram) { 2395 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2396 add_event_to_ctx(event, ctx); 2397 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2398 } else { 2399 add_event_to_ctx(event, ctx); 2400 } 2401 2402 unlock: 2403 perf_ctx_unlock(cpuctx, task_ctx); 2404 2405 return ret; 2406 } 2407 2408 /* 2409 * Attach a performance event to a context. 2410 * 2411 * Very similar to event_function_call, see comment there. 2412 */ 2413 static void 2414 perf_install_in_context(struct perf_event_context *ctx, 2415 struct perf_event *event, 2416 int cpu) 2417 { 2418 struct task_struct *task = READ_ONCE(ctx->task); 2419 2420 lockdep_assert_held(&ctx->mutex); 2421 2422 if (event->cpu != -1) 2423 event->cpu = cpu; 2424 2425 /* 2426 * Ensures that if we can observe event->ctx, both the event and ctx 2427 * will be 'complete'. See perf_iterate_sb_cpu(). 2428 */ 2429 smp_store_release(&event->ctx, ctx); 2430 2431 if (!task) { 2432 cpu_function_call(cpu, __perf_install_in_context, event); 2433 return; 2434 } 2435 2436 /* 2437 * Should not happen, we validate the ctx is still alive before calling. 2438 */ 2439 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2440 return; 2441 2442 /* 2443 * Installing events is tricky because we cannot rely on ctx->is_active 2444 * to be set in case this is the nr_events 0 -> 1 transition. 2445 * 2446 * Instead we use task_curr(), which tells us if the task is running. 2447 * However, since we use task_curr() outside of rq::lock, we can race 2448 * against the actual state. This means the result can be wrong. 2449 * 2450 * If we get a false positive, we retry, this is harmless. 2451 * 2452 * If we get a false negative, things are complicated. If we are after 2453 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2454 * value must be correct. If we're before, it doesn't matter since 2455 * perf_event_context_sched_in() will program the counter. 2456 * 2457 * However, this hinges on the remote context switch having observed 2458 * our task->perf_event_ctxp[] store, such that it will in fact take 2459 * ctx::lock in perf_event_context_sched_in(). 2460 * 2461 * We do this by task_function_call(), if the IPI fails to hit the task 2462 * we know any future context switch of task must see the 2463 * perf_event_ctpx[] store. 2464 */ 2465 2466 /* 2467 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2468 * task_cpu() load, such that if the IPI then does not find the task 2469 * running, a future context switch of that task must observe the 2470 * store. 2471 */ 2472 smp_mb(); 2473 again: 2474 if (!task_function_call(task, __perf_install_in_context, event)) 2475 return; 2476 2477 raw_spin_lock_irq(&ctx->lock); 2478 task = ctx->task; 2479 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2480 /* 2481 * Cannot happen because we already checked above (which also 2482 * cannot happen), and we hold ctx->mutex, which serializes us 2483 * against perf_event_exit_task_context(). 2484 */ 2485 raw_spin_unlock_irq(&ctx->lock); 2486 return; 2487 } 2488 /* 2489 * If the task is not running, ctx->lock will avoid it becoming so, 2490 * thus we can safely install the event. 2491 */ 2492 if (task_curr(task)) { 2493 raw_spin_unlock_irq(&ctx->lock); 2494 goto again; 2495 } 2496 add_event_to_ctx(event, ctx); 2497 raw_spin_unlock_irq(&ctx->lock); 2498 } 2499 2500 /* 2501 * Put a event into inactive state and update time fields. 2502 * Enabling the leader of a group effectively enables all 2503 * the group members that aren't explicitly disabled, so we 2504 * have to update their ->tstamp_enabled also. 2505 * Note: this works for group members as well as group leaders 2506 * since the non-leader members' sibling_lists will be empty. 2507 */ 2508 static void __perf_event_mark_enabled(struct perf_event *event) 2509 { 2510 struct perf_event *sub; 2511 u64 tstamp = perf_event_time(event); 2512 2513 event->state = PERF_EVENT_STATE_INACTIVE; 2514 __perf_event_enable_time(event, tstamp); 2515 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2516 /* XXX should not be > INACTIVE if event isn't */ 2517 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2518 __perf_event_enable_time(sub, tstamp); 2519 } 2520 } 2521 2522 /* 2523 * Cross CPU call to enable a performance event 2524 */ 2525 static void __perf_event_enable(struct perf_event *event, 2526 struct perf_cpu_context *cpuctx, 2527 struct perf_event_context *ctx, 2528 void *info) 2529 { 2530 struct perf_event *leader = event->group_leader; 2531 struct perf_event_context *task_ctx; 2532 2533 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2534 event->state <= PERF_EVENT_STATE_ERROR) 2535 return; 2536 2537 if (ctx->is_active) 2538 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2539 2540 __perf_event_mark_enabled(event); 2541 2542 if (!ctx->is_active) 2543 return; 2544 2545 if (!event_filter_match(event)) { 2546 if (is_cgroup_event(event)) 2547 perf_cgroup_defer_enabled(event); 2548 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2549 return; 2550 } 2551 2552 /* 2553 * If the event is in a group and isn't the group leader, 2554 * then don't put it on unless the group is on. 2555 */ 2556 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2557 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2558 return; 2559 } 2560 2561 task_ctx = cpuctx->task_ctx; 2562 if (ctx->task) 2563 WARN_ON_ONCE(task_ctx != ctx); 2564 2565 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2566 } 2567 2568 /* 2569 * Enable a event. 2570 * 2571 * If event->ctx is a cloned context, callers must make sure that 2572 * every task struct that event->ctx->task could possibly point to 2573 * remains valid. This condition is satisfied when called through 2574 * perf_event_for_each_child or perf_event_for_each as described 2575 * for perf_event_disable. 2576 */ 2577 static void _perf_event_enable(struct perf_event *event) 2578 { 2579 struct perf_event_context *ctx = event->ctx; 2580 2581 raw_spin_lock_irq(&ctx->lock); 2582 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2583 event->state < PERF_EVENT_STATE_ERROR) { 2584 raw_spin_unlock_irq(&ctx->lock); 2585 return; 2586 } 2587 2588 /* 2589 * If the event is in error state, clear that first. 2590 * 2591 * That way, if we see the event in error state below, we know that it 2592 * has gone back into error state, as distinct from the task having 2593 * been scheduled away before the cross-call arrived. 2594 */ 2595 if (event->state == PERF_EVENT_STATE_ERROR) 2596 event->state = PERF_EVENT_STATE_OFF; 2597 raw_spin_unlock_irq(&ctx->lock); 2598 2599 event_function_call(event, __perf_event_enable, NULL); 2600 } 2601 2602 /* 2603 * See perf_event_disable(); 2604 */ 2605 void perf_event_enable(struct perf_event *event) 2606 { 2607 struct perf_event_context *ctx; 2608 2609 ctx = perf_event_ctx_lock(event); 2610 _perf_event_enable(event); 2611 perf_event_ctx_unlock(event, ctx); 2612 } 2613 EXPORT_SYMBOL_GPL(perf_event_enable); 2614 2615 struct stop_event_data { 2616 struct perf_event *event; 2617 unsigned int restart; 2618 }; 2619 2620 static int __perf_event_stop(void *info) 2621 { 2622 struct stop_event_data *sd = info; 2623 struct perf_event *event = sd->event; 2624 2625 /* if it's already INACTIVE, do nothing */ 2626 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2627 return 0; 2628 2629 /* matches smp_wmb() in event_sched_in() */ 2630 smp_rmb(); 2631 2632 /* 2633 * There is a window with interrupts enabled before we get here, 2634 * so we need to check again lest we try to stop another CPU's event. 2635 */ 2636 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2637 return -EAGAIN; 2638 2639 event->pmu->stop(event, PERF_EF_UPDATE); 2640 2641 /* 2642 * May race with the actual stop (through perf_pmu_output_stop()), 2643 * but it is only used for events with AUX ring buffer, and such 2644 * events will refuse to restart because of rb::aux_mmap_count==0, 2645 * see comments in perf_aux_output_begin(). 2646 * 2647 * Since this is happening on a event-local CPU, no trace is lost 2648 * while restarting. 2649 */ 2650 if (sd->restart) 2651 event->pmu->start(event, 0); 2652 2653 return 0; 2654 } 2655 2656 static int perf_event_stop(struct perf_event *event, int restart) 2657 { 2658 struct stop_event_data sd = { 2659 .event = event, 2660 .restart = restart, 2661 }; 2662 int ret = 0; 2663 2664 do { 2665 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2666 return 0; 2667 2668 /* matches smp_wmb() in event_sched_in() */ 2669 smp_rmb(); 2670 2671 /* 2672 * We only want to restart ACTIVE events, so if the event goes 2673 * inactive here (event->oncpu==-1), there's nothing more to do; 2674 * fall through with ret==-ENXIO. 2675 */ 2676 ret = cpu_function_call(READ_ONCE(event->oncpu), 2677 __perf_event_stop, &sd); 2678 } while (ret == -EAGAIN); 2679 2680 return ret; 2681 } 2682 2683 /* 2684 * In order to contain the amount of racy and tricky in the address filter 2685 * configuration management, it is a two part process: 2686 * 2687 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2688 * we update the addresses of corresponding vmas in 2689 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2690 * (p2) when an event is scheduled in (pmu::add), it calls 2691 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2692 * if the generation has changed since the previous call. 2693 * 2694 * If (p1) happens while the event is active, we restart it to force (p2). 2695 * 2696 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2697 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2698 * ioctl; 2699 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2700 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2701 * for reading; 2702 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2703 * of exec. 2704 */ 2705 void perf_event_addr_filters_sync(struct perf_event *event) 2706 { 2707 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2708 2709 if (!has_addr_filter(event)) 2710 return; 2711 2712 raw_spin_lock(&ifh->lock); 2713 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2714 event->pmu->addr_filters_sync(event); 2715 event->hw.addr_filters_gen = event->addr_filters_gen; 2716 } 2717 raw_spin_unlock(&ifh->lock); 2718 } 2719 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2720 2721 static int _perf_event_refresh(struct perf_event *event, int refresh) 2722 { 2723 /* 2724 * not supported on inherited events 2725 */ 2726 if (event->attr.inherit || !is_sampling_event(event)) 2727 return -EINVAL; 2728 2729 atomic_add(refresh, &event->event_limit); 2730 _perf_event_enable(event); 2731 2732 return 0; 2733 } 2734 2735 /* 2736 * See perf_event_disable() 2737 */ 2738 int perf_event_refresh(struct perf_event *event, int refresh) 2739 { 2740 struct perf_event_context *ctx; 2741 int ret; 2742 2743 ctx = perf_event_ctx_lock(event); 2744 ret = _perf_event_refresh(event, refresh); 2745 perf_event_ctx_unlock(event, ctx); 2746 2747 return ret; 2748 } 2749 EXPORT_SYMBOL_GPL(perf_event_refresh); 2750 2751 static void ctx_sched_out(struct perf_event_context *ctx, 2752 struct perf_cpu_context *cpuctx, 2753 enum event_type_t event_type) 2754 { 2755 int is_active = ctx->is_active; 2756 struct perf_event *event; 2757 2758 lockdep_assert_held(&ctx->lock); 2759 2760 if (likely(!ctx->nr_events)) { 2761 /* 2762 * See __perf_remove_from_context(). 2763 */ 2764 WARN_ON_ONCE(ctx->is_active); 2765 if (ctx->task) 2766 WARN_ON_ONCE(cpuctx->task_ctx); 2767 return; 2768 } 2769 2770 ctx->is_active &= ~event_type; 2771 if (!(ctx->is_active & EVENT_ALL)) 2772 ctx->is_active = 0; 2773 2774 if (ctx->task) { 2775 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2776 if (!ctx->is_active) 2777 cpuctx->task_ctx = NULL; 2778 } 2779 2780 /* 2781 * Always update time if it was set; not only when it changes. 2782 * Otherwise we can 'forget' to update time for any but the last 2783 * context we sched out. For example: 2784 * 2785 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2786 * ctx_sched_out(.event_type = EVENT_PINNED) 2787 * 2788 * would only update time for the pinned events. 2789 */ 2790 if (is_active & EVENT_TIME) { 2791 /* update (and stop) ctx time */ 2792 update_context_time(ctx); 2793 update_cgrp_time_from_cpuctx(cpuctx); 2794 } 2795 2796 is_active ^= ctx->is_active; /* changed bits */ 2797 2798 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2799 return; 2800 2801 perf_pmu_disable(ctx->pmu); 2802 if (is_active & EVENT_PINNED) { 2803 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2804 group_sched_out(event, cpuctx, ctx); 2805 } 2806 2807 if (is_active & EVENT_FLEXIBLE) { 2808 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2809 group_sched_out(event, cpuctx, ctx); 2810 } 2811 perf_pmu_enable(ctx->pmu); 2812 } 2813 2814 /* 2815 * Test whether two contexts are equivalent, i.e. whether they have both been 2816 * cloned from the same version of the same context. 2817 * 2818 * Equivalence is measured using a generation number in the context that is 2819 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2820 * and list_del_event(). 2821 */ 2822 static int context_equiv(struct perf_event_context *ctx1, 2823 struct perf_event_context *ctx2) 2824 { 2825 lockdep_assert_held(&ctx1->lock); 2826 lockdep_assert_held(&ctx2->lock); 2827 2828 /* Pinning disables the swap optimization */ 2829 if (ctx1->pin_count || ctx2->pin_count) 2830 return 0; 2831 2832 /* If ctx1 is the parent of ctx2 */ 2833 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2834 return 1; 2835 2836 /* If ctx2 is the parent of ctx1 */ 2837 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2838 return 1; 2839 2840 /* 2841 * If ctx1 and ctx2 have the same parent; we flatten the parent 2842 * hierarchy, see perf_event_init_context(). 2843 */ 2844 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2845 ctx1->parent_gen == ctx2->parent_gen) 2846 return 1; 2847 2848 /* Unmatched */ 2849 return 0; 2850 } 2851 2852 static void __perf_event_sync_stat(struct perf_event *event, 2853 struct perf_event *next_event) 2854 { 2855 u64 value; 2856 2857 if (!event->attr.inherit_stat) 2858 return; 2859 2860 /* 2861 * Update the event value, we cannot use perf_event_read() 2862 * because we're in the middle of a context switch and have IRQs 2863 * disabled, which upsets smp_call_function_single(), however 2864 * we know the event must be on the current CPU, therefore we 2865 * don't need to use it. 2866 */ 2867 switch (event->state) { 2868 case PERF_EVENT_STATE_ACTIVE: 2869 event->pmu->read(event); 2870 /* fall-through */ 2871 2872 case PERF_EVENT_STATE_INACTIVE: 2873 update_event_times(event); 2874 break; 2875 2876 default: 2877 break; 2878 } 2879 2880 /* 2881 * In order to keep per-task stats reliable we need to flip the event 2882 * values when we flip the contexts. 2883 */ 2884 value = local64_read(&next_event->count); 2885 value = local64_xchg(&event->count, value); 2886 local64_set(&next_event->count, value); 2887 2888 swap(event->total_time_enabled, next_event->total_time_enabled); 2889 swap(event->total_time_running, next_event->total_time_running); 2890 2891 /* 2892 * Since we swizzled the values, update the user visible data too. 2893 */ 2894 perf_event_update_userpage(event); 2895 perf_event_update_userpage(next_event); 2896 } 2897 2898 static void perf_event_sync_stat(struct perf_event_context *ctx, 2899 struct perf_event_context *next_ctx) 2900 { 2901 struct perf_event *event, *next_event; 2902 2903 if (!ctx->nr_stat) 2904 return; 2905 2906 update_context_time(ctx); 2907 2908 event = list_first_entry(&ctx->event_list, 2909 struct perf_event, event_entry); 2910 2911 next_event = list_first_entry(&next_ctx->event_list, 2912 struct perf_event, event_entry); 2913 2914 while (&event->event_entry != &ctx->event_list && 2915 &next_event->event_entry != &next_ctx->event_list) { 2916 2917 __perf_event_sync_stat(event, next_event); 2918 2919 event = list_next_entry(event, event_entry); 2920 next_event = list_next_entry(next_event, event_entry); 2921 } 2922 } 2923 2924 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2925 struct task_struct *next) 2926 { 2927 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2928 struct perf_event_context *next_ctx; 2929 struct perf_event_context *parent, *next_parent; 2930 struct perf_cpu_context *cpuctx; 2931 int do_switch = 1; 2932 2933 if (likely(!ctx)) 2934 return; 2935 2936 cpuctx = __get_cpu_context(ctx); 2937 if (!cpuctx->task_ctx) 2938 return; 2939 2940 rcu_read_lock(); 2941 next_ctx = next->perf_event_ctxp[ctxn]; 2942 if (!next_ctx) 2943 goto unlock; 2944 2945 parent = rcu_dereference(ctx->parent_ctx); 2946 next_parent = rcu_dereference(next_ctx->parent_ctx); 2947 2948 /* If neither context have a parent context; they cannot be clones. */ 2949 if (!parent && !next_parent) 2950 goto unlock; 2951 2952 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2953 /* 2954 * Looks like the two contexts are clones, so we might be 2955 * able to optimize the context switch. We lock both 2956 * contexts and check that they are clones under the 2957 * lock (including re-checking that neither has been 2958 * uncloned in the meantime). It doesn't matter which 2959 * order we take the locks because no other cpu could 2960 * be trying to lock both of these tasks. 2961 */ 2962 raw_spin_lock(&ctx->lock); 2963 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2964 if (context_equiv(ctx, next_ctx)) { 2965 WRITE_ONCE(ctx->task, next); 2966 WRITE_ONCE(next_ctx->task, task); 2967 2968 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2969 2970 /* 2971 * RCU_INIT_POINTER here is safe because we've not 2972 * modified the ctx and the above modification of 2973 * ctx->task and ctx->task_ctx_data are immaterial 2974 * since those values are always verified under 2975 * ctx->lock which we're now holding. 2976 */ 2977 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2978 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2979 2980 do_switch = 0; 2981 2982 perf_event_sync_stat(ctx, next_ctx); 2983 } 2984 raw_spin_unlock(&next_ctx->lock); 2985 raw_spin_unlock(&ctx->lock); 2986 } 2987 unlock: 2988 rcu_read_unlock(); 2989 2990 if (do_switch) { 2991 raw_spin_lock(&ctx->lock); 2992 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2993 raw_spin_unlock(&ctx->lock); 2994 } 2995 } 2996 2997 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2998 2999 void perf_sched_cb_dec(struct pmu *pmu) 3000 { 3001 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3002 3003 this_cpu_dec(perf_sched_cb_usages); 3004 3005 if (!--cpuctx->sched_cb_usage) 3006 list_del(&cpuctx->sched_cb_entry); 3007 } 3008 3009 3010 void perf_sched_cb_inc(struct pmu *pmu) 3011 { 3012 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3013 3014 if (!cpuctx->sched_cb_usage++) 3015 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3016 3017 this_cpu_inc(perf_sched_cb_usages); 3018 } 3019 3020 /* 3021 * This function provides the context switch callback to the lower code 3022 * layer. It is invoked ONLY when the context switch callback is enabled. 3023 * 3024 * This callback is relevant even to per-cpu events; for example multi event 3025 * PEBS requires this to provide PID/TID information. This requires we flush 3026 * all queued PEBS records before we context switch to a new task. 3027 */ 3028 static void perf_pmu_sched_task(struct task_struct *prev, 3029 struct task_struct *next, 3030 bool sched_in) 3031 { 3032 struct perf_cpu_context *cpuctx; 3033 struct pmu *pmu; 3034 3035 if (prev == next) 3036 return; 3037 3038 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3039 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3040 3041 if (WARN_ON_ONCE(!pmu->sched_task)) 3042 continue; 3043 3044 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3045 perf_pmu_disable(pmu); 3046 3047 pmu->sched_task(cpuctx->task_ctx, sched_in); 3048 3049 perf_pmu_enable(pmu); 3050 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3051 } 3052 } 3053 3054 static void perf_event_switch(struct task_struct *task, 3055 struct task_struct *next_prev, bool sched_in); 3056 3057 #define for_each_task_context_nr(ctxn) \ 3058 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3059 3060 /* 3061 * Called from scheduler to remove the events of the current task, 3062 * with interrupts disabled. 3063 * 3064 * We stop each event and update the event value in event->count. 3065 * 3066 * This does not protect us against NMI, but disable() 3067 * sets the disabled bit in the control field of event _before_ 3068 * accessing the event control register. If a NMI hits, then it will 3069 * not restart the event. 3070 */ 3071 void __perf_event_task_sched_out(struct task_struct *task, 3072 struct task_struct *next) 3073 { 3074 int ctxn; 3075 3076 if (__this_cpu_read(perf_sched_cb_usages)) 3077 perf_pmu_sched_task(task, next, false); 3078 3079 if (atomic_read(&nr_switch_events)) 3080 perf_event_switch(task, next, false); 3081 3082 for_each_task_context_nr(ctxn) 3083 perf_event_context_sched_out(task, ctxn, next); 3084 3085 /* 3086 * if cgroup events exist on this CPU, then we need 3087 * to check if we have to switch out PMU state. 3088 * cgroup event are system-wide mode only 3089 */ 3090 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3091 perf_cgroup_sched_out(task, next); 3092 } 3093 3094 /* 3095 * Called with IRQs disabled 3096 */ 3097 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3098 enum event_type_t event_type) 3099 { 3100 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3101 } 3102 3103 static void 3104 ctx_pinned_sched_in(struct perf_event_context *ctx, 3105 struct perf_cpu_context *cpuctx) 3106 { 3107 struct perf_event *event; 3108 3109 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3110 if (event->state <= PERF_EVENT_STATE_OFF) 3111 continue; 3112 if (!event_filter_match(event)) 3113 continue; 3114 3115 /* may need to reset tstamp_enabled */ 3116 if (is_cgroup_event(event)) 3117 perf_cgroup_mark_enabled(event, ctx); 3118 3119 if (group_can_go_on(event, cpuctx, 1)) 3120 group_sched_in(event, cpuctx, ctx); 3121 3122 /* 3123 * If this pinned group hasn't been scheduled, 3124 * put it in error state. 3125 */ 3126 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3127 update_group_times(event); 3128 event->state = PERF_EVENT_STATE_ERROR; 3129 } 3130 } 3131 } 3132 3133 static void 3134 ctx_flexible_sched_in(struct perf_event_context *ctx, 3135 struct perf_cpu_context *cpuctx) 3136 { 3137 struct perf_event *event; 3138 int can_add_hw = 1; 3139 3140 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3141 /* Ignore events in OFF or ERROR state */ 3142 if (event->state <= PERF_EVENT_STATE_OFF) 3143 continue; 3144 /* 3145 * Listen to the 'cpu' scheduling filter constraint 3146 * of events: 3147 */ 3148 if (!event_filter_match(event)) 3149 continue; 3150 3151 /* may need to reset tstamp_enabled */ 3152 if (is_cgroup_event(event)) 3153 perf_cgroup_mark_enabled(event, ctx); 3154 3155 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3156 if (group_sched_in(event, cpuctx, ctx)) 3157 can_add_hw = 0; 3158 } 3159 } 3160 } 3161 3162 static void 3163 ctx_sched_in(struct perf_event_context *ctx, 3164 struct perf_cpu_context *cpuctx, 3165 enum event_type_t event_type, 3166 struct task_struct *task) 3167 { 3168 int is_active = ctx->is_active; 3169 u64 now; 3170 3171 lockdep_assert_held(&ctx->lock); 3172 3173 if (likely(!ctx->nr_events)) 3174 return; 3175 3176 ctx->is_active |= (event_type | EVENT_TIME); 3177 if (ctx->task) { 3178 if (!is_active) 3179 cpuctx->task_ctx = ctx; 3180 else 3181 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3182 } 3183 3184 is_active ^= ctx->is_active; /* changed bits */ 3185 3186 if (is_active & EVENT_TIME) { 3187 /* start ctx time */ 3188 now = perf_clock(); 3189 ctx->timestamp = now; 3190 perf_cgroup_set_timestamp(task, ctx); 3191 } 3192 3193 /* 3194 * First go through the list and put on any pinned groups 3195 * in order to give them the best chance of going on. 3196 */ 3197 if (is_active & EVENT_PINNED) 3198 ctx_pinned_sched_in(ctx, cpuctx); 3199 3200 /* Then walk through the lower prio flexible groups */ 3201 if (is_active & EVENT_FLEXIBLE) 3202 ctx_flexible_sched_in(ctx, cpuctx); 3203 } 3204 3205 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3206 enum event_type_t event_type, 3207 struct task_struct *task) 3208 { 3209 struct perf_event_context *ctx = &cpuctx->ctx; 3210 3211 ctx_sched_in(ctx, cpuctx, event_type, task); 3212 } 3213 3214 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3215 struct task_struct *task) 3216 { 3217 struct perf_cpu_context *cpuctx; 3218 3219 cpuctx = __get_cpu_context(ctx); 3220 if (cpuctx->task_ctx == ctx) 3221 return; 3222 3223 perf_ctx_lock(cpuctx, ctx); 3224 /* 3225 * We must check ctx->nr_events while holding ctx->lock, such 3226 * that we serialize against perf_install_in_context(). 3227 */ 3228 if (!ctx->nr_events) 3229 goto unlock; 3230 3231 perf_pmu_disable(ctx->pmu); 3232 /* 3233 * We want to keep the following priority order: 3234 * cpu pinned (that don't need to move), task pinned, 3235 * cpu flexible, task flexible. 3236 * 3237 * However, if task's ctx is not carrying any pinned 3238 * events, no need to flip the cpuctx's events around. 3239 */ 3240 if (!list_empty(&ctx->pinned_groups)) 3241 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3242 perf_event_sched_in(cpuctx, ctx, task); 3243 perf_pmu_enable(ctx->pmu); 3244 3245 unlock: 3246 perf_ctx_unlock(cpuctx, ctx); 3247 } 3248 3249 /* 3250 * Called from scheduler to add the events of the current task 3251 * with interrupts disabled. 3252 * 3253 * We restore the event value and then enable it. 3254 * 3255 * This does not protect us against NMI, but enable() 3256 * sets the enabled bit in the control field of event _before_ 3257 * accessing the event control register. If a NMI hits, then it will 3258 * keep the event running. 3259 */ 3260 void __perf_event_task_sched_in(struct task_struct *prev, 3261 struct task_struct *task) 3262 { 3263 struct perf_event_context *ctx; 3264 int ctxn; 3265 3266 /* 3267 * If cgroup events exist on this CPU, then we need to check if we have 3268 * to switch in PMU state; cgroup event are system-wide mode only. 3269 * 3270 * Since cgroup events are CPU events, we must schedule these in before 3271 * we schedule in the task events. 3272 */ 3273 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3274 perf_cgroup_sched_in(prev, task); 3275 3276 for_each_task_context_nr(ctxn) { 3277 ctx = task->perf_event_ctxp[ctxn]; 3278 if (likely(!ctx)) 3279 continue; 3280 3281 perf_event_context_sched_in(ctx, task); 3282 } 3283 3284 if (atomic_read(&nr_switch_events)) 3285 perf_event_switch(task, prev, true); 3286 3287 if (__this_cpu_read(perf_sched_cb_usages)) 3288 perf_pmu_sched_task(prev, task, true); 3289 } 3290 3291 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3292 { 3293 u64 frequency = event->attr.sample_freq; 3294 u64 sec = NSEC_PER_SEC; 3295 u64 divisor, dividend; 3296 3297 int count_fls, nsec_fls, frequency_fls, sec_fls; 3298 3299 count_fls = fls64(count); 3300 nsec_fls = fls64(nsec); 3301 frequency_fls = fls64(frequency); 3302 sec_fls = 30; 3303 3304 /* 3305 * We got @count in @nsec, with a target of sample_freq HZ 3306 * the target period becomes: 3307 * 3308 * @count * 10^9 3309 * period = ------------------- 3310 * @nsec * sample_freq 3311 * 3312 */ 3313 3314 /* 3315 * Reduce accuracy by one bit such that @a and @b converge 3316 * to a similar magnitude. 3317 */ 3318 #define REDUCE_FLS(a, b) \ 3319 do { \ 3320 if (a##_fls > b##_fls) { \ 3321 a >>= 1; \ 3322 a##_fls--; \ 3323 } else { \ 3324 b >>= 1; \ 3325 b##_fls--; \ 3326 } \ 3327 } while (0) 3328 3329 /* 3330 * Reduce accuracy until either term fits in a u64, then proceed with 3331 * the other, so that finally we can do a u64/u64 division. 3332 */ 3333 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3334 REDUCE_FLS(nsec, frequency); 3335 REDUCE_FLS(sec, count); 3336 } 3337 3338 if (count_fls + sec_fls > 64) { 3339 divisor = nsec * frequency; 3340 3341 while (count_fls + sec_fls > 64) { 3342 REDUCE_FLS(count, sec); 3343 divisor >>= 1; 3344 } 3345 3346 dividend = count * sec; 3347 } else { 3348 dividend = count * sec; 3349 3350 while (nsec_fls + frequency_fls > 64) { 3351 REDUCE_FLS(nsec, frequency); 3352 dividend >>= 1; 3353 } 3354 3355 divisor = nsec * frequency; 3356 } 3357 3358 if (!divisor) 3359 return dividend; 3360 3361 return div64_u64(dividend, divisor); 3362 } 3363 3364 static DEFINE_PER_CPU(int, perf_throttled_count); 3365 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3366 3367 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3368 { 3369 struct hw_perf_event *hwc = &event->hw; 3370 s64 period, sample_period; 3371 s64 delta; 3372 3373 period = perf_calculate_period(event, nsec, count); 3374 3375 delta = (s64)(period - hwc->sample_period); 3376 delta = (delta + 7) / 8; /* low pass filter */ 3377 3378 sample_period = hwc->sample_period + delta; 3379 3380 if (!sample_period) 3381 sample_period = 1; 3382 3383 hwc->sample_period = sample_period; 3384 3385 if (local64_read(&hwc->period_left) > 8*sample_period) { 3386 if (disable) 3387 event->pmu->stop(event, PERF_EF_UPDATE); 3388 3389 local64_set(&hwc->period_left, 0); 3390 3391 if (disable) 3392 event->pmu->start(event, PERF_EF_RELOAD); 3393 } 3394 } 3395 3396 /* 3397 * combine freq adjustment with unthrottling to avoid two passes over the 3398 * events. At the same time, make sure, having freq events does not change 3399 * the rate of unthrottling as that would introduce bias. 3400 */ 3401 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3402 int needs_unthr) 3403 { 3404 struct perf_event *event; 3405 struct hw_perf_event *hwc; 3406 u64 now, period = TICK_NSEC; 3407 s64 delta; 3408 3409 /* 3410 * only need to iterate over all events iff: 3411 * - context have events in frequency mode (needs freq adjust) 3412 * - there are events to unthrottle on this cpu 3413 */ 3414 if (!(ctx->nr_freq || needs_unthr)) 3415 return; 3416 3417 raw_spin_lock(&ctx->lock); 3418 perf_pmu_disable(ctx->pmu); 3419 3420 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3421 if (event->state != PERF_EVENT_STATE_ACTIVE) 3422 continue; 3423 3424 if (!event_filter_match(event)) 3425 continue; 3426 3427 perf_pmu_disable(event->pmu); 3428 3429 hwc = &event->hw; 3430 3431 if (hwc->interrupts == MAX_INTERRUPTS) { 3432 hwc->interrupts = 0; 3433 perf_log_throttle(event, 1); 3434 event->pmu->start(event, 0); 3435 } 3436 3437 if (!event->attr.freq || !event->attr.sample_freq) 3438 goto next; 3439 3440 /* 3441 * stop the event and update event->count 3442 */ 3443 event->pmu->stop(event, PERF_EF_UPDATE); 3444 3445 now = local64_read(&event->count); 3446 delta = now - hwc->freq_count_stamp; 3447 hwc->freq_count_stamp = now; 3448 3449 /* 3450 * restart the event 3451 * reload only if value has changed 3452 * we have stopped the event so tell that 3453 * to perf_adjust_period() to avoid stopping it 3454 * twice. 3455 */ 3456 if (delta > 0) 3457 perf_adjust_period(event, period, delta, false); 3458 3459 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3460 next: 3461 perf_pmu_enable(event->pmu); 3462 } 3463 3464 perf_pmu_enable(ctx->pmu); 3465 raw_spin_unlock(&ctx->lock); 3466 } 3467 3468 /* 3469 * Round-robin a context's events: 3470 */ 3471 static void rotate_ctx(struct perf_event_context *ctx) 3472 { 3473 /* 3474 * Rotate the first entry last of non-pinned groups. Rotation might be 3475 * disabled by the inheritance code. 3476 */ 3477 if (!ctx->rotate_disable) 3478 list_rotate_left(&ctx->flexible_groups); 3479 } 3480 3481 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3482 { 3483 struct perf_event_context *ctx = NULL; 3484 int rotate = 0; 3485 3486 if (cpuctx->ctx.nr_events) { 3487 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3488 rotate = 1; 3489 } 3490 3491 ctx = cpuctx->task_ctx; 3492 if (ctx && ctx->nr_events) { 3493 if (ctx->nr_events != ctx->nr_active) 3494 rotate = 1; 3495 } 3496 3497 if (!rotate) 3498 goto done; 3499 3500 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3501 perf_pmu_disable(cpuctx->ctx.pmu); 3502 3503 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3504 if (ctx) 3505 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3506 3507 rotate_ctx(&cpuctx->ctx); 3508 if (ctx) 3509 rotate_ctx(ctx); 3510 3511 perf_event_sched_in(cpuctx, ctx, current); 3512 3513 perf_pmu_enable(cpuctx->ctx.pmu); 3514 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3515 done: 3516 3517 return rotate; 3518 } 3519 3520 void perf_event_task_tick(void) 3521 { 3522 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3523 struct perf_event_context *ctx, *tmp; 3524 int throttled; 3525 3526 WARN_ON(!irqs_disabled()); 3527 3528 __this_cpu_inc(perf_throttled_seq); 3529 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3530 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3531 3532 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3533 perf_adjust_freq_unthr_context(ctx, throttled); 3534 } 3535 3536 static int event_enable_on_exec(struct perf_event *event, 3537 struct perf_event_context *ctx) 3538 { 3539 if (!event->attr.enable_on_exec) 3540 return 0; 3541 3542 event->attr.enable_on_exec = 0; 3543 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3544 return 0; 3545 3546 __perf_event_mark_enabled(event); 3547 3548 return 1; 3549 } 3550 3551 /* 3552 * Enable all of a task's events that have been marked enable-on-exec. 3553 * This expects task == current. 3554 */ 3555 static void perf_event_enable_on_exec(int ctxn) 3556 { 3557 struct perf_event_context *ctx, *clone_ctx = NULL; 3558 enum event_type_t event_type = 0; 3559 struct perf_cpu_context *cpuctx; 3560 struct perf_event *event; 3561 unsigned long flags; 3562 int enabled = 0; 3563 3564 local_irq_save(flags); 3565 ctx = current->perf_event_ctxp[ctxn]; 3566 if (!ctx || !ctx->nr_events) 3567 goto out; 3568 3569 cpuctx = __get_cpu_context(ctx); 3570 perf_ctx_lock(cpuctx, ctx); 3571 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3572 list_for_each_entry(event, &ctx->event_list, event_entry) { 3573 enabled |= event_enable_on_exec(event, ctx); 3574 event_type |= get_event_type(event); 3575 } 3576 3577 /* 3578 * Unclone and reschedule this context if we enabled any event. 3579 */ 3580 if (enabled) { 3581 clone_ctx = unclone_ctx(ctx); 3582 ctx_resched(cpuctx, ctx, event_type); 3583 } else { 3584 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3585 } 3586 perf_ctx_unlock(cpuctx, ctx); 3587 3588 out: 3589 local_irq_restore(flags); 3590 3591 if (clone_ctx) 3592 put_ctx(clone_ctx); 3593 } 3594 3595 struct perf_read_data { 3596 struct perf_event *event; 3597 bool group; 3598 int ret; 3599 }; 3600 3601 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3602 { 3603 u16 local_pkg, event_pkg; 3604 3605 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3606 int local_cpu = smp_processor_id(); 3607 3608 event_pkg = topology_physical_package_id(event_cpu); 3609 local_pkg = topology_physical_package_id(local_cpu); 3610 3611 if (event_pkg == local_pkg) 3612 return local_cpu; 3613 } 3614 3615 return event_cpu; 3616 } 3617 3618 /* 3619 * Cross CPU call to read the hardware event 3620 */ 3621 static void __perf_event_read(void *info) 3622 { 3623 struct perf_read_data *data = info; 3624 struct perf_event *sub, *event = data->event; 3625 struct perf_event_context *ctx = event->ctx; 3626 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3627 struct pmu *pmu = event->pmu; 3628 3629 /* 3630 * If this is a task context, we need to check whether it is 3631 * the current task context of this cpu. If not it has been 3632 * scheduled out before the smp call arrived. In that case 3633 * event->count would have been updated to a recent sample 3634 * when the event was scheduled out. 3635 */ 3636 if (ctx->task && cpuctx->task_ctx != ctx) 3637 return; 3638 3639 raw_spin_lock(&ctx->lock); 3640 if (ctx->is_active) { 3641 update_context_time(ctx); 3642 update_cgrp_time_from_event(event); 3643 } 3644 3645 update_event_times(event); 3646 if (event->state != PERF_EVENT_STATE_ACTIVE) 3647 goto unlock; 3648 3649 if (!data->group) { 3650 pmu->read(event); 3651 data->ret = 0; 3652 goto unlock; 3653 } 3654 3655 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3656 3657 pmu->read(event); 3658 3659 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3660 update_event_times(sub); 3661 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3662 /* 3663 * Use sibling's PMU rather than @event's since 3664 * sibling could be on different (eg: software) PMU. 3665 */ 3666 sub->pmu->read(sub); 3667 } 3668 } 3669 3670 data->ret = pmu->commit_txn(pmu); 3671 3672 unlock: 3673 raw_spin_unlock(&ctx->lock); 3674 } 3675 3676 static inline u64 perf_event_count(struct perf_event *event) 3677 { 3678 return local64_read(&event->count) + atomic64_read(&event->child_count); 3679 } 3680 3681 /* 3682 * NMI-safe method to read a local event, that is an event that 3683 * is: 3684 * - either for the current task, or for this CPU 3685 * - does not have inherit set, for inherited task events 3686 * will not be local and we cannot read them atomically 3687 * - must not have a pmu::count method 3688 */ 3689 int perf_event_read_local(struct perf_event *event, u64 *value) 3690 { 3691 unsigned long flags; 3692 int ret = 0; 3693 3694 /* 3695 * Disabling interrupts avoids all counter scheduling (context 3696 * switches, timer based rotation and IPIs). 3697 */ 3698 local_irq_save(flags); 3699 3700 /* 3701 * It must not be an event with inherit set, we cannot read 3702 * all child counters from atomic context. 3703 */ 3704 if (event->attr.inherit) { 3705 ret = -EOPNOTSUPP; 3706 goto out; 3707 } 3708 3709 /* If this is a per-task event, it must be for current */ 3710 if ((event->attach_state & PERF_ATTACH_TASK) && 3711 event->hw.target != current) { 3712 ret = -EINVAL; 3713 goto out; 3714 } 3715 3716 /* If this is a per-CPU event, it must be for this CPU */ 3717 if (!(event->attach_state & PERF_ATTACH_TASK) && 3718 event->cpu != smp_processor_id()) { 3719 ret = -EINVAL; 3720 goto out; 3721 } 3722 3723 /* 3724 * If the event is currently on this CPU, its either a per-task event, 3725 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3726 * oncpu == -1). 3727 */ 3728 if (event->oncpu == smp_processor_id()) 3729 event->pmu->read(event); 3730 3731 *value = local64_read(&event->count); 3732 out: 3733 local_irq_restore(flags); 3734 3735 return ret; 3736 } 3737 3738 static int perf_event_read(struct perf_event *event, bool group) 3739 { 3740 int event_cpu, ret = 0; 3741 3742 /* 3743 * If event is enabled and currently active on a CPU, update the 3744 * value in the event structure: 3745 */ 3746 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3747 struct perf_read_data data = { 3748 .event = event, 3749 .group = group, 3750 .ret = 0, 3751 }; 3752 3753 event_cpu = READ_ONCE(event->oncpu); 3754 if ((unsigned)event_cpu >= nr_cpu_ids) 3755 return 0; 3756 3757 preempt_disable(); 3758 event_cpu = __perf_event_read_cpu(event, event_cpu); 3759 3760 /* 3761 * Purposely ignore the smp_call_function_single() return 3762 * value. 3763 * 3764 * If event_cpu isn't a valid CPU it means the event got 3765 * scheduled out and that will have updated the event count. 3766 * 3767 * Therefore, either way, we'll have an up-to-date event count 3768 * after this. 3769 */ 3770 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3771 preempt_enable(); 3772 ret = data.ret; 3773 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3774 struct perf_event_context *ctx = event->ctx; 3775 unsigned long flags; 3776 3777 raw_spin_lock_irqsave(&ctx->lock, flags); 3778 /* 3779 * may read while context is not active 3780 * (e.g., thread is blocked), in that case 3781 * we cannot update context time 3782 */ 3783 if (ctx->is_active) { 3784 update_context_time(ctx); 3785 update_cgrp_time_from_event(event); 3786 } 3787 if (group) 3788 update_group_times(event); 3789 else 3790 update_event_times(event); 3791 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3792 } 3793 3794 return ret; 3795 } 3796 3797 /* 3798 * Initialize the perf_event context in a task_struct: 3799 */ 3800 static void __perf_event_init_context(struct perf_event_context *ctx) 3801 { 3802 raw_spin_lock_init(&ctx->lock); 3803 mutex_init(&ctx->mutex); 3804 INIT_LIST_HEAD(&ctx->active_ctx_list); 3805 INIT_LIST_HEAD(&ctx->pinned_groups); 3806 INIT_LIST_HEAD(&ctx->flexible_groups); 3807 INIT_LIST_HEAD(&ctx->event_list); 3808 atomic_set(&ctx->refcount, 1); 3809 } 3810 3811 static struct perf_event_context * 3812 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3813 { 3814 struct perf_event_context *ctx; 3815 3816 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3817 if (!ctx) 3818 return NULL; 3819 3820 __perf_event_init_context(ctx); 3821 if (task) { 3822 ctx->task = task; 3823 get_task_struct(task); 3824 } 3825 ctx->pmu = pmu; 3826 3827 return ctx; 3828 } 3829 3830 static struct task_struct * 3831 find_lively_task_by_vpid(pid_t vpid) 3832 { 3833 struct task_struct *task; 3834 3835 rcu_read_lock(); 3836 if (!vpid) 3837 task = current; 3838 else 3839 task = find_task_by_vpid(vpid); 3840 if (task) 3841 get_task_struct(task); 3842 rcu_read_unlock(); 3843 3844 if (!task) 3845 return ERR_PTR(-ESRCH); 3846 3847 return task; 3848 } 3849 3850 /* 3851 * Returns a matching context with refcount and pincount. 3852 */ 3853 static struct perf_event_context * 3854 find_get_context(struct pmu *pmu, struct task_struct *task, 3855 struct perf_event *event) 3856 { 3857 struct perf_event_context *ctx, *clone_ctx = NULL; 3858 struct perf_cpu_context *cpuctx; 3859 void *task_ctx_data = NULL; 3860 unsigned long flags; 3861 int ctxn, err; 3862 int cpu = event->cpu; 3863 3864 if (!task) { 3865 /* Must be root to operate on a CPU event: */ 3866 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3867 return ERR_PTR(-EACCES); 3868 3869 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3870 ctx = &cpuctx->ctx; 3871 get_ctx(ctx); 3872 ++ctx->pin_count; 3873 3874 return ctx; 3875 } 3876 3877 err = -EINVAL; 3878 ctxn = pmu->task_ctx_nr; 3879 if (ctxn < 0) 3880 goto errout; 3881 3882 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3883 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3884 if (!task_ctx_data) { 3885 err = -ENOMEM; 3886 goto errout; 3887 } 3888 } 3889 3890 retry: 3891 ctx = perf_lock_task_context(task, ctxn, &flags); 3892 if (ctx) { 3893 clone_ctx = unclone_ctx(ctx); 3894 ++ctx->pin_count; 3895 3896 if (task_ctx_data && !ctx->task_ctx_data) { 3897 ctx->task_ctx_data = task_ctx_data; 3898 task_ctx_data = NULL; 3899 } 3900 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3901 3902 if (clone_ctx) 3903 put_ctx(clone_ctx); 3904 } else { 3905 ctx = alloc_perf_context(pmu, task); 3906 err = -ENOMEM; 3907 if (!ctx) 3908 goto errout; 3909 3910 if (task_ctx_data) { 3911 ctx->task_ctx_data = task_ctx_data; 3912 task_ctx_data = NULL; 3913 } 3914 3915 err = 0; 3916 mutex_lock(&task->perf_event_mutex); 3917 /* 3918 * If it has already passed perf_event_exit_task(). 3919 * we must see PF_EXITING, it takes this mutex too. 3920 */ 3921 if (task->flags & PF_EXITING) 3922 err = -ESRCH; 3923 else if (task->perf_event_ctxp[ctxn]) 3924 err = -EAGAIN; 3925 else { 3926 get_ctx(ctx); 3927 ++ctx->pin_count; 3928 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3929 } 3930 mutex_unlock(&task->perf_event_mutex); 3931 3932 if (unlikely(err)) { 3933 put_ctx(ctx); 3934 3935 if (err == -EAGAIN) 3936 goto retry; 3937 goto errout; 3938 } 3939 } 3940 3941 kfree(task_ctx_data); 3942 return ctx; 3943 3944 errout: 3945 kfree(task_ctx_data); 3946 return ERR_PTR(err); 3947 } 3948 3949 static void perf_event_free_filter(struct perf_event *event); 3950 static void perf_event_free_bpf_prog(struct perf_event *event); 3951 3952 static void free_event_rcu(struct rcu_head *head) 3953 { 3954 struct perf_event *event; 3955 3956 event = container_of(head, struct perf_event, rcu_head); 3957 if (event->ns) 3958 put_pid_ns(event->ns); 3959 perf_event_free_filter(event); 3960 kfree(event); 3961 } 3962 3963 static void ring_buffer_attach(struct perf_event *event, 3964 struct ring_buffer *rb); 3965 3966 static void detach_sb_event(struct perf_event *event) 3967 { 3968 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3969 3970 raw_spin_lock(&pel->lock); 3971 list_del_rcu(&event->sb_list); 3972 raw_spin_unlock(&pel->lock); 3973 } 3974 3975 static bool is_sb_event(struct perf_event *event) 3976 { 3977 struct perf_event_attr *attr = &event->attr; 3978 3979 if (event->parent) 3980 return false; 3981 3982 if (event->attach_state & PERF_ATTACH_TASK) 3983 return false; 3984 3985 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3986 attr->comm || attr->comm_exec || 3987 attr->task || 3988 attr->context_switch) 3989 return true; 3990 return false; 3991 } 3992 3993 static void unaccount_pmu_sb_event(struct perf_event *event) 3994 { 3995 if (is_sb_event(event)) 3996 detach_sb_event(event); 3997 } 3998 3999 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4000 { 4001 if (event->parent) 4002 return; 4003 4004 if (is_cgroup_event(event)) 4005 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4006 } 4007 4008 #ifdef CONFIG_NO_HZ_FULL 4009 static DEFINE_SPINLOCK(nr_freq_lock); 4010 #endif 4011 4012 static void unaccount_freq_event_nohz(void) 4013 { 4014 #ifdef CONFIG_NO_HZ_FULL 4015 spin_lock(&nr_freq_lock); 4016 if (atomic_dec_and_test(&nr_freq_events)) 4017 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4018 spin_unlock(&nr_freq_lock); 4019 #endif 4020 } 4021 4022 static void unaccount_freq_event(void) 4023 { 4024 if (tick_nohz_full_enabled()) 4025 unaccount_freq_event_nohz(); 4026 else 4027 atomic_dec(&nr_freq_events); 4028 } 4029 4030 static void unaccount_event(struct perf_event *event) 4031 { 4032 bool dec = false; 4033 4034 if (event->parent) 4035 return; 4036 4037 if (event->attach_state & PERF_ATTACH_TASK) 4038 dec = true; 4039 if (event->attr.mmap || event->attr.mmap_data) 4040 atomic_dec(&nr_mmap_events); 4041 if (event->attr.comm) 4042 atomic_dec(&nr_comm_events); 4043 if (event->attr.namespaces) 4044 atomic_dec(&nr_namespaces_events); 4045 if (event->attr.task) 4046 atomic_dec(&nr_task_events); 4047 if (event->attr.freq) 4048 unaccount_freq_event(); 4049 if (event->attr.context_switch) { 4050 dec = true; 4051 atomic_dec(&nr_switch_events); 4052 } 4053 if (is_cgroup_event(event)) 4054 dec = true; 4055 if (has_branch_stack(event)) 4056 dec = true; 4057 4058 if (dec) { 4059 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4060 schedule_delayed_work(&perf_sched_work, HZ); 4061 } 4062 4063 unaccount_event_cpu(event, event->cpu); 4064 4065 unaccount_pmu_sb_event(event); 4066 } 4067 4068 static void perf_sched_delayed(struct work_struct *work) 4069 { 4070 mutex_lock(&perf_sched_mutex); 4071 if (atomic_dec_and_test(&perf_sched_count)) 4072 static_branch_disable(&perf_sched_events); 4073 mutex_unlock(&perf_sched_mutex); 4074 } 4075 4076 /* 4077 * The following implement mutual exclusion of events on "exclusive" pmus 4078 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4079 * at a time, so we disallow creating events that might conflict, namely: 4080 * 4081 * 1) cpu-wide events in the presence of per-task events, 4082 * 2) per-task events in the presence of cpu-wide events, 4083 * 3) two matching events on the same context. 4084 * 4085 * The former two cases are handled in the allocation path (perf_event_alloc(), 4086 * _free_event()), the latter -- before the first perf_install_in_context(). 4087 */ 4088 static int exclusive_event_init(struct perf_event *event) 4089 { 4090 struct pmu *pmu = event->pmu; 4091 4092 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4093 return 0; 4094 4095 /* 4096 * Prevent co-existence of per-task and cpu-wide events on the 4097 * same exclusive pmu. 4098 * 4099 * Negative pmu::exclusive_cnt means there are cpu-wide 4100 * events on this "exclusive" pmu, positive means there are 4101 * per-task events. 4102 * 4103 * Since this is called in perf_event_alloc() path, event::ctx 4104 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4105 * to mean "per-task event", because unlike other attach states it 4106 * never gets cleared. 4107 */ 4108 if (event->attach_state & PERF_ATTACH_TASK) { 4109 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4110 return -EBUSY; 4111 } else { 4112 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4113 return -EBUSY; 4114 } 4115 4116 return 0; 4117 } 4118 4119 static void exclusive_event_destroy(struct perf_event *event) 4120 { 4121 struct pmu *pmu = event->pmu; 4122 4123 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4124 return; 4125 4126 /* see comment in exclusive_event_init() */ 4127 if (event->attach_state & PERF_ATTACH_TASK) 4128 atomic_dec(&pmu->exclusive_cnt); 4129 else 4130 atomic_inc(&pmu->exclusive_cnt); 4131 } 4132 4133 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4134 { 4135 if ((e1->pmu == e2->pmu) && 4136 (e1->cpu == e2->cpu || 4137 e1->cpu == -1 || 4138 e2->cpu == -1)) 4139 return true; 4140 return false; 4141 } 4142 4143 /* Called under the same ctx::mutex as perf_install_in_context() */ 4144 static bool exclusive_event_installable(struct perf_event *event, 4145 struct perf_event_context *ctx) 4146 { 4147 struct perf_event *iter_event; 4148 struct pmu *pmu = event->pmu; 4149 4150 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4151 return true; 4152 4153 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4154 if (exclusive_event_match(iter_event, event)) 4155 return false; 4156 } 4157 4158 return true; 4159 } 4160 4161 static void perf_addr_filters_splice(struct perf_event *event, 4162 struct list_head *head); 4163 4164 static void _free_event(struct perf_event *event) 4165 { 4166 irq_work_sync(&event->pending); 4167 4168 unaccount_event(event); 4169 4170 if (event->rb) { 4171 /* 4172 * Can happen when we close an event with re-directed output. 4173 * 4174 * Since we have a 0 refcount, perf_mmap_close() will skip 4175 * over us; possibly making our ring_buffer_put() the last. 4176 */ 4177 mutex_lock(&event->mmap_mutex); 4178 ring_buffer_attach(event, NULL); 4179 mutex_unlock(&event->mmap_mutex); 4180 } 4181 4182 if (is_cgroup_event(event)) 4183 perf_detach_cgroup(event); 4184 4185 if (!event->parent) { 4186 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4187 put_callchain_buffers(); 4188 } 4189 4190 perf_event_free_bpf_prog(event); 4191 perf_addr_filters_splice(event, NULL); 4192 kfree(event->addr_filters_offs); 4193 4194 if (event->destroy) 4195 event->destroy(event); 4196 4197 if (event->ctx) 4198 put_ctx(event->ctx); 4199 4200 exclusive_event_destroy(event); 4201 module_put(event->pmu->module); 4202 4203 call_rcu(&event->rcu_head, free_event_rcu); 4204 } 4205 4206 /* 4207 * Used to free events which have a known refcount of 1, such as in error paths 4208 * where the event isn't exposed yet and inherited events. 4209 */ 4210 static void free_event(struct perf_event *event) 4211 { 4212 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4213 "unexpected event refcount: %ld; ptr=%p\n", 4214 atomic_long_read(&event->refcount), event)) { 4215 /* leak to avoid use-after-free */ 4216 return; 4217 } 4218 4219 _free_event(event); 4220 } 4221 4222 /* 4223 * Remove user event from the owner task. 4224 */ 4225 static void perf_remove_from_owner(struct perf_event *event) 4226 { 4227 struct task_struct *owner; 4228 4229 rcu_read_lock(); 4230 /* 4231 * Matches the smp_store_release() in perf_event_exit_task(). If we 4232 * observe !owner it means the list deletion is complete and we can 4233 * indeed free this event, otherwise we need to serialize on 4234 * owner->perf_event_mutex. 4235 */ 4236 owner = lockless_dereference(event->owner); 4237 if (owner) { 4238 /* 4239 * Since delayed_put_task_struct() also drops the last 4240 * task reference we can safely take a new reference 4241 * while holding the rcu_read_lock(). 4242 */ 4243 get_task_struct(owner); 4244 } 4245 rcu_read_unlock(); 4246 4247 if (owner) { 4248 /* 4249 * If we're here through perf_event_exit_task() we're already 4250 * holding ctx->mutex which would be an inversion wrt. the 4251 * normal lock order. 4252 * 4253 * However we can safely take this lock because its the child 4254 * ctx->mutex. 4255 */ 4256 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4257 4258 /* 4259 * We have to re-check the event->owner field, if it is cleared 4260 * we raced with perf_event_exit_task(), acquiring the mutex 4261 * ensured they're done, and we can proceed with freeing the 4262 * event. 4263 */ 4264 if (event->owner) { 4265 list_del_init(&event->owner_entry); 4266 smp_store_release(&event->owner, NULL); 4267 } 4268 mutex_unlock(&owner->perf_event_mutex); 4269 put_task_struct(owner); 4270 } 4271 } 4272 4273 static void put_event(struct perf_event *event) 4274 { 4275 if (!atomic_long_dec_and_test(&event->refcount)) 4276 return; 4277 4278 _free_event(event); 4279 } 4280 4281 /* 4282 * Kill an event dead; while event:refcount will preserve the event 4283 * object, it will not preserve its functionality. Once the last 'user' 4284 * gives up the object, we'll destroy the thing. 4285 */ 4286 int perf_event_release_kernel(struct perf_event *event) 4287 { 4288 struct perf_event_context *ctx = event->ctx; 4289 struct perf_event *child, *tmp; 4290 4291 /* 4292 * If we got here through err_file: fput(event_file); we will not have 4293 * attached to a context yet. 4294 */ 4295 if (!ctx) { 4296 WARN_ON_ONCE(event->attach_state & 4297 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4298 goto no_ctx; 4299 } 4300 4301 if (!is_kernel_event(event)) 4302 perf_remove_from_owner(event); 4303 4304 ctx = perf_event_ctx_lock(event); 4305 WARN_ON_ONCE(ctx->parent_ctx); 4306 perf_remove_from_context(event, DETACH_GROUP); 4307 4308 raw_spin_lock_irq(&ctx->lock); 4309 /* 4310 * Mark this event as STATE_DEAD, there is no external reference to it 4311 * anymore. 4312 * 4313 * Anybody acquiring event->child_mutex after the below loop _must_ 4314 * also see this, most importantly inherit_event() which will avoid 4315 * placing more children on the list. 4316 * 4317 * Thus this guarantees that we will in fact observe and kill _ALL_ 4318 * child events. 4319 */ 4320 event->state = PERF_EVENT_STATE_DEAD; 4321 raw_spin_unlock_irq(&ctx->lock); 4322 4323 perf_event_ctx_unlock(event, ctx); 4324 4325 again: 4326 mutex_lock(&event->child_mutex); 4327 list_for_each_entry(child, &event->child_list, child_list) { 4328 4329 /* 4330 * Cannot change, child events are not migrated, see the 4331 * comment with perf_event_ctx_lock_nested(). 4332 */ 4333 ctx = lockless_dereference(child->ctx); 4334 /* 4335 * Since child_mutex nests inside ctx::mutex, we must jump 4336 * through hoops. We start by grabbing a reference on the ctx. 4337 * 4338 * Since the event cannot get freed while we hold the 4339 * child_mutex, the context must also exist and have a !0 4340 * reference count. 4341 */ 4342 get_ctx(ctx); 4343 4344 /* 4345 * Now that we have a ctx ref, we can drop child_mutex, and 4346 * acquire ctx::mutex without fear of it going away. Then we 4347 * can re-acquire child_mutex. 4348 */ 4349 mutex_unlock(&event->child_mutex); 4350 mutex_lock(&ctx->mutex); 4351 mutex_lock(&event->child_mutex); 4352 4353 /* 4354 * Now that we hold ctx::mutex and child_mutex, revalidate our 4355 * state, if child is still the first entry, it didn't get freed 4356 * and we can continue doing so. 4357 */ 4358 tmp = list_first_entry_or_null(&event->child_list, 4359 struct perf_event, child_list); 4360 if (tmp == child) { 4361 perf_remove_from_context(child, DETACH_GROUP); 4362 list_del(&child->child_list); 4363 free_event(child); 4364 /* 4365 * This matches the refcount bump in inherit_event(); 4366 * this can't be the last reference. 4367 */ 4368 put_event(event); 4369 } 4370 4371 mutex_unlock(&event->child_mutex); 4372 mutex_unlock(&ctx->mutex); 4373 put_ctx(ctx); 4374 goto again; 4375 } 4376 mutex_unlock(&event->child_mutex); 4377 4378 no_ctx: 4379 put_event(event); /* Must be the 'last' reference */ 4380 return 0; 4381 } 4382 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4383 4384 /* 4385 * Called when the last reference to the file is gone. 4386 */ 4387 static int perf_release(struct inode *inode, struct file *file) 4388 { 4389 perf_event_release_kernel(file->private_data); 4390 return 0; 4391 } 4392 4393 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4394 { 4395 struct perf_event *child; 4396 u64 total = 0; 4397 4398 *enabled = 0; 4399 *running = 0; 4400 4401 mutex_lock(&event->child_mutex); 4402 4403 (void)perf_event_read(event, false); 4404 total += perf_event_count(event); 4405 4406 *enabled += event->total_time_enabled + 4407 atomic64_read(&event->child_total_time_enabled); 4408 *running += event->total_time_running + 4409 atomic64_read(&event->child_total_time_running); 4410 4411 list_for_each_entry(child, &event->child_list, child_list) { 4412 (void)perf_event_read(child, false); 4413 total += perf_event_count(child); 4414 *enabled += child->total_time_enabled; 4415 *running += child->total_time_running; 4416 } 4417 mutex_unlock(&event->child_mutex); 4418 4419 return total; 4420 } 4421 EXPORT_SYMBOL_GPL(perf_event_read_value); 4422 4423 static int __perf_read_group_add(struct perf_event *leader, 4424 u64 read_format, u64 *values) 4425 { 4426 struct perf_event_context *ctx = leader->ctx; 4427 struct perf_event *sub; 4428 unsigned long flags; 4429 int n = 1; /* skip @nr */ 4430 int ret; 4431 4432 ret = perf_event_read(leader, true); 4433 if (ret) 4434 return ret; 4435 4436 /* 4437 * Since we co-schedule groups, {enabled,running} times of siblings 4438 * will be identical to those of the leader, so we only publish one 4439 * set. 4440 */ 4441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4442 values[n++] += leader->total_time_enabled + 4443 atomic64_read(&leader->child_total_time_enabled); 4444 } 4445 4446 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4447 values[n++] += leader->total_time_running + 4448 atomic64_read(&leader->child_total_time_running); 4449 } 4450 4451 /* 4452 * Write {count,id} tuples for every sibling. 4453 */ 4454 values[n++] += perf_event_count(leader); 4455 if (read_format & PERF_FORMAT_ID) 4456 values[n++] = primary_event_id(leader); 4457 4458 raw_spin_lock_irqsave(&ctx->lock, flags); 4459 4460 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4461 values[n++] += perf_event_count(sub); 4462 if (read_format & PERF_FORMAT_ID) 4463 values[n++] = primary_event_id(sub); 4464 } 4465 4466 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4467 return 0; 4468 } 4469 4470 static int perf_read_group(struct perf_event *event, 4471 u64 read_format, char __user *buf) 4472 { 4473 struct perf_event *leader = event->group_leader, *child; 4474 struct perf_event_context *ctx = leader->ctx; 4475 int ret; 4476 u64 *values; 4477 4478 lockdep_assert_held(&ctx->mutex); 4479 4480 values = kzalloc(event->read_size, GFP_KERNEL); 4481 if (!values) 4482 return -ENOMEM; 4483 4484 values[0] = 1 + leader->nr_siblings; 4485 4486 /* 4487 * By locking the child_mutex of the leader we effectively 4488 * lock the child list of all siblings.. XXX explain how. 4489 */ 4490 mutex_lock(&leader->child_mutex); 4491 4492 ret = __perf_read_group_add(leader, read_format, values); 4493 if (ret) 4494 goto unlock; 4495 4496 list_for_each_entry(child, &leader->child_list, child_list) { 4497 ret = __perf_read_group_add(child, read_format, values); 4498 if (ret) 4499 goto unlock; 4500 } 4501 4502 mutex_unlock(&leader->child_mutex); 4503 4504 ret = event->read_size; 4505 if (copy_to_user(buf, values, event->read_size)) 4506 ret = -EFAULT; 4507 goto out; 4508 4509 unlock: 4510 mutex_unlock(&leader->child_mutex); 4511 out: 4512 kfree(values); 4513 return ret; 4514 } 4515 4516 static int perf_read_one(struct perf_event *event, 4517 u64 read_format, char __user *buf) 4518 { 4519 u64 enabled, running; 4520 u64 values[4]; 4521 int n = 0; 4522 4523 values[n++] = perf_event_read_value(event, &enabled, &running); 4524 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4525 values[n++] = enabled; 4526 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4527 values[n++] = running; 4528 if (read_format & PERF_FORMAT_ID) 4529 values[n++] = primary_event_id(event); 4530 4531 if (copy_to_user(buf, values, n * sizeof(u64))) 4532 return -EFAULT; 4533 4534 return n * sizeof(u64); 4535 } 4536 4537 static bool is_event_hup(struct perf_event *event) 4538 { 4539 bool no_children; 4540 4541 if (event->state > PERF_EVENT_STATE_EXIT) 4542 return false; 4543 4544 mutex_lock(&event->child_mutex); 4545 no_children = list_empty(&event->child_list); 4546 mutex_unlock(&event->child_mutex); 4547 return no_children; 4548 } 4549 4550 /* 4551 * Read the performance event - simple non blocking version for now 4552 */ 4553 static ssize_t 4554 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4555 { 4556 u64 read_format = event->attr.read_format; 4557 int ret; 4558 4559 /* 4560 * Return end-of-file for a read on a event that is in 4561 * error state (i.e. because it was pinned but it couldn't be 4562 * scheduled on to the CPU at some point). 4563 */ 4564 if (event->state == PERF_EVENT_STATE_ERROR) 4565 return 0; 4566 4567 if (count < event->read_size) 4568 return -ENOSPC; 4569 4570 WARN_ON_ONCE(event->ctx->parent_ctx); 4571 if (read_format & PERF_FORMAT_GROUP) 4572 ret = perf_read_group(event, read_format, buf); 4573 else 4574 ret = perf_read_one(event, read_format, buf); 4575 4576 return ret; 4577 } 4578 4579 static ssize_t 4580 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4581 { 4582 struct perf_event *event = file->private_data; 4583 struct perf_event_context *ctx; 4584 int ret; 4585 4586 ctx = perf_event_ctx_lock(event); 4587 ret = __perf_read(event, buf, count); 4588 perf_event_ctx_unlock(event, ctx); 4589 4590 return ret; 4591 } 4592 4593 static unsigned int perf_poll(struct file *file, poll_table *wait) 4594 { 4595 struct perf_event *event = file->private_data; 4596 struct ring_buffer *rb; 4597 unsigned int events = POLLHUP; 4598 4599 poll_wait(file, &event->waitq, wait); 4600 4601 if (is_event_hup(event)) 4602 return events; 4603 4604 /* 4605 * Pin the event->rb by taking event->mmap_mutex; otherwise 4606 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4607 */ 4608 mutex_lock(&event->mmap_mutex); 4609 rb = event->rb; 4610 if (rb) 4611 events = atomic_xchg(&rb->poll, 0); 4612 mutex_unlock(&event->mmap_mutex); 4613 return events; 4614 } 4615 4616 static void _perf_event_reset(struct perf_event *event) 4617 { 4618 (void)perf_event_read(event, false); 4619 local64_set(&event->count, 0); 4620 perf_event_update_userpage(event); 4621 } 4622 4623 /* 4624 * Holding the top-level event's child_mutex means that any 4625 * descendant process that has inherited this event will block 4626 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4627 * task existence requirements of perf_event_enable/disable. 4628 */ 4629 static void perf_event_for_each_child(struct perf_event *event, 4630 void (*func)(struct perf_event *)) 4631 { 4632 struct perf_event *child; 4633 4634 WARN_ON_ONCE(event->ctx->parent_ctx); 4635 4636 mutex_lock(&event->child_mutex); 4637 func(event); 4638 list_for_each_entry(child, &event->child_list, child_list) 4639 func(child); 4640 mutex_unlock(&event->child_mutex); 4641 } 4642 4643 static void perf_event_for_each(struct perf_event *event, 4644 void (*func)(struct perf_event *)) 4645 { 4646 struct perf_event_context *ctx = event->ctx; 4647 struct perf_event *sibling; 4648 4649 lockdep_assert_held(&ctx->mutex); 4650 4651 event = event->group_leader; 4652 4653 perf_event_for_each_child(event, func); 4654 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4655 perf_event_for_each_child(sibling, func); 4656 } 4657 4658 static void __perf_event_period(struct perf_event *event, 4659 struct perf_cpu_context *cpuctx, 4660 struct perf_event_context *ctx, 4661 void *info) 4662 { 4663 u64 value = *((u64 *)info); 4664 bool active; 4665 4666 if (event->attr.freq) { 4667 event->attr.sample_freq = value; 4668 } else { 4669 event->attr.sample_period = value; 4670 event->hw.sample_period = value; 4671 } 4672 4673 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4674 if (active) { 4675 perf_pmu_disable(ctx->pmu); 4676 /* 4677 * We could be throttled; unthrottle now to avoid the tick 4678 * trying to unthrottle while we already re-started the event. 4679 */ 4680 if (event->hw.interrupts == MAX_INTERRUPTS) { 4681 event->hw.interrupts = 0; 4682 perf_log_throttle(event, 1); 4683 } 4684 event->pmu->stop(event, PERF_EF_UPDATE); 4685 } 4686 4687 local64_set(&event->hw.period_left, 0); 4688 4689 if (active) { 4690 event->pmu->start(event, PERF_EF_RELOAD); 4691 perf_pmu_enable(ctx->pmu); 4692 } 4693 } 4694 4695 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4696 { 4697 u64 value; 4698 4699 if (!is_sampling_event(event)) 4700 return -EINVAL; 4701 4702 if (copy_from_user(&value, arg, sizeof(value))) 4703 return -EFAULT; 4704 4705 if (!value) 4706 return -EINVAL; 4707 4708 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4709 return -EINVAL; 4710 4711 event_function_call(event, __perf_event_period, &value); 4712 4713 return 0; 4714 } 4715 4716 static const struct file_operations perf_fops; 4717 4718 static inline int perf_fget_light(int fd, struct fd *p) 4719 { 4720 struct fd f = fdget(fd); 4721 if (!f.file) 4722 return -EBADF; 4723 4724 if (f.file->f_op != &perf_fops) { 4725 fdput(f); 4726 return -EBADF; 4727 } 4728 *p = f; 4729 return 0; 4730 } 4731 4732 static int perf_event_set_output(struct perf_event *event, 4733 struct perf_event *output_event); 4734 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4735 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4736 4737 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4738 { 4739 void (*func)(struct perf_event *); 4740 u32 flags = arg; 4741 4742 switch (cmd) { 4743 case PERF_EVENT_IOC_ENABLE: 4744 func = _perf_event_enable; 4745 break; 4746 case PERF_EVENT_IOC_DISABLE: 4747 func = _perf_event_disable; 4748 break; 4749 case PERF_EVENT_IOC_RESET: 4750 func = _perf_event_reset; 4751 break; 4752 4753 case PERF_EVENT_IOC_REFRESH: 4754 return _perf_event_refresh(event, arg); 4755 4756 case PERF_EVENT_IOC_PERIOD: 4757 return perf_event_period(event, (u64 __user *)arg); 4758 4759 case PERF_EVENT_IOC_ID: 4760 { 4761 u64 id = primary_event_id(event); 4762 4763 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4764 return -EFAULT; 4765 return 0; 4766 } 4767 4768 case PERF_EVENT_IOC_SET_OUTPUT: 4769 { 4770 int ret; 4771 if (arg != -1) { 4772 struct perf_event *output_event; 4773 struct fd output; 4774 ret = perf_fget_light(arg, &output); 4775 if (ret) 4776 return ret; 4777 output_event = output.file->private_data; 4778 ret = perf_event_set_output(event, output_event); 4779 fdput(output); 4780 } else { 4781 ret = perf_event_set_output(event, NULL); 4782 } 4783 return ret; 4784 } 4785 4786 case PERF_EVENT_IOC_SET_FILTER: 4787 return perf_event_set_filter(event, (void __user *)arg); 4788 4789 case PERF_EVENT_IOC_SET_BPF: 4790 return perf_event_set_bpf_prog(event, arg); 4791 4792 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4793 struct ring_buffer *rb; 4794 4795 rcu_read_lock(); 4796 rb = rcu_dereference(event->rb); 4797 if (!rb || !rb->nr_pages) { 4798 rcu_read_unlock(); 4799 return -EINVAL; 4800 } 4801 rb_toggle_paused(rb, !!arg); 4802 rcu_read_unlock(); 4803 return 0; 4804 } 4805 default: 4806 return -ENOTTY; 4807 } 4808 4809 if (flags & PERF_IOC_FLAG_GROUP) 4810 perf_event_for_each(event, func); 4811 else 4812 perf_event_for_each_child(event, func); 4813 4814 return 0; 4815 } 4816 4817 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4818 { 4819 struct perf_event *event = file->private_data; 4820 struct perf_event_context *ctx; 4821 long ret; 4822 4823 ctx = perf_event_ctx_lock(event); 4824 ret = _perf_ioctl(event, cmd, arg); 4825 perf_event_ctx_unlock(event, ctx); 4826 4827 return ret; 4828 } 4829 4830 #ifdef CONFIG_COMPAT 4831 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4832 unsigned long arg) 4833 { 4834 switch (_IOC_NR(cmd)) { 4835 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4836 case _IOC_NR(PERF_EVENT_IOC_ID): 4837 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4838 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4839 cmd &= ~IOCSIZE_MASK; 4840 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4841 } 4842 break; 4843 } 4844 return perf_ioctl(file, cmd, arg); 4845 } 4846 #else 4847 # define perf_compat_ioctl NULL 4848 #endif 4849 4850 int perf_event_task_enable(void) 4851 { 4852 struct perf_event_context *ctx; 4853 struct perf_event *event; 4854 4855 mutex_lock(¤t->perf_event_mutex); 4856 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4857 ctx = perf_event_ctx_lock(event); 4858 perf_event_for_each_child(event, _perf_event_enable); 4859 perf_event_ctx_unlock(event, ctx); 4860 } 4861 mutex_unlock(¤t->perf_event_mutex); 4862 4863 return 0; 4864 } 4865 4866 int perf_event_task_disable(void) 4867 { 4868 struct perf_event_context *ctx; 4869 struct perf_event *event; 4870 4871 mutex_lock(¤t->perf_event_mutex); 4872 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4873 ctx = perf_event_ctx_lock(event); 4874 perf_event_for_each_child(event, _perf_event_disable); 4875 perf_event_ctx_unlock(event, ctx); 4876 } 4877 mutex_unlock(¤t->perf_event_mutex); 4878 4879 return 0; 4880 } 4881 4882 static int perf_event_index(struct perf_event *event) 4883 { 4884 if (event->hw.state & PERF_HES_STOPPED) 4885 return 0; 4886 4887 if (event->state != PERF_EVENT_STATE_ACTIVE) 4888 return 0; 4889 4890 return event->pmu->event_idx(event); 4891 } 4892 4893 static void calc_timer_values(struct perf_event *event, 4894 u64 *now, 4895 u64 *enabled, 4896 u64 *running) 4897 { 4898 u64 ctx_time; 4899 4900 *now = perf_clock(); 4901 ctx_time = event->shadow_ctx_time + *now; 4902 *enabled = ctx_time - event->tstamp_enabled; 4903 *running = ctx_time - event->tstamp_running; 4904 } 4905 4906 static void perf_event_init_userpage(struct perf_event *event) 4907 { 4908 struct perf_event_mmap_page *userpg; 4909 struct ring_buffer *rb; 4910 4911 rcu_read_lock(); 4912 rb = rcu_dereference(event->rb); 4913 if (!rb) 4914 goto unlock; 4915 4916 userpg = rb->user_page; 4917 4918 /* Allow new userspace to detect that bit 0 is deprecated */ 4919 userpg->cap_bit0_is_deprecated = 1; 4920 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4921 userpg->data_offset = PAGE_SIZE; 4922 userpg->data_size = perf_data_size(rb); 4923 4924 unlock: 4925 rcu_read_unlock(); 4926 } 4927 4928 void __weak arch_perf_update_userpage( 4929 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4930 { 4931 } 4932 4933 /* 4934 * Callers need to ensure there can be no nesting of this function, otherwise 4935 * the seqlock logic goes bad. We can not serialize this because the arch 4936 * code calls this from NMI context. 4937 */ 4938 void perf_event_update_userpage(struct perf_event *event) 4939 { 4940 struct perf_event_mmap_page *userpg; 4941 struct ring_buffer *rb; 4942 u64 enabled, running, now; 4943 4944 rcu_read_lock(); 4945 rb = rcu_dereference(event->rb); 4946 if (!rb) 4947 goto unlock; 4948 4949 /* 4950 * compute total_time_enabled, total_time_running 4951 * based on snapshot values taken when the event 4952 * was last scheduled in. 4953 * 4954 * we cannot simply called update_context_time() 4955 * because of locking issue as we can be called in 4956 * NMI context 4957 */ 4958 calc_timer_values(event, &now, &enabled, &running); 4959 4960 userpg = rb->user_page; 4961 /* 4962 * Disable preemption so as to not let the corresponding user-space 4963 * spin too long if we get preempted. 4964 */ 4965 preempt_disable(); 4966 ++userpg->lock; 4967 barrier(); 4968 userpg->index = perf_event_index(event); 4969 userpg->offset = perf_event_count(event); 4970 if (userpg->index) 4971 userpg->offset -= local64_read(&event->hw.prev_count); 4972 4973 userpg->time_enabled = enabled + 4974 atomic64_read(&event->child_total_time_enabled); 4975 4976 userpg->time_running = running + 4977 atomic64_read(&event->child_total_time_running); 4978 4979 arch_perf_update_userpage(event, userpg, now); 4980 4981 barrier(); 4982 ++userpg->lock; 4983 preempt_enable(); 4984 unlock: 4985 rcu_read_unlock(); 4986 } 4987 4988 static int perf_mmap_fault(struct vm_fault *vmf) 4989 { 4990 struct perf_event *event = vmf->vma->vm_file->private_data; 4991 struct ring_buffer *rb; 4992 int ret = VM_FAULT_SIGBUS; 4993 4994 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4995 if (vmf->pgoff == 0) 4996 ret = 0; 4997 return ret; 4998 } 4999 5000 rcu_read_lock(); 5001 rb = rcu_dereference(event->rb); 5002 if (!rb) 5003 goto unlock; 5004 5005 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5006 goto unlock; 5007 5008 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5009 if (!vmf->page) 5010 goto unlock; 5011 5012 get_page(vmf->page); 5013 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5014 vmf->page->index = vmf->pgoff; 5015 5016 ret = 0; 5017 unlock: 5018 rcu_read_unlock(); 5019 5020 return ret; 5021 } 5022 5023 static void ring_buffer_attach(struct perf_event *event, 5024 struct ring_buffer *rb) 5025 { 5026 struct ring_buffer *old_rb = NULL; 5027 unsigned long flags; 5028 5029 if (event->rb) { 5030 /* 5031 * Should be impossible, we set this when removing 5032 * event->rb_entry and wait/clear when adding event->rb_entry. 5033 */ 5034 WARN_ON_ONCE(event->rcu_pending); 5035 5036 old_rb = event->rb; 5037 spin_lock_irqsave(&old_rb->event_lock, flags); 5038 list_del_rcu(&event->rb_entry); 5039 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5040 5041 event->rcu_batches = get_state_synchronize_rcu(); 5042 event->rcu_pending = 1; 5043 } 5044 5045 if (rb) { 5046 if (event->rcu_pending) { 5047 cond_synchronize_rcu(event->rcu_batches); 5048 event->rcu_pending = 0; 5049 } 5050 5051 spin_lock_irqsave(&rb->event_lock, flags); 5052 list_add_rcu(&event->rb_entry, &rb->event_list); 5053 spin_unlock_irqrestore(&rb->event_lock, flags); 5054 } 5055 5056 /* 5057 * Avoid racing with perf_mmap_close(AUX): stop the event 5058 * before swizzling the event::rb pointer; if it's getting 5059 * unmapped, its aux_mmap_count will be 0 and it won't 5060 * restart. See the comment in __perf_pmu_output_stop(). 5061 * 5062 * Data will inevitably be lost when set_output is done in 5063 * mid-air, but then again, whoever does it like this is 5064 * not in for the data anyway. 5065 */ 5066 if (has_aux(event)) 5067 perf_event_stop(event, 0); 5068 5069 rcu_assign_pointer(event->rb, rb); 5070 5071 if (old_rb) { 5072 ring_buffer_put(old_rb); 5073 /* 5074 * Since we detached before setting the new rb, so that we 5075 * could attach the new rb, we could have missed a wakeup. 5076 * Provide it now. 5077 */ 5078 wake_up_all(&event->waitq); 5079 } 5080 } 5081 5082 static void ring_buffer_wakeup(struct perf_event *event) 5083 { 5084 struct ring_buffer *rb; 5085 5086 rcu_read_lock(); 5087 rb = rcu_dereference(event->rb); 5088 if (rb) { 5089 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5090 wake_up_all(&event->waitq); 5091 } 5092 rcu_read_unlock(); 5093 } 5094 5095 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5096 { 5097 struct ring_buffer *rb; 5098 5099 rcu_read_lock(); 5100 rb = rcu_dereference(event->rb); 5101 if (rb) { 5102 if (!atomic_inc_not_zero(&rb->refcount)) 5103 rb = NULL; 5104 } 5105 rcu_read_unlock(); 5106 5107 return rb; 5108 } 5109 5110 void ring_buffer_put(struct ring_buffer *rb) 5111 { 5112 if (!atomic_dec_and_test(&rb->refcount)) 5113 return; 5114 5115 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5116 5117 call_rcu(&rb->rcu_head, rb_free_rcu); 5118 } 5119 5120 static void perf_mmap_open(struct vm_area_struct *vma) 5121 { 5122 struct perf_event *event = vma->vm_file->private_data; 5123 5124 atomic_inc(&event->mmap_count); 5125 atomic_inc(&event->rb->mmap_count); 5126 5127 if (vma->vm_pgoff) 5128 atomic_inc(&event->rb->aux_mmap_count); 5129 5130 if (event->pmu->event_mapped) 5131 event->pmu->event_mapped(event, vma->vm_mm); 5132 } 5133 5134 static void perf_pmu_output_stop(struct perf_event *event); 5135 5136 /* 5137 * A buffer can be mmap()ed multiple times; either directly through the same 5138 * event, or through other events by use of perf_event_set_output(). 5139 * 5140 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5141 * the buffer here, where we still have a VM context. This means we need 5142 * to detach all events redirecting to us. 5143 */ 5144 static void perf_mmap_close(struct vm_area_struct *vma) 5145 { 5146 struct perf_event *event = vma->vm_file->private_data; 5147 5148 struct ring_buffer *rb = ring_buffer_get(event); 5149 struct user_struct *mmap_user = rb->mmap_user; 5150 int mmap_locked = rb->mmap_locked; 5151 unsigned long size = perf_data_size(rb); 5152 5153 if (event->pmu->event_unmapped) 5154 event->pmu->event_unmapped(event, vma->vm_mm); 5155 5156 /* 5157 * rb->aux_mmap_count will always drop before rb->mmap_count and 5158 * event->mmap_count, so it is ok to use event->mmap_mutex to 5159 * serialize with perf_mmap here. 5160 */ 5161 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5162 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5163 /* 5164 * Stop all AUX events that are writing to this buffer, 5165 * so that we can free its AUX pages and corresponding PMU 5166 * data. Note that after rb::aux_mmap_count dropped to zero, 5167 * they won't start any more (see perf_aux_output_begin()). 5168 */ 5169 perf_pmu_output_stop(event); 5170 5171 /* now it's safe to free the pages */ 5172 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5173 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5174 5175 /* this has to be the last one */ 5176 rb_free_aux(rb); 5177 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5178 5179 mutex_unlock(&event->mmap_mutex); 5180 } 5181 5182 atomic_dec(&rb->mmap_count); 5183 5184 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5185 goto out_put; 5186 5187 ring_buffer_attach(event, NULL); 5188 mutex_unlock(&event->mmap_mutex); 5189 5190 /* If there's still other mmap()s of this buffer, we're done. */ 5191 if (atomic_read(&rb->mmap_count)) 5192 goto out_put; 5193 5194 /* 5195 * No other mmap()s, detach from all other events that might redirect 5196 * into the now unreachable buffer. Somewhat complicated by the 5197 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5198 */ 5199 again: 5200 rcu_read_lock(); 5201 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5202 if (!atomic_long_inc_not_zero(&event->refcount)) { 5203 /* 5204 * This event is en-route to free_event() which will 5205 * detach it and remove it from the list. 5206 */ 5207 continue; 5208 } 5209 rcu_read_unlock(); 5210 5211 mutex_lock(&event->mmap_mutex); 5212 /* 5213 * Check we didn't race with perf_event_set_output() which can 5214 * swizzle the rb from under us while we were waiting to 5215 * acquire mmap_mutex. 5216 * 5217 * If we find a different rb; ignore this event, a next 5218 * iteration will no longer find it on the list. We have to 5219 * still restart the iteration to make sure we're not now 5220 * iterating the wrong list. 5221 */ 5222 if (event->rb == rb) 5223 ring_buffer_attach(event, NULL); 5224 5225 mutex_unlock(&event->mmap_mutex); 5226 put_event(event); 5227 5228 /* 5229 * Restart the iteration; either we're on the wrong list or 5230 * destroyed its integrity by doing a deletion. 5231 */ 5232 goto again; 5233 } 5234 rcu_read_unlock(); 5235 5236 /* 5237 * It could be there's still a few 0-ref events on the list; they'll 5238 * get cleaned up by free_event() -- they'll also still have their 5239 * ref on the rb and will free it whenever they are done with it. 5240 * 5241 * Aside from that, this buffer is 'fully' detached and unmapped, 5242 * undo the VM accounting. 5243 */ 5244 5245 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5246 vma->vm_mm->pinned_vm -= mmap_locked; 5247 free_uid(mmap_user); 5248 5249 out_put: 5250 ring_buffer_put(rb); /* could be last */ 5251 } 5252 5253 static const struct vm_operations_struct perf_mmap_vmops = { 5254 .open = perf_mmap_open, 5255 .close = perf_mmap_close, /* non mergable */ 5256 .fault = perf_mmap_fault, 5257 .page_mkwrite = perf_mmap_fault, 5258 }; 5259 5260 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5261 { 5262 struct perf_event *event = file->private_data; 5263 unsigned long user_locked, user_lock_limit; 5264 struct user_struct *user = current_user(); 5265 unsigned long locked, lock_limit; 5266 struct ring_buffer *rb = NULL; 5267 unsigned long vma_size; 5268 unsigned long nr_pages; 5269 long user_extra = 0, extra = 0; 5270 int ret = 0, flags = 0; 5271 5272 /* 5273 * Don't allow mmap() of inherited per-task counters. This would 5274 * create a performance issue due to all children writing to the 5275 * same rb. 5276 */ 5277 if (event->cpu == -1 && event->attr.inherit) 5278 return -EINVAL; 5279 5280 if (!(vma->vm_flags & VM_SHARED)) 5281 return -EINVAL; 5282 5283 vma_size = vma->vm_end - vma->vm_start; 5284 5285 if (vma->vm_pgoff == 0) { 5286 nr_pages = (vma_size / PAGE_SIZE) - 1; 5287 } else { 5288 /* 5289 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5290 * mapped, all subsequent mappings should have the same size 5291 * and offset. Must be above the normal perf buffer. 5292 */ 5293 u64 aux_offset, aux_size; 5294 5295 if (!event->rb) 5296 return -EINVAL; 5297 5298 nr_pages = vma_size / PAGE_SIZE; 5299 5300 mutex_lock(&event->mmap_mutex); 5301 ret = -EINVAL; 5302 5303 rb = event->rb; 5304 if (!rb) 5305 goto aux_unlock; 5306 5307 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5308 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5309 5310 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5311 goto aux_unlock; 5312 5313 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5314 goto aux_unlock; 5315 5316 /* already mapped with a different offset */ 5317 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5318 goto aux_unlock; 5319 5320 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5321 goto aux_unlock; 5322 5323 /* already mapped with a different size */ 5324 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5325 goto aux_unlock; 5326 5327 if (!is_power_of_2(nr_pages)) 5328 goto aux_unlock; 5329 5330 if (!atomic_inc_not_zero(&rb->mmap_count)) 5331 goto aux_unlock; 5332 5333 if (rb_has_aux(rb)) { 5334 atomic_inc(&rb->aux_mmap_count); 5335 ret = 0; 5336 goto unlock; 5337 } 5338 5339 atomic_set(&rb->aux_mmap_count, 1); 5340 user_extra = nr_pages; 5341 5342 goto accounting; 5343 } 5344 5345 /* 5346 * If we have rb pages ensure they're a power-of-two number, so we 5347 * can do bitmasks instead of modulo. 5348 */ 5349 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5350 return -EINVAL; 5351 5352 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5353 return -EINVAL; 5354 5355 WARN_ON_ONCE(event->ctx->parent_ctx); 5356 again: 5357 mutex_lock(&event->mmap_mutex); 5358 if (event->rb) { 5359 if (event->rb->nr_pages != nr_pages) { 5360 ret = -EINVAL; 5361 goto unlock; 5362 } 5363 5364 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5365 /* 5366 * Raced against perf_mmap_close() through 5367 * perf_event_set_output(). Try again, hope for better 5368 * luck. 5369 */ 5370 mutex_unlock(&event->mmap_mutex); 5371 goto again; 5372 } 5373 5374 goto unlock; 5375 } 5376 5377 user_extra = nr_pages + 1; 5378 5379 accounting: 5380 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5381 5382 /* 5383 * Increase the limit linearly with more CPUs: 5384 */ 5385 user_lock_limit *= num_online_cpus(); 5386 5387 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5388 5389 if (user_locked > user_lock_limit) 5390 extra = user_locked - user_lock_limit; 5391 5392 lock_limit = rlimit(RLIMIT_MEMLOCK); 5393 lock_limit >>= PAGE_SHIFT; 5394 locked = vma->vm_mm->pinned_vm + extra; 5395 5396 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5397 !capable(CAP_IPC_LOCK)) { 5398 ret = -EPERM; 5399 goto unlock; 5400 } 5401 5402 WARN_ON(!rb && event->rb); 5403 5404 if (vma->vm_flags & VM_WRITE) 5405 flags |= RING_BUFFER_WRITABLE; 5406 5407 if (!rb) { 5408 rb = rb_alloc(nr_pages, 5409 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5410 event->cpu, flags); 5411 5412 if (!rb) { 5413 ret = -ENOMEM; 5414 goto unlock; 5415 } 5416 5417 atomic_set(&rb->mmap_count, 1); 5418 rb->mmap_user = get_current_user(); 5419 rb->mmap_locked = extra; 5420 5421 ring_buffer_attach(event, rb); 5422 5423 perf_event_init_userpage(event); 5424 perf_event_update_userpage(event); 5425 } else { 5426 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5427 event->attr.aux_watermark, flags); 5428 if (!ret) 5429 rb->aux_mmap_locked = extra; 5430 } 5431 5432 unlock: 5433 if (!ret) { 5434 atomic_long_add(user_extra, &user->locked_vm); 5435 vma->vm_mm->pinned_vm += extra; 5436 5437 atomic_inc(&event->mmap_count); 5438 } else if (rb) { 5439 atomic_dec(&rb->mmap_count); 5440 } 5441 aux_unlock: 5442 mutex_unlock(&event->mmap_mutex); 5443 5444 /* 5445 * Since pinned accounting is per vm we cannot allow fork() to copy our 5446 * vma. 5447 */ 5448 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5449 vma->vm_ops = &perf_mmap_vmops; 5450 5451 if (event->pmu->event_mapped) 5452 event->pmu->event_mapped(event, vma->vm_mm); 5453 5454 return ret; 5455 } 5456 5457 static int perf_fasync(int fd, struct file *filp, int on) 5458 { 5459 struct inode *inode = file_inode(filp); 5460 struct perf_event *event = filp->private_data; 5461 int retval; 5462 5463 inode_lock(inode); 5464 retval = fasync_helper(fd, filp, on, &event->fasync); 5465 inode_unlock(inode); 5466 5467 if (retval < 0) 5468 return retval; 5469 5470 return 0; 5471 } 5472 5473 static const struct file_operations perf_fops = { 5474 .llseek = no_llseek, 5475 .release = perf_release, 5476 .read = perf_read, 5477 .poll = perf_poll, 5478 .unlocked_ioctl = perf_ioctl, 5479 .compat_ioctl = perf_compat_ioctl, 5480 .mmap = perf_mmap, 5481 .fasync = perf_fasync, 5482 }; 5483 5484 /* 5485 * Perf event wakeup 5486 * 5487 * If there's data, ensure we set the poll() state and publish everything 5488 * to user-space before waking everybody up. 5489 */ 5490 5491 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5492 { 5493 /* only the parent has fasync state */ 5494 if (event->parent) 5495 event = event->parent; 5496 return &event->fasync; 5497 } 5498 5499 void perf_event_wakeup(struct perf_event *event) 5500 { 5501 ring_buffer_wakeup(event); 5502 5503 if (event->pending_kill) { 5504 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5505 event->pending_kill = 0; 5506 } 5507 } 5508 5509 static void perf_pending_event(struct irq_work *entry) 5510 { 5511 struct perf_event *event = container_of(entry, 5512 struct perf_event, pending); 5513 int rctx; 5514 5515 rctx = perf_swevent_get_recursion_context(); 5516 /* 5517 * If we 'fail' here, that's OK, it means recursion is already disabled 5518 * and we won't recurse 'further'. 5519 */ 5520 5521 if (event->pending_disable) { 5522 event->pending_disable = 0; 5523 perf_event_disable_local(event); 5524 } 5525 5526 if (event->pending_wakeup) { 5527 event->pending_wakeup = 0; 5528 perf_event_wakeup(event); 5529 } 5530 5531 if (rctx >= 0) 5532 perf_swevent_put_recursion_context(rctx); 5533 } 5534 5535 /* 5536 * We assume there is only KVM supporting the callbacks. 5537 * Later on, we might change it to a list if there is 5538 * another virtualization implementation supporting the callbacks. 5539 */ 5540 struct perf_guest_info_callbacks *perf_guest_cbs; 5541 5542 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5543 { 5544 perf_guest_cbs = cbs; 5545 return 0; 5546 } 5547 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5548 5549 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5550 { 5551 perf_guest_cbs = NULL; 5552 return 0; 5553 } 5554 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5555 5556 static void 5557 perf_output_sample_regs(struct perf_output_handle *handle, 5558 struct pt_regs *regs, u64 mask) 5559 { 5560 int bit; 5561 DECLARE_BITMAP(_mask, 64); 5562 5563 bitmap_from_u64(_mask, mask); 5564 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5565 u64 val; 5566 5567 val = perf_reg_value(regs, bit); 5568 perf_output_put(handle, val); 5569 } 5570 } 5571 5572 static void perf_sample_regs_user(struct perf_regs *regs_user, 5573 struct pt_regs *regs, 5574 struct pt_regs *regs_user_copy) 5575 { 5576 if (user_mode(regs)) { 5577 regs_user->abi = perf_reg_abi(current); 5578 regs_user->regs = regs; 5579 } else if (current->mm) { 5580 perf_get_regs_user(regs_user, regs, regs_user_copy); 5581 } else { 5582 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5583 regs_user->regs = NULL; 5584 } 5585 } 5586 5587 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5588 struct pt_regs *regs) 5589 { 5590 regs_intr->regs = regs; 5591 regs_intr->abi = perf_reg_abi(current); 5592 } 5593 5594 5595 /* 5596 * Get remaining task size from user stack pointer. 5597 * 5598 * It'd be better to take stack vma map and limit this more 5599 * precisly, but there's no way to get it safely under interrupt, 5600 * so using TASK_SIZE as limit. 5601 */ 5602 static u64 perf_ustack_task_size(struct pt_regs *regs) 5603 { 5604 unsigned long addr = perf_user_stack_pointer(regs); 5605 5606 if (!addr || addr >= TASK_SIZE) 5607 return 0; 5608 5609 return TASK_SIZE - addr; 5610 } 5611 5612 static u16 5613 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5614 struct pt_regs *regs) 5615 { 5616 u64 task_size; 5617 5618 /* No regs, no stack pointer, no dump. */ 5619 if (!regs) 5620 return 0; 5621 5622 /* 5623 * Check if we fit in with the requested stack size into the: 5624 * - TASK_SIZE 5625 * If we don't, we limit the size to the TASK_SIZE. 5626 * 5627 * - remaining sample size 5628 * If we don't, we customize the stack size to 5629 * fit in to the remaining sample size. 5630 */ 5631 5632 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5633 stack_size = min(stack_size, (u16) task_size); 5634 5635 /* Current header size plus static size and dynamic size. */ 5636 header_size += 2 * sizeof(u64); 5637 5638 /* Do we fit in with the current stack dump size? */ 5639 if ((u16) (header_size + stack_size) < header_size) { 5640 /* 5641 * If we overflow the maximum size for the sample, 5642 * we customize the stack dump size to fit in. 5643 */ 5644 stack_size = USHRT_MAX - header_size - sizeof(u64); 5645 stack_size = round_up(stack_size, sizeof(u64)); 5646 } 5647 5648 return stack_size; 5649 } 5650 5651 static void 5652 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5653 struct pt_regs *regs) 5654 { 5655 /* Case of a kernel thread, nothing to dump */ 5656 if (!regs) { 5657 u64 size = 0; 5658 perf_output_put(handle, size); 5659 } else { 5660 unsigned long sp; 5661 unsigned int rem; 5662 u64 dyn_size; 5663 5664 /* 5665 * We dump: 5666 * static size 5667 * - the size requested by user or the best one we can fit 5668 * in to the sample max size 5669 * data 5670 * - user stack dump data 5671 * dynamic size 5672 * - the actual dumped size 5673 */ 5674 5675 /* Static size. */ 5676 perf_output_put(handle, dump_size); 5677 5678 /* Data. */ 5679 sp = perf_user_stack_pointer(regs); 5680 rem = __output_copy_user(handle, (void *) sp, dump_size); 5681 dyn_size = dump_size - rem; 5682 5683 perf_output_skip(handle, rem); 5684 5685 /* Dynamic size. */ 5686 perf_output_put(handle, dyn_size); 5687 } 5688 } 5689 5690 static void __perf_event_header__init_id(struct perf_event_header *header, 5691 struct perf_sample_data *data, 5692 struct perf_event *event) 5693 { 5694 u64 sample_type = event->attr.sample_type; 5695 5696 data->type = sample_type; 5697 header->size += event->id_header_size; 5698 5699 if (sample_type & PERF_SAMPLE_TID) { 5700 /* namespace issues */ 5701 data->tid_entry.pid = perf_event_pid(event, current); 5702 data->tid_entry.tid = perf_event_tid(event, current); 5703 } 5704 5705 if (sample_type & PERF_SAMPLE_TIME) 5706 data->time = perf_event_clock(event); 5707 5708 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5709 data->id = primary_event_id(event); 5710 5711 if (sample_type & PERF_SAMPLE_STREAM_ID) 5712 data->stream_id = event->id; 5713 5714 if (sample_type & PERF_SAMPLE_CPU) { 5715 data->cpu_entry.cpu = raw_smp_processor_id(); 5716 data->cpu_entry.reserved = 0; 5717 } 5718 } 5719 5720 void perf_event_header__init_id(struct perf_event_header *header, 5721 struct perf_sample_data *data, 5722 struct perf_event *event) 5723 { 5724 if (event->attr.sample_id_all) 5725 __perf_event_header__init_id(header, data, event); 5726 } 5727 5728 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5729 struct perf_sample_data *data) 5730 { 5731 u64 sample_type = data->type; 5732 5733 if (sample_type & PERF_SAMPLE_TID) 5734 perf_output_put(handle, data->tid_entry); 5735 5736 if (sample_type & PERF_SAMPLE_TIME) 5737 perf_output_put(handle, data->time); 5738 5739 if (sample_type & PERF_SAMPLE_ID) 5740 perf_output_put(handle, data->id); 5741 5742 if (sample_type & PERF_SAMPLE_STREAM_ID) 5743 perf_output_put(handle, data->stream_id); 5744 5745 if (sample_type & PERF_SAMPLE_CPU) 5746 perf_output_put(handle, data->cpu_entry); 5747 5748 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5749 perf_output_put(handle, data->id); 5750 } 5751 5752 void perf_event__output_id_sample(struct perf_event *event, 5753 struct perf_output_handle *handle, 5754 struct perf_sample_data *sample) 5755 { 5756 if (event->attr.sample_id_all) 5757 __perf_event__output_id_sample(handle, sample); 5758 } 5759 5760 static void perf_output_read_one(struct perf_output_handle *handle, 5761 struct perf_event *event, 5762 u64 enabled, u64 running) 5763 { 5764 u64 read_format = event->attr.read_format; 5765 u64 values[4]; 5766 int n = 0; 5767 5768 values[n++] = perf_event_count(event); 5769 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5770 values[n++] = enabled + 5771 atomic64_read(&event->child_total_time_enabled); 5772 } 5773 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5774 values[n++] = running + 5775 atomic64_read(&event->child_total_time_running); 5776 } 5777 if (read_format & PERF_FORMAT_ID) 5778 values[n++] = primary_event_id(event); 5779 5780 __output_copy(handle, values, n * sizeof(u64)); 5781 } 5782 5783 static void perf_output_read_group(struct perf_output_handle *handle, 5784 struct perf_event *event, 5785 u64 enabled, u64 running) 5786 { 5787 struct perf_event *leader = event->group_leader, *sub; 5788 u64 read_format = event->attr.read_format; 5789 u64 values[5]; 5790 int n = 0; 5791 5792 values[n++] = 1 + leader->nr_siblings; 5793 5794 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5795 values[n++] = enabled; 5796 5797 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5798 values[n++] = running; 5799 5800 if (leader != event) 5801 leader->pmu->read(leader); 5802 5803 values[n++] = perf_event_count(leader); 5804 if (read_format & PERF_FORMAT_ID) 5805 values[n++] = primary_event_id(leader); 5806 5807 __output_copy(handle, values, n * sizeof(u64)); 5808 5809 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5810 n = 0; 5811 5812 if ((sub != event) && 5813 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5814 sub->pmu->read(sub); 5815 5816 values[n++] = perf_event_count(sub); 5817 if (read_format & PERF_FORMAT_ID) 5818 values[n++] = primary_event_id(sub); 5819 5820 __output_copy(handle, values, n * sizeof(u64)); 5821 } 5822 } 5823 5824 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5825 PERF_FORMAT_TOTAL_TIME_RUNNING) 5826 5827 /* 5828 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5829 * 5830 * The problem is that its both hard and excessively expensive to iterate the 5831 * child list, not to mention that its impossible to IPI the children running 5832 * on another CPU, from interrupt/NMI context. 5833 */ 5834 static void perf_output_read(struct perf_output_handle *handle, 5835 struct perf_event *event) 5836 { 5837 u64 enabled = 0, running = 0, now; 5838 u64 read_format = event->attr.read_format; 5839 5840 /* 5841 * compute total_time_enabled, total_time_running 5842 * based on snapshot values taken when the event 5843 * was last scheduled in. 5844 * 5845 * we cannot simply called update_context_time() 5846 * because of locking issue as we are called in 5847 * NMI context 5848 */ 5849 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5850 calc_timer_values(event, &now, &enabled, &running); 5851 5852 if (event->attr.read_format & PERF_FORMAT_GROUP) 5853 perf_output_read_group(handle, event, enabled, running); 5854 else 5855 perf_output_read_one(handle, event, enabled, running); 5856 } 5857 5858 void perf_output_sample(struct perf_output_handle *handle, 5859 struct perf_event_header *header, 5860 struct perf_sample_data *data, 5861 struct perf_event *event) 5862 { 5863 u64 sample_type = data->type; 5864 5865 perf_output_put(handle, *header); 5866 5867 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5868 perf_output_put(handle, data->id); 5869 5870 if (sample_type & PERF_SAMPLE_IP) 5871 perf_output_put(handle, data->ip); 5872 5873 if (sample_type & PERF_SAMPLE_TID) 5874 perf_output_put(handle, data->tid_entry); 5875 5876 if (sample_type & PERF_SAMPLE_TIME) 5877 perf_output_put(handle, data->time); 5878 5879 if (sample_type & PERF_SAMPLE_ADDR) 5880 perf_output_put(handle, data->addr); 5881 5882 if (sample_type & PERF_SAMPLE_ID) 5883 perf_output_put(handle, data->id); 5884 5885 if (sample_type & PERF_SAMPLE_STREAM_ID) 5886 perf_output_put(handle, data->stream_id); 5887 5888 if (sample_type & PERF_SAMPLE_CPU) 5889 perf_output_put(handle, data->cpu_entry); 5890 5891 if (sample_type & PERF_SAMPLE_PERIOD) 5892 perf_output_put(handle, data->period); 5893 5894 if (sample_type & PERF_SAMPLE_READ) 5895 perf_output_read(handle, event); 5896 5897 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5898 if (data->callchain) { 5899 int size = 1; 5900 5901 if (data->callchain) 5902 size += data->callchain->nr; 5903 5904 size *= sizeof(u64); 5905 5906 __output_copy(handle, data->callchain, size); 5907 } else { 5908 u64 nr = 0; 5909 perf_output_put(handle, nr); 5910 } 5911 } 5912 5913 if (sample_type & PERF_SAMPLE_RAW) { 5914 struct perf_raw_record *raw = data->raw; 5915 5916 if (raw) { 5917 struct perf_raw_frag *frag = &raw->frag; 5918 5919 perf_output_put(handle, raw->size); 5920 do { 5921 if (frag->copy) { 5922 __output_custom(handle, frag->copy, 5923 frag->data, frag->size); 5924 } else { 5925 __output_copy(handle, frag->data, 5926 frag->size); 5927 } 5928 if (perf_raw_frag_last(frag)) 5929 break; 5930 frag = frag->next; 5931 } while (1); 5932 if (frag->pad) 5933 __output_skip(handle, NULL, frag->pad); 5934 } else { 5935 struct { 5936 u32 size; 5937 u32 data; 5938 } raw = { 5939 .size = sizeof(u32), 5940 .data = 0, 5941 }; 5942 perf_output_put(handle, raw); 5943 } 5944 } 5945 5946 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5947 if (data->br_stack) { 5948 size_t size; 5949 5950 size = data->br_stack->nr 5951 * sizeof(struct perf_branch_entry); 5952 5953 perf_output_put(handle, data->br_stack->nr); 5954 perf_output_copy(handle, data->br_stack->entries, size); 5955 } else { 5956 /* 5957 * we always store at least the value of nr 5958 */ 5959 u64 nr = 0; 5960 perf_output_put(handle, nr); 5961 } 5962 } 5963 5964 if (sample_type & PERF_SAMPLE_REGS_USER) { 5965 u64 abi = data->regs_user.abi; 5966 5967 /* 5968 * If there are no regs to dump, notice it through 5969 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5970 */ 5971 perf_output_put(handle, abi); 5972 5973 if (abi) { 5974 u64 mask = event->attr.sample_regs_user; 5975 perf_output_sample_regs(handle, 5976 data->regs_user.regs, 5977 mask); 5978 } 5979 } 5980 5981 if (sample_type & PERF_SAMPLE_STACK_USER) { 5982 perf_output_sample_ustack(handle, 5983 data->stack_user_size, 5984 data->regs_user.regs); 5985 } 5986 5987 if (sample_type & PERF_SAMPLE_WEIGHT) 5988 perf_output_put(handle, data->weight); 5989 5990 if (sample_type & PERF_SAMPLE_DATA_SRC) 5991 perf_output_put(handle, data->data_src.val); 5992 5993 if (sample_type & PERF_SAMPLE_TRANSACTION) 5994 perf_output_put(handle, data->txn); 5995 5996 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5997 u64 abi = data->regs_intr.abi; 5998 /* 5999 * If there are no regs to dump, notice it through 6000 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6001 */ 6002 perf_output_put(handle, abi); 6003 6004 if (abi) { 6005 u64 mask = event->attr.sample_regs_intr; 6006 6007 perf_output_sample_regs(handle, 6008 data->regs_intr.regs, 6009 mask); 6010 } 6011 } 6012 6013 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6014 perf_output_put(handle, data->phys_addr); 6015 6016 if (!event->attr.watermark) { 6017 int wakeup_events = event->attr.wakeup_events; 6018 6019 if (wakeup_events) { 6020 struct ring_buffer *rb = handle->rb; 6021 int events = local_inc_return(&rb->events); 6022 6023 if (events >= wakeup_events) { 6024 local_sub(wakeup_events, &rb->events); 6025 local_inc(&rb->wakeup); 6026 } 6027 } 6028 } 6029 } 6030 6031 static u64 perf_virt_to_phys(u64 virt) 6032 { 6033 u64 phys_addr = 0; 6034 struct page *p = NULL; 6035 6036 if (!virt) 6037 return 0; 6038 6039 if (virt >= TASK_SIZE) { 6040 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6041 if (virt_addr_valid((void *)(uintptr_t)virt) && 6042 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6043 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6044 } else { 6045 /* 6046 * Walking the pages tables for user address. 6047 * Interrupts are disabled, so it prevents any tear down 6048 * of the page tables. 6049 * Try IRQ-safe __get_user_pages_fast first. 6050 * If failed, leave phys_addr as 0. 6051 */ 6052 if ((current->mm != NULL) && 6053 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6054 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6055 6056 if (p) 6057 put_page(p); 6058 } 6059 6060 return phys_addr; 6061 } 6062 6063 void perf_prepare_sample(struct perf_event_header *header, 6064 struct perf_sample_data *data, 6065 struct perf_event *event, 6066 struct pt_regs *regs) 6067 { 6068 u64 sample_type = event->attr.sample_type; 6069 6070 header->type = PERF_RECORD_SAMPLE; 6071 header->size = sizeof(*header) + event->header_size; 6072 6073 header->misc = 0; 6074 header->misc |= perf_misc_flags(regs); 6075 6076 __perf_event_header__init_id(header, data, event); 6077 6078 if (sample_type & PERF_SAMPLE_IP) 6079 data->ip = perf_instruction_pointer(regs); 6080 6081 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6082 int size = 1; 6083 6084 data->callchain = perf_callchain(event, regs); 6085 6086 if (data->callchain) 6087 size += data->callchain->nr; 6088 6089 header->size += size * sizeof(u64); 6090 } 6091 6092 if (sample_type & PERF_SAMPLE_RAW) { 6093 struct perf_raw_record *raw = data->raw; 6094 int size; 6095 6096 if (raw) { 6097 struct perf_raw_frag *frag = &raw->frag; 6098 u32 sum = 0; 6099 6100 do { 6101 sum += frag->size; 6102 if (perf_raw_frag_last(frag)) 6103 break; 6104 frag = frag->next; 6105 } while (1); 6106 6107 size = round_up(sum + sizeof(u32), sizeof(u64)); 6108 raw->size = size - sizeof(u32); 6109 frag->pad = raw->size - sum; 6110 } else { 6111 size = sizeof(u64); 6112 } 6113 6114 header->size += size; 6115 } 6116 6117 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6118 int size = sizeof(u64); /* nr */ 6119 if (data->br_stack) { 6120 size += data->br_stack->nr 6121 * sizeof(struct perf_branch_entry); 6122 } 6123 header->size += size; 6124 } 6125 6126 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6127 perf_sample_regs_user(&data->regs_user, regs, 6128 &data->regs_user_copy); 6129 6130 if (sample_type & PERF_SAMPLE_REGS_USER) { 6131 /* regs dump ABI info */ 6132 int size = sizeof(u64); 6133 6134 if (data->regs_user.regs) { 6135 u64 mask = event->attr.sample_regs_user; 6136 size += hweight64(mask) * sizeof(u64); 6137 } 6138 6139 header->size += size; 6140 } 6141 6142 if (sample_type & PERF_SAMPLE_STACK_USER) { 6143 /* 6144 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6145 * processed as the last one or have additional check added 6146 * in case new sample type is added, because we could eat 6147 * up the rest of the sample size. 6148 */ 6149 u16 stack_size = event->attr.sample_stack_user; 6150 u16 size = sizeof(u64); 6151 6152 stack_size = perf_sample_ustack_size(stack_size, header->size, 6153 data->regs_user.regs); 6154 6155 /* 6156 * If there is something to dump, add space for the dump 6157 * itself and for the field that tells the dynamic size, 6158 * which is how many have been actually dumped. 6159 */ 6160 if (stack_size) 6161 size += sizeof(u64) + stack_size; 6162 6163 data->stack_user_size = stack_size; 6164 header->size += size; 6165 } 6166 6167 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6168 /* regs dump ABI info */ 6169 int size = sizeof(u64); 6170 6171 perf_sample_regs_intr(&data->regs_intr, regs); 6172 6173 if (data->regs_intr.regs) { 6174 u64 mask = event->attr.sample_regs_intr; 6175 6176 size += hweight64(mask) * sizeof(u64); 6177 } 6178 6179 header->size += size; 6180 } 6181 6182 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6183 data->phys_addr = perf_virt_to_phys(data->addr); 6184 } 6185 6186 static void __always_inline 6187 __perf_event_output(struct perf_event *event, 6188 struct perf_sample_data *data, 6189 struct pt_regs *regs, 6190 int (*output_begin)(struct perf_output_handle *, 6191 struct perf_event *, 6192 unsigned int)) 6193 { 6194 struct perf_output_handle handle; 6195 struct perf_event_header header; 6196 6197 /* protect the callchain buffers */ 6198 rcu_read_lock(); 6199 6200 perf_prepare_sample(&header, data, event, regs); 6201 6202 if (output_begin(&handle, event, header.size)) 6203 goto exit; 6204 6205 perf_output_sample(&handle, &header, data, event); 6206 6207 perf_output_end(&handle); 6208 6209 exit: 6210 rcu_read_unlock(); 6211 } 6212 6213 void 6214 perf_event_output_forward(struct perf_event *event, 6215 struct perf_sample_data *data, 6216 struct pt_regs *regs) 6217 { 6218 __perf_event_output(event, data, regs, perf_output_begin_forward); 6219 } 6220 6221 void 6222 perf_event_output_backward(struct perf_event *event, 6223 struct perf_sample_data *data, 6224 struct pt_regs *regs) 6225 { 6226 __perf_event_output(event, data, regs, perf_output_begin_backward); 6227 } 6228 6229 void 6230 perf_event_output(struct perf_event *event, 6231 struct perf_sample_data *data, 6232 struct pt_regs *regs) 6233 { 6234 __perf_event_output(event, data, regs, perf_output_begin); 6235 } 6236 6237 /* 6238 * read event_id 6239 */ 6240 6241 struct perf_read_event { 6242 struct perf_event_header header; 6243 6244 u32 pid; 6245 u32 tid; 6246 }; 6247 6248 static void 6249 perf_event_read_event(struct perf_event *event, 6250 struct task_struct *task) 6251 { 6252 struct perf_output_handle handle; 6253 struct perf_sample_data sample; 6254 struct perf_read_event read_event = { 6255 .header = { 6256 .type = PERF_RECORD_READ, 6257 .misc = 0, 6258 .size = sizeof(read_event) + event->read_size, 6259 }, 6260 .pid = perf_event_pid(event, task), 6261 .tid = perf_event_tid(event, task), 6262 }; 6263 int ret; 6264 6265 perf_event_header__init_id(&read_event.header, &sample, event); 6266 ret = perf_output_begin(&handle, event, read_event.header.size); 6267 if (ret) 6268 return; 6269 6270 perf_output_put(&handle, read_event); 6271 perf_output_read(&handle, event); 6272 perf_event__output_id_sample(event, &handle, &sample); 6273 6274 perf_output_end(&handle); 6275 } 6276 6277 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6278 6279 static void 6280 perf_iterate_ctx(struct perf_event_context *ctx, 6281 perf_iterate_f output, 6282 void *data, bool all) 6283 { 6284 struct perf_event *event; 6285 6286 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6287 if (!all) { 6288 if (event->state < PERF_EVENT_STATE_INACTIVE) 6289 continue; 6290 if (!event_filter_match(event)) 6291 continue; 6292 } 6293 6294 output(event, data); 6295 } 6296 } 6297 6298 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6299 { 6300 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6301 struct perf_event *event; 6302 6303 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6304 /* 6305 * Skip events that are not fully formed yet; ensure that 6306 * if we observe event->ctx, both event and ctx will be 6307 * complete enough. See perf_install_in_context(). 6308 */ 6309 if (!smp_load_acquire(&event->ctx)) 6310 continue; 6311 6312 if (event->state < PERF_EVENT_STATE_INACTIVE) 6313 continue; 6314 if (!event_filter_match(event)) 6315 continue; 6316 output(event, data); 6317 } 6318 } 6319 6320 /* 6321 * Iterate all events that need to receive side-band events. 6322 * 6323 * For new callers; ensure that account_pmu_sb_event() includes 6324 * your event, otherwise it might not get delivered. 6325 */ 6326 static void 6327 perf_iterate_sb(perf_iterate_f output, void *data, 6328 struct perf_event_context *task_ctx) 6329 { 6330 struct perf_event_context *ctx; 6331 int ctxn; 6332 6333 rcu_read_lock(); 6334 preempt_disable(); 6335 6336 /* 6337 * If we have task_ctx != NULL we only notify the task context itself. 6338 * The task_ctx is set only for EXIT events before releasing task 6339 * context. 6340 */ 6341 if (task_ctx) { 6342 perf_iterate_ctx(task_ctx, output, data, false); 6343 goto done; 6344 } 6345 6346 perf_iterate_sb_cpu(output, data); 6347 6348 for_each_task_context_nr(ctxn) { 6349 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6350 if (ctx) 6351 perf_iterate_ctx(ctx, output, data, false); 6352 } 6353 done: 6354 preempt_enable(); 6355 rcu_read_unlock(); 6356 } 6357 6358 /* 6359 * Clear all file-based filters at exec, they'll have to be 6360 * re-instated when/if these objects are mmapped again. 6361 */ 6362 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6363 { 6364 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6365 struct perf_addr_filter *filter; 6366 unsigned int restart = 0, count = 0; 6367 unsigned long flags; 6368 6369 if (!has_addr_filter(event)) 6370 return; 6371 6372 raw_spin_lock_irqsave(&ifh->lock, flags); 6373 list_for_each_entry(filter, &ifh->list, entry) { 6374 if (filter->inode) { 6375 event->addr_filters_offs[count] = 0; 6376 restart++; 6377 } 6378 6379 count++; 6380 } 6381 6382 if (restart) 6383 event->addr_filters_gen++; 6384 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6385 6386 if (restart) 6387 perf_event_stop(event, 1); 6388 } 6389 6390 void perf_event_exec(void) 6391 { 6392 struct perf_event_context *ctx; 6393 int ctxn; 6394 6395 rcu_read_lock(); 6396 for_each_task_context_nr(ctxn) { 6397 ctx = current->perf_event_ctxp[ctxn]; 6398 if (!ctx) 6399 continue; 6400 6401 perf_event_enable_on_exec(ctxn); 6402 6403 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6404 true); 6405 } 6406 rcu_read_unlock(); 6407 } 6408 6409 struct remote_output { 6410 struct ring_buffer *rb; 6411 int err; 6412 }; 6413 6414 static void __perf_event_output_stop(struct perf_event *event, void *data) 6415 { 6416 struct perf_event *parent = event->parent; 6417 struct remote_output *ro = data; 6418 struct ring_buffer *rb = ro->rb; 6419 struct stop_event_data sd = { 6420 .event = event, 6421 }; 6422 6423 if (!has_aux(event)) 6424 return; 6425 6426 if (!parent) 6427 parent = event; 6428 6429 /* 6430 * In case of inheritance, it will be the parent that links to the 6431 * ring-buffer, but it will be the child that's actually using it. 6432 * 6433 * We are using event::rb to determine if the event should be stopped, 6434 * however this may race with ring_buffer_attach() (through set_output), 6435 * which will make us skip the event that actually needs to be stopped. 6436 * So ring_buffer_attach() has to stop an aux event before re-assigning 6437 * its rb pointer. 6438 */ 6439 if (rcu_dereference(parent->rb) == rb) 6440 ro->err = __perf_event_stop(&sd); 6441 } 6442 6443 static int __perf_pmu_output_stop(void *info) 6444 { 6445 struct perf_event *event = info; 6446 struct pmu *pmu = event->pmu; 6447 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6448 struct remote_output ro = { 6449 .rb = event->rb, 6450 }; 6451 6452 rcu_read_lock(); 6453 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6454 if (cpuctx->task_ctx) 6455 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6456 &ro, false); 6457 rcu_read_unlock(); 6458 6459 return ro.err; 6460 } 6461 6462 static void perf_pmu_output_stop(struct perf_event *event) 6463 { 6464 struct perf_event *iter; 6465 int err, cpu; 6466 6467 restart: 6468 rcu_read_lock(); 6469 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6470 /* 6471 * For per-CPU events, we need to make sure that neither they 6472 * nor their children are running; for cpu==-1 events it's 6473 * sufficient to stop the event itself if it's active, since 6474 * it can't have children. 6475 */ 6476 cpu = iter->cpu; 6477 if (cpu == -1) 6478 cpu = READ_ONCE(iter->oncpu); 6479 6480 if (cpu == -1) 6481 continue; 6482 6483 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6484 if (err == -EAGAIN) { 6485 rcu_read_unlock(); 6486 goto restart; 6487 } 6488 } 6489 rcu_read_unlock(); 6490 } 6491 6492 /* 6493 * task tracking -- fork/exit 6494 * 6495 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6496 */ 6497 6498 struct perf_task_event { 6499 struct task_struct *task; 6500 struct perf_event_context *task_ctx; 6501 6502 struct { 6503 struct perf_event_header header; 6504 6505 u32 pid; 6506 u32 ppid; 6507 u32 tid; 6508 u32 ptid; 6509 u64 time; 6510 } event_id; 6511 }; 6512 6513 static int perf_event_task_match(struct perf_event *event) 6514 { 6515 return event->attr.comm || event->attr.mmap || 6516 event->attr.mmap2 || event->attr.mmap_data || 6517 event->attr.task; 6518 } 6519 6520 static void perf_event_task_output(struct perf_event *event, 6521 void *data) 6522 { 6523 struct perf_task_event *task_event = data; 6524 struct perf_output_handle handle; 6525 struct perf_sample_data sample; 6526 struct task_struct *task = task_event->task; 6527 int ret, size = task_event->event_id.header.size; 6528 6529 if (!perf_event_task_match(event)) 6530 return; 6531 6532 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6533 6534 ret = perf_output_begin(&handle, event, 6535 task_event->event_id.header.size); 6536 if (ret) 6537 goto out; 6538 6539 task_event->event_id.pid = perf_event_pid(event, task); 6540 task_event->event_id.ppid = perf_event_pid(event, current); 6541 6542 task_event->event_id.tid = perf_event_tid(event, task); 6543 task_event->event_id.ptid = perf_event_tid(event, current); 6544 6545 task_event->event_id.time = perf_event_clock(event); 6546 6547 perf_output_put(&handle, task_event->event_id); 6548 6549 perf_event__output_id_sample(event, &handle, &sample); 6550 6551 perf_output_end(&handle); 6552 out: 6553 task_event->event_id.header.size = size; 6554 } 6555 6556 static void perf_event_task(struct task_struct *task, 6557 struct perf_event_context *task_ctx, 6558 int new) 6559 { 6560 struct perf_task_event task_event; 6561 6562 if (!atomic_read(&nr_comm_events) && 6563 !atomic_read(&nr_mmap_events) && 6564 !atomic_read(&nr_task_events)) 6565 return; 6566 6567 task_event = (struct perf_task_event){ 6568 .task = task, 6569 .task_ctx = task_ctx, 6570 .event_id = { 6571 .header = { 6572 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6573 .misc = 0, 6574 .size = sizeof(task_event.event_id), 6575 }, 6576 /* .pid */ 6577 /* .ppid */ 6578 /* .tid */ 6579 /* .ptid */ 6580 /* .time */ 6581 }, 6582 }; 6583 6584 perf_iterate_sb(perf_event_task_output, 6585 &task_event, 6586 task_ctx); 6587 } 6588 6589 void perf_event_fork(struct task_struct *task) 6590 { 6591 perf_event_task(task, NULL, 1); 6592 perf_event_namespaces(task); 6593 } 6594 6595 /* 6596 * comm tracking 6597 */ 6598 6599 struct perf_comm_event { 6600 struct task_struct *task; 6601 char *comm; 6602 int comm_size; 6603 6604 struct { 6605 struct perf_event_header header; 6606 6607 u32 pid; 6608 u32 tid; 6609 } event_id; 6610 }; 6611 6612 static int perf_event_comm_match(struct perf_event *event) 6613 { 6614 return event->attr.comm; 6615 } 6616 6617 static void perf_event_comm_output(struct perf_event *event, 6618 void *data) 6619 { 6620 struct perf_comm_event *comm_event = data; 6621 struct perf_output_handle handle; 6622 struct perf_sample_data sample; 6623 int size = comm_event->event_id.header.size; 6624 int ret; 6625 6626 if (!perf_event_comm_match(event)) 6627 return; 6628 6629 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6630 ret = perf_output_begin(&handle, event, 6631 comm_event->event_id.header.size); 6632 6633 if (ret) 6634 goto out; 6635 6636 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6637 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6638 6639 perf_output_put(&handle, comm_event->event_id); 6640 __output_copy(&handle, comm_event->comm, 6641 comm_event->comm_size); 6642 6643 perf_event__output_id_sample(event, &handle, &sample); 6644 6645 perf_output_end(&handle); 6646 out: 6647 comm_event->event_id.header.size = size; 6648 } 6649 6650 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6651 { 6652 char comm[TASK_COMM_LEN]; 6653 unsigned int size; 6654 6655 memset(comm, 0, sizeof(comm)); 6656 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6657 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6658 6659 comm_event->comm = comm; 6660 comm_event->comm_size = size; 6661 6662 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6663 6664 perf_iterate_sb(perf_event_comm_output, 6665 comm_event, 6666 NULL); 6667 } 6668 6669 void perf_event_comm(struct task_struct *task, bool exec) 6670 { 6671 struct perf_comm_event comm_event; 6672 6673 if (!atomic_read(&nr_comm_events)) 6674 return; 6675 6676 comm_event = (struct perf_comm_event){ 6677 .task = task, 6678 /* .comm */ 6679 /* .comm_size */ 6680 .event_id = { 6681 .header = { 6682 .type = PERF_RECORD_COMM, 6683 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6684 /* .size */ 6685 }, 6686 /* .pid */ 6687 /* .tid */ 6688 }, 6689 }; 6690 6691 perf_event_comm_event(&comm_event); 6692 } 6693 6694 /* 6695 * namespaces tracking 6696 */ 6697 6698 struct perf_namespaces_event { 6699 struct task_struct *task; 6700 6701 struct { 6702 struct perf_event_header header; 6703 6704 u32 pid; 6705 u32 tid; 6706 u64 nr_namespaces; 6707 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6708 } event_id; 6709 }; 6710 6711 static int perf_event_namespaces_match(struct perf_event *event) 6712 { 6713 return event->attr.namespaces; 6714 } 6715 6716 static void perf_event_namespaces_output(struct perf_event *event, 6717 void *data) 6718 { 6719 struct perf_namespaces_event *namespaces_event = data; 6720 struct perf_output_handle handle; 6721 struct perf_sample_data sample; 6722 int ret; 6723 6724 if (!perf_event_namespaces_match(event)) 6725 return; 6726 6727 perf_event_header__init_id(&namespaces_event->event_id.header, 6728 &sample, event); 6729 ret = perf_output_begin(&handle, event, 6730 namespaces_event->event_id.header.size); 6731 if (ret) 6732 return; 6733 6734 namespaces_event->event_id.pid = perf_event_pid(event, 6735 namespaces_event->task); 6736 namespaces_event->event_id.tid = perf_event_tid(event, 6737 namespaces_event->task); 6738 6739 perf_output_put(&handle, namespaces_event->event_id); 6740 6741 perf_event__output_id_sample(event, &handle, &sample); 6742 6743 perf_output_end(&handle); 6744 } 6745 6746 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6747 struct task_struct *task, 6748 const struct proc_ns_operations *ns_ops) 6749 { 6750 struct path ns_path; 6751 struct inode *ns_inode; 6752 void *error; 6753 6754 error = ns_get_path(&ns_path, task, ns_ops); 6755 if (!error) { 6756 ns_inode = ns_path.dentry->d_inode; 6757 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6758 ns_link_info->ino = ns_inode->i_ino; 6759 } 6760 } 6761 6762 void perf_event_namespaces(struct task_struct *task) 6763 { 6764 struct perf_namespaces_event namespaces_event; 6765 struct perf_ns_link_info *ns_link_info; 6766 6767 if (!atomic_read(&nr_namespaces_events)) 6768 return; 6769 6770 namespaces_event = (struct perf_namespaces_event){ 6771 .task = task, 6772 .event_id = { 6773 .header = { 6774 .type = PERF_RECORD_NAMESPACES, 6775 .misc = 0, 6776 .size = sizeof(namespaces_event.event_id), 6777 }, 6778 /* .pid */ 6779 /* .tid */ 6780 .nr_namespaces = NR_NAMESPACES, 6781 /* .link_info[NR_NAMESPACES] */ 6782 }, 6783 }; 6784 6785 ns_link_info = namespaces_event.event_id.link_info; 6786 6787 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6788 task, &mntns_operations); 6789 6790 #ifdef CONFIG_USER_NS 6791 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6792 task, &userns_operations); 6793 #endif 6794 #ifdef CONFIG_NET_NS 6795 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6796 task, &netns_operations); 6797 #endif 6798 #ifdef CONFIG_UTS_NS 6799 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6800 task, &utsns_operations); 6801 #endif 6802 #ifdef CONFIG_IPC_NS 6803 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6804 task, &ipcns_operations); 6805 #endif 6806 #ifdef CONFIG_PID_NS 6807 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6808 task, &pidns_operations); 6809 #endif 6810 #ifdef CONFIG_CGROUPS 6811 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6812 task, &cgroupns_operations); 6813 #endif 6814 6815 perf_iterate_sb(perf_event_namespaces_output, 6816 &namespaces_event, 6817 NULL); 6818 } 6819 6820 /* 6821 * mmap tracking 6822 */ 6823 6824 struct perf_mmap_event { 6825 struct vm_area_struct *vma; 6826 6827 const char *file_name; 6828 int file_size; 6829 int maj, min; 6830 u64 ino; 6831 u64 ino_generation; 6832 u32 prot, flags; 6833 6834 struct { 6835 struct perf_event_header header; 6836 6837 u32 pid; 6838 u32 tid; 6839 u64 start; 6840 u64 len; 6841 u64 pgoff; 6842 } event_id; 6843 }; 6844 6845 static int perf_event_mmap_match(struct perf_event *event, 6846 void *data) 6847 { 6848 struct perf_mmap_event *mmap_event = data; 6849 struct vm_area_struct *vma = mmap_event->vma; 6850 int executable = vma->vm_flags & VM_EXEC; 6851 6852 return (!executable && event->attr.mmap_data) || 6853 (executable && (event->attr.mmap || event->attr.mmap2)); 6854 } 6855 6856 static void perf_event_mmap_output(struct perf_event *event, 6857 void *data) 6858 { 6859 struct perf_mmap_event *mmap_event = data; 6860 struct perf_output_handle handle; 6861 struct perf_sample_data sample; 6862 int size = mmap_event->event_id.header.size; 6863 int ret; 6864 6865 if (!perf_event_mmap_match(event, data)) 6866 return; 6867 6868 if (event->attr.mmap2) { 6869 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6870 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6871 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6872 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6873 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6874 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6875 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6876 } 6877 6878 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6879 ret = perf_output_begin(&handle, event, 6880 mmap_event->event_id.header.size); 6881 if (ret) 6882 goto out; 6883 6884 mmap_event->event_id.pid = perf_event_pid(event, current); 6885 mmap_event->event_id.tid = perf_event_tid(event, current); 6886 6887 perf_output_put(&handle, mmap_event->event_id); 6888 6889 if (event->attr.mmap2) { 6890 perf_output_put(&handle, mmap_event->maj); 6891 perf_output_put(&handle, mmap_event->min); 6892 perf_output_put(&handle, mmap_event->ino); 6893 perf_output_put(&handle, mmap_event->ino_generation); 6894 perf_output_put(&handle, mmap_event->prot); 6895 perf_output_put(&handle, mmap_event->flags); 6896 } 6897 6898 __output_copy(&handle, mmap_event->file_name, 6899 mmap_event->file_size); 6900 6901 perf_event__output_id_sample(event, &handle, &sample); 6902 6903 perf_output_end(&handle); 6904 out: 6905 mmap_event->event_id.header.size = size; 6906 } 6907 6908 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6909 { 6910 struct vm_area_struct *vma = mmap_event->vma; 6911 struct file *file = vma->vm_file; 6912 int maj = 0, min = 0; 6913 u64 ino = 0, gen = 0; 6914 u32 prot = 0, flags = 0; 6915 unsigned int size; 6916 char tmp[16]; 6917 char *buf = NULL; 6918 char *name; 6919 6920 if (vma->vm_flags & VM_READ) 6921 prot |= PROT_READ; 6922 if (vma->vm_flags & VM_WRITE) 6923 prot |= PROT_WRITE; 6924 if (vma->vm_flags & VM_EXEC) 6925 prot |= PROT_EXEC; 6926 6927 if (vma->vm_flags & VM_MAYSHARE) 6928 flags = MAP_SHARED; 6929 else 6930 flags = MAP_PRIVATE; 6931 6932 if (vma->vm_flags & VM_DENYWRITE) 6933 flags |= MAP_DENYWRITE; 6934 if (vma->vm_flags & VM_MAYEXEC) 6935 flags |= MAP_EXECUTABLE; 6936 if (vma->vm_flags & VM_LOCKED) 6937 flags |= MAP_LOCKED; 6938 if (vma->vm_flags & VM_HUGETLB) 6939 flags |= MAP_HUGETLB; 6940 6941 if (file) { 6942 struct inode *inode; 6943 dev_t dev; 6944 6945 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6946 if (!buf) { 6947 name = "//enomem"; 6948 goto cpy_name; 6949 } 6950 /* 6951 * d_path() works from the end of the rb backwards, so we 6952 * need to add enough zero bytes after the string to handle 6953 * the 64bit alignment we do later. 6954 */ 6955 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6956 if (IS_ERR(name)) { 6957 name = "//toolong"; 6958 goto cpy_name; 6959 } 6960 inode = file_inode(vma->vm_file); 6961 dev = inode->i_sb->s_dev; 6962 ino = inode->i_ino; 6963 gen = inode->i_generation; 6964 maj = MAJOR(dev); 6965 min = MINOR(dev); 6966 6967 goto got_name; 6968 } else { 6969 if (vma->vm_ops && vma->vm_ops->name) { 6970 name = (char *) vma->vm_ops->name(vma); 6971 if (name) 6972 goto cpy_name; 6973 } 6974 6975 name = (char *)arch_vma_name(vma); 6976 if (name) 6977 goto cpy_name; 6978 6979 if (vma->vm_start <= vma->vm_mm->start_brk && 6980 vma->vm_end >= vma->vm_mm->brk) { 6981 name = "[heap]"; 6982 goto cpy_name; 6983 } 6984 if (vma->vm_start <= vma->vm_mm->start_stack && 6985 vma->vm_end >= vma->vm_mm->start_stack) { 6986 name = "[stack]"; 6987 goto cpy_name; 6988 } 6989 6990 name = "//anon"; 6991 goto cpy_name; 6992 } 6993 6994 cpy_name: 6995 strlcpy(tmp, name, sizeof(tmp)); 6996 name = tmp; 6997 got_name: 6998 /* 6999 * Since our buffer works in 8 byte units we need to align our string 7000 * size to a multiple of 8. However, we must guarantee the tail end is 7001 * zero'd out to avoid leaking random bits to userspace. 7002 */ 7003 size = strlen(name)+1; 7004 while (!IS_ALIGNED(size, sizeof(u64))) 7005 name[size++] = '\0'; 7006 7007 mmap_event->file_name = name; 7008 mmap_event->file_size = size; 7009 mmap_event->maj = maj; 7010 mmap_event->min = min; 7011 mmap_event->ino = ino; 7012 mmap_event->ino_generation = gen; 7013 mmap_event->prot = prot; 7014 mmap_event->flags = flags; 7015 7016 if (!(vma->vm_flags & VM_EXEC)) 7017 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7018 7019 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7020 7021 perf_iterate_sb(perf_event_mmap_output, 7022 mmap_event, 7023 NULL); 7024 7025 kfree(buf); 7026 } 7027 7028 /* 7029 * Check whether inode and address range match filter criteria. 7030 */ 7031 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7032 struct file *file, unsigned long offset, 7033 unsigned long size) 7034 { 7035 if (filter->inode != file_inode(file)) 7036 return false; 7037 7038 if (filter->offset > offset + size) 7039 return false; 7040 7041 if (filter->offset + filter->size < offset) 7042 return false; 7043 7044 return true; 7045 } 7046 7047 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7048 { 7049 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7050 struct vm_area_struct *vma = data; 7051 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7052 struct file *file = vma->vm_file; 7053 struct perf_addr_filter *filter; 7054 unsigned int restart = 0, count = 0; 7055 7056 if (!has_addr_filter(event)) 7057 return; 7058 7059 if (!file) 7060 return; 7061 7062 raw_spin_lock_irqsave(&ifh->lock, flags); 7063 list_for_each_entry(filter, &ifh->list, entry) { 7064 if (perf_addr_filter_match(filter, file, off, 7065 vma->vm_end - vma->vm_start)) { 7066 event->addr_filters_offs[count] = vma->vm_start; 7067 restart++; 7068 } 7069 7070 count++; 7071 } 7072 7073 if (restart) 7074 event->addr_filters_gen++; 7075 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7076 7077 if (restart) 7078 perf_event_stop(event, 1); 7079 } 7080 7081 /* 7082 * Adjust all task's events' filters to the new vma 7083 */ 7084 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7085 { 7086 struct perf_event_context *ctx; 7087 int ctxn; 7088 7089 /* 7090 * Data tracing isn't supported yet and as such there is no need 7091 * to keep track of anything that isn't related to executable code: 7092 */ 7093 if (!(vma->vm_flags & VM_EXEC)) 7094 return; 7095 7096 rcu_read_lock(); 7097 for_each_task_context_nr(ctxn) { 7098 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7099 if (!ctx) 7100 continue; 7101 7102 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7103 } 7104 rcu_read_unlock(); 7105 } 7106 7107 void perf_event_mmap(struct vm_area_struct *vma) 7108 { 7109 struct perf_mmap_event mmap_event; 7110 7111 if (!atomic_read(&nr_mmap_events)) 7112 return; 7113 7114 mmap_event = (struct perf_mmap_event){ 7115 .vma = vma, 7116 /* .file_name */ 7117 /* .file_size */ 7118 .event_id = { 7119 .header = { 7120 .type = PERF_RECORD_MMAP, 7121 .misc = PERF_RECORD_MISC_USER, 7122 /* .size */ 7123 }, 7124 /* .pid */ 7125 /* .tid */ 7126 .start = vma->vm_start, 7127 .len = vma->vm_end - vma->vm_start, 7128 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7129 }, 7130 /* .maj (attr_mmap2 only) */ 7131 /* .min (attr_mmap2 only) */ 7132 /* .ino (attr_mmap2 only) */ 7133 /* .ino_generation (attr_mmap2 only) */ 7134 /* .prot (attr_mmap2 only) */ 7135 /* .flags (attr_mmap2 only) */ 7136 }; 7137 7138 perf_addr_filters_adjust(vma); 7139 perf_event_mmap_event(&mmap_event); 7140 } 7141 7142 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7143 unsigned long size, u64 flags) 7144 { 7145 struct perf_output_handle handle; 7146 struct perf_sample_data sample; 7147 struct perf_aux_event { 7148 struct perf_event_header header; 7149 u64 offset; 7150 u64 size; 7151 u64 flags; 7152 } rec = { 7153 .header = { 7154 .type = PERF_RECORD_AUX, 7155 .misc = 0, 7156 .size = sizeof(rec), 7157 }, 7158 .offset = head, 7159 .size = size, 7160 .flags = flags, 7161 }; 7162 int ret; 7163 7164 perf_event_header__init_id(&rec.header, &sample, event); 7165 ret = perf_output_begin(&handle, event, rec.header.size); 7166 7167 if (ret) 7168 return; 7169 7170 perf_output_put(&handle, rec); 7171 perf_event__output_id_sample(event, &handle, &sample); 7172 7173 perf_output_end(&handle); 7174 } 7175 7176 /* 7177 * Lost/dropped samples logging 7178 */ 7179 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7180 { 7181 struct perf_output_handle handle; 7182 struct perf_sample_data sample; 7183 int ret; 7184 7185 struct { 7186 struct perf_event_header header; 7187 u64 lost; 7188 } lost_samples_event = { 7189 .header = { 7190 .type = PERF_RECORD_LOST_SAMPLES, 7191 .misc = 0, 7192 .size = sizeof(lost_samples_event), 7193 }, 7194 .lost = lost, 7195 }; 7196 7197 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7198 7199 ret = perf_output_begin(&handle, event, 7200 lost_samples_event.header.size); 7201 if (ret) 7202 return; 7203 7204 perf_output_put(&handle, lost_samples_event); 7205 perf_event__output_id_sample(event, &handle, &sample); 7206 perf_output_end(&handle); 7207 } 7208 7209 /* 7210 * context_switch tracking 7211 */ 7212 7213 struct perf_switch_event { 7214 struct task_struct *task; 7215 struct task_struct *next_prev; 7216 7217 struct { 7218 struct perf_event_header header; 7219 u32 next_prev_pid; 7220 u32 next_prev_tid; 7221 } event_id; 7222 }; 7223 7224 static int perf_event_switch_match(struct perf_event *event) 7225 { 7226 return event->attr.context_switch; 7227 } 7228 7229 static void perf_event_switch_output(struct perf_event *event, void *data) 7230 { 7231 struct perf_switch_event *se = data; 7232 struct perf_output_handle handle; 7233 struct perf_sample_data sample; 7234 int ret; 7235 7236 if (!perf_event_switch_match(event)) 7237 return; 7238 7239 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7240 if (event->ctx->task) { 7241 se->event_id.header.type = PERF_RECORD_SWITCH; 7242 se->event_id.header.size = sizeof(se->event_id.header); 7243 } else { 7244 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7245 se->event_id.header.size = sizeof(se->event_id); 7246 se->event_id.next_prev_pid = 7247 perf_event_pid(event, se->next_prev); 7248 se->event_id.next_prev_tid = 7249 perf_event_tid(event, se->next_prev); 7250 } 7251 7252 perf_event_header__init_id(&se->event_id.header, &sample, event); 7253 7254 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7255 if (ret) 7256 return; 7257 7258 if (event->ctx->task) 7259 perf_output_put(&handle, se->event_id.header); 7260 else 7261 perf_output_put(&handle, se->event_id); 7262 7263 perf_event__output_id_sample(event, &handle, &sample); 7264 7265 perf_output_end(&handle); 7266 } 7267 7268 static void perf_event_switch(struct task_struct *task, 7269 struct task_struct *next_prev, bool sched_in) 7270 { 7271 struct perf_switch_event switch_event; 7272 7273 /* N.B. caller checks nr_switch_events != 0 */ 7274 7275 switch_event = (struct perf_switch_event){ 7276 .task = task, 7277 .next_prev = next_prev, 7278 .event_id = { 7279 .header = { 7280 /* .type */ 7281 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7282 /* .size */ 7283 }, 7284 /* .next_prev_pid */ 7285 /* .next_prev_tid */ 7286 }, 7287 }; 7288 7289 perf_iterate_sb(perf_event_switch_output, 7290 &switch_event, 7291 NULL); 7292 } 7293 7294 /* 7295 * IRQ throttle logging 7296 */ 7297 7298 static void perf_log_throttle(struct perf_event *event, int enable) 7299 { 7300 struct perf_output_handle handle; 7301 struct perf_sample_data sample; 7302 int ret; 7303 7304 struct { 7305 struct perf_event_header header; 7306 u64 time; 7307 u64 id; 7308 u64 stream_id; 7309 } throttle_event = { 7310 .header = { 7311 .type = PERF_RECORD_THROTTLE, 7312 .misc = 0, 7313 .size = sizeof(throttle_event), 7314 }, 7315 .time = perf_event_clock(event), 7316 .id = primary_event_id(event), 7317 .stream_id = event->id, 7318 }; 7319 7320 if (enable) 7321 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7322 7323 perf_event_header__init_id(&throttle_event.header, &sample, event); 7324 7325 ret = perf_output_begin(&handle, event, 7326 throttle_event.header.size); 7327 if (ret) 7328 return; 7329 7330 perf_output_put(&handle, throttle_event); 7331 perf_event__output_id_sample(event, &handle, &sample); 7332 perf_output_end(&handle); 7333 } 7334 7335 void perf_event_itrace_started(struct perf_event *event) 7336 { 7337 event->attach_state |= PERF_ATTACH_ITRACE; 7338 } 7339 7340 static void perf_log_itrace_start(struct perf_event *event) 7341 { 7342 struct perf_output_handle handle; 7343 struct perf_sample_data sample; 7344 struct perf_aux_event { 7345 struct perf_event_header header; 7346 u32 pid; 7347 u32 tid; 7348 } rec; 7349 int ret; 7350 7351 if (event->parent) 7352 event = event->parent; 7353 7354 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7355 event->attach_state & PERF_ATTACH_ITRACE) 7356 return; 7357 7358 rec.header.type = PERF_RECORD_ITRACE_START; 7359 rec.header.misc = 0; 7360 rec.header.size = sizeof(rec); 7361 rec.pid = perf_event_pid(event, current); 7362 rec.tid = perf_event_tid(event, current); 7363 7364 perf_event_header__init_id(&rec.header, &sample, event); 7365 ret = perf_output_begin(&handle, event, rec.header.size); 7366 7367 if (ret) 7368 return; 7369 7370 perf_output_put(&handle, rec); 7371 perf_event__output_id_sample(event, &handle, &sample); 7372 7373 perf_output_end(&handle); 7374 } 7375 7376 static int 7377 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7378 { 7379 struct hw_perf_event *hwc = &event->hw; 7380 int ret = 0; 7381 u64 seq; 7382 7383 seq = __this_cpu_read(perf_throttled_seq); 7384 if (seq != hwc->interrupts_seq) { 7385 hwc->interrupts_seq = seq; 7386 hwc->interrupts = 1; 7387 } else { 7388 hwc->interrupts++; 7389 if (unlikely(throttle 7390 && hwc->interrupts >= max_samples_per_tick)) { 7391 __this_cpu_inc(perf_throttled_count); 7392 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7393 hwc->interrupts = MAX_INTERRUPTS; 7394 perf_log_throttle(event, 0); 7395 ret = 1; 7396 } 7397 } 7398 7399 if (event->attr.freq) { 7400 u64 now = perf_clock(); 7401 s64 delta = now - hwc->freq_time_stamp; 7402 7403 hwc->freq_time_stamp = now; 7404 7405 if (delta > 0 && delta < 2*TICK_NSEC) 7406 perf_adjust_period(event, delta, hwc->last_period, true); 7407 } 7408 7409 return ret; 7410 } 7411 7412 int perf_event_account_interrupt(struct perf_event *event) 7413 { 7414 return __perf_event_account_interrupt(event, 1); 7415 } 7416 7417 /* 7418 * Generic event overflow handling, sampling. 7419 */ 7420 7421 static int __perf_event_overflow(struct perf_event *event, 7422 int throttle, struct perf_sample_data *data, 7423 struct pt_regs *regs) 7424 { 7425 int events = atomic_read(&event->event_limit); 7426 int ret = 0; 7427 7428 /* 7429 * Non-sampling counters might still use the PMI to fold short 7430 * hardware counters, ignore those. 7431 */ 7432 if (unlikely(!is_sampling_event(event))) 7433 return 0; 7434 7435 ret = __perf_event_account_interrupt(event, throttle); 7436 7437 /* 7438 * XXX event_limit might not quite work as expected on inherited 7439 * events 7440 */ 7441 7442 event->pending_kill = POLL_IN; 7443 if (events && atomic_dec_and_test(&event->event_limit)) { 7444 ret = 1; 7445 event->pending_kill = POLL_HUP; 7446 7447 perf_event_disable_inatomic(event); 7448 } 7449 7450 READ_ONCE(event->overflow_handler)(event, data, regs); 7451 7452 if (*perf_event_fasync(event) && event->pending_kill) { 7453 event->pending_wakeup = 1; 7454 irq_work_queue(&event->pending); 7455 } 7456 7457 return ret; 7458 } 7459 7460 int perf_event_overflow(struct perf_event *event, 7461 struct perf_sample_data *data, 7462 struct pt_regs *regs) 7463 { 7464 return __perf_event_overflow(event, 1, data, regs); 7465 } 7466 7467 /* 7468 * Generic software event infrastructure 7469 */ 7470 7471 struct swevent_htable { 7472 struct swevent_hlist *swevent_hlist; 7473 struct mutex hlist_mutex; 7474 int hlist_refcount; 7475 7476 /* Recursion avoidance in each contexts */ 7477 int recursion[PERF_NR_CONTEXTS]; 7478 }; 7479 7480 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7481 7482 /* 7483 * We directly increment event->count and keep a second value in 7484 * event->hw.period_left to count intervals. This period event 7485 * is kept in the range [-sample_period, 0] so that we can use the 7486 * sign as trigger. 7487 */ 7488 7489 u64 perf_swevent_set_period(struct perf_event *event) 7490 { 7491 struct hw_perf_event *hwc = &event->hw; 7492 u64 period = hwc->last_period; 7493 u64 nr, offset; 7494 s64 old, val; 7495 7496 hwc->last_period = hwc->sample_period; 7497 7498 again: 7499 old = val = local64_read(&hwc->period_left); 7500 if (val < 0) 7501 return 0; 7502 7503 nr = div64_u64(period + val, period); 7504 offset = nr * period; 7505 val -= offset; 7506 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7507 goto again; 7508 7509 return nr; 7510 } 7511 7512 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7513 struct perf_sample_data *data, 7514 struct pt_regs *regs) 7515 { 7516 struct hw_perf_event *hwc = &event->hw; 7517 int throttle = 0; 7518 7519 if (!overflow) 7520 overflow = perf_swevent_set_period(event); 7521 7522 if (hwc->interrupts == MAX_INTERRUPTS) 7523 return; 7524 7525 for (; overflow; overflow--) { 7526 if (__perf_event_overflow(event, throttle, 7527 data, regs)) { 7528 /* 7529 * We inhibit the overflow from happening when 7530 * hwc->interrupts == MAX_INTERRUPTS. 7531 */ 7532 break; 7533 } 7534 throttle = 1; 7535 } 7536 } 7537 7538 static void perf_swevent_event(struct perf_event *event, u64 nr, 7539 struct perf_sample_data *data, 7540 struct pt_regs *regs) 7541 { 7542 struct hw_perf_event *hwc = &event->hw; 7543 7544 local64_add(nr, &event->count); 7545 7546 if (!regs) 7547 return; 7548 7549 if (!is_sampling_event(event)) 7550 return; 7551 7552 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7553 data->period = nr; 7554 return perf_swevent_overflow(event, 1, data, regs); 7555 } else 7556 data->period = event->hw.last_period; 7557 7558 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7559 return perf_swevent_overflow(event, 1, data, regs); 7560 7561 if (local64_add_negative(nr, &hwc->period_left)) 7562 return; 7563 7564 perf_swevent_overflow(event, 0, data, regs); 7565 } 7566 7567 static int perf_exclude_event(struct perf_event *event, 7568 struct pt_regs *regs) 7569 { 7570 if (event->hw.state & PERF_HES_STOPPED) 7571 return 1; 7572 7573 if (regs) { 7574 if (event->attr.exclude_user && user_mode(regs)) 7575 return 1; 7576 7577 if (event->attr.exclude_kernel && !user_mode(regs)) 7578 return 1; 7579 } 7580 7581 return 0; 7582 } 7583 7584 static int perf_swevent_match(struct perf_event *event, 7585 enum perf_type_id type, 7586 u32 event_id, 7587 struct perf_sample_data *data, 7588 struct pt_regs *regs) 7589 { 7590 if (event->attr.type != type) 7591 return 0; 7592 7593 if (event->attr.config != event_id) 7594 return 0; 7595 7596 if (perf_exclude_event(event, regs)) 7597 return 0; 7598 7599 return 1; 7600 } 7601 7602 static inline u64 swevent_hash(u64 type, u32 event_id) 7603 { 7604 u64 val = event_id | (type << 32); 7605 7606 return hash_64(val, SWEVENT_HLIST_BITS); 7607 } 7608 7609 static inline struct hlist_head * 7610 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7611 { 7612 u64 hash = swevent_hash(type, event_id); 7613 7614 return &hlist->heads[hash]; 7615 } 7616 7617 /* For the read side: events when they trigger */ 7618 static inline struct hlist_head * 7619 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7620 { 7621 struct swevent_hlist *hlist; 7622 7623 hlist = rcu_dereference(swhash->swevent_hlist); 7624 if (!hlist) 7625 return NULL; 7626 7627 return __find_swevent_head(hlist, type, event_id); 7628 } 7629 7630 /* For the event head insertion and removal in the hlist */ 7631 static inline struct hlist_head * 7632 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7633 { 7634 struct swevent_hlist *hlist; 7635 u32 event_id = event->attr.config; 7636 u64 type = event->attr.type; 7637 7638 /* 7639 * Event scheduling is always serialized against hlist allocation 7640 * and release. Which makes the protected version suitable here. 7641 * The context lock guarantees that. 7642 */ 7643 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7644 lockdep_is_held(&event->ctx->lock)); 7645 if (!hlist) 7646 return NULL; 7647 7648 return __find_swevent_head(hlist, type, event_id); 7649 } 7650 7651 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7652 u64 nr, 7653 struct perf_sample_data *data, 7654 struct pt_regs *regs) 7655 { 7656 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7657 struct perf_event *event; 7658 struct hlist_head *head; 7659 7660 rcu_read_lock(); 7661 head = find_swevent_head_rcu(swhash, type, event_id); 7662 if (!head) 7663 goto end; 7664 7665 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7666 if (perf_swevent_match(event, type, event_id, data, regs)) 7667 perf_swevent_event(event, nr, data, regs); 7668 } 7669 end: 7670 rcu_read_unlock(); 7671 } 7672 7673 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7674 7675 int perf_swevent_get_recursion_context(void) 7676 { 7677 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7678 7679 return get_recursion_context(swhash->recursion); 7680 } 7681 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7682 7683 void perf_swevent_put_recursion_context(int rctx) 7684 { 7685 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7686 7687 put_recursion_context(swhash->recursion, rctx); 7688 } 7689 7690 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7691 { 7692 struct perf_sample_data data; 7693 7694 if (WARN_ON_ONCE(!regs)) 7695 return; 7696 7697 perf_sample_data_init(&data, addr, 0); 7698 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7699 } 7700 7701 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7702 { 7703 int rctx; 7704 7705 preempt_disable_notrace(); 7706 rctx = perf_swevent_get_recursion_context(); 7707 if (unlikely(rctx < 0)) 7708 goto fail; 7709 7710 ___perf_sw_event(event_id, nr, regs, addr); 7711 7712 perf_swevent_put_recursion_context(rctx); 7713 fail: 7714 preempt_enable_notrace(); 7715 } 7716 7717 static void perf_swevent_read(struct perf_event *event) 7718 { 7719 } 7720 7721 static int perf_swevent_add(struct perf_event *event, int flags) 7722 { 7723 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7724 struct hw_perf_event *hwc = &event->hw; 7725 struct hlist_head *head; 7726 7727 if (is_sampling_event(event)) { 7728 hwc->last_period = hwc->sample_period; 7729 perf_swevent_set_period(event); 7730 } 7731 7732 hwc->state = !(flags & PERF_EF_START); 7733 7734 head = find_swevent_head(swhash, event); 7735 if (WARN_ON_ONCE(!head)) 7736 return -EINVAL; 7737 7738 hlist_add_head_rcu(&event->hlist_entry, head); 7739 perf_event_update_userpage(event); 7740 7741 return 0; 7742 } 7743 7744 static void perf_swevent_del(struct perf_event *event, int flags) 7745 { 7746 hlist_del_rcu(&event->hlist_entry); 7747 } 7748 7749 static void perf_swevent_start(struct perf_event *event, int flags) 7750 { 7751 event->hw.state = 0; 7752 } 7753 7754 static void perf_swevent_stop(struct perf_event *event, int flags) 7755 { 7756 event->hw.state = PERF_HES_STOPPED; 7757 } 7758 7759 /* Deref the hlist from the update side */ 7760 static inline struct swevent_hlist * 7761 swevent_hlist_deref(struct swevent_htable *swhash) 7762 { 7763 return rcu_dereference_protected(swhash->swevent_hlist, 7764 lockdep_is_held(&swhash->hlist_mutex)); 7765 } 7766 7767 static void swevent_hlist_release(struct swevent_htable *swhash) 7768 { 7769 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7770 7771 if (!hlist) 7772 return; 7773 7774 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7775 kfree_rcu(hlist, rcu_head); 7776 } 7777 7778 static void swevent_hlist_put_cpu(int cpu) 7779 { 7780 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7781 7782 mutex_lock(&swhash->hlist_mutex); 7783 7784 if (!--swhash->hlist_refcount) 7785 swevent_hlist_release(swhash); 7786 7787 mutex_unlock(&swhash->hlist_mutex); 7788 } 7789 7790 static void swevent_hlist_put(void) 7791 { 7792 int cpu; 7793 7794 for_each_possible_cpu(cpu) 7795 swevent_hlist_put_cpu(cpu); 7796 } 7797 7798 static int swevent_hlist_get_cpu(int cpu) 7799 { 7800 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7801 int err = 0; 7802 7803 mutex_lock(&swhash->hlist_mutex); 7804 if (!swevent_hlist_deref(swhash) && 7805 cpumask_test_cpu(cpu, perf_online_mask)) { 7806 struct swevent_hlist *hlist; 7807 7808 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7809 if (!hlist) { 7810 err = -ENOMEM; 7811 goto exit; 7812 } 7813 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7814 } 7815 swhash->hlist_refcount++; 7816 exit: 7817 mutex_unlock(&swhash->hlist_mutex); 7818 7819 return err; 7820 } 7821 7822 static int swevent_hlist_get(void) 7823 { 7824 int err, cpu, failed_cpu; 7825 7826 mutex_lock(&pmus_lock); 7827 for_each_possible_cpu(cpu) { 7828 err = swevent_hlist_get_cpu(cpu); 7829 if (err) { 7830 failed_cpu = cpu; 7831 goto fail; 7832 } 7833 } 7834 mutex_unlock(&pmus_lock); 7835 return 0; 7836 fail: 7837 for_each_possible_cpu(cpu) { 7838 if (cpu == failed_cpu) 7839 break; 7840 swevent_hlist_put_cpu(cpu); 7841 } 7842 mutex_unlock(&pmus_lock); 7843 return err; 7844 } 7845 7846 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7847 7848 static void sw_perf_event_destroy(struct perf_event *event) 7849 { 7850 u64 event_id = event->attr.config; 7851 7852 WARN_ON(event->parent); 7853 7854 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7855 swevent_hlist_put(); 7856 } 7857 7858 static int perf_swevent_init(struct perf_event *event) 7859 { 7860 u64 event_id = event->attr.config; 7861 7862 if (event->attr.type != PERF_TYPE_SOFTWARE) 7863 return -ENOENT; 7864 7865 /* 7866 * no branch sampling for software events 7867 */ 7868 if (has_branch_stack(event)) 7869 return -EOPNOTSUPP; 7870 7871 switch (event_id) { 7872 case PERF_COUNT_SW_CPU_CLOCK: 7873 case PERF_COUNT_SW_TASK_CLOCK: 7874 return -ENOENT; 7875 7876 default: 7877 break; 7878 } 7879 7880 if (event_id >= PERF_COUNT_SW_MAX) 7881 return -ENOENT; 7882 7883 if (!event->parent) { 7884 int err; 7885 7886 err = swevent_hlist_get(); 7887 if (err) 7888 return err; 7889 7890 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7891 event->destroy = sw_perf_event_destroy; 7892 } 7893 7894 return 0; 7895 } 7896 7897 static struct pmu perf_swevent = { 7898 .task_ctx_nr = perf_sw_context, 7899 7900 .capabilities = PERF_PMU_CAP_NO_NMI, 7901 7902 .event_init = perf_swevent_init, 7903 .add = perf_swevent_add, 7904 .del = perf_swevent_del, 7905 .start = perf_swevent_start, 7906 .stop = perf_swevent_stop, 7907 .read = perf_swevent_read, 7908 }; 7909 7910 #ifdef CONFIG_EVENT_TRACING 7911 7912 static int perf_tp_filter_match(struct perf_event *event, 7913 struct perf_sample_data *data) 7914 { 7915 void *record = data->raw->frag.data; 7916 7917 /* only top level events have filters set */ 7918 if (event->parent) 7919 event = event->parent; 7920 7921 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7922 return 1; 7923 return 0; 7924 } 7925 7926 static int perf_tp_event_match(struct perf_event *event, 7927 struct perf_sample_data *data, 7928 struct pt_regs *regs) 7929 { 7930 if (event->hw.state & PERF_HES_STOPPED) 7931 return 0; 7932 /* 7933 * All tracepoints are from kernel-space. 7934 */ 7935 if (event->attr.exclude_kernel) 7936 return 0; 7937 7938 if (!perf_tp_filter_match(event, data)) 7939 return 0; 7940 7941 return 1; 7942 } 7943 7944 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7945 struct trace_event_call *call, u64 count, 7946 struct pt_regs *regs, struct hlist_head *head, 7947 struct task_struct *task) 7948 { 7949 struct bpf_prog *prog = call->prog; 7950 7951 if (prog) { 7952 *(struct pt_regs **)raw_data = regs; 7953 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7954 perf_swevent_put_recursion_context(rctx); 7955 return; 7956 } 7957 } 7958 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7959 rctx, task, NULL); 7960 } 7961 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7962 7963 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7964 struct pt_regs *regs, struct hlist_head *head, int rctx, 7965 struct task_struct *task, struct perf_event *event) 7966 { 7967 struct perf_sample_data data; 7968 7969 struct perf_raw_record raw = { 7970 .frag = { 7971 .size = entry_size, 7972 .data = record, 7973 }, 7974 }; 7975 7976 perf_sample_data_init(&data, 0, 0); 7977 data.raw = &raw; 7978 7979 perf_trace_buf_update(record, event_type); 7980 7981 /* Use the given event instead of the hlist */ 7982 if (event) { 7983 if (perf_tp_event_match(event, &data, regs)) 7984 perf_swevent_event(event, count, &data, regs); 7985 } else { 7986 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7987 if (perf_tp_event_match(event, &data, regs)) 7988 perf_swevent_event(event, count, &data, regs); 7989 } 7990 } 7991 7992 /* 7993 * If we got specified a target task, also iterate its context and 7994 * deliver this event there too. 7995 */ 7996 if (task && task != current) { 7997 struct perf_event_context *ctx; 7998 struct trace_entry *entry = record; 7999 8000 rcu_read_lock(); 8001 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8002 if (!ctx) 8003 goto unlock; 8004 8005 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8006 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8007 continue; 8008 if (event->attr.config != entry->type) 8009 continue; 8010 if (perf_tp_event_match(event, &data, regs)) 8011 perf_swevent_event(event, count, &data, regs); 8012 } 8013 unlock: 8014 rcu_read_unlock(); 8015 } 8016 8017 perf_swevent_put_recursion_context(rctx); 8018 } 8019 EXPORT_SYMBOL_GPL(perf_tp_event); 8020 8021 static void tp_perf_event_destroy(struct perf_event *event) 8022 { 8023 perf_trace_destroy(event); 8024 } 8025 8026 static int perf_tp_event_init(struct perf_event *event) 8027 { 8028 int err; 8029 8030 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8031 return -ENOENT; 8032 8033 /* 8034 * no branch sampling for tracepoint events 8035 */ 8036 if (has_branch_stack(event)) 8037 return -EOPNOTSUPP; 8038 8039 err = perf_trace_init(event); 8040 if (err) 8041 return err; 8042 8043 event->destroy = tp_perf_event_destroy; 8044 8045 return 0; 8046 } 8047 8048 static struct pmu perf_tracepoint = { 8049 .task_ctx_nr = perf_sw_context, 8050 8051 .event_init = perf_tp_event_init, 8052 .add = perf_trace_add, 8053 .del = perf_trace_del, 8054 .start = perf_swevent_start, 8055 .stop = perf_swevent_stop, 8056 .read = perf_swevent_read, 8057 }; 8058 8059 static inline void perf_tp_register(void) 8060 { 8061 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8062 } 8063 8064 static void perf_event_free_filter(struct perf_event *event) 8065 { 8066 ftrace_profile_free_filter(event); 8067 } 8068 8069 #ifdef CONFIG_BPF_SYSCALL 8070 static void bpf_overflow_handler(struct perf_event *event, 8071 struct perf_sample_data *data, 8072 struct pt_regs *regs) 8073 { 8074 struct bpf_perf_event_data_kern ctx = { 8075 .data = data, 8076 .regs = regs, 8077 }; 8078 int ret = 0; 8079 8080 preempt_disable(); 8081 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8082 goto out; 8083 rcu_read_lock(); 8084 ret = BPF_PROG_RUN(event->prog, &ctx); 8085 rcu_read_unlock(); 8086 out: 8087 __this_cpu_dec(bpf_prog_active); 8088 preempt_enable(); 8089 if (!ret) 8090 return; 8091 8092 event->orig_overflow_handler(event, data, regs); 8093 } 8094 8095 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8096 { 8097 struct bpf_prog *prog; 8098 8099 if (event->overflow_handler_context) 8100 /* hw breakpoint or kernel counter */ 8101 return -EINVAL; 8102 8103 if (event->prog) 8104 return -EEXIST; 8105 8106 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8107 if (IS_ERR(prog)) 8108 return PTR_ERR(prog); 8109 8110 event->prog = prog; 8111 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8112 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8113 return 0; 8114 } 8115 8116 static void perf_event_free_bpf_handler(struct perf_event *event) 8117 { 8118 struct bpf_prog *prog = event->prog; 8119 8120 if (!prog) 8121 return; 8122 8123 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8124 event->prog = NULL; 8125 bpf_prog_put(prog); 8126 } 8127 #else 8128 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8129 { 8130 return -EOPNOTSUPP; 8131 } 8132 static void perf_event_free_bpf_handler(struct perf_event *event) 8133 { 8134 } 8135 #endif 8136 8137 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8138 { 8139 bool is_kprobe, is_tracepoint, is_syscall_tp; 8140 struct bpf_prog *prog; 8141 8142 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8143 return perf_event_set_bpf_handler(event, prog_fd); 8144 8145 if (event->tp_event->prog) 8146 return -EEXIST; 8147 8148 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8149 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8150 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8151 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8152 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8153 return -EINVAL; 8154 8155 prog = bpf_prog_get(prog_fd); 8156 if (IS_ERR(prog)) 8157 return PTR_ERR(prog); 8158 8159 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8160 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8161 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8162 /* valid fd, but invalid bpf program type */ 8163 bpf_prog_put(prog); 8164 return -EINVAL; 8165 } 8166 8167 if (is_tracepoint || is_syscall_tp) { 8168 int off = trace_event_get_offsets(event->tp_event); 8169 8170 if (prog->aux->max_ctx_offset > off) { 8171 bpf_prog_put(prog); 8172 return -EACCES; 8173 } 8174 } 8175 event->tp_event->prog = prog; 8176 event->tp_event->bpf_prog_owner = event; 8177 8178 return 0; 8179 } 8180 8181 static void perf_event_free_bpf_prog(struct perf_event *event) 8182 { 8183 struct bpf_prog *prog; 8184 8185 perf_event_free_bpf_handler(event); 8186 8187 if (!event->tp_event) 8188 return; 8189 8190 prog = event->tp_event->prog; 8191 if (prog && event->tp_event->bpf_prog_owner == event) { 8192 event->tp_event->prog = NULL; 8193 bpf_prog_put(prog); 8194 } 8195 } 8196 8197 #else 8198 8199 static inline void perf_tp_register(void) 8200 { 8201 } 8202 8203 static void perf_event_free_filter(struct perf_event *event) 8204 { 8205 } 8206 8207 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8208 { 8209 return -ENOENT; 8210 } 8211 8212 static void perf_event_free_bpf_prog(struct perf_event *event) 8213 { 8214 } 8215 #endif /* CONFIG_EVENT_TRACING */ 8216 8217 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8218 void perf_bp_event(struct perf_event *bp, void *data) 8219 { 8220 struct perf_sample_data sample; 8221 struct pt_regs *regs = data; 8222 8223 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8224 8225 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8226 perf_swevent_event(bp, 1, &sample, regs); 8227 } 8228 #endif 8229 8230 /* 8231 * Allocate a new address filter 8232 */ 8233 static struct perf_addr_filter * 8234 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8235 { 8236 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8237 struct perf_addr_filter *filter; 8238 8239 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8240 if (!filter) 8241 return NULL; 8242 8243 INIT_LIST_HEAD(&filter->entry); 8244 list_add_tail(&filter->entry, filters); 8245 8246 return filter; 8247 } 8248 8249 static void free_filters_list(struct list_head *filters) 8250 { 8251 struct perf_addr_filter *filter, *iter; 8252 8253 list_for_each_entry_safe(filter, iter, filters, entry) { 8254 if (filter->inode) 8255 iput(filter->inode); 8256 list_del(&filter->entry); 8257 kfree(filter); 8258 } 8259 } 8260 8261 /* 8262 * Free existing address filters and optionally install new ones 8263 */ 8264 static void perf_addr_filters_splice(struct perf_event *event, 8265 struct list_head *head) 8266 { 8267 unsigned long flags; 8268 LIST_HEAD(list); 8269 8270 if (!has_addr_filter(event)) 8271 return; 8272 8273 /* don't bother with children, they don't have their own filters */ 8274 if (event->parent) 8275 return; 8276 8277 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8278 8279 list_splice_init(&event->addr_filters.list, &list); 8280 if (head) 8281 list_splice(head, &event->addr_filters.list); 8282 8283 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8284 8285 free_filters_list(&list); 8286 } 8287 8288 /* 8289 * Scan through mm's vmas and see if one of them matches the 8290 * @filter; if so, adjust filter's address range. 8291 * Called with mm::mmap_sem down for reading. 8292 */ 8293 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8294 struct mm_struct *mm) 8295 { 8296 struct vm_area_struct *vma; 8297 8298 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8299 struct file *file = vma->vm_file; 8300 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8301 unsigned long vma_size = vma->vm_end - vma->vm_start; 8302 8303 if (!file) 8304 continue; 8305 8306 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8307 continue; 8308 8309 return vma->vm_start; 8310 } 8311 8312 return 0; 8313 } 8314 8315 /* 8316 * Update event's address range filters based on the 8317 * task's existing mappings, if any. 8318 */ 8319 static void perf_event_addr_filters_apply(struct perf_event *event) 8320 { 8321 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8322 struct task_struct *task = READ_ONCE(event->ctx->task); 8323 struct perf_addr_filter *filter; 8324 struct mm_struct *mm = NULL; 8325 unsigned int count = 0; 8326 unsigned long flags; 8327 8328 /* 8329 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8330 * will stop on the parent's child_mutex that our caller is also holding 8331 */ 8332 if (task == TASK_TOMBSTONE) 8333 return; 8334 8335 if (!ifh->nr_file_filters) 8336 return; 8337 8338 mm = get_task_mm(event->ctx->task); 8339 if (!mm) 8340 goto restart; 8341 8342 down_read(&mm->mmap_sem); 8343 8344 raw_spin_lock_irqsave(&ifh->lock, flags); 8345 list_for_each_entry(filter, &ifh->list, entry) { 8346 event->addr_filters_offs[count] = 0; 8347 8348 /* 8349 * Adjust base offset if the filter is associated to a binary 8350 * that needs to be mapped: 8351 */ 8352 if (filter->inode) 8353 event->addr_filters_offs[count] = 8354 perf_addr_filter_apply(filter, mm); 8355 8356 count++; 8357 } 8358 8359 event->addr_filters_gen++; 8360 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8361 8362 up_read(&mm->mmap_sem); 8363 8364 mmput(mm); 8365 8366 restart: 8367 perf_event_stop(event, 1); 8368 } 8369 8370 /* 8371 * Address range filtering: limiting the data to certain 8372 * instruction address ranges. Filters are ioctl()ed to us from 8373 * userspace as ascii strings. 8374 * 8375 * Filter string format: 8376 * 8377 * ACTION RANGE_SPEC 8378 * where ACTION is one of the 8379 * * "filter": limit the trace to this region 8380 * * "start": start tracing from this address 8381 * * "stop": stop tracing at this address/region; 8382 * RANGE_SPEC is 8383 * * for kernel addresses: <start address>[/<size>] 8384 * * for object files: <start address>[/<size>]@</path/to/object/file> 8385 * 8386 * if <size> is not specified, the range is treated as a single address. 8387 */ 8388 enum { 8389 IF_ACT_NONE = -1, 8390 IF_ACT_FILTER, 8391 IF_ACT_START, 8392 IF_ACT_STOP, 8393 IF_SRC_FILE, 8394 IF_SRC_KERNEL, 8395 IF_SRC_FILEADDR, 8396 IF_SRC_KERNELADDR, 8397 }; 8398 8399 enum { 8400 IF_STATE_ACTION = 0, 8401 IF_STATE_SOURCE, 8402 IF_STATE_END, 8403 }; 8404 8405 static const match_table_t if_tokens = { 8406 { IF_ACT_FILTER, "filter" }, 8407 { IF_ACT_START, "start" }, 8408 { IF_ACT_STOP, "stop" }, 8409 { IF_SRC_FILE, "%u/%u@%s" }, 8410 { IF_SRC_KERNEL, "%u/%u" }, 8411 { IF_SRC_FILEADDR, "%u@%s" }, 8412 { IF_SRC_KERNELADDR, "%u" }, 8413 { IF_ACT_NONE, NULL }, 8414 }; 8415 8416 /* 8417 * Address filter string parser 8418 */ 8419 static int 8420 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8421 struct list_head *filters) 8422 { 8423 struct perf_addr_filter *filter = NULL; 8424 char *start, *orig, *filename = NULL; 8425 struct path path; 8426 substring_t args[MAX_OPT_ARGS]; 8427 int state = IF_STATE_ACTION, token; 8428 unsigned int kernel = 0; 8429 int ret = -EINVAL; 8430 8431 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8432 if (!fstr) 8433 return -ENOMEM; 8434 8435 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8436 ret = -EINVAL; 8437 8438 if (!*start) 8439 continue; 8440 8441 /* filter definition begins */ 8442 if (state == IF_STATE_ACTION) { 8443 filter = perf_addr_filter_new(event, filters); 8444 if (!filter) 8445 goto fail; 8446 } 8447 8448 token = match_token(start, if_tokens, args); 8449 switch (token) { 8450 case IF_ACT_FILTER: 8451 case IF_ACT_START: 8452 filter->filter = 1; 8453 8454 case IF_ACT_STOP: 8455 if (state != IF_STATE_ACTION) 8456 goto fail; 8457 8458 state = IF_STATE_SOURCE; 8459 break; 8460 8461 case IF_SRC_KERNELADDR: 8462 case IF_SRC_KERNEL: 8463 kernel = 1; 8464 8465 case IF_SRC_FILEADDR: 8466 case IF_SRC_FILE: 8467 if (state != IF_STATE_SOURCE) 8468 goto fail; 8469 8470 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8471 filter->range = 1; 8472 8473 *args[0].to = 0; 8474 ret = kstrtoul(args[0].from, 0, &filter->offset); 8475 if (ret) 8476 goto fail; 8477 8478 if (filter->range) { 8479 *args[1].to = 0; 8480 ret = kstrtoul(args[1].from, 0, &filter->size); 8481 if (ret) 8482 goto fail; 8483 } 8484 8485 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8486 int fpos = filter->range ? 2 : 1; 8487 8488 filename = match_strdup(&args[fpos]); 8489 if (!filename) { 8490 ret = -ENOMEM; 8491 goto fail; 8492 } 8493 } 8494 8495 state = IF_STATE_END; 8496 break; 8497 8498 default: 8499 goto fail; 8500 } 8501 8502 /* 8503 * Filter definition is fully parsed, validate and install it. 8504 * Make sure that it doesn't contradict itself or the event's 8505 * attribute. 8506 */ 8507 if (state == IF_STATE_END) { 8508 ret = -EINVAL; 8509 if (kernel && event->attr.exclude_kernel) 8510 goto fail; 8511 8512 if (!kernel) { 8513 if (!filename) 8514 goto fail; 8515 8516 /* 8517 * For now, we only support file-based filters 8518 * in per-task events; doing so for CPU-wide 8519 * events requires additional context switching 8520 * trickery, since same object code will be 8521 * mapped at different virtual addresses in 8522 * different processes. 8523 */ 8524 ret = -EOPNOTSUPP; 8525 if (!event->ctx->task) 8526 goto fail_free_name; 8527 8528 /* look up the path and grab its inode */ 8529 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8530 if (ret) 8531 goto fail_free_name; 8532 8533 filter->inode = igrab(d_inode(path.dentry)); 8534 path_put(&path); 8535 kfree(filename); 8536 filename = NULL; 8537 8538 ret = -EINVAL; 8539 if (!filter->inode || 8540 !S_ISREG(filter->inode->i_mode)) 8541 /* free_filters_list() will iput() */ 8542 goto fail; 8543 8544 event->addr_filters.nr_file_filters++; 8545 } 8546 8547 /* ready to consume more filters */ 8548 state = IF_STATE_ACTION; 8549 filter = NULL; 8550 } 8551 } 8552 8553 if (state != IF_STATE_ACTION) 8554 goto fail; 8555 8556 kfree(orig); 8557 8558 return 0; 8559 8560 fail_free_name: 8561 kfree(filename); 8562 fail: 8563 free_filters_list(filters); 8564 kfree(orig); 8565 8566 return ret; 8567 } 8568 8569 static int 8570 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8571 { 8572 LIST_HEAD(filters); 8573 int ret; 8574 8575 /* 8576 * Since this is called in perf_ioctl() path, we're already holding 8577 * ctx::mutex. 8578 */ 8579 lockdep_assert_held(&event->ctx->mutex); 8580 8581 if (WARN_ON_ONCE(event->parent)) 8582 return -EINVAL; 8583 8584 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8585 if (ret) 8586 goto fail_clear_files; 8587 8588 ret = event->pmu->addr_filters_validate(&filters); 8589 if (ret) 8590 goto fail_free_filters; 8591 8592 /* remove existing filters, if any */ 8593 perf_addr_filters_splice(event, &filters); 8594 8595 /* install new filters */ 8596 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8597 8598 return ret; 8599 8600 fail_free_filters: 8601 free_filters_list(&filters); 8602 8603 fail_clear_files: 8604 event->addr_filters.nr_file_filters = 0; 8605 8606 return ret; 8607 } 8608 8609 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8610 { 8611 char *filter_str; 8612 int ret = -EINVAL; 8613 8614 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8615 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8616 !has_addr_filter(event)) 8617 return -EINVAL; 8618 8619 filter_str = strndup_user(arg, PAGE_SIZE); 8620 if (IS_ERR(filter_str)) 8621 return PTR_ERR(filter_str); 8622 8623 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8624 event->attr.type == PERF_TYPE_TRACEPOINT) 8625 ret = ftrace_profile_set_filter(event, event->attr.config, 8626 filter_str); 8627 else if (has_addr_filter(event)) 8628 ret = perf_event_set_addr_filter(event, filter_str); 8629 8630 kfree(filter_str); 8631 return ret; 8632 } 8633 8634 /* 8635 * hrtimer based swevent callback 8636 */ 8637 8638 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8639 { 8640 enum hrtimer_restart ret = HRTIMER_RESTART; 8641 struct perf_sample_data data; 8642 struct pt_regs *regs; 8643 struct perf_event *event; 8644 u64 period; 8645 8646 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8647 8648 if (event->state != PERF_EVENT_STATE_ACTIVE) 8649 return HRTIMER_NORESTART; 8650 8651 event->pmu->read(event); 8652 8653 perf_sample_data_init(&data, 0, event->hw.last_period); 8654 regs = get_irq_regs(); 8655 8656 if (regs && !perf_exclude_event(event, regs)) { 8657 if (!(event->attr.exclude_idle && is_idle_task(current))) 8658 if (__perf_event_overflow(event, 1, &data, regs)) 8659 ret = HRTIMER_NORESTART; 8660 } 8661 8662 period = max_t(u64, 10000, event->hw.sample_period); 8663 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8664 8665 return ret; 8666 } 8667 8668 static void perf_swevent_start_hrtimer(struct perf_event *event) 8669 { 8670 struct hw_perf_event *hwc = &event->hw; 8671 s64 period; 8672 8673 if (!is_sampling_event(event)) 8674 return; 8675 8676 period = local64_read(&hwc->period_left); 8677 if (period) { 8678 if (period < 0) 8679 period = 10000; 8680 8681 local64_set(&hwc->period_left, 0); 8682 } else { 8683 period = max_t(u64, 10000, hwc->sample_period); 8684 } 8685 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8686 HRTIMER_MODE_REL_PINNED); 8687 } 8688 8689 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8690 { 8691 struct hw_perf_event *hwc = &event->hw; 8692 8693 if (is_sampling_event(event)) { 8694 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8695 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8696 8697 hrtimer_cancel(&hwc->hrtimer); 8698 } 8699 } 8700 8701 static void perf_swevent_init_hrtimer(struct perf_event *event) 8702 { 8703 struct hw_perf_event *hwc = &event->hw; 8704 8705 if (!is_sampling_event(event)) 8706 return; 8707 8708 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8709 hwc->hrtimer.function = perf_swevent_hrtimer; 8710 8711 /* 8712 * Since hrtimers have a fixed rate, we can do a static freq->period 8713 * mapping and avoid the whole period adjust feedback stuff. 8714 */ 8715 if (event->attr.freq) { 8716 long freq = event->attr.sample_freq; 8717 8718 event->attr.sample_period = NSEC_PER_SEC / freq; 8719 hwc->sample_period = event->attr.sample_period; 8720 local64_set(&hwc->period_left, hwc->sample_period); 8721 hwc->last_period = hwc->sample_period; 8722 event->attr.freq = 0; 8723 } 8724 } 8725 8726 /* 8727 * Software event: cpu wall time clock 8728 */ 8729 8730 static void cpu_clock_event_update(struct perf_event *event) 8731 { 8732 s64 prev; 8733 u64 now; 8734 8735 now = local_clock(); 8736 prev = local64_xchg(&event->hw.prev_count, now); 8737 local64_add(now - prev, &event->count); 8738 } 8739 8740 static void cpu_clock_event_start(struct perf_event *event, int flags) 8741 { 8742 local64_set(&event->hw.prev_count, local_clock()); 8743 perf_swevent_start_hrtimer(event); 8744 } 8745 8746 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8747 { 8748 perf_swevent_cancel_hrtimer(event); 8749 cpu_clock_event_update(event); 8750 } 8751 8752 static int cpu_clock_event_add(struct perf_event *event, int flags) 8753 { 8754 if (flags & PERF_EF_START) 8755 cpu_clock_event_start(event, flags); 8756 perf_event_update_userpage(event); 8757 8758 return 0; 8759 } 8760 8761 static void cpu_clock_event_del(struct perf_event *event, int flags) 8762 { 8763 cpu_clock_event_stop(event, flags); 8764 } 8765 8766 static void cpu_clock_event_read(struct perf_event *event) 8767 { 8768 cpu_clock_event_update(event); 8769 } 8770 8771 static int cpu_clock_event_init(struct perf_event *event) 8772 { 8773 if (event->attr.type != PERF_TYPE_SOFTWARE) 8774 return -ENOENT; 8775 8776 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8777 return -ENOENT; 8778 8779 /* 8780 * no branch sampling for software events 8781 */ 8782 if (has_branch_stack(event)) 8783 return -EOPNOTSUPP; 8784 8785 perf_swevent_init_hrtimer(event); 8786 8787 return 0; 8788 } 8789 8790 static struct pmu perf_cpu_clock = { 8791 .task_ctx_nr = perf_sw_context, 8792 8793 .capabilities = PERF_PMU_CAP_NO_NMI, 8794 8795 .event_init = cpu_clock_event_init, 8796 .add = cpu_clock_event_add, 8797 .del = cpu_clock_event_del, 8798 .start = cpu_clock_event_start, 8799 .stop = cpu_clock_event_stop, 8800 .read = cpu_clock_event_read, 8801 }; 8802 8803 /* 8804 * Software event: task time clock 8805 */ 8806 8807 static void task_clock_event_update(struct perf_event *event, u64 now) 8808 { 8809 u64 prev; 8810 s64 delta; 8811 8812 prev = local64_xchg(&event->hw.prev_count, now); 8813 delta = now - prev; 8814 local64_add(delta, &event->count); 8815 } 8816 8817 static void task_clock_event_start(struct perf_event *event, int flags) 8818 { 8819 local64_set(&event->hw.prev_count, event->ctx->time); 8820 perf_swevent_start_hrtimer(event); 8821 } 8822 8823 static void task_clock_event_stop(struct perf_event *event, int flags) 8824 { 8825 perf_swevent_cancel_hrtimer(event); 8826 task_clock_event_update(event, event->ctx->time); 8827 } 8828 8829 static int task_clock_event_add(struct perf_event *event, int flags) 8830 { 8831 if (flags & PERF_EF_START) 8832 task_clock_event_start(event, flags); 8833 perf_event_update_userpage(event); 8834 8835 return 0; 8836 } 8837 8838 static void task_clock_event_del(struct perf_event *event, int flags) 8839 { 8840 task_clock_event_stop(event, PERF_EF_UPDATE); 8841 } 8842 8843 static void task_clock_event_read(struct perf_event *event) 8844 { 8845 u64 now = perf_clock(); 8846 u64 delta = now - event->ctx->timestamp; 8847 u64 time = event->ctx->time + delta; 8848 8849 task_clock_event_update(event, time); 8850 } 8851 8852 static int task_clock_event_init(struct perf_event *event) 8853 { 8854 if (event->attr.type != PERF_TYPE_SOFTWARE) 8855 return -ENOENT; 8856 8857 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8858 return -ENOENT; 8859 8860 /* 8861 * no branch sampling for software events 8862 */ 8863 if (has_branch_stack(event)) 8864 return -EOPNOTSUPP; 8865 8866 perf_swevent_init_hrtimer(event); 8867 8868 return 0; 8869 } 8870 8871 static struct pmu perf_task_clock = { 8872 .task_ctx_nr = perf_sw_context, 8873 8874 .capabilities = PERF_PMU_CAP_NO_NMI, 8875 8876 .event_init = task_clock_event_init, 8877 .add = task_clock_event_add, 8878 .del = task_clock_event_del, 8879 .start = task_clock_event_start, 8880 .stop = task_clock_event_stop, 8881 .read = task_clock_event_read, 8882 }; 8883 8884 static void perf_pmu_nop_void(struct pmu *pmu) 8885 { 8886 } 8887 8888 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8889 { 8890 } 8891 8892 static int perf_pmu_nop_int(struct pmu *pmu) 8893 { 8894 return 0; 8895 } 8896 8897 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8898 8899 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8900 { 8901 __this_cpu_write(nop_txn_flags, flags); 8902 8903 if (flags & ~PERF_PMU_TXN_ADD) 8904 return; 8905 8906 perf_pmu_disable(pmu); 8907 } 8908 8909 static int perf_pmu_commit_txn(struct pmu *pmu) 8910 { 8911 unsigned int flags = __this_cpu_read(nop_txn_flags); 8912 8913 __this_cpu_write(nop_txn_flags, 0); 8914 8915 if (flags & ~PERF_PMU_TXN_ADD) 8916 return 0; 8917 8918 perf_pmu_enable(pmu); 8919 return 0; 8920 } 8921 8922 static void perf_pmu_cancel_txn(struct pmu *pmu) 8923 { 8924 unsigned int flags = __this_cpu_read(nop_txn_flags); 8925 8926 __this_cpu_write(nop_txn_flags, 0); 8927 8928 if (flags & ~PERF_PMU_TXN_ADD) 8929 return; 8930 8931 perf_pmu_enable(pmu); 8932 } 8933 8934 static int perf_event_idx_default(struct perf_event *event) 8935 { 8936 return 0; 8937 } 8938 8939 /* 8940 * Ensures all contexts with the same task_ctx_nr have the same 8941 * pmu_cpu_context too. 8942 */ 8943 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8944 { 8945 struct pmu *pmu; 8946 8947 if (ctxn < 0) 8948 return NULL; 8949 8950 list_for_each_entry(pmu, &pmus, entry) { 8951 if (pmu->task_ctx_nr == ctxn) 8952 return pmu->pmu_cpu_context; 8953 } 8954 8955 return NULL; 8956 } 8957 8958 static void free_pmu_context(struct pmu *pmu) 8959 { 8960 /* 8961 * Static contexts such as perf_sw_context have a global lifetime 8962 * and may be shared between different PMUs. Avoid freeing them 8963 * when a single PMU is going away. 8964 */ 8965 if (pmu->task_ctx_nr > perf_invalid_context) 8966 return; 8967 8968 mutex_lock(&pmus_lock); 8969 free_percpu(pmu->pmu_cpu_context); 8970 mutex_unlock(&pmus_lock); 8971 } 8972 8973 /* 8974 * Let userspace know that this PMU supports address range filtering: 8975 */ 8976 static ssize_t nr_addr_filters_show(struct device *dev, 8977 struct device_attribute *attr, 8978 char *page) 8979 { 8980 struct pmu *pmu = dev_get_drvdata(dev); 8981 8982 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8983 } 8984 DEVICE_ATTR_RO(nr_addr_filters); 8985 8986 static struct idr pmu_idr; 8987 8988 static ssize_t 8989 type_show(struct device *dev, struct device_attribute *attr, char *page) 8990 { 8991 struct pmu *pmu = dev_get_drvdata(dev); 8992 8993 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8994 } 8995 static DEVICE_ATTR_RO(type); 8996 8997 static ssize_t 8998 perf_event_mux_interval_ms_show(struct device *dev, 8999 struct device_attribute *attr, 9000 char *page) 9001 { 9002 struct pmu *pmu = dev_get_drvdata(dev); 9003 9004 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9005 } 9006 9007 static DEFINE_MUTEX(mux_interval_mutex); 9008 9009 static ssize_t 9010 perf_event_mux_interval_ms_store(struct device *dev, 9011 struct device_attribute *attr, 9012 const char *buf, size_t count) 9013 { 9014 struct pmu *pmu = dev_get_drvdata(dev); 9015 int timer, cpu, ret; 9016 9017 ret = kstrtoint(buf, 0, &timer); 9018 if (ret) 9019 return ret; 9020 9021 if (timer < 1) 9022 return -EINVAL; 9023 9024 /* same value, noting to do */ 9025 if (timer == pmu->hrtimer_interval_ms) 9026 return count; 9027 9028 mutex_lock(&mux_interval_mutex); 9029 pmu->hrtimer_interval_ms = timer; 9030 9031 /* update all cpuctx for this PMU */ 9032 cpus_read_lock(); 9033 for_each_online_cpu(cpu) { 9034 struct perf_cpu_context *cpuctx; 9035 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9036 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9037 9038 cpu_function_call(cpu, 9039 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9040 } 9041 cpus_read_unlock(); 9042 mutex_unlock(&mux_interval_mutex); 9043 9044 return count; 9045 } 9046 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9047 9048 static struct attribute *pmu_dev_attrs[] = { 9049 &dev_attr_type.attr, 9050 &dev_attr_perf_event_mux_interval_ms.attr, 9051 NULL, 9052 }; 9053 ATTRIBUTE_GROUPS(pmu_dev); 9054 9055 static int pmu_bus_running; 9056 static struct bus_type pmu_bus = { 9057 .name = "event_source", 9058 .dev_groups = pmu_dev_groups, 9059 }; 9060 9061 static void pmu_dev_release(struct device *dev) 9062 { 9063 kfree(dev); 9064 } 9065 9066 static int pmu_dev_alloc(struct pmu *pmu) 9067 { 9068 int ret = -ENOMEM; 9069 9070 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9071 if (!pmu->dev) 9072 goto out; 9073 9074 pmu->dev->groups = pmu->attr_groups; 9075 device_initialize(pmu->dev); 9076 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9077 if (ret) 9078 goto free_dev; 9079 9080 dev_set_drvdata(pmu->dev, pmu); 9081 pmu->dev->bus = &pmu_bus; 9082 pmu->dev->release = pmu_dev_release; 9083 ret = device_add(pmu->dev); 9084 if (ret) 9085 goto free_dev; 9086 9087 /* For PMUs with address filters, throw in an extra attribute: */ 9088 if (pmu->nr_addr_filters) 9089 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9090 9091 if (ret) 9092 goto del_dev; 9093 9094 out: 9095 return ret; 9096 9097 del_dev: 9098 device_del(pmu->dev); 9099 9100 free_dev: 9101 put_device(pmu->dev); 9102 goto out; 9103 } 9104 9105 static struct lock_class_key cpuctx_mutex; 9106 static struct lock_class_key cpuctx_lock; 9107 9108 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9109 { 9110 int cpu, ret; 9111 9112 mutex_lock(&pmus_lock); 9113 ret = -ENOMEM; 9114 pmu->pmu_disable_count = alloc_percpu(int); 9115 if (!pmu->pmu_disable_count) 9116 goto unlock; 9117 9118 pmu->type = -1; 9119 if (!name) 9120 goto skip_type; 9121 pmu->name = name; 9122 9123 if (type < 0) { 9124 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9125 if (type < 0) { 9126 ret = type; 9127 goto free_pdc; 9128 } 9129 } 9130 pmu->type = type; 9131 9132 if (pmu_bus_running) { 9133 ret = pmu_dev_alloc(pmu); 9134 if (ret) 9135 goto free_idr; 9136 } 9137 9138 skip_type: 9139 if (pmu->task_ctx_nr == perf_hw_context) { 9140 static int hw_context_taken = 0; 9141 9142 /* 9143 * Other than systems with heterogeneous CPUs, it never makes 9144 * sense for two PMUs to share perf_hw_context. PMUs which are 9145 * uncore must use perf_invalid_context. 9146 */ 9147 if (WARN_ON_ONCE(hw_context_taken && 9148 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9149 pmu->task_ctx_nr = perf_invalid_context; 9150 9151 hw_context_taken = 1; 9152 } 9153 9154 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9155 if (pmu->pmu_cpu_context) 9156 goto got_cpu_context; 9157 9158 ret = -ENOMEM; 9159 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9160 if (!pmu->pmu_cpu_context) 9161 goto free_dev; 9162 9163 for_each_possible_cpu(cpu) { 9164 struct perf_cpu_context *cpuctx; 9165 9166 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9167 __perf_event_init_context(&cpuctx->ctx); 9168 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9169 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9170 cpuctx->ctx.pmu = pmu; 9171 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9172 9173 __perf_mux_hrtimer_init(cpuctx, cpu); 9174 } 9175 9176 got_cpu_context: 9177 if (!pmu->start_txn) { 9178 if (pmu->pmu_enable) { 9179 /* 9180 * If we have pmu_enable/pmu_disable calls, install 9181 * transaction stubs that use that to try and batch 9182 * hardware accesses. 9183 */ 9184 pmu->start_txn = perf_pmu_start_txn; 9185 pmu->commit_txn = perf_pmu_commit_txn; 9186 pmu->cancel_txn = perf_pmu_cancel_txn; 9187 } else { 9188 pmu->start_txn = perf_pmu_nop_txn; 9189 pmu->commit_txn = perf_pmu_nop_int; 9190 pmu->cancel_txn = perf_pmu_nop_void; 9191 } 9192 } 9193 9194 if (!pmu->pmu_enable) { 9195 pmu->pmu_enable = perf_pmu_nop_void; 9196 pmu->pmu_disable = perf_pmu_nop_void; 9197 } 9198 9199 if (!pmu->event_idx) 9200 pmu->event_idx = perf_event_idx_default; 9201 9202 list_add_rcu(&pmu->entry, &pmus); 9203 atomic_set(&pmu->exclusive_cnt, 0); 9204 ret = 0; 9205 unlock: 9206 mutex_unlock(&pmus_lock); 9207 9208 return ret; 9209 9210 free_dev: 9211 device_del(pmu->dev); 9212 put_device(pmu->dev); 9213 9214 free_idr: 9215 if (pmu->type >= PERF_TYPE_MAX) 9216 idr_remove(&pmu_idr, pmu->type); 9217 9218 free_pdc: 9219 free_percpu(pmu->pmu_disable_count); 9220 goto unlock; 9221 } 9222 EXPORT_SYMBOL_GPL(perf_pmu_register); 9223 9224 void perf_pmu_unregister(struct pmu *pmu) 9225 { 9226 int remove_device; 9227 9228 mutex_lock(&pmus_lock); 9229 remove_device = pmu_bus_running; 9230 list_del_rcu(&pmu->entry); 9231 mutex_unlock(&pmus_lock); 9232 9233 /* 9234 * We dereference the pmu list under both SRCU and regular RCU, so 9235 * synchronize against both of those. 9236 */ 9237 synchronize_srcu(&pmus_srcu); 9238 synchronize_rcu(); 9239 9240 free_percpu(pmu->pmu_disable_count); 9241 if (pmu->type >= PERF_TYPE_MAX) 9242 idr_remove(&pmu_idr, pmu->type); 9243 if (remove_device) { 9244 if (pmu->nr_addr_filters) 9245 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9246 device_del(pmu->dev); 9247 put_device(pmu->dev); 9248 } 9249 free_pmu_context(pmu); 9250 } 9251 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9252 9253 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9254 { 9255 struct perf_event_context *ctx = NULL; 9256 int ret; 9257 9258 if (!try_module_get(pmu->module)) 9259 return -ENODEV; 9260 9261 if (event->group_leader != event) { 9262 /* 9263 * This ctx->mutex can nest when we're called through 9264 * inheritance. See the perf_event_ctx_lock_nested() comment. 9265 */ 9266 ctx = perf_event_ctx_lock_nested(event->group_leader, 9267 SINGLE_DEPTH_NESTING); 9268 BUG_ON(!ctx); 9269 } 9270 9271 event->pmu = pmu; 9272 ret = pmu->event_init(event); 9273 9274 if (ctx) 9275 perf_event_ctx_unlock(event->group_leader, ctx); 9276 9277 if (ret) 9278 module_put(pmu->module); 9279 9280 return ret; 9281 } 9282 9283 static struct pmu *perf_init_event(struct perf_event *event) 9284 { 9285 struct pmu *pmu; 9286 int idx; 9287 int ret; 9288 9289 idx = srcu_read_lock(&pmus_srcu); 9290 9291 /* Try parent's PMU first: */ 9292 if (event->parent && event->parent->pmu) { 9293 pmu = event->parent->pmu; 9294 ret = perf_try_init_event(pmu, event); 9295 if (!ret) 9296 goto unlock; 9297 } 9298 9299 rcu_read_lock(); 9300 pmu = idr_find(&pmu_idr, event->attr.type); 9301 rcu_read_unlock(); 9302 if (pmu) { 9303 ret = perf_try_init_event(pmu, event); 9304 if (ret) 9305 pmu = ERR_PTR(ret); 9306 goto unlock; 9307 } 9308 9309 list_for_each_entry_rcu(pmu, &pmus, entry) { 9310 ret = perf_try_init_event(pmu, event); 9311 if (!ret) 9312 goto unlock; 9313 9314 if (ret != -ENOENT) { 9315 pmu = ERR_PTR(ret); 9316 goto unlock; 9317 } 9318 } 9319 pmu = ERR_PTR(-ENOENT); 9320 unlock: 9321 srcu_read_unlock(&pmus_srcu, idx); 9322 9323 return pmu; 9324 } 9325 9326 static void attach_sb_event(struct perf_event *event) 9327 { 9328 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9329 9330 raw_spin_lock(&pel->lock); 9331 list_add_rcu(&event->sb_list, &pel->list); 9332 raw_spin_unlock(&pel->lock); 9333 } 9334 9335 /* 9336 * We keep a list of all !task (and therefore per-cpu) events 9337 * that need to receive side-band records. 9338 * 9339 * This avoids having to scan all the various PMU per-cpu contexts 9340 * looking for them. 9341 */ 9342 static void account_pmu_sb_event(struct perf_event *event) 9343 { 9344 if (is_sb_event(event)) 9345 attach_sb_event(event); 9346 } 9347 9348 static void account_event_cpu(struct perf_event *event, int cpu) 9349 { 9350 if (event->parent) 9351 return; 9352 9353 if (is_cgroup_event(event)) 9354 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9355 } 9356 9357 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9358 static void account_freq_event_nohz(void) 9359 { 9360 #ifdef CONFIG_NO_HZ_FULL 9361 /* Lock so we don't race with concurrent unaccount */ 9362 spin_lock(&nr_freq_lock); 9363 if (atomic_inc_return(&nr_freq_events) == 1) 9364 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9365 spin_unlock(&nr_freq_lock); 9366 #endif 9367 } 9368 9369 static void account_freq_event(void) 9370 { 9371 if (tick_nohz_full_enabled()) 9372 account_freq_event_nohz(); 9373 else 9374 atomic_inc(&nr_freq_events); 9375 } 9376 9377 9378 static void account_event(struct perf_event *event) 9379 { 9380 bool inc = false; 9381 9382 if (event->parent) 9383 return; 9384 9385 if (event->attach_state & PERF_ATTACH_TASK) 9386 inc = true; 9387 if (event->attr.mmap || event->attr.mmap_data) 9388 atomic_inc(&nr_mmap_events); 9389 if (event->attr.comm) 9390 atomic_inc(&nr_comm_events); 9391 if (event->attr.namespaces) 9392 atomic_inc(&nr_namespaces_events); 9393 if (event->attr.task) 9394 atomic_inc(&nr_task_events); 9395 if (event->attr.freq) 9396 account_freq_event(); 9397 if (event->attr.context_switch) { 9398 atomic_inc(&nr_switch_events); 9399 inc = true; 9400 } 9401 if (has_branch_stack(event)) 9402 inc = true; 9403 if (is_cgroup_event(event)) 9404 inc = true; 9405 9406 if (inc) { 9407 if (atomic_inc_not_zero(&perf_sched_count)) 9408 goto enabled; 9409 9410 mutex_lock(&perf_sched_mutex); 9411 if (!atomic_read(&perf_sched_count)) { 9412 static_branch_enable(&perf_sched_events); 9413 /* 9414 * Guarantee that all CPUs observe they key change and 9415 * call the perf scheduling hooks before proceeding to 9416 * install events that need them. 9417 */ 9418 synchronize_sched(); 9419 } 9420 /* 9421 * Now that we have waited for the sync_sched(), allow further 9422 * increments to by-pass the mutex. 9423 */ 9424 atomic_inc(&perf_sched_count); 9425 mutex_unlock(&perf_sched_mutex); 9426 } 9427 enabled: 9428 9429 account_event_cpu(event, event->cpu); 9430 9431 account_pmu_sb_event(event); 9432 } 9433 9434 /* 9435 * Allocate and initialize a event structure 9436 */ 9437 static struct perf_event * 9438 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9439 struct task_struct *task, 9440 struct perf_event *group_leader, 9441 struct perf_event *parent_event, 9442 perf_overflow_handler_t overflow_handler, 9443 void *context, int cgroup_fd) 9444 { 9445 struct pmu *pmu; 9446 struct perf_event *event; 9447 struct hw_perf_event *hwc; 9448 long err = -EINVAL; 9449 9450 if ((unsigned)cpu >= nr_cpu_ids) { 9451 if (!task || cpu != -1) 9452 return ERR_PTR(-EINVAL); 9453 } 9454 9455 event = kzalloc(sizeof(*event), GFP_KERNEL); 9456 if (!event) 9457 return ERR_PTR(-ENOMEM); 9458 9459 /* 9460 * Single events are their own group leaders, with an 9461 * empty sibling list: 9462 */ 9463 if (!group_leader) 9464 group_leader = event; 9465 9466 mutex_init(&event->child_mutex); 9467 INIT_LIST_HEAD(&event->child_list); 9468 9469 INIT_LIST_HEAD(&event->group_entry); 9470 INIT_LIST_HEAD(&event->event_entry); 9471 INIT_LIST_HEAD(&event->sibling_list); 9472 INIT_LIST_HEAD(&event->rb_entry); 9473 INIT_LIST_HEAD(&event->active_entry); 9474 INIT_LIST_HEAD(&event->addr_filters.list); 9475 INIT_HLIST_NODE(&event->hlist_entry); 9476 9477 9478 init_waitqueue_head(&event->waitq); 9479 init_irq_work(&event->pending, perf_pending_event); 9480 9481 mutex_init(&event->mmap_mutex); 9482 raw_spin_lock_init(&event->addr_filters.lock); 9483 9484 atomic_long_set(&event->refcount, 1); 9485 event->cpu = cpu; 9486 event->attr = *attr; 9487 event->group_leader = group_leader; 9488 event->pmu = NULL; 9489 event->oncpu = -1; 9490 9491 event->parent = parent_event; 9492 9493 event->ns = get_pid_ns(task_active_pid_ns(current)); 9494 event->id = atomic64_inc_return(&perf_event_id); 9495 9496 event->state = PERF_EVENT_STATE_INACTIVE; 9497 9498 if (task) { 9499 event->attach_state = PERF_ATTACH_TASK; 9500 /* 9501 * XXX pmu::event_init needs to know what task to account to 9502 * and we cannot use the ctx information because we need the 9503 * pmu before we get a ctx. 9504 */ 9505 event->hw.target = task; 9506 } 9507 9508 event->clock = &local_clock; 9509 if (parent_event) 9510 event->clock = parent_event->clock; 9511 9512 if (!overflow_handler && parent_event) { 9513 overflow_handler = parent_event->overflow_handler; 9514 context = parent_event->overflow_handler_context; 9515 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9516 if (overflow_handler == bpf_overflow_handler) { 9517 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9518 9519 if (IS_ERR(prog)) { 9520 err = PTR_ERR(prog); 9521 goto err_ns; 9522 } 9523 event->prog = prog; 9524 event->orig_overflow_handler = 9525 parent_event->orig_overflow_handler; 9526 } 9527 #endif 9528 } 9529 9530 if (overflow_handler) { 9531 event->overflow_handler = overflow_handler; 9532 event->overflow_handler_context = context; 9533 } else if (is_write_backward(event)){ 9534 event->overflow_handler = perf_event_output_backward; 9535 event->overflow_handler_context = NULL; 9536 } else { 9537 event->overflow_handler = perf_event_output_forward; 9538 event->overflow_handler_context = NULL; 9539 } 9540 9541 perf_event__state_init(event); 9542 9543 pmu = NULL; 9544 9545 hwc = &event->hw; 9546 hwc->sample_period = attr->sample_period; 9547 if (attr->freq && attr->sample_freq) 9548 hwc->sample_period = 1; 9549 hwc->last_period = hwc->sample_period; 9550 9551 local64_set(&hwc->period_left, hwc->sample_period); 9552 9553 /* 9554 * We currently do not support PERF_SAMPLE_READ on inherited events. 9555 * See perf_output_read(). 9556 */ 9557 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9558 goto err_ns; 9559 9560 if (!has_branch_stack(event)) 9561 event->attr.branch_sample_type = 0; 9562 9563 if (cgroup_fd != -1) { 9564 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9565 if (err) 9566 goto err_ns; 9567 } 9568 9569 pmu = perf_init_event(event); 9570 if (IS_ERR(pmu)) { 9571 err = PTR_ERR(pmu); 9572 goto err_ns; 9573 } 9574 9575 err = exclusive_event_init(event); 9576 if (err) 9577 goto err_pmu; 9578 9579 if (has_addr_filter(event)) { 9580 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9581 sizeof(unsigned long), 9582 GFP_KERNEL); 9583 if (!event->addr_filters_offs) { 9584 err = -ENOMEM; 9585 goto err_per_task; 9586 } 9587 9588 /* force hw sync on the address filters */ 9589 event->addr_filters_gen = 1; 9590 } 9591 9592 if (!event->parent) { 9593 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9594 err = get_callchain_buffers(attr->sample_max_stack); 9595 if (err) 9596 goto err_addr_filters; 9597 } 9598 } 9599 9600 /* symmetric to unaccount_event() in _free_event() */ 9601 account_event(event); 9602 9603 return event; 9604 9605 err_addr_filters: 9606 kfree(event->addr_filters_offs); 9607 9608 err_per_task: 9609 exclusive_event_destroy(event); 9610 9611 err_pmu: 9612 if (event->destroy) 9613 event->destroy(event); 9614 module_put(pmu->module); 9615 err_ns: 9616 if (is_cgroup_event(event)) 9617 perf_detach_cgroup(event); 9618 if (event->ns) 9619 put_pid_ns(event->ns); 9620 kfree(event); 9621 9622 return ERR_PTR(err); 9623 } 9624 9625 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9626 struct perf_event_attr *attr) 9627 { 9628 u32 size; 9629 int ret; 9630 9631 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9632 return -EFAULT; 9633 9634 /* 9635 * zero the full structure, so that a short copy will be nice. 9636 */ 9637 memset(attr, 0, sizeof(*attr)); 9638 9639 ret = get_user(size, &uattr->size); 9640 if (ret) 9641 return ret; 9642 9643 if (size > PAGE_SIZE) /* silly large */ 9644 goto err_size; 9645 9646 if (!size) /* abi compat */ 9647 size = PERF_ATTR_SIZE_VER0; 9648 9649 if (size < PERF_ATTR_SIZE_VER0) 9650 goto err_size; 9651 9652 /* 9653 * If we're handed a bigger struct than we know of, 9654 * ensure all the unknown bits are 0 - i.e. new 9655 * user-space does not rely on any kernel feature 9656 * extensions we dont know about yet. 9657 */ 9658 if (size > sizeof(*attr)) { 9659 unsigned char __user *addr; 9660 unsigned char __user *end; 9661 unsigned char val; 9662 9663 addr = (void __user *)uattr + sizeof(*attr); 9664 end = (void __user *)uattr + size; 9665 9666 for (; addr < end; addr++) { 9667 ret = get_user(val, addr); 9668 if (ret) 9669 return ret; 9670 if (val) 9671 goto err_size; 9672 } 9673 size = sizeof(*attr); 9674 } 9675 9676 ret = copy_from_user(attr, uattr, size); 9677 if (ret) 9678 return -EFAULT; 9679 9680 attr->size = size; 9681 9682 if (attr->__reserved_1) 9683 return -EINVAL; 9684 9685 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9686 return -EINVAL; 9687 9688 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9689 return -EINVAL; 9690 9691 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9692 u64 mask = attr->branch_sample_type; 9693 9694 /* only using defined bits */ 9695 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9696 return -EINVAL; 9697 9698 /* at least one branch bit must be set */ 9699 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9700 return -EINVAL; 9701 9702 /* propagate priv level, when not set for branch */ 9703 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9704 9705 /* exclude_kernel checked on syscall entry */ 9706 if (!attr->exclude_kernel) 9707 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9708 9709 if (!attr->exclude_user) 9710 mask |= PERF_SAMPLE_BRANCH_USER; 9711 9712 if (!attr->exclude_hv) 9713 mask |= PERF_SAMPLE_BRANCH_HV; 9714 /* 9715 * adjust user setting (for HW filter setup) 9716 */ 9717 attr->branch_sample_type = mask; 9718 } 9719 /* privileged levels capture (kernel, hv): check permissions */ 9720 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9721 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9722 return -EACCES; 9723 } 9724 9725 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9726 ret = perf_reg_validate(attr->sample_regs_user); 9727 if (ret) 9728 return ret; 9729 } 9730 9731 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9732 if (!arch_perf_have_user_stack_dump()) 9733 return -ENOSYS; 9734 9735 /* 9736 * We have __u32 type for the size, but so far 9737 * we can only use __u16 as maximum due to the 9738 * __u16 sample size limit. 9739 */ 9740 if (attr->sample_stack_user >= USHRT_MAX) 9741 ret = -EINVAL; 9742 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9743 ret = -EINVAL; 9744 } 9745 9746 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9747 ret = perf_reg_validate(attr->sample_regs_intr); 9748 out: 9749 return ret; 9750 9751 err_size: 9752 put_user(sizeof(*attr), &uattr->size); 9753 ret = -E2BIG; 9754 goto out; 9755 } 9756 9757 static int 9758 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9759 { 9760 struct ring_buffer *rb = NULL; 9761 int ret = -EINVAL; 9762 9763 if (!output_event) 9764 goto set; 9765 9766 /* don't allow circular references */ 9767 if (event == output_event) 9768 goto out; 9769 9770 /* 9771 * Don't allow cross-cpu buffers 9772 */ 9773 if (output_event->cpu != event->cpu) 9774 goto out; 9775 9776 /* 9777 * If its not a per-cpu rb, it must be the same task. 9778 */ 9779 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9780 goto out; 9781 9782 /* 9783 * Mixing clocks in the same buffer is trouble you don't need. 9784 */ 9785 if (output_event->clock != event->clock) 9786 goto out; 9787 9788 /* 9789 * Either writing ring buffer from beginning or from end. 9790 * Mixing is not allowed. 9791 */ 9792 if (is_write_backward(output_event) != is_write_backward(event)) 9793 goto out; 9794 9795 /* 9796 * If both events generate aux data, they must be on the same PMU 9797 */ 9798 if (has_aux(event) && has_aux(output_event) && 9799 event->pmu != output_event->pmu) 9800 goto out; 9801 9802 set: 9803 mutex_lock(&event->mmap_mutex); 9804 /* Can't redirect output if we've got an active mmap() */ 9805 if (atomic_read(&event->mmap_count)) 9806 goto unlock; 9807 9808 if (output_event) { 9809 /* get the rb we want to redirect to */ 9810 rb = ring_buffer_get(output_event); 9811 if (!rb) 9812 goto unlock; 9813 } 9814 9815 ring_buffer_attach(event, rb); 9816 9817 ret = 0; 9818 unlock: 9819 mutex_unlock(&event->mmap_mutex); 9820 9821 out: 9822 return ret; 9823 } 9824 9825 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9826 { 9827 if (b < a) 9828 swap(a, b); 9829 9830 mutex_lock(a); 9831 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9832 } 9833 9834 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9835 { 9836 bool nmi_safe = false; 9837 9838 switch (clk_id) { 9839 case CLOCK_MONOTONIC: 9840 event->clock = &ktime_get_mono_fast_ns; 9841 nmi_safe = true; 9842 break; 9843 9844 case CLOCK_MONOTONIC_RAW: 9845 event->clock = &ktime_get_raw_fast_ns; 9846 nmi_safe = true; 9847 break; 9848 9849 case CLOCK_REALTIME: 9850 event->clock = &ktime_get_real_ns; 9851 break; 9852 9853 case CLOCK_BOOTTIME: 9854 event->clock = &ktime_get_boot_ns; 9855 break; 9856 9857 case CLOCK_TAI: 9858 event->clock = &ktime_get_tai_ns; 9859 break; 9860 9861 default: 9862 return -EINVAL; 9863 } 9864 9865 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9866 return -EINVAL; 9867 9868 return 0; 9869 } 9870 9871 /* 9872 * Variation on perf_event_ctx_lock_nested(), except we take two context 9873 * mutexes. 9874 */ 9875 static struct perf_event_context * 9876 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9877 struct perf_event_context *ctx) 9878 { 9879 struct perf_event_context *gctx; 9880 9881 again: 9882 rcu_read_lock(); 9883 gctx = READ_ONCE(group_leader->ctx); 9884 if (!atomic_inc_not_zero(&gctx->refcount)) { 9885 rcu_read_unlock(); 9886 goto again; 9887 } 9888 rcu_read_unlock(); 9889 9890 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9891 9892 if (group_leader->ctx != gctx) { 9893 mutex_unlock(&ctx->mutex); 9894 mutex_unlock(&gctx->mutex); 9895 put_ctx(gctx); 9896 goto again; 9897 } 9898 9899 return gctx; 9900 } 9901 9902 /** 9903 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9904 * 9905 * @attr_uptr: event_id type attributes for monitoring/sampling 9906 * @pid: target pid 9907 * @cpu: target cpu 9908 * @group_fd: group leader event fd 9909 */ 9910 SYSCALL_DEFINE5(perf_event_open, 9911 struct perf_event_attr __user *, attr_uptr, 9912 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9913 { 9914 struct perf_event *group_leader = NULL, *output_event = NULL; 9915 struct perf_event *event, *sibling; 9916 struct perf_event_attr attr; 9917 struct perf_event_context *ctx, *uninitialized_var(gctx); 9918 struct file *event_file = NULL; 9919 struct fd group = {NULL, 0}; 9920 struct task_struct *task = NULL; 9921 struct pmu *pmu; 9922 int event_fd; 9923 int move_group = 0; 9924 int err; 9925 int f_flags = O_RDWR; 9926 int cgroup_fd = -1; 9927 9928 /* for future expandability... */ 9929 if (flags & ~PERF_FLAG_ALL) 9930 return -EINVAL; 9931 9932 err = perf_copy_attr(attr_uptr, &attr); 9933 if (err) 9934 return err; 9935 9936 if (!attr.exclude_kernel) { 9937 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9938 return -EACCES; 9939 } 9940 9941 if (attr.namespaces) { 9942 if (!capable(CAP_SYS_ADMIN)) 9943 return -EACCES; 9944 } 9945 9946 if (attr.freq) { 9947 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9948 return -EINVAL; 9949 } else { 9950 if (attr.sample_period & (1ULL << 63)) 9951 return -EINVAL; 9952 } 9953 9954 /* Only privileged users can get physical addresses */ 9955 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 9956 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9957 return -EACCES; 9958 9959 if (!attr.sample_max_stack) 9960 attr.sample_max_stack = sysctl_perf_event_max_stack; 9961 9962 /* 9963 * In cgroup mode, the pid argument is used to pass the fd 9964 * opened to the cgroup directory in cgroupfs. The cpu argument 9965 * designates the cpu on which to monitor threads from that 9966 * cgroup. 9967 */ 9968 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9969 return -EINVAL; 9970 9971 if (flags & PERF_FLAG_FD_CLOEXEC) 9972 f_flags |= O_CLOEXEC; 9973 9974 event_fd = get_unused_fd_flags(f_flags); 9975 if (event_fd < 0) 9976 return event_fd; 9977 9978 if (group_fd != -1) { 9979 err = perf_fget_light(group_fd, &group); 9980 if (err) 9981 goto err_fd; 9982 group_leader = group.file->private_data; 9983 if (flags & PERF_FLAG_FD_OUTPUT) 9984 output_event = group_leader; 9985 if (flags & PERF_FLAG_FD_NO_GROUP) 9986 group_leader = NULL; 9987 } 9988 9989 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9990 task = find_lively_task_by_vpid(pid); 9991 if (IS_ERR(task)) { 9992 err = PTR_ERR(task); 9993 goto err_group_fd; 9994 } 9995 } 9996 9997 if (task && group_leader && 9998 group_leader->attr.inherit != attr.inherit) { 9999 err = -EINVAL; 10000 goto err_task; 10001 } 10002 10003 if (task) { 10004 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10005 if (err) 10006 goto err_task; 10007 10008 /* 10009 * Reuse ptrace permission checks for now. 10010 * 10011 * We must hold cred_guard_mutex across this and any potential 10012 * perf_install_in_context() call for this new event to 10013 * serialize against exec() altering our credentials (and the 10014 * perf_event_exit_task() that could imply). 10015 */ 10016 err = -EACCES; 10017 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10018 goto err_cred; 10019 } 10020 10021 if (flags & PERF_FLAG_PID_CGROUP) 10022 cgroup_fd = pid; 10023 10024 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10025 NULL, NULL, cgroup_fd); 10026 if (IS_ERR(event)) { 10027 err = PTR_ERR(event); 10028 goto err_cred; 10029 } 10030 10031 if (is_sampling_event(event)) { 10032 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10033 err = -EOPNOTSUPP; 10034 goto err_alloc; 10035 } 10036 } 10037 10038 /* 10039 * Special case software events and allow them to be part of 10040 * any hardware group. 10041 */ 10042 pmu = event->pmu; 10043 10044 if (attr.use_clockid) { 10045 err = perf_event_set_clock(event, attr.clockid); 10046 if (err) 10047 goto err_alloc; 10048 } 10049 10050 if (pmu->task_ctx_nr == perf_sw_context) 10051 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10052 10053 if (group_leader && 10054 (is_software_event(event) != is_software_event(group_leader))) { 10055 if (is_software_event(event)) { 10056 /* 10057 * If event and group_leader are not both a software 10058 * event, and event is, then group leader is not. 10059 * 10060 * Allow the addition of software events to !software 10061 * groups, this is safe because software events never 10062 * fail to schedule. 10063 */ 10064 pmu = group_leader->pmu; 10065 } else if (is_software_event(group_leader) && 10066 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10067 /* 10068 * In case the group is a pure software group, and we 10069 * try to add a hardware event, move the whole group to 10070 * the hardware context. 10071 */ 10072 move_group = 1; 10073 } 10074 } 10075 10076 /* 10077 * Get the target context (task or percpu): 10078 */ 10079 ctx = find_get_context(pmu, task, event); 10080 if (IS_ERR(ctx)) { 10081 err = PTR_ERR(ctx); 10082 goto err_alloc; 10083 } 10084 10085 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10086 err = -EBUSY; 10087 goto err_context; 10088 } 10089 10090 /* 10091 * Look up the group leader (we will attach this event to it): 10092 */ 10093 if (group_leader) { 10094 err = -EINVAL; 10095 10096 /* 10097 * Do not allow a recursive hierarchy (this new sibling 10098 * becoming part of another group-sibling): 10099 */ 10100 if (group_leader->group_leader != group_leader) 10101 goto err_context; 10102 10103 /* All events in a group should have the same clock */ 10104 if (group_leader->clock != event->clock) 10105 goto err_context; 10106 10107 /* 10108 * Make sure we're both events for the same CPU; 10109 * grouping events for different CPUs is broken; since 10110 * you can never concurrently schedule them anyhow. 10111 */ 10112 if (group_leader->cpu != event->cpu) 10113 goto err_context; 10114 10115 /* 10116 * Make sure we're both on the same task, or both 10117 * per-CPU events. 10118 */ 10119 if (group_leader->ctx->task != ctx->task) 10120 goto err_context; 10121 10122 /* 10123 * Do not allow to attach to a group in a different task 10124 * or CPU context. If we're moving SW events, we'll fix 10125 * this up later, so allow that. 10126 */ 10127 if (!move_group && group_leader->ctx != ctx) 10128 goto err_context; 10129 10130 /* 10131 * Only a group leader can be exclusive or pinned 10132 */ 10133 if (attr.exclusive || attr.pinned) 10134 goto err_context; 10135 } 10136 10137 if (output_event) { 10138 err = perf_event_set_output(event, output_event); 10139 if (err) 10140 goto err_context; 10141 } 10142 10143 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10144 f_flags); 10145 if (IS_ERR(event_file)) { 10146 err = PTR_ERR(event_file); 10147 event_file = NULL; 10148 goto err_context; 10149 } 10150 10151 if (move_group) { 10152 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10153 10154 if (gctx->task == TASK_TOMBSTONE) { 10155 err = -ESRCH; 10156 goto err_locked; 10157 } 10158 10159 /* 10160 * Check if we raced against another sys_perf_event_open() call 10161 * moving the software group underneath us. 10162 */ 10163 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10164 /* 10165 * If someone moved the group out from under us, check 10166 * if this new event wound up on the same ctx, if so 10167 * its the regular !move_group case, otherwise fail. 10168 */ 10169 if (gctx != ctx) { 10170 err = -EINVAL; 10171 goto err_locked; 10172 } else { 10173 perf_event_ctx_unlock(group_leader, gctx); 10174 move_group = 0; 10175 } 10176 } 10177 } else { 10178 mutex_lock(&ctx->mutex); 10179 } 10180 10181 if (ctx->task == TASK_TOMBSTONE) { 10182 err = -ESRCH; 10183 goto err_locked; 10184 } 10185 10186 if (!perf_event_validate_size(event)) { 10187 err = -E2BIG; 10188 goto err_locked; 10189 } 10190 10191 if (!task) { 10192 /* 10193 * Check if the @cpu we're creating an event for is online. 10194 * 10195 * We use the perf_cpu_context::ctx::mutex to serialize against 10196 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10197 */ 10198 struct perf_cpu_context *cpuctx = 10199 container_of(ctx, struct perf_cpu_context, ctx); 10200 10201 if (!cpuctx->online) { 10202 err = -ENODEV; 10203 goto err_locked; 10204 } 10205 } 10206 10207 10208 /* 10209 * Must be under the same ctx::mutex as perf_install_in_context(), 10210 * because we need to serialize with concurrent event creation. 10211 */ 10212 if (!exclusive_event_installable(event, ctx)) { 10213 /* exclusive and group stuff are assumed mutually exclusive */ 10214 WARN_ON_ONCE(move_group); 10215 10216 err = -EBUSY; 10217 goto err_locked; 10218 } 10219 10220 WARN_ON_ONCE(ctx->parent_ctx); 10221 10222 /* 10223 * This is the point on no return; we cannot fail hereafter. This is 10224 * where we start modifying current state. 10225 */ 10226 10227 if (move_group) { 10228 /* 10229 * See perf_event_ctx_lock() for comments on the details 10230 * of swizzling perf_event::ctx. 10231 */ 10232 perf_remove_from_context(group_leader, 0); 10233 put_ctx(gctx); 10234 10235 list_for_each_entry(sibling, &group_leader->sibling_list, 10236 group_entry) { 10237 perf_remove_from_context(sibling, 0); 10238 put_ctx(gctx); 10239 } 10240 10241 /* 10242 * Wait for everybody to stop referencing the events through 10243 * the old lists, before installing it on new lists. 10244 */ 10245 synchronize_rcu(); 10246 10247 /* 10248 * Install the group siblings before the group leader. 10249 * 10250 * Because a group leader will try and install the entire group 10251 * (through the sibling list, which is still in-tact), we can 10252 * end up with siblings installed in the wrong context. 10253 * 10254 * By installing siblings first we NO-OP because they're not 10255 * reachable through the group lists. 10256 */ 10257 list_for_each_entry(sibling, &group_leader->sibling_list, 10258 group_entry) { 10259 perf_event__state_init(sibling); 10260 perf_install_in_context(ctx, sibling, sibling->cpu); 10261 get_ctx(ctx); 10262 } 10263 10264 /* 10265 * Removing from the context ends up with disabled 10266 * event. What we want here is event in the initial 10267 * startup state, ready to be add into new context. 10268 */ 10269 perf_event__state_init(group_leader); 10270 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10271 get_ctx(ctx); 10272 } 10273 10274 /* 10275 * Precalculate sample_data sizes; do while holding ctx::mutex such 10276 * that we're serialized against further additions and before 10277 * perf_install_in_context() which is the point the event is active and 10278 * can use these values. 10279 */ 10280 perf_event__header_size(event); 10281 perf_event__id_header_size(event); 10282 10283 event->owner = current; 10284 10285 perf_install_in_context(ctx, event, event->cpu); 10286 perf_unpin_context(ctx); 10287 10288 if (move_group) 10289 perf_event_ctx_unlock(group_leader, gctx); 10290 mutex_unlock(&ctx->mutex); 10291 10292 if (task) { 10293 mutex_unlock(&task->signal->cred_guard_mutex); 10294 put_task_struct(task); 10295 } 10296 10297 mutex_lock(¤t->perf_event_mutex); 10298 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10299 mutex_unlock(¤t->perf_event_mutex); 10300 10301 /* 10302 * Drop the reference on the group_event after placing the 10303 * new event on the sibling_list. This ensures destruction 10304 * of the group leader will find the pointer to itself in 10305 * perf_group_detach(). 10306 */ 10307 fdput(group); 10308 fd_install(event_fd, event_file); 10309 return event_fd; 10310 10311 err_locked: 10312 if (move_group) 10313 perf_event_ctx_unlock(group_leader, gctx); 10314 mutex_unlock(&ctx->mutex); 10315 /* err_file: */ 10316 fput(event_file); 10317 err_context: 10318 perf_unpin_context(ctx); 10319 put_ctx(ctx); 10320 err_alloc: 10321 /* 10322 * If event_file is set, the fput() above will have called ->release() 10323 * and that will take care of freeing the event. 10324 */ 10325 if (!event_file) 10326 free_event(event); 10327 err_cred: 10328 if (task) 10329 mutex_unlock(&task->signal->cred_guard_mutex); 10330 err_task: 10331 if (task) 10332 put_task_struct(task); 10333 err_group_fd: 10334 fdput(group); 10335 err_fd: 10336 put_unused_fd(event_fd); 10337 return err; 10338 } 10339 10340 /** 10341 * perf_event_create_kernel_counter 10342 * 10343 * @attr: attributes of the counter to create 10344 * @cpu: cpu in which the counter is bound 10345 * @task: task to profile (NULL for percpu) 10346 */ 10347 struct perf_event * 10348 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10349 struct task_struct *task, 10350 perf_overflow_handler_t overflow_handler, 10351 void *context) 10352 { 10353 struct perf_event_context *ctx; 10354 struct perf_event *event; 10355 int err; 10356 10357 /* 10358 * Get the target context (task or percpu): 10359 */ 10360 10361 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10362 overflow_handler, context, -1); 10363 if (IS_ERR(event)) { 10364 err = PTR_ERR(event); 10365 goto err; 10366 } 10367 10368 /* Mark owner so we could distinguish it from user events. */ 10369 event->owner = TASK_TOMBSTONE; 10370 10371 ctx = find_get_context(event->pmu, task, event); 10372 if (IS_ERR(ctx)) { 10373 err = PTR_ERR(ctx); 10374 goto err_free; 10375 } 10376 10377 WARN_ON_ONCE(ctx->parent_ctx); 10378 mutex_lock(&ctx->mutex); 10379 if (ctx->task == TASK_TOMBSTONE) { 10380 err = -ESRCH; 10381 goto err_unlock; 10382 } 10383 10384 if (!task) { 10385 /* 10386 * Check if the @cpu we're creating an event for is online. 10387 * 10388 * We use the perf_cpu_context::ctx::mutex to serialize against 10389 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10390 */ 10391 struct perf_cpu_context *cpuctx = 10392 container_of(ctx, struct perf_cpu_context, ctx); 10393 if (!cpuctx->online) { 10394 err = -ENODEV; 10395 goto err_unlock; 10396 } 10397 } 10398 10399 if (!exclusive_event_installable(event, ctx)) { 10400 err = -EBUSY; 10401 goto err_unlock; 10402 } 10403 10404 perf_install_in_context(ctx, event, cpu); 10405 perf_unpin_context(ctx); 10406 mutex_unlock(&ctx->mutex); 10407 10408 return event; 10409 10410 err_unlock: 10411 mutex_unlock(&ctx->mutex); 10412 perf_unpin_context(ctx); 10413 put_ctx(ctx); 10414 err_free: 10415 free_event(event); 10416 err: 10417 return ERR_PTR(err); 10418 } 10419 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10420 10421 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10422 { 10423 struct perf_event_context *src_ctx; 10424 struct perf_event_context *dst_ctx; 10425 struct perf_event *event, *tmp; 10426 LIST_HEAD(events); 10427 10428 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10429 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10430 10431 /* 10432 * See perf_event_ctx_lock() for comments on the details 10433 * of swizzling perf_event::ctx. 10434 */ 10435 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10436 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10437 event_entry) { 10438 perf_remove_from_context(event, 0); 10439 unaccount_event_cpu(event, src_cpu); 10440 put_ctx(src_ctx); 10441 list_add(&event->migrate_entry, &events); 10442 } 10443 10444 /* 10445 * Wait for the events to quiesce before re-instating them. 10446 */ 10447 synchronize_rcu(); 10448 10449 /* 10450 * Re-instate events in 2 passes. 10451 * 10452 * Skip over group leaders and only install siblings on this first 10453 * pass, siblings will not get enabled without a leader, however a 10454 * leader will enable its siblings, even if those are still on the old 10455 * context. 10456 */ 10457 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10458 if (event->group_leader == event) 10459 continue; 10460 10461 list_del(&event->migrate_entry); 10462 if (event->state >= PERF_EVENT_STATE_OFF) 10463 event->state = PERF_EVENT_STATE_INACTIVE; 10464 account_event_cpu(event, dst_cpu); 10465 perf_install_in_context(dst_ctx, event, dst_cpu); 10466 get_ctx(dst_ctx); 10467 } 10468 10469 /* 10470 * Once all the siblings are setup properly, install the group leaders 10471 * to make it go. 10472 */ 10473 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10474 list_del(&event->migrate_entry); 10475 if (event->state >= PERF_EVENT_STATE_OFF) 10476 event->state = PERF_EVENT_STATE_INACTIVE; 10477 account_event_cpu(event, dst_cpu); 10478 perf_install_in_context(dst_ctx, event, dst_cpu); 10479 get_ctx(dst_ctx); 10480 } 10481 mutex_unlock(&dst_ctx->mutex); 10482 mutex_unlock(&src_ctx->mutex); 10483 } 10484 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10485 10486 static void sync_child_event(struct perf_event *child_event, 10487 struct task_struct *child) 10488 { 10489 struct perf_event *parent_event = child_event->parent; 10490 u64 child_val; 10491 10492 if (child_event->attr.inherit_stat) 10493 perf_event_read_event(child_event, child); 10494 10495 child_val = perf_event_count(child_event); 10496 10497 /* 10498 * Add back the child's count to the parent's count: 10499 */ 10500 atomic64_add(child_val, &parent_event->child_count); 10501 atomic64_add(child_event->total_time_enabled, 10502 &parent_event->child_total_time_enabled); 10503 atomic64_add(child_event->total_time_running, 10504 &parent_event->child_total_time_running); 10505 } 10506 10507 static void 10508 perf_event_exit_event(struct perf_event *child_event, 10509 struct perf_event_context *child_ctx, 10510 struct task_struct *child) 10511 { 10512 struct perf_event *parent_event = child_event->parent; 10513 10514 /* 10515 * Do not destroy the 'original' grouping; because of the context 10516 * switch optimization the original events could've ended up in a 10517 * random child task. 10518 * 10519 * If we were to destroy the original group, all group related 10520 * operations would cease to function properly after this random 10521 * child dies. 10522 * 10523 * Do destroy all inherited groups, we don't care about those 10524 * and being thorough is better. 10525 */ 10526 raw_spin_lock_irq(&child_ctx->lock); 10527 WARN_ON_ONCE(child_ctx->is_active); 10528 10529 if (parent_event) 10530 perf_group_detach(child_event); 10531 list_del_event(child_event, child_ctx); 10532 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10533 raw_spin_unlock_irq(&child_ctx->lock); 10534 10535 /* 10536 * Parent events are governed by their filedesc, retain them. 10537 */ 10538 if (!parent_event) { 10539 perf_event_wakeup(child_event); 10540 return; 10541 } 10542 /* 10543 * Child events can be cleaned up. 10544 */ 10545 10546 sync_child_event(child_event, child); 10547 10548 /* 10549 * Remove this event from the parent's list 10550 */ 10551 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10552 mutex_lock(&parent_event->child_mutex); 10553 list_del_init(&child_event->child_list); 10554 mutex_unlock(&parent_event->child_mutex); 10555 10556 /* 10557 * Kick perf_poll() for is_event_hup(). 10558 */ 10559 perf_event_wakeup(parent_event); 10560 free_event(child_event); 10561 put_event(parent_event); 10562 } 10563 10564 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10565 { 10566 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10567 struct perf_event *child_event, *next; 10568 10569 WARN_ON_ONCE(child != current); 10570 10571 child_ctx = perf_pin_task_context(child, ctxn); 10572 if (!child_ctx) 10573 return; 10574 10575 /* 10576 * In order to reduce the amount of tricky in ctx tear-down, we hold 10577 * ctx::mutex over the entire thing. This serializes against almost 10578 * everything that wants to access the ctx. 10579 * 10580 * The exception is sys_perf_event_open() / 10581 * perf_event_create_kernel_count() which does find_get_context() 10582 * without ctx::mutex (it cannot because of the move_group double mutex 10583 * lock thing). See the comments in perf_install_in_context(). 10584 */ 10585 mutex_lock(&child_ctx->mutex); 10586 10587 /* 10588 * In a single ctx::lock section, de-schedule the events and detach the 10589 * context from the task such that we cannot ever get it scheduled back 10590 * in. 10591 */ 10592 raw_spin_lock_irq(&child_ctx->lock); 10593 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10594 10595 /* 10596 * Now that the context is inactive, destroy the task <-> ctx relation 10597 * and mark the context dead. 10598 */ 10599 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10600 put_ctx(child_ctx); /* cannot be last */ 10601 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10602 put_task_struct(current); /* cannot be last */ 10603 10604 clone_ctx = unclone_ctx(child_ctx); 10605 raw_spin_unlock_irq(&child_ctx->lock); 10606 10607 if (clone_ctx) 10608 put_ctx(clone_ctx); 10609 10610 /* 10611 * Report the task dead after unscheduling the events so that we 10612 * won't get any samples after PERF_RECORD_EXIT. We can however still 10613 * get a few PERF_RECORD_READ events. 10614 */ 10615 perf_event_task(child, child_ctx, 0); 10616 10617 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10618 perf_event_exit_event(child_event, child_ctx, child); 10619 10620 mutex_unlock(&child_ctx->mutex); 10621 10622 put_ctx(child_ctx); 10623 } 10624 10625 /* 10626 * When a child task exits, feed back event values to parent events. 10627 * 10628 * Can be called with cred_guard_mutex held when called from 10629 * install_exec_creds(). 10630 */ 10631 void perf_event_exit_task(struct task_struct *child) 10632 { 10633 struct perf_event *event, *tmp; 10634 int ctxn; 10635 10636 mutex_lock(&child->perf_event_mutex); 10637 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10638 owner_entry) { 10639 list_del_init(&event->owner_entry); 10640 10641 /* 10642 * Ensure the list deletion is visible before we clear 10643 * the owner, closes a race against perf_release() where 10644 * we need to serialize on the owner->perf_event_mutex. 10645 */ 10646 smp_store_release(&event->owner, NULL); 10647 } 10648 mutex_unlock(&child->perf_event_mutex); 10649 10650 for_each_task_context_nr(ctxn) 10651 perf_event_exit_task_context(child, ctxn); 10652 10653 /* 10654 * The perf_event_exit_task_context calls perf_event_task 10655 * with child's task_ctx, which generates EXIT events for 10656 * child contexts and sets child->perf_event_ctxp[] to NULL. 10657 * At this point we need to send EXIT events to cpu contexts. 10658 */ 10659 perf_event_task(child, NULL, 0); 10660 } 10661 10662 static void perf_free_event(struct perf_event *event, 10663 struct perf_event_context *ctx) 10664 { 10665 struct perf_event *parent = event->parent; 10666 10667 if (WARN_ON_ONCE(!parent)) 10668 return; 10669 10670 mutex_lock(&parent->child_mutex); 10671 list_del_init(&event->child_list); 10672 mutex_unlock(&parent->child_mutex); 10673 10674 put_event(parent); 10675 10676 raw_spin_lock_irq(&ctx->lock); 10677 perf_group_detach(event); 10678 list_del_event(event, ctx); 10679 raw_spin_unlock_irq(&ctx->lock); 10680 free_event(event); 10681 } 10682 10683 /* 10684 * Free an unexposed, unused context as created by inheritance by 10685 * perf_event_init_task below, used by fork() in case of fail. 10686 * 10687 * Not all locks are strictly required, but take them anyway to be nice and 10688 * help out with the lockdep assertions. 10689 */ 10690 void perf_event_free_task(struct task_struct *task) 10691 { 10692 struct perf_event_context *ctx; 10693 struct perf_event *event, *tmp; 10694 int ctxn; 10695 10696 for_each_task_context_nr(ctxn) { 10697 ctx = task->perf_event_ctxp[ctxn]; 10698 if (!ctx) 10699 continue; 10700 10701 mutex_lock(&ctx->mutex); 10702 raw_spin_lock_irq(&ctx->lock); 10703 /* 10704 * Destroy the task <-> ctx relation and mark the context dead. 10705 * 10706 * This is important because even though the task hasn't been 10707 * exposed yet the context has been (through child_list). 10708 */ 10709 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10710 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10711 put_task_struct(task); /* cannot be last */ 10712 raw_spin_unlock_irq(&ctx->lock); 10713 10714 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10715 perf_free_event(event, ctx); 10716 10717 mutex_unlock(&ctx->mutex); 10718 put_ctx(ctx); 10719 } 10720 } 10721 10722 void perf_event_delayed_put(struct task_struct *task) 10723 { 10724 int ctxn; 10725 10726 for_each_task_context_nr(ctxn) 10727 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10728 } 10729 10730 struct file *perf_event_get(unsigned int fd) 10731 { 10732 struct file *file; 10733 10734 file = fget_raw(fd); 10735 if (!file) 10736 return ERR_PTR(-EBADF); 10737 10738 if (file->f_op != &perf_fops) { 10739 fput(file); 10740 return ERR_PTR(-EBADF); 10741 } 10742 10743 return file; 10744 } 10745 10746 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10747 { 10748 if (!event) 10749 return ERR_PTR(-EINVAL); 10750 10751 return &event->attr; 10752 } 10753 10754 /* 10755 * Inherit a event from parent task to child task. 10756 * 10757 * Returns: 10758 * - valid pointer on success 10759 * - NULL for orphaned events 10760 * - IS_ERR() on error 10761 */ 10762 static struct perf_event * 10763 inherit_event(struct perf_event *parent_event, 10764 struct task_struct *parent, 10765 struct perf_event_context *parent_ctx, 10766 struct task_struct *child, 10767 struct perf_event *group_leader, 10768 struct perf_event_context *child_ctx) 10769 { 10770 enum perf_event_active_state parent_state = parent_event->state; 10771 struct perf_event *child_event; 10772 unsigned long flags; 10773 10774 /* 10775 * Instead of creating recursive hierarchies of events, 10776 * we link inherited events back to the original parent, 10777 * which has a filp for sure, which we use as the reference 10778 * count: 10779 */ 10780 if (parent_event->parent) 10781 parent_event = parent_event->parent; 10782 10783 child_event = perf_event_alloc(&parent_event->attr, 10784 parent_event->cpu, 10785 child, 10786 group_leader, parent_event, 10787 NULL, NULL, -1); 10788 if (IS_ERR(child_event)) 10789 return child_event; 10790 10791 /* 10792 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10793 * must be under the same lock in order to serialize against 10794 * perf_event_release_kernel(), such that either we must observe 10795 * is_orphaned_event() or they will observe us on the child_list. 10796 */ 10797 mutex_lock(&parent_event->child_mutex); 10798 if (is_orphaned_event(parent_event) || 10799 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10800 mutex_unlock(&parent_event->child_mutex); 10801 free_event(child_event); 10802 return NULL; 10803 } 10804 10805 get_ctx(child_ctx); 10806 10807 /* 10808 * Make the child state follow the state of the parent event, 10809 * not its attr.disabled bit. We hold the parent's mutex, 10810 * so we won't race with perf_event_{en, dis}able_family. 10811 */ 10812 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10813 child_event->state = PERF_EVENT_STATE_INACTIVE; 10814 else 10815 child_event->state = PERF_EVENT_STATE_OFF; 10816 10817 if (parent_event->attr.freq) { 10818 u64 sample_period = parent_event->hw.sample_period; 10819 struct hw_perf_event *hwc = &child_event->hw; 10820 10821 hwc->sample_period = sample_period; 10822 hwc->last_period = sample_period; 10823 10824 local64_set(&hwc->period_left, sample_period); 10825 } 10826 10827 child_event->ctx = child_ctx; 10828 child_event->overflow_handler = parent_event->overflow_handler; 10829 child_event->overflow_handler_context 10830 = parent_event->overflow_handler_context; 10831 10832 /* 10833 * Precalculate sample_data sizes 10834 */ 10835 perf_event__header_size(child_event); 10836 perf_event__id_header_size(child_event); 10837 10838 /* 10839 * Link it up in the child's context: 10840 */ 10841 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10842 add_event_to_ctx(child_event, child_ctx); 10843 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10844 10845 /* 10846 * Link this into the parent event's child list 10847 */ 10848 list_add_tail(&child_event->child_list, &parent_event->child_list); 10849 mutex_unlock(&parent_event->child_mutex); 10850 10851 return child_event; 10852 } 10853 10854 /* 10855 * Inherits an event group. 10856 * 10857 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10858 * This matches with perf_event_release_kernel() removing all child events. 10859 * 10860 * Returns: 10861 * - 0 on success 10862 * - <0 on error 10863 */ 10864 static int inherit_group(struct perf_event *parent_event, 10865 struct task_struct *parent, 10866 struct perf_event_context *parent_ctx, 10867 struct task_struct *child, 10868 struct perf_event_context *child_ctx) 10869 { 10870 struct perf_event *leader; 10871 struct perf_event *sub; 10872 struct perf_event *child_ctr; 10873 10874 leader = inherit_event(parent_event, parent, parent_ctx, 10875 child, NULL, child_ctx); 10876 if (IS_ERR(leader)) 10877 return PTR_ERR(leader); 10878 /* 10879 * @leader can be NULL here because of is_orphaned_event(). In this 10880 * case inherit_event() will create individual events, similar to what 10881 * perf_group_detach() would do anyway. 10882 */ 10883 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10884 child_ctr = inherit_event(sub, parent, parent_ctx, 10885 child, leader, child_ctx); 10886 if (IS_ERR(child_ctr)) 10887 return PTR_ERR(child_ctr); 10888 } 10889 return 0; 10890 } 10891 10892 /* 10893 * Creates the child task context and tries to inherit the event-group. 10894 * 10895 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10896 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10897 * consistent with perf_event_release_kernel() removing all child events. 10898 * 10899 * Returns: 10900 * - 0 on success 10901 * - <0 on error 10902 */ 10903 static int 10904 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10905 struct perf_event_context *parent_ctx, 10906 struct task_struct *child, int ctxn, 10907 int *inherited_all) 10908 { 10909 int ret; 10910 struct perf_event_context *child_ctx; 10911 10912 if (!event->attr.inherit) { 10913 *inherited_all = 0; 10914 return 0; 10915 } 10916 10917 child_ctx = child->perf_event_ctxp[ctxn]; 10918 if (!child_ctx) { 10919 /* 10920 * This is executed from the parent task context, so 10921 * inherit events that have been marked for cloning. 10922 * First allocate and initialize a context for the 10923 * child. 10924 */ 10925 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10926 if (!child_ctx) 10927 return -ENOMEM; 10928 10929 child->perf_event_ctxp[ctxn] = child_ctx; 10930 } 10931 10932 ret = inherit_group(event, parent, parent_ctx, 10933 child, child_ctx); 10934 10935 if (ret) 10936 *inherited_all = 0; 10937 10938 return ret; 10939 } 10940 10941 /* 10942 * Initialize the perf_event context in task_struct 10943 */ 10944 static int perf_event_init_context(struct task_struct *child, int ctxn) 10945 { 10946 struct perf_event_context *child_ctx, *parent_ctx; 10947 struct perf_event_context *cloned_ctx; 10948 struct perf_event *event; 10949 struct task_struct *parent = current; 10950 int inherited_all = 1; 10951 unsigned long flags; 10952 int ret = 0; 10953 10954 if (likely(!parent->perf_event_ctxp[ctxn])) 10955 return 0; 10956 10957 /* 10958 * If the parent's context is a clone, pin it so it won't get 10959 * swapped under us. 10960 */ 10961 parent_ctx = perf_pin_task_context(parent, ctxn); 10962 if (!parent_ctx) 10963 return 0; 10964 10965 /* 10966 * No need to check if parent_ctx != NULL here; since we saw 10967 * it non-NULL earlier, the only reason for it to become NULL 10968 * is if we exit, and since we're currently in the middle of 10969 * a fork we can't be exiting at the same time. 10970 */ 10971 10972 /* 10973 * Lock the parent list. No need to lock the child - not PID 10974 * hashed yet and not running, so nobody can access it. 10975 */ 10976 mutex_lock(&parent_ctx->mutex); 10977 10978 /* 10979 * We dont have to disable NMIs - we are only looking at 10980 * the list, not manipulating it: 10981 */ 10982 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10983 ret = inherit_task_group(event, parent, parent_ctx, 10984 child, ctxn, &inherited_all); 10985 if (ret) 10986 goto out_unlock; 10987 } 10988 10989 /* 10990 * We can't hold ctx->lock when iterating the ->flexible_group list due 10991 * to allocations, but we need to prevent rotation because 10992 * rotate_ctx() will change the list from interrupt context. 10993 */ 10994 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10995 parent_ctx->rotate_disable = 1; 10996 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10997 10998 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10999 ret = inherit_task_group(event, parent, parent_ctx, 11000 child, ctxn, &inherited_all); 11001 if (ret) 11002 goto out_unlock; 11003 } 11004 11005 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11006 parent_ctx->rotate_disable = 0; 11007 11008 child_ctx = child->perf_event_ctxp[ctxn]; 11009 11010 if (child_ctx && inherited_all) { 11011 /* 11012 * Mark the child context as a clone of the parent 11013 * context, or of whatever the parent is a clone of. 11014 * 11015 * Note that if the parent is a clone, the holding of 11016 * parent_ctx->lock avoids it from being uncloned. 11017 */ 11018 cloned_ctx = parent_ctx->parent_ctx; 11019 if (cloned_ctx) { 11020 child_ctx->parent_ctx = cloned_ctx; 11021 child_ctx->parent_gen = parent_ctx->parent_gen; 11022 } else { 11023 child_ctx->parent_ctx = parent_ctx; 11024 child_ctx->parent_gen = parent_ctx->generation; 11025 } 11026 get_ctx(child_ctx->parent_ctx); 11027 } 11028 11029 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11030 out_unlock: 11031 mutex_unlock(&parent_ctx->mutex); 11032 11033 perf_unpin_context(parent_ctx); 11034 put_ctx(parent_ctx); 11035 11036 return ret; 11037 } 11038 11039 /* 11040 * Initialize the perf_event context in task_struct 11041 */ 11042 int perf_event_init_task(struct task_struct *child) 11043 { 11044 int ctxn, ret; 11045 11046 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11047 mutex_init(&child->perf_event_mutex); 11048 INIT_LIST_HEAD(&child->perf_event_list); 11049 11050 for_each_task_context_nr(ctxn) { 11051 ret = perf_event_init_context(child, ctxn); 11052 if (ret) { 11053 perf_event_free_task(child); 11054 return ret; 11055 } 11056 } 11057 11058 return 0; 11059 } 11060 11061 static void __init perf_event_init_all_cpus(void) 11062 { 11063 struct swevent_htable *swhash; 11064 int cpu; 11065 11066 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11067 11068 for_each_possible_cpu(cpu) { 11069 swhash = &per_cpu(swevent_htable, cpu); 11070 mutex_init(&swhash->hlist_mutex); 11071 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11072 11073 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11074 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11075 11076 #ifdef CONFIG_CGROUP_PERF 11077 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11078 #endif 11079 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11080 } 11081 } 11082 11083 void perf_swevent_init_cpu(unsigned int cpu) 11084 { 11085 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11086 11087 mutex_lock(&swhash->hlist_mutex); 11088 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11089 struct swevent_hlist *hlist; 11090 11091 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11092 WARN_ON(!hlist); 11093 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11094 } 11095 mutex_unlock(&swhash->hlist_mutex); 11096 } 11097 11098 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11099 static void __perf_event_exit_context(void *__info) 11100 { 11101 struct perf_event_context *ctx = __info; 11102 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11103 struct perf_event *event; 11104 11105 raw_spin_lock(&ctx->lock); 11106 list_for_each_entry(event, &ctx->event_list, event_entry) 11107 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11108 raw_spin_unlock(&ctx->lock); 11109 } 11110 11111 static void perf_event_exit_cpu_context(int cpu) 11112 { 11113 struct perf_cpu_context *cpuctx; 11114 struct perf_event_context *ctx; 11115 struct pmu *pmu; 11116 11117 mutex_lock(&pmus_lock); 11118 list_for_each_entry(pmu, &pmus, entry) { 11119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11120 ctx = &cpuctx->ctx; 11121 11122 mutex_lock(&ctx->mutex); 11123 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11124 cpuctx->online = 0; 11125 mutex_unlock(&ctx->mutex); 11126 } 11127 cpumask_clear_cpu(cpu, perf_online_mask); 11128 mutex_unlock(&pmus_lock); 11129 } 11130 #else 11131 11132 static void perf_event_exit_cpu_context(int cpu) { } 11133 11134 #endif 11135 11136 int perf_event_init_cpu(unsigned int cpu) 11137 { 11138 struct perf_cpu_context *cpuctx; 11139 struct perf_event_context *ctx; 11140 struct pmu *pmu; 11141 11142 perf_swevent_init_cpu(cpu); 11143 11144 mutex_lock(&pmus_lock); 11145 cpumask_set_cpu(cpu, perf_online_mask); 11146 list_for_each_entry(pmu, &pmus, entry) { 11147 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11148 ctx = &cpuctx->ctx; 11149 11150 mutex_lock(&ctx->mutex); 11151 cpuctx->online = 1; 11152 mutex_unlock(&ctx->mutex); 11153 } 11154 mutex_unlock(&pmus_lock); 11155 11156 return 0; 11157 } 11158 11159 int perf_event_exit_cpu(unsigned int cpu) 11160 { 11161 perf_event_exit_cpu_context(cpu); 11162 return 0; 11163 } 11164 11165 static int 11166 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11167 { 11168 int cpu; 11169 11170 for_each_online_cpu(cpu) 11171 perf_event_exit_cpu(cpu); 11172 11173 return NOTIFY_OK; 11174 } 11175 11176 /* 11177 * Run the perf reboot notifier at the very last possible moment so that 11178 * the generic watchdog code runs as long as possible. 11179 */ 11180 static struct notifier_block perf_reboot_notifier = { 11181 .notifier_call = perf_reboot, 11182 .priority = INT_MIN, 11183 }; 11184 11185 void __init perf_event_init(void) 11186 { 11187 int ret; 11188 11189 idr_init(&pmu_idr); 11190 11191 perf_event_init_all_cpus(); 11192 init_srcu_struct(&pmus_srcu); 11193 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11194 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11195 perf_pmu_register(&perf_task_clock, NULL, -1); 11196 perf_tp_register(); 11197 perf_event_init_cpu(smp_processor_id()); 11198 register_reboot_notifier(&perf_reboot_notifier); 11199 11200 ret = init_hw_breakpoint(); 11201 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11202 11203 /* 11204 * Build time assertion that we keep the data_head at the intended 11205 * location. IOW, validation we got the __reserved[] size right. 11206 */ 11207 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11208 != 1024); 11209 } 11210 11211 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11212 char *page) 11213 { 11214 struct perf_pmu_events_attr *pmu_attr = 11215 container_of(attr, struct perf_pmu_events_attr, attr); 11216 11217 if (pmu_attr->event_str) 11218 return sprintf(page, "%s\n", pmu_attr->event_str); 11219 11220 return 0; 11221 } 11222 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11223 11224 static int __init perf_event_sysfs_init(void) 11225 { 11226 struct pmu *pmu; 11227 int ret; 11228 11229 mutex_lock(&pmus_lock); 11230 11231 ret = bus_register(&pmu_bus); 11232 if (ret) 11233 goto unlock; 11234 11235 list_for_each_entry(pmu, &pmus, entry) { 11236 if (!pmu->name || pmu->type < 0) 11237 continue; 11238 11239 ret = pmu_dev_alloc(pmu); 11240 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11241 } 11242 pmu_bus_running = 1; 11243 ret = 0; 11244 11245 unlock: 11246 mutex_unlock(&pmus_lock); 11247 11248 return ret; 11249 } 11250 device_initcall(perf_event_sysfs_init); 11251 11252 #ifdef CONFIG_CGROUP_PERF 11253 static struct cgroup_subsys_state * 11254 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11255 { 11256 struct perf_cgroup *jc; 11257 11258 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11259 if (!jc) 11260 return ERR_PTR(-ENOMEM); 11261 11262 jc->info = alloc_percpu(struct perf_cgroup_info); 11263 if (!jc->info) { 11264 kfree(jc); 11265 return ERR_PTR(-ENOMEM); 11266 } 11267 11268 return &jc->css; 11269 } 11270 11271 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11272 { 11273 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11274 11275 free_percpu(jc->info); 11276 kfree(jc); 11277 } 11278 11279 static int __perf_cgroup_move(void *info) 11280 { 11281 struct task_struct *task = info; 11282 rcu_read_lock(); 11283 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11284 rcu_read_unlock(); 11285 return 0; 11286 } 11287 11288 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11289 { 11290 struct task_struct *task; 11291 struct cgroup_subsys_state *css; 11292 11293 cgroup_taskset_for_each(task, css, tset) 11294 task_function_call(task, __perf_cgroup_move, task); 11295 } 11296 11297 struct cgroup_subsys perf_event_cgrp_subsys = { 11298 .css_alloc = perf_cgroup_css_alloc, 11299 .css_free = perf_cgroup_css_free, 11300 .attach = perf_cgroup_attach, 11301 /* 11302 * Implicitly enable on dfl hierarchy so that perf events can 11303 * always be filtered by cgroup2 path as long as perf_event 11304 * controller is not mounted on a legacy hierarchy. 11305 */ 11306 .implicit_on_dfl = true, 11307 .threaded = true, 11308 }; 11309 #endif /* CONFIG_CGROUP_PERF */ 11310